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PREFACE 

Integer programming (IP) is a class of constrained optimization problems in which 
some or all variables are integers and all mathematical functions in the objective and 
constraints are conventionally linear. In the professional community, the acronym 
MIP (mixed integer programming) is more often used, because many real-world 
problems involve a mix of continuous and integer-valued decision variables. 

PURPOSE, SCOPE, AND AUDIENCE 

We set out to write an easy-to-read, applied textbook for students enrolled in multiple 
academic disciplines and for professionals. In academia, the textbook is intended for 
graduate- and senior-level students of industrial engineering, operations research, 
management science, computer science, and applied mathematics. Other disciplines 
(such as operations management, supply chain management, logistics management, 
transportation engineering) that need a course in applied optimization would find this 
text a relevant option. Because of its application emphasis, this textbook can also be 
used as a reference book by practitioners whose jobs require modeling and solving 
real-world optimization problems using commercial integer programming software, 
as well as MIP software developers and analysts. 

Instructors who are preparing students for careers in the practice of operations 
research and management science will find this book appealing. However, because of 
its application emphasis rather than mathematical rigor, this book is not suitable for 
instructors who are looking for theoretical underpinnings, such as mathematicians 
who are selecting a text for a course in discrete or combinatorial optimization. 

xvii 



xviii PREFACE 

Instructors of operations research and management science will find this text a 
natural continuation of and complement to well-known introductory textbooks in 
operations research and management science. As the subtitle indicates, the major 
approach of this book is modeling and solution. Modeling is emphasized because 
the insertion of integer variables in a linear program (LP) enables much more rich 
and realistic representations of decision situations. Both in the examples and 
exercises, students develop advanced modeling skills. Integer and linear program-
ming terminology commonly referenced in commercial MIP solution software is 
covered in the text. This text provides extensive coverage of modeling techniques 
and solution methods with algorithms that are implemented in today's commercial 
software. 

TOPIC COVERAGE, LEVEL OF PRESENTATION, 
AND IMPORTANT FEATURES 

This text is organized into three parts—Part I: Modeling, Part II: Review of Linear 
Programming and Network Flows, and Part III: Solutions. Part I (Chapters 1-6) 
includes areas of successful integer programming applications, systematic modeling 
procedure, types of integer programming models, transformation of non-IP models, 
automatic preprocessing for better formulation, and an introduction to combinatorial 
optimization. Part II (Chapters 7-10) reviews algebraic-geometric concepts and 
solution methods related to LP and network flows that are needed for understanding 
IP. Part III (Chapters 11-15) describes various solution approaches for large-scale IP 
and combinatorial optimization problems in addition to fundamentals of typical 
software systems. Solution approaches include classical, branch-and-cut, branch-
and-price, primal heuristic, and Lagrangian relaxation. In Chapter 15, three popular 
modeling languages and one solver are introduced. Answers to selected problems 
from each chapter appear in an appendix. A more detailed preview of the text may be 
found in Section 1.5. 

As an application-oriented text, we aim to teach students about the art and science 
of mathematical modeling for the collection of problems that fit the MIP framework 
and about the algorithms and associated practices that enable those models to be 
solved most efficiently. To make algorithms easier to comprehend, this book places 
unique emphasis not only on how the algorithms work but also on why they work. To 
achieve these goals, reasoning and interpretation are exercised more often than 
rigorous mathematical proofs of theorems, which may be located in referenced 
articles. The authors have been very thorough in searching out and synthesizing 
various modeling and solution approaches that have appeared in disparate publica-
tions over the past 40 years. We want the student, who we envision will become a 
practitioner, to have a well-organized and comprehensive reference that eases the 
learning hurdles in integer programming and provides suggestions/guidelines for 
practice, once on the job. 

The book makes liberal use of examples and flowcharts. Each new concept or 
algorithm mentioned is illustrated by a numerical example. The book contains over 
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100 figures, either flowcharts or simple geometric drawings, to illustrate the concepts 
in the text. A unique feature is that where possible, we use graphics to draw together 
diverse problems or approaches into a well-structured whole. Chapters typically have 
between 10 and 20 exercises; some are simple applications similar to examples, and 
some are more comprehensive and challenging, such as choosing the appropriate 
methods from several presented, and applying them collectively to a problem. This 
again simulates the authors' experiences as practitioners. There are a few problems 
that require the reader to investigate a topic further or to attempt to prove an assertion 
or provide a counterexample. In summary, we attempted to write an applied integer 
programming text that emphasizes modeling and solution, with due attention to 
fundamentals of theory and algorithms. We believe it meets an unfulfilled need for an 
IP text that links together problem solving, theory, algorithms, and commercial 
software. 

SUGGESTIONS FOR COURSE USE 

This book is self-contained, requiring only a background in linear or matrix algebra. 
The book offers a great deal of flexibility to university course instructors. The entire 
book can be used for a two-semester sequence in linear and integer programming, at 
the level of seniors or masters students in engineering, computer science, or business 
schools. For students already completing a full course in linear programming, Parts I 
and III can be used as a masters-level course entitled Integer Programming or Integer 
and Combinatorial Programming. For students with a partial knowledge of linear 
programming obtained in an undergraduate survey of operations research, a com-
promise is to cover sections of Part I, II, and III. For instance, one coauthor taught a 
masters-level course Integer Programming using Chapters \-4, 7-10,11,12, and 15. 
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1 
INTRODUCTION 

1.1 INTEGER PROGRAMMING 

A linear programming problem (LP) is a class of the mathematical programming 
problem, a constrained optimization problem, in which we seek to find a set of values 
for continuous variables (xi, x2, ■ ■ ■ , x„) that maximizes or minimizes a linear 
objective function z, while satisfying a set of linear constraints (a system of 
simultaneous linear equations and/or inequalities). Mathematically, an LP is 
expressed as follows: 

(LP) Maximize z = YJ c¡x¡ 
i 

subject to y ^ a¡jXj <b¡ (i = 1,2,..., m) 
j 

xj>0 (j=l,2,...,n) 

An integer (linear) programming problem (IP) is a linear programming problem in 
which at least one of the variables is restricted to integer values. In the past two 
decades, there has been an increasing use of an alternate term—mixed integer 
programming problem (MIP)—for LPs with integer restrictions on some or all of 
the variables. In this text, the terms IP and MIP may be used interchangeably unless 
there is a chance of confusion. For clarity, we shall use the term pure integer 

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang 
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4 INTRODUCTION 

programming problem (or pure IP) to emphasize an IP whose variables are all 
restricted to be integer valued. 

The term "programming" in this context means planning activities that consume 
resources and/or meet requirements, as expressed in the m constraints, not the other 
meaning—coding computer programs. The resources may include raw materials, 
machines, equipments, facilities, workforce, money, management, information tech-
nology, and so on. In the real world, these resources are usually limited and must 
be shared with several competing activities. Requirements may be implicitly or 
explicitly imposed. The objective of the LP/IP is to allocate the shared resources, and 
responsibility to meet requirements, to all competing activities in an optimal (best 
possible) manner. 

The term "programming problem" is sometimes replaced by program, for short. 
Thus, an integer programming problem is also called an integer program, and so are 
mixed integer program, pure integer program, and so on. Mathematically, an MIP is 
defined as 

(MIP) Maximize z = S~\ cjxj + T^ ^Wk 
j k 

subject to ^2 a'JxJ + 5Z 8ikyk -b' (' = 1 ' 2 ' • • • ' m ) 
j k 

xj>o ( y = 1,2,...,«) 

y* = 0 , 1 , 2 , . . . (k=l,2,...,p) 

Note that all input parameters (Cj, ¿4> <*y, givb b¡) may be positive, negative, or zero. 
Using matrix notation, a mixed integer program may be expressed as 

(MIP) Maximize z = cTx + dTy 

subject to Ax + Gy < b 

x > 0 

y > 0 integer 

number of constraints 
number of continuous variables 
number of integer variables 
(Cj) is a row vector of n elements 
(dk) is a row vector of p elements 
(a¡j) is an m x n matrix 
(g,*) is an mxp matrix 
(bj) is a column vector of m constants (or right-hand-side column, rhs) 
(Xf) is a column vector of n continuous variables 

(v/t) is a column vector of p integer variables 

where m = 

n = 

cT-

dT = 
A = 
G = 
b = 
x = 

y = 
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All variables integer 

Mixed 
integer 

program 
(MIP) 

and n = 0 

All variables 

Pure 
integer 

pro gram 

All integer 
variables 0-1 

continuous 
and/> = 0 

Relax all integer 

Linear 
program 

(LP) 

requirements 
LP 

Relaxation 

Binary 
(0-1) 

integer 
program 

Single constraint and 

all parameters positive 

Single 
constraint and 
all parameters 
positive 

> 

Knapsack 
problem 

Integer 
knapsack 

All integer 
variables 0-1 

FIGURE 1.1 A simple classification of integer programs. 

When n = 0, no continuous variables x are present and the MIP reduces to depure 
IP. When p = 0, no integer-restricted variables y are present and the MIP reduces to a 
linear program. An LP is also obtained by relaxing (or ignoring) the integer 
requirements in a given MIR Thus, the resulting LP is called the LP relaxation 
(of a given IP). Unlike the above-mentioned LP that contains only variables x, the LP 
relaxation contains both x and y variables and treats y as a vector of continuous 
variables. 

An integer program in which the integer variables are restricted to be 0 or 1 is called 
a 0-1 (binary) integer program, or binary IP (BIP). A binary IP with a single < linear 
constraint, whose objective function and constraint coefficients are all positive, is 
called a knapsack (or backpack) problem. An IP with a single constraint and all 
positive constraint coefficients is called an integer knapsack program, in which the 
values of an integer variable are not restricted to 0-1. In particular, an integer 
knapsack program is a knapsack program if all integer variables are restricted to be 0 
or 1. Figure 1.1 depicts the relationships between various classes of MIPs under 
certain conditions. A box represents an IP class and an arrow represents the imposed 
condition(s) leading to a subclass from a class. There are many more subclasses than 
shown in this simple diagram, but the details of Figure 1.1 are adequate for this 
introductory chapter. 

1.2 STANDARD VERSUS NONSTANDARD FORMS 

Throughout this text, a mixed integer program will be said to be in standardform if ( 1 ) 
the objective function is maximized, (2) all the constraints are of < form, (3) each 
integer variable is defined over consecutive integer numbers whose lower bound is 0 
and upper bound infinity, and (4) each continuous variable is nonnegative with no 
finite upper bound. 

Any MIP that does not conform to the conditions (l)-(4) is considered to be in 
nonstandard form, but may be converted to a standard one through simple mathe-
matical manipulations. For ease of presentation, we shall use the standard form for the 
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remainder of the text, except for special purposes. The following are various 
nonstandard forms that need to be converted: 

• Minimization problem 
• Inequality of > form 

• Equation (equality constraint) 
• Unrestricted variable (continuous or integer) 
• Variable with a positive or a negative lower bound 
• Variable with a finite upper bound 

If a given problem is a minimization problem, then it may be converted to an 
"equivalent" maximization problem. Two problems are considered equivalent if their 
optimal solutions are the same. Consider the given problem, 

Minimize z' = Y^ cjXj + ¿2 ^kyk 
j k 

To convert to a standard form, we multiply the given objective function by — 1 and 
change the minimization to the maximization as follows: 

Maximize —z' = — Y^ cjxj— /_, ¿4% 
j k 

For example, we convert min z' = 3x\ — 2x2 + 4x3 to max z = — 3xi + 2x2 — 4x3, 
and the new objective value becomes z = —z'. 

If a given inequality is in > form, we then convert it to the standard < form 
by multiplying the inequality by — 1 and reversing the direction of the inequality 
sign. For example, the inequality 6x\ — 5x2 + 3x3 > 10 may be converted to 
—6x\ + 5x2 — 3x3 < —10. 

Converting an equation to the standard < form requires two steps: ( 1 ) replace the 
equation by a pair of inequalities of opposite sense, and as before, (2) convert the 
inequality of > form to the standard < form. For example, we first convert 
—2xj + 5x2 — 3x3 = 15 to the following two inequalities: — 2x\ + 5x2 — 3x3 < 15 
and —2x\ + 5x2 - 3x3 > 15. We then convert the nonstandard inequality by multi-
plying it by — 1 and reversing the sign of the inequality to get the second standard 
inequality: 2xx —5x2 + 3x3 < —15. 

If a continuous or an integer variable is unrestricted in sign (i.e., it can be negative, 
positive, or zero), then we may replace an unrestricted variable by the difference of 
two new variables, xf and xj, as follows: 

Xj = Xj ~Xj , Xj , Xj = U 

where xf = x¡ if x¡ > 0 
= 0, otherwise 

xj — —Xj if Xj < 0 

= 0, otherwise 
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Note that the same variable t may be used for other unrestricted variables. Thus, 
only one variable is increased regardless of the number of unrestricted variables. 

If a continuous or an integer variable, respectively, has a positive or negative lower 
bound, say, /, or 4, respectively, then it can be transformed to a new variable (say, x' or 
y'k) by substituting 

x'j = xrh o r y'k =yk-k 

The transformed problem is equivalent to the original problem with a set of new 
variables. After solving the transformed problem, the optimum solution in terms of 
the original variables is recoverable from the above equations. 

Recall that the upper bound of a continuous or an integer variable in the standard 
form of IP is infinite. Thus, a continuous or an integer variable having a. finite (value 
of) upper bound needs to be transformed. However, the above substituting equation 
cannot be used to get a standard (an infinite) upper bound because the new transformed 
variable will still have a finite upper bound (why?). In this case, an upper bound 
constraint, Xj < Uj or yk < uk, must be adjoined to the program. Basically, we treat a 
lower or an upper bound as a simple constraint consisting of a single variable. 

1.3 COMBINATORIAL OPTIMIZATION PROBLEMS 

A combinatorial optimization problem {COP) is a discrete optimization problem in 
which we seek to find a solution in a finite set of solutions that maximizes or minimizes 
an objective function. This type of problem usually arises in the selection of a finite set 
of mutually exclusive alternatives. These qualitative alternatives may be quantified by 
the use of discrete variables. Usually, the set of all possible solutions can be 
enumerated and their associated objective values can be evaluated to determine an 
optimum solution. But unfortunately, the number of solutions by complete enumera-
tion is usually too huge even for a moderate-sized problem. 

The COP is closely related to the IP in that most, if not all, COPs can be formulated 
as 0-1 integer programs. Well-known examples of COP include the classical assign-
ment problem and traveling salesman problem (TSP). The assignment problem may 
be applied, for example, to assign «jobs to n workers in a most efficient manner so that 
each job is assigned to one and only one worker, and vice versa. The TSP originates 
from a salesman who starts from a home city to visit n — 1 cities so that each city is 
visited once and only once and then returns to the home city with a minimum travel 
distance. The assignment problem is "well solved" because any optimum solution to 
its LP relaxation is naturally integer. Moreover, there are special assignment algo-
rithms such as Hungarian algorithm that are available to solve the problem much 
faster than the standard simplex method. This class of "well-solved (easy)" integer 
programs will be discussed in more detail in Chapter 10. 

It is "hard" to find an exact optimum solution to a traveling salesman problem 
because of its combinatorial nature. Although there are many algorithms available for 
finding an approximate solution, the state of the art for finding an exact solution is to 
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formulate and solve it as a 0-1 (binary) integer program. Unfortunately, the 
formulated model requires an enormous number of binary variables and constraints 
even for a moderate-sized problem. Modeling combinatorial optimization problems 
will be discussed in Chapters 5 and 6, and the solution methods to these problems will 
be a main theme of Chapters 11-13. 

1.4 SUCCESSFUL INTEGER PROGRAMMING APPLICATIONS 

The authors believe that integer programming plays a key role in operations research, 
an observation supported by analysis below. This textbook is grounded in theoretical 
developments in IP over the past five decades, but is written in hope of bridging the gap 
between academic developments in IP and modern OR practice. 

Interfaces, a bimonthly journal publication of INFORMS, had published over 500 
OR/MS application articles from 1979 to 2006, when we started writing this book. We 
reviewed all these articles and surprisingly found that about 23% of them used integer 
programming and that many of them were finalists of the annual Franz Edelman 
Award competitions over the years. 

We further identified 44 IP application articles in Interfaces that claimed enormous 
savings in cost or increase in profit. Financial benefits cited were of a magnitude of 
tens or hundreds of million dollars per year. In Table 1.1, these 44 applications are 
classified by industry sector. They are transportation and distribution, manufacturing, 
communication, military and government, finance, energy, and others. In this count, 
the sectors of manufacturing and transportation and distribution tie for first place in 
terms of most IP application papers (13 each), followed by the communication, 
military and government, and finance sectors (4 articles each of three sectors). Within 
the sectors, the airline industry had the most application papers (9 articles). 

These 44 articles also are classified in Table 1.1 by problem/model type: 
workforce/staff scheduling, transportation and distribution, supply chain manage-
ment, production planning, government services, financial services, project man-
agement, and others. In this count, workforce/staff scheduling problem has the most 
papers ( 11 articles), followed by the transportation and distribution ( 10 articles), and 
the supply chain management (5 articles). 

1.5 TEXT ORGANIZATION AND CHAPTER PREVIEW 

This text is organized into three parts: Part I Modeling, Part II Review of Linear 
Programming and Network Flows, and Part III Solutions. Part I (Chapters 1-6) 
includes areas of successful integer programming applications, systematic modeling 
procedure, types of integer programming models, transformation of non-IP models, 
automatic preprocessing for better formulation, and an introduction to combinatorial 
optimization. Part II (Chapters 7-10) reviews algebraic-geometric concepts and 
solution methods relating to LP and network flows that are needed for understanding 
IP. Part III (Chapters 11-15) describes various solution approaches for large-scale IP 



TABLE 1.1 Classification of IP Application Papers in Interfaces by Industry 

Industry 
Category Subcategory 

Company Name 
(Year Published) IP/LP 

Nature of Primary 
Applications 

Savings/Benefits 
(Projected/Actual) 

Transportation and 
distribution 

Airline 

Airline 

Airline 

Airline 

Airline 

Airline 

Airline 

Airline 

Airline 

Airline 

American Airlines 
(1981) 

American Airlines 
(1991°) 

American Airlines 
(1991*) 

Air New Zealand 
(2001°) 

American Airlines 
(1989) 

Continental 
Airlines (2004) 

Continental 
Airlines (2003*) 

Delta Airlines 
(2003 c) 

Qantas Airways 
Limited (1979) 

United Airlines 
(1986a) 

IP 

IP 

IP and LP 

IP 

IP 

IP 

IP 

IP 

IP and LP 

IP and LP 

Used an IP model to determine the 
least-cost crew schedule 

Crew pairing optimization 

Implemented a network optimiza-
tion-based system to help reduce 
delays caused by air traffic control 

Developed computer systems to 
solve the planning and rostering 
processes (IP problem) 

Used IP algorithm to build flight crew 
schedules 

Solved large-scale IP-formulated 
pilot staffing and training 
problems to save costs 

Developed IP-based system to 
generate optimal crew recovery 
solutions 

Developed an automated optimiza-
tion system to minimize operating 
costs and maximize training 
assignments 

Used ILP model for planning annual 
manpower requirement for 
telephone reservation 

Used IP/LP-based system to control 
the entire manpower scheduling 
process 

$0.25 million 

$20 million per year 

$5.2 million 

$15.655 million per 
year 

$ 18 million per year 

$10 million per year 

$40 million 

$7.5 million 

$0.235 million 

$6 million per year 

{continued) 
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Industry 
Category Subcategory 

Company Name 
(Year Published) IP/LP 

Public 
transportation 

Railway 

Railway 

Shipping 

Shipping 

Container port 

lication Telephone 

Telephone 

Telephone 

The Société de 
transport de la 
communauté 
urbaine de 
Montréal (1990°) 

The Canadian 
Pacifie Railway 
(2004*) 

NS Reizigers 
(Dutch Railway) 
(2005 e) 

Menlo Worldwide 
Forwarding 
(2004 a) 

UPS (2004") 

Hong Kong Inter-
national Term-
inais (2005 a) 

AT&T (1990a) 

GTE (1992") 

Bellcore (1995 a) 

IP 

IP and LP 

IP 

IP 

IP 

IP 

IP 

IP 

IP 

Nature of Primary Savings/Benefits 
Applications (Projected/Actual) 

Employs network flow methods (an 
IP formulation) to generate 
optimal vehicle schedules 

$4 million per year 

Used IP/network algorithms for 
planning locomotive use and 
distributing empty cars 

Applied a set covering model to 
support the development of an 
alternative set of scheduling rules 

Developed a network routing 
optimization model to optimize its 
transportation network in North 
America 

Created an IP-based system to 
optimize the design of package 
delivering networks 

Developed a decision support system 
to generate various decisions, 
including scheduling, storage, and 

CN$510 million 

$4.8 million per year 

$80 million 

$87 million 

$100 million per year 

Developed an MIP-based system to 
minimize cost 

Developed an IP-based optimization 
tool to improve productivity 

Built an IP-based decision support 
software to design robust fiber-
optic networks 

$1 million 

$30 million per year 

$50-225 million 



Telephone 

Television 

Manufacturing Automobile 

Automobile 

Automobile 

Automobile 

Chemical 

Chemical 

Chemical 

Computer 

Motorola (2005*) 

NBC (2002") 

Ford Motor 
Company 
(2001") 

General Motors 
(1987°) 

General Motors 
(2004 d) 

Volkswagen of 
America (2000) 

Air Products and 
Chemicals 
(1983*) 

Proctor & Gamble 
(2006") 

Trumbull Asphalt 
(1985) 

Digital Equipment 
Corporation 
(1995") 

IP 

IP 

IP 

IP/LP 

COP 

IP 

IP 

IP 

IP 

IP 

Used Emptoris's end-to-end Internet 
negotiations platform to identify 
the best procurement strategy 

Used MIP-based sales systems to 
improve its revenues and 
productivity 

Developed an IP model to shorten the 
planning process and establish 
global procedures 

Used network tools to reduce 
logistics cost 

Developed a heuristic-based decision 
support tool to schedule vehicle 
road tests 

Used a combination of simulation 
and MIP models to analyze supply 
chain 

Developed a decision support system 
for vehicle scheduling 

$600 million 

$200 million 

$250 million 

$2.9 million per year 

Millions of dollars of 
savings; 100% in-
crease in throughput 

35% reduction in cost 

$1.54-1.72 million 

Built a sourcing network that 
optimizes sourcing problem with 
suppliers 

Used MIP to assist planning of 
sourcing, distribution, blending, 
and facility configuration 

Used a large-scale MIP model to 
minimize supply chain cost 

$294.8 million 

$1 million per year 

$100 million 

(continued) 
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Industry 
Category Subcategory 

Company Name 
(Year Published) IP/LP 

Nature of Primary 
Applications 

Savings/Benefits 
(Projected/Actual) 

Energy 

Food Golden Vale Coop- IP and LP 
erative Cream-
eries Ltd (1983) 

Food Irish Milk Coop- IP and LP 
erative (1986) 

Lumber The Chilean Forest IP 
Sector (1999 a) 

Machinery Schindler Elevator IP 
Corporation 
(2003 a) 

Pharmacy P&G (1997 a) IP and LP 

Photography Kodak Australasia IP 
(1991a) 

Steel The Bethlehem IP 
Plant (1989 a) 

Electricity Southern Company IP 
(1991a) 

Gas Exxon Corporation IP 
(1982a) 

Developed large-scale IP/LP pro-
gram to analyze the problem of 
milk collecting and transporting 

Used large-scale network (graphic) 
method to solve the transshipment 
and lot sizing problem 

Implemented MIP models to support 
decisions on truck scheduling, 
harvesting, and so on 

Provided an IP-based application to 
optimize preventive maintenance 
operations 

Developed MIP and network models 
to improve work processes 

Developed a two-phase IP-based 
system for the problem of cutting 
photographic color papers 

Developed a two-phase, IP-based 
procedure to determine new mold 
dimensions 

Installed an optimization software 
based on IP algorithm to reduce 
fuel cost 

Developed an MIP model to evaluate 
projects and determine utility 
distribution 

$4 million 

IR £1.5 million per year 

$20 million per year 

$1 million per year 

$200 million 

$2 million 

$8 million per year 

$140 million 

$100 million 



Military and 
government 

Finance 

Water 

Military 

Military 
Police 

Tax 

Bank 

Bank 

Insurance 

Hidroeléctrica 
Española (1990a) 

South African 
Defense Force 
(1997*) 

U.S. Army (1998°) 
The San Francisco 

Police Depart-
ment (1989*) 

Office of Tax 
Analysis, U.S. 
Treasury Depart-
ment (1980) 

The Maryland 
National Bank 
(1983) 

The World Bank, 
Chinese State 
Planning Com-
mission (1995 a) 

PSI Insurance 
(1992°) 

IP 

IP 

IP 
IP 

IP 

IP 

IP 

LP and IP 

Insurance The Variable An-
nuity Life Insur-
ance Company 
(1984) 

IP 

Developed and implemented a 
hierarchy of models, including IP 
and network models, to manage its 
system of reservoirs 

Used MIP model to analyze the size 
and shape of defense force when 
no threat exists 

Used MIP model to allocate budget 
Implemented an IP-based support 

system for deploying patrol 
officers 

Used an IP model to minimize the 
loss of information by using a 
subset of the database instead of 
the whole file 

Implemented a computerized IP 
model for transit check clearing 

$2 million per year 

$32-78 million 

$360 million 
$14 million per year 

3-13% improvement in 
accuracy 

$0.1 million 

Developed a coal transporting study 
system with MIP as an important 
element 

$6.4 billion 

Developed a series of optimization-
based models, including LP/IP, to 
value and trade mortgage-backed 
securities 

Used branch-and-bound method to 
solve an IP model to find out the 
best number of sales regions 

Over $10 billion 
increase in trading 
volume; rank in-
creased from below 
No. 10 to No. 3 

$8.8 million 

(continued) 
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Industry 
Category 

Others 

Subcategory 

Construction 

Retail 

Retail, alcohol 

Restaurant 

Waste collection 

Education 

Company Name 
(Year Published) 

Homart 
Development 
Company 
(1987") 

Fingerhut 
Companies, Inc. 
(2001a) 

Société des alcools 
du Québec 
(2005 e) 

Taco Bell (1998 a) 

Waste Management 
(2005 a) 

Nanzan Gakuen 
(Nanzan 
Educational 
Complex (2006a) 

IP/LP 
Nature of Primary 

Applications 
Savings/Benefits 

(Projected/Actual) 

IP 

IP 

IP 

IP 

COP 

COP 

Designed an IP model to schedule the 
divestiture of shopping malls 

Developed IP-based system to select 
the most profitable sequence of 
catalogs mailing stream 

Developed a solution engine that 
implements an IP model to reduce 
the costs of producing worker 
schedules 

Used IP model to schedule and 
allocate crew members to mini-
mize payroll 

Developed a comprehensive route 
management system to solve its 
vehicle routing problems 

Solved school bus problems, school 
time problems, and the problem of 
assigning supervisors for entrance 
examinations 

$40 million 

$3.5 million per year 

CN$1 million per year 

$53 million 

$18 million 

$2 million 

" Franz Edelman Award finalist of the previous year. 
* Franz Edelman Award winner of the previous year. 
c Daniel H. Wagner Prize finalist of the previous year. 
d Daniel H. Wagner Prize winner of the previous year. 
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and combinatorial optimization problems in addition to fundamentals of typical 
software systems. Solution approaches include classical, branch-and-cut, branch-
and-price, primal heuristics, and Lagrangian relaxation. In Chapter 15, three popular 
modeling languages and one solver are introduced. Answers to selected exercises 
from each chapter appear in an appendix. 

This chapter (a) defines the IP model and associated notation to be used in the text, 
(b) classifies IP models and describes their relationships to linear and combinatorial 
optimization models, (c) previews the contents of each chapter, and (d) categorizes 
numerous successful IP applications arising in diverse industry/business sectors, 
based on survey data collected from the articles published in Interfaces (a bimonthly 
journal by INFORMS) 1979-2006, when we started writing this book. 

Chapter 2 (a) explores the assumptions underlying the MIP mathematical model 
and explains their physical interpretations, (b) provides a step-by-step procedure for 
building a model from a given real-world problem, and (c) introduces fundamental 
formulations for the most utilized types of MIP models that are identified from the 
survey of successful applications described in this chapter. Seven assumptions 
underlying the MIP problem are fully uncovered through a careful examination of 
its mathematical anatomy. Some of these assumptions do not appear explicitly in 
other texts of operations research and integer programming. 

In Chapter 3, beyond the simple use of 0-1 variables discussed in Chapter 2, the 
formulation power of 0-1 variables extends their ability to transform a variety of 
optimization models into integer programs. Transformable optimization models are 
identified and grouped together according to the types of decision variables, math-
ematical functions, and constraints. This chapter also describes the relation between 
logical (Boolean) expressions and 0-1 formulations, in addition to modeling the 
bundle pricing problem, which is a common business practice. These features appear 
for the first time in any integer programming text. 

Chapter 4 (a) defines and explains what is meant by better formulation of an IP 
problem, (b) introduces several basic preprocessing techniques, for both general and 
special problems, that can automatically transform a user-supplied formulation into a 
better one, and (c) identifies primary preprocessing functions/areas that are covered 
by most preprocessors of current IP software. 

Chapter 5 begins with defining the class of COPs and ends with a discussion of the 
computational complexity of a problem or an algorithm. Three classes of COPs are 
discussed: set covering, partitioning, and packing; matching problems; and cutting 
stock problems. 

Chapter 6 is devoted to the best-known combinatorial optimization problem, the 
TSP, and its many variations. More details on TSP applications are given, expanding 
the discussion in this chapter. Solution approaches, which generally involve creating 
constraints that prevent inclusion of subtours in the IP search for the optimal tour, 
depend on whether the arcs connecting the nodes are one-way (asymmetric TSP) or 
bidirectional (symmetric TSP). 

Chapter 7 reviews the fundamentals of linear programming theory and network 
flows that are essential to the understanding of the solution space and solution 
methods to be discussed in Chapters 11-13. 
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Chapter 8 reviews/introduces basic geometric concepts and terminology that are 
essential to the understanding of the properties of the solution spaces and cutting 
planes for both general and special IP problems. These concepts are prerequisites for 
full understanding of the branch-and-cut method to be discussed in Chapter 12. 

The modern methods for solving a large-scale integer program require the 
optimization and reoptimization of a usually long sequence of LP relaxation 
problems that in turn are often solved by a variety of simplex-based methods 
(and/or an interior point method). Chapter 9 reviews four simplex-based methods 
that serve as building blocks for solving integer programs. The simplex method 
provides the foundation for optimizing a long sequence of LP relaxations. The 
simplex method for upper-bounded variables is used for reducing the problem size by 
implicitly handling the upper and lower bounds on variables (equivalent to single-
variable constraints). The dual simplex methodic most effective for reoptimizing the 
current optimum, after addition of constraints, without resolving the augmented LP 
problem from scratch. The revised simplex method produces the same sequence of 
bases as the simplex method, but depends on updating the basis inverse (m columns) 
rather than the entire simplex tableau (n columns) in each iteration. 

Chapter 10 (a) identifies a class of easy network optimization problems whose IP 
formulations are solvable as LPs by simply ignoring the integer requirements, (b) 
describes the sufficient conditions (or model structure) that characterize this class of 
problems, and (c) introduces a more efficient algorithm than the ordinary simplex for 
solving this class of network optimization problem. 

Chapter 11 introduces three classical approaches for solving integer programs: 
branch-and-bound, cutting plane, and group theoretic. Currently, these approaches are 
not implemented in practice as stand-alone solvers. However, they are integrated parts 
of a modern solution approach such as the branch-and-cut to be described in Chapter 12. 

The recent advances in solving large-scale integer programs have been made 
possible by great improvements in modeling, preprocessing, solution algorithms, LP 
software, and computer hardware. We have already discussed modeling and pre-
processing. Chapter 12 addresses a modern solution approach known as the branch-
and-cut, in which a substantial portion of the discussion centers on the generation of 
cuts that are useful for solving general and special integer programs. 

In the previous chapter, branch-and-bound is generalized to include generation of 
cuts or rows, hence the name branch-and-cut. In Chapter 13, branch-and-bound is first 
generalized to include generation of columns by solving pricing problems, hence the 
name branch-and-price, and then generalized to include columns and rows, hence the 
name branch-and-price-and-cut. Basically, all these generalizations solve a sequence 
of LP relaxations of a given IP. Branch-and-cut tightens the LP relaxations (or 
polyhedra) by adding cuts or constraints (rows). Branch-and-price tightens the LP 
relaxations by generating a subset of profitable columns associated with variables to 
join the current basis. These columns are generated iteratively by solving subpro-
blems or pricing problems. 

Chapter 14 introduces a variety of primal heuristic algorithms that can be used to 
obtain a good solution or an approximate solution for an integer program or a 
combinatorial optimization problem. Both classical and artificial intelligence (AI) 
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heuristic algorithms are provided. The traveling salesman problem is used for the 
purpose of illustration. This chapter also (a) describes various relaxation methods for 
solving IP problems, (b) lists examples of IP model types to which the Lagrangian 
relaxation approach is applied, (c) derives the associated Lagrangian dual problems 
for both linear and integer programs, (d) provides efficient methods for solving the 
Lagrangian dual, and (e) develops Benders' decomposition algorithm for integer 
programming. 

Chapter 15 (a) provides some practical considerations when algorithms are 
implemented in software, (b) describes the key components and features of a typical 
software system, (c) introduces three commonly used modeling languages (AMPL®, 
LINGO®, and MPL®) in more depth than earlier chapters, and (d) briefly describes 
other modeling languages and systems. 

1.6 NOTES 

Section 1.1 

General IP textbooks that are referenced in this text include Hu (1969), Garfinkel and 
Nemhauser (1972), Zionts (1974), Taha (1975), Nemhauser and Wolsey (1988), 
Parker and Rardin (1988), Salkin and Mathur (1989), and Wolsey (1998). 

Introductory OR/MS textbooks that are referenced in this text include Wagner 
(1975), Winston (1994), Hillier and Lieberman (2005), and Taha (2007). 

Journals that are referenced include Interfaces, Operations Research, Manage-
ment Science, European Journal of Operational Research, HE Transactions, Trans-
portation Science, Naval Research Logistics Quarterly, Journal of the Association 
for Computing Machinery, Mathematical Programming, Discrete Applied Mathe-
matics, and SIAM Journal on Algebraic and Discrete Methods. 

Many textbooks, like this one, use a maximization problem as a standard MIP, 
while others use a minimization problem. In a minimization MIP, the standard 
inequality constraint is of > form. 

Section 1.2 

Conversion from a nonstandard MIP to standard form is similar to that for linear 
programs. For references of conversion techniques, see any introductory OR/MS 
textbooks such as Winston (1994) and Hillier and Lieberman (2005). 

Section 1.3 

Some authors, for example, Parker and Rardin (1988), view discrete optimization 
problems as a combination of integer programming and combinatorial 
optimization problems. Literally speaking, a discrete optimization problem is an 
optimization problem defined over discrete variables. However, a discrete variable is 
different from an integer variable in that an integer variable may take on any 
consecutive integral values, while a discrete variable may take on specified discrete 
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values, consecutive or not, integer number or not—essentially what mathematicians 
call a countable set. Thus, an integer variable is a discrete variable, but a discrete 
variable may or may not be an integer variable. For example, both solution sets of ;y5 

and ^3, defined by Z5 = {3,4,5,6,7} andZ3 = {4,6,7,10}, respectively, are discrete 
variables. But y3 is not an integer variable, while variable y5 is both an integer and a 
discrete variable. In Chapter 2, we shall show how a discrete variable can be converted 
to a set of binary (0-1) variables. 

Section 1.4 

INFORMS is a professional society that was founded through the merger of two 
older societies: the former Operations Research Society of America (ORSA) and 
The Institute of Management Science (TIMS). 

Interfaces, a bimonthly journal publication of INFORMS, has published over 500 
OR/MS application articles since 1971. All articles are available in both electronic 
form and hard copy. 

The Franz Edelman Award was founded in 1972 (initially under the name of "the 
Annual International Management Science Achievement Award"). From 1975 to 
1984 (the year in which the award name was changed to Franz Edelman Award), the 
papers of the finalist and the winners were published in Interfaces in the last issue of 
that year. From 1985 up to today, the first issue each year is dedicated to the finalist and 
the winner(s) of the previous year. "The Edelman Award recognizes outstanding 
implemented operations research that has had a significant, positive impact on the 
performance of a client organization. The top finalist receives a $10,000 first prize" 
(OR/MS Today). 

The Daniel H. Wagner prize was founded in 1998. It "emphasizes the quality and 
coherence of the analysis used in practice. Dr. Wagner strove for strong mathematics 
applied to practical problems, supported by clear and intelligible writing. This prize 
recognizes those principles by emphasizing good writing, strong analytical content, 
and verifiable practice successes. The competition is held each year in the fall at the 
INFORMS Annual Meeting" (see http://www2.informs.org/PrizesAVagnerPrize. 
html for details). Papers of each year's finalists are published in the fifth issue of 
Interfaces of the following year. 

1.7 EXERCISES 

1.1 Read one of the successful application articles from the category of transporta-
tion and distribution published by INFORMS in Interfaces as shown in 
Table 1.1. Do the following: 

(a) Verify the entries described in the row associated with the company. 
(b) Use your own words to describe the objective, sets of constraints, 

decision variables, and types of variables (continuous or integer, binary 
or general). 
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1.2-1.7 Do the same for each of the remaining categories: (1.2) communications, 
(1.3) manufacturing, (1.4) energy, (1.5) military and government, (1.6) 
finance, and (1.7) others. 

1.8-1.14 Read one of the application articles from each of the following problem 
types published in Interfaces, as given in Table 1.1 : ( 1.8) project manage-
ment, (1.9) production planning, (1.10) workforce scheduling, (1.11) 
transportation and distribution, (1.12) supply chain management, (1.13) 
cutting stock, and (1.14) machine scheduling and sequencing. Do the 
following: 

(a) Verify the entries described in the row associated with the company. 

(b) Use your own words to describe the objective, sets of constraints, 
decision variables, and types of variables (continuous or integer, binary 
or general). 

1.15-1.19 Transform each of the following nonstandard integer programs into a 
standard form of IP defined in this text. 

1.15 Minimize 3xi — 11x2 + 5x3 + X4 

subject to x\ + 5x2—3x3 + 6x4 < 7 

—xi +X2+X3—2x4 > 3 

X ] , X2, X3, X4 > 0 

—X] +5X2 + 2X3 —7X4—X5 

X2 +X3 +X4 > 13 

*i — *2 + 2x4 + 2x5 < 4 

X\ unrestricted in sign 

> 0 

x3 > - 2 

1.17 Maximize 7xi + 2x2 + x3 —4x4 

subject to 2xj—X2 + X3<10 

X] + X4 = 12 

X], X2, X4 >0 

x3 > 0 

1.16 Maximize 

subject to 
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1.18 Minimize - l l j q + 13x2-15x3 

subject to x2 + x-i = 1 

xi -x3 < 3 

x\ unrestricted in sign 

x2>5 

* 3 > 0 

1.19 Maximize x\ +x2 + x3 

subject to -x\ + x2 > 8 

X\ —X2 + X3 < 2 

x\, x3 > 0 

x2 < 15 



2 
MODELING AND MODELS 

In Chapter 1, we mathematically defined a mixed integer program (MIP). A 
mathematical definition in general has the advantages of being precise, concise, and 
capable of data manipulation. But to most managers and even some practitioners, it 
may be too abstract to comprehend and difficult to relate to reality. To alleviate this 
difficulty, we begin this chapter with an explanation of the real-world meanings of the 
MIP assumptions (or conditions). Section 2.1 describes these assumptions and their 
physical implications. Having this background, we then introduce a three-step 
procedure for modeling real-world problems in Section 2.2. This procedure system-
atically leads the practitioner toward an MIP model. In case the constructed model is 
not an MIP, the transformation techniques introduced in the next chapter may be used 
to obtain an equivalent MIR 

Recall in Chapter 1 we tabulated many successful IP application papers published 
in Interfaces and classified them by problem type. Each problem type will be given 
one to three examples in Sections 2.3-2.9. These examples may appear to be simpler 
than the real-world problems described in the application articles. Nevertheless, they 
do provide primary characteristics of the model types. 

Applied integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang 
Copyright © 2010 John Wiley & Sons, Inc. 
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2.1 ASSUMPTIONS ON MIXED INTEGER PROGRAMS 

Recall the following mixed integer program defined in Chapter 1 : 

(MIP) Maximize z = VJ c¡x¡ + 2~] dkyk 

j k 

subject to Y^, a'Jxj + ^2 gikyk - b i (' = 1.2, • • •, w) 
1 k 

xj>0 ( 7 = 1 , 2 , . . . , « ) 

Vk= 0 ,1 ,2 , . . . (k=l,2,...,p) 

The mixed IP comprises two fundamental building blocks: variables (including 
continuous Xj and integer yk) and input parameters (including Cj, dk, a¡j, gik, b¡, m, 
n, p). The objective function is a summation of several functions, each containing a 
single variable. Likewise, each constraint function (the left-hand side of an inequality) 
is also a summation of several functions of single variables. Both the objective and the 
constraint functions in the mixed IP are separable and linear. Figure 2.1 gives an 
anatomy of all assumptions imposed on a mixed integer program. 

The above mathematical definition of an MIP implies the following assumptions: 

• Divisibility assumption for each continuous variable (xj > 0) 
• Integrality assumption for each integer variable 0^ = 0, 1, 2, ...) 
• Certainty (constant) assumption for each input parameter (c7, dk, <%, g¡k, b¡) 

• Proportionality assumption for each term in the constraint and objective 
function (cjXj, dkyk, a^Xj, gikyk) 

• Additivity and separability assumption for each combined function in the 
objective and constraints ÇEJCJXJ, Y.kdky^ Hjavxj' Eftft^k) 

• Single-objective assumption(max or min z = ^flXj + Ylk^kïk) 
• Simultaneousness (conjunction) assumption for the system of all constraint 

equations and inequalities 

Now we interpret each of the above assumptions in detail. 
The divisibility assumption implies that each continuous variable in a solution is 

allowed to be any real value, which may carry an arbitrary number of decimal places. 
For example, a production level of 2534.397 cars per week is an acceptable computed 
solution because in practice it may be rounded up to 2535 or rounded down to 2534 
without making any difference in a practical sense. Continuous commodities such as 
the quantity of water flowing through a segment of a pipeline obviously satisfy 
divisibility. 

The integrality assumption implies that each integer variable is restricted to be one 
of the integral values {0, 1, 2, . . .} or binary values {0 or 1}. A solution carrying a 
fractional value is unacceptable under this assumption. For example, we are to 
determine whether plant A or plant B should be built and a computed solution of linear 



Divisibility 
assumption on 
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variables: 

x,>0 

Constant 
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input parameters: 

Combined 
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Simultaneous 
assumption of all 

constraints 

Equality/inequality 
form of constraints 

Combined 
MIP 

FIGURE 2.1 Anatomy of MIP assumptions. 
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program results in building 0.57 plant A and 0.43 plant B. Obviously, this fractional 
solution does not make sense in decision making. Even if sometimes a sensible 
solution were obtained after rounding, chances are this solution might not be 
optimal. 

The certainty assumption implies that the values of all input parameters can be 
estimated or predicted with almost certainty, if not certainty. In other words, under this 
assumption, each input parameter (data point) is constant or fixed, and any variation 
about this fixed value is negligible. Consider a counterexample. Suppose a profit of a 
certain product per unit is $ 1.2 if the economy is good, a profit of $0.3 if the economy 
is mediocre, and a loss of $1.1 if the economy is bad. There are three possible values 
regarding the unit profit or loss depending on the economic conditions. 

There is another class of mathematical program in which the unit profit is a random 
variable following a certain probability distribution. The integer program with 
random parameter(s) is called a stochastic integer program. Another class of 
mathematical program in which the unit price is a mathematical function of a certain 
parameter is called a parametric integer program. 

The proportionality (linearity) assumption implies that the total contribution to a 
function value is proportional to the values of a variable. In other words, the marginal 
contribution to the function value by each unit of a variable is constant. Figures 2.2 
and 2.3 depict, respectively, the proportionality assumption of a continuous variable x 
and an integer variable v. Note that both increasing and decreasing functions are 
linear, and each linear function has a constant slope over the domain defined by the 
variable(s). 

Recall that the slope of a continuous function at any continuous point x is 
defined as 

d/W_ ,. f(x + A)-f(x) 

where A is arbitrarily small and approaches to 0. For the function of continuous 
variable xx defined in Figure 2.2, the slope = 1ÍITIA^O(2(.X:I +A)— X\)/A = 2, a 
constant for every value of X\. For a function of continuous variable x2, the slope = 
limA ̂ o(—3(*2 + A) — (—3^2))/A = —3, a constant for every value of x2-

The slope of a discrete function at any discrete point y is defined as 

4T(y) = / (y + A)-/(y) 
Ay A 

where A is a positive increment (equal to 1 in this case). Applying this slope definition 
to the two functions given in Figure 2.3, we obtain the following constant slopes, 
respectively: 

/(yi + i)-/(yi) = 2 _ 2 
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FIGURE 2.2 Proportionality of continuous variables: (a) Increasing linear function; 
(b) decreasing linear function. 
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FIGURE 2.4 Counterexamples for the proportionality assumption. 

and 

Z(y2 + i)-/(y2) = - 3 
()>2 + l)-y2 1 

- 3 

Counterexamples to the proportionality assumption of continuous variables are 
2x2 and 8 — x2. They are nonlinear functions, as shown in Figure 2.4. Any math 
programming problem containing any nonlinear function in the objective or a 
constraint function is called a nonlinear programming problem {nonlinear program). 

The additivity/separability assumption implies that every function (in the objec-
tive or in each of the constraints) can be expressed as a sum of several functions, each 
containing a single variable. Note that the function 2>X\ — 5x2 is equivalent to the sum 
of two single-variable functions: 3xt + (—5x2), with a negative coefficient in the 
second function. Also note that a function is separable if it is an algebraic sum of 
functions of single variables. 

Mathematically, a separable function is defined as f{x\, x2, . ■ ■, x„) = 
f\ C*i ) +/a(x2) + • • • +f„(x„). Counterexamples of additivity/separability include 
functions that contain product terms such as xxx2 and x 
functions are nonseparable and nonlinear. 

-2x\x2-\-x2. These 
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Precaution: When formulating an objective function or a constraint equation/ 
inequality, make sure that the units or dimensions of all terms in the same function are 
identical. 

The single-objective assumption implies that an optimization problem satisfying 
the above assumptions, but with multiple objectives, is not a mixed integer program. 
However, there are cases where a multiobjective problem may be converted into a 
single-objective problem. The multiobjective problem is beyond the scope of this 
book. For further information, read the references given in Section 2.10. 

The simultaneousness assumption implies that a feasible solution must simulta-
neously satisfy all the constraint equations and inequalities. That is, any feasible 
solution must not violate any constraint in a given mixed IP. If a problem requires only 
a subset of constraints to be satisfied, then it must be transformed into an equivalent 
problem in which all constraints must be satisfied simultaneously. Chapter 3 will 
discuss how to perform this transformation. 

2.2 MODELING PROCESS 

Many definitions of operations research (OR) have been published over the five-decade 
history of ORS A/INFORMS. INFORMS recently defined OR to be "the discipline of 
applying advanced analytical methods to help make better decisions." One way to 
understand how such methods apply to a decision situation (a real system to be optimized 
or problem to be solved) is to consider the three phases of an OR study in Figure 2.5: 

i. Construction of the model 
ii. Solution of the model 

iii. Validation of the model results and interpretation back to the decision 
situation 

Two other phases in the OR approach to problem solving are important, but are not 
shown in Figure 2.5. There is a premodel phase "Definition of the problem." This 

Real world Model world 

Real system or problem 

'' 
Real-world conclusion 

(optimal policy) 

I. Model 
construction 

III. Model validation 

and interpretation 

Math model 
of reality 

' 

II. Model 
solution 

Model 
conclusion (optimal 

solution) 

FIGURE 2.5 Three phases of an OR study. 
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phase establishes objectives and scope of the model and is carried out by the OR 
analyst in conjunction with the client and his staff, or by the appointed "OR team." 
There is also a postmodel phase "Implementation of the optimal policy" in the 
organizational environment. The policy is translated into action by managers and 
workers under authority of the client. 

Modeling is therefore central to any application of OR, and the construction of an 
OR model is in part both art and science. There are many cases where practitioners 
who follow the following three-step "model construction process" naturally arrive at a 
model formulation: 

Step 1. Verbally identify and define decision variables, input data or parameters, 
constraints, state variables (if any), and the objective from the given problem 
description. Then assign appropriate symbols to decision variables, input para-
meters (or data), and state variables (if any). 

Step 2. Translate the verbal description of the objective and constraints into 
functions, equations, and inequalities. Check whether each of the seven MIP 
assumptions is satisfied. If all are satisfied, then an MIP is obtained; otherwise, go 
to Step 3. 

Step 3. Check whether the non-MIP factors such as a discrete (but not integer) 
variable, a nonlinear function, or nonsimultaneous constraints can be transformed 
into equivalent mathematical expressions that satisfy all MIP assumptions. If yes, 
we obtain an MIP; otherwise, the problem is not an MIP. 

Decision variables are variables under the control of the decision authority. 
Appropriate symbols for the decision variables are selected, and data needed to 
express objective and constraint functions are organized into tables. In large-scale 
applications, these tables are more appropriately called "decision databases." 

In Step 1, the objective to be achieved by the decision should be expressed verbally. 
Constraints that often relate to resources, requirements, and regulations should also be 
verbally described. Sometimes, these symbols, data, and verbal descriptions may be 
augmented by graphical (or iconic) or analog models, for example, an input-output 
diagram or a network flow diagram with appropriate labels. 

Step 2 translates the verbal and/or graphical description into a mathematical model 
using the selected symbols for the decision variables, and using functions of these 
variables to represent objectives (to be maximized or minimized), and other functions 
of the variables combined with a constant to create equation or inequality constraints. 
These constraints express the nature of resource limitations or requirements, and how 
the values of the variables are converted into resource demands (performance versus 
requirement). It is desirable, of course, if the functions created in the mathematical 
expression of objectives and constraints are linear. In that case, the tables from Step 1 
become matrices in MIP model. 

Check the formulated math model to see if it satisfies each of the seven assumptions 
pertaining to an integer program. If any assumption is violated, the math program is 
not an MIP, but it may be possible to transform it into an MIP. Step 3 performs the 
transformation using techniques to be introduced in Chapter 3. 
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Now we are ready, in Sections 2.3-2.9, to apply this modeling process to the 
following problem types selected from the IP applications from Interfaces: 

• Project selection 

• Production planning 
• Workforce/staff scheduling 

• Fixed-charge transportation and distribution 
• Multicommodity network flow 
• Side-constrained network optimization 
• Supply chain planning 

2.3 PROJECT SELECTION PROBLEMS 

Two types of project selection (or capital budgeting) problems will be discussed here. 
One type covers a single time period and the other multiple time periods. In fact, the 
single-period project problem may be viewed as a knapsack problem. We begin this 
section with the knapsack problem and then proceed to more complicated, and more 
realistic, problems. 

2.3.1 Knapsack Problem 

The simplest form of integer program is the knapsack problem (or 0-1 knapsack 
problem) that contains a single constraint with 0-1 variables. The name is taken from 
a decision problem faced by a hiker who is to select items of a given set to be included 
in his backpack (or knapsack) within the limit of a specified weight. Each item 
selected contributes a (relative) value to the hiking trip and the objective of this 
decision problem is to maximize the total value of all the items selected. Following the 
modeling procedure described above, we now formulate this problem in two steps. 

Step 1 

Input parameters: number of items («), weight of each item (aj), 
value of each item (cj), total weight limit (b) 

Decision variables: whether or not to select item j (yj = 1 or 0) 
Constraint: total weight of selected items cannot exceed 

weight limit (b) 
State variables: none 
Objective: maximize total value of selected items 

Step 2. The knapsack problem can be formulated as follows: Find values of y7 

(j= 1, 2, ..., n) so as to 
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Maximize z = \ cjyj 
j 

subject to 2_]a¡yj — ° 
j 

y ; = 0 o r l j = 1 , 2 , . . . , « 

where a,, cy, and ¿> are assumed nonnegative. 

Sometimes, a} and b are further assumed integer, while other times they are 
assumed rational (integer or fractional). The integrality assumption does not affect 
the generality of the problem definition because any constraint containing fractional 
coefficients can be made integer by multiplying through by an appropriate number. 
For example, the fractional constraint, 2Ax\ + x2 < 5.6, can be converted to an 
integer constraint by multiplying it by 5 on both sides. 

Depending on its application area, the knapsack problem carries many different 
names. In project management, for example, a project manager is faced with the 
problem of selecting a subset of n projects to be undertaken because of budget 
limitation that prohibits funding them all. Each project/ will cost a, dollars if selected, 
and benefits to the firm in the future have a present value of Cj dollars. The manager has 
a budget of b dollars to be allocated to the selected projects. Thus, the knapsack 
problem can be viewed as a single-period project selection problem (based on its 
decision variables) or a single-period capital budgeting problem (based on its 
constraint). 

Furthermore, the knapsack problem sometimes is also referred to as the cargo 
loading problem when cargos of various weights are being selected for loading onto a 
vessel having a limited weight capacity. Similarly, the knapsack problem is some-
times called the flyaway kit problem when a number of valuable items are being 
considered for loading on an airplane. 

Obviously, volume can be the deciding factor and can replace weight as the 
criterion of the constraint. Volume can also be "another" constraint criterion if volume 
of each item and total volume capacity limit are also specified. This two-constraint 
problem is known as the two-dimensional knapsack problem. There are obvious 
extensions to multiple criteria (multidimensional knapsack problem). 

In reality, there may be other conditions or requirements about the selection 
of projects. Examples are the following: (l)the number of projects selected in each 
period may not exceed a certain number, (2) project 3 may not be selected unless 
both projects 1 and 2 have been undertaken in the previous periods, (3) either project 
4 or project 6, but not both, may be selected in the same time period, and others. 
These additional conditions may be formulated as linear constraints and will be 
discussed in detail in Chapter 3. 

2.3.2 Capital Budgeting Problem 

The capital budgeting problem often arises over a planning horizon of multiple time 
periods. The time period may be quarterly, semiannually, or annually. The multiperiod 
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problem may be described as follows. A project manager has n projects that he would 
like to undertake but not all can be selected because of budget limitation in each time 
period over a prescribed planning horizon. Assume project y has a present value of c7 

dollars and requires an investment of atj dollars in time period t (t = 1, . . . , T). The 
capital available in time period t is b, dollars. The objective of this problem is to 
maximize the total present value subject to the budgetary constraint in each time 
period over a prescribed planning horizon T. The problem may be mathematically 
modeled as follows: Find a set of values for yj so as to 

Maximize z = YJ c¡y¡ 
i 

subject to 2_.a'jyj — bt t = l,...,T 
j 

y, = 0o r l y = 1 , 2 , . . . , « 

where input parameters n and b, are positive, atJ- nonnegative, and c¡ unrestricted in 
sign. Again, the negative coefficient can be made positive by changing the associated 
variable to its complement. In a real application, a model may have additional 
constraints such as requiring contingency and/or mutual exclusion among projects. 
Chapter 3 will discuss how to handle these types of constraints. 

2.4 PRODUCTION PLANNING PROBLEMS 

Production planning problems often arise in multiple periods. As shown in Figure 2.6, 
there is a demand in each time period. The demand can be met by two sources: 
production in the same time period and the inventory carried over from the previous 
period (assuming no backorder is allowed). A production run incurs a fixed setup cost 
(per run) and a variable production cost (function of production quantity). The 
inventory carried over from the previous period incurs a variable "carrying" or 
holding cost (function of carryover quantity). The planning objective is to minimize 

Produce or not? yr_, y, 

Production quantity? xt-\ xi 

Inventory j r _ 2 

d,_\ d, 

O 
1 De 

FIGURE 2.6 Uncapacitated lot sizing. 

Hamid
Sticky Note
خوبه



PRODUCTION PLANNING PROBLEMS 33 

the sum of these three costs. In what follows, we shall discuss three examples of 
production planning. 

2.4.1 Uncapacitated Lot Sizing 

A lot sizing problem in production planning is to find an optimal lot size (or quantity of 
a production run) for each time period, so that the total cost of production and 
inventory is minimized while the demand in each period is satisfied. The uncapa-
citated lot sizing problem assumes unlimited production capacity (lot size) in each 
period. This implies one lot size (production run) per time period. For the following 
problem formulation, we further assume that ( 1 ) the production cost is proportional to 
the production quantity and (2) the carrying cost is proportional to the ending 
inventory level of the previous period. 

Step 1 

Input parameters: 

Decision variables: 

Constraints: 
State variables: 

Objective: 

number of periods (7), demand in each period 
(d,), setup cost for each period (/",), unit 
production cost (c¡), unit holding cost {ht) 

whether or not to produce in each time period 
(y, = 1 or 0) and how much if the decision is to 
produce (x,) 

satisfy the demand in each period t 
inventory level at the end of each period (s,), 

assuming the beginning inventory level So = 0 
minimize the total production and inventory 

costs 

Step2. LetAfbea"sufficiently"largenumber(say,M=^tc/r).Notethaty,= 1 if and 
only if x, > 0. The problem can be formulated as follows: Find values of xt and yt 

(t= 1, 2, ..., T) so as to 

Minimize \~](ctxt +ftyt + htst) 

subject to S(_i +x,—s, = d, for all t 

xt < My, for all t 

xt>0 for all t 

s,>0 f = 0,1, 

y i = 0 or 1 for all t 
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Note that if backorder is allowed, we simply change the constraint from 
Í,_I + x,~s, = d, to jr_i +x,—s,—b,-i +bt = dt, to include a backorder amount 
in the inventory balancing equation, where b, is the backorder amount cumulated at 
the end of time period t. 

2.4.2 Capacitated Lot Sizing 

In the event that the production quantity in a given time period cannot exceed a certain 
amount, for instance, due to plant capacity, then the problem becomes a capacitated 
lot sizing problem. When the given capacity is constant over periods, we simply 
replace the big "AÍ" in the uncapacitated lot sizing model with a capacity upper limit u 
(i.e., replace x, < Myt with x, < uy,). 

The capacity may also vary from period to period with an upper limit u, in period t, 
which is reflected in the model by using x, < uty¡ to replace xt < My,; the complete 
model becomes 

Minimize 2~\{c,x, +fty, + h,st) 
t 

subject to st-\ + x, + s, = d¡ for all t 

Xt < u¡y, for all t 

xt > 0 for all t 

s, > 0 for all t 

y, = 0 or 1 for all t 

2.4.3 Just-in-Time Production Planning 

Now we present a multiproduct, multiperiod production planning problem under the 
just-in-time environment. This type of production planning seeks to determine a 
production level for each product in each time period with the right quantity at the 
right time. The ideal for just-in-time manufacturing is to maintain a zero inventory 
level (i.e., to prevent any surplus or shortage of inventory for each product at each 
time). However, in practice, there may occur a small surplus of inventory that can be 
temporarily stored on the plant floor in buffer area(s) or there may occur a temporary 
shortage of inventory. In either case, a penalty is imposed on each unit of excess or 
shortage of inventory. If no amount of shortage is allowed, a very large penalty should 
be imposed. Note that any excessive inventory implies production "too soon" and any 
shortage of inventory implies tardy production. 

Thus, the primary objective of the just-in-time production problem may be 
modeled as to minimize the total penalties caused by the earliness/tardiness for all 
products over the planning horizon. The unit penalty of earliness and of tardiness, 
which may or may not be the same, may be assessed by the management. The model 
formulation follows. 

Hamid
Sticky Note
خوبه

Hamid
Sticky Note
خوبه



PRODUCTION PLANNING PROBLEMS 35 

Step 1 

Input parameters: 

Decision variables: 

Constraints: 

State variables: 

Objective: 

number of product types («), number of periods (7), 
demand of product y in each period (dp), 
prescribed production lot size for each product 
(/,,), unit penalty of earliness (pß, unit penalty of 
lateness (qß 

production level of each product in each period 
(Xj, > 0), number of production runs in each 
period t for each product (jjt) 

satisfy demand of each product/ in each period and 
constraints relating to prescribed lot size, 
number of 
production runs per period, and production level 

surplus and shortage inventory levels for each 
product in 
each time period (dt and djt), ending inventory 
level of each product (sp) 

minimize total penalty cost of all products due to 
earliness and lateness over all periods 

Step 2. Recall the inventory balancing equation that relates the beginning inventory 
level, production level, demand level, and the ending level given below: 

ùJ,>- ! + Xjt-djt = sj, for all j , t 

or sJ,t-i 

\j, Up 

- x i,—Su — dj 

Let dp and djt, respectively, be a nonnegative amount of surplus and shortage for each 
period t and each product/. Let sp = dt —djt. Note that variable Sp may be positive, 
negative, or zero; all Xp, dp , and djt are nonnegative variables. 

To model the relationships between the production level (a continuous variable), 
prescribed production lot size (an integer constant), and number of production runs 
(an integer variable), caution must be exercised because the production level may not 
be divisible by the prescribed lot size, which may result in a fractional number of 
production runs. To overcome this modeling difficulty, we introduce the following 
pair of inequality constraints. For example, assume the prescribed lot size in period 
t {ljt)= 150 units and the production level in period t (x/i) = 700 units. Then the 
number of lots in period t is 700/150 = 4.67 or 5 after rounding up. Thus, the fifth 
(the last) lot contains only 100 units instead of 150. To resolve this problem, we 
introduce the following pair of inequality constraints: 

to for all j and t 

and xp = lp(yp—l) for all jandt 

where yp > 0 and integer for all / and /. 
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Thus, the objective is to 

Minimizez = Yl\PjJ2dt+ + %Hdt ) 

2.5 WORKFORCE/STAFF SCHEDULING PROBLEMS 

2.5.1 Scheduling Full-Time Workers 

Many companies or institutions, especially those operating 24 h daily, usually divide 
the daily schedule into discrete (say, T) time windows. Examples include hospitals, 
restaurants, call centers, and police departments. The number of staff required 
typically varies among time windows. Staff members are scheduled to n different 
(work) shifts, each covering m(m < T) consecutive time windows. Staff members 
assigned to different shifts may be paid differently, depending on which shift they 
work. For example, those working overnight are usually paid at a higher rate. The 
scheduling problem is to determine the number of workers to be assigned to each shift 
so that the company meets the demand in each time window. 

Following is an example of a 24 h fast food restaurant. The daily operation is 
divided into eight consecutive time windows, each of 3 h duration. A shift covers three 
consecutive time windows (i.e., 9h), as shown in Table 2.1. Information about the 
number of workers required within each time window as well as the wage level for 
each shift is also listed in the table. 

Step 1 

Input parameters: 

Decision variables: 
Constraints: 
State variables: 
Objective: 

number of shifts (n), number of time windows (7), number 
of workers required per time window (d,), wage rate per 
shift (H 'j* 

number of workers needed per work shift (yß 
demand within each time window t must be satisfied 
none 
minimize the total wages paid to all workers 

TABLE 2.1 Time Windows for Shift Workers 

Time Window 

6 a.m.-9 a.m. 
9 a.m.-12 noon 
12 noon-3 p.m. 
3 p.m.-6 p.m. 
6 p.m.-9 p.m. 
9 p.m.-12 a.m. 
12 a.m.-3 a.m. 
3 a.m.-6 a.m. 
Wage rate per 9 h shift 

1 

X 
X 
X 

$135 

Shift 

2 

X 
X 
X 

$140 

3 4 Workers Required 

X 55 
46 
59 
23 

X 60 
X 38 
X X 20 

X 30 
$190 $188 
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Step 2. Leiaj,— 1 if shifty covers time window t(j= 1,. . . ,«;<= 1,.. .,7) and 0,7 = 0 
otherwise. Then the model formulation is 

Minimize \] wjyj 
j 

subject to 2_, ajtyj >-dt t = 1 , . . . , T 
j 

y i > 0 and integer t = 1 , . . . , T 

where the matrix (a,,) is of the following form: 

■1 

1 

1 

0 

0 

0 

0 

.0 

0 

0 

1 

1 

1 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

0 

1-

0 

0 

0 

0 

0 

1 

1. 

Note that in the previous model if the integer requirement is relaxed, the problem 
might generate fractional solutions. In reality, a fractional staff member can be 
interpreted as a part-time worker. For example, a solution with 4.2 workers in shift 
2 means that we have 4 full-time shift-2 workers, and a part-time worker who 
works 20% of the time and is paid 20% of a full-time workers. Hence, if it is 
allowed for some shifts to have part-time staff, then the problem becomes a mixed 
integer program. However, this is not the only way to handle the part-time 
situation. In Section 2.5.2, we will discuss another way to formulate the personnel 
scheduling problem when both full-time and part-time staffs are necessary in the 
model. 

2.5.2 Scheduling Full-Time and Part-Time Workers 

We still consider the problem described in Section 2.5.1. Now assume that part-time 
workers may be hired per time window. That is, during time window t, if a part-time 
worker is used, then he/she is paid c,. However, at least one full-time worker has to 
be present when part-time workers are hired. The problem is to determine how 
many full-time and part-time workers need to be hired to minimize the total 
workforce cost. 
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Step 1 

Input parameters: 

Decision variables: 

Constraints: 

State variables: 
Objective: 

number of shifts («), number of time windows (7), 
number of workers required during each time 
window (d„ t= 1, 2, . . . , T), wage rate per 12 h 
shift for a full-time worker (wj), wage rate per 6 h 
time window per part-time worker (c,) 

number of full-time workers needed for each work 
shift (yß, number of part-time workers needed for 
each time window (x¡) 

demand within each time window t must be satis-
fied, restriction on using part-time workers (can 
be used only if one or more full-time workers are 
available in the same time window) 

none 
minimize the total wages paid to all workers 

Step 2. Let aJt = 1 if shift j covers time window t, 0 otherwise. Let M be a 
"sufficiently" large number (say, M = ^tdt). Then the model formulation is 

Minimize ^ J w¡y¡ + 2_] ctxt 
j ' 

subject to y^a¡ty¡ + x, > d, t=l,...,T 
j 

Mj2aj,yj-x,>0 t=l,...,T 
J 

Xt,yj > 0 and integer j = 1 , . . . , n; t = 1 , . . . , T 

2.6 FIXED-CHARGE TRANSPORTATION AND DISTRIBUTION 
PROBLEMS 

2.6.1 Fixed-Charge Transportation 

Units of a product (single commodity) are to be shipped from m source nodes to 
supply the demands at n destinations (as shown in Figure 2.7). Shipping cost from 
source / to destination^' includes a unit shipping charge Cy in addition to a fixed charge 
fy if arc (/,/) is used in the solution, regardless of the shipping quantity (as long as a 
positive amount, of course). Find a minimum cost shipping plan so that the demand at 
each destination is met. Assume that each source node can supply all the demands at 
destinations. 
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Source Destination 

39 

FIGURE 2.7 Transportation problem. 

Step 1 

Decision variables: whether or not source /' will supply destination 

Input parameters: 

Constraints: 

State variables: 
Objective: 

j(y¡j — 1 or 0). If yes, how much (xy) 
unit shipping cost (cy), fixed cost (fy) from source i 

to destination j , demand at destination j(dj) 
demand at each destination must be satisfied 

(assuming unlimited product availability at each 
source node) 

none 
minimize sum of fixed and variable costs 

Step 2. Let M be a "sufficiently" large number (we can let M = Y^jdj)- Note that 
y y = 1 if and only if xy > 0. The transportation model can be formulated as 

Minimize ^ ^ ( c y X ^ + ^ y ) 
' j 

subject to 2_.xü = dj 

xy < My y 

Xy > 0 

y y = 0 or 1 

= 1,. 

= 1,-

= 1,-

.,m;j= 1,. 

.,m;j=l,. 

.,m;j= 1,. 

. , 7 2 

. ,« 

. ,« 
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2.6.2 Uncapacitated Facility Location 

A company needs to build several distribution centers to supply its retail stores located 
at n different cities, each with different demand. There are m candidate locations for 
the distribution centers. There is a unit transportation cost for shipping from 
distribution center / to retail storey, and a fixed cost for opening distribution center 
i. Decide on which distribution centers to open so that total cost (including opening 
cost and transportation cost) is minimized, while the demand at each retail store is 
satisfied. 

Step 1 

Decision variables: whether or not distribution center i should be opened 
(y, = 1 or 0). If opened, how much should be shipped 
from distribution center to retail store (x¡¡) 

Input parameters: unit shipping cost from center i to retaily (c¡¡), fixed cost 
for opening distribution center (f¡) 

Constraints: all demands are to be met at all retail stores 
State variables: none 
Objective: minimize total cost of opening and transportation cost 

Step 2. Let M be a "sufficiently" large number (we can let M = J2jdj)- Note that 
y i = 1 if and only if Yl\xü > 0- The uncapacitated facility location problem can be 
formulated as 

Minimize ^ ^ cyXy + ^fm 
i j i 

subject to 2_]xü = dj j = 1 , . . . ,n 
i 

y^x¡j <My¡ i=l,...,m 
j 

Xy > 0 and integer i = 1 , . . . , m; j = 1 , . . . , n 

Substituting x¡¡ = Xy/dj or xy = djX¡¡ into the above model, an alternate formulation 
is obtained: 

Minimize ^ ^ c'yXy + Y^fyi 
i j i 

subject to ^2x'y = l j=l,...,n 
i 

Y^x'y<ny¡ i=\,...,m 
j 

x'y>0 i=l,...,m;j=l,...,n 

v, = 0 or 1 i=\,...,m 
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where d¡j = cy/dj. Note that x1^ can be interpreted as the fraction (between 0 and 1 
inclusive) of demand, rather than the quantity supplied, at store j satisfied by 
distribution center i. Also note that the "big Af ' is replaced by "«", which is the 
total number of retail stores. This replacement is valid because the demand at each 
store location, after the transformation, is equal to 1. Thus, the total demand at n store 
locations is n. 

A third formulation can also be obtained by using a set of m constraints, 
x'ij < y,(j = 1,2,...«), to replace each /' of J2¡ x'¡j ̂  ny¡- Although this replacement 
multiplies the number of constraints, this alternative does give a better formulation. 
We will justify this claim later in Chapter 4. 

2.6.3 Capacitated Facility Location 

When each distribution center has limited supply uk the uncapacitated facility 
location problem becomes a capacitated facility location problem. 

Let u¡ be the supply amount at distribution center /, then the first model 
formulation is 

Minimize ^ ^ cyxy + ^ / ¡ y , 

subject to 2_^xu = 4 

"Yl Xij < u¡yi 
j 

Xij > 0 and integer 

y, = 0 or 1 

; = ! , ■ ■ 

/ = i , . . 

i = i , . . 

/ = i , . . 

. . ,« 

. ,m 

. ,m: 

.. ,m 

2.7 MULTICOMMODITY NETWORK FLOW PROBLEM 

A set of p commodities is to be shipped from m sources to n sinks. A source / can 
supply up to J* units of commodity k. A sink j has demand d: on commodity k. A 
transshipment node t is used as a connecting point between sources and sinks, but does 
not have its own supply or demand. The shipping amount between any pair of nodes is 
subject to a capacity limit, and for each unit of commodity k shipped from node / to t, 
or t toy, a cost is incurred. The problem requires finding a shipping plan that minimizes 
the total shipping cost as well as meets the demand for each commodity at each sink. 
Assume the nodes have been numbered consecutively and grouped into the three 
classes of source, transshipment, and sink nodes with indices i, t, andy, respectively. 
Also, assume no "backflow" is permitted from sink to transshipment or source, nor 
from transshipment to source. 
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Step 1 

Decision variables: 

Input parameters: 

Constraints: 

State variables: 
Objective: 

units of commodity k to be shipped from source / to 
sinkytó), from source i to transshipment t(x^), 
and from transshipment t to sinky'(x^) 

supply jf of each commodity k at each source i, 
demand d, for each commodity k at each sinky; 
maximum combined shipping capacity for all 
commodities from source / to sinky'(w,y), from 
source i to transshipment node t(uit), from 
transshipment t to sinkyXw,,); unit transportation 
cost for commodity k that can be transported from 
source i to sinky'(eí), from source i to trans-
shipment i(c£), from transshipment t to sinky'(c^) 

supply constraints for all sources, demand con-
straints for all sinks, flow conservation constraints 
for each transshipment node (total outflow equals 
total inflow for each commodity), maximum 
combined flow capacity for all commodities 
between any two nodes 

none 
minimize total transportation cost 

Step 2. The problem can be mathematically modeled as 

Minimize * = E E 4 4 + E E 4 4 + E E 4 4 
k (ij) k (,-,,) k (,j) 

subject to / _ X 4 + x^lt) = 4 f°r e a c n '"> ^ (n°de /supplies commodity k) 
tj 

2_.■X/r- ¿2*// = 0 f°r e a c n U k (node t is a transshipment node) 
i j 

Y~](4 + rfj) = d* for eachy, k (sink/ demands commodity k) 

E 4 «̂fr-it 

E4<««-r 
k 

2~24<u'j 
k 

xfy:, x*¡„ x^j > 0 and integer 
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2.8 NETWORK OPTIMIZATION PROBLEMS 
WITH SIDE CONSTRAINTS 

All the network problems we have discussed so far have common constraints: ( 1 ) each 
arc has some capacity limit, (2) flow on an arc is subject to unit cost, and (3) each node 
satisfies a flow conservation constraint. Sometimes, additional or side constraints are 
required. One of the most frequently seen side constraints are proportional con-
straints and blending constraints. 

Proportional constraints are usually seen in production where raw materials are 
refined into different semiproducts, in which the amount of each semiproduct is 
specified as a proportion of raw materials. Figure 2.8 shows an example of such a 
production scenario. Requirements like this can be expressed by a set of side 
constraints in the following way. 

Suppose the nodes are labeled with numbers, that is, the nodes associated with raw 
materials 1 and 2 are labeled nodes 1 and 2, respectively. The processor is node 3, 
semiproducts made from raw material 1 are nodes 4-6, and semiproducts made from 
raw material 2 are nodes 7-9. Let *ybe the flow to be determined from node /to node/ 
Then the mathematical expressions for the proportional constraints are 

*34 = 0.3X13, *35 = 0.5*13, *36 = 0.2*13 

Xyl = 0.4*23, *38 = 0.1*23, *39 = 0.5*23 

Blending constraints are used to reflect a mixing or blending process. Several 
ingredients are mixed according to different ratios to get different products. Figure 2.9 
shows such a blending process. With the raw material nodes labeled 1 and 2, as before, 
the processor node 3, and semiproduct nodes 4-6, such requirements can then be 
reflected by the following equality constraints: *34 = 0.4*i3 + 0.3*23, *35 — 0.2*i3 + 
0.6*23, *36 - 0.4*13+0.1*23-

Side constraints can take other forms too, either of special structure or of some 
arbitrary structure. Side constraints can be adjoined to many network optimization 
problems, such as multicommodity flow, facility location, and production lot sizing. 

Raw material 1 

Raw material 2 

<?] 

<?2 

» / , \ "/ processor \ 

*\ ^ J 

\J.JHX 

0.5?, 

0.2?, 

u.^t/2 

0-192 

0 .5^ 

Semiproduct 1A 

Semiproduct IB 

Semiproduct 1C 

Semiproduct 2A 

Semiproduct 2B 

Semiproduct 2C 

4 

5 

6 

7 

8 

9 

FIGURE 2.8 Proportional constraints. 
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Raw material 1 

Raw material 2 

1\ 

<?2 

b / 

* \ 

Blending \ 

3 ) 

0.4qt+03g2 

0.2q] + 0.6<?2 

0.4?,+0.1?2 

Product 3A 4 

Product 3B 5 

Product 3C 6 

FIGURE 2.9 Blending constraints. 

When embedded in a problem, side constraints might dramatically increase the 
difficulty in solving the problem, and new efficient algorithms must be developed to 
handle these constraints. 

2.9 SUPPLY CHAIN PLANNING PROBLEMS 

Two broad classes of operations research models are used to support supply chain 
management: normative models in the form of MIPs, which provide insight into 
pending decisions about supply chain structure, and descriptive models in the form of 
simulation models, which capture the dynamics of a proposed or existing supply chain 
after the structure is decided. Shapiro (2001) states that "optimization models provide 
templates for integration of concepts and constructs from multiple disciplines," which 
make up supply chain planning (SCP). According to Shapiro, "a company's supply 
chain is comprised of geographically dispersed facilities where products are acquired, 
transformed, stored, or sold, and transportation links connecting facilities along 
which products flow." 

If product demand is assumed fixed, the SCP optimization problem is to minimize the 
total supply chain cost of satisfying demand, which may involve a simple transportation 
model (which distribution centers supply which products) or a complex, sequential 
decision involving multiple suppliers, multiple plants, and multiple distribution cen-
ters—and the transportation links among them. Furthermore, the time frame may vary 
from an operational planning model run weekly (for production or logistics planning) to 
strategic network models run once per year, with a planning horizon of 1-5 years. See 
Table 2.2 for time frames and horizons of typical MIP modeling situations in SCP. 

Obviously, many supply chain problems have one of the network structures 
previously discussed, hence may be modeled as MIPs: 

Transportation model 
Assignment model 
Transshipment model 
Multicommodity flow model 
Single- and multicommodity capacitated flow model 
Multiple choices of mode of transport on the same arcs, each with costs and 
capacities 
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TABLE 2.2 Typical MIP Modeling Situations in Supply Chain Planning 

Model Type and 
Objective Function Planning Horizon Model Structure Use Frequency 

Strategic network opti- 1-5 years 
mization (maximize 
net revenues or if 
demand is fixed, 
minimize the cost) 

Tactical optimization 12 months 
model (minimize to-
tal cost of meeting 
forecasted demands) 

Production planning 13 weeks 
optimization model 
(minimize avoidable 
production and in-
ventory costs) 

Logistics optimization 13 weeks 
model (minimize 
avoidable logistics 
costs) 

Yearly, or multiple 
linked years 

Next 3 months and 
3 quarters beyond 

Next 4 weeks and 
2 months beyond 

Next 4 weeks and 
2 months beyond 

Once/year 

Once/month 

Once/week 

Once/week 

The last item listed hints only at the broad applicability of 0-1 variables in supply 
chain modeling. Other well-recognized applications are to capture 

• Fixed and investment costs 

• Economies and diseconomies of scale 

• Sole sourcing of markets 

• A wide range of logical (if-then) conditions 

Although it is recognized that integer variables should be used sparingly (only 
when necessary) in SCP models, their use in conjunction with MIP provides the 
company with powerful insights into decision situations that can literally convert a 
marginally profitable product line or supply chain into a profit maker. For a simple 
introduction to the use of MIP modeling constructs in SCP, see Shapiro (2001), 
Chapter 4. 

As an example of a supply chain model, consider the following strategic distribu-
tion network model (Karabakal et al., 2000) implemented at Volkswagen of America. ' 
Sources and markets were fixed, as was the variety of vehicle types and which sources 
would provide which vehicle type. The processing centers (which receive vehicles 

1 Reprinted with permission of authors (see Bibliography). Copyright 2000, the Institute for Operations 
Research and Management Sciences, 7240 Parkway Drive, Suite 300, Hanover, MD 21076, USA. 
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from sources) and the distribution centers (which receive vehicles from processing 
centers and provide them to markets) had to be located, the type of facility at the 
distribution centers had to be decided, and shipping quantities on each node of 
the network had to be determined. The objective was to minimize the total 
combined cost of transportation and fixed-facility installation. Therefore, the follow-
ing model is a multicommodity, transshipment model with fixed and variable 
transportation costs between nodes and investment costs for the centers that are 
included in the network. 

Step 1 

Decision variables: 

Input parameters: 

Constraints: 

Objective: 

annual shipment of type k vehicles from source i to 
processing center pirf), annual shipment of type k 
vehicles from processing center p to distribution 
center j(xk:), annual shipment of type k vehicles from 
distribution center j to market i(x|r), yes-no variable 
on whether to install type/(/"= 1, 2) facility at 
distribution center j(yjf— 1 or 0), yes-no variable on 
whether to install processing center p(zp = 1 or 0) 

annual demand for type k vehicles in market t(dt ), 
mileage between distribution center y and market 
t(mjt), cost of shipping one vehicle from source i to 
processing center p(cip), cost of shipping one vehicle 
from processing center p to distribution center j(spj), 
number of vehicles shipped to market t each load (L¡), 
fixed shipment cost per load of truck (Q, shipment 
cost per mile traveled by each truck (v), fixed cost for 
installing a type/facility in distribution center j(gjf), 
fixed cost for operating processing center p{hp), an-
nual shipment capacity of a type 1 facility at distri-
bution center j{ uj) 

demand at each market area for each vehicle type must 
be met; vehicle flows from sources to processing 
centers and from processing centers to distribution 
centers must be balanced; total vehicle flow to each 
distribution center must satisfy the capacity limitation 
of the facility installed; no shipment to a distribution 
center (processing center) is possible if no facility 
installed there; facility type 2 (large) is installed only if 
facility type 1 (total capacity Uj at DC,) does not have 
enough capacity to meet the shipment requirement to 
distribution center j , for each j 

minimize total cost, including shipping cost, facility 
installation cost, and processing centers operation cost 
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Step 2. Let M be a "sufficiently" large number, say, M = ^2,J2kd^, then the SCP 
problem can be mathematically formulated as 

Minimize E E E (-r ) (c+v^')+E Es» E 4 + E E c<> E 4 
j I k \U'J p i k i p k 

7 / P 

subjectto E 4 = í í * f = l , . . . , r ; A:= 1 , . . . ,* : 
y 

E 4 = E 4 y=l,...,/;*=!,...,* 
p < 

E 4 = E 4 i = 1 , . . . , # ! ;*= 1,...,AT 
' J 

Ujyji < E E 4 - "J»'1 + M '̂2 ./ =!,••• ,J 
p k 

EE4^A / z / ' p = i,...,/' 
) k 

X £ , X * . , J C £ > 0 i = l , . . . , « ; y = l , . . . , / ; / > = l , . . . , P 

í = i r ; A: = i A-

3 # = l o r 0 j= l,...,J;f= 1,2 
zp = 1 or 0 /J = 1,..., P 

2.10 NOTES 

Section 2.1 

The seven MIP assumptions described in this section are extended from the four well-
known LP assumptions described in introductory OR/MS textbooks such as Hillier and 
Lieberman (2005) and Winston (1994). The three additional assumptions are simul-
taneousness (conjunction), single objective, and integrality. Figure 2.1 is our original 
contribution intended to help practitioners understand and exploit these assumptions. 

Section 2.2 

The three-phase process of an OR study discussed in this section is similar to the three-
phase modeling process given in Ravindran et al. (1987) and the five-phase process 
given in Taha (2007). 

Section 2.3 

Traditionally, "the knapsack problem" refers to the problem involving only one item 
of each type, each represented by a 0-1 variable. A problem that allows multiple items 
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of each type is called integer, general, or multi-item knapsack problem. The 
knapsack problem received considerable attention in the literature during the early 
development of OR algorithms (1950-1970) mainly because it can be used as a 
subproblem in developing a decomposition algorithm for the well-known cutting 
stock (or trim loss) problem and because a general integer linear problem can be 
converted to a knapsack problem. Dozens of specialized algorithms for knapsack 
problems have been developed, encompassing dynamic programming, enumeration, 
Lagrangian multiplier, and network approaches. 

Section 2.4 

The just-in-time production planning model discussed in this section is based on a 
recent article by Li et al. (2006). 

Section 2.8 

SAS/OR User' s Guide: Mathematical Programming (retrieved online at http://www. 
csc.fi/cschelp/sovellukset/stat/sas/sasdoc/sashtml/ormp/chap4/sect4.htm). 

Section 2.9 

For those interested in using MIPs in modeling supply chain planning problems at all 
levels (strategic, tactical, and operational), Shapiro (2001) is recommended. 

2.11 EXERCISES 

2.1 Consider the case of a quantity discount to a buyer, that is, the unit cost is lower 
when quantity purchased reaches a certain level. How would you express the 
quantity discount in the objective function of the lot sizing problem? Does the 
revised model still satisfy the assumptions of integer programming? 
(Assumption) 

2.2 Give a situation (with side constraints) in which a project selection problem 
cannot be modeled as an MIR (Hint: Include some special structure in the 
specification of the objective function or the constraint function.) 
(Assumption) 

2.3 (A Diet Problem) Mrs. Bradley is on diet according to the instruction from her 
family doctor. Every day she can eat only several specific types of food and 
drink several specific beverages. There is even a limitation on how many 
ounces of each type of food she can eat at maximum. And she cannot take more 
than two types of beverages each day. Suppose if every day she eats W ounces 
of food and drinks L ounces of beverages, then she feels full. Given that each 
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TABLE 2.3 Stock Selection Options 

Expected Annual 
Stock Return in Present Value 

A 90 
B 120 
C 100 
D 80 
E 130 
Money available 

Year 1 

10 
15 
12 
9 

13 
45 

Budget Requirement 

Year 2 

20 
15 
25 
15 
10 
60 

Year 3 

15 
20 
20 
15 
10 
50 

type of food or drink has a different unit price, how should she plan her diet to 
minimize the total daily cost? (Modeling Process) 
(a) Follow the modeling process strictly and try to formulate the problem. 

(b) Does the problem belong to any of the model types discussed in this 
chapter? 

(c) What feature (variables or constraints) is unique about this problem? 

2.4 Jimmy plans to invest in several stocks in the coming 3 years, each with a 
different expected return for each dollar invested and a specific amount of 
investment, as shown in Table 2.3 (all in thousands of dollars). Given that the 
amount Jimmy can invest in stock purchases is limited each year, help Jimmy 
to decide which stocks to invest in each year so as to maximize the total returns. 
(Project Selection) 

2.5 (The Cutting Stock Problem) A standard fabric is usually L yards long. Based on 
customer need, it will be cut into small pieces of different lengths, say, l\, l2,. ■., 
/„. Any cutting combination will typically result in some unusable "leftover" 
material, of length less than min{/,}. Suppose the daily demand for the 
respective pieces is d\, d2, ■ ■., d„. Find a cutting pattern so that the leftover 
is minimized. (Modeling Process) 
(a) Identify the parameters provided in this problem. 
(b) Identify decision variables, objective, and constraints. 
(c) What information is important for formulating this model but is not 

included in the problem description? 
(d) If the information needed in part (c) is given, construct a model to solve the 

problem. 

2.6 Nurses in large hospitals usually work 3 days a week. Daily demand for nurses 
is summarized in Table 2.4. Determine the number of nurses required per 
schedule type so that the total wage cost is minimized. 
(a) What is the coefficient matrix A = (a,,)? 
(b) Use the numbers (not symbols) in the table to model this problem instance. 
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TABLE 2.4 

Day 

Weekly Scheduling of Nurses 

Schedule Type 

1 2 3 4 5 
Nurses 

Required 

Monday 
Tuesday 
Wednesday 
Thursday 
Friday 
Saturday 
Sunday 
Weekly wage 

X 
X 

X 
525 

X 
X 
X 

47( 

X 

X 
X 

X 

X 
X 

20 
25 
26 
26 
30 
30 
35 X 

550 500 425 

In Exercise 2.6, if part-time nurses are hired at the rate of $150/day, formulate 
the problem to minimize the total cost. If part-time nurses must be accompanied 
by at least four full-time nurses, how would you formulate this constraint? 

XYZ University is planning on the construction of parking lots to solve the 
parking problem. There are m possible locations for parking lots, each with a 
specific amount of maintenance cost f¡, and a projected number of parking 
positions Sj. Students go to classes located at n different blocks. Distance from 
parking lot /' to block j is ay. Forecast shows that the number of students 
attending classes at block j each day is around dj. Assuming that one unit 
distance of walking costs $ 1, help the university to decide which parking lots to 
construct, and the most ideal parking situation, so that the total cost including 
walking and maintenance is minimized. (Facility Location) 

Is the problem in Exercise 2.8 capacitated or uncapacitated? Under what 
situation(s) will it convert to the other? Do you believe such situation is 
realistic? Why? What if the maintenance cost of a lot is comprised of a fixed 
cost plus a variable cost that is proportional to the number of parking positions 
it contains? How does the model change? 

(A Modified Caterer Problem) A caterer to "The Ritz" motel collects the dirty 
napkins and sends them to laundry every day. Due to different room occupation 
levels during a week, the number of dirty napkins on day i is d, (i = 1, . . . , 7). 
The caterer can wash and dry at most u napkins every day. If a dirty napkin is 
not cleaned on the same day, a new one is purchased at the price of c. If the 
laundry room is used on day i, a fixed cost of/} is incurred. Assume that at the 
beginning of a week (Sunday), there are no dirty napkins left. That is, all dirty 
napkins are discarded at the end of the week, and Sunday's napkins are all new 
or clean. Find the best laundry plan for the caterer so that the entire week's cost 
is minimized. (Lot Sizing) 

Cool Summer is a beverage company. It has 20 distribution centers located in 
different states to supply its 500 retail partners. Each retail partner j has a 
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weekly demand level of d¡. Shipping cost per bottle of beverage from 
distribution center i to retail store j is c,y. Once it is decided to ship from 
distribution center /' to retail storey, a labor cost of f¡ is incurred. Find the 
minimum cost shipping plan so that demand from each retail partner is 
satisfied. (Fixed Charge Transportation) 

2.12 In Exercise 2.11, what changes will happen to the problem if distribution center 
i can only supply w, bottles of beverages? 

2.13 Consider Exercise 2.11 again. Now assume that Cool Summer produces four 
types of beverages. Each retail partner has different demand for each type of 
beverage. Shipping cost per bottle is the same for all four types and labor cost 
remains the same. The fixed cost is incurred once, if any quantity of any type of 
beverage is shipped from / toy. Formulate the problem to minimize the total 
cost. (Multicommodity Flow) 

2.14 Formulate the following multicommodity flow problem as an IP: The Farmer's 
Orchard is a large fruit supplier in Georgia. It has three branch stores supplying 
five types of fruits to the distributors in six different cities. Due to the long 
distance and the fruit freshness requirements, some cities cannot be directly 
reached. Instead, the trucks have to stop at some other connecting cities, repack 
the fruit, and deliver from that city to the destination. The shipping network is 
shown in Figure 2.10. Demand for fruit type t in city i is shown in Table 2.5. 
Supply of fruit type t(t = 1,.. . , 5) from each branch store is shown in Table 2.6. 
Shipping cost for fruit t from city i toy is labeled below the arc (i,j) as a vector. 
Shipping capacity (regardless of fruit type) from city i toy is labeled above the 
associated arc. Develop a shipping policy to minimize the total shipping cost, 
while satisfying the demand from each retailer. (Multicommodity Flow) 

FIGURE 2.10 Multicommodity flow network. 
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TABLE 2.5 Multicommodity Demand 

City 

1 
2 
3 
4 
5 
6 
7 
8 
9 

TABLE 2.6 

Branch Store 

1 
2 
3 

A 

0 
0 

250 
100 

0 
50 

200 
0 

150 

B 

0 
0 

150 
300 

0 
50 

100 
300 
100 

Multicommodity Supply 

A 

400 
100 
250 

B 

350 
500 
150 

Fruit Type 

C 

0 
0 

300 
0 
0 

100 
200 
300 
250 

Fruit Type 

C 

350 
300 
500 

D 

0 
0 

100 
250 

0 
50 
0 

200 
300 

D 

0 
700 
200 

E 

0 
0 
0 

400 
0 

100 
100 
50 

100 

E 

150 
0 

600 

2.15 Consider the following lot sizing problem with side constraints: The produc-
tion plan for some product A is to be determined for the next 7* time periods. At 
the end of each period, 60% of the products unsold will go back to the assembly 
line and be renewed (assuming that this does not take up the capacity of the 
assembly line). The other 40% will be carried to the next time period as 
inventory. Demand at period / is dt. Production and reassembling cost per unit 
is c, for time period t. Inventory holding cost per unit is /,. No backorders are 
allowed. Formulate the problem of finding the minimum cost production plan 
as an IP model. (Network with Side Constraints) 

2.16 Consider the following multicommodity production-distribution problem 
with side constraints: Happy Bakery is a company making breads, cakes, 
muffins, and so on. It supplies 10 retailers in the city, including supermarkets, 
gas stations, and bakery thrift stores. Happy Bakery receives raw materials 
(flour, sugar, and butter) from two suppliers. Supplier A can provide up to 
300 lb of flour, 500 lb of sugar, and 100 lb of butter. Supplier B can provide up 
to 700 lb of flour, 200 lb of sugar, and 150 lb of butter. Shipping cost for each 
raw material from each supplier is listed in Table 2.7. The ratios of the raw 

TABLE 2.7 Raw Material Shipping Costs 

Supplier Flour Sugar Butter 

A 0.2 0.05 0.8 
B 0.3 0.04 0.7 
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TABLE 2.8 Travel Times from Depots to Neighborhoods 

Depots 

1 

15 
10 
5 
7 
14 
18 
11 
24 

2 

17 
12 
6 
6 
12 
17 
10 
22 

3 

27 
24 
17 
8 
6 
10 
5 
22 

4 

5 
4 
9 
15 
23 
28 
21 
33 

5 

25 
22 
21 
13 
6 
9 
10 
6 

6 

22 
20 
17 
10 
8 
5 
9 
16 

Population 

12 
8 
11 
14 
22 
18 
16 
20 

materials in bread, cake, and muffin are 5:2:1, 4:4:1, and 3:2:1, respectively 
(assuming that the weight of water can be omitted). If the demand for bread is 
400 lb, for cake is 300 lb, and for muffin is 200 lb, develop the minimum cost 
shipping plan. (Network with Side Constraints) 

2.17 Read Chapter 4 of Shapiro (2001 ). Consider the example of "strategic planning 
at Ajax" in Section 4.3. Study the strategic model carefully. The model is a 
combination of which models discussed in this chapter (regardless of the 
objective function)? Identify them. Try to list the complete mathematical 
formulation of the problem using your own symbols. 

2.18 (Shapiro, 2001, Exercise 4.3, p. 1652) Home Grocery is a new company that 
makes same-day deliveries of groceries to people's homes. The company is 
launching its business in Metropolis, a large urban area. The marketing 
department has identified eight neighborhoods in Metropolis where the 
company should concentrate its business. The logistics manager has identified 
six locations where the company may locate grocery depots. Table 2.8 shows 
the average time (in minutes) required to travel from each of the six potential 
depot locations to the center of each of the eight neighborhoods. It also shows 
the target population (in thousands) for the company's service in each 
neighborhood. 

The company wishes to locate two depots so that they maximize the population 
served within 12 min of average travel time. Formulate the problem as an IP 
model. 

2 From Shapiro, Modeling the Supply Chain, 1 st edition. Copyright 2001, South-Western, a part of Centage 
Learning, Inc. Reproduced with permission, www.centage.com/permissions. 



3 
TRANSFORMATION USING 0-1 
VARIABLES 

The ability to use 0-1 (binary) variables to formulate a wide variety of optimization 
problems expands the applicability of MIP and adds precision to modeling the real-
world concerns of managers. In Chapter 2, many types of optimization problems are 
formulated by linear functions containing 0-1 variables. For example, in project 
selection, a 0-1 variable is used to represent whether or not a certain project is included 
in the project portfolio. In production planning, a 0-1 variable is used to represent 
whether or not a certain lot size is produced. In fixed-charge transportation and 
distribution problems, a 0-1 variable is used to represent whether or not an existing 
facility is utilized (or a new facility is built). All these examples share a common 
feature—any yes-no decision can be naturally formulated by using a 0-1 variable. 

In this chapter, we move beyond the simple use of 0-1 variables to represent yes-no 
or on-off decisions. Though not obvious, 0-1 variables can also be used to transform a 
variety of optimization models into integer programs that model real-world con-
siderations as follows: 

1. Logical (Boolean) expressions 

2. Nonbinary variables (discrete, integer) 
3. Piecewise linear functions (arbitrary, concave—economic of scale) 
4. Functions with products of 0-1 variables 
5. Functions with products of binary and continuous variables (the bundle pricing 

problem) 

6. Nonsimultaneous constraints (either/or, if/then, p out of m, negation) 

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang 
Copyright © 2010 John Wiley & Sons, Inc. 
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Clearly, a logical expression does not conform to the MIP format, but its true/ 
false outputs correspond naturally to the values of a binary variable (1 for true, 0 for 
false). But, complications arise in almost any real-world MIP modeling effort. For 
example, the presence of a discrete variable (with nonconsecutive integer values) 
does not conform to the MIP format, the presence of a piecewise linear function 
violates the assumption of linear function, the presence of product terms of variables 
violates the MIP linearity assumption, and the presence of nonsimultaneous 
constraints violates the assumption of simultaneousness imposed on an integer 
program. Each of these violations must be resolved before the problem can be 
modeled and solved as an MIP. Such problem features will be addressed, one by one, 
in each of the following sections. 

3.1 TRANSFORM LOGICAL (BOOLEAN) EXPRESSIONS 

In some applications, using logical expressions may be easier, and even a more natural 
way, to describe problem requirements than mathematical expressions. That is, during 
the modeling process, the first model constructed may be in the form of logical 
expressions rather than mathematical expressions that conform to the MIP assump-
tions. The purpose of this section is to use 0-1 variables to transform logical relations 
into linear equations/inequalities that conform to the MIP assumptions. 

3.1.1 Truth Table of Boolean Operations 

Binary variables can be used to represent a variety of go/no-go or on/off decisions in 
the analysis of networks, such as transportation, electrical, and others. Binary 
variables are sometimes called Boolean variables in honor of the logician George 
Boole, who developed the rules of Boolean algebra for manipulating variables that 
can take on only two values. Originally these values were "true" and "false." However, 
a natural extension represents "true" by the value 1 and "false" by the value 0. 

A basic logical relation deals with putting two statements A and B together to 
form a new combined (compound) statement, or to form a complement of a statement. 
In the context of Boolean algebra, a statement may represent a single Boolean variable 
or a Boolean expression. In the context of MIP, a statement may represent a 
binary variable, a linear constraint, or even a set of linear constraints. In this section, 
we shall focus on the operations of Boolean variables, leaving logical operations on 
linear constraints to the section of nonsimultaneous constraints. The following are the 
basic logical relations/operations of statements: 

• Conjunction (A and B,AnB) 

• Disjunction (A or B,AUB) 
• Simple implication (If A then B, A —> B) 
• Double implication (A if and only if B, A — B) 
• Negation (not A, ~A) 
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TABLE 3.1 Truth Table 

(1) 
Statement 
A 

m 
m 
FIO 
F/0 

(2) 
Statement 

B 

r/i 
F/0 
771 
F/0 

(3) 
A andÄ 

AC\B 

m 
F/0 
F/0 
F/0 

(4) 
AorB 
A U S 

771 
r/i 
771 
F/0 

(5) 
If A thenß 

A^B 

771 
F/0 

m 
771 

(6) 
A if and only B 

iíA-^B 

r/i 
F/0 
F/0 
771 

(7) 
Negation 
Not A ~A 

F/0 
F/0 
771 
771 

Each statement has two possible values (true or false), and four possible values for 
combining any two statements, as shown in columns 1 and 2 of Table 3.1. Five 
logical relations are listed as columns 3-7. Note that the negation of any statement has 
only two possible values. 

3.1.2 Basic Logical (Boolean) Operations on Variables 

We shall use the project selection problem described in Section 2.3 to illustrate various 
logical operations on 0-1 variables. Recall that the problem is to select a subset of n 
projects in a manner that maximizes the total present value while satisfying the budget 
limitation. To formulate it, we let y¡ = 1 if project j is selected, and 0 otherwise. 
Translating to the logical expression, we have 

Statement A: project A is selected (yA = 1) or not selected (yA — 0) 
Statement B: project B is selected (yB = 1) or not selected (yB — 0) 

To obtain a correct MIP model, keep in mind that (1) only linear equation(s)/ 
inequalities are allowed, (2) if more than one linear constraint is required, these 
must be satisfied simultaneously, and (3) only the true value is of interest in the final 
logical output (i.e., the final value must be 1). 

3.1.2.1 Conjunction (A and B,ACiB) The conjunction of two statements, A and 
B, implies that both projects A and B are selected, or symbolically 

yA = landos = 1 

Note that these two equations already satisfy the "simultaneousness" assumption.We 
can also use column 3 of Table 3.1 to verify the result. Note that the only true (T) value 
of four possible cases is when statement A is true (yA = 1) and B is true (y^ = 1). An 
alternate formulation is yA + yB — 2. 

3.1.2.2 Disjunction (A or B, Al)B) The disjunction relation of two statements, 
A or B, implies that either A or B or both are true. In other words, at least one of the 
projects A or B must be selected. Clearly, the corresponding linear constraint is 
yA + ;VB>I . 
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This constraint can be verified by column 4 of Table 3.1, where three possible cases 
are shown to be "true": 

1. Project A is selected but not B (yA=\ and yB = 0) 
2. Project B is selected but not A (yA = 0 and yB = 1) 

3. Both projects A and B are selected (yA = 1 and yB = 1) 

Observethatincasesland2,)>J4 + yB= \,b\AyA + yB = 2incase3.Tosatisfyallthe 
three cases, we have yA + yB> 1. Instead, if the problem requires that exactly one of the 
projects A and B can be selected, then the constraint must be an equality, yA + yB = 1. 

3.1.2.3 Simple Implication (If A Then B,A —> B) "If statement A then statement 
B" (or "statement A implies statement B") means that if statement A is true, then 
statement B must be true; and if statement A is false, then statement B can be either 
true or false. Substituting statement A for project A and statement B for project B, we 
have the following three possible true cases: 

1. Project A is selected (yA — 1) and project B is selected (yB = 1) 
2. Project A is not selected (yA — 0) and project B is selected (yB = 1) 
3. Project A is not selected (yA = 0) and project B is not selected (yB — 0) 

Comparing the values of yA and yB in each case, we find that the following 
inequality captures all the three cases: 

y A < y s 

3.1.2.4 Negation (Not A, ~Aj The negation of statement A is called "not A" or 
"~A" symbolically. The statement simply reverses "true to false," or "false to true," as 
shown in Column 7 of Table 3.1. That is, if yA = 1, then ~yA = 0; or if yA = 0, then 
~yA=\. 

3.1.2.5 Relation Between Either/Or and If/Then Statements There is an 
important relation between "either/or," "if/then," and "not A." That is, the 
following two statements are equivalent: 

If A then B 

~A US 
We may verify this by examining the values of all four possible cases in columns 3 

and 5 of Table 3.2. 

TABLE 3.2 Simple Implication and Negation 

A B If A then B ~A ~Al~l£ 

1 1 1 0 1 
1 0 0 0 0 
0 1 1 1 1 
0 0 1 1 1 
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TABLE 3.3 Linear Expressions for Boolean Relations 

Logical Relation Linear Inequality/Equation 

yc=yA^yB yc<yA 
yc<yB 
yc>yA + ^ - 1 

yc=yAUyB yc>yA 
yc>yB 
yc < y A + yn 

yA^yc yA<yc 
yc = ~yA yc=i-yA 

3.1.2.6 Double Implication or Biconditional (A If and Only If B) Double 
implication means A implies B, and B also implies A. Applying this relation to 
the project selection problem, it means that project A is selected if and only if project B 
is selected. There are only two true cases for this compound statement, as shown in 
column 6 of Table 3.1: 

(1) Project A is selected (yA = 1) and project B is selected (yB = 1) 

(2) Project A is not selected (yA = 0) and project B is not selected (yB = 0) 

To satisfy both cases, we must have yA = yB. 

3.1.3 Multiple Boolean Operations on Variables 

If there are two Boolean operations performed on three binary variables, for instance, 
yAr\yBUyc, then two steps are required: (1) perform yADyB and output a new 
variable (say, yD), and (2) perform yoUyc and evaluate the true value.Table 3.3 
summarizes the logical operations and their corresponding 0-1 linear equations or 
inequalities. Table 3.3 illustrates the use of appropriate constraint combinations to 
represent compound operations. 

3.2 TRANSFORM NONBINARY TO 0-1 VARIABLE 

There are two types of nonbinary variables to be considered. In this context, we define 
a general integer variable that can take on consecutive integer values between 0 and 
infinity. If the smallest value of the variable is nonzero, then we add a simple lower 
bound constraint to the model. If the largest value is bounded, then we add a simple 
upper bound. All these cases, except for binary, are considered general integer 
variables. In this section, we refer to a discrete variable as one that takes on 
nonconsecutive integer values. For example, z € Z = { 2 , 5, 9, 21}. Both general 
integer variables and discrete variables are called nonbinary integer variables. 

3.2.1 Transform Integer Variable 

Some algorithms apply only to problems with pure 0-1 variables. Conceptually, this 
places no limitation on their solution ability as any general integer variable x > 0 with 
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a finite upper bound can be converted to a set of 0-1 variables. To illustrate how this is 
done, consider the integers restricted to 21 values x = 0, 1, ..., 20, which may be 
represented by a string of binary digits (bits): 

x = 2 % + 2lyi + 22y2 + 23y3 + 24y4 

= lyo + 2y, + Ay2 + 8y3 + 16>M 

where yj = 0 or 1 fory'=0, 1, 2, 3, 4. Note that possible combinations of binary 
variables yj yield a range of 0-31, which can cover the integer values of x ranging from 
0 to 20. Also note that the sum of coefficients that associate with x in all preceding 
terms is always 1 less than the coefficient of any term. In this example, 1=2— 1, 
1 + 2 = 4 - 1 , 1 + 2 + 4 = 8 - 1 , and 1 + 2 + 4 + 8 = 1 6 - 1 . Based on these 
observations, we are able to calculate (or predetermine) the number of binary 
variables that are required for representing a given general integer variable x > 0. 

Assume the upper bound of x is u. Then the required minimum number of binary 
variables, k + 1, must satisfy 

2* <u<2k+l 

Taking log2 on the formula, we have 

k < log2 u < k + 1 

where k and k + 1, respectively, are integers obtained by rounding down and 
rounding up the value of log2 u. In this example, u = 20 giving log2 (20) = 4.34 or 
k + 1=5 . For this problem, the proper binary representation of x can be obtained by 
substituting k = A into 

x = 2 % + 2 1 y 1+2 2 y 2+ ••• + 2 V 

Note that the required number of binary variables is k + 1 or 5 because the set of 
binary variables begins with y0. 

Transformation of a bounded (but not necessarily positive) integer variable x, 
where b<x<u, is analogous to that described above for nonnegative integer 
variables. This is because 0<x-b<u-b, or 0<x/<u', where x' — x — b and 
u' = u — b may be substituted into the expressions above for nonnegative integer 
variables bounded above. 

Substituting this binary representation for each integer variable in the given IP 
problem will reduce the problem to a binary integer program but will increase the 
number of variables in the model. The increase may be large if the upper bound u of x 
is large. But the increase is not as fast as one might think. See Table 3.4 to get a 
feeling about the magnitude of the increase on the number of binary variables as u 
increases. 

Therefore, the conditions that could make the conversion to binary variables useful 
are (1) a small number of general integer variables, each having a low upper bound, 
and (2) the proposed 0-1 algorithm is much more efficient than the existing 
general integer algorithms. The choice of using 0-1 transformation is more or less 
problem dependent. The practitioner should weigh the trade-off before using the 
transformation. 
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TABLE 3.4 Representing Integer Variable Using Binary Variables 
~u ÏÔ ÏÔÔ ÏÔÔÔ 10,000 
log2w 3.32 6.64 9.96 13.29 
k + 1 4 7 10 14 

3.2.2 Transform Discrete Variable 

When a discrete variable is limited to take only one value in a given list, then the 
discrete variable can be expressed by a set of binary variables. For example, the 
discrete variable z may take on only one value in the set Z = {1,5,7,9,23}. To do this, 
we let a new 0-1 variable y¡= 1 (/= 1,.. .,5) to represent the choice ofthefth element 
in the set and then add the following set of constraints to the problem: 

z=\yi+ 5y2 + 7y3 + 9y4 + 23y5 

yy+yi+yi+yA+ys — l 
y i = 0 or 1 for all i 

The above constraint equation, which is the sum of all of the binary variables equal 
to 1, is called a multiple choice constraint. 

3.3 TRANSFORM PIECEWISE LINEAR FUNCTIONS 

3.3.1 Arbitrary Piecewise Linear Functions 

Consider the following price structure offered by a seller for a certain commodity. The 
price is $ 10 per unit for the first 100 units, $9 per unit for the next 200 units, and $6 per 
unit for the next 200 units. Suppose at most 500 units may be purchased. Let x denote 
the number of units purchased and letf[x) represent the total cost associated with the 
purchase of x units. 

To represent the cost function/(x) for this example, we first write a mathematical 
expression for f(x). For the interval 0 < x < 100, clearly fix)= lOx. For the next 
interval 100 < x < 300, then/(x) = 10(100) + 9(x - 100). For the interval 300 < x 
500, then^x) = 10(100) + 9(200) + 6(x - 100 - 200). Simplifying, we obtain the 
following mathematical function: 

f{x) = l0x i f 0 < x < 1 0 0 (3.1) 

f{x) = 100 + 9x if 100 < x < 300 (3.2) 

f(x) = 1000 + 6x if 300 < x < 500 (3.3) 

Note that the function/^) within each interval of x represents a line segment, bounded 
by two end points. Plotting this function graphically, we obtain Figure 3.1. Extending 
each line segment to reach the vertical axis, we obtain the intercept of that line. This 



TRANSFORM PIECEWISE LINEAR FUNCTIONS 61 

¿4 4000 

fc3 2800 

b2 1000 

b, 100 
0 

0 100 300 500 
a, a2 a3 a4 

FIGURE 3.1 Representing a piecewise linear function. 

intercept corresponds to the constant term of /(x), and the slope of a line 
segment corresponds to the coefficient of x in/(x). Specifically, the intercept of line 
segment 1 is 0 and the slope is 10, the intercept of line 2 is 100 and the slope is 9, 
and the intercept of line 3 is 1000 and the slope is 6. The collection of these 
three individual line segments form a "piecewise linear function" with four break-
points located at ax=0, a2=100, a3 = 300, and a4 = 500. Note that the entire 
function is still considered nonlinear even though all individual segments are linear. 
Therefore, the piecewise linear function must be converted to an equivalent formula-
tion involving only linear functions so that the resulting model can be solved by an 
MIP algorithm. 

The piecewise linear cost function in this example is a concave function with a 
special property of having decreasing slopes of line segments (10 > 9 > 6). By taking 
advantage of this special property, there is a better formulation than the one for 
an arbitrary piecewise linear function. In this section, we first present an MIP 
formulation for the arbitrary piecewise linear function. Using the same example, 
we then introduce a better formulation for the "concave" piecewise linear cost 
function in Section 3.3.2. 

Toward this end, consider two consecutive breakpoints, ak and ak +1, and the line 
segment between them. If x is any point lying on the line segment with end points, ak 

and ak+\, then x c a n be expressed by 

x = Xkak + {\-Xk)ak+\ 

where 0 < Xk < 1. Since/(x) is also a line segment between f(ak) and f(ak+1), it also 
follows that 

f(x)=Xkf(ak) + (l-Xk)f(ak+l) 

1—► x 
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Generalizing this idea to include all breakpoints, we can write 

x = Aiai + X2a2 + ■ ■■ +Àr+lar+i 

f{x) = Xxf{ax) + l2f{a2) + ■■■ + Xr+lf(ar+l) 

where X\ + X2 + ■ ■ ■ + XT +1 + 1 = 1, X\¡ > 0 for all k, and at most two adjacent Xk 

can be positive. 
The condition that "at most two adjacent Xk can be positive" is a nonmathematical 

expression, which must be replaced by a mathematical expression. To do this, we 
introduce a binary variable yk for each line segment of the piecewise linear function 
and add the following set of linear constraints: 

X\ <y\ 

X2 <yi+y2 

X-i <y2+y3 

Xr <yr-[+yr 

Xr+\ < yr 

k=\ 

Xk>0 for all k 

yk = 0 or 1 for all k 

Note that each yk controls the value of Xk and Xk+\. That is, if yk = Q, the above 
constraints force Xk and Xk +1 to be 0. Likewise, if yk = 1, then Xk and Xk +1 are in the 
range [0,1 ]. Since the constraint ^k= i Yk = 1 restricts all yk so that exactly one yk will 
have the value 1, exactly two adjacent Xk are allowed to be nonzero in any solution. In 
fact, the yk that assumes the value of 1 corresponds precisely to the line segment that is 
being used. 
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Applying this conversion to the example problem, the piecewise linear function of 
Figure 3.1 can be written as 

x = OAi + 100A2 + 300/13 + 500A4 

f{x) = /(0)A, +/(100)A2 +/(300)A3 +/(500)A4 

= OAi + 1000A2 + 2800A3 + 4000/U 

h < y\ 

h < yi+yi 

h < yi+y?, 

A4 < ?3 

y\ +j2+3'3 = 1 

A1+A2 + A3 + A4 = 1 

kk > 0 for all k 

yk = 0 or 1 for all k 

To utilize this technique in the context of integer programming, all occurrences of x 
and function f(x) in the original objective and constraints should be replaced by 
continuous variables A* and binary variables yk defined by the first two equations. The 
resulting new problem contains only A* and yk variables. After adding the above 
remaining constraints to this problem, the augmented problem is equivalent to the 
original problem. After solving this equivalent problem, the solution in original 
variables x could be recovered by using the first equation. 

3.3.2 Concave Piecewise Linear Cost Functions: Economy of Scale 

"Economy of scale" is a common business practice. For example, suppliers offer 
various discounted unit prices for various scales of purchase quantities. Likewise, 
shippers offer various unit freight charge "breaks" for various scales of weights, and 
so on. The common property of these two is that the unit costs decrease as the quantity 
scales increase. 

Consider the piecewise linear function defined in (3.1)—(3.3). There are three line 
segments with slopes S\ = 10, s2 = 9, and s3 = 6, respectively. Because these slopes 
are in the decreasing order (si > s2 > S3), the piecewise linear function is concave. The 
line segment can be expressed by 

f(x) = b¡ + s,x for / = 1,2,3 
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The intercepts of the three line segments are determined by 

t¡ = Oat ai = 0 

í2 = íi +sia2-s2a2 = 0 + 10(100)-9(100) = 100 

h = t2+s2a3-s3a3 = 100+ 9(300)-6(300) = 1000 

To formulate the objective function, we define 

y i = 1 if a,-_i < x < a,, 0 otherwise 

x¡ = x if a,_i < x < a¡, 0 otherwise 

In the objective function to be minimized, the formulation should include the 
following terms: 

tiyi + s\xl + t2y2 + s2x2 + t3y3 + s3x3 

and replace everywhere x appears by X\ + x2 + x3. The required constraints similar 
to that of the fixed-charge problem are 

*/ < a¡+ \y¡ a nd cuy i < Xi for i = 1,2,3 

y\ +yi+y3 < l 

y i = 0or 1 for i = 1,2, 3 

This formulation, by taking advantage of special concave property, is simpler than 
the one in Section 3.3.1. 

Note that the above formulation considers a piecewise linear function for just a 
certain variable x. The extension to formulating a problem with multiple piecewise 
linear functions is straightforward as long as these functions are separable. 

3.4 TRANSFORM 0-1 POLYNOMIAL FUNCTIONS 

Consider a simple quadratic function in which the variables must be 0 or 1, 

f(yi,y2,---,y„) = ^y]+ ^y¡yk 
j i*k 

Obviously, each y? can be replaced by y¡ without affecting the value of the function. 
Also, a new variable y^ is needed to replace a product of yjyk such that its values 
correspond to the values of yj and y^ in Table 3.5. 

Two linear constraints are added to give lower and upper bounds of yj + y^ for 
every pairy, k: 

tyjk < yj + yk < yjk +1 

yj,yk,yjk = 0 o r i 
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TABLE 3.5 Linearization of a Quadratic Function in Two Binary Variables 

C o m b i n a t i o n 

yj yk 

0 0 
0 1 
1 0 
1 1 

yjk =yjyk 

0 
0 
0 
1 

2yjk 

0 
0 
0 
2 

yj + yk 

0 
i 
i 
2 

yjk + i 

i 
i 
i 
2 

Functions with product terms of three binary variables can be transformed in a similar 
manner. A new binary variable y^ is introduced to replace a product of y¡, y7-, and y* 
such that its values correspond to the values of y„ yj, and y^ in Table 3.6. 

Two linear constraints are required to give lower and upper bounds of y, + y, + y¿, 
for every triple /', j , and k: 

3y,;vt < y i + yj + y* < yyk + 2 

yi,yj,yk,yijk = 0 o r i 

Higher degree functions can be generalized in a similar manner. In general, given a 
set, g, composed of q 0-1 variables, the product fT.egyP, for any positive integer value 
of p, can be replaced by a single variable y ô and imposing the additional constraints 

& < yQ + ( ? - i ) (3-4) 

^yj>qyQ 
m (3.5) 
yj,yQ = 0 or 1 

Note that if any y, = 0, then constraint (3.4) is nonrestrictive, constraint (3.5) becomes 
y e < 0, and therefore y e = 0. If all y, = 1, then constraint (3.4) becomes y e > 1, the 
equality holds, and the desired relation is obtained. 

TABLE 3.6 Linearization of a Cubic Function in Three Binary Variables 

y¡ 

0 
0 
0 
0 
1 
1 
1 
1 

C o m b i n a t i o n 

yj 

0 
0 
i 
i 
0 
0 
1 
1 

yk 

0 
i 
0 
1 
0 
1 
0 
1 

yyk 

0 
0 
0 
0 
0 
0 
0 
1 

3VyA 

0 
0 
0 
0 
0 
0 
0 
3 

y,- + yj + 

0 
1 
1 
2 
1 
2 
2 
3 

yk y¡jk + 2 

2 

2 
2 
2 
2 
2 
2 
3 
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Example 3.1 Consider the following 0-1 polynomial programming problem: 

Maximize 2y i y2y\ + y\y2 

subject to 12yi + ly\y3 —3yij3 < 16 

yi,)>2,y3 = 0 o r l 

The conversion procedure is as follows: 

1. Drop all positive exponents from the problem. 
Since y" = y for any binary y and n > 0, we can drop all positive exponents. 

2. Replace each product term with a new binary variable. 

Let yi23=yiyiy3, y\2 = y\y2> yi3=yiy3, and yn=y\y3- To ensure that the new 
variables correctly relate to the original variables, we must add a pair of linear 
inequalities for each new variable. 

yi+y2 + y3 > 3ym (3.6) 

y\ +yi+y3 <yi23 + 2 (3.7) 

y\+yi>'2yn (3.8) 

yi+yi<yii + i (3.9) 

yi+y3 > 2y23 (3.10) 

y2+y3<y23 + i (3.n) 

y\ +y3 > 2>>i3 (3.12) 

yi+y3<yi3 + i (3.13) 

The new formulation becomes 

Maximize 2yi23 +J12 

subject to 12yi +7^23 -3yn < 16 

and(3.6)-(3.13) 

3.5 TRANSFORM FUNCTIONS WITH PRODUCTS OF BINARY AND 
CONTINUOUS VARIABLES: BUNDLE PRICING PROBLEM 

Bundling products or services is a widespread marketing strategy. This strategy arises 
naturally when the products or services being offered are comprised of components. A 
firm must decide on prices for individual components and for bundled components so 
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that its total revenue or profit is maximized. Examples of bundling products are ample 
across various industries: 

1. A software firm has a product line composed of multiple software modules. 
Each module provides a unique set of features, ranging from statistics to 
graphics to database management to optimization. 

2. A computer distributor has components such as basic computer, monitor, 
printer, hard disk, and memory board. 

3. An insurance company has components such as auto, home, and life insurance 
policies; each component may also have several options. 

4. A fast food restaurant has components of a hamburger, fries, and soft drink. 

5. A travel agency offers products of airfare, rental car, and hotel. 

All of the above components may be purchased individually or by bundling two or 
more components. If all n individual components can be bundled in any combination 
(including individually), then there are totally 2" — 1 possible component bundles. In 
practice, only a small subset of these will be considered for bundling. The main 
concern here is setting the prices for all product options, both individual and bundled 
components, so that the seller's total revenue is maximized. Toward this end, 
construction of a constrained optimization model has been attempted (Schräge, 
2000), which turns out to be a nonlinear program in which the objective function 
contains products of binary and continuous variables. To fit into MIP format, the 
product term must be transformed to a set of linear functions. To describe the model, 
we give the following example. 

Office Barn sells computers and accessories to its customers using the following 
strategy. Customers may choose from buying a computer only, a monitor only, or a 
bundle of computer and monitor. Its potential customers are categorized into four 
segments: home users, government and educational institutions, small firms, and 
medium and large firms. Assume that the size of each customer segment can be forecast 
accurately as can the maximum price each customer segment is willing to pay for 
each purchase option. Table 3.7 tabulates the data for a certain type of desktop computer 
and LCD monitor. If each customer buys exactly one option or buys nothing, how 
should Office Barn set the price for each option to maximize its total revenue? 

TABLE 3.7 Office Barn Bundle Pricing Problem 

Maximum Price Customer is Willing 
to Pay 

Customer Segment 
Expected Size 

(in 10,000) 
Computer 

Only 
LCD Monitor 

Only Both 

Home 
Government and educational 
Small firms 
Medium/large firms 

5 
15 
8 

12 

600 
700 
650 
700 

350 
350 
300 
300 

850 
1000 
900 
900 
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Stigler's (1963) economic model for consumer behavior suggests that the relevant 
customer demand information is captured by a vector of reservation prices for the 
products. The reservation price is defined as the maximum price a customer is willing 
to pay. A customer will choose the product that maximizes consumer surplus, which is 
defined as the difference between the reservation price and the product price. For 
example, if the product prices for the three options, namely, computer only, monitor 
only, and both together, were set respectively at 550, 320, and 750, then for the home 
users the consumer surplus is respectively 50 (=600 — 550), 30 (=350 — 320), and 
100 (=850 — 750). Then the home segment will buy both because the consumer 
surplus is the largest. 

To develop a general model of this problem, we define 

Input parameters: n¡ = size of customer segments (number of indivi-
dual customers in segment i), r¡j = reservation 
price of customer / for bundle j 

Decision variable: Xj = price of bundle j to be determined 
State variables: yy = 1 if customer segment i purchase bundle j , 0 

otherwise; s¡ = consumer surplus preservation 
price — selling price) achieved by customer seg-
ment i 

The seller would like to determine Xj, the selling price of bundle/ to 

Maximize \] I n¡ /"_, yyxj I 

subject to constraint sets: 

(1) Every customer buys exactly one bundle: 

2_\yy — 1 f°r e a c n i 
j 

(2) Customer i will buy bundle y only when consumer surplus is maximum: 

Si > Tij-Xj 

where s¡ = ^2(ry-xj)yy 

(3) Restrictions on variables: 

Vy = 0 for all ij 

Xj > 0 

Note that there is a product term of yyXj in the objective function and in constraint 
set (2). 
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To linearize it, we replace yyXj by Zy everywhere it appears in the model, giving the 
following modifications on the objective function and constraint set (2): 

Maximize Y^ n, Y j zy 

(2)' 'Y^rvyg-zn)+xj>rij 
j 

in addition to Zy > 0. Also add the following constraint sets to enforce the correct 
representation: 

(4) Zy<Xj 

(5) Zy < Tyyy 

(6) z,j > Xj-(l-yy)Mj 

where Mj is an upper bound on Xj. Constraint set (4) ensures that zy {—yyxj) cannot 
exceed the market price of bundley. Constraint set (5) ensures that zy cannot exceed 
the maximum price that customer i is willing to pay for bundley when it is purchased, 
and Zy is 0 when bundley is not purchased. If y y = 1, then zy = x¡ due to constraint (4). 
If y y — 0, then constraint (6) is satisfied due to redundancy. 

3.6 TRANSFORM NONSIMULTANEOUS CONSTRAINTS 

Recall that MIP assumes that all constraints must be satisfied simultaneously. In this 
section, we examine various types of nonsimultaneous constraints and show how to 
convert them to simultaneous constraints. Many of them are related to the following 
logical operations on constraints as they perform on binary variables: 

• Either/or constraints 
• Negation of a constraint 
• If/then constraints 

3.6.1 Either/Or Constraints 

A decision variable may be defined by two disjunctive regions. For instance, variable x 
is defined outside the interval (3, 10). That is, either x < 3 or x > 10. To satisfy the 
simultaneousness assumption of MIP, they must be transformed. 

To do this, rewrite the pair to x - 3 < 0 and — x + 10 < 0, and let M be a very big 
number such that M > max{x - 3, —x + 10}. Let y be a binary variable. Then the 
disjunctive constraints can be replaced by two simultaneous constraints: 

x-3 < My 

and -x+l0<M{l-y) 
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Note that if y = 1, the constraint x — 3 < M is redundant (and evidently satisfied) 
and one of the given constraints, 10 — x < 0, is also satisfied. If y = 0, the other given 
constraint, x — 3 < 0, is satisfied, and the constraint — x + 10 < M is also satisfied 
because it is redundant. 

Consider the problem of scheduling jobs on a single machine. Let x¡ and Xj 
respectively denote the start time of job i and job/to be scheduled. The start times may 
be continuous variables. Also, let t¡ and t¡ respectively represent the known machine 
time of job / and j o b / Then the completion times of job i and job / are x¡ + t¡ and 
x, + tj, respectively. Assume that a job once commenced must be processed until it 
completes. Since only one machine is available, it is impossible for two jobs to be 
scheduled during the same time interval. Thus, for any two jobs i andy", it must be true 
that 

Either x, + t¡ < x¡ 

or Xj + tj < x, 

The either-constraint enforces that job/ cannot start before the completion of job /, and 
the or-constraint ensures that job /' cannot start before the completion of job / 
Obviously, both constraints cannot be satisfied simultaneously. Rewriting the con-
straints, we have 

Either x,—x¡ + t¡ < 0 

or Xj—x¡ + tj < 0 

Again introducing a binary variable y and a big M value, the either/or constraints 
can be converted to two simultaneous inequalities: 

Xj—Xj + tj < My 

and Xj—Xj + tj < M{\ — y) 

Rewriting in MIP standard form, we have 

Xj—Xj < tj+My 

and Xj—Xj < tj + M( 1 —y) 

3.6.2 p Out of m Constraints Must Hold 

Consider the case where the model has a set of m constraints but in addition requires 
only some p out of m (assuming p<m) constraints to hold. The problem allows 
selection of any combination ofp constraints, and wants to select which p constraints 
so as to optimize the specified objective function. The m—p constraints that are not 
selected are in effect dropped from the problem, although feasible solutions might 
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coincidently satisfy some of them. This case is a direct generalization of the either/or 
case in which m = 2 and p = 1. 

The formulation is similar to that of the either/or case. We let y¡ = 1 if constraint i is 
selected, and 0 otherwise. In effect,/? such constraints must have the following form of 
the constraint enforced for feasible x, that is,/}(x)— b¡ < 0. In addition, the remaining 
p — m constraints are dropped from consideration, which can be accomplished by 
imposing the redundant constraints,/Xx) — b¡ < M. To satisfy these two conditions, we 
thus use the constraints below: 

fi(x)-bi < My¡ for / = 1 , 2 , . . . , m 

Y^yi = m-p 
i 

and y i is binary for all /. 

3.6.3 Disjunctive Constraint Sets 

Now we consider a more generalized case where either one subset of constraints or 
another subset of constraints must be satisfied, but not both. These two subsets are 
disjunctive. We can convert them to form a set of simultaneous constraints. Let the two 
subsets be defined as follows: 

Either subset 1 : {aTx-b¡ < 0, i = 1,2,..., mi} 

or subset 2: {c^x-dj < 0, i = 1,2,... ,m2} 

Again, let y be a binary variable and Mbe a big number such that it is greater than or 
equal to all constraints involved. Then the corresponding simultaneous constraints 
can be expressed as 

sifx-bj < My / = 1,2,..., mi 

cfx-di < M{l-y) i=l,2,...,m2 

3.6.4 Negation of a Constraint 

Suppose the given constraint is/(xi )-b<0 or fix) - b < 0, where b is the 
right-hand side constant. Then the negation of this constraint must be/(x) — b > 0 or 
-f[x) + b<0. 

3.6.5 If/Then Constraints 

Previously we have shown that the logical statement 

If A then B 
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is equivalent to the logical statement 

~ AuB 

In the context of MIP, we view a constraint as a statement. Specifically, constraints 
f\ (x) — b i < 0 and/2(x) — b2 < 0 are viewed as statements A and B, respectively. Then 
the negation of/i(x) — bx < 0 must be/,(x) — b\ > 0 or —/i(x) + bx < 0. Therefore, 
the simple implication constraint: 

If/i(x)-6i < 0 then f2(x)-b2 < 0 

is equivalent to 

Either - / , (x) + b, < 0 or f2{x)-b2<0 

Applying the same transformation rule to either/or constraints, we obtain two 
simultaneous constraints: 

- / i ( x ) + * i <My 

f2{x)-b2 < M{\-y) 

where M is a big number such that M > max {—fx (x) + b x ,f2(x) — b2} and y is a binary 
variable. 

3.7 NOTES 

Except for Sections 3.1 and 3.4, the materials of the remaining sections are based on 
the following OR, IP, and LP textbooks: Dantzig (1963), Garfinkel and Nemhauser 
(1972), Hillier and Lieberman (2005), LINDO Systems Inc. (2004), Nemhauser and 
Wolsey (1988), Salkin and Mathur (1989), Schräge (2003), Schriver (1986), Taha 
(1975, 2007), Wagner (1975), and Winston (1994). 

Section 3.1 

The truth table of logical relations can be found in an introductory textbook on finite or 
discrete mathematics, for example, Kemeny et al. (1959). This section describes 
basics about how Boolean operations (or computational problems of logic) can be 
formulated as 0-1 integer programs. For details about the connections between the 
methods of computational logic (or constraint logic programming) and integer 
programming, see Williams (1993,1999), Williams and Wilson (1998), and Williams 
and Brailsford (1999). 

Section 3.3 

A function/(x) is a convex function if for any two points, xt and x2, 
fUxi + (1 - A)x2] > AflxO + (1 - X)flx2) holds for all A, 0 < X < 1. 
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Section 3.4 

The transformation of a 0-1 polynomial function to a pair of 0-1 linear functions was 
introduced by Watters (1967). The transformation has been applied to a high-risk 
investment problem in which a quadratic 0-1 function is maximized. Glover and 
Woolsey (1974) developed an improved transformation in which product terms are 
replaced by a continuous variable rather than integer variable and three new 
constraints, instead of two, are added. Other references include Glover and Woolsey 
(1973) and Hansen et al. (1993). 

Section 3.5 

Hanson and Martin (1990) first formulated the optimal bundle pricing problem as an 
MIP model. The model in the text is a simplified version, as given in Schräge (2003). 

3.8 EXERCISES 

3.1 E-Shop is an e-commerce company. For each transaction (can include multiple 
items) you make with it, a $9.50 transaction fee is charged. For every item you 
sell, E-Shop takes a commission that depends on the selling price. The 
commission rate is 5% for $(0, 45], 8% for $(45, 80], 12% for $(80, 100], 
15% for $(100, 120], and 20% for sales above $120. Lee has three books to 
sell. If the acceptable price ranges for the three books are [40,65], [75,90], and 
[90,110], respectively, formulate an IP problem to help Lee decide on the exact 
price for each book? 

3.2 Give the final result of the following logical expressions, and verify your result 
using a truth table: 

A, B, C, and D are four different events, where A = T, B = F, C = F, D = T 

(a) Cn [ (AUB) -+D]U~ A 
(b) ( A n D ) u [ C » ( B U D ) U F] 
(c) D u {A-> [(c n A) u B]U ~ D} n (c n B) 

3.3 Express the following statements using a linear integer formulation: 

(a) A nurse can choose from a shift starting either before 11:00 a.m. or after 
5:00 p.m. 

(b) A task must be finished no earlier than 8:00 p.m., but no later than 6:00 p.m. 
(c) If the completion time of a job is larger than its due date, it is counted as a late job. 

3.4 Change the following functions to a linear integer formulation: 

(a) X\X2 = 0 , X\,X2 > 0 
, , . _ J 2x + 3, 0 < x < a, a>0 
{ ' y ~~ 1 3JC-5, a<x<b, b>a 
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3.5 A cell phone carrier provides several different plans for customers to 
choose. Plan A charges $0.10 per minute of usage, and has no monthly 
fee. Plan B has a monthly fee of $30, and an extra charge of $0.40 per 
minute if the usage exceeds 400 min. Plan C has a monthly fee of $40, and 
an extra charge of $0.60 per minute if the usage exceeds 600 min. Find the 
minimum cost plan for Donna if her monthly usage is at least 410 min. 
Formulate as an IP. 

3.6 John is buying stocks. His broker suggests six different stocks, namely, 1, . . . , 
6. Formulate the stock selection problem subject to the following constraints, 
using 0-1 variables as needed: 

(a) To lower the risk of losing money, John should buy at least two stocks. 
(b) Due to John's budget limit, he cannot buy more than four stocks. 
(c) Since stocks 3 and 5 belong to the same company, the broker recommends 

purchase of at most one of these. 
(d) John's broker suggests the following two combinations: either choose two 

from stocks 1, 2, 3, and 4, or at least two from stocks 3, 4, 5, and 6. 
(e) Stock 4 can only be purchased if stock 1 is bought. 

3.7 Consider a system that uses binary digits to represent any possible value of all 
variables. For example, a decision of "yes" is represented by 1 and "no" is 
represented by 0. A die with six sides can be represented using three digits of 
binary values: 001 is 1,010 is 2,011 is 3,100 is 4, 101 is 5, and 110 is 6. How 
many digits will be required to represent the alphabets, the states in the United 
States, and the days in a year? 

3.8 Formulate the following scheduling problem as an IP problem. A set of n jobs 
are to be processed on m machines (n>m). Each job visits one and only one 
machine. Each job y has a release time (earliest time when the job is ready to be 
processed) r¡ and a processing time p¡¡ on machine i, and no two jobs can be 
processed on the same machine simultaneously. But during the same time 
interval, different jobs can be processed on different machines. Schedule the 
processing order of the jobs so that the makespan z (the completion time of the 
last job) is minimized. {Hint: z > x¡j + py, the completion time of job j on 
machine /.) Consider the following two cases: 

(a) The m machines are identical, that is, Py=Pj for each y 

(b) The m machines are different 

3.9 Consider the following single machine scheduling problem. A set of eight jobs, 
each with weight wj and processing time pj, are to be processed on a single 
machine. The precedence limitations of the jobs are depicted in Figure 3.2. No 
two jobs can be processed simultaneously. Schedule the processing order of the 
jobs so that the sum of the weighted completion times (the product of the 
completion time and weight) of all jobs is minimized. 
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FIGURE 3.2 Job precedence. 

Let Xj be the completion time of job / 

(a) Express the objective function using Xj. 
(b) Express the constraints that job 1 must precede job 3, and job 4 must 

precede job 6. 
(c) Express that no two jobs can be processed simultaneously. {Hint: For each 

pair of independent jobs, the schedule must be either / preceding y or y 
preceding i. Let ytj = 1 if job / precedes joby, 0 otherwise.) Formulate the 
problem using jy's. 

3.10 A set of «jobs, each with processing time/Ty and due date d¡, are to be processed 
on a single machine. If the completion time of a job exceeds its due date, then 
the job is said to be a "tardy" job. Otherwise, the job is not tardy. Formulate the 
scheduling problem to minimize the total number of tardy jobs as an IP. 

3.11 The volume of a certain solid object changes with temperature. Let t be the 
temperature and/(?) be its expansion index in percentage. The expansion index 
changes with temperature as follows: 

/(') 

f 0.002/ 0 < / < 40°C 

-0.0011 + 0.12 40°C < t < 100°C 

0.003/-0.28 100°C < t < 200°C 

Transform this function into linear integer function(s). 
3.12 Big Burger is a fast food restaurant with many chain stores all over the states. 

Customers to Big Burger can be divided into three types: kids, drivers drawn 
from highways, and workers nearby. Each type has different purchasing 
preference. The most popular food in Big Burger includes burgers, fries, and 
soft drinks. They can be purchased individually or as a combo meal, which 
includes all three items. The maximum price each customer group is willing to 
pay for each item or the combo, as well as monthly estimated number 
of customers from each group, is listed in Table 3.8. Determine the price to 
charge for individual and combo purchases so as to maximize revenue from 
sales. 
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TABLE 3.8 Big Burger Customers 

Customer Type Expected Monthly Customers 

Kids 300 
Drivers 240 
Workers 600 

Maximum Price Customer is Willing to Pay 

Burger Fries Soft Drink Combo Meal 

2.69 1.39 1.09 4.29 
2.99 0.99 1.29 4.89 
2.59 0.99 1.19 4.19 

3.13 Study the electrical circuit shown in Figure 3.3, where A, B, C, and D are four 
light bulbs. 

(a) Let the event "electrical current is through" be denoted by E, show the 
logic relationships between E and A, B, C, D. 

(b) Since each light bulb is either working or not working, we can define the 
possible value by 0-1 variable. If we want to maximize the probability of 
electrical current getting through, how would you formulate the objective 
function? 

(c) If we know the following constraints are enforced, formulate the problem 
as binary IP and transform it into linear IP: 

• A and C have the same performance. 
• The probability of both B and C are working is greater than the 

probability of two A's working. 
• The probability of D working is no larger than the probability of either A 

or C working. 

(d) Verify your work in part (3) using truth table. 

3.14 The ABC University selects students out of a large population of applicants. To 
ease the selection process, the university makes a checklist of the students' 
qualifications. If a student satisfies at least four items in the list, then he/she is 
admitted. Formulate this as IP. 

(a) SAT score higher than 600 

(b) More than 10 A's in high school 
(c) GPA over 3.0 

FIGURE 3.3 Electrical circuit schematic. 
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(d) Participated in at least one national subject competition 
(e) Won at least one presidential prize 
(f) Is considered talented in art 
(g) Has been in gifted program for at least 5 years 
(h) Is recommended by his/her high school counselor 

3.15 Mandy is ordering a set of football tickets for the coming season. She plans to 
sell the tickets to make some money. There are two types of tickets: tickets for 
road games and tickets for home games. For each road game ticket, she could 
make a profit of $150, and for each home game ticket, the profit is $50 on 
average. The ticket office offers two price options: 

(a) $5/home ticket, and no more than $50 purchase per person; $50/road 
ticket, and no more than $300 purchase per person. 

(b) $7.5/home ticket, and no more than $100 purchase per person; $45/road 
ticket, and no more than $250 purchase per person. 

How many tickets of each type should Mandy purchase so as to maximize the 
total profit she can make? 

3.16 HomeMax offers the following promotion offer to customers: if a 
customer makes a purchase between $200 and $300, then he/she gets $25 
off, and if the purchase if $300 or more, then he/she gets $40 off. Jimmy is 
buying some furniture at HomeMax. He can choose from the following items 
(not necessarily all): a gazebo, four chairs, one dining table, two long tables, 
one coffee table, and two TV stands. Price for each item is listed in Table 3.9. 
Help Jimmy decide which items to buy so as to achieve maximum saving, 
defined as the difference between the original price and the amount actually 
paid. 

3.17 Step function (Taha, 1975. Used with permission). Show how the following 
step function can be represented as a 0-1 expression: 

f(x) — b¡ a¡-\ < x < a¡, i = 1,2,..., n 

where b¡ > b¡_ i for all i = 1,2,..., n. In particular, show how the 0-1 variables 
relate to the variable x by specifying the appropriate constraints. 

3.18 Conditional constraints (Taha, 1975. Used with permission). Consider the 
constraints a¡ <f,{x)¡ < b¡, i= 1, 2, 3 and a¡ and b¡ are given constants for all 

TABLE 3.9 HomeMax Prices 
Item Gazebo Chair Dining Table Long Table Coffee Table TV Stand 
Price ($) 119 69 199 29 49 69 
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i. Show how the following conditional constraints can be expressed as 
manageable forms by using 0-1 variables: 

( i ) / , ( x ) > 0 ^ / 2 ( x ) > 0 

(ii) / , (* ) > 0 =>/2(JC) > 0 and / , (* ) < 0 =>f3(x) > 0 

3.19 Absolute Value Constraint (Taha, 1975. Used with permission). Convert the 
following constraint into a manageable form by simulating the effect of the 
absolute value using 0-1 variables: 

^Lj=iaVxJ ~ b > 



4 
BETTER FORMULATION 
BY PREPROCESSING 

For any given integer programming problem, there always exist many, possibly 
infinite, alternative formulations. Intuitively, a better formulation means that it is 
easier to solve. In this chapter, we make precise what is meant by a formulation, 
examine alternative formulations, and explain why some formulations might be better 
than others. Then we present some basic preprocessing techniques that can be used 
for transforming a given formulation to a better formulation for a general MIP 
program as well as for a special pure 0-1 program. Problem preprocessing has made a 
great contribution to the success of the modern branch-and-cut algorithms for solving 
combinatorial optimization problems and large-scale 0-1 integer programming 
problems. 

4.1 BETTER FORMULATION 

For a linear programming (LP) problem, the size of the problem matrix is commonly 
used for measuring the quality of a formulation, where problem size is a function of 
the number of constraints (or rows), number of variables (or columns), and number of 
nonzero elements in the problem matrix. In the absence of a sparse matrix, LP problem 
size can be approximated by the product of the number of variables and constraints. 
Thus, for an LP problem, a smaller problem matrix generally means a better 
formulation. But for an IP/MIP problem, the simple use of the problem matrix is 
no longer accurate for measuring its formulation quality for several reasons. 

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang 
Copyright © 2010 John Wiley & Sons, Inc. 
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First, integer and continuous variables should not be weighted equally in measur-
ing IP formulation quality because a problem with integer variables is much more 
difficult to solve than that with continuous variables. Moreover, the degree of 
difficulty increases exponentially as the number of integer variables increases. 

Second, an IP formulation with more constraints may be easier to solve (not harder 
to solve, contrary to an LP formulation) because extra constraints may often help 
"tighten" a continuous feasible region. The cutting plane methods (see Chapter 11) 
provide good evidence for this phenomenon, in which the latter iteration has 
more cutting constraints and a smaller feasible region. Another example arises in 
the alternative formulations for the uncapacitated facility location problem 
(Section 2.6.2), which will be detailed later in this section. 

Therefore, measuring the quality of an IP formulation needs a different criterion 
than the one associated with an LP problem matrix. This criterion is based on the quality 
of the polyhedron (feasible region) of the linear programming relaxation of the given 
integer program. The key idea of preprocessing is to reformulate problems so as to 
make the difference in the objective function values between the solutions to the linear 
programming relaxation and the respective integer program as small as possible. 

There is another important reason why the LP relaxation is commonly used for 
measuring the quality of IP formulations. This is due to the fact that the state-of-the-art 
methods used for solving general integer programs are based on linear programming, 
or the so-called LP-based methods. In fact, as can be seen in later chapters, all existing 
general IP methods (including branch-and-bound, cutting plane, and branch-and-cut) 
require solving a large number of LP relaxation problems, numbering in the thousands 
or even millions for a moderate or large-scale combinatorial optimization problem. 

Before rigorously defining the terms such as polyhedron, formulation, and better 
formulation, let us consider three expository examples of pure IP constraints: 

IP1: 2y¡ + 2y2 < 3 
y uy2 integer 

IP2: 3 î + 2y2 < 3 
yi,y2 integer 

IP3: yi +y2 < 1 
yi,y2 integer 

Plotting them in Figure 4.1, we see that each IP constraint set contains exactly the 
same set of feasible integer points, S= {(0, 0), (0, 1), (1, 0)}. 

Relaxing the integer requirements of y\ and y2 from the given programs, we obtain 
the following LP relaxations: 

LP1: 2yl+2y2<3 

yi,yi > 0 

LP2: 3y¡ + 2y2 < 3 

y\,y2>0 

LP3: y, +y2 < 1 

yi,yi > 0 
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FIGURE 4.1 Integer feasible points. 

Plotting LP1, LP2, and LP3, respectively, in Figure 4.1, we obtain three (continuous) 
feasible regions enclosed by triangles ADE, ADC, and ABC. Geometrically, each of 
these regions is called a polyhedron. Since each of these polyhedra contains the same 
set S— {(0, 0), (0, 1), (1, 0)}, they are alternative formulations for set S. 

Now we rigorously define the terms "polyhedron," "formulation," and "better 
formulation." Let E" and Zp, respectively, denote «-dimensional real space and 
/»-dimensional integer space. Thus, x G E", y € Zp, and the set of mixed integer 
feasible solutions SCE"x Zp. 

Definition 4.1 The set of all points (or solutions) that satisfy a set of linear 
constraints, denoted by P = {x: Ax<b, x continuous}, is a polyhedron. 

Recall that Ax < b represents the standard linear constraint set and those non-
standard linear constraints in <, >, and = forms as well as nonnegativity restrictions 
x > 0 can be converted to the standard form. For example, x > 0 can be converted to 
—x < 0, which in turn is a simple form of Ax < b. This definition states that any 
feasible region formed by a linear program is a polyhedron. 

For a pure integer program, a formulation for a pure integer feasible region Sy is 
defined below. 

Definition 4.2 Given Sy = {y GZp: Gy < b, y integer}. A polyhedron PÇEp is a 
formulation for Sy if and only if Sy = P n Sy, which is the same as Sy Ç P. 

Note that a formulation for a set of pure integer feasible solutions must satisfy two 
conditions: (1) It must be a polyhedron defined in the samep-dimensional real space. 
(2) It must contain exactly the same set of integer feasible points Sy (i.e., the 
polyhedron contains no more integer points than in Sy and no less integer points 
than in Sy). For example, polyhedron ABFC in Figure 4.2 is not a formulation for 
Sy— {(0,0),(0,1),(1,0)} because it contains an extra integer point (1,1).Polyhedron 
AGC is not a formulation for Sy because point (0, 1) is not in Sy. 

For a mixed integer program, a formulation for a mixed feasible region Sxy is 
defined below. 
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FIGURE 4.2 Formulations. 

Definition 4.3 Given Sxy = {(x, y): Ax + Gy < b, x e E", y G Zp}. A polyhedron 
P Ç E" +p is a formulation for Sxy if and only if Sxy = PD Sxy. 

For example, consider the constraint set of a mixed integer program 

x + y< 1 
J C > 0 

y integer 

Plotting in Figure 4.3, we see that the set of mixed integer feasible points Sxy contains 
point (0, 1) and a line segment AC defined by (x, 0), 0 < x < 1. Relaxing the integer 
requirement on y, we obtain formulations ABC and ADC for S^. 

We now define a better formulation for a pure integer program below. Definition of 
a better formulation for a mixed integer program is similar. 

Definition 4.4 Given two formulations P\ and P2 for Sy. P\ is a better formulation 
than P2 if Pi C P2, that is, Pi is a proper subset of P2. 

In Figure 4.1, since formulation LP3 c LP2, LP3 is a better formulation than LP2. 
Similarly, LP2 is a better formulation than LP1. However, given any two formulations, 
we may not know whether one is better than the other. For example in Figure 4.4, we 
cannot tell whether P3 is better than P2 even though P3 looks smaller in area than P2. 
Note that just the size alone of a feasible region does not necessarily determine the 
quality of formulation. 

Definition 4.5 Given S — {y: Gy < b, y integer}. A formulation S is ideal if all 
extreme points of the polyhedron are integer. 

In linear programming theory, if there exists a finite optimum solution (maximum 
or minimum) and if all the extreme points (or basic feasible solutions) of the 
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FIGURE 4.3 Better formulation. 

polyhedron are integer, then one of the extreme points must be an integer optimum to a 
pure integer program. Therefore, in this special case, solving the relaxed LP problem 
will automatically solve the original integer program. It is instructive to draw several 
linear objective functions of various slopes on Figure 4.4. We can see that no matter 
what the coefficients (gradient vector) of the objective functions is, a maximum or 
minimum must always fall on one of the extreme points. 
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FIGURE 4.4 Formulations with same integer solutions. 
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Considering Figure 4.1, many other formulations are also possible for the set S, 
and readers are encouraged to draw some of them. You can see that there is a smallest 
formulation whose extreme points are integer. Geometrically, it is called the convex 
hull of the set S, denoted by Conv(S). This is an ideal formulation. Special classes of 
combinatorial optimization problems, such as the assignment, transportation, trans-
shipment, maximum flow, and linear minimum cost flow, have the property that their 
LP relaxation is the convex hull of basic feasible integer solutions. We refer to this 
class as "easy integer programs" to be discussed in Chapter 10. However, the ideal 
formulation for a general integer program is very difficult to find. 

In what follows, we give two real-world examples to show how one formulation is 
better than the other. One example is a knapsack problem for a pure 0-1 integer 
program and another is an uncapacitated facility location problem for a mixed integer 
program. 

Example 4.1 (The Knapsack Problem) The following two polyhedra, P] and P2, 
are formulations for S because they satisfy P C E5 and S = P n S, where S = { (0,0,0, 
0,0),(1,0,0,0,0),(0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1),(1,1,0,0,0), 
(1,0,1,0,0),(1,0,0,1,0),(1,0,0,0,1),(0,1,1,0,0), (0,1,0,1,0), (0,1,0,0,1),(0,0, 
1,1,0), (0,0,1,0,1), (0,0,0,1,1),(1,1,1,0,0),(1,1,0,0,1),(1,0,1,1,0),(1,0,1,0, 
1), (1,0,0,1,1), (0,1,1,1,0), (0,1,1,0,1), (0,1,0,1,1,), (0,0,1,1,1), (1,1,1,0,1), 
(1,0, 1, 1, 1), (0, 1,1, 1, 1)}: 

P, = {y e E5 : 13y, + 21y2 + 4y3 + 17y4 + 4y5 < 47,0 < y < 1} 

P2 = {y £ E5 : 3y{+3y2 + y3 + 3y4 + y5 < 8,0 < y < 1} 

To show that formulation P2 is better than Pl 5 we must show that P2CP\, which is 
equivalent to show that P2 Ç P i and P2 ^ P i. If we can show that all the points in P2 are 
also in Pi, then P2 Ç Px. In addition, if we can also show there exists a point in P\ but 
not inP2, thcnP2cPl. 

First, we show that all the points in P2 are also in Pi. Multiplying by 4 on both sides 
of the constraint in P2, we obtain an equivalent constraint 

12y, + 12y2 +4y3 + 12y4 +4y5 < 32 

The constraint in Pi can be rewritten as 

13yi+21y2+4y3 + 17y4+4y5 < 47 

or (12y, + 12y2 +4y3 + 12y4 +4y5) + (y, +9y2 + 5y4) < 47 

If we can show that y ! + 9y2 + 5y4 < 47—32, then it implies that P2QP\. The 
claim is true because 0 < y < 1. 

Next, to show that there exists a point in Px but not in P2, consider the point 
y* = (0.02, 1, 1, 1, 1). We have y* G P{ since 13(0.02) + 21(1) + 4(1) + 17(1) + 
4(1) = 46.26 < 47, but y*£P2 since 3(0.02) + 3(1)+ 1(1) + 3(1) + 1(1) = 8.06 > 
8. Hence, we conclude that P2CP\. 
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Example 4.2 (The Uncapacitated Facility Location Problem) There are m 
machines available to meet the production requirement from n workshops, each 
with a demand 1. Once a machine is set up, a fixed cost of f¡ is incurred. Unit 
transportation cost of products from machine i to workshop/ is c,y. The objective is to 
find a production plan with the lowest cost while meeting the demands at all 
workshops. 

To model this problem, we let x¡j be the fraction of demand from workshop y met 
by machine i. Also, let y¡ be 1 if machine / is used, and 0 otherwise. Two alternative 
models are obtained. 

m n m 

(IP,) Minimize ^^CyXy: + ^fyi 
(=1 j=\ i=\ 

/=1 

n 

y=i 

Xij > 0 

y i = 0 or 1 

7 = 1 , 2 , . 

i = 1 , 2 . . . 

i = 1 , 2 , . . 

1 = 1 ,2 . . . 

. , « 

. ,m 

■, m;j = 

. ,m 

= 1 ,2 , . . 

(4.1) 

(4.2) 

. , « 

(IP2) Minimize Y1^2CiJx'J+ ^2^'yi 

i=i j=\ 

subject to 2_.X'J = * 7 = 1 , 2 , . . . , « 
/=i 

xij < y i 

xij > 0 

y i = 0 or 1 

= 1 ,2 , . . 

= 1,2,. 

• = 1 , 2 , . 

.,m;j= 1 ,2 , . . 

.,m;j= 1,2,. 

. ,m 

. , « 

.,n 

(4.3) 

Note that the two IP models are similar except for constraint sets (4.2) and (4.3). 
Considering the problem size, model IP2 is larger than IP, because the number of 
constraints in (4.3) is n times that of (4.2). However, we claim that formulation 
P2 is better than P¡ because P2CP\, where these represent the LP relaxation of 
the respective integer programs, hence in both models y¡ becomes continuous 
on [0, 1]. 

To show that P2cPi,we simply need to show that any points in P2 also lie in Pu 

but not vice versa. Since the only difference in these two formulations is that (4.3) 
replacing (4.2) in P2, showing P2cP\ is equivalent to showing that any points 
satisfying (4.3) also satisfy (4.2), but not vice versa. 

Clearly, if we sum the inequalities in (4.3) over the range of/, then we obtain (4.2). 
Hence, every point satisfying (4.3) must also satisfy (4.2). On the other hand, we can 
easily find an example that satisfies (4.2) but not (4.3). 
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Consider a special case where m = n. Let y, = (1/«) for all i, then ny¡= 1. The 
coefficient matrix of x is a diagonal matrix with all the elements on the diagonal equal 
to 1, and others 0: 

" 1 
0 

0 
_ 0 

0 
1 . 

0 
0 . 

. 0 
0 

1 
. 0 

0 " 
0 

0 
1 

We can see that in this case, ^2,-xy — 1 = ny¡, which satisfies (4.2), but x„ > y¡ for each 
i, which violates (4.3). So we can conclude that P2CPi, andP2 is a better formulation. 
In fact, the example discussed earlier is not the only case where (4.2) is satisfied 
but (4.3) is violated. Readers are encouraged to make up other examples too. 

4.2 AUTOMATIC PROBLEM PREPROCESSING 

Building good formulations for a given IP problem is both art and science. It often 
depends on the creativity of a model builder as well as scientific techniques. Even for 
the same model builder, one can often expect that his/her original formulation can be 
improved, either artistically or scientifically. In the remaining sections, we will 
introduce some logical rules that can be used to automatically improve a given 
formulation. These rules routinely process a given problem formulation before it is 
actually solved by an MIP algorithm. These rules are bundled together to form the 
so-called preprocessor or presolver. The preprocessor has been proven very efficient 
in reducing the solution space and speeding up the solution time. In fact, nowadays 
most popular IP software has a built-in preprocessor. Most preprocessors cover the 
following basic functions: 

1. Tightening bounds on variables 
2. Fixing variables 
3. Eliminating redundant constraints 

4. Identifying infeasibility 
5. Tightening constraints 
6. Decomposing the problem into independent subproblems 
7. Scaling the coefficient matrix 

There are many preprocessing techniques available in the literature; the interested 
reader should refer to the note of this section. In Section 4.3, we introduce a basic 
preprocessing technique for tightening bounds, fixing variables, and identifying 
redundant constraints and infeasibility for general integer programs. Then in 
Section 4.4, we introduce basic techniques for the same functions specially designed 



TIGHTENING BOUNDS ON VARIABLES 87 

for pure 0-1 integer programs. Methods for decomposing the problem and scaling the 
coefficient matrix are given in Sections 4.5 and 4.6, respectively. 

4.3 TIGHTENING BOUNDS ON VARIABLES 

We introduce a basic technique based on tightening upper and lower bounds on 
variables in mixed integer programs. Three types of variables are considered in order: 
continuous, general integer, and 0-1 variables. First, we introduce a bounding 
technique on continuous variables as a foundation. Then we modify and simplify 
this bounding technique for the special treatment of general integer and 0-1 variables. 

Basically, a preprocessor is initiated with the inputted IP model. It examines and 
computes possible tighter upper and lower bounds on all variables, one at a time, in the 
following order: constraint 1, constraint 2, . . . , constraint i, ... , constraint m\ and 
within each constraint, variable X\, x2,. ■ ■, xk,..., xn. If a computed upper bound of 
a variable is lower than the best upper bound found so far, or a computed lower bound 
is higher than the best lower bound found so far, then the computed bound replaces the 
current bound. 

After an entire constraint set is evaluated, the process is terminated if there are 
no bound improvements on any of the variables. If any bound is improved, then a 
smaller or better formulation is obtained and another round (pass) of preprocessing is 
repeated on the new formulation. The process is repeated until no improvements are 
possible on either lower or upper bounds for any variables of an entire formulation. 
Alternatively, a termination condition may be set to a maximum number of passes 
predetermined by the user. 

4.3.1 Bounds on Continuous Variables 

The bounded linear programming problem can be stated as 

Maximize z = ^ CjXj 
j 

subject to 2_.a'JxJ — bi (i = 1 ,2,. . . ,m) (4-4) 
j 

ij<Xj<Uj ( y = 1 ,2 , . . . , « ) 

Separating positive and negative coefficients, the constraints can be rewritten as 

y ^ ayXj + ^2 aijxj ^ bj (/ = 1,2,..., m) (4.5) 
y:a,j>0 My<0 

Isolating variable x^, we have 

a¡kXk + ^2 avxJ + ] C a'JxJ ~bi (' = 1 > 2> • • • ' m ) ( 4 - 6 ) 
j^k,a0>0 j¿k,a¡j<0 

Hamid
Sticky Note
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where k is the index of the variable to be computed for possible tighter bounds, j is 
the index of the remaining variables, u¡ and /,, respectively, denote the tightest upper 
and lower bounds found so far on variable/. If they are not specified, we may initially 
let Uj = M (a big number) and /, — 0. The upper and lower bounds on variable xk can be 
computed based on (4.6). 

If aik > 0, then an upper bound on xk can be computed by 

«* = — [ b¡- J2 avlj- J2 avuj (4-7) 

If aik < 0, then a lower bound on xk can be computed by 

îk=--[b>- Y. av'j- S a«uA (4-8) 

" '* \ jftkAj>0 j¿k,aij<0 J 

The basic idea is that any potential tighter bound must not exclude any feasible 
solution even under the "worst" conditions. For a positive coefficient aik in (4.7), the 
worst possible conditions are /,■ for positive coefficient a¡j and are Uj for negative a¡j. 
Similarly, for a negative coefficient aik in (4.8), the possible worst conditions are /,• for 
positive coefficient ay and are Uj for negative a¡j. 

After calculations, the new best bounds are updated by setting uk — ûk if ûk < uk 

and setting lk = lk if lk > lk. 

4.3.2 Bounds on General Integer Variables 

In the presence of integer variables, upper and lower bounds can be further tightened 
by rounding the fractional values. If an integer variable has a computed upper bound 
(ûk) that is noninteger, then it can be further tightened by rounding it down to obtain 
the largest integer smaller than uk, or symbolically xk < \uk\. For example, if 
uk = 2.47, then 2 is a tighter upper bound for integer xk. 

If an integer variable has a lower bound (lk) that is noninteger, then it can be 
tightened by rounding it up to obtain the smallest integer greater than lk, or symbo-
lically xk > [7*1 • For example, if lk = 0.3, then 1 is a lower bound for integer xk. The 
current best bound will then be replaced (updated) if the computed bound is tighter. 

Example 4.3 (MIP Problem) 

4xl-3x2-2x3+y4 + 2y5 < 13 

—3x1 + 2x2— *3 + 2y4 + 3y$ < —9 
X[>0 
0<x2<3 

1 < *3 < 5 
2<y4<4 
ys > 0 and integer 
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Initialization: 

«i = M, h = 0, u2 - 3, h = 0, w3 = 5, h = 1, "4 = 4, /4 = 2, u5 = M, l5 = 0 

Iteration 1 

Check constraint 1 : 

x, : «i = (13-l(2)-2(0) + 3(3) + 2(5))/4 = 7.5 < Ai, sow, is updated to7.5 
x2:l2 = (13-4(0)-1(2)-2(0)+2(5)) / ( -3) = - 7 < 0 , so l2 is not updated 
x3 : /3 = (13-4(0)- l (2)-2(0) + 3(3))/(-2) = - 1 0 < l , s o / 3 is not updated 
yA: «4= L(13—4(0)—2(0) + 3(3) +2(5))/lJ = 32 > 4, so uA is not updated 
y5: u5 = L(13—4(0)—2(0) + 3(3) + l(4))/2J = 13 < M, sou5 is updated to 13 

Check constraint 2: 

xi:l\ = ( -9-2(0)-2(2)-3(0) + l(5)) /(-3) = 2.67 > 0, so h is updated to2.67 
x2 : u2 = ( -9-2(2)-3(0) + 3(7.5) + 1 (5))/2 = 7.25 > 3, sow2 is not updated 
x3 : l3 = ( -9-2(0)-2(2)-3(0) + 3(7.5))/(-3) = -3.17 < 1, so/3 is not updated 
yA: u4= L(-9-2(0)-3(0)+ 3(7.5)+ 1(5))/2J = 9 > 4, so uA is not updated 
y5:u5= L(-9-2(0)-2(2)+ 3(7.5)+ 1(5))/3J = 4 < 13, sou5 is updated to4 

After the first iteration, we have 

2.67 < x\ < 7.5, 0 < x2 < 3, 1 < x3 < 5, 2 < y4 < 4, 0 < y5 < 4 

Iteration 2 

Check constraint 1 : 

x\ : Wi = (13-l(2)-2(0)+3(3) + 2(5))/4 = 7.5, sowi is not updated 
x2 : h = (13-4(2.67)-l(2)-2(0) + 2(5))/(-3) = -3.44 < 0, so/2 is not updated 
x 3 : /3 = (13-4(2.67)-l(2)-2(0) + 3(3))/(-2) = -3.11 < 1.67, so/3 is not updated 
yA: w4=L(13-4(2.67)-2(0)+3(3) + 2(5))/lJ =21 > 4, so u4 is not updated 
y5: u5 = [(13—4(2.67)—2(0) + 3(3) + l(4))/2j = 7 > 4, soH5 is not updated 

Check constraint 2: 

x, : /i = ( -9-2(0)-2(2)-3(0) + l ( 5 ) ) / ( - 3 )= 2.67, so/i is not updated 
x2:u2 = ( -9-2(2)-3(0) + 3(7.5) + l(5))/2 = 7.25 > 3, sow2is not updated 
x3 : /3 = ( -9-2(0)-2(2)-3(0)+3(7 .5)) / ( -3) = -3.17 < 1, so/3 is not updated 
yA: uA= L(-9-2(0)-3(0)+ 3(7.5)+ 1(5))/2J = 9 > 4, so uA is not updated 
y5 : u5 = L(-9-2(0)-2(2)+ 3(7.5)+ 1(5))/3J = 4 , so u5 is not updated 

Stop, because no bounds that can be further tightened were found in this iteration. 
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4.3.3 Bounds on 0-1 Variables 

Recall that for a 0-1 variable, the worst lower bound is 0 and the worst upper bound is 
1. Thus, initially we can set /, = 0 and Uj = 1 for ally. Any fractional upper bound may 
be rounded down to 0 and any fractional lower bound may be rounded up to 1. By 
rounding, for example, if u x = 0.37, then 0 is a new upper bound for binary variable y i ; 
and if l2 = 0.42, then 1 is a new lower bound for binary variable y2. 

Example 4.4 (BIP Problem) 

Syl + lly2-9y3+4y4 < 0 
yi~4y2-6y3+y4 < - 5 
all yj — 0 or 1 

Iteration 1 
Check constraint 1 : 

ux = |_(0- l l (0)-4(0)+9(l)) /8j = 1, so«! is not updated 

u2= L(0-8(0)-4(0)+9(l)) / l lJ = 0 , soj>2isfixedto0 

Substituting y2 = 0 to the given problem, we have a new constraint set 

8}'i-9}>3+4}'4<0 

y\-6y3+y4 < - 5 

Iteration 2 
Check constraint 1 : 

Ml = [(0-4(0)+ 9(1))/8J = 1, so wi is not updated 

h = L(0-8(0)-4(0))/(-9)J = 0, so/3 is not updated 

w4= L(0-8(0)+9(l))/4j = 2 > 1, so w4 is not updated 

Check constraint 2: 

u\ = [ ( -5-1(0)+6(1)) /1J = 1, sou\ is not updated 

/3 = f(—5 — 1(0) —1(0))/(—6)1 = 1, soy3 is fixed at 1 

Substituting y3 = 1, we have 

8y, + 4 y 4 < 9 

y\ +Ï4 < 1 
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Iteration 3 
Check constraint 1 : 

w, = L(9—4(0))/9j = 1, sowi is not updated 

u4 = |_(9-8(0))/4j = 2 > 1, sow4is not updated 

Check constraint 2: 

u\ = [(I — 1 (0))/lj = 1, so «i is not updated 

«4 = L(l — 1(0))/1J = 1, so «4 is not updated 

Stop, because no tighter bounds can be obtained in both constraints. The final set of 
constraints remains the same as start of Iteration 3. 

8yi+4y4 < 9 

y\ +y4 < 1 
y2=0 

4.3.4 Variables Fixing, Redundant Constraints, and Infeasibility 

There are a number of variable fixing techniques available. We discuss three of them. 
First, for a maximization problem in the form given in (4.4), if a,y > 0 for all / = 1, 
2 , . . . ,mandcy<0, then fix x7 at /,. If fly < 0 for all i= 1,2,..., m and Cj> 0, then fix 
Xj at Uj. Second, if the best bounds on any variable obtained after applying the bound 
tightening routine having /¿ = w¿, then variable xk can be fixed at /^. Third, based on 
bounds on the left-hand side of a constraint, we can fix variables under the condition 
described below. Once a variable is fixed, it can be removed by substituting its fixed 
value into the current formulation (model), resulting in a smaller feasible region. 

For the z'th constraint, define the following upper and lower row bounds: 

Ui = ] T a¡jUj + Y, avlJ 
j:a¡¡>0 j:a¡j<0 

Li = Y^ aiJlJ + Y a¡JuJ 
j:a¡j>0 j':a,)<0 

Note that U¡ is an upper bound for the left-hand-side of the ith constraint (or row) and L¡ 
is a lower bound for the left-hand-side of the ith constraint (or row). Comparing with 
the right-hand side b¡, these row bounds can be used to (a) identify a redundant 
constraint, (b) identify an infeasible constraint, and (c) fix variables. Normally, we have 

U < bj < Ui 
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Consider the following three cases outside the above bounds: 

(a) If b¡ > U¡, then the fth constraint is redundant and can be removed from 
the problem. 

(b) If bj < Lj, then the rth constraint cannot be satisfied and no feasible solution 
exists. 

(c) If b,: = L¡, then all x¡ with ay > 0 can be fixed at Xj = lj, and all Xj with a¡j < O 
can be fixed at x7 = Uj. 

Example 4.5 Consider the following constraint set and bounds on variables 

x\ + X2 + X?, —2XÍ, < —6 

— X\ —3̂ 2 + 2X3 —X4 < 4 
—xi +X2+X4 < 0 
0 < X] < 2 

0 < x2 < 1 
1 < x3 < 2 
2 < x4 < 3 

Compute i/i = 1(2) + 1(1) + 1(2)—2(2) = 1 

U = l (0 )+ l (0) + l ( l ) -2(3) = - 5 > - 6 

Constraint 1 is infeasible since bx<L\. 

Example 4.6 Consider the following constraint set and bounds on variables: 

X\ + X2 + X3—2X4 < — 1 

—x\ —3x2 + 2x3—X4 < 4 
—x\ + X2 + x4 < 0 
0 < x, < 2 

0 < x2 < 1 
1 < x3 < 2 

2 < x4 < 3 

Compute Ux = 2 + 1 + 2-2(2) = 1 
L, = 0 + 0 + 1-2(3) = - 5 

No action is taken since — 5 < — 1 < 1. 

Compute U2 = - 0 -3 (0 ) + 2(2)-2 = 2 

L2 = - 2 - 3 ( l ) + 2 ( l ) - 3 = - 6 

Thus, constraint 2 is redundant since b2 > U2. Remove constraint 2 and continue. 

Compute U3 = - 0 + 1 + 3 = 4 
L3 = - 2 + 0 + 2 = 0 
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Since ¿>3 = L3, we can fix variables: xi = ux = 2, x2 = h = 0, and x4 = l4 = 2. Sub-
stituting these fixed values, constraint 3 reduces to 

2 + 0 + x3-2(2) < - 1 
or X3 < 1 

Combined with the given bound x3 > 1, we have x3 = 1. Since all variables are fixed, 
the problem is solved. 

To illustrate the first-mentioned variable fixing technique, let us assume x3 < 2 
instead of x3 < 1, which leads to 1 < x3 < 2. Then we can determine the value of x3 

using the given objective function. For the maximization problem, if the associated 
c3 > 0, then x3 = w3 = 2. If c3 < 0, then x3 = /3 = 1. 

Although the row bounding technique can also be applied even before the variable 
bounding routine, the power of this technique depends on the tightness of bounds 
on variables. 

4.4 PREPROCESSING PURE 0-1 INTEGER PROGRAMS 

Problem preprocessing is most effective when a given model is a pure 0-1 integer 
program, which arises frequently in combinatorial optimization problems (see 
Chapters 5 and 6). Problem preprocessing includes the following functions for pure 
0-1 integer programs: 

• Fixing 0-1 variables 

• Detecting redundant constraints and infeasibility 
• Tightening constraints (coefficients reduction) 
• Generating cutting planes (from minimum cover) 
• Rounding by division with GCD 

For distinction within an MIP problem, in this section we shall use j 7 instead of Xj 
to denote a 0-1 variable in a pure 0-1 integer program. 

4.4.1 Fixing 0-1 Variables 

Isolating a variable y¿ and separating positive and negative coefficients of the other 
variables, we can rewrite the standard form of the constraint set as 

aikyk+ ] T %y,+ Yl aijyj^bi ( '= l,2,...,m) (4.9) 

Any constraint of > form can be converted to a corresponding constraint of < form 
by multiplying by (-1). Note that the right-hand side constant may be negative. 
For fixing a 0-1 variable, the following two rules are applied to each constraint /: 
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Rule 1 : Identify the variable (say yk) with the largest positive coefficient (say aik > 0). 
If the sum of aik and all ay < 0 exceeds b¡, then constraint / is violated at yk = 1 and 
hence yk should be fixed at 0. 

Rule 2: Identify the variable (say yk) with the most negative coefficient (say aik < 0). 
If the sum of all ay <0(J^=k) exceeds b¡, then constraint / is violated at yk = 0 and 
hence yk should be fixed at 1. 

Note that in rule 1, the sum of aik and all ay < 0 is equivalent to setting ^ = 1 , ^ = 1 
if its coefficient ay < 0, and y¡ = 0 if ay > 0 for ally / k in (4.9). In rule 2, the sum of all 
ay < 0 is equivalent to setting yk = 0, yj — 1 if ay < 0, and yj = 0 if ay > 0 for ally ^ k 
in (4.9). 

Consider the following example in < form: 

6yi+2y2-2y3-y4 < 2 

Identify y{ as the variable having the largest positive coefficient and apply rule 1. 
Since 6 + (—2) + (—1) = 3 > 2 violates the constraint, y\ must be fixed at 0. Identify 
yj as the variable having the most negative coefficient. Rule 2 cannot be applied 
because — 1 < 2. 

Consider the following constraint in > form: 

3̂ 1 +J2—3j3 > 2 

Multiplying (—1) through the constraint, we obtain 

—3yi -y2 + 3y3 < - 2 

Identify y3 as the variable with the largest positive coefficient and apply rule 1. Since 
3 + (—3) + (— 1) > —2violates the constraint, y$ must be fixed at 0. Identify j i as the 
variable with the most negative coefficient and apply rule 2. Since — 1 > —2, y\ must 
be fixed at 0. 

Once a variable is fixed at 0 or 1 using a certain constraint, the fixed value can be 
substituted into the other constraints, which results in problem reduction. 

Example 4.4 (Continued) 

8>>1 + 11>>2-9B+4)>4 < 0 

y\-4y2-6y3+y4 < - 5 
all yj = 0 or 1 

By applying rules 1 and 2 to constraint 1, we can fix y2 = 0 and y3 = 1 resulting in the 
formulation 

8 j i + 4 j 4 < 9 

yi+y4 < l 

y3 = 1 
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which, coincidently, is the same set of reduced constraints as obtained by the bound 
tightening technique described in the previous section. 

Moreover, fixing a variable from one constraint can sometimes generate a chain 
reaction of fixing other variables from other constraints. Example 4.7 presents an 
extension of Example 4.4 in which two constraints and three variables are added. 

Example 4.7 The set of constraints include two constraints in Example 4.4 plus the 
following constraints: 

yi+y4+ys < l 
V5-V6 > 0 

Variable fixing in Example 4.4 yields the reduced constraints 

8yi+4y4 < 9 
V1+V4 < 1 

by fixing y2 — 0 and V3 = 1. Next, continue the fixing process for two additional 
constraints. 

V3 +y4 + V5 < 1 implies V4 = y¡ = 0 , andys — y6 > 0 implies y6 = 0 

Fixing variables can achieve a drastic reduction on the size of a pure 0-1 integer 
program. Crowder et al. (1983) reported that a problem of 2756 variables has been 
reduced to a problem of 1415 variables. 

4.4.2 Detecting Redundant Constraints and Infeasibility 

There are many techniques that can be used to detect a redundant constraint. The 
technique presented in the previous section is based on row bounding. Here we present 
another one that is based on a similar idea for variable fixing as presented in rules 1 and 
2 in Section 4.4.1. 

Rule 3: For a < constraint, assign a value of 1 to the variables with positive 
coefficients and 0 otherwise. If the constraint is still satisfied, then it is redundant 
and can be dropped from further consideration. 

Again, if a constraint is in > form, convert it to one in < form by multiplying by 
(—1). For example, 

2xi +X2 + 3x3 < 7 

is redundant, since 2(2) + 1(1) + 3(1) = 6 < 7. As another example, 

3x\— 2x2—*3 £ 0 

is redundant, since 3(1) - 2(0) - 1(0) = 3 < 3. 
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Very often redundant constraints are not detected from the original model, but 
are detected from the reduced models after fixing some variables. Note that the two 
techniques presented in this and the last sections, as well as other techniques, do not 
ensure detecting all redundant constraints. There are many more techniques in the 
literature for detecting redundant constraints. 

4.4.3 Tightening Constraints (or Coefficients Reduction) 

We use a flowchart in Figure 4.5 to demonstrate a constraint tightening procedure. 
Suppose we are given a constraint of the form 

a\y\+ a2)>2 + • • • + a„y„ < b where yj = 0 or 1 for ally 

Example 4.8 Tighten the following constraint 

6yi + 3y2-5y3 + 2yA + 7y5-4y6 < 15 

Iteration 1 

Calculate M = 6 + 3 + 2 + 7 = 18, M-b= 1 8 - 15 = 3. 

S={aua3,a5, a6}. 

Let M = X a ; 
a,>0 

S= laf.\aj\>M-b} 

* ' 

' 
N 

Select ak from S 

<"""^ ak~ 

Y 

T 
N 

Let âk = b - M 

Replace a k with âk 

Y 

Stop, constraint 
cannot be tightened 

Let âk = M-b,b = M-ak 

Replace ak with âh b with b 

FIGURE 4.5 Process for coefficient reduction. 
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Pick ci\ to begin with. Since ax > 0, calculate à\ = M—b = 3, b = M—a\ = 12. 

Thus, the given constraint is tightened as 

3yi + 3v2-5y3 + 2y4 + 7y5-4y6 < 12 

Iteration 2 

M = 3 + 3 + 2 + 7 = 15. M-b=l5-l2 = 3. 

S={a3,a5,a6}. 

Pick a3 to start with. Since a3 < 0, calculate a3 — b—M = —3. 

The tightened constraint becomes 

3y, + 3y2-3y3 + 2y4 + 7y5-4y6 < 12 

Iteration 3 

M = 3 + 3 + 2 + 7=15. M-b=l5-l2 = 3. 

S={a5,a6}. 

Pick a5 to start with. Since a5 > 0, calculate as = M—b = 3, b — M—a¡ = 8. 

The tightened constraint becomes 

3yi + 3y2-3y3 + 2y4 + 3y5-4y6 < 8 

Iteration 4 

Af= 3 + 3 + 2 + 3 = 1 l . A f - è = l l - 8 = 3. 

S={a6}. 

Since a6 < 0, calculate âf, = b—M = —3. 

The tightened constraint becomes 

y\ + 3y2-3y3 + 2y4 + 3y5-3y6 < 8 

Iteration 5 
S = 0. Stop, the constraint cannot be further tightened. 

4.4.4 Generating Cutting Planes from Minimum Cover 

A cutting plane (or cut) for an IP problem is a derived constraint that reduces the 
feasible region for the LP relaxation without eliminating any feasible solution for the 
IP problem. Here we will see a particular type of cutting planes for pure 0-1 integer 
programs. Such a cut is generated from a constraint in < form with all coefficients and 
the right-hand side positive, 

aiyi +Ö2V2+ ••■ +a„yn < b 
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where b > 0, a} > 0, and yj — 0 or 1 for al l / Recall that this type of constraint appears 
in the knapsack problem. The procedure for generating cutting planes is as follows: 

Step 1. Find a group of variables (called a minimum cover of the constraint, or 
knapsack cover) such that (a) the constraint is violated if every variable in the 
group is set to 1 and all other variables are set to 0, and (b) the constraint becomes 
satisfied if the value of every one of these variables is changed from 1 to 0. Let nc 
denote the number of variables in the group. 

Step 2. The resulting cutting plane has the form J2%{ y i ^ w c ~ 1-

Applying this procedure to the constraint 2y\ + 2>y2 + 5y3 + 6y4< 10, we see 
that the group of variables {yi, y2, y4} is a minimum cover because (a) (1, 1,0, 1) 
violates the constraint and (b) the constraint becomes satisfied if the value of every one 
of these three variables is changed from 1 to 0. Since nc = 3, the resulting cutting 
plane is 

y\ +yj+yA < 2 

This same constraint also has another minimum cut {y3, y4] because (0, 0, 1, 1) 
violates the constraint, but both (0,0,1,0) and (0,0,0,1 ) satisfy the constraint. Thus, 
the resulting cutting plane is y3 + y4 < 1. 

These cutting planes are very effective in tightening the LP relaxation. For 
example, for the Crowder et al. (1983) test problem with 2756 binary variables 
considered, 3326 cutting planes were generated. The result narrows the gap between 
the optimal objective value for the LP relaxation of the entire 0-1 integer program and 
the optimal objective value for this problem by 98%. The integration of this cutting 
plane and the branch-and-bound techniques provides a powerful, effective approach 
for solving binary integer programs. 

4.4.5 Rounding by Division with GCD 

Consider a constraint of the form 

aiyi + a2y2 + ■ • ■ + a„y„ < b 

where y¡ is a 0-1 variable and ay is an integer constant. Denote GCD as the greatest 
common divisor of a\,a2,.. .,an. The constraint can be tightened by dividing all terms 
by the GCD, then rounding b/GCD down to largest integer < b/GCD: 

b 
GCD 

If coefficients are not all integer, they can be made integer by the following 
procedure: 

GCD-*'' GCD-*'2 " ' GCD3'" ~ 
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Find k such that k = min{^: a/Kf) are integer for ally'}. Then all coefficients can be 
made integer by computing d¡ = a}■ ( 10*) and b' = b(\Qk) and substituting d¡ for a¡ 
and b'j for bj, respectively. 

To derive a tightening constraint, find GCD — max{¿/ : (dj)/d is integer for ally'}, 
then divide the transformed constraint by GCD, and round the right-hand side down 
to the next largest integer. 

Example 4.9 Tighten the following constraint by dividing GCD and rounding 

l.05yl+035y2-lAy3+0.63y4 < 6 

Make all coefficients integer by multiplying 100, 

105yj +35y2-U0y3 +63y4 < 600 

Since GCD (105, 35, 140, 63) = 7, the constraint can be tightened as 

600 
I5yi+5y2-20y3+9y4< 85 

If the given constraint is in > form, then reverse the inequality sign by multiplying 
by (-1). 

4.5 DECOMPOSING A PROBLEM INTO INDEPENDENT 
SUBPROBLEMS 

A large-scale IP problem contains many variables and/or constraints. However, 
sometimes, special structures in the set of constraints enable us to partition the 
problem into two or more subproblems that are independent of each other. Combining 
solutions to these subproblems will yield a solution to the original problem. In this 
way the problem is greatly simplified. Whether a problem can be decomposed can be 
determined by looking at the coefficient matrix of the constraints. To be specific, if 
the coefficient matrix A for the constraint set Ay < b, after rearrangement, takes the 
following form: 

y\ \yi\ y?, 

Mx 

0 

0 

y, \y$\ >6 

0 

M2 

0 

yi y« 

0 

0 

M3 

where M j , M2, M3 ^ 0, then the IP problem can be decomposed into three independent 
subproblems. Subproblem 1 optimizes over variables yx, y2, and y3. Subproblem 2 
optimizes over variables^,y5, andy6. Subproblem 3 optimizes over variables^ andy8. 
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Example 4.10 Consider the IP problem 

Minimize 2y\ + 3y2 + y3 —2y4 

subject to y\+y-i <1 
2y2+y4< 11 

-y2 + 5y4 > 3 

y\ > 1 

y > 0 and integer 

Rearranging the coefficient matrix by exchanging columns 2 and 3, we obtain 

y i y 2 y 3 y*_ 

1 1 0 0 
1 0 0 0 
0 0 2 1 
0 0 - 1 5 

Obviously, the problem can be decomposed (partitioned) into two independent 
subproblems: 

Subproblem 1 Subproblem 2 

Minimize 2y\ + y^ Minimize 3_y2—2)4 
subject to y\ + y¿ < 7 subject to 2y2+y4 < 11 

y\ > 1 ~yi + 5y4 > 3 

Subproblem 1 only involves variables y\ and y-i, while subproblem 2 only involves 
variables y2 and y4. 

Note that the decomposing technique discussed in this section is not what is known 
as "decomposition approach," which is the topic of Section 14.6. 

4.6 SCALING THE COEFFICIENT MATRIX 

When a practical problem is modeled, it is important to pay attention to the units in 
which quantities are measured. Great disparity in the sizes of the coefficients in an 
MIP model could make such a model difficult to solve and yield an inaccurate solution 
due to rounding and truncation errors. 

If capacity constraints allow quantities in thousands of tons, it would be better to 
allow each variable to represent a quantity in thousands of tons rather than tons. 
In general, constraints concerning a given resource should share a common measure. 
But different sets of constraints may have big difference in measuring units. Ideally, 
one should choose units so that each nonzero coefficient in an MIP model is of a 
magnitude between 0.1 and 10. In practice, this may not always be possible. However, 
most commercial packages have procedures for automatically scaling the coefficients 
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of a model before it is solved. Even with that, some software guides such as the one 
accompanying LINGO® suggest that the user define units of the objective function, 
right-hand sides, and decision variables so that no nonzero coefficients have absolute 
values of more than 100,000 or less than 0.0001. The solution is then automatically 
unsealed before being printed out. 

4.7 NOTES 

Section 4.1 

The quality of an IP formulation defined in this section is primarily based on the 
constraint set (polyhedron) of the problem with little or no consideration of the 
objective function. Nevertheless, in Section 4.3, one of the three variable fixing 
techniques does take advantage of the obj ective function. Prior to solving the problem, 
the role of preprocessing is to rapidly reduce the problem dimension with little 
computational effort and leave the optimization step for the solution phase. 

Section 4.3 

Brearley et al. (1975) presented some preprocessing techniques prior to applying 
the simplex method and reported implementation of such techniques in the earlier 
software systems such as MPSX® of IBM and APEX II® of CDC under system 
procedures called REDUCE and ANALYZE, respectively. Earlier, Zionts (1968) 
derived upper and lower bounds on variables during the simplex iterations for linear 
and integer programs. 

Section 4.4 

Hoffman and Padberg (1991) presented various techniques for automatically im-
proving the LP-representations of 0-1 linear programs for branch-and-cut. 

Savelsbergh (1994) presented various preprocessing and probing techniques for 
mixed integer programming problems. 

Section 4.6 

For scaling the coefficient matrix, see the notes in Williams (1993) and Winston 
(1994). 

4.8 EXERCISES 

4.1 Plot the feasible regions for the following two formulations from the same 
problem. Can you tell from the graphs, which is a better formulation? Why or 
why not? 
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Formulation 1 Formulation 2 

2yi +y2 < 25 y i < 9 
2yi -yi < 5 yi > 1 
4>i +y2 > 5 >>2 < 13 
y\ -2yi > 2 j2 > 0 
y > 0 and integer y > 0 and integer 

Does a better formulation imply that it has fewer variables and/or constraints? 
Why or why not? If not, give a counterexample. 
Examine the following two formulations, Pi and P2, for a single machine 
scheduling problem to minimize the total weighted completion time. Which do 
you think is a better formulation? Why? Let Wj be the weight of job j , pj be the 
integer processing time of joby, M be a large number, and Xj be the completion 
time of j o b / 

{Pi) 

{P\ ) Minimize 2_\wixi 
; '=i 

subject to Xj > pj 
-Xj+Xi+Pj 

-Xi + Xj+Pi 

y = 0orl 
n 1 

Minimize / ^ / ^ ( i +Pj)y~jt 
j=\ i=0 

subject to y j » = 1 

n i -1 

7=1 k=ma\(t-pj,0) 

yjk = 0 or 1 

<My 

<M{\-y) 

for ally 

for all t 

for ally and k 

where / = Ylj=i Pj~l>yjt = 1 if job»y starts at time t {t is integer), 0 otherwise. 

Find the best bounds for each variable in the following constraints: 

2JM +7y2-3y3 + 6yA-9y5 +)>6 < -12 
v1-2>'2+y3+43'4 + 2)'5-3y6 < 13 

l <y\ < 4 

0 < y2 < 1 
4 < y3 < 10 

2 < y 4 

J 5 < 2 
y > 0 and integer 
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4.5 Show that tightening bounds on 0-1 variables is the same as fixing 0-1 
variables. 

4.6 Use the variable fixing technique to fix the values of the variables as many as 
possible in the following 0-1 constraints: 

30xi-20x2 +40JK3 + 17x4-23x5 + 1 lx6 < 70 

23xi +15x2 +30x 3 -27x 4 + 13x5-21x6 > 61 

4.7 Tighten bounds of the following constraints by using one of the techniques 
mentioned in this chapter: 

10 25 5 17 
Tï X l + - ^ - * 2 - T * 3 + 3 X 4 - X 5 < y 

18 5 17 5 
— X ! - - X 2 + 77TX3--X4 + X5 > 4 
J O 10 / 

4.8 Fix the variables in Exercise 4.4 after the bounds are tightened. 

4.9 Tighten the constraints in Exercise 4.3. 

4.10 Tighten the constraints obtained in Exercise 4.5. 

4.11 Consider the following set of constraints for an IP problem. Identify redundant 
or infeasible constraints, if any. 

5xi +X2 + 3x3-2x4 + x5-3x6 < 9 
2xi —2x2 + *3 + X4—2x5 + X(, < 6 
X\ +X2— X3— X4 + 2X5— Xf, > 2 
2xi + X2-2X3 + 3X4-X5 + Xf, > 8 
x 6(0,1) 

4.12 Show that the constraints in Example 4.3 can be further processed for 
redundancy. 

4.13 Consider the set of possible solutions for a set covering problem defined as 

S = {y(0,1) : Y,ja»yj > 1. a» = (0,1) for all (ij)} 

(a) Under what condition(s) is the set S empty (constraint infeasible)? 
(b) Under what condition(s) is each constraint redundant? 
(c) Under what condition(s) can variable yk be fixed to 0 and 1 ? 
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4.14 The following two inequalities are simultaneous constraints of some binary IP 
problem. 

a\y\ + aiyi + am + «4J4 < b 
g\y\+ giyi + giy-î + g*y* < d 

(a) Under what condition(s) is the second constraint redundant? 
(b) Under what condition(s) is the problem infeasible (the two constraints 

contradict each other)? 

4.15 Generate a cutting plane for the knapsack constraint below. (Hint: Transfor-
mation of the constraint is needed before generating the cutting plane.) 

3yi -yi + 2y3 + 4y4-3y5 < 5 

4.16 Consider the following set of constraints for a binary IP problem. Preprocess 
the model using the techniques from this chapter. Identify the type of 
techniques you used. 

37xi-68x2 + 78x3 +X4-2IX5 < 141 
4xi+7x2+7x3—2x4 + 5x5 < 17 

13Xi + 11X2 —17X3+ 6X4—X5 > 10 
3 8 27 27 1 7 

-X[ + - X 2 - y X 3 + -yX4+ -X5 > -

» 6 ( 0 , 1 ) 

4.17 How would you rescale the following problem? 

Minimize 2xi +0.003x2-x3 

subject to 21xi-0.005x2 < 13 
- l l x j + x 3 < 9 
0.001x2+4x3 > 17 

x > 0 

4.18 If you are using some software (designed specifically for mathematical 
programming) for solving IP problems, read the user's manual and identify 
the built-in preprocessing techniques. 



5 
MODELING COMBINATORIAL 
OPTIMIZATION PROBLEMS I 

This chapter deals with important classes of combinatorial optimization problem 
(COP), introduced in Chapter 1. Other COPs have appeared in Chapter 2, and some 
are to appear in Chapters 6 and 10. This chapter will discuss the modeling and 
successful real-world applications of the following COPs: set covering, set partition-
ing, node covering, set packing, matching, and cutting stock. 

5.1 INTRODUCTION 

Recall that the combinatorial optimization problem is a class of optimization problem 
whose optimum solution(s) can be identified from a finite set of feasible solutions, 
which in principle can be obtained by complete enumeration of all possible combina-
tions. In Chapter 2, we have seen the IP formulations of some COPs: 

• The 0-1 knapsack problem (Section 2.3.1) 
• The capital budgeting problem (Section 2.3.2) 

• The uncapacitated lot sizing problem (Section 2.4.1) 
• The workforce/staff scheduling problem (Section 2.5) 
• The uncapacitated facility location problem (Section 2.6.2). 

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang 
Copyright © 2010 John Wiley & Sons, Inc. 
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Another group of COPs, the network optimization problems, can be found in most 
introductory OR or LP texts, and also in Chapter 10: 

• The minimum cost network flow problem (Section 10.2.1). 
• The assignment problem (Section 10.2.2, also Section 6.2) 

• The transportation problem (Section 10.2.2) 
• The transshipment problem (Section 10.2.3) 
• The maximal flow problem (Section 10.2.4) 
• The shortest path problem (Section 10.2.5) 

The group of network optimization problems can be solved as if they were linear 
programs (by ignoring integer requirements) because their constraint matrices are 
totally unimodular. The minimum cost network flow problem is a general class of this 
group. By specifying appropriate values to the parameters of the minimum cost 
network flow problem, the other five problems are seen as special cases. 

Furthermore, any pure IP problem with bounded variables, general or binary, 
can also be treated as a COP. The reader may verify this in the exercises of this 
chapter. 

5.2 SET COVERING AND SET PARTITIONING 

The set covering problem can be stated in a general way as follows. You are given a set 
of requirements or characteristics (say R) that must be satisfied entirely, a set of 
activities (say Ax, A2, ■ ■., A„) whose union equals or "cover" the entire set of 
requirements, and a cost associated with each activity. Although an activity A¡ may 
cover only a subset of R, a combination of some activities A/ s may cover R. The 
set covering problem is to determine a combination of activities Ay's that can 
collectively cover all the requirements while minimizing a certain objective function. 
For example, an airline company has a set of scheduled flights (set of requirements) 
to be covered entirely and has a set of crews (set of activities) available for flight 
assignments. Assuming each crew (activity) incurs a certain cost, the objective is to 
find a subset of crews that cover all flights and minimize the total cost of crew 
assignments. For example, using set notation, if 

/ ? = {1,2,3,4,5} 

and 

¿ , = { 1 , 2 , 5 } , A2 = {3,4}, ¿3 = {3,4,5}, A4 = {2,4,5} 

the selections {A1;A2} and {Ai,A3} cover/? because/? = A, UA2=A[ UA3. But the 
selections {A|,A4}, {A2,A3}, and {A3,A4} do not because A, UA4^/?,A2L)A3^/?, 
andA3UA4^fl . 
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5.2.1 Set Covering Problem 

The set covering problem can be defined as follows: 

1. Given set of requirements or characteristics that must be fully satisfied or 
covered. 

2. Given set of activities (often very large), each of which can satisfy some 
requirements and incur a certain cost. 

3. A feasible solution is defined as a select subset of activities that as a whole 
can satisfy all requirements. 

4. An optimal solution is a feasible solution with a minimal total cost. 

Many real-world problems have been modeled as the set covering and set 
partitioning problems, primarily in industries such as airlines, trucking, communica-
tion, hospitals, and manufacturing. Primary application areas include flight crew 
scheduling, facility location, truck/vehicle delivery and routing, and workforce 
scheduling. In what follows, we give two examples to show how to formulate a set 
covering problem. We begin with the identification of the sets of requirements and 
activities. 

Example 5.1 (Location of Warehouses) A firm has five distribution centers and it 
is to be determined as to which subset of these distribution centers should be selected 
as a site for construction of warehouses. Suppose the goal is to build a minimal number 
of warehouses that can cover all distribution centers in a manner that every warehouse 
is located within 10 miles of each distribution center it services. 

To solve this problem as a set covering problem, we first obtain a distance table as 
shown in Table 5.1. Each entry represents the distance (in miles) between two 
distribution centers. Based on this distance table and the distance limitation of 
10 miles or less, we can construct a requirement-activity table as shown in Table 5.2. 
A requirement row corresponds to a distribution center. An activity column corre-
sponds to the set of distribution centers that are located within 10 miles from each 
given center. The entries of this table are either 1 or 0. A " 1 " indicates that the 
corresponding requirement is covered, and a "0" otherwise. Activity column 1 
represents that if a warehouse is built in center 1, then both centers 1 and 2 are 
covered. Activity column 2 indicates that centers 1, 2, and 5 are covered. Likewise, 
other activity columns have similar interpretation. 

TABLE 5.1 Distance Between Distribution Centers 

Center 1 2 3 4 5 

1 
2 
3 
4 
5 

0 
10 
15 
20 
18 

10 
0 
20 
15 
10 

15 
20 
0 
8 
17 

20 
15 
8 
0 
5 

18 
10 
17 
5 
0 
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TABLE 5.2 Requirements and Activities of Warehouse Location Problem 

Activity 

Requirement (Center) 1 2 3 4 5 

At each distribution center, we must decide whether or not to build a warehouse 
there. Therefore, we have five activity columns, one for each center. The problem is to 
build a minimal number of warehouses that can cover all five distribution centers. 

Now we are ready to formulate this problem as a set covering problem, a special 
0-1 IP model. 

Step 1 

Input parameters: number of distribution centers (m), vectors of 
activity (Sij,j= 1, 2, . . . ,« ) , requirement vector 
(b = l) 

Decision variables: whether or not to build a warehouse at the rth 
distribution center (y¡= 1 or 0, /'= 1, 5) 

Constraint: each of the five distribution centers must be covered 
Objective: minimize the number of warehouses built 

Step 2. Let y¡ = 1 if a warehouse is built at center i and 0 otherwise. To ensure at least 
one warehouse is within 10 miles of center 1, we have constraint 

y i +yi > 1 (requirement 1 constraint) 

Likewise, we obtain constraints for all five distribution centers. Combining these 
constraints with the objective function, we obtain the following 0-1 IP model: 

5 

Minimize z = y . y¡ 

subject to 

;=1 

(\ 1 0 0 0\ 

1 1 0 0 1 

0 0 1 1 0 

0 0 1 1 1 

\ o i o i i / 

yi 

y-i 

y* 

W 

> 

i 

i 

i 

w 
Oorl / = 1,2,. ,m 
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Example 5.2 (Flight Crew Scheduling Problem) Flight crew scheduling (i.e., 
assigning crews to a given set of flights) is one of the most important problems faced 
by the airline industry. Almost all major airlines solve this problem by formulating 
it as an integer program in which the set covering problem is a core component. 
For example, American Airlines has over 8000 airplanes and 16,000 flight attendants 
to schedule. They estimate that their mathematical programming-based system 
(in which the covering problem is a major component) saves about $20 million 
per year (see Table 1.1). From this table, we can also see that many MIP applications in 
the airline industry involve crew scheduling. 

The problem can be formulated as a set covering problem as follows: (1) List the 
set of flight legs that are required to be covered; (2) generate a set of flight sequences 
or tours that begin and end in the same city, subject to certain regulations and 
conditions ; and (3 ) formulate a 0-1 integer program to find a subset of flight sequences 
that cover all flights at a minimal cost. A numerical example is given below. 

Budget Airways is required to assign its crews based in New York to cover all the 
upcoming scheduled flights. There are many possible sequences of flights that are 
feasible for a crew to choose from, assuming one crew can only be assigned to one 
sequence. In Table 5.3, 10 flights and 8 feasible sequences of flights are viewed 
respectively as requirements and activities of the set covering problem. The asso-
ciated cost of each sequence of flight is also listed in this table. The problem is to find 
crew assignment that covers all 10 flights at a minimal total cost. 

In Table 5.3, the number in each column indicates the order of flight legs to be 
connected in a given sequence of flights. It is permissible to have more than one crew 
on a flight where the extra crews would fly as passengers and would get pay as if they 
were working. 

To formulate this problem, we begin by forming a node-arc incidence matrix A, having 
an entry of " 1 " if a sequence of flight covers a certain flight and "0" otherwise. Then 
Table 5.3 can be converted to Table 5.4, which is the incidence matrix A used in this 
covering problem. We now formulate the flight crewing problem as a set covering problem. 

TABLE 5.3 Feasible Sequences of Flights 

Activity (Feasible Sequence of Flights) 

Requirement (Flight) 1 2 3 4 5 6 7 8 

1 New York to Buffalo 1 1 1 
2 New York to Cincinnati 1 1 
3 New York to Chicago 1 1 1 
4 Buffalo to Chicago 2 2 
5 Chicago to Cincinnati 2 3 2 
6 Cincinnati to Pittsburgh 2 4 3 
7 Cincinnati to Buffalo 3 2 
8 Buffalo to New York 4 3 2 
9 Pittsburgh to New York 3 5 4 
10 Chicago to New York 3 2 
Cost ($1000) for each sequence 5 4 4 9 7 8 3 3 
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TABLE 5.4 Requirements and Activities of Flight Crew Scheduling Problem 

Requirement 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 

1 
0 
0 
1 
0 
0 
0 
0 
0 
1 

2 

0 
1 
0 
0 
0 
1 
0 
0 
1 
0 

3 

0 
0 
1 
0 
1 
0 
1 
1 
0 
0 

Activity 

4 

1 
0 
0 
1 
1 
1 
0 
0 
1 
0 

5 

0 
1 
0 
0 
0 
0 
1 
1 
0 
0 

6 

0 
0 
1 
0 
1 
1 
0 
0 
1 
0 

7 

1 
0 
0 
0 
0 
0 
0 
1 
0 
0 

8 

0 
0 
1 
0 
0 
0 
0 
0 
0 
1 

Step 1 

Input parameters: 

Decision variable: 

Constraint: 
Objective: 

0-1 incidence matrix (A) given in Table 5.4, cost for 
each feasible sequence of flight (cj,j= 1,2, ..., 
8), requirement vector (b¡= 1, i= 1, 2, ..., 10) 

one 0-1 variable for each sequence of flight (y7- = 1 
or 0 , ; = 1,2, . . . , 8) 

one constraint for each requirement or flight 
minimize the total cost of assigning crews to the 

selected sequence of flights 

Step 2. Let y¡ = 1 if a crew is assigned to they'th sequence of flights and 0 otherwise. 
To ensure that at least one crew is assigned to the first flight, we have constraint 

y\ +)>4 +yi > 1 (requirement 1 constraint) 

Likewise, we obtain constraints for all 10 flights. Combining these constraints with 
the objective function, we obtain the following 0-1 IP model: 

Minimize z = 5yx + 4y2 + 4y3 + 9y4 + ly5 + Sy6 + 3y7 + 3y& 

(\ 0 0 1 0 0 1 0 \ 

subject to 

0 1 0 0 1 0 0 0 
0 0 1 0 0 1 0 1 
1 0 0 1 0 0 0 0 
0 0 1 1 0 1 0 0 
0 1 0 1 0 1 0 0 
0 0 1 0 1 0 0 0 
0 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 0 

\ i o o o o o o 1/ 

/ y i \ 

ys 
ye 

yi 

\yj 

> 

i 
i 
i 
i 
i 
i 

M/ 

yj = 0orl 7 = 1,2,...,! 
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In general, the set covering problem is defined as 

Minimize z = cTy 

subject to Ay > 1 

y e (0,1) 

where c is a cost vector representing the costs associated with activities, y is a vector 
of 0-1 variables indicating whether the corresponding activity is chosen or not, A is 
a 0-1 matrix representing relationships between requirements and activities. 

5.2.2 Set Partitioning and Set Packing 

The set partitioning problem is the same as the set covering problem except that each 
requirement must be exactly satisfied. Mathematically, the > constraints are replaced 
by = constraints. 

Minimize z — cTy 

subject to Ay = 1 

y e (0,1) 

As an example, consider the problem of delivering orders from a warehouse to 
n different stores by m trucks. Each store receives its order in exactly one delivery. 
A truck can deliver at most k(k<n) orders (stores). Because a store may fall on more 
than one route, a truck may pass a store without delivery of that store's order. It is 
required that all orders (stores) must be delivered. Here, activity y represents a feasible 
delivery sequence of orders satisfying the truck capacity. The collection of feasible 
activities forms a matrix A. The constraint set, Ay = 1, ensures that every order is 
delivered exactly by one truck. In a busy day, it may be acceptable that some lower 
priority orders can be postponed to a later day. To represent this situation, the set of 
constraints becomes Ay < 1. This problem is known as a set packing problem. 

5.2.3 Set Covering in Networks 

In the domain of an undirected network, the set covering problem can be posed as a 
node covering problem. The node covering problem is one of the simplest classes of 
combinatorial optimization problems. Consider an undirected network G(V, E) of 
n = | V\ nodes and m=\E\ arcs, each arc joining a pair of nodes. A cover is a subset of 
arcs such that each of the n nodes is incident or connected to at least one arc of the 
subset. A simple covering problem is defined as finding a cover with a minimum 
number of arcs. Consider the undirected network in Figure 5.1, consisting of 7 nodes 
and 12 arcs. The subset of five arcs in Figure 5.2 is a cover because all the seven nodes 
are incident to these arcs. But this five-arc cover is not minimal because a cover using 
only four arcs can be obtained by dropping arc (4, 5) from the five-arc cover. 
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FIGURE 5.1 An example network. 

We begin the IP formulation with constructing a node-arc incidence matrix of 
the network, in which row i corresponds to node / and column j corresponds to arc 

j . Let A denote node-arc incidence matrix, whose entries are a¡j (i=l,2,...,n;j=l, 
2, ..., m). Let column vector a, be the jth arc joining nodes p and q such that 
aPj = aqj= 1 and fl,y = 0 if i^p, q. Note that each arc column contains exactly two 
elements of l's. The network in Figure 5.1 can be represented by the following 
node-arc incidence matrix: 

1 

1 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

1 

0 

0 

1 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

0 

0 

0 

1 

0 

0 

1 

0 

0 

0 

0 

0 

1 

0 

1 

0 

0 

0 

0 

0 

1 

1 

Let variable yj be 1 if the y'th arc is selected and 0 otherwise. The node covering 
problem can be formulated as 

FIGURE 5.2 A node cover. 
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Minimize z = /^yy 

subject to yjfly-yy > 1 J = 1 , 2 , . . . , « 

>>,=0orl ; ' = 1,2,..., m 

Or in matrix notation, 

Minimize z = cTy 

subject to Ay > 1 

y 6 (0,1) 

where cT is a row vector containing m elements of l's, y = (yi, y2> ■ ■-, ym)T, 
1 = (1, 1, ..., 1)T, and A is an n x m matrix. 

For example, the node covering problem of the graph in Figure 5.1 can be 
formulated as follows: 

Minimize z = ( 1 ,1 , . . . , 1 ) 

subject to 

1 1 ... 

1 0 ... 

0 1 ... 

0 0 ... 

0 0 ... 

0 0 ... 

0 0 ... 

y¡ = 0 or 1 

yi 

\yn) 

/ * \ 

yi 

\yu) 

> 
l 

y = 1 , 2 , . . . , 12 

Clearly, the node covering problem defined on an undirected network is a special 
case of the set covering problem. Note that each column of matrix A in the node 
covering problem contains exactly two 1 ' s, while each column of A in the set covering 
problem may contain any number of l's. 

5.2.4 Applications of Set Covering Problem 

Successful real-world applications of the set covering problem are ample, which can 
be classified in three major areas: (1) facility location, (2) scheduling or staffing of 
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personnel, and (3) dispatching trucks/vehicles to routes/customers. For each area, we 
list below a few sample applications published in the literature. 

1. Facility location 
• Determine the optimal location for a new fire station that can cover a given set 

of dispersed subdivisions, taking into account the average response time from 
a fire station to a fire in each subdivision. 

• Determine where emergency medical vehicles should be located in Austin, 
Texas, so that the number of people receiving adequate emergency service 
is maximized within a limited budget (Eaton et al., 1985). 

• Determine the least number of new supermarkets to be built to cover 
a number of geographically dispersed communities, taking into consid-
eration the distance restriction and concentration of populations (Taha, 
2007). 

• Determine which subset of a given number of potential transmission towers to 
be constructed that can cover a given number of contiguous geographical 
communities, taking into account their budgeted construction costs and 
maximization of potential population to be served (Guéret et al., 2002; 
Taha, 2007). 

• In an automated meter reading system for an electricity utility where meters 
from several customers are linked wirelessly to a single receiver, meters send 
monthly signals to designated receivers to report consumption of electricity 
and receivers send data to a central computer to general electricity bills. 
The problem is to determine the minimum number of receivers needed to 
cover a given number of customers (Taha, 2007). 

2. Scheduling or staffing of personnel 
• Given a set of scheduled flights and a set of "preferred" flight crews, the 

staffing problem is to identify a subset of crews to cover all flights at a minimal 
cost. The problem has been modeled as a covering problem by most major 
airlines; recent references are Anbil et al. (1991), Hoffman and Padberg 
(1993), and Kontogiorgis and Acharya (1999). Other references dating back 
to 1957 are provided in the section notes. 

• For Pan American World Airways, determine optimal staffing levels for 
support staff for ticket counters, baggage loading and unloading, mechanical 
maintenance, and others, so that all work requirements are covered (Schindler 
and Semmel, 1993). 

• For a hospital, determine minimal number of nurses at various levels (RN, 
LPN, etc.) to cover the hourly requirements of various nursing functions, 
taking into account the upper limit on consecutive work hours. 

• Determine the minimal number of patrol police officers required to cover a 
given set of beats in San Francisco, taking into account response times (Taylor 
and Huxley, 1989). 
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3. Dispatching trucks to routes/customers 

• Determine emergency medical service vehicle deployment in Austin, Texas 
(Eaton et al., 1985). 

• Minimize the number of vehicles to meet a fixed periodic schedule (Orlin, 
1982). 

5.3 MATCHING PROBLEM 

The matching problem belongs to another class of combinatorial optimization 
problems in which the constraint matrix A has exactly two l's in each column. They 
deal with matching, pairing, or grouping objects such as selecting roommates, 
matching males to females, and assigning jobs to workers. The primary applications 
of this problem are for the development of matching-based algorithms. Examples 
include modeling network flow, routing, scheduling, spanning tree, and portfolio 
hedging and tracking. 

5.3.1 Matching Problems in Network 

The matching problem can be better described by the use of an undirected network. 
Consider an undirected network G(V, E) of n = | V\ nodes and m = \E\ arcs, each 
arc joining a pair of nodes. The number of arcs incident to node i is called the degree 
of node i. The matching problem is to find a subset of arcs in the network such that 
at least a certain number of degrees, say bk are connected to node /, where b¡ is a 
positive integer. This problem is called the h-matching problem, where b¡ is an 
element of b. 

The simplest matching problem is to find a matching in which each node can 
only be connected by at most one arc. This special case is called 1-matching 
problem with b¡ equal to 1 for all i. Consider the undirected network in Figure 5.1, 
the subset of arcs {(1, 2), (3, 4), and (5, 6)} is a 1-matching, which is shown 
in Figure 5.3. A commonly used objective is to maximize the number of arcs 
selected. 

FIGURE 5.3 1-Matching for Figure 5.1. 
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The 1-matching problem can be formulated as a 0-1 integer program: 

m 

Maximize z = V V 
J=i 

m 

subject to ¿2ayyj — ^ 1 = 1 , 2 , . . . , « 

y,- = 0o r l y = 1 , 2 , . . . , m 

where ay is an element of a node-arc incidence matrix of the network and y} = 1 if the 
/th arc is included in the matching, and 0 otherwise. Mathematically, the 1-matching 
problem is different from the node covering problem in two ways: (1) The objective 
function is replaced by maximization, and (2) the constraint set is replaced 
by < inequalities. In other words, the node covering problem seeks to minimize the 
number of arcs used to cover all nodes in the network, while the 1-matching problem 
seeks to maximize the number of arcs to connect nodes subject to at most one arc 
can be incident to each node. As a result, not all nodes are connected as shown in 
Figure 5.3. 

5.3.2 Integer Programming Formulation 

The b-matching problem is a generalization of the 1-matching problem, which can be 
formulated as a 0-1 IP model: 

Max/min z = cTy 

subject to Ay < b 

y e (0,l) 

where c = (1, 1, . . . , 1)T, y = (y,, y2, ■ ■ -, ym) T, b = (bu ..., b„), and A is a node-arc 
incident matrix with each column containing exactly two elements of l's. The 
matching problem can be a maximization or minimization problem. For example, 
find a maximum number of matching in the roommate selection problem, or find a 
minimum number of arcs forming a closed route in the postman problem. 

When c is a vector of weights associated with variables, instead of 1 's, the problem 
is called a weighted b-matching. When the constraint set is Ay = 1, as in the set 
partitioning problem, the problem is called a weighted perfect matching. 

In a weighted perfect matching problem, if the pairing objects are selected from 
two disjoint sets, then it becomes the classical assignment problem. Examples 
include assigning a set of workers (machines) to a set of jobs, assigning a set of 
plants to a set of potential locations, and assigning a set of tasks to a set of time slots. 
All of these assignments deal with pairing of objects from two disjoint sets. This 
problem can be represented by a bipartite network. In this bipartite network, a node 
in one set is connected to nodes in the other set, but the nodes of the same set are not 
connected. 
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5.4 CUTTING STOCK PROBLEM 

Production activities in industries such as paper, textiles, plastic food wrap, aluminum 
foil, and steel sheet typically involve two stages. In the first stage, products are 
manufactured in large standard sizes, usually of a small variety due to economical and 
machinery considerations. In the second stage, these large standard sizes are cut into 
smaller ordered sizes, usually of a larger variety to satisfy diversified customer orders. 
The determination of how to cut the (larger) standard sizes into the (smaller) ordered 
sizes at minimum cost is called the cutting stock problem. 

The cutting stock problem can be one or two dimensional. If all the ordered sizes 
are cut either horizontally or vertically, the problem is one dimensional. For example, 
a standard sheet of 72 in. width and 100 ft length can be slit horizontally into three 
pieces of 24 in. width and 100 ft length or vertically into four pieces of 72 in. width and 
25 ft length. If an ordered size is made by both horizontal and vertical cuts, the 
problem is two dimensional. 

For a given standard width (or standard length), usually there are many ways of 
cutting it into ordered widths (or ordered lengths). Each such way is called a cutting 
pattern. Figure 5.4 shows a possible cutting pattern from a roll of width W, which 
includes two rolls of width wu one roll of w2, and one roll of trim loss T. Specifically, 
if W= 12 ft, W] = 3 ft, and w2 = 5ft, then there are seven possible cutting patterns 
as shown in Figure 5.5. However, patterns 4-7 that have trim loss greater than or equal 
to the smallest ordered width (i.e., >3 ft in this case) can be discarded. Therefore, 
only the first three patterns are effective. 

5.4.1 One-Dimensional Case 

Assume that there are available a sufficiently large number of rolls of a single standard 
width W, all having the same length L, that can be cut into at least b¡ pieces of the 
ordered widths H>, (/= 1, 2, . . . , m). A one-dimensional cutting stock problem is to 
determine how to cut rolls of the standard width into various ordered widths so that 
the required number of rolls (assuming trim pieces are useless) is minimal while 
satisfying the ordered quantity (b¡) of each width (w,). 

Length L ► 

FIGURE 5.4 A cutting pattern from a roll of width. 
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12 ft 

Cutting 
pattern 2 3 4 5 

FIGURE 5.5 Another cutting pattern. 

Let vector a,- denote the y'th cutting pattern, whose component a¡j denotes the 
number of pieces in width w, that can be generated from a standard width W. 
Mathematically, 

/av\ 

\amjj 

Note that a¡¡ is a nonnegative integer that must satisfy the following condition: 

m 

Tj = W~Y^ w¡aij ^ ° 

where 7} < min w¡ is the trim loss associated with they'th cutting pattern. For example, 
the first three cutting patterns given in Figure 5.5 can be represented by 

a i = o ' " 2 = i ' a 3 

0 

with T{ = 0, T2 = 1, and T3 = 2, respectively. 
Following the modeling procedure described in Chapter 2, we formulate this 

problem. 
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Step 1 

Input parameters: standard width (W), ordered widths (w,-, / = 1, 2, 
..., ni), required number of rolls of ordered 
widths (bj, i = 1, 2 , . . . , m), all cutting patterns 
to be used (a^y = 1,2, . . . ,«) 

Decision variables: number of standard rolls (jy-, 7}) to be cut 
according to the yth pattern 

State variables: trim losses (Tj,j= 1,2, . . . ,«) 
Constraint: total number of each ordered width w, made must 

be at least b¿ 
Objective: minimize the number of standard rolls needed 

Step 2. The given cutting stock problem becomes 

n 

Minimize / ~ \ 
7=1 

n 

subject to ¿Jûi/vy >b¡ i = 1,2,..., m 
y=i 

yj > 0 and integer j = 1,2,... ,« 

If a cost cy is incurred with each cut using pattern a7, then the above objective 
function can be changed to minimize the total cost: 

n 

Minimize Tjc/Vy 
7=1 

The above formulation can be extended to one-dimensional problem with multiple 
standard widths (W*, k = 1, 2 , . . . , K) with a fixed length L. For each standard width 
W*, let nk be the number of patterns, y1- be the number of theyth pattern to be cut, and c1-
be the associated cost of cutting each y'th pattern. Then the jth pattern can be 
represented by a vector a1-, whose rth component is d¡¡. We have the IP model for 
multiple standard widths: 

K nk 

Minimize y ^ y Y ^ y f 
k=\j=l 

K nk 

subject to y^y^flft-yf >bi i = 1,2,..., m 
k=\j=\ 

yj > Oand integer j = 1,2,... ,nk; k = l,2,...,K 
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Note that d\, is a nonnegative integer that must satisfy the following condition: 

m 

1=1 

The difficulty of cutting stock problem is that the number of possible cutting 
patterns n is usually too huge to enumerate them all. For example, with a roll of width 
20 in. and demand for 40 different widths ranging from 20-80 in., the number of 
cutting patterns can exceed 100 million (Gilmore and Gomory, 1961). The number of 
cutting patterns is multiplied when there are multiple standard widths to be cut from. 

Therefore, the IP model of a cutting stock problem is rarely solved exactly. In 
practice, its LP relaxation is solved by using Dantzig-Wolfe decomposition principle 
through a column generation technique. The details of such a solution approach will 
be discussed in Chapter 13. 

5.4.2 Two-Dimensional Case 

A two-dimensional cutting stock problem allows both horizontal and vertical cuts to 
get the ordered sizes. That is, rolls of standard width W and length L can be cut into b¡ 
number of rectangular pieces of size w¡ x /,(i = 1, 2 , . . . , m). For example, given an 
unlimited number of standard rolls of size 4 ft x 10 ft and a demand of five rectangular 
pieces of size 2 ft x 4 ft and three pieces of size 3 ft x 7 ft, the problem is to determine 
the minimal number of rolls that satisfies the demand. 

Similar to the one-dimensional problem, a set of suitable cutting patterns must be 
generated first to model the problem. Figure 5.6 shows two sample cutting patterns 
for the above example. 

10 

FIGURE 5.6 Examples of two-dimensional cutting patterns. 
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Let Gybe the number of rectangular pieces of size M>, x /,(/= 1,2,.. .,m) generated 
by the y'th cutting pattern. For example, the cutting patterns in Figure 5.6 are, 
respectively, represented by 

ai = I I and a2 = 

Given the cutting patterns, the IP model of the two-dimensional case is the same as 
that of the one-dimensional case. However, due to the added dimension, the cutting 
pattern generation inequality and the column generating technique mentioned in 
the one-dimensional case cannot be used. Heuristics may be used to generate only the 
patterns that are likely to appear in the optimum solution. 

In reality, the cost function of a cutting stock problem is more complex than the 
one described above. Schräge (2000) provides a list of additional cost considerations 
that are important in formulating a practical cutting stock model. 

5.5 COMPARISONS FOR ABOVE PROBLEMS 

The five problem types of the COP described in this chapter (namely, set covering, 
set partitioning, node covering, matching, and stock cutting) belong to a broader class 
of a pure IP model given below: 

Find an integer vector y 
such that objective function z = cTy is minimized or maximized 

subject to a set of equality or inequality constraints: Ay {> or = or <}b 

The individual members of this class are distinguishable by their types of decision 
variables y (0-1 or general integer), types of optimization (min or max z), types of 
parameters (cT, A, and b), and types of relation (>, =, or <) between the left-hand and 
right-hand sides of the constraint set. For clarity, Table 5.5 provides comparisons for 
these problems. 

To better understand the degree of difficulty for solving COB in particular, and IP 
in general, the basic concepts of the computational complexity of a problem and of 
an algorithm are explained next. 

5.6 COMPUTATIONAL COMPLEXITY OF COP 

A few people tend to overestimate the solution power of a computer (hardware) and 
underestimate the solution power of an algorithm (software). In fact, the solution 
power of an algorithm often exceeds the solution power of a computer. In what 
follows, we shall demonstrate how an algorithm affects the size of a problem that can 
be solved. 
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TABLE 5.5 Comparison of Five Problems 

y 

z 
cT 

A 

b 

Relation 

Set Covering 

0, 1 

Min 
Vector of real 

values 
Any 0-1 

matrix 

(1 ,1 . . . . ,1 )T 

> 

Set 
Partitioning 

0, 1 

Min 
Vector of real 

values 
Any 0-1 

matrix 

(1 ,1 , . . . ,1 ) T 

= 

Node 
Covering 

0, 1 

Min 
(1 ,1 , . . . , 1 ) 

0-1 Matrix 
with two 
Is in each 
column 

(1 ,1 . . . . ,1 ) T 

> 

Matching 

0, 1 

Min or max 
Vector of real 

values 
0-1 Matrix 

with two 
Is in each 
column 

Positive inte-
ger vector 

> or < 

Stock 
Cutting 

Positive 
integer 

Min 
Vector of real 

values 
Positive inte-

ger matrix 

Positive inte-
ger vector 

> 

In a practical sense, a combinatorial optimization problem can be viewed as a 
decision problem from which an optimum solution can be found among a finite set of 
feasible solutions that can be obtained by explicit enumeration of all possible 
combinations. Such a solution algorithm is known as complete enumeration. 
A grave shortcoming of complete enumeration is that the set of feasible solutions 
normally is too huge to handle, even for a small problem. In other words, solving a 
combinatorial optimization problem can be algorithmically simple but computa-
tionally intractable. 

To show this, consider the knapsack problem discussed in Section 2.2. The 
problem deals with the optimal selection of a subset from a given set of items subject 
to a given knapsack capacity. The number of all possible feasible solutions is equal to 
the sum of combinations of selecting any one item from the given n items, any two 
items, and so on, which equals to 

Cï + C"2- + C"+C" = 2"-\ 

Note that the number of all possible solutions increases exponentially in about 2" 
as n increases. If n = 20, there are over 1 million (106) possibilities; if n = 30, over 
1 billion (109); if « = 40, over 1 trillion (1012); if « = 50, over 1000 trillion (1015); 
and if n = 60, over 1 million trillion (1018). Roughly, each additional 10 items will 
take nearly 1000-fold of additional computer time. On average, each such possible 
solution requires In arithmetic operations and comparisons. 

Now suppose we have a computer that could calculate an arithmetic operation at 
a speed of light, that is, it can perform 8 trillion arithmetic operations per second. 
The complete enumeration algorithm would take over 4 years to solve a 70 item 
knapsack problem and would take over 4000 years to solve an 80 item problem. 

In this section, we provide a brief, practical view of computational complexity for 
the combinatorial optimization problem. 
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5.6.1 Problem Versus Problem Instance 

The word problem used in the domain of computational complexity is referred to as a 
class of problems having a common set of characteristics. For example, the knapsack 
problem is defined as a class of problems that is to determine an optimal subset of 
items within a prescribed knapsack capacity. The set covering problem is another 
class of problems that is to determine an optimal combination of activities covering all 
the prescribed requirements. In general, a problem is defined in terms of the types 
of its goal (min or max), decision variables, and constraints. To solve a particular COP 
problem, parameters such as c, A, b, m, and n must be specified. A problem, after 
specification of its parameters, is called a problem instance. The warehouse location 
problem in Example 5.1 and the flight crew scheduling problem in Example 5.2 are 
problem instances. 

5.6.2 Computational Complexity of an Algorithm 

For a given algorithm, a mathematical function is often used to describe the growth of 
computational effort as problem size increases. Such a function is called computa-
tional complexity of algorithm. For example, the complete enumeration for the 
knapsack problem of size n has a computational complexity of 2", an exponential 
function. 

Clearly, the size of an IP problem is a function of the number of integer variables n, 
the number of constraints, and the density of nonzero elements in a coefficient matrix. 
Traditionally and practically, however, only the number of integer variables is 
considered in the determination of the computational complexity (or complexity, 
for short) of an algorithm. Two reasons are behind this. First, an IP problem of more 
constraints does not necessarily require more computation time, based on Section 4.1. 
In fact, the reverse is often true. Second, the issue of the sparsity of matrix is problem 
specific or data specific, which is considered in the implementation of a given 
algorithm. 

Ideally, an exact function in n is used to represent the computational complexity 
of an algorithm, sometimes even to a detailed level of counting the exact number 
of elementary operations ( + , —, x, /, comparisons) required to solve a problem 
instance. However, an exact function is often unattainable, in which case, an 
approximate function is used instead, and only the order of complexity for a large 
problem n is considered. For this purpose, the big O notation is commonly used in the 
theory of computational complexity to express an approximate upper bound com-
putational effort for a given algorithm to solve a problem instance of size n. The 
expression 

g(n) = 0(f(n)) 

means that there exists a constant k > 0 and a small integer n0 such that 

g(n)<k-0(f(n)) 
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for all n > n0. In other words,/(n) gives a functional form of an upper bound on the 
value of g(n) for a large n. The computational complexity of the given algorithm is 
then said to be 0(f(n)), pronounced "a big-oh function of/(«)." For example, let 

g(n) = an + b 

Then the complexity is 0(n) for all n > 1 because 

g(n) < an + bn = (a + b)n 

where k = (a + b) > 0, n0 = 1, and f(n) = n. 
Note that the big O notation provides an upper bound on how poor an algorithm 

could be. It gives no information about how good an algorithm is. 
Although the big O notation gives an approximate upper bound on the computa-

tional effort for a specified problem size, it should not be assumed that all problem 
instances of the same size require the same computational effort. Various problem 
instances of a given size may take different amounts of effort. Therefore, in practice, 
an average of computation times of problem instances is often taken to represent the 
performance. In addition, the worst-case and best-case analyses are also used. 

5.6.3 Polynomial Versus Nonpolynomial Function 

Unlike the complete enumeration algorithm, the computational complexity of most 
COP algorithms often cannot be exactly determined. In this case, an approximate 
function is estimated for the worst-case or average-case situations. 

Based on the type of mathematical function, all algorithms are classified into two 
categories: polynomial time and nonpolynomial time. When the function is poly-
nomial, the algorithm is said to be of polynomial complexity (or to be polynomially 
bounded) and such a polynomial algorithm is considered to be "easy" or efficient. 
Conversely, a nonpolynomial function is considered to be "hard" because the 
algorithm is capable of solving only a very small problem. 

For example, if g(n) = 6n2 + 15« + 40, then 0(f(n)) = 0(n2). Both g(n) and/fa) 
are polynomial functions except that the latter is a simplified form indicated by the 
order of the most significant term of the former. We say that the given algorithm has 
a polynomial function and the associated algorithm is considered to be easy. 

Consider another example. The big O complexity of g(n) — 2"~{ + n2 + 10 is 
0(f{n)) = 0(2"~l), or more loosely 0(2"). We say that the algorithm has a non-
polynomial complexity and is considered to be hard. 

Other forms of polynomial functions frequently used in the COP include 0(na) 
and 0(ne), where n is the problem size (a variable), e is well-known constant 
approximately equal to 2.7183, and a is a positive constant. Other forms of 
nonpolynomial functions frequently used in the COP include 0(e") and 0(a"), where 
e and a are positive constants and n is a variable. The forms of these big O functions 
can be further reduced or approximated to 0(n2) for polynomial and 0(2") 
for nonpolynomial functions, respectively. The distinction of the two is that a 
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TABLE 5.6 Polynomial Versus Nonpolynomial Function 

n n2 2" 

1 
10 
100 
1000 

1 
1 x 102 

1 x 104 

1 x 106 

1.02 x 103 

1.27 x 1030 

1.07 x 1030 

nonpolynomial function has a constant base (2 or a) and a variable exponent («), while 
a polynomial function has a variable base (n) and constant exponent (2 or a). To help 
the reader perceive how great is the difference on the computational complexity 
between the two functions, we give Table 5.6 and Figure 5.7. A problem is said to be a 
polynomial problem if there exists at least one polynomial-time algorithm. A 
problem is said to be a nonpolynomial problem if no polynomial-time algorithms 
have been found. 

5.7 NOTES 

Section 5.2 

For the airline crew scheduling problems, see Anbil et al. (1991), Arabeyre et al. 
(1969), McCloskey and Hannsmann (1957), Baker and Fisher (1981), Hoffman and 
Padberg ( 1993), Kontogiorgis and Acharya ( 1999), Miller et al. ( 1976), Schindler and 
Semmel (1993), and Thirez (1968). 

10,000-, 

8000-

6000-

4000 

2000 

FIGURE 5.7 Polynomial versus nonpolynomial function. 
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For the staffing problem, see Agnihothri and Taylor (1991), Andrews and Parsons 
(1993), Aykin (1996), Rothstein (1973), Schindler and Semmel (1993), Taylor and 
Huxley (1989), and Warner (1976). 

For the vehicle dispatching problems, see Agarwal et al. (1989), Balinski and 
Quandt (1964), Brown et al. (1987), Clarke and Wright (1964), Dantzig and Ramser 
(1960), Eaton et al. (1985), Lasky (1969), and Orlin (1982). 

For assembly line balancing and information retrieval problems, see Salveson 
(1955) and Day (1965), respectively. 

Section 5.3 

For a survey on the matching problem, see Balinski and Quandt (1964) and Balinski 
( 1965). For developing matching-based algorithms, see Edmonds and Johnson ( 1973) 
and Balletal. (1983). 

Section 5.4 

For the cutting stock problem, see Dyckhoff (1981), Farley (1990), Gilmore and 
Gomory (1961, 1963), and Schräge (2003). 

Section 5.6 

See Ausiello et al. (1999) for a complete description on the computational complexity 
and approximation. 

5.8 EXERCISES 

5.1 Consider the pure integer program with bounded variables yj<K 0 = 1 , 
2, ..., n), where K\s & positive integer. 

(a) Show that the set of all possible solutions can be completely enumerated. 
(b) Show that the computational complexity of complete enumeration is 

nonpolynomial. 

5.2 Given the graph below, (a) identify two different node covers; (b) set up its 
node-arc incidence matrix; and (c) formulate an IP model for finding a 
minimum cover of the graph (Figure 5.8). 

5.3 Give two real-world applications of the set partitioning problem that have not 
been mentioned in this text. 

5.4 Find a real-world application of cutting stock problem. {Hint: Search on 
Internet with appropriate keywords). Is it one dimensional or two dimensional? 
Is the problem formulated mathematically? If yes, give the formulation. If no, 
how will you formulate it? Can you think of an example of three or more 
dimensional problem? 
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FIGURE 5.8 A simple graph. 

5.5 (A Broker Model) A broker is placing m bids on « jobs. Each bidy can generate 
a possible profit of Wj, and each job i can only be bid at most once. Each bid 
either includes a job or not. The broker is trying to maximize the total profits 
generated by the bids. 

(a) Formulate the problem as IP. 

(b) What type of COP does this one belong to? 

5.6 Based on Eaton et al. (1985) Gotham City has been divided into eight districts. 
The time (in minutes) that an ambulance takes to travel from one district to 
another is shown in Table 5.7. The population of each district (in thousands) 
is as follows—district 1: 40, district 2: 30, district 3: 35, district 4: 20, district 
5:15, district 6:50, district 7:45, and district 8:60. Suppose Gotham City has n 
ambulance locations. Determine the locations of ambulances that maximize 
the number of people who live within 2 min of an ambulance. Do this 
separately for n — 1, n = 2, n = 3, and n = 4. 

5.7 (Schräge, 2003) Suppose you manage your company's strategic planning 
department. There are eight analysts in the department. Your department is 
about to move into a new suite of offices. There are four offices in the new suite 

TABLE 5.7 Travel Distances for Gotham City Problem 

To 

From 

1 
2 
3 
4 
5 
6 

1 

0 
3 
4 
6 
8 
9 

2 

3 
0 
5 
4 
8 
6 

3 

4 
5 
0 
2 
2 
3 

4 

6 
4 
2 
0 
3 
2 

5 

8 
8 
2 
3 
0 
2 

6 

9 
6 
3 
2 
2 
0 

7 

8 
12 
5 
5 
2 
3 

8 

10 
9 
7 
4 
4 
2 

8 12 
10 9 
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TABLE 5.8 Analysts' Incompatibility Ratings 

Analysts 1 

5.8 

5.9 

and you need to match up your analysts into four pairs, so that each pair can be 
assigned to one of the new offices. Based on past observations, you know some 
of the analysts work better together than they do with others. In the interest of 
departmental peace, you would like to come up with a pairing of analysts 
that results in minimal potential conflicts. To this goal, you have come up with 
a rating system for pairing your analysts. The scale runs from 1 to 10, with a 1 
rating for a pair meaning the two get along fantastically, whereas all sharp 
objects should be removed from the pair's office in anticipation of mayhem 
for a rating of 10. The ratings appear in Table 5.8. 

Since the pairing of analyst / with analyst J is indistinguishable from the 
pairing of J with /, we have only included the above diagonal elements in the 
table. Our problem is to find the pairings of analysts that minimizes the sum 
of the incompatibility ratings of the paired analysts. 

Find a node cover and a 1-matching for the following network (Figure 5.9). 

(Zionts, 1974. Used with permission) A lumber yard stocks 2 in. x 4 in. beams 
in three lengths: 8 ft, 14 ft, and 16 ft. The beams are sold by foot and no charge 
is made for cuts. The yard has an order for the following lengths: 

80 

60 

200 

100 

12ft lengths 

10ft lengths 

8ft lengths 

4ft lengths 

dy-<¿>^}—0 

0 
FIGURE 5.9 A simple network. 
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TABLE 5.9 Transmission Tower Data 

Transmission Tower Covered Population Centers Cost ($M) 

1 1,2, 3 2.3 
2 3,5,7 1.5 
3 1,6,9 1.9 
4 2,4, 8,9 3.1 
5 4,5,7,11,12 2.7 
6 10,11,12 2.0 

The cost of the 2 x 4's to the lumber yard is $0.30 per 8 ft length, $0.60 per 14 ft 
length, and $0.70 per 16 ft length. Cutting costs can be assumed to be zero. 
Assuming that the lumber yard has enough of each of the three lengths in stock, 
what is the minimum cost method of filling the order? 

5.10 Plywood is sold at Walls-are-Us in 48 in. x 96 in. rectangular sheets. A large 
job at a local construction site requires the following: 

100 36in. x 48in. pieces 

200 24in. x 35in. pieces 

50 20in. x 48in. pieces 

100 16in. x 30in. pieces 

How many standard sheets of ply wood should be purchased to minimize the cost 
to the contractor, assuming any cutting patterns are feasible and cutting is free of 
cost? 

5.11 A cellular telephone service provider plans to offer service in a developing 
country, with 12 population centers (the rest is uninhabited mountainous 
terrain). The company has budgeted 10 million dollars to construct as many as 
6 transmission towers to cover as much population as possible in the 12 
population centers. The centers covered by each transmitter and the cost of 
construction are shown in Table 5.9. 

The following table contains the population at each center: 

Center 1 2 3 4 5 6 7 8 9 10 11 12 
Population 5 4 17 7 8 10 8 3 6 15 9 10 
(in thousands) 

Which of the proposed transmission towers should be constructed? 



6 
MODELING COMBINATORIAL 
OPTIMIZATION PROBLEMS II 

This chapter deals with perhaps the most important class of combinatorial optimiza-
tion problem: the traveling salesman problem (TSP) and its variants. Its purposes 
include ( 1 ) explain why the TSP is so important, (2) describe how to transform a variety 
of problems into a standard TSP, (3) provide a wide range of real-world applications of 
TSP, and (4) introduce several popular IP formulations for the TSP. 

6.1 IMPORTANCE OF TRAVELING SALESMAN PROBLEM 

The traveling salesman problem perhaps has been the most well-studied combinatorial 
optimization problem. Since the seminal paper published by Dantzig et al. (1954), the 
TSP has been actively and systematically studied by mathematicians, operations 
researchers, management scientists, and computer scientists for over five decades. 
During this period, thousands of refereed papers have been continuously published in 
the literature on TSP theories, formulations, applications, algorithms, and computa-
tions. In the two TSP books published in Gutin and Punnen (2002) and Applegate 
et al., (2006), the total number of distinct papers cited already exceeded 1000. 

The TSP perhaps plays the most important role in the combinatorial optimization 
problem because over the decades it has been regarded as a representative or typical 
model of the combinatorial optimization problems whose computational complexity 
is of nonpolynomial (i.e., the problem is "hard" to solve). The TSP has been a primary 
driving force for the development of novel optimization concepts and solution 
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TABLE 6.1 Milestones of TSP Instances Solved 

Year 

1954 
1971 
1975 
1977 
1980 
1987 
1987 
1987 
1994 
1998 
2001 
2004 
2004 
2006 

No. of Cities 

49 
64 
67 
120 
318 
532 
666 
2392 
7397 
13,509 
15,112 
24,978 
33,810 
85,900 

Data Set 

dantzig42 
random points 
random points 
grl20 
lin318 
a«532 
gr666 
pr2392 
pla7397 
usai 3509 
dl5112 
sw24978 
pla33810 
pla85900 

Research Team 

Dantzig, Fulkerson, Johnson 
Held and Karp 
Camerini, Fratta, Maffioli 
Grötschel 
Crowder and Padberg 
Padberg and Rinaldi 
Grotschel and Holland 
Padberg and Rinaldi 
Applegate, Bixby, Chvátal, Cook 
Applegate, Bixby, Chvátal, Cook 
Applegate, Bixby, Chvátal, Cook 
Applegate, Bixby, Chvátal, Cook 
Applegate, Bixby, Chvátal, Cook 
Applegate, Bixby, Chvátal, Cook 

Sources: www.tsp.gatech.edu (Applegate, 2007) and Applegate et al. (2006). 

algorithms. For example, many AI algorithms, such as genetic algorithms, simulated 
annealing, and Tabu search, and many heuristic schemes, such as Lin-Kernighan's k-
opt and the nearest-neighboring city, were developed at least in part to solve the TSP. 

Commonly, the performance of an IP algorithm is measured by how large a TSP 
instance can be solved. Table 6.1 displays the milestones of the sizes of TSP instances 
that have been solved to optimality. The table marks the year, the problem size, and the 
contributor(s) when a particular sized TSP instance was solved to optimality. Many 
test data sets of the TSP are true distances on the road maps of the world's continents. 
For example, the data set dl5112 is a map of 15,112 cities in Germany, usa 13509 is a 
map of 13,509 cities in USA, and sw24978 is a map of 24,978 cities in Sweden. 
However, pla33810 and pla85900 are data sets derived from the application of TSP to 
integrated circuits (Applegate et al., 2006). These data sets can be found in TSPLIB, a 
library of sample instances for the TSP and related problems, maintained by Reinelt 
(1991,2007). The largest six TSP instances in Table 6.1 were solved by a TSP solver 
called Concorde. The computer code is developed by the research team of Applegate 
et al. and written in the ANSI C programming language. "The full source code to the 
optimization package, as well as exécutables for various platforms, and a Windows 
graphical user interfaces to Concorde's traveling salesman solver are available for 
academic research use; for other uses, contact William Cook for licensing options" 
(www.tsp.gatech.edu). The user is suggested to download the Concorde package and 
try some TSP instances from the data sets of TSPLIB. 

It is interesting to note that the ability for solving a large-scale TSP instance 
progressed very slowly in the first two and a half decades (1950s to mid-1970s) 
and progressed rapidly in the last three decades (mid-1970s to mid-2000s). The giant 
leap in computational capability is perhaps due to, among others, the introduction of 
novel solution approach called the branch-and-cut, which will be discussed in 
Chapter 12. 
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Another interesting observation is that prior to 1980s, the areas of TSP applications 
were limited, perhaps due to the small size of the TSP that could be solved. Most 
applications then were in the areas of machine sequencing in manufacturing and vehicle 
routing in transportation. After 1980s, areas of application are expanded to genome 
mapping of human and animals in life science, and circuit printing in the electronic 
industry. More details about these applications will be provided in the next section. 

The statement of the traveling salesman problem is rather simple: A traveling 
salesman is to visit a number of cities and the distance connecting two cities are 
known; the problem is to find a shortest route that starts from a home city, visits other 
cities exactly once, and returns to the home city. 

In graph theory, the TSP is commonly represented by a graph or network. A network 
is composed of a set of nodes (or vertices), a set of arcs (or edges) connecting nodes, and a 
known length (or distance) associated with each arc. An arc may be either undirected or 
directed. A directed arc allows travel only in the direction specified, while an undirected 
arc allows travel in either direction of the same length. Thus, any undirected or mixed 
network can be converted to a directed network by replacing any undirected arc by a pair 
of opposite directed arcs of the same length. Cities in a TSP are represented by nodes, and 
links between cities are represented by directed arcs. If a TSP is defined over a network 
(or digraph) of directed arcs, then it is called an asymmetric TSP. If a TSP is defined over 
a network consisting entirely of undirected arcs, it is called a symmetric TSP. Unless 
specified otherwise, we shall assume that the network is directed and replace any 
undirected arc by a pair of opposite directed arcs of the same length. 

A cycle in a directed network is a sequence of nodes of the network such that it is 
possible to move from node to node, along directed arcs of the network, so that the 
selected nodes are encountered exactly once, except that the ending node is also 
the starting node. If a cycle contains all the nodes of the network, it is called a 
Hamiltonian cycle. For example, the directed network given in Figure 6.1 has a 
Hamiltonian cycle {(1, 2), (2, 5), (5,6), (6,4), (4,3), (3,1)} as depicted by the dotted 
lines. The TSP for a directed network with specified arc lengths is the problem of 
finding a Hamiltonian cycle of shortest length. A Hamiltonian cycle in the TSP is also 
called a tour. Any cycle that contains less than all the nodes in the network is a subtour. 

FIGURE 6.1 Hamiltonian cycle. 
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6.2 TRANSFORMATIONS TO TRAVELING SALESMAN PROBLEM 

There are many problems that are minor variations of the TSP and can be 
easily transformed into the standard TSR As a result, any efficient algorithm for 
solving the standard TSP can also be used to solve these variants, which extends the 
scope of the algorithmic application. In this section, we briefly describe and show how 
to transform the following problems into the standard TSP: 

• Shortest Hamiltonian paths 
• TSP with repeated city visits 
• Multiple traveling salesmen problem 
• Clustered TSP 
• Generalized TSP 
• Maximum TSP 

Note that most variants can be formulated directly as integer programming 
models without using the transformations. The reader may attempt the models or 
see the cited references for formulations. Here, our purpose is to show how to 
transform each of these variants to a standard one. Note that the transformation 
may be reversed in some variants, for example, transforming a standard TSP to 
a shortest Hamiltonian path. Thus, knowing the reverse transformation can 
be beneficial if an efficient algorithm is available for finding a shortest Hamiltonian 
path. 

6.2.1 Shortest Hamiltonian Paths 

A path that starts from an arbitrary node, ends at another arbitrary node, and visits all 
other nodes exactly once in a given directed network is called a Hamiltonian path 
(or H-path). The shortest Hamiltonian path problem is a problem to find a //-path with 
the shortest distance. 

A shortest //-path problem can be transformed into an equivalent TSP by 
constructing a new network G' from the original network G as follows. We add a 
new node (say n + 1) and new bidirectional dotted arcs (with distance 0) that, 
respectively, connect the new node with every node in the original network, as shown 
by the dotted arcs in Figure 6.2a. Now the shortest H-path problem on an n-node 
network G is equivalent to an (n + l)-node TSP on network G'. Solving the TSP on 
network G', we obtain a shortest //-path, starting from node 5 and ending at node 2, as 
shown by the dotted arcs in Figure 6.2b. 

Suppose the starting node is specified, say nodel. Then the shortest //-path 
problem can be transformed to the TSP by constructing a new network as follows. 
We add a directed arc with distance 0 to node 1 from every other node in the network, 
as shown by the dotted arcs in Figure 6.2c. Now the shortest //-path problem is 
equivalent to an n-node TSP on the new network. 
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FIGURE 6.2 (a) Transformed TSP from H-path problem, (b) shortest Hamiltonian path, and 
(c) shortest H-path from node 1 to any node. 

6.2.2 TSP with Repeated City Visits 

Suppose that we have a standard TSP, except that it is required to visit each city at least 
once instead of exactly once. The challenge is: how to transform this problem to a 
standard TSP? We construct a new network with arcs representing the shortest paths 
between each pair of nodes. To show this construction, we consider a simpler network 
given in Figure 6.3a to obtain a new network in Figure 6.3b. Comparing these two 
figures, observe that in Figure 6.3a we have a shortest path from node 1 to node 4, {( 1, 
2), (2, 4)}, which has a shortest distance 7, shorter than the directed arc (1, 4) of 
distance 9. Now the TSP with multiple city visits is equivalent to a standard TSP 
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(c) 

FIGURE 6.2 {Continued) 

defined on the new network. In other words, we simply replace the given distance 
matrix by a new one whose elements are the distances of shortest paths between all 
pairs of nodes. Determination of shortest distances between all pairs of nodes can be 
easily computed in polynomial time 0(n3) by a variety of shortest path algorithms. 

6.2.3 Multiple Traveling Salesmen Problem 

The multiple traveling salesmen problem (MTSP) can be stated as follows: Given a 
home city (node 0) and a set of«— 1 customer cities (nodes 1,2,...,«— 1) to visit, the 

(a) 

FIGURE 6.3 (a) TSP with repeated city visits; (b) transformed TSP from TSP with repeated 
city visits. 
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(b) 

FIGURE 6.3 (Continued) 

problem is to determine how many of the m salesmen should be utilized and to 
determine their respective routes that starts from and returns to the home city 0, so that 
the total distance traveled is minimized, subject to the constraint that each city (except 
home city) is visited once by one and only one salesman, where a fixed cost^, (p = 0, 
1,..., m — 1 ) is incurred if salesman/? is activated and a distance cost c(i,j) is incurred if 
arc (/,_/) is traversed. Assuming the network is directed, the MTSP can be transformed 
to a standard asymmetric TSP by modifying the original network as follows: 

1. Arrange the fixed costs of the salesman in ascending order: 

/ 0 < / l < / 2 < •■• < / m - l 

2. Add dummy nodes, labeled by —1, —2, .. . , —(m — 1), as a home city for 
salesman 2, 3, ..., m, respectively. 

3. Add a directed arc (-/,/) for each i = 1, 2 , . . . , (m - 1) and each arc (0,/) with 
distance c'(-i,j) = c(0,fi + l/2f¡. 

4. Add an directed arc (/', —z) for each arc (j, 0) with distance c'(j, —i) = c(j, 0) + 1/ 
2f, 

5. Add a directed arc (—j, —(/— 1)) for every pair of ¡'=1,2, ..., (m — 1) with 
distance d{-i, -(i-l))=l/2f¡_i - 111 f¡. 

Applying the above procedure, we obtain a new network as shown in Figure 6.4. 
Suppose we apply a standard TSP algorithm to solve the new network and obtain the 
following optimal tour: {(0, 1), (1,4), (4, -2 ) , ( -2 , -1 ) ( - 1 , 2), (2, 3), (3,0)}. Then 
the corresponding optimal solution to the MTSP is interpreted as follows: Salesman 0 
visits customer cities 1 and 4; salesman 2 visits no customer city; and salesman 1 visits 
customer cities 2 and 3. To obtain the total cost for the MTSP, we simply sum up the 
fixed and distance costs for salesmen 0 and 1. 



TRANSFORMATIONS TO TRAVELING SALESMAN PROBLEM 137 

FIGURE 6.4 A multiple traveling salesmen problem. 

Note that the transformed network is a directed network and the transformed TSP is 
an asymmetric TSP. Other transformation schemes are available (see Section 6.6 for 
references). 

6.2.4 Clustered TSP 

The clustered TSP can be stated as follows. Start with a directed network G = (N,A) in 
which the set of nodes N is partitioned into & disjoint clusters of nodes N{,N2, ■ ■ -,A^. 
The problem is to find a least cost tour in G subject to the constraints that nodes within 
the same cluster must be visited consecutively. This problem can be transformed to the 
standard TSP by adding a large cost M to the cost of each intercluster arc. 

6.2.5 Generalized TSP 

The generalized TSP can be stated as follows. Start with a directed network G = (N,A) 
in which the set of nodes N has been partitioned into k disjoint clusters of nodes N\, 
N2, ■ ■., Nk, where \N¡\ > 1 for 1 < i < k. Then, the definition of the generalized TSP 
varies somewhat in the literature. Here, we define the generalized TSP as a problem, 
to find a least cost tour in G that passes through exactly one node from each cluster N¡, 
1 < i < k. In particular, if \N,■ | = 1 for 1 < / < k, then the generalized TSP is reduced to 
the standard TSP. Now we show how to transform a generalized TSP to a standard TSP 
according to Noon and Bean (1993). Basically, a new network is constructed from the 
given network by adding some new arcs and adjusting the connection of some old arcs. 
The procedure is given below: 
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1. For each cluster of |Ni| > 1, we arbitrarily label the nodes as nn, ni2,..., n¡p. and 
form a cycle within cluster iV,-, say {(nñ, «¿2). («12, "¿3). • • •> (ni,P¡-\,n¡tP¡), {n¡tP¡, 
na)}. For example, the dotted lines in Figure 6.5b shows a cycle within cluster 
N4 of the give network in Figure 6.5a. 

FIGURE 6.5 (a) Original network for generalized TSP; (b) transformed network for 
generalized TSP. 
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2. For each added arc {ny, n¡j+l), we associate a cost of zero: c'(nñ, ni2) = 
c'(ni2, ni3) = ■■■ = c'(n^p.-u nUp) = c'{n¡iP¡, nn) = 0. 

3. For each outgoing arc (ny, rikq) from a cluster, we replace it with arc («,-,_/_i, nkq) 
such that «ij-i, n¡j£Ni,nkq£Nk, and k^i. Its associated cost is adjusted as 
follows: c'(n,j_i, nkq) - c(ny, nkq) and c'(niU nkq) = c(nUp¡, nkq). 

4. For each remaining arc, its connection and cost remain unchanged. 

Figure 6.5b depicts the transformed network G created from the given network G 
in Figure 6.5a. Step 2 implies that once a TSP tour enters cluster N¡ through ny, it will 
visit all other nodes in N¡ following a predetermined cycle without additional cost. But 
the TSP tour must leave cluster N¡ from node H/J-I rather than from node ny. 

Step 3 ensures that a generalized tour visits exactly one node in each cluster N¡ For 
example in Figure 6.5b, there are three arcs leaving from cluster N4. If the entering 
node ny is node 6, then its preceding node n¡ ¡_ \ is node 7. Thus, arc (6,1 ) is replaced 
by arc (7, 1) with cost c'(7, 1) = c(6, 1). Similarly, we have c'(8,2) = c(l,2) and d(\, 
4) = c(8,4). This step ensure that if a TSP tour in G enters a cluster N, through node ny 
it visits nodes of cluster N¡ in the order of ny, nbJ+ \, ■ ■., nijP¡, na,..., «,-,y_i and leaves 
the cluster N, from the node n¡j_\. Note that all outgoing arcs from node n¡j.i in G 
correspond to the original outgoing arcs from node ny in G. As a result, all other nodes 
in the cluster are treated as dummy, and only the entering and leaving arcs of node ny 
are counted. For example, suppose there is a TSP tour that enters cluster N4 from 
cluster N3 by arc (9,6), visits nodes 6, 8, and 7, and finally leaves cluster N4 by using 
arc (7,1 ) to node 1. This tour in Figure 6.5b corresponds to a tour in Figure 6.5a, which 
enters N4 by arc (9, 3), visits node 6, and leaves cluster N4 by arc (6,1 ) to cluster N\. 
Thus, the generalized TSP on G is equivalent to standard TSP on G. 

6.2.6 Maximum TSP 

The maximum TSP can be stated as follows: Given a network G where the profit 
associated with each arc may be either positive or negative, the problem is to find a 
tour in G where the total profit of arcs of the tour is maximal. The problem can be 
transformed to a standard (minimum) TSP by replacing each arc profit by its negative 
value. If some resultant arc values are negative, then add a large constant M to each of 
the arc values to ensure that all arc values in G are nonnegative. 

6.3 APPLICATIONS OF TSP 

Real-world applications of the TSP and its variants are ample. Here, we give examples 
of four application areas reported in the literature: (1) machine sequencing problems 
in various manufacturing systems, (2) machine sequencing problems in electronic 
industry, (3) vehicle routing problems for delivery/dispatching, and (4) genome 
sequencing problems for genetic study. There is a wide variety of TSP applications. 
The interested reader may refer the survey papers mentioned in Section 6.6. 
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6.3.1 Machine Sequencing Problems in Various Manufacturing Systems 

Perhaps the largest application area of the TSP is machine sequencing/scheduling 
problems arising in various manufacturing systems across multiple industries. In 
general, there are two types of sequencing problems that can be solved as a TSP. The 
first type of sequencing problem is scheduling n jobs on a single machine or on an 
assembly line. The second type is scheduling «jobs on m machines in the same order 
with no wait in process. In what follows, we give three systems for the first type and 
one system for the second type. 

• Job scheduling: There are «jobs with known processing times to be processed 
sequentially on a single machine. The jobs can be processed in any order but their 
machine setup times are job dependent. That is, the setup time requiring for 
processing job y immediately follow job i may vary. The objective is to find a 
sequence of jobs so that all jobs are completed in the shortest possible time. 

• Assembly line: In an assembly line system, jobs are often grouped together as a 
cluster so that the setup time, if any, between jobs within the same cluster is 
relatively small compared to the setup time between jobs in different clusters. 
This type of manufacturing system can be viewed as a clustered TSP. 

• Cellular manufacturing: In a cellular manufacturing system, families of parts 
(products) that required similar processing are grouped and processed together 
in a specialized machine cell to achieve efficiency and cost reductions. This 
production philosophy is known as group technology. Aneja and Kamoun 
(1999) showed that the problem of sequencing jobs processed by a robot in a 
machine cell can be formulated as a TSP. Its objective is to find an optimal job 
sequence such that the robot's total time of movement is minimized. 

• Flow shop sequencing: The problem of scheduling n jobs on m machines, with 
processing in the same order for each job, with no wait in process is also known as 
the flow shop sequencing problem with no wait in process. The sequencing 
problem can be described as follows. There are n jobs with known processing 
time that require processing by m machines in the same order. Each machine can 
work on at most one job at a time and once it begins work on a job it must 
continue working on it until completion without interruption. It is assumed that 
once a job is completed on a machine j , it must be immediately processed on 
machine y + 1 with no wait in process. The objective is to finish the last job as 
soon as possible. It can be shown that this sequencing problem can be formulated 
as an «-city shortest Hamiltonian path problem, which in turn can be transformed 
to an (n + l)-city TSP by adding a dummy city. 

6.3.2 Sequencing Problems in Electronic Industry 

The electronic industry has utilized the TSP to solve the sequencing problems arising 
in design, production, and testing of integrated circuits (IC), also known as computer 
chips. In fact, the history of the TSP applications in the electronic industry paces the 
history of TSP applications. Such applications began as early as 1973 when Lin and 



APPLICATIONS OF TSP 141 

Kernighan (1973) introduced their famous heuristic algorithm for solving a 318-city 
problem arising in sequencing a numerically controlled drilling machine efficiently 
through a set of hole positions of an IC. The problem is called lin318 in the TSPLIB. 
As the IC technologies evolved over the decades, the use of the TSP in solving the 
sequencing problem still prevailed. The following are examples of the TSP uses in 
designing, manufacturing, and testing of ICs. 

• Drilling holes on printed IC boards: A large number of holes are needed on 
printed IC boards for mounting chips and other hardware, or connecting layers to 
attain some specific functionality. Such holes are typically produced by auto-
mated drilling machines that move to drill holes between specified locations. The 
TSP is to minimize the total traveling time of the drill, where the cities 
correspond to the hole locations. The hole drilling problems arise in production 
of both general and customized ICs. 

• Testing ICs via scan chain technology: A scan chain is automatically generated 
test pattern for an IC in which components (scan points) in the IC are connected 
in a chain having input and output connections on the boundary of the chip. As 
stated by Applegate et al. (2006), "a scan chain permits test data to be loaded into 
the scan points through the input end, and after the chips performs a series of test 
operations [in pre-determined sequence] the data can be read and evaluated from 
the output end." In creating a scan chain, chip designers have naturally turned to 
the TSP in order to determine the minimum distance sequence of the scan points 
to save time in the testing phase. Pathways on ICs are only in the vertical and 
horizontal directions, so scan chains form paths that run from input to outputs in 
the manner of city street layouts, using the so-called "taxicab" or "Manhattan" 
metric: d[(xu yi), (x2, y2)] = \xi - x2\ + b i - ^ l -

6.3.3 Vehicle Routing for Delivery and Dispatching 

Another common application of the TSP is the vehicle routing for delivery and 
dispatching services: 

• School bus routing: Scheduling a fleet of school buses to pick up and transport 
waiting children to schools can be viewed as a multiple TSP if the constraints of 
time windows and bus capacities are of no concerns. Otherwise, the problem is a 
vehicle routing problem rather than a TSP. 

• Parcel/postal delivery/dispatching: This type of problem is normally considered 
as a postman problem where a vehicle visits a given set of streets (or arcs) rather 
than a given set of locations (or nodes). However, recently the TSP software has 
been modified and adopted for use in these applications with successful reports. 

• Meals on wheels: In many urban areas, dispatch a fleet of vehicles with meals to 
deliver to elderly and sickly people on a regular basis. 

• Clinic on wheels: Dispatch a medical vehicle to service medical needs for a set of 
rural communities. 
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• Maintenance on wheels: Periodically, a maintenance vehicle with crew and 
equipments is dispatched to inspect and maintain the equipments in a number of 
bases or stations. 

6.3.4 Genome Sequencing for Genetic Study 

Mapping the genome of a species of animals is an ordering problem of huge 
proportion. For example, human have 23 chromosomes and each has to be mapped. 
As stated by Applegate et al. (2006), before finding the genome sequence of a species, 
the research team must determine "accurate placement of markers that serve as 
landmarks for the genome maps... A genome map has for each chromosome a 
sequence of markers with some estimate of the distance between adjacent markers. 
The markers in these maps are segments of DNA that appear exactly once in the 
genome under study... It is particularly useful to have accurate information on the 
order in which the markers appear on the genome, and this is where the TSP comes 
into play." 

Many genome sequencing research projects that employ the TSP approach have 
been reported in the literature in the 2000s. Species under study include human, 
macaque, horse, dog, cat, mouse, rat, and cow (see Section 6.6 for references). 

6.4 FORMULATING ASYMMETRIC TSP 

The asymmetric TSP is defined on a directed network in which travels are allowed 
only in the directions specified. The problem is to find a directed tour with a minimal 
distance. This section presents the formulation of the asymmetric TSP as a 0-1 integer 
program. All of IP formulations in this chapter are based on the assignment problem. 
We follow the modeling procedure described in Chapter 2. Although any city can be a 
starting city, for simplicity we assume it is city 1. 

Step 1 

Input parameters: all directed arcs (i,j) and associated distances (c,y) 
Decision variables: whether or not each directed arc (i,j) is in the tour 

(Vy=lor0) 
Constraints: each city y must be entered exactly once, each city i 

must be exited exactly once, a tour that starts from 
a starting city must travel exactly n — 1 cities and 
return to the starting city, and no subtours are 
allowed 

Objective: total distance traveled on a tour must be minimum 

Step 2. The asymmetric TSP can be formulated as 

Minimize y . cyyij 
('V)eA 

(6.1) 
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subject to 2_, yy = 1 f°r a ^ cities./ = 1 to n 
{r.(iJ)sA} 

y ^ y¡¡ = 1 for all cities i = 1 to « 

yy = 0 or 1 for all arcs (ij) e A 

A set of subtour elimination constraints 

(6.2) 

(6.3) 

(6.4) 

Constraints (6.2) ensure that each city j must be entered exactly once. Con-
straints (6.3) ensure that each city i must be exited exactly once. Note that con-
straints (6.1)-(6.4) correspond to the classical assignment problem. However, any 
solution satisfying (6.2)-(6.4) is not sufficient to define a tour because it may also 
define some disjoint subtours, for example, of n = 6 cities as shown in Figure 6.6. The 
solution y12 = )'25=)'5i =>'43=3'36 = }'64= 1 (and y,y = 0 for all others) satisfies 
constraints (6.2)-(6.4) but forms two disjoint subtours: 1 —> 2 —► 5 —> 1 and 
3—> 6 —> 4 —> 3 as shown in Figure 6.7. Thus, the assignment problem is a relaxation 
of the TSP, and the TSP is a restriction of the assignment problem. 

Many existing IP formulations for the TSP are relaxations of the assignment 
problem. Their difference is in the formulation of subtour elimination constraints. In 
this text, we present two popular ones for the asymmetric TSP and one for the 
symmetric TSP. 

6.4.1 Subtour Elimination by Dantzig-Fulkerson-Johnson Constraints 

This subtour elimination scheme is based on the fact that for every tour or subtour, the 
number of nodes must be equal to the number of arcs. Therefore, to prevent from 
forming subtours but allow forming a tour, the number of arcs must be less than the 
number of cities for every subset that consists of 2 to n — 1 cities. Mathematically, 

i'es jes 
\S\-l for all subsets |5| = 2 , 3 , . . . ,n—l (6.5) 

FIGURE 6.6 Directed graph. 
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FIGURE 6.7 Directed subtours. 

where Sisa nonempty proper subset of all nodes V, and | S\ is the number of cities in S. 
The total number of constraints in (6.5) is nearly 2" because there are 2" possible 
subsets for« cities. For example, the subtour 1 —>2 —»̂5 —>lin Figure 6.7 could not be 
satisfied because YliesYljesyy = vi2 + v25 +^51 = 3, |5 | — 1=2 , and thus a corre-
sponding constraint in (6.5) would be violated. Likewise, the subtour 3 —> 6 —» 4 —> 3 
in Figure 6.7 would also violate a constraint in (6.5). 

6.4.2 Subtour Elimination by Miller-Tucker-Zemlin (MTZ) Constraints 

This set of subtour elimination constraints is introduced by Miller et al. (1960). This 
set is derived based on the following observation. Consider that a tour is just a 
sequence of all cities. If we define Uj as the sequence number of city j in a tour, we 
obtain the following set of subtour elimination constraints: 

Ui-Uj + ny¡j < n-1 for (ij) € A, i ¿J ¿ IJ ¿ i (6.6) 

Consider the first subtour in Figure 6.7, for example. We have V36 = V64 = V43 = 1. 
Because city 3 is the first city in the sequence, we have w3 = 1, u6 = 2, and w4 = 3. 
From (6.6), we obtain three corresponding constraints: 

M3-w6 + 6y36 = 1—2 + 6 = 5 < 5 (satisfied) 

U6—U4 + 6yM = 2—3 + 6 = 5 < 5 (satisfied) 

un,—us + 6y43 = 3— 1 + 6 = 8 > 5 (violated) 

Clearly, this subtour violates the third constraint. Similarly, we can show that every 
subtour that does not contain city 1 will violate a constraint in (6.6). 

Now if there is a set of y,/s that does not contain a subtour, then we can define a set 
of tifs, starting from city 1, that does not violate any constraint in (6.6). Let u¡ = k 
indicate that city i is the Ath city visited in the tour, where k — 2 ,3 , . . . , n. If yi}:— 1, we 
then have Uj — k+ 1 and the left-hand side of (6.6) is 

Uj—Uj + ny¡j = k-(k+\)+n = n—\ 
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which satisfies the right-hand side of (6.6) for every k. If y¡¡ = 0 and u¡ = k! (k1 = 2, 
3, ..., n, k1 =¡¿ k + 1), then the left-hand side of (6.6) is 

Uj—uj + ny¡j = Uj—Uj = k—k' 

Clearly, the largest difference for k — k1 occurs when k = n and k1 = 2, which is 
n — 2 < n — 1. We have shown that (6.6) can be satisfied for all cases of y,y = 1 and 
y¡j = 0 if no subtours are involved. For example, consider a tour of 1 —> 2 —> 4 —> 
5 —> 3 —» 6 —» 1 for the above six-city problem. We have yi2 = y24 = y45=y53 = 
>'36 = >'6i = U }'23::::3'25=};43=>'5i=)'64 = 0, and set u{ = 1, u2 = 2, «4 = 3, «5=4, 
«3 = 5, and «6 = 6. Check the corresponding constraints in (6.6) for i^ 1 andj^= 1: 

)>24=1, U2-U4 + 6y24 = 2-3 + 6 = 5 

y45 = 1, M4-W5 + 6y45 = 3 -4 + 6 = 5 

y53 = l, M5-W3+6^53 = 4 - 5 + 6 = 5 

3̂6 = 1, "3-"6 + 6)>36 = 4 - 5 + 6 = 5 

which satisfy all the constraints in (6.6). Next, we consider y2i = 2̂5 = V43 = y ^ = 0 

y23 = 0, H2-W3 + 6y23 = 2 -5 = - 3 < 5 

y25 = 0, u2—u5 + 6y25 = 2—4 = —2 < 5 

y43 = 0, M4-M3 + 6y43 = 3-5 = - 2 < 5 

yM = 0, «6-«4 + 6yM = 6 -3 = 3 < 5 

which also satisfy all the constraints in (6.6). Now we have shown that every subtour 
will violate at least one of the constraints in (6.6) and that no complete tour can be 
excluded by (6.6). 

The MTZ formulation, when compared with clique packing, adds only n variables 
to the model (the H'S), but dramatically decreases the number of constraints to 
approximately n2 from nearly 2". At first glance, this huge reduction in the number of 
constraints could mean great reduction in time for finding an optimum tour. On the 
contrary, the set of type (6.5) constraints is much tighter than the set of type (6.6) 
constraints. In fact, the clique packing formulation is better than the MTZ formulation 
in the sense that the polyhedron (say P\) of the LP relaxation of the first formulation is 
a subset of the polyhedron (say P2) of the second formulation. Nemhauser and Wolsey 
(1988) provided the following example to show that P2<tP\. If « > 4 , The point 
u2 = «3 = «4 = 0 and y23 = >>34 = y42 = (n — 1 )ln > 2/3 satisfies constraint set (6.6) but 
not (6.5). 

The above two formulations for TSP show that the computability of IP reverses the 
rule of the computability of LP—the computational time increases as the number of 
constraints increases. Therefore, any attempts to finding compact IP formulations 
with a small number of constraints are often counterproductive for efficiently solving 
large-scale TSPs. 
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6.5 FORMULATING SYMMETRIC TSP 

The symmetric traveling salesman problem is defined on an undirected network in 
which travel is allowed in either direction of each undirected arc or edge. The problem 
is to find an undirected tour with a minimal traveling distance. To formulate the 
symmetric TSP, one must note that c¡j = Cß and y y = yyí. Thus, each edge can be 
identified by a single index k, each decision variable by yk, and each distance by ck. As 
a result, the symmetric problem can be formulated with only one-half the number of 
0-1 variables as required in the asymmetric problem. To find a tour in an undirected 
network G(E, A), one must select a subset of undirected arcs such that every node y is 
connected to exactly two of the undirected arcs selected. As in the asymmetric 
problem, the symmetric problem requires additional constraints to eliminate all 
subtours, but not any tour. 

Again, following the modeling procedure described in Chapter 2, we now 
formulate the symmetric TSP as a 0-1 integer program. 

Step 1 

Input parameters: a list of undirected arcs indexed by k and their 
associated distances, ck 

Decision variables: whether or not each undirected arc k is in the tour 
(y*=l<w0) 

Constraints: each city in the tour must have exactly two undir-
ected arcs incident to it, and all subtours must be 
eliminated 

Objective: total distance traveled in a tour must be minimal 

Step 2. Let E be the set of all undirected arcs, Ej be the set of all undirected arcs 
connected to cityy, and£ s be the set of all undirected arcs connecting the cities 
in any proper subset S. Also let yk = 1 if undirected arc & e £ is in the tour, and 
yk = 0 otherwise. Then the symmetric TSP can be formulated as a 0-1 integer 
program: 

1 " 
Minimize ^ X X ^ E / ^ (6-7) 

i=\ 
subject to 2_, yk = 2 for all citiesy = 1 , 2 , . . . , « //- g\ 

keEj 

£ > , = |S | -1 f o r a l l | S | = 2 , 3 , . . . , « - 2 
jeEs 

(6.9) 

y, = l o r 0 for ally e E (6.10) 

Constraints (6.8) ensure that every node in the tour must have exactly two 
undirected arcs connected to it. As in the asymmetric case, (6.9) is a set of subtour 
elimination constraints equivalent to (6.5). 
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FIGURE 6.8 Undirected network. 

For example, consider the undirected network given in Figure 6.8 that has 7 cities 
and 11 undirected arcs labeled by k = 1, 2, . . . , 11. The solutions yi=y2=ys=y6 
y4= y\o = y 1i = I and y3 = y5 — y-, — y9 — 0 satisfy constraints in (6.8) but not in (6.9). 
As a result, we obtain two disjoint subtours, 1-2-4-5-1 and 3-6-7-3, as shown in 
Figure 6.9. 

First, we examine the subtour 1-2^4-5-1 using the constraints in (6.8) and (6.9). In 
this subtour, we have 

S= {1,2,4,5}, | 5 | = 4 

£ , = { 1 , 2 , 7 } , E2 = {2,8,3,9}, E4 = {6,7,8,5}, E5 = {1,6} 

The corresponding constraints in (6.8) are 

F o r / = i , Y^yk =y\+yi+yi = 2 

keE, 

For; = 2, ^ yk = y2 + ys + y3 + y9 = 2 
k£E2 

For; = 4, ^yk = y6+y7+y$ +y5 = 2 
keE4 

For; = 5, ^ ^ = yi +y6 = 2 
keE5 

which satisfy all the constraints in (6.8). 
Next, we examine the constraints in (6.9). We have 

Es = {1,2,6,7,8} 

yi=y2=y6=ys = l 

y7=0 

Thus, the left-hand side of (6.9) is 

^2yj = y\+y2+y6 + y7 + ys = 4 

jSEs 
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y 

FIGURE 6.9 Two subtours in undirected network. 

But the right-hand side of (6.10) is 

|S | -1 = 4 - 1 = 3 

Hence, a constraint (6.9) is violated and the subtour 1—2—4—5—1 cannot happen. 
Likewise, we can show that the subtour 3-6-7-3 and all other subtours cannot occur 
because each subtour would violate a constraint in (6.9). 

6.6 NOTES 

Much of the material in this chapter is based on the TSP books by Applegate et al. 
(2006), Gutin and Punnen (2002), and Lawler et al. (1985). Related material is 
available on www.tsp.gatech.edu. 

Section 6.1 

Much of the data sets of TSP instances given in Table 6.1 can be found in TSPLIB 
(Reinelt, 1991), a traveling salesman problem library. Gutin and Punnen (2002) and 
Applegate et al. (2006), respectively, have 838 and 581 counts of TSP references. 
After removing the duplicated references, the total count exceeds 1000. 

Section 6.2 

See Lawler et al. (1985) for transforming a TSP to a shortest Hamiltonian path 
problem. See Hong and Padberg ( 1977) and Rao ( 1980) for transforming a symmetric 
multiple traveling salesmen problem to a standard TSR See Jongens and Volgenant 
(1985) for transforming the symmetric cluster TSP to the standard TSR See Noon 
(1988) and Noon and Bean (1993) for transforming generalized TSP to standard TSR 
See Barvinok et al. (2002) for more detail about the maximum TSR 



EXERCISES 149 

Section 6.3 

For scheduling jobs on a machine with sequence-dependent setup times, see Gilmore 
and Gomory (1964) and Bianco et al. (1988). For knowledge of scheduling theory and 
manufacturing systems, see Pinedo (2002). For more TSP applications, see survey 
papers by Garfinkel ( 1985), Lenstra and Rinnooy Kan ( 1975), and the book by Reinelt 
(1994). 

6.7 EXERCISES 

6.1 Visit "http://www.tsp.gatech.edu/index.html" or any other Web site containing 
information on TSP. Give at least three real-world applications of TSP that are 
not mentioned in this book. 

6.2 For the asymmetric TSP, show that the following set of constraints is equivalent 
to the set of subtour elimination constraints in (6.5): 

íes jes 
for all subsets \S\ = 2 , 3 , . . . , n— 1 

where S = V\S. 

6.3 For the symmetric TSP, show that each of the following sets of constraints is 
equivalent to the set of subtour elimination constraints in (6.10): 

(a) EjeESyj < I M-l-SI-l for *" |S| = 2 , 3 , . . . , « - 2 

where S = V\S and Es is the set of all edges in S. 

(b) YljeE'syj - 2 for all subsets \S\ = 2 , 3 , . . . , w—2 

where S — V\S and Ess is the set of all edges between S and S. 

6.4 Consider the directed network given in Figure 6.10: 

FIGURE 6.10 A directed network. 
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(a) Find a Hamiltonian path starting from node 1. Find a Hamiltonian path 
starting from node 5. 

(b) Find a shortest Hamiltonian path by inspection. 
(c) Transform the given network G into a network G' such that a shortest 

Hamiltonian path can be found by a TSP algorithm. 
(d) Construct the cost matrix corresponding to the network G'. 

6.5 Consider the network in Problem 6.5. Suppose nodes are allowed to visit more 
than once. 

(a) By inspection find the shortest distance between each pair of nodes. 
(b) Construct a transformed network that can be solved by a standard TSP 

algorithm/software. 
(c) Construct the distance matrix for the transformed network. 

6.6 There are two trucks available at the warehouse (node 1) to be dispatched for 
delivering goods to all the customers (the remaining nodes). Assume each 
customer can be delivered by a truck only. 

(a) Suppose the costs of trucks and drivers vary: $100 and $120, respectively. 
Construct a transformed network that can be solved by a standard TSP 
algorithm/software. 

(b) In the transformed network, let nodes 1 and — 1 be the starting nodes for 
trucks 1 and 2, respectively. Suppose an optimal TSP tour for the 
transformed network is found: {(1, 4), (4, 3), (3, 5), (5, 2), (2, -1) , 
(—1,1)}. Determine the number of trucks needed, tours, and the total cost. 

6.7 In cellular manufacturing, similar parts (products) are grouped in a same cell to 
reduce costs. Consider the network of seven parts grouped in two cells Ni and N2 

FIGURE 6.11 Parts assigned to cells. 
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FIGURE 6.12 Subnetwork in a TSP. 

shown in Figure 6.11. Assume that once a cell is entered, all the parts in the cell 
must be processed before moving out of the cell. Show how this network can be 
transformed into one that can be solved by a standard TSP. 

6.8 Consider the generalized TSP discussed in this text. Suppose you are given a 
subnetwork for cluster JV¡ (Figure 6.12). There are four outgoing arcs from this 
cluster, (1, a), (2, b), (3, c), and (4, d), with respective costs 1,2,3, and 4. Draw a 
transformed subnetwork with appropriate links and costs so that the transformed 
network can be solved by a standard TSP. Show that if a TSP tour enters cluster 
N¡ through node 4, it will leave TV, via a new arc with cost equal to 4. 

6.9 Given a complete directed network of 10 nodes. 
(a) Determine the number of subtour elimination constraints required by 

equation (6.5). 
(b) Determine the number of subtour elimination constraints required by 

equation (6.6). 

6.10 Given a complete undirected network of 10 nodes, determine the number of 
subtour elimination constraints required by equation (6.9). 
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7 
LINEAR PROGRAMMING— 
FUNDAMENTALS 

This chapter reviews the basic linear algebra and linear programming theory essential 
to the understanding of the LP and IP solutions and methods to be discussed in the 
remainders of this book. 

7.1 REVIEW OF BASIC LINEAR ALGEBRA 

An n vector is a column or row array of« numbers. Throughout this text, we shall use a 
lowercase boldface letter to denote a column vector such as b or d, and use the 
transpose of a column vector to denote a row vector such as bT or dT, where superscript 
T stands for transpose. 

7.1.1 Euclidean Space 

Definition 7.1 An «-dimensional Euclidean space, denoted by E", is the collection 
of all vectors of dimension « having the following properties: 

• Addition of vectors—for any two vectors a and b in E", vector a + b is in E". 
• Scalar multiplication—for any vector a and scalar k in E", vector /ca is in E". 

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang 
Copyright © 2010 John Wiley & Sons, Inc. 
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• Vector multiplication—any two vectors a and b in E" can be multiplied. The 
result of this vector multiplication is a real number called inner (dot) product of 
the two vectors, defined by aTb = aibi + a2b2 + • • • + a„b„. 

• The length (norm) of a vector in the space, denoted by ||a||, is defined 

"a" = # 

7.1.2 Linear and Convex Combinations 

Definition 7.2 Givenp vectors, a1, a2,... , sf in E", and/J scalars kx, k2, ■ ■ -, kp, the 
expression Aia1 + k2a

2 + • ■ • + kpaP is called a linear combination. The scalars are 
real numbers that can be positive, negative, or zero. The linear combination becomes a 
convex combination when k\ +k2 + • • • + kp — 1 and 0 < k\, k2,..., kp < 1. 

7.1.3 Linear Independence 

Definition7.3 A collection of vectors a1, a2,.. .^ofdimensionwiscalled/Znear/y 
dependent if there exist constants ax, a2, ■ ■ -, ap, with at least one aj^O, such that 
their linear combination equals to an «-dimensional null vector, or 

7=1 

and the set of vectors is said to be linearly independent if the only solution is 
ai =a2= ■■■ =ap = 0. 

Note that in E", any set ofp > n vectors is always linearly dependent, but a set of 
p < n vectors may or may not be linearly independent. 

7.1.4 Rank of a Matrix 

A matrix is a rectangular array of numbers. Thus, the size of a matrix is represented 
by the number of rows crossed with the number of columns, denoted bymxn. In this 
text, we shall use an uppercase boldface letter to denote a matrix, for example, A or 
B. 

Definition 7.4 Let A b e a n m x n matrix. The row rank of the matrix is equal to the 
maximum number of linearly independent rows of A. The column rank of A is the 
maximum number of linearly independent columns of A. It can be shown that the row 
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rank of a matrix is always equal to its column rank, and hence the rank of A, 
denoted by rank(A), is equal to the number of linearly independent rows (or 
columns) of A. 

7.1.5 Basis 

A collection of vectors a1, a2,... , 2P in E" is said to span E" if any vector in this space 
can be represented as a linear combination of this set of vectors. In other words, given 
any vector b in this space, we can always find scalars au a2, ■ ■ -, ap such that 

p 

7=1 

Definition 7.5 A collection of n linearly independent row vectors forms a basis 
ofE". 

Thus, given a basis of E", say a', a2, ..., a", any vector b in E" is uniquely 
represented in terms of this basis. Note that a basis must be an n x n square matrix. 

7.1.6 Matrix Inversion 

Definition 7.6 Given an m x m matrix A if there exists a n m x m matrix B such that 
their product is an identity matrix (i.e., AB = I and BA = I), then B is called the 
inverse of A. The inverse matrix is unique and usually denoted by A- 1 . Also, the 
inverse of B is A, denoted by B _ 1 . 

Note that a square matrix A can have an inverse if and only if the row vectors of A 
are linearly independent, or if and only if the column vectors of A are linearly 
independent. There is a simple condition to check for existence of A - 1 , called 
nonsingularity. 

7.1.7 Determinant of a Matrix 

Definition 7.7 Every n x n square matrix A has a real number associated with it 
called the determinant of the matrix, denoted by detA, which is defined as 
follows: 

n 

detA = y ^ anAn 
i=i 

where An is the cofactor of an defined as (—1)' + ' times the determinant of the 
submatrix of A obtained by deleting the ¡th row and the first column. The matrix A 
is singular if det A = 0 and is nonsingular if det A ^ 0. 
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To illustrate how to calculate the determinant of a matrix, consider the following 
example: 

(2 1 - 1 \ 

= 2(-l)1 + ldet( j + l ( - l ) z + ' d e t l j - 2 ( - l ) 3 + 1det( 

= 2(1)2+1(1)2-2(1)(4) 

= - 6 

Thus, matrix A is nonsingular. 
If a matrix A is nonsingular, then the inverse A - 1 exists and can be calculated by 

A _ , _ad jA 
detA 

where adj A is called the adjoint matrix of A, which is defined as the transpose of the 
matrix whose ij element is Ay, the cofactor of ay. However, this method for finding the 
inverse of a matrix is not as effective as the method using the elementary row 
operations to be given in the following section. 

Consider the system Ax = b where A is a n x n nonsingular matrix, b is an n vector, 
and x is an « vector of unknowns. Then according to the Cramer's rule, the unique 
solution to this system is given by 

det A,- r Xj = ——f for j = 1,2,...,n 
detA 

where A, is obtained from A by replacing the jth column of A by b. However, this 
method is not as effective as that of the elementary row operations. 

7.1.8 Upper and Lower Triangular Matrices 

Definition 7.8 A square matrix A = (ay) is called an upper triangular matrix if 
a¡j = 0 for all i >j. Matrix A is called a lower triangular matrix if ay = 0 for all i <j. 
A square matrix Dis called a diagonal matrix with diagonal elements du,d22, ■ ■ .,d„„ 
if all other elements (dy, i ̂ j) are equal to 0. The diagonal matrix is denoted by 
D = diag{û?u, d22, ■ ■-, d„„}. 

The triangular matrix (either upper or lower) with nonzero diagonal elements has 
an inverse. Note that in solving a system of equations, finding an equivalent triangular 
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coefficient matrix requires about one-half the computational operations as in finding 
the inverse of a basis matrix. Two systems of linear equations are said to be equivalent 
if their solution sets (including empty set) are the same. 

A diagonal matrix D with diagonal elements d\ \, d22, • ■ •> dnn is a special form of a 
triangular matrix (either upper or lower) in which dy = 0 for all i =¿/ Let D be the 
diagonal matrix obtained from matrix A by the elementary row operations, it can be 
shown that det A = det D and therefore 

det A = d\Ud22,... ,d„„ 

If any diagonal element du = 0, then det A = 0 and hence matrix A is singular. 

7.2 USES OF ELEMENTARY ROW OPERATIONS 

Given a matrix A (or a collection of row vectors), we can perform some elementary 
row operations (or row operations, for short). In the context of this textbook, these 
operations have the following uses: 

• Finding the rank of A (or the number of linearly independent row vectors) 

• Calculating the inverse of A if exists 
• Converting to an upper or a lower triangular matrix 
• Converting to a diagonal matrix 
• Calculating the determinant of a matrix 

• Solving a system of linear equations 

A row operation on a matrix is one of the following operations: 

1. Interchange of any two rows (R,■<-► Ry). 
2. Multiply any row R, by a scalar k ^ 0 and use the resultant row £R, to replace R,. 
3. Addition to any row R, of a nonzero scalar multiple of another row R„ or use 

Rj + kRj to replace Ry. 

We can also view a matrix A as a collection of column vectors and can perform 
some elementary column operations (or column operations, for short) on a matrix in a 
way similar to row operations except that rows are replaced by columns. 

7.2.1 Finding the Rank of a Matrix 

To find the rank of a given matrix, we either apply row operations to find the row rank 
or apply column operations to find the column rank. The following example is to show 
an application of row operations. 
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Example 7.1 Find the rank of A defined by 

/ 2 1 2 3 \ 

1 3 1 9 

\l 1 1 3j 

We apply row operations 2 and 3 to A, and attempt to make as many columns as 
possible to become distinct unit vectors. For this example, we attempt to obtain three 
distinct unit vectors in the following order: 

To obtain the first unit column vector, we multiply row R] by 0.5 and use 0.5Ri to 
replace R ]. Then use R2 — 1R1 to replace R2, and use R3 — 1R1 to replace R3. To obtain 
the second unit column vector, we multiply R2 by 0.4 and use 0.4R2 to replace R2. We 
then use R[ — 0.5R2 to replace Rj and use R3 — 0.5R2 to replace R3: 

/ l 0.5 1 1.5 \ 

0 2.5 0 7.5 

\ 0 0.5 0 1.5/ 

/ 1 0 1 0 \ 

0 1 0 3 

\ 0 0 0 Oy 

After making two distinct unit columns, we find that the third row becomes a 
zero vector. This indicates that row 3 is a linear combination of rows 1 and 2. In 
other words, the maximum number of linearly independent vectors is 2, or the rank of 
A is 2. 

7.2.2 Calculating the Inverse of a Matrix 

An m x n matrix A is invertible or nonsingular if it contains m linearly independent 
rows. To calculate the inverse of a square matrix, we construct an augmented matrix 
(A|I) and perform row operations on it until the augmented matrix becomes (I|B). 
ThenB=A _ 1 . 

Example 7.2 Find the inverse of matrix A defined by 
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Construct the matrix by augmenting an identity matrix of the same size and 
perform row operations 2 and 3 repeatedly until an identity matrix is obtained on the 
left-hand part of the augmented matrix. 

/ 2 1 2 

1 3 1 

\ 2 1 1 

1 0 0 \ 

0 1 0 -

0 0 1 / 

/ 1 0 1 

0 1 0 

\ 0 0 - 1 

Thei -efore, we c >bta 

/ 1 1/2 1 

0 5/2 0 

v 0 0 - 1 

1/2 0 0 \ 

-1/2 1 0 -

- 1 0 1 / 

3/5 -1/5 0 \ / 1 0 0 

-1/5 2/5 0 -

- 1 0 1 / 

in 

0 1 0 

v 0 0 1 

-2/5 -1/5 

-1/5 2/5 

1 0 

1 \ 

0 

-v 

and check that AA = I. 

7.2.3 Converting to a Triangular Matrix 

Example 7.3 Find the upper triangular, lower triangular, and diagonal matrices for 

Apply the elementary row operations on A. 

For upper triangular matrix 
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For lower triangular matrix 

'2/3 0 (T 

- 1 3 0 

,2/3 0 1, 

From upper triangular to diagonal 

1 1 1 \ 

0 2 2 

0 0 1 / 
1-1 

/ l 0 0 

0 2 2 

\ 0 0 1 

1 0 0N 

0 2 0 

,0 0 1 

From lower triangular to diagonal matrix 

7.2.4 Calculating the Determinant of a Matrix 

The determinant of a matrix A can be obtained by calculating the product of the 
diagonal elements of any one of its equivalent upper triangular, lower triangular, or 
diagonal matrix. From Example 6.3, we may compute 

2 
det A = 1 x 2 x 1 x 3 x 1 

7.2.5 Solving a System of Linear Equations 

There are two commonly used methods for solving a system of linear equations: (1) 
matrix inversion and (2) matrix triangularization. The former method, called 
Gauss-Jordan reduction, is well known in introductory operations research texts. 
The latter method, called Gaussian reduction, is more efficient and converts a given 
augmented matrix to a triangular matrix, either upper or lower triangular. 

We shall first use the first method to solve a system of equations. Consider the 
system of linear equations Ax = b where A i s m x n , x i s n x 1, and b is m x 1. Such a 
system has one of three cases when solved: (1) a unique solution, (2) an infinite 
number of solutions, and (3) no solution. To know which case holds for a given 
system, we must use the concept of rank and the augmented matrix of the system 
denoted (A|b). 

1. The system has a unique solution if rank(A) = rank(A|b) = n. 

2. The system has an infinite number of solutions if rank(A) = rank(A|b) < n. 
3. The system has no solution if rank(A) < rank(A|b). 
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Example 7.4 (Unique Solution) Solve the following system: 

A = 

x\ +X2+X3 = 4 

x\ + 3x2 + 3x3 — 2 

xi +X2 + 2X3 = 6 

rank(A) — 3 

A 1 1 
1 3 3 

yi 1 2 

4 \ 

2 6I 
-> 

A 1 1 
0 2 2 

yO 0 1 

* \ 
-2 L 
2 

/l 0 0 

0 1 1 

yO 0 1 

s\ 
- 1 2I 

- ► 

A 0 0 
0 1 0 

yO 0 1 

(A|b) = 

Because rank(A) = rank(A|b) = 3 = n, the system has a unique solution 

x\ = 5 , x2 = - 3 , x3 = 2 

5 

Example 7.5 (Infinite Number of Solutions) Solve the following system: 

x\ + X2 + X3 + X4 = 4 

x\ + 3x2 + 3x3 = 2 

X\ + X2 + 2X3 —X4 = 6 

/ l 0 0 3/2 

0 1 1 - 1 / 2 

\ 0 0 1 - 2 

/ l 0 0 3/2N 

0 1 0 3/2 

\0 0 1 - 2 

(A|b): 

/ 1 1 1 1 

1 3 3 0 

V 1 1 2 -

/ l 0 0 3/2 

0 1 0 3/2 

^0 0 1 - 2 

4 \ 
2 

6y 

- 3 
2J 

^ 1 1 1 1 

0 2 2 -

V 0 0 1 - 2 ! 2 y 

4 \ 

- 2 

/ 1 0 0 3/2 

0 1 0 - 1 / 2 

\ 0 0 1 - 2 

5 \ 

- 1 

2 / 
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Because rank(A) = rank(A|b) = 3 < n — 4, the system has an infinite number of 
solutions. Note that the final equivalent system of equations reads 

xv 

, 3 
: 5 - - * 4 

x2 

XT, = 2 + 2x4 

3-fx* 

Clearly, the system has an infinite number of solutions because an infinite number 
of possible values can be assigned to x4. 

Example 7.6 (No Solution) Consider the following system: 

2x\ +X2 + 2^3 = 6 

Xi +3X2 + X 3 = 9 

x\ + x 2 + x 3 = 3 

Applying the row operations to matrix A, we have 

rank(A) = 2 

(A|b): 

/ 2 1 2 

1 3 1 

1 1 1 

6 \ 

9 

V 

/ 1 1/2 1 

0 5/2 0 

^0 1/2 0 

3\ 

6 

V 
-

/ 1 0 1 

0 1 0 

^0 0 0 

24/5 \ 

12/5 

-6/5 j 

-

/ 1 0 1 

0 1 0 

^ 0 0 0 

o\ 
0 

V 
=>rank(A|b) = 3 

Because rank(A) < rank(A|b), the system has no solution. Note that the third row 
of the last equivalent system gives the equation 

Ox, + 0x2 + 0x3 = 1 

Clearly, the left-hand side of this equation never equals to the right-hand side. 
Hence, the system has no solution. 

Now let us use the matrix triangularization method to solve a system of linear 
equations. Basically, the procedure performs a sequence of row operations on the 
augmented matrix (A|b) until a triangular matrix appears on the left-hand side. Then 
for the lower triangular matrix, use forward substitutions to find the solution; or for the 
upper triangular matrix, use backward substitutions to find the solution. 
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Example 7.7 Solve the following system by matrix triangularization 

x\ + X2+X3 —4 

x\ + 3x2 + 3x3 = 2 

X\ + X2 + 2X3 = 6 

Perform row operations on the augmented matrix until an upper triangular matrix is 
obtained: 

(A|b) 

/ l 1 1 

1 3 3 

^ 1 1 2 

4 \ 
2 
6) 

/ 1 1 1 

0 2 2 

y 0 0 1 

4 \ 

- 2 

2 ) 

The equivalent system of equations becomes 

X\ + X2 + X3 = 4 

2^2 + 2x3 — — 2 

X3 = 2 

Applying backward substitutions, we have X3 — 2 —► X2 — — 3 —> X1 — 5. 
Likewise, we perform row operations on the augmented matrix until a lower 

triangular matrix is obtained: 

4 ^ / 2/3 0 0 

1 3 3 

1 1 2 V 

10/3 \ 

2 

6 ) 

-* 

Í 2/3 0 0 

- 1 / 2 3/2 0 

y \ 1 2 

10/3 \ 

- 7 

6 / 

Applying forward substitutions, we have xx — 5 —> x2 = — 3 x3 = 2. 

7.3 THE DUAL LINEAR PROGRAM 

Every linear program, whether expressed in standard form or not, has another linear 
program associated with it called the "dual". In this context, the given or original LP 
problem will be referred to as the "primal". The dual problem complements its primal 
in many ways. In problem formulation, for example, if the primal (P) problem is a 
maximization, then the dual (D) is a minimization, and vice versa. Moreover, both 
problems share all the data (parameters) found in A, c, and b. 

Knowing the relations between an LP and its dual is vital to understanding 
advanced topics in linear and nonlinear programming such as economic interpreta-
tion, sensitivity analysis, and development of dual and primal-dual simplex methods. 



166 LINEAR PROGRAMMING—FUNDAMENTALS 

After we explain the formulation of the dual problem from the primal, first in 
standard form and then in arbitrary form, we will provide an economic interpretation 
of the dual problem using an insurance portfolio problem as an example. Then we will 
review the duality theory as to the relations between their respective feasible solutions 
and their respective optimal solutions in this chapter. Other contributions from duality 
theory will be introduced in later chapters when needed. 

7.3.1 The Linear Program in Standard Form 

First, let us define the linear programming problem in standard form: 

(P) maximize z = \ J cjxj 
j 

subject to 2_,auxj — hi (*' = 1,2,..., m) 
j 

xj>0 ( / = l , 2 , . . . , i i ) 

or in matrix form, 

(P1) maximize z = cTx 

subject to Ax < b 

x > 0 

Throughout this text, a linear program is said to be in standard form if (1) the 
objective function is maximized, (2) all the constraints are of < form, and (3) all 
continuous variables are >0 with no finite upper bound. However, all parameters b¡, Cj, 
and a¡j may be positive, negative, or zero. 

Any LP problem that does not conform to conditions (l)-(3) is in nonstandard 
form, which can be converted to standard by simple substitutions. Various non-
standard forms are as follows: 

• Minimization problem 
• Inequality of > form 

• Equation (equality constraint) 
• Unrestricted variable (continuous or integer) 
• Variable with a lower bound other than 0 
• Variable with a finite upper bound 

The conversion procedures for an LP problem are identical to those for an MIP 
problem described in Section 1.2. For ease of presentation, we shall use the standard 
LP form for the remainder of the text unless specified otherwise. 



THE DUAL LINEAR PROGRAM 167 

The above mathematical definition of an LP problem implies the following 
assumptions: 

• Divisibility assumption for each continuous variable (xj > 0) 
• Certainty (constant) assumption for each input parameter (cy, ay, b¡) 
• Proportionality assumption for each term in the constraint and objective 

function (ayXj, CjxJ) 
• Additivity and separability assumption for each combined function in the 

objective and constraints Ç£ljcjxj-> ^2tayxj) 
• Single-objective assumption(max or minz = z^fixj) 
• Simultaneousness (conjunction) assumption for the system of all constraint 

equations and inequalities (¿T,jaijxj < b¡, i = 1, 2,...,m) 

Note that these assumptions are the same as those imposed on an MIP 
problem except for the absence of the integrality assumption. The implications of 
all other assumptions are the same as those described in Section 2.1. We shall not 
reiterate here. 

7.3.2 Formulating the Dual Problem 

To formulate the dual of P, we first detach variables from the coefficients and form the 
following augmented matrix by combining A, b, and cT. 

Dual variable 

X\ X2 Xn < 

an 

a2\ 

am\ 

C\ 

an 

a22 

ami 

Cl 

a\n 

a2n 

amn 

Cn 

bA 

b2 

bm 

l ) 

ui>0 

M2 > 0 

um > 0 

The dual problem is formulated by the following procedure: 

1. Assign a nonnegative dual variable to each corresponding constraint, denoted 
by Mi, u2, ..., w„ .. . , um > 0, or u > 0. 
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2. Construct dual constraints with respect to variables x/. 

m 

a{ju\ + a2Ju2 + ■■■ + amjum = ^ a y u ¡ > c,-, j=l,2,...,n 
;=1 

or, ATu > c 
3. Construct dual objective function 

minimize w = b\U\ + b2u2 + 

or, minimize w = bTu 

The dual problem is recapped as follows: 

m 

(D) Minimize w = y^jb¡u¡ 
i=i 

m 

subject to 2_,a'ju' — CJ J 
i=i 

M, > 0 / 

(D') Minimize w = b r u 

subject to ATu > c 

u > 0 

Basically, the formulation rule state that if a given (primal) problem is a 
maximization problem with all constraints of < form and all variables >0, then the 
dual problem must be a minimization problem with all dual constraints of > form and 
all dual variables >0. Both primal and dual problems share the same set of 
coefficient matrix and vectors of objective coefficients and right-hand side 
constants, while the dual problem takes on the transpose of the original matrix and 
vectors given in the primal problem. That is, in matrix notation, the dual problem uses 
AT, c, and bT as the coefficient matrix, right-hand side column, and objective 
coefficients, respectively. In other words, the transpose of a matrix implies that 
the objective coefficients of the primal become the right-hand sides of the dual, and 
vice versa. The number of variables in the primal equals the number of constraints in 
the dual, and vice versa. Relative to the dual problem, primal variables and primal 
constraints are used for referring the variables and constraints defined in the given 
problem. 

Clearly, the dual of the dual is the primal because the transpose of the transpose of a 
matrix is itself. This implies that we may also refer the minimization problem as the 
primal and the maximization problem as the dual. Therefore, the format in problem D 
or D' will also be treated as the standard minimization problem. 

+ b¡u¡ + ■ ■ ■ + bmum = ^ P b¡Ui 
í=i 

1,2,...,« 

1,2,. . . .m 
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Example 7.8 If the primal problem is 

Maximize z = X\ + 2x2—8x3 

subject to xi + 3x2 + 5x3 < 8 

2xi—5x3 < 7 

xi ,x2 ,x3 > 0 

then the dual problem is 

Minimize w = 8u\ + lu-¿ 

subject to u\ + 2«2 > 1 

3«i > 2 

5 M 1 - 5 « 2 > - 8 

U\,U2 > 0 

What if the given problem is not in standard form? Straightforwardly, we may first 
convert the given problem to a standard problem as usual, then formulate the dual from 
the converted standard problem, and finally convert this dual problem back to the 
original format. It can be shown that the result of this three-step procedure corre-
sponds to the primal-dual formulation rules listed in Table 7.1. The reader is 
encouraged to verify these rules in exercises by the three-step procedure. 

Example 7.9 Formulate the dual problem of the following LP: 

Maximize z = 2x\ —X2 + 5x3 + 3x4 

subject to xi + 2x2 + 3x3—X4 > 5 

2xj —3x2 + *3 + 2x4 < 12 

X2 _ X3 + X4 = —3 

Xj,X2,X4 > 0, X3 < 0 

TABLE 7.1 Correspondence of Primal-Dual Formulation 

Maximization Problem 

Constraint i 
< 
> 

Variable j 
>0 
<0 
Unrestricted in sign 

Objective row 
Right-hand side column 

Minimization Problem 

Variable / 
>0 
<0 
Unrestricted in sign 

Constraint j 
> 
< 

Right-hand side column 
Objective row 
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The dual problem is 

Minimize w — 5u\ + 12«2—3«3 

subject to u\ + 2«2 > 2 

2w1-3H2 + W3 < — 1 

3«i +U2—U3 < 5 

—u\ +2u2 + U3 > 3 

wl < 0, «2 > 0, UT, unrestricted in sign 

7.3.3 Economic Interpretation of the Dual 

Suppose the primal problem represents a resource allocation problem at a manu-
facturing plant; that is, Xj is the quantity of product^' to produce in a given period (say 
one month) and the limited availability of raw material i is represented by 
a¡\X\ +aaX2 + ••• +a{„x„ < b¡, for each i= 1, . . . , m. The plant manager wants 
to maximize profit in the particular production mix(X[, X2, ■ ■ -, x„) found to represent 
optimal utilization of available raw materials b\, b2, ■. -, bm. 

Now, consider the company's risk manager, who reports to the VP of finance. He is 
interested in insuring the raw materials on hand against loss, but only wants to insure 
them (place a per unit valuation on each) up to their value in producing products that 
result in sales and profit (represented by C\, c2, ■ ■■, cn for each potential product 
manufactured). 

If we let w, be the per unit insured value of raw material i, the total valuation of 
resource i on-hand would be 6,«,-. We shall assume that w, > 0, and otherwise no cost to 
dispose of unused resource i. The objective function for minimizing the cost of 
insurance is to minimize w = b\ U\ + Z>2"2 + • • • + bmum. 

Furthermore, the combined values of the various raw materials used to make say 
one unit of product^ must be at least cy, the profit from producing one unit of producty; 
in mathematical notation: a\jU\ -\-a2jU2 + ■ ■ ■ +am¡um > c¡. 

Because the above relationship must hold for each producty= 1, . . . , « , the risk 
manager's linear program to choose the least cost insurance portfolio is 

Minimize bT u 

subject to ATu > c 

and u > 0 

which is recognized as the dual problem to the primal production mix problem. 
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7.3.4 Importance of the Dual 

We have just seen that the duality relationship for the standard form LP explained by the 
total insurance valuation of on-hand raw materials (b) should be precisely equal to the 
maximum dollar value that can be extracted from them, using the company's current 
technology (A) and profit per unit for each of n products (c). There are many more such 
insights to be gained from the dual LP, regardless of whether the primal represents the 
classic resource allocation model or some other model. Duality plays a central role in 
linear programming. The primal-dual relationships presented here and in the following 
section help establish the simplex method, and then develop an alternative version 
known as the dual simplex algorithm. It turns out that whether one is solving the primal 
or dual LP via the simplex (or related) algorithm, one is automatically solving the dual 
LP as well. More theory is needed to justify this statement, presented next. 

7.4 RELATIONSHIPS BETWEEN PRIMAL AND DUAL SOLUTIONS 

There are a series of primal-dual relationships the reader needs to know. Let 
x° = (x°],X2, ■ ■ ■ ,x°) represent any feasible solution to the maximizing (primal) 
problem, with objective value z° = 5Z/=i ciA = c T x ° - Let u° = (w°, U\, ..., wJJJ be 
feasible for the minimizing (dual) problem, with objective function value 
w° = E r - = i ^ = bTu°. 

7.4.1 Relationships Between All Primal and All Dual Feasible Solutions 

Since the primal problem can be either maximization or minimization and the dual 
problem can be either maximization or minimization too, we shall simply use the 
maximization problem or minimization problem in this section to ease the presenta-
tion of primal-dual relations. 

The Weak Duality Theorem If x° is feasible a maximization problem, and u°is 
feasible for the associated minimization problem, then the objective value of the 
maximization problem is a lower bound of the objective value of the associated 
minimization problem, or mathematically z° = Ylj=i f/*? < w° = J2?=i ^í"?-

Proof Since x° is feasible to the maximizing problem, we have 

*° = ¿ < ^ (7.1) 
7=1 

n 

subject to y^flyjc? < b¡ (i = 1,2,..., m) (7.2) 

x° > 0 ( 7 = 1 , 2 , . . . , « ) (7.3) 
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Since u° is feasible to the minimizing problem, we have 
m 

w 

subject to E ^ ' " ? -CJ (/' = ! ' 2 ' ■ • • 'M) C7-2') 
1=1 

M ° > 0 (1=1 ,2 , . . . , / « ) (7.3') 

Premultiplying (7.2) by (7.3') and summing over /, we obtain 

m n m 

i;«?2>J? _:$>«? (7.4) 
i=l 7=1 1=1 

Premultiplying (7.2') by (7.3) and summing over j , we obtain 

n m 

E*?E%"^E^ (7-4') 
7 = 1 i = l 7=1 

Rearranging and combining (7.4) and (7.4'), we get 

E^<EEf l</^E^ (7-5) 
7=1 i'=l 7=1 i'=l 

or, by definition, z° < w°. Expressing (7.5) in matrix notation, we have 

cTx° < (u°)TAx° < bTu° (7.6) 

7.4.2 Relationship Between Primal and Dual Optimum Solutions 

The Duality Theorem There are three possible relationships between the primal 
and dual problems: 

1. Ifone problem has a feasible solution x* with a bounded objective value z*, then 
the other problem has a feasible solution u* with a bounded objective value w*. 
Furthermore, both problems have a finite optimum solution with the relation 
c V = (u*)TAx* = b V . 
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2. If one problem has a feasible solution with an unbounded objective value, then 
the other problem has no feasible solution. 

3. If one problem has no feasible solution, then the other problem has either no 
feasible solution or an unbounded solution. 

Example 7.10 The reader should verify graphically that both primal and dual 
problems below are infeasible. 

(P) maximize z = x\-\- 2x2 (D) minimize w = -u2 

subject to x\—X2 < 0 subject to u\—u2 > 1 

—X\ + X2 < — 1 — U\ + «2 > 2 

X\, *2 > 0 U\, U2 > 0 

7.4.3 Relationships Between Each Complementary Pair of Variables 
at Optimum 

We now convert problem P to equality constraints by adding slack variables xSl (i = 1, 
2, ..., tri). 

Maximize z = 2_, cjxj 
j 

subject to Y^ ayXj + Xs, = b¡ (i=l,2,...,m) 
J 

* / > 0 ( 7 = 1 , 2 , . . . , « ) 

Likewise, convert problem D to dual equality constraints by subtracting surplus 
variables us (/= 1, 2,... , ri). 

Minimize w = \^b¡u¡ 

m 

subject to ^2ajjUj-uSj = c¡ j=l,2,...,n 

u, > 0 y = 1,2,... ,m 

Complementary Slackness Theorem Let x j " , x\,..., x„* be an optimum solution 
to the primal problem P and x¡¡, x*2,..., x/m be the associated slack variables. Also, 
let wj", «j ) • • ■ i um be an optimum solution to the dual problem D and MS* , MS* , • • •, «s*„ 
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be the associated surplus variables. Then, the following relation holds for each of the 
complementary pairs of variables: 

x* u* = 0 for i = 1 ,2, . . . ,m 

Usj x* — 0 iorj = 1,2,...,« 

Proof From the duality theorem, we have 
n m n m 

cJxj =2^2^avxj ui = Z^b¡ui 
j=\ 1=1 j=\ i=i 

Subtracting the middle term from the rightmost term, we have 

ÇU-Çûy*;W =° 

i = i 

But because u* > 0 for all i, this equality implies that x¡¡ u* = 0 for i = 1,2,..., m. 
Likewise, subtracting the leftmost term from the middle term, we have 

n Im 

or 

7=1 

But because xj > 0 for ally, this equality implies u^x* = 0 fory"= 1, 2, . . . , n, 
completing the proof. ■ 

Example 7.11 Consider the following LP problem (P) and its dual (D) (with slack 
variables and surplus variables). 

(D) minimize w=10wi+20w2 
(P) maximize z — x\— 3x2+ *3 

subject to —u\ +3«2—uSl = 1 
subjectto —x\ +2x2+x-s+xSl = 10 

2u\— 2«2—MS2 = —3 
3xi—2x2 + 3x3+xJ2 =20 

U\ +3li2 — US3 = 1 
x > 0 

u > 0 
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Suppose we know that the optimal solution to D is u\ = 0, u2 = 1/3, w* = 20/3, 
which implies that uS| = 0, uS2 = —7/3, uS3 = 0. By the duality and the complemen-
tary theorems, we can obtain that z* = w* = 20/3,xS2 = 0, andx2 = 0. 

Let us look at one more example. 

Example 7.12 Consider the following LP problem (P) and its dual (D). 

(P) maximize z — lx\ + \\x2 (D) minimize w= llu\+5u2—20«3 

subjectto x\ +X2+xSt = 11 subjectto u\ +2ii2—3w3 —USI = 7 

2X\— X2+XSl = 5 U\— «2 — 2«3 — USl = 11 

-2>x\-2x2-\-xS:s = -20 u > 0 

x > 0 

Given that the optimal solution to P is xj =0,x2= 11,z*— 121, which implies that 
xSi = 0,xS2 = 16, andxi3 = 2. By strong duality and the complementary rule, we 
can obtain that w* = z* = 121, «2 = 0, u-¡ = 0, and w.Ç2 = 0, which implies 
«i = l l and Ws, = 4. Hence, all information about the dual optimal solution is also 
obtained. 

7.5 NOTES 

Section 7.2 

In some discussions of linear programming, the converted LP with each constraint 
expressed as an equality is called "standard form," and the version with all < 
constraints (maximizing objective) is called "canonical form." 

Section 7.4 

Duality theory for linear programming was a major focus of applied mathematicians 
in the early 1950s. The main duality theorem was originally stated by John von 
Neumann, and proof first appeared in an article by Goldman and Tucker (1956). The 
interested reader should review the papers by Farkas (1902), the paper by Gale et al. 
(1951), and then the paper by Goldman and Tucker (1956). 

There is a much broader duality theory for convex programming. The classic 
reference is Rockafellar (1970). For a brief introduction to duality for integer 
programming, see Section 2.5 of Wolsey (1998). For a comprehensive survey of 
duality theory and its relation to the concept of relaxation in integer programming, see 
Chapter II.3 in Nemhauser and Wolsey (1988). 
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7.6 EXERCISES 

7.1 Under what conditions the following expressions are (a) affine combinations 
and (b) convex combinations? 

(1) AV + 2/lx2 - Ax3 + 3/1V 
(2) 2 l V + 3Ax2 + ¿ V + 2/lx4 

7.2 Calculate the determinant of each of the following matrices using the two 
methods introduced in this chapter. 

(1) A 

0 3 2 1 

2 - 1 6 4 

1 4 - 1 3 

5 2 3 0 

(2) B = 

- 3 0 2 

4 7 3 

2 1 - 5 

7.3 Generate upper and lower triangular matrices for each of the matrix below. 
Show your steps. 

(1) A 

6 9 5 
- 3 7 4 
4 0 - 3 
8 - 1 7 

(2) B 

2 5 - 3 0 
0 4 6 5 

- 1 2 5 3 
3 3 7 4 

7.4 Apply elementary row operations to the matrices in Exercise 7.3 to generate 
new matrices. Show your steps. 

7.5 Prove the following two statements: 

(1) If A and B are nonsingular « x n matrices, then (AB)-1 =B_ 1A_ 1(« x n). 

(2) If A is nonsingular, then AB = AC implies B = C. 

7.6 Determine the rank of each of the matrices in Exercises 7.2 and 7.3. 
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7.7 Determine whether the following linear system is feasible or not by applying 
the upper or lower triangular matrix method. 

2x\ + xj—3x3 + x4 = 9 

—X\ + 2X2 + *3 + 2^4 = 11 

X\—X2 +4X3 = 7 

2X2 + -^3— 2X4 = 5 

Xi, X2, X3, X4 > 0 

7.8 Determine if the following linear system has (a) no solution, (b) unique 
solution, or (c) multiple solutions. 

7xi —3x2 + *3 + 4x4 = 23 

3xi + 2 x 2 - 4 x 3 - x 4 — 19 

x\ + X2 + X3 + 3x4 — 15 

-x\ + 3x2 + 8x3 + 2x4 = 29 

Xi,X2,X3,X4 > 0 

7.9 Determine the feasibility of the following LP system without solving it. Use at 
least two methods in this chapter. 

—xi +3x2—2x3 = 7 

2xi +X2—X3 = 6 

X!,X2,X3 > 0 

7.10 Test if the solution (125/92,4/23,91/92) is optimal to the following LP. Why or 
why not? 

Maximize z = 2xi —3x2 + IOX3 

subject to — 3xi + X2 + 9x3 < 5 

X] —2X2 + *3 < 2 

6x] + 5x2 + 2x3 < 11 

x > 0 
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7.11 Formulate the dual of the following LP problem. 

Maximize z = 11 x\ — 13x2 + 7x3 + 9x4 

subject to —2xi + X2 +4x3—5x4 < —5 

5xi +4x2—X3 < 17 

2xi +X3—X4 < 5 

x > 0 

7.12 Formulate the dual of the following LP problem. 

Minimize z = llxi — 13x2 + 7x3— 9x4 

subject to 2xi —X2 + 4x3—5x4 < 5 

5x, +4x2-X3 < 17 

—2xi + X3—X4 = 5 

xi, X2 > 0, X3 < 0, X4 unrestricted in sign 

7.13 Consider the following LP problem and its unique optimal solution. Formulate 
its dual and figure out as much information about the dual optimal solution 
from the information given about the primal. 

Maximize z = 4xi + 3x2 + xi + 7x4 + 6x5 

subject to x\ + 2x2 + 3x3 + X4—3xs < 9 

2xi —X2 + 2x3 + 2x4 + X5 < 10 

—3xi + 2x2 + X3—X4 + 2x5 < 11 

x > 0 

optimal solution is (7, 10, 0, 0, 6) withz* = 94 

7.14 Consider the following LP problem and its dual. Given the optimal solution to 
the dual, figure out as much information about the optimal solution to the 
primal. 

Primal 

maximize z = 25xi— 2x2 + 16x3 

subjectto 3xi+X2 + 9x3<5 

5xi+2x2—4x3 < 2 

— 6X1 +3X2 + 2X3 < 1 

2x|-7x2 + - 5x 3 <4 

2xi+3x2—X3 <3 

x > 0 

Dual 

minimize H> = 5MI+2H2 + W3+4W4 + 3W5 

subjectto 3«i+5«2—6«3+2«4 + 2w5 >25 

U\ +2«2 + 3W3 —7«4 + 3«5 > —2 

9wi— 4w2 + 2w3 + 5«4—US > 16 

u > 0 

optimal solution : 

(60/19,59/19,0,0,0)withw* =22 
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7.15 Consider the following LP problem. Formulate its dual. Given that the optimal 
solution to the primal problem is (3,4,0,3) with z* = 22, is the optimal solution 
to the dual degenerate? Why or why not? 

Maximize z = 3x\ + xi + 2x3 + 3x4 

subject to —x\ + 3x2 + x-¡—2x4 < 17 

lx\ + 3x3 + X4 < 23 

X\ + 2X2 < 11 

X2 + 3X4 < 13 

x\, X4 > 0, X2 unrestricted in sign, X3 < 0 



8 
LINEAR PROGRAMMING: 
GEOMETRIC CONCEPTS 

This chapter introduces basic geometric concepts and terminology relevant to various 
simplex-based algorithms (Chapter 9) for solving linear programs and helpful to 
comprehending the various cutting plane methods embedded in the branch-and-cut 
method (Chapter 12) for solving integer programs. The geometry of the LP objective 
function, solution space, and requirement space is described. The geometry of convex 
sets in general, and polyhedra specifically, must be understood to motivate the linear 
algebra-based algorithms and methods to follow in later chapters. 

8.1 GEOMETRIC SOLUTION 

Recall that the feasible region of any LP is a polyhedron or polyhedral set and a 
polyhedron is the set of all points in E" that simultaneously satisfy a set of m linear 
constraints: 

P= I (xi,x2,...,x„) : Y^ayxj < b¡, i=l,...,m\ 

In matrix notation, the system of constraints is Ax < b and P = {x: Ax < b}. It is 
understood that any lower or upper bound constraints on x, including x > 0, can be 
represented as a special form of YL"¡=\ a¡jxj ^ b¡. We now examine the geometry of the 
LP problem in detail. 

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang 
Copyright © 2010 John Wiley & Sons, Inc. 
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8.1.1 Objective Function 

Consider the objective function z = cTx subject to the above constraints. Variable z 
can take on any real value k. Hence, as k varies, we may consider the set {x: cTx = k} 
to be an infinite number of parallel lines in E2, parallel planes in E3, or parallel 
hyperplanes in a higher dimension, each corresponding to a different value of k. For 
example, if z = x\ + 3x2, we know from calculus that the gradient of z 

Vz = 
dxi 

dz 

is the steepest ascent direction and the "equi-profit" contour for say k = 0, 3, 6, as 
shown in Figure 8.1. Note that the contours are parallel lines, perpendicular to the 
gradient vector c = ( 1,3)T. Moving x in the cT direction yields the greatest increase per 
unit change in the constant k. If the objective function is minimized, then the direction 
of steepest descent is —cT. 

8.1.2 Solution Space 

Consider the solution space for the following problem: 

Maximize z = x\ + 3x2 
subject to x\ +X2 < 3 

x\— *2 > 1 
xi,x > 0 

FIGURE 8.1 Gradient vector and equi-profit contours. 



182 LINEAR PROGRAMMING: GEOMETRIC CONCEPTS 

FIGURE 8.2 Bounded feasible region with various objective values. 

The geometry of this problem is shown in Figure 8.2, where the shaded area is the 
solution space. Note that the contour z — 6 does not touch the feasible region, but z = 5 
just does at the point (2, 1). The example illustrates several points: 

• An LP with a bounded feasible region always has a finite optimal solution. 

• The optimal solution of a bounded LP, if unique, will occur at one and only one 
extreme point of P. 

• If a bounded LP has two extreme points optimal (hence, alternative optima), then 
there are an infinite number of optimal points expressed by the line segment 
between them. 

By bounded feasible region or set P, we mean there exists a nonnegative 
constant e such that P Ç {JC: |x| <s], a spheroid in E" of diameter e. An LP with an 
unbounded feasible region may or may not have a finite optimal value, depending 
on the objective function. The following objective functions are plotted in 
Figure 8.3: 

(a) Maximize z = — x\ — x2 

(b) Maximize z=— x\ + x2 

(c) Maximize z = x\ + x2 

(d) Maximize z=—0.5x¡ + 4x2 

Note that objective function (a) has a unique, finite optimum at (0, 0), (b) has 
alternative optima expressed by a line segment, (c) has an unbounded solution, and (d) 
has a finite optimal ray. 
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FIGURE 8.3 Optimal solutions of various objective functions. 

8.1.3 Requirements Space 

There is another geometric interpretation of the system of constraints in the space of 
the requirements and resource vectors, that is, in Em. We shall first discuss case (A), a 
system of equality constraints, and then (B), a system of inequalities. 

Definition 8.1 A convex cone C is a convex set with the additional property that 
Xx€ C for each x e C and X >0. 

The origin is always an element of a convex cone, and if x e C, the ray {Ax: X > 0} 
belongs to C. 

Case A: Equality Constraints (Ax = b, x > 0) Let A = (ai, a2,..., a„), then the LP 
is feasible if b is within the convex cone generated by {a1? a2, ..., a„}. 

Example 8.1 

3X\ + 2^2 + *3 = 1 

—Xi +X2+ 2X4 — 3 

X\,X2,X$,X4 > 0 

As shown in Figure 8.4, the system has a feasible solution because the vector 
b = (l, 3)T falls within the convex cone generated by a! =(3 , — 1)T, a2 = (2, 1)T, 
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FIGURE 8.4 Geometric detection for feasibility. 

33 = (1,0)T, and 34 = (0,2)T. In fact, b can be generated by (32,34), (33,34), or (3j, s4). 
For example, 

b = X232 + X434 

( 0 = X 2 ( Î ) + X 4 ( 2 ) " X 2 4 ' * 4 = Ï 
Note that all variables are nonnegative: x2 > 0, x4 > 0, X\ = x3 = 0. Thus, this is 

a feasible solution. Likewise, we may verify that b can be generated by (33, 34) or 
(3 b 34) by solving a system of equations for their associated variables. 

Conversely, if b does not fall within the convex cone of the columns of A, the LP is 
infeasible (all basic solutions of Ax = b are infeasible). Consider the following 
example. 

Example 8.2 

2x\ +2.X2 + X3 = — 1 

—x\ +X2 + 2x4, = 2 

Xl,X2,X3,-X4 > 0 
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FIGURE 8.5 Geometric detection for infeasibility. 

As can be seen in Figure 8.5, the vector b = (—1, 2)T falls outside the convex cone 
generated by the columns of A. This situation implies that at least one variable takes 
on a negative value. For example, 

b = X3&3 + X4SI4 

2 ) = *3 ( 0 ) + XA ( 1 ) ~~* *3 = ~~1 a n d M = 2 

Note that x3 < 0, and thus b cannot be generated by vectors a3 and a4. Similarly, we 
can verify that b cannot be generated by any other pair of vectors, and hence there is no 
feasible solution for this system. The reader should verify that every basic solution of 
Ax = b is infeasible (has at least one negative component). 

Given a feasible LP, there is a geometric explanation of how a bounded optimal 
objective value arises. Let us illustrate this condition with an example. 

Example 8.3 

Minimize z = — X\ — IXÏ 

subject to x\ + 3x2 + 2x3 = 3 
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FIGURE 8.6 Bounded objective in requirement space. 

The problem is to choose X\, x2, x3 > 0 such that z is minimized in 

In Figure 8.6, we first draw the vectors for the coefficient columns and then draw a 
horizontal line for the right-hand side column toward the direction of decreasing 
values (for minimization). When the line (dotted) hits the leftmost vector or its 
extension, then a minimum is found at z = —3. 

To illustrate the geometric condition for an unbounded solution, we use Example 
8.4 and Figure 8.7. 

Example 8.4 

Minimize z = — x\ —2x2 

subject to x\ +3x2—2x3 = 3 

Xi,X2,X3 > 0 

Case B: Inequality Constraints As noted above, the requirement space {Ax: 
x > 0} is the convex cone generated by {a!, a2,. • -, a„}. If a feasible solution exists, 
this requirement space in Em must overlap the collection of vectors that are less than or 
equal to the requirement vector b (another convex cone). Figure 8.8 shows (a) a 
feasible system and (b) an infeasible system. 
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FIGURE 8.7 Unbounded objective in requirement space. 

Collection of 

C=^iajXj\xJ>0 

Collection of 

" C='£ajXj\Xj>0 

Collection of 
vectors ? b 

(a) "I (b) 

FIGURE 8.8 Geometry of (a) feasibility versus (b) infeasibility for an LP. 
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8.2 CONVEX SETS 

This section introduces concepts and properties of convex sets in E", including 
polyhedra, and both convex and concave functions defined for vectors in E". 

8.2.1 Convex Sets and Polyhedra 

Definition 8.2 A set X in E" is convex if given any two points x1 and x2 in X, and then 
ax1 + (1 — a)x2isalsoinATforeacha,0<a < l. Each point along this line segment 
from x1 to x2 is called a convex combination of x1 and x2. 

It can be shown that the solution of every linear equation or inequality forms a 
convex set such as the sets defined below: 

A = {x : X\ +2x2 = 5} 
B= {x : X\+2x2> 5} 
C = {x : X\ +2^2 < 5} 

Moreover, the intersection of two or more convex sets forms a convex set. This 
implies that the set of feasible solutions of an LP forms a convex set. For example, 
Figure 8.9a is a convex set while the set depicted in Figure 8.9b is not convex 
because at least one point on the line segment between points xl and x2 falls outside 
the set. 

(a) (b) 

(c) (d) 

FIGURE 8.9 Examples of convex versus nonconvex sets. 
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However, a set containing nonlinear constraints may or may not be convex. For 
example, D = {x : x\-\-x\< 1} is convex, while U = {x : x2 + x\ = 1} and V 
{x integer: xx + 2x2 < 4}are not convex. Figure 8.9c is convex but Figure 8.9d is not 

convex. 
A hyperplane in E" generalizes the concept of straight line in E2 and plane in E3. 

Definition 8.3 A hyperplane in E" is a set of the form X= {x: pTx = A:} where 
nonzero p e £ " and ¿Visa constant. Hence, a hyperplane is the solution set to a linear 
equation in E". A hyperplane clearly separates E" into two half-spaces, each is a 
convex set containing the hyperplane, H\ = {x: pTx < A;} and H2 = {x: pTx > k}. 

Example 8.5 
be written as 

Consider the linear equation 2xi + 3x2 = 6'mE . This equation may 

[2 3) = 6 or T 
p'x 

and as Figure 8.10 illustrates, each x eX is perpendicular to p. 

Definition 8.4 A point x in a convex set X is called an extreme point of X if it cannot 
be represented as a strict (0 < a < 1) convex combination of two distinct points in X. 
In a polyhedron, the line segment formed by all convex combinations of two adjacent 
extreme points is called an edge of X. 

x2 
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FIGURE 8.10 A hyperplane in E2. 
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FIGURE 8.11 Extreme points of polyhedral and nonlinear convex sets. 

A polyhedron P always has a finite number of extreme points and the line segment 
connecting two extreme points may include interior points of P. If a convex set 
contains any nonlinear constraint, then a convex set may have an infinite number of 
extreme points as illustrated in Figure 8.11. 

Other examples of convex sets are rays and line segments in E". 

Definition 8.5 A ray is aset inE" of the form*= {x: x = x° + Xd, d^O, X>0}. 
The point x° is called the vertex of the ray, and the vector d is the direction of the ray. 

There is of course a ray in the "opposite direction" by using -d as the direction. A 
line segment emanating from x° in a particular direction d and of length / may be 
produced by limiting X to 0 < X < u (where u = ll\ |d| |) in the definition above. More 
generally, the line segment from x1 to x2 is given by the set of all convex combinations 
of x1 and x2 

L = {x : x = ax1 + ( l - a )x 2 , 0 < a < 1} 

A more general concept than line segment is that of convex hull of any set of points. 

Definition 8.6 Given a set P Ç E", it is possible to find a "minimal" convex set 
containing P. The convex hull ofP is the intersection of all convex sets containing P, 
denoted by Conv(F). The convex hull of a finite number of points is called a convex 
polytope, a special type of bounded polyhedron. 

It is clear that a convex polytope X may be generated by all possible convex 
combinations of its n extreme points, say set E: 

X = < x : x = Y^ a,x', where x' G E, 0 < a < 1, and \^ ai = ^ \ 
I i=i /=i I 

Thatis,A' = Conv(£:). 
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8.2.2 Directions of Unbounded Convex Sets 

The feasible region of a linear program may be unbounded. Unbounded convex sets 
have at least one "direction" in which the set recedes to infinity, whereas bounded 
convex sets has no such direction. We define and extend this concept formally. 

Definition 8.7 Given an unbounded convex set X, a nonzero vector d is called a 
direction (of recession) of X if for each x° £X, the ray {x:x = x° + Ad,d^0 ,A>0} 
is contained within X. 

Note that a convex set may have multiple directions. For example, the first quadrant 
in E2, (x: x\ >0 , x2>0}, has any nonzero d = (du d2) with d\ >0 , d2>0 as a 
direction. However, we are most interested in the "extreme directions" associated 
with the two rays formed by the positive xraxis and positive x2-axis. 

Definition 8.8 A direction of an unbounded convex set X is called an extreme 
direction if it cannot be represented as a positive combination of two distinct 
directions of X. Two directions d1 and d2 are distinct if d1 cannot be expressed as 
kd2 for some positive scalar k. 

For example, d1 = (1, 0)T and d2 = (2, 1)T are distinct because we cannot find a 
scalar k such that d1 = A:d2, since the system of equations, 1 — 2k and 0 = k, has no 
solution. 

A property of extreme directions of X is that any other direction d of X can 
be expressed as a positive combination of extreme directions of X: d = ^ a , d ' , 
a, > 0 and d' extreme direction for every i. Therefore, there is an obvious analogy 
between extreme points of a convex set and extreme directions of an unbounded 
convex set. 

Definition 8.9 An extreme ray of an unbounded convex set is a ray whose direction 
is an extreme direction. For example, the positive x raxis and positive x2-axis are 
extreme rays of the first quadrant in E2. Obviously, the set of extreme rays of AT has the 
form {x: x = x° + Ad, \°£X, d an extreme direction of X, A>0}. 

8.2.3 Convex and Polyhedral Cones 

Definition 8.10 A convex cone is a convex set C that consists of rays emanating 
from the origin, that is, C is a convex set with the additional property that Ax S C for 
each x e C and A > 0. 

Definition 8.11 A polyhedral cone C is a convex cone of the form, C = {x: Ax < 0}. 
That is, C is the intersection of a finite number of half-spaces whose hyperplanes pass 
through the origin. 

Example 8.6 Figure 8.12 depicts three cases: (a) a polyhedron P that is bounded, 
hence not a cone; (b) a polyhedron Q that is a cone; and (c) an unbounded polyhedron 
R that is not a cone. 
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FIGURE 8.12 Example polyhedra. 

8.2.4 Convex and Concave Functions 

The reader probably encountered the concept of convex and concave functions in 
calculus. Convexity (concavity) is a strong property that often replaces differentia-
bility as a desirable property in constrained optimization problems. 

Definition 8.12 A real-valued function/(x), x € E", is convex on E" if the following 
inequality holds for any two points x1 and x2 in E": f[Xxl + (1 - X)x2] < Xfix1) + 
(I - À)fix2) for M 0< À < I. 

See Figure 8.13a and note the geometric interpretation of convexity of/. Any x 
between x1 and x2 has its function value fix) below the correspond point on the line 
segment joining (xl,fix1)) and (x2,fix2)). 

Definition 8.13 A real-valued function/(x), x £ E", is concave on E" if the following 
inequality holds for any two points x1 and x2 in E":f[Axl + (1 - X)x2] > Àfix1) + 
(1 -À)fix2) for all 0<X< 1. 
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/(x2) 

/[Ax'+(1-A)x2] 
/(x1) 

/(Ax') + (l-A)/(x2) 

Ax' + (1-A)x2 

(a) Convex function 

/(x) 

/(x2) 

/[Ax'+(1-A)x2] 

/(Ax') + (l-A)/(x2) 

/(x1) I-

x1 Ax' + (1-A)x2 

(b) Concave function 

FIGURE 8.13 Example convex and concave functions on El. 

See Figure 8.13b and note the geometric interpretation of concavity off. Also, note 
the following obvious properties: 

1. A function / is concave (convex) if and only if the function g = —f is convex 
(concave). 

2. A function f is linear if and only iff is both concave and convex. 
3. The definition of convex and concave/can be reduced to a specific subset 

X € E"; some functions may be convex on a certain subset(s) of E", but not the 
entire space. 

An interesting relationship between convex and concave functions on E" and 
convex sets in E" +1 exists. 
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Definition 8.14 The epigraph of a function/(x), x G E", is the set in E" + x defined by 
{(x, y): x G E", y G El, y >fix)}. The hyper graph of/is defined similarly to be the set 
in£" + l : {(x,y):x£En,y€El,y<j{x)}. 

It can be shown that a function_/(x), x G E", is convex if and only if its epigraph is a 
convex set in En + \ Similarly, a function/(x), x£E", is concave if and only if its 
hypergraph is a convex set in E"+ '. 

The reader can envision the epigraph of the function in Figure 8.13a by shading 
in all of E2 on or above the points of the graph of/. Similarly, the hypergraph of 
the function / in Figure 8.13b is generated by shading on or below the graph 
of/ 

8.3 DESCRIBING A BOUNDED POLYHEDRON 

8.3.1 Representation by Extreme Points 

It can be shown that given a nonempty bounded polyhedron (or polytope) P = 
{x: Ax<b , x > 0 } with extreme points x1, x2, . . . , xp, any point xGP can be 
represented as a convex combination of extreme points; that is, x = X^=i aj^ f°r 

some particular values of atj > 0, where Ylj= iaj = 1 • This property is very important 
in the simplex method of linear programming, so we elaborate on it here. 

8.3.2 Example Application of Representation Theorem 

Consider the polytope in E2 depicted in Figure 8.14. The point x* is an interior point 
that happens to fall on the line segment connecting x5 and y on the edge between x2 

and x3. 

FIGURE 8.14 A polytope with five extreme points. 
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To illustrate the representation property, let us show that x* is a convex combina-
tion of the five extreme points: 

x* = a5\5 + (\-a5)y 
= a5x5 + ( l -a 5 ) [a2 x 2 + (l-a!2)x3] 
= a5x5 + ( l - a 5 ) a 2 x 2 + ( l - a 5 ) ( l - a 2 ) x 3 

Now since 0 < a 5 < 1 and 0<a2< 1, it follows that 0 < ( 1 — a5)a2< 1 and 
0 < ( 1 - a 5 ) ( l -a2)< 1. It is clear that a5 + (1 -a5)a2 + (1 - a 5 ) ( l - a 2 ) = l . 
Therefore, x* is a convex combination of the five extreme points, with coefficients 
of x1 and x4 set to zero. 

8.4 DESCRIBING UNBOUNDED POLYHEDRON 

An unbounded polyhedron (or polytope) can be described by the set of all extreme 
points and the set of all extreme directions. First, we will show how to find all extreme 
directions algebraically. Then we will provide a precise mathematical expression 
that describes an unbounded polyhedron by the extreme points and extreme 
directions. 

8.4.1 Finding Extreme Direction Algebraically 

Theorem 8.1 The directions of an unbounded polyhedron X = {x: Ax < b, x > 0} 
are nonzero vectors d in the set {d: Ad < 0, d > 0, d ^ 0}, known as the recession cone 
of*. 

Recall that an extreme direction of AT is a direction that cannot be represented as a 
positive combination of two distinct directions of X. 

Definition 8.15 The set of recession directions of .Y is obtained from the recession 
cone by adjoining a normalization constraint to the recession cone definition: 

D = {d: A d < 0 , d > 0 , l T d = 1} 

The set D is illustrated in Figure 8.15 for a three-constraint feasible region X, Note 
that D is always a bounded polyhedron because it is bounded by lTd = 1. 

Theorem 8.2 The vector d is an extreme point of D if and only if d is an extreme 
direction of X. 

Example 8.7 To illustrate the algebraic process of finding the extreme direction of 
an LP feasible region, consider the polyhedral set X given by the inequalities 
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FIGURE 8.15 Recession cone and its normalized set of directions. 

—X\ — 2x2 < 1 

—5xi +X2 < 6 

—X\ + X2 < 4 

- X ! +3X 2 < 12 

Xi, X2 unrestricted in sign 

The set is illustrated in Figure 8.16. Its extreme points are given as 

^ ( - n - A ) ^ 2 = (-^)T-»d«3-(°-4>T 

The set D above is given by all {dx, d2) that satisfy 

di+d2 = l 

-dx -2d2 < 0 

-5di +d2<0 

-dx + d2 < 0 

-dx + 3d2 < 0 

(8.1) 

(8.2) 

(8.3) 

(8.4) 

(8.5) 
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-2 J 

FIGURE 8.16 Boundary of feasible region for Example 8.8. 

Adjoining slack variables to constraints (8.2)-(8.5) and solving the resulting 
system, leads to two extreme points of O (or extreme directions of X): 

2 
- 1 

Figure 8.17 illustrates graphically the determination of the set D. The reader should 
also verify that if xx > 0, x2 > 0 are adjoined to the original model, then with d\ > 0, 

3/4 d2 > 0 in the solution process, d1 = ( Dlj\ ) as before, and d2 — . _ .. 

Example 8.8 Using the normalizing equation, find all extreme directions of the LP 
feasible region defined by 

x\— X2 + X3 < 10 

2JCI -X2 + 2JC3 < 40 

X\,X2,X3 > 0 

Create the system Ad < 0, d > 0, d ^ 0, Id = 1 

d\ -d2 + d3 < 0 

2di -d2 +2d3<0 

d\ + d2 + d?, = 1 
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* ¿. 

FIGURE 8.17 Extreme points of set D for Example 8.8. 

Adjoin slack variables d4 and d5 yielding the system 

d\ —d2 + di + d4 = 0 

2di -d2 + 2d3+d5=0 

d{+d2 + d3 = l 

d\,d2ldT,,d4,d*, > O 

This system potentially has I , 1=10 basic solutions. It may be shown that only 

three of these are basic feasible solutions: 

xB| = (d2,d4,d5) = (1,1,1) 

XB2 = (d2,d3,d4) = I 3 '3 '3 

XB3 = (d\,d2,d4) 
1 2 1 

We conclude that there are three extreme directions of X (extreme points of D): 

/ 2 1 1 \ T / 1 2 1 ^ T 

(o , i ,o , , , i ) \ o , - , - , - ,o , 3 , 3 , 0 , 3 , 0 
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FIGURE 8.18 Representation of a feasible point using extreme points and directions. 

8.4.2 Representing by Extreme Points and Extreme Directions 

We now present the representation theorem for an unbounded polyhedron. 

Theorem 8.3 (Representation Theorem) Given a nonempty polyhedron X = 
{x: Ax < b, x > 0}, its set of extreme points Sp= {x1, x2, . . . , xp], and its set of 
extreme directions Sd = {d ', d2,..., d?}, any point x in X can be expressed as the sum 
of a convex combination of points in Sp and a positive linear combination of 
directions in Sd: 

x = ¿a/x
/+¿j3 /d ' 

where J X i «/ = l .«,->0, / = 1, ...,p;ßj>0,j=l, ■ ■ -, q. 

8.4.3 Example of Representation Theorem 

As an example of an application in E2 of the above theorem, consider the unbounded 
polyhedron X depicted in Figure 8.18. Note that there are three extreme points and two 
extreme directions of X. A point along the upper extreme ray would have a unique 
representation as x3 + Id2 for a particular A > 0, whereas x* has multiple possible 
representations, one (as depicted) being x* = y + j82d2 = ax ' + (1 — a)x3 + /32d

2 

for particular values of 0 < a < 1 and ß2 > 0. 

8.5 FACES, FACETS, AND DIMENSION OF A POLYHEDRON 

In this section, we provide some additional geometrically motivated definitions and 
insights into the nature of extreme points and higher dimensional faces of a 
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FIGURE 8.19 Degenerate polyhedron. 

polyhedron. We will assume a polyhedron in E" defined by X— {x: Ax < b, x > 0} 
where A is m x n matrix, x is n x 1 matrix, and b is m x 1 matrix. 

Hence, there are {m + n) inequality constraints, corresponding to (m + ri) 
defining half-spaces whose intersection is X. We will call the (m + ri) hyperplanes 
formed by the boundary of each of these half-spaces as the defining hyperplanes oïX. 
Each hyperplane corresponds to the solution of an equation in E"; a set of n defining 
hyperplanes are linearly independent if the coefficient matrix associated with this set 
has full row rank (=«). An extreme point x of the polyhedron X in E" is the (unique) 
solution of« linearly independent defining hyperplanes of X. If more than n defining 
hyperplanes of A'pass through an extreme point x, then such an extreme point is called 
a degenerate extreme point (see Figure 8.19). A polyhedron that contains at least one 
degenerate extreme point is called a degenerate polyhedron, and the corresponding 
LP has degeneracy. 

Definition 8.16 A constraint aTx < ß is said to be binding {active) at a point \* GX 
ifaTx*=ß. 

Above, we defined an extreme point x of X to be the unique solution of some n 
linearly independent defining hyperplanes binding at x. A more general concept is that 
of proper face of X. 

Definition 8.17 A proper face F of X is a nonempty set of points in X formed by 
the intersection of some set of binding defining hyperplanes of X. The dimension of a 
face of X is dim(F) = n — rank(F), where rank(F) = maximum number of linearly 
independent defining hyperplanes binding at all points of F. Note: 0 < dim 
( F ) < n - 1 . 

For example, in/?3 a face can have 1,2, or 3 binding hyperplanes, so a face can be of 
dimension 2, 1, or 0. Of course, in the case of a degenerate extreme point x, there 
would be four or more binding hyperplanes at x. The extreme points of AT are the zero-
dimensional faces; the edges of X are the one-dimensional faces; and the planes, 
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Degenerate extreme point 

Edge (one-dimensional face) 
Adjacent extreme 
points 

Nondegenerate extreme point (zero-
dimensional face) 

Facet (two-dimensional face) 

FIGURE 8.20 Proper faces of a polyhedron of full dimension in E3. 

two-dimensional faces are called facets, a term reserved for the highest dimensional 
proper face of X. So if X is full dimensional (n), the dimension of a facet is dim 
(X) — 1 = n — 1, or 2 in the case of X Ç E3. A face loses one dimension (or degree of 
freedom) for every additional linearly independent binding hyperplane associated 
with it. In E", a face can have one of 1,2,3,..., n binding defining hyperplanes, except 
for degenerate extreme points. 

Figure 8.20 shows a full-dimensional polyhedron in E3 with nine defining 
hyperplanes. It has nine extreme points, five of which are degenerate, and nine 
two-dimensional faces (facets). As shown in Figure 8.20, two extreme points are 
adjacent if the line segment joining them is an edge of A". Hence, adjacent extreme 
points have (« — 1) binding linearly independent defining hyperplanes in common. 

8.6 DESCRIBING A POLYHEDRON BY FACETS 

In cutting plane methods and branch-and-cut methods for solving mixed integer 
programs, it is necessary to generate a sequence of linear inequalities, each of which is 
used to form a new facet of the "updated" LP feasible region, enclosing the MIP 
feasible region, by means of intersecting its half-space with a "current" LP feasible 
region of interest. Thus, the knowledge of "minimal" hyperplane representation of 
polyhedra is useful background for Chapters 11 and 12. 

Definition 8.18 A polyhedron PÇE" is called full dimensional if it contains n 
linearly independent directions. By this we mean that at any interior point x° of P, 
there exists a set of directions {d1, d2,..., d"} and an s0 > 0 such that x° + ed' € P, for 
all 0<e<e0. Equivalently, the spheroid {x: | | x ° -x | | <e0] ÇP. Hence, a full-
dimensional polyhedron P has the property that there is no hyperplane H= jxE 
En\aTx = ß] such that PÇH. 
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Theorem 8.4 Any full-dimensional polyhedron P can be uniquely represented by a 
set of inequalities P = {x G R": a,x <b¡,i=\,...,m} where each inequality is unique 
within a positive multiple, and each of which defines a facet of P. 

The set of m inequalities in Theorem 8.4 is minimal in the sense that if one is 
removed, the resulting polyhedron is no longer P. 

Definition 8.19 An inequality aTx < b is a valid inequality for X C E" if aTx < b for 
all x G X. In other words, X is contained within the half-space defined by aTx < b. 

Theorem 8.5 If P is full dimensional, a valid inequality aTx < b is necessary in the 
description of P if and only if it defines a facet of P. 

Wolsey (1998) provides the following example in E2. Of the seven inequalities 
listed, only (8.6) and (8.9)-(8.11) are necessary. Inequalities (8.7), (8.8), and (8.12) 
although valid for P are redundant and would not be included among the "minimal" 
set of valid inequalities described in Theorems 8.4 and 8.5. 

Example 8.9 (Wolsey 1998') The reader is encouraged to verify that inequal-
ities (8.7), (8.8), and (8.12) are not necessary in the minimal (facet) description of P: 

xi < 2 

JCI + x2 < 4 

xi+2x2 < 1° 

X] + 2x2 < 6 

X\ +*2 < 2 

xi > 0 

x2 > 0 

(8.6) 

(8.7) 

(8.8) 

(8.9) 

(8.10) 

(8.11) 

(8.12) 

8.7 CORRESPONDENCE BETWEEN ALGEBRAIC 
AND GEOMETRIC TERMS 

To summarize this chapter, Table 8.1 is provided to show the correspondence between 
the algebraic expression of a set related to an LP feasible region and its geometric 
concept in E". In this table, we assume that F is a full-dimensional polyhedron 
represented (Theorem 8.5) by P = {x : Yll=i aüxj — b¡,i = I, ■ ■ ■ ,m;Xj > 0, j = 
1,2, . . . ,«}. 

'From Wolsey, Integer Programming. Copyright 1998 John Wiley & Sons, Inc. Reprinted with permission 
of John Wiley & Sons. 
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TABLE 8.1 Correspondence between Algebraic and Geometric Concepts in LP 

Algebraic Description Geometric Term 

Ax < b and x > 0 

Ax<b,x>0,and]C"= 

least one /', or x¡ = 0 
All feasible x satisfying 

for a specific subset 
/'= 1, . . . , m 

All feasible x satisfyin; 
for exactly one / 

All feasible x satisfyin; 
for exactly n — 1 of 
..., m 

A feasible x satisfying 
the indices ; = 1, . . . 

( x : £;=i «y*/= M 
among / = 1, ... , m 

{x : YTj=x "uXj < M 
among i= 1, ... , m 

D={d: Ad<0, d>0, 
Cone(D) = {Xd:deD, 
D = (t> 

i ayXj = b¡ for at 
for at least one j 
I £ " = i OijXj < b¡ 
of the indices 

g E"=i auxJ = b< 

? EJLi OijXj = b¡ 
the indices / = 1, 

for exactly n of 

for a given / 

for a given i 

, Id = 1} 

Interior point x of P 
Boundary point x of P 

Face of P 

Facet of P (or (n — l)-dimensional face) 

Edge of P (or one-dimensional face) 

Extreme point x of P (zero-dimensional face) 

Defining hyperplane of P 

Defining half-space of P 

Directions of recession of an unbounded P 
Recession cone of unbounded P 
P is a bounded polyhedron (polytope) 

8.8 NOTES 

Sections 8.2 and 8.3 

A standard reference on convex sets and functions is Rockafellar (1970). Minkowski 
published his "summation" theorem in 1911, the origin of the Representation 
Theorem (Theorem 8.3). Stability theory (Batson, 1979) uses this theorem. 

Section 8.5 

Much more detail on faces and facets of convex polytopes may be found in 
Griinbraum (1967). 

8.9 EXERCISES 

8.1 Consider the polyhedron P shown in the Figure 8.21. Is it possible that it is the 
feasible region of some LP problem? Why or why not? 

8.2 Sketch the feasible region of the following LP problem. Do you think whether 
it has optimal solution or not without solving the problem? If yes, it is finite and 
unique? 
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FIGURE 8.21 A polyhedron. 

Maximize z = x\ + 8x2 
subject to xi—X2 < 0 

X\ + X2 > 2 
-5xi +*2 < 5 
X\,X2 > 0 

Sketch the feasible region of the following LP problem. Try to tell if it has 
unbounded solution using the concept of convex cone. 

Minimize z = — 2x\ + xi 
subject to x\ + 2x2 < 11 

x\ +3x2 < 21 
Ax\— X2 < 3 
x\, x2 unrestricted in sign 

Give examples of LP problems in E2 that satisfy 

(1) The feasible region is bounded with objective function optimized at a 
unique extreme point. 

(2) The feasible region is bounded, and objective function is optimized at an 
edge. 

(3) The feasible region is unbounded, but the objective function is optimized 
at a unique extreme point. 

(4) The feasible region is unbounded, and the objective function is unbounded. 

Consider the following sets: Are they convex? If not, explain why using two 
specific points in S. 
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(1) S = {x continuous: x¡x2 > 4, x¡ < 4, x2 < 4} 
(2) S = { x > 0 : x,x2 < 25, x , - x 2 < 10, x 2 < 7 } 
(3) S = {x continuous: |xi — x2\ > 4, x, + x2 < 10, xt > 2} 

8.6 Decide if each of the following functions is convex, concave, or neither. Justify 
your conclusion (by numerical proof, by using the epigraph or hypergraph, or 
by providing points in conflict with the definition). 

( l ) / (x) = -2x 3 

(2)/(x) = x - 1 , x / 0 
X2 X2 

(3) /(x) = 4 + -yi, a, b > 0 and constant 
X2 X2 

(4) /(x) = ^ - jf, a, b > 0 and constant 

8.7 ShowthatConv(xl,x2,...,x") = Conv[x1,x2,...,x',Conv(x'+1,x' + 2 , . . . ,x")]. 

8.8 Given two distinct sets Si andS2, whereSi C S2, show that Conv(Si) C Conv(S2). 

8.9 Show that the convex hull of a convex set is itself. 

8.10 Consider the feasible region of an IP problem. If the corresponding LP convex 
hull is unbounded, is it possible that the feasible region of the IP is bounded? 
Why or why not? 

8.11 Prove that (a) a function is linear if and only if it is both concave and convex; (b) 
a function f is convex (concave) if and only if the function g = —fis convex 
(concave). 

8.12 Find all the extreme points of the following polyhedron formed by the feasible 
region of an LP problem with three decision variables. List all possible 
simplexes. 

Xi + X2 + X3 < 1 

*1,*2,*3 > 0 

8.13 Following the procedure described in Example 8.8, find all extreme directions 
(if any) of the feasible region of the LP problem in Exercise 8.1. 

8.14 What do you think is the relationship between degeneracy and the necessity of 
constraints in defining the facets of the corresponding polyhedron? 

8.15 Show another way to represent the point x* in Figure 8.18. 

8.16 Find all extreme points and extreme rays of the polyhedron defined as 
follows: P= ( x>0 : —2>x{ + x 2 < 3 , x^ — x 2 < 5 , -2x i - x 2 < - 7 } . Repre-
sent the point (10, 25) and (5, 5) using the extreme points and extreme rays 
you found. 

8.17 Plot the feasible region of the polyhedron described in Exercise 8.12. Find all 
its faces and facets. 
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8.18 Consider the following set of constraints for an LP problem. Which one(s) is 
necessary in the description of the facets? Which not? Why? 

—X\ + X2 < 2 
x\— 2^2 < 6 
X\ +4X2 > 5 

3xi +X2 < 18 

x2 > 0 

8.19 Consider the following constraint set for an LP problem. Sketch a graph in E2 

showing 3], 32,33, the cone generated by these three vectors, and then add b to 
the graph. Show that Ax = b, x > 0 has no solution but that Ax < b, x > 0 has 
feasible solutions: 

X2 + 2X3 = 2 
3x\ + 2x2 + 2x3 = 1 
Xi,X2,X3 > 0 



9 
LINEAR PROGRAMMING: 
SOLUTION METHODS 

The modern methods for solving a large-scale integer program require the optimiza-
tion and reoptimization of a usually long sequence of LP relaxation problems, which 
in turn are often solved by a variety of simplex-based methods. This chapter reviews 
three simplex-based methods that are the building blocks for solving integer 
programs. The simplex method provides the foundation for optimizing a long 
sequence of LP relaxations. The simplex method for upper bounded variables is 
used for reducing the problem size by implicitly handling the upper and lower bounds 
on variables (or single-variable constraints, more generally). The dual simplex 
method is most effective for reoptimizing the current optimum, after additional 
constraints are added, without resolving the augmented LP problem from scratch. The 
revised simplex method produces the same sequence of bases as the simplex method, 
but depends on updating B~' (m columns) rather than on the entire simplex tableau 
(« columns). 

9.1 LINEAR PROGRAMS IN CANONICAL FORM 

Recall the following LP problem in standard form: 

Maximize z = > J c¡x¡ (9.1) 
i 

Applied Integer Programming: Modeling andSolution, By Der-San Chen, Robert G. Batson, and Yu Dang 
Copyright © 2010 John Wiley & Sons, Inc. 
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subject to V^ ciijXj <b¡ (i — 1,2,..., m) (9.2) 
i 

Xj>0 ( / = 1,2 «) (9.3) 

where b, (i= 1, 2, . . . , m) can be a positive or negative number. 
Because the simplex-based methods work on systems of linear equations rather 

than inequalities, the standard LP problem must be first converted to a system of 
equations. This can be accomplished by adding a nonnegative slack variable s¡ to each 
inequality constraint (9.2) and transferring all the variable terms in the objective 
function (9.1 ) to the left-hand side of an equation and leaving the constant term on the 
right-hand side: 

Maximize z— 2_, cixi = ^ (9-4) 
j 

subject to \~) aijxj + s¡ — b¡ (z = 1,2,..., ra) (9.5) 
j 

xj>0 ( .7=1,2, . . . , / i ) (9.6) 

s / > 0 ( i = l , 2 , . . . , / n ) (9.7) 

Based on this new formulation, therefore, solving a linear program can be viewed 
as performing the following three tasks: 

1. Find solutions to the augmented system of linear equations in (9.4) and (9.5). 
2. Use the nonnegative conditions (9.6) and (9.7) to indicate and maintain the 

feasibility of a solution. 
3. Maximize the objective function, which is rewritten as equation (9.4). 

Note that (9.4) can also be viewed as a combination of two parts: 

maximize z 

subject to z— £\. CjXj = 0 

Also note that the augmented system of equations (9.4)-(9.5) has a particular form of 
coefficient matrix called canonicalform. In this form, a solution can be read immediately 
from the right-hand side of all equations: all Xj■ = 0, all s¡ = b¡, and z = 0. Clearly, ̂ feasible 
solution is readily available if all b¡ > 0. Moreover, this LP canonical form, after 
detaching the coefficients from the variables, appears to be the so-called simplex tableau. 

If there exists any b¡ < 0, the system has an infeasible solution because it violates at 
least one of (9.6) and (9.7). In this case therefore, to obtain a starting basic feasible 
solution, a Phase I problem must be constructed and solved. The details of this 
procedure will be given in Section 9.3. 
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9.2 BASIC FEASIBLE SOLUTIONS AND REDUCED COSTS 

9.2.1 Basic Feasible Solution 

Definition 9.1 Given that a system Ax = b, where the number of solutions are infinite, 
and rank (A) — m (m<n), a unique solution can be obtained by setting any n — m 
variables to 0 and solving for the remaining system of m variables in m equations. Such a 
solution, if it exists, is called a basic solution. The variables that are set to 0 are called 
nonbasic variables, denoted by xN. The variables that are solved are called basic 
variables, denoted by xB. A basic solution that contains all nonnegative values is called a 
basic feasible solution. A basic solution that contains any negative component is called a 
basic infeasible solution. The m x m coefficient matrix associated with a given set of 
basic variables is called a basis, or basis matrix, and is denoted as B. 

Let x = (xB, xN)T, c = (cB, cN)T, and A = (B, N). Then, the LP can be expressed by 
the following partitioned form: 

Maximize z = c¿xB + C£XN 

subject to BxB + NxN = b 

xB,xN > 0 

Example 9.1 Consider the following system of two equations in four unknowns (or 
variables): 

X\ + X2 + Xj = 6 

¿X\ -\- X2 ~f" X4 = o 

A basic solution to this system can be obtained by assigning 0 to any two variables 
and solving the remaining system of two equations in two variables. This system has a 
maximum of six basic solutions: 

C 4 4 ! - 6 
2 ~2! (4-2) ! 

These six basic solutions are listed in Table 9.1. Note that basic solutions 3 and 4 
are infeasible because one of their basic variables has a negative value while the 
remaining basic solutions are feasible. 

, - ■ fl °\ fxi\ f1 l\ 
For xB = I I, the basis B = and for xB = , the basis B — \ 

Vo V W V2 V 
TABLE 9.1 Basic Solutions in Example 9.1 

Basic Solution 

1 2 3 4 5 6 

Nonbasic x r=0, X!=0, Xj=0, x2 = 0, x2 = 0, x3 = 0, 
variables xN x2 = 0 x3 = 0 x4 = 0 x3 = 0 x4 = 0 x4 = 0 
isic variables 
xB 

x3 = 6, 
x4 = 8 

x2 = 6, 
x4 = 2 

*2 = 8, 
x3 = - 2 

X\ =6 , 
x4 = - 4 

x , = 4 , 
x3 = 2 

Xi=2, 
x2 = 4 
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In general, the number of basic solutions possible in a system of m equations in n 
variables is calculated by 

n1 

Cn = -
m m\{n-m)\ 

We now formally define a canonical system of linear equations. 

Definition 9.2 A system of linear equations is said to be in a canonical form if each 
equation contains a basic variable whose coefficient is 1 in that equation and whose 
coefficient in all other equations is 0. 

Therefore, in a canonical system, every equation contains only one basic variable 
in the current basis whose value equals to the right-hand-side constant, and the rest of 
the variables are nonbasic with a value of 0. Thus, a basic solution can be obtained by 
letting each basic variable equal to the right-hand side of its respective equation and 
setting the nonbasic variables equal to zero. 

Example 9.2 Consider the following LP in standard form: 

Max z = 4xj + 3^2 

X[ +X2 < 6 

2x\ + x2 < 8 

x\, xj > 0 

After transferring the objective function and adding nonnegative slack variables S\ 
and s2 to equalize the inequality constraints, we obtain a canonical system: 

Max z—Ax\ -3x2 = 0 

Xi +X2 +S\ = 6 

2xi + x 2 + s2 = 8 

xi , x2 > 0 

sus2 > 0 

Let X! and x2 be nonbasic variables, then the remaining variables s^ and s2 are 
basic. A basic solution is X\ = x2 = 0, S\ =6,s2 = 8, and z — 0, which forms a solution 
vector (including z-value component) equal to the right-hand side of the equations. 
For simplicity, we detach the coefficients from the variables resulting in a simplex 
tableau given in Table 9.2. 

Note that z can also be viewed as a basic variable for the objective equation (row). 
Just like the constraint equations (or rows), this objective row is updated during 
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TABLE 9.2 Simplex Tableau for Example 9.2 

Basic Variable 

z 

s2 

z 

1 

0 
0 

Xl 

- 4 

1 
2 

x2 

- 3 

1 
1 

•Sl 

0 

1 
0 

*2 

0 

0 
1 

RHS 

0 

6 
8 

elementary row operations embedded in a simplex pivot. We shall refer to this 
equation as the objective row or row 0 of the simplex tableau. The constraint rows are 
rows 1 through m. 

9.2.2 Adjacent Basic Feasible Solution 

Given a basic feasible solution in Table 9.2, one can generate an adjacent basic 
feasible solution by exchanging only one nonbasic variable for a basic variable while 
keeping all other variables unchanged (of course, their values typically change). This 
can be accomplished by the following steps: (a) determine a current nonbasic variable 
to become basic, (b) determine a current basic variable to become nonbasic, and 
(c) perform necessary row operations for exchanging the two variables determined in 
(a) and (b) and updating the values of the basic variables and z. 

Definition 9.3 A nonbasic variable is called an entering variable if it is selected to 
become basic in the next basis. Its associated coefficient column is called a pivot 
column. A basic variable is called a leaving variable if it is selected to become 
nonbasic in the next basis. Its associated coefficient row is called a pivot row. The 
element that intersects a pivot column and a pivot row is called a pivot or pivot 
element. A pivoting operation is a sequence of elementary row operations that makes 
the pivot element " 1 " and all other elements "0" in the pivot column. Two basic 
feasible solutions are said to be adjacent if the set of their basic variables differ by only 
one basic variable. Geometrically, these two basic feasible solutions will correspond 
to two extreme points except in the case of degeneracy, in which case two or more 
bases correspond to the same extreme point. 

In Table 9.2, suppose we select Xi as the entering variable. This will make either S\ 
or s2 leave the basis. If s{ is to leave, the coefficient of X\ must be " 1 " in row 1 and"0" 
in both rows 2 and 0. To achieve this, we apply the following row operations: multiply 
row 1 by —2 and add to row 2, and then multiply row 1 by 4 and add to row 0, resulting 
in Table 9.3. Because s2 is negative, the basic solution (6, 0, 0, —4) is infeasible. So, 
selecting s\ to exit was an improper choice. 

Suppose X\ is still the entering variable. If we let s2, instead of s\, leave the basis, 
then the coefficient of Xi must be " 1 " in row 2 and "0" in rows 1 and 0. After pivoting, 
Table 9.4 is generated. Because all RHS values are nonnegative, the basic solution 
(4, 0, 2, 0) is feasible with z = 16. 

Note that the different results in Tables 9.3 and 9.4 indicate that a certain choice of 
leaving variable may cause the next basic solution infeasible. The question is how to 



212 LINEAR PROGRAMMING: SOLUTION METHODS 

TABLE 9.3 Updated Simplex Tableau After Pivot 1 

Basic Variable z 

z 1 

x, 0 
J 2 0 

TABLE 9.4 Updated Simplex 

Basic Variable z 

z 1 

j , 0 

x, 0 

X , 

0 

1 
0 

x2 

1 

1 
- 1 

Tableau After Pivot 2 

Xl 

0 

0 
1 

x2 

- 1 

0.5 
0.5 

s 

■Si 

0 

1 
0 

;i 

4 

1 
-2 

*2 

0 

0 
1 

«2 

2 

-0.5 
0.5 

RHS 

24 

6 
- 4 

RHS 

16 

2 
4 

ensure that the next basic solution will remain feasible if the current basic solution is 
feasible. To achieve this, we must choose a leaving variable such that its ratio of the 
right-hand side to the corresponding positive component in the pivot column is 
minimal. That is, from Table 9.1, we calculate the minimum ratio, 

min{6 / l ,8 /2}=4 

Because the minimum ratio 4 corresponds to s2
 row> *2 must be the leaving variable 

to ensure the next basic solution is feasible. 
Because row 0 of Table 9.4 still contains a negative value, which implies the 

objective value can be increased further, another simplex iteration is needed. 
Choosing x2 as the entering variable and s\ as the leaving variable, we obtain 
Table 9.5, which yields a nonnegative objective row and an optimum solution is 
found. 

9.2.3 Reduced Costs 

Examining Tables 9.2-9.5, we see that each row of a simplex tableau represents a 
basic variable written in terms of nonbasic variables. In Table 9.5 for instance, 
x2 + ls\ + s2 = A or x2 = 4 — 2s\ + s2- In effect, the dimension of the original 
solution space is reduced from (n + rri), the number of basic and nonbasic variables, 

TABLE 9.5 Optimal Tableau After Pivot 3 

Basic Variable 

z 

z 

1 

X , 

0 

x2 

0 

S\ 

2 

*2 

1 

RHS 

20 

x2 0 0 1 2 - 1 4 
x, 0 1 0 - 1 1 2 
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to a subspace of dimension n equal to the number of nonbasic variables. Premultiply-
ing B _ 1 on the equation BxB + NxN = b, we obtain 

IXB + B lNxN = B 1 b 

orxB = B ~ ' b - B _ ' N x N . Substituting it into z = cBxB + cJxN, we have 

z = ( C B B - ' N - C ^ X N 

= cBB_1b— \~](zj—Cj)xj, j nonbasic 
j 

Definition 9.4 The subspace that contains only the nonbasic variables is referred to 
as a reduced space. The components of the objective row in a reduced space are called 
reduced costs, denoted by c: 

cT = (<$, ¿5) = (0T, C B B - ' N - C S ) 

Note that the cost vector associated with the set of basic variables is a null 
vector 0. 

9.3 THE SIMPLEX METHOD 

The simplex method is an iterative algorithm consisting of the following steps: 

1. Initialization: Find an initial basic solution that is feasible. 
2. Iteration: Find a basic solution that is better, adjacent, and feasible. 
3. Optimality test: Test if the current solution is optimal. If not, repeat step 2. 

First, we shall address the iteration step, the core of the simplex method. 

9.3.1 Better and Feasible Solution 

The iteration step is aimed at finding a new basic solution that is better, feasible, and 
adjacent than a given feasible basic solution. When no better solution can be found, 
then an optimum solution has to be obtained. This iteration contains three basic steps: 
(1) determining the entering variable, (2) determining the leaving variable, and 
(3) pivoting on the pivot element for exchange of variables and updating the data in the 
tableau. A new basic solution will be better if an entering variable is properly chosen. 
A new basic solution will be. feasible if a leaving variable is properly chosen. A new 
basic solution will be adjacent to the current one if only one basic variable from the 
old basic solution is exchanged with the old basic solution, which can be accom-
plished by a pivot operation. Consider the given simplex tableau in Table 9.6. 
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TABLE 9.6 The Simplex Tableau Immediately Before Pivoting 

Basic 
Variable 

z 

z xBl . 

1 0 . 

xB 

• • xBr ■ ■ 

.. 0 .. 

• XBm 

. 0 

xN 

. . . Xj . . . Xk . . . 

. . . Cj . . . Ck 

RHS 
Solution 

h 
xBl 0 1 . . . 0 . . . 0 ... av ... axk ... ¿, 

xBr 0 0 . . . 1 . . . 0 ... arj ... ark ... br 

xB„ 0 0 . . . 0 . . . 1 ... âmJ... âmk ... bm 

The entering variable, denoted by JC*, is chosen among the current nonbasic 
variables, denoted by x7 G xN ( /= 1, 2, . . . , n), such that it will improve the current 
objective value. This can be accomplished by selecting the Xk with the most (or any) 
negative reduced cost. Mathematically, 

Xk = {XJ G XN : miUjCj, Cj < 0} (9.8) 

The coefficients column k associated with the entering variable x^ is the pivot 
column. The leaving variable, denoted by Xßr, is chosen among the current basic 
variables, denoted by Xßi € XB (/' = 1 ,2 , . . . , m), such that it has a minimum (positive) 
ratio 6 defined by 

e = h. = miJkiäik>o\ (9.9) 
ark ya-ik ) 

The coefficient row r associated with the leaving variable xBr is the pivot row. The 
rationale for selecting the minimum ratio is justified below. 

Consider the simplex tableau given in Table 9.6. While holding (n — 1) nonbasic 
variables fixed at zero and increasing the nonbasic variable x^ from zero to positive, 
we will have the following system of equations for the objective function and 
constraints: 

z + CkXk = b0 or z — bo-CkXk (9-10) 

and xBi + äikXk = b¡ or xB, = h—äikXk (/' = 1 ,2 , . . . , m) (9.11) 

Because we want a new solution to remain feasible, meaning that the new xBl must 
be > 0 for all /, 

XB¡ = bj—äikXk > 0 for / = 1 ,2 , . . . , m (9-12) 
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If alk < 0, then XB¡ increases as xk increases and so XB¡ continues to be nonnegative 
without bound. If a¡k = 0, then there is no change in XB¡ as xk increases. Clearly, if 
a¡k < 0 for all / = 1,2,..., m, then the problem has an unbounded solution. Moreover, 
if there exists any nonpositive column j , not necessarily the pivot column, with a 
negative component in row 0 (or c¡ < 0), then x¡ can increase to infinity without 
making the new XB1 negative. 

If a¡k > 0, then XB< decreases as xk increases. To satisfy nonnegativity, xk is 
increased until the first basic variable XB¡ drops to zero. Examining the system of 
inequalities in (9.12), it is clear that the first basic variable dropping to zero 
corresponds to the minimum of b¡¡alk for positive ä,*. Mathematically, we can 
increase xk until equal to the amount of 8 determined by (9.9). From (9.10), the new 
objective value will be (b0—ckd). 

9.3.2 Updating Simplex Tableau by Pivoting 

Now we address how to find an adjacent basic feasible solution. Given the entering 
variable xk (pivot column k) and the leaving variable XB, (pivot row r), the pivot 
element ark can be determined by the intersection of row r and column k. To update the 
simplex tableau in Table 9.6, the following pivoting operation is performed. 

1. Divide row r by ark. 
2. For all / / r , update the rth row by adding to it (-a,*) times the new rth row. 
3. Update row 0 by adding to it ck times the new rth row. 

After pivoting operation, we obtain Table 9.7. Note that the positions of xBr and xk 

are exchanged. That is, XB, appears in the rows of basic variables and xk in the columns 
of nonbasic variables. 

TABLE 9.7 The Simplex Tableau After Pivoting 

Basic X
B

 XN 
Variable z xg, . . . xBt . . . xBm . . . xj 

br - «17 -
z 1 0 . . . — . . . 0 ••• Cj-^-Ck . 

àrk ark 

. xk ... 

.. 0 . . . 

RHS 
Solution 

Ä ~b'~ b0- — Ck 
ürk 

0 1 . . . ^ ... 0 ... -av-?Ü-äxk ... 0 ... ¿ , - ^ ä u 
ürk ark

 ark 

Xk ( J O . . . — . . . 0 . . . ^ . . . 1 . . . A . 
a,k a,k ark 
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9.3.3 Optimality Test 

An optimum solution is found if there exists no adjacent basic feasible solution that 
can improve the objective value. In a maximization problem, the optimality condition 
is satisfied if Cj > 0 for all j= 1, 2, ..., m. If at optimality, there exists a nonbasic 
variable, say Xp, with cp = 0, then this variable can enter the basis to obtain an alternate 
optimum solution with the same objective value. 

9.3.4 Initial Basic Feasible Solution 

In the preceding section, we assume that an LP problem has all constraints in < form 
and all b¡ > 0. In this case, a basic feasible solution is naturally obtained after adding a 
nonnegative slack variables J, to each constraint. However, if there is any b¡ < 0 or any 
constraint in > or = form, then artificial variables are added to become basic 
variables for a starting basis. Unfortunately, this basic solution is infeasible to the 
original problem because of the presence of artificial variables with positive values. 
To obtain a feasible basic solution to the original problem, a phase I problem of the 
two-phase method is constructed to drive all artificial variables out of basis (and hence 
equal 0). The construction procedure is given below. 

1. Convert each constraint so that the right-hand side is nonnegative. This requires 
that any constraint with a negative right-hand side be multiplied by — 1. The 
resultant constraint has one of the three forms: <, =, or >. If it is in < form, then 
add a nonnegative slack variable; in = form, add a nonnegative artificial 
variable; in > form, subtract a nonnegative slack variable and add a nonnegative 
artificial variable. 

2. Solve a phase I problem whose objective function is minimizing the sum of 
artificial variables subject to the same set of constraints. The sum of artificial 
variables is obtained by assigning a cost of 1 to each artificial variable and 0 to 
each of nonartificial variables. 

Example 9.3 This example is extended by adding the following additional con-
straint to Example 9.2. 

—2x\ + X2 > 2 

Applying step 1, we obtain 

—2x\ + X2—S3 + Xa = 2 

s3,xa > 0 

Applying step 2, we minimize za = xa, 

or maximize—za = — x" 

or maximize—z° + Xa = 0 
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Setting up a tableau format for phase I problem, we have the following tableau: 

Basic Variable 

-z° 

Sl 

Í2 

x" 

-z" 

1 

0 
0 
0 

X\ 

0 

1 
2 

- 2 

x2 

0 

1 
1 
1 

■Sl 

0 

1 
0 
0 

¡¡2 

0 

0 
1 
0 

■S3 

0 

0 
0 

- 1 

xa 

1 

0 
0 
1 

RHS 

0 

6 
8 
2 

Note that the above tableau is not yet in canonical form because the coefficient of 
xa in row 0 is nonzero. To zero it out, we mult iply row Xa by — 1 and add the resultant 
row to row 0, resulting in the following tableau. N o w the artificial variable Xa becomes 
a basic variable to the transformed p roblem. 

Basic Variable 

-za 

Sl 

Si 

Xa 

-za 

1 

0 
0 
0 

X\ 

2 

1 
2 

- 2 

x2 

- 1 

1 
1 
1 

■Sl 

0 

1 
0 
0 

■S2 

0 

0 
1 
0 

■S3 

1 

0 
0 

- 1 

xa 

0 

0 
0 
1 

RHS 

- 2 

6 
8 
2 

Let x2 be the entering variable and xa be the leaving variable. After pivoting, we 
have the following tableau. 

Basic Variable 

-za 

Sl 

•S2 

* 2 

-za 

1 

0 
0 
0 

X\ 

0 

3 
4 

- 2 

* 2 

0 

0 
0 
1 

Sl 

0 

1 
0 
0 

■S2 

0 

0 
1 
0 

•S3 

0 

1 
1 
- 1 

xa 

1 

- 1 
- 1 

1 

RHS 

0 

4 
6 
2 

Because the artificial variable is driven out of basis and hence has a value of 0, we 
obtain a basic feasible solution for the original problem: x\ = 0 and x2 = 2. 

Once a starting basic feasible solution is obtained, we proceed to the phase II 
problem to find an op t imum solution using the original objective function and the last 
tableau of the phase I problem. To begin with, we must drop the columns associated 
with all the artificial variables, drop the objective row of phase I, and replace it with the 
original objective row. We obtain the following tableau. 

Basic Variable 

z 

z 

1 

X\ 

- 4 

x2 

- 3 

•Sl 

0 

•S2 

0 

•S3 

0 

RHS 

0 

i , 0 3 0 1 0 1 4 
52 0 4 0 0 1 1 6 
x2 0 - 2 1 0 0 - 1 2 
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Note that this tableau is not yet in canonical form because in row 0 the coefficient of 
the basic variable x2 is nonzero. To obtain a canonical form, we zero it out by 
multiplying row x2 by 3 and adding the resultant row to the objective row. 

Basic Variable 

z 

■îi 

S2 

x2 

Z 

1 

0 
0 
0 

X\ 

-10 

3 
4 

- 2 

x2 

0 

0 
0 
1 

¿1 

0 

1 
0 
0 

S2 

0 

0 
1 
0 

S3 

- 3 

1 
1 

- 1 

RHS 

6 

4 
6 
2 

This tableau has a basic feasible solution (0,2,4,6,0) but it is not optimal because 
the objective row contains negative components. Letting the entering variable be X\ 
and the leaving variable be S\, we have the following tableau. 

Basic Variable 

z 

X\ 

s2 

x2 

z 

1 

0 
0 
0 

X\ 

0 

1 
0 
0 

x2 

0 

0 
0 
1 

•Sl 

10/3 

1/3 
-4/3 

2/3 

«2 

0 

0 
1 
0 

«3 

1/3 

1/3 
-1/3 
-1/3 

RHS 

58/3 

4/3 
2/3 
14/3 

Since all the components in the objective row are nonnegative, an optimum 
solution is found: (4/3, 14/3, 0, 2/3, 0) with an objective value z = 58/3. 

9.4 INTERPRETING THE SIMPLEX TABLEAU 

9.4.1 Entire Simplex Tableau 

Every simplex tableau provides information about the current basic feasible solution 
and its n adjacent basic feasible solutions. Geometrically, a basic feasible solution 
corresponds to an extreme point of the feasible region. Recall that a convex hull of 
n + 1 points is called a simplex, hence the name of the simplex method. 

9.4.2 Rows of Simplex Tableau 

Every row of a simplex tableau represents an equation with all variable terms on the 
left-hand side and a constant term on the right-hand side of the equality sign. 
Moreover, the coefficients of all but one basic variables are zero. Note that the 
objective function can also be expressed as an equation, z— ^ CjXj = 0 (where x¡ is 
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nonbasic) with a new variable z being treated as a basic variable. This objective row is 
also referred to as row 0 and the remaining rows are rows 1 through m. The coefficient 
Zj = Zj—Cj is referred to a reduced cost because it is a cost coefficient expressed in the 
reduced space of n nonbasic variables. 

Note that each equation contains exactly one basic variable with coefficient equal 
to 1 and one or more nonbasic variables with coefficients of any values. Moreover, 
different equations have distinct basic variables. 

9.4.3 Columns of Simplex Tableau 

The right-hand side column of a simplex tableau contains the objective value and the 
m values of basic variables for the current basic feasible solution. Note that the values 
of all nonbasic variables are always 0 and do not appear in the tableau. 

The left-hand side column associated with each basic variable always contains a 
unit column vector with a " 1 " corresponding to the basic variable and a "0" to each of 
the nonbasic variables, including row 0. The left-hand side column associated with 
each nonbasic variable provides information about the basic feasible solutions 
adjacent to the current one. The objective component of the left-hand side column 
predicts the negative rate of the change in objective function value if the correspond-
ing nonbasic variable is increased by one unit. The remaining components of the same 
left-hand side column predict the amount of each resource to be consumed if a 
nonbasic variable is increased by one. In case of a negative component, the resource is 
added rather than consumed. Therefore, in the calculation of minimum ratio, the 
negative and zero components are excluded. 

9.4.4 Pivot Column and Pivot Row 

The negative of row-0 component in the pivot column represents the unit improve-
ment in the objective value if the entering variable is increased by one unit. The ratio of 
a right-hand side to a positive component of the pivot column represents the maximum 
amount that the corresponding nonbasic variable can be increased without exceeding 
the resource availability on the right-hand side of the equation. To satisfy the limits of 
all resources, a minimum ratio must be used. Otherwise, the new solution will be 
infeasible, indicated by negative values on the right-hand side. 

9.4.5 Predicting the New Objective Value Before Updating 

Prior to updating a simplex tableau, the new objective value of the next tableau can be 
predicted by the following formula: 

New z = current z + total improvement in the objective value 

= current z+ (unit improvement) (amount of improvement) 

or, b0 = b0-ck6 

where b0 denotes the new objective value. 
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9.5 GEOMETRIC INTERPRETATION OF THE SIMPLEX METHOD 

9.5.1 Basic Feasible Solution Versus Extreme Point 

Recall that in Chapter 8, a point x in a polyhedron P (feasible region) is called an 
extreme point of P if it cannot be represented as a strict ( 0 < a < 1) convex 
combination of two distinct points in P. Here we will show that every extreme point 
corresponds one-for-one to a basic feasible solution in the absence of degeneracy. To 
illustrate this, we compare the extreme points in Figure 9.1 with the basic feasible 
solutions in Table 9.1 for Example 9.2. Figure 9.1 shows a feasible region (poly-
hedron) with four extreme points and two infeasible points outside the feasible region: 
(6, 0) and (0, 8). 

Table 9.1 lists four basic feasible solutions and two basic infeasible solutions. 
Comparing Table 9.1 with Figure 9.1, we see that every basic feasible solution 
corresponds to an extreme point. Furthermore, every basic infeasible solution 
corresponds to a point outside the feasible region. The two-dimensional figure does 
not show the values of slack variables s\ and s2> whose values can be obtained by 
substituting the values of X\ and x2 into the respective equations. For example, 
extreme point (6,0) has si = 0 and s2 = —4 and extreme point (0, 8) has s¡ = —2 and 
s2 = 0. Both points are outside the feasible region and correspond to basic infeasible 
solutions. 

FIGURE 9.1 Six basic solutions to Example 9.2. 



TABLE 9.8 Basic Solutions Associated with Figure 9.2 

X N 

Xß 

1 

x i = 0 , 
x2 = 0 

•Si = 6 , 

52 = 8. 
5 3 = 4 

2 

x, = 0 , 
5 , = 0 

x2 = 6, 
52 = 2, 

5 3 = 4 

3 

x,=0, 
5 2 = 0 

x2 = 8, 
5, = - 2 , 

5 3 = 4 

4 

x,=0, 
53 = 0 

No solution 

Basic Solution 

5 

x2 = 0, 
5 , = 0 

Xi = 6 , 

52 = - 4 , 

5 3 = - 2 

6 

x2 = 0, 
5 2 = 0 

X] = 2 , 

5, = 4 , 

5 3 = —2 

7 

x2 = 0, 
5 3 = 0 

X i = 4 , 

51 = 2 , 

5 2 = 0 

8 

5 l = 0 , 

52 = 0 

x , = 2 , 
x2 = 4, 
53 = 2 

9 

5 , = 0 , 

5 3 = 0 

x , = 4 , 
x2 = 2, 
52 = - 2 

10 

5 2 = 0, 

53 = 0 

x , = 4 , 
x2 = 0, 
5, = 2 
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FIGURE 9.2 A degenerate solution created by x¡ <4. 

A degenerate solution has more than one basic feasible solution corresponding to an 
extreme point. To show this, we add the constraint X\ < 4 to the problem in Example 
9.2. Figure 9.2 shows the same feasible region with four extreme points, while Table 9.8 
shows the five basic feasible solutions. Note that every basic feasible solution 
corresponds to an extreme point, except that the two degenerate solutions 7 and 10 
correspond to the same extreme point (4,0). The only difference between the two is that 
they belong to different bases. In other words, they have two different sets of basic 
variables: the zero- valued variable x2 is basic in solution 10, but nonbasic in solution 7. 

9.5.2 Explanation of "Simplex Method" Nomenclature 

Corresponding to adjacent basic feasible solutions, adjacent extreme points are 
hereby defined. 

Definition 9.5 Two extreme points of a polyhedron X are said to be adjacen t if they 
are joined by a line segment forming an edge of X. 

Consider Figure 9.1. To the extreme point (0, 0), for example, points (4, 0) and 
(0,6) are its adjacent extreme points. To the extreme point (4,0), points (2,4) and (0,0) 
are its adjacent extreme points. 

Recall that in Chapter 8, a specific class of the bounded polyhedron in E", formed 
by all convex combinations of n + 1 linear independent vectors, is called a simplex. 
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The simplex method searches the feasible region for an optimum extreme point by 
sequentially examining a subset of simplexes comprising the boundary of the 
polyhedron. Each simplex is formed by the convex combination of the current 
extreme point, a basic feasible solution, and n adjacent extreme points. Each simplex 
iteration geometrically moves from the current extreme point to an adjacent extreme 
point along an edge of one of these simplexes. 

Take Figure 9.3a for an example. There are four extreme points and hence four 
simplexes. The four extreme points are denoted by x1 = (0, 0), x2 = (0, 6), x3 = (2,4), 
and x4 = (4, 0). The four simplexes are Sx = {x1, x2, x4}, S2 = {x2, x \ x3}, S3 = {x3, 
x2, x4}, and S4={x4, x3, x1}. Simplex Si is indicated by a shaded triangle in 
Figure 9.3a, and simplex S2 by a shaded triangle in Figure 9.3b. Solving the LP 
problem in Example 9.2, the simplex method begins with Si and moves to S4, and then 
to S3 when x3 is the optimum. The corresponding edges traveled are [x1, x4] and 
[x4, x3]. An alternate sequence is Si —► S2 —> S3. Note that each simplex tableau 
contains the information about the current extreme point (basic feasible solution) and 
its adjacent extreme points. The pivot procedure decides whether to exchange the 
current extreme point for an adjacent extreme point and determines the coordinates 
(values) of the next extreme point. 

9.5.3 Identifying an Extreme Ray in a Simplex Tableau 

Recalling from Chapter 8, we know that an unbounded polyhedron P of an LP 
problem can be described in terms of extreme points and extreme rays. An extreme 
ray of P is defined as x = x0 + àX, À > 0, where Xo is the root or vertex of the extreme 
ray, d is the extreme direction, and l i s a nonnegative scalar, unbounded above. Note 
that x0 is an extreme point of P. In Chapter 8, we learned how to calculate algebraically 
an extreme direction. Here we will show how to identify an extreme ray and extreme 
direction from a given simplex tableau. First, we use a simple graphical example and 
then derive the algebraic relationship. 

Example 9.4 (Extreme Ray) Consider the following LP problem: 

Maximize z = 4.x 1 + 3x2 

subject to — x\ + X2 < 4 

x\ —2x2 < 2 

X\, X2 > 0 

Solving it by the graphical method, we obtain Figure 9.4 in which the extreme ray is 
expressed by 

ö+"(')' , = ° 
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FIGURE 9.3 (a) A simplex associated with Example 9.2. (b) Another simplex associated 
with Example 9.2. 
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FIGURE 9.4 Feasible region for Example 9.4. 

Alternatively, solving the problem by the simplex method, we obtain the following 
two simplex tableaus: 

Basic Variable 

z 

* 3 

X4 

z 

1 

0 
0 

X\ 

- 4 

- 1 
1 

x2 

- 3 

1 
- 2 

* 3 

0 

1 
0 

x4 

0 

0 
1 

RHS 

0 

4 
2 

Basic Variable 

z 

X3 

X\ 

z 

1 

0 
0 

X\ 

0 

0 
1 

Xl 

-11 

- 1 
- 2 

* 3 

0 

1 
0 

x4 

4 

1 
1 

RHS 

8 

6 
2 

The last simplex tableau indicates that the problem has an unbounded solution 
because x2 column contains all nonpositive values. This condition implies 
that the variable x2 can increase its value to 00 without making the new RHS 
negative (or violating any constraints). This simplex tableau indicates that the 
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current basic feasible solution is 

xB = (x3,xi)T = (6,2)T 

and xN = (x2,x4)
T = (0,0)T 

Rearranging in order of variables, we have the following root of an extreme ray 

x0 = (xux2,x3,x4)
T = (2,0,6,0)T 

Also from this simplex tableau, we have the pivot column, 

a2 

Given that x2 is the entering variable, the following condition must be satisfied to 
ensure that the next solution is feasible: 

1 1 
0 

6 

\o) 

-

/ - 2 \ 
0 

- 1 

\o) 

Xl > 

(°\ 
0 

0 

W 
where x2 > 0. The extreme direction of this ray is d = (2, 1, 1, 0), as can be seen 
in (9.16). 

Now we show the general relationship algebraically. Recall that for a maximiza-
tion problem, if we have a basic feasible solution with c¿ < 0 for some nonbasic 
variable x^ and a¡k < 0 for all i — 1, 2, . . . , m, then the problem has an unbounded 
solution. This has been shown in Section 9.4.1 using the system of equations in (9.13), 
which is restated here: 

xBl = bj-äikXk (i = 1 ,2 , . . . , m) 

or in matrix form, XB = b—ä^x^ 

Because the coefficient of the entering variable xk is 1, the vector of the next 
nonbasic variables must be 

/ 0 \ 

xN e* 

w 
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Putting xB and xN together, we obtain 

■ - : - r r - : ♦ : > <-> 
Comparing (9.13) with the definition of extreme ray given below, 

x = x0 + /ld, A > 0 (9.14) 

with the root, the current extreme point, 

H« (915) 

the extreme (ray) direction, 

-{:) <9i6) 

and the unbounded step size 

X = xk 

9.6 THE SIMPLEX METHOD FOR UPPER BOUNDED VARIABLES 

Quite often in practice, a variable has a lower bound other than 0 and has a finite upper 
bound other than infinity. Let /, and Uj denote the lower and upper bounds of variable 
Xj, respectively. Then, we have the following lower bound and upper bound con-
straints as follows: 

xj>lj (9.17) 

xj < Uj (9.18) 

The lower bound constraint (9.17) can be easily handled by a variable substitution. 
Let a new variable x'¡ ~ Xj—lj for any lower bound constraint. We can then obtain a 
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new problem containing new variables x'¡ for all lower bound constraints, each with 
standard lower bound zero. 

However, the upper bound constraint (9.18) cannot be handled similarly 
because despite substituting new variables x¡ = Uj—Xj, we still require upper 
bound constraints for the new variables. Nevertheless, the upper bound con-
straints can be handled implicitly by a modification of the ordinary simplex 
method without explicitly treating them as ordinary constraints. As a result, the 
number of constraints in an upper bounded linear program can be greatly 
reduced. 

Now we are ready to describe the simplex method for upper bounded variables, 
also known as the upper bound technique. The basic concept is to allow any upper 
bound variable Xj to be nonbasic if x¡ = 0 (as usual) or if x¡ = Uj. To attain this, we use 
the following rules: For each upper bounded variable with x¡ = u¡, we define a new 
variable x¡ by the relationship Xj + Xj = u¡ or Xj = u¡ — Xj. Note that if Xj = 0, then 
Xj = Uj, whereas if Xj — u¡, then x}■ = 0. Whenever we want Xj to equal its upper bound 
Uj, we simply replace it with Uj — Xj. 

Suppose a basic feasible solution is available and we are solving a maximization 
problem. At each simplex iteration, we choose the entering variable JC* as in the 
ordinary simplex algorithm. There are three possible cases that limit the amount by 
which Xk can increase: 

Case 1: Xk cannot exceed the minimum ratio 6 as usual. Otherwise, it will cause one 
or more current basic variables to become negative. 

Case 2: x^ cannot exceed the amount by which it will cause one or more current basic 
variables to exceed its upper bound. We shall denote this amount as 6'. 

Case 3: x^ cannot exceed its upper bound u^. 

Any increase of x¿ must be within these three limits (i.e., the minimum of 6,6', and 
u/c). The simplex algorithm for upper bounded variables for a maximization problem 
is as follows: 

Step 0 (Initialization). Find a starting basic feasible solution as in the ordinary 
simplex method. Introduce a new variable x¡ for each upper bound constraint, 
xj < Uj, such that x¡ + x¡ — u¡, where Uj is a constant. 

Step 1 (Optimality Test). Check if the usual optimality condition is satisfied. If yes, 
an optimum solution is found; otherwise, go to next step. 

Step 2 (Entering Variable). Select the entering variable xk as in the ordinary simplex 
method. 

Step 3 (Leaving Variable and Pivoting). Compute 9, 6', and A as follows: 
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, . (uj—bj _ 1 
6 = min, < —^—, a¡k < 0 > 

l ~a¡k J 

A = min{0,0', Uk} 

There are three cases of A: (1) If A = 6, then determine the leaving variable xBr and 
perform the ordinary pivoting. (2) If A = 6', then replace the leaving variable xBr 

with Ußr— Xßr in row r and the "label" for XB, with XB, and perform the ordinary 
pivoting. (3) If A = Uk, then replace the entering variable Xk with Uk —Xk in each row of 
the tableau, and Xk with x.k in the "label" row. In any case, go to step 1 for an optimality 
test. 

Example 9.5 (Bounded Variables) Consider the following LP problem 

Maximize z = \x\ + 3^2 

subject to x\ + X2 < 6 

2xi + x2 < 8 

X] > 1 

1 < x2 < 3 

Assuming x\ = x\ — 1, x2 = x2— 1, the problem can be transformed into 

Maximize z = Ax\ + 3x'2 + 7 

subject to x\ + x2 + s\ = 4 

2x', + x'2 + s2 — 5 

x'2 < 2 

Let x2 + x'2 = 2. The starting basis consists of (sx, s2) with the initial tableau as 
follows: 

Basic Variable 

z 

z 

1 

A 
- 4 

4 
- 3 

Sl 

0 

■Ï2 

0 

RHS 

7 

A, 0 1 1 1 0 4 
s2 0 2 1 0 1 5 
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Clearly, the optimality condition is not satisfied. Select x\ as the entering variable. 
Then, we have 

0 = min{^}=2.5 

Note that 6' does not exist in this case since both an and Ö21 are nonnegative and 
that x'[ has no upper bound. Thus, A = 6 = 2.5, which makes s2 the leaving variable. 
After pivoting, we obtain the following updated tableau. 

Basic Variable 

z 

Si 

A 

z 

1 

0 
0 

A 
0 

0 
1 

A 
- 1 

0.5 
0.5 

S\ 

0 

1 
0 

Si 

2 

-0.5 
0.5 

RHS 

17 

1.5 
2.5 

The optimality condition still does not hold, so choose x'2 to be the entering 
variable. Compute 

• fl-5 2.51 „ 
ö = m , n{uTö5r 3 

Note that 6' does not exist. Since x2 has upper bound 2, A = min{0 = 
3, u2 = 2} = 2. Replacing x'2 with 2—x'2, we obtain the following tableau: 

Basic Variable 

z 

S] 

A 

z 

1 

0 
0 

A 
0 

0 
1 

x'2 

1 

-0.5 
-0.5 

S\ 

0 

1 
0 

■52 

2 

-0.5 
0.5 

RHS 

19 

0.5 
1.5 

Now the optimality condition is satisfied; hence, the optimal solution to the 
transformed problem is x\ — 1.5, x'2 = 0 (or x2 = 2 - 0 = 2), and z = 19. 
Transforming back to the original problem using the relations x', = X] - 1 and 
x'2 — X2 —1, we have an optimal solution to the original problem: X\ = 2.5, x2 = 3, 
and z= 19. 

Handling lower bounded variables by substitution and upper bounded variables 
by this method greatly increase the efficiencies for solving LP problems. To 
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illustrate this, suppose we are solving an LP with 100 bounded variables with 10 
other constraints. If we use the ordinary simplex method, the size of basis for each 
tableau would be 210 x 210 (=44,100). If we use these two handling techniques, the 
size would be only 10 x 10 or 100. Moreover, solving an integer program by the 
branch-and-bound method (to be covered in Chapter 11) mainly contains two 
branches using lower and upper bounded variables. The savings in computation are 
evident. 

9.7 THE DUAL SIMPLEX METHOD 

There are three uses of the dual simplex method: ( 1 ) finding a new LP optimum after 
one or more constraints are added to the current LP optimum, (2) finding a new LP 
optimum after changing the right-hand side of constraints, and (3) solving an ordinary 
linear program. 

For cases 1 and 2, the addition of constraints or change of the right-hand side 
may cause the current basic solution to become infeasible. In other words, the 
augmented simplex tableau may contain negative values on the right-hand side 
while the objective row remains nonnegative (dual feasible) in a maximization 
problem. These are the typical starting conditions for the dual simplex method. 
For case 3 where the objective row contains some negative values, we can 
augment a big-M artificial constraint to the original simplex tableau and perform 
row operations to obtain a canonical form for a starting basis. See note 9.7 for 
details. 

For solving an integer program, the first use is the most important for efficient 
reoptimization because the dual simplex method is applied within the IP algorithms 
such as the branch-and-bound, cutting plane, and branch-and-cut. The dual simplex 
algorithm for a maximization problem is described below. 

Step 0 (Initialization). Obtain a starting dual feasible solution. In the ordinary 
simplex tableau, this implies that all components of the objective row are 
nonnegative, or the updated values c > 0. Initially, we construct a basic solution 
with only slack variables as basic variables (no artificial variables are ever 
needed). This may cause some right-hand side values to become negative. In the 
initial simplex tableau, b may be equal to b where some components are 
negative. 

Step 1 (Optimality Test). Check if b > 0. If yes, the current solution is optimal. 
Otherwise, go to next step. 

Step 2 (Leaving Variable). Determine the leaving variable xr by selecting a pivot 
row r with the most negative value on the right-hand side, that is, br = min, {b¡: 
bi<0}. 

Step 3 (Infeasibility Test). If ar¡ > 0 for all j , the given problem has no feasible 
solution. Otherwise, go to next step. 
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Step 4 (Entering Variable). Determine the entering variable by selecting the pivot 
column k based on the minimum ratio test: 

Ck 
—^— = min 
-ark 

ij\-^-,arj<0 

where c¡ is the y'th component of CN- Note that ties in entering variable are 
broken arbitrarily and that if the entering variable rule cannot be applied 
(e.g., arj < 0 for all j= 1, . . . , ri), then the dual is unbounded and the primal is 
infeasible. 

Step 5 (Pivoting). Update the current simplex tableau by pivoting on the pivot 
element ark- Return to step 1. 

Example 9.6 (Dual Simplex) Consider the following constraint that is added after 
an optimum solution is found for Example 9.2: 3xj + 2x2 < 12. We wanted to find a 
new optimum using the dual simplex method. Recall the current optimum tableau 
(Table 9.5) below: 

Basic Variable 

z 

* 2 

X , 

z 

1 

0 
0 

X , 

0 

0 
1 

x2 

0 

1 
0 

■Si 

2 

2 
- 1 

■Ï2 

1 

- 1 
1 

RHS 

20 

4 
2 

Appending the additional constraint in equation form after introducing a slack 
variable s3, we obtain the following tableau: 

Basic Variable 

z 

Xl 

X\ 

•*3 

z 

1 

0 
0 
0 

* i 

0 

0 
1 
3 

x2 

0 

1 
0 
2 

•Sl 

2 

2 
- 1 

0 

«2 

1 

- 1 
1 
0 

■S3 

0 

0 
0 
1 

RHS 

20 

4 
2 

12 

Note that this tableau does not have a canonical form and hence is not a simplex 
tableau. To obtain a canonical form, we add to s3 row (—2) multiple of x2 row and (-3) 
multiple of Xi row. 

Basic Variable 

z 

x2 

X] 

¡3 

z 

1 

0 
0 
0 

X , 

0 

0 
1 
0 

x2 

0 

1 
0 
0 

•Sl 

2 

2 
- 1 
- 1 

■S2 

0 

- 1 
1 

- 1 

«3 

0 

0 
0 
1 

RHS 

20 

4 
2 

- 2 
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Because c > 0 and b has a negative component, we have a starting condition for the 
dual simplex method. Let s3 be the leaving variable. Compute min{2/l , 0/1}, choose 
s2 as the entering variable, and perform pivoting. 

Basic Variable 

z 

x2 

X\ 

*2 

z 

1 

0 
0 
0 

X\ 

0 

0 
1 
0 

x2 

0 

1 
0 
0 

Si 

2 

3 
- 2 

1 

Í 2 

0 

0 
0 
1 

■S3 

0 

0 
0 
1 

RHS 

20 

6 
0 
2 

Because all b¡ > 0, we obtain an optimum solution (0, 6, 0, 2) with z = 20. 

9.8 T H E REVISED S I M P L E X M E T H O D 

Recall the LP problem in partitioned form 

Maximize z = CßXß + C£XN 

subject to BXB + NXN = b 

x B , x N > 0 

where xB and xN, respectively, denote vectors of basic and nonbasic variables; c B and 
cN, respectively, are associated objective coefficients; and B and N, respectively, are 
coefficient matrices associated with the constraints. 

Multiplying the equality constraints by B _ 1 , we obtain 

I X B + B 1 N x N = B 1 b 

Writing the objective function in terms of xN, we obtain 

Maximize z = ( - C B B ~ 1 N + C T
4 ) X N + CgB_ 1b 

Transferring the variable term to the left-hand side of the objective row and 
combining it with the constraints, we obtain the following "ordinary" simplex 
tableau: 

z xB xN RHS 

1 0T c^B 'N-c£ c£B-'b 
0 I B ' N B ' b 
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From the foregoing ordinary simplex tableau, we observe the following 
notes: 

1. Once the set of basic variables xB is specified, the corresponding simplex 
tableau can be calculated directly from the original data. 

2. There is no need to update and store the coefficient matrix associated with the 
basic variables because that matrix is always identity I, and the reduced cost 
associated with each basic variables is always zero. 

3. All other entries of the ordinary simplex tableau are characterized by pre-
multiplying the original data by B~ . Therefore, only B - 1 is required to be 
updated. 

4. The reduced cost vector c j associated with the nonbasic variables is calcu-
lated by cjj = CgB_1N — cj,, whosey'th entry c, = CgB^'a, - cj, where column 
a ,eN. 

5. The dual solution uTis updated by uT ~ CgB"1, which requires to be computed 
only once for each simplex iteration. 

6. The updated coefficient columns associated with nonbasic variables are B_1N, 
whose y'th column is ay = B-1ay. 

7. The primal solution is computed by xB = B - 1 b = b, xN = 0, and z = 
c j j ß - ' b ^ B b . 

Based on the foregoing results, the ordinary simplex tableau can be further 
simplified to the revised simplex tableau as shown below. 

C B B - ' = uT 

B ' 

c¡B_1b = z 

B_1b = b 

Using the above revised simplex tableau, the revised simplex algorithm for the 
maximization problem may now be described as follows: 

Step 0 (Initialization). Find an initial revised simplex tableau using slack vari-
ables (and/or artificial variables, if needed). In the presence of artificial 
variables, the two-phase method is applied as usual to obtain a starting basic 
feasible solution. Initially, B = B _ 1 = I , uT = c£B_1 =<:£, B 'b = b, and 
z = clB1b = clb. 

Step 1 (Pivot Column). For all nonbasic y and a, e N = A\B, compute 

a) = B ' a , 

cj = uTäy-c; 
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Determine the entering variable xk by 

k={j : minj(cj : c¡ < 0)} 

and the pivot column 

0 
Step 2 (Optimality). A finite maximum solution has been found if c^ > 0 and at least 

one entry of âk is positive. An unbounded maximum exists if ëk > 0 and ä^ < 0. 
Otherwise, go to step 3. 

Step 3 (Pivot Row). Append pivot column k and determine the leaving variable xBr or 
pivot row r by 

r = {i : min,[^-, a¡k> 0 
{ \a¡k 

Go to step 4. 

Step 4 (Pivoting). Update the revised simplex tableau by pivoting at ark. Go to 
step 1. 

The revised simplex method is actually the version of the simplex algorithm most 
implemented in software. It is also particularly useful in the branch-and-price 
algorithm for solving MIPs (Chapter 13). In the standard simplex, the most computa-
tion time would be due to updating every column in the simplex tableau with each 
iteration. Even though this assures the availability of all the data needed for the next 
pivot (pivot position not yet determined), we actually end up using only one column to 
make the decision on which variable will exit the basis. An example will illustrate the 
efficiency of this approach. 

Example 9.7 Solve the following problem by the revised simplex method. 

Maximize Ax\ + 3^2 + x3 + 7 M + 6x5 

subject to x\ + 2x2 + 3x3 + x 4-3x 5 < 9 

2xi —X2 + 2x3 + 2x4 + X5 < 10 

-3xj + 2x2 + X3-X4 + 2x5 < 11 

x > 0 
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Adding slack variables, we have 

Maximize z = 4x\ + 3x2 + x3 + 7x4 + 6x5 

subject to x\ + 2x2 + 3x3 + X4—3x5 +s\ =9 

2x\ —X2 + 2x3 + 2x4 + X5 + *2 = 10 

-3xi + 2x2 + X3— X4 + 2x5 + 53 = 11 

x > 0 , s > 0 

Step 0 (Initialization) 

XB = (íl,Í2,Í3)T,XN = (x1,X2,X3,X4,X5)
T,c5 = (0,0,0),cJf = (4,3,l,7,6), 

b=(9,10, l l ) T ,B=B^1 =I ,uT = cSB-1 = (0,0,0), 

b = B- 'b = (9,10,ll)T,z=0 

Iteration 1 

Compute cj, =CgB_1N - c j = (-4, - 3 , —1, - 7 , -6) . We select x4 as the entering 
variable. Then the pivoting column 4 is calculated by 

B 'a4 = 

1 0 0" 

0 1 0 

0 0 1. 

" r 
2 

. - 1 . 

= 
" r 

2 

. - 1 . 

, C4 = u 84—C4 

Add the pivot column to the right of the revised simplex tableau, and s2 becomes the 
leaving variable (why?). 

z 

S3 

0 0 0 

1 0 0 

0 1 0 

0 0 1 

0 

9 

10 

11 

- 7 

After pivoting, the new tableau becomes 

z 

S\ 

■S3 

0 

1 

0 

0 

3.5 

-0.5 

0.5 

0.5 

0 

0 

0 

1 

35 

4 

5 

16 
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Iteration 2 

uT === (0,3.5,0). Therefore, c j === cjB_1N - c j = (3, -6.5,6,0, -2.5,0,3.5,0). Then, 
x2 is selected as the entering variable. 

B 1 a 2 

1 

0 

0 

-0.5 0" 

0.5 0 

0.5 1 

' 2" 

- 1 

2 

= 

" 2.5 

-0.5 

1.5 
, c2 

uTa2—c2 -6.5 

Add the pivot column to the right of the revised simplex tableau and S\ becomes the 
leaving variable. 

z 

S\ 

X4 

S3 

0 

1 

0 

0 

3.5 0 

-0.5 0 

0.5 0 

0.5 1 

35 

4 

5 

16 

-6.5 

2.5 

-0.5 

1.5 

After pivoting, the new tableau becomes 

z 

x2 

X4 

S3 

2.6 

0.4 

0.2 

-0.6 

2.2 0 

-0 .2 0 

0.4 0 

0.8 1 

45.4 

1.6 

5.8 

13.6 

Iteration 3 

= (2.6, 2.2, 0). Therefore, cl -clB 'N-
Then x5 is selected as the entering variable. 

= (3,0, 11.2,0,-11.6,2.6,2.2,0). 

B ' a 5 = 

0.4 

0.2 

-0.6 

-0 .2 0" 

0.4 0 

0.8 1. 

" - 3 " 

1 

. 2 . 

= 

"-1.4" 

-0 .2 

. 4.6 . 

, cj = -11.6 

Add the column to the right of the revised simplex tableau and s3 becomes the leaving 
variable. 

z 

x2 

X4 

S3 

2.6 

0.4 

0.2 

-0.6 

2.2 0 

-0 .2 0 

0.4 0 

0.8 1 

45.4 

1.6 

5.8 

13.6 

-11.6 

-1.4 

-0 .2 

4.6 
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After pivoting, the new tableau becomes 

z 

x2 

Xi, 

x5 

1.09 

0.22 

0.17 

-0.13 

4.22 

-0.04 

0.43 

0.17 

2.52 

0.30 

0.04 

0.22 

79.70 

5.74 

6.39 

2.96 

Iteration 4 

uT = (1.09, 4.22, 2.52). Therefore, cJJ = c j B - ' N - c J ) = (-2.04, 0, 13.22, 0, 0, 
1.09, 4.22, 2.52). Then x\ is selected as the entering variable. 

B 'a. 

0.22 -0.04 0.30 

0.17 0.43 0.04 

-0.13 0.17 0.22 

■ 1 ■ 

2 

. - 3 . 

= 

■-0.61-

0.913 

. - 0 . 4 3 . 

, c, = -2.04 

Add the column to the right of the revised simplex tableau and x4 becomes the leaving 
variable. 

*2 

X4 

*5 

1.09 

0.22 

0.17 

-0.13 

4.22 2.52 

-0.4 0.30 

0.43 0.04 

0.17 0.22 

79.70 

5.74 

6.39 

2.96 

-2.04 

-0.61 

0.913 

-0.43 

After pivoting, the new tableau becomes 

x2 

Xi 

*5 

1.48 

0.33 

0.19 

-0.05 

5.19 

0.33 

0.48 

0.38 

2.62 

0.33 

0.05 

0.24 

94 

10 

7 

6 

Iteration 5 

uT = (1.48, 5.19, 2.62). Therefore, c£ = c ¡ B _ 1 N - c £ = (0, 0, 16.42, 2.23, 0, 1.48, 
5.19,2.62). Since all reduced costs are nonnegative, an optimum has been found and 
the algorithm terminates. 
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9.9 NOTES 

Section 9.2 

Many LP solvers provide several options for the user to select the entering variable. 
The options may include random selection, the first index, the most unit improvement, 
and the most total improvement. 

Section 9.3 

For finding the starting basic feasible solution, the big M method seems easier to 
comprehend and to compute manually, but it is not implementable in practice 
because we cannot give an appropriate value precisely for the big M. No matter 
what value you choose, for some problems it could be either too large or too small. 
In either case, it could cause great truncation and/or rounding errors that would 
mislead the solution. The two-phase procedure is the only method utilized in 
practice. 

Theoretically, the degeneracy can cause a cycling problem for simplex iterations 
(see the example given by Beale, 1955). But in practice the cycling problem is highly 
unlikely. Although there are cycling prevention rules available (e.g., Bland's rule 
(Bland, 1977)) that guarantee finite convergence of the simplex algorithm, usually 
they are not implemented in commercial software because of substantial extra 
computational efforts. 

Section 9.7 

The starting dual feasible solution corresponds to the condition when a cutting 
constraint is introduced after an LP optimum is obtained. To reoptimize the aug-
mented LP problem, the dual simplex method is much efficient than solving a new LP 
problem from scratch. 

In case the dual simplex method is used as an independent algorithm for solving an 
LP problem from scratch and if the dual solution is infeasible, then make it feasible by 
adding the following redundant constraint (also called artificial constraint) obtained 
by summing over all nonbasic variables: 

y'6N 

or ^2xj + x"+i = M 

where M is a big value that can be set equal to the sum of finite upper bounds of 
all nonbasic variables and xn+i is the associated slack variable. Perform the 
elementary row operations such that a standard form of the simplex tableau is 
obtained. 
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9.10 EXERCISES 

9.1 Transform the following LP problem to canonical form. 

Minimize z = 3xj + 5x2 

subject to 2xi + X2 > 13 

-X!+X 2 < 10 

Xi, X2 > 0 

9.2 Consider the LP problem in Exercise 9.1 again. List all its extreme points and 
determine if each pair of points are adjacent. 

9.3 Consider the following LP problem. Plot the feasible region and identify all the 
extreme points. Find the optimal solution by evaluating the objective function 
at each extreme point. 

Maximize z = 5xi + 3x2 

subject to x\ +X2 < 12 

-2xi +X2 < 7 

x\—xi > 3 

JCI < 5 

x\, x2 > 0 

9.4 The point (1/3,1/3,1/3) is feasible for the following problem. Is it also a basic 
solution? Why or why not? 

Minimize z = 2xi +3x2—2x3 

subject to xi + X2 + X3 < 1 

xi—2x2 +2x3 < 2 

xi ,x 2,x3 > 0 

9.5 Consider the following LP problem. Verify that x = (0,2.5,0)T is optimal and 
that the dual price of binding constraint 3 is 1.5. 

Minimize z = 2xi + 3x2 + X3 

*1 + *2 + *3 < 3 

2xi +2x3 < 3 

xi + 2x2 + 3x3 > 5 

x > 0 
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9.6 Consider the following LP problem: 

Minimize z = xi—2x2—2x3 

subject to 2x\ + 2x2 + X3 < 11 

x\ + x 2 - x 3 > 4 

XUX2,X3 > 0 

(i) Rewrite the problem in canonical form. 
(ii) Find an initial tableau using two-phase method (without solving the whole 

problem). 

9.7 Go through the phase I of the following LP problem and stop at the phase I 
optimum. Is the original problem feasible? Why? 

Minimize z = 2xi + 3x2 

subject to 2xi + X2 < 8 

x\ + 3x2 > 29 

x\,x2 > 0 

9.8 Consider the following LP problem: 

Maximize z = x\+ 2x2 

subject to 2xi+5x2 = 21 

Xi—x2 < 10 

x\,x2 > 0 

(¡) Rewrite the problem in canonical form, 
(ii) Solve the problem using two-phase method. 

9.9 Solve the following LP problem using the primal simplex method. 

Maximize z = 2xi + 3x2 

subject to xi —3x2 < 4 

—X\ +x2 <2 

3x!+x 2 < 10 

X], X2 > 0 

9.10 Suppose variable x, leaves the basis at some iteration p. Is it possible that Xj 
enters the basis at the end of iteration p + 1 ? Why or why not? 
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9.11 Solve the following LP problem using the primal simplex method. Note that 
some variables are unrestricted in sign. 

Maximize z = — 3x\ + X2—X3 +X4 

subject to 2x]—X2—xi +X4 < 8 

-2*i + 2x2 + 2x3 + 3x4 < 10 

—x\ + x 2 -3x 3 + x4 < 3 

X2,X4 > 0 

9.12 Consider LP problem in Exercise 9.11. Suppose at some iteration the basis 
consists of x2, Si, and s3, where S[ and s3 are the slack variables corresponding 
to the first and third constraints, respectively. 

(i) Decide the right-hand side values at this iteration without actually solving 
the problem, 

(ii) Decide the objective value at this iteration. 

9.13 Consider the following LP problem: 

Minimize z = 13xi -7^2 + *3 + 3xt-5x5 + X(, 

subject to —xi + 2x2 + X3 + X4 < 10 

2xi - x 3 + x4 + x5 < 13 

X2 + 3x3 — X4 — X(, < 7 

X¡,X2,X3,X4,X5,X(, > 0 

(i) Solve the problem to optimum using the primal simplex method. At each 
iteration, apply the rule of "least index" when picking the entering 
variable. That is, among all the candidates of entering variable, always 
choose the one with least index. 

(ii) At optimum, adjoin to the model the constraint x2 < 4. Reoptimize the 
problem using the dual simplex method. 

Solve the LP problem in Exercise 9.4 using the dual simplex method. 

The shaded area of the Figure 9.5 shows the feasible region of an LP problem. 

(i) Show the inequalities of the constraints. 

(ii) Start the primal simplex iteration with the basic feasible solution 
(X], x2) — (3, 0) and iterate until an optimal solution is obtained. 

9.14 

9.15 
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FIGURE 9.5 LP feasible region. 

9.16 Consider the following LP problem: 

Minimize x\— 2X2 + 2X3 + X4—5x5 + 3xg 

subject to x\ + *2 + x3 + *5 < 7 

2JC2 -2X3 + 2x5 +JC6 < 13 

x2 < 3 

X 1 ,X2 ,X 3 ,X 4 ,X 5 ,X 6 > 0 

Solve it using the upper bound technique. 
9.17 Consider the problem in Exercise 9.13. Now add two constraints: x{ < 5 , 

x 2 < 8 . 

(i) Start from the optimal tableau you obtained in Exercise 9.15 and 
reoptimize by adding one constraint at a time, 

(ii) What new extreme points are introduced into the problem, and which ones 
are gone? 

(iii) Solve the whole problem from beginning by using upper bound 
technique. 

9.18 Ben has three dogs, Uno, Dos, and Tres. Every day Ben feeds them with five 
types of food: beef, dog food, bread, bones, and chicken. Each type of food 
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TABLE 9.10 Food Prices 

Food 

$/lb 

Beef 

$2.50 

Dog Food 

$1.00 

Bread 

$0.80 

Bones 

$1.20 

Chicken 

$1.60 

is bought in pounds. The price for each type of food is as follows 
(Table 9.10): 

Ben's wife wants him to find the most cost-effective plan for feeding dogs, 
subject to the dogs' preferences. Table 9.11 shows the minimum amount of 
food consumed by each dog each day. 

Despite this, Dos eats no less than 2.5 lb of chicken plus bread. Uno 
eats no less than 2.71b of meats (including dog food, chicken, and 
bones). The total amount of bread and beef fed to Tres cannot be less than 
2.61b. 

(i) Formulate the problem as an LP. 
(ii) Solve the problem using LINGO®. Declare the variables and parameters 

by sets. Apply the domain defining functions as necessary. Show your 
output and interpret the solution. 

(iii) When solving the model, manipulate the "linear solver options" by 
selecting primal simplex, dual simplex, and barrier, respectively. Com-
pare the number of steps it took for LINGO® to solve the problem under 
each option. 

9.19 Solve the following LP problem using revised simplex method. 

Maximize — 3x¡ +X2—X3 + X4 

subject to 2x\— X2— X3 +X4 < 8 

-2xi + 2x2 + 2x3 + 3x4 < 10 

—Xi + X2~3X3 + X4 < 3 

x > 0 

TABLE 9.11 Minimum Daily Food Consumption 

Beef Dog Food Bread Bones Chicken 

Uno 0 0 0.5 1.7 1.9 
Dos 0 1.5 0.3 0.9 0.1 
Tres 1.5 0.9 0.8 0.6 0.2 
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9.20 Solve the following LP problem using revised simplex method. 

Minimize x\— 2x2— 2x3 

subject to 2xi + 2x2 + *3 < 11 

xi +X2— X3 > 4 

xi ,x2 ,x3 > 0 



10 
NETWORK OPTIMIZATION 
PROBLEMS AND SOLUTIONS 

There are certain classes of integer programming problems whose special structures 
make them particularly easy to solve. Among them, the most noteworthy class is the 
network-structured problems whose LP solutions under certain conditions are 
naturally integer. This class includes the well-known transportation, assignment, 
transshipment, maximum flow, and shortest path problems, appearing in most 
introductory OR texts. These network and related models are widely formulated in 
real-world problems, as estimated (Taha, 2007) that "70% of real-world mathematical 
programming problems use network-related models." 

The purposes of this chapter are (a) to formulate each of these problems as a special 
case of a larger class of problem called the minimum cost network flow problem, (b) to 
introduce a unifying solution algorithm (called the network simplex) that is much 
more efficient than the ordinary simplex algorithm, and (c) to provide the sufficient 
conditions (or model structures) that characterize such "easy" integer programs. 

As a generalization of the transportation algorithm, the network simplex method 
performs the simplex operations directly on the network itself. Moreover, these 
simplex operations involve only additions and subtractions, unlike the ordinary 
simplex that requires multiplications/divisions. The empirical experience shows that 
this method enables one "to solve problems 200-300 times faster than a standard 
simplex method that ignores any inherent special structures other than sparsity" 
(Bazaraa et al., 2005) of the constraint matrix. 

Before we define the class of minimum cost network flow problem and its 
individual problems, we need some basic knowledge of network (or graph) concepts. 

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang 
Copyright © 2010 John Wiley & Sons, Inc. 
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10.1 NETWORK FUNDAMENTALS 

Definition 10.1 A network (or graph) G is a collection of nodes (or vertices) 
and a collection of arcs (or edges) joining pairs of nodes, denoted by G = (V, E), 
V={1,2 , ...,m), and E=[(i, / ) : iJeV}. 

An arc in G may be either directed or undirected. A directed arc is an ordered pair 
of nodes (/, j) that allows the flow only going from node i to j . Nodes /' and j , 
respectively, are called initial and terminal nodes of arc (/,/). An undirected arc allows 
the flow in either direction and may be replaced by two opposite directed arcs of the 
same capacity. In the context of this chapter, we will deal with directed networks (or 
digraphs) in which all arcs are directed. 

Definition 10.2 Apath (from node /0 to ip) is a sequence of arcs [(i0, ¿i), (i\, ¿2), ■ ■ -, 
(ip-1. ip)} in which the initial node of each arc is the same as the terminal node of the 
preceding node in the sequence and all nodes /0, i\, ..., ip are distinct. A chain is a 
sequence of arcs similar to a path, except that not all arcs are necessarily directed 
toward node ip. Thus, every path is a chain but a chain may not be a path. 

Consider, for example, Figure 10.1 in which the sequences {(1, 2), (2, 4)} and 
{( 1,3), (3,4)} are paths from node 1 to node 4. These paths are also chains from node 
1 to node 4. The sequences {(1,2), (3,2), (3,4)} is a chain from node 1 to 4, but not a 
path because arc (3, 2) is not directed to node 4. 

Definition 10.3 Given a network G (V, E) and a distance (cost) cy associated with 
each directed arc (i, j), the problem to determine a path from a specified node to 
another specified node with a minimal total distance is called a shortest path {route) 
problem. 

Definition 10.4 A circuit is a path from some node i0 to ip plus the return arc (ip, ¡o). 
Thus, a circuit is a closed path. Similarly, a cycle is a closed chain and every circuit is a 
cycle but a cycle may not be a circuit. 

Consider Figure 10.1, adding arc (4,1 ) to either of the above two paths will yield a 
circuit. Similarly, adding arc (4, 1) to chain {(1,2), (3, 2), (3, 4)} will yield a cycle. 

FIGURE 10.1 A directed network. 
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(b) 

FIGURE 10.2 Trees and spanning trees. 

Definition 10.5 Given a network with m nodes, a tree with k(2<k<m) nodes is a 
subnetwork that connects all k nodes with no cycles. A spanning tree is a tree that 
connects all m nodes in the given network with no cycles. 

By definition, every arc (k = 2) in a network is a tree (with two nodes). Examples of 
trees with k = 3 and k~4 nodes are given in Figure 10.2a and b, respectively. The 
trees in Figure 10.2b are spanning trees of the network in Figure 10.1, but the trees in 
Figure 10.2a are not. 

The following are some important properties of a tree: 

1. Every tree (including spanning tree) with k nodes has exactly (k — 1) arcs. 
2. Adding any new arc from the original network to a spanning tree results in a 

unique cycle. 
3. Every pair of nodes in a tree can be connected by a unique chain. 

10.2 A CLASS OF EASY NETWORK PROBLEMS 

In this section, we define the minimum cost network flow (MCNF) problem and then 
show how the transportation, assignment, transshipment, maximal flow, and shortest 
path problems can be viewed as special cases of an MCNF problem. 
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10.2.1 The Minimum Cost Network Flow Problem 

The minimum cost network flow problem is defined as follows: Given a directed 
network G consisting of m nodes and n arcs joining pairs of nodes, let b¡ be the net 
supply amount (^outflow — inflow) at node i. There are three types of nodes: the 
supply or source node (if b¡ > 0), demand or destination node (if b¡ < 0), and 
transshipment or intermediate node (if b¡ — 0). Associated with each arc (i, j) is a 
lower bound Ly on flow through arc, a upper bound i/y on flow through arc, and a cost 
Cij of transporting a unit flow through arc. The problem is to determine the amount of 
flow Xjj through each arc (i, f) so that the total shipping cost is minimum. 

We assume that the total supply (sum of all b¡ > 0) equals the total demand (sum of 
all b¡ < 0) in the network, that is, £] è, = 0, / = 1,2,..., m. If Y¿ °i < 0 . t h e n t h e 

total supply cannot meet the total demand, and hence there is no feasible solution. If 
J2 b¡ > 0, then we can make it equal to 0 by adding a dummy demand node, say 
m + l ,withèm + 1 = — X]Z>¿, and adding arcs with zero cost from each supply node to 
the dummy demand node. 

In order to obtain a "uniform" flow balance equation for all nodes, the original 
network may be modified so that every node has both outgoing and incoming arc flows. 
To accomplish this, a "dummy" return arc is usually added. For example, if source node 
1 has no incoming arc and sink node m has no outgoing arc, then a return arc (ra, 1) 
joining m and 1 with 0 cost is created. After modification, the MCNF problem becomes 

Minimize z = ^2^2 
CyXy 

• J 

m m 

subject to 2_]xij—¿_\Xkl' = b¡ for each node/ (10.1) 

j=\ k=\ 

xy < Uij for each arc (j, j) (10-2) 

xy > Ly for each arc (i, j) (10.3) 
Constraints ( 10.1) stipulates that the net flow into and out of node / must equal b¡. 

These equations ensure that the flow may not be created or destroyed in the network. 
They are referred to as the flow conservation equations or flow balance equations. 
Constraints (10.2) and (10.3) ensure that the flow through each arc satisfies the upper 
and lower limits. For ease of representation, we will assume Ly = 0. If any lower 
bound is other than 0, we can convert it to 0 by a simple variable substitution as 
described in Section 9.6. 

10.2.2 Formulating the Transportation-Assignment Problem 
as an MCNF Problem 

The "classical" transportation problem may be stated as follows. Given n\\ source 
nodes (i=l,2,...,ml), each with s¡ units of supply, and m2 destination nodes (j = 1,2, 



250 NETWORK OPTIMIZATION PROBLEMS AND SOLUTIONS 

..., m2), each with dj; units of demand. Let Cy be the unit flow cost from node i toy, and 
Xij be the amount of arc flow to be determined. The problem is to determine the amount 
of commodity to be shipped from each source i to each destination y so that the total 
transportation cost is minimized. Mathematically, the transportation problem be-

comes 

Minimize z = Y^^c 
'jX'j i=l 7=1 

Subject to yj*i / = s¡ i = 1,2,..., m\ 
y=i 

^Xij = dj y = l , 2 , . . . , m2 
f=i 

Xij > 0 a l l i j 

(10.4) 

(10.5) 

(10.6) 

Reformulate the transportation model as a special MCNFP using the following 
procedure and Figure 10.3. 

1. Renumber m\ source and m2 destination nodes using a common index ¿=1,2, 
..., mi, mi + 1, m, + 2 , . . . , m, where m = m\ + m2. The unit transportation 
costs Cjj are also renumbered accordingly. 

2. Set bi = Si for /' = 1,2,..., m { and set bmi +J = —dj for/ = 1 , 2 , . . . , m2. Note that 
5 > = £ , 4 implies Er='i */ + YZx bmt+i = J2T=i b, = 0. 

3. Create a dummy source node (say node 0) with bo = J2T=\ b¡ a nd connect arcs 
(0, 0 for /'= 1, 2, ..., m, with unit cost c0i = 0. 

i > 0 Vn< 0 

bo=Zb, 
b2>0 , < 0 

bm+í = ¿ b¡ 
Í=ml + \ ;;0 

v
x 

^ 

-A. 

bm > o / / 

m\ j 

\ . \ bm < 0 

► [ m 

, ' i 

, ' ' i 

V ' 

FIGURE 10.3 Formulating transportation problem as an MCNF problem. 
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4. Create a dummy sink node (say node m + 1) with bm+ \ = YlT=m +i ^' anc^ 
connect arcs (m\ + i, m + 1) for / = 1, 2, . . . , m2 with unit cost ci%m+\ = 0. 

5. Add a return arc (m + 1, 0) with cm+ifi — 0. 
6. Ignore the upper bound constraints (10.2). 

The "classical" assignment problem can be viewed as a special case of the 
transportation problem, in which the number of source nodes is equal to the number 
of destination nodes (i.e., m, =m2). Demand dj at each destination node is 1, and 
supply Sj at each source node is also 1. The objective is to "assign" each source to a 
unique destination so that the total cost associated with an assignment plan is 
minimized. Clearly, we can formulate the assignment problem as an MCNF problem 
as we did for the transportation problem with special values of s¡ = dj = 1 for all / , / 

10.2.3 Formulating the Transshipment Problem as an MCNF Problem 

The transshipment problem is a generalization of transportation problem in which 
there are transshipment nodes in the network in addition to the sources and 
destinations. The transshipment node does not supply nor demand commodity 
(i.e., b,= 0). This problem is a special MCNF problem in which there is no upper 
limit on each arc flow as stipulated in constraints (10.2). 

10.2.4 Formulating the Maximum Flow Problem as an MCNF Problem 

Given a directed network with a single source node 1 and a single sink node m. A 
commodity supplied at node 1 is to be shipped to node m using one or more paths from 
1 to m. At each intermediate node, the sum of inflows must equal the sum of outflows. 
An arc (i,J) connecting nodes i andy is subject to a flow capacity Uy. The maximum flow 
problem is to determine the maximum amount of flow that can be shipped from node 1 
to node m. After adding a return arc (m, 1), the problem can be formulated as follows: 

Minimize —z = Y j —xy 
j 

subject to 2_. xij~ / J xki' — 0 for i = 1,2,..., m 
J k 

xy < U¡j for all i,j 

xy > 0 for all i,j 

The upper limit of the return arc (m, 1) may be set to Um\ = min{ ^¡Uy, J2j^mj}-
Converting this problem to an MCNF problem, we set all b¡ = 0, and let the objective 
coefficient Cy — — 1 for / = 1 and all j , and Cy — 0 for i'^ 1 and all j . 

10.2.5 Formulating the Shortest Path Problem as an MCNF Problem 

Given a directed network with distance or cost Cy on each arc (/, j). The shortest 
(longest) path problem is to find a path from the source node 1 to the sink node m at 
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minimum (maximum) cost. It can be viewed as sending a unit of flow from a 
node to another. Converting to a MCNF problem, we set U¡¡ = 1 for all /', j , and 
¿,- = 0 for all/. 

10.3 TOTALLY UNIMODULAR MATRICES 

An important property possessed by the MCNF problem is that every basic feasible 
solution is naturally integer provided that all b¡ and Uy are integer. In this section, we 
shall present a sufficient condition, called total unimodularity, that ensures this 
happens. 

10.3.1 Definition 

Definition 10.6 A square matrix whose determinant is 0, 1, or —1 is called 
unimodular. A matrix M is totally unimodular (TU) if the determinant of every 
square submatrix of M has value 0, 1, or — 1. 

Clearly, this definition implies that if matrix M is TU, then all of its elements must 
be 0, 1, or — 1. This is because every element of a matrix is a 1 x 1 submatrix. 

Example 10.1 Check each of the following matrices to see if it is totally unimodular. 
Checking all nine possible square submatrices for matrix 1, we see that the 

determinant of every submatrix is 0, 1, or —1, and hence matrix 1 is TU. Matrix 2 is 
5 x 6 and has numerous square submatrices. For instance, there are 75 4 x 4 
submatrices and 200 3 x 3 submatrices (verify!). Therefore, the process of checking 
the determinant of each of these submatrices is arduous. It will turn out that the 
structure of matrix 2 guarantee that it is TU. Matrix 3 is clearly not TU because the 
matrix contains elements of value 2. Matrix 4 is not TU because its submatrix formed 
by the first three columns and three rows has the determinant —2. 

Matrix 1 Matrix 2 Matrix 3 

- 1 
1 
0 

0 0 \ 
1 0 

- 1 - 1 / 
' 

/ l 0 0 1 1 1 \ 
1 1 0 0 1 1 
1 1 1 0 0 1 
0 1 1 1 0 0 

\0 0 1 1 1 0/ 

/ l 1 0 1 0 \ 
1 2 0 1 0 
0 0 0 1 1 
0 0 2 1 1 

\l 0 1 0 Oj 

/ 1 

ft 1 

0 

Matrix 4 

- ! \ 1 
0 - 1 

- 1 0 
1 0 / 

10.3.2 Sufficient Condition for a Totally Unimodular Matrix 

Theorem 10.1 (Sufficient Condition) Anmxn matrix M is totally unimodular if 
the following conditions hold: 

1. Every element of M is 0, 1, or — 1. 
2. Each column of M contains at most two nonzero elements. 
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3. The m rows of M can be partitioned into two mutually exclusive subsets Mi and 
M2 such that 

(a) If any column contains two nonzero elements of the same sign, one element 
can be placed in Mi and the other in M2. 

(b) If any column contains two nonzero elements of opposite signs, both elements 
can be placed in the same subset. 

Example 10.2 Check if the following matrix satisfies the sufficient condition 
for TU. 

0 

0 

1 

- 1 

0 

1 

- 1 

0 

0 

0 

0 

- 1 

- 1 

0 

0 

0 

0 

1 

0 

1 

1. Every element is 0, 1, or —1. 
2. Each column contains two nonzero elements. 
3. Begin the partitioning procedure with column 1. The two nonzero elements are 

of opposite sign, so both rows should be placed in the same subset, say, 
M, = {R„R4}. 

Scanning column 2, again the two nonzero elements are of opposite sign, and 
because R4 is already in M), we have Mi = {R],R4,R3}. From column 3, rows 1 and2 
must be in the same set, and hence Mi = {Ri, R4, R3, R2}. Column 5 has nonzero 
elements of the same sign, and so R2 and R3 should be in opposite sets. But, we already 
have R2 and R3 in the same set M1. This contradiction implies that this matrix does not 
satisfy condition 3 of Theorem 10.1. 

Note that if one of two sets created in verification of condition 3 is empty, then M is 
TU. This means that any matrix satisfying 1 and 2, and having nonzero elements of 
opposite sign in every column, is automatically TU. Matrix 1 in Example 10.1 is an 
example of such a matrix. The sufficient condition for a matrix to be TU is not 
necessary—meaning that we cannot claim that a matrix is not a TU just because it 
does not satisfy this sufficient condition. 

Definition 10.7 A network G(V, E) is called bipartite if there exists two subsets of 
nodes (vertices), V\ and V2, such that Vl U V2 = V and V\ n V2 = <£, and every arc 
(edge) of G is incident to exactly one node of Vi and one node of V2. 

The transportation and the assignment problems are examples of bipartite net-
works (graphs). The incidence matrix (matrix A in Ax = b) of a bipartite graph is 
totally unimodular. 
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10.3.3 Some Properties of Totally Unimodular Matrices 

The following are some important properties of totally unimodular matrices: 

1. The matrix obtained by adding (deleting) an identify matrix to (from) a TU 
matrix is also TU. 

2. The transpose of a TU matrix is also TU. 
3. The matrix obtained by pivoting on a TU matrix is also TU. 
4. The matrix obtained by multiplying any row (column) of a TU matrix by — 1 is 

also TU. 
5. The matrix obtained by interchanging any two rows (columns) of a TU matrix is 

also TU. 
6. The matrix obtained by deleting (adding) a unit row (column) of a TU matrix is 

also TU. 

Definition 10.8 A 0-1 matrix is called an interval matrix if in each column (or row) 
the l's appear consecutively (allowing wrapping around). 

For example, the following matrix is an interval matrix with three consecutive l's. 
In column 4, the third " 1 " wraps around in row 1. In column 5, the second and third " 1 " 
appear in rows 1 and 2, respectively. 

/ 1 0 0 1 1 \ 
1 1 0 0 1 
1 1 1 0 0 
0 1 1 1 0 

\ 0 0 1 1 1 / 

It can be shown that an interval matrix is TU. Recall that the IP formulation of the 
workforce/staff scheduling problem in Section 10.2.5 has an interval coefficient 
matrix. Hence, the solution to the workforce scheduling problem is always integer 
provided that all b¡ are integer. 

10.3.4 Matrix Structure of the MCNF Problem 

To give an idea about the structure of the coefficient matrix associated with a system of 
flow conservation equations given in constraints (10.1), we illustrate an example for 
the transportation problem with two sources and three destinations. After renumber-
ing and adding an artificial source node 0 and artificial sink node 6, we obtain the 
coefficient matrix and right-hand side in Table 10.1. 

Note that each column contains exactly one " 1 " and one "— 1". We can easily show 
that this matrix satisfies the sufficient condition of totally unimodularity. Likewise, it 
can be shown that the coefficient matrix of any MCNF problem is totally unimodular. 
The reader is encouraged to construct an example matrix for each network problem. 
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TABLE 10.1 

Node i 

0 
1 
2 
3 
4 
5 
6 

*01 

1 
- 1 

Coefficient Matrix for a Transportation 

XQ2 

1 

- 1 

* 1 3 

1 

- 1 

X i 4 

1 

- 1 

-«15 

1 

- 1 

* 2 3 

1 
- 1 

X 2 4 

1 

- 1 

* 2 5 

1 

- 1 

Problem 

* 3 6 

1 

- 1 

* 4 6 

1 

- 1 

x56 

1 
- 1 

•*60 

- 1 

1 

RHS 

bo 
b\ 
h 
h 
b4 

b5 

be 

Each column (vector) of the coefficient matrix, denoted by a,y, may be represented 
by the difference of two unit vectors, e, — e7. 

/ o \ 

1 

- 1 

V o ) 

(o\ 
i 

0 

W 

(°\ 
0 

1 

w 
where / is the initial node and j is the terminal node of arc (/', j). 

Note that the coefficient matrix corresponding to the upper bounded con-
straints (10.2) is an identity matrix. Thus, by property 1, the matrix obtained by 
combining (10.1) and (10.2) together is also TU. 

10.3.5 Lower Triangular Matrix and Forward Substitution 

Another important property about the coefficient matrix of the flow conservation 
equations is that it has a rank of m — 1 for an w-node network. After deleting any row, 
the remaining (m — 1) x (m — 1) submatrix will be nonsingular. From Section 7.2, we 
know that an equivalent lower (upper) triangular matrix with nonzero diagonal 
elements can be constructed and that a unique solution can be found by the forward 
(backward) substitution method. This property is utilized in the network simplex 
method to find efficiently the primal solution xB for the system BXB = b and the dual 
solution u for the system uTN = c. 

10.3.6 Naturally Integer Solution for the MCNF Problem 

Now let us observe the structure of the coefficient matrix corresponding to the system 
of m flow conservation equations in (10.1). Because of the condition J^è, = 0, the 
system has at most m — 1 linearly independent equations, and in fact every equation is 
a linear combination of the remaining m — 1 equations. Therefore, any equation can 
be dropped from the system without affecting the feasible solution space. 
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Partitioning the set of variables into basic and nonbasic variables, we have x = (xB, 
xN)Tand A = (B, N). Thus, we may obtain a basic solution with m — 1 basic variables 
or less, depending on the degree of degeneracy. Assume that B is a (m — 1) x (m — 1) 
nonsingular matrix (or d e t B / 0 ) in the system BxB = b. To determine a basic 
solution, we let xN = 0 and compute the values of basic variables Xj (j=l,2, ..., 
m — 1) by Cramer's rule: 

_detBy 
* y "deTB" 

where By is obtained from B by replacing they'th column of B by b. Because det B = 1 
or — 1, we have Xj = ±det By. Also, because By is a matrix containing all integer 
elements, the determinant of By must be integer, which in turn results in integer values 
for all Xj. We have just proved the following result. 

Theorem 10.2 Every basic feasible (including basic optimal) solution to an LP 
problem P = {max cTx: Ax < b, x > 0} is always an integer solution if A is TU, b is 
integer, and P has a finite optimal solution. In addition, the statement is also true if 
Ix < u is adjoined to the constraint set of P, provided u is integer. 

Corollary 10.1 The MCNF problem has integer basic feasible solution and optimal 
solution if b and u are integer-valued vectors. 

10.4 THE NETWORK SIMPLEX METHOD 

The network simplex method is based on the simplex method for upper bounded 
variables while taking advantage of the special network structure of the MCNF 
problem. Without using the simplex tableaux, the method performs simplex iterations 
directly on the network itself and only additions and subtractions are required for 
calculations. 

10.4.1 Feasible Spanning Trees Versus Basic Feasible Solutions 

Suppose we are solving an MCNF problem with m nodes by the simplex method for 
bounded variables. The method in effect requires only carrying a (w—l)x(w—1) 
basis matrix obtained from constraints (10.1), while implicitly handling a maximum 
of In bounded constraints (10.2)—(10.3). To accomplish this, the variables in a basic 
feasible solution are classified into three types of variables: 

1. Nonbasic variables at lower bounds (x¡j = 0). 
2. Nonbasic variables at upper bounds (xy = U¡j). 
3. Basic variables: In the absence of degeneracy, each variable Xy will satisfy 

0 < Xjj < Ujj and in degeneracy, some Xy may be 0 or Uy. 
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Recall that in the simplex tableau, the row-0 coefficients of all basic variables must 
beO or Cy — 0, where 

Cy = CBB ^ij~cij ~ ( M l , ■ ■ ■ , U,, . . . , Uj, . . . , Um)&y — Cy 

But ay = e, —e7. Hence, cy = u,> — u¡ — ci}■. = 0, or «,- — Uj=Cy, for every basic 
variable Xy. The dual variables ti\, ..., um that corresponds to each of m nodes are 
also called simplex multipliers. Because there are only m — 1 linearly independent 
equations, we may set any w, to 0 and solve for the remaining ones because cy is 
known, for all i, j . 

After obtaining the dual solutions, we can calculate the reduced costs for all 
nonbasic variables by cy = Ui—Uj—cy. From these reduced costs, we can determine 
whether the current solution is optimal. 

Previously, we know that there are m — 1 linearly independent flow conservation 
equations in an MCNF model. This means that the rank of basis matrix is m — 1, and 
each basic feasible solution to an m-node MCNF problem will have m — 1 basic 
variables. Recall that, by definition, a spanning tree in an w-node network is a 
connected network containing exactly m — 1 arcs with no cycles. Therefore, a set of 
m — 1 variables will yield a basic feasible solution if and only if the arcs correspond-
ing to the basic variables form a spanning tree for the network. These arcs are called 
basic arcs, and the remaining arcs in the given network are called nonbasic arcs. By 
property 2 of a tree, we know that adding a nonbasic arc to a spanning tree will form a 
unique cycle. This implies that a nonbasic arc/variable can be represented by the basic 
arcs/variables that form a spanning tree. Therefore, a feasible basic solution to an 
MCNF problem is a spanning tree that satisfies the bounds constraints on each arc. We 
call it a feasible spanning tree. 

Recall that the simplex method always starts with a full-rank (m) constraint matrix. 
But earlier we concluded that the coefficient matrix of the MCNF problem is of rank 
m—\. Therefore, an artificial variable is required to make up the difference so that the 
rank of the new matrix is m. The addition of an artificial variable is equivalent to 
creating an arc leading to node m (or any other node). This particular one-ended arc is 
called a root arc and the associated node (m) is called a root node. The feasible 
spanning tree with a root arc is called a rooted spanning tree. 

10.4.2 The Network Algorithm 

Now we are ready to describe the network simplex algorithm that works on the 
network directly. Assume that the given network has m nodes and n arcs, where n>m. 
Each node is associated with a given commodity amount b¡ and each arc is associated 
with a given unit flow cost Cy and given flow capacity Uy The lower bounds of all arc 
flows are assumed to be 0. The problem is to determine the amount of arc flow Xy. The 
algorithm is as follows: 

Step 0 (Initialization). Find a rooted feasible spanning tree comprising m — 1 basic 
arcs: 
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(a) Check if J2 °i = 0- If not> add a dummy node and its associated dummy arcs. 
(b) Designate a demand node (b¡ < 0) as a root node and create a rooted arc 

incident to the root node. 

(c) Create a feasible spanning tree in the following process. Begin with 
the end nodes and proceed toward the rooted node (say m + 1). Assign 
flows to arcs so that at each node the net flow (=outflows — inflows) 
equals b¡. 

Step 1 (Node Potential). Compute the node potentials w, (or dual variables or 
simplex multipliers) for all nodes as follows. Begin with the rooted node and set 
w m + 1 = 0 , and proceed toward the end nodes. Determine M, iteratively by 
ui-uj=cij. 

Step 2 (Entering Arc). Compute the reduced costs ëy for all nonbasic arcs by 
cy = u¡ — Uj — Cjj and then check the optimality (minimization) conditions for 
both types of nonbasic variables. If Xy = 0, then the optimal condition is 
c¡j < 0. If Xy = Uy, then the optimal condition is Cy > 0. If the current solution 
is not optimal, then choose an entering arc that most violates either optimal 
condition. 

Step 3 (Leaving Arc). Form a unique cycle by adding the entering arc to the current 
spanning tree. Determine the amount of arc flow Á that can increase without 
exceeding any arc capacity Uy in the cycle and that can decrease without 
violating the lower bound Xy > 0. The leaving arc will be the one that first hits 
either 0 or Uy. 

Step 4 (Updating). Find the new feasible spanning tree (feasible solution) by 
adjusting the arc flows in the cycle so that the flow conservation at each node 
is maintained. Go to step 1. 

10.4.3 Numerical Example 

We use the network in Figure 10.4 to show how the network simplex method works. 
Each node / is associated with a given b¡. Each arc is associated with a triplet ($Cy, Uy, 
xy), where Cy denotes the given unit flow cost, Uy denotes the given upper bound, and 
Xy denotes the amount of flow to be determined. 

Step 0. We construct a starting feasible spanning tree beginning with the end node 1 
toward the root node 5. We first assign x 1 3 = 10 and jci4 = 30, and then assign 
•X23 = 50 and x35 = 60. These four basic arcs form a five-node spanning tree. As 
shown in Figure 10.5, we use the solid lines to represent the basic arcs (or variables) 
that form the spanning tree and the dashed lines to represent the nonbasic arcs (or 
variables). Initially, all nonbasic arcs are set at the lower bound Ly (assumed to be 0 
from now on). Note that arc ( 1,3) is a basic arc even though its arc flow reaches the 
arc capacity Ui3= 10. The total cost is 800 (verify!). Add a root arc JC5 = 0 to the 
rooted node 5. 
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($3,°o,*12) 

\Cjj> Ujj, Xjj 

50 -60 

FIGURE 10.4 The given network (Taha, 2007). 

Iteration 1. 

Step 1. Consider the nodes in Figure 10.6. Compute the dual values u¿ iteratively in 
the order of nodes 5 ,3 ,2 ,1 , and 4 via w, — u¡ = cy. These nodes are connected by the 
basic arcs in the spanning tree. Let u5 — 0, and then compute w3 = u5 + 8 = 8, 
"2 = u3 + 2 = 10, «i = «3 + 7 = 15, and u4 = u\ — 5 = 10. 

Step 2. For all nonbasic arcs, compute the reduced costs c,y = w, — Uj — c¡/. 

C\2 = U\—U2~C\2 = 15 — 10 — 3 = 2 > 0 

Cl5 = U2-U5-C25 = 1 0 - 0 - 1 = 9 > 0 

C45 = U4—U5—C45 — 10—0—4 = 6 > 0 

(10.7) 

($3,~, 0) 

50 -60 

FIGURE 10.5 First feasible solution (z = 800). 
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«i = 15 «4 = 10 

FIGURE 10.6 Steps 1-3 for the first feasible solution. 

Because x}2=
:X25 = X45 — 0, all nonbasic arcs violate the optimality condition 

Cy < 0. Select arc (2, 5) as the candidate entering arc because it violates this 
condition the most. 

Step 3. Construct the cycle {(2,5), (3,5), (2,3)}. If arc (2,5) increases the flow by A, 
then the flows of arcs (3, 5) and (2, 3) must decrease by A because of opposite 
direction of flow. The amount of A must satisfy the following conditions: 

For arc (2,5) :0 + A < 30 
For arc (3,5) : 60-A > 0 
For arc (2,3) : 50-A > 0 

Therefore, A = min {30,60,50}~ 30. Arc (3,5) is the leaving variable. Because 
arc (2,5) must be increased, we adjust the flow in the arcs of the cycle by an equal 
amount of A in order to maintain the feasibility of the new solution. To achieve 
this, we identify a positive ( + ) flow in the cycle by the same flow direction of 
the entering arc and assign a negative (—) flow in the cycle by the opposite flow 
direction of the entering arc. See Figure 10.6 for the assignment of + A or — Ain 
the cycle. After adjusting the arc flow in the cycle, we obtain a new feasible 
solution in Figure 10.7 with new flow of 30 in arc (2, 5), new flow of 30 in arc 
(3, 5), and new flow of 20 in arc (2, 3). 
Note that because no current basic arcs (2, 3) and (3, 5) leave the basis at zero 
level, arc (2,5) remains nonbasic at level Uy, switching from level 0. However, 
to maintain dealing with nonbasic arcs at level 0, we substitute the arc using its 
reverse arc by the relations: 

*25 = U25 -x51 = 30-X52 and 0 < x52 < 30 
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40 -30 

50 -60 

FIGURE 10.7 The second feasible solution (z = 610). 

similar to what we did in the simplex method for upper bounded variables. 
This substitution causes changes in flow conservation equations at nodes 2 and 
5 as well as on arcs. At node 2, the current flow equation is x23 + *25 — *i2 = 
50 and the new flow equation becomes x23

 — x\2 — X52 = 20. At node 5, the 
current flow equation is 0 — x2s — x35 — x45 = —60 and the new flow equation 
becomes x52 — x35 — x45 = —30. The direction of flow in arc (2,5) is reversed to 
(5,2) with x52 = 0. The unit cost of flow on arc (5,2) is —$ 1. These changes are 
shown in Figure 10.8. 

Iteration 2. 
Repeat steps 1-3 on the adjusted network. We obtain new u¡ for nodes, cy for nonbasic 
arcs, flow increment A, and new cycle. All of these are shown in Figure 10.9. 

40 -30 

20 -30 

FIGURE 10.8 Adjusted network after the second feasible solution (z' = 580). 
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u2=10 «5 = 0 

FIGURE 10.9 Steps 1-3 for the adjusted second feasible solution. 

40 -30 

($3, «o, 0) 

FIGURE 10.10 The third feasible solution (z' = 550). 

Iteration 3. 

U 2 = 1 0 « 5 = 0 

FIGURE 10.11 Steps 1-3 for the third feasible solution. 
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($3, - , 5) 

20 -60 

FIGURE 10.12 The fourth feasible solution (z" = 285, z7 = 460, z = 490). 

Iteration 4. 

Check the optimality following conditions: 

For arc (1,3) 

For arc (4,1 ) 

Fora rc (5 ,2 ) 

en = —2andxi3 = 0 (satisfied) 

C41 = —4 and Xu = 0 (satisfied) 

C52 = —9 and x& = 0 (satisfied) 

Optimal solution: 

Basic variables : xn = 5,*23 = 25,^35 = 25,^45 = 5 

Nonbasic variables : X13 = 0, X14 = 35—X41 = 35—0 = 35, 

x25 = 3O-X52 = 3 0 - 0 = 30 

Total cost = $490 

» 2 = 1 0 "5 = 0 

FIGURE 10.13 Steps 1-3 for the fourth feasible solution. 
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10.5 SOLUTION VIA LINGO® 

The following LINGO® program can be used to find an optimum solution to the above 
example (five nodes, seven arcs), as well as any minimum cost network flow problem 
with appropriate network structure and input data (m, b¡, Cy, Uy). 

MODEL : 

S E T S : 

NODES/1. .5/¡DEMAND;r 
ARCS(NODES,NODES)/1,2 1,31,42,32,53,5 4,5/: CAP,FLOW, 
COST; 
ENDSETS 
MINY=Y@SUM(ARCS:COST*FLOW); 
@FOR(NODES(I):@SUM(ARCS(I,J):FLOW(I,J)) 
-@SUM(ARCS(K,I):FLOW(K,I))=DEMAND(I)); 
@FOR(ARCS:FLOW<=CAP); 
DATA: 
DEMAND = 40 50 0 -30 -60; 
CAP = 100 10 35 60 30 100 100; 
COST = 3 7 5 2 1 8 4 ; 

ENDDATA 

END 

After running the program, we will obtain a standard (or default) output report that 
includes the optimum solution containing all decision variables (zero or nonzero), 
slack variables, reduced costs, dual prices, and even all input data. To avoid obtaining 
such a lengthy report, we may select an option in the following "Solution Report and 
Graph" menu to obtain specific set of information. For example, if we select the 
attributes "flow" and "nonzero," the report will contain an optimum solution contain-
ing only nonzero flow values as shown in Figure 10.14. 

10.6 NOTES 

In this chapter, we present only the "primal" network simplex algorithm for the 
MCNF problem. There are other algorithms such as the "dual" network simplex, the 
primal-dual, and the out-of-kilter. To know these algorithms, the interested reader 
may refer to Murty (1992), Ahuja et al. (1993), Bazaraa et al. (1990) and Phillips and 
Garcia-Diaz(1981). 

We provide how the network simplex method can work directly on the network 
itself and give basic concepts and reasoning on its ties with the upper bound simplex 
method. For more details about the correspondence between the two methods, see 
Bazaraa et al. (2005). 

Most introductory OR textbooks such as Hillier and Lieberman (2005), Taha 
(2007), and Winston (1994) ignore the procedure about how to find a starting feasible 
spanning tree. To learn how to construct it, read Bazaraa et al. (2005). 
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Variable Value Reduced Cost 

FLOW(l,2) 5.000000 0.000000 

FLOW(l,4) 35.00000 0.000000 

FLOW( 2,3) 25.00000 0.000000 

FLOW( 2,5) 30.00000 0.000000 

FLOW( 3,5) 25.00000 0.000000 

FLOW( 4,5) 5.000000 0.000000 

FIGURE 10.14 Solution to numerical example via LINGO. 

The implementation of the network simplex method plays a very important role in 
making the method efficient. Knowing that the method is about finding a series of 
related spanning trees, the data (parameters and solutions) can be stored, accessed, 
and updated by using efficient tree or listed structures. The interested readers, 
especially computer programmers and analysts, should refer to Bazaraa et al. 
(2005), Murty (1992), and Ahuja et al. (1993). 

10.7 EXERCISES 

10.1 Given the graph shown in Figure 10.15, identify (a) a path from node 1 to 
node 6 and (b) a directed path from node 2 to node 7. If the numbers on each 
arc represent arc capacity, identify the capacity of the paths you find in (a) 
and (b). 
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FIGURE 10.15 A directed graph. 

10.2 Identify the vertex-edge incidence matrix of the graph in Exercise 10.1. 

10.3 Given an m x n (0, 1, — 1) matrix M where m>n, m, n>3, how many 
submatrices do you need to evaluate so that the total unimodularity of matrix 
M can be identified? Show your reasoning. 

10.4 Which of the following matrices are TU? Which are not? Why? 

( 1 
- 1 
0 
0 
0 

^ o 

0 
1 

- 1 
- 1 
0 
0 

1 0 \ 
0 0 

- 1 0 
- 1 1 
0 1 
0 l) 

/ l 1 0 0 \ 
1 0 1 1 
0 1 1 0 

\ l 1 0 \j 

(1) (2) 

f-1 
1 

- 1 
0 

\o 

0 
0 

- 1 
- 1 
1 

0 
1 
0 

- 1 
1 

1 \ 
- 1 
1 
0 

o ) 
(3) 

10.5 Generate three more TU matrices using the TU matrix given below. 

/ 0 1 1 - 1 \ 
- 1 1 0 0 
0 0 - 1 1 

V i - i o i ) 

10.6 If the TU matrix in Exercise 10.5 is the vertex-edge incidence matrix of some 
directed graph, draw the graph. 
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[-30] 

FIGURE 10.16 A maximum flow problem. 

10.7 Consider the 0-1 matrix below. Is it possible that it is the vertex-edge 
incidence matrix of some undirected graph? If yes, draw the graph. Other-
wise, why is it not? 

(\ 0 0 1 \ 
1 0 1 0 
1 1 0 1 
0 0 1 1 

\ 0 1 1 0 / 

10.8 Check if the following matrices satisfy the sufficient condition of TU. If not, is 
it TU? Why? 

0 
/ 0 - 1 1 0 0 \ 

0 0 - 1 - 1 0 
1 1 0 - 1 - 1 

/ 1 0 - 1 0 \ 
- 1 1 0 0 
0 1 0 - 1 

\\ 0 0 0 1 / V 0 - 1 - 1 1 ) 
(1) (2) 

10.9 Consider the graph in Exercise 10.1 again. Identify (a) a tree and (b) a 
spanning tree (not minimal). Now assuming the numbers on each arc 
represent flow cost, identify a minimal spanning tree. 

10.10 For the graph in Exercise 10.1, identify (a) a cycle and (b) a directed cycle. 

10.11 Create two TU matrices using the sufficient conditions in Theorem 10.1. 
The two matrices must be of dimensions 5 x 5 and 6 x 4 . 

10.12 Consider a three-supplier, three-customer transportation problem. Show its 
coefficient matrix. Partition the columns of the matrix using the partitioning 
approach. 

10.13 Solve the following maximum flow problem using the network simplex 
algorithm (Figure 10.16). Numbers on the arcs indicate the flow capacities. 
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11 
CLASSICAL SOLUTION APPROACHES 

This chapter introduces three classical approaches for solving integer programs, 
namely, branch-and-bound, cutting plane, and group theoretic. Although all ap-
proaches are capable of solving integer programs, their degrees of success vary in 
software implementation. The cutting plane approach, when used as a stand-alone 
solver, has potential to solve IP programs of limited size, but may not work well in 
large-scale application. Similarly limited is the group theoretic approach, which has 
not been implemented as a stand-alone solver in practice. However, the valid 
inequality cuts generated by both cutting plane and group theoretic approaches can 
be useful when combined with branch-and-bound to yield a powerful branch-and-cut 
approach. 

For over three decades, the branch-and-bound had been the prevailing solution 
method until the emergence of the branch-and-cut in early 1990s. Branch-and-cut 
combined branch-and-bound with the generated cutting planes into a much more 
efficient "hybrid" approach. Similarly, the group cuts generated from the group 
theoretical approach have also been incorporated, but at a lesser degree of 
integration. As a whole, extracting the strengths of these two approaches and 
injecting them into the branch-and-bound may greatly increase the modern solution 
power for integer programs. In what follows, we will introduce the concepts and 
background of these three solution approaches, and then exploit the potential 
strengths of each approach. 

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang 
Copyright © 2010 John Wiley & Sons, Inc. 
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11.1 BRANCH-AND-BOUND APPROACH 

Branch-and-bound is a general-purpose approach capable of solving pure IP, mixed 
IP, and binary IP problems. For ease of exposition, sometimes we shall assume that 
the given problem is a pure IP problem because a similar algorithm can be applied to a 
mixed or binary IP problem. We also assume that the given problem is a maximization 
problem because modification of the algorithm for the minimization problem is 
straightforward. 

11.1.1 Basic Concepts 

Theoretically, any pure IP problem with finite bounds on integer variables can be 
solved by enumerating all possible combinations of integer values and determining a 
combination (solution) that satisfies all constraints and yields the maximal objective 
value—hence the name of complete enumeration. Unfortunately, the number of all 
possible combinations is prohibitively large to be evaluated even for a small problem. 
A problem of n integer variables with m values each has a total of m" possible 
combinations (feasible and infeasible solutions). Therefore, complete enumeration is 
theoretically simple but practically intractable. 

As a better alternative, implicit enumeration applies an intelligent enumeration 
scheme that can cover all possible solutions by explicitly evaluating only a small 
number of solutions while ignoring (or implicitly enumerating) a large number of 
inferior solutions. One such strategy is called divide and conquer. Basically, this 
strategy divides the given problem into a series of easier to solve subproblems that are 
systematically generated and solved (or conquered). The solutions of these generated 
subproblems are then put together to solve the original problem. 

Branch-and-bound can be viewed as a divide-and-conquer approach to solving the 
IP problem, in which a branching process for dividing and a bounding process for 
conquering. Throughout the algorithm, a series of LP subproblems are systematically 
generated and solved. Then upper and lower bounds are progressively tightened on the 
objective value of the original IP problem. 

A typical way to represent such a process is via a branch-and-bound (B&B) tree, 
which is a specialized enumeration tree for keeping track of how LP subproblems are 
generated and solved. The B&B tree by convention is drawn upside down with its root 
node at the top. The root node that represents the LP relaxation of the original IP 
problem (denoted by SLP) is solved. If the LP optimum solution satisfies the integer 
requirement, the IP problem is solved. Otherwise, the LP objective value becomes the 
initial upper bound on the IP optimal objective value and the root node is partitioned 
into two successor nodes (subproblems) by two branches. These branches are valid cuts 
in terms of simple inequality constraints that have the following properties: (a) they cut 
off the current noninteger LP optimum point and other fractional region, and (b) the two 
successor nodes are mutually exclusive and their union contains the same integer 
feasible region as that of their predecessor (i.e., no integer points are eliminated). The 
solution of an LP relaxation on a node provides information about (a) whether a further 
branching from this node is needed (or whether the node can be pruned), and (b) a better 
lower bound (for maximization problem) on the objective of the original IP problem. 

Hamid
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Note that in some texts, the term pruned may be replaced by fathomed to indicate that 
no further exploration beyond that point is necessary. 

There are three cases indicating that a node can be pruned: (1) the subproblem 
has no feasible LP solution, (2) the subproblem has an integer optimum solution, and 
(3) the upper bound of the subproblem optimum is less than or equal to the lower 
bound of the original problem. These three cases are, respectively, referred to as 
pruned by infeasibility, pruned by optimality, and pruned by bound. If a node is 
pruned by optimality, its optimum solution can be used to increase the lower bound 
on the objective value of the original IP problem. 

Whenever an integer solution to a subproblem is obtained, it is a candidate 
optimum to the original IP problem. In the solution process of B&B, the best integer 
solution found so far is continuously updated. Such a solution is called an incumbent 
solution. To illustrate how the B&B algorithm works, we use the following two 
examples—one for pure and one for mixed IP problem. 

Example 11.1 Solve the following pure IP problem by branch-and-bound approach. 

Maximize z = 5y\ —2v2 
subject to — y i +2v2 < 5 

3y, +2y2< 19 
v, + 3v2 > 9 

y\, y2 > 0 and integer 

We first solve the LP relaxation SLp As shown in Figure 11.1, the shaded area 
represents the LP feasible region and the solid lattice points the IP feasible solutions. 

FIGURE 11.1 LP and IP feasible regions for Example 11.1. 
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We obtain the noninteger optimum j j=39 /7 , y2 = &/7, and z = 25.57. Then the 
objective value 25.57 becomes an upper bound to the IP problem. We set the lower 
bound to — oo. Since both variables are fractional, we need to branch on them in an 
attempt to obtain an integer optimum. 

We arbitrarily select y\ as the variable to be branched. Two subproblems are 
generated by adding the constraint of yx > 6 and y\ < 5 , respectively, to the LP 
relaxation. From Figure 11.2 we can see that the triangle area S' is cut off by y\ < 5. 
Clearly, the branch with the added constraint yx > 6 is infeasible, so it is pruned 
by infeasibility. The other branch with the added constraint yx < 5 is optimized at 
(yi. yi) = (5, 4/3), with objective value 22.33. So the new upper bound is updated 
to 22.33. 

Again, the variable y2 is fractional, so this time we branch on y2. The two 
constraints y2 > 2 and y2 < 1 are then added. This time the area S" is cut off, as 
shown in Figure 11.3. 

The branch with y2 < 1 is infeasible, and hence is pruned by infeasibility. The 
branch with y2 > 3 is optimized at (y¡, y2) = (5,2), with objective value 21. Since this 
is a feasible solution to the IP problem, the value 21 becomes a new lower bound to the 
problem, replacing the initial lower bound —00, and (5, 2) is a candidate solution. 
Checking the tree, all branches are evaluated, so (yi,y2) = (5,2) is the optimal solution 
to the IP problem, and the optimal objective value is 21. 

The branch-and-bound algorithm is usually depicted as an enumeration tree, in 
which the nodes denote the subproblems, and the branches correspond to constraints 

FIGURE 11.2 LP and IP feasible regions after the first branching. 
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FIGURE 11.3 LP and IP solution regions after the second branching. 

(cuts) that separate the subproblems from their parent subproblems. The number 
above each node is the optimal solution to the LP subproblem generated on that node 
(which is also the upper bound on that branch). The number below the node indicates 
the best lower bound on the original IP problem found so far. The previous procedure 
is depicted in Figure 11.4. 

25.57 

Pruned by 
infeasibility 

(yi. >2) = (5, 2) 

Candidate 

(y„ y2) = (5.57, 1.14) 

o-., 

y-¡ 

.yi)z 

< l 

= (5,4/3) 

5 ) Pruned by 
y infeasibility 

FIGURE 11.4 Branch-and-bound tree for Example 11.1. 
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When an LP solution contains several fractional integer variables, the decision of 
which integer variable to branch on next is needed. The following rules are commonly 
used for choosing a branching variable: 

1. Variable with fractional value closest to 0.5 

2. Variable with highest impact on objective function 
3. Variable with the least index 

A decision is also needed as to which unpruned node to explore first. The most 
commonly used search strategies include 

1. Depth-first (last-in first-out; solve the most recently generated subproblem first) 
2. Best-bound-first (best upper bound; branch on the active node with greatest 

z-value) 

The goal of the depth-first strategy is to quickly obtain a primal feasible integer 
solution whose objective function value zk is a lower bound on the given IP 
problem and can be used to prune nodes by optimality (rule 3). The best-bound-first 
strategy chooses the active node with the best upper bound (for maximization 
problem). The goal is to minimize the total number of nodes evaluated in the B&B 
tree. Performance of these branching rules depends on the problem structure. In 
practice, a compromise between the two is adopted. That is, apply the depth-first 
strategy first to get one feasible integer solution, followed by a mixture of both 
strategies. 

Example 11.2 Solve the following mixed integer problem using branch-and-bound 
approach. At each step, apply the rule of best-bound-first, and at each node, select the 
variable with least index to branch first. 

Maximize z = —y\+ 2y2 +y?,+2x\ 

subject to vi +y2~yi +3xi < 7 

V2 + 3J3-X, < 5 

3vi +*i > 2 

Ïi,y2,y3 > 0and integer 

x\ > 0 

After solving the LP relaxation, we obtain an LP optimum yi = 6/11, y2 = 59/11, 
V3 = 0, X\ = Al\ 1, and z = 120/11. This solution violates the integer requirements of y¡ 
and y2- We use this solution as the root node the branch-and-bound tree in Figure 11.5. 
The number of each node indicates the sequence of subproblems evaluated. Note 
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15 ) Pruned by 
,_^/ infeasibility 

FIGURE 11.5 Branch-and-bound tree for Example 11.2 using best-bound-first. 

that at node 1, the constraint y{ < 0 was indicated on the left branch, but since ̂ i > 0, 
)>i has to be fixed at 0. At node 7, the constraint y2 > 2 was intended to be added, but if 
we trace back along node 7, we would see that the constraint of y2 < 2 was already 
added at node 2. Combining these two constraints, we have y2 = 2. So is the constraint 
of y 3 = 2 at node 8. The problem is finally optimized at node 12, where (1,5,0,1/3) is 
the optimal solution, with objective value 9.67. 

Figure 11.6 depicts the branch-and-bound tree for the same problem, where the 
"depth-first" rule is applied, and at each node, the variable (violating an integer 
constraint) with the largest absolute value cost coefficient is chosen to branch first. 
Ties are broken arbitrarily. 

Depth-first is sometimes called last-in first-out (LIFO) because it solves the most 
recently generated subproblem first. It tends to pursue paths to the depths of the 
tree, then backtrack to where that path started, and finally plunge down into another 

9.33 

1(0, 1,2,8/3) 
Pruned by LB 
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10.91 

Pruned by 
¡nfeasibility 

(1, 13/4, 1,5/4) 

Pruned by LB 

Pruned by 
¡nfeasibility 

FIGURE 11.6 Branch-and-bound tree for Example 11.2 using depth-first. 

depth search. Yet another name for depth-first is "backtracking." Best-bound-first is 
sometimes called "jumptracking" because it leads to searches that jump back and 
forth across the tree. 

11.1.2 Branch-and-Bound Algorithm 

Now we describe the general branch-and-bound algorithm using the following 
notation. 

S = the given IP problem 
SLP = the LP relaxation of S 
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yLP = the solution to the LP relaxation of the given IP 
z = lowest (best) upper bound on z* of the given IP problem 
z = highest (best) lower bound on z* of the given IP problem 

These are global bounds that are periodically updated as the branching proceeds 
down the various paths in the tree, but are not shown on the tree. In Example 11.2, 
z = 10.91 throughout and z was —oo, then 9,9.33, and 9.67 at nodes 1, 8,12, and 14, 
respectively. Next comes more notation. Let 

Sk = subproblem k of problem S 
S£p = the LP relaxation of subproblem k 

zk — the optimum objective value of Sk 

zk — best (lowest) upper bound of subproblem Sk (shown above node k) 
zk = best (highest) lower bound of subproblem Sk (shown below node k) 

>£p = t n e optimum solution of the LP subproblem S£P 

yj = noninteger value of integer variable y¡ (current numerical value of yj) 
[a] = the largest integer <a (or rounding down a) 
\a] = the smallest integer >a (or rounding up a) 

We now formally describe the B&B algorithm 

Step 0 (Initialization). Solve the LP relaxation (SLP) of the given IP problem (S). If it 
is infeasible, so is the IP problem—terminate. If the LP optimum solution satisfies 
the integer requirement, the IP problem is solved—terminate. Otherwise, initialize 
the best upper bound (z) by the optimal objective value of problem SLP and the best 
lower bound by z — —oo. Place S£P on the active list of nodes (subproblems). 
Initially, there is no incumbent solution. 

Step 1 (Choosing a Node). If the active list is empty, terminate. The incumbent 
solution y* is optimal. Otherwise, choose a node (subproblem) Sk with S£p by one 
of the rules (e.g., depth-first, best-bound-first, etc.) 

Step 2 (Updating Upper Bound). Solve and set zk equal to the LP optimum objective 
value. Keep the optimum LP solution y£p. 

Step 3 (Prune by Infeasibility). If S£p has no feasible solution, prune the current node 
and go to step 1. Otherwise, go to step 4. 

Step 4 (Prune by Bound), li zk < z, prune the current node and go to step 1. 
Otherwise, go to step 5. 

Step 5 (Updating Lower Bound and Prune by Optimality). 
(a) If the LP optimum y£p is integer, a feasible solution to S is found, an incumbent 

solution to the given problem. Set zk = y^p and compare zk with z. If zk > z, 
set z — zk, otherwise z does not change. The current node is pruned because no 
better solution can be branched down from this node. Go to step 1. 

(b) If the LP optimum y£P is noninteger, go to step 6. 
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Step 6 (Branching). From the current node Sk choose a variable y>j with fractional 
value to generate two subproblems Sf{ and 5^ defined by 

St¡ = Stn{y:yj<[yj}} 

^2=Sfcn{y:yj>\yj]} 

Place both of these two nodes in the active list and go to step 1. 

11.2 CUTTING PLANE APPROACH 

In geometry, an equation in two variables is called a plane and an equation in 
n variables a hyperplane, strictly speaking. For simplicity, however, both in practice 
are often referred to as a plane, regardless of the number of variables. Strictly 
speaking, an inequality constraint in n variables is called a half-space, not a hyper-
plane. But an inequality constraint can always be converted to an equation by adding 
or subtracting a nonnegative slack variable. The term cutting plane is often used for an 
equality or inequality constraint that can cut off a fractional part of an LP feasible 
region, without excluding any integer feasible solution. In the cutting plane approach, 
one or more such cutting planes are added to the current LP simplex tableau, which in 
turn are resolved for a new LP optimum. This process is repeated until the prescribed 
integer requirements are satisfied. In this text, the collection of all such cutting plane 
methods will be called a cutting plane approach (more specifically, a dual cutting 
plane approach, due to the use of the dual simplex method for LP reoptimization). 

11.2.1 Dual Cutting Plane Approach 

A large variety of cutting plane methods were developed during the 1950s and 1960s. 
Among them, the most prominent ones belong to the class of dual cutting plane 
approach such as the fractional and mixed cutting plane methods developed by 
Gomory. This class shares a common solution algorithm when they are utilized as 
a stand-alone solver. 

Step 1. Solve the integer program as if it were a linear program. If it is infeasible, 
so is the integer program and then stop. Else if an LP optimal solution 
satisfying the integer requirements is found, then the IP is solved. Otherwise, 
go to step 2. 

Step 2. Select a row to be a generating row (or source row) from the LP optimum 
simplex tableau. 

Step 3. Derive a cut constraint from the generating row and augment it to the current 
tableau, resulting in a primal infeasible solution. 

Step 4. Apply the dual simplex method to reoptimize the augmented linear program. 
If the new LP optimum satisfies the integer requirements, the original MIP 
program is solved. Otherwise, go to step 2. 
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The main difference among various methods of cutting plane is how a cut 
constraint is generated. The main requirement is that a generated cut constraint must 
be valid, meaning that its addition will result in cutting off the current LP optimal point 
but will not eliminate any integer feasible solution. In other words, every valid cut has 
two properties: 

• The current optimal solution to the LP relaxation problem will violate the cut 
constraints. 

• Any feasible point to the corresponding IP or MIP problems will satisfy the cut 
constraint. 

The class of dual cutting plane methods begins with an optimal LP solution and 
requires application of a series of dual simplex steps to reoptimize a series of new LP 
problems, each adding one or more constraints to the current simplex tableau 
(although some cuts may be dropped from later considerations). 

There is another class of cutting plane methods known as the primal cutting plane 
approach. This approach commonly begins with a primal simplex tableau and creates 
a series of primal simplex tableaux, from which cuts are generated. As a result, all 
the subsequent simplex tableaux will remain primal feasibility and dual infeasibility. 
The primal simplex method is applied throughout the process until both primal and 
dual solutions are feasible, in which case an optimum solution if found. We shall not 
describe them in detail. The interested reader may refer the Section 11.5. 

11.2.2 Fractional Cutting Plane Method 

The fractional cutting plane method is capable of solwingpure integer programs. This 
method requires that the starting IP problem must contain all-integer coefficients so 
that all slack variables, including those that are added after introduction of cuts, are 
ensured to be nonnegative integers. Note that the integer assumption of the starting IP 
problem does not limit the problem application because any coefficients consisting of 
rational numbers can always be made integers by multiplying an appropriate number. 

The fractional cutting plane method begins with an optimal simplex tableau of the 
LP relaxation given below (recall that we use y¡ to denote integer variables): 

Maximize z + YJ d^yk = do 
k 

subjectto yBi+^2gikyk = bi i =1,2,...,m , n ^ 
k V ■ J 

yBi > 0 ; = 1,2, ...,m 

yk = 0 k=l,2,...,p 

where yBi and_y¿ denote basic variables and nonbasic variables, respectively. Note that 
the current LP optimum solution is yB¡ = b¡ and yk = 0, in which some b¡ are assumed 
to be noninteger. Optimality conditions require that dk > 0 for all k. 
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To find an integer solution, we arbitrarily select a row with b¡ noninteger. The 
selected row, say r, is called a source row or generating row, from which a fractional 
cut will be generated. Consider the source row 

k 

which can be rewritten by separating fractional and integral parts of all data: 

VBr + Yl {(Srk-lSrkl) + [grk\}yk = (¿,~ \pT\) + [br\ 
k 

where [a] denotes the largest integer <a. For example, |_5.4J — 5, j_— 1.8J = —2, and 
|_3J = 3. The fractional part is always >0. For simplicity, we let 

frk =g,k~\]Srk\ 

fro = br-[br\ 

be the fractional parts of tableau coefficients and the RHS of row r. Rearranging the 
terms, we have 

yBr + Yl \-Srk\yk - [br\ =u- Yjrkyk (11-2) 
k k 

Now in order for ysr and y^ (k = 1, ...,/?) to be integer, both the left-hand and 
right-hand sides of (11.2) must be integer. By the definition of congruence, we have 

/ K ) - ^ / r * v * t = 0 ( m o d l ) (11.3) 
k 

But since/ro—^^/riji </rt) < 1, the necessary condition for integrality becomes 

frO- Y2frkyk - 0 

k 

or ^/rtVfc = fro (Gomory fractional cutt) ^ , 4 ) 
k 

or Y -frkyk +s= -fro (Gomory fractional cut) ^j j_5) 
k 

where s > 0 is Gomory's slack variable associated with the fractional cut. Note that all 
frk and/,o must be nonnegative fractions, that is, 0 <frk {k=\, ■ ■ -, p) and/ro < 1. 

Example 11.3 Solve the pure IP problem in (11.1) using the cutting plane method. 
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TABLE 11.1 Tableau 1 for Example 11.3 

Basic Variable 

z 

y\ 
yi 

y3 

z 

1 

0 
0 
0 

y\ 

0 

i 
0 
0 

yi 

0 

0 
1 
0 

^3 

0 

0 
0 
1 

?4 

Mil 

3/7 
-1/7 

5/7 

ys 

16/7 

111 
-3/7 

8/7 

RHS 

179/7 

39/7 
8/7 

58/7 

We first add a nonnegative slack variable to each inequality constraint: 

Maximize z = 5y\ —2y2 

subject to —y\+ 2y2 + y3 — 5 
3yl+2y2+y4 = 19 
-y\-3y2+y5 = - 9 
yi,y2,y3,y*,ys > Oandinteger 

We then solve the LP relaxation, yielding the optimal simplex tableau shown in 
Table 11.1. 

The optimum solution is noninteger: yx = 39/7, y2 = 8/7, y3 — 58/7, y4 = y5 = 0, 
and z= 179/7. We arbitrarily select yt row as the source row and generate the 
following fractional cut. 

3 2 4 

7 y 4 + 7 * - 7 

or 

3 2 4 
- ^ 4 - ^ 5 + 5 1 = - -

where s{ is called Gomory's slack variable to differentiate from the ordinary slack 
variable. Appending the equation to tableau 1, we obtain tableau 2 (Table 11.2). 

Applying the dual simplex iteration, s\ is replaced by y4 yielding tableau 3 
(Table 11.3). 

Repeating generation of fractional cuts and application of dual simplex iterations, 
the reader may verify the subsequent simplex tableaux 4 through 6 (Tables 11.4-11.6). 

TABLE 11.2 Tableau 2 for Example 11.3 

Basic Variable 

z 

z 

1 

y\ 

0 

y% 

0 

^3 

0 

J4 

\lll 

ys 

16/7 

i i 

0 

RHS 

179/7 

0 1 0 0 3/7 2/7 0 39/7 
0 0 1 0 -1/7 -3/7 0 8/7 
0 0 0 1 5/7 8/7 0 58/7 
0 0 0 0 -3/7 -2/7 1 -4/7 



284 CLASSICAL SOLUTION APPROACHES 

TABLE 11.3 Tableau 3 for Example 11.3 

Basic Variable Ji yi y-i y* y$ S\ RHS 

2/3 17/3 67/3 

y\ 
yi 

y¡ 

J4 

0 
0 
0 
0 

1 
0 
0 
0 

0 
1 
0 
0 

0 
0 
1 
0 

0 
0 
0 
1 

0 
-1 /3 

2/3 
2/3 

1 
-1/3 

5/3 
-7/3 

5 
4/3 

22/3 
4/3 

TABLE 11.4 Tableau 4 for Example 11.3 

Basic Variable z >>i y2 yi 

z 1 0 0 0 

>"4 

0 

>5 

2/3 

Sl 

17/3 

s2 

0 

RHS 

67/3 

y\ 
yi 
JV3 

y* 
S2 

0 
0 
0 
0 
0 

1 
0 
0 
0 
0 

0 
1 
0 
0 
0 

0 
0 
1 
0 
0 

0 
0 
0 
1 
0 

0 
-1/3 

2/3 
2/3 

-2/3 

1 
-1/3 

5/3 
-7/3 
-2/3 

0 
0 
0 
0 
1 

5 
4/3 

22/3 
4/3 

-1/3 

TABLE 11.5 Tableau 5 for Example 11.3 

Basic Variable 

2 

y\ 
yz 
y¡ 

y* 
ys 
Si 

z 

1 

0 
0 
0 
0 
0 
0 

y\ 

0 

i 
0 
0 
0 
0 
0 

J2 

0 

0 
1 
0 
0 
0 
0 

^3 

0 

0 
0 
1 
0 
0 
0 

y* 

0 

0 
0 
0 
1 
0 
0 

ys 

0 

0 
0 
0 
0 
1 
0 

Si 

5 

1 
0 
1 

- 3 
1 
0 

■S2 

1 

0 
-1/2 

1 
1 

-3/2 
-1/2 

RHS 

22 

5 
3/2 

3 
1 

1/2 
-1/2 

TABLE 11.6 Tableau 6 for Example 11.3 

Basic Variable z y\ y2 y?, 

z 1 0 0 0 

y* 

0 

ys 

0 

S\ 

5 

s2 

0 

■S3 

2 

RHS 

21 

y\ 
J2 
>3 

J4 
ys 
s2 

0 
0 
0 
0 
0 
0 

1 
0 
0 
0 
0 
0 

0 
1 
0 
0 
0 
0 

0 
0 
1 
0 
0 
0 

0 
0 
0 
1 
0 
0 

0 
0 
0 
0 
1 
0 

1 
0 
1 

- 3 
1 
0 

0 
0 
0 
0 
0 
1 

0 
1 
2 
2 

- 3 
- 2 

5 
2 
2 
0 
2 
1 
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Because all basic variables are integer, we have an integer optimum y¡ = 5, 
y2 = 2, and z = 21. The solution is the same as that obtained by branch-and-bound 
approach. 

The cutting plane approach often takes a large number of cuts to reach an 
integer solution even for a small or moderate sized IP problem, although it can be 
shown that the fractional cutting plane method is ensured to converge to an IP 
optimum after a finite number of cuts. Here, we arbitrarily select a source row, 
although alternative rules may be applied to select other source rows. For example, 
we may select a source row r with/r0 closest to 0.5, or select a row with the largest 
fro- However, no evidence shows that a certain selection rule is better than the 
others in all cases. 

11.2.3 Mixed Integer Cutting Plane Method 

The mixed integer cutting plane method, also due to Gomory, can be used to solve the 
following MIP problem: 

Maximize z = \ J CJXJ + 2_] dkyk 
j k 

subject to Y^ a'ixi + 5 Z 8ikyk - b i (' = 1,2,..., m) 
j k 

xj>o ( y = 1,2,...,«) 

yic > 0 and integer (A: = 1,2,...,/?) 

Essentially, the solution procedure is similar to that of the fractional cutting plane 
method. It generates a valid cut from the optimal simplex tableau of the LP relaxation 
of the MIP problem. Any row r associated with yk, which is basic but has fractional 
right-hand side, may be chosen to generate the cut. Just like the fractional cuts, each 
of the generated mixed cuts will violate primal feasibility and will be restored to 
primal feasibility after applying the dual simplex method. 

Let the nonzero coefficients (arj) of the continuous variables Xj (jGj) be 
partitioned into two sets: positive coefficients (arj > 0) and negative coefficients 
(arj<0). Also, let/,* = grk—[grk\ and/,o = br—[br\ as before. It can be shown that a 
mixed cut due to Gomory can be derived (see Section 11.5) as 

aoxJ+ ¿^ [T^\)arjXj+ 2 - frkyk+ ¿ - ~ ~ Ï Z 7 — y k - f r 0 

j:arj>0 j:ar,<0 V » 0 V kfrk<f* k:frk>U Jr0 

We use the following numerical problem to show how to generate a mixed integer 
cut. The remaining procedure will be similar to that in Example 11.3, except that no 
rows corresponding to continuous variables are used for source rows to generate 
cuts. 
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Example 11.4 Solve the given MIP problem using a cutting plane approach. 

Maximize z = 5x\ + 3x2 + 7y\ + 2>>2 

subject to 7x\ + 8x2 + 9y\ + 3;y2 < 43 

llxx+4x2 + 4yi+5y2 < 51 

x > 0 

y > 0 and integer 

Solving the LP relaxation, we obtain an LP optimum y\ = 43/9, with the following 
source row: 

7 8 1 1 43 
^ + ^x2+y1 + -y2+-s1=-

Here, we have all positive coefficients and no negative coefficients for the 
continuous variables. Compute 

u 
frl 

fa 

and we obtain a mixed integer cut 

7 8 1 1 7 
9 X l + 9 X 2 + 3 y 2 + 9 S l - 9 

In Exercise 11.10, the reader is asked to continue on this example. 

11.3 GROUP THEORETIC APPROACH 

Gomory showed that the coefficient row vectors of the derived inequalities form a 
finite set that is closed under the operation of addition when the arithmetic operations 
are taken modulo 1 (i.e., integer parts are dropped). Such a set forms what is called a 
group. Furthermore, this group can have at most D elements, where D is the absolute 
value of the determinant of the current LP basis. If the starting basis is an identity 
matrix, then this group contains exactly D elements. 

Gomory also showed that by relaxing nonnegative (but not integer) requirements 
of the current basic variables, an integer program can be transformed into one in which 
the columns of constraint coefficients and the right-hand side are elements of an 
abelian group. If this group problem (in terms of nonbasic variables only) is solved 
and a solution containing nonnegative values for all variables is obtained, then the 

_ 7 
~ 9 
= 0 
_ 1 
~ 3 
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original integer program is solved. Before describing the role of group theory in 
integer programming, we need some definitions from group theory. 

11.3.1 Group Theory Terminology 

Definition 11.1 A group is a set of elements with a single operation (e.g., ordinary 
addition is taken modulo 1) defined on pairs of elements such that the operation is 
closed, associative, and for each element there exist unique identity and inverse 
elements. 

Specifically, elements here are column vectors. Closure means that the sum of any 
two elements is also an element in the group. Associativity means that the operation 
satisfies the law of association such that a + (b + c) = (a + b) + c. The identity 
element has the property that any element in the group added to the identity (on the 
left or right) will result in itself. The inverse of an element has the property that the 
sum of the inverse and this element will result in the identity element. 

Definition 11.2 A group infinite if it contains a finite number of elements. The order 
of a finite group is the number of elements comprising the group. 

Definition 11.3 An additive group is a group whose operation is an ordinary 
addition (with modulo 1). An abelian group is one in which the operation is 
commutative such that a + b = b + a for all elements a and b in the group. 

Definition 11.4 A cyclic group is one in which there exists an element such that 
successive additions of the element to itself (or a scalar multiple of itself) will generate 
the entire group. If a group does not have such an element, then the group is called 
noncyclic or acyclic. 

Definition 11.5 The number a is congruent to b modulo c if there exists an integer n 
such that a — b = nc. The congruence relationship (or simply congruence) is written 
as a = Z>(mod c). For example, 2 = 5(mod 3), —1 =3(mod 2), and 1 =0(mod 1). 

To explain the above group definitions, we utilize tableau 1 of Example 11.3. The 
group contains three elements: (1/3, 2/3,2/3)T, (2/3, 1/3,1/3)T, and (0,0,0)T. Hence, 
the group is finite with the order of 3. The group is closed because the sum (modulo 1) 
of any two elements will also result in an element in the group. For example, (1/3,1/3, 
1/3)T + (0,0,0)T = (1/3, 1/3, l/3)T(mod 1); (2/3, 2/3, 2/3)T + (0, 0,0)T = (2/3, 2/3, 
2/3)T(mod 1); and (1/3, 1/3, 1/3)T + (2/3, 2/3, 2/3)T = (0, 0, 0)T(mod 1). It can be 
easily shown that the associative law also holds: 

[(1/3,1/3,1/3)T + (2/3,2/3,2/3)T] + (0,0,0)T 

= ( l / 3 , l / 3 , l / 3 ) T + [(2/3,2/3,2/3)T + (0,0,0)T] 
= (0,0,0)T(modl) 
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Element (0, 0, 0)T is the identity element for the entire group because any other 
element added to it will result in itself. Element (1/3,1/3, 1/3)T is the inverse element 
of (2/3, 2/3, 2/3)T and vice versa because (1/3, 1/3, 1/3)T + (2/3, 2/3, 2/3)T = 
(1,1, l)T(mod 1) = (0, 0, 0)T The group is additive because its single operation on 
any coordinate is an ordinary addition. The group is abelian because the operation is 
communicative: 

[(1/3,1/3,1/3)T + (2/3,2/3,2/3)T](mod 1) 

= [(2/3,2/3,2/3)T + ( l /3 , l /3 , l /3) T ] (modl) = (0,0,0)T 

11.3.2 Deriving the Group (Minimization) Problem 

Consider the integer program with inequality constraints 

Maximize z = c' y' 

subject to A'y' < b (H-6) 
y' > 0 and integer 

where A' is an m x n integer matrix, y' an n column vector, b an m integer column 
vector, and c'T an n integer row vector. After adding m nonnegative slack variables, 
y„ + ], yn + 2, • • -, yn + m> o n e to each inequality, we have the equivalent IP problem with 
equality constraints 

Maximize z = cTy 
subject to Ay = b (11.7) 

y > 0 and integer 

where A = (A', I) is an m x (n + m) integer matrix, I a n m x m identity matrix, y an 
(« + m) column vector, b an m integer column vector, and cT = (c/T, 0T) an {n + m) 
integer row vector. 

Partitioning variables into sets of basic and nonbasic such that y = (yB, yiv)T 

with associated coefficients cT = (cB
T, cN

T) and A = (B, N), we have the partitioned 
problem 

Maximize z = c£yB + cJyN 

subject to ByB + NyN = b ( 11.8) 

yß>vN > 0 and integer 

where B i s a n m x m basis matrix and N an m x n nonbasis matrix. To express yB in 
terms of y^, we premultiply B _ 1 on the equalities in problem (11.8): 

IyB + B 1NyN = B 1 b 

or 

yB = B 1 b - B 1 N y N 
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Substituting yB into the objective function, we obtain the IP problem in terms 
of yN: 

Maximize z = cBB_1b-(cBB_1N-CN)yN 

subjectto IyB + B ' N y N = B ' b (11.9) 

yB,yN > 0 and integer 

Relaxing integer requirements and letting B be the LP optimum basis, we have the 
optimum solution yB = B~'b, yN = 0 with z = cjB~'b. The optimality conditions are 
cjB_1N—cj > 0. If B~'b happens to be an integer vector, the LP optimum solution 
is also an IP optimum. When the solution vector B~'b contains noninteger compo-
nents, we must increase some y¡ € yN from value 0 to some positive amount while 
maintaining the following conditions: 

yB — B~'b-B~'NyN > 0 and integer 

This poses two questions concerning the vector of basic variables yB: 

(1) When is yB an integer vector? 

(2) W h e n i s B " ' b - B - 1 N y N > 0 ? 

We first address question (1) concerning integer vector. Denote the columns of 
matrix B_1N as («i, a2, ..., a„)T and the right-hand side column B~'b as a0. Then 
question (1) can be posed as a problem of finding some nonnegative components y¡ 
(j= 1, 2, . . . , ri) of yN such that 

Y^Bjyj = «o(modl) 
j (11.10) 

yj > 0 and integer y, £ yN 

Note that an integer vector ay multiplied by any integer scalar yy will yield a null 
vector 0(mod 1 ) and that the addition or subtraction of multiples of y} — 0(mod l ) will 
not destroy the congruence relationships. Thus, (11.10) can be reduced to one that 
contains only nonnegative fractional parts of ay and a0, denoted by àj and âo. We have 
the equivalent form 

]Pô/y/ = âo(modl) 
(11.11) 

yj > 0 and integer y, G yN 

with the objective function 

Maximize z = cBB~'b— (cBB_1N-cJj)yN 
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Dropping yB > 0, letting z = — z + c^B 'b and CN = cjB *N—cj, and changing 
to a minimization problem, we obtain 

Minimize z = 2_, ô'^/ 
j 

subject to 2_. fyyj = *o (m°d 1 ) (11-1^) 
j 

yj > 0 and integer^- e yN 

where c, G c\ . Note that all components of a¡ and âo are nonnegative fractions and 
Cj > 0 for all / Equation ( 11.12) is termed a group minimization problem (or group 
problem, for short). 

11.3.3 Formulating a Group Problem 

Example 11.5 Construct the group minimization problem for IP problem (11.1). 
For ease of reference, we restate it here. 

Maximize z = 5>>i —2y2 

subject to — y\ + 2y2 < 5 

3yi+2y2 < 19 

yi + 3̂ 2 > 9 

y\,yi > 0 and integer 

Adding a nonnegative slack variable to each inequality constraint, we have 

Maximize z = 5y\ —2y2 

subject to —yi + 2y2 +yj =5 

3yi+2y2+y4 = l9 

-y\-3y2+y5 = - 9 

y\, y 2, y 3, y A > O and integer 

After solving the LP relaxation, we have the optimal basis B. basic variables y& 
and nonbasic variables yN. Representing in partitioned form, we have 

-=''^-(I)—(S)-(S>-Gi,i. 
19 j , c ¡ = (5)-2,0),cj = (0,0) 
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Calculating the components of the optimum tableau, we have 

/ 0 3/7 2/7 \ / 3/7 2/7 \ 
B " ' = 0 - 1 / 7 - 3 / 7 , B - ' N = - 1 / 7 - 3 / 7 = (a4,a5), 

\ 1 5/7 8/7 / \ 5/7 8/7 / 

/ 3 9 / 7 \ 
B ' b = 8/7 = a 0 , c ^ B - ' N - c 5 = (17/7,16/7), andc^B'b = 179/7 

V58/7 ) 

Converting to the notation for the group problem, we have 

/ 3 / 7 \ / 2 / 7 \ / 4 / 7 \ 
«4 = 6/7 ,«5 = 4/7 ,«o = 1/7 . Ê J = cSB- 'N-c í = (17/7,16/7) 

\5/lj \\/l) \2/lj 

z = - z + 1 7 9 / 7 

Thus, we have the following associated group problem: 

. . . . . . 17 16 
Minimize z = —3*4 H 3*5 

subject to 
/ 3 / 7 \ / 2 / 7 \ / 4 / 7 \ 

6/7 ]y4+\ 4/7 ]y5= 1/7 (modi) 
\5/7/ \\/7) \2/7j 

(11.13) 

y*,y5 > 0 and integer 

Note that the system of congruence equations in (11.13) is equivalent to 

6 U4+I 4 b 5 = | 1 J(mod7) (11.14) 

11.3.4 Solving Group Problem as a Shortest Route Problem 

Essentially there are two approaches available for solving the group minimization 
problem: (1) treating it as a special shortest route problem and solving it by a more 
efficient algorithm than the standard one, and (2) treating it as a variant of knapsack 
problem and solving it by a dynamic programming algorithm. Here, we shall 
describe how to construct the group problem as a special shortest route problem 
and leave the knapsack approach for the interested reader (see references in 
Section 11.5). 

Now we want to construct a shortest route problem from the group minimization 
problem (11.13). First, we construct a directed network with nodes equal to the 
number of group elements D, where D is the absolute value of the determinant of 



292 CLASSICAL SOLUTION APPROACHES 

TABLE 11.7 Group Elements for Example 11.5 

Group Element 

K4&4 

K5i5 

gi 

(2\ 
6 

W 
lâ4 
5âs 

g2 

(6\ 
5 w 

2Ä4 

3ÓC5 

g3 

(2\ 
4 w 

3 «4 

lâ5 

g4 

(5\ 
3 

W 
4â4 

6â5 

g5 

(l\ 
2 

W 
5Í4 
4â5 

g6 

(4\ 
1 

W 
6â4 
2â5 

go 

/°\ 
° w 

7«4 

7a5 

the optimal basis B. For (11.13), or D = |detB| = 7. Each group element is a 3-tuple 
column vector. To generate the entire group elements, we calculate 

A:4â4(mod 7) for KA = 1,2,... 7 

A:5a5(mod7)forA:5 = 1,2,.. .7 

where 

04 = I 6 I and i5 = 4 

resulting in Table 11.7. Here, each ô,- can generate the entire group (g0, gi, . . . , go). 
Thus, the group is cyclic and contains no cyclic subgroups. 

Each directed arc (g„ gj) is constructed by connecting the initial node g, to the 
terminal node by setting y¡ = 1 in the congruence relationship 

8 /= (& + «#/) (mod D) 

which incurs a distance c¡. Examples are 

Si = (go + «4y4)(mod7) with a cost C4 = 17/7 
85 = (go + *5>'5)(mod7) with a cost c5 = 16/7 
82 — (gi +Ä4>>4)(mod7) with a cost C4 = 17/7 
g6 = (g3+*53'5)(mod7) with a cost c5 = 16/7 

Similarly, we can construct the remaining arcs of a complete directed network as 
shown in Figure 11.7. Let node g0 be the origin (or source) node and g6 (= ôo) be the 
destination (or sink) node of the shortest route problem. The objective of the problem 
is to find a route from the origin to the destination such that the total distance is 
minimal. To solve this problem, any standard shortest route algorithm will do. 
However, due to the special structure of the network, standard algorithms can be 
simplified in order to drastically increase the computational efficiency. For details 
about the algorithms, see Section 11.5. 
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? 5 = i y$=l 

FIGURE 11.7 Directed network constructed by group problem. 

By inspection of the above network, we can easily find the shortest route with 
y5 = 2, y4 = 0, and z = 32/7. 

11.3.5 Solving the Original Integer Program 

Recall that when the group problem was derived from an integer program, the 
constraints yB > 0 were ignored. This implies that if the optimal solution yN (which is 
a nonnegative integer) to the group problem also yields yB > 0, then we have already 
solved the integer program. If some basic variable turns out to be negative, then the 
optimal solution to the group problem is not an optimum to the original IP problem. 
To verify this for our example, we calculate 

" - S) —----̂  - (K )-(-^ $ ) o) - (i) 
Since yB > 0, this optimal solution to the group problem is also an optimal solution 

to the original IP problem with y = (yB, yN)T = (5,2,6,0,2)T. Should any component 
of y turns out to be negative, we continue to find the next shortest route and test for 
yB > 0 until such condition is obtained or no more route can be found, in which case 
the original IP problem has no feasible solution. However, this process is quite 
complicated and difficult to implement. 

An alternative method is apply a branch-and-bound enumeration scheme that 
implicitly examines all possible integer solutions to the group problem by succes-
sively adding constraints of the form ys > C for eachy, where C begins with value 0 and 
is incremented by 1. Mori to (1976) utilized this basic bookkeeping scheme with 
a particular branching rule and information from the optimal solution to the group 
problem to create an efficient branch-and-bound algorithm. Again, the scheme is not 
implemented in practice. 
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In conclusion, there are still several technical hurdles to overcome before the group 
theoretic approach can be implemented as a general, stand-alone IP solver. However, 
the faces of comer polyhedron generated by the group problem are strong cuts (or 
valid inequalities) that can be incorporated into the novel branch-and-cut approach, 
in the same manner as other cutting planes are utilized. 

11.4 GEOMETRIC CONCEPTS 

Now we discuss the solution space to the pure integer program defined by the 
structural variables y' in ( 11.6), and the solution space to the group problem defined by 
nonbasic variables yN in ( 11.12). Many important geometric concepts will be covered, 
including polyhedron, convex hull, comer polyhedron, and faces. For illustration, we 
reduce Example 11.5 to a two-constraint problem by dropping the first constraint. 

Example 11.6 

Maximize z = 5y\— 2yi 

subject to 3yi+2y2<l9 

- > i - 3 y 2 < - 9 
y\, yi > 0 and integer 

Adding nonnegative slack variables y3 and y4 to constraints 1 and 2, respectively, 
we find the optimum LP solution containing basic variables y\ and y2, and so 

yi »»=i::i-^7'7>y-. = (;;j = W ' B n - i -3 

»=(;?MS).»-'-(-3£ % 
.-»-(_^ ^).--"=(?/7).°-^-i-' 
cJir 'N-cJ = (5,-2)[lÇp ^ ^ - ( O . O ) = (17/7,16/7), 

z = c^B'b = 179/7 

From (11.12), we obtain the associated group problem 

w • • - 1 7 1 6 

Minimize z = —y3 -\ y4 

"*"■> P » + ($)»-(#)<■"""> (11J6) 

J3J4 > 0 and integer 
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Solving the problem as a shortest route problem, we obtain the solution y3 = 0, 
y4 = 2, which gives 

»-.-,-,-.,*,-(*£)-(_'£ %)(°2)-{l)>-(l) 
Since all components of vector yB are nonnegative, the optimal solution to the 

original integer program is y = (5, 2, 0, 2)T with objective value 

z = -z + c^B-'b = -32 /7 + 179/7 = 21 

11.4.1 Various Polyhedrons in Original Space 

From Chapter 8, we know that the solution region of the LP relaxation defined by the 
constraints and the nonnegative restrictions in (11.15) is a polyhedron, say P. In our 
example, P is the triangle area enclosed by points a', b', and c', shown in Figure 11.8. 
A basis B selected from the coefficient matrix yields the basic feasible solution 
y = (yB. yiM)T = (B~ 'b, 0)T, which is an extreme point to P. In our example, a', b', and 
c' are extreme points of P. Taking the objective function into consideration, we obtain 
an optimal extreme point c' = (39/7, 8/7)T with objective value z = 25.57. The 
objective function, indicated by a dotted line and passing through vertex c', is plotted 
in Figure 11.8. 

Recall that the congruence constraints of the group problem (11.16) are obtained 
from those of the IP program by ignoring the nonnegative requirements on the basic 

FIGURE 11.8 Corner polyhedron in original space. 
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variables yB. In the original solution space, this is equivalent to dropping those 
inequalities from A'y' < b and y' > 0 in (11.6), which are nonbinding at vertex e'. 
In this example, there are two binding constraints at c', namely, 

3yi+2y2<\9 

-y{-3y2<-9 

and two nonbinding constraints y3 > 0, y4 > 0. 
An inequality constraint that is nonbinding at v' implies that it takes on a strict 

inequality (<) when substituting v' into it. As a result, the associated slack variable is 
strictly positive because only a basic variable can be positive. In general, when 
constraint /' is binding at v', the associated slack variable y„ +, must take on value 0 and 
the corresponding hyperplane yn + i = 0 must pass through v'. In our example, the 
hyperplanes y3 = 0 and y4 — 0 must pass through c'. This implies that these hyper-
planes intersect at c'. As shown in Figure 11.8, the hyperplanes 3y\ + 2 j 2 = 19 and 
y i + 3>'3 = 9 in the original solution space correspond to the hyperplanes y3 = 0 
and ^4 = 0 in the space of nonbasic variables xN. 

On the other hand, if y¡ > 0 or y¡ is a basic variable (where i: y¡ e ya), then the 
hyperplane y¡ = 0 does not intersect the vertex v'. Thus, ignoring the nonnegativity 
requirement on a basic variable y¡ is equivalent to allowing y¡ to take on any value 
when the corresponding hyperplane does not pass through v'. In our example, we 
have strict inequalities yx > 0 and y2 > 0, so hyperplanes yx = 0 and y2 = 0 do not 
intersect at c'. Therefore, these hyperplanes can be dropped with affecting the 
solution. 

After dropping these hyperplanes, we obtain a polyhedron P with vertex c' — (39/7, 
8/7)T as shown in Figure 11.8. Adding the integer requirements yields the lattice 
points inside P, indicated by dots. The convex hull of these lattice points may be 
viewed as the feasible region to the group problem. The corner polyhedron is obtained 
by dropping the hyperplanes yx = 0 and ^2 = 0, and taking the convex hull of the 
integer solutions. In Figure 11.8, the polyhedron bounded by integer points a', d', e', 
and b' forms a corner polyhedron, which is denoted by Py and indicated by the shaded 
area. The hyperplanes that bound Py are the faces of the corner polyhedron. Recall 
that in «-dimensional space, a face is an (n — l)-dimensional hyperplane. Since n = 2 
in our example, so a face must be a line such as face 1, face 2, and face 3, indicated 
in Figure 11.8. 

Note that any integer point y' in Py will produce nonnegative integer values for the 
nonbasic variables yN that satisfy the congruence relationship in (11.16). Further-
more, a vertex of the corner polyhedron is an optimal solution for the integer program. 
The vertex e' is at the intersection of faces 2 and 3 in Figure 11.8. These inequalities 
are the strongest that can be obtained from the integer program without using the 
requirements of yB > 0. Therefore, it is worthwhile finding the face inequalities 
and using them in a cutting plane algorithm or in a branch-and-bound algorithm. To 
enable generating these valid inequalities, we next investigate the corner polyhedron 
in yN space. 
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11.4.2 Corner Polyhedron in Solution Space of Nonbasic Variables 

The solution region defined by the constraints in (11.12), or (11.16) in particular for 
Example 11.6, can also be plotted in yN space. To do this, recall that the congruence 
relationship 

^àjyj = ôo (modi) 
j 

is equivalent to 

^yvyj=fio (mod I) (i = l ,2 , . . . , /n) (11.17) 
j 

where yj£y*¡, and/y is the ith component (i'= 1, 2, ..., ni) of âj(j = 1,2,..., n). 
Because the left-hand side in (11.12) must differ from the right-hand side by an 
integer amount and because y¡ > 0 and integer, the congruence can hold only when the 
left-hand side isfi0, 1 + fi0, 2 + fi0, and so on. That is, equation (11.12) implies 

n 

Yjvyj>h ( i=l ,2, . . . , / r t) (11.18) 
7=1 

Note that the inequalities ( 11.18) are the Gomory fractional cuts obtained from the 
m equalities yB = B_ 1b - B_1NyN. For Example 11.6, we have 

3/7y3 + 2 / 7 y 4 > 4 / 7 

6 / 7 y 3 + 4 / 7 y 4 > l / 7 (11.19) 

y3,y* > 0 and integer 

Note that the second constraint is redundant and may be dropped without affecting 
the solution. 

Every y,- that satisfies ( 11.17) will also satisfy (11.18). However, the converse is not 
true because y b y2 , . . . , y„ satisfying (11.18) may yield a value for ^.-«¿y/ that is not 
an integer plus SLQ. Therefore, the constraints 

^ ô / y , = ôo (modi) 
7 

yN > 0 and integer 

for the group problem may be viewed in yN space by plotting the inequalities (11.18) 
along with yN > 0 and integer, and taking the convex hull of the points satisfy-
ing (11.18). This region is termed the corner polyhedron PN. 

We plot (11.19), or (11.16) to be exact, in the solution space of yN = (y3> ^4) 
shown in Figure 11.9. The solution set is an unbounded polyhedron with two 
extreme points at (4/3, 0) and (0, 2). The circled lattice points are those that satisfy 
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FIGURE 11.9 Corner polyhedron in yN space. 

the congruence relationship. Some of them are marked by a, b, c, and d, and e in 
Figure 11.9: 

•='2M1M>- î - » 
Using 

yB = B b-B-'NyN 

we obtain yB components, as shown in Table 11.8, for the corresponding points in the 
original solution space. 

TABLE 11.8 Integer Solution Points 

Point a I 

yN = 

yB 

73 

^ 2 . 
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To see the correspondence of these points in the original solution space in 
Figure 11.8, we label such points with a bracket (a), (b), (c), (d), (e). 

A convex set may be formed by the convex combinations of these circled lattice 
points (integer solutions for both yB and yN) in the unbounded polyhedral cone. 
That set is a corner polyhedron, denoted by PN. The corner polyhedron for this 
example problem is the shaded area in Figure 11.9. Unlike the corner polyhedron in 
the original space, the corner polyhedron in yN space always satisfies yN > 0. Also, 
note that this corner polyhedron is an unbounded convex set. This is always true 
because if yN satisfies (11.17), then for any integer K, the value KD (where D is the 
absolute value of the determinant of B) added to each of its components will also 
satisfy ( 11.18). To show their correspondences, we use the same labels for the faces 
in Figure 11.8. The faces (faces 1 through 3) of this corner polyhedron are marked in 
Figure 11.9. 

It can be shown (Salkin and Marthur, 1989) that yB is an extreme point of corner 
polyhedron Py if and only if the corresponding yN is an extreme point of P^ using the 
relationship between faces. In our example, yN = (0, 2)T is an extreme point in PN 

denoted by a, which corresponds to yB = (5,2)T, an extreme point e in P y . Similarly, 
extreme point e in PN corresponds to extreme point d in Py. 

11.5 NOTES 

Sections 11.1 

The branch-and-bound method was originated by Land and Doig (1960) and refined 
by Dakin (1965), which is regarded as the basis of the current algorithm. 

Sections 11.2 

Three fundamental cutting plane methods, dual fractional, dual mixed integer, and 
primal all-integer are developed by Gomory (1958,1960,1963). For details on these 
and other cutting plane methods, see Garfinkel and Nemhauser ( 1972), and Salkin and 
Mathur(1989). 

Sections 11.3 

Gomory ( 1960,1963,1965) developed group properties of IP program. For exposition 
of group theory approach to solving integer programs, see Hu (1969), Chen (1970), 
Chen and Zionts (1972), and Salkin and Mathur (1989). 

Section 11.4 

Special shortest route algorithms for solving the group problem are given in Hu ( 1968) 
and Chen and Zionts (1976). Shapiro (1968) treated the group problem as a variant of 
knapsack problem that is solved by a dynamic programming algorithm. 
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An equivalent group problem can be obtained by transforming the LP optimal basis 
into a Smith's normal form (Hu, 1969), which can be solved more efficiently. The 
form is a diagonal matrix (all elements not on the diagonal are zero) denoted by diag 
(d\, d2,- .., d„), such that d¡ (i = 1,2,..., m) is a positive integer, d¡ dives di+1 (/ = 1. 
2,..., m— 1 ), and D = det B can be determined by the product of diagonal elements d¡. 
The diagonahzation process is performed by the elementary row and column 
operations. 

There are three types of group problems, depending on the number of a¡ elements 
that can be used to generate the entire group: (1) each element (like Example 11.5), 
(2) some but not each element, and (3) no single element. The groups determined by 
types 1 and 2 are cyclic. The group type 3 is acyclic, whose elements are determined 
by the direct sum of cyclic subgroups. For details see Salkin and Mathur (1989), for 
example. 

A sufficient condition for yB > 0 is used to ensure that an optimum solution yN to 
the group problem is also an optimum solution y = (yn^n) to the original integer 
program. Several sufficient conditions have been developed. See Gomory (1965), 
Hu (1968), and Zionts (1974), for example. Sufficiency conditions have little use in 
application although are of theoretical value. 

11.6 EXERCISES 

11.1 Solve the problem in Example 11.1 again using branch-and-bound. This time, 
start your branching with y2. Graphically show the changes in the feasible 
region at each node. Apply the depth-first rule. 

11.2 Use the branch-and-bound method to solve the following IP problem. Show 
your solution procedure graphically as in Figures 11.1-11.3. 

Maximize y\ + 3y2 

subject to vi +5v2 < 12 

vi + 2v2 < 8 

y i, y i > 0 and integer 

11.3 Solve the following IP problem using the branch-and-bound method. Apply 
the best-bound-first rule. At each node, branch on the variable with fraction 
value closest to 0.5 first. Label the nodes in the order they are generated. 

Maximize 3y i + 2y2 + y-¡ + 2y4 

subject to y i — y2 + 2y3 + y4 < 11 

y2+y3+y4 < 7 

3yi-y3-3y4 < 5 

y > 0 and integer 
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zLP = 41.25 

ZLP = 4 1 

LP infeasible 

Feasible solution 

z = 40 

Feasible solution 

z = 40 

Feasible solution 

z = 37 

FIGURE 11.10 A branch-and-bound tree. 

11.4 Given a branch-and-bound tree for a maximization problem (as shown in 
Figure 11.10), where the number of the nodes shows the order they are 
generated, write the reason for each pruning. 

11.5 Mary is the cashier of a fast food restaurant. Coins of four values are used to 
get customers the change: 10,50, 100, and 250. Suppose now she is to give a 
customer 910 of change. What is the minimum number of coins needed? 
Formulate as an IP model and solve using branch-and-bound method. (Hint: 
convert to maximization problem first). Verify your solution with LINGO®. 

11.6 Solve the following IP problem using branch-and-bound. Apply the rule of 
best-bound-first. At each node, branch on the variable with least index first. 

Maximize 1 Oy i —yj + 5y¿ + 3j4—7y¡ 

subject to 3yi +2yi— y-$— y4—3y$ < 3 

3yi-2y2 + 2y3-2y4 + 5y5 < 7 

y\-yi+yA~ys < 3 
yi,yi,yi,ys > O and integer,^ = {0,1} 

11.7 Assume in Exercise 11.6 that y3, y5 are continuous. Solve the problem again 
using branch-and-bound method. Apply the rule of depth-first. 

11.8 Consider the IP problem in Exercise 11.3. Which of the two cutting planes 
(fractional or mixed) could be applied to it? Why? No need to solve the 
problem to optimum. 
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11.9 Let S = {y > 0 and integer yx-y2< 2, lyi + y2<2\,y\ + 5y2<34}. 

(a) Find an inequality description of Conv(S). 

(b) Find the extreme points of Conv(S). 

11.10 Consider the problem in Example 11.4. Generate another Gomory fractional 
cut using the row corresponding to the basic variable of y2. 

11.11 Consider the integer problem 

Maximize 5y\ —2y2 

subject to Wy\—yi < 21 

3yi -3y2 < 5 

y\ < 4 
y > 0 and integer 

(a) Solve the LP relaxation and show the optimal simplex tableau. 
(b) Is there any basic variable fractional in the optimal tableau? If yes, find 

a Gomory fractional cut based on it. 

11.12 Consider the following IP problem. 

Maximize 3y\ + y2 + 1y^ + 3y$ 

subject to —y\ +3y2+y3— 2y¡, < 17 

yi+2y2< 11 
y2 + 3y4< 13 
y > 0 and integer 

Solve it using Gomory's fractional cutting plane. Show the cutting planes 
you generated at each step. 

11.13 Generate a group of fractional cuts based on variable y2 in Exercise 11.2. 

11.14 Assuming in Exercise 11.12 that y2 is continuous, solve the problem using 
Gomory mixed integer cut. 

11.15 Complete solving Example 11.4 using Gomory mixed integer cutting plane 
algorithm. Compare your results with the solution obtained in Example 11.2 
using a branch-and- bound method. 

For each of the problems in Exercises 11.16-11.18, (a) formulate the group 
problem, (b) construct the group problem as a directed network, and (c) solve 
the shortest route problem by inspection. 
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TABLE 11.9 An Optimal Tableau 

Basic Variable 

z 
yi 

y* 
y& 

z 

1 
0 
0 
0 

y\ 

7/10 
5/10 

16/10 
16/10 

y2 

0 
i 
0 
0 

^3 

69/10 
5/10 
2/10 

-8/10 

^4 

0 
0 
1 
0 

ys 

4/10 
0 

2/10 
2/10 

ye 

0 
0 
0 
1 

yi 

19/10 
5/10 
2/10 
2/10 

RHS 

139/10 
25/10 
32/10 

2/10 

11.16 

Maximize z = 4yi + 3y2 — 5y3 + 2>>4 

subject to ly\ — 2y2 + 5>>4 < 11 

-y3-y* < - 3 

y\ + 2y2+y3 < 5 

yuy2,y3,y*> 0 and integer 

Add slack variables y5, y6, and y7 to the inequality constraints, respectively. 
Then solve the LP relaxation and obtain the following optimum tableau 
(Table 11.9). 

11.17 (Balinski, 1965)' 

Maximize z — Ay\ + 5y2 

subject to — yi— y2 < —5 

—3yi -2y2 < - 7 

y i, y2 > 0 and integer 

Adding nonnegative slack variables y3 and y4 to constraints 1 and 2, 
respectively, we find the optimum LP solution containing basic variables 
y, and y2. 

11.18 (Zionts, 1974) (used with permission) 

Maximize z — 5y\+ 2y2 

subject to 2yi + 2y2 < 9 

3y\+y2< 11 

y\, y i > 0 and integer 

' Reprinted with permission from author (see Bibliography). Copyright 1965 The Institute for Operations 
Research and Management Sciences, 7240 Parkway Drive, Suite 300, Hanover, MD 21076. 
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Adding slack variables y3 and yA to constraints 1 and 2, respectively, and 
ignoring the integer requirements, we solve the LP relaxation and obtain a 
noninteger optimum solution, written in equation form, as follows: 

Maximize z-l/4y3-6/4y4 = 75/4 

subject to y2 + 3/4^3-2/4y4 = 5/4 

y , - l / 4 y 3 + 2 / 4 y 4 = 13/4 

yi,y2,y3,y4 > o 

where yB = 0^, yù-
11.19 For the problem in Exercise 11.17, draw the solution space of the IP program 

and identify the LP polyhedron, convex hull, corner polyhedron, and faces. 

11.20 For the problem in Exercise 11.17, draw the solution space of nonbasic 
variables and identify faces and corner polyhedron. 

11.21 For the problem in Exercise 11.17, relate all faces between the solution space 
of the structural variables and the solution space of the nonbasic variables. 

11.22 For the problem in Exercise 11.18, draw the solution space of the IP program 
and identify the LP polyhedron, convex hull, corner polyhedron, and faces. 

11.23 For the problem in Exercise 11.18, draw the solution space of nonbasic 
variables and identify faces and corner polyhedron. 

11.24 For the problem in Exercise 11.18, relate all faces between the solution space 
of the structural variables and the solution space of the nonbasic variables. 



12 
BRANCH-AND-CUT APPROACH 

Since the development of the branch-and-bound (B&B), cutting plane, and group 
theoretic approaches in the 1960s, progress on methods for solving large-scale IP or 
MIP problems was very limited for two decades. Then in the mid-1980s, a novel 
solution approach known as branch-and-cut (B&C) was introduced, which marked a 
breakthrough milestone in the power of MIP solution algorithms. This approach and 
its variations, coupled with the advances in modeling techniques, preprocessing 
techniques, LP software, and computer hardware, make the solution of large-scale 
MIP problems possible. As of today, the solution power has leapt from solving 
problems with up to one hundred integer variables in the early 1980s to solving 
problems with thousands of integer variables, and even in many instances with 
millions of 0-1 variables. 

This textbook aims at addressing four of the five major factors that contributed to 
the advances in MIP: modeling techniques, preprocessing techniques, solution 
algorithms, and commercial software. Only computer hardware is outside our scope; 
modeling, transformation, and preprocessing techniques were addressed in Chapter 2 
through Chapter 4. This chapter will address the solution algorithm known as branch-
and-cut. A substantial portion of the discussion will focus on the generation of valid 
cuts capable of solving general and special MIP programs efficiently. Branch-and-cut 
as a feature of MIP commercial software will be addressed in Chapter 15. 

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang 
Copyright © 2010 John Wiley & Sons, Inc. 
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12.1 INTRODUCTION 

12.1.1 Basic Concept 

Conceptually, the branch-and-cut method can be viewed as a generalization of the 
branch-and-bound method. Basically, it builds upon the same branch-and-bound 
framework with additional cuts generated and imposed on each node of the branch-
and-bound tree, prior to pruning and branching processes. 

Although both methods solve a series of LP relaxation problems at various nodes, 
their solution philosophies are different. B&B applies two simple bound cuts at each 
node and takes advantage of fast reoptimization of the LP at each node. The B&C 
philosophy is to do as much work as necessary to get a "tight bound" at the node 
before pruning and branching. The work at each node may include generating strong 
cuts, improving formulations, problem preprocessing, and applying a primal 
heuristic. In practice, many cuts may be added at each node, which may slow 
down the reoptimization. For a given large-scale problem, an empirical investiga-
tion is usually used to determine the proper number of cuts to be imposed on the root 
and other nodes. 

12.1.2 Branch-and-Cut Algorithm 

We now describe the branch-and-cut algorithm below. 
Let: 

S — the given IP problem 
SLP = the LP relaxation of S 

yLP = the solution to the LP relaxation of the given IP 
z = lowest (best) upper bound on z of the given IP problem 
z = highest (best) lower bound on z of the given IP problem 
Sk = subproblem k of problem S 

■S£p = LP relaxation of subproblem k 
Sk(t) = subproblem k at iteration t 
S£P(0 = LP relaxation of subproblem k at iteration t as an LP problem 
)£p(0 = the optimum solution of the LP subproblem S\^{t] 
y* = the current incumbent solution 
Z LP(0 = m e optimum objective value of Sr[p(t) 
zk — lowest upper bound of subproblem Sk 

zk = highest lower bound of subproblem Sk 

Step 0 (Initialization). Preprocess the given IP formulation. Solve its LP relaxation 
(SLP). If SLP is infeasible, so is the IP problem. Terminate. If the LP optimum 
solution satisfies the integer requirement, the IP problem S is also optimized. 
Terminate. Otherwise, set the best lower bound z = — oo, and z = z* for SLP. 
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Set k = 1. Let Sk = S. Place Sk on the active list of nodes (subproblems). 
Initially, there is no incumbent solution. 

Step 1 (Choosing a Node). If the active list is empty, terminate. The current 
incumbent solution y* is optimal. Otherwise, choose a node (subproblem) k with 
Sk. Remove Sk from the active list. Set iteration number t = 1. Denote the current 
subproblem by Sk(t), which has LP relaxation 5^P(i). Go to step 2. 

Step 2. (Solving LP Relaxation of Subproblem). Solve S£p (i). If it is infeasible, prune 
node k and go to step 1. Otherwise, keep the optimal LP solution to S£P(i), which is 
y£p(i), and the optimal objective value z£P(0- Go to step 3. 

Step 3 (Generating Cuts). Try to generate cuts to the optimized problem S£p(i) to 
cut off the point y^P(t). If no cut can be added, go to step 4. Otherwise, add a 
cut to S£P(i), resulting in a new LP problem s£ p ( f+ l ) . Increase iteration 
number / b y 1. Go to step 2. 

Step 4 (Pruning). If z£p(i) < z, prune node k and go to step 1. Otherwise, if y^P(t) 
satisfies all the integer requirements of the given IP problem, go to step 5. If )£P(0 
violates some integer requirements, go to step 6. 

Step 5 (Updating Lower Bound). Since the optimal LP solution }>LP(0 satisfies all 
integer requirements, a feasible solution to S is found and y^P(t) becomes a 
candidate solution. Set zk to the optimal objective value of S^p(t), that is, 
zk = z£p(i), and comparez* with z. If zk > z, setz = zk,aady*=yk

J,(t) becomes 
the incumbent; otherwise, z does not change. Node k is pruned because no better 
solution can be branched down from this node. Go to step 1. 

Step 6 (Branching). Branch on the current node k to create more subproblems 
Sk+ \ Sk + 2, and so on. Place these new subproblems in the active list and go to 
step 1. 

12.1.3 Generating Valid Cuts and Preprocessing 

In Chapter 4, we learned about how to preprocess a given MIP model to obtain a 
"better" formulation. That exposition and the experience of practitioners support the 
belief that any original MIP formulation can almost always be improved. By 
improvement, we mean the new formulation has a smaller difference between the 
space of feasible continuous solutions and the space of feasible integer solutions. It 
may also mean that a new formulation has fewer variables (especially integer), less or 
no redundant constraints, and smaller differences between upper and lower bounds for 
variables. In short, a new formulation with such properties is called a "tighter" 
formulation. For the similarities and differences between preprocessing and cut 
generation, readers are suggested to make a quick review of Chapter 4. 

Both preprocessing and cut generation share the similar steps for "tightening" 
formulation by adding and/or replacing constraints in the model so that the 
integer solution space remains unchanged but has a smaller continuous solution 
space. For this reason, they sometimes look alike. In fact, some software 
programs (such as LINGO®) include both options of preprocessing and cut 
generating in one place. 
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However, preprocessing and cut generation do have fundamental differences. First, 
preprocessing is applied to the original model to create a new model (independent of 
the relaxation problem), while cuts are generated and added to cut off a relaxation 
solution. Second, preprocessing introduces tighter constraints that dominate existing 
constraints, while cut generating introduces tighter constraints that cut off part of a 
particular relaxation solution. 

12.2 VALID INEQUALITIES 

12.2.1 Valid Inequalities for Linear Programs 

A linear inequality is called a valid inequality for an LP problem if it is satisfied by all 
feasible solutions to the problem. Here, we are interested in when an inequality is 
valid. This is answered by the following theorem. 

Theorem 12.1 A linear inequality 7tTx < no is valid for a nonempty polyhedron 
P = { x : Ax<b, x > 0 } if and only if there exists u > 0 such that uTA>ir and 
uTb < n0. 

To show this, we treat u as the dual variables to a maximization problem. Then 
by the LP duality theorem, we have max{7tTx: Ax < b, x > 0} < n0 if and only if 
min {uTb: uTA > n, u > 0} <n0. That is, JITX < no for all x in P and there exists at least 
one u such that uTb < n0. 

12.2.2 Valid Inequalities for Integer Programs 

A linear inequality is valid for an MIP problem if it is satisfied by the set oí all feasible 
solutions of the MIP, in particular with the integer restrictions in place. Given a 
polyhedron P and an optimal LP solution x* € P, we are interested in the particular set 
of valid inequalities that cuts off x*. Such particular valid inequalities are sometimes 
called violated cuts. The problem consisting of the determination of whether x* is in 
the new polyhedron, and if not to find an inequality cutting off x*, is called a 
separation problem. 

A violated cut pTx < bi is said to be stronger than a violated cut qTx < b2 if the 
resultant polyhedron of pTx < b] is a proper subset of the resultant polyhedron of 
qTx < b2. By Chapter 4 terminology, pTx < b\ results in a "better" formulation. 

Consider Figure 12.1. The solid dots in the graph represent the feasible integer 
points. Inequalities a, b, and c are valid, while d is not because it excludes an integer 
point. Inequalities b and c are violated cuts, but a is not. Inequality c is stronger cut 
than b because the new polyhedron formed by c is a subset of that by b. 

12.2.3 Types of Valid Inequalities 

Based on the types of MIP problems, we will present valid inequalities of three types. 
Type 1 valid inequalities are generated from pure and mixed IP problems with no 
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FIGURE 12.1 Valid inequalities for a pure integer program. 

special structure. The advantage of this type is that they can always be used to 
separate a fractional point and can be applied to all IP or MIP problems, but the 
disadvantage is that the derived cuts are usually very weak. We will address inequal-
ities for pure and mixed IP problems in Sections 12.4 and 12.5, respectively. 

Type 2 inequalities are basically derived from problems with some local structure 
by considering a single constraint (such as knapsack sets) or a subset of the problem 
constraints (such as set packing). The inequalities thus derived can at best only 
separate fractional points that are infeasible to the convex hull of the relaxation. 
Frequently, type 2 inequalities are facets of the convex hull of the relaxation and 
should be stronger than type 1 inequalities. We will discuss the 0-1 knapsack sets and 
sets with 0-1 coefficients in Sections 12.6 and 12.7, respectively. 

Type 3 inequalities are typically derived from a large part or full set of a specific 
problem structure such as the flow-conservation constraints in the network flow 
problem. Usually these inequalities are very strong because they may come from 
certain known classes offacets of the convex hull of feasible regions. However, their 
applications are limited to the particular type of problem. These cuts are very useful 
and widely implemented in most MIP software, because many hard combinatorial 
optimization problems possess some or all constraints of special structure. We shall 
discuss this type of problem in Section 12.8. 

12.3 CUT GENERATING TECHNIQUES 

Rounding, disjunction, and lifting are three powerful, widely used techniques to 
generate cuts from constraints. In this section, we introduce the basic concept of each 
technique, while the specific applications of various classes will be discussed in the 
subsequent sections. 
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12.3.1 Rounding Technique 

The rounding technique has been applied to model preprocessing in Chapter 4. For 
example, a fractional upper bound on an integer variable can be rounded down and a 
fractional lower bound can be rounded up as seen below: 

y < 3.8 implies y < 3 

and 

y > 1.1 implies y > 2 

Another rounding example in model preprocessing is GCD (greatest common 
divisor) reduction, in which a constraint involves all integer variables with integer 
coefficients such as 6y¡ + 3y2 + 12y3 < 17. The GCD of all coefficients is 3. Divide 
the constraint by 3 and round down the right-hand side resulting in 
2y, +y2 + 4y3<5. 

The rounding technique for cut generation is in a more relaxed manner (hence, 
weaker) and applied more locally. For example, a rounding cut may be applied to a 
constraint involving nonnegative integer variables 

where a¡ may be any number. We may divide the constraint by some (arbitrarily) 
positive constant c and round down the right-hand side to obtain a rounding cut 

0/ 
J 

c 
yj< 

b 
-
c 

This rounding cut is relevant for the general pure integer programs. But unfortu-
nately, the cut thus generated may be very weak. We need additional information 
about problem structure to generate stronger cuts. There are several problems, such as 
node packing, for which strong cuts have been developed. 

A strong rounding cut, called mixed integer rounding(MIR) cut, can be derived 
from a constraint involving multiple integer variables and a single continuous 
variable. This will be covered in Section 12.5. 

12.3.2 Disjunction Technique 

The disjunction technique is one of the most widely used techniques for constructing a 
cut for problems involving both continuous and integer variables. For ease of 
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FIGURE 12.2 Mixed IP feasible region. 

exposition, we consider a constraint set involving a single continuous variable and a 
single integer variable: 

S= {(x,y) :x+y> 2.4,x > 0; v > Oandinteger} 

View this MIP feasible region in Figure 12.2. The shaded area represents the 
feasible region for the LP relaxation of S. The solid lines represent the feasible points 
to S. Assume point (0, 2.4) is the point upon which a disjunctive cut is to be derived. 
First, we partition S into two separate sets by adding the following two either-or 
constraints: 

y < L2-4J 

and 

y > \2A] 

The shaded areas in Figure 12.3 show the two feasible regions represented by the 
two disconnected sets. Either region is feasible to the original MIP problem. To 
combine both feasible regions, we apply the disjunction technique to obtain a "union" 
of the two disjoint sets. To achieve this, consider point A — (0, 3) that intersects 
y = [2.4] = 3 and x = 0, and point B - (0.4, 2) that intersects y = [2.4] = 2 and 
x + y > 2.4. Joining points A and B by a line and determining the inequality sign for 
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FIGURE 12.3 A disjunctive cut. 

feasibility, we obtain a dotted line in Figure 12.3, which represents a disjunctive cut. 
The crosshatched region represents the infeasible region being cut off. Note that this 
inequality is valid for the original MIP because all feasible solutions to the MIP are 
unchanged, and this is a violated cut because it violates the points in the crosshatched 
region. 

To represent this disjunctive cut algebraically, we first write a line equation passing 
through two points A — (0, 3) and B = (0.4, 2), 

y - 3 _ 2 - 3 
x~^Q ~ 0.4-0 

resulting in 5x + 2y = 6. After checking with the origin for feasibility, we obtain the 
following inequality: 

5x + 2y > 6 

12.3.3 Lifting Technique 

Lifting is a technique for strengthening valid inequalities and obtaining facet-defining 
inequalities especially for binary IP programs. There are two types of lifting: 
sequential versus sequence independent. In sequential lifting, the cut coefficients 
{jij} are evaluated one by one, while in sequence-independent lifting, the 71/s are 
evaluated simultaneously. The details of lifting procedure will be discussed later in 
Section 12.6.1. 
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12.4 CUTS GENERATED FROM SETS INVOLVING 
PURE INTEGER VARIABLES 

This section introduces several violated cuts that are applicable only to pure integer 
programs. These cuts cannot be applied to problems that contain both integer and 
continuous variables. 

12.4.1 Gomory Fractional Cut 

Recall the fractional cutting plane method for pure integer programs described in 
Chapter 11. Suppose an LP optimum contains a fractional value of some basic variable 
(say yBr) in row r 

yBr+^2grkyk = br (12.1) 
ka 

where J is the set of indices of all nonbasic variables. Row (12.1) can be used to derive 
a Gomory fractional cut 

5 > * M >/K) (12.2) 
keJ 

where frk = grk - [grk\ > 0 and fro = br- [br\ > 0. 

12.4.2 Chvátal-Gomory Cut 

The above Gomory fractional cut (12.2) is derived from the updated coefficients gy of 
the optimum simplex tableau. To find the same fractional cut but in terms of the 
original variables and coefficients g7-, we use the relation 

where B _ 1 is the inverse of the optimum basis B. Matrix B"1 may be obtained by 
direct calculations from B or by extracting it from the optimum simplex tableau. 
Recall that if the initial simplex tableau utilizes slack variables as basic variables, then 
the associated coefficients of the slack variables form an identity matrix and hence we 
have the updated matrix, B ~~ ' I = B ~ '. The result implies that we can immediately find 
B^1 in the columns located under the starting basic variables in the corresponding 
simplex tableau, without additional calculations. One can show that a Gomory 
fractional cut is the Chvátal-Gomory cut. 

Theorem 12.2 Let ß denote row r of B ', ß, denote the ith element of ß, and 
f'i — ß, - '\ßi\ for i = \, 2 , . . . , m. The Gomory fractional cut Y^kejfrkJk > fro, when 
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written in terms of the original variables and coefficients, is the Chvátal-Gomory 
cut 

¿[f'Tg,Jyy< [f'TbJ (12.3) 

where n is the number of original variables, f' = {f[J^ ■ ■ ■ >/«)' 8/ls t n e original yth 
coefficient column, and b is the original right-hand side column. 

A family of Chvátal-Gomory cuts may be rewritten in terms of the original data of 
the given pure IP problem defined by max{dTy: X)/8/3!/' < b, y > 0 and integer}, 
where g, (/'= 1, 2, . . . , n) are column vectors of matrix G of dimension mxn. 

Let multipliers u > 0 and polyhedron P = {y : Y!* fifij — b, y > 0} be defined for the 
IP. Then the inequality 

E u V ^ » T b (12-4) 
j 

is a valid inequality for P because u > 0, YjSjyj — b and y > 0. Rounding down the 
noninteger coefficients on the left-hand side of (12.4), we obtain a valid inequality, 

£[uTg,J„<uTb (12.5) 
j 

The right-hand side of (12.5) can be further rounded down because y¡ are 
nonnegative integer resulting in the integrality of the left-hand side, 

i 

The inequality (12.6), defined for any u, generates a valid inequality for a given 
pure IP problem. The three-step Chvátal-Gomory procedure, (12.4)—(12.6), can be 
used to construct a valid inequality for a pure integer program. The optimum dual 
solution u for an LP relaxation can be used for the values in (12.4)-(12.6). 

12.4.3 Pure Integer Rounding Cut 

"Rounding" is a widely used technique for generating valid cuts for pure general 
integer and pure binary programs. We saw a similar rounding technique in Chapter 4, 
when a preprocessing method called GCD reduction is used. Here, we apply the 
rounding technique to a < constraint involving nonnegative integer variables, 

The rounding procedure is rather simple: 

1. Divide the constraint by some positive constant d: Y(aj/d)yj — b¡d. 
2. Round down the coefficients on the left-hand side: J2 \_aj/d\yj < J2(aj/d)yj 

<b/d. 
3. Round down the right-hand side: Yl [aj/d\yj < [b/d\. 
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If the given constraint is of > form, the procedure is similar except that the 
rounding-down operations are changed to rounding-up operations. 

Example 12.1 Derive an integer rounding cut for the integer feasible region of a 
pure IP problem defined by the following inequality and y > 0 and integer: 

1y\ + lyi + 4y3 + 10>>4 + 9y5 < 20 

Dividing both sides by a coefficient of arbitrary selection (say, 9), we obtain an 
equivalent inequality: 

7 1 4 10 2 
^yi + ^y2+^y3 + ^-y4+ys>2-

Since y > 0 and integer, rounding up the coefficients of all terms on the left-hand 
side will give an upper bound on the left-hand side. That is, 

7 1 4 10 2 
y\+y2+yi + 2y4+y5 >^y\ + ̂ yi + ^B + y ^ + y s > 2 -

Then the inequality 

2 
y\+yi+yi + 2yA+y5 > 2 - (12.7) 

is a weaker formulation of the feasible region. Since the left-hand side is integer, hence 
we can round up the right-hand side to obtain an integer rounding cut for the original 
IP problem: 

y\ +)'2+),3+2>'4+>'5 > 3 

12.4.4 Objective Integrality Cut 

During the solution process for a pure IP problem, upper bounds on the optimum 
objective value are obtained and updated. These upper bounds can also be used to 
generate cuts. If the objective coefficients d are integer, then the entire left-hand side 
must be integer because variables y are required to be integer. Let z be the best upper 
bound found so far, we have an objective integrality cut 

dTy > \i\ 

12.5 CUTS GENERATED FROM SETS INVOLVING MIXED 
INTEGER VARIABLES 

12.5.1 Gomory Mixed Integer Cut 

Recall the Gomory mixed integer cutting plane method for mixed integer programs in 
Chapter 11. If the LP optimum contains a basic integer variable with a fractional value, 
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the corresponding row (say r) is selected for generating a mixed integer cut. Let the 
generating row r be 

j k 

We partition the continuous variables Xj into two cases: those with positive 
coefficients and those with negative coefficients. We also partition integer variables 
yk into two cases: those with/r/t </,<) and those with/r¿ >/K>- Then a Gomory mixed 
integer cut can be generated by 

E w+ E ( A W E /*»+ E *^»>/* 
7:ä,->0 j:ä,j<0 V»fl V fc^^ t:/ri>/K, Jr(> 

where/^ = frit-LfritJ and/ro = ¿V — [br\- For simplicity, we drop subscript r to 
obtain 

E ö ^ + E (jh)ûJxJ+ J2&yk+ E fo^yk>fo (12.8) 
1-/0 

Example 12.2 Find a Gomory mixed integer cut for the following mixed integer 
program: 

Maximize 2xi + 5*2 + 3x3 + 4x4 + Ji + 7̂ 2 + 2^3 

subject to x\ + 2x2 + 11*3 + M + 3yi + 2̂ 2 + ^3 < 23 

- x i + x2 + x3 + 2x4-5^1 +y2 + 3y3 < 23 

X I , X 2 , X 3 , X 4 , Í 1 , Í 2 > 0;yuy2,y3 > Oandinteger 

The optimal tableau of its LP relaxation contains the following row, in which the 
variable y2 is basic and fractional and S[ and s2 are slack variables: 

11 1 2 1 23 
xi + x2 + 7x3 + -r-yi +y2--y3+ ^si--s2 = y 

To construct a mixed integer cut, we must first classify the variables. Among 
noninteger variables, xj, x2, X3, and S\ have positive coefficients, while s2 has a negative 
coefficient. Integer variables are y¡, y2, and y3, whose nonnegative fractions are/i,/2, 
and/3, respectively. After computing/] = 2/3,f2 = 0,f3 = 2/3, and/o = y — |_yj= 5, 
we conclude/^ < / 0 for all k = 1, 2, and 3. That is, there are no integer variables yk 

whose fk >/0. Applying (12.8), we obtain the following mixed integer cut: 

2 / - 1 \ 2 2 2 
( x i + x 2 + 7 x 3 + - s i ) + ( - 2 ) l — Js2+ -yi + ->>3 > 2 
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In the previous section, we gave (12.8) without elaborating how it is obtained. Here 
we will show how. Consider the following LP optimum simplex tableau, 

xBr+^2ärjXj = br (12.9) 
jeJ 

For simplicity, we omit row subscripts in (12.9) to get (12.10) and assume that x¡ 
may be either an integer or a continuous variable. 

x+^2äjxj = b (12.10) 
jeJ 

Since basic variable x > 0 is required to be an integer, it follows x = 0 (mod 1). 
Since b by assumption is not an integer, it follows b =f0 (mod 1). Hence any integer 
solution to (12.9) must satisfy 

£ ö , x y = / o ( m o d l ) (12.11) 
jeJ 

Let the coefficients on the left-hand side of (12.11) be partitioned into two sets, 
J+ = {j\âj > 0} and J- = {j\äj < 0}. Then, 

y ^ äjXj + ^2äjXj =/o(mod 1) (12.12) 
j€J+ J€J-

where 0 < / 0 < 1. 
The left-hand side of (12.12) is either positive or negative. If it is positive, then it 

must be one of/0,/0 + l , / 0 + 2, ..., and we have 

Y^ ~aixi ̂  H *JXJ + H °Jxi -^° (12.13) 
jeJ* j€J+ j£J-

If the left-hand side is negative, then it must be one of — 1 4- /0, —2 + f0, ■ ■ -, and we 
have 

J2 ~així ^ Yl ~aix> + S °JXJ ^~l+f° (12-14) 
jeJ- jeJ+ yev-

Multiplying both sides of (12.14) by/o/(-l +/o), we have 

E r r w ^ û (12.15) 
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Note that either (12.13) or (12.15) must hold. Because the left-hand sides of (12.13) 
and ( 12.15) are both nonnegative, and one of them is >/0 , then by union (disjunction) 
of two sets we conclude 

Ew+Err^^ (12-16) 

The above inequality must be satisfied by every integer solution, but will violate the 
current LP solution, because substituting all nonbasic variables x, to 0 makes the left-
hand side zero, which cannot be > f0 (a positive fraction). 

Note that in the process of deriving (12.16), we use only the fact that the basic 
variable x on the left-hand side of (12.10) must be an integer and that the nonbasic 
variables x¡ on the right-hand side must be nonnegative. Therefore, if some 
nonbasic variables are not required to be integers, (12.16) still represents a valid 
inequality. 

However, we can further utilize the integer requirement of some nonbasic variables 
Xj to improve (12.16) to a stronger inequality. To achieve this goal, we make the 
coefficients a¡ for y s / + and {(äjfo)/(fo—1)) iorj G J~ to be as small as possible. 

Consider a certain term aqxq in (12.11) for which xq is required to be integer. 
Because (12.16) is derived from (12.11), any increasing or decreasing by an integer 
multiple clearly will still satisfy the congruence relation (12.11). Among all aq > 0, 
the smallest coefficient that can be obtained is/?. Among all aq < 0, setting aq tofq — 1 
will give the smallest value to/o/(/0— 1) aq. Therefore, the smallest coefficient 
in (12.16) must be 

min{/j , /o(l-/ ,) /(l-/o)} 

Clearly, if fq </0 , then 

/ , ( l - /o ) < / o ( l - / , ) 

or 

/ , < / o ( l - / , ) / ( l - / o ) 

If/? >/o. then 

/ , > / o ( l - / , ) / ( l - / o ) 

Combining all four cases, we obtain Gomory mixed integer cut in the form 

£■£•**,■ >/o 
j 
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where 

f.* = üj if a¡ > 0 and Xj noninteger 

/■* = -—-a¡ if ö, < 0 and x, noninteger 
Jo-1 

fj* = fq if/? < / 0 and x, integer 

/•* = - r V ( 1 - / ? ) if/? >/o and xy integer 
1-/0 

12.5.2 Mixed Integer Rounding Cut 

Here we intend to derive a rounding cut for the mixed integer set in the following form: 

S= {(y,x) : a T y -x < A, y > 0 and integer, x > 0} (12.17) 

We begin with the simplest case where the set contains a single integer variable, a 
single continuous variable, and a single inequality, symbolically 

S' = {(y, x) : y—x < b,y > 0 and integer, x > 0} 

Then the following inequality, due to Nemhauser and Wolsey (1988), is valid for 
Conv(S'). 

y<[b\ + Yj (12.18) 

where f=b— \b\. To prove (12.18), we consider the disjunction (union) of the 
following two sets: S1 = S'H {(y, x): y < [b\} and S2 = S'n {(y, x): y > [b\ + 1}. For 
S1, we multiply y < [b\ by (1 —/), multiply 0 < x by 1, and sum the two resultant 
inequalities, yielding 

( y - [ A | ) ( l - / ) < * (12-19) 

equivalent to (12.18). ForS2, we multiply —(y - [b\)< —1 by/ multiply y — b< xby 
1, and sum the two resultant inequalities, yielding (12.19) and then (12.18). There-
fore, (12.18) is valid for Conv(S' U S2) = Conv(S')-

The above single-integer variable case can be extended to derive a mixed integer 
rounding cut for the two-integer variable case 

5" = {Cyi,;v2,*) : g\y\ +giyi-x <b;x> 0;yuy2 > 0 and integer} 

where gu g2, and b are scalars with fractional b. 
Let /= b - [b\ > 0 and/t = gk - [gk\ > 0 for k = 1, 2. Then it can be shown that 

the inequality 
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where (fk —f)+ = max (0,fk —f) is valid for Conv(S"). This can be generalized to the 
set containing p integer variables and a single continuous variable. 

Theorem 12.3 Let the set S = {(y, x): gTy - x < b, y > 0 and integer, x > 0}, the 
inequality 

Ç(kJ + i ^ )^<W + ï ^ (12-20) 

is valid for Conv(S), where f=b- [b\ > 0 , fk = gk- \_gk\ > 0 , and (fk-f)
+ = 

max(0, fk-f). 

12.6 CUTS GENERATED FROM 0-1 KNAPSACK SETS 

12.6.1 Knapsack Cover 

Consider a knapsack constraint 

K= {y e (0,1)" : Y^ajyj < b,aj > 0;b > 0} (12.21) 

Any negative coefficient can be converted to a positive coefficient by substituting j y 

for a new variable y'j — l—yj. 
A set C is a cover if X],6c a/ > Ä, or A = ^ / 6 c aj~b > 0. The cover C is said to be 

minimal if a¡ > A for all j S C. 

Theorem 12.4 Let CÇJVbea cover of K and ICI be the number of elements in C, 
then the cover inequality 

X > < | C | - 1 (12.22) 
jec 

is valid for K. Moreover, if C is a minimal cover, then the inequality (12.22) defines a 
/ace/ of Conv(/fc) 

tfc = JÍT n {y : y,- = Oj G A^\C} (12.23) 

where MC is the difference of sets N and C, and Conv(ATc) is the convex hull of Kc. 

Example 12.3 Construct a cut for K={ye(0, l)5: 2yx + y2 + 5y3 + 2y4 

+ 3y5<9}. 
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C= {3,4,5} is a cover because A = 5 + 2 + 3 — 9 = 1 > 0, and is a minimal cover 
for K because 5 > 1, 2 > 1 and 3 > 1. We obtain the corresponding cover inequality 
ys + y4 + y5< 2, which defines a facet of Conv({ y €(0, l)3:5y3 + 2y4 + 3y5<9}). 

If a cover C is not minimal, then it is clearly seen that the corresponding cover 
inequality is redundant because it is the sum of a minimal cover inequality and some 
upper bound constraints. 

12.6.2 Lifted Knapsack Cover 

Lifting can be used to strengthen knapsack cover inequalities and to obtain a large 
class of facet-defining inequalities for Conv(K) called lifted cover inequalities. 

Consider the knapsack set K defined in ( 12.21 ) and let M be a subset of N. Suppose 
we have an inequality, 

5> , -v y <7r 0 (12-24) 
jeM 

which is valid for KM = K(~\ {y: yj = 0,jGN\M}. The lifting problem is to find the 
lifting coefficients {nj},j€N\M, so that 

^2nJyJ - n° (12.25) 
jeN 

is valid for K. Ideally, we would like inequality (12.25) to be "strong." That is, if 
inequality (12.24) defines a face of high dimension of Con\(KM), we would like the 
inequality (12.25) to define a face of high dimension of Com(K). 

There are two types of lifting: (1) sequential lifting and (2) sequence independent 
lifting. We first describe sequential lifting. The sequential lifting obtains coefficients 
{iij},jeMAf, one at a time. Specifically, the coefficient nk is computed for a given 
Are MM so that 

^ Ji/Vy + nkyk < n0 ( 12.26) 
jeM 

is valid for Kuu{k)- This can be done by computing the lifting function 

FM{ak) = mxa{nQ-'Ylnjyj : ̂ ajyj < b-ak,y € (0, l)M} (12.27) 
jeM jeM 

For a given k€N\M, suppose KMu{k] H {y: yk = 1} ¥"0- Then inequality 

^ np} + Wie < "o ( 12.28) 
jeM 
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is valid for KMlnk¡ if nk < F^a/c). Once variable V/t is lifted, Mis updated by including 
k, and lifting can be done to a second variable by repeating the lifting function. The 
lifting procedure for a cover inequality is given below. 

Assume the given cover C = {r + 1, . . . , «} and MC —[l,...,r] after reordering 
the variables. 

1. Letk=\. 

2. Compute 
Fc(ak) = m a x ^ J , 1 njyj+ £y 6 C y/ : £/=/ W + E/ec«/» < ¿-a*, 
ye (0,1)} 

3. Compute nk = ICI - 1 - F c (a*). 
4. A; <— A: + 1. Stop if k = r + 1, otherwise go to step 2. 

Example 12.4 Find a lifted knapsack cover for the knapsack set 

K = {y € (0, l)7 : 4v[ + 7v2 + 5y3 + v4 + 2v5 + 3y6 + 4y7 < 15} 

LetM={2, 3, 7}, then 

KM = Kn {y : yx = y4 = y5 = y6 = 0} = {y € (0, l)3 : 7y2 + 5y3 + 4y7 < 15} 

The inequality y2 + y3 + y7 < 2 is valid for ÍTA/. So is y2 + y3 + y7 < 3 
used below. 

The lifting procedure is as follows: 

1. Let k= 1. FM(ak) = FM(4) = mm{3 - ( y 2 + y3 + y7): 7y2 + 5y3 + 
4 y 7 < l l } = l. 

2. KMu(i) = lye (0 , l):4y, + 7y2 + 5y3 + 4y7< 15}. 
3- tfA*u(i)n{y:y1 = l} = {7y2 + 5y3 + 4 y 7 < l l } / 0 . 

4. Let 71! = 1. Then the inequality, yx + y2 + y3 + y7 < 3, is valid for ÍÍTAÍUÍI }-
5. M <— M U {1}. Select another k. Repeat the procedure until all variables are lifted. 

Now we apply the method of sequence independent lifting to the knapsack cover. 
Before doing this, we need to define the term superadditive. 

Definition 12.1 A function F: IR-> IR is superadditive on IR if F(c0 + F(c2) < 
F(c\ + c2) for all real cl7 c2-

Let F: R —* U be a function. The inequality 

J2 njyj+ Yl F^yj - n° 
jeM jeN\M 

is valid for K if the following two conditions are satisfied: 
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(i) F(c) < FM(C) for all real c 

(ii) F{c) is superadditive 

Example 12.5 Consider Example 12.4. Let 

FM{ak) = min{7t0- ^7 t , y y : ^ a / v y < b-ak,y € (0,1)} 

= min{3- (y 2 +y 3 +y 7 ) : 7y 2 + 5y3+4y 7< \7-ak,y € (0,1)} 

We have 

FM(ak) = < 

' 0 0 < ak < 1 
1 1 < ak < 8 
2 8 < flfe < 13 

I 3 a* > 13 

Let F(ak) = ak — l, then F(a^) < FM(ak) for any a .̂ (i) is satisfied. 
Since F(ak) + F(dj) = ak + aj—2 < F(ak + aj) — ak+aj—l, (ii) is satisfied. 
In this problem, N\M = {1,4,5,6}, {ak} = {ßi,a4, a5, a6} = {4,1, 2,3}, we have 

F{a{) = 3, F(a4) = 0, F(a5) = 1, F(a6) = 2, and the inequality 

3yi+y2+y3+y5 + 2y6+>'7 < 3 

is valid for K. 

12.6.3 GUB Cover 

A GUB (generalized upper bound) cover inequality is derived from the following 
GUB set: 

S= {ye (0,1)" : 5>,y,- < b^yj < l,QlnQJ = 0foralli?j,\JlQi = M} 
j jeQt 

A strong cut can be derived by 

where C is a GUB cover defined by no two elements of C belonging to the same Q¡. 

Example 12.6 Construct a GUB cut for S = {y G (0, 1): 2y{ + y2 + 5y3 + 2y4 

3y5 + 6y6 + 4y7 + y8 < 9, yx + y3 + yA < 1, y2 + y7 < 1, y5 + y8 < 1, ye < 1 }• 
Select a variable from each of the constraints 2-5 so that no two variables are the 

same. Then, we obtain an inequality y3 + y6 + y7 + y8 < 4 as a GUB cover. There 
are many other combinations that can be used to form GUB covers. 
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12.7 CUTS GENERATED FROM SETS CONTAINING 
0-1 COEFFICIENTS AND 0-1 VARIABLES 

The constraint sets comprising 0-1 coefficients and binary variables frequently arise 
in graph- or network-related problems and in combinatorial problems, for example, 
node packing and traveling salesman. Here, we will discuss the polyhedron of the 
node packing problem and the construction of strong valid inequalities. 

Definition 12.2 Given is a graph G = (V, E), where V and E are sets of vertices (or 
nodes) and edges (or arcs), respectively. A node packing (set) S is a set of nodes such 
that no two nodes have a common edge, that is, 

5 = {y G {0, l } " 1 : yt+yj < 1 for all (/,/) G E} 

where i,j G V and | V\ is the number of vertices. The node packing problem is to find 
the maximum-cardinality node packing (independent node set) in G 

Consider the graph for a node packing problem with five nodes and seven arcs in 
Figure 12.4. 

To represent in matrix notation, let A be an arc-node incidence matrix and y be a 
column of 0-1 variables. Then, a node packing set must satisfy Ay < 1, where A is a 
0-1 coefficient matrix and y is a 0-1 vector. For example, in Figure 12.4, | V\ = 5, 
\E\=7, and the arc-node matrix is 

FIGURE 12.4 Graph for node packing problem. 
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y = 

"yr 
yi 

J3 

V4 

.ys. 

1 = 

"1" 

- 1 -

1 1 0 0 0 

1 0 1 0 0 

0 1 1 0 0 

A = 0 1 0 1 0 

0 0 1 1 0 

0 0 1 0 1 

0 0 0 1 1 

To find a node packing set, we can "directly" solve max {JZjJi yj '• Ay < 1, where 
y¡ = 1 if node y is in the set, v̂  = 0 otherwise}. However, we can solve it easier by 
constructing strong valid inequalities to the problem. To achieve this, we introduce the 
concept of maximal clique. 

Definition 12.3 Given is the graph G = ( V, E), where V and E are sets of vertices and 
edges, respectively. A set of nodes, Cq Ç V, is called a clique if every pair of nodes in 
Cq is joined by an edge. A clique is maximal if it contains a maximal number of nodes. 

Consider Figure 12.4. The two-node cliques are {1,2}, {1,3}, {2,3}, {2,4}, {3,4}, 
{3,5}, and {4,5}. The three-node cliques are {1,2,3}, {2,3,4}, and {3,4,5}. The set 
{1,2,3,4} is not a clique because there is no edge between nodes 1 and 4. The set {2,3, 
4,5} is not a clique because there is no edge between nodes 2 and 5. In fact, there is no 
clique containing four or more nodes. Therefore, the maximal clique is three. The 
maximal clique can be used to construct a strong cut for a node pack set called clique 
cut (inequality). 

Theorem 12.5 Let Cq be a maximal clique, the clique inequality or cut 5Z,-eC yj < 1 
defines a facet of Conv({y € {0, l } m : Ay < 1}). 

Consider Figure 12.4. For the maximal clique Cq= {1, 2, 3}, the clique cut is 
y i + y i + y i < l- For the maximal clique Cq= {2, 3, 4}, the clique cut is y2 + y-$ 
y4< 1. For the maximal clique Cq= {3, 4, 5}, the clique cut is y3 + v4 + v5 < 1. 
These three clique cuts provide strong valid inequalities for solving the node packing 
problem in Figure 12.4. In this particular problem, the reader can list all the seven 
constraints in Ay < 1 and verify that they all are dominatedby these three clique cuts. 

yi+y2+yi < l 

J2 + V3+J4 < 1 

W + V4 + V5 < 1 

(12.29) 

(12.30) 

(12.31) 

Now we utilize these cuts to solve the node packing problem. From (12.29), 
vi = 1 implies y2=y3 = 0. From (12.30), y 4 = l because we want to maximize 
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Z))=i yj- From (12.31), v4 = 1 implies y5 = 0. Now we have a solution yx = y4 = 1, 
)'2 = y3 = v5 = 0. Similarly, we can generate two alternative solutions. 

yi = ys = l, y, = y 3 = y 4 = o 

yi = J5 = 1, V 2 = y 3 = ) ' 4 = 0 

These three solutions correspond to the respective node packing sets {1,4},{2,5}, 
and {1,5}, and there are no packing sets including three or more nodes. This example 
shows how a maximal clique can be used to generate strong cuts to help solve a 
problem containing 0-1 coefficients and binary variables. For this example, it is 
coincidental that the generated cuts can immediately find a solution. Nevertheless, 
the generated strong cuts are useful for making the branch-and-cut method more 
efficient. 

12.8 CUTS GENERATED FROM SETS WITH SPECIAL STRUCTURES 

This section discusses several well-known special-structure constraint sets from 
which strong cuts are generated, including 

• Flow cover from a simple fixed-charge flow network 
• Plant location 

12.8.1 Flow Cover from Fixed-Charge Flow Network 

Consider the following simple fixed-charge network flow problem in mixed integer 
variables: 

S = {(x, y) : y j Xj— 2_\ xj < b, x¡ < aßj for ally, x > 0, y binary} 
jeNi jeN2 

The constraints contain two sets: the flow-conservation constraints and fixed-
charge constraints imposed on each nodey". A flow cover cut is derived below: 

jec¡ jec2 \ yeCi jeC2 ) 

~Yla>~[J2aj-J2a'-bIHyj- ]C xi-b 

jeC, Vec, jec2 ) jeL2 ye/v2\(C2u¿2) 

where C\ Ç /Vi, Ci Ç N2 are generalized covers defined by 
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} aj— y ^ Qj > b, where L2 = N2\C2-
jeC, jec2 

Example 12.7 Assume the demand on a certain node is b = 5, and the capacities of 
the supply and demand nodes are (13,15,8) and (9,14,10,12), respectively. Then the 
constraint set is as follows: 

x\ + x2 + x3 — X4—X5— x¿— Ax-] < 5 
x\ < 13vi,x2 < I5y2,x3 < &y3,x4 < 9y4,x5 < \4y5,x6 < I0y6,x7 < I2y7 

Let d CNX = {1, 2, 3}, C2QN2= {4, 7}, L2C(N2\C2) = {5}, with Eyec,0/ = 3 6 

and Yl,jeC2aJ = 21. Then the inequality 

x 1 + x 2 + x3 + 3( l -y1) + 5 ( l - ) ' 2 ) -21 -10v5 -x 6 <5 

or equivalently, 

xi+x2 + X3-x6-3yi-5y2-l0y5 < 18 

is a valid cut for this problem. 

12.8.2 Plant/Facility Location (Fixed-Charge Transportation) 

Consider the following constraint set of the fixed-charge transportation problem 

s = {(x, y) : E Xi>= ö; ' E xv ^ bjyj' x¡j 

j 

< min(a,-, bj)yj, x > 0, y binary, i e M,j € N} 

A strong cut can be derived as follows: 

£$>+ E [h-Y,h+ $>)+o-») * E« 
jeC i&Kj jeC \ jeC ieK / ieK 

where C Ç N is a subset of locations, and a cover such that Y^jecfy > IZíeir0' > ^ — ^ 

is a subset of clients, /£, Ç K is possibly a smaller subset of K, bj = min (6/, J2ieKai) 

is the "effective" capacity of location j . 

Example 12.8 Products are manufactured in four plants to supply customers from 
five different cities, as shown in Figure 12.5. The capacities bj for the four plants are 
30,20,40, and 30, respectively. The demands from the five cities a, are 15,12,18,10, 
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Customer i e M 

FIGURE 12.5 Constructing a cut for plant/facility location, 

and 16, respectively. The set of all constraints are 

*11 +-«21 + *31 +*41 = 15 

*12 + *22 + *32 + *42 = 12 

*13+*23+*33+*43 = 18 

Xi4 + X24 + X34 + X44 = 10 

*15 + *25 + *35 + X45 = 16 

Xu+Xn + Xi3+Xi4+Xi5 < 303Í1 

*21 + *22 + *23 + *24 + *25 < 20>'2 

*31 + *32 + *33 + *34 + *35 < 40^3 

X41 + X42 + X43 + X44 + X45 < 30y4 

xy < min(a¡,bj)yj 

Let KCM= {1, 2, 3, 4} , ^ = {1, 2, 3}, tf2= {2, 3}, and tf3= {3, 4}. Compute 

D / e J r a , = 15 + 1 2 + 1 8 + 1 0 = 55 

¿i = min Í bi, ^2 a¡ ) = min(30,45) = 30 

¡£K2 / 

, '6*3 / 

¿2 = min | 

¿3 = min 

min(20,30) = 20, 

min(40,28) = 28 
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Let CÇN= {1, 2, 3}, (52j€Cbj = 78 > £/6jra,- = 55, so C is a cover), then in-
equality 

•Xii+*2i+*3i+*22+*32 + *33+*43+7(l-;yi)+5(l--;y3) < 55 

or equivalently 

^11 +JC21 +^31 + *22 + X32 + X33 + X43-7V] -5y3 < 43 

is a valid cut for the problem. 

12.9 NOTES 

The branch-and-cut approach, a generalization of branch-and-bound (Land and Doig, 
1960), follows a series of key contributing papers by Crowder et al. (1983), Johnson 
et al. (1985), Van Roy and Wolsey (1987), and Hoffman and Padberg (1991). In fact, 
the name was given by the authors in the last article, which claimed to solve a 0-1 IP 
instance containing as many as 6000 binary variables. Johnson et al. (2000) present an 
excellent survey paper about modeling and solving mixed integer programs using LP-
based algorithms. Marchand et al. (2002) provide a complete treatment of various 
types of cutting planes that are useful or potentially useful in solving pure integer and 
mixed integer programs. Cordier et al. (1999) describe a branch-and-cut MIP software 
system called bc-opt. 

Section 12.4 

Gomory fractional (Gomory, 1960) and Chvátal-Gomory cuts for pure integer 
programs are rarely implemented and are usually replaced by the Gomory mixed 
integer cut (Gomory, 1960), even for pure integer programs. 

Section 12.5 

The Gomory mixed integer cut (Gomory, 1960) in (12.8) is the most implemented cut 
for general IPs and MIPs. An alternative form of this cut is obtained by dropping the 
first two terms corresponding to the continuous variables Xj in (12.8). Mixed integer 
rounding cut is due to Nemhauser and Wolsey (1988). 

Section 12.6 

Knapsack covers (Crowder et al., 1983, Weisemantel, 1997) are the first cuts to find 
extensive use in general purpose solvers and have been successfully used in 
commercial codes for many years. GUB covers are due to Gu et al. (1998). 
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Section 12.7 

Cliques are due to Johnson and Padberg (1983) and Atamturk et al. (1988). 

Section 12.8 

How covers are due to Padberg et al. (1985) and Gu et al. (1999). 

12.10 EXERCISES 

12.1 Consider the integer set S = {y > 0 and integer: 2y[ + 3y2 < 23, -5yi + 5 
yi>8} and two given valid inequalities for S: y\ < 4 and —yt + y2 > 2. 
Which one is stronger? 

12.2 Graphically represent the feasible region of S = {x > 0: 3x\ + x2 < 6, Xi — 
x2> 1 }• Check if Ixx + x2 < 10 is valid for S with no calculation involved. 

12.3 Consider the set S = {y G (0, 1): 5yi + 2y2 - 3y3 - yA + 4y5 < 6}. Check if 
the following inequalities are valid for S: 

(a) y, = 1 
(b)y 3 = 0 

(c) yi + y2 + y5 < 2 

(d) y3 + y 4 > l 

12.4 In each of the following problems, a set S and a point are given. Find a valid 
inequality for S that cuts off the point. 

(a) S= {y>0 and integer: lyx + 10y2 + 5y3 + 13y4>30}, y = (0, 0, 0, 
13/30) 

(b) S = {x>0, y > 0 and integer: xx + x 2 < 4 1 , X\ + x2<15y), (x, y) 
(10, 16, 15/26) 

(c) S = { x > 0 , y G ( 0 , l) :*i + x2<3y, xx <2 , x2< 1}, (x, y) = (l, 1,2/3) 
(d) S = {y > 0 and integer: 2y, + y2 + 7y3 + 5y4 + 3y5 < 25}, y = (25/2, 

0, 0, 0, 0) 

12.5 Generate a valid inequality using Chvátal-Gomory cut procedure for the 
following IP: 

Maximize y i+y2+y3 

3yi+5y 2 -y 3 < 12 

;yi+y3 < l 

y\ -yi + 2y3 < 9 

y > 0 and integer 
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12.6 Let S = {x > 0, y > 0 and integer: -ax0 + ax + gy<b, bx0 + ax + gy< 
b + ß, a, ß > 0}. Show that ax + gy < b is an MIR inequality for S. (Hint: 
Scale each inequality in S by l/(a + /?).) 

12.7 Consider the set S = {x > 0, y > 0 and integer: x < My, 0<x<b}. Show that 
x<b-a(ß-y), where a = b-(|"¿]-1 )M, ß = ¡fe] is valid for S. 

12.8 Consider the mixed integer problem 

Maximize y i + y 2 + ^3 — 2x 

subject to 3.1yi + 1.3y2 + 1.4y3-x < 19.7 

y > 0 and integer, x > 0 

(a) Solve this problem using MIR cuts. 
(b) Solve this problem using Gomory mixed integer cuts. 

12.9 Consider Example 12.5. Suppose the objective function for Si and S2 is max 
1 lxi + 6x2. Let Ui = (1/2, 1/3), u2 = (1, 1/4). Generate a disjunctive cut for 
Si US2 using these parameters. 

12.10 Show that the valid inequality in Example 12.1 is a Chvátal-Gomory cut. 

12.11 Find two valid cuts for S = {y e (0,1): 4y, + 3y2 + 2y3 + 7y4 + 5ys < 11} 
using two different algorithms learned in Chapters 11 and 12. 

12.12 (Mixed Integer Knapsack) Let S = {x > 0, y € (0,1 ): Y.jei^^i ~y<b,b>0, 
Qj > 0}, C Ç N is a cover. Then, the mixed integer knapsack inequality 

Y,min \aJ> 5Z a'~b )XJ- Ylmin \aJ' Yl a~b I ~ H aJ+b+y 

jec \ jeC ) jec \ jeC ) jeC 
is valid for S. Consider the instance where S = {x > 0, y G (0, 1): 5XÍ + 3 
x2 + 5x3 + 4x4 + 7x5 — y < 15}. Find at least three mixed integer knap-
sack covers for S. 

12.13 Consider the following generalized assignment problem: 

Maximize \] ¿ J c0\l 
i j 

subject to 2_, yy — ^ / = 1 , . . . , 4 
j 

YavyiJ-bJ ^ ' = 1 ' - - - ' 3 

y'e(o,i) 

where b = (6, 12, 10) and 
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FIGURE 12.6 A simple graph. 

(a) Generate two knapsack covers. 
(b) Find a Gomory fractional cut. 
(c) Find two disjunctive cuts. 

12.14 Consider the flow conservation set S = {x > 0, y G (0, 1): X\ + x2 + x3 + 
*4 - (*5 + *6 + x7) < 6, xi < 5yu x3 < 4y2, x4 < 7v4, x5 < 3y5, x6 < 2v6, 
*i < 5y7}. Derive a flow cover inequality with Cj = {1, 4}. 

12.15 Given the following graph G( V, E) and the set S = {y,< + y} < 1, for (i,f) eE], 
(a) Find two cliques of G. 

(b) Generate two clique cuts associated with the two cliques in (1). 
Figure 12.6 

12.16 (The Stable Set) Given a graph G( V, E), a stable set is a subgraph induced by a 
subset of vertices G', so that no pair of vertices in G' defines an edge of E. For 
each stable set G' in G we can define a point y, in the following way: 

_ f l ifieC 
\o otherwise 

The convex hull of all these points, called the stable set polytope, 
associated with G will be denoted by STAB(G). Mathematically, it can be 
expressed as 

STAB(G) = Conv{y G (0,1) : y,+yj < l,(i,j) G E} 

Let CÇE be a cycle of odd cardinality in G. The odd cycle inequality 
£,-ev(c)*í ^ (¡ViQl-1)/2 i s valid f o r STAB(G). Consider the graph G(V, E) 
in Exercise 12.15. 
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(a) Find two stable sets in G. 
(b) For each stable set found in part (a), find an odd cycle inequality for STAB 

(G). 

12.17 Consider the instance of a capacitated plant location problem where there are 
three plants and four customers. The problem data are as follows: c = (100, 
120, 110) and d = (90, 70, 80, 60). 

(a) Formulate the problem with input data. 

(b) Find a valid plant location inequality. 



13 
BRANCH-AND-PRICE APPROACH 

In the previous chapter, branch-and-bound is generalized to include generation of cuts 
or rows, hence the name branch-and-cut. In this chapter, branch-and-bound is first 
generalized to include generation of columns by solving pricing problems, hence the 
name branch-and-price, and yet another generalization includes generation of 
columns and rows, hence the name branch-and-price-and-cut. Basically, all these 
generalizations solve a sequence of LP relaxations of a given IP. Branch-and-cut 
tightens the LP relaxations (or polyhedra) by adding cuts or constraints (rows). 
Branch-and-price tightens the LP relaxations by generating a subset of profitable 
columns associated with variables to join the current basis. These columns are 
generated iteratively by solving subproblems or pricing problems. 

13.1 CONCEPTS OF BRANCH-AND-PRICE 

Branch-and-price builds upon the branch-and-bound framework. It applies column 
generation throughout the branch-and-bound tree prior to branching. Branching 
occurs when no profitable columns can be found and the LP solution does not satisfy 
the integrality conditions. The concept of column generation is outlined below. 

• The column generation approach is used when the LP relaxation of a given IP 
formulation contains too many columns (associated with variables) to handle 
explicitly and simultaneously. 

Applied Integer Programming: Modeling andSolution, By Der-San Chen, Robert G. Batson, and Yu Dang 
Copyright © 2010 John Wiley & Sons, Inc. 
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• Instead of handling all columns of a given master problem explicitly, a restricted 
version of the master problem that contains only a subset of columns (usually 
associated with the basic variables) is maintained and updated, while the 
remaining huge number of columns (usually associated with nonbasic variables) 
are left out of the LP relaxation. 

• Because most of these columns will likely have their associated variables equal 
to zero in an optimal solution, only profitable columns (associated with nonbasic 
variables) are generated and added to the current restricted master problem to 
improve its current LP solution. Such columns can be generated iteratively by 
solving subproblems (or pricing problems). 

• The column generation approach to integer programming is closely related to 
Dantzig-Wolfe decomposition in linear programming. Initially, the restricted 
master problem is represented by the revised simplex tableau that contains 
the current basis inverse, primal solution, and dual solution. Then the dual 
solution is passed to update the objective function of a subproblem, which in turn 
is solved to determine if the LP solution of the master problem is optimal—and if 
not, to identify a pivot column to enter the basis to improve the current LP 
solution. 

• An LP optimum is found when there is no column that can be generated with a 
profitable reduced cost. The LP optimum may or may not satisfy the integrality 
conditions. 

• If the LP optimum satisfies the integrality conditions, a lower bound for the IP is 
found. Otherwise, the noninteger LP optimum (or approximation) can be used as 
an upper bound and then branching occurs. 

• A special (problem-specific) branching scheme is usually needed because 
column generation may destroy the original problem structure. 

In the next section, Dantzig-Wolfe decomposition for linear programs will be 
introduced via the revised simplex method to provide the necessary background for 
the development of column generation for integer programs. 

13.2 DANTZIG-WOLFE DECOMPOSITION 

Consider the following linear program containing two sets of constraints: Ax < b and 
Gx < d. Usually, the first set of constraints is of general structure and the second set is 
of special structure. 

(LP) Maximize z = cTx 
subject to Ax < b 

G x < d 
x > 0 

where c is a "profit" vector in the objective function to be maximized. Let S = 
{x: Gx<d, x > 0 } . For ease of exposition, we assume that S is bounded (this 
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assumption can be relaxed). Since S is a bounded polyhedron, any point x € S can be 
represented as a convex combination of all (say t) extreme points of S. Denoting these 
extreme points by x1, x2, . . . , x', any x € S can be represented as 

r 

x = 53V 
7 = 1 

£¿7 = 1 
7 = 1 

A , > 0 y = 1,2 í 

Substituting for x, LP can be transformed into the following so-called master 
problem (PM) in the variables X\... X,. 

t 

(PA/) maximize z = \\<?-ii)Xj 
7=1 

; 
subject to ^(Ax/)A/- < b 

7=1 

É4/ = 1 
7 = 1 

Ay>0 y = 1 , 2 , . . . , / 

Let Cj — cT\j associated with basic variable X-¡, cB = (ci .. . c,■■.. . cm +i ) , and 
XK = (X\,..., Xj,..., Xm+i). Let u denote the vector of dual variables corresponding 
to the constraint set £\ '= 1 (Ax7)^- < b, and a denote the dual variable corresponding 
to the convexity constraint 5Z/=i X¡= 1. The right-hand side column of the master 

problem is b m + i = [*?], and Bm +1 is a basis for PM. 
In Figure 13.1, the left box depicts the original LP and the right box depicts 

the transformed LP. There are three columns to the right of the transformed LP. In 
the coefficient column j , the first entry is the negative of the /th coefficient of the 
objective function, the next m entries are coefficients associated with the/th variable 
of the general constraints, and the last entry is the y'th coefficient of the convexity 
constraint. The RHS column contains one entry from the objective function, m entries 
from the general constraints, and one entry from the convexity constraint. 

In the dual variable column, the first m entries are dual variables (denoted by u) 
corresponding to m general constraints and the last entry is the dual variable a 
corresponding to the convexity constraint. 

Because of t, the number of extreme points of set S, is usually very large and 
intractable to explicitly enumerate all possible extreme points and explicitly solve this 
problem. Instead, we solve the transformed problem (and hence the original problem) 
by simply maintaining a revised simplex tableau of size {m + 2) x (m + 2), usually a 
small subset of all possible extreme points. The revised simplex tableau of the master 
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Given LP 

Findx 

Max z = cTx 

s.t. Ax < b 

G x < d 

x > 0 

Equivalent 

Let x satisfy 
G i < d 

Let x = £ ¿jxj 

E ^ l 
; lXj>o 

Transformed LP 

Find Xj for ally 

t 

Maxz=E ( c M ^ y 

s.t. S (Ax^)A,.<b 

Y.Xj=\ 

Xj > 0 for ally 

Coefficient RHS Dual 
columny column variables 

cV 

Ax '̂ 

1 

v. J 

•• 

0 

b 

1 

FIGURE 13.1 Dantzig-Wolfe decomposition. 

problem is updated iteratively by generating pivot columns from the solutions of 
subproblems. 

From the transformed problem, a revised simplex tableau for the master problem of 
size (m + 1) x (m + 1) can be constructed as shown in the left box of Figure 13.2. 
Suppose that we have a basic feasible solution k = (AB, AN) and that B"1 of size 
(m + 1) x (m + 1) is known. Then the primal solution can be obtained by calculating 
B" ' b, the dual solution by CgB" ' = (uT, a), and the objective value by CgB~ ' b, where 
eg is the profit vector of the basic variables with a profit of c¡ = CßV for each basic 
variable k¡. 

Consider Figure 13.2. The left box contains the subproblem subject to the 
constraints of special structure and the right box contains the master problem. The 
master problem passes the values of the current dual solution, (uT, a) — cBB_1, to 
the subproblem for constructing its objective function. After the subproblem has been 
solved, a pivot column is formed and passed to the master program. The interaction 
between the master problem and the subproblem are repeated until the dual solution is 
nonnegative. 

m+\ • 

Master tableau 
(uT, a) 

B'1 

cT
BB'b 

B ' b 

l X 

m+1 

Use (uT, a) = c „B to construct subproblem 

Generate column 
Ck 

to update master tableau 

Subproblem 

Findx 

Min (uTA - cT)x + a 

s.t. Gx < d 

x > 0 

ck = Min Cj 

m = number of rows Ax* 

FIGURE 13.2 Interaction between master problem and subproblem(s). 
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To find an entering variable, x¿, we choose a variable with a most negative reduced 
cost defined by 

Ck = min {c, < 0} 
y=l,2,...,/ J 

^ m i n ^ o V î ^ - c V } (13.1) 

= min {(uTA—cTW}+a 
7 = 1 , 2 , . . . , / l ' 

Minimizing over all the extreme points in (13.1) is equivalent to solving over the 
entire polyhedron S, 

min{(uTA-cT)x}+a (13.2) 

Note that a is a constant and can be dropped from consideration for finding an 
optimum solution. That is, solving (13.2) is equivalent to solving the following 
subproblem (Ps): 

(Ps) Minimize (uTA—cT)x 
subject to Gx < d 

x > 0 

The following are some important remarks regarding the decomposition algorithm: 

1. The constraint set of the subproblem remains unchanged from iteration to 
iteration, while the objective functions of the subproblem are different between 
iterations. 

2. At each iteration, a different dual vector is passed from the master problem to 
the subproblem. Rather than solving the subproblem from scratch at each 
iteration, the optimal basis of the last iteration could be used by modifying the 
objective row. 

3. At each iteration, the subproblem need not be completely optimized. It is only 
necessary that the current basic feasible solution x* satisfies (uTA — c) x* + 
a > 0. In this case, the corresponding k^ is a candidate to enter the basis of the 
master problem. 

Example 13.1 Solve the following problem by decomposition. 

Maximize 2x\ + 2x2 + 3x3 — x4 

subject to x\ + x2 + x-} + 2x4 < 17 

—2x\ + 2x2 + X3 + X4 < 11 

—X\ + X4 < 2 

2xi + X3 < 9 

X2 + X4 < 5 

x > 0 
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Although there is no constraint set of special structure, we still can decompose the 
problem into two sets: one set contains the first two constraints and the other contains 
the remaining three. Here m = 2. 

Let the starting basis, Bm+l, consist of s (slack variables) and Xx (can be any one 
element of X). Since B m + 1 = 1 (the identity matrix), we have B~'+1 = 1 . Then the 
entire vector x is nonbasic, hence x1 =(0, 0, 0, 0)T, and Ci = ex1 = 0 for ally. The 
revised simplex tableau for master problem PM is as follows: 

(uT,a) 

Bm'+1 

H^m+fim+l 

B~ + 1 b m + i 

z 

S\ 

Si 

X2 

0 0 0 

1 0 0 

0 1 0 

0 0 1 

0 

17 

11 

1 

Given the vector (uT, a) from PM, the corresponding subproblem (Ps) is 

(PS) Minimize (uTA—cT)x + a Minimize —2xj—2x2—3x3+X4 + O 

Subject to G x < d Subject to (12.3) —(12.5) 

x > 0 . 

The subproblem is optimized at x2 = (0, 5, 9, 0)T, with objective function —37. 
Since —37 < 0, the coefficient of x2, X2, enters the basis. The solution x2 is passed back 
to the master problem. Calculate a new coefficient vector of X2, 

B m + 1 
Ax2 

1 

14 
19 
1 

and the associated reduced cost —37. Adjoin this as a pivot column to the revised 
simplex tableau, and pivot 

z 

S\ 

Si 

h 

0 0 0 

1 0 0 

0 1 0 

0 0 1 

0 

17 

11 

1 

h 
-37 

14 

19 

1 

The tableau after pivoting is as follows: 

z 

S\ 

x2 
h 

0 

1 

0 

0 

1.95 0 

0.74 0 

0.05 0 

-0.05 1 

21.42 

8.89 

0.58 

0.42 
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The best feasible solution found so far is given by 

A,xi + A2x2 = 0.42(0,0,0,0)T + 0.58(0,5,9,0)T = (0,2.89,5.21,0)T 

with objective value 21.42. Note that the new (uT, a) = (0,1.95,0). This information is 
used to generate the new subproblem 

Minimize -5.89xi + 1.89x2-1.05x3 +2.95x4 + 0 

subject to (12.3)-(12.5) 

The subproblem is optimized at x3 = (4.5, 0, 0, 0)T with objective —26.53. Since 
objective is still less than zero, the coefficient of x3, A3 is introduced into the basis, and 
solution x3 is passed back to the master problem. 

B m + 1 
Ax3 

1 

-0.74 0" 

0.05 0 

-0.05 1 

'4.5" 

- 9 

1 
= 

' 11.13" 

-0.47 

. L 4 7 . 

Add the pivot column to the revised simplex tableau and pivot 

h 
-26.53 

11.13 

-0.47 

1.47 

After pivoting, the tableau becomes 

z 

S\ 

h 

A, 

0 

1 

0 

0 

19.5 0 

-0.74 0 

0.05 0 

-0.05 1 

21.42 

8.89 

0.58 

0.42 

z 

■Sl 

h 
X, 

0 

1 

0 

0 

1 

-0.34 

0.04 

-0.04 

18 

-7.55 

0.32 

0.68 

29 

40/7 

5/7 

2/7 

Because u > 0 , we can claim that the optimal solution has been found, with 
objective value 29. The optimal solution is given by A2x

2 + A3x
3 = 5/7(0,5,9,0)T + 

2/7(4.5, 0, 0, 0)T = (9/7, 25/7, 45/7, 0)T. If we solve this problem using another 
method, we can find that this is not the unique optimal solution. Now let us work on an 
example with two subproblems. 

Example 13.2 Solve the following LP problem by decomposition. 

Maximize -3xi + 7x2 + 5x3 + 4x4 

subject to 2xi —x2 + 2x3 + 2x4 < 19 
(13.3) 
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-2x\ +2x2+x3-3x4 < 21 

X\+X2 < 12 

3x\—X2 < 15 

*3 + *4 < 5 

—XT, + X4 < 2 

x > 0 

(13.4) 

(13.5) 

(13.6) 

(13.7) 

(13.8) 

We can easily see that this problem has some constraints of special structures. That 
is, constraints (13.5) and (13.6) involve only variables xx and x2, while con-
straints (13.7) and (13.8) involve only variables x3 and x4. Taking advantage of 
these specialties, we can decompose this problem into a master problem with 
constraints (13.3) and (13.4), and two subproblems, one subject to (13.5) and (13.6), 
and the other subject to (13.7) and (13.8). 

For the convenience of notation, we partition matrix A into (AiA2), where 

A, = 
2 - 1 

- 2 2 
2 2 
1 - 3 

We also partition x into x = [x^ x^2'], where x(1) = {x\X2) and x(2) = (x3x4). Then 
the problem, in terms of extreme points, can be expressed as follows: 

t\ h 

Maximize /"Jci*! &j+ /JC2X) ßj 
7=1 

' i 

7=1 

'2 

subject to ^Aix j 'Uy + ^A2xj2 )y3; < b 
7=1 7=1 

7=1 

h 

7=1 

ß>0 

Let Ö] and a2, respectively, denote the dual variables corresponding to the 
constraints 

5 > = 1 and J2ßj=l 
7=1 7=1 
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Initialization step. Let the starting basis consists of sl5 s2, ¿i, and ß b which implies 
that x, = (0, 0), x[ ' = (0, 0), and obtain the revised simplex tableau 

z 
Si 

S2 

ßx 

0 0 0 0 
1 0 0 0 
0 1 0 0 
0 0 1 0 
0 0 0 1 

0 
19 
21 
1 
1 

Iteration 1. Generate two subproblems using (uT, a{) and (uT, a2). 

Subproblem 1 

minimize 

subject to 

( u ^ - c O x W + a , 

= JX\ —7X2 

X\+X2< 12 

3x i—X2< 15 

x i ,x 2 >0 

Subproblem 2 

minimize 

subject to 

(uTA2-c2)x(2)+a2 

= —5X3—4^4 

X 3 + X 4 < 5 

— X 3 + X 4 < 1 5 

The two respective subproblems are optimized at (0,12) and (5,0) with objectives 
—84 and —25. Since both objective values are negative, A2 and ß2 are both eligible to 
enter the basis. Here, we choose À2 as the entering variable. 

Bm + 2 

A i X 2 ' 

1 

0 

1 0 0 0" 
0 1 0 0 
0 0 1 0 
0 0 0 1 

"-12" 
24 
1 
0 

"-12" 
24 
1 
0 

Master step. Adjoin the objective value of—84 at the top of the vector and append this 
column X2 to the simplex tableau, and then pivot. 

-84 
-12 
24 
0 
1 

The updated tableau is as follows: 

z 
S\ 

Si 

h 
ßx 

0 0 0 0 
1 0 0 0 

0 1 0 0 
0 0 1 0 
0 0 0 1 

0 
19 

21 
1 
1 

z 
S\ 

h 
h 
0> 

0 
1 
0 
0 
0 

3.5 
0.5 
0.04 

-0.04 
0 

0 0 
0 0 
0 0 
1 0 
0 1 

73.5 
29.5 
0.875 
0.125 

1 
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Iteration 2. Generate two subproblems with the new objective functions: 

Subproblem 1 : minimize—4x\ + 0 

and subproblem 2 : minimize—1.5x3 —14.5x4 + 0 

The two subproblems are optimized at (5, 0) and (0, 5), respectively, with 
objectives —20 and —72.5. Since X2 just entered the basis, it is not qualified to be 
the entering variable, so this time j33 enters the basis. 

B
m + 2 

A2x3' 

0 

1 

(2)1 
0.5 0 0" 

0.04 0 0 

-0.04 1 0 

0 0 1 

" 10 " 

-15 

0 

1 

2.5 

-0.625 

0.625 

1 

Master step. Adjoin the objective value of —72.5 and append this column ß3 to the 
simplex tableau, and then pivot. 

z 

Si 

h 
h 
ßl 

0 

1 

0 

0 

0 

3.5 0 0 

0.5 0 0 

0.04 0 0 

-0.04 1 0 

0 0 1 

73.5 

29.5 

0.875 

0.125 

1 

03 

-72.5 

2.5 

-0.625 

0.625 

1 

The updated tableau is as follows: 

z 

Si 

h 
ß3 

ßl 

0 

1 

0 

0 

0 

-1.33 

0.67 

0 

-0.07 

0.07 

116 

- 4 

1 

1.6 

-1 .6 

0 

0 

0 

0 

1 

88 

29 

1 

0.2 

0.8 

Iteration 3. Generate two subproblems with the new objective functions: 

Subproblem 1 : minimize5.67xi—9.67x2 + 116 

and subproblem 2 : minimize —6.33x3 + 0 

Subproblem 1 is optimized at (0, 12), with objective value 0, and subproblem 2 is 
optimized at (5,0), with objective -31.67. Since the objective value of subproblem 1 
is 0, X is not qualified to enter basis, so /34 becomes the entering variable. 
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B m + 2 

A2xf 
0 

1 

1 

0 

0 

0 

0.67 

0 

-0.07 

0.07 

- 4 0] 

1 0 

1.6 0 

-1 .6 1 

no i 
5 

0 

1 

" 13.33 

0 

-0.33 

1.33 

Master step. Add the objective value of —31.67 and append this column /34 to the 
simplex tableau, and then pivot. 

z 

■Si 

h 
03 
ßx 

0 
1 
0 
0 
0 

-1.33 
0.67 

0 
-0.07 
0.07 

116 
- 4 
1 

1.6 
-1 .6 

0 
0 
0 
0 
1 

88 
29 
1 

0.2 

0.8 

04 
-31.67 
13.33 

0 
-0.33 
1.33 

The updated tableau is as follows: 

z 

S\ 

h 
03 
04 

0 
1 

0 
0 
0 

0.25 
0 
0 

-0.05 
0.05 

78 
12 
1 

1.2 
-1 .2 

23.75 
- 1 0 

0 
0.25 
0.75 

107 
21 

1 
0.4 
0.6 

Iteration 4. Generate two subproblems with the new objective functions: 

Subproblem 1 : minimize 2.5xj -6.5x2 + 78, and 

Subproblem2 : minimize —4.75x3—4.75x4 + 23.75 

Both subproblems have optimal objective value of 0, so we can claim that the entire 
model is optimized with objective value of 107. The optimal solution (xu x2, x3, x4)T 

is given by 

(A2x^,/33X3
2) + 0 4 x f ) = [0,12,0.4(0,5)+0.6(5,0)]T = (0,12,2,3)T 

Now we apply the column generation scheme to a specific problem called the 
generalized assignment problem (GAP). 

13.3 GENERALIZED ASSIGNMENT PROBLEM 

The assignment problem is to find a maximum profit assignment of n tasks to n 
machines such that each task ( i= 1, 2, . . . , ri) is assigned to exactly one machine 
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(j= 1, 2, ..., ri) and each machine is assigned to exactly one task. The GAP is a 
generalization of the assignment problem that finds a maximum profit assignment of 
m tasks to n (m > ri) machines such that each task is assigned to exactly one machine 
and that each machine is allowed to be assigned to more than one task, subject to its 
capacity limitation. 

13.3.1 Conventional Formulation 

Let binary variable y,y = 1 if task / is assigned to machine y and y,y —0 otherwise. 
Conventionally, GAP is formulated as 

m n 

Maximize z = / ] / ]piyyi j 
i=l y=l 

n 

subject to Z__,yy = 1 i=l,2,...,m (assignment) 
7=1 

m 

/JwyVy < dj j = 1,2,..., n (machine capacity) 
i=i 

yij = 0 or 1 for all i,j 

where py is the profit incurred if task / is assigned to machine j , dj is the capacity of 
machine j , and Wy is the amount of capacity of machine j used by task i. 
The assignment constraint (13.9) ensures that each task is assigned to exactly 
one machine. The capacity constraint (13.10) ensures that each machine capacity 
is not exceeded. To get an idea about the structure of this formulation, consider a GAP 
example of m = 3 tasks and n = 2 machines given below. Note: the size of the 
constraint matrix is (m + ri) x mn. 

Machine 1 Machine 2 

y n yi\ V3i yi2 yn y^ RHS 

I i =1 
i i =i 

i i =1 
t»n M>21 W31 <d\ 

W12 w22 w 3 2 <d2 

13.3.2 Column Generation Formulation 

Consider the set of points satisfying S = [y'-Y^=\ wijy¡j ^ dj,y¡j = 0orl,j= 1,...,«}. 
Clearly, S is just a finite set of points, say S= {z j , . . . ,zf',... , z¿ , . . . ,z^"}, 
where x1- =(z\j,Zy, ■.., zL)T anc^ ^j 1S t n e number of feasible solutions f o r / 

(13.9) 

(13.10) 

(13.11) 
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Every point y G {0, 1 }m can be represented by 

(13.12) 
k=\ 

K, 

£4 
Oorl 

y = 1 , 2 , . 

k=\,2,. ,Kj,j = 1,2,...,« 

where y y = 1 if task / is assigned to machine _/ and yy = 0,A: =1 (k=l,..., KJ) if the 
kth assignment of machine y is used and Ê = 0 otherwise. 

Substituting (13.12) and the convexity constraint into the objective function of the 
conventional GAP formulation and into the assignment constraints (13.9) that define the 
master problem, we obtain the master problem in the column generation formulation 

Maximize z = / _ ] / _ , 
7=1 k=\ \i=\ ) 

subject to y~]y~/í^/ i = 1,2,..., m (assignment) 
7=1 k=\ 

Yltf = 1 7 = 1,2,...,« (convexity) 
k=\ 

X) = 0 o r l k=l,2,...,Kj;j=l:2,...,n 

(13.13) 

(13.14) 

(13.15) 

(13.16) 

This alternative GAP is formulated in terms of columns representing feasible 
assignments of tasks to machines. The assignment constraints (13.14) ensure that 
each task is assigned to a machine. The convexity constraints (13.15)—(13.16) ensure 
that exactly one feasible assignment of tasks to machines is selected for each machine. 

To get an idea about the structure of this formulation, consider a GAP example of 
m = 3 tasks and n = 2 machines given below. Symbol 0/1 in the entries represents 0 or 
1 value of Zy. 

Machine j 

Variable 

Task i 

Machine j 

1 
2 
3 

1 
2 

¿! 

0/1 
0/1 
0/1 

1 
0 

x\ . 
0/1 . 
0/1 
0/1 . 

1 
0 

. Af 

. 0/1 

. 0/1 

. 0/1 

. 1 

. 0 

A 
0/1 
0/1 
0/1 

0 
1 

l\ . 

0/1 
0/1 
0/1 . 
0 
1 

. # 

. 0/1 
0/1 
0/1 

0 
1 

RHS 
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The fundamental difference between the conventional formulation and the 
column generation formulation is that the IP feasible solution S is replaced by a 
finite set of points. Any fractional point to the LP relaxation of the conventional 
formulation is a feasible solution to the LP relaxation of the column generation 
formulation if and only if it can be represented by a convex combination of extreme 
points of Conv(S). Geoffrion (1974) has shown that if polyhedron Conv(S) does not 
have all integral extreme points, then the LP relaxation of the column generation 
formulation will be tighter than that of the conventional formulation for some 
objective functions. 

However, the column generation formulation often contains a huge number of 
columns due to a huge number of extreme points of a bounded polyhedron. It may be 
necessary to work with restricted versions that contain only a subset of all columns and 
to generate additional columns only as needed. The column generation formulation is 
called the master problem and a restricted version of the master problem is called a 
restricted master problem. Column generation is carried out by solving subproblems 
or pricing problems of the form 

Max\ Y^(Pij-ui)y>j-vj: Y^wuyij ^ djiyij = O o r l \ 

where w, and vy are determined from optimum dual solutions to the LP relaxation of a 
restricted master problem. 

Note that the column generation formulation contains an exponential number of 
variables, while the conventional formulation contains much less variables. Why 
bother developing a formulation with a huge number of variables? The reasons are as 
follows. First, a compact IP formulation such as the conventional GAP has a weak LP 
relaxation. The LP relaxation of the master problem in the column generation 
formulation is tighter than that of the conventional formulation because fractional 
solutions that are not convex combinations of 0-1 solutions to the knapsack con-
straints (13.12) are not feasible to the column generation formulation. The advantage 
of applying decomposition to the column generation formulation is not to speed up the 
solution of its LP relaxation but to improve the LP bound. 

Second, instead of considering all possible feasible assignments, only a subset of 
feasible assignments are considered, whose columns are generated by solving a 
series of subproblems or pricing problems. In particular, the subproblem for GAP can 
be decomposed into n knapsack problems, for which efficient algorithms are 
available. 

Unfortunately, it is intractable to directly solve the LP relaxation of the master 
problem in the column generation formulation due to exponential number of variables 
(columns). Instead, we solve the LP relaxation of a restricted version of the master 
problem that considers only m + n columns, usually a small subset of all columns, 
which can be directly solved by the revised simplex method. Moreover, the pivot 
column associated with the entering variable can be generated by solving the 
subproblem, which in turn can be decomposed into a set of n knapsack problems. 
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Let M, be the dual variable (price) associated with the assignment constraint (13.14) 
of task i and let vy be the dual variable (price) associated with the convexity 
constraint ( 13.15) of machine/ The subproblem for machiney is a knapsack problem 
defined by 

(KP,) maximize z(KP,-) = /^(/fy— ufiyy—Vj 
i 

subject to ^2 w>jy>i = di 
i 

y¡j■ = 0 or 1 / = 1 , . . . , m 

If the optimum value of any pricing problem is positive, then we have identified a 
column with positive reduced cost that can be added to the restricted master problem 
to improve the solution. If the maximal reduced costs of all the knapsack problems are 
nonpositive, then the LP solution obtained is also maximal for the relaxation of the 
unrestricted master problem. 

13.3.3 Initial Solution 

Column generation begins with an initial restricted master problem, which must 
possess a feasible LP relaxation solution. This will assure that proper dual problem 
information is available for passage to the pricing problem. An initial LP relaxation 
solution, if exists, can be found by the two-phase simplex method. 

13.4 GAP EXAMPLE 

Here, we illustrate the column generation procedure to a GAP example with 
parameters m = 3, n = 2, {d\, d2) = (11, 18), 

/ 1 0 6 \ 

[Pij] i {Wij} = 

/ 9 5 \ 

6 7 

\3 V \ 5 H / 

From 9zn + 6z2i + 3z31 < 11, we have four (=ÀTj) possible feasible solutions: 

zf = {(1,0,0), (0,1,0), (0,0,1), (0,1,1)} 

From 5z12 + 7z22 + 9z32 < 18, we have six (=K2) possible feasible solutions: 

2* = {(1,0,0), (0,1,0), (0,0,1), (1,1,0), (0,1,1), (1,0,1)} 
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Assuming L be the variable associated with z|, we obtain the master problem in a 
column generation formulation: 

Maximize 10A¡ + 1X\ + 5X\ + 12A| + 6Xl
2 + U2

2 + 1 \l\ + UX\ + 19/l| + 17A* 

(13.17) 

(13.18) 

(13.19) 

(13.20) 

(13.21) 

(13.22) 

(13.23) 

subject to AJ+O + O + O + ^ + O + O + ^ + O + A ^ 1 

0 + À2 +0 + À4
t +0 + À\+0 + Àj + k5

2+0 = 1 

0 + 0 + X] + Xi + 0 + 0 + X3
2 + 0 + X5

2 + X2 = I 

X\ + X] + X\ + X\ + 0 + 0 + 0 + 0 + 0 + 0 = 1 

O + O + O + O + Â  + Â  + A^+A^ + A^+A^ = ! 

tf>0 

To get an identity matrix (i.e., B = B _ 1 = I) as an initial basis for the "restricted" 
master problem, we add an artificial variable to each of equations (13.18)—(13.22) and 
apply the two-phase method. In phase I, the objective is to minimize the sum of all 
artificial variables (min J2T=i" tf). At the end of phase I, a feasible solution is obtained 
if all artificial variables reduce to 0 (either become nonbasic or basic variables). In this 
case, phase 2 begins and its objective is to maximize the original objective function. 

In phase I, we begin with constructing a starting revised simplex tableau using all 
artificial variables as basic variables XB = (X", X2,X", X%, X$)T and minimizing 
5Zí=i Xa¡. At iteration 1, variable k\ enters the basis to replace X2. The pivot column 
is (0, 1, 0, 0, 1)T with a reduced cost 3. At iteration 2, variable X\ enters the basis to 
replace X\. The pivot column is (1, 1, 0, 0, 1)T with a reduced cost 2. At iteration 3, 
variable X\ enters the basis to replace X". The pivot column is (0, 1, 1, 1, 0)T with a 
reduced cost 2. At iteration 4, variable X2 enters the basis to replace X\. The pivot 
column is (0,1, -1 ,1 ,0 ) T with a reduced cost 1. At iteration 5, variable X2 enters the 
basis to replace X\. The pivot column is (0,0,0, - 1 , 1 ) T with a reduced cost 1. Since 
there are no more positive reduced cost and all the artificial variables reduce to 0, we 
have obtained an initial feasible solution, Xn = (Xi,Xi,Xi ,X2,X2) , after rearrangement, 
withc£ = (7, 5, 12, 6, 11), 

B = 

' 0 0 0 1 0 " 

1 0 1 0 0 

0 1 1 0 1 

1 1 1 0 0 

0 0 0 1 1 

, B - ' = 

C£B~' = (0 ,7 ,5 ,0 ,6 ) , andc ¡B ' 1 b= 18^ 
master tableau 

- 1 

0 

1 

1 

0 

- 1 

1 

0 

- 1 

0 

1 

0 

1 

1 

- 1 

0 

1 

0 

- 1 

0 

- 1 0 0 0 

18. We have the following initial restricted 
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z 

A 
A 
A 
4 
¿I 

0 

- 1 

0 

1 

1 

- 1 

7 

0 

- 1 

1 

0 

0 

5 

- 1 

0 

1 

0 

0 

0 

1 

1 

- 1 

0 

0 

6 

1 

0 

- 1 

0 

1 

18 

0 

0 

1 

1 

0 

Passing the dual values u¡ and v, to the subproblems, we have 

Subproblem 1: 

Max z(KPj) = (lO-O)zii + (7-7)z2i + (5-5)z3 1-0 
s.t. 9zn +6z2i+3z3i < 11 

Z n ,Z 2 l ,Z31 € { 0 , 1 } 

Subproblem 1 is optimized at (1, 0, 0)T = z¡ with z(KP[)= 10. 

Subproblem 2: 

Max z(KP2) = (6-0)z12 + (8-7)z22 + ( l l -5 )z 3 2-6 
s.t. 5zi2 + 7z22 + 9z32 < 18 

^12,Z22,Z32 G {0, 1} 

Subproblem 2 is optimized at (1, 0, 1)T = z\ with z(KP2) = 6. 
z(KP]) >z(KP2) > 0, so we choose X\ as the new column. Compute B"'a¡ and 

append the column to the revised simplex tableau and pivot: 

z 

A 
A 
A 
A 
A 

0 

- 1 

0 

1 

1 

- 1 

7 

0 

- 1 

1 

0 

0 

5 

- 1 

0 

1 

0 

0 

0 

1 

1 

- 1 

0 

0 

6 

1 

0 

- 1 

0 

1 

18 

0 

0 

1 

1 

0 

- 1 0 

0 

1 

0 

1 

- 1 

The updated tableau is 

z 

A 
A 
A 
A-y 

A 

0 

- 1 

0 

1 

1 

- 1 

- 3 5 

0 - 1 

- 1 0 

1 1 

1 0 

- 1 0 

10 

1 

1 

- 1 

- 1 

1 

6 

1 

0 

- 1 

0 

1 

18 

0 

0 

1 

1 

0 

0 

0 

1 

0 

0 

0 
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Subproblem 1: 

Max z(KP,) = (10-0)zn + (7 + 3)z21 + (5-5)z3 i-10 

s.t. 9zn+6z2i +3z3 ] < 11 

Zl l ,Z 2 l ,Z 3 i G { 0 , 1 } 

Subproblem 1 is optimized at (0, 1, 0)T = z? with z(KP[) = 0. 

Subproblem 2: 

Max z(KP2) = (6-0)z12 + (8 + 3)z22 + (11 -5 )z 3 2 -6 

s.t. 5zi2 + 7z22 + 9z32 < 18 

Zl2,Z22,Z3 2 € { 0 , 1 } 

Subproblem 2 is optimized at (0, 1, 1)T = z{ with z(KP2) =11 . 
z(KP2) > 0, so we choose l\ as the new column. Compute B^'af and append the 

column to the revised simplex tableau and pivot: 

-11 z 

¿. 

4 
K 
A'j 

X9 

0 

- 1 

0 

1 

1 

- 1 

- 3 

0 

- 1 

1 

1 

- 1 

5 

- 1 

0 

1 

0 

0 

10 

1 

1 

- 1 

- 1 

1 

6 

1 

0 

- 1 

0 

1 

18 

0 

0 

1 

1 

0 

The updated tableau is 

z 

% 

4 
/ , ■ - ) 

/ ,•} 

A2 

11 

- 1 

1 

1 

0 

- 1 

8 

0 

0 

1 

0 

- 1 

16 

- 1 

1 

1 

- 1 

0 

- 1 

1 

0 

- 1 

0 

1 

- 5 

1 

- 1 

- 1 

1 

1 

29 

1 

1 

1 

0 

0 

Subproblem 1: 

0 

0 

0 

1 

0 

0 

Max z(KP,) = (10-l l )zi i + (7-8)z 2 i+(5-16)z3 1 + l 
s.t. 9z n +6z2 i+3z 3 1 < 11 

Zll,Z21,Z3l S { 0 , 1 } 

Subproblem 1 is optimized at (0, 0, 0)T with ztKPO = 1. 
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Subproblem 2: 

Max 

s.t. 

z(KP2) = ( 6 - l l ) z 1 2 + (8-8)Z22 + ( l l -16)Z32 + 5 

5Zi2 + 7z22+9z32 < 18 

Zl2,Z22,Z32 e {0, 1} 

Subproblem 2 is optimized at (0, 1 , 0 ) = z| with z(KP2) = 5. 
z(KP2) > z(KPi) > 0, so we choose X\ as the new column. Compute B - ^ and 

append the column to the revised simplex tableau and pivot: 

z 

¿? 
4 
4 
A 
A 

i i 

- i 

i 

i 

0 

- i 

8 

0 

0 

1 

0 

- 1 

16 

- 1 

1 

1 

- 1 

0 

- 1 

1 

0 

- 1 

0 

1 

- 5 

1 

- 1 

- 1 

1 

1 

29 

0 

1 

1 

0 

0 

The updated tableau is 

z 

A 
i\ 

A 
Aj 

4 

6 

- 1 

0 

1 

1 

- 1 

8 

0 

0 

1 

0 

- 1 

11 

- 1 

0 

1 

0 

0 

4 

1 

1 

- 1 

- 1 

0 

0 

1 

0 

- 1 

0 

1 

29 

0 

1 

1 

0 

1 

0 

1 

0 

0 

1 

0 

0 

0 

0 

Subproblem 1: 

Max z(KPi) = (10-6)zn + (7-8)z2i + (5- l l )z 3 1 + 4 

s.t. 9zn+6z 2 i+3z 3 1 < 11 

¿11,^21, Z31 G {0,1} 

Subproblem 1 is optimized with z(KPt) = 0. 

Subproblem 2: 

Max z(KP2) = (6-6)z12 + (8-8)z22 + ( l l - l l )z32 + 0 

S.t. 5Zi2+7z22+9z32 < 18 

Zl2,Z22,Z32 G {0, 1} 

Subproblem 2 is optimized with z(KP2) = 0. 
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z(KP2) = z(KP!) = 0, so the optimal solution to the original problem is found, 
which is zl = (1 , 0, 0) and z2 = (0, 1, 1). 

In the previous example, we were lucky enough not to obtain any fractional 
solution to the restricted master problem, so branching was not needed. However, in 
practice, when the number of columns in the master problem is large, encountering 
fractional solutions is very common. Therefore, we use the following example to 
explain the branching scheme for the generalized assignment problem. 

13.4.1 GAP Branching Scheme 

Suppose at some iteration the solution to the restricted master problem includes 
X\ = 1/3,X\ = 2/3. In terms of the original variables, this is equivalent to zu = 1/3, 
z12 = 2/3, which is infeasible. Hence, we need to branch on either zn or z[2. Let us 
choose Z] i arbitrarily. The two children problems will be created by setting z u = 0 
and Z] ] = 1. It is easy to see that zu=0 implies that X\ and X\ are ruled out of the 
master problem, while zn = 1 implies that X\ and X\ are ruled out. So at each child 
node, the master problem is reduced by two columns. Furthermore, in subproblem 1 at 
each branch, z n is already fixed to either 0 or 1, and hence subproblem 1 is also 
reduced by one column. Interested readers may try other numerical examples to 
practice this branching scheme. 

Standard branching on the X variable creates a problem along a branch where a 
variable has been set to zero. Recall that z* = (z\¡, Zy, ■ ■ ■, zk

mj) represents a particular 
solution to theyth knapsack problem. Thus, setting Xj = 0 implies that the solution z* 
is excluded. However, it is quite likely that the next time the knapsack problem for the 
same/th machine is solved and the optimal solution is also the same one represented 
by Zj. In this case, it would be required to find the next second best solution. At the /-
level of the branch-and-bound tree, we may need to find the /th best solution, which is 
very hard. 

Fortunately, this difficulty can be overcome by applying a simple branching rule. 
Instead of branching on the X' s in the restricted master problem, we use a branching 
rule that corresponds to branching on the original variables v,y. When y¡/ = 1, all 
existing columns in the master problem that do not assign task / to machine/are deleted 
and task i is permanently assigned to machine/ (i.e., variable Zy is fixed to 1 in the/th 
knapsack). Conversely, when y¡¡ = 0, all existing columns in the master problem that 
assign task / to machine/ are deleted and task i cannot be assigned to machine/ (i.e., 
variable z,y is removed from the /th knapsack problem). In either case, each of the 
knapsack problems contains one fewer variable after the branching has been done. 

Note that the branching scheme discussed here is specific to the GAP. This is 
typical of branch-and-price algorithms. Each problem requires its own problem-
specific branching scheme. 

13.4.2 Tailing-Off Effect of Column Generation 

One of the difficulties encountered in applying the column generation is the so-called 
tailing-off effect of column generation. This effect manifests itself as: after a large 
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number of generated columns, the improvement in the objective value becomes very 
small. Clearly, it is ineffective to continue column generation until an optimum is 
found. Therefore, the alternative is to terminate the column generation prematurely. 
The objective value to the current restricted master problem gives a lower bound on 
the final LP value. 

Lagrangian duality can be used to obtain an upper bound on the final LP value. To 
illustrate this, consider the alternative GAP formulation (13.16)—(13.19). An asso-
ciated Lagrangian relaxation can be obtained by dualizing the assignment constraints: 

n Kj ( m \ m / n Kj \ 

E E 5>4 4+j> 1-EE44 
7=1 k=\ \i=\ J i=l \ 7=1 k=\ ) 

J 

subject to yj^-i = 1 y = 1,2,...,« 
k=\ 

A* = 0 o r l j=l,2,...,n;k=l,2,...,Kj 

which provides an upper bound on the optimal value of the LP for any dual vector 
u = («i, w2, . . . , um)T. 

The reader can verify that the objective function can be rewritten as follows: 

m n Kj m 

E^-"')4 A* EM'+EmaxE 
i=l ,/=l k=\ 

m n 

= EM'-+Ez^) 
( = 1 7 = 1 

This shows that after solving a given pricing problem within the branch-and-price 
algorithm, all the information needed to compute an upper bound of the final LP 
solution is available. The difference between these two bounds is called a duality gap. 
The width of this gap may be used as a stopping rule to terminate the column 
generation process. 

13.4.3 Treatment of Identical Machines 

Should the machines be identical, there is a modification of the above methodology 
available. Because the machines are identical, the variables L can be aggregated into 
a single variable 

** = £ 4 
J 

and the convexity constraints can be combined into a single new constraint 

5> = „ 
k=\ 
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where n is an integer. The master problem simplifies to 

K 

Max y^j}¡J¡kk 

k=\ 
K 

subject to ^ z f Xk — 1 
k=\ 

£t=n 
k=\ 

where coefficients zk must satisfy the constraint 

m 

Furthermore, this problem has only one subproblem 

m 

(KP) maxz(KP) = ^ (/>,—«,-)z,-

m 

subject to 2_,w>z* — d 
(=i 
z, = 0 or 1 for all i 

To check if there exists a column with positive reduced cost, we calculate the value 

z(KP)-v 

where «,•(/= 1,2,..., m) and vare the optimum dual prices from the solution to the LP 
relaxation of the restricted master problem, as usual. Note that this special GAP 
problem has the structure of a 0-1 cutting stock problem. 

With identical machines, many solutions will differ only by the names of the 
machines; that is, by swapping the assignments of two machines we get two solutions 
that are the same but have different values for the variables. This property will cause 
performance problems when branching on the original variables; that is, when a 
fractional solution is excluded at some node of the tree, it pops up again with different 
variable values somewhere else in the tree. Another property—the large number of 
alternate optima dispersed throughout the tree—excludes pruning by bounds as a 
viable pruning strategy. 

To resolve these performance problems, a special branching scheme exists that 
works directly on the master problem but is focused on the pairs of tasks: consider 
rows of the master with respect to tasks r and s. First divide the solution space into 
a pair of sets in which r and s appear together; tasks r and 5 can be combined into 
one task when solving the knapsack. The other branch occurs when the solution 
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space is divided into another pairs of sets in which r and s must appear separately, 
in which case a constraint zr + zs < 1 is added to the knapsack. Note that the 
structure of the two subproblems differs depending on the branch. Specifically, 
branch 1 is 

m 

2_, w¡z¡ < d and zr + zs < 1 

and branch 2 is 
m 

WjZj < d and zr = zs 

13.4.4 Branch-and-Price Algorithm 

The application of branch-and-cut algorithm on the branch-and-bound tree is 
summarized below. 

Step 1 (Solving restricted master problem). Find a feasible solution to the LP 
relaxation of the restricted master problem. If the solution is integral, go to step 
3. Otherwise, go to step 2. 

Step 2 (Branching). If A- is a noninteger, then by y y = Ylk=\ Aj^j w e know that the 
corresponding y y is also a noninteger. Branch on y y by setting it to 0 and 1, 
respectively. At each branch, y y is also fixed in the subproblem /. Go to step 3. 

Step 3 (Solving Subproblems). Pass the dual solutions obtained from the solution of 
the restricted master problem to the subproblem(s). Solve each subproblem. Go to 
step 4. 

Step 4 (Pricing). If none of the subproblems has a positive reduced cost, stop. Current 
solution to the restricted master problem is optimal to the original IP problem. 
Otherwise, choose one subproblem with a positive reduced cost. The optimal 
assignment associated with it corresponds to the new column that can be generated. 
Go to step 1. 

13.5 OTHER APPLICATION AREAS 

Branch-and-price has been applied to many other MIP problems. Several examples 
are described below. 

• Airline crew scheduling (Vance, Barnhart, Johnson, and Nemhauser) 
• Vehicle routing with time windows (Desrochers, Desrosiers, and Solomon) 
• Machine scheduling (Bard and Rojanasoonthon) 
• Origin-destination integer multicommodity flow problems (Barnhart, Hane, and 

Vance) 

£ 
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Airline crew scheduling deals with finding a minimum cost assignment of flight 
crews to a given flight schedule, while satisfying restrictions dictated by collective 
bargaining agreements and the Federal Aviation Administration. Traditionally, the 
problem has been formulated as a set partitioning problem. An alternative formulation 
allows the use of a branch-and-price algorithm. 

Vehicle routing problems with time windows is to find the minimum number of 
vehicles required to visit all customers subject to capacity constraints and time 
windows defined by the earliest and the latest times when the customer will permit the 
start of service. The LP relaxation of the set partitioning formulation is solved by 
branch-and-price algorithm. 

Machine scheduling is to schedule «jobs on m nonhomogeneous parallel machines 
with multiple time windows and job priorities. The objective is to maximize the 
weighted number of jobs scheduled, where a job in a higher priority class has an 
infinite more weight than a job in a lower priority class. A branch-and-price algorithm 
is used to solve the problem. 

The origin-destination integer multicommodity flow problem is a constrained 
version of the linear multicommodity flow problem in which flow of a commodity 
may use only one path from origin to destination. A new branching rule is devised that 
allows columns to be generated efficiently as well as allow cuts or cover inequalities to 
be generated at each node of the branch-and-bound tree. The use of column generation 
and cut generation is called branch-and-price-and-cut. 

13.6 NOTES 

Sections 13.1 and 13.3 

The term branch-and-price first appeared in Savelsbergh (1997) for solving the 
generalized assignment problem, even though the application of column generation 
using Dantzig-Wolfe decomposition principle appeared at least 5 years earlier in 
Desrochers et al. (1992) for solving a generalized vehicle routing problem. 

Section 13.2 

The decomposition principle originated by Dantzig and Wolfe (1960). 

Section 13.4 

Applications of branch-and-price are airline crew scheduling (Vance et al, 1997), 
vehicle routing with time windows (Desrochers et al., 1992, Bard et al., 2002), 
and machine scheduling (Bard and Rojanasoonthon, 2006). For application of 
branch-and-price-and-cut, see integer multicommodity flow problems (Barnhart 
et al., 2000). 
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13.7 EXERCISES 

13.1 Solve the following LP problem using Dantzig-Wolfe decomposition. 

Maximize — 3xj + XJ—XT, + X4 
subject to 2*i— xi— X3 + X4 < 8 

-2JCJ + 2x2 + 2x3 + 3x4 < 10 

—X\ +X2 — 3X3+X4 < 3 
x > 0 

13.2 Solve the following problem using Dantzig-Wolfe decomposition: 

Minimize 4xi + 2x2 + X3—2x4 
subject to xi —X2 + 2x3 + X4 < 11 

X2 +X3 +X4 > 17 
3xi—X3—3x4 > 5 
x > 0 and integer 

13.3 Compare the Dantzig-Wolfe decomposition applied to the GAP problem with 
its generic form in Section 13.2. Is there any difference? If there is difference, is 
it simply an equivalent expression or is it completely different in concept? 

13.4 Solve the following GAP problem with branch-and-price using the data given 
below: m = 3, n = 2, 

23 
27 

10 
13 
9 

8 \ 
14 
1 0 / 

W = 
/ 1 0 

14 

V8 

9 
11 
13 



14 
SOLUTION VIA HEURISTICS, 
RELAXATIONS, AND PARTITIONING 

14.1 INTRODUCTION 

This chapter introduces a variety of primal heuristic algorithms that can be used to 
obtain a good solution or an approximate solution for an integer program or a 
combinatorial optimization problem (COP). Both classical and artificial intelligence 
(AI) heuristic algorithms are provided. The traveling salesman problem (TSP) and 
other combinatorial optimization problems are used for the purpose of illustration. 
This chapter also (a) describes various relaxation methods for solving integer 
programming (IP) problems, (b) lists examples of IP model types to which the 
Lagrangian relaxation approach is applied, (c) derives the associated Lagrangian dual 
problems for both linear and integer programs, (d) provides three efficient methods 
for solving the Lagrangian dual, and (e) develops a decomposition algorithm for 
integer programming. 

14.2 OVERALL SOLUTION STRATEGIES 

Linear programming problems have been shown to be much easier to solve than 
integer programming problems. However, the simplex algorithm and the capability it 

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang 
Copyright © 2010 John Wiley & Sons, Inc. 
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provides to efficiently solve a sequence of linear programs is basic to solving integer 
programs, be they pure, mixed, or binary. If the IP has special structure, the solution 
to the LP relaxation is sometimes the solution to the IP (see Chapter 10). Otherwise, 
the solution strategy recommended involves selecting from the following: 

• Preprocessing 

• Branch-and-bound (B&B)or its descendents 
- branch-and-cut (B&C) 

- branch-and-price 

• Heuristics to develop 

- Good, approximate solutions 

- Tighter lower bounds 

• Relaxations to develop tighter upper bounds 

Furthermore, preprocessing, heuristics, and relaxations can be used at each node 
in branch-and-cut. This exemplifies the strategy of using general-purpose algorithms 
to control the overall MIP solution process and special-purpose approaches to 
improve their overall effectiveness. The user of MIP solver software generally has 
the option of selecting from these approaches, that is, creating a "customized" 
approach. 

14.2.1 Better Formulation by Preprocessing 

Preprocessing was discussed in detail in Chapter 4. Recall that a better formulation 
of an MIP is one that is easier to solve. It is widely accepted that almost any MIP 
formulation can be improved by preprocessing—this is why modern MIP solvers 
include a set of rules (see Section 4.2) bundled together into the so-called preprocessor 
or presolver, automatically applied on behalf of the user. In Section 4.3, we introduced 
basic preprocessing techniques for tightening bounds, fixing variables, and identify-
ing redundant constraints and infeasibility in general integer programming. In 
Section 4.4, the reader can find techniques for the same functions, but specially 
designed for pure 0-1 integer programs. The key idea of preprocessing is to 
reformulate the problem statement created by the modeler in such a way that the 
difference in objective function optimal values for the linear programming relaxation 
and the respective integer program is as small as possible. 

In general, preprocessing introduces tighter constraints that dominate existing 
constraints, which are removed from the reformulated model. So, the problem size 
generally is improved. Reformulation is completely independent of the solution of the 
linear programming relaxation of the original model. Results of preprocessing MIP 
models are reported to reduce problem size by a factor of 5 and runtime by a factor of 
10; hence, preprocessing is valuable at the start of any attempt to solve an MIP model. 
If you are given this option, use it. 
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14.2.2 LP-Based Branch-and-Bound Framework 

LP-based branch-and-bound remains central to state-of-the-art MIP solvers. The 
application of branch-and-bound to general integer programs was presented in 
Section 11.1. Recall that branch-and-bound can be viewed as a divide-and-conquer 
approach to solving IP problems, in which a branching process for dividing and 
a bounding process for conquering are applied. In the enumeration that keeps up 
with progress toward optimality in this implicit enumeration approach, pathways 
(branches) that cannot lead to a better solution than the best already identified are 
systematically pruned (fathomed). At points where branching does occur, two linear 
programs are generally solved and the resulting information is used to guide the 
so-called "intelligent" search for the IP optimal solution. 

Versions of the classic branch-and-bound algorithms specialized to binary integer 
programs and mixed integer programs are well known and may be founded in Hillier 
and Lieberman (2005). In all these versions, branch-and-bound is LP based; that is, 
it depends on solution of an intelligently chosen sequence of linear programs to 
approach the optimal integer solution. Because upper and lower bounds are 
generated to aid with fathoming and testing for optimality, the algorithm provides 
built-in measure of solution quality if the user wants to terminate the search before 
optimality is reached. This is often necessary if branch-and-bound is used on large-
scale MIPs. 

Heuristic and relaxation for systematically tightening lower and upper bounds, 
respectively, are in fact important solution strategies in integer programming. These 
general strategies will be introduced briefly in Sections 14.2.3 and 14.2.4 and in detail 
in Sections 14.3 and 14.4. 

14.2.3 Heuristics for Tightening Lower Bounds 

Tightening bounds on variables was presented in Section 4.3. Here, we are concerned 
with tightening bounds on the optimal value of an MIP. Prior to or during application 
of a solution algorithm to solve the MIP, if a tighter lower bound on the optimal value 
is known, searches can be limited to more promising portion of the relaxed LP feasible 
region. In general, bounds obtained from LP relaxation may be too weak to guide the 
search for the MIP optimum. Also, the heuristics presented in Section 14.3 often find 
good solutions to the MIP—that is, solutions that are within a few percent of optimal. 
Such solutions can be accepted as "good enough" or can become the starting point for 
an algorithm (e.g., branch-and-bound), significantly reducing the algorithm's number 
of iterations to converge. 

Three heuristic approaches that have been successfully applied to MIPs are 
presented in Section 14.3: 

• Local search 
• Tabu search 

• Genetic algorithms 
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Some challenging MIPs can only be solved by heuristics, and these solutions are 
of course approximate (each resulting in a lower bound on the optimal solution of the 
original, or primal, minimizing MIP). Another weakness of heuristics is that they 
provide no upper bound on the MIP optimal value, so the user will not know how 
close to optimum he may be. Upper bounds require dual problem solution, as 
discussed next. 

14.2.4 Relaxations for Tightening Upper Bounds 

Section 14.4 presents three "relaxation" approaches to obtaining a lower bound on the 
optimal value of a primal, minimizing MIP: 

• Linear programming relaxation 

• Combinatorial relaxation 
• Lagrangian relaxation 

The first two create a revised (more extensive) feasible region, but leave the 
objective function as is. The third approach substitutes another minimizing objective 
function for ex, one that is the same or smaller value on the fixed feasible region. 

14.2.5 Strong Cuts for Tightening Solution Polyhedron 

The concept of cuts, additional constraints that cut off (reduce the extent of) the 
relaxed LP solution space while leaving the MIP solution space unchanged, was 
introduced in Chapter 12. Cuts are generated based on model data and are adjoined to 
the (current) model to cut off a relaxation solution x* in the solution polyhedron P. 
Stronger cuts produce smaller solution polyhedrons, which still contain the MIP 
feasible region. Three cut-generating techniques were presented in Section 12.3: 
rounding, disjunction, and lifting. MIP solvers today give the user many options for 
cutting planes, both general and structure dependent. In Section 12.3, the reader will 
find general cuts from sets involving pure integer variables and sets involving mixed 
integer variables. More specialized cuts generated from 0-1 knapsack sets and sets 
containing 0-1 coefficients and 0-1 variables are also presented along with cuts from 
sets with special structure. 

The branch-and-cut approach that first appeared in the mid-1980s was a break-
through that generalized the branch-and-bound method. It built upon the branch-and-
bound framework with additional cuts generated and imposed on each node in the 
branch-and-bound tree, prior to pruning and branching. B&B applies two simple 
bound cuts at each node and takes advantage of fast reoptimization of the LP at each 
node. B&C activity at each node may include generating stronger cuts, problem 
preprocessing, or even application of a primal heuristic. So, many cuts may be applied 
at each node; the trade-off is that a tighter bound is generated at the node, prior to 
pruning and branching. Branch-and-cut options are a standard feature of commercial 
MIP solvers today. 
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14.3 PRIMAL SOLUTION VIA HEURISTICS 

A practicing engineer or operations analyst would say that a heuristic is a simple 
procedure (or algorithm) that is meant to provide a good but not necessarily optimal 
solution to a particular difficult problem easily and quickly. In MIP, a heuristic is an 
approximate algorithm designed to quickly find good solutions, but the solution may 
not be optimal. The word "heuristic" invokes the concept of purposeful search, 
because the word derives from the Greek "heuriskein" that means "to discover." 
Shapiro (2001) distinguishes between problem-specific heuristics that use "rules of 
thumb" to arrive at good feasible solutions to MIPs and general-purpose methods 
for intelligently searching the space of feasible solutions. He suggests that the latter 
"may be combined with problem-specific heuristics to improve their effectiveness." 
A term that is sometimes used when one heuristic controls another at a lower level of 
activity is metaheuristic. 

Local search heuristics start with a given feasible solution and by limited changes 
(often called interchange) in one or a few coordinates, attempt to improve the 
objective function value while retaining feasibility. Hence, this sort of heuristic 
applies a rule to select an element from a set. For example, the traveling salesman 
problem presents an obvious simple heuristic: go to the next closest city not yet 
visited. Starting at home base and systematically moving from one city to the nearest 
unvisited city until all cities have been visited, and then returning home generates a 
feasible tour with no subtours. The route prescribed may not be optimal, in fact may be 
far from optimal. Two more sophisticated local search methods, tabu search and 
simulated annealing, will be discussed in the context of solving MIP problems in 
sections to follow. Finally, the general-purpose heuristic method known as genetic 
algorithms will be described. 

There are many reasons to include a section on heuristics in any applied integer 
programming text: 

1. Good heuristics are available for many integer and combinatorial optimization 
problems due to their structure. 

2. Solving real-world MIPs by the approaches of earlier chapters can be too 
slow—solutions are needed in seconds or minutes, not hours or even days. 

3. The MIP formulation is too difficult for branch-and-bound, branch-and-cut, and 
other LP-based approaches. 

Tempering these practical considerations is required to assure quality (near 
optimal) solutions. Unlike the earlier methods to solve MIPs, heuristic search can 
become trapped at a local optimum. The improved local search heuristics, tabu search 
and simulated annealing, have features that enable the search to escape from a local 
optimum. Genetic algorithms build new, improved solutions from pairs of solutions, 
mimicking the genetics of natural selection. These primal heuristics have another 
weakness. While providing lower bound on the MIP minimum optimal value, which 
improve as the heuristic discovers better solutions, they provide no upper bounds to 
enable quantification of how close the heuristic solution is to optimal. This requires 
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dual problem solution, to be discussed in Section 14.4. Nemhauser and Wolsey ( 1988) 
observed that "often, primal and dual heuristic solutions can be found in pairs. 
The complimentary slackness conditions are one way of pairing heuristic solutions. 
The dual solution provides an upper bound on the deviation from optimal of the primal 
solution." 

14.3.1 Local Search Approaches 

Local search heuristics for MIP problems were included in Chapter 9 of the famous 
text by Garfinkel and Nemhauser (1972). The same year Woolsey (1972) observed 
that "many of those who actually solve (MIP) problems turn to heuristic methods to 
get good starting solutions, followed by some kind of branch-and-bound solution to 
take every possible advantage of problem structure." Papers published in the 1980s 
by Zanakis and Evans (1981), Haessler (1983), and Hillier (1983) all discussed the 
proper situation and role of local search heuristics. A comprehensive reference is 
Walser (2008). Generally, there are three roles for local search heuristics in MIP: 

1. Locate a feasible solution as starting place for an MIP algorithm, because 
finding simply a feasible solution for an MIP can be difficult in practice. 

2. Local search methods themselves can benefit from a feasible starting solution. 

3. Local search methods can be integrated into general search method (e.g., 
genetic algorithms) or MIP methods (e.g., branch-and-cut). 

The following is an example of two local search heuristics. 

Example 14.1 (Example 2.5 Wolsey (1998)) Consider the following six city 
symmetric traveling salesman problem (STSP) where city 1 is home base and the 
matrix C consists of distances (costs) for every city pair. 

12 
10 
18 
24 
— 

1 1 \ 
32 
6 
3 
19 

- ) 

Wolsey applies a "greedy algorithm" that builds up the traveling salesman tour 
segment-by-segment, always choosing the least costly segment not creating a subtour 
if added to the current set of segments: The sequence is (1, 3) with cost 2; (4, 6) with 
cost 3; (3,6) with cost 6; (1,2) with cost 9; (2,5) with cost 10; and (4,5) with cost 24. 
The greedy tour is ( 1,3,6,4,5,2,1 ) with total cost 54. The nearest-neighbor heuristic 
applied to the same matrix C yield the following: (1,3) with cost 2; (3,6) with cost 6; 
(6, 4) with cost 3; (4, 5) with cost 24; (5, 2) with cost 10; and (2, 1) with cost 9. 
The nearest-neighbor tour is (1, 3, 6, 4, 5, 2, 1) with total cost 54, the same as the 
greedy tour. 
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Examples of specific MIP models for which local search algorithms have been 
developed are as follows: 

• Real-time scheduling of jobs on mixed model assembly lines (Bolat et al., 1994) 
• Trim-loss problem in slitting rolls of paper (Ramirez-Beltran and Aguilar-

Ruggiero, 1997) 
• Capacitated production scheduling (Walser et al., 1998) 
• Job shop scheduling with earliness and tardiness costs (Danna et al., 2003) 
• Vehicle routing with time windows (Danna, 2004). 

To motivate an example application of generic algorithms to appear in 
Section 14.3.2, let us describe an application of a local search algorithm (nearest 
neighbors) that appears in Shapiro (2001)1. The specific problem here is the local 
delivery problem: m customers require delivery from a depot each day; each customer 
has an integer demand for the product on a given day; and an unlimited number of 
delivery trucks are available at the depot, each with identical capacity (10, in this 
case). The cost of sending a truck on a particular route involves a fixed cost and a 
variable cost depending on the cost associated with traveling each leg of the truck's 
assigned route. The supplier wants to meet the daily delivery demand, yet minimize 
the number of trucks used (fixed cost); and within each route, minimize the route cost 
(an embedded traveling salesman problem). The nearest unserved neighbor is used 
to created the routes, of course staying within the capacity constraint of the truck 
and Shapiro's side constraint that no unserved customers more than 60 miles distant 
from the currently included customers on a route will be considered. 

Two versions of the heuristic are used; one, where the current unserved customer 
closest to the depot is used to start each new route; and the other where the current 
unserved customer farthest from the depot is used to start each new route. In the 
example (5.1) in Shapiro (2001), the depot is labeled 0 and customer numbered 1-13. 
Besides a 13 x 13 matrix of distances, the demand at each customer (an integer 
between 2 and 9) is provided. The result of the first version of the heuristic was as 
follows: 

Route Customers Cost ($) 

1 0-11-10-0 182 
2 0-5-6-9-0 174 
3 0-12-7-0 169 
4 0-2-1-0 197 
5 0-4-3-0 214 
6 0-8-0 170 
7 0-13-0 200 
Total cost of routing solution 1 1306 

1 From Shapiro, Modeling the Supply Chain, IE Copyright 2001 South-Western, a part of Centage 
Learning, Inc. Reproduced with permission, www.centage.com/permissions. 
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Note that in route 2, the shortest sequence (TSP solution) is 0-9-6-5-0 for a route 
cost of 74, or a total trip cost of 174. For routes with one or two customers, the order 
of listing yields the minimum distance (TSP) order of delivery. 

The result of the second version of the heuristic was as follows: 

Route Customers Cost ($) 

8 0-13-3-5-0 241 
9 0-1-2-6-0 252 
10 0-10-7-0 192 
6 0-8-0 170 
11 0-4-9-0 199 
12 0-12-0 138 
13 0-11-0 132 
Total cost of routing solution 2 1324 

Note in routing solution 1, the larger cost routes are assigned later, whereas in 
routing solution 2, the largest cost routes appear earlier. Also, the solutions are quite 
different except for the repetition of the route 0-8-0. In the section on generic 
algorithms, we will show how to select routes from these two preliminary solutions 
(parents) to create a new solution (offspring) with 11% better performance than 
routing solution 1. But for now, routing solution 1 is the best solution. 

14.3.2 Artificial Intelligence Approaches 

Artificial intelligence is a broad and intensely important field of study, encompassing 
many approaches (expert systems, neural networks, heuristics, etc.) with an ever-
expanding list of applications for each approach. The discussion here is limited to 
three heuristics that have proven themselves valuable for solving integer and 
combinatorial programming problems: 

• Tabu search 
• Simulated annealing 

• Genetic algorithms 

Genetic algorithms are attributed to Holland (1975), though the most popular 
reference to date was written by Holland's student Goldberg (1989). Simulated 
annealing was conceived by Kirkpatrick et al. (1983) and independently by Cerny 
(1985). However, the article by Glover (1986) suggested strongly that artificial 
intelligence heuristics were appropriate for many of the difficult problems being 
encountered while solving large MIPs and COPs with special structure. In this same 
article, Glover is credited with creating (and coining the name) tabu search. Glover 
promoted a "blend of heuristics and algorithms" and stated that "effective strategies 
for combinatorial problems can require methods that formal theories are unable to 
justify," that is, are not guaranteed to converge. 
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Glover (1986) noted that "perhaps the most conspicuous limitation of a heuristic 
method for problem solving involving discrete alternatives is the ability to become 
trapped at a local optimum." He suggested four classes of heuristics to transcend the 
problem of local optimality. Tabu search was one class, and simulated annealing was 
introduced as a new entrant in the "controlled randomization" class, which was 
already established with "random restart" and "random shakeup" approaches. From 
the AI point of view, Glover states that "tabu search deviates to an extent from what 
might be expected of intelligent human behavior" and that simulated annealing, 
based on physical behavior of molten metal as it cools, resembles human behavior 
only in that "a human may take non-goal-directed moves with greater probability at 
greater distances from a perceived destination." 

Generic algorithms are considered general-purpose or global-search heuristics. 
Because they mimic both natural (genetic) adaptations and adaptations observed 
in human behavior, they are properly called an artificial intelligence approach. The 
processes found in genetic algorithms, such as crossover, selection, and mutation, 
were adapted from evolutionary biology. 

LetF = Ï {x,y)\^aijxj-\-'^gikyk < b¡ \ 

where/ = \,...,m;xj > 0,j = 1 , . . . , / j ; and yk integer, k = \,...,p 

that is, F is the feasible region of an MIP, as defined in Chapter 2. In the application of 
heuristics, a solution SeF that is currently the best solution is called the incumbent. 
Local search heuristics, including tabu search and simulated annealing, define a 
neighborhood Q(S) of solutions close to S within F. How Q{S) is formed is problem 
specific. For instance, in the local routing problem, a neighborhood of a given 
(incomplete) route might be to add any yet unassigned customer to the route, subject 
to constraints that define F in that problem, or take away one of the customers assigned 
to the route already. Wolsey (1998) illustrates neighborhood formation rules for two 
COPs: uncapacitated facility location and the graph equipartition problem. 

The term "tabu" in tabu search derives from a short-term memory feature of the 
heuristic that prevents revisiting solutions that have been visited in the recent past. 
A list of fixed or randomly varying size of recently visited solutions is maintained, 
called the tabu list. Another approach is to prohibit visits to solutions that have certain 
attributes. 

Wolsey (1998) provided a description of a basic tabu search algorithm, which we 
reproduce here as Figure 14.1, with permission. 

Pedroso (2006) has described how to apply tabu search to the solution of a bounded 
version of the generic MIP defined in Chapter 2: 

Min z = ex + dy 
subject to (x, y) £ F (defined above) 

and for integer^, lk < yk < uk, k=\,...,p 
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1. Initialize an empty tabu list. 
2. Get an initial solution 5. 
3. While the stopping criterion is not satisfied, 

3.1. Choose a subset Q'(S) ç Q(S) of nontabu solutions. 

3.2. Let 5' = arg min{/(7'):7'eQ(S)). 

3.3. Replace S by S' and update the tabu list. 
4. On termination, the best solution found is the heuristic solution. 

The parameters specific to tabu search are as follows: 
(i) The choice of subset Q'(S). Here, if ß(S)is small, one takes the whole 

neighborhood, while if Q(S) is large, Q'(S) can be a fixed number of 

neighbors of S, chosen randomly or by some heuristic rule, 

(ii) The tabu list consists of a small number t of most recent solutions or 
modifications. If f = 1 or 2, it is not surprising that cycling is still 
common. The magic value t = 7 is often cited as a good choice, 

(iii) The stopping rule is often just a fixed number of iterations, or a certain 
number of iterations without any improvement of the goal value of the 
best solution found. 

FIGURE 14.1 Tabu search algorithm (From Wolsey, Integer Programming. Copyright 1998 
John Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons). 

Pedroso's strategy involves fixing the integer variables y by tabu search heuristic 
and then obtaining the corresponding optimal objective value z and continuous 
variables x by solving a linear programming problem via the simplex algorithm. 
A critical measure at the end of this LP solution is the sum v of the constraint 
violations, if any. Pedroso calls a solution S' better than SJ if the extent of constraint 
violation v, < v,-, or if v, = y, and z, < zy. As Pedroso explains, 

• The initial solution is obtained by rounding the LP relaxation optimal values for 
integer variables to obtain a feasible solution. 

• Tabu search starts operating on this solution by making changes exclusively 
in the integer variables, after which the continuous variables are recomputed 
through LP optimal solution. 

• Modifications of the solutions are made using a simple neighborhood structure: 
incrementing or decrementing one unit to the value of an integer variable's value 
in the incumbent solution; hence, y' is a neighbor solution to y if y¡¿ =y¡c + 1 or 
ïk =yie— 1> for one index k, and y) = yj for all indices y ^ k. 

• Moves are tabu if they involve a variable that has been changed recently. 

Pedroso states that "this is tabu search based on short-term memory, as described in 
Glover ( 1989). As suggested in Glover ( 1990), we complement this simple tabu search 
with intensification and diversification." See the notes for more on tabu search. 
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As stated earlier, simulated annealing includes a probabilistic "controlled 
randomization" feature that leads to evaluation of random neighbors of the incum-
bent, and due to an embedded looping process (the Metropolis algorithm popularized 
by Hastings in 1970), moves to solutions with higher objective function value 
with nonzero probability. In the Metropolis algorithm, an initial solution S (state 
of material), an objective function/(internal energy), and initial temperature Tare 
known. A neighbor S' is chosen randomly, and the energy levels of the incumbent/(S) 
and the neighbor f(S') are compared. If the energy level is lower, keep S' with 
probability 1 ; if the energy level is higher, keep S' with probability e^s ) -^S)/T. The 
temperature is gradually reduced by a factor r, 0 < r < 1, known as the cooling ratio. 
This probability of accepting S' over S when f[S') >fiS) decreases as temperature 
reduces (metal cools). A stopping criterion is when the metal is "frozen," that is, when 
0 < T< 1. The probabilistic feature in the looping process periodically moves the 
incumbent away from local optima, but the repeated application of r forces the 
proportion of nonimproving interchanges to decrease over time. 

Simulated annealing got its unusual name because it mimics the metallurgical 
process known as annealing, a technique involving controlled cooling of a molten 
metal to increase the size of its crystals. The heating causes atoms to wander 
randomly through states of higher energy; gradually lowering the temperature 
enables perfect crystals to form and allows probabilistic changes in state, the goal 
is to bring the system from its initial state to a state with the minimum possible 
energy. According to Kirkpatrick et al. (1983), simulated annealing offered the dual 
benefits of 

• ability to escape local minima at nonzero temperature, and 
• divide and conquer outcomes, where gross features of the final state appear at 

high temperature while finer details appear at lower temperatures. 

Wolsey (1998) provided a description of the simulated annealing heuristic, which 
we have reproduced as Figure 14.2, with permission. 

Simulated annealing has been used to solve a variety of COPs as shown below and 
is reputed to be very successful: 

• Graph partitioning problem in Johnson et al. (1989) 

• Graph coloring problem in Johnson et al. (1991) 
• Traveling salesman problem in Kirkpatrick et al. (1983) 
• Quadratic assignment problem in Wilhelm and Ward (1987) 

Genetic algorithms employ a probabilistic search approach. Unlike tabu search 
and simulated annealing, genetic algorithms maintain a pool (or population) of 
candidate solutions, and this population evolves based not only on mutation (like 
SA) but also on parent selection of certain pairs from the population, combination 
(or crossover) to create one or two offspring, and finally on population selection 
based on a fitness criterion—a new population is selected by replacing members of 
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1. Get an initial solution S. 

2. Get an initial temperature T and a reduction factor r with 0 < r < 1. 

3. While not yet frozen, do the following: 
3.1 Perform the following loop L times: 

3.1.1 Pick a random neighbor S' of S. 

3.1.2 Let A =/(S') -f(S). 

3.1.3 If A<0 , s e tS=S ' . 

3.1.4 I f A > 0 , s e t S = S ' with probability e~m. 

3.2 Set T <- rT. (Reduce the temperature.) 

4. Return the best solution found. 

Note that as specified above, the larger the A is, the lesser is the chance of 

making a move to a solution worse by A. Also, as the temperature decreases, 

the chances of making a move to a worse solution decrease. 

Exactly as for local exchange heuristics, one has to define 

(i) A solution 
(ii) The neighbors of a solution 
(iii) The cost of a solution 
(iv) How to determine an initial solution 

The other parameters specific to simulated annealing are then 

(v) The initial temperaturer 
(vi) The cooling ratior 
(vii) The loop length L 
(viii) The definition of "frozen," or the stopping criterion 

FIGURE 14.2 Simulated annealing algorithm (From Wolsey, Integer Programming. Copy-
right 1998 John Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons). 

the original population by an identical member of offspring. Thus, the population 
evolves from one generation to the next. This process from evolutionary biology 
can be modeled in a continuous generational genetic algorithm pseudocode in 
Figure 14.3. 

To illustrate the application of a genetic algorithm to a COP, consider the two 
solutions obtained for the local routing problem introduced in Section 14.3.1 on local 
search. The following example2 is taken from Shapiro (2001), who calls genetic 
algorithms "perhaps the most popular class of heuristics for analyzing combinatorial 
optimization problems arising in supply chain management." Shapiro provides an 
excellent explanation of genetic algorithms in terms of chromosomes. He notes that 

2 From Shapiro, Modeling the Supply Chain, IE Copyright 2001 South-Western, a part of Centage 
Learning, Inc. Reproduced with permission, www.centage.com/permissions. 
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1. Choose initial population. 
2. Evaluate the fitness of each individual in the initial population. 
3. Repeat until termination (time limit, or sufficient fitness achieved by a 

population member, or plateau reached): 
(i) Select best-ranking individuals to reproduce 
(ii) Create offspring by crossover and/or mutation 
(iii) Evaluate the individual fitness of the offspring 
(iv) Replace worst-ranked part of population with offspring 

FIGURE 14.3 Genetic algorithm pseudocode. 

"both crossovers and mutations are invoked probabilistically... this allows variations 
in offsprings. The likelihood that a chromosome is included in an offspring depends 
on its fitness value, which is defined relative to the objective of the optimization." 
Chromosomes in our example are the various routes included in each solution (1 and 
2) given earlier. The underlying legs in the routes, for example, "3-13" in route 8 
"0-3-3-5-0" are variously called schemata, building blocks, or genes. 

In Figure 14.4, from Shapiro (2001), crossover is applied to the two solutions of the 
local routing problem given earlier. Recall that there were a total of 13 routes between 
the 2 (parent) solutions. At the top of the figure, the routes are reordered by their 
fitness, measured in cost per tons delivered. A probability of selection P(select) has 
been attached to each route, and the probabilities decrease with fitness. The form of 
the probability rule was P(x) = Ke~Xx for x < 15, where K= 1.953 and X = 0.04463 
were chosen so that P(15) = 1.0, P{x) decreases with increasing x, and P(20) = 0.80. 
Hence, any route approaching fitness value 15 should have a very high probability 
of being selected in a crossover solution, and routes with fitness value 20 should have 
a fairly high (0.8) probability of being selected. 

A crossover solution is shown in the middle of the figure. A route was selected for 
potential inclusion of its P(select) was greater than a randomly chosen number r, 
0 < r < 1. But, the route is not included in the crossover solution if it visits a customer 
already covered by an earlier route selected for inclusion in its crossover solution. 
Of course, different streams of random numbers could be used to generate many 
crossover solutions besides this one. At the end of the GA application, all but one 
customer (customer 6) are in the crossover solution. Customer 6, with 2 units of 
demand, could have been added to routes 6,4, or 11. Shapiro says, "this new route can 
be viewed as a mutation of the original chromosome route 11." The resulting 
crossover solution is approximately 11% better than the lowest cost parent (feasible 
solution 1) with a cost $1306. 

Applications of genetic algorithms to COPs include the following: 

• Manufacturing cell design (Joines et al., 1996) 

• Traveling salesman problem (Chatterjee et al., 1996) and (Katayama et al., 2000) 
• Generalized assignment problem (Wolsey, 1998). 
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FIGURE 14.4 Genetic algorithm applied to local delivery problem (From Shapiro, Modeling 
the Supply Chain, IE Copyright 2001 South-Western, a part of Centage Learning, Inc. 
Reproduced with permission, www.centage.com/permissions) 
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14.4 DUAL SOLUTION VIA RELAXATION 

Section 14.3 was devoted to finding a first feasible solution to an MIP and then finding 
improved feasible solutions through heuristics. No guarantee of optimality came with 
the heuristic, but each improved solution gave a tighter upper bound on a minimizing 
objective function for the MIP. In this section, we consider the dual problem of finding 
lower bounds for a minimizing problem. Because the duality theory of integer 
programming has been extremely developed for pure integer programs, we shall 
assume the problem at hand is IP, as follows: 

(IP) zIP = min{cx : x G F}, F = {x G Z"+ : Ax > b} 

where c is n x 1, A is m x n, and b is m x 1 in dimension. 
If a suitably tight lower bound on zIP can be found, then in combination with the 

primal upper bounds discussed in Section 14.3, one can develop criteria for stopping 
any algorithmic approach to find zIP once the current objective function value falls 
within known bounds. This section presents three "relaxation" approaches to 
obtaining a lower bound on z1P. The first two, linear programming relaxation and 
combinatorial relaxation, create a revised (more extensive) feasible region but leave 
the objective function as is. The third approach, Lagrangian relaxation, substitutes 
another minimizing objective function for ex, one that has the same or smaller value 
on the fixed feasible region. Another approach to finding a lower bound on zIP is based 
on duality, and will be presented in Section 14.5. 

Definition 14.1 A relaxation of an IP is any minimization problem 

(RP) zR = min{zR(x) : x e FR} 

with the properties 

(Rl) F C F R 

(R2) zR(x) < ex, for all x G F 

Proposition 14.1 If RP is infeasible, so is IP. If IP is feasible, then zR < ZiP. 

In Sections 14.4.1 and 14.4.2, one or more constraints will be dropped from F, and 
zR(x) = ex. 

14.4.1 Linear Programming Relaxation 

The linear programming relaxation of IP is given by 

(LP) zLP = min{cx : x G L}, where L = {x G R"+ : Ax > b} 

An optimal solution x* to zLP is optimal for IP if x* has all integer values. Another 
condition for x* to be optimal for IP is if ex* =ZiP, which of course is unknown. 
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So, with the right set of conditions on the upper bound, x*, and zLP = ex*, the LP 
relaxation may provide insight into the optimal vector and value of zIP. Also, recall 
from Section 4.1 that many combinatorial optimization problems have the property 
that their LP relaxation has feasible region L equal to the convex hull of the basic 
feasible integer solutions: 

• Assignment 
• Transportation 

• Transshipment 
• Maximum flow 
• Linear minimum cost flow 

These are the so-called "easy integer programs" of Chapter 10, and solving their LP 
relaxation provides the integer optimum as well. 

Consider the following example to see how helpful the LP relaxation can be. 

Example 14.2 Suppose the integer program is 

Min z = 5x\ + 4x2 
3x, +2x 2 > 5 
2*1 + 3x2 > 7 
x\,X2 > Oand integer 

Some obvious feasible points with their z-value are shown below: 

(2.1) z = 1 4 
(1.2) z = 1 3 
(3,1) z = 1 9 
(0,3) z = 1 2 
(4,0) z = 20 

So, an upper bound on z* is 12. Now, the solution to the LP relaxation of the integer 
program is x* = (0.2, 2.2) with z* = 9.8. At this point, we know the optimal value of 
the IP must be either 10, 11, or 12. In fact, the point (0, 3) turns out to be the optimal 
integer solution with optimal value 12. 

Another obvious property of the linear programming relaxation, in fact any 
relaxation of IP, is that if the relaxation is infeasible, the original IP is infeasible. 

14.4.2 Combinatorial Relaxation 

As the name implies, sometimes when we remove one or more constraints from IP, 
we create an instance of a combinatorial optimization problem. If that COP turns out 
to be easy to solve, then a lower bound on ZIP can be generated rapidly. A five-city 
(asymmetric) traveling salesman problem is used to illustrate the opportunity. 
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Example 14.3 Consider a matrix of distances for the TSP as follows: 

/oo 11 3 6 9 \ 
5 oo 5 4 2 
4 9 oo 7 8 
7 1 3 oo 4 

\ 3 2 6 5 o o / 

Removing the constraints that no subtours are permitted, the relaxation is well 
known to be the assignment problem. The optimal assignments and their distances 
are as follows: 

1—3 3 
3 — 1 4 
2 — 5 2 
5 — 4 5 
4 — 2 1 

15 

Two subtours (1 — 3 — 1) and (2 — 5 — 4 — 2) arise, and the optimal value 15 is a 
lower bound on the optimal length of a five-city tour. Note this would also have been 
the optimal value of the LP relaxation of the TSR To get an upper bound, arbitrarily 
choosing the tour 1 - 2 - 3 - 4 - 5 - 1 yields a length of 11 + 5 + 7 + 4 + 3 = 30. 
A much tighter bound is obtained using the nearest-neighbor heuristic, which yields 
1 - 3 - 4 - 2 - 5 - 1 with a length of 3 + 7 + 1 + 2 + 3 = 16. So, using the COP 
relaxation and a simple heuristic, we have obtained the optimal value of this TSP to be 
either 15 or 16. 

Wolsey (1998) provides examples including the TSP, the symmetric TSP, the 
quadratic 0-1 problem, and the knapsack problem. We use a simple knapsack problem 
to illustrate the power of bounding solutions. 

Example 14.4 (Integer Knapsack Problem) 

z = max 42*1 + 26x2 + 35x3 +71x4 + 53xs 
14.4xi + 10x2 + 12. lx3 + 25x4 + 20x5 < 69.9 
X[,X2, X3, X4, X5 > 0and integer 

The COP relaxation of this problem is obtained by rounding each coefficient in the 
constraint down to the largest integer less than or equal to the coefficient given: 

z = max 42xi + 26x2 + 35x3 + 7IX4 + 53xs 
14xi + 10x2 + 12x3 + 25x4 + 20x5 < 69 
x\,X2,X3,X4,X5 = 0 and integer 



376 SOLUTION VIA HEURISTICS, RELAXATIONS, AND PARTITIONING 

The optimal LP relaxation of COP has x* = (4.93,0,0,0,0) and z* = 207. So, 207 is 
an upper bound on zIP. Some obvious feasible vectors for COP and their objective 
function values are as follows: 

(4,0,0,0,0) 

(0,6,0,0,0) 

(0,0,5,0,0) 

(0,0,0,2,0) 

(0,0,0,0,3) 

(3,0,0,1,0) 

(1,5,0,0,0) 

(0,0,4,0,1) 

(0,0,0,1,2) 

z = 

z = 

z = 

z = 

z = 

z = 

z = 

z = 

z = 

168 
156 
175 
143 
159 
197 
172 
193 
177 

So, the optimal value of IP is somewhere between the lower bound 197 and upper 
bound 207. The optimal IP solution is (4,0,1,0,0) with z* = 206; the COP relaxation 
provided a tight bound in this case. 

14.4.3 Lagrangian Relaxation 

The (IP) above can be rewritten as 

(IP) ZIP = min{cx : x e F} 

where F = {x G Z"+ : Aix > b1 ; A2x = b2} 

F = {x € Z"+ : A,x > bi, A2x = b2} 

and A) is m, x w, A2 is m2xn,b is m, x 1, and b is m2 x 1. 
Note the original m constraints have been partitioned into two sets, with m\ + 

m2 = m. It is traditional to think of one set, say A t\ > bt, as "complicated" constraints 
and the other, A2x > b2, as simple or "easy" constraints. For example, A2x > b2 might 
correspond to the constraint set of a COP, or they might just be an expression of 
the lower bounds on x\, x2, ■ ■ -, xn. Instead of merely dropping the complicated 
constraints from the problem as a relaxation, they can actually be assigned a multiplier 
k G R + to form the Lagrangian relaxation of IP with respect to AiX > b^ 

LR(A) ZLR(A) = min{cx + A(b-Ajx) : A2x > b2, x G Z"+ } 

LR(A) does not contain the complicated constraints and k > 0 forces b — A*x < 0 
(as desired) to minimize the overall (penalized) objective function. 

Proposition 14.2 zLR(A), as defined above for LR(A), has the property zIP > zhR(k), 
for all k > 0. 
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Nemhauser and Wolsey (1988), in their Example 6.1, provide an extended explana-
tion of the bounds and geometry resulting from applying Lagrangian relaxation to 
a maximizing integer program with two variables and five constraints. Four of the five 
constraints are treated as "nice" and one as "complicating," so A is a scalar (which 
enhances the geometric explanation). 

Example 14.5 The Lagrangian relaxation of the IP given in Section 14.4.1 will be 
developed using the first constraint 3x[ + 2x 2 >5 as the complicating constraint. 
The multiplier X will, therefore, be a scalar in the formulation: 

Min z = 5*i + 4x2 + A(5-3xi-2x2) 

2x{ + 3x2 > 7 

x\, x2 = 0 and integer 

which can be rewritten as 

Min z = (5-3A)x! + (4-2/1)JC2 + 5A 

2x\ + 3x2 = 7 
x\, X2 = 0 and integer 

The solution of this problem would provide a lower bound on the original IP. 
Lagrangian relaxation has been applied in integer programming to such difficult 

problems as 

• Airline scheduling (Yan and Lin, 1997) 

• Generalized assignment problem (Nauss, 2006) 
• Ship scheduling (Rana and Vickson, 1988). 

14.5 LAGRANGIAN DUAL 

As stated in Section 14.4, relaxation and duality are the two ways of finding lower 
bounds on zIP in 

(IP) ZIP = min{cx : x G F}, F = {x e Z"+ : Ax > b} 

where c is n x 1, A is m x «, and b is m x 1 in dimension. 
There is a theory of Lagrangian duality for both linear programming and integer 

programming; Nemhauser and Wolsey (1988) is a comprehensive reference upon 
which this section is based. As we shall see, any dual feasible solution provides a 
lower bound on z for the primal. Note that in the relaxation methods of Section 14.4, 
the relaxation must be solved to optimality to determine a lower bound. 
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14.5.1 Lagrangian Dual in LP 

Consider LP as defined earlier, with the constraints partitioned into A ^ ^ b i 
(complicated) and A2x > b2 (easy) constraint sets. Now 

(LP) ZLP = min{cx : x G L} 

where L = {x: AiX>b), A2 x>b 2, X G R " + }. 
The Lagrangian dual of LP is 

(LDLP) WLDLP = maxvv(u), where 

w(u) — ubi +minimum(c—uA[)x,x G L' 

u(l x mi) > 0 andL' = {x G R"+ : A2x > b2} 

Proposition 14.3 (Weak Duality) If x0 is feasible for LP and u0 is feasible for 
LDLP, then cx0 > w(u0). 

Proposition 14.4 If L' is nonempty and bounded and LP has a finite optimal 
solution, then zLP = wLDLP. 

14.5.2 Lagrangian Dual in IP 

Definition 14.2 The two problems 

(IP) z = min{cx : x G F}, and 

(D) w = max{n'(u) : u G U} 

form a weak dual pair of w(u) < ex for all x G F and all u G U. When z=w, they are 
said to form a strong dual pair. 

Proposition 14.5 The integer program IP and the dual of its linear programming 
relaxation LP, as given below, form a weak dual pair: 

(DLP) WLDLP = max{ub : u G U}, where U = {u G R + : uA < c} 

More generally, if a problem is dual to any relaxation of IP, it is a weak dual to IP. 

Example 14.6 Consider the integer knapsack problem in Section 14.4.2. The LP 
relaxation of this problem has dual LP: 

w = min 69.9 u 

14.4M > 42 
10« > 26 
12.1« > 35 
25« > 71 
20M > 53 

M>0 

M* = 2.92 and w* = 203.88, so 203.88 is a lower bound on zIP. 
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The COP relaxation of the IP has dual LP: 

w = min 69 u 
Uu > 42 
10« > 26 
12w > 35 
25« > 71 
20« > 53 
w > 0 

Here, u = 3 and w* = 207, so a better lower bound for zIP is 207. Note: u = 3 could 
have been quickly determined to solve all five constraints (hence, was feasible), so its 
objective function value 207 is known to be a lower bound of zjP without solving 
the dual problem to optimality. 

Proposition 14.6 Suppose IP and D are a weak dual pair. If x* 6 F and u* € U can be 
found such that w(u*) = ex*, then u* is optimal for D and x* is optimal for IP. 

14.5.3 Properties of the Lagrangian Dual 

For any u G R™1, define the following integer programming problem 

LRIP(u) w(u) = ubi + minimum (c-uAi)x 

whereu > 0 and X = {x € Z"+ : A2x = b2} 
The vector u is called the dual variable (Lagrange multiplier) associated with the 

constraint AjX > bi, just as in the LP case. Note the function w(u) could alternatively 
be written as 

tv(u) = mincx + uibi—Aix) 
xex 

and w(u) < Z\P = min{cx: x G F}, for all u > 0. 

Definition 14.3 The problem LRIP(u) is called a Lagrangian relaxation of IP with 
parameter u. 

To find the largest lower bound over all possible values of u, we need to solve the 
Lagrangian dual problem. 

LDIP wLDIP = max{w(u) : u € ^ ' } 

Proposition 14.7 The problem LPIP(u) is a relaxation of IP, for all u > 0. 

Proposition 14.8 Given a specific u e R+', if the following two conditions are 
satisfied, then the optimal vector x*(u) of LRIP(u) is optimal for IP: 
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1. A,x*(u) > b , 
2. (Aix* (u));. = bi,- whenever u, > 0 

Wolsey (1998) provides application of this proposition to the uncapacitated facility 
location problem and the symmetric traveling salesman problem. 

Proposition 14.9 wLDIP = minimum{cx: A[X> b b x eConv(X)} 
This proposition states that the (primal) linear program given is dual to the IP 
Lagrangian dual problem LDIP. 

14.6 PRIMAL-DUAL SOLUTION VIA BENDERS' PARTITIONING 

In Sections 14.4 and 14.5, we started with a pure IP and described various solution 
approaches based on relaxations and duality. In each case, a set of "complicating 
constraints" was assumed. In this section, while retaining the minimizing objective 
function, we return to the MIP formulation used in most of the chapters of this book: 

(MIP) ZMIP = min cixi + c2y2 

subject to A[X + A 2 y > b i 
Dy>b 2 

x > 0, y = 0 and integer 

where A! is m x n, A2 is m xp, D is m' xp, x is n x 1, y is/? x 1, bj is m x 1, b2 is 
m' x 1, Ci is 1 x n, and c2 is 1 xp. 

Benders' (Benders, 1962) partitioning approach applies to programming problems 
that involve groupings of either different types of variables (e.g., continuous and 
integer) or different types of constraints (e.g., linear and nonlinear). We are interested 
here in explaining how Benders' general theory of decomposition can be applied to 
MIPs. The integer variable y can be viewed as a "complicating variable"; with y fixed, 
MIP becomes a linear program that can be readily solved. Setting y to a specific 
integer value, say 

the dual of the remaining LP is 

(DLP1) maxu(bi-A2y') 
subject to uAj < C[ 

u > 0 
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Next, adjoin a constraint uE < M to DLP1, where E is an m x 1 vector of 1 s and M 
is an appropriately large positive integer. This minor adjustment to DLPl (hence to 
MIP) results in a revised dual problem 

(DLP2) max u(b, -A2y') 
subject to uAi < ci 

uE <M 
u > 0 

Properties of DLPl and DLP2 are as follows: 

• If DLPl is bounded, then DLPl and DLP2 are equivalent LPs (uE < M is 
redundant, for M large enough). 

• DLPl and DLP2 are functions of y. 
• If for a given value of y, DLPl is unbounded, then DLP2 will be bounded and the 

constraint uE < M will be binding. 

• Thus, if we solve DLP2 and uE < M is binding (slack variable = 0), then we 
conclude DLPl is unbounded. 

• The feasible regions of both problems are independent of y, so regardless of y, 
the optimal solution of DLP2 is a vertex of the feasible region they share. 

• The dual variable u is 1 x m, so all these vertices are in R™ ; say {w', u2,..., wT}. 

Benders (1962) derived the following pure integer program that is equivalent to MIP: 

(IP) min z 

subject to z > c2y + w'(bi -A2y) / = 1 , . . . , T 

D y > b 2 

y > 0 and integer 

This problem has T constraints (one for each of the vertices of DLP2) in addition to 
the m' constraints expressed in Dy > b2. 

The number of vertices (T) can be very large, so instead of solving IP with all T 
constraints, IP is relaxed to start with only one constraint. One successively generates 
vertex-related constraints (cuts) for the pure IP by alternately solving DLP2 (to obtain 
a particular u') and the relaxed pure problem. This is why the algorithm is referred to 
as a primal-dual algorithm. 

Figure 14.5 presents the basic version of Benders' partitioning algorithm for 
MIPs, adapted from McDaniel and Devine (1977); these researchers made modifica-
tions to create the Figure 14.4 version to gain convergence in fewer iterations. 
Garfinkel and Nemhauser (1972) presented a more general version of Benders' 
decomposition for MIPs; many versions of Benders' decomposition for MIPs with 
special structure have appeared since the 1970s. 

Each successive solution z' of the relaxation of IP results in a tighter lower bound 
on zMIFS that is, the sequence {z'} is monotonically increasing. At iteration t, the best 
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Step 0 (Initialization). Set t = 1, B„ = + °° and select some e (convergence criterion) 
that is feasible for DLP2. 

Step 1 (Iteration t). Solve the relaxed pure integer program 

(IP(0) min z subject to 

z>c2y + u ' (b,-A2y) i=l,...,t 

Dy>b2 

y > 0 and integer 

Select some H1 

Let z' and y' be the solution. If z is unbounded from below, take y' to be some value that gives z' 
some arbitrarily large negative value. 

Step 2. Generate the most violated constraint of IP by solving the linear program 

(DLP2(i)) max: «„ = u(b, - A2y') subject to 

uA] < C| 

uE<M 

u > 0 

Let the solution of this LP be optimal value U0 at u'+1. 

Step 3. Check convergence criterion. Set B„ = min{B„, U0 +Ciy'}. If z' > B„ - e, stop; the optimal 

solution has been reached. Otherwise, add the constraint z > c2y + u'+l (b] - A2y) to IP(i). 
Return to step 1. 

Set/ = r+ 1. 

FIGURE 14.5 Benders' algorithm for MIP.3 

upper bound on zMIP is given by 

Bu = min{«ó+1 +ciy '} , i—\,...,t 

3 Reprinted by permission of authors (see Bibliography). Copyright (1977), the Institute for Operations 
Research and Management Sciences, 7240 Parkway Drive, Suite 300, Hanover, MD 21076. 
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14.7 NOTES 

Section 14.3 

A comprehensive reference on local search heuristics is Walser (2008). 
There is a huge literature on tabu search. For instance, for MPS files and test results 

comparing Pedroso's tabu search approach with branch-and-bound, see the entire 
chapter in Pedroso (2006). A problem-specific application of tabu search appears in 
Rolland et al. ( 1997). Glover and Laguna ( 1997) include a chapter on tabu search in integer 
programming, and another on tabu search applications—many of which are MIPs. A 
recent edited collection by Rego and Alidaee (2005) contains chapters on advances for 
solving classical problems, in addition to the chapter by Pedroso mentioned above. 

Nemhauser and Wolsey (1988) state that "the efficiency of simulated annealing 
depends on its neighborhood structure. For some combinatorial optimization pro-
blems, such as the traveling salesman problem, simulated annealing has found much 
better solutions than those obtained by a random-start interchange algorithm." 

The standard reference on genetic algorithms remains (Goldberg, 1989). Nieminen 
(2001) reports the development of a genetic algorithm customized to find the (first) 
feasible solution of an MIP to start the branch-and-bound algorithm. His strategy is 
quite similar to Pedroso's from tabu search in that he fixed the integer values in the 
MIP and solves the remaining problem as an LP. If the solution is infeasible, its fitness 
is the sum of the infeasibilities; if the solution is feasible, the fitness is the optimal 
value of the LP. This value is then used to determine a new generation of genomes 
(individuals) made up of vectors of genes (integer values for y¡ that satisfy the integer 
constraints). Hua and Huang (2006) report a variable grouping-based genetic 
(VGGA) algorithm for large-scale integer programs. The MIP's LP relaxation is 
solved first, then the integer variables are grouped and a standard genetic algorithm 
is applied to the subproblem of each group. VGGA uses variable grouping to reduce 
the dimensionality of the genetic algorithm's search space. 

Section 14.5 

The presentation here is derived from Nemhauser and Wolsey (1988). 

Section 14.6 

Benders' decomposition is discussed in Nemhauser and Wolsey (1988, Section 
II.3.7). An application of Benders' decomposition to ship scheduling appears in 
Scott (1995). An alternative decomposition approach (the Dantzig-Wolfe approach) 
was presented as the basis for branch-and-price in our Chapter 13. 

14.8 EXERCISES 

14.1 Apply the "greedy" and "nearest (unserved)-neighbor" heuristics to the 
following five-city symmetric traveling salesman problem: 
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Are the routes the same, as in Example 14.1? 

14.2 (Shapiro, 2001)4. The depot described in Section 14.3.1 is faced with their new 
demands for local delivery: 

Customer: 
Tons: 

1 
5 

2 
4 

3 
2 

4 
7 

5 
3 

6 
5 

7 
4 

8 
4 

9 
6 

10 
5 

11 
3 

12 
2 

13 
6 

14.3 

(a) Apply the heuristic described in Section 14.3.1 to determine a feasible 
routing solution for the new demands; all other factors of the vehicle routing 
problem remain the same. In particular, apply the heuristic twice by changing 
the rule for selecting the first customer in a route. First, use the heuristic to 
select the first customer on each route to be the unserved customer that is 
nearest to the depot. Second, use the heuristic to select the first customer on 
each route to be the unserved customer that is farthest from the depot. 

(b) Apply the genetic programming algorithm outlined in Figure 14.3 to 
perform crossover operations on the two feasible routing solutions found 
in part (a) using the probability function P(x) = 1.953e~004463*, where x 
is the cost per delivered ton of a route. Use random numbers 1 < r < 99 
from a calculator or a random number table and compare your offspring 
with those of your classmates. If any customers are not visited in your 
crossover solution, apply a heuristic as in Figure 14.3. 

(Bazaraa et al., 1990)5. Consider the problem: Minimize X] + 2x2 subject to 
3x] + x2 > 6, -Xi + x2<2, X\ + x2< 8, and xu x2>0. Let X= {x: —x{ 

x 2 < 2 , x\ + x 2 < 8, X\, x 2 > 0 } . 
(a) Formulate the Lagrangian dual problem. 
(b) Show that j{w) = 6w + minimum{0,4 - 2w, 13 - 14w, 8 - 24w}. (Hint: 

Examine the second term \nf(w) and enumerate the extreme points of X 
graphically.) 

(c) Plot/(w) for each value of w. 
(d) From part (c) locate the optimal solution to the Lagrangian dual problem. 
(e) From part (d) find the optimal solution to the primal problem. 

From Shapiro, Modeling the Supply Chain, IE Copyright 2001 South-Western, a part of Centage 
Learning, Inc. Reproduced with permission, www.centage.com/permissions. 
5 From Bazaraa, Jarvis, Sherali, Linear Programming and Network Flows, 2nd ed. Copyright 1990 John 
Wiley & Sons, Inc. Reprinted with permission of John Wiley & Sons, Inc. 
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14.4 Consider Benders' reformulation IP of the MIP given in Section 14.6. Now, 
consider if the MIP had been the maximization problem 

Maxcjx + C2y 

subject to Aix + A2y < bi 
D y < b 2 

x > 0, y > 0 and integer 

(a) Write out Benders' reformulation of this MIP. 
(b) Write out explicitly the Benders' reformulation of the mixed integer 

program. 

Maxl4xi + 10*2 + 4>>i + 2y2 + 6y3 

35*1 + 24x2 + 9yi + 4y2 + 14j3 < 80 
-2xi +4x2-^1 -2y2 + 3j3 < 10 
x > 0, y > 0 and integer 



15 
SOLUTIONS WITH COMMERCIAL 
SOFTWARE 

This final chapter (a) provides some practical considerations when algorithms are 
implemented as software, (b) describes the key components and features of a typical 
software system to model and solve integer programming problems, and (c) intro-
duces three commonly used modeling languages (AMPL®, LINGO®, MPL®) and 
solvers in more depth than earlier chapters. AMPL is from AMPL Optimization LLC, 
LINGO® is from LINDO Systems, Inc., and MPL is from Maximal Software, Inc. 

The purpose of this chapter is to introduce the reader to components of software 
systems one might encounter, or be asked to implement, working as an operations 
research analyst or programming specialist. Such implementations may require 
repetitive solution of a model with different input data and often involve embedding 
of the model and/or solver in an application (e.g., an inventory control system). There 
are numerous options available; this chapter should help prepare the reader for such 
responsibilities. It also enables the reader to understand that most of the topics of 
earlier chapters, such as preprocessing, branch-and-cut, and primal heuristics, have 
been implemented in commercial software, some as default settings and others as 
options the user can control. 

Of necessity, in describing the software components and their role in the system, 
specific examples make the explanation more meaningful. It is not the authors' 
intention to recommend any particular modeling language or solver for linear and 
integer programming. Nor is it our intention to be comprehensive in the descriptions 
we do provide; that is the job of the developers of the many commercial modeling 
languages and solvers currently available and well indexed in the most recent survey 

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang 
Copyright © 2010 John Wiley & Sons, Inc. 
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in a long series published by INFORMS (Fourer, 2007). Each software product in turn 
has a Web site where the reader can typically find detailed descriptions of the product, 
tutorials, free trial downloads, bundling options for modeling languages with solvers, 
contacts for licenses/pricing, and other information. 

15.1 INTRODUCTION 

In practice, after a linear program (LP) or mixed integer program (MIP) is formulated, 
some computer software package (e.g., the CPLEX® solver) is typically used to solve 
the problem. CPLEX is from ILOG®, an IBM® company. Hence, an input mechanism 
is needed to translate the mathematical/algebraic description of the problem into a 
format that the software recognizes. Such input mechanisms are often referred to as 
modeling tools. Fourer et al. (2003) call this the problem of translation from 
"modeler's form" to "algorithm's form," the latter referring to the simplex algorithm 
and the simplex-based branch-and-bound and branch-and-cut methods, found in 
commercial solvers. Common modeling tools for LP or MIP problems were devel-
oped chronologically, and they fall into three categories: ( 1 ) MPS format files, (2) LP-
format files, and (3) algebraic modeling languages. 

The MPS format (Murtagh, 1981) was originally developed at IBM in the early 
1960s and is widely used in both academia and industry. An MPS format file is a 
column-oriented (i.e., input fields must fit within prespecified columns) text file in 
which there are sections specifying various components of an LP or MIP problem. The 
MPS format is a legacy from the mainframe era and is not as flexible as an LP-format 
or algebraic modeling language. It is very difficult, if not entirely impossible, to 
manually write an MPS file for a large-scale LP or MIP problem; one would always 
resort to a software tool to generate an MPS file for his or her problem. "Even though it 
is lengthy and rather cryptic to the human eye, the MPS format became a standard for 
specifying and exchanging mathematical programming problems, and it is still 
supported by modern commercial mathematical programming systems" (Atamturk 
and Savelsbergh, 2005). 

There are several variants of LP-formats, for example, CPLEX LP-format and the 
LINDO equivalent, and each LP-format provider has documentation describing 
components of an LP or MIP problem. The primary difference between the MPS 
format and an LP-format is that whereas in the MPS format only the objective function 
coefficients, constraint coefficients, and right-hand side elements are specified, in an 
LP-format the objective function and constraints are explicitly written in algebraic 
forms. Hence, an LP-format is more readable than the MPS format. To write a large-
scale problem in an LP-format, one still needs assistance of a software tool. 

In linear and integer programming, the major conversion challenge has been 
producing a compact representation of the constraint matrix. In the early 1980s, the 
programs written and commercialized to handle this task were called matrix gen-
erators, but these proved to be difficult to debug and maintain. Algebraic modeling 
languages evolved in the mid-to-late 1980s as an alternative to matrix generators, 
enabling the direct linkage from "modeler's form" to "algorithms (solver) form." 
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These algebraic modeling languages provide "computer readable equivalents" of 
notation used in the algebraic expression of LP and MIP models. An algebraic 
modeling language overcomes the deficiencies of an LP-format by introducing sets, 
symbolic constants, indexed variables, indexed constraints, aggregate operators such 
as summations, and other logical and flow control expressions. Furthermore, most 
modeling languages separate the model and the data. Such separation is also 
important to the maintainability of the models (e.g., model documentation, ease of 
reuse). As described in Chapter 1, much more powerful solvers were being developed 
in parallel over the past two decades. In fact, one solver developer has reported a 2360-
fold speedup due to software improvements and an additional 800-fold speedup due to 
advances in hardware, 1988-2002 (Atamturk and Savelsbergh, 2005). 

15.2 TYPICAL IP SOFTWARE COMPONENTS 

In this section, we briefly describe the typical software components that make up a 
software system to solve integer programming problems. The intent is to simply 
familiarize the reader with these components. However, solution methods from 
previous chapters that form the basis of certain components are identified and much 
more extensive software references are provided. Also, we attempted to include 
illustration of the implementation of these components in the descriptions of leading 
commercial software that follows. The discussion will progress from the solution 
"engine" or solver, back through modeling languages and option control, to the user 
who is typically sitting at a PC as the input/output device. 

15.2.1 Solvers 

An LP or MIP model actually describes an infinite number of possible problems. An 
"instance" of the problem is when specific data are assigned to the model, and an 
optimal solution is sought. A solver is a software program that accepts the instance as 
input, applies one or more of the solution techniques we described in Chapters 9-14, 
and returns information about the optimal solution. For example, in solving an LP, the 
information might be that the problem is unbounded, or it might be a unique optimal 
vector with its optimal value, along with the dual values of the constraints. In solving a 
MIP, the information would be related to the branch-and-bound method, the basis of 
all state-of-the-art MIP solvers: for instance, how many nodes were explored, how 
close is the "best solution found" to optimal, and so on. Of course, any MIP solver is 
dependent on the speed of the LP solver that it repeatedly invokes; another feature that 
determined MIP solver performance is the so-called "branching control" to separate 
and select subproblems in the enumeration scheme. 

In addition, "today's MIP codes have become increasingly complex with the 
incorporation of sophisticated algorithmic components... the behavior of the branch-
and-bound algorithm can be altered significantly by changing the parameter settings 
that control these components. Through extensive experimentation, integer program-
ming software vendors have determined default settings that work well in most 
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instances encountered in practice" (Atamturk and Savelsbergh, 2005). In particular, 
branch-and-cut (Chapter 12), branch-and-price (Chapter 13), and primal heuristics 
(Section 14.3) have been applied by default in MIP solvers. As described in Chapters 
12 and 14, cutting plane generators, using a variety of available cuts, are used to 
tighten the upper bound on a maximizing objective; heuristics may be used to find 
feasible MIP solutions and to tighten lower bounds. For example, Rothberg (2003) 
reported that CPLEX using the following cuts we described in Chapter 12: knapsack 
cover cuts, clique cuts, flow cover cuts, GUB cuts, Gomory mixed integer cuts, mixed 
integer rounding (MIR) cuts, flow path cuts, and disjunctive cuts. Yet another feature 
of solvers is their implementation of preprocessing (Chapter 4), in what is called a 
presolver, discussed next. 

15.2.2 Presolvers 

Presolve is a feature found in both solvers and algebraic modeling languages; virtually 
all commercial software products of these two classes included a presolver. In Chapter 
4, we systematically detailed the standard techniques of preprocessing the problem 
instance prior to solvers attempt to find an optimal solution. Techniques for tightening 
bounds on variables and preprocessing a pure binary integer program (BIP) were 
given, along with examples of their effectiveness in creating a "better formulation," 
meaning a formulation that is easier to solve. All these techniques guarantee that the 
integer optimal solution of the original problem has not been eliminated from the 
feasible region of the reformulation. The presolver is automatically invoked and 
attempts to fix or eliminate variables, tighten bounds on variables, and tighten 
constraints by modifying coefficients or reformulating. Special preprocessing tech-
niques are applied in the case of BIP. If problem infeasibility is detected by the 
presolver, the user is notified and the solver is not invoked. 

MIP solvers use a variety of preprocessing techniques at the root node of the 
branch-and-bound tree; that is, before the first LP relaxation is solved. Preprocessing 
is also applied at each subsequent call to the LP solver as branch-and-bound proceeds. 
All this activity goes on behind the scenes and is not reported to the user. Solvers return 
solution information to the user through the algebraic modeling language in terms of 
the original model formulation. However, user options concerning preprocessing are 
provided in most solvers. We discuss this briefly in Section 15.2.4. For example, 
Rothberg (2003) reported that CPLEX's presovler used the following preprocessing 
approaches described in Chapter 4: tightening bounds by rounding a fractional bound, 
rounding by division with GCD, variable fixing, inactive constraints, and redundant 
constraints. To review AMPL's presolver, see (Fourer et al., 2003, Section 14.1). 

15.2.3 Modeling Languages 

In practice, an analyst or operations research team (Batson, 1987) would decide that 
the appropriate mathematical formulation of real problem is an MIP and proceed to 
use the conventions and notation found in this book. As the initial data to describe this 
model instance are located in various databases, the user quickly realizes that the 

Hamid
Highlight
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problem is too large to write out completely and that the data are quite extensive and 
will probably change many times as subsequent problem instances are explored. At 
one time, the analyst would have had to develop an MPS description of the problem. 
An algebraic modeling language is software designed to efficiently 

• Formulate the model 
• Access the data and move each datum into proper location as a model parameter 
• Communicate the problem instance to a solver 
• Communicate solver results back to the user 

• Document the model that was solved 
• Handle subsequent modifications to the model and/or updates to the data. 

In summary, a modeling language provides efficient documentation, two-way 
communication between user and solver, and reformulation—helping the analyst to 
manage the model and the associated data. We shall discuss the communication 
aspects in more detail in Section 15.2.5. Because of the close relationship between the 
modeling language and the solver in use, they are often acquired as bundled products 
from the respective sources. Solver providers may "offer integrated systems that 
provide a modeling environment specifically for their own solver" (Fourer, 2007). 
Features of three popular modeling languages (AMPL, LINGO®, and MPL) and how 
they are used with a solver are discussed in subsequent sections in this chapter. 

15.2.4 User's Options/Intervention 

Assuming the user is working in a given modeling language, he/she may have more 
than one solver to choose from on the organization's network. So, the most basic 
option arises when an analyst indicates which solver is to be invoked. More generally, 
all modeling languages and solvers provide users with options. 

In a modeling language, a command interface is provided that will respond user 
commands expressed in text or through a graphical user interface. Standard 
commands related to solutions and sensitivity information desired are conveyed 
in this manner, along with options the user wants to enable or disable. For instance, 
the LINDO® solver enables the user to control the preprocessing operation by 
changing the value of the parameter prelevel to turn on or off presolver options such 
as simple presolve, variable fixing, coefficient reduction, elimination of variables, 
and elimination of constraints. Or, the user may "turn off' the modeling language's 
presolver and pass responsibility for presolve to the preprocessing routine of the 
chosen solver. 

User options in the solver enable the user to change certain parameter settings from 
their default values, either because the user has the skill to identify and communicate 
special features in the structure of the problem instance, or because the default settings 
of the solver did not give acceptable results on the first attempt at problem solution. 
These options may be accessible through the graphical user interface of the modeling 
software, once the solver is called. A large portion of the paper by Atamturk and 
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Savelsbergh (2005) is devoted to user control of the following options in three state-
of-the-art solvers: 

• Node selection in branch-and-bound, expressed by the focus given to decrease 
the global upper bound or to increase the global lower bound. Typically, four or 
five search options are provided to the user and he/she can choose only one, or a 
hybrid. 

• Branching in branch-and-bound: Choosing integer variable whose value at a 
currently active node is noninteger, for the next branching into two new nodes. 
Simple branching was described in Section 11.1, based on rounding the 
noninteger value up or down; a number of other advanced options, such as 
strong branching, branching based on pseudo-costs, or pseudo-reduced costs, are 
often available as alternatives. 

• Cutting planes to provide improved LP bounds: There are two categories of cuts 
implemented in MIP solvers, general cuts and strong special cuts such as 
knapsack and fixed-charge flow, all discussed in Chapter 12. Solvers provide 
users with parameters that control which cuts are enabled and how aggressive the 
solver should be in "looking for cuts." 

• Preprocessing prior to solving the relaxed LP at a node: All the preprocessing 
techniques described in Chapter 4 are typically available in commercial solvers 
and may be turned on or off by the user. 

• Primal heuristics attempt to find feasible solutions to an MIP because such 
solutions automatically provide a lower bound at that node in the branch-and-
bound tree. A good lower bound enables the tree to be pruned, and the search 
reduced. Heuristics of the three types described in Section 14.3 may be options, 
as well as heuristics developed by the solver provider. 

Overriding the default settings in modeling languages and solvers can make the 
integer program at hand more tractable, but the user must develop skills and insights 
over time in order to choose wisely from among available options and learn how to 
carefully monitor the solution process and duration to decide when to revert to default 
on some options. Such skills and insights can only be developed with experience. 

15.2.5 Data and Application Interfaces 

Modeling languages must be capable of reading data in standard spreadsheet and 
database formats. In fact, a main purpose of the modeling language is to retrieve data 
from such structured data sources, on command, and generate a matrix that the solver 
can use. Virtually all modeling languages and solvers can also handle model instances 
expressed in simple text formats, especially the MPS and LP-formats discussed at the 
start of this section. For the LINGO® modeling language, we provide a detailed listing 
of database management systems and programming languages that interface with 
LINGO® in Section 15.4. Similar capabilities to those described are provided in any 
commercial modeling language. 
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There are other web-based interfaces that provide users access to the 
organization's modeling languages and solvers over network connections. Applica-
tion program interfaces (APIs) have been developed in such languages as C++ and 
Java for calling each of the modeling languages and solvers mentioned in this chapter. 
These APIs enable modeling languages and/or solvers to be embedded in customized 
applications and provide the programmer with solution query methods and routines to 
access information about the results of applying an optimization method to a problem 
object. For instance, for MIP problem objects, the solver LINDO's API provides 
access to values of variables and constraint slacks; methods and routines are provided 
to retrieve other information about the optimization process, for example, the number 
of nodes searched, the objective value of the best remaining node, and so on. All such 
commercial solvers provide API libraries, and these enable the application program to 
interface directly with an embedded solver. 

Embedding of solvers in applications has a longer history than embedding of 
models developed in modeling systems. Fourer (2007) has noted that it is now 
possible to embed an entire modeling system, or a particular model, or an instance of 
a model. 

15.3 THE AMPL MODELING LANGUAGE 

The AMPL® algebraic modeling language (Fourer et al., 2003) attains a very high 
level of readability in that a model written in AMPL resembles the algebraic notation 
in which one would formulate or describe an LP or MIP problem. An important 
feature is that AMPL facilitates separation of a model structure and its data. Fourer et 
al. (2003) state that "the separation of model and data is the key to describing more 
complex linear programs in a concise and understandable fashion." This also enables 
one to run the same model with different input data and then compare or analyze the 
results. AMPL has many other features that assist a user in efficiently building an LP 
or MIP model. The text by Fourer et al. serves as a user's guide and reference manual. 
In Section 15.3.1 we will describe the basic components of the AMPL modeling 
language. Then we will introduce several useful modeling techniques of AMPL 
through examples in Section 15.3.2. 

15.3.1 Components of the AMPL Modeling Language 

For every LP or MIP problem, the following are the essential parts of the problem 
description: 

• Decision variables 

• Objective function 
• Constraints 
• Variable bounds, which can be in the forms of nonnegativity constraints, 

unrestricted variables (i.e., variables whose upper and lower bounds are oo 
and — oo), or variables with finite upper or lower bounds 

• Integrality requirements on decision variables 

Hamid
Highlight
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The above are specified by the following basic components in AMPL: 

• Sets, used to index symbolic constants and variables 
• Parameters, that is, symbolic constants as input data 
• Variables 
• Objective to be minimized or maximized 
• Constraints 

15.3.2 An AMPL Example: the Diet Problem 

We will use a diet problem in Winston (1994) to illustrate these basic components of 
AMPL. For the purpose of illustration, we have modified the original data so that the 
optimal solution to the LP problem takes fractional values: 

Minimize z = 50xi + 20x2 + 30x3 + 80x4 

subject to 400x, + 200x2 + 150x3 + 500x4 > 500 

3.2*i +2.5x2 > 6 

2*i + 2x2 + 4x3 + 4x4 > 10 

1.8xi+4.5x2+x3+5.6x 4 > 8 
Xi,X2,X 3,X4 > 0 
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we have the following equivalent model: 

ILP1 minimize Yjjxj 
7=1 

subject to y2aüxj > bi (/' = 1 , . . . , 4) 

(y = i , . . . , 4 ) xj > 0 

To index constants or input data c¡, ay, Z>¡, i= 1, ..., 4,j= 1, . . . , 4, and decision 
variables X j J = 1 , . . . , 4 , we need to define s e t s / = { 1 , 2 , 3 , 4 } a n d 7 = ( 1 , 2 , 3 , 4 } . This 
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is done by the AMPL statements 

S e t I : = 1. . 4 ; 
S e t J : = 1 . . 4 ; 

With / and J defined as above, we can declare the constants by the param 
statements 

param c {J} ; 
param a {I, J} ; 
param b {I} ; 

The decision variables and nonnegativity constraints are specified by 

v a r x {J} >= 0; 

Now we can set up the objective function and constraints by the following 
statements: 

minimize z : sum(j in Jl c [ j]*x[j]; 
subject to con {iinl}: sum{j in JJ a[i, j]*x[j] >= b [i] ; 

Up to this point, we have set up the complete model structure for the diet problem. 
Before we can solve the problem, we need to input data into matrix A and vectors b and 
c. This is accomplished by the following section in the AMPL model, beginning with a 
d a t a statement: 

data; 

param c : = 
1 50 
2 20 
3 30 
4 80; 

param a : 
1 2 

1 400 200 
2 3.2 2.5 
3 2 2 
4 1.8 4.5 

param b : = 
1 500 
2 6 
3 10 
4 8; 

Putting all the above together, we have the complete AMPL model shown in 
Figure 15.1. 

3 4 : = 
150 500 

0 0 
4 4 

1 5 . 6 ; 
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s e t I : = 1 . . 4 ; 
s e t J : = 1 . . 4 ; 
param c {J} ; 
param a { I , J } ; 
param b {I} ; 
v a r x { j} >= 0; 

min imize z : sum 
s u b j e c t t o con 

d a t a ; 

param c := 
1 50 
2 20 
3 30 
4 80 ; 

param a : 
1 2 3 

{j i n J} c [ j ] * x [ j ] ; 
i i n I } : sum {j i n j } a [ i , j ] * x [ j ] 

4 : = 
1 400 200 150 500 
2 3 . 2 2 . 5 0 
3 2 2 4 
4 1.8 4 . 5 1 5 

param b := 
1 500 
2 6 
3 10 
4 8; 

0 
4 
6 ; 

>= b [ i ] ; 

FIGURE 15.1 The AMPL model of the diet problem. 

After we save the AMPL model to a file named, for example, d i e t , mod, we can 
load the model by issuing the following command at an AMPL prompt: 

ampl : model d i e t . m o d ; 

We can also examine the model we have entered by an expand command: 

ampl : expand; 
min imize z : 

5 0 * x [ l ] + 20*x[2] + 3 0 * x [ 3 ] + 8 0 * x [ 4 ] ; 

sub j e c t t o c o n [ 1 ] : 
4 0 0 * x [ l ] + 200*x[2] + 150*x[3] + 500*x[4] >= 500; 

s u b j e c t t o c o n [ 2 ] : 
3 . 2 * x [ l ] + 2 . 5 * x [ 2 ] >= 6; 

s u b j e c t t o c o n [ 3 ] : 
2 * x [ l ] + 2*x[2] + 4*x[3] + 4*x[4] >= 10; 
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s u b j e c t t o c o n [ 4 ] : 
1 . 8 * x [ l ] + 4 . 5 * x [ 2 ] + x [ 3 ] + 5 . 6 * x [ 4 ] > = 8 ; 

Suppose we would allow only integral values for the decision variables x in the 
diet problem. Hence, we have the following MIP problem: 

4 

[MIP] minimize z = 2_,cixJ 

4 

subject to 2_,a'JxJ — ^" / = 1 , . . . , 4 
7=1 

Xj > 0 and integer, j = 1 , . . . , 4 

To model this problem in AMPL, all we need to do is to replace the v a r statements 
in Figure 15.1 by the following: 

v a r x {J} i n t e g e r >= 0; 

and we have created the MILP model in Figure 15.2. 

set I : = 1. . 4 ; 
set J := 1..4; 
param c {J}; 
param a {I, J} ; 
param b {I}; 
var x {j} integer >= 0; 

min imize z : sum {j i n J} c [ j ] * x [ j ] ; 

s u b j e c t t o con {i i n I } : sum {j i n J} a [ i , j ] * x [ j ] >= b [ i ] 

data; 

param c := 

1 50 
2 20 
3 30 
4 80; 

param a : 
1 2 3 4 : = 

1 400 200 150 500 
2 3.2 2.5 0 0 
3 2 2 4 4 
4 1.8 4.5 15.6; 

param b := 
1 500 
2 6 
3 10 
4 8; 

FIGURE 15.2 The MILP model of the diet problem. 
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Now we have covered the basics in building an LP or MILP model in AMPL. In 
Section 15.3.3, we will describe some enhanced modeling techniques. 

15.3.3 Enhanced AMPL Modeling Techniques 

In this section, we will illustrate the following modeling enhancement techniques 
with AMPL: 

1. Separation of the model structure and input data 
2. Adding or deleting a constraint 
3. Relaxing integrality constraints on some variables 

It is often the case that after we have built a model, we would like to run the same 
model with different sets of input data. The AMPL modeling language enables us to 
do that through separating the model structure from the input data. Take the diet 
problem in Figure 15.1 for example. We can slightly modify the statements in the file 
d i e t , mod and split them into two files, for example, d i e t l .mod and d i e t l a . 
d a t shown in Figures 15.3 and 15.4. 

Note the difference between the model in d i e t l . m o d and d i e t l a . d a t 
combined and that in d i e t . m o d is that the sizes of sets I and J are determined 
in the data file after the following two statements are executed: 

p a r am M:= 4; 
param N: = 4; 

Other than the above, the statements in the two models are identical. To load the 
model structure and input data in AMPL, issue the following commands: 

ampl : model dietl .mod; 
ampl: datadietla.dat; 

As we have already mentioned, the advantage of separating the model structure 
from the input data is that we can feed the same model with different input data. 
Suppose we have a similar LP problem with five constraints and six variables instead 
of four constraints and four variables as specified in d i e t l a . d a t . We specify the 
objective coefficients, constraint coefficients, and right-hand side in a file named 
d i e t l b . d a t as indicated in Figure 15.5. 

param 
param 
set I 
set J 
param 
param 
param 
var x 

M; 
N; 
: = 1. . M ; 
:= 1..N; 
C {J}; 
a {I, J}; 
b {I}; 
{J} >= 0; 

minimize z: sum {j in J} c[j]*x[j]; 
subject to con {i in I}: sum {j in j} a[i, j] *x[j] >= b[i] ; 

FIGURE 15.3 The model structure of the diet problem—file d i e t l .mod. 
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data ; 

param M := 4 ; 
param N := 4 ; 

param c : : 
1 50 
2 20 
3 30 
4 80; 

param a : 
1 2 

1 400 200 
2 3.2 2.5 
3 2 2 
4 1.8 4.5 

param b := 
1 500 
2 6 
3 10 
4 8; 

FIGURE 15.4 The input data of the diet problem—file d i e t l a . d a t . 

data; 

param M := 
param N := 

param c := 
1 50 
2 20 
3 30 
4 80 
5 75 
6 90; 

param a: 
1 2 

1 400 200 
2 3.2 2.5 
3 2 2 
4 1.8 4.5 
5 0 - 3 

param b := 
1 500 
2 6 
3 10 
4 8 
5 -12; 

5; 
6; 

3 4 5 6 := 
150 500 100 300 
0 0 0 0 
4 4 1 2 
1 5.6 2.2 0.8 
-4 0 0 0; 

FIGURE 15.5 The input data of the five constraint and six variable problem. 

3 4 : = 
1 5 0 5 0 0 

0 0 
4 4 
1 5 . 6 ; 
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We can issue the following AMPL commands to load the new problem: 

ampl : model dietl .mod; 
ampl : datadietlb.dat; 

There are various cases in which we need to add or delete a constraint, or even relax 
integer requirements on certain variables. For example, we would like to compare 
different production plans or service strategies in our study. Suppose we need to add 
the following constraint to the model in d i e t .mod: 

3x2 + 4JC3 < 3 

We can issue the following in AMPL after we load d i e t . mod: 

ampl : s u b j e c t t o new_con: 3*x[2] + 4 * x [ 3 ] < = 3 ; 

To verify that the new constraint is indeed added, we can use the expand 
command: 

amp 1 : expand ; 
min imize z : 

5 0 * x [ l ] + 2 0 * x [ 2 ] + 3 0 * x [ 3 ] + 8 0 * x [ 4 ] ; 

s u b j e c t t o con [1 ] : 
4 0 0 * x [ l ] + 2 0 0 * x [ 2 ] + 1 5 0 * x [ 3 ] + 5 0 0 * x [ 4 ] >= 500; 

s u b j e c t t o con [2 ] : 
3 . 2 * x [ l ] + 2 . 5 * x [ 2 ] >= 6; 

s u b j e c t t o c o n [ 3 ] : 
2 * x [ l ] + 2*x[2] + 4*x[3] + 4 * x [ 4 ] > = 1 0 ; 

s u b j e c t t o con [4 ] : 
1 . 8 * x [ l ] + 4 . 5 * x [ 2 ] + x [ 3 ] + 5 . 6 * x [ 4 ] >= 8; 

s u b j e c t t o new_con: 
3*x[2] + 4*x[3] < = 3 ; 

To delete the constraint new_con, we simply issue the following command: 

ampl : d e l e t e new_con; 

And we can verify the deletion by the expand command. Note that we cannot 
delete an individual constraint in a set of indexed constraints. For example, we cannot 
delete constraint con [ 3 ] only, although we can delete the entire set of constraints by 
the command 

ampl : d e l e t e con ; 
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If we want to temporarily drop a constraint but restore it later on, we use the d r o p 
and r e s t o r e command instead: 

ampl : drop con [ 3 ] ; 
ampl:... 
ampl : restore con [ 3 ] ; 

As we have seen, we can drop an individual constraint in a set of indexed 
constraints. 

Finally, we show how to relax integer requirements on variables. Take the MILP 
problem in Figure 15.2 for example. If we would like to relax the integrality on all the 
variables, we can change option r e l a x _ i n t e g r a l i t y from the default value of 
zero to a nonzero value: 

ampl : o p t i o n r e l a x _ i n t e g r a l i t y 1; 

To restore the integrality requirements, set option r e l a x _ i n t e g r a l i t y back 
to zero. 

If we would like to relax the integer requirement only on a certain variable, we can 
do so by setting the . r e l a x suffix of the variable to 1. For example, 

ampl : l e t x [2 ] . r e l a x : = 1; 

relaxes integrality on variable x [ 2 ] only. 

15.3.4 AMPL Compatible MIP Solvers 

A number of linear and MIP solvers have been identified in Fourer and Gay (2006) as 
supported by AMPL, or see the AMPL Web site www.ampl.com. Detailed descrip-
tions of each of these solvers, and information on their respective providers and Web 
sites, can be found in Fourer (2007). The CPLEX solution of a diet problem and other 
standard LP/MIPs modeled in AMPL can be found in Fourer et al. (2003). 

15.4 LINGO® MODELING LANGUAGE 

LINGO® is a Fortran-based optimization tool designed by LINDO Systems, Inc., first 
offered in 1988. According to LINDO Systems, LINGO® was their "first product to 
include a full featured modeling language." In 1993, LINGO® added the first 
nonlinear solver for PCs that can support general and binary integer restrictions. In 
1994, LINGO® was included in Winston ( 1994), making itself the first IP software to 
appear in a textbook. The release of Windows version LINGO® came into the market 
in 1995. LINDO Systems Inc. also markets a solver called LINDO (first appearing in 
1979) and a spreadsheet add-in optimizer What's Best® (since 1985). 

According to the statement of LINDO System, Inc., "LINDO Systems products are 
in use at over half the Fortune 500 companies—including 23 of the top 25." The latest 
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trial versions of all three of these software packages may be downloaded from the Web 
site www.lindo.com. The LINDO Systems company Web site also provides applica-
tion papers that cover many business and industry fields and, of course, reference 
manuals for the software. A comprehensive guide to optimization modeling using 
LINGO® is Schräge (2003). The user's guide and reference manual is LINDO 
Systems (2004). Below, we first provide some technical details concerning LINGO®, 
and then briefly describe its modeling conventions. Note that LINGO® contains built-
in documentation. 

15.4.1 Prescription of Tolerances 

When solving optimization problems, many calculations of multiplication and 
division are involved. This will surely affect the accuracy of the solution due to the 
limited precision of the computer. Hence, it is very important to set tolerances for the 
solver. Tolerance is the + /— range within which a value can be viewed as the target 
value. The major types of tolerances involved in LP/IP solvers include 

• Feasibility Tolerances (for LP Models) 
The feasibility tolerance allows that when the basic variables fall "close" 

enough to the right-hand side values, the constraints are considered satisfied. 
This tolerance directly affects solver's decision on whether to accept an optimal 
basis. When it is very hard to maintain problem feasibility during the optimiza-
tion procedure, these tolerances can be set to lower values. 

LINGO® controls this tolerance in two positions: the initial feasibility 
tolerance and the final feasibility tolerance. The default values for these 
tolerances are, respectively, 3e—06 and le—07. 

• Integrality Tolerances 
For some IP problems, it is hard to obtain a solution that is exactly integer. In 

such cases, integrality tolerances are employed so that when the solution is 
"close enough" to some integer number, it is accepted as an integer solution. 

LINGO® defines two types of integrality tolerances: absolute integrality 
tolerance and relative integrality tolerance. Assume xz is an integer value, and xr 

is the (real) solution obtained. xr is accepted as the target solution if \xr - xz\ < 
absolute integrality tolerance, or if \xr - xz\< relative integrality tolerance * xz. 
Default value for the absolute integrality tolerance and relative integrality 
tolerance are, respectively, le—06 and 8e—6. 

• Optimality Tolerances 
The optimality tolerance decides how closely a solution must be to the true 

(theoretical) optimal solution to be "considered" optimal. 

Similar to the integrality tolerances, LINGO® uses two parameters to control 
optimality tolerances: absolute optimality tolerance and relative optimality tolerance. 
The absolute optimality tolerance is a positive number r with default value of 8e—8. 
When applied in the branch-and-bound solver, this tolerance forces the solver to 
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always search for integer solutions that result in at least r units of improvement, 
comparing to the best integer solution found so far. The relative optimality tolerance 
is a positive fraction r with default value of 5e—8. It is used to force the branch-and-
bound solver to search only integer solutions with at least 100*r% improvement. 
According to the LINGO® User's Guide (2004), typical values for the relative 
optimality tolerance would be in the range 0.01-0.05. 

15.4.2 Presolver—Automatic Problem Reduction 

As introduced in Chapter 4, preprocessing and model reformulation are very 
important for solving IP problems. LINGO® incorporates this method as an essential 
feature. Presolver enables users to decide which preprocessing technique(s) to apply 
before the solver actually starts the IP algorithms. 

LINGO® presolver includes preprocessing techniques as well as all the cuts and 
other IP algorithms like lattice approach. Here, we only list the preprocessing 
techniques: 

• G(general) C(common) D(divider) 
• Coefficient Reduction 
• Disaggregation 

Note that LINGO® allows users to turn off the presolver because in some cases 
preprocessing might cause excessive running time. 

15.4.3 Solvers for Linear/Integer Programming 

A unique feature of LINGO® is that all solvers (linear, integer, nonlinear, quadratic, 
etc.) are integrated and directly linked to its modeling environment. When a model is 
run, LINGO® will automatically pass the problem to the appropriate solver. Hence, 
LINGO® is capable of solving a wide variety of optimization problems, including 
linear programming, integer programming (binary, pure, and mixed), and nonlinear 
programming problems. 

The solvers for LP problems employ three approaches: primal simplex, dual 
simplex, and barrier (or interior point approach). The third approach listed is not 
addressed in this text, but see Hillier and Lieberman (2005) for a discussion. LINGO® 
allows users to select which approach to use for a specific problem. The default is set to 
allow solvers automatically decide the best method. 

LINGO® employs branch-and-cut as the major IP algorithm, which starts by 
solving the LP relaxation. Types of cuts to be generated can be selected by users. 
These types include 

• Flow Cover 
• Gomory 
• GUB 
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• Knapsack cover 
• Objective 
• Plant location 

The new íT-best MIP solver enables the user to see multiple best solutions to the 
given MIP problem, where the number K can be specified by users. 

15.4.4 Interfacing with the User 

As this text is published, Microsoft Windows continues to be the most popular 
platform for software users. Although LINGO® supports both Windows and UNIX 
platforms, we only discuss interfacing with other applications on the Windows 
platform. 

Interfacing with programming languages: LINGO® uses the Dynamic Link 
Library to allow users to hook up LINGO® functions with external applications. 
The most recent version of LINGO® supports access from Visual Basic, Visual 
C/C++, Delphi, Fortran, C#, .NET, and Visual Java. 

Interfacing with databases: LINGO® supports connections with data sources such 
as spreadsheet, text files, and databases. For small or moderate data volume, LINGO® 
can link to spreadsheets such as Microsoft Excel® or FoxPro® through object linking 
and embedding (OLE), which is a built-in function of LINGO®. Solutions can be 
output to spreadsheet using @OLE, as well. 

For large data volume, LINGO® has a built-in connection function named 
@ODBC that helps link to database management systems (DBMS) that have open 
database connectivity. Such DBMSs include 

• Microsoft Access® 
• dBase (DB/2) 
• PeopleSoft Oracle® 
• Paradox 
• SQL Server 

The most recent release of LINGO® (version 11.0) incorporated some functions 
such as @TEXT and ©POINTER, which allow users to build links for both importing 
and exporting data. 

15.4.5 LINGO® Modeling Conventions 

LINGO® uses sets at its fundamental building block. Each member of a set may 
have one or more attributes associated with it, such as in a product mix 
application, the product may have a profit, a monthly demand, and so on. Selected 
attributes are the decision variables in the optimization model. Variables are 
assumed to be nonnegative unless the statement @FREE() is invoked. Variables 
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may be specified to be binary or general integer using statements @BIN or @GIN, 
respectively. 

As with MPL (see Section 15.5), the @SUM looping operator is used to specify an 
objective function in a compact form. The general form is @SUM (set: expression), 
for example, @SUM (Product (j): Profit (j) * ProductCount (j)). The @FOR operator 
is another set looping function used to generate constraints over members of a set: 
@FOR (set: constraint). Below is an example of how @FOR and @SUM are used to 
specify a series of resource constraints: 

@FOR (Machine (i) : 
@SUM (Product ( j) : ProdHours Used (i,j) * ProductCount ( j)) 

< = ProdHours Limit (i) ; 
); 

The above LINGO® statement illustrates two aspects of modeling in LINGO®: (1) 
The use of a derived set based on two or more simple sets (machine, product) = (i,j) 
and (2) the scalability of the model—once constructed, data sets representing say a 
new quarter of demand, resource availability, and so on could be input and run simply 
by updating the DATA statements, leaving the model structure as it is. 

A LINGO® model specification consists of three sections: 

1. A SETS section that specifies the sets and their attributes. This describes the 
problem parameters or data structure. 

2. A DATA section that provides the data direction in vectors or matrices, or 
specifies where it will be accessed (e.g., in certain cells of a spreadsheet). 

3. A section that provides the mathematical model, often surprisingly compact. 

15.4.6 LINGO® Model for the Diet Problem 

Here, we will provide the LINGO® model for the 

MODEL: 

S E T S : 

FOOD/1, 2, 3,4/: X, COST; 
REQUIREMENT/1, 2, 3, 4/: RQMT, MIN; 

ENDSETS: 
DATA: 

COST = 50, 20, 30, 80; 
MIN = 500, 6, 10, 8; 
RQMTPROV = 

400 200 150 500 
3.2 2.5 0 0 
2 2 4 4 

1.8 4.5 1 5.6; 
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ENDDATA 
MIN = @SUM (COST(J) * X ( J ) ) 
@FOR (RQMT ( I ) : 

@SUM ( X ( J ) : RQMTPROVd, J ) * X ( J ) ) 
> = MIN ( I ) ; 

) ; 

The LINDO solution of a wide variety of LP/MIP problems can be found in 
Schräge (2000). 

15.5 MPL MODELING LANGUAGE 

MPL®, which stands for Mathematical Programming Language, is a product of 
Maximal Software, Inc. MPL is another algebraic modeling language, such as AMPL 
and LINGO® described earlier. MPL can be used with many proprietary or open 
source solvers (consult www.maximalsoftware.com for the most recent table or see 
the last paragraph of this section). Student versions of MPL and CPLEX are available 
for free by download from this Web site. A leading introductory operations research 
text (Hillier and Lieberman, 2005) contains examples of solving linear and integer 
programming problems in MPL/CPLEX files. 

On its Web site, Maximal Software states, "The size of problems that corporations 
are dealing with has increased and the speed of commercial optimization packages 
(solvers) has risen dramatically to meet that demand. This means that users need 
more advanced tools to collect and manage the data, formulate the model, and deliver 
it to the solver. This is where an advanced modeling system, such as MPL, can 
become very valuable." Some features of MPL that lend it to teaching modeling skills 
include 

• Takes full advantage of the graphical user interface of MS Windows 
• An easy-to-learn syntax 
• Powerful data management capabilities (for interface with spreadsheets and 

databases) 
• An online tutorial 

The seven sessions currently available in the online tutorial include vectors and 
indexes, separating data from the model; special types of constraints, and various data 
management issues. A session on mixed integer programming is planned. The 
interested reader should check for availability. 

MPL for Windows is the most popular platform, but there are versions for UNIX 
environments as well. MPL has operators to facilitate importing files (data or indexes) 
from spreadsheets, databases, or external files. MPL also can export results back to 
such locations, and MPL models can be embedded into other Windows applications 
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that Maximal claims "makes MPL ideal for creating end-user applications." Sup-
ported databases include 

• Access® 
• ODBC 
• Paradox 

• FoxPro 
• Dbase for the Windows version 
• Oracle® for the Motif (UNIX) version. 

The MPL Main Window provides access to the following 11 menus: 

1. Main Menu 
2. File Menu 
3. Edit Menu 
4. Search Menu 

5. Project Menu 
6. Run Menu 
7. View Menu 

8. Graph Menu 
9. Options Menu 

10. Window Menu 
11. Help Menu 

MPL provides extensive compatibility with Excel, for those whose transactional data 
have been aggregated into what Shapiro (2001) calls "decision databases," which are 
databases that are suitable for MIP modeling. A recent enhancement of MPL (the 
OptiMax 2000 Component Library) enables the modeler to provide the end-user with the 
appearance of a spreadsheet model while still using MPL as the behind-the-scenes 
modeling language and permitting selection of the appropriate solver. This can be 
important because of the well-known limitations of the built-in solver in Excel, such 
as problem size limitations, speed of data importation and computing, the fact that the 
optimization model itself is hidden, and Excel's solver lacks the advanced indexing 
techniques available in modeling languages. Furthermore, Maximal states "OptiMax 
allows MPL models to be seamlessly integrated directly into object-oriented program-
ming languages such as Visual Basic, VBA for Excel and Access, C/C++, Java, Delphi, 
as well as many popular web-scripting languages." 

15.5.1 MPL Modeling Conventions 

Some notable features of building optimization models in MPL are 

• MPL can dynamically store models of any size like LINGO® ; the only limitation 
is how much memory is available on the machine 
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• Variables and constants can be written on both sides of a constraint—the so-
called free format input of constraints, which means no conversion to standard 
form is required of the modeler 

• Summation over vector variables, of up to eight dimensions 
• Expansion of similarly structured constraints; a single line enables you to 

express multiple constraints of identical form, such as monthly inventory 
balance you want repeated for each month in a planning horizon. 

• Extensive flexibility when working with subsets of indexes, functions of indexes, 
and multidimensional index sets. 

A typical MPL model would begin with a TITLE declaration, and then an INDEX 
section. Each entity (product, plant, machine, etc.) is assigned arbitrary labels that in 
turn are used in data files, using colon, parentheses, and semicolon much as in other 
modeling languages, for example, 

p l a n t : = ( p i , p 2 , p 3 , p 4 , p5) ; 

The next section of an MPL model is DATA in which line by line the model is told 
where data in the form of vectors or matrices will be found and what attributes will be 
used to index such data; for example, to find the monthly demand for each product at 
each plant, one would specify 

Demand [ p l a n t , p r o d u c t , month] : = SPARSEFILE 
("Demand.da t" ) ; 

indicating that demand is being stored in a matrix in sparse format, where only 
nonzero values (and an identification of their index values) are entered in the data file. 
MPL can access data that are either specified in vectors or matrices typed with the 
model, or located in external to the model. The third section of an MPL model is 
VARIABLES, in which each decision variable is given a short name. Inside brackets, 
there is an indication of indexes associated with the variable, for example, 

Inventory [plant, product, month] - > Invt; 

where the arrow is used to create an abbreviation for variable names of more than four 
letters. Should one or more variables be restricted to either binary or integer, those 
variables are specified in separate sections labeled BINARY VARIABLES or 
INTEGER VARIABLES, respectively. The fourth section of an MPL model declara-
tion is called MACROS, and there summations that will ultimately become part of the 
objective function are specified, using the SUM operator, for example, 

TotalRevenue : = SUM (plant, product, month: Price*Sales) ; 
TotallnvtCost : = SUM (plant, product, month: 

InvtCost*Inventory); 
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where just inside the first parentheses are the indexes over which the summation runs, 
and after the colon is the vector product of a data vector with a variable vector. Next, 
the actual mathematical model is specified using variables, macros, operators, and 
other mathematical logic, expressed in sections labeled MODEL (objective function) 
and SUBJECT TO (nonbound constraints), for example, 

MODEL 

MAX Profit = TotalRevenue - Total Cost; 
SUBJECT TO 
SUM (product: Inventory) < = InvtCapacity; and other applic-
able constraints. 

Finally, the modeler sets any upper bounds on variables in a BOUNDS section and 
may declare variables to be free (real) valued, otherwise MPL assumes they are 
nonnegative. An END statement used after the model formulation is judged complete. 
Assuming one wanted to solve the model using CPLEX, you would choose Solve 
CPLEX from the Run Menu mentioned earlier and find the solution using the View 
Menu. 

15.5.2 MPL Model for the Diet Problem 

Here, we will provide the MPL model for the simple diet problem described in the 
AMPL section above. Note that BR symbolizes brownies eaten, IC scoops of ice 
cream eaten, COLA bottles of soda drunk, and PC pieces of pineapple cheesecake 
eaten daily: 

INDEX 

FOOD : = (BR, IC, COLA, PC) ; 
REQUIREMENT : = (Rl, R2, R3, R4 ) ; 

DATA 
COST [FOOD] : = (50, 20, 30, 80); 
MIN [REQUIREMENT] : = (500, 6, 10, 8); 
RQMTPROV [REQUIRMENT, FOOD] = 

400 200 150 500 
3.2 2.5 0 0 
2 2 4 4 

1.8 4.5 1 5.6; 
VARIABLES 

EAT [FOOD]; 
MACROS 

TOTALCOST = SUM (FOOD; COST*EAT) ; 
SUBJECT TO 

NUTRITIONVALUE [REQUIREMENT] - >NVAL: 
SUM (FOOD; RQMTPROV*EAT) > = MIN; 

END 
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15.5.3 MPL Compatible MIP Solvers 

The numerous linear and MIP solvers supported by MPL have been identified in a 
white paper at www.maximalsoftware.com. Detailed descriptions of each of these 
solvers, and information on their respective providers and Web sites, can be found in 
(Fourer, 2007). 
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APPENDIX 

ANSWERS TO SELECTED EXERCISES 

CHAPTER 1 

Problem 1.15 

Maximize — 3x\ + 11x2—5x3—X4 

s.t. x i+5x 2 -3x3+6x4 < 7 

x\— X2— X3 + 2X4 < —3 

Xj,X2,X3,X4 > 0 

Problem 1.16 

Let X\ = X] —X| 

V3 = x 3 - ( - 2 ) = x3 + 2 > 0(x'3-2) 

Rewrite constraint 2: 

—X2—X3—X4 < —13 

Applied Integer Programming: Modeling and Solution, By Der-San Chen, Robert G. Batson, and Yu Dang 
Copyright © 2010 John Wiley & Sons, Inc. 
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LP : Maximize: — (xj+ — xj) + 5 x 2 + 2(x'3—2)—7x4—*5 

s.t. - x 2 - ( x ' 3 - 2 ) - x 4 < - 1 3 

(x 1
+-x 1"")-X2 + 2x4 + 2x5 < 4 

X i , X i , X 2 , X-î, X 4 , X5 -^ U 

Maximize : —x,+ + xj~ + 5x2 + 2x'3—7x4—X5—4 

s.t. —X2—x'3—x4 < —15 

X,+ —Xf —X2 + 2X4 + 2X5 < 4 

X1 , X1 , X2 ) X - i , X41 X5 ^ U 

Problem 1.17 

Maximize 7x 1 + 2x2 + *3 —4x4 

s.t. 2xi—X2 + X3 < 10 

xi +X4 = 12 

Xi,X2,X4 > 0 

x3 < 0 

Let x3 = —x3 > 0 and rewrite constraint 2 as two < inequalities: 

Maximize 7xi+2x2—x3—4x4 

s.t. 2xj—X2—x3 < 10 

x, + x 4 > 12 

—xj—X4 < —12 

X i} X2 ) Xo ^ X4 >o 
Problem 1.18 

Minimize 

s.t. 

.et x\ 

vhere X[+ 

x\ 

— \\X\ + 13X2 — 15X3 

x2 + x3 = 7 

* 1 ~ *3 < 3 

xi unrestricted 

X2 > 5,X3 > 0 

= X[ —Xj 

= x\ if X] > 0 

= 0 otherwise 

= — x\ if xj < 0 

= 0 otherwise 
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Change objective function to maximize. 

Let x2 = x 2 - 5 > 0 (x2 = x'2 + 5) 

Finally, rewrite constraint 1 as 2 inequalities: 

Maximize + ll(x,+ -xj~)-13(x2 + 5) + 15x3 

S.t. x'2 + X3 < 2 

—x2—X3 < —2 

(X[+-Xj")-X3 < 3 

>0 

Problem 1.19 

Let x'2 = 15-x2 > 0 (x2 = 15-x2) 

Maximize x\ + (15—x'2) + X3 

s.t. -X! + (15-x2) > 8 

x i - ( 1 5 - x 2 ) + x 3 < 2 

Xi,X2,X3 > 0 

Maximize X]—x2 + X3 + 15 

s.t. x\ + x 2 < 7 

x\ +x2 +X3 < 17 

> 0 

CHAPTER 2 

Problem 2.3 

Sie/? 7: 

Input parameters: 

Decision variables: 

Constraints: 

Objective: 

number of beverages n (say 3), number of food 
items m (say 4), cost of each item c„ upper bound 
on daily consumption of each item w, 
whether or not to select each beverage y¡ (bin-
ary); 1 = 1,.. .,«(3), how much of each beverage 
and food to consume x, (continuous > 0), 
i = n + m(7) 
total beverage consumed must equal L, total food 
consumed must equal W, cannot drink more than 
two types of beverage, upper bound on amount of 
each beverage and food item 
minimize total cost 
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Step 2: 

Item Amount/Day (oz) Cost/oz Daily Limitation (oz) 

Water 

Tea 
Milk 

Bread 

Rice 

Cereal 

Apple 

Xi 

x2 

x3 

x4 

*5 

*6 

X-, 

C\ 

c2 

c4 

Cl 

"1 

" 2 

" 3 

u4 

u5 

"6 
U-, 

Indicator variables for beverages: 

Water : y\ — 1 if water consumed 

= 0 otherwise 

Tea : j2 = 1 if t e a consumed 

= 0 otherwise 

Milk : V3 = 1 if milk consumed 

= 0 otherwise 

y\ +yi +yi < 2 (cannot consume more than two types of beverages) 

7 

Minimize 

s.t. 

^c¡x¡ 
1=1 

-Xl + *2 + *3 = L 

XA + X5 + X(, + X-i — W 

y\ +V2 + V3 < 2 

x\ <y\u{ 

x2 < yiu2 

X3 < BW3 

Xj < u¡, i = 4 , 5 , 6 , 7 

X\, X2, X$, X4, X5, X(y, X-j > 0 

y\,y2,y3 > O o r l 
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Problem 2.4 

Let Yy = 1 if stock i is bought in year^' 

= 0 otherwise 

Max : 90(y,i + YX2 + Yl3) + 120(72i + 2̂2 + Y23) + 100(K3i + Y32 + Y33) 

+ 80(y4i + Y42 + Y43) + 130(y5i + 5̂2 + Y53) 

s.t. IOK11 + 15K2i + I2F31 +9F4i + 131M < 45 

20K12 + 15y22 + 25y32 + 15K42 + IOK52 < 60 

157,3 +20r23 +20K33 + 15^43 + 10K53 < 50 

IV = (0,1) i=l,...,5;j= 1,2,3 

Problem 2.6 

Let Yj = number of nurses of schedule type /, i— 1, . . . , 5. 

(a) 

(b) Min : 

s.t. 

1 0 1 0 0 

1 0 0 0 0 

0 0 1 1 0 

A = 0 1 0 0 1 

0 1 0 1 1 

0 1 0 1 0 

1 0 1 0 0 

525Ki + 470Í2 + 550K3 + 500*4 + 42575 

Y\ + Y3 > 20 

F, + Y5 > 25 

Y3 + Y4> 26 

Y2 + Y5> 26 

Y2 + YA + Y5 > 30 

Y2 + Y4 > 30 

Yi + Y3> 35 

Yu Y2, Y3, Y4, Y5 > 0 and integer 
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Problem 2.7 

Let Xj be the number of part nurses hired to work (one day) on day /, i = 1, 2, s..., 7. 

Min : 5257, + 470K2 + 550y3 + 500Y4 + 425Y5 + 150X, 

+ 150X2 + I5OX3 + I5OX4 + I5OX5 + 150X6 + I5OX7 

s.t. K,+ K 3 + X ! > 2 0 

YI + YS+X2>25 

K3 + K4+X3 > 26 

Y2 + Y5+X4 > 2 6 

Y2 + Y4 + Y5+X5>30 

Y2 + Y4+X6>30 

Yx + Y3+X7>35 

Yi~4Y[ > 0 

*2-4K2 > 0 

K3-4K3 > 0 

YA-4Y'4 > 0 

Y5-4Y'5 > 0 

MY[+MY'A-XX > 0 

MY[+MY'5-X2 > 0 

MY^+MY4-X3 > 0 

MY'2+MY'5-X4 > 0 

MY'2 + MY'4 + MY'5 -X 5 > 0 

MY'2+MY'4-X(, > 0 

MY'i+MY'i-Xj > 0 

^1, • ■ •, ̂ 5 > 0 and integer 

X i , . . . , X7 > 0 and integer 

Y[,...,Y'5 binary 
Problem 2.11 

Let Xij = amount shipped from DC, to retail partner y 

i = l , . . . , 2 0 y = l , . . . , 5 0 0 
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Let Yjj = 1 if DC, is used to supply partner; 

= 0 otherwise 

20 500 
Min: EE( c A+^t i ) 

i=l 7=1 
20 

s.t. YlxV = dJ y = l , . . . , 5 0 0 

i=l 7=1 

20 

S.l 

i = l 

500 

Xij < M*Yy 

Xy>0 

Yij = (0,1) 

i=l,.. 

i = l , . . 
i = l . . . 

. , 2 0 ; ; = 1,.. 

. . ,20; ; = 1,.. 
, . , 2 0 ; ; = 1,.. 

.., 500 (M = 'Yjlj 
/— 1 

..,500 
,.,500 

s.t 

Problem 2.13 

Let X|- be the amount of commodity A: (beverage type k) shipped from DC¡ to partner/ 
k=l,2, 3, and 4. 

Furthermore, assume if any quantity of any commodity is shipped from DC, to partner 
;', the fixed cost/} is incurred (but not repeated for k = 1, 2, 3, 4) as in Problem 2.11. 

4 20 500 
Min: EEE(c</*4+¿*y</) 

Ar=l i = l 7 = 1 

20 

Yrfj = dJ ; '=1 , . . . ,500;À:=1, . . . ,4 
i=i 

4 4 500 

^ . < M * K y / = 1 , . . . , 2 0 ; ; = 1,...,500 (M = ^ ^ ) 
(t=l t= l7=l 

4 > 0 ; = l , . . . , 2 0 ; ; = l , . . . , 5 0 0 ; f c = l , . . . , 4 
^ = (0,1) / = 1 , . . . , 2 0 ; ; = 1 , . . . , 5 0 0 

CHAPTER 3 

Problem 3.2 

Given : A T 

B F 

C F 

D T 
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(1) C n [(AUB) -► D)U ~ A 

FnruF 
FUF 

F 

(2) (A n D) U [C <-► (ß U D) U F] 

r u f ^ t TUF 

TUF ^ T 

TUF 

T 

(3) Du{A-^[(cnA)u5]u~ö}n(cnß) 

ru{rnF} 

T U F 

Problem 3.4 

(a) Want x\ = 0orx2 = 0 (or both) 

Let M = max{xi, xi} 

ye{o,i} 

x\ < M*y 

x2 <M*(\-y) 

x\,x2 > 0 

Check: 

if y = 1 then x\ = M and X2 = 0 

if y = 0 then xj = 0 and X2 — M 

Note: This generalizes to ^i(x)*g2W = 0. 
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yo) 

Problem 3.6 

Let Yi 

and C, 

and Z/t 

Let yx = 1 

= 0 

y2 = \ 

= 0 

X\ =X 

= 0 

X2=X 

= 0 

y\ +yi < l 

x\ <ay\ 

x2 < by2 

* i > 0 

X2 > ay2 

y = ?>y\+2x 

yi,y2e(0,l); 

= 1 

= 0 

= profit of holding stock i 

= 0,1 

ifO<X<<2 

otherwise 

ifa<x<b 

otherwise 

if0<x<a 

otherwise 

i fa<x<b 

otherwise 

1-5^2 + 3X2 

x\,x2>0 

if stock i is purchased 

otherwise 

i = l , . . . , 

k= 1 , . . . 

6 

2 

Objective function will be to Max : X)f=i C¡*Y¡. 
Constraints 1 and 2 may be expressed as 

2 < K, + Y2 + Y3 + Y4 + Y5 + Y6 < 4 

Constraint3: Y3 + Y5<1. 
Constraint 4: Either K, + Y2 + Y3 + Y4 = 2 or Y3 + Y4 + Y5 + Y6 > 2. 
Let M be a large constant. Represent above as 

Either Yi + Y2 + Y3 + Y4< 2and-Yx-Y2-Y3-Y4 < - 2 

or -Y3-Y4-Y5-Y6 < -2 

Yi + Y2 + Y3 + Y4-2 <M*Z¡ 

-Yi-Y2-Y3-Y4 + 2<M*Zi 

-Y3-Y4-Y5-Y6 + 2 < M* (1-Z,) 
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Constraint 5: If Y4 = 1, then K, = 1 as well, "not Y4 = 1" is "F4 = 0." 

Either Y4 = 0 or K, = 1 (or both) 

Either K4 < 0 or Y{ > 1 

Either K4-0 < 0 or 1 -Y, < 0 

Either y 4 - 0 < M * Z 2 1-K, < AÍ* (1-Z2) 

Check: 

If Z2 = 0, then Y4 = Oand 1-Ki < M (always true) 

If Z2 = 1, then r4 < M and Yi = 1 

(y4can be 0 or 1) 

Note: A much simpler expression is just Y4 < 7i (Y4 — Y{ < 0). 

Final model is 

Max : C1Y1+ C2Y2 + C3Y3 + ■■■ + C„Y„ 

s.t. Yl + Y2 + Y3 + Y4 + Y5 + Y6<4 

-Yl-Y2-Yi-Y4-Y5-Y6 <-2 

Y3 + Y5<1 

Yl + Y2 + Y} + Y4<2 + M*Zl 

-Yi-Y2-Y3-Y4 < - 2 + Af *Z, 

-Y3-Y4-Y5-Y6 < 2 + M( l -Z , ) 

Y4<M*Z2 

-Yx < 1+M(1-Z2) 

Yl,...,Y6,ZuZ2 = (0,1) 

Problem 3.10 

Let Xj = start time of joby'-j = 1 , . . . , n 

Xj +pj = end time of joby 

Desire x¡ +pj < d¡ but may not be possible;^ = 1 , . . . , « 

Define tardy time = t¡ = dj—(xj +Pj) = dj—Xj—pj 
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To minimize total tardy time: 

Min : y^Jj 
7=1 

tj = dj-xj-pj 

For all i j , i = l,...,nj=l,...,n;andi¿ j 

Either x¡ + t¡ < xj or xj + tj < x¡ 

that is, Xi—Xj + ti < Myk 

Xj-Xi + tj <M(l-yk) 

whereas (0,1); k=l,...,[ ^ 

To minimize the total number of tardy jobs: 

Let yj = 1 if Xj+pj > dj 

= 0 otherwise 

Min : J^yj 
7=1 

s.t. if Xj+pj < dj, thcnyj = 0 

which implies : "not x¡ +pj < dj or yj = 0 

that is, —Xj—pj + dj < MjZj or yj < M(l—zj), 

where A/,- = max{—Xj-pj + dj,yj} andz,-£{0,1} 

Problem 3.11 

Breakpoints are at ax = 0°, a2 = 40°, a3 = 100°, and a4 = 200°. 
Any point on the line segment (?) is 
t = AiO + A240 + A3100 + A4200 
where A] + A2 + A3 + A4 = 1 and at most two consecutive A,- are > 

Ai <y\ 

h <y\ +yi 

h <y2+yî 

h <yj, 

y,-= 0,1 for i = 1,2,3 

y\ +yi+y?, = l 
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Model 

/ ( / ) = A,/(0) + W O ) + ^ ( 1 0 0 ) + W O O ) 

= Ai + 0.08A2 + O.O2A3 + 0.32/U 

s.t. ¿1 < yi 

h <yi+y-s 

h < y 3 

Á.I +A2 + h + M — 1 

yi+y2+y3= 1 

A,->0 y = l , 2 , 3 , 4 

y , = 0 , 1 1= 1,2,3 

Problem 3.12 

Product bundling model with three customer segments i = 1,2,3 : n x = 300, n2 = 240, 
and n3 = 600. 

Letxy = price of bundle/ j= 1,2,3,4 

and yij = 1, if customer segment / purchases bundle/ 

= 0, otherwise 

and si = consumer surplus achieved by segment i in the "bundle/' chosen 

Note: Both y y and s¡ assume customer / will purchase only one "bundle" to 
achieve 

s¡ = Maxj{rjj—Xj} 

though we all know a customer may order two bundles, for example, HB plus 
drink, but not combo. 
Finally, let zij = yij* xß / = 1, 2, 3 and /= 1, 2, 3, 4. 
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MIP Model 

Max : 300(zn + z!2 + z13 +zj4) +240(z2i + z22 + z23 + z24) 

+ 600(z31 + z32 + z33 + z34) 

s-t. y\i+yi2+yi3+yu = l 

J2I +3'22+)'23+}'24 — 1 

^31 +>'32+y33+3'34 = 1 

s\ > ru-xi 

si > rn-x2 

St > n-i-Xi 

s\ > ri4-x4 

s2 > r2\ -x\ 

s2 > r22-x2 

s2 > r23-x3 

52 > J"24—Xi, 

53 > r3i—JCI 

S3 > r32-x2 

S3 > r33-x2 

S3 > r34-x2 

51 =ru * y i l - ^ I l+ ' ' l 2*3 ' l2 -^12 + ' ,13*3'l3-Zl3+'"l4*3'l4-Zl4 

52 = r2\ *yu -Z2l + r22 *y22~Z22 + ^23 *y23~Z23 + >"24 *^24~^24 

53 = ^31 * y3\~Z3l + r32* y32~Z32 + r33* y33~Z33 + r34* y34~Z34 

Zy<Xj i= 1,2,3;;= 1,2,3,4 

zV<rg*yij 1= l ,2 ,3 ;y= 1,2,3,4 

^ > x , - ( l - ) ' / / ) * M / ¿ = 1 , 2 , 3 ; ; = 1,2,3,4 

where AÍ, is an upper bound on xjj = 1,2,3,4 

y,y = (0,l) i = 1,2,3;;= 1,2,3,4 

xj>0 ; = 1,2,3,4 

Z0<O / = 1,2,3;;= 1,2,3,4 
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CHAPTER 4 

Problem 4.1 

By graphing each feasible region, the student can see that the first one is the better 
LP formulation for the problem, since Pj(feasible region of the first formulation) 
C /^(feasible region of the second graph). 

Problem 4.4 

(1) 2yi +7y2-3j3 + 6y4-9y5 + y6 < - 12 

(2) y i - 2 j 2 + y3 + AyA + 2y5-3y6 < 13 

Iteration 1 

1 <y\ < 4 

0 < y2 < 7 

4 < B < 10 

2 < ^4 < M where M is a large constant 

0 < y5 < 2 

0<y6<M 

yj integer; = 1,...,6 

Constraint ( 1 ) 

yi: U\ = 1/2*[-12 -7(0) - 6(2) -
+ 9(2)] = 12 

y2: u2 = l/7*[—12 - 2(1) - 6(2) -
+ 3(10)+ 9(2)] = [3.14] = 3 

y 3 : / 3 = l / - 3 * [ - 1 2 - 2 ( l ) - 7 ( 0 ) 
+ 9(2)] = [2.67] = 3 

y4: M 4 = 1 / 6 * [ - 1 2 - 2 ( 1 ) - 7 ( 0 ) -

+ 3(10)+ 9(2)] = [5.66] = 5 
y 5 : / 3 = l / - 9 * [ - 1 2 - 2 ( l ) - 7 ( 0 ) 
+ 3(10)] = [4/-9] = 0 
y 6 : « 6 = l / r [ - 1 2 - 2 ( l ) - 7 ( 0 ) -
+ 3(10) + 9(2)] =22 

1(0) + (10) 

1(0) 

- 6 ( 2 ) - 1 ( 0 ) 

1(0) 

- 6 ( 2 ) - 1 ( 0 ) 

6(2) 

Bound Tightens? 

No 

Yes 

No 

Yes 

No 

Yes 

Updated bounds are y2 < 3, y4 < 5, and y6 < 22. 
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Constraint (2) Bound Tightens? 

yt: w, = l / r [ 1 3 - l ( 4 ) - 4 ( 2 ) - 2 ( 0 ) + 2(3) No 
+ 3(22)] = 73 

y2: l2 = 1/-2*[13 - 1(1) - 1(4) - 4(2) - 2(0) No 
+ 3(22)] = -33 

;y3: w 3 = l / l * [ 1 3 - l ( l ) - l ( 4 ) - 4 ( 2 ) - 2 ( 0 ) No 
+ 3(22)]=76 

y4: w4 =l /4*[13- 1(1) - 1(4) - 2(0) + 2(3) No 
+ 3(22)] = 20 

y5: M 5 = 1 / 2 * [ 1 3 - 1(1)- l (4)-4(2) + 2(3) No 
+ 3(22)] = 36 

y6: k= 1/-3*[13 - 1(1) - 1(4) -4(2) - 2(0) No 
+ 2(3)] = - 2 

Iteration 2 

Constraint (1): Exactly as above. No changes beyond those identified in Iteration 1. 
Constraint (2): Exactly as above. No bound changes. Stop. 

New Model is 

2)>i +7j?2-3>'3 +6y4-9y5 +y<> < - 12 

yi-2y2+y3+4y4 + 2y5-3y6 < 13 

1 < y\ < 4 

0 < y2 < 3 

4 < ;y3 < 10 

2 < y A < 5 

0 < y5 < 2 

0<ye<22 

yj integer j = 1,...,6 

Problem 4.11 

This is a pure 0-1 IP. 
Constraint (1): 5x! + x2 + 3x3 — 2x4 + x5 — 3x6 < 9. 
Row bound method: 

wi = 5 ( l ) + l ( l ) + 3 ( l ) - 2 ( 0 ) + l ( l ) -3(0) = 10 

h = 5(0) + 1(0) + 3(0)-2(l) + 1(0)-3(1) = - 5 

- 5 < 9 < 10 
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so no new conclusion, where 9 = b\. 

Constraint (2): 2x\ — 2x2 + x3 + x4 — 2x5 + X(, < 6. 

u2 = 2(l)-2(0) + 1 + 1-2(0) + 1 = 5 

Now since b2 = 6 > u2 = 5, constraint 2 is redundant. 
Constraint (3): Xi + x2 — x3 — x4 + 2x5 — x6 > 2. 
Must be rewritten: — X\ — x2 + X3 + x4 — 2x5 + x¿ < —2. 

i/3 = - l ( 0 ) - l ( 0 ) + l( l) + l ( l ) -2(0) + l( l) = 3 

/3 = - l ( l ) - l ( l ) + l(0) + l (0)-2( l ) + l(0) = - 4 

Because —4 < —2 < 3, no new conclusion. 
Constraint (4): 2x\ + x2 — 2x3 + 3x4 — x5 + x¿ > 8. 
Must be rewritten: — 2X) — x2 + 2x3 — 3x4 + X5 — x6 < — 8. 

£/4 = -2(0)-1(0) + 2(l)-3(0) + 1(1) —1(0) = 3 

U = -2(1)-1(1) + 2(0)-3(l) + 1(0) —1(1) = - 7 

Now —8<L4=—7, so constraint is infeasible and must be removed, or entire 
program is infeasible. 
Constraints (1) and (3) remain in the model. 

Problem 4.15 

To generate knapsack cut, need a¡ > 0. 

Let y'2 = \-y2(y2 = \-y2) 

and y'5 = l-y5(y5 = l - / 5 ) 

Transformed constraint is 

3 ? i - ( l - y 2 ) + 2y3 + 4 y 4 - 3 ( l - y s ) < 5 

3yl+y'2 + 2y3+4y4 + 3y'5 < 9 

{y\,y4,y'5} is a knapsack cover because 3*1 + 0 + 0 + 4*1 + 3*1 = 10>9, but 
(0, 0, 0, 1, 1), (1, 0, 0, 0, 1), and (1, 0, 0, 1, 0) are each feasible. 
Hence, ng — 3. 

So, yx +y4+y'5 < 2 

that is,)», +y4 + (l-y5) < 2 

y\ +y4-ys < 1 
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Problem 4.17 

Let x'2 = 1000x2. Then the model becomes 

Max : z = 2xi + 3x2—X3 

s.t. 21xi -5x 2 < 13 

- I I X 1 + X 3 < 9 

x'2+4x3 > 17 

CHAPTER 5 

Problem 5.7 

Optimal matching of employees is (1, 6), (2, 7), (3, 8), and (4, 5), with z* = 6. 

Problem 5.9 

Let x\ = number of 8ft lengths sold uncut 

X2 = number of 8ft lengths cut into two 4ft lengths 

x-j = number of 14ft lengths cut into 10ft and 4ft lengths 

X4 = number of 14ft lengths cut into 12ft lengths 

x5 = number of 14ft lengths cut into 10ft lengths 

x¿ = number of 16ft lengths cut into 12ft and 4ft lengths 

Note: It can be shown that other cutting combinations are unprofitable, but if they are 
included as variables in the model, their optimal value will be zero. 
Optimal cutting plan is x* = (200, 0, 60, 40, 0, 40) with z* = $14,800. 

CHAPTER 7 

Problem 7.9 

r(A) = 2 

r(A : b) = 2 

Hence, it is a consistent system with r = 2 < n = 3. 
Thus, the given system has infinite number of solutions. 
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Problem 7.10 

If (125/92, 4/23, 91/92) = x \ then 
z*=2*(125/92)-3*(4/23) + 10*(91/92) = (250-48 + 910)/92 
= 1112/92=12.087. 
First primal constraint: —3xt + x2 + 9x3 + xs¡. 
-3*(125/92) + (4/23) + 9*(91/92) = 460/92 = 5. Hence, xs]* = 0. 
Second primal constraint: X\ — 2x2 + x3 + xs2 = 2. 
(125/92) - 2*(4/23) + (91/92) = (125-32 + 91)/92 = 184/92 = 2. Hence, x;2 = 0. 
Third primal constraint: 6x\ + 5x2 + 2x3 + xs3 = 11. 
6*(125/92) + 5*(4/23) + 2*(91/92) = (750 + 80 + 182)/92= 1012/92= 11. 
Hence, xS3 * = 0. 
By complementary slackness at optimal: 

z = 12.087 = w* 

x\ = 125/92 usl = 0 

x*2 = 4/23 us2 = 0 

x¡ = 91/92 u# = 0 

**i = 0 u\ = ? 

x*s2=0 u2 = ? 

X*S3 = ° M 3 = ? 

At optimal dual: 

5 M I + 2 M 2 + 1 1 « 3 = 1112/92 

—3wi + u2 + 6«3 = 2 

u\—2u2 +5^3 = —3 

9ui+u2 + 2u3 = 10 

UUU2,U3 > 0 

Using AT« = c, the student should verify u* = 12.1. 

Problem 7.11 

Dual is 

Min: w = -5u\ + I7u2 + 5u3 

s.t. — 2ui + 5u2 + 2M3 > 11 

«i +4«2 > - 1 3 

AU\ —U2 + H3 > 7 

—5MJ— US > 9 

U\,U2,U3 > 0 
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Problem 7.12 
Dual is 

Max : w = 5u\ + 17«2 + 5«3 

s.t. 2u\ +5u2-2u3 < 11 

-U\ +4u2 < - 1 3 

4u\-Ui + »3 > 7 

—5u\— «3 = —9 

M, > 0 

w2 < 0 

»3 unrestricted 

Problem 7.13 

Given: 

X[ = 7 

x\ = 10 

Xj = x*A = 0 

xj = 6 

z* = 9 4 

Primal constraint 1 : X| + 2x2 + 3x3 + x4 — 3x5 + xsl = 9. 
7 + 2*10 + 3*10 + 0 -3*6 = 2 7 - 1 8 = 9. Hence, xs\* = 0 . 
Similarly, substituting in primal constraints 2 and 3, xs2* = 0 and x^» 
By complementary slackness at optimal: 

z = 94 = 

X[ = 7 

x\ = 10 

x; = o 

x; = o 

x; = 6 

^ 1 = 0 

x*s2 = 0 

4 = o 

= w 

«U=o 
us2 = 0 

*4 = ? 

* 0 

«s5=0 

u\ = 1 

U*2 = ? 

* 0 

M 3 = ? 
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At optimal dual: 

9M1 + 10W2 + HW3 = 9 4 

u\ +2u2—3u3 = 4 

2wi —W2 + 2«3 = 3 

—3»i +«2 + 2«3 = 6 

Using AT« = c, the student should verify u* = 94.04 = w*. 

CHAPTER 8 

Problem 8.1 

No, because it is not convex. 

Problem 8.3 

After graphing the problem, we find the direction of min — 2x\ + x2 and hence 
conclude that the problem is unbounded (z —» — oo). 

Problem 8.5 

(1) 

Let*1 =(4, l),x2 = (-4, -1 ) . It can be seen from the graph that all ax1 + (1 - a ) x 2 

are not in S for each a, 0 < a < 1. Therefore, S is not a convex set. 
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(2) 

Let x ' = ( 4 , 6.25), x2 = (10, 2.5). It can be seen from the graph that all 
ax1 + (1 — a) x2 are not in S for each a, 0 < a < 1. Therefore, S is not a convex 
set. 

(3) 

Let x1 = (2,6), x2 = (4,0). It can be seen from the graph that all ax1 + (1 — a)x2 

is not in 5 for each a, 0 < a < 1. Therefore, 5 is not a convex set. 
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Problem 8.12 

Extreme points: (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 1). 
There is a single simplex, the entire region. 

Problem 8.16 

After graphing the problem as shown below, it can be seen that there are three extreme 
points; their exact coordinates are as follows: 
2x\ + x2 — 1 and x2 = 0, hence, xl = (3.5, 0). 
X! - x2 — 5 and x2 = 0, hence, x2 = (5, 0). 
—3xi + x2 = 3 and 2x\ + x2 = l, hence, x3 = (0.8, 5.4). 
Now, to find the extreme directions: 

dx + d2 = 1 

-2d1 +d2 < 0 

dl-d2 <0 

-2dl-d2 < 0 

dl > 0 

d2>0 

Substituting d2 — l-dl: 

(/' > -1 (redundant) 

dl > 0 (redundant) 

d] < \ (redundant) 

So, 1/4 <dl< 1/2, 1/2 < cF < 3/4. 
Considering d[ + d2 = 1 and -3d1 +d2 = 0. Hence, dl = 1/4 and d2 = 3/4. 
Considering dl + d2 = 1 and dl -d2 = 0. Hence, dl = 1/2 and d2 = 1/2. 

So, extreme points of D (extreme directions) are d1 = \^A ar,d d2 = ¡^ , a s s n o w n 

in the following figure. 
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Any point in the polyhedron can be represented by extreme points and extreme 
directions as 

3 2 

x = ^2 aix' + ^2 ßjd 
1=1 7=1 

where 

2_]a> = 1 ' a ' — ^ ¿ = 1 , 2 , 3 
i = i 

j 8 , > 0 7 = 1 , 2 

= ax2 + ( 1 - a ) x 3 + ßdl (all other a,-, j8y- = 0) 

= a + ( l - a ) 

Therefore, a = 4/9 and ß = 88/3. 

+ ß 
1/4 
3/4 

ax2 + ( l - a ) x 3 +j8i/1(all other a,, ¿3, = 0) 

+ ( l - a ) + /3 
1/2 
1/2 

Therefore, a = 23/48 and ß = 35/8. 
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Note: The starting point for the ray extending to (10,25) is (8/3, 3); the starting point 
for the ray extending to (5, 5) is (2.8125, 2.8125). 

Problem 8.18 

After graphing the problem, it can be seen that the constraint of X\ — 2x2 < 6 is not 
necessary in the description of facets, while all others are necessary. Because (6,0) is a 
degenerate extreme point and constraint 2 is not on the edge of the facet. 

CHAPTER 9 

Problem 9.4 

In canonical form, 

Max : - z + 2xx + 3x2-2x3 

(1) S.t. X\ +X2 + X3 +S\ = 1 

(2) x\ -2x2 + 2x3 + s2 = 2 

Xi,X2,X3,Si,S2 > 0 

With n = 5 variables and two equations, a basic feasible solution will have two basic 
variables (and typically nonzero) and the other three nonbasic with value zero. 
Substituting (1/3,1/3,1/3) in constraints (1) and (2) yield st = 0 and s2 = 5/3. The fact 
that s2 ^ 0 is an argument that (1/3, 1/3, 1/3) could not be basic. 

Problem 9.8 

Canonical form: 

Max : z—x\—2x2 

(1) s.t. 2*1+5*2 = 21 

(2) x\-x2+s\ = 10 

x\,x2,S] > 0 

Adjoining an artificial variable to (1) 

Max : z—X\—2x2 

s.t. 2 x i + 5 x 2 + * a = 21 

x\—x2+S\ = 10 

X\,X2,Si,Xa > 0 
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Phase 1 objective: Max — z" + xa = 0. 

Basic Variable 

- z ° 
xa 

Si 

-z" 

1 
0 
0 

x¡ 

0 
2 
1 

* 2 

0 
5 

- 1 

xa 

1 
1 
0 

í i 

0 
0 
1 

RHS 

0 
21 
10 

The coefficient of xa in row 0 is nonzero. Row 0—row 1 yields 

Basic Variable — za 

-za 1 
xa 0 
sx 0 

2 be the entering variable and 

Basic Variable — za 

- z a 1 
x2 0 
s{ 0 

X\ 

- 2 
2 
1 

x2 

- 5 
5 

- 1 

xa be the leaving 

X , 

0 
2/5 
7/5 

x2 

0 
1 
0 

xa 

0 
1 
0 

variable. 

Xa 

1 
1/5 
1/5 

■Sl 

0 
0 
1 

S\ 

0 
0 
1 

RHS 

- 2 1 
21 
10 

RHS 

0 
21/5 
71/5 

Hence, xa is driven out of basis. 
Phase 2 objective: Max z — xx — 2x2 = 0. 

Basic Variable 

z 

x2 

Si 

z 

1 
0 
0 

Xl 

- 1 
2/5 
7/5 

x2 

-2 
1 
0 

x" 

0 
1/5 
1/5 

Sl 

0 
0 
1 

RHS 

0 
21/5 
71/5 

It is not yet in canonical form because the coefficient of x2 in row 0 is not 0. Let row 
0 = row0 + row 1*2. 

Basic Variable z X\ x2 x" ¡i RHS 

z 1 - 1 / 5 0 2/5 0 42/5 
x2 0 2/5 1 1/5 0 21/5 
s, 0 7/5 0 1/5 1 71/5 
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Let Xi be the entering variable, and since min{ (21/5)/(2/5), (71/5)/(7/5) }= 71/7, so let 
the leaving variable be s\. 

Basic Variable 

z 
x2 

S\ 

z 

1 
0 
0 

X\ 

0 
0 
1 

x2 

0 
1 
0 

xa 

3/1 
1/7 
1/7 

i i 

1/7 
-2/7 

5/7 

RHS 

73/7 
1/7 

71/7 

The optimum solution is (71/7,1/7) with an objective value of 73/7. In decimal form, 
the optimum solution is (10.14, 0.14) with an objective solution of 10.43. 

Problem 9.18 

Let the price for beef, dog food, bread, bones, and chicken be Cj (J=l, ..., 5), 
respectively. Uno consumes each type of food in the quantity of xi7lb, respectively. 
Similarly, Dos and Tres consume x2j and x3j for each type of food. 

(i) 
3 5 

Minimize z = ¿^zLcJx'J (CJ ls s n o w n m ta^^e m t n e t e x t ) 
i = l y = l 

s.t. Xu > 0.5 

X\4 > 1.7 

*15 > 1-9 

xn > 1.5 

x23 > 0.3 

x24 > 0.9 

X25 > 0 . 1 

*3i > 1.5 

xn > 0.9 

X33 > 0.8 

X34 > 0.6 

X35 > 0.2 

*23 + X25 > 2.5 

■*12+*14 + Xl5 > 2.7 

■̂31 +^33 > 2.6 

Xy > 0 
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(ii) The LINGO model and solution by using sets are shown on the next page. As 
shown in the solution, the minimum cost is $ 16.71 per day. Uno consumes 0 lb 
beef, 01b dog food, 2.41b bread, 0.91b bones, and 0.11b chicken. Tres 
consumes 1.5 lb beef, 0.9 lb dog food, 1.1 lb bread, 0.6 lb bones, and 0.2 lb 
chicken. 

MODEL : 
SETS: 
DOGTYPE/UNO,DOS,TRES/; 
FOODTYPE/BEEF,DOGFOOD,BREAD,BONES,CHICKEN/:C; 
LINK(DOGTYPE,FOODTYPE):B,X; 
ENDSETS 
DATA: 
C = 2.510.81.21.6; 
B = 0 0 0.5 1.7 1.9 

01.50.30.90.1 
1.50.90.80.60.2; 

ENDDATA 
MIN = @SUM(FOODTYPE(J) :C (J)*@SUM(DOGTYPE(I ) :X(I,J))) ; 
@FOR(DOGTYPE(I):@FOR(FOODTYPE(J) 
X(2,3) + X(2,5) >=2.5; 
X(l,2) +X(1,4) +X(1,5) >=2.7; 
X(3,l) + X(3,3) >= 2.6; 
END 
Global optimal solution found at 
Objective value: 

Variable 
C ( BEEF) 

C ( DOGFOOD) 
C( BREAD) 
C( BONES) 

C( CHICKEN) 
B( UNO, BEEF) 

B( UNO, DOGFOOD) 
B( UNO, BREAD) 
B( UNO, BONES) 

B( UNO, CHICKEN) 
B( DOS, BEEF) 

B( DOS, DOGFOOD) 
B( DOS, BREAD) 
B( DOS, BONES) 

B( DOS, CHICKEN) 
B( TRES, BEEF) 

B( TRES, DOGFOOD) 
B( TRES, BREAD) 
B( TRES, BONES) 

:X(I,J)>=B(I, J) ) ) 

iteration: 

Value 
2.500000 
1.000000 

0.8000000 
1.200000 
1.600000 
0.000000 
0.000000 

0.5000000 
1.700000 
1.900000 
0.000000 
1.500000 

0.3000000 
0.9000000 
0.1000000 
1.500000 

0.9000000 
0.8000000 
0.6000000 

; 

16. 
12 

71000 
Reduced Cost 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0, 
0 
0 
0 
0. 

,000000 
.000000 
.000000 
,000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
.000000 
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B( TRES, CHICKEN) 
X( UNO, BEEF) 

X( UNO, DOGFOOD) 
X( UNO, BREAD) 
X( UNO, BONES) 

X( UNO, CHICKEN) 
X( DOS, BEEF) 

X( DOS, DOGFOOD) 
X( DOS, BREAD) 
X( DOS, BONES) 

X( DOS, CHICKEN) 
X( TRES, BEEF) 

X( TRES, DOGFOOD) 
X( TRES, BREAD) 
X( TRES, BONES) 

X( TRES, CHICKEN) 

Row 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

CHAPTER 10 

Problem 10.4 

0.2000000 
0.000000 
0.000000 
0.5000000 
1.700000 
1.900000 
0.000000 
1.500000 
2.400000 
0.9000000 
0.1000000 
1.500000 

0.9000000 
1.100000 

0.6000000 
0.2000000 

Slack or Surplus 
16.71000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
2.100000 
0.000000 
0.000000 
0.000000 
0.000000 
0.3000000 
0.000000 
0.000000 
0.000000 
0.9000000 
0.000000 

0.000000 
2.500000 
1.000000 
0.000000 
0.000000 
0.000000 
2.500000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

Dual Price 
-1.000000 
0.000000 
0.000000 
-0.8000000 
-1.200000 
-1.600000 
0.000000 
-1.000000 
0.000000 
-1.200000 
-0.8000000 
-1.700000 
-1.000000 
0.000000 
-1.200000 
-1.600000 
-0.8000000 
0.000000 
-0.8000000 

(a) This 6x4 matrix does not meet the second sufficient condition of Theorem 
10.1, because there are two columns with more than two nonzero elements. So, 
the theorem cannot be used to prove TU. This is not an interval matrix either. 
The only way to check TU is to compute the determinant of 209 submatrices. 
After computation, we can show that each of these has a determinant of - 1 , 0 , 
or 1. Hence, matrix is TU. 
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(b) The matrix is not TU because the entire matrix is —2^0, 1, or — 1. 

(c) The matrix is not TU. It is easy to find a 3*3 submatrix with determinant not 
equal to — 1, 0, and 1, such as 

1 

-1 

0 

0 

- 1 

- 1 

1 

0 

-

with determinant = 2 

Problem 10.6 

Problem 10.13 

MODEL: 
SETS: 
NODES/A, B, C, D, E, F, G, H/ : DEMAND; 
ARCS (NODES, NODES) /A,BA,CB,DC,DB,EC,GD,ED,GD,FE,HF,H 
G,H/:CAPACITY, 
FLOW,COST; 
ENDSETS 
MIN=@SUM(ARCS:COST*FLOW); 
@FOR(NODES(I) :@SUM(ARCS(I,J) : FLOW(I,J) )-
@SUM(ARCS(K,I):FLOW(K,I))=DEMAND(I)); 
@FOR(ARCS :FLOW<=CAPACITY); 
DATA: 
DEMAND = 2 5 2 0 2 0 5 1 0 0 - 3 0 - 5 0 ; 
CAPACITY = 30 44 28 19 42 20 26 27 16 2 3 29 4 1 ; 
COST = 3 5 3 5 5 4 6 7 2 8 9 7 ; 
ENDDATA 
END 

Global optimal solution found at iteration: 8 
Objective value: 916.0000 

Variable Value Reduced Cost 

FLOW(A, B) 21.00000 0.000000 
FLOW(A, C) 4.000000 0.000000 
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FLOW( B, D) 
FLOW( C, D) 
FLOW( B, E) 
FLOW( C, G) 
FLOW( D, G) 
FLOW( D, F) 
FLOW( E, H) 
FLOW( F, H) 
FLOW( G, H) 

CHAPTER 11 

Problem 11.3 

28. 
4.( 
13, 
20. 
21. 
16 
23. 
16 
11 

.00000 
Í00000 
.00000 
.00000 
.00000 
.00000 
.00000 
.00000 
.00000 

0. 
0. 
0. 
0. 
0. 
0. 
0, 
0, 
0. 

.000000 

.000000 

.000000 

.000000 

.000000 

.000000 

.000000 

.000000 

.000000 

Node 

1 
2 
3 
4 
5 (Fathom—integer) 
6 (Fathom by lower bound) 
7 (Fathom—integer) 

X\ 

7.11 
6.83 
6.67 
6 
6 
5.67 
6 

x2 

1.56 
1 
2 
2.67 
2 
3 
1 

*3 

0 
0 
0 
0 
0 
0 
0 

*4 

5.44 
5.17 
5 
4.33 
5 
4 
6 

z 

35.33 
32.83 
34 
32 
32 
31 
32 

Problem 11.4 

• Node 3 is fathomed due to "integer feasibility," and ultimately optimality as 
well. 

• Node 4 is fathomed due to "infeasibility." 
• Node 6 is fathomed due to "optimality." 
• Node 7 is fathomed due to bound: 37 < z = 40. 
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Problem 11.11 

(b)After obtaining the final tableau, the student should verify 

Row 1 : x2 + 0 . 1 x 3 - 0 . 3 7 x 4 = 0.27 

Row 2 : xi + 0. lx 3 - 0 . 03x 4 = 1.93 

Hence, 

C u t l : - 0 .1x3 -0 .63x4-0 .27 

C u t 2 : - 0 .1x3 -0 .97x4 -0 .93 

Problem 11.12 

Max 3)>i + y 2 + 2y3 + 3y4 

s.t. -y, +3y2+y3-2y4 + s¡ = 17 

7yi +3y3+yi + s2 - 23 

y\ + 2y2 + s-i = 11 

y2 + 3y4+s4 = 13 

- 0 . 1 1 8 J 1 - 0 . 2 6 5 J I - 0 . 9 1 2 5 2 - 0 . 2 0 6 5 4 + J 5 = -0 .147 

- 0 . 2 2 2 y i - 0 . 2 2 2 i 2 - 0 . 8 8 9 i 4 - 0 . i l 1J5 + $I = -0 .778 

-0.065yi -0 .258J! -0.839^2 -0.226s7+ss = -0 .968 

-0 .25y 1 -0 .255 2 -0 .875 i7 -0 .125 j 8 +59 = - 0 . 7 5 

-0 .571yl -0 .571s 2 -0 .286s8-0 .714j9 + iio = -0 .714 

-0 .99> ' 1 -0 .99i 2 -0 .9959-0 .015,0+ 5ii = - 0 . 9 9 

-0.559-0.4995io-O.OOl5n +sl2 = - 0 . 5 

y \,y 2, y i, y A integer 

Initial Solution: The Tableau 

Row Yl Y2 Y3 Y4 SI S2 S3 S4 RHS 

1.471 0.000 0.000 0.000 0.059 0.647 0.000 0.824 26.588 
-0.882 1.000 0.000 0.000 0.265 -0 .088 0.000 0.206 5.147 
2.235 0.000 1.000 0.000 0.029 0.324 0.000 -0 .088 6.794 
2.765 0.000 0.000 0.000 -0 .529 0.176 1.000 -0 .412 0.706 
0.294 0.000 0.000 1.000 -0 .088 0.029 0.000 0.265 2.618 

Cut 1 : Using y2 as source row in initial tableau, we get 

-0 .118j i -0 .2655i-0 .91252-0.20654 +s5 = -0 .147 

1 
2 
3 
4 
5 

ART 
Y2 
Y3 
S3 
Y4 
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Cut 2: Using y3 as source row in Tableau 2, we get 

-0.222y]-0.222s2-0M9s4-0.llls5+s1 = - 0 .778 

Cut 3: Using y2 as source row in Tableau 3, we get 

-0.065>>, -0 .2585, -0 .839 i 2 -0 .226^7+58 = -0 .968 

Cut 4: Using y^ as source row in Tableau 4, we get 

-0 .25J1-0 .2552-0.875^7-0.12558+59 = - 0 . 7 5 

Cut 5: Using s4 as source row in Tableau 5, we get 

-0.571>>i-0.57l52-0.28658-0.71459+51o = -0 .714 

Cut 6: Using si as source row in Tableau 6, we get 

-0.99yi-0.9952-0.9959-O.Ol5io + 5n = - 0 . 9 9 

Cut 7: Using 57 as source row in Tableau 7, we get 

-0.559-0.4995io-O.OOl5ii + 5 , 2 = - 0 . 5 

Tableau 8 produces the optimal integer solution: z* = 25, y\ = 0, y2 = 4, y^ = 6, and 

y A = 3. 

Problem 11.14 

Max 3yi + y2 + 2y3 + 3y4 

Subjectto -y\ +3^2 +y3~2y4+s\ = 17 

lyi + 3 j 3 + > ' 4 + 5 2 = 23 

yi + 2 y 2 + 5 3 = 11 

y2 + 3y4+s4 = 13 

-0.118ji-> '2-0.26551-0.01552-0.20654 + 55 = -0 .147 

-0.235}; ,-0.0295!-0.32452-0.33954+ 56 = -0 .794 

-0 .182^1-0.27351-0.29854-0.15556+57 = -0 .363 

-0 .333yi -0 .33354-0 .1425 6 -0 .6645 7 + 58 = -0 .666 

yi,y3,y* integer > 0andy2 > 0 
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After four cuts, the optimal integer solution is z* = 25, y¡ —0, y2 = 4, y3 = 6, and 
y4 = 3. 

CHAPTER 12 

Problem 12.3 

Given S = {ye(0,1) : 5y, + 2y2-3y3-y4 + 4y5 < 6}. 

(1) y i = 1 is invalid because it excludes some feasible points in S, such as the 
origin, (0, 1, 1, 1, 1) and others. 

(2) y y = 0 is invalid because it excludes some feasible points in S, such as ( 1,1,1,0, 
0). 

(3) The inequality y¡ + y2 + y 5 < 2 is valid because C = {1, 2, 5} isa cover and 
y\ + yi + Ï5 < 2 is the knapsack cover cut. 

(4) ;y3 + y4 > 1 is invalid because it excludes some feasible points in 5, such as the 
origin or (1,0, 0, 0, 0). 

Problem 12.4 

( l)rf=13. 
Hence, yx + y2 + ^3 + y* > 3. 
(0, 0, 0, 30/13) is "cut off' by this integer rounding cut. 
(4)rf=2. 
Hence, y{ + 3y3 + 2y4 + y5 < 12. 
(25/2, 0, 0, 0) is "cut off' by this integer rounding cut. 

Problem 12.5 

Optimal tableau of the LP relaxation is as follows: 

Basic 

z 
yi 
*5 

ys 

y\ 

0.67 
0.78 
0.11 
0.89 

yi 

0 
1 
0 
0 

y¡ 

0 
0 
0 
1 

í 4 

0.33 
0.22 

-0.11 
0.11 

Í5 

0 
0 
1 
0 

Í6 

0.67 
0.11 

-0.56 
0.56 

RHS 

10 
3.67 
0.67 
6.33 

Note: Any row may be used: 
Using row 1, the C-G cut is y2 < 3. 
Using row 2, the C-G cut is 2>y\ + 4y2-y3 < 14. 
Using row 3, the C-G cut is — y2 + y3 < 6. 
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Problem 12.8 

Max y i +y2+yi-2x 

Subject to : 3.lyi + l.3y2 + lAy^-x + Si = 19.7 

yuy2,y>3 = 0 integer 

The MIR cut is 1.727^i + y2 + y3 - 1.182* + 0.727.$! + s2= 15. 
The solution is z* = 15 and y* = (0, 13, 2, 0). Using the Gomory mixed integer cut, 
z* = 15, and y* = (0, 14, 1, 0)—an alternate optima. 

CHAPTER 13 

Problem 13.1 

x* = (0, 4.5, 0.5, 0) withz*=4. 

Problem 13.2 

x*=(2, 16, 1,0) with z* = 4 1 . 

CHAPTER 14 

Problem 14.1 

Yes, both yield the tour 4-1-3-2-5-4. 

Problem 14.2 

(a) The heuristic where the first customer of each route is the unserved customer 
nearest the depot produces as follows: 

Route 

1 
2 
3 
4 
5 
6 
7 
Total 

Customers Visited 

0-11-2-3-0 
0-5-6-12-0 

0-9-8-0 
0-7-10-0 

0-4-0 
0-1-0 
0-13-0 

Tons Delivered 

9 
10 
10 
9 
7 
5 
6 

Cost 

169 
197 
180 
182 
168 
190 
200 
1286 
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The heuristic where the first customer of each route is the unserved customer farthest 
from the depot produces as follows: 

Route 

8 
9 
10 
4 
3 
11 
Total 

Customer Served 

0-13-2-0 
0 - 3 ^ - 0 

0-1-11-12-0 
0-10-7-0 
0-8-9-0 
0-6-5-0 

Tons Delivered 

10 
9 

10 
9 

10 
8 

Cost 

202 
214 
217 
192 
180 
167 
1172 

(b) Performing the genetic algorithm's crossover operation will create an off-
spring that depends on the random number sequence used by the student. 
Students should compare their crossover solution with the two parent solutions 
and the offspring generated by classmates. The second solution above is likely 
close to optimal. 
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Abelian group, 287 
Additive group, 287 
Adjacent basic feasible solution, 211, 215, 

222 
Adjoint matrix, 158 
Airline crew scheduling problems, 125 
Algebraic modeling languages, 388 
All-integer coefficients, 281 
AMPL model, 394, 395 

commands, 399 
of diet problem, 395 
modeling language, 392-400 

AMPL compatible MIP solvers, 400 
AMPL modeling techniques, 

397^00 
components of, 392-393 

Application program interfaces (APIs), 
392 

Arc-node matrix, 324 
Artificial intelligence approaches, 366-372 
Artificial intelligence (AI) heuristic 

algorithms, 131,359 
Artificial variables, 216, 217 
Assignment algorithms, Hungarian 

algorithm, 7 

Applied Inleger Programming: Modeling anc 
Copyright © 2010 John Wiley & Sons, Inc. 

Assignment problem, 143, 344 
Associative law, 287 

Backpack problem, See Knapsack problem 
Backtracking, 278 
Benders' general theory of decomposition, 

380 
Benders' partitioning approach, 380 
Best-bound-first strategy, 276 
Better formulation, definition, 82, 83 
Binary integer program (BIP), 5, 59, 389 

problem, 90 
Binary variable(s), 59, 69, 70 
Binding constraints, 296 
Bipartite network, 116, 253 
Bookkeeping scheme, 293 
Boolean algebra, 55 
Boolean expression, 55 
Boolean operations, 58 
Boolean variables, 55 
Bounded linear programming problem, 87 
Bounded polyhedron, 194, 222 

representation theorem, 194 
Bounded polytope, See Bounded 

polyhedron 

i, By Der-San Chen, Robert G. Batson, and Yu Dang 

459 
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Branch-and-bound (B&B) approach, 98, 
272-280, 299, 305 

algorithm, 273, 274, 278-280, 361, 388 
behavior, 388 
steps, 279 

basic concepts, 272 
development, 305 
enumeration scheme, 293 
origin, 299 
solution process, 273 

Branch-and-bound (B&B) tree, 272, 275, 
277, 278, 353 

branches, properties, 272 
nodes, 272 

Branch-and-cut (B&C) approach, 131, 201, 
306-308, 329, 362 

algorithm, 306-307, 356 
application, 356 
steps, 306 

cut generating techniques, 309-312 
from sets involving pure integer 

variables, 313-315 
preprocessing, 307-308 
valid inequalities, 308-309 

for integer program, 309 
for linear programs, 308 
types of, 308-309 

Branch-and-price approach, 334, 356-357 
application areas, 356-357 
concepts, 334-335 

Dantzig-Wolfe decomposition, 335-344 
generalized assignment problem (GAP), 

344-356 
branch-and-price algorithm, 356 
branching scheme, 353 
column generation, tailing-off effect, 

353-354 
identical machines treatment, 354 

Branching scheme, 355 
Branching variable, selection rules, 276 
Bundling products, examples, 67 

Canonical system, 210 
Capital budgeting problem, 31-32 
Cargo loading problem, 31 
Chain reaction, 95 
Chvátal-Gomory cut, 313, 314 

procedure, 314 
Classical solution approaches, 271 

Classical transportation problem, 249 
Clique cut, 325 
Coding computer programs, 4 
Coefficient matrix, 86, 100, 295 
Coefficient reduction process, 96 
Coefficient vector, 339 
Column generation approach, 334, 335 

formulation, 346, 347, 349 
vs. conventional formulation, 347 
LP relaxation, 347 
master problem in, 346, 349 

tailing-off effect, 353-354 
manifestation, 353 

Combinatorial optimization problem (COP), 
7, 84, 105, 106, 121, 130, 359, 376 

classes of, 84, 105 
classical assignment problem, 7 
comparison of, 122 
computational complexity, 121-125 

of algorithm, 123 
polynomial vs. nonpolynomial function, 

124, 125 
problem vs. problem instance, 123 

group of, 106 
IP formulations, 105 
LP relaxation, 376 
representative/typical model, 130 
traveling salesman problem (TSP), 7, 130 

Combinatorial optimization problem 
modeling, 105, 130 

cutting stock problem, 117-121 
matching problem, 115-116 
set covering/set partitioning, 106 

applications, 113-115 
set covering in networks, 111 
set covering problem, 107-111 
set partitioning/set packing, 111 

traveling salesman problem (TSP), 130 
Commercial modeling languages, 386 
Commercial software, 386 

solutions with, 386 

typical IP software components, 388-392 
data and application interfaces, 391-392 
modeling languages, 389-390 
presolvers, 389 
sovlers, 388-389 
user's options/intervention, 390-391 

Complementary slackness theorem, 173 
Complete enumeration scheme, 272 
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Concave function, 61, 192, 193 
Concavity, geometric interpretation, 193 
Constraint equations, 210 
Constraint set(s), 68, 69, 327, 339 
Convex combination, 156, 188 
Convex cone, 183, 191 
Convex functions, 192 
Convex hull, 84, 190 
Convexity, geometric interpretation, 192 
Convex polytope, 190 
Convex sets, 183, 188 

concave functions, 192-194 
edge, 189 
hyperplane, 189 
intersection of, 188 
line segments, 190 
vs. nonconvex sets, 188 
polyhedra, 188-190 

cones, 191 
extreme points, 190 

unbounded, directions of, 191 
Corner polyhedron, 295-299 

in yN space, 298 
CPLEX solver, 387 
CPLEX's presovler, 389 
Cramer's rule, 158 
Cubic function, linearization, 65 
Cut generating techniques, 309-312, 315, 

320, 324, 326, 362 
disjunction technique, 310-312 
from 0-1 knapsack sets, 320-323 

GUB cover, 323 
knapsack cover, 320 
lifted knapsack cover, 321-323 

from sets containing 0-1 coefficients/0-1 

variables, 324-326 
from sets involving mixed integer 

variables, 315-320 
Gomory mixed integer cut, 315 
mixed integer rounding cut, 319-320 

from sets involving pure integer variables, 
313-315 

Chvátal-Gomory cut, 313 
Gomory fractional cut, 313 
objective integrality cut, 315 
pure integer rounding cut, 314—315 

from sets with special structures, 326 
lifting technique, 312 
rounding technique, 310 

Cutting pattern, 117, 118 
roll of given width, 117 

Cutting plane approach, 80, 271, 280-286, 
299 

algorithm, 296 
dual cutting plane approach, 280-281 
fractional cutting plane method, 281-285 
MIP problem solver, 286 
mixed integer cutting plane method, 

285-286 
Cutting stock problem, 117-121 

one-dimensional case, 117 
two-dimensional case, 120-121 

Dantzig-Fulkerson-Johnson constraints, 143 
subtour elimination, 143 

Dantzig-Wolfe decomposition, 335-344 
principle, 120, 357 

Database management systems (DBMS), 403 
DBase (DB/2), 403 
Microsoft Access, 403 
Paradox, 403 
PeopleSoft Oracle, 403 
SQL Server, 403 

Decision databases, 29 
Decision variables, 29 
Decomposing technique, 99-100 
Decomposition algorithm, remarks, 338 
Depth-first strategy, goal, 276 
Diagonal matrix, 86, 158, 159 
Diet problem, 397, 398 

input data, 398 
model structure, 397 

Discrete optimization problems, 17 
Discrete variables, 17 
Disjunctive cut, 312 
Distribution centers, 107 
Divide-and-conquer approach, 272, 361 
Dual cutting plane approach, 280-281 

class of, 280, 281 
stand-alone solver, 280 

Dual linear program, 165 
dual problem, formulation, 167-168 
economic interpretation, 170 
importance of, 171 
nonstandard/standard form, 166 
primal-dual simplex methods, 165 

Dual optimum solutions, 172 
primal, relationship, 172 
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Dual simplex method, 16, 207, 231 
maximization problem, 231 
starting conditions, 231 

Dual solution, 373 
via relaxation, 373-377 

combinatorial relaxation, 374-376 
Lagrangian relaxation, 376-377 
linear programming relaxation, 

373-374 
Duality gap, 354 

Elementary column operations, 159 
Elementary row operations, 159 

determinant of a matrix, 162 
inverse of a matrix, 160-161 
linear equations, 162 
rank of a matrix, 159-160 
triangular matrix, 161-162 
uses of, 159-165 

Embedded looping process, 369 
Enumeration approach, 361 
Equality constraints, 183 
Extreme ray, 223 

definition of, 227 
LP problem, 223 
root/vertex of, 223 

Facets of convex polyhedron, 309 
Feasibility, geometric detection, 184 
Feasible spanning tree, 257 
Fixed-charge constraints, 326 
Fixed-charge network, 326 
Fixed-charge transportation problem, 38-39, 

327 
capacitated facility location problem, 41 
transportation cost, 40 
transportation problem, 39 
uncapacitated facility location problem, 

40 
Flight crew scheduling problem, 109, 110 

requirements/activities, 110 
Flow balance equations, 249 
Flow-conservation constraints, 326 
Flow conservation equations, 249, 254 
Flow cover, 326 

from fixed-charge flow network, 326-329 
plant/facility location, 327, 328 

cut construction, 328 
Flow shop sequencing, 140 

Flyaway kit problem, 31 
Formulation, 81-83 

definition, 81 
with same integer solutions, 83 

Fractional cutting plane method, 281-285 

Gaussian reduction, 162 
Gauss-Jordan reduction, 162 
Generalized assignment problem (GAP), 

344-348 
assignment constraints, 346 
branching scheme, 353 
column generation formulation, 345-348 
formulation, 345, 354 
initial solution, 348 

Generalized upper bound (GUB) cover 
inequality, 323 

Generating row, See Source row 
Genetic algorithm, 363, 365-367, 370-372 

application, 365, 370-372 
pseudocode, 371 

Geometric concepts, 294—299 
corner polyhedron, 297 

in solution space of nonbasic variables, 
297-299 

polyhedrons in original space, 295-297 
Geometric solution, 180 

objective function, 181 
polyhedron set, 180 
requirements space, 183 

equality constraints, 183-186 
inequality constraints, 186-187 

solution space, 181-183 
Gomory fractional cut, 313 
Gomory mixed integer cut, 318, 329 
Gomory's slack variable, 282, 283 
Graph theory, 132 
Group elements, generation, 292 
Group problems, types, 300 
Group theoretic approach, 271, 286-294 

definition, 287 
group (minimization) problem derivation, 

288 
group problem formulation, 290-291 
group problem solving, as shortest route 

problem, 291 
group theory terminology, 287-288 
original integer program solving, 293-294 

Hamiltonian cycle, 132 
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Heuristic approaches, 361, 363, 367 
algorithms, variety, 359 
limitation, 367 
MIP application, 361 

Hybrid approach, 271 

Identity matrix, 255, 313, 349 
Implicit enumeration scheme, 272 
Inequality constraints, 186 
Infeasibility, geometric detection, 185 
Integer knapsack problem, 375 
Integer (linear) programming problem (IP), 3 
Integer program(s), 4, 5, 54, 271, 294, 374, 

377, 378, 381 
classical solution approaches, 271 

branch-and-bound, 271 
cutting plane, 271 
group theoretic, 271 

classification of, 5 
LP relaxation, 374 

Integer programming (IP) models, 3, 15, 80, 
85, 119-121, 133,377,379 

algorithm, 131,402 
performance of, 131 
types of cuts, 402 

application, 9, 30 
interfaces, 8, 30 
problem/model type, 8, 30 

application papers, 8, 9, 21 
classification, 9-14 
in Interfaces, 9 

COP relaxation, 379 
cutting stock problem, 120 
feasible regions, 273, 274 
formulation, 80, 101, 112 
Lagrangian relaxation, 377, 379 
problem, 4, 123 
quality of, 80, 101 
solution regions, 275 
solvers, types of tolerances, 401 

Integer variable, 6, 59, 60, 311 

binary representation, 59 
Integrated circuits (IC) technologies, testing, 

140, 141 
Interval matrix, 254 

Jumptracking, 278 
Just-in-time production planning, 34-36 

objective, 34 

Knapsack problem, 30-31 
approach, 291 
constraint, 320 
covers, 329 
problem formulation, 5, 31, 47, 84, 122, 

348, 378 
two-dimensional, 31 

Lagrangian dual, 377-380 
in IP, 378 
in LP, 378 
properties of, 379-380 

Lagrangian relaxation, 15, 354 
assignment constraints, 354 

Last-in first-out (LIFO), 277 
Lifting technique, 312, 321 

coefficients, 321 
function, 321 
procedure, 322 
sequence independent lifting, 

312,321 
sequential lifting, 312, 321 

LINDO solver, 390 
LINDO Systems, 400, 401 

LINGO, 400 
Linear algebra, 155 

algorithms, 180 
bounded feasible region, 182 
finite optimal solution, 182 
solution space, 181 

convex combination, 156 
determinant of matrix, 157-158 
Euclidean space, 155-156 
linear combination, 156 
linear independence, 156 
lower triangular matrices, 158-159 
matrix inversion, 157 
rank of matrix, 155-156 
upper triangular matrices, 158-159 

Linear constraints, 3,5,55,56,62,64,65,81, 
180 

Linear programming (LP), 180 
adjacent basic feasible solution, 

211-212 
algebraic concepts, 203 

terms, 202-203 
based methods, 80 
basic feasible solution, 209-211 
basic infeasible solution, 209 
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Linear programming (Continued) 
bounded/unbounded feasible region, 182, 

197 
canonical form, 207-208 
convex set, 188 
feasibility vs. infeasibility, 187 
feasible region, 202, 273, 274 

algebraic expression of, 202 
finite optimal solution, 182 
geometric concepts, 180, 203 
optimum simplex tableau, 281, 317 
problem, 3, 79, 166, 167, 340 

mathematical definition, 167 
matrix size, 79 

reduced costs, 212-213 
relaxation, 5, 80, 98, 281, 295, 316, 374 

problems, 306 
simplex-based methods, 208 
solution regions, 275 
solvers, types of tolerances, 401 
unbounded convex sets, 191 

LINGO model, 401-404 
feature of, 402 
modeling, aspects, 404 
model specification, sections, 404 
parameters, 401 
program, 264 
user's guide, 402 

LINGO modeling language, 391, 400-405 
interfacing with user, 403 
LINGO model for the diet problem, 

404-405 
LINGO modeling conventions, 403^104 
prescription of tolerances, 401 
presolver, 402 
solvers for linear/integer programming, 402 

Local search heuristics, 363 
Logical (Boolean) expressions 

transformation, 55-58 
basic logical (Boolean) operations on 

variables, 56-58 
conjunction, 56 
disjunction, 56 
double implication/biconditional, 58 
either/or and if/then statements, 

relationship, 57 
negation, 57 
simple implication, 57 
truth table, 55-56 

multiple Boolean operations on variables, 
58 

Lot sizing problem, 33 

MACROS, 407, 408 
Master problem, 336, 337, 339, 347 

interaction with subproblem, 337 
simplex tableau, 339 

Matching problem, 115-116 
integer programming formulation, 116 
matching problems in networks, 115 

Mathematical Programming Language 
(MPL), 405^107 

features, 405, 406 
main window, 406 
modeling language, 405-409 

MPL compatible MIP solvers, 409 
MPL model for diet problem, 408 
MPL modeling conventions, 406-408 

supported databases, 406 
Matrix generators, 387 
Matrix inversion, 157 
Matrix triangularization method, 164 
Maximum-cardinality node packing, 324 
Metallurgical process, 369 
Metropolis algorithm, 369 
Miller-Tucker-Zemlin (MTZ) constraints, 144 

formulation, 145 
subtour elimination, 144 

MILP model, of diet problem, 396 
Minimum cost network flow (MCNF) 

problem, 246, 248, 249 
definition, 249 
formulating transportation problem, 250 
maximum flow problem, 251 
model, 257 
problem, 251 
shortest path problem, 251 
transportation-assignment problem, 

249-251 
transshipment problem, 251 

Mixed integer cutting plane method, 285-286 
MIP problem solver, 285 

Mixed integer program (MIP), 3-5,21,22,29, 
82,100,305, 312,360,361, 363-365, 
381-383, 387 

advancement factors, 305 
assumptions on, 22-28, 47 

additivity/separability assumption, 27 
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anatomy of, 23 
certainty assumption, 24 
divisibility assumption, 22 
integrality assumption, 22 
proportionality (linearity) assumption, 

24,27 
simultaneousness assumption, 28 
single-objective assumption, 28 

Benders' partitioning algorithm, 381, 382 
building blocks, 22 
continuous variables, proportionality, 25 
expression, 4 
feasible region, 311 
format, 55, 67 
formulation, 380 
integer variables, proportionality, 26 
linearity assumption, 55 
local search algorithms, 365 
local search heuristics, example, 364 
mathematical definition, 22 
problem, 88, 166 
software, 309 
solution process, 360 
standard vs. nonstandard forms, 5-7 

Mixed integer rounding (MIR) cut, 310 
Mixed integer set, form, 319 
Mixed integer variables, 326 
Model construction process, 29 
Modeling enhancement techniques, 397 
Modeling languages, 17, 386, 389-391 

AMPL, 17, 386, 390 
LINGO, 17, 386, 390 
MPL, 17, 386, 390 

Modeling process, 28-30 
Modeling software, 390 
Multicommodity network flow problem, 

41-42 
mathematical model, 42 

Multiple traveling salesmen problem 
(MTSP), 135-137 

Network algorithm, 257-258 
Network optimization problems, 43-44, 106, 

246 
blending constraints, 43, 44 
class of, 248 

maximum flow problem, 251 
minimum cost network flow (MCNF) 

problem, 248, 249 

shortest path problem, 251 
transportation-assignment problem, 

249-251 
transshipment problem, 251 

facility location problem, 43 
LINGO program, 264 
multicommodity flow problem, 43 
network fundamentals, 247 

direct, 247 
trees and spanning trees, 248 

production lot sizing, 43 
proportional constraints, 43 
solutions, 246 
totally unimodular (TU) matrices, 252 

definition, 252 
forward/backward substitution method, 

255 
lower/upper triangular matrix, 255 
MCNF problem, matrix structure, 

254 
MCNF problem, naturally integer 

solution, 255-256 
sufficient condition, 252-254 
transportation problem, 255 

with side constraints, 43 
Network simplex method, 246, 256 

feasible spanning trees vs. basic feasible 
solutions, 256-257 

network algorithm, 257-258 
numerical example, 258-263 

Node-arc incidence matrix, 112, 116 
Node covering problem, 111-113, 116 

vs. 1-matching problem, 116 
Node packing problem, graph for, 324 
Node potential, 258 
Nonbinary variables, 58 

types, 58 
to 0-1 variable transformation, 58-60 

transform discrete variable, 60 
transform integer variable, 58-59 

Nonlinear functions, 27 
Nonlinear programming problem, 27 
Nonsimultaneous constraints transformation, 

69-72 
disjunctive constraint sets, 71 
either/or constraints, 69-70 
if/then constraints, 71 
negation of constraint, 71 
p out of m constraints, 70-71 
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Nonzero coefficients, 285 
negative/positive coefficients, 285 

Object linking and embedding (OLE), 403 
Operations research (OR) models, 28, 44 

classes, 44 
definitions, 28 
study, phases of, 28 

Operations Research Society of America 
(ORS A), 18 

Optimality test, 228 
Optimum solution, 217 

Parametric integer program, 24 
Partition integer variables, 316 
Partition matrix, 341 

initialization step, 342 
master step, 342-344 

Pedroso's strategy, 368 
Pedroso's tabu search approach, 383 
Piecewise linear function, 61-64 

arbitrary piecewise linear functions, 
60-63 

MIP formulation, 61 
concave piecewise linear cost functions, 

63-64 
economy of scale, 63 

transformation, 60-64 
Pivot column, 234, 337, 339, 340, 347, 349 
Polyhedral cone, 191 
Polyhedral set, 180 
Polyhedron, 199, 201 

definition, 81 
faces, facets, and dimension, 199-201 
facets, 201-202 
set, 180 

Polynomial complexity, 124 
Polynomial function, 124 
Polytope, See Bounded polyhedron 
Preprocessing techniques, 79, 80, 86, 101, 

360, 389 
automatic problem preprocessing, 86-87 
better formulation, 79-86 
coefficient matrix scaling, 100-101 
MIP solvers, 389 
preprocessor, functions, 86 
problem decomposition into independent 

subproblems, 99-100 
pure 0-1 integer programs, 93-99 

cutting planes generation from 
minimum cover, 97-98 

fixing 0-1 variables, 93-95 
redundant constraints detection/ 

infeasibility, 95-96 
rounding by division with GCD, 98-99 
tightening constraints, 96-97 

tighter constraints, 360 
tightening bounds on variables, 87-93 

bounds on 0-1 variables, 90 
bounds on continuous variables, 87 
bounds on general integer variables, 

88-89 
infeasibility, 91-93 
redundant constraints, 91-93 
variables fixing, 91-93 

Presolver, See Preprocessor 
Primal-dual formulation, 169 
Primal-dual relations, 171 

complementary slackness theorem, 173 
duality theorem, 172 
optimum solutions, 172 
weak duality theorem, 171 

Primal-dual simplex method, 165 
Primal cutting plane approach, 281 
Primal solution, 363, 380 

via Benders' partitioning, 380-382 
via heuristics, 363-372 

artificial intelligence approaches, 
366-372 

local search approaches, 364-366 
Probabilistic search approach, 369 

genetic algorithms, 369 
Problem preprocessing, functions, 93 
Problem-specific heuristics, 363 
Production planning problems, 32-36 

capacitated lot sizing, 34 
just-in-time production planning, 

34-36 
uncapacitated lot sizing, 33-34 

Project selection problems, 30-32 
capital budgeting problem, 31-32 
knapsack problem, 30-31 
single-period, 31 

Pruning strategy, 355 
Pure integer programming problem, 4 

Quadratic function, 64, 65 
linearization, 65 
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Real-valued function, 192 
Real-world problems, 107 
Recession cone, 195, 196 

normalization constraint, 196 
Redundant constraint, 95, 96 
Relative optimality tolerance, 402 
Relaxation approaches, 359, 362, 373 

combinatorial relaxation, 362, 373 
Lagrangian relaxation, 362, 373 
linear programming relaxation, 362, 373 
for solving integer programming (IP) 

problems, 359 
Representation theorem, 199 
Resource constraints, 404 
Restricted master problem, 347, 353 
Revised simplex method, 16, 233 

LP problem, 233 
Rooted spanning tree, 257 
Rounding technique, 310 

procedure, 314 
Row bounding technique, 93 

Set covering problem models, 45, 47, 
106-111 

definition, 107, 111 
requirements/characteristics, 106 

Set partitioning problem, 111 
Shortest path problem, 247, 251 
Simple covering problem, 111 
Simplex method, 16, 213, 223 

basic feasible/infeasible solutions, 
220-221 

better and feasible solution, 213-215 
dual simplex method, 231-233 
geometric interpretation, 220 

basic feasible solution vs. extreme point, 
220-222 

nomenclature, 222-223 
initial basic feasible solution, 216 
optimality test, 216 
pivoting operation, 215 
revised simplex method, 233-238 
updating simplex tableau, 215 
for upper bounded variables, 227-231 
upper bound technique, 228 

Simplex tableau, 208, 211, 212, 214, 218, 
219, 225 

after pivoting, 215 
before pivoting, 214 

columns of, 219 
extreme ray identification, 223-227 
objective value, 219 
pivot column, 219 
pivot row, 219 

Simulated annealing algorithm, 370 
Simulated annealing heuristic, 369 
Single-variable constraints, 207 
Software packages, 401 
Software systems, components, 386 
Solution strategies, 359-362 

better formulation by preprocessing, 360 
heuristics for tightening lower bounds, 361 
LP-based branch-and-bound framework, 

361 
relaxations for tightening upper bounds, 

. 362 
strong cuts for tightening solution 

polyhedron, 362 
Source row, 282 
Spanning trees, 248 
Standard minimization problem, 168 
State-of-the-art MIP solvers, 388 
Stigler's economic model, 68 
Stochastic integer program, 24 
Stopping criterion, 369 

consumer surplus, 68 
reservation prices, 68 

Subproblems, objective functions, 344 
Superadditive, definition, 322 
Supply chain model, 45 
Supply chain planning (SCP), 44, 45 

MIP modeling situations, 45 
problems, 44-47 

descriptive models, 44 
network structures, 44 
normative models, 44 

Tableau coefficients, 282 
Tabu search, 367, 383 

algorithm, 367, 368 
problem-specific application, 383 

The Institute of Management Science 
(TIMS), 18 

Totally unimodular matrices, properties of, 
254 

Transformation, 54 
using 0-1 variables, 54 

Transformed network, 139 
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Transform functions, 66-69 
binary products, 66 
bundle pricing problem, 66 
continuous variables, 66 

Transportation model, 39, 250 
formulating, 250 
problem, 251,255 

coefficient matrix for, 255 
Traveling salesman problem (TSP), 17, 

130-133, 136, 139, 145, 148, 359 
applications of, 132, 139-142 

genome sequencing for genetic study, 
142 

machine sequencing problems in various 
manufacturing systems, 140 

sequencing problems in electronic 
industry, 140 

vehicle routing for delivery and 
dispatching, 141-142 

asymmetric TSP, 132, 142 
definition, 142 
formulating, 142-145 

data sets, 148 
formulations, 145 
generalized TSP, definition, 137 
importance of, 130 
instances, milestones of, 131 
symmetric TSP, 132, 146 

formulating, 146-148 
transformations, 133-139 

clustered TSP, 137 
generalized TSP, 137 
maximum TSP, 139 
multiple traveling salesmen problem, 

135 

shortest Hamiltonian path, 133-134 
TSP with repeated city visits, 134 

variations, 133 
Triangular matrix, 255 

Unbounded polyhedron, 195 
direction algebraically, 195 
recession cone, 196 
representation theorem, 199 

extreme directions/points, 199 
Uncapacitated facility location problem, 

85 
Undirected network, 147, 148 

subtours in, 148 
Upper bound technique, 228 
Valid inequality theorem, 308 
Variable fixing techniques, 91, 93 
Variable grouping-based genetic algorithm 

(VGGA), 383 

Warehouse location problem, 108 
requirements/activities, 108 

Web-based interfaces, 392 
Weighted b-matching, 116 
Weighted perfect matching, 116 
Workforce/staff scheduling problems, 

36-38 
scheduling full-time workers, 36, 37 
scheduling part-time workers, 37 

0-1 (binary) integer program, See Binary 
integer program (BIP) 

0-1 polynomial functions transformation, 
64-66 

Zero-valued variable, 222 
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