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Preface

The book by Gene Lawler from 1976 was the first of a series of books all en-
titled ‘Combinatorial Optimization’, some embellished with a subtitle: ‘Net-
works and Matroids’, ‘Algorithms and Complexity’, ‘Theory and Algorithms’.
Why adding another book to this illustrious series? The justification is con-
tained in the subtitle of the present book, ‘Polyhedra and Efficiency’. This is
shorthand for Polyhedral Combinatorics and Efficient Algorithms.

Pioneered by the work of Jack Edmonds, polyhedral combinatorics has
proved to be a most powerful, coherent, and unifying tool throughout com-
binatorial optimization. Not only it has led to efficient (that is, polynomial-
time) algorithms, but also, conversely, efficient algorithms often imply poly-
hedral characterizations and related min-max relations. It makes the two
sides closely intertwined.

We aim at offering both an introduction to and an in-depth survey of poly-
hedral combinatorics and efficient algorithms. Within the span of polyhedral
methods, we try to present a broad picture of polynomial-time solvable com-
binatorial optimization problems — more precisely, of those problems that
have been proved to be polynomial-time solvable. Next to that, we go into a
few prominent NP-complete problems where polyhedral methods were suc-
cessful in obtaining good bounds and approximations, like the stable set and
the traveling salesman problem. Nevertheless, while we obviously hope that
the question ‘NP=P?’ will be settled soon one way or the other, we realize
that in the astonishing event that NP=P will be proved, this book will be
highly incomplete.

By definition, being in P means being solvable by a ‘deterministic se-
quential polynomial-time’ algorithm, and in our discussions of algorithms
and complexity we restrict ourselves mainly to this characteristic. As a conse-
quence, we do not cover (but yet occasionally touch or outline) the important
work on approximative, randomized, and parallel algorithms and complex-
ity, areas that are recently in exciting motion. We also neglect applications,
modelling, and computational methods for NP-complete problems. Advanced
data structures are treated only moderately. Other underexposed areas in-
clude semidefinite programming and graph decomposition. ‘This all just to
keep size under control.’
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Although most problems that come up in practice are NP-complete or
worse, recognizing those problems that are polynomial-time solvable can be
very helpful: polynomial-time (and polyhedral) methods may be used in pre-
processing, in obtaining approximative solutions, or as a subroutine, for in-
stance to calculate bounds in a branch-and-bound method. A good under-
standing of what is in the polynomial-time tool box is essential also for the
NP-hard problem solver.

∗ ∗ ∗

This book is divided into eight main parts, each discussing an area where
polyhedral methods apply:

I. Paths and Flows
II. Bipartite Matching and Covering

III. Nonbipartite Matching and Covering
IV. Matroids and Submodular Functions
V. Trees, Branchings, and Connectors

VI. Cliques, Stable Sets, and Colouring
VII. Multiflows and Disjoint Paths

VIII. Hypergraphs

Volume A contains Parts I–III, Volume B Parts IV–VI, and Volume C Parts
VII and VIII, the list of References, and the Name and Subject Indices.

Each of the eight parts starts with an elementary exposition of the basic
results in the area, and gradually evolves to the more elevated regions. Sub-
sections in smaller print go into more specialized topics. We also offer several
references for further exploration of the area.

Although we give elementary introductions to the various areas, this book
might be less satisfactory as an introduction to combinatorial optimization.
Some mathematical maturity is required, and the general level is that of
graduate students and researchers. Yet, parts of the book may serve for un-
dergraduate teaching.

The book does not offer exercises, but, to stimulate research, we collect
open problems, questions, and conjectures that are mentioned throughout
this book, in a separate section entitled ‘Survey of Problems, Questions, and
Conjectures’ (in Volume C). It is not meant as a complete list of all open
problems that may live in the field, but only of those mentioned in the text.

We assume elementary knowledge of and familiarity with graph theory,
with polyhedra and linear and integer programming, and with algorithms
and complexity. To support the reader, we survey the knowledge assumed in
the introductory chapters, where we also give additional background refer-
ences. These chapters are meant mainly just for consultation, and might be
less attractive to read from front to back. Some less standard notation and
terminology are given on the inside back cover of this book.

For background on polyhedra and linear and integer programming, we
also refer to our earlier book Theory of Linear and Integer Programming
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(Wiley, Chichester, 1986). This might seem a biased recommendation, but
this 1986 book was partly written as a preliminary to the present book, and
it covers anyway the author’s knowledge on polyhedra and linear and integer
programming.

Incidentally, the reader of this book will encounter a number of concepts
and techniques that regularly crop up: total unimodularity, total dual inte-
grality, duality, blocking and antiblocking polyhedra, matroids, submodular-
ity, hypergraphs, uncrossing. It makes that the meaning of ‘elementary’ is not
unambiguous. Especially for the basic results, several methods apply, and it
is not in all cases obvious which method and level of generality should be
chosen to give a proof. In some cases we therefore will give several proofs of
one and the same theorem, just to open the perspective.

∗ ∗ ∗

While I have pursued great carefulness and precision in composing this
book, I am quite sure that much room for corrections and additions has
remained. To inform the reader about them, I have opened a website at the
address

www.cwi.nl/˜lex/co

Any corrections (including typos) and other comments and suggestions from
the side of the reader are most welcome at

lex@cwi.nl

I plan to provide those who have contributed most to this, with a compli-
mentary copy of a potential revised edition.

∗ ∗ ∗

In preparing this book I have profited greatly from the support and help
of many friends and colleagues, to whom I would like to express my gratitude.

I am particularly much obliged to Sasha Karzanov in Moscow, who has
helped me enormously by tracking down ancient publications in the (former)
Lenin Library in Moscow and by giving explanations and interpretations of
old and recent Russian papers. I also thank Sasha’s sister Irina for translating
Tolstŏı’s 1930 article for me.

I am very thankful to Tamás Fleiner, András Frank, Bert Gerards, Dion
Gijswijt, Willem Jan van Hoeve, Sasha Karzanov, Judith Keijsper, Monique
Laurent, Misha Lomonosov, Frédéric Maffay, Gábor Maróti, Coelho de Pina,
Bruce Shepherd, and Bianca Spille, for carefully reading preliminary parts
of this book, for giving corrections and suggestions improving the text and
the layout, and for helping me with useful background information. I am also
happy to thank Noga Alon, Csaba Berki, Vasek Chvátal, Michele Conforti,
Bill Cook, Gérard Cornuéjols, Bill Cunningham, Guoli Ding, Jack Edmonds,
Fritz Eisenbrand, Satoru Fujishige, Alan Hoffman, Tibor Jordán, Gil Kalai,
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Alfred Lehman, Jan Karel Lenstra, Laci Lovász, Bill Pulleyblank, Herman
te Riele, Alexander Rosa, András Sebő, Paul Seymour, Bruno Simeone, Jan
Smaus, Adri Steenbeek, Laci Szegő, Éva Tardos, Bjarne Toft, and David
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Sincere thanks are due as well to Truus W. Koopmans for sharing with
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16.2 Frobenius’ and Kőnig’s theorems . . . . . . . . . . . . . . . . . . . . . . . . 260

16.2a Frobenius’ proof of his theorem . . . . . . . . . . . . . . . . . . . . 262
16.2b Linear-algebraic proof of Frobenius’ theorem . . . . . . . . 262
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60.3d Packing cuts and Győri’s theorem . . . . . . . . . . . . . . . . 1030
60.3e Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034

61 Graph orientation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1035
61.1 Orientations with bounds on in- and outdegrees . . . . . . . . . . 1035
61.2 2-edge-connectivity and strongly connected orientations . . . 1037

61.2a Strongly connected orientations with bounds on
degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038

61.3 Nash-Williams’ orientation theorem . . . . . . . . . . . . . . . . . . . . . 1040



Table of Contents XXIX

61.4 k-arc-connected orientations of 2k-edge-connected graphs . . 1044
61.4a Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045
61.4b k-arc-connected orientations with bounds on

degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045
61.4c Orientations of graphs with lower bounds on

indegrees of sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046
61.4d Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1047

62 Network synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1049
62.1 Minimal k-(edge-)connected graphs . . . . . . . . . . . . . . . . . . . . . 1049
62.2 The network synthesis problem . . . . . . . . . . . . . . . . . . . . . . . . . 1051
62.3 Minimum-capacity network design . . . . . . . . . . . . . . . . . . . . . . 1052
62.4 Integer realizations and r-edge-connected graphs . . . . . . . . . . 1055

63 Connectivity augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058
63.1 Making a directed graph k-arc-connected . . . . . . . . . . . . . . . . 1058

63.1a k-arc-connectors with bounds on degrees . . . . . . . . . . 1061
63.2 Making an undirected graph 2-edge-connected . . . . . . . . . . . . 1062
63.3 Making an undirected graph k-edge-connected . . . . . . . . . . . . 1063

63.3a k-edge-connectors with bounds on degrees . . . . . . . . . 1066
63.4 r-edge-connectivity and r-edge-connectors . . . . . . . . . . . . . . . 1067
63.5 Making a directed graph k-vertex-connected . . . . . . . . . . . . . 1074
63.6 Making an undirected graph k-vertex-connected . . . . . . . . . . 1077

63.6a Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1078

Part VI: Cliques, Stable Sets, and Colouring 1081

64 Cliques, stable sets, and colouring . . . . . . . . . . . . . . . . . . . . . . . 1083
64.1 Terminology and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083
64.2 NP-completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1084
64.3 Bounds on the colouring number . . . . . . . . . . . . . . . . . . . . . . . 1085

64.3a Brooks’ upper bound on the colouring number . . . . . 1086
64.3b Hadwiger’s conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 1086

64.4 The stable set, clique, and vertex cover polytope . . . . . . . . . . 1088
64.4a Facets and adjacency on the stable set polytope . . . . 1088

64.5 Fractional stable sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1090
64.5a Further on the fractional stable set polytope . . . . . . . 1091

64.6 Fractional vertex covers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1093
64.6a A bound of Lorentzen . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095

64.7 The clique inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1095
64.8 Fractional and weighted colouring numbers . . . . . . . . . . . . . . 1096

64.8a The ratio of χ(G) and χ∗(G) . . . . . . . . . . . . . . . . . . . . . 1098
64.8b The Chvátal rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1098

64.9 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099



XXX Table of Contents

64.9a Graphs with polynomial-time stable set algorithm . . 1099
64.9b Colourings and orientations . . . . . . . . . . . . . . . . . . . . . . 1101
64.9c Algebraic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102
64.9d Approximation algorithms . . . . . . . . . . . . . . . . . . . . . . . 1103
64.9e Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104

65 Perfect graphs: general theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106
65.1 Introduction to perfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 1106
65.2 The perfect graph theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108
65.3 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109
65.4 Perfect graphs and polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . 1110

65.4a Lovász’s proof of the replication lemma. . . . . . . . . . . . 1111
65.5 Decomposition of Berge graphs . . . . . . . . . . . . . . . . . . . . . . . . . 1112

65.5a 0- and 1-joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1112
65.5b The 2-join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113

65.6 Pre-proof work on the strong perfect graph conjecture . . . . . 1115
65.6a Partitionable graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116
65.6b More characterizations of perfect graphs . . . . . . . . . . . 1118
65.6c The stable set polytope of minimally imperfect

graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118
65.6d Graph classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1120
65.6e The P4-structure of a graph and a semi-strong

perfect graph theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122
65.6f Further notes on the strong perfect graph

conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123
65.7 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125

65.7a Perz and Rolewicz’s proof of the perfect graph
theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125

65.7b Kernel solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126
65.7c The amalgam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130
65.7d Diperfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131
65.7e Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133

66 Classes of perfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135
66.1 Bipartite graphs and their line graphs . . . . . . . . . . . . . . . . . . . 1135
66.2 Comparability graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137
66.3 Chordal graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138

66.3a Chordal graphs as intersection graphs of subtrees of
a tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1142

66.4 Meyniel graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143
66.5 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145

66.5a Strongly perfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
66.5b Perfectly orderable graphs . . . . . . . . . . . . . . . . . . . . . . . 1146
66.5c Unimodular graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
66.5d Further classes of perfect graphs . . . . . . . . . . . . . . . . . . 1148



Table of Contents XXXI

66.5e Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149

67 Perfect graphs: polynomial-time solvability . . . . . . . . . . . . . . 1152
67.1 Optimum clique and colouring in perfect graphs

algorithmically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152
67.2 Weighted clique and colouring algorithmically . . . . . . . . . . . . 1155
67.3 Strong polynomial-time solvability . . . . . . . . . . . . . . . . . . . . . . 1159
67.4 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1159

67.4a Further on ϑ(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1159
67.4b The Shannon capacity Θ(G) . . . . . . . . . . . . . . . . . . . . . 1167
67.4c Clique cover numbers of products of graphs . . . . . . . . 1172
67.4d A sharper upper bound ϑ′(G) on α(G) . . . . . . . . . . . . 1173
67.4e An operator strengthening convex bodies . . . . . . . . . . 1173
67.4f Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
67.4g Historical notes on perfect graphs . . . . . . . . . . . . . . . . . 1176

68 T-perfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186
68.1 T-perfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186
68.2 Strongly t-perfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187
68.3 Strong t-perfection of odd-K4-free graphs . . . . . . . . . . . . . . . . 1188
68.4 On characterizing t-perfection . . . . . . . . . . . . . . . . . . . . . . . . . . 1194
68.5 A combinatorial min-max relation . . . . . . . . . . . . . . . . . . . . . . 1196
68.6 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200

68.6a The w-stable set polyhedron . . . . . . . . . . . . . . . . . . . . . 1200
68.6b Bidirected graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201
68.6c Characterizing odd-K4-free graphs by mixing stable

sets and vertex covers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1203
68.6d Orientations of discrepancy 1 . . . . . . . . . . . . . . . . . . . . 1204
68.6e Colourings and odd K4-subdivisions . . . . . . . . . . . . . . 1206
68.6f Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207
68.6g Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207

69 Claw-free graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208
69.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208
69.2 Maximum-size stable set in a claw-free graph . . . . . . . . . . . . . 1208
69.3 Maximum-weight stable set in a claw-free graph . . . . . . . . . . 1213
69.4 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216

69.4a On the stable set polytope of a claw-free graph . . . . . 1216
69.4b Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217



XXXII Table of Contents

Volume C

Part VII: Multiflows and Disjoint Paths 1219

70 Multiflows and disjoint paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221
70.1 Directed multiflow problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 1221
70.2 Undirected multiflow problems . . . . . . . . . . . . . . . . . . . . . . . . . 1222
70.3 Disjoint paths problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223
70.4 Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1223
70.5 Complexity of the disjoint paths problem . . . . . . . . . . . . . . . . 1224
70.6 Complexity of the fractional multiflow problem . . . . . . . . . . . 1225
70.7 The cut condition for directed graphs . . . . . . . . . . . . . . . . . . . 1227
70.8 The cut condition for undirected graphs . . . . . . . . . . . . . . . . . 1228
70.9 Relations between fractional, half-integer, and integer

solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1230
70.10 The Euler condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1233
70.11 Survey of cases where a good characterization has been

found . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1234
70.12 Relation between the cut condition and fractional cut

packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236
70.12a Sufficiency of the cut condition sometimes implies

an integer multiflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1238
70.12b The cut condition and integer multiflows in directed

graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1241
70.13 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1242

70.13a Fixing the number of commodities in undirected
graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1242

70.13b Fixing the number of commodities in directed
graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1243

70.13c Disjoint paths in acyclic digraphs . . . . . . . . . . . . . . . . . 1244
70.13d A column generation technique for multiflows . . . . . . 1245
70.13e Approximate max-flow min-cut theorems for

multiflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1247
70.13f Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1248
70.13g Historical notes on multicommodity flows . . . . . . . . . . 1249

71 Two commodities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251
71.1 The Rothschild-Whinston theorem and Hu’s 2-commodity

flow theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1251
71.1a Nash-Williams’ proof of the Rothschild-Whinston

theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1254
71.2 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1255
71.3 2-commodity cut packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1257
71.4 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1261



Table of Contents XXXIII

71.4a Two disjoint paths in undirected graphs . . . . . . . . . . . 1261
71.4b A directed 2-commodity flow theorem . . . . . . . . . . . . . 1262
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Chapter 1

Introduction

1.1. Introduction

Combinatorial optimization searches for an optimum object in a finite collec-
tion of objects. Typically, the collection has a concise representation (like a
graph), while the number of objects is huge — more precisely, grows exponen-
tially in the size of the representation (like all matchings or all Hamiltonian
circuits). So scanning all objects one by one and selecting the best one is not
an option. More efficient methods should be found.

In the 1960s, Edmonds advocated the idea to call a method efficient if its
running time is bounded by a polynomial in the size of the representation.
Since then, this criterion has won broad acceptance, also because Edmonds
found polynomial-time algorithms for several important combinatorial opti-
mization problems (like the matching problem). The class of polynomial-time
solvable problems is denoted by P.

Further relief in the landscape of combinatorial optimization was discov-
ered around 1970 when Cook and Karp found out that several other promi-
nent combinatorial optimization problems (including the traveling salesman
problem) are the hardest in a large natural class of problems, the class NP.
The class NP includes most combinatorial optimization problems. Any prob-
lem in NP can be reduced to such ‘NP-complete’ problems. All NP-complete
problems are equivalent in the sense that the polynomial-time solvability of
one of them implies the same for all of them.

Almost every combinatorial optimization problem has since been either
proved to be polynomial-time solvable or NP-complete — and none of the
problems have been proved to be both. This spotlights the big mystery:
are the two properties disjoint (equivalently, P�=NP), or do they coincide
(P=NP)?

This book focuses on those combinatorial optimization problems that have
been proved to be solvable in polynomial time, that is, those that have been
proved to belong to P. Next to polynomial-time solvability, we focus on the
related polyhedra and min-max relations.

These three aspects have turned out to be closely related, as was shown
also by Edmonds. Often a polynomial-time algorithm yields, as a by-product,
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a description (in terms of inequalities) of an associated polyhedron. Con-
versely, an appropriate description of the polyhedron often implies the
polynomial-time solvability of the associated optimization problem, by ap-
plying linear programming techniques. With the duality theorem of linear
programming, polyhedral characterizations yield min-max relations, and vice
versa.

So the span of this book can be portrayed alternatively by those combi-
natorial optimization problems that yield well-described polyhedra and min-
max relations. This field of discrete mathematics is called polyhedral combi-
natorics. In the following sections we give some basic, illustrative examples.1

1.2. Matchings

Let G = (V, E) be an undirected graph and let w : E → R+. For any subset
F of E, denote

(1.1) w(F ) :=
∑

e∈F

w(e).

We will call w(F ) the weight of F .
Suppose that we want to find a matching (= set of disjoint edges) M in

G with weight w(M) as large as possible. In notation, we want to ‘solve’

(1.2) max{w(M) | M matching in G}.

We can formulate this problem equivalently as follows. For any matching M ,
denote the incidence vector of M in RE by χM ; that is,

(1.3) χM (e) :=

{

1 if e ∈ M ,
0 if e �∈ M ,

for e ∈ E. Considering w as a vector in RE , we have w(M) = wTχM . Hence
problem (1.2) can be rewritten as

(1.4) max{wTχM | M matching in G}.

This amounts to maximizing the linear function wTx over a finite set of
vectors. Therefore, the optimum value does not change if we maximize over
the convex hull of these vectors:

(1.5) max{wTx | x ∈ conv.hull{χM | M matching in G}}.

The set

(1.6) conv.hull{χM | M matching in G}
is a polytope in RE , called the matching polytope of G. As it is a polytope,
there exist a matrix A and a vector b such that

1 Terms used but not introduced yet can be found later in this book — consult the Subject
Index.
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(1.7) conv.hull{χM | M matching in G} = {x ∈ RE | x ≥ 0, Ax ≤ b}.

Then problem (1.5) is equivalent to

(1.8) max{wTx | x ≥ 0, Ax ≤ b}.

In this way we have formulated the original combinatorial problem (1.2) as
a linear programming problem. This enables us to apply linear programming
methods to study the original problem.

The question at this point is, however, how to find the matrix A and the
vector b. We know that A and b do exist, but we must know them in order
to apply linear programming methods.

If G is bipartite, it turns out that the matching polytope of G is equal to
the set of all vectors x ∈ RE satisfying

(1.9) x(e) ≥ 0 for e ∈ E,
∑

e∋v

x(e) ≤ 1 for v ∈ V .

(The sum ranges over all edges e containing v.) That is, for A we can take
the V × E incidence matrix of G and for b the all-one vector 1 in RV .

It is not difficult to show that the matching polytope for bipartite graphs is
indeed completely determined by (1.9). First note that the matching polytope
is contained in the polytope determined by (1.9), since χM satisfies (1.9)
for each matching M . To see the reverse inclusion, we note that, if G is
bipartite, then the matrix A is totally unimodular, i.e., each square submatrix
has determinant belonging to {0, +1,−1}. (This easy fact will be proved in
Section 18.2.) The total unimodularity of A implies that the vertices of the
polytope determined by (1.9) are integer vectors, i.e., belong to ZE . Now
each integer vector satisfying (1.9) must trivially be equal to χM for some
matching M . Hence, if G is bipartite, the matching polytope is determined
by (1.9).

We therefore can apply linear programming techniques to handle problem
(1.2). Thus we can find a maximum-weight matching in a bipartite graph in
polynomial time, with any polynomial-time linear programming algorithm.
Moreover, the duality theorem of linear programming gives

(1.10) max{w(M) | M matching in G} = max{wTx | x ≥ 0, Ax ≤ 1}
= min{yT1 | y ≥ 0, yTA ≥ wT}.

If we take for w the all-one vector 1 in RE , we can derive from this Kőnig’s
matching theorem (Kőnig [1931]):

(1.11) the maximum size of a matching in a bipartite graph is equal to
the minimum size of a vertex cover,

where a vertex cover is a set of vertices intersecting each edge. Indeed, the
left-most expression in (1.10) is equal to the maximum size of a matching.
The minimum can be seen to be attained by an integer vector y, again by
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the total unimodularity of A. This vector y is a 0, 1 vector in RV , and hence
is the incidence vector χU of some subset U of V . Then yTA ≥ 1T implies
that U is a vertex cover. Therefore, the right-most expression is equal to the
minimum size of a vertex cover.

Kőnig’s matching theorem (1.11) is an example of a min-max formula
that can be derived from a polyhedral characterization. Conversely, min-max
formulas (in particular in a weighted form) often give polyhedral characteri-
zations.

The polyhedral description together with linear programming duality also
gives a certificate of optimality of a matching M : to convince your ‘boss’ that a
certain matching M has maximum size, it is possible and sufficient to display
a vertex cover of size |M |. In other words, it yields a good characterization
for the maximum-size matching problem in bipartite graphs.

1.3. But what about nonbipartite graphs?

If G is nonbipartite, the matching polytope is not determined by (1.9): if C is
an odd circuit in G, then the vector x ∈ RE defined by x(e) := 1

2 if e ∈ EC
and x(e) := 0 if e �∈ EC, satisfies (1.9) but does not belong to the matching
polytope of G.

A pioneering and central theorem in polyhedral combinatorics of Edmonds
[1965b] gives a complete description of the inequalities needed to describe
the matching polytope for arbitrary graphs: one should add to (1.9) the
inequalities

(1.12)
∑

e⊆U

x(e) ≤ ⌊ 1
2 |U |⌋ for each odd-size subset U of V .

Trivially, the incidence vector χM of any matching M satisfies (1.12). So the
matching polytope of G is contained in the polytope determined by (1.9) and
(1.12). The content of Edmonds’ theorem is the converse inclusion. This will
be proved in Chapter 25.

In fact, Edmonds designed a polynomial-time algorithm to find a maxi-
mum-weight matching in a graph, which gave this polyhedral characterization
as a by-product. Conversely, from the characterization one may derive the
polynomial-time solvability of the weighted matching problem, with the el-
lipsoid method. In applying linear programming methods for this, one will be
faced with the fact that the system Ax ≤ b consists of exponentially many
inequalities, since there exist exponentially many odd-size subsets U of V .
So in order to solve the problem with linear programming methods, we can-
not just list all inequalities. However, the ellipsoid method does not require
that all inequalities are listed a priori. It suffices to have a polynomial-time
algorithm answering the question:

(1.13) given x ∈ RE , does x belong to the matching polytope of G?
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Such an algorithm indeed exists, as it has been shown that the inequalities
(1.9) and (1.12) can be checked in time bounded by a polynomial in |V |, |E|,
and the size of x. This method obviously should avoid testing all inequalities
(1.12) one by one.

Combining the description of the matching polytope with the duality
theorem of linear programming gives a min-max formula for the maximum
weight of a matching. It again yields a certificate of optimality: if we have a
matching M , we can convince our ‘boss’ that M has maximum weight, by
supplying a dual solution y of objective value w(M). So the maximum-weight
matching problem has a good characterization — i.e., belongs to NP∩co-NP.

This gives one motivation for studying polyhedral methods. The ellip-
soid method proves polynomial-time solvability, it however does not yield a
practical method, but rather an incentive to search for a practically efficient
algorithm. The polyhedral method can be helpful also in this, e.g., by imi-
tating the simplex method with a constraint generation technique, or by a
primal-dual approach.

1.4. Hamiltonian circuits and the traveling salesman

problem

As we discussed above, matching is an area where the search for an inequal-
ity system determining the corresponding polytope has been successful. This
is in contrast with, for instance, Hamiltonian circuits. No full description in
terms of inequalities of the convex hull of the incidence vectors of Hamiltonian
circuits — the traveling salesman polytope — is known. The corresponding
optimization problem is the traveling salesman problem: ‘find a Hamiltonian
circuit of minimum weight’, which problem is NP-complete. This implies
that, unless NP=co-NP, there exist facet-inducing inequalities for the trav-
eling salesman polytope that have no polynomial-time certificate of validity.
Otherwise, linear programming duality would yield a good characterization.
So unless NP=co-NP there is no hope for an appropriate characterization of
the traveling salesman polytope.

Moreover, unless NP=P, there is no polynomial-time algorithm answering
the question

(1.14) given x ∈ RE , does x belong to the traveling salesman polytope?

Otherwise, the ellipsoid method would give the polynomial-time solvability
of the traveling salesman problem.

Nevertheless, polyhedral combinatorics can be applied to the traveling
salesman problem in a positive way. If we include the traveling salesman
polytope in a larger polytope (a relaxation) over which we can optimize in
polynomial time, we obtain a polynomial-time computable bound for the
traveling salesman problem. The closer the relaxation is to the traveling
salesman polytope, the better the bound is. This can be very useful in a



6 Chapter 1. Introduction

branch-and-bound algorithm. This idea originates from Dantzig, Fulkerson,
and Johnson [1954b].

1.5. Historical and further notes

1.5a. Historical sketch on polyhedral combinatorics

The first min-max relations in combinatorial optimization were proved by Dénes
Kőnig [1916,1931], on edge-colouring and matchings in bipartite graphs, and by
Karl Menger [1927], on disjoint paths in graphs. The matching theorem of Kőnig
was extended to the weighted case by Egerváry [1931]. The proofs by Kőnig and
Egerváry were in principal algorithmic, and also for Menger’s theorem an algo-
rithmic proof was given in the 1930s. The theorem of Egerváry may be seen as
polyhedral.

Applying linear programming techniques to combinatorial optimization prob-
lems came along with the introduction of linear programming in the 1940s and
1950s. In fact, linear programming forms the hinge in the history of combinatorial
optimization. Its initial conception by Kantorovich and Koopmans was motivated
by combinatorial applications, in particular in transportation and transshipment.

After the formulation of linear programming as generic problem, and the devel-
opment in 1947 by Dantzig of the simplex method as a tool, one has tried to
attack about all combinatorial optimization problems with linear programming
techniques, quite often very successfully. In the 1950s, Dantzig, Ford, Fulkerson,
Hoffman, Kuhn, and others studied problems like the transportation, maximum
flow, and assignment problems. These problems can be reduced to linear program-
ming by the total unimodularity of the underlying matrix, thus yielding exten-
sions and polyhedral and algorithmic interpretations of the earlier results of Kőnig,
Egerváry, and Menger. Kuhn realized that the polyhedral methods of Egerváry for
weighted bipartite matching are in fact algorithmic, and yield the efficient ‘Hungar-
ian’ method for the assignment problem. Dantzig, Fulkerson, and Johnson gave a
solution method for the traveling salesman problem, based on linear programming
with a rudimentary, combinatorial version of a cutting plane technique.

A considerable extension and deepening, and a major justification, of the field
of polyhedral combinatorics was obtained in the 1960s and 1970s by the work and
pioneering vision of Jack Edmonds. He characterized basic polytopes like the match-
ing polytope, the arborescence polytope, and the matroid intersection polytope; he
introduced (with Giles) the important concept of total dual integrality; and he
advocated the interconnections between polyhedra, min-max relations, good char-
acterizations, and efficient algorithms. We give a few quotes in which Edmonds
enters into these issues.

In his paper presenting a maximum-size matching algorithm, Edmonds [1965d]
gave a polyhedral argument why an algorithm can lead to a min-max theorem:

It is reasonable to hope for a theorem of this kind because any problem which
involves maximizing a linear form by one of a discrete set of non-negative vectors
has associated with it a dual problem in the following sense. The discrete set
of vectors has a convex hull which is the intersection of a discrete set of half-
spaces. The value of the linear form is as large for some vector of the discrete set



Section 1.5a. Historical sketch on polyhedral combinatorics 7

as it is for any other vector in the convex hull. Therefore, the discrete problem
is equivalent to an ordinary linear programme whose constraints, together with
non-negativity, are given by the half-spaces. The dual (more precisely, a dual) of
the discrete problem is the dual of this ordinary linear programme.
For a class of discrete problems, formulated in a natural way, one may hope then
that equivalent linear constraints are pleasant enough though they are not explicit
in the discrete formulation.

In another paper (characterizing the matching polytope), Edmonds [1965b] stressed
that the number of inequalities is not relevant:

The results of this paper suggest that, in applying linear programming to a com-
binatorial problem, the number of relevant inequalities is not important but their
combinatorial structure is.

Also in a discussion at the IBM Scientific Computing Symposium on Combinatorial
Problems (March 1964 in Yorktown Heights, New York), Edmonds emphasized that
the number of facets of a polyhedron is not a measure of the complexity of the
associated optimization problem (see Gomory [1966]):

I do not believe there is any reason for taking as a measure of the algorithmic
difficulty of a class of combinatorial extremum problems the number of faces in the
associated polyhedra. For example, consider the generalization of the assignment
problem from bipartite graphs to arbitrary graphs. Unlike the case of bipartite
graphs, the number of faces in the associated polyhedron increases exponentially
with the size of the graph. On the other hand, there is an algorithm for this
generalized assignment problem which has an upper bound on the work involved
just as good as the upper bound for the bipartite assignment problem.

After having received support from H.W. Kuhn and referring to Kuhn’s maximum-
weight bipartite matching algorithm, Edmonds continued:

This algorithm depends crucially on what amounts to knowing all the bounding
inequalities of the associated convex polyhedron—and, as I said, there are many
of them. The point is that the inequalities are known by an easily verifiable
characterization rather than by an exhaustive listing—so their number is not
important.
This sort of thing should be expected for a class of extremum problems with a
combinatorially special structure. For the traveling salesman problem, the ver-
tices of the associated polyhedron have a simple characterization despite their
number—so might the bounding inequalities have a simple characterization de-
spite their number. At least we should hope they have, because finding a really
good traveling salesman algorithm is undoubtedly equivalent to finding such a
characterization.

So Edmonds was aware of the correlation of good algorithms and polyhedral char-
acterizations, which later got further support by the ellipsoid method.

Also during the 1960s and 1970s, Fulkerson designed the clarifying framework of
blocking and antiblocking polyhedra, throwing new light by the classical polarity of
vertices and facets of polyhedra on combinatorial min-max relations and enabling,
with a theorem of Lehman, the deduction of one polyhedral characterization from
another. It stood at the basis of the solution of Berge’s perfect graph conjecture in
1972 by Lovász, and it also inspired Seymour to obtain several other basic results
in polyhedral combinatorics.
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1.5b. Further notes

Raghavan and Thompson [1987] showed that randomized rounding of an optimum
fractional solution to a combinatorial optimization problem yields, with high prob-
ability, an integer solution with objective value close to the value of the fractional
solution (hence at least as close to the optimum value of the combinatorial prob-
lem). Related results were presented by Raghavan [1988], Plotkin, Shmoys, and
Tardos [1991,1995], and Srinivasan [1995,1999].

Introductions to combinatorial optimization (and more than that) can be found
in the books by Lawler [1976b], Papadimitriou and Steiglitz [1982], Sys�lo, Deo,
and Kowalik [1983], Nemhauser and Wolsey [1988], Parker and Rardin [1988],
Cook, Cunningham, Pulleyblank, and Schrijver [1998], Mehlhorn and Näher [1999],
and Korte and Vygen [2000]. Focusing on applying geometric algorithms in com-
binatorial optimization are Lovász [1986] and Grötschel, Lovász, and Schrijver
[1988]. Bibliographies on combinatorial optimization were given by Kastning [1976],
Golden and Magnanti [1977], Hausmann [1978b], von Randow [1982,1985,1990], and
O’hEigeartaigh, Lenstra, and Rinnooy Kan [1985].

Survey papers on polyhedral combinatorics and min-max relations were pre-
sented by Hoffman [1979], Pulleyblank [1983,1989], Schrijver [1983a,1986a,1987,
1995], and Grötschel [1985], on geometric methods in combinatorial optimization
by Grötschel, Lovász, and Schrijver [1984b], and on polytopes and complexity by
Papadimitriou [1984].



Chapter 2

General preliminaries

We give general preliminaries on sets, numbers, orders, vectors, matrices,
and functions, we discuss how to interpret maxima, minima, and infinity,
and we formulate and prove Fekete’s lemma.

2.1. Sets

A large part of the sets considered in this book are finite. We often

neglect mentioning this when introducing a set. For instance, graphs
in this book are finite graphs, except if we explicitly mention otherwise. Sim-
ilarly for other structures like hypergraphs, matroids, families of sets, etc.
Obvious exceptions are the sets of reals, integers, etc.

We call a subset Y of a set X proper if Y �= X. Similarly, any other
substructure like subgraph, minor, etc. is called proper if it is not equal to
the structure of which it is a substructure.

A family is a set in which elements may occur more than once. More
precisely, each element has a multiplicity associated. Sometimes, we indicate
a family by (A1, . . . , An) or (Ai | i ∈ I).

A collection is synonymous with set, but is usually used for a set whose
elements are sets. Also class and system are synonyms of set, and are usually
used for sets of structures, like a set of graphs, inequalities, or curves.

A set is called odd (even) if its size is odd (even). We denote for any set
X:

(2.1) P(X) := collection of all subsets of X,
Podd(X) := collection of all odd subsets Y of X,
Peven(X) := collection of all even subsets Y of X.

Odd and even are called parities.
We sometimes say that if s ∈ U , then U covers s and s covers U . A set

U is said to separate s and t if s �= t and |U ∩ {s, t}| = 1. Similarly, a set U
is said to separate sets S and T if S ∩ T = ∅ and U ∩ (S ∪ T ) ∈ {S, T}.

We denote the symmetric difference of two sets S and T by S△T :

(2.2) S△T = (S \ T ) ∪ (T \ S).
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We sometimes use the following shorthand notation, where X is a set and y
an ‘element’:

(2.3) X + y := X ∪ {y} and X − y := X \ {y}.

We say that sets S1, S2, . . . , Sk are disjoint if they are pairwise disjoint:

(2.4) Si ∩ Sj = ∅ for distinct i, j ∈ {1, . . . , k}.

A partition of a set X is a collection of disjoint subsets of X with union X.
The elements of the partition are called its classes.

As usual:

(2.5) X ⊆ Y means that X is a subset of Y ,
X ⊂ Y means that X is a proper subset of Y , that is: X ⊆ Y
and X �= Y .

Two sets X, Y are comparable if X ⊆ Y or Y ⊆ X. A collection of pairwise
comparable sets is called a chain.

Occasionally, we need the following inequality:

Theorem 2.1. If T and U are subsets of a set S with T �⊆ U and U �⊆ T ,
then

(2.6) |T ||T | + |U ||U | > |T ∩ U ||T ∩ U | + |T ∪ U ||T ∪ U |,
where X := S \ X for any X ⊆ S.

Proof. Define α := |T ∩ U |, β := |T \ U |, γ := |U \ T |, and δ := |T ∪ U |.
Then:

(2.7) |T ||T | + |U ||U | = (α + β)(γ + δ) + (α + γ)(β + δ)
= 2αδ + 2βγ + αγ + βδ + αβ + γδ

and

(2.8) |T ∩ U ||T ∩ U | + |T ∪ U ||T ∪ U | = α(β + γ + δ) + (α + β + γ)δ
= 2αδ + αγ + βδ + αβ + γδ.

Since βγ > 0, (2.6) follows.

A set U is called an inclusionwise minimal set in a collection C of sets
if U ∈ C and there is no T ∈ C with T ⊂ U . Similarly, U is called an
inclusionwise maximal set in C if U ∈ C and there is no T ∈ C with T ⊃ U .

We sometimes use the term minimal for inclusionwise minimal, and min-
imum for minimum-size. Similarly, we sometimes use maximal for inclu-
sionwise maximal, and maximum for maximum-size (or maximum-value for
flows).

A metric on a set V is a function µ : V × V → R+ such that µ(v, v) = 0,
µ(u, v) = µ(v, u), and µ(u, w) ≤ µ(u, v) + µ(v, w) for all u, v, w ∈ V .
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2.2. Orders

A relation ≤ on a set X is called a pre-order if it is reflexive (x ≤ x for all
x ∈ X) and transitive (x ≤ y and y ≤ z implies x ≤ z). It is a partial order
if it is moreover anti-symmetric (x ≤ y and y ≤ x implies x = y). The pair
(X, ≤) is called a partially ordered set if ≤ is a partial order.

A partial order ≤ is a linear order or total order if x ≤ y or y ≤ x for
all x, y ∈ X. If X = {x1, . . . , xn} and x1 < x2 < · · · < xn, we occasionally
refer to the linear order ≤ by x1, . . . , xn or x1 < · · · < xn. A linear order �
is called a linear extension of a partial order ≤ if x ≤ y implies x � y.

In a partially ordered set (X, ≤), a lower ideal is a subset Y of X such
that if y ∈ Y and z ≤ y, then z ∈ Y . Similarly, an upper ideal is a subset Y
of X such that if y ∈ Y and z ≥ y, then z ∈ Y . Alternatively, Y is called
down-monotone if Y is a lower ideal, and up-monotone if Y is an upper ideal.

If (X, ≤) is a linearly ordered set, then the lexicographic order � on
⋃

k≥0 Xk is defined by:

(2.9) (v1, . . . , vt) ≺ (u1, . . . , us) ⇐⇒ the smallest i with vi �= ui

satisfies vi < ui,

where we set vi :=void if i > t, ui :=void if i > s, and void< x for all x ∈ X.

2.3. Numbers

Z, Q, and R denote the sets of integers, rational numbers, and real numbers,
respectively. The subscript + restricts the sets to the nonnegative numbers:

(2.10) Z+ := {x ∈ Z | x ≥ 0}, Q+ := {x ∈ Q | x ≥ 0},
R+ := {x ∈ R | x ≥ 0}.

Further we denote for any x ∈ R:

(2.11) ⌊x⌋ := largest integer y satisfying y ≤ x,
⌈x⌉ := smallest integer y satisfying y ≥ x.

2.4. Vectors, matrices, and functions

All vectors are assumed to be column vectors. The components or entries of a
vector x = (x1, . . . , xn)T are x1, . . . , xn. The support of x is the set of indices
i with xi �= 0. The size of a vector x is the sum of its components.

A 0, 1 vector, or a {0, 1}-valued vector, or a simple vector, is a vector with
all entries in {0, 1}. An integer vector is a vector with all entries integer.

We identify the concept of a function x : V → R with that of a vector
x in RV . Its components are denoted equivalently by x(v) or xv. An integer
function is an integer-valued function.

For any U ⊆ V , the incidence vector of U (in RV ) is the vector χU defined
by:
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(2.12) χU (s) :=

{

1 if s ∈ U ,
0 if s �∈ U .

For any u ∈ V we set

(2.13) χu := χ{u}.

This is the uth unit base vector. Given a vector space RV for some set V , the
all-one vector is denoted by 1V or just by 1, and the all-zero vector by 0V

or just by 0. Similarly, 2V or 2 is the all-two vector. We use ∞ for the all-∞
vector.

If a = (a1, . . . , an)T and b = (b1, . . . , bn)T are vectors, we write a ≤ b if
ai ≤ bi for i = 1, . . . , n, and a < b if ai < bi for i = 1, . . . , n.

If A is a matrix and x, b, y, and c are vectors, then when using notation
like

(2.14) Ax = b, Ax ≤ b, yTA = cT, cTx,

we often implicitly assume compatibility of dimensions.
For any vector x = (x1, . . . , xn)T:

(2.15) ‖x‖1 := |x1| + · · · + |xn| and ‖x‖∞ := max{|x1|, . . . , |xn|}.

A hyperplane in Rn is a set H with H = {x ∈ Rn | cTx = δ} for some
c ∈ Rn with c �= 0 and some δ ∈ R.

If U and V are sets, then a U×V matrix is a matrix whose rows are indexed
by the elements of U and whose columns are indexed by the elements of V .
Generally, when using this terminology, the order of the rows or columns is
irrelevant. For a U × V matrix M and u ∈ U , v ∈ V , the entry in position
u, v is denoted by Mu,v. The all-one U × V matrix is denoted by JU×V , or
just by J .

The tensor product of vectors x ∈ RU and y ∈ RV is the vector x ◦ y in
RU×V defined by:

(2.16) (x ◦ y)(u,v) := xuyv

for u ∈ U and v ∈ V .
The tensor product of a W × X matrix M and a Y × Z matrix N (where

W, X, Y, Z are sets), is the (W × Y ) × (X × Z) matrix M ◦ N defined by

(2.17) (M ◦ N)(w,y),(x,z) := Mw,xNy,z

for w ∈ W , x ∈ X, y ∈ Y , z ∈ Z.
The C × V incidence matrix of a collection or family C of subsets of a set

V is the C × V matrix M with MC,v := 1 if v ∈ C and MC,v := 0 if v �∈ C
(for C ∈ C, v ∈ V ). Similarly, the V × C incidence matrix is the transpose of
this matrix.

For any function w : V → R and any U ⊆ V , we denote

(2.18) w(U) :=
∑

v∈U

w(v).
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If U is a family, we take multiplicities into account (so if v occurs k times in
U , w(v) occurs k times in sum (2.18)).

If w is introduced as a ‘weight function’, then w(v) is called the weight
of v, and for any U ⊆ V , w(U) is called the weight of U . Moreover, for any
x : V → R, we call wTx the weight of x. If confusion may arise, we call w(U)
and wTx the w-weight of U and x, respectively.

The adjective ‘weight’ to ‘function’ has no mathematical meaning, and im-
plies no restriction, but is just introduced to enable referring to w(v) or w(U)
as the weight of v or U . Similarly, for ‘length function’, ‘cost function’, ‘profit
function’, ‘capacity function’, ‘demand function’, etc., leading to the length,
cost, profit, capacity, demand, etc. of elements or of subsets. Obviously, short-
est and longest are synonyms for ‘minimum-length’ and ‘maximum-length’.

A permutation matrix is a square {0, 1} matrix, with exactly one 1 in each
row and in each column.

Vectors x1, . . . , xk are called affinely independent if there do not exist
λ1, . . . , λk ∈ R such that λ1x1 + · · · + λkxk = 0 and λ1 + · · · + λk = 0 and
such that the λi are not all equal to 0.

Vectors x1, . . . , xk are called linearly independent if there do not exist
λ1, . . . , λk ∈ R such that λ1x1 + · · · + λkxk = 0 and such that the λi are not
all equal to 0. The linear hull of a set X is denoted by lin.hullX or lin.hull(X).

If X and Y are subsets of a linear space L over a field F, z ∈ L, and
λ ∈ F, then

(2.19) z + X := {z + x | x ∈ X}, X + Y := {x + y | x ∈ X, y ∈ Y }, and
λX = {λx | x ∈ X}.

If X and Y are subspaces of L, then

(2.20) X/Y := {x + Y | x ∈ X}
is a quotient space, which is again a linear space, with addition and scalar
multiplication given by (2.19). The dimension of X/Y is equal to dim(X) −
dim(X ∩ Y ).

A function f : X → Y is called an injection or an injective function if it
is one-to-one: if x, x′ ∈ X and x �= x′, then f(x) �= f(x′). The function f is
a surjection if it is onto: for each y ∈ Y there is an x ∈ X with f(x) = y. It
is a bijection if it is both an injection and a surjection.

For a vector x = (x1, . . . , xn)T ∈ Rn, we denote

(2.21) ⌊x⌋ := (⌊x1⌋, . . . , ⌊xn⌋)T and ⌈x⌉ := (⌈x1⌉, . . . , ⌈xn⌉)T.

If f, g : X → R are functions, we say that f(x) is O(g(x)), in notation

(2.22) f(x) = O(g(x)) or O(f(x)) = O(g(x)),

if there exists a constant c ≥ 0 with f(x) ≤ cg(x) + c for all x ∈ X. Hence
the relation = given in (2.22) is transitive, but not symmetric. We put

(2.23) g(x) = Ω(f(x))

if f(x) = O(g(x)).
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2.5. Maxima, minima, and infinity

In this book, when speaking of a maximum or minimum, we often implicitly
assume that the optimum is finite. If the optimum is not finite, consistency
in min-max relations usually can be obtained by setting a minimum over
the empty set to +∞, a maximum over a set without upper bound to +∞, a
maximum over the empty set to 0 or −∞ (depending on what is the universe),
and a minimum over a set without lower bound to −∞. This usually leads
to trivial, or earlier proved, statements.

When we speak of making a value infinite, usually large enough will suffice.
If we consider maximizing a function f(x) over x ∈ X, we call any x ∈ X

a feasible solution, and any x ∈ X maximizing f(x) an optimum solution.
Similarly for minimizing.

2.6. Fekete’s lemma

We will need the following result called Fekete’s lemma, due to Pólya and
Szegő [1925] (motivated by a special case proved by Fekete [1923]):

Theorem 2.2 (Fekete’s lemma). Let a1, a2, . . . be a sequence of reals such
that an+m ≥ an + am for all positive n, m ∈ Z. Then

(2.24) lim
n→∞

an

n
= sup

n

an

n
.

Proof. For all i, j, k ≥ 1 we have ajk+i ≥ jak+ai, by the inequality prescribed
in the theorem. Hence for all fixed i, k ≥ 1 we have

(2.25) lim inf
j→∞

ajk+i

jk + i
≥ lim inf

j→∞

jak + ai

jk + i
= lim inf

j→∞
(
ak

k

jk

jk + i
+

ai

jk + i
)

=
ak

k
.

As this is true for each i, we have for each fixed k ≥ 1:

(2.26) lim inf
n→∞

an

n
= inf

i=1,...,k
lim inf
j→∞

ajk+i

jk + i
≥ ak

k
.

So

(2.27) lim inf
n→∞

an

n
≥ sup

k

ak

k
,

implying (2.24).

We sometimes use the multiplicative version of Fekete’s lemma:

Corollary 2.2a. Let a1, a2, . . . be a sequence of positive reals such that
an+m ≥ anam for all positive n, m ∈ Z. Then
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(2.28) lim
n→∞

n
√

an = sup
n

n
√

an.

Proof. Directly from Theorem 2.2 applied to the sequence log a1, log a2, . . ..



Chapter 3

Preliminaries on graphs

This chapter is not meant as a rush course in graph theory, but rather as
a reference guide and to settle notation and terminology.
To promote readability of the book, nonstandard notation and terminology
will be, besides below in this chapter, also explained on the spot in later
chapters.

3.1. Undirected graphs

A graph or undirected graph is a pair G = (V, E), where V is a finite set
and E is a family of unordered pairs from V . The elements of V are called
the vertices, sometimes the nodes or the points. The elements of E are called
the edges, sometimes the lines. We use the following shorthand notation for
edges:

(3.1) uv := {u, v}.

We denote

(3.2) V G := set of vertices of G,
EG := family of edges of G.

In running time estimates of algorithms, we denote:

(3.3) n := |V G| and m := |EG|.
In the definition of graph we use the term ‘family’ rather than ‘set’, to

indicate that the same pair of vertices may occur several times in E. A pair
occurring more than once in E is called a multiple edge, and the number of
times it occurs is called its multiplicity. Two edges are called parallel if they
are represented by the same pair of vertices. A parallel class is a maximal set
of pairwise parallel edges.

So distinct edges may be represented in E by the same pair of vertices.
Nevertheless, we will often speak of ‘an edge uv’ or even of ‘the edge uv’,
where ‘an edge of type uv’ would be more correct.

Also loops are allowed: edges that are families of the form {v, v}. Graphs
without loops and multiple edges are called simple, and graphs without loops
are called loopless. A vertex v is called a loopless vertex if {v, v} is not a loop.
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An edge uv is said to connect u and v. The vertices u and v are called the
ends of the edge uv. If there exists an edge connecting vertices u and v, then
u and v are called adjacent or connected, and v is called a neighbour of u.
The edge uv is said to be incident with, or to meet, or to cover, the vertices u
and v, and conversely. The edges e and f are said to be incident, or to meet,
or to intersect, if they have a vertex in common. Otherwise, they are called
disjoint.

If U ⊆ V and both ends of an edge e belong to U , then we say that U
spans e. If at least one end of e belongs to U , then U is said to be incident
with e. An edge connecting a vertex in a set S and a vertex in a set T is said
to connect S and T . A set F of edges is said to cover a vertex v if v is covered
by at least one edge in F , and to miss v otherwise.

For a vertex v, we denote:

(3.4) δG(v) := δE(v) := δ(v) := family of edges incident with v,
NG(v) := NE(v) := N(v) := set of neighbours of v.

Here and below, notation with the subscript deleted is used if the graph is
clear from the context. We speak in the definition of δ(v) of the family of
edges incident with v, since any loop at v occurs twice in δ(v).

The degree degG(v) of a vertex v is the number of edges incident with v.
In notation,

(3.5) degG(v) := degE(v) := deg(v) := |δG(v)|.
A vertex of degree 0 is called isolated, and a vertex of degree 1 an end vertex.
A vertex of degree k is called k-valent. So isolated vertices are loopless.

We denote

(3.6) ∆(G) := maximum degree of the vertices of G,
δ(G) := minimum degree of the vertices of G.

∆(G) and δ(G) are called the maximum degree and minimum degree of G,
respectively.

If ∆(G) = δ(G), that is, if all degrees are equal, G is called regular. If all
degrees are equal to k, the graph is called k-regular. A 3-regular graph is also
called a cubic graph.

If G = (V, E) and G′ = (V ′, E′) are graphs, we denote by G + G′ the
graph

(3.7) G + G′ := (V ∪ V ′, E ∪ E′)

where E ∪ E′ is the union of E and E′ as families (taking multiplicities into
account).
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Complementary, complete, and line graph

The complementary graph or complement of a graph G = (V, E) is the simple
graph with vertex set V and edges all pairs of distinct vertices that are
nonadjacent in G. In notation,

(3.8) G := the complementary graph of G.

So if G is simple, then G = G.
A graph G is called complete if G is simple and any two distinct vertices

are adjacent. In notation,

(3.9) Kn := complete graph with n vertices.

As Kn is unique up to isomorphism, we often speak of the complete graph
on n vertices.

The line graph of a graph G = (V, E) is the simple graph with vertex set
E, where two elements of E are adjacent if and only if they meet. In notation,

(3.10) L(G) := the line graph of G.

Subgraphs

A graph G′ = (V ′, E′) is called a subgraph of a graph G = (V, E) if V ′ ⊆ V
and E′ ⊆ E. If H is a subgraph of G, we say that G contains H. If G′ �= G,
then G′ is called a proper subgraph of G. If V ′ = V , then G′ is called a
spanning subgraph of G. If E′ consists of all edges of G spanned by V ′, G′ is
called an induced subgraph, or the subgraph induced by V ′. In notation,

(3.11) G[V ′] := subgraph of G induced by V ′,
E[V ′] := family of edges spanned by V ′.

So G[V ′] = (V ′, E[V ′]). We further denote for any graph G = (V, E) and for
any vertex v, any subset U of V , any edge e, and any subset F of E,

(3.12) G − v := G[V \ {v}], G − U := G[V \ U ], G − e := (V, E \ {e}),
G − F := (V, E \ F ).

We say that these graphs arise from G by deleting v, U , e, or F . (We realize
that, since an edge e is a set of two vertices, the notation G − e might be
ambiguous (if we would consider U := e). We expect, however, that the
appropriate interpretation will be clear from the context.)

Two subgraphs of G are called edge-disjoint if they have no edge in com-
mon, and vertex-disjoint or disjoint, if they have no vertex in common.

In many cases we deal with graphs up to isomorphism. For instance, if G
and H are graphs, we say that a subgraph G′ of G is an H subgraph if G′ is
isomorphic to H.
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Paths and circuits

A walk in an undirected graph G = (V, E) is a sequence

(3.13) P = (v0, e1, v1, . . . , ek, vk),

where k ≥ 0, v0, v1, . . . , vk are vertices, and ei is an edge connecting vi−1 and
vi (for i = 1, . . . , k). If v0, v1, . . . , vk are all distinct, the walk is called a path.
(Hence e1, . . . , ek are distinct.)

The vertex v0 is called the starting vertex or first vertex of P and the
vertex vk the end vertex or last vertex of P . Sometimes, both v0 and vk are
called the end vertices, or just the ends of P . Similarly, edge e1 is called the
starting edge or first edge of P , and edge ek the end edge or last edge of P .
Sometimes, both e1 and ek are called the end edges.

The walk P is said to connect v0 and vk, to run from v0 to vk (or between
v0 and vk), and to traverse v0, e1, v1, . . . , ek, vk. The vertices v1, . . . , vk−1 are
called the internal vertices of P . For s, t ∈ V , the walk P is called an s − t
walk if it runs from s to t, and for S, T ⊆ V , it is called an S − T walk if it
runs from a vertex in S to a vertex in T . Similarly, s − T walks and S − t
walks run form s to a vertex in T and from a vertex in S to t, respectively.

The number k is called the length of P . (We deviate from this in case a
function l : E → R has been introduced as a length function. Then the length
of P is equal to l(e1) + · · · + l(ek).) A walk is called odd (even, respectively)
if its length is odd (even, respectively).

The minimum length of a path connecting u and v is called the distance
of u and v. The maximum distance over all vertices u, v of G is called the
diameter of G.

The reverse walk P−1 of P is the walk obtained from (3.13) by reversing
the order of the elements:

(3.14) P−1 := (vk, ek, vk−1, . . . , e1, v0).

If P = (v0, e1, v1, . . . , ek, vk) and Q = (u0, f1, u1, . . . , fl, ul) are walks satisfy-
ing u0 = vk, the concatenation PQ of P and Q is the walk

(3.15) PQ := (v0, e1, v1, . . . , ek, vk, f1, u1, . . . , fl, ul).

For any walk P , we denote by V P and EP the families of vertices and edges,
respectively, occurring in P :

(3.16) V P := {v0, v1, . . . , vk} and EP := {e1, . . . , ek}.

A chord of P is an edge of G that is not in EP and that connects two
vertices of P . The path P is called chordless if P has no chords.

If no confusion may arise, we sometimes identify the walk P with the
subgraph (V P, EP ) of G, or with the set V P of vertices in P , or with the
family EP of edges in P . If the graph is simple or if the edges traversed are
irrelevant, we indicate the walk just by the sequence of vertices traversed:

(3.17) P = (v0, v1, . . . , vk) or P = v0, v1, . . . , vk.
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A simple path may be identified by the sequence of edges:

(3.18) P = (e1, . . . , ek) or P = e1, . . . , ek.

We denote

(3.19) Pn := a path with n vertices,

usually considered as the graph (V Pn, EPn). This graph is unique up to
isomorphism.

Two walks P and Q are called vertex-disjoint or disjoint if V P and V Q are
disjoint, internally vertex-disjoint or internally disjoint if the set of internal
vertices of P is disjoint from the set of internal vertices of Q, and edge-disjoint
if EP and EQ are disjoint.

The walk P in (3.13) is called closed if vk = v0. It is called a circuit if
vk = v0, k ≥ 1, v1, . . . , vk are all distinct, and e1, . . . , ek are all distinct.

The circuit is also called a k-circuit. If k = 1, then e1 must be a loop,
and if k = 2, e1 and e2 are (distinct) parallel edges. If k = 3, the circuit is
sometimes called a triangle.

The above definition of chord of a walk implies that an edge e of G is a
chord of a circuit C if e connects two vertices in V C but does not belong to
EC. A chordless circuit is a circuit without chords.

We denote

(3.20) Cn := a circuit with n edges,

usually considered as the graph (V Cn, ECn). Again, this graph is unique up
to isomorphism.

For any graph G = (V, E), a subset F of E is called a cycle if each degree
of the subgraph (V, F ) is even. One may check that for any F ⊆ E:

(3.21) F is a cycle ⇐⇒ F is the symmetric difference of the edge sets
of a number of circuits.

Connectivity and components

A graph G = (V, E) is connected if for any two vertices u and v there is a path
connecting u and v. A maximal connected nonempty subgraph of G is called
a connected component, or just a component, of G. Here ‘maximal’ is taken
with respect to taking subgraphs. Each component is an induced subgraph,
and each vertex and each edge of G belong to exactly one component.

We often identify a component K with the set V K of its vertices. Then the
components are precisely the equivalence classes of the equivalence relation
∼ on V defined by: u ∼ v ⇐⇒ there exists a path connecting u and v.

A component is called odd (even) if it has an odd (even) number of ver-
tices.
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Cuts

Let G = (V, E) be a graph. For any U ⊆ V , we denote

(3.22) δG(U) := δE(U) := δ(U) := set of edges of G connecting U and
V \ U .

A subset F of E is called a cut, if F = δ(U) for some U ⊆ V . In particular,
∅ is a cut. If ∅ �= U �= V , then δ(U) is called a nontrivial cut. (So ∅ is a
nontrivial cut if and only if G is disconnected.) It is important to observe
that for any two sets T, U ⊆ V :

(3.23) δ(T )△δ(U) = δ(T△U).

Hence the collection of cuts is closed under taking symmetric differences.
If s ∈ U and t �∈ U , then δ(U) is called an s − t cut. If S ⊆ U and

T ⊆ V \U , δ(U) is called an S −T cut. An edge-cut of size k is called a k-cut.
A subset F of E is called a disconnecting edge set if G−F is disconnected.

For s, t ∈ V , if F intersects each s− t path, then F is said to disconnect or to
separate s and t, or to be s−t disconnecting or s−t separating. For S, T ⊆ V ,
if F intersects each S − T path, then F is said to disconnect or to separate S
and T , or to be S − T disconnecting or S − T separating.

One may easily check that for all s, t ∈ V :

(3.24) each s − t cut is s − t disconnecting; each inclusionwise minimal
s − t disconnecting edge set is an s − t cut.

An edge e of G is called a bridge if {e} is a cut. A graph having no bridges
is called bridgeless.

For any subset U of V we denote

(3.25) dG(U) := dE(U) := d(U) := |δ(U)|.
Moreover, for subsets U, W of V :

(3.26) E[U, W ] := {e ∈ E | ∃u ∈ U, w ∈ W : e = uw}.

The following is straightforward and very useful:

Theorem 3.1. For all U, W ⊆ V :

(3.27) d(U) + d(W ) = d(U ∩ W ) + d(U ∪ W ) + 2|E[U \ W, W \ U ]|.

Proof. Directly by counting edges.

This in particular gives:

Corollary 3.1a. For all U, W ⊆ V :

(3.28) d(U) + d(W ) ≥ d(U ∩ W ) + d(U ∪ W ).

Proof. Directly from Theorem 3.1.

A cut of the form δ(v) for some vertex v is called a star.
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Neighbours and vertex-cuts

Let G = (V, E) be a graph. For any U ⊆ V , we call a vertex v a neighbour of
U if v �∈ U and v has a neighbour in U . We denote

(3.29) NG(U) := NE(U) := N(U) := set of neighbours of U .

We further denote

(3.30) N2(v) := N(N(v)) \ {v}.

A subset U of V is called a disconnecting vertex set, or a vertex-cut, if
G − U is disconnected. A vertex-cut of size k is called a k-vertex-cut. A cut
vertex is a vertex v of G for which G − v has more components than G has.

For s, t ∈ V , if U intersects each s − t path, then U is said to disconnect
s and t, or called s − t disconnecting. If moreover s, t �∈ U , then U is said to
separate s and t, or called s − t separating, or an s − t vertex-cut. It can be
shown that if U is an inclusionwise minimal s− t vertex-cut, then U = N(K)
for the component K of G − U that contains s.

For S, T ⊆ V , if U intersects each S−T path, then U is said to disconnect
S and T , or called S −T disconnecting. If moreover U is disjoint from S ∪T ,
then U is said to separate S and T , or called S − T separating or an S − T
vertex-cut.

A pair of subgraphs (V1, E1), (V2, E2) of a graph G = (V, E) is called a
separation if V1 ∪ V2 = V and E1 ∪ E2 = E. So G has no edge connecting
V1\V2 and V2\V1. Therefore, if these sets are nonempty, V1∩V2 is a vertex-cut
of G.

Trees and forests

A graph is called a forest if it has no circuits. For any forest (V, E),

(3.31) |E| = |V | − κ,

where κ is the number of components of (V, F ). A tree is a connected forest.
So for any tree (V, E),

(3.32) |E| = |V | − 1.

Any forest with at least one edge has an end vertex. A connected subgraph
of a tree T is called a subtree of T .

The notions of forest and tree extend to subsets of edges of a graph
G = (V, E) as follows. A subset F of E is called a forest if (V, F ) is a forest,
and a spanning tree if (V, F ) is a tree. Then for any graph G = (V, E):

(3.33) G has a spanning tree ⇐⇒ G is connected.

For any connected graph G = (V, E) and any F ⊆ E:

(3.34) F is a spanning tree ⇐⇒ F is an inclusionwise maximal for-
est ⇐⇒ F is an inclusionwise minimal edge set with (V, F )
connected.
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Cliques, stable sets, matchings, vertex covers, edge covers

Let G = (V, E) be a graph. A subset C of V is called a clique if any two
vertices in V are adjacent, a stable set if any two vertices in C are nonadjacent,
and a vertex cover if C intersects each edge of G.

A subset M of E is called a matching if any two edges in M are disjoint,
an edge cover if each vertex of G is covered by at least one edge in M , and
a perfect matching if it is both a matching and an edge cover. So a perfect
matching M satisfies |M | = 1

2 |V |.
We denote and define:

(3.35) ω(G) := clique number of G := maximum size of a clique in G,
α(G) := stable set number of G := maximum size of a stable set
in G,
τ(G) := vertex cover number of G := minimum size of a vertex
cover in G,
ν(G) := matching number of G := maximum size of a matching
in G,
ρ(G) := edge cover number of G := minimum size of an edge
cover in G.

(We will recall this notation where used.)
Given a matching M in a graph G = (V, E), we will say that a vertex u

is matched to a vertex v, or u is the mate of v, if uv ∈ M . A subset U of
V is called matchable if the subgraph G[U ] of G induced by U has a perfect
matching.

Colouring

A vertex-colouring, or just a colouring, is a partition of V into stable sets. We
sometimes consider a colouring as a function φ : V → {1, . . . , k} such that
φ−1(i) is a stable set for each i = 1, . . . , k.

Each of the stable sets in a colouring is called a colour of the colouring.
The vertex-colouring number, or just the colouring number, is the minimum
number of colours in a vertex-colouring. In notation,

(3.36) χ(G) := vertex-colouring number of G.

A graph G is called k-colourable, or k-vertex-colourable, if χ(G) ≤ k, and
k-chromatic if χ(G) = k. A vertex-colouring is called a minimum vertex-
colouring, or a minimum colouring, if it uses the minimum number of colours.

Similar terminology holds for edge-colouring. An edge-colouring is a par-
tition of E into matchings. Each of these matchings is called a colour of
the edge-colouring. An edge-colouring can also be described by a function
φ : E → {1, . . . , k} such that φ−1(i) is a matching for each i = 1, . . . , k.

The edge-colouring number is the minimum number of colours in an edge-
colouring. In notation,
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(3.37) χ′(G) := edge-colouring number of G.

So χ′(G) = χ(L(G)).
A graph G is called k-edge-colourable if χ′(G) ≤ k, and k-edge-chromatic

if χ′(G) = k. An edge-colouring is called a minimum edge-colouring if it uses
the minimum number of colours.

Bipartite graphs

A graph G = (V, E) is called bipartite if χ(G) ≤ 2. Equivalently, G is bipartite
if V can be partitioned into two sets U and W such that each edge of G
connects U and W . We call the sets U and W the colour classes of G (although
they generally need not be unique).

Bipartite graphs are characterized by:

(3.38) G is bipartite ⇐⇒ each circuit of G has even length.

A graph G = (V, E) is called a complete bipartite graph if G is simple and V
can be partitioned into sets U and W such that E consists of all pairs {u, w}
with u ∈ U and w ∈ W . If |U | = m and |W | = n, the graph is denoted by
Km,n:

(3.39) Km,n := the complete bipartite graph with colour classes of size
m and n.

The graphs K1,n are called stars or (when n ≥ 3) claws.

Hamiltonian and Eulerian graphs

A Hamiltonian circuit in a graph G is a circuit C satisfying V C = V G. A
graph is Hamiltonian if it has a Hamiltonian circuit. A Hamiltonian path is
a path P with V P = V G.

A walk P is called Eulerian if each edge of G is traversed exactly once by
P . A graph G is called Eulerian if it has a closed Eulerian walk. The following
is usually attributed to Euler [1736] (although he only proved the ‘only if’
part):

(3.40) a graph G = (V, E) without isolated vertices is Eulerian if and
only if G is connected and all degrees of G are even.

Sometimes, we call a graph Eulerian if all degrees are even, ignoring connec-
tivity. This will be clear from the context.
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Contraction and minors

Let G = (V, E) be a graph and let e = uv ∈ E. Contracting e means deleting
e and identifying u and v. We denote (for F ⊆ E):

(3.41) G/e := graph obtained from G by contracting e,
G/F := graph obtained from G by contracting all edges in F .

The image of a vertex v of G in G/F is the vertex of G/F to which v is
contracted.

A graph H is called a minor of a graph G if H arises from G by a series
of deletions and contractions of edges and deletions of vertices. A minor H
of G is called a proper minor if H �= G. If G and H are graphs, we say that
a minor G′ of G is an H minor of G if G′ is isomorphic to H.

Related is the following contraction. Let G = (V, E) be a graph and let
S ⊆ V . The graph G/S (obtained by contracting S) is obtained by identifying
all vertices in S to one new vertex, called S, deleting all edges contained in
S, and redefining any edge uv with u ∈ S and v �∈ S to Sv.

Homeomorphic graphs

A graph G is called a subdivision of a graph H if G arises from H by replacing
edges by paths of length at least 1. So it arises from H by iteratively choosing
an edge uv, introducing a new vertex w, deleting edge uv, and adding edges
uw and wv. If G is a subdivision of H, we call G an H-subdivision.

Two graphs G and G′ are called homeomorphic if there exists a graph
H such that both G and G′ are subdivisions of H. The graph G is called a
homeomorph of G′ if G and G′ are homeomorphic.

Homeomorphism can be described topologically. For any graph G =
(V, E), the topological graph |G| associated with G is the topological space
consisting of V and for each edge e of G a curve |e| connecting the ends of e,
such that for any two edges e, f one has |e| ∩ |f | = e ∩ f . Then

(3.42) G and H are homeomorphic graphs ⇐⇒ |G| and |H| are home-
omorphic topological spaces.

Planarity

An embedding of a graph G in a topological space S is an embedding (contin-
uous injection) of the topological graph |G| in S. A graph G is called planar
if it has an embedding in the plane R2.

Often, when dealing with a planar graph G, we assume that it is embedded
in the plane R2. The topological components of R2 \ |G| are called the faces
of G. A vertex or edge is said to be incident with a face F if it is contained
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in the boundary of F . Two faces are called adjacent if they are incident with
some common edge.

There is a unique unbounded face, all other faces are bounded. The bound-
ary of the unbounded face is part of |G|, and is called the outer boundary of
G.

Euler’s formula states that any connected planar graph G = (V, E), with
face collection F , satisfies:

(3.43) |V | + |F| = |E| + 2.

Kuratowski [1930] found the following characterization of planar graphs:

Theorem 3.2 (Kuratowski’s theorem). A graph G is planar ⇐⇒ no sub-
graph of G is homeomorphic to K5 or to K3,3.

(See Thomassen [1981b] for three short proofs, and for history and references
to other proofs.)

As Wagner [1937a] noticed, the following is an immediate consequence
of Kuratowski’s theorem (since planarity is maintained under taking minors,
and since any graph without K5 minor has no subgraph homeomorphic to
K5):

(3.44) A graph G is planar ⇐⇒ G has no K5 or K3,3 minor.

(In turn, with a little more work, this equivalence can be shown to imply
Kuratowski’s theorem.)

The four-colour theorem of Appel and Haken [1977] and Appel, Haken,
and Koch [1977] states that each loopless planar graph is 4-colourable.
(Robertson, Sanders, Seymour, and Thomas [1997] gave a shorter proof.)

Tait [1878b] showed that the four-colour theorem is equivalent to: each
cubic bridgeless planar graph is 3-edge-colourable. Petersen [1898] gave the
example of the now-called Petersen graph (Figure 3.1), to show that not
every bridgeless cubic graph is 3-edge-colourable. (This graph was also given
by Kempe [1886], for a different purpose.)

Wagner’s theorem

We will use occasionally an extension of Kuratowski’s theorem, proved by
Wagner [1937a]. For this we need the notion of a k-sum of graphs.

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs and let k := |V1 ∩ V2|.
Suppose that (V1 ∩V2, E1 ∩E2) is a (simple) complete graph. Then the graph

(3.45) (V1 ∪ V2, E1△E2)

is called a k-sum of G1 and G2. We allow multiple edges, so the k-sum might
keep edges spanned by V1 ∩ V2.

To formulate Wagner’s theorem, we also need the graph denoted by V8,
given in Figure 3.2.
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Figure 3.1

The Petersen graph

Figure 3.2

V8

Theorem 3.3 (Wagner’s theorem). A graph G has no K5 minor ⇐⇒ G
can be obtained from planar graphs and from copies of V8 by taking 1-, 2-,
and 3-sums.

As Wagner [1937a] pointed out, this theorem implies that the four-colour
theorem is equivalent to: each graph without K5 minor is 4-colourable. This
follows from the fact that k-colourability is maintained under taking k′-sums
for all k′ ≤ k.

The dual graph

The dual G∗ of an embedded planar graph G = (V, E) is the graph having
as vertex set the set of faces of G and having, for each e ∈ E, an edge e∗

connecting the two faces incident with e. Then G∗ again is planar, and (G∗)∗

is isomorphic to G, if G is connected. For any C ⊆ E, C is a circuit in G if
and only if C∗ := {e∗ | e ∈ C} is an inclusionwise minimal nonempty cut in
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G∗. Moreover, C is a spanning tree in G if and only if {e∗ | e ∈ E \ C} is a
spanning tree in G∗.

Series-parallel and outerplanar graphs

A graph is called a series-parallel graph if it arises from a forest by repeated
replacing edges by parallel edges or by edges in series. It was proved by Duffin
[1965] that a graph is series-parallel if and only if it has no K4 minor.

A graph is called outerplanar if it can be embedded in the plane such
that each vertex is on the outer boundary. It can be easily derived from
Kuratowski’s theorem that a graph is outerplanar if and only if it has no K4

or K2,3 minor.

Adjacency and incidence matrix

The adjacency matrix of a graph G = (V, E) is the V × V matrix A with

(3.46) Au,v := number of edges connecting u and v

for u, v ∈ V .
The incidence matrix, or V ×E incidence matrix, of G is the V ×E matrix

B with

(3.47) Bv,e :=







1 if v ∈ e and e is not a loop,
2 if v ∈ e and e is a loop,
0 if v �∈ e,

for v ∈ V and e ∈ E. The transpose of B is called the E ×V incidence matrix
of G, or just the incidence matrix, if no confusion is expected.

The concepts from graph theory invite to a less formal, and more expres-
sive language, which appeals to the intuition, and whose formalization will
be often tedious rather than problematic. Thus we say ‘replace the edge uv
by two edges in series’, which means deleting uv and introducing a new ver-
tex, w say, and new edges uw and wv. Similarly, ‘replacing the edge uv by
a path’ means deleting uv, and introducing new vertices w1, . . . , wk say, and
new edges uw1, w1w2, . . . , wk−1wk, wkv.

3.2. Directed graphs

A directed graph or digraph is a pair D = (V, A) where V is a finite set and A
is a family of ordered pairs from V . The elements of V are called the vertices,
sometimes the nodes or the points. The elements of A are called the arcs
(sometimes directed edges). We denote:
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(3.48) V D := set of vertices of D and AD := family of arcs of D.

In running time estimates of algorithms we denote:

(3.49) n := |V D| and m := |AD|.
Again, the term ‘family’ is used to indicate that the same pair of vertices
may occur several times in A. A pair occurring more than once in A is called
a multiple arc, and the number of times it occurs is called its multiplicity.
Two arcs are called parallel if they are represented by the same ordered pair
of vertices.

Also loops are allowed, that is, arcs of the form (v, v). In our discussions,
loops in directed graphs will be almost always irrelevant, and it will be clear
from the context if they may occur. Directed graphs without loops and mul-
tiple arcs are called simple, and directed graphs without loops are called
loopless.

Each directed graph D = (V, A) gives rise to an underlying undirected
graph, which is the graph G = (V, E) obtained by ignoring the orientation of
the arcs:

(3.50) E := {{u, v} | (u, v) ∈ A}.

We often will transfer undirected terminology to the directed case. Where
appropriate, the adjective ‘undirected’ is added to a term if it refers to the
underlying undirected graph.

If G is the underlying undirected graph of a directed graph D, we call D
an orientation of G.

An arc (u, v) is said to connect u and v, and to run from u to v. For an
arc a = (u, v), u and v are called the ends of a, and u is called the tail of a,
and v the head of a. We say that a = (u, v) leaves u and enters v. For U ⊆ V ,
an arc a = (u, v) is said to leave U if u ∈ U and v �∈ U . It is said to enter U
if u �∈ U and v ∈ U .

If there exists an arc connecting vertices u and v, then u and v are called
adjacent or connected. If there exists an arc (u, v), then v is called an out-
neighbour of u, and u is called an inneighbour of v.

The arc (u, v) is said to be incident with, or to meet, or to cover, the
vertices u and v, and conversely. The arcs a and b are said to be incident,
or to meet, or to intersect, if they have a vertex in common. Otherwise, they
are called disjoint. If U ⊆ V and both ends of an arc a belong to U , then we
say that U spans a.

For any vertex v, we denote:

(3.51) δin
D(v) := δin

A (v) := δin(v) := set of arcs entering v,
δout
D (v) := δout

A (v) := δout(v) := set of arcs leaving v,
N in

D (v) := N in
A (v) := N in(v) := set of inneighbours of v,

Nout
D (v) := Nout

A (v) := Nout(v) := set of outneighbours of v.

The indegree degin
D(v) of a vertex v is the number of arcs entering v. The

outdegree degout
D (v) of a vertex v is the number of arcs leaving v. In notation,
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(3.52) degin
D(v) := degin

A (v) := degin(v) := |δin
D(v)|,

degout
D (v) := degout

A (v) := degout(v) := |δout
D (v)|.

A vertex of indegree 0 is called a source and a vertex of outdegree 0 a sink.
For any arc a = (u, v) we denote

(3.53) a−1 := (v, u).

For any digraph D = (V, A) the reverse digraph D−1 is defined by

(3.54) D−1 = (V, A−1), where A−1 := {a−1 | a ∈ A}.

A mixed graph is a triple (V, E, A) where (V, E) is an undirected graph
and (V, A) is a directed graph.

The complete directed graph and the line digraph

The complete directed graph on a set V is the simple directed graph with
vertex set V and arcs all pairs (u, v) with u, v ∈ V and u �= v. A tournament
is any simple directed graph (V, A) such that for all distinct u, v ∈ V precisely
one of (u, v) and (v, u) belongs to A.

The line digraph of a directed graph D = (V, A) is the digraph with vertex
set A and arc set

(3.55) {((u, v), (x, y)) | (u, v), (x, y) ∈ A, v = x}.

Subgraphs of directed graphs

A digraph D′ = (V ′, A′) is called a subgraph of a digraph D = (V, A) if
V ′ ⊆ V and A′ ⊆ A. If D′ �= D, then D′ is called a proper subgraph of D.
If V ′ = V , then D′ is called a spanning subgraph of D. If A′ consists of all
arcs of D spanned by V ′, D′ is called an induced subgraph, or the subgraph
induced by V ′. In notation,

(3.56) D[V ′] := subgraph of D induced by V ′,
A[V ′] := family of arcs spanned by V ′.

So D[V ′] = (V ′, A[V ′]). We further denote for any vertex v, any subset U of
V , any arc a, and any subset B of A,

(3.57) D − v := D[V \ {v}], D − U := D[V \ U ], D − a := (V, A \ {a}),
D − B := (V, A \ B).

We say that these graphs arise from D by deleting v, U , a, or B.
Two subgraphs of D are called arc-disjoint if they have no arc in common,

and vertex-disjoint or disjoint, if they have no vertex in common.
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Directed paths and circuits

A directed walk, or just a walk, in a directed graph D = (V, A) is a sequence

(3.58) P = (v0, a1, v1, . . . , ak, vk),

where k ≥ 0, v0, v1, . . . , vk ∈ V , a1, . . . , ak ∈ A, and ai = (vi−1, vi) for
i = 1, . . . , k. The path is called a directed path, or just a path, if v0, . . . , vk are
distinct. (Hence a1, . . . , ak are all distinct.)

The vertex v0 is called the starting vertex or the first vertex of P , and the
vertex vk the end vertex or the last vertex of P . Sometimes, both v0 and vk

are called the end vertices, or just the ends of P . Similarly, arc a1 is called
the starting arc or first arc of P and arc ak the end arc or last arc of P .
Sometimes, both a1 and ak are called the end arcs.

The walk P is said to connect the vertices v0 and vk, to run from v0 to
vk (or between v0 and vk), and to traverse v0, a1, v1, . . . , ak, vk. The vertices
v1, . . . , vk−1 are called the internal vertices of P . For s, t ∈ V , a walk P is
called an s − t walk if it runs from s to t, and for S, T ⊆ V , P is called an
S − T walk if it runs from a vertex in S to a vertex in T . If P is a path, we
obviously speak of an s − t path and an S − T path, respectively.

A vertex t is called reachable from a vertex s (or from a set S) if there
exists a directed s − t path (or directed S − t path). Similarly, a vertex s is
said to reach, or to be reachable to, a vertex t (or to a set T ) if there exists
a directed s − t path (or directed s − T path).

The number k in (3.58) is called the length of P . (We deviate from this
in case a function l : A → R has been introduced as a length function. Then
the length of P is equal to l(a1) + · · · + l(ak).)

The minimum length of a path from u to v is called the distance from u
to v.

An undirected walk in a directed graph D = (V, A) is a walk in the un-
derlying undirected graph; more precisely, it is a sequence

(3.59) P = (v0, a1, v1, . . . , ak, vk)

where k ≥ 0, v0, v1, . . . , vk ∈ V , a1, . . . , ak ∈ A, and ai = (vi−1, vi) or
ai = (vi, vi−1) for i = 1, . . . , k. The arcs ai with ai = (vi−1, vi) are called the
forward arcs of P , and the arcs ai with ai = (vi, vi−1) the backward arcs of
P .

If P = (v0, a1, v1, . . . , ak, vk) and Q = (u0, b1, u1, . . . , bl, ul) are walks
satisfying u0 = vk, the concatenation PQ of P and Q is the walk

(3.60) PQ := (v0, a1, v1, . . . , ak, vk, b1, u1, . . . , bl, ul).

For any walk P , we denote by V P and AP the families of vertices and arcs,
respectively, occurring in P :

(3.61) V P := {v0, v1, . . . , vk} and AP := {a1, . . . , ak}.
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If no confusion may arise, we sometimes identify the walk P with the subgraph
(V P, AP ) of D, or with the set V P of vertices in P , or with the family AP
of arcs in P .

If the digraph is simple or (more generally) if the arcs traversed are irrel-
evant, we indicate the walk just by the sequence of vertices traversed:

(3.62) P = (v0, v1, . . . , vk) or P = v0, v1, . . . , vk.

A path may be identified by the sequence of arcs:

(3.63) P = (a1, . . . , ak) or P = a1, . . . , ak.

Two walks P and Q are called vertex-disjoint or disjoint if V P and V Q are
disjoint, internally vertex-disjoint or internally disjoint if the set of internal
vertices of P is disjoint from the set of internal vertices of Q, and arc-disjoint
if AP and AQ are disjoint.

The directed walk P in (3.13) is called a closed directed walk or directed
cycle if vk = v0. It is called a directed circuit, or just a circuit, if vk = v0,
k ≥ 1, v1, . . . , vk are all distinct, and a1, . . . , ak are all distinct. An undirected
circuit is a circuit in the underlying undirected graph.

Connectivity and components of digraphs

A digraph D = (V, A) is called strongly connected if for each two vertices u
and v there is a directed path from u to v. The digraph D is called weakly
connected if the underlying undirected graph is connected; that is, for each
two vertices u and v there is an undirected path connecting u and v.

A maximal strongly connected nonempty subgraph of a digraph D =
(V, A) is called a strongly connected component, or a strong component, of
D. Again, ‘maximal’ is taken with respect to taking subgraphs. A weakly
connected component, or a weak component, of D is a component of the un-
derlying undirected graph.

Each strong component is an induced subgraph. Each vertex belongs to
exactly one strong component, but there may be arcs that belong to no strong
component. One has:

(3.64) arc (u, v) belongs to a strong component ⇐⇒ there exists a
directed path in D from v to u.

We sometimes identify a strong component K with the set V K of its
vertices. Then the strong components are precisely the equivalence classes of
the equivalence relation ∼ defined on V by: u ∼ v ⇐⇒ there exist a directed
path from u to v and a directed path from v to u.

Cuts

Let D = (V, A) be a directed graph. For any U ⊆ V , we denote:
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(3.65) δin
D(U) := δin

A (U) := δin(U) := set of arcs of D entering U ,
δout
D (U) := δout

A (U) := δout(U) := set of arcs of D leaving U .

A subset B of A is called a cut if B = δout(U) for some U ⊆ V . In particular,
∅ is a cut. If ∅ �= U �= V , then δout(U) is called a nontrivial cut.

If s ∈ U and t �∈ U , then δout(U) is called an s − t cut. If S ⊆ U and
T ⊆ V \ U , δout(U) is called an S − T cut. A cut of size k is called a k-cut.

A subset B of A is called a disconnecting arc set if D − B is not strongly
connected. For s, t ∈ V , it is said to be s − t disconnecting, if B intersects
each directed s − t path. For S, T ⊆ V , B is said to be S − T disconnecting,
if B intersects each directed S − T path.

One may easily check that for all s, t ∈ V :

(3.66) each s − t cut is s − t disconnecting; each inclusionwise minimal
s − t disconnecting arc set is an s − t cut.

For any subset U of V we denote

(3.67) din
D(U) := din

A (U) := din(U) := |δin(U)|,
dout

D (U) := dout
A (U) := dout(U) := |δout(U)|.

The following inequalities will be often used:

Theorem 3.4. For any digraph D = (V, A) and X, Y ⊆ V :

(3.68) din(X) + din(Y ) ≥ din(X ∩ Y ) + din(X ∪ Y ) and
dout(X) + dout(Y ) ≥ dout(X ∩ Y ) + dout(X ∪ Y ),

Proof. The first inequality follows directly from the equation

(3.69) din(X) + din(Y ) =
din(X ∩ Y ) + din(X ∪ Y ) + |A[X \ Y, Y \ X]| + |A[Y \ X, X \ Y ]|,

where A[S, T ] denotes the set of arcs with tail in S and head in T . The second
inequality follows similarly.

A cut C is called a directed cut if C = δin(U) for some U ⊆ V with
δout(U) = ∅ and ∅ �= U �= V . An arc is called a cut arc if {a} is a directed
cut; equivalently, if a is a bridge in the underlying undirected graph.

Vertex-cuts

Let D = (V, A) be a digraph. A subset U of V is called a disconnecting vertex
set, or a vertex-cut, if D − U is disconnected. A vertex-cut of size k is called
a k-vertex-cut.

For s, t ∈ V , if U intersects each directed s − t path in D, then U is said
to disconnect s and t, or called s− t disconnecting. If moreover s, t �∈ U , then
U is said to separate s and t, or called s− t separating, or an s− t vertex-cut.
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For S, T ⊆ V , if U intersects each directed S − T path, then U is said to
disconnect S and T , or called S − T disconnecting. If moreover U is disjoint
from S ∪ T , then U is said to separate S and T , or called S − T separating
or an S − T vertex-cut.

Acyclic digraphs and directed trees

A directed graph D = (V, A) is called acyclic if it has no directed circuits. It
is easy to show that

(3.70) an acyclic digraph has at least one source and at least one sink,

provided that it has at least one vertex.
A directed graph is called a directed tree if the underlying undirected graph

is a tree; that is, if D is weakly connected and has no undirected circuits. It
is called a rooted tree if moreover D has precisely one source, called the root.
If r is the root, we say that the rooted tree is rooted at r. If a rooted tree
D = (V, A) has root r, then each vertex v �= r has indegree 1, and for each
vertex v there is a unique directed r − v path. An arborescence in a digraph
D = (V, A) is a set B of arcs such that (V, B) is a rooted tree. If the rooted
tree has root r, it is called an r-arborescence.

A directed graph is called a directed forest if the underlying undirected
graph is a forest; that is, if D has no undirected circuits. It is called a rooted
forest if moreover each weak component is a rooted tree. The roots of the
weak components are called the roots of the rooted forest. A branching in a
digraph D = (V, A) is a set B of arcs such that (V, B) is a rooted forest.

Hamiltonian and Eulerian digraphs

A Hamiltonian circuit in a directed graph D = (V, A) is a directed circuit C
with V C = V D. A digraph is Hamiltonian if it has a Hamiltonian circuit. A
Hamiltonian path is a directed path P with V P = V D.

A directed walk P is called Eulerian if each arc of D is traversed exactly
once by P . A digraph D is called Eulerian if it has a closed Eulerian directed
walk. Then a digraph D = (V, A) is Eulerian if and only if D is weakly
connected and degin(v) = degout(v) for each vertex v. Sometimes, we call a
digraph Eulerian if each weak component is Eulerian. This will be clear from
the context.

An Eulerian orientation of an undirected graph G = (V, E) is an ori-
entation (V, A) of G with degin

A (v) = degout
A (v) for each v ∈ V . A classical

theorem in graph theory states that an undirected graph G has an Eulerian
orientation if and only if all degrees of G are even.



Section 3.2. Directed graphs 35

Contraction

Contraction of directed graphs is similar to contraction of undirected graphs.
Let D = (V, A) be a digraph and let a = (u, v) ∈ A. Contracting a means
deleting a and identifying u and v. We denote:

(3.71) D/a := digraph obtained from D by contracting a.

Related is the following contraction. Let D = (V, A) be a digraph and let S ⊆
V . The digraph D/S (obtained by contracting S) is obtained by identifying
all vertices in S to one new vertex, called S, deleting all arcs contained in S,
and redefining any arc (u, v) to (S, v) if u ∈ S and to (u, S) if v ∈ S.

Planar digraphs and their duals

A digraph D is called planar if its underlying undirected graph G is planar.
There is a natural way of making the dual graph G∗ of G into a directed
graph D∗, the dual: if arc a = (u, v) of D separates faces F and F ′, such
that, when following a from u to v, F is at the left and F ′ is at the right of
a, then the dual edge is oriented from F to F ′, giving the arc a∗ of D∗. Then
D∗∗ is isomorphic to D−1, if D is weakly connected. One may check that a
subset C of D is a directed circuit in D if and only if the set {a∗ | a ∈ C} is
an inclusionwise minimal directed cut in D∗.

Adjacency and incidence matrix

The adjacency matrix of a digraph D = (V, A) is the V × V matrix M with

(3.72) Mu,v := number of arcs from u to v

for u, v ∈ V .
The incidence matrix, or V ×A incidence matrix, of D is the V ×A matrix

B with

(3.73) Bv,a :=







−1 if v is tail of a,
+1 if v is head of a,

0 otherwise,

for any v ∈ V and any nonloop a ∈ A. If a is a loop, we set Bv,a := 0 for
each vertex v.

The transpose of B is called the A × V incidence matrix of D, or just the
incidence matrix, if no confusion is expected.
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3.3. Hypergraphs

Part VIII is devoted to hypergraphs, but we occasionally need the terminol-
ogy of hypergraphs in earlier parts. A hypergraph is a pair H = (V, E) where
V is a finite set and E is a family of subsets of V . The elements of V and E
are called the vertices and the edges respectively. If |F | = k for each F ∈ E ,
the hypergraph is called k-uniform.

A hypergraph H = (V, E) is called connected if there is no U ⊆ V such
that ∅ �= U �= V and such that F ⊆ U or F ⊆ V \ U for each edge F . A
(connected) component of H is a hypergraph K = (V ′, E ′) with V ′ ⊆ V and
E ′ ⊆ E , such that V ′ and E ′ are inclusionwise maximal with the property that
K is connected. A component is uniquely identified by its set of vertices.

Packing and covering

A family F of sets is called a packing if the sets in F are pairwise disjoint.
For k ∈ Z+, F is called a k-packing if each element of

⋃ F is in at most k sets
in F (counting multiplicities). In other words, any k +1 sets from F have an
empty intersection. If each set in F is a subset of some set S, and c : S → R,
then F is called a c-packing if each element s ∈ S is in at most c(s) sets in
F (counting multiplicities).

A fractional packing is a function λ : F → R+ such that, for each s ∈ S,

(3.74)
∑

U ∈ F
s ∈ U

λU ≤ 1.

For c : S → R, the function λ : F → R+ is called a fractional c-packing if

(3.75)
∑

U∈F

λUχU ≤ c.

The size of λ : F → R is, by definition,

(3.76)
∑

U∈F

λU .

Similarly, a family F of sets is called a covering of a set S if S is contained
in the union of the sets in F . For k ∈ Z+, F is called a k-covering of S if each
element of S is in at least k sets in F (counting multiplicities). For c : S → R,
F is called a c-covering if each element s ∈ S is in at least c(s) sets in F
(counting multiplicities).

A fractional covering of S is a function λ : F → R+ such that, for each
s ∈ S,

(3.77)
∑

U ∈ F
s ∈ U

λU ≥ 1.
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For c : S → R, the function λ : F → R+ is called a fractional c-covering if

(3.78)
∑

U∈F

λUχU ≥ c.

Again, the size of λ : F → R is, by definition,

(3.79)
∑

U∈F

λU .

Cross-free and laminar families

A collection C of subsets of a set V is called cross-free if for all T, U ∈ C:

(3.80) T ⊆ U or U ⊆ T or T ∩ U = ∅ or T ∪ U = V .

C is called laminar if for all T, U ∈ C:

(3.81) T ⊆ U or U ⊆ T or T ∩ U = ∅.

There is the following upper bound on the size of a laminar family:

Theorem 3.5. If C is laminar and V �= ∅, then |C| ≤ 2|V |.

Proof. By induction on |V |. We can assume that |V | ≥ 2 and that V ∈ C.
Let U be an inclusionwise minimal set in C with |U | ≥ 2. Resetting C to
C \ {{v} | v ∈ U}, and identifying all elements in U , |C| decreases by at most
|U |, and |V | by |U | − 1. Since |U | ≤ 2(|U | − 1) (as |U | ≥ 2), induction gives
the required inequality.

3.3a. Background references on graph theory

For background on graph theory we mention the books by Kőnig [1936] (historical),
Harary [1969] (classical reference book), Wilson [1972b] (introductory), Bondy and
Murty [1976], and Diestel [1997].



Chapter 4

Preliminaries on algorithms and

complexity

This chapter gives an introduction to algorithms and complexity, in par-
ticular to polynomial-time solvability and NP-completeness. We restrict
ourselves to a largely informal outline and keep formalisms at a low level.
Most of the formalisms described in this chapter are not needed in the re-
maining of this book. A rough understanding of algorithms and complexity
suffices.

4.1. Introduction

An informal, intuitive idea of what is an algorithm will suffice to understand
the greater part of this book. An algorithm can be seen as a finite set of
instructions that perform operations on certain data. The input of the algo-
rithm will give the initial data. When the algorithm stops, the output will be
found in prescribed locations of the data set. The instructions need not be
performed in a linear order: an instruction determines which of the instruc-
tions should be followed next. Also, it can prescribe to stop the algorithm.

While the set of instructions constituting the algorithm is finite and fixed,
the size of the data set may vary, and will depend on the input. Usually, the
data are stored in arrays, that is, finite sequences. The lengths of these arrays
may depend on the input, but the number of arrays is fixed and depends only
on the algorithm. (A more-dimensional array like a matrix is stored in a linear
fashion, in accordance with the linear order in which computer memory is
organized.)

The data may consist of numbers, letters, or other symbols. In a computer
model they are usually stored as finite strings of 0’s and 1’s (bits). The size
of the data is the total length of these strings. In this context, the size of a
rational number p/q with p, q ∈ Z, q ≥ 1, and g.c.d.(p.q) = 1, is equal to
1 + ⌈log(|p| + 1)⌉ + ⌈log q⌉.
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4.2. The random access machine

We use the algorithmic model of the random access machine, sometimes ab-
breviated to RAM. It operates on entries that are 0, 1 strings, representing
abstract objects (like vertices of a graph) or rational numbers. An instruc-
tion can read several (but a fixed number of) entries simultaneously, perform
arithmetic operations on them, and store the answers in array positions pre-
scribed by the instruction2. The array positions that should be read and
written, are given in locations prescribed by the instruction.

We give a more precise description. The random access machine has a
finite set of variables z0, . . . , zk and one array, f say, of length depending
on the input. Each array entry is a 0, 1 string. They can be interpreted as
rationals, in some binary encoding, but can also have a different meaning.
Initially, z0, . . . , zk are set to 0, and f contains the input.

Each instruction is a finite sequence of resettings of one the following
types, for i, j, h ∈ {1, . . . , k}:

(4.1) zi := f(zj); f(zj) := zi; zi := zj + zh; zi := zj − zh; zi := zjzh;
zi := zj/zh; zi := zi + 1; zi := 1 if zj > 0 and zi := 0 otherwise.

These include the elementary arithmetic operations: addition, subtraction,
multiplication, division, comparison. (One may derive other arithmetic op-
erations from this like rounding and taking logarithm or square root, by
performing O(σ + | log ε|) elementary arithmetic operations, where σ is the
size of the rational number and ε is the required precision.)

The instructions are numbered 0, 1, . . . , t, and z1 is the number of the
instruction to be executed. If z1 > t we stop and return the contents of the
array f as output.

4.3. Polynomial-time solvability

A polynomial-time algorithm is an algorithm that terminates after a number
of steps bounded by a polynomial in the input size. Here a step consists of
performing one instruction. Such an algorithm is also called a good algorithm
or an efficient algorithm.

In this definition, the input size is the size of the input, that is, the number
of bits that describe the input. We say that a problem is polynomial-time
solvable, or is solvable in polynomial time, if it can be solved by a polynomial-
time algorithm.

This definition may depend on the chosen algorithmic model, but it has
turned out that for most models the set of problems solvable by a polynomial-
time algorithm is the same. However, in giving order estimates of running

2 This property has caused the term ‘random’ in random access machine: the machine
has access, in constant time, to the data in any (however, well-determined) position.
This is in contrast with the Turing machine, which can only move to adjacent positions.
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times and in considering the concept of ‘strongly polynomial-time’ algorithm
(cf. Section 4.12), we fix the above algorithmic model of the random access
machine.

4.4. P

P, NP, and co-NP are collections of decision problems: problems that can be
answered by ‘yes’ or ‘no’, like whether a given graph has a perfect matching
or a Hamiltonian circuit. An optimization problem is no decision problem,
but often can be reduced to it in a certain sense — see Section 4.7 below.

A decision problem is completely described by the inputs for which the
answer is ‘yes’. To formalize this, fix some finite set Σ, called the alphabet,
of size at least 2 — for instance {0, 1} or the ASCII-set of symbols. Let Σ∗

denote the set of all finite strings (words) of letters from Σ. The size of a word
is the number of letters (counting multiplicities) in the word. We denote the
size of a word w by size(w).

As an example, an undirected graph can be represented by the word

(4.2) ({a, b, c, d}, {{a, b}, {b, c}, {a, d}, {b, d}, {a, c}})

(assuming that Σ contains each of these symbols). Its size is 43.
A problem is any subset Π of Σ∗. The corresponding ‘informal’ problem

is:

(4.3) given a word x ∈ Σ∗, does x belong to Π?

As an example, the problem if a given graph is Hamiltonian is formalized by
the collection of all strings representing a Hamiltonian graph.

The string x is called the input of the problem. One speaks of an instance
of a problem Π if one asks for one concrete input x whether x belongs to Π.

A problem Π is called polynomial-time solvable if there exists a polynomi-
al-time algorithm that decides whether or not a given word x ∈ Σ∗ belongs
to Π. The collection of all polynomial-time solvable problems Π ⊆ Σ∗ is
denoted by P.

4.5. NP

An easy way to characterize the class NP is: NP is the collection of decision
problems that can be reduced in polynomial time to the satisfiability problem
— that is, to checking if a Boolean expression can be satisfied. For instance, it
is not difficult to describe the conditions for a perfect matching in a graph by
a Boolean expression, and hence reduce the existence of a perfect matching to
the satisfiability of this expression. Also the problem of finding a Hamiltonian
circuit, or a clique of given size, can be treated this way.
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However, this is not the definition of NP, but a theorem of Cook. Roughly
speaking, NP is defined as the collection of all decision problems for which
each input with positive answer, has a polynomial-time checkable ‘certificate’
of correctness of the answer. Consider, for instance, the question:

(4.4) Is a given graph Hamiltonian?

A positive answer can be ‘certified’ by giving a Hamiltonian circuit in the
graph. The correctness of it can be checked in polynomial time. No such
certificate is known for the opposite question:

(4.5) Is a given graph non-Hamiltonian?

Checking the certificate in polynomial time means: checking it in time
bounded by a polynomial in the original input size. In particular, it implies
that the certificate itself has size bounded by a polynomial in the original
input size.

This can be formalized as follows. NP is the collection of problems Π ⊆ Σ∗

for which there is a problem Π ′ ∈P and a polynomial p such that for each
w ∈ Σ∗ one has:

(4.6) w ∈ Π ⇐⇒ there exists a word x of size at most p(size(w)) with
wx ∈ Π ′.

The word x is called a certificate for w. (NP stands for nondeterministi-
cally polynomial-time, since the string x could be chosen by the algorithm by
guessing. So guessing well leads to a polynomial-time algorithm.)

For instance, the collection of Hamiltonian graphs belongs to NP since
the collection Π ′ of strings GC, consisting of a graph G and a Hamiltonian
circuit C in G, belongs to P. (Here we take graphs and circuits as strings like
(4.2).)

Trivially, we have P⊆NP, since if Π ∈P, we can take Π ′ = Π and p ≡ 0
in (4.6).

About all problems that ask for the existence of a structure of a prescribed
type (like a Hamiltonian circuit) belong to NP. The class NP is apparently
much larger than the class P, and there might be not much reason to believe
that the two classes are the same. But, as yet, nobody has been able to prove
that they really are different. This is an intriguing mathematical question,
but besides, answering the question might also have practical significance. If
P=NP can be shown, the proof might contain a revolutionary new algorithm,
or alternatively, it might imply that the concept of ‘polynomial-time’ is com-
pletely meaningless. If P�=NP can be shown, the proof might give us more
insight in the reasons why certain problems are more difficult than other, and
might guide us to detect and attack the kernel of the difficulties.
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4.6. co-NP and good characterizations

The collection co-NP consists of all problems Π for which the complementary
problem Σ∗ \ Π belongs to NP. Since for any problem Π ∈P, also Σ∗ \ Π
belongs to P, we have

(4.7) P⊆NP∩co-NP.

The problems in NP∩co-NP are those for which both a positive answer
and a negative answer have a polynomial-time checkable certificate. In other
words, any problem Π in NP∩co-NP has a good characterization: there exist
Π ′, Π ′′ ∈P and a polynomial p such that for each w ∈ Σ∗:

(4.8) there is an x ∈ Σ∗ with wx ∈ Π ′ and size(x) ≤ p(size(w)) ⇐⇒
there is no y ∈ Σ∗ with wy ∈ Π ′′ and size(y) ≤ p(size(w)).

Therefore, the problems in NP∩co-NP are called well-characterized.
A typical example is Tutte’s 1-factor theorem:

(4.9) a graph G = (V, E) has a perfect matching if and only if there is
no U ⊆ V such that G − U has more than |U | odd components.

So in this case Π consists of all graphs having a perfect matching, Π ′ of all
strings GM where G is a graph and M a perfect matching in G, and Π ′′ of
all strings GU where G is a graph and U is a subset of the vertex set of G
such that G − U has more than |U | odd components. (To be more precise,
since Σ∗ is the universe, we must add all strings w{} to Π ′′ where w is a
word in Σ∗ that does not represent a graph.) This is why Tutte’s theorem is
said to be a good characterization.

In fact, there are very few problems known that have been proved to
belong to NP∩co-NP, but that are not known to belong to P. Most problems
having a good characterization, have been proved to be solvable in polynomial
time. So one may ask: is P=NP∩co-NP?

4.7. Optimization problems

Optimization problems can be transformed to decision problems as follows.
Consider a minimization problem: minimize f(x) over x ∈ X, where X is
a collection of elements derived from the input of the problem, and where
f is a rational-valued function on X. (For instance, minimize the length of
a Hamiltonian circuit in a given graph, for a given length function on the
edges.) This can be transformed to the following decision problem:

(4.10) given a rational number r, is there an x ∈ X with f(x) ≤ r ?

If we have an upper bound β on the size of the minimum value (being propor-
tional to the sum of the logarithms of the numerator and the denominator),
then by asking question (4.10) for O(β) choices of r, we can find the optimum
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value (by binary search). In this way we usually can derive a polynomial-time
algorithm for the minimization problem from a polynomial-time algorithm
for the decision problem. Similarly, for maximization problems.

About all combinatorial optimization problems, when framed as a decision
problem like (4.10), belong to NP, since a positive answer to question (4.10)
can often be certified by just specifying an x ∈ X satisfying f(x) ≤ r.

If a combinatorial optimization problem is characterized by a min-max
relation like

(4.11) min
x∈X

f(x) = max
y∈Y

g(y),

this often leads to a good characterization of the corresponding decision prob-
lem. Indeed, if minx∈X f(x) ≤ r holds, it can be certified by an x ∈ X sat-
isfying f(x) ≤ r. On the other hand, if minx∈X f(x) > r holds, it can be
certified by a y ∈ Y satisfying g(y) > r. If these certificates can be checked in
polynomial time, we say that the min-max relation is a good characterization,
and that the optimization problem is well-characterized.

4.8. NP-complete problems

The NP-complete problems are the problems that are the hardest in NP:
every problem in NP can be reduced to them. We make this more precise.

Problem Π ⊆ Σ∗ is said to be reducible to problem Λ ⊆ Σ∗ if there exists
a polynomial-time algorithm that returns, for any input w ∈ Σ∗, an output
x ∈ Σ∗ with the property:

(4.12) w ∈ Π ⇐⇒ x ∈ Λ.

This implies that if Π is reducible to Λ and Λ belongs to P, then also Π
belongs to P. Similarly, one may show that if Π is reducible to Λ and Λ
belongs to NP, then also Π belongs to NP.

A problem Π is said to be NP-complete if each problem in NP is reducible
to Π. Hence

(4.13) if some NP-complete problem belongs to P, then P=NP.

Surprisingly, there exist NP-complete problems (Cook [1971]). Even more
surprisingly, several prominent combinatorial optimization problems, like the
traveling salesman problem, the maximum clique problem, and the maximum
cut problem, are NP-complete (Karp [1972b]).

Since then one generally distinguishes between the polynomial-time solv-
able problems and the NP-complete problems, although there is no proof
that these two concepts really are distinct. For almost every combinatorial
optimization problem (and many other problems) one has been able to prove
either that it is solvable in polynomial time, or that it is NP-complete — and
no problem has been proved to be both. But it still has not been excluded
that these two concepts are just the same!
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The usual approach to prove NP-completeness of problems is to derive
it from the NP-completeness of one basic problem, often the satisfiability
problem. To this end, we prove NP-completeness of the satisfiability problem
in the coming sections.

4.9. The satisfiability problem

To formulate the satisfiability problem, we need the notion of a Boolean
expression. Examples are:

(4.14) ((x2 ∧x3)∨¬(x3 ∨x5)∧x2), ((¬x47 ∧x2)∧x47), and ¬(x7 ∧¬x7).

Boolean expressions can be defined inductively. We work with an alphabet Σ
containing the ‘special’ symbols ‘(’, ‘)’, ‘∧’, ‘∨’, ‘¬’, and ‘,’, and not contain-
ing the symbols 0 and 1. Then any word not containing any special symbol
is a Boolean expression, called a variable. Next, if v and w are Boolean ex-
pressions, then also (v ∧ w), (v ∨ w), and ¬v are Boolean expressions. These
rules give us all Boolean expressions. We denote a Boolean expression f by
f(x1, . . . , xk) if x1, . . . , xk are the variables occurring in f .

A Boolean expression f(x1, . . . , xk) is called satisfiable if there exist
α1, . . . , αk ∈ {0, 1} such that f(α1, . . . , αk) = 1, using the well-known identi-
ties

(4.15) 0 ∧ 0 = 0 ∧ 1 = 1 ∧ 0 = 0, 1 ∧ 1 = 1,
0 ∨ 0 = 0, 0 ∨ 1 = 1 ∨ 0 = 1 ∨ 1 = 1,
¬0 = 1,¬1 = 0, (0) = 0, (1) = 1.

Now let SAT⊆ Σ∗ be the collection of satisfiable Boolean expressions. SAT
is called the satisfiability problem.

The satisfiability problem SAT trivially belongs to NP: to certify that
f(x1, . . . , xk) belongs to SAT, we can take the equations xi = αi that give f
the value 1.

4.10. NP-completeness of the satisfiability problem

Let an algorithm be represented by the random access machine (we use no-
tation as in Section 4.2). Consider the performance of the algorithm for some
input w of size s (in the alphabet {0, 1}). We may assume that all entries in
the random access machine are stored with the same number of bits, α say,
only depending on s. Let q be the length of the array f . We may assume
that q is invariant throughout the algorithm, and that q only depends on s.
(So the initial input w is extended to an array f of length q.) Let r be the
number of iterations performed by the algorithm. We may assume that r only
depends on s.

Let mi be the following word in {0, 1}∗:
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(4.16) z0z1 . . . zkf(0)f(1) . . . f(q)

after performing i iterations (where each zj and each f(j) is a word in {0, 1}∗

of size α). So it is the content of the machine memory after i iterations. We
call the word

(4.17) h = m0m1 . . . mr

the history. The size of h is equal to

(4.18) T := (r + 1)(k + q + 2)α.

We call a word h correct if there is an input w of size s that leads to history
h.

The following observation is basic:

(4.19) given the list of instructions describing the random access ma-
chine and given s, we can construct, in time bounded by a pol-
ynomial in T , a Boolean expression g(x1, . . . , xT ) such that any
0,1 word h = α1 . . . αT is correct if and only if g(α1, . . . , αT ) = 1.

To see this, we must observe that each of the instructions (4.1) can be de-
scribed by Boolean expressions in the 0,1 variables describing the correspond-
ing entries.

We can permute the positions in g such that the first s variables corre-
spond to the s input bits, and that the last variable gives the output bit (0
or 1). Let it give the Boolean expression g̃(y1, . . . , yT ). Then input β1 . . . βs

leads to output 1 if and only if

(4.20) g̃(β1, . . . , βs, ys+1, . . . , yT−1, 1) = 1

has a solution in the variables ys+1, . . . , yT−1.
Consider now a problem Π in NP. Let Π ′ be a problem in P and p a pol-

ynomial satisfying (4.6). We can assume that x has size precisely p(size(w)).
So if input w of Π has size u, then wx has size s := u + p(u). Let A be a
polynomial-time algorithm as described above solving Π ′ and let g̃ be the cor-
responding Boolean expression as above. Let w = β1 . . . βu. Then w belongs
to Π if and only if

(4.21) g̃(β1, . . . , βu, yu+1, . . . , ys, ys+1, . . . , yT−1, 1) = 1

is solvable. This reduces Π to the satisfiability problem. Hence we have the
main result of Cook [1971] (also Levin [1973]):

Theorem 4.1. The satisfiability problem is NP-complete.

Proof. See above.
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4.11. NP-completeness of some other problems

For later reference, we derive from Cook’s theorem the NP-completeness of
some other problems. First we show that the 3-satisfiability problem 3-SAT
is NP-complete (Cook [1971], cf. Karp [1972b]). Let B1 be the set of all
words x1,¬x1, x2,¬x2, . . ., where the xi are words not containing the symbols
‘¬’, ‘∧’, ‘∨’, ‘(’, ‘)’. Let B2 be the set of all words (w1 ∨ · · · ∨ wk), where
w1, · · · , wk are words in B1 and 1 ≤ k ≤ 3. Let B3 be the set of all words
w1 ∧ . . . ∧ wk, where w1, . . . , wk are words in B2. Again, we say that a word
f(x1, x2, . . .) ∈ B3 is satisfiable if there exists an assignment xi := αi ∈ {0, 1}
(i = 1, 2, . . .) such that f(α1, α2, . . .) = 1 (using the identities (4.15)).

Now the 3-satisfiability problem 3-SAT is: given a word f ∈ B3, decide if
it is satisfiable. More formally, 3-SAT is the set of all satisfiable words in B3.

Corollary 4.1a. The 3-satisfiability problem 3-SAT is NP-complete.

Proof. We give a polynomial-time reduction of SAT to 3-SAT. Let f(x1, x2,
. . .) be a Boolean expression. Introduce a variable yg for each subword g of
f that is a Boolean expression (not splitting variables).

Now f is satisfiable if and only if the following system is satisfiable:

(4.22) yg = yg′ ∨ yg′′ (if g = (g′ ∨ g′′)),
yg = yg′ ∧ yg′′ (if g = (g′ ∧ g′′)),
yg = ¬yg′ (if g = ¬g′),
yf = 1.

Now yg = yg′ ∨yg′′ can be equivalently expressed by: yg∨¬yg′ = 1, yg∨¬yg′′ =
1,¬yg ∨ yg′ ∨ yg′′ = 1. Similarly, yg = yg′ ∧ yg′′ can be equivalently expressed
by: ¬yg∨yg′ = 1,¬yg∨yg′′ = 1, yg∨¬yg′ ∨¬yg′′ = 1. The expression yg = ¬yg′

is equivalent to: yg ∨ yg′ = 1,¬yg ∨ ¬yg′ = 1.
By renaming variables, we thus obtain words w1, . . . , wk in B2, such that

f is satisfiable if and only if the word w1 ∧ . . . ∧ wk is satisfiable.

(As Cook [1971] mentioned, a method of Davis and Putnam [1960] solves the
2-satisfiability problem in polynomial time.)

We next derive that the partition problem is NP-complete (Karp [1972b]).
This is the problem:

(4.23) Given a collection of subsets of a finite set X, does it contain a
subcollection that is a partition of X?

Corollary 4.1b. The partition problem is NP-complete.

Proof. We give a polynomial-time reduction of 3-SAT to the partition prob-
lem. Let f = w1 ∧ . . . ∧ wk be a word in B3, where w1, . . . , wk are words in
B2. Let x1, . . . , xm be the variables occurring in f . Make a bipartite graph G
with colour classes {w1, . . . , wk} and {x1, . . . , xm}, by joining wi and xj by
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an edge if and only if xj or ¬xj occurs in wi. Let X be the set of all vertices
and edges of G.

Let C′ be the collection of all sets {wi} ∪ E′, where E′ is a nonempty
subset of the edge set incident with wi. Let C′′ be the collection of all sets
{xj} ∪ E′

j and {xj} ∪ E′′
j , where E′

j is the set of all edges {wi, xj} such that
xj occurs in wi and where E′′

j is the set of all edges {wi, xj} such that ¬xj

occurs in wi.
Now f is satisfiable if and only if the collection C′ ∪ C′′ contains a subcol-

lection that partitions X. Thus we have a reduction of 3-SAT to the partition
problem.

In later chapters we derive from these results the NP-completeness of
several other combinatorial optimization problems.

4.12. Strongly polynomial-time

Roughly speaking, an algorithm is strongly polynomial-time if the number of
elementary arithmetic and other operations is bounded by a polynomial in
the size of the input, where any number in the input is counted only for 1.
Strong polynomial-timeness of an algorithm is of relevance only for problems
that have numbers among its input data. (Otherwise, strongly polynomial-
time coincides with polynomial-time.)

Consider a problem that has a number k of input parts, like a vertex set,
an edge set, a length function. Let f : Z2k

+ → R. We say that an algorithm
takes O(f) time if the algorithm terminates after

(4.24) O(f(n1, s1, . . . , nk, sk))

operations (including elementary arithmetic operations), where the ith input
part consists of ni numbers of maximum size si (i = 1, . . . , k), and if the
numbers occurring during the execution of the algorithm have size

(4.25) O(max{s1, . . . , sk}).

The algorithm is called a strongly polynomial-time algorithm if the algorithm
takes O(f) time for some polynomial f in the array lengths n1, . . . , nk, where
f is independent of s1, . . . , sk. If a problem can be solved by a strongly
polynomial-time algorithm, we say that it is solvable in strongly polynomial
time or strongly polynomial-time solvable.

An algorithm is called linear-time if f can be taken linear in n1, . . . , nk,
and independent of s1, . . . , sk. If a problem can be solved by a linear-time
algorithm, we say that it is solvable in linear time or linear-time solvable.

Rounding a rational x to ⌊x⌋ can be done in polynomial-time, by O(size(x))
elementary arithmetic operations. It however cannot be done in strongly pol-
ynomial time. In fact, even checking if an integer k is odd or even cannot
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be done in strongly polynomial time: for any strongly polynomial-time al-
gorithm with one integer k as input, there is a number L and a rational
function q : Z → Q such that if k > L, then the output equals q(k). (This
can be proved by induction on the number of steps of the algorithm.) How-
ever, there do not exist a rational function q and number L such that for
k > L, q(k) = 0 if k is even, and q(k) = 1 if k is odd.

We say that an algorithm is semi-strongly polynomial-time if we count
rounding a rational as one step (one time-unit). We sometimes say weakly
polynomial-time for polynomial-time, to distinguish from strongly polynomial-
time.

4.13. Lists and pointers

Algorithmically, sets (of vertices, edges, etc.) are often introduced and han-
dled as ordered sets, called lists. Their elements can be indicated just by their
positions (addresses) in the order: 1, 2, . . .. Then attributes (like the capacity,
or the ends, of an edge) can be specified in arrays.

Arrays represent functions, and such functions are also called pointers
if their value is taken as an address. Such functions also allow the value
void, where the function is undefined. Pointers can be helpful to shorten the
running time of an algorithm.

One way to store a list is just in an array. But then updating may take
(relatively) much time, for instance, if we would like to perform operations
on lists, such as removing or inserting elements or concatenating two lists.

A better way to store a list S = {s1, . . . , sk} is as a linked list. This is
given by a pointer f : S \ {sk} → S where f(si) = si+1 for i = 1, . . . , k − 1,
together with the first element s1 given by the variable b say (a fixed array
of length 1). It makes that S can be scanned in time O(|S|).

If we need to update the list after removing an element from S, it is
convenient to store S as a doubly linked list. Then we keep, next to f and b, a
pointer g : S \ {s1} → S where g(si) = si−1 for i = 2, . . . , k, and a variable l
say, with l := sk. The virtue of this data structure is that it can be restored in
constant time if we remove some element sj from S. Also concatenating two
doubly linked lists can be done in constant time. It is usually easy to build
up the doubly linked list along with reading the input, taking time O(|S|).

A convenient (but usually too abundant) way to store a directed graph
D = (V, A) using these data structures is as follows. For each v ∈ V , order
the sets δin(v) and δout(v). Store V as a doubly linked list. Give pointers
t, h : A → V , where t(a) and h(a) are the tail and head of a. Give four
pointers V → A, indicating the first and last (respectively) arc in the lists
δin(v) and δout(v) (respectively). Give four pointers A → A, indicating for
each a ∈ A, the previous and next (respectively) arc in the lists δin(h(a)) and
δout(t(a)) (respectively). (Values may be ‘void’. One can avoid the value ‘void’
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by merging the latter eight pointers described into four pointers V ∪ A →
V ∪ A.)

If, in the input of a problem, a directed graph is given as a string (or file),
like

(4.26) ({a, b, c, d}, {(a, c), (a, d), (b, d), (c, d)}),

we can build up the above data structure in time linear in the length of
the string. Often, when implementing a graph algorithm, a subset of this
structure will be sufficient. Undirected graphs can be handled similarly by
choosing an arbitrary orientation of the edges. (So each edge becomes a list.)

4.14. Further notes

4.14a. Background literature on algorithms and complexity

Background literature on algorithms and complexity includes Knuth [1968] (data
structures), Garey and Johnson [1979] (complexity, NP-completeness), Papadi-
mitriou and Steiglitz [1982] (combinatorial optimization and complexity), Aho,
Hopcroft, and Ullman [1983] (data structures and complexity), Tarjan [1983]
(data structures), Cormen, Leiserson, and Rivest [1990] (algorithms), Papadimi-
triou [1994] (complexity), Sipser [1997] (algorithms, complexity), and Mehlhorn
and Näher [1999] (data structures, algorithms and algorithms).

In this book we restrict algorithms and complexity to deterministic, sequential,
and exact. For other types of algorithms and complexity we refer to the books by
Motwani and Raghavan [1995] (randomized algorithms and complexity), Leighton
[1992,2001] (parallel algorithms and complexity), and Vazirani [2001] (approxima-
tion algorithms and complexity). A survey on practical problem solving with cutting
planes was given by Jünger, Reinelt, and Thienel [1995].

4.14b. Efficiency and complexity historically

In the history of complexity, more precisely, in the conception of the notions
‘polynomial-time’ and ‘NP-complete’, two lines loom up: one motivated by questions
in logic, recursion, computability, and theorem proving, the other more down-to-
earth focusing on the complexity of some concrete problems, with background in
discrete mathematics and operations research.

Until the mid-1960s, the notions of efficiency and complexity were not formal-
ized. The notion of algorithm was often used for a method that was better than
brute-force enumerating. We focus on how the ideas of polynomial-time and NP-
complete got shape. We will not go into the history of data structures, abstract
computational complexity, or the subtleties inside and beyond NP (for which we
refer to Papadimitriou [1994]).

We quote references in chronological order. This order is quite arbitrary, since
the papers mostly seem to be written isolated from each other and they react very
seldom to each other.
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Maybe the first paper that was concerned with the complexity of computation
is an article by Lamé [1844], who showed that the number of iterations in the
Euclidean g.c.d. algorithm is linear in the logarithm of the smallest of the two
(natural) numbers:

Dans les traités d’Arithmétique, on se contente de dire que le nombre des divisions
à effectuer, dans la recherche du plus grand commun diviseur entre deux entiers,
ne pourra pas surpasser la moitié du plus petit. Cette limite, qui peut être dépassée
si les nombres sont petits, s’éloigne outre mesure quand ils ont plusieurs chiffres.
L’exagération est alors semblable à celle qui assignerait la moitié d’un nombre
comme la limite de son logarithme; l’analogie devient évidente quand on connâıt
le théorème suivant:

Théorème. Le nombre des divisions à effectuer, pour trouver le plus grand com-
mun diviseur entre deux entiers A, et B<A, est toujours moindre que cinq fois
le nombre des chiffres de B.3

The first major combinatorial optimization problem for which a polynomial-time
algorithm was given is the shortest spanning tree problem, by Bor̊uvka [1926a,
1926b] and Jarńık [1930], but these papers do not discuss the complexity issue —
the efficiency of the method might have been too obvious. Choquet [1938] mentioned
explicitly an estimate for the number of iterations in finding a shortest spanning
tree:

Le réseau cherché sera tracé après 2n opérations élémentaires au plus, en appelant
opération élémentaire la recherche du continu le plus voisin d’un continu donné.4

The traveling salesman and the assignment problem

The traveling salesman problem and the assignment problem have been long-term
bench-marks that gave shape to the ideas on efficiency and complexity.

Menger might have been the first to ask attention for the complexity of the
traveling salesman problem. In the session of 5 February 1930 of his mathematische

Kolloquium in Vienna (as reported in Menger [1932a]), he introduced das Boten-

problem, later called the traveling salesman problem and raised the question for a
better-than-finite algorithm:

Dieses Problem ist natürlich stets durch endlichviele Versuche lösbar. Regeln,
welche die Anzahl der Versuche unter die Anzahl der Permutationen der gegebe-
nen Punkte herunterdrücken würden, sind nicht bekannt.5

3 In the handbooks of Arithmetics, one contents oneself with saying that, in the search
for the greatest common divisor of two integers, the number of divisions to execute
could not surpass half of the smallest [integer]. This bound, that can be exceeded if
the numbers are small, goes away beyond measure when they have several digits. The
exaggeration then is similar to that which would assign half of a number as bound of
its logarithm; the analogy becomes clear when one knows the following theorem:

Theorem. The number of divisions to execute, to find the greatest common divisor of
two integers A, and B<A, is always smaller than five times the number of digits of B.

4 The network looked for will be traced after at most 2n elementary operations, calling
the search for the continuum closest to a given continuum an elementary operation.

5 Of course, this problem is solvable by finitely many trials. Rules which would push the
number of trials below the number of permutations of the given points, are not known.
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Ghosh [1949] observed that the problem of finding a shortest tour along n

random points in the plane (which is the traveling salesman problem) is hard:

After locating the n random points in a map of the region, it is very difficult to
find out actually the shortest path connecting the points, unless the number n is
very small, which is seldom the case for a large-scale survey.

We should realize however that at that time also the (now known to be polynomial-
time solvable) assignment problem was considered to be hard. In an Address deliv-
ered on 9 September 1949 at a meeting of the American Psychological Association
at Denver, Colorado, Thorndike [1950] studied the problem of the ‘classification’ of
personnel:

There are, as has been indicated, a finite number of permutations in the assign-
ment of men to jobs. When the classification problem as formulated above was
presented to a mathematician, he pointed to this fact and said that from the
point of view of the mathematician there was no problem. Since the number of
permutations was finite, one had only to try them all and choose the best. He
dismissed the problem at that point. This is rather cold comfort to the psychol-
ogist, however, when one considers that only ten men and ten jobs mean over
three and a half million permutations. Trying out all the permutations may be a
mathematical solution to the problem, it is not a practical solution.

But, in a RAND Report dated 5 December 1949, Robinson [1949] reported
that an ‘unsuccessful attempt’ to solve the traveling salesman problem, led her
to a ‘cycle-cancelling’ method for the optimum assignment problem, which in fact
stands at the basis of efficient algorithms for network problems. She gave an op-
timality criterion for the assignment problem (absence of negative-length cycles in
the residual graph). As for the traveling salesman problem she mentions:

Since there are only a finite number of paths to consider, the problem consists in
finding a method for picking out the optimal path when n is moderately large,
say n = 50. In this case, there are more than 1062 possible paths, so we can not
simply try them all. Even for as few as 10 points, some short cuts are desirable.

She also observed that the number of feasible solutions is not a measure for the
complexity (where ‘it’ refers to the assignment problem):

However at first glance, it looks more difficult than the traveling salesman
probl[e]m, for there are obviously many more systems of circuits than circuits.

The development of the simplex method for linear programming, and its, in
practice successful, application to combinatorial optimization problems like assign-
ment and transportation, led to much speculation on the theoretical efficiency of
the simplex method. In his paper describing the application of the simplex method
to the transportation problem, Dantzig [1951a] mentioned (after giving a variable
selection criterion that he speculates to lead to favourable computational experience
for large-scale practical problems):

This does not mean that theoretical problems could not be “cooked up” where
this criterion is weak, but that in practical problems the number of steps has not
been far from m + n − 1.

(Here n and m are the numbers of vertices and arcs, respectively.)
At the Symposium on Linear Inequalities and Programming in Washington,

D.C. in 1951, Votaw and Orden [1952] reported on early computational results
with the simplex method (on the SEAC), and claimed (without proof) that the
simplex method is polynomial-time for the transportation problem (a statement
refuted by Zadeh [1973a]):
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As to computation time, it should be noted that for moderate size problems, say
m × n up to 500, the time of computation is of the same order of magnitude as
the time required to type the initial data. The computation time on a sample
computation in which m and n were both 10 was 3 minutes. The time of com-
putation can be shown by study of the computing method and the code to be
proportional to (m + n)3.

Another early mention of polynomial-time as efficiency criterion is by von Neu-
mann, who considered the complexity of the assignment problem. In a talk in the
Princeton University Game Seminar on 26 October 1951, he described a method
which is equivalent to finding a best strategy in a certain zero-sum two-person
game. According to a transcript of the talk (cf. von Neumann [1951,1953]), von
Neumann noted the following on the number of steps:

It turns out that this number is a moderate power of n, i.e., considerably smaller
than the ”obvious” estimate n! mentioned earlier.

However, no further argumentation is given.
In a Cowles Commission Discussion Paper of 2 April 1953, also Beckmann and

Koopmans [1953] asked for better-than-finite methods for the assignment problem,
but no explicit complexity measure was proposed, except that the work should be
reduced to ‘manageable proportions’:

It should be added that in all the assignment problems discussed, there is, of
course, the obvious brute force method of enumerating all assignments, evaluating
the maximand at each of these, and selecting the assignment giving the highest
value. This is too costly in most cases of practical importance, and by a method
of solution we have meant a procedure that reduces the computational work to
manageable proportions in a wider class of cases.

During the further 1950s, better-than-finite methods were developed for the as-
signment and several other problems like shortest path and maximum flow. These
methods turned out to give polynomial-time algorithms (possibly after modifica-
tion), and several speedups were found — but polynomial-time was, as yet, seldom
marked as efficiency criterion. The term ‘algorithm’ was often used just to distin-
guish from complete enumeration, but no mathematical characterization was given.

Kuhn [1955b,1956] introduced the ‘Hungarian method’ for the assignment prob-
lem (inspired by the proof method of Egerváry [1931]). Kuhn contented himself with
showing finiteness of the method, but Munkres [1957] showed that it is strongly
polynomial-time:

The final maximum on the number of operations needed is

(11n3 + 12n2 + 31n)/6.

This maximum is of theoretical interest, since it is much smaller than the n!
operations necessary in the most straightforward attack on the problem.

As for the maximum flow problem, Ford and Fulkerson [1955,1957b] showed that
their augmenting path method is finite, but only Dinits [1970] and Edmonds and
Karp [1970,1972] showed that it can be adapted to be (strongly) polynomial-time.

Several algorithms were given for finding shortest paths (Shimbel [1955], Ley-
zorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz [1957], Bellman [1958],
Dantzig [1958,1960], Dijkstra [1959], Moore [1959]), and most of them are obvi-
ously strongly polynomial-time. (Ford [1956] gave a liberal shortest path algorithm
that may require exponential time (Johnson [1973a,1973b,1977a]).)
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Similarly, the interest in the shortest spanning tree problem revived, leading to
old and new strongly polynomial-time algorithms (Kruskal [1956], Loberman and
Weinberger [1957], Prim [1957], and Dijkstra [1959]).

The traveling salesman problem resisted these efforts. In the words of Dantzig,
Fulkerson, and Johnson [1954a,1954b]:

Although algorithms have been devised for problems of similar nature, e.g., the
optimal assignment problem,3,7,8 little is known about the traveling-salesman
problem. We do not claim that this note alters the situation very much;

The papers 3,7,8 referred to, are the papers Dantzig [1951a], Votaw and Orden
[1952], and von Neumann [1953], quoted above.

The use of the word ‘Although’ in the above quote makes it unclear what
Dantzig, Fulkerson, and Johnson considered to be an algorithm. Their algorithm
uses polyhedral methods to solve the traveling salesman problem, while Dantzig
[1951a] and Votaw and Orden [1952] apply the simplex method to solve the assign-
ment and transportation problems. In a follow-up paper, Dantzig, Fulkerson, and
Johnson [1959] seem to have come to the conclusion that both methods are of a
comparable level:

Neither does the example, as we have solved it, indicate how one could make
the combinatorial analysis a routine procedure. This can certainly be done (by
enumeration, if nothing else)—but the fundamental question is: does the use of
a few linear inequalities in general reduce the combinatorial magnitude of such
problems significantly?
We do not know the answer to this question in any theoretical sense, but it is
our feeling, based on our experience in using the method, that it does afford a
practical means of computing optimal tours in problems that are not too huge.
It should be noted that a similar question, for example, arises when one uses the
simplex method to find optimal solutions to linear programs, since no one has yet
proved that the simplex method cuts down the computational task significantly
from the crude method of examining all basic solutions, say. Nonetheless, people
do use the simplex method because of successful experience with many hundreds
of practical problems.

The feeling that the traveling salesman problem is more complex than the as-
signment problem was stated by Tompkins [1956]:

A traveling-salesman problem is in some respects similar to the assignment prob-
lem. It seems definitely more difficult, however.

Tompkins described a branch-and-bound scheme to the permutation problem (in-
cluding assignment and traveling salesman), but said:

It must be noted, however, that this is not a completely satisfactory scheme
for solution of such problems. In a few important cases (such as the assignment
problem) more efficient machine methods have been devised.

The available algorithms for the traveling salesman problem were also not accept-
able to Flood [1956]:

There are as yet no acceptable computational methods, and surprisingly few
mathematical results relative to the problem.

He mentioned that the problem might be ‘fundamentally complex’:

Very recent mathematical work on the traveling-salesman problem by I. Heller,
H.W. Kuhn, and others indicates that the problem is fundamentally complex.
It seems very likely that quite a different approach from any yet used may be
required for succesful treatment of the problem. In fact, there may well be no
general method for treating the problem and impossibility results would also be
valuable.
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Logic and computability

Parallel to those motivated by concrete combinatorial problems, interest in com-
plexity arose in the circles of logicians and recursion theorists.

A first quote is from a letter of K. Gödel to J. von Neumann of 20 March 1956.
(The letter was reviewed by Hartmanis [1989], to whose attention it was brought
by G. Heise. A reproduction and full translation was given by Sipser [1992].)

Turing [1937] proved that there is no algorithm that decides if a given state-
ment in full first-order predicate logic has a proof (the unsolvability of Hilbert’s
Entscheidungsproblem of the engere Funktionskalkül (which is the term originally
used by Hilbert for full first-order predicate calculus; Turing [1937] translated it
into restricted functional calculus)). It implies the result of Gödel [1931] that there
exist propositions A such that neither A nor ¬A is provable (in the formalism of
the Principia Mathematica).

But a given proof can algorithmically be checked, hence there is a finite al-
gorithm to check if there exists a proof of any prescribed length n (simply by
enumeration). Nowadays it is known that this is in fact an NP-complete problem
(the satisfiability problem is a special case). Gödel asked for the opinion of von
Neumann on whether a proof could be found algorithmically in time linear (or else
quadratic) in the length of the proof — quite a bold statement, which Gödel yet
seemed to consider plausible:

Man kann offenbar leicht eine Turingmaschine konstruieren, welche von jeder
Formel F des engeren Funktionenkalküls u. jeder natürl. Zahl n zu entschei-
den gestattet ob F einen Beweis der Länge n hat [Länge = Anzahl der Sym-
bole]. Sei ψ(F, n) die Anzahl der Schritte die die Maschine dazu benötigt u.
sei ϕ(n) = max

F
ψ(F, n). Die Frage ist, wie rasch ϕ(n) für eine optimale Mas-

chine wächst. Man kann zeigen ϕ(n) ≥ Kn. Wenn es wirklich eine Maschine mit
ϕ(n) ∼ K.n (oder auch nur ∼ Kn2) gäbe, hätte das Folgerungen von der grössten
Tragweite. Es würde nämlich offenbar bedeuten, dass man trotz der Unlösbarkeit
des Entscheidungsproblems die Denkarbeit des Mathematikers bei ja-oder-nein
Fragen vollständig∗ durch Maschinen ersetzen könnte. Man müsste ja bloss das
n so gross wählen, dass, wenn die Maschine kein Resultat liefert es auch keinen
Sinn hat über das Problem nachzudenken. Nun scheint es mir aber durchaus
im Bereich der Möglichkeit zu liegen, dass ϕ(n) so langsam wächst. Denn 1.)
scheint ϕ(n) ≥ Kn die einzige Abschätzung zu sein, die man durch eine Verallge-
meinerung des Beweises für die Unlösbarkeit des Entscheidungsproblems erhalten
kann; 2. bedeutet ja ϕ(n) ∼ K.n (oder ∼ Kn2) bloss, dass die Anzahl der Schritte
gegenüber dem blossen Probieren von N auf log N (oder (log N)2) verringert wer-
den kann. So starke Verringerungen kommen aber bei andern finiten Problemen
durchaus vor, z.B. bei der Berechnung eines quadratischen Restsymbols durch
wiederholte Anwendung des Reziprozitätsgesetzes. Es wäre interessant zu wissen,
wie es damit z.B. bei der Feststellung, ob eine Zahl Primzahl ist, steht u. wie stark
im allgemeinen bei finiten kombinatorischen Problemen die Anzahl der Schritte
gegenüber dem blossen Probieren verringert werden kann.

* abgesehen von der Aufstellung der Axiome6

6 Clearly, one can easily construct a Turing machine, which makes it possible to decide,
for each formula F of the restricted functional calculus and each natural number n,
whether F has a proof of length n [length = number of symbols]. Let ψ(F, n) be the
number of steps that the machine needs for that and let ϕ(n) = max

F
ψ(F, n). The

question is, how fast ϕ(n) grows for an optimal machine. One can show ϕ(n) ≥ Kn.
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(For integers a, p with p prime, the Legendre symbol ( a
p
) indicates if a is a quadratic

residue mod p (that is, if x2 = a (mod p) has an integer solution x), and can be
calculated by log a + log p arithmetic operations (using the Jacobi symbol and the
reciprocity law) — so Gödel took the logarithms of the numbers as size.)

The unavoidability of brute-force search for finding the smallest Boolean repre-
sentation for a function was claimed by Yablonskĭı [1959] (cf. Trakhtenbrot [1984]).

Davis and Putnam [1960] gave a method for the satisfiability problem (in reac-
tion to earlier, exponential-time methods of Gilmore [1960] and Wang [1960] based
on elimination of variables), which they claimed to have some (not exactly formu-
lated) efficiency:

In the present paper, a uniform proof procedure for quantification theory is given
which is feasible for use with some rather complicated formulas and which does
not ordinarily lead to exponentiation.

(It was noticed later by Cook [1971] that Davis and Putnam’s method gives a
polynomial-time method for the 2-satisfiability problem.)

A mathematical framework for computational complexity of algorithms was set
up by Hartmanis and Stearns [1965]. They counted the number of steps made by
a multitape Turing machine to solve a decision problem. They showed that for
all ‘real-time countable’ functions f, g (which include all functions nk, kn, n!, and
sums, products, and compositions of them) the following holds: if each problem
solvable in time O(f) is also solvable in time O(g), then f = O(g2). This implies,
for instance, that there exist problems solvable in time O(n5) but not in time
O(n2), and problems solvable in time O(2n) but not in time O(2n/3) (hence not in
polynomial time).

Polynomial-time

In the summer of 1963, at a Workshop at the RAND Corporation, Edmonds discov-
ered that shrinking leads to a polynomial-time algorithm to find a maximum-size
matching in any graph — a basic result in graph algorithmics. It was described in
the paper Edmonds [1965d] (received November 22, 1963), in which he also gave
his views on algorithms and complexity:

When really there were a machine with ϕ(n) ∼ K.n (or even just ∼ Kn2), that would
have consequences of the largest impact. In particular, it would obviously mean that,
despite the unsolvability of the Entscheidungsproblem, one could replace the brainwork
of the mathematician in case of yes-or-no questions fully∗ by machines. One should
indeed only choose n so large that if the machine yields no result, there is also no
sense in thinking about the problem. Now it seems to me, however, to lie completely
within the range of possibility that ϕ(n) grows that slowly. Because 1.) ϕ(n) ≥ Kn
seems to be the only estimate that one can obtain by a generalization of the proof
for the unsolvability of the Entscheidungsproblem; 2. ϕ(n) ∼ K.n (or ∼ Kn2) means
indeed only that the number of steps can be reduced compared to mere trying from N

to log N (or (log N)2). Such strong reductions occur however definitely at other finite
problems, e.g. at the calculation of a quadratic residue symbol by repeated application
of the reciprocity law. It would be interesting to know how this is e.g. for the decision
if a number is prime, and how strong in general, for finite combinatorial problems, the
number of steps can be reduced compared to mere trying.

* apart from the set-up of the axioms
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For practical purposes computational details are vital. However, my purpose is
only to show as attractively as I can that there is an efficient algorithm. According
to the dictionary, “efficient” means “adequate in operation or performance.” This
is roughly the meaning I want—in the sense that it is conceivable for maximum
matching to have no efficient algorithm. Perhaps a better word is “good.”
I am claiming, as a mathematical result, the existence of a good algorithm for
finding a maximum size matching in a graph.
There is an obvious finite algorithm, but that algorithm increases in difficulty
exponentially with the size of the graph. It is by no means obvious whether or
not there exists an algorithm whose difficulty increases only algebraically with
the size of the graph.

Moreover:

For practical purposes the difference between algebraic and exponential order is
often more crucial than the difference between finite and non-finite.

In another paper, Edmonds [1965c] introduced the term good characterization:

We seek a good characterization of the minimum number of independent sets
into which the columns of a matrix of MF can be partitioned. As the criterion
of “good” for the characterization we apply the “principle of the absolute su-
pervisor.” The good characterization will describe certain information about the
matrix which the supervisor can require his assistant to search out along with
a minimum partition and which the supervisor can then use with ease to verify
with mathematical certainty that the partition is indeed minimum. Having a good
characterization does not mean necessarily that there is a good algorithm. The
assistant might have to kill himself with work to find the information and the
partition.

Further motivation for polynomial-time solvability was given by Edmonds [1967b]:

An algorithm which is good in the sense used here is not necessarily very good
from a practical viewpoint. However, the good-versus-not-good dichotomy is use-
ful. It is easily formalized (say, relative to a Turing machine, or relative to a
typical digital computer with an unlimited supply of tape), and usually it is eas-
ily recognized informally. Within limitations it does have practical value, and it
does admit refinements to “how good” and “how bad”. The classes of problems
which are respectively known and not known to have good algorithms are very
interesting theoretically.

Edmonds [1967a] conjectured that there is no polynomial-time algorithm for the
traveling salesman problem — in language developed later, this is equivalent to
NP�=P:

I conjecture that there is no good algorithm for the traveling salesman problem.
My reasons are the same as for any mathematical conjecture: (1) It is a legitimate
mathematical possibility, and (2) I do not know.

Also Cobham [1965] singled out polynomial-time as a complexity criterion, in a
paper on Turing machines and computability, presented at the 1964 International
Congress on Logic, Methodology and Philosophy of Science in Jerusalem (denoting
the size of n by l(n)):

To obtain some idea as to how we might go about the further classification of
relatively simple functions, we might take a look at how we ordinarily set about
computing some of the more common of them. Suppose, for example, that m and
n are two numbers given in decimal notation with one written above the other
and their right ends aligned. Then to add m and n we start at the right and
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proceed digit-by-digit to the left writing down the sum. No matter how large m
and n, this process terminates with the answer after a number of steps equal at
most to one greater than the larger of l(m) and l(n). Thus the process of adding
m and n can be carried out in a number of steps which is bounded by a linear
polynomial in l(m) and l(n). Similarly, we can multiply m and n in a number of
steps bounded by a quadratic polynomial in l(m) and l(n). So, too, the number of
steps involved in the extraction of square roots, calculation of quotients, etc., can
be bounded by polynomials in the lengths of the numbers involved, and this seems
to be a property of simple functions in general. This suggests that we consider
the class, which I will call L, of all functions having this property.

At a symposium in New York in 1966, also Rabin [1967] noted the importance
of polynomial-time solvability:

In the following we shall consider an algorithm to be practical if, for automata
with n states, it requires at most cnk (k is a fixed integer and c a fixed constant)
computational steps. This stipulation is, admittedly, both vague and arbitrary. We
do not, in fact cannot, define what is meant by a computational step, thus have no
precise and general measure for the complexity of algorithms. Furthermore, there
is no compelling reason to classify algorithms requiring cnk steps as practical.
Several points may be raised in defense of the above stipulation. In every given
algorithm the notion of a computational step is quite obvious. Hence there is not
much vagueness about the measure of complexity of existing algorithms. Another
significant pragmatic fact is that all existing algorithms either require up to about
n4 steps or else require 2n or worse steps. Thus drawing the line of practicality
between algorithms requiring nk steps and algorithms for which no such bound
exists seems to be reasonable.

NP-completeness

Cook [1971] proved the NP-completeness of the satisfiability problem (‘Theorem
1’) and of the 3-satisfiability problem and the subgraph problem (‘Theorem 2’)
and mentioned (the class of polynomial-time solvable problems is denoted by L∗; {
tautologies } is the satisfiability problem):

Theorem 1 and its corollary give strong evidence that it is not easy to determine
whether a given proposition formula is a tautology, even if the formula is in
normal disjunctive form. Theorems 1 and 2 together suggest that it is fruitless
to search for a polynomial decision procedure for the subgraph problem, since
success would bring polynomial decision procedures to many other apparently
intractable problems. Of course, the same remark applies to any combinatorial
problem to which { tautologies } is P-reducible.
Furthermore, the theorems suggest that { tautologies } is a good candidate for
an interesting set not in L∗, and I feel it is worth spending considerable effort
trying to prove this conjecture. Such a proof would be a major breakthrough in
complexity theory.

So Cook conjectured that NP�=P.
Also Levin [1973] considered the distinction between NP and P:

After the concept of the algorithm had been fully refined, the algorithmic unsolv-
ability of a number of classical large-scale problems was proved (including the
problems of the identity of elements of groups, the homeomorphism of varieties,
the solvability of the Diophantine equations, etc.). These findings dispensed with
the question of finding a practical technique for solving the indicated problems.
However, the existence of algorithms for the solution of other problems does not
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eliminate the analogous question, because the volume of work mandated by those
algorithms is fantastically large. This is the situation with so-called sequential
(or exhaustive) search problems, including: the minimization of Boolean func-
tions, the search for proofs of finite length, the determination of the isomorphism
of graphs, etc. All of these problems are solved by trivial algorithms entailing
the sequential scanning of all possibilities. The operating time of the algorithms,
however, is exponential, and mathematicians nurture the conviction that it is
impossible to find simpler algorithms.

Levin next announced that any problem in NP (in his terminology, any ‘sequential
search problem’) can be reduced to the satisfiability problem, and to a few other
problems.

The wide extent of NP-completeness was disclosed by Karp [1972b], by showing
that a host of prominent combinatorial problems is NP-complete, therewith reveal-
ing the fissure in the combinatorial optimization landscape. According to Karp, his
theorems

strongly suggest, but do not imply, that these problems, as well as many others,
will remain intractable perpetually.

Karp also introduced the notation P and NP, and in a subsequent paper, Karp
[1975] introduced the term NP-complete.

Sipser [1992] gave an extensive account on the history of the P=NP question.
Hartmanis [1989] reviewed the historic setting of ‘Gödel, von Neumann and the
P=?NP Problem’. Other papers on the history of complexity are Hartmanis [1981],
Trakhtenbrot [1984] (Russian approaches), Karp [1986], and Iri [1987] (the Japanese
view).



Chapter 5

Preliminaries on polyhedra and

linear and integer programming

This chapter surveys what we need on polyhedra and linear and integer
programming. Most background can be found in Chapters 7–10, 14, 16, 19,
22, and 23 of Schrijver [1986b]. We give proofs of a few easy further results
that we need in later parts of the present book.
The results of this chapter are mostly formulated for real space,

but are maintained when restricted to rational space. So the symbol
R can be replaced by the symbol Q. In applying these results, we add the
adjective rational when we restrict ourselves to rational numbers.

5.1. Convexity and halfspaces

A subset C of Rn is convex if λx + (1 − λ)y belongs to C for all x, y ∈ C and
each λ with 0 ≤ λ ≤ 1. A convex body is a compact convex set.

The convex hull of a set X ⊆ Rn, denoted by conv.hullX, is the smallest
convex set containing X. Then:

(5.1) conv.hullX = {λ1x1 + · · · + λkxk | k ≥ 1, x1, . . . , xk ∈ X, λ1, . . . ,
λk∈ R+, λ1 + · · · + λk = 1}.

A useful fundamental result was proved by Carathéodory [1911]:

Theorem 5.1 (Carathéodory’s theorem). For any X ⊆ Rn and x ∈
conv.hullX, there exist affinely independent vectors x1, . . . , xk in X with
x ∈ conv.hull{x1, . . . , xk}.

(Corollary 7.1f in Schrijver [1986b].)
A subset H of Rn is called an affine halfspace if H = {x | cTx ≤ δ}, for

some c ∈ Rn with c �= 0 and some δ ∈ R. If δ = 0, then H is called a linear
halfspace.

Let X ⊆ Rn. The set conv.hullX + Rn
+ is called the up hull of X, and the

set conv.hullX − Rn
+ the down hull of X.
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5.2. Cones

A subset C of Rn is called a (convex) cone if C �= ∅ and λx + µy ∈ C
whenever x, y ∈ C and λ, µ ∈ R+. The cone generated by a set X of vectors
is the smallest cone containing X:

(5.2) coneX = {λ1x1 + · · · + λkxk | k ≥ 0, λ1, . . . , λk ≥ 0, x1, . . . , xk∈
X}.

There is a variant of Carathéodory’s theorem:

Theorem 5.2. For any X ⊆ Rn and x ∈ coneX, there exist linearly inde-
pendent vectors x1, . . . , xk in X with x ∈ cone{x1, . . . , xk}.

A cone C is polyhedral if there is a matrix A such that

(5.3) C = {x | Ax ≤ 0}.

Equivalently, C is polyhedral if it is the intersection of finitely many linear
halfspaces.

Results of Farkas [1898,1902], Minkowski [1896], and Weyl [1935] imply
that

(5.4) a convex cone is polyhedral if and only if it is finitely generated,

where a cone C is finitely generated if C = coneX for some finite set X.
(Corollary 7.1a in Schrijver [1986b].)

5.3. Polyhedra and polytopes

A subset P of Rn is called a polyhedron if there exists an m × n matrix A
and a vector b ∈ Rm (for some m ≥ 0) such that

(5.5) P = {x | Ax ≤ b}.

So P is a polyhedron of and only if it is the intersection of finitely many affine
halfspaces. If (5.5) holds, we say that Ax ≤ b determines P . Any inequality
cTx ≤ δ is called valid for P if cTx ≤ δ holds for each x ∈ P .

A subset P of Rn is called a polytope if it is the convex hull of finitely
many vectors in Rn. Motzkin [1936] showed:

(5.6) a set P is a polyhedron if and only if P = Q+C for some polytope
Q and some cone C.

(Corollary 7.1b in Schrijver [1986b].) If P �= ∅, then C is unique and is called
the characteristic cone char.cone(P ) of P . Then:

(5.7) char.cone(P ) = {y ∈ Rn | ∀x ∈ P∀λ ≥ 0 : x + λy ∈ P}.
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If P = ∅, then by definition its characteristic cone is char.cone(P ) := {0}.
(5.6) implies the following fundamental result (Minkowski [1896], Steinitz

[1916], Weyl [1935]):

(5.8) a set P is a polytope if and only if P is a bounded polyhedron.

(Corollary 7.1c in Schrijver [1986b].)
A polyhedron P is called rational if it is determined by a rational system

of linear inequalities. Then a rational polytope is the convex hull of a finite
number of rational vectors.

5.4. Farkas’ lemma

A system Ax ≤ b is called feasible (or solvable) if it has a solution x. Feasibility
of a system Ax ≤ b of linear inequalities is characterized by Farkas’ lemma
(Farkas [1894,1898], Minkowski [1896]):

Theorem 5.3 (Farkas’ lemma). Ax ≤ b is feasible ⇐⇒ yTb ≥ 0 for each
y ≥ 0 with yTA = 0T.

(Corollary 7.1e in Schrijver [1986b].) Theorem 5.3 is equivalent to:

Corollary 5.3a (Farkas’ lemma — variant). Ax = b has a solution x ≥ 0

⇐⇒ yTb ≥ 0 for each y with yTA ≥ 0T.

(Corollary 7.1d in Schrijver [1986b].) A second equivalent variant is:

Corollary 5.3b (Farkas’ lemma — variant). Ax ≤ b has a solution x ≥ 0

⇐⇒ yTb ≥ 0 for each y ≥ 0 with yTA ≥ 0T.

(Corollary 7.1f in Schrijver [1986b].) A third equivalent, affine variant of
Farkas’ lemma is:

Corollary 5.3c (Farkas’ lemma — affine variant). Let Ax ≤ b be a feasible
system of inequalities and let cTx ≤ δ be an inequality satisfied by each x
with Ax ≤ b. Then for some δ′ ≤ δ, the inequality cTx ≤ δ′ is a nonnegative
linear combination of the inequalities in Ax ≤ b.

(Corollary 7.1h in Schrijver [1986b].)

5.5. Linear programming

Linear programming, abbreviated to LP, concerns the problem of maximizing
or minimizing a linear function over a polyhedron. Examples are

(5.9) max{cTx | Ax ≤ b} and min{cTx | x ≥ 0, Ax ≥ b}.
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If a supremum of a linear function over a polyhedron is finite, then it is
attained as a maximum. So a maximum is finite if the value set is nonempty
and has an upper bound. Similarly for infimum and minimum.

The duality theorem of linear programming says (von Neumann [1947],
Gale, Kuhn, and Tucker [1951]):

Theorem 5.4 (duality theorem of linear programming). Let A be a matrix
and b and c be vectors. Then

(5.10) max{cTx | Ax ≤ b} = min{yTb | y ≥ 0, yTA = cT},

if at least one of these two optima is finite.

(Corollary 7.1g in Schrijver [1986b].) So, in particular, if at least one of the
optima is finite, then both are finite.

Note that the inequality ≤ in (5.10) is easy, since cTx = yTAx ≤ yTb.
This is called weak duality.

There are several equivalent forms of the duality theorem of linear pro-
gramming, like

(5.11) max{cTx | x ≥ 0, Ax ≤ b} = min{yTb | y ≥ 0, yTA ≥ cT},
max{cTx | x ≥ 0, Ax = b} = min{yTb | yTA ≥ cT},
min{cTx | x ≥ 0, Ax ≥ b} = max{yTb | y ≥ 0, yTA ≤ cT},
min{cTx | Ax ≥ b} = max{yTb | y ≥ 0, yTA = cT}.

Any of these equalities holds if at least one of the two optima is finite (im-
plying that both are finite).

A most general formulation is: let A, B, C, D, E, F, G, H, K be matrices
and let a, b, c, d, e, f be vectors; then

(5.12) max{dTx + eTy + fTz | x ≥ 0, z ≤ 0,
Ax + By + Cz ≤ a,
Dx + Ey + Fz = b,
Gx + Hy + Kz ≥ c}
= min{uTa + vTb + wTc | u ≥ 0, w ≤ 0,
uTA + vTD + wTG ≥ dT,
uTB + vTE + wTH = eT,
uTC + vTF + wTK ≤ fT},

provided that at least one of the two optima is finite (cf. Section 7.4 in
Schrijver [1986b]).

So there is a one-to-one relation between constraints in a problem and
variables in its dual problem. The objective function in one problem becomes
the right-hand side in the dual problem. We survey these relations in the
following table:
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maximize minimize
≤ constraint variable ≥ 0
≥ constraint variable ≤ 0
= constraint unconstrained variable
variable ≥ 0 ≥ constraint
variable ≤ 0 ≤ constraint

unconstrained variable = constraint
right-hand side objective function

objective function right-hand side

Some LP terminology. Linear programming concerns maximizing or mini-
mizing a linear function cTx over a polyhedron P . The polyhedron P is called
the feasible region, and any vector in P a feasible solution. If the feasible re-
gion is nonempty, the problem is called feasible, and infeasible otherwise. The
function x → cTx is called the objective function or the cost function. Any
feasible solution attaining the optimum value is called an optimum solution.
An inequality cTx ≤ δ is called tight or active for some x∗ if cTx∗ = δ.

Equations like (5.10), (5.11), and (5.12) are called linear programming
duality equations. The minimization problem is called the dual problem of the
maximization problem (which problem then is called the primal problem), and
conversely. A feasible solution of the dual problem is called a dual solution.

Complementary slackness. The following complementary slackness con-
ditions characterize optimality of a pair of feasible solutions x, y of the linear
programs (5.10):

(5.13) x and y are optimum solutions if and only if (Ax)i = bi for each
i with yi > 0.

Similar conditions can be formulated for other pairs of dual linear programs
(cf. Section 7.9 in Schrijver [1986b]).

Carathéodory’s theorem. A consequence of Carathéodory’s theorem (The-
orem 5.1 above) is:

Theorem 5.5. If the optimum value in the LP problems (5.10) is finite,
then the minimum is attained by a vector y ≥ 0 such that the rows of A
corresponding to positive components of y are linearly independent.

(Corollary 7.1l in Schrijver [1986b].)

5.6. Faces, facets, and vertices

Let P = {x | Ax ≤ b} be a polyhedron in Rn. If c is a nonzero vector and
δ = max{cTx | Ax ≤ b}, the affine hyperplane {x | cTx = δ} is called a
supporting hyperplane of P . A subset F of P is called a face if F = P or if
F = P ∩ H for some supporting hyperplane H of P . So
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(5.14) F is a face of P ⇐⇒ F is the set of optimum solutions of
max{cTx | Ax ≤ b} for some c ∈ Rn.

An inequality cTx ≤ δ is said to determine or to induce face F of P if

(5.15) F = {x ∈ P | cTx = δ}.

Alternatively, F is a face of P if and only if

(5.16) F = {x ∈ P | A′x = b′}
for some subsystem A′x ≤ b′ of Ax ≤ b (cf. Section 8.3 in Schrijver [1986b]).
So any face of a nonempty polyhedron is a nonempty polyhedron. We say
that a constraint aTx ≤ β from Ax ≤ b is tight or active in a face F if aTx = β
holds for each x ∈ F .

An inequality aTx ≤ β from Ax ≤ b is called an implicit equality if Ax ≤ b
implies aTx = β. Then:

Theorem 5.6. Let P = {x | Ax ≤ b} be a polyhedron in Rn. Let A′x ≤ b′ be
the subsystem of implicit inequalities in Ax ≤ b. Then dim P = n − rankA′.

(Cf. Section 8.2 in Schrijver [1986b].)
A facet of P is an inclusionwise maximal face F of P with F �= P . An

inequality determining a facet is called facet-determining or facet-inducing.
Any facet has dimension one less than the dimension of P .

A system Ax ≤ b is called minimal or irredundant if each proper subsys-
tem A′x ≤ b′ has a solution x not satisfying Ax ≤ b. If Ax ≤ b is irredundant
and P is full-dimensional, then Ax ≤ b is the unique minimal system deter-
mining P , up to multiplying inequalities by positive scalars.

If Ax ≤ b is irredundant, then there is a one-to-one relation between the
facets F of P and those inequalities aTx ≤ β in Ax ≤ b that are not implicit
equalities, given by:

(5.17) F = {x ∈ P | aTx = β}
(cf. Theorem 8.1 in Schrijver [1986b]). This implies that each face F �= P is
the intersection of facets.

A face of P = {x | Ax ≤ b} is called a minimal face if it is an inclusionwise
minimal face. Any minimal face is an affine subspace of Rn, and all minimal
faces of P are translates of each other. They all have dimension n − rankA.

If each minimal face has dimension 0, P is called pointed. A vertex of P is
an element z such that {z} is a minimal face. A polytope is the convex hull
of its vertices.

For any element z of P = {x | Ax ≤ b}, let Azx ≤ bz be the system
consisting of those inequalities from Ax ≤ b that are satisfied by z with
equality. Then:

Theorem 5.7. Let P = {x | Ax ≤ b} be a polyhedron in Rn and let z ∈ P .
Then z is a vertex of P if and only if rank(Az) = n.
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An edge of P is a bounded face of dimension 1. It necessarily connects
two vertices of P . Two vertices connected by an edge are called adjacent. An
extremal ray is a face of dimension 1 that forms a halfline.

The 1-skeleton of a pointed polyhedron P is the union of the vertices,
edges, and extremal rays of P . If P is a polytope, the 1-skeleton is a topologi-
cal graph. The diameter of P is the diameter of the associated (combinatorial)
graph.

The Hirsch conjecture states that a d-dimensional polytope with m facets
has diameter at most m − d. Naddef [1989] proved this for polytopes with
0, 1 vertices. We refer to Kalai [1997] for a survey of bounds on the diameter
and on the number of pivot steps in linear programming.

5.7. Polarity

(For the results of this section, see Section 9.1 in Schrijver [1986b].) For any
subset C of Rn, the polar of C is

(5.18) C∗ := {z ∈ Rn | xTz ≤ 1 for all x ∈ C}.

If C is a cone, then C∗ is again a cone, the polar cone of C, and satisfies

(5.19) C∗ := {z ∈ Rn | xTz ≤ 0 for all x ∈ C}.

Let C be a polyhedral cone; so C = {x | Ax ≤ 0} for some matrix A.
Trivially, if C is generated by the vectors x1, . . . , xk, then C∗ is equal to the
cone determined by the inequalities xT

i z ≤ 0 for i = 1, . . . , k. It is less trivial,
and can be derived from Farkas’ lemma, that:

(5.20) the polar cone C∗ is equal to the cone generated by the transposes
of the rows of A.

This implies

(5.21) C∗∗ = C for each polyhedral cone C.

So there is a symmetric duality relation between finite sets of vectors gener-
ating a cone and finite sets of vectors generating its polar cone.

5.8. Blocking polyhedra

(For the results of this section, see Section 9.2 in Schrijver [1986b].) A dual-
ity relation similar to polarity holds between convex sets ‘of blocking type’,
and also between convex sets ‘of antiblocking type’. This was shown by Fulk-
erson [1970b,1971a,1972a], who found several applications in combinatorial
optimization.

We say that a subset P of Rn is up-monotone if x ∈ P and y ≥ x imply
y ∈ P . Similarly, P is down-monotone if x ∈ P and y ≤ x imply y ∈ P .
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Moreover, P is down-monotone in Rn
+ if x ∈ P and 0 ≤ y ≤ x imply y ∈ P .

For any P ⊆ Rn we define

(5.22) P ↑ := {y ∈ Rn | ∃x ∈ P : y ≥ x} = P + Rn
+ and

P ↓ := {y ∈ Rn | ∃x ∈ P : y ≤ x} = P − Rn
+.

P ↑ is called the dominant of P . So P is up-monotone if and only if P = P ↑,
and P is down-monotone if and only if P = P ↓.

We say that a convex set P ⊆ Rn is of blocking type if P is a closed convex
up-monotone subset of Rn

+. Each polyhedron P of blocking type is pointed.
Moreover, P is a polyhedron of blocking type if and only if there exist vectors
x1, . . . , xk ∈ Rn

+ such that

(5.23) P = conv.hull{x1, . . . , xk}↑;

and also, if and only if

(5.24) P = {x ∈ Rn
+ | Ax ≥ 1}

for some nonnegative matrix A.
For any polyhedron P in Rn, the blocking polyhedron B(P ) of P is defined

by

(5.25) B(P ) := {z ∈ Rn
+ | xTz ≥ 1 for each x ∈ P}.

Fulkerson [1970b,1971a] showed:

Theorem 5.8. Let P ⊆ Rn
+ be a polyhedron of blocking type. Then B(P )

is again a polyhedron of blocking type and B(B(P )) = P . Moreover, for any
x1, . . . , xk ∈ Rn

+:

(5.26) (5.23) holds if and only if B(P ) = {z ∈ Rn
+ | xT

i z ≥ 1 for i =
1, . . . , k}.

Here the only if part is trivial, while the if part requires Farkas’ lemma.
Theorem 5.8 implies that for vectors x1, . . . , xk ∈ Rn

+ and z1, . . . , zd ∈ Rn
+

one has:

(5.27) conv.hull{x1, . . . , xk}+Rn
+ = {x ∈ Rn

+ | zT

j x ≥ 1 for j = 1, . . . , d}
if and only if

(5.28) conv.hull{z1, . . . , zd}+Rn
+ = {z ∈ Rn

+ | xT

i z ≥ 1 for i = 1, . . . , k}.

Two polyhedra P, R are called a blocking pair (of polyhedra) if they are
of blocking type and satisfy R = B(P ). So if P, R is a blocking pair, then so
is R, P .
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5.9. Antiblocking polyhedra

(For the results of this section, see Section 9.3 in Schrijver [1986b].) The
theory of antiblocking polyhedra is almost fully analogous to the blocking
case and arises mostly by reversing inequality signs.

We say that a set P ⊆ Rn is of antiblocking type if P is a nonempty closed
convex subset of Rn

+ that is down-monotone in Rn
+. Then P is a polyhedron

of antiblocking type if and only if

(5.29) P = {x ∈ Rn
+ | Ax ≤ b}

for some nonnegative matrix A and nonnegative vector b.
For any subset P of Rn, the antiblocking set A(P ) of P is defined by

(5.30) A(P ) := {z ∈ Rn
+ | xTz ≤ 1 for each x ∈ P}.

If A(P ) is a polyhedron we speak of the antiblocking polyhedron, and if A(P )
is a convex body, of the antiblocking body.

Fulkerson [1971a,1972a] showed:

Theorem 5.9. Let P ⊆ Rn
+ be of antiblocking type. Then A(P ) is again of

antiblocking type and A(A(P )) = P .

The antiblocking analogue of (5.26) is a little more complicated to for-
mulate, but we need it only for full-dimensional polytopes. For any full-
dimensional polytope P ⊆ Rn of antiblocking type and x1, . . . , xk ∈ Rn

+

we have:

(5.31) P = conv.hull{x1, . . . , xk}↓ ∩ Rn
+ if and only if A(P ) = {z ∈ Rn

+ |
xT

i z ≤ 1 for i = 1, . . . , k}.

Two convex sets P, R are called an antiblocking pair (of polyhedra) if they
are of antiblocking type and satisfy R = A(P ). So if P, R is an antiblocking
pair, then so is R, P .

5.10. Methods for linear programming

The simplex method was designed by Dantzig [1951b] to solve linear pro-
gramming problems. It is in practice and on average quite efficient, but no
polynomial-time worst-case running time bound has been proved (most of
the pivot selection rules that have been proposed have been proved to take
exponential time in the worst case).

The simplex method consists of finding a path in the 1-skeleton of the
feasible region, ending at an optimum vertex (in preprocessing, the problem
first is transformed to one with a pointed feasible region). An important issue
when implementing this is that the LP problem is not given by vertices and
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edges, but by linear inequalities, and that vertices are determined by a, not
necessarily unique, ‘basis’ among the inequalities.

The first polynomial-time method for linear programming was given by
Khachiyan [1979,1980], by adapting the ‘ellipsoid method’ for nonlinear pro-
gramming of Shor [1970a,1970b,1977] and Yudin and Nemirovskĭı [1976]. The
method consists of finding a sequence of shrinking ellipsoids each containing
at least one optimum solution, until we have an ellipsoid that is small enough
so as to derive an optimum solution. The method however is practically quite
infeasible.

Karmarkar [1984a,1984b] showed that ‘interior point’ methods can solve
linear programming in polynomial time, and moreover that they have efficient
implementations, competing with the simplex method. Interior point methods
make a tour not along vertices and edges, but across the feasible region.

5.11. The ellipsoid method

While the ellipsoid method is practically infeasible, it turned out to have
features that are useful for deriving complexity results in combinatorial op-
timization. Specifically, the ellipsoid method does not require listing all con-
straints of an LP problem a priori, but allows that they are generated when
needed. In this way, one can derive the polynomial-time solvability of a num-
ber of combinatorial optimization problems. This should be considered as
existence proofs of polynomial-time algorithms — the algorithms are not
practical.

This application of the ellipsoid method was described by Karp and Pa-
padimitriou [1980,1982], Padberg and Rao [1980], and Grötschel, Lovász, and
Schrijver [1981]. The book by Grötschel, Lovász, and Schrijver [1988] is de-
voted to it. We refer to Chapter 6 of this book or to Chapter 14 of Schrijver
[1986b] for proofs of the results that we survey below.

The ellipsoid method applies to classes of polyhedra (and more generally,
classes of convex sets) which are described as follows.

Let Σ be a finite alphabet and let Π be a subset of the set Σ∗ of words
over Σ. In applications, we take for Π very simple sets like the set of strings
representing a graph or the set of strings representing a digraph.

For each σ ∈ Π, let Eσ be a finite set and let Pσ be a rational polyhedron
in QEσ . (When we apply this, Eσ is often the vertex set or the edge or arc
set of the (di)graph represented by σ.) We make the following assumptions:

(5.32) (i) there is a polynomial-time algorithm that, given σ ∈ Σ∗, tests
if σ belongs to Π and, if so, returns the set Eσ;

(ii) there is a polynomial p such that, for each σ ∈ Π, Pσ is deter-
mined by linear inequalities each of size at most p(size(σ)).

Here the size of a rational linear inequality is proportional to the sum of the
sizes of its components, where the size of a rational number p/q (for integers
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p, q) is proportional to log(|p| + 1) + log q. Condition (5.32)(ii) is equivalent
to (cf. Theorem 10.2 in Schrijver [1986b]):

(5.33) there is a polynomial q such that, for each σ ∈ Π, we can write
Pσ = Q + C, where Q is a polytope with vertices each of input
size at most q(size(σ)) and where C is a cone generated by vectors
each of input size at most q(size(σ)).

(The input size7 of a vector is the sum of the sizes of its components.) In
most applications, the existence of the polynomial p in (5.32)(ii) or of the
polynomial q in (5.33) is obvious.

We did not specify how the polyhedra Pσ are given algorithmically. In
applications, they might have an exponential number of vertices or facets, so
listing them would not be an algorithmic option. To handle this, we formu-
late two, in a sense dual, problems. An algorithm for either of them would
determine the polyhedra Pσ.

First, the optimization problem for (Pσ | σ ∈ Π) is the problem:

(5.34) given: σ ∈ Π and c ∈ QEσ ,
find: x ∈ Pσ maximizing cTx over Pσ or y ∈ char.cone(Pσ) with

cTy > 0, if either of them exists.

Second, the separation problem for (Pσ | σ ∈ Π) is the problem:

(5.35) given: σ ∈ Π and z ∈ QEσ ,
find: c ∈ QEσ such that cTx < cTz for all x ∈ Pσ (if such a c

exists).

So c gives a separating hyperplane if z �∈ Pσ.
Then the ellipsoid method implies that these two problems are ‘polyno-

mial-time equivalent’:

Theorem 5.10. Let Π ⊆ Σ∗ and let (Pσ | σ ∈ Π) satisfy (5.32). Then the
optimization problem for (Pσ | σ ∈ Π) is polynomial-time solvable if and only
if the separation problem for (Pσ | σ ∈ Π) is polynomial-time solvable.

(Cf. Theorem (6.4.9) in Grötschel, Lovász, and Schrijver [1988] or Corollary
14.1c in Schrijver [1986b].)

The equivalence in Theorem 5.10 makes that we call (Pσ | σ ∈ Π)
polynomial-time solvable if it satisfies (5.32) and the optimization problem
(equivalently, the separation problem) for it is polynomial-time solvable.

Using simultaneous diophantine approximation based on the basis reduc-
tion method given by Lenstra, Lenstra, and Lovász [1982], Frank and Tardos
[1985,1987] extended these results to strong polynomial-time solvability:

7 We will use the term size of a vector for the sum of its components.
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Theorem 5.11. The optimization problem and the separation problem for
any polynomial-time solvable system of polyhedra are solvable in strongly pol-
ynomial time.

(Theorem (6.6.5) in Grötschel, Lovász, and Schrijver [1988].)
For polynomial-time solvable classes of polyhedra, the separation problem

can be strengthened so as to obtain a facet as separating hyperplane:

Theorem 5.12. Let (Pσ | σ ∈ Π) be a polynomial-time solvable system of
polyhedra. Then the following problem is strongly polynomial-time solvable:

(5.36) given: σ ∈ Π and z ∈ QEσ ,
find: c ∈ QEσ and δ ∈ Q such that cTz > δ and such that cTx ≤ δ

is facet-inducing for Pσ (if it exists).

(Cf. Theorem (6.5.16) in Grötschel, Lovász, and Schrijver [1988].) Also a
weakening of the separation problem turns out to be equivalent, under certain
conditions. The membership problem for (Pσ | σ ∈ Π) is the problem:

(5.37) given σ ∈ Π and z ∈ QEσ , does z belong to Pσ?

Theorem 5.13. Let (Pσ | σ ∈ Π) be a system of full-dimensional polytopes
satisfying (5.32), such that there is a polynomial-time algorithm that gives for
each σ ∈ Π a vector in the interior of Pσ. Then (Pσ | σ ∈ Π) is polynomial-
time solvable if and only if the membership problem for (Pσ | σ ∈ Π) is
polynomial-time solvable.

(This follows from Corollary (4.3.12) and Theorem (6.3.2) in Grötschel,
Lovász, and Schrijver [1988].)

The theorems above imply:

Theorem 5.14. Let (Pσ | σ ∈ Π) and (Qσ | σ ∈ Π) be polynomial-time
solvable classes of polyhedra, such that for each σ ∈ Π, the polyhedra Pσ

and Qσ are in the same space REσ . Then also (Pσ ∩ Qσ | σ ∈ Π) and
(conv.hull(Pσ ∪ Qσ) | σ ∈ Π) are polynomial-time solvable.

(Corollary 14.1d in Schrijver [1986b].)

Corollary 5.14a. Let (Pσ | σ ∈ Π) be a polynomial-time solvable system
of polyhedra, all of blocking type. Then also the system of blocking polyhedra
(B(Pσ) | σ ∈ Π) is polynomial-time solvable.

(Corollary 14.1e in Schrijver [1986b].) Similarly:

Corollary 5.14b. Let (Pσ | σ ∈ Π) be a polynomial-time solvable system
of polyhedra, all of antiblocking type. Then also the system of antiblocking
polyhedra (A(Pσ) | σ ∈ Π) is polynomial-time solvable.
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(Corollary 14.1e in Schrijver [1986b].)
Also the following holds:

Theorem 5.15. Let (Pσ | σ ∈ Π) be a polynomial-time solvable system
of polyhedra, where each Pσ is a polytope. Then the following problems are
strongly polynomial-time solvable:

(5.38) (i) given σ ∈ Π, find an internal vector, a vertex, and a facet-
inducing inequality of Pσ;

(ii) given σ ∈ Π and x ∈ Pσ, find affinely independent ver-
tices x1, . . . , xk of Pσ and write x as a convex combination
of x1, . . . , xk;

(iii) given σ ∈ Π and c ∈ REσ , find facet-inducing inequalities
cT

1 x ≤ δ1,. . . , c
T

kx ≤ δk of Pσ with c1, . . . , ck linearly indepen-
dent, and find λ1, . . . , λk ≥ 0 such that λ1c1 + · · · + λkck = c
and λ1δ1 + · · · + λkδk = max{cTx | x ∈ Pσ} (i.e., find an
optimum dual solution).

(Corollary 14.1f in Schrijver [1986b].)
The ellipsoid method can be applied also to nonpolyhedral convex sets,

in which case only approximative versions of the optimization and separation
problems can be shown to be equivalent. We only need this in Chapter 67
on the convex body TH(G), where we refer to the appropriate theorem in
Grötschel, Lovász, and Schrijver [1988].

5.12. Polyhedra and NP and co-NP

An appropriate polyhedral description of a combinatorial optimization prob-
lem relates to the question NP�=co-NP. More precisely, unless NP=co-NP, the
polyhedra associated with an NP-complete problem cannot be described by
‘certifiable’ inequalities. (These insights go back to observations in the work
of Edmonds of the 1960s.)

Again, let (Pσ | σ ∈ Π) be a system of polyhedra satisfying (5.32). Con-
sider the decision version of the optimization problem:

(5.39) given σ ∈ Π, c ∈ QEσ , and k ∈ Q, is there an x ∈ Pσ with
cTx > k?

Then:

Theorem 5.16. Problem (5.39) belongs to co-NP if and only if for each
σ ∈ Π, there exists a collection Iσ of inequalities determining Pσ such that
the problem:

(5.40) given σ ∈ Π, c ∈ QEσ , and δ ∈ Q, does cTx ≤ δ belong to Iσ,
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belongs to NP.

Proof. To see necessity, we can take for Iσ the collection of all valid in-
equalities for Pσ. Then co-NP-membership of (5.39) is equivalent of NP-
membership of (5.40).

To see sufficiency, a negative answer to question (5.39) can be certified
by giving inequalities cT

i x ≤ δi from Iσ and λi ∈ Q+ (i = 1, . . . , k) such that
c = λ1c1 + · · · + λkck and δ ≥ λ1δ1 + · · · + λkδk. As we can take k ≤ |Eσ|,
and as each inequality in Iσ has a polynomial-time checkable certificate (as
(5.40) belongs to NP), this gives a polynomial-time checkable certificate for
the negative answer. Hence (5.39) belongs to co-NP.

This implies for NP-complete problems:

Corollary 5.16a. Let (5.39) be NP-complete and suppose NP�=co-NP. For
each σ ∈ Π, let Iσ be a collection of inequalities determining Pσ. Then
problem (5.40) does not belong to NP.

Proof. If problem (5.40) would belong to NP, then by Theorem 5.16, problem
(5.39) belongs to co-NP. If (5.39) is NP-complete, this implies NP=co-NP.

Roughly speaking, this implies that if (5.39) is NP-complete and NP�=co-
NP, then Pσ has ‘difficult’ facets, that is, facets which have no polynomial-
time checkable certificate of validity for Pσ.

(Related work on the complexity of facets was reported in Karp and
Papadimitriou [1980,1982] and Papadimitriou and Yannakakis [1982,1984].)

5.13. Primal-dual methods

As a generalization of similar methods for network flow and transporta-
tion problems, Dantzig, Ford, and Fulkerson [1956] designed the ‘primal-dual
method’ for linear programming. The general idea is as follows. Starting with
a dual feasible solution y, the method searches for a primal feasible solution
x satisfying the complementary slackness condition with respect to y. If such
a primal feasible solution x is found, x and y form a pair of optimum solu-
tions (by (5.13)). If no such primal solution is found, the method prescribes
a modification of y, after which the method iterates.

The problem now is how to find a primal feasible solution x satisfying the
complementary slackness condition, and how to modify the dual solution y
if no such primal solution is found. For general linear programs this problem
can be seen to amount to another linear program, generally simpler than the
original linear program. To solve the simpler linear program we could use any
LP method. In many combinatorial applications, however, this simpler linear
program is a simpler combinatorial optimization problem, for which direct
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methods are available. Thus, if we can describe a combinatorial optimization
problem as a linear program, the primal-dual method gives us a scheme for
reducing one combinatorial problem to an easier combinatorial problem. The
efficiency of the method depends on the complexity of the easier problem and
on the number of primal-dual iterations.

We describe the primal-dual method more precisely. Suppose that we wish
to solve the LP problem

(5.41) min{cTx | x ≥ 0, Ax = b},

where A is an m×n matrix, with columns a1, . . . , an, and where b ∈ Rm and
c ∈ Rn. The dual problem is

(5.42) max{yTb | yTA ≤ cT}.

The primal-dual method consists of repeating the following primal-dual iter-
ation. Suppose that we have a feasible solution y0 for problem (5.42). Let A′

be the submatrix of A consisting of those columns aj of A for which yT

0 aj = cj

holds. To find a feasible primal solution satisfying the complementary slack-
ness, solve the restricted linear program

(5.43) x′ ≥ 0, A′x′ = b.

If such an x′ exists, by adding components 0, we obtain a vector x ≥ 0 such
that Ax = b and such that xj = 0 if yT

0 aj < cj . By complementary slackness
((5.13)), it follows that x and y0 are optimum solutions for problems (5.41)
and (5.42).

On the other hand, if no x′ satisfying (5.43) exists, by Farkas’ lemma

(Corollary 5.3a), there exists a y′ such that y′TA′ ≤ 0 and y′Tb > 0. Let α
be the largest real number satisfying

(5.44) (y0 + αy′)TA ≤ cT.

(Note that α > 0.) Reset y0 := y0 + αy′, and start the iteration anew. (If
α = ∞, (5.42) is unbounded, hence (5.41) is infeasible.)

This describes the primal-dual method. It reduces problem (5.41) to
(5.43), which often is an easier problem.

The primal-dual method can equally well be considered as a gradient
method. Suppose that we wish to solve problem (5.42), and we have a feasible
solution y0. This y0 is not optimum if and only if there exists a vector y′ such
that y′Tb > 0 and y′ is a feasible direction at y0 (that is, (y0 + αy′)TA ≤ cT

for some α > 0). If we let A′ consist of those columns of A in which yT

0 A ≤ cT

has equality, then y′ is a feasible direction if and only if y′TA′ ≤ 0. So y′ can
be found by solving (5.43).

5.14. Integer linear programming

A vector x ∈ Rn is called integer if each component is an integer, i.e., if x
belongs to Zn. Many combinatorial optimization problems can be described as
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maximizing a linear function cTx over the integer vectors in some polyhedron
P = {x | Ax ≤ b}.

So this type of problems can be described as:

(5.45) max{cTx | Ax ≤ b; x ∈ Zn}.

Such problems are called integer linear programming, or ILP, problems. They
consist of maximizing a linear function over the intersection P ∩ Zn of a
polyhedron P with the set Zn of integer vectors.

Clearly, always the following inequality holds:

(5.46) max{cTx | Ax ≤ b; x integer} ≤ max{cTx | Ax ≤ b}.

It is easy to make an example where strict inequality holds. This implies,
that generally one will have strict inequality in the following duality relation:

(5.47) max{cTx | Ax ≤ b; x integer}
≤ min{yTb | y ≥ 0; yTA = cT; y integer}.

No polynomial-time algorithm is known to exist for solving an integer lin-
ear programming problem in general. In fact, the general integer linear pro-
gramming problem is NP-complete (since the satisfiability problem is easily
transformed to an integer linear programming problem). However, for special
classes of integer linear programming problems, polynomial-time algorithms
have been found. These classes often come from combinatorial problems.

5.15. Integer polyhedra

A polyhedron P is called an integer polyhedron if it is the convex hull of the
integer vectors contained in P . This is equivalent to: P is rational and each
face of P contains an integer vector. So a polytope P is integer if and only if
each vertex of P is integer. If a polyhedron P = {x | Ax ≤ b} is integer, then
the linear programming problem

(5.48) max{cTx | Ax ≤ b}
has an integer optimum solution if it is finite. Hence, in that case,

(5.49) max{cTx | Ax ≤ b; x integer} = max{cTx | Ax ≤ b}.

This in fact characterizes integer polyhedra, since:

Theorem 5.17. Let P be a rational polyhedron in Qn. Then P is integer
if and only if for each c ∈ Qn, the linear programming problem max{cTx |
Ax ≤ b} has an integer optimum solution if it is finite.

A stronger characterization is (Edmonds and Giles [1977]):

Theorem 5.18. A rational polyhedron P in Qn is integer if and only if for
each c ∈ Zn the value of max{cTx | x ∈ P} is an integer if it is finite.
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(Corollary 22.1a in Schrijver [1986b].) We also will use the following obser-
vation:

Theorem 5.19. Let P be an integer polyhedron in Rn
+ with P +Rn

+ = P and
let c ∈ Zn

+ be such that x ≤ c for each vertex x of P . Then P ∩ {x | x ≤ c}
is an integer polyhedron again.

Proof. Let Q := P ∩ {x | x ≤ c} and let R be the convex hull of the integer
vectors in Q. We must show that Q ⊆ R.

Let x ∈ Q. As P = R + Rn
+ there exists a y ∈ R with y ≤ x. Choose such

a y with y1 + · · · + yn maximal. Suppose that yi < xi for some component
i. Since y ∈ R, y is a convex combination of integer vectors in Q. Since
yi < xi ≤ ci, at least one of these integer vectors, z say, has zi < ci. But then
the vector z′ := z+χi belongs to R. Hence we could increase yi, contradicting
the maximality of y.

We call a polyhedron P box-integer if P ∩ {x | d ≤ x ≤ c} is an integer
polyhedron for each choice of integer vectors d, c. The set {x | d ≤ x ≤ c} is
called a box.

A 0, 1 polytope is a polytope with all vertices being 0,1 vectors.

5.16. Totally unimodular matrices

Total unimodularity of matrices is an important tool in integer programming.
A matrix A is called totally unimodular if each square submatrix of A has
determinant equal to 0, +1, or −1. In particular, each entry of a totally
unimodular matrix is 0, +1, or −1.

An alternative way of characterizing total unimodularity is by requiring
that the matrix is integer and that each nonsingular submatrix has an integer
inverse matrix. This implies the following easy, but fundamental result:

Theorem 5.20. Let A be a totally unimodular m×n matrix and let b ∈ Zm.
Then the polyhedron

(5.50) P := {x | Ax ≤ b}
is integer.

(Cf. Theorem 19.1 in Schrijver [1986b].) It follows that each linear program-
ming problem with integer data and totally unimodular constraint matrix
has integer optimum primal and dual solutions:

Corollary 5.20a. Let A be a totally unimodular m × n matrix, let b ∈ Zm,
and let c ∈ Zn. Then both optima in the LP duality equation

(5.51) max{cTx | Ax ≤ b} = min{yTb | y ≥ 0, yTA = cT}



76 Chapter 5. Preliminaries on polyhedra and linear and integer programming

have integer optimum solutions (if the optima are finite).

(Corollary 19.1a in Schrijver [1986b].) Hoffman and Kruskal [1956] showed
that this property is close to a characterization of total unimodularity.

Corollary 5.20a implies:

Corollary 5.20b. Let A be an m × n matrix, let b ∈ Zm, and let c ∈ Rn.
Suppose that

(5.52) max{cTx | x ≥ 0, Ax ≤ b}
has an optimum solution x∗ such that the columns of A corresponding to
positive components of x∗ form a totally unimodular matrix. Then (5.52) has
an integer optimum solution.

Proof. Since x∗ is an optimum solution, we have

(5.53) max{cTx | x ≥ 0, Ax ≤ b} = max{c′Tx′ | x′ ≥ 0, A′x′ ≤ b},

where A′ and c′ are the parts of A and c corresponding to the support of x∗.
As A′ is totally unimodular, the right-hand side maximum in (5.53) has an
integer optimum solution x′∗. Extending x′∗ by components 0, we obtain an
integer optimum solution of the left-hand side maximum in (5.53).

We will use the following characterization of Ghouila-Houri [1962b] (cf.
Theorem 19.3 in Schrijver [1986b]):

Theorem 5.21. A matrix M is totally unimodular if and only if each col-
lection R of rows of M can be partitioned into classes R1 and R2 such that
the sum of the rows in R1, minus the sum of the rows in R2, is a vector with
entries 0,±1 only.

5.17. Total dual integrality

Edmonds and Giles [1977] introduced the powerful notion of total dual in-
tegrality. It is not only useful as a tool to derive combinatorial min-max
relation, but also it gives an efficient way of expressing a whole bunch of
min-max relations simultaneously.

A system Ax ≤ b in n dimensions is called totally dual integral, or just
TDI, if A and b are rational and for each c ∈ Zn, the dual of maximizing cTx
over Ax ≤ b:

(5.54) min{yTb | y ≥ 0, yTA = cT}
has an integer optimum solution y, if it is finite.
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By extension, a system A′x ≤ b′, A′′x = b′′ is defined to be TDI if the
system A′x ≤ b′, A′′x ≤ b′′,−A′′x ≤ −b′′ is TDI. This is equivalent to requir-
ing that A′, A′′, b′, b′′ are rational and for each c ∈ Zn the dual of maximizing
cTx over A′x ≤ b′, A′′x = b′′ has an integer optimum solution, if finite.

Problem (5.54) is the problem dual to max{cTx | Ax ≤ b}, and Edmonds
and Giles showed that total dual integrality implies that also this primal
problem has an integer optimum solution, if b is integer. In fact, they showed
Theorem 5.18, which implies (since if (5.54) has an integer optimum solution,
the optimum value is an integer):

Theorem 5.22. If Ax ≤ b is TDI and b is integer, then Ax ≤ b determines
an integer polyhedron.

So total dual integrality implies ‘primal integrality’. For combinatorial
applications, the following observation is useful:

Theorem 5.23. Let A be a nonnegative integer m × n matrix such that the
system x ≥ 0, Ax ≥ 1 is TDI. Then also the system 0 ≤ x ≤ 1, Ax ≥ 1 is
TDI.

Proof. Choose c ∈ Zn. Let c+ arise from c by setting negative components to
0. By the total dual integrality of x ≥ 0, Ax ≥ 1, there exist integer optimum
solutions x, y of

(5.55) min{cT

+x | x ≥ 0, Ax ≥ 1} = max{yT1 | y ≥ 0, yTA ≤ cT

+}.

As A is nonnegative and integer and as c+ ≥ 0, we may assume that x ≤ 1.
Moreover, we can assume that xi = 1 if (c+)i = 0, that is, if ci ≤ 0.

Let z := c − c+. So z ≤ 0. We show that x, y, z are optimum solutions of

(5.56) min{cTx | 0 ≤ x ≤ 1, Ax ≥ 1}
= max{yT1 + zT1 | y ≥ 0, z ≤ 0, yTA + zT ≤ cT}.

Indeed, x is feasible, as 0 ≤ x ≤ 1 and Ax ≥ 1. Moreover, y, z is feasible, as
yTA + zT ≤ cT

+ + zT = cT. Optimality of x, y, z follows from

(5.57) cTx = cT

+x + zTx = yT1 + zTx = yT1 + zT1.

In certain cases, to obtain total dual integrality one can restrict oneself
to nonnegative objective functions:

Theorem 5.24. Let A be a nonnegative m × n matrix and let b ∈ Rm
+ . Then

x ≥ 0, Ax ≤ b is TDI if and only if min{yTb | y ≥ 0, yTA ≥ cT} is attained
by an integer optimum solution (if finite), for each c ∈ Zn

+.

Proof. Necessity is trivial. To see sufficiency, let c ∈ Zn with min{yTb | y ≥
0, yTA ≥ cT} finite. Let it be attained by y. Let c+ arise from c by setting
negative components to 0. Then
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(5.58) min{yTb | y ≥ 0, yTA ≥ cT

+} = min{yTb | y ≥ 0, yTA ≥ cT},

since yTA ≥ 0 if y ≥ 0. As the first minimum has an integer optimum
solution, also the second minimum has an integer optimum solution.

Total dual integrality is maintained under setting an inequality to an
equality (Theorem 22.2 in Schrijver [1986b]):

Theorem 5.25. Let Ax ≤ b be TDI and let A′x ≤ b′ arise from Ax ≤ b
by adding −aTx ≤ −β for some inequality aTx ≤ β in Ax ≤ b. Then also
A′x ≤ b′ is TDI.

Total dual integrality is also maintained under translation of the solution
set, as follows directly from the definition of total dual integrality:

Theorem 5.26. If Ax ≤ b is TDI and w ∈ Rn, then Ax ≤ b − Aw is TDI.

For future reference, we prove:

Theorem 5.27. Let A11, A12, A21, A22 be matrices and let b1, b2 be column
vectors, such that the system

(5.59) A1,1x1 + A1,2x2 = b1,
A2,1x1 + A2,2x2 ≤ b2

is TDI and such that A1,1 is nonsingular. Then also the system

(5.60) (A2,2 − A2,1A
−1
1,1A1,2)x2 ≤ b2 − A2,1A

−1
1,1b1

is TDI.

Proof. We may assume that b1 = 0, since by Theorem 5.26 total dual inte-
grality is invariant under replacing (5.59) by

(5.61) A1,1x1 + A1,2x2 = b1 − A1,1A
−1
1,1b1 = 0,

A2,1x1 + A2,2x2 ≤ b2 − A2,1A
−1
1,1b1.

Let x2 minimize cTx2 over (5.60), for some integer vector c of appropri-
ate dimension. Define x1 := −A−1

1,1A1,2x2. Then x1, x2 minimizes cTx2 over

(5.59), since any solution x′
1, x

′
2 of (5.59) satisfies x′

1 = −A−1
1,1A1,2x

′
2, and

therefore x′
2 satisfies (5.60); hence cTx′

2 ≥ cTx2.
Let y1, y2 be an integer optimum solution of the problem dual to maxi-

mizing cTx2 over (5.59). So y1, y2 satisfy

(5.62) yT

1 A1,1 + yT

2 A2,1 = 0, yT

1 A1,2 + yT

2 A2,2 = cT, yT

2 b2 = cTx2.

Hence

(5.63) yT

2 (A2,2 − A2,1A
−1
1,1A1,2) = yT

2 A2,2 + yT

1 A1,2 = cT

and
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(5.64) yT

2 b2 = cTx2.

So y2 is an integer optimum solution of the problem dual to maximizing cTx2

over (5.60).

This has as consequence (where a0 is a column vector):

Corollary 5.27a. If x0 = β, a0x0 + Ax ≤ b is TDI, then Ax ≤ b − βa0 is
TDI.

Proof. This is a special case of Theorem 5.27.

We also have:

Theorem 5.28. Let A = [a1 a2 A′′] be an integer m × n matrix and let
b ∈ Rm. Let A′ be the m × (n − 1) matrix [a1 + a2 A′′]. Then A′x′ ≤ b is
TDI if and only if Ax ≤ b, x1 − x2 = 0 is TDI.

Proof. To see necessity, choose c ∈ Zn. Let c′ := (c1 + c2, c3, . . . , cn)T. Then

(5.65) µ := max{cTx | Ax ≤ b, x1 − x2 = 0} = max{c′Tx′ | A′x′ ≤ b}.

Let y ∈ Zm
+ be an integer optimum dual solution of the second maximum.

So yTA′ = c′ and yTb = µ. Then yTa1 + yTa2 = c1 + c2. Hence yTA =
cT + λ(1, −1, 0, . . . , 0) for some λ ∈ Z. So y, λ form an integer optimum dual
solution of the first maximum.

To see sufficiency, choose c′ = (c2, . . . , cn)T ∈ Zn−1. Define c := (0, c2, . . . ,
cn)T. Again we have (5.65). Let y ∈ Zm

+ , λ ∈ Z constitute an integer optimum
dual solution of the first maximum, where λ corresponds to the constraint
x1 − x2 = 0. So yTA + λ(1, −1, 0, . . . , 0) = c and yTb = µ. Hence yTA′ = cT,
and therefore, y is an integer optimum dual solution of the second maximum.

Let A be a rational m × n matrix and let b ∈ Qm, c ∈ Qn. Consider
the following series of inequalities (where a vector z is half-integer if 2z is
integer):

(5.66) max{cTx | Ax ≤ b, x integer} ≤ max{cTx | Ax ≤ b}
= min{yTb | y ≥ 0, yTA = cT}
≤ min{yTb | y ≥ 0, yTA = cT, y half-integer}
≤ min{yTb | y ≥ 0, yTA = cT, y integer}.

Under certain circumstances, equality in the last inequality implies equality
throughout:

Theorem 5.29. Let Ax ≤ b be a system with A and b rational. Then Ax ≤ b
is TDI if and only if

(5.67) min{yTb | y ≥ 0, yTA = cT, y half-integer}
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is finite and is attained by an integer optimum solution y, for each integer
vector c with max{cTx | Ax ≤ b} finite.

Proof. Necessity follows directly from (5.66). To see sufficiency, choose c ∈
Zn with max{cTx | Ax ≤ b} finite. We must show that min{yTb | y ≥
0, yTA = cT} is attained by an integer optimum solution.

For each k ≥ 1, define

(5.68) αk = min{yTb | y ≥ 0, yTA = kcT, y integer}.

This is well-defined, as max{kcTx | Ax ≤ b} is finite.
The condition in the theorem gives that, for each t ≥ 0,

(5.69)
α2t

2t
= α1.

This can be shown by induction on t, the case t = 0 being trivial. If t ≥ 1,
then

(5.70) α2t = min{yTb | yTA = 2tcT, y ∈ Zm
+}

= 2 min{yTb | yTA = 2t−1cT, y ∈ 1
2Zm

+}
= 2 min{yTb | yTA = 2t−1cT, y ∈ Zm

+} = 2α2t−1 ,

implying (5.69) by induction.
Now αk+l ≤ αk + αl for all k, l. Hence we can apply Fekete’s lemma, and

get:

(5.71) min{yTb | y ≥ 0, yTA = cT} = min
k

αk

k
= lim

k→∞

αk

k
= lim

t→∞

α2t

2t

= α1.

The following analogue of Carathéodory’s theorem holds (Cook, Fonlupt,
and Schrijver [1986]):

Theorem 5.30. Let Ax ≤ b be a totally dual integral system in n dimensions
and let c ∈ Zn. Then min{yTb | y ≥ 0, yTA ≥ cT} has an integer optimum
solution y with at most 2n − 1 nonzero components.

(Theorem 22.12 in Schrijver [1986b].)
We also will need the following substitution property:

Theorem 5.31. Let A1x ≤ b1, A2x ≤ b2 be a TDI system with A1 integer,
and let A′

1 ≤ b′
1 be a TDI system with

(5.72) {x | A1x ≤ b1} = {x | A′
1x ≤ b′

1}.
Then the system A′

1x ≤ b′
1, A2x ≤ b2 is TDI.

Proof. Let c ∈ Zn with

(5.73) max{cTx | A′
1x ≤ b′

1, A2x ≤ b2}
= min{yTb′

1 + zTb2 | y, z ≥ 0, yTA′
1 + zTA2 = cT}
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finite. By (5.72), also

(5.74) max{cTx | A1x ≤ b1, A2x ≤ b2}
= min{yTb1 + zTb2 | y, z ≥ 0, yTA1 + zTA2 = cT}

is finite. Hence, since A1x ≤ b1, A2x ≤ b2 is TDI, the minimum in (5.74) has
an integer optimum solution y, z. Set d := yTA1. Then, as d is an integer
vector,

(5.75) yTb1 = min{uTb1 | u ≥ 0, uTA1 = dT}
= max{dTx | A1x ≤ b1} = max{dTx | A′

1x ≤ b′
1}

= min{vTb′
1 | v ≥ 0, vTA′

1 = dT}
is finite. Hence, since A′

1x ≤ b′
1 is TDI, the last minimum in (5.75) has an

integer optimum solution v. Then v, z is an integer optimum solution of the
minimum in (5.73).

A system Ax ≤ b is called totally dual half-integral if A and b are rational
and for each c ∈ Zn, the dual of maximizing cTx over Ax ≤ b has a half-
integer optimum solution, if it is finite. Similarly, Ax ≤ b is called totally
dual quarter-integral if A and b are rational and for each c ∈ Zn, the dual of
maximizing cTx over Ax ≤ b has a quarter-integer optimum solution y, if it
is finite.

5.18. Hilbert bases and minimal TDI systems

For any X ⊆ Rn we denote

(5.76) latticeX := {λ1x1 + · · · + λkxk | k ≥ 0, λ1, . . . , λk ∈ Z, x1, . . . , xk

∈X}.

A subset L of Rn is called a lattice if L = latticeX for some base X of Rn.
So for general X, latticeX need not be a lattice.

The dual lattice of X is, by definition:

(5.77) {x ∈ Rn | yTx ∈ Z for each y ∈ X}.

Again, this need not be a lattice in the proper sense.
A set X of vectors is called a Hilbert base if each vector in latticeX∩coneX

is a nonnegative integer combination of vectors in X. The Hilbert base is
called integer if it consists of integer vectors only.

One may show:

(5.78) Each rational polyhedral cone C is generated by an integer
Hilbert base. If C is pointed, there exists a unique inclusionwise
minimal integer Hilbert base generating C.
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(Theorem 16.4 in Schrijver [1986b].)
There is a close relation between Hilbert bases and total dual integrality:

Theorem 5.32. A rational system Ax ≤ b is TDI if and only if for each face
F of P := {x | Ax ≤ b}, the rows of A which are active in F form a Hilbert
base.

(Theorem 22.5 in Schrijver [1986b].)
(5.78) and Theorem 5.32 imply (Giles and Pulleyblank [1979], Schrijver

[1981b]):

Theorem 5.33. Each rational polyhedron P is determined by a TDI system
Ax ≤ b with A integer. If moreover P is full-dimensional, there exists a
unique minimal such system.

(Theorem 22.6 in Schrijver [1986b].)

5.19. The integer rounding and decomposition

properties

A system Ax ≤ b is said to have the integer rounding property if Ax ≤ b is
rational and

(5.79) min{yTb | y ≥ 0, yTA = cT, y integer}
= ⌈min{yTb | y ≥ 0, yTA = cT}⌉

for each integer vector c for which min{yTb | y ≥ 0, yTA = cT} is finite. So
any TDI system has the integer rounding property.

A polyhedron P is said to have the integer decomposition property if for
each natural number k, each integer vector in k · P is the sum of k integer
vectors in P .

Baum and Trotter [1978] showed that an integer matrix A is totally uni-
modular if and only if the polyhedron {x | x ≥ 0, Ax ≤ b} has the integer
decomposition property for each integer vector b. In another paper, Baum and
Trotter [1981] observed the following relation between the integer rounding
and the integer decomposition property:

(5.80) Let A be a nonnegative integer matrix. Then the system x ≥
0, Ax ≥ 1 has the integer rounding property if and only if the
blocking polyhedron B(P ) of P := {x | x ≥ 0, Ax ≥ 1} has the
integer decomposition property and all minimal integer vectors
in B(P ) are transposes of rows of A (minimal with respect to ≤).

Similarly,

(5.81) Let A be a nonnegative integer matrix. Then the system x ≥
0, Ax ≤ 1 has the integer rounding property if and only if the
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antiblocking polyhedron A(P ) of P := {x | x ≥ 0, Ax ≤ 1}
has the integer decomposition property and all maximal integer
vectors in A(P ) are transposes of rows of A (maximal with respect
to ≤).

(Theorem 22.19 in Schrijver [1986b].)

5.20. Box-total dual integrality

A system Ax ≤ b is called box-totally dual integral, or just box-TDI, if the
system d ≤ x ≤ c, Ax ≤ b is totally dual integral for each choice of vectors
d, c ∈ Rn. By Theorem 5.22,

(5.82) if Ax ≤ b is box-totally dual integral, then the polyhedron {x |
Ax ≤ b} is box-integer.

We will need the following two results.

Theorem 5.34. If Ax ≤ b is box-TDI in n dimensions and w ∈ Rn, then
Ax ≤ b − Aw is box-TDI.

Proof. Directly from the definition of box-total dual integrality.

Theorem 5.35. Let Ax ≤ b be a system of linear inequalities, with A an
m×n matrix. Suppose that for each c ∈ Rn, max{cTx | Ax ≤ b} has (if finite)
an optimum dual solution y ∈ Rm

+ such that the rows of A corresponding to
positive components of y form a totally unimodular submatrix of A. Then
Ax ≤ b is box-TDI.

Proof. Choose d, c ∈ Rn, with d ≤ c, and choose c ∈ Zn. Consider the dual
of maximizing cTx over Ax ≤ b, d ≤ x ≤ c:

(5.83) min{yTb + zT

1 c − zT

2 d | y ∈ Rm
+ , z1, z2 ∈ Rn

+, yTA + zT

1 − zT

2 = cT}.

Let y, z1, z2 attain this optimum. Define c′ := c − z1 + z2. By assumption,
min{y′Tb | y′ ∈ Rm

+ , y′TA = c′T} has an optimum solution such that the rows
of A corresponding to positive components of y′ form a totally unimodular
matrix. Now y′, z1, z2 is an optimum solution of (5.83). Also, the rows in
Ax ≤ b, d ≤ x ≤ c corresponding to positive components of y′, z1, z2 form a
totally unimodular matrix. Hence by Corollary 5.20b, (5.83) has an integer
optimum solution.

5.21. The integer hull and cutting planes

Let P be a rational polyhedron. The integer hull PI of P is the convex hull
of the integer vectors in P :
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(5.84) PI = conv.hull(P ∩ Zn).

It can be shown that PI is a rational polyhedron again.
Consider any rational affine halfspace H = {x | cTx ≤ δ}, where c is a

nonzero integer vector such that the g.c.d. of its components is equal to 1
and where δ ∈ Q. Then it is easy to show that

(5.85) HI = {x | cTx ≤ ⌊δ⌋}.

The inequality cTx ≤ ⌊δ⌋ (or, more correctly, the hyperplane {x | cTx = ⌊δ⌋})
is called a cutting plane.

Define for any rational polyhedron P :

(5.86) P ′ :=
⋂

H⊇P

HI,

where H ranges over all rational affine halfspaces H containing P . Then P ′

is a rational polyhedron contained in P . Since P ⊆ H implies PI ⊆ HI, we
know

(5.87) PI ⊆ P ′ ⊆ P.

For k ∈ Z+, define P (k) inductively by:

(5.88) P (0) := P and P (k+1) := (P (k))′.

Then (Gomory [1958,1960], Chvátal [1973a], Schrijver [1980b]):

Theorem 5.36. For each rational polyhedron there exists a k ∈ Z+ with
PI = P (k).

(For a proof, see Theorem 23.2 in Schrijver [1986b].)

5.21a. Background literature

Most background on polyhedra and linear and integer programming needed for this
book can be found in Schrijver [1986b].

More background can be found in Dantzig [1963] (linear programming), Grün-
baum [1967] (polytopes), Hu [1969] (integer programming), Garfinkel and Nemhau-
ser [1972a] (integer programming), Brøndsted [1983] (polytopes), Chvátal [1983]
(linear programming), Lovász [1986] (ellipsoid method), Grötschel, Lovász, and
Schrijver [1988] (ellipsoid method), Nemhauser and Wolsey [1988] (integer pro-
gramming), Padberg [1995] (linear programming), Ziegler [1995] (polytopes), and
Wolsey [1998] (integer programming).
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Paths belong to the most basic and important objects in combinatorial optimization.
First of all, paths are of direct practical use, to make connections and to search. One
can imagine that even in very primitive societies, finding short paths and searching
(for instance, for food) is essential. ‘Short’ need not be just in terms of geometric
distance, but might observe factors like differences in height, crosscurrent, and
wind. In modern societies, searching is also an important issue in several kinds of
networks, like in communication webs and data structures. Several other nonspatial
problems (like the knapsack problem, dynamic programming) can be modelled as
a shortest path problem. Also planning tools like PERT and CPM are based on
shortest paths.
Next to that, paths form an important tool in solving other combinatorial optimiza-
tion problems. In a large part of combinatorial algorithms, finding an appropriate
path is the main issue in a subroutine or in the iterations. Several combinatorial
optimization problems can be solved by iteratively finding a shortest path.
Disjoint paths were first investigated in a topological setting by Menger starting in
the 1920s, leading to Menger’s theorem, a min-max relation equating the maximum
number of disjoint s − t paths and the minimum size of an s − t cut. The theorem
is fundamental to graph theory, and provides an important tool to handle the
connectivity of graphs.
In a different environment, the notion of flow in a graph came up, namely at RAND
in the 1950s, motivated by a study of the capacity of the Soviet and East Euro-
pean railway system. It inspired Ford and Fulkerson to develop a maximum flow
algorithm based on augmenting paths and to prove the max-flow min-cut theorem.
As flows can be considered as linear combinations of incidence vectors of paths,
there is a close connection between disjoint paths and flow problems, and it turned
out that the max-flow min-cut theorem and Menger’s theorem can be derived from
each other.
Minimum-cost flows can be considered as the common generalization of shortest
paths and disjoint paths/flows. Related are minimum-cost circulations and trans-
shipments. This connects the topic to the origins of linear programming in the 1940s,
when Koopmans designed pivot-like procedures for minimum-cost transshipment in
order to plan protected ship convoys during World War II.
Actually, linear programming and polyhedral methods apply very favourably to
path and flow problems, by the total unimodularity of the underlying constraint
matrices. They lead to fast, strongly polynomial-time algorithms for such problems,
while also fast direct, combinatorial algorithms have been found.
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Chapter 6

Shortest paths: unit lengths

The first three chapters of this part are devoted to the shortest path prob-
lem. A number of simple but fundamental methods have been developed
for it.
The division into the three chapters is by increasing generality of the length
function. In the present chapter we take unit lengths; that is, each edge or
arc has length 1. Equivalently, we search for paths with a minimum number
of edges or arcs. We also consider ‘zero length’, equivalently, searching for
any path.
Next, in Chapter 7, we consider nonnegative lengths, where Dijkstra’s
method applies. Finally, in Chapter 8, we go over to arbitrary lengths.
If we put no further constraints, the shortest path problem is NP-complete
(in fact, even if all lengths are −1). But if there are no negative-length
directed circuits, the problem is polynomial-time solvable, by the Bellman-
Ford method.
The methods and results in this chapter generally apply to directed and
undirected graphs alike; however, in case of an undirected graph with length
function such that each circuit has nonnegative length, the problem is
polynomial-time, but the method is much more involved. It can be solved
in polynomial time with nonbipartite matching methods, and for this we
refer to Section 29.2.
In this chapter, graphs can be assumed to be simple.

6.1. Shortest paths with unit lengths

Let D = (V, A) be a digraph. In this chapter, the length of any path in D is
the number of its arcs. For s, t ∈ V , the distance from s to t is the minimum
length of any s − t path. If no s − t path exists, we set the distance from s to
t equal to ∞.

There is an easy min-max relation, due to Robacker [1956b], characteriz-
ing the minimum length of an s − t path. Recall that a subset C of A is an
s− t cut if C = δout(U) for some subset U of V satisfying s ∈ U and t �∈ U .1

1 δout(U) and δin(U) denote the sets of arcs leaving and entering U , respectively.
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Theorem 6.1. Let D = (V, A) be a digraph and let s, t ∈ V . Then the
minimum length of an s − t path is equal to the maximum number of disjoint
s − t cuts.

Proof. Trivially, the minimum is at least the maximum, since each s− t path
intersects each s − t cut in at least one arc. That the minimum is equal to
the maximum follows by considering the s − t cuts δout(Ui) for i = 1, . . . , d,
where d is the distance from s to t and where Ui is the set of vertices of
distance less than i from s.

(This is the proof of Robacker [1956b].)
Dantzig [1957] observed the following. Let D = (V, A) be a digraph and

let s ∈ V . A rooted tree T = (V ′, A′) rooted at s is called a shortest paths
tree (rooted at s) if V ′ is the set of vertices in D reachable from s and A′ ⊆ A,
such that for each t ∈ V ′, the s − t path in T is a shortest s − t path in D.

Theorem 6.2. Let D = (V, A) be a digraph and let s ∈ V . Then there exists
a shortest paths tree rooted at s.

Proof. Let V ′ be the set of vertices reachable in D from s. Choose, for each
t ∈ V ′ \ {s}, an arc at that is the last arc of some shortest s − t path in D.
Then A′ := {at | t ∈ V ′ \ {s}} gives the required rooted tree.

The above trivially applies also to undirected graphs.

6.2. Shortest paths with unit lengths algorithmically:
breadth-first search

The following algorithm of Berge [1958b] and Moore [1959], essentially
breadth-first search, determines the distance from s to t. Let Vi denote the
set of vertices of D at distance i from s. Then V0 = {s}, and for each i:

(6.1) Vi+1 is equal to the set of vertices v ∈ V \ (V0 ∪ V1 ∪ · · · ∪ Vi) for
which (u, v) ∈ A for some u ∈ Vi.

This gives us directly an algorithm for determining the sets Vi: we set V0 :=
{s} and next we determine with rule (6.1) the sets V1, V2, . . . successively,
until Vi+1 = ∅.

In fact, it gives a linear-time algorithm, and so:

Theorem 6.3. Given a digraph D = (V, A) and s, t ∈ V , a unit-length
shortest s − t path can be found in linear time.

Proof. Directly from the description.
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In fact, the algorithm finds the distance from s to all vertices reachable
from s. Moreover, it gives the shortest paths, even the shortest paths tree:

Theorem 6.4. Given a digraph D = (V, A) and s ∈ V , a shortest path tree
rooted at s can be found in linear time.

Proof. Use the algorithm described above.

6.3. Depth-first search

In certain cases it is more useful to scan a graph not by breadth-first search
as in Section 6.2, but by depth-first search (a variant of which goes back to
Tarry [1895]).

Let D = (V, A) be a digraph. Define the operation of scanning a vertex v
recursively by:

(6.2) For each arc a = (v, w) ∈ δout(v): delete all arcs entering w and
scan w.

Then depth-first search from a vertex s amounts to scanning s. If each vertex
of D is reachable from s, then all arcs a chosen in (6.2) form a rooted tree
with root s. This tree is called a depth-first search tree.

This can be applied to find a path and to sort and order the vertices of a
digraph D = (V, A). We say that vertices v1, . . . , vn are in topological order
if i < j for all i, j with (vi, vj) ∈ A. So a subset of V can be topologically
ordered only if it induces no directed circuit.

To grasp the case where directed circuits occur, we say that vertices
v1, . . . , vn are in pre-topological order if for all i, j, if vj is reachable from vi

and j < i, then vi is reachable from vj . So if D is acyclic, any pre-topological
order is topological.

We can interpret a pre-topological order as a linear extension of the partial
order ≺ defined on V by:

(6.3) v ≺ w ⇐⇒ w is reachable from v, but v is not reachable from
w.

Thus a pre-topological ordering is one satisfying: vi ≺ vj ⇒ i < j.
The following was shown by Knuth [1968] and Tarjan [1974d] (cf. Kahn

[1962]):

Theorem 6.5. Given a digraph D = (V, A) and s ∈ V , the vertices reachable
from s can be ordered pre-topologically in time O(m′), where m′ is the number
of arcs reachable from s.

Proof. Scan s. Then recursively all vertices reachable from s will be scanned,
and the order in which we finish scanning them is the opposite of a pre-
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topological order: for vertices v, w reachable from s, if D has a v − w path
but no w − v path, then scanning w is finished before scanning v.

This implies:

Corollary 6.5a. Given a digraph D = (V, A), the vertices of D can be ordered
pre-topologically in linear time.

Proof. Add a new vertex s and arcs (s, v) for each v ∈ V . Applying Theorem
6.5 gives the required pre-topological ordering.

For acyclic digraphs, it gives a topological order:

Corollary 6.5b. Given an acyclic digraph D = (V, A), the vertices of D can
be ordered topologically in linear time.

Proof. Directly from Corollary 6.5a, as a pre-topological order of the vertices
of an acyclic graph is topological.

(The existence of a topological order for an acyclic digraph is implicit in the
work of Szpilrajn [1930].)

One can also use a pre-topological order to identify the strong components
of a digraph in linear time (Karzanov [1970], Tarjan [1972]). We give a method
essentially due to S.R. Kosaraju (cf. Aho, Hopcroft, and Ullman [1983]) and
Sharir [1981].

Theorem 6.6. Given a digraph D = (V, A), the strong components of D can
be found in linear time.

Proof. First order the vertices of D pre-topologically as v1, . . . , vn. Next let
V1 be the set of vertices reachable to v1. Then V1 is the strong component
containing v1: each vj in V1 is reachable from v1, by the definition of pre-
topological order.

By Theorem 6.5, the set V1 can be found in time O(|A1|), where A1 is the
set of arcs with head in V1. Delete from D and from v1, . . . , vn all vertices
in V1 and all arcs in A1, yielding the subgraph D′ and the ordered vertices
v′
1, . . . , v

′
n′ . This is a pre-topological order for D′, for suppose that i < j

and that v′
i is reachable from v′

j in D′ while v′
j is not reachable in D′ from

v′
i. Then v′

j is also not reachable in D from v′
i, since otherwise V1 would be

reachable in D from v′
i, and hence v′

i ∈ V1, a contradiction.
So recursion gives all strong components, in linear time.

As a consequence one has for undirected graphs (Shirey [1969]):

Corollary 6.6a. Given a graph G = (V, E), the components of G can be
found in linear time.



Section 6.5a. All-pairs shortest paths in undirected graphs 91

Proof. Directly from Theorem 6.6.

If we apply depth-first search to a connected undirected graph G = (V, E),
starting from a vertex s, then the depth-first search tree T has the property
that

(6.4) for each edge e = uv of G, u is on the s − v path in T or v is on
the s − u path in T .

So the ends of each edge e of G are connected by a directed path in T .

6.4. Finding an Eulerian orientation

An orientation D = (V, A) of an undirected graph G = (V, E) is called an
Eulerian orientation if

(6.5) degin
A (v) = degout

A (v)

for each v ∈ V . As is well-known, an undirected graph G = (V, E) has an
Eulerian orientation if and only if each v ∈ V has even degree in G. (We do
not require connectivity.)

An Eulerian orientation can be found in linear time:

Theorem 6.7. Given an undirected graph G = (V, E) with all degrees even,
an Eulerian orientation of G can be found in O(m) time.

Proof. We assume that we have a list of vertices, and, with each vertex v, a
list of edges incident with v.

Consider the first nonisolated vertex in the list, v say. Starting at v, we
make a walk such that no edge is traversed more than once. We make this
walk as long as possible. Since all degrees are even, we terminate at v.

We orient all edges traversed in the direction as traversed, delete them
from G, find the next nonisolated vertex, and iterate the algorithm. We stop
if all vertices are isolated. Then all edges are oriented as required.

6.5. Further results and notes

6.5a. All-pairs shortest paths in undirected graphs

Theorem 6.3 directly gives that determining the distances in a digraph D = (V, A)
between all pairs of vertices can be done in time O(nm); similarly for undirected
graphs.

Seidel [1992,1995] gave the following faster method for dense undirected graphs
G = (V, E), assuming without loss of generality that G is connected (by Corollary
6.6a).
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For any undirected graph G = (V, E), let distG(v, w) denote the distance
between v and w in G (with unit-length edges). Moreover, let G2 denote the
graph with vertex set V , where two vertices v, w are adjacent in G2 if and only
if distG(v, w) ≤ 2.

Let M(n) denote the time needed to determine the product A · B of two n × n
matrices A and B, each with entries in {0, . . . , n}.

It is not difficult to see that the following problem can be solved in time
O(M(n)):

(6.6) given: an undirected graph G = (V, E);
find: the undirected graph G2.

Moreover, also the following problem can be solved in time O(M(n)):

(6.7) given: an undirected graph G = (V, E) and the function distG2 ;
find: the function distG.

Lemma 6.8α. Problem (6.7) can be solved in time O(M(n)).

Proof. Let A be the adjacency matrix of G and let T be the V × V matrix with
Tv,w = distG2(v, w) for all v, w ∈ V . Note that distG2 = ⌈distG/2⌉. Let B := T · A.
So for all u, w ∈ V :

(6.8) Bu,w =
∑

v∈N(w)

distG2(u, v).

Now if distG(u, w) = 2⌈distG(u, w)/2⌉, then ⌈distG(u, v)/2⌉ ≥ ⌈distG(u, w)/2⌉ for
each neighbour v of w, and hence Bu,w ≥ deg(v)⌈distG(u, w)/2⌉. On the other
hand, if distG(u, w) = 2⌈distG(u, w)/2⌉− 1, then ⌈distG(u, v)/2⌉ ≤ ⌈distG(u, w)/2⌉
for each neighbour v of w, with strict inequality for at least one neighbour v of
w (namely any neighbour of w on a shortest u − w path). So we have Bu,w <
deg(v)⌈distG(u, w)/2⌉. We conclude that having G, distG2 = ⌈distG/2⌉, and B, we
can derive distG. As we can calculate B in time O(M(n)), we have the lemma.

The all-pairs shortest paths algorithm now is described recursively as follows:

(6.9) If G is a complete graph, the distance between any two distinct vertices
is 1. If G is not complete, determine G2 and from this (recursively)
distG2 . Next determine distG.

Theorem 6.8. Given an undirected graph G on n vertices, the function distG can be

determined in time O(M(n) log n). Here M(n) denotes the time needed to multiply

two n × n matrices each with entries in {0, . . . , n}.

Proof. Determining G2 from G and determining distG from G and distG2 can be
done in time O(M(n)). Since the depth of the recursion is O(log n), the algorithm
has running time O(M(n) log n).

The results on fast matrix multiplication of Coppersmith and Winograd [1987,
1990] give M(n) = o(n2.376) (extending earlier work of Strassen [1969]).

Seidel [1992,1995] showed in fact that also shortest paths can be found in this
way. More precisely, for all u, w ∈ V with u �= w, a neighbour v of w can be found
such that distG(u, v) = distG(u, w) − 1, in time O(M(n) log n + n2 log2 n). Having
this, one can find, for any u, w ∈ V , a shortest u − w path in time O(distG(u, w)).
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6.5b. Complexity survey

Complexity survey for all-pairs shortest paths with unit lengths (∗ indicates an
asymptotically best bound in the table):

O(nm) Berge [1958b], Moore [1959]

O(n
3+ω

2 log3 n) Alon, Galil, and Margalit [1991,1997]

∗ O(nm logn(n2/m)) Feder and Motwani [1991,1995]

∗ O(nω log n) undirected Seidel [1992,1995]

Here ω is any real such that any two n × n matrices can be multiplied by O(nω)
arithmetic operations (e.g. ω = 2.376).

Alon, Galil, and Margalit [1991,1997] extended their method to digraphs with
arc lengths in {−1, 0, 1}.

Related work was done by Fredman [1976], Yuval [1976], Romani [1980], Aing-
worth, Chekuri, and Motwani [1996], Zwick [1998,1999a,2002], Aingworth, Chekuri,
Indyk, and Motwani [1999], and Shoshan and Zwick [1999].

6.5c. Ear-decomposition of strongly connected digraphs

Let D = (V, A) be a directed graph. An ear of D is a directed path or circuit P in
D such that all internal vertices of P have indegree and outdegree equal to 1 in D.
The path may consist of a single arc — so any arc of D is an ear. If I is the set
of internal vertices of an ear P , we say that D arises from D − I by adding ear P .
An ear-decomposition of D is a series of digraphs D0, D1, . . . , Dk, where D0 = K1,
Dk = D, and Di arises from Di−1 by adding an ear (i = 1, . . . , k).

Digraphs having an ear-decomposition are be characterized by:

Theorem 6.9. A digraph D = (V, A) is strongly connected if and only if D has an

ear-decomposition.

Proof. Sufficiency of the condition is easy, since adding an ear to a strongly con-
nected graph maintains strong connectivity.

To see necessity, let D = (V, A) be strongly connected. Let D′ = (V ′, A′) be
a subgraph of D which has an ear-decomposition and with |V ′| + |A′| as large as
possible. (Such a subgraph exists, as any single vertex has an ear-decomposition.)

Then D′ = D, for otherwise there exists an arc a ∈ A \A′ with tail in V ′. Then
a is contained in a directed circuit C (as D is strongly connected). This circuit C
contains a subpath (or circuit) P such that P can be added as an ear to D′. This
contradicts the maximality of |V ′| + |A′|.

A related decomposition of strongly connected digraphs was described by Knuth
[1974]. Related work was done by Grötschel [1979].
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6.5d. Transitive closure

Complexity survey for finding the transitive closure of a directed graph (∗ indicates
an asymptotically best bound in the table):

O(n3) Warshall [1962]

∗ O(nm)
Purdom [1970], cf. Coffy
[1973] (also Ebert [1981])

O(n3/ log n)
Arlazarov, Dinits, Kronrod,
and Faradzhev [1970]

Õ(nω) Furman [1970], Munro [1971]

O(nω log n log log n log log log n)
Aho, Hopcroft, and Ullman
[1974]

∗ O(nω log n log log log n log log log log n)
Adleman, Booth, Preparata,
and Ruzzo [1978]

Again, ω is any real such that any two n × n matrices can be multiplied by O(nω)

arithmetic operations (e.g. ω = 2.376). Moreover, f = Õ(g) if f = O(g logk g) for
some k.

For more on finding the transitive closure we refer to Fischer and Meyer [1971],
Munro [1971], O’Neil and O’Neil [1973], Dzikiewicz [1975], Sys�lo and Dzikiewicz
[1975], Warren [1975], Eve and Kurki-Suonio [1977], Adleman, Booth, Preparata,
and Ruzzo [1978], Schnorr [1978a], Schmitz [1983], Ioannidis and Ramakrishnan
[1988], Jakobsson [1991], Ullman and Yannakakis [1991], and Cohen [1994a,1997].

Aho, Garey, and Ullman [1972] showed that finding a minimal directed graph
having the same transitive closure as a given directed graph, has the same time
complexity as finding the transitive closure.

6.5e. Further notes

For the decomposition of graphs into 3-connected graphs, see Cunningham and
Edmonds [1980]. Karzanov [1970] and Tarjan [1974b] gave linear-time algorithms
(based on a search method) to find the bridges of an undirected graph.

Theorem 6.1 implies the result of Moore and Shannon [1956] that if D = (V, A)
is a digraph, s, t ∈ V , and l is the minimum length of an s − t path and w is the
minimum size of an s − t cut, then |A| ≥ lw (the length-width inequality).

Finding a shortest (directed) circuit in a (directed) graph can be reduced to
finding a shortest path. More efficient algorithms were given by Itai and Rodeh
[1978].

Barnes and Ruzzo [1991,1997] gave a polynomial-time algorithm to test if there
exists an s − t path in an undirected graph, using sublinear space only. This was
extended to directed graphs by Barnes, Buss, Ruzzo, and Schieber [1992,1998].
Related work was done by Savitch [1970], Cook and Rackoff [1980], Beame, Borodin,
Raghavan, Ruzzo, and Tompa [1990,1996], Nisan [1992,1994], Nisan, Szemeredi,
and Wigderson [1992], Broder, Karlin, Raghavan, and Upfal [1994], and Armoni,
Ta-Shma, Wigderson, and Zhou [1997,2000].
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Karp and Tarjan [1980a,1980b] gave algorithms for finding the connected com-
ponents of an undirected graph, and the strong components of a directed graph, in
O(n) expected time. More on finding strong components can be found in Gabow
[2000a].

Books discussing algorithmic problems on paths with unit lengths (reachability,
closure, etc.) include Even [1973], Aho, Hopcroft, and Ullman [1974,1983], Chris-
tofides [1975], Cormen, Leiserson, and Rivest [1990], Lengauer [1990], Jungnickel
[1999], and Mehlhorn and Näher [1999]. Berge [1958b] gave an early survey on
shortest paths.



Chapter 7

Shortest paths: nonnegative
lengths

In this chapter we consider the shortest path problem in graphs where each
arc has a nonnegative length, and describe Dijkstra’s algorithm, together
with a number of speedups based on heaps.
In this chapter, graphs can be assumed to be simple. If not mentioned ex-
plicitly, length is taken with respect to a given function l.

7.1. Shortest paths with nonnegative lengths

The methods and results discussed in Chapter 6 for unit-length arcs can be
generalized to the case where arcs have a not necessarily unit length. For any
‘length’ function l : A → R and any path P = (v0, a1, v1, . . . , am, vm), the
length l(P ) of P is defined by:

(7.1) l(P ) :=

m∑

i=1

l(a).

The distance from s to t (with respect to l), denoted by distl(s, t), is equal
to the minimum length of any s − t path. If no s − t path exists, distl(s, t) is
set to +∞.

A weighted version of Theorem 6.1 is as follows, again due to Robacker
[1956b] (sometimes called the ‘max-potential min-work theorem’ (Duffin
[1962])):

Theorem 7.1. Let D = (V, A) be a digraph, let s, t ∈ V , and let l : A → Z+.
Then the minimum length of an s − t path is equal to the maximum size k of
a family of s − t cuts C1, . . . , Ck such that each arc a is in at most l(a) of
the cuts Ci.

Proof. Again, the minimum is not smaller than the maximum, since if P is
any s − t path and C1, . . . , Ck is any collection as described in the theorem,
then
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(7.2) l(P ) =
∑

a∈AP

l(a) ≥
∑

a∈AP

(number of i with a ∈ Ci)

=
k∑

i=1

|Ci ∩ AP | ≥
k∑

i=1

1 = k.

To see equality, let d be the distance from s to t and let Ui be the set of
vertices at distance less than i from s, for i = 1, . . . , d. Taking Ci := δout(Ui),
we obtain a collection C1, . . . , Cd as required.

A rooted tree T = (V ′, A′), with root s, is called a shortest paths tree for
a length function l : A → R+, if V ′ is the set of vertices reachable from s and
A′ ⊆ A such that for each t ∈ V ′, the s − t path in T is a shortest s − t path
in D. Again, Dantzig [1957] showed:

Theorem 7.2. Let D = (V, A) be a digraph, let s ∈ V , and let l : A → R+.
Then there exists a shortest paths tree for l, with root s.

Proof. Let V ′ be the set of vertices reachable from s. Let A′ be an inclu-
sionwise minimal set containing for each t ∈ V ′ a shortest s − t path of D.
Suppose that some vertex v is entered by two arcs in A′. Then at least one of
these arcs can be deleted, contradicting the minimality of A′. One similarly
sees that no arc in A′ enters s.

7.2. Dijkstra’s method

Dijkstra [1959] gave an O(n2) algorithm to find a shortest s − t path for
nonnegative length functions — in fact, the output is a shortest paths tree
with root s. We describe Dijkstra’s method (the idea of this method was
also described by Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz
[1957]).

We keep a subset U of V and a function d : V → R+ (the tentative
distance). Start with U := V and set d(s) := 0 and d(v) = ∞ if v �= s. Next
apply the following iteratively:

(7.3) Find u ∈ U minimizing d(u) over u ∈ U . For each a = (u, v) ∈ A
for which d(v) > d(u) + l(a), reset d(v) := d(u) + l(a). Reset
U := U \ {u}.

We stop if d(u) = ∞ for all u ∈ U . The final function d gives the distance
from s. Moreover, if we store for each v �= s the last arc a = (u, v) for which
we have reset d(v) := d(u) + l(a), we obtain a shortest path tree with root s.

Clearly, the number of iterations is at most |V |, while each iteration takes
O(n) time. So the algorithm has running time O(n2). Thus:

Theorem 7.3. Given a digraph D = (V, A), s ∈ V , and a length function
l : A → Q+, a shortest paths tree with root s can be found in time O(n2).
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Proof. We show correctness of the algorithm. Let dist(v) denote the distance
from s to v, for any vertex v. Trivially, d(v) ≥ dist(v) for all v, throughout
the iterations. We prove that throughout the iterations, d(v) = dist(v) for
each v ∈ V \ U . At the start of the algorithm this is trivial (as U = V ).

Consider any iteration (7.3). It suffices to show that d(u) = dist(u) for
the chosen u ∈ U . Suppose d(u) > dist(u). Let s = v0, v1, . . . , vk = u be a
shortest s − u path. Let i be the smallest index with vi ∈ U .

Then d(vi) = dist(vi). Indeed, if i = 0, then d(vi) = d(s) = 0 = dist(s) =
dist(vi). If i > 0, then (as vi−1 ∈ V \ U):

(7.4) d(vi) ≤ d(vi−1) + l(vi−1, vi) = dist(vi−1) + l(vi−1, vi) = dist(vi).

This implies d(vi) ≤ dist(vi) ≤ dist(u) < d(u), contradicting the choice of u.

7.3. Speeding up Dijkstra’s algorithm with k-heaps

If |A| is asymptotically smaller than |V |2, one may expect faster methods
than O(n2). Such a method based on ‘heaps’ (introduced by Williams [1964]
and Floyd [1964]), was given by Murchland [1967b] and sharpened by Johnson
[1972], Johnson [1973b,1977a] and Tarjan [1983] (see Section 8.6g).

In Dijkstra’s algorithm, we spend (in total) O(m) time on updating the
values d(u), and O(n2) time on finding a u ∈ U minimizing d(u). As m ≤ n2,
a decrease in the running time bound requires a speedup in finding a u
minimizing d(u).

A way of doing this is based on storing U in some order such that a u ∈ U
minimizing d(u) can be found quickly and such that it does not take too much
time to restore the order if we delete a u minimizing d(u) or if we decrease
some d(u).

This can be done by using ‘heaps’, two forms of which we consider: k-heaps
(in this section) and Fibonacci heaps (in the next section).

A k-heap is an ordering u0, . . . , un of the elements of U such that for all
i, j, if ki < j ≤ k(i + 1), then d(ui) ≤ d(uj).

This is a convenient way of defining (and displaying) the heap, but it
is helpful to imagine the heap as a rooted tree on U : its arcs are the pairs
(ui, uj) with ki < j ≤ k(i + 1). So ui has outdegree k if k(i + 1) ≤ n. The
root of this rooted tree is u0.

If one has a k-heap, one easily finds a u minimizing d(u): it is the root
u0. The following two theorems are basic for estimating the time needed for
updating the k-heap if we change U or values of d(u). To swap ui and uj

means exchanging the positions of ui and uj in the order (that is, resetting
uj := ui and ui := the old uj).

Theorem 7.4. If u0 is deleted, the k-heap can be restored in time O(k logk n).
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Proof. Reset u0 := un and n := n − 1. Let i = 0. While there is a j with
ki < j ≤ ki + k, j ≤ n − 1, and d(uj) < d(ui), choose such a j with smallest
d(uj), swap ui and uj , and reset i := j.

The final k-heap is as required.

The operation described is called sift-down. The following theorem de-
scribes the operation sift-up.

Theorem 7.5. If d(ui) is decreased, the k-heap can be restored in time
O(logk n).

Proof. While i > 0 and d(uj) > d(ui) for j := ⌊ i−1
k ⌋, swap ui and uj , and

reset i := j. The final k-heap is as required.

In Dijkstra’s algorithm, we delete at most |V | times a u minimizing d(u)
and we decrease at most |A| times any d(u). So using a k-heap, the algorithm
can be done in time O(nk logk n + m logk n). This implies:

Theorem 7.6. Given a digraph D = (V, A), s ∈ V , and a length function
l : A → Q+, a shortest paths tree with root s can be found in time O(m logk n),
where k := max{2, m

n }.

Proof. See above.

This implies that if for some class of digraphs D = (V, A) one has |A| ≥
|V |1+ε for some fixed ε > 0, then there is a linear-time shortest path algorithm
for these graphs.

7.4. Speeding up Dijkstra’s algorithm with Fibonacci
heaps

Using a more sophisticated heap, the ‘Fibonacci heap’, Dijkstra’s algorithm
can be speeded up to O(m + n log n), as was shown by Fredman and Tarjan
[1984,1987].

A Fibonacci forest is a rooted forest (U, A), such that for each v ∈ U the
children of v can be ordered in such a way that the ith child has at least i−2
children. (If (u, v) ∈ A, v is called a child of u, and u the parent of v.)

Lemma 7.7α. In a Fibonacci forest (U, A), each vertex has outdegree at most
2 log2 |U |.

Proof. We show:

(7.5) if u has outdegree at least k, then at least
√

2
k

vertices are reach-
able from u.



100 Chapter 7. Shortest paths: nonnegative lengths

This implies the lemma, since
√

2
k ≤ |U | is equivalent to k ≤ 2 log2 |U |.

In proving (7.5), we may assume that u is a root. We prove (7.5) by
induction on k, the case k = 0 being trivial. If k ≥ 1, let v be the highest
ordered child of u. So v has outdegree at least k − 2. Then by induction, at

least
√

2
k−2

vertices are reachable from v. Next delete arc (u, v). We keep a
Fibonacci forest, in which u has outdegree at least k − 1. By induction, at

least
√

2
k−1

vertices are reachable from u in the new forest. Hence at least

(7.6)
√

2
k−2

+
√

2
k−1 ≥

√
2

k

vertices are reachable from u in the original forest.

(The recursion (7.6) shows that the Fibonacci numbers give the best bound,
justifying the name Fibonacci forest. The weaker bound given, however, is
sufficient for our purposes.)

A Fibonacci heap consists of a rooted forest F = (U, A) and functions
d : U → R and φ : U → {0, 1}, such that:

(7.7) (i) if (u, v) ∈ A, then d(u) ≤ d(v);
(ii) for each u ∈ U , the children of u can be ordered such that the

ith child v satisfies degout(v) + φ(v) ≥ i − 1;
(iii) if u and v are distinct roots of F , then degout(u) �= degout(v).

Condition (7.7)(ii) implies that F is a Fibonacci forest. So, by Lemma 7.7α,
condition (7.7)(iii) implies that F has at most 1 + 2 log2 |U | roots.

The Fibonacci heap will be specified by the following data structure,
where t := ⌊2 log2 |U |⌋:
(7.8) (i) for each u ∈ U , a doubly linked list of the children of u (in any

order);
(ii) the function parent : U → U , where parent(u) is the parent of

u if it has one, and parent(u) = u otherwise;
(iii) the functions degout : U → Z+, φ : U → {0, 1}, and d : U → R;
(iv) a function b : {0, . . . , t} → U with b(degout(u)) = u for each

root u.

Theorem 7.7. When inserting p times a new vertex, finding and deleting n
times a root u minimizing d(u), and decreasing m times the value of d(u),
the structure can be restored in time O(m + p + n log p).

Proof. Inserting a new vertex v, with value d(v), can be done by setting
φ(v) := 0 and by applying:

(7.9) plant(v):
Let r := b(degout(v)).
If r is a root with r �= v, then:
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{
if d(r) ≤ d(v), add arc (r, v) to A and plant(r);
if d(r) > d(v), add arc (v, r) to A and plant(v);

else define b(degout(v)) := v.

Throughout we update the lists of children and the functions parent, degout,
φ, and b.

A root u minimizing d(u) can be found in time O(log p), by scanning
d(b(i)) for i = 0, . . . , t where b(i) is a root.

The root u can be deleted as follows. Let v1, . . . , vk be the children of u.
First delete u and all arcs leaving u from the forest. This maintains conditions
(7.7)(i) and (ii). Next, condition (7.7)(iii) can be restored by applying plant(v)
for each v = v1, . . . , vk.

If we decrease the value of d(u) for some u ∈ U we do the following:

(7.10) Determine the longest directed path P in F ending at u such
that each internal vertex v of P satisfies φ(v) = 1. Reset φ(v) :=
1−φ(v) for each v ∈ V P \{u}. Delete all arcs of P from A. Apply
plant(v) to each v ∈ V P that is a root of the new forest.

The fact that this maintains (7.7) uses that if the starting vertex q of P is
not a root of the original forest, then q �= u and φ(q) is reset from 0 to 1 —
hence degout(q) + φ(q) is not changed, and we maintain (7.7)(ii).

We estimate the running time. Throughout all iterations, φ increases at
most m times (at most once in each application of (7.10)). Hence φ decreases
at most m times. So the sum of the lengths of the paths P in (7.10) is at
most 2m. So A decreases at most 2m + 2n log2 p times (since each time we
delete a root we delete at most 2 log2 p arcs). Therefore, A increases at most
2m + 2n log2 p + p times (since the final |A| is less than p). This gives the
running time bound.

This implies for the shortest path problem:

Corollary 7.7a. Given a digraph D = (V, A), s ∈ V , and a length function l :
A → Q+, a shortest paths tree with root s can be found in time O(m+n log n).

Proof. Directly from Dijkstra’s method and Theorem 7.7.

7.5. Further results and notes

7.5a. Weakly polynomial-time algorithms

The above methods all give a strongly polynomial-time algorithm for the shortest
path problem, with best running time bound O(m + n log n). If we allow also the
size of the numbers to occur in the running time bound, some other methods are
of interest that are in some cases (when the lengths are small integers) faster than
the above methods.



102 Chapter 7. Shortest paths: nonnegative lengths

In Dijkstra’s algorithm, we must select a u ∈ U with d(u) minimum. It was
observed by Dial [1969] that partitioning U into ‘buckets’ according to the values
of d gives a competitive running time bound. The method also gives the following
result of Wagner [1976]:

Theorem 7.8. Given a digraph D = (V, A), s ∈ V , l : A → Z+, and an upper

bound ∆ on max{distl(s, v) | v reachable from s}, a shortest path tree rooted at s
can be found in time O(m + ∆).

Proof. Apply Dijkstra’s algorithm as follows. Next to the function d : U → Z+ ∪
{∞}, we keep doubly linked lists L0, . . . , L∆ such that if d(u) ≤ ∆, then u is in
Ld(u). We keep also, for each i = 0, . . . , ∆, the first element ui of Li. If Li is empty,
then ui is void. Moreover, we keep a ‘current minimum’ µ ∈ {0, . . . , ∆}.

The initialization follows directly from the initialization of d: we set L0 := {s},
u0 := s, while Li is empty and ui void for i = 1, . . . , ∆. Initially, µ := 0.

The iteration is as follows. If Lµ = ∅ and µ ≤ ∆, reset µ := µ + 1. If Lµ �= ∅,
apply Dijkstra’s iteration to uµ: We remove uµ from Lµ. When decreasing some
d(u) from d to d′, we delete u from Ld (if d ≤ ∆) and insert it into Ld′ (if d′ ≤ ∆).

We stop if µ = ∆ + 1. With each removal or insertion, we can update the lists
and the ui in constant time. Hence we have the required running time.

A consequence is the bound of Dial [1969]:

Corollary 7.8a. Given a digraph D = (V, A), s ∈ V , and l : A → Z+, a shortest

path tree rooted at s can be found in time O(m+nL) where L := max{l(a) | a ∈ A}.

Proof. We can take ∆ = nL in Theorem 7.8.

One can derive from Theorem 7.8 also the following result of Gabow [1985b]:

Theorem 7.9. Given a digraph D = (V, A), s ∈ V , and a length function l :
A → Z+, a shortest paths tree rooted at s can be found in time O(m logd L), where

d = max{2, m/n}, and L := max{l(a) | a ∈ A}.

Proof. For each a ∈ A, let l′(a) := ⌊l(a)/d⌋. Recursively we find distl′(s, v) for all
v ∈ V , in time O(m logd L′) where L′ := ⌊L/d⌋. Note that logd L′ ≤ (logd L) − 1.
Now set

(7.11) l̃(a) := l(a) + d · distl′(s, u) − d · distl′(s, v)

for each a = (u, v) ∈ A. Then l̃(a) ≥ 0, since

(7.12) l(a) ≥ d · l′(a) ≥ d(distl′(s, v) − distl′(s, u)).

Moreover, distl̃(s, v) ≤ nd for each v reachable from s, since if P is an s − v path
with l′(P ) = distl′(s, v), then l̃(P ) = l(P ) − dl′(P ) ≤ nd. So by Theorem 7.8 we
can find distl̃(s, v) for all v ∈ V in time O(m), since nd ≤ 2m. As distl(s, v) =
distl̃(s, v) − d · distl′(s, v), we find the required data.

(This improves a result of Hansen [1980a].)
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7.5b. Complexity survey for shortest paths with nonnegative
lengths

The following gives a survey of the development of the running time bound for
the shortest path problem for a digraph D = (V, A), s, t ∈ V , and nonnegative
length-function l, where n := |V |, m := |A|, and L := max{l(a) | a ∈ A} (assuming
l integer). As before, ∗ indicates an asymptotically best bound in the table.

O(n4) Shimbel [1955]

O(n2mL) Ford [1956]

O(nm) Bellman [1958], Moore [1959]

O(n2 log n)
Dantzig [1958,1960], Minty (cf.
Pollack and Wiebenson [1960]),
Whiting and Hillier [1960]

O(n2) Dijkstra [1959]

O(m + nL)
Dial [1969] (cf. Wagner [1976],
Filler [1976](=E.A. Dinits))

O(m log(2 + (n2/m))) Johnson [1972]

O(dn logd n + m + m logd(n2/m)) (for any d ≥ 2) Johnson [1973b]

O(m logm/n n)
Johnson [1973b,1977a], Tarjan
[1983]

O(L + m log log L)
van Emde Boas, Kaas, and Zijlstra
[1977]

O(m log log L + n log L log log L) Johnson [1977b]

O(mink≥2(nkL1/k + m log k)) Denardo and Fox [1979]

O(m log L) Hansen [1980a]

∗ O(m log log L)
Johnson [1982], Karlsson and
Poblete [1983]

∗ O(m + n log n) Fredman and Tarjan [1984,1987]2

O(m logm/n L) Gabow [1983b,1985b]

∗ O(m + n
√

log L)
Ahuja, Mehlhorn, Orlin, and
Tarjan [1990]

Fredman and Willard [1990,1994] gave an O(m + n log n
log log n

)-time algorithm for
shortest paths with nonnegative lengths, utilizing nonstandard capabilities of a
RAM like addressing. This was extended to O(m + n

√
log n log log n) by Raman

[1996], to O(m log log n) and O(m log log L) by Thorup [1996,2000b] (cf. Hagerup
[2000]), and to O(m+n(log L log log L)1/3) by Raman [1997]. For undirected graphs,

2 Aho, Hopcroft, and Ullman [1983] (p. 208) claimed to give an O(m + n log n)-time
shortest path algorithm based on 2-heaps, but they assume that, after resetting a value,
the heap can be restored in constant time.
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a bound of O(m) was achieved by Thorup [1997,1999,2000a]. Related results were
given by Pettie and Ramachandran [2002b].

The expected complexity of Dijkstra’s algorithm is investigated by Noshita,
Masuda, and Machida [1978], Noshita [1985], Cherkassky, Goldberg, and Silverstein
[1997,1999], Goldberg [2001a,2001b], and Meyer [2001].

In the special case of planar directed graphs:

O(n
√

log n) Frederickson [1983b,1987b]

∗ O(n)
Klein, Rao, Rauch, and Subramanian [1994], Henzinger,
Klein, Rao, and Subramanian [1997]

For the all-pairs shortest paths problem with nonnegative lengths one has:

O(n4) Shimbel [1955]

O(n3 log n)
Leyzorek, Gray, Johnson, Ladew,
Meaker, Petry, and Seitz [1957]

O(n2m) Bellman [1958], Moore [1959]

O(n3 log n)
Dantzig [1958,1960], Minty (cf.
Pollack and Wiebenson [1960]),
Whiting and Hillier [1960]

O(n3) Dijkstra [1959]

O(nm + n2L) Dial [1969] (cf. Wagner [1976])

O(nm log n) Johnson [1972]

O(n3(log log n/ log n)1/3) Fredman [1976]

O(nm logm/n n)
Johnson [1973b,1977a], Tarjan
[1983]

O(nL + nm log log L)
van Emde Boas, Kaas, and
Zijlstra [1977]

O(nm log log L + n2 log L log log L) Johnson [1977b]

O(nm log L) Hansen [1980a]

∗ O(nm log log L)
Johnson [1982], Karlsson and
Poblete [1983]

∗ O(n(m + n log n)) Fredman and Tarjan [1984,1987]

O(nm logm/n L) Gabow [1983b,1985b]

∗ O(nm + n2√log L)
Ahuja, Mehlhorn, Orlin, and
Tarjan [1990]

∗ O(n3(log log n/ log n)1/2) Takaoka [1992a,1992b]

∗ Õ(n
5ω−3
ω+1 L + n

3+ω
2 L

ω−1
2 ) Galil and Margalit [1997a,1997b]

∗ Õ(nωL
ω+1

2 )
undirected Galil and Margalit
[1997a,1997b]
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Here ω is any real such that any two n × n matrices can be multiplied by O(nω)

arithmetic operations (e.g. ω = 2.376). Moreover, f = Õ(g) if f = O(g logk g)
for some k. (At the negative side, Kerr [1970] showed that matrix multiplication
of n × n matrices with addition and multiplication replaced by minimization and
addition, requires time Ω(n3).)

Spira [1973] gave an O(n2 log2 n) expected time algorithm for all-pairs short-
est paths with nonnegative lengths. This was improved to O(n2 log n log log n) by
Takaoka and Moffat [1980], to O(n2 log n log∗ n) by Bloniarz [1980,1983] (defining
log∗ n := min{i | log(i) n ≤ 1}, where log(0) n := n and log(i+1) n := log(log(i) n)),
and to O(n2 log n) by Moffat and Takaoka [1985,1987]. Related work includes Car-
son and Law [1977], Frieze and Grimmett [1985], Hassin and Zemel [1985], Walley
and Tan [1995], and Mehlhorn and Priebe [1997].

Yen [1972] (cf. Williams and White [1973]) described an all-pairs shortest paths
method (based on Dijkstra’s method) using 1

2
n3 additions and n3 comparisons.

Nakamori [1972] gave a lower bound on the number of operations. Yao, Avis, and
Rivest [1977] gave a lower bound of Ω(n2 log n) for the time needed for the all-pairs
shortest paths problem.

Karger, Koller, and Phillips [1991,1993] and McGeoch [1995] gave an O(n(m∗ +
n log n)) algorithm for all-pairs shortest paths, where m∗ is the number of arcs that
belong to at least one shortest path. See also Yuval [1976] and Romani [1980] for
relations between all-pairs shortest paths and matrix multiplication.

Frederickson [1983b,1987b] showed that in a planar directed graph, with non-
negative lengths, the all-pairs shortest paths problem can be solved in O(n2) time.

7.5c. Further notes

Spira and Pan [1973,1975], Shier and Witzgall [1980], and Tarjan [1982] studied
the sensitivity of shortest paths trees under modifying arc lengths. Fulkerson and
Harding [1977] studied the problem of lengthening the arc lengths within a given
budget (where each arc has a given cost for lengthening the arc length) so as to
maximize the distance from a given source to a given sink. They reduced this
problem to a parametric minimum-cost flow problem. Land and Stairs [1967] and
Hu [1968] studied decomposition methods for finding all-pairs shortest paths (cf.
Farbey, Land, and Murchland [1967], Hu and Torres [1969], Yen [1971b], Shier
[1973], and Blewett and Hu [1977]).

Frederickson [1989,1995] gave a strongly polynomial-time algorithm to find an
O(n) encoding of shortest paths between all pairs in a directed graph with non-
negative length function. (It extends earlier work of Frederickson [1991] for planar
graphs.)

Algorithms for finding the k shortest paths between pairs of vertices in a directed
graph were given by Clarke, Krikorian, and Rausen [1963], Yen [1971a], Minieka
[1974], Weigand [1976], Lawler [1977], Shier [1979], Katoh, Ibaraki, and Mine [1982],
Byers and Waterman [1984], Perko [1986], Chen [1994], and Eppstein [1994b,1999].

Mondou, Crainic, and Nguyen [1991] gave a survey of shortest paths methods,
with computational results, and Raman [1997] on ‘recent’ results on shortest paths
with nonnegative lengths.
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Books covering shortest path methods for nonnegative lengths include Berge
[1973b], Aho, Hopcroft, and Ullman [1974,1983], Christofides [1975], Lawler [1976b],
Minieka [1978], Even [1979], Hu [1982], Papadimitriou and Steiglitz [1982], Smith
[1982], Sys�lo, Deo, and Kowalik [1983], Tarjan [1983], Gondran and Minoux [1984],
Rockafellar [1984], Nemhauser and Wolsey [1988], Bazaraa, Jarvis, and Sherali
[1990], Chen [1990], Cormen, Leiserson, and Rivest [1990], Lengauer [1990], Ahuja,
Magnanti, and Orlin [1993], Cook, Cunningham, Pulleyblank, and Schrijver [1998],
Jungnickel [1999], Mehlhorn and Näher [1999], and Korte and Vygen [2000].



Chapter 8

Shortest paths: arbitrary lengths

We now go over to the shortest path problem for the case where negative
lengths are allowed, but where each directed circuit has nonnegative length
(with no restriction, the problem is NP-complete). The basic algorithm here
is the Bellman-Ford method.
In this chapter, graphs can be assumed to be simple. If not mentioned ex-
plicitly, length is taken with respect to a given function l.

8.1. Shortest paths with arbitrary lengths but no
negative circuits

If lengths of arcs may take negative values, finding a shortest s − t path is
NP-complete — see Theorem 8.11 below. Negative-length directed circuits
seem to be the source of the trouble: if no negative-length directed circuits
exist, there is a polynomial-time algorithm — mainly due to the fact that
running into loops cannot give shortcuts. So a shortest walk (nonsimple path)
exists and yields a shortest path.

We first observe that if no negative-length directed circuits exists, then
the existence of a shortest paths tree is easy:

Theorem 8.1. Let D = (V, A) be a digraph, let s ∈ V , and let l : A → R be
such that each directed circuit reachable from s has nonnegative length. Then
there exists a shortest paths tree with root s.

Proof. As the proof of Theorem 7.2.

8.2. Potentials

The following observation of Gallai [1958b] is very useful. Let D = (V, A) be
a digraph and let l : A → R. A function p : V → R is called a potential if for
each arc a = (u, v):

(8.1) l(a) ≥ p(v) − p(u).
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Theorem 8.2. Let D = (V, A) be a digraph and let l : A → R be a length
function. Then there exists a potential if and only if each directed circuit
has nonnegative length. If moreover l is integer, the potential can be taken
integer.

Proof. Suffiency. Suppose that a function p as described exists. Let C =
(v0, a1, v1, . . . , am, vm) be a directed circuit (vm = v0). Then

(8.2) l(C) =
m∑

i=1

l(ai) ≥
m∑

i=1

(p(vi) − p(vi−1)) = 0.

Necessity. Suppose that each directed circuit has nonnegative length. For
each t ∈ V , let p(t) be the minimum length of any path ending at t (starting
wherever). This function satisfies the required condition.

Theorem 8.2 gives a good characterization for the problem of deciding if
there exists a negative-length directed circuit.

A potential is useful in transforming a length function to a nonnegative
length function: if we define l̃(a) := l(a) − p(v) + p(u) for each arc a = (u, v),
then we obtain a nonnegative length function l̃ such that each s − t path is
shortest with respect to l if and only if it is shortest with respect to l̃. So once
we have a potential p, we can find shortest paths with Dijkstra’s algorithm.
This can be used for instance in finding shortest paths between all pairs of
vertices — see Section 8.4.

One can also formulate a min-max relation in terms of functions that are
potentials on an appropriate subgraph. This result is sometimes called the
‘max-potential min-work theorem’ (Duffin [1962]).

Theorem 8.3. Let D = (V, A) be a digraph, let s, t ∈ V and let l : A → R.
Then distl(s, t) is equal to the maximum value of p(t)−p(s), where p : V → R

is such that l(a) ≥ p(v) − p(u) for each arc a = (u, v) traversed by at least
one s − t walk. If l is integer, we can restrict p to be integer.

Proof. Let p(v) := distl(s, v) if v belongs to at least one s − t walk, and
p(v) := 0 otherwise. This p is as required.

The following observation can also be of use, for instance when calculating
shortest paths by linear programming:

Theorem 8.4. Let D = (V, A) be a digraph, let s ∈ V be such that each vertex
of D is reachable from s, and let l : A → R be such that each directed circuit
has nonnegative length. Let p be a potential with p(s) = 0 and

∑
v∈V p(v)

maximal. Then p(t) = distl(s, t) for each t ∈ V .
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Proof. One easily shows that for any potential p with p(s) = 0 one has
p(t) ≤ distl(s, t) for each t ∈ V . As distl(s, ·) is a potential, the theorem
follows.

8.3. The Bellman-Ford method

Also in the case of a length function without negative-length directed circuit,
there is a polynomial-time shortest path algorithm, the Bellman-Ford method
(Shimbel [1955], Ford [1956], Bellman [1958], Moore [1959]). Again, it finds
a shortest paths tree for any root s.

To describe the method, define for t ∈ V and k ≥ 0:

(8.3) dk(t) := minimum length of any s − t walk traversing at most k
arcs,

setting dk(t) := ∞ if no such walk exists.
Clearly, if there is no negative-length directed circuit reachable from s,

the distance from s to t is equal to dn(v), where n := |V |.
Algorithmically, the function d0 is easy to set: d0(s) = 0 and d0(t) = ∞

if t �= s. Next d1, d2, . . . can be successively computed by the following rule:

(8.4) dk+1(t) = min{dk(t), min
(u,t)∈A

(dk(u) + l(u, t))}

for all t ∈ V .
This method gives us the distance from s to t. It is not difficult to derive

a method finding a shortest paths tree with root s. Thus:

Theorem 8.5. Given a digraph D = (V, A), s ∈ V , and a length function
l : A → Q such that each directed circuit reachable from s has nonnegative
length, a shortest paths tree rooted at s can be found in time O(nm).

Proof. There are at most n iterations, each of which can be performed in
time O(m).

A negative-length directed circuit can be detected similarly:

Theorem 8.6. Given a digraph D = (V, A), s ∈ V , and a length function
l : A → Q, a directed circuit of negative length reachable from s (if any exists)
can be found in time O(nm).

Proof. If dn �= dn−1, then dn(t) < dn−1(t) for some t ∈ V . So the algorithm
finds an s− t walk P of length dn(t), traversing n arcs. As P traverses n arcs,
it contains a directed circuit C. Removing C gives an s − t walk P ′ with less
than n arcs. So l(P ′) ≥ dn−1(t) > dn(t) = l(P ) and hence l(C) < 0.

If dn = dn−1, then there is no negative-length directed circuit reachable
from s.
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Also a potential can be found with the Bellman-Ford method:

Theorem 8.7. Given a digraph D = (V, A) and a length function l : A → Q

such that each directed circuit has nonnegative length, a potential can be found
in time O(nm).

Proof. Extend D by a new vertex s and arcs (s, v) for v ∈ V , each of length 0.
Then setting p(v) equal to the distance from s to v (which can be determined
with the Bellman-Ford method) gives a potential.

We remark that the shortest path problem for undirected graphs, for
length functions without negative-length circuits, also can be solved in pol-
ynomial time. However, the obvious reduction — replacing every undirected
edge uv by two arcs (u, v) and (v, u) each of length l(uv) — may yield a
negative-length directed circuit. So in this case, the undirected case does not
reduce to the directed case, and we cannot apply the Bellman-Ford method.
The undirected problem can yet be solved in polynomial time, with the meth-
ods developed for the matching problem — see Section 29.2.

8.4. All-pairs shortest paths

Let D = (V, A) be a digraph and l : A → Q be a length function such
that each directed circuit has nonnegative length. By applying |V | times the
Bellman-Ford method one can find shortest s− t paths for all s, t ∈ V . As the
Bellman-Ford method takes time O(nm), this makes an O(n2m) algorithm.

A more efficient algorithm, the Floyd-Warshall method was described by
Floyd [1962b], based on an idea of Warshall [1962], earlier found by Kleene
[1956], Roy [1959], and McNaughton and Yamada [1960]: Order the vertices
of D (arbitrarily) as v1, . . . , vn. Define for s, t ∈ V and k ∈ {0, . . . , n}:

(8.5) dk(s, t) := minimum length of an s − t walk using only vertices
in {s, t, v1, . . . , vk}.

Clearly, d0(s, t) = l(s, t) if (s, t) ∈ A, while d0(s, t) = ∞ otherwise. Moreover:

(8.6) dk+1(s, t) = min{dk(s, t), dk(s, vk+1) + dk(vk+1, t)}
for all s, t ∈ V and k < n.

This gives:

Theorem 8.8. Given a digraph D = (V, A) and a length function l : A → Q

with no negative-length directed circuit, all distances distl(s, t) can be deter-
mined in time O(n3).

Proof. Note that distl = dn and that dn can be determined in n iterations,
each taking O(n2) time.
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The Floyd-Warshall method can be adapted so as to find for all s ∈ V , a
shortest s − t paths tree rooted at s.

A faster method was observed by Johnson [1973b,1977a] and Bazaraa and
Langley [1974]. Combined with the Fibonacci heap implementation of Dijk-
stra’s algorithm, it gives all-pairs shortest paths in time O(n(m + n log n)),
which is, if n log n = O(m), of the same order as the Bellman-Ford for single-
source shortest path. The idea is to preprocess the data by a potential func-
tion, so as to make the length function nonnegative, and next to apply Dijk-
stra’s method:

Theorem 8.9. Given a digraph D = (V, A) and a length function l : A → Q

with no negative-length directed circuit, a family (Ts | s ∈ V ) of shortest paths
trees Ts rooted at s can be found in time O(n(m + n log n)).

Proof. With the Bellman-Ford method one finds a potential p in time O(nm)
(Theorem 8.7). Set l̃(a) := l(a) − p(v) + p(u) for each arc a = (u, v). So
l̃(a) ≥ 0 for each arc a. Next with Dijkstra’s method, using Fibonacci heaps,
one can determine for each s ∈ V a shortest paths tree Ts for l̃, in time
O(m + n log n) (Corollary 7.7a). As these are shortest paths trees also for l,
we have the current theorem.

8.5. Finding a minimum-mean length directed circuit

Let D = (V, A) be a directed graph (with n vertices) and let l : A → R. The
mean length of a directed cycle (directed closed walk) C = (v0, a1, v1, . . . , at,
vt) with vt = v0 and t > 0 is l(C)/t. Karp [1978] gave the following
polynomial-time method for finding a directed cycle of minimum mean length.
For each v ∈ V and each k = 0, 1, 2, . . ., let dk(v) be the minimum length of
a walk with exactly k arcs, ending at v. So for each v one has

(8.7) d0(v) = 0 and dk+1(v) = min{dk(u) + l(a) | a = (u, v) ∈ δin(v)}.

Now Karp [1978] showed:

Theorem 8.10. The minimum mean length of a directed cycle in D is equal
to

(8.8) min
v∈V

max
0≤k≤n−1

dn(v) − dk(v)

n − k
.

Proof. We may assume that the minimum mean length is 0, since adding ε
to the length of each arc increases both minima in the theorem by ε. So we
must show that (8.8) equals 0.

First, let minimum (8.8) be attained by v. Let Pn be a walk with n
arcs ending at v, of length dn(v). So Pn can be decomposed into a path Pk,
say, with k arcs ending at v, and a directed cycle C with n − k arcs (for
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some k < n). Hence dn(v) = l(Pn) = l(Pk) + l(C) ≥ l(Pk) ≥ dk(v) and so
dn(v) − dk(v) ≥ 0. Therefore, (8.8) is nonnegative.

To see that it is 0, let C = (v0, a1, v1, . . . , at, vt) be a directed cycle of
length 0. Then minr dr(v0) is attained by some r with n − t ≤ r < n (as it is
attained by some r < n (since each circuit has nonnegative length), and as
we can add C to the shortest walk ending at v0). Fix this r.

Let v := vn−r, and split C into walks

(8.9) P := (v0, a1, v1, . . . , an−r, vn−r) and
Q := (vn−r, an−r+1,vn−r+1, . . . , at, vt).

Then dn(v) ≤ dr(v0) + l(P ), and therefore for each k:

(8.10) dk(v) + l(Q) ≥ dk+(t−(n−r))(v0) ≥ dr(v0) ≥ dn(v) − l(P ).

This implies dn(v) − dk(v) ≤ l(C) = 0. So the minimum (8.8) is at most 0.

Algorithmically, it gives:

Corollary 8.10a. A minimum-mean length directed circuit can be found in
time O(nm).

Proof. See the method above.

Notes. Karp and Orlin [1981] and Karzanov [1985c] gave generalizations. Orlin and
Ahuja [1992] gave an O(

√
n m log(nL)) algorithm for the minimum-mean length di-

rected circuit problem (cf. McCormick [1993]). Early work on this problem includes
Lawler [1967], Shapiro [1968], and Fox [1969].

8.6. Further results and notes

8.6a. Complexity survey for shortest path without negative-length
circuits

The following gives a survey of the development of the running time bound for the
shortest path problem for a digraph D = (V, A), s, t ∈ V , and l : A → Z (without
negative-length directed circuits), where n := |V |, m := |A|, L := max{|l(a)|

∣∣ a ∈
A}, and L′ := max{−l(a) | a ∈ A} (assuming L′ ≥ 2). As before, ∗ indicates an
asymptotically best bound in the table.

O(n4) Shimbel [1955]

O(n2mL) Ford [1956]

∗ O(nm) Bellman [1958], Moore [1959]

O(n3/4m log L′) Gabow [1983b,1985b]

≫
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continued

O(
√

n m log(nL′)) Gabow and Tarjan [1988b,1989]

∗ O(
√

n m log L′) Goldberg [1993b,1995]

(Gabow [1983b,1985b] and Gabow and Tarjan [1988b,1989] give bounds with L
instead of L′, but Goldberg [1995] mentioned that an anonymous referee of his
paper observed that L can be replaced by L′.)

Kolliopoulos and Stein [1996,1998b] proved a bound of o(n3) for the average-
case complexity.

For the special case of planar directed graphs:

O(n3/2) Lipton, Rose, and Tarjan [1979]

O(n4/3 log(nL′))
Klein, Rao, Rauch, and Subramanian [1994],
Henzinger, Klein, Rao, and Subramanian [1997]

∗ O(n log3 n) Fakcharoenphol and Rao [2001]

For the all-pairs shortest paths problem, with no negative-length directed circuits,
one has:

O(n4) Shimbel [1955]

O(n3 log n)
Leyzorek, Gray, Johnson, Ladew,
Meaker, Petry, and Seitz [1957]

O(n2m) Bellman [1958], Moore [1959]

O(n3) Floyd [1962b]

∗ O(n · SP+(n, m, L))
Johnson [1973b,1977a], Bazaraa
and Langley [1974]

O(nm + n3(log log n/ log n)1/3) Fredman [1976]

O(nm log log L + n2 log L log log L) Johnson [1977b]

O(nL + nm log log L)
van Emde Boas, Kaas, and
Zijlstra [1977]

∗ O(nm log log L) Johnson [1982]

O(nm logm/n L) Gabow [1985b]

∗ O(nm + n2√log L)
Ahuja, Mehlhorn, Orlin, and
Tarjan [1990]

∗ O((nL)
3+ω

2 log3 n)
Alon, Galil, and Margalit [1991,
1997], Galil and Margalit [1997a,
1997b]

Here SP+(n, m, L) denotes the time needed to find a shortest path in a digraph
with n vertices and m arcs, with nonnegative integer lengths on the arcs, each at
most L. ω is any real such that any two n×n matrices can be multiplied by O(nω)
arithmetic operations (e.g. ω = 2.376).
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Frederickson [1983b,1987b] showed that for planar directed graphs, the all-pairs
shortest paths problem, with no negative-length directed circuits, can be solved in
O(n2) time.

8.6b. NP-completeness of the shortest path problem

In full generality — that is, not requiring that each directed circuit has nonnegative
length — the shortest path problem is NP-complete, even if each arc has length
−1. Equivalently, finding a longest path in a graph (with unit length arcs) is NP-
complete. This is a result of E.L. Lawler and R.E. Tarjan (cf. Karp [1972b]).

This directly follows from the NP-completeness of finding a Hamiltonian path
in a graph. Let D = (V, A) be a digraph. (A directed path P is called Hamiltonian

if each vertex of D is traversed exactly once.)
We show the NP-completeness of the directed Hamiltonian path problem: Given

a digraph D = (V, A) and s, t ∈ V , is there a Hamiltonian s − t path?

Theorem 8.11. The directed Hamiltonian path problem is NP-complete.

Proof. We give a polynomial-time reduction of the partition problem (Section 4.11)
to the directed Hamiltonian path problem. Let C = {C1, . . . , Cm} be a collection of
subsets of the set X = {1, . . . , k}. Introduce vertices r0, r1, . . . , rm, 0, 1, . . . , k.

For each i = 1, . . . , m, we do the following. Let Ci = {j1, . . . , jt}. We construct
a digraph on the vertices ri−1, ri, jh − 1, jh (for h = 1, . . . , t) and 3t new vertices,
as in Figure 8.1. Moreover, we make an arc from rm to 0.

ri−1

jt jt − 1 jt−1 jt−1 − 1 j2 j2 − 1 j1 j1 − 1

ri

Figure 8.1

Let D be the digraph arising in this way. Then it is not difficult to check that
there exists a subcollection C′ of C that partitions X if and only if D has a directed
Hamiltonian r0 − k path P . (Take: (ri−1, ri) ∈ P ⇐⇒ Ci ∈ C′.)

Hence:

Corollary 8.11a. Given a digraph D = (V, A) and s, t ∈ V , finding a longest s − t
path is NP-complete.

Proof. This follows from the fact that there exists an s − t path of length |V | − 1
if and only if there is a directed Hamiltonian s − t path.

From this we derive the NP-completeness of the undirected Hamiltonian path

problem: Given a graph G = (V, E) and s, t ∈ V , does G have a Hamiltonian s − t
path? (R.E. Tarjan (cf. Karp [1972b])).
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Corollary 8.11b. The undirected Hamiltonian path problem is NP-complete.

Proof. We give a polynomial-time reduction of the directed Hamiltonian path
problem to the undirected Hamiltonian path problem. Let D be a digraph. Replace
each vertex v by three vertices v′, v′′, v′′′, and make edges {v′, v′′} and {v′′, v′′′}.
Moreover, for each arc (v1, v2) of D, make an edge {v′′′

1 , v′
2}. Delete the vertices

s′, s′′, t′′, t′′′. This makes the undirected graph G. One easily checks that D has a
directed Hamiltonian s − t path if and only if G has an (undirected) Hamiltonian
s′′′ − t′ path.

Again it implies:

Corollary 8.11c. Given an undirected graph G = (V, E) and s, t ∈ V , finding a

longest s − t path is NP-complete.

Proof. This follows from the fact that there exists an s − t path of length |V | − 1
if and only if there is a Hamiltonian s − t path.

Notes. Corollary 8.11b implies that finding a Hamiltonian circuit in an undirected
graph is NP-complete: just add a new vertex r and edges rs and rt. This reduces
finding a Hamiltonian s − t path in the original graph to finding a Hamiltonian
circuit in the extended graph.

Also the directed Hamiltonian circuit problem is NP-complete, as the undirected
version can be reduced to it by replacing each edge uv by two oppositely oriented
arcs (u, v) and (v, u).

8.6c. Nonpolynomiality of Ford’s method

The method originally described by Ford [1956] consists of the following. Given a
digraph D = (V, A), s, t ∈ V , and a length function l : A → Q, define d(s) := 0 and
d(v) := ∞ for all v �= s; next perform the following iteratively:

(8.11) choose an arc (u, v) with d(v) > d(u) + l(u, v), and reset d(v) :=
d(u) + l(u, v).

Stop if no such arc exists.
If there are no negative-length directed circuits, this is a finite method, since

at each iteration
∑

v d(v) decreases, while it is at least
∑

v distl(s, v) and it is an
integer multiple of the g.c.d. of the l(a).

In fact, it can be shown that the number of iterations is at most 2|V |, if l is
nonnegative. Moreover, if l is arbitrary (without negative directed circuit), there
are at most 2|V |2L iterations, where L := max{|l(a)|

∣∣ a ∈ A}.
However, Johnson [1973a,1973b] showed that the number of iterations is Ω(n2n),

even if we prescribe to choose (u, v) in (8.11) with d(u) minimal. For nonnegative l,
Johnson [1973b,1977a] showed that the number of iterations is Ω(2n) if we prescribe
no selection rule of u.
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8.6d. Shortest and longest paths in acyclic graphs

Let D = (V, A) be a digraph. A subset C of A is called a directed cut if there is a
subset U of V with ∅ �= U �= V such that δout(U) = C and δin(U) = ∅. So each
directed cut is a cut.

It is easy to see that, if D is acyclic, then a set B of arcs is contained in a directed
cut if and only if no two arcs in B are contained in a directed path. Similarly, if D
is acyclic, a set B of arcs is contained in a directed path if and only if no two arcs
in B are contained in a directed cut.

Theorem 8.12. Let D = (V, A) be an acyclic digraph and let s, t ∈ V . Then the

maximum length of an s − t path is equal to the minimum number of directed s − t
cuts covering all arcs that are on at least one s − t path.

Proof. Any s− t path of length k needs at least k directed s− t cuts to be covered,
so the maximum cannot exceed the minimum.

To see equality, let for each v ∈ V , d(v) be equal to the length of a longest
s − v path. Let k := d(t). For i = 1, . . . , k, let Ui := {v ∈ V | d(v) < i}. Then the
δout(Ui) form k directed s − t cuts covering all arcs that are on at least one s − t
path.

One similarly shows for paths not fixing its ends (Vidyasankar and Younger
[1975]):

Theorem 8.13. Let D = (V, A) be an acyclic digraph. Then the maximum length

of any path is equal to the minimum number of directed cuts covering A.

Proof. Similar to the proof above.

Also weighted versions hold, and may be derived similarly. A weighted version
of Theorem 8.12 is:

Theorem 8.14. Let D = (V, A) be an acyclic digraph, let s, t ∈ V and let l : A →
Z+ be a length function. Then the maximum length of an s − t path is equal to the

minimum number of directed s − t cuts covering each arc a that is on at least one

s − t path, at least l(a) times.

Proof. Any s− t path of length k needs at least k directed s− t cuts to be covered
appropriately, so the maximum cannot exceed the minimum.

To see equality, let for each v ∈ V , d(v) be equal to the length of a longest
s − v path. Let k := d(t). For i = 1, . . . , k, let Ui := {v ∈ V | d(v) < i}. Then the
δout(Ui) form k directed s − t cuts covering each arc a on any s − t path at least
l(a) times.

Similarly, a weighted version of Theorem 8.13 is:

Theorem 8.15. Let D = (V, A) be an acyclic digraph and l : A → Z+ be a length

function. Then the maximum length of any path is equal to the minimum number

of directed cuts such that any arc a is in at least l(a) of these directed cuts.
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Proof. Similar to the proof above.

In acyclic graphs one can find shortest paths in linear time (Morávek [1970]):

Theorem 8.16. Given an acyclic digraph D = (V, A), s, t ∈ V , and a length

function l : A → Q, a shortest s − t path can be found in time O(m).

Proof. First order the vertices reachable from s topologically as v1, . . . , vn (cf.
Corollary 6.5b). So v1 = s. Set d(v1) := 0 and determine

(8.12) d(v) := min{d(u) + l(u, v) | (u, v) ∈ δin(v)}
for v = v2, . . . , vn (in this order). Then for each v reachable from s, d(v) is the
distance from s to v.

Note that this implies that also a longest path in an acyclic digraph can be
found in linear time.

Johnson [1973b] showed that, in a not necessarily acyclic digraph, an O(m)-
time algorithm for the single-source shortest path problem exists if the number of
directed circuits in any strongly connected component is bounded by a constant.
Related work was reported by Wagner [2000].

More on longest paths and path covering in acyclic graphs can be found in
Chapter 14.

8.6e. Bottleneck shortest path

Pollack [1960] observed that several of the shortest path algorithms can be modified
to the following maximum-capacity path problem. For any digraph D = (V, A) and
‘capacity’ function c : A → Q, the capacity of a path P is the minimum of the
capacities of the arcs in P . (This is also called sometimes the reliability of P — cf.
Section 50.6c.)

Then the maximum-capacity path problem (also called the maximum reliability

problem), is:

(8.13) given: a digraph D = (V, A), s, t ∈ V , and a ‘capacity’ function c :
A → Q;

find: an s − t path of maximum capacity.

To this end, one should appropriately replace min by max and + by min in these
algorithms. Applying this to Dijkstra’s algorithm gives, with Fibonacci heaps, a
running time of O(m + n log n).

In fact, the following ‘bottleneck’ min-max relation holds (Fulkerson [1966]):

Theorem 8.17. Let D = (V, A) be a digraph, let s, t ∈ V , and let c : A → R be a

capacity function. Then:

(8.14) max
P

min
a∈AP

c(a) = min
C

max
a∈C

c(a),

where P ranges over all s − t paths and C over all s − t cuts.
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Proof. To see ≤ in (8.14), let P be an s − t path and let C be an s − t cut. Since
P and C have at least one arc in common, say a0, we have mina∈AP c(a) ≤ c(a0) ≤
maxa∈C c(a).

To see ≥ in (8.14), let γ := maxP mina∈AP c(a). Let A′ := {a ∈ A | c(a) ≤ γ}.
Then A′ intersects each s−t path. So A′ contains an s−t cut C. Therefore, c(a) ≤ γ
for all a ∈ C; that is, maxa∈C c(a) ≤ γ. Hence minC maxa∈C c(a) ≤ γ.

It is easy to solve the bottleneck shortest path problem by binary search in time
O(m log L), where L := ‖l‖∞ assuming l integer. This was improved by Gabow
[1985b] to O(m logn L).

8.6f. Further notes

Further analyses of shortest path methods were given by Pollack and Wiebenson
[1960], Hoffman and Winograd [1972], Tabourier [1973], Pape [1974], Kershenbaum
[1981], Glover, Glover, and Klingman [1984], Pallottino [1984], Glover, Klingman,
and Phillips [1985], Glover, Klingman, Phillips, and Schneider [1985], Desrochers
[1987], Bertsekas [1991], Goldfarb, Hao, and Kai [1991], Sherali [1991], Cherkassky,
Goldberg, and Radzik [1994,1996], and Cherkassky and Goldberg [1999] (negative
circuit detection).

Spirakis and Tsakalidis [1986] gave an average-case analysis of an O(nm)-time
negative circuit detecting algorithm, and Tarjan [1982] a sensitivity analysis of
shortest paths trees.

Fast approximation algorithms for shortest paths were given by Klein and
Sairam [1992], Cohen [1994b,2000], Aingworth, Chekuri, and Motwani [1996], Dor,
Halperin, and Zwick [1996,2000], Cohen and Zwick [1997,2001], and Aingworth,
Chekuri, Indyk, and Motwani [1999].

Dantzig [1957] observed that the shortest path problem can be formulated as
a linear programming problem, and hence can be solved with the simplex method.
Edmonds [1970a] showed that this may take exponentially many pivot steps, even
for nonnegative arc lengths. On the other hand, Dial, Glover, Karney, and Kling-
man [1979] and Zadeh [1979] gave pivot rules that solve the shortest path problem
with nonnegative arc lengths in O(n) pivots. For arbitrary length Akgül [1985] and
Goldfarb, Hao, and Kai [1990b] gave strongly polynomial simplex algorithms. Akgül
[1993] gave an algorithm using O(n2) pivots, yielding an O(n(m + n log n))-time
algorithm. An improvement to O(nm) (with (n − 1)(n − 2)/2 pivots) was given by
Goldfarb and Jin [1999b]. Related work was done by Dantzig [1963], Orlin [1985],
and Ahuja and Orlin [1988,1992].

Computational results were presented by Pape [1974,1980], Golden [1976], Car-
son and Law [1977], Kelton and Law [1978], van Vliet [1978], Denardo and Fox
[1979], Dial, Glover, Karney, and Klingman [1979], Glover, Glover, and Klingman
[1984], Imai and Iri [1984], Glover, Klingman, Phillips, and Schneider [1985], Gallo
and Pallottino [1988], Mondou, Crainic, and Nguyen [1991], Goldberg and Radzik
[1993] (Bellman-Ford method), Cherkassky, Goldberg, and Radzik [1996], Goldberg
and Silverstein [1997], and Zhan and Noon [1998].

Frederickson [1987a,1991] gave an algorithm that gives a succint encoding of all
pairs shortest path information in a directed planar graph (with arbitrary lengths,
but no negative directed circuits).
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Surveys and bibliographies on shortest paths were presented by Pollack and
Wiebenson [1960], Murchland [1967a], Dreyfus [1969], Gilsinn and Witzgall [1973],
Pierce [1975], Yen [1975], Lawler [1976b], Golden and Magnanti [1977], Deo and
Pang [1984], Gallo and Pallottino [1986], and Mondou, Crainic, and Nguyen [1991].

Books covering shortest path methods include Christofides [1975], Lawler
[1976b], Even [1979], Hu [1982], Papadimitriou and Steiglitz [1982], Smith [1982],
Sys�lo, Deo, and Kowalik [1983], Tarjan [1983], Gondran and Minoux [1984], Nem-
hauser and Wolsey [1988], Bazaraa, Jarvis, and Sherali [1990], Chen [1990], Cormen,
Leiserson, and Rivest [1990], Lengauer [1990], Ahuja, Magnanti, and Orlin [1993],
Cook, Cunningham, Pulleyblank, and Schrijver [1998], Jungnickel [1999], Mehlhorn
and Näher [1999], and Korte and Vygen [2000].

8.6g. Historical notes on shortest paths

Compared with other combinatorial optimization problems like the minimum span-
ning tree, assignment, and transportation problems, research on the shortest path
problem started relatively late. This might be due to the fact that the problem is ele-
mentary and relatively easy, which is also illustrated by the fact that at the moment
that the problem came into the focus of interest, several researchers independently
developed similar methods. Yet, the problem has offered some substantial difficul-
ties, as is illustrated by the fact that heuristic, nonoptimal approaches have been
investigated (cf. for instance Rosenfeld [1956], who gave a heuristic approach for
determining an optimal trucking route through a given traffic congestion pattern).

Search methods

Depth-first search methods were described in the 19th century in order to traverse
all lanes in a maze without knowing its plan. Wiener [1873] described the following
method:

Man markire sich daher den Weg, den man zurücklegt nebst dem Sinne, in
welchem es geschieht. Sobald man auf einen schon markirten Weg stösst, kehre
man um und durchschreite den schon beschriebenen Weg in umgekehrtem Sinne.
Da man, wenn man nicht ablenkte, denselben hierbei in seiner ganzen Ausdehnung
nochmals zurücklegen würde, so muss mann nothwendig hierbei auf einen noch
nicht markirten einmündenden Weg treffen, den man dann verfolge, bis man
wieder auf einen markirten trifft. Hier kehre man wieder um und verfahre wie
vorher. Es werden dadurch stets neue Wegtheile zu den beschriebenen zugefügt,
so dass man nach einer endlichen Zeit das ganze Labyrinth durchwandern würde
und so jedenfalls den Ausgang fände, wenn er nicht schon vorher erreicht worden
wäre.3

3 One therefore marks the road that one traverses together with the direction in which it
happens. As soon as one hits a road already marked, one turns and traverses the road
already followed in opposite direction. As one, if one would not deviate, would traverse
it to its whole extent another time, by this one should necessarily meet a road running
to a not yet marked one, which one next follows, until one again hits a marked one.
Here one turns again and proceeds as before. In that road always new road parts are
added to those already followed, so that after a finite time one would walk through the
whole labyrinth and in this road in any case would find the exit, if it would not have
been reached already before.
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In his book Recréations mathématiques, Lucas [1882] described a method due to
C.P. Trémaux to traverse all lanes of a maze exactly twice, starting at a vertex
A: First traverse an arbitrary lane starting at A. Next apply the following rule
iteratively when arriving through a lane L at a vertex N :

(8.15) if you did not visit N before, traverse next an arbitrary other lane at
N , except if L is the only lane at N , in which case you return through
L;
if you have visited N before, return through L, except if you have
traversed L already twice; in that case traverse another lane at N not
traversed before; if such a lane does not exist, traverse a lane at L that
you have traversed before once.

The method stops if no lane can be chosen by this rule at N . It is not hard to show
that then one is at the starting vertex A and that all lanes of the maze have been
traversed exactly twice (if the maze is connected).

A simpler rule was given by Tarry [1895]:

Tout labyrinthe peut être parcouru en une seule course, en passant deux fois en
sens contraire par chacune des allées, sans qu’il soit nécessaire d’en connâıtre le
plan.
Pour résoudre ce problème, il suffit d’observer cette règle unique:
Ne reprendre l’allée initiale qui a conduit à un carrefour pour la première fois

que lorsqu’on ne peut pas faire autrement.4

This is equivalent to depth-first search.

Alternate routing

Path problems were also studied at the beginning of the 1950s in the context of
‘alternate routing’, that is, finding a second shortest route if the shortest route is
blocked. This applies to freeway usage (cf. Trueblood [1952]), but also to telephone
call routing. At that time making long-distance calls in the U.S.A. was automatized,
and alternate routes for telephone calls over the U.S. telephone network nation-wide
should be found automatically:

When a telephone customer makes a long-distance call, the major problem fac-
ing the operator is how to get the call to its destination. In some cases, each
toll operator has two main routes by which the call can be started towards this
destination. The first-choice route, of course, is the most direct route. If this is
busy, the second choice is made, followed by other available choices at the oper-
ator’s discretion. When telephone operators are concerned with such a call, they
can exercise choice between alternate routes. But when operator or customer toll
dialing is considered, the choice of routes has to be left to a machine. Since the
“intelligence” of a machine is limited to previously “programmed” operations,
the choice of routes has to be decided upon, and incorporated in, an automatic
alternate routing arrangement.

(Jacobitti [1955], cf. Myers [1953], Clos [1954], and Truitt [1954]).

4 Each maze can be traversed in one single run, by passing each of the corridors twice in
opposite direction, without that it is necessary to know its plan.

To solve this problem, it suffices to observe this only rule:
Retake the initial corridor that has led to a crossing for the first time only when one

cannot do otherwise.
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Matrix methods

Matrix methods were developed to study relations in networks, like finding the
transitive closure of a relation; that is, identifying in a digraph the pairs of vertices
s, t such that t is reachable from s. Such methods were studied because of their
application to communication nets (including neural nets) and to animal sociology
(e.g. peck rights).

The matrix methods consist of representing the relation by a matrix, and then
taking iterative matrix products to calculate the transitive closure. This was studied
by Landahl and Runge [1946], Landahl [1947], Luce and Perry [1949], Luce [1950],
Lunts [1950,1952], and by A. Shimbel.

Shimbel’s interest in matrix methods was motivated by their applications to
neural networks. He analyzed with matrices which sites in a network can communi-
cate to each other, and how much time it takes. To this end, let S be the 0, 1 matrix
indicating that if Si,j = 1, then there is direct communication from i to j (includ-
ing i = j). Shimbel [1951] observed that the positive entries in St correspond to
the pairs between which there exists communication in t steps. An adequate com-
munication system is one for which St is positive for some t. One of the other
observations of Shimbel [1951] is that in an adequate communication system, the
time it takes that all sites have all information, is equal to the minimum value of t
for which St is positive. (A related phenomenon was observed by Luce [1950].)

Shimbel [1953] mentioned that the distance from i to j is equal to the number
of zeros in the i, j position in the matrices S0, S1, S2, . . . , St. So essentially he gave
an O(n4) algorithm to find all distances in a (unit-length) digraph.

Shortest paths

The basic methods for the shortest path problem are the Bellman-Ford method
and Dijkstra’s method. The latter one is faster but is restricted to nonnegative
length functions. The former method only requires that there is no directed circuit
of negative length.

The general framework for both methods is the following scheme, described in
this general form by Ford [1956]. Keep a provisional distance function d. Initially,
set d(s) := 0 and d(v) := ∞ for each v �= s. Next, iteratively,

(8.16) choose an arc (u, v) with d(v) > d(u)+ l(u, v) and reset d(v) := d(u)+
l(u, v).

If no such arc exists, d is the distance function.
The difference in the methods is the rule by which the arc (u, v) with d(v) >

d(u) + l(u, v) is chosen. The Bellman-Ford method consists of considering all arcs
consecutively and applying (8.16) where possible, and repeating this (at most |V |
rounds suffice). This is the method described by Shimbel [1955], Bellman [1958],
and Moore [1959].

Dijkstra’s method prescribes to choose an arc (u, v) with d(u) smallest (then
each arc is chosen at most once, if the lengths are nonnegative). This was described
by Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz [1957] and Dijkstra
[1959]. A related method, but slightly slower than Dijkstra’s method when imple-
mented, was given by Dantzig [1958], G.J. Minty, and Whiting and Hillier [1960],
and chooses an arc (u, v) with d(u) + l(u, v) smallest.
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Parallel to this, a number of further results were obtained on the shortest path
problem, including a linear programming approach and ‘good characterizations’.

We now describe the developments in greater detail.

The Bellman-Ford method: Shimbel

In April 1954, Shimbel [1955] presented at the Symposium on Information Networks
in New York some observations on calculating distances, which amount to describing
a ‘min-addition’ algebra and a method which later became known as the Bellman-
Ford method. He introduced:

Arithmetic
For any arbitrary real or infinite numbers x and y

x + y ≡ min(x, y) and
xy ≡ the algebraic sum of x and y.

He extended this arithmetic to the matrix product. Calling the distance matrix
associated with a given length matrix S the ‘dispersion’, he stated:

It follows trivially that Sk k ≥ 1 is a matrix giving the shortest paths from site
to site in S given that k − 1 other sites may be traversed in the process. It also
follows that for any S there exists an integer k such that Sk = Sk+1. Clearly, the
dispersion of S (let us label it D(S)) will be the matrix Sk such that Sk = Sk+1.

Although Shimbel did not mention it, one trivially can take k ≤ |V |, and hence
the method yields an O(n4) algorithm to find the distances between all pairs of
vertices.

Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz [1957] noted that
Shimbel’s method can be speeded up by calculating Sk by iteratively raising the
current matrix to the square (in the min-addition matrix algebra). This solves the
all-pairs shortest paths problem in time O(n3 log n).

The Bellman-Ford method: Ford

In a RAND paper dated 14 August 1956, Ford [1956] described a method to find
a shortest path from P0 to PN , in a network with vertices P0, . . . , PN , where lij
denotes the length of an arc from i to j:

Assign initially x0 = 0 and xi = ∞ for i �= 0. Scan the network for a pair Pi

and Pj with the property that xi − xj > lji. For this pair replace xi by xj + lji.
Continue this process. Eventually no such pairs can be found, and xN is now
minimal and represents the minimal distance from P0 to PN .

Ford next argues that the method terminates. It was shown by Johnson [1973a,
1973b,1977a] that Ford’s liberal selection rule can require exponential time.

In their book Studies in the Economics of Transportation, Beckmann, McGuire,
and Winsten [1956] showed that the distance matrix D = (di,j) is the unique matrix
satisfying

(8.17) di,i = 0 for all i;
di,k = minj(li,j + dj,k) for all i, k with i �= k.
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The Bellman-Ford method: Bellman

We next describe the work of Bellman on shortest paths. After publishing several
papers on dynamic programming (in a certain sense a generalization of shortest
path methods), Bellman [1958] eventually focused on the shortest path problem by
itself. He described the following ‘functional equation approach’ (originating from
dynamic programming) for the shortest path problem, which is the same as that of
Shimbel [1955].

Bellman considered N cities, numbered 1, . . . , N , every two of which are linked
by a direct road, together with an N × N matrix T = (ti,j), where ti,j is the time
required to travel from i to j (not necessarily symmetric). Find a path between 1
and N which consumes minimum time. First, Bellman remarked that the problem
is finite:

Since there are only a finite number of paths available, the problem reduces to
choosing the smallest from a finite set of numbers. This direct, or enumerative,
approach is impossible to execute, however, for values of N of the order of mag-
nitude of 20.

Next he gave a ‘functional equation approach’:

The basic method is that of successive approximations. We choose an initial se-

quence {f
(0)
i }, and then proceed iteratively, setting

f
(k+1)
i = Min

j �= i
(tij + f

(k)
j ], i = 1, 2, · · · , N − 1,

f
(k+1)
N = 0,

for k = 0, 1, 2 · · · ,.

For the initial function f
(0)
i , Bellman proposed (upon a suggestion of F. Haight) to

take f
(0)
i = ti,N for all i. Bellman observed that, for each fixed i, starting with this

choice of f
(0)
i gives that f

(k)
i is monotonically nonincreasing in k, and states:

It is clear from the physical interpretation of this iterative scheme that at most
(N − 1) iterations are required for the sequence to converge to the solution.

Since each iteration can be done in time O(N2), the algorithm takes time O(N3).
Bellman also remarks:

It is easily seen that the iterative scheme discussed above is a feasible method for
either hand or machine computation for values of N of the order of magnitude of
50 or 100.

In a footnote, Bellman says:

Added in proof (December 1957): After this paper was written, the author was
informed by Max Woodbury and George Dantzig that the particular iterative
scheme discussed in Sec. 5 had been obtained by them from first principles.

Bellman [1958] mentioned that one could also start with f
(0)
i = minj �=i ti,j (if

i �= N) and f
(0)
N = 0. In that case for each fixed i, the value of f

(k)
i is monotonically

nondecreasing in k, and converges to the distance from i to N . (Indeed, f
(k)
i is equal

to the shortest length of all those paths starting at i that have either exactly k + 1
arcs, or have at most k arcs and end at N .)
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The Bellman-Ford method: Moore

At the International Symposium on the Theory of Switching at Harvard University
in April 1957, Moore [1959] of Bell Laboratories presented a paper ‘The shortest
path through a maze’:

The methods given in this paper require no foresight or ingenuity, and hence
deserve to be called algorithms. They would be especially suited for use in a
machine, either a special-purpose or a general-purpose digital computer.

The motivation of Moore was the routing of toll telephone traffic. He gave algo-
rithms A, B, and C, and D.

First, Moore considered the case of an undirected graph G = (V, E) with no
length function, where a path from vertex A to vertex B should be found with
a minimum number of edges. Algorithm A is: first give A label 0. Next do the
following for k = 0, 1, . . .: give label k +1 to all unlabeled vertices that are adjacent
to some vertex labeled k. Stop as soon as vertex B is labeled.

If it were done as a program on a digital computer, the steps given as single steps
above would be done serially, with a few operations of the computer for each city
of the maze; but, in the case of complicated mazes, the algorithm would still be
quite fast compared with trial-and-error methods.

In fact, a direct implementation of the method would yield an algorithm with
running time O(m). It is essentially breadth-first search. Algorithms B and C differ
from A in a more economical labeling (by fewer bits).

Moore’s algorithm D finds a shortest route for the case where each edge of
the graph has a nonnegative length. This method gives a refinement of Bellman’s
method described above: (i) it extends to the case that not all pairs of vertices have
a direct connection; that is, if there is an underlying graph G = (V, E) with length
function; (ii) at each iteration only those di,j are considered for which ui has been
decreased in the previous iteration.

The method has running time O(nm). Moore observed that the algorithm is
suitable for parallel implementation, yielding a decrease in the running time bound
to O(n∆(G)), where ∆(G) is the maximum degree of G. He concluded:

The origin of the present methods provides an interesting illustration of the value
of basic research on puzzles and games. Although such research is often frowned
upon as being frivolous, it seems plausible that these algorithms might eventually
lead to savings of very large sums of money by permitting more efficient use
of congested transportation or communication systems. The actual problems in
communication and transportation are so much complicated by timetables, safety
requirements, signal-to-noise ratios, and economic requirements that in the past
those seeking to solve them have not seen the basic simplicity of the problem, and
have continued to use trial-and-error procedures which do not always give the true
shortest path. However, in the case of a simple geometric maze, the absence of
these confusing factors permitted algorithms A, B, and C to be obtained, and from
them a large number of extensions, elaborations, and modifications are obvious.
The problem was first solved in connection with Claude Shannon’s maze-solving
machine. When this machine was used with a maze which had more than one
solution, a visitor asked why it had not been built to always find the shortest
path. Shannon and I each attempted to find economical methods of doing this by
machine. He found several methods suitable for analog computation, and I ob-
tained these algorithms. Months later the applicability of these ideas to practical
problems in communication and transportation systems was suggested.
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Among the further applications of his method, Moore described the example
of finding the fastest connections from one station to another in a given railroad
timetable (cf. also Levin and Hedetniemi [1963]). A similar method was given by
Minty [1958].

Berge [1958b] described a breadth-first search method similar to Moore’s algo-
rithm A, to find the shortest paths from a given vertex a, for unit lengths, but he
described it more generally for directed graphs: let A(0) := {a}; if A(k) has been
found, let A(k + 1) be the set of vertices x for which there is a y ∈ A(k) with (y, x)
an arc and with x �∈ A(i) for all i ≤ k. One directly finds a shortest a− b path from
the A(k). This gives an O(m) algorithm.

D.A. D’Esopo (cf. the survey of Pollack and Wiebenson [1960]) proposed the
following sharpening of Moore’s version of the Bellman-Ford method, by indexing
the vertices during the algorithm. First define index(s) := 1, and let i := 1. Then
apply the following iteratively:

(8.18) Let v be the vertex with index i. For each arc (v, w) leaving v, reset
d(w) := d(v)+l(v, w) if it decreases d(w); if w is not indexed give it the
smallest unused index; if some d(w) has been reset with index(w) < i,
choose the w minimizing index(w), and let i :=index(w); otherwise,
let i := i + 1.

In May 1958, Hoffman and Pavley [1959b] reported, at the Western Joint Com-
puter Conference in Los Angeles, the following computing time for finding the
distances between all pairs of vertices by Moore’s algorithm (with nonnegative
lengths):

It took approximately three hours to obtain the minimum paths for a network of
265 vertices on an IBM 704.

Linear programming and transportation

Orden [1955] observed that the shortest path problem is a special case of the trans-
shipment problem: let be given an n × n matrix (ci,j) and a vector g ∈ Rn

(8.19) minimize
∑

i,j ci,jxi,j

subject to

n∑

j=1

(xi,j − xj,i) = gi for i = 1, . . . , n

and xi,j ≥ 0 for i, j = 1, . . . n,

and showed that it can be reduced to a ‘transportation problem’, and hence to a
linear programming problem. If one wants to find a shortest 1 −n path, set g1 = 1,
gn = −1, and gi = 0 for all other i.

In a paper presented at the Summer 1955 meeting of ORSA at Los Angeles,
Dantzig [1957] formulated the shortest path problem as an integer linear program-
ming problem ‘very similar to the system for the assignment problem’, and similar
to Orden’s formulation. Dantzig observed that replacing the condition xi,j ≥ 0 by
xi,j ∈ {0, 1} does not change the minimum value. (Dantzig assumed di,j = dj,i for
all i, j.)

He described a graphical procedure for the simplex method applied to this
problem. Let T be a rooted tree on {1, . . . , n}, with root 1. For each i = 1, . . . , n,
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let ui be equal to the length of the path from 1 to i in T . Now if uj ≤ ui + di,j

for all i, j, then for each i, the 1 − i path in T is a shortest path. If uj > ui + di,j ,
replace the arc of T entering j by the arc (i, j), and iterate with the new tree.

Trivially, this process terminates (as
∑n

j=1 uj decreases at each iteration, and
as there are only finitely many rooted trees). (Edmonds [1970a] showed that the
method may take exponential time.) Dantzig illustrated his method by an example
of sending a package from Los Angeles to Boston.

Good characterizations

Robacker [1956b] observed that the minimum length of a P0 − Pn path in a graph
N is equal to the maximum number of disjoint P0 − Pn cuts:

the maximum number of mutually disjunct cuts of N is equal to the length of the
shortest chain of N from P0 to Pn.

Gallai [1958b] noticed that if the length function l : A → Z on the arcs of a
digraph (V, A) gives no negative-length directed circuits, then there is a ‘potential’
p : V → Z with l(u, v) ≥ p(v) − p(u) for each arc (u, v).

Case Institute of Technology 1957

In the First Annual Report of the project Investigation of Model Techniques, car-
ried out by the Case Institute of Technology in Cleveland, Ohio for the Combat
Development Department of the Army Electronic Proving Ground, Leyzorek, Gray,
Johnson, Ladew, Meaker, Petry, and Seitz [1957] describe (rudimentarily) a shortest
path algorithm similar to Dijkstra’s algorithm:

(1) All the links joined to the origin, a, may be given an outward orientation. . . .
(2) Pick out the link or links radiating from a, aaα, with the smallest delay. . . .

Then it is impossible to pass from the origin to any other node in the network
by any “shorter” path than aaα. Consequently, the minimal path to the general
node α is aaα.
(3) All of the other links joining α may now be directed outward. Since aaα must
necessarily be the minimal path to α, there is no advantage to be gained by
directing any other links toward α. . . .
(4) Once α has been evaluated, it is possible to evaluate immediately all other
nodes in the network whose minimal values do not exceed the value of the second-
smallest link radiating from the origin. Since the minimal values of these nodes
are less than the values of the second-smallest, third-smallest, and all other links
radiating directly from the origin, only the smallest link, aaα, can form a part
of the minimal path to these nodes. Once a minimal value has been assigned to
these nodes, it is possible to orient all other links except the incoming link in an
outward direction.
(5) Suppose that all those nodes whose minimal values do not exceed the value
of the second-smallest link radiating from the origin have been evaluated. Now it
is possible to evaluate the node on which the second-smallest link terminates. At
this point, it can be observed that if conflicting directions are assigned to a link,
in accordance with the rules which have been given for direction assignment, that
link may be ignored. It will not be a part of the minimal path to either of the
two nodes it joins. . . .
Following these rules, it is now possible to expand from the second-smallest link as
well as the smallest link so long as the value of the third-smallest link radiating
from the origin is not exceeded. It is possible to proceed in this way until the
entire network has been solved.
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(In this quotation we have deleted sentences referring to figures.)
Leyzorek, Gray, Johnson, Ladew, Meaker, Petry, and Seitz [1957] also described

a speedup of solving the all-pairs shortest paths problem by matrix-multiplication:

This process of multiplication may be simplified somewhat by squaring the orig-
inal structure matrix to obtain a dispersion matrix which is the second power
of the structure matrix; squaring the second-power matrix to obtain the fourth
power of the structure matrix; and so forth.

This gives an O(n3 log n)-time all-pairs shortest paths algorithm.

Analog computing

In a reaction to the linear programming approach of Dantzig [1957] discussed above,
Minty [1957] proposed an ‘analog computer’ for the shortest path problem:

Build a string model of the travel network, where knots represent cities and
string lengths represent distances (or costs). Seize the knot ‘Los Angeles’ in your
left hand and the knot ‘Boston’ in your right and pull them apart. If the model
becomes entangled, have an assistant untie and re-tie knots until the entanglement
is resolved. Eventually one or more paths will stretch tight — they then are
alternative shortest routes.
Dantzig’s ‘shortest-route tree’ can be found in this model by weighting the knots
and picking up the model by the knot ‘Los Angeles’.
It is well to label the knots since after one or two uses of the model their identities
are easily confused.

A similar method was proposed by Bock and Cameron [1958] (cf. Peart, Randolph,
and Bartlett [1960]). The method was extended to the directed case by Klee [1964].

Rapaport and Abramson [1959] described an electric analog computer for solv-
ing the shortest path problem.

Dantzig’s O(n2 log n) algorithm

Dantzig [1958,1960] gave an O(n2 log n) algorithm for the shortest path problem
with nonnegative length function. A set X is updated throughout, together with
a function d : X → Q+. Initially X = {s} and d(s) = 0. Then do the following
iteratively:

(8.20) for each v ∈ X, let wv be a vertex not in X with d(wv) minimal.
Choose a v ∈ X minimizing d(v) + l(v, wv). Add wv to X and set
d(wv) := d(v) + l(v, wv).

Stop if X = V .
Note that throughout the iterations, the function d is only extended, and not

updated. Dantzig assumed

(a) that one can write down without effort for each node the arcs leading to other
nodes in increasing order of length and (b) that it is no effort to ignore an arc of
the list if it leads to a node that has been reached earlier.

Indeed, in a preprocessing the arcs can be ordered in time O(n2 log n), and, for
instance by using doubly linked lists, an arc can be deleted from the appropriate
list in time O(1). As each iteration can be done in time O(n) (identifying a v
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minimizing d(v) + l(v, wv) and deleting all arcs entering wv from each list of arcs
leaving x for x ∈ X), Dantzig’s method can be performed in time O(n2 log n).

Dantzig [1958,1960] mentioned that, beside Bellman, Moore, Ford, and himself,
also D. Gale and Fulkerson proposed shortest path methods, ‘in informal conversa-
tions’.

The same method as that of Dantzig (however without the observations con-
cerning storing the outgoing arcs from any vertex in a list) was given by G.J. Minty
(cf. Pollack and Wiebenson [1960]) and by Whiting and Hillier [1960].

Dijkstra’s O(n2) algorithm

Dijkstra [1959] gave an O(n2) method which is slightly different from that of Dantzig
[1958,1960]. Let D = (V, A) be a graph and let a length function l : A → R+ be
given. Dijkstra’s method consists of repeatedly updating a set X and a function
d : V → R+ as follows.

Initially, set X = ∅, d(s) = 0, d(v) = ∞ if v �= s. Next move s into X. Then do
the following iteratively: Let v be the vertex just moved into X;

(8.21) for each arc (v, w) with w �∈ X, reset d(w) := d(v) + l(v, w) if this
would decrease d(w). Choose v′ �∈ X with minimum d(v′), and move
v′ into X.

Stop if no such v′ exists.
Since each iteration can be done in time O(n) and since there are at most |V |

iterations, the algorithm runs in time O(n2). Dijkstra states:

The solution given above is to be preferred to the solution by L.R. Ford [3 ] as
described by C. Berge [4 ], for, irrespective of the number of branches, we need
not store the data for all branches simultaneously but only those for the branches
in sets I and II, and this number is always less than n. Furthermore, the amount
of work to be done seems to be considerably less.

(Dijkstra’s references [3] and [4] are Ford [1956] and Berge [1958b].)
Dijkstra’s method is easier to implement (as an O(n2) algorithm) than Dantzig’s,

since we need not store the information in lists: in order to find v′ �∈ X minimizing
d(v′) we can just scan all vertices that are not in X.

Whiting and Hillier [1960] described the same method as Dijkstra.

Heaps

The 2-heap was introduced by Williams [1964] (describing it as an array, with
subroutines to insert and extract elements of the heap), as a major improvement to
the sorting algorithm ‘treesort’ of Floyd [1962a]. The 2-heap of Williams was next
extended by Floyd [1964] to the sorting algorithm ‘treesort3’.

In an erratum of 24 October 1968 to a report of the London Business School,
Murchland [1967b] seems to be the first to use heaps for finding shortest paths,
although he concludes to a time bound of O(n2 log n) only — worse than Di-
jkstra’s bound O(n2). E.L. Johnson [1972] improved Murchland’s method to
O(m log(n2/m)). He also considers the k-heap for arbitrary k (‘k-tree’).

In his Ph.D. thesis, D.B. Johnson [1973b], using a sharper analysis and k-heaps,
obtains an O((nd + m) logd n)-time algorithm, implying algorithms with running
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time O(m log n) and O(n1+ε + m) (for each ε > 0) (published in D.B. Johnson
[1977a]). Tarjan [1983] observed that taking d := m/n gives O(m logm/n n). Next,
Fredman and Tarjan [1984,1987] showed that Fibonacci heaps give O(m + n log n).

All pairs: Roy, Warshall, Floyd, Dantzig

Based on a study of Kleene [1951,1956], McNaughton and Yamada [1960] gave a for-
mula to calculate a ‘regular expression’ associated with a ‘state graph’ (essentially
describing all paths from a given source) that is quite similar to the fast method
of Roy [1959] and Warshall [1962] to compute the transitive closure A of a digraph

D = (V, A): Assume that the vertices are ordered 1, . . . , n. First set Ã := A. Next,

for k = 1, . . . , n, add to Ã all pairs (i, j) for which both (i, k) and (k, j) belong to Ã.

The final Ã equals A. This gives an O(n3) algorithm, which is faster than iterative
matrix multiplication.

Floyd [1962b] extended this method to an algorithm to find all distances d(i, j)
given a length function l : V × V → Q+: First set d(i, j) := l(i, j) for all i, j. Next,
for k = 1, . . . , n, reset, for all i, j, d(i, j) := d(i, k) + d(k, j) if it decreases d(i, j).
This gives an O(n3) transitive closure algorithm for finding the distances between
all pairs of vertices.

Dantzig [1967] proposed a variant of this method. For i, j, k with i ≤ k and
j ≤ k, let dk

i,j be the length of the shortest i − j path in the graph induced by
{1, . . . , k}. Then there is an easy iterative scheme to determine the dk

i,j from the
dk−1

i,j : first dk
i,k = minj<k(dk−1

i,j + lj,k) and dk
k,i = minj<k(lk,j + dk−1

j,i ). Next, for all

i, j < k, dk
i,j = min(dk−1

i,j , dk
i,k + dk

k,j).

Negative lengths

Ford and Fulkerson [1962] seem to be the first to observe that the Bellman-Ford
method also works for arbitrary lengths as long as each directed circuit has non-
negative length. It is also implicit in the paper of Iri [1960].

PERT and CPM

The application of shortest path (and other) methods in the form of PERT (Program

Evaluation and Review Technique, originally called Program Evaluation Research

Task) started in 1958, and was reported by Malcolm, Roseboom, Clark, and Fazar
[1959]. The use of the Critical Path Method (CPM) was described by Kelley [1957,
1961], and Kelley and Walker [1959].

The kth shortest path

Bock, Kantner, and Haynes [1957,1958] described a method to find the kth shortest
path in a graph, based essentially on enumerating. Hoffman and Pavley [1959a]
described an adaptation of Dantzig’s tree method to obtain the kth shortest path.
Bellman and Kalaba [1960] gave a method to find the kth shortest paths from a
given vertex simultaneously to all other vertices. Also Pollack [1961b] described a
method for the kth shortest path problem, especially suitable if k is small. A survey
was given by Pollack [1961a].
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Bottleneck path problems

Pollack [1960] modified the shortest path algorithm so as to obtain a path with
maximum capacity (the capacity of a path is equal to the minimum of the capacities
of the arcs in the path). Related work was done by Amara, Lindgren, and Pollack
[1961].

Fanning out from both ends

Berge and Ghouila-Houri [1962] and Dantzig [1963] proposed to speed up Dijkstra’s
method by fanning out at both ends simultaneously. Berge and Ghouila-Houri [1962]
proposed to stop as soon as a vertex is permanently labeled from both ends; how-
ever, one may see that this need not yield a shortest path.

Dantzig [1963] proposed to add an arc (s, v) with length d(s, v) as soon as v is
permanently labeled when fanning out from s, and similarly add an arc (w, t) with
length d(w, t) if a vertex w is labeled permanently when fanning out from t:

The algorithm terminates whenever the fan of one of the problems reaches its
terminal in the other.
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Disjoint paths

Having done with shortest paths, we now arrive at disjoint paths. We con-
sider disjoint s−t paths, where s and t are the same for all paths. The more
general problem where we prescribe for each path a (possibly different) pair
of ends, will be discussed in Part VII.
Menger’s theorem equates the maximum number of disjoint s − t paths to
the minimum size of a cut separating s and t. There are several variants
of Menger’s theorem, all about equivalent: undirected, directed, vertex-
disjoint, arc- or edge-disjoint. The meaning of ‘cut’ varies accordingly.
Next to Menger’s min-max relation, we consider the algorithmic side of
disjoint s− t paths. This will be an extract from the related maximum flow
algorithms to be discussed in the next chapter. (Maximum integer flow can
be viewed as the capacitated version of disjoint s − t paths.)

9.1. Menger’s theorem

Menger [1927] gave a min-max theorem for the maximum number of disjoint
S − T paths in an undirected graph. It was observed by Grünwald [1938]
(= T. Gallai) that the theorem also holds for directed graphs. We follow the
proof given by Göring [2000].

Recall that a path is an S − T path if it runs from a vertex in S to a
vertex in T . A set C of vertices is called S − T disconnecting if C intersects
each S − T path (C may intersect S ∪ T ).

Theorem 9.1 (Menger’s theorem (directed vertex-disjoint version)). Let
D = (V, A) be a digraph and let S, T ⊆ V . Then the maximum number
of vertex-disjoint S − T paths is equal to the minimum size of an S − T
disconnecting vertex set.

Proof. Obviously, the maximum does not exceed the minimum. Equality is
shown by induction on |A|, the case A = ∅ being trivial.

Let k be the minimum size of an S − T disconnecting vertex set. Choose
a = (u, v) ∈ A. If each S − T disconnecting vertex set in D − a has size at
least k, then inductively there exist k vertex-disjoint S − T paths in D − a,
hence in D.
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So we can assume that D − a has an S − T disconnecting vertex set C of
size ≤ k − 1. Then C ∪ {u} and C ∪ {v} are S − T disconnecting vertex sets
of D of size k.

Now each S − (C ∪ {u}) disconnecting vertex set B of D − a has size at
least k, as it is S − T disconnecting in D. Indeed, each S − T path P in D
intersects C ∪ {u}, and hence P contains an S − (C ∪ {u}) path in D − a. So
P intersects B.

So by induction, D − a contains k disjoint S − C ∪ {u} paths. Similarly,
D − a contains k disjoint C ∪ {v} − T paths. Any path in the first collection
intersects any path in the second collection only in C, since otherwise D − a
contains an S − T path avoiding C.

Hence, as |C| = k − 1, we can pairwise concatenate these paths to obtain
disjoint S−T paths, inserting arc a between the path ending at u and starting
at v.

A consequence of this theorem is a variant on internally vertex-disjoint
s − t paths, that is, s − t paths having no vertex in common except for s and
t. Recall that a set U of vertices is called an s − t vertex-cut if s, t �∈ U and
each s − t path intersects U .

Corollary 9.1a (Menger’s theorem (directed internally vertex-disjoint ver-
sion)). Let D = (V, A) be a digraph and let s and t be two nonadjacent vertices
of D. Then the maximum number of internally vertex-disjoint s − t paths is
equal to the minimum size of an s − t vertex-cut.

Proof. Let D′ := D − s− t and let S and T be the sets of outneighbours of s
and of inneighbours of t, respectively. Then Theorem 9.1 applied to D′, S, T
gives the corollary.

In turn, Theorem 9.1 follows from Corollary 9.1a by adding two new
vertices s and t and arcs (s, v) for all v ∈ S and (v, t) for all v ∈ T .

Also an arc-disjoint version can be derived (where paths are arc-disjoint
is they have no arc in common). This version was first formulated by Dantzig
and Fulkerson [1955,1956] for directed graphs and by Kotzig [1956] for undi-
rected graphs.

Recall that a set C of arcs is an s − t cut if C = δout(U) for some subset
U of V with s ∈ U and t �∈ U .

Corollary 9.1b (Menger’s theorem (directed arc-disjoint version)). Let D =
(V, A) be a digraph and s, t ∈ V . Then the maximum number of arc-disjoint
s − t paths is equal to the minimum size of an s − t cut.

Proof. Let L(D) be the line digraph of D and let S := δout
A (s) and T := δin

A (t).
Then Theorem 9.1 for L(D), S, T implies the corollary. Note that a minimum-
size set of arcs intersecting each s − t path necessarily is an s − t cut.
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The internally vertex-disjoint version of Menger’s theorem can be derived
in turn from the arc-disjoint version: make digraph D′ as follows from D:
replace any vertex v by two vertices v′, v′′ and make an arc (v′, v′′); moreover,
replace each arc (u, v) by (u′′, v′). Then Corollary 9.1b for D′, s′′, t′ gives
Corollary 9.1a for D, s, t.

Similar theorems hold for undirected graphs. The undirected vertex-
disjoint version follows immediately from Theorem 9.1 by replacing each
undirected edge by two oppositely oriented arcs. Next, the undirected edge-
disjoint version follows from the undirected vertex-disjoint version applied to
the line graph (like the proof of Corollary 9.1b).

9.1a. Other proofs of Menger’s theorem

The proof above of Theorem 9.1b was given by Göring [2000], which curtails the
proof of Pym [1969a], which by itself is a simplification of a proof of Dirac [1966].
The basic idea (decomposition into two subproblems determined by a minimum-size
cut) is due to Menger [1927], for the undirected vertex-disjoint version. (Menger’s
original proof contains a hole, closed by Kőnig [1931] — see Section 9.6e.)

Hajós [1934] gave a different proof for the undirected vertex-disjoint case, based
on intersections and unions of sets determining a cut. Also the proofs given in Nash-
Williams and Tutte [1977] are based on this. We give the first of their proofs.

Let G = (V, E) be an undirected graph and let s, t ∈ V . Suppose that the
minimum size of an s − t vertex-cut is k. We show by induction on |E| that there
exist k vertex-disjoint s − t paths.

The statement is trivial if each edge is incident with at least one of s and t. So
we can consider an edge e = xy incident with neither s nor t.

We can assume that G − e has an s − t vertex-cut C of size k − 1 — otherwise
the statement follows by induction. Similarly, we can assume that G/e has an s − t
vertex-cut of size k − 1 — otherwise the statement follows by induction again.
Necessarily, this cut contains the new vertex obtained by contracting e. Hence G
has an s − t vertex-cut C′ of size k containing both x and y.

Now let Cs be the set of vertices in C ∪ C′ that are reachable in G from s by
a path with no internal vertex in C ∪ C′. Similarly, let Ct be the set of vertices in
C ∪ C′ that are reachable in G from t by a path with no internal vertex in C ∪ C′.

Trivially, Cs and Ct are s − t vertex-cuts, and Cs ∪ Ct ⊆ C ∪ C′. Moreover,
Cs ∩ Ct ⊆ C ∩ C′, since for any v ∈ Cs ∩ Ct there is an s − t path P intersecting
C ∪ C′ only in v. As x, y ∈ C′, P does not traverse edge e. Hence v ∈ C ∩ C′.

Therefore,

(9.1) |Cs| + |Ct| ≤ |C| + |C′| ≤ 2k − 1,

contradicting the fact that Cs and Ct each have size at least k.
An augmenting path proof for the directed vertex-disjoint version was given by

Grünwald [1938] (= T. Gallai), and for the directed arc-disjoint version by Ford
and Fulkerson [1955,1957b] — see Section 9.2. (O’Neil [1978] gave a proof similar
to that of Grünwald [1938].)

More proof ideas were given by Halin [1964,1968,1989], Hajós [1967], McCuaig
[1984], and Böhme, Göring, and Harant [2001].



134 Chapter 9. Disjoint paths

9.2. Path packing algorithmically

A specialization of the maximum flow algorithm of Ford and Fulkerson [1955,
1957b] (to be discussed in the next chapter) yields a polynomial-time algo-
rithm to find a maximum number of disjoint s− t paths and a minimum-size
s − t cut.

Define for any digraph D and any path P in D:

(9.2) D ← P := the digraph arising from D by reversing the orientation
of each arc occurring in P .

Note that if P is an s − t path in D = (V, A), then for each U ⊆ V with
s ∈ U , t �∈ U , we have

(9.3) δout
A′ (U) = δout

A (U) − 1,

where A′ is the arc set of D ← P .
Determine D0, D1, . . . as follows.

(9.4) Set D0 := D. If Dk has been found and contains an s− t path P ,
set Dk+1 := Dk ← P . If Dk contains no s − t path we stop.

The path P is called an augmenting path.
Now finding a minimum-size s − t cut is easy: let U be the set of vertices

reachable in the final Dk from s. Then δout
A (U) is a minimum-size s − t cut,

by (9.3).
Also a maximum packing of s − t paths can be derived. Indeed, the set

B of arcs of D that are reversed in the final Dk contains k arc-disjoint s − t
paths in D. This can be seen as follows.

Let Bi be the set of arcs of D that are reversed in Di, added with i parallel
arcs from t to s. We show by induction on i that (V, Bi) is Eulerian. For i = 0,
this is trivial. Suppose that it has been proved for i. Let P be the s − t path
in Di with Di+1 = Di ← P . Then (V, Bi ∪ AP ∪ {(t, s)}) is Eulerian. Since
Bi+1 arises from Bi ∪ AP ∪ {(t, s)} by deleting pairs a, a−1 with a ∈ Bi and
a−1 ∈ AP , also (V, Bi+1) is Eulerian.

A consequence is that k arc-disjoint s−t paths in B can be found in linear
time.

Since an s− t path in Dk can be found in time O(m), and since there are
at most |A| arc-disjoint s − t paths, one has:

Theorem 9.2. A maximum collection of arc-disjoint s − t paths and a
minimum-size s − t cut can be found in time O(m2).

Proof. See above.

Similarly one has for the vertex-disjoint variant:

Theorem 9.3. A maximum collection of internally vertex-disjoint s−t paths
and a minimum-size s − t vertex-cut can be found in time O(nm).
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Proof. Apply the reduction described after Corollary 9.1b. In this case the
number of iterations is at most |V |.

One similarly derives for a fixed number k of arc-disjoint paths:

Corollary 9.3a. Given a digraph D = (V, A), s, t ∈ V , and a natural number
k, we can find k arc-disjoint s − t paths (if they exist) in time O(km).

Proof. Directly from the fact that the path P can be found in time O(m).

9.3. Speeding up by blocking path packings

The algorithm might be speeded up by selecting, at each iteration, not just
one path P , but several arc-disjoint paths P1, . . . , Pl in Di at one go, and
setting

(9.5) Di+1 := Di ← P1 ← · · · ← Pl.

This might reduce the number of iterations — but of course this should be
weighed against the increase in complexity of each iteration.

Such a speedup is obtained by a method of Dinits [1970] as follows. For
any digraph D = (V, A) and s, t ∈ V , let µ(D) denote the minimum length
of an s − t path in D. If no such path exists, set µ(D) = ∞. If we choose
the paths P1, . . . , Pl in such a way that µ(Di+1) > µ(Di), then the number
of iterations clearly is not larger than |V | (as µ(Di) < |V | if finite).

We show that a collection P1, . . . , Pl with the property that µ(D ← P1 ←
· · · ← Pl) > µ(D) indeed can be found quickly, namely in linear time.

To that end, call a collection of arc-disjoint s− t paths P1, . . . , Pl blocking
if D contains no s − t path arc-disjoint from P1, . . . , Pl. This is weaker than
a maximum number of arc-disjoint paths, but a blocking collection can be
found in linear time (Dinits [1970]):

Theorem 9.4. Given an acyclic digraph D = (V, A) and s, t ∈ V , a blocking
collection of arc-disjoint s − t paths can be found in time O(m).

Proof. With depth-first search we can find in time O(|A′|) a subset A′ of A
and an s − t path P1 in A′ such that no arc in A′ \ AP1 is contained in any
s − t path: scan s (cf. (6.2)) and stop as soon as t is reached; let A′ be the
set of arcs considered so far (as D is acyclic).

Next we find (recursively) a blocking collection P2, . . . , Pk of arc-disjoint
s − t paths in the graph D′ := (V, A \ A′). Then P1, . . . , Pk is blocking in
D. For suppose that D contains an s − t path Q that is arc-disjoint from
P1, . . . , Pk. Then AQ ∩ A′ �= ∅, since P2, . . . , Pk is blocking in D′. So AQ
intersects AP1, a contradiction.
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We also need the following. Let α(D) denote the set of arcs contained in
at least one shortest s − t path. Then:

Theorem 9.5. Let D = (V, A) be a digraph and let s, t ∈ V . Define D′ :=
(V, A ∪ α(D)−1). Then µ(D′) = µ(D) and α(D′) = α(D).

Proof. It suffices to show that µ(D) and α(D) are invariant if we add a−1

to D for one arc a ∈ α(D). Suppose not. Then there is a directed s − t path
P in A ∪ {a−1} traversing a−1, of length at most µ(D). As a ∈ α(D), there
is an s − t path Q traversing a, of length µ(D). Hence AP ∪ AQ \ {a, a−1}
contains an s − t path of length less than µ(D), a contradiction.

The previous two theorems imply:

Corollary 9.5a. Given a digraph D = (V, A) and s, t ∈ V , a collection of
arc-disjoint s − t paths P1, . . . , Pl with µ(D ← P1 ← · · · ← Pl) > µ(D) can
be found in time O(m).

Proof. Let D̃ = (V, α(D)). (Note that α(D) can be identified in time O(m)
and that (V, α(Df )) is acyclic.) By Theorem 9.4, we can find in time O(m)

a blocking collection P1, . . . , Pl in D̃. Define:

(9.6) D′ := (V, A ∪ α(D)−1) and D′′ := D ← P1 ← · · · ← Pl.

We show µ(D′′) > µ(D). As D′′ is a subgraph of D′, we have µ(D′′) ≥
µ(D′) = µ(D), by Theorem 9.5. Suppose that µ(D′′) = µ(D′). Then α(D′′) ⊆
α(D′) = α(D) (again by Theorem 9.5). Hence, as α(D′′) contains an s−t path
(of length µ(D′′)), α(D) contains an s − t path arc-disjoint from P1, . . . , Pl.

This contradicts the fact that P1, . . . , Pl is blocking in D̃.

This gives us the speedup in finding a maximum packing of s − t paths:

Corollary 9.5b. Given a digraph D = (V, A) and s, t ∈ V , a maximum
number of arc-disjoint s− t paths and a minimum-size s− t cut can be found
in time O(nm).

Proof. Directly from Corollary 9.5a with the iterations (9.5).

9.4. A sometimes better bound

Since µ(Di) is at most |V | (as long as it is finite), the number k of iterations
is at most |V |. But Karzanov [1973a], Tarjan [1974e], and Even and Tarjan
[1975] showed that an alternative, often tighter bound on k holds.

To see this, it is important to observe that, for each i, the set of arcs of
Di that are reversed in the final Dk (compared with Di) forms a maximum
number of arc-disjoint s − t paths in Di.
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Theorem 9.6. If µ(Di+1) > µ(Di) for each i < k, then k ≤ 2|A|1/2. If
moreover D is simple, then k ≤ 2|V |2/3.

Proof. Let p := ⌊|A|1/2⌋. Then each s − t path in Dp has length at least
p + 1 ≥ |A|1/2. Hence Dp contains at most |A|/|A|1/2 = |A|1/2 arc-disjoint
s − t paths. Therefore k − p ≤ |A|1/2, and hence k ≤ 2|A|1/2.

If D is simple, let p := ⌊|V |2/3⌋. Then each s− t path in Dp has length at
least p+1 ≥ |V |2/3. Then Dp contains at most |V |2/3 arc-disjoint s− t paths.
Indeed, let Ui denote the set of vertices at distance i from s in Dp. Then

(9.7)

p∑

i=0

(|Ui| + |Ui+1|) ≤ 2|V |.

Hence there is an i ≤ p with |Ui|+|Ui+1| ≤ 2|V |1/3. This implies |Ui|·|Ui+1| ≤
1
4 (|Ui| + |Ui+1|)2 ≤ |V |2/3. So Dp contains at most |V |2/3 arc-disjoint s − t

paths. Therefore k − p ≤ |V |2/3, and hence k ≤ 2|V |2/3.

This gives the following time bounds (Karzanov [1973a], Tarjan [1974e],
Even and Tarjan [1975]):

Corollary 9.6a. Given a digraph D = (V, A) and s, t ∈ V , a maximum
number of arc-disjoint s− t paths and a minimum-size s− t cut can be found
in time O(m3/2). If D is simple, the paths and the cut can be found also in
time O(n2/3m).

Proof. Directly from Corollary 9.5a and Theorem 9.6.

(Related work was presented in Ahuja and Orlin [1991].)

9.5. Complexity of the vertex-disjoint case

If we are interested in vertex -disjoint paths, the results can be sharpened.
Recall that if D = (V, A) is a digraph and s, t ∈ V , then the problem of
finding a maximum number of internally vertex-disjoint s − t paths can be
reduced to the arc-disjoint case by replacing each vertex v �= s, t by two
vertices v′, v′′, while each arc with head v is redirected to v′ and each arc
with tail v is redirected from v′′; moreover, an arc (v′, v′′) is added.

By Corollary 9.6a, this construction directly yields algorithms for vertex-
disjoint paths with running time O(m3/2) and O(n2/3m). But one can do
better. Note that, with this construction, each of the digraphs Di has the
property that each vertex has indegree at most 1 or outdegree at most 1.
Under this condition, the bound in Theorem 9.6 can be improved to 2|V |1/2:

Theorem 9.7. If each vertex v �= s, t has indegree or outdegree equal to 1,
and if µ(Di+1) > µ(Di) for each i ≤ k, then k ≤ 2|V |1/2.
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Proof. Let p := ⌈|V |1/2⌉. Then each s−t path in Dp has length at least p+1.
Let Ui be the set of vertices at distance i from s in Di. Then

∑p
i=1 |Ui| ≤ |V |.

This implies that |Ui| ≤ |V |1/2 for some i. Hence Di has at most |V |1/2 arc-
disjoint s − t paths. So k + 1 − p ≤ |V |1/2. Hence k ≤ 2|V |1/2.

This gives, similarly to Corollary 9.6a, another result of Karzanov [1973a],
Tarjan [1974e], and Even and Tarjan [1975] (which can be derived also from
Theorem 16.4 due to Hopcroft and Karp [1971,1973] and Karzanov [1973b],
with the method of Hoffman [1960] given in Section 16.7c):

Corollary 9.7a. Given a digraph D = (V, A) and s, t ∈ V , a maximum
number of internally vertex-disjoint s − t paths and a minimum-size s − t
vertex-cut can be found in time O(n1/2m).

Proof. Directly from Corollary 9.5a and Theorem 9.7.

In fact one can reduce n in this bound to the minimum number τ(D)
of vertices intersecting each arc of D (this bound will be used in deriving
bounds for bipartite matching (Theorem 16.5)):

Theorem 9.8. Given a digraph D = (V, A) and s, t ∈ V , a maximum number
of internally vertex-disjoint s − t paths and a minimum-size s − t vertex-cut
can be found in time O(τ(D)1/2m).

Proof. Similar to Corollary 9.7a, by taking p := ⌊τ(D)1/2⌋ in Theorem 9.7:
Finding Dp takes O(pm) time. Let W be a set of vertices intersecting each
arc of D, of size τ(D). In Dp there are at most 2τ(D)1/2 internally vertex-
disjoint s − t paths, since each s − t path contains at least p/2 vertices in W .

9.6. Further results and notes

9.6a. Complexity survey for the disjoint s − t paths problem

For finding arc-disjoint s − t paths we have the following survey of running time
bounds (∗ indicates an asymptotically best bound in the table):

O(m2) Ford and Fulkerson [1955,1957b]

∗ O(nm) Dinits [1970]

∗ O(m3/2)
Karzanov [1973a], Tarjan [1974e], Even and Tarjan
[1975]

∗ O(n2/3m)
Karzanov [1973a], Tarjan [1974e], Even and Tarjan
[1975] D simple

≫
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continued

∗ O(k2n)
Nagamochi and Ibaraki [1992a] finding k arc-disjoint
paths

∗ O(kn5/3)
Nagamochi and Ibaraki [1992a] finding k arc-disjoint
paths

∗ O(kn2)
Nagamochi and Ibaraki [1992a] finding k arc-disjoint
paths; D simple

∗ O(k3/2n3/2)
Nagamochi and Ibaraki [1992a] finding k arc-disjoint
paths; D simple

For undirected simple graphs, Goldberg and Rao [1997b,1999] gave an O(n3/2m1/2)
bound, and Karger and Levine [1998] gave (m + nk3/2) and O(nm2/3k1/6) bounds,
where k is the number of paths.

For vertex-disjoint paths:

O(nm)
Grünwald [1938], Ford and Fulkerson [1955,
1957b]

O(
√

n m)
Karzanov [1973a], Tarjan [1974e], Even and
Tarjan [1975]

∗ O(
√

n m logn(n2/m)) Feder and Motwani [1991,1995]

∗ O(k2n)
Nagamochi and Ibaraki [1992a] finding k
vertex-disjoint paths

∗ O(kn3/2)
Nagamochi and Ibaraki [1992a] finding k
vertex-disjoint paths

For edge-disjoint s − t paths in simple undirected planar graphs:

O(n2 log n) Itai and Shiloach [1979]

O(n2) Cheston, Probert, and Saxton [1977]

O(n3/2 log n) Johnson and Venkatesan [1982]

O(n log2 n)
Reif [1983] (minimum-size s − t cut), Hassin and
Johnson [1985] (edge-disjoint s − t paths)

O(n log n log∗ n) Frederickson [1983b]

O(n log n) Frederickson [1987b]

∗ O(n) Weihe [1994a,1997a]

For arc-disjoint s − t paths in simple directed planar graphs:

O(n3/2 log n) Johnson and Venkatesan [1982]

O(n4/3 log2 n)
Klein, Rao, Rauch, and Subramanian [1994],
Henzinger, Klein, Rao, and Subramanian [1997]

≫
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continued

O(n log n) Weihe [1994b,1997b]

∗ O(n) Brandes and Wagner [1997]

For vertex-disjoint s − t paths in undirected planar graphs:

O(n log n) Suzuki, Akama, and Nishizeki [1990]

∗ O(n) Ripphausen-Lipa, Wagner, and Weihe [1993b,1997]

Orlova and Dorfman [1972] and Hadlock [1975] showed, with matching theory, that
in planar undirected graphs also a maximum-size cut can be found in polynomial-
time (Barahona [1990] gave an O(n3/2 log n) time bound) — see Section 29.1. Karp
[1972b] showed that in general finding a maximum-size cut is NP-complete — see
Section 75.1a.

9.6b. Partially disjoint paths

For any digraph D = (V, A) and any B ⊆ A, call two paths disjoint on B if they
have no common arc in B. One may derive from Menger’s theorem a more general
min-max relation for such partially disjoint paths:

Theorem 9.9. Let D = (V, A) be a digraph, s, t ∈ V , and B ⊆ A. Then the

maximum number of s − t paths such that any two are disjoint on B is equal to the

minimum size of an s − t cut contained in B.

Proof. If there is no s− t cut contained in B, then clearly the maximum is infinite.
If B contains any s− t cut, let k be its minimum size. Replace any arc a ∈ A\B by
|A| parallel arcs. Then by Menger’s theorem there exist k arc-disjoint s− t paths in
the extended graph. This gives k s − t paths in the original graph that are disjoint
on B.

The construction given in this proof can also be used algorithmically, but making
|A| parallel arcs takes Ω(m2) time. However, one can prove:

Theorem 9.10. Given a digraph D = (V, A), s, t ∈ V , and B ⊆ A, a maximum

number of s − t paths such that any two are disjoint on B can be found in time

O(nm).

Proof. The theorem follows from Corollary 10.11a below.

9.6c. Exchange properties of disjoint paths

Disjoint paths have a number of exchange properties that imply a certain matroidal
structure (cf. Section 39.4).

Let D = (V, A) be a directed graph and let X, Y ⊆ V . Call X linked to Y
if |X| = |Y | and D has |X| vertex-disjoint X − Y paths. Note that the following
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theorem follows directly from the algorithm for finding a maximum set of disjoint
paths (since any vertex in S∪T , once covered by the disjoint paths, remains covered
during the further iterations):

Theorem 9.11. Let D = (V, A) be a digraph, let S, T ⊆ V , and suppose that X ⊆ S
and Y ⊆ T are linked. Then there exists a maximum number of vertex-disjoint S−T
paths covering X ∪ Y .

Proof. Directly from the algorithm.

The following result, due to Perfect [1968], says that for two distinct maximum
packings P, Q of S −T paths there exists a maximum packing of S −T paths whose
starting vertices are equal to those of P and whose end vertices are equal to those
of Q.

Theorem 9.12. Let D = (V, A) be a digraph and S, T ⊆ V . Let k be the maximum

number of disjoint S − T paths. Let X ⊆ S be linked to Y ⊆ T , and let X ′ ⊆ S be

linked to Y ′ ⊆ T , with |X| = |X ′| = k. Then X is linked to Y ′.

Proof. Let C be a minimum-size vertex set intersecting each S − T path. So by
Menger’s theorem, |C| = |X| = |Y | = |X ′| = |Y ′| = k. Let P ′

1, . . . , P
′
k be vertex-

disjoint X − Y paths. Similarly, let P ′′
1 , . . . , P ′′

k be vertex-disjoint X ′ − Y ′ paths.
We may assume that, for each i, P ′

i and P ′′
i have a vertex in C in common. Let Pi

be the path obtained by traversing P ′
i until it reaches C, after which it traverses

P ′′
i . Then P1, . . . , Pk are vertex-disjoint X − Y ′ paths.

The previous two theorems imply:

Corollary 9.12a. Let D = (V, A) be a digraph, let X ′ be linked to Y ′, and let

X ′′ be linked to Y ′′. Then there exist X and Y with X ′ ⊆ X ⊆ X ′ ∪ X ′′ and

Y ′′ ⊆ Y ⊆ Y ′ ∪ Y ′′ such that X is linked to Y .

Proof. Directly from Theorems 9.11 and 9.12.

Other proofs of this corollary were given by Pym [1969b,1969c], Brualdi and
Pym [1971], and McDiarmid [1975b].

9.6d. Further notes

Lovász, Neumann-Lara, and Plummer [1978] proved the following on the maximum
number of disjoint paths of bounded length. Let G = (V, E) be an undirected
graph, let s and t be two distinct and nonadjacent vertices, and let k ≥ 2. Then the
minimum number of vertices ( �= s, t) intersecting all s − t paths of length at most
k is at most ⌊ 1

2
k⌋ times the maximum number of internally vertex-disjoint s − t

paths each of length at most k. (A counterexample to a conjecture on this raised by
Lovász, Neumann-Lara, and Plummer [1978] was given by Boyles and Exoo [1982].
Related results are given by Galil and Yu [1995].)

On the other hand, when taking lower bounds on the path lengths, Montejano
and Neumann-Lara [1984] showed that, in a directed graph, the minimum number
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of vertices ( �= s, t) intersecting all s − t paths of length at least k is at most 3k − 5
times the maximum number of internally vertex-disjoint such paths. For k = 3, the
factor was improved to 3 by Hager [1986] and to 2 by Mader [1989].

Egawa, Kaneko, and Matsumoto [1991] gave a version of Menger’s theorem in
which vertex-disjoint and edge-disjoint are mixed: Let G = (V, E) be an undirected
graph, let s, t ∈ V , and k, l ∈ Z+. Then G contains l disjoint edge sets, each
containing k vertex-disjoint s − t paths if and only if for each U ⊆ V \ {s, t} there
exist l(k − |U |) edge-disjoint s − t paths in G − U . Similarly, for directed graphs.
The proof is by reduction to Menger’s theorem using integer flow theory.

Bienstock and Diaz [1993] showed that the problem of finding a minimum-weight
subset of edges intersecting all s−t cuts of size at most k is polynomial-time solvable
if k is fixed, while it is NP-complete if k is not fixed.

Motwani [1989] investigated the expected running time of Dinits’ disjoint paths
algorithm.

Extensions of Menger’s theorem to the infinite case were given by P. Erdős (cf.
Kőnig [1932]), Grünwald [1938] (= T. Gallai), Dirac [1960,1963,1973], Halin [1964],
McDiarmid [1975b], Podewski and Steffens [1977], Aharoni [1983a,1987], and Polat
[1991].

Halin [1964], Lovász [1970b], Escalante [1972], and Polat [1976] made further
studies of (the lattice of) s − t cuts.

9.6e. Historical notes on Menger’s theorem

The topologist Karl Menger published his theorem in an article called Zur allge-

meinen Kurventheorie (On the general theory of curves) (Menger [1927]) in the
following form:

Satz β. Ist K ein kompakter regulär-eindimensionaler Raum, welcher zwischen

den beiden endlichen Mengen P und Q n-punktig zusammenhängend ist, dann

enthält K n paarweise fremde Bögen, von denen jeder einen Punkt von P und

einen Punkt von Q verbindet.5

It can be formulated equivalently in terms of graphs as: Let G = (V, E) be an
undirected graph and let P, Q ⊆ V . Then the maximum number of disjoint P − Q
paths is equal to the minimum size of a set W of vertices such that each P − Q
path intersects W .

The result became known as the n-chain theorem. Menger’s interest in this
question arose from his research on what he called ‘curves’: a curve is a connected
compact topological space X with the property that for each x ∈ X and each
neighbourhood N of x there exists a neighbourhood N ′ ⊆ N of x with bd(N ′)
totally disconnected. (Here bd stands for boundary; a space is totally disconnected

if each point forms an open set.)
The curve is called regular if for each x ∈ X and each neighbourhood N of x

there exists a neighbourhood N ′ ⊆ N of x with |bd(N ′)| finite. The order of a point
x ∈ X is equal to the minimum natural number n such that for each neighbourhood
N of x there exists a neighbourhood N ′ ⊆ N of x satisfying |bd(N ′)| ≤ n.

According to Menger:

5 Theorem β. If K is a compact regularly one-dimensional space which is n-point con-

nected between the two finite sets P and Q, then K contains n pairwise disjoint curves,

each of which connects a point in P and a point in Q.
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Eines der wichtigsten Probleme der Kurventheorie ist die Frage nach den Bezie-
hungen zwischen der Ordnungszahl eines Punktes der regulären Kurve K und
der Anzahl der im betreffenden Punkt zusammenstossenden und sonst fremden
Teilbögen von K.6

In fact, Menger used ‘Satz β’ to show that if a point in a regular curve K has
order n, then there exists a topological n-leg with p as top; that is, K contains n
arcs P1, . . . , Pn such that Pi ∩ Pj = {p} for all i, j with i �= j.

The proof idea is as follows. There exists a series N1 ⊃ N2 ⊃ · · · of open
neighbourhoods of p such that N1 ∩ N2 ∩ · · · = {p} and |bd(Ni)| = n for all
i = 1, 2, . . . and such that

(9.8) |bd(N)| ≥ n for each neighbourhood N ⊆ N1.

This follows quite directly from the definition of order.
Now Menger showed that we may assume that the space Gi := Ni \ Ni+1 is a

(topological) graph. For each i, let Qi := bd(Ni). Then (9.8) gives with Menger’s
theorem that there exist n disjoint paths Pi,1, . . . , Pi,n in G such that each Pi,j runs
from Qi to Qi+1. Properly connecting these paths for i = 1, 2, . . . we obtain n arcs
forming the required n-leg.

It was however noticed by Kőnig [1932] that Menger’s proof of ‘Satz β’ is in-
complete. Menger applied induction on |E|, where E is the edge set of the graph G.
Menger first claimed that one easily shows that |E| ≥ n, and that if |E| = n, then
G consists of n disjoint edges connecting P and Q. He stated that if |E| > n, then
there exists a vertex s �∈ P ∪ Q, or in his words (where the ‘Grad’ denotes |E|):

Wir nehmen also an, der irreduzibel n-punktig zusammenhängende Raum K′

besitze den Grad g(> n). Offenbar enthält dann K′ ein punktförmiges Stück s,
welches in der Menge P + Q nicht enthalten ist.7

Indeed, as Menger showed, if such a vertex s exists one is done: If s is contained
in no set W intersecting each P − Q path with |W | = n, then we can delete s and
the edges incident with s without decreasing the minimum in the theorem. If s is
contained in some set W intersecting each P − Q path such that |W | = n, then we
can split G into two subgraphs G1 and G2 that intersect in W in such a way that
P ⊆ G1 and Q ⊆ G2. By the induction hypothesis, there exist n disjoint P − W
paths in G1 and n disjoint W − Q paths in G2. By pairwise sticking these paths
together at W we obtain paths as required.

However, such a vertex s need not exist. It might be that V is the disjoint union
of P and Q in such a way that each edge connects P and Q, and that there are
more than n edges. In that case, G is a bipartite graph, with colour classes P and
Q, and what should be shown is that G contains a matching of size n. This is a
nontrivial basis of the proof.

At the meeting of 26 March 1931 of the Eötvös Loránd Matematikai és Fizikai
Társulat (Loránd Eötvös Mathematical and Physical Society) in Budapest, Kőnig
[1931] presented a new result that formed the missing basis for Menger’s theorem:

6 One of the most important problems of the theory of curves is the question of the
relations between the order of a point of a regular curve K and the number of subarcs
of K meeting in that point and disjoint elsewhere.

7 Thus we assume that the irreducibly n-point-connected space K′ has degree g(> n).
Obviously, in that case K′ contains a point-shaped piece s, that is not contained in the
set P + Q.
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Páros körüljárású graphban az éleket kimeŕıtő szögpontok minimális száma meg-
egyezik a páronként közös végpontot nem tartalmazó élek maximális számával.8

In other words, in a bipartite graph G = (V, E), the maximum size of a matching
is equal to the minimum number of vertices needed to cover all edges, which is
Kőnig’s matching theorem — see Theorem 16.2.

Kőnig did not mention in his 1931 paper that this result provided the missing
element in Menger’s proof, although he finishes with:

Megemĺıtjük végül, hogy eredményeink szorosan összefüggnek Frobeniusnak de-
terminánsokra és Mengernek graphokra vonatkozó némely vizsgálatával. E kapc-
solatokra másutt fogunk kiterjeszkedni.9

‘Elsewhere’ is Kőnig [1932], in which paper he gave a full proof of Menger’s
theorem. The hole in Menger’s original proof is discussed in a footnote:

Der Beweis von Menger enthält eine Lücke, da es vorausgesetzt wird (S. 102, Zeile
3–4) daß ,,K′ ein punktförmiges Stück s enthält, welches in der Menge P +Q nicht
enthalten ist“, während es recht wohl möglich ist, daß —mit der hier gewählten
Bezeichnungsweise ausgedrückt—jeder Knotenpunkt von G zu H1 + H2 gehört.
Dieser—keineswegs einfacher—Fall wurde in unserer Darstellung durch den Be-
weis des Satzes 13 erledigt. Die weiteren—hier folgenden—Überlegungen, die uns
zum Mengerschen Satz führen werden, stimmen im Wesentlichen mit dem—sehr
kurz gefaßten—Beweis von Menger überein. In Anbetracht der Allgemeinheit
und Wichtigkeit des Mengerschen Satzes wird im Folgenden auch dieser Teil ganz
ausführlich und den Forderungen der rein-kombinatorischen Graphentheorie ent-
sprechend dargestellt.
[Zusatz bei der Korrektur, 10.V.1933] Herr Menger hat die Freundlichkeit
gehabt—nachdem ich ihm die Korrektur meiner vorliegenden Arbeit zugeschickt
habe—mir mitzuteilen, daß ihm die oben beanstandete Lücke seines Beweises
schon bekannt war, daß jedoch sein vor Kurzem erschienenes Buch Kurventhe-

orie (Leipzig, 1932) einen vollkommen lückenlosen und rein kombinatorischen
Beweis des Mengerschen Satzes (des “n-Kettensatzes”) enthält. Mir blieb dieser
Beweis bis jetzt unbekannt.10

8 In an even circuit graph, the minimal number of vertices that exhaust the edges agrees
with the maximal number of edges that pairwise do not contain any common end point.

9 We finally mention that our results are closely connected to some investigations of
Frobenius on determinants and of Menger on graphs. We will enlarge on these con-
nections elsewhere.

10 The proof of Menger contains a hole, as it is assumed (page 102, line 3–4) that ‘K′

contains a point-shaped piece s that is not contained in the set P + Q’, while it is quite
well possible that—expressed in the notation chosen here—every node of G belongs to
H1 + H2. This—by no means simple—case is settled in our presentation by the proof
of Theorem 13. The further arguments following here that will lead us to Menger’s
theorem, agree essentially with the—very briefly couched—proof of Menger. In view of
the generality and the importance of Menger’s theorem, also this part is exhibited in the
following very extensively and conforming to the progress of the purely combinatorial

graph theory.
[Added in proof, 10 May 1933] Mr. Menger has had the kindness—after I have sent

him the galley proofs of my present work—to inform me that the hole in his proof
objected above, was known to him already, but that his, recently appeared, book Kur-

ventheorie (Leipzig, 1932) contains a completely holeless and purely combinatorial proof
of the Menger theorem (the ‘n-chain theorem’). As yet, this proof remained unknown
to me.
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The book Kurventheorie (Curve Theory) mentioned is Menger [1932b], which
contains a complete proof of Menger’s theorem. Menger did not refer to any hole
in his original proof, but remarked:

Über den n-Kettensatz für Graphen und die im vorangehenden zum Beweise
verwendete Methode vgl. Menger (Fund. Math. 10, 1927, S. 101 f.). Die obige
detaillierte Ausarbeitung und Darstellung stammt von Nöbeling.11

In his book Theorie der endlichen und unendlichen Graphen (Theory of finite
and infinite graphs), Kőnig [1936] called his theorem ein wichtiger Satz (an impor-
tant theorem), and he emphasized the chronological order of the proofs of Menger’s
theorem and of Kőnig’s theorem (which is implied by Menger’s theorem):

Ich habe diesen Satz 1931 ausgesprochen und bewiesen, s. Kőnig [9 und 11].
1932 erschien dann der erste lückenlose Beweis des Mengerschen Graphensatzes,
von dem in §4 die Rede sein wird und welcher als eine Verallgemeinerung dieses
Satzes 13 (falls dieser nur für endliche Graphen formuliert wird) angesehen wer-
den kann.12

([9 und 11] are Kőnig [1931] and Kőnig [1932].)
In his reminiscences on the origin of the n-arc theorem, Menger [1981] wrote:

In the spring of 1930, I came through Budapest and met there a galaxy of Hun-
garian mathematicians. In particular, I enjoyed making the acquaintance of Dénes
Kőnig, for I greatly admired the work on set theory of his father, the late Julius
Kőnig—to this day one of the most significant contributions to the continuum
problem—and I had read with interest some of Dénes’ papers. Kőnig told me
that he was about to finish a book that would include all that was known about
graphs. I assured him that such a book would fill a great need; and I brought up my
n-Arc Theorem which, having been published as a lemma in a curve-theoretical
paper, had not yet come to his attention. Kőnig was greatly interested, but did
not believe that the theorem was correct. “This evening,” he said to me in part-
ing, “I won’t go to sleep before having constructed a counterexample.” When we
met again the next day he greeted me with the words, “A sleepless night!” and
asked me to sketch my proof for him. He then said that he would add to his book
a final section devoted to my theorem. This he did; and it is largely thanks to
Kőnig’s valuable book that the n-Arc Theorem has become widely known among
graph theorists.

Related work

In a paper presented 7 May 1927 to the American Mathematical Society, Rutt [1927,
1929] gave the following variant of Menger’s theorem, suggested by J.R. Kline. Let
G = (V, E) be a planar graph and let s, t ∈ V . Then the maximum number of
internally vertex-disjoint s− t paths is equal to the minimum number of vertices in
V \ {s, t} intersecting each s − t path.

11 On the n-chain theorem for graphs and the method used in the foregoing for the proof,
compare Menger (Fund. Math. 10, 1927, p. 101 ff.). The detailed elaboration and ex-
planation above originates from Nöbeling.

12 I have enunciated and proved this theorem in 1931, see Kőnig [9 and 11]. Next, in 1932,
the first holeless proof of the Menger theorem appeared, of which will be spoken in §4
and which can be considered as a generalization of this Theorem 13 (in case this is
formulated only for finite graphs).
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In fact, the theorem follows quite easily from Menger’s version of his theorem by
deleting s and t and taking for P and Q the sets of neighbours of s and t respectively.
(Rutt referred to Menger and gave an independent proof of the theorem.)

This construction was also observed by Knaster [1930] who showed that
Menger’s theorem would follow from Rutt’s theorem for general (not necessarily
planar) graphs. A similar theorem was published by Nöbeling [1932], using Menger’s
result.

A result implied by Menger’s theorem was presented by Whitney [1932a] on
28 February 1931 to the American Mathematical Society: a graph is n-connected
if and only if any two vertices are connected by n internally disjoint paths. While
referring to the papers of Menger and Rutt, Whitney gave a direct proof. Kőnig
[1932] remarked on Whitney’s theorem:

Das interessante Hauptresultat einer Abhandlung von Whitney [10], nämlich
sein Theorem 7, folgt unmittelbar aus diesem Mengerschen Satz, jedoch, wie es
scheint, nicht umgekehrt.13

In the 1930s, other proofs of Menger’s theorem were given by Hajós [1934] and
Grünwald [1938] (= T. Gallai) — the latter paper gives an essentially algorithmic
proof based on augmenting paths, and it observes, in a footnote, that the theorem
also holds for directed graphs:

Die ganze Betrachtung lässt sich auch bei orientierten Graphen durchführen und
liefert dann eine Verallgemeinerung des Mengerschen Satzes.14

The arc-disjoint version of Menger’s theorem seems to be first shown by Ford
and Fulkerson [1954,1956b] and Kotzig [1956] for undirected graphs and by Dantzig
and Fulkerson [1955,1956] for directed graphs.

In his dissertation for the degree of Academical Doctor, Kotzig [1956] defined,
for any undirected graph G and vertices u, v of G, σG(u, v) to be the minimum size
of a u − v cut. Then he states:

Veta 35. Nech G je l’ubovol’ný graf obsahujúci uzly u �= v, o ktorých plat́ı
σG(u, v) = k > 0, potom existuje systém ciest {C1, C2, . . . , Ck} taký že každa
cesta spojuje uzly u, v a žiadne dve rôzne cesty systému nemajú spoločnej hrany.
Takýto systém ciest v G existuje len vtedy, keď je σG(u, v) ≥ k.15

In Theorems 33 and 34 of the dissertation, methods are developed for the proof
of Theorem 35. The method is to consider a minimal graph satisfying the cut
condition, and next to orient it so as to make a directed graph in which each vertex
w (except u and v) has indegree = outdegree, while u has outdegree k and indegree
0. This then yields the required paths.

Although the dissertation has several references to Kőnig’s book, which contains
the undirected vertex-disjoint version of Menger’s theorem, Kotzig did not link his

13 The interesting main result of an article of Whitney [10], namely his Theorem 7, follows
immediately from this theorem of Menger, however, as it seems, not conversely.

14 The whole argument lets itself carry out also for oriented graphs and then yields a
generalization of Menger’s theorem.

15 Theorem 35. Let G be an arbitrary graph containing vertices u �= v for which σG(u, v) =
k > 0, then there exists a system of paths {C1, C2, . . . , Ck} such that each path connects
vertices u, v and no two distinct paths have an edge in common. Such a system of paths
in G exists only if σG(u, v) ≥ k.
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result to that of Menger. (Kotzig [1961a] gave a proof of the directed arc-disjoint
version of Menger’s theorem, without reference to Menger.)

We refer to the historical notes on maximum flows in Section 10.8e for further
notes on the work of Dantzig, Ford, and Fulkerson on Menger’s theorem.



Chapter 10

Maximum flow

An s − t flow is defined as a nonnegative real-valued function on the arcs
of a digraph satisfying the ‘flow conservation law’ at each vertex �= s, t.
In this chapter we consider the problem of finding a maximum-value flow
subject to a given capacity function. Basic results are Ford and Fulkerson’s
max-flow min-cut theorem and their augmenting path algorithm to find a
maximum flow.
Each s − t flow is a nonnegative linear combination of incidence vectors
of s − t paths and of directed circuits. Moreover, an integer flow is an
integer such combination. This makes flows tightly connected to disjoint
paths. Thus, maximum integer flow corresponds to a capacitated version of
a maximum packing of disjoint paths, and the max-flow min-cut theorem
is equivalent to Menger’s theorem on disjoint paths.
Distinguishing characteristic of flow is however that it is not described by
a combination of paths but by a function on the arcs. This promotes the
algorithmic tractability.
In this chapter, graphs can be assumed to be simple.

10.1. Flows: concepts

Let D = (V, A) be a digraph and let s, t ∈ V . A function f : A → R is called
a flow from s to t, or an s − t flow, if:

(10.1) (i) f(a) ≥ 0 for each a ∈ A,
(ii) f(δout(v)) = f(δin(v)) for each v ∈ V \ {s, t}.

Condition (10.1)(ii) is called the flow conservation law : the amount of flow
entering a vertex v �= s, t should be equal to the amount of flow leaving v.

The value of an s − t flow f is, by definition:

(10.2) value(f) := f(δout(s)) − f(δin(s)).

So the value is the net amount of flow leaving s. This is equal to the net
amount of flow entering t (this follows from (10.5) below).

Let c : A → R+ be a capacity function. We say that a flow f is under c
(or subject to c) if

(10.3) f(a) ≤ c(a) for each a ∈ A.
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A maximum s − t flow, or just a maximum flow, is an s − t flow under c, of
maximum value. The maximum flow problem is to find a maximum flow.

By compactness and continuity, a maximum flow exists. It will follow from
the results in this chapter (in particular, Theorem 10.4), that if the capacities
are rational, then there exists a rational-valued maximum flow.

It will be convenient to make an observation on general functions f : A →
R. For any f : A → R, the excess function is the function excessf : P(V ) → R

defined by

(10.4) excessf (U) := f(δin(U)) − f(δout(U))

for U ⊆ V . Set excessf (v) := excessf ({v}) for v ∈ V . Then:

Theorem 10.1. Let D = (V, A) be a digraph, let f : A → R, and let U ⊆ V .
Then:

(10.5) excessf (U) =
∑

v∈U

excessf (v).

Proof. This follows directly by counting, for each a ∈ A, the multiplicity of
f(a) at both sides of (10.5).

To formulate a min-max relation, define the capacity of a cut δout(U) by
c(δout(U)). Then:

Theorem 10.2. Let D = (V, A) be a digraph, s, t ∈ V , and c : A → R+.
Then

(10.6) value(f) ≤ c(δout(U)),

for each s − t flow f ≤ c and each s − t cut δout(U). Equality holds in
(10.6) if and only if f(a) = c(a) for each a ∈ δout(U) and f(a) = 0 for each
a ∈ δin(U).

Proof. Using (10.5) we have

(10.7) value(f) = −excessf (s) = −excessf (U) = f(δout(U))−f(δin(U))
≤ c(δout(U)),

with equality if and only if f(δout(U)) = c(δout(U)) and f(δin(U))= 0.

Finally, we consider a concept that turns out to be important in studying
flows. Let D = (V, A) be a digraph. For each a = (u, v) ∈ A, let a−1 := (v, u).
Define

(10.8) A−1 := {a−1 | a ∈ A}.

Fix a lower bound function d : A → R and an upper bound function c : A →
R. Then for any f : A → R satisfying d ≤ f ≤ c we define

(10.9) Af := {a | a ∈ A, f(a) < c(a)} ∪ {a−1 | a ∈ A, f(a) > d(a)}.
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Clearly, Af depends not only on f , but also on D, d, and c, but in the
applications below D, d, and c are fixed, while f is variable. The digraph

(10.10) Df = (V, Af )

is called the residual graph of f . So Df is a subgraph of the directed graph
(V, A ∪ A−1). As we shall see, the residual graph is very useful in studying
flows and circulations, both theoretically and algorithmically.

In the context of flows we take d = 0. We observe:

Corollary 10.2a. Let f be an s − t flow in D with f ≤ c. Suppose that Df

has no s − t path. Define U as the set of vertices reachable in Df from s.
Then value(f) = c(δout

A (U)). In particular, f has maximum value.

Proof. We apply Theorem 10.2. For each a ∈ δout
A (U), one has a �∈ Af , and

hence f(a) = c(a). Similarly, for each a ∈ δin
A (U) one has a−1 �∈ Af , and hence

f(a) = 0. So value(f) = c(δout
A (U)) and f has maximum value by Theorem

10.2.

Any directed path P in Df gives an undirected path in D = (V, A). Define
χP ∈ RA by:

(10.11) χP (a) :=





1 if P traverses a,
−1 if P traverses a−1,

0 if P traverses neither a nor a−1,

for a ∈ A.

10.2. The max-flow min-cut theorem

The following theorem was proved by Ford and Fulkerson [1954,1956b] for the
undirected case and by Dantzig and Fulkerson [1955,1956] for the directed
case. (According to Robacker [1955a], the max-flow min-cut theorem was
conjectured first by D.R. Fulkerson.)

Theorem 10.3 (max-flow min-cut theorem). Let D = (V, A) be a digraph,
let s, t ∈ V , and let c : A → R+. Then the maximum value of an s − t flow
subject to c is equal to the minimum capacity of an s − t cut.

Proof. Let f be an s − t flow subject to c, of maximum value. By Theorem
10.2, it suffices to show that there is an s− t cut δout(U) with capacity equal
to value(f).

Consider the residual graph Df (for lower bound d := 0). Suppose that it
contains an s − t path P . Then f ′ := f + εχP is again an s − t flow subject
to c, for ε > 0 small enough, with value(f ′) = value(f) + ε. This contradicts
the maximality of value(f).
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So Df contains no s − t path. Let U be the set of vertices reachable in
Df from s. Then value(f) = c(δout(U)) by Corollary 10.2a.

This ‘constructive’ proof method is implied by the algorithm of Ford and
Fulkerson [1955,1957b], to be discussed below.

Moreover, one has (Dantzig and Fulkerson [1955,1956])16:

Corollary 10.3a (integrity theorem). If c is integer, there exists an integer
maximum flow.

Proof. Directly from the proof of the max-flow min-cut theorem, where we
can take ε = 1.

10.3. Paths and flows

The following observation gives an important link between flows at one side
and paths at the other side.

Let D = (V, A) be a digraph, let s, t ∈ V , and let f : A → R+ be an s − t
flow. Then f is a nonnegative linear combination of at most |A| vectors χP ,
where P is a directed s − t path or a directed circuit. If f is integer, we can
take the linear combination integer-scalared.

Conversely, if P1, . . . , Pk are s− t paths in D, then f := χAP1 + · · ·+χAPk

is an integer s − t flow of value k.
With this observation, Corollary 10.3a implies the arc-disjoint version of

Menger’s theorem (Corollary 9.1b). Conversely, Corollary 10.3a (the integrity
theorem) can be derived from the arc-disjoint version of Menger’s theorem
by replacing each arc a by c(a) parallel arcs.

10.4. Finding a maximum flow

The proof idea of the max-flow min-cut theorem can also be used algorith-
mically to find a maximum s − t flow, as was shown by Ford and Fulkerson
[1955,1957b]. Let D = (V, A) be a digraph and s, t ∈ V and let c : A → Q+

be a ‘capacity’ function.
Initially set f := 0. Next apply the following flow-augmenting algorithm

iteratively:

(10.12) let P be a directed s − t path in Df and reset f := f + εχP ,
where ε is as large as possible so as to maintain 0 ≤ f ≤ c.

If no such path exists, the flow f is maximum, by Corollary 10.2a.
The path P is called a flow-augmenting path or an f-augmenting path, or

just an augmenting path.

16 The name ‘integrity theorem’ was used by Ford and Fulkerson [1962].



152 Chapter 10. Maximum flow

As for termination, we have:

Theorem 10.4. If all capacities c(a) are rational, the algorithm terminates.

Proof. If all capacities are rational, there exists a natural number K such
that Kc(a) is an integer for each a ∈ A. (We can take for K the l.c.m. of the
denominators of the c(a).)

Then in the flow-augmenting iterations, every fi(a) and every ε is a mul-
tiple of 1/K. So at each iteration, the flow value increases by at least 1/K.
Since the flow value cannot exceed c(δout({s})), there are only finitely many
iterations.

If we delete the rationality condition, this theorem is not maintained —
see Section 10.4a. On the other hand, in Section 10.5 we shall see that if
we always choose a shortest possible flow-augmenting path, then the algo-
rithm terminates in a polynomially bounded number of iterations, regardless
whether the capacities are rational or not.

10.4a. Nontermination for irrational capacities

Ford and Fulkerson [1962] showed that Theorem 10.4 is not maintained if we allow
arbitrary real-valued capacities. The example is as follows.

Let D = (V, A) be the complete directed graph on 8 vertices, with s, t ∈ V . Let
A0 = {a1, a2, a3} consist of three disjoint arcs of D, each disjoint from s and t. Let
r be the positive root of r2 + r − 1 = 0; that is, r = (−1 +

√
5)/2 < 1. Define a

capacity function c on A by

(10.13) c(a1) := 1, c(a2) := 1, c(a3) := r,

and c(a) at least

(10.14) q :=
1

1 − r
= 1 + r + r2 + · · ·

for each a ∈ A \ A0. Apply the flow-augmenting algorithm iteratively as follows.
In step 0, choose, as flow-augmenting path, the s− t path of length 3 traversing

a1. After this step, the flow f satisfies, for k = 1:

(10.15) (i) f has value 1 + r + r2 + · · · + rk−1,
(ii) {c(a) − f(a) | a ∈ A0} = {0, rk−1, rk},
(iii) f(a) ≤ 1 + r + r2 + · · · + rk−1 for each a ∈ A.

We describe the further steps. In each step k, for k ≥ 1, the input flow f
satisfies (10.15). Choose a flow-augmenting path P in Df that contains the arc
a ∈ A0 satisfying c(a) − f(a) = 0 in backward direction, and the other two arcs in
A0 in forward direction; all other arcs of P are arcs of D in forward direction. Since
rk < rk−1, and since (1 + r + · · · + rk−1) + rk < q, the flow augmentation increases
the flow value by rk. Since rk−1 − rk = rk+1, the new flow satisfies (10.15) with k
replaced by k + 1.
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We can keep iterating this, making the flow value converge to 1+r+r2+r3+· · · =
q. So the algorithm does not terminate, and the flow value does not converge to the
optimum value, since, trivially, the maximum flow value is more than q.

(Zwick [1995] gave the smallest directed graph (with 6 vertices and 8 arcs) for
which the algorithm (with irrational capacities) need not terminate.)

10.5. A strongly polynomial bound on the number of
iterations

We saw in Theorem 10.4 that the number of iterations in the maximum flow
algorithm is finite, if all capacities are rational. But if we choose as our flow-
augmenting path P in the auxiliary graph Df an arbitrary s − t path, the
number of iterations yet can get quite large. For instance, in the graph in
Figure 10.1 the number of iterations, at an unfavourable choice of paths, can
become 2 · 10k, so exponential in the size of the input data (which is O(k)).

10k

10k

10k

10k

s t1

Figure 10.1

However, if we choose always a shortest s − t path in Df as our flow-
augmenting path P (that is, with a minimum number of arcs), then the
number of iterations is at most |V | · |A| (also if capacities are irrational).
This was shown by Dinits [1970] and Edmonds and Karp [1972]. (The latter
remark that this refinement ‘is so simple that it is likely to be incorporated
innocently into a computer implementation.’)

To see this bound on the number of iterations, let again, for any digraph
D = (V, A) and s, t ∈ V , µ(D) denote the minimum length of an s − t path.
Moreover, let α(D) denote the set of arcs contained in at least one shortest
s − t path. Recall that by Theorem 9.5:

(10.16) for D′ := (V, A ∪ α(D)−1), one has µ(D′) = µ(D) and α(D′) =
α(D).

This implies the result of Dinits [1970] and Edmonds and Karp [1972]:

Theorem 10.5. If we choose in each iteration a shortest s− t path in Df as
flow-augmenting path, the number of iterations is at most |V | · |A|.
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Proof. If we augment flow f along a shortest s − t path P in Df , obtaining
flow f ′, then Df ′ is a subgraph of D′ := (V, Af ∪ α(Df )−1). Hence µ(Df ′) ≥
µ(D′) = µ(Df ) (by (10.16)). Moreover, if µ(Df ′) = µ(Df ), then α(Df ′) ⊆
α(D′) = α(Df ) (again by (10.16)). As at least one arc in P belongs to Df

but not to Df ′ , we have a strict inclusion. Since µ(Df ) increases at most |V |
times and, as long as µ(Df ) does not change, α(Df ) decreases at most |A|
times, we have the theorem.

Since a shortest path can be found in time O(m) (Theorem 6.3), this
gives:

Corollary 10.5a. A maximum flow can be found in time O(nm2).

Proof. Directly from Theorem 10.5.

10.6. Dinits’ O(n2
m) algorithm

Dinits [1970] observed that one can speed up the maximum flow algorithm,
by not augmenting simply along paths in Df , but along flows in Df . The
approach is similar to that of Section 9.3 for path packing.

To describe this, define a capacity function cf on Af by, for each a ∈ A:

(10.17) cf (a) := c(a) − f(a) if a ∈ Af and
cf (a−1) := f(a) if a−1 ∈ Af .

Then for any flow g in Df subject to cf ,

(10.18) f ′(a) := f(a) + g(a) − g(a−1)

gives a flow f ′ in D subject to c. (We define g(a) or g(a−1) to be 0 if a or
a−1 does not belong to Af .)

Now we shall see that, given a flow f in D, one can find in time O(m) a
flow g in Df such that the flow f ′ arising by (10.18) satisfies µ(Df ′) > µ(Df ).
It implies that there are at most n iterations.

The basis of the method is the concept of ‘blocking flow’. An s − t flow f
is called blocking if for each s − t flow f ′ with f ≤ f ′ ≤ c one has f ′ = f .

Theorem 10.6. Given an acyclic graph D = (V, A), s, t ∈ V , and a capacity
function c : A → Q+, a blocking s − t flow can be found in time O(nm).

Proof. By depth-first search we can find, in time O(|A′|), a subset A′ of A
and an s − t path P in A′ such that no arc in A′ \ AP is contained in any
s − t path: just scan s (cf. (6.2)) until t is reached; then A′ is the set of arcs
considered so far.

Let f be the maximum flow that can be sent along P , and reset c := c−f .
Delete all arcs in A′ \ AP and all arcs a with c(a) = 0, and recursively find
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a blocking s − t flow f ′ in the new network. Then f ′ + f is a blocking s − t
flow for the original data, as is easily checked.

The running time of the iteration is O(n + t), where t is the number of
arcs deleted. Since there are at most |A| iterations and since at most |A| arcs
can be deleted, we have the required running time bound.

Hence we have an improvement on the running time for finding a maxi-
mum flow:

Corollary 10.6a. A maximum flow can be found in time O(n2m).

Proof. It suffices to describe an O(nm) method to find, for given flow f , a
flow f ′ with µ(Df ′) > µ(Df ).

Find a blocking flow g in (V, α(Df )). (Note that α(Df ) can be determined
in O(m) time.) Let f ′(a) := f(a)+g(a)−g(a−1), taking values 0 if undefined.
Then Df ′ is a subgraph of D′ := (V, Af ∪ α(Df )−1), and hence by (10.16),
µ(Df ′) ≥ µ(D′) = µ(Df ). If µ(Df ′) = µ(Df ), Df ′ has a path P of length
µ(Df ), which (again (10.16)) should also be a path in α(Df ). But then g
could have been increased along this path, contradicting the fact that g is
blocking in Df .

10.6a. Karzanov’s O(n3) algorithm

Karzanov [1974] gave a faster algorithm to find a blocking flow, thus speeding up
the maximum flow algorithm. We give the short proof of Malhotra, Kumar, and
Maheshwari [1978] (see also Cherkasskĭı [1979] and Tarjan [1984]).

Theorem 10.7. Given an acyclic digraph D = (V, A), s, t ∈ V , and a capacity

function c : A → Q+, a blocking s − t flow can be found in time O(n2).

Proof. First order the vertices reachable from s as s = v1, v2, . . . , vn−1, vn topo-

logically ; that is, if (vi, vj) ∈ A, then i < j. This can be done in time O(m) (see
Corollary 6.5b).

We describe the algorithm recursively. Consider the minimum of the values
c(δin(v)) for all v ∈ V \ {s} and c(δout(v)) for all v ∈ V \ {t}. Let the minimum be
attained by vi and c(δout(vi)) (without loss of generality). Define f(a) := c(a) for
each a ∈ δout(vi) and f(a) := 0 for all other a.

Next for j = i+1, . . . , n−1, redefine f(a) for each a ∈ δout(vj) such that f(a) ≤
c(a) and such that f(δout(vj)) = f(δin(vj)). By the minimality of c(δout(vi)), we
can always do this, as initially f(δin(vj)) ≤ c(δout(vi)) ≤ c(δout(vj)). We do this in
such a way that finally f(a) ∈ {0, c(a)} for all but at most one a in δout(vj).

After that, for j = i, i − 1, . . . , 2, redefine similarly f(a) for a ∈ δin(vj) such
that f(a) ≤ c(a), f(δin(vj)) = f(δout(vj)), and f(a) ∈ {0, c(a)} for all but at most
one a in δin(vj).

If vi ∈ {s, t} we stop, and f is a blocking flow. If vi �∈ {s, t}, set c′(a) :=
c(a) − f(a) for each a ∈ A, and delete all arcs a with c′(a) = 0 and delete vi and
all arcs incident with vi, thus obtaining the directed graph D′ = (V ′, A′). Obtain



156 Chapter 10. Maximum flow

(recursively) a blocking flow f ′ in D′ subject to the capacity function c′. Define
f ′′(a) := f(a) + f ′(a) for a ∈ A′ and f ′′(a) = f(a) for a ∈ A \ A′. Then f ′′ is a
blocking flow in D.

This describes the algorithm. The correctness can be seen as follows. If vi ∈
{s, t} the correctness is immediate. If vi �∈ {s, t}, suppose that f ′′ is not a blocking
flow in D, and let P be an s−t path in D with f ′′(a) < c(a) for each arc a in P . Then
each arc of P belongs to A′, since f ′′(a) = f(a) = c(a) for each a ∈ A\(A′∪δin(vi)).
So for each arc a of P one has c′(a) = c(a) − f(a) > f ′′(a) − f(a) = f ′(a). This
contradicts the fact that f ′ is a blocking flow in D′.

The running time of the algorithm is O(n2), since the running time of the
iteration is O(n + |A \ A′|), and since there are at most |V | iterations.

Theorem 10.7 improves the running time for finding a maximum flow as follows:

Corollary 10.7a. A maximum flow can be found in time O(n3).

Proof. Similar to the proof of Corollary 10.6a.

Sharper blocking flow algorithms were found by Cherkasskĭı [1977a] (O(n
√

m)),
Galil [1978,1980a] (O((nm)2/3)), Shiloach [1978] and Galil and Naamad [1979,1980]
(O(m log2 n)), Sleator [1980] and Sleator and Tarjan [1981,1983a] (O(m log n)),
and Goldberg and Tarjan [1990] (O(m log(n2/m))), each yielding a maximum flow
algorithm with running time bound a factor of n higher.

An alternative approach finding a maximum flow in time O(nm log(n2/m)),
based on the ‘push-relabel’ method, was developed by Goldberg [1985,1987] and
Goldberg and Tarjan [1986,1988a], and is described in the following section.

10.7. Goldberg’s push-relabel method

The algorithms for the maximum flow problem described above are all based
on flow augmentation. The basis is updating a flow f until Df has no s − t
path. Goldberg [1985,1987] and Goldberg and Tarjan [1986,1988a] proposed
a different, in a sense dual, method, the ‘push-relabel’ method: update a ‘pre-
flow’ f , maintaining the property that Df has no s− t path, until f is a flow.
(Augmenting flow methods are ‘primal’ as they maintain feasibility of the
primal linear program, while the push-relabel method maintains feasibility
of the dual linear program.)

Let D = (V, A) be a digraph, s, t ∈ V , and c : A → Q+. A function
f : A → Q is called an s − t preflow, or just a preflow, if

(10.19) (i) 0 ≤ f(a) ≤ c(a) for each a ∈ A,
(ii) excessf (v) ≥ 0 for each vertex v �= s.

(Preflows were introduced by Karzanov [1974]. excessf was defined in Section
10.1.)

Condition (ii) says that at each vertex v �= s, the outgoing preflow does
not exceed the ingoing preflow. For any preflow f , call a vertex v active if
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v �= t and excessf (v) > 0. So f is an s − t flow if and only if there are no
active vertices.

The push-relabel method consists of keeping a pair f, p, where f is a preflow
and p : V → Z+ such that

(10.20) (i) if (u, v) ∈ Af , then p(v) ≥ p(u) − 1,
(ii) p(s) = n and p(t) = 0.

Note that for any given f , such a function p exists if and only if Df has no
s − t path. Hence, if a function p satisfying (10.20) exists and f is an s − t
flow, then f is an s − t flow of maximum value (Corollary 10.2a).

Initially, f and p are set by:

(10.21) f(a) := c(a) if a ∈ δout(s) and f(a) := 0 otherwise;
p(v) := n if v = s and p(v) := 0 otherwise.

Next, while there exist active vertices, choose an active vertex u maximizing
p(u), and apply the following iteratively, until u is inactive:

(10.22) choose an arc (u, v) ∈ Af with p(v) = p(u) − 1 and push over
(u, v); if no such arc exists, relabel u.

Here to push over (u, v) ∈ Af means:

(10.23) if (u, v) ∈ A, reset f(u, v) := f(u, v)+ε, where ε := min{c(u, v)−
f(u, v), excessf (u)};
if (v, u) ∈ A, reset f(v, u) := f(v, u) − ε, where ε := min{f(v, u),
excessf (u)}.

To relabel u means:

(10.24) reset p(u) := p(u) + 1.

Note that if Af has no arc (u, v) with p(v) = p(u) − 1, then we can relabel u
without violating (10.20).

This method terminates, since:

Theorem 10.8. The number of pushes is O(n3) and the number of relabels
is O(n2).

Proof. First we show:

(10.25) throughout the process, p(v) < 2n for each v ∈ V .

Indeed, if v is active, then Df contains a v−s path (since f can be decomposed
as a sum of incidence vectors of s − v paths, for v ∈ V , and of directed
circuits). So by (10.20)(i), p(v) − p(s) ≤ distDf

(v, s) < n. As p(s) = n, we
have p(v) < 2n. This gives (10.25), which directly implies:

(10.26) the number of relabels is at most 2n2.
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To estimate the number of pushes, call a push (10.23) saturating if after
the push one has f(u, v) = c(u, v) (if (u, v) ∈ A) or f(v, u) = 0 (if (v, u) ∈ A).
Then:

(10.27) the number of saturating pushes is O(nm).

For consider any arc a = (u, v) ∈ A. If we increase f(a), then p(v) = p(u)−1,
while if we decrease f(a), then p(u) = p(v)−1. So meantime p(v) should have
been relabeled at least twice. As p is nondecreasing (in time), by (10.25) we
have (10.27).

Finally:

(10.28) the number of nonsaturating pushes is O(n3).

Between any two relabels the function p does not change. Hence there are
O(n) nonsaturating pushes, as each of them makes an active vertex v maxi-
mizing p(v) inactive (while possibly a vertex v′ with p(v′) < p(v) is activated).
With (10.26) this gives (10.28).

There is an efficient implementation of the method:

Theorem 10.9. The push-relabel method finds a maximum flow in time
O(n3).

Proof. We order the vertex set V as a doubly linked list, in order of increasing
value p(v). Moreover, for each u ∈ V we keep the set Lu of arcs (u, v) in Af

with p(v) = p(u) − 1, ordered as a doubly linked list. We also keep with each
vertex v the value excessf (v), and we keep linked lists of arcs of D incident
with v.

Throughout the iterations, we choose an active vertex u maximizing p(u),
and we process u, until u becomes inactive. Between any two relabelings,
this searching takes O(n) time, since as long as we do not relabel, we can
continue searching the list V in order. As we relabel O(n2) times, we can do
the searching in O(n3) time.

Suppose that we have found an active vertex u maximizing p(u). We next
push over each of the arcs in Lu. So finding an arc a = (u, v) for pushing
takes time O(1). If it is a saturating push, we can delete (u, v) from Lu in
time O(1). Moreover, we can update excessf (u) and excessf (v) in time O(1).
Therefore, as there are O(n3) pushes, they can be done in O(n3) time.

We decide to relabel u if Lu = ∅. When relabeling, updating the lists
takes O(n) time: When we reset p(u) from i to i + 1, then for each arc (u, v)
or (v, u) of D, we add (u, v) to Lu if p(v) = i and (u, v) ∈ Af , and we remove
(v, u) from Lv if p(v) = i+1 and (v, u) ∈ Af ; moreover, we move u to its new
rank in the list V . This all takes O(n) time. Therefore, as there are O(n2)
relabels, they can be done in O(n3) time.

Further notes on the push-relabel method. If we allow any active vertex u
to be chosen for (10.22) (not requiring maximality of p(u)), then the bounds of
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O(n2) on the number of relabels and O(nm) on the number of saturating pushes
are maintained, while the number of nonsaturating pushes is O(n2m).

A first-in first-out selection rule was studied by Goldberg [1985], also yield-
ing an O(n3) algorithm. Theorem 10.9 (using the largest-label selection) is due
to Goldberg and Tarjan [1986,1988a], who also showed an implementation of the
push-relabel method with dynamic trees, taking O(nm log(n2/m)) time. Cheriyan
and Maheshwari [1989] and Tunçel [1994] showed that the bound on the number
of pushes in Theorem 10.8 can be improved to O(n2√m), yielding an O(n2√m)
running time bound. Further improvements are given in Ahuja and Orlin [1989]
and Ahuja, Orlin, and Tarjan [1989]. The worst-case behaviour of the push-relabel
method was studied by Cheriyan and Maheshwari [1989].

10.8. Further results and notes

10.8a. A weakly polynomial bound

Edmonds and Karp [1972] considered the following fattest augmenting path rule:
choose a flow-augmenting path for which the flow value increase is maximal. They
showed that, if all capacities are integer, it terminates in at most 1 + m′ log φ
iterations, where φ is the maximum flow value and where m′ is the maximum
number of arcs in any s − t cut. This gives a maximum flow algorithm of running
time O(n2m log nC), where C is the maximum capacity (assuming all capacities
are integer). (For irrational capacities, Queyranne [1980] showed that the method
need not terminate.)

Edmonds and Karp [1970,1972] and Dinits [1973a] introduced the idea of
capacity-scaling, which gives the following stronger running time bound:

Theorem 10.10. For integer capacities, a maximum flow can be found in time

O(m2 log C).

Proof. Let L := ⌈log2 C⌉+1. For i = L, L−1, . . . , 0, we can obtain a maximum flow
f ′ for capacity function c′ := ⌊c/2i⌋, from a maximum flow f ′′ for capacity function
c′′ := ⌊c/2i+1⌋ as follows. Observe that the maximum flow value for c′ differs by
at most m from that of the maximum flow value φ for 2c′′. For let δout(U) be a
cut with 2c′′(δout(U)) = φ. Then c′(δout(U)) − φ ≤ |δout(U)| ≤ m. So a maximum
flow with respect to c′ can be obtained from 2f ′′ by at most m augmenting path
iterations. As each augmenting path iteration can be done in O(m) time, and as
⌊c/2L⌋ = 0, we have the running time bound given.

With methods similar to those used in Corollary 10.6a, the bound in Theorem
10.10 can be improved to O(nm log C), a result of Dinits [1973a] and Gabow [1985b].
To see this, observe that the proof of Theorem 10.6 also yields:

Theorem 10.11. Given an acyclic graph D = (V, A), s, t ∈ V , and a capacity

function c : A → Z+, an integer blocking flow f can be found in time O(nφ + m),
where φ is the value of f .
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Proof. Consider the proof of Theorem 10.6. We do at most φ iterations, while each
iteration takes O(n + t) time, where t is the number of arcs deleted.

Hence, similarly to Corollary 10.6a one has:

Corollary 10.11a. For integer capacities, a maximum flow can be found in time

O(n(φ + m)), where φ is the maximum flow value.

Proof. Similar to the proof of Corollary 10.6a.

Therefore,

Corollary 10.11b. For integer capacities, a maximum flow can be found in time

O(nm log C).

Proof. In the proof of Theorem 10.10, a maximum flow with respect to c′ can be
obtained from 2f ′′ in time O(nm) (by Corollary 10.11a), since the maximum flow
value in the residual graph Df ′′ is at most m.

10.8b. Complexity survey for the maximum flow problem

Complexity survey (∗ indicates an asymptotically best bound in the table):

O(n2mC) Dantzig [1951a] simplex method

O(nmC)
Ford and Fulkerson [1955,1957b]
augmenting path

O(nm2)
Dinits [1970], Edmonds and Karp
[1972] shortest augmenting path

O(n2m log nC)
Edmonds and Karp [1972] fattest
augmenting path

O(n2m)
Dinits [1970] shortest augmenting
path, layered network

O(m2 log C)
Edmonds and Karp [1970,1972]
capacity-scaling

O(nm log C)
Dinits [1973a], Gabow [1983b,1985b]
capacity-scaling

O(n3)
Karzanov [1974] (preflow push); cf.
Malhotra, Kumar, and Maheshwari
[1978], Tarjan [1984]

O(n2√m)
Cherkasskĭı [1977a] blocking preflow
with long pushes

O(nm log2 n)
Shiloach [1978], Galil and Naamad
[1979,1980]

O(n5/3m2/3) Galil [1978,1980a]

≫
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continued

O(nm log n)
Sleator [1980], Sleator and Tarjan
[1981,1983a] dynamic trees

∗ O(nm log(n2/m))
Goldberg and Tarjan [1986,1988a]
push-relabel+dynamic trees

O(nm + n2 log C)
Ahuja and Orlin [1989] push-relabel +
excess scaling

O(nm + n2√log C)
Ahuja, Orlin, and Tarjan [1989]
Ahuja-Orlin improved

∗ O(nm log((n/m)
√

log C + 2))
Ahuja, Orlin, and Tarjan [1989]
Ahuja-Orlin improved + dynamic trees

∗ O(n3/ log n)
Cheriyan, Hagerup, and Mehlhorn
[1990,1996]

O(n(m + n5/3 log n))
Alon [1990] (derandomization of
Cheriyan and Hagerup [1989,1995])

O(nm + n2+ε)
(for each ε > 0) King, Rao, and Tarjan
[1992]

∗ O(nm logm/n n + n2 log2+ε n)
(for each ε > 0) Phillips and
Westbrook [1993,1998]

∗ O(nm log m
n log n

n) King, Rao, and Tarjan [1994]

∗ O(m3/2 log(n2/m) log C) Goldberg and Rao [1997a,1998]

∗ O(n2/3m log(n2/m) log C) Goldberg and Rao [1997a,1998]

Here C := ‖c‖∞ for integer capacity function c. For a complexity survey for unit
capacities, see Section 9.6a.

Research problem: Is there an O(nm)-time maximum flow algorithm?
For the special case of planar undirected graphs:

O(n2 log n) Itai and Shiloach [1979]

O(n log2 n)
Reif [1983] (minimum cut), Hassin and Johnson
[1985] (maximum flow)

O(n log n log∗ n) Frederickson [1983b]

∗ O(n log n) Frederickson [1987b]

For directed planar graphs:

O(n3/2 log n) Johnson and Venkatesan [1982]

O(n4/3 log2 n log C)
Klein, Rao, Rauch, and Subramanian [1994],
Henzinger, Klein, Rao, and Subramanian [1997]

∗ O(n log n) Weihe [1994b,1997b]
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Itai and Shiloach [1979] and Hassin [1981b] showed that if s and t both are on
the outer boundary, then a shortest path algorithm applied to the dual gives an
O(n log n) algorithm for finding a minimum-capacity s−t cut and a maximum-value
s − t flow, also for the directed case. This extends earlier work of Hu [1969].

Khuller, Naor, and Klein [1993] studied the lattice structure of the integer s− t
flows in a planar directed graph. More on planar maximum flow can be found in
Khuller and Naor [1990,1994].

10.8c. An exchange property

Dinits [1973b] and Minieka [1973] observed the following analogue of Theorem 9.12:

Theorem 10.12. Let D = (V, A) be a digraph, let s, t ∈ V , let c : A → R+, and

let f1 and f2 be maximum s − t flows subject to c. Then there exists a maximum

s − t flow f subject to c such that f(a) = f1(a) for each arc a incident with s and

f(a) = f2(a) for each arc a incident with t.

Proof. Let δout(U) be an s − t cut of minimum capacity, with U ⊆ V and s ∈
U ,t �∈ U . So f1 and f2 coincide on δout(U) and on δin(U). Define f(a) := f1(a) if
a is incident with U and f(a) := f2(a) if a is incident with V \ U . This defines a
maximum s − t flow as required.

This was also shown by Megiddo [1974], who used it to prove the following.
Let D = (V, A) be a directed graph, let c : A → R+ be a capacity function,
and let s, t ∈ V , where s is a source, and t is a sink. An s − t flow f ≤ c is
called source-optimal if the vector (f(a) | a ∈ δout(s)) is lexicographically maximal
among all s − t flows subject to c (ordering the a ∈ δout(s) by nonincreasing value
of f(a)). The maximum flow algorithm implies that a source-optimal s − t flow is
a maximum-value s − t flow.

One similarly defines sink-optimal, and Theorem 10.12 implies that there exists
an s − t flow that is both source- and sink-optimal. The proof shows that this flow
can be found by combining a source-optimal and a sink-optimal flow appropriately.

As Megiddo showed, a source-optimal flow can be found iteratively, by updating
a flow f (starting with f = 0), by determining an arc a ∈ δout(s) with f(a) = 0,
on which f(a) can be increased most. Making this increase, gives the next f . Stop
if no increase is possible anymore.

10.8d. Further notes

Simplex method. The maximum flow problem is a linear programming problem,
and hence it can be solved with the simplex method of Dantzig [1951b] (this pa-
per includes an anti-cycling rule based on perturbation). This was elaborated by
Fulkerson and Dantzig [1955a,1955b]. A direct, combinatorial anti-cycling rule for
flow problems was given by Cunningham [1976]. Goldfarb and Hao [1990] gave a
pivot rule that leads to at most nm pivots, yielding an algorithm of running time
O(n2m). Goldberg, Grigoriadis, and Tarjan [1991] showed that with the help of dy-
namic trees there is an O(nm log n) implementation. See also Gallo, Grigoriadis, and
Tarjan [1989], Plotkin and Tardos [1990], Goldfarb and Hao [1991], Orlin, Plotkin,



Section 10.8d. Further notes 163

and Tardos [1993], Ahuja and Orlin [1997], Armstrong and Jin [1997], Goldfarb
and Chen [1997], Tarjan [1997], Armstrong, Chen, Goldfarb, and Jin [1998], and
Hochbaum [1998].

Worst-case analyses of maximum flow algorithms were given by Zadeh [1972,
1973b] (shortest augmenting path rule), Dinits [1973b] (shortest augmenting path
rule), Tarjan [1974e], Even and Tarjan [1975] (Dinits O(n2m) algorithm), Baratz
[1977] (Karzanov’s O(n3) algorithm), Galil [1981], Cheriyan [1988] (push-relabel
method), Cheriyan and Maheshwari [1989] (push-relabel method), and Martel
[1989] (push-relabel method). For further analysis of maximum flow algorithms,
see Tucker [1977a] and Ahuja and Orlin [1991].

Computational studies were reported by Cherkasskĭı [1979], Glover, Kling-
man, Mote, and Whitman [1979,1980,1984], Hamacher [1979] (Karzanov’s method),
Cheung [1980], Imai [1983b], Goldfarb and Grigoriadis [1988] (Dinits’ method
and the simplex method), Derigs and Meier [1989] (push-relabel method), Al-
izadeh and Goldberg [1993] (push-relabel in parallel), Anderson and Setubal [1993]
(push-relabel), Gallo and Scutellà [1993], Nguyen and Venkateswaran [1993] (push-
relabel), and Cherkassky and Goldberg [1995,1997] (push-relabel method). Consult
also Johnson and McGeoch [1993].

A probabilistic analysis was presented by Karp, Motwani, and Nisan [1993]. A
randomized approximation algorithm for minimum s − t cut was given by Benczúr
and Karger [1996].

Fulkerson [1959b] gave a labeling algorithm for finding the minimum cost of
capacities to be added to make an s − t flow of given value possible. Wollmer
[1964] studied which k arcs to remove from a capacitated digraph so as to reduce
the maximum s − t flow value as much as possible. McCormick [1997] studied the
problem of computing ‘least infeasible’ flows. Akers [1960] described the effect of
∆Y operations on max-flow computations.

Ponstein [1972] gave another rule guaranteeing termination of the augmenting
path iterations in Ford and Fulkerson’s algorithm. Karp [1972b] showed that the
maximum-cut problem is NP-complete — see Section 75.1a. Work on flows with
small capacities was reported by Fernández-Baca and Martel [1989] and Ahuja and
Orlin [1991]. Decomposition algorithms for locating minimal cuts were studied by
Jarvis and Tufekci [1982]. The kth best cut algorithm was given by Hamacher
[1982].

The problem of determining a flow along odd paths in an undirected graph was
considered by Schrijver and Seymour [1994] — see Section 29.11e.

For an in-depth survey of network flows, see Ahuja, Magnanti, and Orlin [1993].
Other surveys were given by Ford and Fulkerson [1962], Dantzig [1963], Busacker
and Saaty [1965], Fulkerson [1966], Hu [1969,1982], Iri [1969], Frank and Frisch
[1971], Berge [1973b], Adel’son-Vel’skĭı, Dinits, and Karzanov [1975] (for a review,
see Goldberg and Gusfield [1991]), Christofides [1975], Lawler [1976b], Bazaraa and
Jarvis [1977], Minieka [1978], Even [1979], Jensen and Barnes [1980], Papadimitriou
and Steiglitz [1982], Smith [1982], Chvátal [1983], Sys�lo, Deo, and Kowalik [1983],
Tarjan [1983], Gondran and Minoux [1984], Rockafellar [1984], Tarjan [1986], Nem-
hauser and Wolsey [1988], Ahuja, Magnanti, and Orlin [1989,1991], Chen [1990],
Cormen, Leiserson, and Rivest [1990], Goldberg, Tardos, and Tarjan [1990], Frank
[1995], Cook, Cunningham, Pulleyblank, and Schrijver [1998], Jungnickel [1999],
Mehlhorn and Näher [1999], and Korte and Vygen [2000].
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Golden and Magnanti [1977] gave a bibliography and Slepian [1968] discussed
the algebraic theory of flows.

10.8e. Historical notes on maximum flow

The problem of sending flow through a network was considered by Kantorovich
[1939]. In fact, he considered multicommodity flows — see the historical notes in
Section 70.13g.

The foundations for one-commodity maximum flow were laid during the period
November 1954-December 1955 at RAND Corporation in Santa Monica, California.
We will review the developments in a chronological order, by the date of the RAND
Reports.

In their basic report Maximal Flow through a Network dated 19 November
1954, Ford and Fulkerson [1954,1956b] showed the max-flow min-cut theorem for
undirected graphs:

Theorem 1. (Minimal cut theorem). The maximal flow value obtainable in a net-
work N is the minimum of v(D) taken over all disconnecting sets D.

(Robacker [1955a] wrote that the max-flow min-cut theorem was conjectured first
by Fulkerson.)

Ford and Fulkerson were motivated by flows and cuts in railway networks — see
below. In the same report, also a simple algorithm was described for the maximum
flow problem in case the graph, added with an extra edge connecting s and t, is
planar.

The authors moreover observed that the maximum flow problem is a special
case of a linear programming problem and that hence it can be solved by Dantzig’s
simplex method.

In a report of 1 January 1955 (revised 15 April 1955), Dantzig and Fulkerson
[1955,1956] showed that the max-flow min-cut theorem can also be deduced from
the duality theorem of linear programming (they mention that also A.J. Hoffman
did this), they generalized it to the directed case, and they observed, using results
of Dantzig [1951a], that if the capacities are integer, there is an integer maximum
flow (the ‘integrity theorem’). Hence (as they mention) Menger’s theorem follows
as a consequence. A simple computational method for the maximum flow problem
based on the simplex method was described in a report of 1 April 1955 by Fulkerson
and Dantzig [1955a,1955b].

Conversely, in a report of 26 May 1955, Robacker [1955a] derived the undirected
max-flow min-cut theorem from the undirected vertex-disjoint version of Menger’s
theorem.

Boldyreff’s heuristic

While the maximum flow algorithms found so far were derived from the simplex
method, the quest for combinatorial methods remained vivid. A heuristic for the
maximum flow problem, the ‘flooding technique’, was presented by Boldyreff [1955c,
1955b] on 3 June 1955 at the New York meeting of the Operations Research Society
of America (published as a RAND Report of 5 August 1955 (Boldyreff [1955a])).
The method is intuitive and the author did not claim generality (we quote from
Boldyreff [1955b]):
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It has been previously assumed that a highly complex railway transportation
system, too complicated to be amenable to analysis, can be represented by a
much simpler model. This was accomplished by representing each complete rail-
way operating division by a point, and by joining pairs of such points by arcs
(lines) with traffic carrying capacities equal to the maximum possible volume of
traffic (expressed in some convenient unit, such as trains per day) between the
corresponding operating divisions.
In this fashion, a network is obtained consisting of three sets of points — points
of origin, intermediate or junction points, and the terminal points (or points of
destination) — and a set of arcs of specified traffic carrying capacities, joining
these points to each other.

Boldyreff’s arguments for designing a heuristic procedure are formulated as follows:

In the process of searching for the methods of solving this problem the following
objectives were used as a guide:
1. That the solution could be obtained quickly, even for complex networks.
2. That the method could be explained easily to personnel without specialized
technical training and used by them effectively.
3. That the validity of the solution be subject to easy, direct verification.
4. That the method would not depend on the use of high-speed computing or
other specialized equipment.

Boldyreff’s ‘flooding technique’ pushes as much flow as possible greedily through
the network. If at some vertex a ‘bottleneck’ arises (i.e., more trains arrive than can
be pushed further through the network), it is eliminated by returning the excess
trains to the origin.

The method is empirical, not using backtracking, and not leading to an optimum
solution in all cases:

Whenever arbitrary decisions have to be made, ordinary common sense is used as
a guide. At each step the guiding principle is to move forward the maximum pos-
sible number of trains, and to maintain the greatest flexibility for the remaining
network.

Boldyreff speculates:

In dealing with the usual railway networks a single flooding, followed by removal
of bottlenecks, should lead to a maximal flow.

In the abstract of his lecture, Boldyreff [1955c] mentions:

The mechanics of the solutions is formulated as a simple game which can be
taught to a ten-year-old boy in a few minutes.

In his article, Boldyreff [1955b] gave as example the model of a real, comprehensive,
railway transportation system with 41 vertices and 85 arcs:

The total time of solving the problem is less than thirty minutes.

His closing remarks are:

Finally there is the question of a systematic formal foundation, the comprehensive
mathematical basis for empiricism and intuition, and the relation of the present
techniques to other processes, such as, for instance, the multistage decision process
(a suggestion of Bellman’s).
All this is reserved for the future.
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Ford and Fulkerson’s motivation: The Harris-Ross report

In their first report on maximum flow, Maximal Flow through a Network, Ford and
Fulkerson [1954,1956b] mentioned that the maximum flow problem was formulated
by T.E. Harris as follows:

Consider a rail network connecting two cities by way of a number of intermediate
cities, where each link of the network has a number assigned to it representing its
capacity. Assuming a steady state condition, find a maximal flow from one given
city to the other.

Later, in their book Flows in Networks, Ford and Fulkerson [1962] gave a more
precise reference17:

It was posed to the authors in the spring of 1955 by T.E. Harris, who, in conjunc-
tion with General F.S. Ross (Ret.), had formulated a simplified model of railway
traffic flow, and pinpointed this particular problem as the central one suggested
by the model [11].

Ford and Fulkerson’s reference [11] here is the secret report by Harris and Ross
[1955] entitled Fundamentals of a Method for Evaluating Rail Net Capacities, dated
24 October 195518, and written for the Air Force. The report was downgraded to
‘unclassified’ on 21 May 1999.

Unlike what Ford and Fulkerson write, the interest of Harris and Ross was not
to find a maximum flow, but rather a minimum cut (‘interdiction’) of the Soviet
railway system. We quote:

Air power is an effective means of interdicting an enemy’s rail system, and such
usage is a logical and important mission for this Arm.
As in many military operations, however, the success of interdiction depends
largely on how complete, accurate, and timely is the commander’s information,
particularly concerning the effect of his interdiction-program efforts on the en-
emy’s capability to move men and supplies. This information should be available
at the time the results are being achieved.
The present paper describes the fundamentals of a method intended to help the
specialist who is engaged in estimating railway capabilities, so that he might more
readily accomplish this purpose and thus assist the commander and his staff with
greater efficiency than is possible at present.

In the Harris-Ross report, first much attention is given to modelling a railway
network: taking each railway junction as a vertex would give a too refined net-
work (for their purposes). Therefore, Harris and Ross proposed to take ‘railway
divisions’ (organizational units based on geographical areas) as vertices, and to es-
timate the capacity of the connections between any two adjacent railway divisions.
In an interview with Alexander [1996], Harris remembered:

We were studying rail transportation in consultation with a retired army general,
Frank Ross, who had been chief of the Army’s Transportation Corps in Europe.
We thought of modeling a rail system as a network. At first it didn’t make sense,
because there’s no reason why the crossing point of two lines should be a special

17 There seems to be some discrepancy between the date of the RAND Report of Ford
and Fulkerson (19 November 1954) and the date mentioned in the quotation (spring of
1955).

18 In their book, Ford and Fulkerson incorrectly date the Harris-Ross report 24 October
1956.
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sort of node. But Ross realized that, in the region we were studying, the “divi-
sions” (little administrative districts) should be the nodes. The link between two
adjacent nodes represents the total transportation capacity between them. This
made a reasonable and manageable model for our rail system.

The Harris-Ross report stresses that specialists remain needed to make up the
model (which seems always a good strategy to get new methods accepted):

It is not the purpose that the highly specialized individual who estimates track
and network capacities should be replaced by a novice with a calculating machine.
Rather, it is accepted that the evaluation of track capacities remains a task for
the specialist.

[...]
The ability to estimate with relative accuracy the capacity of single railway lines
is largely an art. Specialists in this field have no authoritative text (insofar as the
authors are informed) to guide their efforts, and very few individuals have either
the experience or talent for this type of work. The authors assume that this job
will continue to be done by the specialist.

The authors next disputed the naive belief that a railway network is just a set of
disjoint through lines, and that cutting these lines would imply cutting the network:

It is even more difficult and time-consuming to evaluate the capacity of a railway
network comprising a multitude of rail lines which have widely varying charac-
teristics. Practices among individuals engaged in this field vary considerably, but
all consume a great deal of time. Most, if not all, specialists attack the problem
by viewing the railway network as an aggregate of through lines.
The authors contend that the foregoing practice does not portray the full flexi-
bility of a large network. In particular it tends to gloss over the fact that even if
every one of a set of independent through lines is made inoperative, there may
exist alternative routings which can still move the traffic.
This paper proposes a method that departs from present practices in that it
views the network as an aggregate of railway operating divisions. All trackage
capacities within the divisions are appraised, and these appraisals form the basis
for estimating the capability of railway operating divisions to receive trains from
and concurrently pass trains to each neighboring division in 24-hour periods.

Whereas experts are needed to set up the model, to solve it is routine (when having
the ‘work sheets’):

The foregoing appraisal (accomplished by the expert) is then used in the prepara-
tion of comparatively simple work sheets that will enable relatively inexperienced
assistants to compute the results and thus help the expert to provide specific
answers to the problems, based on many assumptions, which may be propounded
to him.

While Ford and Fulkerson flow-augmenting path algorithm for the maximum
flow problem was not found yet, the Harris-Ross report suggests applying Boldyr-
eff’s flooding technique described above. The authors preferred this above the sim-
plex method for maximum flow:

The calculation would be cumbersome; and, even if it could be performed, suffi-
ciently accurate data could not be obtained to justify such detail.

However, later in the report their assessment of the simplex method is more
favourable:

These methods do not require elaborate computations and can be performed by
a relatively untrained person.
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The Harris-Ross report applies Boldyreff’s flooding technique to a network
model of the Soviet and East European railways. For the data it refers to several
secret reports of the Central Intelligence Agency (C.I.A.) on sections of the Soviet
and East European railway networks. After the aggregation of railway divisions to
vertices, the network has 44 vertices and 105 (undirected) edges.

Figure 10.2

From Harris and Ross [1955]: Schematic diagram of the railway network of the Western
Soviet Union and East European countries, with a maximum flow of value 163,000 tons
from Russia to Eastern Europe, and a cut of capacity 163,000 tons indicated as ‘The
bottleneck’.

The application of the flooding technique to the problem is displayed step by
step in an appendix of the report, supported by several diagrams of the railway
network. (Also work sheets are provided, to allow for future changes in capacities.)
It yields a flow of value 163,000 tons from sources in the Soviet Union to destinations
in East European ‘satellite’ countries, together with a cut with a capacity of, again,
163,000 tons. So the flow value and the cut capacity are equal, hence optimum. In
the report, the minimum cut is indicated as ‘the bottleneck’ (Figure 10.2).
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Further developments

Soon after the Harris-Ross report, Ford and Fulkerson [1955,1957b] presented in a
RAND Report of 29 December 1955 their ‘very simple algorithm’ for the maximum
flow problem, based on finding ‘augmenting paths’ as described in Section 10.4
above. The algorithm finds in a finite number of steps a maximum flow, if all
capacities have integer values. We quote:

This problem is of course a linear programming problem, and hence may be solved
by Dantzig’s simplex algorithm. In fact, the simplex computation for a problem of
this kind is particularly efficient, since it can be shown that the sets of equations
one solves in the process are always triangular [2]. However, for the flow problem,
we shall describe what appears to be a considerably more efficient algorithm; it is,
moreover, readily learned by a person with no special training, and may easily be
mechanized for handling large networks. We believe that problems involving more
than 500 nodes and 4,000 arcs are within reach of present computing machines.

(Reference [2] is Dantzig and Fulkerson [1955].)
In the RAND Report, Ford and Fulkerson [1955] mention that Boldyreff’s flood-

ing technique might give a good starting flow, but in the final paper (Ford and
Fulkerson [1957b]) this suggestion has been omitted.

An alternative proof of the max-flow min-cut theorem was given by Elias, Fein-
stein, and Shannon [1956] (‘manuscript received by the PGIT, July 11,1956’), who
claimed that the result was known by workers in communication theory:

This theorem may appear almost obvious on physical grounds and appears to have
been accepted without proof for some time by workers in communication theory.
However, while the fact that this flow cannot be exceeded is indeed almost trivial,
the fact that it can actually be achieved is by no means obvious. We understand
that proofs of the theorem have been given by Ford and Fulkerson and Fulkerson
and Dantzig. The following proof is relatively simple, and we believe different in
principle.

The proof of Elias, Feinstein, and Shannon is based on a reduction technique similar
to that used by Menger [1927] in proving his theorem.
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Circulations and transshipments

Circulations and transshipments are variants of flows. Circulations have no
source or sink — so flow conservation holds in each vertex — while trans-
shipments have several sources and sinks — so any nonnegative function
is a transshipment (however, the problem is to find a transshipment with
prescribed excess function).
Problems on circulations and transshipments can be reduced to flow prob-
lems, or can be treated with similar methods.

11.1. A useful fact on arc functions

Recall that for any digraph D = (V, A) and any f : A → R, the excess
function excessf : V → R is defined by

(11.1) excessf (v) := f(δin(v)) − f(δout(v))

for v ∈ V .
The following theorem of Gallai [1958a,1958b] will turn out to be useful

in this chapter:

Theorem 11.1. Let D = (V, A) be a digraph and let f : A → R+. Then f
is a nonnegative linear combination of at most |A| vectors χP , where P is a
directed path or circuit. If P is a path, it starts at a vertex v with excessf (v) <
0 and ends at a vertex with excessf (v) > 0. If f is integer, we can take the
linear combination integer-scalared. The combination can be found in O(nm)
time.

Proof. We may assume that excessf = 0, since we can add a new ver-
tex u, for each v ∈ V with excessf (v) > 0, an arc (v, u), and for each
v ∈ V with excessf (v) < 0, an arc (u, v). Define f(v, u) := excessf (v) and
f(u, v) := −excessf (v) for any new arc (u, v) or (v, u). Then the new f sat-
isfies excessf = 0, and a decomposition for the new f gives a decomposition
for the original f .

Define A′ := {a | f(a) > 0}. We apply induction on |A′|. We may assume
that A′ �= ∅. Then A′ contains a directed circuit, C say. Let τ be the minimum
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of the f(a) for a ∈ AC and let f ′ := f − τχC . Then the theorem follows by
induction.

Since we can find C in O(n) time, we can find the decomposition in O(nm)
time.

11.2. Circulations

Let D = (V, A) be a digraph. A function f : A → R is called a circulation if

(11.2) f(δin(v)) = f(δout(v))

for each vertex v ∈ V . So now the flow conservation law holds in each vertex
v. By Theorem 11.1,

(11.3) each nonnegative circulation is a nonnegative linear combination
of incidence vectors of directed circuits; each nonnegative integer
circulation is the sum of incidence vectors of directed circuits.

Hoffman [1960] mentioned that he proved the following characterization
of the existence of circulations in 195619:

Theorem 11.2 (Hoffman’s circulation theorem). Let D = (V, A) be a digraph
and let d, c : A → R with d ≤ c. Then there exists a circulation f satisfying
d ≤ f ≤ c if and only if

(11.4) d(δin(U)) ≤ c(δout(U))

for each subset U of V . If moreover d and c are integer, f can be taken
integer.

Proof. To see necessity of (11.4), suppose that a circulation f satisfying
d ≤ f ≤ c exists. Then for each U ⊆ V ,

(11.5) d(δin(U)) ≤ f(δin(U)) = f(δout(U)) ≤ c(δout(U)).

To see sufficiency, choose a function f satisfying d ≤ f ≤ c and mini-
mizing ‖excessf‖1. Let S := {v ∈ V | excessf (v) > 0} and T := {v ∈ V |
excessf (v) < 0}. Suppose that S �= ∅. Let Df = (V, Af ) be the residual graph
(defined in (10.9)). If Df contains an S −T path P , we can modify f along P
so as to reduce ‖excessf‖1. So Df contains no S −T path. Let U be the set of
vertices reachable in Df from S. Then for each a ∈ δout

A (U) we have a �∈ Af

and hence f(a) = c(a). Similarly, for each a ∈ δin
A (U) we have a−1 �∈ Af and

hence f(a) = d(a). Therefore,

(11.6) d(δin(U)) − c(δout(U)) = f(δin(U)) − f(δout(U)) = excessf (U)
= excessf (S) > 0,

19 In fact, A.J. Hoffman [1960] attributes it to A.H. Hoffman, but this is a misprint (A.J.
Hoffman, personal communication 1995).
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contradicting (11.4).

(One can derive this theorem also from the max-flow min-cut theorem, with
the methods described in Section 11.6 below.)

Theorem 11.2 implies that any circulation can be rounded:

Corollary 11.2a. Let D = (V, A) be a digraph and let f : A → R be a
circulation. Then there exists an integer circulation f ′ with ⌊f(a)⌋ ≤ f ′(a) ≤
⌈f(a)⌉ for each arc a.

Proof. Take d := ⌊f⌋ and c := ⌈f⌉ in Theorem 11.2.

Another consequence is:

Corollary 11.2b. Let D = (V, A) be a digraph, let k ∈ Z+ (with k ≥ 1), and
let f : A → Z be a circulation. Then f = f1 + · · · + fk where each fi is an
integer circulation satisfying

(11.7) ⌊ 1
kf⌋ ≤ fi ≤ ⌈ 1

kf⌉.

Proof. By induction on k. Define d := ⌊ 1
kf⌋ and c := ⌈ 1

kf⌉. It suffices to
show that there exists an integer circulation fk such that

(11.8) d ≤ fk ≤ c and (k − 1)d ≤ f − fk ≤ (k − 1)c,

equivalently,

(11.9) max{d(a), f(a) − (k − 1)c(a)} ≤ fk(a)
≤ min{c(a), f(a) − (k − 1)d(a)}

for each a ∈ A. Since these bounds are integer, by Corollary 11.2a it suffices
to show that there is any circulation obeying these bounds. For that we can
take 1

kf .

This corollary implies that the set of circulations f satisfying d ≤ f ≤ c
for some integer bounds d, c, has the integer decomposition property.

11.3. Flows with upper and lower bounds

We can derive from Corollary 11.2a that flows can be rounded similarly:

Corollary 11.2c. Let D = (V, A) be a digraph, let s, t ∈ V , and let f be an
s − t flow of value k ∈ Z. Then there exists an integer s − t flow f ′ of value
k with ⌊f(a)⌋ ≤ f ′(a) ≤ ⌈f(a)⌉ for each arc a.

Proof. Add an arc (t, s) and define f(t, s) := k. We obtain a circulation to
which we can apply Corollary 11.2a. Deleting the new arc, we obtain an s− t
flow as required.
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According to Berge [1958b], A.J. Hoffman showed the following on the
existence of a flow obeying both an upper bound (capacity) and a lower
bound (demand):

Corollary 11.2d. Let D = (V, A) be a digraph, let s, t ∈ V , and let d, c :
A → R+ with d ≤ c. Then there exists an s − t flow f with d ≤ f ≤ c if and
only if

(11.10) c(δout(U)) ≥ d(δin(U))

for each U ⊆ V not separating s and t. If moreover d and c are integer, f
can be taken integer.

Proof. Necessity being direct, we show sufficiency. Identify s and t. By The-
orem 11.2, there exists a circulation in the shrunk network. This gives a flow
as required in the original network.

(Berge [1958b] wrote that this result was shown by Hoffman with linear
programming techniques, and was reduced to network theory by L.R. Ford,
Jr.)

Moreover, a min-max relation for the maximum value of a flow obeying
upper and lower bounds can be derived:

Corollary 11.2e. Let D = (V, A) be a digraph, let s, t ∈ V , and let d, c :
A → R+ with d ≤ c, such that there exists an s − t flow f with d ≤ f ≤ c.
Then the maximum value of an s − t flow f with d ≤ f ≤ c is equal to the
minimum value of

(11.11) c(δout(U)) − d(δin(U))

taken over U ⊆ V with s ∈ U and t �∈ U . If d and c are integer, the maximum
is attained by an integer flow f .

Proof. Let µ be the minimum value of (11.11). Add to D an arc (t, s),
with d(t, s) = c(t, s) = µ. Then the extended network has a circulation by
Theorem 11.2. Indeed, condition (11.4) for U not separating s and t follows
from (11.10). If s ∈ U , t �∈ U , (11.4) follows from the definition of µ. If s �∈ U ,
t ∈ U , then µ ≥ value(f). Hence

(11.12) µ + c(δout(U)) − d(δin(U)) ≥ µ + f(δout(U)) − f(δin(U))
= µ − value(f) ≥ 0.

Therefore, the original network has a flow as required.

11.4. b-transshipments

Let D = (V, A) be a digraph and let b ∈ RV . A function f : A → R is
called a b-transshipment if excessf = b. (So each function f : A → R is a
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b-transshipment for some b. excessf is defined in Section 10.1.) By reduction
to Hoffman’s circulation theorem, one may characterize the existence of a
b-transshipment obeying given upper and lower bounds on the arcs:

Corollary 11.2f. Let D = (V, A) be a digraph, let d, c : A → R with d ≤ c,
and let b : V → R with b(V ) = 0. Then there exists a b-transshipment f with
d ≤ f ≤ c if and only if

(11.13) c(δin(U)) − d(δout(U)) ≥ b(U)

for each U ⊆ V . If moreover b, c, and d are integer, f can be taken integer.

Proof. The corollary can be reduced to Hoffman’s circulation theorem (The-
orem 11.2). Add a new vertex u, and for each v ∈ V an arc (v, u) with
d(v, u) := c(v, u) := b(v). Then a function f as required exists if and only if
the extended graph has a circulation f ′ satisfying d ≤ f ′ ≤ c. The condition
in Hoffman’s circulation theorem is equivalent to (11.13).

Conversely, Hoffman’s circulation theorem is the special case b = 0. The
special case d = 0 is the following result of Gale [1956,1957]:

Corollary 11.2g (Gale’s theorem). Let D = (V, A) be a digraph and let
c : A → R and b : V → R with b(V ) = 0. Then there exists a b-transshipment
f satisfying 0 ≤ f ≤ c if and only if

(11.14) c(δin(U)) ≥ b(U)

for each U ⊆ V . If moreover b and c are integer, f can be taken integer.

Proof. Take d = 0 in Corollary 11.2f.

The proof of Gale is by reduction to the max-flow min-cut theorem. Con-
versely, the max-flow min-cut theorem follows easily: if s, t ∈ V and φ is
the minimum capacity of an s − t cut, then set b(s) := −φ, b(t) := φ, and
b(v) := 0 for each v �= s, t. As (11.14) is satisfied, by Gale’s theorem there
exists a b-transshipment f with 0 ≤ f ≤ c. This is an s − t flow of value φ.

Taking c = ∞ in Gale’s theorem gives the following result of Rado [1943]:

Corollary 11.2h. Let D = (V, A) be a digraph and let b : V → R with
b(V ) = 0. Then there exists a b-transshipment f ≥ 0 if and only if b(U) ≤ 0
for each U ⊆ V with δin(U) = ∅.

Proof. This is Gale’s theorem (Corollary 11.2g) for c = ∞.

11.5. Upper and lower bounds on excessf

Instead of equality constraints on excessf one may put upper and lower
bounds b and a. This has the following characterization:
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Corollary 11.2i. Let D = (V, A) be a digraph, let d, c : A → R with d ≤ c,
and let a, b : V → R with a ≤ b. Then there exists a z-transshipment f with
d ≤ f ≤ c for some z with a ≤ z ≤ b if and only if

(11.15) c(δin(U)) − d(δout(U)) ≥ max{a(U), −b(V \ U)}
for each U ⊆ V . If moreover a, b, c, and d are integer, f can be taken integer.

Proof. The corollary can be reduced to Hoffman’s circulation theorem: Add
a new vertex u, and for each v ∈ V an arc (v, u) with d(v, u) := a(v) and
c(v, u) := b(v). Then a function f as required exists if and only if the extended
graph has a circulation f ′ satisfying d ≤ f ′ ≤ c.

This characterization can be formulated equivalently as:

Corollary 11.2j. Let D = (V, A) be a digraph, let d, c : A → R with d ≤ c,
and let a, b : V → R with a ≤ b. Then there exists a z-transshipment f
with d ≤ f ≤ c for some z with a ≤ z ≤ b if and only if there exists a
z-transshipment f ′ with d ≤ f ′ ≤ c for some z ≥ a and there exists a z-
transshipment f ′′ with d ≤ f ′′ ≤ c for some z ≤ b.

Proof. Directly from Corollary 11.2i, since (11.15) can be split into a condi-
tion on a and one on b.

For d = 0, Corollary 11.2i gives a result of Fulkerson [1959a]:

Corollary 11.2k. Let D = (V, A) be a digraph, let c : A → R+, and let
a, b : V → R with a ≤ b. Then there exists a z-transshipment f satisfying
0 ≤ f ≤ c, for some z with a ≤ z ≤ b if and only if

(11.16) c(δin(U)) ≥ max{a(U), −b(V \ U)}
for each U ⊆ V . If moreover a, b, and c are integer, f can be taken integer.

Proof. Directly from Corollary 11.2i, taking d = 0.

11.6. Finding circulations and transshipments
algorithmically

Algorithmic and complexity results for circulations and transshipments fol-
low directly from those for the maximum flow problem, by the following
construction.

Let D = (V, A) be a digraph and let d, c : A → Q with d ≤ c. Then a
circulation f satisfying d ≤ f ≤ c can be found as follows. Give each arc a a
new capacity

(11.17) c′(a) := c(a) − d(a).
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Add two new vertices s and t. For each v ∈ V with excessd(v) > 0, add an arc
(s, v) with capacity c′(s, v) := excessd(v). For each v ∈ V with excessd(v) <
0, add an arc (v, t) with capacity c′(v, t) := −excessd(v). This makes the
extended graph D′ = (V ′, A′).

Then D has a circulation f satisfying d ≤ f ≤ c if and only if D′ has an
s − t flow f ′ ≤ c′ of value

(11.18)
∑

v ∈ V
excessd(v) > 0

excessd(v)

(by taking f(a) = f ′(a) + d(a) for each a ∈ A).
This yields:

Theorem 11.3. If a maximum flow can be found in time MF(n, m), then a
circulation can be found in time O(MF(n, m)).

Proof. Apply the above construction.

If, in addition, functions a, b : V → Q are given, we can reduce the problem
of finding a transshipment f satisfying d ≤ f ≤ c and a ≤ excessf ≤ b to
finding a circulation in a slightly larger graph — see the proof of Corollary
11.2i. This gives:

Corollary 11.3a. If a maximum flow can be found in time MF(n, m), then
(given a, b, d, c) a z-transshipment f satisfying d ≤ f ≤ c and a ≤ z ≤ b can
be found in time O(MF(n, m)).

Proof. Reduce the problem with the construction of Corollary 11.2i to the
circulation problem, and use Theorem 11.3.

11.6a. Further notes

The results on flows, circulations, and transshipments extend directly to the case
where also each vertex has an upper and/or lower bound on the amount of flow
traversing that vertex. We can reduce this to the cases considered above by splitting
any vertex v into two vertices v′ and v′′, adding an arc from v′ to v′′ with bounds
equal to the vertex bounds, and replacing any arc (u, v) by (u′′, v′).

The results of this chapter also apply to characterizing the existence of a sub-
graph D′ = (V, A′) of a given graph D = (V, A), where D′ has prescribed bounds
on the indegrees and outdegrees (cf. Hakimi [1965]).



Chapter 12

Minimum-cost flows and
circulations

Minimum-cost flows can be seen to generalize both shortest path and max-
imum flow. A shortest s − t path can be deduced from a minimum-cost
s − t flow of value 1, while a maximum s − t flow is a minimum-cost s − t
flow if we take cost −1 on arcs leaving s and 0 on all other arcs (assuming
no arc enters s).
Minimum-cost flows, circulations, and transshipments are closely related,
and when describing algorithms, we will choose the most suitable variant.
In this chapter, graphs can be assumed to be simple.

12.1. Minimum-cost flows and circulations

Let D = (V, A) be a digraph and let k : A → R, called the cost function. For
any function f : A → R, the cost of f is, by definition,

(12.1) cost(f) :=
∑

a∈A

k(a)f(a).

The minimum-cost s − t flow problem is: given a digraph D = (V, A),
s, t ∈ V , a ‘capacity’ function c : A → Q+, a ‘cost’ function k : A → Q, and
a value φ ∈ Q+, find an s − t flow f ≤ c of value φ that minimizes cost(f).
This problem includes the problem of finding a maximum-value s − t flow
that has minimum cost among all maximum-value s − t flows.

Related is the minimum-cost circulation problem: given a digraph D =
(V, A), a ‘demand’ function d : A → Q, a ‘capacity’ function c : A → Q,
and a ‘cost’ function k : A → Q, find a circulation f subject to d ≤ f ≤ c,
minimizing cost(f).

One can easily reduce the minimum-cost flow problem to the minimum-
cost circulation problem: just add an arc a0 := (t, s) with d(a0) := c(a0) = φ
and k(a0) := 0. Also, let d(a) := 0 for each arc a �= a0. Then a minimum-cost
circulation in the extended digraph gives a minimum-cost flow of value φ in
the original digraph.

Also the problem of finding a maximum-value s − t flow can be reduced
easily to a minimum-cost circulation problem in the extended digraph: now
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define d(a0) := 0, c(a0) := ∞, and k(a0) := −1. Moreover, set k(a) := 0 for
each a �= a0. Then a minimum-cost circulation gives a maximum-value s − t
flow.

Edmonds and Karp [1970,1972] showed that the minimum-cost circu-
lation problem is solvable in polynomial time. Their algorithm is based
on a technique called capacity-scaling and can be implemented to run in
O(m(m + n log n) log C) time, where C := ‖c‖∞ (assuming c integer). So
it is weakly polynomial-time. They raised the question of the existence of a
strongly polynomial-time algorithm.

Tardos [1985a] answered this question positively. Her algorithm has re-
sulted in a stream of further research on strongly polynomial-time algorithms
for the minimum-cost circulation problem. It stood at the basis of the strongly
polynomial-time algorithms discussed in this chapter.

12.2. Minimum-cost circulations and the residual graph
Df

It will be useful again to consider the residual graph Df = (V, Af ) of f : A →
R (with respect to d and c), where

(12.2) Af := {a | a ∈ A, f(a) < c(a)} ∪ {a−1 | a ∈ A, f(a) > d(a)}.

Here a−1 := (v, u) if a = (u, v).
We extend any cost function k to A−1 by defining the cost k(a−1) of a−1

by:

(12.3) k(a−1) := −k(a)

for each a ∈ A.
We also use the following notation. Any directed circuit C in Df gives an

undirected circuit in D = (V, A). We define χC ∈ RA by:

(12.4) χC(a) :=





1 if C traverses a,
−1 if C traverses a−1,

0 if C traverses neither a nor a−1,

for a ∈ A.
Given D = (V, A), d, c : A → R, a circulation f in D is called feasible if

d ≤ f ≤ c. The following observation is fundamental20:

Theorem 12.1. Let D = (V, A) be a digraph and let d, c, k : A → R. Let
f : A → R be a feasible circulation. Then f has minimum cost among all
feasible circulations if and only if each directed circuit of Df has nonnegative
cost.

20 The idea goes back to Tolstŏı [1930,1939] (for the transportation problem), and was
observed also by Robinson [1949,1950] (for the transportation problem), Gallai [1957,
1958b], Busacker and Gowen [1960], Fulkerson [1961], and Klein [1967].
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Proof. Necessity. Let C be a directed circuit in Df of negative cost. Then for
small enough ε > 0, f ′ := f +εχC is again a circulation satisfying d ≤ f ′ ≤ c.
Since cost(f ′) < cost(f), f is not minimum-cost.

Sufficiency. Suppose that each directed circuit in Df has nonnegative
cost. Let f ′ be any feasible circulation. Then f ′ − f is a circulation, and
hence

(12.5) f ′ − f =
m∑

j=1

λjχ
Cj

for some directed circuits C1, . . . , Cm in Df and λ1, . . . , λm > 0. Hence

(12.6) cost(f ′) − cost(f) = cost(f ′ − f) =
m∑

j=1

λjk(Cj) ≥ 0.

So cost(f ′) ≥ cost(f).

This directly implies a strong result: optimality of a given feasible circu-
lation f can be checked in polynomial time, namely in time O(nm) (with
the Bellman-Ford method). It also implies the following good characteriza-
tion (Gallai [1957,1958b], Ford and Fulkerson [1962]; for the simpler case
of a symmetric cost function satisfying the triangle inequality it was shown
by Kantorovich [1942], Kantorovich and Gavurin [1949], and Koopmans and
Reiter [1951]):

Corollary 12.1a. Let D = (V, A) be a digraph, let d, c, k : A → R, and let f
be a feasible circulation. Then f is minimum-cost if and only if there exists
a function p : V → R such that

(12.7) k(a) ≥ p(v) − p(u) if f(a) < c(a),
k(a) ≤ p(v) − p(u) if f(a) > d(a),

for each arc a = (u, v) ∈ A.

Proof. Directly from Theorem 12.1 with Theorem 8.2.

From this characterization, a min-max relation for minimum-cost circu-
lations can be derived — see Section 12.5b. It also follows directly from the
duality theorem of linear programming — see Chapter 13.

12.3. Strongly polynomial-time algorithm

Theorem 12.1 gives us a method to improve a given circulation f :

(12.8) Choose a negative-cost directed circuit C in the residual graph
Df , and reset f := f + τχC where τ is maximal subject to d ≤
f ≤ c. If no such directed circuit exists, f is a minimum-cost
circulation.



180 Chapter 12. Minimum-cost flows and circulations

It is not difficult to see that for rational data this leads to a finite algorithm.
However, if we just select circuits in an arbitrary fashion, the algorithm

may take exponential time, as follows by application to the maximum flow
problem given in Figure 10.1 (by adding an arc from t to s of cost −1). Zadeh
[1973a,1973b] showed that several strategies of selecting a circuit do not lead
to a strongly polynomial-time algorithm.

Goldberg and Tarjan [1988b,1989] were able to prove that one obtains a
strongly polynomial-time algorithm if one chooses in (12.8) a directed circuit
C of minimum mean cost, that is, one minimizing

(12.9)
k(C)

|C| .

(We identify C with its set AC of arcs.) In Corollary 8.10a we saw that such
a circuit can be found in time O(nm).

Note that if we formulate a maximum s − t flow problem as a minimum-
cost circulation problem, by adding an arc (t, s) of cost −1 and capacity
+∞, then the minimum-mean cost cycle-cancelling algorithm reduces to the
shortest augmenting path method of Dinits [1970] and Edmonds and Karp
[1972] (Section 10.5).

We now prove the result of Goldberg and Tarjan (as usual, n := |V |,
m := |A|):

Theorem 12.2. Choosing a minimum-mean cost cycle C in (12.8), the num-
ber of iterations is at most 4nm2⌈ln n⌉.

Proof. Let f0, f1, . . . be the circulations found. For each i ≥ 0, define Ai :=
Afi

, let εi be minus the minimum of (12.9) in (V, Ai), and let Ci be the
directed circuit in Ai chosen to obtain fi+1 (taking circuits as arc sets). So

(12.10) k(Ci) = −εi|Ci|.
εi is the smallest value such that if we would add εi to the cost of each arc

of Ai, then each directed circuit has nonnegative cost. So εi is the smallest
value for which there exists a function pi : V → Q such that

(12.11) k(a) + εi ≥ pi(v) − pi(u) for each a = (u, v) ∈ Ai.

The proof of the theorem is based on the following two facts on the de-
crease of the εi:

(12.12) (i) εi+1 ≤ εi and (ii) εi+m ≤ (1 − 1
n )εi

(assuming in (ii) that we reach iteration i + m). To prove (12.12), we may
assume that i = 0 and p0 = 0. Then k(a) ≥ −ε0 for each a ∈ A0, with
equality if a ∈ C0.

Since A1 ⊆ A0 ∪C−1
0 and since each arc in C−1

0 has cost ε0 ≥ 0, we know
that k(a) ≥ −ε0 for each a ∈ A1. Hence ε1 ≤ ε0. This proves (12.12)(i).

To prove (ii), we may assume εm > 0. We first show that at least one of
the directed circuits C0, . . . , Cm−1 contains an arc a with k(a) ≥ 0. Otherwise



Section 12.3. Strongly polynomial-time algorithm 181

each Ah arises from Ah−1 by deleting at least one negative-cost arc and adding
only positive-cost arcs. This implies that Am contains no negative-cost arc,
and hence fm has minimum cost; so εm = 0, contradicting our assumption.

Let h be the smallest index such that Ch contains an arc a with k(a) ≥ 0.
So all negative-cost arcs in Ch also belong to A0, and hence have cost at least
−ε0. So k(Ch) ≥ −(|Ch|− 1)ε0 and therefore εh = −k(Ch)/|Ch| ≤ (1− 1

n )ε0.
This proves (12.12).

Now define

(12.13) t := 2nm⌈lnn⌉.
Then by (12.12)(ii):

(12.14) εt ≤ (1 − 1

n
)2n⌈ln n⌉ε0 < ε0/2n,

since (1 − 1
n )n < e−1 and e−2 ln n = n−2 ≤ 1

2n .
We finally show that for each i there exists an arc a in Ci such that a �∈ Ch

for each h ≥ i + t. Since |A ∪ A−1| = 2m, this implies that the number of
iterations is at most 4mt, as required.

To prove this, we may assume that i = 0 and that pt = 0. As k(C0) =
−ε0|C0|, C0 contains an arc a0 with k(a0) ≤ −ε0 < −2nεt. Without loss of
generality, a0 ∈ A.

Suppose that fh(a0) �= ft(a0) for some h > t. Since k(a0) < −2nεt ≤ −εt,
we have that a0 �∈ At (by (12.11)). So ft(a0) = c(a0), and hence fh(a0) <
ft(a0). Then, by (11.3) applied to ft − fh, Ah has a directed circuit C con-
taining a0 such that At contains C−1. By (12.11), −k(a) = k(a−1) ≥ −εt for
each a ∈ C. This gives (using (12.12)(i)):

(12.15) k(C) = k(a0) + k(C \ {a0}) < −2nεt + (|C| − 1)εt ≤ −nεt

≤ −nεh ≤ −|C|εh,

contradicting the definition of εh.

This gives for finding a minimum-cost circulation:

Corollary 12.2a. A minimum-cost circulation can be found in O(n2m3 log n)
time. If d and c are integer, an integer minimum-cost circulation is found.

Proof. Directly from Theorem 12.2 and Corollary 8.10a. Note that if d and c
are integer and we start with an integer circulation f0, all further circulations
obtained by (12.8) are integer.

So we have the theorem of Tardos [1985a]:

Corollary 12.2b. A minimum-cost circulation can be found in strongly pol-
ynomial time. If d and c are integer, an integer circulation is found.

Proof. Directly from Corollary 12.2a.
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Notes. Goldberg and Tarjan [1988b,1989] showed that, with the help of dynamic
trees, the running time of the minimum-mean cost cycle-cancelling method can be
improved to O(nm log n min{log(nK), m log n}), where K := ‖k‖∞, assuming k to
be integer.

Weintraub [1974] showed that if we take always a directed circuit C in Df

such that, by resetting f to f + τχC as in (12.8), the cost decreases most, then
the number of iterations (12.8) is polynomially bounded. However, finding such
a circuit is NP-complete (finding a Hamiltonian circuit in a directed graph is a
special case). Weintraub [1974] also proposed a heuristic of finding a short (negative)
circuit by finding a minimum-cost set of vertex-disjoint circuits in Df (by solving
an assignment problem), and choosing the shortest among them. Barahona and
Tardos [1989] showed that this also leads to a (weakly) polynomial-time algorithm.

12.4. Related problems

Corollary 12.2b concerns solving the minimization problem in the following
LP-duality equation, where M denotes the V × A incidence matrix of D:

(12.16) min{kTx | d ≤ x ≤ c, Mx = 0}
= max{zT

1 d − zT

2 c | z1, z2 ≥ 0, ∃y : zT

1 − zT

2 + yTM = kT}.

It implies that also the maximization problem can be solved in strongly pol-
ynomial time:

Corollary 12.2c. The maximization problem in (12.16) can be solved in
strongly polynomial time. If k is integer, an integer optimum solution is
found.

Proof. Let x be an optimum solution of the minimization problem, that
is, a minimum-cost circulation. Since x is extreme, the digraph Dx has no
negative-cost directed circuits. Hence we can find a function (‘potential’)
y : V → Q such that k(u, v) ≥ y(v) − y(u) if x(u, v) < c(u, v) and k(u, v) ≤
y(v) − y(u) if x(u, v) > d(u, v), in strongly polynomial time (Theorem 8.7).
If k is integer, we find an integer y.

Let z1 and z2 be the unique vectors with z1, z2 ≥ 0, zT

1 − zT

2 = kT − yTM
and z1(a)z2(a) = 0 for each a ∈ A. So z1(a) = 0 if x(a) > d(a) and z2(a) = 0
if x(a) < c(a). Hence

(12.17) zT

1 d − zT

2 c = zT

1 x − zT

2 x = (kT − yTM)x = kTx.

So z1, z2 form an optimum solution for the maximization problem.

By an easy construction, Corollary 12.2b implies that a more general
problem is solvable in strongly polynomial time:

(12.18) input: a digraph D = (V, A) and functions a, b : V → Q and
d, c, k : A → Q,
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find: a z-transshipment x with a ≤ z ≤ b and d ≤ x ≤ c, mini-
mizing kTx.

Corollary 12.2d. Problem (12.18) is solvable in strongly polynomial time.
If a, b, d, and c are integer, an integer optimum solution is found.

Proof. Extend D by a new vertex u and arcs (v, u) for each v ∈ V . Extend
d, c, and k by defining d(v, u) := a(v), c(v, u) := b(v) and k(v, u) := 0 for
each v ∈ V . By Corollary 12.2b, we can find a minimum-cost circulation x
with d ≤ x ≤ c in the extended digraph in strongly polynomial time. It gives
a b-transshipment in the original graph as required.

For later reference, we derive that also the dual problem (in the LP sense)
can be solved in strongly polynomial time. If M denotes V × A incidence
matrix of D, problem (12.18) corresponds to the minimum in the LP-duality
equation:

(12.19) min{kTx | d ≤ x ≤ c, a ≤ Mx ≤ b}
= max{yT

1 b − yT

2 a + zT

1 d − zT

2 c | y1, y2, z1, z2 ≥ 0,
(y1 − y2)

TM + (z1 − z2)
T = kT}.

Corollary 12.2e. An optimum solution for the maximum in (12.19) can be
found in strongly polynomial time. If k is integer, we find an integer optimum
solution.

Proof. By reduction to Corollary 12.2c, using a reduction similar to that
given in the proof of Corollary 12.2d.

12.4a. A dual approach

The approach above consists of keeping a feasible circulation, and throughout im-
proving its cost. A dual approach can best be described in terms of b-transshipments:
we keep a b′-transshipment f such that Df has no negative-cost directed circuits,
and improve b′ until b′ = b. This can be studied with the concept of ‘extreme
function’.

Let D = (V, A) be a digraph and let d, c, k : A → R be given, the lower bound
function, the capacity function, and the cost function, respectively. Let f : A → R

be such that d ≤ f ≤ c. We call f extreme if cost(f ′) ≥ cost(f) for each function f ′

satisfying d ≤ f ′ ≤ c and excessf ′ = excessf ; in other words, setting b := excessf ,
f is a minimum-cost b-transshipment subject to d ≤ f ≤ c. (excessf is defined in
Section 10.1.)

Note that the concept of extreme depends on k, d, and c. So it might be better
to define a function to be extreme with respect to k, d, and c. However, when
considering extreme functions f , the functions k, d, and c are generally fixed, or
follow from the context.

Again it will be useful to consider the residual graph Df = (V, Af ) of f (with
respect to d and c), where
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(12.20) Af := {a | a ∈ A, f(a) < c(a)} ∪ {a−1 | a ∈ A, f(a) > d(a)}.

Here a−1 := (v, u) if a = (u, v).
We extend k to A−1 := {a−1 | a ∈ A} by defining

(12.21) k(a−1) := −k(a)

for each a ∈ A. We call k(a−1) the cost of a−1.
We also use the following notation. Any directed path P in Df gives an undi-

rected path in D = (V, A). We define χP ∈ RA by:

(12.22) χP (a) :=





1 if P traverses a,
−1 if P traverses a−1,

0 if P traverses neither a nor a−1,

for a ∈ A.
Theorem 12.1 for minimum-cost circulations can be directly extended to ex-

treme functions:

Theorem 12.3. Let D = (V, A) be a digraph and let d, c, k, f : A → R with d ≤
f ≤ c. Then f is extreme if and only if each directed circuit of Df has nonnegative

cost.

Proof. Like the proof of Theorem 12.1.

This implies that the optimality of a given feasible solution f of a b-transship-
ment problem can be checked in polynomial time, namely in time O(nm) (with the
Bellman-Ford method). It also implies the following good characterization (Kan-
torovich [1942], Gallai [1957,1958b], Ford and Fulkerson [1962]):

Corollary 12.3a. Let D = (V, A) be a digraph and let d, c, k, f : A → R with

d ≤ f ≤ c. Then f is extreme if and only if there exists a function p : V → R such

that

(12.23) k(a) ≥ p(v) − p(u) if f(a) < c(a),
k(a) ≤ p(v) − p(u) if f(a) > d(a),

for each arc a = (u, v) ∈ A.

Proof. Directly from Theorem 12.3 with Theorem 8.2.

As for the algorithmic side, the following observation (Jewell [1958], Busacker
and Gowen [1960], Iri [1960]) is very useful in analyzing algorithms (‘This theorem
may properly be regarded as the central one concerning minimal cost flows’ — Ford
and Fulkerson [1962]):

Theorem 12.4. Let D = (V, A) be a digraph and let d, c, k, f : A → R with

d ≤ f ≤ c and with f extreme. Let P be a minimum-cost s− t path in Df , for some

s, t ∈ V , and let ε > 0 be such that f ′ := f + εχP satisfies d ≤ f ′ ≤ c. Then f ′ is

extreme again.

Proof. Let f ′′ satisfy d ≤ f ′′ ≤ c and excessf ′′ = excessf ′ . Then by Theorem 11.1,
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(12.24) f ′′ − f =

n∑

i=1

µiχ
Pi +

m∑

j=1

λjχ
Cj ,

where P1, . . . , Pn are s − t paths in Df , C1, . . . , Cm are directed circuits in Df ,
µ1, . . . , µn > 0, and λ1, . . . , λm > 0, with

∑
i µi = ε. Then

(12.25) cost(f ′′ − f) =
∑

i

µi · cost(Pi) +
∑

j

λj · cost(Cj) ≥
∑

i

µiτ = ετ,

where τ := cost(P ). As cost(f ′ − f) = ετ , we have cost(f ′′ − f) ≥ cost(f ′ − f), and
therefore cost(f ′′) ≥ cost(f ′).

We will refer to updating f to f + εχP as in Theorem 12.4 as to sending a flow

of value ε over P .
Also the following observation is useful in algorithms (Edmonds and Karp

[1970], Tomizawa [1971]):

Theorem 12.5. In Theorem 12.4, if p is a potential for Df such that p(t)−p(s) =
distk(s, t), then p is also a potential for Df ′ .

Proof. Choose a = (u, v) ∈ Af ′ . If a ∈ Af , then p(v) ≤ p(u)+k(a). If a �∈ Af , then
a−1 is traversed by P , and hence p(u) = p(v) + k(a−1) = p(v) − k(a). Therefore
p(v) ≤ p(u) + k(a).

These theorems lead to the following minimum-cost s − t flow algorithm due
to Ford and Fulkerson [1958b], Jewell [1958], Busacker and Gowen [1960], and Iri
[1960] (an equivalent ‘primal-dual’ algorithm was given by Fujisawa [1959]).

Let be given D = (V, A), s, t ∈ V , and c, k : A → Q+, the capacity and cost
function, respectively.

Algorithm for minimum-cost s − t flow
Starting with f = 0 apply the following iteratively:
Iteration: Let P be an s− t path in Df minimizing k(P ). Reset f := f +εχP , where
ε is maximal subject to 0 ≤ f + ε · χP ≤ c.

Termination of this algorithm for rational capacities follows similarly as for the
maximum flow algorithm (Theorem 10.4).

One may use the Bellman-Ford method to obtain the path P , since Df has
no negative-cost directed circuits (by Theorems 12.3 and 12.4). However, using
a trick of Edmonds and Karp [1970] and Tomizawa [1971], one can use Dijkstra’s
algorithm, since by Theorem 12.5 we can maintain a potential that makes all lengths
(= costs) nonnegative. This leads to the following theorem (where SP+(n, m, K)
denotes the time needed to find a shortest path in a digraph with n vertices, m
arcs, and nonnegative integer lengths, each at most K):

Theorem 12.6. For c, k : A → Z+ and φ ∈ Z+, a minimum-cost s − t flow f ≤ c
of value φ can be found in time O(φ · SP+(n, m, K)), where K := ‖k‖∞.

Proof. Note that each iteration consists of finding a shortest path in Df . Simulta-
neously we can find a potential for Df satisfying p(t) − p(s) = distk(s, t). Since by
Theorem 12.5, p is a potential also for Df ′ , we can perform each iteration in time
SP+(n, m, K).
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12.4b. A strongly polynomial-time algorithm using
capacity-scaling

The algorithm given in Theorem 12.6 is not polynomial-time, but several improve-
ments leading to a polynomial-time algorithm have been found. Orlin [1988,1993]
gave the currently fastest strongly polynomial-time algorithm for minimum-cost
circulation, which is based on this dual approach: while keeping an extreme b′-
transshipment, it throughout improves b′, until b′ = b. This implies an algorithm
for minimum-cost circulation.

Let D = (V, A) be a digraph, let k : A → Q+ be a cost function, and let b :
V → Q be such that there exists a nonnegative b-transshipment. For any f : A → Q

define deff : V → Q by

(12.26) deff := b − excessf .

So deff (v) is the ‘deficiency’ of f at v. Then deff (V ) = b(V ) − excessf (V ) = 0.
The algorithm determines a sequence of functions fi : A → Q+ and rationals βi

(i = 0, 1, 2, . . .). Initially, set f0 := 0 and β0 := ‖b‖∞. If fi and βi have been found,
we find fi+1 and βi+1 by the following iteration (later referred to as iteration i).

Let Ai be the set of arcs a with fi(a) > 12nβi and let Ki be the collection
of weak components of the digraph (V, Ai). We are going to update a function gi

starting with gi := fi.

(12.27) If there exists a component K ∈ Ki and distinct u, v ∈ K with
|defgi(u)| ≥ |defgi(v)| > 0, then update gi by sending a flow of value
|defgi(v)| from v to u or conversely along a path in Ai, so as to make
defgi(v) equal to 0.

(In (12.32) it is shown that this is possible, and that it does not modify Dgi , hence
gi remains extreme.) We iterate (12.27), so that finally each K ∈ Ki contains at
most one vertex u with defgi(u) �= 0.

Next do the following repeatedly, as long as there exists a u ∈ V with
|defgi(u)| > n−1

n
βi:

(12.28) If defgi(u) > n−1
n

βi, then there exists a v ∈ V such that defgi(v) <
− 1

n
βi and such that u reachable from v in the residual graph Dgi .

Update gi by sending a flow of value βi along a minimum-cost v − u
path in Dgi .
If defgi(u) < −n−1

n
βi, proceed symmetrically.

(The existence of v in (12.28) follows from the assumption that there exists a
nonnegative b-transshipment, f say, by applying Theorem 11.1 to f − gi. The fact
that we can send a flow of value βi in the residual graph follows from (12.36).)

When we cannot apply (12.27) anymore, we define fi+1 := gi. Let T :=
‖deffi+1

‖∞. If T = 0 we stop. Otherwise, define:

(12.29) βi+1 :=

{
1
2
βi if T ≥ 1

12n
βi,

T if 0 < T < 1
12n

βi,

and iterate.

Theorem 12.7. The algorithm stops after at most n iterations of (12.27) and at

most O(n log n) iterations of (12.28).

Proof. Throughout the proof we assume n ≥ 2. We first observe that for each i:
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(12.30) ‖deffi+1
‖∞ ≤ n − 1

n
βi,

since otherwise we could have applied (12.28) to the final gi(= fi+1). This implies
that for each i:

(12.31) ‖deffi
‖∞ ≤ 2βi.

This is direct for i = 0. If βi+1 = 1
2
βi, then, by (12.30), ‖deffi+1

‖∞ ≤ n−1
n

βi ≤ βi =
2βi+1. If βi+1 < 1

2
βi, then ‖deffi+1

‖∞ = T = βi+1 ≤ 2βi+1. This proves (12.31).
We next show, that, for any i:

(12.32) in the iterations (12.27) and (12.28), for any a ∈ Ai the value of gi(a)
remains more than 6nβi.

In each iteration (12.27), for any arc a ∈ Ai, the value of gi(a) changes by at most
‖deffi

‖∞, which is at most 2βi (by (12.31)). For any fixed i, we apply (12.27) at
most n times. So the value of gi(a) on any arc a ∈ Ai changes by at most 2nβi.

In the iterations (12.28), the value of gi(a) changes by at most 4nβi. To see
this, consider the sum

(12.33)
∑

v ∈ V
|defgi

(v)| > n−1
n

βi

|defgi(v)|.

In each iteration (12.28), this sum decreases by at least n−1
n

βi, which is at least
1
2
βi. On the other hand, gi(a) changes by at most βi. Since (12.33) initially is at

most ‖defgi‖1 ≤ ‖deffi
‖1 ≤ 2nβi, we conclude that in the iterations (12.28), gi(a)

changes by at most 4nβi.
Concluding, in the iterations (12.27) and (12.28), any gi(a) changes by at most

6nβi. Since at the beginning of these iterations we have gi(a) > 12nβi for a ∈ Ai,
this proves (12.32).

(12.32) implies that in iteration (12.27) we can make defgi(v) equal to 0. (After
that it will remain 0.) Hence, iteration (12.27) can be applied at most n times in
total (over all i), since each time the number of vertices v with deffi

(v) �= 0 drops.
(12.32) also implies:

(12.34) each fi is extreme.

This is clearly true if i = 0 (since the cost function k is nonnegative). Suppose that
fi is extreme. Then also gi is extreme initially, and remains extreme during the
iterations (12.27) (since by (12.32) the residual graph Dgi does not change during
the iterations (12.27)). Moreover, also during the iterations (12.28) the function gi

remains extreme, since we send flow over a minimum-cost path in Dgi (Theorem
12.4). This proves (12.34).

Directly from (12.32) we have, for each i:

(12.35) Ai ⊆ Ai+1,

since βi+1 ≤ 1
2
βi. This implies that each set in Ki is contained in some set in Ki+1.

Next, throughout iteration i,

(12.36) If a ∈ A \ Ai, then βi|gi(a).

The proof is by induction on i, the case i = 0 being trivial (since for i = 0 we do
not apply (12.27), as A0 = ∅). Suppose that we know (12.36). Choose a ∈ A\Ai+1.
Then a ∈ A \ Ai by (12.35). Hence βi|gi(a), and so βi|fi+1(a). If fi+1(a) > 0 and
βi+1 < 1

2
βi, then βi > 12nT = 12n‖deffi+1

‖∞, and hence
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(12.37) fi+1(a) ≥ βi > 12n‖deffi+1
‖∞ = 12nβi+1,

contradicting the fact that a does not belong to Ai+1.
So fi+1(a) = 0 or βi+1 = 1

2
βi. This implies that βi+1|fi+1(a). In iteration i +1,

only flow packages of size βi+1 are sent over arc a (since a �∈ Ai+1). Therefore,
throughout iteration i + 1 we have βi+1|gi+1(a), which proves (12.36).

So in iteration (12.28) we indeed can send a flow of value βi in the residual
graph Dgi . Since fi+1 is equal to the final gi, (12.36) also implies:

(12.38) if a ∈ A \ Ai, then βi|fi+1(a).

Next we come to the kernel in the proof, which gives two bounds on b(K) for
K ∈ Ki:

Claim 1. For each i and each K ∈ Ki:

(12.39) (i) |b(K)| ≤ 13n3βi;

(ii) suppose i > 0, K ∈ Ki−1, and (12.28) is applied to a vertex u in K;

then |b(K)| ≥ 1
n
βi.

Proof of Claim 1. I. We first show (12.39)(i). If i = 0, then |b(K)| ≤ n‖b‖∞ =
nβ0 ≤ 13n3β0. If i > 0, then, by (12.31),

(12.40) |deffi
(K)| ≤ n‖deffi

‖∞ ≤ 2nβi.

Moreover, since fi(a) ≤ 12nβi for each a ∈ δin(K),

(12.41) |excessfi
(K)| ≤ 12nβi · |δin(K)| ≤ 12n3βi.

Hence

(12.42) |b(K)| ≤ |deffi
(K)| + |excessfi

(K)| ≤ 2nβi + 12n3βi ≤ 13n3βi.

This proves (12.39)(i).
II. Next we show (12.39)(ii). Since K ∈ Ki−1 ∩ Ki, u is the only vertex in K

with deffi
(u) �= 0. So, in iteration i, we do not apply (12.27) to a vertex in K.

Moreover, by applying (12.28), |defgi(K)| does not increase. This gives

(12.43)
n − 1

n
βi < |defgi(K)| ≤ |deffi

(K)| ≤ n − 1

n
βi−1.

The first inequality holds as we apply (12.28) to u, and the last inequality follows
from (12.30).

To prove (12.39)(ii), first assume βi = 1
2
βi−1. Since deffi

(K) = deffi
(u), we

have, by (12.43),

(12.44)
n − 1

2n
βi−1 =

n − 1

n
βi ≤ |deffi

(K)| ≤ n − 1

n
βi−1.

So |deffi
(K)|/βi−1 has distance at least 1/2n to Z. Since fi(a) ≡ 0 (mod βi−1) by

(12.38), we have

(12.45) |b(K)|/βi−1 ≡ |deffi
(K)|/βi−1 (mod 1).

Hence also |b(K)|/βi−1 has distance at least 1/2n to Z. So |b(K)| ≥ 1
2n

βi−1 ≥ 1
n
βi,

as required.
Second assume βi < 1

2
βi−1. Then βi = ‖deffi

‖∞ < 1
12n

βi−1. Now as K ∈ Ki,
we have for each a ∈ δ(K): 0 ≤ fi(a) < 12nβi < βi−1, while fi(a) ≡ 0 (mod βi−1)
by (12.38). So fi(a) = 0 for each a ∈ δ(K). Hence by (12.43),
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(12.46) |b(K)| = |deffi
(K)| ≥ n − 1

n
βi ≥ 1

n
βi,

which proves (12.39)(ii). End of Proof of Claim 1

Define K∗ :=
⋃

i Ki, and consider any K ∈ K∗. Let I be the set of i with K ∈ Ki.
Let t be the smallest element of I. Let λK be the number of components in Kt−1

contained in K. (Set λK := 1 if t = 0.) Then in iteration t, (12.28) is applied at
most 4λK times to a vertex u in K, since (at the start of applying (12.28))

(12.47) |defgt(K)| = |defft(K)| ≤ λK‖defft‖∞ ≤ 2λKβt

(by (12.31)). In any further iteration i > t with i ∈ I, (12.28) is applied at most
twice to u (again by (12.31)).

We estimate now the number of iterations i ∈ I in which (12.28) is applied to
u ∈ K. Consider the smallest such i with i > t. Then:

(12.48) if j > i + log2(13n4), then j �∈ I.

For suppose to the contrary that K ∈ Kj . Since βi ≥ 2j−iβj > 13n4βj , Claim 1
gives the contradiction b(K) ≤ 13n3βj < 1

n
βi ≤ b(K). This proves (12.48).

So (12.28) is applied at most 4λK + 2 log2(13n4) times to a vertex u ∈ K, in
iterations i ∈ I. Since

(12.49)
∑

K∈K∗

λK ≤ |K∗| < 2n

(as K∗ is laminar — cf. Theorem 3.5), (12.28) is applied at most 8n+4n log2(13n4)
times in total.

This bound on the number of iterations gives:

Corollary 12.7a. A minimum-cost nonnegative b-transshipment can be found in

time O(n log n(m + n log n)).

Proof. Directly from Theorem 12.7, since any iteration (12.27) or (12.28) takes
O(m + n log n) time, using Fibonacci heaps (Corollary 7.7a) and maintaining a
potential as in Theorem 12.5.

We can derive a bound for finding a minimum-cost circulation:

Corollary 12.7b. A minimum-cost circulation can be found in time O(m log n(m+
n log n)).

Proof. The minimum-cost circulation problem can be reduced to the minimum-
cost transshipment problem as follows. Let D = (V, A), d, c, k : A → Q be the input
for the minimum-cost circulation problem. Define

(12.50) b(v) := d(δout(v)) − d(δin(v))

for each v ∈ V . Then any minimum-cost b-transshipment x satisfying 0 ≤ x ≤ c−d
gives a minimum-cost circulation x′ := x + d satisfying d ≤ x′ ≤ c. So we can
assume d = 0.

Now replace each arc a = (u, v) by three arcs (u, ua), (va, ua), and (va, v), where
ua and va are new vertices. This makes the digraph D′ say.
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Define b(ua) := c(a) and b(va) := −c(a). Moreover, define a cost function k′ on
the arcs of D′ by k′(u, ua) := k(a), k′(va, ua) := 0, k′(va, v) := 0 if k(a) ≥ 0, and
k′(u, ua) := 0, k′(va, ua) := −k(a), k′(va, v) := 0 if k(a) < 0. Then a minimum-cost
b-transshipment x ≥ 0 in D′ gives a minimum-cost b-transshipment x satisfying
0 ≤ x ≤ c in the original digraph D.

By Theorem 12.7, a minimum-cost b-transshipment x ≥ 0 in D′ can be found by
finding O(n log n) times a shortest path in a residual graph D′

x. While this digraph
has 2m + n vertices, it can be reduced in O(m) time to finding a shortest path in
an auxiliary digraph with O(n) vertices only. Hence again it takes O(m + n log n)
time by using Fibonacci heaps (Corollary 7.7a) and maintaining a potential as in
Theorem 12.5.

12.5. Further results and notes

12.5a. Complexity survey for minimum-cost circulation

Complexity survey for minimum-cost circulation (∗ indicates an asymptotically best
bound in the table):

O(n4CK) Ford and Fulkerson [1958b] labeling

O(m3C)
Yakovleva [1959], Minty [1960],
Fulkerson [1961] out-of-kilter
method

O(nm2C)
Busacker and Gowen [1960], Iri
[1960] successive shortest paths

∗ O(nC · SP+(n, m, K))

Edmonds and Karp [1970],
Tomizawa [1971] successive shortest
paths with nonnegative lengths
using vertex potentials

O(nK · MF(n, m, C)) Edmonds and Karp [1972]

∗ O(m log C · SP+(n, m, K))
Edmonds and Karp [1972]
capacity-scaling

O(nm log(nC)) Dinits [1973a] capacity-scaling

O(n log K · MF(n, m, C))
Röck [1980] (cf. Bland and Jensen
[1992]) cost-scaling

O(m2 log n · MF(n, m, C)) Tardos [1985a]

O(m2 log n · SP+(n, m, K)) Orlin [1984a], Fujishige [1986]

O(n2 log n · SP+(n, m, K)) Galil and Tardos [1986,1988]

O(n3 log(nK))
Goldberg and Tarjan [1987],
Bertsekas and Eckstein [1988]

∗ O(n5/3m2/3 log(nK))
Goldberg and Tarjan [1987]
generalized cost-scaling

≫
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continued

O(nm log n log(nK))

Goldberg and Tarjan [1987]
generalized cost-scaling; Goldberg
and Tarjan [1988b,1989]
minimum-mean cost cycle-cancelling

∗ O(m log n · SP+(n, m, K)) Orlin [1988,1993]

∗ O(nm log(n2/m) log(nK))
Goldberg and Tarjan [1990]
generalized cost-scaling

∗ O(nm log log C log(nK))
Ahuja, Goldberg, Orlin, and Tarjan
[1992] double scaling

∗ O(n log C(m + n log n))
circulations with lower bounds only

Gabow and Tarjan [1989]

∗ O((m3/2C1/2 + γ log γ) log(nK)) Gabow and Tarjan [1989]

∗ O((nm + γ log γ) log(nK)) Gabow and Tarjan [1989]

Here K := ‖k‖∞, C := ‖c‖∞, and γ := ‖c‖1, for integer cost function k and integer
capacity function c. Moreover, SP+(n, m, K) denotes the running time of any algo-
rithm finding a shortest path in a digraph with n vertices, m arcs, and nonnegative
integer length function l with K = ‖l‖∞. Similarly, MF(n, m, C) denotes the run-
ning time of any algorithm finding a maximum flow in a digraph with n vertices,
m arcs, and nonnegative integer capacity function c with C = ‖c‖∞.

Complexity survey for minimum-cost nonnegative transshipment:

∗ O(n log B · SP+(n, m, K)) Edmonds and Karp [1970,1972]

O(n2 log n · SP+(n, m, K)) Galil and Tardos [1986,1988]

∗ O(n log n · SP+(n, m, K)) Orlin [1988,1993]

Here B := ‖b‖∞ for integer b.

12.5b. Min-max relations for minimum-cost flows and circulations

From Corollary 12.1a, the following min-max equality for minimum-cost circulation
can be derived. The equality also follows directly from linear programming duality
and total unimodularity. Both approaches were considered by Gallai [1957,1958a,
1958b].

Theorem 12.8. Let D = (V, A) be a digraph and let c, d, k : A → R. Then the

minimum of
∑

a∈A k(a)f(a) taken over all circulations f in D satisfying d ≤ f ≤ c
is equal to the maximum value of

(12.51)
∑

a∈A

(y(a)d(a) − z(a)c(a)),

where y, z : A → R+ are such that there exists a function p : V → R with the

property that
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(12.52) y(a) − z(a) = k(a) − p(v) + p(u)

for each arc a = (u, v) of D.

If d and c are integer, we can take f integer. If k is integer, we can take y and

z integer.

Proof. The minimum is not less than the maximum, since if f is any circulation
in D with d ≤ f ≤ c and y, z, p satisfy (12.52), then

(12.53)
∑

a∈A

k(a)f(a) =
∑

a=(u,v)∈A

(k(a)+p(u)−p(v))f(a) =
∑

a∈A

(y(a)−z(a))f(a)

≥
∑

a∈A

(y(a)d(a) − z(a)c(a)).

To see equality, let f be a minimum-cost circulation. By Corollary 12.1a, there
is a function p : V → R satisfying (12.7). Define for each arc a = (u, v):

(12.54) y(a) := max{0, k(a) − p(v) + p(u)},
z(a) := max{0, −k(a) + p(v) − p(u)}.

So y and z satisfy (12.52). Moreover, we have by (12.7) that y(a)(f(a) − d(a)) = 0
and z(a)(c(a) − f(a)) = 0 for each arc a. Hence we have equality throughout in
(12.53).

We consider a special case (Gallai [1957,1958a,1958b]). Let D = (V, A) be a
strongly connected digraph, let d : A → Z+, and let k : A → Z+ be a cost function,
with k(C) ≥ 0 for each directed circuit C. Then:

(12.55) the minimum cost
∑

a∈A k(a)f(a) of an integer circulation f in D
with f ≥ d is equal to the maximum value of

∑
a∈A d(a)y(a) where

y : A → Z+ with y(C) = k(C) for each directed circuit C in D.

A consequence of this applies to the ‘directed Chinese postman problem’: given
a strongly connected directed graph, find a shortest directed closed path traversing
each arc at least once. If we take unit length, we obtain the following. The minimum
number of arcs in any closed directed path traversing each arc at least once is equal
to the maximum value of

(12.56) |A| +
∑

U∈U

(|δin(U)| − |δout(U)|),

where U is a collection of subsets U of V such that the δout(U) are disjoint.
This equality follows from (12.55), by taking d = 1 and k = 1: then there is a

p : V → Z with y(a) = 1 − p(v) + p(u) for each arc a = (u, v). So p(v) ≤ p(u) + 1
for each arc a = (u, v). Taking Ui := {v ∈ V | p(v) ≤ i} for each i ∈ Z gives the
required cuts δout(Ui).

12.5c. Dynamic flows

A minimum-cost flow algorithm (in disguised form) was given by Ford and Fulkerson
[1958b]. They considered the following ‘dynamic flow’ problem. Let D = (V, A) be
a digraph and let r, s ∈ V (for convenience we assume that r is a source and s is a
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sink of D). Let c : A → Z+ be a capacity function. Moreover, let a ‘traversal time’
function τ : A → Z+ be given, and a ‘time limit’ T .

The problem now is to send a maximum amount of flow from r to s, such that,
for each arc a, at each time unit at most c(a) flow is sent over a; it takes τ(a) time
to traverse a. All flow is sent from r at one of the times 1, 2, . . . , T , while it reaches
s at time at most T .

More formally, for any arc a = (u, v) and any t ∈ {1, 2, . . . , T}, let x(a, t) denote
the amount of flow sent from u over a at time t, reaching v at time t + τ(a). A first
constraint is:

(12.57) 0 ≤ x(a, t) ≤ c(a)

for each a ∈ A and each t ∈ {1, . . . , T}. Next a flow conservation law can be
formulated. Flow may ‘wait’ at any vertex until there is capacity enough to be
transmitted further. This can be described as follows:

(12.58)
∑

a∈δin(v)

t′−τ(a)∑

t=1

x(a, t) ≥
∑

a∈δout(v)

t′∑

t=1

x(a, t)

for each v ∈ V \ {r, s} and each t′ ∈ {1, . . . , T}. We maximize the amount of flow
reaching s not later than time T ; that is, we

(12.59) maximize
∑

a∈δin(s)

T−τ(a)∑

t=1

x(a, t).

Since we may assume that we do not send flow from r that will not reach s, we
may assume that we have equality in (12.58) if t′ = T .

As Ford and Fulkerson [1958b] observed, this ‘dynamic flow’ problem can be
transformed to a ‘static’ flow problem as follows. Let D′ be the digraph with vertices
all pairs (v, t) with v ∈ V and t ∈ {1, . . . , T}, and arcs

(12.60) (i) ((u, t), (v, t+τ(a))) for each a = (u, v) ∈ A and t ∈ {1, . . . , T −τ(a)},
(ii) ((v, t), (v, t + 1)) for each v ∈ V and t ∈ {1, . . . , T − 1}.

Let any arc of type (i) have capacity c(a) and let any arc of type (ii) have capacity
+∞. Then the maximum dynamic flow problem is equivalent to finding a maximum
flow in the new network from (r, 1) to (s, T ).

By this construction, a maximum dynamic flow can be found by solving a max-
imum flow problem in the large graph D′. Ford and Fulkerson [1958b] however
described an alternative way of finding a dynamic flow that has a number of advan-
tages. First of all, no ‘large’ graph D′ has to be constructed (and the final algorithm
can be modified with the scaling method of Edmonds and Karp [1972] to a method
that is polynomial also in log T ). Second, the solution can be represented as a rel-
atively small number of paths over which flow is transmitted repeatedly. Finally,
the method shows that at intermediate vertices hold-over of flows is not necessary
(that is, all arcs of type (12.60)(ii) with v �= r, s can be deleted).

Ford and Fulkerson [1958b] showed that a solution of the dynamic flow problem
can be found by solving the following problem:

(12.61) maximize
∑

a∈δin(s)

Tx(a) −
∑

a∈A

τ(a)x(a),

where x is an r − s flow satisfying 0 ≤ x ≤ c.
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This is equivalent to a minimum-cost flow problem, with cost k(a) := τ(a) − T for
a ∈ δin(s), and k(a) := τ(a) for all other a. Note that there are arcs of negative
cost (generally), and that the value of the flow is not prescribed. So by adding an
arc (s, r) we obtain a minimum-cost circulation problem.

How is problem (12.61) related to the dynamic flow problem? Given an optimum
solution x : A → Z+ of (12.61), there exist r − s paths P1, . . . , Pm in D such that

(12.62) x ≥
m∑

i=1

χPi

where m is the value of x. (We identify a path P and its set of arcs.) For any path
P , let τ(P ) be the traversal time of P (= the sum of the traversal times of the arcs
in P ). Then τ(Pi) ≤ T for each i, since otherwise we could replace x by x − χPi ,
while increasing the objective value in (12.61).

Now send, for each i = 1, . . . , m, a flow of value 1 along Pi at times 1, . . . , T −
τ(Pi). It is not difficult to describe this in terms of the x(a, t), yielding a feasible
solution for the dynamic flow problem, of value

(12.63)

m∑

i=1

(T − τ(Pi)) ≥ mT −
∑

a∈A

τ(a)x(a),

which is the optimum value of (12.61).
In fact, this dynamic flow is optimum. Indeed, by Theorem 12.8 (alternatively,

by LP-duality and total unimodularity), the optimum value of (12.61) is equal to
that of:

(12.64) minimize
∑

a∈A

c(a)y(a)

where y : A → Z+ such that there exists p : V → Z satisfying:

(12.65) p(u) − p(v) + y(a) ≥ −τ(a) for each a = (u, v) ∈ A,

where p(r) = 0 and p(s) = T .
Now if x(a, t) is a feasible solution of the dynamic flow problem, then by (12.58),

(12.57) and (12.63),

(12.66)
∑

a∈δin(s)

T−τ(a)∑

t=1

x(a, t) ≤
∑

a∈δin(s)

T−τ(a)∑

t=1

x(a, t)

+
∑

v �=s

( ∑

a∈δin(v)

p(v)−τ(a)∑

t=1

x(a, t) −
∑

a∈δout(v)

p(v)∑

t=1

x(a, t)
)

=
∑

a=(u,v)∈A

( p(v)−τ(a)∑

t=1

x(a, t) −
p(u)∑

t=1

x(a, t)
)

≤
∑

a=(u,v)∈A

p(v)−τ(a)∑

t=p(u)+1

x(a, t) ≤
∑

a=(u,v)∈A

c(a)(p(v) − τ(a) − p(u))

≤
∑

a∈A

c(a)y(a).
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Therefore, the dynamic flow constructed is optimum.
Ford and Fulkerson [1958b] described a method for solving (12.61) which es-

sentially consists of repeatedly finding a shortest r − s path in the residual graph,
making costs nonnegative by translating the cost with the help of the current po-
tential p (this is ‘Routine I’ of Ford and Fulkerson [1958b]). In this formulation, it
is a primal-dual method.

The method of Ford and Fulkerson [1958b] improves the algorithm of Ford [1956]
for the dynamic flow problem. More on this and related problems can be found
in Wilkinson [1971], Minieka [1973], Orlin [1983,1984b], Aronson [1989], Burkard,
Dlaska, and Klinz [1993], Hoppe and Tardos [1994,1995,2000], Klinz and Woeginger
[1995], Fleischer and Tardos [1998], and Fleischer [1998b,1999c,2001b,2001a].

12.5d. Further notes

The minimum-cost flow problem is a linear programming problem, and hence it can
be solved with the primal simplex method or the dual simplex method. Strongly
polynomial dual simplex algorithms for minimum-cost flow have been given by
Orlin [1985] (O(m3) pivots) and Plotkin and Tardos [1990] (O(m2/ log n) pivots)
(cf. Orlin, Plotkin, and Tardos [1993]). No pivot rule is known however that finds
a minimum-cost flow with the primal simplex method in polynomial time. Partial
results were found by Goldfarb and Hao [1990] and Tarjan [1991].

Further work on the primal simplex method applied to the minimum-cost flow
problem is discussed by Dantzig [1963], Gassner [1964], Johnson [1966b], Grigoriadis
and Walker [1968], Srinivasan and Thompson [1973], Glover, Karney, and Kling-
man [1974], Glover, Karney, Klingman, and Napier [1974], Glover, Klingman, and
Stutz [1974], Ross, Klingman, and Napier [1975], Cunningham [1976,1979], Bradley,
Brown, and Graves [1977], Gavish, Schweitzer, and Shlifer [1977], Barr, Glover, and
Klingman [1978,1979], Mulvey [1978a], Kennington and Helgason [1980], Chvátal
[1983], Cunningham and Klincewicz [1983], Gibby, Glover, Klingman, and Mead
[1983], Grigoriadis [1986], Ahuja and Orlin [1988,1992], Goldfarb, Hao, and Kai
[1990a], Tarjan [1991,1997], Eppstein [1994a,2000], Orlin [1997], and Sokkalingam,
Sharma, and Ahuja [1997].

Further results on the dual simplex method applied to minimum-cost flows
are given by Dantzig [1963], Helgason and Kennington [1977b], Armstrong, Kling-
man, and Whitman [1979], Orlin [1984a], Ikura and Nemhauser [1986], Adler and
Cosares [1990], Plotkin and Tardos [1990], Orlin, Plotkin, and Tardos [1993], Epp-
stein [1994a,2000], and Armstrong and Jin [1997].

Further algorithmic work is presented by Briggs [1962], Pla [1971] (dual out-
of-kilter), Barr, Glover, and Klingman [1974] (out-of-kilter), Hassin [1983,1992],
Bertsekas [1985], Kapoor and Vaidya [1986] (interior-point method), Bertsekas and
Tseng [1988] (‘relaxation method’), Masuzawa, Mizuno, and Mori [1990] (interior-
point method), Cohen and Megiddo [1991], Bertsekas [1992] (‘auction algorithm’),
Norton, Plotkin, and Tardos [1992], Wallacher and Zimmermann [1992] (combi-
natorial interior-point method), Ervolina and McCormick [1993a,1993b], Fujishige,
Iwano, Nakano, and Tezuka [1993], McCormick and Ervolina [1994], Hadjiat and
Maurras [1997], Goldfarb and Jin [1999a], McCormick and Shioura [2000a,2000b]
(cycle canceling), Shigeno, Iwata, and McCormick [2000] (cycle- and cut-canceling),
and Vygen [2000].
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Worst-case studies are made by Zadeh [1973a,1973b,1979] (cf. Niedringhaus
and Steiglitz [1978]), Adel’son-Vel’skĭı, Dinits, and Karzanov [1975], Dinits and
Karzanov [1974], Radzik and Goldberg [1991,1994] (minimum-mean cost cycle-
cancelling), and Hadjiat [1998] (dual out-of-kilter).

Computational studies were presented by Glover, Karney, and Klingman [1974]
(simplex method), Glover, Karney, Klingman, and Napier [1974], Harris [1976], Kar-
ney and Klingman [1976], Bradley, Brown, and Graves [1977], Helgason and Ken-
nington [1977b] (dual simplex method), Ali, Helgason, Kennington, and Lall [1978],
Mulvey [1978b] (simplex method), Armstrong, Klingman, and Whitman [1979],
Monma and Segal [1982] (simplex method), Gibby, Glover, Klingman, and Mead
[1983], Grigoriadis [1986] (simplex method), Ikura and Nemhauser [1986] (dual
simplex method), Bertsekas and Tseng [1988], Bland and Jensen [1992], Bland,
Cheriyan, Jensen, and Ladányi [1993], Fujishige, Iwano, Nakano, and Tezuka [1993],
Goldberg [1993a,1997] (push-relabel and successive approximation), Goldberg and
Kharitonov [1993] (push-relabel), and Resende and Veiga [1993] (interior-point).
Consult also Johnson and McGeoch [1993].

Bein, Brucker, and Tamir [1985] and Hoffman [1988] considered minimum-cost
circulation for series-parallel digraphs. Wagner and Wan [1993] gave a polynomial-
time simplex method for the maximum k-flow problem (with a profit for every unit
of flow sent, and a cost for every unit capacity added to any arc a), which can be
reduced to a minimum-cost circulation problem.

Maximum flows where the cost may not exceed a given ‘budget’ were considered
by Fulkerson [1959b] and Ahuja and Orlin [1995].

‘Unsplittable’ flows (with one source and several sinks, where all flow from the
source to any sink follows the same path) were investigated by Kleinberg [1996,
1998], Kolliopoulos and Stein [1997,1998a,1999,2002], Srinivasan [1997], Dinitz,
Garg, and Goemans [1998,1999], Skutella [2000,2002], Azar and Regev [2001], Er-
lebach and Hall [2002], and Kolman and Scheideler [2002].

For generalized flows (with ‘gains’ on arcs), see Jewell [1962], Fujisawa [1963],
Eisemann [1964], Mayeda and van Valkenburg [1965], Charnes and Raike [1966], On-
aga [1966,1967], Glover, Klingman, and Napier [1972], Maurras [1972], Glover and
Klingman [1973], Grinold [1973], Truemper [1977], Minieka [1978], Elam, Glover,
and Klingman [1979], Jensen and Barnes [1980], Gondran and Minoux [1984],
Kapoor and Vaidya [1986], Bertsekas and Tseng [1988], Ruhe [1988], Vaidya [1989c],
Goldberg, Tardos, and Tarjan [1990], Goldberg, Plotkin, and Tardos [1991], Cohen
and Megiddo [1994], Goldfarb and Jin [1996], Tseng and Bertsekas [1996,2000],
Goldfarb, Jin, and Orlin [1997], Radzik [1998], Tardos and Wayne [1998], Oldham
[1999,2001], Wayne [1999,2002], Wayne and Fleischer [1999], Fleischer and Wayne
[2002], and Goldfarb, Jin, and Lin [2002].

For convex costs,see Charnes and Cooper [1958], Beale [1959], Shetty [1959],
Berge [1960b], Minty [1960,1961,1962], Tu.y [1963,1964], Menon [1965], Hu [1966],
Weintraub [1974], Jensen and Barnes [1980], Kennington and Helgason [1980],
Dembo and Klincewicz [1981], Hassin [1981a], Klincewicz [1983], Ahuja, Batra, and
Gupta [1984], Minoux [1984,1986], Rockafellar [1984], Florian [1986], Bertsekas,
Hosein, and Tseng [1987], Katsura, Fukushima, and Ibaraki [1989], Karzanov and
McCormick [1995,1997], Tseng and Bertsekas [1996,2000], and Ahuja, Hochbaum,
and Orlin [1999].
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Concave costs were studied by Zangwill [1968], Rothfarb and Frisch [1970],
Daeninck and Smeers [1977], Jensen and Barnes [1980], Graves and Orlin [1985],
and Erickson, Monma, and Veinott [1987].

The basic references on network flows are the books of Ford and Fulkerson [1962]
(historical) and Ahuja, Magnanti, and Orlin [1993]. Minimum-cost flow problems
are discussed also in the books of Hu [1969,1982], Iri [1969], Frank and Frisch
[1971], Potts and Oliver [1972], Adel’son-Vel’skĭı, Dinits, and Karzanov [1975] (for
a review, see Goldberg and Gusfield [1991]), Christofides [1975], Lawler [1976b],
Murty [1976], Bazaraa and Jarvis [1977], Minieka [1978], Jensen and Barnes [1980],
Kennington and Helgason [1980], Phillips and Garcia-Diaz [1981], Swamy and Thu-
lasiraman [1981], Papadimitriou and Steiglitz [1982], Smith [1982], Chvátal [1983],
Sys�lo, Deo, and Kowalik [1983], Tarjan [1983], Gondran and Minoux [1984], Rock-
afellar [1984], Derigs [1988a], Nemhauser and Wolsey [1988], Bazaraa, Jarvis, and
Sherali [1990], Chen [1990], Cook, Cunningham, Pulleyblank, and Schrijver [1998],
Jungnickel [1999], and Korte and Vygen [2000].

Survey papers include Glover and Klingman [1977], Ahuja, Magnanti, and Orlin
[1989,1991], Goldberg, Tardos, and Tarjan [1990], and Frank [1995]. A bibliography
was given by Golden and Magnanti [1977].

The history of the minimum-cost flow, circulation, and transshipment problems
is closely intertwined with that of the transportation problem — see Section 21.13e.



Chapter 13

Path and flow polyhedra and
total unimodularity

A large part of the theory of paths and flows can be represented geometri-
cally by polytopes and polyhedra, and can be studied with methods from
geometry and linear programming. Theorems like Menger’s theorem, the
max-flow min-cut theorem, and Hoffman’s circulation theorem can be de-
rived and interpreted with elementary polyhedral tools.
This can be done with the help of the total unimodularity of the incidence
matrices of directed graphs, and of the more general network matrices. It
again yields proofs of basic flow theorems and implies the polynomial-time
solvability of flow problems.

13.1. Path polyhedra

Let D = (V, A) be a digraph and let s, t ∈ V . The s − t path polytope
Ps − t path(D) is the convex hull of the incidence vectors in RA of s − t paths
in D. (We recall that paths are simple, by definition.) So Ps − t path(D) is
a polytope in the space RA. Since finding a maximum-length s − t path
in D is NP-complete, we may not expect to have a decent description of
the inequalities determining Ps − t path(D) (cf. Corollary 5.16a). That is, the
separation problem for Ps − t path(D) is NP-hard.

However, if we extend the s− t path polytope to its dominant, it becomes
more tractable. This leads to an illuminating geometric framework, in which
the (easy) max-potential min-work theorem (Theorem 7.1) and the (more
difficult) max-flow min-cut theorem (Theorem 10.3) show up as polars of each
other, and can be derived from each other. This duality forms a prototype
for many other dual theorems and problems.

The dominant P ↑
s − t path(D) of Ps − t path(D) is the set of vectors x ∈ RA

with x ≥ y for some y ∈ Ps − t path(D). So

(13.1) P ↑
s − t path(D) = Ps − t path(D) + RA

+.

An alternative way of describing this polyhedron is as the set of all capacity
functions c : A → R+ for which there exists a flow x ≤ c of value 1.

It is not difficult to derive from the (easy) max-potential min-work theo-

rem that the following inequalities determine P ↑
s − t path(D):
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(13.2) (i) x(a) ≥ 0 for each a ∈ A,
(ii) x(C) ≥ 1 for each s − t cut C.

Theorem 13.1. P ↑
s − t path(D) is determined by (13.2).

Proof. Clearly, each vector in P ↑
s − t path(D) satisfies (13.2). So P ↑

s − t path(D)
is contained in the polyhedron Q determined by (13.2). Suppose that the re-
verse inclusion does not hold. Then there is an l ∈ ZA such that the minimum
of lTx over x ∈ Q is smaller than over x ∈ P ↑

s − t path(D). If l �∈ ZA
+, the mini-

mum in both cases is −∞; so l ∈ ZA
+. Then the minimum over P ↑

s − t path(D)
is equal to the minimum length k of an s−t path, taking l as length function.
By Theorem 7.1, there exist s − t cuts C1, . . . , Ck such that each arc a is in
at most l(a) of the Ci. Hence for any x ∈ Q one has

(13.3) lTx ≥
( k∑

i=1

χCi

)T

x =
k∑

i=1

x(Ci) ≥ k,

by (13.2)(ii). So the minimum over Q is at least k, contradicting our assump-
tion.

So the characterization of the dominant P ↑
s − t path(D) of the s − t path

polytope follows directly from the easy Theorem 7.1 (the max-potential min-
work theorem).

Note that Theorem 13.1 is equivalent to:

Corollary 13.1a. The polyhedron determined by (13.2) is integer.

Proof. The vertices are integer, as they are incidence vectors of paths.

Next, the theory of blocking polyhedra implies a similar result when we
interchange ‘paths’ and ‘cuts’, thus deriving the max-flow min-cut theorem.

The s − t cut polytope Ps − t cut(D) is the convex hull of the incidence
vectors of s − t cuts in D. Again, Ps − t cut(D) is a polytope in the space RA.
Since finding a maximum-size s− t cut in D is NP-complete (Theorem 75.1),
we may not expect to have a decent description of inequalities determining
Ps − t cut(D). That is, the separation problem for Ps − t cut(D) is NP-hard.

Again, a polyhedron that behaves more satisfactorily is the dominant
P ↑

s − t cut(D) of the s − t cut polytope, which is the set of vectors x ∈ RA

with x ≥ y for some y ∈ Ps − t cut(D). That is,

(13.4) P ↑
s − t cut(D) = Ps − t cut(D) + RA

+.

Now the following inequalities determine P ↑
s − t cut(D):

(13.5) (i) x(a) ≥ 0 for a ∈ A,
(ii) x(AQ) ≥ 1 for each s − t path Q.
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Corollary 13.1b. P ↑
s − t cut(D) is determined by (13.5).

Proof. Directly with the theory of blocking polyhedra (Theorem 5.8) from
Theorem 13.1.

Equivalently:

Corollary 13.1c. The polyhedron determined by (13.5) is integer.

Proof. The vertices are integer, as they are incidence vectors of s − t cuts.

The two polyhedra are connected by the blocking relation:

Corollary 13.1d. The polyhedra P ↑
s − t path(D) and P ↑

s − t cut(D) form a
blocking pair of polyhedra.

Proof. Directly from the above.

With linear programming duality, this theorem implies the max-flow min-
cut theorem:

Corollary 13.1e (max-flow min-cut theorem). Let D = (V, A), let s, t ∈ V
and let c : A → R+ be a capacity function. Then the maximum value of an
s − t flow f ≤ c is equal to the minimum capacity of an s − t cut.

Proof. The minimum capacity of an s − t cut is equal to the minimum of
cTx over x ∈ P ↑

s − t cut(D) (by definition (13.4)). By Corollary 13.1b, this
is equal to the minimum value µ of cTx where x satisfies (13.5). By linear
programming duality, µ is equal to the maximum value of

∑
Q λQ, where

λQ ≥ 0 for each s − t path Q, such that

(13.6)
∑

Q

λQχAQ ≤ c.

Then f :=
∑

Q λQχAQ is an s − t flow of value µ.

Thus the theory of blocking polyhedra links minimum-length paths and
minimum-capacity cuts.

Algorithmic duality. The duality of paths and cuts can be extended to
the polynomial-time solvability of the corresponding optimization problems.
Indeed, Corollary 5.14a implies that the following can be derived from the
fact that P ↑

s − t path(D) and P ↑
s − t cut(D) form a blocking pair of polyhedra

(Corollary 13.1d):
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(13.7) the minimum-length path problem is polynomial-time solvable
⇐⇒
the minimum-capacity cut problem is polynomial-time solvable.

(Here the length and capacity functions are restricted to be nonnegative.)
By Theorem 5.15, one can also find a dual solution, which implies:

(13.8) the minimum-capacity cut problem is polynomial-time solvable
⇐⇒
the maximum flow problem is polynomial-time solvable.

The statements in (13.7) by themselves are not surprising, since the poly-
nomial-time solvability of neither of the problems has turned out to be hard,
although finding a shortest path in polynomial time is easier than finding a
maximum flow in polynomial time.

However, it is good to realize that the equivalence has been derived purely
from the theoretical fact that the two polyhedra form a blocking pair. In
further chapters we will see more sophisticated applications of this principle.

Dual integrality. The fact that P ↑
s − t path(D) and P ↑

s − t cut(D) form a block-
ing pair of polyhedra, is equivalent to the fact that the polyhedra determined
by (13.2) and (13.5) each are integer (that is, have integer vertices only).
More precisely, blocking polyhedra theory tells us:

(13.9) the polyhedron determined by (13.2) is integer ⇐⇒ the polyhe-
dron determined by (13.5) is integer.

In other words, minimizing any linear function over (13.2) gives an integer
optimum solution if and only if minimizing any linear function over (13.5)
gives an integer optimum solution. Thus there is an equivalence of the exis-
tence of integer optimum solutions between two classes of linear programming
problems. What can be said about the dual linear programs?

There is no general theorem known that links the existence of integer op-
timum dual solutions of blocking pairs of polyhedra. In fact, it is not the case
that if two systems Ax ≤ b and A′x ≤ b′ of linear inequalities represent a
blocking pair of polyhedra, then the existence of integer optimum dual solu-
tions for one system implies the existence of integer optimum dual solutions
for the other. That is, the total dual integrality of Ax ≤ b is not equivalent to
the total dual integrality of A′x ≤ b′ (even not if one puts strong conditions
on the two systems, like A, b, A′, and b′ being 0, 1).

Yet, in the special case of paths and cuts the systems are totally dual
integral, as follows directly from theorems proved in previous chapters. (In
particular, total dual integrality of (13.5) amounts to the integrity theorem
for flows.)

Theorem 13.2. The systems (13.2) and (13.5) are totally dual integral.
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Proof. Total dual integrality of (13.2) is equivalent to Theorem 7.1, and total
dual integrality of (13.5) is equivalent to Corollary 10.3a.

By Theorem 5.22, total dual integrality of a system Ax ≤ b (with b
integer) implies total primal integrality; that is, integrality of the polyhedron
determined by Ax ≤ b. So general polyhedral theory gives the following
implications:

(13.10)

(13.2) determines an
integer polyhedron

⇐⇒ (13.5) determines an
integer polyhedron

⇑ ⇑
(13.2) is totally dual
integral

(13.5) is totally dual
integral

13.1a. Vertices, adjacency, and facets

Vertices of the dominant of the s − t path polytope have a simple characterization:

Theorem 13.3. A vector x is a vertex of P ↑

s − t path if and only if x = χπ for some

s − t path π.

Proof. If x = χπ for some s − t path π, then x is a vertex of P ↑

s − t path, as for the

length function l defined by l(a) := 0 if a ∈ Aπ and l(a) := 1 otherwise, the path π
is the unique shortest s − t path.

Conversely, let x be a vertex. As x is integer, x ≥ χπ for some s−t path π. Then
χπ and 2x − χπ = x + (x − χπ) belong to P ↑

s − t path. As x = (χπ + (2x − χπ))/2,

we have x = χπ.

As for adjacency, one has:

Theorem 13.4. Let π and π′ be two distinct s − t paths in D. Then χπ and χπ′

are adjacent vertices of P ↑

s − t path if and only if Aπ△Aπ′ is an undirected circuit

consisting of two internally vertex-disjoint directed paths.

Proof. If Aπ△Aπ′ is an undirected circuit consisting of two internally vertex-
disjoint paths, define the length function l by l(a) := 0 if a ∈ Aπ ∪ Aπ′ and
l(a) := 1 otherwise. Then π and π′ are the only two shortest s − t paths.

Conversely, let χπ and χπ′

be adjacent. Suppose that Aπ∪Aπ′ contains an s− t
path π′′ different from π and π′. Then χπ + χπ′ − χπ′′

= χπ′′′

for some s − t path
π′′′, contradicting the adjacency of χπ and χπ′

. This implies that Aπ△Aπ′ is an
undirected circuit consisting of two internally vertex-disjoint directed paths.

Finally, for the facets we have:

Theorem 13.5. Let C be an s − t cut. Then the inequality x(C) ≥ 1 determines a

facet of P ↑

s − t path if and only if C is an inclusionwise minimal s − t cut.
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Proof. Necessity. Suppose that there is an s − t cut C′ ⊂ C. Then the inequalities
x ≥ 0 and x(C′) ≥ 1 imply x(C) ≥ 1, and hence x(C) ≥ 1 is not facet-inducing.

Sufficiency. If the inequality x(C) ≥ 1 is not facet-inducing, it is a nonnegative
linear combination of other inequalities in system (13.2). At least one of them is of
the form x(C′) ≥ 1 for some s − t cut C′. Then necessarily C′ ⊂ C.

Garg and Vazirani [1993,1995] characterized the vertices of and adjacency on a
variant of the s − t cut polytope.

13.1b. The s − t connector polytope

There are a number of related polyhedra for which similar results hold. Call a subset
A′ of A an s − t connector if A′ contains the arc set of an s − t path as a subset.
The s − t connector polytope Ps − t connector(D) is the convex hull of the incidence
vectors of the s − t connectors.

This polytope turns out to be determined by the following system of linear
inequalities:

(13.11) (i) 0 ≤ x(a) ≤ 1 for each a ∈ A,
(ii) x(C) ≥ 1 for each s − t cut C.

Again, the fact that the s − t connector polytope is contained in the polytope
determined by (13.11) follows from the fact that χP satisfies (13.11) for each s − t
connector P .

Also in this case one has:

Theorem 13.6. System (13.11) is totally dual integral.

Proof. Directly from Theorem 13.2, using Theorem 5.23.

It implies primal integrality:

Corollary 13.6a. The s − t connector polytope is equal to the solution set of

(13.11).

Proof. Directly from Theorem 13.6.

The dimension of Ps − t connector(D) is easily determined:

Theorem 13.7. Let A′ be the set of arcs a for which there exists an s − t path not

traversing a. Then dim Ps − t connector(D) = |A′|.

Proof. We use Theorem 5.6. Clearly, no inequality xa ≥ 0 is an implicit equality.
Moreover, the inequality xa ≤ 1 is an implicit equality if and only if a ∈ A\A′. For
distinct arcs a ∈ A \ A′, these equalities are independent.

Suppose that there is a U ⊆ V with s ∈ U , t �∈ U , such that x(δout(U)) ≥ 1
is an implicit equality. Then |δout(U)| = 1, since the all-one vector belongs to the
polytope. So the arc in δout(U) belongs to A \ A′.

We conclude that the maximum number of independent implicit equalities is
equal to |A \ A′|. Hence dim P = |A′|.
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Let D = (V, A) be a digraph, let s, t ∈ V , and let k ∈ Z+. By the results above,
the convex hull P of the incidence vectors χB of those subsets B of A that contain
k arc-disjoint s − t paths, is determined by

(13.12) (i) 0 ≤ x(a) ≤ 1 for each a ∈ A,
(ii) x(C) ≥ k for each s − t cut C.

L.E. Trotter, Jr observed that this polytope P has the integer decomposition prop-

erty ; that is, for each l ∈ Z+, any integer vector x ∈ l · P is the sum of l integer
vectors in P .

Theorem 13.8. The polytope P determined by (13.12) has the integer decomposi-

tion property.

Proof. Let l ∈ Z+ and let x ∈ l ·P . Then there exists an integer s− t flow f ≤ x of
value l · k (by the max-flow min-cut theorem). We can assume that x = f . As 1

l
f

is an s − t flow of value k, by Corollary 11.2c there exists an integer s − t flow f ′

of value k with

(13.13) ⌊1

l
f(a)⌋ ≤ f ′(a) ≤ ⌈1

l
f(a)⌉

for each arc a. Then f ′ is an integer vector in P , since f ′(a) ≤ 1 for each arc a, as
f(a) ≤ l for each arc a. Moreover, f −f ′ is an integer vector belonging to (l−1) ·P ,
as f − f ′ is an s − t flow of value (l − 1) · k and as (f − f ′)(a) ≤ l − 1 for each arc
a, since if f(a) = l, then f ′(a) = 1 by (13.13).

13.2. Total unimodularity

Let D = (V, A) be a digraph. Recall that the V × A incidence matrix M
of D is defined by Mv,a := −1 if a leaves v, Mv,a := +1 if a enters v, and
Mv,a := 0 otherwise. So each column of M contains exactly one +1 and
exactly one −1, while all other entries are 0. The following basic statement
follows from a theorem of Poincaré [1900]21 (we follow the proofs of Chuard
[1922] and Veblen and Franklin [1921]):

Theorem 13.9. The incidence matrix M of any digraph D is totally uni-
modular.

Proof. Let B be a square submatrix of M , of order k say. We prove that
det B ∈ {0, ±1} by induction on k, the case k = 1 being trivial. Let k > 1.
We distinguish three cases.

21 Poincaré [1900] showed the total unimodularity of any {0, ±1} matrix M = (Mi,j) with
the property that for each k and all distinct row indices i1, . . . , ik and all distinct column
indices j1, . . . , jk, the product

Mi1,j1Mi1,j2Mi2,j2Mi2,j3 · · · Mik−1,jk−1
Mik−1,jk

Mik,jk
Mik,j1

belongs to {0, 1} if k is even and to {0, −1} if k is odd. Incidence matrices of digraphs
have this property.
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Case 1: B has a column with only zeros. Then detB = 0.
Case 2: B has a column with exactly one nonzero. Then we can write (up

to permuting rows and columns):

(13.14) B =

(
±1 bT

0 B′

)
,

for some vector b and matrix B′. Then by the induction hypothesis, detB′ ∈
{0, ±1}, and hence detB ∈ {0, ±1}.

Case 3 : Each column of B contains two nonzeros. Then each column of
B contains one +1 and one −1, while all other entries are 0. So each row of
B adds up to 0, and hence detB = 0.

One can derive several results on circulations, flows, and transshipments
from the total unimodularity of the incidence matrix of a digraph, like the
max-flow min-cut theorem (see Section 13.2a below) and theorems charac-
terizing the existence of a circulation or a b-transshipment (Theorem 11.2
and Corollary 11.2f). Moreover, min-max equalities for minimum-cost flow,
circulation (cf. Theorem 12.8), and b-transshipment follow. We discuss some
of the previous and some new results in the following sections.

13.2a. Consequences for flows

We show that the max-flow min-cut theorem can be derived from the total uni-
modularity of the incidence matrix of a digraph:

Corollary 13.9a (max-flow min-cut theorem). Let D = (V, A), let s, t ∈ V , and

let c : A → R+ be a capacity function. Then the maximum value of an s − t flow

f ≤ c is equal to the minimum capacity of an s − t cut.

Proof. Since the maximum clearly cannot exceed the minimum, it suffices to show
that there exists an s − t flow x ≤ c and an s − t cut, whose capacity is not more
than the value of x.

Let M be the incidence matrix of D and let M ′ arise from M by deleting the
rows corresponding to s and t. So the condition M ′x = 0 means that the flow
conservation law should hold at any vertex v �= s, t.

Let w be the row of M corresponding to vertex t. So for any arc a, wa = +1 if
a enters t, wa = −1 if a leaves t, and wa = 0 otherwise.

Now the maximum value of an s − t flow subject to c is equal to

(13.15) max{wTx | 0 ≤ x ≤ c; M ′x = 0}.

By LP-duality, this is equal to

(13.16) min{yTc | y ≥ 0; ∃z : yT + zTM ′ ≥ wT}.

Since M ′ is totally unimodular by Theorem 13.9 and since w is an integer vector,
minimum (13.16) is attained by integer vectors y and z. Extend z by defining
zt := −1 and zs := 0. Then yT + zTM ≥ 0.

Now define
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(13.17) U := {v ∈ V | zv ≥ 0}.

Then U is a subset of V containing s and not containing t.
It suffices to show that

(13.18) c(δout(U)) ≤ yTc,

since yTc is equal to the maximum flow value (13.15).
To prove (13.18), it suffices to show that

(13.19) if a = (u, v) ∈ δout(U), then ya ≥ 1.

To see this, note that zu ≥ 0 and zv ≤ −1. Moreover, yT + zTM ≥ 0 implies
ya + zv − zu ≥ 0. So ya ≥ zu − zv ≥ 1. This proves (13.19).

It follows similarly that if all capacities are integers, then there exists a maxi-
mum integer flow; that is, we have the integrity theorem (Corollary 10.3a).

Let D = (V, A) be a digraph and s, t ∈ V . The set of all s − t flows of value 1
is a polyhedron Ps − t flow(D), determined by:

(13.20) (i) x(a) ≥ 0 for each a ∈ A,

(ii) x(δin(v)) = x(δout(v)) for each v ∈ V \ {s, t},

(iii) x(δout(s)) − x(δin(s)) = 1.

The set of all s − t flows of value φ trivially equals φ · Ps − t flow(D).
The total unimodularity of M gives that, for integer φ, the intersection of φ ·

Ps − t flow(D) with an integer box {x | 0 ≤ x ≤ c} is an integer polytope. In other
words:

Theorem 13.10. Let D = (V, A) be a digraph, s, t ∈ V , c : A → Z, and φ ∈ Z+.

Then the set of s − t flows x ≤ c of value φ forms an integer polytope.

Proof. Directly from the total unimodularity of the incidence matrix of a digraph
(using Theorem 5.20).

In particular this gives:

Corollary 13.10a. Let D = (V, A) be a digraph, s, t ∈ V , c : A → Z and φ ∈ Z. If

there exists an s − t flow x ≤ c of value φ, then there exists an integer such flow.

Proof. Directly from Theorem 13.10.

Notes. A relation of Ps − t flow(D) with the polytope Ps − t path(D) is that

(13.21) Ps − t path(D) ⊆ Ps − t flow(D) ⊆ P ↑

s − t path(D).

Hence

(13.22) P ↑

s − t path(D) = P ↑

s − t flow(D).

Dantzig [1963] (pp. 352–366) showed that each vertex x of Ps − t flow(D) is the
incidence vector χP of some s − t path P . It can be shown that, if each arc of D is
in some s − t path, then Ps − t flow(D) is the topological closure of the convex hull
of the vectors χP ∈ RA where P is an s − t walk and where



Section 13.2c. Consequences for transshipments 207

(13.23) χP (a) := number of times P traverses a,

for a ∈ A.
For two distinct s − t paths, the vertices χP and χP ′

are adjacent if and only
if the symmetric difference AP△AP ′ forms an undirected circuit consisting of two
internally vertex disjoint directed paths.

Saigal [1969] proved that any two vertices of Ps − t flow(D) are connected by
a path on the 1-skeleton of Ps − t flow(D) with at most |A| − 1 edges — this im-
plies the Hirsch conjecture for this class of polyhedra. (The Hirsch conjecture (cf.
Dantzig [1963,1964]) says that the 1-skeleton of a polytope in Rn determined by
m inequalities has diameter at most m − n.) In fact, Saigal showed more strongly
that for any two feasible bases B, B′ of (13.20), there is a series of at most |A| − 1
pivots bringing B to B′. It amounts to the following. Call a spanning tree T of D
feasible if it contains a directed s − t path. Call two feasible spanning trees T, T ′

adjacent if |AT \ AT ′| = 1. Then for any two feasible spanning trees T, T ′ there
exists a sequence T0, . . . , Tk of feasible spanning trees such that T0 = T , Tk = T ′,
k ≤ |A| − 1, and Ti−1 and Ti adjacent for i = 1, . . . , k.

Rispoli [1992] showed that if D is the complete directed graph, then for each
length function l and each vertex x0 of (13.20), there is a path x0, x1, . . . , xd on the
1-skeleton of (13.20), where lTxi ≤ lTxi−1 for i = 1, . . . , d, where xd minimizes lTx
over (13.20), and where d ≤ 2

3
(|V | − 1).

13.2b. Consequences for circulations

Another consequence is:

Corollary 13.10b. Let D = (V, A) be a digraph and let c, d : A → Z. Then the set

of circulations x satisfying d ≤ x ≤ c forms an integer polytope.

Proof. Directly from the total unimodularity of the incidence matrix of a digraph.

In particular this implies:

Corollary 13.10c. Let D = (V, A) be a digraph and let c, d : A → Z. If there exists

a circulation x satisfying d ≤ x ≤ c, then there exists an integer such circulation.

Proof. Directly from Corollary 13.10b.

Another consequence is the integer decomposition property as in Corollary
11.2b.

13.2c. Consequences for transshipments

Let D = (V, A) be a digraph, d, c ∈ RA
+, and b ∈ RV . The b-transshipment polytope

is the set of all b-transshipments x with d ≤ x ≤ c. So it is equal to

(13.24) P := {x ∈ R
A | d ≤ x ≤ c, Mx = b},
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where M is the V × A incidence matrix of D.
Again, the total unimodularity of M (Theorem 13.9) implies:

Theorem 13.11. Let D = (V, A) be a digraph, b : V → Z, and c, d : A → Z. Then

the b-transshipment polytope is an integer polytope.

Proof. Directly from the total unimodularity of the incidence matrix of a digraph.

In particular this gives:

Corollary 13.11a. Let D = (V, A) be a digraph, b : V → Z, and c, d : A → Z. If

there exists a b-transshipment x with d ≤ x ≤ c, then there exists an integer such

b-transshipment.

Proof. Directly from Theorem 13.11.

Also Corollary 11.2f can be derived:

Theorem 13.12. There exists a b-transshipment x satisfying d ≤ x ≤ c if and only

if b(V ) = 0, d ≤ c and c(δin(U)) − d(δout(U)) ≥ b(U) for each U ⊆ V .

Proof. Necessity being easy, we show sufficiency. If no b-transshipment as required
exists, then by Farkas’ lemma, there exist vectors y ∈ RV and z′, z′′ ∈ RA

+ such

that yTM + z′T − z′′T = 0 and yTb + z′Tc − z′′Td < 0. By adding a multiple of 1
to y we can assume that y ≥ 0 (since 1TM = 0 and 1Tb = 0). Next, by scaling we
can assume that 0 ≤ y ≤ 1. As M is totally unimodular, we can assume moreover
that y is integer. So y = χU for some U ⊆ V . Since d ≤ c, we can assume that

z′(a) = 0 or z′′(a) = 0 for each a ∈ A. Hence z′ = χδout(U) and z′′ = χδin(U). Then

yTb + z′Tc − z′′Td < 0 contradicts the condition for V \ U .

For any digraph D = (V, A) and b ∈ RV , let Pb denote the set of b-
transshipments. So

(13.25) Pb = {x | Mx = b}
where M is the V × A incidence matrix of D. Koopmans and Reiter [1951] charac-
terized the dimension of the transshipment space:

(13.26) if Pb is nonempty, then it has dimension |A| − |V | + k, where k is the
number of weak components of D.

(A weak component of a digraph is a component of the underlying undirected graph.)
To see (13.26), let F ⊆ A form a spanning forest in the underlying undirected

graph. So (V, F ) has k weak components and contains no undirected circuit. Then
|F | = |V | − k. Now each x ∈ RA\F can be extended uniquely to a b-transshipment
x ∈ RA. Hence Pb has dimension |A \ F | = |A| − |V | + k.

Consider next the polyhedron

(13.27) Qb := {x ∈ RA | there exists a nonnegative b-transshipment f ≤ x}
So
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(13.28) Qb = (Pb ∩ R
A
+) + R

A
+.

By Gale’s theorem (Corollary 11.2g), Qb is determined by:

(13.29) (i) x(a) ≥ 0 for each a ∈ A,

(ii) x(δin(U)) ≥ b(U) for each U ⊆ V .

Fulkerson and Weinberger [1975] showed that this system is TDI:

Theorem 13.13. System (13.29) is TDI.

Proof. Choose w ∈ ZA
+. We must show that the dual of minimizing wTx over

(13.29) has an integer optimum solution.
Let µ be the minimum value of wTx over (13.29). As (13.29) determines Qb, µ

is equal to the minimum value of wTx over x ≥ 0, Mx = b, where M is the V × A
incidence matrix of D. Since M is totally unimodular, this LP-problem has an
integer optimum dual solution. That is, there exists a y ∈ ZV such that yTM ≤ wT

and yTb = µ. We can assume that y ≥ 0, since 1TM = 0 and 1Tb = 0 (we can add
a multiple of 1 to y). For each i ∈ Z+, let Ui := {v | yv ≥ i}. (So Ui = ∅ for i large
enough.) Then

(13.30)

∞∑

i=1

χδout(Ui) ≤ w,

since for each arc a = (u, v) we have yv − yu ≤ w(a), implying that the number
of i such that a enters Ui is at most max{0, yv − yu}, which is at most w(a). So
this gives a feasible integer dual solution to the problem of minimizing wTx over
(13.29). It is in fact optimum, since

(13.31)

∞∑

i=1

b(Ui) = yTb = µ.

This proves the theorem.

This implies for primal integrality:

Corollary 13.13a. If b is integer, then Qb is integer.

Proof. Directly from Theorem 13.13.

Fulkerson and Weinberger [1975] also showed an integer decomposition theorem
for nonnegative b-transshipments (it also follows directly from the total unimodu-
larity of the incidence matrix M of D):

Theorem 13.14. Let D = (V, A), b ∈ ZV , and k ∈ Z+, with k ≥ 1, and let f : A →
Z+ be a k · b-transshipment. Then there exist b-transshipments f1, . . . , fk : A → Z+

such that f = f1 + · · · + fk.

Proof. It suffices to show that there exists a b-transshipment g : A → Z+ such that
g ≤ f — the theorem then follows by induction on k.

The existence of g follows from Gale’s theorem (Corollary 11.2g), since b(U) ≤
f(δin(U)) for each U ⊆ V , as either b(U) < 0, or b(U) ≤ kb(U) ≤ f(δin(U)).
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Theorem 13.14 implies the integer decomposition property for the polyhedron
Qb:

Corollary 13.14a. If b is integer, the polyhedron Qb has the integer decomposition

property.

Proof. Let k ∈ Z+ and let c be an integer vector in kQb. So c ∈ Qk·b, implying
that there exists an integer k · b-transshipment f ≤ c. By Theorem 13.14, there
exist integer b-transshipments f1, . . . , fk ≥ 0 with f = f1 + · · · + fk. Define f ′

1 :=
f1 + (c − f). Then f ′

1, f2, . . . , fk ∈ Qb and c = f ′
1 + f2 + · · · + fk.

If b is integer, we know:

(13.32) Qb = conv.hull{f | f nonnegative integer b-transshipment} + RA
+.

Hence the blocking polyhedron B(Qb) of Qb is determined by:

(13.33) (i) x(a) ≥ 0 for each a ∈ A,

(ii) fTx ≥ 1 for each nonnegative integer b-transshipment f .

Fulkerson and Weinberger [1975] derived from Corollary 13.14a that this system
has the integer rounding property if b is integer:

Corollary 13.14b. If b is integer, system (13.33) has the integer rounding prop-

erty.

Proof. Choose c ∈ ZA. Let

(13.34) µ := max{
∑

f

zf | zf ≥ 0,
∑

f

zff ≤ c}

and let µ′ be the maximum in which the zf are restricted to nonnegative integers
(here f ranges over minimal nonnegative integer b-transshipments). Let k := ⌊µ⌋.
We must show that µ′ = k.

As µ = min{cTx | x ∈ B(Qb)}, we know that c ∈ µ · Qb. Hence, as k ≤ µ,
c ∈ kQb. By Corollary 13.14a, there exist nonnegative integer b-transshipments
f1, . . . , fk with f1 + · · · + fk ≤ c. Hence µ′ ≥ k. Since µ′ ≤ µ, we have µ′ = k.

Generally, we cannot restrict (13.33) to those f that form a vertex of Qb

while maintaining the integer rounding property, as was shown by Fulkerson and
Weinberger [1975]. Trotter and Weinberger [1978] extended these results to b-
transshipments with upper and lower bounds on the arcs. For related results, see
Bixby, Marcotte, and Trotter [1987].

13.2d. Unions of disjoint paths and cuts

The total unimodularity of the incidence matrix of a digraph can also be used to
derive min-max relations for the minimum number of arcs covered by l arc-disjoint
s − t paths:

Theorem 13.15. Let D = (V, A) be a digraph, s, t ∈ V , and l ∈ Z+. Then the

minimum value of |AP1| + · · · + |APl| where P1, . . . , Pl are arc-disjoint s − t paths

is equal to the maximum value of
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(13.35)
∣∣⋃C

∣∣ −
∑

C∈C

(|C| − l),

where C ranges over all collections of s − t cuts.

Proof. The minimum in the theorem is equal to the minimum value of
∑

a∈A f(a)
subject to

(13.36) 0 ≤ f(a) ≤ 1 for each a ∈ A,

f(δin(v)) − f(δout(v)) = 0 for each v ∈ V \ {s, t},

f(δin(t)) − f(δout(t)) = l.

By LP-duality and total unimodularity of the constraint matrix, this minimum
value µ is equal to the maximum value of l · p(t) − ∑

a∈A y(a), where y ∈ ZA
+ and

p ∈ ZV satisfy:

(13.37) p(s) = 0;
p(v) − p(u) − y(a) ≤ 1 for each a = (u, v) ∈ A.

As µ ≥ 0, we know p(t) ≥ 0. Let r := p(t), and for j = 1, . . . , r, let Uj := {v ∈ V |
p(v) < j} and Cj := δout(Uj). Then

(13.38)

r∑

j=1

|Cj | ≤
∑

a = (u, v) ∈ A
p(v) > p(u)

p(v) ≥ 0
p(u) < r

(p(v) − p(u)) ≤
∑

a = (u, v) ∈ A
p(v) > p(u)

p(v) ≥ 0
p(u) < r

(1 + y(a))

≤
∣∣∣

r⋃

j=1

Cj

∣∣∣ +
∑

a∈A

y(a) =
∣∣∣

r⋃

j=1

Cj

∣∣∣ + l · r − µ.

So

(13.39) µ ≤
∣∣∣

r⋃

j=1

Cj

∣∣∣ −
r∑

j=1

(|Cj | − l),

and we have the required min-max equality.

A similar formula holds for unions of arc-disjoint s − t cuts:

Theorem 13.16. Let D = (V, A) be a digraph, s, t ∈ V , and l ∈ Z+. Then the

minimum value of |C1| + · · · + |Cl| where C1, . . . , Cl are disjoint s − t cuts is equal

to the maximum value of

(13.40)
∣∣⋃P

∣∣ −
∑

P∈P

(|AP | − l),

where P ranges over all collections of s − t paths.

Proof. By total unimodularity, the minimum size of the union of l disjoint s − t
cuts is equal to the minimum value of

∑
a∈A x(a) where x ∈ RA and p ∈ RV such

that

(13.41) 0 ≤ x(a) ≤ 1 for each a ∈ A,
p(v) − p(u) − x(a) ≤ 0 for each a = (u, v) ∈ A;
p(t) − p(s) = l.
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By LP-duality and total unimodularity, this is equal to the maximum value of
l · r − ∑

a∈A y(a), where r ∈ Z, y ∈ ZA
+, f ∈ ZA

+ such that

(13.42) f(δin(v)) − f(δout(v)) = 0 for each v ∈ V \ {s, t},

f(δin(t)) − f(δout(t)) = r,
f(a) − y(a) ≤ 1 for each a ∈ A.

As f is an s − t flow of value r, it is the sum of the incidence vectors of s − t paths
P1, . . . , Pr, say. Then

(13.43)
∑

a∈A

y(a) ≥
r∑

j=1

|APj | −
∣∣∣

r⋃

j=1

APj

∣∣∣.

Hence we have the required equality.

One may derive similarly min-max formulas for the minimum number of vertices
in l internally vertex-disjoint s − t paths and for the minimum number of vertices
in l disjoint s − t vertex-cuts.

Minimum-cost flow methods also provide fast algorithms to find optimum
unions of disjoint paths:

Theorem 13.17. Given a digraph D = (V, A), s, t ∈ V , and l ∈ Z+, a collection

of arc-disjoint s − t paths P1, . . . , Pl minimizing |AP1|+ · · · + |APl| can be found in

time O(lm).

Proof. Directly from Theorems 12.6 and 11.1 and Corollary 7.8a.

Similarly for disjoint cuts:

Theorem 13.18. Given a digraph D = (V, A), s, t ∈ V , l ∈ Z+, and a length

function k : A → Q+, a collection of arc-disjoint s − t paths P1, . . . , Pl minimizing

k(P1) + · · · + k(Pl) can be found in time O(l(m + n log n)).

Complexity survey for finding k arc-disjoint s−t paths of minimum total length
(∗ indicates an asymptotically best bound in the table):

∗ O(k · SP(n, m, L))
Ford and Fulkerson [1958b], Jewell [1958],
Busacker and Gowen [1960], Iri [1960]

O(nL · DPk(n, m)) Edmonds and Karp [1972]

∗ O(n log L · DPk(n, m)) Röck [1980] (cf. Bland and Jensen [1992])

Here DPk(n, m) denotes the time needed to find k arc-disjoint disjoint s − t paths
in a digraph with n vertices and m edges.

Suurballe and Tarjan [1984] described an O(m logm/n n) algorithm for finding,
in a digraph with nonnegative length function and fixed vertex s, for all v a pair of
edge-disjoint s − v paths Pv, Qv with length(Pv) + length(Qv) minimum.

Gabow [1983b,1985b] described minimum-cost flow algorithms for networks
with unit capacities. The running times are O(m7/4 log L) and, if D is simple,
O(n1/3m3/2 log L). For the vertex-disjoint case, he gave algorithms with running
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time O(n3/4m log L) and O(nm log2+ m
n

L). Goldberg and Tarjan [1990] gave an

O(nm log(nL)) algorithm for minimum-cost flow with unit capacities. More com-
plexity results follow from the table in Section 12.5a. Disjoint s − t cuts were con-
sidered by Wagner [1990] and Talluri and Wagner [1994].

13.3. Network matrices

Let D = (V, A) be a digraph and let T = (V, A′) be a directed tree. Let C be
the A′ × A matrix defined as follows. Take a′ ∈ A′ and a = (u, v) ∈ A and
let P be the undirected u − v path in T . Define

(13.44) Ca′,a :=





+1 if a′ occurs in forward direction in P ,
−1 if a′ occurs in backward direction in P ,

0 if a′ does not occur in P .

Matrix C is called a network matrix, generated by T = (V, A′) and D = (V, A).

Theorem 13.19. Any submatrix of a network matrix is again a network
matrix.

Proof. Deleting column indexed by a ∈ A corresponds to deleting a from
D = (V, A). Deleting the row indexed by a′ = (u, v) ∈ A′ corresponds to
contracting a′ in the tree T = (V, A′) and identifying u and v in D.

The following theorem is implicit in Tutte [1965a]:

Theorem 13.20. A network matrix is totally unimodular.

Proof. By Theorem 13.19, it suffices to show that any square network matrix
C has determinant 0, 1, or −1. We prove this by induction on the size of C,
the case of 1 × 1 matrices being trivial. We use notation as above.

Assume that det C �= 0. Let u be an end vertex of T and let a′ be the arc
in T incident with u. By reversing orientations, we can assume that each arc
in A and A′ incident with u, has u as tail. Then, by definition of C, the row
indexed by a′ contains only 0’s and 1’s.

Consider two 1’s in row a′. That is, consider two columns indexed by arcs
a1 = (u, v1) and a2 = (u, v2) in A. Subtracting column a1 from column a2,
has the effect of resetting a2 to (v1, v2). So after that, column a2 has a 0 in
position a′. Since this subtraction does not change the determinant, we can
assume that there is exactly one arc in A incident with u; that is, row a′

has exactly one nonzero. Then by expanding the determinant by row a′, we
obtain inductively that detC = ±1.

The incidence matrix of a digraph D = (V, A) is a network matrix: add a
new vertex u to D giving digraph D′ = (V ∪ {u}, A). Let T be the directed
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tree on V ∪{u} with arcs (u, v) for v ∈ V . Then the network matrix generated
by T and D′ is equal to the incidence matrix of D.

Notes. Recognizing whether a given matrix is a network matrix has been studied by
Gould [1958], Auslander and Trent [1959,1961], Tutte [1960,1965a,1967], Tomizawa
[1976b], and Fujishige [1980a] (cf. Bixby and Wagner [1988] and Section 20.1 in
Schrijver [1986b]).

Seymour [1980a] showed that all totally unimodular matrices can be obtained
by glueing network matrices and copies of a certain 5 × 5 matrix together (cf.
Schrijver [1986b] and Truemper [1992]).

13.4. Cross-free and laminar families

We now show how cross-free and laminar families of sets give rise to network
matrices. The results in this section will be used mainly in Part V.

A family C of subsets of a finite set S is called cross-free if for all X, Y ∈ C
one has

(13.45) X ⊆ Y or Y ⊆ X or X ∩ Y = ∅ or X ∪ Y = S.

C is called laminar if for all X, Y ∈ C one has

(13.46) X ⊆ Y or Y ⊆ X or X ∩ Y = ∅.

So each laminar family is cross-free.
Cross-free families could be characterized geometrically as having a ‘Venn-

diagram’ representation on the sphere without crossing lines. If the family is
laminar we have such a representation in the plane.

A laminar collection C can be partitioned into ‘levels’: the ith level consists
of all sets X ∈ C such that there are i− 1 sets Y ∈ C satisfying Y ⊃ X. Then
each level consists of disjoint sets, and for each set X of level i + 1 there is a
unique set of level i containing X.

Note that if C is a cross-free family, then adding, for each set X ∈ C,
the complement S \ X to C maintains cross-freeness. Moreover, for any fixed
s ∈ S, the family {X ∈ C | s �∈ X} is laminar.

In order to relate cross-free families and directed trees, suppose that we
have a directed tree T = (V, A) and a function π : S → V , for some set S.
Then the pair T, π defines a family C of subsets of S as follows. Define for
each arc a = (u, v) of T the subset Xa of S by:

(13.47) Xa := the set of vertices in the weak component of T − a con-
taining v.

So Xa is the set of s ∈ S for which arc a ‘points’ in the direction of π(s) in
T .

Let CT,π be the family of sets Xa; that is,

(13.48) CT,π := {Xa | a ∈ A}.
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If C = CT,π, the pair T, π is called a tree-representation for C. If moreover T
is a rooted tree, then T, π is called a rooted tree-representation for C.

It is easy to see that CT,π is cross-free. Moreover, if T is a rooted tree,
then CT,π is laminar. In fact, each cross-free family has a tree-representation,
and each laminar family has a rooted tree-representation, as is shown by the
following theorem of Edmonds and Giles [1977]:

Theorem 13.21. A family C of subsets of S is cross-free if and only if C has
a tree-representation. Moreover, C is laminar if and only if C has a rooted
tree-representation.

Proof. As sufficiency of the conditions is easy, we show necessity. We first
show that each laminar family C of subsets of a set S has a rooted tree-
representation. The proof is by induction on |C|, the case C = ∅ being trivial.
If C �= ∅, choose an inclusionwise minimal X ∈ C. By induction, the family
C′ := C \ {X} has a rooted tree-representation T = (V, A), π : S → V .

If X = ∅, then we can add to T a new arc from any vertex to a new
vertex, to obtain a rooted tree-representation T ′, π of C. So we can assume
that X �= ∅.

Now |π(X)| = 1, since if π(x) �= π(y) for some x, y ∈ X, then there is
an arc a of T separating π(x) and π(y). Hence the set Xa ∈ C′ contains one
of π(x) and π(y), say π(y). As C is laminar, this implies that Xa is properly
contained in X, contradicting the minimality of X.

This proves that |π(X)| = 1. Let v be the vertex of T with π(X) = {v}.
Augment T by a new vertex w and a new arc b = (v, w). Reset π(z) := w for
each z ∈ X. Then the new tree and π form a rooted tree-representation for
C. This shows that each laminar family has a rooted tree-representation.

To see that each cross-free family C has a tree-representation, choose
s ∈ S, and let G be obtained from C by replacing any set containing s by its
complement. Then G is laminar, and hence it has a rooted tree-representation
by the foregoing. Reversing arcs in the tree if necessary, it gives a tree-
representation for C.

From Theorems 13.20 and 13.21 we derive the total unimodularity of
certain matrices. Let D = (V, A) be a directed graph and let C be a family
of subsets of V . Let N be the C × A matrix defined by:

(13.49) NX,a :=





1 if a enters X,
−1 if a leaves X,

0 otherwise,

for X ∈ C and a ∈ A.

Corollary 13.21a. If C is cross-free, then N is a network matrix, and hence
N is totally unimodular.
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Proof. Let T = (W, B), π : V → W be a tree-representation for C. Let
D′ = (W, A′) be the directed graph with

(13.50) A′ := {(π(u), π(v)) | (u, v) ∈ A}.

Then N is equal to the network matrix generated by T and D′ (up to identi-
fying any arc b of T with the set Xb in C determined by b, and any arc (u, v)
of D with the arc (π(u), π(v)) of D′). Hence by Theorem 13.20, N is totally
unimodular.



Chapter 14

Partially ordered sets and path
coverings

Partially ordered sets can be considered as a special type of networks, and
several optimization problems on partially ordered sets can be handled
with flow techniques. Basic theorem is Dilworth’s min-max relation for the
maximum size of an antichain.

14.1. Partially ordered sets

A partially ordered set is a pair (S, ≤) where S is a set and where ≤ is a
relation on S satisfying:

(14.1) (i) s ≤ s,
(ii) if s ≤ t and t ≤ s, then s = t,
(iii) if s ≤ t and t ≤ u, then s ≤ u,

for all s, t, u ∈ S. We put s < t if s ≤ t and s �= t. We restrict ourselves to
finite partially ordered sets; that is, with S finite.

A subset C of S is called a chain if s ≤ t or t ≤ s for all s, t ∈ C. A subset
A of S is called an antichain if s �< t and t �< s for all s, t ∈ A. Hence if C is
a chain and A is an antichain, then

(14.2) |C ∩ A| ≤ 1.

First we notice the following easy min-max relation:

Theorem 14.1. Let (S, ≤) be a partially ordered set. Then the minimum
number of antichains covering S is equal to the maximum size of a chain.

Proof. That the maximum cannot be larger than the minimum follows easily
from (14.2). To see that the two numbers are equal, define for any element
s ∈ S the height of s as the maximum size of any chain in S with maximum
s. For any i ∈ Z+, let Ai denote the set of elements of height i. Let k be
the maximum height of the elements of S. Then A1, . . . , Ak are antichains
covering S, and moreover there exists a chain of size k, since there exists an
element of height k.
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This result can also be formulated in terms of graphs. Let D = (V, A) be
a digraph. A subset C of A is called a directed cut if there exists a subset U
of V such that ∅ �= U �= V , δout(U) = C, and δin(U) = ∅. Then Vidyasankar
and Younger [1975] observed:

Corollary 14.1a. Let D = (V, A) be an acyclic digraph. Then the mini-
mum number of directed cuts covering A is equal to the maximum length of
a directed path.

Proof. Define a partial order ≤ on A by: a < a′ if there exists a directed path
traversing a and a′, in this order. Applying Theorem 14.1 gives the Corollary.

14.2. Dilworth’s decomposition theorem

Dilworth [1950] proved that Theorem 14.1 remains true after interchanging
the terms ‘chain’ and ‘antichain’, which is less simple to prove:

Theorem 14.2 (Dilworth’s decomposition theorem). Let (S, ≤) be a partially
ordered set. Then the minimum number of chains covering S is equal to the
maximum size of an antichain.

Proof. That the maximum cannot be larger than the minimum follows easily
from (14.2). To see that the two numbers are equal, we apply induction on
|S|. Let α be the maximum size of an antichain and let A be an antichain of
size α. Define

(14.3) A↓ := {s ∈ S | ∃t ∈ A : s ≤ t},
A↑ := {s ∈ S | ∃t ∈ A : s ≥ t}.

Then A↓ ∩ A↑ = A and A↓ ∪ A↑ = S (otherwise we can augment A).
First assume that A↓ �= S and A↑ �= S. Then, by induction, A↓ can be

covered by α chains. Since A ⊆ A↓, each of these chains contains exactly one
element in A. For each s ∈ A, let Cs denote the chain containing s. Similarly,
there exist α chains C ′

s (for s ∈ A) covering A↑, where C ′
s contains s. Then

for each s ∈ A, Cs ∪ C ′
s forms a chain in S, and moreover these chains cover

S.
So we may assume that A↓ = S or A↑ = S for each antichain A of size α.

It means that each antichain A of size α is either the set of minimal elements
of S or the set of maximal elements of S. Now choose a minimal element
s and a maximal element t of S with s ≤ t. Then the maximum size of an
antichain in S \ {s, t} is equal to α − 1 (since each antichain in S of size
α contains s or t). By induction, S \ {s, t} can be covered by α − 1 chains.
Adding the chain {s, t} yields a covering of S by α chains.
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Notes. This proof is due to Perles [1963]. Dilworth original proof is based on a
different induction. For a proof using linear programming duality, see Dantzig and
Hoffman [1956]. For a deduction of Dilworth’s decomposition theorem from Kőnig’s
matching theorem (Theorem 16.2), see Fulkerson [1956], Ford and Fulkerson [1962]
(pp. 61–64), and Mirsky and Perfect [1966]. Further proofs were given by Dilworth
[1960], Tverberg [1967], and Pretzel [1979].

14.3. Path coverings

Dilworth’s decomposition theorem can be formulated equivalently in terms
of covering vertices of a digraph22:

Corollary 14.2a. Let D = (V, A) be an acyclic digraph. Then the minimum
number of paths covering all vertices is equal to the maximum number of
vertices no two of which belong to a directed path.

Proof. Apply Dilworth’s decomposition theorem to the partially ordered set
(V, ≤) where u ≤ v if and only if v is reachable in D from u.

As for covering the arcs, we have:

Corollary 14.2b. Let D = (V, A) be an acyclic digraph. Then the minimum
number of paths covering all arcs is equal to the maximum size of a directed
cut.

Proof. Apply Dilworth’s decomposition theorem to the partially ordered set
(A, ≤) where a < a′ if and only if there exists a directed path traversing a
and a′, in this order.

Similarly, for s − t paths:

Corollary 14.2c. Let D = (V, A) be an acyclic digraph with exactly one
source, s, and exactly one sink, t. Then the minimum number of s − t paths
covering A is equal to the maximum size of a directed s − t cut.

Proof. Apply Dilworth’s decomposition theorem to the partially ordered set
(A, ≤) defined by: a ≤ a′ if and only if there exists an s − t path traversing
a and a′, in this order.

If only a subset of the arcs has to be covered, one has more generally:

Corollary 14.2d. Given an acyclic digraph D = (V, A) and B ⊆ A, the
minimum number of paths covering B is equal to the maximum of |C ∩ B|
where C is a directed cut.

22 Gallai and Milgram [1960] claim to have found this result in 1947.
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Proof. Consider the partially ordered set (B,≤) with a < a′ if there exists
a directed path traversing a and a′, in this order. Then for each chain K in
(B,≤) there is a path in D covering K, and for each antichain L in (B,≤)
there is a directed cut C in D with L ⊆ C ∩ B. Hence the theorem follows
from Dilworth’s decomposition theorem.

14.4. The weighted case

Dilworth’s decomposition theorem has a self-refining nature, and implies a
weighted version. Let (S, ≤) be a partially ordered set. Let C and A denote the
collections of chains and antichains in (S, ≤), respectively. Let w : S → Z+

be a ‘weight’ function. Then:

Theorem 14.3. The maximum weight w(A) of an antichain A is equal to
the minimum size of a family of chains covering each element s exactly w(s)
times.

Proof. Replace each element s of S by w(s) copies, making the set S′. For
any copy s′ of s and t′ of t, define s′ <′ t′ if and only if s < t. This gives the
partially ordered set (S′, ≤′). Note that the copies of one element of S form
an antichain in S′.

Then the maximum weight w(A) of an antichain A in S is equal to the
maximum size |A′| of an antichain A′ in S′. By Dilworth’s decomposition
theorem, S′ can be covered by a collection Λ of |A′| chains. Replacing the
elements of each chain by their originals in S, gives the required equality.

In terms of digraphs this gives the following result of Gallai [1958a,1958b]:

Corollary 14.3a. Let D = (V, A) be an acyclic digraph and let S and T be
subsets of V such that each vertex is on at least one S − T path. Let c ∈ ZV

+.
Then the minimum number k of S −T paths P1, . . . , Pk such that each vertex
v is covered at least c(v) times by the Pi is equal to the maximum of c(U)
where U is a set of vertices intersecting each S − T path at most once.

Proof. Directly from Theorem 14.3 by defining the partially ordered set
(V, ≤) by: u ≤ v if and only if there exists a u − v path.

Similarly, there is the following ‘min-flow max-cut theorem’:

Corollary 14.3b. Let D = (V, A) be an acyclic digraph with exactly one
source, s, and exactly one sink, t. Let d : A → R+. Then the minimum value
of any s − t flow f satisfying f ≥ d is equal to the maximum value of d(C)
where C is a directed s − t cut. If d is integer, we can take f integer.
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Proof. Define a partial order ≤ on A by: a < a′ if there is an s − t path
traversing a and a′ in this order. Then any chain in A is contained in some
s−t path and any antichain is contained in some directed s−t cut. Hence this
Corollary can be derived from Theorem 14.3 (using continuity, compactness,
and scaling).

A similar weighted variant of the easier Theorem 14.1 holds: Again, let
(S, ≤) be a partially ordered set. Let w : S → Z+ be a ‘weight’ function.

Theorem 14.4. The maximum weight w(C) of any chain is equal to the
minimum size of a family of antichains covering each element s exactly w(s)
times.

Proof. Similar to the proof of Theorem 14.3.

The following ‘length-width inequality’ follows similarly:

Theorem 14.5. Let (S, ≤) be a partially ordered set and let l, w : S → R+.
Then

(14.4) max
C chain

l(C) · max
A antichain

w(A) ≥
∑

s∈S

l(s)w(s).

Proof. We can assume that l and w are rational (by continuity), and hence
integer. Let t be the maximum of l(C) taken over all chains C.

For each s ∈ S, let h(s) be the maximum of l(C) taken over all chains C
with maximum element s. For each k ∈ Z, let Ak be the set of those elements
s ∈ S with h(s) − l(s) < k ≤ h(s).

Then each Ak is an antichain. Moreover, Ak = ∅ if k > t, and

(14.5)

t∑

k=1

χAk = l.

Therefore,

(14.6) max
C

l(C) · max
A

w(A) = t · max
A

w(A) ≥
t∑

k=1

w(Ak) =
t∑

k=1

wTχAk

= wTl,

where C and A range over chains and antichains, respectively.

14.5. The chain and antichain polytopes

Let (S, ≤) be a partially ordered set. The chain polytope Pchain(S) of S is
the convex hull of the incidence vectors (in RS) of chains in S. Similarly,
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the antichain polytope Pantichain(S) of S is the convex hull of the incidence
vectors (in RS) of antichains in S.

These two polytopes turn out to form an antiblocking pair of polyhedra.
To see this, we first show:

Corollary 14.5a. The chain polytope of S is determined by

(14.7) (i) 0 ≤ xs ≤ 1 for each s ∈ S,
(ii) x(A) ≤ 1 for each antichain A,

and this system is TDI.

Proof. Directly from Theorem 14.4, by LP-duality: for any chain C, χC is
a feasible solution of (14.7). An antichain family covering each element s
precisely w(s) times gives a dual feasible solution. As the minimum of w(C)
is equal to the maximum value of these dual feasible solutions (by Theorem
14.4), the linear program of minimizing wTx over (14.7) has integer optimum
primal and dual solutions.

Similarly for the antichain polytope:

Theorem 14.6. The antichain polytope of S is determined by the inequalities

(14.8) (i) 0 ≤ xs ≤ 1 for each s ∈ S,
(ii) x(C) ≤ 1 for each chain C,

and this system is TDI.

Proof. Similar to the previous proof, now using Theorem 14.3.

This implies that the chain and antichain polytope are related by the
antiblocking relation:

Corollary 14.6a. P ↑
chain(S) and P ↑

antichain(S) form an antiblocking pair of
polyhedra.

Proof. Directly from the previous results.

14.5a. Path coverings algorithmically

When studying partially ordered sets (S, ≤) algorithmically, we should know how
these are represented. Generally, giving all pairs (s, t) with s ≤ t yields a large,
redundant input. It suffices to give an acyclic digraph D = (S, A) such that s ≤ t if
and only if t is reachable from s. So it is best to formulate the algorithmic results
in terms of acyclic digraphs.

The strong polynomial-time solvability of the problems discussed below follow
from the strong polynomial-time solvability of minimum-cost circulation. We give
some better running time bounds.
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Theorem 14.7. Given an acyclic digraph D = (V, A) and B ⊆ A, a minimum

number of paths covering B can be found in time O(nm).

Proof. Add two vertices s and t to D, and, for each vertex v, make degin
B (v)

parallel arcs from s to v and degout
B (v) parallel arcs from v to t. Let D′ = (V ′, A′)

be the extended graph. By Theorem 9.10, we can find in time O(nm) a maximum
collection P1, . . . , Pk of s − t paths that are disjoint on the set A′ \ A of new arcs.

We make another auxiliary graph D̃ = (V, Ã) as follows. Each arc in B belongs

to Ã. Moreover, for each a = (u, v) ∈ A, we make r parallel arcs from u to v, where
r is the number of times a is traversed by the Pi. (So if a ∈ B, there are r+1 parallel

arcs from u to v.) This gives the acyclic graph D̃. Now choose, repeatedly as long

as possible, in D̃ a path from a (current) source to a (current) sink and remove its

arcs. This gives us a collection of paths in D̃ and hence also in D, covering all arcs
in B. We claim that it has minimum size.

For each i, let P ′
i be the path obtained from Pi by deleting the first and last

arc. For each v ∈ V , let σ(v) be the number of Pi that start with (s, v) and let τ(v)
be the number of Pi that and with (v, t).

Let U ⊆ V give a minimum s − t cut δout
A′ (U ∪ {s}) in D′ with δout

A (U) = ∅. As
P1, . . . , Pk form a maximum s − t path packing in D′, we have for each v ∈ V :

(14.9) σ(v) ≤ δin
B (v), with equality if v ∈ V \ U ,

τ(v) ≤ δout
B (v), with equality if v ∈ U .

So

(14.10) degin
Ã

(v) = degin
B (v) +

k∑

i=1

degin
AP ′

i
(v) ≥ σ(v) +

k∑

i=1

degin
AP ′

i
(v)

=

k∑

i=1

degin
APi

(v),

with equality if v ∈ V \ U . Similarly,

(14.11) degout
Ã

(v) = degout
B (v) +

k∑

i=1

degout
AP ′

i
(v) ≥ τ(v) +

k∑

i=1

degout
AP ′

i
(v)

=

k∑

i=1

degout
APi

(v),

with equality if v ∈ U . Hence, since degin
APi

(v) = degout
APi

(v) for each v ∈ V and
each i = 1, . . . , k:

(14.12) degin
D̃

(v) ≥ degout
D̃

(v) for each v ∈ U and

degin
D̃

(v) ≤ degout
D̃

(v) for each v ∈ V \ U .

Now deleting any source-sink path P in D̃ does not invalidate (14.12). Moreover, P
runs from V \ U to U . Since none of the arcs in δin

A (U) are traversed by any Pi, we
know that P should use an arc of B ∩ δin(U). So the number of paths found is at
most |B ∩ δin

A (U)|. Therefore, by Corollary 14.2d, the paths form a minimum-size
collection of paths covering B.

The special case where all arcs must be covered, is:
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Corollary 14.7a. Given an acyclic digraph D = (V, A), a minimum collection of

paths covering all arcs can be found in time O(nm).

Proof. Directly from the foregoing, by taking B := A.

The theorem also applies to vertex coverings:

Corollary 14.7b. Given an acyclic digraph D = (V, A), a minimum number of

paths covering all vertices can be found in time O(nm).

Proof. Introduce for each vertex v of D vertices v′ and v′′. Define V ′ := {v′ | v ∈
V }, V ′′ := {v′′ | v ∈ V }, A′ := {(v′, v′′) | v ∈ V }, and A′′ := {(u′′, v′) | (u, v) ∈ A}.

Then a minimum cover of A′ by paths in the new graph (V ′ ∪V ′′, A′ ∪A′′) gives
a minimum cover of V by paths in the original graph.

It is trivial to extend the results to s − t paths:

Corollary 14.7c. Given an acyclic digraph D = (V, A) and s, t ∈ V , a minimum

collection of s − t paths covering all arcs can be found in time O(nm).

Proof. We may assume that each arc of D is contained in at least one s−t path. But
then each path can be extended to an s − t path, and hence a minimum collection
of paths gives a minimum collection of s − t paths.

One similarly has for covering the vertices:

Corollary 14.7d. Given an acyclic digraph D = (V, A) and s, t ∈ V , a minimum

collection of s − t paths covering all vertices can be found in time O(nm).

Proof. Similar to the proof of Corollary 14.7b.

These bounds are best possible, as the size of the output is Ω(nm). As for paths
covering the arcs, this can be seen by taking vertices v1, . . . , vn, with r parallel arcs
from v1 to v2, r parallel arcs from vn−1 to vn, and one arc from vi−1 to vi for each
i = 2, . . . , n − 1. Then the number of arcs is 2r + n − 2, while any minimum path
covering of the arcs consists of r paths of length n − 1 each.

14.6. Unions of directed cuts and antichains

The following theorem is (in the terminology of partially ordered sets — see
Corollary 14.8a) due to Greene and Kleitman [1976]. We follow the proof
method of Fomin [1978] and Frank [1980a] based on minimum-cost circula-
tions.

Theorem 14.8. Let D = (V, A) be an acyclic digraph, let B ⊆ A, and let
k ∈ Z+. Then the maximum of |B ∩ ⋃ C|, where C is a collection of at most
k directed cuts is equal to the minimum value of
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(14.13) |B \ ⋃P| + k · |P|,
where P is a collection of directed paths.

Proof. To see max ≤ min, let C be a collection of at most k directed cuts and
let P be a collection of directed paths. Then, setting Γ :=

⋃ C and Π :=
⋃ P,

(14.14) |B ∩ Γ | ≤ |B \ Π| + |Γ ∩ Π| ≤ |B \ Π| + k · |P|.
(Note that any directed path P intersects any directed cut in at most one
edge; hence |Γ ∩ AP | ≤ k for each P ∈ P.)

In proving equality, we may assume that D has exactly one source, s say,
and exactly one sink, t say. (Adding s to V , and all arcs (s, v) for v ∈ V does
not change the theorem. Similarly for adding a sink.)

Define for each a ∈ A, a capacity c(a) := ∞ and a cost l(a) := 0. For
each arc a = (u, v) ∈ B, introduce a new arc a′ = (u, v) parallel to a, with
c(a) := 1 and l(a) := −1. Finally, add an arc (t, s), with c(t, s) := ∞ and

l(t, s) := k. This makes the digraph D̃ = (V, Ã).

Let f : Ã → Z be a minimum-cost nonnegative circulation in D̃ subject to
c. As Df has no negative-cost directed circuits (Theorem 12.1), there exists
a function p : V → Z such that for each a = (u, v) ∈ A:

(14.15) p(v) ≤ p(u), with equality if f(a) ≥ 1.

Moreover, for each a = (u, v) ∈ B:

(14.16) p(v) ≤ p(u) − 1 if f(a′) = 0,
p(v) ≥ p(u) − 1 if f(a′) = 1.

Finally,

(14.17) p(s) ≤ p(t) + k, with equality if f(t, s) ≥ 1.

We may assume that p(t) = 0. So by (14.15), p(s) ≥ 0 and by (14.17),
p(s) ≤ k. For each i = 1, . . . , p(s), let Ui := {v ∈ V | p(v) ≥ i}. Then for each
i, δout

A (Ui) is a directed s − t cut, since s ∈ Ui, t �∈ Ui, and no arc in A enters
Ui: if (u, v) ∈ A with v ∈ Ui, then p(v) ≥ i, and hence by (14.15), p(u) ≥ i,
that is u ∈ Ui.

Let C be the collection of these directed cuts and let Γ :=
⋃ C. We can

decompose f as a sum of incidence vectors of directed circuits in D̃. Each of
these circuits contains exactly one arc (t, s). Deleting it, and identifying any
a′ with a (for a ∈ B) gives a path collection P in D. Let Π :=

⋃ P.
Then B \Π = B ∩Γ \Π. For let a = (u, v) ∈ B \Π. Then f(a′) = 0, and

hence by (14.16), p(v) ≤ p(u)−1. Hence a ∈ δout(Ui) for i := p(u). So a ∈ Γ .
Moreover,

(14.18) k · |P| = (p(s) − p(t))f(t, s)

=
∑

a=(u,v)∈A

(p(u) − p(v))f(a) +
∑

a=(u,v)∈B

(p(u) − p(v))f(a′)

=
∑

a=(u,v)∈B

(p(u) − p(v))f(a′) = |B ∩ Γ ∩ Π|.
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Thus |B\Π|+k·|P| = |B\Π|+|B∩Γ ∩Π| = |B∩Γ \Π|+|B∩Γ ∩Π| = |B∩Γ |.

This implies for partially ordered sets:

Corollary 14.8a. Let (S, ≤) be a partially ordered set and let k ∈ Z+. Then
the maximum size of the union of k antichains is equal to the minimum value
of

(14.19)
∑

C∈C
min{k, |C|},

where C ranges over partitions of S into chains.

Proof. This can be reduced to Theorem 14.8, by making a digraph D =
(V, A) as follows. Let for each s ∈ S, s′ be a copy of s, and let V := S ∪ {s′ |
s ∈ S}. Let A consist of all pairs (s, s′) with s ∈ S and all pairs (s′, t) with
s < t. Taking B := {(s, s′) | s ∈ S} reduces Corollary 14.8a to Theorem 14.8.
(For each arcs (s, s′) in B \ ⋃ P, we take a singleton C = {s}.)

Corollary 14.8a can be stated in a slightly different form. For any partially
ordered set (S,≤), any Y ⊆ S, and any k ∈ Z+, let

(14.20) ak(Y ) := max{|Z|
∣∣ Z ⊆ Y is the union of k antichains}.

Then:

Corollary 14.8b. ak(S) = min
Y ⊆S

(|S \ Y | + k · a1(Y )).

Proof. The inequality ≤ follows from the fact that if Z is the union of k
antichains and Y ⊆ S, then |Z| ≤ |Z \ Y | + ak(Z ∩ Y ) ≤ |S \ Y | + k · a1(Y ).

To obtain equality, let C be a partition of S into chains attaining the
minimum in Corollary 14.8a. Let C′ be the collection of those chains C ∈ C
with |C| ≥ k. Let Y be the union of the chains in C′. Then (14.19) is equal
to |S \ Y | + k|C′|. This is at least |S \ Y | + k · a1(Y ) (as |C′| ≥ a1(Y )). Thus
we have equality.

Note that the proof of Theorem 14.8 gives a polynomial-time algorithm
to find a maximum union of k directed cuts or antichains. For a proof of
the results in this section based on LP-duality, see Hoffman and Schwartz
[1977]. For other proofs, see Saks [1979]. For extensions, see Linial [1981] and
Cameron [1986].

14.6a. Common saturating collections of chains

Greene and Kleitman [1976] also showed that for each h there is a chain partition
C of a partially ordered set (S, ≤) attaining the minimum of (14.19) both for k = h
and for k = h + 1.
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More generally, in terms of acyclic digraphs, there is the following result of
Greene and Kleitman [1976] on the minimum in Theorem 14.8:

Theorem 14.9. Let D = (V, A) be an acyclic digraph, let B ⊆ A, and let h ∈ Z+.

Then there is a collection P of directed paths attaining

(14.21) min
P

(|B \ ⋃P| + k · |P|)

both for k = h and for k = h + 1.

Proof. It suffices to show that in the proof of Theorem 14.8 the minimum-cost
circulation f can be chosen such that it has minimum cost simultaneously with
respect to the given cost function l, and with respect to the cost function l′ which
is the same as l except that l′(t, s) = k + 1.

For choose f such that it has minimum cost with respect to l, and with l′
T
f as

small as possible. Suppose that f does not have minimum cost with respect to l′.
Then Df has a directed circuit C with l′(C) < 0. As l(C) ≥ 0, C traverses (s, t).
So l(C) − l′(C) = l(s, t) − l′(s, t) = 1, and therefore l(C) = 0. So f ′ := f + χC

is a feasible circulation with lTf ′ = lTf and l′
T
f ′ < l′

T
f . This contradicts our

assumption.

For partially ordered sets it gives (using definition (14.20)):

Corollary 14.9a. Let (S, ≤) be a partially ordered set and let k ∈ Z+. Then there

exists a chain partition C of S such that

(14.22) ak(S) =
∑

C∈C

min{k, |C|} and ak+1(S) =
∑

C∈C

min{k + 1, |C|}.

Proof. Directly from Theorem 14.9.

(For a linear programming proof and an extension, see Hoffman and Schwartz
[1977]. For another proof, see Perfect [1984]. Denig [1981] showed that the common
saturating chain collections determine a matroid.)

14.7. Unions of directed paths and chains

Results dual to those of the previous sections were obtained by Greene [1976]
and Edmonds and Giles [1977]. They can be formulated by interchanging the
terms ‘chain’ and ‘antichain’. Again we follow the proof method of Fomin
[1978] and Frank [1980a] based on minimum-cost flows.

Theorem 14.10. Let D = (V, A) be an acyclic digraph, let B ⊆ A, and let
k ∈ Z+. Then the maximum of |B ∩ ⋃ P|, where P is a collection of the arc
sets of at most k directed paths, is equal to the minimum value of

(14.23) |B \ ⋃C| + k · |C|,



228 Chapter 14. Partially ordered sets and path coverings

where C is a collection of directed cuts.

Proof. The inequality max ≤ min is shown similarly as in Theorem 14.8. In
proving the theorem, we may again assume that D has only one source, s
say, and only one sink, t say.

To obtain equality, we again consider the extended graph D̃ as in the
proof of Theorem 14.8, with capacity c and cost l, except that we delete arc
(t, s).

Let f : Ã → Z be a minimum-cost s − t flow in D̃ of value k subject
to c. As Df has no negative-cost directed circuits, there exists a function
p : V → Z such that for each a = (u, v) ∈ A:

(14.24) p(v) ≤ p(u), with equality if f(a) ≥ 1.

Moreover, for each a = (u, v) ∈ B:

(14.25) p(v) ≤ p(u) − 1 if f(a′) = 0,
p(v) ≥ p(u) − 1 if f(a′) = 1.

We may assume that p(t) = 0. By (14.24), p(s) ≥ 0. For each i = 1, . . . , p(s),
let Ui := {v ∈ V | p(v) ≥ i}. Then for each i, δout(Ui) is a directed cut, since
s ∈ Ui, t �∈ Ui, and no arc in A enters Ui: if (u, v) ∈ A with v ∈ Ui, then
p(v) ≥ i, and hence by (14.24), p(u) ≥ i, that is u ∈ Ui.

Let C be the collection of these directed cuts and let Γ :=
⋃ C. We

can decompose f as a sum of incidence vectors of k directed paths in D̃.
Identifying any a′ with a (for a ∈ B) this gives a collection P of s − t paths.
Let Π :=

⋃
P∈P AP .

Then B \ Π ⊆ Γ . For let a = (u, v) ∈ B \ Π. Then f(a′) = 0, and hence
by (14.25), p(v) ≤ p(u) − 1. Hence a ∈ δout(Ui) for i = p(u). So a ∈ Γ .

Moreover,

(14.26) k · |C| = k(p(s) − p(t))

=
∑

a=(u,v)∈A

(p(u) − p(v))f(a) +
∑

a=(u,v)∈B

(p(u) − p(v))f(a′)

=
∑

a∈B

(p(u) − p(v))f(a′) = |B ∩ Γ ∩ Π|.

So |B \Γ |+k|C| = |B \Γ |+ |B∩Γ ∩Π| = |B∩Π \Γ |+ |B∩Γ ∩Π| = |B∩Π|.

This implies for partially ordered sets:

Corollary 14.10a. Let (S, ≤) be a partially ordered set and let k ∈ Z+. Then
the maximum size of the union of k chains is equal to the minimum value of

(14.27)
∑

A∈A
min{k, |A|},
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where A ranges over partitions of S into antichains.

Proof. Similar to the proof of Corollary 14.8a.

Like the result in the previous section, also this theorem can be stated in
a different form. For any partially ordered set (S, ≤), Y ⊆ S and k ∈ Z+, let

(14.28) ck(Y ) := max{|Z|
∣∣ Z ⊆ Y is the union of k chains}.

Then:

Corollary 14.10b. ck(S) = min
Y ⊆S

(|S \ Y | + k · c1(Y )).

Proof. Similar to the proof of Corollary 14.8b.

Note that the proof method gives a polynomial-time algorithm to find
a maximum union of k paths or chains. A weighted version was given by
Edmonds and Giles [1977]. For an extension, see Hoffman [1983].

14.7a. Common saturating collections of antichains

Similar results to those in Section 14.6a were obtained for antichain partitions by
Greene [1976]. Consider the proof of Theorem 14.10. By Theorem 12.5, there exist
minimum-cost flows f and f ′ of values k and k + 1 respectively and a function
p : V → Z that is both a potential for f and for f ′.

This implies the following result of Greene [1976] on the minimum in Theorem
14.10:

Theorem 14.11. Let D = (V, A) be an acyclic digraph, let B ⊆ A, and let h ∈ Z+.

Then there is a collection C of directed cuts attaining

(14.29) min
C

(|B \ ⋃C| + k · |C|)

both for k = h and for k = h + 1.

Proof. Directly from the foregoing observation.

For partially ordered sets it gives (using definition (14.28)):

Corollary 14.11a. Let (S, ≤) be a partially ordered set and let k ∈ Z+. Then there

exists an antichain partition A of S such that

(14.30) ck(S) =
∑

A∈A

min{k, |A|} and ck+1(S) =
∑

A∈A

min{k + 1, |A|}.

Proof. Directly from Theorem 14.11.

More on this can be found in Perfect [1984]. For more on chain and antichain
partitions, see Frank [1980a].
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14.7b. Conjugacy of partitions

Greene [1976] showed that the numbers studied above give so-called ‘conjugate’
partitions, implying that in fact the results of Section 14.6 and those of 14.7 can
be derived from each other.

Fix a partially ordered set (S, ≤). For each k = 0, 1, 2, . . ., let ak be the maxi-
mum size of the union of k antichains in S and let ck be the maximum size of the
union of k chains in S.

Then Corollary 14.8a is equivalent to:

(14.31) ak = |S| + min
p≥0

(kp − cp).

Similarly, Corollary 14.10a is equivalent to:

(14.32) ck = |S| + min
p≥0

(kp − ap).

Define for each k = 1, 2, . . .:

(14.33) αk := ak − ak−1 and γk := ck − ck−1.

Trivially, each αk and γk is nonnegative, and both α1, α2, . . . and γ1, γ2, . . . are
partitions of the number |S|. In fact:

Theorem 14.12. α1 ≥ α2 ≥ · · · and γ1 ≥ γ2 ≥ · · ·.

Proof. For each k ≥ 1, one has αk ≥ αk+1; equivalently

(14.34) ak+1 + ak−1 ≤ 2ak.

Indeed, by Corollary 14.8a there is a collection C of chains satisfying

(14.35) ak =
∑

C∈C

min{k, |C|}.

Then

(14.36) 2ak =
∑

C∈C

2min{k, |C|} ≥
∑

C∈C

(min{k − 1, |C|} + min{k + 1, |C|})

≥ ak−1 + ak+1.

The second part of the theorem is shown similarly (with Corollary 14.10a).

In fact, the partitions (α1, α2, . . .) and (γ1, γ2, . . .) of |S| are conjugate. To show
this, we mention some of the theory of partitions of numbers.

Let ν1 ≥ ν2 ≥ · · · be integers forming a partition of the number n; that is,
ν1 + ν2 + · · · = n. (So νk = 0 for almost all k.) The conjugate partition (ν∗

p) of (νk)
is defined by:

(14.37) ν∗
p := max{k | νk ≥ p}

for p = 1, 2, . . .. Then it is easy to see that ν∗
1 ≥ ν∗

2 ≥ · · ·, and that

(14.38) for all p, k ≥ 1: p ≤ νk ⇐⇒ k ≤ ν∗
p .

The conjugate partition can be interpreted in terms of the ‘Young diagram’.
The Young diagram F of (νk) is the collection of pairs (x, y) of natural numbers
x, y ≥ 1 satisfying y ≤ νx. So the Young diagram uniquely determines the sequence
(νk). The number of pairs in the Young diagram is equal to n. Now the Young
diagram F ∗ of the conjugate partition (ν∗

p) satisfies
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(14.39) F ∗ = {(y, x) | (x, y) ∈ F}.

This follows directly from (14.38). It implies that the conjugate partition (ν∗
p) is

again a partition of n, and that the conjugate of (ν∗
p) is (νk).

The following interprets conjugacy of partitions in terms of their partial sums.
Let ν1 ≥ ν2 ≥ · · · and ν′

1 ≥ ν′
2 ≥ · · · be partitions of n. For each k = 0, 1, . . ., let

(14.40) nk := ν1 + · · · + νk and n′
k := ν′

1 + · · · + ν′
k.

Then:

Lemma 14.13α. (νk) and (ν′
k) are conjugate partitions if and only if

(14.41) n′
p = n + min

k≥0
(pk − nk)

for each p = 0, 1, 2, . . ..

Proof. First note that, for each p = 1, 2, . . .,

(14.42) min
k≥0

(pk − nk) is attained by k = ν∗
p .

Indeed, choose k ≥ 0 attaining mink≥0(pk − nk), with k as large as possible. Then
(k +1)p − nk+1 > pk − nk, and hence νk+1 < p. Moreover, if k ≥ 1, then (k − 1)p −
nk−1 ≥ pk − nk, and hence νk ≥ p, implying ν∗

p = k. If k = 0, then ν1 < p, again
implying ν∗

p = 0 = k. This shows (14.42).
Moreover,

(14.43)

p∑

q=1

ν∗
q = n + min

k≥0
(pk − nk),

since

(14.44)

p∑

q=1

ν∗
q =

p∑

q=1

max{k | νk ≥ q} =

p∑

q=1

∞∑

k = 1
νk ≥ q

1 =

∞∑

k=1

min{νk, p}

=

∞∑

k=1

νk −
ν∗

p∑

k=1

(νk − p) = n + pν∗
p −

ν∗

p∑

k=1

νk = n + pν∗
p − nν∗

p

= n + min
k≥0

(pk − nk),

by (14.42).
By (14.43), condition (14.41) is equivalent to

(14.45) n′
p =

p∑

q=1

ν∗
q for p = 0, 1, . . ..

Hence it is equivalent to: ν′
q = ν∗

q for each q = 1, 2, . . .; that is to: (νk) and (ν′
k) are

conjugate.

This yields the conjugacy of the αk and γp:

Theorem 14.13. (αk) and (γp) are conjugate partitions of |S|.

Proof. Directly from Lemma 14.13α and Corollary 14.10b.

Lemma 14.13α gives the equivalence of the Corollaries 14.10b and 14.8b. For
other proofs of the conjugacy of (αk) and (γp), see Fomin [1978] and Frank [1980a].
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14.8. Further results and notes

14.8a. The Gallai-Milgram theorem

Gallai and Milgram [1960] showed the following generalization of Dilworth’s decom-
position theorem. It applies to any directed graph, but generally is not a min-max
relation.

Theorem 14.14 (Gallai-Milgram theorem). Let D = (V, A) be a digraph and let

α(D) be the maximum number of vertices that are pairwise nonadjacent in the

underlying undirected graph. Then V can be partitioned into α(D) directed paths.

Proof. For any partition Π of V into directed paths, let CΠ be the set of end
vertices of the paths in Π. For any subset U of V , let α(U) be the maximum
number of pairwise nonadjacent vertices in U . We show by induction on |V | that

(14.46) for each partition Π of V into directed paths there is a partition Π ′

into directed paths with CΠ′ ⊆ CΠ and |CΠ′ | ≤ α(V ).

This implies the theorem.
Let Π be a partition of V into directed paths. To prove (14.46), we may assume

that CΠ is inclusionwise minimal among all such partitions.
If CΠ is a stable set, then (14.46) is trivial. If CΠ is not a stable set, take

u, v ∈ CΠ with (v, u) ∈ A. By the minimality of CΠ , the path Pu in Π ending at u
consists of more than u alone, since otherwise we could extend the path ending at
v by u. So Pu has a one but last vertex, w say.

Let Π̃ be obtained from Π by deleting u from Pu. So Π̃ is a partition of V \{u}
into directed paths. By induction, there is a partition Π̃ ′ of V \ {u} into directed
paths such that C

Π̃′ ⊆ C
Π̃

and such that |C
Π̃′ | ≤ α(V \ {u}).

If one of the paths in Π̃ ′ ends at w, we can extend it with u, and obtain a
partition Π ′ of V as required. If none of the paths in Π̃ ′ end at w, but one of the
paths ends at v, we can extend it with u, again obtaining a partition Π ′ as required.
If none of the paths in Π̃ ′ end at v or w, then augmenting Π̃ ′ by a path consisting
of u alone, gives a partition Π ′ of V with CΠ′ ⊂ CΠ , contradicting the minimality
of CΠ .

Theorem 14.14 gives no min-max relation, as is shown by a directed circuit of
length 2k: the vertices can be covered by one directed path, while there exist k
pairwise nonadjacent vertices.

A consequence of Theorem 14.14 is Dilworth’s decomposition theorem: for any
partially ordered set (S, ≤) take V := S and A := {(x, y) | x < y}. Another
consequence is the graph-theoretical result of Rédei [1934] that each tournament
has a Hamiltonian path:

Corollary 14.14a (Rédei’s theorem). Each tournament has a Hamiltonian path.

Proof. This is the special case where α(D) = 1 in the Gallai-Milgram theorem.

Berge [1982b] posed the following conjecture generalizing the Gallai-Milgram
theorem. Let D = (V, A) be a digraph and let k ∈ Z+. Then for each path collection
P partitioning V and minimizing
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(14.47)
∑

P∈P

min{|V P |, k},

there exist disjoint stable sets C1, . . . , Ck in D such that each P ∈ P intersects
min{|V P |, k} of them. This was proved by Saks [1986] for acyclic graphs. For exten-
sions and related results, see Linial [1978,1981], Saks [1986], and Thomassé [2001].

14.8b. Partially ordered sets and distributive lattices

There is a strong relation between the class of partially ordered sets and the class
of partially ordered sets of a special type, the distributive lattices. It formed the
original motivation for Dilworth to study minimum chain partitions of partially
ordered sets.

Let (S, ≤) be a partially ordered set and let a, b ∈ S. Then an element c ∈ S is
called the meet of a and b if for each s ∈ S:

(14.48) s ≤ c if and only if s ≤ a and s ≤ b.

Note that if the meet of a and b exists, it is unique. Similarly, c is called the join

of a and b if for each s ∈ S:

(14.49) s ≥ c if and only if s ≥ a and s ≥ b.

Again, if the join of a and b exists, it is unique.
S is called a lattice if each pair s, t of elements of S has a meet and a join; they

are denoted by s ∧ t and s ∨ t, respectively. The lattice is called distributive if

(14.50) s ∧ (t ∨ u) = (s ∧ t) ∨ (s ∧ u) and s ∨ (t ∧ u) = (s ∨ t) ∧ (s ∨ u)

for all s, t, u ∈ S. (In fact it suffices to require only one of the two equalities.)
Each partially ordered set (S, ≤) gives a distributive lattice in the following

way. Call a subset I ⊆ S a lower ideal, or just an ideal, if t ∈ I and s ≤ t implies
that s ∈ I. Let IS be the collection of ideals in S. Then (IS , ⊆) is a distributive
lattice. This follows directly from the fact that for I, J ∈ IS one has I ∧ J = I ∩ J
and I ∨ J = I ∪ J , and hence (14.50) is elementary set theory. Thus

(14.51) (S, ≤) → (IS , ⊆)

associates a distributive lattice with any partially ordered set.
In fact, each finite distributive lattice can be obtained in this way; that is, we

can reverse (14.51). For any lattice (L, ≤), call an element u ∈ L join-irreducible

if there exist no s, t ∈ L with s �= u, t �= u, and u = s ∨ t. Let JL be the set of
join-irreducible elements in L. Trivially,

(14.52) (L, ≤) → (JL, ≤)

associates a partially ordered set with any distributive lattice.

Theorem 14.15. Functions (14.51) and (14.52) are inverse to each other.

Proof. First, let (S ≤) be a partially ordered set. For each s ∈ S, let Is := {t ∈
S | t ≤ s}. Then an element I of IS is join-irreducible if and only if there exists
an s ∈ S with I = Is. Moreover, s ≤ t if and only if Is ⊆ It. Thus we have an
isomorphism of (S, ≤) and (JIS

, ⊆).
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Conversely, let (L, ≤) be a distributive lattice. For each s ∈ L, let Js := {t ∈
JL | t ≤ s}. This gives a one-to-one relation between elements of L and ideals in
JL. Indeed, if I is an ideal in JL, let s :=

∨
I. Then I = Js. Clearly, I ⊆ Js, since

t ≤ s for each t ∈ I. Conversely, let u ∈ Js. Then, as L is distributive,

(14.53) u = u ∧ s = u ∧
∨

t∈I

t =
∨

t∈I

(u ∧ t).

Since u is join-irreducible, u = u ∧ t for some t ∈ I. Hence u ≤ t, and therefore
u ∈ I.

Moreover, for any s, t ∈ L one has: s ≤ t if and only if Js ⊆ Jt. So we have an
isomorphism of (L, ≤) and (IJL

, ⊆).

There is moreover a one-to-one relation between ideals I in a partially ordered
set (S, ≤) and antichains A in S, given by:

(14.54) A = Imax and I = A↓.

Here, for any Y ⊆ S, Y max denotes the set of maximal elements of Y and

(14.55) Y ↓ := {s ∈ S | ∃t ∈ Y : s ≤ t}.

For each d, the set Zd is a distributive lattice, under the usual order: x ≤ y if
and only if xi ≤ yi for each i = 1, . . . , d. Any finite distributive lattice (L, ≤) is a
sublattice of Zd for some d (as will follow from the next theorem). That is, there is
an injection φ : L → Zd such that φ(s ∧ t) = φ(s) ∧ φ(t) and φ(s ∨ t) = φ(s) ∨ φ(t)
for all s, t ∈ L.

Let d(L) be the minimum number d for which L is (isomorphic to) a sublat-
tice Zd. As Dilworth [1950] showed, the number d(L) can be characterized with
Dilworth’s decomposition theorem.

To this end, an element s of a partially ordered set (S, ≤) is said to cover t ∈ S
if s > t and there is no u ∈ S with s > u > t. For any s ∈ S, let cover(s) be the
number of elements covered by s.

Then the following result of Dilworth [1950] can be derived from Dilworth’s
decomposition theorem:

Theorem 14.16. Let L be a finite distributive lattice. Then

(14.56) d(L) = max
s∈L

cover(s).

Proof. We first show that d(L) ≥ cover(s) for each s ∈ L. Let d := d(L), let
L ⊂ Zd, and choose s ∈ L. Let Y be the set of elements covered by s. For each
t ∈ Y , let Ut := {i | ti < si}. Now for all t, u ∈ Y with t �= u one has t ∨ u = s;
hence Ut ∩ Uu = ∅. As Ut �= ∅ for all t ∈ Y , we have |Y | ≤ d.

So d(L) ≥ maxs∈L cover(s). To see equality, by Theorem 14.15 we may assume
that L = IS (the set of ideals in S) for some partially ordered set (S, ≤), ordered
by inclusion. For any ideal I in S, cover(I) is the number of inclusionwise maximal
ideals J ⊂ I. Each such ideal J is equal to I \ {t} for some t ∈ Imax. So cover(I) =
|Imax|. Hence maxs∈L cover(s) is equal to the maximum antichain size in S. Let
this be d, say.

By Dilworth’s decomposition theorem, S can be covered by d chains, C1, . . . , Cd

say. For each j, the collection ICj of ideals in Cj is again a chain (ordered by
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inclusion). Now I → (I∩C1, . . . , I∩Cd) embeds IS into the product IC1 ×· · ·×ICd
.

Therefore d(IS) ≤ d.

The following was noted by Dilworth [1960]. The relations (14.54) give the
following partial order on the collection AS of antichains in a partially ordered set
(S, ≤):

(14.57) A � B if and only if A↓ ⊆ B↓

for A, B ∈ AS . As (IS , ⊆) is a lattice, also (AS , �) is a lattice.

Theorem 14.17. Let (S, ≤) be a partially ordered set and let A and B be maximum-

size antichains. Then also A ∧ B and A ∨ B are maximum-size antichains.

Proof. One has |A ∧ B| + |A ∨ B| ≥ |A| + |B|. Indeed, A ∪ B ⊆ (A ∧ B) ∪ (A ∨ B)
and A ∩ B ⊆ (A ∧ B) ∩ (A ∨ B). So

(14.58) |A ∧ B| + |A ∨ B| = |(A ∧ B) ∪ (A ∨ B)| + |(A ∧ B) ∩ (A ∨ B)|
≥ |A ∪ B| + |A ∩ B| = |A| + |B|.

As |A∧B| ≤ |A| = |B| and |A∨B| ≤ |A| = |B|, we have |A∧B| = |A∨B| = |A| =
|B|.

In terms of distributive lattices this gives:

Corollary 14.17a. Let L be a finite distributive lattice. Then the elements s max-

imizing cover(s) form a sublattice of L.

Proof. We can represent L as the set IS of ideals in a partially ordered set (S, ≤).
As one has cover(I) = |Imax| for any I ∈ IS , the result follows from Theorem 14.17.

Theorem 14.17 led Dilworth [1960] to derive an alternative proof of Dilworth’s
decomposition theorem. For another proof and application of Theorem 14.17, see
Freese [1974]. Theorem 14.17 was extended to maximum-size unions of k antichains
by Greene and Kleitman [1976].

14.8c. Maximal chains

Let (S, ≤) be a partially ordered set. Call a chain maximal if it is contained in no
other chain. As ‘complementary’ to Dilworth’s decomposition theorem, Greene and
Kleitman [1976] observed:

Theorem 14.18. The maximum number of disjoint maximal chains is equal to the

minimum size of a set intersecting all maximal chains.

Proof. Define a digraph D = (S, A) where A consists of all pairs (s, t) where t covers
s. Let U and W be the sets of minimal and maximal elements of S, respectively. So
maximal chains correspond to U −W paths, and the theorem follows from Menger’s
theorem.
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14.8d. Further notes

Related results were given by Bogart [1970], Saks [1986], and Behrendt [1988], ex-
tensions and algorithms by Cameron and Edmonds [1979], Frank [1980a], Linial
[1981], Cameron [1982,1985,1986], and Hoffman [1983], surveys by Greene [1974b],
Hoffman [1982], West [1982], and Bogart, Greene, and Kung [1990], and an intro-
duction to and historical account of Dilworth’s decomposition theorem by Dilworth
[1990].

Fleiner [1997] proved the following conjecture of A. Frank: Let (S, ≤) be a
partially ordered set and let M be a perfect matching on S such that for any two
uu′, vv′ ∈ M with u ≤ v, one has v′ ≤ u′. (This is called a symmetric partially

ordered set.) Call a subset C of M a symmetric chain if S has a chain intersecting
each edge in C. Then the minimum number of symmetric chains covering M is
equal to the maximum value of

(14.59)

k∑

i=1

⌈ 1
2
|Xi|⌉,

where X1, . . . , Xk are disjoint subsets of M (for some k) with the properties that
(i) no Xi contains a symmetric chain of size 3, and (ii) if i �= j, then there exist no
x ∈ e ∈ Xi and y ∈ f ∈ Xj with x ≤ y.



Chapter 15

Connectivity and Gomory-Hu
trees

Since a minimum s − t cut can be found in polynomial time, also the
connectivity of a graph can be determined in polynomial time, just by
checking all pairs s, t. However, there are more economical methods, which
we discuss in this chapter.
A finer description of the edge-connectivity of a graph G is given by the
function rG(s, t), defined as the minimum size of a cut separating s and t.
A concise description of the corresponding minimum-size cuts is given by
the Gomory-Hu tree — see Section 15.4.

15.1. Vertex-, edge-, and arc-connectivity

For any undirected graph G = (V, E), the vertex-connectivity, or just con-
nectivity, of G is the minimum size of a subset U of V for which G − U
is not connected. A subset U of V attaining the minimum is called a min-
imum vertex-cut. If no such U exists (namely, if G is complete), then the
(vertex-)connectivity is ∞.

The connectivity of G is denoted by κ(G). If κ(G) ≥ k, G is called k-
vertex-connected, or just k-connected.

The following direct consequence of Menger’s theorem was formulated by
Whitney [1932a]:

Theorem 15.1. An undirected graph G = (V, E) is k-connected if and only
if there exist k internally vertex-disjoint paths between any two nonadjacent
vertices s and t.

Proof. Directly from the vertex-disjoint version of Menger’s theorem (Corol-
lary 9.1a).

Similarly, the edge-connectivity of G is the minimum size of a subset C
of E for which G − C is not connected. So it is the minimum size of any
cut δ(U) with ∅ �= U �= V . A cut C attaining the minimum size is called a
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minimum cut. The edge-connectivity of G is denoted by λ(G). If λ(G) ≥ k,
G is called k-edge connected. Then:

Theorem 15.2. An undirected graph G = (V, E) is k-edge-connected if and
only if there exist k edge-disjoint paths between any two vertices s and t.

Proof. Directly from the edge-disjoint version of Menger’s theorem (Corol-
lary 9.1b).

Similar terminology and characterizations apply to digraphs. For any di-
graph D = (V, A) the vertex-connectivity, or just connectivity, of D is the
minimum size of a subset U of V for which D − U is not strongly connected.
A set U attaining the minimum is called a minimum vertex-cut. If no such
U exists (that is, if each pair (u, v) of vertices is an arc), then the (vertex-
)connectivity of D is ∞.

The connectivity of D is denoted by κ(D). If κ(D) ≥ k, D is called k-
vertex-connected, or just k-connected. Now one has:

Theorem 15.3. A digraph D = (V, A) is k-connected if and only if there
exist k internally vertex-disjoint s − t paths for any s, t ∈ V for which there
is no arc from s to t.

Proof. Directly from the vertex-disjoint version of Menger’s theorem (Corol-
lary 9.1a).

Finally, the arc-connectivity of D is the minimum size of a subset C of
A for which D − C is not strongly connected. That is, it is the minimum
size of any cut δout(U) with ∅ �= U �= V . Any cut attaining the minimum
size is called a minimum cut. The arc-connectivity of D is denoted by λ(D).
If λ(D) ≥ k, D is called k-arc-connected or strongly k-connected. (So D is
1-arc-connected if and only if D is strongly connected.) Then:

Theorem 15.4. A digraph D = (V, A) is k-arc-connected if and only if there
exist k arc-disjoint paths between any two vertices s and t.

Proof. Directly from the arc-disjoint version of Menger’s theorem (Corollary
9.1b).

Shiloach [1979a] observed that Edmonds’ disjoint arborescences theorem
(to be discussed in Chapter 53) implies a stronger characterization of k-arc-
connectivity: a digraph D = (V, A) is k-arc-connected if and only if for all
s1, t1, . . . , sk, tk ∈ V there exist arc-disjoint paths P1, . . . , Pk, where Pi runs
from si to ti (i = 1, . . . , k) — see Corollary 53.1d.

A similar characterization does not hold for the undirected case, as is
shown by the 2-edge-connected graph in Figure 15.1.
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s1

t1s2

t2

Figure 15.1

15.2. Vertex-connectivity algorithmically

It is clear that the vertex-connectivity of a directed or undirected graph
can be determined in polynomial time, just by finding a minimum-size s − t
vertex-cut for each pair s, t of vertices. Since by Corollary 9.7a, a minimum-
size s− t vertex-cut can be found in O(n1/2m) time, this yields an O(n5/2m)
algorithm. In fact, Podderyugin [1973] (for undirected graphs) and Even and
Tarjan [1975] observed that one need not consider every pair of vertices:

Theorem 15.5. A minimum-size vertex-cut in a digraph D can be found in
O(κ(D)n3/2m) time.

Proof. Let D = (V, A) be a digraph. We may assume that D is simple.
Order V arbitrarily as v1, . . . , vn. For i = 1, 2, . . ., determine, for each v ∈ V ,
a minimum vi − v vertex-cut Cvi,v and a minimum v − vi vertex-cut Cv,vi

.
(This takes O(n3/2m) time by Corollary 9.7a.) At any moment, let c be the
minimum size of the cuts found so far. We stop if i > c + 1. Then c is the
vertex-connectivity of D.

Indeed let C be a minimum-size vertex-cut. Then for i := κ(D)+2, there
is a j < i with vj �∈ C. Hence there is a vertex v such that C is a vj − v
or a v − vj vertex-cut. Assume without loss of generality that C is a vj − v
vertex-cut. Then c ≤ |Cvj ,v| = |C| = κ(D).

Since κ(D) ≤ m/n if D is not complete, this implies:

Corollary 15.5a. A minimum-size vertex-cut in a digraph can be found in
O(n1/2m2) time.

Proof. Immediately from Theorem 15.5, since if D is not complete, κ(D) is
at most the minimum outdegree of D, and hence κ(D) ≤ m/n.

If we want to test the k-connectivity for some fixed k, we may use the
following result given by Even [1975]:

Theorem 15.6. Given a digraph D and an integer k, one can decide in
O((k +

√
n)k

√
nm) time if D is k-connected, and if not, find a minimum

cut.
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Proof. Let V = {1, . . . , n}. Determine

(15.1) (i) for all i, j ∈ {1, . . . , k} with (i, j) �∈ A, a minimum-size i − j
vertex-cut if it has size less than k;

(ii) for each i = k + 1, . . . , n a minimum-size {1, . . . , i − 1} − i
vertex-cut if it has size less than k, and a minimum-size i −
{1, . . . , i − 1} vertex-cut if it has size less than k.

We claim that if we find any vertex-cut, the smallest among them is a
minimum-size vertex-cut. If we find no vertex-cuts, then D is k-connected.

To see this, let U be a minimum-size vertex-cut with |U | < k. Suppose that
each vertex-cut found has size > |U |. Then for all distinct i, j ∈ {1, . . . , k}\U
there is an i−j path avoiding U . So {1, . . . , k}\U is contained in some strong
component K of D − U . As D − U is not strongly connected, D − U has a
vertex not in K. Let i be the smallest index i �∈ K ∪U . As there exist |U |+1
disjoint {1, . . . , i − 1} − i paths, D − U has a j − i path for some j < i;
then j ∈ K. Similarly, D − U contains an i − j′ path for some j′ ∈ K. This
contradicts the fact that i �∈ K and K is a strong component.

This implies the theorem. Indeed, by Corollaries 9.3a and 9.7a one can
find a vertex-cut as in (15.1)(i) or (ii) in time O(min{k,

√
n}m) time. So in

total it takes O((k2 + n) min{k,
√

n}m) = O((k +
√

n)k
√

n m) time.

This implies:

Corollary 15.6a. A minimum-size vertex-cut in a digraph can be found in

time O(max{ m3

n
√

n
,m2}).

Proof. From Theorem 15.6 by taking k := ⌊m/n⌋.

Matula [1987] showed that Theorem 15.6 implies the following result of
Galil [1980b], where κ(D) is the vertex-connectivity of D:

Corollary 15.6b. A minimum-size vertex-cut in a digraph D can be found
in O((κ(D) +

√
n)κ(D)

√
n m) time.

Proof. For k = 2, 22, 23, . . . test with the algorithm of Theorem 15.6 if D
is k-connected. Stop if D is not k-connected; then the algorithm gives a
minimum-size vertex-cut. Let l be such that k = 2l. As 2l ≤ 2κ(D), this
takes time

(15.2) O(
l∑

i=1

((2i +
√

n)2i
√

n m)) = O((4l+1 + 2l+1
√

n)
√

n m)

= O((κ(D)2 + κ(D)
√

n)
√

n m).

Since vertex-cuts in an undirected graph G are equal to vertex-cuts in the
digraph obtained from G by replacing each edge by two oppositely oriented
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arcs, the results above immediately imply similar results for vertex-cuts and
vertex-connectivity in undirected graphs.

15.2a. Complexity survey for vertex-connectivity

Complexity survey for vertex-connectivity (in directed graphs, unless stated other-
wise; again, ∗ indicates an asymptotically best bound in the table):

O(n2 · VC(n, m)) (trivial)

O(kn · VCk(n, m)) Kleitman [1969]

O(κn · VC(n, m))
Podderyugin [1973], Even and Tarjan
[1975]

O((k2 + n) · VCk(n, m))
Even [1975] (cf. Esfahanian and
Hakimi [1984])

O((κ2 + n) · VCκ(n, m)) Galil [1980b] (cf. Matula [1987])

O((κ +
√

n)κ2n3/2)
undirected Nagamochi and Ibaraki
[1992a], Cheriyan and Thurimella
[1991]

O((κ +
√

n)κ2n3/2 logn(n2/m))
undirected Feder and Motwani [1991,
1995]

O((κ3 + n)m)
Henzinger, Rao, and Gabow [1996,
2000]

O(κnm)
Henzinger, Rao, and Gabow [1996,
2000]

O((κ3 + n)κn)
undirected Henzinger, Rao, and
Gabow [1996,2000]

O(κ2n2)
undirected Henzinger, Rao, and
Gabow [1996,2000]

∗ O((κ5/2 + n)m) Gabow [2000b]

∗ O((κ + n1/4)n3/4m) Gabow [2000b]

∗ O((κ5/2 + n)κn) undirected Gabow [2000b]

∗ O((n1/4 + κ)κn7/4) undirected Gabow [2000b]

Here κ denotes the vertex-connectivity of the graph. Note that κ ≤ m/n. If k is
involved, the time bound is for determining min{κ, k}. By VC(n, m) we denote the
time needed to find the minimum size of an s− t vertex-cut for fixed s, t. Moreover,
VCk(n, m) denotes the time needed to find the minimum size of an s− t vertex-cut
if this size is less than k. We refer to Sections 9.5 and 9.6a for bounds on VC(n, m)
and VCk(n, m). Note that VCk(n, m) = O(min{k,

√
n}m).

By the observation of Matula [1987] (cf. Corollary 15.6b above), if min{k, κ} can
be determined in time O(kαf(n, m)) (for some α ≥ 1), then κ can be determined
in time O(καf(n, m)).
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15.2b. Finding the 2-connected components

In this section we show the result due to Paton [1971], Tarjan [1972], and Dinits,
Zajtsev, and Karzanov [1974] (cf. Hopcroft and Tarjan [1973a]) that the 2-vertex-
connected components of an undirected graph can be found in linear time. Hence,
the 2-connectivity of an undirected graph can be tested in linear time.

Let G = (V, E) be an undirected graph and let k ∈ Z+. A k-connected compo-

nent is an inclusionwise maximal subset U of V for which G[U ] is k-connected. A
block is a 2-connected component U with |U | ≥ 2.

We note

(15.3) if U and W are two different k-connected components, then |U ∩W | <
k.

Indeed, as G[U ∪ W ] is not k-connected, there is a subset C of U ∪ W with G[(U ∪
W ) \ C] disconnected and |C| < k. As (U ∪ W ) \ C = (U \ C) ∪ (W \ C) and as
G[U \ C] and G[W \ C] are connected, it follows that (U \ C) ∩ (W \ C) = ∅. Hence
C ⊇ U ∩ W , and therefore |U ∩ W | < k.

(15.3) implies that each edge of G is contained in a unique 2-connected compo-
nent. So the 2-connected components partition the edge set. One may show:

(15.4) edges e and e′ are contained in the same 2-connected component if and
only if G has a circuit C containing both e and e′.

Indeed, if C exists, it forms a 2-connected subgraph of G, and hence e and e′ are
contained in some 2-connected component. Conversely, if e = uv and e′ = u′v′

are contained in a 2-connected component H, by Menger’s theorem H has two
vertex-disjoint {u, v}−{u′, v′} paths; with e and e′ these paths form a circuit C as
required.

Theorem 15.7. The collection of blocks of a graph G = (V, E) can be identified in

linear time.

Proof. By Corollary 6.6a, we may assume that G is connected. Choose s ∈ V
arbitrarily. Apply depth-first search starting at s. If we orient the final tree to
become a rooted tree (V, T ) with root s, all further edges of G connect two vertices
u, v such that T has a directed u − v path P . For each such edge, make an arc
(v, u′), where u′ is the second vertex of P . The arcs in T and these new arcs form
a directed graph denoted by D = (V, A).

By adapting the depth-first search, we can find A is linear time. Indeed, while
scanning s, we keep a directed path Q in T formed by the vertices whose scanning
has begun but is not yet finished. If we scan v and meet an edge uv with u on Q,
we can find u′ and construct the arc (v, u′).

Since no arc of D enters s, {s} is a strong component. For any strong component
K of D one has:

(15.5) the subgraph of T induced by K is a subtree.

Indeed, for any arc (u, v) ∈ A\T spanned by K, the v −u path in T is contained in
K, since it forms a directed circuit with (u, v) and since K is a strong component.
This proves (15.5).

(15.5) implies that for each strong component K of D with K �= {s}, there is
a unique arc of T entering K; let uK be its tail and define K′ := K ∪ {uK}. We
finally show



Section 15.3. Arc- and edge-connectivity algorithmically 243

(15.6) {K′ | K strong component of D, K �= {s}} is equal to the collection
of blocks of G.

This proves the theorem (using Theorem 6.6).
Let (t, u, v) be a directed path in T . Then

(15.7) tu and uv are contained in the same block of G if and only if D has a
directed v − u path.

To see this, let W be the set of vertices reachable in (V, T ) from v. Then:

(15.8) D has a directed v − u path ⇐⇒ D has an arc leaving W ⇐⇒ G
has an edge leaving W and not containing u ⇐⇒ G has a v − t path
not traversing u ⇐⇒ tu and uv are contained in a circuit of G ⇐⇒
tu and uv are contained in the same block of G.

This proves (15.7).
(15.7) implies that for each strong component K ⊆ V \ {s} of D, the set K′

is contained in a block of G. Conversely, let B be a block of G. Then B induces a
subtree of T . Otherwise, B contains two vertices u and v such that the undirected
u − v path P in T has length at least two and such that no internal vertex of P
belongs to B. Let Q be a u − v path in B. Then P and Q form a circuit, hence a
2-connected graph. So P is contained in B, a contradiction.

So B induces a subtree of T . Let u be its root. As B \ {u} induces a connected
subgraph of G, there is a unique arc in T entering B \ {u}. So also B \ {u} induces
a subtree of T . Then (15.7) implies that B \{u} is contained in a strong component
of D.

Corollary 15.7a. The 2-connectivity of an undirected graph can be tested in linear

time.

Proof. A graph (V, E) is 2-connected if and only if V is a 2-connected component.
So Theorem 15.7 implies the result.

Hopcroft and Tarjan [1973b] gave a linear-time algorithm to test 3-connectivity
of an undirected graph; more generally, to decompose an undirected graph into 3-
connected components (cf. Miller and Ramachandran [1987,1992]). Kanevsky and
Ramachandran [1987,1991] gave an O(n2) algorithm to test 4-connectivity of an
undirected graph.

Finding all 2- and 3-vertex-cuts of an undirected graph has been investigated by
Tarjan [1972], Hopcroft and Tarjan [1973b], Kanevsky and Ramachandran [1987,
1991], Miller and Ramachandran [1987,1992], and Kanevsky [1990a]. Kanevsky
[1990b] showed that for each fixed k, the number of vertex-cuts of size k in a
k-vertex-connected graph is O(n2) (cf. Kanevsky [1993]). Related results can be
found in Gusfield and Naor [1990], Cohen, Di Battista, Kanevsky, and Tamassia
[1993], Gabow [1993b,1995c], and Cheriyan and Thurimella [1996b,1999].

15.3. Arc- and edge-connectivity algorithmically

Denote by EC(n, m) the time needed to find a minimum-size s− t cut for any
given pair of vertices s, t. Even and Tarjan [1975] (and Podderyugin [1973]
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for undirected graphs) observed that one need not check all pairs of vertices
to find a minimum cut:

Theorem 15.8. A minimum-size cut in a digraph can be found in O(n ·
EC(n, m)) time.

Proof. Choose s ∈ V . For each t �= s, determine a minimum s−t cut Cs,t and
a minimum t − s cut Ct,s. The smallest among all these cuts is a minimum
cut.

Hence we have for the arc-connectivity:

Corollary 15.8a. The arc-connectivity of a digraph can be determined in
O(n · EC(n, m)) time.

Proof. Directly from Theorem 15.8.

As EC(n, m) = O(m3/2) by Corollary 9.6a, it follows that the arc-
connectivity can be determined in time O(nm3/2). Actually, also in time
O(m2), since we need to apply the disjoint paths algorithm only until we
have at most k := ⌊m/n⌋ arc-disjoint paths, as the arc-connectivity is at
most m/n (there is a v ∈ V with |δout(v)| ≤ ⌊m/n⌋).

Moreover, again by Corollary 9.6a, EC(n, m) = O(n2/3m) for simple di-
graphs, and hence the arc-connectivity of a simple directed graph can be
determined in time O(n5/3m) (cf. Esfahanian and Hakimi [1984]).

Schnorr [1978b,1979] showed that in fact:

Theorem 15.9. Given a digraph D and an integer k, one can decide in
O(knm) time if D is k-arc-connected, and if not, find a minimum cut.

Proof. In Theorem 15.8 one needs to check only if there exist k arc-disjoint
s − t paths, and if not find a minimum-size s − t cut. This can be done in
time O(km), as we saw in Corollary 9.3a.

With a method of Matula [1987] this implies, where λ(D) is the arc-
connectivity of D:

Corollary 15.9a. A minimum-size cut in a digraph D can be found in time
O(λ(D)nm).

Proof. For k = 2, 22, 23, . . . test if D is k-arc-connected, until we find that
D is not k-arc-connected, and have a minimum-size cut. With the method of
Theorem 15.9 this takes time O((2+22 +23 + · · ·+2l)nm), with 2l ≤ 2λ(D).
So 2 + 22 + 23 + · · · + 2l ≤ 2l+1 ≤ 4λ(D), and the result follows.
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For undirected graphs, Nagamochi and Ibaraki [1992b] showed that the
edge-connectivity of an undirected graph can be determined in time O(nm)
(for simple graphs this bound is due to Podderyugin [1973]). We follow the
shortened algorithm described by Frank [1994b] and Stoer and Wagner [1994,
1997].

Theorem 15.10. Given an undirected graph G, a minimum cut in G can be
found in time O(nm).

Proof. Let G = (V, E) be a graph. For U ⊆ V and v ∈ V \ U , let d(U, v)
denote the number of edges connecting U and v. Let r(u, v) denote the min-
imum capacity of a u − v cut.

Call an ordering v1, . . . , vn of the vertices of G a legal order for G if
d({v1, . . . , vi−1}, vi) ≥ d({v1, . . . , vi−1}, vj) for all i, j with 1 ≤ i < j ≤ n.
Then:

(15.9) If v1, . . . , vn is a legal order for G = (V, E), then r(vn−1, vn) =
d(vn).

To see this, let C be any vn−1 − vn cut. Define u0 := v1. For i = 1, . . . , n − 1,
define ui := vj , where j is the smallest index such that j > i and C is a
vi − vj cut. Note that for each i = 1, . . . , n − 1 one has

(15.10) d({v1, . . . , vi−1}, ui) ≤ d({v1, . . . , vi−1}, ui−1),

since if ui−1 �= ui, then ui−1 = vi, in which case (15.10) follows from the
legality of the order.

Then we have

(15.11) d(C) ≥
n−1∑

i=1

d(vi, ui)

=

n−1∑

i=1

(d({v1, . . . , vi}, ui) − d({v1, . . . , vi−1}, ui))

≥
n−1∑

i=1

(d({v1, . . . , vi}, ui) − d({v1, . . . , vi−1}, ui−1))

= d({v1, . . . , vn−1}, vn) = d(vn),

showing (15.9).
Next one has that a legal order for a given graph G can be found in

time O(m). Indeed, one can find v1, v2, v3, . . . successively: if v1, . . . , vi−1

have been found, we need to find a v ∈ V \ {v1, . . . , vi−1} maximizing
d({v1, . . . , vi−1}, v). With a ‘bucket’ data structure this can be done in O(m)
time.23

23 Suppose that we have a set V and a function φ : V → Z. We can select and delete a v

maximizing φ(v) in O(1) time and to reset φ(v) from k to k′ in O(|k′ − k|) time.
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Concluding, in any given graph G = (V, E) with |V | ≥ 2, we can find two
vertices s and t with r(s, t) = d(s) in time O(m). Identify s and t, and find
recursively a minimum cut C in the new graph. Then δ(s) is a minimum cut
separating s and t, and C is a minimum cut not separating s and t. Hence,
the smallest of the two is a minimum cut.

(Another correctness proof was given by Fujishige [1998].)
Theorem 15.10 extends to capacitated graphs (Nagamochi and Ibaraki

[1992b]):

Theorem 15.11. Given an undirected graph G = (V, E) and a capacity
function c : E → Q+, a minimum-capacity cut can be found in time O(n(m+
n log n)).

Proof. This can be shown in the same way as Theorem 15.10, using Fibonacci
heaps for finding a legal order.

15.3a. Complexity survey for arc- and edge-connectivity

Survey for arc-complexity (in uncapacitated directed graphs, unless stated other-
wise):

O(n · EC(n, m)) (trivial)

O(nm) simple undirected Podderyugin [1973]

O(n · ECl(n, m)) Schnorr [1978b,1979]

O(λ3n2 + λm) Timofeev [1982]

O(λn2)
simple undirected Karzanov and Timofeev
[1986], Matula [1987]

O(n · ECλ(n, m)) Matula [1987]

O(nm) simple Mansour and Schieber [1989]

O(λ2n2) simple Mansour and Schieber [1989]

∗ O(n log δ
δ

· EC(n, m))
simple N. Alon, 1988 (cf. Mansour and
Schieber [1989])

O(nm logn(n2/m)) undirected Feder and Motwani [1991,1995]

≫
To this end, partition V into classes Vj , where Vj := {v ∈ V | φ(v) = j}. Each

nonempty Vj is ordered as a doubly linked list, and the nonempty Vj among them are
ordered as a doubly linked list L, in increasing order of j. Then in O(1) time we can
choose the largest j for which Vj is nonempty, choose v ∈ Vj , delete v from Vj , and
possibly delete Vj from L (if Vj has become empty). Resetting φ(v) from k to k′ can be
done by finding or creating Vk′ in L, which takes O(|k′ − k|) time.

Having this data structure, throughout let U := V \ {v1, . . . , vi}, and for each v ∈ U

let φ(v) := d({v1, . . . , vi}, v). If vi+1 has been found, we must delete vi+1 from U , and
reset, for each neighbour v of vi+1 in U , φ(v) to d({v1, . . . , vi+1}, v). This gives an
O(m)-time algorithm.
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continued

O(nm) undirected Nagamochi and Ibaraki [1992b]

O(m + λ2n2) undirected Nagamochi and Ibaraki [1992b]

O(m + m̃n + n2 log n) undirected Nagamochi and Ibaraki [1992b]

∗ O(n(m + n log n))
capacitated undirected Nagamochi and Ibaraki
[1992b]

∗ O(nm log(n2/m)) capacitated Hao and Orlin [1992,1994]

∗ O(λm log(n2/m)) Gabow [1991a,1995a]

∗ O(m + λ2n log(n/λ)) undirected Gabow [1991a,1995a]

Here λ denotes the arc- or edge-connectivity of the graph, m̃ the number of parallel
classes of edges, and δ the minimum (out-)degree. Note that λ ≤ δ ≤ 2m/n. If l is
involved, the time bound is for determining min{λ, l}.

EC(n, m) denotes the time needed to find the minimum size of an s − t cut, for
fixed s, t. Moreover, ECl(n, m) denotes the time needed to find the minimum size
of an s − t cut (for fixed s, t) if this size is less than l. We refer to Sections 9.4 and
9.6a for bounds on EC(n, m) and ECl(n, m).

By the observation of Matula [1987] (cf. Corollary 15.9a above), if min{λ, l} can
be determined in time O(lαf(n, m)) (for some α ≥ 1), then λ can be determined
in time O(λαf(n, m)).

Matula [1993] gave a linear-time 2+ε-approximative algorithm determining the
edge-connectivity. (Related work was done by Henzinger [1997].)

Galil and Italiano [1991] described a linear-time method to make from a graph
G a graph φk(G), with m+(k −2)n vertices and (2k −3)m edges such that: G is k-
edge-connected ⇐⇒ φk(G) is k-vertex-connected. This implies, for instance, that
3-edge-connectivity can be tested in linear time (as Hopcroft and Tarjan [1973b]
showed that 3-vertex-connectivity can be tested in linear time). Related work was
reported by Esfahanian and Hakimi [1984] and Padberg and Rinaldi [1990a].

Karger and Stein [1993,1996] gave a randomized minimum cut algorithm for
undirected graphs, with running time O(n2 log3 n). Karger [1996,2000] gave an im-
provement to O(m log3 n).

Nagamochi, Ono, and Ibaraki [1994] report on computational experiments with
the Nagamochi-Ibaraki algorithm. An experimental study of several minimum cut
algorithms was presented by Chekuri, Goldberg, Karger, Levine, and Stein [1997].

15.3b. Finding the 2-edge-connected components

Let G = (V, E) be an undirected graph and let k ∈ Z+. Consider the relation ∼ on
V defined by:

(15.12) u ∼ v ⇐⇒ G has k edge-disjoint u − v paths.

Then ∼ is an equivalence relation. This can be seen with Menger’s theorem. If u ∼ v
and v ∼ w, then u ∼ w; otherwise, there is a u − w cut C of size less than k. Then
C is also a u − v cut or a v − w cut, contradicting the fact that u ∼ v and v ∼ w.
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The equivalence classes are called the k-edge-connected components of G. So
the 1-edge connected components of G coincide with the components of G, and can
be found in linear time by Corollary 6.6a. Also for k = 2, the k-edge-connected
components can be found in linear time (Karzanov [1970]; we follow the proof of
Tarjan [1972]):

Theorem 15.12. Given an undirected graph G = (V, E), its 2-edge-connected com-

ponents can be found in linear time.

Proof. We may assume that G is connected, since by Corollary 6.6a, the compo-
nents of G can be found in linear time.

Choose s ∈ V arbitrarily, and consider a depth-first search tree T starting at
s. Orient each edge in T away from s. For each remaining edge e = uv, there is
a directed path in T that connects u and v. Let the path run from u to v. Then
orient e from v to u. This gives the orientation D of G.

Then any edge not in T belongs to a directed circuit in D. Moreover, any edge
in T that is not a cut edge, belongs to a directed circuit in D. Then the 2-edge-
connected components of G coincide with the strong components of D. By Theorem
6.6, these components can be found in linear time.

More on finding 2-edge-connected components can be found in Gabow [2000a].

15.4. Gomory-Hu trees

In previous sections of this chapter we have considered the problem of deter-
mining a minimum cut in a graph, where the minimum is taken over all pairs
s, t. The all-pairs minimum-size cut problem asks for a minimum s − t cut
for all pairs of vertices s, t. Clearly, this can be solved in time O(n2τ), where
τ is the time needed for finding a minimum s − t cut for any given s, t.

Gomory and Hu [1961] showed that for undirected graphs it can be done
faster, and that there is a concise structure, the Gomory-Hu tree, to represent
all minimum cuts. Similarly for the capacitated case.

Fix an undirected graph G = (V, E) and a capacity function c : E → R+.
A Gomory-Hu tree (for G and c) is a tree T = (V, F ) such that for each edge
e = st of T , δ(U) is a minimum-capacity s− t cut of G, where U is any of the
two components of T − e. (Note that it is not required that T is a subgraph
of G.)

Gomory and Hu [1961] showed that for each G, c there indeed exists a
Gomory-Hu tree, and that it can be found by n − 1 minimum-cut computa-
tions.

For distinct s, t ∈ V , define r(s, t) as the minimum capacity of an s − t
cut. The following triangle inequality holds:

(15.13) r(u, w) ≥ min{r(u, v), r(v, w)}
for all distinct u, v, w ∈ G. Now a Gomory-Hu tree indeed describes concisely
minimum-capacity s − t cuts for all s, t:
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Theorem 15.13. Let T = (V, F ) be a Gomory-Hu tree. Consider any s, t ∈
V , the s−t path P in T , an edge e = uv on P with r(u, v) minimum, and any
component K of T −e. Then r(s, t) = r(u, v) and δ(K) is a minimum-capacity
s − t cut.

Proof. Inductively, (15.13) gives r(s, t) ≥ r(u, v). Moreover, δ(K) is an s − t
cut, and hence r(s, t) ≤ c(δ(K)) = r(u, v).

To show that a Gomory-Hu tree does exist, we first prove:

Lemma 15.14α. Let s, t ∈ V , let δ(U) be a minimum-capacity s − t cut in
G, and let u, v ∈ U with u �= v. Then there exists a minimum-capacity u − v
cut δ(W ) with W ⊆ U .

Proof. Consider a minimum-capacity u − v cut δ(X). By symmetry we may
assume that s ∈ U (otherwise interchange s and t), t �∈ U , s ∈ X (otherwise
replace X by V \ X), u ∈ X (otherwise interchange u and v), and v �∈ X. So
one of the diagrams of Figure 15.2 applies.

uu vv
ss

t t

XX

UU

t �∈ X t ∈ X

Figure 15.2

In particular, δ(U ∩X) and δ(U \X) are u−v cuts. If t �∈ X, then δ(U ∪X)
is an s − t cut. As

(15.14) c(δ(U ∩ X)) + c(δ(U ∪ X)) ≤ c(δ(U)) + c(δ(X))

and

(15.15) c(δ(U ∪ X)) ≥ c(δ(U)),

we have c(δ(U ∩ X)) ≤ c(δ(X)). So δ(U ∩ X) is a minimum-capacity u − v
cut.

If t ∈ X, then δ(X \ U) is an s − t cut. As

(15.16) c(δ(U \ X)) + c(δ(X \ U)) ≤ c(δ(U)) + c(δ(X))
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and

(15.17) c(δ(X \ U)) ≥ c(δ(U)),

we have c(δ(U \ X)) ≤ c(δ(X)). So δ(U \ X) is a minimum-capacity u − v
cut.

This lemma is used in proving the existence of Gomory-Hu trees:

Theorem 15.14. For each graph G = (V, E) and each capacity function
c : E → R+ there exists a Gomory-Hu tree.

Proof. Define a Gomory-Hu tree for a set R ⊆ V to be a pair of a tree (R, T )
and a partition (Cr | r ∈ R) of V such that:

(15.18) (i) r ∈ Cr for each r ∈ R,
(ii) δ(U) is a minimum-capacity s− t cut for each edge e = st ∈ T ,

where U :=
⋃

u∈K

Cu and K is a component of T − e.

We show by induction on |R| that for each nonempty R ⊆ V there exists a
Gomory-Hu tree for R. Then for R = V we have a Gomory-Hu tree.

If |R| = 1, (15.18) is trivial, so assume |R| ≥ 2. Let δ(W ) be a minimum-
capacity cut separating at least one pair of vertices in R. Contract V \ W to
one vertex, v′ say, giving graph G′. Let R′ := R ∩ W . By induction, G′ has
a Gomory-Hu tree (R′, T ′), (C ′

r | r ∈ R′) for R′.
Similarly, contract W to one vertex, v′′ say, giving graph G′′. Let R′′ :=

R \ W . By induction, G′′ has a Gomory-Hu tree (R′′, T ′′), (C ′′
r | r ∈ R′′) for

R′′.
Now let r′ ∈ R′ be such that v′ ∈ C ′

r′ . Similarly, let r′′ ∈ R′′ be such that
v′′ ∈ C ′′

r′′ . Let T := T ′ ∪ T ′′ ∪ {r′r′′}, Let Cr′ := C ′
r′ \ {v′} and let Cr := C ′

r

for all other r ∈ R′. Similarly, let Cr′′ := C ′′
r′′ \ {v′′} and let Cr := C ′′

r for all
other r ∈ R′′.

Now (R, T ) and the Cr form a Gomory-Hu tree for R. Indeed, for any
e ∈ T with e �= r′r′′, (15.18) follows from Lemma 15.14α. If e = r′r′′, then
U = W and δ(W ) is a minimum-capacity r′ − r′′ cut (as it is minimum-
capacity over all cuts separating at least one pair of vertices in R).

The method can be sharpened to give the following algorithmic result:

Theorem 15.15. A Gomory-Hu tree can be found by n − 1 applications of
a minimum-capacity cut algorithm.

Proof. In the proof of Theorem 15.14, it suffices to take for δ(W ) just a
minimum-capacity s − t cut for at least one pair s, t ∈ R. Then δ(W ) is also
a minimum-capacity r′ − r′′ cut. For suppose that there exists an r′ − r′′ cut
δ(X) of smaller capacity. We may assume that s ∈ W and t �∈ W . As δ(W ) is
a minimum-capacity s− t cut, δ(X) is not an s − t cut. So it should separate
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s and r′ or t and r′′. By symmetry, we may assume that it separates s and r′.
Then it also as is a u−v cut for some edge uv on the s−r′ path in T ′. Let uv
determine cut δ(U). This cut is an s − t cut, and hence c(δ(U)) ≥ c(δ(W )).
On the other hand, c(δ(U)) ≤ c(δ(X)), as δ(U) is a minimum-capacity u − v
cut. This contradicts our assumption that c(δ(X)) < c(δ(W )).

This implies for the running time:

Corollary 15.15a. A Gomory-Hu tree can be found in time O(nτ) time, if
for any s, t ∈ V a minimum-capacity s − t cut can be found in time τ .

Proof. Directly from Theorem 15.15.

Notes. The method gives an O(m2) method to find a Gomory-Hu tree for the
capacity function c = 1, since O(m2) = O(

∑
v d(v)m), and for each new vertex v a

minimum cut can be found in time O(d(v)m). Hao and Orlin [1992,1994] gave an
O(n3)-time method to find, for given graph G = (V, E) and s ∈ V , all minimum-
size s − t cuts for all t �= s (with push-relabel). Shiloach [1979b] gave an O(n2m)
algorithm to find a maximum number of edge-disjoint paths between all pairs of
vertices in an undirected graph. Ahuja, Magnanti, and Orlin [1993] showed that the
best directed all-pairs cut algorithm takes Ω(n2) max-flow iterations.

For planar graphs, Hartvigsen and Mardon [1994] gave an (n2 log n + m) al-
gorithm to find a Gomory-Hu tree (they observed that this bound can be derived
also from Frederickson [1987b]). This improves a result of Shiloach [1980a], who
gave an O(n2(log n)2)-time algorithm to find minimum-size cuts between all pairs
of vertices in a planar graph.

Theorem 15.13 implies that a Gomory-Hu tree for a graph G = (V, E) is a
maximum-weight spanning tree in the complete graph on V , for weight function
r(u, v). However, not every maximum-weight spanning tree is a Gomory-Hu tree
(for G = K1,2, c = 1, only G itself is a Gomory-Hu tree, but all spanning trees on
V K1,2 have the same weight).

More on Gomory-Hu trees can be found in Elmaghraby [1964], Hu and Shing
[1983], Agarwal, Mittal, and Sharma [1984], Granot and Hassin [1986], Hassin
[1988], Chen [1990], Gusfield [1990], Hartvigsen and Margot [1995], Talluri [1996],
Goldberg and Tsioutsiouliklis [1999,2001], and Hartvigsen [2001b]. Generalizations
were given by Cheng and Hu [1990,1991,1992] and Hartvigsen [1995] (to matroids).

15.4a. Minimum-requirement spanning tree

Hu [1974] gave the following additional application of Gomory-Hu trees. Let G =
(V, E) be an undirected graph and let r : E → R+ be a ‘requirement’ function (say,
the number of telephone calls to be made between the end vertices of e).

We want to find a tree T on V minimizing

(15.19)
∑

e∈E

r(e)distT (e),
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where distT (e) denotes the distance in T between the end vertices of e.
Now any Gomory-Hu tree T for G and capacity function r indeed minimizes

(15.19). To see this, let for any edge f of T , RT (f) be equal to the requirement (=
capacity) of the cut determined by the two components of T − f . Then (15.19) is
equal to

(15.20)
∑

f∈T

RT (f).

Now T minimizes (15.20), as was shown by Adolphson and Hu [1973]. For let T ′

be any other spanning tree on V . Then for each f = st ∈ T and each edge f ′ on
the s − t path in T ′ one has

(15.21) RT ′(f ′) ≥ RT (f),

since the components of T − f determine a minimum-capacity s − t cut, and since
the components of T ′ − f ′ determine an s − t cut. Since T and T ′ are spanning
trees, there exists a one-to-one function φ : T → T ′ such that for each f = st ∈ T ,
φ(f) is an edge on the s − t path in T ′.

To see this, let u be an end vertex of T . Let f = uv be the edge of T incident
with u, and define φ(f) to be the first edge of the u − v path in T ′. Delete f and
contract φ(f). Then induction gives the required function.

So (15.21) implies that (15.20) is not decreased by replacing T by T ′. Hence T
minimizes (15.20), and therefore also (15.19).

15.5. Further results and notes

15.5a. Ear-decomposition of undirected graphs

In Section 6.5c we characterized the strongly connected digraphs as those digraphs
having an ear-decomposition. We now consider the undirected case, and we will see
a correspondence between ear-decompositions and 2-(edge-)connected graphs.

Let G = (V, E) be an undirected graph. An ear of G is a path or circuit P in
G, of length ≥ 1, such that all internal vertices of P have degree 2 in G. The path
may consist of a single edge — so any edge of G is an ear. A proper ear is an ear
that is a path, that is, has two different ends.

If I is the set of internal vertices of an ear P , we say that G arises from G−I by
adding ear. An ear-decomposition of G is a series of graphs G0, G1, . . . , Gk, where
G0 = K1, Gk = G, and Gi arises from Gi−1 by adding an ear (i = 1, . . . , k).
If G0 = K2 and Gi arises from Gi−1 by adding a proper ear, it is a proper ear-

decomposition.
Graphs with a proper ear-decomposition were characterized by Whitney [1932b]:

Theorem 15.16. A graph G = (V, E) with |V | ≥ 2 has a proper ear-decomposition

if and only if G is 2-vertex-connected.

Proof. Necessity follows from the facts that K2 is 2-vertex-connected and that
2-vertex-connectivity is maintained under adding proper ears. To see sufficiency,
let G be 2-vertex-connected, and let G′ = (V ′, E′) be a subgraph of G that has a
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proper ear-decomposition, with |E′| as large as possible. Suppose that E′ �= E, and
let e = uv be an edge in E \ E′ incident with V ′; say u ∈ V ′. By the 2-connectivity
of G, there is a path from v to V ′ avoiding u. Let P be a shortest such path. Then
path e, P is a proper ear that can be added to G′, contradicting the maximality of
|E′|.

Similarly, graphs having an ear-decomposition are characterized by being 2-
edge-connected (this is implicit in Robbins [1939]):

Theorem 15.17. A graph G = (V, E) has an ear-decomposition if and only if G is

2-edge-connected.

Proof. Necessity follows from the facts that K1 is 2-edge-connected and that 2-
edge-connectivity is maintained under adding ears. To see sufficiency, let G be
2-edge-connected, and let G′ = (V ′, E′) be a subgraph of G that has an ear-
decomposition, with |E′| as large as possible. Suppose that E′ �= E, and let e = uv
be an edge in E \E′ incident with V ′; say u ∈ V ′. Let C be a circuit in G traversing
e. Let C start with u, e, . . .. Let s be the first vertex in C, after e, that belongs to V ′.
Then subpath P = u, e . . . , w of C is an ear that can be added to G′, contradicting
the maximality of |E′|.

15.5b. Further notes

Dinits, Karzanov, and Lomonosov [1976] showed that the set of all minimum-
capacity cuts of an undirected graph (with positive capacities on the edges) has
the ”cactus structure”, as follows. A cactus is a connected graph such that each
edge belongs to at most one circuit. Let G = (V, E) be a graph with a capacity
function c : E → Z+ such that the minimum cut capacity λ is positive. Then there
exist a cactus K with O(|V |) vertices and a function φ : V → V K such that for
each inclusionwise minimal cut δK(U) of K, the set δG(φ−1(U)) is a cut of capac-
ity λ, and such that each minimum-capacity cut in G can be obtained this way.
Moreover, K is a tree when λ is odd. It follows that the number of minimum-
capacity cuts is at most

(
n
2

)
(and at most n − 1 when λ is odd), and that the

vertices of G can be ordered as v1, . . . , vn so that each minimum-capacity cut is of
the form δ({vi, vi+1, . . . , vj}) for some i ≤ j. Related results can be found in Picard
and Queyranne [1980], Karzanov and Timofeev [1986], Gabow [1991b,1993b,1995c],
Gusfield and Naor [1993], Karger and Stein [1993,1996], Nagamochi, Nishimura,
and Ibaraki [1994,1997], Benczúr [1995], Henzinger and Williamson [1996], Karger
[1996,2000], Fleischer [1998a,1999b], Dinitz and Vainshtein [2000], and Nagamochi,
Nakao, and Ibaraki [2000].

Gusfield and Naor [1990,1991] considered the analogue of the Gomory-Hu tree
for vertex-cuts.

A theorem of Mader [1971] implies that each k-connected graph G = (V, E)
contains a k-connected spanning subgraph with O(k|V |) edges — similarly for k-
edge-connected. This was extended by Nagamochi and Ibaraki [1992a], showing
that for each k, each graph G = (V, E) has a subgraph Gk = (V, Ek) such that
|Ek| = O(k|V |) and such that for all s, t ∈ V :

(15.22) (i) λGk
(s, t) ≥ min{λG(s, t), k},
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(ii) κGk
(s, t) ≥ min{κG(s, t), k} if st �∈ E.

Here λH(s, t) (κH(s, t), respectively) denotes the maximum number of edge-disjoint
(internally vertex-disjoint, respectively) s − t paths in H. They also gave a linear-
time algorithm finding Gk. A shorter proof and a generalization was given by Frank,
Ibaraki, and Nagamochi [1993].

Frank [1995] showed that the following is implied by the existence of a Gomory-
Hu tree. Let G = (V, E) be an undirected graph of minimum degree k. Then there
exist two distinct vertices s, t ∈ V connected by k edge-disjoint paths. This follows
by taking for s a vertex of degree 1 in the Gomory-Hu tree, and for t its neighbour
in this tree. Then δE(s) is a minimum-size cut separating s and t.

Tamir [1994] observed that the up hull P of the incidence vectors of the non-
trivial cuts of an undirected graph G = (V, E) can be described as follows. Let
D = (V, A) be the digraph with A being the set of all ordered pairs (u, v) for ad-
jacent u, v ∈ V . Choose r ∈ V arbitrarily. Then P is equal to the projection to
x-space of the polyhedron in the variables x ∈ RE and y ∈ RA determined by:

(15.23) (i) y(a) ≥ 0 for each a ∈ A,
(ii) y(B) ≥ 1 for each r-arborescence B,
(iii) x(e) = y(u, v) + y(v, u) for each edge e = uv of G.

(Here an r-arborescence is a subset B of A such that (V, B) is a rooted tree rooted
at r.) This can be shown with the help of the results to be discussed in Chapter
53. To see this, consider any c ∈ RE

+. Then the minimum value of cTx over all
x, y satisfying (15.23), is equal to the minimum value of dTy over all x, y satisfying
(15.23), where d(u, v) := c(uv) for each (u, v) ∈ A. This is equal to the minimum
value of dTy over all y satisfying (i) and (ii) of (15.23). By Corollary 53.1f, below this
is equal to the minimum d-weight of an r-cut in D, which is equal to the minimum
c-weight of a nontrivial cut in G.

No explicit description in terms of linear inequalities is known for the up hull of
the incidence vectors of nontrivial cuts. Alevras [1999] gave descriptions for small
instances (up to seven vertices for undirected graphs and up to five vertices for
directed graphs).

The minimum k-cut problem: ‘find a partition of the vertex set of a graph into
k nonempty classes such that the number of edges connecting different classes is
minimized’, is NP-complete if k is part of the input (there is an easy reduction
from the maximum clique problem, as the problem is equivalent to maximizing the
number of edges spanned by the classes in the partition). For fixed k however, it was
shown to be polynomial-time solvable by Goldschmidt and Hochbaum [1988,1994].
If we prescribe certain vertices to belong to the classes, the problem is NP-complete
even for k = 3 (Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis [1992,
1994]). More on this problem can be found in Hochbaum and Shmoys [1985], Lee,
Park, and Kim [1989], Chopra and Rao [1991], Cunningham [1991], He [1991],
Saran and Vazirani [1991,1995], Garg, Vazirani, and Yannakakis [1994], Kapoor
[1996], Burlet and Goldschmidt [1997], Kamidoi, Wakabayashi, and Yoshida [1997],
Călinescu, Karloff, and Rabani [1998,2000], Hartvigsen [1998b], Karzanov [1998c],
Cunningham and Tang [1999], Karger, Klein, Stein, Thorup, and Young [1999],
Nagamochi and Ibaraki [1999a,2000], Nagamochi, Katayama, and Ibaraki [1999,
2000], Goemans and Williamson [2001], Naor and Rabani [2001], Zhao, Nagamochi,
and Ibaraki [2001], and Ravi and Sinha [2002].
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Surveys on connectivity are given by Even [1979], Mader [1979], Frank [1995],
and Subramanian [1995] (edge-connectivity). For the decomposition of 3-connected
graphs into 4-connected graphs, see Coullard, Gardner, and Wagner [1993].
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Part II: Bipartite Matching and Covering

A second classical area of combinatorial optimization is formed by bipartite match-
ing. The area gives rise to a number of basic problems and techniques, and has an
abundance of applications in various forms of assignment and transportation.
Work of Frobenius in the 1910s on the decomposition of matrices formed the incen-
tive to Kőnig to study matchings in bipartite graphs. An extension by Egerváry in
the 1930s to weighted matchings inspired Kuhn in the 1950s to design the ‘Hungar-
ian method’ for the assignment problem (which is equivalent to finding a minimum-
weight perfect matching in a complete bipartite graph).
Parallel to this, Tolstŏı, Kantorovich, Hitchcock, and Koopmans had investigated
the transportation problem. It motivated Kantorovich and Dantzig to consider more
general problems, culminating in the development of linear programming. It led in
turn to solving the assignment problem by linear programming, and thus to a
polyhedral approach.
Several variations and extensions of bipartite matching, like edge covers, factors, and
transversals, can be handled similarly. Major explanation is the total unimodularity
of the underlying matrices.
Bipartite matching and transportation can be considered as special cases of disjoint
paths and of transshipment, studied in the previous part — just consider a bipartite
graph as a directed graph, by orienting all edges from one colour class to the other.
It was however observed by Hoffman and Orden that this can be turned around,
and that disjoint paths and transshipment problems can be reduced to bipartite
matching and transportation problems. So several results in this part on bipartite
matching are matched by results in the previous part on paths and flows. Viewed
this way, the present part forms a link between the previous part and the next part
on nonbipartite matching, where the underlying matrices generally are not totally
unimodular.

Chapters:

16. Cardinality bipartite matching and vertex cover . . . . . . . . . . . . . . . . . . . . . . . . . 259
17. Weighted bipartite matching and the assignment problem. . . . . . . . . . . . . . . . 285
18. Linear programming methods and the bipartite matching polytope . . . . . . 301
19. Bipartite edge cover and stable set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
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22. Transversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
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Chapter 16

Cardinality bipartite matching
and vertex cover

‘Cardinality matching’ deals with maximum-size matchings. In this chapter
we give the theorems of Frobenius on the existence of a perfect matching
in a bipartite graph, and the extension by Kőnig on the maximum size of
a matching in a bipartite graph. We also discuss finding a maximum-size
matching in a bipartite graph algorithmically.
We start with an easy but fundamental theorem relating maximum-size
matchings and M -alternating paths, that applies to any graph and that
will also be important for nonbipartite matching.
In this chapter, graphs can be assumed to be simple.

16.1. M -augmenting paths

Let G = (V, E) be an undirected graph. A matching in G is a set of disjoint
edges. An important concept in finding a maximum-size matching, both in
bipartite and in nonbipartite graphs, is that of an ‘augmenting path’ (intro-
duced by Petersen [1891]).

Let M be a matching in a graph G = (V, E). A path P in G is called
M -augmenting if P has odd length, its ends are not covered by M , and its
edges are alternatingly out of and in M .

edge in M

edge not in M

vertex covered by M

vertex not covered by M

Figure 16.1

An M -augmenting path

Clearly, if P is an M -augmenting path, then

(16.1) M ′ := M△EP
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is again a matching and satisfies |M ′| = |M | + 1.1 In fact, it is not difficult
to show (Petersen [1891]):

Theorem 16.1. Let G = (V, E) be a graph and let M be a matching in
G. Then either M is a matching of maximum size or there exists an M -
augmenting path.

Proof. If M is a maximum-size matching, there cannot exist an M -augment-
ing path P , since otherwise M△EP would be a larger matching.

Conversely, if M ′ is a matching larger than M , consider the components
of the graph G′ := (V, M ∪ M ′). Then G′ has maximum degree two. Hence
each component of G′ is either a path (possibly of length 0) or a circuit. Since
|M ′| > |M |, at least one of these components should contain more edges in
M ′ than in M . Such a component forms an M -augmenting path.

So in any graph, if we have an algorithm finding an M -augmenting path
for any matching M , then we can find a maximum-size matching: we itera-
tively find matchings M0, M1, . . ., with |Mi| = i, until we have a matching
Mk such that there exists no Mk-augmenting path. (Also this was observed
by Petersen [1891].)

16.2. Frobenius’ and Kőnig’s theorems

A classical min-max relation due to Kőnig [1931] characterizes the maximum
size of a matching in a bipartite graph. To this end, call a set C of vertices
of a graph G a vertex cover if each edge of G intersects C. Define

(16.2) ν(G) := the maximum size of a matching in G,
τ(G) := the minimum size of a vertex cover in G.

These numbers are called the matching number and the vertex cover number
of G, respectively. It is easy to see that, for any graph G,

(16.3) ν(G) ≤ τ(G),

since any two edges in any matching contain different vertices in any vertex
cover. The graph K3 has strict inequality in (16.3). However, if G is bipartite,
equality holds, which is the content of Kőnig’s matching theorem (Kőnig
[1931]). It can be seen to be equivalent to a theorem of Frobenius [1917]
(Corollary 16.2a below).

Theorem 16.2 (Kőnig’s matching theorem). For any bipartite graph G =
(V, E) one has

(16.4) ν(G) = τ(G).

1 EP denotes the set of edges in P . △ denotes symmetric difference.
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That is, the maximum size of a matching in a bipartite graph is equal to the
minimum size of a vertex cover.

Proof. By (16.3) it suffices to show that ν(G) ≥ τ(G). We may assume that
G has at least one edge. Then:

(16.5) G has a vertex u covered by each maximum-size matching.

To see this, let e = uv be any edge of G, and suppose that there are maximum-
size matchings M and N missing u and v respectively2. Let P be the com-
ponent of M ∪ N containing u. So P is a path with end vertex u. Since P is
not M -augmenting (as M has maximum size), P has even length, and hence
does not traverse v (otherwise, P ends at v, contradicting the bipartiteness
of G). So P ∪ e would form an N -augmenting path, a contradiction (as N
has maximum size). This proves (16.5).

Now (16.5) implies that for the graph G′ := G − u one has ν(G′) =
ν(G) − 1. Moreover, by induction, G′ has a vertex cover C of size ν(G′).
Then C ∪ {u} is a vertex cover of G of size ν(G′) + 1 = ν(G).

(This proof is due to De Caen [1988]. For Kőnig’s original, algorithmic proof,
see the proof of Theorem 16.6. Note that also Menger’s theorem implies
Kőnig’s matching theorem (using the construction given in the proof of The-
orem 16.4 below). For a proof based on showing that any minimum bipartite
graph with a given vertex cover number is a matching, see Lovász [1975d]. For
another proof (of Rizzi [2000a]), see Section 16.2c. As we will see in Chapter
18, Kőnig’s matching theorem also follows from the total unimodularity of
the incidence matrix of a bipartite graph. (Flood [1960] and Entringer and
Jackson [1969] gave proofs similar to Kőnig’s proof.))

A consequence of Theorem 16.2 is a theorem of Frobenius [1917] that
characterizes the existence of a perfect matching in a bipartite graph. (A
matching is perfect if it covers all vertices.) Actually, this theorem motivated
Kőnig to study matchings in graphs, and in turn it can be seen to imply
Kőnig’s matching theorem.

Corollary 16.2a (Frobenius’ theorem). A bipartite graph G = (V, E) has a
perfect matching if and only if each vertex cover has size at least 1

2 |V |.

Proof. Directly from Kőnig’s matching theorem, since G has a perfect match-
ing if and only if ν(G) ≥ 1

2 |V |.

This implies an earlier theorem of Kőnig [1916] on regular bipartite graphs:

2 M misses a vertex u if u �∈
⋃

M . Here
⋃

M denotes the union of the edges in M ; that
is, the set of vertices covered by the edges in M .



262 Chapter 16. Cardinality bipartite matching and vertex cover

Corollary 16.2b. Each regular bipartite graph (of positive degree) has a
perfect matching.

Proof. Let G = (V, E) be a k-regular bipartite graph. So each vertex is
incident with k edges. Since |E| = 1

2k|V |, we need at least 1
2 |V | vertices

to cover all edges. Hence Corollary 16.2a implies the existence of a perfect
matching.

Let A be the V × E incidence matrix of the bipartite graph G = (V, E).
Kőnig’s matching theorem (Theorem 16.2) states that the optima in the linear
programming duality equation

(16.6) max{1Tx | x ≥ 0, Ax ≤ 1} = min{yT1 | y ≥ 0, yTA ≥ 1T}
are attained by integer vectors x and y. This can also be derived from the
total unimodularity of A — see Section 18.3.

16.2a. Frobenius’ proof of his theorem

The proof method given by Frobenius [1917] of Corollary 16.2a is in terms of ma-
trices, but can be formulated in terms of graphs as follows. Necessity of the con-
dition being easy, we prove sufficiency. Let U and W be the colour classes of G.
As both U and W are vertex covers, and hence have size at least 1

2
|V |, we have

|U | = |W | = 1
2
|V |.

Choose an edge e = {u, w} with u ∈ U and w ∈ W . We may assume that
G−u−w has no perfect matching. So, inductively, G−u−w has a vertex cover C′

with |C′| < |U | − 1. Then C := C′ ∪ {u, w} is a vertex cover of G, with |C| ≤ |U |,
and hence |C| = |U |.

Now U△C and W△C partition V (where △ denotes symmetric difference).
If both U△C and W△C are matchable3, then G has a perfect matching. So, by
symmetry, we may assume that U△C is not matchable. Now U△C �= V as u �∈
U△C. Hence we can apply induction, giving that G[U△C] has a vertex cover D
with |D| < 1

2
|U△C|. Then the set D∪(U ∩C) is a vertex cover of G (since each edge

of G intersects both U and C, and hence it either intersects U ∩ C, or is contained
in U△C and hence intersects D). However, |D| + |U ∩ C| < 1

2
|U△C| + |U ∩ C| =

1
2
(|U | + |C|) = 1

2
|V |, a contradiction.

(This is essentially also the proof method of Rado [1933] and Dulmage and
Halperin [1955].)

16.2b. Linear-algebraic proof of Frobenius’ theorem

Frobenius [1917] was motivated by a determinant problem, namely by the following
direct consequence of his theorem. Let A = (ai,j) be an n×n matrix in which each
entry ai,j is either 0 or a variable xi,j (where the variables xi,j are independent).
Then Frobenius’ theorem is equivalent to: det A = 0 if and only if A has a k × l
all-zero submatrix with k + l > n. (Earlier, Frobenius [1912] showed that for such

3 A set T of vertices is called matchable if there exists a matching M with T =
⋃

M .
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a matrix A, det A is reducible (that is, there exist nonconstant polynomials p and
q with det A = p · q) if and only if A has a k × l all-zero submatrix with k + l = n
and k, l ≥ 1.)

Edmonds [1967b] showed that the argumentation can be applied also the other
way around. This gives the following linear-algebraic proof of Frobenius’ theorem
(implying linear-algebraic proofs also of other bipartite matching theorems).

Let G = (V, E) be a bipartite graph not having a perfect matching. Let U and
W be the colour classes of G. We may assume that |U | = |W | (otherwise the smaller
colour class is a vertex cover of size less than 1

2
|V |).

Make a U × W matrix A = (au,w), where au,w = 0 if u and w are not adjacent,
and au,w = xu,w otherwise, where the xu,w are independent variables.

As G has no perfect matching, we know that det A = 0, and hence the columns
of A are linearly dependent. Let W ′ ⊆ W be the index set of a minimal set of linearly
dependent columns of A. Then there is a subset U ′ of U with |U ′| = |W ′| − 1 such
that the U ′×W ′ submatrix A′ of A has rank |U ′|. Hence there is a vector y such that
A′y = 0 and such that each entry in y is a nonzero polynomial in those variables
xu,w that occur in A′. Let A′′ be the U × W ′ submatrix of A. Then A′′y = 0, and
hence all entries in the (U \ U ′) × W ′ submatrix of A are 0. Hence the rows in U ′

and columns in W \ W ′ cover all nonzeros. As |U ′| + |W \ W ′| < |W |, we have
Frobenius’ theorem.

16.2c. Rizzi’s proof of Kőnig’s matching theorem

Rizzi [2000a] gave the following short proof of Kőnig’s matching theorem. Let G =
(V, E) be a counterexample with |V | + |E| minimal. Then G has a vertex u of
degree at least 3. Let v be a neighbour of u. By the minimality of G, G − v has
a vertex cover U of size ν(G − v). Then U ∪ {v} is a vertex cover of G. As G is
a counterexample, we have |U ∪ {v}| ≥ ν(G) + 1, and so ν(G − v) = |U | ≥ ν(G).
Therefore, G has a maximum-size matching M not covering v. Let f ∈ E \ M be
incident with u and not with v. Then ν(G − f) ≥ |M | = ν(G). Let W be a vertex
cover of G − f of size ν(G − f) = ν(G). Then v �∈ W , since v is not covered by
M . Hence u ∈ W , as W covers edge uv of G − f . Therefore, W also covers f , and
hence it is a vertex cover of G of size ν(G).

16.3. Maximum-size bipartite matching algorithm

We now focus on the problem of finding a maximum-size matching in a bipar-
tite graph algorithmically. In view of Theorem 16.1, this amounts to finding
an augmenting path. In the bipartite case, this can be done by finding a di-
rected path in an auxiliary directed graph. This method is essentially due to
van der Waerden [1927] and Kőnig [1931].

Matching augmenting algorithm for bipartite graphs

input: a bipartite graph G = (V, E) and a matching M ,
output: a matching M ′ satisfying |M ′| > |M | (if there is one).
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description of the algorithm: Let G have colour classes U and W . Make a
directed graph DM by orienting each edge e = {u, w} of G (with u ∈ U, w ∈
W ) as follows:

(16.7) if e ∈ M , then orient e from w to u,
if e �∈ M , then orient e from u to w.

Let UM and WM be the sets of vertices in U and W (respectively) missed by
M .

Now an M -augmenting path (if any) can be found by finding a directed
path in DM from UM to WM . This gives a matching larger than M .

The correctness of this algorithm is immediate. Since a directed path can
be found in time O(m), we can find an augmenting path in time O(m). Hence
we have the following result (implicit in Kuhn [1955b]):

Theorem 16.3. A maximum-size matching in a bipartite graph can be found
in time O(nm).

Proof. Note that we do at most n iterations, each of which can be done in
time O(m) by breadth-first search (Theorem 6.3).

16.4. An O(n1/2
m) algorithm

Hopcroft and Karp [1971,1973] and Karzanov [1973b] proved the following
sharpening of Theorem 16.3, which we derive from the (equivalent) result of
Karzanov [1973a], Tarjan [1974e], and Even and Tarjan [1975] on the com-
plexity of finding a maximum number of vertex-disjoint paths (Corollary
9.7a).

Theorem 16.4. A maximum-size matching in a bipartite graph can be found
in O(n1/2m) time.

Proof. Let G = (V, E) be a bipartite graph, with colour classes U and W .
Make a directed graph D = (V, A) as follows. Orient all edges from U to W .
Moreover, add a new vertex s, with arcs (s, u) for all u ∈ U , and a new vertex
t, with arcs (w, t) for all w ∈ W . Then the maximum number of internally
vertex-disjoint s − t paths in D is equal to the maximum size of a matching
in G. The result now follows from Corollary 9.7a.

In fact, the factor n1/2 can be reduced to ν(G)1/2 (as before, ν(G) and
τ(G) denote the maximum size of a matching and the minimum size of a
vertex cover, respectively):

Theorem 16.5. A maximum-size matching in a bipartite graph G can be
found in O(ν(G)1/2m) time.
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Proof. Similar to the proof of Theorem 16.4, using Theorem 9.8 and the fact
that ν(G) = τ(G).

Gabow and Tarjan [1988a] observed that the method of Corollary 9.7a
applied to the bipartite matching problem implies that for each k one can
find in time O(km) a matching of size at least ν(G) − n

k .

16.5. Finding a minimum-size vertex cover

From a maximum-size matching in a bipartite graph, one can derive a
minimum-size vertex cover. The method gives an alternative proof of Kőnig’s
matching theorem (in fact, this is the original proof of Kőnig [1931]):

Theorem 16.6. Given a bipartite graph G and a maximum-size matching
M in G, we can find a minimum-size vertex cover in G in time O(m).

Proof. Make DM , UM , and WM as in the matching-augmenting algorithm,
and let RM be the set of vertices reachable in DM from UM . So RM ∩WM = ∅.
Then each edge uw in M is either contained in RM or disjoint from RM (that
is, u ∈ RM ⇐⇒ w ∈ RM ). Moreover, no edge of G connects U ∩ RM and
W \ RM , as no arc of DM leaves RM . So C := (U \ RM ) ∪ (W ∩ RM ) is a
vertex cover of G. Since C is disjoint from UM ∪WM and since no edge in M
is contained in C, we have |C| ≤ |M |. Therefore, C is a minimum-size vertex
cover.

Hence:

Corollary 16.6a. A minimum-size vertex cover in a bipartite graph can be
found in O(n1/2m) time.

Proof. Directly from Theorems 16.4 and 16.6.

16.6. Matchings covering given vertices

The following theorem characterizes when one of the colour classes of a bi-
partite graph can be covered by a matching, and is a direct consequence of
Kőnig’s matching theorem (where N(S) denotes the set of vertices not in S
that have a neighbour in S):

Theorem 16.7. Let G = (V, E) be a bipartite graph with colour classes U
and W . Then G has a matching covering U if and only if |N(S)| ≥ |S| for
each S ⊆ U .
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Proof. Necessity being trivial, we show sufficiency. By Kőnig’s matching
theorem (Theorem 16.2) it suffices to show that each vertex cover C has
|C| ≥ |U |. This indeed is the case, since N(U \ C) ⊆ C ∩ W , and hence

(16.8) |C| = |C ∩U |+ |C ∩W | ≥ |C ∩U |+ |N(U \C)| ≥ |C ∩U |+ |U \C|
= |U |.

This can be extended to general subsets of V . First, Hoffman and Kuhn
[1956b] and Mendelsohn and Dulmage [1958a] showed:

Theorem 16.8. Let G = (V, E) be a bipartite graph with colour classes U
and W and let R ⊆ V . Then there exists a matching covering R if and only if
there exist a matching M covering R∩U and a matching N covering R∩W .

Proof. Necessity being trivial, we show sufficiency. We may assume that G
is connected, that E = M ∪ N , and that neither M nor N covers R. This
implies that there is a u ∈ R ∩ U missed by N and a w ∈ R ∩ W missed
by M . So G is an even-length u − w path, a contradiction, since u ∈ U and
w ∈ W .

(This theorem goes back to theorems of F. Bernstein (cf. Borel [1898] p. 103),
Banach [1924], and Knaster [1927] on injective mappings between two sets.)

Theorem 16.8 implies a characterization of sets that are covered by some
matching:

Corollary 16.8a. Let G = (V, E) be a bipartite graph with colour classes U
and W and let R ⊆ V . Then there is a matching covering R if and only if
|N(S)| ≥ |S| for each S ⊆ R ∩ U and for each S ⊆ R ∩ W .

Proof. Directly from Theorems 16.7 and 16.8.

It also gives the following exchange property:

Corollary 16.8b. Let G = (V, E) be a bipartite graph, with colour classes
U and W , let M and N be maximum-size matchings, let U ′ be the set of
vertices in U covered by M , and let W ′ be the set of vertices in W covered
by N . Then there exists a maximum-size matching covering U ′ ∪ W ′.

Proof. Directly from Theorem 16.8: the matching found is maximum-size
since |U ′| = |W ′| = ν(G).

Notes. These results also are special cases of the exchange results on paths dis-
cussed in Section 9.6c. Perfect [1966] gave the following linear-algebraic argument
for Corollary 16.8b. Make a U × W matrix A with au,w = xu,w if uw ∈ E and
au,w := 0 otherwise, where the xu,w are independent variables. Let U ′ be any
maximum-size subset of U covered by some matching and let W ′ be any maximum-
size subset of W covered by some matching. Then U ′ gives a maximum-size set of
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linearly independent rows of A and W ′ gives a maximum-size set of linearly in-
dependent columns of A. Then the U ′ × W ′ submatrix of A is nonsingular, hence
of nonzero determinant. It implies (by the definition of determinant) that G has a
matching covering U ′ ∪ W ′.
(Related work includes Perfect and Pym [1966], Pym [1967], Brualdi [1969b,1971b],
and Mirsky [1969].)

16.7. Further results and notes

16.7a. Complexity survey for cardinality bipartite matching

Complexity survey for cardinality bipartite matching (∗ indicates an asymptotically
best bound in the table):

O(nm) Kőnig [1931], Kuhn [1955b]

O(
√

n m)
Hopcroft and Karp [1971,1973], Karzanov
[1973a]

∗ Õ(nω) Ibarra and Moran [1981]

O(n3/2
√

m
log n

) Alt, Blum, Mehlhorn, and Paul [1991]

∗ O(
√

n m logn(n2/m)) Feder and Motwani [1991,1995]

Here ω is any real such that any two n × n matrices can be multiplied by O(nω)
arithmetic operations (e.g. ω = 2.376).

Goldberg and Kennedy [1997] described a bipartite matching algorithm based
on the push-relabel method, of complexity O(

√
n m logn(n2/m)). Balinski and Gon-

zalez [1991] gave an alternative O(nm) bipartite matching algorithm (not using
augmenting paths).

16.7b. Finding perfect matchings in regular bipartite graphs

By Kőnig’s matching theorem, each k-regular bipartite graph has a perfect matching
(if k ≥ 1). One can use the regularity also to find quickly a perfect matching. This
will be used in Chapter 20 on bipartite edge-colouring.

First we show the following result of Cole and Hopcroft [1982] (which will not
be used any further in this book):

Theorem 16.9. A perfect matching in a regular bipartite graph can be found in
O(m log n) time.

Proof. We first describe an O(m log n)-time algorithm for the following problem:

(16.9) given: a k-regular bipartite graph G = (V, E) with k ≥ 2,
find: a nonempty proper subset F of E with (V, F ) regular.
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Let G have colour classes U and W . First let k be even. Then find an Eulerian
orientation of the edges of G (this can be done in O(m) time (Theorem 6.7)). Let
F be the set of edges oriented from U to W .

Next let k be odd. Call a subset F of E almost regular if | degF (v)−degF (u)| ≤ 1
for all u, v ∈ V . (Here degF (v) is the degree of v in the graph (V, F ).)

Moreover, let odd(F ) and even(F ) denote the sets of vertices v with degF (v)
odd and even, respectively, and let ∆(F ) denote the maximum degree of the graph
(V, F ). We give an O(m) algorithm for the following problem:

(16.10) given: an almost regular subset F of E with ∆(F ) ≥ 2,
find: an almost regular subset F ′ of E with ∆(F ′) ≥ 2 and |odd(F ′)| ≤

1
2
|odd(F )|.

In time O(m) we can find a subset F ′′ of F such that

(16.11) ⌊ 1
2

degF (v)⌋ ≤ degF ′′(v) ≤ ⌈ 1
2

degF (v)⌉
for each vertex v: make an Eulerian orientation in the graph obtained from (V, F )
by adding edges so as to make all degrees even, and choose for F ′′ the subset of all
edges oriented from U to W . So F ′′ and F \ F ′′ are almost regular.

We choose F ′′ such that

(16.12) |odd(F ′′) ∩ odd(F )| ≤ 1
2
|odd(F )|

(otherwise replace F ′′ by F \ F ′′). Let 2l be the degree of the even-degree vertices
of (V, F ). We consider two cases.

Case 1: l is even. Define F ′ := F ′′. By (16.11), F ′ is almost regular. Moreover, as
l is even, odd(F ′) ⊆ odd(F ), implying (with (16.12)) that |odd(F ′)| ≤ 1

2
|odd(F )|.

Finally, ∆(F ′) ≥ 2, since otherwise ∆(F ) ≤ 3 and hence l = 0, implying ∆(F ) ≤ 1,
a contradiction.

Case 2: l is odd. Define F ′ := F ′′ ∪ (E \F ). Then F ′ is almost regular, since each
degF ′(v) is either ⌊ 1

2
degF (v)⌋ + k − degF (v) = k − ⌈ 1

2
degF (v)⌉ or ⌈ 1

2
degF (v)⌉ +

k − degF (v) = k − ⌊ 1
2

degF (v)⌋.
Since k is odd, one also has (by definition of F ′): degF ′(v) is odd ⇐⇒

degF ′′(v) + k − degF (v) is odd ⇐⇒ degF ′′(v) ≡ degF (v) (mod 2) ⇐⇒
v ∈ odd(F ′′) ∩ odd(F ) (since even(F ) ⊆ odd(F ′′), as l is odd). So |odd(F ′)| =
|odd(F ′′) ∩ odd(F )| ≤ 1

2
|odd(F )|, by (16.12).

Finally, suppose that ∆(F ′) ≤ 1. Choose v ∈ odd(F )\odd(F ′). So v ∈ even(F ′),
hence degF ′(v) = 0, implying degF ′′(v) = 0 and degF (v) = k. But then 0 = ⌊ 1

2
k⌋,

and so k ≤ 1, a contradiction.

This describes the O(m)-time algorithm for problem (16.10). It implies that one can
find an almost regular subset F of E with ∆(F ) ≥ 2 and odd(F ) = ∅ in O(m log n)
time. So (V, F ) is a regular subgraph of G, and we have solved (16.9).

This implies an O(m log n) algorithm for finding a perfect matching: First find a
subset F of E as in (16.9). Without loss of generality, |F | ≤ 1

2
|E|. Recursively, find a

perfect matching in (V, F ). The time is bounded by O((m+ 1
2
m+ 1

4
m+ · · ·) log n) =

O(m log n).

In fact, as was shown by Cole, Ost, and Schirra [2001], one can find a perfect
matching in a regular bipartite graph in O(m) time. To explain this algorithm, we
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first describe an algorithm that finds a perfect matching in a k-regular bipartite
graph in O(km) time (Schrijver [1999]). So for each fixed degree k one can find a
perfect matching in a k-regular graph in linear time, which is also a consequence of

an O(n22O(k)

)-time algorithm of Cole [1982].

Theorem 16.10. A perfect matching in a k-regular bipartite graph can be found in
time O(km).

Proof. Let G = (V, E) be a k-regular bipartite graph. For any function w : E → Z+,
define Ew := {e ∈ E | we > 0}.

Initially, set we := 1 for each e ∈ E. Next apply the following iteratively:

(16.13) Find a circuit C in Ew. Let C = M ∪ N for matchings M and N with
w(M) ≥ w(N). Reset w := w + χM − χN .

Note that at any iteration, the equation w(δ(v)) = k is maintained for all v.
To see that the process terminates, note that at any iteration the sum

(16.14)
∑

e∈E

w2
e

increases by

(16.15)
∑

e∈M

((we+1)2−w2
e)+

∑

e∈N

((we−1)2−w2
e) = 2w(M)+|M |−2w(N)+|N |,

which is at least |M | + |N | = |C|. Since we ≤ k for each e ∈ E, (16.14) is bounded,
and hence the process terminates. We now estimate the running time.

At termination, we have that the set Ew contains no circuit, and hence is a
perfect matching (since w(δ(v)) = k for each vertex v). So at termination, the sum
(16.14) is equal to 1

2
nk2 = km.

Now we can find a circuit C in Ew in O(|C|) time on average. Indeed, keep a
path P in Ew such that we < k for each e in P . Let v be the last vertex of P . Then
there is an edge e = vu not occurring in P , with 0 < we < k. Reset P := P ∪{e}. If
P is not a path, it contains a circuit C, and we can apply (16.13) to C, after which
we reset P := P \ C. We continue with P .

Concluding, as each step increases the sum (16.14) by at least |C|, and takes
O(|C|) time on average, the algorithm terminates in O(km) time.

The bound given in this theorem was improved to linear time independent of
the degree, by Cole, Ost, and Schirra [2001]. Their method forms a sharpening of
the method described in the proof of Theorem 16.10, utilizing the fact that when
breaking a circuit, the path segments left (‘chains’) can be used in the further path
search to extend the path by chains, rather than just edge by edge. To this end,
these chains need to be supplied with some extra data structure, the ‘self-adjusting
binary trees’, in order to avoid that we have to run through the chain to find an
end of the chain where it can be attached to the path. The basic operation is the
‘splay’.

The main technique of Cole, Ost, and Schirra’s theorem is contained in the
proof of the following theorem. For any graph G = (V, E) call a (‘weight’) function
w : E → R k-regular if w(δ(v)) = k for all v ∈ V .
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Theorem 16.11. Given a bipartite graph G = (V, E) and a k-regular w : E → Z+,
for some k ≥ 2, a perfect matching in G can be found in time O(m log2 k).

Proof. I. Conceptual outline. We first give a conceptual description, as extension of
the algorithm described in the previous proof. First delete all edges e with we = 0.

We keep a set F of edges such that each component of (V, F ) is a path (possibly
a singleton) with at most k2 vertices, and we keep a path

(16.16) Q = (P0, e1, P1, . . . , et, Pt),

where each Pj is a (path) component of (V, F ). Let v be the last vertex of Q and let
e = vu be an edge in E \ F incident with v with we < k. Let P be the component
of (V, F ) containing u.

If u is not on Q, let R be a longest segment of P starting from u. Delete the
first edge of the other segment of P (if any) from F . If |Pt| + |R| ≤ k2, add e to F ,
and reset Pt to Pt, e, R. (Here and below, |X| denotes the number of vertices of a
path X.) Otherwise, extend Q by e, R.

If u is on Q, then:

(16.17) split Q into a part Q1 from the beginning to u, and a part Q2 from u
to the end;
split the circuit Q2, e into two matchings M and N , such that w(M) ≥
w(N);
let α be the minimum of the weights in N ;
reset w := w + α(χM − χN );
delete the edges g with w(g) = 0 or w(g) = k (in the latter case, also
delete the two ends of g);
delete the first edge of Q2 from F if it was in F ;
reset Q := Q1;
iterate.

If v is incident with no edge e ∈ E \ F satisfying we < k, start Q in a new
vertex that is incident with an edge e with we < k. If no such vertex exists, we are
done: the edges left form a perfect matching.

II. Data structure. In order to make profit of storing paths, we need additional
data structure (based on ‘self-adjusting binary trees’, analyzed by Sleator and Tar-
jan [1983b,1985], cf. Tarjan [1983]).

We keep a collection P of paths (possibly singletons), each being a subpath of
a component of F , such that

(16.18) (i) each component of F itself is a path in P;
(ii) P is laminar, that is, any two paths in P are vertex disjoint, or one

is a subpath of the other;
(iii) any nonsingleton path P ∈ P has an edge eP such that the two

components of P − eP again belong to P.

With any path P ∈ P we keep the following information:

(16.19) (i) the number |P | of vertices in P ;
(ii) a list ends(P ) of the ends of P (so ends(P ) contains one or two

vertices);
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(iii) if P is not a singleton, the edge eP , and a list subpaths(P ) of the
two components of P − eP ;

(iv) the smallest path parent(P ) in P that properly contains P (null if
there is no such path).

Then for each edge e ∈ F there is a unique path Pe ∈ P traversing e such that
both components of Pe − e again belong to P (that is, ePe = e). We keep with any
e ∈ F the path Pe.

Call a path P ∈ P a root if parent(P ) = null. So the roots correspond to the
components of the graph (V, F ). Along a path P ∈ P we call edges alternatingly
odd and even in P in such a way that eP is odd.

We also store information on the current values of the we. Algorithmically, we
only reset explicitly those we for which e is not in F . For e ∈ F , these values are
stored implicitly, such that it takes only O(1) time to update we for all e in a root
when adding α to the odd edges and −α to the even edges in it. This can be done
as follows.

If P is a root, we store w(eP ) at P . If P has a parent Q, we store

(16.20) w(eP ) ± w(eQ)

at P , where ± is − if eP is odd in Q, and + otherwise.
We also need the following values for any P ∈ P with EP �= ∅:

(16.21) minodd(P ) := min{we | e odd in P}, mineven(P ) := min{we | e even
in P},
diffsum(P ) :=

∑
(we | e odd in P ) − ∑

(we | e even in P )

(taking a minimum ∞ if the range is empty). When storing these data, we relate
them to w(eP ), again so as to make them invariant under updates. Thus we store

(16.22) diffsum(P ) − |EP |w(eP ), minodd(P ) − w(eP ), mineven(P ) + w(eP )

at P . So for any root P we have diffsum(P ), minodd(P ), and mineven(P ) ready at
hand, as we know w(eP ).

III. The splay. We now describe splaying an edge e ∈ F . It changes the data
structure so that Pe becomes a root, keeping F invariant. It modifies the tree
associated with the laminar family through three generations at a time, so as to
attain efficiency on average. (The adjustments make future searches more efficient.)

The splay is as follows. While parent(Pe) �= null, do the following:

(16.23) Let Pf := parent(Pe).
Case 1: parent(Pf ) = null. Reset as in:

Pe

PePf

Pf

e
e

f
f

Case 2: parent(Pf ) �= null. Let Pg := parent(Pf ). If Pe and Pg have
an end in common, reset as in:

Pe

Pe

Pf Pf

Pg

Pg

e

e
ff

g

g

If Pe and Pg have no end in common, reset as in:

Pe

Pe

PfPf

Pg

Pg

e

e
f f

g
g
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Note that Case 1 applies only in the last iteration of the while loop. It is straight-
forward to check that the data associated with the paths can be restored in O(1)
time at any iteration.

IV. Running time of one splay. To estimate the running time of a splay, define:

(16.24) γ :=
∑

P∈P

log |P |,

taking logarithms with base 2 (again, |P | denotes the number of vertices of P ).
For any splay of e one has (adding ′ to parameters after the splay):

(16.25) the number of iterations of (16.23) is at most γ − γ′ + 3(log |P ′
e| −

log |Pe|) + 1.

To show this, consider any iteration (16.23) (adding ′ to parameters after the iter-
ation).

If Case 1 applies, then

(16.26) γ − γ′ + 3(log |P ′
e| − log |Pe|) + 1

= log |Pe| + log |Pf | − log |P ′
e| − log |P ′

f | + 3 log |P ′
e| − 3 log |Pe| + 1

= 3 log |Pf | − log |P ′
f | − 2 log |Pe| + 1 ≥ 1,

since P ′
e = Pf and since P ′

f and Pe are subpaths of Pf . If Case 2 applies, then

(16.27) γ − γ′ + 3(log |P ′
e| − log |Pe|) = log |Pe| + log |Pf | + log |Pg|

− log |P ′
e| − log |P ′

f | − log |P ′
g| + 3 log |P ′

e| − 3 log |Pe|
= 3 log |Pg| + log |Pf | − log |P ′

f | − log |P ′
g| − 2 log |Pe| ≥ 1.

The last equality follows from P ′
e = Pg. The last inequality holds since Pe

is a subpath of Pf , and P ′
f , P ′

g, and Pe are subpaths of Pg, and since, if the
first alternative in Case 2 holds, then Pe and P ′

g are vertex-disjoint (implying
2 log |Pg| ≥ log |Pe| + log |P ′

g| + 1), and, if the second alternative in Case 2 holds,
then P ′

f and P ′
g are vertex-disjoint (implying 2 log |Pg| ≥ log |P ′

f | + log |P ′
g| + 1).

(16.26) and (16.27) imply (16.25).

V. The algorithm. Now we use the splay to perform the conceptual operations
described in the conceptual outline (proof section I above). Thus, let v be the last
vertex of the current path Q (cf. (16.16)) and let e = vu be an edge in E\F incident
with u. Determine the root P ∈ P containing u (possibly by splaying an edge in F
incident with u).

Case A: P is not on Q. (We keep a pointer to indicate if a root belongs to Q.)
Find a root R as follows. If u is incident with no edge in F , then R := {u}. If u is
incident with exactly one edge f ∈ F , splay f and let R := Pf . If u is incident with
two edges in F , by splaying find f ∈ F incident with u such that (after splaying f)
subpaths(Pf ) = {R, R′} where u ∈ ends(R) and |R| > |R′|; then delete Pf from P,
and f from F .

This determines R. If |Pt| + |R| ≤ k2, add e to F , let Pe be the join of Pt, e,
and R, and reset Pt in Q to Pe. If |Pt| + |R| > k2, extend Q by e, Pt+1 := R.

Case B: P is on Q, say P = Pj . By (possibly) splaying, we can decide if u is at
the end of Pj or not. In the former case, reset Q := P0, e1, P1, . . . , ej , Pj and let
C := ej+1, Pj+1, . . . , Pt, e. In the latter case, split Pj to P ′

j , f, P ′′
j in such a way that
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Q := P0, e1, P1, . . . , ej , P
′
j is the initial segment of the original Q ending at u, and

let C := f, P ′′
j , ej+1, Pj+1, . . . , Pt, e.

Determine the difference of the sum of the we over the odd edges in C and that
over the even edges in C. As we know diffsum(S) for any root S, this can be done
in time O(t − j + 1). Depending on whether this difference is positive or not, we
know (implicitly) which splitting of the edges on C into matchings M and N gives
w(M) ≥ w(N). From the values of minodd and mineven for the paths P ∈ P on C
and from the values of we for the edges ej+1, . . . , et, e on C (and possibly f), we
can find the maximum decrease α on the edges in N , and reset the parameters.

Next, for any P ∈ P on C with minodd(P ) = 0 or mineven(P ) = 0, deter-
mine the edges on P of weight 0, delete them after splaying, and decompose P
accordingly. Delete any edge ei on C with w(ei) = 0 (similarly f).

This describes the iteration.

VI. Running time of the algorithm. We finally estimate the running time. In
any iteration, let γ be the number of roots of P that are not on Q. Initially, γ ≤ n.
During the algorithm, γ only increases when we are in Case B and break a circuit
C, in which case γ increases by at most

(16.28) 2
LC

k2
+ mC + 2,

where LC is the length of C in G (that is, the number of edges ei plus the sum of
the lengths of the paths Pi in C), and where mC is the number of edges of weight
0 deleted at the end of the iteration. Bound (16.28) uses the fact that the sizes of
any two consecutive paths along C sum up to more than k2, except possibly at the
beginning and the end of the circuit, and that any edge of weight 0 can split a root
into two new roots.

Now if we sum bound (16.28) over all circuits C throughout the iterations, we
have

(16.29)
∑

C

(2
LC

k2
+ mC + 2) = O(m),

since
∑

C LC ≤ nk2, like in the proof of the previous theorem (note that mC ≥ 1
for each C, so the term 2 is absorbed by mC). So the number of roots created
throughout the Case B iterations is O(m). Now at each Case A iteration, we split
off a part of a root of size less than half the size of the root; the split off part can
be used again by Q some time in later iterations. Hence any root can be split at
most log k2 times, and therefore, the number of Case A iterations is O(m log k). In
particular, the number of times we join two paths in P and make a new path is
O(m log k).

Next consider γ as defined in (16.24). Note that at any iteration except for
joins and splays, γ does not increase. At any join, γ increases by at most log k2,
and hence the total increase of γ during joins is O(m log2 k).

Now the number of splays during any Case A iteration is O(1), and during any
Case B iteration O(LC/k2 +mC +1). Hence by (16.29), the total number of splays
is O(m log k). By (16.25), each splay takes time O(δ+log k), where δ is the decrease
of γ (possibly δ < 0). The sum of δ over all splays is O(m log2 k), as this is the total
increase of γ during joins. So all splays take time O(m log2 k). As the number of
splits is proportional to the number of splays, and each takes O(1) time, we have
the overall time bound of O(m log2 k).
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This implies a linear-time perfect matching algorithm for regular bipartite
graphs:

Corollary 16.11a. A perfect matching in a regular bipartite graph can be found in
linear time.

Proof. Let G = (V, E) be a k-regular bipartite graph. We keep a weight function
w : E → Z+, with the property that w(δ(v)) = k for each v ∈ V . Throughout
the algorithm, let Gi be the subgraph of G consisting of those edges e of G with
we = 2i (for i = 1, . . .).

Initially, define a weight we := 1 for each edge e. For i = 0, 1, . . . , ⌊log2 k⌋ do
the following. Perform a depth-first search in Gi. If we meet a circuit C in Gi, then
split C arbitrarily into matchings M and N , reset w := w + 2i(χM − χN ), delete
the edges in N , and update Gi (that is, delete the edges of C from Gi).

As Gi has at most m/2i edges (since w(E) = 1
2
kn = m), and as depth-first

search can be done in time linear in the number of edges, this can be done in
O(m + 1

2
m + 1

4
m + · · ·) = O(m) time.

For the final G and w, all weights are a power of 2 and each graph Gi has no
circuits, and hence has at most |V | − 1 edges. So G has at most |V | log2 k edges.
As w is k-regular, by Theorem 16.11 we can find a perfect matching in G in time
O(|V | log3 k), which is linear in the number of edges of the original graph G.

This result will be used in obtaining a fast edge-colouring algorithm for bipartite
graphs (Section 20.9a).

Notes. Alon [2000] gave the following easy O(m log m)-time method for finding a
perfect matching in a regular bipartite graph G = (V, E). Let k be the degree, and
choose t with 2t ≥ kn. Let α := ⌊2t/k⌋ and β := 2t − kα. So β < k. Let H be the
graph obtained from G by replacing each edge by α parallel edges, and by adding
a β-regular set F of (new) edges, consisting of 1

2
n disjoint classes, each consisting

of β parallel edges. So H is 2t-regular.
Iteratively, split H into two regular graphs of equal degree (by determining an

Eulerian orientation), and reset H to the graph that has a least number of edges
in F .

As |F | = 1
2
βn < 2t, after log2 |F | < t iterations, H contains no edge in F .

Hence after t iterations we have a perfect matching in H not intersecting F ; that
is, we have a perfect matching in G.

This gives an O(m log m)-time method, provided that we do not display the
graph H fully, but handle the parallel edges implicitly (by the sizes as a function
of the underlying edges).

Note that O(m log m) = O(nk(log k + log n)). An O(nk + n log n log k)-time
algorithm finding a perfect matching in a k-regular bipartite graph was given by
Rizzi [2002].

(Csima and Lovász [1992] described a space-efficient O(n2k log k)-time algo-
rithm for finding a perfect matching in a k-regular bipartite graph.)
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16.7c. The equivalence of Menger’s theorem and Kőnig’s theorem

We have seen that Kőnig’s matching theorem can be derived from Menger’s theorem
(by the construction given in the proof of Theorem 16.4) — in fact it forms the
induction basis in Menger’s proof. The interrelation however is even stronger, as was
noticed by Hoffman [1960] (cf. Orden [1955], Ford and Fulkerson [1958c], Hoffman
and Markowitz [1963], Ingleton and Piff [1973]): in turn Menger’s theorem (in the
form of Theorem 9.1) can be derived from Kőnig’s matching theorem by a direct
(noninductive) construction.

Let D = (V, A) be a directed graph and let S, T ⊆ V . We may assume that
S ∩T = ∅. For each v ∈ V \S introduce a vertex v′ and for each v ∈ V \T introduce
a vertex v′′. Let E be the set of pairs {u′, v′′} with u ∈ V \S and v ∈ V \T with the
property that (u, v) ∈ A or u = v. This makes the bipartite graph G, containing
the matching

(16.30) M := {{v′, v′′} | v ∈ V \ (S ∪ T )}.

For any X ⊆ V , let X ′ := {v′ | v ∈ X} and X ′′ := {v′′ | v ∈ X}.
Now let M ′ be a matching in G of size ν(G). For each component of M△M ′

having more than one vertex, we may assume that it is an M -augmenting path
(since any other component K has an equal number of edges in M and in M ′, and
hence we can replace M ′ by M ′△K). Each M -augmenting path is an S′′ −T ′ path.
Hence there exist |M ′| − |M | = ν(G) − |V \ (S ∪ T )| vertex-disjoint S − T paths.

Let U ⊆ V \ T and W ⊆ V \ S be such that D := U ′′ ∪ W ′ is a vertex cover of
G, with |U | + |W | = τ(G). Then

(16.31) C := (U ∩ S) ∪ (U ∩ W ) ∪ (W ∩ T )

intersects each S − T path in D. Indeed, suppose P = (v0, v1, . . . , vk) is an S − T
path not intersecting C. We may assume that P intersects S and T only at v0 and
vk, respectively. Now

(16.32) Q := (v′′
0 , v′

1, v
′′
1 , . . . , v′

k−1, v
′′
k−1, v

′
k)

is a path in G of odd length 2k − 1. Hence D intersects Q in at least k vertices.
Therefore, v′′

0 ∈ D (hence v0 ∈ U ∩ S ⊆ C), or v′
k ∈ D (hence vk ∈ W ∩ T ⊆ C),

or v′
i, v

′′
i ∈ D for some i ∈ {1, . . . , k − 1} (hence vi ∈ U ∩ W ⊆ C). So C intersects

each S − T path in D.
As

(16.33) |C| = |U∩S|+|U∩W |+|W ∩T | = |U∩S|+|U |+|W |−|U∪W |+|W ∩T |
= |U | + |W | − |V \ (S ∪ T )|

(since (U ∪ W ) \ (S ∪ T ) = V \ (S ∪ T )), and as |U | + |W | = τ(G) = ν(G), we have
that the size of C is at most the number of disjoint S − T paths found above.

The converse construction (described by Kuhn [1956]) also applies. Let be given
a bipartite graph G = (V, E), with colour classes U and W , and a matching M in
G. Orient each edge from U to W , and next contract all edges in M . This gives a
directed graph D = (V ′, A). Let S and T be the sets of vertices in U and W missed
by M . Then the maximum number of vertex-disjoint S − T paths in D is equal to
ν(G) − |M |.

These constructions also imply:
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Theorem 16.12. For any function φ(n, m) one has: the bipartite matching problem
with n vertices and m edges is solvable in time O(φ(n, m)) ⇐⇒ the disjoint s − t
paths problem with n vertices and m arcs is solvable in time O(φ(n, m)).

Proof. See above.

16.7d. Equivalent formulations in terms of matrices

Frobenius [1917] proved his theorem (Corollary 16.2a) in terms of matrices, in the
following form:

(16.34) Each diagonal of an n × n matrix has product 0 if and only if M has
a k × l all-zero submatrix with k + l > n.

Similarly, Kőnig’s matching can be formulated in matrix terms as follows:

(16.35) In a matrix, the maximum number of nonzero entries with no two in
the same line (=row or column) is equal to the minimum number of
lines that include all nonzero entries.

An equivalent form of Kőnig’s theorem on the existence of a perfect matching in a
regular bipartite graph (Corollary 16.2b) is:

(16.36) If in a nonnegative matrix each row and each column has the same
positive sum, then it has a diagonal with positive entries.

16.7e. Equivalent formulations in terms of partitions

Bipartite graphs can be studied also as unions of two partitions of a given set.
Indeed, let G = (V, E) be a bipartite graph. Then the family (δ(v) | v ∈ V ) is a
union of two partitions of E. Since each union of two partitions arises in this way,
we can formulate theorems on bipartite graphs equivalently as theorems on unions
of two partitions of a set.

The following equivalent form of Frobenius’ theorem (Corollary 16.2a) was given
by Maak [1936]:

(16.37) Let A and B be two partitions of the finite set X. Then there is a
subset Y of X intersecting each set in A ∪ B in exactly one element if
and only if for each natural number k, the union of any collection of k
classes of A intersects at least k classes of B.

This implies the following equivalent form of Corollary 16.2b, given by van der
Waerden [1927] (with short proof by Sperner [1927] — see Section 22.7d):

(16.38) Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be two partitions of a
finite set X with |A1| = · · · = |An| = |B1| = · · · = |Bn|. Then there
is a subset Y of X intersecting each Ai and each Bi in exactly one
element.

Some of the matching results can be formulated in terms of (common) transver-
sals. We will discuss this more extensively in Chapters 22 and 23.
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16.7f. On the complexity of bipartite matching and vertex cover

In a bipartite graph we can derive a minimum-size vertex cover from a maximum-
size matching in linear time (for general graphs this would imply NP=P) — see
Theorems 16.6.

So knowing a maximum-size matching in a bipartite graph gives us a minimum-
size vertex cover in linear time. The reverse, however, is unlikely, unless there would
exist an algorithm to find a perfect matching in a bipartite graph in linear time.
To see this, suppose that there is an algorithm A to derive from a minimum-size
vertex cover a maximum-size matching in linear time. Now let G = (V, E) be a
bipartite graph in which we want to find a perfect matching. Then we may assume
that G has a perfect matching. So we may assume by Frobenius’ theorem that the
colour classes U and W are minimum-size vertex covers. Then apply A to G and
U . Then either we obtain a perfect matching if U indeed is a minimum-size vertex
cover, or else (if our assumption is wrong) the algorithm gets stuck, in which case
we may conclude that G has no perfect matching.

16.7g. Further notes

Extensions of Frobenius’ and Kőnig’s theorems to the infinite case were considered
by Kőnig and Valkó [1925], Shmushkovich [1939], de Bruijn [1943], Rado [1949b],
Brualdi [1971f], Aharoni [1983b,1984b], and Aharoni, Magidor, and Shore [1992].

Itai, Rodeh, and Tanimoto [1978] showed that, given a bipartite graph G =
(V, E), F ⊆ E, and k ∈ Z+, one can find a perfect matching M with |M ∩ F | ≤ k
(or decide that no such perfect matching exists) in time O(nm). (This amounts to
a minimum-cost flow problem.)

Karp, Vazirani, and Vazirani [1990] gave an optimal on-line bipartite matching
algorithm. Motwani [1989,1994] investigated the expected running time of matching
algorithms.

The following question was posed by A. Frank: Given a bipartite graph
G = (V, E) whose edges are coloured red and blue, and given k and l; when does
there exist a matching containing k red edges and l blue edges? This problem is
NP-complete, but for complete bipartite graphs it was characterized by Karzanov
[1987c].

An extension of Frobenius’ theorem to more general matrices than described in
Section 16.2b was given by Hartfiel and Loewy [1984].

Dulmage and Mendelsohn [1958] study minimum-size vertex covers in a bipar-
tite graph as a lattice. For maintaining perfect matchings ‘in the presence of failure’,
see Sha and Steiglitz [1993]. Lovász [1970a] gave a generalization of Kőnig’s match-
ing theorem — see Section 60.1a. Uniqueness of a maximum-size matching in a
bipartite graph was investigated by Cechlárová [1991], and related work was re-
ported by Costa [1994]. A variant of Kőnig’s matching theorem was given by de
Werra [1984].

For surveys on matching algorithms, see Galil [1983,1986a,1986b]. For sur-
veys on bipartite matching, see Woodall [1978a,1978b]. Books discussing bipartite
matching include Ford and Fulkerson [1962], Ore [1962], Dantzig [1963], Christofi-
des [1975], Lawler [1976b], Even [1979], Papadimitriou and Steiglitz [1982], Tarjan
[1983], Tutte [1984], Halin [1989], Cook, Cunningham, Pulleyblank, and Schrijver



278 Chapter 16. Cardinality bipartite matching and vertex cover

[1998], Jungnickel [1999], Mehlhorn and Näher [1999], and Korte and Vygen [2000].

16.7h. Historical notes on bipartite matching

The fundaments of matching theory in bipartite graphs were laid by Frobenius
(in terms of matrices and determinants) and Kőnig. In his article Über Matrizen
aus nicht negativen Elementen (On matrices with nonnegative elements), Frobenius
[1912] investigated the decomposition of matrices:

In §11 dehne ich die Untersuchung auf zerlegbare Matrizen aus, und in §12 zeige
ich, daß eine solche nur auf eine Art in unzerlegbare Teile zerfällt werden kann.
Dabei ergibt sich der merkwürdige Determinantensatz:
I. Die Elemente einer Determinante nten Grades seien n2 unabhängige Verän-
derliche. Man setze einige derselben Null, doch so, daß die Determinante nicht
identisch verschwindet. Dann bleibt sie eine irreduzible Funktion, außer wenn für
einen Wert m < n alle Elemente verschwinden, die m Zeilen mit n − m Spalten
gemeinsam haben.4

Frobenius gave a combinatorial and an algebraic proof.
In a reaction to Frobenius’ paper, Kőnig [1915] (‘presented to Class III of the

Hungarian Academy of Sciences on 16 November 1914’) next gave a proof of Frobe-
nius’ result with the help of graph theory:

A graphok alkalmazásával e tételnek egyszerű és szemléletes új bizonyitását adjuk
a következőkben.5

He introduced a now quite standard construction of making a bipartite graph from
a matrix (ai,j): for each row index i there is a vertex Ai and for each column index
j there is a vertex Bj ; then vertices Ai and Bj are connected by an edge if and
only if ai,j �= 0.

Kőnig was interested in graphs because of his interest in set theory, especially
cardinal numbers (cf. footnotes in Kőnig [1916]). In proving Schröder-Bernstein
type results on the equivalence of sets, graph-theoretic arguments (in particular:
matchings) can be illustrative. This led Kőnig to studying graphs (in particular
bipartite graphs) and its applications in other areas of mathematics.

Kőnig’s work on matchings in regular bipartite graphs

Earlier, on 7 April 1914, Kőnig had presented the following theorem at the Congrès
de Philosophie mathématique in Paris (cf. Kőnig [1923]):

A. Chaque graphe régulier à circuits pairs possède un facteur du premier degré.6

4 In §11, I extend the investigation to decomposable matrices, and in §12, I show that
such a matrix can be decomposed in only one way into indecomposable parts. With
that, the [following] curious determinant theorem comes up:

I. Let the elements of a determinant of degree n be n2 independent variables. One sets
some of them equal to zero, but such that the determinant does not vanish identically.
Then it remains an irreducible function, except when for some value m < n all elements
vanish that have m rows in common with n − m columns.

5 In the following we will give a simple and clear new proof by applying graphs to this
theorem.

6 A. Each regular graph with even circuits has a factor of the first degree.
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That is, every regular bipartite graph has a perfect matching (= factor of degree
1). As a corollary, Kőnig derived:

B. Chaque graphe régulier à circuits pairs est le produit de facteurs du premier
degré; le nombre de ces facteurs est égal au degré du graphe.7

That is, each k-regular bipartite graph is k-edge-colourable (cf. Chapter 20).
Kőnig did not give a proof of the theorem in the Paris paper, but expressed the
hope to give a complete proof ‘at another occasion’.

This occasion came in Kőnig [1916] (‘presented to Class III of the Hungarian
Academy of Sciences on 15 November 1915’) where next to the above mentioned
Theorems A and B, Kőnig gave the following result:

C) Ha egy páros körüljárású graph bármelyik csúcsába legfeljebb k-számú él fut,
akkor minden éléhez oly módon lehet k-számú index valamelyikét hozzárendelni,
hogy ugyanabba a csúcsba futó két élhez mindenkor két különböző index legyen
rendelve.8

In other words, the edge-colouring number of a bipartite graph is equal to its
maximum degree. Kőnig gave a proof of result C), and derived A and B. (See the
proof of Theorem 20.1 below of Kőnig’s proof.)

In §2 of Kőnig [1916], applications of his results to matrices and determinants
are studied. First:

D) Ha egy nem negativ [egész számú] elemekből álló determináns minden sora
és minden oszlopa ugyanazt a positiv összeget adja, akkor van a determinánsnak
legalább egy el nem tünő tagja.9

Next:

E) Ha egy determináns minden sorában és oszlopában pontosan k-számú el nem
tünő elem van, akkor legalább k-számú determinánstag nem tünik el.10

Third:

F) Ha egy n2 mezejű quadratikus táblán kn-számú figura úgy van elhelyezve
(ugyanazon a mezőn több figura is lehet), hogy minden sorban és oszlopban
pontosan k-számú figura fordul elő, akkor e konfiguráczió mindig mint k-számú
ugyancsak n2 mezejű oly konfiguráczió egyeśıtése keletkeztethető, melyek minde-
gyikében egy-egy figura van minden sorban és minden oszlopban.11

7 B. Each regular graph with even circuits is the product of factors of the first degree;
the number of these factors is equal to the degree of the graph.

8 C) If in each vertex of an even circuit graph at most k edges meet, then one can assign
to each of the edges of the graph one from k indices in such a way that two edges that
meet in a point always obtain different indices.

9 D) If in a determinant of nonnegative [integer] numbers each row and each column
yield the same positive sum, then at least one member of the determinant is different
from zero.

10 E) If the number of nonvanishing elements in each row and column of a determinant
is exactly equal to k, then there are at least k nonvanishing determinant members.

11 F) If kn pieces are placed on a quadratic board with n2 fields (where several pieces
may stand in the same field), such that each row and each column contains exactly k

pieces, then this configuration always arises by joining k such configurations with also
n2 fields, in which each row and each column contains exactly one piece.
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Frobenius’ theorem

Chronologically next is a paper of Frobenius [1917]. In order to give an elemen-
tary proof of his result in Frobenius [1912] quoted above, he proved the following
‘Hilfssatz’:

II. Wenn in einer Determinante nten Grades alle Elemente verschwinden, welche
p (≤ n) Zeilen mit n − p + 1 Spalten gemeinsam haben, so verschwinden alle
Glieder der entwickelten Determinante.
Wenn alle Glieder einer Determinante nten Grades verschwinden, so verschwin-
den alle Elemente, welche p Zeilen mit n − p + 1 Spalten gemeinsam haben für
p = 1 oder 2, · · · oder n.12

That is, if A = (ai,j) is an n×n matrix, and if
∏n

i=1 ai,j = 0 for each permutation
π of {1, . . . , n}, then for some p there exist p rows and n − p + 1 columns of A such
that each element that is both in one of these rows and in one of these columns, is
equal to 0.

In other words, a bipartite graph G = (V, E) with colour classes V1 and V2

satisfying |V1| = |V2| = n has a perfect matching if and only if one cannot select p
vertices in V1 and n − p + 1 vertices in V2 such that no edge is connecting two of
these vertices.

Frobenius noticed with respect to Kőnig’s work:

Aus dem Satze II ergibt sich auch leicht ein Ergebnis der Hrn. Dénis Kőnig,
Uber Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre,
Math. Ann. Bd. 77.
Wenn in einer Determinante aus nicht negativen Elementen die Größen jeder
Zeile und jeder Spalte dieselbe, von Null verschiedene Summe haben, so können
ihre Glieder nicht sämtlich verschwinden.13

Frobenius gave a short combinatorial proof of his theorem — see Section 16.2a.
His proof is in terms of determinants, and he offered his opinion on graph-theoretic
methods:

Die Theorie der Graphen, mittels deren Hr. Kőnig den obigen Satz abgeleitet
hat, ist nach meiner Ansicht ein wenig geeignetes Hilfsmittel für die Entwick-
lung der Determinantentheorie. In diesem Falle führt sie zu einem ganz speziellen
Satze von geringem Werte. Was von seinem Inhalt Wert hat, ist in dem Satze II
ausgesprochen.14

(See Schneider [1977] for some comments.)

12 II. If in a determinant of the nth degree all elements vanish that p (≤ n) rows have in
common with n−p+1 columns, then all members of the expanded determinant vanish.

If all members of a determinant of degree n vanish, then all elements vanish that p

rows have in common with n − p + 1 columns for p = 1 or 2, · · · or n.
13 From Theorem II, a result of Mr Dénis Kőnig, Uber Graphen und ihre Anwendung auf

Determinantentheorie und Mengenlehre, Math. Ann. Vol. 77 follows also easily.
If in a determinant of nonnegative elements the quantities of each row and of each

column have the same nonzero sum, then its members cannot vanish altogether.
14 The theory of graphs, by which Mr Kőnig has derived the theorem above, is to my

opinion of little appropriate help for the development of determinant theory. In this
case it leads to a very special theorem of little value. What from its contents has value,
is enunciated in Theorem II.
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Equivalent formulations in terms of partitions

In October 1926, van der Waerden [1927] presented the following theorem at the
Mathematisches Seminar in Hamburg:

Es seien zwei Klasseneinteilungen einer endlichen Menge M gegeben. Die eine
soll die Menge in µ zueinander fremde Klassen A1, . . . , Aµ zu je n Elementen
zerlegen, die andere ebenfalls in µ fremde Klassen B1, . . . , Bµ zu je n Elementen.
Dann gibt es ein System von Elementen x1, . . . , xµ, derart, daß jede A-Klasse
und ebenso jede B-Klasse under den xi durch ein Element vertreten wird.15

The proof of van der Waerden is based on an augmenting path argument. More-
over, van der Waerden remarked that E. Artin has communicated orally to him that
the result can be sharpened to the existence of n disjoint such common transversals.

In the article, the following note is added in proof:

Zusatz bei der Korrektur. Ich bemerke jetzt, daß der hier bewiesene Satz mit
einem Satz von Dénes Kőnig über reguläre Graphen äquivalent ist.16

The article of van der Waerden is followed by an article of Sperner [1927] (presented
at the Mathematisches Seminar in Januari 1927), which gives a ‘simple proof’ of
van der Waerden’s result — we quote the full paper in Section 22.7d.

Kőnig’s matching theorem

At the meeting of 26 March 1931 of the Eötvös Loránd Matematikai és Fizikai
Társulat (Loránd Eötvös Mathematical and Physical Society) in Budapest, Kőnig
[1931] presented a new result that formed the basis for Menger’s theorem:

Páros körüljárású graphban az éleket kimeŕıtő szögpontok minimális száma meg-
egyezik a páronként közös végpontot nem tartalmazó élek maximális számával.17

In other words, the maximum size of a matching in a bipartite graph is equal to
the minimum number of vertices needed to cover all edges. As we discussed in
Section 9.6e, Kőnig’s proof formed the missing basis for Menger’s theorem. Kőnig
also referred to the work of Frobenius (but did not notice that his theorem can be
derived from Frobenius’ theorem).

The proof of Kőnig [1931] is based on an augmenting path argument. A German
version of it was published in Kőnig [1932] (stating that another proof was given
by L. Kalmár), in which paper he described several other results as consequences
of the theorem. First he derived his theorem on the existence of a perfect matching
in a regular bipartite graph:

15 Let be given two partitions of a finite set M. One of them should decompose the set
into µ mutually disjoint classes A1, . . . , Aµ each of n elements, the other likewise in µ

disjoint classes B1, . . . , Bµ each of n elements. Then there exists a system of elements
x1, . . . , xµ such that each A-class and likewise each B-class is represented by one element
among the xi.

16 Note added in proof. I now notice that the theorem proved here is equivalent to a
theorem of Dénes Kőnig on regular graphs.

17 In an even circuit graph, the minimal number of vertices that exhaust the edges agrees
with the maximal number of edges that pairwise do not contain any common end point.
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Um die Tragweite dieses Satzes zu beleuchten, wollen wir noch zeigen, daß ein
von mir schon vor längerer Zeit bewiesener Satz über die Faktorenzerlegung von
regulären endlichen paaren Graphen aus Satz 13 unmittelbar abgeleitet werden
kann.
Der betreffende Satz lautet:
14. Jeder endliche paare reguläre Graph besitzt einen Faktor ersten Grades.18

In a footnote, Kőnig mentioned:

Später wurden für diesen Satz, bzw. für seine Interpretation in der Determi-
nantentheorie und in der Kombinatorik verschiedene Beweise gegeben, so durch
Frobenius, Sainte-Laguë, van der Waerden, Sperner, Skolem, Egerváry.19

Another consequence is a graph-theoretic variant of the result of Frobenius
[1912] on reducible determinants:

16. Im (paaren) Graphen G soll jede Kante einen der Punkte von Π1 =
(P1, P2, . . . , Pn) mit einem der Punkte von Π2 = (Q1, Q2, . . . , Qn) verbinden
(Pi �= Qj) und diejenigen Kanten von G, die in einem Faktor ersten Grades von
G enthalten sind, sollen einen nichtzusammenhängenden Graphen G∗ bilden.
Dann kann man r(> 0) Punkte aus Π1 und n − r(> 0) Punkte aus Π2 so
auswählen, daß keine Kante von G zwei ausgewählte Punkte verbinde.20

As consequences in matrix theory, Kőnig [1932] gave:

17. Verschwinden sämtliche Entwicklungsglieder aller Unterdeterminanten n-ter
Ordnung einer Matrix von p Zeilen und q Spalten (wo n ≤ p, n ≤ q ist), so
verschwinden alle Elemente, welche r Zeilen mit (p + q − n + 1) − r Spalten
gemeinsam haben für r = 1, oder 2, . . . , oder p.21

and

18. Die Minimalzahl der Reihen (Zeilen und Spalten), welche in ihr Gesamtheit
jedes nicht-verschwindende Element einer Matrix enthalten, ist gleich der Maxi-
malzahl von nicht-verschwindenden Elementen, welche paarweise verschiedenen
Zeilen und verschiedenen Spalten angehören.22

Again, a footnote is added:

18 To illustrate the bearing of this theorem, we want to show that a theorem, proved by me
already long ago, on the factorization of regular finite bipartite graphs, can be derived
immediately from Theorem 13.

The theorem referred to reads:
14. Every finite bipartite regular graph possesses a factor of first degree.

19 Later, several proofs were given for this theorem, respectively for its interpretation in
determinant theory and in combinatorics, so by Frobenius, Sainte-Laguë, van der

Waerden, Sperner, Skolem, Egerváry.
20 16. Let every edge in the (bipartite) graph G connect a vertex of Π1 = (P1, . . . , Pn) with

a vertex of Π2 = (Q1, . . . , Qn) (Pi �= Qj), and let those edges of G that are contained
in a factor of first degree form a disconnected graph G∗. Then one can choose r(> 0)
vertices in Π1 and n − r(> 0) vertices in Π2 such that no edge of G connects two of
the chosen vertices.

21 17. If all expansion terms of all underdeterminants of the order n of a matrix with p

rows and q columns vanish (where n ≤ p, n ≤ q), then all entries vanish that r rows
have in common with (p + q − n + 1) − r columns, for r = 1, or 2, . . . , or p.

22 18. The minimum number of lines (rows and columns) that together contain each non-
vanishing entry of a matrix, is equal to the maximum number of nonvanishing entries
that pairwise belong to different rows and different columns.
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Die Sätze 17 und 18 hat der Verfasser, mit den hier gegebenen Beweisen, am 26.
März 1931 in der Budapester Mathematischen und Physikalischen Gesellschaft
vorgetragen, s. [6]. Hieran anschließend hat dann E. Egerváry [1] für den Satz
18 einen anderen Beweis und eine interessante Verallgemeinerung gegeben.23

(We note that references [6] and [1] in Kőnig’s article correspond to our references
Kőnig [1931] and Egerváry [1931].)

Kőnig also derived the theorems of Frobenius [1912,1917] mentioned above:

19. Wenn alle Glieder einer Determinante n-ter Ordnung verschwinden, so ver-
schwinden alle Elemente, welche r Zeilen mit n−r+1 Spalten gemeinsam haben,
für r = 1 oder 2, . . . , oder n.24

20. In einer Determinante n-ter Ordnung D seien die nichtverschwindenden Ele-
mente unabhängige Veränderliche. Ist D eine reduzible Funktion ihrer (nichtver-
schwindenden) Elemente, so verschwinden alle Elemente von D, welche r Zeilen
mit n − r Spalten gemeinsam haben für r = 1 oder 2, . . . , oder n − 1.25

With respect to Frobenius [1912], Kőnig noticed in a footnote:

Dort wird dieser Satz “aus verborgenen Eigenschaften der Determinanten mit
nichtnegativen Elementen” durch komplizierte Betrachtungen bewiesen. Ich gab
dann in 1915 in meiner Arbeit [4] einen elementaren graphentheoretischen Beweis
(welcher hier durch einen noch einfacheren ersetzt wird). In 1917 hat dann auch
Frobenius [3] einen elementaren Beweis publiziert, und zwar nach dem ich ihm
meinen Beweis (in deutscher Übersetzung) zugeschickt hatte. Frobenius hat es
dort unterlassen, diese Tatsache, sowie überhaupt meine Arbeit [4] zu erwähnen.
Jedoch zitiert er meine Arbeit [5] und zwar mit folgender Bemerkung: “Die Theo-
rie der Graphen, mittels deren Hr. Kőnig den obigen Satz [dies ist die determinan-
tentheoretische Interpretation von Satz 14] abgeleitet hat, ist nach meiner Ansicht
ein wenig geeignetes Hilfsmittel für die Entwicklung der Determinantentheorie.
In diesem Falle führt sie zu einem ganz speziellen Satz vom geringem Werte. Was
von seinem Inhalt Wert hat, ist in dem Satze II [dies ist der Frobeniussche Satz
19] ausgesprochen.”
Es ist wohl natürlich, daß der Verfasser vorliegender Abhandlung diese Meinung
nicht unterschreiben wird. Die Gründe, die man für oder gegen den Wert oder
Unwert eines Satzes oder eine Methode anführen könnte, haben stets, mehr oder
weniger, einen subjektiven Character, so daß es vom geringen wissenschaftlichen
Wert wäre, wenn wir hier den Standpunkt von Frobenius zu bekämpfen ver-
suchten. Wollte aber Frobenius seine verwerfende Kritik über die Anwendbarkeit
der Graphen auf Determinantentheorie damit begründen, daß sein tatsächlich
“wertvoller” Satz 19 nicht graphentheoretisch bewiesen werden kann, so ist seine
Begründung—wie wir gesehen haben—sicherlich nicht stichhaltig. Der graphen-
theoretische Beweis, den wir für Satz 19 gegeben haben, scheint uns ein ein-
facher und anschaulicher Beweis zu sein, der dem kombinatorischen Character
der Satzes in natürlicher Weise entspricht und auch zu einer bemerkenswerten
Verallgemeinerung (Satz 17) führt.

23 The author has presented Theorems 17 and 18, with the proofs given here, on 26 March
1931 to the Budapest Mathematical and Physical Society, see [6]. Following this, E.

Egerváry [1] has next given another proof for Theorem 18 and an interesting general-
ization.

24 19. When all members of a determinant of the order n vanish, then all elements vanish
that have r rows in common with n − r + 1 columns, for r = 1 or 2, . . . , or n.

25 20. Let, in a determinant D of order n, the nonvanishing entries be independent vari-
ables. If D is a reducible function of its (nonvanishing) entries, then all entries of D

vanish that have r rows in common with n − r columns for r = 1 or 2, . . . , or n − 1.
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Es sei noch erwähnt, daß wir oben, im §2, beim Beweis des Satzes 16 einen
Gedanken von Frobenius benützt haben, den er bei seiner Zurückführung des
Satzes 20 auf Satz 19 angewendet hat.26

(We note that Kőnig’s quotation ‘aus verborgenen Eigenschaften der Determinanten
mit nichtnegativen Elementen’ is from Frobenius [1917]. The references [3], [4], and
[5] in Kőnig’s article correspond to our references Frobenius [1917], Kőnig [1915],
and Kőnig [1916], respectively.)

In terms of transversals, the theorems of Frobenius and Kőnig have been redis-
covered by Hall [1935] — see the historical notes on transversals in Section 22.7d.
Other developments are mentioned in Section 19.5a.

26 This theorem was proved there ‘from hidden properties of determinants with nonneg-
ative elements’ by complicated arguments. Next, I gave in 1915, in my work [4], an
elementary, graph-theoretic proof (which was replaced here by an even simpler one).
Next, in 1917, also Frobenius [3] has published an elementary proof, and that after I
had sent him my proof (in German translation). Frobenius has refrained from men-
tioning this fact there, as well as my work [4] at all. Yet, he quotes my work [5], and
that with the following remark: ‘The theory of graphs, by which Mr. Kőnig has derived
the theorem above [this is the determinant-theoretic interpretation of Theorem 14], is,
to my opinion, of little appropriate help for the development of determinant theory. In
this case it leads to a very special theorem of little value. What from its contents has
value, is expressed in Theorem II [this is Theorem 19 of Frobenius]’.

Obviously, the author of the present treatise will not subscribe to this opinion. The
arguments that one can produce for or against the value or valuelessness of a theorem
or a method, have always, more or less, a subjective character, so that it would be of
little scientific value when we here tried to fight the point of view of Frobenius. But
if Frobenius wants to base his rejecting criticism about the applicability of graphs to
determinant theory on the fact that his actually ‘more valuable’ Theorem 19 cannot
be proved graph-theoretically, then his ground is—as we have seen—certainly not solid.
The graph-theoretic proof that we have given for Theorem 19 seems to us to be a simple
and illustrative proof, that corresponds naturally to the combinatorial character of the
theorem and also leads to a remarkable generalization (Theorem 17).

Let it finally be mentioned that above, in §2, in the proof of Theorem 16, we have
used an idea of Frobenius, which he has applied at his reduction of Theorem 20 to
Theorem 19.



Chapter 17

Weighted bipartite matching
and the assignment problem

The methods and results of the previous chapter can be extended to han-
dle maximum-weight matchings. Egerváry’s theorem is the weighted ver-
sion of Kőnig’s matching theorem. It led Kuhn to develop the ‘Hungarian
method’ for the assignment problem. This problem is equivalent to finding
a minimum-weight perfect matching in a complete bipartite graph.

17.1. Weighted bipartite matching

For bipartite graphs, Egerváry [1931] characterized the maximum weight of
a matching by the following duality relation:

Theorem 17.1 (Egerváry’s theorem). Let G = (V, E) be a bipartite graph
and let w : E → R+ be a weight function. Then the maximum weight of a
matching in G is equal to the minimum value of y(V ), where y : V → R+ is
such that

(17.1) yu + yv ≥ we

for each edge e = uv. If w is integer, we can take y integer.

Proof. The maximum is not more than the minimum, since for any matching
M and any y ∈ RV

+ satisfying (17.1) for each edge e = uv, one has

(17.2) w(M) ≤
∑

e=uv∈M

(yu + yv) ≤
∑

v∈V

yv.

To see equality, choose a y ∈ RV
+ attaining the minimum value. Let F be the

set of edges e having equality in (17.1) and let R be the set of vertices v with
yv > 0.

If F contains a matching M covering R, we have equality throughout in
(17.2), showing that the maximum is equal to the minimum value.

So we may assume that no such matching exists. Then by Corollary 16.8a
there exists a stable set S ⊆ R containing no edge and such that |N(S)| < |S|.
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Then there is an α > 0 such that decreasing yv by α for v ∈ S and increasing
yv by α for v ∈ N(S) gives a better y — a contradiction.

If w is integer we can keep y integer, by taking ε = 1 throughout.

(This is essentially the proof method of Egerváry [1931].)
We can formulate Egerváry’s theorem in combinatorial terms. Let G =

(V, E) be a graph and let w ∈ ZE
+. A w-vertex cover is a vector y ∈ ZV

+ such
that

(17.3) yu + yv ≥ we

for each edge e = uv of G. The size of any vector y ∈ RV is the sum of its
components.

Corollary 17.1a. Let G = (V, E) be a bipartite graph and let w : E → Z+

be a weight function. Then the maximum weight of a matching in G is equal
to the minimum size of a w-vertex cover.

Proof. The corollary is a reformulation of the integer part of Egerváry’s
theorem (Theorem 17.1).

Let A be the V ×E incidence matrix of G. Egerváry’s theorem states that
for w ∈ ZV

+, the optima in the linear programming duality equation

(17.4) max{wTx | x ≥ 0, Ax ≤ 1} = min{yT1 | y ≥ 0, yTA ≥ wT}
are attained by integer vectors x and y. This also follows from the total
unimodularity of A — see Section 18.3.

17.2. The Hungarian method

We describe the Hungarian method for the maximum-weight matching prob-
lem. In its basic form it is due to Kuhn [1955b], based on Egerváry’s proof
above. Sharpenings were given by Munkres [1957] (yielding a polynomial-time
method), Iri [1960], Edmonds and Karp [1970], and Tomizawa [1971].

Let G = (V, E) be a bipartite graph, with colour classes U and W , and
let w : E → Q be a weight function.

We start with matching M = ∅. If we have found a matching M , let DM

be the directed graph obtained from G by orienting each edge e in M from
W to U , with length le := we, and orienting each edge e not in M from U to
W , with length le := −we. Let UM and WM be the set of vertices in U and
W , respectively, missed by M . If there is a UM − WM path, find a shortest
such path, P say, and reset M ′ := M△EP .

We iterate until no UM − WM path exists in DM (whence M is a
maximum-size matching). The maximum-weight matching among the match-
ings found, has maximum weight among all matchings.
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To see this, call a matching M extreme if it has maximum weight among
all matchings of size |M |. Then, inductively:

Theorem 17.2. Each matching M found is extreme.

Proof. This is clearly true if M = ∅. Suppose next that M is extreme, and
let P and M ′ be the path and matching found in the iteration. Consider any
extreme matching N of size |M | + 1. As |N | > |M |, M ∪ N has a component
Q that is an M -augmenting path. As P is a shortest M -augmenting path,
we know l(Q) ≥ l(P ). As N△Q is a matching of size |M |, and as M is
extreme, we have w(N△Q) ≤ w(M). Hence w(N) = w(N△Q) − l(Q) ≤
w(M) − l(P ) = w(M ′).

If M is extreme, then DM has no negative-length circuit C (otherwise
M△C is a matching of size |M | and larger weight than M). So by the theo-
rem, we can find with the Bellman-Ford method a shortest UM − WM path
in time O(nm), yielding an O(n2m) method overall (Iri [1960]).

But in fact one may apply Dijkstra’s method (Edmonds and Karp [1970],
Tomizawa [1971]) and obtain a better time bound:

Theorem 17.3. The method can be performed in time O(n(m + n log n)).

Proof. Let RM denote the set of vertices reachable in DM from UM . We show
that along with M we can keep a potential p for the subgraph DM [RM ] of
DM induced by RM (with respect to the length function l defined above).27

When M = ∅ we take p(v) := max{we | e ∈ E} if v ∈ U and p(v) := 0 if
v ∈ W .

Suppose next that for given extreme M we have a potential p for DM [RM ].
Then define p′(v) := distl(UM , v) for each v ∈ RM . Note that having p, one
can determine p′ in O(m + n log n) time (cf. Section 8.2).

Then p′ is a potential for DM ′ [RM ′ ]. To see this, let P be the path in
DM with M ′ = M△EP . Trivially, UM ′ ⊆ UM . Moreover, RM ′ ⊆ RM . In-
deed, otherwise some arc of DM ′ leaves RM . As no arc of DM leaves RM ,
this implies that P has an arc entering RM . So P has an arc leaving RM ,
contradicting the definition of RM . Concluding, RM ′ ⊆ RM .

Finally consider an arc (u, v) of DM ′ [RM ′ ]. If (u, v) is also an arc of DM ,
then p′(v) ≤ p′(u) + l(u, v). If (u, v) is not an arc of DM , then (v, u) belongs
to P , and hence (as P is shortest) p′(u) = p′(v) + l(v, u). So p′(v) − p′(u) =
−l(v, u) = l(u, v).

Observe that in the Hungarian method one can stop as soon as matching
M ′ has no larger weight than M ; that is, DM has no UM − WM path of
negative length. For let N be a matching with w(N) > w(M). So |N | > |M |
27 A potential for a digraph D = (V, A) with respect to a length function l : A → R is a

function p : V → R satisfying p(v) − p(u) ≤ l(a) for each arc a = (u, v).
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(since all matchings of size ≤ |M | have weight ≤ w(M)). Choose N with
|N△M | minimal. By similar arguments as used in the proof of Theorem
17.2, we may assume that N△M has |N | − |M | nontrivial components, each
having one more edge in N than in M . So each component gives a UM −WM

path in DM . As none of them have negative length, we have w(N) ≤ w(M),
a contradiction.

Hence we can reduce the factor n in the time bound:

Theorem 17.4. In a weighted bipartite graph, a maximum-weight matching
can be found in time O(n′(m + n log n)), where n′ is the minimum size of a
maximum-weight matching.

Proof. See above.

17.3. Perfect matching and assignment problems

The methods described above also find a maximum-weight perfect match-
ing in a bipartite graph. This follows from the fact that a maximum-weight
perfect matching is an extreme matching of size 1

2 |V |.
By multiplying all weights by −1, this problem can be seen to be equiva-

lent to finding a minimum-weight perfect matching. Hence:

Corollary 17.4a. A minimum-weight perfect matching can be found in time
O(n(m + n log n)).

Proof. Directly from the above.

This in turn gives an algorithm for the assignment problem:

(17.5) given: a rational n × n matrix A = (ai,j);

find: a permutation π of {1, . . . , n} minimizing
n∑

i=1

ai,π(i).

Corollary 17.4b. The assignment problem can be solved in time O(n3).

Proof. Take G = Kn,n in Corollary 17.4a.

The following characterization of the minimum weight of a perfect match-
ing can be derived from Egerváry’s theorem — we however give a direct proof
that might be illuminating:

Theorem 17.5. Let G = (V, E) be a bipartite graph having a perfect matching
and let w : E → Q be a weight function. The minimum weight of a perfect
matching is equal to the maximum value of y(V ) taken over y : V → Q with
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(17.6) yu + yv ≤ we for each edge e = uv.

If w is integer, we can take y integer.

Proof. Clearly, the minimum is not less than the maximum, since for any
perfect matching M and any y ∈ QV satisfying (17.6) one has

(17.7) w(M) =
∑

e∈M

we ≥
∑

v∈V

yv = y(V ).

To see the reverse inequality, let M be a minimum-weight perfect matching.
Make a digraph D = (V, A), with length function, as follows. Orient any
edge e of G from one colour class, U say, to the other, W say, with length
we. Moreover, add for each edge e in M an arc parallel to e oriented from
W to U , with length −we. As M is minimum-weight, the digraph has no
negative-weight directed circuits (otherwise we could make a perfect matching
of smaller weight). Hence, by Theorem 8.2, there exists a function p : V → Q

such that w(a) ≥ p(v)−p(u) for each arc a = (u, v) of D. Defining yv := −p(v)
for v ∈ U and yv := p(v) for v ∈ W , we obtain a function y satisfying (17.6).
For each edge e = uv in M , the arcs (u, v) and (v, u) form a zero-length
directed circuit in D, and therefore we = yu + yv. This gives equality in
(17.7).

If w is integer, we can take p and hence y integer.

17.4. Finding a minimum-size w-vertex cover

Given a maximum-weight matching M in a bipartite graph G = (V, E) with
weight w : E → Z+, we can find a minimum-size w-vertex cover as follows.
Let U and W be the colour classes of G. As before, define UM := U \ ⋃

M
and WM := W \ ⋃

M .
For any edge e = uv, with u ∈ U , v ∈ W , make an arc a = (u, v), of length

l(a) := −we. If e ∈ M , make also an arc a′ = (v, u), of length l(a′) := we. We
obtain a directed graph D = (V, A) without negative-length directed circuits
and no negative-length directed path from UM ∪(W \WM ) to WM ∪(U \UM )
(otherwise we can improve M). Then we can find a potential p : V → Z such
that l(a) ≥ p(v)−p(u) for each arc a = (u, v) of D and such that p(v) = 0 for
each v ∈ UM ∪WM , p(v) ≥ 0 for each v ∈ U , and p(v) ≤ 0 for each v ∈ W . To
see this, add an extra vertex r, and arcs (r, v) for each v ∈ UM ∪ (W \ WM )
and (v, r) for each v ∈ WM ∪ (U \ UM ). Let the new arcs have length 0.
Then the extended digraph D′ has no negative-length circuits. Let p be a
potential for D′. By translating, we can assume p(r) = 0. Resetting p(v) to
0 if v ∈ UM ∪ WM maintains that p is a potential. This gives a potential for
D as described.

Now set yv := −p(v) if v ∈ U and yv := p(v) if v ∈ W . Then y is a
w-vertex cover of size w(M), and hence it is a minimum-size w-vertex cover.
Therefore (Iri [1960]):
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Theorem 17.6. A minimum-size w-vertex cover in a bipartite graph can be
found in O(n(m + n log n)) time.

Proof. See above.

17.5. Further results and notes

17.5a. Complexity survey for maximum-weight bipartite matching

Complexity survey for the maximum-weight bipartite matching (∗ indicates an
asymptotically best bound in the table):

O(nW · VC(n, m)) Egerváry [1931] (implicitly)

O(2nn2) Easterfield [1946]

O(nW · DC(n, m, W )) Robinson [1949]

O(n4)
Kuhn [1955b], Munkres [1957]28 Hungarian
method

O(n2m) Iri [1960]

O(n3) Dinits and Kronrod [1969]

∗ O(n · SP+(n, m, W )) Edmonds and Karp [1970], Tomizawa [1971]

O(n3/4m log W ) Gabow [1983b,1985a,1985b]

∗ O(
√

n m log(nW ))
Gabow and Tarjan [1988b,1989] (cf. Orlin
and Ahuja [1992])

O(
√

n mW ) Kao, Lam, Sung, and Ting [1999]

∗ O(
√

n mW logn(n2/m)) Kao, Lam, Sung, and Ting [2001]

Here W := ‖w‖∞ (assuming w to be integer-valued). Moreover, SP+(n, m, W ) is
the time needed to find a shortest path in a directed graph with n vertices and
m arcs, with nonnegative integer lengths on the arcs, each at most W . Similarly,
DC(n, m, W ) is the time required to find a negative-length directed circuit in a
directed graph with n vertices and m arcs, with integer lengths on the arcs, each
at most W in absolute value. Moreover, VC(n, m) is the time required to find a
minimum-size vertex cover in a bipartite graph with n vertices and m edges.

Dinits [1976] gave an algorithm for finding a minimum-weight matching in Kp,q

of size p, with time bound O(|p|3 + pq) (taking p ≤ q).

17.5b. Further notes

Simplex method. Finding a maximum-weight matching in a bipartite graph is a
special case of a linear programming problem (see Chapter 18), and hence linear
programming methods like the simplex method apply.

28 Munkres showed that Kuhn’s ‘Hungarian method’ takes O(n4) time.
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Gassner [1964] studied cycling of the simplex method when applied to the as-
signment problem. Using the ‘strongly feasible’ trees of Cunningham [1976], Roohy-
Laleh [1980] showed that a version of the simplex method solves the assignment
problem in less than n3 pivots (cf. Hung [1983], Orlin [1985], and Akgül [1993];
the last paper gives a method with O(n2) pivots, yielding an O(n(m + n log n))
algorithm).

Balinski [1985] (cf. Goldfarb [1985]) showed that a version of the dual simplex
method (the signature method) solves the assignment problem in strongly poly-
nomial time (O(n2) pivots, yielding an O(n3) algorithm). More can be found in
Dantzig [1963], Barr, Glover, and Klingman [1977], Balinski [1986], Ahuja and Or-
lin [1988,1992], Akgül [1988], Paparrizos [1988], and Akgül and Ekin [1991].

For further algorithmic studies of the assignment problem, consult Flood [1960],
Kurtzberg [1962], Hoffman and Markowitz [1963], Balinski and Gomory [1964],
Tabourier [1972], Carpaneto and Toth [1980a,1983,1987], Hung and Rom [1980],
Karp [1980], Bertsekas [1981,1987,1992] (‘auction method’), Engquist [1982], Avis
[1983], Avis and Devroye [1985], Derigs [1985b,1988a], Carraresi and Sodini [1986],
Derigs and Metz [1986a], Glover, Glover, and Klingman [1986], Jonker and Vol-
genant [1986], Kleinschmidt, Lee, and Schannath [1987], Avis and Lai [1988], Bert-
sekas and Eckstein [1988], Motwani [1989,1994], Kalyanasundaram and Pruhs [1991,
1993], Khuller, Mitchell, and Vazirani [1991,1994], Goldberg and Kennedy [1997]
(push-relabel), and Arora, Frieze, and Kaplan [1996,2002].

For computational studies, see Silver [1960], Florian and Klein [1970], Barr,
Glover, and Klingman [1977] (simplex method), Gavish, Schweitzer, and Shlifer
[1977] (simplex method), Bertsekas [1981], Engquist [1982], McGinnis [1983], Lind-
berg and Ólafsson [1984] (simplex method), Glover, Glover, and Klingman [1986],
Jonker and Volgenant [1987], Bertsekas and Eckstein [1988], and Goldberg and
Kennedy [1995] (push-relabel). Consult also Johnson and McGeoch [1993].

Linear-time algorithm for weighted bipartite matching problems satisfying a
quadrangle or other inequality were given by Karp and Li [1975], Buss and Yianilos
[1994,1998], and Aggarwal, Bar-Noy, Khuller, Kravets, and Schieber [1995].

For generating all minimum-weight perfect matchings, see Fukuda and Matsui
[1992]. For studies of the ‘most vital’ edges in a weighted bipartite graph, see Hung,
Hsu, and Sung [1993].

Aráoz and Edmonds [1985] gave an example showing that iterative dual im-
provements in the linear programming problem dual to the assignment problem,
need not converge for irrational data.

For the ‘bottleneck’ assignment problem, see Gross [1959] and Garfinkel [1971].
An algebraic approach to assignment problems was described by Burkard, Hahn,
and Zimmermann [1977].

For surveys on matching algorithms, see Galil [1983,1986a,1986b]. Books cov-
ering the weighted bipartite matching and assignment problems include Ford
and Fulkerson [1962], Dantzig [1963], Christofides [1975], Lawler [1976b], Bazaraa
and Jarvis [1977], Burkard and Derigs [1980], Papadimitriou and Steiglitz [1982],
Gondran and Minoux [1984], Rockafellar [1984], Derigs [1988a], Bazaraa, Jarvis,
and Sherali [1990], Cook, Cunningham, Pulleyblank, and Schrijver [1998], Jung-
nickel [1999], Mehlhorn and Näher [1999], and Korte and Vygen [2000].
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17.5c. Historical notes on weighted bipartite matching and

optimum assignment

Monge: optimum assignment

The assignment problem is one of the first studied combinatorial optimization prob-
lems. It was investigated by Monge [1784], albeit camouflaged as a continuous prob-
lem, and often called a transportation problem.

Monge was motivated by transporting earth, which he considered as the dis-
continuous, combinatorial problem of transporting molecules:

Lorsqu’on doit transporter des terres d’un lieu dans un autre, on a coutime de
donner le nom de Déblai au volume des terres que l’on doit transporter, & le nom
de Remblai à l’espace qu’elles doivent occuper après le transport.
Le prix du transport d’une molécule étant, toutes choses d’ailleurs égales, pro-
portionnel à son poids & à l’espace qu’on lui fait parcourir, & par conséquent le
prix du transport total devant être proportionnel à la somme des produits des
molécules multipliées chacune par l’espace parcouru, il s’ensuit que le déblai &
le remblai étant donnés de figure & de position, il n’est pas indifférent que telle
molécule du déblai soit transportée dans tel ou tel autre endroit du remblai, mais
qu’il y a une certaine distribution à faire des molécules du premier dans le second,
d’après laquelle la somme de ces produits sera la moindre possible, & le prix du
transport total sera un minimum.29

Monge described an interesting geometric method to solve this problem. Con-
sider a line that is tangent to both areas, and move the molecule m touched in the
first area to the position x touched in the second area, and repeat, until all earth
has been transported. Monge’s argument that this would be optimum is simple:
if molecule m would be moved to another position, then another molecule should
be moved to position x, implying that the two routes traversed by these molecules
cross, and that therefore a shorter assignment exists:

Étant données sur un même plan deux aires égales ABCD, & abcd, terminées
par des contours quelconques, continus ou discontinus, trouver la route que doit
suivre chaque molécule M de la premiere, & le point m où elle doit arriver dans la
seconde, pour que tous les points étant semblablement transportés, ils replissent
exactement la seconde aire, & que la somme des produits de chaque molécule
multipliée par l’espace parcouru soit un minimum.
Si par un point M quelconque de la première aire, on mène une droite Bd, telle
que le segment BAD soit égal au segment bad, je dis que pour satisfaire à la
question, il faut que toutes les molécules du segment BAD, soient portées sur le
segment bad, & que par conséquent les molécules du segment BCD soient portées

29 When one must transport earth from one place to another, one usually gives the name
of Déblai to the volume of earth that one must transport, & the name of Remblai to
the space that they should occupy after the transport.

The price of the transport of one molecule being, if all the rest is equal, proportional
to its weight & to the distance that one makes it covering, & hence the price of the
total transport having to be proportional to the sum of the products of the molecules
each multiplied by the distance covered, it follows that, the déblai & the remblai being
given by figure and position, it makes difference if a certain molecule of the déblai
is transported to one or to another place of the remblai, but that there is a certain
distribution to make of the molecules from the first to the second, after which the sum
of these products will be as little as possible, & the price of the total transport will be
a minimum.
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sur le segment égal bcd; car si un point K quelconque du segment BAD, étoit
porté sur un point k de bcd, il faudroit nécessairement qu’un point égal L, pris
quelque part dans BCD, fût transporté dans un certain point l de bad, ce qui
ne pourroit pas se faire sans que les routes Kk, Ll, ne se coupassent entre leurs
extrémités, & la somme des produits des molécules par les espaces parcourus ne
seroit pas un minimum. Pareillement, si par un point M ′ infiniment proche du
point M , on mène la droite B′d′, telle qu’on ait encore le segment B′A′D′, égal
au segment b′a′d′, il faut pour que la question soit satisfaite, que les molécules
du segment B′A′D′ soient transportées sur b′a′d′. Donc toutes les molécules de
l’élément BB′D′D doivent être transportées sur l’élément égal bb′d′d. Ainsi en
divisant le déblai & le remblai en une infinité d’élémens par des droites qui coupent
dans l’un & dans l’autre des segmens égaux entr’eux, chaque élément du déblai
doit être porté sur l’élément correspondant du remblai.
Les droites Bd & B′d′ étant infiniment proches, il est indifférent dans quel or-
dre les molécules de l’élément BB′D′D se distribuent sur l’élément bb′d′d; de
quelque manière en effet que se fasse cette distribution, la somme des produits
des molécules par les espaces parcourus, est toujours la même, mais si l’on remar-
que que dans la pratique il convient de débleyer premièrement les parties qui se
trouvent sur le passage des autres, & de n’occuper que les dernières les parties du
remblai qui sont dans le même cas; la molécule MM ′ ne devra se transporter que
lorsque toute la partie MM ′D′D qui la précêde, aura été transportée en mm′d′d;
donc dans cette hypothèse, si l’on fait mm′d′d = MM ′D′D, le point m sera celui
sur lequel le point M sera transporté.30

Although geometrically intuitive, the method is however not fully correct, as
was noted by Appell [1928]:

30 Being given, in the same plane, two equal areas ABCD & abcd, bounded by arbitrary
contours, continuous or discontinuous, find the route that every molecule M of the first
should follow & the point m where it should arrive in the second, so that, all points
being transported likewise, they fill precisely the second area & so that the sum of the
products of each molecule multiplied by the distance covered, is minimum.

If one draws a straight line Bd through an arbitrary point M of the first area, such
that the segment BAD is equal to the segment bad, I assert that, in order to satisfy
the question, all molecules of the segment BAD should be carried on the segment bad,
& hence the molecules of the segment BCD should be carried on the equal segment
bcd; for, if an arbitrary point K of segment BAD, is carried to a point k of bcd, then
necessarily some point L somewhere in BCD is transported to a certain point l in bad,
which cannot be done without that the routes Kk, Ll cross each other between their
end points, & the sum of the products of the molecules by the distances covered would
not be a minimum. Likewise, if one draws a straight line B′d′ through a point M ′

infinitely close to point M , in such a way that one still has that segment B′A′D′ is
equal to segment b′a′d′, then in order to satisfy the question, the molecules of segment
B′A′D′ should be transported to b′a′d′. So all molecules of the element BB′D′D must
be transported to the equal element bb′d′d. Dividing the déblai & the remblai in this
way into an infinity of elements by straight lines that cut in the one & in the other
segments that are equal to each other, every element of the déblai must be carried to
the corresponding element of the remblai.

The straight lines Bd & B′d′ being infinitely close, it does not matter in which
order the molecules of element BB′D′D are distributed on the element bb′d′d; indeed,
in whatever manner this distribution is being made, the sum of the products of the
molecules by the distances covered is always the same; but if one observes that in
practice it is convenient first to dig off the parts that are in the way of others, & only at
last to cover similar parts of the remblai; the molecule MM ′ must be transported only
when the whole part MM ′D′D that precedes it will have been transported to mm′d′d;
hence with this hypothesis, if one has mm′d′d = MM ′D′D, point m will be the one to
which point M will be transported.
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Il est bien facile de faire la figure de manière que les chemins suivis par les deux
parcelles dont parle Monge ne se croisent pas.31

(cf. Taton [1951]).

Egerváry

Egerváry [1931] published a weighted version of Kőnig’s theorem:

Ha az ‖aij‖ n-edrendű matrix elemei adott nem negat́ıv egész számok, úgy a

λi + µj ≥ aij , (i, j = 1, 2, ...n),
(λi, µj nem negat́ıv egész számok)

feltételek mellett

min .

n
∑

k=1

(λk + µk) = max .(a1ν1 + a2ν2 + · · · + anνn ).

hol ν1, ν2, ...νn az 1, 2, ...n számok összes permutációit befutják.32

The proof method of Egerváry is essentially algorithmic. Assume that the ai,j are
integer. Let λ∗

i , µ∗
j attain the minimum. If there is a permutation ν of {1, . . . , n}

with λ∗
i + µ∗

νi
= ai,νi for all i, then this permutation attains the maximum, and we

have the required equality. If no such permutation exists, by Frobenius’ theorem
there are subsets I, J of {1, . . . , n} such that

(17.8) λ∗
i + µ∗

j > ai,j for all i ∈ I, j ∈ J

and such that |I| + |J | = n + 1. Resetting λ∗
i := λ∗

i − 1 if i ∈ I and µ∗
j := µ∗

j + 1
if j �∈ J , would give feasible values for the λi and µj , however with their total sum
being decreased. This is a contradiction.

Translated into an algorithm, it consists of applying O(nW ) times a cardinality
bipartite matching algorithm, where W is the maximum weight. So its running
time is O(nW ·B(n)), where B(n) is a bound on the running time of any algorithm
finding a maximum-size matching and a minimum-size vertex cover in a bipartite
graph with n vertices.

This method forms the basis for the Hungarian method of Kuhn [1955b,1956]
— see below.

31 It is very easy to make the figure in such a way that the routes followed by the two
particles of which Monge speaks, do not cross each other.

32 If the elements of the matrix ‖aij‖ of order n are given nonnegative integers, then
under the assumption

λi + µj ≥ aij , (i, j = 1, 2, ...n),
(λi, µj nonnegative integers)

we have

min .

n
∑

k=1

(λk + µk) = max .(a1ν1 + a2ν2 + · · · + anνn ).

where ν1, ν2, ...νn run over all possible permutations of the numbers 1, 2, ...n.
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The 1940s

The first algorithm for the assignment problem might have been published by East-
erfield [1946], who described his motivation as follows:

In the course of a piece of organisational research into the problems of demobili-
sation in the R.A.F., it seemed that it might be possible to arrange the posting of
men from disbanded units into other units in such a way that they would not need
to be posted again before they were demobilised; and that a study of the numbers
of men in the various release groups in each unit might enable this process to be
carried out with a minimum number of postings. Unfortunately the unexpected
ending of the Japanese war prevented the implications of this approach from be-
ing worked out in time for effective use. The algorithm of this paper arose directly
in the course of the investigation.

Easterfield seems to have worked without knowledge of the existing literature.
He formulated and proved a theorem equivalent to Hall’s marriage theorem (see
Section 22.1a) and he described a primal-dual type method for the assignment
problem from which Egerváry’s result given above follows. The idea of the method
can be described as follows.

Let A = (ai,j) be an n × n matrix and let for each column index j, Ij be the
set of row indices i for which ai,j is minimum among all entries in row i. If the
collection (I1, . . . , In) has a transversal, say i1, . . . , in (with ij ∈ Ij), then ij → j is
an optimum assignment.

If (I1, . . . , In) has no transversal, let J be the collection of subsets J of
{1, . . . , n} for which (Ij | j ∈ J) has a transversal. Select an inclusionwise min-
imal set J that is not in J . Then there exists an ε > 0 such that subtracting ε
from each entry in each of the columns in J extends J by (at least) J . (This can
be seen using Hall’s condition.)

Easterfield described an implementation (including scanning all subsets in lex-
icographic order), that has running time O(2nn2). (This is better than scanning
all permutations, which takes time Ω(n!).) The algorithm was explained again by
Easterfield [1960].

Birkhoff [1946] derived from Hall’s marriage theorem that each doubly stochas-
tic matrix is a convex combination of permutation matrices. Birkhoff’s motivation
was:

Estas matrices son interesantes para la probabilidad, y los cuadrados mágicos son
múltiplos escalares de estas matrices.33

A breakthrough in solving the assignment problem came when Dantzig [1951a]
showed that the assignment problem can be formulated as a linear programming
problem that automatically has an integer optimum solution. Indeed, by Birkhoff’s
theorem, minimizing a linear functional over the set of doubly stochastic matrices
(which is a linear programming problem) gives a permutation matrix, being the
optimum assignment. So the assignment problem can be solved with the simplex
method.

In an address delivered on 9 September 1949 at a meeting of the American Psy-
chological Association at Denver, Colorado, Thorndike [1950] studied the problem
of the ‘classification’ of personnel:

33 These matrices are interesting because of the probability, and the magic squares are
scalar multiples of these matrices.
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The past decade, and particularly the war years, have witnessed a great concern
about the classification of personnel and a vast expenditure of effort presumably
directed towards this end.

He exhibited little trust in mathematicians:

There are, as has been indicated, a finite number of permutations in the assign-
ment of men to jobs. When the classification problem as formulated above was
presented to a mathematician, he pointed to this fact and said that from the
point of view of the mathematician there was no problem. Since the number of
permutations was finite, one had only to try them all and choose the best. He
dismissed the problem at that point. This is rather cold comfort to the psychol-
ogist, however, when one considers that only ten men and ten jobs mean over
three and a half million permutations. Trying out all the permutations may be a
mathematical solution to the problem, it is not a practical solution.

Thorndike next presented three heuristics for the assignment problem, the Method
of Divine Intuition, the Method of Daily Quotas, and the Method of Predicted Yield.

In a RAND Report dated 5 December 1949, Robinson [1949] reported that
an ‘unsuccessful attempt’ to solve the traveling salesman problem, led her to the
following ‘cycle-cancelling’ method for the optimum assignment problem.

Let matrix (ai,j) be given, and consider any permutation π. Define for all i, j
a ‘length’ li,j by: li,j := aj,π(i) − ai,π(i) if j �= π(i) and li,π(i) = ∞. If there exists
a negative-length directed circuit, there is a straightforward way to improve π. If
there is no such circuit, then π is an optimal permutation.

This clearly is a finite method. Robinson remarked:

I believe it would be feasible to apply it to as many as 50 points provided suitable
calculating equipment is available.

The early 1950s

Von Neumann considered the complexity of the assignment problem. In a talk in
the Princeton University Game Seminar on 26 October 1951, he showed that the
assignment problem can be reduced to finding an optimum column strategy in a
certain zero-sum two-person game, and that it can be found by a method given by
Brown and von Neumann [1950]. We give first the mathematical background.

A zero-sum two-person game is given by a matrix A, the ‘pay-off matrix’. The
interpretation as a game is that a ‘row player’ chooses a row index i and a ‘column
player’ chooses simultaneously a column index j. After that, the column player pays
the row player Ai,j . The game is played repeatedly, and the question is what is the
best strategy.

Let A have order m × n. A row strategy is a vector x ∈ Rm
+ satisfying 1Tx = 1.

Similarly, a column strategy is a vector y ∈ Rn
+ satisfying 1Ty = 1. Then

(17.9) max
x

min
j

(xTA)j = min
y

max
i

(Ay)i,

where x ranges over row strategies, y over column strategies, i over row indices,
and j over column indices. Equality (17.9) follows from LP-duality.

It implies that the best strategy for the row player is to choose rows with
distribution an optimum x in (17.9). Similarly, the best strategy for the column
player is to choose columns with distribution an optimum y in (17.9). The average
pay-off then is the value of (17.9).
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The method of Brown [1951] to determine the optimum strategies is that each
player chooses in turn the line that is best with respect to the distribution of the
lines chosen by the opponent so far. It was proved by Robinson [1951] that this
converges to optimum strategies. The method of Brown and von Neumann [1950] is
a continuous version of this, and amounts to solving a system of linear differential
equations.

Now von Neumann noted that the following reduces the assignment problem to
the problem of finding an optimum column strategy. Let C = (ci,j) be an n×n cost
matrix, as input for the assignment problem. We may assume that C is positive.
Consider the following pay-off matrix A, of order 2n × n2, with columns indexed
by ordered pairs (i, j) with i, j = 1, . . . , n. The entries of A are given by: Ai,(i,j) :=
1/ci,j and An+j,(i,j) := 1/ci,j for i, j = 1, . . . , n, and Ak,(i,j) := 0 for all i, j, k with
k �= i and k �= n + j. Then any minimum-cost assignment, of cost γ say, yields an
optimum column strategy y by: y(i,j) := ci,j/γ if i is assigned to j, and y(i,j) := 0
otherwise. Any optimum column strategy is a convex combination of strategies
obtained this way from optimum assignments. So an optimum assignment can in
principle be found by finding an optimum column strategy.

According to a transcript of the talk (cf. von Neumann [1951,1953]), von Neu-
mann noted the following on the number of steps:

It turns out that this number is a moderate power of n, i.e., considerably smaller
than the ”obvious” estimate n! mentioned earlier.

However, no further argumentation is given. (Related observations were given by
Dulmage and Halperin [1955] and Koopmans and Beckmann [1955,1957].)

Beckmann and Koopmans [1952] studied the quadratic assignment problem, and
they noted that the traveling salesman problem is a special case. In a Cowles Com-
mission Discussion Paper of 2 April 1953, Beckmann and Koopmans [1953] men-
tioned applying polyhedral methods to solve the assignment problem, and noted:

It should be added that in all the assignment problems discussed, there is, of
course, the obvious brute force method of enumerating all assignments, evaluating
the maximand at each of these, and selecting the assignment giving the highest
value. This is too costly in most cases of practical importance, and by a method
of solution we have meant a procedure that reduces the computational work to
manageable proportions in a wider class of cases.

Geometric methods were proposed by Lord [1952] and Dwyer [1954] (the
‘method of optimal regions’) and other heuristics by Votaw and Orden [1952] and
Törnqvist [1953]. A survey of developments on the assignment problem until 1955
was given by Motzkin [1956].

Computational results of the early 1950s

In a paper presented at the Symposium on Linear Inequalities and Linear Program-
ming (14–16 June 1951 in Washington, D.C.), Votaw and Orden [1952] mentioned
that solving a 10 × 10 transportation problem took 3 minutes on the SEAC (Na-
tional Bureau of Standards Eastern Automatic Computer). However, in a later
paper (submitted 1 November 1951), Votaw [1952] said that solving a 10 × 10
assignment problem with the simplex method on the SEAC took 20 minutes.

Moreover, in his reminiscences, Kuhn [1991] mentioned:
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The story begins in the summer of 1953 when the National Bureau of Stan-
dards and other US government agencies had gathered an outstanding group of
combinatorialists and algebraists at the Institute for Numerical Analysis (INA)
located on the campus of the University of California at Los Angeles. Since space
was tight, I shared an office with Ted Motzkin, whose pioneering work on linear
inequalities and related systems predates linear programming by more than ten
years. A rather unique feature of the INA was the presence of the Standards West-
ern Automatic Computer (SWAC), the entire memory of which consisted of 256
Williamson cathode ray tubes. The SWAC was faster but smaller than its sibling
machine, the Standards Eastern Automatic Computer (SEAC), which boasted a
liquid mercury memory and which had been coded to solve linear programs.

During the summer, C.B. Tompkins was attempting to solve 10 by 10 assign-
ment problems by programming the SWAC to enumerate the 10! = 3, 628, 800
permutations of 10 objects. He never succeeded in this project.

Thus, the 10 by 10 assignment problem is a linear program with 100 nonnegative
variables and 20 equation constraints (of which only 19 are needed). In 1953,
there was no machine in the world that had been programmed to solve a linear
program this large!

If ‘the world’ includes the Eastern Coast of the U.S.A., there seems to be some
discrepancy with the remarks of Votaw [1952] mentioned above.

On 23 April 1954, Gleyzal [1955] wrote that a code of his algorithm for the
transportation problem, for the special case of the assignment problem with an
8 × 8 matrix, had just been composed for the SWAC.

Tompkins [1956] mentioned the following ‘branch-and-bound’ approach to the
assignment problem:

Benjamin Handy, on the suggestion of D.H. Lehmer and with advice from T.S.
Motzkin [1], coded this problem for SWAC; he used exhaustive search including
rejection of blocks of permutations when the first few elements of the trace led to
a hopelessly low contribution. The problem worked for a problem whose matrix
had 12 rows and 12 columns and was composed of random three-digit numbers.
The solution in this case took three hours. Some restrictions which had been
imposed concerning the types of problems to which the code should be applicable
led to some inefficiencies; however, the simplex method of G.B. Dantzig [7] and
various other methods of solution of this problem seem greatly superior to this
method of exhaustive search;

(References [1] and [7] in this quotation are Motzkin [1956] and Dantzig [1951b].)

Kuhn, Munkres: the Hungarian method

Kuhn [1955b,1956] developed a new combinatorial procedure for solving the assign-
ment problem. The method is based on the work of Egerváry [1931], and therefore
Kuhn introduced the name Hungarian method for it. (According to Kuhn [1955b],
the algorithm is ‘latent in work of D. Kőnig and J. Egerváry’.) The method was
sharpened by Munkres [1957].

In an article On the origin of the Hungarian method, Kuhn [1991] presented the
following reminiscences on the Hungarian method, from the time starting Summer
1953:
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During this period, I was reading Kőnig’s classical book on the theory of graphs
and realized that the matching problem for a bipartite graph on two sets of n

vertices was exactly the same as an n by n assignment problem with all aij = 0
or 1. More significantly, Kőnig had given a combinatorial algorithm (based on
augmenting paths) that produces optimal solutions to the matching problem and
its combinatorial (or linear programming) dual. In one of the several formulations
given by Kőnig (p. 240, Theorem D), given an n by n matrix A = (aij) with all
aij = 0 or 1, the maximum number of 1’s that can be chosen with no two in the
same line (horizontal row or vertical column) is equal to the minimum number
of lines that contain all of the 1’s. Moreover, the algorithm seemed to be ‘good’
in a sense that will be made precise later. The problem then was: how could the
general assignment problem be reduced to the 0-1 special case?
Reading Kőnig’s book more carefully, I was struck by the following footnote (p.
238, footnote 2): “... Eine Verallgemeinerung dieser Sätze gab Egerváry, Ma-
trixok kombinatorius tulajdonságairól (Über kombinatorische Eigenschaften von
Matrizen), Matematikai és Fizikai Lapok, 38, 1931, S. 16-28 (ungarisch mit einem
deutschen Auszug) ...” This indicated that the key to the problem might be in
Egerváry’s paper. When I returned to Bryn Mawr College in the fall, I obtained
a copy of the paper together with a large Hungarian dictionary and grammar
from the Haverford College library. I then spent two weeks learning Hungarian
and translated the paper [1]. As I had suspected, the paper contained a method
by which a general assignment problem could be reduced to a finite number of
0-1 assignment problems.
Using Egerváry’s reduction and Kőnig’s maximum matching algorithm, in the fall
of 1953 I solved several 12 by 12 assignment problems (with 3-digit integers as
data) by hand. Each of these examples took under two hours to solve and I was
convinced that the combined algorithm was ‘good’. This must have been one of
the last times when pencil and paper could beat the largest and fastest electronic
computer in the world.

(Reference [1] is the English translation of the paper of Egerváry [1931].)
The method described by Kuhn is a sharpening of the method of Egerváry

sketched above, in two respects: (i) it gives an (augmenting path) method to find
either a perfect matching or sets I and J as required, and (ii) it improves the λi

and µj not by 1, but by the largest value possible.
Kuhn [1955b] described the method in terms of matrices — in terms of graphs

it amounts to the following algorithm for the maximum weighted perfect matching
problem in a complete bipartite graph G = (V, E), with weight function w : E →
Z+. Let U and W be the colour classes of G. Throughout there is a function
p : V → Z satisfying

(17.10) p(u) + p(v) ≥ w(uv) for each edge uv

and a matching M in the subgraph G′ = (V, E′) of G consisting of those edges
having equality in (17.10).

If M is not a perfect matching, orient each edge in M from W to U , and every
other edge of G′ from U to W , giving graph D′

M . Let UM and WM be the sets of
vertices in U and W missed by M .

Kuhn [1955b] described a depth-first search to find the set RM of vertices that
are reachable by a directed path in D′

M from UM . (In a subsequent paper, Kuhn
[1956] described a breadth-first search, starting at only one vertex in UM .)

Case 1: RM ∩ WM �= ∅. We have an M -augmenting path in G′, by which we
increase M .

Case 2: RM ∩ UM = ∅. Determine
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(17.11) µ := min{p(u) + p(v) − w(u, v) | u ∈ U ∩ RM , v ∈ W \ RM}.

This number is positive, since no edge of G′ connects U ∩RM and W \RM . Decrease
p(u) by µ if u ∈ U ∩ RM and increase p(v) by µ if v ∈ W ∩ RM . Then (17.10) is
maintained, while the sum

∑
v∈V p(v) decreases (as |U ∩ RM | > |W ∩ RM |).

After this we iterate, until we have a perfect matching M in G′, which is a
maximum-weight perfect matching.

Kuhn [1955b] contented himself with stating that the number of iterations is
finite (since the number of iterations where Case 2 applies is finite (as

∑
v p(v) is

nonnegative)).
It was observed by Munkres [1957] that the method runs in strongly polynomial

time, since, between any two occurrences of Case 1, the number of iterations where
Case 2 applies is at most n, as at each such iteration RM ∩ W increases (namely
by all vertices v that attain the minimum (17.11)).

So the number of iterations is at most n2 (since M can increase at most n times).
As the (depth- or breadth-first) search takes O(n2) this gives an O(n4) algorithm.

Munkres [1957] observed also that after an occurrence of Case 2 one can continue
the search of the previous iteration, since edges of G′ traversed in the search from
UM , remain edges of the new graph G′. Hence between any two occurrences of
Case 1, the depth-first search takes time O(n2). This still gives an O(n4) algorithm,
since calculating the minimum (17.11) takes O(n2) time. (Munkres claimed that his
algorithm takes O(n3) operations, but he takes ‘scanning a line’ (that is, considering
all edges incident with a given vertex) as one operation.)

(However, all Case 2-iterations can be combined to one iteration, by finding
distances from UM , with respect to the length function w in the oriented G′. It
amounts to including a Dijkstra-like labeling, yielding an O(n3) time bound. This
is the method we described in Section 17.2. This principle was noticed by Edmonds
and Karp [1970] and Tomizawa [1971].)

Ford and Fulkerson [1955,1957b] (cf. Ford and Fulkerson [1956c,1956d]) ex-
tended the Hungarian method to general transportation problems. They state in
Ford and Fulkerson [1956c,1956d]:

Large systems involving hundreds of equations in thousands of unknowns have
been successfully solved by hand using the simplex computation. The procedure of
this paper has been compared with the simplex method on a number of randomly
chosen problems and has been found to take roughly half the effort for small
problems. We believe that as the size of the problem increases, the advantages of
the present method become even more marked.

In a footnote, the authors add as to the assignment problem:

The largest example tried was a 20 × 20 optimal assignment problem. For this
example, the simplex method required well over an hour, the present method
about thirty minutes of hand computation.



Chapter 18

Linear programming methods
and the bipartite matching

polytope

The weighted matching problem for bipartite graphs discussed in the previ-
ous chapter is related to the ‘matching polytope’ and the ‘perfect matching
polytope’, and can be handled with linear programming methods by the
total unimodularity of the incidence matrix of a bipartite graph.
In this chapter, graphs can be assumed to be simple.

18.1. The matching and the perfect matching polytope

Let G = (V, E) be a graph. The perfect matching polytope Pperfect matching(G)
of G is defined as the convex hull of the incidence vectors of perfect matchings
in G. So Pperfect matching(G) is a polytope in RE .

The perfect matching polytope is a polyhedron, and hence can be de-
scribed by linear inequalities. The following are clearly valid inequalities:

(18.1) (i) xe ≥ 0 for each edge e,
(ii) x(δ(v)) = 1 for each vertex v.

These inequalities are generally not enough (for instance, not for K3). How-
ever, as Birkhoff [1946] showed, for bipartite graphs they are enough:

Theorem 18.1. If G is bipartite, the perfect matching polytope of G is de-
termined by (18.1).

Proof. Let x be a vertex of the polytope determined by (18.1). Let F be the
set of edges e with xe > 0. Suppose that F contains a circuit C. As C has
even length, EC = M ∪ N for two disjoint matchings M and N . Then for ε
close enough to 0, both x + ε(χM − χN ) and x − ε(χM − χN ) satisfy (18.1),
contradicting the fact that x is a vertex of the polytope. So (V, F ) is a forest,
and hence by (18.1), F is a perfect matching.
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Figure 18.1

The implication cannot be reversed, as is shown by the graph in Figure
18.1.

Theorem 18.1 was shown by Birkhoff in the terminology of doubly stochas-
tic matrices. A matrix A is called doubly stochastic if A is nonnegative and
each row sum and each column sum equals 1. A permutation matrix is an
integer doubly stochastic matrix (so it is {0, 1}-valued, and has precisely one
1 in each row and in each column). Then:

Corollary 18.1a (Birkhoff’s theorem). Each doubly stochastic matrix is a
convex combination of permutation matrices.

Proof. Directly from Theorem 18.1, by taking G = Kn,n.

Theorem 18.1 also implies a characterization of the matching polytope
for bipartite graphs. For any graph G = (V, E), the matching polytope
Pmatching(G) of G is the convex hull of the incidence vectors of matchings
in G. So again it is a polytope in RE . The following are valid inequalities for
the matching polytope:

(18.2) (i) xe ≥ 0 for each edge e,
(ii) x(δ(v)) ≤ 1 for each vertex v.

Then:

Corollary 18.1b. The matching polytope of G is determined by (18.2) if and
only if G is bipartite.

Proof. To see necessity, suppose that G is not bipartite, and let C be an odd
circuit in G. Define xe := 1

2 if e ∈ C and xe := 0 otherwise. Then x satisfies
(18.2) but does not belong to the matching polytope of G.

To see sufficiency, let G be bipartite and let x satisfy (18.2). Let G′ and
x′ be a copy of G and x, and add edges vv′, where v′ is the copy of v ∈ V .
Define y(vv′) := 1 − x(δ(v)). Then x, x′, y satisfy (18.1) with respect to
the new graph, and hence by Theorem 18.1, it is a convex combination of
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incidence vectors of perfect matchings in the new graph. Hence x is a convex
combination of incidence vectors of matchings in G.

Notes. Birkhoff derived Corollary 18.1a from Hall’s marriage theorem (Theo-
rem 22.1), which is equivalent to Kőnig’s matching theorem. (Also Dulmage and
Halperin [1955] derived Birkhoff’s theorem from Kőnig’s matching theorem.) Other
proofs were given by von Neumann [1951,1953], Dantzig [1952], Hoffman and
Wielandt [1953], Koopmans and Beckmann [1955,1957], Hammersley and Mauldon
[1956] (a polyhedral proof based on total unimodularity), Tompkins [1956], Mirsky
[1958], and Vogel [1961]. A survey was given by Mirsky [1962]. More can be found
in Johnson, Dulmage, and Mendelsohn [1960], Nishi [1979], and Brualdi [1982].

18.2. Totally unimodular matrices from bipartite graphs

In this section we show that the results on matchings discussed above can
also be derived from linear programming duality with total unimodularity
(Hoffman [1956b]).

Let A be the V × E incidence matrix of a graph G = (V, E). The matrix
A generally is not totally unimodular. E.g., if G is the complete graph K3 on
three vertices, then the determinant of A is equal to +2 or −2.

However, the following can be proved (necessity can also be derived di-
rectly from the total unimodularity of the incidence matrix of a directed
graph (Theorem 13.9) — we give a direct proof):

Theorem 18.2. A graph G = (V, E) is bipartite if and only if its incidence
matrix A is totally unimodular.

Proof. Sufficiency. Assume that A is totally unimodular and G is not bipar-
tite. Then G has a circuit of odd length, t say. The submatrix of A induced
by the vertices and edges in C is a t × t matrix with exactly two ones in
each row and each column. As t is odd, the determinant of this matrix is ±2,
contradicting the total unimodularity of A.

Necessity. Let G be bipartite. We show that A is totally unimodular. Let
B be a square submatrix of A, of order t × t say. We show that detB equals
0 or ±1 by induction on t. If t = 1, the statement is trivial. So let t > 1. We
distinguish three cases.

Case 1: B has a column with only 0’s. Then detB=0.
Case 2: B has a column with exactly one 1. In that case we can write

(possibly after permuting rows or columns):

(18.3) B =

(
1 bT

0 B′

)
,

for some matrix B′ and vector b, where 0 denotes the all-zero vector in Rt−1.
By the induction hypothesis, detB′ ∈ {0,±1}. Hence, by (18.3), detB ∈
{0,±1}.
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Case 3. Each column of B contains exactly two 1’s. Then, since G is
bipartite, we can write (possibly after permuting rows):

(18.4) B =

(
B′

B′′

)
,

in such a way that each column of B′ contains exactly one 1 and each column
of B′′ contains exactly one 1. So adding up all rows in B′ gives the all-one
vector, and also adding up all rows in B′′ gives the all-one vector. The rows
of B therefore are linearly dependent, and hence detB=0.

18.3. Consequences of total unimodularity

Let G = (V, E) be a bipartite graph and let A be its V ×E incidence matrix.
Consider Kőnig’s matching theorem (Theorem 16.2): the maximum size of a
matching in G is equal to the minimum size of a vertex cover in G. This can
be derived from the total unimodularity of A as follows. By Corollary 5.20a,
both optima in the LP-duality equation

(18.5) max{1Tx | x ≥ 0, Ax ≤ 1} = min{yT1 | y ≥ 0, yTA ≥ 1T}
have integer optimum solutions x∗ and y∗. Now x∗ necessarily is the incidence
vector of a matching and y∗ is the incidence vector of a vertex cover. So we
have Kőnig’s matching theorem.

One can also derive the weighted version of Kőnig’s matching theorem,
Egerváry’s theorem (Theorem 17.1): for any weight function w : E → Z+,
the maximum weight of a matching in G is equal to the minimum value of∑

v∈V yv, where y ranges over all y : V → Z+ with yu + yv ≥ we for each
edge e = uv of G. To derive this, consider the LP-duality equation

(18.6) max{wTx | x ≥ 0, Ax ≤ 1} = min{yT1 | y ≥ 0, yTA ≥ wT}.

By the total unimodularity of A, these optima are attained by integer x∗ and
y∗, and we have the theorem.

The min-max relation for minimum-weight perfect matching (Theorem
17.5) follows similarly.

One can also derive the characterizations of the matching polytope and
perfect matching polytope of a bipartite graph (Theorem 18.1 and Corollary
18.1b) from the total unimodularity of the incidence matrix of a bipartite
graph. This amounts to the fact that the polyhedra

(18.7) {x | x ≥ 0, Ax ≤ 1}
and

(18.8) {x | x ≥ 0, Ax = 1}
are integer polyhedra, by the total unimodularity of A.
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18.4. The vertex cover polytope

One can similarly derive, from the total unimodularity, a description of the
vertex cover polytope of a bipartite graph. The vertex cover polytope of a
graph G is the convex hull of the incidence vectors of vertex covers. It is a
polytope in RV .

For bipartite graphs, it is determined by:

(18.9) (i) 0 ≤ yv ≤ 1 for each v ∈ V ,
(ii) yu + yv ≥ 1 for each e = uv ∈ E.

In fact, this characterizes bipartiteness:

Theorem 18.3. A graph G is bipartite if and only if the vertex cover polytope
of G is determined by (18.9).

Proof. Necessity follows from the total unimodularity of the incidence matrix
of A (Theorem 18.2). Sufficiency can be seen as follows. Suppose that G
contains an odd circuit C. Define yv := 1

2 for each v ∈ V . Then y satisfies
(18.9) but does not belong to the vertex cover polytope, as each vertex cover
contains more than 1

2 |V C| vertices in C.

The total unimodularity of A also yields descriptions of the edge cover
and stable set polytopes of a bipartite graph — see Section 19.5.

18.5. Further results and notes

18.5a. Derivation of Kőnig’s matching theorem from the matching

polytope

We note here that Kőnig’s matching theorem quite easily follows from description
(18.2) of the matching polytope of a bipartite graph.

Since the matching polytope of a bipartite graph G = (V, E) is determined by
(18.2), the maximum size of a matching in G is equal to the minimum value of∑

v∈V yv where yv ≥ 0 (v ∈ V ) such that yu + yv ≤ 1 for each edge e = uv.
Now consider any vertex u with yu > 0. Then by complementary slackness,

each maximum-size matching covers u. That is, we have (16.5), which (as we saw)
directly implies Kőnig’s matching theorem, by applying induction to G − u.

18.5b. Dual, primal-dual, primal?

The Hungarian method is considered as the first so-called ‘primal-dual’ method. It
maintains a feasible dual solution, and tries to build up a feasible primal solution
fulfilling the complementary slackness conditions. We will show that in a certain
sense the method can also be considered as just dual or just primal.

We consider the problem of finding a minimum-weight perfect matching in a
bipartite graph G = (V, E), with weight function w : E → Q+. Let U and W be
the colour classes of G, with |U | = |W |. The corresponding LP-duality equation is
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(18.10) min{wTx | x ≥ 0, Ax = 1} = max{yT
1 | yTA ≤ wT},

where A is the V × E incidence matrix of G.
To describe the Hungarian method as a purely dual method one can start with

y = 0. So y satisfies

(18.11) yu + yv ≤ we

for each edge e = uv of G. Consider the subset

(18.12) F := {e = uv ∈ E | yu + yv = we}
of E. If F contains a perfect matching M , then M is a minimum-weight perfect
matching, by complementary slackness applied to (18.10). If F contains no perfect
matching, by Frobenius’ theorem (Corollary 16.2a) there exist U ′ ⊆ U and W ′ ⊆ W
such that each edge in F intersecting U ′ also intersects W ′ and such that |W ′| <
|U ′|. Now we can reset

(18.13) yv :=

{
yv + α if v ∈ U ′,
yv − α if v ∈ W ′,

choosing α as large as possible while maintaining (18.11). That is, α is equal to the
minimum of we − yu − yv over all edges e = uv ∈ E with u ∈ U ′ and v �∈ W ′. So
α > 0, and hence yT1 increases. After that we iterate.

Described in this way it is a purely dual method, since only in the last iteration
we see a primal solution. In each iteration we test the existence of a perfect matching
from scratch. We could, however, remember our work of the previous iteration in
our search for a perfect matching in F .

To this end, we keep at any iteration a maximum-size matching M in F . Let
DM be the directed graph obtained from (V, F ) by orienting each edge in M from
W to U and each edge in F \M from U to W . Let UM and WM be the set of vertices
in U and W , respectively, missed by M . We also keep, throughout the iterations,
the set RM of vertices reachable in DM from UM .

Then we can take U ′ := U ∩ RM and W ′ := W ∩ RM . Resetting (18.13) of y
increases RM , since at least one edge connecting U ′ and W \ W ′ is added to F ,
while all edges in F that were contained in U ′ ∪ W ′ remain in F . So after at most
n iterations, RM contains a vertex in WM , in which case we can augment M .

Described in this way it is a primal-dual method. Throughout the iterations we
keep a feasible dual solution y and a partially feasible primal solution M .

We could however combine all updates of y, between any two augmentations of
M , by taking le := we − yu − yv as a length function, and by determining, for each
vertex v, the distance d(v) from v to WM in DM with respect to length function l.
Resetting

(18.14) yv :=

{
yv + d(v) if v ∈ U ,
yv − d(v) if v ∈ W ,

maintains (18.10), while the new F contains an M -augmenting path (namely, any
shortest UM − WM path in DM ). Note that this updating of y is the same as the
aggregated updating of y (in (18.13)) between any two matching augmentations.

This still is a primal-dual method, since we keep sequences of vectors y and
matchings M . It enables us to apply Dijkstra’s method to find the distances and
the shortest path, since the length function l is nonnegative. We can however do
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without y, at the cost of an increase in the complexity, since we then must use
the Bellman-Ford method (like in our description in Section 17.2). We can use this
method since DM has no negative-length directed circuit, because M is an extreme
matching (that is, a matching of minimum weight among all matchings M ′ with
|M ′| = |M |).

Indeed, we can define the length function l by le := we if e ∈ E \ M and
le := −we if e ∈ M . Then DM has no negative-length directed circuits. Any shortest
UM − WM path is an M -augmenting path yielding an extreme matching M ′ with
|M ′| = |M | + 1.

Described in this way we have a purely primal method, since we keep no vector
y ∈ QV anymore.

18.5c. Adjacency and diameter of the matching polytope

Clearly, for each perfect matching M , the incidence vector χM is a vertex of the
perfect matching polytope. Adjacency is also easily characterized (Balinski and
Russakoff [1974]):

Theorem 18.4. Let M and N be perfect matchings in a graph G = (V, E). Then
χM and χN are adjacent vertices of the perfect matching polytope if and only if
M△N is a circuit.

Proof. To see necessity, let χM and χN be adjacent. Then M△N is the vertex-
disjoint union of circuits C1, . . . , Ck. If k = 1 we are done so assume k ≥ 2. Let
M ′ := M△C1 and N ′ := N△C1. Then 1

2
(χM + χN ) = 1

2
(χM′

+ χN′

). This contra-
dicts the adjacency of χM and χN .

To see sufficiency, define a weight function w : E → R by we := 0 if e ∈ M ∪ N
and we := 1 otherwise. Then M and N are the only two perfect matchings in G of
minimum weight. Hence χM and χN are adjacent.

This gives for the diameter:

Corollary 18.4a. The perfect matching polytope of a graph G = (V, E) has diam-
eter at most 1

2
|V |. If G is simple, the diameter is at most 1

4
|V |.

Proof. Let M and N be perfect matchings of G. Let M△N be the vertex-disjoint
union of circuits C1, . . . , Ck. Define Mi := M△(C1 ∪ · · · ∪ Ci), for i = 0, . . . , k.
Then M = M0, N = Mk, and Mi and Mi+1 give adjacent vertices of the perfect
matching polytope of G (by Theorem 18.4). As each Ci has at least two vertices,
we have k ≤ 1

2
|V |. If G is simple, each Ci has at least four vertices, and hence

k ≤ 1
4
|V |.

For complete bipartite graphs, this bound can be strengthened. The assignment
polytope is the perfect matching polytope of a complete bipartite graph Kn,n. So in
matrix terms, it is the polytope of the n × n doubly stochastic matrices. Balinski
and Russakoff [1974] showed:

Theorem 18.5. The diameter of the assignment polytope is 2 (if n ≥ 4).
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Proof. Let U and W be the two colour classes of Kn,n. Let M and N be two
distinct perfect matchings in Kn,n. Assume that M �= N and that M and N are
not adjacent. Let M△N be the vertex-disjoint union of the circuits C1, . . . , Ck.
As M and N are not adjacent, k ≥ 2. For each i = 1, . . . , k, choose an edge
uiwi ∈ Ci ∩ M , with ui ∈ U and wi ∈ W . Let C be the circuit

(18.15) C := {u1w1, u2w1, u2w2, u3w2, . . . , unwn, u1wn}
and let L := M△C. As M△L = C, L is a perfect matching adjacent to M . Now L
is adjacent also to N as well, since N△L = (C1 ∪ · · · ∪ Ck)△C, which is a circuit.

Naddef [1982] characterized the dimension of the perfect matching polytope of
a bipartite graph (cf. Lovász and Plummer [1986]):

Theorem 18.6. Let G = (V, E) be a bipartite graph with at least one perfect
matching. Then the dimension of the perfect matching polytope of G is equal to
|E0|−|V |+k, where E0 is the set of edges contained in at least one perfect matching
and where k is the number of components of the graph (V, E0).

Proof. It is easy to see that we may assume that E0 = E and that G is connected
and has at least four vertices. Let T be the edge set of a spanning tree in G. So
|E\T | = |E|−|V |+1. Now for any x ∈ Pperfect matching(G), the values xe with e ∈ T
are determined by the values xe with e ∈ E \T . Hence dim(Pperfect matching(G)) ≤
|E \ T | = |E| − |V | + 1.

To see the reverse inequality, choose a vector x in the relative interior of
Pperfect matching(G). So 0 < xe < 1 for each e ∈ E (as each edge is contained
in some perfect matching and is missed by some perfect matching). Then any small
enough change of xe for any e ∈ E \ T can be corrected by changing values of x(e′)
with e′ ∈ T . Therefore dim(Pperfect matching(G)) ≥ |E \ T |.

Rispoli [1992] showed that the ‘monotonic diameter’ (that is, the maximum
length of a shortest path on the polytope where a given objective function is mono-
tonically increasing) of the assignment polytope is equal to ⌊n

2
⌋. More can be found

in Balinski and Russakoff [1974], Padberg and Rao [1974], Brualdi and Gibson
[1976,1977a,1977b,1977c], Roohy-Laleh [1980], Hung [1983], Balinski [1985], and
Goldfarb [1985].

18.5d. The perfect matching space of a bipartite graph

The perfect matching space of a graph G = (V, E) is the linear hull of the incidence
vectors of perfect matchings:

(18.16) Sperfect matching(G) := lin.hull{χM | M perfect matching in G}.

(Here lin.hull denotes linear hull.)
Note that Theorem 18.6 directly implies the dimension of the perfect matching

space of a bipartite graph:

Corollary 18.6a. Let G = (V, E) be a bipartite graph with at least one perfect
matching. Then the dimension of the perfect matching space of G is equal to |E0|−
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|V |+k+1, where E0 is the set of edges contained in at least one of perfect matching,
and where k is the number of components of the graph (V, E0).

Proof. The dimension of the perfect matching space is 1 more than the dimension
of the perfect matching polytope (as 0 does not belong to the affine hull of the
incidence vectors of perfect matchings). So the Corollary follows from Theorem
18.6.

With the help of the description of the perfect matching polytope we can simi-
larly describe the perfect matching space in terms of equations:

Theorem 18.7. The perfect matching space of a bipartite graph G = (V, E) is equal
to the set of vectors x ∈ RE such that

(18.17) (i) xe = 0 if e is contained in no perfect matching,
(ii) x(δ(u)) = x(δ(v)) for all u, v ∈ V .

Proof. (18.17) clearly is a necessary condition for each vector x in the perfect
matching space. To see sufficiency, let x ∈ RE satisfy (18.17). We can assume that
G has at least one perfect matching.

By adding sufficiently many incidence vectors of perfect matchings to x, we can
achieve that xe ≥ 0 for all e ∈ E. By scaling we can achieve that x(δ(v)) = 1 for
each v ∈ V . Then x belongs to the perfect matching polytope of G, and hence to
the perfect matching space.

This theorem has as direct consequence a characterization of the linear space
orthogonal to the perfect matching space:

Corollary 18.7a. Let G = (V, E) be a bipartite graph and let w ∈ RE. Then
w(M) = 0 for each perfect matching M if and only if there exists a vector b ∈ RV

with b(V ) = 0 such that we = bu + bv for each edge e = uv contained in at least one
perfect matching.

Proof. Directly by orthogonality from Theorem 18.7.

18.5e. Up and down hull of the perfect matching polytope

Fulkerson [1970b] studied the up hull of the perfect matching polytope of a graph
G = (V, E), that is,

(18.18) P ↑

perfect matching(G) = Pperfect matching(G) + RE
+.

Any x in this polyhedron satisfies:

(18.19) (i) xe ≥ 0 for each e ∈ E,
(ii) x(E[S]) ≥ |S| − 1

2
|V | for each S ⊆ V .

Here E[S] denotes the set of edges spanned by S. Inequality (18.19)(ii) follows from
the fact that any perfect matching M has at most |V \ S| edges not contained in
S, and hence at least 1

2
|V | − |V \ S| = |S| − 1

2
|V | edges contained in S.
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Fulkerson [1970b] showed that for bipartite graphs these inequalities are enough
to characterize polyhedron (18.18):

Theorem 18.8. If G is bipartite, then P ↑

perfect matching(G) is determined by

(18.19).

Proof. Let U and W be the colour classes of G. Let x ∈ RE satisfy (18.19). Note
that this implies that |U | = |W | = 1

2
|V |, for if (say) |U | > 1

2
|V |, then (18.19)

implies that 0 = x(E[U ]) ≥ |U | − 1
2
|V | > 0, a contradiction.

We must show that there exists a vector y such that 0 ≤ y ≤ x and such that
y(δ(v)) = 1 for each v ∈ V . This can be shown quite directly with flow theory, for
instance with Gale’s theorem (Corollary 11.2g): Make a directed graph by orienting
each edge from U to W . Then by Gale’s theorem (taking b(v) := −1 if v ∈ U and
b(v) := 1 if v ∈ W ), it suffices to show that |W ′| − |U ′| ≤ x(δin(U ′ ∪ W ′)) for each
U ′ ⊆ U and W ′ ⊆ W . Let S := (U \ U ′) ∪ W ′. Then δin(U ′ ∪ W ′) = E[S] and
|W ′| − |U ′| = |S| − 1

2
|V |, giving the required inequality.

(Fulkerson [1970b] derived Theorem 18.8 from an earlier result in Fulkerson [1964b],
which is Corollary 20.9a below. Related results were given by O’Neil [1971,1975],
Cruse [1975], and Houck and Pittenger [1979].)

Note that the theorem gives also a characterization of the convex hull of the
incidence vectors of edge sets containing a perfect matching in a bipartite graph:

Corollary 18.8a. Let G = (V, E) be a bipartite graph. Then the convex hull of
the incidence vectors of edge sets containing a perfect matching is determined by
(18.19) together with xe ≤ 1 for each e ∈ E.

Proof. Directly from Theorem 18.8.

One can similarly characterize the convex hull of the incidence vectors of subsets
of perfect matchings in a bipartite graph. Consider:

(18.20) (i) xe ≥ 0 for each e ∈ E,
(ii) x(E[S]) ≤ |S| − 1

2
|V | for each vertex cover S.

Theorem 18.9. The convex hull of the incidence vectors of subsets of perfect match-
ings in a bipartite graph is determined by (18.20).

Proof. Similar to the proof of Theorem 18.8.

(Alternative proofs of Theorems 18.8 and 18.9 were given by Cunningham and
Green-Krótki [1986].)

See Section 20.6a for more results on P ↑

perfect matching(G).

18.5f. Matchings of given size

Let G = (V, E) be a graph and let k, l ∈ Z+ with k ≤ l. It is easy to derive from the
description of the matching polytope, a description of the convex hull of incidence
vectors of matchings M satisfying k ≤ |M | ≤ l. To this end we show:
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Theorem 18.10. Let G = (V, E) be an undirected graph and let x ∈ Pmatching(G).
Then x is a convex combination of incidence vectors of matchings M satisfying

(18.21) ⌊1Tx⌋ ≤ |M | ≤ ⌈1Tx⌉.

Proof. Write x =
∑

M λMχM , where M ranges over all matchings in G and where
λM ≥ 0 with

∑
M λM = 1. Assume that we have chosen the λM such that

(18.22)
∑

M

λM |M |2

is as small as possible. We show that if M and N are matchings with λM > 0 and
λN > 0, then

∣∣|M | − |N |
∣∣ ≤ 1. This implies the theorem.

Suppose that |M | ≥ |N | + 2. Let P be a component of M ∪ N having more

elements in M than in N . Let M ′ := M△EP and N ′ := N△EP . Then χM′

+χN′

=
χM + χN and |M ′|2 + |N ′|2 < |M |2 + |N |2. So decreasing λM and λN by ε, and
increasing λM′ and λN′ by ε, where ε := min{λM , λN}, would decrease sum (18.22),
contradicting our assumption.

This implies that certain slices of the matching polytope are again integer poly-
topes:

Corollary 18.10a. Let G = (V, E) be an undirected graph and let k, l ∈ Z+ with
k ≤ l. Then the convex hull of the incidence vectors of matchings M satisfying
k ≤ |M | ≤ l is equal to the set of those vectors x in the matching polytope of G
satisfying k ≤ 1Tx ≤ l.

Proof. Directly from Theorem 18.10.

A special case is the following result of Mendelsohn and Dulmage [1958b]. Call
a matrix a subpermutation matrix if it is a {0, 1}-valued matrix with at most one 1
in each row and in each column. Then:

Corollary 18.10b. A matrix M belongs to the convex hull of the subpermutation
matrices of rank r if and only if M is nonnegative, each row and column sum is at
most 1, and the sum of the entries in M is equal to r.

Proof. Directly from Theorem 18.10.

18.5g. Stable matchings

Let G = (V, E) be a graph and let for each v ∈ V , ≤v be a total order on δ(v). Put
e � f if e and f have a vertex v in common with e ≤v f . Call a set M of edges
stable if for each e ∈ E there exists an f ∈ M with e � f .

In general, stable matchings need not exist (e.g., generally not for K3). However,
Gale and Shapley [1962] showed that if G is bipartite, they do exist:

Theorem 18.11 (Gale-Shapley theorem). If G is bipartite, then there exists a
stable matching.
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Proof. Let U and W be the colour classes of G. For each edge e = uw with u ∈ U
and w ∈ W , let φ(e) be the height of e in (δ(w), ≤w). (The height of e is the
maximum size of a chain with maximum e.) Choose a matching M in G such that
for each edge e = uw of G, with u ∈ U and w ∈ W ,

(18.23) if f ≤u e for some f ∈ M , then e ≤w g for some g ∈ M ,

and such that
∑

e∈M φ(e) is as large as possible. (Such a matching exists, since
M = ∅ satisfies (18.23).) We show that M is stable.

Choose e = uw ∈ E with u ∈ U and w ∈ W and suppose that there is no
e′ ∈ M with e � e′. Choose e largest in ≤u with this property. Then by (18.23)
there is no f ∈ M with f ≤u e; and moreover, there is no f ∈ M with e ≤u f .
Hence u is missed by M .

Since also there is no g ∈ M with e ≤w g, we can remove any edge in M incident
with w and add e to M , so as to obtain a matching satisfying (18.23) with larger∑

e∈M φ(e), a contradiction.

This proof also gives a polynomial-time algorithm to find a stable matching34.
The following fact was shown by McVitie and Wilson [1970]:

Theorem 18.12. Each two stable matchings cover the same set of vertices.

Proof. Let M and N be two stable matchings, and suppose that there exists a
vertex v covered by M but not by N . Let P be the path component of M ∪ N
starting at v. Denote P = (v0, e1, v1, e2, . . . , ek, vk) with v = v0. As v0 is missed by
N , e1 <v1 e2. As M and N are stable, if ei−1 <vi−1 ei, then ei <vi ei+1 for each
i < k. So ek−1 <vk−1 ek. However, as vk is missed by M or N , ek <vk−1 ek−1. So

we have a contradiction.

In particular:

Corollary 18.12a. All stable matchings have the same size.

Proof. Directly from Theorem 18.12.

In order to find a maximum-weight stable matching, we consider the stable
matching polytope Pstable matching(G) of G, which is defined as the convex hull of
the incidence vectors of the stable matchings. Vande Vate [1989] (also Rothblum
[1992]) characterized the inequalities determining the stable matching polytope if
G is bipartite. In that case it suffices to add the following inequalities to the system
defining the matching polytope:

(18.24)
∑

f�e

x(f) ≥ 1 for each e ∈ E.

Theorem 18.13. If G is bipartite, then x ∈ Pstable matching(G) if and only if
x ∈ Pmatching(G) and x satisfies (18.24).

34 It was noted by Roth [1984] that this algorithm is in fact in use in practice since 1951
in the U.S., to match hospitals and medical students (cf. Roth and Sotomayor [1990]).
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Proof. Necessity is easy, since the incidence vector of any stable matching satis-
fies (18.24). To see sufficiency, let x be a vertex of the polytope of all vectors in
Pmatching(G) satisfying (18.24). Define E+ to be the set of edges e with xe > 0,
and V + the set of vertices covered by E+. For each v ∈ V +, let ev be the maximum
element of (δ(v) ∩ E+, ≤v).

We first show that for each v ∈ V +, with say ev = vv′,

(18.25) ev is the minimum element in (δ(v′) ∩ E+, ≤v′) and that x(δ(v′)) = 1.

Indeed, (18.24) implies (writing e := ev):

(18.26) 1 ≤
∑

f�e

x(f) =
∑

f≥v′ e

x(f) = x(δ(v′)) −
∑

f<v′ e

x(f) ≤ 1 −
∑

f<v′ e

x(f).

Hence we have equality throughout in (18.26). This implies that x(f) = 0 for each
f <v′ e and that x(δ(v′)) = 1. This proves (18.25).

It follows that for each v′ ∈ V + there is exactly one v ∈ V + with ev = vv′.
Now let U and W be the colour classes of G. The sets M := {ev | v ∈ U ∩ V +}
and N := {ev | v ∈ W ∩ V +} are matchings covering V +. Consider the vector
x′ = x + εχM − εχN , with ε close enough to 0 (positive or negative). It is easy to
see that x′ again belongs to the matching polytope. To see that x′ satisfies (18.24)
for ε close enough to 0, let e be an edge of G attaining equality in (18.24). We show
that e � f for exactly one f ∈ M . If e ∈ M , this is trivial, so assume that e �∈ M .
Let e = uw with u ∈ U and w ∈ W . Then

(18.27) there is an f ∈ M with e <u f ⇐⇒
∑

f>ue

x(f) > 0 ⇐⇒
∑

g≥we

x(g) < 1

⇐⇒ there is no g ∈ M with e <w g.

Similarly, e � f for exactly one f ∈ N . Concluding,

(18.28)
∑

f�e

x′(f) =
∑

f�e

x(f) = 1

if ε is close enough to 0. So x′ again satisfies (18.24). Since x is a vertex, we have
χM = χN , that is, M = N . So E+ = M , and hence x = χM , and therefore x is
{0, 1}-valued.

As for algorithms, this theorem directly implies:

Corollary 18.13a. A maximum-weight stable matching can be found in polynomial
time.

Proof. This follows from the fact that Theorem 18.13 transforms the problem to
a linear programming problem.

For surveys and further results, see Wilson [1972a], Knuth [1976], Itoga [1978,
1981], Roth [1982], Gale and Sotomayor [1985], Irving [1985], Gusfield [1987b,1988],
Irving, Leather, and Gusfield [1987], Blair [1988], Gusfield and Irving [1989], Ng
[1989], Knuth, Motwani, and Pittel [1990a,1990b], Ng and Hirschberg [1990], Ronn
[1990], Roth and Sotomayor [1990], Khuller, Mitchell, and Vazirani [1991,1994],
Tan [1991], Feder [1992], Roth, Rothblum, and Vande Vate [1993], Abeledo and
Rothblum [1994], Feder, Megiddo, and Plotkin [1994,2000], Subramanian [1994],
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Abeledo and Blum [1996], Balinski and Ratier [1997], Teo and Sethuraman [1997,
1998], Teo, Sethuraman, and Tan [1999], Fleiner [2001a], and Aharoni and Fleiner
[2002].

18.5h. Further notes

Perfect and Mirsky [1965] characterized which patterns can occur as the support
of a doubly stochastic matrix. It is equivalent to characterizing matching-covered
bipartite graphs (that is, bipartite graphs in which each edge belongs to at least
one perfect matching).

Frank and Karzanov [1992] gave a polynomial-time combinatorial algorithm to
determine the Euclidean distance of the perfect matching polytope of a bipartite
graph to the origin.



Chapter 19

Bipartite edge cover and stable
set

While matchings cover each vertex at most once, edge covers are required
to cover each vertex at least once. Most edge cover results can be proved
similarly to matching results, but in fact, they often can be reduced to
matching results, by a method of Gallai.
In this chapter, graphs can be assumed to be simple.

19.1. Matchings, edge covers, and Gallai’s theorem

Let G = (V, E) be a graph. An edge cover is a subset F of E such that for
each vertex v there exists an edge e ∈ F satisfying v ∈ e. Note that an edge
cover can exist only if G has no isolated vertices.

A stable set is a subset S of V such that no two vertices in S are adjacent.
So for any U ⊆ V :

(19.1) S is a stable set ⇐⇒ V \ S is a vertex cover.

Define:

(19.2) α(G) := the maximum size of a stable set in G,
ρ(G) := the minimum size of an edge cover in G.

These numbers are called the stable set number and the edge cover number,
respectively.

It is not difficult to show that:

(19.3) α(G) ≤ ρ(G).

The triangle K3 shows that strict inequality is possible. Recall that for the
matching number ν(G) and the vertex cover number τ(G) we have

(19.4) ν(G) ≤ τ(G).

In fact, equality in one of the relations (19.3) and (19.4) implies equality in
the other, as Gallai [1959a] proved the following35:

35 Gallai mentioned that he had formulated and proved this theorem in 1932 (cf. also
Erdős [1982]), and that to his knowledge also D. Kőnig had known this theorem.
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Theorem 19.1 (Gallai’s theorem). For any graph G = (V, E) without iso-
lated vertices one has

(19.5) α(G) + τ(G) = |V | = ν(G) + ρ(G).

Proof. The first equality follows directly from (19.1).
To see the second equality, let M be a maximum-size matching and let U

be the set of vertices missed by M . For each vertex v ∈ U , choose an edge ev

containing v. Then F = M ∪ {ev | v ∈ U} is an edge cover of size

(19.6) |F | = |M | + |U | = |M | + (|V | − 2|M |) = |V | − |M | = |V | − ν(G).

So ρ(G) ≤ |V | − ν(G).
To see the reverse inequality, let F be a minimum-size edge cover. Let M

be an inclusionwise maximal matching contained in F . Let U be the set of
vertices missed by M . Since U spans no edge in F , we have |U | ≤ |F \ M |.
Hence |V | − 2|M | = |U | ≤ |F \ M | = |F | − |M |. This implies ν(G) ≥ |M | ≥
|V | − |F | = |V | − ρ(G).

This proof method implies the following theorem (observed by Gallai
[1959a] and Norman and Rabin [1959]):

Theorem 19.2. Let G = (V, E) be a graph without isolated vertices. Then
every maximum-size matching is contained in a minimum-size edge cover,
and every minimum-size edge cover contains a maximum-size matching.

Proof. See above.

Moreover, there is the following complexity result, observed by Norman
and Rabin [1959]:

Theorem 19.3. Let G = (V, E) be an undirected graph with n vertices and m
edges. If we have a maximum-size matching in G, we can find a minimum-size
edge cover in time O(m), and vice versa.

Proof. See the proof of Gallai’s theorem (Theorem 19.1).

This gives:

Corollary 19.3a. A minimum-size edge cover and a maximum-size stable
set in a bipartite graph can be found in time O(n1/2m).

Proof. By Theorems 16.4 and 19.3 and Corollary 16.6a.

Short proof of Gallai’s theorem. For any partition Π of V into edges and
singletons, let f(Π) be the number of edges in Π. So f(Π)+ |Π| = |V |. Then ν(G)
is equal to the maximum of f(Π) over all such partitions, and ρ(G) is equal to the
minimum of |Π| over all such partitions. Hence ν(G) + ρ(G) = |V |.
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19.2. The Kőnig-Rado edge cover theorem

Combination of Theorems 19.1 and 16.2 yields the following theorem, which
Gallai [1958a,1958b] attributes to oral communication from D. Kőnig in 1932.
In a different but equivalent form it was stated by Rado [1933] — see Section
19.5a. (Hoffman [1956b] called it a ‘well-known theorem’.)

Theorem 19.4 (Kőnig-Rado edge cover theorem). For any bipartite graph
G = (V, E) without isolated vertices one has

(19.7) α(G) = ρ(G).

That is, the maximum size of a stable set in a bipartite graph is equal to the
minimum size of an edge cover.

Proof. Directly from Theorems 19.1 and 16.2, as α(G) = |V | − τ(G) =
|V | − ν(G) = ρ(G).

By representing a bipartite graph as a partially ordered set, the Kőnig-
Rado edge cover theorem can be derived also from Dilworth’s decomposition
theorem (Theorem 14.2).

19.3. Finding a minimum-weight edge cover

There is a straightforward reduction of the minimum-weight edge cover prob-
lem to the minimum-weight perfect matching problem. Indeed, let G = (V, E)
be a graph without isolated vertices, and let w : E → Q+. Let G′ = (V ′, E′)

be the graph obtained from G by adding a disjoint copy G̃ = (Ṽ , Ẽ) of G,
and adding for each vertex v of G an edge vṽ connecting v with its copy ṽ.
Let w′ be the weight function on E′ defined by:

(19.8) w′(e) := w′(ẽ) := w(e) for each e ∈ E (where ẽ is the copy of e);
w′(vṽ) := 2µ(v) for each v ∈ V , where µ(v) is the minimum
weight of the edges of G incident with v.

Then a minimum-weight perfect matching M in G′ yields a minimum-weight
edge cover F in G: replace any edge vṽ in M by an edge ev of minimum
weight of G incident with v, and delete all edges in M ∩ Ẽ. Then w(F ) =
1
2w′(M). Conversely, any edge cover F ′ of G gives by a reverse construction a
perfect matching M ′ in G′ with w′(M ′) ≤ 2w(F ′). Hence w(F ) = 1

2w′(M) ≤
1
2w′(M ′) ≤ w(F ′). So F is a minimum-weight edge cover in G.

Note that if G is bipartite, then also G′ is bipartite. Hence:

Corollary 19.4a. A minimum-weight edge cover in a bipartite graph can be
found in time O(n(m + n log n)).

Proof. From the above, using Theorem 17.3.
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19.4. Bipartite edge covers and total unimodularity

Similarly to Kőnig’s matching theorem, also the Kőnig-Rado edge cover theo-
rem (Theorem 19.4) can be derived from the total unimodularity of the V ×E
incidence matrix of a bipartite graph G = (V, E). This follows by considering
the LP-duality equation

(19.9) min{1Tx | x ≥ 0, Ax ≥ 1} = max{yT1 | y ≥ 0, yTA ≤ 1T}.

More generally, we can derive the analogue of Egerváry’s theorem:

Theorem 19.5. Let G = (V, E) be a bipartite graph and let w : E → R+

be a weight function on E. Then the minimum weight of an edge cover in
G is equal to the maximum value of y(V ), where y ranges over all functions
y : V → R+ with yu + yv ≤ we for each edge e = uv of G. If w is integer, we
can restrict y to be integer.

Proof. Again, let A be the V ×E incidence matrix of G. Then the statement
is equivalent to the statement that the minimum in

(19.10) min{wTx | x ≥ 0, Ax ≥ 1} = max{yT1 | y ≥ 0, yTA ≤ wT}
has an integer optimum solution x. This fact follows from the total unimod-
ularity of A. If w is integer, we can take also y integer.

The integer part of this theorem can be formulated as follows. For any
graph G = (V, E) and w ∈ ZE

+, a w-stable set is a function y ∈ ZV
+ with

yu + yv ≤ we for each edge e = uv. So if w = 1 and G has no isolated
vertices, w-stable sets coincide with the incidence vectors of stable sets.

The size of a vector y ∈ RV is equal to y(V ). Then:

Corollary 19.5a. Let G = (V, E) be a bipartite graph and let w : E → Z+

be a weight function on E. Then the minimum weight of an edge cover in G
is equal to the maximum size of a w-stable set.

Proof. Directly from Theorem 19.5.

19.5. The edge cover and stable set polytope

Like in Sections 18.3 and 18.4, the total unimodularity of the incidence matrix
of a bipartite graph yields descriptions of the edge cover and the stable set
polytope for bipartite graphs.

The edge cover polytope Pedge cover(G) of a graph is the convex hull of the
incidence vectors of the edge covers in G. For any graph, each vector x in
Pedge cover(G) satisfies:

(19.11) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(δ(v)) ≥ 1 for each v ∈ V .
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Theorem 19.6. If G is bipartite, the edge cover polytope is determined by
(19.11).

Proof. Directly from the total unimodularity of the constraint matrix in
(19.11).

This implication cannot be turned around, as is shown by the graph in
Figure 18.1.

The stable set polytope Pstable set(G) of a graph G = (V, E) is the convex
hull of the incidence vectors of the stable sets in G. For any graph G, each
vector x in Pstable set(G) satisfies:

(19.12) (i) 0 ≤ xv ≤ 1 for each v ∈ V ,
(ii) xu + xv ≤ 1 for each edge e = uv ∈ E.

Theorem 19.7. The stable set polytope is determined by (19.12) if and only
if G is bipartite.

Proof. Sufficiency follows from the total unimodularity of the incidence ma-
trix of a bipartite graph. Necessity follows from the fact that if C is an odd
circuit in G, then defining xv := 1

2 for each v ∈ V , we obtain a vector x
satisfying (19.12) but not belonging to the stable set polytope of G, since
any stable set intersects C in at most 1

2 |V C| − 1
2 vertices.

In fact, there is an easy direct proof of sufficiency in Theorem 19.7. Let x
satisfy (19.12) and let U and W be the colour classes of G. For any λ ∈ [0, 1],
define

(19.13) Sλ := {u ∈ U | xu > λ} ∪ {w ∈ W | xw > 1 − λ}.

Then Sλ is a stable set, and

(19.14) x =

∫ 1

0

χSλdλ.

This describes x as a convex combination of incidence vectors of stable sets.

19.5a. Some historical notes on bipartite edge covers

Gallai [1958a,1958b,1959a] wrote that the edge cover theorem (Theorem 19.4) was
orally communicated to him by Kőnig in 1932. In the latter paper, Gallai also
mentioned that he found Theorem 19.1 in 1932, and that, to his knowledge, also D.
Kőnig knew this theorem. Together with Theorem 16.2 of Kőnig [1931] it implies
Theorem 19.4.

The oldest written version of Theorem 19.4 seems to be the paper of Rado
[1933] entitled Bemerkungen zur Kombinatorik im Anschluß an Untersuchungen
von Herrn D. Kőnig36. The investigations referred to in the title are those of Kőnig
[1916] on matchings in regular bipartite graphs.

36 Remarks on combinatorics in connection to investigations of Mr D. Kőnig.
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Rado formulated the edge cover theorem in terms of partitions:

Es seien A1, A2, . . . , Am endlich viele nicht leere, paarweise elementenfremde
Mengen. Ebenso seien B1, B2, . . . , Bn endlich viele nicht leere, paarweise ele-
mentenfremde Mengen. Alle Mengen Aµ und Bν seien Teilmengen einer Menge
M. Unter dieser Annahme gilt: Dann und nur dann sind die Mengen
(26) A1, A2, . . . , Am, B1, B2, . . . , Bn

durch k Elemente von M zu repräsentieren, wenn es unter den Mengen (26)
keine k + 1 zu einander fremde Mengen gibt.37

The proof of Rado is based on a decomposition similar to that used by Frobenius
(see Section 16.2a). The equivalence with Theorem 19.4 follows with the construc-
tion described in Section 16.7e. (A theorem similar to Rado’s was published by
Kreweras [1946].)

37 Let A1, A2, . . . , Am be finitely many nonempty, pairwise disjoint sets. Similarly, let
B1, B2, . . . , Bn be finitely many nonempty, pairwise disjoint sets. All sets Aµ and Bν

are subsets of a set M. Under this condition the following holds: The sets
(26) A1, A2, . . . , Am, B1, B2, . . . , Bn

can be represented by k elements of M, if and only if there are no k + 1 disjoint sets
among the sets (26).
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Bipartite edge-colouring

Edge-colouring means partitioning the edge set into matchings. While for
general graphs, finding a minimum edge-colouring is NP-complete, another
fundamental theorem of Kőnig gives a min-max relation for bipartite edge-
colouring, and his proof method yields a polynomial-time algorithm. Also
the capacitated case and the ‘dual’ problem of partitioning the edge set
into edge covers are tractable for bipartite graphs.

20.1. Edge-colourings of bipartite graphs

For any graph G = (V, E), an edge-colouring or k-edge-colouring is a partition
Π = (M1, . . . , Mk) of the edge set E into matchings. Each of the Mi is called
a colour. If e ∈ Mi we say that e has colour i.

The edge-colouring number χ(G) of G is the minimum number of colours
in an edge-colouring of G.

Let ∆(G) denote the maximum degree of (the vertices of) G. Clearly,

(20.1) χ(G) ≥ ∆(G),

since at each vertex v, the edges incident with v should have different colours.
The triangle K3 has strict inequality in (20.1). Kőnig [1916] showed that for
bipartite graphs the two numbers are equal:

Theorem 20.1 (Kőnig’s edge-colouring theorem). For any bipartite graph
G = (V, E),

(20.2) χ(G) = ∆(G).

That is, the edge-colouring number of a bipartite graph is equal to its maxi-
mum degree.

Proof. Let M1, . . . , M∆(G) be a collection of disjoint matchings covering a
maximum number of edges. If all edges are covered, we are done. So suppose
that edge e = uv, say, is not covered. Then (since deg(u) ≤ ∆(G)) some
Mi misses u and (similarly) some Mj misses v. If i = j we can extend Mi to
Mi∪{e}. If i �= j, Mi∪Mj∪{e} makes a bipartite graph of maximum degree at
most two. Hence there exist matchings M and N with Mi∪Mj∪{e} = M∪N .
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So replacing Mi and Mj by M and N , increases the number of edges covered,
contradicting our assumption.

This proof, due to Kőnig [1916] (using a simplification of Skolem [1927]),
also gives a polynomial-time algorithm to find a ∆(G)-edge-colouring with
∆(G) colours. In fact, if G is simple, it gives an O(nm) algorithm for edge-
colouring. This bound can be achieved also for bipartite multigraphs using
an appropriate data-structure — see Section 20.9a.

20.1a. Edge-colouring regular bipartite graphs

Kőnig’s edge-colouring theorem is directly equivalent to the special case of regular
bipartite graphs (since any bipartite graph of maximum degree ∆ is a subgraph of a
∆-regular bipartite graph (Kőnig [1932])). Rizzi [1997,1998] gave the following very
elegant short argument for the k-edge-colourability of k-regular bipartite graphs.
(A similar proof in terms of common transversals of two partitions of a set into
equally sized classes was given by Sperner [1927] — see Section 22.7d.)

Let G be a counterexample with fewest edges. So G has no perfect matching.
Choose an edge e = uv. Then we can extend the graph G − u − v to a k-regular
bipartite graph H by adding at most k − 1 new edges. As H has fewer edges than
G, H has a k-edge-colouring. Since less than k new edges have been added, there
is a colour M that uses none of the new edges. Then M ∪ {e} is a perfect matching
in G, a contradiction.

20.2. The capacitated case

Egerváry [1931] observed that the following capacitated version directly fol-
lows from Kőnig’s edge-colouring theorem:

Corollary 20.1a. Let G = (V, E) be a bipartite graph and let c : E → Z+ be
a capacity function. Then the minimum size of a family of matchings such
that each edge e is in at least ce of them is equal to the maximum of c(δ(v))
over all v ∈ V .

Proof. Directly from Kőnig’s edge-colouring theorem, by replacing each edge
e by ce parallel edges.

This reduction being easy, it might not be satisfactory algorithmically. It
would not yield a polynomial-time reduction for the following problem:

(20.3) given: a bipartite graph G = (V, E) and a capacity function c :
E → Z+;

find: matchings M1, . . . , Mk and nonnegative integers λ1, . . . , λk

such that
∑k

i=1 λiχ
Mi = c and such that

∑k
i=1 λi is mini-

mized.
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However, there is an easy strongly polynomial-time algorithm for this
problem: Let F be the subset of edges e of G with ce > 0. Find a matching
M in F covering all vertices v of G that maximize c(δ(v)). Let λ := min{ce |
e ∈ M}, and replace c by c − λχM . Next iterate this.

Since in each iteration the number of edges e with ce > 0 decreases, there
are at most |E| iterations. Since a matching covering a given set R of vertices
can be found in time O(|R||E|), this gives an O(nm2) algorithm. However, by
starting in each iteration with the matching left from the previous iteration,
one can do better (Gonzalez and Sahni [1976]):

Theorem 20.2. Problem (20.3) can be solved in time O(m2).

Proof. We may assume that c(δ(v)) is equal for all v, by duplicating G
and connecting each vertex with its copy, giving the new edges appropriate
capacities. We can also assume that ce > 0 for each edge e.

First we find a perfect matching in G, which can be done in time O(nm),
since we can apply O(n) matching-augmenting iterations to find a perfect
matching.

In any further iteration, let M be the matching obtained in the previous
iteration. Suppose that after resetting c, there exist α edges e in M with
ce = 0. Delete these edges. Then in α matching-augmenting steps we can
obtain a perfect matching M ′ in the new graph. So the iteration takes O(αm)
time. Since over all iterations the α add up to |E|, we have the time bound
O(m2).

20.3. Edge-colouring polyhedrally

Polyhedrally, edge-colouring can be studied with the help of the ‘substar
polytope’ of an undirected graph G = (V, E). Call a set F of edges of G a
substar if F ⊆ δ(v) for some v ∈ V . The substar polytope Psubstar(G) of G
is the convex hull of the incidence vectors of substars. So it is a polytope in
RE .

Each vector x in the substar polytope trivially satisfies

(20.4) (i) xe ≥ 0 for each e ∈ E,
(ii) x(M) ≤ 1 for each matching M .

The following is direct from the description of the bipartite matching polytope
(Corollary 18.1b) with the theory of antiblocking polyhedra:

Theorem 20.3. The substar polytope of a bipartite graph is determined by
(20.4).

Proof. By Corollary 18.1b, the matching polytope is the antiblocking polyhe-
dron of the substar polytope. Hence the substar polytope is the antiblocking
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polyhedron of the matching polytope (cf. Section 5.9), which is the content
of the theorem.

What Kőnig’s edge-colouring theorem adds to it is:

Theorem 20.4. System (20.4) is TDI.

Proof. This is equivalent to Corollary 20.1a.

Note that Kőnig’s edge-colouring theorem also can be derived easily from
the characterization of the matching polytope. For any bipartite graph G =
(V, E), the vector ∆(G)−1 ·1 belongs to the matching polytope (where 1 is the
all-one vector in RE), and hence it is a convex combination of matchings. Each
of these matchings should cover each maximum-degree vertex. So there exists
a matching M covering all maximum-degree vertices. Hence ∆(G − M) =
∆(G) − 1, and we can apply induction.

Also, the integer decomposition property of the matching polytope is
equivalent to Kőnig’s edge-colouring theorem. (The integer decomposition
property follows from the total unimodularity of the incidence matrix of G.)

20.4. Packing edge covers

A theorem ‘dual’ to Kőnig’s edge-colouring theorem was shown by Gupta
[1967,1978]. The edge-colouring number χ(G) of a graph G is the minimum
number of matchings needed to cover the edges of a G. Dually, one can define
the edge cover packing number ξ(G) of a graph by:

(20.5) ξ(G) := the maximum number of disjoint edge covers in G.

So, in terms of colours, ξ(G) is the maximum number of colours that can be
used in colouring the edges of G in such a way that at each vertex all colours
occur. Hence, if δ(G) denotes the minimum degree of G, then

(20.6) ξ(G) ≤ δ(G).

The triangle K3 again is an example having strict inequality. For bipartite
graphs however Gupta [1967,1978] showed:

Theorem 20.5. For any bipartite graph G = (V, E):

(20.7) ξ(G) = δ(G).

That is, the maximum number of disjoint edge covers is equal to the minimum
degree.

Proof. We give a reduction to Kőnig’s edge-colouring theorem (Theorem
20.1).
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One may derive from G a bipartite graph H, each vertex of which has
degree δ(G) or 1, by repeated application of the following procedure:

(20.8) for any vertex v of degree larger than δ(G), add a new vertex
u, and replace one of the edges incident with v, {v, w} say, by
{u, w}.

So there is a one-to-one correspondence between the edges of the final
graph H and the edges of G. Since H has maximum degree δ(G), by Theorem
20.1 the edges of H can be coloured with δ(G) colours such that no two edges
of the same colour intersect. So at any vertex of H of degree δ(G), all colours
occur. This gives a colouring of the edges of G with δ(G) colours such that
at any vertex of G all colours occur.

Gupta [1974,1978] gave the following common generalization of Theorems
20.1 on edge-colouring and 20.5 on disjoint edge covers:

Theorem 20.6. Let G = (V, E) be a bipartite graph and let k ∈ Z+. Then E
can be partitioned into classes E1, . . . , Ek such that each vertex v is covered
by at least min{k,degG(v)} of the Ei.

Proof. Like in the proof of Theorem 20.5, split off edges from vertices of
degree larger than k, until each vertex has degree at most k. Applying Kőnig’s
edge-colouring theorem to the final graph yields a partitioning of the original
edge set as required.

Call a set F of edges of a graph G = (V, E) a superstar if F ⊇ δ(v) for
some v ∈ V . The superstar polytope Psuperstar(G) of G is the convex hull of
the incidence vectors of superstars in G. Consider

(20.9) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(F ) ≥ 1 for each edge cover F .

Theorem 20.7. If G is bipartite, system (20.9) determines the superstar
polytope and is TDI.

Proof. With the theory of blocking polyhedra, Theorem 19.6 implies that the
superstar polytope is determined by (20.9). Total dual integrality of (20.9) is
equivalent to the capacitated version of Theorem 20.5.

20.5. Balanced colours

McDiarmid [1972] and de Werra [1970,1972] showed the following general-
ization of Kőnig’s edge-colouring theorem (in fact, it is a special case of a
theorem of Folkman and Fulkerson [1969] (see Theorem 20.10 below), and
also it is a consequence of the result in Dulmage and Mendelsohn [1969]):
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Theorem 20.8. Let G = (V, E) be a bipartite graph and let k ≥ ∆(G). Then
E can be partitioned into matchings M1, . . . , Mk such that

(20.10) ⌊|E|/k⌋ ≤ |Mi| ≤ ⌈|E|/k⌉
for each i = 1, . . . , k.

Proof. As k ≥ ∆(G), by Kőnig’s edge-colouring theorem, E can be par-
titioned into matchings M1, . . . , Mk (possibly empty). Choose M1, . . . , Mk

such that

(20.11)
k∑

i=1

|Mi|2

is minimized.
Suppose that (20.10) is violated. Then there exist Mi and Mj with |Mi| ≥

|Mj |+2. Then Mi∪Mj has at least one component K containing more edges in
Mi than in Mj . Let M ′

i := Mi△K and M ′
j := Mj△K. Then |M ′

i |2 + |M ′
j |2 =

(|Mi|−1)2+(|Mj |+1)2 = |Mi|2+|Mj |2−2|Mi|+2|Mj |+2 < |Mi|2+|Mj |2. So
replacing Mi and Mj by M ′

i and M ′
j decreases the sum (20.11), contradicting

our minimality assumption.

Related results can be found in Dulmage and Mendelsohn [1969], Folkman
and Fulkerson [1969], Brualdi [1971b], and de Werra [1971,1976].

20.6. Packing perfect matchings

Packing perfect matchings seems less directly reducible to partitioning into
matchings or edge covers. It can be handled with the following more general
result of Folkman and Fulkerson [1969] on packing matchings of a fixed size
p, which is proved by reduction to Menger’s theorem:

Theorem 20.9. Let G = (V, E) be a bipartite graph and let k, p ∈ Z+. Then
there exist k disjoint matchings of size p if and only if each subset X of V
spans at least k(p + |X| − |V |) edges.

Proof. To see necessity, let X ⊆ V and consider a matching M in G of size p.
Since at most |V |−|X| edges in M intersect V \X, at least |M |−(|V |−|X|) =
p + |X| − |V | edges of M are spanned by X. So k disjoint matchings of size
p have at least k(p + |X| − |V |) edges spanned by X.

To see sufficiency, let U and W be the colour classes of G. Orient all edges
from U to W . Moreover, add vertices s and t, and, for each u ∈ U , add k
parallel arcs from s to u, and, for each w ∈ W , add k parallel arcs from w to
t. Let D be the directed graph arising.

We show with Menger’s theorem that D contains kp arc-disjoint s − t
paths. Consider any s− t cut δout(Y ), with s ∈ Y , t �∈ Y . Let X := (U ∩Y )∪
(W \ Y ). Then
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(20.12) |δout(Y )| = k|U \Y |+k|W ∩Y |+ |E[X]| = k(|V |− |X|)+ |E[X]|,
where E[X] is the set of edges spanned by X. As |E[X]| ≥ k(p + |X| − |V |),
it follows that |δout(Y )| ≥ kp.

So D contains kp arc-disjoint s − t paths. The edges of G that belong to
these paths form a subgraph of G with kp edges, of maximum degree at most
k. So by Theorem 20.8, G has k disjoint matchings of size p.

This implies the following theorem of Fulkerson [1964b] on the maximum
number of disjoint perfect matchings (in fact equivalent to a result of Ore
[1956], see Corollary 20.9b below):

Corollary 20.9a. Let G = (V, E) be a bipartite graph and let k ∈ Z+. Then
G has k disjoint perfect matchings if and only if each subset X of V spans at
least k(|X| − 1

2 |V |) edges.

Proof. Directly by taking p := 1
2 |V | in Theorem 20.9.

(Lebensold [1977] and Murty [1978] gave other proofs of this corollary.)
Note that, by Kőnig’s edge-colouring theorem, a bipartite graph G =

(V, E) has k disjoint perfect matchings if and only if G has a k-factor. (A
k-factor is a subset F of E with the graph (V, F ) k-regular.)

So Corollary 20.9a is equivalent to the following result of Ore [1956]:

Corollary 20.9b. A bipartite graph G = (V, E) has a k-factor if and only if
each subset X of V spans at least k(|X| − 1

2 |V |) edges.

Proof. Directly from Corollary 20.9a.

20.6a. Polyhedral interpretation

We can interpret these results polyhedrally. In Theorem 18.8 we saw that for any
bipartite graph G = (V, E), the up hull of the perfect matching polytope of G,

(20.13) P ↑

perfect matching(G) = Pperfect matching(G) + R
E
+

is determined by the inequalities

(20.14) (i) xe ≥ 0 for each e ∈ E,
(ii) x(E[S]) ≥ |S| − 1

2
|V | for each S ⊆ V .

Then Corollary 20.9a implies that for each k ∈ Z+, each integer vector w ∈
k · P ↑

perfect matching(G) is the sum of k vectors in P ↑

perfect matching(G). In other
words:

Corollary 20.9c. P ↑

perfect matching(G) has the integer decomposition property.

Proof. From Corollary 20.9a, by replacing each edge by w(e) parallel edges.

We can view this also in terms of the blocking polyhedron of P ↑

perfect matching(G),
which is the polyhedron Q determined by
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(20.15) (i) xe ≥ 0 for each e ∈ E,
(ii) x(M) ≥ 1 for each perfect matching M .

Since P ↑

perfect matching(G) is determined by (20.14), the theory of blocking polyhe-
dra gives that Q is equal to the up hull of the convex hull of the vectors

(20.16) 1

|S|−
1
2

|V |
χE[S]

where S ⊆ V with |S| > 1
2
|V |.

So the minimum value of 1Tx over Q is equal to

(20.17) min{ |E[S]|

|S|−
1
2

|V |
| S ⊆ V, |S| > 1

2
|V |}.

By LP-duality, this is equal to the maximum value of
∑

M λM , where M ranges over
perfect matchings and where λM ≥ 0 such that

∑
M λMχM ≤ 1. So Corollary 20.9a

states: the maximum number of disjoint perfect matchings in a bipartite graph is
equal to

(20.18) ⌊max{
∑

M

λM | λM ≥ 0,
∑

M

λMχM ≤ 1}⌋.

As we can directly extend this to a weighted version, one has:

Corollary 20.9d. System (20.15) has the integer rounding property.

Proof. See above.

20.6b. Extensions

The results of Sections 20.5 and 20.6 can be extended as follows, as was shown by
Folkman and Fulkerson [1969]. It is based on the following theorem:

Theorem 20.10. Let G = (V, E) be a bipartite graph, let k ≥ ∆(G), and let
p ≥ |E|/k. Then G has a k-edge-colouring in which l colours have size p if and only
if G has l disjoint matchings of size p.

Proof. Necessity being trivial, we show sufficiency. Let G have l disjoint matchings
of size p. We must show that there exist l disjoint matchings of size p such that at
each vertex v at most k − l edges incident with v are in none of these matchings
(since then the edges not contained in the matchings can be properly coloured by
k − l colours).

That is, by Theorem 20.8 it suffices to show that there exists a subset F of E
such that

(20.19) (i) degF (v) ≤ l and degE\F (v) ≤ k − l for each vertex v;
(ii) |F | = lp.

Let F be any subset of E satisfying (20.19)(i), with |F | ≤ lp, and with |F | as large
as possible. Such an F exists, since by Theorem 20.8 we can k-edge-colour G such
that each colour has size at most ⌈|E|/k⌉ ≤ p. Any l of the colours gives F as
required.
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If |F | = lp we are done, so assume that |F | < lp. Since G has l disjoint matchings
of size p, E has a subset F ′ of size lp with degF ′(v) ≤ l for each vertex v. Choose
F ′ with F ′ \ F as small as possible.

Consider an orientation D of the graph (V, F△F ′), where each edge in F \F ′ is
oriented from colour class U (say) to colour class W (say), and where each edge in
F ′ \ F is oriented from W to U . If D contains a directed circuit C, we can reduce
F ′ \F , by replacing F ′ by F ′△C. So D is acyclic, and hence we can partition F△F ′

into directed paths, where each path starts at a vertex v with degout
D (v) > degin

D (v)
and ends at a vertex v with degin

D (v) > degout
D (v). As |F ′| > |F |, at least one of

these paths, P say, has more edges in F ′ than in F . Now replacing F by F△EP
does not violate (20.19)(i), since degF△EP (v) = degF (v) + 1 ≤ degF ′(v) ≤ l if v is
an end of P and degF△EP (v) = degF (v) for any other vertex v. As this increases

|F |, it contradicts our maximality assumption.

This implies the following result of Folkman and Fulkerson [1969], generalizing
Theorems 20.8 and 20.9 (by taking p2 = 1):

Corollary 20.10a. Let G = (V, E) be a bipartite graph and let k1, k2, p1, p2 ∈ Z+

be such that k1 + k2 ≥ ∆(G), k1p1 + k2p2 = |E|, and p1 ≥ p2. Then E can be
partitioned into k1 matchings of size p1 and k2 matchings of size p2 if and only if
each subset X of V spans at least k1(p1 + |X| − |V |) edges.

Proof. Necessity being easy, we prove sufficiency. By Theorem 20.9, G has k1

disjoint matchings of size p1. Let k := k1 + k2. Since p1 ≥ p2, we have p1 ≥
(p1k1 + p2k2)/k = |E|/k. Hence, by Theorem 20.10, G has k1 disjoint matchings
of size p1, such that the uncovered edges form a subgraph of maximum degree at
most k2. As this subgraph has |E| − p1k1 = p2k2 edges, by Theorem 20.8 we can
split its edge set into k2 matchings of size p2.

These results relate to simple b-matchings — see Corollary 21.29a.

20.7. Covering by perfect matchings

A series of results similar to those in Section 20.6 can be derived for covering
by perfect matchings and for the down hull of the perfect matching polytope.
Brualdi [1979] showed the covering analogue of Corollary 20.9a:

Theorem 20.11. Let G = (V, E) be a bipartite graph and let k ∈ Z+. Then
E can be covered by k perfect matchings if and only if any vertex cover X
spans at most k(|X| − 1

2 |V |) edges.

Proof. Necessity. Let G be covered by k perfect matchings and let X be a
vertex cover. Each perfect matching contains |V \ X| edges not spanned by
X, and hence 1

2 |V | − |V \ X| = |X| − 1
2 |V | edges spanned by X. This proves

necessity.
Sufficiency. Assume that the condition holds. This implies that both

colour classes of G have size 1
2 |V |, since each of them is a vertex cover X
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spanning no edge, implying |X| ≥ 1
2 |V |. It also implies that the maximum

degree of G is at most k, since for each vertex v the set U ∪ {v} (where U is
the colour class of G not containing v) spans at most k edges.

For each vertex v, let bv := k−deg(v). Split each vertex v into bv vertices,
and replace any edge uv by bubv edges connecting the bu copies of u with the
bv copies of v. This yields the bipartite graph H, with k|V | − 2|E| vertices.

Now H has a perfect matching, as follows from Frobenius’ theorem: if Y
is a vertex cover in H, then the set X of vertices v of G for which all copies
in H belong to Y , is a vertex cover in G. Now by the condition, X spans at
most k(|X| − 1

2 |V |) edges of G. Hence

(20.20) |Y | ≥
∑

v∈X

(k − deg(v)) = k|X| − |E| − |E[X]| ≥ 1
2k|V | − |E|.

So Y is not smaller than half the number of vertices of H. Therefore, by
Frobenius’ theorem, H has a perfect matching M .

For each edge e of G, add parallel edges to e as often as a copy of e occurs
in M . We obtain a k-regular bipartite graph G′. By Kőnig’s edge-colouring
theorem, the edges of G′ can be partitioned into k perfect matchings. This
gives k perfect matchings in G covering E.

(This proof method in fact consists of showing that G has a perfect b-matching
— see Chapter 21.)

The result is equivalent to characterizing bipartite graphs that are k-
regularizable. A graph G = (V, E) is k-regularizable if we can replace each
edge by a positive number of parallel edges so as to obtain a k-regular graph.
Then:

Corollary 20.11a. Let G = (V, E) be a bipartite graph and let k ∈ Z+.
Then G is k-regularizable if and only if any vertex cover X spans at most
k(|X| − 1

2 |V |) edges.

Proof. Directly from Theorem 20.11.

20.7a. Polyhedral interpretation

Again we can interpret Theorem 20.11 polyhedrally. In Theorem 18.9 we saw that
for a bipartite graph G = (V, E), the down hull of the perfect matching polytope
of G,

(20.21) P ↓

perfect matching(G) = (Pperfect matching(G) − R
E
+) ∩ R

E
+

is determined by the inequalities

(20.22) (i) xe ≥ 0 for each e ∈ E,
(ii) x(E[S]) ≤ |S| − 1

2
|V | for each vertex cover S.

Then Theorem 20.11 implies that for each k ∈ Z+, each integer vector w ∈
k · P ↓

perfect matching(G) is a sum of k integer vectors in P ↓

perfect matching(G). That
is:
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Corollary 20.11b. P ↓

perfect matching(G) has the integer decomposition property.

Proof. See above.

We can view this result also in terms of the antiblocking polyhedron of
P ↓

perfect matching(G), which is the polyhedron Q determined by

(20.23) (i) xe ≥ 0 for each e ∈ E,
(ii) x(M) ≤ 1 for each perfect matching M .

By the theory of antiblocking polyhedra, Q is equal to the down hull of the convex
hull of the vectors

(20.24) 1

|S|−
1
2

|V |
χE[S]

where S is a vertex cover with |S| > 1
2
|V |.

So the maximum value of 1Tx over Q is equal to

(20.25) max{ |E[S]|

|S|−
1
2

|V |
| S vertex cover, |S| > 1

2
|V |}.

By LP-duality, this is equal to the minimum value of
∑

M λM , where M ranges
over perfect matchings and where λM ≥ 0 with

∑
M λMχM ≥ 1. So Theorem 20.11

states: the minimum number of perfect matchings needed to cover all edges in a
bipartite graph is equal to

(20.26) ⌈min{
∑

M

λM |λM ≥ 0,
∑

M

λMχM ≥ 1}⌉.

As we can directly extend this to a weighted version, one has:

Corollary 20.11c. The polyhedron determined by (20.23) has the integer rounding
property.

Proof. See above.

20.8. The perfect matching lattice of a bipartite graph

The perfect matching lattice (often briefly the matching lattice) of a graph G =
(V, E) is the lattice generated by the incidence vectors of perfect matchings
in G; that is,

(20.27) Lperfect matching(G) := lattice{χM | M perfect matching in G}.

With the help of Kőnig’s edge-colouring theorem, it is not difficult to
characterize the perfect matching lattice of a bipartite graph (cf. Lovász
[1985]). Recall that the perfect matching space of a graph G is the linear hull
of the incidence vectors of the perfect matchings in G (cf. Section 18.5d).

Theorem 20.12. The perfect matching lattice of a bipartite graph G = (V, E)
is equal to the set of integer vectors in the perfect matching space of G.
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Proof. Obviously, each vector in the perfect matching lattice is integer and
belongs to the perfect matching space. To see the reverse inclusion, let x be an
integer vector in the perfect matching space. So xe = 0 for each edge covered
by no perfect matching, and x(δ(u)) = x(δ(v)) for all u, v ∈ V . By adding to
x incidence vectors of perfect matchings, we can assume that xe ≥ 0 for all
e ∈ E.

Replace any edge e by xe parallel copies. We obtain a k-regular bipartite
graph H, with k := x(δ(v)) for any v ∈ V . Hence, by Kőnig’s edge-colouring
theorem, H is k-edge-colourable. As each colour is a perfect matching in H,
we can decompose x as a sum of k incidence vectors of perfect matchings in
G. So x belongs to the perfect matching lattice of G.

This gives a characterization of the perfect matching lattice for matching-
covered bipartite graphs (which will be used in the characterization of the
perfect matching lattice of an arbitrary graph in Chapter 38). A graph is
called matching-covered if each edge belongs to a perfect matching.

Corollary 20.12a. Let G = (V, E) be a matching-covered bipartite graph
and let x ∈ ZE be such that x(δ(u)) = x(δ(v)) for any two vertices u and v.
Then x belongs to the perfect matching lattice of G.

Proof. Directly from Theorems 20.12 and 18.7.

By lattice duality theory, Theorem 20.12 is equivalent to the following.

Corollary 20.12b. Let G = (V, E) be a bipartite graph and let w ∈ RE be a
weight function. Then each perfect matching has integer weight if and only if
there exists a vector b ∈ RV with b(V ) = 0 and with we − bu − bv integer for
each edge e = uv covered by at least one perfect matching.

Proof. Sufficiency is easy, since if such a b exists, then, for each perfect
matching M ,

(20.28) w(M) = b(V ) +
∑

e=uv∈M

(we − bu − bv) =
∑

e=uv∈M

(we − bu − bv)

is an integer.
To see necessity, suppose that w(M) is integer for each perfect matching

M . Then (by definition of dual lattice) w belongs to the dual lattice of the
perfect matching lattice. Theorem 20.12 implies that the dual lattice is the
sum of ZE and the linear space orthogonal to the perfect matching space. So
w = w′ + w′′, where w′ ∈ ZE and w′′ is orthogonal to the perfect matching
space; that is, w′′(M) = 0 for each perfect matching M . By Corollary 18.7a,
there exists a vector b ∈ RV with b(V ) = 0 and with w′′

e = bu + bv for each
edge e = uv covered by at least one perfect matching. This is equivalent to
the present Corollary.
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20.9. Further results and notes

20.9a. Some further edge-colouring algorithms

As mentioned, it is easy to implement an O(nm)-time algorithm for finding a ∆(G)-
edge-colouring in a simple bipartite graph G. Such an algorithm also exists if G has
multiple edges:

Theorem 20.13. The edges of a bipartite graph G can be coloured with ∆(G)
colours in O(nm) time.

Proof. Let ∆ := ∆(G). We update a collection of disjoint matchings M1, . . . , M∆

(the colours), each stored as a doubly linked list. For each edge e, we keep the i for
which e ∈ Mi (i = 0 if e is in no Mi). Initially we set Mi := ∅ for i := 1, . . . , ∆. We
also store the colour classes U and W as lists.

The algorithm runs along all pairs of vertices u ∈ U and w ∈ W . Fixing u ∈ U
and w ∈ W , make a list L of edges e connecting u and w (taking O(deg(u)) time,
by scanning δ(u)); define d(u, w) := |L|; make a list I of d(u, w) indices i for which
Mi misses u (taking O(deg(u)) time, by scanning δ(u)); make a list J of d(u, w)
indices j for which Mj misses w (taking O(deg(w)) time, by scanning δ(w)); next,
while there is an edge e0 in L:

(20.29) choose i ∈ I and j ∈ J ;
if i = j, insert e0 in Mi, delete e0 from L, and delete i from I and J ;
if i �= j, make for each v ∈ V a list Tv of edges in Mi ∪ Mj incident
with v (taking O(n) time, by scanning Mi and Mj);
identify the path component P in Mi ∪ Mj starting at u (taking O(n)
time, using the Tv);
for each edge e on P , if e is in Mi move e to Mj and if e is in Mj we
move e to Mi (taking O(n) time);
insert e0 in Mj , delete e0 from L, delete i from I, and delete j from J .

Fixing u and w, the preprocessing takes O(deg(u) + deg(w)) time, and each of the
d(u, w) iterations takes O(n) time. As

∑
u∈U

∑
w∈W (deg(u)+deg(w)+nd(u, w)) =

2nm, we obtain an algorithm as required.

From their linear-time perfect matching algorithm for regular bipartite graphs,
Cole, Ost, and Schirra [2001] derived (using an idea of Gabow [1976c]):

Theorem 20.14. A k-regular bipartite graph G = (V, E) can be k-edge-coloured in
time O(m log k).

Proof. We describe a recursive algorithm, the case k = 1 being the basis.
If k is even, find an Eulerian orientation of G, let G′ be the 1

2
k-regular graph

consisting of all edges oriented from one colour class of G to the other, let G′′ be the
1
2
k-regular graph consisting of the remaining edges, and recursively 1

2
k-edge-colour

G′ and G′′. This gives a k-edge-colouring of G.
If k is odd and ≥ 3, find a perfect matching M in G, and recursively (k − 1)-

edge-colour G − M . With M , this gives a k-edge-colouring of G.
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We show that the running time is O(m log k). The recursive step takes time
O(m), since finding an Eulerian orientation or finding a perfect matching takes
O(m) time (Corollary 16.11a). Moreover, in one or two recursive steps, the graph
is split into two graphs with half the number of edges. Since m log2 k = m +
2( 1

2
m log2(

1
2
k)), the result follows.

Corollary 20.14a. The edges of a bipartite graph G can be coloured with ∆(G)
colours in O(m log ∆(G)) time.

Proof. Let k := ∆(G). First iteratively merge any two vertices in the same colour
class of G if each of them has degree at most 1

2
k. The final graph H will have at

most two vertices of degree at most 1
2
k, and moreover, ∆(H) = k and any k-edge-

colouring of H yields a k-edge-colouring of G. Next make a copy H ′ of H, and join
each vertex v of H by k − degH(v) parallel edges with its copy v′ in H ′ (where
degH(v) is the degree of v in H). This gives the k-regular bipartite graph G′, with
|EG′| = O(|EG|).

By Theorem 20.14, we can find a k-edge-colouring of G′ in O(m log k) time.
This gives a k-edge-colouring of H and hence a k-edge-colouring of G.

20.9b. Complexity survey for bipartite edge-colouring

O(nm) Kőnig [1916]

O(
√

n m∆)
Hopcroft and Karp [1971,1973] (cf.
Gabow and Kariv [1978])

∗ O(m̃2) Gonzalez and Sahni [1976]

O(
√

n m log ∆) Gabow [1976c]

O(m
√

n log n) Gabow and Kariv [1978]

O(m∆ log n) Gabow and Kariv [1978]

O((m + n2) log ∆) Gabow and Kariv [1978,1982]

O(m(log n)2 log ∆) Lev, Pippenger, and Valiant [1981]

O(m(log m)2) Gabow and Kariv [1982]

O(m log m) Cole and Hopcroft [1982]

∗ O(nm̃ log µ) Gabow and Kariv [1982]

O((m + n log n log2 ∆) log ∆) Cole and Hopcroft [1982]

O((m + n log n log ∆) log ∆) Cole [1982]

O(n22O(∆)

) Cole [1982]

O((m + n log n) log ∆)
R. Cole and K. Ost (cf. Ost [1995]),
Kapoor and Rizzi [2000]

O(m∆) Schrijver [1999]

O(m log ∆ + n log n log ∆) Rizzi [2002]

∗ O(m log ∆) Cole, Ost, and Schirra [2001]
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Here m̃ denotes the number of parallel classes of edges, µ the maximum size of a
parallel class, and ∆ the maximum degree. As before, ∗ indicates an asymptotically
best bound in the table.

Kapoor and Rizzi [2000] showed that a bipartite graph of maximum degree ∆
can be ∆-edge-coloured in time T +O(m log ∆), where T is the time needed to find
a perfect matching in a k-regular bipartite graph with m edges and k ≤ ∆. (So this
is applied only once!)

20.9c. List-edge-colouring

An interesting extension of Kőnig’s edge-colouring theorem was shown by Galvin
[1995], which was the ‘list-edge-colouring conjecture’ for bipartite graphs (cf. Alon
[1993], Häggkvist and Chetwynd [1992]). It implies the conjecture of J. Dinitz (1979)
that the list-edge-colouring number of the complete bipartite graph Kn,n equals n.
(This is in fact a special case of the conjecture, formulated by V.G. Vizing in 1975,
that the list-edge-colouring number of any graph is equal to its edge-colouring
number (see Häggkvist and Chetwynd [1992]).) The proof of Galvin is based on the
Gale-Shapley theorem on stable matchings (Theorem 18.11).

Let G = (V, E) be a graph. Then G is k-list-edge-colourable if for each choice
of finite sets Le for e ∈ E with |Le| = k, we can choose le ∈ Le for e ∈ E such that
le �= lf if e and f are incident. The smallest k for which G is k-list-edge-colourable
is called the list-edge-colouring number of G.

Trivially, the list-edge-colouring number of G is at least the edge-colouring
number of G, and hence at least the maximum degree ∆(G) of G. Galvin [1995]
showed:

Theorem 20.15. The list-edge-colouring number of a bipartite graph is equal to its
maximum degree.

Proof. Let G = (V, E) be a bipartite graph, with colour classes U and W , and
with maximum degree k := ∆(G). The theorem follows by applying the following
statement to any ∆(G)-edge-colouring φ : E → {1, . . . , ∆(G)} of G.

(20.30) Let φ : E → Z be such that φ(e) �= φ(f) if e and f are incident. For
each e = uw ∈ E with u ∈ U and w ∈ W , let Le be a finite set
satisfying

|Le| > |{f ∈ δ(u) | φ(f) < φ(e)}| + |{f ∈ δ(w) | φ(f) > φ(e)}|.

Then there exist le ∈ Le (e ∈ E) such that le �= lf if e and f are
incident.

So it suffices to prove (20.30), which is done by induction on |E|. Choose p ∈ ⋃
Le

and let F := {e ∈ E | p ∈ Le}. Define for each v ∈ V a total order <v on δF (v) by:

(20.31) e ≤v f ⇐⇒ φ(e) ≥ φ(f), if v ∈ U ,
e ≤v f ⇐⇒ φ(e) ≤ φ(f), if v ∈ W ,

for e, f ∈ δF (v). By the Gale-Shapley theorem (Theorem 18.11), F contains a stable
matching M . So M is a matching such that for each e ∈ F there is an f ∈ M with
e ≤v f for some v ∈ e. Hence for each edge e = uw ∈ F \ M , with u ∈ U and
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w ∈ W : ∃f ∈ M ∩ δ(u) : φ(f) < φ(e) or ∃f ∈ M ∩ δ(w) : φ(f) > φ(e). So removing
M from E and resetting Le := Le \{p} for each e ∈ F \M , we can apply induction.

(The proof by Slivnik [1996] is similar.) An extension of Galvin’s theorem was given
by Borodin, Kostochka, and Woodall [1997].

20.9d. Further notes

Edge-colouring relates to timetabling — see Appleby, Blake, and Newman [1960],
Gotlieb [1963], Broder [1964], Cole [1964], Csima and Gotlieb [1964], Barraclough
[1965], Duncan [1965], Almond [1966], Lions [1966b,1966a,1967], Welsh and Powell
[1967], Yule [1967], Dempster [1968,1971], Wood [1968], de Werra [1970,1972], and
McDiarmid [1972].

However, most practical timetabling problems require more than just bipartite
edge-colouring, and are NP-complete. It is NP-complete to decide if a given partial
edge-colouring in a bipartite graph can be extended to a minimum edge-colouring
(Even, Itai, and Shamir [1975,1976]). This corresponds to a timetabling problem
with ‘time windows’. Moreover, the 3-dimensional analogue is NP-complete (Karp
[1972b]): given three disjoint sets R, S, and T and a family F of triples {r, s, t}
with r ∈ R, s ∈ S, and t ∈ T , colour the sets in F with a minimum number of
colours in such a way that sets of the same colour are disjoint.

Analogues of Kőnig’s edge-colouring theorem, in terms of odd paths packing
and covering, were given by de Werra [1986,1987]. The edge-colouring number of
almost bipartite graphs (graphs which have a vertex whose deletion makes the graph
bipartite) was characterized by Eggan and Plantholt [1986] and Reed [1999b].

Kőnig [1916] also proved an infinite extension of Theorem 20.1. We refer to
Section 16.7h for some historical notes on the fundamental paper Kőnig [1916].

Sainte-Laguë [1923] mentioned (without proof and without reference to Kőnig’s
work) the result that each k-regular bipartite graph is k-edge-colourable.



Chapter 21

Bipartite b-matchings and
transportation

The total unimodularity of the incidence matrix of a bipartite graph leads
to general min-max relations, for b-matchings, b-edge covers, w-vertex cov-
ers, w-stable sets, and b-factors. The weighted versions of these problems
relate to the classical transportation problem.
In this chapter, graphs can be assumed to be simple.

21.1. b-matchings and w-vertex covers

Let G = (V, E) be a graph, with V ×E incidence matrix A. We introduce the
concepts of b-matching and w-vertex cover, which will turn out to be dual.

For b : V → Z+, a b-matching is a function x : E → Z+ such that for each
vertex v of G:

(21.1) x(δ(v)) ≤ bv,

where δ(v) is the set of edges incident with v. In other words, x is a b-matching
if and only if x is an integer vector satisfying x ≥ 0, Ax ≤ b. So if b = 1,
then b-matchings are precisely the incidence vectors of matchings.

For w : E → Z+, a w-vertex cover is a function y : V → Z+ such that for
each edge e = uv of G:

(21.2) yu + yv ≥ we.

In other words, y is a w-vertex cover if and only if y is an integer vector
satisfying y ≥ 0, yTA ≥ wT. So if w = 1, then {0, 1}-valued w-vertex covers
are precisely the incidence vectors of vertex covers.

b-matchings and w-vertex covers are related by the following LP-duality
equation:

(21.3) max{wTx | x ≥ 0, Ax ≤ b} = min{yTb | y ≥ 0, yTA ≥ wT}.

Since A is totally unimodular (Theorem 18.2), both optima are attained by
integer vectors. In other words (where the w-weight of a vector x equals wTx
and the b-weight of a vector y equals yTb):
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Theorem 21.1. Let G = (V, E) be a bipartite graph and let b : V → Z+ and
w : E → Z+. Then the maximum w-weight of a b-matching is equal to the
minimum b-weight of a w-vertex cover.

Proof. See above.

Taking b = 1, we obtain Corollary 17.1a. For w = 1, we get the following
min-max relation for maximum-size b-matching (again, the sum of the entries
in a vector is called its size):

Corollary 21.1a. Let G = (V, E) be a bipartite graph and let b : V → Z+.
Then the maximum size of a b-matching is equal to the minimum b-weight of
a vertex cover.

Proof. This is the special case w = 1 of Theorem 21.1.

An alternative way of proving this is by derivation from Kőnig’s matching
theorem: Split each vertex v into bv copies, and replace each edge uv by bubv

edges connecting the bu copies of u with the bv copies of v. (This construction
is due to Tutte [1954b].)

Corollary 21.1a implies a characterization of the existence of a perfect
b-matching. A b-matching is called perfect if equality holds in (21.1) for each
vertex v. So a b-matching is perfect if and only if it has size 1

2b(V ). Hence:

Corollary 21.1b. Let G = (V, E) be a bipartite graph and let b ∈ ZV
+. Then

there exists a perfect b-matching if and only if b(C) ≥ 1
2b(V ) for each vertex

cover C.

Proof. Directly from Corollary 21.1a.

21.2. The b-matching polytope and the w-vertex cover
polyhedron

The total unimodularity of the incidence matrix also implies characterizations
of the corresponding polyhedra.

The b-matching polytope is the convex hull of the b-matchings. For bipar-
tite graphs it is determined by:

(21.4) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≤ bv for each v ∈ V .

Theorem 21.2. The b-matching polytope of a bipartite graph G = (V, E) is
determined by (21.4).

Proof. Directly from the facts that system (21.4) amounts to x ≥ 0, Ax ≤ b
and that A is totally unimodular, where A is the V × E incidence matrix
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of G. By Theorem 5.20, the vertices of the polytope {x ≥ 0 | Ax ≤ b} are
integer, hence they are b-matchings.

This generalizes the sufficiency part of Corollary 18.1b.
Similarly, the w-vertex cover polyhedron, being the convex hull of the w-

vertex covers, is, for bipartite graphs, determined by:

(21.5) (i) yv ≥ 0 for each v ∈ V ,
(ii) yu + yv ≥ we for each e = uv ∈ E.

Theorem 21.3. The w-vertex cover polyhedron of a bipartite graph is deter-
mined by (21.5).

Proof. Directly from the total unimodularity of the incidence matrix of a
bipartite graph.

This generalizes the necessity part in Theorem 18.3.

21.3. Simple b-matchings and b-factors

In the context of b-matchings, call a vector x simple if it is {0, 1}-valued. So a
simple b-matching is the incidence vector of a set F of edges with degF (v) ≤
bv for each vertex v. We will identify the vector and the subset.

To characterize the maximum size of a simple b-matching, let, for any
X ⊆ V , E[X] denote the set of edges spanned by X.

Theorem 21.4. The maximum size of a simple b-matching in a bipartite
graph G = (V, E) is equal to the minimum value of b(V \ X) + |E[X]| taken
over X ⊆ V .

Proof. This can be reduced to the nonsimple case by replacing each edge uv
by a path of length 3 connecting u and v (thus introducing two new vertices
for each edge), and extending b by defining b(s) := 1 for each new vertex s.
Then the maximum size of a simple b-matching in the original graph is equal
to the maximum size of a b-matching in the new graph minus |E|, and we
can apply Corollary 21.1a.

(This construction is due to Tutte [1954b].)
The theorem can also be derived from the fact that both optima in the

LP-duality equation:

(21.6) max{1Tx | 0 ≤ x ≤ 1, Ax ≤ b}
= min{yTb + zT1 | y ≥ 0, z ≥ 0, yTA + zT ≥ 1T}

have integer optimum solutions, since A (the incidence matrix of G) is totally
unimodular.



340 Chapter 21. Bipartite b-matchings and transportation

Theorem 21.4 implies the following result of Ore [1956] (who formulated
it in terms of directed graphs). A b-factor is a simple perfect b-matching. So
it is a subset F of E with degF (v) = bv for each v ∈ V (again identifying a
subset of E with its incidence vector in RE).

Corollary 21.4a. Let G = (V, E) be a bipartite graph and let b : V →
Z+. Then G has a b-factor if and only if each subset X of V spans at least
b(X) − 1

2b(V ) edges.

Proof. Directly from Theorem 21.4.

If b is equal to a constant k, Theorem 21.4 amounts to (with the help of
Kőnig’s edge-colouring theorem):

Corollary 21.4b. Let G = (V, E) be a bipartite graph and let k ∈ Z+. Then
the maximum size of the union of k matchings is equal to the minimum value
of k|V \ X| + |E[X]| taken over X ⊆ V .

Proof. Apply Theorem 21.4 to bv := k for all v ∈ V . We obtain a formula
for the maximum size of a subset F of E with degF (v) ≤ k for all v ∈ V . By
Theorem 20.1, this is the union of k matchings.

A k-factor in a graph G = (V, E) is a subset F of E with degF (v) = k for
each v ∈ V . Then:

Corollary 21.4c. Let G = (V, E) be a bipartite graph and let k ∈ Z+. Then
G has a k-factor if and only if each subset X of V spans at least k(|X|− 1

2 |V |)
edges.

Proof. Directly from Corollary 21.4a.

From this one can derive the result of Fulkerson [1964b] (Corollary 20.9a)
that a bipartite graph has k disjoint perfect matchings if and only if each
subset X of V spans at least k(|X| − 1

2 |V |) edges.
By the total unimodularity of the incidence matrix of bipartite graphs,

the simple b-matching polytope (the convex hull of the simple b-matchings)
of a bipartite graph G = (V, E) is determined by:

(21.7) 0 ≤ xe ≤ 1 for each e ∈ E,
x(δ(v)) ≤ bv for each v ∈ V .

Similarly, the following min-max relation for maximum-weight simple b-
matching follows (Vogel [1963]):

Theorem 21.5. Let G = (V, E) be a bipartite graph and let b ∈ ZV
+ and

w ∈ ZE
+. Then the maximum weight wTx of a simple b-matching x is equal

to the minimum value of
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(21.8)
∑

v∈V

yvbv +
∑

e∈E

ze

where y ∈ ZV
+ and z ∈ ZE

+ with yu + yv + ze ≥ we for each edge e = uv.

Proof. Directly from the LP-duality equation

(21.9) max{wTx | 0 ≤ x ≤ 1, Ax ≤ b}
= min{yTb + zT1 | y ≥ 0, z ≥ 0, yTA + zT ≥ wT}

(where A is the V × E incidence matrix of G), using the total unimodularity
of A.

Moreover:

Theorem 21.6. Let G = (V, E) be a bipartite graph and let b ∈ ZV
+ and

w ∈ ZE
+. Then the minimum weight wTx of a b-factor x is equal to the

maximum value of

(21.10)
∑

v∈V

yvbv +
∑

e∈E

ze

where y ∈ ZV and z ∈ ZE
+ with yu + yv − ze ≤ we for each edge e = uv.

Proof. Directly from the LP-duality equation

(21.11) min{wTx | 0 ≤ x ≤ 1, Ax = b}
= max{yTb − zT1 | z ≥ 0, yTA − zT ≤ wT}

(where A is the V × E incidence matrix of G), using the total unimodularity
of A.

Notes. Hartvigsen [1999] gave a characterization of the convex hull of square-free
simple 2-matching in a bipartite graph. (A 2-matching is a b-matching with b = 2.
A simple 2-matching is square-free if it contains no circuit of length 4.) It implies
that a maximum-weight square-free 2-matching in a bipartite graph can be found
in strongly polynomial time.

21.4. Capacitated b-matchings

If we require that a b-matching x satisfies x ≤ c for some ‘capacity’ function
c : E → Z+, we speak of a capacitated b-matching. So simple b-matchings
correspond to capacitated b-matchings for c = 1.

Theorem 21.7. Let G = (V, E) be a bipartite graph and let b ∈ ZV
+ and

c ∈ ZE
+. Then the maximum size of a b-matching x ≤ c is equal to

(21.12) min
X⊆V

b(V \ X) + c(E[X]).
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Proof. The proof is similar to that of Theorem 21.4. Now we define b(s) := ce

if s is a new vertex on the path connecting the end vertices of e.

Alternatively, we can reduce this theorem to Theorem 21.4, by replacing
each edge e by ce parallel edges, or we can use total unimodularity similarly
to (21.6).

Again we have the perfect case as direct consequence:

Corollary 21.7a. Let G = (V, E) be a bipartite graph and let b ∈ ZV
+ and

c ∈ ZE
+. Then there exists a perfect b-matching x ≤ c if and only if

(21.13) c(E[X]) ≥ b(X) − 1
2b(V )

for each X ⊆ V .

Proof. Directly from Theorem 21.7.

Again, by the total unimodularity of the incidence matrix of bipartite
graphs, the c-capacitated b-matching polytope (the convex hull of the b-
matchings x ≤ c) of a bipartite graph G = (V, E) is determined by:

(21.14) 0 ≤ xe ≤ ce for each e ∈ E,
x(δ(v)) ≤ bv for each v ∈ V .

Similarly, the following min-max relation for maximum-weight capacitated
b-matching follows:

Theorem 21.8. Let G = (V, E) be a bipartite graph and let b ∈ ZV
+ and

w, c ∈ ZE
+. Then the maximum weight wTx of a b-matching x ≤ c is equal to

the minimum value of

(21.15)
∑

v∈V

yvbv +
∑

e∈E

zece

where y ∈ ZV
+ and z ∈ ZE

+ satisfy yu + yv + ze ≥ we for each edge e = uv.

Proof. Directly from the LP-duality equation

(21.16) max{wTx | 0 ≤ x ≤ c, Ax ≤ b}
= min{yTb + zTc | y ≥ 0, z ≥ 0, yTA + zT ≥ wT}

(where A is the V × E incidence matrix of G), using the total unimodularity
of A.

21.5. Bipartite b-matching and w-vertex cover
algorithmically

Algorithmically, optimization problems on b-matchings and w-vertex covers
in bipartite graphs can be reduced to minimum-cost flow problems, and hence
can be solved in strongly polynomial time.
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Theorem 21.9. Given a bipartite graph G = (V, E), b : V → Z+, c : E →
Z+, and w : E → Q, a b-matching x ≤ c maximizing wTx can be found in
strongly polynomial time. Similarly, a perfect b-matching x ≤ c minimizing
wTx can be found in strongly polynomial time.

Proof. Let S and T be the colour classes of G, and orient the edges of G from
S to T , giving the digraph D. Then b-matchings in G correspond to integer
z-transshipments in D with 0 ≤ z(v) ≤ b(v) if v ∈ T and −b(v) ≤ z(v) ≤ 0
if v ∈ S. Perfect b-matchings correspond to integer b′-transshipments, where
b′(v) := −b(v) if v ∈ S and b′(v) := b(v) if v ∈ T . Hence this theorem follows
from Corollary 12.2d.

Wagner [1958] (cf. Dantzig [1955]) observed that the capacitated version
of the minimum-weight perfect b-matching problem can be reduced to the
uncapacitated version, by a construction similar to that used in proving The-
orem 21.4.

One similarly has for w-vertex covers:

Theorem 21.10. Given a bipartite graph G = (V, E), b : V → Q+, c : V →
Z+, and w : E → Z+, a w-vertex cover y ≤ c minimizing yTb can be found
in strongly polynomial time.

Proof. By reduction to Corollary 12.2e.

Although these results suggest a symmetry between matchings and ver-
tex covers, we mention here that the nonbipartite version of Theorem 21.9
holds true (Section 32.4), but that finding a maximum-size stable set in a
nonbipartite graph is NP-complete (see Section 64.2).

21.6. Transportation

The minimum-weight perfect b-matching problem is close to the classical
transportation problem. Given a bipartite graph G = (V, E) and a vector
b ∈ RV

+, a b-transportation is a vector x ∈ RE
+ with

(21.17) x(δ(v)) = bv

for each v ∈ V . So a b-transportation is a fractional version of a perfect
b-matching. Integer b-transportations are exactly the perfect b-matchings.

The following characterization of the existence of a b-transportation was
shown (in a much more general form) by Rado [1943] — compare Corollary
21.1b:

Theorem 21.11. Let G = (V, E) be a bipartite graph and let b ∈ RV
+. Then

there exists a b-transportation if and only if b(C) ≥ 1
2b(V ) for each vertex

cover C.
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Proof. Since the inequalities b(C) ≥ 1
2b(V ) (for vertex covers C), define a

rational polyhedral cone, we can assume that b is rational, and hence, by
scaling, that b is integer. Then the theorem follows from Corollary 21.1b.

Note that, trivially, there exists a b-transportation if and only if b belongs
to the convex cone in RV generated by the incidence vectors of the edges of
G. So Theorem 21.11 characterizes this cone.

A negative cycle criterion follows directly from the corresponding criterion
for transshipments. For any b-transportation x in a bipartite graph G =
(V, E) and any cost function c : E → R, make the directed graph Dx = (V, A)
as follows. Let U and W be the colour classes of G. For each edge e = uv of
G, with u ∈ U and v ∈ W , let A have an arc (u, v) of cost ce, and, if xe > 0,
an arc (v, u).of cost −ce. Then (Tolstŏı [1930]):

Theorem 21.12. x is a minimum-cost b-transportation if and only if Dx

has no negative-cost directed circuits.

Proof. Directly from Theorem 12.3.

Transportations in a complete bipartite graph can be formulated in terms
of matrices. Fixing vectors a ∈ Rm

+ and b ∈ Rn
+, an m × n matrix X = (xi,j)

is called a transportation if

(21.18) (i) xi,j ≥ 0 i = 1, . . . , m; j = 1, . . . , n,

(ii)
n∑

j=1

xi,j = ai i = 1, . . . , m,

(iii)

m∑

i=1

xi,j = bj j = 1, . . . , n.

Clearly, a transportation exists if and only if
∑

i ai =
∑

j bj .
Given an m × n ‘cost’ matrix C = (ci,j), the cost of a transportation

X = (xi,j) is defined as
∑

i,j ci,jxi,j . Then the transportation problem (also
called the Hitchcock-Koopmans transportation problem) is:

(21.19) given: vectors a ∈ Qm
+ , b ∈ Qn

+ and an m × n ‘cost’ matrix C =
(ci,j),

find: a minimum-cost transportation.

So it is equivalent to solving the LP problem of minimizing
∑

i,j ci,jxi,j over
(21.18). The transportation problem formed a major impulse to introduce
linear programming. Hitchcock [1941] and Dantzig [1951a] showed that the
simplex method applies to the transportation problem.

The transportation problem is also a special case of the minimum-cost b-
transshipment problem, and hence can be solved with the methods of Chapter
12. In particular, it is solvable in strongly polynomial time.

Linear programming also yields a min-max relation, originally due to
Hitchcock [1941] (also implicit in Kantorovich [1939]):
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Theorem 21.13 (Hitchcock’s theorem). The minimum cost of a transporta-
tion is equal to the maximum value of yTa + zTb, where y ∈ Rm and z ∈ Rn

such that yi + zj ≤ ci,j for all i, j.

Proof. This is LP-duality.

(Hitchcock [1941] gave a direct proof.)
The transportation problem differs from the minimum-weight perfect b-

matching problem in having a complete bipartite graph Km,n as underlying
bipartite graph and in not requiring integrality of the output. This last how-
ever is not a restriction, as Dantzig [1951a] showed:

Theorem 21.14. If a and b are integer, the transportation problem has an
integer optimum solution x.

Proof. Directly from the total unimodularity of the matrix underlying the
system (21.18), which is the incidence matrix of the complete bipartite graph
Km,n.

For a different proof, see the proof of Corollary 21.15a below.

Notes. Ford and Fulkerson [1955,1957b], Gleyzal [1955], Munkres [1957], and
Egerváry [1958] described primal-dual methods for the transportation problem,
and Ford and Fulkerson [1956a,1957a] extended it to the capacitated version.

If the ai and bj are small integers, the transportation problem can be reduced to
the assignment problem, by ‘splitting’ each i into ai or bi copies. (This observation
is due to Egerváry [1958], and in a different context to Tutte [1954b].)

21.6a. Reduction of transshipment to transportation

It is direct to transform a transportation problem to a transshipment problem.
Orden [1955] observed a reverse reduction (similar to the reduction described in
Section 16.7c). Indeed, let input D = (V, A), b ∈ RV and k ∈ RA for the trans-
shipment problem be given. Split each vertex v into two vertices v′, v′′ and replace
each arc (u, v) by an arc (u′, v′′), with cost k(u, v). Moreover, add arcs (v′, v′′), each
with cost 0. Let N :=

∑
v∈V |b(v)|. Define b′(v′) := −N and b′(v′′) := b(v) + N .

Then a minimum-cost b′-transshipment in the new structure gives a minimum-cost
b-transshipment in the original structure. Since the new graph is bipartite with
all edges oriented from one colour class to the other, we have a reduction to the
transportation problem.

(Orden [1955] also gave an alternative reduction of the transshipment problem
to the transportation problem. Let A′ be the set of pairs (u, v) with bu < 0 and
bv > 0 and with v is reachable in D from U . For each (u, v) ∈ A′, let k′(u, v) be
the length of a shortest u − v path in D, taking k as length function. Then the
(bipartite) transshipment problem for D′ := (V, A′), b, and k′ is equivalent to the
original transshipment problem.)

Fulkerson [1960] gave the following reduction of the capacitated transshipment
problem to the uncapacitated transportation problem. Let be given directed graph
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D = (V, A), b ∈ RV , a ‘capacity’ function c ∈ RA, and a ‘cost’ function k ∈
RA. Define V ′ := V ∪ A and E′ := {{a, v} | a = (v, u) or a = (u, v)}. Define
w({a, v}) := k(a) if v is head of a, and := 0 if v is tail of a. Let b′(a) := c(a)
and b′(v) := b(v) + c(δout(v)). Then a minimum-cost b-transshipment subject to c
corresponds to a minimum-cost b′-transportation. (More can be found in Wagner
[1958].)

21.6b. The transportation polytope

Given a ∈ Rm
+ and b ∈ Rn

+, the transportation polytope is the set of all matrices
X = (xi,j) in Rm×n satisfying (21.18). The transportation polytope was first studied
by Hitchcock [1941]. The following result is due to Dantzig [1951a].

Theorem 21.15. Let X = (xi,j) belong to the transportation polytope. Then X is
a vertex of the transportation polytope if and only if the set F := {ij | xi,j > 0}
forms a forest in the complete bipartite graph Km,n.

Proof. If F contains a circuit C = (i0, j1, i1, j2, i2, . . . , jk, ik), with ik = i0, define
Y = (yi,j) by: yi,j := 1 if (i, j) = (ih, jh) for some h = 1, . . . , k, yi,j := −1 if
(i, j) = (ih−1, jh) for some h = 1, . . . , k, and yi,j := 0 for all other (i, j). Then
X +εY belongs to the transportation polytope for any ε close enough to 0 (positive
or negative), and hence X is not a vertex of the transportation polytope.

Conversely, if X is not a vertex of the transportation polytope, there exists
a nonzero matrix Y = (yi,j) such that X + εY is in the transportation polytope
for any ε close enough to 0 (positive or negative). Then Y satisfies

∑n
j=1 yi,j = 0

for i = 1, . . . , m and
∑m

i=1 yi,j = 0 for j = 1, . . . , n. Since Y is nonzero, the set
F ′ := {ij | yi,j �= 0} contains a circuit. Since F ′ ⊆ F , it implies that F contains a
circuit.

This gives:

Corollary 21.15a. If a and b are integer vectors, the transportation polytope is an
integer polyhedron.

Proof. By Theorem 21.15, for any vertex X = (xi,j) of the transportation polytope,
the set of pairs (i, j) with xi,j not an integer is a forest. Hence, if it is nonempty,
this forest has an end edge, say (i, j). Assume without loss of generality that i has
degree 1 in this forest. Then xi,j is equal to ai minus

∑
j′ 
=j xi,j′ , which is an integer

as ai and each of the xi,j′ (j′ �= j) is an integer.

The dimension of the transportation polytope is easy to determine (Koopmans
and Reiter [1951], Dulmage and Mendelsohn [1962], Klee and Witzgall [1968]):

Theorem 21.16. If a > 0 and b > 0, the dimension of the transportation polytope
is equal to (m − 1)(n − 1).

Proof. Let X = (xi,j) be a vector in the relative interior of the transportation
polytope. So xi,j > 0 for all i, j. For each (i, j) with i ∈ {1, . . . , m − 1} and j ∈
{1, . . . , n − 1}, we can correct any small perturbation of xi,j by a unique change of
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the xi,n and xm,j . So the dimension of the transportation polytope is (m−1)(n−1).

Notes. Balinski [1974] (cf. Balinski and Rispoli [1993]) showed the Hirsch conjec-
ture for some classes of transportation polytopes. For counting and estimating the
number of vertices of transportation polytopes, see Simonnard and Hadley [1959],
Demuth [1961], Wintgen [1964], Szwarc and Wintgen [1965], Klee and Witzgall
[1968], Bolker [1972], and Ahrens [1981]. For counting facets, see Klee and Witzgall
[1968].

Given C = (ci,j) ∈ Rm×n, the dual transportation polyhedron is the set of all
vectors (u; v) ∈ Rm × Rn satisfying38:

(21.20) u1 = 0
ui + vj ≥ ci,j i = 1, . . . , m; j = 1, . . . , n.

(The condition u1 = 0 is added for normalization.) It is easy to see that the dimen-
sion of the dual transportation polyhedron is m + n − 1, and that (u; v) satisfying
(21.20) is a vertex of the dual transportation polyhedron if and only if the graph
with vertex set {p1, . . . , pm, q1, . . . , qn} and edge set {{pi, qj} | ui + vj = ci,j} is
connected.

Balinski [1984] showed with the ‘signature method’ that the diameter of the
dual transportation polyhedron is at most (m − 1)(n − 1), thus proving the Hirsch
conjecture for this class of polyhedra.

Balinski and Russakoff [1984] characterized vertices and higher-dimensional
faces of dual transportation polyhedra. More can be found in Zhu [1963], Balin-
ski [1983], and Kleinschmidt, Lee, and Schannath [1987].

21.7. b-edge covers and w-stable sets

Exchanging ≤ and ≥ appropriately in the definitions of b-matchings and w-
vertex covers gives the b-edge covers and the w-stable sets. These concepts
again turn out to be each others dual.

Let G = (V, E) be a graph, with V × E incidence matrix A. For b : V →
Z+, a b-edge cover is a function x : E → Z+ such that for each vertex v of G:

(21.21) x(δ(v)) ≥ bv.

In other words, x is a b-edge cover if and only if x is an integer vector satisfying
x ≥ 0, Ax ≥ b. So if b = 1, then {0, 1}-valued b-edge covers are precisely the
incidence vectors of edge covers.

For w : E → Z+, a w-stable set is a function y : V → Z+ such that for
each edge e = uv of G:

(21.22) yu + yv ≤ we.

38 We write (u; v) for

(

u

v

)

.
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In other words, y is a w-stable set if and only if y is an integer vector satisfying
y ≥ 0, yTA ≤ wT. So if w = 1, then {0, 1}-valued w-stable sets are precisely
the incidence vectors of stable sets.

In this case, b-edge covers and w-stable sets are related by the following
LP-duality equation:

(21.23) min{wTx | x ≥ 0, Ax ≥ b} = max{yTb | y ≥ 0, yTA ≤ wT}.

Since A is totally unimodular (Theorem 18.2), both optima are attained by
integer vectors. This gives (where the w-weight of a vector x equals wTx and
the b-weight of a vector y equals yTb):

Theorem 21.17. Let G = (V, E) be a bipartite graph and let b : V → Z+

and w : E → Z+. Then the minimum w-weight wTx of a b-edge cover x is
equal to the maximum b-weight of a w-stable set.

Proof. See above.

Taking b = 1, we obtain Corollary 19.5a. For w = 1, we get a min-max
relation for minimum-size b-edge cover:

Corollary 21.17a. Let G = (V, E) be a bipartite graph and let b : V → Z+.
Then the minimum size of a b-edge cover is equal to the maximum b-weight
of a stable set.

Proof. This is the special case w = 1 of Theorem 21.17.

Again, an alternative way of proving this is by derivation from the Kőnig-
Rado edge cover theorem (Theorem 19.4): Split each vertex v into bv copies,
replace each edge uv by bubv edges connecting the bu copies of u with the bv

copies of v.

21.8. The b-edge cover and the w-stable set polyhedron

The total unimodularity of the incidence matrix of a bipartite graph also
gives descriptions of the corresponding polyhedra.

The b-edge cover polyhedron is the convex hull of the b-edge covers. For
bipartite graphs it is determined by:

(21.24) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≥ bv for each v ∈ V .

Theorem 21.18. The b-edge cover polyhedron of a bipartite graph G = (V, E)
is determined by (21.24).

Proof. Directly from the facts that system (21.24) amounts to x ≥ 0, Ax ≥ b
and that A is totally unimodular.
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This extends Theorem 19.6 on the edge cover polytope.
Similarly, the w-stable set polyhedron, being the convex hull of the w-

stable sets, is, for bipartite graphs, determined by:

(21.25) (i) yv ≥ 0 for each v ∈ V ,
(ii) yu + yv ≤ we for each e = uv ∈ E.

Theorem 21.19. The w-stable set polyhedron of a bipartite graph is deter-
mined by (21.25).

Proof. Directly from the total unimodularity of the incidence matrix of a
bipartite graph.

This generalizes the necessity part of Theorem 19.7.

21.9. Simple b-edge covers

Again, call a vector x simple if it is {0, 1}-valued. Then a simple b-edge cover
corresponds to a set F of edges with degF (v) ≥ bv for each v ∈ V . We will
identify the vector and the set. Note that a simple b-edge cover can exist only
if bv ≤ deg(v) for each vertex v.

It is easy to derive the following min-max relation for simple b-edge covers
from Theorem 21.4 on the maximum size of a simple b-matching (E[X] denote
the set of edges spanned by X):

Theorem 21.20. Let G = (V, E) be a bipartite graph and let b ∈ ZV
+ with

bv ≤ deg(v) for each vertex v. Then the minimum size of a simple b-edge cover
in G is equal to the maximum value of b(X) − |E[X]| taken over X ⊆ V .

Proof. Define b′(v) := deg(v) − b(v) for each vertex v. Then a subset F
of E is a simple b-edge cover if and only if E \ F is a simple b′-matching.
By Theorem 21.4, the maximum size of a simple b′-matching is equal to the
minimum value of b′(V \X)+ |E[X]| taken over X ⊆ V . Hence the minimum
size of a simple b-edge cover is equal to the maximum value of

(21.26) |E| − b′(V \ X) − |E[X]| = |E| −
∑

v∈V \X

(deg(v) − b(v)) − |E[X]|

= |E| − 2|E[V \ X]| − |δ(X)| + b(V \ X) − |E[X]|
= b(V \ X) − |E[V \ X]|,

taken over X ⊆ V .

Alternatively, the theorem follows from the fact that both optima in the
LP-duality equation (where A is the V × E incidence matrix of G):

(21.27) min{1Tx | 0 ≤ x ≤ 1, Ax ≥ b}
= max{yTb − zT1 | y ≥ 0, z ≥ 0, yTA − zT ≤ 1T}
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have integer optimum solutions, since A is totally unimodular.
If b is equal to a constant k, Theorem 21.20 amounts to (with the help of

the edge cover variant of Kőnig’s edge-colouring theorem (Theorem 20.5)):

Corollary 21.20a. Let G = (V, E) be a bipartite graph and let k ∈ Z+.
Then the minimum size of the union of k disjoint edge covers is equal to the
maximum value of k|X| − |E[X]| taken over X ⊆ V .

Proof. Apply Theorem 21.20 to bv := k for all v ∈ V . We obtain a formula
for the maximum size of a subset F of E with degF (v) ≥ k for all v ∈ V . By
Theorem 20.5, F is the union of k disjoint edge covers.

By the total unimodularity of the incidence matrix of bipartite graphs,
the simple b-edge cover polytope (the convex hull of the simple b-edge covers)
of a bipartite graph G = (V, E) is determined by:

(21.28) 0 ≤ xe ≤ 1 for each e ∈ E,
x(δ(v)) ≥ bv for each v ∈ V .

LP-duality also gives a min-max formula for the minimum weight of simple
b-edge covers:

Theorem 21.21. Let G = (V, E) be a bipartite graph and let b ∈ ZV
+ and

w ∈ ZE
+. Then the minimum weight wTx of a simple b-edge cover x is equal

to the maximum value of

(21.29)
∑

v∈V

yvbv −
∑

e∈E

ze

where y ∈ ZV
+ and z ∈ ZE

+ with yu + yv − ze ≤ we for each edge e = uv.

Proof. Directly from the LP-duality equation

(21.30) min{wTx | 0 ≤ x ≤ 1, Ax ≥ b}
= max{yTb − zT1 | y ≥ 0, z ≥ 0, yTA − zT ≤ wT}

(where A is the V × E incidence matrix of G), using the total unimodularity
of A.

21.10. Capacitated b-edge covers

If we require that a b-edge cover x satisfies x ≤ c for some ‘capacity’ function
c : E → Z+, we speak of a capacitated b-edge cover. So simple b-edge covers
correspond to capacitated b-edge covers with c = 1.

Theorem 21.22. Let G = (V, E) be a bipartite graph and let b ∈ ZV
+ and

c ∈ ZE
+ with c(δ(v)) ≥ bv for each v ∈ V . Then the minimum size of a b-edge

cover x ≤ c is equal to
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(21.31) max
X⊆V

b(X) − c(E[X]).

Proof. The proof is similar to that of Theorem 21.20.

Alternatively, we can reduce this theorem to Theorem 21.20, by replacing
each edge e by ce parallel edges, or we can use total unimodularity similarly
to (21.27).

Theorem 21.23. Let G = (V, E) be a bipartite graph and let b ∈ ZV
+ and

c, w ∈ ZE
+. Then the minimum weight wTx of a b-edge cover x ≤ c is equal

to the maximum value of

(21.32)
∑

v∈V

yvbv −
∑

e∈E

zece

where y ∈ ZV
+ and z ∈ ZE

+ with yu + yv − ze ≤ we for each edge e = uv.

Proof. Directly from the LP-duality equation

(21.33) min{wTx | 0 ≤ x ≤ c, Ax ≥ b}
= max{yTb − zTc | y ≥ 0, z ≥ 0, yTA − zT ≤ wT}

(where A is the V × E incidence matrix of G), using the total unimodularity
of A.

By the total unimodularity of the incidence matrix of G, the convex hull
of b-edge covers x ≤ c of a bipartite graph G is determined by the inequalities

(21.34) (i) 0 ≤ xe ≤ ce for each e ∈ E,
(ii) x(δ(v)) ≥ bv for each v ∈ V .

21.11. Relations between b-matchings and b-edge covers

Like for matchings and edge covers, there is also a close relation between
maximum-size b-matchings and minimum-size b-edge covers, as was shown
by Gallai [1959a]. This gives a connection between Corollaries 21.1a and
21.17a.

Let G = (V, E) be an undirected graph without isolated vertices, and let
b ∈ ZV

+. Define:

(21.35) νb(G) := the maximum size of a b-matching,
ρb(G) := the minimum size of a b-edge cover.

Theorem 21.24. Let G = (V, E) be an undirected graph without isolated
vertices, and let b ∈ ZV

+. Then

(21.36) νb(G) + ρb(G) = b(V ).
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Proof. This can be reduced to Gallai’s theorem (Theorem 19.1), by splitting
each vertex v into bv copies, and replacing each edge e = uv by bubv edges
connecting the bu copies of u with the bv copies of v.

A direct proof of the previous theorem is given in the proof of the following
theorem, also due to Gallai [1959a]:

Theorem 21.25. Let G = (V, E) be an undirected graph and let b ∈ ZV
+.

Then for each maximum-size b-matching x there is a minimum-size b-edge
cover y with x ≤ y. Conversely, for each minimum-size b-edge cover y there
is a maximum-size b-matching x with x ≤ y.

Proof. Let x be a maximum-size b-matching. For each vertex v of G, increase
the value of x on some edge incident with v, by bv − x(δ(v)). We obtain a
b-edge cover y satisfying

(21.37) y(E) = x(E) +
∑

v∈V

(bv − x(δ(v))) = b(V ) − x(E).

Conversely, let y be a minimum-size b-edge cover. For each vertex v of
G, decrease the value of y on edges incident with v, by a total amount of
y(δ(v)) − bv (as long as y ≥ 0). We obtain a b-matching x satisfying

(21.38) x(E) ≥ y(E) −
∑

v∈V

(y(δ(v)) − bv) = b(V ) − y(E).

(21.37) and (21.38) imply that the y (x, respectively) obtained from x
(y, respectively) is optimum, thus showing the theorem, and also showing
(21.36).

In a bipartite graph, a minimum-size b-edge cover and a maximum-weight
stable set can be found in strongly polynomial time, by reduction to Theorem
21.9:

Corollary 21.25a. Given a bipartite graph G = (V, E) and b ∈ ZV
+, a

minimum-size b-edge cover and a maximum b-weight stable set can be found
in strongly polynomial time.

Proof. Since stable sets are exactly the complements of vertex covers, finding
a maximum b-weight stable sets is directly reduced to finding a minimum b-
weight vertex cover. The construction given in the proof of Theorem 21.25
implies that a maximum-size b-matching gives a minimum-size b-edge cover
in polynomial time. So Theorem 21.9 gives the present corollary.

Moreover, for the weighted case:

Theorem 21.26. A minimum-weight capacitated b-edge cover in a bipartite
graph can be found in strongly polynomial time.
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Proof. Directly from Corollary 12.2d, by orienting the edges from one colour
class to the other.

21.12. Upper and lower bounds

We finally consider upper and lower bounds. That is, for a graph G = (V, E)
and a, b ∈ RV and d, c ∈ RE , we consider vectors x ∈ RE satisfying:

(21.39) (i) de ≤ xe ≤ ce for each e ∈ E,
(ii) av ≤ x(δ(v)) ≤ bv for each v ∈ V ,

If integer, x is both a b-matching and an a-edge cover.
The optimization problem can be reduced again to minimum-cost circu-

lation, and hence:

Theorem 21.27. Given w : E → Q, an integer vector x maximizing wTx
over (21.39) can be found in strongly polynomial time.

Proof. This is a special case of Corollary 12.2d, by orienting the edges of G
from one colour class to the other.

Corresponding min-max and polyhedral characterizations directly follow
from LP-duality and the total unimodularity of the incidence matrix of G.
We formulate them for existence and optimum size of solutions of (21.39).

The following was formulated by Kellerer [1964]:

Theorem 21.28. Let G = (V, E) be a bipartite graph and let a, b ∈ ZV and
d, c ∈ ZE with a ≤ b and d ≤ c. Then there exists an x ∈ ZE satisfying
(21.39) if and only if for each X ⊆ V one has

(21.40) c(E[X]) − d(E[V \ X])
≥ max{a(S ∩ X) − b(T \ X), a(T ∩ X) − b(S \ X)},

where S and T are the colour classes of G.

Proof. From Corollary 11.2i, by orienting all edges from S to T and taking
U := (S \ X) ∪ (T ∩ X).

This theorem has several special cases. For d = 0 it implies the following
result due to Fulkerson [1959a] (a generalization of Theorem 16.8):

Corollary 21.28a. Let G = (V, E) be a bipartite graph with colour classes
S and T , let a, b ∈ ZV

+ with a ≤ b, and let c ∈ ZE
+. Then there is a vector

x ≤ c that is both a b-matching and an a-edge cover if and only if there exist
y ∈ ZE

+ and z ∈ ZE
+ with y ≤ c and z ≤ c, such that

(21.41) y(δ(v)) ≤ bv and z(δ(v)) ≥ av for each v ∈ S and
y(δ(v)) ≥ av and z(δ(v)) ≤ bv for each v ∈ T .
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Proof. Note that (21.40) can be decomposed into two inequalities, one in-
volving a|S and b|T only, the other involving a|T and b|S only39. This gives
the present corollary.

The special case d = 0, c = 1 is:

Corollary 21.28b. Let G = (V, E) be a bipartite graph with colour classes
S and T and let a, b ∈ ZV

+ with a ≤ b. Then E has a subset F that is both a
b-matching and an a-edge cover if and only if E has subsets F ′ and F ′′ such
that F ′ contains at least av edges covering v if v ∈ S and at most bv edges
covering v if v ∈ T , and F ′′ contains at least av edges covering v if v ∈ T
and at most bv edges covering v if v ∈ S.

Proof. Directly from Corollary 21.28a by taking c = 1.

A min-max relation for such vectors can be derived from Hoffman’s cir-
culation theorem (Theorem 11.2):

Theorem 21.29. Let G = (V, E) be a bipartite graph and let a, b ∈ ZV

and d, c ∈ ZE, such that there exists an x ∈ ZE satisfying (21.39). Then the
minimum size of such a vector x is equal to

(21.42) max
Z⊆V

(a(Z) − c(E[Z)) + d(E[V \ Z]]),

while the maximum size of such a vector x is equal to

(21.43) min
Z⊆V

(c(E[V \ Z]) − d(E[Z]) + b(Z)).

For each integer value τ between (21.42) and (21.43) there exists such a vector
x of size τ .

Proof. Choose τ ∈ Z. Make a directed graph D = (V, A) as follows.
Let S and T be the colour classes of G. Orient each edge of G from S

to T . Add new vertices s and t. For each v ∈ S, make an arc from s to v,
with d(s, v) := av and c(s, v) := bv. For each v ∈ T , make an arc from v to
t, with d(v, t) := av and c(v, t) := bv. Finally, make an arc from t to s with
d(t, s) := c(t, s) := τ .

It suffices to show that D has a circulation x satisfying d ≤ x ≤ c if
and only if τ is between (21.42) and (21.43). We do this by using Hoffman’s
circulation theorem. Choose a subset X of the vertex set of D. Consider
Hoffman’s condition:

(21.44) d(δin(X)) ≤ c(δout(X)).

Since by assumption some vector x satisfying (21.39) exists, (21.44) holds if
s, t ∈ X or s, t �∈ X (as ignoring the bounds on (t, s) there is a circulation).

If s ∈ X and t �∈ X, we have

39 f |X denotes the restriction of a function f to a set X.
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(21.45) d(δin(X)) = τ + d(E[(S \ X) ∪ (T ∩ X)])

and

(21.46) c(δout(X)) = b(S \ X) + c(E[(S ∩ X) ∪ (T \ X)]) + b(T ∩ X).

Hence (21.44) for such X is equivalent to

(21.47) τ ≤ b(Z) + c(E[V \ Z]) − d(E[Z])

for all Z ⊆ V (take Z = (S \ X) ∪ (T ∩ X)). That is, to τ being at most
(21.43).

If t ∈ X and s �∈ X, we have

(21.48) d(δin(X)) = a(S ∩ X) + d(E[(S \ X) ∪ (T ∩ X)]) + a(T \ X)

and

(21.49) c(δout(X)) = τ + c(E[(S ∩ X) ∪ (T \ X)]).

Hence (21.44) for such X is equivalent to

(21.50) τ ≥ a(Z) − c(E[Z]) + d(E[V \ Z])

for all Z ⊆ V (take Z = (S ∩ X) ∪ (T \ X)). That is, to τ being at least
(21.42).

A special case is the following theorem of Folkman and Fulkerson [1969]:

Corollary 21.29a. Let G = (V, E) be a bipartite graph, let a, b ∈ ZV
+, and

let τ ∈ Z+. Then E has a subset F with av ≤ degF (v) ≤ bv for each v ∈ V
and with |F | = τ if and only if

(21.51) |E[Z]| ≥ max{a(Z) − τ, τ − b(V \ Z), a(S ∩ Z) − b(T \ Z), a(T ∩
Z) − b(S \ Z)}

for each Z ⊆ V , where S and T are the colour classes of G.

Proof. Directly from Theorems 21.28 and 21.29.

21.13. Further results and notes

21.13a. Complexity survey on weighted bipartite b-matching and

transportation

Complexity survey for weighted b-matching in bipartite graphs (∗ indicates an
asymptotically best bound in the table):

O(n4B) Munkres [1957]

O(β · MF(n, m, B)) Ford and Fulkerson [1955,1957b]

≫
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continued

O(n2mB) Iri [1960]

∗ O(β · SP+(n, m, W )) Edmonds and Karp [1970]

O(nW · MF(n, m, B)) Edmonds and Karp [1972]

∗ O(m log B · SP+(n, m, W )) Edmonds and Karp [1972]

O(nm log(nB)) Dinits [1973a]

O(n log β · SP+(n, m, W )) Lawler [1976b]

O(n log W · MF(n, m, B)) Röck [1980]

O(m2 log n · MF(n, m, B)) Tardos [1985a]

∗ O(β3/4m log W ) Gabow [1985b]

∗ O(β1/2n1/3m log W ) Gabow [1985b] for simple graphs

O(n2 log n · SP+(n, m, W )) Galil and Tardos [1986,1988]

O(nm log(n2/m) log(nW )) Goldberg and Tarjan [1987,1990]

O(n log n(m + n log n)) Orlin [1988,1993]

∗ O((β1/2m + β log β) log(nW )) Gabow and Tarjan [1989]

∗ O(n1m + n3
1 log(n1W )) Ahuja, Orlin, Stein, and Tarjan [1994]

∗ O(n1m log(2 +
n2
1

m
log(n1W ))) Ahuja, Orlin, Stein, and Tarjan [1994]

∗ O(n log n(m + n1 log n1)) Kleinschmidt and Schannath [1995]

Here B := ‖b‖∞, β := ‖b‖1, W := ‖w‖∞ (assumed to be integer), and n1 :=
min{|S|, |T |}, where S and T are the colour classes of the bipartite graph. By
SP+(n, m, W ) we denote the time required for solving a shortest path problem
in a digraph with n vertices, m arcs, and nonnegative integer length function l
with ‖l‖∞ ≤ W . MF(n, m, B) denotes the time required to solve a maximum flow
problem in a digraph with n vertices, m arcs, and integer capacity function c with
‖c‖∞ ≤ B.

Complexity survey for the uncapacitated transportation problem:

O(n4B) Munkres [1957]

O(β · MF(n, n2, B)) Ford and Fulkerson [1955,1957b]

∗ O(n3 log(nB))
Edmonds and Karp [1972], Dinits
[1973a]

O(n4W ) Edmonds and Karp [1972]

∗ O(β3/4n2 log W ) Gabow [1985b]

∗ O(β1/2n7/3 log W ) Gabow [1985b]

O(n4 log n · MF(n, n2, W )) Tardos [1985a]

O(n4 log n) Galil and Tardos [1986,1988]

O(n3 log(nW )) Goldberg and Tarjan [1987,1990]

≫
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continued

O(n3 log n) Orlin [1988,1993]

∗ O((β1/2n2 + β log β) log(nW )) Gabow and Tarjan [1989]

∗ O(n1n
2 + n3

1 log(n1W )) Ahuja, Orlin, Stein, and Tarjan [1994]

∗ O(n1n
2 log(2 +

n2
1

n2 log(n1W ))) Ahuja, Orlin, Stein, and Tarjan [1994]

∗ O(n2
1n log2 n) Tokuyama and Nakano [1992,1995]

∗ O(n1n
2 log n) Kleinschmidt and Schannath [1995]

Complexity survey for weighted capacitated b-matching in bipartite graphs:

∗ O(n max{B, C} · SP+(n, m, W )) Edmonds and Karp [1970]

O(nW · MF(n, m, max{B, C})) Edmonds and Karp [1972]

∗ O(n log β · SP+(n, m, W )) Lawler [1976b]

O(n log W · MF(n, m, max{B, C})) Röck [1980]

O(m2 log n · MF(n, m, max{B, C})) Tardos [1985a]

O(β3/4mC log W ) Gabow [1985b]

O(β1/2n1/3mC log W ) Gabow [1985b]

O(n2 log n · SP+(n, m, W )) Galil and Tardos [1986,1988]

∗ O(nm log(n2/m) log(nW )) Goldberg and Tarjan [1987,1990]

∗ O(m log n · SP+(n, m, W )) Orlin [1988,1993]

∗ O(β1/2mC log(nW )) Gabow and Tarjan [1988b,1989]

∗ O(n2/3mC4/3 log(nW )) Gabow and Tarjan [1989]

∗ O((β1/2m + β log β) log(nW )) Gabow and Tarjan [1989]

∗ O((nm + β log β) log(nW )) Gabow and Tarjan [1989]

∗ O(n1m + n3
1 log(n1W ))

Ahuja, Orlin, Stein, and Tarjan
[1994]

∗ O(n1m log(2 +
n2
1

m
log(n1W )))

Ahuja, Orlin, Stein, and Tarjan
[1994]

Here C := ‖c‖∞.
Complexity survey for the capacitated transportation problem:

O(n4W ) Edmonds and Karp [1972]

O(n3 log max{B, C}) Edmonds and Karp [1972]

O(n4 log W ) Röck [1980]

O(n4 log n · MF(n, n2, max{B, C})) Tardos [1985a]

∗ O(n2B) Gabow [1985b]

≫
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continued

O(β3/4n2C log W ) Gabow [1985b]

O(β1/2n7/3C log W ) Gabow [1985b]

∗ O(n3 log(nW )) Goldberg and Tarjan [1987,1990]

∗ O(n4 log n)
Galil and Tardos [1986,1988],
Orlin [1988,1993]

∗ O(n2β1/2C log(nW )) Gabow and Tarjan [1988b,1989]

∗ O(n8/3C4/3 log(nW )) Gabow and Tarjan [1989]

∗ O((β1/2n2 + β log β) log(nW )) Gabow and Tarjan [1989]

∗ O(n1n
2 + n3

1 log(n1W ))
Ahuja, Orlin, Stein, and Tarjan
[1994]

∗ O(n1n
2 log(2 +

n2
1

n2 log(n1W )))
Ahuja, Orlin, Stein, and Tarjan
[1994]

Let G = (V, E) be a bipartite graph, with colour classes S and T say. The existence
of a perfect (capacitated) b-matching can be reduced quite directly to the problem
of finding a maximum s − t flow in the digraph obtained from G by adding two
new vertices s and t, orienting each edge from S to T , and adding an arc (s, s′)
for each s′ ∈ S, and adding an arc (t′, t) for each t′ ∈ T . Similarly, a maximum
(capacitated) b-matching can be found.

It implies that if MF(n, m, C) is the running time of a maximum flow algo-
rithm for inputs with n vertices, m arcs, and integer capacity function c with
‖c‖∞ ≤ C, then a maximum-size (capacitated) b-matching can be found in time
O(MF(n, m, C)), for bipartite graphs with n vertices, m edges and b ∈ ZV satisfying
‖b‖∞ ≤ C (and capacity function c ∈ ZE satisfying ‖c‖∞ ≤ C).

In some cases, one can obtain better bounds, in particular if one of the colour
classes is considerably smaller than the other. To this end, let n1 := min{|S|, |T |}.
Implementing the shortest augmenting path rule described in Section 10.5, then
gives an O(n1m

2) running time, since a shortest s − t path has length at most
2n1 + 1 = O(n1), implying that the number of iterations is bounded by n1m.

Similarly, the blocking flow method of Dinits [1970] described in Section 10.6 can
be performed in O(n2

1m) time, since the bound in Theorem 10.6 becomes O(n1m),
while there are O(n1) blocking flow iterations. The method of Karzanov [1974] can
be sharpened to O(n2

1n), as was shown by Gusfield, Martel, and Fernández-Baca
[1987]. Ahuja, Orlin, Stein, and Tarjan [1994] gave a method taking the minimum

of O(n1m + n3
1), O(n1m + n2

1

√
m), O(n1m + n2

1

√
log C), and O(n1m log(2 +

n2
1

m
))

time.
For the special case where bu = 1 for each u in the smaller colour class, Adel’son-

Vel’skĭı, Dinits, and Karzanov [1975] gave an O(n
5/3
1 n) algorithm for finding a b-

factor.
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21.13b. The matchable set polytope

Let G = (V, E) be a graph. A subset X of V is called matchable, if G has a matching
M with

⋃
M = X; that is, if the subgraph G[X] of G induced by X has a perfect

matching.
The matchable set polytope of G is the convex hull of the incidence vectors

of matchable sets. Theorem 21.11 implies a characterization of the matchable set
polytope in case G is bipartite.

For any graph, each vector in the matchable set polytope trivially satisfies:

(21.52) (i) 0 ≤ xv ≤ 1 for each v ∈ V ,
(ii) x(C) ≤ 1

2
x(V ) for each stable set C.

If G is bipartite, this set of inequalities determines the matchable set polytope, a
result of Balas and Pulleyblank [1983]:

Theorem 21.30. If G is bipartite, the matchable set polytope is determined by
(21.52).

Proof. Let x satisfy (21.52). By Theorem 21.11, there exists an x-transportation
y ∈ RE

+. That is, x = Ay, where A is the V × E incidence matrix of G.
As x satisfies (21.52)(i), y satisfies y ≥ 0, Ay ≤ 1. So, by Corollary 18.1b, y

belongs to the matching polytope of G. So y is a convex combination of vectors
χM , where M ranges over the matchings in G. Then x is a convex combination of
the vectors χS , where S is matchable (that is, the set of vertices covered by some
matching M). This follows from the fact that AχM = χS if M is a matching and
S is the set of vertices covered by M .

So x belongs to the matchable set polytope.

It is easy to check that only for bipartite graphs the matchable set polytope is
determined by (21.52).

Note that for bipartite graphs G = (V, E), by Theorem 21.11, condition
(21.52)(ii) is equivalent to x belonging to the convex cone generated by the in-
cidence vectors (in RV ) of edges, considered as subsets of V .

Qi [1987] gave an algorithm for the separation problem for the matchable set
polytope of a bipartite graph. For more on the matchable set polytope, see Balas
and Pulleyblank [1983] and Section 25.5d.

21.13c. Existence of matrices

If the bipartite graph is a complete bipartite graph, theorems on the existence of
b-matchings and b-edge covers amount to theorems on the existence of matrices
obeying prescribed bounds on the row and column sums. This gives the following
theorem of Gale [1956,1957] and Ryser [1957]:

Theorem 21.31 (Gale-Ryser theorem). Let a, b ∈ Zm
+ and a′, b′ ∈ Zn

+ with a ≤ b
and a′ ≤ b′ and satisfying a1 ≥ a2 ≥ · · · ≥ am and a′

1 ≥ a′
2 ≥ · · · ≥ a′

n. Then there
exists a {0, 1}-valued m×n matrix with ith row sum between ai and bi (i = 1, . . . , m)
and jth column sum between a′

j and b′
j (j = 1, . . . , n) if and only if
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(21.53) (i)

k∑

i=1

ai ≤
n∑

j=1

min{k, b′
j} for all k = 1, . . . , m,

(ii)

k∑

j=1

a′
j ≤

m∑

i=1

min{k, bi} for all k = 1, . . . , n.

Proof. Necessity. Consider any inequality in (21.53)(i). The number of 1’s in rows
1, . . . , k is at least the left-hand side and at most the right-hand side. This proves
necessity of the inequality. Necessity of the inequalities (ii) is shown similarly.

Sufficiency. This follows from Theorem 21.28 applied to the complete bipartite
graph G = Km,n. Then we must show that for each I ⊆ {1, . . . , m} and J ⊆
{1, . . . , n} one has:

(21.54) |I| · |J | ≥ max{a(I) − b′(J), a′(J) − b(I)},

where I := {1, . . . , m} \ I and J := {1, . . . , n} \ J . By symmetry, it suffices to show

(21.55) |I| · |J | ≥ a(I) − b′(J).

This follows from (21.53)(i), since

(21.56) a(I) ≤
|I|∑

i=1

≤
n∑

j=1

min{|I|, b′
j} ≤ |J | · |I| + b′(J)

for any J ⊆ {1, . . . , n}.

(Gale [1956,1957] proved this theorem for a = 0 and b′ = ∞, and Ryser [1957] for
a = b and a′ = b′.)

Corollary 21.28a due to Fulkerson [1959a], is equivalent to the following result
extending the Gale-Ryser theorem:

Theorem 21.32. Let (ci,j) be a nonnegative m × n matrix and let a, b ∈ Zm
+ and

a′, b′ ∈ Zn
+ with a ≤ b and a′ ≤ b′. Then there exists an integer m × n matrix (xi,j)

satisfying

(21.57) (i) 0 ≤ xi,j ≤ ci,j for all i = 1, . . . , m and j = 1, . . . , n,

(ii) ai ≤
n∑

j=1

xi,j ≤ bi for all i = 1, . . . , m,

(iii) a′
j ≤

m∑

i=1

xi,j ≤ b′
j for all j = 1, . . . , n,

if and only if there exist an m × n matrix (x′
i,j) satisfying

(21.58) (i) 0 ≤ x′
i,j ≤ ci,j for all i = 1, . . . , m and j = 1, . . . , n,

(ii)

n∑

j=1

x′
i,j ≤ bi for all i = 1, . . . , m,

(iii) a′
j ≤

m∑

i=1

x′
i,j for all j = 1, . . . , n,

and an m × n matrix (x′′
i,j) satisfying
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(21.59) (i) 0 ≤ x′′
i,j ≤ ci,j for all i = 1, . . . , m and j = 1, . . . , n,

(ii) ai ≤
n∑

j=1

x′′
i,j for all i = 1, . . . , m,

(iii)

m∑

i=1

x′′
i,j ≤ b′

j for all j = 1, . . . , n.

Proof. This is equivalent to Corollary 21.28a.

21.13d. Further notes

Corollary 11.2c implies the following result of Hoffman [1956a]. Let G = (V, E) be
a bipartite graph and let 0 < α < 1. Then E has a subset F such that

(21.60) ⌊degE(v)

α
⌋ ≤ degF (v) ≤ ⌈degE(v)

α
⌉

for each vertex v.
Ikura and Nemhauser [1982] gave a strongly polynomial-time primal simplex al-

gorithm for the maximum-weight stable set problem in bipartite graphs (the number
of pivot steps is at most n2; the method corresponds to a strongly polynomial-time
dual simplex algorithm for the minimum-size b-edge cover problem, which is a spe-
cial case of a minimum-flow problem). (An improvement was given by Armstrong
and Jin [1996].) An interior-point method was described by Mizuno and Masuzawa
[1989]. For more on capacitated b-matchings (in terms of matrices), see Anstee
[1983].

We refer for further notes on algorithmic aspects of the transportation problem
to Section 12.5d on the equivalent transshipment problem.

Heller [1963,1964] gave necessary and sufficient conditions for a linear program
to be equivalent to a transportation problem. Katerinis [1987] and Enomoto, Ota,
and Kano [1988] gave sufficient conditions for bipartite graphs to have a k-factor.

Goodman, Hedetniemi, and Tarjan [1976] gave a linear-time algorithm finding
a maximum-weight simple b-matching in a tree.

Faster algorithms for transportation problems where the cost satisfies a quad-
rangle inequality where given by Karp and Li [1975] and Aggarwal, Bar-Noy,
Khuller, Kravets, and Schieber [1995].

Variants of the transportation problem (minimax, bottleneck) were investigated
by Szwarc [1966,1971], Hammer [1969,1971], Garfinkel and Rao [1971], Srinivasan
and Thompson [1972a,1972b,1976], Derigs and Zimmermann [1979], Derigs [1982],
Russell, Klingman, and Partow-Navid [1983], and Ahuja [1986]. Prager [1957b] and
Kellerer [1961] gave a generalization.

Prager [1955] gave an extension to quadratic cost functions, i.e. given b ∈ Rm,
d ∈ Rn, and ci,j ≥ 0, qi,j ≥ 0 (i = 1, . . . , m; j = 1, . . . , n):

(21.61) minimize

m∑

i=1

n∑

j=1

(ci,jxi,j + qi,jx
2
i,j),

subject to

n∑

j=1

xi,j = bi for i = 1, . . . , m,

m∑

i=1

xi,j = dj for j = 1, . . . , n,

xi,j ≥ 0 for i = 1, . . . , m; j = 1, . . . , n.
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Among the books surveying transportation are Ford and Fulkerson [1962],
Dantzig [1963], Murty [1976,1983], Bazaraa and Jarvis [1977], Papadimitriou and
Steiglitz [1982], Gondran and Minoux [1984], Derigs [1988a], Nemhauser and Wolsey
[1988], and Bazaraa, Jarvis, and Sherali [1990].

21.13e. Historical notes on the transportation and transshipment

problems

Transportation can be considered as the special case of transshipment where all arcs
are oriented from a source to a sink. By the techniques described in Section 21.6a,
transshipment problems can be reduced conversely to transportation problems. This
makes the history of the two problems intertwined. We should notice also that
the transshipment problems studied by Kantorovich and Koopmans were in fact
transportation problems, due to the fact that their cost functions are metrics.

Tolstŏı

The first to study the transportation problem mathematically seems to be A.N.
Tolstŏı. In the collection Transportation Planning, Volume I of the National Com-
missariat of Transportation of the Soviet Union, Tolstŏı [1930] published an arti-
cle called Methods of finding the minimal total kilometrage in cargo-transportation
planning in space. In it, Tolstŏı described a number of approaches to solve the
transportation problem, illuminated by applications to the transportation of salt,
cement, and other cargo between sources and destination points along the railway
network of the Soviet Union. He seems to be the first to give a negative cycle
criterion for optimality. Moreover, a for that time large-scale instance of the trans-
portation problem was solved to optimality.

First, Tolstŏı considered the problem for the case where there are two sources.
He observed that in that case one can order the destination points by the difference
between the distances to the two sources. In that case, one source can provide
the destinations starting from the beginning of the list, until the supply of that
source has been used up. The other source supplies the remaining demands. Tolstŏı
observed that the list is independent of the supplies and demands, and hence

such table is applicable for the whole life-time of factories, or sources of produc-
tion.
Using this table, one can immediately compose an optimal transportation plan ev-
ery year, given quantities of output produced by these two factories and demands
of the destination points.

Next, Tolstŏı studied the transportation problem for the case where all sources
and destinations are along one circular railway line. In this case, considering the neg-
ative cycle criterion yields directly the optimum solution. He calls this phenomenon
‘circle dependency’.

Finally, Tolstŏı combined the two methods into a heuristic to solve a concrete
transportation problem coming from cargo transportation along the Soviet railway
network. The problem has 10 sources and 68 sinks, and 155 links between sources
and sinks (all other distances are taken infinite):
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demand:

Agryz 709 1064 693 2

Aleksandrov 397 1180 4

Almaznaya 81 65 1.5

Alchevskaya 106 114 4

Baku 1554 1563 10

Barybino 985 968 2

Berendeevo 135 430 10

Bilimbai 200 59 1

Bobrinskaya 655 663 10

Bologoe 389 1398 1

Verkhov’e 678 661 1

Volovo 757 740 3

Vologda 634 1236 2

Voskresensk 427 1022 1005 1

V.Volochek 434 1353 1343 5

Galich 815 224 1056 0.5

Goroblagodatskaya 434 196 0.5

Zhlobin 882 890 8

Zverevo 227 235 5

Ivanovo 259 6

Inza 380 735 1272 2

Kagan 2445 2379 0.5

Kasimov 0 1

Kinel’ 752 1208 454 1447 2

Kovylkino 355 1213 2

Kyshtym 421 159 3

Leningrad 1237 709 1667 1675 55

Likino 223 328 15

Liski 443 426 1

Lyuberdzhy 268 411 1074 1

Magnitogorskaya 932 678 818 1

Mauk 398 136 5

Moskva 288 378 405 1030 1022 141

Navashino 12 78 2

Nizhegol’ 333 316 1

Nerekhta 50 349 5

Nechaevskaya 92 0.5

N.-Novgorod 32 25

Omsk 1159 904 1746 5

Orenburg 76 1.5

Penza 411 1040 883 1023 7

Perm’ 1749 121 1

Petrozavodsk 1394 1

Poltoradzhk 1739 3085 1748 4

Pskov 1497 1505 10

Rostov/Don 287 296 20

Rostov/Yarosl 56 454 2

Rtishchevo 880 863 1

Savelovo 325 1206 1196 5

Samara 711 495 1406 7

San-Donato 416 157 1

Saratov 1072 1055 15

Sasovo 504 1096 1079 1

Slavyanoserbsk 119 115 1.1

Sonkovo 193 1337 0.5

Stalingrad 624 607 15.4

St.Russa 558 1507 1515 5

Tambov 783 766 4

Tashkent 3051 1775 3

Tula 840 848 8

Tyumen’ 584 329 6

Khar’kov 251 259 60

Chelyabinsk 511 257 949 2

Chishmy 1123 773 889 0.5

Shchigry 566 549 4

Yudino 403 757 999 0.5

Yama 44 52 5

Yasinovataya 85 93 6

supply: 5 11.5 8.5 12 100 12 15 314 10 55 543

Table of distances (in kilometers) between sources and destinations, and of
supplies and demands (in kilotons).
Tolstŏı gave no distance for Kasimov. We have inserted a distance 0 to Murom,
since from Tolstŏı’s solution it appears that Kasimov is connected only to
Murom (by a waterway). Hence the distance is irrelevant.
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Tolstŏı’s heuristic also makes use of insight into the geography of the Soviet
Union. He goes along all sources (starting with the most remote source), where, for
each source X, he lists those sinks for which X is the closest source or the second
closest source. Based on the difference of the distances to the closest and second
closest sources, he assigns cargo from X to the sinks, until the supply of X has
been used up. In case Tolstŏı foresees circle dependency, he deviates from this rule
to avoid that a negative-length circuit would arise. No backtracking occurs.

Figure 21.1

Figure from Tolstŏı [1930] to illustrate a negative cycle.

In the following quotation, Tolstŏı considers the cycles Dzerzhinsk-Rostov-
Yaroslavl’-Leningrad-Artemovsk-Moscow-Dzerzhinsk and Dzerzhinsk-Nerekhta-Ya-
roslavl’-Leningrad-Artemovsk-Moscow-Dzerzhinsk. It is the sixth step in his meth-
od, after the transports from the factories in Iletsk, Sverdlovsk, Kishert’, Bal-
akhonikha, and Murom have been set:

6. The Dzerzhinsk factory produces 100,000 tons. It can forward its production
only in the Northeastern direction, where it sets its boundaries in interdependency
with the Yaroslavl’ and Artemovsk (or Dekonskaya) factories.

From Dzerzhinsk From Yaroslavl’
Difference
to Dzerzhinsk

Berendeevo 430 km 135 km −295 km
Nerekhta 349 ,, 50 ,, −299 ,,
Rostov 454 ,, 56 ,, −398 ,,

From Dzerzhinsk From Artemovsk
Difference
to Dzerzhinsk

Aleksandrov 397 km 1,180 km +783 km
Moscow 405 ,, 1,030 ,, +625 ,,

The method of differences does not help to determine the boundary between the
Dzerzhinsk and Yaroslavl’ factories. Only the circle dependency, specified to be
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an interdependency between the Dzerzhinsk, Yaroslavl’ and Artemovsk factories,
enables us to exactly determine how far the production of the Dzerzhinsk factory
should be advanced in the Yaroslavl’ direction.
Suppose we attach point Rostov to the Dzerzhinsk factory; then, by the circle
dependency, we get:

Dzerzhinsk-Rostov 454 km −398 km Nerekhta 349 km −299 km
Yaroslavl’- ,, 56 ,, ,, 50 ,,
Yaroslavl’-Leningrad 709 ,, +958 ,, These points remain
Artemovsk- ,, 1,667 ,, unchanged because only the
Artemovsk-Moscow 1,030 ,, −625 ,, quantity of production sent
Dzerzhinsk- ,, 405 ,, by each factory changes

Total −65 km +34 km

Therefore, the attachment of Rostov to the Dzerzhinsk factory causes over-run in
65 km, and only Nerekhta gives a positive sum of differences and hence it is the
last point supplied by the Dzerzhinsk factory in this direction.
As a result, the following points are attached to the Dzerzhinsk factory:

N. Novgorod 25,000 tons
Ivanova 6,000 ,,
Nerekhta 5,000 ,,
Aleksandrov 4,000 ,,
Berendeevo 10,000 ,,
Likino 15,000 ,,
Moscow 35,000 ,, (remainder of factory’s production)

Total 100,000 tons

After 10 steps, when the transports from all 10 factories have been set, Tolstŏı
‘verifies’ the solution by considering a number of cycles in the network, and he
concludes that his solution is optimum:

Thus, by use of successive applications of the method of differences, followed by
a verification of the results by the circle dependency, we managed to compose the
transportation plan which results in the minimum total kilometrage.

The objective value of Tolstŏı’s solution is 395,052 kiloton-kilometers. Solving the
problem with modern linear programming tools (CPLEX) shows that Tolstŏı’s so-
lution indeed is optimum. But it is unclear how sure Tolstŏı could have been about
his claim that his solution is optimum. Geographical insight probably has helped
him in growing convinced of the optimality of his solution. On the other hand, it
can be checked that there exist feasible solutions that have none of the negative-cost
cycles considered by Tolstŏı in their residual graph, but that are yet not optimum40.

In the September 1939 issue of Sotsialisticheskĭı Transport, Tolstŏı [1939] pub-
lished an article Methods of removing irrational transportations in planning, in
which he again described his method of ‘circle dependency’, and applied it to the
planning of driving empty cars and transporting heavy cargoes on the U.S.S.R. rail-
way network. In this paper, Tolstŏı restricted himself to sources and sinks arranged
along a circular railway line, for which he gave his ‘circle dependency’ method:

40 The maximum objective value of a feasible solution, whose residual graph contains no
nonnegative-cost cycle of length 4, and none of the seven longer nonnegative-length
cycles considered by Tolstŏı (of lengths 6 and 8), is equal to 397,226.
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Before counting distances from cargo-senders to points of destination which form
a circle dependency, it is necessary to attach points of destination to cargo-senders
with complete distribution of waggons. In case of circle dependency determined
by geographical location it can be done without special calculations. Then, by
calculation of km in circle dependency, the initial attachment can be verified and
if not correct, then it can be improved.

Tolstŏı illustrated the method by the circuit Smolensk - Vitebsk - Velikiye-Luki
- Zemtsy - Rzhev - Vyazma - Smolensk of the U.S.S.R. network. A negative-length
directed circuit in the auxiliary directed graph gives an improvement, as in the
following Table given by Tolstŏı [1939]:

Source of cargoes Amount Difference Amount
km of distance of carriages

Vyazma-Smolensk 176 −37 4 − 3 = 1
Vitebsk ,, 139 0 + 3 = 4

Vitebsk-V. Luki 156 −37 3 − 3 = 0
Zemtsy ,, 119 2 + 3 = 5

Zemtsy-Rzhev 123 +7 5 − 3 = 2
Vyazma ,, 130 1 + 3 = 4

Altogether . . . −67

Tolstŏı then remarked:

The negative total difference shows that the distribution was wrong and that there
is an over-run of 67 km for every waggon which goes from upper cargo-senders.

According to Kantorovich [1987], there were some attempts to introduce Tol-
stŏı’s work by the appropriate department of the People’s Commissariat of Trans-
port. Tolstŏı’s method was also explained in the book Planning Goods Transporta-
tion by Parĭıskaya, Tolstŏı, and Mots [1947].

Kantorovich

Apparently unaware (by that time) of the work of Tolstŏı, L.V. Kantorovich studied
a general class of problems, that includes the transportation problem. It formed a
major impulse to the study of linear programming. In his memoirs, Kantorovich
[1987] writes:

Once some engineers from the veneer trust laboratory came to me for consul-
tation with a quite skilful presentation of their problems. Different productivity
is obtained for veneer-cutting machines for different types of materials; linked
to this the output of production of this group of machines depended, it would
seem, on the chance factor of which group of raw materials to which machine was
assigned. How could this fact be used rationally?
This question interested me, but nevertheless appeared to be quite particular
and elementary, so I did not begin to study it by giving up everything else. I
put this question for discussion at a meeting of the mathematics department,
where there were such great specialists as Gyunter, Smirnov himself, Kuz’min,
and Tartakovskii. Everyone listened but no one proposed a solution; they had
already turned to someone earlier in individual order, apparently to Kuz’min.
However, this question nevertheless kept me in suspense. This was the year of my
marriage, so I was also distracted by this. In the summer or after the vacation
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concrete, to some extent similar, economic, engineering, and managerial situations
started to come into my head, that also required the solving of a maximization
problem in the presence of a series of linear constraints.
In the simplest case of one or two variables such problems are easily solved—by
going through all the possible extreme points and choosing the best. But, let
us say in the veneer trust problem for five machines and eight types of materials
such a search would already have required solving about a billion systems of linear
equations and it was evident that this was not a realistic method. I constructed
particular devices and was probably the first to report on this problem in 1938 at
the October scientific session of the Herzen Institute, where in the main a number
of problems were posed with some ideas for their solution.
The universality of this class of problems, in conjunction with their difficulty,
made me study them seriously and bring in my mathematical knowledge, in par-
ticular, some ideas from functional analysis.

In a footnote, Kantorovich’s son V.L. Kantorovich adds:

In L.V. Kantorovich’s archives a manuscript from 1938 is preserved on “Some
mathematical problems of the economics of industry, agriculture, and transport”
that in content, apparently, corresponds to this report and where, in essence, the
simplex method for the machine problem is described.

L.V. Kantorovich recalled that he created in January 1939 ‘a method of Lagrange
(resolving) multipliers’.

What became clear was both the solubility of these problems and the fact that
they were widespread, so representatives of industry were invited to a discussion
of my report at the university.

This meeting took place on 13 May 1939 at the Mathematical Section of the In-
stitute of Mathematics and Mechanics of the Leningrad State University. A second
meeting, which was devoted specifically to problems connected with construction,
was held on 26 May 1939 at the Leningrad Institute for Engineers of Industrial
Construction. These meetings provided the basis of the monograph Mathematical
Methods in the Organization and Planning of Production (Kantorovich [1939]).

According to the Foreword by A.R. Marchenko to this monograph, Kan-
torovich’s work was highly praised by mathematicians, and, in addition, at the
special meeting industrial workers unanimously evinced great interest in the work.

The relevance was described by Kantorovich as follows:

I want to emphasize again that the greater part of the problems of which I shall
speak, relating to the organization and planning of production, are connected
specifically with the Soviet system of economy and in the majority of cases do
not arise in the economy of a capitalist society. There the choice of output is
determined not by the plan but by the interests and profits of individual capi-
talists. The owner of the enterprise chooses for production those goods which at
a given moment have the highest price, can most easily be sold, and therefore
give the largest profit. The raw material used is not that of which there are huge
supplies in the country, but that which the entrepreneur can buy most cheaply.
The question of the maximum utilization of equipment is not raised; in any case,
the majority of enterprises work at half capacity.
In the USSR the situation is different. Everything is subordinated not to the
interests and advantage of the individual enterprise, but to the task of fulfilling
the state plan. The basic task of an enterprise is the fulfillment and overfulfillment
of its plan, which is a part of the general state plan. Moreover, this not only means
fulfillment of the plan in aggregate terms (i.e. total value of output, total tonnage,
and so on), but the certain fulfillment of the plan for all kinds of output; that is,
the fulfillment of the assortment plan (the fulfillment of the plan for each kind of
output, the completeness of individual items of output, and so on).
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In the monograph, Kantorovich outlined a new method to maximize a linear func-
tion under given linear constraints. One of the problems studied was a rudimentary
form of a transportation problem:

(21.62) given: an m × n matrix (ai,j);
find: an m × n matrix (xi,j) such that:

(i) xi,j ≥ 0 for all i, j;

(ii)

m∑

i=1

xi,j = 1 for each j = 1, . . . , n;

(iii)

n∑

j=1

ai,jxi,j is independent of i and is maximized.

Another problem studied by Kantorovich was ‘Problem C’ which can be stated as
follows:

(21.63) maximize λ

subject to

m∑

i=1

xi,j = 1 (j = 1, . . . , n)

m∑

i=1

n∑

j=1

ai,j,kxi,j = λ (k = 1, . . . , t)

xi,j ≥ 0 (i = 1, . . . , m; j = 1, . . . , n).

The interpretation is: let there be n machines, which can do m jobs. Let there be
one final product consisting of t parts. When machine i does job j, ai,j,k units of
part k are produced (k = 1, . . . , t). Now xi,j is the fraction of time machine i does
job j. The number λ is the amount of the final product produced. ‘Problem C’
was later seen (by H.E. Scarf, upon a suggestion by Kantorovich — see Koopmans
[1959]) to be equivalent to the general linear programming problem.

Kantorovich’s method consists of determining dual variables (‘resolving multi-
pliers’) and finding the corresponding primal solution. If the primal solution is not
feasible, the dual solution is modified following prescribed rules. Kantorovich also
indicated the role of the dual variables in sensitivity analysis, and he showed that
a feasible primal solution for Problem C can be shown to be optimal by specifying
optimal dual variables.

Kantorovich gave a wealth of practical applications of his methods, which he
based mainly in the Soviet plan economy:

Here are included, for instance, such questions as the distribution of work among
individual machines of the enterprise or among mechanisms, the correct distribu-
tion of orders among enterprises, the correct distribution of different kinds of raw
materials, fuel, and other factors. Both are clearly mentioned in the resolutions
of the 18th Party Congress.

He described the applications to transportation:

Let us first examine the following question. A number of freights (oil, grain,
machines and so on) can be transported from one point to another by various
methods; by railroads, by steamship; there can be mixed methods, in part by
railroad, in part by automobile transportation, and so on. Moreover, depending
on the kind of freight, the method of loading, the suitability of the transportation,
and the efficiency of the different kinds of transportation is different. For example,
it is particularly advantageous to carry oil by water transportation if oil tankers
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are available, and so on. The solution of the problem of the distribution of a given
freight flow over kinds of transportation, in order to complete the haulage plan
in the shortest time, or within a given period with the least expenditure of fuel,
is possible by our methods and leads to Problems A or C.
Let us mention still another problem of different character which, although it does
not lead directly to questions A, B, and C, can still be solved by our methods.
That is the choice of transportation routes.

B

A C

E

D

Let there be several points A, B, C, D, E (Fig. 1) which are connected to one
another by a railroad network. It is possible to make the shipments from B to
D by the shortest route BED, but it is also possible to use other routes as well:
namely, BCD, BAD. Let there also be given a schedule of freight shipments; that
is, it is necessary to ship from A to B a certain number of carloads, from D to
C a certain number, and so on. The problem consists of the following. There is
given a maximum capacity for each route under the given conditions (it can of
course change under new methods of operation in transportation). It is necessary
to distribute the freight flows among the different routes in such a way as to
complete the necessary shipments with a minimum expenditure of fuel, under the
condition of minimizing the empty runs of freight cars and taking account of the
maximum capacity of the routes. As was already shown, this problem can also be
solved by our methods.

Kantorovich [1987] wrote in his memoirs:

The university immediately published my pamphlet, and it was sent to fifty Peo-
ple’s Commissariats. It was distributed only in the Soviet Union, since in the days
just before the start of the World War it came out in an edition of one thousand
copies in all.
The number of responses was not very large. There was quite an interesting
reference from the People’s Commissariat of Transportation in which some opti-
mization problems directed at decreasing the mileage of wagons was considered,
and a good review of the pamphlet appeared in the journal The Timber Industry.
At the beginning of 1940 I published a purely mathematical version of this work in
Doklady Akad. Nauk [76], expressed in terms of functional analysis and algebra.
However, I did not even put in it a reference to my published pamphlet—taking
into account the circumstances I did not want my practical work to be used
outside the country.

In the spring of 1939 I gave some more reports—at the Polytechnic Institute
and the House of Scientists, but several times met with the objection that the
work used mathematical methods, and in the West the mathematical school in
economics was an anti-Marxist school and mathematics in economics was a means
for apologists of capitalism. This forced me when writing a pamphlet to avoid
the term “economic” as much as possible and talk about the organization and
planning of production; the role and meaning of the Lagrange multipliers had
to be given somewhere in the outskirts of the second appendix and in the semi
Aesopian language.
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(Here reference [76] is Kantorovich [1940].) Kantorovich mentioned that the new
area opened by his work played a definite role in forming the Leningrad Branch of
the Mathematical Institute (LOMI), where he worked with M.K. Gavurin on this
area. The problem that they studied occurred to them by itself, but they soon found
out that railway workers were already studying the problem of planning haulage on
railways, applied to questions of driving empty cars and transport of heavy cargoes.

Kantorovich and Gavurin wrote their method (the method of ‘potentials’) in
a paper Application of mathematical methods in questions of analysis of freight
traffic (Kantorovich and Gavurin [1949]), which was presented in January 1941 to
the mathematics section of the Leningrad House of Scientists, but according to
Kantorovich [1987]:

The publication of this paper met with many difficulties. It had already been
submitted to the journal Railway Transport in 1940, but because of the dread of
mathematics already mentioned it was not printed then either in this or in any
other journal, despite the support of Academicians A.N. Kolmogorov and V.N.
Obraztsov, a well-known transport specialist and first-rank railway General.

Kantorovich [1987] said that he fortunately made an abstract version of the prob-
lem, Kantorovich [1942], in which he considered the following generalization of the
transportation problem.

Let R be a compact metric space, with two measures µ and µ′. Let B be the
collection of measurable sets in R. A translocation (of masses) is a function Ψ :
B × B → R+ such that for each X ∈ B the functions Ψ(X, .) and Ψ(., X) are
measures and such that

(21.64) Ψ(X, R) = µ(X) and Ψ(R, X) = µ′(X)

for each X ∈ B.
Let a continuous function r : R × R → R+ be given. (The value r(x, y) rep-

resents the work needed to transfer a unit mass from x to y.) Then the work of a
translocation Ψ is by definition:

(21.65)

∫

R

∫

R

r(x, y)Ψ(dµ, dµ′).

Kantorovich argued that, if there exists a translocation, then there exists a minimal
translocation, that is, a translocation Ψ minimizing (21.65).

He calls a translocation Ψ potential if there exists a function p : R → R such
that for all x, y ∈ R:

(21.66) (i) |p(x) − p(y)| ≤ r(x, y);
(ii) p(y) − p(x) = r(x, y) if Ψ(Ux, Uy) > 0 for any neighbourhoods Ux

of x and Uy of y.

Kantorovich showed:

Theorem 21.33. A translocation Ψ is minimal if and only if it is potential.

This framework applies to the transportation problem (when m = n), by taking for
R the space {1, . . . , n}, with the discrete topology.

Kantorovich’s proof of Theorem 21.33 is by a construction of a potential, that
however only is correct if r satisfies the triangle inequality. Kantorovich remarked
that his method is algorithmic:
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The theorem just demonstrated makes it easy for one to prove that a given mass
translocation is or is not minimal. He has only to try and construct the potential
in the way outlined above. If this construction turns out to be impossible, i.e. the
given translocation is not minimal, he at least will find himself in the possession
of the method how to lower the translocation work and eventually come to the
minimal translocation.

Beside to a problem of leveling a land area, Kantorovich gave as application:

Problem 1. Location of consumption stations with respect to production stations.
Stations A1, A2, · · · , Am, attached to a network of railways deliver goods to an
extent of a1, a2, · · · , am carriages per day respectively. These goods are consumed
at stations B1, B2, · · · , Bn of the same network at a rate of b1, b2, · · · , bn carriages
per day respectively (

∑

ai =
∑

bk). Given the costs ri,k involved in moving
one carriage from station Ai to station Bk, assign the consumption stations such
places with respect to the production stations as would reduce the total transport
expenses to a minimum.

As mentioned, Kantorovich’s results remained unnoticed for some time by West-
ern researchers. In a note introducing a reprint of the article of Kantorovich [1942],
in Management Science in 1958, the following reassurance is given:

It is to be noted, however, that the problem of determining an effective method
of actually acquiring the solution to a specific problem is not solved in this paper.
In the category of development of such methods we seem to be, currently, ahead
of the Russians.

Kantorovich’s method was elaborated by Kantorovich and Gavurin [1949],
where moreover single- and multicommodity transportation models are studied,
with applications to the railway network of the U.S.S.R.

Hitchcock

Independently, Hitchcock [1941] studied the transportation problem:

(21.67) given: an m × n matrix C = (ci,j) and vectors a ∈ Rm and b ∈ Rn;
find: an m × n matrix X = (xi,j) such that:

(i) xi,j ≥ 0 for all i, j;

(ii)

n∑

j=1

xi,j = ai for each i = 1, . . . , m;

(iii)

m∑

i=1

xi,j = bj for each j = 1, . . . , n;

(iv)

m∑

i=1

n∑

j=1

ci,jxi,j is as small as possible.

The interpretation of the problem is, in Hitchcock’s words:

When several factories supply a product to a number of cities we desire the least
costly manner of distribution. Due to freight rates and other matters the cost of
a ton of product to a particular city will vary according to which factory supplies
it, and will also vary from city to city.
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Hitchcock showed that the minimum is attained at a vertex of the feasible region,
and he outlined a scheme for solving the transportation problem which has much
in common with the simplex method for linear programming. It includes pivoting
(eliminating and introducing basic variables) and the fact that nonnegativity of
certain dual variables implies optimality. He showed that the complementary slack-
ness conditions characterize optimality: (x∗

i,j) is an optimum vertex if and only if
there exists a combination

∑
i,j λi,jxi,j of the left-hand sides of the constraints (ii)

and (iii) such that λi,j ≥ ci,j for all i, j and such that λi,j = ci,j if x∗
i,j > 0.

Hitchcock however seemed to have overlooked the possibility of cycling of his
method, although he pointed at an example in which some dual variables are neg-
ative while yet the primal solution is optimum.

Hitchcock also gave a method to find an initial basic solution, now known as
the north-west rule: set x1,1 := min{a1, b1}; if the minimum is attained by a1, reset
b1 := b1 − a1 and recursively find a basic solution xi,j satisfying

∑n
j=1 xi,j = ai

for each i = 2, . . . , m and
∑m

i=2 xi,j = bj for each j = 1, . . . , n; if the minimum
is attained by b1, proceed symmetrically. (The north-west rule was also described
by Salvemini [1939] and Fréchet [1951] in a statistical context, namely in order to
complete correlation tables given the marginal distributions.)

Koopmans

Also independently, Koopmans investigated transportation problems. In March
1942, Koopmans was appointed as a statistician on the staff of the British Merchant
Shipping Mission, and later the Combined Shipping Adjustment Board (CSAB),
a British-American agency dealing with merchant shipping problems during the
Second World War (as they should go in convoys, under military protection). Influ-
enced by his teacher J. Tinbergen (cf. Tinbergen [1934]) he was interested in tanker
freights and capacities (cf. Koopmans [1939]). According to Koopmans’ personal
diary, in August 1942 while the Board was being organized, there was not much
work for the statisticians,

and I had a fairly good time working out exchange ratio’s between cargoes for
various routes, figuring how much could be carried monthly from one route if
monthly shipments on another route were reduced by one unit.

At the Board he studied the assignment of ships to convoys so as to accomplish pre-
scribed deliveries, while minimizing empty voyages (cf. Dorfman [1984]). According
to the memoirs of his wife (Wanningen Koopmans [1995]), when Koopmans was
with the Board,

he had been appalled by the way the ships were routed. There was a lot of
redundancy, no intensive planning. Often a ship returned home in ballast, when
with a little effort it could have been rerouted to pick up a load elsewhere.

In his autobiography (published posthumously), Koopmans [1992] described how
he came to the problem:

My direct assignment was to help fit information about losses, deliveries from
new construction, and employment of British-controlled and U.S-controlled ships
into a unified statement. Even in this humble role I learned a great deal about
the difficulties of organizing a large-scale effort under dual control—or rather in
this case four-way control, military and civilian cutting across U.S. and U.K.



Section 21.13e. Historical notes 373

controls. I did my study of optimal routing and the associated shadow costs of
transportation on the various routes, expressed in ship days, in August 1942 when
an impending redrawing of the lines of administrative control left me temporarily
without urgent duties. My memorandum, cited below, was well received in a
meeting of the Combined Shipping Adjustment Board (that I did not attend)
as an explanation of the “paradoxes of shipping” which were always difficult to
explain to higher authority. However, I have no knowledge of any systematic use
of my ideas in the combined U.K.-U.S. shipping problems thereafter.

In the memorandum to the Board, Koopmans [1942] analyzed the sensitivity of
the optimum shipments for small changes in the demands. In this memorandum,
Koopmans did not give a method to find an optimum shipment. Further study
led him to a ‘local search’ method for the transportation problem, stating that
it leads to an optimum solution. According to Dorfman [1984], Koopmans found
these results in 1943, but, due to wartime restrictions, published them only after
the war (Koopmans [1948], Koopmans and Reiter [1949a,1949b,1951]). Koopmans
[1948] wrote:

Let us now for the purpose of argument (since no figures of war experience are
available) assume that one particular organization is charged with carrying out a
world dry-cargo transportation program corresponding to the actual cargo flows
of 1925. How would that organization solve the problem of moving the empty
ships economically from where they become available to where they are needed?
It seems appropriate to apply a procedure of trial and error whereby one draws
tentative lines on the map that link up the surplus areas with the deficit areas,
trying to lay out flows of empty ships along these lines in such a way that a
minimum of shipping is at any time tied up in empty movements.

The ‘trial and error’ method mentioned is one of local improvements, corresponding
to finding a negative-cost directed circuit in the residual digraph. Koopmans’ first
theorem is that it leads to an optimum solution:

If, under the assumptions that have been stated, no improvement in the use of
shipping is possible by small variations such as have been illustrated, then there
is no—however thoroughgoing—rearrangement in the routing of empty ships that
can achieve a greater economy of tonnage.

He illustrated the method by giving an optimum solution for a 3×12 transportation
problem, with the following supplies and demands:

Net receipt of dry cargo in overseas trade, 1925

Unit: Millions of metric tons per annum

Harbour Received Dispatched Net receipts
New York 23.5 32.7 −9.2
San Francisco 7.2 9.7 −2.5
St. Thomas 10.3 11.5 −1.2
Buenos Aires 7.0 9.6 −2.6
Antofagasta 1.4 4.6 −3.2
Rotterdam 126.4 130.5 − 4.1
Lisbon 37.5 17.0 20.5
Athens 28.3 14.4 13.9
Odessa 0.5 4.7 −4.2
Lagos 2.0 2.4 −0.4
Durban 2.1 4.3 −2.2
Bombay 5.0 8.9 −3.9
Singapore 3.6 6.8 −3.2
Yokohama 9.2 3.0 6.2
Sydney 2.8 6.7 −3.9
Total 266.8 266.8 0.0
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Koopmans [1948] moreover claimed that there exist potentials p1, . . . , pn and
q1, . . . , qm such that ci,j ≥ pi − qj for all i, j and such that ci,j = pi − qj for each
i, j for which xi,j > 0.

The potentials give the marginal costs when modifying the input data. That is,
if both ai and bj increase by 1, then the minimum cost increases by at least pi − qj .
This is Koopmans’ second theorem.

In the proof, Koopmans assumed that the cost function is symmetric and sat-
isfies the triangle inequality. Moreover, he assumed that the graph of arcs having
a positive transshipment value is weakly connected. The latter restriction was re-
moved in a later paper by Koopmans and Reiter [1951]. In this paper, they inves-
tigated the economic implications of the model and the method:

For the sake of definiteness we shall speak in terms of the transportation of car-
goes on ocean-going ships. In considering only shipping we do not lose generality
of application since ships may be “translated” into trucks, aircraft, or, in first
approximation, trains, and ports into the various sorts of terminals. Such transla-
tion is possible because all the above examples involve particular types of movable
transportation equipment.

They use the graph model, and in a footnote they remark:

The cultural lag of economic thought in the application of mathematical methods
is strikingly illustrated by the fact that linear graphs are making their entrance
into transportation theory just about a century after they were first studied in
relation to electrical networks, although organized transportation systems are
much older than the study of electricity.

(For a review of Koopmans’ research, see Scarf [1992].)

Robinson, 1950

Robinson [1950] might be the earliest reference stating clearly and generally that
the absence of a negative-cost directed circuit in the residual digraph is necessary
and sufficient for optimality. She mentioned that it can be ‘verified directly’, and ob-
served that it gives an algorithm to find an optimum transportation. She concluded
with:

The number of steps in the iterative procedure depends on the “goodness” of
the initial choice of X0. The method does not seem to lend itself to machine
calculation but may be efficient for hand computation with matrices of small
order.

Linear programming and the simplex method

The breakthrough of general linear programming came at the end of the 1940s.
In 1947, Dantzig formulated the linear programming problem and designed the
simplex method for the linear programming problem, published in Dantzig [1951b].
The success of the method was enlarged by a simple tableau-form and a simple
pivoting rule, and by the efficiency in practice. In another paper, Dantzig [1951a]
described a direct implementation of the simplex method to the transportation
problem (including an anti-cycling rule based on perturbation; variants were given
by Charnes and Cooper [1954] and Eisemann [1956]).
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The simplex method for transportation was described in terms of graphs by
Koopmans and Reiter [1951], and Flood [1952,1953] aimed at giving a purely math-
ematical description of it. A continuous model of transportation was studied by
Beckmann [1952].

Votaw and Orden [1952] reported on early computational results (on the SEAC),
and claimed (without proof) that the simplex method is polynomial-time for the
transportation problem (a statement refuted by Zadeh [1973a]):

As to computation time, it should be noted that for moderate size problems, say
m × n up to 500, the time of computation is of the same order of magnitude as
the time required to type the initial data. The computation time on a sample
computation in which m and n were both 10 was 3 minutes. The time of com-
putation can be shown by study of the computing method and the code to be
proportional to (m + n)3.

Application to practice

The new ideas of applying linear programming to the transportation problem were
quickly disseminated. Applications to routing empty boxcars over the U.S. railroads
were given by Fox [1952] and Nerlove [1953]. Dantzig and Fulkerson [1954b,1954a]
studied a rudimentary form of a minimum-cost circulation problem in order to
determine the minimum number of tankers to meet a fixed schedule. Similarly,
Bartlett [1957] and Bartlett and Charnes [1957] studied methods to determine the
minimum railway stock to run a given schedule.

Applicability of linear programming to transportation to practice was also met
with scepticism. At a Conference on Linear Programming in May 1954 in London,
Land [1954] presented a study of applying linear programming to the problem of
transporting coal for the British Coke Industry:

The real crux of this piece of research is whether the saving in transport cost
exceeds the cost of using linear programming.

In the discussion which followed, T. Whitwell of Powers Samas Accounting Ma-
chines Ltd remarked

that in practice one could have one’s ideas of a solution confirmed or, much more
frequently, completely upset by taking a couple of managers out to lunch.

Gleyzal’s primal-dual method for the transportation problem

Gleyzal [1955] published the following primal-dual method for the transportation
problem (with integer data). Let xi,j be a feasible solution of the transportation
problem. Transform xi,j such that the set {uivj | xi,j > 0} contains no circuit,
and transform ci,j such that ci,j = 0 if xi,j > 0. (These are easy by first cancelling
circuits, and next redefining ci,j .)

If ci,j ≥ 0 for all i, j we are done. Suppose that ci0,j0 < 0 for some i0, j0. Let
A := {(ui, vj) | ci,j ≤ 0} ∪ {(vj , ui) | xi,j > 0}. If ui0 is reachable in A from vj0 , A
contains a directed circuit C containing (ui0 , vj0). Then we can reset xi,j := xi,j −1
if (vj , ui) is in C and xi,j := xi,j + 1 if (ui, vj) is in C. This decreases cTx.

If ui0 is not reachable in A from vj0 , then for any vertex v let r(v) := 1 if v is
reachable in A from vj0 and r(v) := 0 otherwise. Reset ci,j := ci,j − r(ui) + r(vj).
This increases

∑
(ci,j | ci,j < 0), and hence the method terminates.
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Munkres on the transportation problem

Munkres [1957] extended his variant of the Hungarian method for the assignment
problem to the transportation problem. In graph terms, it amounts to the following.

Let G = (V, E) be a complete bipartite graph, with colour classes U and W of
size n, and let be given a weight function w : E → Z+ and a function b : V → Z+

with b(U) = b(W ). We must find a function x : E → Q+ such that
∑

e∈δ(v) xe = bv

for each vertex v and such that
∑

e wexe is minimized.
Let F be the set of edges e with we = 0 and let H = (V, F ). Suppose that we

have found an x : E → Q+ such that xe = 0 if e �∈ F and such that
∑

e∈δ(v) xe ≤ bv

for each v ∈ V . Let U ′ and W ′ be the sets of vertices v in U and W for which
strict inequality holds. If U ′, and hence W ′, are empty, x is an optimum solution.
Otherwise, perform the following iteratively.

Orient each edge of H from U to W , and orient each edge e of H with xe > 0
also from W to U (so they are two-way). Now determine the set RM of vertices
reachable by a directed path from U ′.

Case 1: RM ∩W ′ �= ∅. Then D has a U ′−W ′ path, on which we can alternatingly
increase and decrease the value of xe, so as to make

∑
e xe larger.

Case 2: RM ∩W ′ = ∅. So w(uv) > 0 for each u ∈ U ∩RM and v ∈ W \RM . Let
h be the minimum of these w(uv). Decrease w(uv) by h if u ∈ U ∩RM , v ∈ W \RM ,
and increase w(uv) by h if u ∈ U \ RM , v ∈ W ∩ RM .

This describes the iteration. Note that between any two occurrences of Case 1,
only n times Case 2 can occur, since at each such iteration the set RM ∩W increases.
Moreover, after Case 2 we can continue the previous search for RM . So between
any two Case 1-iterations, the Case 2-iterations take O(n2) time altogether.

Now Case 1 can occur at most
∑

v∈U bv times. So the algorithm is finite, and
has running time O(n4B) where B := max{bv | v ∈ V }. This specializes to the
Hungarian method if bv = 1 for all v ∈ V .

Further early methods

Also Ford and Fulkerson [1955,1957b] (cf. Ford and Fulkerson [1956c,1956d]) ex-
tended the Hungarian method to general transportation problems. Their method is
essentially the same as that of Munkres [1957], except that successive occurrences of
Case 1 iterations are combined to a maximum flow computation. A similar primal-
dual method for the transportation problem was described by Egerváry [1958].

Ford and Fulkerson [1956a,1957a] extended the method of Ford and Fulker-
son [1955,1957b] for the uncapacitated transportation problem to the capacitated
transportation problem.

Orden [1955] showed the equivalence of the transshipment problem and the
transportation problem. He also noted that the class of transportation problems
covers the majority of the applications of linear programming which are in practical
use or under active development. Also Prager [1957a] studied the transshipment
problem by reduction to a transportation problem and by methods of elastostatics
(cf. Kuhn [1957]).

Gallai [1957,1958a,1958b] studied the minimum-cost and the maximum-profit
circulation problem, for which he gave min-max relations (see Section 12.5b). He
also considered vertex capacities and demands. Beside combinatorial proofs based
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on potentials, Gallai gave proofs based on linear programming duality and total
unimodularity.

A minimum-cost flow algorithm (in disguised form) was given by Ford and
Fulkerson [1958b], to solve the ‘dynamic flow’ problem described in Section 12.5c.
They described a method which essentially consists of repeatedly finding a zero-
length r − s path in the residual graph, making lengths nonnegative by translating
the cost with the help of the current potential p. If no zero-length path exists,
the potential is updated. (This is Routine I of Ford and Fulkerson [1958b].) The
complexity of this was studied by Fulkerson [1958].

Yakovleva [1959] gave some implementations of the method of Kantorovich and
Gavurin [1949]. The paper considers three cases of the problem in a digraph with
demands (positive, negative, and zero) of vertices and costs of arcs: (i) noncapac-
itated case, (ii) capacitated case, and (iii) bipartite case (without zero demands).
Two methods are developed for finding feasible potentials or improving the current
flow. Time bounds are not indicated.

Among the other early algorithms for minimum-cost flow are successive short-
est paths methods (Busacker and Gowen [1960], Iri [1960]), out-of-kilter meth-
ods (Minty [1960], Fulkerson [1961]), cycle-cancelling (Klein [1967]), and succes-
sive shortest paths maintaining potentials (Tomizawa [1971], Edmonds and Karp
[1972]). An alternative method, which transforms the transportation problem to
a nonlinear programming problem, with computational results, was given by Ger-
stenhaber [1958,1960].

Polynomial-time algorithms

Edmonds and Karp [1972] gave the first polynomial-time algorithm for the mini-
mum-cost flow problem, based on capacity-scaling. They realized that in fact the
method is only weakly polynomial; that is, the number of steps depends also on the
size of the numbers in the input:

Although it is comforting to know that the minimum-cost flow algorithm termi-
nates, the bounds on the number of augmentations are most unfavorable. The
scaling method of the next two sections is a variant of this algorithm in which the
bound depends logarithmically, rather than linearly, on the capacities. A challeng-
ing open problem is to emulate the results of Section 1.2 for the maximum-value
flow problem by giving a method for the minimum-cost flow problem having a
bound on computation which is a polynomial in the number of nodes, and is
independent of both costs and capacities.

Tarjan [1983] wrote: ‘There is still much to be learned about the minimum cost
flow problem’. Soon after, Edmonds and Karp’s question was resolved by Tardos
[1985a], by giving a strongly polynomial-time minimum-cost circulation algorithm.
Her work has inspired a stream of further developments, part of which was discussed
in Chapter 12.
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Transversals

The study of transversals of a family of sets is close to that of matchings
in a bipartite graph, but with a shift in focus. While matchings are subsets
of the edge set, transversals are subsets of one of the colour classes. This
gives rise to a number of optimization and polyhedral problems and results
that deserve special attention.
In this chapter we study transversals of one family of sets, while in the
next chapter we go over to common transversals of two families of sets.

22.1. Transversals

Let A = (A1, . . . , An) be a family of sets. A set T is called a transversal
of A if there exist distinct elements a1 ∈ A1, . . . , an ∈ An such that T =
{a1, . . . , an}. So T is an unordered set with |T | = n. (Instead of ‘transversal’
one uses also the term system of distinct representatives or SDR.)

Transversals are closely related to matchings in bipartite graphs. In par-
ticular, the basic result on the existence of a transversal (Hall [1935]), is a
consequence of Kőnig’s matching theorem. This can be seen with the fol-
lowing basic construction of a bipartite graph G = (V, E) associated with a
family A = (A1, . . . , An) of subsets of a set S:

(22.1) V := {1, . . . , n} ∪ S,
E := {{i, s} | i = 1, . . . , n; s ∈ Ai},

assuming that S is disjoint from {1, . . . , n} (which for our purposes can be
done without loss of generality). So G has colour classes {1, . . . , n} and S.
(This construction was given by Skolem [1917].)

Then trivially

(22.2) a set T is a transversal of A if and only if G has a matching M
of size n such that T is the set of vertices in S covered by M .

So the existence of a transversal of A can be reduced to the existence of
a matching in G of size n. Hence Kőnig’s matching theorem applies to the
existence of transversals.

It is convenient to introduce the following notation, for any family
(A1, . . . , An) of sets and any I ⊆ {1, . . . , n}:
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(22.3) AI :=
⋃

i∈I

Ai.

Theorem 22.1 (Hall’s marriage theorem). A family A = (A1, . . . , An) of
sets has a transversal if and only if

(22.4) |AI | ≥ |I|
for each subset I of {1, . . . , n}.

Proof. Necessity of the condition being easy, we prove sufficiency. Let G be
the graph associated to A (as in (22.1)). Now the theorem is equivalent to
Theorem 16.7 (taking U := {1, . . . , n}).

Condition (22.4) is called Hall’s condition. The name ‘marriage theorem’
is due to Weyl [1949].

The polynomial-time algorithm given in Section 16.3 for finding a max-
imum matching in a bipartite graph directly yields a polynomial-time al-
gorithm for finding a transversal of a family (A1, . . . , An) of sets. In fact,
Theorem 16.5 implies an O(

√
n m) algorithm, where m :=

∑
i |Ai|.

22.1a. Alternative proofs of Hall’s marriage theorem

We give two alternative, direct proofs of the sufficiency of Hall’s condition (22.4)
for the existence of a transversal. Call a subset I of {1, . . . , n} tight if equality holds
in (22.4).

If there is a y ∈ An such that A1 \ {y}, . . . , An−1 \ {y} has a transversal,
then we are done. Hence, we may assume that for each y ∈ An there is a tight
I ⊆ {1, . . . , n − 1} with y ∈ AI (using induction).

The proof given by Easterfield [1946] (also by M. Hall [1948], Halmos and
Vaughan [1950], and Mann and Ryser [1953]) continues as follows. Choose any such
tight subset I. Without loss of generality, I = {1, . . . , k}. By induction, (A1, . . . , Ak)
has a transversal, which must be T := AI . Moreover, (Ak+1 \ T, . . . , An \ T ) has a
transversal, Z say. This follows inductively, since for each J ⊆ {k + 1, . . . , n},

(22.5)
∣∣ ⋃

i∈J

(Ai \ T )
∣∣ =

∣∣ ⋃

i∈I∪J

Ai

∣∣ − |T | ≥ |I| + |J | − |T | = |J |.

Then T ∪ Z is a transversal of (A1, . . . , Ak, Ak+1, . . . , An).
The proof due to Everett and Whaples [1949] continues slightly different. They

noted that the collection of tight subsets of {1, . . . , n} is closed under taking inter-
sections and unions. That is, if I and J are tight, then also I ∩ J and I ∪ J are
tight, since

(22.6) |I| + |J | = |AI | + |AJ | ≥ |AI∩J | + |AI∪J | ≥ |I ∩ J | + |I ∪ J | = |I| + |J |,
giving equality throughout. (In (22.6), the first inequality holds as AI∩J ⊆ AI ∩AJ

and AI∪J = AI ∪ AJ .)
Since for each y ∈ An there is a tight subset I of {1, . . . , n − 1} with y ∈ AI , it

follows, by taking the union of them, that there is a tight subset I of {1, . . . , n − 1}
with An ⊆ AI . For J := I ∪{n} this gives the contradiction |AJ | = |AI | = |I| < |J |.
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The the closedness of tight subsets under intersections and unions was also
noticed by Maak [1936] and Weyl [1949], who gave alternative proofs of a theorem
of Rado and Hall’s marriage theorem, respectively.

Edmonds [1967b] gave a linear-algebraic proof of Hall’s marriage theorem (cf.
Section 16.2b). Ford and Fulkerson [1958c] derived Hall’s marriage theorem from
the max-flow min-cut theorem.

22.2. Partial transversals

Let A = (A1, . . . , An) be a family of sets. A set T is called a partial transver-
sal if it is a transversal of some subfamily (Ai1 , . . . , Aik

) of (A1, . . . , An).
(Instead of ‘partial transversal’ one uses also the term partial system of dis-
tinct representatives or partial SDR.)

Again, by the construction (22.1), we can study partial transversals with
the help of bipartite matching theory. In particular, if G is the graph associ-
ated to a family A of subsets of a set S,

(22.7) a set T is a partial transversal of A if and only if G has a matching
M such that T is the set of vertices in S covered by M .

This yields the following so-called defect form of Hall’s marriage theorem,
which is equivalent to Kőnig’s matching theorem (cf. Ore [1955]):

Theorem 22.2 (defect form of Hall’s marriage theorem). Let A = (A1, . . . ,
An) be a family of subsets of a set S. Then the maximum size of a partial
transversal of A is equal to the minimum value of

(22.8) |S \ X| + |{i | Ai ∩ X �= ∅}|,
where X ranges over all subsets of S.

Proof. Let G be the graph constructed in (22.1). The maximum size of a
partial transversal of A is equal to the maximum size of a matching in G.
By Kőnig’s matching theorem, this is equal to the minimum size of a vertex
cover of G. This minimum is attained by a vertex cover of form (S \X)∪{i |
Ai ∩ X �= ∅}, which shows the theorem.

An equivalent way of characterizing the maximum size of a partial
transversal is:

Corollary 22.2a. The maximum size of a partial transversal of A is equal
to the minimum value of

(22.9)
∣∣ ⋃

i∈I

Ai

∣∣ + n − |I|,

taken over I ⊆ {1, . . . , n}.
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Proof. Directly from Theorem 22.2, since we can assume that S \ X = AI

where I := {i | Ai ∩ X = ∅}.

Note that it needs an argument to state that each partial transversal is
a subset of a transversal, if a transversal exists. This was shown by Hoffman
and Kuhn [1956b] (solving a problem of Mann and Ryser [1953]):

Theorem 22.3. Let A = (A1, . . . , An) be a system of sets having a transver-
sal. Then each partial transversal is contained in a transversal.

Proof. Directly from Theorem 16.8, using construction (22.1) (taking R :=
{1, . . . , n} ∪ T , where T is a partial transversal).

One can generalize this to the case where the family need not have a
transversal:

Theorem 22.4. Let A be a family of sets. Then each partial transversal is
contained in a maximum-size partial transversal.

Proof. Again directly from Theorem 16.8, using construction (22.1).

In other words, each inclusionwise maximal partial transversal is a maxi-
mum-size partial transversal. This is the basis of the fact that partial transver-
sals form the independent sets of a matroid — see Chapter 39. It is equivalent
to:

Corollary 22.4a (exchange property of transversals). Let A be a family of
sets and let T and T ′ be partial transversals of A, with |T | < |T ′|. Then there
exists an s ∈ T ′ \ T such that T ∪ {s} is a partial transversal.

Proof. To prove this, we can assume that each set in A is contained in T ∪T ′.
This implies that, if no s as required exists, T is an inclusionwise maximal
partial transversal. However, as |T ′| > |T |, this contradicts Theorem 22.4.

Brualdi and Scrimger [1968] (extending a result of Mirsky and Perfect
[1967]) observed:

Theorem 22.5. Let A = (A1, . . . , An) be a family of sets, let k be the maxi-
mum size of a partial transversal, and let A′ = (A1, . . . , Ak) have a transver-
sal. Then each maximum-size partial transversal of A is a transversal of A′.

Proof. Via construction (22.1) this follows from Corollary 16.8b.

So when studying the collection of partial transversals of a certain collec-
tion A of sets, we can assume that A has a transversal.
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22.3. Weighted transversals

Consider the problem of finding a minimum-weight transversal: given a family
A = (A1, . . . , An) of subsets of a set S and a weight function w : S → Q, find
a transversal T of A minimizing w(T ). This problem can be easily reduced
to a minimum-weight perfect matching problem, implying that a minimum-
weight transversal can be found in strongly polynomial time. In fact:

Theorem 22.6. A minimum-weight transversal can be found in time O(nm)
where n is the number of sets and m :=

∑
i |Ai|.

Proof. Make the graph G as in (22.1) and define w({i, s}) := w(s) for each
edge {i, s} of G. Denote R := {1, . . . , n}. Starting with M = ∅, we can
apply the Hungarian method, to obtain an extreme matching of size n. The
elements of S covered by M form a maximum-weight transversal. As each
iteration of the Hungarian method takes O(m) time, this gives the theorem.

Note that in this algorithm, we grow a partial transversal until it is a
(complete) transversal. In this respect it is a ‘greedy method’: we never back-
track. Again, this is a preview of the fact that transversals form a ‘matroid’
— see Chapter 39.

The method similarly solves the problem of finding a maximum-weight
partial transversal:

Theorem 22.7. A maximum-weight partial transversal can be found in time
O(rm), where r is the maximum size of a partial transversal and where m :=∑

i |Ai|.

Proof. As above.

22.4. Min-max relations for weighted transversals

We can also obtain a min-max relation for the minimum weight of a transver-
sal:

Theorem 22.8. Let A = (A1, . . . , An) be a family of subsets of a set S having
a transversal and let w : S → Z be a weight function. Then the minimum
weight of a transversal of A is equal to the maximum value of

(22.10) y(S) +
n∑

i=1

min
s∈Ai

(w(s) − y(s))

taken over y : S → Z+.
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Proof. Let t := |S|. For i = n + 1, . . . , t, let Ai := S. Consider the bipartite
graph G = (V, E) defined by (22.1), for the family (A1, . . . , At). Define a
length function l on the edges of G as follows. For any edge e = is of G, with
s ∈ Ai, define le := w(s) if i ≤ n and le := 0 otherwise. Then the minimum
weight of a transversal of (A1, . . . , An) is equal to the minimum length of a
perfect matching in G. By Theorem 17.5 (a variant of Egerváry’s theorem),
the latter value is equal to the maximum value of y(V ) where y ∈ QV with
y(s) + y(i) ≤ l(is) for each i = 1, . . . , t and s ∈ Ai. We can assume that the
minimum of y(s) over s ∈ S is equal to 0 (since subtracting a constant to
y(s) for any s ∈ S and adding it to y(i) for any i ∈ {1, . . . , t} maintains the
properties required for y). Then y(i) = mins∈Ai

(w(s) − y(s)) if i ≤ n and
y(i) = 0 if i > n. So y(V ) is equal to the value of (22.10).

A min-max relation for the maximum weight of a partial transversal fol-
lows similarly:

Theorem 22.9. Let A = (A1, . . . , Ak) be a family of subsets of a set S and
let w : S → Z+ be a weight function. Then the maximum weight of a partial
transversal of A is equal to the minimum value of

(22.11) y(S) +

k∑

i=1

max{0, max
s∈Ai

(w(s) − y(s))}

over functions y : S → Z+.

Proof. Directly from Egerváry’s theorem (Theorem 17.1), using construction
(22.1).

22.5. The transversal polytope

Let A = (A1, . . . , An) be a family of subsets of a set S. The partial transversal
polytope Ppartial transversal(A) of A is the convex hull of the incidence vectors
(in RS) of the partial transversals of A. That is,

(22.12) Ppartial transversal(A) = conv.hull{χT | T is a partial transversal
of A}.

It is easy to see that each vector x in the partial transversal polytope satisfies:

(22.13) (i) 0 ≤ xs ≤ 1 for each s ∈ S,
(ii) x(S \ AI) ≤ n − |I| for each I ⊆ {1, . . . , n}.

Corollary 22.9a. System (22.13) determines the partial transversal polytope
and is TDI.
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Proof. Consider a weight function w : S → Z+. Let ω be the maximum
weight of a partial transversal. By Theorem 22.9, there exists a function
y : S → Z+ such that

(22.14) ω = y(S) +
n∑

i=1

max{0, max
s∈Ai

(w(s) − y(s))}.

For each j ∈ Z+, let Ij be the set of i ∈ {1, . . . , n} with

(22.15) max
s∈Ai

(w(s) − y(s)) ≤ j.

So Ij = {1, . . . , n} for j large enough.
Then

(22.16) w − y ≤
∞∑

j=0

χS\AIj ,

since for k := w(s) − y(s), we have for each j < k there is no i ∈ Ij with
s ∈ Ai. Hence s ∈ S \ AIj

for all j < k. So y and the Ij give an integer
feasible dual solution.

The fact that they are optimum follows from:

(22.17) y(S) +
∞∑

j=0

(n − |Ij |) = y(S) +
∞∑

j=0

n∑

i = 1
max
s∈Ai

(w(s) − y(s)) > j

1

= y(S) +
n∑

i=1

∞∑

j = 0
max
s∈Ai

(w(s) − y(s)) > j

1

= y(S) +
n∑

i=1

max{0, max
s∈Ai

(w(s) − y(s))} = ω,

by (22.14).

Let A = (A1, . . . , An) be a family of subsets of a set S. The transversal
polytope Ptransversal(A) of A is the convex hull of the incidence vectors (in
RS) of the transversals of A. That is,

(22.18) Ptransversal(A) = conv.hull{χT | T is a transversal of A}.

It is easy to see that each vector x in the transversal polytope satisfies:

(22.19) (i) 0 ≤ xs ≤ 1 for each s ∈ S,
(ii) x(AI) ≥ |I| for each I ⊆ {1, . . . , n},
(iii) x(S) = n.

Corollary 22.9b. System (22.19) determines the transversal polytope and is
TDI.
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Proof. The transversal polytope is the facet of the partial transversal poly-
tope determined by the equality x(S) = n. This is constraint (22.13)(ii) for
I = ∅, set to equality. Now each inequality in (22.19) is a nonnegative in-
teger combination of the inequalities in (22.13) and of −x(S) ≤ −n (since
−x(AI) = x(S \ AI) − x(S) ≤ (n − |I|) − n = −|I|). So using Theorem 5.25,
the corollary follows.

One may note that the number of facets of the matching polytope of a
bipartite graph G = (V, E) is at most |V | + |E|, while the number of facets
of the closely related partial transversal polytope can be exponential in the
size of the input (the family A). In fact, the partial transversal polytope is a
projection of the matching polytope of the corresponding graph. Thus we have
an illustration of the phenomenon that projection can increase the number
of facets dramatically, while this has no negative effect on the complexity of
the corresponding optimization problem.

22.6. Packing and covering of transversals

The following min-max relation for the maximum number of disjoint transver-
sals is an easy consequence of Hall’s marriage theorem:

Theorem 22.10. Let A = (A1, . . . , An) be a family of sets and let k be a
natural number. Then A has k disjoint transversals if and only if

(22.20) |AI | ≥ k|I|
for each subset I of {1, . . . , n}.

Proof. Replace each set Ai by k copies, yielding the family A′. Then by
Hall’s marriage theorem and (22.20), A′ has a transversal. This can be split
into k transversals of A.

A generalization to disjoint partial transversals of prescribed sizes was
given by Higgins [1959] (cf. Mirsky [1966], Mirsky and Perfect [1966]):

Theorem 22.11. Let A = (A1, . . . , An) be a family of sets and let d1, . . . , dk

∈ {1, . . . , n}. Then A has k disjoint partial transversals of sizes d1, . . . , dk

respectively if and only if

(22.21) |AI | ≥
k∑

j=1

max{0, |I| − n + dj}

for each I ⊆ {1, . . . , n}.

Proof. Necessity follows from the fact that if T1, . . . , Tk are partial transver-
sals as required, then
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(22.22) |AI | ≥
k∑

j=1

|AI ∩ Tj | ≥
k∑

j=1

max{0, |I| − n + dj}

for each I ⊆ {1, . . . , n}, since |AI ∩ Tj | + (n − dj) ≥ |I|.
To see sufficiency, let B1, . . . , Bk be disjoint sets, disjoint also from all Ai,

with |Bj | = n − dj for j = 1, . . . , k. Define Ai,j := Ai ∪ Bj for i = 1, . . . , n
and j = 1, . . . , k. Then A has k disjoint partial transversals as required,
if (Ai,j | i = 1, . . . , n; j = 1, . . . , k) has a transversal. So it suffices to check
Hall’s condition (22.4) for the latter family. Take K ⊆ {1, . . . , n}×{1, . . . , k}.
Let I := {i | ∃j : (i, j) ∈ K} and J := {j | ∃i : (i, j) ∈ K}. Then

(22.23)
∣∣ ⋃

(i,j)∈K

Ai,j

∣∣ =
∣∣ ⋃

i∈I

Ai

∣∣ +
∣∣ ⋃

j∈J

Bj

∣∣

≥
k∑

j=1

max{0, |I| − n + dj} +
∑

j∈J

(n − dj) ≥
∑

j∈J

|I| = |I| · |J |

≥ |K|.

(A proof based on total unimodularity was given by Hoffman [1976b].)
As to covering by partial transversals, Mirsky [1971b] (p. 51) mentioned

that R. Rado proved in 1965:

Theorem 22.12. Let A = (A1, . . . , An) be a family of subsets of a set S and
let k be a natural number. Then S can be covered by k partial transversals if
and only if

(22.24) k · |{i | Ai ∩ X �= ∅}| ≥ |X|
for each subset X of S.

Proof. Let A′ be the family obtained from A by taking each set k times.
Then S can be covered by k partial transversals if and only if S is a partial
transversal of A′. By the defect form of Hall’s marriage theorem (Theorem
22.2), this last is equivalent to the condition that

(22.25) |S \ X| + k · |{i | Ai ∩ X �= ∅}| ≥ |S|
for each X ⊆ S. This is equivalent to (22.24).

For covering by partial transversals of prescribed size, there is the fol-
lowing easy consequence of the exchange property of transversals (Corollary
22.4a):

Theorem 22.13. Let A be a family of subsets of a set S and let k ∈ Z+.
If S can be covered by k partial transversals, it can be covered by k partial
transversals each of size ⌊|S|/k⌋ or ⌈|S|/k⌉.

Proof. Let T1, . . . , Tk be partial transversals partitioning S. If |Ti| ≥ |Tj |+2
for some i, j, we can replace Ti and Tj by Ti \ {s} and Tj ∪ {s} for some
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s ∈ Ti. Repeating this, we finally achieve that
∣∣|Ti| − |Tj |

∣∣ ≤ 1 for all i, j.
Hence ⌊|S|/k⌋ ≤ |Ti| ≤ ⌈|S|/k⌉ for all i.

22.7. Further results and notes

22.7a. The capacitated case

Capacitated versions of the theorems on transversals can be derived straightfor-
wardly from the previous results. First, Halmos and Vaughan [1950] showed the
following generalized (but straightforwardly equivalent) version of Hall’s marriage
theorem:

Theorem 22.14. Let A = (A1, . . . , An) be a family of sets and let b ∈ Zn
+. Then

there exist disjoint subsets B1, . . . , Bn of A1, . . . , An respectively with |Bi| = bi for
i = 1, . . . , n if and only if

(22.26) |AI | ≥ b(I)

for each I ⊆ {1, . . . , n}.

Proof. Let A′ be the family of sets obtained from A by repeating any Ai bi times.
Then the existence of the Bi is equivalent to the existence of a transversal of A′.
Moreover, (22.26) is equivalent to Hall’s condition for A′.

This theorem concerns taking multiplicities on the sets in A. If we put mul-
tiplicities on the elements of S, there is the following observation of R. Rado (as
reported by Mirsky and Perfect [1966]):

Theorem 22.15. Let A = (A1, . . . , An) be a family of sets and let r ∈ Z+. Then
there exist xi ∈ Ai (i = 1, . . . , n) such that no element occurs more than r times
among the si if and only if

(22.27) |AI | ≥ |I|/r

for each I ⊆ {1, . . . , n}.

Proof. Let A′ be the family of sets obtained from A by replacing any Ai by
Ai × {1, . . . , r}. Then the existence of the required si is equivalent to the existence
of a transversal of A′. Moreover, (22.27) is equivalent to Hall’s condition for A′.

These theorems are in fact direct consequences of the general Theorem 21.28.
This theorem moreover gives the following result of Vogel [1961], which puts mul-
tiplicities both on the sets in A and on the elements of the underlying set S:

Theorem 22.16. Let A = (A1, . . . , An) be a family of subsets of a set S. Let
a ∈ Zn

+ and b ∈ ZS
+. Then there exist subsets B1, . . . , Bn of A1, . . . , An respectively

such that |Bi| = ai for i = 1, . . . , n and such that each s ∈ S occurs in at most b(s)
of the Bi if and only if

(22.28) b(X) +
∑

i∈I

|Ai \ X| ≥ a(I)
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for each X ⊆ S and each I ⊆ {1, . . . , n}.

Proof. Consider the system

(22.29) 0 ≤ x(i, s) ≤ 1 for i ∈ {1, . . . , n} and s ∈ Ai,
ai ≤ x(δ(i)) ≤ ai for i ∈ {1, . . . , n},
0 ≤ x(δ(s)) ≤ bs for s ∈ S,

and apply Theorem 21.28.

This has as special case (Vogel [1961]):

Corollary 22.16a. Let A = (A1, . . . , An) be a family of subsets of a set S and let
r, s ∈ Z+. Then there exist subsets B1, . . . , Bn of A1, . . . , An respectively such that
|Bi| = s for each i and such that each element belongs to at most r of the Bi if and
only if

(22.30) r|X| +
∑

i∈I

|Ai \ X| ≥ s|I|

for each I ⊆ {1, . . . , n} and each X ⊆ S.

Proof. This is a special case of Theorem 22.16.

Similar methods apply to systems of restricted representatives, considered by
Ford and Fulkerson [1958c]. Let A = (A1, . . . , An) be a collection of subsets of a
set S and let a, b ∈ ZS

+ with a ≤ b. A system of restricted representatives (or SRR)
of A (with respect to a and b) is a sequence (s1, . . . , sn) such that

(22.31) (i) si ∈ Ai for i = 1, . . . , n;
(ii) a(s) ≤ |{i | si = s}| ≤ b(s) for s ∈ S.

Ford and Fulkerson [1958c] showed:

Theorem 22.17. A has a system of restricted representatives if and only if

(22.32) a(S −
⋃

i
∈I

Ai) ≤ |I| ≤ b(
⋃

i∈I

Ai)

for each I ⊆ {1, . . . , n}.

Proof. Consider the system

(22.33) 0 ≤ x(i, s) ≤ ∞ for i ∈ {1, . . . , n}, s ∈ Ai,
x(δ(i)) = 1 for i ∈ {1, . . . , n},
as ≤ x(δ(s)) ≤ bs for s ∈ S,

and apply Theorem 21.28.

(For an alternative proof, see Mirsky [1968a].)
Considering both upper and lower bounds, the following theorem of Hoffman

and Kuhn [1956a] follows from Hoffman’s circulation theorem:

Theorem 22.18. Let A = (A1, . . . , An) be a collection of subsets of a set S, let
P = (P1, . . . , Pm) be a partition of S, and let a, b ∈ Zm

+ with a ≤ b. Then A has a
transversal T satisfying ai ≤ |T ∩ Pi| ≤ bi for each i = 1, . . . , m if and only if
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(22.34) |PI ∩ AJ | ≥ max{|J | − b(I), |J | − n + a(I)}
for all I ⊆ {1, . . . , m} and J ⊆ {1, . . . , n}, where I := {1, . . . , n} \ I.

Proof. Make a directed graph as follows. Its vertex set is {r} ∪ {u1, . . . , un} ∪ S ∪
{p1, . . . , pm} ∪ {t}, and there are arcs

(22.35) (r, ui) for i = 1, . . . , n,
(ui, s) for i = 1, . . . , n and s ∈ Ai,
(s, pj) for j = 1, . . . , m and s ∈ Pj ,
(pj , t) for j = 1, . . . , m.

Put lower bound aj and capacity bj on each arc (pj , t). On any other arc, put lower
bound 0 and capacity 1. Then a transversal as required exists if and only if there is
an integer r− t flow of value n satisfying the lower bounds and capacities. Applying
Corollary 11.2e gives the present theorem.

(The proof of Hoffman and Kuhn [1956a] is based on the duality theorem of linear
programming. Gale [1956,1957] and Fulkerson [1959a] derived the theorem from
network flow theory. For further extensions, see Mirsky [1968b].)

22.7b. A theorem of Rado

Rado [1938] proved the following generalization (but also consequence) of Hall’s
marriage theorem:

Theorem 22.19. Let A1, . . . , An, B1, . . . , Bn be sets. Then there exists an injection
f : A1 ∪ · · · ∪ An → B1 ∪ · · · ∪ Bn such that f [Ai] ⊆ Bi for i = 1, . . . , n if and only
if each set obtained by intersections and unions of sets from A1, . . . , An has size at
most the size of the result of the same operations applied to B1, . . . , Bn.

Proof. Let A := A1 ∪ · · · ∪ An. For each s ∈ A, define

(22.36) Cs :=
⋂

i
s ∈ Ai

Bi.

Then for each subset S of A one has

(22.37)
∣∣ ⋃

s∈S

Cs

∣∣ =
∣∣ ⋃

s∈S

⋂

i
s ∈ Ai

Bi

∣∣ ≥
∣∣ ⋃

s∈S

⋂

i
s ∈ Ai

Ai

∣∣ ≥ |S|.

Hence, by Hall’s marriage theorem, (Cs | s ∈ A) has a transversal. This gives an
injection f : A → B1 ∪ · · · ∪ Bn with f(s) ∈ Cs for s ∈ A. This is as required.

22.7c. Further notes

Shmushkovich [1939], de Bruijn [1943], Hall [1948], Henkin [1953], Tutte [1953],
Mirsky [1967], Rado [1967a] (with H.A. Jung), Brualdi and Scrimger [1968], Folk-
man [1970], McCarthy [1973], Damerell and Milner [1974], Steffens [1974], Podewski
and Steffens [1976], Nash-Williams [1978], Aharoni [1983c], and Aharoni, Nash-
Williams, and Shelah [1983] considered extensions of Hall’s marriage theorem to the
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infinite case. Perfect [1968] gave proofs of theorems on transversals with Menger’s
theorem.

For a ‘very general theorem’ see Brualdi [1969a]. For counting transversals, see
Hall [1948], Rado [1967b], and Ostrand [1970].

Gale [1968] showed that for any family A of subsets of a finite set S and any
total order < on S, there is a transversal T of A such that for each transversal T ′

of A there exists a one-to-one function φ : T ′ → T with φ(s) ≥ s for each s ∈ T ′.
(Gale showed that this in fact characterizes matroids.)

The standard work on transversal theory is Mirsky [1971b]. Also Brualdi [1975]
and Welsh [1976] provide surveys. Surveys on the relations between the theorems
of Hall, Kőnig, Menger, and Dilworth were given by Jacobs [1969] and Reichmeider
[1984].

22.7d. Historical notes on transversals

Results on transversals go back to the papers by Miller [1910] and Chapman [1912],
who showed that if H is a subgroup of a finite group G, then the partitions of G
into left cosets and into right cosets have a common transversal. This is an easy
result, due to the fact that each component of the intersection graph of left and
right cosets is a complete bipartite graph. This implies that any common partial
transversal can be extended to a common (full) transversal (Chapman [1912]).

This result was extended by Scorza [1927] to: if H and K are subgroups of a finite
group G, with |H| = |K|, then there exist x1, . . . , xm ∈ G with x1H ∪ · · · ∪ xmH =
G = Kx1 ∪ · · · ∪ Kxm and m = |G|/|H|. (Again this can be derived easily from
the fact that each component of the intersection graph of left cosets of H and right
cosets of K is a complete bipartite graph.)

As an extension of these results, in October 1926, van der Waerden [1927]
presented the following theorem at the Mathematisches Seminar in Hamburg:

Es seien zwei Klasseneinteilungen einer endlichen Menge M gegeben. Die eine
soll die Menge in µ zueinander fremde Klassen A1, . . . , Aµ zu je n Elementen
zerlegen, die andere ebenfalls in µ fremde Klassen B1, . . . , Bµ zu je n Elementen.
Dann gibt es ein System von Elementen x1, . . . , xµ, derart, daß jede A-Klasse
und ebenso jede B-Klasse under den xi durch ein Element vertreten wird.41

The proof of van der Waerden is based on an augmenting path argument. More-
over, van der Waerden remarked that E. Artin had communicated orally to him that
the result can be sharpened to the existence of n disjoint such common transversals.

In a note added in proof, van der Waerden observed that his theorem follows
from Kőnig’s theorem on the existence of a perfect matching in a regular bipartite
graph:

Zusatz bei der Korrektur. Ich bemerke jetzt, daß der hier bewiesene Satz mit
einem Satz von Dénes Kőnig über reguläre Graphen äquivalent ist.42

41 Let be given two partitions of a finite set M. One of them should decompose the set
into µ mutually disjoint classes A1, . . . , Aµ each of n elements, the other likewise in µ

disjoint classes B1, . . . , Bµ each of n elements. Then there exists a system of elements
x1, . . . , xµ such that each A-class and likewise each B-class is represented by one element
among the xi.

42 Note added in proof. I now notice that the theorem proved here is equivalent to a
theorem of Dénes Kőnig on regular graphs.
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Van der Waerden’s article is followed by an article of Sperner [1927] (presented at
the Mathematisches Seminar in Januari 1927) that gives a ‘simple proof’ of van der
Waerden’s result. We quote the full article (containing page references to van der
Waerden’s paper):

Der auf S. 185 ff. bewiesene Satz gestattet auch folgenden einfachen Beweis.
Der Satz lautete:
Zwei beliebige Klasseneinteilungen von m · n Elementen in m Klassen zu je n

Elementen haben immer ein gemeinsames Repräsentantensystem (vgl. S. 185).
Der Satz ist evident für die Klassenzahl 1. Wir nehmen an, er sei bewiesen für
die Klassenzahl m (und beliebiges n). Dan folgt für dieses m:
1. Die beiden Klasseneinteilungen haben sogar n verschiedene und zueinander
fremde Repräsentantensysteme.
Beweis wie auf S. 187 oben.
2. Streicht man daher in beiden Einteilungen dieselben k Elemente, wo 0 ≤ k ≤
n−1, dan werden höchstens n−1 Repräsentantensysteme verletzt und wenigstens
eins bleibt erhalten. Da man auch umgekehrt m · n − k Elemente durch k neue
ergänzen kann, um diese nachher wieder zu streichen, so gilt:
Zwei beliebige Klasseneinteilungen von m · n − k Elementen in m Klassen zu
je höchstens n Elementen, wo 0 ≤ k ≤ n − 1, haben immer ein gemeinsames
Repräsentantensystem.
Nunmehr wenden wir vollständige Induktion an. Es seien zwei Klasseneinteilun-
gen von (m+1) ·n Elementen in m+1 Klassen zu je n Elementen gegeben. Dann
greifen wir aus beiden Einteilungen je eine Klasse heraus, etwa die Klassen A
und B, die aber wenigstens 1 Element gemeinsam haben sollen, etwa A. Streichen
wir dann in beiden Einteilungen die in A und B vorkommenden Elemente (also
höchstens 2n − 1, aber wenigstens n Elemente), so bleiben zwei Klasseneinteilun-
gen von m · n − k Elementen in je m Klassen zu je höchstens n Elementen übrig,
wo 0 ≤ k ≤ n − 1. Zwei solche Einteilungen haben aber nach 2. ein gemeinsames
Repräsentantensystem, das man sofort durch Hinzufügen von A zu einem gemein-
samen Repräsentantensysteme der beiden Einteilungen von (m + 1)n Elementen
erweitert.43

43 The theorem proved on p. 185 and following pages allows also the following simple proof.
The theorem reads:
Two arbitrary partitions of m · n elements into m classes of n elements each, always

have a common system of representatives (cf. p. 185).
The theorem is evident for class number 1. We assume that it be proved for class

number m (and arbitrary n). Then the following follows for this m:
1. Both partitions even have n different and disjoint systems of representatives.
Proof like on p. 187 above.
2. Therefore, if one cancels in both partitions the same k elements, where 0 ≤ k ≤

n − 1, then at most n − 1 systems of representatives are injured and at least one is
preserved. As one can also, reversely, complete m · n − k elements by k new ones, to
cancel them after it again, the following therefore holds:

Two arbitrary partitions of m · n − k elements into m classes of at most n elements
each, where 0 ≤ k ≤ n − 1, always have a common system of representatives.

Now we apply complete induction. Let be given two partitions of (m+1) ·n elements
into m+1 classes of n elements each. Then we select from each of the two partitions one
class, say the classes A and B, that however should have at least 1 element in common,
say A. If we then cancel in both partitions the elements occurring in A and B (so at
most 2n−1, but at least n elements), two partitions of m ·n−k elements into m classes
of at most n elements each thus remain, where 0 ≤ k ≤ n − 1. Two such partitions
have however, according to 2., a common system of representatives, that one extends,
by adding A, to a common system of representatives of both partitions of (m + 1)n
elements.
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Hall

After having mentioned Kőnig’s result on the existence of a common transversal
for two partitions of a set where all classes have the same size, Hall [1935] said that
he is ‘concerned with a slightly different problem’: to find a transversal

for a finite collection of (arbitrarily overlapping) subsets of any given set of things.
The solution, Theorem 1, is very simple.

Calling a transversal a ‘C.D.R. (= complete system of distinct representatives)’
and denoting a finite system T1, . . . , Tm of subsets of a set S by ‘(1)’, Hall formulated
his theorem as follows:

In order that a C.D.R. of (1) shall exist, it is sufficient that for each k =
1, 2, . . . , m any selection of k of the sets (1) shall contain between them at least
k elements of S.

This result now is known as ‘Hall’s marriage theorem’.
In order to prove this theorem, Hall first showed the following lemma. Let

(A1, . . . , An) be a system of sets with at least one transversal and let R be the
intersection of all transversals. Then there is an I ⊆ {1, . . . , n} with AI = R and
|I| = |R|.

Hall proved this with the help of an alternating path argument. Having the
lemma, the theorem is easy, by induction on n: we may assume that (A1, . . . , An−1)
has a transversal; let R′ be the intersection of all these transversals. So by the
lemma, R′ = AI′ for some I ′ ⊆ {1, . . . , n−1} with |I ′| = |R′|. Hence An �⊆ R′, since
otherwise for I := I ′∪{n} one has

∣∣ ⋃
i∈I Ai

∣∣ = |R′| < |I|. Therefore, (A1, . . . , An−1)
has a transversal not containing An as a subset, implying that (A1, . . . , An) has a
transversal.

Hall derived as a consequence that if A1, . . . , An and B1, . . . , Bn are two parti-
tions of a finite set S, then the two partitions have a common transversal if and only
if for each subset I of {1, . . . , n}, the set

⋃
i∈I Ai intersects at least |I| sets among

B1, . . . , Bn. Hall remarked that the theorem of Kőnig [1916] on the existence of
a perfect matching in a regular bipartite graph follows as an immediate corollary,
and that also a theorem of Rado [1933] can be derived (the Kőnig-Rado edge cover
theorem — Theorem 19.4), but he did not observe that Hall’s marriage theorem
is equivalent to a theorem of Kőnig [1931] (Kőnig’s matching theorem — Theorem
16.2).

As for common transversals, Maak [1936] showed that if A = (A1, . . . , An) and
B = (B1, . . . , Bn) are partitions of a finite set S, then A and B have a common
transversal if and only if for each I ⊆ {1, . . . , n}, the set

⋃
i∈I Ai contains at most |I|

of the sets Bi as a subset. This can be derived from Frobenius’ theorem (Frobenius
[1917]).

The basic characterization of common transversals of two arbitrary families of
sets was given by Ford and Fulkerson [1958c] — see Section 23.1.

Shmushkovich [1939] and de Bruijn [1943] extended the results to the infinite
case. Weyl [1949] introduced the name ‘marriage theorem’ for Hall’s marriage the-
orem. Maak [1952] gave some historical notes.
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Common transversals

We consider sets that are transversals of two families of sets simultaneously.
Again we denote, for any family (A1, . . . , An) of sets and any I ⊆
{1, . . . , n},

AI :=
⋃

i∈I

Ai.

23.1. Common transversals

Let A and B be families of sets. A set T is called a common transversal of A
and B if T is a transversal of both A and B. Similarly, T is called a common
partial transversal of A and B if T is a partial transversal of both A and B.

When considering two families A = (A1, . . . , An) and B = (B1, . . . , Bm)
of subsets of a set S, it is helpful to construct the following directed graph
D = (V, A):

(23.1) V := {a1, . . . , an} ∪ S ∪ {b1, . . . , bm},
A := {(ai, s) | i = 1, . . . , n; s ∈ Ai} ∪ {(s, bi) | i = 1, . . . , m; s ∈
Bi},

where a1, . . . , an, b1, . . . , bm are distinct new elements, not in S.
Then one has, if m = n:

(23.2) a subset T of S is a common transversal of A and B if and only
if D has n vertex-disjoint paths from {a1, . . . , an} to {b1, . . . , bn}
such that T is the set of vertices in S traversed by these paths.

A similar statement can be formulated with respect to common partial
transversals.

With Menger’s theorem, it yields the following characterization of the
existence of a common transversal, due to Ford and Fulkerson [1958c]:

Theorem 23.1. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of
sets. Then A and B have a common transversal if and only if

(23.3) |AI ∩ BJ | ≥ |I| + |J | − n
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for all I, J ⊆ {1, . . . , n}.

Proof. To see necessity, let T be a common transversal. To prove (23.3), we
can assume that Ai ⊆ T and Bj ⊆ T for all i, j. Then

(23.4) |AI ∩BJ | = |AI |+ |BJ |−|AI ∪BJ | ≥ |I|+ |J |−|T | ≥ |I|+ |J |−n

for all I, J ⊆ {1, . . . , n}.
To see sufficiency, make the digraph D associated to A, B as in (23.1). Let

U := {a1, . . . , an} and W := {b1, . . . , bn}. Then by (23.2), A and B have a
common transversal if D has n disjoint U − W paths. By Menger’s theorem,
these paths exist if |C| ≥ n for each C ⊆ U ∪S ∪W intersecting each U − W
path. To check this condition, let I := {i | ai �∈ C} and J := {j | bj �∈ C}.
Then

(23.5) C ∩ S ⊇ AI ∩ BJ ,

since AI ∩ BJ is equal to the set of vertices in S that are on a U − W path
not intersected by C ∩ (U ∪ W ). So (23.3) implies

(23.6) |C∩S| ≥ |AI∩BJ | ≥ |I|+|J |−n = (n−|C∩U |)+(n−|C∩W |)−n,

giving |C| ≥ n.

(For a direct derivation of this theorem from Hall’s marriage theorem, see
Perfect [1969c]. For a derivation from the Kőnig-Rado edge cover theorem,
see Perfect [1980].)

This construction also implies, with Theorem 9.8, that a common transver-
sal of two collections of n subsets of S can be found in time O(n3/2|S|) (cf.
Adel’son-Vel’skĭı, Dinits, and Karzanov [1975]).

Perfect [1968] (cf. McDiarmid [1973]) strengthened Theorem 23.1 to a
min-max relation for the maximum size of a common partial transversal:

Corollary 23.1a. Let A = (A1, . . . , An) and B = (B1, . . . , Bm) be families
of sets and let k ∈ Z+. Then A and B have a common partial transversal of
size k if and only if

(23.7) |AI ∩ BJ | ≥ |I| + |J | − n − m + k

for all I ⊆ {1, . . . , n} and J ⊆ {1, . . . , m}.

Proof. We may assume that m = n (if, say, n < m, add m − n copies of ∅
to A). Let X be a set disjoint from all Ai and Bi with |X| = n − k. Replace
each Ai by A′

i := Ai ∪ X and each Bi by B′
i := Bi ∪ X. Then A and B have

a common partial transversal of size k if and only if A′ = (A′
1, . . . , A

′
n) and

B′ = (B′
1, . . . , B

′
n) have a common transversal. Applying Theorem 23.1 to A′

and B′ gives this corollary.

Generally, a common partial transversal of families A and B need not be
contained in a common transversal, even not if a common transversal exists:
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let A := ({a}, {b, c}) and B := ({b}, {a, c}). Then {c} is a common partial
transversal, while {a, b} is the only common transversal.

The following result of Perfect [1968] and Welsh [1968] characterizes sub-
sets contained in common transversals. It is a special case of a theorem of
Ford and Fulkerson [1958c] (cf. Theorem 23.14), and will be derived from
Theorem 23.1 with a method of Mirsky and Perfect [1968].

Corollary 23.1b. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of
subsets of a set S and let X ⊆ S. Then A and B have a common transversal
containing X if and only if

(23.8) |AI ∩ BJ | ≥ |I| + |J | − n + |X \ (AI ∪ BJ)|
for all I, J ⊆ {1, . . . , n}.

Proof. To see necessity, we can assume that there is a common transversal
T containing each Ai, each Bj , and X. Then for all I, J ⊆ {1, . . . , n}:

(23.9) |AI ∩BJ | = |AI |+ |BJ |−|AI ∪BJ | ≥ |I|+ |J |+ |X \(AI ∪BJ)|−n

since |AI ∪ BJ | + |X \ (AI ∪ BJ)| ≤ |T | = n.
To see sufficiency, let X = {x1, . . . , xk} and let x′

1, . . . , x
′
k be new elements.

For each i = 1, . . . , n, let A′
i be the set obtained from Ai by replacing any

occurrence of xj by x′
j . Then A and B have a common transversal containing

X if the families

(23.10) A′ := (A′
1, . . . , A

′
n, {x1}, . . . , {xk}) and

B′ := (B1, . . . , Bn, {x′
1}, . . . , {x′

k})

have a common transversal. So by Theorem 23.1 we must check condition
(23.3) for A′ and B′. Let I, J ⊆ {1, . . . , n} and I ′, J ′ ⊆ {1, . . . , k}. Define
Y := {xi | i ∈ I ′} and Z := {xi | i ∈ J ′}. Then

(23.11)
∣∣( ⋃

i∈I

A′
i ∪

⋃

i∈I′

{xi}
)

∩
( ⋃

j∈J

Bj ∪
⋃

j∈J′

{x′
j}

)∣∣

= |(AI ∩ BJ) \ X| + |AI ∩ Z| + |BJ ∩ Y |
= |(AI ∩ BJ) \ X| + |Z| − |Z \ AI | + |Y | − |Y \ BJ |
≥ |(AI ∩ BJ) \ X| + |Z| − |X \ AI | + |Y | − |X \ BJ |
= |AI ∩ BJ | − |X \ (AI ∪ BJ)| + |Y | + |Z| − |X|
≥ |I| + |J | + |Y | + |Z| − |X| − n = |I| + |I ′| + |J | + |J ′| − n − k

(the last inequality follows from (23.8)).

23.2. Weighted common transversals

Consider the problem of finding a minimum-weight common transversal:
given families A = (A1, . . . , An) and B = (B1, . . . , Bn) of subsets of a set
S and a weight function w : S → Q, find a common transversal T of A and B
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minimizing w(T ). This problem can easily be solved by solving an associated
minimum-cost flow problem.

Alternatively, it can be solved with the Hungarian method, as follows. For
s ∈ S, introduce a copy s′ of s. Let S′ := {s′ | s ∈ S}. Let a1, . . . , an, b1, . . . , bn

be vertices. Make a bipartite graph G with colour classes {a1, . . . , an} ∪ S
and {b1, . . . , bn} ∪ S′. Vertex ai is connected with vertex s′ ∈ S′ if s ∈ Ai.
Vertex bi is connected with vertex s ∈ S if s ∈ Bi. Moreover, each s ∈ S is
connected with its copy s′ ∈ S′. This describes all edges of G.

For any perfect matching M in G, the set of s ∈ S with {s, s′} �∈ M is
a common transversal of A and B. Conversely, each common transversal can
be obtained in this way from a perfect matching in G.

Therefore, a minimum-weight common transversal of A and B can be
found by determining a maximum-weight perfect matching in G, taking
weight w(s) on any edge {s, s′} and weight 0 on any other edge of G. So
by Theorem 17.3 we can find a minimum-weight common transversal in time
O(k(m + k log k)), where

(23.12) k := n + |S| and m :=
n∑

i=1

(|Ai| + |Bi|).

Due to the special structure of G and its weight function one can sharpen
this to:

Theorem 23.2. A minimum-weight common transversal can be found in
time O(n(m + k log k)), with m and k as in (23.12).

Proof. We may assume that w(s) ≥ 0 for each s ∈ S (we can add a constant
to all weights). Then we can start the Hungarian method with the matching
M consisting of all edges {s, s′} with s ∈ S. This matching is extreme (that
is, has maximum weight among all matchings of size |M |), and the Hungar-
ian method requires only n iterations to obtain a maximum-weight perfect
matching.

Note that, unlike what happened in finding a minimum-weight transversal
for one family of sets, in the algorithm above we do not grow a common partial
transversal — we do backtrack.

We can also obtain a min-max relation for the minimum weight of a
common transversal:

Theorem 23.3. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of
subsets of a set S and let w : S → Z be a weight function. Then the minimum
weight of a common transversal of A and B is equal to the maximum value
of

(23.13)
n∑

i=1

(min
s∈Ai

w1(s) + min
s∈Bi

w2(s)) + (w(S) − w1(S) − w2(S))
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taken over w1, w2 ∈ ZS satisfying w1 + w2 ≥ w.

Proof. Consider the graph G above. By Theorem 17.5 (or by total unimod-
ularity), the maximum weight of a perfect matching in G is equal to the
minimum value of

(23.14)
n∑

i=1

(λi + µi) +
∑

s∈S

(w1(s) + w2(s))

taken over λ, µ ∈ Zn and w1, w2 ∈ ZS satisfying

(23.15) λi + w1(s) ≥ 0 for i = 1, . . . , n and s ∈ Ai,
w1(s) + w2(s) ≥ w(s) for s ∈ S,
µi + w2(s) ≥ 0 for i = 1, . . . , n and s ∈ Bi.

We can assume that λi = max{−w1(s) | s ∈ Ai} and µi = max{−w2(s) | s ∈
Bi} for each i = 1, . . . , n.

Now the minimum weight of a common transversal is equal to w(S) mi-
nus the maximum weight of a perfect matching in G. So it is equal to the
maximum value of

(23.16) w(S) −
∑

s∈S

(w1(s) + w2(s)) +
n∑

i=1

(min
s∈Ai

w1(s) + min
s∈Bi

w2(s)),

where w1, w2 ∈ ZS satisfy w1 + w2 ≥ w. This is equal to (23.13).

23.3. Weighted common partial transversals

A maximum-weight common partial transversal can be found with the Hun-
garian method, like described at the beginning of Section 23.2. At any stage
of the Hungarian method the current matching M is extreme (that is, it has
optimum weight among all matchings of size |M |). So we can also apply it
(like in Theorem 23.2) to find a maximum-weight common partial transversal
of two families A = (A1, . . . , Ak) and B = (B1, . . . , Bl) of subsets of a set S.
Taking

(23.17) n := k + l + |S| and m :=
k∑

i=1

|Ai| +
l∑

i=1

|Bi|,

we have:

Theorem 23.4. A maximum-weight common partial transversal can be found
in time O(min{k, l}(m + n log n)).

Proof. As above.

Note that, even if all weights are positive, a maximum-weight common
partial transversal need not be a common transversal (a statement that is true
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if we delete ‘common’). To see this, let A = ({a}, {b, c}), B = ({b}, {a, c}),
and w(a) = w(b) = 1, w(c) = 3. Then {c} is the only maximum-weight
common partial transversal, while {a, b} is the only common transversal.

A min-max relation for the maximum weight of a common partial transver-
sal can be derived from a min-max relation for the maximum weight of a
matching in a bipartite graph, or from linear programming duality using
total unimodularity, as we do in the proof below:

Theorem 23.5. Let A = (A1, . . . , Ak) and B = (B1, . . . , Bl) be families
of subsets of a set S and let w : S → Z+ be a weight function. Then the
maximum weight of a common partial transversal of A and B is equal to the
minimum value of

(23.18)
k∑

i=1

max
s∈Ai

w1(s) +
l∑

i=1

max
s∈Bi

w2(s) + (w − w1 − w2)(S)

where w1, w2 ∈ ZS
+ with w1 + w2 ≤ w.

Proof. The maximum weight of a common partial transversal is equal to
the maximum of wTx where x ∈ ZS such that there exist y1(i, s) ∈ Z+

(i = 1, . . . , k; s ∈ Ai) and y2(i, s) ∈ Z+ (i = 1, . . . , l; s ∈ Bi) satisfying

(23.19)
∑

s∈Ai

y1(i, s) ≤ 1 for i = 1, . . . , k,

∑

s∈Bi

y2(i, s) ≤ 1 for i = 1, . . . , l,

xs =
∑

i,s∈Ai

y1(i, s) for s ∈ S,

xs =
∑

i,s∈Bi

y2(i, s) for s ∈ S,

0 ≤ xs ≤ 1 for s ∈ S.

By linear programming duality and the total unimodularity of the constraint
matrix in (23.19), the maximum value is equal to the minimum value of

(23.20)
k∑

i=1

z1(i) +

l∑

i=1

z2(i) +
∑

s∈S

u(s),

where z1, z2 ∈ Zk
+ and u ∈ ZS

+ satisfy

(23.21) z1(i) ≥ w1(s) for i = 1, . . . , k and s ∈ Ai,
z2(i) ≥ w2(s) for i = 1, . . . , l and s ∈ Bi,
w1(s) + w2(s) + u(s) ≥ w(s) for s ∈ S,

for some w1, w2 ∈ ZE . We may assume that w1, w2 ≥ 0, since replacing
any negative wj(s) by 0 does not violate (23.21). We may assume that w1 +
w2 + u = w, since w ≥ 0, and hence we can decrease w1(s), w2(s) or u(s) if
w1(s) + w2(s) + u(s) > w(s). This gives the theorem.



Section 23.4. The common partial transversal polytope 399

By specializing w to the all-one function, Theorem 23.5 reduces to Corol-
lary 23.1a on the maximum size of a common partial transversal. We can also
derive an alternative min-max relation for the maximum weight of a common
partial transversal, expressed in

(23.22) m(C, w) := maximum weight of a partial transversal of C
for any family C and weight function w (so we can plug in a min-max relation
for m(C, w) to obtain a genuine min-max relation):

Corollary 23.5a. Let A = (A1, . . . , Ak) and B = (B1, . . . , Bl) be families
of subsets of a set S and let w : S → Z+ be a weight function. Then the
maximum weight of a common partial transversal of A and B is equal to
the minimum value of m(A, w1) + m(B, w2), taken over w1, w2 ∈ ZS

+ with
w1 + w2 = w.

Proof. Clearly, the maximum value here cannot be larger than the minimum
value, since w(T ) = w1(T )+w2(T ) ≤ m(A, w1)+m(B, w2) for any maximum-
weight common partial transversal T .

To see equality, consider w1 and w2 of Theorem 23.5, and let w′
2 := w−w1.

Then for any partial transversal T1 of A one has

(23.23) w1(T1) ≤
k∑

i=1

max
s∈Ai

w1(s).

Moreover, for any partial transversal T2 of B one has

(23.24) w′
2(T2) = w2(T2) + (w − w1 − w2)(T2)

≤
k∑

i=1

max
s∈Bi

w2(s) + (w − w1 − w2)(S).

So by Theorem 23.5 we have that m(A, w1) + m(B, w′
2) is not more than the

maximum w-weight of a common partial transversal.

The obvious generalization to common partial transversals of three fami-
lies is not true: take

(23.25) A = ({a}, {b, c}), B = ({b}, {a, c}), and C = ({c}, {a, b}),

and w(a) = w(b) = w(c) = 1. Then the maximum weight of a common
partial transversal is 1, but one cannot decompose w as w = w1 + w2 + w3

with m(A, w1) + m(B, w2) + m(C, w3) = 1.

23.4. The common partial transversal polytope

Let A = (A1, . . . , Ak) and B = (B1, . . . , Bl) be families of subsets of a set
S. The common partial transversal polytope Pcommon partial transversal(A, B) of
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A and B is the convex hull of the incidence vectors (in RS) of the common
partial transversals of A and B. That is,

(23.26) Pcommon partial transversal(A, B) = conv.hull{χT | T is a common
partial transversal of A and B}.

It is easy to see that each vector x in the common partial transversal polytope
satisfies:

(23.27) (i) 0 ≤ xs ≤ 1 for s ∈ S,
(ii) x(S \ AI) ≤ k − |I| for I ⊆ {1, . . . , k},
(iii) x(S \ BI) ≤ l − |I| for I ⊆ {1, . . . , l}.

In fact, this fully determines the common partial transversal polytope:

Theorem 23.6. The common partial transversal polytope is determined by
(23.27).

Proof. We must show that for any weight function w ∈ ZS
+, the maximum

value of wTx over (23.27) is equal to the maximum weight µ of any common
partial transversal. By Corollary 23.5a, there exist weight functions w1, w2 ∈
ZS with w = w1 + w2 and µ = m(A, w1) + m(B, w2). Now any x satisfying
(23.27) belongs to the partial transversal polytopes of A and B. So wT

1 x ≤
m(A, w1) and wT

2 x ≤ m(B, w2). Hence wTx ≤ µ.

Since (23.27) is the union of the systems that determine the partial
transversal polytope of A and of B, we have:

Corollary 23.6a. Let A and B be families of subsets of a set S. Then

(23.28) Pcommon partial transversal(A, B)
= Ppartial transversal(A) ∩ Ppartial transversal(B).

Proof. Directly from Theorem 23.6 and Corollary 22.9a.

Also:

Theorem 23.7. System (23.27) is TDI.

Proof. Directly from Corollaries 23.5a and 22.9a.

Again one cannot make the obvious extension to three families of sets,
by considering the families (23.25). In that case, the vector (1

2 , 1
2 , 1

2 ) belongs
to the intersection of the three partial transversal polytopes, but does not
belong to the common partial transversal polytope.
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23.5. The common transversal polytope

Similar results hold for the common transversal polytope. Let A = (A1, . . . ,
An) and B = (B1, . . . , Bn) be families of subsets of a set S. The common
transversal polytope Pcommon transversal(A) of A and B is the convex hull of
the incidence vectors (in RS) of the common transversals of A and B. That
is,

(23.29) Pcommon transversal(A,B) = conv.hull{χT | T is a common trans-
versal of A and B}.

It is easy to see that each vector x in the common transversal polytope
satisfies:

(23.30) (i) 0 ≤ xs ≤ 1 for s ∈ S,
(ii) x(AI) ≥ |I| for I ⊆ {1, . . . , n},
(iii) x(BI) ≥ |I| for I ⊆ {1, . . . , n},
(iv) x(S) = n.

Corollary 23.7a. The common transversal polytope is determined by (23.30).

Proof. The common transversal polytope is the facet of the common partial
transversal polytope determined by the equality x(S) = n. So we must show
that (23.30) implies (23.27), which is trivial, since if x satisfies (23.30), then
x(S \ AI) = x(S) − x(AI) ≤ n − |I| and x(S \ BI) = x(S) − x(BI) ≤ n − |I|
for any I ⊆ {1, . . . , n}.

Again this implies:

Corollary 23.7b. Let A and B be families of subsets of a set S. Then

(23.31) Pcommon transversal(A,B) = Ptransversal(A) ∩ Ptransversal(B).

Proof. Directly from Corollaries 23.7a and 22.9b.

In fact:

Theorem 23.8. System (23.30) is TDI.

Proof. This follows from Theorem 23.7, using Theorem 5.25.

Weinberger [1976] proved the following conjecture of Fulkerson [1971a],
which generalizes Theorem 18.8. Let A = (A1, . . . , An) and B = (B1, . . . , Bn)

be families of subsets of a set S. Then the up hull P ↑
common transversal(A, B) of

the common transversal polytope is determined by:

(23.32) x(U) ≥ n− maximum size of a common partial transversal con-
tained in S \ U ,
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for U ⊆ S. This will follow from Theorem 46.3 on polymatroids.

23.6. Packing and covering of common transversals

Fulkerson [1971b] and de Sousa [1971] detected that results on bipartite edge-
colouring (or related results) imply characterizations of packings of common
transversals. It was noticed by Brualdi [1971b] that the methods in fact yield
more general results.

Basic is the following exchange property given by de Sousa [1971]:

Theorem 23.9. Let A = (A1, . . . , An) and B = (B1, . . . , Bm) be families of
subsets of a set S and let k ∈ Z+. Suppose that S can be covered by k partial
transversals of A and that S can also be covered by k partial transversals of
B. Then S can be covered by k common partial transversals of A and B.

Proof. Let T1, . . . , Tk be a partition of S into k partial transversals of A.
Since each Ti is a partial transversal of A, it follows that each Ai has a subset
A′

i such that |A′
i| ≤ k and such that A′

1, . . . , A
′
n partition S. We can assume

that A′
i = Ai for each i, and hence that A is a partition of S into classes of

size at most k.
Similarly, we can assume that B is a partition of S into classes of size at

most k.
Now make a bipartite graph G, with colour classes {a1, . . . , an} and

{b1, . . . , bm}, connecting ai and bj by |Ai ∩ Bj | parallel edges. So G has
maximum degree k, and hence, by Kőnig’s edge-colouring theorem, the edges
of G can be coloured with k colours. It implies that S can be partitioned as
required.

A consequence is a min-max formula for the minimum number of common
partial transversals needed to cover S, stated by Brualdi [1971b]:

Corollary 23.9a. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of
subsets of a set S, each with union S. Then the minimum number of common
partial transversals of A and B needed to cover S is equal to

(23.33)
⌈

max
X ⊆ S
X �= ∅

max{ |X|
|{i|Ai∩X �=∅}| ,

|X|
|{i|Bi∩X �=∅}|}

⌉
.

Proof. From Theorem 23.9, using Theorem 22.12.

Theorem 23.9 also gives a variant of the exchange property (de Sousa
[1971]):

Corollary 23.9b. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families
of subsets of a set S and let k ∈ Z+. Suppose that S can be partitioned into k
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transversals of A, and also can be partitioned into k transversals of B. Then
S can be partitioned into k common transversals of A and B.

Proof. Directly from Theorem 23.9, since |S| = nk.

This implies another variant (de Sousa [1971]):

Corollary 23.9c. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of
subsets of a set S and let k ∈ Z+. Suppose that S has a partition (S1, . . . , Sn)
with |Si| = k and Si ⊆ Ai for i = 1, . . . , n. Suppose moreover that S has a
partition (Z1, . . . , Zn) with |Zi| = k and Zi ⊆ Bi for i = 1, . . . , n. Then S
can be partitioned into common transversals of A and B.

Proof. Note that if S has a partition (S1, . . . , Sn) with |Si| = k and Si ⊆ Ai

for i = 1, . . . , n, then S can be partitioned into k transversals of A. Similarly
for B. So the present corollary follows from Corollary 23.9b.

This gives the following basic min-max relation for the maximum number
of disjoint common transversals, given by Fulkerson [1971b] and de Sousa
[1971]:

Corollary 23.9d. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families
of sets and let k be a natural number. Then A and B have k disjoint common
transversals if and only if

(23.34) |AI ∩ BJ | ≥ k(|I| + |J | − n).

for all I, J ⊆ {1, . . . , n}.

Proof. Necessity of (23.34) being easy, we show sufficiency.
Let A′ arise by taking k copies of A and let B′ arise from taking k copies

of B. Condition (23.34) implies that A′ and B′ have a common transversal, S
say (by Theorem 23.1). Then we can partition S into subsets A′

1, . . . , A
′
n, with

A′
i ⊆ Ai and |A′

i| = k. Similarly, we can partition S into subsets B′
1, . . . , B

′
n,

with B′
i ⊆ Bi and |B′

i| = k. Then by Corollary 23.9c, S has a partition into
k common transversals of A and B.

(Note that if A and B are partitions of a set, this corollary reduces to Corol-
lary 20.9a.)

The following open problem, dealing with packing common transversals,
was mentioned by Fulkerson [1971b]: Let A and B be families of subsets of a
set S and let c ∈ ZS

+. What is the maximum number k of common transversals
T1, . . . , Tk such that

(23.35) χT1 + · · · + χTk ≤ c?

More generally than Corollary 23.9d, one has for disjoint common partial
transversals of prescribed size (Fulkerson [1971b]):
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Theorem 23.10. Let A = (A1, . . . , An) and B = (B1, . . . , Bm) be families of
sets and let k, p ∈ Z+. Then there exist k disjoint common partial transversals
of size p if and only if

(23.36) |AI ∩ BJ | ≥ k(|I| + |J | + p − n − m)

for all I ⊆ {1, . . . , n} and J ⊆ {1, . . . , m}.

Proof. Construct A′ and B′ as in Corollary 23.9d. By Corollary 23.1a, (23.36)
implies that A′ and B′ have a common partial transversal, T say, of size pk.
Then each Ai has a subset A′

i such that |A′
i| ≤ k and such that A′

1, . . . , A
′
n

partition T . We can assume that A′
i = Ai for each i, and hence that A is a

partition of T into classes of size at most k.
Similarly, we can assume that B is a partition of T into classes of size at

most k.
Now make a bipartite graph G, with colour classes {a1, . . . , an} and

{b1, . . . , bm}, connecting ai and bj by |Ai ∩ Bj | parallel edges. So G has
kp edges and maximum degree k, and hence, by Theorem 20.8, the edges of
G can be coloured with k colours, each of size p. It implies that T can be
partitioned into common partial transversals of A and B of size p.

Similarly to Theorem 23.9 one can prove the following exchange property:

Theorem 23.11. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of
subsets of a set S and let k ∈ Z+. Suppose that A has k disjoint transver-
sals and that also B has k disjoint transversals. Then S has k disjoint sub-
sets S1, . . . , Sk such that each Si contains a transversal of A and contains a
transversal of B.

Proof. As A has k disjoint transversals, there exist disjoint sets A′
1, . . . , A

′
n

with A′
i ⊆ Ai and |A′

i| = k for i = 1, . . . , k. For our purposes, we can assume
that A′

i = Ai. Let Y be the union of the Ai. Similarly, we can assume that
B1, . . . , Bn have size k each and partition some set Z.

Again, make a bipartite graph G, with colour classes {a1, . . . , an} and
{b1, . . . , bn}, connecting ai and bj by |Ai ∩ Bj | parallel edges. Then G has
maximum degree at most k, and hence, by Kőnig’s edge-colouring theorem
(Theorem 20.1), G is k-edge-colourable. It gives a partition of Y ∩ Z into
k classes each intersecting any Ai and Bi in at most one element. We can
extend this partition to a partition of Y ∪Z into classes each intersecting any
Ai and any Bi in exactly one element. This is a partition as required.

This implies another min-max relation:

Corollary 23.11a. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families
of subsets of a set S. Then the maximum number k for which there exist dis-
joint subsets S1, . . . , Sk each containing a transversal of A and a transversal
of B is equal to
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(23.37) ⌊ min
∅�=I⊆{1,...,n}

min{ |AI |
|I| , |BI |

|I| }⌋.

Proof. Directly from Theorems 22.10 and 23.11.

An analogue of Corollary 23.9d for covering by common transversals is:

Theorem 23.12. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of
subsets of S and let X ⊆ S. Then X can be covered by k common transversals
if and only if

(23.38) k|AI ∩ BJ | ≥ k(|I| + |J | − n) + |X \ (AI ∪ BJ)|
for all I, J ⊆ {1, . . . , n}.

Proof. To see necessity, let T1, . . . , Tk be common transversals covering X
and let I, J ⊆ {1, . . . , n}. Then

(23.39) k|AI ∩ BJ | ≥
k∑

j=1

|AI ∩ BJ ∩ Tj |

=
k∑

j=1

(|AI ∩ Tj | + |BJ ∩ Tj | − |Tj ∩ (AI ∪ BJ)|)

≥
k∑

j=1

(|I| + |J | − |Tj ∩ (AI ∪ BJ)|)

= k(|I| + |J | − n) +

k∑

j=1

|Tj \ (AI ∪ BJ)|

≥ k(|I| + |J | − n) + |X \ (AI ∪ BJ)|.
To see sufficiency, make a directed graph D, with vertex set

(23.40) {r} ∪ {a1, . . . , an} ∪ S ∪ S′ ∪ {b1, . . . , bn},

where S′ is a set consisting of, for each s ∈ S, a (new) copy s′ of s, and with
arcs, with demands and capacities, as follows:

(23.41) (r, ai) with demand k and capacity k, for i = 1, . . . , n,
(ai, s) with demand 0 and capacity ∞ for i = 1, . . . , n and s ∈ Ai,
(s, s′) with demand 1 (if s ∈ X) or 0 (if s �∈ X) and capacity k,
for s ∈ S,
(s′, bi) with demand 0 and capacity ∞, for i = 1, . . . , n and s ∈
Bi,
(bi, r) with demand k and capacity k, for i = 1, . . . , n.

Then by Hoffman’s circulation theorem (Theorem 11.2), (23.38) implies the
existence of a circulation f obeying the demands and capacities. Indeed,
consider any set U of vertices of D. Let I := {i | ai ∈ U}, J := {j | bj �∈ U},
Y := U ∩ S and Z := {s ∈ S | s′ �∈ U}. We can assume that the capacity of
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the arcs leaving U is finite, and hence, if i ∈ I, then Ai ⊆ Y and if j ∈ J ,
then Bj ⊆ Z. That is, AI ⊆ Y and BJ ⊆ Z.

If r �∈ U , then the total demand of the arcs entering U is equal to

(23.42) k|I| + |X \ (Y ∪ Z)|
and the total capacity of the arcs leaving U is equal to

(23.43) k|Y ∩ Z| + k(n − |J |).
Since AI ⊆ Y and BJ ⊆ Z, (23.38) implies that (23.42) is at most (23.43).

If r ∈ U , then the total demand of the arcs entering U is equal to

(23.44) k|J | + |X \ (Y ∪ Z)|
and the total capacity of the arcs leaving U is equal to

(23.45) k|Y ∩ Z| + k(n − |I|).
Since AI ⊆ Y and BJ ⊆ Z, (23.38) implies that (23.44) is at most (23.45).

So Hoffman’s condition is satisfied, and hence there exists a circulation
f .

Now f is at most k on any arc. Hence, by Corollary 11.2b, f is the sum
of k {0, 1}-valued circulations f1, . . . , fk. For each circulation fi, the set Ti

of s ∈ S with fi(s, s
′) = 1 is a common transversal of A and B. Moreover,

since f(s, s′) ≥ 1 for each s ∈ X, these common transversals cover X.

A covering theorem different from Theorem 23.12 is due to Brualdi
[1971b]:

Theorem 23.13. Let A = (A1, . . . , An) and B = (B1, . . . , Bm) be fami-
lies of subsets of a set S. Suppose that S can be covered by k common partial
transversals of A and B. Then S can be covered by k common partial transver-
sals each of size ⌊|S|/k⌋ or ⌈|S|/k⌉.

Proof. The assumption implies that each Ai contains a subset A′
i with |A′

i| ≤
k, such that the A′

i partition S. For our purposes, we can assume that A′
i = Ai

for each i. Similarly, we can assume that B is a partition of S into classes of
size at most k.

Again, make a bipartite graph G, with colour classes {a1, . . . , an} and
{b1, . . . , bm}, connecting ai and bj by |Ai ∩ Bj | parallel edges. Then G has
maximum degree at most k, and hence, by Theorem 20.8, G is k-edge-
colourable, where each colour has size ⌊|S|/k⌋ or ⌈|S|/k⌉. This yields a par-
tition of S into k common partial transversals as required.
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23.7. Further results and notes

23.7a. Capacitated common transversals

Recall the definition of system of restricted representatives: Let A = (A1, . . . , An)
be a collection of subsets of a set S and let a, b ∈ ZS

+ with a ≤ b. A system of
restricted representatives (or SRR) of A (with respect to a and b) is a sequence
(s1, . . . , sn) such that

(23.46) (i) si ∈ Ai for i = 1, . . . , n;
(ii) a(s) ≤ |{i | si = s}| ≤ b(s) for s ∈ S.

Ford and Fulkerson [1958c] derived the following characterization of the existence of
a common system of restricted representatives from the max-flow min-cut theorem
(we give the derivation from Corollary 23.1b based on splitting elements, due to
Mirsky and Perfect [1968]):

Theorem 23.14. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be families of subsets
of a set S and let a, b ∈ ZS

+ with a ≤ b. Then A and B have a common system of
restricted representatives if and only if

(23.47) b(AI ∩ BJ) ≥ |I| + |J | − n + a(S \ (AI ∪ BJ))

for all I, J ⊆ {1, . . . , n}.

Proof. Let for any s ∈ S, Zs be a set of b(s) (new) elements. Replace in each Ai

and Bj , any occurrence of any s ∈ S by the elements of Zs. Choose from each
Zs, a(s) elements, forming the set X. Then A and B have a common system of
restricted representatives if and only if the new families have a common transversal
containing X. Trivially, condition (23.47) is equivalent to condition (23.8) for the
new families, and hence the theorem follows from Corollary 23.1b.

(More can be found in Mirsky [1968b].)

23.7b. Exchange properties

Mirsky [1968a] showed the following exchange property of common transversals:

Theorem 23.15. Let A = (A1, . . . , An) and B = (B1, . . . , Bm) be families of sets.
Let I ′, I ′′ ⊆ {1, . . . , n} and J ′, J ′′ ⊆ {1, . . . , m}. Suppose that (Ai | i ∈ I ′) and
(Bj | j ∈ J ′) have a common transversal, and also that (Ai | i ∈ I ′′) and (Bj | j ∈
J ′′) have a common transversal. Then there exist I and J with I ′ ⊆ I ⊆ I ′ ∪ I ′′

and J ′′ ⊆ J ⊆ J ′ ∪ J ′′ such that (Ai | i ∈ I) and (Bj | j ∈ J) have a common
transversal.

Proof. Directly from Corollary 9.12a applied to the digraph defined in (23.1).

This implies (Mirsky [1968a]):

Corollary 23.15a. Let A and B be families of sets and let A′ and B′ be subfam-
ilies of A and B respectively. Then there exist subfamilies A0 and B0 of A and B
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respectively satisfying A′ ⊆ A0 and B′ ⊆ B0 and having a common transversal if
and only if (i) A′ and some subfamily of B have a common transversal and (ii) B′

and some subfamily of A have a common transversal.

Proof. Directly from Theorem 23.15.

23.7c. Common transversals of three families

It is NP-complete to test if three families of sets have a common transversal, even
if each of the three families is a partition of S (E.L. Lawler — cf. Karp [1972b]).

Theorem 23.16. Testing if three partitions have a common transversal is NP-
complete.

Proof. I. It suffices to show the NP-completeness of the following problem:

(23.48) given disjoint sets X, Y, Z with |X| = |Y | ≥ |Z| and a collection C
of subsets U of W := X ∪ Y ∪ Z with |U ∩ X| = |U ∩ Y | = 1 and
|U ∩ Z| ≤ 1, decide if C contains a partition of W as subcollection.

To see this, first observe that we can assume that |X| = |Y | = |Z|. Indeed, we can
extend Z by a set R of size |X| − |Z| and replace each doubleton {x, y} in C by all
sets {x, y, w} with w ∈ R. Then the new collection contains a partition if and only
if the original collection contains one.

So we can assume that |X| = |Y | = |Z|. For w ∈ W , define Cw := {C ∈
C | w ∈ C}. Then the collection {Cw | w ∈ W} is the union of three partitions
of C. Moreover, these three partitions have a common transversal if and only if C
contains a partition of W . So this reduces problem (23.48) to the problem of finding
a common transversal of three partitions of a set.

II. So it suffices to show the NP-completeness of (23.48). We derive this from the
NP-completeness of the (more general) partition problem: decide if a given collection
B of subsets of a set Z contains a partition of Z as a subcollection (Corollary 4.1b).

Let V := {(B, z) | z ∈ B ∈ B}. Make, for each B ∈ B, an (arbitrary) directed
circuit on {(B, z) | z ∈ B}. This makes the directed graph D on V (consisting of
vertex-disjoint directed circuits). Define X := V × {1} and Y := V × {2}. Let C be
the collection of

(23.49) all triples {(B, z, 1), (B, z, 2), z} for all B ∈ B and z ∈ B, and
all pairs {(B, z, 1), (B, z′, 2)}, for all B ∈ B and z, z′ ∈ B such that D
contains an arc from z to z′.

So each element of X ∪ Y is in precisely two sets in C: a triple and a pair. Any
partition P ⊆ C of X ∪ Y ∪ Z contains, for any B ∈ B, either all triples containing
B or all pairs containing B. (Here containing B means: containing (B, z, i) for some
z, i.)

This implies that C contains a partition of X ∪ Y ∪ Z if and only if B contains
a partition of Z.

As indicated in this proof, the problem of finding a common transversal of three
partitions is equivalent to the 3-dimensional matching problem: given a partition
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U, V, W of a finite set S and a collection C of subsets X of S satisfying |X ∩ U | =
|X ∩ V | = |X ∩ W | = 1, does C have a subcollection that partitions S?

The following necessary condition for the existence of a common transversal of
three families A = (A1, . . . , An), B = (B1, . . . , Bn), and C = (C1, . . . , Cn) of sets is
not sufficient: for all I, J, K ⊆ {1, . . . , n}
(23.50) |AI ∩ BJ ∩ CK | ≥ |I| + |J | + |K| − 2n.

(This would generalize condition (23.3).) To see this, consider A = ({a}, {b, c}),
B = ({b}, {a, c}), C = ({c}, {a, b}).

More on common transversals of more than two families is given by Brown
[1976,1984], Dacić [1977,1979], Longyear [1977], and Zaverdinos [1981]. Woodall
[1982] studied fractional transversals, and described a good characterization for the
existence of a common fractional transversal for more than two families, based on
linear programming.

23.7d. Further notes

Weinberger [1974b] observed that if the families A = (A1, . . . , An) and B =
(B1, . . . , Bn) of subsets of a set S are uniform (that is, all sets have the same
size) and regular (that is, each s ∈ S is in the same number of sets), then A and B
have a common transversal.

Further work on common transversals (including extensions to the infinite case)
is reported by Perfect [1969b], Brualdi [1970b,1971a], and Davies and McDiarmid
[1976].
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Part III: Nonbipartite Matching and Covering

Nonbipartite matching is a highlight of combinatorial optimization, thanks to pio-
neering work of Tutte and Edmonds. In particular the 1965 papers of Edmonds on
nonbipartite matching opened up areas that were not accessible with the ‘classi-
cal’ methods based on flows, linear programming, and total unimodularity found in
the 1950s. The papers are pioneering in polyhedral combinatorics, giving the first
nontrivial characterizations of combinatorially defined polytopes.
The techniques are highly self-refining, and extend to b-matchings, b-factors, T -
joins, shortest paths in undirected graphs, and the Chinese postman problem. Non-
bipartite matching also applies to practical problems where an optimal pairing has
to be found, like in seat or room assignment, crew planning, and two-processor
scheduling.
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Chapter 24

Cardinality nonbipartite
matching

In this chapter we consider maximum-cardinality matching, with as key
results Tutte’s characterization of the existence of a perfect matching (im-
plying the Tutte-Berge formula for the maximum-size of a matching) and
Edmonds’ polynomial-time algorithm to find a maximum-size matching.
As in Section 16.1, we call a path P an M-augmenting path if P has odd
length and connects two vertices not covered by M , and its edges are alter-
natingly out of and in M . By Theorem 16.1, a matching M has maximum
size if and only if there is no M -augmenting path.
We say that a matching M covers a vertex v if v is incident with an edge
in M . If M does not cover v, we say that M misses v.
In this chapter, graphs can be assumed to be simple.

24.1. Tutte’s 1-factor theorem and the Tutte-Berge
formula

A basic result of Tutte [1947b] characterizes graphs that have a perfect match-
ing. Berge [1958a] observed that it implies a min-max formula for the maxi-
mum size of a matching in a graph, the Tutte-Berge formula.

Call a component of a graph odd if it has an odd number of vertices. For
any graph G, let

(24.1) o(G) := number of odd components of G.

Let ν(G) denotes the maximum size of a matching. Then:

Theorem 24.1 (Tutte-Berge formula). For each graph G = (V, E),

(24.2) ν(G) = min
U⊆V

1
2 (|V | + |U | − o(G − U)).

Proof. To see ≤, we have for each U ⊆ V :

(24.3) ν(G) ≤ |U | + ν(G − U) ≤ |U | + 1
2 (|V \ U | − o(G − U))

= 1
2 (|V | + |U | − o(G − U)).
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We prove the reverse inequality by induction on |V |, the case V = ∅
being trivial. We can assume that G is connected, since otherwise we can
apply induction to the components of G.

First assume that there exists a vertex v covered by all maximum-size
matchings. Then ν(G−v) = ν(G)−1, and by induction there exists a subset
U ′ of V \ {v} with

(24.4) ν(G − v) = 1
2 (|V \ {v}| + |U ′| − o(G − v − U ′)).

Then U := U ′ ∪ {v} gives equality in (24.2), since

(24.5) ν(G) = ν(G − v) + 1 = 1
2 (|V \ {v}| + |U ′| − o(G − v − U ′)) + 1

= 1
2 (|V | + |U | − o(G − U)).

So we can assume that there is no such v. In particular, ν(G) < 1
2 |V |.

We show that there exists a matching of size 1
2 (|V | − 1), which implies the

theorem (taking U := ∅).
Indeed, suppose to the contrary that each maximum-size matching M

misses at least two distinct vertices u and v. Among all such M, u, v, choose
them such that the distance dist(u, v) of u and v in G is as small as possible.

If dist(u, v) = 1, then u and v are adjacent, and hence we can augment
M by the edge uv, contradicting the maximality of |M |. So dist(u, v) ≥ 2,
and hence we can choose an intermediate vertex t on a shortest u − v path.
By assumption, there exists a maximum-size matching N missing t. Choose
such an N with |M ∩ N | maximal.

By the minimality of dist(u, v), N covers both u and v. Hence, as M and
N cover the same number of vertices, there exists a vertex x �= t covered
by M but not by N . Let x ∈ e = xy ∈ M . Then y is covered by some edge
f ∈ N , since otherwise N ∪{e} would be a matching larger than N . Replacing
N by (N \ {f}) ∪ {e} would increase its intersection with M , contradicting
the choice of N .

(This proof is based on the proof of Lovász [1979b] of Edmonds’ matching
polytope theorem.)

The Tutte-Berge formula immediately implies Tutte’s 1-factor theorem.
A perfect matching (or 1-factor) is a matching covering all vertices of the
graph.

Corollary 24.1a (Tutte’s 1-factor theorem). A graph G = (V, E) has a
perfect matching if and only if G − U has at most |U | odd components, for
each U ⊆ V .

Proof. Directly from the Tutte-Berge formula (Theorem 24.1), since G has
a perfect matching if and only if ν(G) ≥ 1

2 |V |.
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24.1a. Tutte’s proof of his 1-factor theorem

The original proof of Tutte [1947b] of his 1-factor theorem (Corollary 24.1a), with
a simplification of Maunsell [1952], and smoothed by Halton [1966] and Lovász
[1975d], is as follows.

Suppose that there exist graphs G = (V, E) satisfying the condition, but not
having a perfect matching. Fixing V , take such a graph G with G simple and |E|
as large as possible. Let U := {v ∈ V | v is adjacent to every other vertex of G}.
We show that each component of G − U is a complete graph.

Suppose to the contrary that there are distinct a, b, c �∈ U with ab, bc ∈ E and
ac �∈ E. By the maximality of |E|, adding ac to E makes that G has a perfect match-
ing (since the condition is maintained under adding edges). So G has a matching
M missing precisely a and c. As b �∈ U , there exists a vertex d with bd �∈ E. Again
by the maximality of |E|, G has a matching N missing precisely b and d. Now each
component of M△N contains the same number of edges in M as in N — otherwise
there would exist an M - or N -augmenting path, and hence a perfect matching in
G, a contradiction. So the component P of M△N containing d is a path starting at
d, with first edge in M and last edge in N , and hence ending at a or c; by symmetry
we may assume that it ends at a. Moreover, P does not traverse b. Then extending
P by the edge ab gives an N -augmenting path, and hence a perfect matching in G
— a contradiction.

So each component of G − U is a complete graph. Moreover, by the condition,
G−U has at most |U | odd components. This implies that G has a perfect matching,
contradicting our assumption.

More proofs were given by Gallai [1950,1963b], Edmonds [1965d], Balinski
[1970], Anderson [1971], Brualdi [1971d], Hetyei [1972,1999], Mader [1973], and
Lovász [1975a,1979b].

24.1b. Petersen’s theorem

The following theorem of Petersen [1891] is a consequence of Tutte’s 1-factor theo-
rem (a graph is cubic if it is 3-regular):

Corollary 24.1b (Petersen’s theorem). A bridgeless cubic graph has a perfect
matching.

Proof. Let G = (V, E) be a bridgeless cubic graph. By Tutte’s 1-factor theorem,
we should show that G − U has at most |U | odd components, for each U ⊆ V .

Each odd component of G−U is left by an odd number of edges (as G is cubic),
and hence by at least three edges (as G is bridgeless). On the other hand, U is
left by at most 3|U | edges, since G is cubic. Hence G − U has at most |U | odd
components.

24.2. Cardinality matching algorithm

The idea of finding an M -augmenting path to increase a matching M is
fundamental in finding a maximum-size matching. However, the simple trick
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for bipartite graphs, of orienting the edges based on the colour classes of the
graph, does not extend to the nonbipartite case. Yet one could try to find
an M -augmenting path by finding an ‘M -alternating walk’, but such a walk
can run into a loop that cannot simply be deleted. It was Edmonds [1965d]
who found the trick to resolve this problem, namely by ‘shrinking’ the loop
(for which he introduced the term ‘blossom’). Then applying recursion to a
smaller graph solves the problem1.

Let G = (V, E) be a graph, let M be a matching in G, and let X be the set
of vertices missed by M . A walk P = (v0, v1, . . . , vt) is called M -alternating if
for each i = 1, . . . , t− 1 exactly one of the edges vi−1vi and vivi+1 belongs to
M . Note that one can find a shortest M -alternating X − X walk of positive
length, by considering the auxiliary directed graph D = (V, A) with

(24.6) A := {(u, v) | ∃x ∈ V : ux ∈ E, xv ∈ M}.

Then each M -alternating X −X walk of positive length yields a directed X −
N(X) path in D, and vice versa (where N(X) denotes the set of neighbours
of X).

An M -alternating walk P = (v0, v1, . . . , vt) is called an M -flower if t is
odd, v0, . . . , vt−1 are distinct, v0 ∈ X, and vt = vi for some even i < t.
Then the circuit (vi, vi+1, . . . , vt) is called an M -blossom (associated with
the M -flower).

v0 v1 v2 v3

v5 v6

vt−2vt−1

v4 = vt

edge in M

edge not in M

vertex covered by M

vertex not covered by M

Figure 24.1

An M -flower

The core of the algorithm is the following observation. Let G = (V, E) be
a graph and let B be a subset of V . Denote by G/B the graph obtained by
contracting (or shrinking) B to one new vertex, called B. That is, G/B has
vertex set (V \ B) ∪ {B}, and for each edge e of G an edge obtained from e
by replacing any end vertex in B by the new vertex B. (We ignore loops that
may arise.) We denote the new edge again by e. (So its ends are modified,

1 The idea of applying shrinking recursively to matching problems was introduced by
Petersen [1891], and was applied in an algorithmic way by Brahana [1917].
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but not its name.) We say that the new edge is the image (or projection) of
the original edge.

For any matching M , let M/B denote the set of edges in G/B that are
images of edges in M not spanned by B. Obviously, if M intersects δ(B) in at
most one edge, then M/B is a matching in G/B. In the following, we identify
a blossom with its set of vertices.

Theorem 24.2. Let B be an M -blossom in G. Then M is a maximum-size
matching in G if and only if M/B is a maximum-size matching in G/B.

Proof. Let B = (vi, vi+1, . . . , vt).
First assume that M/B is not a maximum-size matching in G/B. Let P

be an M/B-augmenting path in G/B. If P does not traverse vertex B of
G/B, then P is also an M -augmenting path in G. If P traverses vertex B, we
may assume that it enters B with some edge uB that is not in M/B. Then
uvj ∈ E for some j ∈ {i, i + 1, . . . , t}.

(24.7) If j is odd, replace vertex B in P by vj , vj+1, . . . , vt.
If j is even, replace vertex B in P by vj , vj−1, . . . , vi.

In both cases we obtain an M -augmenting path in G. So M is not maximum-
size.

Conversely, assume that M is not maximum-size. We may assume that
i = 0, that is, vi ∈ X, since replacing M by M△EQ, where Q is the path
(v0, v1, . . . , vi), does not modify the theorem. Let P = (u0, u1, . . . , us) be an
M -augmenting path in G. If P does not intersect B, then P is also an M/B-
augmenting path in G/B. If P intersects B, we may assume that u0 �∈ B.
(Otherwise replace P by its reverse.) Let uj be the first vertex of P in B.
Then (u0, u1, . . . , uj−1, B) is an M/B-augmenting path in G/B. So M/B is
not maximum-size.

Another useful observation is:

Theorem 24.3. Let P = (v0, v1, . . . , vt) be a shortest M -alternating X − X
walk. Then either P is an M -augmenting path or (v0, v1, . . . , vj) is an M -
flower for some j ≤ t.

Proof. Assume that P is not a path. Choose i < j with vj = vi and with j
as small as possible. So v0, . . . , vj−1 are all distinct.

If j − i would be even, we can delete vi+1, . . . , vj from P so as to obtain a
shorter M -alternating X − X walk. So j − i is odd. If j is even and i is odd,
then vi+1 = vj−1 (as it is the vertex matched to vi = vj), contradicting the
minimality of j.

Hence j is odd and i is even, and therefore (v0, v1, . . . , vj) is an M -flower.
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We now describe an algorithm (the matching-augmenting algorithm) for
the following problem:

(24.8) given: a matching M ;
find: an M -augmenting path, if any.

Denote the set of vertices missed by M by X.

(24.9) If there is no M -alternating X −X walk of positive length, there
is no M -augmenting path.
If there exists an M -alternating X − X walk of positive length,
choose a shortest one, P = (v0, v1, . . . , vt) say.
Case 1: P is a path. Then output P .
Case 2: P is not a path. Choose j such that (v0, . . . , vj) is an
M -flower, with M -blossom B. Apply the algorithm (recursively)
to G/B and M/B, giving an M/B-augmenting path P in G/B.
Expand P to an M -augmenting path in G (cf. (24.7)).

The correctness of this algorithm follows from Theorems 24.2 and 24.3. It
gives a polynomial-time algorithm to find a maximum-size matching, which
is a basic result of Edmonds [1965d].

Theorem 24.4. Given a graph, a maximum-size matching can be found in
time O(n2m).

Proof. The algorithm directly follows from algorithm (24.9), since, starting
with M = ∅, one can iteratively apply it to find an M -augmenting path P
and replace M by M△EP . It terminates if there is no M -augmenting path,
whence M is a maximum-size matching.

By using (24.6), path P in (24.9) can be found in time O(m). Moreover,
the graph G/B can be constructed in time O(m). Since the recursion has
depth at most n, an M -augmenting path can be found in time O(nm). Since
the number of augmentations is at most 1

2n, the time bound follows.

This implies for perfect matchings:

Corollary 24.4a. A perfect matching in a graph (if any) can be found in
time O(n2m).

Proof. Directly from Theorem 24.4, as a perfect matching is a maximum-size
matching.

24.2a. An O(n3) algorithm

The matching algorithm described above consists of a series of matching augmenta-
tions. Each matching augmentation itself consists of a series of two steps performed
alternatingly:
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(24.10) finding an M -alternating walk, and
shrinking an M -blossom,

until the M -alternating walk is simple, that is, is an M -augmenting path.
Each of these two steps can be done in time O(m). Since there are at most

n shrinkings and at most n matching augmentations, we obtain the O(n2m) time
bound.

If we want to save time we must consider speeding up both the walk-finding
step and the shrinking step. In a sense, our description above gives a brute-force
polynomial-time method. The O(m) time bound for shrinking gives us time to
construct the shrunk graph completely, by copying all vertices that are not in the
blossom, by introducing a new vertex for the shrunk blossom, and by introducing
for each original edge its ‘image’ in the shrunk graph. The O(m) time bound for
finding an M -alternating walk gives us time to find, after any shrinking, a walk
starting just from scratch.

In fact, we cannot do much better if we explicitly construct the shrunk graph.
But if we modify the graph only locally, by shrinking the M -blossom B and remov-
ing loops and parallel edges, this can be done in time O(|B|n). Since the sum of |B|
over all M -blossoms B is O(n), this yields a time bound of O(n2) for shrinking.

To reduce the O(m) time for walk-finding, we keep data from the previous walk-
search for the next walk-search, with the help of an M -alternating forest, defined
as follows.

edge in M

edge not in M

vertex covered by M

vertex not covered by M

X

Figure 24.2

An M -alternating forest
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Let G = (V, E) be a simple graph and let M be a matching in G. Define X
to be the set of vertices missed by M . An M-alternating forest is a subset F of E
satisfying:

(24.11) F is a forest with M ⊆ F , each component of (V, F ) contains either
exactly one vertex in X or consists of one edge in M , and each path
in F starting in X is M -alternating

(cf. Figure 24.2). For any M -alternating forest F , define

(24.12) even(F ) := {v ∈ V | F contains an even-length X − v path},
odd(F ) := {v ∈ V | F contains an odd-length X − v path},
free(F ) := {v ∈ V | F contains no X − v path}.

Then each u ∈ odd(F ) is incident with a unique edge in F \ M and a unique edge
in M . Moreover:

(24.13) if there is no edge connecting even(F ) and even(F ) ∪ free(F ), then M
is a maximum-size matching.

Indeed, if there is no such edge, even(F ) is a stable set in G − odd(F ). Hence,
setting U := odd(F ):

(24.14) o(G − U) ≥ |even(F )| = |X| + |odd(F )| = (|V | − 2|M |) + |U |,
and hence M has maximum size by (24.2).

Now algorithmically, we keep, next to E and M , an M -alternating forest F . We
keep the set of vertices by a doubly linked list. We keep for each vertex v, the edges
in E, M , and F , incident with v as doubly linked lists. We also keep the incidence
functions χeven(F ) and χodd(F ). Moreover, we keep for each vertex v of G one edge
ev = vu with u ∈ even(F ), if such an edge exists.

Initially, F := M and for each v ∈ V we select an edge ev = vu with u ∈ X (if
any). The iteration is:

(24.15) Find a vertex v ∈ even(F ) ∪ free(F ) for which ev = vu exists.
Case 1: v ∈ free(F ). Add uv to F . Let vw be the edge in M incident
with v. For each edge wx incident with w, set ex := wx.
Case 2: v ∈ even(F ). Find the X − u and X − v paths P and Q in
F .
Case 2a: P and Q are disjoint. Then P and Q form with uv an
M -augmenting path.
Case 2b: P and Q are not disjoint. Then P and Q contain an
M -blossom B. For each edge bx with b ∈ B and x �∈ B, set ex := Bx.
Replace G by G/B and remove all loops and parallel edges from E,
M , and F .

The number of iterations is at most |V |, since, in each iteration, |V | + |free(F )|
decreases by at least 2 (one of these terms decreases by at least 2 and the other
does not change). We end up either with a matching augmentation or with the
situation that there is no edge connecting even(F ) and even(F ) ∪ free(F ), in which
case M has maximum size by (24.13).

It is easy to update the data structure in Case 1 in time O(n). In Case 2, the
paths P and Q can be found in time O(n), and hence in Case 2a, the M -augmenting
path is found in time O(n).
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Finally, the data structure in Case 2b can be updated in O(|B|n) time2. Also
a matching augmentation in G/B can be transformed to a matching augmentation
in G in time O(|B|n). Since |B| is bounded by twice the decrease in the number of
vertices of the graph, this takes time O(n2) overall.

Hence a matching augmentation can be found in time O(n2), and therefore:

Theorem 24.5. A maximum-size matching can be found in time O(n3).

Proof. From the above.

The first O(n3)-time cardinality matching algorithm was published by Balin-
ski [1969], and consists of a depth-first strategy to find an M -alternating forest,
replacing shrinking by a clever labeling technique.

Bottleneck in a further speedup is storing the shrinking. With the disjoint set
union data structure of Tarjan [1975] one can obtain an O(nmα(m, n))-time algo-
rithm (Gabow [1976a]). A special set union data structure of Gabow and Tarjan
[1983,1985] gives an O(nm)-time algorithm. An O(

√
n m)-time algorithm was an-

nounced (with partial proof) by Micali and Vazirani [1980]. A proof was given by
Blum [1990], Vazirani [1990,1994], and Gabow and Tarjan [1991] (cf. Peterson and
Loui [1988]).

24.3. Matchings covering given vertices

Brualdi [1971d] derived from Tutte’s 1-factor theorem the following extension
of the Tutte-Berge formula:

Theorem 24.6. Let G = (V, E) be a graph and let T ⊆ V . Then the maxi-
mum size of a subset S of T for which there is a matching covering S is equal
to the minimum value of

(24.16) |T | + |U | − oT (G − U)

over U ⊆ V . Here oT (G−U) denotes the number of odd components of G−U
contained in T .

Proof. For any matching M in G and any U ⊆ V , at most |U | odd com-
ponents of G − U can be covered completely by M . So M misses at least
oT (G−U)− |U | vertices in T . This shows that the minimum is not less than
the maximum.

To see equality, let µ be equal to the minimum. Let C be a set disjoint
from V with |C| = |V | and let C ′ ⊆ C with |C ′| = |T |−µ. Make a new graph
H by extending G by C, in such a way that C is a clique, each vertex in C ′

2 For each Z ∈ {E, M, F}, we scan the vertices b in B, and for b ∈ B we scan the Z-
neighbours w of b. If w does not belong to B and was not met as a Z-neighbour of an
earlier scanned vertex in B, we replace bw by Bw in Z. Otherwise, we delete bw from
Z.
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is adjacent to each vertex in V , and each vertex in C \ C ′ is adjacent to each
vertex in V \ T .

If H has a perfect matching M , then M contains at most |C ′| = |T | − µ
edges connecting T and C (since T is not connected to C \C ′). Hence at least
µ vertices in T are covered by edges in M spanned by V , as required.

So we may assume that H has no perfect matching. Then by Tutte’s 1-
factor theorem, there is a set W of vertices of H such that H − W has at
least |W | + 2 odd components (since |V | + |C| is even).

If C ′ �⊆ W , then H − W has only one component (since each vertex in C ′

is adjacent to every other vertex), a contradiction. If C ⊆ W , then H−W has
at most |V | components, while |W | + 2 ≥ |C| + 2 = |V | + 2, a contradiction.

So C ′ ⊆ W and C \ C ′ �⊆ W . Then at most one component of H − W
is not contained in T (since C \ C ′ is a clique and each vertex in C \ C ′ is
adjacent to each vertex in V \ T ). Let U := W ∩ V . Then

(24.17) oT (G − U) = oT (H − W ) ≥ o(H − W ) − 1 > |W | ≥ |C ′| + |U |
= |T | − µ + |U |,

contradicting the definition of µ.

(This theorem was also given by Las Vergnas [1975b].)
A consequence is a result of Lovász [1970c] on sets of vertices covered by

matchings:

Corollary 24.6a. Let G = (V, E) be a graph and let T be a subset of V .
Then G has a matching covering T if and only if T contains at most |U | odd
components of G − U , for each U ⊆ V .

Proof. Directly from Theorem 24.6.

(This theorem was also given by McCarthy [1975].)

24.4. Further results and notes

24.4a. Complexity survey for cardinality nonbipartite matching

O(n2m) Edmonds [1965d] (cf. Witzgall and Zahn [1965])

O(n3)
Balinski [1969] (also Gabow [1973,1976a],
Karzanov [1976], Lawler [1976b])

O(nmα(m, n)) Gabow [1976a]

O(n5/2)
Even and Kariv [1975], Kariv [1976] (also Bartnik
[1978])

O(
√

n m log n) Even and Kariv [1975], Kariv [1976]

≫
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continued

O(
√

n m log log n) Kariv [1976]

O(
√

n m + n1.5+ε) Kariv [1976] for each ε > 0

O(
√

n m)

announced by Micali and Vazirani [1980], full
proof in Blum [1990], Vazirani [1990,1994], and
Gabow and Tarjan [1991](cf. Gabow and Tarjan
[1983,1985])

∗ O(
√

n m logn
n2

m
) Goldberg and Karzanov [1995]

Here ∗ indicates an asymptotically best bound in the table. (Kameda and Munro
[1974] claim to give an O(nm)-time cardinality matching algorithm, but the proof
contains some errors which I could not resolve.)

Gabow and Tarjan [1988a] observed that the method of Micali and Vazirani
[1980] also implies that one can find, for given k, a matching of size at least
ν(G)− n

k
in time O(km). They derived that a maximum-size matching M minimiz-

ing maxe∈M w(e) can be found in time O(
√

n log n m). (the ‘bottleneck matching
problem’).

Mulmuley, Vazirani, and Vazirani [1987a,1987b] showed that ‘matching is as
easy as matrix inversion’, which is especially of interest for the parallel complexity.

24.4b. The Edmonds-Gallai decomposition of a graph

There is a canonical set U that attains the minimum in (24.2). It has the property
that the odd components of G−U cover an inclusionwise minimal set of vertices, and
is given by the Edmonds-Gallai decomposition, independently found by Edmonds
[1965d] and Gallai [1963a,1964].

Let G = (V, E) be a graph. The Edmonds-Gallai decomposition of G is the
partition of V into D(G), A(G), and C(G) defined as follows (recall that N(U) :=
{v ∈ V \ U | ∃u ∈ U : uv ∈ E}):

(24.18) D(G) := {v ∈ V | there exists a maximum-size matching missing v},
A(G) := N(D(G)),
C(G) := V \ (D(G) ∪ A(G)).

It yields a ‘canonical’ certificate of maximality of a matching:

Theorem 24.7. U := A(G) attains the minimum in (24.2), D(G) is the union of
the odd components of G−U , and (hence) C(G) is the union of the even components
of G − U .

Proof. Case 1: D(G) is a stable set. Let M be a maximum-size matching and let
X be the set of vertices missed by M . Then each vertex v in A(G) is contained in
an edge uv ∈ M (as v �∈ D(G)). We show that u ∈ D(G). Assume that u �∈ D(G).

Since v ∈ A(G) = N(D(G)), there is an edge vw with w ∈ D(G). Let N be a
matching missing w. Then M△N contains a path component starting at a vertex in
X and ending at w. Let (v0, v1, . . . , vt) be this path, with v0 ∈ X and vt = w. Then
t is even and vi ∈ D(G) for each even i (because M△{v0v1, v2v3, . . . , vi−1vi} is a
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maximum-size matching missing vi). Hence, assuming u �∈ D(G), the edge vu is not
on P . So extending P by wv and vu gives a path Q. Then M△Q is a maximum-size
matching missing u. So u ∈ D(G).

As this is true for any v ∈ A(G), we see that part of M matches A(G) and
D(G) \ X. Hence

(24.19) o(G − U) ≥ |D(G)| = |X| + |A(G)| = |V | − 2|M | + |U |.
So U attains the minimum in (24.2), and moreover o(G − U) = |D(G)|, that is,
D(G) is the union of the odd components of G − U .

Case 2: D(G) spans some edge e = uv. Let M and N be maximum-size match-
ings missing u and v, respectively. Then M ∪ N contains a path component P
starting at u. If it does not end at v, then P ∪ {e} forms an N -augmenting path,
contradicting the maximality of N . So P ends at v, and hence P ∪ {e} gives an
M -blossom B.

Let G′ := G/B and M ′ := M/B and let X ′ be the set of vertices of G′ missed
by M ′. By Theorem 24.2, |M ′| = ν(G′). Then

(24.20) D(G′) = (D(G) \ B) ∪ {B},

since B ∈ D(G′) and since for each v ∈ V \ B:

(24.21) v ∈ D(G′) ⇐⇒ G′ has an even-length M ′-alternating X ′ − v path
⇐⇒ G has an even-length M -alternating X −v path ⇐⇒ v ∈ D(G).

This proves (24.20), which implies that A(G′) = A(G) and C(G′) = C(G). By
induction, D(G′) is the union of the odd components of G′ − U . Hence D(G) is
the union of the odd components of G − U (since B ⊆ D(G) by (24.20)). Also by
induction, |M ′| = 1

2
(|V ′| + |U | − o(G′ − U)). Hence |M | = 1

2
(|V | + |U | − o(G − U)),

since |V | − 2|M | = |V ′| − 2|M ′|.

So U = A(G) is the unique set attaining the minimum in (24.2) for which the
union of the odd components of G − U is inclusionwise minimal.

Note that:

(24.22) for any U attaining the minimum in (24.2), each maximum-size match-
ing M has exactly ⌊ 1

2
|K|⌋ edges contained in any component K of

G − U , and each edge of M intersecting U also intersects some odd
component of G − U .

This implies the following. Call a graph G = (V, E) factor-critical if G − v has a
perfect matching for each vertex v.

Corollary 24.7a. Let G = (V, E) be a graph. Then each component K of G[D(G)]
is factor-critical.

Proof. Directly from Theorem 24.7 and (24.22): if v ∈ K, then v ∈ D(G), and
hence G−v has a maximum-size matching M missing v. By (24.22), M has ⌊ 1

2
|K|⌋

edges contained in K. So K − v has a perfect matching.

The Edmonds-Gallai decomposition can be found in polynomial time, since
the set D(G) of vertices missed by at least one maximum-size matching can be
determined in polynomial time (with the cardinality matching algorithm). In fact,
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with the alternating forest approach of Section 24.2a one can find the Edmonds-
Gallai decomposition in time O(n3). If we have a maximum-size matching, it takes
O(n2) time.

24.4c. Strengthening of Tutte’s 1-factor theorem

Tutte’s 1-factor theorem can be (self-)refined as follows (this theorem also can be
derived from Theorem 24.7 and Corollary 24.7a; we give a direct derivation from
Tutte’s 1-factor theorem):

Theorem 24.8. A graph G = (V, E) has a perfect matching if and only if for each
U ⊆ V , the graph G − U has at most |U | factor-critical components.

Proof. Necessity is easy, since each factor-critical component is odd. To see suffi-
ciency, let the condition be satisfied, and suppose that G has no perfect matching.
By Tutte’s 1-factor theorem, there is a subset U of V such that G − U has more
than |U | odd components. Choose an inclusionwise maximal such set U .

By the condition, at least one component K of G−U is not factor-critical. That
is, K contains a vertex v such that K −v has no perfect matching. Then by Tutte’s
1-factor theorem, there exists a subset U ′ of K − v such that K − v − U ′ has more
than |U ′| odd components, and hence at least |U ′|+2 odd components (since K −v
has an even number of vertices). Now define U ′′ := U ∪ U ′ ∪ {v}. Then G − U ′′ has
more than |U ′′| odd components. As U ′′ ⊃ U , this contradicts the maximality of
U .

24.4d. Ear-decomposition of factor-critical graphs

As mentioned, a graph G = (V, E) is factor-critical if, for each v ∈ V , the graph
G − v has a perfect matching. Lovász [1972b] showed that all factor-critical graphs
can be constructed by ‘odd ear-decompositions’ in the following sense. We say that
graph H arises by adding an odd ear from G, if H arises from G by adding an
odd-length path at two (not necessarily distinct) vertices of G. That is, if there is
a path or circuit (v0, v1, . . . , vt) in H with t odd, v1, . . . , vt−1 each having degree 2,
and G = H − {v1, . . . , vt−1}.

It is easy to see that if H arises by adding an odd ear to a factor-critical graph
G, then H is again factor-critical. Now each factor-critical graph arises in this way
from the one-vertex graph:

Theorem 24.9. A graph G is factor-critical if and only if there exists a series of
graphs G0, . . . , Gk with G0 being a one-vertex graph, Gk = G, and Gi arising by
adding an odd ear to Gi−1 (i = 1, . . . , k).

Proof. For sufficiency, see above. To see necessity, fix, for each vertex v of G, a
perfect matching Mv of G−v. Choose a vertex u of G. Let H be a maximal subgraph
of G such that

(24.23) (i) H arises by a series of odd ear addings from the one-vertex graph
on u;

(ii) for each edge e ∈ Mu, if e intersects V H, then e ∈ EH.
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Such a graph trivially exists, as the one-vertex graph on u satisfies (24.23).
If EH = EG we are done, so assume EH �= EG. As G is factor-critical, G is

connected, and hence there is an edge e = vw ∈ EG \ EH with v ∈ V H. Consider
Mw ∪Mu. One of its components is an even-length w−u path P = (v1, . . . , vt) with
v1 = w and vt = u. So vt ∈ V H. Let j be the smallest index with vj ∈ V H. Then j
is odd, since otherwise vj−1vj ∈ Mu with vj−1 �∈ V H and vj ∈ V H, contradicting
(24.23)(ii).

Let Q be the path (v, v1, . . . , vj). Then H ∪ Q arises by adding an odd ear to
H, and moreover, it satisfies (24.23)(ii) again, contradicting the maximality of H.

(This is the original proof of Lovász [1972b].)
As a consequence we have a recursive characterization of factor-critical graphs:

Corollary 24.9a. Let G = (V, E) be a graph with |V | ≥ 2. Then G is factor-critical
if and only if G has an odd circuit C with G/C factor-critical.

Proof. To see sufficiency, let C be an odd circuit with G/C factor-critical. We show
that G is factor-critical. Choose v ∈ V . If v ∈ C, let M ′ be a perfect matching of
G[C \ {v}]. Since G/C is factor-critical, G − C has a perfect matching M ′′. Then
M ∪ M ′′ is a perfect matching of G − v.

If v �∈ C, let M ′′ be a perfect matching of (G/C)−v. In G this gives a matching
covering all vertices in V \ (C ∪{v}) and exactly one vertex, u say, in C. Let M ′ be
a perfect matching in G[C \ {u}]. Then M ′ ∪ M ′′ is a perfect matching of G − v.
This shows sufficiency.

Necessity is shown with Theorem 24.9. Let G be factor-critical. Consider an
odd ear-decomposition of G, and let C be the first odd ear. Then the remaining
ears form an odd ear-decomposition of G/C, and hence G/C is factor-critical.

(Related results were given by Cornuéjols and Pulleyblank [1983].)

24.4e. Ear-decomposition of matching-covered graphs

A graph G = (V, E) is called matching-covered if each edge of G belongs to a
perfect matching of G. Matching-covered graphs can be constructed similarly to
factor-critical graphs, but now starting from an even circuit (however, the decompo-
sition does not characterize matching-covered graphs). This will be used in proving
Theorem 29.11 on the maximum size of a join.

Theorem 24.10. For each connected matching-covered graph G with at least four
vertices there exists a series of graphs G0, . . . , Gk with G0 being an even circuit,
Gk = G, and Gi arising by adding an odd ear to Gi−1 (i = 1, . . . , k).

Proof. For each edge e of G, fix a perfect matching Me of G containing e. Fix a
perfect matching M of G. One easily checks that G contains an M -alternating even
circuit C. Let H be a maximal subgraph of G such that

(24.24) (i) H arises by a series of odd ear addings from C;
(ii) for each edge e ∈ M , if e intersects V H, then e ∈ EH.
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Such a graph trivially exists, as C satisfies (24.24).
If EH = EG we are done, so assume EH �= EG. As G is connected, there is

an edge e ∈ EG \ EH intersecting V H. Consider Me ∪ M . Then the component of
Me ∪ M containing e gives an odd ear that can be added to H, contradicting the
maximality of H.

A direct algorithmic proof was given by Little and Rendl [1989]. Little [1974]
showed that in a matching-covered graph, any two edges belong to a circuit that
is in the symmetric difference of two perfect matchings. Carvalho, Lucchesi, and
Murty [1999] gave more results on ear-decompositions of matching-covered graphs.

24.4f. Barriers in matching-covered graphs

A barrier in a graph G = (V, E) is a subset B of V such that G − B has |B| odd
components. Note that if B is a barrier in a connected matching-covered graph G,
then B is a stable set and each component of G − B is odd.

Lovász and Plummer [1975,1986] showed:

Theorem 24.11. Let B and C be barriers in a connected matching-covered graph
G = (V, E) with B ∩ C �= ∅. Then B ∩ C and B ∪ C are barriers again.

Proof. We first show:

(24.25) if B and C are distinct barriers with B ∩ C �= ∅, then there exists a
nonempty set D with D ⊆ B \ C or D ⊆ C \ B such that B△D and
C△D are barriers again.

As B and C are stable sets, there is a path from B∩C to B△C. Consider a shortest
such path, say it runs from B ∩ C to C \ B. It implies that G − B has a component
K with a neighbour in B ∩ C and intersecting C \ B. Define D := K ∩ C. We show
that B ∪ D and C \ D are barriers again.

Fix an edge e connecting B ∩ C and K. Let L be the component of G − C
incident with e. Let M be a perfect matching containing e. As e connects K ∩ L
and B ∩ C, all other edges in M incident with K are contained in K. So if some
edge f ∈ M leaves K ∩L′ for some component L′ of G−C, and f �= e, then f does
not leave K. Hence f leaves L′, implying L′ �= L (otherwise, L is left by two edges
in M). It also implies that f connects K ∩ L′ and K ∩ C and that f is the only
edge in M leaving K ∩ L′. Moreover, each vertex in D is covered by an edge in M ,
and hence it is such an edge f . Hence the number of components L′ of G − C with
K ∩ L′ odd is equal to |D| + 1.

Now B∪D is a barrier, since G[K\D] has |D|+1 odd components. So G−(B∪D)
has at least |B| + |D| odd components, and hence B ∪ D is a barrier.

Hence, as G is matching-covered, each component of G − B − D is odd. So
each component of G[K \ D] is odd, and therefore G[K \ D] has exactly |D| + 1
components. So all but at most |D| + 1 components of G − C are also components
of G − (C \ D). Hence the number of odd components of G − (C \ D) is at least
|C| − |D| − 1, and hence, by parity, at least |C \ D|. So C \ D is a barrier. This
proves (24.25).
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Now to prove that B ∪ C is a barrier, we can assume that we have chosen B
and C inclusionwise maximal barriers contained in B ∪ C. Then B = C by (24.25).

Similarly, to prove that B ∩ C is a barrier, we can assume that we have chosen
B and C inclusionwise minimal barriers containing B ∩ C. Again we have B = C
by (24.25).

This has the following consequence due to Lovász [1972e] (cf. Kotzig [1960]
(Theorem 31)):

Corollary 24.11a. Any two distinct maximal barriers in a connected matching-
covered graph are disjoint.

Proof. Directly from Theorem 24.11.

Since each singleton is a barrier, Corollary 24.11a implies that the maximal
barriers in a connected matching-covered graph partition the vertex set of G. This
gives the result of Kotzig [1959b] (Theorem 11):

Corollary 24.11b. Let G = (V, E) be a connected matching-covered graph. For
u, v ∈ V define u ∼ v by:

(24.26) u ∼ v if and only if G − u − v has no perfect matching.

Then ∼ is an equivalence relation.

Proof. Note that u ∼ v if and only if {u, v} is contained in some barrier. So the
corollary follows directly from Corollary 24.11a.

For much more on barriers in matching-covered graphs, see Lovász and Plummer
[1986].

24.4g. Two-processor scheduling

The following problem was considered by Fujii, Kasami, and Ninomiya [1969]. Sup-
pose that we have to carry out certain jobs, where some of the jobs have to be done
before other. We can represent this by a partially ordered set (V, ≤) where V is the
set of jobs and x < y indicates that job x has to be done before job y. Each job
takes one time-unit, say one hour.

Suppose now that there are two workers, each of which can do one job at a time.
Alternatively, suppose that you have one machine, that can do at each moment two
jobs simultaneously (a two-processor).

We wish to do all jobs within a minimum total time span. This problem can
be solved with the matching algorithm as follows. Make a graph G = (V, E), with
vertex set V (the set of jobs) and with edge set

(24.27) E := {{u, v} | u �≤ v and v �≤ u}.

(So (V, E) is the complementary graph of the ‘comparability graph’ associated with
(V, ≤).)
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Consider now a possible schedule of the jobs. That is, we have a sequence
p1, . . . , pt, where each pi is either a singleton vertex or an edge of G such that
p1, . . . , pt partition V and such that if u < v and u ∈ pi and v ∈ pj , then i < j.

Now the pairs in this list should form a matching M in G. Hence t = |V |− |M |.
In particular, t cannot be smaller than |V | − ν(G), where ν(G) is the matching
number of G.

Fujii, Kasami, and Ninomiya [1969] showed that in fact one can always make a
schedule with t = |V | − ν(G). For that it is sufficient to show:

Theorem 24.12. G contains a maximum-size matching M = {e1, . . . , et} such
that if u ∈ ei and v ∈ ej with u < v, then i < j.

Proof. The proof is by induction on |V |. Let M be a maximum-size matching in
G. We may assume that M is a perfect matching, since otherwise we can delete all
vertices missed by M , and apply induction.

Let V min be the set of minimal elements of (V ≤). If V min contains an edge
uv ∈ M as a subset, we can delete u and v from V , and apply induction. So we
may assume that each s ∈ V min is contained in an edge st ∈ M with t �∈ V min.
Choose an edge st ∈ M with s ∈ V min and with the height of t as small as possible.
(The height of an element t is the maximum size of a chain in (V, ≤) with maximum
element t.) As t �∈ V min there exists an s′t′ ∈ M with s′ ∈ V min and s′ < t.

Now clearly ss′ is an edge of G, as s and s′ are minimal elements. Moreover, tt′

is an edge of G. For if t < t′, then s′ < t < t′, contradicting the fact that s′t′ ∈ E;
and if t′ < t, then t′ would have smaller height than t.

So replacing st and s′t′ in M by ss′ and tt′, we have ss′ ⊆ V min, and so by
deleting s and s′ from V we can apply induction as before.

The theorem implies that there is a linear extension � of ≤ and a maximum-size
matching M in G such that if uv ∈ M , then u and v are neighbouring in �.

Coffman and Graham [1972] gave a direct, O(n2)-time algorithm. (Muntz and
Coffman [1969] gave an algorithm for the two-processor scheduling problem if jobs
may be interrupted and continued later.) This was improved to O(m + nα(m, n))
by Gabow [1982] and to O(m + n) by Gabow and Tarjan [1983,1985].

24.4h. The Tutte matrix and an algebraic matching algorithm

Tutte [1947b] observed the following. Let G = (V, E) be a graph. Choose for each
edge e an indeterminate xe. Let M be a skew-symmetric3 V × V matrix with
Mu,v = ±xe if e = {u, v} ∈ E, and Mu,v = 0 otherwise (including u = v) (the
Tutte matrix). Then the rank of M is equal to twice the matching number of G.

Lovász [1979c] showed that substituting random integers for the xe, gives an
efficient randomized algorithm for finding the matching number of G. This idea was
extended by Geelen [2000], who proved the following:

(24.28) Let M ′ arise from M by substituting the xe by integers from {1, . . . , n},
where n := |V |. If rank(M ′) < rank(M), then there is an edge e of G
and a number b ∈ {1, . . . , n} such that for the matrix M ′′ arising from

3 A matrix M is skew-symmetric if MT = −M .
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M ′ by resetting the ±xe entries to ±b, we have rank(M ′′) > rank(M ′),
or rank(M ′′) = rank(M ′) and D(M ′′) ⊃ D(M ′).

Here D(A) denotes the set of v ∈ V such that the V \ {v} × V \ {v} submatrix of
A has the same rank as A.

(24.28) implies a polynomial-time algorithm to compute the matching number
of G (and hence to find a maximum-size matching in G): start with an arbitrary
matrix M ′ obtained by substituting the xe by numbers in {1, . . . , n}, and iteratively
try to reset an entry to another number from {1, . . . , n}, as long as it either increases
the rank of M ′, or maintains the rank and increases D(M ′). The final matrix has
rank equal to the matching number of G.

L. Lovász (cf. Geelen [1995]) extended Tutte’s result to the rank of any (not
necessarily principal) submatrix of M . Geelen [1995] described the corresponding
system of linear inequalities and proved its total dual integrality, generalizing Ed-
monds’ matching polytope theorem.

24.4i. Further notes

Biedl, Bose, Demaine, and Lubiw [1999,2001] gave an O(n log4 n) time algorithm
to find a perfect matching in cubic bridgeless graphs (linear-time if the graph is
moreover planar). Biedl [2001] gave a linear-time reduction of the general matching
problem to the matching problem for cubic graphs.

Lower bounds on the maximum size of a matching were given by Nishizeki and
Baybars [1979] for planar graphs and by Biedl, Demaine, Duncan, Fleischer, and
Kobourov [2001] for several other classes of graphs.

Fulkerson, Hoffman, and McAndrew [1965] showed that any regular graph with
an even number of vertices and with the property that each two vertex-disjoint odd
circuits are connected by an edge, has a perfect matching (cf. Mahmoodian [1977],
Berge [1978b,1981]). Other sufficient conditions were given by Anderson [1972],
Sumner [1974a], Las Vergnas [1975a], and Chartrand, Goldsmith, and Schuster
[1979].

Plesńık [1972] showed that in a k-regular (k − 1)-edge-connected graph with
an even number of vertices, there is a perfect matching not containing k − 1 pre-
scribed edges (cf. Chartrand and Nebeský [1979]). For k = 3 this was proved by
Schönberger [1934]. For general k, it can also be derived from Edmonds’ perfect
matching polytope theorem (Theorem 25.1 below). See also Plesńık [1979].

Further studies on the structure of matching-covered graphs (graphs in which
each edge belongs to a perfect matching) were made by Kotzig [1959a,1959b,1960],
Hetyei [1964], Lovász [1970d,1972f,1972d,1972e,1983a], Little, Grant, and Holton
[1975], Lovász and Plummer [1975], Gabow [1979], Edmonds, Lovász, and Pulley-
blank [1982], Naddef [1982], and Szigeti [1998b].

Gabow, Kaplan, and Tarjan [1999,2001] gave fast algorithms to test if a given
perfect matching is unique, to find it, and if it not unique to find another perfect
matching.

Sumner [1974b,1976] studied sets U with o(G−U) > |U |. Weinstein [1963,1974]
and Bollobás and Eldridge [1976] related the matching number to the minimum and
maximum degree and the connectivity. Chvátal and Hanson [1976] evaluated the
maximum number f(n, b, d) of edges of a graph with n vertices having no vertex of
degree > d and no matching of size > b.
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Implementing cardinality matching algorithms were studied by Burkard and
Derigs [1980], Crocker [1993], and Mattingly and Ritchey [1993]. A simulated an-
nealing approach was described by Sasaki and Hajek [1988].

Books covering nonbipartite matching algorithms include Christofides [1975],
Lawler [1976b], Minieka [1978], Papadimitriou and Steiglitz [1982], Sys�lo, Deo, and
Kowalik [1983], Tarjan [1983], Gondran and Minoux [1984], Derigs [1988a], Nem-
hauser and Wolsey [1988], Cook, Cunningham, Pulleyblank, and Schrijver [1998],
Jungnickel [1999], Mehlhorn and Näher [1999], and Korte and Vygen [2000]. Surveys
on matching algorithms were given by Galil [1983,1986a,1986b].

Motwani [1989,1994] investigated the expected running time of matching algo-
rithms.

Gallai [1950], Tutte [1950], Kaluza [1953], Steffens [1977], and Aharoni [1984a,
1984c,1984d,1988] gave extensions to infinite graphs. The Edmonds-Gallai decom-
position was extended to locally finite graphs by Bry and Las Vergnas [1982] (cf.
Steffens [1985]).

The behaviour of a greedy heuristic for finding a large matching was investigated
by Dyer and Frieze [1991], Dyer, Frieze, and Pittel [1993], and Aronson, Dyer, Frieze,
and Suen [1994].

The standard work on matching theory is Lovász and Plummer [1986]. Other
books discussing nonbipartite matching include Berge [1973b], Bondy and Murty
[1976], Bollobás [1978,1979], Tutte [1984], and Diestel [1997]. Survey articles on
matchings were given by Akiyama and Kano [1985b] and Lovász and Plummer
[1986], Gerards [1995a], Pulleyblank [1995], and Cunningham [2002].

24.4j. Historical notes on nonbipartite matching

Petersen and Sylvester

Petersen [1891] was among the first to study perfect matchings (1-factors) in graphs,
introducing several basic concepts and methods, like factors and alternating paths.
He was motivated by finite basis theorems in invariant theory, especially by the ques-
tion which polynomials form a finite basis. Petersen cooperated with J.J. Sylvester,
who did similar studies, leading to an intensive correspondence on the topic in the
years 1889-1890 — see Sabidussi [1992] (unfortunately, the letters of Petersen to
Sylvester were not found).

In particular, they considered homogeneous polynomials of the form

(24.29)
∏

i<j

(xi − xj)
ri,j ,

and were interested in conditions under which such a polynomial can be factorized
into other homogeneous polynomials of the same form. This is equivalent to char-
acterizing the existence of k-factors in regular graphs. (Graph terms like ‘factor’
and ‘degree’ introduced by Petersen are motivated by this interpretation.)

In a letter of 18 October 1889, Sylvester expressed to Petersen the conjecture
that each graph of minimum degree at least two has a 2-factor. He had checked it
for graphs with up to 7 vertices, and said that he had ‘not much doubt of being
able to establish the proof for all values of n by the same process which has been
successful for the earlier numbers’. Sylvester considered this as the most important
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theorem discovered hitherto in the science of chemical graphology, a field initiated
by Sylvester [1878].

Two days later, Sylvester wrote a letter in which he restricted his conjecture to
the case of regular graphs, and he was more doubtful on whether it is true. After
a reply of Petersen, Sylvester gave in a letter of 27 October 1889 an example of a
graph with 7 vertices, with degrees 2 and 3, not having a 2-factor. In this letter,
Sylvester also remarked that as a consequence of his conjecture, each regular graph
of odd order has a 2-factorization.

Then, in a letter of 8 November 1889, Sylvester observed that there is a cubic
graph on 10 vertices that has no factorization (Figure 24.3). (A graph is cubic if it

Figure 24.3

Sylvester’s graph

is 3-regular.)
Subsequently, on 16 November 1889, Sylvester wrote to Petersen:

Thanks for your interesting note—I also have a proof of the ‘theorem of Ablation’
for even equifrequencies.

Apparently, Petersen had written about his theorem that each regular graph of
even degree has a 2-factorization, for which Sylvester also said to have a proof.

Next follows correspondence on the proofs the two have, with a lot of mutual
misunderstanding. However, after hearing Petersen’s proof at a visit of Petersen to
Sylvester, at the end of December 1889, Sylvester became convinced of the correct-
ness of Petersen’s proof, and found it ‘a very beautiful method’. On the other hand,
Petersen remained very sceptical about Sylvester’s proof, which Sylvester said was
by induction on the number of vertices. They decided to publish their proofs sepa-
rately. However, Sylvester did not publish on the topic; Petersen’s proof appeared
in the paper Petersen [1891].

Petersen’s 1891 paper

In this paper, Petersen first observed that Gordan’s finite basis theorem implies
that for each n there exists a finite set G of regular graphs on n vertices (of nonzero
degree) with the property that each regular graph on n vertices contains at least
one graph in G as spanning subgraph (factor). (This result can also be proved
by elementary means.) Petersen next puts as his goal to characterize all primitive
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graphs, that is, all regular graphs that have no other factors than itself and the
0-regular subgraph.

First, Petersen observed that a 2-regular graph is primitive if and only if at
least one of its components is odd. Next, he showed that each 4-regular graph has
a 2-factor. To this end, he made an Eulerian tour along all edges, colouring them
alternatingly blue and red. The blue edges then form a 2-factor. He observed that
similarly one can show more generally that each 2k-regular graph with an even
number of edges has a k-factor.

Next, Petersen showed that each 2k-regular graph has a 2-factorization. His
proof is by observing that the existence of a 2-factorization is invariant under re-
placing any two disjoint edges ab and cd by ac and bd (by using the result that each
4-regular graph has a 2-factorization).

This solves the factorization problem for k-regular graphs with k even. Petersen
next considered the case of odd k. He gave an example of primitive k-regular graphs
for arbitrary odd k. He showed that each k-regular graph on n vertices with k >
1
2
n + 1 has a perfect matching. To this end, he considered a matching M and

observed that

(24.30) M has maximum size if and only if there is no M -augmenting path.

To formulate this, Petersen coloured the edges in M red, and all other edges blue.
A Wechselweg (alternating path) is a path coloured alternatingly red and blue. Let
2n be the number of vertices of the graph and let α be the size of the matching
(thus it misses 2n − 2α vertices). Then:

Wir sahen oben, dass α grösser gemacht werden konnte, wenn wir zwischen zwei
von den 2n − 2α Punkten einen Wechselweg cabd finden konnten; dasselbe gilt
wenn wir zwischen zwei von den 2n − 2α Punkten überhaupt einen Wechselweg
finden können, denn verändert man die Farben der Seiten eines solches Weges, so
wird die Anzahl der rothen Linien um eins vergrössert. Man beweist leicht, dass
diese Bedingung auch notwendig is.4

This brought Petersen to propose an algorithm to find a 1-factor:

Indem wir die α Linien aufs Geradewohl ausnehmen und dann mittelst Wechsel-
wege α zu vergrössern suchen, können wir untersuchen, ob ein gegebener graph
primitiv ist oder nicht;5

Petersen however preferred a direct characterization:

es entsteht aber die Frage, ob die primitiven graphs sich nicht durch einfache
Kennzeichen von den zerlegbaren scheiden.6

He conjectured:

4 We saw above that α can be increased, if we could find an alternating path cabd between
two of the 2n−2α points; the same holds if we can find an alternating path at all between
two of the 2n−2α points, because if one changes the colours of the edges in such a path,
then the number of red edges increases by one. One easily proves that this condition is
also necessary.

5 While we select the α edges arbitrarily and then try to increase α by alternating paths,
we can investigate if a given graph is primitive or not;

6 the question however arises if the primitive graphs are not distinguished from the fac-
torizable by simple characteristics.
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Es spricht etwas dafür, dass ein primitiver graph Blätter haben muss, indem ein
Blatt ein solcher Theil des graphs ist, der nur durch eine einzelne Linie mit dem
übrigen Theil in Verbindung steht. Ich habe daher versucht dieses zu beweisen,
habe aber die Schwierigkeiten so gross gefunden, dass ich die Untersuchung auf
den graph dritten Grades beschränkt habe.7

Petersen [1891] described the cubic graph on 10 vertices found by Sylvester that
has no 1-factor (Figure 24.3), which he called Sylvester’s graph.

Petersen showed that each primitive cubic graph has at least three leaves. As
mentioned, a leaf is a subset U of the vertices with |δ(U)| = 1. (A graph is cubic if
it is 3-regular.)

Again, Petersen showed his theorem with the help of studying alternating paths.
Those edges that can be traversed in both directions by alternating paths starting
at a ‘free’ vertex are called ‘zweipfeilig’ (two-arrow as adjective). He then reduced
the problem by shrinking and stated:

Wir ziehen jetzt jedes zweipfeiliges System in einen Punkt zusammen;8

Proofs and extensions of Petersen’s theorem

Brahana [1917] gave a shorter proof of Petersen’s theorem. He restricted the concept
of leaf to a minimal set of vertices connected by only one edge to the remainder of
the graph. (In fact, also Petersen’s proof is valid for this restricted interpretation
of leaf.)

Brahana’s method is again based on augmenting paths and shrinking. Moreover,
he used a reduction to smaller graphs by deleting two adjacent vertices u and v and
connecting the two further vertices adjacent to u and v by new edges. This can be
done in such a way that the number of leaves remains at most 2.

In fact, part of Brahana’s method is algorithmic, and can be considered as a
specialization of Edmonds’ cardinality matching algorithm. Brahana needs to find
a 1-factor, given a matching M of size 1

2
n − 1 (where n is the number of vertices).

He described a depth-first method to find an M -augmenting path starting from a
vertex missed by M . If it runs into a loop (a ‘bicursal circuit’), it can be removed
by shrinking:

We continue this shrinking process as long as there are such bicursal circuits.

Also Errera [1921,1922], Frink [1925], Schönberger [1934], Kőnig [1936], and
Baebler [1954] gave alternative proofs of Petersen’s theorem (see also Sainte-Laguë
[1926b]). The proof of Frink is ‘by induction, no shrinking or counting processes
being used.’ He overlooked however some complications (in relation to the con-
struction of a new 2-connected graph in the proof of his ‘Theorem II’) — they were
resolved by Kőnig [1936]. The proof yields a polynomial-time algorithm to find a
perfect matching in a 2-connected cubic graph.

Schönberger [1934] showed that in any 2-connected cubic graph each edge is in
a perfect matching, and (more generally) for any two prescribed edges there is a
perfect matching not containing these edges.

7 Something speaks for it that a primitive graph must have leaves, while a leaf is such a
part of the graph that is in connection with the remaining part only by one single edge.
I therefore have tried to prove this, but have found the difficulties that big, that I have
restricted the investigation to the graph of third degree.

8 We now contract each two-arrow system to one point;
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Baebler [1937] showed that each k-regular l-edge-connected graph, with k odd
and l even, has an l-factor. His proof is based on shrinking.

Tutte

Tutte [1947b] characterized the graphs that have a perfect matching. His proof is
essentially that given in Section 24.1a, defining a graph to be ‘hyperprime’ if it
has no perfect matching, but adding any edge creates a perfect matching. He used
‘pfaffians’ in order to show that, in a hyperprime graph, each component of the
subgraph induced by the set of vertices that are not adjacent to all other vertices,
is complete. A combinatorial proof of this fact was given by Maunsell [1952].

Tutte’s theorem was extended to arbitrary l-factors (l ∈ Z+) by Belck [1950]
(see Chapter 33); the proof is by extension of Tutte’s method. This in turn was
generalized by Tutte [1952] to b-factors where b ∈ ZV

+ . As an ‘allied problem’, Tutte
[1952] considered perfect b-matchings, that is, functions f ∈ ZE

+ with f(δ(v)) = b(v)
for each vertex v. The proof is by reduction to the b-factor case, by replacing each
edge by several parallel edges.

Then in Tutte [1954b] it is realized that the b-factor and b-matching theorems
can be reduced to the case b = 1 by splitting vertices and by the construction given
in the proof of Theorem 32.1.

Gallai [1950] gave a short proof of Tutte’s 1-factor theorem. He showed the
following. Let G be a graph without a perfect matching, let M be a maximum-size
matching in G, and let v be a vertex missed by M . Let U be the set of vertices u
for which there is an M -alternating v −u path of odd length. Then G−U has more
than |U | odd components. Gallai [1950] also gave several characterizations for the
existence of l-factors in regular graphs, and he considered the infinite case.

Also Tutte [1950] and Kaluza [1953] gave extensions to the infinite case. The
main theorem of Ore [1957] is an alternative characterization of the existence of a
b-factor. Berge [1958a] extended Tutte’s 1-factor theorem to a min-max relation for
the maximum size of a matching, the Tutte-Berge formula.

Kotzig [1959a,1959b,1960] studied the structure of matching-covered graphs,
leading to a decomposition of any graph (cf. Ore [1959]).

Augmenting paths

Like Petersen, Berge [1957] observed that a matching M is maximum if and only
if there is no M -augmenting path, and he suggested the following procedure for
solving the cardinality matching problem:

Construct a maximal matching V , and determine whether there exists an al-
ternating chain W connecting two neutral points. (The procedure is known.) If
such a chain exists, change V into (V \ W ) ∪ (W \ V ), and look again for a new
alternating chain; if such a chain does not exist, V is maximum.

In Berge [1958b], a depth-first search approach to finding an augmenting path is
sketched, however without shrinking, and not leading to a polynomial-time algo-
rithm.

Also Norman and Rabin [1958,1959] found the augmenting path criterion for
maximality of a matching (and similarly, for minimality of an edge cover):
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These results immediately lead to algorithms for a minimum cover and a maxi-
mum matching respectively.

Edmonds [1962] and Ray-Chaudhuri [1963] extended the augmenting path cri-
terion to arbitrary hypergraphs.

Edmonds

Edmonds observed that Berge’s proposal for finding an augmenting path (quoted
above) does not lead to a polynomial-time algorithm. In his personal recollections,
Edmonds [1991] stated:

It is really hard for anyone to see that it isn’t easy that when you’ve got a matching
in a graph and you are starting at a deficient node, that you cannot just grow a
tree looking for a Berge augmenting path.

Edmonds [1965d] argued:

Berge proposed searching for augmenting paths as an algorithm for maximum
matching. In fact, he proposed to trace out an alternating path from an exposed
vertex until it must stop and, then, if it is not augmenting, to back up a little
and try again, thereby exhausting possibilities.
His idea is an important improvement over the completely naive algorithm. How-
ever, depending on what further directions are given, the task can still be one of
exponential order, requiring an equally large memory to know when it is done.

In the summer of 1963, at a Workshop at the RAND Corporation, Edmonds
discovered that shrinking leads to a polynomial-time algorithm to find a maximum-
size matching in any graph. The result was described in the paper Edmonds [1965d]
(received 22 November 1963), in which paper he also described his views on algo-
rithms and complexity:

For practical purposes computational details are vital. However, my purpose is
only to show as attractively as I can that there is an efficient algorithm. According
to the dictionary, “efficient” means “adequate in operation or performance”. This
is roughly the meaning I want — in the sense that it is conceivable for maximum
matching to have no efficient algorithm. Perhaps a better word is “good”.
I am claiming, as a mathematical result, the existence of a good algorithm for
finding a maximum cardinality matching in a graph.
There is an obvious finite algorithm, but that algorithm increases in difficulty
exponentially with the size of the graph. It is by no means obvious whether or
not there exists an algorithm whose difficulty increases only algebraically with
the size of the graph.

Moreover:

For practical purposes the difference between algebraic and exponential order is
often more crucial than the difference between finite and non-finite.

Edmonds described his algorithm, in terms of paths, trees, flowers, and blossoms,
and concluded that the ‘order of difficulty’ is n4 (more precisely, it is O(n2m)).

In this paper, Edmonds also introduced the decomposition of any graph which
is now called the Edmonds-Gallai decomposition. Also in 1963, Gallai submitted a
paper (Gallai [1963a]), in which this decomposition is described implicitly, which
was made more explicit in Gallai [1964].

In the Proceedings of the IBM Scientific Computing Symposium on Combinato-
rial Problems in March 1964 in Yorktown Heights, New York, at the end of Gomory
[1966], the following discussion is reported:
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J. Edmonds: I have a comment on the polyhedral approach to complete analysis,
supplementing Professor Kuhn’s remarks. I do not believe there is any reason
for taking as a measure of the algorithmic difficulty of a class of combinatorial
extremum problems the number of faces in the associated polyhedra. For example,
consider the generalization of the assignment problem from bipartite graphs to
arbitrary graphs. Unlike the case of bipartite graphs, the number of faces in the
associated polyhedron increases exponentially with the size of the graph. On the
other hand, there is an algorithm for this generalized assignment problem which
has an upper bound on the work involved just as good as the upper bound for
the bipartite assignment problem.
H.W. Kuhn: I could not agree with you more. That is shown by the unreasonable
effectiveness of the Norman-Rabin scheme for solving this problem. Their result is
unreasonable only in the sense that the number of faces of the polyhedron suggests
that it ought to be a harder problem than it actually turned out to be. It is not
impossible that some day we will have a practical combinatorial algorithm for
this problem.
J. Edmonds: Actually, the amount of work in carrying out the Norman-Rabin
scheme generally increases exponentially with the size of the graph.
The algorithm I had in mind is one I introduced in a paper submitted to the
Canadian Journal of Mathematics (see Edmonds, 1965). This algorithm depends
crucially on what amounts to knowing all the bounding inequalities of the as-
sociated convex polyhedron—and, as I said, there are many of them. The point
is that the inequalities are known by an easily verifiable characterization rather
than by exhaustive listing—so their number is not important.
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The matching polytope

As a by-product of his weighted matching algorithm (to be discussed in
Chapter 26), Edmonds obtained a characterization of the matching poly-
tope in terms of defining inequalities. It forms the first class of polytopes
whose characterization does not simply follow just from total unimodular-
ity, and its description was a breakthrough in polyhedral combinatorics.

25.1. The perfect matching polytope

The perfect matching polytope of a graph G = (V, E) is the convex hull
of the incidence vectors of the perfect matchings in G. It is denoted by
Pperfect matching(G):

(25.1) Pperfect matching(G) =conv.hull{χM | M perfect matching in G}.

So Pperfect matching(G) is a polytope in RE .
Consider the following set of linear inequalities for x ∈ RE :

(25.2) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) = 1 for each v ∈ V ,
(iii) x(δ(U)) ≥ 1 for each U ⊆ V with |U | odd.

In Section 18.1 we saw that if G is bipartite, the perfect matching polytope
is fully determined by the inequalities (25.2)(i) and (ii). These inequalities
are not enough for, say, K3: taking xe := 1

2 for each edge e of K3 gives a
vector x satisfying (25.2)(i) and (ii) but not belonging to the perfect matching
polytope of K3 (as it is empty).

Edmonds [1965b] showed that for general graphs, adding (25.2)(iii) is
enough. It is clear that for any perfect matching M in G, the incidence
vector χM satisfies (25.2). So Pperfect matching(G) is contained in the polytope
determined by (25.2). The essence of Edmonds’ theorem is that one needs no
more inequalities.

Theorem 25.1 (Edmonds’ perfect matching polytope theorem). The perfect
matching polytope of any graph G = (V, E) is determined by (25.2).
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Proof. Clearly, the perfect matching polytope is contained in the polytope Q
determined by (25.2). Suppose that the converse inclusion does not hold. So
we can choose a vertex x of Q that is not in the perfect matching polytope.

We may assume that we have chosen this counterexample such that |V |+
|E| is as small as possible. Hence 0 < xe < 1 for all e ∈ E (otherwise, if
xe = 0, we can delete e, and if xe = 1, we can delete e and its ends). So each
degree of G is at least 2, and hence |E| ≥ |V |. If |E| = |V |, each degree is 2,
in which case the theorem is trivially true. So |E| > |V |. Note also that |V |
is even, since otherwise Q = ∅ (consider U := V in (25.2)(iii)).

As x is a vertex, there are |E| linearly independent constraints among
(25.2) satisfied with equality. Since |E| > |V |, there is an odd subset U of V
with 3 ≤ |U | ≤ |V | − 3 and x(δ(U)) = 1.

Consider the projections x′ and x′′ of x to the edge sets of the graphs
G/U and G/U , respectively (where U := V \U). Here we keep parallel edges.

Then x′ and x′′ satisfy (25.2) for G/U and G/U , respectively, and hence
belong to the perfect matching polytopes of G/U and G/U , by the minimality
of |V | + |E|.

So G/U has perfect matchings M ′
1, . . . , M

′
k and G/U has perfect match-

ings M ′′
1 , . . . , M ′′

k with

(25.3) x′ =
1

k

k∑

i=1

χM ′

i and x′′ =
1

k

k∑

i=1

χM ′′

i .

(Note that x is rational as it is a vertex of Q.)
Now for each e ∈ δ(U), the number of i with e ∈ M ′

i is equal to kx′(e) =
kx(e) = kx′′(e), which is equal to the number of i with e ∈ M ′′

i . Hence we
can assume that, for each i = 1, . . . , k, M ′

i and M ′′
i have an edge in δ(U) in

common. So Mi := M ′
i ∪ M ′′

i is a perfect matching of G. Then

(25.4) x =
1

k

k∑

i=1

χMi .

Hence x belongs to the perfect matching polytope of G.

Notes. This proof was given by Aráoz, Cunningham, Edmonds, and Green-Krótki
[1983] and Schrijver [1983c], with ideas of Seymour [1979a]. For other proofs, see
Balinski [1972], Hoffman and Oppenheim [1978], and Lovász [1979b]. A proof can
also be derived from Edmonds’ weighted matching algorithm (Chapter 26).

25.2. The matching polytope

The characterization of the perfect matching polytope implies Edmonds’
matching polytope theorem. It characterizes the matching polytope of a graph
G = (V, E), denoted by Pmatching(G), which is the convex hull of the incidence
vectors of the matchings in G:
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(25.5) Pmatching(G) =conv.hull{χM | M matching in G}.

Again, Pmatching(G) is a polytope in RE .

Corollary 25.1a (Edmonds’ matching polytope theorem). For any graph
G = (V, E), the matching polytope is determined by:

(25.6) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≤ 1 for each v ∈ V ,
(iii) x(E[U ]) ≤ ⌊ 1

2 |U |⌋ for each U ⊆ V with |U | odd.

Proof. Clearly, each vector x in the matching polytope satisfies (25.6). To
see that the inequalities (25.6) are enough, let x satisfy (25.6). Make a copy
G′ = (V ′, E′) of G, and add edges vv′ for each vertex v ∈ V , where v′ is the

copy of v in V ′. This makes the graph G̃ = (Ṽ , Ẽ).
Define x̃e := x̃e′ := xe for each e ∈ E, where e′ is the copy of e in E′, and

x̃(vv′) := 1 − x(δ(v)) for each v ∈ V . Then by Theorem 25.1, x̃ belongs to

the perfect matching polytope of G̃, since x̃ satisfies (25.2) with respect to

G̃.
Indeed, for each v ∈ V one has x̃(δ̃(v)) = x̃(δ̃(v′)) = 1 (where δ̃ := δG̃).

Moreover, consider any odd subset U of Ṽ = V ∪ V ′, say U = W ∪ X ′ with
W, X ⊆ V . Then x̃(δ̃(U)) ≥ x̃(δ̃(W \X))+ x̃(δ̃(X ′ \W ′)). So we may assume
that W ∩ X = ∅, and by symmetry we may assume that W is odd, and
hence that X = ∅. So it suffices to show that for any odd U ⊆ V one has
x̃(δ̃(U)) ≥ 1. Now

(25.7) x̃(δ̃(U)) + 2x̃(Ẽ[U ]) =
∑

v∈U

x̃(δ̃(v)) = |U |,

and hence

(25.8) x̃(δ̃(U)) = |U | − 2x̃(Ẽ[U ]) ≥ |U | − 2⌊ 1
2 |U |⌋ = 1.

So by Theorem 25.1, x̃ belongs to the perfect matching polytope of G̃, and
hence x belongs to the matching polytope of G.

25.3. Total dual integrality: the Cunningham-Marsh
formula

With linear programming duality one can derive from Corollary 25.1a a min-
max relation for the maximum weight of a matching:

Corollary 25.1b. Let G = (V, E) be a graph and let w ∈ RE
+ be a weight

function. Then the maximum weight of a matching is equal to the minimum
value of
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(25.9)
∑

v∈V

yv +
∑

U∈Podd(V )

zU⌊ 1
2 |U |⌋,

where y ∈ RV
+ and z ∈ R

Podd(V )
+ satisfy

(25.10)
∑

v∈V

yvχδ(v) +
∑

U∈Podd(V )

zUχE[U ] ≥ w.

Proof. Directly with LP-duality from Corollary 25.1a.

The constraints (25.6) determining the matching polytope in fact are to-
tally dual integral, as was shown by Cunningham and Marsh [1978]. This
implies that a stronger min-max relation holds than obtained by linear pro-
gramming duality from the matching polytope inequalities: if w is integer-
valued, then in Corollary 25.1b we can restrict y and z to integer vectors:

Theorem 25.2 (Cunningham-Marsh formula). In Corollary 25.1b, if w is
integer, we can take y and z integer. We can take z moreover such that the
collection {U ∈ Podd(V ) | zU > 0} is laminar.9

Proof. We prove the theorem by induction on |E| + w(E). If w(e) = 0 for
some e ∈ E, we can delete e and apply induction. So we may assume that
w(e) ≥ 1 for each e ∈ E.

First assume that there exists a vertex u of G covered by every maximum-
weight matching. Let w′ := w−χδ(u). By induction, there exist integer y′

v, z′
U

that are optimum with respect to w′. Now increasing y′
u by 1, gives yv, zU as

required for w, since the maximum of w′(M) over all matchings M is strictly
less than the maximum of w(M) over all matchings M , as each maximum-
weight matching M contains an edge e incident with u.

So we may assume that for each vertex v there exists a maximum-weight

matching missing v. Hence if y ∈ RV
+ and z ∈ R

Podd(V )
+ satisfying (25.10)

attain the minimum of (25.9), then y = 0. (If yu > 0, then each maximum-
weight matching covers u, by complementary slackness.)

Now choose z attaining the minimum (with y = 0) such that

(25.11)
∑

U∈Podd(V )

zU⌊ 1
2 |U |⌋2

is as large as possible. Let F := {U ∈ Podd(V ) | zU > 0}. Then F is laminar.
For suppose not. Let U, W ∈ F with U ∩ W �= ∅ and U �⊆ W �⊆ U . Then
|U ∩ W | is odd. To see this, choose v ∈ U ∩ W . Then there is a maximum-
weight matching M missing v. Since zU > 0, E[U ] contains ⌊ 1

2 |U |⌋ edges in
M , and hence each vertex in U \{v} is covered by an edge in M contained in
U . Similarly, each vertex in W \ {v} is covered by an edge in M contained in

9 A collection F of sets is called laminar if U ∩ W = ∅ or U ⊆ W or W ⊆ U for all
U, W ∈ F .
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W . Hence each vertex in (U ∩W )\{v} is covered by an edge in M contained
in U ∩ W . So |(U ∩ W ) \ {v}| is even, and hence |U ∩ W | is odd.

Now let α := min{zU , zW }, and decrease zU and zW by α and increase
zU∩W and zU∪W by α. This resetting maintains (25.10), does not change
(25.9), but increases (25.11), contradicting our assumption.

This shows that F is laminar. Now suppose that z is not integer-valued,
and let U be an inclusionwise maximal set in F with zU �∈ Z. Let U1, . . . , Uk be
the inclusionwise maximal sets in F properly contained in U (possibly k = 0).
As F is laminar, the Ui are disjoint. Let α := zU −⌊zU⌋. Then decreasing zU

by α and increasing each zUi
by α would maintain (25.10) (by the integrality

of w), but would strictly decrease (25.9) (since
∑k

i=1⌊
1
2 |Ui|⌋ < ⌊ 1

2 |U |⌋). This
contradicts the minimality of (25.9).

(This proof follows the method given by Schrijver and Seymour [1977]. Other
proofs were given by Hoffman and Oppenheim [1978], Schrijver [1983a,1983c],
and Cook [1985].)

Note that the Cunningham-Marsh formula has the Tutte-Berge formula
(Corollary 24.1) as special case. The previous theorem is equivalent to:

Corollary 25.2a. System (25.6) is totally dual integral.

Proof. This follows from Theorem 25.2.

25.3a. Direct proof of the Cunningham-Marsh formula

We give a direct proof of the Cunningham-Marsh formula, as given in Schrijver
[1983a] (generalizing the proof of Lovász [1979b] of Edmonds’ matching polytope
theorem). It does not use Edmonds’ matching polytope theorem, which rather fol-
lows as a consequence.

Let G = (V, E) be a graph. For each weight function w ∈ ZE
+, let νw denote the

maximum weight of a matching. We must show that for each w ∈ ZE
+ there exist

y ∈ ZV
+ and z ∈ Z

Podd(V )
+ such that

(25.12)
∑

v∈V

yv +
∑

U∈Podd(V )

zU⌊ 1
2
|U |⌋ ≤ νw

and

(25.13)
∑

v∈V

yvχδ(v) +
∑

U∈Podd(V )

zUχE[U ] ≥ w.

Suppose that G and w contradict this, with |V |+|E|+w(E) as small as possible.
Then G is connected (otherwise one of the components of G will form a smaller
counterexample) and w(e) ≥ 1 for each edge e (otherwise we can delete e). Now
there are two cases.

Case 1: There is a vertex u covered by every maximum-weight matching. In this
case, let w′ := w −χδ(u). Then νw′ = νw − 1. Since w′(E) < w(E), there are y′ and
z′ satisfying (25.12) and (25.13) with respect to w′. Increasing y′

u by 1 gives y and
z satisfying (25.12) and (25.13) with respect to w.
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Case 2: No vertex is covered by every maximum-weight matching. Now let w′

arise from w by decreasing all weights by 1. Let M be a matching with w′(M) = νw′

and with |M | as large as possible.
Then M does not cover all vertices, as, otherwise, for any matching N of max-

imum w-weight not covering all vertices:

(25.14) w′(N) = w(N) − |N | > w(N) − |M | ≥ w(M) − |M | = w′(M) = νw′ ,

contradicting the definition of νw′ .
Suppose that M covers all but one vertex (in particular, |V | is odd). Then

(25.15) νw ≥ w(M) = w′(M) + |M | = νw′ + ⌊ 1
2
|V |⌋.

Since w′(E) < w(E), there are y′ and z′ satisfying (25.12) and (25.13) with respect
to w′. Increasing z′

V by 1 gives y and z satisfying (25.12) and (25.13) with respect
to w (by (25.15)), a contradiction.

So we know that M leaves at least two vertices in V uncovered. Let u and v be
not covered by M . We can assume that we have chosen M, u, v under the additional
condition that the distance d(u, v) of u and v in G is as small as possible. Then
d(u, v) > 1, since otherwise we could augment M by edge {u, v}, thereby increasing
|M | while not decreasing w′(M). Let t be an internal vertex of a shortest u − v
path. Let N be a matching not covering t, with w(N) = νw.

Let P be the component of M ∪ N containing t. Then P forms a path starting
at t and not covering both u and v (as t is not covered by N and u and v are
not covered by M). We can assume that P does not cover u. Now the symmetric
differences M ′ := M△P and N ′ := N△P are matchings again, and |M ′| ≤ |M | (as
M covers t), implying

(25.16) w′(M ′) − w′(M) = w(M ′) − |M ′| − w(M) + |M | ≥ w(M ′) − w(M)
= w(N) − w(N ′) = νw − w(N ′) ≥ 0.

So w′(M ′) ≥ w′(M) = νw′ and hence we have equality throughout. So w(M ′) =
w(M), w′(M ′) = w′(M), and |M ′| = |M |. However, M ′ does not cover t and u
while d(u, t) < d(u, v), contradicting our choice of M, u, v.

25.4. On the total dual integrality of the perfect
matching constraints

System (25.2) determining the perfect matching polytope is generally not
totally dual integral. Indeed, consider the complete graph G = K4 on four
vertices, with w(e) := 1 for each edge e; then the maximum weight of a
perfect matching is 2, while the dual of optimizing wTx subject to (25.2) is
attained only by taking y({v}) = 1

2 for each vertex v.
However, consider the following system, again determining the perfect

matching polytope (by Corollary 25.1a):

(25.17) (i) xe ≥ 0 for each e ∈ E;
(ii) x(δ(v)) = 1 for each v ∈ V ;
(iii) x(E[U ]) ≤ ⌊ 1

2 |U |⌋ for each U ⊆ V with |U | odd.
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Corollary 25.2b. System (25.17) is totally dual integral.

Proof. Directly from Corollary 25.2a, with Theorem 5.25.

This implies a result stated by Edmonds and Johnson [1970]:

Corollary 25.2c. The perfect matching inequalities (25.2) form a totally
dual half-integral system.

Proof. Let w ∈ ZE , and minimize wTx subject to (25.2). As it is the same as
minimizing wTx subject to (25.17), by Corollary 25.2b there is an optimum

dual solution y ∈ ZV , z ∈ Z
Podd(V )
+ . Since x(E[U ]) ≤ ⌊ 1

2 |U |⌋ is half of the
sum of the inequalities x(δ(v)) = 1 (v ∈ U) and −x(δ(U)) ≤ −1, we obtain
the total dual half-integrality of (25.2).

This can be strengthened to (Barahona and Cunningham [1989]):

Corollary 25.2d. If w ∈ ZE and w(C) is even for each circuit C, then the
problem of minimizing wTx subject to (25.2) has an integer optimum dual
solution.

Proof. If w(C) is even for each circuit, there is a subset T of V with {e ∈
E | w(e) is odd} = δ(T ). Now replace w by w̃ := w +

∑
v∈T χδ(v). Then

w̃(e) is an even integer for each edge e. Hence by Corollary 25.2c there is an

optimum dual solution ỹ ∈ ZV , z ∈ Z
Podd(V )
+ for the problem of minimizing

w̃Tx subject to (25.2). Now setting yv := ỹv −1 if v ∈ T and yv := ỹv if v �∈ T
gives an integer optimum dual solution for w.

25.5. Further results and notes

25.5a. Adjacency and diameter of the matching polytope

Balinski and Russakoff [1974] and Chvátal [1975a] characterized adjacency on the
matching polytope:

Theorem 25.3. Let M and N be distinct matchings in a graph G = (V, E). Then
χM and χN are adjacent vertices of the matching polytope if and only if M△N is
a path or circuit.

Proof. To see necessity, let χM and χN be adjacent. Let P be any nontrivial
component of M△N and let M ′ := M△P and N ′ := N△P . So M ′ and N ′ are
matchings again. Then

(25.18) 1
2
(χM + χN ) = 1

2
(χM′

+ χN′

).

As χM and χN are adjacent, it follows that {M ′, N ′} = {M, N}. So M ′ = N and
N ′ = M , and therefore M△N = P .
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To see sufficiency, let P := M△N be a path or circuit. Suppose that χM and
χN are not adjacent. Then there exists a matching L �= M, N that belongs to the
smallest face of the matching polytope containing x := 1

2
(χM + χN ). As xe = 0

for each edge e �∈ M ∪ N and xe = 1 for each edge e ∈ M ∩ N , we know that
M ∩ N ⊆ L ⊆ M ∪ N . Moreover, x(δ(v)) = 1 for each vertex v covered both by M
and by N . Hence each vertex v covered both by M and by N is covered by L. As
P is a path or a circuit, it follows that L = M or L = N , a contradiction.

This has as consequence for the diameter:

Corollary 25.3a. The diameter of the matching polytope of any graph G = (V, E)
is equal to the maximum size ν(G) of the matchings.

Proof. First, by Theorem 25.3, for any two matchings M and N , the distance
of χM and χN is at most the number of nontrivial components of M△N . Since
each such component contains at least one edge and since these edges are pairwise
disjoint, this number is at most ν(G). So the diameter is at most ν(G).

Equality follows from the fact that ∅ and any matching M have distance |M |.
This follows from the fact that if M and N are adjacent, then

∣

∣|M | − |N |
∣

∣ ≤ 1 by

Theorem 25.3.

Another direct consequence concerns adjacency on the perfect matching poly-
tope:

Corollary 25.3b. Let M and N be perfect matchings in a graph G = (V, E). Then
χM and χN are adjacent vertices of the perfect matching polytope if and only if
M△N is a circuit.

Proof. Directly from Theorem 25.3.

This in turn implies for the diameter of the perfect matching polytope:

Corollary 25.3c. The perfect matching polytope of a graph G = (V, E) has diam-
eter at most 1

2
|V | ( 1

4
|V | if G is simple).

Proof. For any two perfect matching M, N , the symmetric difference has at most
1
2
|V | components (each being a circuit). Hence Corollary 25.3b implies that χM

and χN have distance at most 1
2
|V |.

If G is simple the bounds can be sharpened to 1
4
|V |, as each even circuit has at

least four vertices.

Padberg and Rao [1974] showed that if G is a complete graph with an even
number 2n of vertices, then Pperfect matching(G) has diameter at most 2. (This can
be derived from Theorem 18.5, since any two perfect matchings belong to some
Kn,n-subgraph of G, which subgraph gives a face of Pperfect matching(G).)
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25.5b. Facets of the matching polytope

Pulleyblank and Edmonds [1974] (cf. Pulleyblank [1973]) characterized which of
the inequalities (25.6) give a facet of the matching polytope:

Let G = (V, E) be a graph. Define

(25.19) I := {v ∈ V | degG(v) ≥ 3, or degG(v) = 2 and v is contained in no
triangle, or degG(v) = 1 and the neighbour of v also has degree 1},
T := {U ⊆ V

∣

∣ |U | ≥ 3, G[U ] is factor-critical and 2-vertex-
connected}.

(Recall that graph G is factor-critical if, for each vertex v of G, G− v has a perfect
matching.)

Consider the system

(25.20) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≤ 1 for v ∈ I,
(iii) x(E[U ]) ≤ ⌊ 1

2
|U |⌋ for U ∈ T .

We first show:

Theorem 25.4. Each inequality in (25.6) is a nonnegative integer combination of
inequalities (25.20).

Proof. First consider a vertex v �∈ I. If degG(v) = 1, let u be the neighbour of v.
Then u ∈ I and

(25.21) x(δ(v)) = x(δ(u)) −
∑

e∈δ(u)−δ(v)

xe.

If degG(v) = 2 and v is contained in a triangle G[U ], then x(δ(v)) = x(E[U ]) − xe,
where e is the edge in E[U ] not incident with v.

Next consider a subset U of V with |U | odd and |U | ≥ 3. We show that
x(E[U ]) ≤ ⌊ 1

2
|U |⌋ is a sum of constraints (25.20), by induction on |U |. If U ∈ T

we are done. So assume that U �∈ T . Let H := G[U ]. If H is not factor-critical,
there is a vertex v such that H − v has no perfect matching. Let U ′ = U \ {v}.
Then x(E[U ′]) ≤ ⌊ 1

2
|U |⌋ − 1 for the incidence vector x of any matching, and hence

also for each vector x in the matching polytope. By the total dual integrality of
the matching constraints (Corollary 25.2a), this constraint is a sum of constraints
(25.6), and hence, by induction, of constraints (25.20). So x(E[U ]) ≤ ⌊ 1

2
|U |⌋ is a

sum of constraints (25.20), as E[U ] ⊆ E[U ′] ∪ δ(v).
If H is factor-critical, it has a cut vertex v. Let K1, . . . , Kt be the components

of H − v and let Ui := Ki ∪ {v} for each i. As H is factor-critical, each |Ui| is odd.
Hence x(E[U ]) ≤ ⌊ 1

2
|U |⌋ is a sum of the constraints x(E[Ui]) ≤ ⌊ 1

2
|Ui|⌋.

This implies that (25.20) is sufficient:

Corollary 25.4a. (25.20) determines the matching polytope.

Proof. Directly from Corollary 25.1a and Theorem 25.4.

Another consequence is the result of Cunningham and Marsh [1978] that the
irredundant system still is totally dual integral:
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Corollary 25.4b. (25.20) is TDI.

Proof. Directly from Theorem 25.4, using the total dual integrality of system
(25.6).

(For a short proof of this result, see Cook [1985].)
Next we show that each inequality in (25.20) determines a facet. To this end,

we first show:

Lemma 25.5α. Let G = (V, E) be a 2-vertex-connected factor-critical graph and
let W be a proper subset of V with |W | odd and ≥ 3. Then G has a matching of
size ⌊ 1

2
|V |⌋ containing less than ⌊ 1

2
|W |⌋ edges in E[W ].

Proof. Choose a vertex v ∈ W that is adjacent to at least one vertex in V \ W . If
v has no neighbour in W , choose u ∈ W \ {v} and let M be a perfect matching in
G − u. This matching has the required properties.

So we may assume that v has a neighbour in W . Make from G a graph G′, by
splitting v into two vertices v′ and v′′, where v′ is adjacent to all vertices in W
adjacent to v and where v′′ is adjacent to all vertices in V \ W adjacent to v.

If G′ has a perfect matching M ′, then deleting the edge in M ′ covering v′,
and identifying v′ and v′′, gives a matching M in G with |M | = ⌊ 1

2
|V |⌋, but with

|M ∩ E[W ]| < ⌊ 1
2
|W |⌋.

So we can assume that G′ has no perfect matching. Then by Tutte’s 1-factor
theorem, there is a subset U of V G′ such that G′ − U has more than |U | odd
components. Since the graph G′ ∪ {v′v′′} has a perfect matching10 (as G is factor-
critical), we know that v′, v′′ �∈ U .

If U = ∅, G′ has an odd component, contradicting the fact that G′ is connected
(since G is 2-vertex-connected) and has an even number of vertices. So U �= ∅.
Choose u ∈ U , and let M be a perfect matching in G − u. Then M yields a
matching M ′ in G′ missing u and exactly one of v′, v′′. So G′ ∪{uv′} or G′ ∪{uv′′}
has a perfect matching, contradicting the fact that u ∈ U and G′ − U has more
than |U | odd components.

This lemma is used in proving:

Theorem 25.5. Each inequality in (25.20) determines a facet.

Proof. We clearly cannot delete any inequality xe ≥ 0, since otherwise the vector
x defined by xe := −1 and xe′ := 0 for each e′ �= e would be a solution. So it
determines a facet.

Consider next an inequality

(25.22) x(δ(v)) ≤ 1

for some v ∈ I. Let F be the set of vectors x in the matching polytope satisfying
x(δ(v)) = 1. Suppose that F is not a facet. Then there is a facet F ′ with F ′ ⊃ F .
So F ′ is determined by one of the inequalities (25.20).

10 By G′ ∪ {uv} we denote the graph obtained from G′ by adding edge uv.
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If F ′ is determined by xe = 0 for some e ∈ E, choose a matching M with e ∈ M
and covering v (the existence of such a matching follows from the definition of I).
Then χM ∈ F \ F ′, a contradiction.

If F ′ is determined by x(δ(u)) = 1 for some u ∈ I, then u �= v (since F ′ �= F )
and there is an edge e incident with u but not with v (since u, v ∈ I). Hence for
matching M := {e} we have χM ∈ F \ F ′, a contradiction.

If F ′ is determined by x(E[U ]) = ⌊ 1
2
|U |⌋ for some U ∈ T , then δ(u) ⊆ E[U ]

and ⌊ 1
2
|U |⌋ = 1 (since χM ∈ F ⊆ F ′ for M = {e}, for each e ∈ δ(v)). So |U | = 3.

Since F ′ �= F , U determines a triangle, contradicting the fact that v ∈ I.
Finally consider an inequality

(25.23) x(E[U ]) ≤ ⌊ 1
2
|U |⌋

for some U ∈ T . Let F be the set of vectors x in the matching polytope satisfying
x(E[U ]) = ⌊ 1

2
|U |⌋.

Suppose that F is not a facet, and let F ′ be a facet with F ′ ⊃ F .
First assume that F ′ is determined by xe = 0 for some e ∈ E. If e is not spanned

by U , there is a v ∈ U such that U \ {v} is not intersected by e. Let M be a perfect
matching of G[U ] − v. Then χM∪{e} ∈ F \ F ′, a contradiction. If e is spanned by
U , choose v ∈ e and let M be a perfect matching of G[U ] − v. Let f ∈ M intersect

e, and define M ′ := (M \ {f}) ∪ {e}. Then χM′ ∈ F \ F ′, a contradiction.
Next assume that F ′ is determined by x(δ(v)) = 1 for some v ∈ I. Then, as G[U ]

is factor-critical, there is a matching M with |M ∩E[U ]| = ⌊ 1
2
|U |⌋ and M ∩δ(v) = ∅.

So χM ∈ F \ F ′, a contradiction.
Finally assume that F ′ is determined by x(E[U ′]) = ⌊ 1

2
|U ′|⌋ for some U ′ ∈ T .

If U ′ �⊆ U , there is a matching M with |M ∩ E[U ]| = ⌊ 1
2
|U |⌋ missing at least two

vertices in U ′ and hence |M ∩E[U ′]| < ⌊ 1
2
|U ′|⌋. Then χM ∈ F \F ′, a contradiction.

So U ′ ⊂ U . By Lemma 25.5α, G[U ] has a matching M of size ⌊ 1
2
|U |⌋ such that

less than ⌊ 1
2
|U ′|⌋ edges in M are spanned by U ′. Then χM ∈ F \F ′, a contradiction.

(This proof is due to L. Lovász (cf. Cornuéjols and Pulleyblank [1982]). For another
proof, see Cook [1985]. See also Giles [1978b].)

Edmonds, Lovász, and Pulleyblank [1982] gave an irredundant system of linear
inequalities describing the perfect matching polytope. More on the combinatorial
structure of the (perfect) matching polytope is given by Naddef and Pulleyblank
[1981a].

25.5c. Polynomial-time solvability with the ellipsoid method

In Chapter 26 we shall describe Edmonds’ strongly polynomial-time algorithm for
the weighted matching problem. This algorithm gives as a by-product the inequal-
ities describing the perfect matching polytope, as we shall see in Section 26.3b.

It turns out that conversely one can derive the strong polynomial-time solvabil-
ity of the weighted matching problem from the description of the perfect matching
polytope (albeit that the method is impractical).

Indeed, the weighted perfect matching problem is equivalent to the optimization
problem over the perfect matching polytope. So, by the ellipsoid method, there
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exists a polynomial-time weighted perfect matching algorithm if and only if there
exists a polynomial-time separation algorithm for the perfect matching polytope.

Such a polynomial-time algorithm indeed exists (and would follow conversely
also with the ellipsoid method from the polynomial-time solvability of the weighted
matching problem). A direct proof was given by Padberg and Rao [1982], and is as
follows.

The separation problem for the perfect matching polytope is: given a graph
G = (V, E) and a vector x ∈ RE

+, decide if x belongs to the perfect matching
polytope, and if not, find a separating hyperplane. To answer this question we
can first check the constraints (25.2)(i)(ii) in polynomial time. If one of them is
violated, it gives a separating hyperplane. If each of them is satisfied, we should
check if x(δ(U)) < 1 for some odd subset U of V . Considering x as a capacity
function, we should find an odd cut of capacity less than 1. Here an odd cut is a
cut δ(U) with |U | odd.

Such a cut can be found in strongly polynomial time. For a graph G = (V, E)
and a tree T = (V, F ), a fundamental cut determined by T is a cut δE(Wf ), where
f ∈ F and Wf is one of the components of T − f . Then:

Theorem 25.6. Let G = (V, E) be a graph with |V | even, let c ∈ RE
+ be a capacity

function, and let T = (V, F ) be a Gomory-Hu tree for G and c. Then one of the
fundamental cuts determined by T is a minimum-capacity odd cut in G.

Proof. For each f ∈ F , choose Wf as one of the two components of T −f . Let δG(U)
be a minimum-capacity odd cut of G. Then U or V \ U is equal to the symmetric
difference of the Wf over f ∈ δF (U). Hence |Wf | is odd for at least one f ∈ δF (U).
So δG(Wf ) is an odd cut. Let f = uv. As δG(Wf ) is a minimum-capacity u − v
cut and as δG(U) is a u − v cut, we have c(δG(Wf )) ≤ c(δG(U)). So δG(Wf ) is a
minimum-capacity odd cut.

This gives algorithmically:

Corollary 25.6a. A minimum-capacity odd cut can be found in strongly polynomial
time.

Proof. This follows from Theorem 25.6, since a Gomory-Hu tree can be found in
strongly polynomial time, by Corollary 15.15a.

As the separation problem for the perfect matching polytope can be reduced to
finding a minimum-capacity odd cut, this implies:

Corollary 25.6b. The separation problem for the perfect matching polytope can be
solved in strongly polynomial time.

Proof. See above.

Corollary 25.6c. A minimum-weight perfect matching can be found in strongly
polynomial time.

Proof. This follows from Corollary 25.6b, with Theorem 5.11.
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25.5d. The matchable set polytope

Let G = (V, E) be a graph. A subset U of V is called matchable if the graph G[U ]
has a perfect matching. The matchable set polytope of G is the convex hull (in RV )
of the incidence vectors of matchable sets.

Balas and Pulleyblank [1989] characterized the matchable set polytope as fol-
lows (where N(U) is the set of neighbours of U and o(G[U ]) is the number of odd
components of G[U ]):

Theorem 25.7. The matchable set polytope of a graph G = (V, E) is determined
by:

(25.24) (i) 0 ≤ xv ≤ 1 for v ∈ V ,
(ii) x(U) − x(N(U)) ≤ |U | − o(G[U ]) for U ⊆ V .

Proof. Each vector in the matchable set polytope of G satisfies (25.24), since the
incidence vector of any matchable set satisfies (25.24), since if any odd component
K of G[U ] is covered by a matching M , then M has an edge connecting K and
N(U).

To see the reverse, choose a counterexample with |V | + |E| minimal, and let x
be a vertex of the polytope determined by (25.24) that is not in the matchable set
polytope.

Then xv > 0 for each vertex v, since otherwise we can obtain a smaller coun-
terexample by deleting v. Moreover, there exists at least one vertex v with xv < 1,
since otherwise x = χV , while V is matchable (as follows from Tutte’s theorem,
using (25.24)(ii)).

Hence, since x is a vertex of the polytope determined by (25.24), at least one
constraint in (25.24)(ii) is attained with equality for some U with o(G[U ]) ≥ 1 (for
any other U , (ii) follows from (i)).

Choose such a U with U inclusionwise minimal. Let K be the collection of
components of G[U ]. Then

(25.25) G[K] is factor-critical for each K ∈ K.

Otherwise, if K is even, then

(25.26) x(U \ K) − x(N(U \ K)) ≥ x(U) − x(K) − x(N(U))
≥ x(U) − |K| − x(N(U)) = |U | − o(G[U ]) − |K|
= |U \ K| − o(G[U \ K]),

contradicting the minimality of U .
So K is odd. If G[K] is not factor-critical, then by Tutte’s 1-factor theorem, K

has a nonempty subset C with o(G[K] − C) ≥ |C| + 1. Then

(25.27) x(U \ C) − x(N(U \ C)) ≥ x(U) − 2x(C) − x(N(U))
= |U | − o(G[U ]) − 2x(C) ≥ |U | − o(G[U ]) − 2|C|
= |U \ C| − o(G[U ]) − |C| ≥ |U \ C| − o(G[U ]) − o(G[K \ C]) + 1
= |U \ C| − o(G[U \ C]).

So we have equality by (25.24)(ii), contradicting the minimality of U . This shows
(25.25).

Let S := U ∪ N(U). Let G′ := G − S and let x′ be the restriction of x to V \ S.
Then x′ satisfies (25.24) with respect to G′. Indeed, (i) is trivial. To see (ii), choose
a subset U ′ ⊆ V \ S. Then (since no edge connects U and U ′):
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(25.28) x′(U ′) − x′(NG′(U ′)) = x(U ′) − x(N(U ′) \ S)
= x(U ∪ U ′) − x(N(U ∪ U ′)) − (x(U) − x(N(U)))
≤ |U | + |U ′| − o(G[U ∪ U ′]) − (|U | − o(G[U ])) = |U ′| − o(G′[U ′]),

as required.
Hence, by the minimality of G, x′ belongs to the matchable set polytope of G′.

Hence we are done if we have shown that the restriction of x to G[S] belongs to
the matchable set polytope of G.

Let H be the bipartite graph obtained from G[S] by deleting all edges spanned
by N(U) and by contracting each K ∈ K to one vertex, uK say. Define y on the
vertices of H by: y(v) := x(v) if v ∈ N(U) and y(uK) := x(K)−|K|+1 for K ∈ K.

Then y belongs to the matchable set polytope of H. To see this, we apply
Theorem 21.30. Trivially 0 ≤ y(v) ≤ 1 for each v ∈ N(U). Moreover, y(uK) ≥ 0 for
each K ∈ K, since otherwise x(K) < |K| − 1 implying

(25.29) x(U \ K) − x(N(U \ K)) ≥ x(U) − x(K) − x(N(U))
= |U | − o(G[U ]) − x(K) > |U | − o(G[U ]) − |K| + 1
= |U \ K| − o(G[U \ K]),

contradicting (25.24)(ii). The inequality y(uK) ≤ 1 follows from the fact that
x(K) ≤ |K|.

Now

(25.30)
∑

K∈K

y(uK) = x(U) − |U | + |K| = x(N(U)) =
∑

v∈N(U)

y(v).

This implies, by Theorem 21.30, that if y is not in the matchable set polytope of
H, then there exists a subcollection L of K with

(25.31) y(N(U ′)) <
∑

K∈L

y(uK),

where U ′ :=
⋃ L. However, by (25.24) we have

(25.32)
∑

K∈L

y(uK) =
∑

K∈L

(x(K) − |K| + 1) = x(U ′) − |U ′| + |L|

= x(U ′) − |U ′| + o(G[U ′]) ≤ x(N(U ′)) = y(N(U ′)).

So y belongs to the matchable set polytope of H. Assuming that the restriction
of x to S does not belong to the matchable set polytope of G[S], there exists a
vector w ∈ RV with wTx > w(Y ) for each matchable set Y of G[S] and with
w(v) = 0 if v �∈ S. For each K ∈ K, let vK ∈ K minimize w(v) over K. Define
w′ on the vertices of H by: w′(v) := w(v) for v ∈ N(U) and w′(uK) := w(vK) for
K ∈ K. Since y belongs to the matchable set polytope of H, H has a matchable
set Y ′ satisfying w′(Y ′) ≥ w′Ty. Let Y be the union of Y ′, of all K with uK ∈ Y ′,
and of all K \ {vK}. Since each G[K] is factor-critical, Y is matchable. Moreover,

(25.33) w(Y ) = w′(Y ′) +
∑

K∈K

w(K \ {vK}) ≥ w′Ty +
∑

K∈K

w(K \ {vK})

=
∑

v∈N(U)

w(v)x(v) +
∑

K∈K

w(vK)(x(K) − |K| + 1) +
∑

K∈K

w(K \ {vK})

≥
∑

v∈N(U)

w(v)x(v) +
∑

K∈K

∑

v∈K

(w(v) − w(vK) + w(vK)x(v))

≥
∑

v∈N(U)

w(v)x(v) +
∑

K∈K

∑

v∈K

w(v)x(v) = wTx
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(the last inequality follows from (w(v) − w(vK))(1 − x(v)) ≥ 0), contradicting our
assumption.

Cunningham and Green-Krótki [1994] gave a combinatorial, polynomial-time
separation algorithm for the matchable set polytope that implies a proof of Theo-
rem 25.7. A combinatorial, strongly polynomial-time algorithm was given by Cun-
ningham and Geelen [1996,1997]. Qi [1987] characterized adjacency of vertices on
the matchable set polytope. Related work can be found in Barahona and Mahjoub
[1994a].

25.5e. Further notes

We postpone a discussion of the dimension of the perfect matching polytope to
Chapter 37.

Note that Edmonds’ matching polytope theorem gives the linear inequalities
determining the convex hull of all symmetric permutation matrices.

Hoffman and Oppenheim [1978] showed that for each graph G = (V, E) and for
each vertex x of the matching polytope of G, there exist |E| linearly independent
constraints among (25.6) satisfied by x with equality and yielding a matrix of
determinant ±1. This also implies the total dual integrality of the constraints (25.6).

Unlike in the bipartite case, the convex hull of incidence vectors of edge sets
containing a perfect matching is not determined by linear inequalities with 0, 1
coefficients (in the left-hand side), as was shown by Cunningham and Green-Krótki
[1986]. They showed that for each integer n > 0 there exists a graph G = (V, E) with
|V | = 2n+4 such that the convex hull of the incidence vectors of supersets of perfect
matchings has facet-inducing inequalities with coefficient set {0, 1, . . . , n}. They also
showed that for odd n a similar result holds for subsets of perfect matchings. So
the polyhedra P ↑

perfect matching(G) and P ↓

perfect matching(G) are not determined by
0, 1 inequalities.

Naddef and Pulleyblank [1981b] observed that Edmonds’ perfect matching poly-
tope theorem implies that any (k − 1)-edge connected k-regular graph G = (V, E)
with an even number of vertices, is matching-covered. (This can be seen by showing
that the all- 1

k
vector in RE belongs to the perfect matching polytope.)

Rispoli [1992] noticed that the ‘monotonic diameter’ of the perfect matching
polytope of Kn is equal to ⌊n

4
⌋. So for any weight function w there is a polytopal

path with monotonically increasing wTx and leading from any vertex to a vertex
maximizing wTx, of length at most ⌊n

4
⌋.



Chapter 26

Weighted nonbipartite matching
algorithmically

In the previous chapter we gave good characterizations for the maximum-
weight matching problem. In the present chapter we go over to the algo-
rithmic side, and describe Edmonds’ strongly polynomial-time algorithm
for finding a minimum-weight perfect matching in any graph. It implies a
strongly polynomial-time algorithm for finding a maximum-weight match-
ing.
In this chapter, graphs can be assumed to be simple.

26.1. Introduction and preliminaries

As an extension of the cardinality matching algorithm, Edmonds [1965b]
proved that also a maximum-weight matching can be found in strongly poly-
nomial time. Equivalently, a minimum-weight perfect matching can be found
in strongly polynomial time.

Like the cardinality matching algorithm, the weighted matching algorithm
is based on shrinking sets of vertices. Unlike the cardinality matching algo-
rithm however, for weighted matchings one has, at times, to ‘deshrink’ sets
of vertices (the reverse operation of shrinking). For this purpose we have to
keep track of the shrinking history throughout the iterations.

Let G = (V, E) be a graph and let w ∈ QE be a weight function. We de-
scribe a strongly polynomial-time algorithm to find a minimum-weight perfect
matching in G. We can assume that G has at least one perfect matching and
that w ≥ 0.

The algorithm is ‘primal-dual’. The ‘vehicle’ carrying us to a minimum-
weight perfect matching is a pair of a laminar11 collection Ω of odd-size
subsets of V and a function π : Ω → Q satisfying:

(26.1) (i) π(U) ≥ 0 if U ∈ Ω and |U | ≥ 3,

(ii)
∑

U ∈ Ω
e ∈ δ(U)

π(U) ≤ w(e) for each e ∈ E.

11 A collection Ω of sets is called laminar if U ∩ W = ∅ or U ⊆ W or W ⊆ U for any
U, W ∈ Ω.
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Condition (26.1) implies

(26.2) w(M) ≥
∑

U∈Ω

π(U)

for each perfect matching M in G, since

(26.3) w(M) =
∑

e∈M

w(e) ≥
∑

e∈M

∑

U ∈ Ω
e ∈ δ(U)

π(U) =
∑

U∈Ω

π(U)|M ∩ δ(U)|

≥
∑

U∈Ω

π(U).

Hence M is a minimum-weight perfect matching if equality holds throughout
in (26.3).

Notation. Let be given Ω and π : Ω → Q. Define for any edge e:

(26.4) wπ(e) := w(e) −
∑

U ∈ Ω
e ∈ δ(U)

π(U).

So (26.1)(ii) says that wπ(e) ≥ 0 for each e ∈ E. Let Eπ denote the set of
edges e with wπ(e) = 0, and let Gπ = (V, Eπ).

Throughout the algorithm we will have that {v} ∈ Ω for each v ∈ V .
Hence, as Ω is laminar, the collection Ωmax of inclusionwise maximal sets in
Ω is a partition of V .

By G′ we denote the graph obtained from Gπ by shrinking all sets in
Ωmax:

(26.5) G′ := Gπ/Ωmax.

(So G′ depends on Ω and π.) The vertex set of G′ is Ωmax, with two distinct
elements U, U ′ ∈ Ωmax adjacent if and only if Gπ has an edge connecting U
and U ′. We denote any edge of G′ by the original edge in G.

Finally, for U ∈ Ω with |U | ≥ 3, we denote by HU the graph obtained
from Gπ[U ] by contracting each inclusionwise maximal proper subset of U
that belongs to Ω.

26.2. Weighted matching algorithm

We keep a laminar collection Ω of odd-size subsets of V , a function π : Ω → Q

satisfying (26.1), a matching M in G′, and for each U ∈ Ω with |U | ≥ 3, a
Hamiltonian circuit CU in HU . We assume that G is simple and has at least
one perfect matching.

Initially, we set Ω := {{v} | v ∈ V }, π({v}) := 0 for each v ∈ V , and
M := ∅. The iteration is as follows. Let X be the set of vertices of G′ missed
by M . (In the algorithm, ‘positive length’ means: having at least one edge.)
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(26.6) Case 1: G′ has an M-alternating X − X walk of positive
length. Choose a shortest such walk P . If P is a path, it is
an M -augmenting path in G′. Reset M := M△EP (matching
augmentation) and iterate.
If P is not a path, it contains an M -flower (Theorem 24.3). Let
C be the circuit in it. Add U :=

⋃
V C to Ω (shrinking), set

π(U) := 0, M := M \ EC, and CU := C, and iterate.
Case 2: G′ has no M-alternating X − X walk of positive
length. Let S be the set of vertices U of G′ for which G′ has
an odd-length M -alternating X − U walk and let T be the set of
vertices U of G′ for which G′ has an even-length M -alternating
X − U walk. Reset π(U) := π(U) + α if U ∈ T and π(U) :=
π(U) − α if U ∈ S, where α is the largest value maintaining
(26.1). If after this resetting π(U) = 0 for some U ∈ S with
|U | ≥ 3, delete U from Ω (deshrinking), extend M by the perfect
matching of CU − v, where v is the vertex of CU covered by M ,
and iterate.

In Case 2, α is bounded, since |T | > |S| if M is not perfect and since by
(26.3),

∑
U∈Ω π(U) is bounded (as there exists at least one perfect matching

by assumption).
The iterations stop if M is a perfect matching in G′, and then we are

done: using the CU we can expand M to a perfect matching N in G with
wπ(N) = 0 and |N ∩ δ(U)| = 1 for each U ∈ Ω. Then N has equality
throughout in (26.3), and hence it is a minimum-weight perfect matching.

As for estimating the number of iterations, it is good to observe that the
laminarity of Ω implies (cf. Theorem 3.5)

(26.7) |Ω| ≤ 2|V |,

assuming V �= ∅.

Theorem 26.1. There are at most 2|V |2 iterations.

Proof. There are at most 1
2 |V | matching augmentations, since at each match-

ing augmentation the size of X decreases by 2, and remains unchanged in
any other iteration.

The further proof is based on the following observation:

(26.8) Any set U added to Ω (‘shrinking’) will not be removed from Ω
(‘deshrinking’) before the next matching augmentation.

Indeed, after shrinking U , there exists an even-length M -alternating X − U
path. Until the next matching augmentation, this remains the case, or U is
swallowed by a larger set that is shrunk. So U is not in S before the next
matching augmentation, proving (26.8).

Consider any sequence of iterations between two consecutive matching
augmentations. By (26.8), the number of deshrinkings is not more than the
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size of Ω at the start of the sequence. Similarly by (26.8), the number of
shrinkings is not more than the size of Ω at the end of the sequence. So, by
(26.7), both the number of shrinkings and the number of deshrinkings are at
most 2|V |.

If in Case 2 we do not deshrink, then there is an edge e connecting a
vertex U ∈ T with a vertex W �∈ S of G′ for which wπ(e) has decreased to 0.
If W �∈ T , then after resetting π, W ∈ S, and hence the number of vertices
of G′ not in S ∪ T decreases. If W ∈ T , then, in the next iteration, Case 1
applies. So the number of Case 2 iterations in which we do not deshrink is at
most |V |. This proves the theorem.

This gives the theorem of Edmonds [1965b]:

Corollary 26.1a. A minimum-weight perfect matching can be found in time
O(n2m).

Proof. By Theorem 26.1, since each iteration can be performed in time O(m).

This implies that also a maximum-weight matching can be found in time
O(n2m):

Corollary 26.1b. A maximum-weight matching can be found in time O(n2m).

Proof. Let G = (V, E) be a graph with weight function w ∈ QE . Extend
G as follows. Make copies G′ and w′ of G and w. Connect each v ∈ V to
its copy in V ′, by an edge of weight 0. Let M be a maximum-weight perfect
matching in the extended graph. The restriction of M to the original edges
is a maximum-weight matching in G.

Notes. In fact, a bound of 3
2
|V | can be shown in (26.7) (as the size of any set in

Ω is odd), implying a bound of |V |2 on the number of iterations in Theorem 26.1.

26.2a. An O(n3) algorithm

In the above description, we estimated the time required for any iteration by O(m).
This leaves time to find the walk in each iteration just from scratch, and to construct
the graph G′ = Gπ/Ω from scratch, after any shrinking or deshrinking step.

Like in the cardinality case, we can speed this up (i) by using the result of the
previous walk-search in the next walk-search, and (ii) by constructing the graph
G′ only in an implicit way. In this way we can reduce the time per iteration from
O(m) to O(n) on average, leading to an overall time bound of O(n3).

Again we use M -alternating forests to reach this goal. Thus, next to Ω, π, M ,
and the CU , we keep an M -alternating forest F in G′ := Gπ/Ωmax.
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We do not keep the graph G′. Instead, we keep for each pair Y, Z of disjoint
sets in Ω an edge eY Z of G connecting Y and Z and minimizing wπ(eY Z). We take
eY Z void if no such edge exists. We keep the eY Z as lists: for each Y ∈ Ω we have
a list containing the eY Z .

Moreover, for each Y ∈ Ω we keep an edge eY with eY = eY Z for some Z ∈
even(F ) and with wπ(eY Z) minimal. Again, if no such eY Z exists, eY is void.

Finally, for each v ∈ V we keep

(26.9) p(v) :=
∑

U ∈ Ω
v ∈ U

π(U).

Initially, we set Ω := {{v} | v ∈ V }, π({v}) := 0 and p(v) := 0 for each v ∈ V ,
and M := ∅, F := ∅. The eY Z and eY are easily set.

Next we apply the following iteratively:

(26.10) Reset π(U) := π(U) − α for U ∈ odd(F ) and π(U) := π(U) + α for
U ∈ even(F ), where α is the largest value maintaining (26.1). Update p
accordingly. After that, at least one of the following three cases applies.
Case 1: wπ(eU) = 0 for some U ∈ free(F ). Extend F by eU and
update the eY (forest augmentation).
Case 2: wπ(eU) = 0 for some U ∈ even(F ). Let eU connect
vertices U and W in even(F ). Let P and Q be the X − U and the
X − W path in (Ωmax, F ), respectively.
Case 2a: Paths P and Q are disjoint. Then P and Q form with
eU an M -augmenting path, yielding a matching M ′ in G′ with |M ′| =
|M | + 1. Reset M := M ′, F := M ′, and update the eY (matching
augmentation).
Case 2b: Paths P and Q intersect. Then they contain (with eU )
an M -blossom B. Let T be the union of the sets (in Ωmax) forming
the vertices of B. Add T to Ω, setting CT := B and π(T ) := 0. Reset
F := F \ EB and M \ EB, and update the eY Z and eY (shrinking).
Case 3: π(U) = 0 for some U ∈ odd(F ) with |U | ≥ 3. Let v
be the vertex in CU covered by an edge in M and let u be the vertex
in CU covered by an edge in F \ M . Let P be the even-length u − v
path in CU and let N be the matching in CU − v. Delete U from Ω,
reset F := F ∪EP ∪N and M := M ∪N , and update the eY Z and eY

(deshrinking).

(In updating F and M , we update them as graphs on Ωmax.)
The number of iterations between any two matching augmentations is at most

|V |, as may be proved similarly to the proof of Theorem 26.1 (replacing S by odd(F )
and T by even(F )).

In the iteration (26.10), we can find the value α in O(n) time, as it is the
minimum of wπ(eU ) over U ∈ free(F ), of 1

2
wπ(eU ) over U ∈ even(F ), and of π(U)

over U ∈ odd(F ) with |U | ≥ 3. So we can update π and p in O(n) time. Also F
and M can be updated in O(n) time (as they have O(n) edges).

Note that each time we need the value of wπ(e) for some edge e (when deter-
mining α or the eY Z and eY ), then e connects two disjoint sets in Ωmax, and hence
wπ(e) = w(e) − p(u) − p(v). Note also that the resetting of π on Ωmax changes no
eY Z and eY .
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In Case 1, Ω, π, p, and the eY Z are unchanged. The set U ∈ Ωmax is moved
from free(F ) to odd(F ), and a set W ∈ Ωmax (the mate of U in M) is moved from
free(F ) to even(F ). To update the eY , it suffices to scan the list of the eWZ . This
can be done in O(n) time.

In Case 2a, Ω, π, p, and the eY Z are unchanged. Since (in the new situation)
F = M , we delete from even(F ) and odd(F ) all sets in Ωmax covered by M . We
can find the eY by scanning all eY Z . We have O(n2) time for this, since there are
only 1

2
|V | matching augmentations.

In Case 2b, set T is inserted into Ωmax and into even(F ), and the sets in V B
are removed from even(F ) and odd(F ). We need to find the eTZ , which can be done
by scanning the eY Z for each Y ∈ V B. At the same time, the eZ can be updated.
This can be done in O(|V B|n) time.

In Case 3, set U is removed from Ωmax and from odd(F ), and the sets in V CU

become members of Ωmax and are inserted into even(F ) or odd(F ). This modifies
no eY Z (except that all eUZ disappear). By scanning the eY Z for each Y ∈ V CU ,
we can update the eZ . This can be done in O(|V CU |n) time.

Now, between any two matching augmentations, the sum of the |V CU | over the
U added or removed is O(n), since any set added will not be removed before the next
matching augmentation (cf. (26.8)). So between any two matching augmentations,
the iterations can be done in O(n2) time.

This gives the result of Gabow [1973] and Lawler [1976b]:

Theorem 26.2. A minimum-weight perfect matching can be found in O(n3) time.

Proof. See above.

Several ingredients in this method can be implemented so as to require only
O(m) time between any two matching augmentations. However, reducing the time
needed to administer Ω requires additional data structure — see the references in
Section 26.3a.

26.3. Further results and notes

26.3a. Complexity survey for weighted nonbipartite matching

Complexity survey for weighted nonbipartite matching (∗ indicates an asymptoti-
cally best bound in the table):

O(n4) Edmonds [1965b]

O(n3) Gabow [1973], Lawler [1976b]

O(nm log n)
Galil, Micali, and Gabow [1982,
1986] (cf. Ball and Derigs [1983])

O(n(m log log logm/n n + n log n))
Gabow, Galil, and Spencer [1984,
1989]

O(n3/4m log W ) Gabow [1985a,1985b]

≫
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continued

∗ O(n(m + n log n)) Gabow [1990]

∗ O(m log(nW )
√

nα(m, n) log n) Gabow and Tarjan [1991]

Here W is the maximum absolute value of the weights, assuming they are integer.
Cunningham and Marsh [1978] gave a primal algorithm for weighted nonbipar-

tite matching that takes O(n2m) time (where, throughout the algorithm, there is a
perfect matching at hand, the weight of which is improved iteratively). They state
that it can be improved to O(n3). Derigs [1981] gave a shortest augmenting path
method of running time O(n3). In Derigs [1988b] an O(min{n3, nm log n}) algo-
rithm is given based on successive improvement of a perfect matching by choosing
an improving alternating circuit.

26.3b. Derivation of the matching polytope characterization from
the algorithm

Edmonds’ weighted matching algorithm directly yields the description of the perfect
matching polytope. Indeed, one can derive from Edmonds’ algorithm the following.
Let G = (V, E) be a graph and let w ∈ QE be a weight function. Then:

(26.11) the minimum weight of a perfect matching is equal to the maxi-
mum value of

∑

U∈Podd(V ) π(U) where π ranges over all functions

π : Podd(V ) → Q satisfying (26.1),

where Podd(V ) denotes the collection of odd-size subsets of V .
To see this, we may assume that w is nonnegative: if µ is the minimum value of

w(e) over all edges e, decreasing each w(e) by µ decreases both the maximum and
the minimum by 1

2
|V |µ.

That the minimum is not smaller than the maximum follows from (26.3). Equal-
ity follows from the fact that in the algorithm the final perfect matching and the
final function π have equality throughout in (26.1). This shows (26.11).

It implies Edmonds’ perfect matching polytope theorem: the perfect matching
polytope of any graph G = (V, E) is determined by (25.2). Indeed, by (weak)
LP-duality, for any weight function w ∈ QE , the minimum weight of a perfect
matching is equal to the minimum of wTx taken over the polytope determined by
(25.2). Hence the two polytopes coincide.

26.3c. Further notes

Weber [1981] and Derigs [1985a] analyzed the sensitivity of minimum-weight perfect
matchings to changing edge weights. White [1974] studied the maximum weight of
a matching of size k, as a function of k.

An outstanding open problem is to formulate the weighted matching problem
as a linear programming problem of size polynomial in the size of the graph, by
extending the set of variables. That is, is the matching polytope of a graph G =
(V, E) equal to the projection of some polytope {x | Ax ≤ b} with A and b having
size polynomial in |V | + |E|?
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Yannakakis [1988,1991] showed that this is not possible in a symmetric fashion.
(That is, for G = Kn there is not a system Ax ≤ b which is invariant under each
permutation of the vertex set.) For further partial results, see Yannakakis [1988,
1991], Gerards [1991], and Barahona [1993a,1993b].

Gabow, Kaplan, and Tarjan [1999,2001] gave fast algorithms to test uniqueness
of a minimum-weight perfect matching.

For heuristics and fast approximation methods for the weighted matching prob-
lem if the weight function satisfies the triangle inequality (including matching points
in Euclidean space), see Papadimitriou [1977b], Avis [1978,1981,1983], Supowit,
Plaisted, and Reingold [1980], Iri, Murota, and Matsui [1981,1983], Reingold
and Tarjan [1981], Bartholdi and Platzman [1983], Reingold and Supowit [1983],
Supowit and Reingold [1983], Supowit, Reingold, and Plaisted [1983], Plaisted
[1984], Grigoriadis and Kalantari [1986,1988], Grigoriadis, Kalantari, and Lai [1986],
Imai [1986], Weber and Liebling [1986], Avis, Davis, and Steele [1988], Vaidya [1988,
1989a,1989b], Kalyanasundaram and Pruhs [1991,1993], Marcotte and Suri [1991],
Goemans and Williamson [1992,1995a], Osiakwan and Akl [1994], Williamson and
Goemans [1994], Jünger and Pulleyblank [1995], Arora [1997,1998], Varadarajan
[1998], and Varadarajan and Agarwal [1999].

For studies of implementing weighted matching algorithms, see Cunningham
and Marsh [1978], Burkard and Derigs [1980], Derigs [1981,1986a,1986b,1988b],
Lessard, Rousseau, and Minoux [1989], Derigs and Metz [1991], Applegate and
Cook [1993], and Cook and Rohe [1999].

Grötschel and Holland [1985] report on implementing a cutting plane algo-
rithm for the weighted matching problem based on the simplex method (cf. Derigs
and Metz [1991]). For an alternative approach, see Lessard, Rousseau, and Mi-
noux [1989]. Derigs and Metz [1986b] showed how solving the matching problem
fractionally can help in finding a shortest augmenting path.

Megiddo and Tamir [1978] gave an O(n log n) algorithm to find a maximum-
weight matching in a graph G = (V, E), if each weight w(uv) is equal to a(u)+ b(v)
for u < v, where the vertices are ordered by < and where a, b : V → Q.

For weighted matching problems with side constraints, see Ball, Derigs, Hil-
brand, and Metz [1990].

For a survey on weighted matching algorithms, see Galil [1983,1986a,1986b].
Books covering weighted nonbipartite matching algorithms include Christofides
[1975], Lawler [1976b], Minieka [1978], Papadimitriou and Steiglitz [1982], Gondran
and Minoux [1984], Derigs [1988a], Nemhauser and Wolsey [1988], Cook, Cunning-
ham, Pulleyblank, and Schrijver [1998], Jungnickel [1999], and Korte and Vygen
[2000].
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Nonbipartite edge cover

Edge cover is closely related to matching, through a construction described
by Gallai. In this chapter we derive basic results on edge covers (min-max
relation, polyhedral characterization, strongly polynomial-time algorithm)
from the results on matchings given in the previous chapters.
In this chapter, graphs can be assumed to be loopless.

27.1. Minimum-size edge cover

With Gallai’s theorem, the Tutte-Berge formula implies a formula for the edge
cover number ρ(G) (where o(G[U ]) denotes the number of odd components
of G[U ]):

Theorem 27.1. Let G = (V, E) be a graph without isolated vertices. Then

(27.1) ρ(G) = max
U⊆V

|U | + o(G[U ])

2
.

Proof. By Gallai’s theorem (Theorem 19.1) and the Tutte-Berge formula
(Theorem 24.1),

(27.2) ρ(G) = |V | − ν(G) = |V | − min
U⊆V

|V | + |U | − o(G − U)

2

= max
U⊆V

|U | + o(G[U ])

2
.

This min-max relation is equivalent to: ρ(G) is equal to the maximum
value of

(27.3)
∑

U∈U

⌈ 1
2 |U |⌉,

where U is a collection of disjoint odd subsets of V such that no edge of G
connects two distinct sets in U .

By the method of Gallai’s theorem, one can derive a minimum-size edge
cover from a maximum-size matching M , just by adding for each vertex v
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missed by M , an arbitrary edge incident with v. Hence a minimum-size edge
cover can be found in polynomial time.

One can reduce the problem of finding a minimum-weight edge cover to
that of finding a minimum-weight perfect matching, as described in Section
19.3. It gives the following result of Edmonds and Johnson [1970]:

Theorem 27.2. A minimum-weight edge cover can be found in O(n3) time.

Proof. From Corollary 26.1b, with the method of Section 19.3.

27.2. The edge cover polytope and total dual integrality

The edge cover polytope of a graph G = (V, E) is the convex hull of the
incidence vectors of edge covers. We will show that the edge cover polytope
is determined by

(27.4) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(E[U ] ∪ δ(U)) ≥ ⌈ 1

2 |U |⌉ for each U ⊆ V with |U | odd,

and moreover, that this system is totally dual integral. The latter statement
will be derived from the Cunningham-Marsh formula (Theorem 25.2), and is
equivalent to:

Theorem 27.3. Let G = (V, E) be a graph without isolated vertices and let
w ∈ ZE

+ be a weight function. Then the minimum weight of an edge cover is
equal to the maximum value of

(27.5)
∑

U∈Podd(V )

zU⌈ 1
2 |U |⌉,

where zU ∈ Z+ for each U ∈ Podd(V ) such that

(27.6)
∑

U∈Podd(V )

zUχE[U ]∪δ(U) ≤ w.

Proof. We first show:

(27.7) in the Cunningham-Marsh formula one can assume that for each

v ∈ V there is an edge e ∈ δ(v) with yv +
∑

U∋v

zU ≤ w(e).

Indeed, by Theorem 25.2 we can take y, z such that F := {U | zU > 0} is
laminar. Now choose v ∈ V . Suppose that yv +

∑
U∋v zU > w(e) for each

edge e ∈ δ(v). If no set in F covers v, then reducing yv by 1 would maintain
the conditions, contradicting the fact that y, z attain the minimum in the
Cunningham-Marsh formula.

So some T ∈ F covers v. Choose an inclusionwise minimal set T ∈ F
covering v. As F is laminar, U ⊇ T for each U ∈ F containing v. Then for
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each edge e = uv with v ∈ e ⊆ T one has for each U ∈ F : if v ∈ U , then
e ⊆ U . So for each such edge e = uv,

(27.8) yu + yv +
∑

U⊇e

zU ≥ yv +
∑

U∋v

zU > w(e).

Hence, if we choose s ∈ T \ {v}, then decreasing zT by 1 and increasing ys

and zT\{v,s} by 1, gives again an optimum solution. Iterating this for all v,
gives a solution as in (27.7).

We next show the theorem. For each vertex v, let ev be an edge incident
with v of minimum weight and let µ(v) := w(ev). For each edge e = uv,
define w′(e) := µ(u) + µ(v) − w(e).

By the Cunningham-Marsh formula, there exists a matching M and yv ∈
Z+ (v ∈ V ) and z′

U ∈ Z+ (U ∈ Podd(V )) such that

(27.9) (i) yu + yv +
∑

U⊇e

z′
U ≥ w′(e) for each edge e = uv;

(ii) w′(M) =
∑

v∈V

yv +
∑

U∈Podd(V )

z′
U⌊ 1

2 |U |⌋.

We may assume that z′
U = 0 if |U | = 1. By (27.7) we may assume that for

each v ∈ V :

(27.10) yv +
∑

T∋v

z′
T ≤ w′(e)

for some edge e incident with v.
Let F be the edge cover obtained from M by adding the edge ev for each

vertex v missed by M . For each U ∈ Podd(V ), define:

(27.11) zU :=

{
µ(v) − yv −

∑
T∋v z′

T if U = {v},
z′
U if |U | ≥ 3.

Clearly zU ≥ 0 if |U | ≥ 3. If U = {v}, then let e = uv ∈ δ(v) satisfy satisfying
(27.10). Hence

(27.12) z{v} = µ(v) − yv −
∑

T∋v

z′
T ≥ µ(v) − w′(e) = w(e) − µ(u) ≥ 0.

So z is nonnegative.
Now for each edge e = uv one has:

(27.13)
∑

U∩e�=∅

zU = z{u} + z{v} +
∑

U∩e�=∅

z′
U

= µ(u) − yu −
∑

U∋u

z′
U + µ(v) − yv −

∑

U∋v

z′
U +

∑

U∩e�=∅

z′
U

= µ(u) + µ(v) − yu − yv −
∑

U⊇e

z′
U ≤ µ(u) + µ(v) − w′(e)

= w(e).

Moreover,
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(27.14)
∑

U

zU⌈ 1
2 |U |⌉ =

∑

v∈V

(µ(v) − yv −
∑

U∋v

z′
U ) +

∑

U

z′
U⌈ 1

2 |U |⌉

=
∑

v∈V

µ(v)−
∑

v∈V

yv −
∑

U

z′
U⌊ 1

2 |U |⌋ =
∑

v∈V

µ(v)−w′(M) = w(F ).

(The idea of using w′ was given by J.F. Geelen.)
Equivalently, we can state:

Corollary 27.3a. System (27.4) determines the edge cover polytope and is
TDI.

Proof. This is equivalent to Theorem 27.3.

27.3. Further notes on edge covers

27.3a. Further notes

Inspired by Edmonds’ algorithm for maximum-weight matching, White [1967] and
Murty and Perin [1982] described minimum-weight edge cover algorithms based on
blossoms.

White and Gillenson [1975] and Murty and Perin [1982] described a blossom-
type algorithm to find a minimum-weight edge cover of given size k. Also White
[1971] considered the problem of finding a minimum-weight edge cover of a given
size, by parametrizing the weight function.

In fact, the convex hull of incidence vectors of edge covers F with k ≤ |F | ≤ l
is equal to the edge cover polytope intersected with {x ∈ RE | k ≤ x(E) ≤ l}. This
can be proved similarly to the proof of Corollary 18.10a.

Hurkens [1991] characterized adjacency on the edge cover polytope and derived
that its diameter is equal to |E| − ρ(G). (This turns out to be harder to prove than
the corresponding results for the matching polytope given in Section 25.5a.)

27.3b. Historical notes on edge covers

The nonbipartite edge cover problem was considered by Gallai [1959a] and Norman
and Rabin [1959]. The latter were motivated by a problem of Roth [1958] related to
minimizing the number of switches in a switching systems, for which they considered
the problem of finding a minimum cover for a cubical complex.

Norman and Rabin [1959] showed that an edge cover F in a graph has minimum
size if and only if there is no path P such that the end vertices of P are covered
more than once by F , while all intermediate vertices are covered exactly once by
F , and such that the edges of P are alternatingly in and out F , with the first and
last edge in F . (Thus F△P is an edge cover of smaller size than F .)



Chapter 28

Edge-colouring

Edge-colouring means covering the edge set by matchings. The problem
goes back to Tait [1878b], who showed that the four-colour conjecture is
equivalent to the 3-edge-colourability of any bridgeless cubic planar graph.
Nonbipartite edge-colouring is less tractable than in the special case of bi-
partite graphs. No tight min-max relation is known and finding a minimum
edge-colouring is NP-complete. In this chapter we prove Vizing’s theorem,
which gives an almost tight min-max relation. Moreover, we consider the
‘fractional’ edge-colouring number, which approximates the edge-colouring
number. It can be characterized and computed with the help of matching
results. We also consider the related problem of packing edge covers.

28.1. Vizing’s theorem for simple graphs

We recall some definitions and notation. Let G = (V, E) be a graph. An
edge-colouring is a partition of E into matchings. Each matching in an edge-
colouring is called a colour or an edge-colour. A k-edge-colouring is an edge-
colouring with k colours. G is k-edge-colourable if a k-edge-colouring exists.
The smallest k for which G is k-edge-colourable is called the edge-colouring
number of G, denoted by χ′(G). Since an edge-colouring of G is a vertex-
colouring of the line-graph L(G) of G, we have that χ′(G) = χ(L(G)).

Clearly χ′(G) ≥ ∆(G), where ∆(G) denotes the maximum degree of G.
We saw that χ′(G) = ∆(G) if G is bipartite (Kőnig’s edge-colouring theorem
(Theorem 20.1)). On the other hand, χ′(G) > ∆(G) if G = K3. It was proved
by Holyer [1981] that deciding if χ(G) ≤ 3 is NP-complete.

Nevertheless, ∆(G) is a good estimate of the edge-colouring number as
Vizing [1964,1965a] showed the following (our proof roots in Ehrenfeucht,
Faber, and Kierstead [1984]):

Theorem 28.1 (Vizing’s theorem for simple graphs). ∆(G) ≤ χ′(G) ≤
∆(G) + 1 for any simple graph G.

Proof. The inequality ∆(G) ≤ χ′(G) being trivial, we show χ′(G) ≤ ∆(G)+
1. To prove this inductively, it suffices to show for any simple graph G:
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(28.1) Let v be a vertex such that v and all its neighbours have degree
at most k, while at most one neighbour has degree precisely k.
Then if G − v is k-edge-colourable, also G is k-edge-colourable.

We prove (28.1) by induction on k, the case k = 0 being trivial. We can
assume that each neighbour u of v has degree k−1, except for one neighbour
having degree exactly k, since otherwise we can add a new vertex w and an
edge uw without violating the condition in (28.1).

Consider any k-edge-colouring of G − v. For i = 1, . . . , k, let Xi be the
set of neighbours of v that are missed by colour i. Choose the colouring such
that

∑k
i=1 |Xi|

2 is minimized.
First assume that |Xi| �= 1 for all i. Since all but one neighbour of v is in

precisely two of the Xi, and one neighbour is in precisely one Xi, we have

(28.2)
k∑

i=1

|Xi| = 2 deg(v) − 1 < 2k.

Hence there exist i, j with |Xi| < 2 and |Xj | odd. So |Xi| = 0 and |Xj | ≥ 3.
Consider the subgraph H made by all edges of colours i and j, and consider
a component of H containing a vertex in Xj . This component is a path
P starting in Xj . Exchanging colours i and j on P reduces |Xi|

2 + |Xj |
2,

contradicting our minimality assumption.
So we can assume that |Xk| = 1, say Xk = {u}. Let G′ be the graph

obtained from G by deleting edge vu and deleting all edges of colour k. So
G′−v is (k−1)-edge-coloured. Moreover, in G′, vertex v and all its neighbours
have degree at most k − 1, and at most one neighbour has degree k − 1. So
by the induction hypothesis, G′ is (k − 1)-edge-colourable. Restoring colour
k, and giving edge vu colour k, gives a k-edge-colouring of G.

Notes. This theorem was also announced in an abstract of Gupta [1966].
The above proof implies the stronger result of Fournier [1973] that a simple

graph G is ∆(G)-edge-colourable if the maximum-degree vertices span no circuit
(since this last condition implies that the maximum-degree vertices induce a forest
as subgraph, and hence there exists a maximum-degree vertex v with at most one
neighbour that has maximum degree).

Petersen [1898] gave the example of the (now-called) Petersen graph (Figure
28.1) which is 2-connected and cubic but not 3-edge-colourable. It was conjectured
by Tutte [1966] that each 2-connected cubic graph without Petersen graph minor, is
3-edge-colourable. This conjecture was proved (using the 4-colour theorem) by the
combined efforts of Robertson, Seymour, and Thomas [1997], Sanders, Seymour,
and Thomas [2000], and Sanders and Thomas [2000].

Complexity. The proof gives a polynomial-time algorithm to find a (∆ + 1)-edge-
colouring of a simple graph, in fact, O(∆n2)-time. As we can assume that ∆n =
O(m) (since we can merge vertices of degree at most 1

2
∆), this implies an O(nm)-

time algorithm.
Gabow, Nishizeki, Kariv, Leven, and Terada [1985] gave algorithms finding a

(∆ + 1)-edge-colouring of a simple graph G of maximum degree ∆, with running
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Figure 28.1

The Petersen graph

times O(m∆ log n) and O(m
√

n log n) (improving O(nm) of Terada and Nishizeki
[1982]).

28.2. Vizing’s theorem for general graphs

In Theorem 28.1 we cannot delete the condition that G be simple: the graph G
obtained from K3 by replacing each edge by two parallel edges, has χ′(G) = 6
and ∆(G) = 4. However, Vizing’s theorem can be extended so as to take also
the nonsimple case into account. For any graph G = (V, E) and u, v ∈ V , let
µ(u, v) denote the number of edges connecting u and v, called the multiplicity
of {u, v}. Let µ(G) denote the maximum of µ(u, v) over all distinct u, v ∈ V .
Then Vizing [1964,1965a] showed (again, our proof roots in Ehrenfeucht,
Faber, and Kierstead [1984]):

Theorem 28.2 (Vizing’s theorem). ∆(G) ≤ χ′(G) ≤ ∆(G) + µ(G) for any
graph G.

Proof. The inequality ∆(G) ≤ χ′(G) being trivial, we show χ′(G) ≤ ∆(G)+
µ(G). To prove this inductively, it suffices to show for any graph G:

(28.3) Let v be a vertex of degree at most k such that each neighbour
u of v satisfies deg(u) + µ(u, v) ≤ k + 1, with equality for at
most one neighbour. Then if G− v is k-edge-colourable, also G is
k-edge-colourable.

We prove (28.3) by induction on k, the case k = 0 being trivial. We can
assume that for each vertex u in N(v) (the set of neighbours of v) we have
deg(u)+µ(u, v) = k, except for one satisfying deg(u)+µ(u, v) = k +1, since
otherwise we can add a new vertex w and an edge uw without violating the
condition in (28.3).
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Consider any k-edge-colouring of G − v. For i = 1, . . . , k, let Xi be the
set of neighbours of v that are missed by colour i. Choose the colouring such
that

∑k
i=1 |Xi|

2 is minimized.
First assume that |Xi| �= 1 for all i. As each u ∈ N(v) is in precisely

2µ(u, v) of the Xi, except for one u ∈ N(v) being in 2µ(u, v) − 1 of the Xi,
we know

(28.4)
k∑

i=1

|Xi| = −1 + 2
∑

u∈N(v)

µ(u, v) = 2 deg(v) − 1 < 2k.

Hence there exist i, j with |Xi| < 2 and |Xj | odd. So |Xi| = 0 and |Xj | ≥ 3.
Consider the subgraph H made by all edges of colours i and j, and consider
a component of H containing a vertex in Xj . This component is a path
P starting in Xj . Exchanging colours i and j on P reduces |Xi|

2 + |Xj |
2,

contradicting our minimality assumption.
So we can assume that |Xk| = 1, say Xk := {u}. Let G′ be the graph

obtained from G by deleting one of the edges vu and deleting all edges of
colour k. So G′ − v is (k − 1)-edge-coloured. Moreover, in G′, vertex v has
degree at most k−1 and each neighbour w of v satisfies degG′(w)+µG′(w, v) ≤
k, with equality for at most one neighbour. So by the induction hypothesis,
G′ is (k −1)-edge-colourable. Restoring colour k, and giving the deleted edge
vu colour k, gives a k-edge-colouring of G.

Notes. The proof of Theorem 28.2 in fact implies that the edge-colouring number
of a graph G is at most

(28.5) max
u∈V

(deg(u) + max{1, max
v ∈ V

deg(v) ≥ deg(u)

µ(u, v)}),

where µ(u, v) is the number of edges connecting u and v (cf. Ore [1967]).
Other proofs of Vizing’s theorem were given by Ore [1967], Fournier [1973],

Berge and Fournier [1991], Misra and Gries [1992], Rao and Dijkstra [1992], and
Chew [1997b].

28.3. NP-completeness of edge-colouring

Vizing’s theorem gives us a close approximation to the edge-colouring number
of a simple graph. The error is at most 1. However, it turns out to be NP-
complete to determine the edge-colouring number precisely, even for cubic
graphs, which was shown by Holyer [1981]:

Theorem 28.3. It is NP-complete to decide if a given cubic graph is 3-edge-
colourable.

Proof. We show that the 3-satisfiability problem (3-SAT) can be reduced
to the edge-colouring problem of graphs of maximum degree 3. One easily
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reduces this last problem to the edge-colouring problem for cubic graphs (by
deleting iteratively all vertices of degree ≤ 1, next making a copy of the graph
left, and adding an edge between each degree-2 vertex and its copy).

Consider the graph fragment, called the inverting component, given by
the left-hand picture of Figure 28.2, where the right-hand picture gives its
symbolic representation if we take it as part of larger graphs. The pairs a, b
and c, d are called the output pairs.

a

b

c

d

e

Figure 28.2
The inverting component and its symbolic representation.

This graph fragment has the property that a 3-colouring of the edges
a, b, c, d, and e is extendible to a 3-edge-colouring of the fragment if
and only if either a and b have the same colour while c, d, and e have
three distinct colours, or c and d have the same colour while a, b, and
e have three distinct colours.

Consider now an instance of the 3-satisfiability problem. From the in-
verting component we build larger graph fragments. A splitting component is
given in Figure 28.3(a). For each variable u, occurring k times, as u or ¬u,
we introduce a fragment Γu by concatenating k − 2 splitting components. So
Γu has k output pairs, and it has the property that in any colouring either
all output pairs are monochromatic, or they all are nonmonochromatic.

For each clause C we introduce a component ∆C given by Figure 28.3(b).
If a variable u occurs in a clause C as u, we connect one of the output pairs
of Γu with one of the output pairs of ∆C . If a variable u occurs in a clause C
as ¬u, we connect one of the output pairs of Γu with one side of an inverting
component, and connect the other side of this inverting component with one
of the output pairs of ∆C .

In this way we can match up all output pairs of the Γu and those of the
∆C . Deleting all loose ends, we obtain a graph G of maximum degree 3. Now,
given the properties of the fragments, one easily checks that the input of the
3-satisfiability problem is satisfiable if and only if G is 3-edge-colourable.
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(a) (b)

Figure 28.3

Fragment (a) (the splitting component) has the property that for any
3-edge-colouring either all three output pairs are monochromatic or all
are nonmonochromatic.
Fragment (b) has the property that a colouring of the output edges is
extendible to a 3-edge-colouring of the fragment if and only if at least
one of the output pairs is monochromatic.

Leven and Galil [1983] showed more generally that for each k, finding the
edge-colouring number of a k-regular graph is NP-complete. (This does not
seem to follow from the case k = 3.)

28.4. Nowhere-zero flows and edge-colouring

Let D = (V, A) be a directed graph and let Γ be an additive abelian group.
A flow over Γ is a function f : A → Γ such that for each v ∈ V :

(28.6) f(δin(v)) = f(δout(v)).

The flow is called nowhere-zero if all values of f are nonzero.
If G is an undirected graph, then a flow over Γ is a flow over Γ in some

orientation of G. We say that an undirected graph G has a nowhere-zero flow
over Γ if G has an orientation having a nowhere-zero flow over Γ .

Colouring the edges of an undirected graph is related to the problem of
finding a nowhere-zero flow over a finite abelian group in the graph. This
might be illustrated best by the following easy fact:

(28.7) a cubic graph G is 3-edge-colourable ⇐⇒ G has a nowhere-zero
flow over GF(4).

Since −x = x for each x ∈ GF(4), the orientation is irrelevant in this case.
Statement (28.7) implies that the four-colour theorem is equivalent to:
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(28.8) each bridgeless cubic planar graph has a nowhere-zero flow over
GF(4)

(since the four-colour theorem is equivalent to each bridgeless cubic planar
graph being 3-edge-colourable (Tait [1878b])).

In studying nowhere-zero flows, the following theorem shows that for the
existence of a nowhere-zero flow, only the size of the group is relevant (the
equivalence (i)⇔(ii) was shown by Tutte [1947a], the equivalence (i)⇔(iii) by
Tutte [1949], and the equivalence (iii)⇔(iv) by Minty [1967]):

Theorem 28.4. Let G = (V, E) be a graph and let k ∈ Z with k ≥ 1. Then
the following are equivalent:

(28.9) (i) G has a nowhere-zero flow over some abelian group with pre-
cisely k elements;

(ii) G has a nowhere-zero flow over each abelian group with at least
k elements;

(iii) G has a flow over Z taking values in the interval [1, k−1] only;
(iv) G has an orientation D = (V, A) with din

A (U) ≥ 1
kdE(U) for

each U ⊆ V .

Proof. The implication (ii)⇒(i) is trivial, while the implication (iii)⇒(i) is
easy, by considering the integer values of (iii) as values in the group of integers
mod k.

For any graph G = (V, E) and any finite abelian group Γ , let φΓ (G)
denote the number of nowhere-zero flows over Γ in G. Then for any nonloop
edge e of G one has (where G/e is the graph obtained from G by contracting
e):

(28.10) φΓ (G) = φΓ (G/e) − φΓ (G − e).

Moreover, if each edge of G is a loop, then:

(28.11) φΓ (G) = (|Γ | − 1)|E|.

This proves that if Γ and Γ ′ are finite abelian groups with |Γ | = |Γ ′|, then
φΓ (G) = φΓ ′(G). Hence G has a nowhere-zero flow over Γ if and only if G
has a nowhere-zero flow over Γ ′. Therefore:

(28.12) if G has a nowhere-zero flow over some abelian group of size k,
then it has one over each abelian group of size k.

We now consider (i)⇒(iii). By (28.12), (i) implies that G has a nowhere-
zero flow over the group of integers mod k. This implies that there is an
orientation D = (V, A) of G and a function f : A → {1, . . . , k − 1} such that
for each v ∈ V :

(28.13) f(δin(v)) ≡ f(δout(v)) (mod k).

We choose the orientation D and the function f such that the sum
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(28.14)
∑

v∈V

|f(δin(v)) − f(δout(v))|

is minimized. If the sum is 0, we are done. So assume that the sum is nonzero.
Define

(28.15) U+ := {v ∈ V | f(δin(v)) > f(δout(v))} and
U− := {v ∈ V | f(δin(v)) < f(δout(v))}.

Necessarily, there is a directed path P in D from U− to U+ (Theorem 11.1).
Now reverse the orientation of each arc a on P to its reverse a−1, and define
f(a−1) := k − f(a). This maintains (28.13) but reduces the sum (28.14), a
contradiction.

This proves (i)⇒(iii), and hence (i)⇔(iii). Since (iii) is maintained if we
increase k, also (i) is maintained if we increase k. So with (28.12), (i) implies
(ii) if (ii) is restricted to finite groups. Since each infinite abelian group has
Z as subgroup or has arbitrarily large finite subgroups, (iii)⇒(ii) also follows
for infinite groups.

The equivalence of (iii) and (iv) follows directly from Hoffman’s circula-
tion theorem (Theorem 11.2).

This theorem implies that in studying the existence of nowhere-zero flows,
we can restrict ourselves to the group Zk with elements 0, . . . , k − 1 and
addition mod k. A nowhere-zero k-flow is a nowhere-zero flow over Zk.

It is easy to characterize the graphs having a nowhere-zero 2-flow: they are
precisely the Eulerian graphs. As to larger values of k there are the following
three famous conjectures of Tutte. The 5-flow conjecture (Tutte [1954a]):

(28.16) (?) each bridgeless graph has a nowhere-zero 5-flow, (?)

the 4-flow conjecture (Tutte [1966]):

(28.17) (?) each bridgeless graph without Petersen graph minor has a
nowhere-zero 4-flow, (?)

and the 3-flow conjecture (W.T. Tutte, 1972 (cf. Bondy and Murty [1976],
Unsolved problem 48)):

(28.18) (?) each 4-edge-connected graph has a nowhere-zero 3-flow. (?)

For planar graphs this is equivalent to the theorem of Grötzsch [1958] that
each loopless triangle-free planar graph is 3-vertex-colourable.

It may be seen that a cubic graph G has a nowhere-zero 3-flow if and
only if G is bipartite. This follows from the fact that the existence of such a
flow implies that G has an orientation such that in each vertex the indegree
and outdegree differ by a multiple of 3. Hence, one of them is 3, the other
0. Hence each arc is oriented from a source to a sink, and so G is bipartite.
The reverse implication is easy, by orienting each edge from one colour class
to the other.
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Jaeger [1979] showed that each 4-edge-connected graph has a nowhere-
zero 4-flow: a 4-edge-connected graph G = (V, E) has two edge-disjoint span-
ning trees T1 and T2 (by Corollary 51.1a). For i = 1, 2, let Ci be the sym-
metric difference of all fundamental circuits of Ti. Then C1 and C2 are cycles
covering E. This gives a nowhere-zero 4-flow.

Jaeger [1988] proposed a weakened version of the 3-flow conjecture, the
weak 3-flow conjecture:

(28.19) (?) there exists a number k such that each k-edge-connected graph
has a nowhere-zero 3-flow. (?)

By (28.8), the 4-flow conjecture implies the four-colour theorem. For cu-
bic graphs, (28.17) was proved by Robertson, Seymour, and Thomas [1997],
Sanders, Seymour, and Thomas [2000], and Sanders and Thomas [2000].

One should note that having a nowhere-zero 4-flow is equivalent to the
existence of two cycles covering the edge set. In other words, there exist two
disjoint T -joins, where T is the set of odd-degree vertices (see Chapter 29).

It was proved by Seymour [1981b] that each bridgeless graph has a
nowhere-zero 6-flow. (Inspired by Seymour’s method, Younger [1983] gave
a polynomial-time algorithmic proof.)

Seymour’s theorem improves an earlier result of Jaeger [1976,1979] that
each bridgeless graph has a nowhere-zero 8-flow. This is equivalent to: each
bridgeless graph contains three cycles covering all edges.

Jaeger [1984] offered a conjecture, the circular flow conjecture, that im-
plies both the 3-flow and the 5-flow conjecture:

(28.20) (?) for each k ≥ 1, each 4k-connected graph has an orientation
such that in each vertex, the indegree and the outdegree differ by
an integer multiple of 2k + 1. (?)

For k = 1, this is equivalent to the 3-flow conjecture. For k = 2, it implies the
5-flow conjecture: Let G = (V, E) be a 3-edge-connected graph, and replace
each edge by 3 parallel edges. The new graph, H say, is 9-edge-connected.
If (28.20) is true for k = 2, H has an orientation such that in each vertex,
the indegree and the outdegree differ by a multiple of 5. This can easily be
transformed to a nowhere-zero 5-flow in G.12

More on the 3-flow conjecture can be found in Fan [1993] and Kochol
[2001]. Jaeger [1979,1988] and Seymour [1995a] gave surveys on nowhere-zero
flows, and a book on this topic was written by Zhang [1997b]. We continue
discussing nowhere-zero flows in Section 38.8.

12 Orient any edge e of G in the direction of the majority of the direction of the three
parallel edges in H made from e, with flow equal to 3 if all three edges have the same
orientation, and 1 otherwise.
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28.5. Fractional edge-colouring

Determining the edge-colouring number of a graph is NP-complete, but with
matching techniques one can determine a fractional version of it in polynomial
time.

Let G = (V, E) be a graph. The fractional edge-colouring number χ′∗(G)
of G is defined as

(28.21) χ′∗(G) := min{
∑

M∈M

λM | λ ∈ RM
+ ,

∑

M∈M

λMχM = 1},

where M denotes the collection of all matchings in G.
So if we require the λM to be integer, this would define the edge-colouring

number of G. Therefore, we have

(28.22) χ′∗(G) ≤ χ′(G).

The Petersen graph is an example of a graph G with χ′∗(G) = 3 and χ′(G) =
4. In Section 28.7 we shall see that χ′∗(G) can be computed in polynomial
time.

χ′∗(G) can be characterized as follows. For any natural number k ≥ 1, let
Gk be the graph obtained from G by replacing each edge by k parallel edges.
Then

(28.23) χ′∗(G) = min
k≥1

χ′(Gk)

k
.

This follows from the fact that the minimum in (28.21) is attained by rational
λM . Then the minimum in (28.23) is attained by k := the l.c.m. of the
denominators of the λM .

From Edmonds’ matching polytope theorem (Corollary 25.1a), a charac-
terization of the fractional edge-colouring number follows:

Theorem 28.5. The fractional edge-colouring number χ′∗(G) satisfies:

(28.24) χ′∗(G) = max{∆(G), max
U⊆V,|U |≥3

|E[U ]|

⌊ 1
2 |U |⌋

}.

Proof. Let µ be equal to the maximum in (28.24). Then χ′∗(G) ≥ µ, since
if λM attains minimum (28.21) and if vertex v has maximum degree, then

(28.25) χ′∗(G) =
∑

M

λM ≥
∑

M

λM |M ∩ δ(v)| =
∑

e∈δ(v)

∑

M∋e

λM

=
∑

e∈δ(v)

1 = ∆(G).

Moreover, for each U ⊆ V with |U | ≥ 3,



Section 28.6. Conjectures 475

(28.26) χ′∗(G) =
∑

M

λM ≥
∑

M

λM
|M ∩ E[U ]|

⌊ 1
2 |U |⌋

=
1

⌊ 1
2 |U |⌋

∑

e∈E[U ]

∑

M∋e

λM

=
|E[U ]|

⌊ 1
2 |U |⌋

.

To see that χ′∗(G) = µ, let x be the all- 1
µ vector in RE . Then x(δ(v)) ≤ 1

for each v ∈ V and x(E[U ]) ≤ ⌊ 1
2 |U |⌋ for each U ⊆ V with |U | ≥ 3. Hence

x belongs to the matching polytope of G. So x is a convex combination of
incidence vectors of matchings. Therefore 1 = µ · x =

∑
M λMχM for some

λM ≥ 0 with
∑

M λM = µ, showing that χ′∗(G) ≤ µ.

This implies for regular graphs:

Corollary 28.5a. Let G = (V, E) be a k-regular graph. Then χ′∗(G) = k if
and only if |δ(U)| ≥ k for each odd subset U of V .

Proof. By Theorem 28.5, χ′∗(G) = k if and only if |E[U ]| ≤ k⌊ 1
2 |U |⌋ for

each subset U of V . This last is equivalent to |δ(U)| ≥ k for each odd subset
U of V .

Call a graph G = (V, E) a k-graph if G is regular of degree k and if
|δ(U)| ≥ k for each odd subset U of V . So by Corollary 28.5a, a k-regular
graph G is a k-graph if and only if χ′∗(G) = k.

28.6. Conjectures

Seymour [1979a] conjectures that

(28.27) (?) ⌈χ′∗(G)⌉ = ⌈ 1
2χ′(G2)⌉ (?)

for each graph G, where G2 arises from G by replacing each edge by two
parallel edges. Conjecture (28.27) is equivalent to the conjecture that, for
each k,

(28.28) (?) for each k-graph G one has χ′(G2) = 2k (?);

equivalently, for each k-graph G, the minimum (28.21) for χ′∗(G) is attained
by half-integer λM . In other words, it is conjectured that any k-graph has
2k perfect matchings covering each edge exactly twice. (The equivalence of
(28.27) and (28.28) can be seen as follows. The implication (28.27)⇒(28.28)
is easy. To see the reverse implication, let G be any graph and define k :=
⌈χ′∗(G)⌉. Make a disjoint copy G′ of G, and connect each vertex v of G by
k − degG(v) parallel edges to its copy v′ in G′. This makes a k-regular graph
H with χ′∗(H) = k. So H is a k-graph, and hence by (28.28), χ′(H2) = 2k.
Hence χ′(G2) ≤ 2k, implying (28.27).)
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Seymour called (28.28) the generalized Fulkerson conjecture, as it general-
izes the special case k = 3 asked (but not conjectured) by Fulkerson [1971a].
This special case is called the ‘Fulkerson conjecture’13. (By Corollary 28.5a,
a cubic graph G has χ′∗(G) = 3 if and only if G is bridgeless.) For a partial
result, see Corollary 38.11e.

Berge [1979a] conjectured that the edges of any bridgeless cubic graph
can be covered by 5 perfect matchings. This would follow from the Fulkerson
conjecture.

A conjecture of Gol’dberg [1973] (and also of Seymour [1979a]) is that for
each (possibly nonsimple) graph G one has

(28.29) (?) χ′(G) ≤ max{∆(G) + 1, ⌈χ′∗(G)⌉}. (?)

(An equivalent conjecture was stated by Andersen [1977].)
As χ′(G) ≥ max{∆(G), ⌈χ′∗(G)⌉}, validity of (28.29) would yield a tight

(gap 1) bound for χ′(G) also for nonsimple graphs. In particular, if ∆(G) <
χ′∗(G), we would have equality in (28.29). Seymour [1979a] mentioned that
he has shown that χ′(G) ≤ ⌈χ′∗(G)⌉ + 1 for graphs G with χ′∗(G) ≤ 6.

Conjecture (28.29) would generalize Theorem 28.2 due to Vizing. For let
µ(G) again denote the maximum multiplicity of any edge of G = (V, E).
Then for any subset U of V ,

(28.30) |E[U ]| ≤ 1
2∆(G[U ])|U | ≤ (∆(G[U ]) + µ(G))1

2 (|U | − 1)
≤ (∆(G) + µ(G))⌊ 1

2 |U |⌋

(The second inequality follows from ∆(G[U ]) ≤ µ(G)(|U | − 1).) So with
Theorem 28.5 we know that χ′∗(G) ≤ ∆(G) + µ(G).

A well-known equivalent form of the four-colour theorem is that each
bridgeless cubic planar graph is 3-edge-colourable. This equivalence was dis-
covered by Tait [1878b]. Seymour [1981c] conjectures the following general-
ization:

(28.31) (?) each planar k-graph is k-edge-colourable. (?)

This was proved for k = 4 and k = 5 by Guenin [2002b].
A consequence of the 4-flow conjecture of Tutte [1966] is:

(28.32) each bridgeless cubic graph without Petersen graph minor is 3-
edge-colourable.

This was proved jointly by Robertson, Seymour, and Thomas [1997], Sanders,
Seymour, and Thomas [2000], and Sanders and Thomas [2000].

(28.31) and (28.32) made Lovász [1987] conjecture:

(28.33) (?) each k-graph without Petersen graph minor is k-edge-colour-
able. (?)

13 Seymour [1979a] says that it was first conjectured by C. Berge, but that it is usually
called Fulkerson’s conjecture because the latter put it into print.
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(An equivalent conjecture was given by Rizzi [1997,1999].) This is equivalent
to stating that the incidence vectors of perfect matchings in a graph without
Petersen graph minor, form a Hilbert base (cf. Section 5.18). It relates to
Lovász’s work on the perfect matching lattice — see Chapter 38.

Goddyn [1993] noted that (28.33) would not yield a full characterization,
since also the perfect matchings of the Petersen graph form a Hilbert base.
(This is due to the fact that the all-one vector does not belong to the perfect
matching lattice of the Petersen graph.)

Notes. Seymour [1979a] conjectured that if k ≥ 4, any k-graph G = (V, E) has a
perfect matching M such that G−M is a (k−1)-graph. However, this was disproved
by Rizzi [1997,1999], who showed that for any k ≥ 3, there exists a k-graph in which
any two perfect matchings intersect. Hence, for any k ≥ 3 there exists a k-graph
that cannot be decomposed into a k1- and a k2-graph for any k1, k2 ≥ 1 with
k1 + k2 = k.

Nishizeki and Kashiwagi [1990] showed that

(28.34) χ′(G) ≤ max{ 11
10

∆(G) + 4
5
, ⌈χ′∗(G)⌉},

and they gave a polynomial-time algorithm finding an edge-colouring fulfilling this
bound. (This improves earlier results of Andersen [1977], Goldberg [1984], and
Hochbaum, Nishizeki, and Shmoys [1986].)

Marcotte [1986,1990a,1990b,2001], Seymour [1990a], Lee and Leung [1993], and
Caprara and Rizzi [1998] gave other partial results on conjecture (28.29).

28.7. Edge-colouring polyhedrally

Let G = (V, E) be a graph and let Q be the polytope determined by

(28.35) xe ≥ 0 (e ∈ E),
x(M) ≤ 1 (M matching).

So Q is the antiblocking polyhedron of the matching polytope. By the descrip-
tion of the matching polytope and by the theory of antiblocking polyhedra,
Q is equal to the convex hull of the following set of vectors:

(28.36) χS S substar,
1

⌊
1
2 |

⋃
F |⌋

χF for nonempty F ⊆ E.

Here a substar is any set S of edges with S ⊆ δ(v) for some v ∈ V . By
⋃

F
we denote the set of vertices covered by F .

Now the fractional edge-colouring number χ′∗(G) is equal to the maxi-
mum value of 1Tx over Q (by LP-duality). The ellipsoid method then gives:

Theorem 28.6. The fractional edge-colouring number of a graph can be de-
termined in polynomial time.
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Proof. The separation problem over Q is equivalent to the weighted matching
problem, and hence is solvable in polynomial time. Therefore, with the ellip-
soid method, also the optimization problem over Q is solvable in polynomial
time. This gives the fractional edge-colouring number.

For any weight function w ∈ RE
+, the maximum of wTx where x ranges

over the vectors (28.36), is equal to the minimum value of
∑

M λM where
λM ≥ 0 for M ∈ M such that

∑
M λMχM = w. Thus we have a min-max

relation for the ‘weighted fractional edge-colouring number’.
We should note that (generally) the matching polytope does not have the

integer decomposition property, and (equivalently) that system (28.35) does
not have the integer rounding property. Indeed, for the Petersen graph, the
maximum of 1Tx over (28.35) is equal to 3. So it has a fractional optimum
dual solution of value 3. However, there is no integer optimum dual solu-
tion, since the edges of the Petersen graph cannot be decomposed into three
matchings.

28.8. Packing edge covers

The results on edge-colouring (which is essentially covering by matchings),
can be dualized to packing edge covers, as observed by Gupta [1974] (where
δ(G) denotes the minimum degree of G):

Theorem 28.7. A simple graph G = (V, E) has δ(G)−1 disjoint edge covers.

Proof. Make an auxiliary graph H as follows. For each v ∈ V , do the follow-
ing. Make degG(v) − δ(G) new vertices, and reconnect degG(v) − δ(G) of the
edges incident with v with the new vertices, in such a way that v has degree
δ(G), while each new vertex has degree 1.

Then H has maximum degree δ(G) and there is a one-to-one mapping
between the edges of G and those of H. By Vizing’s theorem for simple
graphs (Theorem 28.1), H has matchings M1, . . . , Mδ(G)+1 partitioning E.
We denote the corresponding edge sets in G also by Mi.

Then each vertex v of G is covered by all but at most one of the match-
ings M1, . . . , Mδ(G)+1. Let U be the set of vertices of G missed by one of
M1, . . . , Mδ(G)−1. Then each vertex in U is covered by both Mδ(G) and
Mδ(G)+1. So Mδ(G) ∪ Mδ(G)+1 forms a graph on V where each vertex in
U has degree at least 2. Hence we can orient the edges in Mδ(G) ∪ Mδ(G)+1

such that each vertex in U is head of at least one of the oriented edges.
Now for each i = 1, . . . , δ(G)− 1, add to Mi all edges in Mδ(G) ∪Mδ(G)+1

that are oriented towards a vertex missed by Mi. This gives δ(G)−1 disjoint
edge covers.
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This can be formulated in terms of the edge cover packing number ξ(G)
of G, which is the maximum number of disjoint edge covers in G. Then, if G
is simple,

(28.37) ξ(G) ≥ δ(G) − 1.

Gupta [1974] showed more generally for not necessarily simple graphs
(where µ(G) denotes the maximum multiplicity of the edges of G):

Theorem 28.8. Any graph G has δ(G) − µ(G) disjoint edge covers.

Proof. Let δ := δ(G) and µ := µ(G). Make an auxiliary graph H as follows.
For each v ∈ V , do the following. Make degG(v) − δ new vertices, and recon-
nect degG(v) − δ of the edges incident with v with the new vertices, in such
a way that v has degree δ, while each new vertex has degree 1.

Then H has maximum degree δ(G), and there is a one-to-one mapping
between the edges of G and those of H. By Vizing’s theorem (Theorem 28.2),
H has matchings M1, . . . , Mδ+µ partitioning E. We denote the corresponding
edge sets in G also by Mi. Let

(28.38) F := Mδ−µ+1 ∪ · · · ∪ Mδ+µ.

Orient the edges in F such that each vertex v is entered by at least
⌊ 1

2 degF (v)⌋ of the edges incident with v.
Consider any vertex v, and let v be missed by α of the M1, . . . , Mδ−µ.

Let k be the number of Mδ−µ+1, . . . , Mδ+µ covering v. As v is covered by at
least δ of the M1, . . . , Mδ+µ, we know k +(δ −µ−α) ≥ δ, that is, k ≥ µ+α.
Since k ≤ 2µ, it follows that degF (v) ≥ k = 2k − k ≥ 2(µ + α) − 2µ = 2α.
Hence v is entered by at least α edges.

So for each i = 1, . . . , δ − µ, if v is missed by Mi, then we can extend Mi

by an edge in F oriented towards v. Doing this for each vertex v, we obtain
δ − µ disjoint edge covers.

Equivalently, for any graph,

(28.39) ξ(G) ≥ δ(G) − µ(G).

Gupta [1974] announced (without proof) and Fournier [1977] showed that
for any graph G = (V, E) and any k ∈ Z+, E can be partitioned into classes
E1, . . . , Ek such that each vertex v is covered by at least

(28.40) min{k,deg(v), max{k,deg(v)} − µ(v)}

of the Ei, where µ(v) denotes the maximum multiplicity of the edges incident
with v.
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28.9. Further results and notes

28.9a. Shannon’s theorem

Shannon [1949] gave the following upper bound on the edge-colouring number that
can be better than Vizing’s bound if G is not simple. As Vizing [1965a] observed,
the bound can be derived from Vizing’s theorem, as below.

Theorem 28.9. The edge-colouring number χ′(G) of a graph G = (V, E) is at most
⌊ 3

2
∆(G)⌋.

Proof. Let G be a counterexample with a minimum number of edges. Define k :=
⌊ 3

2
∆(G)⌋. So χ′(G) > k and by Vizing’s theorem (Theorem 28.2), χ′(G) ≤ ∆(G) +

µ(G), where µ(G) is the maximum edge-multiplicity of G. Hence µ(G) > 1
2
∆(G).

Let u and v be vertices connected by µ(G) parallel edges. Choose one such
edge, e say. By the minimality of G, χ′(G − e) ≤ k. Consider a k-edge-colouring
of G − e. Let Iu and Iv be the sets of colours covering u and v respectively. Then
|Iu ∩ Iv| ≥ µ(G) − 1, since µ(G) − 1 edges of G − e connect u and v. Moreover,
|Iu| ≤ ∆(G)−1, since u has degree less than ∆(G) in G−e; similarly, |Iv| ≤ ∆(G)−1.
So

(28.41) |Iu ∪ Iv| = |Iu| + |Iv| − |Iu ∩ Iv| ≤ 2(∆(G) − 1) − (µ(G) − 1)
= 2∆(G) − µ(G) − 1 < 3

2
∆(G) − 1 < k

(since µ(G) > 1
2
∆(G)), and hence at least one colour does not occur in Iu ∪ Iv.

This colour can be given to edge e to obtain a k-edge-colouring of G.

The bound in this theorem is sharp, as is shown by a graph H on three ver-
tices u, v, and w, with ⌈ 1

2
∆⌉ parallel arcs connecting u and v, ⌊ 1

2
∆⌋ parallel arcs

connecting u and w, and ⌊ 1
2
∆⌋ parallel arcs connecting v and w. Then ∆(H) = ∆

and χ′(H) = ⌊ 3
2
∆⌋.

Vizing [1965a] showed that any graph G with ∆(G) ≥ 4 and χ′(G) = ⌊ 3
2
∆(G)⌋

contains this graph H as a subgraph.
The case ∆(G) even in Theorem 28.9 can be proved simpler as follows. We may

assume that each degree of G is even (we can pair up the odd-degree vertices by
new edges). Let k := 1

2
∆(G). Make an Eulerian orientation of G. Split each vertex

v into two vertices v′ and v′′, and replace any edge oriented from u to v, by an
edge connecting u′ and v′′. In this way we obtain a bipartite graph H, of maximum
degree k. Hence, by Kőnig’s edge-colouring theorem, H has a k-edge-colouring. This
yields a decomposition of the edges of G into classes E1, . . . , Ek such that each
graph Gi = (V, Ei) has maximum degree 2. Hence each Gi is 3-edge-colourable,
and therefore G is 3k-colourable.

28.9b. Further notes

For simple planar graphs, if ∆(G) ≥ 7, then χ′(G) = ∆(G) (for ∆ ≥ 8, this was
proved by Vizing [1965b], and for ∆ = 7 by Sanders and Zhao [2001] and Zhang
[2000]). For 2 ≤ ∆ ≤ 5 there exist simple planar graphs of maximum degree ∆ with
χ′(G) = ∆ + 1. This is unknown for ∆ = 6 (and constitutes a question of Vizing
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[1968]). For ∆ ≥ 8, polynomial-time algorithms finding a ∆-edge-colouring of a
simple planar graph were given by Terada and Nishizeki [1982] (O(n2)), Chrobak
and Yung [1989] (O(n) if ∆ ≥ 19), and Chrobak and Nishizeki [1990] (O(n log n) if
∆ ≥ 9).

Kotzig [1957] showed the following theorem:

Theorem 28.10. Let G = (V, E) be a connected cubic graph with an even number
of edges. Then G is 3-edge-colourable if and only if the line graph L(G) of G is
4-edge-colourable.

Proof. I. First assume that L(G) is 4-edge-colourable, say with colours 0, 1, 2,
and 3. We colour the edges of G with colours labeled by the three partitions of
{0, 1, 2, 3} into pairs. Consider an edge e = uv of G. Let f1 and f2 be the two other
edges incident with u and let g1 and g2 be the two other edges incident with v. Let
i1 and i2 be the colours of the edges ef1 and ef2 of L(G) and let j1 and j2 be the
colours of the edges eg1 and eg2 of L(G). Give e the colour labeled by the partition
of {0, 1, 2, 3} into the pairs {i1, i2} and {j1, j2}. This gives a 3-edge-colouring of G.

II. Conversely, assume that G is 3-edge-colourable. We first show that L(G)
has a perfect matching. Indeed, there is a subset M of the edge set of L(G) such
that each vertex of L(G) is covered an odd number of times. To see this, choose an
arbitrary partition Π of the vertices of L(G) into pairs, and for each pair {e, f} ∈ Π,
we choose an e − f path Pe,f in L(G). Then the symmetric difference of all these
paths is a subset M as required.

Now choose such an M with |M | as small as possible. We claim that each vertex
of L(G) is covered exactly once by M ; that is, M is a perfect matching in L(G).
Suppose that vertex e of L(G) is covered by three edges in M , say ee1, ee2, and ee3.
We can assume that e, e1 and e2 are pairwise adjacent in L(G). Hence, replacing
M by M△{ee1, ee2, e1e2}, gives a subset M ′ covering each vertex an odd number
of times, however with |M ′| < |M |. This contradicts our assumption.

So M is a perfect matching in L(G), forming our first colour 0. Let G be edge-
coloured with colours 1, 2, and 3. Consider an edge e1e2 of L(G) not having colour
0. Let e0 be the third edge of G incident with the common vertex of e1 and e2. If
e0e1 has colour 0, give e1e2 the colour of edge e1. If e0e2 has colour 0, give e1e2 the
colour of edge e2. If neither e0e1 nor e0e2 has colour 0, give e1e2 the colour of edge
e0. It is straightforward to check that this gives a 4-edge-colouring of L(G).

For more on edge-colouring cubic graphs, see Kotzig [1975,1977].
McDiarmid [1972] observed that in any graph G = (V, E), if p ≥ χ′(G), then

there is a p-edge-colouring with ⌊|E|/p⌋ ≤ |M | ≤ ⌈|E|/p⌉ for each colour M . This
can be proved in the same way as Theorem 20.8.

Meredith [1973] gave k-regular non-Hamiltonian non-k-edge colourable graphs
with an even number of vertices, for each k ≥ 3 (cf. Isaacs [1975]). Johnson [1966a]
gave a short proof that any cubic graph is 4-edge-colourable.

Vizing [1965a] asked if the minimum number of colours of the edges of a graph
can be obtained from any edge-colouring by iteratively swapping colours on a colour-
alternating path or circuit and deleting empty colours.

Marcotte and Seymour [1990] observed that the following is a necessary con-
dition for extending a partial k-edge colouring a graph G = (V, E) to a complete
k-edge colouring:
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(28.42) |F | ≤
k

∑

i=1

µi(F ) for each F ⊆ E,

where µi(F ) is the maximum size of a matching M ⊆ F not covering any vertex
covered by the ith colour. They studied graphs where this condition is sufficient as
well.

Vizing [1965a] showed that if G is nonsimple and ∆(G) = 2µ(G) + 1, then
χ′(G) ≤ 3µ(G) (where µ(G) is the maximum edge-multiplicity of G).

The list-edge-colouring number χl(G) of a graph G = (V, E) is the minimum
number k such that for each choice of sets Le for e ∈ E with |Le| = k, one can
select le ∈ Le for e ∈ E such that for any two incident edges e, f one has le �= lf .
Vizing [1976] conjectures that χl(G) is equal to the edge-colouring number of G,
for each graph G (see Häggkvist and Chetwynd [1992]).

The total colouring number of a graph G = (V, E) is a colouring of V ∪ E such
that each colour consists of a stable set and a matching, vertex-disjoint. Behzad
[1965] and Vizing [1968] conjecture that the total colouring number of a simple
graph G is at most ∆(G) + 2. Molloy and Reed [1998] showed that there ex-
ists a constant C such that the total colouring number of any simple graph is
at most ∆(G) + C. A polynomial-time algorithm finding a total colouring with
∆(G)+poly(log ∆) colours is given by Hind, Molloy, and Reed [1999].

More generally, Vizing [1968] conjectures that the total colouring number of a
graph G is at most ∆(G)+ µ(G)+ 1, where µ(G) is the maximum size of a parallel
class of edges. Partial results have been found by Kostochka [1977], Hind [1990,
1994], Kilakos and Reed [1992], and McDiarmid and Reed [1993].

For extensions of Vizing’s theorem, see Vizing [1965b], Fournier [1973], Jakob-
sen [1973], Gol’dberg [1974], Fiorini [1975], Hilton [1975], Jakobsen [1975], Ander-
sen [1977], Kierstead and Schmerl [1983], Kostochka [1983], Ehrenfeucht, Faber,
and Kierstead [1984], Goldberg [1984], Hilton and Jackson [1987], Berge [1990],
and Chew [1997a]. The fractional edge-colouring number χ′∗(G) was studied by
Hilton [1975] and Stahl [1979]. A computational study based on fractional edge-
colouring was made by Nemhauser and Park [1991]. Equitable edge-colourings were
investigated by de Werra [1981].

Generalizations of edge-colouring were studied by Hakimi and Kariv [1986] and
Nakano, Nishizeki, and Saito [1988,1990]. Fiorini and Wilson [1977,1978], Fiorini
[1978], Jensen and Toft [1995], Nakano, Zhou, and Nishizeki [1995], and Zhou and
Nishizeki [2000] gave surveys on edge-colouring and extensions.

28.9c. Historical notes on edge-colouring

Historically, studying edge-colouring was motivated by the equivalence of the four-
colour conjecture with the 3-edge-colourability of planar bridgeless cubic graphs.
The four-colour conjecture was raised in 1852 by F. Guthrie. An early attempt
to prove the conjecture by Kempe [1879,1880] was shown by Heawood in 1890 to
contain an error — see below.

Also Tait [1878a] studied the four-colour problem. He claimed without proof
that each triangulated planar graph has two disjoint sets of edges such that each
triangular face is incident with exactly one edge in each of these sets. From this he
derived (correctly) that each loopless planar graph is 4-vertex-colourable. He also
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observed that his claim implies that each planar bridgeless cubic graph is 3-edge-
colourable.

In a note following a note of Guthrie [1878] (describing the very early history
of the four-colour problem, which note itself was a reaction to the article of Tait
[1878a]), Tait [1878b] remarked that in his earlier paper

I gave a series of proofs of the theorem that four colours suffice for a map. All of
these were long, and I felt that, while more than sufficient to prove the truth of
the theorem, they gave little insight into its real nature and bearings. A somewhat
similar remark may, I think, be made about Mr Kempe’s proof.

He therefore withdrew the former paper, and replaced it by the present note, in
which, without proof, the following ‘elementary theorem’ is formulated:

if an even number of points be joined, so that three (and only three) lines meet
in each, these lines may be coloured with three colours only, so that no two
conterminous lines shall have the same colour. (When an odd number of the
points forms a group, connected by one line only with the rest, the theorem is
not true.)

Tait next gave the now well-known construction of deriving 3-edge-colourability
of bridgeless planar cubic graphs from the 4-vertex-colourability of planar loopless
graphs. At that time, the error in Kempe’s proof of the four-colour conjecture was
not yet detected.

But Tait also said:

The proof of the elementary theorem is given easily by induction; and then the
proof that four colours suffice for a map follows almost immediately from the
theorem, by an inversion of the demonstration just given.

Tait [1880] claimed that in Tait [1878b] the 3-edge-colourability of bridgeless
planar cubic graphs had been shown:

If 2n points be joined by 3n lines, so that three lines, and three only, meet at
each point, these lines can be divided (usually in many different ways) into three
groups of n each, such that one of each group ends at each of the points.

While Tait did not mention it explicitly, he restricted himself to planar cubic graphs,
since he considered them equivalently as the skeletons of polytopes14. Also the
figures given in Tait [1880] are planar (and also those in Tait [1884], where similar
claims are made).

The validity of Kempe’s proof of the four-colour conjecture was accepted until
Heawood [1890] discovered a fatal error in Kempe’s proof, and showed that it in
fact gives a five-colour theorem for planar graphs. The error in his proof was ac-
knowledged by Kempe [1889]. (For an account of the early history of the four-colour
problem, see Biggs, Lloyd, and Wilson [1976].)

After that, the problem of the 3-edge-colourability of bridgeless planar cubic
graphs was open again. At several occasions, this problem was advanced (cf. Goursat
[1894]). It was only resolved in 1977 when Appel and Haken proved the four-colour
theorem.

Petersen [1898] asserted that Tait had claimed to have proved the 3-edge-
colourability of any (also nonplanar) bridgeless cubic graph. It motivated him to
present, as a counterexample, the now-called Petersen graph, which is a bridgeless
cubic graph that is not 3-edge-colourable:

14 Tait’s polytopes are 3-dimensional, since each vertex has degree 3.
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j’ai réussi à construire un graphe où le théorème de Tait ne s’applique pas.15

Petersen [1898] drew the Petersen graph as follows:

Figure 28.4

For another purpose, the Petersen graph was given earlier by Kempe [1886], who
represented it as follows:

Figure 28.5

Sainte-Laguë [1926a] introduced the term class for the edge-colouring number
of a graph. He noted (without exact argumentation) that Petersen’s theorem on
the existence of a perfect matching in a bridgeless cubic graph implies that each
cubic graph has edge-colouring number 3 or 4.

15 I have succeeded in constructing a graph where the theorem of Tait does not apply.



Chapter 29

T -joins, undirected shortest
paths, and the Chinese postman

The methods for weighted matching also apply to shortest paths in undi-
rected graphs (provided that each circuit has nonnegative length) and to
the Chinese postman problem — more generally, to T -joins.

29.1. T -joins

Let G = (V, E) be a graph and let T ⊆ V . A subset J of E is called a T -join
if T is equal to the set of vertices of odd degree in the graph (V, J). So if a
T -join exists, then |T | is even. More precisely,

(29.1) G has a T -join if and only if |K ∩ T | is even for each component
K of G.

T -joins are close to matchings. In fact, from Corollary 26.1a it can be
derived that a shortest T -join can be found in strongly polynomial time. To
see this, one should observe the following elementary graph-theoretical fact
representing T -joins as sets of paths:

(29.2) each T -join is the edge-disjoint union of circuits and 1
2 |T | paths

connecting disjoint pairs of vertices in T ;
the symmetric difference of a set of circuits and 1

2 |T | paths con-
necting disjoint pairs of vertices in T is a T -join.

This is used in showing that a shortest T -join can be found in strongly pol-
ynomial time:

Theorem 29.1. Given a graph G = (V, E), a length function l ∈ QE, and a
subset T of V , a shortest T -join can be found in strongly polynomial time.

Proof. First we dispose of negative lengths. Let N be the set of edges e with
l(e) < 0, let U be the set of vertices v with degN (v) odd, let T ′ := T△U ,
and let l′ ∈ QE

+ be defined by l′(e) := |l(e)| for e ∈ E.
Then, if J ′ is a T ′-join minimizing l′(J ′), the set J := J ′△N is a T -join

minimizing l(J). To see this, let J̃ be any T -join. Then J̃△N is a T ′-join,

and hence l′(J ′) ≤ l′(J̃△N). Therefore,
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(29.3) l(J) = l′(J ′) + l(N) ≤ l′(J̃△N) + l(N) = l(J̃).

So we can assume l ≥ 0. Now consider the complete graph KT with vertex
set T . For each edge st of KT , determine a path Pst in G of minimum length,
say, w(st). Find a perfect matching M in KT minimizing w(M). Then the
symmetric difference of the paths Pst for st ∈ M is a shortest T -join in G.
This follows directly from (29.2).

(This method is due to Edmonds [1965e].)
Note that a T -join J has minimum length if and only if l(C ∩ J) ≤ 1

2 l(C)
for each circuit C. (This was observed essentially by Guan [1960].)

Theorem 29.1 implies that also a longest T -join can be found in strongly
polynomial time:

Corollary 29.1a. Given a graph G = (V, E), a length function l ∈ QE, and
a subset T of V , a longest T -join can be found in strongly polynomial time.

Proof. Apply Theorem 29.1 to −l.

An application is finding a maximum-capacity cut in a planar graph G =
(V, E) (Orlova and Dorfman [1972]16, Hadlock [1975]): it amounts to finding
a maximum-capacity ∅-join in the planar dual graph. (Barahona [1990] gave
an O(n3/2 log n) time bound.)

Another consequence is:

Corollary 29.1b. Given a graph G = (V, E) and a length function l : E →
Q, one can check if there is a negative-length circuit in strongly polynomial
time.

Proof. There is a negative-length circuit if and only if there exists an ∅-join
J with l(J) < 0. So Theorem 29.1 gives the corollary.

Complexity. With Dijkstra’s shortest path method (Theorem 7.3) one derives from
Theorem 26.2 that a shortest T -join can be found in O(n3) time. Generally, one has
an O(APSP+(n, m, L)+WM(n, n2, nL))-time algorithm, where L is the maximum
absolute value of the lengths of the edges in G (assuming they are integer), where
APSP+(n, m, L) is the time in which the all-pairs shortest paths problem can be
solved, in an undirected graph, with n vertices and m edges and with nonnegative
integer lengths at most L, and where WM(n, m, W ) is the time in which a minimum-
weight perfect matching can be found, in a graph with n vertices and m edges and
with integer weights at most W in absolute value.

16 Orlova and Dorfman observed that finding a maximum-size cut in a planar graph
amounts to finding shortest paths connecting the odd-degree vertices in the dual graph,
but described a branch-and-bound method for it, and did not state that it can be solved
in polynomial time by matching techniques.
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29.2. The shortest path problem for undirected graphs

In Chapter 8 we saw that a shortest path in a directed graph without negative-
length directed circuits, can be found in strongly polynomial time. It implies a
strongly polynomial-time shortest path algorithm for undirected graphs, pro-
vided that all lengths are nonnegative. This, because the reduction replaces
each undirected edge uv by two directed edges (u, v) and (v, u) — which
would create a negative-length directed circuit if uv has negative length.

However, Theorem 29.1 implies that one can find (in strongly polynomial-
time) a shortest path in undirected graphs even if there are negative-length
edges, provided that all circuits have nonnegative length:

Corollary 29.1c. Given a graph G = (V, E), s, t ∈ V , and a length function
l ∈ QE such that each circuit has nonnegative length, a shortest s − t path
can be found in strongly polynomial time.

Proof. Define T := {s, t} and apply Theorem 29.1. By observation (29.2),
a shortest T -join J can be partitioned into an s − t path and a number
of circuits. Since by assumption any circuit has nonnegative length, we can
delete the circuits from J .

Complexity. Since by Gabow [1990] the weighted matching problem is solvable in
O(n(m + n log n)) time, a shortest path in an undirected graph, without negative-
length circuits, can be found in O(n(m + n log n)) time. This can be derived as
follows: If we want to find a shortest s− t path, add to each vertex v a ‘copy’ v′, for
each edge uv add edges uv′, u′v, and u′v′ (each with the same length as uv), and
for each vertex v add an edge vv′, of length 0. Let G′ be the graph obtained. Then
a minimum-weight perfect matching in G′ − s′ − t′ gives a shortest s − t path in G.

Gabow [1983a] gave an O(n min{m log n, n2})-time algorithm for the all-pairs
shortest paths problem in undirected graphs.

29.3. The Chinese postman problem

Call a walk C = (v0, e1, v1, . . . , et, vt) in a graph G a Chinese postman tour if
vt = v0 and each edge of G occurs at least once in C. The Chinese postman
problem, first studied by Guan [1960] (and named by Edmonds [1965e]), is:

(29.4) given: a connected graph G = (V, E) and a length function l ∈
QE

+,
find: a shortest Chinese postman tour C.

By Euler’s theorem, if each vertex has even degree, there is an Eulerian tour,
that is, a walk traversing each edge exactly once. So in that case, any Eulerian
tour is a shortest Chinese postman tour.
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But if not all degrees are even, certain edges have to be traversed more
than once. These edges form in fact a shortest T -join for T := {v | degG(v)
odd}. This is the base of the following consequence of Theorem 29.1:

Corollary 29.1d. The Chinese postman problem can be solved in strongly
polynomial time.

Proof. Let T := {v | degG(v) odd}. Find a shortest T -join J . Add to each
edge e in J an edge e′ parallel to e. This gives the Eulerian graph G′. Then
any Eulerian tour in G′ gives a shortest Chinese postman tour (by identifying
any new edge e′ with its parallel e).

To see this, note that obviously the Eulerian tour gives a Chinese postman
tour C of length l(E) + l(J). Suppose that there is a shorter tour C ′. Let J ′

be the set of edges traversed an even number of times by C ′. Then J ′ is a
T -join, and so l(J ′) ≥ l(J). Hence l(C ′) ≥ l(E) + l(J ′) ≥ l(E) + l(J) = l(C).

Observe that a postman never has to traverse any street more than twice.

Complexity. The above gives an O(n3)-time algorithm for the Chinese postman
problem (more precisely, O(k(m + n log n) + k3 + m), where k is the number of
vertices of odd degree).

29.4. T -joins and T -cuts

There is an interesting min-max relation for the minimum size of T -joins. To
this end, call, for any graph G = (V, E) and any T ⊆ V , a subset C of E a
T -cut if C = δ(U) for some U ⊆ V with |U ∩ T | odd.

Trivially, each T -cut intersects each T -join. Moreover, each edge set C
intersecting each T -join contains a T -cut (since otherwise each component of
(V, E \ C) has an even number of vertices in T , and hence there is a T -join
disjoint from C). So the inclusionwise minimal T -cuts are exactly the inclu-
sionwise minimal edge sets intersecting all T -joins. Hence the inclusionwise
minimal T -joins are exactly the inclusionwise minimal edge sets intersecting
all T -cuts.

Call a family F of cuts in G = (V, E) cross-free if F = {δ(U) | U ∈ C} for
some cross-free collection C of subsets of V ; that is, a collection C with

(29.5) U ⊆ W or W ⊆ U or U ∩ W = ∅ or U ∪ W = V

for all U, W ∈ C.
The following min-max relation for minimum-size T -joins in bipartite

graphs was proved by Seymour [1981d] — we give the simple proof due to
Sebő [1987]:
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Theorem 29.2. Let G = (V, E) be a bipartite graph and let T ⊆ V . Then
the minimum size of a T -join is equal to the maximum number of disjoint
T -cuts. The maximum is attained by a cross-free family of cuts.

Proof. We may assume T �= ∅. Let J be a minimum-size T -join in G. Define
a length function l : E → {+1,−1} by: l(e) := −1 if e ∈ J and l(e) := +1
if e �∈ J . Then every circuit C has nonnegative length, since J△C is again a
T -join, and hence |J△C| ≥ |J |, implying l(C) = |C \ J | − |C ∩ J | ≥ 0.

Let P be a minimum-length walk in G traversing no edge more than once.
Choose P such that it traverses a minimum number of edges. So P is a path
(as we can delete any circuit occurring in P ). Let t be an end vertex of P
and let f be the last edge of P .

Then f ∈ J , since otherwise we could make the walk shorter by deleting
f from P . Moreover, degJ(t) = 1, as if J has another edge, e say, incident
with t, then extending P by e would make the walk shorter.

We next show:

(29.6) Each circuit C traversing t and not traversing f has positive
length.

If C has only vertex t in common with P , let e be the first edge of C. So
l(e) = 1. Consider the walk P ′ := P ∪ (C − e). Then l(P ′) ≥ l(P ) and hence
l(C − e) ≥ 0. So l(C) > 0.

If C has another vertex in common with P , let u be the last vertex on
P with u �= t and traversed by C. Let P ′ be the u − t part of P . Split C
into two u − t paths C ′ and C ′′. By the minimality of |P |, l(P ′) < 0. Hence,
as C ′ ∪ P ′ and C ′′ ∪ P ′ are circuits, l(C ′) > 0 and l(C ′′) > 0. This implies
l(C) > 0.

Now shrink {t} ∪ N(t) to one new vertex v0, giving the graph G′. If
|T ∩ ({t} ∪ N(t))| is odd, let T ′ := (T \ ({t} ∪ N(t))) ∪ {v0}, and otherwise
let T ′ := T \ ({t} ∪ N(t)). Let J ′ := J \ {f}.

Then J ′ is a minimum-size T ′-join in G′. For suppose to the contrary that
G′ contains a circuit C ′ with |C ′ \ J ′| < |C ′ ∩ J ′|. If C ′ comes from a circuit
C in G not traversing t, we would have |C \ J | < |C ∩ J |, a contradiction. So
C ′ comes from a circuit C in G traversing t.

If C traverses f , then |C ′ \ J ′| − |C ′ ∩ J ′| = |C \ J | − |C ∩ J | ≥ 0, a
contradiction. If C does not traverse f , then, by (29.6), l(C) > 0, and hence
l(C) ≥ 2. So |C ′ \J ′| = |C \J |−2 ≥ |C ∩J | = |C ′ ∩J ′|, again a contradiction.

Now by induction (on |V | + |T |), G′ has disjoint cross-free T ′-cuts
D1, . . . , D|J ′|. With the T -cut δ(t) this gives |J | disjoint cross-free T -cuts
in G.

(For another, algorithmic proof, see Barahona [1990].)
This implies for not necessarily bipartite graphs (Lovász [1975a]):
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Corollary 29.2a. Let G = (V, E) and let T ⊆ V with |T | even. Then the
minimum size of a T -join is equal to half of the maximum number of T -cuts
covering each edge at most twice. The maximum is attained by a cross-free
family of cuts.

Proof. Replace each edge of G by a path of length two, thus obtaining the
bipartite graph G′. Applying Theorem 29.2 to G′ gives the corollary.

In general it is not true that the minimum size of a T -cut is equal to the
maximum number of disjoint T -joins — see Section 29.11c.

Notes. Frank, Tardos, and Sebő [1984] sharpened Theorem 29.2 to the following.
Let G = (V, E) be a bipartite graph, with colour classes U and W , and let T ⊆ V .
Then the minimum size of a T -join is equal to the maximum of

(29.7)
∑

S∈Π

qT (S),

where Π ranges over all partitions of U . Here qT (S) denotes the number of com-
ponents K of G − S with |K ∩ T | odd. If G is arbitrary one takes the maximum of
1
2

∑

S∈Π qT (S) over all partitions Π of V . (For extensions, see Kostochka [1994].)

29.5. The up hull of the T -join polytope

The last corollary implies a polyhedral result due to Edmonds and Johnson
[1973] (also stated by Seymour [1979b]). Let G = (V, E) be a graph and let
T ⊆ V . The T -join polytope, denoted by PT -join(G), is the convex hull of the
incidence vectors of T -joins. So it is a polytope in RE .

We first consider the ‘up hull’ of PT -join(G), that is,

(29.8) P ↑
T -join(G) := PT -join(G) + RE

+,

which turns out to be determined by the system:

(29.9) (i) xe ≥ 0 for each e ∈ E,
(ii) x(C) ≥ 1 for each T -cut C.

Corollary 29.2b. The polyhedron P ↑
T -join(G) is determined by (29.9).

Proof. It is easy to see that P ↑
T -join(G) is contained in the polyhedron de-

termined by (29.9). If the converse inclusion does not hold, there is a weight
function w ∈ QE with w > 0 such that the minimum value of wTx subject
to (29.9) is less than the minimum weight α of any T -join. We may assume
that each w(e) is an even integer.

We make a new graph G′ = (V ′, E′) as follows. Replace each edge e = uv
of G by a path from u to v of length w(e). Then α is equal to the minimum
size of a T -join in G′. Hence by Theorem 29.2, G′ has α disjoint T -cuts. This
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gives a family of α T -cuts in G such that each edge e of G is in at most w(e)
of these T -cuts. Let yC be the number of times that T -cut C occurs in this
list. Then the yC give a feasible dual solution to the problem of minimizing
wTx over (29.9), with value

∑
C yC = α. This contradicts our assumption

that the minimum value of wTx subject to (29.9) is less than α.

(Gastou and Johnson [1986] gave a proof based on binary groups.)
By adding xe ≤ 1 for each e ∈ E we obtain from (29.9) the system

(29.10) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(C) ≥ 1 for each T -cut C.

Corollary 29.2c. The convex hull of the incidence vectors of edge sets con-
taining a T -join as a subset is determined by (29.10).

Proof. Directly from Corollary 29.2b, with Theorem 5.19.

These systems are totally dual half-integral:

Corollary 29.2d. Systems (29.9) and (29.10) are totally dual half-integral.

Proof. This follows from the proof of Corollary 29.2b, observing that the yC

are integer if each we is an even integer.

Generally these systems are not TDI, as is shown by taking G = K4 and
T = V — see Section 29.11b.

Barahona [2002] gave an O(n6)-time algorithm to decompose a vector
in the up hull of the T -join polytope as a convex combination of incidence
vectors of T -joins, added with a nonnegative vector.

29.6. The T -join polytope

In the previous section we considered the up hull of the T -join polytope.
We can derive from it an inequality system determining the T -join polytope
itself. Consider the following system of linear inequalities for x ∈ RE :

(29.11) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(U) \ F ) − x(F ) ≥ 1 − |F | (U ⊆ V, F ⊆ δ(U),

|U ∩ T | + |F | odd).

Corollary 29.2e. The T -join polytope is determined by (29.11).

Proof. First, the incidence vector x of any T -join J satisfies (29.11). Indeed,
if U ⊆ V , then |δ(U) ∩ J | ≡ |U ∩ T | (mod 2). Hence if F ⊆ δ(U) with
|U ∩ T | + |F | odd, then |δ(U) ∩ J | + |F | is odd, and hence if x(F ) = |F | one
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has x(δ(U) \ F ) ≥ 1. This shows (29.11). So the T -join polytope is contained
in the polytope determined by (29.11).

To see the reverse inclusion, choose a weight function w ∈ QE . We show
that the minimum value of wTx subject to (29.11) is equal to w(J) for some
T -join J .

Define

(29.12) N := {e | w(e) < 0} and T ′ := T△{v | degN (v) odd}.

Let w′(e) := |w(e)| for each e ∈ E. Let J ′ be a T ′-join minimizing w′(J ′). By
Corollary 29.2c, there exist λU for U ⊆ V with |U ∩ T ′| odd, such that

(29.13) (i) λU ≥ 0 for each U with |U ∩ T ′| odd,
with equality if |J ′ ∩ δ(U)| > 1,

(ii)
∑

U
e ∈ δ(U)

λU ≤ w′(e) for each e ∈ E, with equality if e ∈ J ′.

Define µ, ν : E → R+ by the conditions that µ(e)ν(e) = 0 for each e ∈ E and
that

(29.14) ν − µ +
∑

U

λU (χδ(U)\N − χδ(U)∩N ) = w.

So the ν(e), µ(e), and λU give a feasible dual solution to the problem of
minimizing wTx subject to (29.11) (taking F := δ(U) ∩ N).

Let J := J ′△N . So J is a T -join. We show that J , µ(e), ν(e), λU satisfy
the complementary slackness conditions, thus finishing our proof.

First we show that if e ∈ J , then ν(e) = 0. Indeed, if e ∈ J \ N , then
e ∈ J ′, and hence

(29.15)
∑

U,e∈δ(U)\N

λU −
∑

U,e∈δ(U)∩N

λU

is equal to w′(e) = w(e) by (29.13)(ii), and hence ν(e) = 0. If e ∈ J ∩ N ,
then (29.15) is at least −w′(e) = w(e) by (29.13)(ii), and hence ν(e) = 0.

Second we show that if e �∈ J , then µ(e) = 0. If e �∈ J ∪ N , then (29.15)
is at most w′(e) = w(e) by (29.13)(ii), implying µ(e) = 0. If e ∈ N \ J , then
e ∈ J ′, and hence (29.15) is equal to −w′(e) = w(e) by (29.13)(ii), implying
µ(e) = 0.

Finally if λU > 0, then (as J = J ′△N and |J ′ ∩ δ(U)| = 1 by (29.13)(i))

(29.16) |J ∩ (δ(U) \ N)| − |J ∩ (δ(U) ∩ N)|
= |(J ′ \ N) ∩ δ(U)| − |(N \ J ′) ∩ δ(U)|
= |J ′ ∩ δ(U)| − |N ∩ δ(U)| = 1 − |δ(U) ∩ N |.

In Section 29.11b we show that (29.11) is TDI if and only if G is series-
parallel.
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29.7. Sums of circuits

Given a graph G = (V, E), the circuit cone is the cone in RE generated by
the incidence vectors of circuits. Seymour [1979b] showed that this cone is
determined by:

(29.17) (i) xe ≥ 0 for each e ∈ E,
(ii) x(D) ≥ 2xe for each cut D and e ∈ D.

As J. Edmonds (cf. Seymour [1979b]) pointed out, this can be derived from
(essentially) matching theory:

Corollary 29.2f. The circuit cone is determined by (29.17).

Proof. Since the incidence vector x of any circuit satisfies (29.17), the circuit
cone is contained in the cone determined by (29.17).

To see the converse inclusion, let x satisfy (29.17). To show that x belongs
to the circuit cone, we may assume (by scaling) that x(E) ≤ 1. It suffices to
show that x belongs to the ∅-join polytope of G. Hence, by Corollary 29.2e,
it suffices to show that x(δ(U)) − 2x(F ) ≥ 1 − |F | for each U ⊆ V and
F ⊆ δ(U) with |F | odd. If |F | = 1, this follows from (29.17)(ii). If |F | ≥ 3,
then x(δ(U)) − 2x(F ) ≥ −x(E) ≥ −1 ≥ 1 − |F |.

(This proof is due to Aráoz, Cunningham, Edmonds, and Green-Krótki
[1983]. Hoffman and Lee [1986] gave a ‘different (but not shorter) proof’.
Coullard and Pulleyblank [1989] gave a short elementary proof, together with
decomposition results.)

Seymour [1979b] in fact characterized when a box has a nonempty inter-
section with the circuit cone:

Corollary 29.2g. Let G = (V, E) be a graph and let l, u ∈ RE
+ satisfying

l ≤ u. Then there exists an x in the circuit cone of G with l ≤ x ≤ u if and
only if

(29.18) u(D \ {e}) ≥ l(e) for each cut D and each e ∈ D.

Proof. Necessity being trivial, we show sufficiency. Choose a counterexample
with

∑
e∈E(ue − le) minimum. Suppose that ue > le for some edge e. Then

there exist a cut D and e ∈ D with u(D \ {e}) = l(e) and there exist a cut
D′ containing e, and f ∈ D′ \{e} with u(D′ \{f}) = l(f). Then f �∈ D, since
otherwise e, f ∈ D ∩ D′, implying

(29.19) u(D△D′) ≤ u(D \ {e, f}) + u(D′ \ {e, f})
= l(e) − u(f) + l(f) − u(e) < 0.

Hence the cut D△D′ satisfies

(29.20) u(D△D′ \ {f}) ≤ u(D \ {e}) + u(D′ \ {e, f}) = l(e) − u(e) + l(f)
< l(f),
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contradicting (29.18).
So ue = le for each edge e, and hence the corollary follows from Corollary

29.2f.

Let G = (V, E) be a graph. A function l : E → R is called conservative
if l(C) ≥ 0 for each circuit C. The conservative functions form a polyhedral
convex cone, and Corollary 29.2f gives functions that generate this cone:

Corollary 29.2h. The cone of conservative functions is generated by the
nonnegative functions and by the functions l for which there is a subset U of
V and an edge e ∈ δ(U) such that

(29.21) l = χδ(U)\{e} − χe.

Proof. Directly by polarity (cf. Section 5.7) from Corollary 29.2f.

In Section 29.11b we show that system (29.17) is TDI if and only if G is
series-parallel.

29.8. Integer sums of circuits

Seymour [1979b] gave the following characterization of integer sums of circuits
in planar graphs. It is equivalent to saying that the incidence vectors of
circuits in a planar graph form a Hilbert base. (We follow a proof suggested
by A.V. Karzanov, which starts like Seymour’s proof but does not use the
four-colour theorem.)

Theorem 29.3. Let G = (V, E) be a planar graph and let x ∈ RE. Then x
is a nonnegative integer combination of incidence vectors of circuits if and
only if x is an integer vector in the circuit cone with x(δ(v)) even for each
vertex v.

Proof. Necessity being easy, we show sufficiency. Consider a counterexample
with

(29.22) |V | +
∑

e∈E

(x(e) + 1)2

minimal. Then G is connected (otherwise one of the components forms a
counterexample with (29.22) smaller), x(e) ≥ 1 for each e ∈ E (otherwise we
can delete e), and each vertex v has degree at least 3 (the degree is at least 2
by (29.17)(ii); if it is precisely 2, then x has the same value on the two edges
incident with v (by (29.17)(ii)), and hence we can replace them by one edge).

Consider any edge e0 with x(e0) ≥ 2 and x(e0) minimal. Let e0 connect
vertices p and q say. Let G′ be the graph obtained from G by adding a new
(parallel) edge f between p and q. Define x′(e0) := x(e0)− 1, x′(f) := 1, and
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x′(e) := x(e) for all other edges e of G′. Then condition (29.17) is maintained,
but sum (29.22) decreases. So x′ is a sum of circuits17 in G′. If none of these
circuits consist of e0 and f , then x is a sum of circuits in G, a contradiction.
So {e0, f} is one of the circuits. Therefore, in G, the vector

(29.23) y := x − 2χe0

is a sum of circuits, say

(29.24) y =
∑

C∈C

λCχEC ,

where C is a collection of circuits and where the λC are positive integers. Let
C0 be the collection of circuits in C traversing e0, and let C1 := C \ C0.

We construct a directed graph D = (V, A). We say that a circuit C gen-
erates a pair (u, v) of distinct vertices if C traverses both u and v, in such a
way that if C traverses e0, then C traverses p, q, u, v cyclically in this order
(possibly u = q or v = p). The arc set A of D consists of all pairs (u, v)
generated by at least one C ∈ C. Then:

(29.25) D contains a directed path from p to q.

For suppose not. Let U be the set of vertices reachable in D from p. So q �∈ U ,
and no arc of D leaves U . Hence no C ∈ C1 intersects δE(U), and each C ∈ C0

intersects δE(U) precisely twice: once in e0 and once elsewhere. So

(29.26) x(δE(U) \ {e0}) = y(δE(U) \ {e0}) = y(e0) < x(e0),

contradicting (29.17). This shows (29.25).
Now choose a shortest directed p−q path P in D, say P = (v0, v1, . . . , vk),

with v0 = p and vk = q. Let C′ be an inclusionwise minimal subcollection of
C with the property that each arc of P is generated by some C in C′. Define
C′
0 := C′ ∩ C0, and

(29.27) z := 2χe0 +
∑

C∈C′

χEC .

We show:

(29.28) z = x, C′ = C, and λC = 1 for each C ∈ C.

It suffices to show that z = x. Suppose z �= x. Then, since z ≤ x, by the
minimality of (29.22), z is a sum of circuits. To see this, it suffices to show
that (29.17) is satisfied by z. To this end, let U ⊆ V and e ∈ δ(U). If e �= e0,
then (29.17)(ii) follows since z − 2χe0 is a sum of circuits. If e = e0, then
we can assume that p ∈ U , q �∈ U . Hence some arc (vi−1, vi) leaves U . Let
C ′ ∈ C′ generate (vi−1, vi). Then C ′ has at least two edges in δ(U), and at
least four if C ′ ∈ C′

0. Moreover, any C ∈ C′
0 has at least two edges in δ(U).

Hence

17 By a ‘sum of circuits’ we mean a sum of incidence vectors of circuits.
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(29.29) z(δ(U) \ {e0}) =
∑

C∈C′

|EC ∩ δ(U) \ {e0}| ≥ |C′
0| + 2 = z(e0).

So (29.17) is satisfied by z. Hence z is a sum of circuits. But then also x is a
sum of circuits, since

(29.30) x − z = y −
∑

C∈C′

χEC =
∑

C∈C

λCχEC −
∑

C∈C′

χEC

=
∑

C∈C\C′

λCχEC +
∑

C∈C′

(λC − 1)χEC .

This contradicts our assumption, proving (29.28).
Then:

(29.31) each vertex v is traversed by at most two circuits in C1.

Otherwise, there exist three arcs on P generated by circuits in C1 traversing
v. Hence there exist arcs (vi−1, vi) and (vj−1, vj) on P generated by circuits
C and C ′ in C1 traversing v, with i < j − 1. This implies that we can make
P shorter (by replacing vi, vi+1, . . . , vj−1 by v), a contradiction. This shows
(29.31).

Consider now any vertex v �= p, q and any f ∈ δ(v) with x(f) ≥ 2. By the
choice of e0 we know x(f) ≥ x(e0). Hence, using (29.31),

(29.32) 2x(f) ≤ x(δ(v)) ≤ 2|C0| + 4 = 2(y(e0) + 2) = 2x(e0) ≤ 2x(f).

So we have equality throughout. In particular, v is traversed by precisely two
circuits in C1, and x(f) = x(e0).

It follows that, for any i = 1, . . . , k − 1, the arcs (vi−1, vi) and (vi, vi+1)
are generated by circuits in C1 (by taking v = vi). Trivially, if k = 1, the arc
(v0, v1) is not generated by any circuit in C0, and hence by some circuit in
C1. Therefore, by the minimality of C, C0 = ∅ and C1 = C. Hence y(e0) = 0,
and so x(e0) = 2. Therefore, x(e) ∈ {1, 2} for each edge e.

Since each vertex v �= p, q is traversed by precisely two circuits in C, we
know that v is incident with at most one edge e with x(e) = 2. Since any e
with x(e) = 2 can play the role of e0, this also holds for v ∈ {p, q}. So

(29.33) the edges e with x(e) = 2 form a matching M in G.

Consider the path P above. Let arc (vi−1, vi) be generated by circuit
Ci ∈ C, for i = 1, . . . , k. By the minimality of k, Ci and Cj are vertex-disjoint
if j > i + 1. Let D1 be the union of the ECi for odd i, and let D2 be the
union of the ECi for even i. So (for each i = 1, 2) Di consists of vertex-disjoint
circuits, and D1 ∩ D2 = M \ {e0}.

This is used in proving:

(29.34) each nonempty cut D contained in M is odd.

Indeed, by symmetry we may assume that e0 ∈ D. Then D \ {e0} = D ∩ D1

(since D \ {e0} ⊆ M \ {e0} ⊆ D1 and since e0 �∈ D1). Moreover, |D ∩ D1| is
even, since D1 is a disjoint union of circuits.



Section 29.8. Integer sums of circuits 497

This proves (29.34), which implies that

(29.35) G − M has at most two components,

since if K and L are components with K ∪L �= V , then at least one of δE(K),
δE(L), and δE(K ∪ L) is nonempty and even, contradicting (29.34).

Moreover:

(29.36) M forms a cut in G.

Otherwise, M has an edge spanned by a component of G−M . Hence G has a
circuit C with |C ∩M | = 1 By symmetry, we may assume that C ∩M = {e0}.
Then C△D1 and C△D2 form cycles whose incidence vectors add up to x.
Hence x is a sum of circuits, a contradiction. So we have (29.36).

Now let K1 and K2 be the components of G − M . They are connected
Eulerian graphs. Since M forms a cut, we can assume that the attachments
of M at K1 and at K2 are at the outer boundaries B1 of K1 and B2 of K2.
By the planarity of G, the attachments of M occur in the same order on B1

as on B2. So χEB1 + χEB2 + 2χM is a sum of circuits. Since EK1 \ EB1 and
EK2 \ EB2 are cycles, this gives x as a sum of circuits.

(The proof of Seymour [1979b] of Theorem 29.3 uses the four-colour theorem.
Fleischner and Frank [1990] showed that a method of Fleischner [1980] gives
a proof not using the four-colour theorem. Also Alspach and Zhang [1993]
gave a proof not using the four-colour theorem.)

In Theorem 29.3 we cannot delete the planarity condition, as is shown by
the Petersen graph: fix a perfect matching M , and set xe := 2 if e ∈ M and
xe := 1 if e �∈ M . Alspach, Goddyn, and Zhang [1994] (extending Alspach
and Zhang [1993]) proved that the Petersen graph is the critical example:

Theorem 29.4. For any graph G = (V, E), the following are equivalent:

(29.37) (i) each integer vector x in the circuit cone with x(δ(v)) even for
each vertex v is a nonnegative integer combination of incidence
vectors of circuits;

(ii) G has no Petersen graph minor.

(This was generalized to binary matroids by Fu and Goddyn [1999] — see
Section 81.9.)

Seymour [1979b] conjectures that each even integer vector x in the circuit
cone is a nonnegative integer combination of incidence vectors of circuits.
A special case of this is the circuit double cover conjecture (it was asked by
Szekeres [1973] and conjectured by Seymour [1979b]): each bridgeless graph
has circuits such that each edge is covered by precisely two of them. Thus
Theorem 29.4 implies that the circuit double cover conjecture is true for
graphs without Petersen graph minor.
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It has been proved that for any even integer k ≥ 4, each bridgeless graph
has circuits such that each edge is covered by precisely k of them. (For k = 6
by Jaeger [1979] and for k = 4 by Fan [1992] — hence any even k ≥ 4 follows.)

This relates to the 4-flow conjecture of Tutte [1966], which generalizes the
four-colour theorem:

(29.38) (?) The edges of any bridgeless graph without Petersen graph
minor can be covered by two Eulerian subgraphs. (?)

(It is called the 4-flow conjecture, since it is equivalent to saying that for
each bridgeless graph G = (V, E) without Petersen graph minor, there is an
orientation D = (V, A) of G and a function f : A → {1, 2, 3} with f(δin(v)) =
f(δout(v)) for each v ∈ V — see Section 28.4.)

Conjecture (29.38) was proved for 4-edge-connected graphs by Jaeger
[1979], and for cubic graphs jointly by Robertson, Seymour, and Thomas
[1997], Sanders, Seymour, and Thomas [2000], and Sanders and Thomas
[2000].

(29.38) is equivalent to:

(29.39) (?) Any bridgeless graph without Petersen graph minor has two
disjoint T -joins, where T is the set of vertices of odd degree (?)

(since J is a T -join if and only if E \ T yields an Eulerian graph).
It is NP-complete to decide if a graph has two disjoint T -joins, since for

cubic graphs it is equivalent to 3-edge-colourability (cf. Theorem 28.3).
Related work can be found in Zhang [1993c]. Surveys on the circuit dou-

ble cover conjecture were given by Jaeger [1985], Jackson [1993], and Zhang
[1993a,1993b,1997b], and on integer decomposition of the circuit cone (and
more general decompositions) by Goddyn [1993].

29.9. The T -cut polytope

The T -cut polytope PT -cut(G) — the convex hull of the incidence vectors of
T -cuts — is a ‘hard’ polytope, even if |T | = 2, since finding a maximum cut
separating two given vertices in a graph is NP-complete. However, the up
hull of the T -cut polytope:

(29.40) P ↑
T -cut(G) := PT -cut(G) + RE

+

is tractable, as follows directly with the theory of blocking polyhedra from
the results above on the up hull of the T -join polytope, and is determined
by:

(29.41) (i) xe ≥ 0 for each e ∈ E,
(ii) x(J) ≥ 1 for each T -join J .
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Theorem 29.5. The up hull P ↑
T -cut(G) of the T -cut polytope of G is deter-

mined by (29.41).

Proof. Directly with the theory of blocking polyhedra from Corollary 29.2b.

This implies that the following system:

(29.42) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(J) ≥ 1 for each T -join J ,

describes a convex hull as follows.

Corollary 29.5a. The convex hull of the incidence vectors of edge sets con-
taining a T -cut is determined by (29.42).

Proof. Directly from Theorem 29.5 with Theorem 5.19.

(For a direct derivation from Edmonds’ perfect matching polytope theorem,
see Seymour [1979a].)

In general, (29.41) is not TDI, not even totally dual half-integral (Seymour
[1979a]). Seymour [1977b] characterized pairs of G, T for which (29.41) is TDI
— see Section 29.11c.

Rizzi [1997] showed that the minimal TDI-system for the up hull of the
T -cut polytope can have arbitrarily large coefficients and right-hand sides.

29.10. Finding a minimum-capacity T -cut

Like in Section 25.5c we can find a minimum-capacity T -cut by construct-
ing a Gomory-Hu tree (for a graph G = (V, E) and a tree H = (V, F ), a
fundamental cut is a cut δE(Wf ), where f ∈ F and Wf is a component of
H − f):

Theorem 29.6. Let G = (V, E) be a graph and let T ⊆ V with |T | even.
Let c ∈ RE

+ be a capacity function and let H = (V, F ) be a Gomory-Hu tree.
Then one of the fundamental cuts of H is a minimum-capacity T -cut in G.

Proof. For each f ∈ F , choose Wf to be one of the two components of H −f .
Let δG(U) be a minimum-capacity T -cut of G. So |U ∩ T | is odd.

Then U or V \ U is equal to the symmetric difference of the Wf over
f ∈ δF (U). Hence |Wf ∩ T | is odd for at least one f ∈ δF (U). So δG(Wf ) is
a T -cut.

Let f = uv. As δG(Wf ) is a minimum-capacity u−v cut and as δG(U) is a
u−v cut, we have c(δG(Wf )) ≤ c(δG(U)). So δG(Wf ) is a minimum-capacity
T -cut.
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This gives algorithmically (Padberg and Rao [1982]):

Corollary 29.6a. A minimum-capacity T -cut can be found in strongly pol-
ynomial time.

Proof. This follows from Theorem 29.6, since a Gomory-Hu tree can be found
in strongly polynomial time, by Corollary 15.15a.

Barahona and Conforti [1987] showed that a cut δ(U) with T ∩ U and
T \U even and nonempty, and of minimum capacity, can be found in strongly
polynomial time.

Barahona [2002] gave a combinatorial strongly polynomial-time algorithm
to solve the dual of maximizing cTx over (29.41) (yielding a fractional packing
of T -joins).

29.11. Further results and notes

29.11a. Minimum-mean length circuit

Let G = (V, E) be an undirected graph and let l ∈ QE be a length function. The
mean length of a circuit C is equal to l(C)/|C|. Barahona [1993b] showed (using
an argument of Cunningham [1985c]) that a minimum-mean length circuit in an
undirected graph can be found in strongly polynomial time, by solving at most m
Chinese postman problems.

Theorem 29.7. A minimum-mean length circuit in an undirected graph can be
found in strongly polynomial time.

Proof. Let G = (V, E) be an undirected graph and let l ∈ QE be a length function.
Note that by adding a constant γ to all edge-lengths, the collection of minimum-
mean length circuits does not change (as the mean length of any circuit increases
by exactly γ). So we can assume that there exists a circuit C with l(C) < 0.

The algorithm is as follows:

(29.43) Find a minimum-length ∅-join J .
If l(J) = 0, output a circuit of length 0, and stop.
If l(J) < 0, add γ := −l(J)/|J | to all edge-lengths, and iterate.

We first show that the algorithm stops; in fact, in at most |E| + 1 iterations. To
this end, consider two subsequent iterations. Let l and l′ be two subsequent length
functions and let J and J ′ be the shortest ∅-joins found. So l′(e) = l(e) − l(J)/|J |
for all e ∈ E. If l′(J ′) < 0, then |J ′| < |J |, since

(29.44) 0 > l′(J ′) = l(J ′) − l(J)

|J | |J ′| ≥ l(J) − l(J)

|J | |J ′| = l(J)(1 − |J ′|
|J | )

(note that l(J) < 0 and l(J ′) ≥ l(J)). This shows that the algorithm stops after at
most |E| + 1 iterations.
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As throughout the iterations, the collection of minimum-mean length circuits
is invariant, a minimum-mean length circuit for the final length function, is also a
minimum-mean length circuit for the initial length function. Hence the output is
correct.

Finally, for the 0-length circuit C in the final iteration we can take any circuit
contained in the ∅-join J found in the one but last iteration (as J has length 0 in
the last iteration).

Barahona [1993b] also showed that, conversely, the minimum-length T -join
problem can be solved by solving O(m2 log n) minimum-mean length circuit prob-
lems, as follows. Let l ∈ QE be a length function. Start with any T -join J . Find a
minimum-mean length circuit C for the length function l′ given by: l′(e) := −l(e)
if e ∈ T and l′(e) := l(e) otherwise. If l′(C) ≥ 0, then J is a T -join minimizing l(J).
Otherwise, reset T := T△C, and iterate.

(We note here that Guan [1960] proposed to find a circuit C minimizing l′(C)
and iteratively reset T as above, until l′(C) ≥ 0. It is however NP-complete to
find such a circuit, and moreover, no polynomial upper bound on the number of
iterations is known.)

Barahona [1993b] also observed that the minimum-mean length circuit problem
can be solved by solving a ‘compact’ linear programming problem (that is, one in
which the number of variables and constraints is bounded by a polynomial in the
size of the graph).

This follows from the fact that, for any graph G = (V, E), the convex hull of

(29.45) { 1

|C|χ
C | C circuit}

(where χC is the incidence vector of C in RE) consists of all vectors x in the circuit
cone of G satisfying 1Tx = 1; moreover, by Corollary 29.2f, x belongs to the circuit
cone of G if and only if for each edge e = st there exists an s− t flow y ≤ x in G−e
of value xe. Here the flow is described on the directed graph obtained from G − e
by replacing each edge uv by two arcs (u, v) and (v, u). As the flows are determined
by flow conservation constraints (next to the negativity and capacity constraints),
this yields a compact linear program.

A minimum mean-weight circuit therefore can be found in polynomial time with
any polynomial-time LP-algorithm.

29.11b. Packing T -cuts

System (29.9) generally is not TDI, as is shown by taking G = K4 and T = V K4.
This example is the critical example, since Seymour [1977b] showed that if system
(29.9) is not TDI, then G, T contains K4, V K4 as a ‘minor’ — see Corollary 29.9b
below. To prove this, we follow the approach of Frank and Szigeti [1994] using the
results of Sebő [1988b].

Each polyhedron is determined by a TDI-system, albeit not necessarily the
minimal system defining the polyhedron. Sebő [1988b] showed that system (29.9)
can be extended as follows to a TDI-system defining the up hull of the T -join
polytope.

Let G = (V, E) be a graph and let T be an even-size subset of V . Call a set
B of edges a T -border if there exists a partition P = (U1, . . . , Uk) of V such that
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|Ui ∩ T | is odd for each i and such that B is equal to the set of edges connecting
distinct classes of P. The value val(B) of the T -border B is, by definition, half of
the number of components K of G − B with |K ∩ T | odd. (This is at least 1

2
k.) So

a T -border is a T -cut if and only if val(B) = 1. Moreover, each T -join intersects
any T -border B in at least val(B) edges. Hence the minimum size of any T -join is
at least the maximum total value of any packing of T -borders. (The total value of a
collection of T -borders is the sum of the values of the T -borders in the collection.)
Sebő [1988b] showed that the minimum and maximum are equal:

Theorem 29.8. Let G = (V, E) be a graph and let T ⊆ V . Then the minimum size
of a T -join is equal to the maximum total value of a packing of T -borders.

Proof. Choose a counterexample with |V | as small as possible. Then G is connected.
By Corollary 29.2a, it suffices to show that the maximum total value of a packing

of T -borders is at least half of the maximum size of a 2-packing of T -cuts18 Choose
a maximum-size 2-packing of T -cuts δ(U1), . . . , δ(Uk), which by Corollary 29.2a we
may assume to be cross-free. We must find a packing of T -borders of total value
1
2
k.

We choose the Ui such that

(29.46)

k
∑

i=1

|Ui|

is as small as possible. In particular, |Ui| ≤ |V \ Ui| for each i.
For each such 2-packing we have

(29.47) δ(Ui) �= δ(Uj) if i �= j,

since otherwise we can contract the edges in δ(Ui) to obtain G′, T ′ and apply
induction. We obtain a packing of T ′-borders in G′, of total value 1

2
(k−2). Together

with the T -border B := δ(Ui) this gives a packing of T -borders in G of total value
1
2
k. This shows (29.47).

We next show

(29.48) |Ui| = 1 for each i.

Suppose not. Choose an inclusionwise minimal set Ui with |Ui| > 1. So for any j,
if Uj ⊂ Ui, then Uj = {t} for some t ∈ T ∩ Ui. Moreover, for each t ∈ T ∩ Ui, there
is a j with Uj = {t}, since otherwise we could reset Ui := {t}, contradicting the
minimality of the sum (29.46). Then Ui ⊆ T , since otherwise we can replace Ui by
T ∩ Ui, again contradicting the minimality of the sum (29.46). It follows that the
union of the δ(t) for t ∈ Ui forms a T -border B of value 1

2
(|Ui| + 1). Contracting

the edges in B gives G′, T ′ say. Applying induction to G′, T ′ (in which there exists
a 2-packing of T ′-cuts of size k − (|Ui| + 1)), gives a packing of T ′-borders in G′ of
total value 1

2
(k − |Ui| − 1). Adding B, gives a packing of T -borders in G of total

value 1
2
k.

So we can assume that |Ui| = 1 for each i. Then the union of the δ(Ui) for
i = 2, . . . , k forms a T -border of value 1

2
k.

This theorem bears upon the system

18 A 2-packing is a family of sets such that no element is in more than two of them.
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(29.49) (i) xe ≥ 0 for each e ∈ E,
(ii) x(B) ≥ val(B) for each T -border B.

Since each inequality (29.9)(ii) occurs among (29.49), and since, conversely, each
inequality (29.49)(ii) is a half-integer sum of inequalities (29.9)(ii), the two systems
(29.9) and (29.49) define the same polyhedron — namely P ↑

T -join(G). In fact:

Corollary 29.8a. System (29.49) is TDI.

Proof. For any weight function w ∈ ZE
+ we can replace any edge e = uv by a u − v

path of length w(e), contracting e if w(e) = 0. Applying Theorem 29.8 to the new
graph gives an integer optimum dual solution to the problem of minimizing wTx
subject to (29.49).

We next use Theorem 29.8 to show that system (29.9) is TDI if G, T contains
no K4, V K4 as a ‘minor’. We follow the line of proof given by Frank and Szigeti
[1994]. We first prove the following.

Call a graph G = (V, E) bicritical if G − u − v has a perfect matching for each
pair of distinct vertices u and v. Call a graph G = (V, E) oddly contractible to K4

if V can be partitioned into four odd sets V1, V2, V3, V4 such that G[Vi ∪ Vj ] is
connected for all i, j (also if i = j). The following result is due to A. Sebő (cf. Frank
and Szigeti [1994]):

Theorem 29.9. A bicritical graph with at least four vertices is oddly contractible
to K4.

Proof. Let G = (V, E) be a bicritical graph with |V | ≥ 4. This immediately implies
that G is connected and has a perfect matching M . Moreover,

(29.50) for all u, v ∈ V with u �= v there is an odd-length M -alternating u − v
path Pu,v with first and last edge not in M .

To see this, first assume that uv ∈ M . Then there is a perfect matching N not
containing uv (since there exists an edge uw with w �= v (by the connectedness of
G), and hence the perfect matching of G = {u, w} together with uw forms a perfect
matching). Let C be the circuit in M ∪ N containing uv. Then C − uv is a path as
required in (29.50).

If uv �∈ M , let u′ and v′ be such that uu′ ∈ M and vv′ ∈ M . Let N be a perfect
matching in G−u′ −v′. Then (M ∪N)\{uu′, vv′} contains a u−v path as required.
This shows (29.50).

Now (29.50) implies:

(29.51) there exists an odd-length M -alternating circuit C = (v0, v1, . . . , vt).

(So t is odd, and vivi+1 ∈ M if and only if i is odd.) To see (29.51), choose edges
uv ∈ M and vw �∈ M . Then Pu,w does not traverse v (otherwise uv is on Pu,w). So
C := EPu,w ∪ {uv, vw} is a circuit as required in (29.51).

Let w be such that wv0 ∈ M . Let K be the component of G−V C containing w.
So N(K) ⊆ V C. We first show that |N(K)| ≥ 3. Indeed, first we have v0 ∈ N(K).
Let s be the first vertex in Pw,v1

contained in V C. Then s �= v0, since otherwise
v0w ∈ EPw,v1

. Let s′ be such that ss′ ∈ M . So s′ �= v0. Let r be the first vertex in
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Pw,s′ contained in V C. Again r �= v0. Moreover, r �= s, since otherwise ss′ ∈ EPw,s′

(implying that the last edge of Pw,s′ is in M , a contradiction). As v0, s, r ∈ N(K),
we have |N(K)| ≥ 3.

As K is the union of w with a number of edges in M , |K| is odd. Similarly, any
other component of G−V C is even. As C is an odd circuit, V C can be partitioned
into three paths with an odd number of vertices, each containing a neighbour of K.
Hence G is oddly contractible to K4.

We define deletion, contraction, and minor for pairs G, T . Let G = (V, E) be a
graph, T ⊆ V , and e = uv ∈ E. We say that G − e, T arises from G, T by deleting
e. Let G/e be the graph obtained from G by contracting e. Denote the new vertex
to which e is contracted by ve. Define T ′ := T \ {u, v} if |T ∩ {u, v}| is even, and
T ′ := (T \ {u, v})∪{ve} if |T ∩{u, v}| is odd. Then we say that G/e, T ′ arises from
G, T by contracting e.

We say that the pair G′, T ′ is a minor of the pair G, T if G′, T ′ arises from G, T
by a series of deletions and contractions of edges, and of deletions of vertices not
in T . Then the following is a special case of a more general hypergraph theorem of
Seymour [1977b] (Theorem 80.1):

Corollary 29.9a. Let G = (V, E) be a graph and let T ⊆ V with |T | even, such
that K4, V K4 is not a minor of G, T . Then the minimum size of a T -join is equal
to the maximum number of disjoint T -cuts.

Proof. By Theorem 29.8, the minimum size of a T -join is equal to the maximum
total value of a packing of T -borders. Consider such an optimum packing, with the
number of T -borders as large as possible. If each T -border is a T -cut, we are done. So
assume that one of the T -borders, B say, has value at least 2. Let P = (U1, . . . , Uk)
be a partition of V with |Ui ∩ T | odd for each i and such that B is the union of the
δ(Ui).

Let G′ = (V ′, E′), T ′ be obtained from G, T by contracting each Ui to one
vertex. So T ′ = V ′. As G′, T ′ contains no K4, V K4 as a minor, G is not bicritical,
by Theorem 29.9. Hence there are distinct u, v ∈ V ′ such that G′ − u − v has no
perfect matching. By Tutte’s 1-factor theorem this implies that there is a subset U
of V ′ with u, v ∈ U and with o(G′ − U) ≥ |U |. Take such a U with |U | maximal.
Then each component of G′ −U is odd. (Otherwise, we can add an element of some
even component to U , contradicting the maximality of |U |.)

For each component K of G′ −U , the set of edges of G′ incident with K form a
V ′-border in G′ of value 1

2
(|K|+1). So G′ has a packing of V ′-borders of total value

|V ′ \U |+o(G′ −U) ≥ |V ′| = k. Since |U | ≥ 2 (as u, v ∈ U), we have o(G′ −U) ≥ 2,
so there are at least two such components. Hence the packing contains at least two
V ′-borders. Decontracting the Ui gives a decomposition of B into a packing of at
least two T -borders, of total value k. This contradicts the maximality of the number
of T -borders in the original packing.

This can be formulated equivalently in terms of total dual integrality. Note that
total dual integrality of system (29.9) is closed under taking minors: deletion of an
edge e corresponds to intersection with the hyperplane H := {x | xe = 0}, while
contracting e corresponds to projecting on H. Hence total dual integrality of (29.9)
can be characterized by forbidden minors; in fact, there is only one forbidden minor:
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Corollary 29.9b. System (29.9) is totally dual integral if and only if G, T has no
minor K4, V K4.

Proof. To see necessity, it suffices to show that if G = K4 and T = V K4, then
(29.9) is not TDI. Taking we := 1 for each e ∈ EG, the minimum weight of a T -join
equals 2, while each two T -cuts intersect, implying that there is no integer optimum
dual solution.

To see sufficiency, let K4, V K4 not be a minor of G = (V, E), T . Let w ∈ ZE
+. Let

G′, T ′ arise from G, T by replacing each edge e by a path of length we, contracting e
if we = 0. Then also G′, T ′ has no minor K4, V K4. Moreover, the minimum weight
k of a T -join in G is equal to the minimum size of a T ′-join in G′. By Corollary
29.9a, G′ contains a T ′-cut packing of size k. So G contains k T -cuts such that each
edge e of G is in at most w(e) of them. This gives an integer optimum dual solution
to the problem of minimizing wTx subject to (29.9).

This implies a characterization of series-parallel graphs:

Corollary 29.9c. The following are equivalent for any graph G = (V, E):

(29.52) (i) G is series-parallel;
(ii) (29.9) is TDI for each choice of T ;
(iii) (29.11) is TDI for each choice of T ;
(iv) (29.11) is TDI for some choice of T ;
(v) (29.17) is TDI.

Proof. The equivalence of (i) and (ii) follows from Corollary 29.9b, since a graph
G is series-parallel if and only if G has no K4 minor. The implication (iii)⇒(iv) is
direct.

We next show (v)⇒(ii). Let (29.17) be TDI. Choose T ⊆ V and w ∈ ZE
+. Let J

be a T -join minimizing w(J). Define w̃(e) := w(e) if e ∈ E \ J and w̃(e) := −w(e)
if e ∈ J . Then ∅ is a w̃-minimal ∅-join. Since (29.17) is TDI, there exist λU,e ∈ Z+

for U ⊆ V and e ∈ δ(U) with

(29.53) w̃ ≥
∑

U,e

λU,e(χ
δ(U)\{e} − χe).

Choose the λU,e such that
∑

U,e λU,e is minimized. Then

(29.54) if λU,e ≥ 1 and λU′,e′ ≥ 1, then e′ �∈ δ(U) \ {e}.

Otherwise, if e ∈ δ(U ′), then

(29.55) (χδ(U)\{e} − χe) + (χδ(U′)\{e′} − χe′

)

is nonnegative, and hence we can decrease λU,e and λU′,e′ by 1, without violating
(29.53), contradicting our minimality assumption.

If e �∈ δ(U ′), then e ∈ δ(U△U ′). Also, (29.55) is at least

(29.56) χδ(U△U′)\{e} − χe,

and hence we can decrease λU,e and λU′,e′ by 1, and increase λU△U′,e by 1, without
violating (29.53), again contradicting our minimality assumption.
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This shows (29.54). So there are no two λU,e ≥ 1 and λU′,e′ ≥ 1 such that the

vectors χδ(U)\{e} − χe and χδ(U′)\{e′} − χe′

have opposite signs in some position.
The minimality of

∑

λU,e then implies that
∑

λU,e = −w̃(J) = w(J) and that
J ∩ δ(U) = {e} for each U, e with λU,e ≥ 1. So each such δ(U) is a T -cut. Moreover,

(29.57) w ≥
∑

U,e

λU,eχ
δ(U).

So we have an integral dual solution for the problem of minimizing wTx over (29.9).
This proves (v)⇒(ii).

We next show the reverse implication (ii)⇒(v). Let (29.9) be TDI for each choice
of T . To prove that (29.17) is TDI, choose w ∈ ZE , such that minimizing wTx over
(29.17) is finite — that is (as (29.17) determines the circuit cone) w(C) ≥ 0 for
each circuit C.

Define J := {e ∈ E | w(e) < 0} and T := {v ∈ V | degJ(v) is odd}. Moreover,
w̃(e) := |w(e)| for e ∈ E. Then J is a T -join minimizing w̃(J) (as w(C) ≥ 0 for
each circuit C). Hence, as (29.9) is TDI, there exist λU ∈ Z+ for U with T ∩U odd,
such that

(29.58)
∑

U

λUχδ(U) ≤ w̃ and
∑

U

λU = w̃(J).

For each U with λU ≥ 1 one has |J ∩ δ(U)| = 1; let eU be the edge in J ∩ δ(U).
Then

(29.59) w ≥
∑

U

λU (χδ(U)\eU − χeU ),

proving total dual integrality of (29.17).

Finally we show (v)⇔(iii)⇔(iv). Consider any T ⊆ V and any vertex χJ of the
T -join polytope, determined by T -join J . Total dual integrality of (29.11) in χJ

means that the following system is TDI:

(29.60) xe ≥ 0 for each e ∈ E \ J ,
xe ≤ 1 for each e ∈ J ,
x(H) − x(F ) ≥ 1 − |F |, for each U ⊆ V and partition F, H of

δ(U) with |U ∩ T | + |F | odd and
|H ∩ J | + |F \ J | = 1.

The condition |H ∩ J | + |F \ J | = 1 implies that there exists an edge e ∈ δ(U) with
F = (δ(U) ∩ J)△{e} and H = (δ(U) \ J)△{e}.

Setting x̃e := 1 − xe if e ∈ J and x̃e := xe if e ∈ E \ J , (29.60) is equivalent to:

(29.61) x̃e ≥ 0 for e ∈ E,
x̃(H \J)+ |H ∩J |− x̃(H ∩J)− x̃(F \J)−|F ∩J |+ x̃(F ∩J) ≥ 1−|F |

for each U, F, H as described in (29.60). The second line in (29.61) is equivalent to:

(29.62) x̃(H△(J ∩ δ(U))) − x̃(F△(J ∩ δ(U))) ≥ 1 − |F△(J ∩ δ(U))|.
and hence to

(29.63) x̃(δ(U) \ {e}) − x̃e ≥ 0,
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where {e} := F△(J ∩ δ(U)). As this equivalence holds for any fixed T , this proves
both (iv)⇒(v) and (v)⇒(iii).

(Korach [1982] gave an algorithmic proof of this corollary.)
Sebő [1988b] also characterized the minimal TDI-system for the polyhedron

P ↑
T -join(G). Call a T -border B reduced if B = δ(U1) ∪ · · · ∪ δ(Uk) for some partition

P = (U1, . . . , Uk) of V such that |Ui ∩ T | is odd and G[Ui] is connected for each i
and such that the graph obtained by contracting each Ui to one vertex is bicritical.
Then the following is a minimal TDI-system for connected graphs:

(29.64) (i) xe ≥ 0 for each edge e for which {e} is not a T -cut,
(ii) x(B) ≥ val(B) for each reduced T -border B.

Sebő [1993c] showed that for each fixed k, the problem of finding a maximum in-
teger packing of T -cuts subject to a capacity constraint is polynomial-time solvable
if |T | = k. The method uses that integer linear programming is polynomial-time
solvable in fixed dimension (Lenstra [1983]).

29.11c. Packing T -joins

In the previous section we considered packing T -cuts, which relates to the total
dual integrality of system (29.9). We now consider packing T -joins, which relates
to the total dual integrality of system (29.41).

System (29.41) generally is not TDI. Indeed, let G be the graph K2,3 and let
T0 := V K2,3 \ {v0}, where v0 is one of the two vertices of degree 3 in K2,3. Then
the minimum size of a T0-cut in K2,3 is equal to 2, while there are no two disjoint
T0-joins. This again is the critical example, as follows again from a more general
hypergraph theorem of Seymour [1977b] (Theorem 80.1). For this special case, we
follow the line of proof given by Codato, Conforti, and Serafini [1996].

Theorem 29.10. Let G = (V, E) be a graph and let T ⊆ V , such that K2,3, T0 is
not a minor of G, T . Then the minimum size of a T -cut is equal to the maximum
number of disjoint T -joins.

Proof. Let G, T form a counterexample, with |V | + |E| as small as possible. Let k
be the minimum size of a T -cut. Then trivially G is connected. Moreover:

(29.65) any T -cut C of size k satisfies C = δ(t) for some t ∈ T .

Indeed, let C = δ(U) for U ⊆ V with |U ∩ T | odd and |C| = k. Assume that
1 < |U | < |V | − 1. Then G[U ] is connected, since otherwise there would exist a
T -cut smaller than k. Similarly, G − U is connected.

Now contract U to one vertex v′, yielding minor G′, T ′ of G, T . The minimum
size of a T ′-cut in G′ equals k. As |V G′| < |V G|, we know that G′ has k disjoint
T ′-joins. Each of them intersects δG′(v′) in exactly one edge (as it is a T ′-cut of
size k).

We can contract V \ U to one vertex v′′, yielding minor G′′, T ′′ of G, T . Again,
G′′ has k disjoint T ′′-joins, each intersecting δG′′(v′′) in exactly one edge.

Using the one-to-one correspondence between δG′(v′) and δG′′(v′′), we can glue
the two collections of joins together, to obtain k disjoint T -joins in G, contradicting
our assumption. This gives (29.65).

Let T ′ := {t ∈ T | deg(t) = k}. Then (29.65) implies that
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(29.66) each edge of G intersects T ′.

Otherwise we could delete the edge without decreasing the minimum size of a
T -cut, by (29.65). This would give a smaller counterexample, contradicting our
assumption.

We next have:

(29.67) |V \ T ′| ≥ 2.

For suppose |V \ T ′| ≤ 1. We know that G has k − 1 disjoint T -joins (by the
minimality of |V | + |E| — otherwise deleting any edge would give a smaller coun-
terexample). Let F be the union of these T -joins. Then degF (v) is even if v �∈ T
while degF (v) ≡ k − 1 (mod 2) if v ∈ T . Hence degE\F (v) is odd for each v ∈ T ′.
As |V \ T ′| ≤ 1 it follows that E \ F is a T -join, and hence G would have k disjoint
T -joins. This contradicts our assumption, and proves (29.67).

Then

(29.68) there is no subset U of T ′ with |U | ≤ 2 and G − U disconnected.

Suppose not. If |U | = 1, let U = {t} for t ∈ T ′. Then |K ∩ T | is odd for some
component K of G− t. As G− t is disconnected, |δ(K)| < deg(t) = k, contradicting
the fact that δ(K) is a T -cut.

If |U | = 2, let U = {t, t′} for t, t′ ∈ T ′. Choose a component K of G − U not
contained in T ′. Let l (l′, respectively) be the number of edges connecting K and
t (K and t′, respectively). If |K ∩ T | is odd, then l + l′ = |δ(K)| > k and hence
|δ(K ∪ {t, t′})| ≤ (k − l) + (k − l′) < k, a contradiction. If |K ∩ T | is even, then
l′ + (k − l) = |δ(K ∪ {t})| > k, and similarly l + (k − l′) > k, a contradiction. This
proves (29.68).

Now choose u ∈ V \ T ′. As N(u) ⊆ T ′ (by (29.66)), by (29.68) we know
|N(u)| ≥ 3. Choose a component K of G′ := G − ({u} ∪ N(u)), with |N(K)| as
small as possible. (K exists by (29.67).) If possible, we take K such that moreover
|K ∩ T | is odd.

Again by (29.68), |N(K)| ≥ 3. Choose t1, t2, t3 ∈ N(K). Then

(29.69) for any component L �= K of G′ with N(L) = {t1, t2, t3} one has |L∩T |
even.

For suppose that |L ∩ T | is odd. By the minimality of |N(K)|, we know N(K) =
{t1, t2, t3}. Moreover, |K ∩ T | is odd. Let ki be the number of edges connecting K
and ti and let li be the number of edges connecting L and ti, for i = 1, 2, 3. Then
k1 +k2 +k3 = |δ(K)| ≥ k, and similarly l1 + l2 + l3 ≥ k. This gives the contradiction

(29.70) k < |δ(K∪L∪{t1, t2, t3})| ≤ (k−k1−l1)+(k−k2−l2)+(k−k3−l3) ≤ k

(the first inequality follows from (29.65)). This shows (29.69).
Now contract the union of {u}∪ (N(u) \ {t1, t2, t3}) and all components L �= K

of G′ with N(L) �= {t1, t2, t3} to one vertex u′. Moreover, contract the union of {t1}
and all components L �= K of G′ with N(L) = {t1, t2, t3} to one vertex t′

1. Finally
contract K to one vertex u′′. This gives minor G′′, T ′′ of G, T .

So G′′ has vertices u′, u′′, t′
1, t2, t3, with each of u′, u′′ adjacent to each of t′

1, t2, t3
(possibly there are more adjacencies). Each of t′

1, t2, t3 belongs to T ′′. As |T ′′|
is even, exactly one of u′, u′′ belongs to T ′′. Hence G, T has minor K2,3, T0, a
contradiction.
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This implies the characterization:

Corollary 29.10a. System (29.41) is TDI if and only if K2,3, T0 is not a minor of
G, T .

Proof. Necessity follows from the fact that total dual integrality of (29.41) is main-
tained under taking minors (contraction of an edge e corresponds to intersecting the
polytope with the hyperplane xe = 0, and deletion of e corresponds to projecting
on it), while the minimum size of a T0-cut in K2,3 is 2, and K2,3 has no two disjoint
T0-joins.

To see sufficiency, let w ∈ ZE
+. Replace any edge e = uv of G by w(e) parallel

edges connecting u and v, yielding the graph G′. Then the minimum weight of a
T -cut in G is equal to the minimum size of a T -cut in G′. By Theorem 29.10, this
minimum size is equal to the maximum number of disjoint T -joins in G′. These
T -joins give an integer optimum dual solution to the problem of minimizing wTx
subject to (29.41).

Generally, system (29.41) is not totally dual half-integral, as is shown by the
following example of Seymour [1979a]. Let G′ = (V ′, E′) be a connected bridgeless
cubic graph with χ′(G) = 4 and with an even number of edges. (For instance, G′ is
the Petersen graph with one vertex replaced by a triangle (in such a way that the
three vertices adjacent to it in the Petersen graph, now each are adjacent to one of
the vertices in the triangle).)

Let G = (V, E) be obtained from G′ by replacing each edge by a path of length
2. So |V | is even.

Then trivially the minimum size of a V -cut is equal to 2. However, the maximum
number of V -joins covering each edge at most twice is equal to 3. For suppose that
there exist four V -joins J1, . . . , J4 covering each edge at most twice. Since each edge
of G is incident with a vertex of degree two, each edge of G is covered exactly twice
by the Ji. For i = 1, 2, 3, let Ci := Ji△J4. Then each Ci is a vertex-disjoint union
of circuits, and each edge of G is in exactly two of the Ci. Then the complements
of the Ci form edge-disjoint V ′-joins in G. This would yield a 3-edge-colouring of
G′ — a contradiction.

If we replace each edge of G by two parallel edges, thus obtaining an Eulerian
graph, the minimum size of a V -cut equals 4, whereas the maximum number of
disjoint V -joins is 3.

If Seymour’s ‘generalized Fulkerson conjecture’ (see Section 28.5) is true, there
exists a 1

4
-integer packing (that is, the minimum size of a T -cut is equal to one

quarter of the maximum size of a 4-packing of T -joins); in other words, the total
dual quarter-integrality of the T -join constraints (29.41) follows — we give the proof
of Seymour [1979a] of this derivation.

Proof that the generalized Fulkerson conjecture implies the total dual
quarter-integrality of the T -join constraints. Let G = (V, E) be a graph and
let T ⊆ V . Let k be the minimum size of a T -cut. We must show that the generalized
Fulkerson conjecture implies:

(29.71) there exist T -joins J1, . . . , J4k covering each edge of G at most four
times.

First assume that T = V . We show:
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(29.72) if each vertex of G has even degree, then there exist V -joins J1, . . . , J2k

covering each edge of G at most twice.

To see this, assume that each vertex of G has even degree. So k is even. If k ≤ 2,
(29.72) is trivial. (If k = 2 there exists a V -join J ; then the complement E \ J is a
V -join again.) So we can assume that k ≥ 4.

For each v ∈ V , let Gv be a (k − 1)-edge-connected graph with degG(v) + 1
vertices, one of degree k and all other vertices of degree k − 1. (Such graphs Gv

exist: If k = 4, take any cubic 3-edge-connected graph on degG(v) + 2 vertices (for
instance, by taking a circuit on degG(v) + 2 vertices, and making opposite vertices
adjacent), and contract an arbitrary edge of it. If k ≥ 6, add a Hamiltonian circuit
to the graph for the case k − 2.)

We take the Gv vertex-disjoint. Now transform G to a graph H, by replacing
each vertex v by Gv, and making each edge of G which was incident with v, incident
instead with one of the degG(v) vertices of Gv of degree k − 1, in such a way that
the resulting graph H is k-regular.

We show that H is a k-graph, by showing

(29.73) |δH(U)| ≥ k for each U ⊆ V H with |U | odd.

To see this, assume |δH(U)| < k. Observe that |δH(U)| is even, as k is even and H
is k-regular. Hence |δH(U)| ≤ k − 2. Since each Gv is (k − 1)-edge-connected, for
each v ∈ V we know that either V Gv ⊆ U or V Gv ∩ U = ∅. Define

(29.74) X := {v ∈ V | V Gv ⊆ U}.

Then |δH(U)| = |δG(X)|. Moreover, |X| is odd as |V Gv| is odd for each v ∈ V .
Therefore |δG(X)| ≥ k and hence |δH(U)| ≥ k. This shows (29.73).

Then by the generalized Fulkerson conjecture, there exist perfect matchings
M1, . . . , M2k in H covering each edge of H exactly twice. Projecting these matchings
to the original edges of G, gives V -joins as required in (29.72).

Now, for T = V , (29.71) follows from (29.72) by replacing each edge of G by two
parallel edges. The case of general T can be reduced to the case T = V as follows.
Let T be arbitrary. For each vertex v ∈ V \ T , make a new vertex v′, connected by
k parallel edges with v. This gives the graph G′ = (V ′, E′). Then the minimum size
of a V ′-cut in G′ is equal to k. Hence by (29.71) there exist V ′-joins J ′

1, . . . , J
′
4k in

G′ covering each edge of G′ at most four times. Restricting the J ′
i to the edges of

G, gives V -joins in G as required.
Cohen and Lucchesi [1997] showed that conjecture (29.72) is equivalent to: if

all T -cuts have the same parity, then the maximum size of a 2-packing of T -joins
is equal to twice the minimum size of a T -cut. They also showed that this is true
if |T | ≤ 8; more strongly, that if |T | ≤ 8 and all T -cuts have the same parity, then
the maximum number of disjoint T -joins is equal to the minimum size of a T -cut.

29.11d. Maximum joins

Let G = (V, E) be a graph. Call a subset J of E a join if |J ∩ C| ≤ 1
2
|C| for each

circuit C; that is, |J△C| ≥ |C| for each circuit C. This can be expressed in terms
of the length function lJ : E → {−1, +1}, defined by

(29.75) lJ(e) :=

{

−1 if e ∈ J ,
+1 if e �∈ J .
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So

(29.76) lJ(F ) = |F△J | − |J |
for each F ⊆ E. Then a set J is a join if and only if lJ(C) ≥ 0 for each circuit C.
Note also that

(29.77) a set J is a join if and only if it is a minimum-size T -join for T := {v ∈
V | degJ(v) odd}.

Frank [1990b,1993b] gave a min-max relation for the maximum size of a join. By
Corollary 29.2a and (29.77), the maximum size of a join is equal to the maximum
size of a fractional packing of T -cuts, taken over T ⊆ V with |T ∩ K| even for each
component K of G. This, however, is not a min-max relation.

A min-max relation can be described in terms of ear-decomposition. Let G =
(V, E) be an undirected graph. An ear of G is a path or circuit P in G, of length
≥ 1, such that all internal vertices of P have degree 2 in G. The path may consist
of a single edge — so any edge of G is an ear.

If I is the set of internal vertices of an ear P , we say that G arises from G−I by
adding ear. An ear-decomposition of G is a series of graphs G0, G1, . . . , Gk, where
G0 = K1, Gk = G, and Gi arises from Gi−1 by adding an ear (i = 1, . . . , k).

A graph G = (V, E) has an ear-decomposition if and only if G is 2-edge-
connected (see Theorem 15.17). Moreover, the number of ears in any ear-decompo-
sition is equal to |E| − |V | + 1. Then the min-max relation for maximum-size join
in 2-connected graphs is formulated as:

Theorem 29.11. Let G = (V, E) be a 2-edge-connected graph. Then the maximum
size of a join is equal to the minimum value of

(29.78)

k
∑

i=1

⌊ 1
2
|EPi|⌋

taken over all ear-decompositions (P1, . . . , Pk) of G.

Proof. We first show that the maximum is not more than the minimum. Let J be a
join in G and let Π = (P1, . . . , Pk) be an ear-decomposition of G. Let G′ = (V ′, E′)
be the graph made by P1, . . . , Pk−1 and let J ′ := J ∩ E′. By induction we know

(29.79) |J ′| ≤
k−1
∑

i=1

⌊ 1
2
|EPi|⌋.

If |J ∩ EPk| ≤ ⌊ 1
2
|EPk|⌋ we are done. So assume that |J ∩ EPk| > ⌊ 1

2
|EPk|⌋; that

is, lJ(Pk) < 0. Let u and v be the end vertices of Pk. Let Q be a u − v path in G′

minimizing lJ′(Q). So lJ(Pk) + lJ(Q) ≥ 0 (since J is a maximum-size join). Since
lJ′(Q) = |J ′△EQ| − |J ′|, Q minimizes |J ′△EQ|.

Then J ′′ := J ′△EQ is again a join in G′, since for any circuit C in G′:

(29.80) |J ′′△C| = |J ′△(EQ△C)| ≥ |J ′△EQ| = |J ′′|
(since Q minimizes |J ′△EQ|). Moreover,

(29.81) |J ′′| − |J ′| = |J ′△EQ| − |J ′| = lJ(Q) ≥ −lJ(Pk)
= |J ∩ EPk| − |EPk \ J | ≥ |J ∩ EPk| − ⌊ 1

2
|EPk|⌋.
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Hence, by induction applied to J ′′,

(29.82) |J | = |J ′| + |J ∩ EPk| ≤ |J ′′| + ⌊ 1
2
|EPk|⌋ ≤

k
∑

i=1

⌊ 1
2
|EPi|⌋.

This shows that the maximum is not more than the minimum. To see equal-
ity, for any graph G let β(G) be the maximum size of a join in G. For any ear-
decomposition Π = (P1, . . . , Pk), let σ(Π) :=

∑k
i=1⌊ 1

2
|EPi|⌋. Let π(G) be the min-

imum of σ(Π) over all ear-decompositions Π of G. So we must prove β(G) = π(G).
Call an ear-decomposition Π optimum if it minimizes σ(Π).

We first show:

(29.83) Let U ⊆ V with G[U ] 2-edge-connected. Then π(G) ≤ π(G[U ]) +
π(G/U).

To see this, first observe that if G[U ] has a Hamiltonian circuit C, then an optimum
ear-decomposition Π ′ of G[U ] is obtained by first taking C, and next adding the
remaining edges as ears. Now in any optimum ear-decomposition Π ′′ of G/U , we
can insert Π ′ at the first ear of Π ′′ containing the vertex into which U is contracted
(by splitting C appropriately). In this way we obtain an ear-decomposition Π of G
with σ(Π) ≤ σ(Π ′) + σ(Π ′′).

If G[U ] has no Hamiltonian circuit, let Π ′ be an optimum ear-decomposition
of G[U ]. Let C be its first ear. By the above, π(G) ≤ π(G[V C]) + π(G/V C).
Also, by induction, π(G/V C) ≤ π((G[U ])/V C) + π(G/U). As C is the first ear of
Π ′, we have π(G[V C]) + π((G[U ])/V C) = π(G[U ]). Combining, we get π(G) ≤
π(G[U ]) + π(G/U), showing (29.83).

Next we state:

(29.84) if G is factor-critical, then π(G) ≤ ⌊ 1
2
|V G|⌋.

This follows directly from Theorem 24.9, since ⌊ 1
2
|EPi|⌋ is at most 1

2
the number

of internal vertices of Pi.
In particular, it follows that if G is factor-critical, then β(G) = π(G), as G

has a join of size ⌊ 1
2
|V G|⌋, namely a matching. So we can assume that G is not

factor-critical.
A graph G is called matching-covered if each edge of G is contained in a perfect

matching. By Theorem 24.10,

(29.85) if G is matching-covered and 2-edge-connected, then π(G) ≤ 1
2
|V G|.

For any subset W of V let HW be the graph obtained from G[W ∪ N(W )] by
deleting all edges in N(W ) and contracting all edges in W . (HW may have parallel
edges.) So HW is a bipartite graph with colour classes N(W ) and κ(W ) := the set
of components of G[W ].

(29.86) There is a nonempty subset W of V such that each component of G[W ]
is factor-critical and such that HW is 2-edge-connected and matching-
covered.

To see this, we first observe that there is a nonempty subset X of V such that each
component of G[X] is factor-critical and such that HX has a matching M covering
N(X). Indeed, if G has no perfect matching, then we can take X := D(G) (= the
set of vertices v for which G has a maximum-size matching missing v). By Corollary
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24.7a, X has the required properties. If G has a perfect matching, call it M . Choose
u ∈ V , and let X := D(G − u). Then X has the required properties (note that the
vertex matched in M to u belongs to D(G − u)).

Having X and M , orient the edges in M in the direction from κ(X) to N(X),
and all other edges of HX in the direction from N(X) to κ(X). This gives a directed
graph, that has (like any directed graph) a strong component L such that no arc
enters L. Let W be the union of those components of G[X] whose contraction
belong to L. Since no arc leaves L, for any edge e = uv ∈ M , if u ∈ N(X) and
u ∈ L, then v ∈ W . Conversely, if v ∈ W , then u ∈ L. For let v ∈ K ∈ L. As G
is 2-edge-connected, there exists an edge f �= e leaving K. As K ∈ L and no arc
enters L, both ends of f belong to L. As L is strongly connected, f belongs to a
directed circuit. Necessarily, e is in this directed circuit. So both ends of e are in L.

Hence the edges of M intersecting W , form a perfect matching M ′ in HW , and
so |N(W )| = |κ(W )|. Moreover, consider any edge e of HW not in M . In HX , e is
oriented from N(W ) to κ(W ), and hence, as L is a strong component, it is contained
in a directed circuit. This directed circuit forms an M ′-alternating circuit in HW ,
implying that e belongs to a perfect matching in HW . So HW is matching-covered.
Finally HW is 2-edge-connected, as it has a strongly connected orientation, since L
is a strong component. This shows (29.86).

Define U := W ∪ N(W ). Then (29.83), (29.84), (29.85), and (29.86) imply

(29.87) π(G) ≤ π(G/U) + π(G[U ]) ≤ π(G/U) + π(HW ) +
∑

K∈κ(W )

π(G[K])

≤ π(G/U) + 1
2
|V HW | +

∑

K∈κ(W )

⌊ 1
2
|K|⌋ ≤ π(G/U) + 1

2
|U |.

On the other hand, we have

(29.88) β(G) ≥ β(G/U) + 1
2
|U |.

Indeed, let G′ := G/N(W ). Then trivially, β(G) ≥ β(G′). The contracted N(W )
forms a cut vertex v0 in G′, and so β(G′) is equal to the sum of the β(G′[K ∪{v0}])
over all components K of G − v0. Now for each component K of G[W ] we have
β(G′[K ∪ {v0}]) ≥ 1

2
(|K| + 1), since G′[K ∪ {v0}] has a perfect matching (as K

is factor-critical), which is a join. Since G[W ] has |N(W )| components, this proves
(29.88).

Hence the theorem follows by induction.

The proof gives a polynomial-time algorithm to find a maximum-size join and
an ear-decomposition minimizing (29.78).

In Section 24.4d we saw that a graph is factor-critical if and only if it has an
ear-decomposition with odd ears only. This can be generalized to (where G/F arises
from G by contracting all edges in F ):

Theorem 29.12. Let G = (V, E) be a 2-edge-connected graph. Then the minimum
number of even ears in an ear-decomposition of G is equal to the minimum size of
a subset F of E with G/F factor-critical.

Proof. First let P1, . . . , Pk be an ear-decomposition of G. Choose one edge from
each even ear. This gives a set F with G/F factor-critical, by Theorem 24.9.
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Conversely, let F ⊆ E with G/F factor-critical and |F | minimum. By Theorem
24.9, G/F has an ear-decomposition (P1, . . . , Pk) with odd ears only. Then we can
partition F into F1, . . . , Fk such that P1 ∪ F1, . . . , Pk ∪ Fk is an ear-decomposition
of G. This ear-decomposition has at most |F | even ears.

We can derive from this a characterization of the maximum size of a join in any
graph:

Corollary 29.12a. Let G = (V, E) be a connected graph. Then the maximum size
β(G) of a join is equal to

(29.89) 1
2
(φ(G) + |V | − 1).

where φ(G) is the minimum size of a subset F of E with G/F factor-critical.

Proof. If G has a cut edge e, the corollary follows by applying induction to G/e,
since β(G) = β(G/e) + 1 and φ(G) = φ(G/e) + 1.

So we can assume that G is 2-edge-connected, and then the corollary follows
from Theorem 29.11, with Theorem 29.12. Note that

(29.90)
k

∑

i=1

⌊ 1
2
|EPi|⌋ = 1

2
(number of even ears +

k
∑

i=1

(|EPi| − 1))

= 1
2
(number of even ears +|V | − 1).

For 2-edge-connected bipartite graphs we have:

Corollary 29.12b. Let G = (V, E) be a 2-edge-connected bipartite graph, with
colour classes U and W . Then the maximum size of a join is equal to the minimum
number of edges oriented towards U in any strongly connected orientation of G.

Proof. To see that the maximum is not more than the minimum, consider any
strongly connected orientation of G, yielding the directed graph D. By Theorem
6.9, D has an ear-decomposition (P1, . . . , Pk). Any ear Pi contains at least ⌊ 1

2
|EPi|⌋

edges oriented towards U . So the sum (29.78) is at most the total number of edges
oriented towards U . Hence by Theorem 29.11, the maximum is not more than the
minimum.

To see equality, consider an ear-decomposition P1, . . . , Pk of G minimizing
(29.78). In any ear Pi, we can orient the edges so as to obtain a directed path,
with exactly ⌊ 1

2
|EPi|⌋ edges oriented towards U . This gives a strongly connected

orientation with
∑

i⌊ 1
2
|EPi|⌋ edges oriented towards U . So Theorem 29.11 gives

equality.

We can derive some more min-max relations for bipartite graphs. Seymour
[1981d] observed that Theorem 29.2 is equivalent to:

Theorem 29.13. Let G = (V, E) be bipartite and let J ⊆ E. Then J is a join if
and only if there exist |J | disjoint cuts each intersecting J in exactly one edge.

Proof. By Theorem 29.2, using (29.77).
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This implies a max-max relation for the maximum size of a join in bipartite
graphs:

Corollary 29.13a. Let G be bipartite. Then the maximum size of a join is equal
to the maximum number of disjoint nonempty cuts.

Proof. Directly from Theorem 29.13.

Hence, with Corollary 29.12b, a result of D.H. Younger follows (cf. Frank
[1993b]):

Corollary 29.13b. Let G be a 2-edge-connected bipartite graph, with colour classes
U and W . Then the minimum number of edges oriented towards U in any strongly
connected orientation of G is equal to the maximum number of disjoint nonempty
cuts in G.

Proof. From Corollaries 29.13a and 29.12b.

Frank, Tardos, and Sebő [1984] showed the following. Let G be a 2-edge-
connected bipartite graph, with colour classes U and W . Then the minimum number
of edges oriented towards U in any strongly connected orientation of G is equal to
the maximum value of

(29.91)
∑

S∈Π

κ(G − S),

ranging over all partitions Π of U , where κ(H) denotes the number of components
of H.

For an extension, see Kostochka [1994]. Szigeti [1996] gave a weighted version,
based on matroids. Fraenkel and Loebl [1995] showed that it is NP-complete to
find the maximum size of a subset J of the edge set E of a graph G with lJ(C) <
1
2
|EC| for each circuit C (even if G is planar and bipartite). Connected joins were

investigated by Sebő and Tannier [2001].

29.11e. Odd paths

We saw in Section 29.2 that the problem of finding a shortest s − t path in an
undirected graph G = (V, E), with length function l : E → Q can be solved in
polynomial time, if each circuit has nonnegative length. This is by reduction to the
weighted matching problem.

As J. Edmonds (cf. Grötschel and Pulleyblank [1981]) observed, another prob-
lem reducible to the weighted matching problem is: given a graph G = (V, E) and
a length function l : E → Q+, find a shortest odd s − t path. Here a path is odd if
it has an odd number of edges.

This reduction is as follows: make a copy G′ = (V ′, E′) of G, and a copy
l′ : E′ → Q+ of l, add edges vv′ for each v ∈ V (where v′ is the copy of v), each
of length 0. Call the extended graph H. Then a minimum-length odd s − t path in
G can be found by finding a minimum-length perfect matching M in H − s′ − t′:
let N be the perfect matching {vv′ | v ∈ V } in H; then the component of M ∪ N
containing s and t gives a shortest odd s − t path in G.

Next consider the following polyhedron Q in RE :
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(29.92) Q := conv.hull{χP | P odd s − t path} + RE
+

and its blocking polyhedron

(29.93) B(Q) = {x ∈ RE
+ | x(P ) ≥ 1 for each odd s − t path P}.

By the above method, one can optimize over Q in polynomial time. Hence, with
the ellipsoid method, one can decide if a given x ∈ QE belongs to Q or not, and
if not, find a separating facet. This also implies that for given capacity function
c : E → Q+, one can find in polynomial time a fractional packing of odd s− t paths
subject to c, of maximum value (by minimizing cTx over B(Q)).

Schrijver and Seymour [1994] considered the problem (raised by Grötschel
[1984]) of finding an explicit system of inequalities describing Q; equivalently, of
describing the vertices of B(Q).

Call a subset F of E odd-blocking if each odd s − t path contains an edge in
F . For each F ⊆ E, define hF ∈ ZE

+ as follows, where e = uv ∈ E and WF :=
{s, t} ∪ {v ∈ V | v is incident with at least one edge in E \ F}:

(29.94) hF (e) :=







2 if u, v ∈ WF and e ∈ F ,
1 if exactly one of u, v belongs to WF ,
0 otherwise.

In other words,

(29.95) hF =
∑

v∈WF

χδ(v)∩F .

In particular, hF (e) = 0 if e �∈ F .
Note that for each x ∈ ZE

+ one has:

(29.96) hT

F x ≥ 1 for each odd-blocking F ⇐⇒ there exists an odd s − t path
P with χP ≤ x ⇐⇒ hT

F x ≥ 2 for each odd-blocking F .

Then Schrijver and Seymour [1994] proved:

(29.97) Let l : E → Z+ be a length function such that each circuit and each
s − t path has even length. Then the minimum length of an odd s − t
path is equal to the maximum value of 2k for which there exist odd-
blocking sets F1, . . . , Fk with hF1

+ · · · + hFk
≤ l.

This implies:

(29.98) Let l : E → Z+ be a length function. Then the minimum length of
an odd s − t path is equal to the maximum value of k for which there
exist odd-blocking F1, . . . , Fk with 1

2
hF1

+ · · · + 1
2
hFk

≤ l.

This can be formulated in terms of LP-duality. Let F be the collection of odd-
blocking sets and let H be the F ×E matrix whose F th row equals hF (for F ∈ F).
Then (29.98) states that for l : E → Z+:

(29.99) min{lTx | x ∈ ZE
+, ( 1

2
H)x ≥ 1} = max{yT1 | y ∈ ZF

+ , yT( 1
2
H) ≤ lT}.

Equivalently, the system

(29.100) xe ≥ 0 e ∈ E,
1
2
hT

F x ≥ 1 F odd-blocking,
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determines Q and is TDI. Hence:

(29.101) each vertex of B(Q) is equal to 1
2
hF for some odd-blocking F ⊆ E

(this implies the conjecture of W.J. Cook and A. Sebő that the vertices of B(Q)
are half-integer).

Minimizing cTx over B(Q) then gives the following. Let G = (V, E) be an
undirected graph, let s, t ∈ V , and let c : E → R+. Then the maximum value of a
fractional packing of odd s − t paths subject to c is equal to the minimum value of

(29.102) 1
2

∑

v∈WF

c(δ(v) ∩ F ),

taken over odd-blocking F ⊆ E.
L. Lovász asked for the complexity of the following combination of two of the

problems above: given a graph G = (V, E), vertices s, t ∈ V , and a length function
l : E → Q, such that each circuit has nonnegative length, find a shortest odd s − t
path.

29.11f. Further notes

Complexity survey for all-pairs shortest paths in undirected graphs without nega-
tive-length circuits (∗ indicates an asymptotically best bound in the table):

∗ O(nm log n) Gabow [1983a]

∗ O(n3) Gabow [1983a]

(The algorithm proposed by Bernstein [1984] fails (for instance, for a graph with
four vertices).)

Karzanov [1986] gave an O(|T |m log n +|T |3 log |T |)-time algorithm to find a
shortest T -join and a maximum fractional packing of T -cuts.

It is easy to see that the vertices of P ↑
T -join(G) are the incidence vectors of

the inclusionwise minimal T -joins (that is, those T -joins that are a forest). Indeed,

consider a T -join J . If J contains another T -join J ′ as subset, then χJ′ ≤ χJ , and
hence χJ is not a vertex of P ↑

T -join(G). Conversely, if χJ is not a vertex, then χJ ≥ x
for some convex combination x of incidence vectors T -joins. Each of these T -joins
J ′ satisfies χJ′ ≤ χJ , and hence J ′ ⊆ J .

Similarly, an inequality x(C) ≥ 1 for a T -cut C determines a facet if and only
if C is an inclusionwise minimal T -cut.

Giles [1981] showed that two inclusionwise minimal T -joins J and J ′ give adja-
cent vertices of the polyhedron P ↑

T -join(G) if and only if J ∪J ′ contains exactly one

circuit. It implies that the distance of J and J ′ in P ↑
T -join(G) is at most |J \ J ′| —

this implies the Hirsch conjecture for P ↑
T -join(G).

Gerards [1992b] showed the following. For any graph H, an odd-H is a subdivi-
sion of H such that each odd circuit of H becomes an odd circuit in the subdivision.
In other words, the edges of H that become an even-length path form a cut in H.
The prism is the complement of the 6-circuit C6. Let G = (V, E) be a graph not
containing an odd-K4 or an odd-prism as subgraph. Then for each T ⊆ V , the
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minimum size of a T -join is equal to the maximum number of disjoint T -cuts. This
generalizes Corollary 29.9c and Theorem 29.2.

Call a graph G = (V, E) a Seymour graph if for each subset T of V for which
there exists a T -join, the minimum-size of a T -join is equal to the maximum number
of disjoint T -cuts. Ageev, Kostochka, and Szigeti [1995,1997] showed that G is a
Seymour graph if and only if for each length function l ∈ ZE with l(C) ≥ 0 for each
circuit C, and for each pair of circuits C1 and C2 with l(C1) = 0 and l(C2) = 0, the
graph formed by C1 ∪ C2 is neither an odd-K4 nor an odd-prism. (Here sufficiency
was proved by A. Sebő.)

Seymour [1981d] characterized for which pairs G, T with |T | = 4, the minimum
size of a T -join is equal to the maximum number of disjoint T -cuts. In fact, let
T = {t1, t2, t3, t4} and let k ∈ Z+. Then there is a packing of T -cuts of size k if and
only if

(29.103) dist(t1, t2) + dist(t3, t4) ≥ k,
dist(t1, t3) + dist(t2, t4) ≥ k,
dist(t1, t4) + dist(t2, t3) ≥ k,

such that if equality holds in each of these inequalities, then dist(t1, t2)+dist(t1, t3)+
dist(t2, t3) is even.

Korach [1982] characterized such pairs for |T | = 6, and gave a polynomial-time
algorithm recognizing them.

The existence of T -joins satisfying given upper bounds on the degrees can be
characterized by reduction to Tutte’s 1-factor theorem (cf. Ning [1987]).

Middendorf and Pfeiffer [1990b,1993] showed that it is NP-complete to decide,
for given planar graph G = (V, E) and T ⊆ V , if the minimum size of a T -join
is equal to the maximum number of disjoint T -cuts. As a minimum-size T -join
can be found in polynomial time, it follows that it is NP-complete to determine a
maximum packing of T -cuts. (Related results are given by Korach and Penn [1992],
Korach [1994], and Granot and Penn [1995].)

The directed Chinese postman problem can be solved as a minimum-cost cir-
culation problem (see Section 12.5b). The mixed Chinese postman problem (with
directed and undirected edges) however is NP-complete (Papadimitriou [1976]).
Guan [1984] derived from this that the windy (or asymmetric) postman problem
(where the length of an edge may depend on the direction in which it is traversed)
is NP-complete.

Edmonds and Johnson [1973] showed that the mixed Chinese postman problem
in which each vertex has even total degree is polynomial-time solvable. (The total
degree of a vertex v is the total number of edges (directed and undirected) incident
with v.) Similarly, Guan and Pulleyblank [1985] and Win [1989] showed that the
windy postman problem is solvable in polynomial time if the graph is Eulerian (by
reduction to a minimum-cost circulation problem). More on the windy postman
can be found in Grötschel and Win [1992], Pearn and Li [1994], and Raghavachari
and Veerasamy [1999b].

For approximation algorithms for the mixed postman problem, see Frederick-
son [1979] and Raghavachari and Veerasamy [1998,1999a]. Further work on the
mixed postman problem is reported in Kappauf and Koehler [1979], Minieka [1979],
Brucker [1981], Christofides, Benavent, Campos, Corberán, and Mota [1984], Ralphs
[1993], and Nobert and Picard [1996].
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An extension of the Edmonds-Gallai decomposition to T -joins was given by
Sebő [1990b] (cf. Sebő [1986,1997]). Goemans and Williamson [1992,1995a] gave a
fast 2-approximative algorithm for finding a shortest T -join.

Benczúr and Fülöp [2000] give fast algorithms for finding minimum-size T -cut,
with generalization to directed graphs.

Tobin [1975] studied finding a negative-length circuit with Edmonds’ algorithm.
For more on packing T -joins, see Rizzi [1997]. For surveys on T -joins and T -cuts,
see Sebő [1988a] and Frank [1996a].

29.11g. On the history of the Chinese postman problem

In a paper in Chinese in Acta Mathematica Sinica, entitled (in translation) ‘Graphic
programming using odd or even points’, Guan [1960] introduced the problem of
finding a shortest postman route:

When the author was plotting a diagram for a mailman’s route, he discovered the
following problem: “A mailman has to cover his assigned segment before returning
to the post office. The problem is to find the shortest walking distance for the
mailman.”

(In a footnote it is mentioned that ‘In postal service, a mailman’s route is called a
segment’.) Next:

This problem can be reduced to the following: “Given a connected graph in the
plane, we are to draw a continuous graph (repetition permitted) from a given
point and back minimizing the number of repeated arcs.”

So Guan restricted himself to planar graphs. He observed that a postman never
has to traverse any edge more than twice. Hence the problem amounts to finding
a minimum-length set J of edges such that adding a parallel edge to each of them,
gives an Eulerian graph. He next gave an algorithm, which consist of starting with
any such set J , and next iteratively improving it by finding a circuit C such that
the length of J ∩ C is larger than half of the length of C, and replacing J by J△C.
As in each iteration the length of J decreases, the method finds a shortest route
after a finite number of steps.

In a review in Mathematical Reviews of the article of Guan [1960], Fulkerson
[1964a] observed:

Unfortunately, the construction involves examining all simple cycles to see whether
the minimality test is met or not, and this is easier said than done.

Therefore, Edmonds [1965e] announced a better method in an abstract for the
27th National Meeting of the Operations Research Society of America (May 1965
in Boston):

We present an algorithm which does not involve examining simple cycles. It is
“good” in the sense that the amount of work in applying it is at worst moderately
algebraic, relative to the size of the graph, rather than exponential. It combines
two earlier known algorithms: (1) the well-known “shortest path” algorithm, (2)
a recent algorithm for “maximum matching”.

The name of the problem seems to occur first in the title of this abstract: ‘The
Chinese Postman’s Problem’ (where ‘The Chinese’s Postman Problem’ would be
more appropriate).
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2-matchings, 2-covers, and
2-factors

The results on matchings are strongly self-refining, as was pointed out by
Tutte [1952,1954b] and Edmonds and Johnson [1970,1973]. In this chapter
we see a first instance of this phenomenon. By splitting vertices, results on
2-matchings can be derived from those on ordinary matchings. 2-matchings
are of interest for the traveling salesman problem.

30.1. 2-matchings and 2-vertex covers

Let G = (V, E) be an undirected graph. A 2-matching is a vector x ∈ ZE
+

satisfying x(δ(v)) ≤ 2 for each vertex v. A 2-vertex cover is a vector y ∈ ZV
+

such that yu + yv ≥ 2 for each edge uv of G. Defining the size of a vector as
the sum of its entries, we denote:

(30.1) ν2(G) := the maximum size of a 2-matching in G,
τ2(G) := the minimum size of a 2-vertex cover in G.

Note that

(30.2) τ2(G) = min{|V \ S| + |N(S)|
∣∣ S ⊆ V, S stable set},

since for a minimum-size 2-vertex cover y, the set S := {v ∈ V | yv = 0} is
a stable set, while N(S) = {v ∈ V | yv = 2}, and since χV \S + χN(S) is a
2-vertex cover for each stable set S.

Note also that

(30.3) ν(G) ≤ 1
2ν2(G) ≤ 1

2τ2(G) ≤ τ(G).

The following is a special case of a theorem of Gallai [1957,1958a,1958b] (cf.
Theorem 31.7), and can be derived from Kőnig’s matching theorem.

Theorem 30.1. ν2(G) = τ2(G) for any graph G. That is, the maximum size
of a 2-matching is equal to the minimum size of a 2-vertex cover.

Proof. Make for each vertex v of G a new vertex v′, and replace each edge uv
of G by two edges u′v and uv′. This makes the bipartite graph H. By Kőnig’s



Section 30.2. Fractional matchings and vertex covers 521

matching theorem (Theorem 16.2), H has a vertex cover C and a matching
M with |C| = |M |. For any edge e = uv of G let xe := |{u′v, uv′} ∩ M | and
for any vertex v of G let yv := |{v, v′} ∩ C|. Then x is a 2-matching and y is
a 2-vertex cover with x(E) = |M | = |C| = y(V ).

This construction was given by Nemhauser and Trotter [1975]. It also yields
a polynomial-time reduction of the problems of finding a maximum-size 2-
matching and a minimum-size 2-vertex cover to the problems of finding a
minimum-size matching and a maximum-size vertex cover in a bipartite graph
— hence these problems are polynomial-time solvable.

Call a 2-matching x perfect if x(δ(v)) = 2 for each vertex v. So a 2-
matching x is perfect if and only if x(E) = |V |. Theorem 30.1 implies a
characterization of the existence of a perfect 2-matching (Tutte [1952]):

Corollary 30.1a. Let G = (V, E) be a graph. Then G has a perfect 2-
matching if and only if |N(S)| ≥ |S| for each stable set S.

Proof. Directly from Theorem 30.1, since G has a perfect 2-matching ⇐⇒
ν2(G) ≥ |V | ⇐⇒ τ2(G) ≥ |V |. With (30.2), this last is equivalent to the
condition of the present corollary.

As finding a perfect 2-matching can be reduced to finding a maximum-size
2-matching, it is polynomial-time solvable.

30.2. Fractional matchings and vertex covers

Any vector x ∈ RE satisfying

(30.4) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≤ 1 for v ∈ V ,

is called a fractional matching. The maximum size x(E) of a fractional match-
ing is called the fractional matching number, denoted by ν∗(G). By linear
programming duality, ν∗(G) is equal to the fractional vertex cover number
τ∗(G) — the minimum size of a fractional vertex cover, which is any solution
y ∈ RV of

(30.5) (i) 0 ≤ yv ≤ 1 for v ∈ V ,
(ii) yu + yv ≥ 1 for uv ∈ E.

The equality ν∗(G) = τ∗(G) also follows from Theorem 30.1, since trivially

(30.6) 1
2ν2(G) ≤ ν∗(G) ≤ τ∗(G) ≤ 1

2τ2(G).

(An extension to infinite graphs was given by Aharoni and Ziv [1990].)
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30.3. The fractional matching polytope

Let G = (V, E) be a graph. The fractional matching polytope of G is the
polytope determined by (30.4). Balinski [1965] showed:

Theorem 30.2. Each vertex of the fractional matching polytope of G is half-
integer.

Proof. Let x be a vertex of the fractional matching polytope. We can assume
that xe > 0 for each edge e, since if xe = 0 we can apply induction to G − e.
Hence we can assume also that xe < 1 for each edge e; equivalently, that each
vertex of G has degree at least two.

As x is a vertex, there are |E| constraints among (30.4)(ii) satisfied with
equality. So |E| ≤ |V |, implying that G is 2-regular. Then xe = 1

2 for each
e ∈ E, as it is a solution to setting (30.4)(ii) to equality, and as the solution
must be unique (as x is a vertex).

Balinski [1965] also observed that the support of any vertex x of the
fractional matching polytope can be partitioned into a matching M , with
xe = 1 for e ∈ M , and a set of odd circuits, vertex-disjoint and disjoint from
M , with xe = 1

2 for each edge e in any of the odd circuits.

30.4. The 2-matching polytope

The 2-matching polytope of G is the convex hull of the 2-matchings in G. The-
orem 30.2 implies a characterization of the 2-matching polytope (Edmonds
[1965b]):

Corollary 30.2a. The 2-matching polytope is determined by:

(30.7) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≤ 2 for v ∈ V .

Proof. Directly from Theorem 30.2, since it implies that the vertices of the
polytope determined by (30.7) are integer, and hence are 2-matchings.

Given a graph G = (V, E), the perfect 2-matching polytope of G is the con-
vex hull of the perfect 2-matchings in G. As the perfect 2-matching polytope
is a face of the 2-matching polytope (if nonempty), Corollary 30.2a implies
(Edmonds [1965b]):

Corollary 30.2b. The perfect 2-matching polytope is determined by

(30.8) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) = 2 for v ∈ V .
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Proof. Directly from Corollary 30.2a.

Pulleyblank [1987] related the vertices of the 2-matching polytope with
the Edmonds-Gallai decomposition of the graph.

Similar results as for fractional matchings and 2-matchings hold for frac-
tional vertex covers and 2-vertex covers. We discuss them in Section 64.6.

30.5. The weighted 2-matching problem

Given a graph G = (V, E) and a weight function w ∈ QE , the weight of a 2-
matching x is wTx. The weighted 2-matching problem is strongly polynomial-
time solvable:

Theorem 30.3. A maximum-weight 2-matching can be found in time O(n3).

Proof. Make the bipartite graph H as in the proof of Theorem 30.1, with
weight function w′(u′v) := w′(uv′) := w(uv) for each edge uv of G. Then
a maximum-weight matching in the new graph gives a maximum-weight 2-
matching in the original graph. So Theorem 17.4 gives the present theorem.

One can derive similarly from Egerváry’s theorem a characterization of the
maximum weight of a 2-matching, given by Gallai [1957,1958a,1958b]. Given
w : E → Z+, call a vector y : V → Z+ a w-vertex cover if yu + yv ≥ w(e) for
each edge e = uv.

Theorem 30.4. Let G = (V, E) be a graph and let w ∈ ZE
+. Then the

maximum weight wTx of a 2-matching x is equal to the minimum size of a
2w-vertex cover.

Proof. It is easy to see that the maximum cannot be larger than the mini-
mum. To see equality, make the bipartite graph H as in the proof of Theorem
30.1, with weight w′(u′v) := w′(uv′) := w(uv) for each edge uv of G. Then the
maximum w-weight of a 2-matching in G is equal to the maximum w′-weight
of a matching in H. By Theorem 17.1, the latter is equal to the minimum
of y′(V ∪ V ′) where y′ : V ∪ V ′ → Z+ with y′(u) + y′(v′) ≥ w(uv) and
y′(u′)+ y′(v) ≥ w(uv) for each edge uv of G. Defining yv := y′

v + y′
v′ for each

v ∈ V , we obtain y as required.

System (30.7) is generally not totally dual integral: if G = (V, E) is the
complete graph K3 on three vertices, and w(e) := 1 for each e ∈ E, then the
maximum weight of a 2-matching is equal to 3, while there is no integer dual
solution of odd value (when considering the dual of maximizing wTx subject
to (30.7)).
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However, half-integrality holds:

Corollary 30.4a. System (30.7) is totally dual half-integral.

Proof. This is equivalent to Theorem 30.4.

Pulleyblank [1973,1980] showed that (30.7) can be extended to a TDI
system as follows:

Corollary 30.4b. The following system is totally dual integral:

(30.9) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≤ 2 for v ∈ V ,
(iii) x(E[U ]) ≤ |U | for U ⊆ V .

Proof. Choose w ∈ ZE
+. By Corollary 30.4a, the problem of maximizing wTx

over (30.7) has an optimum dual solution y ∈ 1
2ZV

+. Let y′
v := ⌊yv⌋ and

T := {v ∈ V | yv �∈ Z}. Let zT := 1 and zU := 0 for each U ⊆ V with U �= T .
Then y′, z is an integer optimum dual solution of the problem of maximizing
wTx over (30.9).

Corollary 30.4a gives the total dual half-integrality of the perfect 2-
matching constraints (30.8):

Corollary 30.4c. System (30.8) is totally dual half-integral.

Proof. Directly from Corollary 30.4a.

More strongly, one has:

Corollary 30.4d. Let w ∈ ZE with w(C) even for each circuit C. Then the
problem of minimizing wTx subject to (30.8) has an integer optimum dual
solution.

Proof. As w(C) is even for each circuit, there is a subset U of V with
{e ∈ E | w(e) odd} = δ(U). Now replace w by w′ := w +

∑
v∈U χδ(v). Then

w′(e) is an even integer for each edge e. Hence by Corollary 30.4c there is
an integer optimum dual solution y′

v (v ∈ V ) for the problem of minimizing

w′Tx subject to (30.8). Now setting yv := y′
v − 1 if v ∈ U and yv := y′

v if
v �∈ U gives an integer optimum dual solution y for w.

30.5a. Maximum-size 2-matchings and maximum-size matchings

Uhry [1975] gave the following relation between maximum-size 2-matchings and
maximum-size matchings:
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Theorem 30.5. For each maximum-size 2-matching x in a graph G, there exists a
maximum-size matching M missing each vertex v with x(δ(v)) = 0.

Proof. Let x be a maximum-size 2-matching in G and let M be a maximum-size
matching covering a minimum number of vertices v with x(δ(v)) = 0. Suppose that
M covers a vertex u with x(δ(u)) = 0. To prove the theorem, we can assume that x
has inclusionwise minimal support. This implies that the edges e with xe = 1 form
a collection of vertex-disjoint odd circuits.

Let N be the matching consisting of those edges e with xe = 2. Let P be the
component of M ∪ N containing u. Then P is a path starting at u, and ending
at, say, w. If P has even length, then M△P is a maximum-size matching covering
fewer vertices v with x(δ(v)) = 0 than M does — a contradiction. So P has odd
length, and hence, since x is a maximum-size 2-matching, w belongs to the vertex
set of some odd circuit C consisting of edges e with xe = 1. However, in that case
we can augment x, by redefining xe := 0 if e ∈ P ∩ N , xe := 2 if e ∈ P ∩ M , and
xe := 0 or 2 alternatingly on the edges of C.

Uhry [1975] (cf. Pulleyblank [1987]) related maximum-size 2-matchings and
maximum-size matchings further by:

Theorem 30.6. Let x be a maximum-size 2-matching with the set {e | xe = 1}
inclusionwise minimal. Then the support of x contains a maximum-size matching
M of G.

Proof. As the set F := {e | xe = 1} is inclusionwise minimal, it forms a collection
C of vertex-disjoint odd circuits. So x(δ(v)) = 0 or 2 for each vertex v. By Theorem
30.5, we can assume that x(δ(v)) = 2 for each v ∈ V , since deleting all vertices v
with x(δ(v)) = 0 does not decrease the maximum size of a matching.

Let M be a maximum-size matching containing a minimum number of edges
e with xe = 0. Let N be the matching consisting of those edges e with xe = 2.
Consider any component P of M ∪ N . Then P is not a circuit or an even path of
positive length, since otherwise M△P is a maximum-size matching having fewer
edges e with xe = 0 than M has — a contradiction. So if P is not a singleton, it is
a path of odd length; let it connect vertices u and w. Since P is not M -augmenting,
both u and w are vertices on odd circuits in C, say on Cu and Cw respectively. If
Cu �= Cw, we can modify x so as to decrease the set of edges e with xe = 1. So
Cu = Cw.

It follows that each C ∈ C contains an even number of vertices covered by M ,
and hence an odd number of vertices missed by M . Hence

(30.10) 2|M | ≤ |V | − |C| = 2|N | +
∑

C∈C

(|C| − 1).

Therefore, by augmenting N with a matching of size 1
2
(|C| − 1) contained in C,

for each circuit C ∈ C, we obtain a matching M ′ with |M ′| ≥ |M | contained in the
support of x.

(Theorem 30.6 was generalized in (30.88).) Related results were obtained by Balas
[1981].
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Mühlbacher, Steinparz, and Tinhofer [1984] showed that if x is a vertex of the 2-
matching polytope maximizing |{e ∈ E | xe = 2}|, then the vector (i3(x), i5(x), . . .)
is lexicographically maximal, where ik(x) is the number of circuits in the support
of x of size k. For related work, see Mühlbacher [1979] and Hell and Kirkpatrick
[1981].

30.6. Simple 2-matchings and 2-factors

Call a 2-matching x simple if x is a 0,1 vector. So we can identify simple
2-matchings with subsets F of E satisfying degF (v) ≤ 2 for each v ∈ V .

A construction of Tutte [1954b] gives the following characterization of
the maximum size of a simple 2-matching, with the help of the Tutte-Berge
formula (E[K, S] denotes the set of edges connecting K and S):

Theorem 30.7. Let G = (V, E) be a graph. The maximum size of a simple
2-matching is equal to the minimum value of

(30.11) |V | + |U | − |S| +
∑

K

⌊ 1
2 |E[K, S]|⌋,

where U and S are disjoint subsets of V , with S a stable set, and where K
ranges over the components of G − U − S.

Proof. To see that the maximum is not more than the minimum, let F be
a simple 2-matching and let U and S be disjoint subsets of V , with S a
stable set. Then F has at most 2|U | edges incident with U . Moreover, for
each component K of G−U −S, the number of edges in F spanned by K ∪S
is at most |K| + ⌊ 1

2 |E[K, S]|⌋, since

(30.12) 2|F ∩ E[K ∪ S]| = 2|F ∩ E[K]| + 2|F ∩ E[K, S]|
≤ 2|F ∩ E[K]| + |F ∩ E[K, S]| + |E[K, S]| ≤ 2|K| + |E[K, S]|.

Hence

(30.13) |F | ≤ 2|U | +
∑

K

(|K| + ⌊ 1
2 |E[K, S]|⌋)

(where K ranges over the components of G−U −S), giving that F is at most
(30.11).

To see the reverse inequality, make a graph G′ = (V ′, E′) as follows. For
each vertex v of G, introduce vertices v′ and v′′ of G′. For each edge e = uv
of G, introduce vertices pe,u and pe,v and edges

(30.14) u′pe,u, u′pe,u, pe,upe,v, v′pe,v, v′′pe,v.

This defines all vertices and edges of G′.
Now:

(30.15) νs
2(G) = ν(G′) − |E|,
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where ν(G′) denotes the maximum size of a matching in G′ and νs
2(G) denotes

the maximum size of a simple 2-matching in G. In this proof we only need ≥
in (30.15). This inequality holds as there is a maximum-size matching M in
G′ with the property that for each edge e = uv of G, both vertices pe,u and
pe,v of G′ are covered by M . Then the edges e of G for which edge pe,upe,v

does not belong to M , form a simple 2-matching N in G with |N | = |M |−|E|.
So we have ≥ in (30.15).

By the Tutte-Berge formula (Theorem 24.1), there is a subset X of V ′

such that the number o(G′ − X) of odd components of G′ − X is at least
|V ′| − 2ν(G′) + |X|. We take X inclusionwise minimal with this property.

Then for each v ∈ V , if one of v′, v′′ does not belong to X, then both
do not belong to X. For suppose v′ ∈ X and v′′ �∈ X. As v′ and v′′ have
the same set of neighbours in G′, removing v′ from X, decreases X by 1 and
decreases the number of odd components of o(G′ − X) by at most one. So
we would obtain a smaller set X as required, contradicting the minimality
assumption.

Consider any vertex v of G and any edge e = uv of G with pe,v ∈ X.
Then the three neighbours of pe,v in G′ belong to three different odd com-
ponents of G′ − X. (Otherwise, removing pe,v from X decreases X by 1, and
decreases o(G′ −X) be at most 1, contradicting the minimality of X.) Hence
pe,u, v′, v′′ �∈ X, and moreover pf,v ∈ X for each edge f of G incident with v.

Let U be the set of v ∈ V for which v′, v′′ ∈ X and let S be the set of
v ∈ V for which pe,v ∈ X for each edge e of G incident with v. So U and S
are disjoint, and S is a stable set.

Then |X| = 2|U | + |δ(S)|. Let κ denote the number of components K of
G − U − S with |E[K, S]| odd. Then

(30.16) o(G′ − X) = 2|S| + |E[U, S]| + κ.

Hence we have

(30.17) νs
2(G) ≥ ν(G′) − |E| ≥ 1

2 (|V ′| + |X| − o(G′ − X)) − |E|
= |V | + |U | + 1

2 |δ(S)| − |S| − 1
2 |E[U, S]| − 1

2κ

= |V | + |U | − |S| +
∑

K

⌊ 1
2 |E[K, S]|⌋

(where K ranges over the components of G − U − S), as required.

A 2-factor is a simple perfect 2-matching. Equivalently, it is a subset F
of E with degF (v) = 2 for each v ∈ V .

Theorem 30.7 implies the following result of Belck [1950] (also Gallai
[1950] announced a characterization of the existence of a 2-factor):

Corollary 30.7a. A graph G = (V, E) has a 2-factor if and only if

(30.18) |S| ≤ |U | +
∑

K

⌊ 1
2 |E[K, S]|⌋
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for each pair of disjoint subsets U, S of V , with S a stable set, where K ranges
over the components of G − U − S.

Proof. Directly from Theorem 30.7.

This implies a classical result of Petersen [1891]:

Corollary 30.7b. Each 2k-regular graph has a 2-factor.

Proof. Let G = (V, E) be 2k-regular. We check (30.18). Let U and S be
disjoint subsets of V , with S a stable set. Let l be the number of components
K of G−U −S with |E[K, S]| odd. Then for each such component K we have
|E[K, U ]| ≥ 1 (since G is Eulerian). Hence |E[U, S]| ≤ 2k|U | − l. Therefore,

(30.19) 2k|S| = |δ(S)| = |E[U, S]| +
∑

K

|E[K, S]|

≤ 2k|U | − l +
∑

K

|E[K, S]| = 2k|U | +
∑

K

2⌊ 1
2 |E[K, S]|⌋

≤ 2k(|U | +
∑

K

⌊ 1
2 |E[K, S]|⌋)

(where K ranges over the components of G−U −S), and (30.18) follows.

The construction above gives also a reduction of finding a maximum-
weight simple 2-matching to finding a maximum-weight matching — hence it
can be done in strongly polynomial time. This implies that also a minimum-
weight 2-factor can be found in strongly polynomial time.

(Grötschel and Holland [1987] gave computational results on a cutting
plane method to find a minimum-weight 2-factor.)

30.7. The simple 2-matching polytope and the 2-factor
polytope

Given a graph G = (V, E), the simple 2-matching polytope is the convex hull
of the simple 2-matchings in G. It can be characterized as follows (Edmonds
[1965b]):

Theorem 30.8. The simple 2-matching polytope is determined by

(30.20) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≤ 2 (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≤ |U | + ⌊ 1

2 |F |⌋ (U ⊆ V, F ⊆ δ(U),
F matching, |F | odd).

Proof. It is easy to show that each simple 2-matching x satisfies (30.20).
Condition (iii) follows from
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(30.21) x(E[U ]) + x(F ) ≤ x(E[U ]) + 1
2x(δ(U)) + 1

2x(F ) ≤ |U | + 1
2 |F |

if x is a simple 2-matching.
To show that (30.20) is enough to determine the simple 2-matching poly-

tope, we first show that (30.20) implies an extended version of (30.20)(iii),
where we delete the condition that F be a matching. This can be seen by
induction on |F |. Indeed, suppose that F contains edges f1, f2 incident with
a vertex v. Let F ′ := F \ {f1, f2}. Then, if v ∈ U , setting U ′ := U \ {v}:

(30.22) x(E[U ]) + x(F ) ≤ x(E[U ′]) + x(F ′) + x(δ(v)) ≤ |U ′| + 1
2 |F ′| + 2

= |U | + 1
2 |F |.

If v �∈ U , setting U ′ := U ∪ {v}:

(30.23) x(E[U ]) + x(F ) ≤ x(E[U ′]) + x(F ′) ≤ |U ′| + 1
2 |F ′| = |U | + 1

2 |F |.

So we can delete in (iii) the requirement that F be a matching.
We now prove that the conditions determine the simple 2-matching poly-

tope. Let G′ = (V ′, E′) be as in the proof of Theorem 30.7. Let x satisfy
(30.20). Define x′ ∈ RE′

by

(30.24) x′(u′pe,u) := x′(u′′pe,u) := x′(v′pe,v) := x′(v′′pe,v) := 1
2xe and

x′(pe,upe,v) := 1 − xe,

for any edge e = uv of G. We show that x′ belongs to the matching polytope
of G′.

That is, by Edmonds’ matching polytope theorem (Corollary 25.1a), we
should check

(30.25) (i) x′(e′) ≥ 0 for e′ ∈ E′,
(ii) x′(δ′(v′)) ≤ 1 for v′ ∈ V ′,
(iii) x′(E′[Y ]) ≤ ⌊ 1

2 |Y |⌋ for Y ⊆ V ′ with |Y | odd,

where δ′ := δG′ and where E′[Y ] is the set of edges in E′ spanned by Y .
Trivially we have (30.25)(i) and (ii) by (30.20)(i) and (ii). To prove

(30.25)(iii), let Y violate (30.25)(iii). We first show that if one of v′, v′′ be-
longs to Y , then both belong to Y . For suppose that v′ ∈ Y and v′′ �∈ Y . Let
Y1 := Y \ {v′} and Y2 := Y ∪ {v′′}. Then

(30.26) x′(E′[Y ]) = 1
2 (x′(E′[Y1]) + x′(E′[Y2])) ≤ x′(E′[Y1]) + 1

2x′(δ′(Y1))

= 1
2

∑

u∈Y1

x′(δ′(u)) ≤ 1
2 |Y1| = ⌊ 1

2 |Y |⌋,

a contradiction.
We choose Y with |Y | + |δ′(Y )| minimal. Then:

(30.27) (i) if u′, v′ ∈ Y , then pe,u ∈ Y and pe,v ∈ Y ,
(ii) if pe,u ∈ Y , then u′ ∈ Y .

To see (30.27)(i), first suppose that u′, v′ ∈ Y and pe,u �∈ Y . Define Y ′ :=
Y ∪ {pe,u, pe,v}. Then |Y ′| + |δ′(Y ′)| < |Y | + |δ′(Y )|, and hence Y ′ satisfies
inequality (30.25)(iii). Therefore,
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(30.28) x′(E′[Y ]) ≤ x′(E′[Y ′]) − x′(δ′(pe,u)) ≤ ⌊ 1
2 |Y ′|⌋ − 1 ≤ ⌊ 1

2 |Y |⌋.

This contradicts our assumption that Y violates (30.25)(iii).
To see (30.27)(ii), let pe,u ∈ Y and u′ �∈ Y . Define Y ′ := Y \ {pe,u, pe,v}.

Again |Y ′| + |δ′(Y ′)| < |Y | + |δ′(Y )|, and hence Y ′ satisfies inequality
(30.25)(iii). If pe,v �∈ Y , then

(30.29) x′(E′[Y ]) = x′(E′[Y ′]) ≤ ⌊ 1
2 |Y ′|⌋ ≤ ⌊ 1

2 |Y |⌋.

If pe,v ∈ Y , then

(30.30) x′(E′[Y ]) ≤ x′(E′[Y ′]) + x′(δ′(pe,v)) ≤ ⌊ 1
2 |Y ′|⌋ + 1 = ⌊ 1

2 |Y |⌋.

Both (30.29) and (30.30) contradict our assumption that Y does not satisfy
(30.25)(iii). This proves (30.27).

Let U := {v ∈ V | v′, v′′ ∈ Y } and let F be the set of those edges
e = uv in δ(U) with u ∈ U , v �∈ U , and pe,u ∈ Y . Then x′(E′[Y ]) =
x(E[U ]) + |E[U ]| + x(F ) and |Y | = 2|U | + 2|E[U ]| + |F |. Hence (30.20)(iii)
implies (30.25)(iii).

So x′ is a convex combination of incidence vectors of matchings in G′.
Each such vector y satisfies y(δ′(v′)) = 1 for each vertex v′ = pe,u (as x′

satisfies this equality). Hence each such matching corresponds to a simple 2-
matching in G, and we obtain x as convex combination of simple 2-matchings
in G.

Given a graph G = (V, E), the 2-factor polytope is the convex hull of (the
incidence vectors of) 2-factors in G. Then:

Corollary 30.8a. The 2-factor polytope is determined by

(30.31) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) = 2 (v ∈ V ),
(iii) x(δ(U) \ F ) − x(F ) ≥ 1 − |F | (U ⊆ V , F ⊆ δ(U),

F matching, |F | odd).

Proof. Directly from Theorem 30.8, since (30.31)(ii) implies x(E[U ]) = |U |−
1
2x(δ(U)).

Notes. Grötschel [1977a] characterized the facets of the simple 2-matching polytope
and of the 2-factor polytope of the complete graph Kn. Rispoli and Cosares [1998]
showed that the diameter of the 2-factor polytope of a complete graph is at most
6. Rispoli [1994] showed that the ‘monotonic diameter’ of the 2-factor polytope is
equal to ⌊ 1

2
n⌋ if n ≥ 5 and n �= 8, 9, and to ⌊ 1

2
n⌋ − 1 if n = 3, 4, 8, 9.

Boyd and Carr [1999] showed that if G = (V, E) is a complete graph and
l : E → R+ satisfies the triangle inequality, then the minimum value of lTx over
(30.31) is at most 4

3
times the minimum value of lTx over (30.31)(i)(ii). They also

show that the factor 4
3

is best possible.
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30.8. Total dual integrality

Consider the system

(30.32) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≤ 2 (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≤ |U | + ⌊ 1

2 |F |⌋ (U ⊆ V, F ⊆ δ(U),
F matching).

(So |F | is not required to be odd.)
It is a special case of Theorem 32.3 (cf. Cook [1983b]) that system (30.32)

is TDI (the restriction in (30.32) that F is a matching follows from (30.22)
and (30.23)). This implies that (30.31) is totally dual half-integral. This also
gives:

(30.33) Let w ∈ ZE with w(C) even for each circuit C. Then the problem
of minimizing wTx subject to (30.31) has an integer optimum dual
solution.

To see this, notice that if w(C) is even for each circuit, there is a subset U of
V with {e ∈ E | w(e) odd} = δ(U). Now replace w by w′ := w +

∑
v∈U χδ(v).

Then w′(e) is an even integer for each edge e. Hence there is an integer

optimum dual solution y′
v (v ∈ V ), for the problem of minimizing w′Tx

subject to (30.31). Now setting yv := y′
v − 1 if v ∈ U and yv := y′

v if v �∈ U
gives an integer optimum dual solution for w.

30.9. 2-edge covers and 2-stable sets

Let G = (V, E) be an undirected graph. A 2-edge cover is a vector x ∈ ZE
+

satisfying x(δ(v)) ≥ 2 for each vertex v. A 2-stable set is a vector y ∈ ZV
+

such that yu + yv ≤ 2 for each edge uv of G. Defining the size of a vector as
the sum of its entries, we denote:

(30.34) ρ2(G) := the minimum size of a 2-edge cover in G,
α2(G) := the maximum size of a 2-stable set in G.

Note that if G has no isolated vertices, then:

(30.35) α2(G) = max{|V | + |U | − |N(U)|
∣∣ U ⊆ V, U stable set}

and that

(30.36) α(G) ≤ 1
2α2(G) ≤ 1

2ρ2(G) ≤ ρ(G).

Gallai’s theorem (Theorem 19.1) can be extended to 2-matchings and
2-stable sets, which was published also in Gallai [1959a]:

Theorem 30.9. For any graph G = (V, E) without isolated vertices:
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(30.37) α2(G) + τ2(G) = ν2(G) + ρ2(G) = 2|V |.

Proof. Let x be a minimum-size 2-vertex cover. Then xv ≤ 2 for each vertex
v. Define yv := 2 − xv for each vertex v. Then y is a 2-stable set, and hence
α2(G) ≥ y(V ) = 2|V | − x(V ) = 2|V | − τ2(G).

Conversely, let y be a maximum-size 2-stable set. Then yv ≤ 2 for each
vertex v. Define xv := 2 − yv for each vertex v. Then x is a 2-vertex cover,
and hence τ2(G) ≤ x(V ) = 2|V | − y(V ) = 2|V | − α2(G). This shows that
α2(G) + τ2(G) = 2|V |.

To see that ν2(G) + ρ2(G) = 2|V |, let x be a minimum-size 2-edge cover.
For each v ∈ V , reduce x(δ(v)) by x(δ(v)) − 2, by reducing xe on edges
e ∈ δ(v). We obtain a 2-matching y of size

(30.38) y(E) ≥ x(E) −
∑

v∈V

(x(δ(v)) − 2) = 2|V | − x(E) = 2|V | − ρ2(G).

Hence ν2(G) ≥ 2|V | − ρ2(G).
Conversely, let y be a maximum-size 2-matching. For each v ∈ V , increase

y(δ(v)) by 2−y(δ(v)), by increasing ye on edges e ∈ δ(v). We obtain a 2-edge
cover x of size

(30.39) x(E) ≤ y(E) +
∑

v∈V

(2 − y(δ(v))) = 2|V | − y(E) = 2|V | − ν2(G).

Hence ρ2(G) ≤ 2|V | − ν2(G).

This implies the following, which is a special case of a theorem of Gallai
[1957,1958a,1958b] (cf. Theorem 30.11) (and can be derived alternatively
from the Kőnig-Rado edge cover theorem):

Corollary 30.9a. α2(G) = ρ2(G) for any graph G without isolated vertices.
That is, the maximum size of a 2-stable set is equal to the minimum size of
a 2-edge cover.

Proof. Directly from Theorems 30.1 and 30.9.

These reductions also imply the polynomial-time solvability of the prob-
lems of finding a minimum-size 2-edge cover and a maximum-size 2-stable
set.

30.10. Fractional edge covers and stable sets

Any vector x ∈ RE satisfying

(30.40) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≥ 1 for v ∈ V ,
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is called a fractional edge cover. The minimum size x(E) of a fractional edge
cover is called the fractional edge cover number and is denoted by ρ∗(G). By
linear programming duality, ρ∗(G) is equal to the fractional stable set number
α∗(G) — the maximum size of a fractional stable set, which is any solution
y ∈ RV of

(30.41) (i) 0 ≤ yv ≤ 1 for v ∈ V ,
(ii) yu + yv ≤ 1 for uv ∈ E.

The equality ρ∗(G) = α∗(G) also follows from Corollary 30.9a, since trivially

(30.42) 1
2ρ2(G) ≥ ρ∗(G) ≥ α∗(G) ≥ 1

2α2(G).

30.11. The fractional edge cover polyhedron

Let G = (V, E) be a graph. The fractional edge cover polyhedron of G is the
polyhedron determined by (30.40). Balinski [1965] showed:

Theorem 30.10. Each vertex of the fractional edge cover polyhedron of G
is half-integer.

Proof. Let x be a vertex of the fractional edge cover polyhedron. We can
assume that xe > 0 for each edge e, since if xe = 0 we can apply induction to
G − e. Moreover, we can assume that G is connected and has at least three
vertices.

As x is a vertex, there are |E| constraints among (30.40)(ii) satisfied with
equality. Define U := {v | x(δ(v)) = 1}. So |E| ≤ |V |. If there exists an end
vertex v in U , with neighbour u say, then u ∈ U and there is no other edge
incident with u (otherwise it would have xe = 0), implying the theorem. So
no such end vertex exists.

If G is a tree, then there is at most one vertex w with x(δ(w)) �= 1,
implying the existence of an end vertex v and a neighbour u of v with u, v ∈ U .

So G is not a tree, and hence |E| = |V | and U = V . Since G has no end
vertex, G is a circuit. Then 1

2 · 1 satisfies all constraints that x satisfies. So
x = 1

2 · 1, as x is a vertex.

30.12. The 2-edge cover polyhedron

Theorem 30.10 implies a characterization of the 2-edge cover polyhedron of
G, which is, by definition, the convex hull of the 2-edge covers in G:

Corollary 30.10a. The 2-edge cover polyhedron is determined by
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(30.43) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≥ 2 for v ∈ V .

Proof. Directly from Theorem 30.10, since it implies that the vertices of the
polyhedron determined by (30.43) are integer, and hence 2-edge covers.

Similar results as for fractional edge covers and 2-edge covers hold for
fractional stable sets and 2-stable sets. We discuss them in Section 64.5.

30.13. Total dual integrality of the 2-edge cover
constraints

Finding a minimum-weight 2-edge cover is easily reduced to the minimum-
weight edge cover problem, by splitting vertices. Gallai [1957,1958a,1958b]
characterized the minimum weight as follows. Given w : E → Z+, a w-stable
set is a function y : V → Z+ with yu + yv ≤ w(e) for each edge e = uv.

Theorem 30.11. Let G = (V, E) be a graph without isolated vertices and let
w ∈ ZE

+. Then the minimum weight wTx of a 2-edge cover x is equal to the
maximum size of a 2w-stable set.

Proof. From Egerváry’s theorem (Theorem 17.1).

This is equivalent to the following result:

Corollary 30.11a. System (30.43) is totally dual half-integral.

Proof. Choose w ∈ ZE
+. Then the minimum weight wTx of a 2-edge cover is

equal to

(30.44) max{2y(V ) | y ∈ 1
2ZV

+, yu + yv ≤ w(e) for each e = uv ∈ E},

by Theorem 30.11.

System (30.43) can be extended to a TDI system as follows:

Corollary 30.11b. The following system is totally dual integral:

(30.45) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≥ 2 for v ∈ V ,
(ii) x(E[U ] ∪ δ(U)) ≥ |U | for U ⊆ V .

Proof. Choose w ∈ ZE
+. By Corollary 30.11a, the problem of minimizing wTx

over (30.43) has an optimum dual solution y ∈ 1
2ZV

+. Define y′
v := ⌊yv⌋ for

v ∈ V , and T := {v ∈ V | yv �∈ Z}. Define zT := 1 and zU := 0 for each
U ⊆ V with U �= T . Then y′, z is an integer optimum dual solution for the
problem of minimizing wTx over (30.45).
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30.14. Simple 2-edge covers

Call a 2-edge cover x simple if x is a 0,1 vector. Thus we can identify simple
2-edge covers with subsets F of E satisfying degF (v) ≥ 2 for each v ∈ V . A
2-edge cover exists if and only if all degrees are at least 2. Define

(30.46) νs
2(G) := the maximum size of a simple 2-matching,

ρs
2(G) := the minimum size of a simple 2-edge cover.

Again there is a relation between νs
2(G) and ρs

2(G) similar to Gallai’s theorem
(Theorem 19.1):

Theorem 30.12. For any graph G = (V, E) of minimum degree at least 2
one has:

(30.47) νs
2(G) + ρs

2(G) = 2|V |.

Proof. Let M be a maximum-size simple 2-matching. For each v ∈ V , add
to M 2 − degM (v) edges incident with v. We can do this in such a way that
we obtain a simple 2-edge cover F with

(30.48) |F | ≤ |M | +
∑

v∈V

(2 − degM (v)) = 2|V | − |M |.

So ρs
2(G) ≤ 2|V | − |M | = 2|V | − νs

2(G).
To see the reverse inequality, let F be a minimum-size simple 2-edge cover.

For each v ∈ V , delete from F degF (v) − 2 edges incident with v. We obtain
a simple 2-matching M with

(30.49) |M | ≥ |F | −
∑

v∈V

(degF (v) − 2) = 2|V | − |F |.

So νs
2(G) ≥ 2|V | − |F | = 2|V | − ρs

2(G), which shows (30.47).

This implies a min-max relation for minimum-size simple 2-edge cover:

Corollary 30.12a. Let G = (V, E) be a graph of minimum degree at least
2. Then the minimum size of a simple 2-edge cover is equal to the maximum
value of

(30.50) |V | − |U | + |S| −
∑

K

⌊ 1
2 |E[K, S]|⌋,

where U and S are disjoint subsets of V , with S a stable set, and where K
ranges over the components of G − U − S.

Proof. Directly from Theorems 30.7 and 30.12.

These reductions also imply the polynomial-time solvability of the prob-
lem of finding a minimum-size simple 2-edge cover.
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Given a graph G = (V, E), the simple 2-edge cover polytope is the convex
hull of the simple 2-edge covers in G. A special case of Theorem 34.9 below
is that the simple 2-edge cover polytope is determined by

(30.51) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≥ 2 (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≥ |U | + ⌈ 1

2 |F |⌉ (U ⊆ V, F ⊆ δ(U),
|F | odd).

We refer to Theorem 34.10 for the total dual integrality of the following
system (Cook [1983b]):

(30.52) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≥ 2 (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≥ |U | + ⌈ 1

2 |F |⌉ (U ⊆ V, F ⊆ δ(U)).

Theorem 34.11 implies that a minimum-weight simple 2-edge-cover can
be found in strongly polynomial time.

30.15. Graphs with ν(G) = τ (G) and α(G) = ρ(G)

Kőnig’s matching theorem states that the matching number ν(G) is equal
to the vertex cover number τ(G) for each bipartite graph G. A graph G
therefore is said to have the Kőnig property if ν(G) = τ(G). Deming [1979b]
and Sterboul [1979] characterized the class of graphs with the Kőnig property.

Note that by Gallai’s theorem (Theorem 19.1), for any graph G without
isolated vertices:

(30.53) ν(G) = τ(G) ⇐⇒ α(G) = ρ(G)

(where α(G) and ρ(G) denote the stable set and edge cover number of G,
respectively).

edge in M

edge not in M

v1v2

vi vi+1 vj

vj+1

vt+i−jv0
= vt

Figure 30.1
An M -posy

The two circuits may intersect.
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To characterize graphs G with ν(G) = τ(G), Sterboul defined, for any
graph G = (V, E) and any matching M in G, an M -posy to be an even-
length M -alternating closed walk (v0, v1, . . . , vt), with vi−1vi ∈ M if i is
even, such that there exist i < j with i odd and j even, v1, . . . , vj all distinct,
vj+1, . . . , vt all distinct, and

(30.54) vi = vt, vi+1 = vt−1, . . . , vj = vt+i−j .

Lemma 30.13α. If there exists an even-length M -alternating closed walk
C = (v0, v1, . . . , vt) with vi = vj for i, j of different parity, then there exists
an M -posy.

Proof. Let C be a shortest such closed walk, covering a minimum number
of edges (in this order of priority). Then

(30.55) there exist no three distinct h, i, k ≥ 1 with vh = vi = vk,

since otherwise we may assume that h and i have the same parity. Leaving
out one of the vh − vi parts of C gives a shorter such closed walk.

Choose h, i of different parity with vh = vi and with |h − i| minimal. We
may assume that h = 0 and that v0v1 �∈ M . Choose j, k ≥ i of different parity
with vj = vk and j < k, and with k − j minimal. (Such j, k exist, as vi = vt.)
Then j is even and k is odd, since otherwise vj+1 = vk−1 (as it is the vertex
matched to vj = vk). Moreover, j − i = t − k and

(30.56) vi = vt, vi+1 = vt−1, . . . , vj = vk.

Otherwise, resetting the vk − vt part of C to the vj − vi part of C−1 or
conversely, we obtain again a shortest such closed walk, however covering a
fewer number of edges, a contradiction.

Then C is an M -posy, since v1, . . . , vj are all distinct and vj+1, . . . , vt are
all distinct. If say va = vb with 1 ≤ a < b ≤ j, then b ≤ i (since otherwise
va = vb = vl for some l > b, contradicting (30.55)). So by the minimality
of |h − i|, a ≡ b (mod 2). Hence, deleting the va − vb part from C gives a
shortest such walk, a contradiction.

This is used in proving:

Theorem 30.13. Let G = (V, E) be a graph. Then the following are equiva-
lent:

(30.57) (i) G has the Kőnig property, that is ν(G) = τ(G);
(ii) for some maximum-size matching M there is no M -flower and

no M -posy;
(iii) for each maximum-size matching M there is no M -flower and

no M -posy.

Proof. The implication (iii)⇒(ii) is trivial, and the implication (i)⇒(iii) is
easy: suppose ν(G) = τ(G), let M be a maximum-size matching and let U
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be a minimum-size vertex cover. Then each edge in M has exactly one vertex
in U . Suppose that P = (v0, . . . , vt) is an M -flower or an M -posy. Then for
each odd k, exactly one of vk and vk+1 belongs to U , while for each even k
at least one of vk and vk+1 belongs to U . If vt �∈ U , then vk ∈ U for each
even k. Since vt = vj for some even j, it follows that vt ∈ U . If v0 �∈ U , then
vk ∈ U for each odd k. Since vj ∈ U and j is even, we have v0 ∈ U . So v0

is covered by M , and hence P is an M -posy. So v0 = vi for some odd i. So
vi ∈ U for some odd i, a contradiction.

It remains to prove (ii)⇒(i). Let M be a maximum-size matching in G
and let X be the set of vertices missed by M . Then there is no M -alternating
X − X walk (since M has maximum size and since there is no M -flower
(cf. Theorem 24.3)). Let U be the set of vertices v for which there is an
M -alternating X − v walk and let Z be the set of vertices v for which there
exists an odd-length M -alternating X − v walk. Then Z intersects each edge
intersecting U , while |Z| is equal to the number of edges in M contained in
U .

So we can apply induction to G − U if U �= ∅. Hence we may assume
that U = ∅. Equivalently, X = ∅, that is, M is a perfect matching. Choose
e = uv ∈ M . By Lemma 30.13α, G − u has no M \ {e}-flower or G − v
has no M \ {e}-flower. By symmetry, we may assume that G − v has no
M \ {e}-flower. Since G has no M -posy, G − v has no M \ {e}-posy. Hence,
by induction:

(30.58) ν(G) = ν(G − v) + 1 = τ(G − v) + 1 ≥ τ(G).

Hence ν(G) = τ(G).

This implies a characterization due to Lovász [1974] ((i)⇔(ii) below) and
Lovász and Plummer [1986] ((i)⇔(iii) below), based on the minimum size
τ2(G) of a 2-vertex cover studied in Section 30.1:

Corollary 30.13a. For any graph G, the following are equivalent:

(30.59) (i) ν(G) = τ(G),
(ii) τ2(G) = 2τ(G),
(iii) the edges e for which there exists a maximum-size 2-matching

x with xe ≥ 1, form a bipartite graph.

Proof. The implication (i)⇒(ii) follows from (30.3). To see (ii)⇒(iii), let U
be a minimum-size vertex cover and let x be a maximum-size 2-matching.
Then, using Theorem 30.1,

(30.60) τ2(G) = ν2(G) =
∑

e∈E

xe ≤
∑

e∈E

xe|e ∩ U | =
∑

v∈U

x(δ(v)) ≤ 2|U |

= 2τ(G),

and hence we have equality throughout. So e ∈ δ(U) if xe ≥ 1. As this is true
for each maximum-size 2-matching x, we have (iii).
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We finally show (iii)⇒(i), which we derive from Theorem 30.13. Suppose
that (iii) holds, and let M be a maximum-size matching. If there would exist
any M -flower or M -posy, then we can find a 2-matching of size at least 2|M |
such that M and the support of the 2-matching contains an odd circuit. For
an M -flower this is trivial. For an M -posy (v0, . . . , vt), let

(30.61) x := 2χM −
t∑

h=1

(−1)hχvh−1vh .

Then x is a 2-matching of size 2|M |. However, the support of x together with
M contains an odd circuit. This contradicts (iii).

Note that characterization (iii) can be checked in polynomial time. By
Theorem 30.9 and its proof method, we know that (i), (ii), and (iii) are also
equivalent to each of:

(30.62) (iv) α(G) = ρ(G),
(v) α2(G) = 2α(G),
(vi) the edges e for which there exists a minimum-size 2-edge cover

x with xe ≥ 1, form a bipartite graph.

More on the Kőnig property can be found in Korach [1982], Bourjolly,
Hammer, and Simeone [1984], and Bourjolly and Pulleyblank [1989], and
related results in Tipnis and Trotter [1989].

30.16. Excluding triangles

Let G = (V, E) be a graph. Call a 2-matching x triangle-free if x(ET ) ≤ 2
for each triangle T in G. (A triangle is a subgraph isomorphic to K3.) The
triangle-free 2-matching polytope is the convex hull of the triangle-free 2-
matchings.

In order to characterize the triangle-free 2-matching polytope, Cornuéjols
and Pulleyblank [1980a] (cf. Cook [1983b], Cook and Pulleyblank [1987])
showed the following:

Theorem 30.14. Let G = (V, E) be a simple graph and let T be a collection
of triangles in G. Then the following system is totally dual integral:

(30.63) (i) xe ≥ 0 for each e ∈ E,
(ii) 1

2x(δ(v)) ≤ 1 for each v ∈ V ,
(iii) x(ET ) ≤ 2 for each T ∈ T .

Proof. Let w ∈ ZE
+ and consider the problem dual to maximizing wTx over

(30.63):
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(30.64) minimize
∑

v∈V

yv + 2
∑

T∈T

zT

subject to 1
2

∑

v∈V

yvχδ(v) +
∑

T∈T

zT χET ≥ w,

with y ∈ RV
+ and z ∈ RT

+. We must show that there exists an integer optimum
solution y, z. We take a counterexample with |E|+w(E) minimal. This implies
that G is connected. Moreover, w(e) ≥ 1 for each edge e, since otherwise we
could delete e.

On the other hand, w(e) ≤ 2 for each edge e. To see this, let y, z be any
optimum solution. If yu ≥ 2 for some vertex u, we can reset w(e) := w(e)− 1
for each e ∈ δ(u). By resetting, the optimum value decreases by at least 2
(since resetting yu := yu − 2 gives a feasible solution for the new w, with
objective value 1 less than the original objective value). By the minimality
of G, w, for the new w there is an integer optimum solution y, z. Resetting
yu := yu + 2 then gives an integer optimum solution for the original w.

So we can assume that yv < 2 for each vertex v, and similarly, that zT < 1
for each T ∈ T .

Choose an optimum solution y, z with
∑

T∈T zT minimal. Let T+ := {T ∈
T | zT > 0}. Then:

(30.65) no two triangles in T+ have an edge in common.

For suppose that T1, T2 ∈ T+ have ET1 ∩ ET2 = {e}, say e = v1v2. Resetting
zTi

:= zTi
− ε and yvi

:= yvi
+ 2ε for i = 1, 2, for ε > 0 small enough, gives

again an optimum solution. However,
∑

T∈T zT decreases, contradicting our
assumption. This proves (30.65).

This implies that w(e) ≤ 2 for each edge e, since yv < 2 and zT < 1.
Next:

(30.66) for any T ∈ T+ and any v ∈ V T one has either 0 < yv < 1 for
each v ∈ V T and w(e) = 1 for each e ∈ ET , or 1 < yv < 2 for
each v ∈ V T and w(e) = 2 for each e ∈ ET .

Let V T = {v1, v2, v3}. First assume that 1
2yv1

+ 1
2yv2

+ zT > w(v1v2). Then
after resetting yv3

:= yv3
+ 2ε and zT := zT − ε we obtain again an optimum

solution, for ε > 0 small enough. However,
∑

T∈T zT decreases, contradicting
our assumption. So 1

2yv1
+ 1

2yv2
+ zT = w(v1v2), and similarly for any other

pair from v1, v2, v3. This implies

(30.67) yv1
= w(v1v2) + w(v1v3) − w(v2v3) − zT ,

and similarly for v2 and v3. So if w(e) = 1 for each e ∈ ET , then 0 < yv < 1
for each v ∈ V T . Similarly, if w(e) = 2 for each e ∈ ET , then 1 < yv < 2
for each v ∈ V T . If not all three edges of T have the same weight, (30.67)
implies that there is a vertex v in T with yv > 2 or yv < 0, a contradiction.
This proves (30.66).

Now consider resetting



Section 30.16. Excluding triangles 541

(30.68) yv := yv − ε if 0 < yv < 1,
yv := yv + ε if 1 < yv < 2,
zT := zT + ε if T ∈ T+ and w(e) = 1 for each edge e in T ,
zT := zT − ε if T ∈ T+ and w(e) = 2 for each edge e in T .

If we choose ε close enough to 0 (positive or negative), we obtain again a
feasible solution of (30.64), by (30.65) and (30.66), using the integrality of
w. Moreover, the objective value changes linearly in ε. However, as y, z is
an optimum solution, the objective value cannot decrease. Hence there is no
change in the objective value at all. That is, for any ε close enough to 0, we
obtain again an optimum solution. Therefore, by choosing ε appropriately,
we can decrease the number of noninteger values of yv, zT .

This theorem implies (in fact, is equivalent to) the following TDI result:

Corollary 30.14a. Let G = (V, E) be a simple graph and let T be a collection
of triangles in G. Then the following system is totally dual integral:

(30.69) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≤ 2 for each v ∈ V ,
(iii) x(ET ) ≤ 2 for each T ∈ T ,
(iv) x(E[U ]) ≤ |U | for each U ⊆ V .

Proof. Let w ∈ ZE
+. Let µ be the maximum value of wTx over (30.69), This

is equal to the maximum value of wTx over (30.63) (since (30.69)(iv) follows
from (i) and (ii)).

Consider an integer optimum solution yv (v ∈ V ), zT (T ∈ T ) of the
problem dual to maximizing wTx over (30.63). Define y′

v := ⌊ 1
2yv⌋ for v ∈ V

and T := {v ∈ V | 1
2yv �∈ Z}. Define aU := 1 if U = T and aU := 0 for any

other subset U of V .
Then y′, a, z is an integer feasible solution of the problem dual to maxi-

mizing wTx over (30.69), as w is integer. Moreover, it is optimum, since

(30.70)
∑

v∈V

2y′
v +

∑

U⊆V

aU |U | +
∑

T∈T

2zT =
∑

v∈V

yv +
∑

T∈T

2zT = µ.

The theorem implies the following characterization of the triangle-free
2-matching polytope, given by Cornuéjols and Pulleyblank [1980a] and J.F.
Maurras (cf. Cornuéjols and Pulleyblank [1980b]):

Corollary 30.14b. Let G = (V, E) be a graph. The triangle-free 2-matching
polytope is determined by:

(30.71) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≤ 2 for each v ∈ V ,
(iii) x(ET ) ≤ 2 for each triangle T in G.
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Proof. Theorem 30.14 implies that the polytope determined by (30.63) is
integer (as the right-hand sides are integer). Since (30.71) determines the
same polytope, the corollary follows.

In fact, there is a sharper consequence, where we just consider an arbitrary
subcollection T of the triangles:

Corollary 30.14c. Let G = (V, E) be a graph and let T be a collection of
triangles in G. Then the following inequalities determine an integer polytope:

(30.72) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≤ 2 for each v ∈ V ,
(iii) x(ET ) ≤ 2 for each triangle T ∈ T .

Proof. Similar to the proof of the previous corollary.

Cornuéjols and Pulleyblank [1980a] also showed that the inequalities
(30.72)(i) and (iii) are all necessary, while (ii) is necessary unless degG(v) = 2
and v is in a triangle in T (assuming that G is connected and has at least three
vertices). They also gave a polynomial-time algorithm to find a maximum-
weight triangle-free 2-matching.

Moreover, they showed the following. A triangle cluster is a graph defined
recursively as follows: any one-vertex graph is a triangle cluster; if G is a
triangle cluster and v is a vertex of G, then by introducing two new vertices
u, u′ and adding edges vu, vu′ and uu′, we obtain again a triangle cluster.

For any graph G, let β(G) denote the number of components of G that are
triangle clusters. This is used in the following min-max relation for maximum-
size triangle-free 2-matching (Cornuéjols and Pulleyblank [1980a]):

Theorem 30.15. The maximum size of a triangle-free 2-matching in a graph
G = (V, E) is equal to the minimum value of |V |+ |U |−β(G−U) taken over
U ⊆ V .

Proof. To see that the maximum is not more than the minimum, let x be a
maximum-size triangle-free 2-matching in G. Let U ⊆ V and let W be the
set of vertices of G−U that are in triangle cluster components. Consider any
component K of G−U that is a triangle cluster. Then the edges of K can be
partitioned into 1

2 (|K|−1) triangles. Hence x(E[K]) ≤ |K|−1, and therefore

(30.73)
∑

v∈K

x(δ(v)) = 2x(E[K]) + x(δ(K)) ≤ 2(|K| − 1) + x(δ(K)).

Summing over all components K that are triangle cluster, we see that

(30.74)
∑

v∈W

x(δ(v)) ≤ 2|W | − 2β(G − U) + x(δ(W )).

Moreover,
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(30.75) x(δ(W )) ≤ x(δ(U)) ≤
∑

v∈U

x(δ(v)) ≤ 2|U |.

This implies

(30.76) 2x(E) =
∑

v∈W

x(δ(v)) +
∑

v∈V \W

x(δ(v))

≤ 2|W | − 2β(G − U) + 2|U | + 2|V \ W |
= 2(|V | + |U | − β(G − U)).

This shows that the maximum is not more than the minimum.
To see the reverse inequality, let T denote the set of triangles in G. By

Theorem 30.14, the maximum size of a triangle-free 2-matching is equal to
the minimum value of

(30.77)
∑

v∈V

yv + 2
∑

T∈T

zT

where yv ∈ Z+ (for v ∈ V ) and zT ∈ Z+ (for T ∈ T ) such that

(30.78) 1
2

∑

v∈V

yvχδ(v) +
∑

T∈T

zT χET ≥ 1.

Choose y, z attaining this minimum, with

(30.79)
∑

T∈T

zT as small as possible.

Clearly, yv ≤ 2 for each v ∈ V and zT ≤ 1 for each T ∈ T . Let T+ := {T∈
T | zT = 1}.

Then we have:

(30.80) if T ∈ T+ and v ∈ T , then yv = 0.

Indeed, suppose yv ≥ 1, and let u and u′ be the two other vertices in T .
Then resetting zT := 0, yu := yu + 1, and yu′ := yu′ + 1, we obtain y, z
again attaining the minimum value (30.77), contradicting our minimality
assumption (30.79). This shows (30.80).

Let F be the set of edges contained in some T ∈ T+. Then

(30.81) each component of the graph (V, F ) is a triangle cluster.

If not, there exist distinct T1, . . . , Tk ∈ T+ and distinct v1, . . . , vk ∈ V , such
that, taking v0 := vk,

(30.82) vi−1vi ∈ Ti

for i = 1, . . . , k, and such that k > 1. Then resetting zTi
:= 0 and yvi

:= 2
for i = 1, . . . , k, we obtain y, z again attaining the minimum value (30.77),
contradicting our minimality assumption (30.79). This shows (30.81).

Now let W := {v ∈ V | yv = 0}. Then each edge contained in W is
contained in some T ∈ T+, and hence, by (30.81), each component of G[W ]
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is a triangle cluster. Let k be the number of components of G[W ]. Then∑
T∈T zT = 1

2 (|W | − k).
Define U := N(W ). Then yv = 2 for each v ∈ U , since each edge e

connecting W and U should satisfy (30.78). Therefore, (30.77) is at least

(30.83) |V |−|W |+|U |+2· 1
2 (|W |−k) = |V |+|U |−k ≥ |V |+|U |−β(G−U),

proving the theorem.

This characterizes the existence of a triangle-free perfect 2-matching:

Corollary 30.15a. A graph G = (V, E) has a triangle-free perfect 2-matching
if and only if G − U has at most |U | components that are triangle clusters,
for each U ⊆ V .

Proof. Directly from Theorem 30.15.

Cornuéjols and Pulleyblank [1980b] gave a polynomial-time algorithm to
find a triangle-free perfect b-matching. Cook [1983b] and Cook and Pulley-
blank [1987] characterized the facets and the minimal TDI-system for the
triangle-free 2-matching polytope.

30.16a. Excluding higher polygons

Cornuéjols and Pulleyblank [1983] considered excluding higher polygons. For any
collection P of graphs, call a graph G P -critical if G �∈ P while G − v ∈ P for each
vertex v of G. Let Pk be the collection of graphs that have a perfect 2-matching
in which each circuit has length larger than k. Then for each k and each graph
G = (V, E):

(30.84) If G is Pk-critical, then G is factor-critical,

and

(30.85) V can be partitioned into edges and subsets U with G[U ] Pk-critical if
and only if for each S ⊆ V , the graph G−S has at most |S| Pk-critical
components.

This generalizes Theorem 24.8 and (30.86) below.
Corollary 30.14b does not extend to 2-matchings excluding triangles and pen-

tagons, as is shown by the example given in Figure 30.2. (The sum of the values
is at most 4 on each pentagon, but it does not belong to the convex hull of the
2-matchings without pentagons, since the sum of the values is equal to 20

3
, but

there is no pentagon-free 2-matching of size ≥ 7.)

30.16b. Packing edges and factor-critical subgraphs

Cornuéjols, Hartvigsen, and Pulleyblank [1982] and Cornuéjols and Hartvigsen
[1986] discovered an interesting direction of extensions of the results on match-
ings. Let G = (V, E) be a graph. Call a subset U of V factor-critical if G[U ] is
factor-critical; that is, if for each v ∈ U , the set U \ {v} is matchable.
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Let F be a collection of factor-critical subsets of V . An F-matching is a col-
lection of disjoint subsets from E ∪ F . It is perfect if it covers V . Call a subset U
of V F-critical if G[U ] has no perfect F-matching but for each v ∈ U , the graph
G[U ] − v has one. Cornuéjols, Hartvigsen, and Pulleyblank [1982] showed that

(30.86) if U is F-critical, then U is factor-critical.

Then Cornuéjols and Hartvigsen [1986] proved the following extension of Tutte’s
1-factor theorem (Theorem 24.1a):

(30.87) G has a perfect F-matching if and only if for each U ⊆ V , the graph
G − U has at most |U | F-critical components.

Call an F-matching M maximum if it maximizes
∑

U∈M |U |. Cornuéjols and
Hartvigsen [1986] also showed:

(30.88) Let M be a maximum F-matching containing a minimum number of
sets in F . Let M be a matching containing M ∩ E and having ⌊ 1

2
|U |⌋

edges in any U ∈ M ∩ F . Then M is a maximum-size matching in G.

They also described an extension of the Edmonds-Gallai decomposition theo-
rem. Cornuéjols, Hartvigsen, and Pulleyblank [1982] gave a polynomial-time algo-
rithm to find a maximum F-matching. Related results were obtained by Kirkpatrick
and Hell [1978,1983] and Hell and Kirkpatrick [1984,1986].

30.16c. 2-factors without short circuits

Hartvigsen [1984] showed that a maximum size simple 2-matching without trian-
gles can be found in polynomial time. He also gave good characterization for the
existence of a 2-factor without triangles.

On the other hand, Cornuéjols and Pulleyblank [1980a] showed with a method
of C.H. Papadimitriou that the problem of finding a 2-factor without circuits of
length at most 5, is NP-complete. The complexity of deciding if a 2-factor exists
without circuits of length at most 4 is not known.

Vornberger [1980] showed the NP-completeness of finding a maximum-weight
2-factor without circuits of length at most 4. The complexity status of finding a
maximum-weight 2-factor without circuits of length at most 3 is unknown. Hell,
Kirkpatrick, Kratochv́ıl, and Kř́ıž [1988] and Cunningham and Wang [2000] give
related results.
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b-matchings

b-matchings form an extension of 2-matchings and can be handled again
by applying splitting techniques to ordinary matchings.

31.1. b-matchings

Let G = (V, E) be a graph and let b ∈ ZV
+. A b-matching is a function x ∈ ZE

+

satisfying

(31.1) x(δ(v)) ≤ b(v)

for each v ∈ V . This is equivalent to: Mx ≤ b, where M is the V ×E incidence
matrix of G.

In (31.1), we count multiplicities: if e is a loop at v, then xe is added twice
at v. (This is consistent with our definition of δ(v) as a family of edges, in
which each loop at v occurs twice.)

It is convenient to consider the graph Gb arising from G by splitting each
vertex v into b(v) copies, and by replacing any edge uv by b(u)b(v) edges
connecting the b(u) copies of u with the b(v) copies of v. More formally,
Gb = (Vb, Eb), where

(31.2) Vb := {qv,i | v ∈ V, 1 ≤ i ≤ b(v)},
Eb := {qu,jqv,i | uv ∈ E, 1 ≤ j ≤ b(u), 1 ≤ i ≤ b(v), qu,j �= qv,i}.

The condition qu,j �= qv,i is relevant only if u = v, that is, if there is a loop
at u.

This construction was given by Tutte [1954b], and yields a min-max re-
lation for maximum-size b-matching (where again the size of a vector is the
sum of its components):

Theorem 31.1. Let G = (V, E) be a graph and let b ∈ ZV
+. Then the maxi-

mum size of a b-matching is equal to the minimum value of

(31.3) b(U) +
∑

K

⌊ 1
2b(K)⌋
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taken over U ⊆ V , where K ranges over the components of G − U spanning
at least one edge19.

Proof. To see that the maximum is not more than the minimum, consider
a b-matching x and a subset U of V . Then the sum of xe over the edges e
intersecting U is at most b(U). The sum of xe over the edges e contained in
some component K of G − U is at most ⌊ 1

2b(K)⌋.
Equality is derived from the Tutte-Berge formula (Theorem 24.1). Let Gb

be the graph described in (31.2). Then the maximum size of a b-matching
in G is equal to the maximum size of a matching in Gb. By the Tutte-Berge
formula, this is equal to the minimum value of

(31.4) 1
2 (|Vb| + |U ′| − o(Gb − U ′))

over U ′ ⊆ Vb (where o(H) denotes the number of odd components of a graph
H).

Let U ′ attain this minimum. We may assume that if U ′ misses at least
one copy of some vertex v of G, it misses all copies of v (since deleting all
copies does not increase (31.4)). Hence there is a subset U of V such that U ′

is equal to the set of copies of vertices in U . We take v ∈ U if b(v) = 0.
Let IU be the set of isolated (hence loopless) vertices of G − U . Then

o(Gb −U ′) is equal to b(IU ) plus the number of components K of G−U that
span at least one edge and have b(K) odd. Setting k to the number of such
components, (31.4) is equal to

(31.5) 1
2 (b(V ) + b(U) − o(Gb − U ′)) = b(U) + 1

2 (b(V \ U) − o(Gb − U ′))
= b(U) + 1

2 (b(V \ U) − b(IU ) − k),

which is equal to (31.3).

This theorem directly gives a characterization of the existence of a perfect
b-matching, that is a b-matching having equality in (31.1) for each v ∈ V .
This characterization is due to Tutte [1952]. By IU we denote the set of
isolated, loopless vertices of G − U .

Corollary 31.1a. Let G = (V, E) be a graph and let b ∈ ZV
+. Then there

exists a perfect b-matching if and only if for each U ⊆ V , G − U − IU has at
most b(U) − b(IU ) components K with b(K) odd.

Proof. Directly from Theorem 31.1, by observing that a perfect b-matching
exists if and only if the minimum value of (31.3) is at least 1

2b(V ).

31.2. The b-matching polytope

By a similar construction we can derive a characterization of the b-matching
polytope. Given a graph G = (V, E) and b ∈ ZV

+, the b-matching polytope is

19 So K may consist of one vertex with a loop attached.
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the convex hull of the b-matchings. The inequalities describing the b-matching
polytope were announced by Edmonds [1965b] (cf. Pulleyblank [1973], Ed-
monds [1975]):

Theorem 31.2. Let G = (V, E) be a graph and let b ∈ ZV
+. Then the b-

matching polytope is determined by the inequalities

(31.6) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≤ b(v) for v ∈ V ,
(iii) x(E[U ]) ≤ ⌊ 1

2b(U)⌋ for U ⊆ V with b(U) odd.

Proof. The inequalities (31.6) are trivially valid for the vectors in the b-
matching polytope. To see that they determine the b-matching polytope, let
x satisfy (31.6). We may assume that b ≥ 1.

Again consider the graph Gb = (Vb, Eb) obtained by splitting each vertex
v into b(v) copies (cf. (31.2)). For any edge e′ = u′v′ of Gb, with u′ and v′

copies of u and v in G, define x′(e′) := xe/b(u)b(v), where e := uv. We show
that x′ belongs to the matching polytope of Gb, which implies the theorem.

By Edmonds’ matching polytope theorem, it suffices to show that x′ sat-
isfies:

(31.7) (i) x′(e′) ≥ 0 for each edge e′ ∈ Eb,
(ii) x′(δ′(u′)) ≤ 1 for each vertex u′ ∈ Vb,
(iii) x′(E′[U ′]) ≤ ⌊ 1

2 |U ′|⌋ for each U ′ ⊆ Vb with |U ′| odd.

Clearly (i) holds. To see (31.7)(ii), let u′ be a vertex of Gb, being a copy of
vertex u of G. Then

(31.8) x′(δ′(u′)) = x(δ(u))/b(u) ≤ 1,

since for any edge e = uv of G one has that

(31.9)
∑

v′

x′(u′v′) =
∑

v′

x(uv)/b(u)b(v) = x(uv)/b(u),

where v′ ranges over the copies of v in Gb. So summing over all neighbours
v′ of u′ gives x(δ(u))/b(u).

To see (31.7)(iii), choose U ′ ⊆ Vb with |U ′| odd. Note that x satisfies
(31.6)(iii) for all subsets U of V , since if b(U) is even, then x(E[U ]) ≤
1
2

∑
v∈U x(δ(v)) ≤ 1

2b(U) by (31.6)(ii).
For any vertex v of G let Bv denote the set of copies of v in Gb. We show

(31.7)(iii) by induction on the number of v ∈ V for which U ′ ‘splits’ Bv, that
is, for which

(31.10) Bv ∩ U ′ �= ∅ and Bv �⊆ U ′.

If this number is 0, (31.7)(iii) follows from (31.6)(iii). If this number is
nonzero, choose a vertex v satisfying (31.10). Let U1 := U ′ \ Bv and
U2 := U ′ ∪ Bv. So by induction we know
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(31.11) x′(E′[U1]) ≤ 1
2 |U1| and x′(E′[U2]) ≤ 1

2 |U2|.

Moreover, (31.8) implies:

(31.12) x′(E′[U1]) + x′(E′[U2]) ≤
∑

u′∈U1

x′(δ′(u′)) ≤ |U1|.

(This uses the fact that Bv = U2 \ U1 is a stable set in Gb.) Now define
λ := |Bv ∩ U ′|/b(v) and µ := |Bv \ U ′|/b(v). So λ + µ = 1 and

(31.13) x′(E′[U ′]) = λx′(E′[U2]) + µx′(E′[U1]).

If λ ≤ 1
2 , then, by (31.11) and (31.12):

(31.14) x′(E′[U ′]) = (µ − λ)x′(E′[U1]) + λ(x′(E′[U1]) + x′(E′[U2]))
≤ 1

2 (µ − λ)|U1| + λ|U1| = 1
2 |U1| ≤ ⌊ 1

2 |U ′|⌋.

(The last inequality holds as U1 ⊂ U ′.)
If λ > 1

2 , then, by (31.11) and (31.12):

(31.15) x′(E′[U ′]) = (λ − µ)x′(E′[U2]) + µ(x′(E′[U1]) + x′(E′[U2]))
≤ (λ − µ)1

2 |U2| + µ|U1| = 1
2 |U1| + 1

2 (λ − µ)|U2 \ U1|
= 1

2 |U1| + 1
2 (λ − µ)bv = 1

2 |U1| + 1
2 (|Bv ∩ U ′| − |Bv \ U ′|)

≤ 1
2 |U1| + 1

2 (|Bv ∩ U ′| − 1) ≤ ⌊ 1
2 |U ′|⌋.

(The last inequality holds as U ′ = U1 ∪ (Bv ∩ U ′).)
Thus we have (31.7)(iii).

(This theorem follows also from the proof of the total dual integrality of the
constraints (31.17) in Theorem 31.3 below.)

Given a graph G = (V, E) and b ∈ ZV
+, the perfect b-matching polytope

is the convex hull of the perfect b-matchings in G. As it is a face of the
b-matching polytope (if nonempty), the previous theorem implies:

Corollary 31.2a. Let G = (V, E) be a graph and let b ∈ ZV
+. Then the perfect

b-matching polytope is determined by the inequalities

(31.16) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) = b(v) for v ∈ V ,
(iii) x(δ(U)) ≥ 1 for U ⊆ V with b(U) odd.

Proof. Directly from Theorem 31.2.

(For a direct proof of this Corollary also based on considering the graph
Gb obtained from G by splitting each vertex v into b(v) copies, see Aráoz,
Cunningham, Edmonds, and Green-Krótki [1983].)

Hurkens [1988] characterized adjacency on the b-matching polytope and
showed that the diameter of the b-matching polytope is equal to the maximum
size of a b-matching.
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31.3. Total dual integrality

System (31.6) generally is not totally dual integral: if G = (V, E) is the
complete graph K3 on three vertices, and b(v) := 2 for each v ∈ V and
w(e) := 1 for each e ∈ E, then the maximum weight of a b-matching is equal
to 3, while there is no integer dual solution of odd value (when considering
the dual of optimizing wTx subject to (31.6)).

However, if we extend (31.6)(iii) to all subsets U of V , the system is totally
dual integral, as was shown by Pulleyblank [1980]. So the system becomes:

(31.17) (i) xe ≥ 0 for e ∈ E,
(ii) x(δ(v)) ≤ b(v) for v ∈ V ,
(iii) x(E[U ]) ≤ ⌊ 1

2b(U)⌋ for U ⊆ V .

It is equivalent to the following result:

Theorem 31.3. Let G = (V, E) be a graph, let b ∈ ZV
+ and let w ∈ ZE

+. Then
the maximum weight wTx of a b-matching x is equal to the minimum value
of

(31.18)
∑

v∈V

yvb(v) +
∑

U⊆V

z(U)⌊ 1
2b(U)⌋,

where y ∈ ZV
+ and z ∈ Z

P(V )
+ satisfy

(31.19)
∑

v∈V

yvχδ(v) +
∑

U⊆V

χE[U ] ≥ w.

Proof. By Theorem 31.2 and LP-duality, the maximum weight of a b-

matching is equal to the minimum of (31.18) over y ∈ RV
+ and z ∈ R

P(V )
+

satisfying (31.19). Suppose that this minimum is strictly smaller than if we
restrict y and z to integer-valued functions. Then there exists a t ∈ Z+ such
that the minimum with y and z restricted to values in 2−tZ+ is strictly smaller
than when restricting y and z to values in Z+, because we can slightly increase
any value of yv and z(U) to a dyadic vector. Choose t with this property as
small as possible. By replacing w by 2t−1w, we may assume that t = 1.

It therefore is enough to show that for each y ∈ 1
2ZV

+ and z ∈ 1
2Z

P(V )
+

satisfying (31.19), there exist y′ ∈ ZV
+ and z′ ∈ Z

P(V )
+ satisfying (31.19) such

that

(31.20)
∑

v∈V

y′
v(v) +

∑

U⊆V

z′(U)⌊ 1
2b(U)⌋ ≤

∑

v∈V

yvb(v) +
∑

U⊆V

z(U)⌊ 1
2b(U)⌋.

We show this by induction on w(E). More precisely, we consider a counterex-

ample y ∈ 1
2ZV

+ and z ∈ 1
2Z

P(V )
+ with smallest w(E). Then necessarily

(31.21) y ∈ {0, 1
2}V and z ∈ {0, 1

2}P(V ),
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since if yv ≥ 1 for some vertex v we can reduce w(e) by 1 for each e ∈ δ(v)
and reduce yv by 1, to obtain a counterexample with smaller w(E). Similarly,
if z(U) ≥ 1 for some U ⊆ V we can reduce w(e) by 1 for each e ∈ E[U ] and
reduce z(U) by 1, to obtain a counterexample with smaller w(E).

Put on y ∈ {0, 1
2}V and z ∈ {0, 1

2}P(V ) the additional requirements that,
first, y(V ) is as large as possible, and, second, that

(31.22)
∑

U⊆V

z(U)|U ||V \ U |

is as small as possible.
Let S := {v ∈ V | yv = 1

2} and F := {U ⊆ V | z(U) = 1
2}. We first show

that F is laminar; that is,

(31.23) if U, W ∈ F , then U ∩ W = ∅ or U ⊆ W or W ⊆ U .

Indeed, suppose that U ∩ W �= ∅, U �⊆ W , and W �⊆ U for some U, W ∈ F .
If b(U ∩ W ) is odd, then decreasing z(U) and z(W ) by 1

2 , and in-
creasing z(U ∩ W ) and z(U ∪ W ) by 1

2 , would not increase (31.18) (since
⌊ 1

2b(U ∩ W )⌋+ ⌊ 1
2b(U ∪ W )⌋ ≤ ⌊ 1

2b(U)⌋+ ⌊ 1
2b(W )⌋), would maintain (31.19)

(since χE[U∩W ] + χE[U∪W ] ≥ χE[U ] + χE[W ]), would leave y(V ) unchanged,
but would decrease (31.22), contradicting the minimality of (31.22).

If b(U ∩ W ) is even, then resetting

(31.24) z(U) := z(U)− 1
2 , z(W ) := z(W )− 1

2 , z(U \W ) := z(U \W )+ 1
2 ,

z(W \ U) := z(W \ U) + 1
2 , and yv := yv + 1

2 for each v ∈ U ∩ W ,

would not increase (31.18) (since ⌊ 1
2b(U \ W )⌋ + ⌊ 1

2b(W \ U)⌋ + b(U ∩ W ) ≤

⌊ 1
2b(U)⌋ + ⌊ 1

2b(W )⌋), would maintain (31.19) (since χE[U\W ] + χE[W\U ] +∑
v∈U∩W χδ(v) ≥ χE[U ] +χE[W ]), but would increase y(V ), contradicting the

maximality of y(V ).
This shows (31.23). Suppose F �= ∅. Then choose an inclusionwise minimal

set U ∈ F with the property that there exist an even number of sets W ∈ F
with W ⊃ U . Let U1, . . . , Uk be the inclusionwise maximal proper subsets of
U with Ui ∈ F (possibly k = 0). By the choice of U , none of the Ui contain
properly a set in F . Then

(31.25) ⌊ 1
2b(U)⌋ +

k∑

i=1

⌊ 1
2b(Ui)⌋ ≥ b(U ∩ S) +

k∑

i=1

2⌊ 1
2b(Ui \ S)⌋

or

(31.26) ⌊ 1
2b(U)⌋ +

k∑

i=1

⌊ 1
2b(Ui)⌋ ≥ b(U \ S) +

k∑

i=1

2⌊ 1
2b(Ui ∩ S)⌋,

as
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(31.27) b(U) + 2
k∑

i=1

⌊ 1
2b(Ui)⌋

≥ b(U ∩ S) + b(U \ S) + 2
k∑

i=1

⌊ 1
2b(Ui \ S)⌋ + 2

k∑

i=1

⌊ 1
2b(Ui ∩ S)⌋.

If (31.25) holds, then resetting yv := yv + 1
2 for each v ∈ U ∩ S, z(U) :=

z(U)− 1
2 , and z(Ui) := z(Ui)−

1
2 , z(Ui\S) := z(Ui\S)+1 for each i = 1, . . . , k

would not increase (31.18) (by (31.25)) and would maintain (31.19): on edges
not spanned by U , the left-hand side of (31.19) does not decrease; on edges
spanned by U the contribution of the nonmodified variables is integer, and

(31.28)
⌊

1
2

( ∑

v∈U∩S

χδ(v)+χE[U ]+

k∑

i=1

χE[Ui]
)⌋

≤
∑

v∈U∩S

χδ(v)+

k∑

i=1

χE[Ui\S].

By the maximality of y(V ) it follows that U ∩ S = ∅. Hence, after resetting
we have z(Ui) = 1 for each i = 1, . . . , k. If k > 0 we contradict (31.21). So
k = 0, and therefore (as z(U) decreases) (31.18) decreases, contradicting the
minimality of (31.18).

If (31.26) holds, then resetting yv := yv + 1
2 for each v ∈ U \ S, z(U) :=

z(U)− 1
2 , and z(Ui) := z(Ui)−

1
2 , z(Ui∩S) := z(Ui∩S)+1 for each i = 1, . . . , k

would not increase (31.18) (by (31.26)) and would maintain (31.19), since now

(31.29)
⌊

1
2

( ∑

v∈U∩S

χδ(v)+χE[U ]+

k∑

i=1

χE[Ui]
)⌋

≤ 1
2

∑

v∈U

χδ(v)+

k∑

i=1

χE[Ui∩S].

By the maximality of y(V ) it follows that U \ S = ∅, that is, U ⊆ S. Hence,
after resetting we have z(Ui) = 1 for each i = 1, . . . , k. If k > 0 we again con-
tradict (31.21). So k = 0, and therefore (as z(U) decreases) (31.18) decreases,
again contradicting the minimality of (31.18).
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So F = ∅. Now setting z′
S := 1 and y′ := 0 gives (31.20).

(This is the proof method followed by Schrijver and Seymour [1977]. For a
related proof, see Hoffman and Oppenheim [1978]. See also Cook [1983b].)

This theorem can be formulated equivalently in terms of total dual inte-
grality:

Corollary 31.3a. System (31.17) is TDI.

Proof. Directly from Theorem 31.3.

If we restrict the subsets U to odd-size subsets, the system is totally dual
half-integral — a result stated by Pulleyblank [1973] and Edmonds [1975]:

Corollary 31.3b. System (31.6) is totally dual half-integral.

Proof. This follows from Corollary 31.3a, by using the fact that inequality
(31.17)(iii) for |U | even, is a half-integer sum of inequalities (31.6)(i) and (ii).

Next considering the perfect b-matching polytope, generally (31.16) is not
TDI. However:

Corollary 31.3c. System (31.16) with (31.16)(iii) replaced by (31.17)(iii) is
TDI.

Proof. Directly from Corollary 31.3a with Theorem 5.25.

This implies for the original system (Edmonds and Johnson [1970]):

Corollary 31.3d. System (31.16) is totally dual half-integral.

Proof. Consider an inequality x(E[U ]) ≤ ⌊ 1
2b(U)⌋ in (31.17). If b(U) is odd,

this inequality is half of the sum of the inequalities x(δ(v)) ≤ b(v) for v ∈ U
and of −x(δ(U)) ≤ −1. If b(U) is even, this inequality is half of the sum of
the inequalities x(δ(v)) ≤ b(v) for v ∈ U and of −xe ≤ 0 for e ∈ δ(U).

In fact (Barahona and Cunningham [1989]):

Corollary 31.3e. Let w ∈ ZE with w(C) even for each circuit C. Then the
problem of minimizing wTx subject to (31.16) has an integer optimum dual
solution.

Proof. As w(C) is even for each circuit, there is a subset U of V with
{e ∈ E | w(e) odd} = δ(U). Now replace w by w′ := w +

∑
v∈U χδ(v). Then

w′(e) is an even integer for each edge e. Hence by Corollary 31.3d there is
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an integer optimum dual solution y′
v (v ∈ V ), zU (U ⊆ V , b(U) odd) for the

problem of minimizing w′Tx subject to (31.16). Now setting yv := y′
v − 1 if

v ∈ U and yv := y′
v if v �∈ U gives an integer optimum dual solution for w.

31.4. The weighted b-matching problem

We now consider the problem of finding a maximum-weight b-matching. Here,
for a graph G = (V, E), b ∈ ZV

+, and a weight function w ∈ QE , the weight
of a b-matching x is wTx.

It should be noted that the method of reducing a b-matching problem to
a matching problem by replacing each vertex v by b(v) copies, does not yield
a polynomial-time algorithm for the weighted b-matching problem. W.H.
Cunningham and A.B. Marsh, III (with suggestions of W.R. Pulleyblank,
K. Truemper, and M.R. Rao — cf. Marsh [1979]) and Gabow [1983a] gave
polynomial-time algorithms for the weighted b-matching problem. Padberg
and Rao [1982] showed, with a method similar to that described in Section
25.5c, that one can test the constraints (31.16) in polynomial time, thus
yielding the polynomial-time solvability of the maximum-weight b-matching
problem (with the ellipsoid method).

Gerards [1995a] attributed the following method, leading to a strongly
polynomial-time algorithm, to J. Edmonds. It extends a similar approach of
Anstee [1987], and amounts to reducing the b-matching problem to a bipartite
b-matching problem and a nonbipartite 1-matching problem.

First there is the following observation.

Lemma 31.4α. Let G = (V, E) be a graph and let b, b′ ∈ ZV
+ with ‖b−b′‖1 =

1. Let x be a b-matching and let x′ be a b′-matching. Then there exists a
y ∈ ZE such that ‖y‖∞ ≤ 2 and such that x + y is a b′-matching and x′ − y
is a b-matching.

Proof. By symmetry we may assume that there exists a u ∈ V such that
b′(u) = b(u) + 1 and b′(v) = b(v) if v �= u. Hence x is a b′-matching. If
x′ is a b′-matching, we are done (taking y = 0). So we may assume that
x′ is not a b-matching, that is, x′

u = b′(u). Then there exists a walk P =
(v0, e1, v1, . . . , et, vt) in G such that

(31.30) (i) v0 = u, x′
ei

> xei
if i is odd, x′

ei
< xei

if i is even, and each
edge e is traversed at most |x′

e − xe| times,
(ii) x′(δ(vt)) < x(δ(vt)) if t is even, and x′(δ(vt)) > x(δ(vt)) if t is

odd (if vt = v0 and t is odd, then x′(δ(vt)) ≥ x(δ(vt)) + 2).

The existence of such a path follows by taking a longest path satisfying
(31.30)(i).

We now assume that P is a shortest path satisfying (31.30). Then no
vertex is traversed more than twice (otherwise we can shortcut P ), hence no
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edge is traversed more than twice. Let ye be the number of times P traverses
e, if x′

e ≥ xe, and let ye be minus the number of times P traverses e, if
x′

e < xe. Then x + y is a b′-matching, x′ − y is a b-matching, and ‖y‖∞ ≤ 2.

This implies a sensitivity result for maximum-weight b-matchings if we
vary b:

Lemma 31.4β. Let G = (V, E), let b, b′ ∈ ZV
+ and let a weight function

w ∈ RE be given. Then for any maximum-weight b-matching x there exists a
maximum-weight b′-matching x′ satisfying

(31.31) ‖x − x′‖∞ ≤ 2‖b − b′‖1.

Proof. We may assume that ‖b − b′‖1 = 1. Let x be a maximum-weight
b-matching and let x′ be a maximum-weight b′-matching. By Lemma 31.4α,
we know that there exists an integer vector y with x + y a b′-matching,
x′ − y a b-matching, and ‖y‖∞ ≤ 2. Since x′ − y is a b-matching and since
x is a maximum-weight b-matching, we have wTx ≥ wT(x′ − y), and hence
wT(x+ y) ≥ wTx′. Since x′ is a maximum-weight b′-matching, it follows that
x′′ := x + y is a maximum-weight b′-matching with ‖x′′ − x‖∞ = ‖y‖∞ ≤ 2.

This is used in showing the strong polynomial-time solvability of the
weighted b-matching problem:

Theorem 31.4. Given a graph G = (V, E), b ∈ ZV
+, and a weight function

w ∈ QE, a maximum-weight b-matching can be found in strongly polynomial
time.

Proof. I. First consider the case that b is even. Make a bipartite graph H as
follows. Make a new vertex v′ for each v ∈ V . Let H have edges u′v and uv′

for each edge uv of G. Define b̃(v) := b̃(v′) := 1
2b(v) for each v ∈ V . Define a

weight w̃(u′v) := w̃(uv′) := w(uv) for each edge uv of G.
Find a maximum-weight b̃-matching x̃ in H. This can be done in strongly

polynomial time by Theorem 21.9. Defining x(uv) := x̃(u′v)+ x̃(uv′) for each
edge uv of G, gives a maximum-weight b-matching x in G. Indeed, if there
would be a b-matching in G of larger weight than that of x, then there is a
half-integer b̃-matching in H of larger weight than that of x̃. This contradicts
the fact that in a bipartite graph a maximum-weight b-matching is also a
maximum-weight fractional b-matching (by Theorem 21.1).

II. Next consider the case of arbitrary b. Define b′ := 2⌊ 1
2b⌋. Since b′ is

even, by part I of this proof we can find a maximum-weight b′-matching x′ in
G in strongly polynomial time. Now b arises from b′ by at most |V | resettings
of b′ to b′+χu for some u ∈ V . So it suffices to give a strongly polynomial-time
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method to obtain a maximum-weight b′-matching from a maximum-weight
b-matching x, where b′ = b + χu for some u ∈ U .

To this end, define

(31.32) z := max{0, x − 2} and b′′ := min{b′ − Mz, M4}

(taking the maximum componentwise), where M is the V × E incidence
matrix of G. (0, 2, and 4 denote the all-0, all-2, and all-4 vector.)

Now we can find a maximum-weight b′′-matching x′′ in strongly polyno-
mial time. This follows from the fact that b′′(v) ≤ 4 deg(v) for each vertex
v. So we can consider the graph Gb′′ obtained by splitting each vertex v of
G into b′′(v) copies, and replacing any edge uv by b′′(u)b′′(v) edges connect-
ing the b′′(u) copies of u by the b′′(v) copies of v. Then a maximum-weight
matching in Gb′′ gives a maximum-weight b′′-matching x′′ in G′′.

Then x′′+z is a b′-matching, since x′′+z ≥ 0 and M(x′′+z) ≤ b′′+Mz ≤
b′. Moreover, x′′+z is a maximum-weight b′-matching, since by Lemma 31.4β,
there exists a maximum-weight b′-matching x′ satisfying x − 2 ≤ x′ ≤ x + 2.
Then x′−z is a b′′-matching (since x′−z ≤ 4), and hence wTx′′ ≥ wT(x′−z).
Therefore wT(x′′ + z) ≥ wTx′.

Elaboration of this method gives an O(n2m(n2+m log n))-time algorithm.
A similar approach of Anstee [1987] gives O((m+n log n)n log ‖b‖∞ +n2m)-
and O(n2 log n(m + n log n))-time algorithms.

For weighted perfect b-matching, a similar result follows:

Corollary 31.4a. Given a graph G = (V, E), b ∈ ZV
+, and a weight func-

tion w ∈ QE, a minimum-weight perfect b-matching can be found in strongly
polynomial time.

Proof. By flipping signs, it suffices to describe a method finding a maximum-
weight perfect b-matching in strongly polynomial time.

We can increase each weight by a constant C := BW + W , where W :=
‖w‖∞ + 1 and B := ‖b‖1. So each weight becomes ≥ C − W and ≤ C + W .
Then each perfect b-matching has weight at least 1

2B(C−W ) = 1
2B2W , while

each nonperfect b-matching has weight at most

(31.33) (1
2B − 1)(C + W ) = 1

2BC + 1
2BW − C − W

= 1
2B2W + 1

2BW + 1
2BW − BW − W − W < 1

2B2W .

So each maximum-weight b-matching is perfect. Therefore, Theorem 31.4
applies. (Alternatively, we could repeat the above reduction process.)

31.5. If b is even

The results on b-matchings can be simplified if b is even. In that case, the
proofs can be reduced to the bipartite case. The maximum size of a 2b-
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matching is equal to the minimum weight of a 2-vertex cover, taking b as
weight:

Theorem 31.5. Let G = (V, E) be a graph and let b ∈ ZV
+. Then the maxi-

mum size of a 2b-matching is equal to the minimum value of yTb taken over
2-vertex covers y; equivalently, the minimum value of

(31.34) b(V ) + b(N(S)) − b(S),

taken over stable sets S.

Proof. Make a bipartite graph H as follows. Make a new vertex v′ for each
v ∈ V , and let V ′ := {v′ | v ∈ V }. H has vertex set V ∪ V ′ and edges all u′v
and uv′ for uv ∈ E.

Define b′ : V ∪ V ′ → Z+ by b′(v) := b′(v′) := b(v) for all v ∈ V . Then
the maximum size of a 2b-matching in G is equal to the maximum size of a
b′-matching in H. By Corollary 21.1a, this is equal to the minimum b′-weight
of a vertex cover in H, which is equal to the minimum of yTb over 2-vertex
covers y.

It implies the following characterization of the existence of perfect b-
matchings for even b:

Corollary 31.5a. Let G = (V, E) be a graph and let b ∈ ZV
+ with b even.

Then there exists a perfect b-matching if and only if b(N(S)) ≥ b(S) for each
stable set S of G.

Proof. Directly from Theorem 31.5.

This can also be derived directly from Corollary 31.1a. The following two
theorems can be derived from the bipartite case in a way similar to the proof
of Theorem 31.5, but they also are special cases of results in this chapter.

First we have a characterization of the 2b-matching polytope:

Theorem 31.6. Let G = (V, E) be a graph and let b ∈ ZV
+. Then the 2b-

matching polytope is determined by

(31.35) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≤ 2b(v) for each v ∈ V .

Proof. This is a special case of Theorem 31.2.

Second, we mention a result of Gallai [1957,1958a,1958b]. For a graph
G = (V, E) and w : E → Z+, a w-vertex cover is a function y : V → Z+

satisfying yu + yv ≥ w(uv) for each edge uv.
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Theorem 31.7. Let G = (V, E) be a graph and let w ∈ ZE
+ and b ∈ ZV

+.
Then the maximum weight wTx of a 2b-matching x is equal to the minimum
value of yTb taken over 2w-vertex covers y.

Proof. This follows from Theorem 31.3.

31.6. If b is constant

The results on b-matchings can be specialized to ‘k-matchings’. Let G =
(V, E) be a graph and let k ∈ Z+. A k-matching is a function x ∈ ZE

+ with
x(δ(v)) ≤ k for each vertex v. Thus if we identify k with the all-k vector
in ZV

+, we have a k-matching as before. Therefore, Theorem 31.1 gives a
min-max relation for maximum-size k-matching:

Theorem 31.8. Let G = (V, E) be a graph and let k ∈ Z+. Then the maxi-
mum size of a k-matching is equal to the minimum value of

(31.36) k|U | +
∑

K

⌊ 1
2k|K|⌋,

taken over U ⊆ V , where K ranges over the components of G − U spanning
at least one edge.

Proof. Directly from Theorem 31.1.

Note that it follows that if k is even, we need not round, and hence the
maximum size of a k-matching is equal to 1

2k times the maximum-size of a
2-matching. This maximum size is described in Theorem 30.1.

Again, a k-matching x is perfect if xv = k for each vertex v. In charac-
terizing the existence, it is convenient to distinguish between the cases of k
odd and k even. Let IU denote the set of isolated (hence loopless) vertices of
G − U .

Corollary 31.8a. Let G = (V, E) be a graph and let k ∈ Z+ be odd. Then G
has a perfect k-matching if and only if for each U ⊆ V , G − U − IU has at
most k(|U | − |IU |) odd components K.

Proof. Directly from Corollary 31.1a.

For even k, there is the following result due to Tutte [1952]:

Corollary 31.8b. Let G = (V, E) be a graph and let k ∈ Z+ be even. Then
G has a perfect k-matching if and only if |N(S)| ≥ |S| for each stable set S.

Proof. Directly from Corollary 31.5a.
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So if k is even, there exists a perfect k-matching if and only if there exists
a perfect 2-matching.

We also give the characterization of the k-matching polytope (the convex
hull of k-matchings):

Theorem 31.9. Let G = (V, E) be a graph and let k ∈ Z+. Then the k-
matching polytope is determined by

(31.37) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(v)) ≤ k for each v ∈ V ,
(iii) x(E[U ]) ≤ ⌊ 1

2k|U |⌋ for each U ⊆ V with k|U | odd.

Proof. This is a special case of Theorem 31.2.

31.7. Further results and notes

31.7a. Complexity survey for the b-matching problem

Complexity survey for the maximum-weight b-matching problem:

∗ O(n2B) Pulleyblank [1973]

O(n2m log B)
W.H. Cunningham and A.B. Marsh,
III (cf. Marsh [1979])

∗ O(m2 log n log B) Gabow [1983a]

∗ O(n2m + n log B(m + n log n)) Anstee [1987]

∗ O(n2 log n(m + n log n)) Anstee [1987]

Here B := ‖b‖∞, and ∗ indicates an asymptotically best bound in the table.
Johnson [1965] extended Edmonds’ matching algorithm to an algorithm (not

based on splitting vertices) finding a maximum-size b-matching, with running time
polynomially bounded in n, m, and B. Gabow [1983a] gave an O(nm log n)-time
algorithm to find a maximum-size b-matching.

31.7b. Facets and minimal systems for the b-matching polytope

Edmonds and Pulleyblank (see Pulleyblank [1973]) described the facets of the b-
matching polytope. Let G = (V, E) be a graph and let b ∈ ZV

+ . Call G b-critical
if for each u ∈ V there exists a b-matching x such that x(δ(u)) = b(u) − 1 and
x(δ(v)) = b(v) for each v �= u.

Let G be simple and connected with at least three vertices and let b > 0. Then
an inequality x(δ(v)) ≤ b(v) determines a facet of the b-matching polytope if and
only if b(N(v)) > b(v), and if b(N(v)) = b(v) + 1, then E[N(v)] �= ∅.

Moreover, an inequality x(E[U ]) ≤ ⌊ 1
2
b(U)⌋ determines a facet if and only if

G[U ] is b-critical and has no cut vertex v with b(v) = 1.
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Unlike in the matching case, the facet-inducing inequalities do not form a totally
dual integral system. The minimal TDI-system for the b-matching polytope was
characterized by Cook [1983a] and Pulleyblank [1981]. To describe this, call a graph
G = (V, E) b-bicritical if G is connected and for each u ∈ V there is a b-matching
x with x(δ(u)) = b(u) − 2 and x(δ(v)) = b(v) for each v �= u. Then a minimal TDI-
system for the b-matching polytope (if G is simple and connected and has at least
three vertices and if b > 0) is obtained by adding the following to the facet-inducing
inequalities:

(31.38) x(E[U ]) ≤ 1
2
b(U) for each U ⊆ V with |U | ≥ 3, G[U ] b-bicritical and

b(v) ≥ 2 for each v ∈ N(U).

(The facets of the 2-matching polytope of a complete graph were also given by
Grötschel [1977b].)

The vertices of the 2-matching polytope are characterized by:

Theorem 31.10. Let G = (V, E) be a graph. Then a 2-matching x is a vertex of
the 2-matching polytope P if and only if the edges e with xe = 1 form vertex-disjoint
odd circuits.

Proof. Let x be a 2-matching. Define F := {e ∈ E | xe = 1}. Clearly, degF (v) ≤ 2
for each v ∈ V . So F forms a vertex-disjoint set of paths and circuits.

To see necessity in the theorem, let x be a vertex of P . Suppose that K is a
component of F that forms a path or an even circuit. Then we can split K into
matchings M and N . Then both x + χM − χN and x − χM + χN belong to P ,
contradicting the fact that x is a vertex of P .

To see sufficiency, suppose that x is not a vertex of P . Then there exists a
nonzero vector y such that x + y and x − y belong to P . If xe = 0 or xe = 2, then
ye = 0, as 0 ≤ xe ± ye ≤ 2. If e and f are two edges in F incident with a vertex v,
then ye = −yf , since (xe + xf ) ± (ye + yf ) ≤ 2. Hence, if each component of F is
an odd circuit, we have y = 0, contradicting our assumption.

31.7c. Regularizable graphs

A graph G = (V, E) is called regularizable if there exists a k and a perfect k-
matching x with x ≥ 1. So we obtain a k-regular graph by replacing each edge e
by xe parallel edges. Berge [1978c] characterized regularizability as follows:

Theorem 31.11. Let G = (V, E) be connected and nonbipartite. Then G is regu-
larizable if and only if |N(U)| > |U | for each nonempty stable set U .

Proof. Necessity being easy, we show sufficiency. Make a bipartite graph H by
making for each vertex v a copy v′, and replacing any edge uv by two edges uv′

and u′v. Then every edge of H belongs to some perfect matching of H. To see this,
suppose that edge uv′ belongs to no perfect matching. Then by Frobenius’ theorem
(Corollary 16.2a), there exists a subset X of V \ {u} such that X has less than |X|
neighbours in V ′ \ {v′} (in the graph H; here V ′ := {v′ | v ∈ V }). That is, defining
N ′(X) := ∪u∈XNG(u),

(31.39) |N ′(X) \ {v}| < |X|.
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Let U := X \ N ′(X). Then U is a stable set. Moreover, N(U) ⊆ N ′(X) \ X. By
(31.39), |N ′(X)| ≤ |X|, and therefore |N(U)| ≤ |U |. So by the condition given in
the theorem, U = ∅; that is, X ⊆ N ′(X), and so, by (31.39), X = N ′(X). However,
as G is connected and nonbipartite, H is connected. This contradicts the fact that
X = N ′(X) and X �= V .

So each edge of H belongs to a perfect matching. Hence each edge of G belongs
to a perfect 2-matching. Adding up these perfect 2-matchings gives a perfect k-
matching x ≥ 1 for some k.

Berge [1978b] remarked that this theorem is equivalent to: a connected nonbi-
partite graph G is regularizable if and only if the only 2-vertex cover of size τ2(G)
is the all-1 vector (this follows with (30.2)).

With the help of b-matchings, one can also characterize k-regularizable graphs
— graphs that can become k-regular by adding edges parallel to existing edges. Let
IU denote the set of isolated (hence loopless) vertices of G − U .

Theorem 31.12. Let G = (V, E) be a graph and let k ∈ Z+. Then G is k-
regularizable if and only if for each U ⊆ V , G − U − IU has at most

(31.40) k|U | − k|IU | − 2|E[U ]| − |δ(U ∪ IU )|
components K with k|K| + |δ(K)| odd.

Proof. From Corollary 31.1a applied to b : V → Z+ defined by b(v) := k − deg(v)
for v ∈ V .

Note that the condition implies b(v) ≥ 0 for each vertex v. For suppose deg(v) >
k. If k = 0, then (31.40) is negative for U := V , a contradiction. So k > 0. Taking
U := {v}, the condition implies that k − k|IU | − 2|E[U ]| − |δ({v} ∪ IU )| ≥ 0. As
|δ(v)| > k, it follows that IU �= ∅, hence |IU | = 1, say IU = {w}. So |E[U ]| = 0, that
is, v is loopless. Moreover, δ(U ∪ IU ) = ∅, that is, {v, w} is a component of G. But
then the nonnegativity of (31.40) for U ′ := {v, w} implies 2k ≥ 2|E[U ′]| ≥ 2 deg(v)
(as v is loopless), a contradiction.

See also Berge [1978b,1978d,1981].

31.7d. Further notes

Hoffman and Oppenheim [1978] showed that system (31.17) is ‘locally strongly
modular’; that is, each vertex of the b-matching polytope is determined by a linearly
independent set of inequalities among (31.17) (set to equality), where the matrix
in the system has determinant ±1.

Johnson [1965] characterized the vertices of the fractional b-matching polytope.
Koch [1979] studied bases (in the sense of the simplex method) for the linear pro-
gramming problem of finding a maximum-weight b-matching.

Padberg and Wolsey [1984] described a strongly polynomial-time algorithm to
find for any vector x the largest λ such that λ·x belongs to the b-matching polytope,
and to describe λ · x as a convex combination of b-matchings.

b-matching algorithms are studied in the books by Gondran and Minoux [1984]
and Derigs [1988a].



Chapter 32

Capacitated b-matchings

In the previous chapter we studied b-matchings, without upper bound given
on the values of the edges. In this chapter we refine the results to the case
where each edge has a prescribed ‘capacity’ that bounds the value on the
edge. This can be reduced to uncapacitated b-matching.

32.1. Capacitated b-matchings

The capacitated b-matching problem considers b-matchings x satisfying a
prescribed capacity constraint x ≤ c. By a construction of Tutte [1954b],
results on capacitated b-matchings can be derived from the results for the
uncapacitated case as follows. Denote

(32.1) E[X, Y ] := {e ∈ E | ∃x ∈ X, y ∈ Y : e = {x, y}}.

Theorem 32.1. Let G = (V, E) be a graph and let b ∈ ZV
+ and c ∈ ZE

+

with c > 0. Then the maximum size of a b-matching x ≤ c is equal to the
minimum value of

(32.2) b(U) + c(E[W ]) +
∑

K

⌊ 1
2 (b(K) + c(E[K, W ]))⌋,

taken over disjoint subsets U, W of V , where K ranges over the components
of G − U − W .

Proof. To see that the maximum is not more than the minimum, let x
be a b-matching with x ≤ c and let U, W be disjoint subsets of V . Then
x(E[U ]∪ δ(U)) ≤ b(U) and x(E[W ]) ≤ c(E[W ]). Consider next a component
K of G − U − W . Then 2x(E[K]) + x(E[K, W ]) ≤ b(K) and x(E[K, W ]) ≤
c(E[K, W ]). Hence x(E[K] ∪ E[K, W ]) ≤ ⌊ 1

2 (b(K) + c(E[K, W ]))⌋, and the
inequality follows.

The reverse inequality is proved by reduction to Theorem 31.1. Make a
new graph G′ = (V ′, E′) by replacing each edge of G by a path of length
three. That is, for each edge e = uv introduce two new vertices pe,u and pe,v

and three edges: upe,u, pe,upe,v, and pe,vv.
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Define b′ ∈ ZV ′

+ by b′(v) := b(v) if v ∈ V and b′(pe,v) := c(e) for any new
vertex pe,v. Then the maximum size of a b-matching x in G with x ≤ c is equal
to the maximum size of a b′-matching in G′, minus c(E). By Theorem 31.1,
there exists a subset U ′ of V ′ such that the maximum size of a b′-matching
in G′ equals

(32.3) b′(U ′) +
∑

K′

⌊ 1
2b′(K ′)⌋,

where K ′ ranges over the components of G′ − U ′ with |K ′| ≥ 2. (Note that
G′ has no loops.) We choose U ′ with |U ′| as small as possible.

Let U := V ∩ U ′ and let W be the set of isolated vertices of G′ − U ′ that
belong to V . We show that (32.2) is at most (32.3) minus c(E), which proves
the theorem.

First observe that

(32.4) if pe,v ∈ U ′, then v ∈ W .

Otherwise, deleting pe,v from U ′ does not increase (32.3), contradicting the
minimality of |U ′|. (Here we use that pe,v has degree 2 and that b′(pe,v) > 0,
that is, c(e) > 0. Then b′(U ′) decreases by c(e) while the sum in (32.3)
increases by at most ⌊ 1

2c(e) + 1⌋, which is at most c(e).)
Hence

(32.5) b′(U ′) = b(U) + b′(U ′ \ V ) = b(U) +
∑

v∈W

c(δ(v))

= b(U) + 2c(E[W ]) + c(δ(W )).

Consider a component K ′ of G′−U ′ with |K ′| ≥ 2. If K ′ does not intersect
V , then it is equal to {pe,u, pe,v} for some edge e = uv of G with u, v ∈ U . So
b′(K ′) = 2c(e). If K ′ intersect V , let K := K ′ ∩ V . Then K is a component
of G − U − W . Indeed, any edge spanned by K gives a path of length 3 in
K ′ (by (32.4)), and any path in K ′ between vertices in K gives a path in K.
Any edge of G leaving K gives a path of length 3 in G′ connecting K ′ and
U ∪ W . So

(32.6) K ′ = K ∪ {pe,u | e = uv ∈ E, u ∈ K} ∪ {pe,v | e = uv ∈ E, u ∈
K, v ∈ U}.

Hence

(32.7) b′(K ′) = b(K) + c(E[K, W ]) + 2c(E[K]) + 2c(E[K, U ]).

Therefore, (32.3) is equal to

(32.8) b(U) + 2c(E[W ]) + c(δ(W )) + c(E[U ])

+
∑

K

(
⌊ 1

2 (b(K) + c(E[K, W ]))⌋ + c(E[K]) + c(E[K, U ])
)
,

where K ranges over the components of G − U − W . Since
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(32.9) c(E) = c(E[W ])+c(δ(W ))+c(E[U ])+
∑

K

(c(E[K])+c(E[K, U ])),

(32.3) minus c(E) is equal to (32.2).

This implies for perfect b-matchings:

Corollary 32.1a. Let G = (V, E) be a graph and let b ∈ ZV
+ and c ∈ ZE

+

with c > 0. Then G has a perfect b-matching x ≤ c if and only if for each
partition T, U, W of V , G[T ] has at most

(32.10) b(U) − b(W ) + 2c(E[W ]) + c(E[T, W ])

components K with b(K) + c(E[K, W ]) odd.

Proof. Directly from Theorem 32.1.

32.2. The capacitated b-matching polytope

Let G = (V, E) be a graph and let b ∈ ZV
+ and c ∈ ZE

+. The c-capacitated
b-matching polytope is the convex hull of the b-matchings x satisfying x ≤ c.
A description of this polytope follows again from that for the uncapacitated
b-matching polytope.

Theorem 32.2. Let G = (V, E) be a graph and let b ∈ ZV
+ and c ∈ ZE

+. The
c-capacitated b-matching polytope is determined by

(32.11) (i) 0 ≤ xe ≤ c(e) (e ∈ E),
(ii) x(δ(v)) ≤ b(v) (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≤ ⌊ 1

2 (b(U) + c(F ))⌋ (U ⊆ V, F ⊆ δ(U),
b(U) + c(F ) odd).

Proof. It is easy to show that each b-matching x ≤ c satisfies (32.11). To
show that the inequalities (32.11) completely determine the c-capacitated b-
matching polytope, let x ∈ RE satisfy (32.11). Let G′ = (V ′, E′) and b′ ∈
ZV ′

+ be as in the proof of Theorem 32.1. Define x′ ∈ RE′

by x′(upe,u) :=
x′(vpe,v) := xe and x′(pe,upe,v) := c(e) − xe, for any edge e = uv of G. We
show that x′ belongs to the b′-matching polytope with respect to G′.

By Theorem 31.2, it suffices to check the constraints (31.6) for x′ with
respect to G′ and b′. That is, we should check (where δ′ := δG′ and E′[U ′] is
the set of edges in E′ spanned by U ′):

(32.12) (i) x′(e′) ≥ 0 (e′ ∈ E′),
(ii) x′(δ′(v′)) ≤ b′(v′) (v′ ∈ V ′),
(iii) x′(E′[U ′]) ≤ ⌊ 1

2b′(U ′)⌋ (U ′ ⊆ V ′ with b′(U ′) odd).
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Trivially we have (32.12)(i) by (32.11)(i). Moreover, for each vertex v ∈ V one
has x′(δ′(v)) ≤ b′(v) by (32.11)(ii). For any vertex pe,u of G′, with e = uv ∈ E,
one has x′(δ′(pe,u)) = c(e) = b′(pe,u).

To prove (32.12)(iii), we first show that it suffices to prove it for those
U ′ ⊆ V ′ satisfying for each edge e = uv ∈ E:

(32.13) (i) if u, v ∈ U ′, then pe,u ∈ U ′ and pe,v ∈ U ′,
(ii) if pe,u ∈ U ′, then u ∈ U ′.

To see (32.13)(i), first let u, v ∈ U ′ and pe,u �∈ U ′. Define U ′′ := U ′ ∪
{pe,u, pe,v}. Then

(32.14) x′(E′[U ′]) ≤ x′(E′[U ′′]) − x′(δ′(pe,u)) ≤ ⌊ 1
2b′(U ′′)⌋ − b′(pe,u)

≤ ⌊ 1
2b′(U ′)⌋.

To see (32.13)(ii), let pe,u ∈ U ′ and u �∈ U ′. Define U ′′ := U ′ \ {pe,u, pe,v}. If
pe,v �∈ U ′, then

(32.15) x′(E′[U ′]) = x′(E′[U ′′]) ≤ ⌊ 1
2b′(U ′′)⌋ ≤ ⌊ 1

2b′(U ′)⌋.

If pe,v ∈ U ′, then

(32.16) x′(E′[U ′]) = x′(E′[U ′′]) + x′(δ′(pe,v)) ≤ ⌊ 1
2b′(U ′′)⌋ + b′(pe,v)

= ⌊ 1
2b′(U ′)⌋.

This proves that we may assume (32.13) (as repeated application of these
modifications gives finally (32.13)). Let U := U ′ ∩ V and let F be the set
of those edges e = uv in δ(U) with u ∈ U , v �∈ U , and pe,u ∈ U ′. Then
x′(E′[U ′]) = x(E[U ])+ c(E[U ])+x(F ) and b′(U ′) = b(U)+2c(E[U ])+ c(F ).
Hence (32.11)(iii) implies (32.12)(iii).

So x′ is a convex combination of b′-matchings in G′. Each such b′-matching
y satisfies y(δ′(v′)) = b′(v′) for each ‘new’ vertex v′ = pe,u (as x′ satisfies this
equality). Hence each such b′-matching corresponds to a b-matching subject
to c in G, and we obtain x as convex combination of b-matchings subject to
c in G.

Similarly, the c-capacitated perfect b-matching polytope is the convex hull
of the perfect b-matchings x satisfying x ≤ c. Theorem 32.2 implies the fol-
lowing (announced by Edmonds and Johnson [1970] (cf. Green-Krótki [1980],
Aráoz, Cunningham, Edmonds, and Green-Krótki [1983])):

Corollary 32.2a. The c-capacitated perfect b-matching polytope is deter-
mined by

(32.17) (i) 0 ≤ xe ≤ c(e) (e ∈ E),
(ii) x(δ(v)) = b(v) (v ∈ V ),
(iii) x(δ(U) \ F ) − x(F ) ≥ 1 − c(F ) (U ⊆ V, F ⊆ δ(U),

b(U) + c(F ) odd).

Proof. Directly from Theorem 32.2, as (32.17)(ii) implies that x(E[U ]) =
1
2b(U) − 1

2x(δ(U)).
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32.3. Total dual integrality

System (32.11) generally is not TDI (cf. the example in Section 30.5). To
obtain a TDI-system, one should delete the restriction in (32.11)(iii) that
b(U) + c(F ) is odd. Thus we obtain:

(32.18) (i) 0 ≤ xe ≤ c(e) (e ∈ E),
(ii) x(δ(v)) ≤ b(v) (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≤ ⌊ 1

2 (b(U) + c(F ))⌋ (U ⊆ V, F ⊆ δ(U)).

Theorem 32.3. System (32.18) is TDI.

Proof. Let G′ = (V ′, E′) and b′ ∈ ZV ′

+ be as in the proof of Theorem 32.1.
By Corollary 31.3a, the following system is TDI:

(32.19) (i) x′(e′) ≥ 0 (e′ ∈ E′),
(ii) x′(δ′(v′)) ≤ b′(v′) (v′ ∈ V ′),
(iii) x′(E′[U ′]) ≤ ⌊ 1

2b′(U ′)⌋ (U ′ ⊆ V ′).

Since setting inequalities to equalities maintains total dual integrality (The-
orem 5.25), the following system is TDI:

(32.20) (i) x′(e′) ≥ 0 (e′ ∈ E′),
(ii) x′(δ′(v)) ≤ b(v) (v ∈ V ),
(iii) x′(upe,u) + x′(pe,upe,v) = c(e) (u ∈ e = uv ∈ E),
(iv) x′(E′[U ′]) ≤ ⌊ 1

2b′(U ′)⌋ (U ′ ⊆ V ′).

The inequalities (32.14), (32.15), and (32.16) show that in (32.20)(iv) we may
restrict the U ′ to those satisfying (32.13). So U ′ is determined by U := U ′∩V
and F := {e = uv ∈ E | u, pe,u ∈ U ′, v �∈ U ′}.

Moreover, with Theorem 5.27 we can eliminate the variables x′(upe,u) for
e ∈ E and u ∈ e with the equalities (32.20)(iii). That is, we replace x′(upe,u)
by c(e) − ye, where we set ye := x′(pe,upe,v) for e = uv ∈ E. Then:

(32.21) x′(E′[U ′]) = y(E[U ]) + 2(c(E[U ]) − y(E[U ])) + c(F ) − y(F ) and
b′(U ′) = b(U) + 2c(E[U ]) + c(F ).

Hence the system becomes:

(32.22) (i) ye ≥ 0 (e ∈ E),
(ii) ye ≤ c(e) (e ∈ E),
(iii) −y(δ(v)) ≤ b(v) − c(δ(v)) (v ∈ V ),
(iv) −y(E[U ]) − y(F ) ≤ ⌊ 1

2b(U) + c(F )⌋ − c(E[U ]) − c(F )
(U ⊆ V, F ⊆ δ(U)).

Setting ye to c(e) − xe, the system becomes (32.18) and remains TDI.
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32.4. The weighted capacitated b-matching problem

By the construction given in the proof of Theorem 32.1, the weighted ca-
pacitated b-matching problem can easily be reduced to the uncapacitated
variant:

Theorem 32.4. Given a graph G = (V, E), b ∈ ZV
+, c ∈ ZE

+, and a weight
function w ∈ QE, a maximum-weight b-matching x ≤ c can be found in
strongly polynomial time.

Proof. We may assume that w ≥ 0. Make G′ = (V ′, E′) and b′ ∈ ZV ′

+ as
in the proof of Theorem 32.1. Moreover, define a weight function w′ on the
edges of G′ by w′(upe,u) := w′(pe,upe,v) := w′(pe,vv) := w(e) for any edge
e = uv of G.

Let x′ be a maximum-weight b′-matching in G′. Then we may assume that
for each edge e = uv of G one has x′(upe,u) = c(e) − x′(pe,upe,v) = x′(pe,vv).
(This follows from the fact that we can assume that x′(upe,u) = x′(pe,vv),
since if say x′(upe,u) = x′(pe,vv) + τ with τ > 0, we can decrease x′(upe,u)
by τ and increase x′(pe,upe,v) by τ . Next we can reset x′(pe,upe,v) := c(e) −
x′(upe,u).)

Now define xe := x′(upe,u) for each edge e = uv of G. Then x is a
maximum-weight b-matching with x ≤ c.

Similarly, for the weighted capacitated perfect b-matching problem:

Theorem 32.5. Given a graph G = (V, E), b ∈ ZV
+, c ∈ ZE

+, and a weight
function w ∈ QE, a minimum-weight perfect b-matching x ≤ c can be found
in strongly polynomial time.

Proof. As in the previous proof replace each edge by a path of length three,
yielding the graph G′, and define b′, and w′ similarly. Let x′ be a maximum-
weight perfect b′-matching in G′. Then for each edge e = uv of G one has
x′(upe,u) = c(e) − x′(pe,upe,v) = x′(pe,vv). Defining xe := x′(upe,u) for each
edge e = uv of G, gives a maximum-weight b-matching x ≤ c.

32.4a. Further notes

Cook [1983b] and Cook and Pulleyblank [1987] determined the facets and the min-
imal TDI-system for the capacitated b-matching polytope.

Johnson [1965] extended Edmonds’ matching algorithm to an algorithm (not
based on reduction to matching) that finds a maximum-size capacitated b-matching,
with running time bounded by a polynomial in n, m, and ‖b‖∞. Gabow [1983a]
gave an O(nm log n)-time algorithm for this.

Cunningham and Green-Krótki [1991] showed the following. Let G = (V, E) be
a graph, let b ∈ ZV

+ and c ∈ ZE
+. Then the convex hull of the integer vectors y ≤ b

for which there is a perfect y-matching x ≤ c is determined by the inequalities
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(32.23) 0 ≤ y ≤ b,

y(

k
⋃

i=0

Ai) − y(B) ≤
k

∑

i=1

(b(Ai) − 1) + c(E[A0]) + c(E[A0, V \ B]),

where A0 and B are disjoint subsets of V and where A1, . . . , Ak are some of the
components of G−A0−B such that b(Ai)+c(E[A0, Ai]) is odd for each i = 1, . . . , k.

This characterizes the convex hull of degree-sequences of capacitated b-match-
ings, where the degree-sequence of x ∈ ZE is the vector y ∈ ZE defined by yv =
x(δ(v)) for v ∈ V .

This generalizes the results of Balas and Pulleyblank [1989] on the matchable set
polytope (Section 25.5d) and of Koren [1973] on the convex hull of degree-sequences
of simple graphs (Section 33.6c below). See also Cunningham and Green-Krótki
[1994] and Cunningham and Zhang [1992].
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Simple b-matchings and
b-factors

A special case of capacitated b-matchings is obtained when we take capacity
1 on every edge. So the b-matching takes values 0 and 1 only. Such a b-
matching is called simple. A simple b-matching is the incidence vector of
some set of edges. If the b-matching is simple and perfect it is called a
b-factor.
In this chapter we derive results on simple b-matchings and b-factors in
a straightforward way from those on capacitated b-matchings obtained in
the previous chapter.

33.1. Simple b-matchings and b-factors

Call a b-matching x simple if x is a 0,1 vector. We can identify simple b-
matchings with subsets F of E with degF (v) ≤ b(v) for each v ∈ V .

Simple b-matchings are special cases of capacitated b-matchings, namely
by taking capacity function c = 1. Hence a min-max relation for maximum-
size simple b-matching follows from the more general capacitated version:

Theorem 33.1. Let G = (V, E) be a graph and let b ∈ ZV
+. Then the maxi-

mum size of a simple b-matching is equal to the minimum value of

(33.1) b(U) + |E[W ]| +
∑

K

⌊ 1
2 (b(K) + |E[K, W ]|)⌋,

taken over all disjoint subsets U, W of V , where K ranges over the compo-
nents of G − U − W .

Proof. The theorem is the special case c = 1 of Theorem 32.1.

A b-factor is a simple perfect b-matching. In other words, it is a subset
F of E with degF (v) = b(v) for each v ∈ V . The existence of a b-factor was
characterized by Tutte [1952,1974] (cf. Ore [1957]):
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Corollary 33.1a. Let G = (V, E) be a graph and let b ∈ ZV
+. Then G has a

b-factor if and only if for each partition T, U, W of V , the graph G[T ] has at
most

(33.2) b(U) − b(W ) + 2|E[W ]| + |E[T, W ]|

components K with b(K) + |E[K, W ]| odd.

Proof. Directly from Theorem 33.1 (or Corollary 32.1a).

(An algorithmic proof was given by Anstee [1985], yielding an O(n3)-time al-
gorithm to find a b-factor. Tutte [1981] gave another proof and a sharpening.)

33.2. The simple b-matching polytope and the b-factor
polytope

Given a graph G = (V, E) and a vector b ∈ ZV
+, the simple b-matching poly-

tope is the convex hull of the simple b-matchings in G. It can be characterized
by (Edmonds [1965b]):

Theorem 33.2. The simple b-matching polytope is determined by

(33.3) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≤ b(v) (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≤ ⌊ 1

2 (b(U) + |F |)⌋ (U ⊆ V, F ⊆ δ(U),
b(U) + |F | odd).

Proof. The theorem is a special case of Theorem 32.2.

Given a graph G = (V, E) and a vector b ∈ ZV
+, the b-factor polytope is

the convex hull of (the incidence vectors of) b-factors in G. As it is a face of
the simple b-matching polytope (if nonempty), we have:

Corollary 33.2a. The b-factor polytope is determined by

(33.4) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) = b(v) (v ∈ V ),
(iii) x(δ(U) \ F ) − x(F ) ≥ 1 − |F | (U ⊆ V, F ⊆ δ(U),

b(U) + |F | odd).

Proof. Directly from Theorem 33.2.

33.3. Total dual integrality

Consider the system (extending (33.3)):
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(33.5) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≤ b(v) (v ∈ V ),
(iii) x(E[U ]) + x(F ) ≤ ⌊ 1

2 (b(U) + |F |)⌋ (U ⊆ V, F ⊆ δ(U)).

A special case of Theorem 32.3 is (cf. Cook [1983b]):

Theorem 33.3. System (33.5) is TDI.

Proof. Directly from Theorem 32.3.

It implies for the b-factor polytope:

Corollary 33.3a. System (33.4) is totally dual half-integral.

Proof. By Theorems 33.3 and 5.25, the system obtained from (33.5) by
setting (33.5)(ii) to equality, is TDI. Then each inequality (33.5) is a half-
integer sum of inequalities (33.4), and the theorem follows.

This can be extended to:

Corollary 33.3b. Let w ∈ ZE with w(C) even for each circuit C. Then the
problem of minimizing wTx subject to (33.4) has an integer optimum dual
solution.

Proof. If w(C) is even for each circuit, there is a subset U of V with {e ∈ E |
w(e) odd} = δ(U). Now replace w by w′ := w +

∑
v∈U χδ(v). Then w′(e) is

an even integer for each edge e. Hence by Corollary 33.3a there is an integer
optimum dual solution y′

v (v ∈ V ), zU (U ⊆ V , b(U) odd) for the problem

of minimizing w′Tx subject to (33.4). Now setting yv := y′
v − 1 if v ∈ U and

yv := y′
v if v �∈ U gives an integer optimum dual solution for w.

33.4. The weighted simple b-matching and b-factor
problem

Also algorithmic results can be derived from the general capacity case, but
some arguments can be simplified. While finding a minimum-weight b-factor
can be reduced to finding a minimum-weight perfect b-matching, there is a
more direct construction, since we can assume that b is not too large. We
give the precise arguments in the proofs below.

Theorem 33.4. Given a graph G = (V, E), b ∈ ZV
+, and a weight function

w ∈ QE, a maximum-weight simple b-matching can be found in strongly
polynomial time.

Proof. We may assume that b(v) ≤ degG(v) for each v ∈ V , since replacing
b(v) by min{b(v), degG(v)} for each v does not change the problem.
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Now the techniques described in Chapters 31 and 32 (replacing each vertex
by b(v) vertices, and next each edge by a path of length three), yield a strongly
polynomial reduction to the maximum-weight matching problem.

So a maximum-size simple b-matching and a b-factor (if any) can be found
in polynomial time.

A similar construction applies to the weighted b-factor problem:

Theorem 33.5. Given a graph G = (V, E), b ∈ ZV
+, and a weight function

w ∈ QE, a minimum-weight b-factor can be found in strongly polynomial
time.

Proof. We may assume that b(v) ≤ degG(v) for each v ∈ V , since otherwise
there is no b-factor. Now the reduction techniques described in Chapters 31
and 32 yield a strongly polynomial reduction to the minimum-weight perfect
matching problem.

33.5. If b is constant

Again we can specialize the results above to k-matchings and k-factors, for
k ∈ Z+. First we have for the maximum size of a simple k-matching:

Theorem 33.6. Let G = (V, E) be a graph and let k ∈ Z+. The maximum
size of a simple k-matching is equal to the minimum value of

(33.6) k|U | + |E[W ]| +
∑

K

⌊ 1
2 (k|K| + |E[K, W ]|)⌋,

taken over all disjoint subsets U, W of V , where K ranges over the compo-
nents of G − U − W .

Proof. Directly from Theorem 33.1.

A k-factor is a simple perfect k-matching. In other words, it is a subset
F of E with (V, F ) k-regular. Theorem 33.6 implies a classical theorem of
Belck [1950]:

Corollary 33.6a. A graph G = (V, E) has a k-factor if and only if for each
partition T , U , W of V , G[T ] has at most

(33.7) k(|U | − |W |) + 2|E[W ]| + |E[T, W ]|

components K with k|K| + |E[K, W ]| odd.

Proof. Directly from Theorem 33.6.

Petersen [1891] showed that the following is easy:
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Theorem 33.7. Each connected 2k-regular graph G with an even number of
edges has a k-factor.

Proof. Make an Eulerian tour in G, and colour the edges alternatingly red
and blue. Then the red edges form a k-factor.

33.6. Further results and notes

33.6a. Complexity results

Urquhart [1967] gave an O(b(V )n3)-time algorithm for finding a maximum-weight
simple b-matching. This was improved by Gabow [1983a] to O(b(V )m log n) (by
reduction to the O(nm log n)-time algorithm of Galil, Micali, and Gabow [1982,
1986] for maximum-weight matching) and to O(b(V )n2). For maximum-size sim-
ple b-matching, Gabow [1983a] gave algorithms of running time O(

√

b(V ) m) (by
reduction to Micali and Vazirani [1980]) and to O(nm log n).

33.6b. Degree-sequences

A sequence d1, . . . , dn is called a degree-sequence of a graph G = (V, E) if we can
order the vertices as v1, . . . , vn such that degG(vi) = di for i = 1, . . . , n.

From Corollary 33.1a one can derive the characterization of degree-sequences
of simple graphs due to Erdős and Gallai [1960]: there exists a simple graph with
degrees d1 ≥ d2 ≥ · · · ≥ dn ≥ 0 if and only if

∑n
i=1 di is even and

(33.8)

k
∑

i=1

di ≤ k(k − 1) +

n
∑

i=k+1

min{k, di}

for k = 1, . . . , n.
Havel [1955] gave the following recursive algorithm to decide if a sequence is the

degree-sequence of a simple graph. A sequence d1 ≥ d2 ≥ · · · ≥ dn is the degree-
sequence of a simple graph if and only if 0 ≤ dn ≤ n−1 and d1 −1, d2 −1, . . . , ddn −
1, ddn+1, . . . , dn−1 is the degree sequence of a simple graph.

Koren [1973] showed that the convex hull of degree-sequences of simple graphs
on a finite vertex set V is determined by:

(33.9) (i) xv ≥ 0 for each v ∈ V ,
(ii) x(U) − x(W ) ≤ |U |(|V | − |W | − 1) for disjoint U, W ⊆ V .

If the graph need not be simple (but yet is loopless), condition (33.8) can be replaced
by

∑n
i=2 di ≥ d1, as can be shown easily (cf. Hakimi [1962a]). Related work was

done by Peled and Srinivasan [1989], who showed that system (33.9) is totally
dual integral and characterized vertices, facets, and adjacency on the polytope
determined by (33.9).

Kundu [1973] showed that if both sequences d1 ≥ · · · ≥ dn ≥ k and d1 − k ≥
· · · ≥ dn − k ≥ 0 are realizable (as degree-sequence of a simple graph), then the
first sequence is realizable by a graph with a k-factor (answering a question of
Grünbaum [1970]). See also Edmonds [1964] and Cai, Deng, and Zang [2000].
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33.6c. Further notes

Cook [1983b] and Cook and Pulleyblank [1987] determined the facets and the min-
imal TDI-system for the simple b-matching polytope. Hausmann [1978a,1981] char-
acterized adjacency on the simple b-matching polytope.

Lovász [1972f] extended the Edmonds-Gallai decomposition to b-factors (cf.
Lovász [1972e] and Graver and Jurkat [1980]). For a sharpening of Corollary 33.1a
by specializing T, U, W , see Tutte [1974,1978].

Fulkerson, Hoffman, and McAndrew [1965] showed the following. Let G = (V, E)
be a graph such that any two odd circuits have a vertex in common or are connected
by an edge. Let b ∈ ZV

+ . Then G has a b-factor if and only if b(V ) is even and

(33.10) b(U) + 2|E[W ]| + |E[T, W ]| ≥ b(W )

for each partition T, U, W of V (cf. Mahmoodian [1977]).
Baebler [1937] showed that any k-regular l-connected graph has an l-factor if k

is odd and l is even. Era [1985] proved the following conjecture of Akiyama [1982]:
for each k there exists a t such that for each r-regular graph G = (V, E) with
r ≥ t, E can be partitioned into E1, . . . , Es with for each i = 1, . . . , s one has
k ≤ degEi

(v) ≤ k + 1 for each vertex v.
Katerinis [1985] showed that if k′, k, k′′ are odd natural numbers with k′ ≤

k ≤ k′′, then any graph G having a k′-factor and a k′′-factor, also has a k-factor.
Related results are reported in Enomoto, Jackson, Katerinis, and Saito [1985].

Goldman [1964] studied augmenting paths for simple b-matchings by reduction
to 1-matchings. More on b-matchings and b-factors can be found in Bollobás [1978],
Tutte [1984], and Bollobás, Saito, and Wormald [1985].
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b-edge covers

The covering analogue of a b-matching is the b-edge cover. It is not difficult
to derive min-max relations, polyhedral characterizations, and algorithms
for b-edge covers from those for b-matchings.

34.1. b-edge covers

Let G = (V, E) be a graph and let b ∈ ZV
+. A b-edge cover is a function

x ∈ ZE
+ satisfying

(34.1) x(δ(v)) ≥ b(v)

for each v ∈ V .
There is a direct analogue of Gallai’s theorem (Theorem 19.1), also given

in Gallai [1959a], relating maximum-size b-matchings and minimum-size b-
edge covers:

Theorem 34.1. Let G = (V, E) be a graph without isolated vertices and let
b ∈ ZV

+. Then the maximum size of a b-matching plus the minimum size of a
b-edge cover is equal to b(V ).

Proof. Let x be a minimum-size b-edge cover. For any v ∈ V , reduce x(δ(v))
by x(δ(v)) − b(v), by reducing xe on edges e ∈ δ(v). We obtain a b-matching
y of size

(34.2) y(E) ≥ x(E) −
∑

v∈V

(x(δ(v)) − b(v)) = b(V ) − x(E).

Hence the maximum-size of a b-matching is at least b(V ) − x(E).
Conversely, let y be a maximum-size b-matching. For any v ∈ V , increase

y(δ(v)) by b(v) − y(δ(v)), by increasing ye on edges e ∈ δ(v). We obtain a
b-edge cover x of size

(34.3) x(E) ≤ y(E) +
∑

v∈V

(b(v) − y(δ(v))) = b(V ) − y(E).
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Hence the minimum-size of a b-edge cover is at most b(V ) − y(E).

(An alternative way of proving this is by applying Gallai’s theorem for the
case b = 1 directly to the graph Gb described in (31.2), obtained from G by
splitting any vertex v into b(v) vertices.)

With Theorem 34.1, we can derive a min-max relation for minimum-size
b-edge cover from that for maximum-size b-matching. Let IU denote the set
of isolated (hence loopless) vertices of G − U .

Corollary 34.1a. Let G = (V, E) be a graph and let b ∈ ZV
+. Then the

minimum size of a b-edge cover is equal to the maximum value of

(34.4) b(IU ) +
∑

K

⌈ 1
2b(K)⌉,

taken over U ⊆ V , where K ranges over the components of G − U − IU .

Proof. Directly from Theorems 34.1 and 31.1.

The construction in the proof of Theorem 34.1 also implies that a
minimum-size b-edge cover can be found in polynomial time.

34.2. The b-edge cover polyhedron

Given a graph G = (V, E) and b ∈ ZV
+, the b-edge cover polyhedron is the

convex hull of the b-edge covers. The inequalities describing the b-edge cover
polyhedron can be easily derived from the description of the edge cover poly-
tope, similar to Theorem 31.2.

Theorem 34.2. Let G = (V, E) be a graph and let b ∈ ZV
+. Then the b-edge

cover polyhedron is determined by the inequalities

(34.5) (i) xe ≥ 0 (e ∈ E),
(ii) x(δ(v)) ≥ b(v) (v ∈ V ),
(iii) x(E[U ] ∪ δ(U)) ≥ ⌈ 1

2b(U)⌉ (U ⊆ V, b(U) odd).

Proof. Similar to the proof of Theorem 31.2, by construction of Gb and
reduction to the description of the edge cover polytope (Corollary 27.3a).
The theorem also follows from Theorem 34.3 below.

34.3. Total dual integrality

The constraints (34.5) are totally dual integral if we delete the parity condi-
tion in (34.5)(iii):
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(34.6) (i) xe ≥ 0 (e ∈ E),
(ii) x(δ(v)) ≥ b(v) (v ∈ V ),
(iii) x(E[U ] ∪ δ(U)) ≥ ⌈ 1

2b(U)⌉ (U ⊆ V ).

It is equivalent to the following:

Theorem 34.3. Let G = (V, E) be a graph, b ∈ ZV
+, and w ∈ ZE

+. Then the
minimum weight wTx of a b-edge cover x is equal to the maximum value of

(34.7)
∑

v∈V

yvb(v) +
∑

U⊆V

zU⌈ 1
2b(U)⌉,

where y ∈ ZV
+ and z ∈ Z

P(V )
+ satisfy

(34.8)
∑

v∈V

yvχδ(v) +
∑

U⊆V

zUχE[U ]∪δ(U) ≤ w.

Proof. We derive this from Theorem 32.3. Define B := b(V ) + 1. Then
the minimum is attained by a b-edge cover x < B · 1. So adding xe ≤ B
for e ∈ E as inequalities to (34.6) does not make it TDI if it wasn’t. Let
b̃(v) := B ·deg(v)−b(v) for each v ∈ V . Then by Theorem 32.3, the following
system is TDI:

(34.9) 0 ≤ x̃e ≤ B (e ∈ E),

x̃(δ(v)) ≤ b̃(v) (v ∈ V ),

x̃(E[U ] ∪ F ) ≤ ⌊ 1
2 (b̃(U) + B|F |)⌋ (U ⊆ V, F ⊆ δ(U)).

Hence also the following system is TDI (by resetting xe = B − x̃e for each
e ∈ E):

(34.10) 0 ≤ xe ≤ B (e ∈ E),
x(δ(v)) ≥ b(v) (v ∈ V ),
x(E[U ] ∪ F ) ≥ ⌈ 1

2 (b(U) − B|δ(U) \ F |)⌉ (U ⊆ V, F ⊆ δ(U)).

Now we can restrict ourselves in the last set of inequalities to those with
F = δ(U), as otherwise the right-hand side is negative. So we have system
(34.6) added with the superfluous inequalities xe ≤ B for e ∈ E.

Equivalently, in TDI terms:

Corollary 34.3a. System (34.6) is totally dual integral.

Proof. Directly from Theorem 34.3.

34.4. The weighted b-edge cover problem

A minimum-weight b-edge cover can be found in strongly polynomial time,
by reduction to maximum-weight b-matching:
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Theorem 34.4. For any graph G = (V, E), b ∈ ZV
+, and weight function

w ∈ QE, a minimum-weight b-edge cover can be found in strongly polynomial
time.

Proof. Define B := ‖b‖∞. Then we can assume that a minimum-weight b-
edge cover x satisfies xe ≤ B for each e ∈ E. Define b̃(v) := B · deg(v) − b(v)
for each v ∈ V . By Theorem 32.4, we can find a maximum-weight b̃-matching
x in strongly polynomial time. Defining xe := B − x̃e for each e then gives a
minimum-weight b-edge cover.

34.5. If b is even

The results can be simplified if b is even. In that case, the proofs can be
reduced to the bipartite case.

Minimum-size 2b-edge cover relates to maximum-weight 2-stable set, tak-
ing b as weight. Here a 2-stable set is a function y ∈ ZV

+ with yu + yv ≤ 2 for
each edge uv.

Theorem 34.5. Let G = (V, E) be a graph and let b ∈ ZV
+. Then the min-

imum size of a 2b-edge cover is equal to the maximum value of yTb where y
is a 2-stable set; equivalently, to the maximum value of

(34.11) b(V ) + b(S) − b(N(S)),

taken over stable sets S.

Proof. Similar to the proof of Theorem 31.5. (Alternatively, the present
theorem can be derived with Theorem 34.1 from Theorem 31.7.)

For a graph G = (V, E) and w : E → Z+, a w-stable set is a function
y : V → Z+ satisfying yu + yv ≤ w(uv) for each edge uv. Gallai [1957,1958a,
1958b] showed:

Theorem 34.6. Let G = (V, E) be a graph and let b ∈ ZV
+ and w ∈ ZE

+.
Then the minimum weight wTx of a 2b-edge cover is equal to the maximum
value of yTb where y is a 2w-stable set.

Proof. This follows from Theorem 34.3.

34.6. If b is constant

The above results can also be specialized to k-edge covers, for k ∈ Z+. That
is, b is constant.

Let G = (V, E) be a graph and let k ∈ Z+. A k-edge cover is a function
x ∈ ZE

+ with x(δ(v)) ≥ k for each vertex v. Thus if we identify k with the all-k
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vector in ZV
+, we have a k-edge cover as before. Therefore, Corollary 34.1a

gives the following, where IU denotes the set of isolated (hence loopless)
vertices of G − U :

Theorem 34.7. Let G = (V, E) be a graph and let k ∈ Z+. Then the mini-
mum size of a k-edge cover is equal to the maximum value of

(34.12) k|IU | +
∑

K

⌈ 1
2k|K|⌉,

over U ⊆ V , where K ranges over the components of G − U − IU .

Proof. Directly from Corollary 34.1a.

Note that it follows that if k is even, we need not round, and hence the
minimum size of a k-edge cover is equal to 1

2k times the minimum-size of a
2-edge cover.

34.7. Capacitated b-edge covers

The capacitated b-edge cover problem considers b-edge covers x satisfying a
prescribed capacity constraint x ≤ c. Results on capacitated b-edge covers
can be easily derived from the results on capacitated b-matchings.

For minimum-size capacitated b-edge cover, one has:

Theorem 34.8. Let G = (V, E) be a graph and let b ∈ ZV
+ and c ∈ ZE

+. Then
the minimum size of a b-edge cover x ≤ c is equal to the maximum value of

(34.13) b(U) − c(E[U ]) +
∑

K

⌈ 1
2 (b(K) − c(E[K, U ]))⌉,

taken over all pairs T, U of disjoint subsets of V , where K ranges over the
components of G[T ].

Proof. Define b′(v) := c(δ(v))− b(v) for each v ∈ V . Then by Theorem 32.1,

(34.14) minimum size of a b-edge cover x ≤ c
=c(E)−maximum size of a b′-matching x′ ≤ c
= c(E) − min

T,U,W
(b′(U) + c(E[W ])

+
∑

K

⌊ 1
2 (b′(K) + c(E[K, W ]))⌋)

= max
T,U,W

c(E) − 2c(E[U ]) − c(δ(U)) + b(U) − c(E[W ])

−
∑

K

⌊ 1
2 (2c(E[K]) + c(δ(K)) − b(K) + c(E[K, W ]))⌋

= max
T,U,W

b(U) − c(E[U ]) +
∑

K

⌈ 1
2 (b(K) − c(E[K, U ]))⌉
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(since c(E) = c(E[U ]) + c(δ(U)) + c(E[W ]) + c(E[T, W ])), where T , U , W
range over partitions of V and where K ranges over the components of G[T ].

This reduction also implies that a minimum-size b-edge cover x ≤ c can
be found in strongly polynomial time.

Let G = (V, E) be a graph, let b ∈ ZV
+ and c ∈ ZE

+. The c-capacitated
b-edge cover polytope is the convex hull of the b-edge covers x satisfying x ≤ c.
The description of the inequalities follows again from that for the capacitated
b-matching polytope.

Theorem 34.9. The c-capacitated b-edge cover polytope is determined by

(34.15) (i) 0 ≤ xe ≤ c(e) (e ∈ E),
(ii) x(δ(v)) ≥ b(v) (v ∈ V ),
(iii) x(E[U ]) + x(δ(U) \ F ) ≥ ⌈ 1

2 (b(U) − c(F ))⌉
(U ⊆ V, F ⊆ δ(U), b(U) − c(F ) odd).

Proof. From Theorem 32.2, by setting b̃(v) := c(δ(v)) − b(v) and x̃e :=
c(e) − xe.

By deleting the parity condition in (34.15)(iii), the system becomes totally
dual integral:

Theorem 34.10. The following system is TDI:

(34.16) (i) 0 ≤ xe ≤ c(e) (e ∈ E),
(ii) x(δ(v)) ≥ b(v) (v ∈ V ),
(iii) x(E[U ]) + x(δ(U) \ F ) ≥ ⌈ 1

2 (b(U) − c(F ))⌉
(U ⊆ V, F ⊆ δ(U)).

Proof. From Theorem 32.3, with the substitutions as given in the proof of
the previous theorem.

The weighted capacitated b-edge cover problem can easily be reduced to
the uncapacitated variant:

Theorem 34.11. Given a graph G = (V, E), b ∈ ZV
+, c ∈ ZE

+, and a weight
function w ∈ QE, a minimum-weight b-edge cover x ≤ c can be found in
strongly polynomial time.

Proof. From Theorem 32.4, with the construction given in the proof of The-
orem 34.8.

Agarwal, Sharma, and Mittal [1982] showed that a minimum-weight b-
edge cover x ≤ c can be obtained from a minimum-weight ‘fractional’ b-edge
cover x′ ≤ c with the help of a minimum-weight 1-edge cover algorithm.
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34.8. Simple b-edge covers

Call a b-edge cover x simple if x is a 0,1 vector. Thus we can identify simple
b-edge covers with subsets F of E such that degF (v) ≥ b(v) for each v ∈ V .

So defining b̃(v) := degG(v)− b(v) for v ∈ V , a vector x is a simple b-edge
cover if and only if 1 − x is a simple b̃-matching. This reduces simple b-edge
cover problems to simple b̃-matching problems. With this reduction, Theorem
33.1 gives:

Theorem 34.12. Let G = (V, E) be a graph and let b ∈ ZV
+ with b(v) ≤

deg(v) for each v ∈ V . Then the minimum size of a simple b-edge cover is
equal to the maximum value of

(34.17) b(U) − |E[U ]| +
∑

K

⌈ 1
2 (b(K) − |E[K, U ]|)⌉,

taken over all pairs T, U of disjoint subsets of V , where K ranges over the
components of G[T ].

Proof. From Theorem 33.1 applied to b̃.

The simple b-edge cover polytope is the convex hull of the simple b-edge
covers in G.

Theorem 34.13. The simple b-edge cover polytope is determined by

(34.18) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≥ b(v) (v ∈ V ),
(iii) x(E[U ]) + x(δ(U) \ F ) ≥ ⌈ 1

2 (b(U) − |F |)⌉
(U ⊆ V, F ⊆ δ(U), b(U) − |F | odd).

Proof. This is a special case of Theorem 34.9.

Again the system is TDI:

Theorem 34.14. System (34.18) is totally dual integral after deleting the
parity condition in (iii).

Proof. The theorem is a special case of Theorem 34.10.

Simple b-matchings are special cases of capacitated b-matchings, namely
by taking the capacity function c = 1. Hence a minimum-weight simple b-edge
cover can be found in strongly polynomial time:

Theorem 34.15. Given a graph G = (V, E), b ∈ ZV
+, and a weight function

w ∈ QE, a minimum-weight simple b-edge cover can be found in strongly
polynomial time.
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Proof. The theorem is a special case of Theorem 34.11.

We can specialize these results to k-edge covers, for k ∈ Z+. A simple
k-edge cover is a set of edges covering each vertex at least k times. Thus it
corresponds to subgraphs of minimum degree at least k. A min-max relation
for minimum-size simple k-edge cover reads:

Theorem 34.16. Let G = (V, E) be a graph and let k ∈ Z+. Then the
minimum size of a simple k-edge cover is equal to the maximum value of

(34.19) k|U | − |E[U ]| +
∑

K

⌈ 1
2 (k|K| − |E[K, U ]|)⌉,

taken over all pairs T, U of disjoint subsets of V , where K ranges over the
components of G[T ].

Proof. This is a special case of Theorem 34.12.

34.8a. Simple b-edge covers and b-matchings

Let G = (V, E) be a graph and let b ∈ ZV
+ with b(v) ≤ degG(v) for each v ∈ V .

Define

(34.20) νs(b) := the maximum size of a simple b-matching,
ρs(b) := the minimum size of a simple b-edge cover.

Similar to Theorem 34.1, there is a relation between νs(b) and ρs(b), generalizing
Gallai’s theorem (Theorem 19.1):

(34.21) νs(b) + ρs(b) = b(V ).

To see this, let M be a maximum-size simple b-matching. For each v ∈ V , add to M
b(v) − degM (v) edges incident with v. We can do this in such a way that we obtain
a simple b-edge cover F with |F | ≤ |M | + ∑

v∈V (b(v) − degM (v)) = b(V ) − |M |. So
ρs(b) ≤ b(V ) − |M | = b(V ) − νs(b).

To see the reverse inequality, let F be a minimum-size simple b-edge cover.
For each v ∈ V , delete from F degF (v) − b(v) edges incident with v. We obtain a
simple b-matching M with |M | ≥ |F | − ∑

v∈V (degF (v) − b(v)) = b(V ) − |F |. So
νs(b) ≥ b(V ) − |F | = b(V ) − ρs(b), which shows (34.21).

There is a second relation between simple b-matchings and simple b-edge covers.
Define b̃(v) := degG(v) − b(v) for each v ∈ V . Then trivially (by complementing),

(34.22) νs(b) + ρs(b̃) = |E|.
(34.21) implies

(34.23) b(V ) − 2νs(b) = ρs(b) − νs(b) = 2ρs(b) − b(V ),

and (34.22) implies

(34.24) ρs(b) − νs(b) = ρs(b̃) − νs(b̃).

Hence

(34.25) b(V ) − 2νs(b) = b̃(V ) − 2νs(b̃) = 2ρs(b) − b(V ) = 2ρs(b̃) − b̃(V ).

So the ‘deficiency’ of a maximum-size b-matching is equal to the ‘surplus’ of a
minimum-size b-edge cover, and this parameter is invariant under replacing b by
b̃ = degG −b.
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34.8b. Capacitated b-edge covers and b-matchings

The results of the previous section hold more generally for capacitated b-matchings.
Let G = (V, E) be a graph, let b ∈ ZV

+ and let c ∈ ZE
+ with b(v) ≤ c(δ(v)) for each

v ∈ V . Define

(34.26) νc(b) := the maximum size of a b-matching x ≤ c,
ρc(b) := the minimum size of a b-edge cover x ≤ c.

Then:

(34.27) νc(b) + ρc(b) = b(V ).

To see this, consider a maximum-size b-matching x ≤ c. We can increase x to obtain
a b-edge cover y ≤ c, in such a way that y(E) ≤ x(E) +

∑

v∈V (b(v) − x(δ(v))) =
b(V ) − x(E). So ρc(b) ≤ b(V ) − x(E) = b(V ) − νc(b).

To see the reverse inequality, consider a minimum-size b-edge cover y ≤ c.
We can decrease y to obtain a b-matching x ≤ y such that x(E) ≥ y(E) −
∑

v∈V (y(δ(v)) − b(v)) = b(V ) − y(E). So νc(b) ≥ b(V ) − y(E) = b(V ) − ρc(b),
which shows (34.27).

Again, there is a second relation between capacitated b-matchings and capaci-
tated b-edge covers. Define b̃(v) := c(δ(v))− b(v) for each v ∈ V . Then trivially (by
replacing x by c − x),

(34.28) νc(b) + ρc(b̃) = c(E).

Combining (34.27) and (34.28) gives as in (34.25):

(34.29) b(V ) − 2νc(b) = b̃(V ) − 2νc(b̃) = 2ρc(b) − b(V ) = 2ρc(b̃) − b̃(V ).

So the ‘deficiency’ of a maximum-size b-matching x ≤ c is equal to the ‘surplus’ of
a minimum-size b-edge cover y ≤ c, and this parameter is invariant under replacing
b by b̃ := c ◦ δ − b.



Chapter 35

Upper and lower bounds

In the previous chapters we considered nonnegative integer functions satis-
fying certain loweror upper bounds. We now turn over to the more general
case where we put both upper and lower bounds. We also relax the condi-
tion that the functions be nonnegative. Again, the results can be proved
by refining the results of previous chapters — thus all results are obtained
essentially by reduction to the fundamental results of Tutte and Edmonds.

35.1. Upper and lower bounds

Let G = (V, E) be a graph and let a, b ∈ ZV and d, c ∈ ZE . We will consider
functions x ∈ ZE satisfying

(35.1) (i) d(e) ≤ xe ≤ c(e) for all e ∈ E,
(ii) a(v) ≤ x(δ(v)) ≤ b(v) for all v ∈ V .

The existence of such a function is characterized in the following theorem.
(As usual, E[X, Y ] denotes the set of edges xy in E with x ∈ X and y ∈ Y .)

Theorem 35.1. Let G = (V, E) be a graph and let a, b ∈ ZV with a ≤ b
and d, c ∈ ZE with d < c. Then there exists an x ∈ ZE satisfying (35.1) if
and only if for each partition T , U , W of V , the number of components K
of G[T ] with b(K) = a(K) and

(35.2) b(K) + c(E[K, W ]) + d(E[K, U ])

odd is at most

(35.3) b(U) − 2d(E[U ]) − d(E[T, U ]) − a(W ) + 2c(E[W ]) + c(E[T, W ]).

Proof. To see necessity, consider a component K of G[T ] with b(K) = a(K).
Then

(35.4) 2x(E[K]) = b(K) − x(δ(K)) = b(K) − x(E[K, U ]) − x(E[K, W ]).

Hence, if (35.2) is odd, we have x(E[K, U ]) ≥ d(E[K, U ])+1 or x(E[K, W ]) ≤
c(E[K, W ]) − 1. So x(E[T, U ]) − d(E[T, U ]) + c(E[T, W ]) − x(E[T, W ]) is at
least the number of such components. On the other hand,
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(35.5) x(E[T, U ]) − x(E[T, W ]) = x(δ(U)) − x(δ(W ))
≤ b(U) − 2d(E[U ]) − a(W ) + 2c(E[W ]).

This proves necessity.
To see sufficiency, we may assume that d = 0, since the theorem is in-

variant under replacing a(v) by a(v) − d(δ(v)) and b(v) by b(v) − d(δ(v)) for
each v, and c by c − d and d by 0. (It does not change the parity of (35.2)
and does not change (35.3).)

We show sufficiency by application of Corollary 32.1a. Define

(35.6) R := {v ∈ V | a(v) < b(v)}.

Extend G to a graph G′ = (V ′, E′), and define b′ ∈ ZV ′

+ and c′ ∈ ZE′

+ , as
follows. For each v ∈ V , let b′(v) := b(v) and for each e ∈ E, let c′(e) :=
c(e). Introduce a new vertex v0, with b′(v0) := b(V ), and a loop v0v0 at v0,
with c′(v0v0) := ∞. Moreover, for each v ∈ R introduce an edge vv0 with
c′(vv0) := b(v) − a(v).

Now a function x as required exists if and only if there exists a perfect b′-
matching x′ ≤ c′ in G′. So it suffices to test the constraints given by Corollary
32.1a for G′, b′, and c′. Assuming x′ does not exist, we can partition V ′ into
T ′, U ′, and W ′ such that G′[T ′] has more than b′(U ′)−b′(W ′)+2c′(E′[W ′])+
c′(E′[T ′, W ′]) components K ′ with b′(K ′)+c′(E′[K ′, W ′]) odd. By parity, the
excess is at least 2. (This follows from the fact that b′(V ′) = 2b(V ) is even.)

Let T := T ′ \ {v0}, U := U ′ \ {v0}, and W := W ′ \ {v0}.
First assume that v0 ∈ U ′; so T ′ = T and W ′ = W . Then the number of

components K of G′[T ′] = G[T ] with b(K) + c(E[K, W ]) odd is trivially at
most b(T ) + c(E[T, W ]), and hence at most

(35.7) b(U) + b(V ) − b(W ) + 2c(E[W ]) + c(E[T, W ])
= b′(U ′) − b′(W ′) + 2c′(E′[W ′]) + c′(E′[T ′, W ′]),

a contradiction.
Second assume that v0 ∈ W ′. Then c′(E′W ′) = ∞, which is again a

contradiction.
Hence we may assume that v0 ∈ T ′; so U ′ = U and W ′ = W . Then

G′[T ′] has exactly one component containing v0. All other components K are
components of G[T ] that are disjoint from R (since no vertex in K is adjacent
to v0). So G[T ] has more than

(35.8) b′(U ′) − b′(W ′) + 2c′(E′[W ′]) + c′(E′[T ′, W ′])
= b(U) − a(W ) + 2c(E[W ]) + c(E[T, W ])

components K contained in V \R with b(K)+ c(E[K, W ]) odd. This contra-
dicts the condition of the theorem.

By taking d = 0 and c = ∞ we obtain as special case (where again IU

denotes the set of isolated (hence loopless) vertices of G − U):
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Corollary 35.1a. Let G = (V, E) be a graph and let a, b ∈ ZV
+ with a ≤ b.

Then there exists a function x ∈ ZE
+ satisfying

(35.9) a(v) ≤ x(δ(v)) ≤ b(v)

for each v ∈ V if and only if for each U ⊆ V , G − U − IU has at most
b(U) − a(IU ) components K with b(K) odd and a(K) = b(K).

Proof. We show sufficiency. Suppose that no such x exists. By Theorem 35.1
(for d = 0, c = ∞), there exists a partition T , U , W of V with E[W ] = ∅ and
E[T, W ] = ∅ such that the number of components K of G[T ] with b(K) =
a(K) and b(K) odd, is more than b(U) − a(W ). We may assume that each
component K of G[T ] spans at least one edge: otherwise, if K = {v}, moving
v from T to W , decreases the number of such components by at most 1, while
b(U) − a(W ) decreases by at least 1 (since b(v) = a(v) and b(v) is odd).

So we can assume that W = IU , in which case we have a contradiction
with the condition in the present corollary.

Another special case, for d = 0, and c = 1, is the characterization of
Lovász [1970c] of the existence of subgraphs with prescribed degrees:

Corollary 35.1b. Let G = (V, E) be a graph and let a, b ∈ ZV
+ with a ≤ b.

Then E has a subset F such that

(35.10) a(v) ≤ degF (v) ≤ b(v)

for each v ∈ V if and only if for each partition T, U, W of V , the number of
components K of G[T ] with b(K) = a(K) and b(K) + |E[K, W ]| odd is at
most b(U) − a(W ) + 2|E[W ]| + |E[T, W ]|.

Proof. This is the case d = 0, c = 1 of Theorem 35.1.

The construction described in the proof of Theorem 35.1 also implies:

Theorem 35.2. Given a graph G = (V, E), a, b ∈ ZV , d, c ∈ ZE, and
w ∈ QE, a vector x ∈ ZE satisfying d ≤ x ≤ c and a(v) ≤ x(δ(v)) ≤ b(v) for
each v ∈ V , and minimizing wTx, can be found in strongly polynomial time.

Proof. The construction in the proof of Theorem 35.1 reduces this to Theo-
rem 32.4.

35.2. Convex hull

We now characterize the convex hull of the functions x ∈ ZE satisfying (35.1):

Theorem 35.3. Let G = (V, E) be a graph and let a, b ∈ ZV and d, c ∈ ZE

with a ≤ b and d ≤ c. Then the convex hull of the vectors x ∈ ZE satisfying
(35.1) is determined by (35.1) together with the inequalities
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(35.11) x(E[U ]) − x(E[W ]) + x(F ∩ δ(U)) − x(H ∩ δ(W ))
≤ ⌊ 1

2 (b(U) − a(W ) + c(F ) − d(H))⌋,

where U and W are two disjoint subsets of V and where F and H partition
δ(U ∪ W ), with b(U) − a(W ) + c(F ) − d(H) odd.

Proof. Necessity of (35.11) follows by adding up the following inequalities,
each implied by (35.1):

(35.12) x(E[U ]) + 1
2x(δ(U)) ≤ 1

2b(U),
−x(E[W ]) − 1

2x(δ(W )) ≤ − 1
2a(W ),

1
2x(F ) ≤ 1

2c(F ),
− 1

2x(H) ≤ −1
2d(H).

The left-hand sides add up to the left-hand side of (35.11), and the right-hand
side to the unrounded right-hand side of (35.11).

To see sufficiency of (35.11), we may assume that d = 0. Indeed, the
theorem is invariant under resetting a(v) := a(v) − d(δ(v)), and b(v) :=
b(v) − d(δ(v)) for all v ∈ V , and c := c − d and d := 0. Then, as above, we
can reduce the theorem to Corollary 32.2a characterizing the convex hull of
capacitated b-matchings.

Let x satisfy (35.1) and (35.11). Let R, G′, b′, and c′ be as in the proof
of Theorem 35.1. Define x′(e) := xe for each e ∈ E, x′(vv0) := b(v) − x(δ(v))
for each v ∈ R, and x′(v0v0) := 2x(E).

We show that x′ belongs to the c′-capacitated perfect b′-matching poly-
tope (with respect to G′). This implies that x belongs to the convex hull of
vectors x ∈ ZE

+ satisfying (35.1).
By Corollary 32.2a, it suffices to check

(35.13) (i) 0 ≤ x′(e′) ≤ c′(e′) (e′ ∈ E′),
(ii) x′(δ′(v′)) = b′(v′) (v′ ∈ V ′),
(iii) x′(δ′(U ′) \ F ′) − x′(F ′) ≥ 1 − c′(F ′)

(U ′ ⊆ V ′, F ′ ⊆ δ′(U ′) with
b′(U ′) + c′(F ′) odd).

(35.13)(i) and (ii) are direct. To see (35.13)(iii), let U ′ ⊆ V ′ and F ′ ⊆ δ′(U ′)
with b′(U ′)+c′(F ′) odd. We may assume that v0 ∈ U ′ (as we can replace U ′ by
its complement, since b′(V ′) = 2b(V ) is even). Let W := {v ∈ V | vv0 ∈ F}
and U := V \ (U ′ ∪ W ). Let F := F ′ ∩ E and H := δE(U ∪ W ) \ F .

Now b′(U ′) = b(V ) + b(V \ (U ∪ W )) and c′(F ′) = c(F ) + (b − a)(W ). So
b′(U ′) + c′(F ′) odd implies that b(U) − a(W ) + c(F ) is odd. So by (35.11),

(35.14) 2x(E[U ]) − 2x(E[W ]) + 2x(F ∩ δ(U)) − 2x(H ∩ δ(W ))
≤ b(U) − a(W ) + c(F ) − 1.

Hence

(35.15) x′(δ′(U ′) \ F ′) − x′(F ′)

= x(H) +
∑

v∈U

(b(v) − x(δ(v))) − x(F ) −
∑

v∈W

(b(v) − x(δ(v)))
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= x(H) + b(U) − 2x(E[U ]) − x(δ(U)) − x(F ) − b(W )
+2x(E[W ])+x(δ(W )) = −2x(E[U ])+2x(E[W ])−2x(F ∩ δ(U))
+ 2x(H ∩ δ(W )) + (b(U) − b(W ))
≥ 1 − b(U) + a(W ) − c(F ) + (b(U) − b(W ))
= 1 − c(F ) − b(W ) + a(W ) = 1 − c′(F ′),

proving (35.13)(iii).

The special case d = 0, c = ∞ was mentioned by Schrijver and Seymour
[1977]:

Corollary 35.3a. Let G = (V, E) be a graph and let a, b ∈ ZV
+. Then the

convex hull of those x ∈ ZE satisfying

(35.16) (i) xe ≥ 0 for each e ∈ E,
(ii) a(v) ≤ x(δ(v)) ≤ b(v) for each v ∈ V ,

is determined by (35.16) together with the inequalities:

(35.17) x(E[U ]) − x(E[W ]) − x(δ(W ) \ δ(U)) ≤ ⌊ 1
2 (b(U) − a(W ))⌋,

where U and W are disjoint subsets of V with b(U) − a(W ) odd.

Proof. This is a special case of Theorem 35.3.

Similarly, we can characterize the convex hull of subgraphs with prescribed
bounds on the degrees:

Corollary 35.3b. Let G = (V, E) be a graph and let a, b ∈ ZV
+ with a ≤ b.

Then the convex hull of the incidence vectors of subsets F of E satisfying

(35.18) a(v) ≤ degF (v) ≤ b(v)

for each v ∈ V , is determined by

(35.19) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) a(v) ≤ x(δ(v)) ≤ b(v) for each v ∈ V ,

together with the inequalities

(35.20) x(E[U ]) − x(E[W ]) + x(F ∩ δ(U)) − x(H ∩ δ(W ))
≤ ⌊ 1

2 (b(U) − a(W ) + |F |)⌋,

where U and W are disjoint subsets of V and where F and H partition
δ(U ∪ W ), with b(U) − a(W ) + |F | odd.

Proof. Again this is a special case of Theorem 35.3.

We note that for the V ×E incidence matrix M of any graph G = (V, E),
any a, b ∈ ZV , d, c ∈ ZE , and any k, l ∈ Z one has:
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(35.21) conv.hull{x ∈ ZE | d ≤ x ≤ c, a ≤ Mx ≤ b, k ≤ x(E) ≤ l}
= conv.hull{x ∈ ZE | d ≤ x ≤ c, a ≤ Mx ≤ b}
∩ {x ∈ RE | k ≤ x(E) ≤ l}.

This can be proved similarly to Corollary 18.10a.

35.3. Total dual integrality

System (35.1) together with the inequalities (35.11) generally is not TDI (cf.
the example in Section 30.5). To obtain a totally dual integral system we
should delete the restriction in (35.11) that b(U) − a(W ) + c(F ) − d(H) be
odd. Thus we obtain the system:

(35.22) (i) d(e) ≤ xe ≤ c(e) (e ∈ E),
(ii) a(v) ≤ x(δ(v)) ≤ b(v) (v ∈ V ),
(iii) x(E[U ]) − x(E[W ]) + x(F ∩ δ(U)) − x(H ∩ δ(W ))

≤ ⌊ 1
2 (b(U) − a(W ) + c(F ) − d(H))⌋

(U, W ⊆ V, U ∩ W = ∅, F, H
partition δ(U ∪ W )).

Theorem 35.4. System (35.22) is totally dual integral.

Proof. Again we may assume d = 0. Let R, G′, b′, and c′ be as in the proof
of Theorem 35.1. By Theorem 32.3, the following system, in the variable
x′ ∈ RE′

, is TDI (where δ′ := δG′ and E′[U ′] is the set of edges in E′

spanned by U ′):

(35.23) (i) 0 ≤ x′(e′) ≤ c′(e′) (e′ ∈ E′),
(ii) x′(δ′(v′)) = b′(v′) (v′ ∈ V ′),
(iii) x′(E′[U ′]) + x′(F ′) ≤ ⌊ 1

2 (b′(U ′) + c′(F ′))⌋
(U ′ ⊆ V ′, F ′ ⊆ δ′(U ′)).

Adding the equality

(35.24) x′(v0v0) − x′(E) = 0

to (35.23) maintains total dual integrality (since (35.24) is valid for each
vector x′ satisfying (35.23)).

We can restrict the inequalities (35.23)(iii) to those with v0 �∈ U ′. To see
this, assume v0 ∈ U ′. Define U := U ′ ∩ V and U ′′ := V \ U ′. Then

(35.25) x′(E′[U ′]) = x′(v0v0) + x′(E′[U ]) +
∑

v∈U∩R

x′(vv0)

= x′(E)+x′(E′[U ])+
∑

v∈U∩R

x′(vv0) = x′(E′[U ′′])+
∑

v∈U

x′(δ′(v))

and
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(35.26) ⌊ 1
2 (b′(U ′) + c′(F ′))⌋ = ⌊ 1

2 (b′(U ′′) + 2b′(U) + c′(F ′))⌋

= ⌊ 1
2 (b′(U ′′) + c′(F ′))⌋ +

∑

v∈U

b′(v),

since b′(U ′) = b′(U) + b′(v0) = b′(U) + b′(V ). So the inequality

(35.27) x′(E′[U ′]) + x′(F ′) ≤ ⌊ 1
2 (b′(U ′) + c′(F ′))⌋

is a sum of

(35.28) x′(E′[U ′′]) + x′(F ′) ≤ ⌊ 1
2 (b′(U ′′) + c′(F ′))⌋

and of x′(δ′(v)) = b′(v) for v ∈ U . So we can assume that v0 �∈ U ′.
Now adding an integer multiple of a valid equality to another constraint,

maintains total dual integrality. So using (35.23)(ii) we can replace (35.23)(i)
by:

(35.29) 0 ≤ x′(e) ≤ c(e) (e ∈ E),
a(v) ≤ x′(δ(v)) ≤ b(v) (v ∈ V ),

since for v ∈ R, subtracting x′(δ′(v)) = b(v) from 0 ≤ x′(vv0) ≤ b(v) − a(v)
gives −b(v) ≤ −x′(δ(v)) ≤ −a(v).

For U ′ ⊆ V and F ′ ⊆ δ′(U ′), let W := {v ∈ V | vv0 ∈ F ′} and F :=
F ′ ∩ E. As

(35.30) x′(E′[U ′]) + x′(F ′) −
∑

v∈W

x′(δ′(v))

= x′(E′[U ′]) + x′(F ′) − 2x′(E[W ]) − x′(δ(W ))
= x′(E′[U ′ \ W ]) + x′(F ′) − x′(E[W ]) − x′(δ(W ) \ δ(U ′ \ W ))

and

(35.31) ⌊ 1
2 (b′(U ′) + c′(F ′))⌋ − b(W ) = ⌊ 1

2 (b(U ′ \ W ) − a(W ) + c(F ))⌋,

we can replace (35.23)(iii) by (taking U := U ′ \ W ):

(35.32) x′(E′[U ])+x′(F )−x′(E[W ])−x′(δ(W )\δ(U)) ≤ 1
2⌊b(U)−a(W )

+c(F )⌋ for U, W ⊆ V with U ∩ W = ∅ and for F ⊆ δ(U ∪ W ).

Each of the variables x′(vv0) (v ∈ R) and x′(v0v0) occurs exactly once in the
system, in an equality constraint, with coefficient 1. So we can delete these
variables maintaining total dual integrality (Theorem 5.27), and we obtain
system (35.22).

As special cases one can derive the total dual integrality of the systems
corresponding to d = 0, c = ∞ and to d = 0, c = 1 (the subgraph polytope).
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35.4. Further results and notes

35.4a. Further results on subgraphs with prescribed degrees

Corollary 35.1b of Lovász [1970c] implies the following. Let G = (V, E) be a graph
and let b, b′ ∈ ZV

+ with b + b′ > degG. Then E can be partitioned into a simple
b-matching and a simple b′-matching if and only if

(35.33) |E[U, W ]| ≤ b(U) + b′(W )

for each pair of disjoint subsets U and W of V .
This corresponds to the case a < b in Corollary 35.1b, by taking a := degG −b′.

Then there are no components K with a(K) = b(K).
The condition can be equivalently described as:

(35.34)
∑

v 
∈U

max{0, a(v) − degG−U (v)} ≤ b(u)

for U ⊆ V .
This implies the following result of Lovász [1970c]:

(35.35) Let G = (V, E) be a graph of maximum degree k and let k1, k2 ≥ 0 with
k1 + k2 = k + 1. Then E can be partitioned into a simple k1-matching
and a simple k2-matching

(since |E[U, W ]| ≤ (k1 + k2) min{|U |, |W |} ≤ k1|U | + k2|W |). A special case is a
result noted by Tutte [1978]: for all 0 ≤ r ≤ k, each k-regular graph has a subgraph
in which each degree belongs to {r, r + 1}.

Thomassen [1981a] gave the following short direct proof of (35.35). In fact he
proved the following extension of (35.35):

(35.36) Let G = (V, E) be a graph in which each vertex has degree k or k + 1
and let 1 ≤ k′ < k. Then G has a subgraph G′ = (V, E′) in which each
vertex has degree k′ or k′ + 1.

Note that (35.35) follows from this by embedding G into a k-regular graph.
To prove (35.36), it suffices to prove the case k′ = k − 1. Let U be the set of

vertices of degree k + 1 in G. We can assume that deleting any edge of G results
in a vertex of degree less than k. Hence no two distinct vertices in U are adjacent.
There may be loops at the vertices in U ; let W be the set of those vertices in U
that are not incident with a loop. Since each vertex in W has degree k +1 and each
vertex in V \U has degree k, by Hall’s marriage theorem, G contains a matching M
connecting W to V \ U . Now deleting the edges in M and deleting, for each vertex
v ∈ U \ W , one of the loops attached at v, gives a graph G′ as required.

A ‘dual’ consequence was noted by Gupta [1978]:

(35.37) Let G = (V, E) be a graph of minimum degree δ and let δ1, δ2 ≥ 0
with δ1 + δ2 = δ − 1. Then E can be partitioned into E1 and E2 such
that Gi = (V, Ei) has minimum degree at least δi for i = 1, 2.

Gupta [1978] mentioned that the following direct derivation from Theorem 20.6
was shown to him by C. Berge:

Apply induction on δ1, the case δ1 = 0 being trivial. If δ1 > 0, by the induction
hypothesis E can be partitioned into E1 and E2 such that δ(G1) ≥ δ1 − 1 and
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δ(G2) ≥ δ2 + 1 = δ − δ1. (Here Gi = (V, Ei) for i = 1, 2.) We choose this partition
with |E2| minimal.

Let S be the set of vertices v with degE1
(v) = δ1 − 1. By the minimality

of |E2|, S spans no edge of E2. Let F := δ(S) ∩ E2. So degF (v) = degE2
(v) =

degG(v) − degE1
(v) ≥ δ − δ1 + 1 for each v ∈ S. Let p := δ − δ1 + 1 = δ2 + 2. Now

by Theorem 20.6, F can be partitioned into F1, . . . , Fp such that each vertex v is
covered by at least min{p, degF (v)} of the Fi. Then replacing E1 by E1 ∪F1 and E2

by E2 \ F1 gives a partition as required. Indeed, if degF (v) ≥ p, then degFi
(v) ≥ 1

for each i, implying

(35.38) degE1∪F1
(v) = degE1

(v) + degF1
(v) ≥ (δ1 − 1) + 1 = δ1

and

(35.39) degE2\F1
(v) ≥

p
∑

i=2

degFi
(v) ≥ p − 1 = δ2 + 1.

If degF (v) < p, then v �∈ S and degF1
(v) ≤ 1, and hence

(35.40) degE1∪F1
(v) ≥ degE1

(v) ≥ δ1

and

(35.41) degE2\F1
(v) ≥ degE2

(v) − 1 ≥ (δ2 + 1) − 1 = δ2.

This proves (35.37).
Las Vergnas [1978] showed that if a ≤ 1 ≤ b holds, a simpler condition can be

formulated in Corollary 35.1b:

(35.42) for each U ⊆ V , the number of odd components K of G − U with
|K| = 1 and a(K) = 1, or with |K| ≥ 3 and a(K) = b(K) is at most
b(U).

Anstee [1985] gave a proof of Lovász’s theorem, with an O(n3)-time algorithm
to find the subgraph. Heinrich, Hell, Kirkpatrick, and Liu [1990] gave a simplified
proof of Lovász’s theorem for a < b, implying an O(

√

a(V ) m)-time algorithm.
Lovász [1970c] also characterized the minimum deviation that subsets can have

from prescribed lower and upper bounds on the degrees. In fact, he showed the
following (where α+ := max{0, α} for any α ∈ R): Let G = (V, E) be a graph and
let a, b ∈ ZV

+ with a ≤ b. Then the minimum of

(35.43)
∑

v∈V

((a(v) − degF (v))+ + (degF (v) − b(v))+)

over F ⊆ E is equal to the maximum value of

(35.44) a(W )− b(U)−2|E[W ]|− |E[T, W ]|+number of components K of G[T ]
with a(K) = b(K) and with a(K) + |E[K, W ]| odd,

taken over all partitions T , U , W of V .
Let B : V → P(Z+). The B-matching problem asks for a subgraph H of G such

that degH(v) ∈ B(v) for each v ∈ V . In general, this is NP-complete, even when
B(v) ∈ {{1}, {0, 3}} for each v ∈ V (Lovász [1972f]).

If |Z+ \ B(v)| = 1 for each vertex v, Lovász [1973a] gave a characterization.
Lovász [1972f] investigated the case where Z+ \ B(v) contains no two consecutive
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integers, for which Cornuéjols [1988] gave a polynomial-time algorithm, and Sebő
[1993b] a good characterization.

For algorithms to find subgraphs of minimum deviation see Hell and Kirkpatrick
[1993]. Other work on subgraphs with prescribed degrees includes Berge and Las
Vergnas [1978], Shiloach [1981], Kano and Saito [1983], Akiyama and Kano [1985a],
Kano [1985,1986], Anstee [1990], Cai [1991], and Li and Cai [1998]. A survey is
given by Akiyama and Kano [1985b].

35.4b. Odd walks

Let G = (V, E) be an undirected graph, let s, t ∈ V , and let l : E → Q. Call a
walk odd if it has an odd number of edges. Then a shortest odd s − t walk without
repeated edges can be found as follows. For each edge e of G, set d(e) := 0 and
c(e) := 1, and add an edge ẽ parallel to e, of length l(ẽ) := −l(e), and define
d(ẽ) := −1, c(ẽ) := 0. Let M be the V × E′ incidence matrix of the extended
graph G′ = (V, E′). Define b : V → Z by b(s) := b(t) := 1 and b(v) := 0 for each
v ∈ V \ {s, t}. Then a shortest odd s − t walk without repeated edges can be found

by finding an x ∈ ZE′

satisfying d ≤ x ≤ c and Mx = b and minimizing lTx.
So by Theorem 35.2, this can be solved in strongly polynomial time. Better

running times were given by Goldberg and Karzanov [1994,1996]: O(m) for finding
such an odd s − t walk, O(nm log n) and O(nm

√
log L) for finding a shortest such

odd s−t walk, strengthened to O(m log n) and O(m
√

log L) for nonnegative lengths.
(L is the maximum absolute value of the lengths, assuming they are integer.)



Chapter 36

Bidirected graphs

In the previous chapter we considered integer solutions of d ≤ x ≤ c, a ≤
Mx ≤ b where M is the incidence matrix of an undirected graph. Earlier, in
Chapter 12, we considered the same problem if M is the incidence matrix
of a directed graph.
Edmonds and Johnson [1970] showed that M can more generally be the
incidence matrix of a ‘bidirected’ graph — a structure that comprises both
undirected and directed graphs. That is, M has entries 0, ±1, and ±2, such
that the sum of the absolute values of the entries in any column is equal to
2. The results are obtained by a simple reduction to the undirected case,
although the elaboration takes some effort.
The results could be formulated just in terms of matrices, but the graph-
theoretic interpretation is helpful in formulating, visualizing, and proving
the results.

36.1. Bidirected graphs

A bidirected graph is a triple G = (V, E, σ), where (V, E) is an undirected
graph and where σ assigns to each e ∈ E and v ∈ e a ‘sign’ σe,v ∈ {+1,−1}.

If e is a loop, that is, e is a family {v, v}, we may assign different signs to
the two occurrences of v. However, in the problems discussed in this chapter,
loops where the signs are different are irrelevant. So we assume that the signs
in a loop are the same, either both +1, or both −1.

Clearly, undirected graphs and directed graphs can be considered as spe-
cial cases of bidirected graphs. Graph terminology for the graph (V, E) ex-
tends in an obvious way to the bidirected graph (V, E, σ).

Let G = (V, E, σ) be a bidirected graph. The edges e for which σe,v = 1
for each v ∈ e are called the positive edges, those with σe,v = −1 for each
v ∈ e the negative edges, and the remaining edges are called the directed
edges. The V × E incidence matrix of G is the V × E matrix M defined by:

(36.1) Mv,e := σe,v if e is not a loop,
Mv,e := 2σe,v if e is a loop,

setting σe,v := 0 if v �∈ e. It follows that an integer matrix M is the V × E
incidence matrix of a bidirected graph if and only if the sum of the absolute
values of the entries in any column of M is equal to 2.
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For vectors a, b ∈ ZV and d, c ∈ ZE , we consider integer solutions x ∈ RE

of

(36.2) (i) d ≤ x ≤ c,
(ii) a ≤ Mx ≤ b.

The related existence and optimization problems can be reduced as follows
to the case where G is just an undirected graph. First, we can assume that
G has no negative edges, since multiplying the corresponding column of M
by −1 gives an equivalent problem. Next, any directed edge f = su, with
σf,s = −1 and σf,u = +1, can be handled as follows.

(36.3) Extend G by a new vertex t and replace edge e by two new positive
edges st and tu. This makes the bidirected graph G′ = (V ′, E′).
Define a′, b′ ∈ ZV ′

by a′(v) := a(v) and b′(v) := b(v) for v ∈ V
and a′(t) := b′(t) := 0. Define d′, c′ ∈ ZE′

by d′(e) := d(e) and
c′(e) := c(e) for e ∈ E \ {f}, and d′(st) := −∞, c′(st) := ∞,
d′(tu) := d(f), and c′(tu) := c(f). Let M ′ be the V ′×E′ incidence
matrix of G′.

Then there is a one-to-one relation between (integer) solutions of (36.2) and
those for the system corresponding to G′, M ′, a′, b′, c′, d′: just define x(tu) :=
xf and x(st) := −xf .

Algorithmically, this gives a direct reduction to the undirected case:

Theorem 36.1. For w ∈ QE, an integer vector x maximizing wTx over
(36.2) can be found in strongly polynomial time.

Proof. By multiplying columns of M by −1, we can assume that G has no
negative edges. Next, apply (36.3) to each directed edge. This reduces the
problem to one on a bidirected graph with all edges positive, that is, on an
undirected graph. Hence, the theorem follows from Theorem 35.2.

We next consider characterizations. Let G = (V, E, σ) be a bidirected
graph. For any T ⊆ V , G[T ] denotes the bidirected subgraph of G induced
by T (that is, G[T ] = (T, E[T ], σ′), where σ′ is the restriction of σ to pairs
e, v with e ∈ E[T ]). We set for U ⊆ V :

(36.4) δ(U) := δE(U).

For disjoint X, Y ⊆ V , we denote:

(36.5) E[X, Y +] := {e ∈ δ(X) | ∃v ∈ Y : σe,v = +1},
E[X, Y −] := {e ∈ δ(X) | ∃v ∈ Y : σe,v = −1}.

For any vector z, let z+ be the vector obtained from z by setting each negative
entry to 0. Similarly, let z− be the vector obtained from z by setting each
positive entry to 0. So z = z+ + z−.

In the following theorem the condition that d < c is not really a restriction:
if de = ce we know that xe = de and hence we can dispose of e by contracting
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it appropriately. But if we delete the condition d < c, the formulation of the
theorem would be more complicated.

Theorem 36.2. Let a ≤ b and d < c. Then there exists an integer vector x
satisfying (36.2) if and only if for each partition T , U , W of V , the number
of components K of G[T ] with b(K) = a(K) and

(36.6) b(K)+c(E[K, W+])+c(E[K, U−])+d(E[K, U+])+d(E[K, W−])

odd is at most

(36.7) yT

+b + yT

−a − (yTM)−c − (yTM)+d,

where y := χU − χW .

Proof. The validity of the theorem is invariant under multiplying a row v
of M by −1 and replacing b(v) by −a(v) and a(v) by −b(v) (then if v ∈ U
we move v to W , and if v ∈ W we move v to U). Similarly, the validity is
invariant under multiplying a column e by −1 and replacing c(e) by −d(e)
and d(e) by −c(e).

Hence, to see necessity, we can assume that W = ∅ and E[T, U−] = ∅. So
y+ = y and y− = 0 and E[T, U+] = δ(T ). Then

(36.8) (x − d)(δ(T )) = (x − d)(E[T, U+]) ≤ (yTM)+(x − d)
≤ (yTM)+(x − d) − (yTM)−(c − x)
= yTMx − (yTM)+d − (yTM)−c
= yT

+Mx + yT

−Mx − (yTM)+d − (yTM)−c

≤ yT

+b + yT

−a − (yTM)+d − (yTM)−c.

On the other hand, for each component K of G[T ] one has (x−d)(δ(K)) ≥ 0.
Moreover, if b(K) = a(K) and (36.6) is odd, then (x− d)(δ(K)) is odd, since

(36.9) (x − d)(δ(K)) ≡ (x − d)(δ(K)) + 2x(E[K]) ≡ b(K) + d(δ(K))
(mod 2)

So (x − d)(δ(T )) is not less than the number of components K of G[T ] with
a(K) = b(K) and (36.6) odd, showing necessity of the condition.

To show sufficiency, we can assume that G has no negative edges, since
we can multiply columns of M by −1. We show sufficiency by induction
on the number of directed edges. If this number is 0, the theorem reduces
to Theorem 35.1. So we can assume that there is an edge f = su with
σf,s = −1 and σf,u = +1. Then we apply construction (36.3), to obtain
G′ = (V ′, E′), M ′, a′, b′, d′, c′.

Now there exists an integer vector x satisfying d ≤ x ≤ c and a ≤ Mx ≤ b
if there exists an integer vector x′ satisfying d′ ≤ x′ ≤ c′ and a′ ≤ M ′x′ ≤ b′.
So we can assume that no such x′ exists. By induction (as G′ has fewer
directed edges than G), we know that V ′ can be partitioned into T ′, U ′, and
W ′ such that the number of components K ′ of G′[T ′] with b′(K ′) = a′(K ′)
and
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(36.10) b′(K ′) + c′(E′[K ′, W ′+]) + c′(E′[K ′, U ′−]) + d′(E′[K ′, U ′+])

+ d′(E′[K ′, U ′−])

odd, is more than

(36.11) y′T
+b′ + y′T

−a′ − (y′TM ′)−c′ − (y′TM ′)+d′,

where y′ := χU ′

− χW ′

.
Since c′(st) = ∞ we know that (y′TM ′)st ≥ 0, that is, y′

s + y′
t ≥ 0.

Similarly, since d′(st) = −∞ we know that (y′TM ′)st ≤ 0, that is, y′
s+y′

t ≤ 0.
So y′

s = −y′
t, and hence either s ∈ U ′, t ∈ W ′, or s ∈ W ′, t ∈ U ′, or s, t ∈ T ′.

Let U := U ′ ∩ V , W := W ′ ∩ V , and T := T ′ ∩ V . Then for any compo-
nent K ′ of G′[T ′] with b′(K ′) = a′(K ′) and (36.10) odd, K := K ′ ∩ V is a
component of G[T ] with b(K) = a(K) and (36.6) odd. Moreover, (36.11) is
equal to (36.7). Hence we have a contradiction with the condition given in
the theorem.

36.2. Convex hull

Also the convex hull of the integer solutions of (36.2) can be characterized
(where we do not assume d < c):20

Theorem 36.3. The convex hull of the integer solutions of (36.2) is deter-
mined by

(36.12) (i) d ≤ x ≤ c,
(ii) a ≤ Mx ≤ b,

(iii) 1
2 ((χU − χW )M + χF − χH)x

≤ ⌊ 1
2 (b(U) − a(W ) + c(F ) − d(H))⌋

for U, W ⊆ V with U ∩ W = ∅,
and for partitions F, H of δ(U ∪ W )
with b(U) − a(W ) + c(F ) − d(H) odd.

Proof. Necessity of (36.12) follows from the facts that 1
2 ((χU − χW )M +

χF −χH) is an integer vector and that for each vector x satisfying (36.2) one
has χUMx ≤ χUb = b(U), χW Mx ≥ χW a = a(W ), χF x ≤ χF c = c(F ), and
χHx ≥ χHd = d(H).

Again, to show sufficiency, we can assume that G has no negative edges,
and we apply induction on the number of directed edges. If this number is 0,
the theorem reduces to Theorem 35.3.

So we can assume that there is a directed edge f = su. Again, construct
G′ = (V ′, E′), M ′, a′, b′, d′, c′, as in (36.3). By induction we know that the
theorem holds for the new structure.

20 In order to reduce notation, in this chapter we take incidence vectors χU , χW , χF , and
χH as row vectors.
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Let x ∈ RE satisfy (36.12) for G, a, b, c, d. Define x′ ∈ RE′

by x′(e) := x(e)
for each e ∈ E \ {f}, and x′(st) := −x(f) and x′(tu) := x(f). Now it suffices
to show that x′ satisfies the inequalities for G′, a′, b′, c′, d′ (since of x′ is a
convex combination of integer solutions, also x is).

So let U ′ and W ′ be disjoint subsets of V ′ and let F ′ and H ′ partition
δ′(U ′ ∪W ′), with b′(U ′)−a′(W ′)+ c′(F ′)−d′(H ′) odd. Since c′(st) = ∞ and
d′(st) = −∞, we know that st �∈ δ′(U ′ ∪ W ′).

Let U := U ′ ∩ V and W := W ′ ∩ V . Moreover, let F and H arise from F ′

and H ′ by replacing any occurrence of tu by f . Then

(36.13) 1
2 ((χU ′

−χW ′

)M ′ +χF ′

−χH′

)x′ = 1
2 ((χU −χW )M +χF −χH)x

since x′(F ′) = x(F ) and x′(H ′) = x(H), and moreover, χU ′

M ′x′ = χUMx
and χW ′

M ′x′ = χW Mx (as χtM ′x′ = x′(st) + x′(tu) = 0).
Also we have

(36.14) ⌊ 1
2 (b′(U ′) − a′(W ′) + c′(F ′) − d′(H ′))⌋

= ⌊ 1
2 (b(U) − a(W ) + c(F ) − d(H))⌋,

as a′(t) = b′(t) = 0. Hence (36.12) gives the required inequality for U ′, W ′,
F ′, H ′.

The special case a = b, d = 0 was announced by Edmonds and Johnson
[1970] and elaborated by Aráoz, Cunningham, Edmonds, and Green-Krótki
[1983]. It amounts to, for b ∈ ZV

+ and c ∈ ZE
+:

(36.15) 0 ≤ x ≤ c, Mx = b.

Then:

Corollary 36.3a. The convex hull of the integer solutions of (36.15) is de-
termined by (36.15) together with the constraints

(36.16) x(δ(U) \ F ) − x(F ) ≥ 1 − c(F )

where U ⊆ V and F ⊆ δ(U) with b(U) + c(F ) odd.

Proof. Directly from Theorem 36.3, by replacing Mx by b in (36.12)(iii).

For undirected graphs we obtain a characterization of the capacitated
perfect b-matching polytope as special case — cf. Corollary 32.2a.

36.3. Total dual integrality

System (36.12) generally is not totally dual integral (cf. the example in Sec-
tion 30.5). However, if we delete the parity condition in (36.12)(iii):
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(36.17) (i) d ≤ x ≤ c,
(ii) a ≤ Mx ≤ b,

(iii) 1
2 ((χU − χW )M + χF − χH)x

≤ ⌊ 1
2 (b(U) − a(W ) + c(F ) − d(H))⌋
for U, W ⊆ V with U ∩ W = ∅ and for partition
F, H of δ(U ∪ W ),

we obtain a totally dual integral system:

Theorem 36.4. System (36.17) is totally dual integral.

Proof. Again we can assume that there are no negative edges, and apply
induction on the number of directed edges of G. If there is no directed edge,
the theorem reduces to Theorem 35.4. If there is a directed edge f = su, we
again construct G′ = (V ′, E′), M ′, a′, b′, d′, c′ as in (36.3).

Let Σ and Σ′ be the systems for G, a, b, c, d, and for G′, a′, b′, c′,
d′, respectively. By induction we know that Σ′ is totally dual integral. Now
the constraint x′(st) + x′(tu) = 0 belongs to Σ′. This implies the total dual
integrality of the system Σ′′ obtained from Σ′ by adding an integer multiple
of x′(st)+x′(tu) = 0 to any other constraint of Σ′ so as to make the coefficient
of the variable x′(st) equal to 0.

Now deleting the constraints x′(st) + x′(tu) = 1 and the variable x′(st)
from Σ′′, identifying x′(e) = x(e) for all e ∈ E \{f}, and identifying x′(tu) =
x(f), gives again a totally dual integral system. We show that it is system Σ.

Indeed, a′ ≤ M ′x′ ≤ b′ becomes a ≤ Mx ≤ b. Similarly, for each e ∈
E \ {f}, d′(e) ≤ x′(e) ≤ c′(e) becomes d(e) ≤ xe ≤ c(e), and d′(tu) ≤
x′(tu) ≤ c′(tu) becomes d(f) ≤ x(f) ≤ c(f), while d′(st) ≤ x′(st) ≤ c′(st) is
void (as the bounds are −∞ and +∞).

Consider next the following inequality of Σ′:

(36.18) 1
2 ((χU ′

− χW ′

)M + χF ′

− χH′

)x′

≤ ⌊ 1
2 (b′(U ′) − a′(W ′) + c′(F ′) − d′(H ′))⌋,

where U ′ and W ′ are disjoint subsets of V ′ and where F ′ and H ′ partition
δ′(U ′ ∪ W ′).

Since c′(st) = ∞, d′(s, t) = −∞, we know that st �∈ δ′(U ′ ∪W ′). Consider
the coefficient of x′(st) in (36.18). If this coefficient is 0, (36.18) reduces to
(36.17)(iii). If this coefficient is positive, then s, t ∈ U ′. Set U ′′ := U ′ \ {t}
and W ′′ := W ′ ∪ {t}. Then in Σ′′, (36.18) becomes (by subtracting x′(st) +
x′(tu) = 0):

(36.19) 1
2 ((χU ′′

− χW ′′

)M + χF ′

− χH′

)x′

≤ ⌊ 1
2 (b′(U ′′) − a′(W ′′) + c′(F ′) − d′(H ′))⌋

(since b′(t) = a′(t) = 0). In (36.19), the coefficient of x′(st) is 0, and hence
(36.19) reduces to (36.17)(iii).

We proceed similarly if the coefficient of x′(st) in (36.18) is negative.
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A consequence is the total dual half-integrality of the original system:

Corollary 36.4a. System (36.12) is totally dual half-integral.

Proof. This follows from the fact that each inequality in (36.17) is a half-
integer nonnegative combination of inequalities in (36.12).

A special case is the total dual half-integrality of

(36.20) (i) x ≥ 0,
(ii) Mx = b,
(iii) x(δ(U)) ≥ 1 for each U ⊆ V with b(U) odd

(Edmonds and Johnson [1970]):

Corollary 36.4b. System (36.20) is totally dual half-integral.

Proof. This is a special case of Corollary 36.4a.

From this one can derive (Barahona and Cunningham [1989]):

Corollary 36.4c. Let w ∈ ZE with w(C) even for each circuit C. Then the
problem of minimizing wTx subject to (36.20) has an integer optimum dual
solution.

Proof. If w(C) is even for each circuit, there is a subset U of V with {e ∈
E | w(e) odd} = δ(U). Now replace w by w′ := w +

∑
v∈U MT

v , where Mv

denotes row v of M . Then w′(e) is an even integer for each edge e. Hence
by Corollary 36.4b there is an integer optimum dual solution y′

v (v ∈ V ), zU

(U ⊆ V , b(U) odd) for the problem of minimizing w′Tx subject to (36.20).
Now setting yv := y′

v − 1 if v ∈ U and yv := y′
v if v �∈ U gives an integer

optimum dual solution for w.

36.4. Including parity conditions

We are not yet at the end of our self-refining trip. As was observed by Ed-
monds and Johnson [1973], the results can be generalized even further by
including parity constraints. This can be reduced to the previous case by
adding loops at the vertices at which there is a parity constraint.

Let G = (V, E, σ) be a bidirected graph and let M be the V ×E incidence
matrix of G. (For definitions and terminology, see Section 36.1.) Let a, b ∈ ZV

and d, c ∈ ZE and let Sodd and Seven be two disjoint subsets of V . We consider
integer solutions x of:
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(36.21) (i) d ≤ x ≤ c,
(ii) a ≤ Mx ≤ b,
(iii) (Mx)v is odd if v ∈ Sodd,
(iv) (Mx)v is even if v ∈ Seven.

The problem of finding a maximum-weight integer vector x satisfying
(36.21) can be easily reduced to the special case without parity constraints,
discussed in the previous chapter:

Theorem 36.5. For any w ∈ QE, an integer vector x maximizing wTx over
(36.21) can be found in strongly polynomial time.

Proof. The condition (Mx)v is odd, can be replaced by 1 ≤ (Mx)v+2zv ≤ 1,
where zv is a new integer variable (bounded by −∞ and ∞). Similarly, for
the even case. This gives a reduction to the problem of Theorem 36.1, which
implies the present theorem.

We next characterize the existence of an integer vector x satisfying
(36.21). To this end we make the following assumptions, which can easily
be satisfied:

(36.22) (i) a(v) and b(v) are odd (if finite) for each v ∈ Sodd,
(ii) a(v) and b(v) are even (if finite) for each v ∈ Seven,
(iii) if a(v) = b(v), then v ∈ Sodd ∪ Seven.

Define S := Sodd ∪ Seven. Moreover, for any vector z, again let z+ arise from
z by replacing any negative component by 0, and let z− arise from z by
replacing any positive component by 0. So z = z+ + z−.

Theorem 36.6. Assume (36.22) and that d < c. Then there exists an integer
vector x ∈ ZE satisfying (36.21) if and only if for each partition T , U , W of
V , the number of components K of G[T ] contained in Sodd ∪ Seven and with

(36.23) |K ∩ Sodd| + c(E[K, W+]) + c(E[K, U−]) + d(E[K, U+])
+ d(E[K, W−])

odd is at most

(36.24) yT

+b + yT

−a − (yTM)−c − (yTM)+d,

where y := χU − χW .

Proof. Define L := {v ∈ S | a(v) < b(v)}, Lodd := L ∩ Sodd, and Leven :=
L ∩ Seven.

Extend the bidirected graph G by a loop l at any vertex v ∈ L, where l has
two positive ends at v. This makes the bidirected graph G′ = (V, E′, σ′), with
V × E′ incidence matrix M ′. Define a′(v) := a(v) and b′(v) := b(v) for each
v ∈ V \ L. Moreover, a′(v) := b′(v) := 1 for v ∈ Lodd and a′(v) := b′(v) := 0
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for v ∈ Leven. Define d′(e) := d(e) and c′(e) := c(e) for each e ∈ E. For each
loop l at v ∈ L, define d′(l) := 1

2 (b′(v) − b(v)) and c′(l) := 1
2 (a′(v) − a(v)).

Now there exist an integer vector x satisfying (36.21) if and only if there
exists an integer vector x′ ∈ ZE′

satisfying d′ ≤ x′ ≤ c′ and a′ ≤ M ′x′ ≤ b′.
So we should show that the conditions given in the present theorem imply
those given in Theorem 36.2 (for the modified structure). (Since in Theorem
36.2 the condition d < c is required, we had to exclude loops at vertices in
S \ L.)

To this end, let T , U , W partition V . Then any component K of G′[T ]
with b′(K) = a′(K) and

(36.25) b′(K) + c′(E′[K, W+]) + c′(E′[K, U−]) + d′(E′[K, U+])
+ d′(E[K, W−])

odd, is a component of G[T ] contained in S, with |K ∩Sodd|+c(E[K, W+])+
c(E[K, U−])+d(E[K, U+])+d(E[K, W−]) odd (note that a′(v) = b′(v) ⇐⇒
v ∈ S, and that b′(K) ≡ |K ∩Sodd| mod 2). Moreover, for y := χU −χW one
has

(36.26) yT

+b′ + yT

−a′ − (yTM ′)−c′ − (yTM ′)+d′

= yT

+b + yT

−a − (yTM)−c − (yTM)+d,

since

(36.27) yT

+b′ = b′(U) = b(U \ L) + |U ∩ Lodd|,
yT

−a′ = −a′(W ) = −a(W \ L) − |W ∩ Lodd|,
(yTM ′)−c′ = (yTM)−c − 2( 1

2 (a′(W ∩ L) − a(W ∩ L)))
= (yTM)−c − |W ∩ Lodd| + a(W ∩ L),
(yTM ′)+d′ = (yTM)+d + 2(1

2 (b′(U ∩ L) − b(U ∩ L)))
= (yTM)+d + |U ∩ Lodd| − b(U ∩ L).

A special case is the following result on orientations by Frank, Tardos,
and Sebő [1984].

Corollary 36.6a. Let G = (V, E) be an undirected graph and let l, u ∈ ZV
+

be such that l(v) ≡ u(v) (mod 2) for each v ∈ V . Then G has an orientation
D = (V, A) such that

(36.28) l(v) ≤ degout
D (v) ≤ u(v) and degout

D (v) ≡ u(v) (mod 2)

for each v ∈ V if and only if for each partition T, U, W of V , the number of
components K of G[T ] with u(K) + |E[K]| + |E[K, U ]| odd is at most

(36.29) u(U) − l(W ) − |E[U ]| + |E[W ]| + |δ(W )|.

Proof. Let D′ = (V, A′) be an arbitrary orientation of G. Let δout(U) :=
δout
D′ (U) and δin(U) := δin

D′(U) for any U ⊆ V .
Then G has an orientation as required in the theorem if and only if there

exists a vector x ∈ ZA′

with 0 ≤ x ≤ 1 and
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(36.30) l(v) ≤ x(δin(v)) + |δout(v)| − x(δout(v)) ≤ u(v)

and

(36.31) x(δin(v)) + |δout(v)| − x(δout(v)) ≡ u(v) (mod 2)

for each v ∈ V . (This can be seen by reversing the orientation if and only if
xa = 1.)

Define for each v ∈ V ,

(36.32) a(v) := l(v) − |δout(v)| and b(v) := u(v) − |δout(v)|.

Moreover, let d, c ∈ ZA′

with d = 0 and c = 1. Let M be the V ×A′ incidence
matrix of D′ (such that Mv,a = −1 if a leaves v and Mv,a = +1 if a enters
v). Let Sodd and Seven be the sets of vertices v with b(v) odd and even,
respectively.

Then the existence of an orientation as required is equivalent the exis-
tence of an integer vector x satisfying (36.21). Hence, by Theorem 36.6, it is
equivalent to the condition that for each partition T, U, W of V the number of
components K of G[T ] with (for the bidirected graph G = (V, E, σ) obtained
from M):

(36.33) b(K) + |E[K, W+]| + |E[K, U−]|

odd is at most

(36.34) u(U)−
∑

v∈U

|δout(v)|− l(W )+
∑

v∈W

|δout(v)|+ |δout(U)|+ |δin(W )|.

Now (36.33) is equal to

(36.35) u(K) −
∑

v∈K

|δout(v)| + |E[K, W+]| + |E[K, U−]|

= u(K) − |E[K]| + |δout(K)| + |E[K, W+]| + |E[K, U−]|
≡ u(K) − |E[K]| + |δout(K)| + |E[K, W+]| + 2|E[K, U+]|
+ |E[K, U−]| ≡ u(K) + |E[K]| + |E[K, U ]| (mod 2),

since |δout(K)| = |E[K, U+]| + |E[K, W+]| and |E[K, U ]| = |E[K, U+]| +
|E[K, U−]|. Moreover, (36.34) is equal to (36.29), proving the corollary.

One can similarly derive the following two further orientation results of
Frank, Tardos, and Sebő [1984].

Corollary 36.6b. Let G = (V, E) be an undirected graph and let u ∈ ZV
+.

Then G has an orientation D = (V, A) such that

(36.36) degout
D (v) ≤ u(v) and degout

D (v) ≡ u(v) (mod 2)

for each v ∈ V if and only if for each U ⊆ V the number of components K
of G − U with u(K) + |E[K]| + |δ(K)| odd is at most u(U) − |E[U ]|.

Proof. Similar to the proof of Corollary 36.6a.
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Corollary 36.6c. Let G = (V, E) be an undirected graph and let l ∈ ZV
+.

Then G has an orientation D = (V, A) such that

(36.37) degout
D (v) ≥ l(v) and degout

D (v) ≡ l(v) (mod 2)

for each v ∈ V if and only if for each U ⊆ V the number of components K
of G − U with l(K) + |E[K]| + |δ(K)| odd is at most |E[U ]| + |δ(U)| − l(U).

Proof. Similar to the proof of Corollary 36.6a.

36.5. Convex hull

The convex hull of the integer solutions of (36.21) is characterized by:

Theorem 36.7. Assuming (36.22), the convex hull of the integer solutions
of (36.21) is determined by (36.21)(i) and (ii), together with the constraints

(36.38) 1
2 ((χU −χW )M +χF −χH)x ≤ ⌊ 1

2 (b(U)−a(W )+ c(F )−d(H))⌋,

where U and W are disjoint subsets of V \ S and where F and H partition
δ(U ∪ W ∪ R) for some R ⊆ S with |R ∩ Sodd| + b(U) − a(W ) + c(F ) − d(H)
odd.

Proof. To see necessity of (36.38), let x be an integer vector satisfying (36.21),
and choose U , W , R, F and H as described in the theorem. As x satisfies
d ≤ x ≤ c and a ≤ Mx ≤ b one directly has ((χU − χW )M + χF − χH)x ≤
b(U)−a(W )+c(F )−d(H). So it suffices to show that strict inequality holds.
Now (χU + χW + χR)M + χF + χH is an even vector. So (using (36.21)(iii)
and (iv))

(36.39) ((χU − χW )M + χF − χH)x ≡ χRMx ≡ |R ∩ Sodd|
�≡ b(U) − a(W ) + c(F ) − d(H) (mod 2)

This shows strict inequality.
We next show that (36.38) determines the convex hull, by reduction to

Theorem 36.3. Let L, Lodd, Leven, G′ = (V, E′), M ′, a′, b′, d′, c′ be as in
the proof of Theorem 36.6. Let x ∈ RE satisfy (36.21)(i) and (ii) and all
constraints (36.38). Define x ∈ RE′

by x′(e) := x(e) for each e ∈ E, and
x′(l) := a′(v) − x(δ(v)) for the loop l at any v ∈ L. Then d′ ≤ x′ ≤ c′

and a′ ≤ M ′x′ ≤ b′. It suffices to show that x′ is a convex combination
of integer solutions of this system. By Theorem 36.3, it suffices to check
condition (36.12)(iii) for G′, x′.

Let U ′ and W ′ be disjoint subsets of V and let F and H partition δ′(U ′ ∪
W ′), with b′(U ′)−a′(W ′)+c′(F )−d′(H) odd. Define U := U ′\S, W := W ′\S,
and R := (U ′ ∪ W ′) ∩ S. Then |R ∩ Sodd| + b(U) − a(W ) + c(F ) − d(H) is
odd, since |R ∩ Sodd| ≡ b′(U ′ ∩ S) − a′(W ′ ∩ S) (mod 2). Moreover,
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(36.40) χU ′

M ′x′ = χUMx + b(U ′ ∩ (S \ L)) + |U ′ ∩ Lodd|,
χW ′

M ′x′ = χW Mx + a(W ′ ∩ (S \ L)) + |W ′ ∩ Lodd|,
b′(U ′) = b(U) + b(U ′ ∩ (S \ L)) + |U ′ ∩ Lodd|, and
a′(W ′) = a(W ) + a(W ′ ∩ (S \ L)) + |W ′ ∩ Lodd|.

Hence (36.38) for x implies (36.12)(iii) for x′.

36.5a. Convex hull of vertex-disjoint circuits

Green-Krótki [1980] and Aráoz, Cunningham, Edmonds, and Green-Krótki [1983]
showed that the previous theorem implies a characterization of the convex hull of
disjoint sets of circuits:

Corollary 36.7a. Let G = (V, E) be a graph. Then the convex hull of the vectors
χF where F is the edge set of the union of a number of vertex-disjoint circuits is
given by:

(36.41) (i) 0 ≤ xe ≤ 1 (e ∈ E),
(ii) x(δ(v)) ≤ 2 (v ∈ V ),
(iii) x(δ(U) \ F ) − x(F ) ≥ 1 − |F | (U ⊆ V , F ⊆ δ(U),|F | odd).

Proof. This follows directly from Theorem 36.7, since x is an incidence vector χF

of the edge set of a vertex-disjoint union of disjoint circuits if and only if (36.41)(i)
and (ii) are satisfied, together with: x(δ(v)) even for each v ∈ V . So we can take
a = 0, b = 2, d = 0, c = 1, Seven = V , and Sodd = ∅. In particular, U and W are
empty in (36.38).

Note that Corollaries 29.2e and 36.7a imply that the polytope described in
Corollary 36.7a is obtained from the ∅-join polytope by adding the constraint
(36.41)(ii).

This has as consequence Corollary 29.2f (due to Seymour [1979b]) characterizing
the circuit cone. Given a graph G = (V, E), the circuit cone is the cone in RE

generated by the incidence vectors of circuits. This cone is determined by:

(36.42) (i) xe ≥ 0 for each e ∈ E,
(ii) x(D) ≥ 2xe for each cut D and e ∈ D.

To prove this, we may assume (by scaling) that x(E) ≤ 1. Then (36.42)(ii) implies
(36.41)(iii), and hence the characterization follows from Corollary 36.7a.

36.6. Total dual integrality

We finally show that the system given by (36.21)(i) and (ii) and (36.38) after
deleting the parity constraint on R, is TDI:

Theorem 36.8. Assuming (36.22), the following system is TDI (setting T :=
V \ S):
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(36.43) (i) d ≤ x ≤ c,
(ii) 1

2av ≤ 1
2 (Mx)v ≤ 1

2bv, for v ∈ S,
(iii) av ≤ (Mx)v ≤ bv, for v ∈ T ,
(iv) 1

2 ((χU − χW )M + χF − χH)x
≤ 1

2 (b(U) − a(W ) + c(F ) − d(H) − ε),

where U and W are disjoint subsets of T , where F and H partition δ(U ∪
W ∪ R) for some R ⊆ S, and where ε ∈ {0, 1} such that ε ≡ |R ∩ Sodd| +
b(U) − a(W ) + c(F ) − d(H) (mod 2).

Proof. The partition of V into S and T induces a partition of M, a, b into
MS , aS , bS and MT , aT , bT . By Theorem 36.4, the system

(36.44) (i) d ≤ x ≤ c,
(ii) 0 ≤ z ≤ 1

2 (bS − aS),
(iii) MSx + 2z = bS ,
(iv) aT ≤ MT x ≤ bT

becomes TDI by adding the inequalities

(36.45) 1
2 ((χU − χW )M + χF − χH)x + z(U ∩ S) − z(W ∩ S)
≤ ⌊ 1

2 (b(U) − b(W ∩ S) − a(W ∩ T ) + c(F ) − d(H))⌋,

for disjoint subsets U, W of V and partitions F, H of δ(U ∪ W ). (36.44) is
equivalent to:

(36.46) 1
2 ((χU − χW )M + χF − χH)x + z(U ∩ S) − z(W ∩ S)
≤ 1

2 (b(U) − b(W ∩ S) − a(W ∩ T ) + c(F ) − d(H) − ε),

where ε ∈ {0, 1} and

(36.47) ε ≡ b(U) − b(W ∩ S) − a(W ∩ T ) + c(F ) − d(H) (mod 2).

Substituting z := 1
2 (bS − MSx) in (36.44)(ii) gives (36.43)(ii), and in (36.46)

gives

(36.48) 1
2 ((χU − χW )M + χF − χH)x + 1

2b(U ∩ S) − 1
2χU∩SMSx

− 1
2b(W ∩ S) + 1

2χW∩SMSx
≤ 1

2 (b(U) − b(W ∩ S) − a(W ∩ T ) + c(F ) − c(H) − ε).

Equivalently:

(36.49) 1
2 ((χU∩T − χW∩T )M + χF − χH)x
≤ 1

2 (b(U ∩ T ) − a(W ∩ T ) + c(F ) − d(H) − ε).

This is equivalent to (36.43)(iv), and total dual integrality is maintained by
Theorem 5.27. Note that

(36.50) ε ≡ b(U) − b(W ∩ S) − a(W ∩ T ) + c(F ) − d(H)
≡ b(U ∩ T ) − a(W ∩ T ) + c(F ) − d(H) + b(U ∩ S) + b(W ∩ S)
≡ b(U ∩ T ) − a(W ∩ T ) + c(F ) − d(H) + |R ∩ Sodd| (mod 2),
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where R := (U ∪ W ) ∩ S.

We remark that the coefficients of the inequalities in (36.43) generally are
not all integer.

36.7. Further results and notes

36.7a. The Chvátal rank

The results on the convex hull in this chapter (and in previous chapters) can be
interpreted in terms of the so-called ‘Chvátal rank’ of a system of inequalities or of
a matrix. (This relates to the cutting planes reviewed in Section 5.21.)

For any polyhedron P , let PI denote the integer hull of P , that is, the convex
hull of the integer vectors in P . If P is a rational polyhedron, then PI is again a
rational polyhedron. This polyhedron can be approached as follows.

Define for any polyhedron P , the set P ′ by:

(36.51) P ′ :=
⋂

H⊇P

HI,

where H ranges over all rational affine halfspaces containing P as a subset. Here
an affine halfspace is a set of the form

(36.52) H = {x ∈ R
n | wTx ≤ α}

for some nonzero w ∈ Rn and some α ∈ R. It is rational if w and α are rational. So
trivially (since P ⊆ H ⇒ PI ⊆ HI):

(36.53) P ⊇ P ′ ⊇ PI.

Note that if H is as in (36.52) and w is integer, with relatively prime components,
then

(36.54) HI = {x ∈ R
n | wTx ≤ ⌊α⌋}.

So P ′ arises from P by adding a ‘first round of cuts’. Observe that if P = {x |
Mx ≤ b} for some rational m × n matrix M and some vector b ∈ Qm, then in
(36.51) we can restrict the affine hyperplanes H to those for which there exists a
vector y ∈ Qm

+ with yTM integer and nonzero and

(36.55) H = {x | (yTM)x ≤ yTb}
(by Farkas’ lemma).

It can be shown that P ′ is a rational polyhedron again. To P ′ we can apply
this operation again, and obtain P ′′ = (P ′)′. We thus obtain a series of polyhedra
P , P ′, P ′′,. . . , P (t), . . ., satisfying

(36.56) P ⊇ P ′ ⊇ P ′′ ⊇ · · · ⊇ P (t) ⊇ · · · PI .

Now Chvátal [1973a] (cf. Schrijver [1980b]) showed that for each polyhedron P
there is a finite t with P (t) = PI. The smallest such t is called the Chvátal rank of
P .
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It can be proved more strongly (Cook, Gerards, Schrijver, and Tardos [1986])
that for each rational matrix M there is a finite value t such that the polyhedron
P := {x | Mx ≤ b} has Chvátal rank at most t, for each integer vector b (of
appropriate dimension). The smallest such t is called the Chvátal rank of M . So
each totally unimodular matrix has Chvátal rank 0.

The strong Chvátal rank of M is, by definition, the Chvátal rank of the matrix

(36.57)









I
−I
M

−M









.

So the strong Chvátal rank of M is the smallest t such that for all integer vectors
d, c, a, b the polyhedron {x | d ≤ x ≤ c, a ≤ Mx ≤ b} has Chvátal rank at most
t. So M is totally unimodular if and only if M is integer and has strong Chvátal
rank 0 (this is the Hoffman-Kruskal theorem).

Theorem 36.3 implies that the V × E incidence matrix of a bidirected graph
has strong Chvátal rank at most 1. (Matrices of strong Chvátal rank at most 1 are
said in Gerards and Schrijver [1986] to have the Edmonds-Johnson property.)

Theorem 36.9. The V × E incidence matrix of a bidirected graph has strong
Chvátal rank at most 1.

Proof. We must show that for each integer d, c, a, b, one has P ′ = PI for P := {x |
d ≤ x ≤ c, a ≤ Mx ≤ b}. This follows from

(36.58) P ′ ⊆ {x ∈ P | ∀y ∈ {0, 1
2
}n : yTM ∈ Z

n ⇒ yTMx ≤ ⌊yTb⌋}
= PI ⊆ P ′,

where the equality follows from Theorem 36.3.

It is generally not true that also the transpose MT of these matrices have Chvátal
rank at most 1, as is shown by the incidence matrix M of the complete graph K4.
In Section 68.6c we shall study the Chvátal rank of such matrices MT.

36.7b. Further notes

Gabow [1983a] gave an O(m
3

2 )-time algorithm for finding a maximum s−t flow in a
bidirected graph with unit capacities. Moreover, he gave O(m2 log n)- and O(n2m)-
time algorithms for finding a minimum-cost bidirected s−t flow of given value, with
unit capacities.



Chapter 37

The dimension of the perfect
matching polytope

In this chapter the dimension of the perfect matching polytope is charac-
terized. It implies a characterization of the dimension of the perfect match-
ing space — the linear space spanned by the incidence vectors of perfect
matchings.
The basis of determining the dimension is formed by the matching-covered
graphs without nontrivial tight cuts. For such graphs, there is an easy
formula for the dimension.
Key result (needed in characterizing the perfect matching lattice in the next
chapter) is a characterization of Lovász of the matching-covered graphs
without nontrivial tight cuts: the ‘braces’ and the ‘bricks’.

37.1. The dimension of the perfect matching polytope

Naddef [1982] gave a min-max formula for the dimension of the perfect match-
ing polytope. By the work of Edmonds, Lovász, and Pulleyblank [1982], it is
equivalent to the following.

Let G = (V, E) be a graph and let E0 be the set of edges covered by at
least one perfect matching. Defining G0 := (V, E0), one trivially has:

(37.1) dim(Pperfect matching(G)) = dim(Pperfect matching(G0)).

So when investigating the dimension of the perfect matching polytope, we
can confine ourselves to matching-covered graphs, that is, to graphs in which
each edge is contained in at least one perfect matching.

A further reduction can be obtained by considering tight cuts. A cut C is
called odd if C = δ(U) for some U ⊆ V with |U | odd. A cut C is called tight
if it is odd and each perfect matching intersects C in exactly one edge.

Let G = (V, E) be a graph and let U ⊆ V . Recall that G/U denotes the
graph obtained from G by contracting U to one vertex, which vertex we will
call U . In the obvious way, we will consider the edge set of G/U as a subset
of the edge set of G. Hence, for any x ∈ RE , we can speak of the projection
of x to the edges of G/U .
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Theorem 37.1. Let G = (V, E) be a matching-covered graph and let δ(U) be
a tight cut. Define G1 := G/U and G2 := G/U (where U := V \ U). Then

(37.2) dim(Pperfect matching(G)) =
dim(Pperfect matching(G1))+dim(Pperfect matching(G2))−|δ(U)|+1.

Proof. Let G1 = (V1, E1) and G2 = (V2, E2). Then a vector x ∈ RE belongs
to the perfect matching polytope of G if and only if its projections to E1

and E2 belong to the perfect matching polytopes of G1 and G2 respectively.
Moreover, since G is matching-covered and since δ(U) is tight, the projection
of Pperfect matching(G) on δ(U) has dimension equal to |δ(U)| − 1.

This theorem gives a reduction if there exists a nontrivial tight cut. (A
cut C is called nontrivial if C = δ(U) for some U with 1 < |U | < |U | − 1.)
Then:

Theorem 37.2. Let G = (V, E) be a matching-covered graph without any
nontrivial tight cut and with at least one perfect matching. Then

(37.3) dim(Pperfect matching(G)) = |E| − |V | + k,

where k is the number of bipartite components of G.

Proof. We may assume that G is connected. If G is bipartite, the result
follows from Theorem 18.6. If G is nonbipartite, consider a vector x in the
relative interior of the perfect matching polytope of G. Since G is matching-
covered, we know that xe > 0 for each edge e, and since G has no nontrivial
tight cut, we know that x(C) > 1 for each nontrivial odd cut C. Hence the
only constraints in (25.2) satisfied by x with equality are the constraints
x(δ(v)) = 1 for v ∈ V . So dim(Pperfect matching(G)) ≥ |E| − |V |.

To see equality, we show that the constraints x(δ(v)) = 1 are independent.
For let u ∈ V , and choose an odd-length u−u walk (u, e1, . . . , et, u). For each
e ∈ E, let xe be the number of odd i with e = ei, minus the number of even
i with e = ei. Then x(δ(u)) = 2 and x(δ(v)) = 0 for all v �= u.

Theorems 37.1 and 37.2 describe the decomposition of the dimension prob-
lem. We now aggregate these results.

For any cut C, any set U with C = δ(U) is called a shore of C. Two cuts
C and C ′ are called cross-free if they have shores U and U ′ that are disjoint.
A collection F of cuts is cross-free if each two cuts in F are cross-free.

Let F be a cross-free collection of nontrivial cuts. An F-contraction of G
is a graph obtained from G by choosing a U0 ⊆ V with δ(U0) ∈ F , contracting
U0, and contracting each maximal proper subset U of V \ U0 with δ(U) ∈ F .

One easily checks that, if G is connected, there exist precisely |F| + 1
F-contractions. Let nonbipG(F) denote the number of F-contractions that
are nonbipartite.
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Corollary 37.2a. Let G = (V, E) be a connected matching-covered graph
with |V | ≥ 2. Let F be any inclusionwise maximal cross-free collection of
nontrivial tight cuts. Then

(37.4) dim(Pperfect matching(G)) = |E| − |V | − nonbipG(F) + 1.

Proof. The corollary follows directly by induction from Theorems 37.1 and
37.2, as follows.

If F = ∅, then (37.4) follows from Theorem 37.2. If F �= ∅, choose a cut
δ(U) ∈ F . Let G1 := G/U and G2 := G/U (where U := V \ U). Then G1

and G2 are connected and matching-covered again.
Let F1 be the set of cuts in F that have a shore properly contained in

V \U and let F2 be the set of cuts in F that have a shore properly contained
in U .

Then F1 forms an inclusionwise maximal cross-free collection of nontrivial
tight cuts in G1. So inductively

(37.5) dim(Pperfect matching(G1)) = |EG1| − |V G1| − nonbipG1
(F1) + 1.

Similarly,

(37.6) dim(Pperfect matching(G2)) = |EG2| − |V G2| − nonbipG2
(F2) + 1.

Now each F-contraction of G is an Fi contraction of Gi for exactly one
i ∈ {1, 2}. Hence

(37.7) nonbipG(F) = nonbipG1
(F1) + nonbipG2

(F2).

Since moreover |EG| = |EG1|+|EG2|−|δ(U)| and |V G1|+|V G2| = |V G|+2,
we obtain (37.4) with Theorem 37.1.

37.2. The perfect matching space

We derive from Corollary 37.2a a characterization of the perfect matching
space and its dimension. The perfect matching space of a graph G = (V, E)
is the linear hull of the incidence vectors of perfect matchings; that is,

(37.8) Sperfect matching(G) := lin.hull{χM | M perfect matching in G}.

(Here lin.hull denotes linear hull.)
Corollary 37.2a directly gives for the dimension of the perfect matching

space:

Corollary 37.2b. Let G = (V, E) be a connected matching-covered graph
with |V | ≥ 2. Let F be any inclusionwise maximal cross-free collection of
nontrivial tight cuts. Then

(37.9) dim(Sperfect matching(G)) = |E| − |V | − nonbipG(F) + 2.
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Proof. The dimension of the perfect matching space is 1 more than the
dimension of the perfect matching polytope. So the corollary follows from
Corollary 37.2a.

With the help of the description of the perfect matching polytope we can
similarly describe the perfect matching space in terms of equations:

Theorem 37.3. The perfect matching space of a graph G = (V, E) is equal
to the set of vectors x ∈ RE satisfying

(37.10) (i) xe = 0 if e is contained in no perfect matching,
(ii) x(C) = x(δ(v)) for each tight cut C and each vertex v.

Proof. Condition (37.10) clearly is necessary for each vector x in the perfect
matching space. To see sufficiency, let x ∈ RE satisfy (37.10). We can assume
that G has at least one perfect matching.

By adding sufficiently many incidence vectors of perfect matchings to x,
we can achieve that xe ≥ 0 for each edge e, and xe > 0 for at least one edge
e, and x(C) ≥ x(δ(v)) for each odd cut C and each vertex v. By scaling we
can achieve that x(δ(v)) = 1 for each v ∈ V . Then x belongs to the perfect
matching polytope of G, and hence to the perfect matching space.

37.3. The brick decomposition

For any inclusionwise maximal cross-free collection F of nontrivial tight cuts,
the family of F-contractions is called a brick decomposition. (We note here
that it does not mean that each F-contraction is a brick as defined in Section
37.6.)

Lovász [1987] showed that a brick decomposition is a unique family of
graphs (up to isomorphism), independently of the maximal cross-free collec-
tion of tight cuts chosen:

Theorem 37.4. All brick decompositions of a matching-covered graph G =
(V, E) are the same (up to isomorphism).

Proof. By induction on |V |. Consider two maximal cross-free collection F
and F ′ of nontrivial tight cuts.

Case 1: F and F ′ have a common member δ(U). By induction, the result of
two decompositions of G/U is the same (where U := V \ U). Similarly, the
result of two decompositions of G/U is the same. The theorem follows.

Case 2: There exist C ∈ F and C ′ ∈ F ′ with C and C ′ cross-free. Let F ′′ be
a maximal cross-free collection of nontrivial tight cuts containing C and C ′.
By Case 1, the decompositions of G by F and F ′′ result in the same family of
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graphs. Similarly, the decompositions of G by F ′ and F ′′ result in the same
family of graphs. The theorem follows.

Case 3: There exist C = δ(U) ∈ F and C ′ = δ(U ′) ∈ F ′ with |U ∩ U ′| odd
and at least 3. Then trivially C ′′ := δ(U ∩ U ′) is tight again. Let F ′′ be a
maximal cross-free collection of nontrivial tight cuts containing C ′′. By Case
2, the decompositions of G by F and F ′′ result in the same family of graphs.
Similarly, the decompositions of G by F ′ and F ′′ result in the same family
of graphs. Again, the theorem follows.

Case 4: None of the previous cases applies. Let C = δ(U) ∈ F and C ′ =
δ(U ′) ∈ F ′. Then F = {C} and F ′ = {C ′}. For suppose that say F contains
another cut C ′′ = δ(U ′′). We can assume that U ⊆ U ′′ and that U ′′ ∩ U ′ is
odd. So |U ′′ ∩ U ′| = 1 (as Case 3 does not apply), and therefore |U ∩ U ′| = 1
(as Case 2 does not apply). However, U ∪U ′ is odd and disjoint from U ′′ \U ,
implying that U ∪U ′ is at most |V |−2, and so Case 3 applies, a contradiction.

So F = {C} and F ′ = {C ′}. We can now assume that U ∩U ′ is odd. Since
Case 3 does not apply, |U ∩U ′| = 1 and |U ∪U ′| = |V | − 1. Let U ∩U ′ = {u}
and U ′ ∪ U = V \ {v}.

Now {u, v} is a 2-vertex-cut in G, separating U \ {u} and U ′ \ {u}. For
suppose that there is an edge e connecting U \ {u} and U ′ \ {u}. Let M be
a perfect matching containing e. Let f be the edge in M covering u. Then f
leaves at least one of U and U ′. Since e leaves both U and U ′, this contradicts
the fact that U and U ′ give tight cuts.

As G has no cut vertices (as G is matching-covered), this implies that
G/U and G/U ′ are isomorphic graphs, and similarly that G/U and G/U are
isomorphic. The theorem follows.

37.4. The brick decomposition of a bipartite graph

All graphs in the brick decomposition of a bipartite graph are bipartite:

Theorem 37.5. Let G be a matching-covered graph and let F be an in-
clusionwise maximal cross-free collection of nontrivial tight cuts. Then G is
bipartite if and only if each F-contraction is bipartite.

Proof. It suffices to prove that for any nontrivial tight cut δ(U):

(37.11) G is bipartite if and only if G/U and G/U are bipartite

(where U := V G \ U). Sufficiency in (37.11) is direct (actually, it holds for
any cut). To see necessity in (37.11), note that, since G is matching-covered,
U has neighbours only in the largest colour class of the bipartite graph G−U .
So G/U is bipartite, and similarly, G/U is bipartite.
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37.5. Braces

A bipartite graph G = (V, E), with colour classes U and W , is called a brace
if G is matching-covered with |V | ≥ 4 and for all distinct u, u′ ∈ U and
w, w′ ∈ W , the graph G − u − u′ − w − w′ has a perfect matching.

By Hall’s marriage theorem (Theorem 22.1), a connected bipartite graph
G = (V, E) with equal-sized colour classes U and W is a brace if and only if
for each subset X of U with 1 ≤ |X| ≤ |U | − 2 one has

(37.12) |N(X)| ≥ |X| + 2.

Theorem 37.6. Each tight cut in a brace is trivial.

Proof. Let G = (V, E) be a brace with colour classes U and W , and suppose
that δ(T ) is a nontrivial tight cut. As |T | is odd, by symmetry we can assume
that |U ∩ T | < |W ∩ T |.

Then |U ∩T | = |W ∩T |−1, since there exists a perfect matching intersect-
ing δ(T ) in exactly one edge. Since δ(T ) is nontrivial, 1 ≤ |U ∩ T | ≤ |U | − 2.

Moreover, there is no edge e connecting U ∩ T and W \ T . Otherwise this
e would be contained in a perfect matching M . This perfect matching also
contains an edge connecting U \ T and W ∩ T , contradicting the tightness of
δ(T ).

So N(U ∩T ) ⊆ W ∩T , and hence |N(U ∩T )| ≤ |U ∩T |+1, contradicting
(37.12).

37.6. Bricks

A graph G is called a brick if G is 3-connected and bicritical, and has at
least four vertices. (A graph G is called bicritical if G − u − v has a perfect
matching for any two distinct vertices u, v.)

The following key result was shown by Edmonds, Lovász, and Pulleyblank
[1982]:

Theorem 37.7. Each tight cut in a brick is trivial.

Proof. Let G = (V, E) be a brick, and suppose that it has a nontrivial tight
cut C0. Let C be the collection of odd cuts in G.

For any b ∈ QV , consider the linear program

(37.13) minimize
∑

e=uv∈E

(b(u) + b(v))xe

subject to x(C) ≥ 1 (C ∈ C),
xe ≥ 0 (e ∈ E).

and its dual
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(37.14) maximize
∑

C∈C

y(C)

subject to
∑

C∋e

y(C) ≤ b(u) + b(v) (e = uv ∈ E),

y(C) ≥ 0 (C ∈ C).

We first show:

(37.15) there exist y ∈ QC
+ and b ∈ QV

+ such that
∑

C∋e

y(C) ≤ b(u) + b(v)

for each edge e = uv, and such that y(C) = b(V ) and y(C0) > 0.

To prove this, define w = χC0 (the incidence vector of C0 in RE). As C0

is tight, the maximum of w(M) over perfect matchings M is equal to 1.
Hence, by Edmonds’ perfect matching polytope theorem (Theorem 25.1) and
by linear programming duality, there exists a vector z ∈ QC such that

(37.16) (i)
∑

C∋e

z(C) ≤ −w(e) for each edge e,

(ii) z(C) ≥ 0 if C is nontrivial,
(iii) z(C) = −1.

For v ∈ V , define b(v) := −z(δ(v)) if z(δ(v)) < 0, and b(v) := 0 otherwise.
For C ∈ C, define y(C) := z(C) if z(C) > 0, and y(C) := 0 otherwise. Then
(37.16) implies:

(37.17) (i) b(u) + b(v) ≥
∑

C∋e

y(C) + w(e) for each edge e = uv,

(ii) b ≥ 0, y ≥ 0,
(iii) b(V ) = y(C) + 1.

So resetting y(C0) := y(C0) + 1 gives b and y as required in (37.15), proving
(37.15).

This implies:

(37.18) for some vector b ∈ ZV
+ there exists an integer optimum solution

y ∈ ZC
+ of (37.14) such that y(C0) ≥ 1.

Indeed, in (37.15) we can assume (by scaling) that b and y are integer. Then
by the properties described in (37.15), y is a feasible solution of (37.14). Since
the maximum in (37.13) is at least b(V ) (as any perfect matching M satisfies
w(M) = b(V )), and since y(C) = b(V ), we know that y is an optimum solution
of (37.14). This proves (37.18).

Now fix a b as in (37.18), with b(v) minimal. Then

(37.19) for any optimum solution y of (37.14) and any C ∈ C one has
that if y(C) > 0, then C is tight.

Indeed, any perfect matching M attains the maximum (37.13) (as the max-
imum value equals b(V )). So if y(C) > 0, by complementary slackness,
|M ∩ C| = 1. This shows (37.19).
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Call a vector y ∈ RC
+ laminar if the collection {C ∈ C | y(C) > 0} is

laminar. Then:

(37.20) there exists a laminar integer optimum solution of (37.14) such
that y(C) ≥ 1 for at least one nontrivial tight cut C.

To see this, choose an integer optimum solution y of (37.14) such that y(C) ≥
1 for at least one nontrivial tight cut C, with

(37.21)
∑

C∈C

y(C)s(C)

minimized, where s(C) denotes the number of pairs of vertices separated by
C. We show that y is laminar.

Suppose to the contrary that C and C ′ cross, with y(C) > 0 and y(C ′) >
0. We can choose U ′, U ′′ ⊆ V such that C = δ(U), C ′ = δ(U ′), and |U ∩ U ′|
is odd. Let D := δ(U ∩ U ′) and D′ := δ(U ∪ U ′). Let ε := min{y(C), y(C ′)}.
Decrease y(C) and y(C ′) by ε, and increase y(D) and y(D′) by ε. Then we
obtain again a feasible solution of (37.14), while (37.21) is smaller. So both D
and D′ are trivial. Hence U ∩U ′ = {u} and U ∪U ′ = V \{v} for some vertices
u and v. As G is 3-connected, there is an edge e connecting U \U ′ and U ′ \U .
Since G is matching-covered, there is a perfect matching M containing e. So
e ∈ C ∩C ′. As C and C ′ are tight, e is the only edge of M intersecting C ∪C ′.
Hence no edge of M intersects D = δ(U ∩ U ′), a contradiction. This proves
(37.20).

Fix y satisfying (37.20). We note that the first set of constraints in (37.14)
gives:

(37.22) if e = uv ∈ C and y(C) > 0, then b(u) > 0 or b(v) > 0.

Moreover,

(37.23) for each u ∈ V , b(u) = 0 or y(δ(u)) = 0.

Otherwise, decreasing b(u) and y(δ(u)) by 1 would give b and y with smaller
b(V ).

We also show:

(37.24) if y(δ(U)) > 0, then G[U ] is connected.

If not, let K be an odd component of G[U ] and let e be an edge in δ(U)
not incident with K. Let M be a perfect matching containing e. Then M
intersects δ(U) in more than one edge (since K is odd), while δ(U) is tight
since y(δ(U)) > 0. This contradiction proves (37.24).

Now choose an odd cut C = δ(U) with y(C) > 0, an edge e0 = u0v ∈ C
with u0 ∈ U and b(u0) > 0, such that |U | is as small as possible. (Such U ,
e0, u0 exist by (37.22).)

By (37.23), |U | > 1. Let U1, . . . , Uk be the maximal proper subsets of
U with y(δ(Ui)) > 0. By (37.20), the Ui are pairwise disjoint. Note that
u0 �∈ U1 ∪ · · · ∪ Uk, by the minimality of |U |.

Define



Section 37.7. Matching-covered graphs without nontrivial tight cuts 617

(37.25) U ′ := U \ (U1 ∪ · · · ∪ Uk), U+ := {u ∈ U ′ | b(u) > 0}, and
U0 := U ′ \ U+.

Then

(37.26) there is no edge joining distinct sets among U0, U1, . . . , Uk.

Directly from (37.22) and the minimality of |U |.
Moreover,

(37.27) there is no edge e = uv with u ∈ U+ and v ∈ U ′.

For suppose that such an edge e exists. Then there is a perfect matching
containing e. Hence, by complementary slackness, we have equality in the
corresponding constraint of (37.14). As b(u)+b(v) > 0, we know that y(C) >
0 for some C with e ∈ C. Then C = δ(S) for some S ⊆ U . This contradicts
the definition of the Ui, proving (37.27).

As G[U ] is connected (by (37.24)), it follows that U0 = ∅. Next

(37.28) |U+| = k + 1.

For consider any perfect matching M containing edge e0. Then M intersects
any δ(Ui) in exactly one edge (as each δ(Ui) is tight, by (37.19)) and it also
intersects δ(U) in exactly one edge, namely e0. Since |M ∩δ(U)| = 1, we know
with (37.26) that the edge in M ∩ δ(Ui) connects Ui and U+. Moreover, no
edge in M connects two vertices in U+ (by (37.27)). Hence we have (37.28).

(37.29) No edge connects any Ui with V \ U .

Otherwise, the same counting as for proving (37.28) gives |U+| = k, a con-
tradiction.

As |U | > 1 we know k > 0. Choose s, t ∈ U+. As G is bicritical, G − s − t
has a perfect matching M . Then M intersects each δ(Ui) at least once, and
hence (by (37.29)) |U+ \ {s, t}| ≥ k, a contradiction.

37.7. Matching-covered graphs without nontrivial tight
cuts

The foregoing is used in obtaining the following basic result of Lovász [1987]:

Theorem 37.8. Let G = (V, E) be a connected graph with at least four
vertices. Then G is matching-covered without nontrivial tight cuts if and only
if G is a brick or a brace.

Proof. If G is a brick or a brace, then trivially G is matching-covered. More-
over, Theorems 37.6 and 37.7 show that braces and bricks have no nontrivial
tight cuts.

Conversely, assume that G is matching-covered and has no nontrivial tight
cuts.
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Case 1: G is not bicritical. We show that G is a brace. As G is not bicritical,
by Tutte’s 1-factor theorem (Theorem 24.1a) there exists a subset U of V
such that G − U has |U | odd components, with |U | ≥ 2. As G is matching-
covered, U is a stable set, and G − U has no even components. For each
component K of G − U , δ(K) is tight, and hence trivial, that is |K| = 1. So
G is bipartite, and U is one of its colour classes. If G is not a brace, there
exists a subset X of U with 1 ≤ |X| ≤ |U | − 2 and |N(X)| ≤ |X| + 1. Let
Y ⊆ V \U with N(X) ⊆ Y and |Y | = |X|+ 1. Then δ(X ∪Y ) is a nontrivial
tight cut, a contradiction.

Case 2: G is bicritical. We show that G is a brick. So we must show that G is
3-connected. As G is matching-covered, G is trivially 2-connected. Suppose
that {u, v} is a 2-vertex-cut. Let K be a component of G−u−v. As G−u−v
has a perfect matching, |K| is even. Then δ(K∪{u}) is a nontrivial cut which
is tight, since the intersection of δ(K ∪ {u}) with any perfect matching M is
odd and at most 2 (as each edge in the intersection is incident with u or v).



Chapter 38

The perfect matching lattice

This chapter is devoted to giving a proof of the deep theorem of Lovász
[1987] characterizing the perfect matching lattice of a graph — the lattice
generated by the incidence vectors of perfect matchings.
We summarize concepts and results from previous chapters that we need in
the proof. Let G = (V, E) be a graph. The following notions will be used:
• A cut C in G is tight if each perfect matching intersects C in exactly

one edge.
• A cut C is trivial if C = δ(v) for some vertex v.
• G is matching-covered if each edge is contained in a perfect matching.
• G is bicritical if for each two distinct vertices u and v, the graph G−u−v

has a perfect matching.
• G is a brick if it is 3-connected and bicritical and has at least 4 vertices.
• A subset B of V is a barrier if G−B has at least |B| odd components. A

maximal barrier is an inclusionwise maximal barrier. A nontrivial barrier
is a barrier B with |B| ≥ 2.

Moreover, the following results will be used:
• the perfect matching lattice of a bipartite graph is equal to the set of

integer vectors in the perfect matching space (this is an easy consequence
of Kőnig’s edge-colouring theorem, see Theorem 20.12).

• Any two distinct inclusionwise maximal barriers in a connected matching-
covered graph are disjoint (Corollary 24.11a).

• A graph is a brick if and only if it is nonbipartite and matching-covered
and has no nontrivial tight cuts (a consequence of Theorem 37.8).

• A graph is bicritical if and only if it has no nontrivial barrier (a conse-
quence of Tutte’s 1-factor theorem (Corollary 24.1a)).

Throughout this chapter, U denotes the complement of U .

38.1. The perfect matching lattice

The perfect matching lattice (usually briefly the matching lattice) of a graph
G = (V, E) is the lattice generated by the incidence vectors of perfect match-
ings in G; that is,

(38.1) Lperfect matching(G) := lattice{χM | M perfect matching in G}.
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So it is a sublattice of ZE and is contained in the perfect matching space of
G.

In Section 20.8 we saw that the perfect matching lattice of a bipartite
graph G = (V, E) is equal to the intersection of ZE with the perfect matching
space of G. This characterization does not hold in general for nonbipartite
graphs, as is shown by the Petersen graph. However, as was proved by Lovász
[1987], any graph for which the characterization does not hold, contains the
Petersen graph in some sense. In particular, for any graph without Petersen
graph minor, the characterization remains valid.

In analyzing the perfect matching lattice of G, two initial observations
are of interest:

• We can assume that G is matching-covered, since any edge contained in
no perfect matching can be deleted;

• If G has a nontrivial tight cut, we can reduce the analysis by considering
the two graphs obtained by contracting either of the shores of the cut.

So we can focus the investigations on nonbipartite matching-covered graphs
without nontrivial tight cuts; that is, by Theorem 37.8, on bricks.

38.2. The perfect matching lattice of the Petersen graph

We will need a characterization of the perfect matching lattice of the Petersen
graph, which is easy to prove:

Theorem 38.1. Let G be the Petersen graph and let C be a 5-circuit in
G. Then the perfect matching lattice consists of all integer vectors x in the
perfect matching space with x(EC) even.

Proof. Inspection of the Petersen graph (cf. Figure 38.1) shows that each
edge of G is contained in exactly two perfect matchings, that (hence) G has
exactly six perfect matchings, that any two perfect matchings intersect each
other in exactly one edge, and that each perfect matching intersects EC in
an even number of edges.

Let M0 := δ(V C) (the set of edges intersecting V C in one vertex). Then
M0 is a perfect matching of G. Let M1, . . . , M5 be the five other perfect
matchings of G. So each of the Mi intersects M0 in one edge.

By adding appropriate integer multiples of χM1 , . . . , χM5 to x we can
achieve that xe = 0 for each e ∈ M0. As x is in the perfect matching space,
we know that there exists a number t such that x(δ(v)) = t for each vertex
v. Hence, as |EC| is odd, xe = 1

2 t for all e ∈ EC; similarly, for each edge e in
the 5-circuit vertex-disjoint from C one has xe = 1

2 t. As x(EC) is even, we
know that 5

2 t is even, hence 1
2 t is even. Now the vector

(38.2) y := χM1 + · · ·χM5 − χM0
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Figure 38.1

The Petersen graph

satisfies ye = 0 for e ∈ M0 and ye = 2 for e �∈ M0. Hence x is an integer
multiple of y, proving that x belongs to the perfect matching lattice of G.

38.3. A further fact on the Petersen graph

In the proof of the characterization of the perfect matching lattice, we need
a further, technical fact on the Petersen graph.

Let G = (V, E) be a graph and let b : V → Z+. Recall that a b-factor is
a subset F of E with degF (v) = b(v) for each v ∈ V .

Theorem 38.2. Let G = (V, E) be the Petersen graph and let C be a 5-circuit
in G. Let b : V → Z+ be such that

• either there exists a u ∈ V with b(u) = 3 and b(v) = 1 for all v �= u,
• or there exist distinct u, u′ ∈ V with b(u), b(u′) ∈ {0, 2} and b(v) = 1 for

all v �= u, u′, such that if b(u) = b(u′) = 0, then u and u′ are nonadjacent.

Then there exist b-factors F and F ′ such that |F ∩ EC| and |F ′ ∩ EC| have
different parities.

Proof. By induction on b(V ). If b(u) = b(u′) = 0 for some distinct u, u′ ∈ V ,
then u and u′ are nonadjacent. Let x be the common neighbour of u and u′

and let y be the neighbour of x distinct from u and u′. Then G − x − N(x)
forms a 6-circuit (by inspection — cf. Figure 38.1), D say. Split ED into
two matchings, M and M ′. Adding edge xy to M and M ′ gives b-factors
as required since EC intersects ED in an odd number of edges (as ED =
EG \ δ(N(x)), and |EC| is odd and |EC ∩ δ(N(x))| is even).

If b(u′) = 2, choose a neighbour u′′ of u′ with u′′ different from and
nonadjacent to u. Define b′(u′′) := 0, b′(u) := b(u), and b′(v) := 1 for all
other vertices. By induction, there exist b′-factors F and F ′ such that F and
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F ′ intersect EC in different parities. Adding edge u′u′′ to F and F ′ gives
b-factors as required.

If b(u) = 3 for some u ∈ V , we can choose any neighbour u′ of u, define
b′(u) := 2, b′(u′) := 0, and b′(v) := 1 for all v �= u, u′, and apply induction as
above.

38.4. Various useful observations

In this section we prove a few easy facts that turn out to be useful.
Let G = (V, E) be a graph and let U ⊆ V . Recall that G/U denotes the

graph obtained from G by contracting U to one vertex, which vertex we will
call U . In the obvious way, we will consider the edge set of G/U as a subset
of the edge set of G. Hence, for any x ∈ RE , we can speak of the projection
of x to the edges of G/U .

We now characterize when G/U is a brick if G is a brick:

Theorem 38.3. Let G = (V, E) be a brick and let U ⊆ V . Then G/U is a
brick if and only if G − U is 2-connected and factor-critical.

Proof. Necessity being easy, we prove sufficiency.
First, let G − U be 2-connected. Then G/U is 3-connected, for suppose

that vertices u and u′ of G/U form a 2-vertex-cut of G/U . If both u and u′

are different from vertex U of G/U , then u, u′ would also form a 2-vertex-cut
of G, contradicting the 3-connectivity of G. If, say, u′ is equal to vertex U
of G/U , then u is a cut vertex of G − U , contradicting the 2-connectivity of
G − U .

Second, let G − U be factor-critical. To see that G/U is bicritical, let B
be a nontrivial barrier of G/U . If B does not contain vertex U of G/U , then
B would also be a nontrivial barrier of G, contradicting the bicriticality of
G. If B contains vertex U , then G − U is not factor-critical.

Maximal barriers leave factor-critical components:

Theorem 38.4. Let G = (V, E) be a graph with a perfect matching and let
B be a maximal barrier. Then each component K of G−B is factor-critical.

Proof. Suppose not. Then K has a nonempty subset B′ such that (G[K]) −
B′ has at least |B′| + 1 odd components. Hence B ∪ B′ is a barrier of G,
contradicting the maximality of B.

We note that

(38.3) if B1, . . . , Bk are the maximal nontrivial barriers of a graph G =
(V, E), having a perfect matching, then for each u ∈ V \ (B1 ∪
· · · ∪ Bk), the graph G − u is factor-critical.
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In bicritical graphs, nonempty stable sets have many neighbours (a neigh-
bour of S is a vertex not in S adjacent to at least one vertex in S):

Theorem 38.5. Let G = (V, E) be bicritical with |V | ≥ 4. Then any
nonempty stable set S has at least |S| + 2 neighbours.

Proof. Suppose that |N(S)| ≤ |S| + 1. Since |V \ S| ≥ |S| (as G has a
perfect matching), we know |V \ S| ≥ 2. Hence we can choose two vertices
v, v′ ∈ V \ S such that |N(S) \ {v, v′}| < |S|. This however contradicts the
fact that G − v − v′ has a perfect matching, since each vertex in S should be
matched to a vertex in N(S).

It will also be useful to make the following observation:

Theorem 38.6. Let G = (V, E) be a graph and let U be an odd subset of
V , such that for each edge e ∈ δ(U) there is a perfect matching Me with
Me ∩ δ(U) = {e}. Define G1 := G/U and G2 := G/U , and let x ∈ ZE. If,
for each i = 1, 2, the projection of x to EGi belongs to the perfect matching
lattice of Gi, then x belongs to the perfect matching lattice of G.

Proof. Let x′ and x′′ be the projections of x to EG1 and to EG2, respectively.
Since x′ belongs to the perfect matching lattice of G1, there exist perfect
matchings M ′

1, . . . , M
′
k′ and N ′

1, . . . , N
′
l′ of G1 such that

(38.4) x′ =
k′∑

i=1

χM ′

i −
l′∑

j=1

χN ′

j .

Similarly, there exist perfect matchings M ′′
1 , . . . , M ′′

k′′ and N ′′
1 , . . . , N ′′

l′′ of G2

such that

(38.5) x′′ =

k′′∑

i=1

χM ′′

i −
l′′∑

j=1

χN ′′

j .

Consider any e ∈ δ(U). Then x′
e = xe = x′′

e . Hence, using the projections of
Me to EG1 and to EG2, we can assume that

(38.6) |{i = 1, . . . , k′ | e ∈ M ′
i}| = |{i = 1, . . . , k′′ | e ∈ M ′′

i }| and
|{j = 1, . . . , l′ | e ∈ N ′

j}| = |{j = 1, . . . , l′′ | e ∈ N ′′
j }|,

since we can add the projection of Me to EG1 to both sums in (38.4), if the
number of i with e ∈ M ′

i is less than the number of i with e ∈ M ′′
i ; similarly,

if it would be more.
We can do this for each e ∈ δ(U), to obtain (38.6) for each e ∈ δ(U).

It implies that k′ = k′′ and l′ = l′′. It also implies that we can ‘match’
the M ′

i and M ′′
i in common edges in δ(U). That is, by permuting indices,

we can assume that M ′
i and M ′′

i have an edge in δ(U) in common, for each
i = 1, . . . , k′. In other words, each M ′

i ∪ M ′′
i is a perfect matching of G.

Similarly, we can assume that each N ′
j ∪N ′′

j is a perfect matching of G. Then
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(38.7) x =
k′∑

i=1

χM ′

i∪M ′′

i −
l′∑

j=1

χN ′

j∪N ′′

j .

So x belongs to the perfect matching lattice of G.

38.5. Simple barriers

In this section, we fix a brick G = (V, E) and an edge e such that G − e
is matching-covered, and study barriers of G − e. In particular we focus on
‘simple’ barriers of G − e. They play an important role in the proof of the
characterization of the perfect matching lattice.

For any B ⊆ V , let I(B) denote the set of isolated vertices of G − e − B
and let K(B) denote the set of nonisolated vertices of G − e − B. Then B is
called a simple barrier of G − e if |I(B)| = |B| − 1. So a simple barrier is a
barrier of G − e, and hence a stable set (as G − e is matching-covered). Note
that each singleton is a simple barrier.

For any simple barrier B of G−e, K(B) is an odd component of G−e−B,
since G−e is matching-covered and connected. (Trivially, |K(B)| is odd, since
|V | is even and |I(B)| = |B| − 1. If K(B) would not be connected, let L be
an odd component of K(B) and let f be an edge connecting K(B) \ L and
B. Let M be a perfect matching of G − e containing f . Necessarily some
edge in M leaves L. But then more that one edge in M connects K(B) and
B, and also each vertex in I(B) is matched to B, while |I(B)| = |B| − 1, a
contradiction.)

Since a barrier B of G − e with |B| ≥ 2 is not a barrier of G (since G
is bicritical), e necessarily connects two odd components of G − e − B. If B
is a simple barrier of G − e with |B| ≥ 2, then e connects K(B) with some
vertex v1 ∈ I(B). (G has a perfect matching M intersecting δ(K(B)) in at
least three edges, and hence M contains an edge connecting K(B) and I(B).
This edge must be e.)

Then the perfect matchings M of G are of two types:

(38.8) M does not contain e, in which case M matches B with the
components of G − e − B,
or M contains e, in which case two of the edges in M leaving B
are incident with K(B), and the other edges in M leaving B are
incident with I(B) \ {v1}.

We now give some further easy properties of simple barriers. Recall that
a subset U of the vertex set V of a graph G is called matchable if G[U ] has
a perfect matching.

Theorem 38.7. Let G = (V, E) be a brick, let e ∈ E be such that G − e is
matching-covered and let B be a simple barrier of G − e. Let e = v1v2 with
v1 ∈ B ∪ I(B) and v2 ∈ K(B). Then:
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(38.9) (i) if |B| ≥ 2, then v1 ∈ I(B);
(ii) for any u ∈ B, the set (B − u) ∪ I(B) is matchable;
(iii) for any distinct u, u′ ∈ B, the set (B − u − u′) ∪ (I(B) − v1) is

matchable;
(iv) G − e/K(B) is matching-covered;
(v) G[B ∪ I(B)] is connected;
(vi) any cut vertex v of G[B ∪ I(B)] belongs to I(B);
(vii) if Y ⊆ I(B) and G[B ∪ I(B)] − Y has at least |Y | + 1 compo-

nents, then it contains precisely |Y | + 1 components and any
component of G[B ∪ I(B)] − Y not containing v1 consists of a
singleton vertex in B.

Proof. Since all assertions are trivial if |B| = 1, we can assume that |B| ≥ 2.
We saw above that then v1 ∈ I(B), proving (i).

(ii) follows from the fact that G−u−v2 has a perfect matching. Similarly,
(iii) follows from the fact that G − u − u′ has a perfect matching, necessarily
containing e. (iv) is directly implied by the fact that G−e is matching-covered,
and (v) follows from (ii).

To see (vi), assume that v ∈ B. Choose a component K of G[B∪I(B)]−v
not containing v1. Since (B − v) ∪ I(B) is matchable by (ii), |K ∩ B| =
|K ∩ I(B)|. Choose v′ ∈ K ∩B. Then (B − v − v′)∪ (I(B)− v1) is matchable
by (iii). However, |K ∩ B \ {v′}| < |K ∩ I(B)|, a contradiction. This proves
(vi).

To prove (vii), let α be the number of components of G[B ∪ I(B)] − Y
containing v1, let β be the number of other components intersecting I(B),
and let γ be the number of other components (hence each consisting of a
singleton vertex in B). So α + β + γ ≥ |Y | + 1. Now by Theorem 38.5, each
component K satisfies

(38.10) |K ∩ B| ≥ |K ∩ I(B)| + 1.

Indeed, if K∩I(B) = ∅, this is trivial. If K∩I(B) �= ∅, then by Theorem 38.5,
|K∩I(B)|+2 ≤ N(K∩I(B))| ≤ |K∩B|+1, as N(K∩I(B)) ⊆ (K∩B)∪{v2}.
This proves (38.10).

Moreover,

(38.11) if v1 �∈ K and K ∩ I(B) �= ∅, then |K ∩ B| ≥ |K ∩ I(B)| + 2,

since then N(K ∩ I(B)) ⊆ K ∩ B.
(38.10) and (38.11) imply

(38.12) α + 2β + γ ≤
∑

K

(|K ∩ B| − |K ∩ I(B)|) = |B| − |I(B) \ Y |

= |Y | + 1 ≤ α + β + γ,

where K ranges over the components of G[B ∪ I(B)] − Y . Hence β = 0, and
(vii) follows.

We next consider the case where v2 is a cut vertex of G[K(B)].
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Theorem 38.8. Let G = (V, E) be a brick and let e = v1v2 be an edge
such that G − e is matching-covered. Let B be a simple barrier of G − e with
v1 ∈ I(B) and v2 ∈ K(B). Let Z be a union of components of G[K(B)]− v2,
with Z �= K(B)−v2. Then G/(Z ∪{v2}) is matching-covered and has exactly
one brick in its brick decomposition.

Proof. Define U := Z ∪ {v2} and L := K(B) \ U . Note that L is matchable,
since G − v − v′ has a perfect matching for some v, v′ ∈ B (necessarily
containing e and containing no edge connecting K(B) and B). So |L| is even.

We first show that

(38.13) G/U is matching-covered.

Consider first any perfect matching M of G − e. Then M has exactly one
edge leaving B ∪ I(B). Hence M has exactly one edge leaving U (since if
there were at least three, then at least two of them should leave B ∪ I(B)).
So M gives a perfect matching in G/U . Since G− e is matching-covered, this
implies that each edge of G/U except the image of e is contained in a perfect
matching of G/U .

As L �= ∅ and |L| is even, G has a perfect matching M with at least three
edges leaving L∪{v2}. So it contains at least two edges connecting L and B.
Hence M contains e, and all other edges leaving B ∪ I(B) connect it with L.
So the image of M is a perfect matching in G/U containing the image of e.
This shows (38.13).

To see that G/U has only one brick in its brick decomposition, choose a
counterexample with |B| as small as possible. This implies:

(38.14) |N(X) ∩ I(B)| > |X| for each nonempty subset X of B \ N(L).

Assume that this is not the case. Since |B ∩N(L)| ≥ 2 (as G is 3-connected),
we know |X| ≤ |B|−2, and so |N(X)∩I(B)| ≤ |B|−2 = |I(B)|−1, implying
I(B) �⊆ N(X). Each neighbour of I(B) \ N(X) belongs to (B \ X) ∪ {v2}, as
there is no edge connecting X and I(B) \ N(X). So, using Theorem 38.5,

(38.15) |B| − |X| = |B \ X| ≥ |N(I(B) \ N(X))| − 1 ≥ |I(B) \ N(X)| + 1
= |B| − |N(X) ∩ I(B)|,

implying |N(X)∩ I(B)| = |X| and v1 �∈ N(X). Define B′ := B \X. Then B′

is a simple barrier of G − e again, with I(B′) = I(B) \ N(X) and K(B′) =
K(B) ∪ N(X) ∪ X.

Let S be the union of X, N(X) ∩ I(B), and the contracted vertex U of
G/U . Then each perfect matching of G/U has exactly one edge leaving S (as
X is matched to (I(B) ∩ N(X)) ∪ {U} in G/U , since X ∩ N(L) = ∅). So S
determines a tight cut in G/U . As G/S is bipartite, it suffices to show that
the brick decomposition of G/U/S contains exactly one brick.

Since X ∩ N(L) = ∅, L is a union of components of G[K(B′)] − v2. Then

(38.16) G/U/S = G/(K(B′) \ L) ∪ {v2}.
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Hence, by the minimality of B, G/U has a brick decomposition with exactly
one brick. This shows (38.14).

We finally derive from (38.14) that G/U has only one brick in its brick
decomposition, in fact, that it is a brick — equivalently that G − U is 2-
connected and factor-critical (Theorem 38.3).

Assume that G−U is not 2-connected, and let v be a cut vertex of G−U .
Then each component of G − U − v intersects B ∪ I(B) as G is 3-connected.
Hence v is a cut vertex of G[B ∪ I(B)]. So Theorem 38.7(vi) applies. In
particular, v ∈ I(B).

Since each component of G[L] is adjacent to at least two vertices in B
(since G is 3-connected), we know by Theorem 38.7(vii) that all vertices in
B adjacent to L belong to the same component of G[B ∪I(B)]−v as v1. Any
other component consists of one vertex, w say, in B. But then this contradicts
(38.14), taking X = {w}. So G − U is 2-connected.

To show that G − U is factor-critical, suppose to the contrary that there
exists a nonempty subset Y of U such that G − U − Y has at least |Y | + 1
odd components.

Then Y ⊆ I(B). Otherwise choose v ∈ Y \ I(B). So v ∈ L ∪ B. Then
G−U −v has no perfect matching. However, as G is bicritical, G−v−v2 has
a perfect matching M . Then the restriction of M to U is a perfect matching
of G − U − v, a contradiction. So Y ⊆ I(B).

Each component of G−U−Y containing a component of L has at least two
elements in B (since G is 3-connected). So G[B∪I(B)]−Y has precisely |Y |+1
components. Hence it has |Y | singleton components in B, without neighbours
in L (by Theorem 38.7(vii)). Let X be the union of these components. Each
neighbour y of any x ∈ X with y �∈ U belongs to Y . So |X| ≥ |Y | ≥
|N(X) ∩ I(B)|, contradicting (38.14).

We next consider pairs of simple barriers B1, B2. The following auxiliary
theorem is of special interest for disjoint simple barriers B1 and B2 of G − e
where B2 intersects I(B1).

B1

B2I(B1)

I(B2)

Figure 38.2

Theorem 38.9. Let G = (V, E) be a brick and let e = v1v2 ∈ E be such that
G−e is matching-covered. Let B1 and B2 be disjoint simple barriers of G−e
with v1 ∈ I(B1) and v2 ∈ I(B2). Then
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(38.17) (i) I(B1) ∩ I(B2) = ∅;
(ii) B1 ∪ I(B2) and B2 ∪ I(B1) are stable sets;
(iii) |B1 ∩ I(B2)| = |B2 ∩ I(B1)|;
(iv) B2 \ I(B1) is again a simple barrier of G − e, with I(B2 \

I(B1)) = I(B2) \ B1.

Proof. (i) follows from the fact that all neighbours of any u ∈ I(B1)∩ I(B2)
belong to B1 ∩ B2 = ∅. Since N(I(B2)) ⊆ B2 ∪ {v1}, which is disjoint from
B1, we have that B1 ∪ I(B2) is a stable set. Similarly, B2 ∪ I(B1) is a stable
set, implying (ii).

Since I(B2) \ B1 ⊆ I(B2 \ I(B1)), we know

(38.18) |I(B2)| − |I(B2) ∩ B1| = |I(B2) \ B1| ≤ |I(B2 \ I(B1))|
≤ |B2 \ I(B1)| − 1 = |B2| − 1 − |B2 ∩ I(B1)|
= |I(B2)| − |B2 ∩ I(B1)|.

So |B2 ∩ I(B1)| ≤ |B1 ∩ I(B2)|, and hence by symmetry |B2 ∩ I(B1)| =
|B1 ∩ I(B2)|, and we have equality throughout in (38.18). This gives (iii) and
(iv).

The last auxiliary theorem in this section reads:

Theorem 38.10. Let G be a brick and let e = v1v2 be an edge of G with
G−e matching-covered. Let B1 and B2 be simple barriers of G−e, and define
Ji := Bi∪I(Bi) for i = 1, 2, with v1 ∈ J1 and v2 ∈ J2, and X := V \(J1∪J2).
Assume that J1 ∩J2 = ∅, and that, for each u ∈ X, G−e−u is factor-critical
and G − u/J1 and G − u/J2 are 2-connected. Then if G − e has a 2-vertex-
cut separating J1 and J2, it has a 2-vertex-cut {u, u′} separating J1 and J2

such that for some component K of G − e − u − u′, both G/(K ∪ {u}) and
G/K ∪ {u} are bricks.21

Proof. Note that if {u, u′} is J1 −J2 separating in G−e (which by definition
implies that u, u′ �∈ J1∪J2), then G−e−u−u′ has a perfect matching (by the
assumption in the theorem). Moreover, since G is 3-connected, G − u − u′ is
connected. Hence G− e−u−u′ has exactly two components, one containing
J1 and one containing J2. We will apply Theorem 38.3.

We first show:

(38.19) Let {u, u′} be J1−J2 separating in G−e and let K be a component
of G − e − u − u′. Then the graph G[K ∪ {u}] is factor-critical.

By symmetry, we may assume that J1 ⊆ K. Define S := K ∪ {u}. Choose
a vertex v ∈ S. We prove that G[S] − v has a perfect matching. If v = u,
then G[S] − v = G[K] has a perfect matching (as K is a component of
G−e−u−u′). So let v �= u. As G−e−u′ is factor-critical by the assumption

21 It is important to note that it is not concluded that also G/(K ∪{u′}) and G/K ∪ {u′}
are bricks.



Section 38.5. Simple barriers 629

in the theorem, G − e − u′ − v has a perfect matching M . Since |K| is even,
the edge in M incident with u, connects u with K. So M contains a matching
spanning S \ {v}. This proves (38.19).

In order to prove that G[K ∪ {u}] is 2-connected, we need a special kind
of 2-vertex-cut and a special order of the components:

(38.20) there exist a pair u, u′ separating J1 and J2 in G − e and compo-
nents K ⊇ J1 and L ⊇ J2 of G − e − u − u′ such that for each
v ∈ K \ J1, {u′, v} does not separate J1 and J2 in G − e and for
each v ∈ L \ J2, {u, v} does not separate J1 and J2 in G − e.

To prove this, let {u, u′} be a 2-vertex-cut separating J1 and J2 in G− e. Let
K and L be the components of G−e−u−u′ containing J1 and J2, respectively.
We choose u and u′ such that L is minimal. Then by the minimality of L,
for each v ∈ L \ J2, neither {u, v} nor {u′, v} separates J1 and J2 in G − e.

If (38.20) does not hold, then there exist v, v′ ∈ K \ J2 such that {u, v}
and {u′, v′} are vertex-cuts in G−e, each separating J1 and J2. Let Y be the
component of G−e−u−v not containing u′. Since NG−e(Y ) ⊆ {u, v}, we know
that v1 ∈ Y and hence J1 ⊆ Y . Let Y ′ be the component of G−e−u′ −v′ not
containing u. Again J1 ⊆ Y ′. Hence J1 ⊆ Y ∩Y ′. Now NG−e(Y ∩Y ′) ⊆ {v, v′}
(since NG−e(Y ∩ Y ′) ⊆ NG−e(Y ) ∪ NG−e(Y

′) ⊆ {u, u′, v, v′}; but u′ is not a
neighbour of Y ∩Y ′ since u′ is not in component Y of G−e−u−v; similarly
for u). This implies v �= v′. Hence v′ ∈ Y .

Let A be the component of G − e − u − v different from Y , and let A′ be
the component of G− e−u′ − v′ different from Y ′. Then Y ′ ∩A = ∅. Indeed,
N(Y ′ ∩ A) ⊆ N(Y ′) ∪ N(A) ⊆ {u, v, u′, v′}. Moreover, u, v′ �∈ N(Y ′ ∩ A),
since u ∈ A′ and v′ ∈ Y . So |N(Y ′ ∩ A)| ≤ 2, implying Y ′ ∩ A = ∅ by the
3-connectivity of G.

Similarly, K∩A∩A′ = ∅. Indeed, N(K∩A∩A′) ⊆ N(K)∪N(A)∪N(A′) =
{u, v, u′, v′}. Moreover, v, v′ �∈ N(K ∩ A ∩ A′), since v ∈ Y ′ and v′ ∈ Y . So
|N(K ∩ A ∩ A′)| ≤ 2, implying K ∩ A ∩ A′ = ∅.

So K ∩ A intersects neither Y ′ nor A′, hence K ∩ A ⊆ {u′, v′}. However,
u′ �∈ K and v′ �∈ A. So K ∩ A = ∅. Hence K ⊆ Y ∪ {v}. So Y = K \ {v},
implying that |Y | is odd, a contradiction (since G − e − u − v has a perfect
matching). This proves (38.20).

Let u, u′ be as in (38.20). By symmetry, it suffices to show:

(38.21) G[K ∪ {u}] is 2-connected.

Let S := K ∪ {u}. Suppose that there exists a v ∈ S with G[S \ {v}] dis-
connected. Let Z be a component of G[S \ {v}] not containing v1, and let Y
be any other component. If u �∈ Z, then N(Z) ⊆ {v, u′}, contradicting the
3-connectivity of G. So u ∈ Z.

So u �∈ Y , and hence N(Y ) ⊆ {u′, v, v2}, implying by the 3-connectivity
of G, that v1 ∈ Y . So NG−e(Y ) = {u′, v}. If v �∈ J1, then J1 ⊆ Y (as G[J1] is
connected), implying that {u′, v} is J1 −J2 separating in G−e, contradicting
the condition in (38.20). So v ∈ J1.
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If Y �⊆ J1, then Y \ J1 has only two neighbours in G/J1: J1 and u′,
contradicting the fact that G − u′/J1 is 2-connected (by the condition in the
theorem). So Y ⊆ J1.

Let M be a perfect matching in G−u′−v1. So M intersects δ(J1) in exactly
two edges (since |I(B1) \ {v1}| = |B1| − 2 and u′ ∈ K(B1), as u′ �∈ J1). If
G[J1 \{v}] is connected, then Y = J1 \{v}. Then M contains an edge leaving
J1 and not incident with v. This contradicts the fact that NG−e(Y ) ⊆ {u′, v}
and that M does not cover u′.

So v is a cut vertex of G[J1], and hence by Theorem 38.7(vi), v belongs to
I(B1). Now v �= v1, since v1 ∈ Y . By Theorem 38.7(vii), G[J1 \ {v}] has two
components, one containing v1 and one consisting only of some neighbour, w
say, of v. So Z ∩ J1 = {w} and |(Y \ {v1}) ∪ {v}| is even. Then M contains a
matching with union (Y \ {v1}) ∪ {v}. Hence at most one edge in M leaves
J1, a contradiction. This shows (38.21).

38.6. The perfect matching lattice of a brick

We now prove the theorem of Lovász [1987]:

Theorem 38.11. Let G = (V, E) be a brick different from the Petersen
graph. Then the perfect matching lattice of G is equal to the set of integer
vectors in the perfect matching space of G.

Proof. We choose a counterexample with |V | + |E| minimal. Let x be an
integer vector in the perfect matching space of G that is not in the perfect
matching lattice of G. We can assume that x(δ(v)) = 0 for each vertex v (this
can be achieved by adding an appropriate integer multiple of χM to x, for
some perfect matching M in G).

Claim 1. Let δ(U) be an odd cut in G such that both G/U and G/U are
matching-covered and have exactly one brick in their brick decompositions.
Then there exist no perfect matchings M and N of G with |M ∩ δ(U)|− |N ∩
δ(U)| = 2.

Proof of Claim 1. Suppose to the contrary that such perfect matchings M,N
exist. In particular, |U |, |U | ≥ 3. As x(δ(U)) is even (since x(δ(v)) is even for
each vertex v), by adding an appropriate integer multiple of χM − χN to x
we can achieve that x(δ(U)) = 0.

Let x′ and x′′ be the projections of x to the edges of G/U and G/U ,
respectively. Let H := G/U .

Consider any minimal subset W of U , such that |W | ≥ 3 and such that
δ(W ) is a tight cut of H. (Such a set exists, since δ(U) is tight in H.) Since H
has exactly one brick in its brick decomposition, we know that H/W or H/W
is bipartite and matching-covered. If H/W is bipartite and matching-covered,



Section 38.6. The perfect matching lattice of a brick 631

the colour class of H/W not containing vertex W would be a nontrivial barrier
in G. This contradicts the fact that G is a brick.

So H/W is bipartite and matching-covered. Hence the projection of x′ to
the edges of H/W belongs to the perfect matching lattice of H/W . So (by
Theorem 38.6) the projection y of x′ to the edges of I := H/W is not in the
perfect matching lattice of I.

By the minimality of W , I is a brick. Since y is not in the perfect matching
lattice of I, by the minimality of |V | + |E|, I is the Petersen graph and has
a 5-circuit disjoint from vertex W of I with y(EC) odd.

As δ(W ) is not tight in G (since G is a brick), G has a perfect matching L
satisfying |L ∩ δ(W )| ≥ 3, and hence |L ∩ δ(W )| = 3 (since I is the Petersen
graph). Then by Theorem 38.2 (defining b(W ) := 3 and b(v) := 1 for each
vertex v �= W of I), we can modify L on the edges of I not incident with W
to obtain a perfect matching L′ of G such that the intersections of L and L′

with EC have different parities. Resetting x := x+χL −χL′

we achieve that
x(EC), and hence x′(EC), is even.

Hence the projection of the new x on the edges of G/U is in the perfect
matching lattice of G/U . We can perform similar resettings to achieve that
the projection of the new x on the edges of G/U is in the perfect matching
lattice of G/U . Then the new x, and hence also the original x, belongs to
the perfect matching lattice of G, by Theorem 38.6. This contradicts our
assumption. End of Proof of Claim 1

There exists an edge e with G − e matching-covered

To see this, we first show:

Claim 2. There are no edges e and f such that G−e−f is matching-covered
and bipartite.

Proof of Claim 2. Suppose that such e and f exist. As G−e−f is matching-
covered, the colour classes of G − e − f have the same size, and as G is
matching-covered and nonbipartite, e is spanned by one of the colour classes,
and f by the other.

Let M be a perfect matching in G containing e and f and let N be a
perfect matching in G not containing e and f . By adding an appropriate
integer multiple of χM − χN to x we can achieve that xe = 0. Since x is
in the perfect matching space of G, this implies that xf = 0. By Corollary
20.12a, the restriction of x to G − e − f is in the perfect matching lattice of
G−e−f . Hence x belongs to the perfect matching lattice of G, contradicting
our assumption. End of Proof of Claim 2

This gives:

Claim 3. There is an edge e such that G − e is matching-covered.
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Proof of Claim 3. For each edge e, let Me denote the collection of per-
fect matchings of G containing e. Choose any edge e with Me inclusionwise
minimal. We prove that G − e is matching-covered.

Suppose that G−e is not matching-covered. Hence there is an edge f �= e
such that each perfect matching of G containing f , also contains e; that is,
Mf ⊆ Me. By the minimality of Me, Mf = Me. Hence there is no perfect
matching containing exactly one of e, f . We show that

(38.22) G − e − f is bipartite.

As there is no perfect matching containing e but not containing f , by Tutte’s
1-factor theorem, there exists a subset B of V spanning e such that G−f −B
has more than |B| − 2 odd components; hence, by parity, at least |B| odd
components. As |B| ≥ 2 and as G is bicritical, f connects two distinct odd
components, K1 and K2 say, of G − f − B. Moreover, as G is bicritical, each
component of G − f − B is odd.

We show that G−e−f is bipartite with colour classes B and W := V \B.
That is, e is the only edge contained in B, and each component of G− f −B
is a singleton.

To see this, first assume that some component K of G − f − B is not a
singleton. Then δ(K) is a nontrivial cut, and hence it is not tight. So there
exists a perfect matching M with |M ∩ δ(K)| ≥ 3. If f �∈ M , then (adding up
over all components of G − f − B), |M ∩ δ(B)| ≥ |B| + 2, a contradiction. If
f ∈ M , then similarly |M ∩δ(B)| ≥ |B|, again a contradiction (since e ∈ M).

Second assume that B spans some edge e′ different from e. Let M be a
perfect matching containing e′. If f �∈ M , then |M∩δ(B)| ≥ |B|, contradicting
the fact that e′ ∈ M . If f ∈ M , then |M ∩ δ(B)| ≥ |B| − 2, contradicting the
fact that both e and e′ belong to M . This shows (38.22).

In particular, any odd circuit in G contains exactly one of e and f . By
Claim 2, G−e−f is not matching-covered. Hence there is an edge g such that
each perfect matching containing g contains e or f . Hence Mg = Me = Mf .
So, as before, each of G − e − f , G − e − g, G − f − g is bipartite. Hence each
odd circuit in G contains exactly one edge from each pair taken from e, f, g,
a contradiction. End of Proof of Claim 3

Each maximal barrier of G − e is simple

We fix an edge e with G − e matching-covered. Let e connect vertices v1 and
v2.

Claim 4. Let B be a maximal barrier of G−e. Then B is simple and G/K(B)
is a brick.

Proof of Claim 4. As the claim is trivial if |B| = 1, we can assume |B| ≥ 2;
that is, B is nontrivial. Since G has no nontrivial barrier, B is not a barrier
of G, and hence e connects two different components of G − e − B.
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By Theorem 38.4, each component K of G − e − B is factor-critical. So
it suffices to show (by Theorem 38.3) that G[K(B)] is 2-connected. In other
words, G − e − B has precisely one block22.

Let K denote the collection of components of G− e−B, and let L denote
the collection of blocks of G − e − B. For K ∈ K, let LK denote the set of
blocks of G[K].

It is useful to state the following formulas (38.23) and (38.25). For any
perfect matching M of G and any K ∈ K one has

(38.23)
∑

L∈LK

(|M ∩ δ(L)| − 1) = |M ∩ δ(K)| − 1.

This can be shown inductively as follows. Consider any subsets U ′ and U ′′ of
a set U of vertices with U ′ ∪ U ′′ = U , |U ′ ∩ U ′′| = 1, and no edge connecting
U ′\U ′′ and U ′′\U ′. Then |M∩δ(U)|−1 = (|M∩δ(U ′)|−1)+(|M∩δ(U ′′)|−1),
since

(38.24) |M ∩ δ(U ′)|+ |M ∩ δ(U ′′)| = |M ∩ δ(U ′ ∪U ′′)|+ |M ∩ δ(U ′ ∩U ′′)|
= |M ∩ δ(U)| + 1.

One also has

(38.25)
∑

K∈K

(|M ∩ δ(K)| − 1) = 2|M ∩ {e}|,

since

(38.26)
∑

K∈K

|M ∩ δ(K)| = |M ∩ δ(B)| + 2|M ∩ {e}| = |B| + 2|M ∩ {e}|

= |K| + 2|M ∩ {e}|.

Suppose now that the claim is not true — that is, |L| ≥ 2. We derive:

(38.27) for each L ∈ L and for each edge f ∈ δ(L), G has a perfect
matching M with M ∩ δ(L) = {f}.

Indeed, if f �= e, let M be a perfect matching of G−e containing f . By (38.23)
and (38.25), M intersects δ(L) in exactly one edge. So M ∩ δ(L) = {f}.

Suppose next that f = e. As |L| ≥ 2 by assumption, there exists a block
L′ �= L. As G has no tight nontrivial cuts, G has a perfect matching M with
|M ∩ δ(L′)| ≥ 3, and hence by (38.23) and (38.25), |M ∩ δ(L)| = 1, that is,
M ∩ δ(L) = {e}. This proves (38.27).

Now for each L ∈ L there exists a perfect matching M with |M∩δ(L)| ≥ 3,
and hence, by (38.23) and (38.25), |M ∩ δ(L)| = 3 and |M ∩ δ(L′)| = 1 for all
other L′ ∈ L. Moreover, let N be a perfect matching not containing e. Then
adding an appropriate integer multiple of χM − χN to x we can achieve that
x(δ(L)) = 0, while x(δ(L′)) does not change for any other L′ ∈ L.

As we can do this for all L ∈ L, we can assume that

22 A block of a graph H is an inclusionwise maximal set L of vertices with |L| ≥ 2 and
with G[L] 2-connected.
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(38.28) x(δ(L)) = 0 for all L ∈ L.

Since x is in the perfect matching space, with (38.23) this gives that

(38.29) x(δ(K)) = 0 for all K ∈ K.

Moreover, xe = 0, since

(38.30) 2xe =
∑

K∈K

x(δ(K)) − x(δ(B)) = −x(δ(B)) = −
∑

v∈B

x(δ(v)) = 0.

Let H be the matching-covered bipartite graph obtained from G − e by
contracting each K ∈ K to a vertex. Since x(δ(K)) = 0 for each K ∈ K and
x(δ(v)) = 0 for each v ∈ B, and since xe = 0, we know from Corollary 20.12a
that x|EH is in the perfect matching lattice of H. Now for each K ∈ K and
for each f ∈ δ(K) with f �= e, there exists a matching M in G− e containing
f , and hence there is a matching with union K \{v}, where v is the vertex in
K incident with f . We therefore can extend each perfect matching of H to
a perfect matching of G − e intersecting each δ(K) in one edge. This implies
that we may assume that xf = 0 for each f ∈ δ(B).

Hence each edge f with xf �= 0 is spanned by some L ∈ L. Let L′ be the
collection of those blocks L ∈ L spanning at least one edge f with xf �= 0.
We choose x satisfying all previous assumptions and such that |L′| is as small
as possible.

As each K ∈ K is factor-critical, each L ∈ L is factor-critical. Hence, by
Theorem 38.3,

(38.31) G/L is a brick for each L ∈ L.

Moreover,

(38.32) we can assume that, for each L ∈ L with G/L the Petersen graph,
there is a 5-circuit C in G[L] with x(EC) even.

Indeed, choose any 5-circuit C in G[L], and suppose that x(EC) is odd. Let
M be a perfect matching in G with |M ∩ δ(L)| = 3. By Theorem 38.2, we
can modify M on the edges spanned by L so as to obtain a perfect matching
N with |N ∩ EC| having parity different from |M ∩ EC|, and such that M
and N coincide for all edges not spanned by L. Now adding χM − χN to x
makes x(EC) even, and does not invalidate our previous assumptions. This
shows (38.32).

We show next:

(38.33) for each L0 ⊆ L with xf = 0 for each f ∈ δ(
⋃

L0), one has
L0 ⊆ L′.

We show this by induction on |L0|. If L0 = ∅, this is trivial. If L0 �= ∅, we
can choose an L ∈ L0 such that L has a vertex v such that each L′ ∈ L0 with
L′ �= L is disjoint from L \ {v}. Hence each f ∈ δ(L) with xf �= 0 is incident
with v. By (38.31) and (38.32), x|E(G/L) is in the perfect matching lattice
of G/L. So
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(38.34) x|E(G/L) =
∑

M

λMχM ,

where M ranges over perfect matchings of G/L and where λM ∈ Z. Let M
denote the collection of perfect matchings of G/L not containing an edge
leaving L at v. So if f ∈ M ∈ M and f is incident with L, then xf = 0.
By (38.27), for each f ∈ δ(L) we can choose a perfect matching Nf of G/L

containing f . Then for each perfect matching M of G/L, let M̃ := M ∪ Nf

where f is the edge of M leaving L. Then, by replacing x by

(38.35) x −
∑

M∈M

λMχM̃ ,

x changes only on edges spanned by L, and we achieve that xf = 0 for each
edge f ∈ δ(v) spanned by L. Hence for L′

0 := L0 \ {L} we have xf = 0 for
each f ∈ δ(

⋃
L′

0). Therefore, by the induction hypothesis, L′
0 ⊆ L′. So xf = 0

for each f ∈ δ(L). Hence, taking the λM as above, by replacing x by

(38.36) x −
∑

M

λMχM̃ ,

where M ranges over all perfect matchings of G/L, we achieve that x|E(G/L)
= 0. This proves (38.33).

Applying (38.33) to L0 := L, we derive that x = 0, a contradiction.
End of Proof of Claim 4

We remind that for each maximal nontrivial barrier B of G − e one has
e ∈ δ(K(B)) and:

(38.37) for each perfect matching M of G: e ∈ M ⇐⇒ |M ∩δ(K(B))| =
3.

Pairs of simple barriers of G − e

Claim 5. Let B1 and B2 be simple barriers of G − e and let Ji := Bi ∪ I(Bi)
(for i = 1, 2), with J1 ∩ J2 = ∅ and vi ∈ Ji (for i = 1, 2). Then H :=
G − e/J1/J2 is not a brick.

Proof of Claim 5. Suppose that H is a brick. By adding an appropriate
integer multiple of χM −χN to x, where M and N are perfect matchings in G
containing e and not containing e, respectively, we can achieve xe = 0. Then,
since x(δ(v)) = 0 for each vertex v, we have that x(δ(J1)) = x(δ(J2)) = 0. As
G − e/J1 and G − e/J2 are bipartite and as H is a brick, it follows that the
respective projections of x belong to the perfect matching space of G− e/J1,
G − e/J2, and H.

As x is not in the perfect matching lattice of G, by Theorem 38.6 at
least one of these projections is not in the corresponding perfect matching
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lattice. As G − e/J1 and G − e/J2 are bipartite, it follows (as G is a minimal
counterexample to Theorem 38.11) that H is the Petersen graph and that
x(EC) is odd for some 5-circuit C in H disjoint from vertices J1 and J2 of
H. Then it suffices to show:

(38.38) G has perfect matchings M and N , each containing e, such that
M and N intersect EC in different parities,

since then adding χM − χN to x turns the parity of x(EC).
To prove (38.38), let

(38.39) X := V G \ (J1 ∪ J2) = K(B1) ∩ K(B2).

So V H = X ∪ {J1, J2}. We first show that for i = 1, 2:

(38.40) if |Ji| ≥ 3, and a and b are distinct neighbours of vertex Ji of H
with a, b ∈ X, then {aJi, bJi} is the image of a matching in G.

To see this, we can assume that i = 1.
If J1 and J2 are adjacent vertices of H, then a and b are the only neigh-

bours of J1 in X. Choose z ∈ B2. As G is bicritical, G − v1 − z has a perfect
matching M . Then M matches up all vertices in J2 \ {z}. Moreover, all but
two vertices in B1 are matched with vertices in I(B1)\{v1}. Hence two edges
of M connect B1 and K. So M contains edges connecting a and b with B1.

If J1 and J2 are nonadjacent vertices of H, let z be the vertex distinct from
a, b adjacent in H to J1. Since G is bicritical, G−v1−z has a perfect matching
M . All but two vertices in B1 are matched with vertices in I(B1)\{v1}. Since
M misses z, M contains edges connecting a and b with B1. This shows (38.40).

Moreover, we have:

(38.41) if J1 and J2 are adjacent vertices in H, and |J1| ≥ 3 and |J2| ≥ 3,
then J1 has a neighbour a1 in X, and J2 has a neighbour a2 in
X, such that {a1J1, J1J2, J2a2} is the image of a matching in G.

Let f be an edge of G−e connecting J1 and J2. By (38.40), J1 has a neighbour
a1 in X such that there exists an edge connecting a1 and J1 disjoint from
f . Similarly, J2 has a neighbour a2 in X such that there exists an edge
connecting a2 and J2 disjoint from f . This gives the a1 and a2 required in
(38.41).

By Theorem 38.2, we can find subsets F1 and F2 of the edge set of H
such that for each j = 1, 2,

(38.42) (i) each vertex in X is incident with exactly one edge in Fj ,
(ii) for each i = 1, 2, if |Ji| = 1, then Ji is incident with none of the

edges in Fj , and, if |Ji| ≥ 3, then Ji is incident with exactly
two edges in Fj ,

(iii) |F1 ∩ EC| and |F2 ∩ EC| have different parities.

(Note that if |J1| = |J2| = 1, then J1 and J2 are not adjacent, as then
J1 = {v1} and J2 = {v2}, e = v1v2, and H = G − e.)



Section 38.6. The perfect matching lattice of a brick 637

If J1 and J2 are adjacent vertices of H and |J1| ≥ 3, |J2| ≥ 3, we can
choose the Fj such that moreover

(38.43) a1J1, a2J2 belong to both F1 and F2,

where a1 and a2 are as in (38.41). To see this, note that a1 and a2 are
nonadjacent (as the Petersen graph has no 4-circuit). Then there exist by
Theorem 38.2 subsets F ′

1 and F ′
2 of the edge set of H such that for each

j = 1, 2, each vertex of H different from a1 and a2 is incident with exactly
one edge in F ′

j , while a1 and a2 are not covered by F ′
j , and such that |F ′

1∩EC|
and |F ′

2 ∩ EC| have different parities. Extending the F ′
j with the edges a1J1

and a2J2 gives Fj as required.
By Theorem 38.7(iii), (38.40) and (38.41), F1 and F2 are projections of

perfect matchings M and N of G containing e, as required in (38.38).
End of Proof of Claim 5

This claim can be sharpened as follows:

Claim 6. Let B1 and B2 be simple barriers of G − e and let Ji := Bi ∪ I(Bi)
(for i = 1, 2), with J1 ∩ J2 = ∅ and vi ∈ Ji (for i = 1, 2). Define X :=
V \(J1∪J2). If G−e−u is factor-critical for each u ∈ X and H := G−e/J1/J2

is bicritical, then G/J1/J2 has a 2-vertex-cut intersecting {J1, J2}.

Proof of Claim 6. If G − u/J1 is not 2-connected for some u ∈ X, then
{u, J1} is a 2-vertex-cut in G/J1 (since G is 3-connected), hence in G/J1/J2,
as required. So we may assume that G − u/J1 and G − u/J2 are 2-connected
for each u ∈ X.

Let H be bicritical. By Claim 5, H is not a brick. Hence H is not 3-
connected. Let {u, u′} be a 2-vertex-cut of H. If {u, u′} intersects {J1, J2}
we are done. So suppose that {u, u′} is disjoint from {J1, J2}. Since G is
3-connected and e connects J1 and J2, we know that {u, u′} separates J1 and
J2. Hence, by Theorem 38.10, we may assume that the components K and
L of G − e − u − u′ are such that G/(K ∪ {u}) and G/K ∪ {u} are bricks.

Define U := K∪{u}. Then G has a perfect matching M with |M∩δ(U)| ≥
3, since G has no nontrivial tight cuts. As each edge in δ(U) \ {e} is incident
with u or u′, we know |M ∩ δ(U)| = 3. Let f ∈ δ(U) \ {e} and let N be a
perfect matching in G − e containing f . Then |N ∩ δ(U)| = 1, contradicting
Claim 1. End of Proof of Claim 6

G − e has exactly two maximal nontrivial barriers

By Corollary 24.11a, we know:

(38.44) any two distinct maximal barriers of G − e are disjoint.
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Since each maximal nontrivial barrier B contains N(v1)\{v2} or N(v2)\{v1}
(as e connects I(B) and K(B)), we know that G−e has at most two maximal
nontrivial barriers. In fact:

Claim 7. G − e has exactly two maximal nontrivial barriers B1 and B2.

Proof of Claim 7. First assume that G− e has no nontrivial barriers; that is,
G − e is bicritical. This contradicts Claim 6 for B1 := {v1} and B2 := {v2}.
(G − e − u is factor-critical for each u ∈ V by (38.3).) So G − e has at least
one maximal nontrivial barrier, B1 say. Let J1 := B1 ∪ I(B1), and assume
without loss of generality that v1 ∈ I(B1).

Assume that there is exactly one maximal nontrivial barrier. Then G −
e/J1 has no nontrivial barrier; that is, it is bicritical. By Claim 4, G/J1 is a
brick, and hence is 3-connected. This contradicts Claim 6, taking B2 := {v2}.
(G − e − u is factor-critical for each u ∈ V \ J1 by (38.3).)

End of Proof of Claim 7

Decomposition of G

Having the two maximal nontrivial barriers B1 and B2, assuming v1 ∈ I(B1)
and v2 ∈ I(B2), we define

(38.45) J1 := B1 ∪ I(B1) and J2 := B2 ∪ I(B2).

Note that J1 and J2 might intersect. Define J ′
1 := J1 \ J2, J ′

2 := J2 \ J1,
B′

1 := B1 \ I(B2), and B′
2 := B′

2 \ I(B1). By Theorem 38.9, B′
1 and B′

2 are
simple barriers again, with I(B′

1) = I(B1) \ B2 and I(B′
2) = I(B2) \ B1.

B1

B2I(B1)

I(B2)

X

e

v1

v2

Figure 38.3

Thus we obtain a decomposition of V into

(38.46) B′
1, B′

2, I(B′
1), I(B′

2), B1 ∩ I(B2), B2 ∩ I(B1),
X := K(B1) ∩ K(B2),
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where e connects I(B′
1) and I(B′

2).
By Theorem 38.9, G − X is bipartite, with colour classes B1 ∪ I(B2) and

B2 ∪ I(B1).

G[X] has exactly two components

Claim 8. G[X] is disconnected.

Proof of Claim 8. Consider H := G − e/J1/J ′
2. Note that H is isomorphic

to G − e/J ′
1/J2, since, if J1 ∩ J2 �= ∅, then J1 ∩ J2 has neighbours both in J ′

1

and J ′
2, and nowhere else (by Theorems 38.5 and 38.9).

By Claim 5, H is not a brick. However,

(38.47) H is bicritical.

To see this, choose two distinct vertices v, v′ of H. We can assume that v �= J ′
2

and v′ �= J1. (If v = J ′
2 or v′ = J1 then exchange v and v′.) Let w be equal to

v if v �= J1 and let w be any vertex in B1 if v = J1. Similarly, let w′ be equal
to v′ if v′ �= J ′

2 and let w′ be any vertex in B′
2 if v′ = J ′

2. Then G−e−w−w′

has a perfect matching, since {w, w′} is neither contained in B1 nor in B2. As
B1 is a simple barrier in G−e, each vertex in I(B1) is matched to a vertex in
B1. Similarly, each vertex in I(B′

2) is matched to a vertex in B′
2. Hence this

perfect matching gives a perfect matching of H − v − v′. This proves (38.47).
By Claim 6, G/J1/J ′

2 has a 2-vertex-cut {u, u′} intersecting {J1, J
′
2}. (G−

e − u is factor-critical for each u ∈ X by (38.3).) If {u, u′} = {J1, J
′
2} we are

done. So we can assume that u′ �∈ {J1, J
′
2}. If u = J1, then u′ is a cut vertex of

G−J1, contradicting Claim 4. If u = J ′
2, observe that G/J1/J ′

2 is isomorphic
to G/J ′

1/J2, where the isomorphism brings vertex J1 to vertex J ′
1, and vertex

J ′
2 to vertex J2. So u′ is a cut vertex of G − J2, again contradicting Claim 4.

End of Proof of Claim 8

We have that

(38.48) each component of G[X] is even,

as for any u ∈ B′
1, G[K(B2)]−u has a perfect matching M . Then trivially no

edge in M connects K(B2) and J2. Moreover, no edge in M connects K(B1)
and J1, since e �∈ M (as e is not contained in K(B2)) and since each vertex
in I(B′

1) is matched to a vertex in B′
1 \ {u} (note that J ′

1 ⊆ K(B2)).
For any subset L of X, any perfect matching M of G, and any i ∈ {1, 2},

define

(38.49) λi(M,L) := the number of edges in M connecting L and Bi.

Claim 9. For any component L of G[X] and any perfect matching M of G
containing e one has {λ1(M,L), λ2(M,L)} = {0, 2}.
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Proof of Claim 9. Since λ1(M,L) + λ2(M,L) = |M ∩ δ(L)| is even (as |L| is
even by (38.48)) and since λi(M,L) ≤ 2 for i = 1, 2 (since M has two edges
connecting K(Bi) and Bi), it suffices to show that λ1(M,L) �= λ2(M,L).

Suppose that λ1(M,L) = λ2(M,L). Since e ∈ M , |M ∩ δ(J ′
1)| = 3. As no

edge connects L and I(Bi) (since e is the only edge connecting K(Bi) and
I(Bi), but v1, v2 �∈ L), we have that M has λ1(M,L) edges connecting L and
J ′

1. Hence for U := J ′
1 ∪ L,

(38.50) |M ∩ δ(U)| = |M ∩ δ(J ′
1)| + |M ∩ δ(L)| − 2λ1(M,L)

= 3 + λ1(M,L) + λ2(M,L) − 2λ1(M,L) = 3.

Moreover, any perfect matching N of G − e satisfies |N ∩ δ(U)| = 1. Indeed,
|N∩δ(J ′

1)| = 1 and |N∩δ(J2)| = 1. So |N∩δ(X)| ≤ 2. Hence if |N∩δ(U)| ≥ 3,
then N ∩ δ(U) contains an edge leaving neither J ′

1 nor J2. Hence N has an
edge connecting L and X \ L, a contradiction. So |N ∩ δ(U)| = 1.

We show that both G/U and G/U are matching-covered, AND THat each
has a unique brick in its brick decomposition, contradicting Claim 1.

Consider G′ := G/J2. Then G′ is a brick by Claim 4, and L is a nonempty
union of components of G′ −J ′

1 −{J2}. Moreover, G′ − e is matching-covered
(since each perfect matching of G − e has exactly one edge in δ(J2)) and B′

1

is a simple barrier of G′ − e. So by Theorem 38.8 (taking Z := X \ L and
v2 = J2), G′/U = G/U is matching-covered and has a unique brick in its
brick decomposition.

Let U ′ := J ′
2 ∪ (X \ L). Similarly, G/U ′ is matching-covered and has a

unique brick in its brick decomposition. Since U ′ = U ∪ (J1 ∩ J2), we have
U ∪ U ′ = J1 ∩ J2. So G/U/U ′ is matching-covered and bipartite. As U ′ gives
a tight cut in G/U , also G/U is matching-covered and has a unique brick in
its brick decomposition. End of Proof of Claim 9

Claim 10. G[X] has exactly two components.

Proof of Claim 10. Let M be any perfect matching of G containing e. Then
λi(M,X) ≤ 2 for i = 1, 2, and hence by Claim 9, G[X] has exactly two
components. End of Proof of Claim 10

Conclusion

Let L1 and L2 be the components of G[X]. For j = 1, 2, let Zj be the set
of pairs {b, b′} with b ∈ B1, b′ ∈ B′

2 such that Lj ∪ {b, b′} is matchable. In
particular, if b ∈ B1 and b′ ∈ B′

2 are adjacent, then {b, b′} ∈ Z1 ∩ Z2. Then

Claim 11. For each j = 1, 2, any b ∈ N(Lj) belongs to some pair in Zj.

Proof of Claim 11. As b ∈ N(Lj), there is an edge f joining b and Lj . Let M
be a perfect matching of G−e containing f . Then λ1(M,Lj) = λ2(M,Lj) = 1,
and hence {b, b′} ∈ Zj for some b′. End of Proof of Claim 11
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Note that if b ∈ N(Lj) for some j, then b ∈ B′
1 ∪ B′

2 (since X has no
neighbour in I(B1) ∪ I(B2)).

Claim 12. Each pair in Z1 intersects each pair in Z2.

Proof of Claim 12. Suppose to the contrary that there exist disjoint pairs
{b, b′} ∈ Z1 and {c, c′} ∈ Z2, taking b, c ∈ B1 and b′, c′ ∈ B′

2. By definition
of Zj , L1 ∪ {b, b′} and L2 ∪ {c, c′} are matchable. Moreover, by Theorem
38.7, also J1 \ {b, c, v1} and J ′

2 \ {b′, c′, v2} are matchable. Together with e,
this gives a perfect matching M of G containing e with λ1(M,L1) ≤ 1 and
λ2(M,L1) ≤ 1. This contradicts Claim 9. End of Proof of Claim 12

Claim 13. Z1 ∩ Z2 = ∅, |B1| = |B2| = 2, I(B1) ∩ B2 = I(B2) ∩ B1 = ∅,
B1 ∪ B2 is a stable set, and Z1 and Z2 are perfect matchings on B1 ∪ B2.

Proof of Claim 13. We have |N(Lj) ∩ Bi| ≥ 2 for j = 1, 2 and i = 1, 2, since
(for j = 1, i = 1, say) L1 has at least two neighbours in K(B2) (as G[K(B2)]
is 2-connected), which must belong to B1.

Assume that Z1 ∩ Z2 �= ∅. Let {c, c′} ∈ Z1 ∩ Z2 with c ∈ B1 and c′ ∈ B′
2.

We can choose b ∈ N(L1) ∩ B1 with b �= c. Then {b, c′} ∈ Z1 (by Claims 11
and 12). We can choose b′ ∈ N(L2) ∩ B′

2 with b′ �= c′. Again, {b′, c} ∈ Z2. As
{b, c′} and {b′, c} are disjoint, this contradicts Claim 12. So Z1 ∩ Z2 = ∅.

Then B1 ∪ B′
2 is a stable set, since if there is an edge connecting b ∈ B1

and b′ ∈ B′
2, then L1 ∪ {b, b′} and L2 ∪ {b, b′} are matchable, and hence

{b, b′} ∈ Z1 ∩ Z2, a contradiction.
This implies B1 ∩ I(B2) = ∅, since otherwise there is an edge connecting

b ∈ B1 ∩ I(B2) and b′ ∈ B′
2 = B2 \ I(B1) (since B1 ∩ I(B2) has more than

|B1 ∩ I(B2)| = |B2 ∩ I(B1)| neighbours in B2, by Theorem 38.5). Hence, by
(38.17)(iii), B2 ∩ I(B1) = ∅. So B′

2 = B2.
Next, for each j = 1, 2, no two pairs in Zj intersect. For assume that

{b, b′}, {b, c′} belong to Z1 with b′, c′ different vertices in B2. As |N(L2) ∩
B1| ≥ 2, we can choose (by Claim 11) {d, d′} ∈ Z2, with d ∈ B1 and d �= b.
However, then d′ = b′ and d′ = c′ by Claim 12, a contradiction, as b′ �= c′.

So Zj consists of disjoint pairs. As each pair in Z1 intersects each pair in
Z2, we have that each Zj consists of two disjoint pairs, that Z1 and Z2 cover
the same set of vertices, and that Z1 ∩ Z2 = ∅. In particular,

(38.51) |N(X) ∩ B1| = |N(X) ∩ B2| = 2.

Finally we show that |Bi| = 2 for i = 1, 2. Suppose that (say) |B1| ≥ 3.
Then |I(B1)| ≥ 2. Choose v ∈ I(B1) \ {v1}. As G is bicritical, G − v − v1 has
a perfect matching M . Necessarily, at least three edges of M connect B1 and
K(B1), hence (as B1 ∪ B2 is stable) M has at least three edges connecting
X and B1. So |N(X) ∩ B1| ≥ 3, contradicting (38.51).

End of Proof of Claim 13

This claim in particular implies that
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(38.52) v1 and v2 have degree 3

(since all neighbours of v1 belong to B1 ∪ {v2}). We can set

(38.53) B1 = {b1, b
′
1}, B2 = {b2, b

′
2},

Z1 = {{b1, b
′
2}, {b′

1, b2}}, Z2 = {{b1, b2}, {b′
1, b

′
2}}.

Claim 14. Lj ∪ Bi is matchable for all i, j ∈ {1, 2}.

Proof of Claim 14. We may assume i = 2, j = 1. Let M and N be matchings
spanning L1 ∪ {b′

1, b2} and L1 ∪ {b1, b
′
2}, respectively. The path P in M ∪ N

starting at b′
1 ends at b′

2, as if P would end at b1, then L1∪{b1, b2} is matchable
(while {b1, b2} �∈ Z1), and if it would end at b2, then L1 ∪ {b1, b

′
1, b2, b

′
2} is

matchable, implying that G has a perfect matching M ′ containing e with
λ1(M

′, L1) = λ2(M
′, L1) = 2, contradicting Claim 9. So M△EP is a perfect

matching on L1 ∪ {b2, b
′
2}. End of Proof of Claim 14

Claim 15. G − e′ is matching-covered for each edge e′ of G.

Proof of Claim 15. Since G is connected and e is chosen arbitrarily under the
condition that G − e is matching-covered, we can assume that e′ is incident
with e. In particular, we can assume that e′ connects v1 and b1. Suppose that
G − e′ is not matching-covered. Then there exists an edge f �= e′ such that
each perfect matching of G containing f also contains e′. So f is disjoint from
e′.

First assume that f is incident with v2. We may assume that f connects
v2 with vertex b2. By definition of Z1, L1 ∪ {b1, b

′
2} is matchable. Since also

L2 is matchable, we can find a perfect matching of G containing f but not
e′, contradicting our assumption.

So we may assume that f is incident with L1. Let M ′ be a perfect
matching of G containing f . If M ′ does not intersect δ(L1), we can extend
M ′[L1]∪{v1b

′
1, v2b

′
2} by a matching spanning L2 ∪{b1, b2} to obtain a perfect

matching containing f but not e′, a contradiction. So M ′ intersects δ(L1).
Hence, necessarily, it contains an edge joining L1 with b′

1 (as e′ ∈ M ′). So
also it contains an edge joining L1 and b2. Therefore, M ′ contains a matching
M spanning L1 ∪ {b′

1, b2}. Let N be a matching spanning L1 ∪ {b1, b
′
2}.

Like in Claim 14, the path P in M ∪N starting at b′
1 ends at b′

2. Similarly,
the path Q in M ∪ N starting at b2 ends at b1. At least one of M△EP
and M△EQ contains f (since f is in M and on at most one of P, Q). As
L2 ∪{b1, b

′
1} and L2 ∪{b2, b

′
2} are matchable (by Claim 14), there is a perfect

matching containing f and not e′, a contradiction. End of Proof of Claim 15

This gives with (38.52) that

(38.54) G is 3-regular,

since by Claim 15 we can take for e any edge of G.
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Claim 16. |L1| = |L2| = 2.

Proof of Claim 16. Since G is 3-regular, each b ∈ B1 ∪ B2 has a unique
neighbour in Lj , for each j = 1, 2. In fact, for any j = 1, 2,

(38.55) if b ∈ B1, b′ ∈ B2, and {b, b′} �∈ Zj , then the neighbours of b and
b′ in Lj coincide.

For assume that the neighbour c of b in Lj differs from the neighbour c′ of b′

in Lj . As G is bicritical, G − c − c′ has a perfect matching M . Let M ′ be the
set of edges in M intersecting Lj . As |Lj | is even, M ′ spans either Lj − c− c′

or (Lj − c − c′) ∪ (B1 − b) ∪ (B2 − b′). Extending M ′ with the edges bc and
b′c′, we obtain a matching spanning Lj ∪ {b, b′}, contradicting {b, b′} �∈ Zj ,
or spanning Lj ∪ B1 ∪ B2, contradicting Claim 9. This shows (38.55).

Now (38.55) implies that N(B1) ∩ L1 = N(B2) ∩ L1. As this set is not a
2-vertex-cut of G, we have |L1| = 2. Similarly, |L2| = 2.

End of Proof of Claim 16

So both L1 and L2 consist of a single edge. Therefore, G is the Petersen
graph, contradicting our assumption.

38.7. Synthesis and further consequences of the previous
results

The previous results imply a characterization of the matching lattice for
matching-covered graphs (Lovász [1987]):

Corollary 38.11a. Let G = (V, E) be a matching-covered graph and let
x ∈ ZE. Then x belongs to the perfect matching lattice of G if and only if for
some maximal cross-free collection F of nontrivial tight cuts:

(38.56) (i) x(D) = x(δ(v)) for each D ∈ F and each v ∈ V ;
(ii) for every Petersen brick resulting from the given tight cut de-

composition, and for some 5-circuit C in that brick, the sum
of the xe over edges e mapping to EC, is even.

Proof. Directly from Theorems 38.6, 38.1, and 38.11.

Corollary 38.11a implies the following (conjectured by Lovász [1985]):

Corollary 38.11b. Let G = (V, E) be a matching-covered graph and let
x ∈ 2ZE be such that x(C) = x(C ′) for any two tight cuts C and C ′. Then x
belongs to the perfect matching lattice of G.

Proof. Directly from Corollary 38.11a.
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Moreover, there is the following corollary for regular graphs (recall that
a k-graph is a k-regular graph with |C| ≥ k for each odd cut):

Corollary 38.11c. Let G = (V, E) be a k-graph. Then the all-2 vector 2
belongs to the perfect matching lattice of G. If G has no subgraph homeo-
morphic to the Petersen graph, then the all-1 vector belongs to the perfect
matching lattice of G.

Proof. Directly from Corollary 38.11a.

A special case is the following result of Seymour [1979a], which also fol-
lows from the conjecture of Tutte [1966], proved by Robertson, Seymour,
and Thomas [1997], Sanders, Seymour, and Thomas [2000], and Sanders and
Thomas [2000], that each bridgeless cubic graph without Petersen graph mi-
nor, is 3-edge-colourable.

Corollary 38.11d. Let G = (V, E) be a bridgeless cubic graph without Pe-
tersen graph minor. Then the all-1 vector 1 belongs to the perfect matching
lattice of G.

Proof. This is a special case of Corollary 38.11c.

Similarly, the following consequence, a theorem of Seymour [1979a], sup-
ports a positive answer to the question of Fulkerson [1971a] whether each
cubic graph G satisfies χ′(G2) = 6:

Corollary 38.11e. Let G = (V, E) be a bridgeless cubic graph. Then the
all-2 vector 2 in RE belongs to the perfect matching lattice of G.

Proof. Again, this is a special case of Corollary 38.11c.

38.8. What further might (not) be true

The conjecture that the perfect matchings in any graph would constitute a
Hilbert base, is too bold: Let G be the graph obtained from the Petersen
graph by adding one additional edge (connecting nonadjacent vertices of the
Petersen graph). Let xe := 1 if e is an edge of the Petersen graph, and xe := 0
if e is the new edge. Then x belongs to the perfect matching cone23 and to the
perfect matching lattice (since G is a brick). However, x is not a nonnegative
integer combination of perfect matchings, since the Petersen graph is not
3-edge-colourable. (This example was given by Goddyn [1993].)

Two weaker conjectures might yet hold true. The first one is due to L.
Lovász (cf. Goddyn [1993]):

23 The perfect matching cone is the cone generated by the incidence vectors of the perfect
matchings.
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(38.57) (?) for any graph without Petersen graph minor, the incidence
vectors of the perfect matchings form a Hilbert base. (?)

The second one was given in Section 28.6 above ((28.28)), and is due to
Seymour [1979a] (the generalized Fulkerson conjecture):

(38.58) (?) each k-graph contains 2k perfect matchings, covering each
edge exactly twice. (?)

(A k-graph is a k-regular graph G = (V, E) with dG(U) ≥ k for each odd
U ⊆ V .) For k = 3, (38.58) was asked by Fulkerson [1971a]:

(38.59) (?) each bridgeless cubic graph has 6 perfect matchings covering
each edge precisely twice. (?)

What has been proved by Robertson, Seymour, and Thomas [1997], Sanders,
Seymour, and Thomas [2000], and Sanders and Thomas [2000] is:

(38.60) each bridgeless cubic graph without Petersen graph minor is 3-
edge-colourable.

This is a special case of conjecture (38.57), and of the 4-flow conjecture of
Tutte [1966]:

(38.61) (?) each bridgeless graph without Petersen graph minor has three
cycles covering each edge precisely twice. (?)

(A cycle is an edge-disjoint union of circuits.) Related is the following theorem
of Alspach, Goddyn, and Zhang [1994]:

(38.62) the circuits of a graph G form a Hilbert base ⇐⇒ G has no
Petersen graph minor.

It implies that the circuit double cover conjecture (asked by Szekeres [1973],
conjectured by Seymour [1979b]):

(38.63) (?) each bridgeless graph has a family of circuits covering each
edge precisely twice, (?)

is true for graphs without Petersen graph minor:

(38.64) each bridgeless graph without Petersen graph minor has a family
of circuits covering each edge precisely twice.

(For cubic graphs this was shown by Alspach and Zhang [1993].) This is also
a special case of the 4-flow conjecture (38.61).

Seymour [1979b] conjectures that

(38.65) (?) each even integer vector x in the circuit cone is a nonnegative
integer combination of incidence vectors of circuits. (?)

This is more general than the circuit double cover conjecture.
Bermond, Jackson, and Jaeger [1983] have proved that
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(38.66) each bridgeless graph has a family of circuits covering each edge
precisely four times.

Tarsi [1986] mentioned the following strengthening of the circuit double cover
conjecture:

(38.67) (?) in each bridgeless graph there exists a family of at most 5
cycles covering each edge precisely twice. (?)

Finally, the 5-flow conjecture of Tutte [1954a]:

(38.68) (?) each bridgeless graph has a nowhere-zero 5-flow, (?)

can be formulated in terms of circuits as follows (by Theorem 28.4):

(38.69) (?) each bridgeless graph can be oriented such that there exist
directed circuits, covering each edge at least once and at most
four times. (?)

Seymour [1981b] showed that each bridgeless graph has a nowhere-zero 6-
flow; equivalently:

(38.70) each bridgeless graph can be oriented such that there exist di-
rected circuits, covering each edge at least once and at most five
times.

It improves an earlier result of Jaeger [1976,1979] that each bridgeless graph
has a nowhere-zero 8-flow. This is equivalent to: each bridgeless graph con-
tains three cycles covering all edges.

Notes. More on nowhere-zero flows and circuit covers can be found in Itai, Lipton,
Papadimitriou, and Rodeh [1981], Bermond, Jackson, and Jaeger [1983], Bouchet
[1983], Steinberg [1984], Alon and Tarsi [1985], Fraisse [1985], Jaeger, Khelladi,
and Mollard [1985], Tarsi [1986], Khelladi [1987], Möller, Carstens, and Brinkmann
[1988], Catlin [1989], Goddyn [1989], Jamshy and Tarsi [1989,1992], Fan [1990,1993,
1995,1998], Jackson [1990], Zhang [1990,1993c], Raspaud [1991], Alspach and Zhang
[1993], Fan and Raspaud [1994], Huck and Kochol [1995], Lai [1995], Steffen [1996],
and Galluccio and Goddyn [2002]. Surveys were given by Jaeger [1979,1985,1988],
Zhang [1993a,1993b], and Seymour [1995a], and a book was devoted to it by Zhang
[1997b]. The extension to matroids is discussed in Section 81.10.

38.9. Further results and notes

38.9a. The perfect 2-matching space and lattice

Let G = (V, E) be a graph. The perfect 2-matching space of G is the linear hull of
the perfect 2-matchings in G. This space is easily characterized with the help of
Corollary 30.2b:
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Theorem 38.12. The perfect 2-matching space of G consists of all vectors x ∈ RE

such that xe = 0 if e is not in the support of any perfect 2-matching and such that
x(δ(v)) = x(δ(u)) for all u, v ∈ V .

Proof. Clearly each vector x in the perfect 2-matching space satisfies the condition.
To see the reverse, let x satisfy the condition. By adding appropriate multiples of
perfect 2-matchings, we can assume that x ≥ 0. If x = 0 we are done, so we can
assume x �= 0. Then, by scaling, we can assume that x(δ(v)) = 2 for each vertex v.
Hence, by Corollary 30.2b, x belongs to the perfect 2-matching polytope of F , and
therefore to the perfect 2-matching space.

The perfect 2-matching lattice of G is the lattice generated by the perfect 2-
matchings in G. Jungnickel and Leclerc [1989] showed that a characterization of the
perfect 2-matching lattice can be easily derived from the theorem of Petersen that
the edges of any 2k-regular graph can be decomposed into k 2-factors (Corollary
30.7b):

Theorem 38.13. The perfect 2-matching lattice of G consists of all integer vectors
x in the perfect 2-matching space of G with x(δ(v)) even for one (hence for each)
vertex v.

Proof. Trivially, each vector x in the perfect 2-matching lattice satisfies the con-
dition. To see the reverse, let x satisfy the condition. By adding integer multiples
of perfect 2-matchings, we can assume that x ≥ 0. Replace each edge e by xe

parallel edges, yielding graph G′, of degree 2k for some integer k > 0. Now by
Corollary 30.7b, the edges of G′ can be partitioned into k 2-factors. This gives a
decomposition of x as a sum of k perfect 2-matchings in G.

38.9b. Further notes

De Carvalho, Lucchesi, and Murty [2002a,2002b] showed that each brick G different
from K4, the prism C6, and the Petersen graph, has an edge e such that G − e
is a matching-covered graph with precisely one brick in its brick decomposition
(conjectured by L. Lovász in 1987). Having this, the proof of Theorem 38.11 can be
shortened considerably (de Carvalho, Lucchesi, and Murty [2002c]). (Earlier related
work was done by de Carvalho and Lucchesi [1996].)

Naddef and Pulleyblank [1982] study the relation between ear-decompositions
and the GF(2)-rank of the incidence vectors of the perfect matchings.

Kilakos [1996] characterized the lattice generated by the matchings M that
have a positive coefficient in at least one fractional χ′∗(G)-edge-colouring (these
matchings form a face of the matching polytope of G).
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64.8b The Chvátal rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1098

64.9 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1099
64.9a Graphs with polynomial-time stable set algorithm . . 1099
64.9b Colourings and orientations . . . . . . . . . . . . . . . . . . . . . . 1101
64.9c Algebraic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1102
64.9d Approximation algorithms . . . . . . . . . . . . . . . . . . . . . . . 1103
64.9e Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1104

65 Perfect graphs: general theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 1106
65.1 Introduction to perfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 1106
65.2 The perfect graph theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1108
65.3 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1109
65.4 Perfect graphs and polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . 1110

65.4a Lovász’s proof of the replication lemma. . . . . . . . . . . . 1111
65.5 Decomposition of Berge graphs . . . . . . . . . . . . . . . . . . . . . . . . . 1112

65.5a 0- and 1-joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1112
65.5b The 2-join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113

65.6 Pre-proof work on the strong perfect graph conjecture . . . . . 1115
65.6a Partitionable graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1116
65.6b More characterizations of perfect graphs . . . . . . . . . . . 1118
65.6c The stable set polytope of minimally imperfect

graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1118
65.6d Graph classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1120
65.6e The P4-structure of a graph and a semi-strong

perfect graph theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 1122
65.6f Further notes on the strong perfect graph

conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1123



XIV Table of Contents

65.7 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125
65.7a Perz and Rolewicz’s proof of the perfect graph

theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1125
65.7b Kernel solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1126
65.7c The amalgam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1130
65.7d Diperfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1131
65.7e Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1133

66 Classes of perfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1135
66.1 Bipartite graphs and their line graphs . . . . . . . . . . . . . . . . . . . 1135
66.2 Comparability graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137
66.3 Chordal graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1138

66.3a Chordal graphs as intersection graphs of subtrees of
a tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1142

66.4 Meyniel graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1143
66.5 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1145

66.5a Strongly perfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 1145
66.5b Perfectly orderable graphs . . . . . . . . . . . . . . . . . . . . . . . 1146
66.5c Unimodular graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1147
66.5d Further classes of perfect graphs . . . . . . . . . . . . . . . . . . 1148
66.5e Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1149

67 Perfect graphs: polynomial-time solvability . . . . . . . . . . . . . . 1152
67.1 Optimum clique and colouring in perfect graphs

algorithmically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152
67.2 Weighted clique and colouring algorithmically . . . . . . . . . . . . 1155
67.3 Strong polynomial-time solvability . . . . . . . . . . . . . . . . . . . . . . 1159
67.4 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1159

67.4a Further on ϑ(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1159
67.4b The Shannon capacity Θ(G) . . . . . . . . . . . . . . . . . . . . . 1167
67.4c Clique cover numbers of products of graphs . . . . . . . . 1172
67.4d A sharper upper bound ϑ′(G) on α(G) . . . . . . . . . . . . 1173
67.4e An operator strengthening convex bodies . . . . . . . . . . 1173
67.4f Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1175
67.4g Historical notes on perfect graphs . . . . . . . . . . . . . . . . . 1176

68 T-perfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186
68.1 T-perfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1186
68.2 Strongly t-perfect graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187
68.3 Strong t-perfection of odd-K4-free graphs . . . . . . . . . . . . . . . . 1188
68.4 On characterizing t-perfection . . . . . . . . . . . . . . . . . . . . . . . . . . 1194
68.5 A combinatorial min-max relation . . . . . . . . . . . . . . . . . . . . . . 1196
68.6 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1200

68.6a The w-stable set polyhedron . . . . . . . . . . . . . . . . . . . . . 1200
68.6b Bidirected graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1201



Table of Contents XV

68.6c Characterizing odd-K4-free graphs by mixing stable
sets and vertex covers . . . . . . . . . . . . . . . . . . . . . . . . . . . 1203

68.6d Orientations of discrepancy 1 . . . . . . . . . . . . . . . . . . . . 1204
68.6e Colourings and odd K4-subdivisions . . . . . . . . . . . . . . 1206
68.6f Homomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207
68.6g Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1207

69 Claw-free graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208
69.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1208
69.2 Maximum-size stable set in a claw-free graph . . . . . . . . . . . . . 1208
69.3 Maximum-weight stable set in a claw-free graph . . . . . . . . . . 1213
69.4 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1216

69.4a On the stable set polytope of a claw-free graph . . . . . 1216
69.4b Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1217



XVI Table of Contents

Volume A

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Matchings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 But what about nonbipartite graphs? . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Hamiltonian circuits and the traveling salesman problem . . . . . 5
1.5 Historical and further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5a Historical sketch on polyhedral combinatorics . . . . . . . . . 6
1.5b Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 General preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Orders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Vectors, matrices, and functions . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Maxima, minima, and infinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Fekete’s lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Preliminaries on graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Undirected graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Directed graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 Hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3a Background references on graph theory . . . . . . . . . . . . . . 37

4 Preliminaries on algorithms and complexity . . . . . . . . . . . . . . . 38
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 The random access machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Polynomial-time solvability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.5 NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6 co-NP and good characterizations . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.7 Optimization problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.8 NP-complete problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.9 The satisfiability problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.10 NP-completeness of the satisfiability problem . . . . . . . . . . . . . . . 44
4.11 NP-completeness of some other problems . . . . . . . . . . . . . . . . . . 46
4.12 Strongly polynomial-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.13 Lists and pointers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.14 Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.14a Background literature on algorithms and complexity . . 49
4.14b Efficiency and complexity historically . . . . . . . . . . . . . . . 49



Table of Contents XVII

5 Preliminaries on polyhedra and linear and integer

programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.1 Convexity and halfspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Cones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Polyhedra and polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4 Farkas’ lemma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5 Linear programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.6 Faces, facets, and vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.7 Polarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.8 Blocking polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.9 Antiblocking polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.10 Methods for linear programming . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.11 The ellipsoid method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.12 Polyhedra and NP and co-NP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.13 Primal-dual methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.14 Integer linear programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.15 Integer polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.16 Totally unimodular matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.17 Total dual integrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.18 Hilbert bases and minimal TDI systems . . . . . . . . . . . . . . . . . . . 81
5.19 The integer rounding and decomposition properties . . . . . . . . . 82
5.20 Box-total dual integrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.21 The integer hull and cutting planes . . . . . . . . . . . . . . . . . . . . . . . 83

5.21a Background literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Part I: Paths and Flows 85

6 Shortest paths: unit lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1 Shortest paths with unit lengths . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Shortest paths with unit lengths algorithmically:

breadth-first search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3 Depth-first search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Finding an Eulerian orientation . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5a All-pairs shortest paths in undirected graphs . . . . . . . . . 91
6.5b Complexity survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.5c Ear-decomposition of strongly connected digraphs . . . . 93
6.5d Transitive closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.5e Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7 Shortest paths: nonnegative lengths . . . . . . . . . . . . . . . . . . . . . . . 96
7.1 Shortest paths with nonnegative lengths . . . . . . . . . . . . . . . . . . . 96
7.2 Dijkstra’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3 Speeding up Dijkstra’s algorithm with k-heaps . . . . . . . . . . . . . 98



XVIII Table of Contents

7.4 Speeding up Dijkstra’s algorithm with Fibonacci heaps . . . . . . 99
7.5 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.5a Weakly polynomial-time algorithms . . . . . . . . . . . . . . . . 101
7.5b Complexity survey for shortest paths with

nonnegative lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.5c Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Shortest paths: arbitrary lengths . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.1 Shortest paths with arbitrary lengths but no negative

circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2 Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.3 The Bellman-Ford method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.4 All-pairs shortest paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.5 Finding a minimum-mean length directed circuit . . . . . . . . . . 111
8.6 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.6a Complexity survey for shortest path without
negative-length circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

8.6b NP-completeness of the shortest path problem . . . . . . 114
8.6c Nonpolynomiality of Ford’s method . . . . . . . . . . . . . . . . 115
8.6d Shortest and longest paths in acyclic graphs . . . . . . . . 116
8.6e Bottleneck shortest path . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.6f Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.6g Historical notes on shortest paths . . . . . . . . . . . . . . . . . . 119

9 Disjoint paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
9.1 Menger’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

9.1a Other proofs of Menger’s theorem . . . . . . . . . . . . . . . . . 133
9.2 Path packing algorithmically . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
9.3 Speeding up by blocking path packings . . . . . . . . . . . . . . . . . . . 135
9.4 A sometimes better bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.5 Complexity of the vertex-disjoint case . . . . . . . . . . . . . . . . . . . . 137
9.6 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.6a Complexity survey for the disjoint s − t paths
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.6b Partially disjoint paths . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
9.6c Exchange properties of disjoint paths . . . . . . . . . . . . . . 140
9.6d Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.6e Historical notes on Menger’s theorem . . . . . . . . . . . . . . 142

10 Maximum flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
10.1 Flows: concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
10.2 The max-flow min-cut theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10.3 Paths and flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
10.4 Finding a maximum flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

10.4a Nontermination for irrational capacities . . . . . . . . . . . . 152



Table of Contents XIX

10.5 A strongly polynomial bound on the number of iterations . . . 153
10.6 Dinits’ O(n2m) algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

10.6a Karzanov’s O(n3) algorithm . . . . . . . . . . . . . . . . . . . . . . 155
10.7 Goldberg’s push-relabel method . . . . . . . . . . . . . . . . . . . . . . . . . 156
10.8 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

10.8a A weakly polynomial bound . . . . . . . . . . . . . . . . . . . . . . 159
10.8b Complexity survey for the maximum flow problem . . . 160
10.8c An exchange property . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
10.8d Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
10.8e Historical notes on maximum flow . . . . . . . . . . . . . . . . . 164

11 Circulations and transshipments . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.1 A useful fact on arc functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.2 Circulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
11.3 Flows with upper and lower bounds . . . . . . . . . . . . . . . . . . . . . . 172
11.4 b-transshipments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
11.5 Upper and lower bounds on excessf . . . . . . . . . . . . . . . . . . . . . . 174
11.6 Finding circulations and transshipments algorithmically . . . . 175

11.6a Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

12 Minimum-cost flows and circulations . . . . . . . . . . . . . . . . . . . . . . 177
12.1 Minimum-cost flows and circulations . . . . . . . . . . . . . . . . . . . . . 177
12.2 Minimum-cost circulations and the residual graph Df . . . . . . 178
12.3 Strongly polynomial-time algorithm . . . . . . . . . . . . . . . . . . . . . . 179
12.4 Related problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

12.4a A dual approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
12.4b A strongly polynomial-time algorithm using

capacity-scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
12.5 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

12.5a Complexity survey for minimum-cost circulation . . . . . 190
12.5b Min-max relations for minimum-cost flows and

circulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
12.5c Dynamic flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
12.5d Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

13 Path and flow polyhedra and total unimodularity . . . . . . . . . 198
13.1 Path polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

13.1a Vertices, adjacency, and facets . . . . . . . . . . . . . . . . . . . . . 202
13.1b The s − t connector polytope . . . . . . . . . . . . . . . . . . . . . 203

13.2 Total unimodularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
13.2a Consequences for flows . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
13.2b Consequences for circulations . . . . . . . . . . . . . . . . . . . . . 207
13.2c Consequences for transshipments . . . . . . . . . . . . . . . . . . 207
13.2d Unions of disjoint paths and cuts . . . . . . . . . . . . . . . . . . 210

13.3 Network matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213



XX Table of Contents

13.4 Cross-free and laminar families . . . . . . . . . . . . . . . . . . . . . . . . . . 214

14 Partially ordered sets and path coverings . . . . . . . . . . . . . . . . . 217
14.1 Partially ordered sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
14.2 Dilworth’s decomposition theorem . . . . . . . . . . . . . . . . . . . . . . . 218
14.3 Path coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
14.4 The weighted case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
14.5 The chain and antichain polytopes . . . . . . . . . . . . . . . . . . . . . . . 221

14.5a Path coverings algorithmically . . . . . . . . . . . . . . . . . . . . . 222
14.6 Unions of directed cuts and antichains . . . . . . . . . . . . . . . . . . . . 224

14.6a Common saturating collections of chains . . . . . . . . . . . . 226
14.7 Unions of directed paths and chains . . . . . . . . . . . . . . . . . . . . . . 227

14.7a Common saturating collections of antichains . . . . . . . . 229
14.7b Conjugacy of partitions . . . . . . . . . . . . . . . . . . . . . . . . . . 230

14.8 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
14.8a The Gallai-Milgram theorem . . . . . . . . . . . . . . . . . . . . . . 232
14.8b Partially ordered sets and distributive lattices . . . . . . . 233
14.8c Maximal chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
14.8d Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

15 Connectivity and Gomory-Hu trees . . . . . . . . . . . . . . . . . . . . . . . 237
15.1 Vertex-, edge-, and arc-connectivity . . . . . . . . . . . . . . . . . . . . . . 237
15.2 Vertex-connectivity algorithmically . . . . . . . . . . . . . . . . . . . . . . 239

15.2a Complexity survey for vertex-connectivity . . . . . . . . . . 241
15.2b Finding the 2-connected components . . . . . . . . . . . . . . . 242

15.3 Arc- and edge-connectivity algorithmically . . . . . . . . . . . . . . . . 243
15.3a Complexity survey for arc- and edge-connectivity . . . . 246
15.3b Finding the 2-edge-connected components . . . . . . . . . . 247

15.4 Gomory-Hu trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
15.4a Minimum-requirement spanning tree . . . . . . . . . . . . . . . 251

15.5 Further results and notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
15.5a Ear-decomposition of undirected graphs . . . . . . . . . . . . 252
15.5b Further notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Part II: Bipartite Matching and Covering 257

16 Cardinality bipartite matching and vertex cover . . . . . . . . . . 259
16.1 M -augmenting paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
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Part IV: Matroids and Submodular Functions

Matroids form an important tool in combinatorial optimization. Among other, they
apply to shortest and disjoint trees in undirected graphs, to bipartite matching, and
to directed cut covering.
Matroids were introduced by Whitney in 1935, and equivalent axiom systems were
considered in the 1930s by Nakasawa, Birkhoff, and van der Waerden. They were
motivated by questions from algebra, geometry, and graph theory. The importance
of matroids for combinatorial optimization was revealed by J. Edmonds in the 1960s,
who found efficient algorithms and min-max relations for optimization problems
involving matroids.
Matroids are exactly those structures where the greedy algorithm yields an opti-
mum solution. Edmonds discovered that matroids have an even stronger algorithmic
property: also optimization over intersections of two different matroids can be done
efficiently. It is closely related to matroid union. Among the consequences of ma-
troid intersection and union methods and results are min-max relations, polyhedral
characterizations, and algorithms for bipartite matching, common transversals, and
tree packing and covering. (In fact, tree packing and covering are best investigated
within the structures offered by matroids. This insight was obtained already in the
original paper of Nash-Williams on tree packing. That is why we discuss matroids
before Part V on trees and forests.)
While bipartite matching is generalized by matroid intersection, nonbipartite
matching is generalized by matroid matching. We prove in Chapter 43 Lovász’s
matroid matching theorem for linear matroids. For general matroids the problem
is intractable.
The rank function of a matroid is a special case of a submodular function. Submod-
ular functions give rise to a polyhedral generalization of matroids, the polymatroids.
Most of matroid theory can be lifted to the level of submodular functions and poly-
matroids. Next to having applications by its own, it will also be used in Part V
where we consider submodular functions defined on digraphs (Chapter 60). This
applies to directed variants of tree and cut packing and covering, and to graph
orientation and connectivity augmentation.
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Chapter 39

Matroids

This chapter gives the basic definitions, examples, and properties of ma-
troids. We use the shorthand notation

X + y := X ∪ {y} and X − y := X \ {y}.

39.1. Matroids

A pair (S, I) is called a matroid if S is a finite set and I is a nonempty
collection of subsets of S satisfying:

(39.1) (i) if I ∈ I and J ⊆ I, then J ∈ I,
(ii) if I, J ∈ I and |I| < |J |, then I + z ∈ I for some z ∈ J \ I.

(These axioms are given by Whitney [1935].)
Given a matroid M = (S, I), a subset I of S is called independent if I

belongs to I, and dependent otherwise. For U ⊆ S, a subset B of U is called
a base of U if B is an inclusionwise maximal independent subset of U . That
is, B ∈ I and there is no Z ∈ I with B ⊂ Z ⊆ U .

It is not difficult to see that, under condition (39.1)(i), condition (39.1)(ii)
is equivalent to:

(39.2) for any subset U of S, any two bases of U have the same size.

The common size of the bases of a subset U of S is called the rank of U ,
denoted by rM (U). If the matroid is clear from the context, we write r(U)
for rM (U).

A set is called simply a base if it is a base of S. The common size of all
bases is called the rank of the matroid. A subset of S is called spanning if
it contains a base as a subset. So bases are just the inclusionwise minimal
spanning sets, and also just the independent spanning sets. A circuit of a
matroid is an inclusionwise minimal dependent set. A loop is an element s
such that {s} is a circuit. Two elements s, t of S are called parallel if {s, t} is
a circuit.

Nakasawa [1935] showed the equivalence of axiom system (39.1) with an
ostensibly weaker system, which will be useful in proofs:
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Theorem 39.1. Let S be a finite set and let I be a nonempty collection of
subsets satisfying (39.1)(i). Then (39.1)(ii) is equivalent to:

(39.3) if I, J ∈ I and |I \ J | = 1, |J \ I| = 2, then I + z ∈ I for some
z ∈ J \ I.

Proof. Obviously, (39.1)(ii) implies (39.3). Conversely, (39.1)(ii) follows from
(39.3) by induction on |I \ J |, the case |I \ J | = 0 being trivial. If |I \ J | ≥ 1,
choose i ∈ I \ J . We apply the induction hypothesis twice: first to I − i and
J to find j ∈ J \ I with I − i + j ∈ I, and then to I − i + j and J to find
j′ ∈ J \ (I + j) with I − i + j + j′ ∈ I. Then by (39.3) applied to I and
I − i + j + j′, we have that I + j ∈ I or I + j′ ∈ I.

39.2. The dual matroid

With each matroid M , a dual matroid M∗ can be associated, in such a way
that (M∗)∗ = M . Let M = (S, I) be a matroid, and define

(39.4) I∗ := {I ⊆ S | S \ I is a spanning set of M}.

Then (Whitney [1935]):

Theorem 39.2. M∗ = (S, I∗) is a matroid.

Proof. Condition (39.1)(i) trivially holds for I∗. To see (39.1)(ii), consider
I, J ∈ I∗ with |I| < |J |. By definition of I∗, S \ J contains some base B of
M . As also S \ I contains some base of M , and as B \ I ⊆ S \ I, there exists
a base B′ of M with B \ I ⊆ B′ ⊆ S \ I. Then J \ I �⊆ B′, since otherwise
(as B ∩ I ⊆ I \ J , and as B \ I and J \ I are disjoint, since B ∩ J = ∅)

(39.5) |B| = |B ∩ I| + |B \ I| ≤ |I \ J | + |B \ I| < |J \ I| + |B \ I| ≤ |B′|,

which is a contradiction. As J \ I �⊆ B′, there is a z ∈ J \ I with z �∈ B′. So
B′ is disjoint from I + z. Hence I + z ∈ I∗.

The matroid M∗ is called the dual matroid of M . The bases of M∗ are
precisely the complements of the bases of M . This implies (M∗)∗ = M , which
justifies the name dual.

Theorem 39.3. The rank function rM∗ of the dual matroid M∗ satisfies, for
U ⊆ S:

(39.6) rM∗(U) = |U | + rM (S \ U) − rM (S).

Proof. Let B and B∗ denote the collections of bases of M and of M∗, respec-
tively. Then
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(39.7) rM∗(U) = max{|U ∩ A|
∣∣ A ∈ B∗} = max{|U \ B|

∣∣ B ∈ B}

= |U | − min{|B ∩ U |
∣∣ B ∈ B}

= |U | − rM (S) + max{|B \ U |
∣∣ B ∈ B}

= |U | − rM (S) + rM (S \ U).

The circuits of M∗ are called the cocircuits of M . They are the inclusion-
wise minimal sets intersecting each base of M (as they are the inclusionwise
minimal sets contained in no base of M∗, that is, not contained in the com-
plement of any base of M). The loops of M∗ are the coloops or bridges of M ,
and parallel elements of M∗ are called coparallel or in series in M .

Let M = (S, I) be a matroid, and suppose that we can test in polyno-
mial time if any subset of S is independent in M (or we have an oracle for
that). Then we can calculate, for any subset U of S, the rank rM (U) of U
in polynomial time (by growing an independent set (starting from ∅) to an
inclusionwise maximal independent subset of U). It follows that we can test
in polynomial time if any subset U of S in independent in M∗, just by testing
if rM (S \ U) = rM (S).

A matroid M = (S, I) is called connected if rM (U) + rM (S \ U) > rM (S)
for each nonempty proper subset U of S. This is equivalent to: for any two
elements s, t ∈ S there exists a circuit containing both s and t. One may derive
from (39.6) that a matroid M is connected if and only if M∗ is connected.

39.3. Deletion, contraction, and truncation

We can derive matroids from matroids by ‘deletion’ and ‘contraction’. Let
M = (S, I) be a matroid and let Y ⊆ S. Define

(39.8) I ′ := {Z | Z ⊆ Y, Z ∈ I}.

Then M ′ = (Y, I ′) is a matroid again, as directly follows from the matroid
axioms (39.1). M ′ is called the restriction of M to Y , denoted by M |Y . If
Y = S \ Z with Z ⊆ S, we say that M ′ arises by deleting Z, and denote M ′

by M \ Z. Clearly, the rank function of M |Y is the restriction of the rank
function of M to subsets of Y .

Contraction is the operation dual to deletion. Contracting Z means re-
placing M by (M∗ \ Z)∗. This matroid is denoted by M/Z. If Y = S \ Z,
then we denote M · Y := M/Z. Theorem 39.3 implies that the rank function
r′ of M/Z satisfies

(39.9) rM/Z(X) = r(X ∪ Z) − r(Z)

for X ⊆ S \ Z.
We can describe contraction as follows. Let Z ⊆ S and let X be a base of

Z. Then

(39.10) a subset I of S \ Z is independent in M/Z if and only if I ∪ X is
independent in M .
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Note that for disjoint subsets Y, Z of S one has (M \ Y ) \ Z = M \ (Y ∪
Z) and hence (M/Y )/Z = M/(Y ∪ Z). Moreover, deletion and contraction
commute, as for any two distinct x, y ∈ S and any Z ⊆ S \ {x, y} one has
(using (39.9)):

(39.11) rM\x/y(Z) = rM\x(Z∪{y})−rM\x({y}) = rM (Z∪{y})−rM ({y})
= rM/y(Z) = rM/y\x(Z).

If matroid M ′ arises from M by a series of deletions and contractions, M ′ is
called a minor of M .

The circuits of M |Y are exactly the circuits of M contained in Y , and
the circuits of M · Y are exactly the minimal nonempty sets C ∩ Y , where C
is a circuit of M .

Another operation is that of ‘truncation’. Let M = (S, I) be a matroid
and let k be a natural number. Define I ′ := {I ∈ I

∣∣ |I| ≤ k}. Then (S, I ′)
is again a matroid, called the k-truncation of M .

39.4. Examples of matroids

We describe some basic classes of matroids.

Uniform matroids. An easy class of matroids is given by the uniform ma-
troids. They are determined by a set S and a number k: the independent sets
are the subsets I of S with |I| ≤ k. This trivially gives a matroid, called a
k-uniform matroid and denoted by Uk

n , where n := |S|.

Linear matroids (Grassmann [1862], Steinitz [1913]). Let A be an m × n
matrix. Let S := {1, . . . , n} and let I be the collection of all those subsets
I of S such that the columns of A with index in I are linearly independent.
That is, such that the submatrix of A consisting of the columns with index
in I has rank |I|.

Then (S, I) is a matroid (property (39.1)(ii) was proved by Grassmann
[1862] and by Steinitz [1913], and is called Steinitz’ exchange property). Con-
dition (39.1)(i) is trivial. To see condition (39.1)(ii), let I, J ∈ I with |I| < |J |.
Then I spans an |I|-dimensional space I. So J �⊆ I. Take j ∈ J \ I. Then
I + j ∈ I and j ∈ J \ I.

Any matroid obtained in this way, or isomorphic to such a matroid, is
called a linear matroid. If A has entries in a field F, then M is called repre-
sentable over F. We will also say that M is represented by (the columns of)
A, and A is called a representation of M .

Note that the rank rM (U) of any subset U of S is equal to the rank of
the matrix formed by the columns indexed by U .

The dual matroid of a matroid representable over a field F is again rep-
resentable over F. Indeed, we can assume that the matrix A is of the form
[Im B], where Im is the m × m identity matrix, and B is an m × (n − m)
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matrix. Then the dual matroid can be represented by the matrix [BT In−m],
as follows directly from elementary linear algebra. This implies that the class
of matroids representable over F is closed under taking minors.

MacLane [1936] (and also Lazarson [1958]) showed that nonlinear ma-
troids exist.

Binary matroids. A matroid representable over GF(2) — the field with
two elements — is called a binary matroid. For later purposes, we give some
characterizations of binary matroids. The following is direct (Whitney [1935]):

(39.12) a matroid M is binary if and only if for each choice of circuits
C1, . . . , Ct, the set C1△ · · · △Ct can be partitioned into circuits.

In a binary matroid M , disjoint unions of circuits are called the cycles of M .
Of special interest is the Fano matroid F7, represented by the nonzero vectors
in GF(2)3.

Tutte [1958a,1958b] showed that the unique minor-minimal nonbinary
matroid is U2

4 , the 2-uniform matroid on 4 elements. (We follow the proof
suggested by A.M.H. Gerards.)

Theorem 39.4. A matroid is binary if and only if it has no U2
4 minor.

Proof. Necessity follows from the facts that the class of binary matroids is
closed under taking minors and that U2

4 is not binary.
To see sufficiency, we first show the following. Let M and N be matroids

on the same set S. Call a set wrong if it is a base of precisely one of M and
N . A far base is a common base B of M and N such that there is no wrong
set X with |B△X| = 2. We first show:

(39.13) if M and N are different and have a far base, then M or N has
a U2

4 minor.

Let M,N form a counterexample with S as small as possible. Let B be a far
base and X be a wrong set with |B△X| minimal. Then B ∪ X = S, since we
can delete S \ (B ∪ X). Similarly (by considering M∗ and N∗), B ∩ X = ∅.
Then, by the minimality of |B△X|, X is the only wrong set. By symmetry, we
may assume that X is a base of M . Then M has a base B′ with |B△B′| = 2.
By the uniqueness of X, B′ is also a base of N . By the minimality of |B△X|,
B′ is not far. Hence, by the uniqueness of X, |B′△X| = 2. So |S| = 4.

Let S = {a, b, c, d}, B = {a, b}, X = {c, d}. Since M �= U2
4 by assumption,

we may assume that {a, c} is not a base of M . Hence, since {a} and {c, d}
are independent in M , {a, d} is a base of M . Similarly, since {c} and {a, b}
are independent in M , {b, c} is a base of M .

Since B is far, {a, d} and {b, c} are bases also of N , and {a, c} is not a
base of N . So {c} is independent in N , implying that {c, a} or {c, d} is a base
of N , a contradiction. This proves (39.13).



656 Chapter 39. Matroids

Now let M be a nonbinary matroid on a set S. Choose a base B of M .
Let {xb | b ∈ B} be a collection of linearly independent vectors over GF(2).
For each s ∈ S \ B, let Cs be the circuit contained in B ∪ {s}, and define

(39.14) xs :=
∑

b∈Cs\{s}

xb.

Let N be the binary matroid represented by {xs | s ∈ S}. Now for each b ∈ B
and each s ∈ S \ B one has that (B \ {b}) ∪ {s} is a base of M if and only if
it is a base of N . So B is a far base. Since N is binary, we know that N �= M
and that N has no U2

4 minor. Hence, by (39.13), M has a U2
4 minor.

Regular matroids. A matroid is called regular if it is representable over
each field. It is equivalent to requiring that it can be represented over R by
the columns of a totally unimodular matrix.

Regular matroids are characterized by Tutte [1958a,1958b] as those binary
matroids not having an F7 or F ∗

7 minor. (Gerards [1989b] gave a short proof.)
A basic decomposition theorem of Seymour [1980a] states that each reg-

ular matroid can be obtained by taking 1-, 2-, and 3-sums from graphic and
cographic matroids and from copies of a 10-element matroid called R10. (We
do not use this theorem in this book. Background can be found in the book
of Truemper [1992].)

Algebraic matroids (Steinitz [1910]). Let L be a field extension of a field
K and let S be a finite subset of L. Let I be the collection of all subsets
{s1, . . . , sn} of S that consist of algebraically independent elements over K.
That is, there is no nonzero polynomial p(x1, . . . , xn) ∈ K[x1, . . . , xn] with
p(s1, . . . , sn) = 0. Then (S, I) is a matroid, and matroids arising in this way
are called algebraic (over K). (Steinitz [1910] showed that (S, I) satisfies the
matroid axioms, although the term matroid was not yet introduced.)

To see that (S, I) is a matroid, we check (39.3). It suffices to show that
for all s1, . . . , sn ∈ S one has:

(39.15) if {s1, s2, s3, . . . , sn−1} ∈ I and {s3, . . . , sn−1, sn} ∈ I, then
{s1, s3, . . . , sn} ∈ I or {s2, s3, . . . , sn} ∈ I.

Suppose not. Then there exist nonzero polynomials p(x1, x3, . . . , xn) and
q(x2, x3, . . . , xn) over K with p(s1, s3, . . . , sn) = 0 and q(s2, s3, . . . , sn) = 0.
We may assume that p and q are irreducible. Moreover, since {s3, . . . , sn} ∈ I,
p and q are relatively prime. Define F := K(x1, x2, . . . , xn−1). So p and q be-
long to the Euclidean ring F [xn]. Let r be the g.c.d. of p and q in F [xn].
As p and q are relatively prime, we know r ∈ F , and hence we may as-
sume r ∈ K[x1, . . . , xn−1]. Now r = αp + βq for some α, β ∈ F [xn]. So
r(s1, . . . , sn−1) = 0, contradicting the fact that {s1, . . . , sn−1} ∈ I. This
proves (39.15).

Each linear matroid is algebraic (as we can consider the linear relations
between the elements as polynomials of rank 1), while Ingleton [1971] gave an
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example of a nonlinear algebraic matroid. Examples of nonalgebraic matroids
were given by Ingleton and Main [1975] and Lindström [1984,1986]. The class
of algebraic matroids can be easily seen to be closed under taking minors
(deletion is direct, while contraction of an element t corresponds to replacing
K by K(t)), but it is unknown if it is closed under duality.

In fact, for any field K, the class of matroids that are algebraic over K is
closed under taking minors, since Lindström [1989] showed that any matroid
algebraic over K(t) (for any t), is also algebraic over K.

For an in-depth survey on algebraic matroids, see Oxley [1992].

Graphic matroids (Birkhoff [1935c], Whitney [1935]). Let G = (V, E) be
a graph and let I be the collection of all subsets of E that form a forest.
Then M = (E, I) is a matroid. Condition (39.1)(i) is trivial. To see that
condition (39.2) holds, let F ⊆ E. Then, by definition, each base U of F is an
inclusionwise maximal forest contained in F . Hence U forms a spanning tree
in each component of the graph (V, F ). So U has |V |−k elements, where k is
the number of components of (V, F ). So each base of F has |V | − k elements,
proving (39.2).

The matroid M is called the cycle matroid of G, denoted by M(G). Any
matroid obtained in this way, or isomorphic to such a matroid, is called a
graphic matroid.

Trivially, the circuits of M(G), in the matroid sense, are exactly the cir-
cuits of G, in the graph sense. The bases of M(G) are exactly the inclusionwise
maximal forests F of G. So if G is connected, the bases are the spanning trees.

The rank function of M(G) can be described as follows. For each subset
F of E, let κ(V, F ) denote the number of components of the graph (V, F ).
Then for each F ⊆ E:

(39.16) rM(G)(F ) = |V | − κ(V, F ).

Note that deletion and contraction in the matroid correspond to deletion and
contraction of edges in the graph.

Graphic matroids are regular, that is, representable over any field: orient
the edges of G arbitrarily, and consider the V × E matrix L given by: Lv,e =
+1 if v is the head of e, Lv,e := −1 if v is the tail of e, and Lv,e := 0 otherwise
(for v ∈ V , e ∈ E). Then a subset F of E is a forest if and only if the set of
columns with index in F is linearly independent.

By a theorem of Tutte [1959], the graphic matroids are precisely those
regular matroids containing no M(K5)

∗ and M(K3,3)
∗ minor. (Alternative

proofs were given by Ghouila-Houri [1964] (Chapitre III), Seymour [1980d],
Truemper [1985], Wagner [1985], and Gerards [1995b].)

Cographic matroids (Whitney [1935]). The dual of the cycle matroid M(G)
of a graph G = (V, E) is called the cocycle matroid of G, and denoted by
M∗(G). Any matroid obtained in this way, or isomorphic to such a matroid,
is called a cographic matroid.
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So the bases of M∗(G) are the complements of maximal forests of G. (So
if G is connected, these are exactly the complements of the spanning trees in
G.)

Hence the independent sets are those edge sets F for which E \F contains
a maximal forest of G; that is, (V, E \F ) has the same number of components
as G.

A subset C of E is a circuit of M∗(G) if and only if C is an inclusionwise
minimal set with the property that (V, E \ C) has more components than G.
Hence C is a circuit of M∗(G) if and only if C is an inclusionwise minimal
nonempty cut in G.

The rank function of M∗(G) can be described as follows. Again, for each
subset F of E, let κ(V, F ) denote the number of components of the graph
(V, F ). Then (39.6) and (39.16) give that for each F ⊆ E:

(39.17) rM∗(G)(F ) = |F | − κ(V, E \ F ) + κ(V, E).

Let G be an (embedded) planar graph, and let G∗ be the dual planar
graph of G. Then the cycle matroid M(G∗) of G∗ is isomorphic to the cocycle
matroid M∗(G) of G.

A theorem of Whitney [1933] implies that a matroid is both graphic and
cographic if and only if it is isomorphic to the cycle matroid of a planar
graph.

Transversal matroids (Edmonds and Fulkerson [1965], Mirsky and Perfect
[1967]). Let X = (X1, . . . , Xn) be a family of subsets of a finite set S and
let I be the collection of all partial transversals of X . Then M = (S, I) is
a matroid, as follows directly from Corollary 22.4a. Any matroid obtained
in this way, or isomorphic to such a matroid, is called a transversal matroid
(induced by X ).

The bases of this matroid are the inclusionwise maximal partial transver-
sals. If X has a transversal, the bases of M are the transversals of X . In fact,
Theorem 22.5 implies that we can assume the latter situation:

(39.18) Let M be the transversal matroid induced by the family X . Then
X has a subfamily Y such that M is equal to the transversal
matroid induced by Y and such that Y has a transversal.

So we can assume that any transversal matroid has the transversals of a
family of sets as bases.

It follows from Kőnig’s matching theorem that the rank function r of the
transversal matroid induced by X is given by

(39.19) r(U) = min
T⊆U

(|U \ T | + |{i | Xi ∩ T �= ∅}|)

= min
I⊆{1,...,n}

(n − |I| +
∣∣ ⋃

i∈I

(Xi ∩ U)
∣∣)

for U ⊆ S. This follows directly from Theorem 22.2 and Corollary 22.2a,
applied to the family (X1 ∩ U, . . . , Xn ∩ U).
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Piff and Welsh [1970] (cf. Atkin [1972]) showed that

(39.20) any transversal matroid is representable over all fields, except for
finitely many finite fields.

If the sets X1, . . . , Xm form a partition of S, one speaks of a partition
matroid. Trivially, each partition matroid is graphic and cographic (by con-
sidering a graph consisting of vertex-disjoint parallel classes of edges). Also
uniform matroids are special cases of transversal matroids.

Gammoids (Perfect [1968]). An extension of transversal matroids is obtained
by taking a directed graph D = (V, A) and subsets U and S of V . For
X, Y ⊆ V , call X linked to Y if |X| = |Y | and D has |X| vertex-disjoint
X − Y paths. (So X is the set of starting vertices of these paths, and Y the
set of end vertices.)

Let I be the collection of subsets I of S such that some subset of U is
linked to I. Then M = (S, I) is a matroid. This follows from Theorem 9.11:
let I, J ∈ I with |I| < |J |. Let T := I ∪ J . Let k be the maximum number
of disjoint U − T paths. So k ≥ |J | > |I|. By Theorem 9.11, there exist k
disjoint U − T paths covering I. Hence I + j ∈ I for some j ∈ J \ I. So M is
a matroid.

Matroids obtained in this way are called gammoids. If S = V , the gam-
moid is called a strict gammoid (induced by D, U). Hence:

(39.21) gammoids are exactly the restrictions of strict gammoids.

The bases of the strict gammoid induced by D, U are the subsets B of V such
that U is linked to B. In particular, U is a base.

From Menger’s theorem (Corollary 9.1a) one easily derives the following
formula for the rank function rM of M :

(39.22) rM (X) = min{|Y |
∣∣ Y intersects each U − X path}

for X ⊆ S. (One may prove easily that the right-hand side of (39.22) satisfies
Theorem 39.8 below, thus proving again that M is a matroid.)

39.4a. Relations between transversal matroids and gammoids

Ingleton and Piff [1973] showed the following theorem (based on a duality of bi-
partite graphs and directed graphs similar to that described in Section 16.7c). The
proof provides an alternative proof that gammoids are indeed matroids.

Theorem 39.5. Strict gammoids are exactly the duals of the transversal matroids.

Proof. Let M be the strict gammoid induced by the directed graph D = (V, A)
and U ⊆ V . We can assume that (v, v) ∈ A for each v ∈ V . For each v ∈ V , let

(39.23) Xv := {u ∈ V | (u, v) ∈ A}.
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Let L be the transversal matroid induced by the family X := (Xv | v ∈ V \ U). We
show that L = M∗.

As v ∈ Xv for each v ∈ V \ U , the set V \ U is a transversal of X . Hence the
bases of L are the transversals of X . As U is a base of the strict gammoid induced
by D, U , it suffices to show, for each B ⊆ V :

(39.24) U is linked to B in D if and only if V \ B is a transversal of X .

To see necessity in (39.24), let U be linked to B in D and let P be a set of |U |
disjoint U − B paths. Then for each v ∈ V \ U , let xv := u if v is entered by an arc
(u, v) in a path P in P and let xv := v otherwise. Then:

(39.25) (i) xv ∈ Xv, (ii) xv �= xv′ for v �= v′ ∈ V \ U , and (iii) {xv | v ∈
V \ U} = V \ B.

So V \ B is a transversal of X .
To see sufficiency in (39.24), let V \ B be a transversal of X . Hence there exist

xv for v ∈ V \ U satisfying (39.25). Let A′ be the set of arcs (xv, v) of D with
v ∈ V \ U . Then V \ U is the set of vertices entered by an arc in A′, and V \ B is
the set of vertices left by an arc in A′. Hence U is linked to B in D.

This shows (39.24), and hence that M∗ = L. So the dual of a strict gammoid
is a transversal matroid.

To see that each transversal matroid is the dual of a strict gammoid, we show
that the construction described above can be reversed. Let L be the transversal
matroid induced by the family X = (Xi | i = 1, . . . , m) of sets. By (39.18) we can
assume that X has a transversal. Hence we can assume that i ∈ Xi for i = 1, . . . , m
(by renaming). Let V := X1 ∪ · · · ∪ Xm and let

(39.26) A := {(u, v) | v ∈ {1, . . . , m}, u ∈ Xv}.

Let D = (V, A) and define U := V \ {1, . . . , m}. Since D, U and X are related as
in (39.23), we again have (39.25). So L is equal to the dual of the strict gammoid
induced by D, U .

This theorem has a number of implications for the interrelations of the classes
of transversal matroids and of gammoids. Consider the following class of matroids,
introduced by Ingleton and Piff [1973]. Let G = (V, E) be a bipartite graph, with
colour classes U and W . Let M = (V, I) be the transversal matroid induced by the
family ({v}∪N(v) | v ∈ U) (where N(v) is the set of neighbours of v). So B ⊆ V is
a base of M if and only if (U \ B) ∪ (W ∩ B) is matchable in G (that is, it induces
a subgraph of G having a perfect matching).

Any such matroid M is called a deltoid (induced by G, U, W ). Then M∗ is the
deltoid induced by G, W, U . So

(39.27) the dual of a deltoid is a deltoid again.

Now

(39.28) transversal matroids are exactly those matroids that are the restriction
of a deltoid.

Indeed, each deltoid is a transversal matroid, and hence the restriction of any deltoid
is a transversal matroid (as the class of transversal matroids is closed under taking
restrictions). Conversely, any transversal matroid, induced by (say) X1, . . . , Xm is
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the restriction to W of the deltoid induced by the bipartite graph G with colour
classes U := {1, . . . , m} and W := X1 ∪ · · · ∪ Xm, with i ∈ U and x ∈ W adjacent
if and only if x ∈ Xi. (Assuming without loss of generality that U ∩ W = ∅.) This
shows (39.28).

Then (39.27) and (39.28) give with Theorem 39.5:

(39.29) the strict gammoids are exactly the contractions of the deltoids.

Indeed, the strict gammoids are the duals of transversal matroids, hence the duals
of restrictions of deltoids, and therefore the contractions of (the duals of) deltoids.

This gives:

Corollary 39.5a. The gammoids are exactly the contractions of the transversal
matroids.

Proof. Gammoids are the restrictions of strict gammoids, hence the restrictions of
contractions of deltoids, hence the contractions of restrictions of deltoids, therefore
the contractions of transversal matroids.

Similarly:

(39.30) the gammoids are exactly the minors of deltoids,

which implies (with (39.27)) a result of Mason [1972]:

(39.31) the class of gammoids is closed under taking minors and duals.

Theorem 39.5 also implies, with (39.20), that gammoids are representable over
all fields, except for a finite number of finite fields (Mason [1972]). In fact, Lindström
[1973] showed that any gammoid (S, I) is representable over each field with at least
2|S| elements.

Edmonds and Fulkerson [1965] showed that one gets a transversal matroid as
follows. Let G = (V, E) be an undirected graph and let S ⊆ V . Let I be the
collection of subsets of S which are covered by some matching in G. Then M =
(S, I) is a matroid (which is easy to show), called the matching matroid of G.
In fact, any matching matroid is a transversal matroid. To prove this, we may
assume S = V . Let D(G), A(G), C(G) form the Edmonds-Gallai decomposition of
G (Section 24.4b). Let K be the collection of components of G[D(G)]. Let X be the
family of sets

(39.32) {v} for each v ∈ A(G) ∪ C(G),
N(v) ∩ D(G) for each v ∈ A(G),
K, repeated |K| − 1 times, for each K ∈ K.

Then M is equal to the transversal matroid induced by X , as is easy to derive from
the properties of the Edmonds-Gallai decomposition. A min-max relation for the
rank function is given by Theorem 24.6.

It is straightforward to see that, conversely, each transversal matroid is a match-
ing matroid, by taking G bipartite.
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39.5. Characterizing matroids by bases

In Section 39.1, the notion of matroid is defined by ‘axioms’ in terms of the
independent sets. There are several other axiom systems that characterize
matroids. In this and the next sections we give a number of them.

Clearly, a matroid is determined by the collection of its bases, since a set is
independent if and only if it is contained in a base. Conditions characterizing
a collection of bases of a matroid are given in the following theorem (Whitney
[1935]).

Theorem 39.6. Let S be a set and let B be a nonempty collection of subsets
of S. Then the following are equivalent:

(39.33) (i) B is the collection of bases of a matroid;
(ii) if B, B′ ∈ B and x ∈ B′ \ B, then B′ − x + y ∈ B for some

y ∈ B \ B′;
(iii) if B, B′ ∈ B and x ∈ B′ \ B, then B − y + x ∈ B for some

y ∈ B \ B′.

Proof. (i)⇒(ii): Let B be the collection of bases of a matroid (S, I). Then
all sets in B have the same size. Now let B, B′ ∈ B and x ∈ B′ \ B. Since
B′ − x ∈ I, there exists a y ∈ B \ B′ with B′′ := B′ − x + y ∈ I. Since
|B′′| = |B′|, we know B′′ ∈ B.

(iii)⇒(i): (iii) directly implies that no set in B is contained in another.
Let I be the collection of sets I with I ⊆ B for some B ∈ B. We check (39.3).
Let I, J ∈ I with |I \ J | = 1 and |J \ I| = 2. Let I \ J = {x}.

Consider sets B, B′ ∈ B with I ⊆ B, J ⊆ B′. If x ∈ B′, we are done.
So assume x �∈ B′. Then by (iii), B′ − y + x ∈ B for some y ∈ B′ \ B. As
|J \ I| = 2, there is a z ∈ J \ I with z �= y. Then I + z ⊆ B′ − y + x, and so
I + z ∈ I.

(ii)⇒(iii): By the foregoing we know that (iii) implies (ii). Now axioms
(ii) and (iii) interchange if we replace B by the collection of complements of
sets in B. Hence also the implication (ii)⇒(iii) holds.

The equivalence of (ii) and (iii) also follows from the fact that the collec-
tion of complements of bases of a matroid is the collection of bases of the dual
matroid. Conversely, Theorem 39.6 implies that the dual indeed is a matroid.

39.6. Characterizing matroids by circuits

A matroid is determined by the collection of its circuits, since a set is in-
dependent if and only if it contains no circuit. Conditions characterizing a
collection of circuits of a matroid are given in the following theorem (Whitney
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[1935] proved (i)⇔(iii), and Robertson and Weston [1958] (and also Lehman
[1964] and Asche [1966]) proved (i)⇔(ii)).

Theorem 39.7. Let S be a set and let C be a collection of nonempty subsets of
S, such that no two sets in C are contained in each other. Then the following
are equivalent:

(39.34) (i) C is the collection of circuits of a matroid;
(ii) if C, C ′ ∈ C with C �= C ′ and x ∈ C ∩ C ′, then (C ∪ C ′) \ {x}

contains a set in C;
(iii) if C, C ′ ∈ C, x ∈ C ∩ C ′, and y ∈ C \ C ′, then (C ∪ C ′) \ {x}

contains a set in C containing y.

Proof. (i)⇒(iii): Let C be the collection of circuits of a matroid (S, I) and
let B be its collection of bases. Let C, C ′ ∈ C, x ∈ C ∩C ′, and y ∈ C \C ′. We
can assume that S = C ∪C ′. Let B, B′ ∈ B with B ⊇ C −y and B′ ⊇ C ′ −x.
Then y �∈ B and x �∈ B′ (since C �⊆ B and C ′ �⊆ B′).

We can assume that y �∈ B′. Otherwise, y ∈ B′ \ B, and hence by (ii) of
Theorem 39.6, there exists a z ∈ B \ B′ with B′′ := B′ − y + z ∈ B. Then
z �= x, since otherwise C ′ ⊆ B′′. Hence, replacing B′ by B′′ gives y �∈ B′.

As y �∈ B′, we know B′ ∪ {y} �∈ I, and hence there exists a C ′′ ∈ C
contained in B′ ∪ {y}. As C ′′ �⊆ B′, we know y ∈ C ′′. Moreover, as x �∈ B′

we know x �∈ C ′′.

(iii)⇒(ii): is trivial.

(ii)⇒(i): Let I be the collection of sets containing no set in C as a subset.
We check (39.3). Let I, J ∈ I with |I \ J | = 1 and |J \ I| = 2. Assume that
I + z �∈ I for each z ∈ J \ I. Let y be the element of I \ J . If J + y ∈ I,
then I ∪ J ∈ I, contradicting our assumption. So J + y contains a set C ∈ C.
Then C is the unique set in C contained in J + y. For suppose that there is
another, C ′ say. Again, y ∈ C ′, and hence by (39.34)(ii) there exists a C ′′ ∈ C
contained in (C ∪ C ′) \ {y}. But then C ′′ ⊆ J , a contradiction.

As C �⊆ I, C intersects J \ I. Choose x ∈ C ∩ (J \ I). Then X := J +y −x
contains no set in C (as C is the only set in C contained in J + y). So X ∈ I,
implying that I + z ∈ I for the z ∈ J \ I with z �= x.

This theorem implies the following important property for a matroid M =
(S, I):

(39.35) for any independent set I and any s ∈ S \ I there is at most one
circuit contained in I ∪ {s}.

39.6a. A characterization of Lehman

Lehman [1964] showed that the cocircuits of a matroid M are exactly the inclu-
sionwise minimal nonempty subsets D of S with |D ∩ C| �= 1 for each circuit C of
M .
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To show this, it suffices to show that

(39.36) (i) |D ∩ C| �= 1 for each cocircuit D and circuit C,
(ii) for each nonempty D ⊆ S, if |D ∩ C| �= 1 for each circuit C, then

D contains a cocircuit; that is, then D is dependent in M∗.

To see (i), suppose that D ∩ C = {s} for some circuit C and cocircuit D. As D − s
is independent in M∗, M has a base B disjoint from D − s. Since C − s is disjoint
from D − s and since C − s ∈ I, we can assume that C − s ⊆ B. Then s �∈ B, and
so B is disjoint from D. This implies that D is independent in M∗, contradicting
the fact that D is a circuit in M∗. This shows (i).

To see (ii), let ∅ �= D ⊆ S with |D ∩ C| �= 1 for each circuit C. We show
that D is dependent in M∗. Suppose not. Then M has a base B disjoint from D.
Choose s ∈ D. Then B + s contains a circuit C with s ∈ C. Hence D ∩ C = {s},
contradicting our assumption, thus showing (ii).

39.7. Characterizing matroids by rank functions

The rank function of a matroid M = (S, I) is the function rM : P(S) → Z+

given by:

(39.37) rM (U) := max{|Z|
∣∣ Z ∈ I, Z ⊆ U}

for U ⊆ S. Again, a matroid is determined by its rank function, as a set U
is independent if and only if r(U) = |U |. Conditions characterizing a rank
function are given by the following theorem (Whitney [1935]; necessity was
also shown (in a different terminology) by Bergmann [1929] and Nakasawa
[1935]):

Theorem 39.8. Let S be a set and let r : P(S) → Z+. Then r is the rank
function of a matroid if and only if for all T, U ⊆ S:

(39.38) (i) r(T ) ≤ r(U) ≤ |U | if T ⊆ U ,
(ii) r(T ∩ U) + r(T ∪ U) ≤ r(T ) + r(U).

Proof. Necessity. Let r be the rank function of a matroid (S, I). Choose
T, U ⊆ S. Clearly (39.38)(i) holds. To see (ii), let I be an inclusionwise
maximal set in I with I ⊆ T ∩ U and let J be an inclusionwise maximal set
in I with I ⊆ J ⊆ T∪U . Since (S, I) is a matroid, we know that r(T∩U) = |I|
and r(T ∪ U) = |J |. Then

(39.39) r(T ) + r(U) ≥ |J ∩ T | + |J ∩ U | = |J ∩ (T ∩ U)| + |J ∩ (T ∪ U)|
≥ |I| + |J | = r(T ∩ U) + r(T ∪ U);

that is, we have (39.38)(ii).

Sufficiency. Let I be the collection of subsets I of S with r(I) = |I|. We
show that (S, I) is a matroid, with rank function r.

Trivially, ∅ ∈ I. Moreover, if I ∈ I and J ⊆ I, then
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(39.40) r(J) ≥ r(I) − r(I \ J) ≥ |I| − |I \ J | = |J |.

So J ∈ I.
In order to check (39.3), let I, J ∈ I with |I \ J | = 1 and |J \ I| = 2. Let

J \ I = {z1, z2}. If I + z1, I + z2 �∈ I, we have r(I + z1) = r(I + z2) = |I|.
Then by (39.38)(ii),

(39.41) r(J) ≤ r(I + z1 + z2) ≤ r(I + z1) + r(I + z2) − r(I) = |I| < |J |,

contradicting the fact that J ∈ I.
So (S, I) is a matroid. Its rank function is r, since r(U) = max{|I|

∣∣ I ⊆
U, I ∈ I} for each U ⊆ S. Here ≥ follows from (39.38)(i), since if I ⊆ U
and I ∈ I, then r(U) ≥ r(I) = |I|. Equality can be shown by induction on
|U |, the case U = ∅ being trivial. If U �= ∅, choose y ∈ U . By induction,
there is an I ⊆ U − y with I ∈ I and |I| = r(U − y). If r(U) = r(U − y)
we are done, so assume r(U) > r(U − y). Then I + y ∈ I, since r(I + y) ≥
r(I)+r(U)−r(U −y) ≥ |I|+1. Moreover, r(U) ≤ r(U −y)+r({y}) ≤ |I|+1.
This proves equality for U .

Set functions satisfying condition (39.38)(ii) are called submodular, and
will be studied in Chapter 44.

Whitney [1935] also showed that (39.38) is equivalent to:

(39.42) (i) r(∅) = 0,
(ii) r(U) ≤ r(U + s) ≤ r(U) + 1 for U ⊆ S, s ∈ S \ U ,
(iii) for all U ⊆ S, s, t ∈ S \ U , if r(U + s) = r(U + t) = r(U), then

r(U + s + t) = r(U).

The proof above in fact uses only these properties of r.
The following equivalent form of Theorem 39.8 will be useful.

Corollary 39.8a. Let S be a finite set and let I be a nonempty collection
of subsets of S, closed under taking subsets. For U ⊆ S, let r(U) be the
maximum size of a subset of U that belongs to I. Then (S, I) is a matroid if
and only if r satisfies (39.38)(ii) for all T, U ⊆ S.

Proof. Necessity follows directly from Theorem 39.8. To see sufficiency, it
is easy to see that r satisfies (39.38)(i). So by Theorem 39.8, r is the rank
function of some matroid M = (S, J ). Now: I ∈ J ⇐⇒ r(I) = |I| ⇐⇒
I ∈ I. Hence I = J , and so (S, I) is a matroid.

Note that if we can test in polynomial time if a given set is independent,
we can also test in polynomial time if a given set is a base, or a circuit, and
we can determine the rank of a given set in polynomial time.
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39.8. The span function and flats

With any matroid M = (S, I) we can define the span function spanM :
P(S) → P(S) as follows:

(39.43) spanM (T ) := {s ∈ S | rM (T ∪ {s}) = rM (T )}

for T ⊆ S. If the matroid M is clear from the context, we write span(T ) for
spanM (T ). Note that T ⊆ spanM (T ) and that

(39.44) rM (spanM (T )) = rM (T ).

This follows directly from the fact that if rM (Y ) > rM (T ), then rM (T∪{s}) >
rM (T ) for some s ∈ Y .

Note also that

(39.45) T is spanning ⇐⇒ spanM (T ) = S

for any T ⊆ S. To see =⇒, let T be spanning. Then for each s ∈ T : rM (T +
s) ≤ rM (S) = rM (T ). To see ⇐=, suppose spanM (T ) = S. Then rM (T ) =
rM (spanM (T )) = rM (S).

A flat in a matroid M = (S, I) is a subset F of S with spanM (F ) = F .
A matroid is determined by its collection of flats, as is shown by:

(39.46) a subset I of S is independent if and only if for each y ∈ I there
is a flat F with I − y ⊆ F and y �∈ F .

Indeed, if I is independent and y ∈ I, let F := spanM (I −y). Then F is a flat
containing I − y, but not y, since rM (F + y) ≥ rM (I) > rM (I − y) = rM (F ).
Conversely, if I is not independent, then y ∈ spanM (I − y) for some y ∈ I,
and hence each flat containing I − y also contains y.

39.8a. Characterizing matroids by span functions

It was observed by Mac Lane [1938] that the following characterizes span functions
of matroids (sufficiency was shown by van der Waerden [1937]).

Theorem 39.9. Let S be a finite set. A function span : P(S) → P(S) is the span
function of a matroid if and only if:

(39.47) (i) if T ⊆ S, then T ⊆ span(T );
(ii) if T, U ⊆ S and U ⊆ span(T ), then span(U) ⊆ span(T );
(iii) if T ⊆ S, t ∈ S \ T , and s ∈ span(T + t) \ span(T ), then t ∈

span(T + s).

Proof. Necessity. Let span be the span function of a matroid M = (S, I) with
rank function r. Clearly, (39.47)(i) is satisfied. To see (39.47)(ii), let U ⊆ span(T )
and s ∈ span(U). We show s ∈ span(T ). We can assume s �∈ T . Then, by the
submodularity of r,

(39.48) r(T ∪ {s}) ≤ r(T ∪ U ∪ {s}) ≤ r(T ∪ U) + r(U ∪ {s}) − r(U)
= r(T ∪ U) = r(T ).
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(The last equality follows from (39.44).) This shows that s ∈ span(T ).
To see (39.47)(iii), note that s ∈ span(T + t) \ span(T ) is equivalent to: r(T +

t + s) = r(T + t) and r(T + s) > r(T ). Hence

(39.49) r(T + t + s) = r(T + t) ≤ r(T ) + 1 ≤ r(T + s),

that is, t ∈ span(T + s). This shows necessity of the conditions (39.47).

Sufficiency. Let a function span satisfy (39.47), and define

(39.50) I := {I ⊆ S | s �∈ span(I − s) for each s ∈ I}.

We first show the following:

(39.51) if I ∈ I, then span(I) = I ∪ {t | I + t �∈ I}.

Indeed, if t ∈ span(I)\I, then I + t �∈ I, by definition of I. Conversely, I ⊆ span(I)
by (39.47)(i). Moreover, if I + t �∈ I, then by definition of I, s ∈ span(I + t − s) for
some s ∈ I + t. If s = t, then t ∈ span(I) and we are done. So assume s �= t; that is,
s ∈ I. As I ∈ I, we know that s �∈ span(I − s). So by (39.47)(iii) (for T := I − s),
t ∈ span(I), proving (39.51).

We now show that M = (S, I) is a matroid. Trivially, ∅ ∈ I. To see that
I is closed under taking subsets, let I ∈ I and J ⊆ I. We show that J ∈ I.
Suppose to the contrary that s ∈ span(J − s) for some s ∈ J . By (39.47)(ii),
span(J −s) ⊆ span(I −s). Hence s ∈ span(I −s), contradicting the fact that I ∈ I.

In order to check (39.3), let I, J ∈ I with |I \ J | = 1 and |J \ I| = 2. Let
I \J = {i} and J \I = {j1, j2}. Assume that I + j1 �∈ I. That is, J + i− j2 �∈ I, and
so, by (39.51) applied to J − j2, i ∈ span(J − j2). Therefore, I ⊆ span(J − j2), and
so span(I) ⊆ span(J − j2). So j2 �∈ span(I) (as J ∈ I), and therefore, by (39.51)
applied to I, I + j2 ∈ I.

So M is a matroid. We finally show that span = spanM . Choose T ⊆ S. To see
that span(T ) = spanM (T ), let I be a base of T (in M). Then (using (39.51)),

(39.52) spanM (T ) = I ∪ {x | I + x �∈ I} = span(I) ⊆ span(T ).

So we are done by showing span(T ) ⊆ span(I); that is, by (39.47)(ii), T ⊆ span(I).
Choose t ∈ T \I. By the maximality of I, we know I + t �∈ I, and hence, by (39.51),
t ∈ span(I).

39.8b. Characterizing matroids by flats

Conditions characterizing collections of flats of a matroid are given in the following
theorem (Bergmann [1929]):

Theorem 39.10. Let S be a set and let F be a collection of subsets of S. Then F
is the collection of flats of a matroid if and only if:

(39.53) (i) S ∈ F ;
(ii) if F1, F2 ∈ F , then F1 ∩ F2 ∈ F ;
(iii) if F ∈ F and t ∈ S \F , and F ′ is the smallest flat containing F + t,

then there is no flat F ′′ with F ⊂ F ′′ ⊂ F ′.
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Proof. Necessity. Let F be the collection of flats of a matroid M = (S, I). Condi-
tion (39.53)(i) is trivial, and condition (39.53)(ii) follows from spanM (F1 ∩ F2) ⊆
spanM (F1)∩ spanM (F2) = F1 ∩F2. To see (39.53)(iii), suppose that such an F ′′ ex-
ists. Choose s ∈ F ′′ \F . So s �∈ spanM (F ). As F ′ �⊆ F ′′, we have t �∈ spanM (F + s).
Therefore, by (39.47)(iii) for T := F , s �∈ spanM (F ) = F ′, a contradiction.

Sufficiency. Let F satisfy (39.53). For Y ⊆ S, let span(Y ) be the smallest set
in F containing Y . Since F ∈ F ⇐⇒ span(F ) = F , it suffices to show that
span satisfies the conditions (39.47). Here (39.47)(i) and (ii) are trivial. To see
(39.47)(iii), let T ⊆ S, t ∈ S \ T , and s ∈ span(T + t) \ span(T ). Then span(T ) ⊂
span(T + s) ⊆ span(T + t). Hence, by (39.53)(iii), span(T + s) = span(T + t), and
hence t ∈ span(T + s).

39.8c. Characterizing matroids in terms of lattices

Bergmann [1929] and Birkhoff [1935a] characterized matroids in terms of lattices.
A partially ordered set (L, ≤) is called a lattice if

(39.54) (i) for all A, B ∈ L there is a unique element, called A ∧ B, satisfying
A ∧ B ≤ A, B and C ≤ A ∧ B for all C ≤ A, B;

(ii) for all A, B ∈ L there is a unique element, called A ∨ B, satisfying
A ∨ B ≥ A, B and C ≥ A ∨ B for all C ≥ A, B.

A ∧ B and A ∨ B are called the meet and join respectively of A and B. Here we
assume lattices to be finite. Then a lattice has a unique minimal element, denoted
by 0. The rank of an element A is the maximum number n of elements x1, . . . , xn

with 0 < x1 < · · · < xn = A. An element of rank 1 is called a point or atom.
Call a lattice a point lattice if each element is a join of points, and a matroid

lattice (or a geometric lattice) if it is isomorphic to the lattice of flats of a matroid.
Trivially, each matroid lattice is a point lattice. Moreover, a matroid without loops
and parallel elements is completely determined by the lattice of flats.

In the following theorem, the equivalence of (i) and (ii), and the implication
(ii)⇒(iv) are due (in a different terminology) to Bergmann [1929]; the equivalence
of (iii) and (iv) was shown by Birkhoff [1933], and the implication (iii)⇒(i) was
shown by Birkhoff [1935a].

In a partially ordered set (L, ≤) an element y is said to cover an element x if
x < y and there is no z with x < z < y.

Theorem 39.11. For any finite point lattice (L, ≤), with rank function r, the
following are equivalent:

(39.55) (i) L is a matroid lattice;
(ii) for each a ∈ L and each point p, if p �≤ a, then a ∨ p covers a;
(iii) for each a, b ∈ L, if a and b cover a ∧ b, then a ∨ b covers a and b;
(iv) r(a) + r(b) ≥ r(a ∨ b) + r(a ∧ b) for all a, b ∈ L.

Proof. (i)⇒(iv): Let L be the lattice of flats of a matroid M = (S, I), with rank
function rM . We can assume that M has no loops and no parallel elements. Then for
any flat F we have r(F ) = rM (F ), since rM (F ) is equal to the maximum number k
of nonempty flats F1 ⊂ · · · ⊂ Fk with Fk = F . So (iv) follows from Theorem 39.8.
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(iv)⇒(iii): We first show that (iv) implies that if b covers a, then r(b) = r(a)+1.
As b is a join of points, and as b covers a, we know that b = a∨p for some point p with
p �≤ a. Hence r(b) = r(a∨p) ≤ r(a)+ r(p)− r(a∧p) = r(a)+ r(p)− r(0) = r(a)+1.
As r(b) > r(a), we have r(b) = r(a) + 1.

To derive (iii) from (iv), let a and b cover a∧ b. Then r(a) = r(b) = r(a∧ b)+1.
Hence r(a ∨ b) ≤ r(a) + r(b) − r(a ∧ b) = r(a) + 1. Hence a ∨ b covers a. Similarly,
a ∨ b covers b.

(iii)⇒(ii): We derive (ii) from (iii) by induction on r(a). If a = 0, the statement
is trivial. If a > 0, let a′ be an element covered by a. Then, by induction, a′ ∨ p
covers a′. So a′ = a ∧ (a′ ∨ p). Hence by (iii), a ∨ (a′ ∨ p) = a ∨ p covers a.

(ii)⇒(i): Let S be the set of points of L, and for f ∈ L define Ff := {s ∈ S |
s ≤ f}. Let F := {Ff | f ∈ L}. Then for all f1, f2 ∈ L we have:

(39.56) f1 ≤ f2 ⇐⇒ Ff1
⊆ Ff2

.

Here =⇒ is trivial, while ⇐= follows from the fact that for each f ∈ L we have
f =

∨
Ff , as L is a point lattice.

By (39.56), (L, ≤) is isomorphic to (F , ⊆). Moreover, by (39.54)(i), Ff1∧f2
=

Ff1
∩ Ff2

. So F is closed under intersections, implying (39.53)(ii), while (39.53)(i)
is trivial. Finally, (39.53)(iii) follows from (39.55)(ii).

Lattices satisfying (39.55)(iii) are called upper semimodular.

39.9. Further exchange properties

In this section we prove a number of exchange properties of bases, as a prepa-
ration to the forthcoming sections on matroid intersection algorithms.

An exchange property of bases, stronger than given in Theorem 39.6, is
(Brualdi [1969c]):

Theorem 39.12. Let M = (S, I) be a matroid. Let B1 and B2 be bases and
let x ∈ B1 \ B2. Then there exists a y ∈ B2 \ B1 such that both B1 − x + y
and B2 − y + x are bases.

Proof. Let C be the unique circuit in B2 +x (cf. (39.35)). Then (B1 ∪C)−x
is spanning, since x ∈ spanM (C − x) ⊆ spanM ((B1 ∪ C) − x), implying
span((B1 ∪ C) − x) = span(B1 ∪ C) = S.

Hence there is a base B3 with B1 − x ⊆ B3 ⊆ (B1 ∪ C) − x. So B3 =
B1 −x+ y for some y in C −x. Therefore, B2 − y +x is a base, as it contains
no circuit (since C is the only circuit in B2 + x).

Let M = (S, I) be a matroid. For any I ∈ I define the (bipartite) directed
graph DM (I) = (S, AM (I)), or briefly (S, A(I)), by:

(39.57) A(I) := {(y, z) | y ∈ I, z ∈ S \ I, I − y + z ∈ I}.

Repeated application of the exchange property described in Theorem 39.12
gives (Brualdi [1969c]):
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Corollary 39.12a. Let M = (S, I) be a matroid and let I, J ∈ I with
|I| = |J |. Then A(I) contains a perfect matching on I△J .1

Proof. By truncating M , we can assume that I and J are bases of M . We
prove the lemma by induction on |I \ J |. We can assume |I \ J | ≥ 1. Choose
y ∈ I \ J . By Theorem 39.12, I − y + z ∈ I and J − z + y ∈ I for some
z ∈ J \ I. By induction, applied to I and J ′ := J − z + y, A(I) has a perfect
matching N on I△J ′. Then N ∪ {(y, z)} is a perfect matching on I△J .

Corollary 39.12a implies the following characterization of maximum-
weight bases:

Corollary 39.12b. Let M = (S, I) be a matroid, let B be a base of M , and
let w : S → R be a weight function. Then B is a base of maximum weight
⇐⇒ w(B′) ≤ w(B) for every base B′ with |B′ \ B| = 1.

Proof. Necessity being trivial, we show sufficiency. Suppose to the contrary
that there is a base B′ with w(B′) > w(B). Let N be a perfect matching in
A(B) covering B△B′. As w(B′) > w(B), there is an edge (y, z) in N with
w(z) > w(y), where y ∈ B \ B′ and z ∈ B′ \ B. Hence w(B − y + z) > w(B),
contradicting the condition.

The following forms a counterpart to Corollary 39.12a (Krogdahl [1974,
1976,1977]):

Theorem 39.13. Let M = (S, I) be a matroid and let I ∈ I. Let J ⊆ S be
such that |I| = |J | and such that A(I) contains a unique perfect matching N
on I△J . Then J belongs to I.

Proof. Since N is unique, we can order N as (y1, z1), . . . , (yt, zt) such that
(yi, zj) �∈ A(I) if 1 ≤ i < j ≤ t. Suppose that J �∈ I, and let C be a circuit
contained in J . Choose the smallest i with zi ∈ C. Then (yi, z) �∈ A(I) for all
z ∈ C − zi (since z = zj for some j > i). Therefore, z ∈ span(I − yi) for all
z ∈ C − zi. So C − zi ⊆ span(I − yi), and therefore zi ∈ C ⊆ span(C − zi) ⊆
span(I − yi), contradicting the fact that I − yi + zi is independent.

This implies:

Corollary 39.13a. Let M = (S, I) be a matroid and let I ∈ I. Let J ⊆ S be
such that |I| = |J | and rM (I ∪J) = |I|, and such that A(I) contains a unique
perfect matching N on I△J . Let s �∈ I ∪ J with I + s ∈ I. Then J + s ∈ I.

Proof. Let t be a new element and let M ′ = (S ∪ {t}, I ′) be the matroid
with F ∈ I ′ if and only if F \ {t} ∈ I. Then N ′ := N ∪ {(t, s)} forms a

1 A perfect matching on a vertex set U in a digraph is a set of vertex-disjoint arcs such
that U is the set of tails and heads of these arcs.
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unique perfect matching on (I△J) ∪ {s, t} in DM ′(I ∪ {t}) (since there is no
arc from t to J \ I, as I + j �∈ I for all j ∈ J \ I, since rM (I ∪ J) = |I|). So
by Theorem 39.13, J ∪ {s} is independent in M ′, and hence in M .

39.9a. Further properties of bases

Bases satisfy the following exchange property, stronger than that described in The-
orem 39.12 (conjectured by G.-C. Rota, and proved by Brylawski [1973], Greene
[1973], Woodall [1974a]):

(39.58) if B1 and B2 are bases and B1 is partitioned into X1 and Y1, then B2

can be partitioned into X2 and Y2 such that X1 ∪ Y2 and Y1 ∪ X2 are
bases.

This will be proved in Section 42.1a (using the matroid union theorem).
Other exchange properties of bases were given by Greene [1974a] and Kung

[1978a]. Decomposing exchanges was studied by Gabow [1976b].
In Schrijver [1979c] it was shown that the exchange property described in Corol-

lary 16.8b for bipartite graphs and, more generally, in Theorem 9.12 for directed
graphs, in fact characterizes systems that correspond to matroids.

To this end, let U and W be disjoint sets and let Λ be a collection of pairs
(X, Y ) with X ⊆ U and Y ⊆ W . Call (U, W, Λ) a bimatroid (or linking system) if:

(39.59) (i) (∅, ∅) ∈ Λ;
(ii) if (X, Y ) ∈ Λ and x ∈ X, then (X − x, Y − y) ∈ Λ for some y ∈ Y ;
(iii) if (X, Y ) ∈ Λ and y ∈ Y , then (X − x, Y − y) ∈ Λ for some x ∈ X;
(iv) if (X1, Y1), (X2, Y2) ∈ Λ, then there is an (X, Y ) ∈ Λ with X1 ⊆

X ⊆ X1 ∪ X2 and Y2 ⊆ Y ⊆ Y1 ∪ Y2.

Note that (ii) and (iii) imply that |X| = |Y | for each (X, Y ) ∈ Λ.
To describe the relation with matroids, define:

(39.60) B := {(U \ X) ∪ Y | (X, Y ) ∈ Λ}.

So B determines Λ. Then (Schrijver [1979c]):

(39.61) (U, W, Λ) is a bimatroid if and only if B is the collection of bases of a
matroid on U ∪ W , with U ∈ B.

So bimatroids are in one-to-one correspondence with pairs (M, B) of a matroid M
and a base B of M , and the conditions (39.59) yield a characterization of matroids.
An equivalent axiom system characterizing matroids was given by Kung [1978b].

(Bapat [1994] gave an extension of Kőnig’s matching theorem to bimatroids.)

39.10. Further results and notes

39.10a. Further notes

Dilworth [1944] showed that if r : P(S) → Z satisfies (39.38) and r(U) ≥ 0 if U �= ∅,
then
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(39.62) I := {I ⊆ S | ∀ nonempty U ⊆ I : |U | ≤ r(U)}

is the collection of independent sets of a matroid M . Its rank function satisfies:

(39.63) rM (U) = min(r(U1) + · · · + r(Ut)),

where the minimum ranges over partitions of U into nonempty subsets U1, . . . , Ut

(t ≥ 0). If G = (V, E) is a graph, and we define r(F ) :=
∣∣ ⋃

F
∣∣ − 1 for F ⊆ E, we

obtain the cycle matroid of G (this also was shown by Dilworth [1944]).2

Conforti and Laurent [1988] showed the following sharpening of Corollary 39.8a.
Let C be a collection of subsets of a set S and let f : C → Z+. Let I be the collection
of subsets T of S with |T ∩ U | ≤ f(U) for each U ∈ C. For T ⊆ S, let r(T ) be
the maximum size of a subset of T that belongs to I. Then (S, I) is a matroid if
and only if r satisfies the submodular inequality (39.38)(ii) for all Y, Z ∈ C with
Y ∩ Z �= ∅. In fact, in the right-hand side of this inequality, r may be replaced by
f .

Jensen and Korte [1982] showed that there is no polynomial-time algorithm to
find the minimum size of a circuit of a matroid, if the matroid is given by an oracle
for testing independence. For binary matroids (represented by binary vectors), the
problem of finding a minimum-size circuit was shown by Vardy [1997] to be NP-
complete (solving a problem of Berlekamp, McEliece, and van Tilborg [1978], who
showed the NP-completeness of finding the minimum size of a circuit containing
a given element of the matroid, and of finding a circuit of given size). If we know
that a matroid is binary, a vector representation can be derived by a polynomially
bounded number of calls from an independence testing oracle.

For further studies of the complexity of matroid properties, see Hausmann and
Korte [1978], Robinson and Welsh [1980], and Jensen and Korte [1982].

Extensions of matroid theory to infinite structures were considered by Rado
[1949a], Bleicher and Preston [1961], Johnson [1961], and Dlab [1962,1965].

Standard references on matroid theory are Welsh [1976] and Oxley [1992]. The
book by Truemper [1992] focuses on decomposition of matroids. Earlier texts were
given by Tutte [1965a,1971]. Elementary introductions to matroids were given by
Wilson [1972b,1973], and a survey with applications to electrical networks and
statics by Recski [1989]. Bixby [1982], Faigle [1987], Lee and Ryan [1992], and Bixby
and Cunningham [1995] survey matroid optimization and algorithms. White [1986,
1987,1992] offers a collection of surveys on matroids, and Kung [1986] is a source
book on matroids. Stern [1999] focuses on semimodular lattices. Books discussing
matroid optimization include Lawler [1976b], Papadimitriou and Steiglitz [1982],
Gondran and Minoux [1984], Nemhauser and Wolsey [1988], Parker and Rardin
[1988], Cook, Cunningham, Pulleyblank, and Schrijver [1998], and Korte and Vygen
[2000].

39.10b. Historical notes on matroids

The idea of a matroid, that is, of abstract dependence, seems to have been devel-
oped historically along a number of independent lines during the period 1900-1935.
Independently, different axiom systems were given, each of which is equivalent to

2
⋃

F denotes the union of the edges (as sets) in F .
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that of a matroid. It indicates the naturalness of the concept. Only at the end of
the 1930s a synthesis of the different streams was obtained.

There is a line, starting with the Dualgruppen (dual groups = lattices) of
Dedekind [1897,1900], introduced in order to study modules (= additive subgroups)
of numbers. They give rise to lattices satisfying what Dedekind called the Modulge-
setz (module law). Later, independently, Birkhoff [1933] studied such lattices, calling
them initially B-lattices, and later (after he had learned about Dedekind’s earlier
work), modular lattices. Both Dedekind and Birkhoff considered, in their studies
of modular lattices, an auxiliary property that characterizes so-called semimodular
lattices. If the lattice is a point lattice (that is, each element of the lattice is a join
of atoms (points)), then such semimodular lattices are exactly the lattices of flats
of a matroid. This connection was pointed out by Birkhoff [1935a] directly after
Whitney’s introduction of matroids.

A second line concerns exchange properties of bases. It starts with the new edi-
tion of the Ausdehnungslehre of Grassmann [1862], where he showed that each lin-
early independent set can be extended to a bases, using elements from a given base.
Next Steinitz [1910], in his fundamental paper Algebraische Theorie der Körper (Al-
gebraic Theory of Fields), showed that algebraic dependence has a number of basic
properties, which makes it into a matroid (like the equicardinality of bases), and he
derived some other properties from these basic properties (thus deriving essentially
properties of matroids). In a subsequent paper, Steinitz [1913] gave, as an auxil-
iary result, the property that is now called Steinitz’ exchange property for linearly
independent sets of vectors. Steinitz did not mention the similarities to his earlier
results on algebraic dependence. These similarities were observed by Haupt [1929a]
and van der Waerden [1930] in their books on ‘modern’ algebra. They formulated
properties shared by linear and algebraic dependence that are equivalent to ma-
troids. In the second edition of his book, van der Waerden [1937] condensed these
properties to three properties, and gave a unified treatment of linear and algebraic
dependence. Mac Lane [1938] observed the relation of this work to the work on
lattices and matroids.

A third line pursued the axiomatization of geometry, which clearly can be rooted
back to as early as Euclid. At the beginning of the 20th century this was consid-
ered by, among others, Hilbert and Veblen. Bergmann [1929] aimed at giving a
lattice-theoretical basis for affine geometry, and from lattice-theoretical conditions
equivalent to matroids (cf. Theorem 39.11 above) he derived a number of properties,
like the equicardinality of bases and the submodularity of the rank function. In their
book Grundlagen der Mathematik I (Foundations of Mathematics I), Hilbert and
Bernays [1934] gave axioms for the collinearity of triples of points, amounting to the
fact that any two distinct points belong to exactly one line. A direct extension of
these axioms to general dimensions gives the axioms described by Nakasawa [1935],
that are again equivalent to the matroid axioms. He introduced the concept of a B1-
space, equivalent to a matroid. In fact, the only reference in Nakasawa [1935] is to
the book Grundlagen der Elementargeometrie (Foundations of Elementary Geome-
try) of Thomsen [1933], in which a different axiom system, the Zyklenkalkül (cycle
calculus), was given (not equivalent to matroids). Nakasawa only gave subsets of
linear spaces as an example. In a sequel to his paper, Nakasawa [1936b] observed
that his axioms are equivalent to those of Whitney. The same axiom system as
Nakasawa’s, added with a continuity axiom, was given by Pauc [1937]. In Haupt,



674 Chapter 39. Matroids

Nöbeling, and Pauc [1940] the concept of an Abhängigkeitsraum (dependence space)
based on these axioms was investigated.

The fourth ‘line’ was that of Whitney [1935], who introduced the notion of a
matroid as a concept by itself. He was motivated by generalizing certain separability
and duality phenomena in graphs, studied by him before. This led him to show that
each matroid has a dual. While Whitney showed the equivalence of several axiom
systems for matroids, he did not consider an axiom system based on a closure
operation or on flats. Whitney gave linear dependence as an example, but not
algebraic dependence. In a paper in the same year and journal, Birkhoff [1935a]
showed the relation of Whitney’s work with lattices.

We now discuss some historical papers more extensively, in a more or less
chronological order.

1894-1900: Dedekind: lattices

In the supplements to the fourth edition of Vorlesungen über Zahlentheorie (Lec-
tures on Number Theory) by Lejeune Dirichlet [1894], R. Dedekind introduced the
notion of a module as any nonempty set of (real or complex) numbers closed un-
der addition and subtraction, and he studied the lattice of all modules ordered by
inclusion. He called A divisible by B if A ⊆ B. Trivially, the lattice operations are
given by A ∧ B = A ∩ B and A ∨ B = A + B. In fact, Dedekind denoted A ∩ B by
A − B.

He gave the following ‘charakteristischen Satz’ (characteristic theorem):

Ist m theilbar durch d, und a ein beliebiger Modul, so ist

m + (a − d) = (m + a) − d. 3

In modern notation, for all a, b, c:

(39.64) if a ≤ c, then a ∨ (b ∧ c) = (a ∨ b) ∧ c,

which is now known as the modular law, and lattices obeying it are called modular
lattices.

Next, Dedekind [1897] introduced the notion of a lattice under the name Dual-
gruppe (dual group), motivated by similarities observed by him between operations
on modules and those for logical statements as given in the book Algebra der Logik
(Algebra of Logic) by Schröder [1890]. Dedekind mentioned, as examples, subsets
of a set, modules, ideals in a finite field, subgroups of a group, and all fields, and
he introduced the name module law for property (39.64):

ich will es daher das Modulgesetz nennen, und jede Dualgruppe, in welcher es
herrscht, mag eine Dualgruppe vom Modultypus heißen.4

3 If m is divisible by d, and a is an arbitrary module, then

m + (a − d) = (m + a) − d.

4 I will therefore call it the module law, and every dual group in which it holds, may be
called a dual group of module type.
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Dedekind [1900] continued the study of modular lattices, and showed that each
modular lattice allows a rank function r : M → Z+ with the property that for all
a, b:

(39.65) (i) r(0) = 0;
(ii) r(b) = r(a) + 1 if b covers a;
(iii) r(a ∧ b) + r(a ∨ b) = r(a) + r(b).

In fact, this characterizes modular lattices.
In proving (39.65), Dedekind showed that each modular lattice satisfies

(39.66) if a and b cover c, and a �= b, then a ∨ b covers a and b,

which is the property characterizing upper semimodular lattices, a structure equiv-
alent to matroids.

1862-1913: Grassmann, Steinitz: linear and algebraic dependence

The basic exchange property of linear independence was formulated by Grassmann
[1862], in his book Die Ausdehnungslehre, as follows (in his terminology, vectors are
quantities):

20. Wenn m Grössen a1, . . . am, die in keiner Zahlbeziehung zu einander stehen,
aus n Grössen b1, . . . bn numerisch ableitbar sind, so kann man stets zu den m

Grössen a1, . . . am noch (n − m) Grössen am+1, . . . an von der Art hinzufügen,
dass sich die Grössen b1, . . . bn auch aus a1, . . . an numerisch ableiten lassen,
und also das Gebiet der Grössen a1, . . . an identisch ist dem Gebiete der Grössen
b1, . . . bn; auch kann man jene (n−m) Grössen aus den Grössen b1, . . . bn selbst
entnehmen.5

This property was also given by Steinitz [1913] (see below), but before that,
Steinitz proved it for algebraic independence. In his fundamental paper Algebraische
Theorie der Körper (Algebraic Theory of Fields), Steinitz [1910] studied, in § 22,
algebraic dependence in field extensions. The statements proved are as follows,
where L is a field extension of field K. Throughout, a is algebraically dependent on
S if a is algebraic with respect to the field extension K(S); in other words, if there
is a nonzero polynomial p(x) ∈ K(S)[x] with p(a) = 0.

Calling a set a system, he first observed:

1. Hängt das Element a vom System S algebraisch ab, so gibt es ein endliches
Teilsystem S′ von S, von welchem a algebraisch abhängt.6

and next he showed:

2. Hängt S3 von S2, S2 von S1 algebraisch ab, so ist S3 algebraisch abhängig von
S1.7

5 20. If m quantities a1, . . . am, that stand in no number relation to each other, are
numerically derivable from n quantities b1, . . . bn, then one can always add to the m

quantities a1, . . . am another (n − m) quantities am+1, . . . an such that the quantities
b1, . . . bn can also be derived numerically from a1, . . . an, and that hence the domain of
the quantities a1, . . . an is identical to the domain of the quantities b1, . . . bn; one also
can take those (n − m) quantities from the quantities b1, . . . bn themselves.

6 1. If element a depends algebraically on the system S, then there is a finite subsystem
S′ of S on which a depends algebraically.

7 2. If S3 depends algebraically on S2, and S2 on S1, then S3 is algebraically dependent
on S1.



676 Chapter 39. Matroids

He called two sets S1 and S2 equivalent if S1 depends algebraically on S2, and
conversely. A set is reducible if it has a proper subset equivalent to it. He showed:

3. Jedes Teilsystem eines irreduziblen Systems ist irreduzibel.
4. Jedes reduzible System enthält ein endliches reduzibles Teilsystem.8

and (after statement 5, saying that any two field extensions by equicardinal irre-
ducible systems are isomorphic):

6. Wird ein irreduzibles System S durch Hinzufügung eines Elementes a reduzibel,
so ist a von S algebraisch abhängig.9

From these properties, Steinitz derived:

7. Ist S ein (in bezug auf K) irreduzibles System, das Element a in bezug auf
K transzendent, aber von S algebraisch abhängig, so enthält S ein bestimmtes
endliches Teilsystem T von folgender Beschaffenheit: a ist von T algebraisch
abhängig; jedes Teilsystem von S, von welchem a algebraisch abhängt, enthält
das System T ; wird irgendein Element aus T durch a ersetzt, so geht S in ein
äquivalentes irreduzibles System über; keinem der übrigen Elemente von S kommt
diese Eigenschaft zu.10

Steinitz proved this using only the properties given above (together with the fact
that any s ∈ S is algebraically dependent on S). Moreover, he derived from 7, (what
is now called) Steinitz’ exchange property for algebraic dependence:

8. Es seien U und B endliche irreduzible Systeme von m bzw. n Elementen; es
sei n ≤ m und B algebraisch abhängig von U . Dann sind im Falle m = n die
Systeme U und B äquivalent, im Falle n < m aber ist U einem irreduziblen
System äquivalent, welches aus B und m − n Elementen aus U besteht.11

This in particular implies that any two equivalent irreducible systems have the same
size, and that the properties are equivalent to that determining a matroid.

In a subsequent paper, Steinitz [1913] proved a number of auxiliary statements
on linear equations. Among other things, he showed (in his terminology, vectors are
numbers, and a vector space is a module):

Besitzt der Modul M eine Basis von p Zahlen, und enthält er r linear unabhängige
Zahlen β1, . . . , βr, so besitzt er auch eine Basis von p Zahlen, unter denen die
Zahlen β1, . . . , βr sämtlich vorkommen.12

8 3. Every subsystem of an irreducible system is irreducible.
4. Every reducible system contains a finite reducible subsystem.

9 6. If an irreducible system S becomes reducible by adding an element a, then a is
algebraically dependent on S.

10 7. If S is an irreducible system (with respect to K), [and] the element a transcendent
with respect to K, but algebraically dependent on S, then S contains a certain finite
subsystem T with the following quality: a is algebraically dependent on T ; every subsys-
tem of S on which a depends algebraically, contains the system T ; if any element from
T is replaced by a, then S passes into an equivalent irreducible system; this property
belongs to none of the other elements of S .

11 8. Let U and B be finite irreducible systems of m and n elements respectively; let n ≤ m

and let B be algebraically dependent on U . Then, in case m = n, the systems U and
B are equivalent, but in case n < m, U is equivalent to an irreducible system which
consists of B and m − n elements from U .

12 If a module M possesses a base of p numbers, and it contains r linearly independent
numbers β1, . . . , βr, then it possesses also a base of p numbers, among which the num-
bers β1, . . . , βr all occur.
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Steinitz’ proof of this in fact gives a stronger result, known as Steinitz’ exchange
property : the new base is obtained by extending β1, . . . , βr with vectors from the
given base. So Steinitz came to the same result as Grassmann [1862] quoted above.
In his paper, Steinitz [1913] did not make a link with similar earlier results in
Steinitz [1910] on algebraic dependence.

1929: Bergmann

Inspired by Menger [1928a], who aimed at giving an axiomatic foundation for pro-
jective geometry on a lattice-theoretical basis, Bergmann [1929] gave an axiomatic
foundation of affine geometry, again on the basis of lattices. Bergmann’s article
contains a number of proofs that in fact concern matroids, while he assumed, but
not used, a complementation axiom (since he aimed at characterizing full affine
spaces, not subsets of it): for each pair of elements A ≤ B there exist C1 and C2

with A ∨ C1 = B, A ∧ C1 = 0, B ∧ C2 = A, and B ∨ C2 = 1. This obviously implies
(in the finite case) that

(39.67) each element of the lattice is a join of points.

(A point is a minimal nonzero element.) It is property (39.67) that Bergmann uses
in a number of subsequent arguments (and not the complementation axiom). His
further axiom is:

(39.68) for any element A and any point P of the lattice, there is no element
B with A < B < A ∨ P .

He called an ordered sequence (P1, . . . , Pn) of points a chain (Kette) (of an element
A), if Pi �≤ P1 ∨ · · · ∨Pi−1 for i = 1, . . . , n (and A = P1 ∨ · · · ∨Pn). He derived from
(39.67) and (39.68) that being a chain is independent of the order of the elements
in the chain, and that any two chains of an element A have the same length:

Satz: Alle Ketten eines Elementes A haben dieselbe Gliederzahl.13

He remarked that under condition (39.67), this in turn implies (39.68).
Denoting the length of any chain of A by |A|, Bergmann showed that it is equal

to the rank of A in the lattice, and he derived the submodular inequality:

|A| + |B| ≥ |A + B| + |A · B|.

(Bergmann denoted ∨ and ∧ by + and ·.) Thus he proved the submodularity of the
rank function of a matroid. These results were also given by Alt [1936] in Menger’s
mathematischen Kolloquium in Vienna on 1 March 1935 (cf. Menger [1936a,1936b]).

1929-1937: Haupt, van der Waerden

Inspired by the work of Steinitz, in the books Einführung in die Algebra (Introduc-
tion to Algebra) by Haupt [1929a,1929b] and Moderne Algebra (Modern Algebra)
by van der Waerden [1930], the analogies between proof methods for linear and
algebraic dependence were observed.

Haupt mentioned in his preface (after saying that his book will contain the
modern developments of algebra):

13 Theorem: All chains of an element A have the same number of members.
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Demgemäß ist das vorliegende Buch durchweg beeinflußt von der bahnbrechenden
,,Algebraischen Theorie der Körper“ von Herrn E. Steinitz, was hier ein für allemal
hervorgehoben sei. Ferner stützt sich die Behandlung der linearen Gleichungen
(vgl. 9,1 bis 9,4), einer Anregung von Frl. E. Noether folgend, auf die von Herrn
E. Steinitz gegebene Darstellung (vgl. das Zitat in 9,0 ).14

(The quotation in Haupt’s ‘9,0 ’ is to Steinitz [1910,1913].)
A number of theorems on algebraic dependence were proved in Chapter 23

of Haupt [1929b] by referring to the proofs of the corresponding results on linear
dependence in Chapter 9 of Haupt [1929a]. In the introduction of his Chapter 9,
Haupt wrote:

Die Behandlung der linearen Gleichungen ist (soweit es geht) so angelegt, daß
sich ein Teil der dabei gewonnenen Sätze auf Systeme von algebraisch abhängigen
Elementen überträgt, was später (23,6) dargelegt wird.15

In the first edition of his book, van der Waerden [1930] listed the properties of
algebraic dependence:

Die Relation der algebraischen Abhängigkeit hat demnach die folgenden Eigen-
schaften:
1. a ist abhängig von sich selbst, d.h. von der Menge {a}.
2. Ist a abhängig von M , so hängt es auch von jeder Obermenge von M ab.
3. Ist a abhängig von M , so ist a schon von einer endlichen Untermenge
{m1, . . . , mn} von M (die auch leer sein kann) abhängig.
4. Wählt man diese Untermenge minimal, so ist jedes mi von a und den übrigen
mj abhängig.
Weiter gilt:
5. Ist a abhängig von M und jedes Element von M abhängig von N , so ist a

abhängig von N .16

Following Steinitz, van der Waerden called two sets equivalent if each element
of the one set depends algebraically on the other set, and vice versa, while a set is
irreducible if no element of it depends algebraically on the remaining.

Using only the properties 1-5, van der Waerden derived that each set contains
an irreducible set equivalent to it, and that if M ⊆ N , then each irreducible subset
of M equivalent to M can be extended to an irreducible subset of N equivalent
to N — in other words, inclusionwise minimal subsets of M equivalent to M are

14 Accordingly, the present book is invariably influenced by the pioneering ‘Algebraic The-
ory of Fields’ by Mr E. Steinitz, which be emphasized here once and for all. Further,
following a suggestion by Miss E. Noether, the treatment of linear equations (cf. 9,1 to
9,4) leans on the presentation by Mr E. Steinitz (cf. the quotation in 9,0 ).

15 The treatment of linear equations is (as far as it goes) made such that a part of the
theorems obtained therewith transfers to systems of algebraically dependent elements,
which will be discussed later (23,6).

16 The relation of algebraic dependence has therefore the following properties:
1. a is dependent on itself, that is, on the set {a}.
2. If a is dependent on M , then it also depends on every superset of M .
3. If a is dependent on M , then a is dependent already on a finite subset {m1, . . . , mn}

of M (that can also be empty).
4. If one chooses this subset minimal, then every mi is dependent on a and the

remaining mj .
Further it holds:
5. If a is dependent on M and every element of M is dependent on N , then a is

dependent on N .
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independent, and inclusionwise maximal independent subsets of M are equivalent
to M .

Van der Waerden [1930] also showed that two equivalent irreducible systems
have the same size, but in the proof he uses polynomials. This is not necessary,
since the properties 1-5 determine a matroid.

Van der Waerden noticed the analogy with linear dependence, treated in his §
28, where he uses specific facts on linear equations:

Tatsächlich gelten für die dort betrachtete lineare Abhängigkeit dieselben Regeln
1 bis 5, die für die algebraische Abhängigkeit in § 61 aufgestellt wurden; man
kann also alle Beweise wörtlich übertragen.17

In the second edition of his book, van der Waerden [1937] gave a unified treat-
ment of linear and algebraic dependence, slightly different from the first edition. As
for linear dependence he stated in § 33:

Drei Grundsätze genügen. Der erste ist ganz selbstverständlich.
Grundsatz 1. Jedes ui (i = 1, . . . , n) ist von u1, . . . , un linear abhängig.
Grundsatz 2. Ist v linear abhängig von u1, . . . , un, aber nicht von u1, . . . , un−1,
so ist un linear abhängig von u1, . . . , un−1, v.

[· · ·]
Grundsatz 3. Ist w linear abhängig von v1, . . . , vs und ist jedes vj (j = 1, . . . , s)
linear abhängig von u1, . . . , un, so ist w linear abhängig von u1, . . . , un.18

The same axioms are given in § 64 of van der Waerden [1937], with ‘linear’ replaced
by ‘algebraisch’.

Next, van der Waerden called elements u1, . . . , un (linearly or algebraically)
independent if none of them depend on the rest of them. Among the conse-
quences of these principles, he mentioned that if u1, . . . , un−1 are independent but
u1, . . . , un−1, un are not, then un is dependent on u1, . . . , un−1, and that each finite
system of elements u1, . . . , un contains a (possibly empty) independent subsystem
on which each ui is dependent. He called two systems u1, . . . , un and v1, . . . , vs

equivalent if each vk depends on u1, . . . , un and each ui depends on v1, . . . , vs, and
he now derived from the three principles that two equivalent independent systems
have the same size.

Mac Lane [1938] observed that the axioms introduced by Whitney [1935] and
those by van der Waerden [1937] determine equivalent structures.

1934: Hilbert, Bernays: collinearity axioms

Axiom systems for points and lines in a plane were given by Hilbert [1899] in his
book Grundlagen der Geometrie (Foundations of Geometry), and by Veblen [1904].

17 In fact, the same rules 1 to 5, that were formulated for algebraic dependence in § 61,
hold for the linear dependence considered there; one can transfer therefore all proofs
word for word.

18 Three principles suffice. The first one is fully self-evident.
Principle 1. Every ui (i = 1, . . . , n) is linearly dependent on u1, . . . , un.
Principle 2. If v is linearly dependent on u1, . . . , un, but not on u1, . . . , un−1, then

un is linearly dependent on u1, . . . , un−1, v.
[· · ·]

Principle 3. If w is linearly dependent on v1, . . . , vs and every vj (j = 1, . . . , s) is
linearly dependent on u1, . . . , un, then w is linearly dependent on u1, . . . , un.



680 Chapter 39. Matroids

Basis is the axiom that any two distinct points are in exactly one line. Note that
this axiom determines precisely all matroids of rank at most 3 with no parallel
elements (by taking the lines as maximal flats).

One of the axioms of Veblen is:

Axiom VI. If points C and D (C �= D) lie on the line AB, then A lies on the line
CD.

This axiom corresponds to axiom 3) in the book Grundlagen der Mathematik
(Foundations of Mathematics) of Hilbert and Bernays [1934], who aim to make an
axiom system based on points only:

Dabei empfiehlt es sich für unseren Zweck, von dem Hilbertschen Axiomen-
system darin abzuweichen, daß wir nicht die Punkte und die Geraden als zwei
Systeme von Dingen zugrunde legen, sondern nur die Punkte als Individuen
nehmen.19

The axiom system of Hilbert and Bernays is in terms of a relation Gr to describe
collinearity of triples of points (where (x) stands for ∀x, (Ex) for ∃x, and P for the
negation of P ):

I. Axiome der Verknüpfung.
1) (x)(y)Gr(x, x, y)
,,x, x, y liegen stets auf einer Geraden.“
2) (x)(y)(z)(Gr(x, y, z) → Gr(y, x, z)&Gr(x, z, y)).
,,Wenn x, y, z auf einer Geraden liegen, so liegen stets auch y, x, z sowie auch
x, z, y auf einer Geraden.“
3) (x)(y)(z)(u)(Gr(x, y, z)&Gr(x, y, u)&x �= y → Gr(x, z, u)).
,,Wenn x, y, verschiedene Punkte sind und wenn x, y, z sowie x, y, u auf einer
Geraden liegen, so liegen stets auch x, z, u auf einer Geraden.“
4) (Ex)(Ey)(Ez)Gr(x, y, z).
,,Es gibt Punkte x, y, z, die nicht auf einer Geraden liegen.“20

The axioms 1) and 2) in fact tell that the relation Gr is determined by unordered
triples of distinct points. The exchange axiom 3) is a special case of the matroid
axiom for circuits in a matroid.

Hilbert and Bernays extended the system by axioms for a betweenness rela-
tion Zw for ordered triples of points, and a parallelism relation Par for ordered
quadruples of points.

19 At that it is advisable for our purpose to deviate from Hilbert’s axiom system in that
we do not lay the points and the lines as two systems of things as base, but take only
the points as individuals.

20 I. Axioms of connection.
1) (x)(y)Gr(x, x, y)
‘x, x, y always lie on a line.’
2) (x)(y)(z)(Gr(x, y, z) → Gr(y, x, z)&Gr(x, z, y)).
‘If x, y, z lie on a line, then also y, x, z as well as x, z, y always lie on a line.’
3) (x)(y)(z)(u)(Gr(x, y, z)&Gr(x, y, u)&x �= y → Gr(x, z, u)).
‘If x, y, are different points and if x, y, z as well as x, y, u lie on a line, then also x, z, u

always lie on a line.’
4) (Ex)(Ey)(Ez)Gr(x, y, z).
‘There are points x, y, z, that do not lie on a line.’
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1933–1935: Birkhoff: Lattices

In his paper ‘On the combination of subalgebras’, Birkhoff [1933] (‘Received 15
May 1933’) wrote:

The purpose of this paper is to provide a point of vantage from which to attack
combinatorial problems in what may be termed modern, synthetic, or abstract
algebra. In this spirit, a research has been made into the consequences and appli-
cations of seven or eight axioms, only one [V] of which itself is new.

The axioms are those for a lattice, added with axiom V, that amounts to (39.64)
above. Any lattice satisfying this condition is called by Birkhoff in this paper a ‘B-
lattice’. In an addendum, Birkhoff [1934b] mentioned that O. Ore had informed him
that part of his results had been obtained before by Dedekind [1900]. Therefore,
Birkhoff [1935b] renamed it to modular lattice.

Birkhoff [1933] mentioned, as examples, the classes of normal subgroups and
of characteristic subgroups of a group. Other examples mentioned are the ideals of
a ring, and the linear subspaces of Euclidean space. (Both examples actually give
sublattices of the lattice of all normal subgroups of the corresponding groups.)

Like Dedekind, Birkhoff [1933] showed that (39.64) implies (39.66). Lattices
satisfying (39.66) are called (upper) semimodular. Birkhoff showed that any upper
semimodular lattice has a rank function satisfying (39.65)(i) and (ii) and satisfying
the submodular law:

(39.69) r(a ∩ b) + r(a ∪ b) ≤ r(a) + r(b).

This characterizes upper semimodular lattices.
Birkhoff noticed that this implies that the modular lattices are exactly those

lattices satisfying both (39.66) and its symmetric form:

(39.70) if c covers a and b and a �= b, then a and b cover a ∧ b.

Birkhoff [1935c] showed that the partition lattice is upper semimodular, that is,
satisfies (39.66), and hence has a rank function satisfying the submodular inequal-
ity21. Thus the complete graph, and hence any graph, gives a geometric lattice (and
hence a matroid — however, Whitney’s work seems not to have been known yet to
Birkhoff at the time of writing this paper).

In a number of other papers, Birkhoff [1934a,1934c,1935b] made a further study
of modular lattices, and gave relations to projective geometries (in which the collec-
tion of all flats gives a modular lattice). Klein-Barmen [1937] further investigated
semimodular lattices (called by him Birkhoffsche Verbände (Birkhoff lattices)), of
which he found several lattice-theoretical characterizations.

1935: Whitney: Matroids

Whitney [1935] (presented to the American Mathematical Society, September 1934)
introduces the notion of matroid as follows:

21 In fact, Birkhoff [1935c] claimed the modular equality for the rank function of a partition
lattice (page 448), but this must be a typo, witness the formulation of, and the reference
in, the first footnote on that page.
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Let C1, C2, · · · , Cn be the columns of a matrix M . Any subset of these columns
is either linearly independent or linearly dependent; the subsets thus fall into two
classes. These classes are not arbitrary; for instance, the two following theorems
must hold:

(a) Any subset of an independent set is independent.
(b) If Np and Np+1 are independent sets of p and p +1 columns respec-
tively, then Np together with some column of Np+1 forms an indepen-
dent set of p + 1 columns.

There are other theorems not deducible from this; for in § 16 we give an example of
a system satisfying these two theorems but not representing any matrix. Further
theorems seem, however, to be quite difficult to find. Let us call a system obeying
(a) and (b) a “matroid.” The present paper is devoted to a study of the elementary
properties of matroids. The fundamental question of completely characterizing
systems which represent matrices is left unsolved. In place of the columns of a
matrix we may equally well consider points or vectors in a Euclidean space, or
polynomials, etc.

In the paper, Whitney observed that forests in a graph form the independent
sets of a matroid, for which reason he carried over various terms from graphs to
matroids.

Whitney described several equivalent axiom systems for the notion of matroid.
First, he showed that the rank function is characterized by (39.42), and he derived
that it is submodular. Next, he showed that the collection of bases is characterized
by (39.33)(ii), and the collection of circuits by (39.34)(iii). Moreover, he showed
that complementing all bases gives again a matroid, the dual matroid, and that
the dual of a linear matroid is again a linear matroid. In the paper, he also studied
separability and representability of matroids. The example given in Whitney’s § 16
(mentioned in the above quotation), is in fact the well-known Fano matroid — he
apparently did not consider matrices over GF(2). However, in an appendix of the
paper, he characterized the matroids representable by a matrix ‘of integers mod 2’:
a matroid is representable over GF(2) if and only if any sum (mod 2) of circuits
can be partitioned into circuits.

In a subsequent paper ‘Abstract linear independence and lattices’, Birkhoff
[1935a] pointed out the relations of Whitney’s work with Birkhoff’s earlier work on
semimodular lattices. He stated:

In a preceding paper, Hassler Whitney has shown that it is difficult to distinguish
theoretically between the properties of linear dependence of ordinary vectors, and
those of elements of a considerably wider class of systems, which he has called
“matroids.”
Now it is obviously impossible to incorporate all of the heterogeneous abstract
systems which are constantly being invented, into a body of systematic theory,
until they have been classified into two or three main species. The purpose of this
note is to correlate matroids with abstract systems of a very common type, which
I have called “lattices.”

Birkhoff showed that a lattice is isomorphic to the lattice of flats of a matroid if
and only if the lattice is semimodular, that is, satisfies (39.66), and each element is
a join of atoms.

In the paper ‘Some interpretations of abstract linear dependence in terms of
projective geometry’, MacLane [1936] gave a geometric interpretation of matroids.
He introduced the notion of a ‘schematic n-dimensional figure’, consisting of ‘k-
dimensional planes’ for k = 1, 2, . . .. Each such plane is a subset of an (abstract)
set of ‘points’, with the following axioms (for any appropriate k):
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(39.71) (i) any k points belonging to no k − 1-dimensional plane, belong to
a unique k-dimensional plane; moreover, this plane is contained in
any plane containing these k points;

(ii) every k-dimensional plane contains k points that belong to no k−1-
dimensional plane.

MacLane mentioned that there is a 1-1 correspondence between schematic figures
and the collections of flats of matroids. As a consequence he mentioned that a
schematic n-dimensional figure is completely determined by its collection of n − 1-
dimensional planes (as a matroid is determined by its hyperplanes = complements
of cocircuits).

1935: Nakasawa: Abhängigkeitsräume

In the paper Zur Axiomatik der linearen Abhängigkeit. I (On the axiomatics of
linear dependence. I) in Science Reports of the Tokyo Bunrika Daigaku (Tokyo
University of Literature and Science), Nakasawa [1935] introduced an axiom sys-
tem for dependence, that he proved to be equivalent to matroids (in a different
terminology).

He was motivated by an axiom system described by Thomsen [1933] in his
book Grundlagen der Elementargeometrie (Foundations of Elementary Geometry).
Thomsen’s ‘cycle calculus’ is an attempt to axiomatize relations (like coincidence,
orthogonality, parallelism) between geometric objects (points, lines, etc.). Thomsen
emphasized that existence questions often are inessential in elementary geometry:

In der Tat erscheinen uns ja auch die Existenzaussagen als ein verhältnismäßig
unwesentliches Beiwerk der Elementargeometrie. Ohne Zweifel empfinden wir als
die eigentlich inhaltsvollsten und die wichtigsten Einzelaussagen der Elementarge-
ometrie die von der folgenden reinen Form: ,,Wenn eine Reihe von geometrischen
Gebilden, d.h. eine Anzahl von Punkten, Geraden, usw., gegeben vorliegt, und
zwar derart, daß zwischen den gegebenen Punkten, Geraden usw. die und die ge-
ometrischen Lagebeziehungen bestehen (Koinzidenz, Senkrechtstehen, Parallel-
laufen, ,,Mittelpunkt sein“ und anderes mehr), dann ist eine notwendige Folge
dieser Annahme, daß auch noch diese bestimmte weitere geometrische Lage-
beziehung gleichzeitig besteht.“ In Sätzen dieser Form kommt nichts von Existen-
zaussagen vor. Was das Wichtigste ist, nicht in den Folgerungen. Dann aber auch
nicht in den Annahmen. Wir nehmen an: Wenn die und die Dinge in den und den
Beziehungen gegeben vorliegen..., usw. Wir machen aber keinerlei Voraussetzun-
gen darüber, ob eine solche Konfiguration in unserer Geometrie existieren kann.
Der Schluß ist nur: Wenn sie existieren, dann .... Falls die Konfiguration gar nicht
existiert, der Satz also gegenstandslos wird, betrachten wir ihn nach der üblichen
Konvention ,,gegenstandslos, also richtig“ als richtig.22

22 Indeed, also the existence statements seem to us a relatively inessential side issue of
elementary geometry. Undoubtedly, we find as the really most substantial and most
important special statements of elementary geometry those of the following pure form:
‘If a sequence of geometric creations, that is, a number of points, lines etc., are given
to us, and that in such a way, that those and those geometric position relations exist
between the given points, lines etc. (coincidence, orthogonality, parallelism, “being a
centre”, and other), then a necessary consequence of this assumption is that also this
certain further geometric position relation exists at the same time.’ In theorems of this
form, no existence statements occur. What is most important: not in the consequences.
But then neither in the assumptions. We assume: If those and those things are given
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Thomsen aimed at founding axiomatically ‘the partial geometry of all elementary
geometric theorems without existence statements’. To that end, he introduced the
concept of a cycle, which is an ordered finite sequence of abstract objects, which
can be thought of as points, lines, etc. Certain cycles are ‘correct’ and the other ‘in-
correct’ (essentially they represent a system of relations defining any binary group):

A) Axiom der Grundzyklen: Der Zyklus αα ist für jedes α richtig, der Zyklus α

für kein α.
B) Axiom des Löschens: β1β2 . . . βnαα → β1β2 . . . βn; in Worten: Aus der

Richtigkeit des Zyklus β1β2 . . . βnαα folgt auch die des Zyklus β1β2 . . . βn.
C) Axiom des Umstellens: β1β2 . . . βn → β2β3 . . . βnβ1.
D) Axiom des Umkehrens: β1β2 . . . βn−1βn → βnβn−1 . . . β2β1.
E) Axiom des Anfügens: β1β2 . . . βn und γ1γ2 . . . γr → β1β2 . . . βnγ1γ2 . . . γr.23

Axiom B) can be considered as a variant of Steinitz’ exchange property. With
the other axioms it implies that if β1 · · · βnα and γ1 · · · γrα are cycles, then
β1 · · · βnγ1 · · · γr is a cycle. Therefore, the set of all inclusionwise minimal nonempty
sets containing a cycle form the circuits of a matroid.

The purpose of Nakasawa [1935] is to generalize Thomsen’s axiom system:

In der vorliegenden Untersuchung soll ein Axiomensystem für eine neue For-
mulierung der linearen Abhängigkeit des n-dimensionalen projektiven Raumes
angegeben werden, indem wir hauptsächlich den Zyklenkalkül, den Herr G. Thom-
sen bei seiner Grundlegung der elementaren Geometrie hergestellt hat, hier in
einem noch abstrakteren Sinne verwenden.24

While Thomsen’s cycles relate to unions of circuits in a matroid, those of Nakasawa
form the dependent sets of a matroid. His axiom system can be considered as a direct
extension to higher dimensions of the collinearity axioms of Hilbert and Bernays
given above.

He called the structure der erste Verknüpfungsraum (the first connection space),
or a B1-Raum (B1-space), writing a1 · · · as for a1 · · · as = 0:

Grundannahme: Wir denken uns eine gewisse Menge der Elementen; B1 ∋
a1, a2, · · · , as, · · ·. Für gewisse Reihen der Elementen, die wir Zyklen nennen
wollen, denken wir dazu die Relationen “gelten” oder “gültig sein”, in Ze-
ichen a1 · · · as = 0, bzw. “nicht gelten” oder “nicht gültig sein”, in Zeichen
a1 · · · as �= 0. Diese Relationen sollen nun folgenden Axiomen genügen;

to us in those and those relations..., etc. We do not make any assumption on the fact
if such a configuration can exist in our geometry. The conclusion is only: If they exist,
then .... In case the configuration does not exist at all, and the theorem thus becomes
meaningless, we consider it by the usual convention ‘meaningless, hence correct’ as
correct.

23

A) Axiom of ground cycles: The cycle αα is correct for each α, the cycle α for no α.
B) Axiom of solving: β1β2 . . . βnαα → β1β2 . . . βn; in words: From the correctness of the

cycle β1β2 . . . βnαα follows that of the cycle β1β2 . . . βn.
C) Axiom of transposition: β1β2 . . . βn → β2β3 . . . βnβ1.
D) Axiom of inversion: β1β2 . . . βn−1βn → βnβn−1 . . . β2β1.
E) Axiom of addition: β1β2 . . . βn and γ1γ2 . . . γr → β1β2 . . . βnγ1γ2 . . . γr.

24 In the present research, an axiom system for a new formulation of linear dependence of
the n-dimensional projective space should be indicated, while we use here mainly the
cycle calculus, which Mr G. Thomsen has constructed in his foundation of elementary
geometry, in a still more abstract sense.
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Axiom 1. (Reflexivität) : aa.
Axiom 2. (Folgerung) : a1 · · · as → a1 · · · asx, (s = 1, 2, · · ·).
Axiom 3. (Vertauschung) : a1 · · · ai · · · as → ai · · · a1 · · · as,

(s = 2, 3, · · · ; i = 2, · · · , s).
Axiom 4. (Transitivität) : a1 · · · as �= 0, xa1 · · · as, a1 · · · asy

→ xa1 · · · as−1y, (s = 1, 2, · · ·).
Definition I. Eine solche Menge B1 heisst der erste Verknüpfungsraum, in kurzen
Worten, B1-Raum.25

Axiom 3 corresponds to condition (39.3).
Nakasawa introduced the concept of span, and he derived that any two inde-

pendent sets having the same span, have the same size. It implies that B1-spaces
are the same structures as matroids. Moreover, he gave a submodular law for a
rank concept.

In a second paper, Nakasawa [1936a] added a further axiom on intersections of
subspaces, yielding a ‘B2-space’, which corresponds to a projective space (in which
the rank is modular), and in a third paper, Nakasawa [1936b] observed that his
B1-spaces form the same structure as the matroids of Whitney.

1937-1940: Pauc, Haupt, Nöbeling

The axioms presented by Nakasawa were also given by Pauc [1937], added with
an axiom describing the limit behaviour of dependence, if the underlying set is
endowed with a topology:

Introduction axiomatique d’une notion de dépendance sur une classe lim-

ite. — Soit D un prédicat relatif aux systèmes finis non ordonnés de points d’une
classe limite L, assujetti aux axiomes (notation d’Hilbert-Bernays)

(A1) (x1)(x2)(D[x1, x2] ∼ (x1 = x2)),
(A2) (x1)(x2) . . . (xp)(y)(D[x1, x2, . . . , xp] → D[x1, x2, . . . , xp, y]),

(A3) (x1)(x2) . . . (xp)(y)(z)(D[x1, . . . , xp]& D[x1, . . . , xp, y]&
D[x1, . . . , xp, z] → D[x2, . . . , xp, y, z]),

(A4)





Quels que soient les points x1, x2, . . . , xp et la suite y1, y2, . . . , yq ,

. . . de L
( lim
q→∞

yq = y)&(q)D[x1, x2, . . . , xp, yq ] → D[x1, x2, . . . , xp, y].26

In a subsequent paper, Haupt, Nöbeling, and Pauc [1940] studied systems, called
A-Mannigfaltigkeit, (A-manifolds) that satisfy the axioms A1-A3. They mentioned

25 Basic assumption: We imagine ourselves a certain set of elements; B1 ∋
a1, a2, · · · , as, · · ·. For certain sequences of the elements, which we want to call cycles,
we think the relations on them ‘to hold ’ or ‘to be valid ’, in notation a1 · · · as = 0, and
‘not to hold ’ or ‘not to be valid ’, in notation a1 · · · as �= 0, respectively. These relations
now should satisfy the following axioms;

Axiom 1. (reflexivity) : aa.
Axiom 2. (deduction) : a1 · · · as → a1 · · · asx, (s = 1, 2, · · ·).
Axiom 3. (exchange) : a1 · · · ai · · · as → ai · · · a1 · · · as,

(s = 2, 3, · · · ; i = 2, · · · , s).
Axiom 4. (transitivity) : a1 · · · as �= 0, xa1 · · · as, a1 · · · asy

→ xa1 · · · as−1y, (s = 1, 2, · · ·).
Definition I. Such a set B1 is called the first connection space, in short, B1-space.

26 Axiomatic introduction of a notion of dependence on a limit class. — Let D

be a predicate relative to the finite unordered systems of points from a limit class L,
subject to the axioms (notation of Hilbert-Bernays)
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that this axiom system was indeed inspired by those for collinearity of Hilbert-
Bernays quoted above. They commented that its relation with Birkhoff’s lattices,
is analogous to the relation of the Hilbert-Bernays collinearity axioms with those
of Hilbert for points and lines.

Haupt, Nöbeling, and Pauc [1940] gave, as examples, linear and algebraic de-
pendence, and derived several basic facts (all bases have the same size, each inde-
pendent set is contained in a base, for each pair of bases B, B′ and x ∈ B \B′ there
is a y ∈ B′ \ B such that B − x + y is a base, and the rank is submodular).

The authors mentioned that they were informed by G. Köthe about the relations
of their work with the lattice formulation of algebraic dependence of Mac Lane
[1938], but no connection is made with Whitney’s matroid.

Among the further papers related to matroids are Menger [1936b], giving ax-
ioms for (full) affine spaces, and Wilcox [1939,1941,1942,1944] and Dilworth [1941a,
1941b,1944] on matroid lattices. The notion of M -symmetric lattice introduced by
Wilcox [1942] was shown in Wilcox [1944] to be equivalent to upper semimodular
lattice.

Rado

Rado was one of the first to take the independence structure as a source for further
theorems, and to connect it with matching type theorems and combinatorial opti-
mization. He had been interested in Kőnig-Hall type theorems (Rado [1933,1938]),
and in his paper Rado [1942], he extended Hall’s marriage theorem to transversals
that are independent in a given matroid — a precursor of matroid intersection. In
fact, with an elementary construction, Rado’s theorem implies the matroid union
theorem, and hence also the matroid intersection theorem (to be discussed in Chap-
ters 41 and 42).

Rado [1942] did not refer to any earlier literature when introducing the concept
of an independence relation, but the axioms are similar to those of Whitney for
the independent sets in a matroid. Rado mentioned only linear independence as a
special case.

He proved that a family of subsets of a matroid has an independent transversal
if and only if the union of any k of the subsets contains an independent set of size
k, for all k. Rado also showed that this theorem characterizes matroids.

Rado [1949a] extended the concept of matroid to infinite matroids, where he
says that he extends the axioms of Whitney [1935].

Rado [1957] showed that if the elements of a matroid are linearly ordered by ≤,
there is a unique minimal base {b1, . . . , br} with b1 < b2 < · · · < br such that for
each i = 1, . . . , r all elements s < bi belong to span({b1, . . . , bi−1}). Rado derived
that for any independent set {a1, . . . , ak} with a1 < · · · < ak one has bi ≤ ai

for i = 1, . . . , k. Therefore, the greedy method gives an optimum solution when

(A1) (x1)(x2)(D[x1, x2] ∼ (x1 = x2)),
(A2) (x1)(x2) . . . (xp)(y)(D[x1, x2, . . . , xp] → D[x1, x2, . . . , xp, y]),

(A3) (x1)(x2) . . . (xp)(y)(z)(D[x1, . . . , xp]& D[x1, . . . , xp, y]&
D[x1, . . . , xp, z] → D[x2, . . . , xp, y, z]),

(A4)





Whatever are the points x1, x2, . . . , xp and the sequence y1, y2, . . . , yq ,

. . . from L
( lim
q→∞

yq = y)&(q)D[x1, x2, . . . , xp, yq ] → D[x1, x2, . . . , xp, y].
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applied to find a minimum-weight base. Rado mentioned that it extends the work
of Bor̊uvka and Kruskal on finding a shortest spanning tree in a graph.

For notes on the history of matroid union, see Section 42.6f. For an excellent
survey of early literature on matroids, with reprints of basic articles, see Kung
[1986].



Chapter 40

The greedy algorithm and the
independent set polytope

We now pass to algorithmic and polyhedral aspects of matroids. We show
that the greedy algorithm characterizes matroids and that it implies a
characterization of the independent set polytope (the convex hull of the
incidence vectors of the independent sets).
Algorithmic and polyhedral aspects of the intersection of two matroids will
be studied in Chapter 41.

40.1. The greedy algorithm

Let I be a nonempty collection of subsets of a finite set S closed under
taking subsets. For any weight function w : S → R we want to find a set I
in I maximizing w(I). The greedy algorithm consists of setting I := ∅, and
next repeatedly choosing y ∈ S \ I with I ∪ {y} ∈ I and with w(y) as large
as possible. We stop if no such y exists.

For general collections I of this kind this need not lead to an optimum
solution. Indeed, matroids are precisely the structures where it always works,
as the following theorem shows (Rado [1957] (necessity) and Gale [1968] and
Edmonds [1971] (sufficiency)):

Theorem 40.1. Let I be a nonempty collection of subsets of a set S, closed
under taking subsets. Then the pair (S, I) is a matroid if and only if for each
weight function w : S → R+, the greedy algorithm leads to a set I in I of
maximum weight w(I).

Proof. Necessity. Let (S, I) be a matroid and let w : S → R+ be any weight
function on S. Call an independent set I good if it is contained in a maximum-
weight base. It suffices to show that if I is good, and y is an element in S \ I
with I + y ∈ I and with w(y) as large as possible, then I + y is good.

As I is good, there exists a maximum-weight base B ⊇ I. If y ∈ B, then
I + y is good again. If y �∈ B, then there exists a base B′ containing I + y
and contained in B + y. So B′ = B − z + y for some z ∈ B \ I. As w(y) is
chosen maximum and as I + z ∈ I since I + z ⊆ B, we know w(y) ≥ w(z).
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Hence w(B′) ≥ w(B), and therefore B′ is a maximum-weight base. So I + y
is good.

Sufficiency. Suppose that the greedy algorithm leads to an independent set
of maximum weight for each weight function w : S → R+. We show that
(S, I) is a matroid.

Condition (39.1)(i) is satisfied by assumption. To see condition (39.1)(ii),
let I, J ∈ I with |I| < |J |. Suppose that I + z �∈ I for each z ∈ J \ I.

Let k := |I|. Consider the following weight function w on S:

(40.1) w(s) :=





k + 2 if s ∈ I,
k + 1 if s ∈ J \ I,

0 if s ∈ S \ (I ∪ J).

Now in the first k iterations of the greedy algorithm we find the k elements
in I. By assumption, at any further iteration, we cannot choose any element
in J \ I. Hence any further element chosen, has weight 0. So the greedy
algorithm yields an independent set of weight k(k + 2).

However, J has weight at least |J |(k + 1) ≥ (k + 1)(k + 1) > k(k + 2).
Hence the greedy algorithm does not give a maximum-weight independent
set, contradicting our assumption.

The theorem restricts w to nonnegative weight functions. However, it is
shown similarly that for matroids M = (S, I) and arbitrary weight functions
w : S → R, the greedy algorithm finds a maximum-weight base. By replacing
‘as large as possible’ in the greedy algorithm by ‘as small as possible’, one
obtains an algorithm finding a minimum-weight base in a matroid. Moreover,
by deleting elements of negative weight, the algorithm can be adapted to yield
an independent set of maximum weight, for any weight function w : S → R.

Throughout we assume that the matroid M = (S, I) is given by an algo-
rithm testing if a given subset of S belongs to I. We call this an independence
testing oracle. So the full list of all independent sets is not given explicitly
(such a list would increase the size of the input exponentially, making most
complexity issues meaningless).

In explicit applications, the matroid usually can be described by such a
polynomial-time algorithm (polynomial in |S|). For instance, we can test if
a given set of edges of a graph G = (V, E) is a forest in time polynomially
bounded by |V | + |E|. So the matroid (E, F) can be described by such an
algorithm.

Under these assumptions we have:

Corollary 40.1a. A maximum-weight independent set in a matroid can be
found in strongly polynomial time.

Proof. See above.
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Similarly, for minimum-weight bases:

Corollary 40.1b. A minimum-weight base in a matroid can be found in
strongly polynomial time.

Proof. See above.

40.2. The independent set polytope

The algorithmic results obtained in the previous section have interesting con-
sequences for polyhedra associated with matroids, as was shown by Edmonds
[1970b,1971,1979].

The independent set polytope Pindependent set(M) of a matroid M = (S, I)
is, by definition, the convex hull of the incidence vectors of the independent
sets of M . So Pindependent set(M) is a polytope in RS .

Each vector x in Pindependent set(M) satisfies the following linear inequal-
ities:

(40.2) xs ≥ 0 for s ∈ S,
x(U) ≤ rM (U) for U ⊆ S,

because the incidence vector χI of any independent set I of M satisfies (40.2).
Note that x is an integer vector satisfying (40.2) if and only if x is the
incidence vector of some independent set of M .

Edmonds showed that system (40.2) fully determines the independent set
polytope, by deriving it from the following formula (yielding a good charac-
terization):

Theorem 40.2. Let M = (S, I) be a matroid, with rank function r. Then
for any weight function w : S → R+:

(40.3) max{w(I) | I ∈ I} =
n∑

i=1

λir(Ui),

where U1 ⊂ · · · ⊂ Un ⊆ S and where λi ≥ 0 satisfy

(40.4) w =
n∑

i=1

λiχ
Ui .

Proof. Order the elements of S as s1, . . . , sn such that w(s1) ≥ w(s2) ≥
· · · ≥ w(sn). Define

(40.5) Ui := {s1, . . . , si}

for i = 0, . . . , n, and

(40.6) I := {si | r(Ui) > r(Ui−1)}.
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So I is the output of the greedy algorithm. Hence I is a maximum-weight
independent set.

Next let:

(40.7) λi := w(si) − w(si+1) for i = 1, . . . , n − 1,
λn := w(sn).

This implies (40.3):

(40.8) w(I) =
∑

s∈I

w(s) =
n∑

i=1

w(si)(r(Ui) − r(Ui−1))

= w(sn)r(Un) +
n−1∑

i=1

(w(si) − w(si+1))r(Ui) =
n∑

i=1

λir(Ui).

By taking any ordering of S for which w is nonincreasing, (40.5) gives any
chain of subsets Ui satisfying (40.4) for some λi ≥ 0. Hence we have the
theorem.

This can be interpreted in terms of LP-duality. For any weight function
w : S → R, consider the linear programming problem

(40.9) maximize wTx,
subject to xs ≥ 0 (s ∈ S),

x(U) ≤ rM (U) (U ⊆ S),

and its dual:

(40.10) minimize
∑

U⊆S

yUrM (U),

subject to yU ≥ 0 (U ⊆ S),∑

U⊆S

yUχU ≥ w.

Corollary 40.2a. If w : S → Z, then (40.9) and (40.10) have integer opti-
mum solutions.

Proof. We can assume that w(s) ≥ 0 for each s ∈ S (as neither the maximum
nor the minimum changes by resetting w(s) to 0 if negative). Then (40.4)
implies that the λi are integer. This gives integer optimum solutions of (40.9)
and (40.10).

In polyhedral terms, Theorem 40.2 implies:

Corollary 40.2b. The independent set polytope is determined by (40.2).

Proof. Immediately from Theorem 40.2 (with (40.10)).

Moreover, in TDI terms:
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Corollary 40.2c. System (40.2) is totally dual integral.

Proof. Immediately from Corollary 40.2a.

Similar results hold for the base polytope. For any matroid M , let
Pbase(M) be the base polytope of M , defined as the convex hull of the in-
cidence vectors of bases of M . Then:

Corollary 40.2d. The base polytope of a matroid M = (S, I) is determined
by

(40.11) xs ≥ 0 for s ∈ S,
x(U) ≤ rM (U) for U ⊆ S,
x(S) = rM (S).

Proof. This follows directly from Corollary 40.2b, since the base polytope
is the intersection of the independent set polytope with the hyperplane {x |
x(S) = rM (S)}, as an independent set I is a base if and only if |I| ≥ rM (S).

The corresponding TDI result reads:

Corollary 40.2e. System (40.11) is totally dual integral.

Proof. By Theorem 5.25 from Corollary 40.2c.

One can similarly describe the spanning set polytope Pspanning set(M) of
M , which is, by definition, the convex hull of the incidence vectors of the
spanning sets of M . It is determined by the system:

(40.12) 0 ≤ xs ≤ 1 for s ∈ S,
x(U) ≥ rM (S) − rM (S \ U) for U ⊆ S.

Corollary 40.2f. The spanning set polytope is determined by (40.12).

Proof. A subset U of S is spanning in M if and only if S \ U is independent
in M∗. Hence for any x ∈ RS we have:

(40.13) x ∈ Pspanning set(M) ⇐⇒ 1 − x ∈ Pindependent set(M
∗).

By Corollary 40.2b, 1 − x belongs to Pindependent set(M
∗) if and only if x

satisfies:

(40.14) 1 − xs ≥ 0 for s ∈ S,
|U | − x(U) ≤ rM∗(U) for U ⊆ S.

Since rM∗(U) = |U | + rM (S \ U) − rM (S), the present corollary follows.

Corollary 40.2c gives similarly the TDI result:
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Corollary 40.2g. System (40.12) is totally dual integral.

Proof. By reduction to Corollary 40.2c, by a similar reduction as in the proof
of the previous corollary.

Note that

(40.15) Pbase(M) = Pindependent set(M) ∩ Pspanning set(M),

Pindependent set(M) = P ↓
base(M) ∩ [0, 1]S ,

Pspanning set(M) = P ↑
base(M) ∩ [0, 1]S .

The following consequence on the intersection of the base polytope with a
box was observed by Hell and Speer [1984]:

Corollary 40.2h. Let M = (S, I) be a matroid and let l, u ∈ RS with l ≤ u.

Then there is an x ∈ Pbase(M) with l ≤ x ≤ u if and only if l ∈ P ↓
base(M)

and u ∈ P ↑
base(M).

Proof. Necessity being trivial, we show sufficiency. We may assume that
l, u ∈ [0, 1]S . So l ∈ Pindependent set(M) and u ∈ Pspanning set(M). Choose
l′, u′ such that l ≤ l′ ≤ u′ ≤ u, l′ ∈ Pindependent set(M), u′ ∈ Pspanning set(M),
and ‖u′ − l′‖1 minimal.

If l′ = u′ we are done, so assume that there is an s ∈ S with l′(s) < u′(s).
As we cannot increase l′(s), there is a T ⊆ S with s ∈ T and l′(T ) = r(T ).
Similarly, as we cannot decrease u′(s), there is a U ⊆ S with s �∈ U and
u′(S \ U) = r(S) − r(U). Then we have the contradiction

(40.16) l′(T ∩ U) + u′(T ∪ U) ≤ r(T ∩ U) + u′(S) + r(T ∪ U) − r(S)
≤ r(T ) + r(U) + u′(S) − r(S) = l′(T ) + u′(U)
< l′(T ∩ U) + u′(T ∪ U).

The last inequality follows from

(40.17) u′(T ∪ U) − u′(U) = u′(T \ U) > l′(T \ U) = l′(T ) − l′(T ∩ U),

since s ∈ T \ U and u′(s) > l′(s).

40.3. The most violated inequality

We now consider the problem to find, for any matroid M = (S, I) and any
x ∈ RS

+ not in the independent set polytope of M , an inequality among (40.2)
most violated by x. That is, to find U ⊆ S maximizing x(U) − rM (U).

The following theorem implies a min-max relation for this (Edmonds
[1970b]):

Theorem 40.3. Let M = (S, I) be a matroid and let x ∈ RS
+. Then
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(40.18) max{z(S) | z ∈ Pindependent set(M), z ≤ x}
= min{rM (U) + x(S \ U) | U ⊆ S}.

Proof. The inequality ≤ in (40.18) follows from

(40.19) z(S) = z(U) + z(S \ U) ≤ rM (U) + x(S \ U).

To see equality, let z attain the maximum. Then for each s ∈ S with zs < xs

there exists a U ⊆ S with s ∈ U and z(U) = rM (U) (otherwise we can
increase zs). Now the collection of sets U ⊆ S satisfying z(U) = rM (U) is
closed under taking unions (and intersections), since if z(T ) = rM (T ) and
z(U) = rM (U), then

(40.20) z(T ∪U) = z(T )+z(U)−z(T ∩U) ≥ rM (T )+rM (U)−rM (T ∩U)
≥ rM (T ∪ U).

Hence there exists a U ⊆ S such that z(U) = rM (U) and such that U contains
each s ∈ S with zs < xs. Hence:

(40.21) z(S) = z(U) + z(S \ U) = rM (U) + x(S \ U),

giving (40.18).

Cunningham [1984] showed that from an independence testing oracle for
a matroid one can derive a strongly polynomial time algorithm to find for
any given vector x, a maximum violated inequality for the independent set
polytope.

More strongly, Cunningham showed that one can solve the following prob-
lem in strongly polynomial time:

(40.22) given: a matroid M = (S, I), by an independence testing oracle,
and an x ∈ QS

+;
find: a z ∈ Pindependent set(M) with z ≤ x maximizing z(S),

with a decomposition of z as convex combination of incidence
vectors of independent sets, and a subset U of S satisfying
z(S) = rM (U) + x(S \ U).

By (40.18), the set U certifies that z maximizes z(S). In the algorithm
for (40.22), Cunningham utilized the ‘consistent breadth-first search’ based
on lexicographic order, given by Schönsleben [1980] and Lawler and Martel
[1982a].

To prove Cunningham’s result, we first show two lemmas. The first lemma
is used only to prove the second lemma. As in Section 39.9, we define for any
independent set I of a matroid M = (S, I):

(40.23) A(I) := {(y, z) | y ∈ I, z ∈ S \ I, I − y + z ∈ I}.

Lemma 40.4α. Let M = (S, I) be a matroid and let I ∈ I. Let (s, t) ∈ A(I),
define I ′ := I−s+t, and let (u, v) ∈ A(I ′)\A(I). Then t = u or (u, t) ∈ A(I),
and s = v or (s, v) ∈ A(I).
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Proof. By symmetry, it suffices to show that t = u or (u, t) ∈ A(I) (as we may
assume that I is a base, and hence the second part follows by duality). We
can assume that t �= u. Then t �= v, since v �∈ I ′ = I − s+ t, as (u, v) ∈ A(I ′).

If v = s, then I − u + t = I − u − s + t + v = I ′ − u + v ∈ I and hence
(u, t) ∈ A(I). If v �= s, then I −u ∈ I and I −u− s+ t+ v ∈ I, and therefore
I − u + t ∈ I or I − u + v ∈ I; that is, (u, v) ∈ A(I) or (u, t) ∈ A(I).

Lemma 40.4β. Let M = (S, I) be a matroid and let q be a new element.
For any I ∈ I, define

(40.24) Ã(I) := {(u, v) | u ∈ I + q, v ∈ S \ I, I − u + v ∈ I}.

Let (s, t) ∈ A(I), define I ′ := I − s + t, and let (u, v) ∈ Ã(I ′) \ Ã(I). Then

t = u or (u, t) ∈ Ã(I), and s = v or (s, v) ∈ Ã(I).

Proof. Let Ĩ := {J ⊆ S + q | J − q ∈ I}. Then the present lemma follows

from Lemma 40.4α applied to the matroid (S + q, Ĩ).

Now we can derive Cunningham’s result:

Theorem 40.4. Problem (40.22) is solvable in strongly polynomial time.

Proof. We keep a vector z ≤ x in the independent set polytope of M and a
decomposition

(40.25) z =

k∑

i=1

λiχ
Ii ,

with I1, . . . , Ik ∈ I, λ1, . . . , λk > 0, and
∑

i λi = 1. Initially z := 0, k := 1,
I1 := ∅, λ1 := 1.

Let

(40.26) T := {s ∈ S | zs < xs}.

Let q be a new element. For each i, define Ã(Ii) as in (40.24), and let D =
(S + q, A) be the directed graph with

(40.27) A := Ã(I1) ∪ · · · ∪ Ã(Ik).

Fix an arbitrary linear order of the elements of S + q, by setting S + q =
{1, . . . , n}.

Case 1: D has no q − T path. Let U be the set of s ∈ S for which D has
an s − T path. As T ⊆ U , we know z(S \ U) = x(S \ U). Also, as no arc of
D enters U , we have |U ∩ Ii| = rM (U) for all i, implying

(40.28) z(U) =
k∑

i=1

λi|U ∩ Ii| =

k∑

i=1

λirM (U) = rM (U).



696 Chapter 40. The greedy algorithm and the independent set polytope

Hence z(S) = rM (U) + x(S \ U) as required.

Case 2: D has a q−T path. For each v ∈ S+q, let d(v) denote the distance
in D from q to v (set to ∞ if no q − v path exists). Choose a t ∈ T with d(t)
finite and maximal, and among these t we choose the largest t. Let (s, t) ∈ A,

with d(s) = d(t) − 1, and s largest. We can assume that (s, t) ∈ Ã(I1). Let

(40.29) α := min{xt − zt, λ1}

and define z′ by

(40.30) z′ := z + α(χt − χs) if s �= q, and z′ := z + αχt if s = q.

Let I ′
1 := I1 − s + t (so I ′

1 = I1 + t if s = q).
Then

(40.31) z′ = αχI′

1 + (λ1 − α)χI1 +
k∑

i=2

λiχ
Ii .

If α = λ1, we delete the second term. We obtain a decomposition of z′ as a
convex combination of at most k + 1 independent sets, and we can iterate.

Running time. We show that the number of iterations is at most |S|9. Con-
sider any iteration. Let d′ and A′ be the objects d and A of the next iteration.
We first show:

(40.32) for each v ∈ S + q: d′(v) ≥ d(v).

To show this, we can assume that d′(v) < ∞. We show (40.32) by induction on
d′(v), the case d′(v) = 0 being trivial (as it means v = q). Assume d′(v) > 0.
Let u be such that (u, v) ∈ A′ and d′(u) = d′(v) − 1. By induction we know
d′(u) ≥ d(u).

If (u, v) ∈ A, then d(v) ≤ d(u) + 1 ≤ d′(u) + 1 = d′(v), as required. If

(u, v) �∈ A, then (u, v) ∈ Ã(I ′
1) and (u, v) �∈ Ã(I1). By Lemma 40.4β, t = u

or (u, t) ∈ Ã(I1), and s = v or (s, v) ∈ Ã(I1). Hence

(40.33) d(v) ≤ d(s) + 1 = d(t) ≤ d(u) + 1 ≤ d′(u) + 1 = d′(v).

So d(v) ≤ d′(v). This shows (40.32).

Let β be the number of j = 1, . . . , k with (s, t) ∈ Ã(Ij). Let T ′, t′, s′, and
β′ be the objects T , t, s, β in the next iteration. We show:

(40.34) if d′(v) = d(v) for each v ∈ S + q, then (d′(t′), t′, s′, β′) is lexico-
graphically less than (d(t), t, s, β).

Indeed, if α = xt − zt, then T ′ = T − t + s or T ′ = T − t. So d′(t′) < d(t),
or d′(t′) = d(t) and t′ < t. If α < xt − zt, then T ′ = T + s or T ′ = T .
Moreover, α = λ1, so I1 has been omitted from the convex combination. So,
as t ∈ T ′ and d(s) < d(t), we know that t′ = t and d′(t′) = d(t). As t ∈ I ′

1, we

know (s′, t) �∈ Ã(I ′
1). Hence, as (s′, t) ∈ A′, we have (s′, t) ∈ Ã(Ij) for some

j = 2, . . . , k. Hence (s′, t) ∈ A. By the choice of s, we know s′ ≤ s. If s′ < s,
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we have (40.34), so assume s′ = s. Then β′ = β − 1, as (s, t) �∈ Ã(I ′
1). This

proves (40.34).
The number k of independent sets in the decomposition grows by 1 if

α = xt − zt < λ1. In that case, d′(v) = d(v) for each v ∈ S + q (by (40.32),
as A′ ⊇ A). Moreover, d′(t′) < d(t) or t′ < t (since T ′ ⊆ T − t + s). So k
does not exceed |S|4, and hence β is at most |S|4. Concluding, the number
of iterations is at most |S|9.

With Gaussian elimination, we can reduce the number k in each iteration
to at most |S| (by Carathéodory’s theorem). Incorporating this reduces the
number of iterations to |S|6.

Theorem 40.4 immediately implies that one can test if a given vector
belongs to the independent set polytope of a matroid:

Corollary 40.4a. Given a matroid M = (S, I) by an independence testing
oracle and an x ∈ QS, one can test in strongly polynomial time if x belongs
to Pindependent set(M), and if so, decompose x as a convex combination of
incidence vectors of independent sets.

Proof. Directly from Theorem 40.4.

One can derive a similar result for the spanning set polytope:

Corollary 40.4b. Given a matroid M = (S, I) by an independence testing
oracle and an x ∈ QS, one can test in strongly polynomial time if x belongs to
Pspanning set(M), and if so, decompose x as a convex combination of incidence
vectors of spanning sets.

Proof. x belongs to the spanning set polytope of M if and only if 1 − x
belongs to the independent set polytope of the dual matroid M∗. Also convex
combinations of spanning sets of M and independent sets of M∗ transfer to
each other by this operation. Since rM∗(U) = |U | + rM (S \ U) − rM (S) for
each U ⊆ S, also an independence testing oracle for M∗ is easily obtained
from one for M .

The theorem also implies that the following most violated inequality prob-
lem can be solved in strongly polynomial time:

(40.35) given: a matroid M = (S, I) by an independence testing oracle,
and a vector x ∈ QS ;

find: a subset U of S minimizing rM (U) − x(U).

Corollary 40.4c. The most violated inequality problem can be solved in
strongly polynomial time.
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Proof. Any negative component of x can be reset to 0, as this does not
change the problem. So we can assume that x ≥ 0. Then by Theorem 40.4
we can find a U ⊆ S minimizing rM (U) + x(S \ U) in strongly polynomial
time. This U is as required.

40.3a. Facets and adjacency on the independent set polytope

Let M = (S, I) be a matroid, with rank function r. Trivially, the independent
set polytope P of M is full-dimensional if and only if M has no loops. If P is
full-dimensional there is a unique minimal collection of linear inequalities defining
P (up to scalar multiplication), which corresponds to the facets of P . Edmonds
[1970b] found that this collection is given by the following theorem. Recall that a
subset F of S is called a flat if for all s in S \ F one has r(F + s) > r(F ). A subset
F is called inseparable if there is no partition of F into nonempty sets F1 and F2

with r(F ) = r(F1) + r(F2). Then:

Theorem 40.5. If M is loopless, the following is a minimal system for the inde-
pendent set polytope of M :

(40.36) (i) xs ≥ 0 (s ∈ S),
(ii) x(F ) ≤ r(F ) (F is a nonempty inseparable flat).

Proof. As M is loopless, the independent set polytope of M is full-dimensional.
It is easy to see that (40.36) determines the independent set polytope, as any
other inequality x(U) ≤ r(U) is implied by the inequalities x(Fi) ≤ r(Fi), where
F1, . . . , Ft is a maximal partition of F := spanM (U) such that r(F1)+ · · ·+r(Ft) =
r(F ).

The irredundancy of collection (40.36) can be seen as follows. Each inequality
xs ≥ 0 is irredundant, since the vector −χs satisfies all other inequalities.

We show that also the inequalities (40.36)(ii) are irredundant, by showing that
for any two nonempty nonseparable flats T, U there exists a base I of T with
|I ∩ U | < r(U) (implying that the face determined by T is contained in no (other)
facet).

To show this, let I be a base of T with |I ∩ (T \ U)| = r(T \ U). Suppose
|I ∩ U | = r(U). Then

(40.37) r(U) ≥ r(T ∩ U) ≥ r(T ) − r(T \ U) = |I ∩ U | = r(U).

Hence we have equality throughout. This implies (as T is inseparable) that T \U = ∅
or T ∩ U = ∅, and that r(U) = r(T ∩ U). If T \ U = ∅, then T ⊂ U , and hence (as
T is a flat) r(U) > r(T ) ≥ r(T ∩ U), a contradiction. If T ∩ U = ∅, then r(U) =
r(T ∩ U) = 0, implying that U = ∅ (as M has no loops), again a contradiction.

It follows that the base polytope, which is the face {x ∈ P | x(S) = r(S)} of
P , has dimension |S| − 1 if and only if S is inseparable (that is, the matroid is
connected).

As for adjacency of vertices of the independent set polytope, we have:

Theorem 40.6. Let M = (S, I) be a loopless matroid and let I and J be distinct
independent sets. Then χI and χJ are adjacent vertices of the independent set
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polytope of M if and only if |I△J | = 1, or |I \ J | = |J \ I| = 1 and rM (I ∪ J) =
|I| = |J |.

Proof. To see sufficiency, note that the condition implies that I and J are the
only two independent sets with incidence vector x satisfying x(I ∩ J) = rM (I ∩ J),
xs = 0 for s �∈ I ∪ J , and (if |I△J | = 2) x(I ∪ J) = rM (I ∪ J). Hence I and J are
adjacent.

To see necessity, assume that χI and χJ are adjacent. If I is not a base of I ∪J ,
then I + j is independent for some j ∈ J \ I. Hence

(40.38) 1
2
(χI + χJ) = 1

2
(χI+j + χJ−j),

implying (as χI and χJ are adjacent) that I+j = J and J−j = I, that is |I△J | = 1.
So we can assume that I and J are bases of I ∪J . Choose i ∈ I \J . By Theorem

39.12, there is a j ∈ J \ I such that I − i + j and J − j + i are bases of I ∪ J . Then

(40.39) 1
2
(χI + χJ) = 1

2
(χI−i+j + χJ−j+i),

implying (as χI and χJ are adjacent) that I − i + j = J and J − j + i = I, that is
we have the second alternative in the condition.

More on the combinatorial structure of the independent set polytope can be
found in Naddef and Pulleyblank [1981a].

40.3b. Further notes

Prodon [1984] showed that the separation problem for the independent set polytope
of a matching matroid can be solved by finding a minimum-capacity cut in an
auxiliary directed graph.

Frederickson and Solis-Oba [1997,1998] gave strongly polynomial-time algo-
rithm for measuring the sensitivity of the minimum weight of a base under per-
turbing the weight. (Related analysis was given by Libura [1991].)

Narayanan [1995] described a rounding technique for the independent set poly-
tope membership problem, leading to an O(n3r2)-time algorithm, where n is the
size of the underlying set of the matroid and r is the rank of the matroid.

A strongly polynomial-time algorithm maximizing certain convex objective
functions over the bases was given by Hassin and Tamir [1989].

For studies of structures where the greedy algorithm applies if condition (39.1)(i)
is deleted, see Faigle [1979,1984b], Hausmann, Korte, and Jenkyns [1980], Korte and
Lovász [1983,1984a,1984b,1984c,1985a,1985b,1989], Bouchet [1987a], Goecke [1988],
Dress and Wenzel [1990], Korte, Lovász, and Schrader [1991], Helman, Moret, and
Shapiro [1993], and Faigle and Kern [1996].
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Matroid intersection

Edmonds discovered that matroids have even more algorithmic power than
just that of the greedy method. He showed that there exist efficient algo-
rithms also for intersections of matroids. That is, a maximum-weight com-
mon independent set in two matroids can be found in strongly polynomial
time. Edmonds also found good min-max characterizations for matroid
intersection.
Matroid intersection yields a motivation for studying matroids: we may
apply it to two matroids from different classes of examples of matroids,
and thus we obtain methods that exceed the bounds of any particular
class.
We should note here that if M1 = (S, I1) and M2 = (S, I2) are matroids,
then (S, I1 ∩ I2) need not be a matroid. (An example with |S| = 3 is easy
to construct.)
Moreover, the problem of finding a maximum-size common independent
set in three matroids is NP-complete (as finding a Hamiltonian circuit in
a directed graph is a special case; also, finding a common transversal of
three partitions is a special case).

41.1. Matroid intersection theorem

Let M1 = (S, I1) and M2 = (S, I2) be two matroids, on the same set S.
Consider the collection I1 ∩I2 of common independent sets. The pair (S, I1 ∩
I2) is generally not a matroid again.

Edmonds [1970b] showed the following formula, for which he gave two
proofs — one based on linear programming duality and total unimodularity
(see the proof of Theorem 41.12 below), and one reducing it to the matroid
union theorem (see Corollary 42.1a and the remark thereafter). We give the
direct proof implicit in Brualdi [1971e].

Theorem 41.1 (matroid intersection theorem). Let M1 = (S, I1) and M2 =
(S, I2) be matroids, with rank functions r1 and r2, respectively. Then the
maximum size of a set in I1 ∩ I2 is equal to

(41.1) min
U⊆S

(r1(U) + r2(S \ U)).
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Proof. Let k be equal to (41.1). It is easy to see that the maximum is not
more than k, since for any common independent set I and any U ⊆ S:

(41.2) |I| = |I ∩ U | + |I \ U | ≤ r1(U) + r2(S \ U).

We prove equality by induction on |S|, the case |S| ≤ 1 being trivial. So
assume that |S| ≥ 2.

If minimum (41.1) is attained only by U = S or U = ∅, choose s ∈ S.
Then r1(U) + r2(S \ (U ∪ {s})) ≥ k for each U ⊆ S \ {s}, since otherwise
both U and U ∪ {s} would attain (41.1), whence {U, U ∪ {s}} = {∅, S},
contradicting the fact that |S| ≥ 2. Hence, by induction, M1 \ s and M2 \ s
have a common independent set of size k, implying the theorem.

So we can assume that (41.1) is attained by some U with ∅ �= U �= S.
Then M1|U and M2 · U have a common independent set I of size r1(U).
Otherwise, by induction, there exists a subset T of U with

(41.3) r1(U) > rM1|U (T )+rM2·U (U \T ) = r1(T )+r2(S \T )−r2(S \U),

contradicting the fact that U attains (41.1). Similarly, M1 ·(S\U) and M2|(S\
U) have a common independent set J of size r2(S \ U).

Now I ∪ J is a common independent set of M1 and M2. Indeed, I ∪ J
is independent in M1, as I is independent in M1|U and J is independent in
M1 · (S \ U) = M1/U (cf. (39.10)). Similarly, I ∪ J is independent in M2. As
|I ∪ J | = r1(U) + r2(S \ U), this proves the theorem.

This implies a characterization of the existence of a common base in two
matroids:

Corollary 41.1a. Let M1 = (S, I1) and M2 = (S, I2) be matroids, with rank
functions r1 and r2, respectively, such that r1(S) = r2(S). Then M1 and M2

have a common base if and only if r1(U)+r2(S \U) ≥ r1(S) for each U ⊆ S.

Proof. Directly from Theorem 41.1.

It is easy to derive from the matroid intersection theorem a similar min-
max relation for the minimum size of a common spanning set:

Corollary 41.1b. Let M1 = (S, I1) and M2 = (S, I2) be matroids, with
rank functions r1 and r2, respectively. Then the minimum size of a common
spanning set of M1 and M2 is equal to

(41.4) max
U⊆S

(r1(S) − r1(U) + r2(S) − r2(S \ U)).

Proof. The minimum is equal to the minimum of |B1 ∪ B2| where B1 and
B2 are bases of M1 and M2 respectively. Hence the minimum is equal to
r1(S) + r2(S) minus the maximum of |B1 ∩ B2| over such B1, B2. This last
maximum is characterized in the matroid intersection theorem, yielding the
present corollary.
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The following result of Rado [1942] (a generalization of Hall’s marriage
theorem (Theorem 22.1), and therefore sometimes called the Rado-Hall the-
orem) may be derived from the matroid intersection theorem, applied to M
and the transversal matroid M2 induced by X .

Corollary 41.1c (Rado’s theorem). Let M = (S, I) be a matroid, with rank
function r, and let X = (X1, . . . , Xn) be a family of subsets of S. Then X
has a transversal which is independent in M if and only if

(41.5) r(
⋃

i∈I

Xi) ≥ |I|

for each I ⊆ {1, . . . , n}.

Proof. Let r2 be the rank function of the transversal matroid M2 induced
by X . By the matroid intersection theorem, M and M2 have a common
independent set of size n if and only if

(41.6) r(U) + r2(S \ U) ≥ n for each U ⊆ S.

Now for each T ⊆ S one has (by Kőnig’s matching theorem (cf. Corollary
22.2a)):

(41.7) r2(T ) = min
I⊆{1,...,n}

(
∣∣ ⋃

i∈I

Xi ∩ T
∣∣ + n − |I|).

So (41.6) is equivalent to:

(41.8) r(U) +
∣∣ ⋃

i∈I

Xi \ U
∣∣ + n − |I| ≥ n

for all U ⊆ S and I ⊆ {1, . . . , n}. We can assume that U =
⋃

i∈I Xi, since
replacing U by

⋃
i∈I Xi does not increase the left-hand side in (41.8). So the

condition is equivalent to (41.5), proving the corollary.

Notes. Mirsky [1971a] gave an alternative proof of Rado’s theorem. Welsh [1970]
showed that, in turn, Rado’s theorem implies the matroid intersection theorem. Las
Vergnas [1970] gave an extension of Rado’s theorem. Rado [1942] (and also Welsh
[1971]) showed that Rado’s theorem in fact characterizes matroids. Perfect [1969a]
generalized Rado’s theorem to characterizing the maximum size of an independent
partial transversal. Related results are in Perfect [1971].

41.1a. Applications of the matroid intersection theorem

In this section we mention a number of applications of the matroid intersection
theorem. Further applications will be given in the next chapter on matroid union.

Kőnig’s theorems. Let G = (V, E) be a bipartite graph, with colour classes U1

and U2. For i = 1, 2, let Mi = (E, Ii) be the matroid with F ⊆ E independent if
and only if each vertex in Ui is covered by at most one edge in F .
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So M1 and M2 are partition matroids. The common independent sets in M1

and M2 are the matchings in G, and the common spanning sets are the edge covers
in G. For i = 1, 2 and F ⊆ E, the rank ri(F ) of F in Mi is equal to the number of
vertices in Ui covered by F .

By the matroid intersection theorem, the maximum size of a matching in G is
equal to the minimum of r1(F ) + r2(E \ F ) taken over F ⊆ E. This last is equal
to the minimum size of a vertex cover in G. So we have Kőnig’s matching theorem
(Theorem 16.2).

Similarly, by Corollary 41.1b, the minimum size of an edge cover in G (assuming
G has no isolated vertices), is equal to the maximum of |V | − r1(F ) − r2(E \ F )
taken over F ⊆ E. This last is equal to the maximum size of a stable set in G. So
we have the Kőnig-Rado edge cover theorem (Theorem 19.4).

Common transversals. Let X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) be families
of subsets of a finite set S. Then the matroid intersection theorem implies Theorem
23.1 of Ford and Fulkerson [1958c]: X and Y have a common transversal if and only
if

(41.9) |XI ∩ YJ | ≥ |I| + |J | − m

for all subsets I and J of {1, . . . , m}, where XI :=
⋃

i∈I Xi and YJ :=
⋃

j∈J Yj .
To see this, let M1 and M2 be the transversal matroids induced by X and

Y respectively, with rank functions r1 and r2 say. So X and Y have a common
transversal if and only if M1 and M2 have a common independent set of size m. By
Theorem 41.1, this last holds if and only if r1(Z) + r2(S \ Z) ≥ m for each Z ⊆ S.
Using Kőnig’s matching theorem, this is equivalent to:

(41.10) min
I⊆{1,...,m}

(m − |I| + |XI ∩ Z|) + min
J⊆{1,...,m}

(m − |J | + |YJ \ Z|) ≥ m

for each Z ⊆ S. Equivalently, for all I, J ⊆ {1, . . . , m}:

(41.11) min
Z⊆S

(m − |I| + |XI ∩ Z| + m − |J | + |YJ \ Z|) ≥ m.

As this minimum is attained by Z := YJ , this is equivalent to (41.9).

Coloured trees. Let G = (V, E) be a graph and let the edges of G be coloured
with k colours. That is, we have partitioned E into sets E1, . . . , Ek, called colours.
Then there exists a spanning tree with all edges coloured differently if and only if
G − F has at most t + 1 components, for any union F of t colours, for any t ≥ 0.
This follows from the matroid intersection theorem applied to the cycle matroid
M(G) of G and the partition matroid N induced by E1, . . . , Ek.

Indeed, M(G) and N have a common independent set of size |V |−1 if and only
if rM(G)(E \ F ) + rN (F ) ≥ |V | − 1 for each F ⊆ E. Now rN (F ) is equal to the
number of Ei intersecting F . So we can assume that F is equal to the union of t
of the Ei, with t := rN (F ). Moreover, rM(G)(E \ F ) is equal to |V | − κ(G − F ),
where κ(G − F ) is the number of components of G − F . So the requirement is that
|V | − κ(G − F ) + t ≥ |V | − 1. In other words, κ(G − F ) ≤ t + 1.

Detachments. The following is a special case of a theorem of Nash-Williams [1985],
which he derived from the matroid intersection theorem — in fact it is a consequence
of the result on coloured trees given above.
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Let G = (V, E) be a graph and let b : V −→ Z+. Call a graph G̃ = (Ṽ , Ẽ)

a b-detachment of G if there is a function φ : Ṽ −→ V such that |φ−1(v)| = b(v)

for each v ∈ V , and such that there is a one-to-one function ψ : Ẽ −→ E with
ψ(e) = {φ(u), φ(v)} for each edge e = uv of G̃.

Then there exists a connected b-detachment if and only if

(41.12) b(U) + κ(G − U) ≤ |EU | + 1 for each U ⊆ V ,

where κ(G′) denotes the number of components of graph G′ and where EU denotes
the set of edges intersecting U .

To see this, let H = (Ṽ , E′) be the graph obtained from G by replacing each
vertex v by b(v) new vertices, and by connecting for each edge e = uv of G, the
b(u) new vertices associated with u with the b(v) new vertices associated with v.
We assign to these b(u)b(v) edges the ‘colour’ e.

Then there exists a connected b-detachment if and only if H has a spanning
tree in which all edges have a different colour. By the previous example, such a
spanning tree exists if and only if for each F ⊆ E, deleting from H the edges with
colour in F gives a graph H ′ with at most |F | + 1 components.

Now the number of components of H ′ is equal to the κ(G − F ) + b(IF ) − |IF |,
where IF denotes the set of isolated (hence loopless) vertices of G − F . So the
condition is equivalent to: κ(G − F ) − |F | + b(IF ) − |IF | ≤ 1. As κ(G − F ) − |F |
does not decrease by removing edges from F , we can assume that F is equal to the
set of edges incident with IF . So F is determined by U := IF , namely F = EU .
Then κ(G − F ) − |IF | = κ(G − U). So the condition is equivalent to (41.12).

41.1b. Woodall’s proof of the matroid intersection theorem

P.D. Seymour attributed the following proof of the matroid intersection theorem
to D.R. Woodall (cf. Seymour [1976a]):

Let k be the value of (41.1). Let x ∈ S be such that r1({x}) = r2({x}) = 1.
(If no such x exists the theorem is trivial, as in that case the minimum is 0.) Let
Y := S \ {x}. Now we may assume that the restrictions M1 \ x and M2 \ x have no
common independent set of size k. So, by induction,

(41.13) r1(A1) + r2(A2) ≤ k − 1,

for some partition A1, A2 of Y . Moreover, the contractions M1/x and M2/x have no
common independent set of size k −1 (otherwise we can add x to obtain a common
independent set of size k for M1 and M2). So, by induction,

(41.14) r1(B1 ∪ {x}) − 1 + r2(B2 ∪ {x}) − 1 ≤ k − 2

(cf. (39.9) above), for some partition B1, B2 of Y . However,

(41.15) r1(A1 ∩ B1) + r1(A1 ∪ B1 ∪ {x}) ≤ r1(A1) + r1(B1 ∪ {x}),
r2(A2 ∩ B2) + r2(A2 ∪ B2 ∪ {x}) ≤ r2(A2) + r2(B2 ∪ {x}),

by the submodularity (cf. (39.38)(ii)) of the rank functions. Moreover, by the defi-
nition of k,

(41.16) k ≤ r1(A1 ∩ B1) + r2(A2 ∪ B2 ∪ {x}),
k ≤ r1(A1 ∪ B1 ∪ {x}) + r2(A2 ∩ B2),

as A1 ∩ B1, A2 ∪ B2 ∪ {x} and A1 ∪ B1 ∪ {x}, A2 ∩ B2 form partitions of S. Adding
the inequalities in (41.13), (41.14), (41.15), and (41.16) gives a contradiction.
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41.2. Cardinality matroid intersection algorithm

A maximum-size common independent set can be found in polynomial time.
This result follows from the matroid union algorithm of Edmonds [1968],
since (as Edmonds [1970b] and Lawler [1970] observed) cardinality matroid
intersection can be reduced to matroid union.

We describe below the direct algorithm given by Aigner and Dowling
[1971] and Lawler [1975], based on finding paths in auxiliary graphs. A dif-
ferent algorithm was given by Edmonds [1979].

Note that the examples given in Section 41.1a provide applications for
the matroid intersection algorithm. We should note that in the algorithm we
require that in any matroid M = (S, I), we can test in polynomial time if any
subset of S belongs to I — no explicit list of all sets in I is required. Thus
complexity results are all relative to the complexity of testing independence.
As such a membership testing algorithm exists in each example mentioned,
we obtain polynomial-time algorithms for these special cases.

For any two matroids M1 = (S, I1) and M2 = (S, I2) and any I ∈ I1 ∩I2,
we define a directed graph DM1,M2

(I), with vertex set S, as follows. For any
y ∈ I, x ∈ S \ I,

(41.17) (y, x) is an arc of DM1,M2
(I) if and only if I − y + x ∈ I1,

(x, y) is an arc of DM1,M2
(I) if and only if I − y + x ∈ I2.

These are all arcs of DM1,M2
(I). So this graph is the union of the graphs

DM1
(I) and the reverse of DM2

(I) defined in Section 39.9.
The following is the base for finding a maximum-size common independent

set in two matroids.

Cardinality common independent set augmenting algorithm

input: matroids M1 = (S, I1) and M2 = (S, I2) and a set I ∈ I1 ∩ I2;
output: a set I ′ ∈ I1 ∩ I2 with |I ′| > |I| (if any).
description of the algorithm: Consider the sets

(41.18) X1 := {x ∈ S \ I | I ∪ {x} ∈ I1},
X2 := {x ∈ S \ I | I ∪ {x} ∈ I2}.

Moreover, consider the directed graph DM1,M2
(I) defined above. There are

two cases.

Case 1: DM1,M2
(I) has an X1 − X2 path P . (Possibly of length 0 if

X1 ∩ X2 �= ∅.) We take a shortest such path P (that is, with a minimum
number of arcs). Now output I ′ := I△V P .

Case 2: DM1,M2
(I) has no X1 − X2 path. Then I is a maximum-size

common independent set.
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This finishes the description of the algorithm. The correctness of the al-
gorithm is given by the following two theorems.

Theorem 41.2. If Case 1 applies, then I ′ ∈ I1 ∩ I2.

Proof. Assume that Case 1 applies. By symmetry it suffices to show that I ′

belongs to I1.
Let P start at z0 ∈ X1. The arcs in P leaving I form the only matching

in DM1
(I) with union equal to V P − z0, since otherwise P would have a

shortcut. Moreover, for each z ∈ V P \ I with z �= z0, one has I + z �∈ I1,
since otherwise z ∈ X1, and hence P would have a shortcut. So by Corollary
39.13a, I ′ belongs to I1.

Theorem 41.3. If Case 2 applies, then I is a maximum-size common inde-
pendent set.

Proof. As Case 2 applies, there is no X1 − X2 path in DM1,M2
(I). Hence

there is a subset U of S with X1 ∩ U = ∅ and X2 ⊆ U , and such that no arc
enters U . We show

(41.19) rM1
(U) + rM2

(S \ U) ≤ |I|.

To this end, we first show

(41.20) rM1
(U) ≤ |I ∩ U |.

Suppose that rM1
(U) > |I ∩ U |. Then there exists an x in U \ I such that

(I ∩ U) ∪ {x} ∈ I1. Since I ∪ {x} �∈ I1 (as x �∈ X1), there is a y ∈ I \ U with
I − y + x ∈ I1. But then DM1

(I) has an arc from y to x, contradicting the
facts that x ∈ U and y �∈ U and that no arc enters U .

This shows (41.20). Similarly, rM2
(S\U) ≤ |I \U |. Hence we have (41.19).

So by the matroid intersection theorem, I is a maximum-size common inde-
pendent set.

Clearly, the running time of the algorithm is polynomially bounded, since
we can construct the auxiliary directed graph DM1,M2

(I) and find the path
P (if any), in polynomial time. Therefore:

Theorem 41.4. A maximum-size common independent set in two matroids
can be found in polynomial time.

Proof. Directly from the above, as we can find a maximum-size common
independent set after applying at most |S| times the common independent
set augmenting algorithm.

The algorithm also yields a proof of the matroid intersection theorem
(Theorem 41.1 above): if the algorithm stops with set I, we obtain a set U
for which (41.19) holds.
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Notes. The above algorithm can be shown to take O(n2m(n+Q)) time, where n is
the maximum size of a common independent set, m is the size of the underlying set,
and Q is the time needed to test if a given set is independent (in either matroid).
Cunningham [1986] showed that if one chooses a shortest path as augmenting path,
the sum of the lengths of all augmenting paths chosen is O(n log n), which gives
an O(n3/2mQ)-time algorithm. This algorithm extends several of the ideas behind
the O(n1/2m) algorithm of Hopcroft, Karp, and Karzanov for cardinality bipartite
matching (see Section 16.4). For more efficient algorithms, see Gabow and Tarjan
[1984], Gusfield [1984], Gabow and Stallmann [1985], Frederickson and Srinivas
[1989], Gabow and Xu [1989,1996], and Fujishige and Zhang [1995].

The problem of finding a maximum-size common independent set in three ma-
troids is NP-complete, as finding a Hamiltonian circuit in a directed graph is a
special case (as was observed by Held and Karp [1970]). Another special case is
finding a common transversal of three collections of sets, which is also NP-complete
(Theorem 23.16). In particular, the k-intersection problem can be reduced to the
3-intersection problem (cf. Lawler [1976b]).

Barvinok [1995] gave an algorithm for finding a maximum-size common inde-
pendent set in k linear matroids, represented by given vectors over the rationals.
The running time is linear in the cardinality of the underlying set and singly poly-
nomial in the maximum rank of the matroids.

41.3. Weighted matroid intersection algorithm

Also a maximum-weight common independent set can be found in strongly
polynomial time. This result was announced by Edmonds [1970b], who pub-
lished an algorithm in Edmonds [1979]. An alternative algorithm (which we
describe below) was announced by Lawler [1970] and described in Lawler
[1975,1976b] — the correctness of this algorithm was proved by Krogdahl
[1974,1976], using the results described in Section 39.9. A similar algorithm
was described by Iri and Tomizawa [1976].

This algorithm is an extension of the cardinality matroid intersection
algorithm given in Section 41.2. In each iteration, instead of finding a path P
with a minimum number of arcs in DM1,M2

(I), we will now require P to have
minimum length with respect to some length function defined on DM1,M2

(I).
To describe the algorithm, if matroids M1 = (S, I1) and M2 = (S, I2)

and a weight function w : S → R are given, call a set I ∈ I1 ∩ I2 extreme if
w(J) ≤ w(I) for each J ∈ I1 ∩ I2 satisfying |J | = |I|.

Weighted common independent set augmenting algorithm

input: matroids M1 = (S, I1) and M2 = (S, I2), a weight function w : S →
Q, and an extreme common independent set I;
output: an extreme common independent set I ′ with |I ′| = |I| + 1 (if any).
description of the algorithm: Consider again the sets X1 and X2 and the
directed graph DM1,M2

(I) on S, as in the cardinality case.
For any x ∈ S define the ‘length’ l(x) of x by:
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(41.21) l(x) :=

{
w(x) if x ∈ I,

−w(x) if x �∈ I.

The length of a path P , denoted by l(P ), is equal to the sum of the lengths
of the vertices traversed by P .

Case 1: DM1,M2
(I) has an X1 − X2 path P . We choose P such that

l(P ) is minimal and such that (secondly) P has a minimum number of arcs
among all minimum-length X1 − X2 paths. Set I ′ := I△V P .

Case 2: DM1,M2
(I) has no X1 − X2 path. Then there is no common

independent set larger than I.

This finishes the description of the algorithm. The correctness of the algo-
rithm if Case 2 applies follows directly from Theorem 41.3. In order to show
the correctness if Case 1 applies, we first prove the following basic property
of the length function l.

Lemma 41.5α. Let C be a directed circuit in DM1,M2
(I) and let t ∈ V C.

Define J := I△V C. If J �∈ I1 ∩ I2, then there exists a directed circuit C ′

with V C ′ ⊂ V C such that l(V C ′) < 0, or l(V C ′) ≤ l(V C) and t ∈ V C ′.

Proof. By symmetry we can assume that J �∈ I1. Let N1 and N2 be the sets
of arcs in C belonging to DM1

(I) and DM2
(I) respectively. As J �∈ I1, there

exists, by Theorem 39.13, a matching N ′
1 in DM1

(I) with union V C and with
N ′

1 �= N1. Consider the directed graph D = (V C, A) formed by the arcs in
N1, N ′

1 (taking arcs in N1 ∩N ′
1 parallel), and by the arcs in N2 taking each of

them twice (parallel). Then each vertex in V C is entered and left by exactly
two arcs of D. Moreover, since N ′

1 �= N1, D contains a directed circuit C1

with V C1 ⊂ V C (as N ′
1 contains a chord of C). As D is Eulerian, we can

extend this to a decomposition of A into directed circuits C1, . . . , Ck. Then

(41.22) χV C1 + · · · + χV Ck = 2 · χV C .

Since V C1 �= V C we know that V Cj = V C for at most one j. If, say V Ck =
V C, then (41.22) implies that either l(V Cj) < 0 for some j < k or l(V Cj) ≤
l(V C) for all j < k, implying the proposition.

Suppose next that V Cj �= V C for all j. If l(V Cj) < 0 for some j ≤ k we
are done. So assume l(V Cj) ≥ 0 for each j ≤ k. We can assume that C1 and
C2 traverse t. Then

(41.23) l(V C1) + l(V C2) ≤ l(V C1) + · · · + l(V Ck) = 2l(V C).

Hence l(V C1) ≤ l(V C) or l(V C2) ≤ l(V C), and again we are done.

This implies (Krogdahl [1976], Fujishige [1977a]):

Theorem 41.5. Let I ∈ I1 ∩I2. Then I is extreme if and only if DM1,M2
(I)

has no directed circuit of negative length.



Section 41.3. Weighted matroid intersection algorithm 709

Proof. To see necessity, suppose that DM1,M2
(I) has a directed circuit C of

negative length. Choose C with |V C| minimal. Consider J := I△V C. Since
w(J) = w(I)− l(C) > w(I), while |J | = |I|, we know that J �∈ I1 ∩I2. Hence
by Lemma 41.5α, DM1,M2

(I) has a negative-length directed circuit covering
fewer than |V C| vertices, contradicting our assumption.

To see sufficiency, consider a J ∈ I1 ∩ I2 with |J | = |I|. By Corollary
39.12a, both DM1

(I) and DM2
(I) have a perfect matching on I△J . These

two matchings together form a vertex-disjoint union of a number of directed
circuits C1, . . . , Ct. Then

(41.24) w(I) − w(J) =
t∑

j=1

l(V Cj) ≥ 0,

implying w(J) ≤ w(I). So I is extreme.

This theorem implies that we can find a shortest path P , in Case 1 of the
algorithm, in strongly polynomial time (with the Bellman-Ford method). It
also gives:

Theorem 41.6. If Case 1 applies, I ′ is an extreme common independent
set.

Proof. We first show that I ′ ∈ I1 ∩ I2. To this end, let t be a new element,
and extend (for each i = 1, 2), Mi to a matroid M ′

i = (S + t, I ′
i), where for

each T ⊆ S + t:

(41.25) T ∈ I ′
i if and only if T − t ∈ Ii.

Note that DM ′

1
,M ′

2
(I + t) arises from DM1,M2

(I) by extending it with a new
vertex t and adding arcs from t to each vertex in X1, and from each vertex
in X2 to t.

Let P be the path found in the algorithm. Define

(41.26) w(t) := l(t) := −l(P ).

As P is a shortest X1 − X2 path, this makes that DM ′

1
,M ′

2
(I + t) has no

negative-length directed circuit. Hence, by Theorem 41.5, I + t is an extreme
common independent set of M ′

1 and M ′
2.

Let P run from z1 ∈ X1 to z2 ∈ X2. Extend P by the arcs (t, z1) and
(z2, t) to a directed circuit C. So J = (I + t)△V C. As P has a minimum
number of arcs among all shortest X1−X2 paths, and as DM ′

1
,M ′

2
(I+t) has no

negative-length directed circuits, by Lemma 41.5α we know that J ∈ I1 ∩I2.
Moreover, J is extreme, since I + t is extreme and w(J) = w(I + t).

So the weighted common independent set augmenting algorithm is correct.
It obviously has strongly polynomially bounded running time. Therefore:
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Theorem 41.7. A maximum-weight common independent set in two ma-
troids can be found in strongly polynomial time.

Proof. Starting with the extreme common independent set I0 := ∅ we can
find iteratively extreme common independent sets I0, I1, . . . , Ik, where |Ii| = i
for i = 0, . . . , k and where Ik is a maximum-size common independent set.
Taking one among I0, . . . , Ik of maximum weight, we have a maximum-weight
common independent set.

The above algorithm gives a maximum-weight common independent set
of size k, for each k. In particular, a maximum-weight common base can be
found with the algorithm. Similarly for minimum-weight:

Theorem 41.8. A minimum-weight common base in two matroids can be
found in strongly polynomial time.

Proof. The last extreme common independent set in the above algorithm is
a maximum-weight common base. By flipping the signs of the weights, this
can be turned into a minimum-weight common base algorithm.

Notes. Frank [1981a] gave an O(τn3)-time implementation of this algorithm, where
τ is the time needed to test for any I ∈ Ii and any s ∈ S whether or not I∪{s} ∈ Ii,
and if not, to find a circuit of Mi contained in I ∪ {s}.

Clearly, a maximum-weight common independent set need not be a common
base, even if common bases exist and all weights are positive: Let S = {1, 2, 3}
and let Mi be the matroid on S with unique circuit S \ {i} (for i = 1, 2). Define
w(1) := w(2) := 1 and w(3) := 3. Then {3} is the unique maximum-weight common
independent set, while {1, 2} is the unique common base.

41.3a. Speeding up the weighted matroid intersection algorithm

The algorithm described in Section 41.3 is strongly polynomial-time, since we can
find a shortest path P in strongly polynomial time, as in each iteration the graph
DM1,M2

(I) has no negative-length directed circuit. Hence we can apply the Bellman-
Ford method. To bound the running time, suppose that we can construct, for any
I ∈ I1 ∩I2 the graph DM1,M2

(I) in time T . Then any iteration can be done in time
O(T + n3), where n := |S|.

We can improve this to O(T + n log n) as follows (Frank [1981a], Brezovec,
Cornuéjols, and Glover [1986]). The idea is that, in each iteration, with the extreme
common independent set I, we give a ‘certificate’ of extremity, by specifying a
potential for the length function; that is, a function p ∈ QS satisfying

(41.27) l(v) ≥ p(v) − p(u)

for each arc (u, v) of DM1,M2
(I). By Theorem 41.5, such a potential certifies ex-

tremity of I. We call such a p a potential for I.
Having the potential, we can apply Dijkstra’s method instead of the Bellman-

Ford method, as with the potential we can transform the length function (if defined
on arcs) to a nonnegative length function.
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It is convenient to associate the following functions w1, w2 : S → R to p, w :
S → R:

(41.28) w1(v) = p(v) and w2(v) = w(v) − p(v) if v ∈ I,
w1(v) = w(v) + p(v) and w2(v) = −p(v) if v ∈ S \ I.

So w = w1 + w2. Then:

Theorem 41.9. Let I ∈ I1 ∩ I2 and let p, w, w1, w2 : S → R satisfy (41.28). Then
p is a potential for DM1,M2

(I) if and only if for i = 1, 2 one has

(41.29) I maximizes wi(X) over all J ∈ Ii satisfying |J | = |I|.

Proof. The theorem follows easily with Corollary 39.12b. Indeed, there is an arc
(u, v) leaving I if and only if I − u + v ∈ I1. Then

(41.30) w1(v) ≤ w1(u) ⇐⇒ l(v) ≥ p(v) − p(u),

since l(v) = −w(v) = −w2(v) − w1(v) and −w2(v) − w1(u) = p(v) − p(u).
Similarly, there is an arc (u, v) entering I if and only if I − v + u ∈ I2. Then

(41.31) w2(v) ≥ w2(u) ⇐⇒ l(v) ≥ p(v) − p(u),

since l(v) = w(v) = w2(v) + w1(v) and w2(u) + w1(v) = p(v) − p(u).

We trivially have a potential for I := ∅. Consider next an arbitrary iteration,
with as input a common independent set I and a potential p for I. Construct
DM1,M2

(I) and l as before. Let P be an X1 − X2 path with l(P ) minimum, and,
under this condition, with |V P | minimum. (Using the potential described above,
we can find P with Dijkstra’s algorithm.) Let I ′ := I△V P .

We now reset the potential p such that for any v ∈ S with v reachable from
X1, p(v) is equal to the distance from X1 to v (= the minimum of l(V Q) over all
X1 − v paths Q in DM1,M2

(I)).
Let w1 and w2 satisfy (41.28) with respect to I, (the new) p, and w. Then:

Theorem 41.10. w1, w2 satisfy (41.29) with respect to I ′.

Proof. Extend M1 and M2 to matroids M ′
1 = (S + t, I′

1) and M ′
2 = (S + t, I′

2)
as in (41.25). Let P run from z1 ∈ X1 to z2 ∈ X2. Define w(t) := l(t) := −l(P ),
p(t) := 0, w1(t) := 0, and w2(t) := w(t). Now it suffices to show:

(41.32) (i) wi(I + t) = wi(I
′) for i = 1, 2;

(ii) w1, w2 satisfy (41.29) with respect to M ′
1, M ′

2, and I + t.

Let C be the directed circuit obtained by extending P by the arcs (t, z1) and (z2, t).
Now, since I ′ = (I + t)△V C, to show (41.32), it suffices to show, for each arc (u, v):

(41.33) if (u, v) leaves I + t, then w1(v) ≤ w1(u), with equality if (u, v) is on
C;
if (u, v) enters I + t, then w2(u) ≤ w2(v), with equality if (u, v) is on
C.

Note that for each arc (u, v) of DM′

1
,M′

2

(I + t) one has p(v) ≤ p(u) + l(v), with

equality if (u, v) is on C. Hence, if (u, v) leaves I + t, then:
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(41.34) w1(v) = p(v) + w(v) = p(v) − l(v) ≤ p(u) = w1(u),

with equality if (u, v) is on C.
Similarly, if (u, v) enters I + t, then:

(41.35) w2(v) = w(v) − p(v) = l(v) − p(v) ≥ −p(u) = w2(u),

with equality if (u, v) is on C. This proves (41.33).

Using (41.28) and Theorem 41.9, we can obtain from w1, w2 a potential for I ′.
This implies:

Corollary 41.10a. A maximum-weight common independent set can be found in
time O(k(T +n log n)), where n := |S|, k is the maximum size of a common indepen-
dent set, and T is the time needed to find DM1,M2

(I) for any common independent
set I.

Proof. Each iteration can be done in time O(T + n log n), since constructing the
graph DM1,M2

(I) takes T time, implying that there are O(T ) arcs. Hence, by Corol-
lary 7.7a, a shortest X1 − X2 path P can be found in O(T + n log n) time. Hence
I ′, and a potential for I ′ can be found in time O(T + n log n).

Since there are k iterations, we have the time bound given.

In applications where the matroids are specifically given, one can often derive
a better time bound, by obtaining DM1,M2

(I ′) not from scratch, but by adapting
DM1,M2

(I). See also Brezovec, Cornuéjols, and Glover [1986] and Gabow and Xu
[1989,1996].

41.4. Intersection of the independent set polytopes

It turns out that the intersection of the independent set polytopes of two
matroids gives exactly the convex hull of the common independent sets, as
was shown by Edmonds [1970b]27.

We first prove a very useful theorem, due to Edmonds [1970b], which we
often will apply in this part. (A more general statement and interpretation
in terms of network matrices will be given in Section 13.4.)

A family C of sets is called laminar if

(41.36) Y ⊆ Z or Z ⊆ Y or Y ∩ Z = ∅

for all Y, Z ∈ C.

Theorem 41.11. Let C be the union of two laminar families of subsets of a
set X. Let A be the C × X incidence matrix of C. Then A is totally unimod-
ular.

27 Lawler [1976b] wrote that this result was announced by Edmonds ‘at least as long ago
as 1964’.
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Proof. Let A be a counterexample with |C| + |X| minimal, and (secondly)
with a minimal number of 1’s. Then A is nonsingular and has determinant
�= ±1. Let C1 and C2 be laminar families, with union C.

If each Ci consists of pairwise disjoint sets, then A is the incidence matrix
of a bipartite graph, added with some unit base vectors. Hence A is totally
unimodular, a contradiction.

If say C1 does not consist of pairwise disjoint sets, C1 contains a smallest
nonempty set Y that is contained in some other set Z in C1. Choose Z small-
est. Replacing Z by Z\Y , maintains laminarity of C1. As this does not change
the determinant of the corresponding matrix (as it amounts to subtracting
row indexed Y from row indexed Z), we would have a counterexample with
a smaller number of 1’s, a contradiction.

Let M1 = (S, I1) and M2 = (S, I2) be matroids, with rank func-
tions r1 and r2. By Corollary 40.2a, the intersection Pindependent set(M1) ∩
Pindependent set(M2) of the independent set polytopes associated with the ma-
troids M1 = (S, I1) and M2 = (S, I2) is determined by:

(41.37) (i) xs ≥ 0 for s ∈ S,
(ii) x(U) ≤ ri(U) for i = 1, 2 and U ⊆ S.

Trivially, this intersection contains the convex hull of the incidence vectors
of common independent sets of M1 and M2. We shall see that these two
polytopes are equal.

Basis is the following result of Edmonds [1970b], whose proof we follow (it
constitutes the base of a fundamental technique developed further in several
other results).

Theorem 41.12. System (41.37) is box-totally dual integral.

Proof. Choose w ∈ ZS . Consider the linear programming problem dual to
maximizing wTx over the constraints (41.37)(ii):

(41.38) minimize
∑

U⊆S

(y1(U)r1(U) + y2(U)r2(U))

where y1, y2 ∈ R
P(S)
+ ,∑

U⊆S

(y1(U) + y2(U))χU = w.

Let y1, y2 attain this minimum, such that

(41.39)
∑

U⊆S

(y1(U) + y2(U))|U ||S \ U |

is minimized. Define

(41.40) Fi := {U ⊆ S | yi(U) > 0},

for i = 1, 2. We show that for i = 1, 2, the collection Fi is a chain; that is,
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(41.41) if T, U ∈ Fi, then T ⊆ U or U ⊆ T .

Suppose not. Choose α := min{yi(T ), yi(U)}, and decrease yi(T ) and yi(U)
by α, and increase yi(T ∩ U) and yi(T ∪ U) by α. Since

(41.42) χT + χU = χT∩U + χT∪U ,

y1, y2 remains a feasible solution of (41.38); and since

(41.43) ri(T ) + ri(U) ≥ ri(T ∩ U) + ri(T ∪ U),

it remains optimum. However, sum (41.39) decreases (by Theorem 2.1), con-
tradicting the minimality assumption. So F1 and F2 are chains.

As the constraints in (41.37)(ii) corresponding to F1 and F2 form a totally
unimodular matrix (by Theorem 41.11), by Theorem 5.35 system (41.37)(ii)
is box-TDI, and hence (41.37) is box-TDI.

(The fact that the Fi can be taken to be chains also follows directly from the
proof method of Theorem 40.2.)

This implies a characterization of the common independent set polytope

(41.44) Pcommon independent set(M1, M2)

of two matroids M1 = (S, I1) and M2 = (S, I2), being the convex hull of the
incidence vectors of the common independent sets of M1 and M2:

Corollary 41.12a. Pcommon independent set(M1, M2) is determined by (41.37).

Proof. Directly from Theorem 41.12, since it implies that the vertices of
the polytope determined by (41.37) are integer, and hence are the incidence
vectors of common independent sets.

Another way of stating this is:

Corollary 41.12b.

(41.45) Pcommon independent set(M1, M2)
= Pindependent set(M1) ∩ Pindependent set(M2).

Proof. From Corollary 41.12a, using the fact that (41.37) is the union of the
constraints for the independent set polytopes of M1 and M2, by Corollary
40.2b.

The total dual integrality of (41.37) gives the following extension of the
matroid intersection theorem:

Corollary 41.12c. Let M1 = (S, I1) and M2 = (S, I2) be matroids, with
rank functions r1 and r2, respectively, and let w ∈ ZS

+. Then the maximum
value of w(I) over I ∈ I1 ∩ I2 is equal to the minimum value of
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(41.46) r1(U1) + · · · + r1(Uk) + r2(T1) + · · · + r2(Tl),

where U1 ⊆ · · · ⊆ Uk ⊆ S and T1 ⊆ · · · ⊆ Tl ⊆ S such that each element s of
S occurs in precisely w(s) sets among U1, . . . , Uk, T1, . . . , Tl.

Proof. Directly from Theorem 41.12 and its proof.

(Edmonds [1979] gave an algorithmic proof of this result.)
These corollaries cannot be extended to the intersection of the inde-

pendent set polytopes of three matroids. Let S = {1, 2, 3}, and for i =
1, 2, 3, let Mi be the matroid on S with S \ {i} as unique circuit. Then
Pindependent set(M1) ∩ Pindependent set(M2) ∩ Pindependent set(M3) contains the
all- 1

2 vector, while each integer vector in this intersection contains at most
one 1. So the intersection is not the convex hull of the common independent
sets.

Similar results hold for the common base polytope. For matroids M1 and
M2, let the common base polytope Pcommon base(M1, M2) be the convex hull
of the incidence vectors of common bases of M1 and M2. Then:

Corollary 41.12d. Pcommon base(M1, M2) = Pbase(M1) ∩ Pbase(M2).

Proof. Directly from the foregoing.

So the common base polytope is determined by:

(41.47) xs ≥ 0 for s ∈ S,
x(U) ≤ ri(U) for i = 1, 2 and U ⊆ S,
x(S) = ri(S) for i = 1, 2.

Corollary 41.12e. System (41.47) is box-TDI.

Proof. From Theorem 41.12, with Theorem 5.25.

Moreover, similar results hold for the common spanning set polytope.
For matroids M1 and M2, let the common spanning set polytope, in notation
Pcommon spanning set(M1, M2), be the convex hull of the incidence vectors of
common spanning sets of M1 and M2. Then:

Corollary 41.12f.

(41.48) Pcommon spanning set(M1, M2)
= Pspanning set(M1) ∩ Pspanning set(M2).

Proof. This can be reduced to Corollary 41.12b on the common independent
set polytope, by duality: x belongs to the spanning set polytope of Mi if and
only if 1 − x belongs to the independent set polytope of M∗

i .
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Similarly, x belongs to the common spanning set polytope of M1 and M2

if and only if 1 − x belongs to the common independent set polytope of M∗
1

and M∗
2 .

So the common spanning set polytope is determined by:

(41.49) 0 ≤ xs ≤ 1 for s ∈ S,
x(U) ≤ ri(S) − ri(S \ U) for i = 1, 2 and U ⊆ S.

Corollary 41.12g. System (41.49) is box-TDI.

Proof. Again, this can be derived from Theorem 41.12, by replacing x by
1 − x.

Another consequence of Theorem 41.12 is:

Corollary 41.12h. Let M1 = (S, I1) and M2 = (S, I2) be matroids and let
x ∈ RS

+. Then

(41.50) max{z(S) | z ≤ x, z ∈ Pcommon independent set(M1, M2)}
= min{r(U) + x(S \ U) | U ⊆ S},

where r(U) denotes the maximum size of a common independent set contained
in U .

Proof. This follows from the box-total dual integrality of (41.37), using the
fact that r(U1 ∪ U2) ≤ r1(U1) + r2(U2) for disjoint U1, U2.

Cunningham [1984] showed that, if matroids M1 = (S, I1) and M2 =
(S, I2) are given by independence testing oracles, one can find in strongly
polynomial time for any x ∈ QS , optimum solutions of (41.50). This will
follow from the results in Section 47.4.

The result of Cunningham [1984] also implies:

Theorem 41.13. Given matroids M1 = (S, I1) and M2 = (S, I2) by indepen-
dence testing oracles, and given x ∈ QS, one can test in strongly polynomial
time if x belongs to the common independent set polytope, and if so, decom-
pose x as a convex combination of incidence vectors of common independent
sets.

Proof. Let ri be the rank function of Mi (i = 1, 2) and let r(U) :=
min{r1(U), r2(U)} for i = 1, 2. Let P be the common independent set poly-
tope. Corollaries 40.4a and 41.12b imply that one can test in strongly poly-
nomial time if x belongs to P .

So we can assume that x belongs to P . We decompose x as a convex
combination of incidence vectors of common independent sets. Iteratively
resetting x, we keep a collection U of subsets of S with x(U) = r(U) for each
U ∈ U . Initially, U := ∅. We describe the iteration.
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Define

(41.51) F := {y ∈ P | ∀s ∈ S : xs = 0 ⇒ ys = 0; ∀U ∈ U : y(U) = r(U)}.

So F is a face of P containing x.
Find a common independent set I with χI ∈ F . This can be done by

finding a common independent set I ⊆ supp(x) maximizing wTx, where w :=∑
U∈U χU . (Here supp(x) is the support of x; so supp(x) = {s ∈ S | xs > 0}.)
If x = χI we stop. Otherwise, define u := x − χI . Let λ be the largest

rational such that

(41.52) χI + λu

belongs to P .
We describe an inner iteration to find λ. We consider vectors z along the

halfline L = {χI + λu | λ ≥ 0}. First we let λ be the largest rational with
χI + λu ≥ 0, and set z := χI + λu.

We iteratively reset z. We check if z belongs to the common independent
set polytope, and if not, we find a U ⊆ S minimizing r(U) − z(U) (with
Corollary 40.4c). Let z′ be the (unique) vector on L achieving x(U) ≤ r(U)
with equality; that is, satisfying z′(U) = r(U).

Consider any inequality x(U ′) ≤ r(U ′) violated by z′. Then

(41.53) r(U ′) − |U ′ ∩ I| < r(U) − |U ∩ I|.

This can be seen by considering the function

(41.54) d(y) := (r(U) − y(U)) − (r(U ′) − y(U ′)).

We have d(z) ≤ 0 (since U minimizes r(U) − z(U)) and d(z′) > 0 (since
z′(U) = r(U) and z′(U ′) > r(U ′)). Hence, as d is linear, d(χI) > 0; that is,
we have (41.53). This implies that resetting z := z′, there are at most r(S)
inner iterations.

Let x′ be the final z found. If we apply no inner iteration, then x′
s = 0 for

some s ∈ I ⊆ supp(x) (since we chose λ largest with χI +λu ≥ 0). If we do at
least one inner iteration, we find a U such that x′ satisfies x′(U) = r(U) while
|U ∩ I| < r(U) (since x′ is the unique vector on L satisfying x′(U) = r(U)
and since x′ �= χI).

In the latter case, set U ′ := U ∪{U}; otherwise set U ′ := U . Then resetting
x to x′ and U to U ′, the dimension of F decreases (as χI does not belong to
the new F ). So the number of iterations is at most |S|. This shows that the
method is strongly polynomial-time.

41.4a. Facets of the common independent set polytope

Since the common independent set polytope of two matroids is the intersection of
their independent set polytopes, each facet-inducing inequality for the intersection
is facet-inducing for (at least) one of the independent set polytopes, but not nec-
essarily conversely. Giles [1975] characterized which inequalities are facet-inducing
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for the common independent set polytope. If this polytope is full-dimensional, then
each inequality xs ≥ 0 is facet-inducing. As for the other inequalities, Giles proved:

Theorem 41.14. Let M1 = (S, I1) and M2 = (S, I2) be loopless matroids, with
rank functions r1 and r2. For U ⊆ S, define r(U) := min{r1(U), r2(U)}. Then, for
U ⊆ S, the inequality

(41.55) x(U) ≤ r(U)

is facet-inducing for Pcommon independent set(M1, M2) if and only if there is no par-
tition of U into nonempty proper subsets U1, U2 with

(41.56) r(U) ≥ r(U1) + r(U2)

and there is no proper superset U ′ of U with r(U ′) ≤ r(U).

Proof. By symmetry, we can assume that r(U) = r1(U).
Necessity is easy: Assume that x(U) ≤ r1(U) is facet-inducing. If (41.56) would

hold, then each common independent set I with |I ∩ U | = r1(U) satisfies |I ∩ U1| =
r(U1) (since |I ∩ U1| = |I ∩ U | − |I ∩ U2| ≥ r(U) − r(U2) ≥ r(U1)). Hence each x
in the facet determined by x(U) ≤ r1(U) satisfies x(U1) = r(U1), a contradiction.
Similarly, if r(U ′) ≤ r1(U) for some proper superset U ′ of U , then each common
independent set I with |I ∩ U | = r1(U) satisfies |I ∩ U ′| = r(U ′), implying that
each x in the facet determined by x(U) ≤ r1(U) satisfies x(U ′) = r(U ′), again a
contradiction.

To see sufficiency, suppose that (41.55) satisfies the conditions, but is not facet-
inducing for the common independent set polytope. This implies that the inequality
x(U) ≤ r1(U) is implied by other inequalities in (41.37). So there exist λi : P(S) →
Q+ (for i = 1, 2) such that

(41.57)
∑

T∈P(S)

(λ1(T ) + λ2(T ))χT ≥ χU and

∑

T∈P(S)

(λ1(T )r1(T ) + λ2(T )r2(T )) ≤ r1(U),

and such that λi(U) = 0 for i = 1, 2. Let D be the least common denominator of the
values of the λi. Choose the λi such that D is as small as possible and (secondly)
such that

(41.58) D ·
∑

T⊆S

(λ1(T ) + λ2(T ))|T |(|S \ T | + 1)

is as small as possible. For i = 1, 2, define

(41.59) Fi := {T ⊆ S | λi(T ) > 0}.

We claim that for i = 1, 2:

(41.60) Fi is a chain.

Suppose to the contrary that T1, T2 ∈ Fi satisfy T1 �⊆ T2 �⊆ T1. Then decreasing
λi(T1) and λi(T2) by 1/D and increasing λi(T1 ∩ T2) and λi(T1 ∪ T2) by 1/D
maintains (41.57) but decreases (41.58). This would be a contradiction, except if
T1 ∩ T2 or T1 ∪ T2 equals U . If one of these sets equals U and D ≥ 2, we can
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reset λi(U) := 0, and multiply all values of λ1 and λ2 by D/(D − 1). This again
maintains (41.57) but decreases the least common divisor of the denominators. So
the contradiction would remain, except if D = 1. Then (41.57) implies ri(T1) +
ri(T2) ≤ r1(U). Now if T1 ∩ T2 = U , then U ⊂ T1 and

(41.61) r(T1) ≤ ri(T1) ≤ ri(T1) + ri(T2) ≤ r1(U),

contradicting the condition. If T1 ∪ T2 = U , then

(41.62) r(T1) + r(U \ T1) ≤ ri(T1) + ri(U \ T1) ≤ ri(T1) + ri(T2) ≤ r1(U),

again contradicting the condition.
This proves (41.60). As each Fi is a chain, the incidence matrix of F1 ∪ F2

is totally unimodular (by Theorem 41.11). Therefore, there are integer-valued λi

satisfying (41.57), with λi(T ) = 0 for T �∈ Fi. Then we can assume that |Fi| ≤ 1 for
i = 1, 2, since if T, T ′ ∈ Fi and T ⊂ T ′, we can decrease λi(T ) by 1 without violating
(41.57). If U ′ ∈ Fi with U ′ ⊃ U , then r(U ′) ≤ ri(U

′) ≤ r(U), contradicting
the condition. So each Fi contains a set Ui �⊇ U , implying r(U1) + r(U \ U1) ≤
r(U1) + r(U2) ≤ r1(U1) + r2(U2) ≤ r(U), again contradicting the condition.

This theorem can be seen to imply a variant of it, in which, instead of r(U) :=
min{r1(U), r2(U)}, we define

(41.63) r(U) := max{|I|
∣∣ I ∈ I1 ∩ I2} = min

T⊆U
(r1(T ) + r2(U \ T )).

Fonlupt and Zemirline [1983] characterized the dimension of the common base
polytope of two matroids.

41.4b. Up and down hull of the common base polytope

We saw in Corollary 41.12d a characterization of the common base polytope
Pcommon base(M1, M2) of two matroids M1 = (S, I1) and M2 = (S, I2). The up
hull of this polytope:

(41.64) P ↑

common base(M1, M2) := Pcommon base(M1, M2) + R
S
+

was characterized by Cunningham [1977] and McDiarmid [1978] as follows (proving
a conjecture of Fulkerson [1971a]).

Let M1 = (S, I1) and M2 = (S, I2) be matroids having a common base. Then
P ↑

common base(M1, M2) is determined by:

(41.65) x(U) ≥ r(S) − r(S \ U) for U ⊆ S,

where r(Z) := the maximum size of a common independent set contained in Z. (A
weaker version of this was proved by Edmonds and Giles [1977].)

For a proof we refer to Section 46.7a, where it is also shown that (41.65) is TDI
(Gröflin and Hoffman [1981]). (Frank and Tardos [1984a] derived this, with a direct
algorithmic construction, from the total dual integrality of (41.47).)

Note that by the matroid intersection theorem, the inequalities (41.65) are
equivalent to:

(41.66) x(U) ≥ k − r1(A) − r2(B) for each partition U, A, B of S,
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where r1 and r2 are the rank functions of M1 and M2 respectively, and where k is
the size of a common base. This implies that if we add x ≤ 1 to (41.66) we obtain
the convex hull of the subsets of S that contain a common base.

Similarly, the down hull of the common base polytope:

(41.67) P ↓

common base(M1, M2) := Pcommon base(M1, M2) − R
S
+,

is determined by

(41.68) x(U) ≤ r1(S \ A) + r2(S \ B) − k for each partition U, A, B of S.

This can be derived from the description of the up hull of the common base polytope,
since

(41.69) P ↓

common base(M1, M2) = 1 − P ↑

common base(M
∗
1 , M∗

2 )

(where 1 stands for the all-one vector in RS).
This implies that the convex hull of the incidence vectors of the subsets of

common bases is determined by x ≥ 0 and (41.68).
Cunningham [1984] gave a strongly polynomial-time algorithm to test if a vector

belongs to P ↑

common base(M1, M2), or to P ↓

common base(M1, M2), using only indepen-
dence testing oracles for M1 and M2.

41.5. Further results and notes

41.5a. Menger’s theorem for matroids

Tutte [1965b] showed a special case of the matroid intersection theorem, namely
when both M1 and M2 are minors of one matroid. Specialized to graphic matroids,
it gives the vertex-disjoint, undirected version of Menger’s theorem.

Let M = (E, I) be a matroid, with rank function r, and let U and W be disjoint
subsets of E. Then the maximum size of a common independent set in M/U \ W
and M/W \ U is equal to the minimum value of

(41.70) r(X) − r(U) + r(E \ X) − r(W )

taken over sets X with U ⊆ X ⊆ E \ W . This is the special case of the matroid
intersection theorem for the matroids M/U \ W and M/W \ U , since for Y ⊆
E \ (U ∪ W ) one has

(41.71) rM/U\W (Y ) = r(Y ∪ U) − r(U),

and similarly for M/W \ U .
To see that this implies the vertex-disjoint, undirected version of Menger’s the-

orem, let G = (V, E) be a graph and let S and T be disjoint nonempty subsets of
V . We show that the above theorem implies that the maximum number of disjoint
S − T paths in G is equal to the minimum number of vertices intersecting each
S − T path.

To this end, we can assume that G is connected, and that E contains subsets
U and W such that (S, U) and (T, W ) are trees. (Adding appropriate edges does
not modify the result to be proved.)

Let M := M(G) be the cycle matroid of G. Define R := V \ (S ∪ T ). Then
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(41.72) the maximum number of disjoint S −T paths is at least the maximum
size of a common independent set I of M/U \W and M/W \U , minus
|R|.

(In fact, there is equality.)
To prove (41.72), let I be a maximum-size common independent in M/U\W and

M/W \ U . So I is a forest. Consider any component K of I. Since I is independent
in M/U , K intersects S in at most one vertex. Similarly, K intersects T in at most
one vertex. Let p be the number of components K intersecting both S and T . By
deleting p edges we obtain a forest I ′ such that no component of I ′ intersects both
S and T . So |I ′| ≤ |R| (since I ′ remains a forest after contracting (in the graphical
sense) S ∪ T to one vertex). Hence p = |I| − |I ′| ≥ |I| − |R|. So we have (41.72).

On the other hand,

(41.73) the minimum size of a set of vertices intersecting each S − T path is
at most the minimum value of (41.70), minus |R|.

(Again, we have in fact equality.)
To prove (41.73), let X attain the minimum value of (41.70). So U ⊆ X ⊆ E\W .

Let K be the component of (V, X) containing S and let L be the component of
(V, E \ X) containing T . We choose X with |K ∪ L| maximized.

Then K ∪ L = V . For suppose not. Then, as G is connected, there is an edge
e of G leaving K ∪ L. By symmetry, we can assume that e ∈ X. Let K′ be the
component of (V, X) containing e. So K′ �= K and E[K′] ∩ U = ∅. Resetting X by
X \E[K′], r(X) decreases by |K′|−1, while r(E \X) increases by at most |K′|−1.
So the new X again attains the minimum in (41.70), while K ∪ L increases. This
contradicts our maximality assumption.

So K ∪ L = V . Hence K ∩ L intersects each S − T path (since S ⊆ K and
T ⊆ L, and there is no edge connecting K \ L and L \ K). Moreover

(41.74) |K ∩ L| = |K| + |L| − |V | ≤ (r(X) + 1) + (r(E \ X) + 1) − |V |
= r(X) + r(E \ X) − |V | + 2 = r(X) + r(E \ X) − r(U) − r(W ) − |R|.

So we have (41.73).
Since the maximum number of disjoint S−T paths is trivially not more than the

minimum number of vertices intersecting all S − T paths, we thus obtain Menger’s
theorem (and also equality in (41.72) and (41.73)).

(Tomizawa [1976a] gave an algorithm for Menger’s theorem for matroids.)

41.5b. Exchange properties

Kundu and Lawler [1973] showed the following extension of the exchange property
of bipartite graphs given in Theorem 16.8. Let M1 = (S, I1) and M2 = (S, I2) be
matroids, with span functions span1 and span2. Then

(41.75) For any I1, I2 ∈ I1 ∩ I2 there exists an I ∈ I1 ∩ I2 with I1 ⊆ span1(I)
and I2 ⊆ span2(I).

(Theorem 16.8 is equivalent to the case where the Mi are partition matroids.)
To prove (41.75), choose I ∈ I1 ∩I2 with I1 ⊆ span1(I) and |I ∩ I2| maximized.

Suppose that I2 �⊆ span2(I). Choose s ∈ I2 \ span2(I) with I ∪ {s} ∈ I2. By
the maximality of |I ∩ I2| we know that I ∪ {s} �∈ I1. So M1 has a circuit C
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contained in I ∪ {s}. Since I2 ∈ I1 we know that C �⊆ I2. Choose t ∈ C \ I2.
Then for I ′ := I − t + s we have I ′ ∈ I1 ∩ I2, while span1(I

′) = span1(I). Since
|I ′ ∩ I2| > |I ∩ I2| this contradicts the maximality assumption.

A second exchange property was shown by Davies [1976]:

(41.76) Two matroids M1 and M2 have bases B1 and B2 (respectively) with
|B1 ∩B2| = k if and only if M1 has bases X1 and Y1 and M2 has bases
X2 and Y2 with |X1 ∩ X2| ≤ k and |Y1 ∩ Y2| ≥ k.

To see this, we may assume that X2 = Y2, since if |X1 ∩ Y2| ≤ k we can reset
X2 := Y2, and if |X1 ∩ Y2| > k we can reset Y1 := X1 and exchange indices.

By (39.33)(ii), there exists a series of bases Z0, . . . , Zt of M1 such that Z0 = X1,
Zt = Y1, and |Zi−1△Zi| = 2 for i = 1, . . . , t. Hence

(41.77)
∣∣|Zi−1 ∩ X2| − |Zi ∩ X2|

∣∣ ≤ 1

for i = 1, . . . , t. Since |Z0 ∩ X2| ≤ k and |Zt ∩ X2| ≥ k, we know |Zi ∩ X2| = k for
some i. This proves (41.76).

41.5c. Jump systems

A framework that includes both matroid intersection and maximum-size matching
was introduced by Bouchet and Cunningham [1995]. For x, y ∈ Zn, let [x, y] be the
set of vectors z ∈ Zn with ‖x − y‖1 = ‖x − z‖1 + ‖z − y‖1. So [x, y] consists of all
integer vectors z in the box x ∧ y ≤ z ≤ x ∨ y.

Call a vector z a step from x to y if z ∈ [x, y] and ‖z − x‖1 = 1. A jump system
is a finite subset J of Zn satisfying the following axiom:

(41.78) if x, y ∈ J and z is a step from x to y, then z ∈ J or J contains a step
from z to y.

Trivially, for any jump system J and any x, y ∈ Zn, the intersection J∩[x, y] is again
a jump system. Moreover, being a jump system is maintained under translations
by an integer vector and by reflections in a coordinate hyperplane. Bouchet and
Cunningham [1995] showed that the sum of jump systems is again a jump system
(attributing the proof below to A. Sebő):

Theorem 41.15. If J1 and J2 are jump systems in Zn, then J1 + J2 is a jump
system.

Proof. For x, y ∈ J1 + J2 we prove (41.78) by induction on the minimum value of

(41.79) ‖y′ − x′‖1 + ‖y′′ − x′′‖1,

where x′, y′ ∈ J1, x′′, y′′ ∈ J2, x′ + x′′ = x, and y′ + y′′ = y.
Let z be a step from x to y. By reflection and permutation of coordinates, we

can assume that z = x + χ1. So x1 < y1. Hence, by symmetry of J1 and J2, we can
assume that x′

1 < y′
1. Next, by reflection, we can assume that x′ ≤ y′.

Now x′+χ1 is a step from x′ to y′. If x′+χ1 ∈ J1, then z = x′+χ1+x′′ ∈ J1+J2,
and we have (41.78). So we can assume that x′ +χ1 �∈ J1. Hence, by (41.78) applied
to J1, there is an i ∈ {1, . . . , n} with x̃′ := x′ + χ1 + χi ∈ J1 and x̃′ ≤ y′.

So z + χi = x̃′ + x′′ ∈ J1 + J2. If z + χi ∈ [x, y], we have (41.78). If z + χi �∈
[x, y], then as z ∈ [x, y], we have zi = yi. So z is a step from z + χi to y. Also,
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‖y′ − x̃′‖1 = ‖y′ − x′‖1 − 2. Hence, by our induction hypothesis applied to z + χi

and y, we have (41.78).

As Bouchet and Cunningham [1995] observed, this theorem implies that the
following two constructions give jump systems J ⊆ ZV .

For any matroid M = (S, I), the set {χB | B base of M} is a jump system in
ZS , as follows directly from the axioms (39.33). With Theorem 41.15, this implies
that for matroids M1 = (S, I1) and M2 = (S, I2), the set

(41.80) J := {χB1 − χB2 | Bi base of Mi (i = 1, 2)}

is a jump system.
Let G = (V, E) be an undirected graph and let

(41.81) J := {degF | F ⊆ E} ⊆ ZV ;

that is, J is the collection of degree sequences of spanning subgraphs of G. Again,
J is a jump system. This follows from Theorem 41.15, since for each edge e = uv
the set {0, χ{u,v}} is trivially a jump system in ZV and since J is the sum of these
jump systems.

Bouchet and Cunningham [1995] showed that the following greedy approach
finds, for any w ∈ Rn, a vector x ∈ J maximizing wTx. By reflecting, we can
assume that w ≥ 0. We can also assume that w1 ≥ w2 ≥ · · · ≥ wn. Let J0 := J ,
and for i = 1, . . . , n, let Ji be the set of vectors x in Ji−1 maximizing xi over Ji−1.
Trivially, Jn consists of one vector, y say. Then:

Theorem 41.16. y maximizes wTx over J .

Proof. It suffices to show that the maximum value of wTx over J1 is the same as
over J (since applying this to the jump systems J1, . . . , Jn gives the theorem). Let
the maximum over J be attained by x and over J1 by y. Suppose wTy < wTx.
So x �∈ J1, and hence x1 < y1. We choose x, y such that y1 − x1 is minimal. Let
z := x + χ1. So z is a step from x to y.

Then wTz = wTx + w1 ≥ wTx. Hence z �∈ J , since otherwise we can replace x
by z, contradicting the minimality of y1 − x1. So, by (41.78), J contains a step u
from z to y. So u = z ± χi for some i ∈ {1, . . . , n}. Then

(41.82) wTu = wTz ± wi ≥ wTz − wi = wTx + w1 − wi ≥ wTx.

So we can replace x by u, again contradicting the minimality of y1−x1 (as u1 > x1).

Lovász [1997] gave a min-max relation for the minimum l1-distance of an integer
vector to a jump system of special type. It can be considered as a common gener-
alization of the matroid intersection theorem (Theorem 41.1) and the Tutte-Berge
formula (Theorem 24.1).

For a survey, see Cunningham [2002].

41.5d. Further notes

A special case of the weighted matroid intersection algorithm (where one matroid
is a partition matroid) was studied by Brezovec, Cornuéjols, and Glover [1988].
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Data structures for on-line updating of matroid intersection solutions were given
by Frederickson and Srinivas [1984,1987], and a randomized parallel algorithm for
linear matroid intersection by Narayanan, Saran, and Vazirani [1992,1994].

An extension of matroid intersection to ‘supermatroid’ intersection was given
by Tardos [1990]. Fujishige [1977a] gave a primal approach to weighted matroid in-
tersection, and Shigeno and Iwata [1995] a dual approximation approach. Camerini
and Maffioli [1975,1978] studied 3-matroid intersection problems.



Chapter 42

Matroid union

Matroid union is closely related to matroid intersection, and most of the
basic matroid union results follow from basic matroid intersection results,
and vice versa. But matroid union also gives a shift in focus and offers a
number of specific algorithmic questions.

42.1. Matroid union theorem

The matroid union theorem will be derived from the following basic result
given by Nash-Williams [1967], suggested by earlier unpublished work of J.
Edmonds28:

Theorem 42.1. Let M ′ = (S′, I ′) be a matroid, with rank function r′, and
let f : S′ → S. Define

(42.1) I := {f(I ′) | I ′ ∈ I ′}

(where f(I ′) := {f(s) | s ∈ I ′}). Then M = (S, I) is a matroid, with rank
function r given by

(42.2) r(U) = min
T⊆U

(|U \ T | + r′(f−1(T )))

for U ⊆ S.

Proof. Trivially, I is nonempty and closed under taking subsets. To see
condition (39.1)(ii), let I, J ∈ I with |I| < |J |. Choose I ′, J ′ ∈ I ′ with
f(I ′) = I, f(J ′) = J , |I ′| = |I|, |J ′| = |J |, and |I ′ ∩ J ′| as large as possible.
As M ′ is a matroid, I ′ + j ∈ I ′ for some j ∈ J ′ \ I ′. If f(j) ∈ f(I ′),
say f(j) = f(i) for i ∈ I ′, replacing I ′ by I ′ − i + j would increase |I ′ ∩ J ′|,
contradicting our assumption. So f(j) ∈ J\I and f(I ′)+f(j) = f(I ′+j) ∈ I.
This proves (39.1)(ii), and hence M is a matroid.

The rank r(U) of a subset U of S is equal to the maximum size of a
common independent set in M ′ and the partition matroid N = (S′,J ) in-
duced by the family (f−1(s) | s ∈ U). By the matroid intersection theorem
(Theorem 41.1), this is equal to the right-hand side of (42.2).

28 as mentioned in the footnote on page 20 of Pym and Perfect [1970] (quoted in Section
42.6f below).
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(In his paper, Nash-Williams suggested a direct proof, by decomposing f as
a product of ‘elementary’ functions in which only two elements are merged.
Welsh [1970] observed that the rank formula (42.2) also follows directly from
Rado’s theorem (Corollary 41.1c) of Rado [1942].)

Theorem 42.1 implies the following result, formulated explicitly by Ed-
monds [1968] (and for all Mi equal by Nash-Williams [1967]).

Let M1 = (S1, I1), . . . , Mk = (Sk, Ik) be matroids. Define the union of
these matroids as M1 ∨ · · · ∨ Mk = (S1 ∪ · · · ∪ Sk, I1 ∨ · · · ∨ Ik), where

(42.3) I1 ∨ · · · ∨ Ik := {I1 ∪ . . . ∪ Ik | I1 ∈ I1, . . . , Ik ∈ Ik}.

Corollary 42.1a (matroid union theorem). Let M1 = (S1, I1), . . . , Mk =
(Sk, Ik) be matroids, with rank functions r1, . . . , rk, respectively. Then M1 ∨
· · · ∨ Mk is a matroid again, with rank function r given by:

(42.4) r(U) = min
T⊆U

(|U \ T | + r1(T ∩ S1) + · · · + rk(T ∩ Sk)).

for U ⊆ S1 ∪ · · · ∪ Sk.

Proof. To see that M1 ∨ · · · ∨ Mk is a matroid, let for each i, M ′
i = (S′

i, I
′
i)

be a copy of Mi with S′
1, . . . , S

′
k disjoint. Then trivially M ′

1 ∨ · · · ∨ M ′
k is a

matroid. Now define f : S′
1 ∪ · · · ∪ S′

k → S1 ∪ · · · ∪ Sk by, for i = 1, . . . , k and
s ∈ S′

i: f(s) is the original of s in Si. Then the matroid obtained in Theorem
42.1 is equal to M1 ∨ · · · ∨ Mk, proving that the latter indeed is a matroid,
and (42.4) follows from (42.2).

Conversely, the matroid intersection theorem may be derived from the
matroid union theorem (as was shown by Edmonds [1970b]): the maximum
size of a common independent set in two matroids M1 and M2, is equal to
the maximum size of an independent set in the union M1 ∨ M∗

2 , minus the
rank of M∗

2 .
Application of the matroid union theorem to a number of copies of the

same matroid gives the following results. First:

Corollary 42.1b. Let M = (S, I) be a matroid, with rank function r, and
let k ∈ Z+. Then the maximum size of the union of k independent sets is
equal to

(42.5) min
U⊆S

(|S \ U | + k · r(U)).

Proof. This follows by applying Corollary 42.1a to M1 = · · · = Mk = M .

This implies that the minimum number of independent sets (or bases)
needed to cover the underlying set is described by the following result of
Edmonds [1965c]29:

29 This result was also given, without proof, by Rado [1966], saying that the argument of
Horn [1955] for linear matroids can be extended to arbitrary matroids. The result con-
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Corollary 42.1c (matroid base covering theorem). Let M = (S, I) be a
matroid, with rank function r, and let k ∈ Z+. Then S can be covered by k
independent sets if and only if

(42.6) k · r(U) ≥ |U |

for each U ⊆ S.

Proof. M can be covered by k independent sets if and only if there is a union
of k independent sets of size |S|. By Corollary 42.1b, this is the case if and
only if

(42.7) min
U⊆S

(|S \ U | + k · r(U)) ≥ |S|,

that is, if and only if k · r(U) ≥ |U | for each subset U of S.

One similarly has for the maximum number of disjoint bases in a matroid
(Edmonds [1965a]):

Corollary 42.1d (matroid base packing theorem). Let M = (S, I) be a
matroid, with rank function r, and let k ∈ Z+. Then there exist k disjoint
bases if and only if

(42.8) k · (r(S) − r(U)) ≤ |S \ U |

for each U ⊆ S.

Proof. M has k disjoint bases if and only if the maximum size of the union
of k independent sets is equal to k · r(S). By Corollary 42.1b, this is the case
if and only if

(42.9) min
U⊆S

(|S \ U | + k · r(U)) ≥ k · r(S),

that is, if and only if |S \ U | ≥ k · (r(S) − r(U)) for each subset U of S.

The more general forms of Corollaries 42.1c and 42.1d, with different
matroids, were shown by Edmonds and Fulkerson [1965].

42.1a. Applications of the matroid union theorem

We describe a number of applications of the matroid union theorem. Further ap-
plications will follow in Chapter 51 on packing and covering of trees and forests.

Transversal matroids. Let X = (X1, . . . , Xn) be a family of subsets of a finite
set S, and define for each i = 1, . . . , n a matroid M on S by: Y is independent in
Mi if and only if Y ⊆ Xi and |Y | ≤ 1. Now the union M1 ∨ · · · ∨ Mn is the same

firms a question of Rado [1962a,1962b] (in fact, the result also follows by an elementary
construction from Rado’s theorem (Corollary 41.1c) given in Rado [1942]).
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as the transversal matroid induced by X , so in this way one can prove again that
transversal matroids indeed are matroids.

Disjoint transversals. Let X = (X1, . . . , Xn) be a family of subsets of a finite set
S. Then X has k disjoint transversals if and only if

(42.10)
∣∣ ⋃

i∈I

Xi

∣∣ ≥ k · |I|

for each I ⊆ {1, . . . , n}. This easy consequence of Hall’s marriage theorem (cf.
Theorem 22.10) can also be derived by applying the matroid base packing theorem
to the transversal matroid induced by X , using (39.19).

Similarly, it can be derived from the matroid base covering theorem that S can
be partitioned into k partial transversals of X if and only if

(42.11) k(n − |I|) ≥ |S \
⋃

i∈I

Xi|

for each I ⊆ {1, . . . , n} (cf. Theorem 22.12).

Vector spaces. A finite subset S of a vector space can be covered by k linearly
independent sets if and only if

(42.12) |U | ≤ k · rank(U) for each U ⊆ S.

This conjecture of K.F. Roth and R. Rado was shown by Horn [1955]30. It is the
special case of the matroid base covering theorem for linear matroids (see also
Section 42.1b below).

As a similar consequence of the matroid base packing theorem one has that
the n-dimensional vector space S over the field GF (q) contains k := ⌊(qn − 1)/n⌋
disjoint bases. Indeed, for each U ⊆ S one has k(n−r(U)) ≤ qn−|U |, as |U | ≤ qr(U).

An exchange property of bases. The matroid union theorem also implies the
following stronger exchange property of bases of a matroid (stronger than given in
the ‘axioms’ in Theorem 39.6). In any matroid M = (S, I),

(42.13) for any two bases B1 and B2 and for any partition of B1 into X1 and
Y1, there is a partition of B2 into X2 and Y2 such that both X1 ∪ Y2

and X2 ∪ Y1 are bases.

This property was conjectured by G.-C. Rota, and proved by Brylawski [1973],
Greene [1973], and Woodall [1974a] — we follow the proof of McDiarmid [1975a].

Consider the matroids M1 := M/Y1 and M2 := M/X1. Note that M1 has
rank |X1| and that M2 has rank |Y1|. We must show that B2 is the union of an
independent set X2 of M1 and an independent set Y2 of M2. By the submodularity
of the rank functions ((39.38)(ii)) we have for each T ⊆ B2:

30 Horn [1955] thanked Rado ‘for improvements in the setting out of the argument’. The
result was also published, in the same journal, by Rado [1962a]. This paper does not
mention Horn’s paper. The proof by Rado [1962a] is the same as that of Horn [1955]
and uses the same notation. But Rado [1966] said that the theorem was first proved by
Horn [1955].
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(42.14) |B2 \ T | + rM1
(T \ Y1) + rM2

(T \ X1)
= |B2 \ T | + r(T ∪ Y1) − |Y1| + r(T ∪ X1) − |X1|
≥ r(T ) + r(T ∪ Y1 ∪ X1) − |T | = |B2|.

Hence, by the matroid union theorem (Corollary 42.1a), we have the required result.
Repeated application of this exchange phenomenon implies the following strong-

er property, given by Greene and Magnanti [1975]:

(42.15) for any two bases B1 and B2 and any partition of B1 into X1, . . . , Xk,
there is a partition of B2 into Y1, . . . , Yk such that (B1 \ Xi) ∪ Yi is a
base, for each i = 1, . . . , k.

This extends Corollary 39.12a, which is the special case where each Xi is a singleton.

42.1b. Horn’s proof

The proof of Horn [1955] of the matroid base covering theorem for linear matroids
directly extends to general matroids (as was observed by Rado [1966]):

Consider a counterexample to the matroid base covering theorem (Corollary
42.1c) with smallest |S|. For subsets S1, . . . , Sn of S, define inductively:

(42.16) [S1, . . . , Sn] :=

{
S if n = 0,
span([S1, . . . , Sn−1] ∩ Sn) if n ≥ 1.

By the minimality of |S|, we know that for each s ∈ S, S\{s} can be partitioned
into k independent sets I1, . . . , Ik. We first show:

(42.17) for each s ∈ S and I1, . . . , Ik partitioning S\{s}, there exist j1, . . . , jn ∈
{1, . . . , k} with s �∈ [Ij1 , . . . , Ijn ].

Indeed, choose j1, . . . , jn ∈ {1, . . . , k} with the rank of [Ij1 , . . . , Ijn ] as small as
possible. Define A := [Ij1 , . . . , Ijn ]. By the minimality of the rank of A, we have
r(A ∩ Ij) = r(A) for each j = 1, . . . , k. Hence, by (42.6),

(42.18) |A| ≤ k · r(A) =

k∑

j=1

r(A ∩ Ij) ≤
k∑

j=1

|A ∩ Ij | = |A \ {s}|.

So s �∈ A, proving (42.17).
Now choose s, I1, . . . , Ik, and j1, . . . , jn as in (42.17) with n as small as possible.

For t = 0, . . . , n, define

(42.19) Bt := [Ij1 , . . . , Ijt ].

As we have a counterexample, we know that s ∈ span(Ijn) (otherwise we can add s
to Ijn). Let C be the circuit in Ijn ∪ {s}. As s �∈ Bn = span(Bn−1 ∩ Ijn), we know
that C \ {s} is not contained in Bn−1 (otherwise C \ {s} ⊆ Bn−1 ∩ Ijn , and hence
s ∈ span(Bn−1 ∩ Ijn)). So we can choose z ∈ C \ {s} with z �∈ Bn−1.

Define I ′
jn

:= Ijn −z+s and I ′
j := Ij for j �= jn. Then I ′

1, . . . , I
′
k are independent

sets partitioning S \ {z}. Define, for t = 0, . . . , n:

(42.20) B′
t := [I ′

j1 , . . . , I ′
jt

].

By the minimality of n we know that z ∈ B′
n−1. Since z �∈ Bn−1, we have B′

n−1 �⊆
Bn−1. Choose the smallest q ≤ n − 1 with B′

q �⊆ Bq. Then q ≥ 1 and B′
q−1 ⊆ Bq−1.

By the minimality of n we know that s ∈ Bq (as q < n). So

(42.21) B′
q = span(B′

q−1 ∩ I ′
jq

) ⊆ span((Bq−1 ∩ Ijq ) ∪ {s}) ⊆ span(Bq) = Bq,

a contradiction.
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42.2. Polyhedral applications

The matroid base packing and covering theorems imply (in fact, are equiva-
lent to) the following polyhedral result:

Corollary 42.1e. For any matroid, the independent set polytope, the base
polytope, and the spanning set polytope have the integer decomposition prop-
erty.

Proof. Let M = (S, I) be a matroid. Choose k ∈ Z+ and an integer vector
x ∈ k·Pindependent set(M). Replace each element s of S by xs parallel elements,
thus obtaining the matroid N = (T, J ) say. Now for each U ⊆ T , one has
k · rN (U) ≥ |U |, since if W denotes the set of elements s in S such that U
intersects the parallel class of s, then

(42.22) rN (U) = rM (W ) ≥ x(W )/k ≥ |U |/k,

since x/k belongs to Pindependent set(M). So by the matroid base covering
theorem (Corollary 42.1c), T can be partitioned into k independent sets of
N . Hence x is the sum of k incidence vectors of independent sets of M .

To see that the base polytope has the integer decomposition property, let
x ∈ k · Pbase(M). By the above, x is the sum of the incidence vectors of k
independent sets. As x(S) = k ·r(S), each of these independent sets is a base.

One similarly derives from the matroid base packing theorem (Corollary
42.1d) that the spanning set polytope has the integer decomposition property.

The matroid base packing and covering theorems imply generalizations
to the capacitated case, by splitting elements into parallel elements. For the
matroid base covering theorem this gives:

Theorem 42.2. Let M = (S, I) be a matroid, with rank function r, and
let c : S → Z+. Then the minimum value of

∑
I∈I λI , where λ : I → Z+

satisfies

(42.23)
∑

I∈I

λIχ
I = c,

is equal to the maximum value of

(42.24)
⌈ c(U)

r(U)

⌉

taken over U ⊆ S with r(U) ≥ 1.

Proof. Directly from the matroid base covering theorem (Corollary 42.1c),
by splitting each s ∈ S into c(s) parallel elements.

In other words, the system defining the antiblocking polyhedron of the
independent set polytope:
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(42.25) xs ≥ 0 for s ∈ S,
x(I) ≤ 1 for I ∈ I,

has the integer rounding property (the optimum integer solution to the dual
of maximizing cTx over (42.25) has value equal to the upper integer part
of the value of the optimum (fractional) solution, for any integer objective
function c).

Similarly, the matroid base packing theorem gives:

Theorem 42.3. Let M = (S, I) be a matroid, with rank function r, and let
c : S → Z+. Let B be the collection of bases of M . Then the maximum value
of

∑
B∈B λB, where λ : B → Z+ satisfies

(42.26)
∑

B∈B

λBχB ≤ c,

is equal to the minimum value of

(42.27)
⌊ c(S \ U)

r(S) − r(U)

⌋

taken over U ⊆ S with r(S) − r(U) ≥ 1.

Proof. Directly from the matroid base packing theorem (Corollary 42.1d),
by splitting each s ∈ S into c(s) parallel elements.

In other words, the system defining the blocking polyhedron of the base
polytope:

(42.28) xs ≥ 0 for s ∈ S,
x(B) ≥ 1 for B ∈ B,

has the integer rounding property.
De Pina and Soares [2000] showed that, in Theorem 42.3, the number of

bases B with λB > 0 can be restricted to at most |S|+ r, where r is the rank
of M . This strengthens a result of Cook, Fonlupt, and Schrijver [1986].

42.3. Matroid union algorithm

A polynomial-time algorithm for partitioning a matroid in as few independent
sets as possible may be derived from the matroid intersection algorithm, with
the construction given in the proof of Theorem 42.1. A direct algorithm was
given by Edmonds [1968]. We give the algorithm described by Knuth [1973]
and Greene and Magnanti [1975], which is similar to the algorithm described
in Section 41.2 for cardinality matroid intersection.

Let M1 = (S, I1), . . . , (S, Ik) be matroids. Let Ii ∈ Ii, for i = 1, . . . , k,
with Ii ∩ Ij = ∅ if i �= j. Let D be the union of the graphs DMi

(Ii) as defined
in Section 39.9.
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For each i, let Fi be the set of elements s �∈ Ii with Ii ∪ {s} ∈ Ii. Define
I := I1 ∪ · · · ∪ Ik, F := F1 ∪ · · · ∪ Fk, and I := I1 ∨ · · · ∨ Ik.

Theorem 42.4. For any s ∈ S \ I one has: I ∪ {s} ∈ I ⇐⇒ D has an
F − s path.

Proof. To see necessity, suppose that D has no F − s path. Let T be the set
of elements of S that can reach s in D. So s ∈ T , T ∩F = ∅, and no arc of D
enters T . Then ri(T ) = |Ii ∩ T | for each i = 1, . . . , k. Otherwise, there exists
a t ∈ T \ Ii with (Ii ∩ T ) ∪ {t} ∈ Ii. Since t �∈ F , Ii ∪ {t} �∈ Ii. So there is a
u ∈ Ii \ T with Ii − u + t ∈ Ii. But then (u, t) is an arc of D entering T , a
contradiction.

So ri(T ) = |Ii ∩ T | for each i. Hence r1(T ) + · · · + rk(T ) = |I ∩ T |. As
s ∈ T \ I, this implies (I ∩ T ) ∪ {s} �∈ I, and so I ∪ {s} �∈ I.

To see sufficiency, let P = (s0, s1, . . . , sp) be a shortest F − s path in D.
We can assume by symmetry that s0 ∈ F1; so s0 �∈ I1 and I1 ∪ {s0} ∈ I1.
Since P is a shortest path, for each i = 1, . . . , k, the set Ni of edges (sj−1, sj)
with j = 1, . . . , p and sj−1 ∈ Ii, forms a unique perfect matching in DMi

(Ii)
on the set Si covered by Ni. So by Theorem 39.13, Ii△Si belongs to Ii for
each i. Moreover, by Corollary 39.13a, (I1△S1) ∪ {s0} ∈ I1. So I ∪ {s} ∈ I.

This implies that a maximum-size set in I1 ∨ · · · ∨ Ik can be found in
polynomial time (by greedily growing an independent set in M1 ∨ · · · ∨ Mk).
Similarly, we can find with the greedy algorithm a maximum-weight set in
I1 ∨ · · · ∨ Ik.

In particular, we can test if a given set is independent in M1 ∨ · · · ∨ Mk.
Cunningham [1986] gave an O((n3/2 + k)mQ + n1/2km) algorithm to find a
maximum-size set in I1 ∨ · · · ∨ Ik, where n is the maximum size of a set in
I1 ∨ · · · ∨ Ik, m is the size of the underlying set, and Q is the time needed to
test if a given set belongs to Ij for any given j.

These methods (including the reduction to matroid intersection) also im-
ply:

Theorem 42.5. Given a matroid M = (S, I) by an independence testing
oracle, we can find a maximum number of disjoint bases, and a minimum
number of independent sets covering S, in polynomial time.

Proof. See above.

42.4. The capacitated case: fractional packing and
covering of bases

The complexity of the capacitated and fractional cases of the above packing
and covering problems can be studied with the help of the strong polynomial-
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time solvability of the most violated inequality problem for a matroid M =
(S, I), with rank function r:

(42.29) given: a vector x ∈ QS
+;

find: a subset U of S minimizing r(U) − x(U).

The strong polynomial-time solvability of this problem was shown in Corol-
lary 40.4c, and is a result of Cunningham [1984].

If x belongs to Pindependent set(M), we can decompose x as a convex com-
bination of incidence vectors of independent sets. This decomposition can be
found in strongly polynomial time, by Corollary 40.4a.

We now consider the problem of finding a maximum fractional packing of
bases subject to a given capacity function, and its dual, finding a minimum
fractional covering by independent sets of a demand function.

With a method given by Picard and Queyranne [1982a] and Padberg and
Wolsey [1984] one finds:

Theorem 42.6. Given a matroid M = (S, I) by an independence testing
oracle and given y ∈ QS

+, we can find the minimum value of λ such that
y ∈ λ · Pindependent set(M) in strongly polynomial time.

Proof. Let r be the rank function of M . We can assume that y does not
belong to the independent set polytope. Let L be the line through 0 and y.
We iteratively reset y as follows. By Corollary 40.4c, we can find a subset U
of S minimizing r(U) − y(U). Let y′ be the vector on L with y′(U) = r(U).

Now, for any U ′ ⊆ S, if y′ violates x(U ′) ≤ r(U ′), then r(U ′) < r(U),
since the function d(x) := (r(U) − x(U)) − (r(U ′) − x(U ′)) is nonpositive at
y and positive at y′, implying that it is positive at 0 (as d is linear in x).

We reset y := y′ and iterate, until y belongs to Pindependent set(M). So after
at most r(S) iterations the process terminates, with a y on the boundary
of Pindependent set(M). Comparing the final y with the original y gives the
required λ.

Theorem 42.6 implies an algorithm for capacitated fractional covering by
independent sets:

Corollary 42.6a. Given a matroid M = (S, I) by an independence testing
oracle and given y ∈ QS

+, we can find independent sets I1, . . . , Ik and rationals
λ1, . . . , λk ≥ 0 such that

(42.30) y = λ1χ
I1 + · · · + λkχIk

with λ1 + · · · + λk minimal, in strongly polynomial time.

Proof. Without loss of generality, y �= 0. By Theorem 51.7, we can find
the minimum value of λ such that y belongs to λ · Pindependent set(M). By
Corollary 40.4a, we can decompose 1

λ ·y as a convex combination of incidence
vectors of independent sets. This gives the required decomposition of y.
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One similarly shows for the spanning set polytope:

Theorem 42.7. Given a matroid M = (S, I) by an independence testing
oracle and given y ∈ QS

+, we can find the maximum value of λ such that
y ∈ λ · Pspanning set(M), in strongly polynomial time.

Proof. Let r be the rank function of M . By Corollary 40.2f, the spanning
set polytope of M is determined by the constraints 0 ≤ x ≤ 1 and

(42.31) r(U) − x(U) ≥ r(S) − x(S) for U ⊆ S.

We can assume that y �∈ Pspanning set(M) and that the support of y is a
spanning set. Let L be the line through 0 and y. We iteratively reset y as
follows.

Find a U ⊆ S minimizing r(U) − y(U) (this can be done in strongly
polynomial time, by Corollary 40.4c). If y does not belong to the spanning set
polytope, we know that y violates the constraint r(U)−x(U) ≥ r(S)−x(S).
Let y′ be the vector on L satisfying r(U) − y′(U) = r(S) − y′(S).

Now for any U ′ ⊆ S, if y′ violates r(U ′) − x(U ′) ≥ r(S) − x(S), then
r(U ′) > r(U), since the function d(x) := (r(U) − x(U)) − (r(U ′) − x(U ′)) is
nonpositive at y and positive at y′, implying that it is negative at 0 (as d is
linear in x).

We reset y := y′ and iterate, until y belongs to Pspanning set(M). So after
at most r(S) iterations the process terminates, in which case y is on the
boundary of Pspanning set(M). Comparing the final y with the original y gives
the required λ.

In turn, this gives an algorithm for capacitated fractional base packing:

Corollary 42.7a. Given a matroid M = (S, I) by an independence test-
ing oracle and given y ∈ QS

+, we can find bases B1, . . . , Bk and rationals
λ1, . . . , λk ≥ 0 such that

(42.32) y ≥ λ1χ
B1 + · · · + λkχBk

with λ1 + · · · + λk maximal, in strongly polynomial time.

Proof. By Theorem 42.7, we can find the maximum value of λ such that y
belongs to λ ·Pspanning set(M). If λ = 0, we take k = 0. If λ > 0, by Corollary
40.4b we can decompose 1

λ · y as a convex combination of incidence vectors
of spanning sets. This gives the required decomposition of y.

42.5. The capacitated case: integer packing and covering
of bases

It is not difficult to derive integer versions of the above algorithms, but they
are not strongly polynomial-time, as we round numbers in it. In fact, an
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integer packing or covering cannot be found in strongly polynomial time, as
it would imply a strongly polynomial-time algorithm for testing if an integer
k is even (which algorithm does not exist31): Let M be the 2-uniform matroid
on 3 elements and let k ∈ Z+. Then k is even if and only if M has 3

2k bases
containing each element of M at most k times.

Polynomial-time algorithms follow directly from the fractional versions
with the help of the matroid base packing and covering theorems.

Theorem 42.8. Given a matroid M = (S, I) by an independence testing
oracle and given y ∈ ZS

+, we can find independent sets I1, . . . , It and integers
λ1, . . . , λt ≥ 0 such that

(42.33) y = λ1χ
I1 + · · · + λtχ

It

with λ1 + · · · + λt minimal, in polynomial time.

Proof. First find I1, . . . , Ik and λ1, . . . , λk as in Corollary 42.6a. We can
assume that k ≤ |S| (by Carathéodory’s theorem, applying Gaussian elimi-
nation). Let

(42.34) y′ :=
k∑

i=1

(λi − ⌊λi⌋)χ
Ii = y −

k∑

i=1

⌊λi⌋χ
Ii .

So y′ is integer.
Replace each s ∈ S by y′(s) parallel elements, making matroid M ′ =

(S′, I ′). By Theorem 42.5, we can find a minimum number of independent
sets partitioning S′, in polynomial time (as y′(s) ≤ |S| for each s ∈ S). This
gives independent sets Ik+1, . . . , It of M .

Setting λi := 1 for i = k + 1, . . . , t, we show that this gives a solution of
our problem. Trivially, (42.33) is satisfied (with λi replaced by ⌊λi⌋). By the
matroid base covering theorem applied to M ′ (as (42.34) gives a fractional
decomposition of S′ into independent sets),

(42.35) t − k ≤
⌈ k∑

i=1

(λi − ⌊λi⌋)
⌉
.

Therefore,

(42.36)
t∑

i=1

⌊λi⌋ = (t − k) +
k∑

i=1

⌊λi⌋ ≤
⌈ k∑

i=1

λi

⌉
,

31 For any strongly polynomial-time algorithm with one integer k as input, there is a
number L and a rational function q : Z → Q such that if k > L, then the output equals
q(k). (This can be proved by induction on the number of steps of the algorithm, which
is a fixed number as the input consists of only one number.) However, there do not exist
a rational function q and number L such that for k > L, q(k) = 0 if k is even, and
q(k) = 1 if k is odd.
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proving that the decomposition is optimum (cf. Theorem 42.2).

One similarly shows for packing bases:

Theorem 42.9. Given a matroid M = (S, I) by an independence testing ora-
cle and given y ∈ ZS

+, we can find bases B1, . . . , Bt and integers λ1, . . . , λt ≥ 0
such that

(42.37) y ≥ λ1χ
B1 + · · · + λtχ

Bt

with λ1 + · · · + λt maximal, in polynomial time.

Proof. First find bases B1, . . . , Bk and λ1, . . . , λk as in Corollary 42.7a. Again
we can assume that k ≤ |S|. Let

(42.38) y′ :=
⌈ k∑

i=1

(λi − ⌊λi⌋)χ
Bi

⌉
.

Replace each s ∈ S by y′(s) parallel elements, making matroid M ′. By The-
orem 42.5, we can find a maximum number of disjoint bases in M ′ in poly-
nomial time (as y′(s) ≤ |S| for each s ∈ S). This gives bases Bk+1, . . . , Bt in
M .

Setting λi := 1 for i = k + 1, . . . , t, we show that this gives a solution of
our problem. Trivially, (42.37) is satisfied (with λi replaced by ⌊λi⌋). Again,
now by the matroid base packing theorem applied to M ′, using (42.38),

(42.39) t − k ≥
⌊ k∑

i=1

(λi − ⌊λi⌋)
⌋
.

Therefore,

(42.40)

t∑

i=1

⌊λi⌋ = (t − k) +
k∑

i=1

⌊λi⌋ ≥
⌊ k∑

i=1

λi

⌋
,

proving that the decomposition is optimum (cf. Theorem 42.3).

De Pina and Soares [2000] showed that, in this theorem we can make the
additional condition that t ≤ |S| + r, where r is the rank of M .

42.6. Further results and notes

42.6a. Induction of matroids

An application of matroid intersection and union is the following ‘induction of
a matroid through a directed graph’, discovered by Perfect [1969b] (for bipartite
graphs) and Brualdi [1971c]. In fact, it forms a generalization of the basic Theorem
42.1.
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Let D = (V, A) be a directed graph, let U, W ⊆ V , and let M = (U, I) be a
matroid. Let J be the collection of subsets Y of W such that there exists an X ∈ I
with X linked to Y . (Set X is linked to Y if |X| = |Y | and D has |X| disjoint X −Y
paths.)

Then:

(42.41) N = (W, J ) is a matroid.

To show that N is a matroid, we can assume that U and W are disjoint. (Otherwise,
add a new vertex w′ and new arc (w, w′) for each w ∈ W .) Let L be the gammoid
induced by D, U, U ∪ W . Then N = (M ∨ L)/U . Indeed, since U is independent in
L and hence in M ∨ L, a subset Y of W is independent in (M ∨ L)/U if and only
if Y ∪ U is independent in M ∨ L. This is easily seen to be equivalent to: Y ∈ J .
So N is a matroid.

The rank function rN of N can be described by (for Y ⊆ W ):

(42.42) rN (Y ) = min{rM (X)+|Z|
∣∣ X ⊆ U, Z ⊆ V, Z intersects each U \X−Y

path}.

This can be derived from the matroid union theorem, but also (and simpler) from
the matroid intersection theorem, as follows. Let K be the gammoid induced by
D−1, Y, U , where D−1 arises from D by reversing the orientations of all arcs. Then
rN (Y ) is equal to the maximum size of a common independent set in M and K.
So, by the matroid intersection theorem (Theorem 41.1),

(42.43) rN (Y ) = min
X⊆U

(rM (X) + rK(U \ X)),

which by Menger’s theorem is equal to the right-hand side of (42.42).
Applying the matroid intersection theorem again gives the following result of

Brualdi [1971e] (generalizing Brualdi [1970a]).
Let D = (V, A) be a directed graph, let U, W ⊆ V , and let M = (U, I) and

M ′ = (W, I′) be matroids. Then the maximum size of an independent set in M
that is linked to an independent set in M ′ is equal to the minimum value of

(42.44) rM (X) + |Z| + rM′(Y ),

where X ⊆ U , Y ⊆ W , and Z ⊆ V , such that Z intersects each U \X −W \Y path.
(This follows directly by considering the maximum size of a common independent
set in M ′ and N as defined above.)

Related results are given by McDiarmid [1975b] and Woodall [1975]. These
results are generalized in Schrijver [1979c]. For an algorithm, see Fujishige [1977b].

42.6b. List-colouring

Seymour [1998] showed the following matroid list-colouring theorem (cf. Section
20.9c):

Theorem 42.10. Let M = (S, I) be a matroid such that S can be partitioned into
k independent sets, and let m ∈ Z+. For each s ∈ S, let Ls ⊆ {1, . . . , m} be a set
of size k. Then S can be partitioned into independent sets I1, . . . , Im such that for
each j = 1, . . . , m: if s ∈ Ij, then j ∈ Ls.
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Proof. For each j = 1, . . . , m, let Uj := {s ∈ S | j ∈ Ls}. We need to prove that
for all j, there exists an independent set Ij ⊆ Uj such that S = I1 ∪ · · · ∪ In.

Since S can be partitioned into k independent sets, we know that |X| ≤ k·rM (X)
for each X ⊆ S. Hence, for each T ⊆ S,

(42.45)

m∑

j=1

rM (Uj ∩ T ) ≥
m∑

j=1

1

k
|Uj ∩ T | = |T |,

since each s ∈ T belongs to k of the Uj . So by the matroid union theorem (Corollary
42.1a), applied to the matroids M |Uj , the independent sets Ij as required exist.

42.6c. Strongly base orderable matroids

In general it is not true that given two matroids M1 = (S, I1) and M2 = (S, I2)
such that S can be partitioned into k independent sets of M1, and also into k
independent sets of M2, then S can be partitioned into k common independent sets
of M1 and M2. This could yield a ‘matroid union intersection theorem’. However,
taking for M1 is the cycle matroid of K4 and for M2 the matroid with independent
sets all sets of pairwise intersecting edges of K4 (which is a partition matroid),
shows that the statement is false for k = 2.

But the assertion is true if both M1 and M2 belong to the class of so-called
strongly base orderable matroids, introduced by Brualdi [1970b]. A matroid M =
(S, I) is called strongly base orderable if for each two bases B1, B2 of M there exists
a bijection π : B1 → B2 such that for each subset X of B1 the set π(X) ∪ (B1 \ X)
is a base again.

One easily checks that for such π, the function π|B1 ∩B2 is the identity map. It
is also straightforward to check that if M is strongly base orderable, then also the
dual of M and any contraction of M is strongly base orderable, and hence also any
restriction, and therefore any minor is strongly base orderable. Moreover, Brualdi
[1970b] showed:

Theorem 42.11. Any truncation of a strongly base orderable matroid is strongly
base orderable again.

Proof. Let M = (S, I) be a strongly base orderable matroid, with rank function
r, and let k := r(S) − 1. It suffices to show that the k-truncation of M is strongly
base orderable. Let I and J be independent sets of size k, and restrict M to I ∪ J .
If r(I ∪ J) = k, we are done, since then I and J are bases of the strongly base
orderable matroid M |I ∪ J . So suppose r(I ∪ J) = r(S) = k + 1, and let i ∈ I \ J
and j ∈ J \ I be such that I ∪ {j} and J ∪ {i} are bases of M . As M is strongly
base orderable, there exists a bijection π : I ∪ {j} → J ∪ {i} with the prescribed
exchange property. So π(j) = j and π(i) = i. Define π′ : I → J by π′(s) := π(s)
if s �= i, and π′(i) = j. We show that this bijection is as required. To prove this,
choose X ⊆ I. We must show that π′(X) ∪ (I \ X) is independent.

If i �∈ X, then π′(X) = π(X), hence π′(X) ∪ (I \ X) is independent, since

(42.46) π′(X) ∪ (I \ X) = π(X) ∪ (I \ X) ⊆ π(X) ∪ ((I ∪ {j}) \ X)

and the last set is independent.
If i ∈ X, then π′(X) = π(X \ {i}) ∪ {j}, hence π′(X) ∪ (I \ X) is independent,

since
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(42.47) π′(X)∪(I \X) = π(X \{i})∪{j}∪(I \X) = π(X \{i})∪((I ∪{j})\X)
⊆ π(X \ {i}) ∪ ((I ∪ {j}) \ (X \ {i}))

and the last set is independent.

One also easily checks that strong base orderability is closed under making
parallel extensions. (Given a matroid M = (S, I) a parallel extension in s ∈ S is
obtained by extending S with some new element s′, and I with {(I \ {s}) ∪ {s′} |
s ∈ I ∈ I}.)

Since transversal matroids are strongly base orderable, also gammoids are
strongly base orderable (Brualdi [1971c]):

Theorem 42.12. Each gammoid is strongly base orderable.

Proof. Since strong base orderability is closed under taking contractions and since
each gammoid is a contraction of a transversal matroid (by Corollary 39.5a), it
suffices to show that any transversal matroid is strongly base orderable.

Let M be the transversal matroid induced by a family X = (X1, . . . , Xm) of
subsets of a set S. We may assume that X has a transversal (cf. (39.18)). Consider
two transversals T1 = {x1, . . . , xm} and T2 = {y1, . . . , ym} of X , where xi, yi ∈ Xi

for i = 1, . . . , m.
Consider the bipartite graph on {1, . . . , m} ∪ S with edges all pairs {i, s} with

i ∈ {1, . . . , m} and s ∈ Xi (assuming without loss of generality that {1, . . . , m}∩S =
∅). Then M1 := {{i, xi} | i = 1, . . . , m} and M2 := {{i, yi} | i = 1, . . . , m} are
matchings in G. Define π : T1 → T2 as follows. If s ∈ T1 ∩ T2, define π(s) := s. If
s ∈ T1 \ T2, let π(s) be the (other) end of the path in M1 ∪ M2 starting at s. This
defines a bijection as required.

Brualdi [1971c] showed more generally that strong base orderability is main-
tained under induction of matroids through a directed graph, as described in Sec-
tion 42.6a. However, not every strongly base orderable matroid is a gammoid (cf.
Oxley [1992] p. 411).

Davies and McDiarmid [1976] (cf. McDiarmid [1976]) showed the following.

Theorem 42.13. Let M1 = (S, I1) and M2 = (S, I2) be strongly base orderable
matroids, let k ∈ Z+, and suppose that S can be split into k independent sets of
M1, and also into k independent sets of M2. Then S can be split into k common
independent sets of M1 and M2.

Proof. In order to prove this, let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) be
partitions of S into independent sets of M1 and M2, respectively, with

(42.48)

k∑

i=1

|Xi ∩ Yi|

as large as possible. If this sum is equal to |S| we are done, so suppose that this
sum is less than |S|. Hence there are i and j with Xi ∩ Yj �= ∅ and i �= j. Extend
Xi and Xj to bases Ci and Cj of M1. Similarly, extend Yi and Yj to bases Di

and Dj of M2. Since M1 and M2 are strongly base orderable, there exist bijections
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π1 : Ci → Cj and π2 : Di → Dj with the exchange property. So p1(s) = s for each
s ∈ Ci ∩ Cj and p2(s) = s for each s ∈ Di ∩ Dj .

Let G be the bipartite graph with vertex set Ci ∪ Cj ∪ Di ∪ Dj , and edges the
pairs {s, π1(s)} with s in Ci \ Cj and the pairs {s, π2(s)} with s in Di \ Dj . Split
the vertex set into colour classes S and T , say. Define

(42.49) X ′
i := S ∩ (Xi ∪ Xj), X ′

j := T ∩ (Xi ∪ Xj),
Y ′

i := S ∩ (Yi ∪ Yj), Y ′
j := T ∩ (Yi ∪ Yj).

So X ′
i ∩Y ′

j = ∅ and X ′
j ∩Y ′

i = ∅. Moreover, X ′
i and X ′

j are independent in M1, since,
by the exchange property of π, S ∩ (Ci ∪ Cj) and T ∪ (Ci ∪ Cj) are independent in
M1. Similarly, Y ′

i and Y ′
j are independent in M2.

So replacing the classes Xi and Xj of X by X ′
i and X ′

j , and the classes Yi and
Yj of Y by Y ′

i and Y ′
j yields partitions as required. However, since X ′

i ∩ Y ′
j = ∅ and

X ′
j ∩ Y ′

i = ∅, we have

(42.50) |X ′
i ∩ Y ′

i | + |X ′
j ∩ Y ′

j | > |Xi ∩ Yi| + |Xj ∩ Yj |,

contradicting the maximality of (42.48).

The proof also shows that the required partition can be found in polynomial
time, provided that there is a polynomial-time algorithm to find the exchange bi-
jection π. (This is the case for transversal matroids induced by a given family of
sets.)

By the matroid base covering theorem (Corollary 42.1c), Theorem 42.13 is
equivalent to:

Corollary 42.13a. Let M1 = (S, I1) and M2 = (S, I2) be loopless, strongly base
orderable matroids, with rank functions r1 and r2. Then the minimum number of
common independent sets needed to cover S, is equal to

(42.51) max{
⌈ |U |

ri(U)

⌉
| ∅ �= U ⊆ S, i = 1, 2}.

Proof. Directly from Theorem 42.13 with the matroid base covering theorem.

Applying Corollary 42.13a to transversal matroids gives Corollary 23.9a. Simi-
larly, it follows from Theorem 42.13 that:

Corollary 42.13b. Let M1 = (S, I1) and M2 = (S, I2) be strongly base orderable
matroids, with rank functions r1 and r2, satisfying r1(S) = r2(S). Then M1 and
M2 have k disjoint common bases if and only if

(42.52) |S \ (T ∪ U)| ≥ k(r1(S) − r1(T ) − r2(U))

for all T, U ⊆ S.

Proof. Indeed, from Theorem 42.13 we have that M1 and M2 have k disjoint
common bases if and only if the matroids M1 ∨ · · · ∨ M1 and M2 ∨ · · · ∨ M2 (k-fold
unions) have a common independent set of size k · r1(S). By the matroid union and
intersection theorems, this last is equivalent to the condition stated in the present
corollary.
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By truncating M1 and M2 one has similar results if we replace ‘common bases’
by ‘common independent sets of size t’. Application to transversal matroids yields
Corollary 23.9d.

Another consequence of Theorem 42.13 is:

Corollary 42.13c. Let M1 = (S, I1) and M2 = (S, I2) be strongly base orderable
matroids. Then M1 and M2 have k disjoint common spanning sets if and only if
both M1 and M2 have k disjoint bases.

Proof. This can be deduced as follows. Let Ni arise from the dual matroid of Mi

by replacing each element s of S by k − 1 parallel elements (for i = 1, 2). So N1

and N2 are strongly base orderable again, with an underlying ground set of size
(k − 1)|S|. Now M1 and M2 have k disjoint (common) spanning sets, if and only
if N1 and N2 have k (common) independent sets covering the underlying set. This
directly implies the present corollary.

Applying Corollary 42.13c to transversal matroids gives Theorem 23.11.

Corollary 42.13d. Let M1 = (S, I1) and M2 = (S, I2) be strongly base orderable
matroids, with rank functions r1 and r2, satisfying r1(S) = r2(S). Then S can be
covered by k common bases of M1 and M2 if and only if

(42.53) k(r1(T ) + r2(U) − r1(S)) ≥ |T ∩ U |

for all T, U ⊆ S.

Proof. Condition (42.53) is equivalent to:

(42.54) (k − 1)|S \ (T ∪ U)| ≥ k(r∗
1(S) − r∗

1(T ) − r∗
2(U))

for all T, U ⊆ S. Let N1 and N2 be the matroids defined in the proof of Corollary
42.13c. By Corollary 42.13b, condition (42.54) implies that N1 and N2 contain k
disjoint common bases. So M∗

1 and M∗
2 have k common bases covering each element

at most k − 1 times. Hence M1 and M2 have k common bases covering S.

Applying Corollary 42.13d to transversal matroids gives Theorem 23.12.

42.6d. Blocking and antiblocking polyhedra

We next investigate the blocking and antiblocking polyhedra corresponding to in-
tersections of independent set polytopes of two matroids. Let M1 = (S, I1) and
M2 = (S, I2) be loopless matroids, with rank functions r1 and r2 respectively, and
independent set polytopes P1 and P2 respectively. So P1∩P2 is the convex hull of the
incidence vectors of common independent sets. Hence its antiblocking polyhedron
A(P1 ∩ P2) is determined by the linear inequalities

(42.55) xs ≥ 0 (s ∈ S),
x(I) ≤ 1 (I ∈ I1 ∩ I2).

Since P1 ∩ P2 is determined by the linear inequalities (41.37), A(P1 ∩ P2) consists
of all vectors x ≥ 0 for which there exists a y ≥ x which is a convex combination
of vectors
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(42.56)
1

ri(U)
χU

where U is a nonempty subset of S and i = 1, 2. Then A(P1 ∩ P2) gives rise to the
following linear programming duality equation, for c : S → R+:

(42.57) max{cTx | x ∈ A(P1 ∩ P2)} = max{
c(U)

ri(U)
| ∅ �= U ⊆ S; i = 1, 2}

= min{
∑

I∈I1∩I2

y(I) | y ∈ R
I1∩I2

+ ,
∑

I∈I1∩I2

y(I)χI ≥ c}.

For integer c, an integer optimum solution y need not exist (for instance, if |S| = 3,
ri(U) := min{|U |, 2}, and c = 1). That is, system (42.55) need not be totally dual
integral. In fact, it generally does not have the integer rounding property. That
is, it is not true, for each pair of matroids, that the minimum in (42.57) with y
restricted to be integer:

(42.58) min{
∑

I∈I1∩I2

y(I) | y ∈ Z
I1∩I2

+ ,
∑

I∈I1∩I2

y(I)χI ≥ c},

is equal to the upper integer part of the common value of (42.57). For instance,
take for M1 the cycle matroid of K4, and for M2 the matroid with independent sets
all sets of pairwise intersecting edges in K4, and let c = 1; then the common value
in (42.57) is 2, while (42.58) is equal to 3. However, Corollary 42.13a implies that
if M1 and M2 are strongly base orderable matroids, then (42.58) is equal to the
upper integer part of (42.57). That is, for strongly base orderable matroids, system
(42.57) has the integer rounding property.

Similar results hold if we consider the blocker B(Q1 ∩ Q2) of the intersection
of the spanning set polytopes Q1 and Q2 of M1 and M2. In particular, Corollary
42.13c implies that the system

(42.59) xs ≥ 0 (s ∈ S),
x(U) ≥ 1 (U common spanning set of M1 and M2)

has the integer rounding property, if M1 and M2 are strongly base orderable.
Moreover, Corollaries 42.13b and 42.13d imply that the systems

(42.60) xs ≥ 0 (s ∈ S),
x(B) ≥ 1 (B common base of M1 and M2)

and

(42.61) xs ≥ 0 (s ∈ S),
x(B) ≤ 1 (B common base of M1 and M2)

have the integer rounding property, if M1 and M2 are strongly base orderable. Here
the results of Section 41.4b are used: to prove that (42.60) has the integer rounding
property, let w ∈ ZS

+. Let Q be the polytope determined by (42.60), let r(U) be the
maximum size of a common independent set contained in U , and let B denote the
collection of common bases. Then

(42.62) ⌈min{wTx | x ∈ Q}⌉

= min{
⌈ w(U)

r(S) − r(S \ U)

⌉
| U ⊆ S, r(S) > r(S \ U)}

= max{
∑

B∈B

yB | y ∈ Z
B
+,

∑

B∈B

yBχB ≤ w}.
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The first equality holds as the vertices of Q are given by the vectors

(42.63)
1

r(S) − r(S \ U)
χU ,

since Q is the blocking polyhedron of the common base polytope (cf. Section 41.4b).
The second equality follows from Corollary 42.13b, using the fact that strong base
orderability is maintained under adding parallel elements.

Related results on integer decomposition of the intersection of the independent
set polytopes of two strongly base orderable matroids can be found in McDiarmid
[1983].

42.6e. Further notes

Krogdahl [1976] observed that the following, general problem is solvable in polyno-
mial time, by reduction to matroid intersection: given matroids (S, I1), . . . , (S, Ik),
weight functions w1, . . . , wk ∈ RS , and l ≤ k, find the maximum value of
w1(I1) + · · · + wk(Ik), where I1 ∈ I1, . . . , Ik ∈ Ik, with I1, . . . , Il disjoint and
Il+1, . . . , Ik disjoint, and with I1 ∪ . . . ∪ Il = Il+1 ∪ . . . ∪ Ik.

With matroid union, several new classes of matroids can be constructed. One of
them is formed by the bicircular matroids, which are the union of the cycle matroid
M(G) of a graph G = (V, E) and the matroid on E in which F ⊆ E is independent
if and only if |F | ≤ 1. The independent sets of this matroid are the edge sets
containing at most one circuit.

A randomized parallel algorithm for linear matroid union was given by Nara-
yanan, Saran, and Vazirani [1992,1994]. For matroid base packing algorithms, see
Knuth [1973] and Karger [1993,1998].

42.6f. Historical notes on matroid union

As the matroid base covering theorem can be derived by an elementary construction
from Rado’s theorem (proved by Rado [1942]), it is surprising that, for a long time,
it had remained an open question, posed by Rado himself.

In fact, it was Horn [1955] who showed that a set X of vectors is the union of
k linearly independent sets of vectors if and only if each finite subset Y of X has
rank at least |Y |/k. He mentioned that this was conjectured by K.F. Roth and R.
Rado, and he did not refer to matroids. Horn also acknowledged the help of Rado.

Surprisingly, the same theorem was also published by Rado [1962a] (in the same
journal). The proof method (including notation) is the same as that of Horn, but no
reference to Horn’s paper is given. Rado wondered if the theorem can be generalized
to matroids:

It can be seen that some steps of the argument can be adapted to the more general
situation of abstract independence functions but there does not appear to be an
obvious way of making the whole argument apply to the more general case.

Rado [1962b] presented the vector theorem at the International Congress of Math-
ematicians in Stockholm in 1962, where he mentioned again that its proof has not
yet been extended to ‘abstract independence relations’ (matroids). He wondered if
the property in fact would characterize linear matroids.
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Finally, two years later, at the Conference on General Algebra in Warsaw, 7–11
September 1964, Rado announced the base covering theorem. Simultaneously, there
was the Seminar on Matroids at the National Bureau of Standards in Washington,
D.C., 31 August–11 September 1964, where Edmonds [1965c] presented the base
covering theorem.

In the paper based on his lecture in Warsaw, Rado [1966] did not give a proof
of the matroid base cover theorem, but just said that the argument of Horn [1955]
can be adapted so as to yield the more general version (as we did in Section 42.1b).

The matroid base covering theorem generalizes also the min-max relation of
Nash-Williams [1964] for the minimum number of forests needed to cover the edges
of a graph. (As each graphic matroid is linear, this follows also from the result of
Horn [1955] described above.)

The basic unifying result (Theorem 42.1) on matroid union was given in Nash-
Williams [1967], which has as special case the matroid union theorem given by
Edmonds [1968]. In a footnote on page 20 of Pym and Perfect [1970], it is remarked
that:

Professor Nash-Williams has written to inform us that these results were sug-
gested by earlier unpublished work of Professor J. Edmonds on the relation be-
tween independence structures and submodular functions.

It seems in fact much easier to prove the matroid union theorem in general, than just
its special case for graphic matroids (for instance, the covering forests theorem).
It also generalizes theorems of Higgins [1959] on disjoint transversals (Theorem
22.11), and of Tutte [1961a] and Nash-Williams [1961b] on disjoint spanning trees
in a graph (Corollary 51.1a). (These papers mention no possible generalization to
matroids.)

Welsh [1976] mentioned on these results:

They illustrate perfectly the principle that mathematical generalization often lays
bare the important bits of information about the problem at hand.



Chapter 43

Matroid matching

We saw two generalizations of Kőnig’s matching theorem for bipartite
graphs: the Tutte-Berge formula on matchings in arbitrary graphs and
the matroid intersection theorem. This raises the demand for a common
generalization of these last two theorems. A solution to the following ma-
troid matching problem, posed by Lawler [1971b,1976b], could yield such
a generalization: given an undirected graph G = (S, E) and a matroid
M = (S, I), what is the maximum number of disjoint edges of G whose
union is independent in M?
By taking M trivial, the matroid matching problem reduces to the match-
ing problem, and by taking G regular of degree one, and M to be the
disjoint sum of two matroids defined on the two colour classes of the bi-
partite graph G, we obtain the matroid intersection problem.
However, the general matroid matching problem has been shown to be NP-
complete in the regular NP-framework, and unsolvable in polynomial time
in an oracle framework.
On the other hand, Lovász [1980b] gave a strongly polynomial-time al-
gorithm in case the matroid M is linear. Moreover, Lovász [1980a] gave
a min-max relation, which was extended by Dress and Lovász [1987] to
algebraic matroids.
No extension to the weighted case has been discovered, even not for the
linear case: no polyhedral characterization or polynomial-time algorithm
for finding a maximum-weight matroid matching has been found.

43.1. Infinite matroids

In this chapter, we need an extension of the notion of matroids to infinite
matroids. An infinite matroid is defined as a pair M = (S, I), where S is an
infinite set and I is a nonempty collection of subsets of S satisfying:

(43.1) (i) if I ∈ I and J ⊆ I, then J ∈ I,
(ii) if I ⊆ S and each finite subset of I belongs to I, then I belongs

to I;
(iii) if I, J are finite sets in I and |I| < |J |, then I ∪ {j} ∈ I for

some j ∈ J \ I.
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Standard matroid terminology transfers to infinite matroids. The sets in I
are called independent and those subsets of S not in I dependent. An inclu-
sionwise minimal dependent set is a circuit. By (43.1)(ii), each circuit of M
is finite. We will restrict ourselves to infinite matroids of finite rank. That is,
there is a finite upper bound on the size of the sets in I.

Examples of infinite matroids are linear spaces, where I is the collection
of linearly independent subsets, and field extensions L of a field K, where I
is the collection of subsets of L that are algebraically independent over K. In
fact, these are the only two classes of infinite matroids that we will consider.

We call a matroid M = (S, I) with S finite also a finite matroid.

43.2. Matroid matchings

Let (S, I) be a (finite or infinite) matroid, with rank function r and span
function span. Let E be a finite collection of unordered pairs from S, such
that each pair is an independent set of (S, I). For F ⊆ E define

(43.2) span(F ) := span(
⋃

F )

(where
⋃

F denotes the union of the pairs in F ), and

(43.3) r(F ) := r(span(F )).

Then for X, Y ⊆ E one has

(43.4) r(X) + r(Y ) ≥ r(X ∩ Y ) + r(X ∪ Y ),

since

(43.5) r(X) + r(Y ) = r(span(X)) + r(span(Y ))
≥ r(span(X) ∩ span(Y )) + r(span(X) ∪ span(Y ))
≥ r(span(X ∩ Y )) + r(span(X ∪ Y )) = r(X ∩ Y ) + r(X ∪ Y ).

Call a subset M of E a matroid matching, or just a matching, if

(43.6) r(M) = 2|M |.

So M is a matroid matching if and only if M consists of disjoint pairs and
the union of the pairs in M belongs to I. Hence each subset of a matching
is a matching again. The maximum size of a matching in E is denoted by
ν(E), or just by ν. A matching of size ν(E) is called a base of E. (We should
be aware of the difference between a matching in a graph and a matroid
matching, and between a base of a matroid and a base of a collection of pairs
in a matroid. Below we will see moreover the notion of a circuit in a set of
pairs in a matroid. We will be careful to avoid confusion.32)

Consider the function s defined on subsets F of E by

(43.7) s(F ) := 2|F | − r(F ).

32 As we denote a matching by M , we denote a matroid, for the time being, just by (S, I).
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So a subset M of E is a matching if and only if s(M) = 0.
Then for all collections X and Y :

(43.8) (i) s(X) ≤ s(Y ) if X ⊆ Y ,
(ii) s(X) + s(Y ) ≤ s(X ∩ Y ) + s(X ∪ Y ).

Here (i) follows from

(43.9) r(Y ) ≤ r(X) + r(Y \ X) ≤ r(X) + 2|Y | − 2|X|.

(43.8)(ii) follows from (43.4).
(43.8) implies:

(43.10) each F ⊆ E contains a unique inclusionwise minimal subset X
with s(X) = s(F ).

For let F contain subsets X and Y with s(X) = s(Y ) = s(F ). Then by
(43.8)(i), s(X∩Y ) ≤ s(F ) and s(X∪Y ) = s(F ), and by (43.8)(ii), s(X∩Y ) ≥
s(X) + s(Y ) − s(X ∪ Y ) = s(F ). So s(X ∩ Y ) = s(F ).

43.3. Circuits

A subset C of E is called a circuit if it is an inclusionwise minimal set satis-
fying r(C) = 2|C| − 1. By (43.10):

(43.11) each F ⊆ E with r(F ) = 2|F | − 1 contains a unique circuit.

It implies that for each matching M and each e ∈ E with r(M + e) =
r(M)+1, there is a unique circuit contained in M +e. This circuit is denoted
by C(M, e), and is called a fundamental circuit (of M). (Here and below,
M + e := M ∪ {e} and M − e := M \ {e}.)

Such circuits have a useful exchange property:

(43.12) for each f ∈ C(M, e), M + e − f is a matching again.

Indeed, if M + e − f is not a matching, then s(M + e − f) ≥ 1. In fact,
s(M + e− f) = 1, since s(M + e− f) ≤ s(M + e) = 1. So M + e− f contains
a circuit C. As f �∈ C, we know C �= C(M, e), contradicting (43.11).

43.4. A special class of matroids

The min-max equality for matroid matching to be proved, holds for (finite
or infinite) matroids (S, I) satisfying the following condition:

(43.13) for each pair of circuits C1, C2 of (S, I) with C1 ∩ C2 �= ∅ and
r(C1 ∪C2) = |C1 ∪C2|−2, the intersection of span(C) taken over
all circuits C ⊆ C1 ∪ C2 has positive rank.
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Examples of such matroids will be seen in Section 43.6.
In (43.13), ‘circuits’ are meant in the original meaning: as subsets of S.

But the property transfers to subsets of E, as follows:

Lemma 43.1α. Let (S, I) be a matroid satisfying (43.13) and let E be a
collection of pairs from S. Then for each pair of circuits C1, C2 ⊆ E with
C1 ∩ C2 �= ∅ and s(C1 ∪ C2) = 2, the intersection of span(C) taken over all
circuits C ⊆ C1 ∪ C2 has positive rank.

Proof. Let F := C1∪C2. By assumption, s(F ) = 2. Each proper subcollection
F ′ of F satisfies s(F ′) ≤ 1, since if e ∈ Ci, then s(F − e) ≤ s(F ) + s(Ci −
e) − s(Ci) = 2 + 0 − 1 = 1.

Let C1, . . . , Ck be the circuits contained in F . We can assume that k ≥ 3
(otherwise the lemma trivially holds, since C1 ∩ C2 �= ∅ by assumption).

Then

(43.14) Ci ∪ Cj = F for all distinct i, j = 1, . . . , k,

since for any e ∈ F \ (Ci ∪ Cj) we would have that s(F − e) = 1 and that
F − e contains two distinct circuits, which contradicts (43.11).

An equivalent way of stating (43.14) is:

(43.15) F \ C1, . . . , F \ Ck are pairwise disjoint.

Now first assume that there exist distinct e, f ∈ F with e∩f �= ∅. Then |e∪
f | = 3, so {e, f} is a circuit, and therefore by (43.15), each Ci intersects {e, f}
(as k ≥ 3). So each span(Ci) contains e ∩ f , and therefore the intersection of
the span(Ci) is nonempty, as required.

So we can assume that the pairs in F are disjoint. Consider any i. Then⋃
Ci is a subset of S, containing a unique circuit C ′

i (as subset of S). This
follows from:

(43.16) r(
⋃

Ci) =
∣∣ ⋃

Ci

∣∣ − 1

(as Ci is a circuit in E), because (43.16) implies that
⋃

Ci contains an inde-
pendent set of size

∣∣ ⋃
Ci

∣∣ − 1.
Then

(43.17) C ′
i �= C ′

j if i �= j.

Indeed, C ′
i intersects each pair in Ci, since for each e ∈ Ci the union of the

f ∈ Ci − e has rank 2|Ci − e|, hence is independent. As the pairs in F are
disjoint, this shows (43.17).

Moreover, if i �= j and h ∈ {1, . . . , k}, then

(43.18) C ′
h ⊆ C ′

i ∪ C ′
j .

Otherwise, choose x ∈ C ′
i, y ∈ C ′

j \ C ′
i, and z ∈ C ′

h \ (C ′
i ∪ C ′

j). So x, y, z ∈
span((C ′

i ∪ C ′
j ∪ C ′

h) \ {x, y, z}). Hence r(C ′
i ∪ C ′

j ∪ C ′
h) ≤ |C ′

i ∪ C ′
j ∪ C ′

h| − 3,
and so
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(43.19) r(F ) ≤ r(C ′
i ∪ C ′

j ∪ C ′
h) +

∣∣ ⋃
F

∣∣ − |C ′
i ∪ C ′

j ∪ C ′
h| ≤

∣∣ ⋃
F

∣∣ − 3,

a contradiction, since s(F ) = 2.
This proves (43.18), which implies that C ′

1 ∩ C ′
2 �= ∅ (since C ′

1 ⊆ C ′
2 ∪ C ′

3

and C ′
1 �⊆ C ′

3). Then by (43.13), the intersection of span(C ′
i) over all i has

positive rank. Hence the intersection of span(Ci) over all i has positive rank.

For any collection E of pairs from S, let HE be the hypergraph with
vertex set E and edges all fundamental circuits. The following theorem will
be used in deriving a general min-max relation.

Theorem 43.1. Let (S, I) be a matroid satisfying (43.13) and let E be a
collection of pairs from S such that the intersection of span(B) over all bases
B of E has rank 0. Then

(43.20) |B ∩ F | = ⌊ 1
2r(F )⌋

for each base B and each component F of HE.

Proof. I. Call two fundamental circuits C, D far if there exist a base B and
e, g ∈ E with r(B + e + g) = 2ν + 2 and with C = C(B, e) and D = C(B, g).
We first show:

(43.21) far fundamental circuits are disjoint.

Suppose to the contrary that there exist a base B and e, g ∈ E with r(B +
e+ g) = 2ν +2 and C(B, e)∩C(B, g) �= ∅. Let D := C(B, e)∪C(B, g). Then

(43.22) s(D) ≥ s(C(B, e)) + s(C(B, g)) − s(C(B, e) ∩ C(B, g)) = 2

and

(43.23) s(D) ≤ s(B + e + g) = 2.

So s(D) = 2. If C is any circuit contained in B + e + g, then C ⊆ D, since
otherwise s(C ∩ D) = 0, and hence

(43.24) 2 = 0 + s(B + e + g) ≥ s(C ∩ D) + s(C ∪ D) ≥ s(C) + s(D) = 3,

a contradiction.
By Lemma 43.1α, there is a nonloop p that is contained in span(C) for

each circuit C ⊆ D. By assumption, there is a base B′ with p �∈ span(B′).
Choose B′ with |B′∩(B+e+g)| maximal. Then r(B′+p) = 2ν+1 < r(B+e+
g), and hence f �⊆ span(B′ +p) for some f ∈ B+e+g. Then p �∈ span(B′ +f)
(since r(B′ + f) ≤ 2ν + 1), and therefore p �∈ span(C(B′, f)). So C(B′, f) is
not one of the circuits contained in B+e+g. Choose h ∈ C(B′, f)\(B+e+g).
Hence, resetting B′ to B′−h+f would give a larger intersection with B+e+g,
a contradiction. This shows (43.21).

II. We next show the theorem assuming that HE is connected. Suppose
to the contrary that r(E) ≥ 2ν(E) + 2. Then far fundamental circuits exist,
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since for any base B, there exist e, g ∈ E with r(B + e + g) = 2ν + 2, since
r(E) ≥ r(B) + 2. Then (43.21) implies, as HE is connected, that there exist
fundamental circuits C, C ′, D with C and D far, C ∩ C ′ �= ∅, and C ′ and D
not far.

Choose e ∈ C ∩ C ′ and f ∈ D. As C and D are far fundamental circuits,
there is a base B with r(B + e+ f) = 2ν +2 and C = C(B, e), D = C(B, f).
Also, as C ′ is a fundamental circuit, there is a base B′ with r(B′ +e) = 2ν+1
and C ′ = C(B′, e). Choose such a B′ with |B′ ∩ (B + f)| maximal.

As r(B + e + f) > r(B′ + e), there exists a g ∈ B + f with r(B′ +
e + g) = 2ν + 2. As C ′ and D are not far, C(B′, g) �= D = C(B, f). So
C(B′, g) �⊆ B + f , and hence there exists an h ∈ C(B′, g) \ (B + f). Set
B′′ := B′ − h + g. Then r(B′′ + h + e) = r(B′ + g + e) = 2ν + 2, and hence
r(B′′+e) = 2ν+1. As, by (43.21), C(B′, g) and C(B′, e) are disjoint, we know
h �∈ C(B′, e), so C(B′, e) ⊆ B′′ + e, and hence C(B′′, e) = C(B′, e) = C ′. As
|B′′∩(B+f)| > |B′∩(B+f)| this contradicts the maximality of |B′∩(B+f)|.

III. We finally prove the theorem in general. Let F be a component of
HE . Suppose that there is a base B of E with |B ∩ F | < ⌊ 1

2r(F )⌋. Then

(43.25) there is a base B of E and a base M of F with |M | > |B ∩ F |.

Otherwise, for each base B of E, B∩F is a base of F . Then HF consists of one
component (as each fundamental circuit of E contained in F is a fundamental
circuit of F ). Hence, by part II of this proof, |B ∩ F | = ν(F ) = ⌊ 1

2r(F )⌋,
contradicting our assumption.

So (43.25) holds. Choose B and M as in (43.25) with |M ∩ B| maximal.
Then

(43.26) span(M) ⊆ span(B),

since otherwise there is an e ∈ M with e �⊆ span(B), and we can choose
f ∈ C(B, e) \ M and replace B by B − f + e, thereby increasing |M ∩ B|,
contradicting the maximality of |M ∩ B|.

Moreover,

(43.27) for each e ∈ F with e �⊆ span(B), we have C(M, e) = C(B, e).

Otherwise, choose f ∈ C(B, e)\(M +e) and g ∈ C(M, e)\(B+e). Replacing
B and M by B − f + e and M − g + e respectively, increases |M ∩ B|, a
contradiction.

As M \ B �= ∅, there is an h ∈ M \ B. Then there is a base B′ of E with
h �⊆ span(B′) (as by the condition in the theorem, there is no nonloop that
is contained in the span of each base). We assume that we have chosen M ,
B, and B′ with |B ∩B′| maximal (under the primary condition that |M ∩B|
is maximum).

Since h �⊆ span(B′), we know by (43.26) that span(B) �= span(B′). Hence
there exists an e ∈ B′ with e �⊆ span(B).
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If e �∈ F , then C(B, e) is disjoint from F (as F is a component of HE).
Choose f ∈ C(B, e)\B′. Then replacing B by B −f +e maintains M , B ∩F ,
and M ∩ B, but increases |B ∩ B′|, contradicting our assumption.

So e ∈ F . By (43.27), C(B, e) = C(M, e). Choose f ∈ C(B, e) \ B′. Then
replacing M and B by M − f + e and B − f + e respectively, maintains |M |,
|B ∩ F |, and |M ∩ B|, but increases |B ∩ B′|, contradicting our assumption.

43.5. A min-max formula for maximum-size matroid
matching

We can now derive a min-max formula for the maximum size of a matching
in matroids satisfying (43.13) in an hereditary way, due to Lovász [1980a]:

Theorem 43.2 (matroid matching theorem). Let M = (S, I) be a (finite
or infinite) matroid (with rank function r) such that each contraction of M
satisfies (43.13). Let E be a finite set of pairs from S. Then the maximum
size ν(E) of a matching in E satisfies

(43.28) ν(E) = min(r(F ) +
k∑

i=1

⌊ 1
2 (r(Fi) − r(F ))⌋),

where F, F1, . . . , Fk are flats such that F ⊆ Fi for i = 1, . . . , k, and such that
each e ∈ E is contained in some Fi.

Proof. We first show that ≤ holds in (43.28). Let B be a base of E, and
partition B into B1, . . . , Bk such that span(Bi) ⊆ Fi for i = 1, . . . , k. Define
F ′

i := span(Bi).
By induction on l we show that for each l = 0, . . . , k:

(43.29) r(F ∪ F ′
1 ∪ · · · ∪ F ′

l ) ≤ r(F ) +
l∑

i=1

(|Bi| + ⌊ 1
2 (r(F ∪ F ′

i ) − r(F ))⌋).

For l = 0 this is trivial. For l ≥ 1 we have (by induction and submodularity):

(43.30) r(F ∪ F ′
1 ∪ · · · ∪ F ′

l ) ≤ r(F ∪ F ′
1 ∪ · · · ∪ F ′

l−1) + r(F ∪ F ′
l ) − r(F )

≤ r(F ∪ F ′
l ) +

l−1∑

i=1

(|Bi| + ⌊ 1
2 (r(F ∪ F ′

i ) − r(F ))⌋)

≤ r(F ) +

l∑

i=1

(|Bi| + ⌊ 1
2 (r(F ∪ F ′

i ) − r(F ))⌋),

since

(43.31) r(F ∪ F ′
l ) ≤ r(F ) + |Bl| + 1

2 (r(F ∪ F ′
l ) − r(F )),
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as |Bl| = 1
2r(F ′

l ). This shows (43.29), which for l = k implies that ν(E) is at
most (43.28), since

(43.32) 2ν(E) ≤ r(F ∪ F ′
1 ∪ · · · ∪ F ′

k)

≤ r(F ) +
k∑

i=1

(
|Bi| +

⌊
1
2 (r(F ∪ F ′

i ) − r(F ))
⌋)

= ν(E) + r(F ) +
l∑

i=1

⌊
1
2 (r(F ∪ Fi) − r(F ))

⌋
.

Equality is shown by induction on r(M). First assume that there is a
nonloop p that is contained in span(B) for each base B of E. Let M ′ be the
matroid M/p obtained by contracting p. Let E′ be the set of pairs {s, t} in
E such that s, t �= p and such that s and t are not parallel in M ′. Let ν′ be
the maximum size of a base B′ ⊆ E′ with respect to M ′.

Then ν′ < ν(E). For suppose that ν′ ≥ ν(E). Let B′ be a base of E′ with
respect to M ′. As |B′| ≥ ν(E), B′ is also a base of E with respect to M .
As rM ′(B′) = 2|B′| = rM (B′), we have p �∈ spanM (B). This contradicts our
assumption.

So ν′ < ν(E). By induction, M ′ has flats F ′, F ′
1, . . . , F

′
k′ with F ′ ⊆ F ′

i for
i = 1, . . . , k′, such that each e ∈ E′ is contained in some F ′

i and such that

(43.33) ν′ = rM ′(F ′) +
k′∑

i=1

⌊ 1
2 (rM ′(F ′

i ) − rM ′(F ′))⌋.

Define F := spanM (F ′ + p) and Fi := spanM (F ′
i + p) for i = 1, . . . , k′.

Moreover, for each e ∈ E not occurring in E′, introduce a new Fi with
Fi := spanM (F + e). As p ∈ F , we have rM (Fi) ≤ rM (F ) + 1 for each of
these Fi.

This gives F, F1, . . . , Fk such that F ⊆ Fi for i = 1, . . . , k, such that each
e ∈ E is contained in some Fi and such that

(43.34) ν(E) ≥ ν′ + 1 = rM ′(F ′) + 1 +
k′∑

i=1

⌊ 1
2 (rM ′(F ′

i ) − rM ′(F ′))⌋

= r(F ) +

k∑

i=1

⌊ 1
2 (r(Fi) − r(F ))⌋.

So we can assume that there is no nonloop p contained in span(B) for all
bases B of E. Let E1, . . . , Ek be the components of HE and let Fi := span(Ei)
for i = 1, . . . , k. Let B be a base of E. Then by (43.20),

(43.35) ν(E) = |B| =
k∑

i=1

|B ∩ Ei| =
k∑

i=1

⌊ 1
2r(Fi)⌋.

So taking F := ∅ gives (43.28).
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43.6. Applications of the matroid matching theorem

We now consider specific classes of matroids satisfying (43.13), such that we
know that the min-max equality holds. First, the linear matroids (Lovász
[1980b]):

Corollary 43.2a. If E is a finite set of pairs from a linear space S, then
(43.28) holds, where flats are linear subspaces of S.

Proof. Let I be the collection of sets of linearly independent vectors in S. We
must show that each contraction of the infinite matroid M = (S, I) satisfies
(43.13). It suffices to show that M satisfies (43.13), since each contraction of
M is again coming from a linear space, up to loops and parallel elements.

Let C1 and C2 be intersecting circuits in M with r(C1∪C2) = |C1∪C2|−2.
As C1 is a circuit, there is a nonzero vector p in span(C1\C2)∩span(C1∩C2),
since r(C1 \ C2) + r(C1 ∩ C2) > r(C1). Consider any circuit C contained in
C1 ∪ C2.

Suppose p �∈ span(C). As p ∈ span(C1 \ C2) ∩ span(C1 ∩ C2), C misses
an element s ∈ C1 \ C2 and an element t ∈ C1 ∩ C2. Now t ∈ span(C2 − t)
and s ∈ span(C1 − s). Hence (C1 ∪ C2) − s − t spans C1 ∪ C2, and hence, as
C1 ∪C2 has rank |C1 ∪C2|−2, we have that (C1 ∪C2)− s− t is independent.
This contradicts the fact that C is contained in (C1 ∪ C2) − s − t.

Dress and Lovász [1987] proved that a similar result holds for algebraic de-
pendence in field extensions (where trK(E) denotes the transcendence degree
of

⋃
E over K):

Corollary 43.2b. Let E be a finite set of pairs from a field extension L of
a field K. Then the maximum number of disjoint pairs from E such that the
union is algebraically independent over K is equal to the minimum value of

(43.36) trK(F ) +

k∑

i=1

⌊ 1
2 trF (Ei)⌋,

where F ranges over all field extensions of K in L and where E1, . . . , Ek

ranges over all partitions of E.

Proof. Let M = (L, I) be the infinite matroid with I consisting of all subsets
of L that are algebraically independent over K.

Similarly as for the previous corollary, it suffices to show that for any two
intersecting circuits C1 and C2 of M with r(C1 ∪ C2) = |C1 ∪ C2| − 2 there
is an α ∈ L \ span(K) such that α belongs to span(C) for each circuit C
contained in C1 ∪ C2.

Let I := C1 \ C2. Then

(43.37) I is a circuit in M/C2.
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To see this, trivially I is dependent in M/C2. Consider any circuit C ⊆
C1 ∪ C2 intersecting I. We must show that I ⊆ C. Suppose that there is
an s ∈ I \ C. As C intersects I, C misses at least one element of C2, say
t. So C ⊆ (C1 ∪ C2) − s − t. Now (C1 ∪ C2) − s − t spans C1 ∪ C2 (since
t ∈ span(C − t) and s ∈ span(C1 ∪C2 −s)). This implies that (C1 ∪C2)−s− t
is independent (as r(C1 ∪ C2) = |C1 ∪ C2| − 2), contradicting the fact that it
contains a circuit. This proves (43.37).

Let I = {s1, . . . , sn}. Since I is a circuit in M/C2, there exists an irre-
ducible polynomial p in span(C2)[x1, . . . , xn] with p(s1, . . . , sn) = 0. We can
choose p such that at least one coefficient of p equals 1. Note that p has at
least one coefficient, α say, that is not in span(K), since I is independent over
K. It therefore is enough to show that all coefficients of p belong to span(C)
for each circuit C contained in C1∪C2, since then α belongs to each span(C).

Choose a circuit C �= C2 with C ⊆ C1 ∪ C2. As I is a circuit in
M/C2, we have C \ C2 = I. So I is a circuit in M/(C ∩ C2). Hence
there exists an irreducible polynomial q in span(C ∩ C2)[x1, . . . , xn] with
q(s1, . . . , sn) = 0. As span(C ∩ C2) is algebraically closed in span(C2), q is
also irreducible in span(C2)[x1, . . . , xn]33. Then p and q are also irreducible
in span(C2)(x1, . . . , xn−1)[xn] (cf., for instance, Section IV:6 of Jacobson
[1951]). Therefore, p is a multiple of q in span(C2)(x1, . . . , xn−1); that is,
there are nonzero r, s ∈ span(C2)[x1, . . . , xn−1] with rp = sq. Hence by
the unique factorization theorem (cf., for instance, Section IV:6 of Jacob-
son [1951]), p = λq for some λ ∈ span(C2). As some coefficient of p equals 1,
λ ∈ span(C ∩ C2). Hence p ∈ span(C ∩ C2)[x1, . . . , xn].

(The property of algebraic matroids shown in this proof generalizes a property
shown by Ingleton and Main [1975].)

We also formulate the special case of graphic matroids:

Corollary 43.2c. Let G = (V, E) be a graph and let P be a partition of E
into pairs. Then the maximum size of a forest F ⊆ E that is the union of
classes of P is equal to the minimum value of

(43.38) 2|V | − 2|Q| + 2
k∑

i=1

⌊ 1
2δQ(Ei)⌋,

33 This can be seen as follows. Let L be a field extension of field K, such that K is
algebraically closed in L. Then if p is an irreducible polynomial in K[x1, . . . , xn], then
p is irreducible also in L[x1, . . . , xn]. For suppose to the contrary that p = p1p2 for
nonconstant polynomials p1, p2 in L[x1, . . . , xn]. We can assume that p1 has at least
one coefficient in K. Hence, as p is irreducible in K[x1, . . . , xn], p1 has at least one
coefficient not in K. Choose a large enough natural number k such that substituting xi

by xki
for i = 1, . . . , n, transforms p1 to a polynomial p̃1 in L[x]\K[x]. Let p̃ ∈ K[x] be

obtained similarly from p. Now the algebraic closure of K contains all roots of p̃, hence
all roots of p̃1, and hence all coefficients of p̃1. As each element in L\K is transcendental
over K, we have a contradiction.
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where Q ranges over partitions of V into nonempty classes and where
E1, . . . , Ek ranges over partitions of E such that each Ei is a union of pairs in
P. In (43.38), δQ(Ei) denotes the size of a largest forest in the graph obtained
from (V, Ei) by contracting each class in Q to one vertex.

Proof. We apply Theorem 43.2 to the cycle matroid M of the graph H
obtained from the complete graph on V by adding a parallel edge for each
edge in E. Then (43.13) is satisfied for each contraction of M .

Now for each flat F of M there is a partition Q of V such that F is the
set of edges of H contained in a class of Q. The rank r(F ) of F (in M) is
equal to |V | − |Q|. For any E′ ⊆ E, the smallest flat F ′ containing F ∪ E′

has rank r(F ′) = δQ(E′) + r(F ). Hence the corollary follows from Theorem
43.2.

This corollary implies the following result on 3-uniform hypergraphs. A
hypergraph is a pair H = (V, E), where V is a finite set and E is a family of
subsets of V . The hypergraph is called k-uniform if |U | = k for each U ∈ E .

A subfamily F of E is called a forest if there do not exist distinct
v1, . . . , vt ∈ V and distinct U1, . . . , Ut ∈ F such that t ≥ 2 and vi−1, vi ∈ Ui

for i = 1, . . . , t, setting v0 := vt.
Corollary 43.2c implies a min-max relation for the maximum size of a

forest in a given 3-uniform hypergraph (Lovász [1980a]):

Corollary 43.2d. Let H = (V, E) be a 3-uniform hypergraph. Then the max-
imum size of a forest F ⊆ E is equal to the minimum value of

(43.39) |V | − |Q| +
∑

S∈Σ

⌊ 1
2 (φQ(S) − 1)⌋,

where Q and Σ range over partitions of V and E, respectively. Here φQ(S)
denotes the number of classes of Q intersected by

⋃
S.

Proof. For each U ∈ E , choose two different pairs eU , fU ⊆ U , and let
G = (V, E) be the graph with edges all eU and fU . Let P be the partition of
E into the pairs eU , fU . Then the maximum size of a forest F ⊆ E is equal to
half of the maximum size of a forest in E that is the union of pairs in P. So
to see that Corollary 43.2c implies the present corollary, it suffices to show
that minimum (43.39) is equal to half of minimum (43.38).

First, let Q and Σ attain minimum (43.39). The partition Σ of E induces
a partition of E into classes {eU , fU | U ∈ S} for S ∈ Σ. One easily checks
that for each S ∈ Σ:

(43.40) δQ({eU , fU | U ∈ S}) ≤ φQ(S) − 1,

which implies that the minimum (43.39) is not less than half of minimum
(43.38).

Second, to see the reverse inequality, let Q, E1, . . . , Ek attain minimum
(43.38). Consider any i = 1, . . . , k. Let Q′ be the set of those classes in Q
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intersected by Ei and let t be the number of components of the hypergraph
(V, Q′ ∪ Ei). Then δQ(Ei) = |Q′| − t. The components partition Ei into
Ei,1, . . . , Ei,t. Then

(43.41) δQ(Ei) = |Q′| − t =
t∑

j=1

(φQ(Ei,j) − 1).

So letting Σ to be the partition of E into classes Si,j := {U | eU , fU ∈ Ei,j}
(for all i, j), we have that minimum (43.38) is not less than twice minimum
(43.39).

(Szigeti [1998a] gave a direct proof of this theorem for the case where the
hypergraph consists of all triangles of a given graph.)

Other applications of matroid matching are a derivation of Mader’s theo-
rem on maximum packings of T -paths (cf. Chapter 73), to rigidity (see Lovász
[1980a]), and to matching forests (an easy application, see Section 59.6b).

43.7. A Gallai theorem for matroid matching and
covering

We prove a Gallai-type theorem that relates the maximum size of a matroid
matching to the minimum number of pairs spanning the matroid.

Let E be a collection of pairs of elements from a matroid (S, I) such that
each pair is an independent set and such that span(E) = S. Call F ⊆ E a
matroid cover if span(F ) = S. Let ρ(E) be the minimum size of a matroid
cover. The following relation between ν(E) and ρ(E) was observed by Lovász
and extends Gallai’s theorem (Theorem 19.1):

Theorem 43.3. Let (S, I) be a matroid, with rank function r, and let E be
a collection of pairs from S spanning S. Then ν(E) + ρ(E) = r(S).

Proof. To see ≤, let M be matching of size ν(E). Then by adding at most
r(S) − r(M) pairs from E to M we obtain a matroid cover F . So ρ(E) ≤
|F | ≤ |M | + (r(S) − r(M)) = ν(E) + r(S) − 2ν(E) = r(S) − ν(E).

To see ≥, let F be a matroid cover of size ρ(E). Let M := F . As long
as M contains an element e with r(M − e) ≥ r(M) − 1, delete e from M .
We end up with a matching M . For suppose not. Let M ′ be a maximum-size
matching contained in M , and choose e ∈ M \M ′. Then r(M −e) ≤ r(M)−2
(otherwise we would delete e from M). Hence:

(43.42) r(M ′ + e) ≥ r(M ′) + r(M) − r(M − e) ≥ r(M ′) + 2 = 2|M ′| + 2.

So M ′ + e is a matching, contradicting the maximality of M ′.
So M is a matching. Each time we have deleted an edge from M , its rank

drops by at most 1. Hence r(M) ≥ r(S) − (|F | − |M |). Therefore ν(E) ≥
|M | = r(M) − |M | ≥ r(S) − |F | = r(S) − ρ(E).
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This theorem implies that formula (43.28) for the maximum size of a
matching yields a formula for the minimum number of lines spanning all
space.

43.8. Linear matroid matching algorithm

Jensen and Korte [1982] and Lovász [1981] showed that no polynomial-time
algorithm exists for the matroid matching problem in general (see Section
43.9). On the other hand, Lovász [1981] gave a strongly polynomial-time algo-
rithm for the matroid matching problem for linear matroids (an explicit repre-
sentation over a field is required). This extends, e.g., Edmonds’ polynomial-
time algorithm finding a maximum matching in an undirected graph (cf.
Section 24.2). It does not extend Edmonds’ algorithm for a maximum-size
common independent set in two matroids, as this algorithm also works for
nonlinear matroids.

Theorem 43.4. Given a set E of pairs of vectors in a linear space L, a
maximum-size matching can be found in strongly polynomial time.

Proof. The algorithm is a ‘brute-force’ polynomial-time algorithm, based on
collecting many matchings and utilizing standard linear-algebraic operations,
which can be performed in strongly polynomial time. Since we deal with
subsets of a vector space, we can use X + Y := {x + y | x ∈ X, y ∈ Y }. For
each X ⊆ L, span(X) is a subspace of L.

Throughout this proof, B will be a collection of matchings, all of the same
size ν (say). Define:

(43.43) KB :=
⋂

{span(B) | B ∈ B} and HB := the hypergraph with
vertex set E and edges all fundamental circuits of all B ∈ B.

We say that we improve B if we find, in strongly polynomial time, either
a matching B of size ν + 1, or of size ν such that KB �⊆ span(B), or of
size ν such that HB∪{B} has fewer components than HB. So replacing B by
{B} if |B| = ν + 1, and by B ∪ {B} if |B| = ν, we can have at most 2|E|
improvements.

I. We first show (where a component is called nontrivial if it has more than
one element):

(43.44) We can improve B if we have a union F of nontrivial components
of HB, a matching M ⊆ F , and a B ∈ B such that r(M ∪ A) >
|B ∩ F | + |M |, where A := span(B ∩ F ) ∩ KB.

Here and below, r(X ∪ Y ) := r(
⋃

X ∪ Y ) for X ⊆ E and Y ⊆ S.
To see (43.44), apply the first applicable case of the following five cases,

and then iterate. If Case 1 applies, we improve B. In any of the other cases,
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we reset B or M or both, add the reset B to B, and iterate with the reset B
and M . The input condition given in (43.44) is maintained, as will be shown
after describing the five cases.

Case 1: There is a B′ ∈ B and an e ∈ E such that B′ + e is a
matching, or such that C(B′, e) intersects both F and E \ F , or
such that KB �⊆ span(B′ − f + e) for some f ∈ C(B′, e). Output
B′ + e, B′, or B′ − f + e (thus we improve B).

Note that if Case 1 does not apply, then

(43.45) f �⊆ KB for each f ∈ F .

Indeed, as f is in a nontrivial component of HB, f is contained in some
fundamental circuit C(B′, e) for some B′ ∈ B. As Case 1 does not apply, we
know KB ⊆ span(B′ − f + e). Hence, if f ⊆ KB, then f ⊆ span(B′ − f + e),
hence 2ν + 1 = r(B′ + e) = r(B′ − f + e) = 2ν, a contradiction.

Case 2: There is an e ∈ F such that M + e is a matching and
r((M ∪ A) + e) ≥ r(M ∪ A) + 1. Reset M := M + e.

Case 3: span(M) �⊆ span(B). Choose e ∈ M with e �⊆ span(B), choose
f ∈ C(B, e) \ M , and reset B := B − f + e.

Case 4: There is an e ∈ F such that e �⊆ span(B) and C(B, e) �=
C(M, e). (Note: e �⊆ span(M) + A, since span(M) + A ⊆ span(B) (as Case
3 does not apply). So, as Case 2 does not apply, M + e is not a matching.
Hence C(M,E) is defined.)

Choose f ∈ C(B, e) \ (M + e) and g ∈ C(M, e) \ (B + e), and reset
B := B − f + e and M := M − g + e.

Case 5. Choose B′ ∈ B with span(M△(B ∩ F )) �⊆ span(B′) and with
|B ∩B′| maximal. (This is possible, since M �= B ∩F , since r((B ∩F )∪A) =
r(B ∩ F ) = 2|B ∩ F | and r(M ∪ A) > |B ∩ F | + |M | by assumption. As
M△(B ∩ F ) ⊆ F , such a B′ exists, by (43.45).)

Choose e ∈ B′ with e �⊆ span(B). (This is possible since span(M△(B ∩
F )) ⊆ span(B), so span(B) �= span(B′).)

Choose f ∈ C(B, e) \ B′. If e �∈ F , reset B := B − f + e. If e ∈ F ,
reset B := B − f + e and M := M − f + e. (Note that if e ∈ F , then
C(B, e) = C(M, e) as Case 4 does not apply.)

Running time. The number of iterations is polynomially bounded, since in
each iteration (except the last, where Case 1 applies), the vector (|M |, |M ∩
B|, |B ∩ B′|) increases lexicographically. Here it is important to note that
Case 5 does not modify the set M△(B ∩ F ), and increases the intersection
of this set with B′.

We finally prove that the resettings in Cases 2-5 indeed maintain the
condition given in (43.44). Let B̃, M̃ , and Ã denote B, M , and A after

resetting (taking B̃ or M̃ equal to B or M if they are not reset). We must
show

(43.46) r(M̃ ∪ Ã) > |B̃ ∩ F | + |M̃ |.
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Note that, as Case 1 does not apply, |B̃ ∩ F | = |B ∩ F |.
We first show:

(43.47) A ⊆ Ã.

This is equivalent to (since KB does not change, as Case 1 does not apply):

(43.48) A ⊆ span(B̃ ∩ F ).

This is trivial if B̃ ∩ F = B ∩ F . So we can assume that B̃ ∩ F �= B ∩ F .
Hence B̃ = B − f + e for some e, f ∈ F . Then (43.48) follows from

(43.49) r((B̃ ∩F )∪A) ≤ r((B̃ ∩F )∪A+ f)− 1 = r((B ∩F )∪A+ e)− 1

= r((B ∩ F ) + e) − 1 ≤ r(B ∩ F ) = 2|B ∩ F | = 2|B̃ ∩ F |

= r(B̃ ∩ F ).

Here the first inequality holds as f �⊆ span(B̃ ∩ F ) + A, since f �⊆ span(B̃)

and span(B̃ ∩ F ) + A ⊆ span(B̃). (We use that A ⊆ KB ⊆ span(B̃), as Case
1 does not apply.) The last inequality holds as (B ∩F )+ e is not a matching,
since it contains C(B, e) (as Case 1 does not apply). This shows (43.48), and
hence (43.47).

We finally show (43.46). In Case 2, we have B̃ = B, M̃ = M + e, and

Ã = A, and hence

(43.50) r(M̃ ∪ Ã) = r((M ∪ A) + e) ≥ r(M ∪ A) + 1 > |B ∩ F | + |M | + 1

= |B̃ ∩ F | + |M̃ |,

as required.
In Case 3, (43.47) implies (as M̃ = M) that r(M̃ ∪ Ã) ≥ r(M ∪ A) >

|B ∩ F | + |M | = |B̃ ∩ F | + |M |.

In Cases 4 and 5 we have M̃ = M − g + e (possible g = f). Then

(43.51) r(M̃ ∪ Ã) ≥ r(M̃ ∪A) ≥ r((M̃ ∪A)+ g)− 1 = r((M ∪A)+ e)− 1

≥ r(M ∪ A) > |B ∩ F | + |M | = |B̃ ∩ F | + |M̃ |.

The first inequality follows from (43.47). Next, e �⊆ span(M ∪ A) (as e �⊆
span(B) and as A ⊆ span(B) and span(M) ⊆ span(B), since Case 3 does not
apply). This gives the third inequality. To see the second inequality, suppose

it does not hold. Then M̃ + g is a matching, hence M + e is a matching.
Therefore, as Case 2 does not apply, r(M ∪A+ e) = r(M ∪A), contradicting
the fact that e �⊆ span(M ∪ A).

II. Secondly,

(43.52) we can improve B if KB = {0}, HB is connected, and ν <
⌊ 1

2r(E)⌋.

(In this case, B can only be improved by finding a matching larger than B.)
The algorithm follows the framework of parts I and II in the proof of

Theorem 43.1. Again, the algorithm iteratively applies the first applicable
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case. Call two circuits C1, C2 far if there exist B ∈ B and e, g ∈ E with
r(B + e + g) = 2ν + 2 and C1 = C(B, e) and C2 = C(B, g).

Case 1: There exists a B ∈ B and e ∈ E such that B + e is a
matching of size ν + 1. Output B + e.

Case 2: There exist far circuits C1 and C2 with C1 ∩ C2 �= ∅. We
will create a matching of size ν + 1.

Let C1 = C(B, e) and C2 = C(B, g) for some B ∈ B with e, g ∈ E and
r(B+e+g) = 2ν+2. Define D := C1∪C2. As is shown in the proof of Corollary
43.2a, there is a p �= 0 contained in span(C) for each circuit C ⊆ D. Since
KB = {0}, there is a B′ ∈ B with p �∈ span(B′). Now r(B′ + p) = 2ν + 1 <
r(B + e + g), and hence f �⊆ span(B′ + p) for some f ∈ B + e + g. Then (as
B′ + f is not a matching, since Case 1 does not apply) p �∈ span(B′ + f),
and therefore p �∈ span(C(B′, f)). So C(B′, f) is not contained in B + e + g.
Choose h ∈ C(B′, f)\ (B +e+g). Hence, resetting B′ to B′ −h+f increases
|B′ ∩ (B + e + g)|. So iterating this, we finally obtain a matching larger than
ν.

Case 3. We show that we can create a matching of size ν + 1, or make
that Case 1 or 2 applies.

Far circuits exist, since for any base B, there exist e, g ∈ E with r(B+e+
g) = 2ν +2, since r(E) ≥ r(B)+2. Choose far circuits C, D that are closest34

together in the hypergraph HB. Assuming that Case 2 does not apply, we
know C∩D = ∅. Hence there is an intermediate set C ′ on a shortest path from
C to D. Let C = C(B, e), D = C(B, g), and C ′ = C(B′, f) for B, B′ ∈ B and
e, f, g ∈ E with r(B+e+g) = 2ν+2. We choose B′ such that |B′∩(B+e+g)|
is maximal. Choose h ∈ B + e + g with h �⊆ span(B′ + f).

C(B′, h) and C(B′, f) are disjoint, since otherwise we can apply Case 2.
Moreover,

(43.53) C(B′, h) �⊆ B + e + g,

Otherwise, C(B′, h) = C(B, e) or C(B′, h) = C(B, g). Hence C ′ and C or D
are far, contradicting the minimality of the distance of C and D.

Hence we have (43.53). Choose i ∈ C(B′, h) \ (B + e + g) and add B′′ :=
B′ − i + h to B. Iterate Case 3 with B′ replaced by B′′ (note that C ′ =
C(B′′, f)). As |B′′ ∩ B| > |B′ ∩ B|, the number of iterations of Case 3 is at
most ν.

III. Combination of the previous two algorithms implies:

(43.54) we can improve B if KB = {0} and ν < ν(E).

As ν < ν(E), there is a component F of HB with |B ∩ F | < ν(F ) ≤ ⌊ 1
2r(F )⌋

for at least one B ∈ B. If there exist B, B′ ∈ B with |B ∩ F | < |B′ ∩ F |, set

34 Here the distance of fundamental circuits C, D is the minimum length of a path con-
necting C and D. A path connecting C and D is a sequence C = C0, . . . , Ck = D of
fundamental circuits such that Ci−1 ∩ Ci �= ∅ for i = 1, . . . , k. Its length is k.
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M := B′ ∩ F . Otherwise (that is, if |B ∩ F | = |B′ ∩ F | for all B′ ∈ B), apply
(43.52) to B′ := {B ∩ F | B ∈ B} and B ∩ F for any B ∈ B, to obtain a
matching M ⊆ F with |M | = |B ∩ F | + 1.

Now applying (43.44) to B, F , B, and M improves B. (Since A ⊆ KB, we
have A = {0}, and hence r(M ∪ A) = r(M) = 2|M | > |M | + |B ∩ F |.)

IV. Finally:

(43.55) We can improve B if B �= ∅ and ν < ν(E).

Define F to be the union of all fundamental circuits of the B ∈ B. This
implies

(43.56) span(E \ F ) ⊆ KB.

If there exist B, B′ ∈ B with |B ∩ F | < |B′ ∩ F |, then applying (43.44) to
B and M := B′ ∩ F improves B. So we can assume that |B ∩ F | = β for all
B ∈ B. Choose B0 ∈ B with r(span(B0 ∩ F ) ∩ KB) maximal. Define

(43.57) A := span(B0 ∩ F ) ∩ KB, E′ := F/A, and ν′ := β − r(A).

For each B ∈ B there is a matching MB in (B ∩ F )/A of size ν′, since

(43.58) β − r(span(B ∩ F ) ∩ A) ≥ β − r(span(B ∩ F ) ∩ KB)
≥ β − r(span(B0 ∩ F ) ∩ KB) = β − r(A) = ν′.

Let B′ := {MB | B ∈ B}. Then KB′ = {0}, since

(43.59)
⋂

B∈B

span(B ∩ F ) ⊆ span(B0 ∩ F ) ∩
⋂

B∈B

span(B)

= span(B0 ∩ F ) ∩ KB = A.

Since ν(E) > ν we have ν(E′) > ν′. Indeed, let B′ be a matching in E of size
ν +1. Then B′/A contains a matching of size |B′ ∩F |− r(span(B′ ∩F )∩A).
Hence

(43.60) ν(E′) ≥ |B′ ∩ F | − r(span(B′ ∩ F ) ∩ A)
= |B′| − |B′ \ F | − r(span(B′ ∩ F ) ∩ A)
= |B′|− 1

2 (r(B′ \F )+r(span(B′ ∩F )∩A))− 1
2r(span(B′ ∩F )∩A)

≥ |B′| − 1
2r(KB) − 1

2r(A) > |B0| − 1
2r(KB) − 1

2r(A)
≥ |B0| − 1

2 (r(B0 \ F ) + r(A)) − 1
2r(A) = |B0 ∩ F | − r(A) = ν′.

The second inequality holds as span(B′\F ) and span(B′∩F )∩A are subspaces
of KB having intersection {0} (since B is a matching and as (43.56) holds).
The last inequality follows from

(43.61) r(KB) = r(span(B0) ∩ KB)
= r((span(B0 \ F ) + span(B0 ∩ F )) ∩ KB)
= r(span(B0 \ F ) + (span(B0 ∩ F ) ∩ KB))
= r(span(B0 \ F ) + r(span(B0 ∩ F ) ∩ KB)).

Here we use that
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(43.62) (span(B0 \ F ) + span(B0 ∩ F )) ∩ KB

= span(B0 \ F ) + (span(B0 ∩ F ) ∩ KB),

which holds since if x ∈ span(B0 \F ) and y ∈ span(B0 ∩F ) with x+y ∈ KB,
then y ∈ KB (since x ∈ span(B0 \ F ) ⊆ KB by (43.56)).

Now applying (43.54) repeatedly to B′, we finally find a matching M ′ in
E′ with |M ′| = ν′ + 1. It corresponds to a matching M in F with

(43.63) r(M ∪A) = 2|M |+r(A) = |M |+ν′+1+r(A) = |B0∩F |+|M |+1.

Then applying (43.44) improves B.

The proof also yields an alternative proof of Theorem 43.2.
While most of the matroids we meet in daily life are linear, it might yet

be interesting to extend the algorithm to the class of algebraic matroids. As
Dress and Lovász [1987] remark, this requires the development of algorithmic
techniques for algebraic matroids, for instance, for testing algebraic indepen-
dence, and for finding a point p in the intersection of certain flats. If such
techniques are available, pursuing the layout of the above algorithm for linear
matroids might yield a polynomial-time algorithm for algebraic matroids.

An augmenting path algorithm for linear matroid matching, of complexity
O(n3m) (where n := rank, m := |S|) was given by Stallmann and Gabow
[1984] and Gabow and Stallmann [1986] and an O(n4m)-time algorithm (by
solving a sequence of matroid intersection algorithms) by Orlin and Vande
Vate [1990] (these bounds can be improved to O(n2.376m) and O(n3.376m),
respectively, with fast matrix multiplication).

43.9. Matroid matching is not polynomial-time solvable
in general

Theorem 43.2 characterizes the matroid matching problem for algebraic ma-
troids, and one is challenged to extend this to general matroids. A main
objection to do this in a direct way is that in Theorem 43.2 a line of E may
intersect the flat F in a point not contained in the original matroid. So we
need to extend the matroid in some way, which is quite natural for linear
matroids, but, as Lovász remarks, ‘in general, there seems to be no hope to
extend the original matroid so as to achieve the validity of [Theorem 43.2].
The possibility of “simulating” the flat F inside the matroid seems to be a
difficult, and probably not only technical, question.’

Jensen and Korte [1982] and Lovász [1981] showed that, for matroids in
general, the matroid matching problem is not solvable in polynomial time,
if the matroid is given by an independence testing oracle (an oracle telling
if a given set is independent or not). The construction in both papers is as
follows.
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Let ν ∈ Z, let S be a set, and let E be a partition of S into pairs. Let M
be the matroid on S of rank 2ν, where T ⊆ S is independent if and only if
|T | ≤ 2ν − 1, or |T | = 2ν and T is not the union of ν pairs in E.

For each subset F of E of size ν, let MF be the matroid on S obtained
from M by adding

⋃
F as independent subset.

It is easy to check that M and each of the MF are matroids, and that E
has no matroid matching of size ν with respect to M , while F is the unique
matroid matching of size ν in MF .

Suppose now that we want to find the maximum size of a matroid match-
ing in a matroid, and that we know that the matroid is equal to M or to MF

for some ν-element F ⊆ E. Then we must ask the oracle for the independence
of

⋃
F for each ν-element subset F of E, in order to know if there exists a

matroid matching of size ν. This takes exponential time.
This example shows that the matroid matching problem even does not

belong to (oracle) co-NP, since any certificate that the matching number is at
most ν − 1, needs the oracle output that

⋃
F is dependent, for all ν-element

subsets F of E.
The example can be easily adapted to remove the oracle, and to obtain

a proper problem in NP that is NP-complete. Let G be an undirected graph
with vertex set V and let ν ∈ Z+. For each vertex v of G, let pv be a
pair of elements, such that pu ∩ pv = ∅ if u �= v. Let S :=

⋃
v∈V pv and

E := {pv|v ∈ V }. So E is a partition of S into pairs. Define a matroid on S
by extending the matroid M above by an independent set

(43.64) I :=
⋃

v∈C

pv

for each clique C of G with |C| = ν. Then E contains a matroid matching of
size ν if and only if G has a clique of size ν. As the maximum-size clique prob-
lem is NP-complete, also the matroid matching problem for such matroids is
NP-complete.

43.10. Further results and notes

43.10a. Optimal path-matching

Cunningham and Geelen [1996,1997] gave the following generalization of nonbipar-
tite matching and matroid intersection.

Let G = (V, E) be an undirected graph, let S1 and S2 be two disjoint stable
subsets of V , and let M1 = (S1, I1) and M2 = (S2, I2) be matroids, with rank
functions r1 and r2, such that r1(S2) = r2(S2) =: ρ. Define R := V \ (S1 ∪ S2). A
basic path-matching is a collection of ρ vertex-disjoint B1 − B2 paths, each having
all internal vertices in R, where B1 and B2 are bases of M1 and M2 respectively,
together with a perfect matching on the vertices of R not covered by these paths.
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If R = V , a basic path-matching is just a perfect matching. If R = ∅ and E
consists of disjoint edges linking S1 and S2, then a basic path-matching corresponds
to a common base.

Geelen and Cunningham showed that a basic path-matching exists if and only
if for each U1 ⊆ S1 ∪ R and U2 ⊆ S2 ∪ R such that there is no edge connecting two
sets among U1 ∩ U2, U1 \ U2, U2 \ U1, one has

(43.65) r1(S1 \ U1) + r2(S2 \ U2) + |R \ (U1 ∪ U2)| ≥ ρ + o(G[U1 ∩ U2]),

where o(H) is the number of odd components of a graph H. Moreover, they gave a
polynomial-time algorithm to decide whether there exists a basic path-matching.

More generally, they introduced the concept of an independent path-matching,
which is a set F of edges such that each nonsingleton component of the graph
(V, F ) is an S1 ∪ R − S2 ∪ R path all of whose internal vertices are in R, and such
that the vertices in Si covered by the paths is independent in Mi (i = 1, 2). The
corresponding independent path-matching vector is the vector x ∈ ZE

+ with x(e) = 0
if e �∈ F , x(e) = 2 if e ∈ F forms a component of (V, F ) with both ends of e in R,
and x(e) = 1 otherwise.

Geelen and Cunningham showed that the convex hull of the independent path-
matching vectors is determined by:

(43.66) xe ≥ 0 for e ∈ E,
x(δ(v)) ≤ 2 for v ∈ R,
x(E[U ]) ≤ |U ∩ R| for U ⊆ V with U ∩ S1 = ∅ or U ∩ S2 = ∅,
x(E[U ]) ≤ |U | − 1 for U ⊆ R,
x(δ(U)) ≤ ri(U) for U ⊆ Si and i = 1, 2,

and that this system is TDI. It implies that the maximum of 1Tx over independent
path-matching vectors is equal to the minimum of

(43.67) r1(S1 \ U1) + r2(S2 \ U2) + |R \ (U1 ∪ U2)| + |R| − o(G[U1 ∩ U2])

over all Ui ⊆ Si ∪R (i = 1, 2) such that there is no edge connecting two sets among
U1 ∩ U2, U1 \ U2, U2 \ U1. (A simplified proof of this was given by Frank and Szegő
[2002].)

Cunningham and Geelen argue that the set of inequalities (43.66) can be checked
in polynomial time, implying (with the ellipsoid method) that, for any weight func-
tion w, an independent path-matching vector x maximizing wTx can be found in
strongly polynomial time. A combinatorial algorithm for the unweighted version
was given by Spille and Weismantel [2002a,2002b].

For a survey, see Cunningham [2002].

43.10b. Further notes

Hochstättler and Kern [1989] showed that condition (43.13) is implied by the fol-
lowing:

(43.68) for any three flats A, B, C with

r(A ∪ C) − r(A) = r(B ∪ C) − r(B) = r(A ∪ B ∪ C) − r(A ∪ B),

one has

r(span(A ∪ C) ∩ span(B ∪ C)) − r(A ∩ B) = r(A ∪ C) − r(A).
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Matroids with this property are called pseudomodular by Björner and Lovász [1987],
who proved that full linear matroids (infinite matroids determined by linear inde-
pendence of a linear space), full algebraic matroids (infinite matroids determined
by algebraic independence of a field extension of a field), and full graphic matroids
(cycle matroids of a complete graph) are pseudomodular. See also Lindström [1988],
Dress, Hochstättler, and Kern [1994], and Tan [1997].

A randomized parallel algorithm for linear matroid matching was given by Na-
rayanan, Saran, and Vazirani [1992,1994]. Stallmann and Gabow [1984] gave an
algorithm for graphic matroid matching with running time O(n2m), which was im-
proved by Gabow and Stallmann [1985] to O(nm log6 n). Tong, Lawler, and Vazi-
rani [1984] found a polynomial-time algorithm for weighted matroid matching for
gammoids (by reduction to weighted matching). Structural properties of matroid
matching, including an Edmonds-Gallai type decomposition, were given by Vande
Vate [1992], which paper also studied the matroid matching polytope and a frac-
tional relaxation of it.

The matroid matching problem generalizes the matchoid problem of J. Edmonds
(cf. Jenkyns [1974]): given a graph G = (V, E) and a matroid Mv = (δ(v), Iv) for
each v in V , what is the maximum number of edges such that the restriction to
δ(v) forms an independent set in Mv, for each v in V ?



Chapter 44

Submodular functions and
polymatroids

In this chapter we describe some of the basic properties of a second main
object of the present part, the submodular function. Each submodular func-
tion gives a polymatroid, which is a generalization of the independent set
polytope of a matroid. We prove as a main result the theorem of Edmonds
[1970b] that the vertices of a polymatroid are integer if and only if the
associated submodular function is integer.

44.1. Submodular functions and polymatroids

Let f be a set function on a set S, that is, a function defined on the collection
P(S) of all subsets of S. The function f is called submodular if

(44.1) f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U)

for all subsets T, U of S. Similarly, f is called supermodular if −f is submodu-
lar, i.e., if f satisfies (44.1) with the opposite inequality sign. f is modular if f
is both submodular and supermodular, i.e., if f satisfies (44.1) with equality.

A set function f on S is called nondecreasing if f(T ) ≤ f(U) whenever
T ⊆ U ⊆ S, and nonincreasing if f(T ) ≥ f(U) whenever T ⊆ U ⊆ S.

As usual, denote for each function w : S → R and for each subset U of S,

(44.2) w(U) :=
∑

s∈U

w(s).

So w may be considered also as a set function on S, and one easily sees that
w is modular, and that each modular set function f on S with f(∅) = 0 may
be obtained in this way. (More generally, each modular set function f on S
satisfies f(U) = w(U) + γ (for U ⊆ S), for some unique function w : S → R

and some unique real number γ.)
In a sense, submodularity is the discrete analogue of convexity. If we

define, for any f : P(S) → R and any x ∈ S, a function δfx : P(S) → R

by: δfx(T ) := f(T ∪ {x}) − f(T ), then f is submodular if and only if δfx is
nonincreasing for each x ∈ S.

In other words:
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Theorem 44.1. A set function f on S is submodular if and only if

(44.3) f(U ∪ {s}) + f(U ∪ {t}) ≥ f(U) + f(U ∪ {s, t})

for each U ⊆ S and distinct s, t ∈ S \ U .

Proof. Necessity being trivial, we show sufficiency. We prove (44.1) by in-
duction on |T△U |, the case |T△U | ≤ 2 being trivial (if T ⊆ U or U ⊆ T )
or being implied by (44.3). If |T△U | ≥ 3, we may assume by symmetry that
|T \ U | ≥ 2. Choose t ∈ T \ U . Then, by induction,

(44.4) f(T ∪U)−f(T ) ≤ f((T \{t})∪U)−f(T \{t}) ≤ f(U)−f(T ∩U),

(as |T△((T \ {t}) ∪ U)| < |T△U | and |(T \ {t})△U | < |T△U |). This shows
(44.1).

Define two polyhedra associated with a set function f on S:

(44.5) Pf := {x ∈ RS | x ≥ 0, x(U) ≤ f(U) for each U ⊆ S},
EPf := {x ∈ RS | x(U) ≤ f(U) for each U ⊆ S}.

Note that Pf is nonempty if and only if f ≥ 0, and that EPf is nonempty if
and only if f(∅) ≥ 0.

If f is a submodular function, then Pf is called the polymatroid associated
with f , and EPf the extended polymatroid associated with f . A polyhedron
is called an (extended) polymatroid if it is the (extended) polymatroid as-
sociated with some submodular function. A polymatroid is bounded (since
0 ≤ xs ≤ f({s}) for each s ∈ S), and hence is a polytope.

The following observation presents a basic technique in proofs for sub-
modular functions, which we often use without further reference:

Theorem 44.2. Let f be a submodular set function on S and let x ∈ EPf .
Then the collection of sets U ⊆ S satisfying x(U) = f(U) is closed under
taking unions and intersections.

Proof. Suppose x(T ) = f(T ) and x(U) = f(U). Then

(44.6) f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U) ≥ x(T ∩ U) + x(T ∪ U)
= x(T ) + x(U) = f(T ) + f(U),

implying that equality holds throughout. So x(T ∩ U) = f(T ∩ U) and x(T ∪
U) = f(T ∪ U).

A vector x in EPf (or in Pf ) is called a base vector of EPf (or of Pf ) if
x(S) = f(S). A base vector of f is a base vector of EPf . The set of all base
vectors of f is called the base polytope of EPf or of f . It is a face of EPf ,
and denoted by Bf . So

(44.7) Bf = {x ∈ RS | x(U) ≤ f(U) for all U ⊆ S, x(S) = f(S)}.
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(It is a polytope, since xs = x(S) − x(S \ {s}) ≥ f(S) − f(S \ {s}) for each
s ∈ S.)

Let f be a submodular set function on S and let a ∈ RS . Define the set
function f |a on S by

(44.8) (f |a)(U) := min
T⊆U

(f(T ) + a(U \ T ))

for U ⊆ S. It is easy to check that f |a again is submodular and that

(44.9) EPf |a = {x ∈ EPf | x ≤ a} and Pf |a = {x ∈ Pf | x ≤ a}.

It follows that if P is an (extended) polymatroid, then also the set P ∩{x |
x ≤ a} is an (extended) polymatroid, for any vector a. In fact, as Lovász
[1983c] observed, if f(∅) = 0, then f |a is the unique largest submodular
function f ′ satisfying f ′(∅) = 0, f ′ ≤ f , and f ′(U) ≤ a(U) for each U ⊆ V .

44.1a. Examples

Matroids. Let M = (S, I) be a matroid. Then the rank function r of M is sub-
modular and nondecreasing. In Theorem 39.8 we saw that a set function r on S
is the rank function of a matroid if and only if r is nonnegative, integer, nonde-
creasing and submodular with r(U) ≤ |U | for all U ⊆ S. (This last condition may
be replaced by: r(∅) = 0 and r({s}) ≤ 1 for each s in S.) Then the polymatroid
Pr associated with r is equal to the independent set polytope of M (by Corollary
40.2b).

A generalization is obtained by partitioning S into sets S1, . . . , Sk, and defining

(44.10) f(J) := r(
⋃

i∈J

Si)

for J ⊆ {1, . . . , k}. It is not difficult to show that each integer nondecreasing sub-
modular function f with f(∅) = 0 can be constructed in this way (see Section
44.6b).

As another generalization, if w : S → R+, define f(U) to be the maximum
of w(I) over I ∈ I with I ⊆ U . Then f is submodular. (To see this, write w =
λ1χ

T1 + · · · + λnχTn , with ∅ �= T1 ⊂ T2 ⊂ · · · ⊂ Tn ⊆ S. Then by (40.3), f(U) =∑n
i=1 λir(U ∩ Ti), implying that f is submodular.)
For more on the relation between submodular functions and matroids, see Sec-

tions 44.6a and 44.6b.

Matroid intersection. Let M1 = (S, I1) and M2 = (S, I2) be matroids, with rank
functions r1 and r2 respectively. Then the function f given by

(44.11) f(U) := r1(U) + r2(S \ U)

for U ⊆ S, is submodular. By the matroid intersection theorem (Theorem 41.1),
the minimum value of f is equal to the maximum size of a common independent
set.

Set unions. Let T1, . . . , Tn be subsets of a finite set T and let S = {1, . . . , n}.
Define
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(44.12) f(U) :=
∣∣ ⋃

i∈U

Ti

∣∣

for U ⊆ S. Then f is nondecreasing and submodular. More generally, for w : T →
R+, the function f defined by

(44.13) f(U) := w(
⋃

i∈U

Ti)

for U ⊆ S, is nondecreasing and submodular.
More generally, for any nondecreasing submodular set function g on T , the

function f defined by

(44.14) f(U) := g(
⋃

i∈U

Ti)

for U ⊆ S, again is nondecreasing and submodular.
Let G = (V, E) be the bipartite graph corresponding to T1, . . . , Tn. That is, G

has colour classes S and T , and s ∈ S and t ∈ T are adjacent if and only if t ∈ Ts.
Then we have: x ∈ Pf if and only if there exist z ∈ Pg and y : E → Z+ such that

(44.15) y(δ(v)) = x(v) for all v ∈ S,
y(δ(v)) = z(v) for all v ∈ T .

So y may be considered as an ‘assignment’ of a ‘supply’ z to a ‘demand’ x. If g and
x are integer we can take also y and z integer.

Directed graph cut functions. Let D = (V, A) be a directed graph and let
c : A → R+ be a ‘capacity’ function on A. Define

(44.16) f(U) := c(δout(U))

for U ⊆ V (where δout(U) denotes the set of arcs leaving U). Then f is submodular
(but in general not nondecreasing). A function f arising in this way is called a cut
function.

Hypergraph cut functions. Let (V, E) be a hypergraph. For U ⊆ V , let f(U)
be the number of edges E ∈ E split by U (that is, with both E ∩ U and E \ U
nonempty). Then f is submodular.

Directed hypergraph cut functions. Let V be a finite set and let (E1, F1), . . . ,
(Em, Fm) be pairs of subsets of V . For U ⊆ V , let f(U) be the number of indices
i with U ∩ Ei �= ∅ and Fi �⊆ U . Then f is submodular. (In proving this, we can
assume m = 1, since any sum of submodular functions is submodular again.)

More generally, we can choose c1, . . . , cm ∈ R+ and define

(44.17) f(U) =
∑

(ci | U ∩ Ei �= ∅, Fi �⊆ U)

for U ⊆ V . Again, f is submodular. This generalizes the previous two examples
(where Ei = Fi for each i or |Ei| = |Fi| = 1 for each i).

Maximal element. Let V be a finite set and let h : V → R. For nonempty U ⊆ V ,
define

(44.18) f(U) := max{h(u) | u ∈ U},
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and define f(∅) to be the minimum of h(v) over v ∈ V . Then f is submodular.

Subtree diameter. Let G = (V, E) be a forest (a graph without circuits), and for
each X ⊆ E define

(44.19) f(X) :=
∑

K

diameter(K),

where K ranges over the components of the graph (V, X). Here diameter(K) is the
length of a longest path in K. Then f is submodular (Tamir [1993]); that is:

(44.20) f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y )

for X, Y ⊆ E.
To see this, denote, for any X ⊆ E, the set of vertices covered by X by V X.

We first show (44.20) for X, Y ⊆ E with (V X, X) and (V Y, Y ) connected and
V X ∩ V Y �= ∅. Note that in this case X ∩ Y and X ∪ Y give connected subgraphs
again.

The proof of (44.20) is based on the fact that for all s, t, u, v ∈ V one has:

(44.21) dist(s, u) + dist(t, v) ≥ dist(s, t) + dist(u, v)
or dist(t, u) + dist(s, v) ≥ dist(s, t) + dist(u, v),

where dist denotes the distance in G.
To prove (44.20), let P and Q be longest paths in X ∩Y and X ∪Y respectively.

If EQ is contained in X or in Y , then (44.20) follows, since P is contained in X
and in Y . So we can assume that EQ is contained neither in X nor in Y . Let Q
have ends u, v, with u ∈ V X and v ∈ V Y . Let P have ends s, t. So s, t, u ∈ V X
and s, t, v ∈ V Y . Hence (44.21) implies (44.20).

We now derive (44.20) for all X, Y ⊆ E. Let X and Y be the collections of edge
sets of the components of (V, X) and of (V, Y ) respectively. Let F be the family
made by the union of X and Y, taking the sets in X ∩ Y twice. Then

(44.22) f(X) + f(Y ) ≥
∑

Z∈F

f(Z).

We now modify F iteratively as follows. If Z, Z′ ∈ F , Z �⊆ Z′ �⊆ Z, and V Z∩V Z′ �=
∅, we replace Z, Z′ by Z ∩ Z′ and Z ∪ Z′. By (44.20), (44.22) is maintained. By
Theorem 2.1, these iterations stop. We delete the empty sets in the final F .

Then the inclusionwise maximal sets in F have union equal to X ∪ Y and form
the nonempty edge sets of the components of (V, X∪Y ). Similarly, the inclusionwise
minimal sets in F form the nonempty edge sets of the components of (V, X ∩ Y ).
So

(44.23)
∑

Z∈F

f(Z) = f(X ∩ Y ) + f(X ∪ Y ),

and we have (44.20).

Further examples. Choquet [1951,1955] showed that the classical Newtonian ca-
pacity in R3 is submodular. Examples of submodular functions based on probabil-
ity are given by Fujishige [1978b] and Han [1979], and other examples by Lovász
[1983c].
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44.2. Optimization over polymatroids by the greedy
method

Edmonds [1970b] showed that one can optimize a linear function wTx over
an (extended) polymatroid by an extension of the greedy algorithm. The
submodular set function f on S is given by a value giving oracle, that is, by
an oracle that returns f(U) for any U ⊆ S.

Let f be a submodular set function on S, and suppose that we want to
maximize wTx over EPf , for some w : S → R. We can assume that EPf �= ∅,
that is f(∅) ≥ 0, and hence that f(∅) = 0 (since decreasing f(∅) maintains
submodularity). We can also assume that w ≥ 0, since if some component of
w is negative, the maximum value is unbounded.

Now order the elements in S as s1, . . . , sn such that w(s1) ≥ · · · ≥ w(sn).
Define

(44.24) Ui := {s1, . . . , si} for i = 0, . . . , n,

and define x ∈ RS by

(44.25) x(si) := f(Ui) − f(Ui−1) for i = 1, . . . , n.

Then x maximizes wTx over EPf , as will be shown in the following theorem.
To prove it, consider the following linear programming duality equation:

(44.26) max{wTx | x ∈ EPf}

= min{
∑

T⊆S

y(T )f(T )|y ∈ R
P(S)
+ ,

∑

T∈P(S)

y(T )χT = w}.

Define:

(44.27) y(Ui) := w(si) − w(si+1) (i = 1, . . . , n − 1),
y(S) := w(sn),
y(T ) := 0 (T �= Ui for each i).

Theorem 44.3. Let f be a submodular set function on S with f(∅) = 0 and
let w : S → R+. Then x and y given by (44.25) and (44.27) are optimum
solutions of (44.26).

Proof. We first show that x belongs to EPf ; that is, x(T ) ≤ f(T ) for each
T ⊆ S. This is shown by induction on |T |, the case T = ∅ being trivial. Let
T �= ∅ and let k be the largest index with sk ∈ T . Then by induction,

(44.28) x(T \ {sk}) ≤ f(T \ {sk}).

Hence

(44.29) x(T ) ≤ f(T \{sk})+x(sk) = f(T \{sk})+f(Uk)−f(Uk−1) ≤ f(T )

(the last inequality follows from the submodularity of f). So x ∈ EPf .
Also, y is feasible for (44.26). Trivially, y ≥ 0. Moreover, for any i we have

by (44.27):
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(44.30)
∑

T∋si

y(T ) =
∑

j≥i

y(Uj) = w(si).

So y is a feasible solution of (44.26).
Optimality of x and y follows from:

(44.31) wTx =
∑

s∈S

w(s)xs =
n∑

i=1

w(si)(f(Ui) − f(Ui−1))

=
n−1∑

i=1

f(Ui)(w(si) − w(si+1)) + f(S)w(sn) =
∑

T⊆S

y(T )f(T ).

The third equality follows from a straightforward reordering of the terms,
using that f(∅) = 0.

Note that if f is integer, then x is integer, and that if w is integer, then y
is integer. Moreover, if f is nondecreasing, then x is nonnegative. Hence, in
that case, x and y are optimum solutions of

(44.32) max{wTx | x ∈ Pf}

= min{
∑

T⊆S

y(T )f(T ) | y ∈ R
P(S)
+ ,

∑

T∈P(S)

y(T )χT ≥ w}.

Therefore:

Corollary 44.3a. Let f be a nondecreasing submodular set function on S
with f(∅) = 0 and let w : S → R+. Then x and y given by (44.25) and (44.27)
are optimum solutions for (44.32).

Proof. Directly from Theorem 44.3, using the fact that x ≥ 0 if f is nonde-
creasing.

As for complexity we have:

Corollary 44.3b. Given a submodular set function f on a set S (by a value
giving oracle) and a function w ∈ QS, we can find an x ∈ EPf maximizing
wTx in strongly polynomial time. If f is moreover nondecreasing, then x ∈ Pf

(and hence x maximizes wTx over Pf ).

Proof. By the extension of the greedy method given above.

The greedy algorithm can be interpreted geometrically as follows. Let w
be some linear objective function on S, with w(s1) ≥ . . . ≥ w(sn). Travel via
the vertices of Pf along the edges of Pf , by starting at the origin, as follows:
first go from the origin as far as possible (in Pf ) in the positive s1-direction,
say to vertex x1; next go from x1 as far as possible in the positive s2-direction,
say to x2, and so on. After n steps one reaches a vertex xn maximizing wTx
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over Pf . In fact, the effectiveness of this algorithm characterizes polymatroids
(Dunstan and Welsh [1973]).

44.3. Total dual integrality

Theorem 44.3 implies the box-total dual integrality of the following system:

(44.33) x(U) ≤ f(U) for U ⊆ S.

Corollary 44.3c. If f is submodular, then (44.33) is box-totally dual inte-
gral.

Proof. Consider the dual of maximizing wTx over (44.33), for some w ∈ ZS
+.

By Theorem 44.3, it has an optimum solution y : P(S) → R+ with the
sets U ⊆ S having y(U) > 0 forming a chain. So these constraints give a
totally unimodular submatrix of the constraint matrix (by Theorem 41.11).
Therefore, by Theorem 5.35, (44.33) is box-TDI.

This gives the integrality of polyhedra:

Corollary 44.3d. For any integer submodular set function f , the polymatroid
Pf and the extended polymatroid EPf are integer.

Proof. Directly from Corollary 44.3c. (In fact, integer optimum solutions are
explicitly given by Theorem 44.3 and Corollary 44.3a.)

44.4. f is determined by EPf

Theorem 44.3 implies that for any extended polymatroid P there is a unique
submodular function f satisfying f(∅) = 0 and EPf = P , since:

Corollary 44.3e. Let f be a submodular set function on S with f(∅) = 0.
Then

(44.34) f(U) = max{x(U) | x ∈ EPf}

for each U ⊆ S.

Proof. Directly from Theorem 44.3 by taking w := χU .

So there is a one-to-one correspondence between nonempty extended poly-
matroids and submodular set functions f with f(∅) = 0. The correspondence
relates integer extended polymatroids with integer submodular functions.

There is a similar correspondence between nonempty polymatroids and
nondecreasing submodular set functions f with f(∅) = 0. For any (not nec-
essarily nondecreasing) nonnegative submodular set function f , define f̄ by:
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(44.35) f̄(∅) = 0,
f̄(U) = min

T⊇U
f(T ) for nonempty U ⊆ S.

It is easy to see that f̄ is nondecreasing and submodular and that Pf̄ =

Pf (Dunstan [1973]). In fact, f̄ is the unique nondecreasing submodular set
function associated with Pf , with f̄(∅) = 0, as (Kelley [1959]):

Corollary 44.3f. If f is a nondecreasing submodular function with f(∅) = 0,
then

(44.36) f(U) = max{x(U) | x ∈ Pf}

for each U ⊆ S.

Proof. This follows from Corollary 44.3a by taking w := χT .

This one-to-one correspondence between polymatroids and nondecreasing
submodular set functions f with f(∅) = 0 relates integer polymatroids to
integer such functions:

Corollary 44.3g. For each integer polymatroid P there exists a unique in-
teger nondecreasing submodular function f with f(∅) = 0 and P = Pf .

Proof. By Corollary 44.3d and (44.36).

By (44.36) we have for any nonnegative submodular set function f that
f̄(U) = max{x(U) | x ∈ Pf}. Since we can optimize over EPf in polynomial
time (with the greedy algorithm described above), with the ellipsoid method
we can optimize over Pf = EPf ∩ RS

+ in polynomial time. Hence we can
calculate f̄(U) in polynomial time. Alternatively, calculating f̄(U) amounts
to minimizing the submodular function f ′(T ) := f(T ∪ U).

In fact f̄ is the largest among all nondecreasing submodular set functions
g on S with g(∅) = 0 and g ≤ f , as can be checked straightforwardly.

44.5. Supermodular functions and contrapolymatroids

Similar results hold for supermodular functions and the associated con-
trapolymatroids. Associate the following polyhedra with a set function g on
S:

(44.37) Qg := {x ∈ RS | x ≥ 0, x(U) ≥ g(U) for each U ⊆ S},
EQg := {x ∈ RS | x(U) ≥ g(U) for each U ⊆ S}.

If g is supermodular, then Qg and EQg are called the contrapolymatroid
and the extended contrapolymatroid associated with g, respectively. A vector
x ∈ EQg (or Qg) is called a base vector of EQg (or Qg) if x(S) = g(S). A
base vector of g is a base vector of EQg.
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Since EQg = −EP−g, we can reduce most problems on (extended) con-
trapolymatroids to (extended) polymatroids. Again we can minimize a linear
function wTx over EQg with the greedy algorithm, as described in Section
44.2. (In fact, we can apply the same formulas (44.25) and (44.27) for g in-
stead of f .) If g is nondecreasing, it yields a nonnegative optimum solution,
and hence a vector x minimizing wTx over Qg.

Similarly, the system

(44.38) x(U) ≥ g(U) for U ⊆ S

is box-TDI, as follows directly from the box-total dual integrality of

(44.39) x(U) ≤ −g(U) for U ⊆ S.

Let EPf be the extended polymatroid associated with the submodular
function f with f(∅) = 0. Let Bf be the face of base vectors of EPf , i.e.,

(44.40) Bf = {x ∈ EPf | x(S) = f(S)}.

A vector y ∈ RS is called spanning if there exists an x in Bf with x ≤ y. Let
Q be the set of spanning vectors.

A vector y belongs to Q if and only if (f |y)(S) = f(S), that is (by (44.8)
and (44.9)) if and only if

(44.41) y(U) ≥ f(S) − f(S \ U)

for each U ⊆ S. So Q is equal to the contrapolymatroid EQg associated with
the submodular function g defined by g(U) := f(S) − f(S \ U) for U ⊆ S.
Then Bf is equal to the face of minimal elements of EQg.

There is a one-to-one correspondence between submodular set functions
f on S with f(∅) = 0 and supermodular set functions g on S with g(∅) = 0,
given by the relations

(44.42) g(U) = f(S) − f(S \ U) and f(U) = g(S) − g(S \ U)

for U ⊆ S.
Then the pair (−g,−Q) is related to the pair (f, P ) by a relation similar

to the duality relation of matroids (cf. Section 44.6f).

44.6. Further results and notes

44.6a. Submodular functions and matroids

Let P be the polymatroid associated with the nondecreasing integer submodular
set function f on S, with f(∅) = 0. Then the collection

(44.43) I := {I ⊆ S | χI ∈ P}

forms the collection of independent sets of a matroid M = (S, I) (this result was
announced by Edmonds and Rota [1966] and proved by Pym and Perfect [1970]).
By Corollary 40.2b, the subpolymatroid (cf. Section 44.6c)
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(44.44) P |1 = {x ∈ P | x ≤ 1}

is the convex hull of the incidence vectors of the independent sets of M . By (44.8),
the rank function r of M satisfies

(44.45) r(U) = min
T⊆U

(|U \ T | + f(T ))

for U ⊆ S.
As an example, if f is the submodular function given in the set union example in

Section 44.1a, we obtain the transversal matroid on {1, . . . , n} with I ⊆ {1, . . . , n}
independent if and only if the family (Ti | i ∈ I) has a transversal (Edmonds
[1970b]).

44.6b. Reducing integer polymatroids to matroids

In fact, each integer polymatroid can be derived from a matroid as follows (Helgason
[1974]). Let f be a nondecreasing submodular set function on S with f(∅) = 0.
Choose for each s in S, a set Xs of size f({s}), such that the sets Xs (s ∈ S) are
disjoint. Let X :=

⋃
s∈S Xs, and define a set function r on X by

(44.46) r(U) := min
T⊆S

(|U \
⋃

s∈T

Xs| + f(T ))

for U ⊆ X. One easily checks that r is the rank function of a matroid M (by
checking the axioms (39.38)), and that for each subset T of S

(44.47) f(T ) = r(
⋃

s∈T

Xs).

Therefore, f arises from the rank function of M , as in the Matroids example in
Section 44.1a. The polymatroid Pf associated with f is just the convex hull of all
vectors x for which there exists an independent set I in M with xs = |I ∩ Xs| for
all s in S.

Given a nondecreasing submodular set function f on S with f(∅) = 0, Lovász
[1980a] called a subset U ⊆ S a matching if

(44.48) f(U) =
∑

s∈U

f({s}).

If f({s}) = 1 for each s in S, f is the rank function of a matroid, and U is a
matching if and only if U is independent in this matroid. If f({s}) = 2 for each
s in S, the elements of S correspond to certain flats of rank 2 in a matroid. Now
determining the maximum size of a matching is just the matroid matching problem
(cf. Chapter 43).

44.6c. The structure of polymatroids

Vertices of polymatroids (Edmonds [1970b], Shapley [1965,1971]). Let f be a
submodular set function on a set S = {s1, . . . , sn} with f(∅) = 0. Let Pf be the
polymatroid associated with f . It follows immediately from the greedy algorithm, as
in the proof of Corollary 44.3a, that the vertices of Pf are given by (for i = 1, . . . , n):
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(44.49) x(sπ(i)) =

{
f({sπ(1), . . . , sπ(i)}) − f({sπ(1), . . . , sπ(i−1)}) if i ≤ k,
0 if i > k,

where π ranges over all permutations of {1, . . . , n} and where k ranges over 0, . . . , n.
Similarly, for any submodular set function f on S with f(∅) = 0, the vertices

of the extended polymatroid EPf are given by

(44.50) x(sπ(i)) = f({sπ(1), . . . , sπ(i)}) − f({sπ(1), . . . , sπ(i−1)})

for i = 1, . . . , n, where π ranges over all permutations of {1, . . . , n}.
Topkis [1984] characterized adjacency of the vertices of a polymatroid, while

Bixby, Cunningham, and Topkis [1985] and Topkis [1992] gave further results on
vertices of and paths on a polymatroid and on related partial orders of S.

Facets of polymatroids. Let f be a nondecreasing submodular set function on S
with f(∅) = 0. One easily checks that Pf is full-dimensional if and only if f({s}) > 0
for all s in S. If Pf is full-dimensional there is a unique minimal collection of linear
inequalities defining Pf (clearly, up to scalar multiplication). They correspond to
the facets of Pf . Edmonds [1970b] found that this collection is given by the following
theorem. A subset U ⊆ S is called an f-flat if f(U ∪ {s}) > f(U) for all s ∈ S \ U ,
and U is called f-inseparable if there is no partition of U into nonempty sets U1

and U2 with f(U) = f(U1) + f(U2). Then:

Theorem 44.4. Let f be a nondecreasing submodular set function on S with f(∅) =
0 and f({s}) > 0 for each s ∈ S. The following is a minimal system determining
the polymatroid Pf :

(44.51) xs ≥ 0 (s ∈ S),
x(U) ≤ f(U) (U is a nonempty f -inseparable f -flat).

Proof. It is easy to see that (44.51) determines Pf , as any other inequality x(U) ≤
f(U) follows from (44.51). The irredundancy of collection (44.51) can be seen as
follows.

Clearly, each inequality xs ≥ 0 determines a facet. Next consider a nonempty
f -inseparable f -flat U . Suppose that the face determined by U is not a facet. Then
it is contained in another face, say determined by T . Let x be a vertex of Pf with
x(U \ T ) = f(U \ T ), x(U) = f(U), and x(S \ U) = 0. Such a vertex exists by the
greedy algorithm (cf. (44.49)).

Since x is on the face determined by U , it is also on the face determined by T .
So x(T ) = f(T ). Hence f(T ) = x(T ) = x(T ∩ U) = f(U) − f(U \ T ). So we have
equality throughout in:

(44.52) f(U \ T ) + f(T ) ≥ f(U \ T ) + f(T ∩ U) ≥ f(U).

This implies that U \ T = ∅ or T ∩ U = ∅ (as U is f -inseparable), and that
f(T ) = f(T ∩ U). If U \ T = ∅, then U ⊂ T , and hence (as U is an f -flat)
f(T ) > f(U) ≥ f(T ∩U), a contradiction. If T ∩U = ∅, then f(T ) = f(T ∩U) = 0,
implying that T = ∅, again a contradiction.

It follows that the face {x ∈ Pf | x(S) = f(S)} of maximal vectors in Pf is a
facet if and only if f(U) + f(S \ U) > f(S) for each proper nonempty subset U of
S. More generally, its codimension is equal to the number of inclusionwise minimal
nonempty sets U with f(U) + f(S \ U) = f(S) (cf. Fujishige [1984a]).
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Faces of polymatroids (Giles [1975]). We now extend the characterizations of
vertices and facets of polymatroids given above to arbitrary faces. Let P be the
polymatroid associated with the nondecreasing submodular set function f on S
with f(∅) = 0. Suppose that P is full-dimensional. If ∅ �= S1 ⊂ · · · ⊂ Sk ⊆ T ⊆ S,
then

(44.53) F = {x ∈ P | x(S1) = f(S1), . . . , x(Sk) = f(Sk), x(S \ T ) = 0}

is a face of P of dimension at most |T | − k. (Indeed, F is nonempty by the char-
acterization (44.49) of vertices, while dim(F ) ≤ |T | − k, as the incidence vectors of
S1, . . . , Sk are linearly independent.)

In fact, each face has a representation (44.53). Indeed, let F be a face of P .
Define T = {s ∈ S | xs > 0 for some x in F}, and let S1 ⊂ · · · ⊂ Sk be any
maximal chain of nonempty subsets of T with the property that

(44.54) F ⊆ {x ∈ P | x(S1) = f(S1), . . . , x(Sk) = f(Sk), x(S \ T ) = 0}.

Then we have equality in (44.54), and dim(F ) = |T | − k. (Here a maximal chain is
a chain which is contained in no larger chain satisfying (44.54) — since the empty
chain satisfies (44.54), there exist maximal chains.)

In order to prove this assertion, suppose that F has dimension d. As the right-
hand side of (44.54) is a face of P of dimension at most |T | − k, it suffices to show
that d = |T | − k. Therefore, suppose d < |T | − k. Then there exists a subset U of S
such that x(U) = f(U) for all x in F , and such that the incidence vector of U ∩ T
is linearly independent of the incidence vectors of S1, . . . , Sk. That is, U ∩ T is not
the union of some of the sets Si \ Si−1 (i = 1, . . . , k). Since x(U ∩ T ) = x(U) =
f(U) ≥ f(U ∩ T ) for all x in F , we may assume that U ⊆ T . Since the collection of
subsets U of S with x(U) = f(U) is closed under taking unions and intersections,
we may assume moreover that U is comparable with each of the sets in the chain
S1 ⊂ · · · ⊂ Sk. Hence U could be added to the chain to obtain a larger chain,
contradicting our assumption. So d = |T | − k.

Note that a chain S1 ⊂ · · · ⊂ Sk of nonempty subsets of T is a maximal chain
satisfying (44.54) if and only if there is equality in (44.54) and (setting S0 := ∅):

(44.55) f(Sk ∪ {s}) > f(Sk) for all s in T \ Sk, and each of the sets Si \ Si−1

is fi-inseparable, where fi is the submodular set function on Si \ Si−1

given by fi(U) := f(U ∪ Si−1) − f(Si−1) for U ⊆ Si \ Si−1.

This may be derived straightforwardly from the existence, by (44.49), of appropriate
vertices of F .

It is not difficult to show that if F has a representation (44.53), then F is the
direct sum of F1, . . . , Fk and Q, where Fi is the face of maximal vectors in the
polymatroid associated with fi (i = 1, . . . , k), and Q is the polymatroid associated
with the submodular set function g on T \ Sk given by g(U) := f(U ∪ Sk) − f(Sk)
for U ⊆ T \ Sk. Since dim(Fi) ≤ |Si \ Si−1| − 1 and dim(Q) ≤ |T \ Sk|, this yields
that dim(F ) = |T | − k if and only if dim(Fi) = |Si \ Si−1| − 1 (i = 1, . . . , k) and
dim(Q) = |T \Sk|. From this, characterization (44.55) can be derived again. It also
yields that if F , represented by (44.53), has dimension |T | − k, then the unordered
partition {S1, S2 \ S1, . . . , Sk \ Sk−1, T \ Sk} is the same for all maximal chains
S1 ⊂ · · · ⊂ Sk.

For a characterization of the faces of a polymatroid, see Fujishige [1984a].
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44.6d. Characterization of polymatroids

Let P be the polymatroid associated with the nondecreasing submodular set func-
tion f on S with f(∅) = 0. The following three observations are easily derived
from the representation (44.49) of vertices of P . (a) If x0 is a vertex of P , there
exists a vertex x1 of P such that x1 ≥ x0 and x1 has the form (44.49) with k = n.
(b) A vertex x1 of P can be represented as (44.49) with k = n if and only if
x1(S) = f(S). (c) The convex hull of the vertices x1 of P with x1(S) = f(S) is
the face {x ∈ P | x(S) = f(S)} of P . It follows directly from (a), (b) and (c) that
x ∈ P is a maximal element of P (with respect to ≤) if and only if x(S) = f(S).
So for each vector y in P there is a vector x in P with y ≤ x and x(S) = f(S).

Applying this to the subpolymatroids P |a = P ∩ {x | x ≤ a} (cf. Section 44.1),
one finds the following property of polymatroids:

(44.56) for each a ∈ RS
+ there exists a number r(a) such that each maximal

vector x of P ∩ {x | x ≤ a} satisfies x(S) = r(a).

Here maximal is maximal in the partial order ≤ on vectors. The number r(a) is
called the rank of a, and any x with the properties mentioned in (44.56) is called a
base of a.

Edmonds [1970b] (cf. Dunstan [1973], Woodall [1974b]) noticed the following
(we follow the proof of Welsh [1976]):

Theorem 44.5. Let P ⊆ RS
+. Then P is a polymatroid if and only if P is compact,

and satisfies (44.56) and

(44.57) if 0 ≤ y ≤ x ∈ P , then y ∈ P .

Proof. Necessity was observed above. To see sufficiency, let f be the set function
on S defined by

(44.58) f(U) := max{x(U) | x ∈ P}

for U ⊆ S. Then f is nonnegative and nondecreasing. Moreover, f is submodular.
To see this, consider T, U ⊆ S. Let x be a maximal vector in P satisfying xs = 0
if s �∈ T ∪ U , and let y be a maximal vector in P satisfying y(s) = 0 if s �∈ T ∩ U
and x ≤ y. Note that (44.56) and (44.58) imply that x(T ∩ U) = f(T ∩ U) and
y(T ∪ U) = f(T ∪ U). Hence

(44.59) f(T )+f(U) ≥ y(T )+y(U) = y(T ∩U)+y(T ∪U) ≥ x(T ∩U)+y(T ∪U)
= f(T ∩ U) + f(T ∪ U),

that is, f is submodular.
We finally show that P is equal to the polymatroid Pf associated to f . Clearly,

P ⊆ Pf , since if x ∈ P then x(U) ≤ f(U) for each U ⊆ S, by definition (44.58) of
f .

To see that Pf = P , suppose v ∈ Pf \P . Let u be a base of v (that is, a maximal
vector u ∈ P satisfying u ≤ v). Choose u such that the set

(44.60) U := {s ∈ S | us < vs}

is as large as possible. Since v �∈ P , we have u �= v, and hence U �= ∅. As v ∈ Pf ,
we know



780 Chapter 44. Submodular functions and polymatroids

(44.61) u(U) < v(U) ≤ f(U).

Define

(44.62) w := 1
2
(u + v).

So u ≤ w ≤ v. Hence u is a base of w, and each base of w is a base of v.
For any z ∈ RS , define z′ as the projection of z on the subspace L := {x ∈ RS |

xs = 0 if s ∈ S \ U}. That is:

(44.63) z′(s) := z(s) if s ∈ U , and z′(s) := 0 if s ∈ S \ U .

By definition of f , there is an x ∈ P with x(U) = f(U). We may assume that x ∈ L.
Choose y ∈ L with x ≤ y and u′ ≤ y. Then

(44.64) x(S) = x(U) = f(U) > u(U) = u′(U) = u′(S).

So r(y) > u′(S). Hence, by (44.56), there exists a base z of y with u′ ≤ z and
z(S) > u′(S). So u′

s < zs for at least one s ∈ U . This implies, since u′
s < w′

s for
each s ∈ S, that there is an a ∈ P with u′ ≤ a ≤ w′ and a �= u′, hence a(U) > u′(U).

Since a ≤ w′ ≤ w, there is a base b of w with a ≤ b. Then b(S) = u(S) (since
also u is a base of w) and b(U) ≥ a(U) > u′(U) = u(U). Hence bs < us = vs for
some s ∈ S \ U . Moreover, bs ≤ ws < vs for each s ∈ U . So U is properly contained
in {s ∈ S | bs < vs}, contradicting the maximality of U .

(For an alternative characterization, see Welsh [1976].)
By (44.8) and (44.9) the rank of a is given by

(44.65) r(a) = min
U⊆S

(a(S \ U) + f(U))

(from this one may derive a ‘submodular law’ for r: r(a∧ b)+r(a∨ b) ≤ r(a)+r(b),
where ∧ and ∨ are the meet and join in the lattice (RS , ≤) (Edmonds [1970b])).

Since if P has integer vertices and a is integer, the intersection P |a = {x ∈ P |
x ≤ a} is integer again, we know that for integer polymatroids (44.56) also holds if
we restrict a and x to integer vectors. So if a is integer, then there exists an integer
vector x ≤ a in P with x(S) = r(a).

Theorem 44.5 yields an analogous characterization of extended polymatroids.
Let f be a submodular set function on S with f(∅) = 0. Choose c ∈ RS

+ such that

(44.66) g(U) := f(U) + c(U)

is nonnegative for all U ⊆ S. Clearly, g again is submodular, and g(∅) = 0. Then the
extended polymatroid EPf associated with f and the polymatroid Pg associated
with g are related by:

(44.67) Pg = {x | x ≥ 0, x − c ∈ EPf} = (c + EPf ) ∩ R
S
+.

Since Pg is a polymatroid, by (44.56) we know that EPf satisfies:

(44.68) for each a in RS there exists a number r(a) such that each maximal
vector x in EPf ∩ {x ∈ RS | x ≤ a} satisfies x(S) = r(a).

One easily derives from Theorem 44.5 that (44.68) together with

(44.69) if y ≤ x ∈ EPf , then y ∈ EPf ,

characterizes the class of all extended polymatroids among the closed subsets of
RS .



Section 44.6e. Operations on submodular functions and polymatroids 781

44.6e. Operations on submodular functions and polymatroids

The class of submodular set functions on a given set is closed under certain oper-
ations. Obviously, the sum of two submodular functions is submodular again. In
particular, adding a constant t to all values of a submodular function maintains
submodularity. Also the multiplication of a submodular function by a nonnega-
tive scalar maintains submodularity. Moreover, if f is a nondecreasing submod-
ular set function on S, and q is a real number, then the function f ′ given by
f ′(U) := min{q, f(U)} for U ⊆ S, is submodular again. (Monotonicity cannot be
deleted, as is shown by taking S := {a, b}, f(∅) = f(S) = 1, f({a}) = 0, f({b}) = 2,
and q = 1.)

It follows that the class of all submodular set functions on S forms a convex
cone C in RP(S). This cone is polyhedral as the constraints (44.1) form a finite set
of linear inequalities defining C. Edmonds [1970b] raised the problem of determin-
ing the extreme rays of the cone of all nonnegative nondecreasing submodular set
functions f on S with f(∅) = 0. It is not difficult to show that the rank function
r of a matroid M determines an extreme ray of this cone if and only if r is not
the sum of the rank functions of two other matroids, i.e., if and only if M is the
sum of a connected matroid and a number of loops. But these do not represent
all extreme rays: if S = {1, . . . , 5} and w(1) = 2, w(s) = 1 for s ∈ S \ {1}, let
f(U) := min{3, w(U)} for U ⊆ S; then f is on an extreme ray, but cannot be
decomposed as the sum of rank functions of matroids (L. Lovász’s example; cf. also
Murty and Simon [1978] and Nguyen [1978]).

Lovász [1983c] observed that if f1 and f2 are submodular and f1 − f2 is nonde-
creasing, then min{f1, f2} is submodular.

Let f be a nonnegative submodular set function on S. Clearly, for any λ ≥ 0
we have Pλf = λPf (where λPf = {λx | x ∈ Pf}). If q ≥ 0, and f ′ is given by
f ′(U) = min{q, f(U)} for U ⊆ S, then f ′ is submodular and

(44.70) Pf ′ = {x ∈ Pf | x(S) ≤ q},

as can be checked easily. So the class of polymatroids is closed under intersections
with affine halfspaces of the form {x ∈ RS | x(S) ≤ q}, for q ≥ 0.

Let f1 and f2 be nondecreasing submodular set functions on S, with f1(∅) =
f2(∅) = 0, and associated polymatroids P1 and P2 respectively. Let P be the poly-
matroid associated with f := f1 + f2. Then (McDiarmid [1975c]):

Theorem 44.6. Pf1+f2
= Pf1

+ Pf2
.

Proof. It is easy to see that Pf1+f2
⊇ Pf1

+Pf2
. To prove the reverse inclusion, let

x be a vertex of Pf1+f2
. Then x has the form (44.49). Hence, by taking the same

permutation π and the same k, x = x1 + x2 for certain vertices x1 of Pf1
and x2 of

Pf2
. Since Pf1

+ Pf2
is convex it follows that Pf1+f2

= Pf1
+ Pf2

.

In fact, if f1 and f2 are integer, each integer vector in Pf1
+ Pf2

is the sum of
integer vectors in Pf1

and Pf2
— see Corollary 46.2c. Similarly, if f1 and f2 are

integer, each integer vector in EPf1
+ EPf2

is the sum of integer vectors in EPf1

and EPf2
.

Faigle [1984a] derived from Theorem 44.6 that, for any submodular function f ,
if x, y ∈ Pf and x = x1 + x2 with x1, x2 ∈ Pf , then there exist y1, y2 ∈ Pf with
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y = y1+y2 and x1+y1, x2+y2 ∈ Pf . (Proof: y ∈ Pf ⊆ P2f−x = Pf−x1
+Pf−x2

.) An
integer version of this can be derived from Corollary 46.2c and generalizes (42.13).

If M1 = (S, I1) and M2 = (S, I2) are matroids, with rank functions r1 and
r2 and corresponding independent set polytopes P1 and P2, respectively, then by
Section 44.6c above, P1 + P2 is the convex hull of sums of incidence vectors of
independent sets in M1 and M2. Hence the 0,1 vectors in P1 + P2 are just the
incidence vectors of the sets I1 ∪ I2, for I1 ∈ I1 and I2 ∈ I2. Therefore, the
polyhedron

(44.71) (P1 + P2)|1 = {x ∈ P1 + P2 | x ≤ 1}

is the convex hull of the independent sets of M1∨M2. By Theorem 44.6 and (44.45),
it follows that the rank function r of M1 ∨ M2 satisfies

(44.72) r(U) = min
T⊆U

(|U \ T | + r1(T ) + r2(T ))

for U ⊆ S. Thus we have derived the matroid union theorem (Corollary 42.1a).

44.6f. Duals of polymatroids

McDiarmid [1975c] described the following duality of polymatroids. Let P be the
polymatroid associated with the nondecreasing submodular set function f on S with
f(∅) = 0 and let a be a vector in RS with a ≥ x for all x in P (i.e., a(s) ≥ f({s})
for all s in S). Define

(44.73) f∗(U) := a(U) + f(S \ U) − f(S)

for U ⊆ S. One easily checks that f∗ again is nondecreasing and submodular, and
that f∗(∅) = 0. We call f∗ the dual of f (with respect to a). Then f∗∗ = f taking
the second dual with respect to the same a, as follows immediately from (44.73).

Let P ∗ be the polymatroid associated with f∗, and call P ∗ the dual polymatroid
of P (with respect to a). Now the maximal vertices of P and P ∗ are given by (44.49)
by choosing k = n. It follows that x is a maximal vertex of P if and only if a − x
is a maximal vertex of P ∗. Since the maximal vectors of a polymatroid form just
the convex hull of the maximal vertices, we may replace in the previous sentence
the word ‘vertex’ by ‘vector’. So the set of maximal vectors of P ∗ arises from the
set of maximal vectors of P by reflection in the point 1

2
a.

Clearly, duals of matroids correspond in the obvious way to duals of the related
polymatroids (with respect to the vector 1).

44.6g. Induction of polymatroids

Let G = (V, E) be a bipartite graph, with colour classes S and T . Let f be a
nondecreasing submodular set function on S with f(∅) = 0, and define

(44.74) g(U) := f(N(U))

for U ⊆ T (cf. Section 44.1a). (As usual, N(U) denotes the set of vertices not in U
adjacent to at least one vertex in U .)

The function g again is nondecreasing and submodular. Similarly to Rado’s
theorem (Corollary 41.1c), one may prove that a vector x belongs to Pg if and only
if there exist y ∈ RE

+ and z ∈ Pf such that
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(44.75) y(δ(t)) = xt (t ∈ T ),
y(δ(s)) = zs (s ∈ S).

Moreover, if f and g are integer, we can take y and z to be integer. This procedure
gives an ‘induction’ of polymatroids through bipartite graphs, and yields ‘Rado’s
theorem for polymatroids’ (cf. McDiarmid [1975c]).

In case f is the rank function of a matroid on S, a 0,1 vector x belongs to Pg if
and only if there exists a matching in G whose end vertices in S form an independent
set of the matroid, and the end vertices in T have x as incidence vector. So these
0,1 vectors determine a matroid on T , with rank function r given by

(44.76) r(U) = min
W⊆U

(|U \ W | + f(N(W )))

for U ⊆ T (cf. (44.45) and (44.74)).
Another extension is the following. Let D = (V, A) be a directed graph and

let V be partitioned into classes S and T . Let furthermore a ‘capacity’ function
c : A → R+ be given. Define the set function g on T by

(44.77) g(U) := c(δout(U))

for U ⊆ T , where δout(U) denotes the set of arcs leaving U . Then g is nonnegative
and submodular, and it may be derived straightforwardly from the max-flow min-
cut theorem (Theorem 10.3) that a vector x in RT

+ belongs to Pg if and only if
there exist T − S paths Q1, . . . , Qk and nonnegative numbers λ1, . . . , λk (for some
k), such that

(44.78)

k∑

i=1

λiχ
AQi ≤ c and

k∑

i=1

λiχ
b(Qi) = x,

where b(Qi) is the beginning vertex of Qi. If the c and x are integer, we can take
also the λi integer.

Here the function g in general is not nondecreasing, but the value

(44.79) ḡ(U) = min{g(W ) | U ⊆ W ⊆ T}

of the associated nondecreasing submodular function (cf. (44.35)) is equal to the
minimum capacity of a cut separating U and S, which is equal to the maximum
amount of flow from U to S, subject to the capacity function c (by the max-flow
min-cut theorem).

In an analogous way, one can construct polymatroids by taking vertex-capacities
instead of arc-capacities. Moreover, the notion of induction of polymatroids through
bipartite graphs can be extended in a natural way to the induction of polymatroids
through directed graphs (cf. McDiarmid [1975c], Schrijver [1978]).

44.6h. Lovász’s generalization of Kőnig’s matching theorem

Lovász [1970a] gave the following generalization of Kőnig’s matching theorem (The-
orem 16.2).

For a graph G = (V, E), U ⊆ V , and F ⊆ E, let NF (U) denote the set of
vertices not in U that are adjacent in (V, F ) to at least one vertex in U . Kőnig’s
matching theorem follows by taking g(X) := |X| in the following theorem.
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Theorem 44.7. Let G = (V, E) be a simple bipartite graph, with colour classes S
and T . Let g be a supermodular set function on S, such that g({v}) ≥ 0 for each
v ∈ S and such that

(44.80) g(U ∪ {v}) ≤ g(U) + g({v}) for nonempty U ⊆ S and v ∈ S \ U .

Then E has a subset F with degF (v) = g({v}) for each v ∈ V and |NF (U)| ≥ g(U)
for each nonempty U ⊆ S if and only if |NE(U)| ≥ g(U) for each nonempty U ⊆ S.

Proof. Necessity being trivial, we show sufficiency. Choose F ⊆ E such that

(44.81) |NF (U)| ≥ g(U)

for each nonempty U ⊆ S, with |F | as small as possible. We show that F is as
required.

Suppose to the contrary that degF (v) > g({v}) for some v ∈ S. By the min-
imality of F , for each edge e = vw ∈ F , there is a subset Ue of S with v ∈ Ue,
|NF (Ue)| = g(Ue), and w �∈ NF (Ue \ {v}). Since the function |NF (U)| is submod-
ular, the intersection U of the Ue over e ∈ δ(v) satisfies |NF (U)| = g(U) (using
(44.81)). Then no neighbour w of v is adjacent to U . Hence NF (v) and NF (U \{v})
are disjoint. Moreover, U �= {v}, since NF (U) = g(U) and NF ({v}) > g(v). This
gives the contradiction

(44.82) g(U) ≤ g(U \ {v}) + g({v}) < |NF (U \ {v})| + |NF (v)| = |NF (U)|.

For a derivation of this theorem with the Edmonds-Giles method, see Frank
and Tardos [1989].

44.6i. Further notes

Edmonds [1970b] and D.A. Higgs (as mentioned in Edmonds [1970b]) observed that
if f is a set function on a set S, we can define recursively a submodular function f̄
as follows:

(44.83) f̄(T ) := min{f(T ), min(f̄(S1) + f̄(S2) − f̄(S1 ∩ S2))},

where the second minimum ranges over all pairs S1, S2 of proper subsets of T with
S1 ∪ S2 = T .

Lovász [1983c] gave the following characterization of submodularity in terms of
convexity. Let f be a set function on S and define for each c ∈ RS

+

(44.84) f̂(c) :=

k∑

i=1

λif(Ui),

where ∅ �= U1 ⊂ U2 ⊂ · · · ⊂ Uk ⊆ S and λ1, . . . , λk > 0 are such that
c =

∑k
i=1 λiχ

Ui . Then f is submodular if and only if f̂ is convex. Similarly, f

is supermodular if and only if f̂ is concave. Related is the ‘subdifferential’ of a
submodular function, investigated by Fujishige [1984d].

Korte and Lovász [1985c] and Nakamura [1988a] studied polyhedral structures
where the greedy algorithm applies. Federgruen and Groenevelt [1986] extended the
greedy method for polymatroids to ‘weakly concave’ objective functions (instead
of linear functions). (Related work was reported by Bhattacharya, Georgiadis, and
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Tsoucas [1992].) Nakamura [1993] extended polymatroids and submodular functions
to ∆-polymatroids and ∆-submodular functions.

Gröflin and Liebling [1981] studied the following example of ‘transversal poly-
matroids’. Let G = (V, E) be an undirected graph, and define the submodular set
function f on E by f(F ) :=

∣∣ ⋃
F

∣∣ for F ⊆ E. Then the vertices of the associ-

ated polymatroid are all {0, 1, 2} vectors x in RE with the property that the set
F := {e ∈ E | xe ≥ 1} forms a forest each component of which contains at most
one edge e with xe = 2. If x is a maximal vertex, then each component contains
exactly one edge e with xe = 2.

Narayanan [1991] studied, for a given submodular function f on S, the lattice of
all partitions P of S into nonempty sets such that there exists a λ ∈ R for which P
attains min

∑
U∈P(f(U)−λ) (taken over all partitions P). Fujishige [1980b] studied

minimum values of submodular functions.
For results on the (NP-hard) problems of maximizing a submodular function and

of submodular set cover, see Fisher, Nemhauser, and Wolsey [1978], Nemhauser and
Wolsey [1978,1981], Nemhauser, Wolsey, and Fisher [1978], Wolsey [1982a,1982b],
Conforti and Cornuéjols [1984], and Fujito [1999].

Cunningham [1983], Fujishige [1983], and Nakamura [1988c] presented decom-
position theories for submodular functions. Benczúr and Frank [1999] considered
covering symmetric supermodular functions by graphs.

For surveys and books on polymatroids and submodular functions, see McDi-
armid [1975c], Welsh [1976], Lovász [1983c], Lawler [1985], Nemhauser and Wolsey
[1988], Fujishige [1991], Narayanan [1997], and Murota [2002]. For a survey on ap-
plications of submodular functions, see Frank [1993a].

Historically, submodular functions arose in lattice theory (Bergmann [1929],
Birkhoff [1933]), while submodularity of the rank function of a matroid was shown
by Bergmann [1929] and Whitney [1935]. Choquet [1951,1955] and Kelley [1959]
studied submodular functions in relation to the Newton capacity and to measures
in Boolean algebras. The relevance of submodularity for optimization was revealed
by Edmonds [1970b].

Several alternative names have been proposed for submodular functions, like
sub-valuation (Choquet [1955]), β-function (Edmonds [1970b]), and ground set rank
function (McDiarmid [1975c]). The set of integer vectors in an integer polymatroid
was called a hypermatroid by Helgason [1974] and Lovász [1977c]. A generaliza-
tion of polymatroids (called supermatroids) was studied by Dunstan, Ingleton, and
Welsh [1972].



Chapter 45

Submodular function
minimization

This chapter describes a strongly polynomial-time algorithm to find the
minimum value of a submodular function. It suffices that the submodular
function is given by a value giving oracle.
One application of submodular function minimization is optimizing over
the intersection of two polymatroids. This will be discussed in Chapter 47.

45.1. Submodular function minimization

It was shown by Grötschel, Lovász, and Schrijver [1981] that the minimum
value of a rational-valued submodular set function f on S can be found in
polynomial time, if f is given by a value giving oracle and an upper bound
B is given on the numerators and denominators of the values of f . The
running time is bounded by a polynomial in |S| and log B. This algorithm
is based on the ellipsoid method: we can assume that f(∅) = 0 (by resetting
f(U) := f(U) − f(∅) for all U ⊆ S); then with the greedy algorithm, we can
optimize over EPf in polynomial time (Corollary 44.3b), hence the separation
problem for EPf is solvable in polynomial time, hence also the separation
problem for

(45.1) P := EPf ∩ {x | x ≤ 0},

and therefore also the optimization problem for P . Now the maximum value
of x(S) over P is equal to the minimum value of f (by (44.8), (44.9), and
(44.34)).

Having a polynomial-time method to find the minimum value of a sub-
modular function, we can turn it into a polynomial-time method to find a
subset T of S minimizing f(T ): For each s ∈ S, we can determine if the
minimum value of f over all subsets of S is equal to the minimum value of f
over subsets of S \{s}. If so, we reset S := S \{s}. Doing this for all elements
of S, we are left with a set T minimizing f over all subsets of (the original)
S.

Grötschel, Lovász, and Schrijver [1988] showed that this algorithm can be
turned into a strongly polynomial-time method. Cunningham [1985b] gave a
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combinatorial, pseudo-polynomial-time algorithm for minimizing a submodu-
lar function f (polynomial in the size of the underlying set and the maximum
absolute value of f (assuming f to be integer)). Inspired by Cunningham’s
method, combinatorial strongly polynomial-time algorithms were found by
Iwata, Fleischer, and Fujishige [2000,2001] and Schrijver [2000a]. We will de-
scribe the latter algorithm.

45.2. Orders and base vectors

Let f be a submodular set function on a set S. In finding the minimum value
of f , we can assume f(∅) = 0, as resetting f(U) := f(U)−f(∅) for all U ⊆ S
does not change the problem. So throughout we assume that f(∅) = 0.

Moreover, we assume that f is given by a value giving oracle, that is, an
oracle that returns f(U) for any given subset U of S. We also assume that the
numbers returned by the oracle are rational (or belong to any ordered field in
which we can perform the elementary arithmetic operations algorithmically).

Recall that the base polytope Bf of f is defined as the set of base vectors
of f :

(45.2) Bf := {x ∈ RS | x(U) ≤ f(U) for all U ⊆ S, x(S) = f(S)}.

Consider any total order ≺ on S.35 For any v ∈ S, denote

(45.3) v≺ := {u ∈ S | u ≺ v}.

Define a vector b≺ in RS by:

(45.4) b≺(v) := f(v≺ ∪ {v}) − f(v≺)

for v ∈ S. Theorem 44.3 implies that b≺ belongs to Bf .
Note that b≺(U) = f(U) for each lower ideal U of ≺ (where a lower ideal

of ≺ is a subset U of S such that if v ∈ U and u ≺ v, then u ∈ U).

45.3. A subroutine

In this section we describe a subroutine that is important in the algorithm. It
replaces a total order ≺ by other total orders, thereby reducing some interval
(s, t]≺, where

(45.5) (s, t]≺ := {v | s ≺ v � t}

for s, t ∈ S.
Let ≺ be a total order on S. For any s, u ∈ S with s ≺ u, let ≺s,u be

the total order on S obtained from ≺ by resetting v ≺ u to u ≺ v for each

35 As usual, we use ≺ for strict inequality and � for nonstrict inequality. We refer to the
order by the strict inequality sign ≺.
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v satisfying s � v ≺ u. Thus in the ordering, we move u to the position just
before s. Hence (s, t]≺s,u = (s, t]≺ \ {u} if u ∈ (s, t]≺.

We show that there is a strongly polynomial-time subroutine that

(45.6) for any s, t ∈ S with s ≺ t, finds a δ ≥ 0 and describes b≺ +
δ(χt − χs) as a convex combination of the b≺s,u

for u ∈ (s, t]≺.

To describe the subroutine, we can assume that b≺ = 0, by replacing (tem-
porarily) f(U) by f(U) − b≺(U) for each U ⊆ S.

We investigate the signs of the vector b≺s,u

. We show that for each v ∈ S:

(45.7) b≺s,u

(v) ≤ 0 if s � v ≺ u,
b≺s,u

(v) ≥ 0 if v = u,
b≺s,u

(v) = 0 otherwise.

To prove this, observe that if T ⊆ U ⊆ S, then for any v ∈ S \ U we have by
the submodularity of f :

(45.8) f(U ∪ {v}) − f(U) ≤ f(T ∪ {v}) − f(T ).

To see (45.7), if s � v ≺ u, then by (45.8),

(45.9) b≺s,u

(v) = f(v≺s,u ∪ {v}) − f(v≺s,u) ≤ f(v≺ ∪ {v}) − f(v≺)
= b≺(v) = 0,

since v≺s,u = v≺ ∪ {u} ⊃ v≺.
Similarly,

(45.10) b≺s,u

(u) = f(u≺s,u ∪ {u}) − f(u≺s,u) ≥ f(u≺ ∪ {u}) − f(u≺)
= b≺(u) = 0,

since u≺s,u = s≺ ⊂ u≺.
Finally, if v ≺ s or u ≺ v, then v≺s,u = v≺, and hence b≺s,u

(v) = b≺(v) =
0. This shows (45.7).

By (45.7), the matrix M = (b≺s,u

(v))u,v with rows indexed by u ∈ (s, t]≺
and columns indexed by v ∈ S, in the order given by ≺, has the following,
partially triangular, shape, where + means that the entry is ≥ 0, and − that
the entry is ≤ 0:

s t
0 · · · 0 − + 0 · · · · · · · · · 0 0 0 · · · 0
...

... − − +
.. .

...
...

...
...

...
... − − −

. . .
. . .

...
...

...
...

...
...

...
...

...
. . .

. . .
. . .

...
...

...
...

...
...

...
...

...
. . .

. . . 0 0
...

...
...

...
...

...
...

. . . + 0
...

...
t 0 · · · 0 − − − · · · · · · · · · − + 0 · · · 0
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As each row of M represents a vector b≺s,u

, to obtain (45.6) we must
describe δ(χt − χs) as a convex combination of the rows of M , for some
δ ≥ 0.

We call the + entries in the matrix the ‘diagonal’ elements. Now for each
row of M , the sum of its entries is 0, as b≺s,u

(S) = f(S) = b≺(S) = 0. Hence,
if a ‘diagonal’ element b≺s,u

(u) is equal to 0 for some u ∈ (s, t]≺, then the
corresponding row of M is all-zero. So in this case we can take δ = 0 in (45.6).

If b≺s,u

(u) > 0 for each u ∈ (s, t]≺ (that is, if each ‘diagonal’ element is
strictly positive), then χt−χs can be described as a nonnegative combination
of the rows of M (by the sign pattern of M and since the entries in each row
of M add up to 0). Hence δ(χt − χs) is a convex combination of the rows of
M for some δ > 0, yielding again (45.6).

45.4. Minimizing a submodular function

We now describe the algorithm to find the minimum value of a submodular
set function f on S. We assume f(∅) = 0 and S = {1, . . . , n}.

We iteratively update a vector x ∈ Bf , given as a convex combination

(45.11) x = λ1b
≺1 + · · · + λkb≺k ,

where the ≺i are total orders of S, and where the λi are positive and sum to
1. Initially, we choose an arbitrary total order ≺ and set x := b≺ (so k = 1
and ≺1=≺).

We describe the iteration. Consider the directed graph D = (S, A), with

(45.12) A := {(u, v) | ∃i = 1, . . . , k : u ≺i v}.

Define

(45.13) P := {v ∈ S | x(v) > 0} and N := {v ∈ S | x(v) < 0}.

Case 1: D has no path from P to N . Then let U be the set of vertices
of D that can reach N by a directed path. So N ⊆ U and U ∩P = ∅; that is,
U contains all negative components of x and no positive components. Hence
x(W ) ≥ x(U) for each W ⊆ S. As no arcs of D enter U , U is a lower ideal
of ≺i, and hence b≺i(U) = f(U), for each i = 1, . . . , k. Therefore, for each
W ⊆ S:

(45.14) f(U) =
k∑

i=1

λib
≺i(U) = x(U) ≤ x(W ) ≤ f(W ).

So U minimizes f .

Case 2: D has a path from P to N . Let d(v) denote the distance in D
from P to v (= minimum number of arcs in a directed path from P to v).
Set d(v) := ∞ if v is not reachable from P . Choose s, t ∈ S as follows.
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Let t be the element in N reachable from P with d(t) maximum, such
that t is largest. Let s be the element with (s, t) ∈ A, d(s) = d(t) − 1, and s
largest. Let α be the maximum of |(s, t]≺i

| over i = 1, . . . , k. Reorder indices
such that |(s, t]≺1

| = α.
By (45.6), we can find δ ≥ 0 and describe

(45.15) b≺1 + δ(χt − χs)

as a convex combination of the b≺s,u
1 for u ∈ (s, t]≺1

. Then with (45.11) we
obtain

(45.16) y := x + λ1δ(χ
t − χs)

as a convex combination of b≺i (i = 2, . . . , k) and b≺s,u
1 (u ∈ (s, t]≺1

).
Let x′ be the point on the line segment xy closest to y satisfying x′(t) ≤ 0.

(So x′(t) = 0 or x′ = y.) We can describe x′ as a convex combination of b≺i

(i = 1, . . . , k) and b≺s,u
1 (u ∈ (s, t]≺1

). Moreover, if x′(t) < 0, then we can do
without b≺1 .

We reduce the number of terms in the convex decomposition of x′ to at
most |S| by linear algebra: any affine dependence of the vectors in the de-
composition yields a reduction of the number of terms in the decomposition,
as in the standard proof of Carathéodory’s theorem (subtract an appropriate
multiple of the linear expression giving the affine dependence, from the linear
expression giving the convex combination, such that all coefficients remain
nonnegative, and at least one becomes 0). As all b≺ belong to a hyperplane,
this reduces the number of terms to at most |S|.

Then reset x := x′ and iterate. This finishes the description of the algo-
rithm.

45.5. Running time of the algorithm

We show that the number of iterations is at most |S|6. Consider any iteration.
Let

(45.17) β := number of i ∈ {1, . . . , k} with |(s, t]≺i
| = α.

Let x′, d′, A′, P ′, N ′, t′, s′, α′, β′ be the objects x, d, A, P , N , t, s, α, β in
the next iteration (if any). Then

(45.18) for all v ∈ S, d′(v) ≥ d(v),

and

(45.19) if d′(v) = d(v) for all v ∈ S, then (d′(t′), t′, s′, α′, β′) is lexico-
graphically less than (d(t), t, s, α, β).

Since each of d(t), t, s, α, β is at most |S|, and since (if d(v) is unchanged for
all v) there are at most |S| pairs (d(t), t), (45.19) implies that in at most |S|4
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iterations d(v) increases for at least one v. Any fixed v can have at most |S|
such increases, and hence the number of iterations is at most |S|6.

In order to prove (45.18) and (45.19), notice that

(45.20) for each arc (v, w) ∈ A′ \ A we have s �1 w ≺1 v �1 t.

Indeed, as (v, w) �∈ A we have w ≺1 v. As (v, w) ∈ A′, we have v ≺s,u
1 w for

some u ∈ (s, t]≺1
. Hence the definition of ≺s,u

1 gives v = u and s �1 w ≺1 u.
This shows (45.20).

If (45.18) does not hold, then A′ \ A contains an arc (v, w) with d(w) ≥
d(v) + 2 (using that P ′ ⊆ P ). By (45.20), s �1 w ≺1 v �1 t, and so d(w) ≤
d(s) + 1 = d(t) ≤ d(v) + 1, a contradiction. This shows (45.18).

To prove (45.19), assume that d′(v) = d(v) for all v ∈ S. As x′(t′) < 0,
we have x(t′) < 0 or t′ = s. So by our criterion for choosing t (maximizing
(d(t), t) lexicographically), and since d(s) < d(t), we know that d(t′) ≤ d(t),
and that if d(t′) = d(t), then t′ ≤ t.

Next assume that moreover d(t′) = d(t) and t′ = t. As (s′, t) ∈ A′, and
as (by (45.20)) A′ \ A contains no arc entering t, we have (s′, t) ∈ A, and so
s′ ≤ s, by the maximality of s.

Finally assume that moreover s′ = s. As (s, t]≺s,u
1

is a proper subset of
(s, t]≺1

for each u ∈ (s, t]≺1
, we know that α′ ≤ α. Moreover, if α′ = α, then

β′ < β, since ≺1 does not occur anymore among the linear orders making the
convex combination, as x′(t) < 0. This proves (45.19).

We therefore have proved:

Theorem 45.1. Given a submodular function f by a value giving oracle, a
set U minimizing f(U) can be found in strongly polynomial time.

Proof. See above.

This algorithm performs the elementary arithmetic operations on func-
tion values, including multiplication and division (in order to solve certain
systems of linear equations). One would wish to have a ‘fully combinato-
rial’ algorithm, in which the function values are only compared, added, and
subtracted. The existence of such an algorithm was shown by Iwata [2002a,
2002c], by extending the algorithm of Iwata, Fleischer, and Fujishige [2000,
2001].

Notes. In the algorithm, we have chosen t and s largest possible, in some fixed
order of S. To obtain the above running time bound it only suffices to choose t
and s in a consistent way. That is, if the set of choices for t is the same as in the
previous iteration, then we should choose the same t — and similarly for s. This
roots in the idea of ‘consistent breadth-first search’ of Schönsleben [1980].

The observation that the number of iterations in the algorithm of Section 45.4
is O(|S|6) instead of O(|S|7) is due to L.K. Fleischer. Vygen [2002] showed that the
number of iterations can in fact be bounded by O(|S|5).
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The algorithm described above has been speeded up by Fleischer and Iwata
[2000,2002], by incorporating a push-relabel type of iteration based on approxi-
mate distances instead of precise distances (like Goldberg’s method for maximum
flow, given in Section 10.7). Iwata [2002b] combined the approaches of Iwata, Fleis-
cher, and Fujishige [2000,2001] and Schrijver [2000a] to obtain a faster algorithm.
A descent method for submodular function minimization based on an oracle for
membership of the base polytope was given by Fujishige and Iwata [2002].

Surveys and background on submodular function minimization are given by
Fleischer [2000b] and McCormick [2001].

45.6. Minimizing a symmetric submodular function

A set function f on S is called symmetric if f(U) = f(S \U) for each U ⊆ S.
The minimum of a symmetric submodular function f is attained by ∅, since
for each U ⊆ S one has

(45.21) 2f(U) = f(U) + f(S \ U) ≥ f(∅) + f(S) = 2f(∅).

By extending a method of Nagamochi and Ibaraki [1992b] for finding the
minimum nonempty cut in an undirected graph, Queyranne [1995,1998] gave
an easy combinatorial algorithm to find a nonempty proper subset U of S
minimizing f(U), where f is given by a value giving oracle. We may assume
that f(∅) = f(S) = 0, by resetting f(U) := f(U) − f(∅) for all U ⊆ S.

Call an ordering s1, . . . , sn of the elements of S a legal order of S for f ,
if, for each i = 1, . . . , n,

(45.22) f({s1, . . . , si−1, x}) − f({x})

is minimized over x ∈ S \ {s1, . . . , si−1} by x = si. One easily finds a legal
order, by O(|S|2) oracle calls (for the value of f).

Now the algorithm is (where a set U splits a set X if both X ∩ U and
X \ U are nonempty):

(45.23) Find a legal order (s1, . . . , sn) of S for f .
Determine (recursively) a nonempty proper subset T of S not
splitting {sn−1, sn}, minimizing f(T ). (This can be done by iden-
tifying sn−1 and sn.)
Then the minimum value of f(U) over nonempty proper subsets
U of S is equal to min{f(T ), f({sn})}.

The correctness of the algorithm follows from, for n ≥ 2:

(45.24) f(U) ≥ f({sn}) for each U ⊆ S splitting {sn−1, sn}.

This can be proved as follows. Define t0 := s1. For i = 1, . . . , n − 1, define
ti := sj , where j is the smallest index such that j > i and such that U
splits {si, sj}. For i = 0, . . . , n, let Ui := {s1, . . . , si}. Note that for each
i = 1, . . . , n − 1 one has
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(45.25) f(Ui−1 ∪ {ti}) − f({ti}) ≥ f(Ui−1 ∪ {ti−1}) − f({ti−1}),

since if ti−1 = ti this is trivial, and if ti−1 �= ti, then ti−1 = si, in which case
(45.25) follows from the legality of the order.

Moreover, for each i = 1, . . . , n − 1 (setting U := S \ U):

(45.26) f(Ui ∪ U) − f(Ui−1 ∪ U) + f(Ui ∪ U) − f(Ui−1 ∪ U)
≤ f(Ui ∪ {ti}) − f(Ui−1 ∪ {ti}).

In proving this, we may assume (by symmetry of U and U) that si ∈ U .
Then Ui ∪ U = Ui−1 ∪ U and ti ∈ U . So f(Ui ∪ {ti}) + f(Ui−1 ∪ U) ≥
f(Ui−1 ∪ {ti}) + f(Ui ∪ U), by submodularity. This gives (45.26).

Then we have:

(45.27) f(sn) − 2f(U)
= f(Un−1 ∪ U) + f(Un−1 ∪ U) − f(U0 ∪ U) − f(U0 ∪ U)

=
n−1∑

i=1

(f(Ui ∪ U) − f(Ui−1 ∪ U) + f(Ui ∪ U) − f(Ui−1 ∪ U))

≤
n−1∑

i=1

(f(Ui ∪ {ti}) − f(Ui−1 ∪ {ti}))

≤
n−1∑

i=1

(f(Ui ∪ {ti}) − f(Ui−1 ∪ {ti−1}) + f({ti−1}) − f({ti}))

= f(Un−1 ∪ {tn−1}) − f({tn−1}) − f({t0}) + f({t0}) = −f(sn)

(where the first inequality follows from (45.26), and the second inequality
from (45.25)). This shows (45.24).

Notes. Fujishige [1998] gave an alternative correctness proof. Nagamochi and
Ibaraki [1998] extended the algorithm to minimizing submodular functions f satis-
fying

(45.28) f(T ) + f(U) ≥ f(T \ U) + f(U \ T )

for all T, U ⊆ S. Rizzi [2000b] gave an extension.

45.7. Minimizing a submodular function over the odd
sets

From the strong polynomial-time solvability of submodular function mini-
mization, one can derive that also a set of odd cardinality minimizing f (over
the odd sets) is solvable in strongly polynomial time (Grötschel, Lovász, and
Schrijver [1981,1984a,1988] (the second paper corrects a wrong argument
given in the first paper)).

Theorem 45.2. Given a submodular set function f on S (by a value giving
oracle) and a nonempty subset T of S, one can find in strongly polynomial
time a set W ⊆ S minimizing f(W ) over W with |W ∩ T | odd.
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Proof. The case T odd can be reduced to the case T even as follows. Find
for each t ∈ T a subset Wt of S − t with Wt ∩ (T − t) odd, and minimizing
f(Wt). Moreover, find a subset U of S minimizing f(U) over U ⊇ T . Then
a set that attains the minimum among f(U) and the f(Wt), is an output as
required.

So we can assume that T is even. We describe a recursive algorithm. Say
that a set U splits T if both T ∩ U and T \ U are nonempty. First find a
set U minimizing f(U) over all subsets U of S splitting T . This can be done
by finding for all s, t ∈ T a set Us,t minimizing f(Us,t) over all subsets of
S containing s and not containing t (this amounts to submodular function
minimization), and taking for U a set that minimizes f(Us,t) over all such
s, t.

If U ∩ T is odd, we output W := U . If U ∩ T is even, then recursively
we find a set X minimizing f(X) over all X with X ∩ (T ∩ U) odd, and not
splitting T \ U . This can be done by shrinking T \ U to one element. Also,
recursively we can find a set Y minimizing f(Y ) over all Y with Y ∩ (T \ U)
odd, and not splitting T ∩ U . Output an X or Y attaining the minimum of
f(X) and f(Y ).

This gives a strongly polynomial-time algorithm as the total number of
recursive calls is at most |T |−2 (since 2+(|T ∩U |−2)+(|T \U |−2) = |T |−2).

To see the correctness, let W minimize f(W ) over those W with |W ∩ T |
odd. Suppose that f(W ) < f(X) and f(W ) < f(Y ). As f(W ) < f(X), W
splits T \ U , and hence W ∪ U splits T . Similarly, f(W ) < f(Y ) implies that
W ∩ U splits T .

Since W ∩T is odd and U ∩T is even, either (W ∩U)∩T or (W ∪U)∩T
is odd.

If (W ∩ U) ∩ T is odd, then f(W ∩ U) ≥ f(W ) (as W minimizes f(W )
over W with W ∩ T odd) and f(W ∪ U) ≥ f(U) (as W ∪ U splits T and
as U minimizes f(U) over U splitting T ). Hence, by the submodularity of f ,
f(W ∩ U) = f(W ). Since (W ∩ U) ∩ (T ∩ U) = (W ∩ U) ∩ T is odd and since
W ∩U does not split T \U , we have f(W ) = f(W ∩U) ≥ f(X), contradicting
our assumption.

If (W ∪ U) ∩ T is odd, a symmetric argument gives a contradiction.

This generalizes the strong polynomial-time solvability of finding a mini-
mum-capacity odd cut in a graph, proved by Padberg and Rao [1982] (Corol-
lary 25.6a). For a further generalization, see Section 49.11a.
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Polymatroid intersection

The intersection of two polymatroids behaves as nice as the intersection of
two matroids, as was shown by Edmonds again. We study in this chapter
min-max relations, polyhedral characterizations, and total dual integrality
results. In the next chapter we go over to the algorithmic questions.

46.1. Box-total dual integrality of polymatroid
intersection

We saw in Section 44.2 that the greedy algorithm yields a proof that an
integer-valued submodular function gives an integer polymatroid. The inter-
est of polymatroids for combinatorial optimization is enlarged by the funda-
mental result of Edmonds [1970b] that also the intersection of two integer
polymatroids is integer, thus generalizing the matroid intersection theorem.
In order to obtain this result, we first show a more general theorem (also due
to Edmonds [1970b]).

Consider, for submodular set functions f1, f2 on S, the system:

(46.1) x(U) ≤ f1(U) for U ⊆ S,
x(U) ≤ f2(U) for U ⊆ S.

Then:

Theorem 46.1. If f1 and f2 are submodular, then (46.1) is box-TDI.

Proof. Choose w : S → R. Let y1, y2 attain

(46.2) min{
∑

U⊆S

(y1(U)f1(U) + y2(U)f2(U)) | |

y1, y2 ∈ R
P(S)
+ ,

∑

U⊆S

(y1(U) + y2(U))χU = w}.

For i = 1, 2, define wi : S → R by

(46.3) wi :=
∑

U⊆S

yi(U)χU .

Then yi attains
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(46.4) min{
∑

U⊆S

yi(U)fi(U) | yi ∈ R
P(S)
+ ,

∑

U⊆S

yi(U)χU = wi}.

So by Theorem 44.3, we can assume that the collections

(46.5) Fi := {U ⊆ S | yi(U) > 0}

are chains. Hence, by Theorem 41.11, (46.2) has an optimum solution such
that the inequalities with positive coefficients have a totally unimodular con-
straint matrix. Therefore, by Theorem 5.35, (46.1) is box-TDI.

(This proof method is due to Edmonds [1970b].)

46.2. Consequences

Theorem 46.1 has the following consequences. First, the integrality of the
intersection of two polymatroids:

Corollary 46.1a (polymatroid intersection theorem). The intersection of
two integer (extended) polymatroids is box-integer.

Proof. If Pf1
and Pf2

are integer polymatroids, f1 and f2 can be taken to
be integer-valued, by Corollary 44.3g. Hence (46.1) determines a box-integer
polyhedron.

Next, a min-max relation:

Corollary 46.1b. Let f1 and f2 be submodular set functions on S with
f1(∅) = f2(∅) = 0. Then

(46.6) max{x(U) | x ∈ EPf1
∩ EPf2

} = min
T⊆U

(f1(T ) + f2(U \ T ))

for each U ⊆ S.

Proof. This follows by maximizing wTx over (46.1) for w := χU , and applying
Theorem 46.1.

Similarly, for (nonextended) polymatroids:

Corollary 46.1c. Let f1 and f2 be nondecreasing submodular set functions
on S with f1(∅) = f2(∅) = 0. Then

(46.7) max{x(U) | x ∈ Pf1
∩ Pf2

} = min
T⊆U

(f1(T ) + f2(U \ T ))

for each U ⊆ S.

Proof. As the previous corollary.
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Let f1 and f2 be submodular set functions on S with f1(∅) = f2(∅) = 0.
Define

(46.8) f(U) := min
T⊆U

(f1(T ) + f2(U \ T ))

for U ⊆ S. It is easy to see that a vector x belongs to Pf1
∩Pf2

if and only if

(46.9) xs ≥ 0 (s ∈ S),
x(U) ≤ f(U) (U ⊆ S).

Moreover, system (46.9) is box-totally dual integral, since f(U) ≤ fi(U) for
each U ⊆ S and i = 1, 2.

A consequence is that Pf1
∩Pf2

is integer if and only if f is integer. It may
occur that Pf1

and Pf2
are not integer (i.e., f1 and f2 are not integer), while

Pf1
∩ Pf2

is integer (i.e., f is integer). For instance, take Pf1
= {(x1, x2) |

0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 3
2} and Pf2

= {(x1, x2) | (x2, x1) ∈ Pf1
}.

Many other results on polymatroid intersection may be deduced from
Theorem 46.1, by considering derived polymatroids (cf. McDiarmid [1978]).
For instance, if Pf1

and Pf2
are integer polymatroids in RS , v and w are

integer vectors, and k and ℓ are integers, then the polytope

(46.10) {x ∈ Pf1
∩ Pf2

| v ≤ x ≤ w, k ≤ x(S) ≤ ℓ}

is integer again. To see this, it suffices to show that the polytope Pf1
∩Pf2

∩{x |
x(S) = k} is integer for any integer k. We can reset f1(S) := min{f1(S), k}.
Then the polytope is a face of Pf1

∩ Pf2
, and hence is integer. In fact, the

system determining (46.10) is box-TDI — see Corollary 49.12d.
The intersection of three integer polymatroids can have noninteger ver-

tices, as the following example shows. Let S = {1, 2, 3, 4} and let P1, P2 and
P3 be the following polymatroids:

(46.11) P1 := {x ∈ RS | x ≥ 0, x({1, 2}) ≤ 1, x({3, 4}) ≤ 1},
P2 := {x ∈ RS | x ≥ 0, x({1, 3}) ≤ 1, x({2, 4}) ≤ 1},
P3 := {x ∈ RS | x ≥ 0, x({1, 4}) ≤ 1, x({2, 3}) ≤ 1}.

(So each Pi is the independent set polytope of a partition matroid.) Now the
vector ( 1

2 , 1
2 , 1

2 , 1
2 ) is in P1∩P2∩P3, but the only integer vectors in P1∩P2∩P3

are the 0,1 vectors with at most one 1.

46.3. Contrapolymatroid intersection

Similar results as in the previous sections can be shown for the intersection
of two contrapolymatroids. Such results can be proved similarly, or can be
derived from the corresponding results for polymatroids.

Consider the system, for set functions g1, g2 on S:

(46.12) x(U) ≥ g1(U) for U ⊆ S,
x(U) ≥ g2(U) for U ⊆ S.
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Then Theorem 46.1 gives:

Corollary 46.1d. If g1 and g2 are supermodular, then (46.12) is box-TDI.

Proof. This follows from the box-total dual integrality of (46.1) taking fi :=
−gi for i = 1, 2.

46.4. Intersecting a polymatroid and a
contrapolymatroid

Let S be a finite set. For set functions f and g on S consider the system

(46.13) x(U) ≤ f(U) for U ⊆ S,
x(U) ≥ g(U) for U ⊆ S.

Theorem 46.2. If f is submodular and g is supermodular, then system
(46.13) is box-TDI.

Proof. We can assume that f(∅) ≥ 0 and g(∅) ≤ 0. Choose w ∈ RS , and
consider the dual problem of maximizing wTx over (46.13):

(46.14) min{
∑

U⊆S

y(U)f(U) −
∑

U⊆S

z(U)g(U) |

y, z ∈ R
P(S)
+ ,

∑

U⊆S

y(U)χU −
∑

U⊆S

z(U)χU = w}.

Let y, z attain this minimum. Define

(46.15) u :=
∑

U⊆S

y(U)χU and v :=
∑

U⊆S

z(U)χU .

So y attains

(46.16) min{
∑

U⊆S

y(U)f(U) | y ∈ R
P(S)
+ ,

∑

U⊆S

y(U)χU = u}

and z attains

(46.17) max{
∑

U⊆S

z(U)g(U) | z ∈ R
P(S)
+ ,

∑

U⊆S

z(U)χU = v}.

By Theorem 44.3, (46.16) has an optimum solution y with F := {U |
y(U) > 0} is a chain. Similarly, (46.17) has an optimum solution z with
G := {U | z(U) > 0} is a chain. Hence by Theorem 41.11, minimum (46.14)
has an optimum solution such that the inequalities corresponding to positive
coefficients have a totally unimodular constraint matrix. Hence by Theorem
5.35, (46.13) is box-TDI.

So for the intersection of a polymatroid and a contrapolymatroid one gets:
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Corollary 46.2a. The intersection of an integer extended polymatroid and
an integer extended contrapolymatroid is integer.

Proof. Directly from the fact that an integer extended polymatroid is the
solution set of x(U) ≤ f(U) (U ⊆ S) for some integer submodular set function
on S, and an integer extended contrapolymatroid is the solution set of x(U) ≥
g(U) (U ⊆ S) for some integer submodular set function on S. Hence, by
Theorem 46.2, the intersection is determined by a TDI system with integer
right-hand sides. So the intersection is integer.

46.5. Frank’s discrete sandwich theorem

Frank [1982b] showed the following ‘discrete sandwich theorem’ (analogous to
the ‘continuous sandwich theorem’, stating the existence of a linear function
between a convex and a concave function):

Corollary 46.2b (Frank’s discrete sandwich theorem). Let f be a submod-
ular and g a supermodular set function on S, with g ≤ f . Then there exists
a modular set function h on S with g ≤ h ≤ f . If f and g are integer, h can
be taken integer.

Proof. We can assume that g(∅) = 0 = f(∅), by resetting f(U) := f(U)−f(∅)
and g(U) := g(U) − f(∅), for each U ⊆ S, and g(∅) := 0.

Define f ′(U) := f(S) − g(S \ U) for each U ⊆ S. Then f ′ is submodular.
Now by Corollary 46.1b:

(46.18) max{x(S) | x(U) ≤ f(U), x(U) ≤ f ′(U) for each U ⊆ S}
= min{f(T ) + f ′(S \ T ) | T ⊆ S}.

The minimum is at least f(S), since f(T )+f ′(S \T ) = f(T )+f(S)−g(T ) ≥
f(S). Hence there exists an x ∈ RS with x(U) ≤ f(U) and x(U) ≤ f ′(U)
for each U ⊆ S and with x(S) = f(S). Defining h(U) := x(U), gives the
modular function as required, since for each U ⊆ S:

(46.19) g(U) = f(S) − f ′(S \ U) ≤ x(S) − x(S \ U) = x(U) ≤ f(U).

If f and g are integer, we can choose x integer, implying that h is integer.

As Lovász [1983c] observed, the first part of this result can be derived from
the continuous sandwich theorem: define f̃ : RS

+ → R by

(46.20) f̃(x) :=
k∑

i=1

λif(Ui),

where ∅ �= U1 ⊂ U2 ⊂ · · · ⊂ Un ⊆ S and λ1, . . . , λk > 0 are such that
x =

∑k
i=1 λiχ

Ui . Define g̃ similarly. Then f̃ is convex and g̃ is concave, and

g̃ ≤ f̃ . Hence there is a linear function h̃ satisfying g̃ ≤ h̃ ≤ f̃ . This gives the
function h as required.
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46.6. Integer decomposition

Integer polymatroids have the integer decomposition property. More gener-
ally:

Corollary 46.2c. Let P1, . . . , Pk be integer polymatroids. Then each integer
vector in P1+· · ·+Pk is a sum x1+· · ·+xk of integer vectors x1 ∈ P1, . . . , xk ∈
Pk.

Proof. It suffices to show this for k = 2; the general case follows by induc-
tion (as the sum of integer polymatroids is again an integer polymatroid,
by Theorem 44.6). Choose an integer vector x ∈ P1 + P2. Let Q be the
contrapolymatroid given by

(46.21) Q := x − P2.

Then P1 ∩ Q �= ∅, since x = x1 + x2 for some x1 ∈ P1 and x2 ∈ P2, implying
x1 ∈ P1 ∩ Q. Now Q is integer as x and P2 are integer. Hence by Corollary
46.2a, P1 ∩ Q contains an integer vector y. Then x − y ∈ P2, and so x is the
sum of y ∈ P1 and x − y ∈ P2.

This implies the integer decomposition property for integer polymatroids,
proved by Giles [1975] (also by Baum and Trotter [1981]):

Corollary 46.2d. An integer polymatroid has the integer decomposition
property.

Proof. Directly from Corollary 46.2c, by taking all Pi equal.

This gives the following integer rounding properties (Baum and Trotter
[1981]). Let Pf be the integer polymatroid determined by some integer sub-
modular set function f on S. Let B be the collection of integer base vectors
of Pf . Let B be the B × S incidence matrix. Then for each c ∈ ZS

+, one has

(46.22) min{yT1 | y ∈ ZB
+, yTB ≥ cT}

= ⌈min{yT1 | y ∈ RB
+, yTB ≥ cT}⌉.

Indeed, ≥ is trivial. To see equality, let k be equal to the right-hand side.
Then c ∈ k · Pf , and hence, by Corollary 46.2d, c ≤ b1 + · · · + bk for rows
b1, . . . , bk of B. This shows equality.

Note that the right-hand side in (46.22) is equal to ⌈max{cTx | x ∈
A(Pf )}⌉, where A(Pf ) is the antiblocking polyhedron of Pf .

Similarly, one has:

(46.23) max{yT1 | y ∈ ZB
+, yTB ≤ cT}

= ⌊max{yT1 | y ∈ RB
+, yTB ≤ cT}⌋.
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Now the right-hand side is equal to ⌊min{cTx | x ∈ B(Q)}⌋, where B(Q)
is the blocking polyhedron of Q := {x ∈ RS | x(U) ≥ f(S) − f(S \ U) for
U ⊆ S}.

If f is the rank function of a matroid, then (46.22) describes the minimum
number of bases covering S, while (46.23) describes the maximum number of
disjoint bases.

46.7. Further results and notes

46.7a. Up and down hull of the common base vectors

Let f1 and f2 be nondecreasing submodular set functions on S, with f1(∅) = f2(∅) =
0 and f1(S) = f2(S), and let P1 and P2 be the associated polymatroids. Let F1

and F2 be the faces of base vectors of P1 and of P2, respectively. Suppose that
F1 ∩ F2 �= ∅, equivalently that

(46.24) f1(S) = f2(S) = max{x(S) | x ∈ P1 ∩ P2} = min
U⊆S

f1(U) + f2(S \ U).

Consider the polyhedra P and Q defined by

(46.25) P := {x ∈ R
S
+ | x ≤ y for some y in F1 ∩ F2},

Q := {x ∈ RS
+ | x ≥ y for some y in F1 ∩ F2}.

So if f1 and f2 are the rank functions of matroids on S, then P is just the convex
hull of incidence vectors of subsets of S which are contained in a common base.

Note that F1 and F2 are the faces of minimal vectors in the contrapolymatroids
Q1 and Q2 associated with the supermodular set functions g1 and g2 on S given by

(46.26) gi(U) := fi(S) − fi(S \ U)

for U ⊆ S and i = 1, 2 (cf. Section 44.5). So P ⊆ P1 ∩ P2 and Q ⊆ Q1 ∩ Q2.
Let the set functions f and g on S be defined by

(46.27) f(U) := max{x(U) | x ∈ P1 ∩ P2} = min
T⊆U

(f1(T ) + f2(U \ T )),

g(U) := min{x(U) | x ∈ Q1 ∩ Q2} = max
T⊆U

(g1(T ) + g2(U \ T )),

for U ⊆ S (cf. Corollary 46.1c). Then f(S) = g(S) = f1(S) = f2(S) = g1(S) =
g2(S).

It is easy to see that if x belongs to Q, then

(46.28) x(U) ≥ f(S) − f(S \ U) for each U ⊆ S

(note that x ≥ 0 follows from (46.28) by taking U = {s}). Indeed, if x ≥ z with
z ∈ F1 ∩F2, then x(U) ≥ z(U) = f(S)−z(S \U) ≥ f(S)−f(S \U), as z ∈ P1 ∩P2.

Similarly, if x belongs to P , then

(46.29) xs ≥ 0 (s ∈ S),
x(U) ≤ g(S) − g(S \ U) (U ⊆ S).
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In fact, the systems (46.28) and (46.29) determine Q and P respectively. This
was shown by Cunningham [1977] and McDiarmid [1978], thus proving a conjecture
of Fulkerson [1971a] (cf. Weinberger [1976]).

Theorem 46.3. Polyhedron Q is determined by (46.28). Polyhedron P is deter-
mined by (46.29).

Proof. Consider x ∈ RS
+ and let P ′

i be the polymatroid P ′
i := {y ∈ Pi | y ≤ x} for

i = 1, 2 (cf. Section 44.1). By (44.8), the submodular function f ′
i associated with

P ′
i is given by

(46.30) f ′
i(U) = min

T⊆U
(fi(T ) + x(U \ T ))

for U ⊆ S and i = 1, 2. Now x is in Q if and only if there is a vector z in P1 ∩ P2

with z ≤ x and z(S) = f(S), i.e., if and only if there is a vector z in P ′
1 ∩ P ′

2 with
z(S) = f(S). By (46.7) such a vector exists if and only if

(46.31) min
U⊆S

(f ′
1(U) + f ′

2(S \ U)) ≥ f(S).

Substituting (46.30) one finds that (46.31) is equivalent to (46.28).
The second statement of Theorem 46.3 is proved similarly.

This theorem has a self-refining character. If k is a rational number with k ≤
f(S) and if w ∈ Q, then

(46.32) {x ∈ R
S
+ | x ≥ z for some z in P1 ∩ P2 with z(S) = k}

= {x ∈ RS
+ | x(U) ≥ k − f(S \ U) for all U ⊆ S}

and

(46.33) {x ∈ R
S
+ | x ≥ z for some z in F1 ∩ F2 with z ≤ w}

= {x ∈ R
S
+ |x(S \ (T ∪ U)) ≥ f(S) − w(U) − f(T ) for disjoint

T, U ⊆ S},

as can be seen by taking appropriate subpolymatroids of P1 and P2 (cf. also Mc-
Diarmid [1976,1978]).

This has the following applications. Let G = (V, E) be a bipartite graph, let
x ∈ RE

+, and let k be a natural number. Then there exists a vector z ≤ x such that
z is a convex combination of incidence vectors of matchings in G of size k if and
only if

(46.34) x(E[U ]) ≥ k − |V | + |U |

for all U ⊆ V (where E[U ] denotes the set of edges spanned by U). This can be
derived as follows. Let V1 and V2 be the colour classes of G. For F ⊆ E, let fi(F )
be the number of vertices in Vi covered by F (for i = 1, 2). Then f(F ) equals
the maximum size of a matching in F , which is equal to the minimum number of
vertices covering F . Hence the inequalities x(F ) ≥ k − f(E \ F ) (for F ⊆ E) follow
from x(E[U ]) ≥ k − |V \ U | (for U ⊆ V ).

Another application is Corollary 52.3a on the up hull of the r-arborescence
polytope (cf. Section 52.1a).

Gröflin and Hoffman [1981] gave a method to show the following:
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Theorem 46.4. (46.28) and (46.29) are box-TDI.

Proof. We prove that (46.28) is box-TDI. The box-total dual integrality of (46.29)
is proved similarly.

Let R be the collection of all pairs (T, U) of subsets of S with T ∩ U = ∅. Then
the system

(46.35) x(S \ (T ∪ U)) ≥ f(S) − f1(T ) − f2(U) ((T, U) ∈ R)

is equivalent to (46.28), in the following sense: by (46.27), (46.35) determines Q,
and (46.35) contains all inequalities occurring in (46.28); moreover, all inequalities
in (46.35) satisfied with equality by some x ∈ Q, also occur in (46.28). Hence, if
(46.35) is box-totally dual integral, also (46.28) is box-totally dual integral. So it
suffices to show the box-total dual integrality of (46.35). To this end, let w ∈ ZS

+,
and consider the dual of minimizing wTx over (46.35):

(46.36) max{
∑

(T,U)∈R

y(T, U)(f(S) − f1(T ) − f2(U)) |

y ∈ R
R
+ ,

∑

(T,U)∈R

y(T, U)χS\(T∪U) = w}.

We show that it is attained by an integer vector y if w is integer.
To this end, let y attain the maximum (46.36) such that

(46.37)
∑

(T,U)∈R

y(T, U)(|T | + |S \ U |)(|U | + |S \ T |)

is as small as possible. Then:

(46.38) if y(A, B) > 0 and y(C, D) > 0, then either A ⊆ C and B ⊇ D, or
A ⊇ C and B ⊆ D.

Suppose not. Define α := min{y(A, B), y(C, D)}. Define y′ : R → R+ by

(46.39) y′(A, B) := y(A, B) − α,
y′(C, D) := y(C, D) − α,
y′(A ∩ C, B ∪ D) := y(A ∩ C, B ∪ D) + α,
y′(A ∪ C, B ∩ D) := y(A ∪ C, B ∩ D) + α,

and let y′ coincide with y in the other components. One easily checks that

(46.40)
∑

(T,U)∈R

y′(T, U)χS\(T∪U) =
∑

(T,U)∈R

y(T, U)χS\(T∪U) and

∑

(T,U)∈R

y′(T, U)(f(S) − f1(T ) − f2(U))

≥
∑

(T,U)∈R

y(T, U)(f(S) − f1(T ) − f2(U)),

by the submodularity of f1 and f2. So y′ also attains the maximum (46.36). More-
over, one straightforwardly checks that replacing y by y′ decreases (46.37).36 This
contradicts our assumption, and therefore proves (46.38).

36 This can be seen with Theorem 2.1: Make a copy S̃ of S, and, for any U ⊆ S, let Ũ be
the set of copies of elements of U . Define XT,U := T ∪(S̃\Ũ). Then |T |+|S\U | = |XT,U |

and |U | + |S \ T | = |(S ∪ S̃) \ XT,U |. Moreover, for (A, B) and (C, D) in R we have
XA∩C,B∪D = XA,B ∩ XC,D and XA∪C,B∩D = XA,B ∪ XC,D. So the replacements
decrease (46.37) by Theorem 2.1, since XA,B �⊆ XC,D �⊆ XA,B .
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Let R0 := {(T, U) ∈ R | y(T, U) > 0} = {(T1, U1), . . . , (Tn, Un)} with T1 ⊆
· · · ⊆ Tn and Un ⊆ · · · ⊆ U1 (this is possible by (46.38)). Let M be the {0, 1}
matrix with rows indexed by R0 and columns indexed by S, such that M(T,U),s = 1
if and only if s /∈ T ∪U . Then for each s in S, the indices i for which M(Ti,Ui),s = 1
form a contiguous interval of {1, . . . , n}. Hence M is totally unimodular (as it is a
network matrix with directed tree being a directed path). So we have the box-total
dual integrality of (46.35) by Theorem 5.35.

Frank and Tardos [1984a] indicated a direct derivation of this theorem from the
total dual integrality of (46.1).

There are a number of straightforward corollaries. As for the integrality of
polyhedra:

Corollary 46.4a. If f (or, equivalently, g) is integer, then the polyhedra P , Q, and
F1 ∩ F2 are integer.

Proof. This follows directly from Theorem 46.4. Note that F1 ∩F2 is integer if and
only if P is integer.

Also a min-max relation follows:

Corollary 46.4b. Let M1 = (S, I1) and M2 = (S, I2) be matroids, with rank
functions r1 and r2 and let k be the maximum size of a common independent set.
Then for any subset U of S,

(46.41) min
I

|U ∩ I| = max
S1,...,St

t∑

i=1

(k − r(S \ Si)),

where the minimum ranges over all common independent sets I with |I| = k, and
where the maximum ranges over all partitions of U into sets S1, . . . , St (t ≥ 0), and
where r(T ) denotes the maximum size of a common independent set contained in
T .

Proof. Apply Theorem 46.4, taking c := χU , fi := ri, and f := r.

It is not necessarily true that if F1∩F2 is integer, then also P1∩P2 (or Q1∩Q2) is
integer — i.e., that the converse implication of Corollary 46.4a holds. For instance,
if

(46.42) P1 := {(x, y, z)T | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 3
2
, x + z ≤ 2},

P2 := {(x, y, z)T | 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 3
2
, y + z ≤ 2},

then F1 ∩ F2 = {(1, 1, 1)T}, but ( 1
2
, 1

2
, 3

2
)T is a vertex of P1 ∩ P2.

Related results on integer decomposition of integer polymatroids in McDiarmid
[1983].

46.7b. Further notes

Giles [1975] characterized the facets of the intersection of two polymatroids. Ageev
[1988] studied the problem of maximizing a concave function over the intersection
of polymatroids.



Chapter 47

Polymatroid intersection
algorithmically

In this chapter we consider the problem of finding a vector of maximum
weight in the intersection of two (extended) polymatroids algorithmically.
We describe a strongly polynomial-time algorithm for this problem in four
stages (where f1 and f2 are submodular set functions on S):
• a strongly polynomial-time algorithm finding a maximum-size vector in

EPf1
∩ EPf2

(Section 47.1),
• a strongly polynomial-time algorithm finding a common base vector of

f1 and f2 maximizing x(s) for some prescribed s ∈ S (Section 47.2),
• a polynomial-time algorithm finding a maximum-weight common base

vector of f1 and f2 (Section 47.3),
• a strongly polynomial-time algorithm finding a maximum-weight com-

mon base vector of f1 and f2 (Section 47.4).
At the base of the algorithms is submodular function minimization, which
leads back to the ‘consistent breadth-first search’ technique proposed in a
pioneering paper of Schönsleben [1980] on polymatroid intersection.

47.1. A maximum-size common vector in two
polymatroids

We first consider the problem:

(47.1) given: submodular set functions f1 and f2 on a set S (by value
giving oracles),

find: an x ∈ EPf1
∩ EPf2

maximizing x(S), and a T ⊆ S with
x(S) = f1(T ) + f2(S \ T ).

So T certifies that x indeed maximizes x(S) over EPf1
∩ EPf2

, since for any
x′ ∈ EPf1

∩ EPf2
we have:

(47.2) x′(S) = x′(T ) + x′(S \ T ) ≤ f1(T ) + f2(S \ T ) = x(S).

On the other hand, x certifies that T minimizes f1(T ) + f2(S \ T ).
Then (Lawler and Martel [1982a], extending a weakly polynomial bound

of Schönsleben [1980]):
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Theorem 47.1. Problem (47.1) is solvable in strongly polynomial-time.

Proof. We can assume that f1(∅) = 0 and f2(∅) = 0. Define the submodular
set function f on S by

(47.3) f(U) := f1(U) + f2(S \ U) − f2(S)

for U ⊆ S. With the submodular function minimization algorithm described
in Section 45.4 we find a subset T of S minimizing f . So, by Corollary 46.1b,
f(T ) + f2(S) is equal to the maximum of x(S) over EPf1

∩ EPf2
.

The submodular function minimization algorithm of Section 45.4 also
gives vertices b1, . . . , bk of EPf and λ1, . . . , λk ≥ 0 with λ1 + · · · + λk = 1
such that for

(47.4) y := λ1b1 + · · · + λkbk

we have y(T ) = f(T ), supp−(y) ⊆ T , and supp+(y) ⊆ S \T . (Here, as usual,
supp+(x) := {s ∈ S | x(s) > 0} and supp−(x) := {s ∈ S | x(s) < 0}.)

Now for each i = 1, . . . , k, we can find b′
i ∈ EPf1

and b′′
i ∈ EPf2

with bi = b′
i − b′′

i . Indeed, let u1, . . . , un be a total order of S generating
bi. (That is, bi(uj) = f({u1, . . . , uj}) − f({u1, . . . , uj−1}) for j = 1, . . . , n.
These orderings are also implied by the submodular function minimization
algorithm.) Let b′

i be the vertex of EPf1
generated by the order u1, . . . , un

(that is, b′
i(uj) = f1({u1, . . . , uj}) − f1({u1, . . . , uj−1}) for j = 1, . . . , n). Let

b′′
i be the vertex of EPf2

generated by the order un, un−1, . . . , u1 (that is,
b′′
i (uj) = f2({uj , . . . , un}) − f2({uj+1, . . . , un}) for j = 1, . . . , n). Then by

definition of f we have bi = b′
i − b′′

i , since for each j:

(47.5) bi(uj) = f({u1, . . . , uj}) − f({u1, . . . , uj−1})
= f1({u1, . . . , uj}) + f2({uj+1, . . . , un}) − f1({u1, . . . , uj−1})
−f2({uj , . . . , un}) = b′

i(uj) − b′′
i (uj).

Define

(47.6) x′ :=

k∑

i=1

λib
′
i, x′′ :=

k∑

i=1

λib
′′
i , and x := x′ ∧ x′′,

where ∧ stands for taking coordinatewise minimum. As x′ ∈ EPf1
and x′′ ∈

EPf2
, we know x ∈ EPf1

∩EPf2
. Also, as y = x′ −x′′, we know that if u ∈ T ,

then y(u) ≤ 0, hence x′′(u) ≥ x′(u), and therefore x(u) = x′(u). Similarly, if
u ∈ S \ T , then x(u) = x′′(u). Hence

(47.7) x(S) = x(T )+x(S\T ) = x′(T )+x′′(S\T ) = (x′−x′′)(T )+x′′(S)
= y(T ) + x′′(S) = f(T ) + f2(S) = f1(T ) + f2(S \ T ),

as required.
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47.2. Maximizing a coordinate of a common base vector

Theorem 47.1 implies the strong polynomial-time solvability of:

(47.8) given: submodular set functions f1 and f2 on a set S (by value
giving oracles) and an element s ∈ S,

find: a common base vector x of f1 and f2 maximizing x(s), and
subsets S1 and S2 of S with S1 ∩ S2 = {s}, S1 ∪ S2 = S, and
x(Si) = fi(Si) for i = 1, 2.

This is a result of Frank [1984a]:

Theorem 47.2. Problem (47.8) is solvable in strongly polynomial time.

Proof. We can assume that f1(S) = f2(S) and that f1 and f2 have a common
base vector (this can be checked by Theorem 47.1). Hence

(47.9) f1(S) ≤ f1(U) + f2(S \ U)

for each U ⊆ S. Define S′ := S \ {s}.
First determine S1, S2 with S1∩S2 = {s} and S1∪S2 = S and minimizing

f1(S1) + f2(S2). This can be done by minimizing the submodular function
f1(U + s) + f2(S \ U) over U ⊆ S′.

Define

(47.10) α := f1(S1) + f2(S2) − f1(S).

For i = 1, 2 and U ⊆ S′, define

(47.11) gi(U) := min{fi(U), fi(U + s) − α}.

Then g1 and g2 are submodular set functions on S′, as is easy to check.
Moreover,

(47.12) gi(S
′) = fi(S) − α.

To show this, we may assume that i = 1. Then we must show:

(47.13) f1(S
′) ≥ f1(S) − α = 2f1(S) − f1(S1) − f2(S2).

Now f1(S1 \ {s}) + f2(S2) ≥ f1(S) (since f1 and f2 have a common base
vector) and f1(S1) − f1(S1 \ {s}) ≥ f1(S) − f1(S

′) (by the submodularity of
f1). These two inequalities imply (47.13).

Then

(47.14) g1 and g2 have a common base vector.

Otherwise, S′ can be partitioned into sets R1 and R2 with

(47.15) g1(R1) + g2(R2) < g1(S
′).

If g1(R1) = f1(R1) and g2(R2) = f2(R2), then (47.15) implies
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(47.16) 2f1(S) > f1(S1) + f2(S2) + f1(R1) + f2(R2)
≥ f1(S1 ∩ R1) + f1(S1 ∪ R1) + f2(S2 ∩ R2) + f2(S2 ∪ R2).

By symmetry, we can assume that f1(S) > f1(S1∩R1)+f2(S2∪R2). However,
S1 ∩ R1 and S2 ∪ R2 partition S, contradicting (47.9).

If g1(R1) = f1(R1) and g2(R2) = f2(R2 + s) − α, then (47.15) implies

(47.17) f1(S) − α > f1(R1) + f2(R2 + s) − α,

and hence f1(S) > f1(R1) + f2(R2 + s), contradicting (47.9).
If g1(R1) = f1(R1 + s) − α and g2(R2) = f2(R2 + s) − α, then (47.15)

implies

(47.18) f1(S) − α > f1(R1 + s) + f2(R2 + s) − 2α,

implying f1(S1) + f2(S2) > f1(R1 + s) + f2(R2 + s), contradicting the mini-
mality of f1(S1) + f2(S2). This proves (47.14).

By Theorem 47.1, we can find in strongly polynomial time a common base
vector x of g1 and g2. So x(S′) = g1(S

′). Extend x to S by defining x(s) := α.
Then

(47.19) x is a common base vector of f1 and f2.

By symmetry, it suffices to show that x is a base vector of f1. First, x belongs
to EPf1

, since for each U ⊆ S′ we have

(47.20) x(U) ≤ g1(U) ≤ f1(U) and
x(U + s) = x(U) + α ≤ g1(U) + α ≤ f1(U + s).

Next, x is a base vector of f1, since

(47.21) x(S) = x(S′) + α = g1(S
′) + α = f1(S),

by (47.12). This proves (47.19).
Moreover,

(47.22) x(Si) = fi(Si)

for i = 1, 2. Indeed (for i = 1),

(47.23) x(S1) = x(S) − x(S2 \ {s}) ≥ f1(S) − g2(S2 \ {s})
≥ f1(S) − f2(S2) + α = f1(S1).

This proves (47.22), which implies that x is a common base vector of f1

and f2 maximizing x(s), as for any common base vector z of f1 and f2 we
have

(47.24) z(s) = z(S1) + z(S2) − z(S) ≤ f1(S1) + f2(S2) − f1(S)
= x(S1) + x(S2) − x(S) = x(s).

So x, S1, and S2 have the required properties.
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47.3. Weighted polymatroid intersection in polynomial
time

It may be shown with the ellipsoid method that the following problem is
solvable in polynomial time:

(47.25) given: submodular functions f1, f2 on a set S (by value giving
oracles) and a function w : S → Z,

find: a common base vector x of f1 and f2 maximizing wTx, and
w1, w2 : S → Z with w = w1 +w2 such that, for each i = 1, 2,
x maximizes wT

i x over all base vectors of fi.

Cunningham and Frank [1985] gave, with the help of Theorem 47.2, a com-
binatorial polynomial-time algorithm (using submodular function minimiza-
tion).

In order to describe this, we first give an auxiliary result concerning poly-
matroids. Let f be a submodular set function on S and let F be a face of
EPf . Define

(47.26) F ↓ := F − RS
+.

Then F ↓ is an extended polymatroid again. Moreover, algorithmic properties
for F ↓ can be deduced from those for EPf :

Lemma 47.3α. Let f be a submodular set function on S, let w : S → Z+,
and let F be the set of vectors x in EPf maximizing wTx. Then there is a
submodular set function f ′ on S with F ↓ = EPf ′ . Moreover, if f is given by
a value giving oracle, f ′(U) can be computed in strongly polynomial time, for
any U ⊆ S.

Proof. We can assume that f(∅) = 0. Let ∅ �= T1 ⊂ T2 ⊂ · · · ⊂ Tk−1 ⊂ Tk =
S be the (unique) sets satisfying

(47.27) w = λ1χ
T1 + · · · + λkχTk ,

for some λ1, . . . , λk−1 > 0 and λk ≥ 0. Set T0 := ∅, and define f ′ by:

(47.28) f ′(U) :=
k∑

i=1

(f((U ∩ Ti) ∪ Ti−1) − f(Ti−1)),

for U ⊆ S. Then f ′ is submodular, as it is the sum of k submodular functions.
Also,

(47.29) f ′ ≤ f,

since for each U we have, by the submodularity of f :

(47.30) f ′(U) =
k∑

i=1

(f((U ∩ Ti) ∪ Ti−1) − f(Ti−1))

≤
k∑

i=1

(f(U ∩ Ti) − f(U ∩ Ti−1)) = f(U).
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We show:

(47.31) F ↓ = EPf ′ .

To see ⊆, it suffices to show that F ⊆ EPf ′ . Let x ∈ F . So x(Ti) = f(Ti) for
i = 0, . . . , k − 1. Hence

(47.32) x(U) =
k∑

i=1

x(U ∩ (Ti \Ti−1)) =
k∑

i=1

(x((U ∩Ti)∪Ti−1)−x(Ti−1))

≤
k∑

i=1

(f((U ∩ Ti) ∪ Ti−1) − f(Ti−1)) = f ′(U)

for each U ⊆ S. This proves that x ∈ EPf ′ .
To see ⊇ in (47.31), it suffices to show that any x ∈ EPf ′ with x(S) =

f ′(S) belongs to F . As f ′ ≤ f we know that x ∈ EPf . So it suffices to show
that x(Tj) = f(Tj) for j = 1, . . . , k (as this implies that x maximizes wTx
over EPf , by the greedy algorithm). Now, as f ′(S) = f(S):

(47.33) x(Tj) = x(S) − x(S \ Tj) ≥ f ′(S) − f ′(S \ Tj)

= f(S) −
k∑

i=1

(f((Ti \ Tj) ∪ Ti−1) − f(Ti−1))

= f(S) −
k∑

i=j+1

(f(Ti) − f(Ti−1)) = f(Tj).

This proves (47.31).

We also will use the following lemma:

Lemma 47.3β. Let f be a submodular set function on S, let w : S → Z, and
let F be the set of base vectors x of f maximizing wTx. Let U ⊆ S and let x
maximize x(U) over F . Then x maximizes (w + χU )Tx over all base vectors
of f .

Proof. Let w′ := w + χU . As x maximizes x(U) over F , we know that x

maximizes w′Tx over F . Also, some z ∈ F maximizes w′Tz over EPf , by
the greedy method, as there is an ordering of S in which both w and w′ are
monotonically nondecreasing, and so EPf has a vertex z maximizing both

wTz and w′Tz.
As w′Tx ≥ w′Tz, x maximizes w′Tx over EPf .

Now we can derive:

Theorem 47.3. Problem (47.25) is solvable in polynomial time.

Proof. We give a polynomial-time algorithm to transform a solution of
(47.25) for some w to a solution of (47.25) for w := w+χs, for any s ∈ S. This
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implies a polynomial-time algorithm for (47.25), since we can assume that
w ≥ 0, and since any w ≥ 0 can be obtained from w = 0 by a polynomially
bounded number of resettings w := 2w and w := w + χs for s ∈ S. Note
that for w = 0, (47.25) is trivial, and that a solution x, w1, w2 for w yields a
solution x, 2w1, 2w2 for 2w.

Let s ∈ S. Let x, w1, w2 be a solution of (47.25) for some w. For i = 1, 2,
let Fi be the set of all vectors x ∈ EPfi

maximizing wT

i x and let f ′
i be a

submodular function satisfying F ↓
i = EPf ′

i
(Lemma 47.3α). Applying Theo-

rem 47.2 to f ′
1, f

′
2, we find a common base vector x′ of f ′

1 and f ′
2 maximiz-

ing x′(s), and subsets S1, S2 of S with S1 ∩ S2 = {s}, S1 ∪ S2 = S, and
x′(S1) = f ′

1(S1), x′(S2) = f ′
2(S2). Then x′ maximizes x′(S1) over EPf ′

1
, and

x′ maximizes x′(S2) over EPf ′

2
. Hence, by Lemma 47.3β, x′ is a base vector

of f ′
1 maximizing (w1+χS1)Tx′, and also, x′ is a base vector of f ′

2 maximizing
(w2 + χS2)Tx′. So

(47.34) x′, w′
1 := w1 + χS1 − χS , w′

2 := w2 + χS2 ,

gives a solution of (47.25) for w + χs.

47.4. Weighted polymatroid intersection in strongly
polynomial time

A general simultaneous diophantine approximation method of Frank and Tar-
dos [1985,1987] implies that (47.25) is strongly polynomial-time solvable. Fu-
jishige, Röck, and Zimmermann [1989] showed that from Theorem 47.3 a com-
binatorial strongly polynomial-time algorithm can be derived, by extending
the method of Tardos [1985a] for the minimum-cost circulation problem.

To prove this, we first show a sensitivity result. Let f1, f2 be submodular
set functions on S. Call a pair w1, w2 : S → R good if there exists an x that
maximizes wT

i x over EPfi
, for both i = 1 and i = 2.

Lemma 47.4α. Let w : S → Q and let w1, w2 be a good pair with w =
w1 +w2. Then for any w̃ : S → Q with w̃ ≥ w there exists a good pair w̃1, w̃2

with w̃ = w̃1 + w̃2 and ‖w̃i − wi‖∞ ≤ ‖w̃ − w‖1 for i = 1, 2.

Proof. We can assume that w and w̃ are integer, and that ‖w̃ − w‖1 = 1 (as
the general case then follows inductively).

Let Fi be the set of all x maximizing wT

i x over EPfi
. Let f ′

i be a submod-

ular function satisfying F ↓
i = EPf ′

i
. Let s be such that w̃(s) = w(s) + 1. By

the solvability of problem (47.8), there is a common base vector x of f ′
1 and

f ′
2 maximizing xs, and there exist S1, S2 with S1 ∩S2 = {s} and S1 ∪S2 = S

such that x(S1) = f ′
1(S1) and x(S2) = f ′

2(S2). Define

(47.35) w̃1 := w1 + χS1 − χS , w̃2 := w2 + χS2 .
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So w̃ = w̃1 + w̃2. By Lemma 47.3β, x maximizes w̃T

i x over EPfi
for i = 1, 2.

Therefore, the pair w̃1, w̃2 is good. As ‖w̃i −wi‖∞ ≤ 1 for i = 1, 2, this proves
the lemma.

Theorem 47.4. Given submodular functions f1, f2 on a set S and w ∈ QS,
one can find a common base vector x of f1 and f2 maximizing wTx, in strongly
polynomial time.

Proof. Let be given submodular functions f1, f2 on a set S and a function
w : S → Q. We may assume that f1 and f2 have a common base vector.
(This can be checked by Theorem 47.1.)

We keep chains C1, C2 of subsets of S such that for i = 1, 2 and each
U ∈ Ci:

(47.36) x(U) = fi(U) for each common base vector x of f1 and f2 maxi-
mizing wTx,

and such that S ∈ C1 and S ∈ C2. Initially we set Ci := {S} for i = 1, 2. We
describe an iteration that either extends C1 or C2, or gives a solution x.

We can assume that, for i = 1, 2,

(47.37) each base vector x of fi satisfies x(U) = fi(U) for each U ∈ Ci.

Indeed, let Fi be the set of vectors x in EPfi
with x(U) = fi(U) for each

U ∈ Ci. So Fi is equal to the set of x ∈ EPfi
maximizing cT

i x, where ci :=∑
U∈Ci

χU . By Lemma 47.3α, we can find f ′
i with F ↓

i = EPf ′

i
. By (47.36),

replacing the fi by f ′
i does not change the set of optimum solutions x of our

problem.
Let

(47.38) L := linear hull of {χU | U ∈ C1 ∪ C2}.

Determine y ∈ L minimizing

(47.39) ‖w − y‖∞.

This can be done in strongly polynomial time as follows. For i = 1, 2, let Pi

be the partition of S into nonempty classes such that u and v belong to the
same class if and only if there is no set in Ci containing exactly one of u, v.
Let D be the directed graph with vertex set P1 ∪P2 such that for each v ∈ S
there is an arc of length w(v) from U ∈ P1 to W ∈ P2 with v ∈ U ∩ W ,
and an arc of length −w(v) in the reverse direction. Determine the minimum
mean-length α of a directed circuit in D (cf. Section 8.5). It is the minimum
α for which there exist pi : Pi → Q such that

(47.40) −α ≤ w(v) + p1(U) − p2(W ) ≤ α

for each arc as described. Then

(47.41) y := −
∑

U∈P1

p1(U)χU +
∑

W∈P2

p2(W )χW
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minimizes (47.39).
Let α be the value of (47.39). If α = 0, then w ∈ L, and so

(47.42) w =
2∑

i=1

∑

U∈Ci

λi(U)χU

for functions λi : Ci → Q. Then for any common base vector x of f1 and f2

we have

(47.43) wTx =
2∑

i=1

∑

U∈Ci

λi(U)x(U) =
2∑

i=1

∑

U∈Ci

λi(U)fi(U).

So each common base vector is optimum. As we can find any common base
vector in strongly polynomial time (by Theorem 47.1), we have solved the
problem.

So we can assume that α > 0. Define w′ : S → Z by

(47.44) w′ := ⌊
5n2

α
(w − y)⌋,

where n := |S|. By definition of α, ‖w′‖∞ = 5n2. Hence by Theorem 47.3,
we can find in strongly polynomial time a common base vector x′ of f1 and
f2 and w′

1, w
′
2 : S → Z with w′ = w′

1 + w′
2 such that x′ is a base vector of fi

maximizing w′T
i x′, for i = 1, 2.

For i = 1, 2, we can determine a chain Di of subsets of S (with S ∈ Di)
and a function λi : Di → Z such that

(47.45) w′
i =

∑

W∈Di

λi(W )χW

and such that λi(W ) > 0 if W �= S. We show that

(47.46) there exist i ∈ {1, 2} and W ∈ Di with λi(W ) > 2n and χW �∈ L.

Suppose not. Let D′
i := {W ∈ Di | χW �∈ L}, and D′′

i := Di \ D′
i, for i = 1, 2.

So if W ∈ D′
i, then λi(W ) ≤ 2n. This gives the contradiction:

(47.47) 4n2 ≥ ‖
2∑

i=1

∑

W∈D′

i

λi(W )χW ‖∞ = ‖w′ −
2∑

i=1

∑

W∈D′′

i

λi(W )χW ‖∞

> ‖
5n2

α
(w − y) −

2∑

i=1

∑

W∈D′′

i

λi(W )χW ‖∞ − 1 ≥ 5n2 − 1.

The last inequality holds as y minimizes ‖w − y‖∞ over y ∈ L.
This shows (47.46). We can assume that W ∈ D′

1 is such that λ1(W ) > 2n.
Then:

(47.48) each optimum common base vector x of f1 and f2 satisfies
x(W ) = f1(W ).
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To see this, let

(47.49) w̃ :=
5n2

α
(w − y).

Replacing w by w̃ does not change the set of optimum common base vectors,
since y belongs to L (implying (by our assumption (47.37)) that yTx is the
same for all common base vectors x of f1 and f2).

By Lemma 47.4α, there exists a good pair w̃1, w̃2 with w̃ = w̃1 + w̃2 and

(47.50) ‖w̃i − w′
i‖∞ ≤ ‖w̃ − w′‖1 < n

for i = 1, 2. Now for any v ∈ W and u ∈ S \ W we have w′
1(v) > w′

1(u) + 2n,
as λ1(W ) > 2n, and as λ1(W

′) ≥ 0 for each W ′ ∈ D1 \ {S}. Hence, by
(47.50), w̃1(v) > w̃1(u). So (by the greedy method) any base vector x of f1

maximizing w̃T

1 x satisfies x(W ) = f1(W ). This shows (47.48).
Let C1 = {U1 ⊂ U2 ⊂ · · · ⊂ Ut = S}. For j = 1, . . . , t, let Wj :=

(W ∩ Uj) ∪ Uj−1, where U0 := ∅. Then x(Wj) = f(Wj) for each optimum
common base vector x (since Wj arises by taking unions and intersections
from W , Uj , and Uj−1).

Moreover, Wj �∈ C1 for at least one j = 1, . . . , t, since

(47.51) χW =
t∑

j=1

(χWj − χUj−1)

while χW does not belong to L, implying that not all χWj belong to L, and
so some Wj does not belong to C1. So Wj can be added to C1, and we can
iterate.

From an optimum common base vector x, an optimum ‘dual solution’
w1, w2 can be derived, with a method of Cunningham and Frank [1985]. This
gives:

Corollary 47.4a. Problem (47.25) is solvable in strongly polynomial time.

Proof. By Theorem 47.4, we can find a common base vector x of f1 and
f2 maximizing wTx, in strongly polynomial time. Define a directed graph
D = (S, A) as follows.

For i = 1, 2, let Ai consist of all pairs (u, v) with u, v ∈ S such that for
each U ⊆ V :

(47.52) if x(U) = fi(U) and u ∈ U then v ∈ U .

We can find Ai in strongly polynomial time, by finding the minimum of
fi(U) − x(U) over subsets U of S with u ∈ U and v �∈ U (with any strongly
polynomial-time submodular function minimization algorithm).

Let D have arc set A := A1 ∪ A−1
2 (taking two parallel arcs from u to v

in case (u, v) ∈ A1 and (v, u) ∈ A2). Define a length function l on A by, for
(u, v) ∈ A:



Section 47.4. Strongly polynomial time 815

(47.53) l(u, v) :=

{
w(v) − w(u) for (u, v) ∈ A1,

0 for (v, u) ∈ A2.

We claim:

(47.54) D has no negative-length directed circuits.

For suppose that C is a negative-length directed circuit. We take such a C
with |AC| smallest. Then two consecutive arcs in C neither both belong to
A1 nor both belong to A−1

2 . For suppose that a = (t, u) and a′ = (u, v) are in
C and that they both belong to A1. Then (t, v) ∈ A1 and l(a)+ l(a′) = l(t, v),
contradicting the minimality of |AC|. This similarly gives a contradiction if
a, a′ ∈ A−1

2 .
So we can assume that C traverses the vertices u0, u1, . . . , uk in this order,

with u0 = uk, such that (ui−1, ui) belongs to A1 if i is odd, and to A−1
2 if

i is even. Let X := {u1, u3, . . . , uk−1} and Y := {u2, u4, . . . , uk}. As C has
negative length, we know l(AC) < 0, and hence w(X) < w(Y ).

By (47.52), for each i = 1, 2 and for each U ⊆ V with x(U) = fi(U) we
have |U ∩ Y | ≥ |U ∩ X|. Hence there exists an ε > 0 such that the vector

(47.55) x′ := x + ε(χX − χY )

belongs to EPf1
and to EPf2

. So, since x′(S) = x(S), x′ is again a common
base vector of f1 and f2. However, wTx′ = wTx + w(X) − w(Y ) > wTx,
contradicting the fact that x maximizes wTx. This proves (47.54).

By Theorem 8.7, we can find a potential p : S → Z for D with respect to
l, in strongly polynomial time. Then p satisfies

(47.56) p(v) − p(u) ≤ w(v) − w(u) for each (u, v) ∈ A1,
p(v) − p(u) ≥ 0 for each (u, v) ∈ A2.

Define w1 := w − p and w2 := p. We show that w1 and w2 are as required in
(47.25).

(47.56) implies that, for each i = 1, 2,

(47.57) if (u, v) ∈ Ai then wi(v) ≥ wi(u).

We show that (47.57) implies that, for each i = 1, 2, x is a base vector of fi

maximizing wT

i x, as required. We may assume i = 1.
Let µ and ν be the minimum and maximum value (respectively) of the

entries in w1. For j ∈ Z, let Uj := {v ∈ S | w1(v) ≥ µ + j}. Then, taking
k := ν − µ,

(47.58) w1 = µ · χS +

k∑

j=1

χUj .

Moreover,

(47.59) x(Uj) = f1(Uj) for each j = 1, . . . , k.
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Indeed, for all s ∈ Uj and t ∈ S \ Uj we have (s, t) �∈ A1 (by (47.57),
since w1(t) < µ + j ≤ w1(s)). Hence, by definition of A1, there is a set Ts,t

with s ∈ Ts,t, t �∈ Ts,t, and x(Ts,t) = f1(Ts,t). As the collection of sets U
with x(U) = f1(U) is closed under taking unions and intersections, (47.59)
follows.

Then for any base vector x′ of f1 we have

(47.60) wT

1 x′ = µx′(S) +
k∑

j=1

x′(Uj) ≤ µf1(S) +
k∑

j=1

f1(Uj).

By (47.59), we here have equality throughout for x′ := x, which proves that
x maximizes wT

1 x over all base vectors of f1.

Theorem 47.4 implies for (nonextended) polymatroids (extending a result
of Schönsleben [1980] for integer f1 and f2 for which there is a fixed K with
Pf1

∩ Pf2
⊆ [0, K]S):

Corollary 47.4b. Given submodular set functions f1, f2 on S (by value giv-
ing oracles) and a weight function w ∈ QS, we can find a maximum-weight
vector x ∈ Pf1

∩ Pf2
in strongly polynomial time.

Proof. We can assume that f1(∅) = f2(∅) = 0 and that f1 and f2 are
nondecreasing (as we can replace fi(U) by minT⊇U fi(T )). Extend S with a
new element t to a set S′ := S + t. Define set functions f ′

1 and f ′
2 on S′ by:

(47.61) f ′
i(U) := fi(U) and f ′

i(U + t) := 0

for U ⊆ S and i = 1, 2. Then f ′
1 and f ′

2 are submodular (using the nonde-
creasingness of f1 and f2). Moreover, consider any x′ ∈ RS′

with x′(S′) = 0.
Let x be the restriction of x′ to S. Then:

(47.62) x′ ∈ EPf ′

i
if and only if x ∈ Pfi

.

Indeed, if x′ ∈ EPf ′

i
, then x′(s) ≥ 0 for each s ∈ S, since x′(S′ − s) ≤

f ′(S′ − s) = 0 and x′(S′) = 0, implying that x(s) = x′(s) ≥ 0. Moreover, for
each U ⊆ S one has x(U) = x′(U) ≤ f ′

i(U) = fi(U). So x ∈ Pfi
.

Conversely, if x ∈ Pf , then for each U ⊆ S one has x′(U) = x(U) ≤
fi(U) = f ′

i(U) and x′(U + t) = x(U) − x(S) = −x(S \ U) ≤ 0 = f ′
i(U + t).

So x′ ∈ EPf ′

i
. This proves (47.62).

Define w′ ∈ QS′

by w′(v) := w(v) if v ∈ S, and w′(t) := 0. By Theorem

47.4, we can find a common base vector x′ of f ′
1 and f ′

2 maximizing w′Tx′ in
strongly polynomial time. Let x be the restriction of x′ to S. By (47.62), x
maximizes wTx over Pf1

∩ Pf2
.

Similarly for maximum-weight common base vectors in (nonextended)
polymatroids:
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Corollary 47.4c. Given submodular set functions f1, f2 on S (by value giv-
ing oracles) and a weight function w ∈ QS, we can find a maximum-weight
common base vector x of Pf1

and Pf2
in strongly polynomial time.

Proof. Again, we can assume that f1(∅) = f2(∅) = 0 and that f1 and f2

are nondecreasing. Then the present corollary follows directly from Theorem
47.4, since

(47.63) Pf1
∩Pf2

∩{x | x(S) = f1(S)} = EPf1
∩EPf2

∩{x | x(S) = f1(S)}.

Indeed, if x ∈ EPfi
and x(S) = fi(S), then x ≥ 0, since for any s ∈ S one

has xs = x(S) − x(S − s) ≥ fi(S) − fi(S − s) ≥ 0.

Back to extended polymatroids, Corollary 47.4b yields that we can opti-
mize over the intersection of two extended polymatroids in strongly polyno-
mial time:

Corollary 47.4d. Given submodular set functions f1, f2 on S (by value giv-
ing oracles) and a weight function w ∈ QS

+, we can find a maximum-weight
vector x ∈ EPf1

∩ EPf2
in strongly polynomial time.

Proof. We may assume that f1(∅) = f2(∅) = 0. Let

(47.64) L := max
i=1,2

(|fi(S)| +
∑

s∈S

|fi({s})|).

Then |fi(U)| ≤ L for each i = 1, 2 and U ⊆ S, since

(47.65) fi(U) ≤
∑

s∈U

fi({s}) ≤ L

and

(47.66) fi(U) ≥ fi(S) − fi(S \ U) ≥ fi(S) −
∑

s∈S\U

fi({s}) ≥ −L.

Let K := |S| · L + 1. Then for any vertex x of EPf1
∩ EPf2

and any s ∈ S:

(47.67) x(s) > −K,

since x = A−1b for some totally unimodular matrix A and some vector b
whose entries are values of f1 and f2 (as in the proof of Theorem 46.1;
observe that the entries of A−1 belong to {0,±1}).

Define f ′
i(U) := fi(U) + K · |U |. Then

(47.68) EPf ′

i
= K · 1 + EPfi

for i = 1, 2. Hence, by (47.67), all vertices of EPf ′

1
∩ EPf ′

2
are nonnegative.

So any vector x maximizing wTx over Pf ′

1
∩ Pf ′

2
also maximizes wTx over

EPf ′

1
∩ EPf ′

2
. By Corollary 47.4b, x can be found in strongly polynomial

time.
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47.5. Contrapolymatroids

Similar results hold for intersections of contrapolymatroids, by reduction to
polymatroids. Given supermodular set functions g1 and g2 on S (by value
giving oracles) and a weight function w ∈ QS , we can find in strongly poly-
nomial time:

(47.69) (i) a minimum-weight vector in EQg1
∩ EQg2

,
(ii) a minimum-weight common base vector of EQg1

and EQg2
,

(iii) a minimum-weight vector in Qg1
∩ Qg2

, and
(iv) a minimum-weight common base vector of Qg1

and Qg2
.

Here (i) and (ii) follow from Corollary 47.4d and Theorem 47.4 applied to
the submodular functions −g1 and −g2. Moreover, (iii) and (iv) follow by
application of (i) and (ii) to the supermodular functions ḡi given by ḡi(U) =
maxT⊆U gi(T ) for U ⊆ S and i = 1, 2 (assuming without loss of generality
g1(∅) = g2(∅) = 0).

47.6. Intersecting a polymatroid and a
contrapolymatroid

Let f be a submodular, and g a supermodular, set function on S. The results
on polymatroid intersection also imply that

(47.70) a maximum-weight vector in the intersection of the extended
polymatroid EPf and the extended contrapolymatroid EQg can
be found in strongly polynomial time,

assuming that we have value giving oracles for f and g.
To see this, we can assume that f(∅) = g(∅) = 0 and g(S) ≤ f(S). Let t

be a new element. Define submodular set functions f1 and f2 on S + t by:

(47.71) f1(U) := f(U), f1(U+t) := f(U)−g(S), f2(U) := f(S)−g(S\U),
f2(U + t) := −g(S \ U),

for U ⊆ S. Reset f1(S + t) := 0. Then for each x ∈ RS and λ ∈ R:

(47.72) (x, λ) is a common base vector of EPf1
and EPf2

⇐⇒ λ = −x(S) and x ∈ EPf ∩ EQg.

To see necessity, let (x, λ) be a common base vector of EPf1
and EPf2

. As
f1(S + t) = 0, we have λ = −x(S). Moreover, for any U ⊆ S, we have

(47.73) x(U) ≤ f1(U) = f(U) and
x(U) = x(S)−x(S\U) = −λ−x(S\U) ≥ −f2((S\U)+t) = g(U).

So x ∈ EPf ∩ EQg.
To see sufficiency, assume λ = −x(S) and x ∈ EPf ∩ EQg. Then for each

U ⊆ S we have:
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(47.74) x(U) ≤ f(U) = f1(U),
x(U + t) = x(U) + λ = x(U) − x(S) ≤ f(U) − g(S) = f1(U + t),
x(U) = x(S) − x(S \ U) ≤ f(S) − g(S \ U) = f2(U),
x(U + t) = x(U) + λ = x(U) − x(S) = −x(S \ U) ≤ −g(S \ U)
= f2(U + t).

So (x, λ) is a common base vector of EPf1
and EPf2

.
This shows (47.72), which implies that finding a minimum-weight vector

in EPf ∩EQg amounts to finding a minimum-weight common base vector of
EPf1

and EPf2
.

Similarly, we can find a modular function h satisfying g ≤ h ≤ f in
strongly polynomial time, if g ≤ f (Frank’s discrete sandwich theorem (Corol-
lary 46.2b)). To see this, let f1 and f2 be as above, and find an (x, λ) in
EPf1

∩ EPf2
maximizing x(S) + λ. If x(S) + λ ≥ 0, then x ∈ EPf ∩ EQg,

that is x gives a modular function h with g ≤ h ≤ f .

47.6a. Further notes

Polymatroid intersection is a special case of submodular flow, as discussed in Chap-
ter 60. We therefore refer for further algorithmic work to the notes in Section 60.3e.

A preflow-push algorithm for finding a maximum common vector in the inter-
section of two polymatroids was presented by Fujishige and Zhang [1992].

Tardos, Tovey, and Trick [1986] gave an improved version of Cunningham and
Frank’s polynomial-time algorithm for weighted polymatroid intersection. Fujishige
[1978a] gave a (non-polynomial-time) algorithm for weighted polymatroid intersec-
tion. Optimizing over the intersection of a base polytope and an affine space was
considered by Hartvigsen [1996,1998a,2001a].

Frank [1984c] and Fujishige and Iwata [2000] gave surveys.
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Dilworth truncation

If a submodular function f has f(∅) < 0, the associated extended polyma-
troid is empty, as the conditions x(U) ≤ f(U) for all U include x(∅) < f(∅).
However, by ignoring the condition for U = ∅, the obtained polyhedron is
yet an extended polymatroid, for a different submodular function, denoted
by f̂ . This function f̂ is called the Dilworth truncation of f .

48.1. If f(∅) < 0

Let f be a submodular set function on S. If f(∅) < 0, the associated extended
polymatroid EPf is empty. However, by ignoring the empty set, we yet obtain
an extended polymatroid. (The interest in this goes back to Dilworth [1944].)

Consider the system

(48.1) x(U) ≤ f(U) for U ∈ P(S) \ {∅},

and the problem dual to maximizing wTx over (48.1), for w ∈ RS
+:

(48.2) min{
∑

U∈P(S)\{∅}

y(U)f(U) |

y ∈ R
P(S)\{∅}
+ ,

∑

U∈P(S)\{∅}

y(U)χU = w}.

Recall that a collection F of sets is called laminar if

(48.3) T ∩ U = ∅ or T ⊆ U or U ⊆ T for all T, U ∈ F .

Then a basic result of Edmonds [1970b] is:

Theorem 48.1. If f is a submodular set function on S, then (48.2) has an
optimum solution y with F := {U ∈ P(S) \ {∅} | y(U) > 0} laminar.

Proof. Let y : P(S) \ {∅} → R+ achieve this minimum, with

(48.4)
∑

U∈P(S)\{∅}

y(U)|U ||S \ U |
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as small as possible. Assume that F is not laminar, and choose T, U ∈ F
violating (48.3). Let α := min{y(T ), y(U)}. Decrease y(T ) and y(U) by α,
and increase y(T ∩ U) and y(T ∪ U) by α. Since

(48.5) χT∩U + χT∪U = χT + χU ,

y remains a feasible solution of (48.2). As moreover

(48.6) f(T ∩ U) + f(T ∪ U) ≤ f(T ) + f(U),

f remains optimum. However, by Theorem 2.1, sum (48.4) decreases, contra-
dicting our assumption.

This implies that system (48.1) is TDI. More generally, it implies the
box-total dual integrality of (48.1):

Corollary 48.1a. For any submodular set function f on S, system (48.1) is
box-totally dual integral.

Proof. Consider some w : S → Z+, and problem (48.2) dual to maximizing
wTx over (48.1). By Theorem 48.1, this minimum is attained by a y with F :=
{U ∈ P(S)\{∅} | y(U) > 0} laminar. Hence the constraints corresponding to
positive entries in y form a totally unimodular matrix (by Theorem 41.11).
Therefore, by Theorem 5.35, (48.1) is box-TDI.

Let EP ′
f denote the solution set of (48.1). So EP ′

f is nonempty for each
submodular function f . As for integrality we have:

Corollary 48.1b. If f is submodular and integer, then EP ′
f is integer.

Proof. Directly from Corollary 48.1a.

In fact, as we shall see in Section 48.2, EP ′
f is again an extended poly-

matroid.

48.2. Dilworth truncation

For each submodular function f , there exists a unique largest submodular
function f̂ with the property that f̂(U) ≤ f(U) for each nonempty U ⊆ S,

and f̂(∅) = 0. This follows from a method of Dilworth [1944].

Let f be a submodular set function on S. The Dilworth truncation f̂ :
P(S) → R of f is given by:

(48.7) f̂(U) := min{
∑

P∈P

f(P ) | P is a partition of U into nonempty

sets}
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for U ⊆ S. So f̂(∅) = 0 (as for U = ∅, only P = ∅ qualifies in (48.7)). Dunstan
[1976] showed:

Theorem 48.2. f̂ is submodular.

Proof. Choose T, U ⊆ S, and let P and Q be partitions of T and U (respec-
tively) into nonempty sets with

(48.8) f̂(T ) =
∑

P∈P

f(P ) and f̂(U) =
∑

Q∈Q

f(Q).

Consider the family F made by P and Q (taking a set twice if it occurs in
both partitions). We can transform F iteratively into a laminar family, by
replacing any X, Y ∈ F with X ∩ Y �= ∅ and X �⊆ Y �⊆ X by X ∩ Y, X ∪ Y .
In each iteration, the sum

(48.9)
∑

Z∈F

f(Z)

does not increase (as f is submodular). As at each iteration the sum

(48.10)
∑

Z∈F

|Z||S \ Z|

decreases (by Theorem 2.1), this process terminates. We end up with a lam-
inar family F .

The inclusionwise maximal sets in F form a partition R of T ∪ U , and
the remaining sets form a partition S of T ∩ U . Therefore,

(48.11) f̂(T ∪ U) + f̂(T ∩ U) ≤
∑

X∈R

f(X) +
∑

Y ∈S

f(Y )

≤
∑

P∈P

f(P ) +
∑

Q∈Q

f(Q) = f̂(T ) + f̂(U),

showing that f̂ is submodular.

Lovász [1983c] observed that f̂ is the unique largest among all submodular
set functions g on S with g(∅) = 0 and g(U) ≤ f(U) for U �= ∅. Indeed, each
subset U of S can be partitioned into nonempty sets U1, . . . , Ut such that

(48.12) g(U) ≤
t∑

i=1

g(Ui) ≤
t∑

i=1

f(Ui) = f̂(U)

(the first inequality follows from the submodularity of g, as g(∅) = 0).
Trivially, EPf̂ = EP ′

f . In particular, EP ′
f is an extended polymatroid.

Moreover, by (44.34),

Theorem 48.3.

(48.13) f̂(U) = max{x(U) | x ∈ EP ′
f}.
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Proof. By (44.34), since EP ′
f = EPf̂ .

f̂(U) can be computed in strongly polynomial time:

Theorem 48.4. If a submodular set function f on S is given by a value
giving oracle, then for each given U ⊆ S, f̂(U) can be computed in strongly
polynomial time.

Proof. We can assume that U = S. Order S = {s1, . . . , sn} arbitrarily. For
i = 1, . . . , n, define Ui := {s1, . . . , si}. Set x := 0. Iteratively, for i = 1, . . . , n,
determine

(48.14) µ := min{f(T ) − x(T ) | si ∈ T ⊆ Ui}

(with a submodular function minimization algorithm), and reset x(si) :=
x(si) + µ.

We end up with x ∈ EP ′
f and for each u ∈ S a subset Tu of S with u ∈ Tu

and x(Tu) = f(Tu). As the collection of subsets T of S with x(T ) = f(T ) is
closed under unions and intersections of intersecting sets (cf. Theorem 44.2),
we can modify the Tu in such a way that they form a partition U1, . . . , Uk of
S. Then f̂(S) = f(U1) + · · · + f(Uk), as x attains the maximum in (48.13).

As a consequence, given a submodular set function f on S (by a value
giving oracle), we can optimize over EP ′

f in strongly polynomial time (by

Corollary 44.3b, as EP ′
f = EPf̂ and as we can compute f̂).

48.2a. Applications and interpretations

Graphic matroids (Dilworth [1944], also Edmonds [1970b], Dunstan [1976]). Let
G = (V, E) be an undirected graph and let for each F ⊆ E, f(F ) be given by

(48.15) f(F ) :=
∣∣ ⋃

F
∣∣ − 1.

It is easily checked that the function f is submodular, and that the function f̂ as
given by (48.7) satisfies

(48.16) f̂(F ) = |V | minus the number of components of the graph (V, F ),

i.e., f̂ is the rank function of the cycle matroid of G.

Geometric interpretation. The operation of making f̂ from f can be interpreted
geometrically as follows (Lovász [1977c], Mason [1977,1981]).

Let F be a collection of flats (subspaces) in a projective space, and define for
each subset F ′ of F , the rank r(F ′) by

(48.17) r(F ′) := the (projective) dimension of
⋃

F ′.

One easily checks that r is nondecreasing and submodular and that r(∅) = 0. Now
let
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(48.18) f(F ′) := r(F ′) − 1

for F ′ ⊆ F , and consider the function f̂ . Then f̂ can be interpreted geometrically
as follows. Let H be some hyperplane ‘in general position’ in the projective space.
Then f̂(F ′) is equal to the projective dimension of H ∩

⋃
F ′, i.e., f̂ is as given by

(48.17) if we replace F by {F ∩ H | F ∈ F} (see Lovász [1977c] and Mason [1977,
1981]).

Rigidity. Let M = (S, I) be a loopless matroid, with rank function r. Let d be a
natural number. Define the set function f on S by

(48.19) f(U) := d · r(U) − d + 1,

for U ⊆ S. Again, f is submodular and nondecreasing. Moreover, the function f̂ is
the rank function of a loopless matroid, as f̂({s}) = f({s}) = 1 for all s in S.

Let Md = (S, Id) be this matroid. Since EP ′
f = EPf̂ , a subset I of S is inde-

pendent in Md if and only if

(48.20) |U | ≤ d · r(U) − d + 1

for all U ⊆ I.
In case M is the cycle matroid of a connected graph G = (V, E), this relates to

the following (cf. Crapo [1979] and Crapo and Whiteley [1978]). Let the vertices of
G be placed ‘in general position’ in the d-dimensional Euclidean space. Make the
edges ‘rigid bars’. Suppose now that the whole graph G is rigid (which only depends
on G and not on the embedding, since the vertices are ‘in general position’). Then
G is called rigid (in d dimensions). It is not difficult to see that the minimal sets F
of edges of G for which the subgraph (V, F ) is rigid, form the bases of a matroid.
For d = 1 this matroid is just the cycle matroid of G, as can be checked easily.
Laman [1970] (cf. Asimow and Roth [1978,1979]) showed that for d = 2, a graph
G = (V, E) is a base (i.e., a minimal rigid graph), if and only if

(48.21) (i) |E| = 2|V | − 3,
(ii) |E[U ]| ≤ 2|U | − 3, for each U ⊆ V .

Now if M is the cycle matroid of a rigid graph G, with rank function r, then (48.21)
(ii) is equivalent to

(48.22) |F | ≤ 2r(F ) − 1, for each subset F of E,

that is, by (48.20), to: E is independent in the matroid M2, as given above. Con-
dition (48.21)(i) implies that M2 has rank 2r(E) − 1. Hence, if G is rigid in 2
dimensions, then the bases of M2 are the minimally rigid subgraphs of G in 2
dimensions.

In general, the matroid of rigid subgraphs of a graph G = (V, E) (in d dimen-
sions) has rank d|V |−

(
d+1
2

)
. However, it is not necessarily true that G is minimally

rigid in d dimensions if and only if G has d|V | −
(

d+1
2

)
edges and each subgraph

(U, F ) of G has at most d|U | −
(

d+1
2

)
edges. For instance, if G arises from glueing

two copies of the complete graph K5 together in two vertices, and deleting the edge
connecting these two vertices, then G is not rigid in 3 dimensions, but it satisfies the
conditions given above for d = 3. (These conditions are easily seen to be necessary.)

More on the relation between rigidity and matroid union can be found in White-
ley [1988].
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48.3. Intersection

Corollaries 48.1a and 48.1b on submodular functions f not necessarily sat-
isfying f(∅) ≥ 0, can be extended to pairs of functions. Let f1 and f2 be
submodular set functions on S, and consider the system

(48.23) x(U) ≤ fi(U) for U ∈ P(S) \ {∅} and i = 1, 2.

Then:

Theorem 48.5. System (48.23) is box-totally dual integral.

Proof. Choose w ∈ ZS , and consider the problem dual to maximizing wTx
over (48.23):

(48.24) min{
∑

U∈P(S)\{∅}

(y1(U)f1(U) + y2(U)f2(U)) |

y1, y2 ∈ R
P(S)\{∅}
+ ,

∑

U∈P(S)\{∅}

(y1(U) + y2(U))χU = w}.

Let y1, y2 attain the minimum.
For i ∈ {1, 2}, define

(48.25) wi :=
∑

U∈P(S)\{∅}

yi(U)χU .

By Theorem 48.1, for each i = 1, 2,

(48.26) min{
∑

U∈P(S)\{∅}

yi(U)fi(U) |

yi ∈ R
P(S)\{∅}
+ ,

∑

U∈P(S)\{∅}

yi(U)χU = wi}

has an optimum solution yi with Fi := {U | yi(U) > 0} laminar.
These (modified) y1, y2 again are optimum in (48.24). As the constraints

corresponding to positive components of y1, y2 give a totally unimodular ma-
trix (by Theorem 41.11), Theorem 5.35 implies that system (48.23) is box-
TDI.

Theorem 48.5 implies primal integrality:

Corollary 48.5a. If f1 and f2 are submodular and integer, then EP ′
f1

∩EP ′
f2

is box-integer.

Proof. Directly from Theorem 48.5.

Given submodular functions f1 and f2 (by value giving oracles), we can
optimize over EP ′

f1
∩ EP ′

f2
in strongly polynomial time (by Corollary 47.4d,

as EP ′
f1

= EPf̂1

and EP ′
f2

= EPf̂2

).
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Submodularity more generally

We now discuss a number of generalizations of submodular functions,
namely those defined on a subcollection C of the collection of all subsets of a
set S. The results are similar to those for submodular functions defined on
all subsets on S. Often, the corresponding polyhedra form a polymatroid
for some derived submodular function defined on all subsets of S.
We consider three kinds of collections, in order of increasing generality:
lattice families, intersecting families, and crossing families.

49.1. Submodular functions on a lattice family

We first consider the generalization of submodular functions to those defined
on a ‘lattice family’.

Let S be a finite set. A family C of sets is called a lattice family if

(49.1) T ∩ U, T ∪ U ∈ C for all T, U ∈ C.

For a lattice family C, a function f : C → R is called submodular if

(49.2) f(T ∩ U) + f(T ∪ U) ≤ f(T ) + f(U)

for all T, U ∈ C. Consider the system

(49.3) x(U) ≤ f(U) for U ∈ C,

and the problem dual to maximizing wTx over (49.3), for w ∈ RS :

(49.4) min{
∑

U∈C

y(U)f(U) | y ∈ RC
+,

∑

U∈C

y(U)χU = w}.

Theorem 49.1. Let C be a lattice family, f : C → R a submodular function,
and w ∈ RS. Then (49.4) has an optimum solution y with F := {U ∈ C |
y(U) > 0} a chain.

Proof. Let y : C → R+ achieve this minimum, with

(49.5)
∑

U∈C

y(U)|U ||S \ U |
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as small as possible. Assume that F is not a chain, and choose T, U ∈ F with
T �⊆ U and U �⊆ T . Let α := min{y(T ), y(U)}. Decrease y(T ) and y(U) by
α, and increase y(T ∩ U) and y(T ∪ U) by α. Since

(49.6) χT∩U + χT∪U = χT + χU ,

y remains a feasible solution of (49.4). As moreover

(49.7) f(T ∩ U) + f(T ∪ U) ≤ f(T ) + f(U),

f remains optimum. However, by Theorem 2.1, sum (49.5) decreases, contra-
dicting our assumption.

This implies the box-total dual integrality of (49.3):

Corollary 49.1a. If C is a lattice family and f : C → R is submodular, then
system (49.3) is box-TDI.

Proof. Consider some w : C → Z, and problem (49.4) dual to maximizing
wTx over (49.3). By Theorem 49.1, this minimum is attained by a y with
F := {U ∈ C | y(U) > 0} a chain. So the constraints corresponding to
positive components of y form a totally unimodular matrix (by Theorem
41.11). Hence by Theorem 5.35, (49.3) is box-TDI.

For any C ⊆ P(S) and f : C → R, define:

(49.8) Pf := {x ∈ RS | x ≥ 0, x(U) ≤ f(U) for each U ∈ C},
EPf := {x ∈ RS | x(U) ≤ f(U) for each U ∈ C}.

Then Corollary 49.1a implies:

Corollary 49.1b. If C is a lattice family and f : C → R is submodular and
integer, then EPf is box-integer.

Proof. Directly from Corollary 49.1a.

Another consequence of Theorem 49.1 is that a submodular function f
on a lattice family is uniquely determined by EPf (given the lattice family):

Corollary 49.1c. If C is a lattice family and f : C → R is submodular, then

(49.9) f(U) = max{x(U) | x ∈ EPf}

for each U ∈ C.

Proof. Let w := χU and let y attain minimum (49.4), with F := {T ∈ C |
y(T ) > 0} a chain. Since

(49.10) χU = w =
∑

T∈F

y(T )χT ,



828 Chapter 49. Submodularity more generally

we know that F = {U} and y(U) = 1. So the maximum in (49.9) is equal to∑
T∈C y(T )f(T ) = y(U)f(U) = f(U).

We note that for any lattice family C ⊆ P(S) with
⋃

C = S, and any
submodular function f : C → R, the polytope Pf is a polymatroid. Indeed,
define

(49.11) f ′(U) := min{f(T ) | T ∈ C, T ⊇ U}.

for U ⊆ S. Then f ′ is submodular, and Pf ′ = Pf .

49.2. Intersection

Also the intersection of two of the polyhedra EPf is tractable. Let S be a
finite set. For i = 1, 2, let Ci be a lattice family on S and let fi : Ci → R be
submodular. Consider the system

(49.12) x(U) ≤ f1(U) for U ∈ C1,
x(U) ≤ f2(U) for U ∈ C2.

Then:

Corollary 49.1d. System (49.12) is box-TDI.

Proof. Choose w ∈ RS , and consider the problem dual to maximizing wTx
over (49.12):

(49.13) min{
∑

U∈C1

y1(U)f1(U) +
∑

U∈C2

y2(U)f2(U) |

y1 ∈ R
C1

+ , y2 ∈ R
C2

+ ,
∑

U∈C1

y1(U)χU +
∑

U∈C2

y2(U)χU = w}.

Let y1, y2 attain the minimum.
For i ∈ {1, 2}, define

(49.14) wi :=
∑

U∈Ci

yi(U)χU .

By Theorem 49.1, for each i = 1, 2,

(49.15) min{
∑

U∈Ci

yi(U)fi(U) | yi ∈ R
Ci

+ ,
∑

U∈Ci

yi(U)χU = wi}

has an optimum solution yi with Fi := {U ∈ Ci | yi(U) > 0} a chain.
These y1, y2 again are optimum in (49.13). So, by Theorem 41.11, the con-

straints corresponding to positive components of y form a totally unimodular
matrix. Hence by Theorem 5.35, (49.12) is box-TDI.

This implies primal integrality:
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Corollary 49.1e. If f1 and f2 are submodular and integer, then EPf1
∩EPf2

is box-integer.

Proof. Directly from Corollary 49.1d.

49.3. Complexity

To find the minimum of a submodular function f defined on a lattice family
C in polynomial time, just an oracle telling if a set U belongs to C, and
if so, giving f(U), is not sufficient: if C = {∅, T, S} for some T ⊆ S, with
f(∅) = f(S) = 0 and f(T ) = −1, we cannot find T by a polynomially
bounded number of oracle calls. So we need to have more information on C.

A lattice family C is fully characterized by the smallest set M and the
largest set L in C, together with the pre-order � on S defined by:

(49.16) u � v ⇐⇒ each U ∈ C containing v also contains u.

Then � is a pre-order (that is, it is reflexive and transitive). A subset U of
S belongs to C if and only if M ⊆ U ⊆ L and U is a lower ideal in � (that
is, if v ∈ U and u � v, then u ∈ U).

Hence C has a description of size O(|S|2), such that for given U ⊆ S one
can test in polynomial time if U belongs to C.

For U ⊆ S, define

(49.17) U↓ := {s ∈ S | ∃t ∈ U : s � t} and
U↑ := {s ∈ S | ∃t ∈ U : t � s}.

Set

(49.18) v↑ := {v}↑, v↓ := {v}↓, ṽ := v↑ ∩ v↓.

For any U ⊆ S, let U be the (unique) smallest set in C containing U ∩ L;
that is,

(49.19) U = (U ∩ L)↓ ∪ M.

So having L, M , and �, the set U can be determined in polynomial time.
Determine a number α > 0 such that

(49.20) α ≥ f(S \ v↑) − f((S \ v↑) ∪ ṽ) and α ≥ f(v↓) − f(v↓ \ ṽ)

for all v ∈ L \ M . Such an α can be found by at most 4|S| oracle calls.
Then α satisfies, for any X, Y ∈ C with X ⊆ Y :

(49.21) |f(Y ) − f(X)| ≤ α|Y \ X|.

To show this, we can assume that Y \ X = ṽ for some v ∈ L \ M . Then
f(Y ) − f(X) ≤ f(v↓) − f(v↓ \ ṽ) ≤ α and f(Y ) − f(X) ≥ f((S \ v↑) ∪ ṽ) −
f(S \ v↑) ≥ −α, implying (49.21).

Now define a function f̄ : P(S) → R by:
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(49.22) f̄(U) := f(U) + α|U△U |

for U ⊆ S.
Then:

Theorem 49.2. For any α > 0 satisfying (49.20) for all v ∈ L \ M , the
function f̄ is submodular.

Proof. First consider T, U ⊆ L. Then T ⊆ T and U ⊆ U , and hence:

(49.23) f̄(T ) + f̄(U) = f(T ) + α|T \ T | + f(U) + α|U \ U |
≥ f(T ∩U)+α|(T ∩U)\(T ∩U)|+f(T ∪U)+α|(T ∪U)\(T ∪U)|
≥ f(T ∩ U)+α|T ∩ U \ (T ∩U)|+ f(T ∪ U)+α|T ∪ U \ (T ∪U)|
= f̄(T ∩ U) + f̄(T ∪ U).

(The last inequality uses (49.21), since T ∩U ⊇ T ∩ U (while T ∪U = T ∪ U).)
Hence, for T, U ⊆ S one has:

(49.24) f̄(T ) + f̄(U) = f̄(T ∩ L) + α|T \ L| + f̄(U ∩ L) + α|U \ L|
≥ f̄((T ∩L)∩ (U ∩L))+ f̄((T ∩L)∪ (U ∩L))+α|T \L|+α|U \L|
= f̄((T ∩U)∩L)+ f̄((T ∪U)∩L)+α|(T ∩U)\L|+α|(T ∪U)\L|
= f̄(T ∩ U) + f̄(T ∪ U).

So f̄ is submodular.

The function f̄ enables us to reduce optimization problems on submodular
functions defined on a lattice family, to those defined on all subsets.

Minimization. By Theorem 45.1, the minimum of f̄ can be found in strongly
polynomial time. Hence

(49.25) if C is given by L, M , and �, and a submodular function f :
C → R is given by a value giving oracle, we can find a U ∈ C
minimizing f(U) in strongly polynomial time.

Indeed, if f̄ attains its minimum at U , then U ∈ C, since otherwise U �= U
and hence f̄(U) > f̄(U) (as α > 0), contradicting the fact that f̄ attains its
minimum at U . This shows (49.25).

Maximization over EPf . Given a lattice family C of subsets of a set S, a
submodular function f : C → R, and a weight function w ∈ QS , we can
maximize wTx over EPf , by adapting the greedy algorithm as follows.

Note that max{wTx | x ∈ EPf} is finite if and only if w ≥ 0, w(s) = 0
for each s ∈ S \ L, and

(49.26) u � v implies w(u) ≥ w(v)

for all u, v ∈ S. If (49.26) is not the case, the maximum value is infinite, since
if u � v, then for any x ∈ EPf , the vector x + λ(χv − χu) belongs to EPf

for all λ ≥ 0. Now, if w(v) > w(u), the weight increases to infinity along this
line, and therefore the maximum value is ∞.
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So we can check in strongly polynomial time if max{wTx | x ∈ EPf} is
finite, and therefore we can assume that it is finite. Moreover, we can assume
that L = S, since w(s) = 0 for each s ∈ S \L, and hence we can delete S \L.
Similarly, we can assume that ∅ ∈ C and f(∅) = 0. For if ∅ ∈ C and f(∅) < 0,
then EPf = ∅, and if f(∅) > 0, we can reset f(∅) := 0, without violating the
submodularity and without modifying EPf . If ∅ �∈ C, then we can add ∅ to
C and set f(∅) := 0, again maintaining submodularity and EPf . Finally, we
can assume that � is a partial order, since if u � v � u, then by (49.26),
w(u) = w(v), and each set in C either contains both u and v, or neither of
them. So we can merge u and v; and in fact we can merge any set ṽ to one
element.

Now let ≤ be a linear order such that for any u, v, if u � v or w(u) > w(v),
then u ≤ v. By (49.26), the latter defines a partial order. So ≤ is a linear
extension of it, and hence can be found in strongly polynomial time.

Let S = {s1, . . . , sn} with s1 < s2 < · · · < sn. For i = 0, . . . , n, define
Ui := {s1, . . . , si}. As ≤ is a linear extension of �, each Ui is a lower ideal
of �, and hence each Ui belongs to C. Define x(si) := f(Ui) − f(Ui−1) for
i = 1, . . . , n. Then x maximizes wTx over EPf .

To see this, let f̄ be defined as above. Then by Theorem 44.3, x belongs
to EPf̄ (as f and f̄ coincide on each Ui), and hence x belongs to EPf . To
see that x is optimum, we have for any z ∈ EPf :

(49.27) wTz =
n−1∑

i=1

z(Ui)(w(si) − w(si+1)) + z(S)w(sn)

≤
n−1∑

i=1

f(Ui)(w(si) − w(si+1)) + f(S)w(sn)

=

n∑

i=1

w(si)(f(Ui) − f(Ui−1)) =
n∑

i=1

w(si)x(si) = wTx.

This also gives a dual solution to the corresponding LP-formulation of the
problem.

Maximization over intersections. Let C1 and C2 be lattice families of subsets
of S and let f1 and f2 be submodular functions on C1 and C2 respectively.
Let Ci be specified by Li, Mi, and �i.

Find a number α > 0 satisfying (49.20) for both f = f1 and f = f2. So
by (49.21), α|S| + maxi=1,2 |fi(Li)| is an upper bound on |fi(U)| for each
i ∈ {1, 2} and each U ∈ Ci. Define

(49.28) K := |S|(α|S| + max
i=1,2

|fi(Li)|).

Now for i = 1, 2 and U ⊆ S, let f̄i(U) := fi(U)+K|U△U | (where U is taken
with respect to Ci). So f̄1 and f̄2 are submodular (by Theorem 49.2). Then:

(49.29) max{wTx | x ∈ EPf1
∩ EPf2

} = max{wTx | x ∈ EPf̄1
∩ EPf̄2

},
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if the first maximum is finite. Clearly ≥ holds in (49.29), since EPf̄i
⊆ EPfi

for i = 1, 2. To see equality, each face of EPf1
∩ EPf2

is determined by
equations x(U) = fi(U) for i = 1, 2 and U ∈ Di, where Di is a chain of
sets in Ci. So it is determined by a system of linear equations with totally
unimodular constraint set and right-hand sides determined by function values
of f1 and f2. So each face contains a vector x with |xs| ≤ K for all s ∈ S
(by (49.28), since the inverse of a nonsingular totally unimodular matrix has
all its entries in {0,±1}). But any such x belongs to EPf̄1

∩ EPf̄2
, since for

i = 1, 2 and U ⊆ S, we have:

(49.30) x(U) ≤ x(U) + K|U△U | ≤ fi(U) + K|U△U | = f̄i(U)

(where U is taken with respect to Ci). So we have (49.29).
Therefore, by Corollary 47.4d, we can maximize wTx over EPf1

∩ EPf2

in strongly polynomial time. Note that for any w ∈ QS , we can decide in
strongly polynomial time if the first maximum in (49.29) is finite. For this,
we should decide if there exist w1, w2 ∈ QS

+ such that w = w1 + w2 and such
that for i = 1, 2: wi(s) = 0 for s ∈ S \ Li and u �i v implies wi(u) ≥ wi(v)
for all u, v. This can be reduced to checking if a certain digraph with lengths
has no negative-length directed circuit.

49.4. Submodular functions on an intersecting family

We next consider functions defined on a broader class of collections, the in-
tersecting families, where the function satisfies a restricted form of submod-
ularity. It yields an extension of the Dilworth truncation studied in Chapter
48.

A family C of sets is called an intersecting family if for all T, U ∈ C one
has:

(49.31) if T ∩ U �= ∅, then T ∩ U, T ∪ U ∈ C.

Let C be an intersecting family. A function f : C → R is called submodular
on intersecting pairs, or intersecting submodular, if

(49.32) f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U)

for all T, U ∈ C with T ∩ U �= ∅.
Consider the system

(49.33) x(U) ≤ f(U) for U ∈ C,

and the problem dual to maximizing wTx over (49.33), for w ∈ RS :

(49.34) min{
∑

U∈C

y(U)f(U) | y ∈ RC
+,

∑

U∈C

y(U)χU = w}.

Recall that a collection F of sets is called laminar if



Section 49.5. Intersection 833

(49.35) T ∩ U = ∅ or T ⊆ U or U ⊆ T , for all T, U ∈ F .

A basic result (proved with a method due to Edmonds [1970b]) is:

Theorem 49.3. Let C be an intersecting family of subsets of a set S, let
f : C → R be intersecting submodular and let w ∈ RS. Then (49.34) has an
optimum solution y with F := {U ∈ C | y(U) > 0} laminar.

Proof. Let y : C → R+ achieve this minimum, with

(49.36)
∑

U∈C

y(U)|U ||S \ U |

as small as possible. Assume that F is not laminar, and choose T, U ∈ F
violating (49.35). Let α := min{y(T ), y(U)}. Decrease y(T ) and y(U) by α,
and increase y(T ∩ U) and y(T ∪ U) by α. Since

(49.37) χT∩U + χT∪U = χT + χU ,

y remains a feasible solution of (49.34). As moreover

(49.38) f(T ∩ U) + f(T ∪ U) ≤ f(T ) + f(U),

f remains optimum. However, by Theorem 2.1, sum (49.36) decreases, con-
tradicting our assumption.

It gives the box-total dual integrality of (49.33):

Corollary 49.3a. Let C be an intersecting family of subsets of a set S and
let f : C → R be intersecting submodular. Then system (49.33) is box-TDI.

Proof. Consider problem (49.34) dual to maximizing wTx over (49.33). By
Theorem 49.3, this minimum is attained by a y with F := {U ∈ C | y(U) > 0}
laminar. As the matrix of constraints corresponding to F is totally unimod-
ular (Theorem 41.11), Theorem 5.35 gives the corollary.

49.5. Intersection

Again, these results can be extended in a natural way to pairs of functions,
by derivation from Theorem 49.3.

Corollary 49.3b. For i = 1, 2, let Ci be an intersecting family of subsets of
a set S and let fi : Ci → R be intersecting submodular. Then the system

(49.39) x(U) ≤ f1(U) for U ∈ C1,
x(U) ≤ f2(U) for U ∈ C2,
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is box-TDI.

Proof. Choose w ∈ RS , and consider the problem dual to maximizing wTx
over (49.39):

(49.40) min{
∑

U∈C1

y1(U)f1(U) +
∑

U∈C2

y2(U)f2(U) |

y1 ∈ R
C1

+ , y2 ∈ R
C2

+ ,
∑

U∈C1

y1(U)χU +
∑

U∈C2

y2(U)χU = w}.

Let y1, y2 attain the minimum. For i ∈ {1, 2}, define

(49.41) wi :=
∑

U∈Ci

yi(U)χU .

By Theorem 49.3,

(49.42) min{
∑

U∈Ci

yi(U)fi(U) | yi ∈ R
Ci

+ ,
∑

U∈Ci

yi(U)χU = wi}

has an optimum solution yi with Fi := {U ∈ Ci | yi(U) > 0} laminar.
As F1 ∪ F2 determine a totally unimodular matrix (by Theorem 41.11),

Theorem 5.35 implies that system (49.39) is box-TDI.

This implies the integrality of polyhedra:

Corollary 49.3c. If f1 and f2 are integer, then EPf1
∩EPf2

is box-integer.

Proof. Directly from Corollary 49.3b.

49.6. From an intersecting family to a lattice family

Let C be an intersecting family of subsets of a set S and let f : C → R be
submodular on intersecting pairs. Let Č be the collection of all unions of sets
in C. Since C is closed under unions of intersecting sets, Č is equal to the
collection of disjoint unions of nonempty sets in C. It is not difficult to show
that Č is a lattice family and that ∅ ∈ Č.

Call a partition proper if its classes are nonempty. Define f̌ : Č → R by:

(49.43) f̌(U) := min{
∑

P∈P

f(P ) | P ⊆ C is a proper partition of U}.

for U ∈ Č. So f̌(∅) = 0. Then (Dunstan [1976]):

Theorem 49.4. f̌ is submodular.

Proof. Choose T, U ∈ Č, and let P and Q be partitions of T and U (respec-
tively) into nonempty sets in C with



Section 49.7. Complexity 835

(49.44) f̌(T ) =
∑

P∈P

f(P ) and f̌(U) =
∑

Q∈Q

f(Q).

Consider the family F made by the union of P and Q (taking a set twice if
it occurs in both partitions). We can transform F iteratively into a laminar
family, by replacing any X, Y ∈ F with X ∩ Y �= ∅ and X �⊆ Y �⊆ X by
X ∩ Y, X ∪ Y . In each iteration, the sum

(49.45)
∑

Z∈F

f(Z)

does not increase (as f is submodular on intersecting pairs). As at each
iteration the sum

(49.46)
∑

Z∈F

|Z||S \ Z|

decreases (by Theorem 2.1), this process terminates. We end up with a lam-
inar family F .

The inclusionwise maximal sets in F form a partition R of T ∪ U , and
the remaining sets form a partition S of T ∩ U . Therefore,

(49.47) f̌(T ∪ U) + f̌(T ∩ U) ≤
∑

X∈R

f(X) +
∑

Y ∈S

f(Y )

≤
∑

P∈P

f(P ) +
∑

Q∈Q

f(Q) = f̌(T ) + f̌(U),

showing that f̌ is submodular.

Trivially, if ∅ �∈ C or if f(∅) ≥ 0, then EPf̌ = EPf . Hence, by (49.9),

(49.48) f̌(U) = max{x(U) | U ∈ EPf}.

As we shall see in Section 49.7, this enables us to calculate f̌ from a value
giving oracle, using the greedy algorithm.

49.7. Complexity

The results of the previous section enable us to reduce algorithmic problems
on intersecting submodular functions, to those on submodular functions on
lattice families.

If C is an intersecting family on S, then for each s ∈ S, the collection
Cs := {U ∈ C | s ∈ U} is a lattice family. So (like in Section 49.3) we can
assume that C is given by a representation of Cs for each s ∈ S, in terms of
the pre-order �s given by: u �s v if and only if each set in C containing s
and v also contains u, and by Ms :=

⋂
Cs and Ls :=

⋃
Cs; next to that we

should know if ∅ belongs to C.
We can derive the information on Č as follows:



836 Chapter 49. Submodularity more generally

(49.49)
⋂

Č = ∅,
⋃

Č =
⋃

s∈S

Ls; u � v if and only if u ∈ Mv.

So we can decide in polynomial time if a set U belongs to Č.
For any intersecting submodular function f on C, the restriction fs of

f to Cs is submodular. So by the results of Section 49.3, we can find a set
minimizing f in strongly polynomial time.

For any U ∈ Č, we can calculate f̌(U), as defined in (49.43), in strongly
polynomial time, having a value giving oracle for f . To see this, we use (49.48).
We can assume that ∅ �∈ C.

Order the elements of U as t1, . . . , tk such that if Ltj
⊂ Lti

, then j < i.
For i = 0, . . . , k, let Ui := Lt1 ∪ · · · ∪ Lti

. So Uk = U .
Initially, set x(t) := 0 for each t ∈ U . Next, for i = 1, . . . , k, calculate

(49.50) µ := min{f(T ) − x(T ) | T ∈ C, ti ∈ T ⊆ Ui},

and reset x(ti) := x(ti)+µ. We prove, by induction on i, that for i = 0, 1, . . . , k
we have, after processing t1, . . . , ti:

(49.51) (i) x(T ) ≤ f(T ) for each T ∈ C with T ⊆ Ui,
(ii) for each j = 1, . . . , i there exists a T ∈ C with tj ∈ T ⊆ Ui and

x(T ) = f(T ).

For i = 0 this is trivial. Let i ≥ 1. Consider any T ∈ C with T ⊆ Ui. If ti ∈ T ,
then x(T ) ≤ f(T ), as at processing ti we have added µ to x(ti). If ti �∈ T ,
then T ⊆ Ui−1. For suppose that there exists a tj ∈ T with tj �∈ Ui−1. So
j > i and tj ∈ Lti

, and therefore Ltj
⊆ Lti

, implying Ltj
= Lti

(since if
Ltj

⊂ Lti
, then j < i). But then ti ∈ Ltj

⊆ T , contradicting the fact that
ti �∈ T . So T ⊆ Ui−1. As ti �∈ T , x(T ) did not change at processing ti, and
hence we know x(T ) ≤ f(T ) by induction. This proves (49.51)(i).

To see (49.51)(ii), choose j ≤ i. If j = i, there exists after processing ti a
T as required, as we have added µ to x(ti). If j < i, by induction there exists
a T ∈ C with tj ∈ T ⊆ Ui−1 and x(T ) = f(T ) before processing ti. If ti �∈ T ,
x(T ) = f(T ) is maintained at processing ti. If ti ∈ T , then ti ∈ Ui−1, and
so ti ∈ Ltj

for some j < i. Hence Lti
⊆ Ltj

. So, by the choice of the order
of U , Lti

= Ltj
. Hence before processing ti we have x(T ′) ≤ f(T ′) for each

T ′ ⊆ Ui. So, as x(T ) = f(T ) and ti ∈ T , x(ti) is not modified at processing ti.
Therefore, x(T ) = f(T ) holds also after processing ti. This proves (49.51)(ii).

This shows (49.51), which gives, taking i = k, that x(T ) ≤ f(T ) for each
T ∈ C with T ⊆ U , and that for each t ∈ U , we have a T containing t with
x(T ) = f(T ). We can replace any two T and T ′ with T ∩ T ′ �= ∅ by T ∪ T ′.
We end up with a partition T of U with x(U) =

∑
T∈T f(T ). Hence we know

(49.52) f̌(U) ≥ x(U) =
∑

T∈T

x(T ) =
∑

T∈T

f(T ) ≥ f̌(U),

and therefore we have equality throughout.
Having this, we can reduce the problem of maximizing wTx over EPf ,

where f is intersecting submodular, to that of maximizing wTx over EPf̌ ,
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which can be done in strongly polynomial time by the results of Section 49.3.
Similarly for intersections of two such polyhedra EPf1

and EPf2
.

49.8. Intersecting a polymatroid and a
contrapolymatroid

For an intersecting family C, a function g : C → R is called supermodu-
lar on intersecting pairs, or intersecting supermodular, if −g is intersecting
submodular.

Let S be a finite set. Let C and D be collections of subsets of S and let
f : C → R and g : D → R. Consider the system

(49.53) x(U) ≤ f(U) for U ∈ C,
x(U) ≥ g(U) for U ∈ D.

Theorem 49.5. If C and D are intersecting families, f : C → R is inter-
secting submodular, and g : D → R is intersecting supermodular, then system
(49.53) is box-TDI.

Proof. Choose w ∈ ZS , and consider the dual problem of maximizing wTx
over (49.53):

(49.54) min{
∑

U∈C

y(U)f(U) −
∑

U∈D

z(U)g(U) |

y ∈ RC
+, z ∈ RD

+,
∑

U∈C

y(U)χU −
∑

U∈D

z(U)χU = w}.

Let y, z attain this minimum. Define

(49.55) u :=
∑

U∈C

y(U)χU and v :=
∑

U∈D

z(U)χU .

So y attains

(49.56) min{
∑

U∈C

y(U)f(U) | y ∈ RC
+,

∑

U∈C

y(U)χU = u}

and z attains

(49.57) max{
∑

U∈D

z(U)g(U) | z ∈ RD
+,

∑

U∈D

z(U)χU = v}.

By Theorem 49.3, (49.56) has an optimum solution y with F := {U ∈ C |
y(U) > 0} laminar. Similarly, (49.57) has an optimum solution z with G :=
{U ∈ D | z(U) > 0} laminar. Now F and G determine a totally unimodular
submatrix (by Theorem 41.11), and hence by Theorem 5.35, (49.53) is box-
TDI.
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49.9. Submodular functions on a crossing family

Finally, we consider submodular functions defined on a crossing family. The
results discussed above for submodular functions on intersecting families do
not all transfer to crossing families. But certain restricted versions still hold.

A family C of subsets of a set S is called a crossing family if for all T, U ∈ C
one has:

(49.58) if T ∩ U �= ∅ and T ∪ U �= S, then T ∩ U, T ∪ U ∈ C.

A function f : C → R, defined on a crossing family C, is called submodular
on crossing pairs, or crossing submodular, if for all T, U ∈ C with T ∩ U �= ∅
and T ∪ U �= S:

(49.59) f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U).

In general, the system

(49.60) x(U) ≤ f(U) for U ∈ C

is not TDI. For instance, if S = {1, 2, 3}, C = {{1, 2}, {1, 3}, {2, 3}}, from S,
and f(U) := 1 for each U ∈ C, then (49.60) not even determines an integer
polyhedron (as (1

2 , 1
2 , 1

2 )T is a vertex of it).
However, for any k ∈ R, the system

(49.61) x(U) ≤ f(U) for U ∈ C,
x(S) = k

is box-TDI. This can be done by reduction to Corollary 49.3a. Similarly for
pairs of such functions. This was shown by Frank [1982b,1984a] and Fujishige
[1984e].

Let C be a crossing family of subsets of a set S. Let Ĉ be the collection of
all nonempty intersections of sets in C (we allow the intersection of 0 sets, so
S ∈ Ĉ). Since C is a crossing family, we know

(49.62) Ĉ = {U | U �= ∅; ∃P ⊆ C : P is a copartition of S \ U},

where a copartition of U is a collection P of subsets of S such that the
collection {S \ T | T ∈ P} is a partition of U . We call the copartition proper
if T �= S for each T ∈ P.

Note that, in (49.62), restricting P to proper copartitions of S \ U , does
not modify Ĉ. We allow P = ∅, so S ∈ Ĉ.

Define f̂ : Ĉ → R by:

(49.63) f̂(U) := min{
∑

P∈P

f(P ) | P ⊆ C is a proper copartition of S \ U}

for U ∈ Ĉ. So f̂(S) = 0. Then:

Theorem 49.6. Ĉ is an intersecting family and f̂ is submodular on inter-
secting pairs.
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Proof. Define, for s ∈ S,

(49.64) Ĉs := {U ∈ Ĉ | s ∈ U} and D := {S \ U | s ∈ U ∈ C}.

As C is crossing, D is intersecting. Hence Ď is a lattice family. As Ĉs =
{S \ U | U ∈ Ď}, also Ĉs is a lattice family. As this is true for each s ∈ S, Ĉ
is intersecting.

To prove that f̂ is intersecting submodular, it suffices to show that for
each s ∈ S, the restriction f̂s of f̂ to Ĉs is submodular. Define g : D → R

by g(U) := f(S \ U) for U ∈ D. Then g is intersecting submodular (as f is
crossing submodular). Hence, by Theorem 49.4, ǧ is submodular on Ď. As

f̂s(U) = ǧ(S \ U) for U ∈ Ĉs, f̂s is submodular.

Fujishige [1984e] showed that the following box-TDI result can be derived
from Corollary 49.3a:

Theorem 49.7. Let C be a crossing family of subsets of S, let f : C → R

be crossing submodular, and let k ∈ R. Then system (49.61) is box-TDI and
determines the polyhedron of maximal vectors of EPf ′ for some submodular
function f ′ defined on a lattice family.

Proof. We can assume that k = 0, since, choosing any t ∈ S and resetting
f(U) := f(U) − k for all U ∈ C with t ∈ U , does not change the box-total
dual integrality of (49.61). We can also assume that ∅ �∈ C.

The box-total dual integrality of (49.61) follows from that of

(49.65) x(U) ≤ f̂(U) for U ∈ Ĉ,
x(S) = 0,

as (49.65) and (49.61) have the same solution set, and as each constraint
in (49.65) is a nonnegative integer combination of constraints in (49.61).
The box-total dual integrality of (49.65) follows from Corollary 49.3a (using
Theorem 5.25). It also shows that the solution set of (49.61) is the set of
maximal vectors of EPf ′ for some submodular function f ′ defined on a lattice
family.

Frank and Tardos [1984b] observed that this implies a relation with ma-
troids:

Corollary 49.7a. If C is a crossing family of subsets of a set S, f : C → Z

is crossing submodular, and k ∈ Z, then the collection

(49.66) {B ⊆ S
∣∣ |B| = k, |B ∩ U | ≤ f(U) for each U ∈ C}

forms the collection of bases of a matroid (if nonempty).

Proof. Directly from Theorem 49.7, using the observations on (44.43) and
(49.11).
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Similarly, the box-total dual integrality of pairs of such systems follows:

Theorem 49.8. For i = 1, 2, let Ci be a crossing family of subsets of a set
S, let fi : Ci → R be crossing submodular, and let k ∈ R. Then the system

(49.67) x(U) ≤ f1(U) for U ∈ C1,
x(U) ≤ f2(U) for U ∈ C2,
x(S) = k,

is box-TDI.

Proof. Similar to the proof of the previous theorem, by reduction to Corollary
49.3b.

This implies the integrality of polyhedra:

Corollary 49.8a. For i = 1, 2, let Ci be a crossing family of subsets of a set
S, let fi : Ci → R be crossing submodular, and let k ∈ R. If f1, f2, and k are
integer, system (49.67) determines a box-integer polyhedron.

Proof. Directly from Theorem 49.8.

49.10. Complexity

The reduction given in the proof of Theorem 49.6 also enables us to calculate
f̂(U) from a value giving oracle for f , similar to the proof in Section 49.7.
We assume that C is given by descriptions of the lattice families Cs,t := {U ∈
C | s ∈ U, t �∈ U} as in Section 49.3.

Note that

(49.68) EPf̂ ∩ {x | x(S) = 0} = EPf ∩ {x | x(S) = 0}.

This follows from the fact that if x ∈ EPf and x(S) = 0, then for any

U ∈ Ĉ and any proper copartition P = {U1, . . . , Up} of S \ U with f(U) =∑
P∈P f(P ), one has:

(49.69) x(U) = −x(S \ U) = −
∑

P∈P

x(S \ P ) =
∑

P∈P

x(P ) ≤
∑

P∈P

f(P )

= f(U).

Having this, the problem of maximizing wTx over EPf ∩{x | x(S) = 0}, where
f is crossing submodular, is reduced to the problem of maximizing wTx over
EPf̂∩{x | x(S) = 0}. The latter problem can be solved in strongly polynomial
time by the results of Section 49.7. Similar results hold for intersections of
two such polyhedra:

Theorem 49.9. For crossing families C1, C2 of subsets of a set S, crossing
submodular functions f1 : C1 → Q and f2 : C2 → Q, k ∈ Q, and w ∈ QS, one
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can find an x ∈ EPf1
∩ EPf2

with x(S) = k and maximizing wTx in strongly
polynomial time.

Proof. From the above.

If C is a crossing family and f : C → Q is crossing submodular, then we
can find its minimum value in polynomial time, as, for each s, t ∈ S, we can
minimize f over the lattice family {U ∈ C | s ∈ U, t �∈ U}, and take the
minimum of all these minima, and of the values in ∅ and S (if in C).

Hence we can decide in polynomial time if a given vector x ∈ QS belongs
to EPf , by testing if the minimum value of the crossing submodular function
g : C → Q defined by

(49.70) g(U) := f(U) − x(U)

for U ∈ C, is nonnegative.

49.10a. Nonemptiness of the base polyhedron

Let C be a crossing family of subsets of a set S and let f : C → R be crossing sub-
modular. We give a theorem of Fujishige [1984e] characterizing when EPf contains
a vector x with x(S) = 0. If S ∈ C and f(S) = 0, then the set EPf ∩{x | x(S) = 0}
is called the base polyhedron of f .

To give the characterization, again call a collection P ⊆ C a copartition of S if
the collection {S \ U | U ∈ P} is a partition of S.

Theorem 49.10. EPf contains a vector x satisfying x(S) = 0 if and only if

(49.71)
∑

U∈P

f(U) ≥ 0

for each partition or copartition P ⊆ C of S. If moreover f is integer, there exists
an integer such vector x.

Proof. The condition is necessary, since if x ∈ EPf satisfies x(S) = 0 and P ⊆ C
is a partition of S, then

(49.72)
∑

U∈P

f(U) ≥
∑

U∈P

x(U) = x(S) = 0.

Similarly, if P ⊆ C is a copartition of S, then

(49.73)
∑

U∈P

f(U) ≥
∑

U∈P

x(U) =
∑

U∈P

(x(S) − x(S \ U)) = |P|x(S) − x(S) = 0.

To see sufficiency, let D := Ĉ and g := f̂ (cf. (49.62)). By Theorem 49.6, D is an
intersecting family and g is intersecting submodular. Moreover, S ∈ D. Let E := Ď
and h := ǧ. By Theorem 49.4, E is a lattice family and h is submodular.

Now if EPh contains a vector x with x(S) = 0, then x ∈ EPg, and hence
x ∈ EPf (using x(S) = 0). So it suffices to show that EPh contains a vector x with
x(S) = 0.

By Corollary 49.1c, in order to show this, it suffices to show that h(S) ≥ 0. The
solution can be taken integer if f (hence h) is integer.

Suppose h(S) < 0. Since h = ǧ, D contains a proper partition P of S with
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(49.74) h(S) =
∑

U∈P

g(U).

Since g = f̂ , for each U ∈ P, C contains a proper copartition QU of S \U such that

(49.75) g(U) =
∑

T∈QU

f(T ).

Let F be the family consisting of the union of the QU over U ∈ P, taking multi-
plicities into account. Then

(49.76) (i) all elements of S are contained in the same number of sets in F ;

(ii)
∑

T∈F

f(T ) < 0.

Now apply the following operation as often as possible to F : if T, W ∈ F with
T ∩ W �= ∅, T ∪ W �= S, and T �⊆ W �⊆ T , replace T and W by T ∩ W and T ∪ W .
This maintains (49.76) and decreases

∑
T∈F |T ||S \ T | (by Theorem 2.1). So the

process terminates, and we end up with a cross-free family : for all T, W ∈ F we
have T ⊆ W or W ⊆ T or T ∩ W = ∅ or T ∪ W = S.

We show that F contains a partition or copartition P of S. By (49.71), F \
P again satisfies (49.76), and hence we can repeat. We end up with F empty, a
contradiction.

To show that F contains a partition or copartition of S, choose U ∈ F . If U = ∅
or U = S we are done (taking P := {U}). So we can assume that ∅ �= U �= S. Let
X be the collection of inclusionwise maximal subsets of S \U that belong to F . Let
Y be the collection of inclusionwise minimal supersets of S \ U that belong to F .
Since F is cross-free and U �= ∅, the sets in X are pairwise disjoint. Similarly, the
complements of the sets in Y are pairwise disjoint.

If
⋃

X = S \ U , then X ∪ {U} is a partition of S as required. If
⋂

Y = S \ U ,
then Y ∪ {U} is a copartition of S as required. So we can assume that there exist
s ∈ (S \U) \

⋃
X and t ∈ U ∩

⋂
Y. Since each element of S is contained in the same

number of sets in F , and since s �∈ U , and t ∈ U , there exists a T ∈ F with s ∈ T
and t �∈ T . So T �⊆ U �⊆ T .

Hence T ∩ U = ∅ or T ∪ U = S. However, if T ∩ U = ∅, then T is contained
in some set in X , and hence s ∈ T ⊆

⋃
X , a contradiction. If T ∪ U = S, then T

contains some set in Y, and hence t �∈ T ⊇
⋂

Y, again a contradiction.

This theorem will be used in proving Theorem 61.8.
Fujishige and Tomizawa [1983] characterized the vertices of the base polyhedron

of a submodular function defined on a lattice family.

49.11. Further results and notes

49.11a. Minimizing a submodular function over a subcollection of
a lattice family

In Section 45.7 we saw that the minimum of a submodular function over the odd
subsets can be found in strongly polynomial time. A generalization of minimizing a
submodular function over the odd subsets (cf. Section 45.7), was given by Grötschel,
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Lovász, and Schrijver [1981,1984a] (the latter paper corrects a serious flaw in the
first paper found by A. Frank). This was extended by Goemans and Ramakrishnan
[1995] to the following.

Let C be a lattice family and let D be a subcollection of C with the following
property:

(49.77) for all X, Y ∈ C \ D: X ∩ Y ∈ D ⇐⇒ X ∪ Y ∈ D.

Examples are: D := {X ∈ C
∣∣ |X| �≡ q(mod p)} for some natural numbers p, q, and

D := C \ A for some antichain or some sublattice A ⊆ C.
To prove that for a submodular function on C, the minimum over D can be

found in strongly polynomial time, Goemans and Ramakrishnan gave the following
interesting lemma:

Lemma 49.11α. Let C be a lattice family, let f be a submodular function on C, let
D ⊆ C satisfy (49.77), and let U minimize f(U) over U ∈ D. If U �= ∅, then there
exists a u ∈ U such that f(W ) ≥ f(U) for each subset W of U with W ∈ C and
u ∈ W .

Proof. Suppose not. Then for each u ∈ U there exists a Wu ∈ C satisfying u ∈
Wu ⊆ U and f(Wu) < f(U). Choose each Wu inclusionwise maximal with this
property. Then

(49.78) f(
⋂

u∈T

Wu) < f(U)

for each nonempty T ⊆ U . To prove this, choose a counterexample T with |T |
minimal. Then |T | > 1, since f(Wu) < f(U) for each u ∈ U . Choose t ∈ T . Since⋂

u∈T Wu �=
⋂

u∈T−t Wu by the minimality of T , we know that
⋂

u∈T−t Wu �⊆ Wt,
and hence Wt is a proper subset of (

⋂
u∈T−t Wu) ∪ Wt. So by the maximality of

Wt, f((
⋂

u∈T−t Wu) ∪ Wt) ≥ f(U). Hence

(49.79) f(U) ≤ f(
⋂

u∈T

Wu) = f((
⋂

u∈T−t

Wu) ∩ Wt)

≤ f(
⋂

u∈T−t

Wu) + f(Wt) − f((
⋂

u∈T−t

Wu) ∪ Wt)

< f(U) + f(U) − f(U) = f(U),

a contradiction.
This shows (49.78), which implies

(49.80)
⋂

u∈T

Wu �∈ D

for each nonempty T ⊆ U .
This can be extended to:

(49.81) X := (
⋂

u∈T

Wu) ∩ (
⋃

u∈V

Wu) �∈ D

for all disjoint T, V ⊆ U with V nonempty. Suppose to the contrary that X ∈
D. Choose such X with |V | minimal. By (49.80), |V | ≥ 2. Choose v ∈ V . The
minimality of V gives
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(49.82) (
⋂

u∈T

Wu) ∩ Wv �∈ D and (
⋂

u∈T

Wu) ∩ (
⋃

u∈V \{v}

Wu) �∈ D.

By assumption, the union of these sets belongs to D. Hence, by (49.77), also their
intersection belongs to D; that is

(49.83) (
⋂

u∈T∪{v}

Wu) ∩ (
⋃

u∈V \{v}

Wu) ∈ D

This contradicts the minimality of |V |.
This proves (49.81), which gives for T := ∅ and V := U a contradiction, since

then X = U ∈ D.

This lemma is used in proving the following theorem, where we assume that C
is given as in Section 49.3, f is given by a value giving oracle, and D is given by an
oracle telling if any given set in C belongs to D:

Theorem 49.11. Given a submodular function f on a lattice family C, and a
subcollection D of C satisfying (49.77), a set U minimizing f(U) over U ∈ D can
be found in strongly polynomial time.

Proof. We describe the algorithm. For all distinct s, t ∈ S define

(49.84) Cs,t := {U ∈ C | s ∈ U, t �∈ U}.

Let Us,t be the inclusionwise minimal set minimizing f over Cs,t. (Us,t can be found
by minimizing a slight perturbation of f .) Choose in

(49.85) {∅, S} ∪ {Us,t | s, t ∈ S}

a U ∈ D minimizing f . Then U minimizes f over D.
To see this, we must show that set (49.85) contains a set minimizing f over D.

Let W be a set minimizing f over D, with |W | minimal. If W ∈ {∅, S} we are done.
So we can assume that W �∈ {∅, S}. By Lemma 49.11α (applied to the function
f̃(X) := f(S \ X) for X ⊆ S), there exists an element t ∈ S \ W such that each
T ⊇ W with t �∈ T satisfies f(T ) ≥ f(W ).

The lemma also gives the existence of an s ∈ W such that each T ⊂ W with s ∈
T satisfies f(T ) > f(W ). Indeed, for small enough ε > 0, W minimizes f(X)+ε|X|
over X ∈ D. Hence, by Lemma 49.11α, there exists an s ∈ W such that each
T ⊆ W with s ∈ T satisfies f(T )+ ε|T | ≥ f(W )+ ε|W |. This implies f(T ) > f(W )
if T �= W .

We show that W = Us,t. Indeed, W minimizes f over Cs,t, since

(49.86) f(Us,t) ≥ f(W ∩ Us,t) + f(W ∪ Us,t) − f(W ) ≥ f(W ) + f(W ) − f(W )
= f(W ).

Moreover, W ⊆ Us,t, as otherwise W ∩Us,t ⊂ W , implying that the second inequal-
ity in (49.86) would be strict.

So f(W ) = f(Us,t), and hence, by the minimality of Us,t, we have W = Us,t.

It is interesting to note that this algorithm implies that the set {∅, S} ∪ {Us,t |
s, t ∈ S} contains a set minimizing f over D, for any nonempty subcollection D of
C satisfying (49.77).
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Goemans and Ramakrishnan showed that if C and D are symmetric (that is,
U ∈ C ⇐⇒ S \ U ∈ C, and similarly for D) and ∅ �∈ D, then (49.77) is equivalent
to: if X, Y ∈ C \ D are disjoint, then X ∪ Y ∈ C \ D.

Related work was reported by Benczúr and Fülöp [2000].

49.11b. Generalized polymatroids

We now describe a generalization, given by Frank [1984b], that comprises sub-
and supermodular functions, and (extended) polymatroids and contrapolymatroids.
(Hassin [1978,1982] described the case C = D = P(S).)

Let C and D be intersecting families of subsets of a finite set S and let f : C → R

and g : D → R. We say that the pair (f, g) is paramodular if

(49.87) (i) f is submodular on intersecting pairs,
(ii) g is supermodular on intersecting pairs,
(iii) if T ∈ C and U ∈ D with T \ U �= ∅ and U \ T �= ∅, then T \ U ∈ C

and U \ T ∈ D, and

f(T \ U) − g(U \ T ) ≤ f(T ) − g(U).

If (f, g) is paramodular, the solution set P of the system (for x ∈ RS):

(49.88) x(U) ≤ f(U) for U ∈ C,
x(U) ≥ g(U) for U ∈ D,

is called a generalized polymatroid (determined by (f, g)).
Generalized polymatroids generalize polymatroids (where g(U) = 0 for each

U ⊆ S), extended polymatroids (where D = ∅), contrapolymatroids (where C = ∅
and g({s}) ≥ 0 for each s ∈ S), and extended contrapolymatroids (where C = ∅).

The intersection of a generalized polymatroid with a ‘box’ {x | d ≤ x ≤ c}
(for d, c ∈ RS) is again a generalized polymatroid: we can add {s} to C and to D
if necessary, and (re)define f({s}) := w(s) and g({s}) := d(s), if necessary. This
transformation does not violate the paramodularity of (f, g).

Another transformation is as follows. Let P ⊆ RS be a generalized polymatroid
and let κ, λ ∈ R. Let t be a new element and let S′ := S ∪ {t}. Let P ′ be the

polyhedron in RS′

given by

(49.89) P ′ := {(x, η) | x ∈ P, λ ≤ x(S) + η ≤ κ}.

Then P ′ again is a generalized polymatroid, determined by the functions obtained
by extending C and D with S′ and extending f, g with the values f(S′) := κ and
g(S′) := λ.

The class of generalized polymatroids is closed under projections. That is, for
any generalized polymatroid P ⊆ RS and any t ∈ S, the set

(49.90) P ′ := {x ∈ R
S−t | ∃η : (x, η) ∈ P}

is again a generalized polymatroid. This will be shown as Corollary 49.13c.
The following theorem will imply that system (49.88) is TDI. Hence, if f and g

are integer, then P is integer.

Theorem 49.12. System (49.88) is box-TDI.

Proof. Let t be a new element. Define
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(49.91) B := C ∪ {(S \ D) ∪ {t} | D ∈ D}.

Then B is a crossing family of subsets of S ∪{t}. Define e : B → R by: e(C) := f(C)
for C ∈ C and e((S \D)∪{t}) := −g(D) for D ∈ D. Then e is crossing submodular.
Hence, by Theorem 49.7, system

(49.92) x(U) ≤ e(U) for U ∈ B,
x(S ∪ {t}) = 0,

is box-TDI. Therefore, by Theorem 5.27, system (49.88) is box-TDI.

This gives for the integrality of generalized polymatroids:

Corollary 49.12a. If (f, g) is paramodular and f and g are integer, the generalized
polymatroid is box-integer.

Proof. Directly from Theorem 49.12.

More generally one has the box-total dual integrality of the system

(49.93) x(U) ≤ f1(U) for U ∈ C1,
x(U) ≥ g1(U) for U ∈ D1,
x(U) ≤ f2(U) for U ∈ C2,
x(U) ≥ g2(U) for U ∈ D2,

for pairs of paramodular pairs (fi, gi):

Corollary 49.12b. For i = 1, 2, let Ci and Di be intersecting families and let
fi : Ci → R, gi : Di → R form a paramodular pair. Then system (49.93) is box-
TDI.

Proof. Similar to the proof of Theorem 49.12, by reduction to Theorem 49.8.

This gives for primal integrality:

Corollary 49.12c. If f1, g1, f2 and g2 are integer, the intersection of the associated
generalized polymatroids is box-integer.

Proof. Directly from Corollary 49.12b.

Another consequence is the following box-TDI result of McDiarmid [1978]:

Corollary 49.12d. Let f1 and f2 be submodular set functions on a set S and let
λ, κ ∈ R. Then the system

(49.94) x(U) ≤ f1(U) for U ⊆ S,
x(U) ≤ f2(U) for U ⊆ S,
λ ≤ x(S) ≤ κ,

is box-TDI.

Proof. Redefine f1(S) := min{f1(S), κ}, and define g1 : {S} → R by g1(S) := λ,
and g2 : ∅ → R. Then (f1, g1) and (f2, g2) are paramodular pairs, and the box-total
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dual integrality of (49.94) is equivalent to the box-total dual integrality of (49.93).

From Corollary 49.12c one can derive that the intersection of two integer gen-
eralized polymatroids is integer again. To prove this, we show that for any integer
generalized polymatroid P there exists a paramodular pair (f, g) determining P ,
with f and g integer.

Let P be a generalized polymatroid, determined by the paramodular pair (f, g)
of functions f : C → R and g : D → R, where C and D are intersecting families. For
any U ⊆ S, define

(49.95) f̃(U) := max{x(U) | x ∈ P} and g̃(U) := min{x(U) | x ∈ P}.

So f̃ and g̃ are integer if P is integer.
Let

(49.96) C̃ := {U ∈ C | f̃(U) < ∞} and D̃ := {U ∈ D | g̃(U) > −∞}.

We restrict f̃ and g̃ to C̃ and D̃ respectively. We show that (f̃ , g̃) is a paramodular
pair determining P .

It is convenient to note that if w ∈ RS with w = w1 + w2, then

(49.97) max{wTx | x ∈ P} ≤ max{wT

1 x | x ∈ P} + max{wT

2 x | x ∈ P}.

Theorem 49.13. For any generalized polymatroid P , C̃ and D̃ are intersecting
families, and the pair (f̃ , g̃) is paramodular and determines P .

Proof. We first show the following. Let w ∈ ZS and let λ > 0 be such that ws ≤ λ
for each s ∈ S. Let U := {s ∈ S | w(s) = λ} and w′ := w − χU . Then

(49.98) max{wTx | x ∈ P} = max{w′Tx | x ∈ P} + f̃(U).

Here ≤ follows from (49.97), by definition of f̃ . Equality is proved by induction on
|U |, the case U = ∅ being trivial; so let U �= ∅.

Let y, z be an optimum solution to the dual of max{wTx | x ∈ P}:

(49.99) min{
∑

T∈C

yT f(T ) −
∑

T∈D

zT g(T ) |

y ∈ R
C
+, z ∈ R

D
+ ,

∑

T∈C

yT χT −
∑

T∈D

zT χT = w}.

Define F := {T ∈ C | yT > 0} and G := {T ∈ D | zT > 0}. Similarly to Theorem
49.3, we can assume that F ∪ G is laminar.

Choose u ∈ U , and let W be an inclusionwise minimal set in F containing
u. (Such a set exists, as w(s) = λ > 0.) Let H be the collection of inclusionwise
maximal sets in G contained in W − u. As G is laminar, the sets in H are disjoint.
Moreover, each t ∈ W \ U is contained in some set in H: since w(t) < w(u) and
since every set in F containing u also contains t (as t ∈ W ), there exists an X ∈ G
with t ∈ X and u �∈ X; as F ∪ G is laminar, we know that X ⊆ W − u.

Now let Y := W \
⋃

H. So Y is a nonempty subset of U . Define w′′ := w − χY ,
let y′ be obtained from y by decreasing y(W ) by 1, and let z′ be obtained from z
by decreasing y(H) by 1 for each H ∈ H. So (since χY = χW −

∑
H∈H χH)
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(49.100)
∑

T∈C

y′(T )χT −
∑

T∈D

z′(T )χT = w′′

and

(49.101) f̃(Y ) ≤ f(W ) −
∑

H∈H

g(H).

Moreover, setting U ′ := U \ Y , we have (by (49.97))

(49.102) f̃(U) ≤ f̃(Y ) + f̃(U ′),

and by our induction hypothesis, as |U ′| < |U |,

(49.103) max{w′′Tx | x ∈ P} = max{w′Tx | x ∈ P} + f̃(U ′).

Hence

(49.104) max{wTx | x ∈ P} =
∑

T∈C

y(T )f(T ) −
∑

T∈D

z(T )g(T )

=
∑

T∈C

y′(T )f(T ) −
∑

T∈D

z′(T )g(T ) + f(W ) −
∑

H∈H

g(H)

≥ max{w′′Tx | x ∈ P} + f̃(Y ) = max{w′Tx | x ∈ P} + f̃(U ′) + f̃(Y )

≥ max{w′Tx | x ∈ P} + f̃(U),

thus proving (49.98).

We next derive that f̃ is submodular on intersecting pairs. Choose X, Y ∈ C̃
with X ∩ Y �= ∅. Define w := χX + χY . Then by (49.98) and (49.97),

(49.105) f̃(X ∩ Y ) + f̃(X ∪ Y ) = max{wTx | x ∈ P} ≤ f̃(X) + f̃(Y ).

So C̃ is an intersecting family and f̃ is submodular on intersecting pairs. By symme-
try, it follows that D̃ is an intersecting family and g̃ is supermodular on intersecting
pairs.

Finally, to see that (f, g) is paramodular, let X ∈ C and Y ∈ D. Define w :=
χX − χY . Again, by (49.98) and (49.97),

(49.106) f̃(X \ Y ) − g̃(Y \ X) = max{wTx | x ∈ P} ≤ f̃(X) − g̃(Y ).

So C̃ and D̃ are intersecting families, and the pair (f̃ , g̃) is paramodular. It deter-
mines P , since P is determined by upper and lower bounds on x(U) for subsets U
of S.

Corollary 49.12a implies:

Corollary 49.13a. A generalized polymatroid P is integer if and only if there is a
paramodular pair (f, g) defining P with f and g integer.

Proof. Sufficiency follows from Corollary 49.12a. Necessity follows from Theorem
49.13, as P is determined by (f̃ , g̃), where f̃ and g̃ are integer if P is integer.

A second consequence is:

Corollary 49.13b. The intersection of two integer generalized polymatroids is in-
teger.
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Proof. Directly by combining Corollaries 49.12c and 49.13a.

We should note that the collections C̃ and D̃ found in the proof of Theorem
49.13 are lattice families and that f̃ and g̃ are sub- and supermodular respectively.
Moreover, f̃(T \ U) − g̃(U \ T ) ≤ f̃(T ) − g̃(U) for each pair T ∈ C̃, U ∈ D̃.

This implies that projections of generalized polymatroids are again generalized
polymatroids (Frank [1984b]):

Corollary 49.13c. Let P ⊆ RS be a generalized polymatroid and let t ∈ S. Define
S′ := S − t. Then the projection

(49.107) P ′ := {x ∈ R
S′

| ∃η : (x, η) ∈ P}

is again a generalized polymatroid.

Proof. We can assume that P is nonempty, that C and D are lattice families, and
that P is determined by a paramodular pair (f, g) = (f̃ , g̃) as above. Let C′ and D′

be the collections of sets in C and D respectively not containing t. Let f ′ := f |C′

and g′ := g|D′.
Trivially, (f ′, g′) is a paramodular pair. We claim that P ′ is equal to the gener-

alized polymatroid Q determined by (f ′, g′). Trivially, P ′ ⊆ Q. To see the reverse
inclusion, let x ∈ Q. Let η′ be the largest real such that x(T − t) + η′ ≤ f(T ) for
each T ∈ C \C′. Let η′′ be the smallest real such that x(U − t)+η′′ ≥ g(U) for each
U ∈ D \ D′.

If x �∈ P ′, then η′ < η′′, and hence there exist T ∈ C and U ∈ D with t ∈ T ∩ U
and f(T ) − x(T − t) < g(U) − x(U − t). Hence

(49.108) x(T \ U) − x(U \ T ) = x(T − t) − x(U − t) > f(T ) − g(U)
≥ f(T \ U) − g(U \ T ).

This contradicts the fact that x(T \ U) ≤ f(T \ U) and x(U \ T ) ≥ g(U \ T ), as
x ∈ Q.

For results on the dimension of generalized polymatroids, see Frank and Tardos
[1988], which paper surveys generalized polymatroids and submodular flows. More
results on generalized polymatroids are reported by Fujishige [1984b], Nakamura
[1988b], Naitoh and Fujishige [1992], and Tamir [1995].

49.11c. Supermodular colourings

A colouring-type of result on supermodular functions was shown by Schrijver [1985].
We give the proof based on generalized polymatroids found by Tardos [1985b].

Theorem 49.14. Let C1 and C2 be intersecting families of subsets of a set S, let
g1 : C1 → Z and g2 : C2 → Z be intersecting supermodular, and let k ∈ Z+ with
k ≥ 1. Then S can be partitioned into classes L1, . . . , Lk such that

(49.109) gi(U) ≤ |{j ∈ {1, . . . , k} | Lj ∩ U �= ∅}|

for each i = 1, 2 and each U ∈ Ci if and only if

(49.110) gi(U) ≤ min{k, |U |}
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for each i = 1, 2 and each U ∈ Ci.

Proof. Necessity is easy. Sufficiency is shown by induction on k, the case k = 0
being trivial. By induction, it suffices to find a subset L of S such that

(49.111) |U \ L| ≥ gi(U) − 1 and, if gi(U) = k, then U ∩ L �= ∅.

Indeed, in that case we can apply induction to the functions g′
i : C′

i → Z on C′
i :=

{U \ L | U ∈ C}, defined by

(49.112) g′
i(U \ L) :=

{
gi(U) − 1 if U ∩ L �= ∅,
gi(U) if U ∩ L = ∅,

for U ∈ Ci.
For i = 1, 2, consider the system:

(49.113) (i) 0 ≤ xs ≤ 1 for s ∈ S,
(ii) x(U) ≤ |U | − gi(U) + 1 for U ∈ Ci,
(iii) x(U) ≥ 1 for U ∈ Ci with gi(U) = k.

This system determines an integer generalized polymatroid. This can be seen as
follows. Let Di be the collection of inclusionwise minimal sets in {U ∈ Ci | gi(U) =
k}. So Di consists of disjoint sets (as Ci is intersecting and as gi(U) ≤ k for each
U ∈ Ci). Let

(49.114) C′
i := {U ∈ Ci | ∀T ∈ Di : U ⊆ T or T ∩ U = ∅}.

Then (49.113) has the same solution set as:

(49.115) (i) 0 ≤ xs ≤ 1 for s ∈ S,
(ii) x(U) ≤ |U | − gi(U) + 1 for U ∈ C′

i,
(iii) x(U) ≥ 1 for U ∈ Di.

Indeed, (49.115)(iii) implies (49.113)(iii) (as x ≥ 0). Moreover, for any U ∈ Ci with
T ∩ U �= ∅ for some T ∈ Di, one has

(49.116) gi(T ∩ U) ≥ gi(T ) + gi(U) − gi(T ∪ U) ≥ gi(U)

(as gi(T ∪ U) ≤ k = gi(T )). So with (49.115)(iii) we have:

(49.117) x(U) ≤ x(T ∩ U) + |U \ T | ≤ |T ∩ U | − gi(T ∩ U) + 1 + |U \ T |
≤ |U | − gi(U) + 1

(as xs ≤ 1 for all x ∈ U \ T ). Hence (49.113) and (49.115) have the same solution
set.

Now (49.115) is a system defining a generalized polymatroid, as one easily
checks (condition (49.87)(iii) follows, since if T ∈ C′

i and U ∈ Di with T \ U �= ∅
and U\T �= ∅, then, by definition of C′

i, T and U are disjoint, and then the inequality
in (49.87)(iii) is trivial). It is integer, as the right-hand sides in (49.115) are integer.

Also, the intersection of these generalized polymatroids for i = 1 and i = 2
is nonempty, since the vector x := k−1 · 1 belongs to it. (49.115)(i) and (iii) hold
trivially. To see (ii), we have

(49.118) x(U) = 1
k
|U | = |U |− k−1

k
|U | ≤ |U |− k−1

k
gi(U) = |U |− gi(U)+ 1

k
gi(U)

≤ |U | − gi(U) + 1.
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Therefore, the intersection contains an integer vector x, which is, by (49.115)(i),
the incidence vector of some subset L of S satisfying (49.111), as required.

This theorem generalizes edge-colouring theorems for bipartite graphs G =
(V, E). Let V1 and V2 be the colour classes of G. Let Ci := {δ(v) | v ∈ Vi} for
i = 1, 2. If we define gi(δ(v)) := |δ(v)| for v ∈ Vi (i = 1, 2), Theorem 49.14 reduces
to Kőnig’s edge-colouring theorem (Theorem 20.1). If gi(δ(v)) is set to the minimum
degree of G, we obtain Theorem 20.5, and if it is set to the minimum of k and |δ(v)|,
we obtain Theorem 20.6.

Theorem 49.14 can also be used in proving the ‘disjoint bibranchings theorem’
(Theorem 54.11 — see Section 54.7a). Szigeti [1999] gave a generalization of The-
orem 49.14.

49.11d. Further notes

Let S and T be disjoint sets. A function f : P(S)×P(T ) → R is called bisubmodular
if

(49.119) f(X1 ∩ X2, Y1 ∪ Y2) + f(X1 ∪ X2, Y1 ∩ Y2) ≤ f(X1, Y1) + f(X2, Y2)

for all X1, X2 ⊆ S and Y1, Y2 ⊆ T .
Bisubmodular functions were studied by Kung [1978b] and Schrijver [1978,

1979c]. Most of the results can be obtained from those for submodular functions,
by considering the submodular set function f ′ on S ∪ T defined by f ′(X ∪ Y ) :=
f((S \X)∪Y ) for X ⊆ S and Y ⊆ T . Similarly for bisupermodular functions, where
the inequality sign in (49.119) is reversed.

For an interesting related result of Frank and Jordán [1995b] yielding Győri’s
theorem, see Section 60.3d.

Fujishige [1984c] gave a framework that includes Theorem 46.2 on the total
dual integrality of the intersection of a polymatroid and a contrapolymatroid sys-
tem, Corollary 46.2b on the existence of a modular function between a sub- and
a supermodular function, and Theorem 49.13 on the total dual integrality of the
generalized polymatroid constraints (but not the total dual integrality of the inter-
section of two polymatroids). Fujishige [1984b] described generalized polymatroids
as projections of base polyhedra of submodular functions.

Chandrasekaran and Kabadi [1988] introduced the concept of a generalized sub-
modular function as a function f : R → R, where R := {(T, U) | T, U ⊆ S, T ∩ U =
∅} for some set S, satisfying

(49.120) f(A, B) + f(C, D)
≥ f(A ∩ C, B ∩ D) + f((A \ D) ∪ (C \ B), (B \ C) ∪ (D \ A))

for all (A, B), (C, D) ∈ R. They showed that the system

(49.121) x(T ) − x(U) ≤ f(T, U) for (T, U) ∈ R

is box-TDI, and that for any w ∈ RS , an x maximizing wTx over (49.121) can be
found by a variant of the greedy method. Unions of two such systems need not
define an integer polyhedron if the functions are integer, as is shown by an example
with |S| = 2. A similar framework was considered by Nakamura [1990]. More results
can be found in Dress and Havel [1986], Bouchet [1987a,1995], Bouchet, Dress, and
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Havel [1992], Ando and Fujishige [1996], Fujishige [1997], and Fujishige and Iwata
[2001].

It is direct to represent a lattice family on a set S of size n in O(n2) space (just
by giving all pairs (u, v) for which each set in the family containing u also contains
v). Gabow [1993b,1995c] gave an O(n2) representation for intersecting and crossing
families. Related results were found by Fleiner and Jordán [1999].

Tardos [1985b] also studied generalized matroids, which form the special case of
generalized polymatroids with 0, 1 vertices. An instance of it we saw in the proof
of Theorem 49.14.

More results on submodularity are given by Fujishige [1980b,1984f,1984g,1988],
Nakamura [1988b,1988c,1993], Kabadi and Chandrasekaran [1990], Iwata [1995],
Iwata, Murota, and Shigeno [1997], and Murota [1998]. Generalizations were studied
by Qi [1988b] and Kashiwabara, Nakamura, and Takabatake [1999].
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Part V: Trees, Branchings, and Connectors

This part focuses on structures that are defined by connecting several pairs of ver-
tices simultaneously, with most basic structure that of a spanning tree. A spanning
tree can be characterized as a minimal set of edges that connects each pair of ver-
tices by at least one path — that is, a minimal connector. Alternatively, it can be
characterized as a maximal set of edge that connects each pair of vertices by at
most one path — that is, a maximal forest.
Finding a shortest spanning tree belongs to classical combinatorial optimization,
with lots of applications in planning road, energy, and communication networks,
in chip design, and in clustering data in areas like biology, taxonomy, archeology,
and, more generally, in any large data base. Spanning trees are well under control
polyhedrally and algorithmically, both as to shortest and as to disjoint spanning
trees. They form a prime area of application of matroid theory.
There are several variations and generalizations of the notion of spanning tree that
are also well under control, like arborescences, branchings, biconnectors, bibranch-
ings, directed cut covers, and matching forests.
An illustrious variant that is worse under control is the Hamiltonian circuit —
in other words, the traveling salesman tour — which (in the directed case) can
be considered as a smallest strongly connected subgraph. The traveling salesman
problem is NP-complete and no complete polyhedral characterization is known.
It implies that more general optimization problems like finding a shortest strong
connector or a cheapest connectivity augmentation also are NP-complete. In this
part we will however come across some special cases that are well-solvable and
well-characterized.
In this part we also discuss the powerful framework designed by Edmonds and
Giles, based on defining the concept of a submodular flow in a directed graph with a
submodular function on its vertex set. It unifies several of the results and techniques
of the present part and of the previous part on matroids and submodular functions.

Chapters:
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Chapter 50

Shortest spanning trees

In this chapter we consider shortest spanning trees in undirected graphs.
We show that the greedy algorithm finds a shortest spanning tree in a
graph, and moreover yields min-max relations and polyhedral characteri-
zations. These are special cases of results on matroids discussed in Chapter
40, but deserve special consideration since the graph framework allows a
number of additional viewpoints and opportunities.
We recall some terminology and elementary facts. A graph G = (V, E)
is called a tree if G is connected and contains no circuit. For any graph
G = (V, E), a subset F of E is called:
• a spanning tree if (V, F ) is a tree,
• a forest if F contains no circuit,
• a maximal forest if F is an inclusionwise maximal forest,
• a connector if (V, F ) is connected.
A graph G has a spanning tree if and only if G is connected. For any
connected graph G = (V, E), each of the following characterizes a subset
F of E as a spanning tree:
• F is a maximal forest;
• F is an inclusionwise minimal connector;
• F is a forest with |F | = |V | − 1;
• F is a connector with |F | = |V | − 1.
In any graph G = (V, E), a maximal forest has |V | − k edges, where k is
the number of components of G; it forms a spanning tree in each of the
components of G. So each inclusionwise maximal forest is a maximum-size
forest; that is, each forest is contained in a maximum-size forest. Similarly,
each connector contains a minimum-size connector.

50.1. Shortest spanning trees

Let G = (V, E) be a connected graph and let l : E → R be a function,
called the length function. For any subset F of E, the length l(F ) of F is, by
definition:

(50.1) l(F ) :=
∑

e∈F

l(e).
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In this section we consider the problem of finding a shortest spanning tree in
G — that is, one of minimum length.

While this is a special case of finding a minimum-weight base in a matroid,
and hence can be solved with the greedy algorithm (Section 40.1), spanning
trees allow some variation on the method, essentially because we can exploit
the presence of the vertex set (graphic matroids are defined on the edge set
only).

Also these variants of the greedy method will be called greedy. Such meth-
ods go back to Bor̊uvka [1926a]. The correctness of each of the variants follows
from the following basic phenomenon.

Call a forest F good if there exists a shortest spanning tree T of G that
contains F . (So we are out for a good spanning tree.) Then:

Theorem 50.1. Let F be a good forest and let e be an edge not in F . Then
F ∪ {e} is a good forest if and only if

(50.2) there exists a cut C disjoint from F such that e is shortest among
the edges in C.

Proof. To see necessity, let T be a shortest spanning tree containing F ∪{e}.
Let C be the unique cut disjoint from T \ {e}. Then e is shortest in C, since
if f ∈ C, then T ′ := (T \ {e}) ∪ {f} is again a spanning tree. As l(T ′) ≥ l(T )
we have l(f) ≥ l(e).

To see sufficiency, let T be a shortest spanning tree containing F . Let P
be the path in T between the ends of e. Then P contains at least one edge
f that belongs to C. Then T ′ := (T \ {f}) ∪ {e} is a spanning tree again.
By assumption, l(e) ≤ l(f) and hence l(T ′) ≤ l(T ). Hence T ′ is a shortest
spanning tree again. As F ∪ {e} is contained in T ′, it is a good forest.

(The idea of this proof is in Jarńık [1930].)
This theorem offers us a framework for an algorithm: starting with F := ∅,

iteratively extend F by an edge e satisfying (50.2). We end up with a shortest
spanning tree.

Rule (50.2) was formulated by Tarjan [1983], and is the most liberal rule
in obtaining greedily a shortest spanning tree. The variants of the greedy
method are obtained by specifying how to choose edge e.

The first variant, the tree-growing method, was given by Jarńık [1930]
(and by Kruskal [1956], Prim [1957], Dijkstra [1959]). It is also called the
Jarńık-Prim method or Prim’s method (Prim was the first giving an O(n2)
implementation):

(50.3) Fix a vertex r. Set F := ∅. As long as F is not a spanning tree,
let K be the component of F containing r, let e be a shortest
edge leaving K, and reset F := F ∪ {e}.

Corollary 50.1a. Prim’s method yields a shortest spanning tree.
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Proof. Directly from Theorem 50.1, by taking C := δ(K).

A second variant, the forest-merging method or Kruskal’s method, is due
to Kruskal [1956] (and to Loberman and Weinberger [1957] and Prim [1957]):

(50.4) Set F := ∅. As long as F is not a spanning tree, choose a shortest
edge e for which F ∪ {e} is a forest, and reset F := F ∪ {e}.

(So this version is the true specialization of the greedy algorithm for matroids
to graphs.)

Corollary 50.1b. Kruskal’s method yields a shortest spanning tree.

Proof. Again directly from Theorem 50.1, as e is shortest in the cut δ(K)
for each of the two components K of F incident with e.

Prim [1957] and Loberman and Weinberger [1957] observed that the opti-
mality of the greedy method implies that each length function which gives the
same order of the edges (like the logarithm or square of the lengths), has the
same collection of shortest spanning trees. Similarly, the shortest spanning
tree minimizes the product of the lengths (if nonnegative).

In a similar way one finds a longest spanning tree. The maximum length
of a forest and the minimum length of a connector can also be found with
the greedy method.

Note that the greedy method is flexible: We can change our rule of choos-
ing the new edge e at any time throughout the algorithm, as long as at any
choice of e, (50.2) is satisfied.

As Prim [1957] and Dijkstra [1959] remark, the value of any variant of
the greedy method depends on its implementation. One should have efficient
ways to store and update information on the components of F , and on finding
an edge satisfying (50.2). We now consider such implementations for Prim’s
and for Kruskal’s method.

50.2. Implementing Prim’s method

Prim [1957] and Dijkstra [1959] described implementations of Prim’s method
that run in time O(n2). (Here we assume without loss of generality that the
graph is simple.)

To this end, we indicate at any vertex v, whether or not v belongs to the
component K containing r of the current forest F , and in case v �∈ K, we
store at v a shortest edge ev connecting v with K (void if there is no such
edge). Then at each iteration, we scan all vertices, and select one, v say, for
which v �∈ K and ev is shortest. We add ev to F , and v to K, and for each
edge vu incident with v, we replace eu by vu if u �∈ K and vu is shorter than
eu (or if eu is void).
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As each iteration takes O(n) time and as there are n − 1 iterations we
have the result stated by Dijkstra [1959]:

Theorem 50.2. A shortest spanning tree can be found in time O(n2).

Proof. See above.

In fact, by applying 2-heaps (Section 7.3) one can obtain a running time
bound of O(m log n) (E.L. Johnson, cf. Kershenbaum and Van Slyke [1972]),
and with Fibonacci heaps (Section 7.4) one obtains (Fredman and Tarjan
[1984,1987]):

Theorem 50.3. A shortest spanning tree can be found in time O(m +
n log n).

Proof. Directly by applying Fibonacci heaps as described in Section 7.4.

50.3. Implementing Kruskal’s method

Bottleneck in implementing Kruskal’s method is the necessity to scan the
edges sorted by length. As the best bound for sorting is O(m log n), we cannot
hope for implementations of Kruskal’s method faster than that.

However, the bound O(m log n) is easy to achieve. In fact, as was noticed
by Kershenbaum and Van Slyke [1972] (using ideas of Van Slyke and Frank
[1972]), it is easy to implement Kruskal’s method such that the time after
sorting is O(m + n log n). This can be done with elementary data-structures
like lists; no heaps are needed.

Indeed, it is not hard to design a simple data structure that tests in
constant time if the ends of any edge belong to different components of the
current forest F , and that merges components in time linear in the size of
the smaller component1.

Then the iterations take O(m + n log n) time, since checking if the ends
of an edge belong to different components takes O(m) time overall, while
merging takes O(n log n) time overall: any vertex v belongs at most log2 n
times to the smaller component when merging, as, at any such event, the
component containing v at least doubles in size.

1 Consider any forest F . Represent each component K by a (singly) linked list. For any
vertex v, let r(v) be the first vertex of the list Lv containing v.

Initially, for each vertex v, r(v) = v, as Lv = {v}. At any iteration, the edge e = uv
considered connects different components of F if and only if r(u) �= r(v). Checking this
takes constant time.

If r(u) �= r(v), we can determine which of the lists Lu, Lv is smallest in time
O(min{|Lu|, |Lv |}) (by scanning them in parallel, starting at r(u) and r(v)). Assume
without loss of generality that |Lu| ≤ |Lv |. Then we reset r(u′) := r(v) for all u′ in Lu,
and we insert Lu into Lv directly after v. This can be done in time O(|Lu|).
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Tarjan [1983] showed that if the edges are presorted, a minimum span-
ning tree can be found in time O(mα(m, n)) (where α(m, n) is the ‘inverse
Ackermann function — see Section 50.6a).

50.3a. Parallel forest-merging

A variant that suggests parallel implementation was given by Bor̊uvka [1926a,1926b]
— the parallel forest-merging method or Bor̊uvka’s method. (This method was also
given by Choquet [1938] (without proof) and Florek, �Lukaszewicz, Perkal, Stein-
haus, and Zubrzycki [1951a].) It assumes that all edge lengths are different:

(50.5) Set F := ∅. As long as F is not a spanning tree do the following: choose
for each component K of F the shortest edge leaving K, and add all
chosen edges to F .

Theorem 50.4. Assuming that all edge lengths are different, the parallel forest-
merging variant yields a shortest spanning tree.

Proof. We show that F remains a good forest throughout the iterations. Consider
some iteration, and let F be the good forest at the start of the iteration. Let
e1, . . . , ek be the edges added in the iteration, indexed such that l(e1) < l(e2) <
· · · < l(ek). By the selection rule (50.5), for each i = 1, . . . , k, ei is the shortest edge
leaving some component K of F . Then K is also a component of F ∪{e1, . . . , ei−1},
as none of e1, . . . , ei−1 leave K (since ei is shortest leaving K). Hence for each
i = 1, . . . , k, F ∪ {e1, . . . , ei} is a good forest (by induction on i). Concluding, the
iteration yields a good forest.

50.3b. A dual greedy algorithm

We can consider a dual approach by iteratively decreasing a connector, instead of
iteratively growing a forest. The analogy can be exhibited as follows.

Let G = (V, E) be a connected graph and let l : E →∈ R be a length function.
Call a connector K ⊆ E good if K contains a shortest spanning tree. Then we have:

Theorem 50.5. Let K be a good connector and let e ∈ K. Then K \ {e} is a good
connector if and only if

(50.6) K contains a circuit C such that e is a longest edge in C.

Proof. To see necessity, let T be a shortest spanning tree contained in K \ {e}.
Let C be the unique circuit contained in T ∪ {e}. Then e is longest in C, since if
f ∈ C, then T ′ := (T \ {f})∪{e} is again a spanning tree. As l(T ′) ≥ l(T ) we have
l(e) ≥ l(f).

To see sufficiency, let T be a shortest spanning tree contained in K. If e �∈ T ,
then also K \ {e} contains T , and hence K \ {e} is a good connector. So we can
assume that e ∈ T . Let D be the cut determined by T − e. Then the circuit C
contains at least one edge f �= e that belongs to D. So T ′ := (T \ {e}) ∪ {f} is a
spanning tree again. By assumption, l(e) ≥ l(f) and hence l(T ′) ≤ l(T ). Hence T ′
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is a shortest spanning tree again. It is contained in K \ {e}, which therefore is a
good connector.

So we can formulate the dual greedy algorithm: starting with K := E, iteratively
remove from K an edge e satisfying (50.6). We end up with a shortest spanning
tree.

A special case is the following algorithm, proposed by Kruskal [1956]: iteratively
delete a longest edge e that is not a bridge. We end up with a shortest spanning
tree.

50.4. The longest forest and the forest polytope

The greedy algorithm can be easily adapted so as to give:

Theorem 50.6. A longest forest can be found in strongly polynomial time.

Proof. It suffices to find a longest spanning tree in any component. This can
be done with the greedy method.

As Edmonds [1971] noticed, it is easy to derive with the greedy method a
min-max relation for the maximum length of a forest in a graph G = (V, E).
This is similar to the results of Section 40.2.

Theorem 50.7. Let G = (V, E) be a graph and let l ∈ ZE
+. Then the maxi-

mum length of a forest is equal to the minimum value of

(50.7)
∑

U∈P(V )\{∅}

yU (|U | − 1),

where y ∈ Z
P(V )\{∅}
+ satisfies

(50.8)
∑

U∈P(V )\{∅}

yUχE[U ] ≥ l.

Proof. The maximum cannot be larger than the minimum, since for any

forest F and any y ∈ Z
P(V )\{∅}
+ satisfying (50.8) one has:

(50.9) l(F ) ≤
∑

U∈P(V )\{∅}

yU |E[U ] ∩ F | ≤
∑

U∈P(V )\{∅}

yU (|U | − 1).

To see equality, let k := max{l(e) | e ∈ E}, and let Ei be the set of edges
e with l(e) ≥ i, for i = 0, 1, . . . , k. For each U ∈ P(V ) \ {∅}, let yU be the
number of i ∈ {1, . . . , k} such that U is a component of the graph (V, Ei).
Then it is easy to see that y satisfies (50.8).

We can find a sequence of forests Fk ⊆ · · · ⊆ F1 ⊆ F0, where for i =
0, 1, . . . , k, Fi is a maximal forest in (V, Ei) containing Fi+1, setting Fk+1 :=
∅.

Then for F := F0 we have:
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(50.10) l(F ) =
k∑

i=0

i|Fi \ Fi+1| =
k∑

i=1

|Fi| =
k∑

i=1

(|V | − κ(V, Ei))

=
∑

U∈P(V )\{∅}

yU (|U | − 1),

where κ(V, Ei) denotes the number of components of the graph (V, Ei).

(The series of forests Fk ⊆ Fk−1 ⊆ · · · ⊆ F1 ⊆ F0, corresponds to the greedy
method.)

Note that this theorem gives, if G is connected, a min-max relation for
the maximum length of a spanning tree.

For any graph G = (V, E), let the forest polytope of G, denoted by
Pforest(G), be the convex hull of the incidence vectors (in RE) of the forests of
G. The following characterization of the forest polytope is (in matroid terms)
due to Edmonds [1971] (announced in Edmonds [1967a]):

Corollary 50.7a. The forest polytope of a graph G is determined by

(50.11) (i) xe ≥ 0 for e ∈ E,
(ii) x(E[U ]) ≤ |U | − 1 for nonempty U ⊆ V .

Proof. Trivially, the incidence vector of any forest satisfies (50.11), and hence
the forest polytope is contained in the polytope determined by (50.11). Sup-
pose now that the latter polytope is larger. Then (since both polytopes are
rational and down-monotone in RE

+) there exists a vector l ∈ QE
+ such that

the maximum value of lTx over (50.11) is larger than the maximum of l(F )
over forests F . We can assume that l is integer. However, by Theorem 50.7,
the maximum of l(F ) is at least the minimum value of the problem dual to
maximizing lTx over (50.11), a contradiction.

Theorem 50.7 can be stated equivalently in TDI terms as follows:

Corollary 50.7b. System (50.11) is totally dual integral.

Proof. This follows from Theorem 50.7, by the definition of total dual inte-
grality.

Having a description of the forest polytope, we can derive a description
of the spanning tree polytope Pspanning tree(G) of a graph G = (V, E), which
is the convex hull of the incidence vectors of the spanning trees in G.

Corollary 50.7c. The spanning tree polytope of a graph G = (V, E) is de-
termined by
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(50.12) (i) xe ≥ 0 for e ∈ E,
(ii) x(E[U ]) ≤ |U | − 1 for nonempty U ⊆ V ,
(iii) x(E) = |V | − 1.

Proof. Directly from Corollary 50.7a, since the spanning trees are exactly
the forests of size |V |−1, and since there exist no forests larger than that.

One also directly has a TDI result:

Corollary 50.7d. System (50.12) is totally dual integral.

Proof. Directly from Corollary 50.7b, since (50.12) arises from (50.11) by
setting an inequality to equality (cf. Theorem 5.25).

Theorem 40.5 implies that (if G is loopless) an inequality (50.12)(ii) is
facet-inducing if and only if |U | ≥ 2 and U induces a 2-connected subgraph
of G (cf. Grötschel [1977a]).

In Section 51.4 we consider the problem of testing membership of the
forest polytope.

50.5. The shortest connector and the connector polytope

The greedy method also provides a min-max relation for the minimum length
of a connector in a graph G = (V, E). Let Π denote the collection of partitions
of V into nonempty subsets. For any partition P of V , let δ(P) denote the
set of edges connecting two different classes of P. So any connector contains
at least |P| − 1 edges in δ(P).

Theorem 50.8. Let G = (V, E) be a connected graph and let l ∈ ZE
+. Then

the minimum length of a spanning tree is equal to the maximum value of

(50.13)
∑

P∈Π

yP(|P| − 1),

where y ∈ ZΠ
+ such that

(50.14)
∑

P∈Π

yPχδ(P) ≤ l.

Proof. The minimum cannot be smaller than the maximum, since for any
spanning tree T and any y ∈ ZΠ

+ satisfying (50.14) one has:

(50.15) l(T ) ≥
∑

P∈Π

yPχδ(P)(T ) =
∑

P∈Π

yP |δ(P) ∩ T | ≥
∑

P∈Π

yP(|P| − 1).

To see equality, define k := max{l(e) | e ∈ E} and for i = 0, 1, . . . , k, let Ei

be the set of edges e with l(e) ≤ i. For each P ∈ Π, let yP be the number of
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i ∈ {1, . . . , k} such that P is the collection of components of (V, Ei). Then it
is easy to see that y satisfies (50.14).

We can find a sequence of forests F0 ⊆ F1 ⊆ · · ·Fk−1 ⊆ Fk, where F0 is a
maximal forest in (V, E0), and where for i = 0, . . . , k, Fi is a maximal forest
in (V, Ei) containing Fi−1, setting F−1 := ∅.

Then for T := Fk we have:

(50.16) l(T ) =
k∑

i=0

i|Fi \ Fi−1| = k|T | −
k−1∑

i=0

|Fi| =
k−1∑

i=0

(|V | − 1 − |Fi|)

=
k−1∑

i=1

(κ(V, Ei) − 1) =
∑

P∈Π

yP(|P| − 1),

where κ(V, Ei) denotes the number of components of the graph (V, Ei).

For any graph G = (V, E), let the connector polytope of G, denoted by
Pconnector(G), be the convex hull of the incidence vectors (in RE) of the
connectors of G. The following characterization can be derived from Edmonds
[1970b], and was stated explicitly by Fulkerson [1970b]:

Corollary 50.8a. The connector polytope of a graph G is determined by

(50.17) (i) 0 ≤ xe ≤ 1 for e ∈ E,
(ii) x(δ(P)) ≥ |P| − 1 for P ∈ Π.

Proof. Trivially, the incidence vector of any connector satisfies (50.17), and
hence the connector polytope is contained in the polytope determined by
(50.17). Suppose now that the latter polytope is larger. Then (since both
polytopes are rational and up-monotone in [0, 1]E) there exists a vector l ∈
QE

+ such that the minimum value of lTx over (50.17) is smaller than the
minimum of l(C) over connectors C. We can assume that l is integer. However,
by Theorem 50.8, the minimum of l(C) is at most the maximum value of the
problem dual to minimizing lTx over (50.17), a contradiction.

Theorem 50.8 can be stated equivalently in TDI terms as follows:

Corollary 50.8b. System (50.17) is totally dual integral.

Proof. This follows from Theorem 50.8, by the definition of total dual inte-
grality.

Chopra [1989] described the facets of the connector polytope. In Section
51.4 we consider the problem of testing membership of the connector poly-
tope.
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50.6. Further results and notes

50.6a. Complexity survey for shortest spanning tree

O(nm) Jarńık [1930]

O(n2) Prim [1957], Dijkstra [1959]

O(m log n)
Kershenbaum and Van Slyke [1972], E.L.
Johnson (cf. Kershenbaum and Van Slyke
[1972])

O(m logm/n n) D.B. Johnson [1975b]

O(m
√

log n) R.E. Tarjan (cf. Yao [1975])

O(m log log n) Yao [1975]

O(m log logm/n n) Cheriton and Tarjan [1976], Tarjan [1983]

∗ O((m + n log L) log log L) D.B. Johnson [1977b]

O(m + n log n) Fredman and Tarjan [1984,1987]

O(mβ(m, n)) Fredman and Tarjan [1984,1987]

O(m log β(m, n))
Gabow, Galil, Spencer, and Tarjan [1986]
(cf. Gabow, Galil, and Spencer [1984])

O(m(logn L + α(m, n))) Gabow [1983b,1985b]

O(mα(m, n) log α(m, n)) Chazelle [1997]

∗ O(mα(m, n)) Chazelle [2000]

As before, ∗ indicates an asymptotically best bound in the table. Moreover,
β(m, n) := min{i | log

(i)
2 n ≤ m/n} and L := max{l(e) | e ∈ E} (assuming l

nonnegative integer). The function α(m, n) is the inverse Ackermann function, de-
fined as follows. For i, j ≥ 1, the Ackermann function A(i, j) is defined recursively
by:

(50.18) A(1, j) = 2j for j ≥ 1,
A(i, 1) = A(i − 1, 2) for i ≥ 2,
A(i, j) = A(i − 1, A(i, j − 1)) for i, j ≥ 2.

Next, for m ≥ n ≥ 1,

(50.19) α(m, n) := min{i ≥ 1 | A(i, ⌊m/n⌋) > log2 n}.

The function α(m, n) is extremely slowly growing.
Fredman and Willard [1990,1994] gave a ‘strongly trans-dichotomous’ linear-

time minimum spanning tree algorithm (where capabilities of random access ma-
chines, like addressing, can be used). Based on sampling, Karger [1993,1998] found
a simple linear-time approximative spanning tree algorithm, and an O(m+n log n)-
time minimum spanning tree algorithm not using Fibonacci heaps.

Katoh, Ibaraki, and Mine [1981] gave an algorithm to find the Kth shortest
spanning tree in time O(Km + min{n2, m log log n}) (improving slightly Gabow
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[1977]). They also gave an algorithm to find the second shortest spanning tree in
time O(min{n2, mα(m, n)}).

Pettie and Ramachandran [2000,2002a] showed that a shortest spanning tree
can be found in time O(T ∗(m, n)), where T ∗(m, n) is the minimum number of
edge length comparisons needed to determine the solution.

Frederickson [1983a,1985] gave an O(
√

m)-time algorithm to update a shortest
spanning tree (and the data-structure) if one edge changes length. Spira and Pan
[1973,1975] and Chin and Houck [1978] gave fast algorithms to update a shortest
spanning tree if vertices are added or removed. More on sensitivity and most vital
edges can be found in Tarjan [1982], Hsu, Jan, Lee, Hung, and Chern [1991], Dixon,
Rauch, and Tarjan [1992], Iwano and Katoh [1993], Lin and Chern [1993], and
Frederickson and Solis-Oba [1996,1999].

Tarjan [1979] showed that the minimality of a given spanning tree can be
checked in time O(mα(m, n)) (cf. Dixon, Rauch, and Tarjan [1992]). Komlós [1984,
1985] showed that the minimality of a given spanning tree can be checked by O(m)
comparisons of edge lengths. King [1997] gave a linear-time implementation in the
unit-cost RAM model. A randomized linear-time algorithm was given by Klein and
Tarjan [1994], and Karger, Klein, and Tarjan [1995].

Gabow and Tarjan [1984] (cf. Gabow and Tarjan [1979]) showed that the prob-
lem of finding a shortest spanning tree with a prescribed number of edges incident
with a (one) given vertex r, is linear-time equivalent to the (unconstrained) shortest
spanning tree problem. They also showed that if the edges of a graph are coloured
red and blue, a shortest spanning tree having exactly k red edges (for given k) can
be found in time O(m log log2+ m

n
n + n log n).

Brezovec, Cornuéjols, and Glover [1988] gave an efficient algorithm to find a
shortest spanning tree in a coloured graph with, for each colour, an upper and a
lower bound on the number of edges in the tree of that colour.

Camerini [1978] showed that a spanning tree minimizing maxe∈T l(e) can be
found in O(m) time.

Geometric spanning trees (on vertices in Euclidean space, with Euclidean dis-
tance as length function) were considered by Bentley, Weide, and Yao [1980],
Yao [1982], Supowit [1983], Clarkson [1984,1989], and Agarwal, Edelsbrunner,
Schwarzkopf, and Welzl [1991].

50.6b. Characterization of shortest spanning trees

The following theorem is implicit in Kalaba [1960]:

Theorem 50.9. Let G = (V, E) be a graph, let l ∈ RE be a length function, and
let T be a spanning tree in G. Then T is a shortest spanning tree if and only if
l(f) ≥ l(e) for all e ∈ T and f ∈ E \ T with T − e + f a spanning tree.

Proof. Necessity being trivial, we show sufficiency. Let the condition be satisfied,
and suppose that T is not a shortest spanning tree. Choose a shorter spanning
tree T ′ with |T ′ \ T | minimal. Let f ∈ T ′ \ T . Let e be an edge on the circuit in
T ∪ {f} with e �= f , such that e connects the two components of T ′ \ {f}. Then
(T \{e})∪{f} is a spanning tree, and hence l(f) ≥ l(e). Define T ′′ := (T ′\{f})∪{e}.
Then l(T ′′) ≤ l(T ′) < l(T ) and |T ′′ \ T | < |T ′ \ T |, contradicting our minimality
assumption.
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This theorem gives a good characterization of the minimum length of a spanning
tree. (As Kalaba [1960] pointed out, it also gives an algorithm to find a shortest
spanning tree (by iteratively exchanging one edge for another if it makes the tree
shorter), but it is not polynomial-time.)

Recall that a forest is called good if it is contained in a shortest spanning tree.

Corollary 50.9a. Let G = (V, E) be a connected graph, let l ∈ RE be a length
function, and let F be a forest. Then F is good if and only if for each e ∈ F there
exists a cut C with C ∩ F = {e} and with e shortest in C.

Proof. To see necessity, let F be good and let e ∈ F . So there exists a shortest
spanning tree T containing F . By Theorem 50.9, e is a shortest edge connecting
the two components of T − e. This gives the required cut C.

Sufficiency is shown by induction on |F |, the case F = ∅ being trivial. Choose
e ∈ F . By induction, F \ {e} is good (as the condition is maintained for F \ {e}).
The condition implies that (50.2) is satisfied, and hence F is good by Theorem 50.1.

50.6c. The maximum reliability problem

Often, in designing a network, one is not primarily interested in minimizing the
total length, but rather in maximizing ‘reliability’ (for instance when designing
energy or communication networks).

Let G = (V, E) be a connected graph and let r : E → R+ be a function. Let
us call r(e) the reliability of edge e. For any path P in G, the reliability of P is,
by definition, the minimum reliability of the edges occurring in P . The reliability
rG(s, t) of two vertices s and t is equal to the maximum reliability of P where P
ranges over all s − t paths. That is,

(50.20) rG(s, t) := max
P

min
e∈EP

r(e),

where the maximum ranges over all s − t paths P . (The value of rG(s, t) can be
found with the method described in Section 8.6e.)

The problem now is to find a minimal subgraph H of G having the same relia-
bility as G; that is, with rH = rG. Hu [1961] observed that there is a spanning tree
carrying the reliability of G. More precisely, Hu showed that any spanning tree T
of maximum total reliability is such a tree (also shown by Kalaba [1964]):

Corollary 50.9b. Let G = (V, E) be a graph, let r ∈ RE, and let T be any spanning
tree. Then rT (s, t) = rG(s, t) for all s, t if and only if T is a spanning tree in G
maximizing r(T ).

Proof. To see sufficiency, let T maximize r(T ). Choose s, t ∈ V , and let P be a
path in G attaining maximum (50.20). Let e be an edge on the s − t path in T
with minimum r(e). Then P contains an edge f connecting the two components of
T − e. As T maximizes r(T ) we have r(f) ≤ r(e). Hence

(50.21) rT (s, t) = r(e) ≥ r(f) ≥ rG(s, t).
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Since trivially rT (s, t) ≤ rG(s, t), this shows sufficiency.
To see necessity, we apply Theorem 50.9. Choose e ∈ T , and suppose that there

is an edge f connecting the components of T − e, with r(f) > r(e). Then for the
ends s, t of f we have

(50.22) rG(s, t) ≥ r(f) > r(e) ≥ rT (s, t),

a contradiction.

Corollary 50.9b implies:

Corollary 50.9c. Let G = (V, E) be a complete graph and let l : E → R+ be a
length function satisfying

(50.23) l(uw) ≥ min{l(uv), l(vw)}
for all distinct u, v, w ∈ V . Let T be a longest spanning tree in G. Then for all
u, w ∈ V , l(uw) is equal to the minimum length of the edges in the u − w path in
T .

Proof. Note that (50.23) implies that l(uw) is equal to the reliability rG(u, w) of
u and w, taking r := l. So the corollary follows from Corollary 50.9b.

This implies the following. Let G = (V, E) be a graph and let c : E → R+ be a
capacity function. Let K be the complete graph on V . For each edge st of K, let
the length l(st) be the minimum capacity of any s − t cut in G. (An s − t cut is
any subset δ(W ) with s ∈ W, t �∈ W .)

Let T be a longest spanning tree in K. Then for all s, t ∈ V , l(st) is equal to
the minimum length of the edges of T in the s − t path in T .

(This tree need not be a Gomory-Hu tree, as is shown by the complete graph
on vertices 1, 2, 3 and c(12) = 1 and c(13) = c(23) = 2. Then edges 12 and 13 form
a tree as above, but it is not a Gomory-Hu tree.)

50.6d. Exchange properties of forests

The following fundamental property of forests in fact is the basis of most theorems
in this chapter. It is the ‘exchange property’ that makes the collection of forests
into a matroid.

Theorem 50.10. Let G = (V, E) be a graph and let F and F ′ be forests with
|F | < |F ′|. Then F ∪ {e} is a forest for some e ∈ F ′ \ F .

Proof. We can assume that E = F ∪ F ′. If no such edge e exists, then F is a
maximal forest in G. This however implies that |F | ≥ |F ′|, a contradiction.

Call a forest F extreme if l(F ′) ≥ l(F ) for each forest F ′ satisfying |F ′| = |F |.
The forests made iteratively in Kruskal’s method all are extreme, since:

Corollary 50.10a. Let F be an extreme forest and let e be a shortest edge with
e �∈ F and F ∪ {e} a forest. Then F ∪ {e} is extreme again.
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Proof. Let F ′ be an extreme forest with |F ′| = |F | + 1. By Theorem 50.10, there
exists an e′ ∈ F ′ \ F such that F ∪ {e′} is a forest. As F is extreme we have
l(F ′ \ {e′}) ≥ l(F ). Hence l(F ∪ {e′}) ≤ l(F ′). Also, by the choice of e, l(e) ≤ l(e′).
So l(F ∪ {e}) ≤ l(F ′). Concluding, F ∪ {e} is extreme (as F ′ is extreme).

The following corollary is due to Florek, �Lukaszewicz, Perkal, Steinhaus, and
Zubrzycki [1951a]. Recall that a forest is called good if it is contained in a shortest
spanning tree.

Corollary 50.10b. Each extreme forest is good.

Proof. Directly from Corollary 50.10a, since it implies that each extreme forest is
contained in an extreme maximal forest, and hence in a shortest maximal forest;
so it is good.

We also can derive a ‘slice-integrality’ result:

Corollary 50.10c. Let G = (V, E) be a graph and let k, l ∈ Z+. Then the convex
hull of the incidence vectors of forests F with k ≤ |F | ≤ l is equal to the intersection
of the forest polytope of G with {x ∈ RE | k ≤ x(E) ≤ l}.

Proof. Let x be in the forest polytope with k ≤ x(E) ≤ l. Let x =
∑

F λF χF , where
F ranges over all forests and where the λF are nonnegative reals with

∑
F λF = 1.

Choose the λF with

(50.24)
∑

F

λF |F |2

minimal. Then

(50.25) |F ′| ≤ |F | + 1 for all F, F ′ with λF > 0 and λF ′ > 0.

Otherwise we can choose e ∈ F ′ \ F such that F ∪ {e} is a forest (by Theorem
50.10). Let α := min{λF , λF ′}. Then decreasing λF and λF ′ by α and increasing
λF∪{e} and λF ′\{e} by α, decreases sum (50.24). This contradicts our assumption,
and proves (50.25).

It implies that k ≤ |F | ≤ l for each F with λF > 0, and we have the corollary.

50.6e. Uniqueness of shortest spanning tree

Kotzig [1961b] characterized when there is a unique shortest spanning tree:

Theorem 50.11. Let G = (V, E) be a graph, let l ∈ RE be a length function, and
let T be a spanning tree in G. Then T is a unique shortest spanning tree if and only
if l(f) > l(e) for all e ∈ T and f ∈ E \ T such that T − e + f is a spanning tree.

Proof. As the proof of Theorem 50.9.

This implies a sufficient condition given by Bor̊uvka [1926a]:
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Corollary 50.11a. Let G = (V, E) be a graph and let l ∈ RE be a length function
with l(e) �= l(f) if e �= f . Then there is a unique shortest spanning tree.

Proof. Directly from Theorem 50.11.

Let G = (V, E) be a connected graph and let l ∈ RE be a length function, with
l(e) �= l(f) if e �= f . Define

(50.26) T := {e ∈ E | ∃ cut C such that e is the shortest edge of C}.

Then

(50.27) E \ T = {e ∈ E | ∃ circuit D such that e is the longest edge in D}.

This is easy, since if some edge e is contained in some cut C and some circuit D,
then there exists an edge f �= e in C ∩ D. If l(f) < l(e), then e is not shortest in C,
and if l(f) > l(e), then e is not longest in D. Moreover, for any e ∈ E, if no circuit
D as in (50.27) exists, then each circuit D containing e contains an edge f with
l(f) > l(e). Hence the set of edges f with l(f) ≥ l(e) contains a cut C containing
e. This C is as in (50.26).

Now (Dijkstra [1960], Rosenstiehl [1967]):

(50.28) T is the unique shortest spanning tree in G.

Indeed, T is a forest, since each circuit D intersects E \ T (namely, in the longest
edge of D). Moreover, T is a connector, since each cut C intersects T (namely, in
the shortest edge of C). T is the unique shortest spanning tree. This follows from
Theorem 50.11, since for each e ∈ T and each f �∈ T , if (T \{e})∪{f} is a spanning
tree, then l(e) < l(f) as e is the shortest edge in the cut determined by T − e.

50.6f. Forest covers

Let G = (V, E) be an undirected graph. A subset F of E is called a forest cover
if F is both a forest and an edge cover. Forest covers turn out to be interesting
algorithmically and polyhedrally.

As Gamble and Pulleyblank [1989] point out, White [1971] showed:

Theorem 50.12. Given a graph G = (V, E) and a weight function w ∈ QE, a
minimum-weight forest cover can be found in strongly polynomial time.

Proof. Let E− be the set of edges of negative weight and let V− be the set of
vertices covered by E−. Let V+ := V \ V−. First find a subset F ′ of E[V+] ∪ δ(V+)
covering V+, of minimum weight. This can be done in strongly polynomial time,
by a variation of the strongly polynomial-time algorithm for the minimum weight
edge cover problem. (In fact, it is a special case of Theorem 34.4.)

Next find a forest F ′′ in E[V−] of minimum weight. Again, this can be done in
strongly polynomial time, by Theorem 50.6.

We can assume that any proper subset of F ′ does not cover V+. It implies that
F ′ is a forest and that for any vertex v ∈ V+ incident with some edge e in F ′ with
e ∈ δ(V+), e is the only edge in F ′ incident with v.
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This implies that F ′ ∪ F ′′ is a forest. Moreover, it is an edge cover, since F ′

covers V+ and F ′′ covers V−, since any vertex in V− is incident with an edge of
negative weight.

So F ′ ∪ F ′′ is a forest cover. To see that it has minimum weight, let B ⊆ E be
any forest cover. Let B′′ := B ∩ E[V−] and B′ := B \ B′′. Then w(B′) ≥ w(F ′),
since B′ covers V+. Also, w(B′′) ≥ w(F ′′), since B′′ is a forest. So w(B) ≥ w(F ).

Gamble and Pulleyblank [1989] showed that White’s method implies a charac-
terization of the forest cover polytope Pforest cover(G) of a graph G, which is the
convex hull of the incidence vectors of forest covers in G. It turns out to be equal
to the intersection of the forest polytope (characterized in Corollary 50.7a) and the
edge cover polytope (characterized in Corollary 27.3a):

Theorem 50.13. For any undirected graph G = (V, E):

(50.29) Pforest cover(G) = Pforest(G) ∩ Pedge cover(G).

Proof. The inclusion ⊆ is trivial, as any forest cover is both a forest and an edge
cover. Suppose that the reverse inclusion does not hold, and let x be a vertex of
Pforest(G)∩Pedge cover(G) which is not in Pforest cover(G). Let w ∈ QE be a weight

function such that x uniquely minimizes wTx over Pforest(G) ∩ Pedge cover(G). We
can assume that w(e) �= 0 for each edge e (as we can perturb w slightly).

Again let E− be the set of edges of negative weight, V− be the set of vertices
covered by E−, and V+ := V \V−. Since x is in the edge cover polytope, there exists
a subset F ′ of E[V+] ∪ δ(V+) covering V+ with

(50.30) w(F ′) ≤
∑

e∈E[V+]∪δ(V+)

w(e)xe.

Similarly, since x is in the forest polytope, there is a forest F ′′ in E[V−] with

(50.31) w(F ′′) ≤
∑

e∈E[V−]

w(e)xe.

Now, as in the proof of Theorem 50.12, F := F ′ ∪ F ′′ is a forest cover. Since
w(F ) ≤ wTx, this contradicts our assumptions on x and w.

White [1971] also considered the problem of finding a minimum weight forest
cover of given size k. Gamble and Pulleyblank [1989] showed that the convex hull
of the incidence vectors of forest covers of size k is equal to the intersection of the
forest cover polytope with the hyperplane {x ∈ RE | x(E) = k}.

Cerdeira [1994] related forest covers to matroid intersection.

50.6g. Further notes

Let G = (V, E) be a graph. Call a subset U of V circuit-free if U spans no circuit;
that is, it induces a forest as subgraph of G. Ding and Zang [1999] characterized
the graphs G for which the convex hull of the incidence vectors of circuit-free sets
is determined by
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(50.32) 0 ≤ xv ≤ 1 for each vertex v,
x(V C) ≤ |V C| − 1 for each circuit C.

Their characterization implies that (50.32) is totally dual integral as soon as it
determines an integer polytope.

Goemans [1992] studied the convex hull of the incidence vectors of (not neces-
sarily spanning) subtrees of a graph.

Brennan [1982] reported on good experimental results with an implementation
of Kruskal’s method by only partially sorting the edges until the successive shortest
edges to be added to the current forest can be identified.

Győri [1978] and Lovász [1977a] showed that if G = (V, E) is k-connected and
v1, . . . , vk are distinct vertices, and n1, . . . , nk are positive integers with n1 + · · · +
nk = |V |, then G contains a forest F such that the component containing vi has
size ni (i = 1, . . . , k). For k = 2, Győri’s proof gives an O(nm)-time algorithm.
A linear-time algorithm for k = 2 was given by Suzuki, Takahashi, and Nishizeki
[1990]. More can be found in Győri [1981].

Khuller, Raghavachari, and Young [1993,1995b] considered spanning trees that
belance between shortest spanning trees and shortest paths trees.

Books covering shortest spanning trees include Even [1973,1979], Christofi-
des [1975], Lawler [1976b], Minieka [1978], Hu [1982], Papadimitriou and Steiglitz
[1982], Smith [1982], Aho, Hopcroft, and Ullman [1983], Sys�lo, Deo, and Kowa-
lik [1983], Tarjan [1983], Gondran and Minoux [1984], Nemhauser and Wolsey
[1988], Chen [1990], Cormen, Leiserson, and Rivest [1990], Lengauer [1990]. Ahuja,
Magnanti, and Orlin [1993], Cook, Cunningham, Pulleyblank, and Schrijver [1998],
Jungnickel [1999], and Korte and Vygen [2000]. Pierce [1975] and Golden and Mag-
nanti [1977] gave bibliographies on algorithms for shortest spanning tree.

50.6h. Historical notes on shortest spanning trees

We refer to Graham and Hell [1985] for an extensive historical survey of shortest
tree algorithms, with several quotes (with translations) from old papers. Our notes
below have profited from their investigations.

We recall some terminology for a shortest spanning tree algorithm. We call it
tree-growing if we keep a tree on a subset of the vertices, and iteratively extend it by
adding an edge joining the tree with a vertex outside of the tree. It is forest-merging
if we keep a forest, and iteratively merge two components by joining them by an
edge. It is called parallel forest-merging if forest-merging is performed in parallel,
by connecting each component to its nearest neighbouring component (assuming
all lengths are distinct).

Bor̊uvka: parallel forest-merging

Bor̊uvka [1926a] described the problem of finding a shortest spanning tree as follows
(the paper is in Czech; we quote from its German summary; for quotes from Czech
with translation, see Graham and Hell [1985]):

In dieser Arbeit löse ich folgendes Problem:
Es möge eine Matrix der bis auf die Bedingungen rαα = 0, rαβ = rβα positiven
und von einander verschiedenen Zahlen rαβ (α, β = 1, 2, . . . n; n ≥ 2) gegeben
sein.
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Aus dieser ist eine Gruppe von einander und von Null verschiedener Zahlen
auszuwählen, so dass
1◦ in ihr zu zwei willkürlich gewählten natürlichen Zahlen p1, p2 (≤ n) eine Teil-
gruppe von der Gestalt

rp1c2 , rc2c3 , rc3c4 , . . . rcq−2cq−1 , rcq−1p2

existiere,
2◦ die Summe ihrer Glieder kleiner sei als die Summe der Glieder irgendeiner
anderen, der Bedingung 1◦ genügenden Gruppe von einander und von Null ver-
schiedenen Zahlen.2

So Bor̊uvka stated that the spanning tree found is the unique shortest. He assumed
that all edge lengths are different.

Bor̊uvka next described parallel forest-merging, in a somewhat complicated way.
(He did not have the language of graph theory at hand.) The idea is to update a
number of vertex-disjoint paths P1, . . . , Pk (initially k = 0). Along any Pi, the edge
lengths are decreasing. Let v be the last vertex of Pk and let e be the edge of
shortest length incident with v. If the other end vertex of e is not yet covered by
any Pi, we extend Pk with e, and iterate. Otherwise, if not all vertices are covered
yet by the Pi, we choose such a vertex v, and start a new path Pk+1 at v. If all
vertices are covered by the Pi, we shrink each of the Pi to one vertex, and iterate.
At the end, the edges chosen throughout the iterations form a shortest spanning
tree. It is easy to see that this in fact is ‘parallel forest-merging’.

The interest of Bor̊uvka in this problem came from a question of the Electric
Power Company of Western Moravia in Brno, at the beginning of the 1920s, asking
for the most economical construction of an electric power network (see Bor̊uvka
[1977]).

In a follow-up paper, Bor̊uvka [1926b] gave a simple explanation of the method
by means of an example. We refer to Nešetřil, Milková, and Nešetřilova [2001] for
translations of and comments on the two papers of Bor̊uvka.

Jarńık: tree-growing

In a reaction to Bor̊uvka’s work, Jarńık wrote on 12 February 1929 a letter to
Bor̊uvka in which he described a ‘new solution of a minimal problem discussed by
Mr Bor̊uvka’. This ‘new solution’ is the tree-growing method. An extract of the
letter was published as Jarńık [1930]. We quote from the German summary:

a1 ist eine beliebige unter den Zahlen 1, 2, . . . , n.
a2 ist durch

2 In this work, I solve the following problem:
A matrix may be given of positive distinct numbers rαβ (α, β = 1, 2 . . . n; n ≥ 2), up to
the conditions rαα = 0, rαβ = rβα.
From this, a group of numbers, different from each other and from zero, should be
selected such that
1◦ for arbitrarily chosen natural numbers p1, p2 (≤ n) a subgroup of it exists of the
form

rp1c2 , rc2c3 , rc3c4 , . . . rcq−2cq−1 , rcq−1p2 ,

2◦ the sum of its members be smaller than the sum of the members of any other group
of numbers different from each other and from zero, satisfying condition 1◦.
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ra1,a2 = min(
l = 1, 2, . . . , n

l �= a1

) ra1,l

definiert.
Wenn 2 ≤ k < n und wenn [a1, a2], . . . , [a2k−3, a2k−2] bereits bestimmt sind, so
wird [a2k−1, a2k] durch

ra2k−1,a2k
= min ri,j ,

definiert, wo i alle Zahlen a1, a2, . . . , a2k−2, j aber alle übrigen von den Zahlen
1, 2, . . . , n durchläuft.3

Again, Jarńık assumed that all lengths are distinct and showed that then the short-
est spanning tree is unique. For a detailed discussion and translation of the article
of Jarńık [1930] (and of Jarńık and Kössler [1934] on the Steiner tree problem), see
Korte and Nešetřil [2001].

Other discoveries of parallel forest-merging

Parallel forest-merging was described also by Choquet [1938] (without proof), who
gave as motivation the construction of road systems:

Étant donné n villes du plan, il s’agit de trouver un réseau de routes permettant
d’aller d’une quelconque de ces villes à une autre et tel que:
1◦ la longueur globale du réseau soit minimum;
2◦ exception faite des villes, on ne peut partir d’aucun point dans plus de deux
directions, afin d’assurer la sûreté de la circulation; ceci entrâıne, par exemple,
que lorsque deux routes semblent se croiser en un point qui n’est pas une ville,
elles passent en fait l’une au-dessus de l’autre et ne communiquent pas entre elles
en ce point, qu’on appellera faux-croisement.4

He was one of the first concerned on the complexity of the method:

Le réseau cherché sera tracé après 2n opérations élémentaires au plus, en appelant
opération élémentaire la recherche du continu le plus voisin d’un continu donné.5

3 a1 is an arbitrary one among the numbers 1, 2, . . . , n.
a2 is defined by

ra1,a2 = min(
l = 1, 2, . . . , n

l �= a1

) ra1,l.

If 2 ≤ k < n and if [a1, a2], . . . , [a2k−3, a2k−2] are determined already, then [a2k−1, a2k]
is defined by

ra2k−1,a2k
= min ri,j ,

where i runs through all numbers a1, a2, . . . , a2k−2, j however through all remaining of
the numbers 1, 2, . . . , n.

4 Being given n cities of the plane, the point is to find a network of routes allowing to go
from an arbitrary of these cities to another and such that:
1◦ the global length of the network be minimum;
2◦ except for the cities, one cannot depart from any point in more than two directions,
in order to assure the certainty of the circulation; this entails, for instance, that when
two routes seem to cross each other in a point which is not a city, they pass in fact one
above the other and do not communicate among them in this point, which we shall call
a false crossing.

5 The network looked for will be traced after at most 2n elementary operations, calling
the search for the continuum closest to a given continuum an elementary operation.
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Also Florek, �Lukaszewicz, Perkal, Steinhaus, and Zubrzycki [1951a,1951b] described
parallel forest-merging. They were motivated by clustering in anthropology, taxon-
omy, etc. In the latter paper, they apply the method to:

1◦ the capitals of Poland’s provinces, 2◦ two collections of excavated skulls, 3◦

42 archeological finds, 4◦ the liverworts of Silesian Beskid mountains with forests
as their background, and to the forests of Silesian Beskid mountains with the
liverworts appearing in them as their background.

Kruskal

Kruskal [1956] was motivated by Bor̊uvka’s first paper and by the application to
the traveling salesman problem, described as follows (where [1] refers to Bor̊uvka
[1926a]):

Several years ago a typewritten translation (of obscure origin) of [1] raised some
interest. This paper is devoted to the following theorem: If a (finite) connected
graph has a positive real number attached to each edge (the length of the edge),
and if these lengths are all distinct, then among the spanning trees (German:
Gerüst) of the graph there is only one, the sum of whose edges is a minimum;
that is, the shortest spanning tree of the graph is unique. (Actually in [1] this
theorem is stated and proved in terms of the “matrix of lengths” of the graph,
that is, the matrix ‖aij‖ where aij is the length of the edge connecting vertices
i and j. Of course, it is assumed that aij = aji and that aii = 0 for all i and j.)
The proof in [1] is based on a not unreasonable method of constructing a spanning
subtree of minimum length. It is in this construction that the interest largely lies,
for it is a solution to a problem (Problem 1 below) which on the surface is closely
related to one version (Problem 2 below) of the well-known traveling salesman
problem.
Problem 1. Give a practical method for constructing a spanning subtree of min-
imum length.
Problem 2. Give a practical method for constructing an unbranched spanning
subtree of minimum length.
The construction in [1] is unnecessarily elaborate. In the present paper I give
several simpler constructions which solve Problem 1, and I show how one of these
constructions may be used to prove the theorem of [1]. Probably it is true that
any construction which solves Problem 1 may be used to prove this theorem.

Kruskal described three algorithms: Construction A: iteratively choose the
shortest edge that can be added (forest-merging); Construction B: fix a nonempty
set U of vertices, and choose iteratively the shortest edge leaving some component
intersecting U (a generalization of tree-growing); Construction A′: iteratively re-
move the longest edge that can be removed without making the graph disconnected.
He proved that Construction A implies the uniqueness of shortest spanning tree if
all lengths are distinct.

In his reminiscences, Kruskal [1997] wrote about Bor̊uvka’s method:

In one way, the method of construction was very elegant. In another way, however,
it was unnecessarily complicated. A goal which has always been important to me
is to find simpler ways to describe complicated ideas, and that is all I tried to do
here. I simplified the construction down to its essence, but it seems to me that
the idea of Professor Bor̊uvka’s method is still present in my version.
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Prim

Prim [1957] gave the following motivation:

A problem of inherent interest in the planning of large-scale communication, dis-
tribution and transportation networks also arises in connection with the current
rate structure for Bell System leased-line services.

He described the following algorithm: choose a component of the current forest,
and connect it to the nearest component. He observed that Kruskal’s constructions
A and B are special cases of this.

Prim noticed that in fact only the order of the lengths determines if a spanning
tree is shortest:

The shortest spanning subtree of a connected labelled graph also minimizes all in-
creasing symmetric functions, and maximizes all decreasing symmetric functions,
of the edge “lengths.”

Prim preferred starting at a vertex and growing a tree for computational reasons:

This computational procedure is easily programmed for an automatic computer
so as to handle quite large-scale problems. One of its advantages is its avoidance
of checks for closed cycles and connectedness. Another is that it never requires
access to more than two rows of distance data at a time — no matter how large
the problem.

The implementation described by Prim has O(n2) running time.

Loberman and Weinberger

Loberman and Weinberger [1957] gave minimizing wire connections as motivation:

In the construction of a digital computer in which high-frequency circuitry is used,
it is desirable and often necessary when making connections between terminals to
minimize the total wire length in order to reduce the capacitance and delay-line
effects of long wire leads.

They described two methods: tree-growing and forest-merging. Only after they had
designed their algorithms, they discovered that their algorithms were given earlier
by Kruskal [1956].

However, it is felt that the more detailed implementation and general proofs of
the procedures justify this paper.

They next described how to implement Kruskal’s method, in particular, how to
merge forests. They also observed that the minimality of a spanning tree depends
only on the order of the lengths, and not on their specific values:

After the initial sorting into a list where the branches are of monotonically in-
creasing length, the actual value of the length of any branch no longer appears
explicitly in the subsequent manipulations. As a result, some other parameter
such as the square of the length could have been used. More generally, the same
minimum tree will persist for all variations in branch lengths that do not disturb
the original relative order.
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Dijkstra

Dijkstra [1959] gave again the tree-growing method, which he preferred (for com-
putational reasons) above the forest-merging method of Kruskal and Loberman
and Weinberger (overlooking the fact that these authors also gave the tree-growing
method):

The solution given here is to be preferred to the solution given by J.B. Kruskal

[1] and those given by H. Loberman and A. Weinberger [2]. In their solutions
all the — possibly 1

2
n(n−1) — branches are first of all sorted according to length.

Even if the length of the branches is a computable function of the node coordi-
nates, their methods demand that data for all branches are stored simultaneously.
Our method requires the simultaneous storing of the data for at most n branches,
...

Dijkstra described an O(n2) implementation.
Dijkstra [1960] gave the following alternative shortest spanning tree method:

order edges arbitrarily, find the first edge that forms a circuit with previous edges;
delete the longest edge from this circuit, and continue. (This method was also found
by Rosenstiehl [1967].) This generalizes both forest-merging and tree-growing, by
choosing the order appropriately.

Further work

Kalaba [1960] proposed the method of first choosing a spanning tree arbitrarily,
and next adding, iteratively, an edge and removing the longest edge in the circuit
arising.

Kotzig [1961b] gave again Kruskal’s Algorithm A’ (a referee pointed Kruskal’s
work out to Kotzig). Kotzig moreover showed that there is a unique minimum
spanning tree T if and only if for each edge e not in T , e is the unique longest edge
in the circuit in T ∪ {e}.

As mentioned, Graham and Hell [1985] give an extensive survey on the history of
the minimum spanning tree (and minimum Steiner tree) problem. See also Nešetřil
[1997] for additional notes on the history of the minimum spanning tree problem.
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Packing and covering of trees

The basic facts on packing and covering of trees follow directly from those
on matroid union. In this chapter we check what these results amount to
in terms of graphs, and we give some more direct algorithms.

51.1. Unions of forests

For any graph G = (V, E) and any partition P of V , let δ(P) denote the set
of edges connecting distinct classes of P. From the following consequence of
the matroid union theorem we will derive other results on tree packing and
covering:

Theorem 51.1. Let G = (V, E) be an undirected graph and let k ∈ Z+. Then
the maximum size of the union of k forests is equal to the minimum value of

(51.1) |δ(P)| + k(|V | − |P|)

taken over all partitions P of V into nonempty classes.

Proof. This follows directly from the matroid union theorem (Corollary
42.1a) applied to the cycle matroid M of G. Indeed, by Corollary 42.1b,
the maximum size of the union of k forests is equal to the minimum value of

(51.2) |E \ F | + krM (F ),

where rM (F ) is the maximum size of a forest contained in F . We can assume
that each component of (V, F ) is an induced subgraph of G. So taking P
equal to the set of components of (V, F ), we see that rM (F ) = |V |− |P|, and
hence that the minimum of (51.2) is equal to the minimum of (51.1).

51.2. Disjoint spanning trees

Theorem 51.1 has a number of consequences. First we have the following tree
packing result of Tutte [1961a] and Nash-Williams [1961b]:

Corollary 51.1a (Tutte-Nash-Williams disjoint trees theorem). A graph
G = (V, E) contains k edge-disjoint spanning trees if and only if



878 Chapter 51. Packing and covering of trees

(51.3) |δ(P)| ≥ k(|P| − 1)

for each partition P of V into nonempty classes.

Proof. To see necessity of (51.3), each spanning tree contains at least |P|−1
edges in δ(P). To show sufficiency, it is equivalent to show that there exist
k(|V | − 1) edges that can be covered by k forests. By Theorem 51.1, this is
indeed possible, since

(51.4) |δ(P)| + k(|V | − |P|) ≥ k(|P| − 1) + k(|V | − |P|) = k(|V | − 1)

for each partition P of V into nonempty sets.

Gusfield [1983] observed that the Tutte-Nash-Williams disjoint trees the-
orem (Corollary 51.1a) implies that each 2k-edge-connected undirected graph
has k edge-disjoint spanning trees (since |δ(P)| ≥ k|P| ≥ k(|P| − 1)).

Similarly to the line pursued in Section 42.2, Corollary 51.1a can be for-
mulated equivalently in polyhedral terms:

Corollary 51.1b. The connector polytope of a graph has the integer decom-
position property.

Proof. Similar to the proof of Corollary 42.1e.

For any connected graph G = (V, E), define the strength of G by:

(51.5) strength(G) := max{λ | 1 ∈ λ · Pconnector(G)}

= max{
∑

T

λT | λT ≥ 0,
∑

T

λT χT ≤ 1},

where T ranges over the spanning trees of G, and where 1 denotes the all-1
vector in RE .

The Tutte-Nash-Williams disjoint trees theorem is equivalent to: the max-
imum number of disjoint spanning trees in a graph G = (V, E) is equal to
⌊strength(G)⌋. Similarly, the capacitated version of the Tutte-Nash-Williams
theorem is equivalent to the integer rounding property of the system (cf.
Section 42.2):

(51.6) xe ≥ 0 for e ∈ E,
x(T ) ≥ 1 for each spanning tree T .

51.3. Covering by forests

Dual to Corollary 51.1a is the following forest covering theorem of Nash-
Williams [1964], where E[U ] denotes the set of edges contained in U . (The
theorem is also a consequence of a theorem of Horn [1955] on covering vector
sets by linearly independent sets, since each graphic matroid is linear.)
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Corollary 51.1c (Nash-Williams’ covering forests theorem). The edge set of
a graph G = (V, E) can be covered by k forests if and only if

(51.7) |E[U ]| ≤ k(|U | − 1)

for each nonempty subset U of V .

Proof. Since any forest has at most |U | − 1 edges contained in U , we have
necessity of (51.7). To see sufficiency, notice that (51.7) implies

(51.8) |E| − |δ(P)| =
∑

U∈P

|E[U ]| ≤
∑

U∈P

k(|U | − 1) = k(|V | − |P|)

for any partition P of V into nonempty sets. So |δ(P)| + k(|V | − |P|) ≥ |E|,
and hence Theorem 51.1 implies that there exist k forests covering E.

(Nash-Williams [1964] derived Corollary 51.1c from Corollary 51.1a.)
Again, this corollary can be formulated in terms of the integer decompo-

sition property:

Corollary 51.1d. For any graph G, the forest polytope has the integer de-
composition property.

Proof. Similar to the proof of Corollary 42.1e.

These results are equivalent to: the minimum number of forests needed
to cover the edges of a graph G = (V, E) is equal to

(51.9) ⌈min{λ | 1 ∈ λ · Pforest(G)}⌉,

where 1 denotes the all-one vector in RE . A similar relation holds for the
capacitated case, which is equivalent to the integer rounding property of the
system:

(51.10) xe ≥ 0 for e ∈ E,
x(F ) ≤ 1 for each forest F .

The minimum number of forests needed to cover the edges of a graph G is
called the arboricity of G.

51.4. Complexity

The complexity results on matroid union in Sections 40.3, 42.3 and 42.4 imply
that these packing and covering problems for forests and trees are solvable
in polynomial time:

Theorem 51.2. For any graph G = (V, E), a maximum number of edge-
disjoint spanning trees and a minimum number of forests covering E can be
found in polynomial time.
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Proof. See Section 42.3.

Also weighted versions of it can be solved in strongly polynomial time, for
instance, finding a maximum-weight union of k forests in a graph. We give
in this section some direct proofs.

To study the complexity of the capacitated and fractional cases, we first
observe the following auxiliary result, that is (when applied to undirected
graphs) at the base of several algorithms on the forest and connector poly-
topes, and was observed by Rhys [1970], Picard and Ratliff [1975,1978], Picard
[1976], Trubin [1978], Picard and Queyranne [1982a], Padberg and Wolsey
[1983], and Cunningham [1985a]. (It also follows from the strong polynomial-
time solvability of submodular function minimization, but there is an easier
direct method.)

Theorem 51.3. Given a digraph D = (V, A), x ∈ QA
+, y ∈ QV , and disjoint

subsets S and T , we can find a set U with T ⊆ U ⊆ V \ S minimizing

(51.11) x(δin(U)) + y(U)

in strongly polynomial time.

Proof. Extend D by two new vertices s and t, and arcs (s, v) for v ∈ V
with yv > 0 and (v, t) for v ∈ V with yv < 0. This gives the digraph D′ =
(V ∪ {s, t}, A′). Define a capacity function c on A′ by:

(51.12) c(u, v) := x(u, v) for (u, v) ∈ A,
c(s, v) := yv if (s, v) ∈ A′,
c(v, t) := −yv for (v, t) ∈ A′.

Let κ := −c(δin
A′(t)) (the sum of the negative yv’s). Then

(51.13) c(δin
A′(U ∪ {t})) = x(δin

A (U)) +
∑

v ∈ U
yv > 0

yv −
∑

v ∈ V \ U
yv > 0

yv

= x(δin
A (U)) +

∑

v∈U

yv −
∑

v ∈ V
yv < 0

yv = x(δin
A (U)) + y(U) − κ

for any U ⊆ V . Thus minimizing x(δin
A (U)) + y(U) is reduced to finding a

minimum-capacity (S ∪ {s}) − (T ∪ {t}) cut in D′.

Testing membership and finding most violated inequalities

A first consequence of Theorem 51.3 is that we can test membership, and find
a most violated inequality, for the forest polytope (Picard and Queyranne
[1982b] (suggested by W.H. Cunningham) and Padberg and Wolsey [1983]).
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Corollary 51.3a. Given a graph G = (V, E) and x ∈ QE
+, we can decide

if x belongs to Pforest(G), and if not, find a most violated inequality among
(50.11), in strongly polynomial time.

Proof. Define yv := 2 − x(δ(v)) for v ∈ V . Then

(51.14) 2(x(E[U ]) − |U |) =
∑

v∈U

x(δ(v)) − x(δ(U)) − 2|U |

= −x(δ(U)) − y(U).

So any nonempty U ⊆ V minimizing x(δ(U))+y(U), maximizes x(E[U ])−|U |.
By Theorem 51.3, we can find such a U in strongly polynomial time. If
x(E[U ]) ≤ |U | − 1, x belongs to Pforest(G), and otherwise U gives a most
violated inequality.

A similar result holds for the up hull of the connector polytope, which we
show with a method of Jünger and Pulleyblank [1995]:

Corollary 51.3b. Given a graph G = (V, E) and x ∈ QE
+, we can find a

partition P of V into nonempty sets minimizing

(51.15) x(δ(P)) − |P|

in strongly polynomial time.

Proof. We first construct a vector y ∈ QV , by updating a vector y. Through-
out, y satisfies

(51.16) y(U) ≤ x(δ(U)) − 2 for each nonempty U ⊆ V .

Start with yv := −2 for all v ∈ V . Successively, for each v ∈ V , reset yv to
yv + α, where α is the minimum value of

(51.17) x(δ(U)) − 2 − y(U)

taken over all U ⊆ V containing v. Such a U can be found in strongly
polynomial time by Theorem 51.3.

We end up with a y satisfying (51.16). Moreover, each v ∈ V is contained
in some set U with y(U) = x(δ(U)) − 2.

Let P be the inclusionwise maximal sets U satisfying y(U) = x(δ(U))−2.
Then P is a partition of V , since if T, U ∈ P and T ∩ U �= ∅, then (by the
submodularity of x(δ(Y ))) y(T ∪ U) = x(δ(T ∪ U)) − 2, and hence T = U =
T ∪ U .

This P is as required, since for each partition Q of V into nonempty sets
we have

(51.18) 2x(δ(Q)) − 2|Q| =
∑

U∈Q

(x(δ(U)) − 2) ≥
∑

U∈Q

y(U) = y(V ),

with equality if Q = P.
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(This method is analogous to calculating the Dilworth truncation as discussed
in Theorem 48.4.)

Corollary 51.3b implies for finding the most violated inequality:

Corollary 51.3c. Given a graph G = (V, E) and x ∈ QE
+, we can decide if

x belongs to P ↑
connector(G), and if not, find a most violated inequality among

(50.17)(ii), in strongly polynomial time.

Proof. By Corollary 51.3b, we can find a partition P of V into nonempty
sets, minimizing x(δ(P)) − |P|. If this value is at least −1, then x belongs
to the up hull of the connector polytope, while otherwise P gives a most
violated inequality among (50.17)(ii).

Barahona [1992] showed that membership in the connector polytope can
be tested by solving O(n) maximum flow computations (improving Cunning-
ham [1985c]).

Fractional decomposition into trees

By definition, any vector in Pforest(G) or Pconnector(G) can be decomposed as
a convex combination of incidence vectors of forests or of connectors. These
decompositions can be found in strongly polynomial time, a result due to
Cunningham [1984] and Padberg and Wolsey [1984] (for the forest polytope).

In order to decompose a vector in the forest polytope as a convex com-
bination of forests, by the following theorem it suffices to have a method to
decompose a vector in the spanning tree polytope as a convex combination
of spanning trees:

Theorem 51.4. Given a connected graph G = (V, E) and x ∈ Pforest(G), we
can find a z ∈ Pspanning tree(G) with x ≤ z in strongly polynomial time.

Proof. We reset x successively for each edge e = uv of G as follows. Reset
xe to xe + α, where α is the largest value such that x remains to belong to
Pforest(G). That is, α equals the minimum value of

(51.19) |U | − 1 − x(E[U ]) = |U | − 1 − 1
2

∑

v∈U

x(δ(v)) + 1
2x(δ(U)),

taken over subsets U of V with u, v ∈ U . Such a U can be found in strongly
polynomial time by Theorem 51.3.

As Pforest(G) = P ↓
spanning tree(G) ∩ RE

+, the final x is a z as required.

Hence, to decompose a vector in the forest polytope, we can do with
decomposing vectors in the spanning tree polytope:
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Theorem 51.5. Given a graph G = (V, E) and y ∈ Pspanning tree(G), we can
find spanning trees T1, . . . , Tk and λ1, . . . , λk ≥ 0 satisfying

(51.20) y = λ1χ
T1 + · · · + λkχTk

and λ1 + · · · + λk = 1, in strongly polynomial time.

Proof. Iteratively resetting y, we keep an integer weight function w such
that y maximizes wTy over the spanning tree polytope. Initially, w := 0. We
describe the iteration.

Let T be a spanning tree in G with T ⊆ supp(y), maximizing w(T ). Let
a := y − χT . If a = 0 we stop; then y = χT . If a �= 0, let λ be the largest
rational such that

(51.21) χT + λ · a

belongs to P ↑
spanning tree(G).

We describe an inner iteration to find λ. We iteratively consider vectors
y along the halfline L := {χT + λ · a | λ ≥ 0}. Note that the function wTx is
constant on L. First we let λ be the largest rational such that χT + λ · a is
nonnegative, and set z := χT + λ · a.

We iteratively reset z. We check if z belongs to the spanning tree polytope,
and if not, we find a constraint among (50.12) most violated by z. That is,
we find a nonempty subset U of V minimizing |U | − 1 − z(E[U ]). Let z′ be
the vector on L attaining x(E[U ]) ≤ |U | − 1 with equality.

Consider any inequality x(E[U ′]) ≤ |U ′| − 1 violated by z′. Then

(51.22) |U ′| − 1 − |T ∩ E[U ′]| < |U | − 1 − |T ∩ E[U ]|.

This can be seen by considering the function d(x) := (|U | − 1 − x(E[U ])) −
(|U ′| − 1 − x(E[U ′])). We have d(z) ≤ 0 and d(z′) > 0, and hence, as d is
linear, d(χT ) > 0; that is, we have (51.22). So resetting z := z′, there are at
most |V | inner iterations.

Let y′ be the final z found. Since λ ≥ 1 (as y ∈ Pspanning tree(G)) and
y = λ−1 · y′ + (1 − λ−1) · χT , any convex decomposition of y′ into incidence
vectors of spanning trees, yields such a decomposition of y. We show that
this recursion terminates.

If we apply no iteration, then supp(y′) ⊂ supp(y). So replacing y, w by
y′, w gives a reduction.

If we do at least one iteration, we find a U such that y′ satisfies y′(E[U ]) =
|U | − 1 while |T ∩ E[U ]| < |U | − 1. In this case we replace y, w by y′, w′ :=
2w + χE[U ].

Then y′ maximizes w′Tx over the spanning tree polytope. Indeed, for any
x in the spanning tree polytope, we have

(51.23) w′Tx = 2wTx + x(E[U ]) ≤ 2wTy + |U | − 1 = 2wTy′ + y′(E[U ])

= w′Ty′.
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Moreover, each tree T ′ maximizing w′(T ′) also maximizes w(T ′) (by the
greedy method: for any ordering of V for which w′ is nondecreasing, also
w is nondecreasing). However, T does not maximize w′(T ), since w′(T ) =

2w(T ) + |T ∩ E[U ]| < 2w(T ) + |U | − 1 = 2wTy + |U | − 1 = w′Ty′. So the

dimension of the face of vectors x maximizing w′Tx is less than the dimension
of the face of vectors x maximizing wTx.

So the number of iterations is at most |E|. This shows that the method
is strongly polynomial-time.

Now we can derive from the previous two theorems, an algorithmic result
for fractional forest decomposition:

Corollary 51.5a. Given a graph G = (V, E) and y ∈ Pforest(G), we can find
forests F1, . . . , Fk and λ1, . . . , λk ≥ 0 satisfying

(51.24) y = λ1χ
F1 + · · · + λkχFk

and λ1 + · · · + λk = 1, in strongly polynomial time.

Proof. We can assume that G is connected, as we can consider each compo-
nent of G separately. By Theorem 51.4, we can find a z ∈ Pspanning tree(G)
with y ≤ z in strongly polynomial time. By Theorem 51.5, we can decompose
z as a convex combination of incidence vectors of spanning trees in strongly
polynomial time. By restricting the spanning trees to subforests if necessary,
we obtain a convex decomposition of y into incidence vectors of forests.

We can proceed similarly for decomposing a vector in the connector poly-
tope. To this end, we show the analogue for connectors of Theorem 51.4:

Theorem 51.6. Given a graph G = (V, E) and x ∈ P ↑
connector(G), we can

find a z ∈ Pspanning tree(G) with x ≥ z, in strongly polynomial time.

Proof. The method described in the proof of Corollary 51.3b gives a vector
y ∈ QV satisfying

(51.25) y(U) ≤ x(δ(U)) − 2 for each nonempty U ⊆ V ,

and a partition P of V into nonempty sets with y(U) = x(δ(U)) − 2 for each
U ∈ P. Hence

(51.26) y(V ) =
∑

U∈P

(x(δ(U)) − 2) = 2x(δ(P)) − 2|P| ≥ −2.

By decreasing components of y appropriately, we can achieve that y(V ) = −2,
while maintaining (51.25).

We are going to modify y and x, maintaining (51.25) and y(V ) = −2. For
each u, v ∈ V with e = uv ∈ E, we do the following. Let α be the minimum
value of x(δ(U)) − 2 − y(U) taken over subsets U of V with u ∈ U , v �∈ U .
So α ≥ 0. Let β := min{xe,

1
2α} and reset
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(51.27) xe := xe − β, yu := yu + β, yv := yv − β.

Then (51.25) is maintained, and the collection C of subsets U having equality
in (51.25) is not reduced. Moreover, in the new situation, xe = 0 or there is

a U ∈ C with u ∈ U and v �∈ U . Also, the new x belongs to P ↑
connector(G), as

for any partition Q of V into nonempty sets we have

(51.28)
∑

U∈Q

x(δ(U)) ≥ y(V ) + 2|Q| = 2|Q| − 2.

Doing this for each edge e (in both directions), we end up with x, y sat-
isfying (51.25) such that

(51.29) for all adjacent u, v, if xuv > 0, then there is a U ∈ C with u ∈ U
and v �∈ U .

This implies that

(51.30) yu = x(δ(u)) − 2

for each u ∈ V . Indeed, C is closed under unions and intersections of inter-
secting sets. Let U be the smallest set in C containing u. (This exists, since
V ∈ C.) To show (51.30), we must show U = {u}. Suppose therefore that
U �= {u}. By (51.29), there is no edge e connecting u and U \{u} with xe > 0.
Hence

(51.31) y(U) = yu + y(U \ {u}) ≤ x(δ(u)) − 2 + x(δ(U \ {u})) − 2
= x(δ(U)) − 4 < x(δ(U)) − 2,

contradicting the fact that U ∈ C. This proves (51.30).
Hence

(51.32) 2x(E) =
∑

u∈V

x(δ(u)) = y(V ) + 2|V | = 2(|V | − 1),

and so x(E) = |V | − 1. This implies that x belongs to the spanning tree
polytope.

This implies for fractional connector decomposition:

Corollary 51.6a. Given a graph G = (V, E) and x ∈ Pconnector(G), we can
find connectors C1, . . . , Ck and λ1, . . . , λk ≥ 0 satisfying

(51.33) x = λ1χ
C1 + · · · + λkχCk

and λ1 + · · · + λk = 1, in strongly polynomial time.

Proof. By Theorem 51.6, we can find a z ∈ Pspanning tree(G) with x ≥ z in
strongly polynomial time. By Theorem 51.5, we can decompose z as a convex
combination of incidence vectors of spanning trees in strongly polynomial
time. This gives a decomposition as required.
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Fractionally packing and covering trees and forests

We now consider the problem of finding a maximum fractional packing of
spanning trees subject to a given capacity function, and its dual, finding a
minimum fractional covering by forests of a given demand function.

Since we have proved above that convex decompositions can be found in
strongly polynomial time, we only need to give a method to find the optimum
values of the fractional packing and covering.

The method is a variant of a ‘fractional programming method’ initiated
by Isbell and Marlow [1956], and developed by Dinkelbach [1967], Schaible
[1976], Picard and Queyranne [1982a], Padberg and Wolsey [1984], and Cun-
ningham [1985c].

It implies the following result of Picard and Queyranne [1982a] and Pad-
berg and Wolsey [1984]:

Theorem 51.7. Given a graph G = (V, E) and y ∈ QE
+, we can find the

minimum λ such that y ∈ λ · Pforest(G), in strongly polynomial time.

Proof. We can assume that y does not belong to the forest polytope. (Other-
wise multiply y by a sufficiently large scalar.) Let L be the line through 0 and
y. We iteratively reset y as follows. Find a nonempty subset U of V minimiz-
ing |U | − 1 − y(E[U ]). Let y′ be the vector on L with |U | − 1 − y′(E[U ]) = 0.

Now if y′ violates x(E[U ′]) ≤ |U ′| − 1 for some U ′, then |U ′| < |U |, since
the function d(x) := (|U |−1−x(E[U ]))− (|U ′|−1−x(E[U ′])) is nonpositive
at y and positive at y′, implying that it is positive at 0 (as d is linear in x).

We reset y := y′ and iterate, until y belongs to Pforest(G). So after at most
|V | iterations the process terminates, with a y on the boundary of Pforest(G).
Comparing the final y with the original y gives the required λ.

Hence we have for fractional forest covering:

Corollary 51.7a. Given a graph G = (V, E) and y ∈ QE
+, we can find forests

F1, . . . , Fk and rationals λ1, . . . , λk ≥ 0 such that

(51.34) y = λ1χ
F1 + · · · + λkχFk

with λ1 + . . . + λk minimal, in strongly polynomial time.

Proof. By Theorem 51.7, we can find the minimum value of λ such that y
belongs to λ · Pforest(G). If λ = 0, then y = 0, and (51.34) is trivial. If λ > 0,
then by Corollary 51.5a we can decompose λ−1 · y as a convex combination
of incidence vectors of forests. This gives the required decomposition of y.

Similar results holds for fractional tree packing (Cunningham [1984,
1985c]). First one has:
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Theorem 51.8. Given a connected graph G = (V, E) and y ∈ QE
+, we can

find the maximum λ such that y ∈ λ · Pconnector(G), in strongly polynomial
time.

Proof. If supp(y) is not a connector, then λ = 0. So we may assume that
supp(y) is a connector. We can also assume that y �∈ Pconnector(G). Let L be
the line through 0 and y. We iteratively reset y as follows. Find a partition P
of V into nonempty sets minimizing y(δ(P))− (|P|−1) (by Corollary 51.3b).
Let y′ be the vector on L with y′(δ(P)) = |P| − 1.

Now if y′ violates x(δ(P ′)) ≥ |P ′| − 1 for some partition P ′ of V into
nonempty sets, then |P ′| < |P|, since the function d(x) := (x(δ(P)) − |P| +
1)− (x(δ(P ′))−|P ′|+1) is nonpositive at y and positive at y′, implying that
it is negative at 0 (as d is linear in x).

We reset y := y′ and iterate, until y belongs to Pconnector(G). So after at
most |V | iterations the process terminates, in which case we have a y on the
boundary of Pconnector(G). Comparing the final y with the original y gives
the required λ.

This implies for fractional tree packing:

Corollary 51.8a. Given a connected graph G = (V, E) and x ∈ QE
+, we can

find spanning trees T1, . . . , Tk and rationals λ1, . . . , λk ≥ 0 such that

(51.35) x ≥ λ1χ
T1 + · · · + λkχTk

with λ1 + . . . + λk maximal, in strongly polynomial time.

Proof. By Theorem 51.8, we can find the maximum value of λ such that x
belongs to λ · Pconnector(G). If λ = 0, we take k = 0. If λ > 0, by Corollary
51.6a we can decompose λ−1 ·x as a convex combination of incidence vectors
of connectors. This gives the required decomposition of x.

Integer packing and covering of trees

It is not difficult to derive integer versions of the above algorithms, but they
are not strongly polynomial-time, as we round numbers in it. In fact, an
integer packing or covering cannot be found in strongly polynomial time, as
it would imply a strongly polynomial-time algorithm for testing if an integer
k is even (which algorithm does not exist6): k is even if and only if K3 has
3
2k spanning trees containing each edge at most k times.

6 For any strongly polynomial-time algorithm with one integer k as input, there is a
number L and a rational function q : Z → Q such that if k > L, then the output
equals q(k). (This can be proved by induction on the number of steps of the algorithm.)
However, there do not exist a rational function q and a number L such that for k > L,
q(k) = 0 if k is even, and q(k) = 1 if k is odd.
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Weakly polynomial-time algorithms follow directly from the fractional
case with the help of the theorems of Nash-Williams and Tutte on disjoint
trees and covering forests.

Theorem 51.9. Given a graph G = (V, E) and y ∈ ZE
+, we can find forests

F1, . . . , Ft and integers λ1, . . . , λt ≥ 0 such that

(51.36) y = λ1χ
F1 + · · · + λtχ

Ft

with λ1 + . . . + λt minimal, in polynomial time.

Proof. First find F1, . . . , Fk and λ1, . . . , λk as in Corollary 51.7a. We can
assume that k ≤ |E| (by Carathéodory’s theorem). Let

(51.37) y′ :=
k∑

i=1

(λi − ⌊λi⌋)χ
Fi = y −

k∑

i=1

⌊λi⌋χ
Fi .

So y′ is integer.
Replace each edge e by y′

e parallel edges, making G′. By Theorem 51.2,
we can find a minimum number of forests partitioning the edges of G′, in
polynomial time (as y′

e ≤ |E| for each e ∈ E). This gives forests Fk+1, . . . , Ft

in G.
Setting λi := 1 for i = k + 1, . . . , t, we show that this gives a solution

of our problem. Trivially, (51.36) is satisfied (with λi replaced by ⌊λi⌋). By
Nash-Williams’ covering forests theorem (Theorem 51.1c), using (51.37),

(51.38) t − k ≤
⌈ k∑

i=1

(λi − ⌊λi⌋)
⌉
.

Therefore,

(51.39)
t∑

i=1

⌊λi⌋ = (t − k) +
k∑

i=1

⌊λi⌋ ≤
⌈ k∑

i=1

λi

⌉
,

proving that the decomposition is optimum.

One similarly shows for tree packing:

Theorem 51.10. Given a connected graph G = (V, E) and y ∈ ZE
+, we can

find spanning trees T1, . . . , Tt and integers λ1, . . . , λt ≥ 0 such that

(51.40) y ≥ λ1χ
T1 + · · · + λtχ

Tt

with λ1 + . . . + λt maximal, in polynomial time.

Proof. First find T1, . . . , Tk and λ1, . . . , λk as in Corollary 51.8a. We can
assume that k ≤ |E| (by Carathéodory’s theorem). Let

(51.41) y′ :=
⌈ k∑

i=1

(λi − ⌊λi⌋)χ
Ti

⌉
.
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Replace each edge e by y′
e parallel edges, making G′. By Theorem 51.2, we can

find a maximum number of edge-disjoint spanning trees in G′, in polynomial
time (as y′

e ≤ |E| for each e ∈ E). This gives spanning trees Tk+1, . . . , Tt in
G.

Setting λi := 1 for i = k + 1, . . . , t, we show that this gives a solution of
our problem. Trivially, (51.40) is satisfied (with λi replaced by ⌊λi⌋). By the
Tutte-Nash-Williams disjoint trees theorem using (51.41),

(51.42) t − k ≥
⌊ k∑

i=1

(λi − ⌊λi⌋)
⌋
.

Therefore,

(51.43)
t∑

i=1

⌊λi⌋ = (t − k) +
k∑

i=1

⌊λi⌋ ≥
⌊ k∑

i=1

λi

⌋
,

proving that the decomposition is optimum.

51.5. Further results and notes

51.5a. Complexity survey for tree packing and covering

Complexity survey for finding a maximum number of (or k) disjoint spanning trees
(∗ indicates an asymptotically best bound in the table):

O(m2 log n) Imai [1983a]

O(m2)
Roskind and Tarjan [1985] (announced
by Tarjan [1976]) for simple graphs

∗ O(m
√

m
n

(m + n log n) log m
n

) Gabow and Westermann [1988,1992]

∗ O(nm log m
n

) Gabow and Westermann [1988,1992]

∗ O(kn
√

m + kn log n) Gabow [1991a] (announced)

Complexity survey for finding a minimum number of forests covering all edges of
the graph:

O(n4)
Picard and Queyranne [1982a]
(finding the number) for simple
graphs

O(n2m log2 n)
Picard and Queyranne [1982a]
(finding the number) for simple
graphs

≫
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continued

O(m2)
Imai [1983a], Roskind and Tarjan
[1985] (announced by Tarjan [1976])
for simple graphs

∗ O(nm log n) Gabow and Westermann [1988,1992]

O(m(m(m + n log n) log m)1/3) Gabow and Westermann [1988,1992]

∗ O(m3/2 log(n2/m)) Gabow [1995b,1998]

Liu and Wang [1988] gave an O(k2n2m(m + kn2))-time algorithm to find a
minimum-weight union F of k edge-disjoint spanning trees in a graph G = (V, E),
where E is partitioned into classes E1, . . . , Et, such that ai ≤ |F ∩Ei| ≤ bi for each
i, given a partition E1, . . . , Et of E and numbers ai and bi for all i.

Complexity survey for finding a maximum-size union of k forests:

O(k2n2)
Imai [1983a], Roskind and Tarjan [1985]
(announced by Tarjan [1976]) for simple
graphs

O(k3/2
√

nm(m + n log n)) Gabow and Stallmann [1985]

∗ O(k3/2n
√

m + n log n) Gabow and Westermann [1988,1992]

∗ O(k1/2m
√

m + n log n) Gabow and Westermann [1988,1992]

∗ O(kn2 log k) Gabow and Westermann [1988,1992]

∗ O(m2

k
log k) Gabow and Westermann [1988,1992]

Algorithms for finding a maximum-size union of two forests were given by Kishi
and Kajitani [1967,1968,1969] and Kameda and Toida [1973].

Complexity survey for finding a maximum-weight union of k forests:

O(k2n2 + m log m) Roskind and Tarjan [1985] for simple graphs

∗ O(kn2 log k + m log m) Gabow and Westermann [1988,1992]

∗ O(m2

k
log k + m log m) Gabow and Westermann [1988,1992]

Roskind and Tarjan [1985] (cf. Clausen and Hansen [1980]) gave an O(k2n2 +
m log m)-time algorithm for finding a maximum-weight union of k disjoint spanning
trees, in a simple graph.

As for the capacitated case, the methods given in Section 51.4 indicate that
packing and covering problems on forests and trees can be solved by a series of
minimum-capacity cut problem (as they reduce to Theorem 51.3). A parametric
minimum cut method designed by Gallo, Grigoriadis, and Tarjan [1989] allows to
combine several consecutive minimum cut computations, improving the efficiency
of the corresponding tree packing and covering problem, as was done by Gusfield
[1991].

The published algorithms for integer packing and coverings of trees all are based
on rounding the fractional version, not increasing the complexity of the problem,
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except that rounding is included as an operation. This blocks these algorithms from
being strongly polynomial-time: as we saw in Section 51.4, it can be proved that
there exists no strongly polynomial-time algorithm for finding an optimum integer
packing of spanning trees under a given capacity (similarly, for integer covering by
forests).

The following table gives a complexity survey for finding a maximum fractional
packing of spanning trees subject to a given integer capacity function c, or a min-
imum fractional covering by forests subject to a given demand function c. Here it
seems that the optimum value can be found faster than an explicit fractional pack-
ing or covering. The problems of finding an optimum fractional packing of trees is
close to that of finding an optimum fractional covering of forests (or trees), so we
present their complexity in one survey.

For any graph G = (V, E) and c : E → R+, the strength is the maximum
value of λ such that c belongs to λ · Pconnector(G). It is equal to the maximum size
of a fractional packing of spanning trees subject to c. The fractional arboricity is
the minimum value of λ such that c belongs to λ · Pforest(G). This is equal to the
minimum size of a fractional c-covering by forest.

O(nm8)
Cunningham [1984]: finding an optimum
fractional packing of trees

O(nm · MF(n, n2)) Cunningham [1985c]: computing strength

O(n4m2 log2 C)
Gabow [1991a] (announced): computing
strength

∗ O(n3m) Gusfield [1991]: computing strength

O(nm2 log(n2/m)) Gusfield [1991]: computing strength

O(n3 · MF(n, m))
Trubin [1991]: finding an optimum fractional
packing of trees

O(n2 · MF(n, n2)) Barahona [1992]: computing strength

O(n2 · MF(n, n2))
Barahona [1995]: finding optimum fractional
packing of trees

∗ O(n · MF(n, m))
Cheng and Cunningham [1994]: computing
strength

∗ O(n · MF(n, m))
Gabow [1995b,1998]: computing strength
and fractional arboricity

∗ O(n3m log(n2/m))
Gabow and Manu [1995,1998]: finding an
optimum fractional packing of trees and an
optimum fractional covering by forests

∗ O(n2m log C log(n2/m))
Gabow and Manu [1995,1998]: finding an
optimum fractional packing of trees and an
optimum fractional covering by forests

Here MF(n, m) is the complexity of finding a maximum-value s − t flow subject to
c in a digraph with n vertices and m arcs, and C := ‖c‖max (assuming c integer).
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51.5b. Further notes

A special case of a question asked by A. Frank (cf. Schrijver [1979b], Frank [1995])
amounts to the following:

(51.44) (?) Let G = (V, E) be an undirected graph and let s ∈ V . Suppose
that for each vertex t �= s, there exist k internally vertex-disjoint s − t
paths. Then G has k spanning trees such that for each vertex t �= s,
the s − t paths in these trees are internally vertex-disjoint. (?)

(The spanning trees need not be edge-disjoint — otherwise G = K3 would form
a counterexample.) For k = 2, (51.44) was proved by Itai and Rodeh [1984,1988],
and for k = 3 by Cheriyan and Maheshwari [1988] and Zehavi and Itai [1989].

Peng, Chen, and Koh [1991] showed that for any undirected graph G = (V, E)
and any p, k ∈ Z+, there exist k disjoint forests each with p components if and only
if

(51.45) |δ(P)| ≥ k(|P| − p)

for each partition P of V into nonempty sets. This in fact is the matroid base
packing theorem (Corollary 42.1d) applied to the (|V | − p)-truncation of the cycle
matroid of G.

Theorem 42.10 of Seymour [1998] implies that if the edges of a graph G = (V, E)
can be partitioned into k forests and if for each e ∈ E a subset Le of {1, 2, . . .} with
|Le| = k is given, then we can partition E into forests F1, F2, . . . such that j ∈ Le

for each j ≥ 1 and each e ∈ Fj .
Henneberg [1911] and Laman [1970] characterized those graphs which have,

after adding any edge, two edge-disjoint spanning trees. This was extended to k
edge-disjoint spanning trees by Frank and Szegő [2001].

Farber, Richter, and Shank [1985] showed the following. Let G = (V, E) be an
undirected graph. Let V be the collection of pairs (T1, T2) of edge-disjoint spanning
trees T1 and T2 in G. Call two pairs (T1, T2) and (S1, S2) in V adjacent if |(T1 ∪
T2) − (S1 ∪ S2)| = 2. Then this determines a connected graph on V.

Cunningham [1985c] gave a strongly polynomial-time algorithm (O(nm min{n2,
m log n})) to find a minimum-cost set of capacities to be added to a capacitated
graph so as to create the existence of k edge-disjoint spanning trees; that is, given
G = (V, E) and c, k ∈ ZE

+, solving

(51.46)
∑

e∈E

k(e)xe

where x ∈ ZE
+ satisfies

(51.47) (c + x)(δ(P)) ≥ k(|P| − 1)

for each partition P of V into nonempty sets. (It amounts to finding a minimum-
cost integer vector in a contrapolymatroid.) Related work can be found in Bäıou,
Barahona, and Mahjoub [2000].



Chapter 52

Longest branchings and shortest
arborescences

We next consider trees in directed graphs. We recall some terminology and
facts. Let D = (V, A) be a digraph. A branching is a subset B of A such
that B contains no undirected circuit and such that for each vertex v there
is at most one arc in B entering v. A root of B is a vertex not entered
by any arc in B. For any branching B, each weak component of (V, B)
contains a unique root.
A branching B is called an arborescence if the digraph (V, B) is weakly
connected; equivalently, if (V, B) is a rooted tree. So each arborescence
B has a unique root r. We say that B is rooted at r, and we call B an
r-arborescence. An r-arborescence can be characterized as a directed span-
ning tree B such that each vertex is reachable in B from r. A digraph
D = (V, A) contains an r-arborescence if and only if each vertex of D is
reachable from r.

52.1. Finding a shortest r-arborescence

Let be given a digraph D = (V, A), a vertex r, and a length function l :
A → Q+. We consider the problem of finding a shortest (= minimum-length)
r-arborescence.

We cannot apply here the greedy method of starting at the root r and
iteratively extending an r-arborescence on a subset U of V , by the shortest
arc leaving U . This is shown by the example of Figure 52.1.

The following algorithm was given by Chu and Liu [1965], Edmonds
[1967a], and Bock [1971]:

Algorithm to find a shortest r-arborescence. Let A0 := {a ∈ A | l(a) =
0}. If A0 contains an r-arborescence B, then B is a shortest r-arborescence. If
A0 contains no r-arborescence, there is a strong component K of (V, A0) with
r �∈ K and with l(a) > 0 for each a ∈ δin(K). Let α := min{l(a) | a ∈ δin(K)}.
Set l′(a) := l(a) − α if a ∈ δin(K) and l′(a) := l(a) otherwise.

Find (recursively) a shortest r-arborescence B with respect to l′. As K is
a strong component of (V, A0), we can choose B such that |B ∩ δin(K)| = 1
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r

u v
1

2 3

Figure 52.1

In a greedy method one would first choose the shortest arc leaving
r, which is (r, u). This arc however is not contained in the shortest
r-arborescence.

(since if |B ∩ δin(K)| ≥ 2, then there exists an a ∈ B ∩ δin(K) such that
the set (B \ {a}) ∪ A0 contains an r-arborescence, say B′, with l′(B′) ≤
l′(B) − l′(a) ≤ l′(B)).

Then B is also a shortest r-arborescence with respect to l, since for any
r-arborescence B′:

(52.1) l(B′) = l′(B′) + α|B′ ∩ δin(K)| ≥ l′(B′) + α ≥ l′(B) + α = l(B).

Since the number of iterations is at most m (as in each step A0 increases),
we have:

Theorem 52.1. A shortest r-arborescence can be found in strongly polyno-
mial time.

Proof. See above.

In fact, direct analysis gives the following result of Chu and Liu [1965],
Edmonds [1967a], and Bock [1971]:

Theorem 52.2. A shortest r-arborescence can be found in time O(nm).

Proof. First note that there are at most 2n iterations. This can be seen as
follows. Let k be the number of strong components of (V, A0), and let k0 be
the number of strong components K of (V, A0) with din

A0
(K) = 0. Then at any

iteration, the number k + k0 decreases. Indeed, if the strong component K
selected remains a strong component, then din

A0
(K) �= 0 in the next iteration;

so k0 decreases. Otherwise, k decreases. Hence there are at most 2n iterations.
Next, each iteration can be performed in time O(m). Indeed, in time O(m)

we can identify the set U of vertices not reachable in (V, A0) from r. Next,
by Theorem 6.6 one can identify the strong components of the subgraph of
(V, A0) induced by U , in time O(m). Moreover, by Theorem 6.5 we can order
the vertices in U pre-topologically. Then the first vertex in this order belongs
to a strong component K such that each arc a entering K has l(a) > 0.
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Tarjan [1977] showed that this algorithm has an O(min{n2, m log n})-time
implementation.

52.1a. r-arborescences as common bases of two matroids

Let D = (V, A) be a digraph and let r ∈ V . The r-arborescences can be considered as
the common bases in two matroids on A: M1 is the cycle matroid of the underlying
undirected graph, and M2 is the partition matroid on A induced by the sets δin(v)
for v ∈ V \ {r}. We assume without loss of generality that no arc of D enters r.

Then the r-arborescences are exactly the common bases of M1 and M2. This
gives us a reduction of polyhedral and algorithmic results to matroid intersection.
In particular, Theorem 52.1 follows from the strong polynomial-time solvability of
weighted matroid intersection.

52.2. Related problems

The complexity results of Section 52.1 immediately imply similar results for
finding optimum branchings and arborescences without specifying a root.
First we note:

Corollary 52.2a. Given a digraph D = (V, A), r ∈ V , and a length function
l : A → Q, a longest r-arborescence can be found in O(nm) time.

Proof. Define L := max{l(a) | a ∈ A} and l′(a) := L − l(a) for each a ∈ A.
Then an r-arborescence B minimizing l′(B) is an r-arborescence maximizing
l(B).

Then we have for longest branching:

Corollary 52.2b. Given a digraph D = (V, A) and a length function l ∈ QA,
a longest branching can be found in time O(nm).

Proof. We can assume that l is nonnegative, by deleting all arcs of negative
length. Extend D by a new vertex r and new arcs (r, v) for all v ∈ V , each
of length 0. Let B be a longest r-arborescence in D′ (this can be found in
O(nm)-time by Corollary 52.2a). Then trivially B ∩A is a longest branching
in D.

Similarly, for finding a shortest arborescence, without prescribing a root:

Corollary 52.2c. Given a digraph D = (V, A) and a length function l ∈ QA
+,

a shortest arborescence can be found in time O(nm).

Proof. Extend D by a new vertex r and arcs (r, v) for each v ∈ V , giving
digraph D′. Let l(r, v) := Ln, where L := max{l(a) | a ∈ A}. If D has an
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arborescence, then a shortest r-arborescence in D′ has only one arc leaving
r, and deleting this arc gives a shortest arborescence in D.

52.3. A min-max relation for shortest r-arborescences

We now characterize the minimum length of an r-arborescence. Let D =
(V, A) be a digraph and let r ∈ V . Call a set C of arcs an r-cut if there exists
a nonempty subset U of V \ {r} with

(52.2) C = δin(U).

It is not difficult to show that

(52.3) the collection of inclusionwise minimal arc sets intersecting each
r-arborescence is equal to the collection of inclusionwise minimal
r-cuts,

and

(52.4) the collection of inclusionwise minimal arc sets intersecting each
r-cut is equal to the collection of r-arborescences.

The following theorem follows directly from the method of Edmonds
[1967a], and was stated explicitly by Bock [1971] (and also by Fulkerson
[1974]):

Theorem 52.3 (optimum arborescence theorem). Let D = (V, A) be a di-
graph, let r ∈ V , and let l : A → Z+. Then the minimum length of an
r-arborescence is equal to the maximum size of a family of r-cuts such that
each arc a is in at most l(a) of them.

Proof. Clearly, the maximum is not more than the minimum, as each r-cut
intersects each r-arborescence.

We prove the reverse inequality by induction on
∑

a∈A l(a). Let A0 :=
{a ∈ A | l(a) = 0}. If A0 contains an r-arborescence, the minimum is 0, while
the maximum is at least 0.

If A0 contains no r-arborescence, there exists a strong component K of
the digraph (V, A0) with r �∈ K and with l(a) > 0 for each a ∈ δin(K). Define

l′ := l − χδin(K). By induction there exist an r-arborescence B and r-cuts
C1, . . . , Ct such that each arc a is in at most l′(a) of the Ci and such that
l′(B) = t. We may assume that |B ∩ δin(K)| = 1, since if |B ∩ δin(K)| ≥ 2,
then for each a ∈ B ∩ δin(K), (B \ {a}) ∪ A0 contains an r-arborescence, say
B′, with l′(B′) ≤ l′(B) − l′(a) ≤ l′(B).

It follows that l(B) = t + 1. Moreover, taking Ct+1 := δin(K), each arc a
is in at most l(a) of the C1, . . . , Ct+1.
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Note that if B is a shortest r-arborescence, then |B ∩C| = 1 for any r-cut
C in the maximum-size family. Moreover, for any a ∈ B, l(a) is equal to the
number of r-cuts C chosen with a ∈ C.

52.4. The r-arborescence polytope

Given a digraph D = (V, A) and a vertex r ∈ V , the r-arborescence poly-
tope is defined as the convex hull of the incidence vectors (in RA) of the
r-arborescences; that is,

(52.5) Pr-arborescence(D) := conv.hull{χB | B r-arborescence}.

Theorem 52.3 implies that the r-arborescence polytope of D is determined
by:

(52.6) (i) xa ≥ 0 for a ∈ A,
(ii) x(C) ≥ 1 for each r-cut C,
(iii) x(δin(v)) = 1 for v ∈ V \ {r}.

To prove this, we first characterize the up hull of the r-arborescence poly-
tope, where as usual the up hull of the r-arborescence polytope is defined
as

(52.7) P ↑
r-arborescence(D) := Pr-arborescence(D) + RA

+.

Corollary 52.3a. P ↑
r-arborescence(D) is determined by

(52.8) (i) xa ≥ 0 for a ∈ A,
(ii) x(C) ≥ 1 for each r-cut C.

Proof. The incidence vector of any r-arborescence trivially satisfies (52.8);

hence P ↑
r-arborescence(D) is contained in the polyhedron Q determined by

(52.8).
Suppose that the reverse inclusion does not hold. Then there exists a

rational length function l ∈ QA
+ such that the minimum value of lTx over Q

is less than the minimum length of an r-arborescence. We can assume that
l is integer. However, the minimum value of lTx over Q cannot be less than
the maximum described in Theorem 52.3. So we have a contradiction.

Since the r-arborescence polytope is a face of its up hull, this implies:

Corollary 52.3b. The r-arborescence polytope is determined by (52.6).

Proof. Directly from Corollary 52.3a.

Corollary 52.3a also implies for the restriction to the unit cube:
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Corollary 52.3c. The convex hull of incidence vectors of arc sets containing
an r-arborescence is determined by

(52.9) (i) 0 ≤ xa ≤ 1 for a ∈ A,
(ii) x(C) ≥ 1 for each r-cut C.

Proof. Directly from Corollary 52.3a with Theorem 5.19.

Theorem 52.3 can be reformulated in TDI terms as:

Corollary 52.3d. System (52.8) is TDI.

Proof. Choose a length function l ∈ ZA
+, and consider the dual problem of

minimizing lTx over (52.8). For each r-cut C, let yC be the number of times
C is chosen in the maximum family in Theorem 52.3. Moreover, let B be a
shortest r-arborescence. Then by Theorem 52.3, x := χB and the yC form a
dual pair of optimum solutions. As the yC are integer, it follows that (52.8)
is TDI.

This in turn implies for the r-arborescence polytope:

Corollary 52.3e. System (52.6) is TDI.

Proof. Directly from Corollary 52.3d, with Theorem 5.25, since (52.6) arises
from (52.8) by setting some of the inequalities to equality.

For the intersection with the unit cube it gives:

Corollary 52.3f. System (52.9) is TDI.

Proof. Directly from Corollary 52.3d, with Theorem 5.23.

In fact, (poly)matroid intersection theory gives the box-total dual inte-
grality of (52.8):

Theorem 52.4. System (52.8) is box-TDI.

Proof. Let M1 be the cycle matroid of the undirected graph underlying
D = (V, A), and let M2 be the partition matroid induced by the sets δin(v)
for v ∈ V \ {r}. By Corollary 46.1d, the system

(52.10) x(B) ≥ |V | − 1 − rMi
(A \ B) for i = 1, 2 and B ⊆ A,

is box-TDI. Now any inequality in (52.10) is a nonnegative integer combina-
tion of inequalities (52.8).

Indeed, if i = 1, then rM1
(A\B) is equal to |V | minus the number of weak

components of the digraph (V, A\B). So the inequality in (52.10) states that
x(B) is at least the number of weak components of (V, A\B) not containing r.
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Hence it is a sum of the inequalities x(δin(K)) ≥ 1 for each weak component
K of (V, A \ B) not containing r, and of xa ≥ 0 for all a ∈ B not entering
any of these components.

If i = 2, then rM2
(A \ B) is equal to the number of v �= r entered by at

least one arc in A\B. So the inequality in (52.10) states that x(B) is at least
the number of v �= r with δin(v) ⊆ B. It therefore is a sum of the inequalities
x(δin(v)) ≥ 1 for these v, and xa ≥ 0 for all a ∈ B not entering any of these
vertices.

So Corollary 46.1d implies that (52.8) is box-TDI.

52.4a. Uncrossing cuts

Edmonds and Giles [1977] and Frank [1979b] gave the following procedure of proving
that system (52.8) is box-TDI (cf. Corollary 52.3b). The proof is longer than that
given above, but it is a special case of a far more general approach (to be discussed
in Chapter 60), and is therefore worth noting at this point.

System (52.8) is equivalent to:

(52.11) (i) xa ≥ 0 for a ∈ A,

(ii) x(δin(U)) ≥ 1 for ∅ �= U ⊆ V \ {r}

Consider any length function l ∈ RA
+. Let yU form an optimum solution to the

problem dual to minimizing lTx over (52.11):

(52.12) maximize
∑

U yU

subject to yU ≥ 0 for all U ,∑
U yUχδin(U) ≤ l,

where U ranges over the nonempty subsets of V \ {r}.
Choose the yU in such a way that

(52.13)
∑

U

yU |U ||V \ U |

is as small as possible. Then the collection

(52.14) F := {U | yU > 0}
is laminar; that is,

(52.15) U ∩ W = ∅ or U ⊆ W or W ⊆ U for all U, W ∈ F .

For suppose not. Let α := min{yU , yW }. Decrease yU and yW by α, and increase
yU∩W and yU∪W by α. Then y remains a feasible dual solution, since

(52.16) χδin(U∩W ) + χδin(U∪W ) ≤ χδin(U) + χδin(W ).

Moreover, y remains trivially optimum. However, sum (52.13) decreases (by Theo-
rem 2.1), contradicting our assumption. So F is laminar.

Now the F × A matrix M with

(52.17) MU,a :=

{
1 if a ∈ δin(U),
0 otherwise,
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is totally unimodular. In fact, it is a network matrix. For make a directed tree T as
follows. The vertex set of T is the set F ′ := F ∪ {V }, while for each U ∈ F there
is an arc aU from W to U where W is the smallest set in F ′ with W ⊃ U . This is
in fact an arborescence with root V .

We also define a digraph D̃ = (F ′, Ã). For each arc a = (u, v) of D, let ã be an
arc from the smallest set in F ′ containing both u and v, to the smallest set in F ′

containing v. Let Ã := {ã | a ∈ A}.
Identifying any set U in F with the arc aU of T , the network matrix generated

by directed tree T and digraph D̃ is an F × Ã matrix which is the same as M . So
M is totally unimodular. Therefore, by Theorem 5.35, (52.11) is box-TDI.

52.5. A min-max relation for longest branchings

We now consider longest branchings. Characterizing the maximum size of a
branching is easy:

Theorem 52.5. Let D = (V, A) be a digraph. Then the maximum size of
a branching is equal to |V | minus the number of strong components K of D
with din

A (K) = 0.

Proof. The theorem follows directly from: (i) each branching has at least
one root in any strong component K of D with din

A (K) = 0, and (ii) if a set
R intersects each such K, then there is a branching with root set R (since
each vertex of D is reachable from R).

From Theorem 52.3 one can derive a min-max relation for the maximum
length of a branching in a digraph. The reduction is similar to the reduction
of the algorithmic problem of finding a longest branching to that of finding
a shortest r-arborescence.

However, a direct proof can be derived from matroid intersection. Con-
sider the system:

(52.18) (i) xa ≥ 0 for a ∈ A,
(ii) x(δin(v)) ≤ 1 for v ∈ V ,
(iii) x(A[U ]) ≤ |U | − 1 for U ⊆ V , U �= ∅.

Theorem 52.6. System (52.18) is TDI.

Proof. Directly from Theorem 41.12, applied to the cycle matroid M1 of
the undirected graph underlying D = (V, A), and the partition matroid M2

induced by the sets δin(v) for v ∈ V . Then each inequality x(B) ≤ rM1
(B)

is the sum of the inequalities x(A[U ]) ≤ |U | − 1 for the weak components
U of (V, B), and −xa ≤ 0 for those arcs a ∈ A \ B contained in any weak
component of (V, B). Each inequality x(B) ≤ rM2

(B) is the sum of the
inequalities x(δin(v)) ≤ 1 for those v entered by at least one arc in B, and
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−xa ≤ 0 for those arcs a ∈ A \ B that enter a vertex v entered by at least
one arc in B.

52.6. The branching polytope

The previous corollary immediately implies a description of the branching
polytope Pbranching(D) of D, which is the convex hull of the incidence vectors
of branchings in D (stated by Edmonds [1967a]):

Corollary 52.6a. The branching polytope of D = (V, A) is determined by
(52.18).

Proof. Directly from Theorem 52.6, since the integer solutions of (52.18) are
the incidence vectors of the branchings.

Also the following theorem of Edmonds [1967a] follows from matroid in-
tersection theory:

Corollary 52.6b. Let D = (V, A) be a digraph and let k ∈ Z+. Then the
convex hull of the incidence vectors of branchings of size k is equal to the
intersection of the branching polytope of D with the hyperplane {x | x(A) =
k}.

Proof. This is the common base polytope of the k-truncations of the matroids
M1 and M2 defined in the proof of Theorem 52.6.

In Corollary 53.3a we shall see that the convex hull of the incidence vectors
of branchings of size k has the integer decomposition property (McDiarmid
[1983]).

Giles and Hausmann [1979] characterized which pairs of branchings give
adjacent vertices of the branching polytope, and Giles [1975,1978b] and
Grötschel [1977a] characterized the facets of the branching polytope.

52.7. The arborescence polytope

The results on branchings in the previous section can be specialized to ar-
borescences (without prescribed root). Given a digraph D = (V, A), the ar-
borescence polytope of D, denoted by Parborescence(D), is the convex hull of
the incidence vectors of arborescences.

Corollary 52.6c. The arborescence polytope is determined by
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(52.19) (i) xa ≥ 0 for a ∈ A,
(ii) x(δin(v)) ≤ 1 for v ∈ V ,
(iii) x(A[U ]) ≤ |U | − 1 for U ⊆ V , U �= ∅,
(iv) x(A) = |V | − 1.

Proof. Directly from Corollary 52.6a, since Parborescence(D) is the face of
Pbranching(D) determined by the hyperplane x(A) = |V | − 1.

One similarly obtains from Theorem 52.6 the following, which yields a
min-max relation for the minimum length of an arborescence:

Corollary 52.6d. System (52.19) is TDI.

Proof. From Theorem 52.6, with Theorem 5.25.

52.8. Further results and notes

52.8a. Complexity survey for shortest r-arborescence

O(nm)
Chu and Liu [1965], Edmonds [1967a],
Bock [1971]

O(n2)
Tarjan [1977] (cf. Camerini, Fratta,
and Maffioli [1979])

O(m log n)
Tarjan [1977] (cf. Camerini, Fratta,
and Maffioli [1979])

O(n log n + m log log logm/n n) Gabow, Galil, and Spencer [1984]

∗ O(m + n log n)
Gabow, Galil, Spencer, and Tarjan
[1986]

As before, ∗ indicates an asymptotically best bound in the table.
X. Guozhi (see Guan [1979]), Gabow and Tarjan [1979,1984], and Gabow, Galil,

Spencer, and Tarjan [1986] studied the problem of finding a shortest r-arborescence
with exactly k arcs leaving r, yielding an O(m+n log n)-time algorithm. Hou [1996]
gave an O(k3m3)-time algorithm to find the k shortest r-arborescences in a digraph.

Gabow and Tarjan [1988a] gave O(m+n log n)- and O(m log∗ n)-time algorithms
for the bottleneck r-arborescence problem (that is, minimizing the maximum arc
cost), improving the O(m log n)-time algorithm of Camerini [1978]. (Here log∗ n is

the minimum i with log
(i)
2 n ≤ 1.)

52.8b. Concise LP-formulation for shortest r-arborescence

Wong [1984] and Maculan [1986] observed that the problem of finding a shortest
r-arborescence can be formulated as a concise linear programming problem. In fact,
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the dominant P ↑

r-arborescence(D) of the r-arborescence polytope is the projection of
a polyhedron in nm dimensions determined by at most n(2m + n) constraints.

Theorem 52.7. Let D = (V, A) be a digraph and let r ∈ V . Then P ↑

r-arborescence(D)

is equal to the set Q of all vectors x ∈ RA
+ such that for each u ∈ V \ {r} there

exists an r − u flow fu of value 1 satisfying fu ≤ x.

Proof. Since the incidence vector x = χB of any r-arborescence satisfies the con-
straints, we know that P ↑

r-arborescence(D) is contained in Q.
To see the reverse inclusion, let x ∈ Q. Then for each nonempty subset U of

V \ {r} one has

(52.20) x(δin(U)) ≥ fu(δin(U)) ≥ 1,

where u is any vertex in U and where fu is an r − u flow of value 1 with fu ≤ x.
So by Corollary 52.3a, x belongs to P ↑

r-arborescence(D).

This implies that a shortest r-arborescence can be found by solving a linear
programming problem of polynomial size:

Corollary 52.7a. Let D = (V, A) be a digraph and let r ∈ V and l ∈ RA
+. Then

the length of a shortest r-arborescence is equal to the minimum value of

(52.21)
∑

a∈A

l(a)xa,

where x ∈ RA is such that for each u ∈ V \ {r} there exists an r − u flow fu of
value 1 with fu ≤ x.

Proof. Directly from Theorem 52.7.

52.8c. Further notes

Frank [1979b] showed the following. Let D = (V, A) be a digraph and let r ∈ V .
Then a subset A′ of A is contained in an r-arborescence if and only if |U| ≤ |V | −
1−|A′| for each laminar collection U of nonempty subsets of V \{r} such that each
arc of D enters at most one set in U and no arc in A′ enters any set in U .

Goemans [1992,1994] studied the convex hull of (not necessarily spanning) par-
tial r-arborescences.

Karp [1972a] gave a shortening of the proof of Edmonds [1967a] of the correct-
ness of the shortest r-arborescence algorithm.

Books covering shortest arborescences include Minieka [1978], Papadimitriou
and Steiglitz [1982], and Gondran and Minoux [1984].
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Packing and covering of
branchings and arborescences

Packing arborescences is a special case of packing common bases in two ma-
troids. However, no general matroid theorem is known that covers this case.
In Section 42.6c the maximum number of common bases in two strongly
base orderable matroids was characterized, but this does not apply to pack-
ing arborescences, as graphic matroids are generally not strongly base or-
derable. Yet, min-max relations and polyhedral characterizations can be
proved for packing arborescences, and similarly for covering by branch-
ings.

53.1. Disjoint branchings

Edmonds [1973] gave the following characterization of the existence of disjoint
branchings in a given directed graph D = (V, A). We give the proof of Lovász
[1976c]. The root set of a branching B is the set of roots of B, that is, the set
of sources of the digraph (V, B).

Theorem 53.1 (Edmonds’ disjoint branchings theorem). Let D = (V, A)
be a digraph and let R1, . . . , Rk be subsets of V . Then there exist disjoint
branchings B1, . . . , Bk such that Bi has root set Ri (for i = 1, . . . , k) if and
only if

(53.1) din(U) ≥ |{i | Ri ∩ U = ∅}|,

for each nonempty subset U of V .

Proof. Necessity being trivial, we show sufficiency, by induction on |V \R1|+
· · ·+ |V \Rk|. If R1 = · · · = Rk = V , the theorem is trivial, so we can assume
that R1 �= V . For each U ⊆ V , define

(53.2) g(U) := |{i | Ri ∩ U = ∅}|.

Let W be an inclusionwise minimal set with the properties that W ∩R1 �= ∅,
W \ R1 �= ∅, and din(W ) = g(W ). Such a set exists, since W = V would
qualify.

Then
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(53.3) din(W \ R1) ≥ g(W \ R1) > g(W ) = din(W ),

and hence there exists an arc a = (u, v) in A with u ∈ W ∩R1 and v ∈ W \R1.
It suffices to show that (53.1) is maintained after resetting A := A \ {a} and
R1 := R1 ∪ {v}, since after resetting we can apply induction, and assign a to
B1.

To see that (53.1) is maintained, suppose that to the contrary there is
a U ⊆ V violating the condition after resetting. Then in resetting, din(U)
decreases by 1 while g(U) is unchanged. So a enters U , and, before resetting
we had din(U) = g(U) and U ∩ R1 �= ∅. This implies (before resetting):

(53.4) din(U ∩ W ) ≤ din(U) + din(W ) − din(U ∪ W )
≤ g(U) + g(W ) − g(U ∪ W ) ≤ g(U ∩ W ).

So we have equality throughout. Hence din(U ∩ W ) = g(U ∩ W ) and R1 ∩
(U ∩W ) �= ∅ (as R1 ∩W �= ∅ and R1 ∩U �= ∅, and g(U ∩W ) = g(U)+g(W )−
g(U ∪ W )). Also (U ∩ W ) \ R1 �= ∅ (since v ∈ U ∩ W ) and U ∩ W ⊂ W (as
u �∈ U ∩ W ). This contradicts the minimality of W .

(Also the method of Tarjan [1974a] is based on the existence of an arc a as in
this proof. Fulkerson and Harding [1976] gave another proof of the existence
of such ar arc (more complicated than that of Lovász given above).)

53.2. Disjoint r-arborescences

The previous theorem implies a characterization of the existence of disjoint
arborescences with prescribed roots:

Corollary 53.1a. Let D = (V, A) be a digraph and let r1, . . . , rk ∈ V . Then
there exist k disjoint arborescences B1, . . . , Bk, where Bi has root ri (for
i = 1, . . . , k) if and only if each nonempty subset U of V is entered by at least
as many arcs as there exist i with ri �∈ U .

Proof. Directly from Edmonds’ disjoint branchings theorem (Theorem 53.1)
by taking Ri := {ri} for all i.

If all roots are equal, we obtain the following min-max relation, announced
by Edmonds [1970b]. Recall that an r-cut is a cut δin(U) where U is a
nonempty subset of V \ {r}.

Corollary 53.1b (Edmonds’ disjoint arborescences theorem). Let D =
(V, A) be a digraph and let r ∈ V . Then the maximum number of disjoint
r-arborescences is equal to the minimum size of an r-cut.

Proof. Directly from Corollary 53.1a by taking k equal to the minimum size
of an r-cut and ri := r for i = 1, . . . , k.
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Note that Edmonds’ disjoint arborescences theorem implies Menger’s the-
orem: for any digraph D = (V, A) and r, s ∈ V , if k is the minimum size of
an r − s cut, we can extend D by k parallel arcs from s to v, for each vertex
v �= s; in the extended graph, the minimum size of an r-cut is k, and hence it
contains k arc-disjoint r-arborescences. This gives k arc-disjoint r − s paths
in the original graph D.

One can reformulate Edmonds’ disjoint arborescences theorem in a num-
ber of ways (Edmonds [1975]):

Corollary 53.1c. Let D = (V, A) be a digraph and let r ∈ V . Then for each
k ∈ Z+ the following are equivalent:

(53.5) (i) there exist k disjoint r-arborescences;
(ii) for each nonempty U ⊆ V \ {r}, din(U) ≥ k;
(iii) for each s �= r there exist k arc-disjoint r − s paths in D;
(iv) there exist k edge-disjoint spanning trees in the underlying

undirected graph such that for each s �= r there are exactly
k arcs entering s covered by these trees.

Proof. The equivalence of (i) and (ii) follows from Edmonds’ disjoint ar-
borescences theorem (Theorem 53.1b), and the equivalence of (ii) and (iii) is
a direct consequence of Menger’s theorem.

The implication (i) ⇒ (iv) is trivial. To prove (iv) ⇒ (ii), suppose that
(iv) holds, and let U be a nonempty subset of V \{r}. Each spanning tree has
at most |U | − 1 arcs contained in U . So the spanning trees of (iv) together
have at most k(|U | − 1) arcs contained in U . Moreover, they have exactly
k|U | arcs with head in U . Hence, at least k arcs enter U .

An interesting consequence of Edmonds’ disjoint arborescences theorem
was observed by Shiloach [1979a] and concerns the arc-connectivity of a di-
rected graph:

Corollary 53.1d. A digraph D = (V, A) is k-arc-connected if and only if
for all s1, t1, . . . , sk, tk ∈ V there exist arc-disjoint paths P1, . . . , Pk, where Pi

runs from si to ti (i = 1, . . . , k).

Proof. Sufficiency follows by taking s1 = · · · = sk and t1 = · · · = tk. To see
necessity, extend D by a vertex r and arcs (r, si) for i = 1, . . . , k. By Edmonds’
disjoint arborescences theorem (Corollary 53.1b), the extended digraph has k
disjoint r-arborescences, since each nonempty subset U of V is entered by at
least k arcs of D′. Choosing the si − ti path in the r-arborescence containing
(r, si), for i = 1, . . . , k, we obtain paths as required.



Section 53.3. The capacitated case 907

53.3. The capacitated case

The capacitated version of the min-max relation for disjoint r-arborescences
reads:

Corollary 53.1e. Let D = (V, A) be a digraph, let r ∈ V , and let c ∈ ZA
+

be a capacity function. Then the minimum capacity of an r-cut is equal to
the maximum value of

∑
B λB, where λB is a nonnegative integer for each

r-arborescence B such that

(53.6)
∑

B

λBχB ≤ c.

Proof. Directly from Corollary 53.1b by replacing each arc a by c(a) parallel
arcs.

One can equivalently formulate this in term of total dual integrality. To
see this, consider the r-cut polytope Pr-cut(D) of D, defined as the convex
hull of the incidence vectors of the r-cuts in D. In particular, consider the up
hull

(53.7) P ↑
r-cut(D) := Pr-cut(D) + RA

+

of the r-cut polytope.
In Corollary 52.3a we saw that the up hull P ↑

r-arborescence(D) of the r-
arborescence polytope of D is determined by:

(53.8) (i) xa ≥ 0 for each arc a,
(ii) x(C) ≥ 1 for each r-cut C.

By the theory of blocking polyhedra, this implies that P ↑
r-cut(D) is determined

by:

(53.9) (i) xa ≥ 0 for each arc a,
(ii) x(B) ≥ 1 for each r-arborescence B.

In fact:

Corollary 53.1f. System (53.9) determines P ↑
r-cut(D) and is TDI.

Proof. The first part follows from the theory of blocking polyhedra applied
to Corollary 52.3a, and the second part is equivalent to Corollary 53.1e.

Another equivalent form is:

(53.10) For any digraph D = (V, A) and r ∈ V , the r-arborescence poly-
tope has the integer decomposition property.

By Theorem 5.30, the number of r-arborescences B with λB ≥ 1 in Corol-
lary 53.1e can be taken to be at most 2|A| − 1. (This improves a result of
Pevzner [1979a] giving an O(nm) upper bound.) Gabow and Manu [1995,
1998] showed an upper bound of |V | + |A| − 2.
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53.4. Disjoint arborescences

Frank [1979a,1981c] derived from Corollary 53.1a the following min-max re-
lation for disjoint arborescences without a prescribed root. (A subpartition of
V is a partition of a subset of V .)

Corollary 53.1g. Let D = (V, A) be a digraph and let k ∈ Z+. Then A
contains k disjoint arborescences if and only if

(53.11)
∑

U∈P

din(U) ≥ k(|P| − 1)

for each subpartition P of V with nonempty classes.

Proof. Necessity being easy, we show sufficiency. Choose x ∈ ZV
+ such that

(53.12) x(U) ≥ k − din(U)

for each nonempty subset U of V , with x(V ) as small as possible. We show
that x(V ) = k. Since x(V ) ≥ k by (53.12), it suffices to show x(V ) ≤ k.

Let P be the collection of inclusionwise maximal nonempty sets having
equality in (53.12). Then P is a subpartition, for suppose that U, W ∈ P with
U ∩ W �= ∅. Then

(53.13) x(U ∪ W ) = x(U) + x(W ) − x(U ∩ W )
≤ (k − din(U)) + (k − din(W )) − (k − din(U ∩ W ))
≤ (k − din(U ∪ W )),

and hence U ∪ W ∈ P. So U = W .
Now for each v ∈ V with xv > 0 there exists a set U in P containing v,

since otherwise we could decrease xv. Hence

(53.14) x(V ) =
∑

U∈P

x(U) =
∑

U∈P

(k − din(U)) ≤ k,

by (53.11).
So x(V ) = k. Now let r1, . . . , rk be vertices such that any vertex v oc-

curs xv times among the ri. Then by Corollary 53.1a there exist disjoint
arborescences B1, . . . , Bk, where Bi has root ri. This shows the corollary.

53.5. Covering by branchings

Let A[U ] denote the set of arcs in A with both ends in U . Frank [1979a]
observed that the following min-max relation for covering by branchings can
be derived from Edmonds’ disjoint arborescences theorem:

Corollary 53.1h. Let D = (V, A) be a digraph and let k ∈ Z+. Then A can
be covered by k branchings if and only if
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(53.15) (i) degin(v) ≤ k for each v ∈ V ,
(ii) |A[U ]| ≤ k(|U | − 1) for each nonempty subset U of V .

Proof. Necessity being trivial, we show sufficiency. Extend D by a new vertex
r, and for each v ∈ V , k − degin(v) parallel arcs from r to v. Let D′ be the
digraph thus arising. So each vertex in V is entered by exactly k arcs of D′,
and D′ has k|V | arcs.

Now each nonempty subset U of V is entered by at least k arcs of D′,
since exactly k|U | arcs have their head in U and at most k(|U |−1) arcs have
both ends in U . So by Edmonds’ disjoint arborescences theorem (Theorem
53.1b), D′ has k disjoint r-arborescences. Since D′ has exactly k|V | arcs,
these arborescences partition the arc set of D′. Hence restricting them to the
arcs of the original graph D, we obtain k branchings partitioning A.

(This was also shown by Markosyan and Gasparyan [1986].)
Corollary 53.1h is equivalent to:

Corollary 53.1i. Let D = (V, A) be a digraph and let k ∈ Z+. Then A can
be covered by k branchings if and only if degin(v) ≤ k for each v ∈ V and A
can be covered by k forests of the underlying undirected graph.

Proof. Directly from Corollary 53.1h with Corollary 51.1c.

Corollary 53.1h implies a polyhedral result of Baum and Trotter [1981]
(attributing the proof to R. Giles):

Corollary 53.1j. The branching polytope of a digraph D = (V, A) has the
integer decomposition property.

Proof. Let k ∈ Z+ and let x be an integer vector in k · Pbranching(D). Let
D′ = (V, A′) be the digraph obtained from D by replacing any arc a = (u, v)
by xa parallel arcs from u to v. Then by Corollary 53.1h, A′ can be partitioned
into k branchings. This gives a decomposition of x as a sum of the incidence
vectors of k branchings in D.

53.6. An exchange property of branchings

We derive an exchange property of branchings from Edmonds’ disjoint
branchings theorem (Theorem 53.1). It implies that the branchings in an
optimum covering can be taken of almost equal size. It will also be used in
Section 59.5 on the total dual integrality of the matching forest constraints.

We first show a lemma. For any branching B, let R(B) denote the set of
roots of B.
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Lemma 53.2α. Let B1 and B2 be branchings partitioning the arc set A of a
digraph D = (V, A). Let R1 and R2 be sets with R1 ∪ R2 = R(B1) ∪ R(B2)
and R1 ∩ R2 = R(B1) ∩ R(B2). Then A can be split into branchings B′

1 and
B′

2 with R(B′
i) = Ri for i = 1, 2 if and only if each strong component K of

D with din(K) = 0 intersects both R1 and R2.

Proof. Necessity is easy, since the root set of any branching intersects any
strong component K with din(K) = 0.

To see sufficiency, by Edmonds’ disjoint branchings theorem (Theorem
53.1), branchings B′

1 and B′
2 as required exist if and only if

(53.16) din(U) ≥ |{i ∈ {1, 2} | U ∩ Ri = ∅}|

for each nonempty U ⊆ V . (Actually, Edmonds’ theorem gives the existence
of disjoint branchings B′

1 and B′
2 satisfying R(B′

i) = Ri for i = 1, 2. That
B′

1 ∪B′
2 = A follows from the fact that |B′

1|+ |B′
2| = |B1|+ |B2|, as |R(B′

1)|+
|R(B′

2)| = |R(B1)| + |R(B2)|.)
Suppose that inequality (53.16) does not hold. Then the right-hand side

is positive. If it is 2, then U is disjoint from both R1 and R2, and hence from
both R(B1) and R(B2) (since R1 ∪R2 = R(B1)∪R(B2)), implying that both
B1 and B2 enter U , and so din(U) ≥ 2.

So the right-hand side is 1, and hence the left-hand side is 0. We can
assume that U is an inclusionwise minimal set with this property. It implies
that U is a strong component of D. Then by the condition, U intersects both
R1 and R2, contradicting the fact that the right-hand side in (53.16) is 1.

First, this implies the following exchange property of branchings:

Theorem 53.2. Let B1 and B2 be branchings in a digraph D = (V, A). Let
s be a root of B2 and let r be the root of the arborescence in B1 containing
s. Then D contains branchings B′

1 and B′
2 satisfying

(53.17) B′
1 ∪ B′

2 = B1 ∪ B1, B′
1 ∩ B′

2 = B1 ∩ B2,
and R(B′

1) = R(B1) ∪ {s} or R(B′
1) = (R(B1) \ {r}) ∪ {s}.

Proof. We may assume that B1, B2 partition A, since we can delete all arcs
not occurring in B1 ∪B2, and add parallel arcs for those in B1 ∩B2. We may
also assume that s �= r (since the theorem is trivial if s = r).

Let K be the strong component of D containing s. If no arc of D enters
K, then r ∈ K (as B1 contains a directed path from r to s), and hence r is
not a root of B2 (as otherwise no arc enters r while K is strongly connected);
define R1 := (R(B1) \ {r}) ∪ {s} and R2 := (R(B2) \ {s}) ∪ {r}.

Alternatively, if some arc of D enters K, define R1 := R(B1) ∪ {s} and
R2 := R(B2) \ {s}. Then Lemma 53.2α implies that A can be split into
branchings B′

1 and B′
2 with R(B′

i) = Ri for i = 1, 2.
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The lemma also implies that a packing of branchings can be balanced in
the following sense:

Theorem 53.3. Let D = (V, A) be a digraph. If A can be covered by k
branchings, then A can be covered by k branchings each of size ⌊|A|/k⌋ or
⌈|A|/k⌉.

Proof. Consider any two branchings B1, B2 in the covering which differ in
size by at least 2. Consider the digraph D′ = (V, B1∪B2). We can find subsets
R1 and R2 of V with R1∪R2 = R(B1)∪R(B2) and R1∩R2 = R(B1)∩R(B2),
such that each strong component K of D′ with din

D′(K) = 0 intersects both
R1 and R2, and such that R1 and R2 differ by at most 1 in size. (We can first
include, for any such component K, one element in K ∩ R(B1) in R1, and
one element in K ∩ R(B2) in R2; next we distribute the remaining elements
in R(B1) and R(B2) almost equally over R1 and R2).

Then, by Lemma 53.2α, B1 ∪ B2 can be partitioned into branchings B′
1

and B′
2 with R(B′

i) = Ri for i = 1, 2. Then B′
1 and B′

2 differ by at most 1 in
size. Replacing B1 and B2 in the covering by B′

1 and B′
2, and iterating this,

we end up with a covering by k branchings, any two of which differ in size
by at most 1. This is a covering as required.

This theorem implies the integer decomposition property of the convex
hull of branchings of size k (McDiarmid [1983]):

Corollary 53.3a. Let D = (V, A) be a digraph and let k ∈ Z+. Then the
convex hull of the incidence vectors of the branchings of size k has the integer
decomposition property.

Proof. Choose p ∈ Z+, and let x be an integer vector in p · conv.hull{χB | B
branching, |B| = k}. By Corollary 53.1j, x is a sum of the incidence vectors
of p branchings. Let D′ = (V, A′) be the digraph arising from D by replacing
any arc a by xa parallel arcs. Then A′ can be partitioned into p branchings.
Now |A′|/p = x(A)/p = k. So, by Theorem 53.3, we can take these branchings
all of size k. Hence x is the sum of the incidence vectors of p branchings each
of size k.

53.7. Covering by r-arborescences

Vidyasankar [1978a] proved the following covering analogue of Edmonds’ dis-
joint branchings theorem. (A weaker version was shown by Frank [1979a] (cf.
Frank [1979b]).) For any digraph D = (V, A) and U ⊆ V , let H(U) denote
the set of outneighbours of V \ U ; that is, the set of the heads of the arcs
entering U . So H(U) ⊆ U .
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Theorem 53.4. Let D = (V, A) be a digraph, let r ∈ V , and let k ∈ Z+.
Then A can be covered by k r-arborescences if and only if

(53.18) degin(v) ≤ k for each v ∈ V , and degin(r) = 0,

and

(53.19)
∑

v∈H(U)

(k − degin(v)) ≥ k − din(U)

for each nonempty subset U of V \ {r}.

Proof. Necessity of (53.18) is trivial. To see necessity of (53.19), let U be a
nonempty subset of V \ {r}. Then each r-arborescence B intersects the set

(53.20)
⋃

v∈H(U)

δin(v) \ δin(U)

in at most |H(U)| − 1 arcs, since at least one arc of B should enter U . Hence
if A can be covered by k r-arborescences, the size of set (53.20) is at most
k(|H(U)| − 1), implying (53.19).

To see sufficiency, we can assume that for any arc a of D, if we would add
a parallel arc to a, then (53.18) or (53.19) is violated (since deleting parallel
arcs does not increase the minimum number of r-arborescences needed to
cover the arcs).

If degin(v) = k for each vertex v �= r, then A can be decomposed into k r-
arborescences by Edmonds’ disjoint arborescences theorem (Corollary 53.1b),
since then (53.19) implies that din(U) ≥ k for each nonempty subset U of
V \ {r}.

So we can assume that there exists a vertex u �= r with degin(u) < k.
Consider the collection C of nonempty subsets U of V \ {r} having equality
in (53.19) and with u ∈ H(U). Then C is closed under taking union and
intersection. Indeed, let U and W be in C. Then

(53.21)
∑

v∈H(U∩W )

(k − degin(v)) +
∑

v∈H(U∪W )

(k − degin(v))

≤
∑

v∈H(U)

(k − degin(v)) +
∑

v∈H(W )

(k − degin(v))

= (k − din(U)) + (k − din(W ))
≤ (k − din(U ∩ W )) + (k − din(U ∪ W )).

The first inequality follows from

(53.22) H(U ∩ W ) ∩ H(U ∪ W ) ⊆ H(U) ∩ H(W ) and
H(U ∩ W ) ∪ H(U ∪ W ) ⊆ H(U) ∪ H(W ),

as one easily checks.
By (53.19), (53.21) implies that we have equality throughout, As we have

equality in the first inequality in (53.21), and as k − degin(u) > 0, we know
that u ∈ H(U ∩ W ) ∩ H(U ∪ W ). So U ∩ W and U ∪ W belong to C.
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Now for each arc a entering u, if we would add an arc parallel to a, (53.19)
is violated for some U . This implies that for each arc a entering u there exists
a U ∈ C such that the tail of a is in U . We can take for U the largest set in
C. Hence for each arc a entering u, the tail of a is in U . This contradicts the
fact that u ∈ H(U).

Frank [1979b] showed the following consequence of this result:

Corollary 53.4a. Let D = (V, A) be a digraph, let r ∈ V , and let k ∈ Z+.
Then A can be covered by k r-arborescences if and only if

(53.23) k · s(A′) ≥ |A′|

for each A′ ⊆ A. Here s(A′) denotes the maximum of |B ∩ A′| over r-
arborescences B.

Proof. As necessity is trivial, we show sufficiency, by showing that (53.23)
implies (53.18) and (53.19). To see (53.18), apply (53.23) to A′ := δin(v). To
see (53.19), apply (53.23) to A′ equal to the set (53.20).

Note that for acyclic digraphs, the minimum number of r-arborescences
needed to cover all arcs is easily characterized (Vidyasankar [1978a]):

Theorem 53.5. Let D = (V, A) be an acyclic digraph and let r ∈ V . Then
A can be covered by k r-arborescences if and only if r is the only source of D
and each indegree is at most k.

Proof. Necessity being easy, we show sufficiency. Trivially, we can cover A
by sets B1, . . . , Bk such that each Bi enters each v �= r precisely once. As D
is acyclic, each Bi is an r-arborescence.

53.8. Minimum-length unions of k r-arborescences

Let D = (V, A) be a digraph, let r ∈ V , and let k ∈ Z+. Consider the
following system in the variable x ∈ RA:

(53.24) (i) xa ≥ 0 for each a ∈ A,
(ii) x(δin(U)) ≥ k for each nonempty U ⊆ V \ {r}.

The following basic result of Frank [1979b] follows from Theorem 52.4.

Theorem 53.6. System (53.24) is box-TDI.

Proof. Directly from Theorem 52.4, since if a system Ax ≤ b is box-TDI,
then for any k ≥ 0, the system Ax ≤ k · b is box-TDI.

This theorem has several consequences. First consider the system
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(53.25) (i) 0 ≤ xa ≤ 1 for each a ∈ A,
(ii) x(δin(U)) ≥ k for each nonempty U ⊆ V \ {r}.

The following (cf. Frank [1979b]) implies a min-max relation for the min-
imum length of the union of k disjoint r-arborescences in D:

Corollary 53.6a. System (53.25) is TDI, and determines the convex hull of
subsets of A containing k disjoint r-arborescences.

Proof. Directly from Theorem 53.6 and Edmonds’ disjoint arborescences
theorem (Corollary 53.1b).

Another consequence of Theorem 53.6 is as follows. Let D = (V, A) and
D′ = (V, A′) be digraphs, let r ∈ V , and let k ∈ Z+. Consider the system in
the variable x ∈ RA:

(53.26) (i) xa ≥ 0 for each a ∈ A,
(ii) x(δin

A (U)) ≥ k − din
A′(U) for each nonempty U ⊆ V \ {r}.

Then:

Corollary 53.6b. System (53.26) is box-TDI.

Proof. Choose d, c ∈ ZA
+. We must show that the system

(53.27) (i) d(a) ≤ xa ≤ c(a) for each a ∈ A,
(ii) x(δin

A (U)) ≥ k − din
A′(U) for each nonempty U ⊆ V \ {r}

is TDI. Let D′′ = (V, A′′) be the digraph with A′′ := A ∪ A′ (taking arcs
multiple if they occur both in A and A′). By Theorem 53.6, the following
system in the variable x ∈ RA′′

is TDI:

(53.28) (i) d(a) ≤ xa ≤ c(a) for each a ∈ A,
(ii) 1 ≤ xa ≤ 1 for each a ∈ A′,
(iii) x(δin

A′′(U)) ≥ k for each nonempty U ⊆ V \ {r}.

This implies the total dual integrality of (53.27) by Corollary 5.27a.

Frank [1979a] derived the following ‘rank’ formula for coverings by k r-
arborescences:

Corollary 53.6c. Let D = (V, A) be a digraph, let r ∈ V , and let A′ ⊆
A. Then the maximum number of arcs in A′ that can be covered by k r-
arborescences is equal to the minimum value of

(53.29) k(|V | − 1) +
t∑

i=1

(din
A′(Vi) − k),

where V1, . . . , Vt is a laminar collection of nonempty subsets of V \ {r} such
that each arc in A enters at most one of these sets.
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Proof. Let µ be the maximum number of arcs in A′ that can be covered by
k r-arborescences. Consider the system (in x ∈ RA)

(53.30) (i) xa ≥ 0 for a ∈ A,
(ii) x(δin

A (U)) ≥ k − din
A′(U) for each nonempty U ⊆ V \ {r}.

By Corollary 53.6b, this system is TDI. Let x be an integer vector attaining
the minimum of x(A) over (53.30). Then

(53.31) µ = k(|V | − 1) − x(A).

Indeed, by (53.30) and by Edmonds’ disjoint arborescences theorem, there
exist k r-arborescences B1, . . . , Bk with

(53.32) x + χA′

≥ χB1 + · · · + χBk .

Let A′′ be the set of arcs in A′ covered by no Bi. By the minimality of x(A),
we have that x(A) + |A′| = k(|V | − 1) + |A′′|. As µ ≥ |A′| − |A′′| we have
≥ in (53.31). Since we can reverse this construction (starting from a set of k
r-arborescences covering µ arcs in A′, and making x), we have the equality
in (53.31).

By the total dual integrality of (53.30), x(A) is equal to the maximum
value of

(53.33)

t∑

i=1

(k − din
A′(Vi)),

taken over nonempty subsets V1, . . . , Vt of V \ {r} such that each arc in A
enters at most one of these sets. If, say, V1 ∩ V2 �= ∅ and V1 �⊆ V2 �⊆ V1,
we can replace V1 and V2 by V1 ∩ V2 and V1 ∪ V2 without violating these
conditions. Such replacements terminate by Theorem 2.1. We end up with
V1, . . . , Vt laminar as required. Therefore, with (53.31) we have the corollary.

Taking A′ = A, we get (Frank [1979b]):

Corollary 53.6d. Let D = (V, A) be a digraph and let r ∈ V . Then the
maximum number of arcs that can be covered by k r-arborescences is equal to
the minimum value of

(53.34) k(|V | − 1) +
t∑

i=1

(din(Vi) − k),

where V1, . . . , Vt form a laminar collection of nonempty subsets of V \ {r}
such that each arc enters at most one of these sets.

Proof. This is the case A′ = A in Corollary 53.6c.

This directly implies a min-max characterization for the minimum number
of r-arborescences needed to cover all arcs. However, Theorem 53.4 gives a
stronger relation.
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As for unions of k branchings, Frank [1979a] derived from Corollary 53.6c:

Corollary 53.6e. Let D = (V, A) be a digraph and let k ∈ Z+. The maximum
number of arcs of D that can be covered by k branchings is equal to the
minimum value of

(53.35) k(|V | − |P|) +
∑

U∈P

din(U)

taken over all subpartitions P of V with nonempty classes.

Proof. Let D′ be the digraph obtained from D by adding a new vertex r and
arcs (r, v) for each v ∈ V . Then the maximum number of arcs of D that can
be covered by k branchings in D is equal to the maximum number of arcs in
A that can be covered by k r-arborescences in D′. So Corollary 53.6c gives a
min-max relation for this.

The subsets Vi form a subpartition of V since if Vi and Vj would intersect
in a vertex v say, then the arc (r, v) of D′ enters two sets among the Vi,
contradicting the condition.

As for unions of k arborescences without prescribed root, Frank [1979a]
derived:

Corollary 53.6f. Let D = (V, A) be a digraph and let k ∈ Z+. Then A can
be covered by k arborescences if and only if

(53.36) k(|V | − 1 + λ) ≥ |A| +
t∑

i=1

(k − din(Vi))

for each laminar family (V1, . . . , Vt) of nonempty sets such that no arc enters
more than one of the Vi. Here λ denotes the maximum number of Vi’s having
nonempty intersection.

Proof. Necessity can be seen as follows. Let A be covered by arborescences
B1, . . . , Bk. For each v ∈ V , let r(v) be the number of Bi having v as root.
So r(V ) = k. For each a ∈ A, let s(a) be the number of Bi containing a. So
s(a) ≥ 1 for each a ∈ A. Moreover, s(δin(Vi)) + r(Vi) ≥ k for each i. Hence

(53.37) |A| +

t∑

i=1

(k − din(Vi)) ≤ |A| +

t∑

i=1

(
r(Vi) + s(δin(Vi)) − din(Vi)

)

≤ |A| +
∑

a∈A

(s(a) − 1) +

t∑

i=1

r(Vi) =
∑

a∈A

s(a) +

t∑

i=1

r(Vi)

= k(|V | − 1) +
t∑

i=1

r(Vi) ≤ k(|V | − 1) + kλ.
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The second inequality holds as each arc enters at most one of the Vi. For the
last inequality, we use that r(V ) = k and that V1, . . . , Vt can be partitioned
into λ collections, each consisting of disjoint sets. (53.37) shows necessity.

To see sufficiency, extend D by a vertex r and by the arc set A′ := {(r, v) |
v ∈ V }, yielding the digraph D′ = (V ∪ {r}, A ∪ A′). Consider the following
constraints for x ∈ RA∪A′

:

(53.38) (i) xa ≥ 0 for each a ∈ A ∪ A′,
(ii) x(δin

D′(U)) ≥ k − din
D(U) for each nonempty U ⊆ V ,

(iii) x(δin
D′(V )) = k.

Let x attain the minimum of x(A) over (53.38). Since system (53.38) is TDI
by Corollary 53.6b (with Theorem 5.25), we can assume that x is integer. We
show

(53.39) x(A) = k(|V | − 1) − |A|.

First, x(A) ≥ k(|V | − 1) − |A|, since

(53.40) x(A) + |A| + k = x(A) + |A| + x(δin
A′(V ))

=
∑

v∈V

(
x(δin

A′(v)) + x(δin
A (v)) + din

A (v)
)

≥ k|V |.

To see the reverse inequality, x(A) is equal to the optimum value µ of the
problem dual to the above minimization problem: maximize

(53.41)
∑

U∈P(V )\{∅}

zU (k − din
A (U))

where z ∈ R
P(V )\{∅}
+ such that

(53.42)
∑

U

zUχδin
D′ (U) ≤ χA.

So we should prove that µ ≤ k(|V | − 1) − |A|.
Now let U be the collection of nonempty proper subsets U of V with

zU = 1. We may assume that U is laminar. Let λ be the maximum number
of U ∈ U containing any vertex. Then (53.42) implies that λ ≤ −zV (since
χA(a) = 0 for each a = (r, v)). Hence

(53.43) µ = k · zV +
∑

U∈U

(k − din
A (U)) ≤ −kλ +

∑

U∈U

(k − din
A (U))

≤ k(|V | − 1) − |A|

by (53.36), and we have the required inequality. This proves (53.39).
Then the vector y := x + χA satisfies:

(53.44) y(δin
D′(U)) ≥ k for each nonempty U ⊆ V ,

y(δin
D′(V )) = k,

y(A∪A′) = x(A)+x(A′)+ |A| = k(|V |−1)−|A|+k+ |A| = k|V |.
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So by Edmonds’ disjoint arborescences theorem (Corollary 53.1b), y is the
sum of the incidence vectors of k r-arborescences, each with exactly one arc
leaving r. Hence (by the definition of y) A can be covered by k arborescences.

53.9. The complexity of finding disjoint arborescences

By Edmonds’ disjoint arborescences theorem, the maximum number of dis-
joint r-arborescences can be calculated in polynomial time, just by determin-
ing the minimum size of an r-cut. This can be done by determining, for each
v ∈ V \ {r}, the minimum size of an r − v cut, and taking the minimum of
these values.

Lovász [1976c] and Tarjan [1974a] showed that actually also a maximum
collection of disjoint r-arborescences can be found in polynomial time.

The proof (due to Lovász [1976c]) of Theorem 53.1 described above gives
such a polynomial-time algorithm. In fact, Lovász observed that it implies
the following result (obtained also by Tarjan [1974a]). Call a subset B of
the arc set A of a digraph D = (V, A) a partial r-arborescence if B is an
r-arborescence for the subgraph of D induced by the set V (B) of vertices
covered by B. We take V (B) := {r} if B is empty.

Theorem 53.7. Given a digraph D = (V, A) and a vertex r ∈ V , a maximum
number k of disjoint r-arborescences can be found in time O(k2m2).

Proof. First, the number k can be determined in time O(knm). Since k is
equal to the minimum size of a cut din(U) over nonempty subsets U of V \{r},
we can determine for each v ∈ V \ {r} a maximum set of arc-disjoint r − v
paths, by the augmenting path method described in Section 9.2. Actually,
for i = 1, . . . , k, we determine the ith augmenting paths for all v ∈ V \ {r},
before searching for the (i + 1)th augmenting paths. In this way we can stop
if for some v ∈ V \ {r} no augmenting path exists. So in total we do at
most (n − 1)(k + 1) augmenting path searches. Thus it takes O(knm) time
to determine k.

Next, we can find an r-arborescence B such that

(53.45) din
A\B(U) ≥ k − 1 for each nonempty U ⊆ V \ {r},

in time O(km2). This recursively implies the theorem.
To find B, as in the proof of Theorem 53.1, we can grow a partial r-

arborescence B satisfying (53.45), starting with B = ∅. By the proof of
Theorem 53.1, if V (B) �= V , there exists an arc a leaving V (B) such that
resetting B := B ∪ {a} maintains (53.45). For any given arc a leaving V (B)
it amounts to testing if there exists a set U ⊆ V \ {r} such that a ∈ δin(U)
and din

A\B(U) = k − 1. This can be done in O(km) time with a minimum cut
algorithm.
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Now it is important to observe that for each arc a we need to do this test
at most once: if the test result is negative, then in growing B we never have
to consider arc a anymore; if the result is positive, a is added to B, and again
we will not consider a again.

So to obtain an r-arborescence, we determine at most m minimum cuts,
and so finding the r-arborescence B takes O(km2) time.

Tong and Lawler [1983] observed that the following quite easily follows
from Edmonds’ disjoint arborescences theorem:

Theorem 53.8. Given a digraph D = (V, A) and a vertex r ∈ V , we can
find in time O(knm) a set of arcs that is the union of a maximum number k
of disjoint r-arborescences.

Proof. As in the proof of Theorem 53.7 we can determine the number k in
time O(knm). Now consider any vertex v ∈ V . Find k arc-disjoint r−v paths
in D, and delete from D each arc entering v that is on none of these paths.
After that we still have din(U) ≥ k for any nonempty U ⊆ V \ {r}, since if
v �∈ U , then no arc entering U has been deleted, and if v ∈ U , then k arcs
entering U are maintained, as after deletion there are still k arc-disjoint r−v
paths in D.

Doing this successively for all vertices v ∈ V , we are left with a digraph
D with degin(v) = k if v �= r and degin(r) = 0, and with din(U) ≥ k for each
nonempty U ⊆ V \ {r}. So the remaining arc set is the union of k disjoint
r-arborescences. As k arc-disjoint r − v-paths can be found in time O(km),
we have the required result.

This implies with Theorem 53.7 a sharpening of Theorem 53.7:

Corollary 53.8a. Given a digraph D = (V, A) and a vertex r ∈ V ,
a maximum number k of disjoint r-arborescences can be found in time
O(knm + k4n2).

Proof. By Theorem 53.8, we can find in time O(knm) a set A′ that is the
union of k disjoint r-arborescences. So m′ := |A′| = k(n − 1). Then by

Theorem 53.7 we can find k disjoint r-arborescences in A′, in time O(k2m′2).

Since O(k2m′2) = O(k4n2), the corollary follows.

Tong and Lawler [1983] in fact showed that the method of Lovász
[1976c] has an O(k2nm)-time implementation, yielding with Theorem 53.8
an O(knm + k3n2)-time algorithm for finding k disjoint r-arborescences.

Also the capacitated case can be solved in strongly polynomial time
(Gabow [1991a,1995a]), as can be shown with the help of Edmonds’ dis-
joint branchings theorem. (Pevzner [1979a] proved that it can be solved in
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semi-strongly polynomial time, that is, by taking rounding as one arithmetic
step.)

Theorem 53.9. Given a digraph D = (V, A), r ∈ V , and a capacity function
c : A → Z+, we can find r-arborescences B1, . . . , Bk and integers λ1, · · · , λk ≥

0 with
∑k

i=1 λiχ
Bi ≤ c and with

∑k
i=1 λi maximized, in strongly polynomial

time.

Proof. We can find the maximum value in strongly polynomial time, as it is
equal to the minimum capacity of an r-cut. To find the λi explicitly, we show
more generally that the following problem is solvable in strongly polynomial
time (where R(B) denotes the set of roots of B):

(53.46) given: a digraph D = (V, A), a capacity function c : A → Z+, a
collection R of nonempty subsets of V , and a demand func-
tion d : R → Z+,

find: a collection B of branchings and a function λ : B → Z+, with∑
B∈B λBχB ≤ c and

∑
(λB | B ∈ B, R(B) = R) = d(R) for

each R ∈ R.

For any U ⊆ V , define

(53.47) g(U) :=
∑

(d(R) | R ∈ R, R ∩ U = ∅).

By replacing each arc a by c(a) parallel arcs, it follows from Edmonds’ disjoint
branchings theorem (Theorem 53.1) that a necessary and sufficient condition
for the existence of a solution of (53.46) is that

(53.48) c(δin(U)) ≥ g(U)

for each nonempty U ⊆ V .
We can assume that c(a) > 0 for each a ∈ A and d(R) > 0 for each

R ∈ R, and that we have an R1 ∈ R with R1 �= V .
We may also assume that (53.46) has a solution. This implies that there

exists an arc a = (u, v) ∈ A leaving R1 and a µ ≥ 1 such that resetting
d(R1) := d(R1) − µ, d(R1 ∪ {v}) := d(R1 ∪ {v}) + µ, c(a) := c(a) − µ,
maintains feasibility of (53.46). (If R1 ∪ {v} did not belong to R, we add it
to R.) We apply this for the maximum possible µ. This value of µ can be
calculated in strongly polynomial time, as it satisfies

(53.49) µ = min{c(a),min{c(δin(W ))−g(W ) | a ∈ δin(W ), W ∩R1 �= ∅}}

(for the original c and g).
To minimize c(δin(W ))− g(W ) over W with a ∈ δin(W ) and W ∩R1 �= ∅,

add, for each R ∈ R, a new vertex vR and, for each v ∈ R, a new arc (vR, v) of
capacity d(R). Moreover, add a new vertex r, and for each R ∈ R, a new arc
(r, vR) of capacity d(R). Let D′ = (V ′, A′) be the extended digraph. With a
minimum cut algorithm we can find a subset W ′ of V ′ \ {r} with a ∈ δin(W )
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and W ∩ R1 �= ∅, minimizing the capacity of δin
A′(W ). Then W := W ′ ∩ V is

a set as required.
We next apply the algorithm recursively. This describes the algorithm.

Running time. In each iteration, the number of arcs a with c(a) > 0 decreases
or the collection C := {U ⊆ V | U �= ∅, c(δin(U)) = g(U)} increases. As C is
an intersecting family, the number of times C increases is at most |V |3 (since
for each v ∈ V , the collection Cv := {U ∈ C | v ∈ U} is a lattice family,
and since each lattice family L is determined by the preorder � given by:
s � t ⇐⇒ each set in L containing t contains s; if L increases, then �
decreases, which can happen at most |V |2 times.)

So the number of iterations is at most |A| + |V |3.

With the reductions given earlier, this implies that the capacitated ver-
sions of packing arborescences and covering by branchings also can be solved
in strongly polynomial time.

Edmonds [1975] observed that matroid intersection and union theory im-
plies:

Theorem 53.10. Given a digraph D = (V, A), r ∈ V , k ∈ Z+, and a
length function l ∈ QA, we can find k disjoint r-arborescences B1, . . . , Bk

minimizing l(B1) + · · · + l(Bk) in strongly polynomial time.

Proof. This follows, with Corollary 53.1c and Theorem 53.7, from Theorem
41.8 applied to the intersection of two matroids: one being the union of k
times the cycle matroid of the undirected graph underlying D; the other
being the matroid in which a subset B of A is independent if and only if any
v ∈ V \ {r} is entered by at most k arcs in B.

This implies:

Corollary 53.10a. Given a digraph D = (V, A), r ∈ V , k ∈ Z+, and a
length function l ∈ QA, we can find a minimum-length subset B of A with
δin
B (U) ≥ k for each nonempty U ⊆ V \ {r} in strongly polynomial time.

Proof. Directly from Theorem 53.10, with Edmonds’ disjoint arborescences
theorem (Corollary 53.1b).

53.10. Further results and notes

53.10a. Complexity survey for disjoint arborescences

Finding k disjoint r-arborescences in an uncapacitated digraph (∗ indicates an
asymptotically best bound in the table):
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O(k2m2) Lovász [1976c], Tarjan [1974a]

O(knm + k3n2) Tong and Lawler [1983]

∗ O(k2n2 + m) Gabow [1991a,1995a]

(As noticed by Tong and Lawler [1983], the paper of Shiloach [1979a] claiming
an O(k2nm) bound, contains an essential error (the set A constructed on page
25 of Shiloach [1979a] need not have the desired properties: it is maximal under
the condition that y �∈ A, while it should be maximal under the condition that
A ∪ V (T ) �= V ).)

The O(k2m2) bound for finding k pairwise disjoint r-arborescences implies the
O(n2∆4 log ∆) bound of Markosyan and Gasparyan [1986] for finding a minimum
number of branchings covering all arcs (where ∆ is the maximum indegree of the
vertices), by the construction given in the proof of Corollary 53.1h (as we can take
m ≤ n∆ and k ≤ 2∆).

Tarjan [1974c] gave an O(m + n log n)-time algorithm to find two disjoint r-
arborescences (actually, to find two r-arborescences with smallest intersection).
This was improved to O(mα(m, n)) by Tarjan [1976] (where α(m, n) is the inverse
Ackermann function), and to O(m) by Gabow and Tarjan [1985].

Clearly, each of the bounds in the table above implies a complexity bound for the
capacitated case, by replacing arcs by multiple arcs. However, this can increase the
number m of arcs dramatically, and does not lead to a polynomial-time algorithm.
Better bounds are given in the following table:

O(n3 · MF(n, m))
Pevzner [1979a] taking rounding as one
arithmetic step

∗ O(k2n2 + m) Gabow [1991a,1995a]

∗ O(n3m log n2

m
) Gabow and Manu [1995,1998]

∗ O(n2m log C log n2

m
) Gabow and Manu [1995,1998]

In these bounds, m is the number of arcs in the original graph, MF(n, m) denotes
the time needed to solve a maximum flow problem in a digraph with n vertices and
m arcs, and C is the maximum capacity (for integer capacity function).

The bounds of Gabow [1991a,1995a] and Gabow and Manu [1995,1998] in these
tables also apply to the problem considered in Edmonds’ disjoint branching theorem
(Theorem 53.1): finding k disjoint branchings B1, . . . , Bk where Bi has a given root
set Ri (i = 1, . . . , k), finding minimum coverings by branchings, and related prob-

lems. Gabow and Manu [1995,1998] also gave an O(n3m log n2

m
) fractional packing

algorithm of r-arborescences.
Gabow [1991a,1995a] announced O(kn(m+n log n) log n)- and O(k

√
n log n(m+

kn log n) log(nK))-time algorithms to find a minimum-cost union of k disjoint r-
arborescences (where K is the maximum cost, with integer cost function).
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53.10b. Arborescences with roots in given subsets

Let D = (V, A) be a digraph. Call a vector x ∈ ZV
+ a root vector if there exist disjoint

arborescences such that for each v ∈ V , exactly xv of these arborescences have root
v. By Corollary 53.1a, root vectors are the integer solutions of the following system:

(53.50) (i) xv ≥ 0 for v ∈ V ,

(ii) x(U) ≤ dout(U) for each U ⊂ V .

This system generally does not define an integer polytope P , as is shown by the
digraph with vertices u, v, w and arcs (u, v), (v, w), and (w, u), where 1

2
· 1 is in P ,

but each integer vector x in P satisfies 1Tx ≤ 1.
Moreover, sets R of vertices for which there exist |R| disjoint arborescences,

rooted at distinct vertices in R, do not form the independent sets of a matroid, as
is shown by the graph of Figure 53.1.

Figure 53.1

However, for any k ∈ Z+, the system

(53.51) x(U) ≥ k − din(U) for each nonempty U ⊆ V ,

is box-TDI, since the right-hand side in (ii) is intersecting supermodular (cf. Sec-
tions 44.5 and 48.1).

Cai [1983] proved the following result, with a method (described below) of Frank
[1981c] for proving a special case (Corollary 53.11a):

Theorem 53.11. Let D = (V, A) be a digraph such that D has k arc-disjoint
arborescences. Let l, u ∈ ZV

+ with l ≤ u. Then D has k arc-disjoint arborescences
such that, for each v ∈ V , at least l(v) and most u(v) of these arborescences are
rooted at v if and only if

(53.52) u(U) + din(U) ≥ k and l(U) +
∑

W∈P

(k − din(W )) ≤ k

for each nonempty subset U of V and each partition P of V \ U into nonempty
sets.

Proof. Necessity being easy, we show sufficiency. Choose x ∈ ZV
+ such that l ≤ x ≤

u and such that (53.51) holds, with x(V ) as small as possible. (Such an x exists
since u(U) ≥ k − din(U) for each nonempty subset U of V .)

We show that x(V ) = k. Since x(V ) ≥ k by (53.51), it suffices to show x(V ) ≤ k.
Let P be the collection of inclusionwise maximal sets having equality in (53.51).
Then P is a subpartition, for suppose that U, W ∈ P with U ∩ W �= ∅. Then

(53.53) x(U ∪ W ) = x(U) + x(W ) − x(U ∩ W )
≤ (k − din(U)) + (k − din(W )) − (k − din(U ∩ W ))
≤ (k − din(U ∪ W )),
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and hence U ∪ W ∈ P. So U = W .
Now for each v ∈ V with xv > l(v) there exists a set W in P containing v, since

otherwise we could decrease xv. Hence

(53.54) x(V ) − l(V ) =
∑

W∈P

(x(W ) − l(W )) =
∑

W∈P

(k − din(W ) − l(W ))

≤ k − l(V ),

by (53.52).
So x(V ) = k. Now let r1, . . . , rk be vertices such that each vertex v occurs

xv times among the ri. Then by Corollary 53.1a there exist disjoint arborescences
B1, . . . , Bk, where Bi has root ri. This shows the theorem.

(In this proof we did not use the box-total dual integrality of (53.51), but we applied
a similar argument.)

This has as special case the following result of Frank [1981c]:

Corollary 53.11a. Let D = (V, A) be a digraph such that D has k arc-disjoint
arborescences. Let u ∈ ZV

+. Then D has k arc-disjoint arborescences such that, for
each v ∈ V , at most u(v) of these arborescences have their root in v if and only if

(53.55) u(U) + din(U) ≥ k

for each nonempty subset U of V .

Proof. Directly from Theorem 53.11.

A related theorem is:

Theorem 53.12. Let D = (V, A) be a digraph and let R1, . . . , Rk be subsets of V .
Then there exist disjoint arborescences B1, . . . , Bk, where Bi has its root in Ri (for
i = 1, . . . , k) if and only if

(53.56)
∑

U∈P

(k − din(U)) ≤ |{i | Ri ∩ ⋃P �= ∅}|

for each subpartition P of V with nonempty classes.

Proof. Necessity is easy, since if the Bi exist, with roots ri ∈ Ri, then for each
U ∈ P one has that ri ∈ U or Bi contains at least one arc entering U . That is,

(53.57) |{ri} ∩ U | + din
Bi

(U) ≥ 1.

Summing this inequality over U ∈ P and over i = 1, . . . , k we obtain (53.56), with
Ri replaced by {ri}. This implies (53.56) for the original Ri.

To see sufficiency, first observe that the condition implies that the Ri are
nonempty (by taking P := {V }). If the Ri are singletons, the theorem is equiva-
lent to Corollary 53.1a. So we can assume that |R1| ≥ 2. Choose distinct vertices
u, w ∈ R1.

If the condition is maintained after replacing R1 by R1\{u}, the theorem follows
by induction. So we can assume that this violates the condition. That is, there exists
a subpartition P of V into nonempty classes such that (setting X :=

⋃P):
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(53.58)
∑

U∈P

(k − din(U)) = |{i | Ri ∩ X �= ∅}|

and such that X∩R1 = {u} (for the original R1). Similarly we can assume that there
exists a subpartition Q of V into nonempty classes such that (setting Y :=

⋃Q):

(53.59)
∑

U∈Q

(k − din(U)) = |{i | Ri ∩ Y �= ∅}|

and such that Y ∩ R1 = {w}.
Let F be the union of P and Q (any set occurring both in P and in Q occurs

twice in F). Now iteratively replace any T, U ∈ F with T ∩ U �= ∅ and T �⊆ U �⊆ T
by T ∩ U and T ∪ U . Then the final family F is laminar. Let R be the collection
of inclusionwise minimal sets in F and let S be the collection of inclusionwise
maximal sets in F . Then R and S are subpartitions of V into nonempty classes,
and

⋃R = X ∩ Y and
⋃ S = X ∪ Y . Moreover

(53.60)
∑

U∈R

(k − din(U)) +
∑

U∈S

(k − din(U)) =
∑

U∈F

(k − din(U))

≥
∑

U∈P

(k − din(U)) +
∑

U∈Q

(k − din(U))

= |{i | Ri ∩ X �= ∅}| + |{i | Ri ∩ Y �= ∅}|
> |{i | Ri ∩ (X ∩ Y ) �= ∅}| + |{i | Ri ∩ (X ∪ Y ) �= ∅}|.

The first inequality follows from the submodularity of din(U). The last inequality
holds as (i) if Ri intersects X ∪ Y , then it intersects X or Y , (ii) if Ri intersects
X ∩ Y , then it intersects X and Y , and (iii) R1 intersects X and Y but not X ∩ Y ,
since R1 ∩ X = {u} and R1 ∩ Y = {w}.

However, (53.60) contradicts (53.56).

53.10c. Disclaimers

The equivalence of (i) and (iii) in Corollary 53.1c suggests the following question,
raised by A. Frank (cf. Schrijver [1979b], Frank [1995]; it generalizes a similar
question for the undirected case, described in Section 51.5b):

(53.61) (?) Let D = (V, A) be a k-arc-connected digraph and let r ∈ V . Sup-
pose that for each s ∈ V there exist k internally vertex-disjoint r − s
paths in D. Then there exist k r-arborescences such that, for any ver-
tex s, the k r − s paths determined by the respective r-arborescences
are internally vertex-disjoint. (?)

For k = 2 this was proved by Whitty [1987]. However, for k = 3, a counterexample
was found by Huck [1995].

Two potential generalizations of Edmonds’ disjoint arborescences theorem have
been raised, neither of which holds however. For vertices s, t, let λ(s, t) denote the
maximum number of arc-disjoint s − t paths. It is not true that for any digraph
D = (V, A), r ∈ V , and T ⊆ V \ {r}, there exist k disjoint subsets A1, . . . , Ak of A
such that each Ai contains an r − t path for each t ∈ T if and only if λ(r, t) ≥ k for
each t ∈ T (see Figure 53.2, for k = 2).

N. Robertson raised the question if it is true that in any digraph D = (V, A)
and any r ∈ V , there exist partial r-arborescences B1, B2, . . . such that each vertex
v ∈ V \ {r} is in exactly λ(r, v) of them. Lovász [1973b] showed that Figure 53.3 is
a counterexample. (Related work is reported by Bang-Jensen, Frank, and Jackson
[1995] and Gabow [1996].)



926 Chapter 53. Packing and covering of branchings and arborescences

r T

Figure 53.2

r

Figure 53.3

53.10d. Further notes

Frank [1981c] gave the following results for mixed graphs. Let G = (V, E, A) be a
mixed graph (that is, (V, E) is an undirected graph and (V, A) is a directed graph).
A mixed branching is a subset B of E ∪ A such that the undirected edges in B can
be oriented such that B becomes a branching. Then E can be covered by k mixed
branchings if and only if

(53.62) (i) din
A (U) + |E[U ]| ≤ k|U | for each U ⊆ V ,

(ii) |A[U ]| + |E[U ]| ≤ k(|U | − 1) for each ∅ �= U ⊆ V .

Similarly, a mixed r-arborescence is a subset B of E ∪ A such that the undirected
edges in B can be oriented such that B becomes an r-arborescence. Then for any
r ∈ V , G has k disjoint mixed r-arborescences if and only if for each subpartition
P of V \ {r} with nonempty classes, the number of edges (directed or not) entering
any class of P, is at least k|P|.

Cai [1989] characterized when, for given digraphs D1 = (V, A1) and D2 =
(V, A2), a, b ∈ ZV

+ , and k ∈ Z+, there exists an r ∈ ZV
+ with a ≤ r ≤ b and there

exist, for i = 1, 2, k disjoint arborescences in Di such that for each v ∈ V , r(v) of
these arborescences have root v. This can be proved using polymatroid intersection
theory, in particular the box-total dual integrality of

(53.63) x(U) ≥ k − din
Ai

(U) for i = 1, 2 and nonempty U ⊆ V

(Theorem 48.5). (For a generalization, see Cai [1990a,1993].)
Cai [1990b] showed, for given digraph D = (V, A), r ∈ V , d, c ∈ ZA

+, and k ∈ Z+:
there exist k r-arborescences such that each arc is covered at least d(a) times and
at most c(a) times, if and only if d(δin(v)) ≤ k, for each v ∈ V \ {r}, and
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(53.64)
∑

v∈U

min{k − d(δin(v) \ δin(U)), c(δin(v) ∩ δin(U))} ≥ k

for each nonempty subset U of V \ {r}.



Chapter 54

Biconnectors and bibranchings

The concept of biconnector is a generalization of that of a connector. Let
G = (V, E) be an undirected graph and let V be partitioned into classes R
and S. An R −S biconnector is a subset F of E such that each component
of (V, F ) intersects both R and S. So contracting R or S gives a connector.
If R is a singleton, R − S biconnectors are precisely the connectors.
For biconnectors, min-max relations, polyhedral characterizations, and
complexity results similar to those for connectors hold.
In this chapter we also consider the forest analogue of biconnector, the
biforest. An R − S biforest is a forest F such that each component of
(V, F ) has at most one edge in the cut δ(R). So contracting R or S gives a
forest. Also biforests show good polyhedral and algorithmical behaviour.
Similar results hold for the directed analogues of biconnectors and biforests,
the bibranchings and the bifurcations. An R − S bibranching is a set B of
arcs such that for each s ∈ S, B contains an R − s path and for each
r ∈ R, B contains an r − S path. Bibranchings form a generalization of
arborescences, and give rise to similar min-max relations and polyhedral
characterizations. An R − S bifurcation is a set B of arcs containing no
undirected circuit, such that each vertex in R is left by at most one arc in
B, each vertex in S is entered by at most one arc in B, and B contains no
arcs from S to R.
Theorem 54.11 on disjoint bibranchings will be the only result of this chap-
ter that will be used later in this book, namely in Chapter 56 to obtain a
dual form of the Lucchesi-Younger theorem, on packing directed cut covers
in a source-sink connected digraph. The proof of Theorem 54.11 uses no
other results from this chapter.

54.1. Shortest R − S biconnectors

Let G = (V, E) be a graph and let V be partitioned into two sets R and S. A
subset F of E is called an R − S biconnector if each component of the graph
(V, F ) intersects both R and S. So F is an R − S biconnector if and only if
each component of (V, F ) has at least one edge in δ(R).

A min-max relation for the minimum size of an R−S biconnector can be
derived easily from the Kőnig-Rado edge cover theorem:



Section 54.1. Shortest R − S biconnectors 929

Theorem 54.1. Let G = (V, E) be a graph and let V be partitioned into sets
R and S such that each component of G intersects both R and S. Then the
minimum size of an R − S biconnector is equal to the maximum size of a
subset of V spanning no edge connecting R and S.

Proof. To see that the minimum is not less than the maximum, let F be a
minimum R − S biconnector and let U attain the maximum. Then F is a
forest. For each r ∈ U ∩ R, let φ(r) be the first edge in any r − S path in F ;
and for each s ∈ U ∩S let φ(s) be the first edge in any s−R path in F . Then
φ is injective from U to F (as U spans no edge in δ(R)). Hence |U | ≤ |F |.

To see equality, let H := (N(R)∪N(S), δ(R)), where N(R) and N(S) are
the sets of neighbours of R and of S respectively. (So N(R) ⊆ S and N(S) ⊆
R, and H is bipartite.) Let U ′ be a maximum-size stable set in H. Let F ′

be a minimum-size edge cover in H. By the Kőnig-Rado edge cover theorem
(Theorem 19.4) we know |F ′| = |U ′|. Let U := U ′ ∪ (V \ (N(R) ∪ N(S))).
Then U spans no edge connecting R and S. By adding |V \ (N(R) ∪ N(S))|
edges to F ′ we obtain an R − S biconnector F with

(54.1) |F | = |U ′| + |V \ (N(R) ∪ N(S))| = |U |.

This shows the required equality.

To obtain a min-max relation for the minimum length of an R −S bicon-
nector (given a length function on the edges), consider the system

(54.2) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(δ(P)) ≥ |P| for each subpartition P of R or S

with nonempty classes.

Here a subpartition of a set X is a partition of a subset of X (that is, a
collection of disjoint subsets of X). δ(P) denotes the set of edges incident
with but not spanned by any set in P. Then system (54.2) determines the
R−S biconnector polytope — the convex hull of the incidence vectors of R−S
biconnectors:

Theorem 54.2. System (54.2) is box-totally dual integral and determines the
R − S biconnector polytope.

Proof. This follows from matroid intersection theory, applied to the matroids
M1 and M2 on E, where M1 is obtained from the cycle matroid M(G) of G
by contracting R to one vertex, making all edges spanned by R to a loop, and
where M2 is obtained similarly from M(G) by contracting S to one vertex,
making all edges spanned by S to a loop.

So the spanning sets of M1 are the subsets F of E such that each compo-
nent of (V, F ) intersects R. Similarly, the spanning sets of M2 are the subsets
F of E such that each component of (V, F ) intersects S. Hence the common
spanning sets are precisely the R − S biconnectors. Therefore, by Corollaries
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41.12f and 50.8a, system (54.2) determines the convex hull of the incidence
vectors of R − S biconnectors. To see that the system is box-TDI, we use
Corollary 41.12g and the fact that for each F ⊆ E, the inequality

(54.3) x(F ) ≥ rMi
(E) − rMi

(E \ F )

is a nonnegative integer combination of the inequalities (54.2). Indeed (for
i = 1), if P denotes the collection of the components of (V, E \ F ) contained
in S, then

(54.4) x(F ) ≥ x(δ(P)) ≥ |P| ≥ rM1
(E) − rM1

(E \ F ),

as rM1
(E) ≤ |S| and rM1

(E \ F ) = |S| − |P|.

This implies a min-max relation for the minimum length of an R − S
biconnector. The reduction to matroid intersection also immediately implies
that one can find a shortest R−S biconnector in strongly polynomial time.

54.2. Longest R − S biforests

Again, let G = (V, E) be a graph and let V be partitioned into two sets R and
S. Call a subset F of E an R−S biforest if F is a forest and each component
of F contains at most one edge in δ(R).

A min-max relation for the maximum size of an R − S biforest can be
derived easily from Kőnig’s matching theorem:

Theorem 54.3. Let G = (V, E) be a graph and let V be partitioned into
sets R and S. Then the maximum size of an R − S biforest is equal to the
minimum value of |V | − |U|, where U is a collection of components of G − R
and G − S such that no edge connects any two sets in U .

Proof. We may assume that G has no loops. To see that the maximum is not
more than the minimum, consider any R −S biforest F and any collection U
as in the theorem. Then F contains no path connecting two distinct sets in
U . Hence |F | ≤ |V | − |U|.

The reverse inequality is proved by induction on the number of edges not
in δ(R).

If E = δ(R), then G is bipartite, and R−S biforests coincide with match-
ings. Then the theorem is equivalent to Kőnig’s matching theorem (Theorem
16.2).

If E �= δ(R), choose an edge e = uv in E \δ(R). If we contract e, the min-
imum value in the theorem reduces by precisely 1. Moreover, the maximum
reduces by at least 1, since any R − S forest in the contracted graph gives
with e an R − S forest in the original graph. So we are done by induction.

To obtain a min-max relation for the maximum length of an R−S biforest
(given a length function on the edges), consider the following system:
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(54.5) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(E[U ]) ≤ |U | − 1 for each nonempty subset U of R or S,
(iii) x(E[U ] ∪ (δ(U) ∩ δ(R))) ≤ |U |

for each subset U of R or S.

This determines the R−S biforest polytope — the convex hull of the incidence
vectors of R − S biforests:

Theorem 54.4. System (54.5) is box-totally dual integral and determines the
R − S biforest polytope.

Proof. This can be reduced to matroid intersection theory, similar to the
proof of Theorem 54.3.

Again, this theorem implies a min-max relation for the maximum length
of an R − S biforest, and the reduction to matroid intersection also implies
that a longest R − S biforest can be found in strongly polynomial time.

54.3. Disjoint R − S biconnectors

We give a min-max relation for the maximum number of disjoint R − S
biconnectors (Keijsper and Schrijver [1998]). It generalizes the Tutte-Nash-
Williams disjoint trees theorem (Corollary 51.1a) — which theorem however
is used in the proof — and the disjoint edge covers theorem for bipartite
graphs (Theorem 20.5).

We follow the (algorithmic) proof method of Keijsper [1998a], based on
the following lemma:

Lemma 54.5α. Let T1 = (V, E1) and T2 = (V, E2) be edge-disjoint spanning
trees and let r ∈ V . For each e = rv ∈ δT1

(r), let φ(e) be the first edge of
the v − r path in T2 that leaves the component of T1 − e containing v. Let
B ⊆ δT1

(r) be such that φ(B) contains at most one edge not in δT2
(r). Then

(E1 \ B) ∪ φ(B) and (E2 \ φ(B)) ∪ B are spanning trees again.

Proof. By induction on |B|, the case |B| ≤ 1 being easy. Let |B| ≥ 2. Then
there exists an edge f = rw ∈ B with φ(f) ∈ δT2

(r) (by the condition given
in the theorem). Define

(54.6) T ′
1 := (T1 \ {f}) ∪ {φ(f)} and T ′

2 := (T2 \ {φ(f)}) ∪ {f}.

Let B′ := B \ {f}. Then for each e = rv ∈ B′,

(54.7) φ(e) is equal to the first edge of the v − r path in T ′
2 that leaves

the component K of T ′
1 − e containing v.

To see this, let L be the component of T1−f containing w. Since φ(f) connects
L and r, K is equal to the component of T1 − e containing v. Moreover, the
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v − r path P in T ′
2 does not differ from the v − r path in T2 before entering

L, and hence the first edge of P leaving K equals φ(e). This shows (54.7).
Now (T1 \ B) ∪ φ(B) = (T ′

1 \ B′) ∪ φ(B′) and (T2 \ φ(B)) ∪ B = (T ′
2 \

φ(B′)) ∪ B′, and by induction, they are spanning trees.

Notice that the function φ : E1 ∩ δ(r) → E2 defined in the lemma is
injective.

In the following lemma, we consider forests as edge sets. We recall that
G/R denotes the graph obtained from G by contracting all vertices in R to
one new vertex, denoted by R. The edges in the contracted graph are named
after the edges in the original graph.

Lemma 54.5β. Let G = (V, E) be a graph and let V be partitioned into
sets R and S. Let X1 and X2 be disjoint forests in G/R and let Y1 and
Y2 be disjoint forests in G/S. Then there exist disjoint forests X ′

1 and X ′
2

in G/R and disjoint forests Y ′
1 and Y ′

2 in G/S with X ′
1 ∪ X ′

2 = X1 ∪ X2,
Y ′

1 ∪ Y ′
2 = Y1 ∪ Y2, X ′

1 ∩ Y ′
2 = ∅, and X ′

2 ∩ Y ′
1 = ∅.

Proof. By adding new edges spanned by S, we can assume that the Xi are
spanning trees in G/R. Similarly, we can assume that the Yi are spanning
trees in G/S. (At the conclusion, we delete the new edges from the X ′

i and
Y ′

i .)
If X1 ∩ Y2 = ∅ and X2 ∩ Y1 = ∅, we are done. So, by symmetry, we can

assume that X1 ∩ Y2 �= ∅.
For each e = rs ∈ X1 ∩ δ(R), with r ∈ R, s ∈ S, let φ(e) be the first edge

on the s − R path in X2 that leaves the component of X1 − e containing s.
For each e = rs ∈ Y2 ∩ δ(R), with r ∈ R, s ∈ S, let ψ(e) be the first edge on
the r − S path in Y1 that leaves the component of Y2 − e containing r.

This gives injective functions

(54.8) φ : X1 ∩ δ(R) → X2 and ψ : Y2 ∩ δ(R) → Y1.

Observe that X1 ∩ (Y1 ∪ Y2) ⊆ δ(R) and Y2 ∩ (X1 ∪ X2) ⊆ δ(R). Consider
the directed graph with vertex set E and arc set

(54.9) A := {(e, φ(e)) | e ∈ X1 ∩ δ(R)} ∪ {(e, ψ(e)) | e ∈ Y2 ∩ δ(R)}.

Choose e0 ∈ X1 ∩ Y2 and set e1 := φ(e0). Then D contains a unique directed
path e0, e1, . . . , eh such that e0, . . . , eh−1 ∈ X1 ∪ Y2 and eh �∈ X1 ∪ Y2. (This
because each vertex in X1 ∩Y2 has outdegree 2 and indegree 0 in D, and each
vertex in (X1 ∪ Y2) \ (X1 ∩ Y2) has outdegree 1 and indegree at most 1.)

It follows that for each j < h one has ej+1 = φ(ej) if j is even and
ej+1 = ψ(ej) if j is odd. Define

(54.10) B := {ej | 0 ≤ j < h, j even} and C := {ej | 1 ≤ j < h, j odd}.

Then by Lemma 54.5α,
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(54.11) X ′
1 := (X1 \ B) ∪ φ(B), X ′

2 := (X2 \ φ(B)) ∪ B,
Y ′

1 := (Y1 \ ψ(C)) ∪ C, Y ′
2 := (Y2 \ C) ∪ ψ(C),

are again spanning tree of G/R and G/S respectively. Note that X ′
1∩X ′

2 = ∅,
Y ′

1 ∩ Y ′
2 = ∅, X ′

1 ∪ X ′
2 = X1 ∪ X2 and Y ′

1 ∪ Y ′
2 = Y1 ∪ Y2.

Now φ(B) ∩ ψ(C) = ∅, φ(B) ∩ (Y2 \ C) = ∅ (since φ(B) ∩ Y2 ⊆ C, as
eh �∈ Y2), and ψ(C) ∩ (X1 \ B) = ∅ (since ψ(C) ∩ X1 ⊆ B, as eh �∈ X1). So
X ′

1 ∩ Y ′
2 ⊆ (X1 ∩ Y2) \ {e0} (since e0 �∈ X ′

1).
Moreover, B ∩ C = ∅, B ∩ (Y1 \ ψ(C)) = ∅ (since B ∩ Y1 ⊆ ψ(C), as

e0 �∈ Y1), and C ∩ (X2 \ φ(B)) = ∅ (since C ∩ X2 ⊆ φ(B), as e0 �∈ X2). So
X ′

2 ∩ Y ′
1 ⊆ X2 ∩ Y1.

Concluding, |X ′
1 ∩ Y ′

2 | + |X ′
2 ∩ Y ′

1 | < |X1 ∩ Y2| + |X2 ∩ Y1|. Therefore,
iterating this, we obtain trees as required.

Now a min-max relation for disjoint R − S biconnectors can be deduced:

Theorem 54.5. Let G = (V, E) be a graph, let V be partitioned into sets
R and S, and let k ∈ Z+. Then there exist k disjoint R − S biconnectors if
and only if |δ(P)| ≥ k|P| for each subpartition P of R or S with nonempty
classes.

Proof. Necessity being easy, we show sufficiency. By Corollary 51.1a, the
graph G/R (obtained from G by contracting R) has k disjoint spanning trees
X1, . . . , Xk. Similarly, the graph G/S has k disjoint spanning trees Y1, . . . , Yk.
Then Xi ∩ Yj is a subset of δ(R), for all i, j. Choose the Xi and Yi in such a
way that

(54.12)
k∑

i=1

|Xi ∩ Yi|

is as large as possible.
Then Xi ∩ Yj = ∅ for all distinct i, j, for if, say, X1 ∩ Y2 �= ∅, we can

replace X1, X2, Y1, Y2 by X ′
1, X

′
2, Y

′
1 , Y ′

2 as in Lemma 54.5β. Then we have

(54.13) |X ′
1 ∩ Y ′

1 | + |X ′
2 ∩ Y ′

2 | = |(X ′
1 ∪ X ′

2) ∩ (Y ′
1 ∪ Y ′

2)|
= |(X1 ∪ X2) ∩ (Y1 ∪ Y2)| > |X1 ∩ Y1| + |X2 ∩ Y2|.

This contradicts the maximality of sum (54.12).
Hence X1∪Y1, . . . , Xk ∪Yk form k disjoint R−S biconnectors as required.

This proof gives a polynomial-time algorithm to find a maximum number
of disjoint R − S biconnectors. Keijsper [1998a] gave an O(DT(n, m) + nm)-
time algorithm for this problem, where DT(n, m) denotes the time needed
to find a maximum number of disjoint spanning trees in an undirected graph
with n vertices and m edges.

By replacing edges by parallel edges, one obtains a capacitated version
of Theorem 54.5. The corresponding optimization problem can be solved in
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polynomial time, by a straightforward adaptation of the methods described
in the proofs of Theorems 51.8 and 51.10 and Corollary 51.8a. However, the
capacitated problem cannot be solved in strongly polynomial time if we do
not allow rounding (cf. the argument given in Section 51.4).

A generalization of Theorem 54.5 is given by Keijsper [1998a].

54.4. Covering by R − S biforests

With the foregoing two lemmas, one can also derive a min-max relation for the
minimum number of R − S biforests that cover all edges (Keijsper [1998b]).
It generalizes the Nash-Williams’ covering forests theorem (Corollary 51.1c)
— which theorem however is used in the proof — and Kőnig’s edge-colouring
theorem for bipartite graphs (Theorem 20.1).

Theorem 54.6. Let G = (V, E) be a graph, let V be partitioned into sets R
and S, and let k ∈ Z+. Then E can be covered by k R − S biforests if and
only if

(54.14) |E[U ]| ≤ k(|U | − 1) and |E[U ]| + |δ(U) ∩ δ(R)| ≤ k|U |

for each nonempty subset U of R or S.

Proof. Necessity being easy, we show sufficiency. We can assume that G is
connected, as otherwise we can consider any component of G separately.

By Corollary 51.1c, the edges of the graph G/R can be partitioned into k
forests X1, . . . , Xk. Similarly, the edges of the graph G/S can be partitioned
into k forests Y1, . . . , Yk. So Xi ∩Yj ⊆ δ(R), for all i, j. Choose the Xi and Yi

in such a way that sum (54.12) is as large as possible. Then, as in the proof
of Theorem 54.5, Xi ∩Yj = ∅ for distinct i, j. Hence each e ∈ δ(R) belongs to
Xi ∩ Yi for some i = 1, . . . , k. Concluding, X1 ∪ Y1, . . . , Xk ∪ Yk form R − S
biforests as required.

This proof gives a polynomial-time algorithm for finding a minimum cov-
ering by R − S biforests. The methods of Section 51.4 can be extended to
imply the polynomial-time solvability of the corresponding capacitated ver-
sion, while strong polynomial-time solvability is again impossible.

54.5. Minimum-size bibranchings

We now turn to the directed analogues of biconnectors and biforests. Let
D = (V, A) be a digraph and let V be partitioned into two sets R and S. Call
a subset B of A an R − S bibranching if in the graph (V, B), each vertex in
S is reachable from R, and each vertex in R reaches S.
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Similarly to minimum R − S biconnectors, a min-max relation for the
minimum size of an R − S bibranching follows easily from the Kőnig-Rado
edge cover theorem.

Theorem 54.7. Let D = (V, A) be a graph and let V be partitioned into sets
R and S such that each vertex in R can reach S and such that each vertex
in S is reachable from R. Then the minimum size of an R − S bibranching
is equal to the maximum size of a subset of V spanning no arc in δout(R).

Proof. To see that the minimum is not less than the maximum, let B be a
minimum-size R − S bibranching and let U attain the maximum. For each
r ∈ U ∩ R, let φ(r) be any arc in B leaving r, and for each s ∈ U ∩ S let
φ(s) be any arc in B entering s. Then φ is injective from U to B, and hence
|U | ≤ |B|.

To see equality, let U ′ be a maximum stable set in the bipartite graph
H with colour classes N in(S) ⊆ R and Nout(R) ⊆ S, with r ∈ N in(S)
and s ∈ Nout(R) adjacent if and only if D has an arc from r to s. (Here
Nout(X) and N in(X) are the sets of outneighbours and of inneighbours of
X, respectively.)

Let B′ be a minimum-size edge cover in H. By the Kőnig-Rado edge cover
theorem (Theorem 19.4) we know |B′| = |U ′|. Now by adding |V \(Nout(R)∪
N in(S))| arcs to B′ we obtain an R − S bibranching B with

(54.15) |B| = |U ′| + |V \ (Nout(R) ∪ N in(S))| = |U |,

where U := U ′ ∪ (V \ (Nout(R) ∪ N in(S))). This shows the required equality.

If each arc of D belongs to δout(R), then Theorem 54.7 reduces to the
Kőnig-Rado edge cover theorem (Theorem 19.4).

The proof gives a polynomial-time algorithm to find a minimum-size R−S
bibranching (as we can find a minimum-size edge cover in a bipartite graph
in polynomial time (Corollary 19.3a)).

54.6. Shortest bibranchings

To obtain a min-max relation for the minimum length of an R−S bibranching
(given a length function on the arcs), define a set of arcs C to be an R − S
bicut if C = δin(U) for some nonempty proper subset U of V satisfying U ⊆ S
or S ⊆ U .

Consider the system:

(54.16) (i) xa ≥ 0 for each a ∈ A,
(ii) x(C) ≥ 1 for each R − S bicut C.
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Then the following implies a min-max relation for the minimum length of an
R − S bibranching.

Theorem 54.8. System (54.16) is box-TDI.

Proof. Let w : A → R+. Let U be the collection of nonempty proper subsets
U of V satisfying U ⊆ S or S ⊆ U . Consider the maximum value of

(54.17)
∑

U∈U

yU

where y : U → R+ satisfies

(54.18)
∑

U∈U

yUχδin(U) ≤ w.

Choose y : U → R+ attaining the maximum, such that

(54.19)
∑

U∈U

yU |U ||V \ U |

is minimized. We show that the collection F := {U ∈ U | yU > 0} is cross-
free; that is, for all T, U ∈ F one has

(54.20) T ⊆ U or U ⊆ T or T ∩ U = ∅ or T ∪ U = V .

Suppose that this is not true. Let α := min{yT , yU}. Decrease yT and yU by
α, and increase yT∩U and yT∪U by α. Now (54.18) is maintained, and (54.17)
did not change. However, (54.19) decreases (by Theorem 2.1), contradicting
our minimality assumption.

So F is cross-free. Now the F × A matrix M with

(54.21) MU,a :=

{
1 if a ∈ δin(U),
0 otherwise,

is totally unimodular. To see this, let T = (W, B) and π : V → W form a
tree-representation of F (see Section 13.4). That is, T is a directed tree and
F = {Vb | b ∈ B}, where

(54.22) Vb := {v ∈ V | π(v) belongs to the same component of T − b as
the head of b}.

Then for any arc a = (u, v) of D, the set of forward arcs in the undirected
π(u) − π(v) path in T is contiguous, that is, forms a directed path, say from
u′ to v′. This follows from the fact that there exist no arcs b, c, d in this order
on the path with b and d forward and c backward.

Define a′ := (u′, v′), and let D′ = (W, A′) be the digraph with A′ :=
{a′ | a ∈ A}. Then M is equal to the network matrix generated by T and D′

(identifying b ∈ B with the set Vb in F determined by b). Hence by Theorem
13.20, M is totally unimodular.

This implies with Theorem 5.35 that (54.16) is box-TDI.
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This implies that the R−S bibranching polytope — the convex hull of the
incidence vectors of R − S bibranchings — can be described as follows:

Corollary 54.8a. The R − S bibranching polytope is determined by

(54.23) (i) 0 ≤ xa ≤ 1 for each a ∈ A,
(ii) x(C) ≥ 1 for each R − S bicut C.

Proof. By Theorem 54.8, (54.23) determines an integer polytope. Necessarily,
each vertex of it is the incidence vector of an R − S branching.

The box-total dual integrality of (54.16) has as special case the total dual
integrality of (54.23), which is equivalent to:

Corollary 54.8b (optimum bibranching theorem). Let D = (V, A) be a
digraph, let V be partitioned into sets R and S, and let l : A → Z+ be a
length function. Then the minimum length of an R − S bibranching is equal
to the maximum size of a family of R − S dicuts, such that each arc a is in
at most l(a) of them.

Proof. This is a reformulation of the total dual integrality of (54.23), which
follows from Theorem 54.8.

We also note that Theorem 54.8 implies that for each k ∈ Z+ the system

(54.24) (i) xa ≥ 0 for each a ∈ A,
(ii) x(C) ≥ k for each R − S bicut C,

is box-TDI (since if Ax ≤ b is box-TDI, then for each k > 0, Ax ≤ k · b is
box-TDI).

Keijsper and Pendavingh [1998] gave an O(n′(m + n log n)) algorithm to
find a shortest bibranching, where n′ := min{|R|, |S|}. The strong polynomial-
time solvability follows also from the strong polynomial-time solvability of
finding a minimum-length strong connector for a source-sink connected di-
graph, which by the method of Theorem 57.3 can be reduced to finding a
minimum-length directed cut cover, which is a special case of weighted ma-
troid intersection (Section 55.5).

54.6a. Longest bifurcations

Let D = (V, A) be a digraph and let V be partitioned into two sets R and S. Call a
subset B of A an R−S bifurcation if B contains no undirected circuits, each vertex
in R is left by at most one arc in B, each vertex in S is entered by at most one
arc in B, and B contains no arcs from S to R. So B is an R − S bifurcation if and
only if contracting R gives a branching and contracting S gives a cobranching. (A
cobranching is a set B of arcs whose reversal B−1 is a branching.)

Similarly to maximum R − S biforests, a min-max relation for the maximum
size of an R − S bifurcation follows from Kőnig’s matching theorem:
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Theorem 54.9. Let D = (V, A) be a graph and let V be partitioned into sets R
and S, with δin(R) = ∅. Then the maximum size of an R − S bifurcation is equal
to the minimum size of |V | − |L|, where L is a collection of strong components K
of D with either K ⊆ R and δout(K) ⊆ δout(R), or K ⊆ S and δin(K) ⊆ δin(S),
such that no arc connects two components in L.

Proof. To see that the minimum is not less than the maximum, let B be a
maximum-size R − S bifurcation and let L attain the minimum. Let U be the
set of vertices v with v ∈ R and δout

B (v) = ∅, or v ∈ S and δin
B (v) = ∅. Then

(54.25) |B| = |V | − |U | − |B ∩ δout(R)| ≤ |V | − |L|,
since each K ∈ L contains a vertex in U or is entered or left by an arc in B∩δout(R).

To see equality, consider the following bipartite graph H. H has vertex set the
set K of strong components K of D with either K ⊆ R and δout(K) ⊆ δout(R), or
K ⊆ S and δin(K) ⊆ δin(S). Two sets K, L ∈ K are adjacent if and only if there is
an arc connecting K and L. (This implies that one of K, L is contained in R, the
other in S.) Let L be a maximum-size stable set in H and let B′ be a maximum-size
matching in H. By Kőnig’s matching theorem (Theorem 16.2), |B′| + |L| = |K|.
Now by adding |V |−|K| arcs to the arc set in D corresponding to B′, we can obtain
an R − S bifurcation of size |B′| + |V | − |K| = |V | − |L|.

If each arc of D belongs to δout(R), then Theorem 54.9 reduces to Kőnig’s
matching theorem (Theorem 16.2).

We next give a min-max relation for the maximum length of an R−S bifurcation,
by reduction to Theorem 54.8 on minimum-length bibranching:

Theorem 54.10. Let D = (V, A) be a digraph and let V be partitioned into R and
S such that there are no arcs from S to R. Let l ∈ ZA

+ be a length function. Then
the maximum length of an R − S bifurcation is equal to the minimum value of

(54.26)
∑

v∈V

yv +
∑

U∈U

zU (|U | − 1)

where y ∈ ZV
+ and z ∈ ZU

+, with U := {U | U �= ∅, U ⊆ R or U ⊆ S}, such that

(54.27)
∑

v∈R

yvχδout(v) +
∑

v∈S

yvχδin(v) +
∑

U∈U

zUχA[U ] ≥ l.

Proof. To see that the maximum is not more than the minimum, let B be any
R − S bifurcation and let yv, zU satisfy (54.27). Then

(54.28) l(B) =
∑

a∈B

l(a) ≤
∑

a∈B

(
∑

v ∈ R
a ∈ δout(v)

yv +
∑

v ∈ S
a ∈ δin(v)

yv +
∑

U ∈ U
a ∈ A[U ]

zU )

=
∑

v∈R

yv|B ∩ δout(v)| +
∑

v∈S

yv|B ∩ δin(v)| +
∑

U∈U

zU |B ∩ A[U ]|

≤
∑

v∈V

yv +
∑

U∈U

zU (|U | − 1).

To see equality, extend D by two new vertices, r and s, and by arcs (r, v) for
each v ∈ S ∪ {s} and (v, s) for each v ∈ R. This makes the digraph D′ = (V ′, A′).
Define R′ := R ∪ {r} and S′ := S ∪ {s}. Let L := max{l(a) | a ∈ A} + 1. Define

l′ ∈ ZA′

+ by:
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(54.29) l′(a) :=





L − l(a) for each a ∈ A[R] ∪ A[S],

2L − l(a) for each a ∈ δout(R),
L for each a = (r, v) with v ∈ S and a = (v, s)

with v ∈ R,
0 for a = (r, s).

Let U ′ be the collection of nonempty subsets U of R′ or S′. By Theorem 54.8,
applied to D′, there exists an R′ −S′ bibranching B′ in D′ and a z : U ′ → Z+ such
that

(54.30) l′(B′) =
∑

U∈U′

zU ,

and

(54.31)
∑

U ∈ U ′

U ⊆ R′

zUχδout(U) +
∑

U ∈ U ′

U ⊆ S′

zUχδin(U) ≤ l′.

Since l′(r, s) = 0 we know that zU = 0 if r or s belongs to U . That is, zU = 0 if
U ∈ U ′ \ U .

For each v ∈ V , define

(54.32) yv := L −
∑

U ∈ U
v ∈ U

zU .

Then yv ≥ 0 for each v ∈ V , as

(54.33) yv = L −
∑

U ∈ U
v ∈ U

zU ≥ L − l′(r, v) = 0

if v ∈ S, and similarly yv ≥ 0 if v ∈ R.
Also, y and z satisfy (54.27), since for any arc a = (u, v) one has, if u, v ∈ R:

(54.34) yu +
∑

U ∈ U
a ∈ A[U ]

zU = L −
∑

U ∈ U
u ∈ U

zU +
∑

U ∈ U
a ∈ A[U ]

zU = L −
∑

U ∈ U
a ∈ δout(U)

zU

≥ L − l′(a) = l(a).

Similarly, if u, v ∈ S, then

(54.35) yv +
∑

U ∈ U
a ∈ A[U ]

zU ≥ l(a).

Finally, if u ∈ R and v ∈ S, then:

(54.36) yu + yv = 2L −
∑

U ∈ U
u ∈ U

zU −
∑

U ∈ U
v ∈ U

zU

= 2L −
∑

U ∈ U
a ∈ δout(U)

zU −
∑

U ∈ U
a ∈ δin(U)

zU ≥ 2L − l′(a) = l(a).
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So y and z satisfy (54.27).
Note that each u ∈ R is left by a unique arc in B′, since if there is more than

one, all arcs leaving u should have their heads in S′ (since if (u, v), (u′, v′) ∈ B′,
v �= v′, v �∈ S′, then B′ \ {(u, v)} is again an R′ − S′ bibranching). Then replacing
one outgoing arc (u, v) ∈ B′ by the arc (r, v) keeps B′ an R − S bibranching,
however of smaller length. This contradicts our assumption. So each vertex in R is
left by exactly one arc in B′, and similarly, each vertex in S is entered by exactly
one arc in B′. This implies that B := B′ ∩ A is an R − S bifurcation.

We finally show that equality holds throughout in (54.28). Indeed, if a ∈ B, then
a ∈ B′, and hence we have equality in (54.34), implying that the first inequality in
(54.28) is satisfied with equality. Moreover, if yv > 0 and v ∈ S, then we have strict
inequality in (54.33), and hence (r, v) �∈ B′. Therefore |B ∩ δin(v)| = 1. Similarly,
yv > 0 and v ∈ R implies |B ∩ δout(v)| = 1. Finally, if zU > 0 and (say) U ⊆ R,
then |B′ ∩ δout(U)| = 1, and hence |B′ ∩ A[U ]| = |U | − 1 (since each v ∈ R is left
by precisely one arc in B′), implying |B ∩A[U ]| = |U |− 1. This shows that also the
second inequality in (54.28) is satisfied with equality.

Theorem 54.10 is equivalent to the total dual integrality of the following system:

(54.37) (i) xa ≥ 0 for each a ∈ A,

(ii) x(δout(v)) ≤ 1 for each v ∈ R,

(iii) x(δin(v)) ≤ 1 for each v ∈ S,
(iv) x(A[U ]) ≤ |U | − 1 for each nonempty U with U ⊆ R

or U ⊆ S.

It yields a description of the R − S bifurcation polytope — the convex hull of the
incidence vectors of the R − S bifurcations in D.

Corollary 54.10a. System (54.37) is TDI and determines the R − S bifurcation
polytope.

Proof. This is equivalent to Theorem 54.10.

As for the complexity, the reduction given in Theorem 54.10 also implies that a
maximum-length R−S bifurcation can be found in strongly polynomial time (since
a minimum-length R−S bibranching can be found in strongly polynomial time).

54.7. Disjoint bibranchings

Consider the system

(54.38) (i) 0 ≤ xa ≤ 1 for each a ∈ A,
(ii) x(B) ≥ 1 for each R − S bibranching B.

By the theory of blocking polyhedra, Corollary 54.8a implies:

Corollary 54.10b. System (54.38) determines the convex hull of the inci-
dence vectors of arc sets containing an R − S bicut.
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Proof. Directly from Corollary 54.8a with the theory of blocking polyhedra.

System (54.38) in fact is TDI, which is equivalent to the following state-
ment:

Theorem 54.11 (disjoint bibranchings theorem). Let D = (V, A) be a di-
graph and let V be partitioned into sets R and S. Then the maximum number
of disjoint R−S bibranchings is equal to the minimum size of an R−S bicut.

Proof. Let k be the minimum size of an R − S bicut. Clearly, there are
at most k disjoint R − S bibranchings. We show equality. For any digraph
D = (V, A) and r ∈ V , call a subset B of A an r-coarborescence if the set
B−1 of reverse arcs of B is an r-arborescence.

By Edmonds’ disjoint arborescences theorem (Corollary 53.1b), the graph
D/R (obtained from D by contracting R to one vertex) has k disjoint
R-arborescences B1, . . . , Bk. Similarly, the graph D/S has k disjoint S-
coarborescences B′

1, . . . , B
′
k. Choose the Bi and B′

i such that the sum

(54.39)
k∑

i=1

k∑

j = 1
j 	= i

|Bi ∩ B′
j |

is as small as possible. If the sum is 0, then

(54.40) B1 ∪ B′
1, . . . , Bk ∪ B′

k

are k disjoint R − S bibranchings in D as required. So we can assume that
the sum is positive. Without loss of generality, B1 ∩ B′

2 �= ∅.
Define

(54.41) X := (B1 ∪ B2) ∩ A[S], X ′ := (B′
1 ∪ B′

2) ∩ A[R],
Y := (B1 ∪ B2) ∩ δout(R), Y ′ := (B′

1 ∪ B′
2) ∩ δout(R).

Let K be the collection of strong components K of the digraph (S, X) with
δin
X(K) = ∅. Similarly, let K′ be the collection of strong components K of the

digraph (R, X ′) with δout
X′ (K) = ∅.

Now din
Y (K) = din

B1∪B2
(K) ≥ 2 for each K ∈ K, and similarly dout

Y ′ (K) ≥ 2
for each K ∈ K′. Then we can split Y into Y1 and Y2 and Y ′ into Y ′

1 and Y ′
2

such that

(54.42) din
Yi

(K) ≥ 1 for each K ∈ K and i = 1, 2,
dout

Y ′

i
(K) ≥ 1 for each K ∈ K′ and i = 1, 2,

and Y1 ∩ Y ′
2 = ∅ and Y2 ∩ Y ′

1 = ∅.

This can be seen as follows. Select for each U ∈ K a pair eU from δin
Y (U).

Similarly, select for each U ∈ K′ a pair eU from δout
Y ′ (U). So the eU for

U ∈ K are disjoint, and the eU for U ∈ K′ are disjoint. Hence the eU for
U ∈ K ∪ K′ form a bipartite graph on Y ∪ Y ′ (in fact, a set of vertex-disjoint
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paths and even circuits). The two colour classes of this bipartite graph give
the partitions of Y and Y ′ as required.

Then by Lemma 53.2α, X can be split into two branchings X1 and X2

such that the set of roots of Xi is equal to the set of heads of Yi (i = 1, 2).
Similarly, X ′ can be split into two cobranchings X ′

1 and X ′
2 such that the set

of coroots of X ′
i is equal to the set of tails of Y ′

i (i = 1, 2). (A cobranching is
a set B of arcs whose reversal B−1 is a branching. A coroot of B is a root of
B−1.)

Define

(54.43) B̃i := Xi ∪ Yi and B̃′
i := X ′

i ∪ Y ′
i

for i = 1, 2. Since B̃1 ∩ B̃′
2 = ∅ and B̃2 ∩ B̃′

1 = ∅, replacing B1, B2, B
′
1, B

′
2 by

B̃1, B̃2, B̃
′
1, B̃

′
2 decreases sum (54.39), contradicting the minimality assump-

tion.

The capacitated case can be derived as a consequence:

Corollary 54.11a. Let D = (V, A) be a digraph, let V be partitioned into
sets R and S, and let c ∈ ZA

+ be a capacity function. Then the maximum
number of R − S bibranchings such that no arc a is in more than c(a) of
these bibranchings is equal to the minimum capacity of an R − S bicut.

Proof. This follows from Theorem 54.11 by replacing any arc a by c(a)
parallel arcs.

Equivalently, in TDI terms:

Corollary 54.11b. System (54.38) is totally dual integral.

Proof. This is a reformulation of Corollary 54.11a.

Another consequence is:

(54.44) For any digraph D = (V, A) and any partition of V into R and
S, the R−S bibranching polytope has the integer decomposition
property.

As for the complexity, the proof of Theorem 54.11 gives a polynomial-time
algorithm for finding a maximum number of disjoint R−S bibranchings. For
the capacitated case there is a semi-strongly polynomial-time algorithm (that
is, where rounding takes one arithmetic step): first find a fractional dual so-
lution, then round (Grötschel, Lovász, and Schrijver [1988]). A combinatorial
semi-strongly polynomial-time algorithm follows from the results in Section
57.5.
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54.7a. Proof using supermodular colourings

We show how to derive Theorem 54.11 on disjoint bibranchings from Edmonds’
disjoint branchings theorem (Theorem 53.1) and Theorem 49.14 on supermodular
colourings.

Let D = (V, A) be a digraph and let V be partitioned into R and S. Let k ∈ Z+.
Define H := δout(R), and define the following collections of subsets of H:

(54.45) C1 := {δin
H (U) | ∅ �= U ⊆ S} and C2 := {δout

H (U) | ∅ �= U ⊆ R}.

Then C1 and C2 are intersecting families on H. Define gj : Cj → Z for j = 1, 2 by:

(54.46) g1(B) := max{k − din
A[S](U) | ∅ �= U ⊆ S, B = δin

H (U)} for B ∈ C1,

g2(B) := max{k − dout
A[R](U) | ∅ �= U ⊆ R, B = δout

H (U)} for B ∈ C2.

Then g1 and g2 are intersecting supermodular. Moreover, if U attains the maximum
in (54.46), then

(54.47) g1(B) = k − din
A[S](U) ≤ din

A (U) − din
A[S](U) = din

H (U) = |B| if U ⊆ S
and
g2(B) = k−dout

A[R](U) ≤ dout
A (U)−dout

A[R](U) = dout
H (U) = |B| if U ⊆ R.

Since gj(B) ≤ k for j = 1, 2 and B ∈ Cj , by Theorem 49.14 we can partition H
into classes H1, . . . , Hk such that:

(54.48) (i) if ∅ �= U ⊆ S, then U is entered by at least k − din
A[S](U) of the

classes Hi, and
(ii) if ∅ �= U ⊆ R, then U is left by at least k − dout

A[R](U) of the classes
Hi.

By Edmonds’ disjoint branchings theorem, (i) implies that A[S] contains disjoint
branchings B1, . . . , Bk such that, for each i = 1, . . . , k, the root set of Bi is equal to
the set of heads of the arcs in Hi; that is, each vertex in S is entered by at least one
arc in Bi ∪ Hi. Similarly, A[R] contains disjoint cobranchings (= branchings if all
orientations are reversed) B′

1, . . . , B
′
k such that, for each i = 1, . . . , k, each vertex

in R is left by at least one arc in B′
i ∪Hi. Then the Bi ∪Hi ∪B′

i form disjoint R−S
bibranchings.

54.7b. Covering by bifurcations

Theorem 54.11 also implies the following characterization of the minimum number
of R − S bifurcations needed to cover all arcs (Keijsper [1998b]):

Corollary 54.11c. Let D = (V, A) be a digraph and let V be partitioned into sets
R and S, with no arc from S to R. Then A can be covered by k R − S bifurcations
if and only if

(54.49) (i) degout(v) ≤ k for each v ∈ R;
(ii) degin(v) ≤ k for each v ∈ S;
(iii) |A[U ]| ≤ k(|U | − 1) for each nonempty subset U of R or S.
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Proof. Necessity being easy, we show sufficiency. Extend D by two new vertices r
and s, for each v ∈ S by k − degin(v) parallel arcs from r to v, for each v ∈ R by
k − degout(v) parallel arcs from v to s, and by k parallel arcs from r to s. Let D′

be the graph arising in this way. So in D′, each v ∈ R has outdegree k, and each
v ∈ S has indegree k. Define R′ := R ∪ {r} and S′ := S ∪ {s}.

Then by Theorem 54.11, D′ has k disjoint R′ − S′ bibranchings. Indeed, any
nonempty subset U of R′ is left by k|U |− |A[U ]| ≥ k arcs of D′ if r �∈ U (since each
vertex in R has outdegree k in D′), and by at least k arcs of D′ if r ∈ U . Similarly,
any nonempty subset of S′ is entered by at least k arcs of D′.

Now each of these bibranchings leaves any v ∈ R exactly once (as v has out-
degree k in D′), and (similarly) enters any v ∈ S exactly once. Moreover, these
bibranchings cover A. Hence restricted to A we obtain a covering of A by k R − S
bifurcations.

An equivalent way of saying this is (using Corollary 54.10a):

(54.50) For any digraph D = (V, A) and any partition of V into R and S, the
R − S bifurcation polytope has the integer decomposition property.

As for the complexity, the reduction given in the proof of Corollary 54.11c
implies a polynomial-time algorithm to find a minimum number of R − S bifurca-
tions covering the arc set (by reduction to finding a maximum number of disjoint
bibranchings). The capacitated version can be solved in semi-strongly polynomial
time, with the help of the ellipsoid method, by first finding a fractional packing,
and next round (like in Section 51.4).

54.7c. Disjoint R − S biconnectors and R − S bibranchings

As in Keijsper and Schrijver [1998], one can derive Theorem 54.5 on disjoint R−S bi-
connectors (in an undirected graph) from Theorem 54.11 on disjoint R−S bibranch-
ings (in a directed graph), with the help of the Tutte-Nash-Williams disjoint trees
theorem (Corollary 51.1a).

Indeed, the condition in Theorem 54.5 gives, with the Tutte-Nash-Williams
disjoint trees theorem, that the graph G/R obtained from G by contracting R to
one vertex, has k edge-disjoint spanning trees.

By orienting the edges in these trees appropriately, we see that G/R has an
orientation such that any nonempty U ⊆ S is entered by at least k arcs, and such
that each edge incident with R is oriented away from R. Similarly, G/S has an
orientation such that any nonempty U ⊆ R is left by at least k arcs, and such that
each edge incident with S is oriented towards S.

Combining the two orientations, we obtain an orientation D = (V, A) of G such
that each R−S bicut has size at least k. Hence, by Theorem 54.11, D has k disjoint
R − S bibranchings, and hence, G has k disjoint R − S biconnectors.

54.7d. Covering by R − S biforests and by R − S bifurcations

Similarly, one can derive Theorem 54.6 on covering R − S biforests from Corollary
54.11c on covering R − S bifurcations, with the help of Nash-Williams’ covering
forests theorem (Corollary 51.1c). Indeed, the condition in Theorem 54.6 gives,
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with Nash-Williams’ covering forests theorem, that the edges of the graph G/R
obtained from G by contracting R to one vertex, can be covered by k forests. Hence
G/R has an orientation such that any vertex in S is entered by at most k arcs, and
such that R is only left by arcs. Similarly, G/S has an orientation such that any
vertex in R is left by at most k arcs, and such that S is only entered by arcs.

Combining the two orientations, we obtain an orientation D = (V, A) of G
satisfying the condition in Corollary 54.11c. Hence the arcs of D can be covered by
k R−S bifurcations, and hence the edges of G can be covered by k R−S biforests.



Chapter 55

Minimum directed cut covers
and packing directed cuts

A directed cut in a directed graph D = (V, A) is a set of arcs δin(U) for
some nonempty proper subset U of V with δout(U) = ∅. A directed cut
cover is a set of arcs intersecting each directed cut — equivalent, it is a set
of arcs such that their contraction makes the graph strongly connected. For
planar digraphs, a directed cut cover corresponds to a feedback arc set in
the dual digraph — a set of arcs whose removal makes the digraph acyclic.
Lucchesi and Younger showed that the minimum size of a directed cut cover
is equal to the maximum number of disjoint directed cuts. This min-max
relation is the basis for several other results on shortest directed cut covers,
which we survey in this chapter. In the next chapter we consider the, less
tractable, disjoint directed cut covers.

55.1. Minimum directed cut covers and packing directed
cuts

Let D = (V, A) be a digraph. A subset C of A is called a directed cut if there
exists a nonempty proper subset U of V with δin(U) = C and δout(U) = ∅.
A directed cut cover is a set of arcs intersecting each directed cut.

It is easy to show that for any subset B of A the following are equivalent:

(55.1) (i) B is a directed cut cover;
(ii) adding to D all arcs (u, v) with (v, u) ∈ B makes the digraph

strongly connected;
(iii) contracting all arcs in B makes the digraph strongly connected.

So a minimum directed cut cover gives a minimum number of arcs in D such
that making them two-way we obtain a strongly connected digraph.

Moreover, A. Frank (cf. Lovász [1979a] p. 271) showed:

Theorem 55.1. Let D = (V, A) be a weakly connected digraph without cut
arcs and let B ⊆ A. Then B is an inclusionwise minimal directed cut cover
if and only if B is an inclusionwise minimal set such that if we invert the
orientations of all arcs in B, the digraph becomes strongly connected.
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Proof. Define Ã := (A \ B) ∪ B−1, where B−1 := {a−1 | a ∈ B}, and where
a−1 is the arc arising from a by inverting its orientation.

Trivially, if (V, Ã) is strongly connected, then B is a directed cut cover.
Hence it suffices to show that if B is an inclusionwise minimal directed cut
cover, then D̃ = (V, Ã) is strongly connected.

Suppose that D̃ is not strongly connected. Let K be a strong component
of D̃ with δin

Ã
(K) = ∅. Let δin

A (K) = {a1, . . . , at}. So a1, . . . , at belong to
B. Hence, as B is an inclusionwise minimal directed cut cover, for each i =
1, . . . , t there exists a subset Ui of V with δin

A (Ui) = ∅ and δout
B (Ui) = {ai}.

Then for each i, Ui ∩ K = ∅. For suppose that Ui ∩ K �= ∅. As the head
of ai does not belong to Ui, Ui splits K. Hence some arc a ∈ Ã enters Ui,
with a spanned by K. As δin

A (Ui) = ∅, we know a ∈ B−1, and therefore
a−1 ∈ δout

B (Ui) while a �= ai, a contradiction.
Also, Ui ∩ Uj = ∅ for i �= j, as δin

A (Ui ∩ Uj) = ∅ and

(55.2) dout
B (Ui ∩ Uj) ≤ dout

B (Ui) + dout
B (Uj) − dout

B (Ui ∪ Uj) = 0,

since both ai and aj leave Ui ∪ Uj .
So U1, . . . , Ut are disjoint subsets of V \ K. As D has no cut arcs,

dout
A (Ui) ≥ 2 for each i. Hence, as no arc in A enters any Ui, and only one

arc (namely ai) leaves Ui to enter K, the set W := V \ (K ∪ U1 ∪ · · · ∪ Ut)
is nonempty. Also, δout

A (W ) = ∅, and so δin
B (W ) �= ∅, that is δout

B (K ∪ U1 ∪
· · · ∪ Ut) �= ∅. However, δout

B (K) = ∅ (since δin
Ã

(K) = ∅) and δout
B (Ui) = {ai},

implying δout
B (K ∪ Ui) = ∅ for each i, a contradiction.

55.2. The Lucchesi-Younger theorem

Lucchesi and Younger [1978] proved the following min-max relation for the
minimum size of a directed cut cover, which was conjectured by N. Robertson
and by Younger [1965,1969] (for planar graphs by Younger [1963a], inspired
by a question suggested by J.P. Runyan to Seshu and Reed [1961]).

The proof below is a variant of the proof of Lovász [1976c] (cf. Lovász
[1979b]).

Theorem 55.2 (Lucchesi-Younger theorem). Let D = (V, A) be a weakly
connected digraph. Then the minimum size of a directed cut cover is equal to
the maximum number of disjoint directed cuts.

Proof. For any digraph D, let ν(D) be the maximum number of disjoint
directed cuts in D and let τ(D) be the minimum size of a directed cut cover.
Choose a counterexample D = (V, A) with a minimum number of arcs.

For any B ⊆ A, let DB be the graph obtained from D by replacing each arc
(u, v) in B by a directed u−v path of length 2 (the intermediate vertex being
new). Choose an inclusionwise maximal subset B of A with ν(DB) = ν(D).
Then B �= A, as ν(DA) ≥ 2ν(D) > ν(D).
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Choose b ∈ A \ B. So ν(DB∪{b}) > ν(D). Moreover, as D is a smallest
counterexample, the graph D′ obtained from D by contracting b satisfies
ν(D′) = τ(D′) ≥ τ(D) − 1 ≥ ν(D). Combining a maximum-size packing of
directed cuts in D′ and one in DB∪{b}, we obtain a family F of nonempty
proper subsets of the vertex set V ′ of DB with the property that

(55.3) |F| = 2ν(D) + 1, and the δin(U) for U ∈ F are directed cuts in
DB covering any arc of DB at most twice.

Now we choose F satisfying (55.3) such that

(55.4)
∑

U∈F

|U ||V ′ \ U |

is minimized. Then F is a cross-free family. Indeed, if X, Y ∈ F with X �⊆
Y �⊆ X, X ∩ Y �= ∅ and X ∪ Y �= V ′, we can replace X and Y by X ∩ Y
and X ∪Y , while not violating (55.3) but decreasing sum (55.4) (by Theorem
2.1), contradicting its minimality.

So F is cross-free. For each X ∈ F , define

(55.5) β(X) := {U ∈ F | U ⊆ X or U ∩ X = ∅}.

Let F2 be the collection of sets occurring twice in F and let F1 be the
collection of sets occurring precisely once in F . Then

(55.6) if X and Y are distinct sets in F1 with |β(X)| ≡ |β(Y )| (mod 2),
then no arc of D enters both X and Y .

Suppose that to the contrary arc a enters both X and Y . As F is cross-free,
we can assume that X ⊂ Y .

If |β(Y )| ≤ |β(X)|, then (as Y ∈ β(Y ) \ β(X)) there exists a Z in β(X) \
β(Y ). So Z �⊆ Y and Z ∩Y �= ∅. Hence Z �⊆ X, and so Z ∩X = ∅. So Y �⊆ Z,
and hence (as F is cross-free) Z ∪ Y = V ′. So a leaves Z, a contradiction
(since no arc leaves any set in F).

If |β(Y )| ≥ |β(X)|+2, then there exists a Z �= Y with Z ∈ β(Y )\β(X). So
Z �⊆ X and Z ∩X �= ∅. Hence Z ∩Y �= ∅, and so Z ⊆ Y . So Z ∪X �= V ′, and
hence (as F is cross-free) X ⊂ Z. So a enters X, Y , and Z, a contradiction.
This proves (55.6).

It follows that for some j ∈ {0, 1}, the collection

(55.7) F2 ∪ {X ∈ F1

∣∣ |β(X)| ≡ j (mod 2)}

has size at least ν(D) + 1. By (55.6), it gives ν(D) + 1 disjoint directed cuts
in DB , contradicting our assumption.

Equivalent to the Lucchesi-Younger theorem is the following weighted
version of it:

Corollary 55.2a. Let D = (V, A) be a digraph and let l : A → Z+ be a
length function. Then the minimum length of a directed cut cover is equal to
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the maximum number of directed cuts such that each arc a is in at most l(a)
of them.

Proof. Replace any arc a by a path of length l(a) (contracting a if l(a) =
0). Then the Lucchesi-Younger theorem applied to the new graph gives the
present corollary.

This can be formulated in terms of the total dual integrality of the fol-
lowing system:

(55.8) (i) 0 ≤ xa ≤ 1 for each a ∈ A,
(ii) x(C) ≥ 1 for each directed cut C.

Define the directed cut cover polytope of D as the convex hull of the incidence
vectors of directed cut covers. Then:

Corollary 55.2b. System (55.8) is TDI and determines the directed cut
cover polytope of D.

Proof. The total dual integrality is a reformulation of Corollary 55.2a. The
total dual integrality of (55.8) implies that it determines an integer polytope.
Hence the second part of the corollary follows.

55.3. Directed cut k-covers

In fact, system (55.8) is box-TDI, and more generally, the following system
is box-TDI, as was shown by Edmonds and Giles [1977]:

(55.9) x(C) ≥ 1 for each directed cut C.

Edmonds and Giles’ proof gives the following alternative way of proving the
Lucchesi-Younger theorem.

Theorem 55.3. System (55.9) is box-TDI.

Proof. Let U be the collection of nonempty proper subsets U of V with
δout(U) = ∅. So {δin(U) | U ∈ U} is the collection of all directed cuts.

Choose w ∈ RA, and let y achieve the maximum in the dual of minimizing
wTx over (55.9), that is, in:

(55.10) max{
∑

U∈U

yU | y ∈ RU
+,

∑

U∈U

yUχδin(U) = w},

such that

(55.11)
∑

U∈U

yU |U ||V \ U |
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is as small as possible. Let F := {U ∈ U | yU > 0}. Then F is cross-free.
Suppose to the contrary that T, U ∈ F with T �⊆ U �⊆ T , T ∩ U �= ∅,
T ∪U �= V . Let α := min{yT , yU} > 0. Then decreasing yT and yU by α, and
increasing yT∩U and yT∪U by α, maintains feasibility of y, while its value
is not changed; so it remains an optimum solution. However, sum (55.11)
decreases (by Theorem 2.1). This contradicts the minimality of (55.11).

So F is cross-free, and hence the constraints corresponding to F form
a totally unimodular matrix (Corollary 13.21a). Hence, by Theorem 5.35,
system (55.9) is box-TDI.

This implies the box-total dual integrality of (for k ≥ 0):

(55.12) x(C) ≥ k for each directed cut C.

Corollary 55.3a. For each k ∈ R+, system (55.12) is box-TDI.

Proof. Directly from Theorem 55.3, since if a system Ax ≤ b is box-TDI,
then also Ax ≤ k · b is box-TDI.

This has the following consequences. Call a subset C of the arc set A of
a digraph D = (V, A) a directed cut k-cover if C intersects each directed cut
in at least k arcs. Consider the system:

(55.13) 0 ≤ xa ≤ 1 for a ∈ A,
x(C) ≥ k for each directed cut C.

Then:

Corollary 55.3b. System (55.13) is TDI and determines the convex hull of
the incidence vectors of the directed cut k-covers.

Proof. Directly from Corollary 55.3a.

From this, a min-max relation for the minimum size of a directed cut
k-cover can be derived:

Corollary 55.3c. Let D = (V, A) be a digraph and let k ∈ Z+, such that
each directed cut has size at least k. Then the minimum size of a directed cut
k-cover is equal to the maximum value of

(55.14)
∣∣⋃C

∣∣ + k|C| −
∑

C∈C

|C|

taken over all collections C of directed cuts.

Proof. By Corollary 55.3b, the minimum size of a directed cut k-cover is
equal to the minimum value of 1Tx over (55.13). Hence, as (55.12) is TDI,
the minimum size of a directed cut k-cover is equal to the maximum value of
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(55.15) k
∑

C

yC − z(A),

where yC ∈ Z+ for each directed cut C and where z ∈ ZA
+ such that

(55.16)
∑

C

yCχC − z ≤ 1.

Now we can assume that yC ∈ {0, 1} for each C, since if yC ≥ 2, then za ≥ 1
for each a ∈ C (by (55.16)). Hence decreasing yC by 1 and decreasing za by 1
for each a ∈ C, maintains (55.16) while (55.15) is not decreased (as |C| ≥ k
by assumption).

Let C := {C | yC = 1}. As z(A) is minimized, we have

(55.17) z =
∑

C∈C

χC − χ
⋃

C ,

and hence that z(A) is equal to
∑

C∈C |C| −
∣∣ ⋃

C
∣∣. This proves the corollary.

55.4. Feedback arc sets

The Lucchesi-Younger theorem implies a min-max relation for the minimum
size of a feedback arc set in a planar digraph. A feedback arc set in a digraph
D = (V, A) is a set of arcs intersecting every directed circuit.

In fact, if D has no loops, then a set A′ is an inclusionwise minimal
feedback arc set if and only if A′ is an inclusionwise minimal set of arcs such
that inverting all arcs in A′ makes the digraph acyclic (Grinberg and Dambit
[1966], Gallai [1968a]).

E.L. Lawler and R.M. Karp (see Karp [1972b]) showed that finding a
minimum-size feedback arc set in a digraph, is NP-complete. For planar di-
graphs one has however:

Theorem 55.4. Let D = (V, A) be a planar digraph. Then the minimum size
of a feedback arc set is equal to the maximum number of arc-disjoint directed
circuits.

Proof. Consider the dual digraph D∗ of D. Then a set of arcs of D forms a
directed circuit if and only if the set of dual arcs forms a directed cut in D∗.
Hence the corollary follows immediately from the Lucchesi-Younger theorem
(Theorem 55.2).

Notes. Figure 55.1 (from Younger [1965]) shows that we cannot drop the planarity
condition. This is a counterexample with a smallest number of vertices, since Bara-
hona, Fonlupt, and Mahjoub [1994] showed that in a digraph with no K3,3 minor,
the minimum size of a feedback arc set is equal to the maximum number of disjoint
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Figure 55.1

The minimum size of a feedback arc set equals 2, while there are no
two disjoint directed cuts.

directed circuits. The proof is based on a theorem of Wagner [1937b] on decompos-
ing graphs without K3,3 minor into planar graphs and copies of K5. (Nutov and
Penn [1995] gave a similar proof. Related work is done is reported in Nutov and
Penn [2000].)

Figure 55.2

An Eulerian digraph where the minimum size of a feedback arc set
equals 5, while there are no 5 disjoint directed cuts.

Moreover, Borobia, Nutov, and Penn [1996] showed that in an Eulerian digraph
with at most 6 vertices, the minimum size of a feedback arc set is equal to the
maximum value of a fractional packing of directed circuits. This is not the case if
there are more than 6 vertices, as is shown by the graph in Figure 55.2.

Guenin and Thomas [2001] characterized the digraphs D that have the property
that for every subhypergraph D′ of D, the maximum number of disjoint circuits in
D′ is equal to the minimum size of a feedback arc set in D′.

More on the polytope determined by the feedback arc sets, equivalently on
the acyclic subgraph polytope (the convex hull of the incidence vectors of arc sets
containing no directed circuit) is presented in Young [1978], Grötschel, Jünger, and
Reinelt [1984,1985a,1985b], Reinelt [1993], Leung and Lee [1994], Goemans and
Hall [1996], and Bolotashvili, Kovalev, and Girlich [1999]. (Bowman [1972] wrongly
claimed to give a system determining the acyclic subgraph polytope.)
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The problem of finding a minimum-weight feedback arc set is equivalent to the
linear ordering problem: given a matrix M , find a permutation matrix P such that
the sum of the elements below the main diagonal of P TMP is minimized. More on
this can be found in Younger [1963b], Jünger [1985], Reinelt [1985], Berger and Shor
[1990,1997], Arora, Frieze, and Kaplan [1996,2002], Fernandez de la Vega [1996],
Frieze and Kannan [1996,1999], and Newman and Vempala [2001].

For feedback arc sets in linklessly embeddable graphs, see Section 55.6b. For
feedback vertex sets, see Section 55.6c.

55.5. Complexity

It was shown by Lucchesi [1976], Karzanov [1979c,1981], and Frank [1981b]
that a minimum-size directed cut cover and a maximum packing of directed
cuts can be found in polynomial time. Lucchesi [1976] also gave a weakly
polynomial-time algorithm for the weighted versions of these problems, and
Frank [1981b] gave a strongly polynomial-time algorithm for these problems.

Frank and Tardos [1984b] showed that finding a minimum-length directed
cut k-cover in fact can be reduced to a weighted matroid intersection problem.
Thus all ingredients for a strongly polynomial-time algorithm are ready at
hand.

We describe the reduction. Let D = (V, A) be a digraph, let l : A → Q+

be a length function, and let k ∈ Z+. We want to find a directed cut k-cover
of minimum length.

Let D−1 = (V, A−1) be the reverse digraph of D, where A−1 := {a−1 |
a ∈ A} and a−1 = (v, u) if a = (u, v). We will define matroids M1 and M2

on A ∪ A−1.
M1 is easy: it is the partition matroid induced by the sets {a, a−1} for

a ∈ A. To define M2, let U be the collection of nonempty proper subsets U
of V with δin

A (U) = ∅. Define

(55.18) P := {x ∈ ZV
+ | x(V ) = |A| and x(U) ≥ |A[U ]| + k for each

U ∈ U}.

Then:

(55.19) for x, y ∈ P and u ∈ V with xu < yu, there exists a v ∈ V with
xv > yv and x + χu − χv ∈ P .

Indeed, let K be the collection of inclusionwise maximal subsets U of V \ {u}
with U ∈ U and x(U) = |A[U ]| + k. As sets with this property are closed
under unions of intersecting sets, K consists of disjoint sets, and no two of
them are connected by an arc. Hence for W := V \

⋃
K, we have

(55.20) y(W ) = y(V ) −
∑

U∈K

y(U) ≤ |A| −
∑

U∈K

(|A[U ]| + k) = x(W ).
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As xu < yu and u ∈ W , we know that xv > yv for some v ∈ W . Also,
x + χu − χv ∈ P , since there is no subset U of V \ {u} with δin(U) = ∅,
x(U) = |A[U ]| + k, and v ∈ U .

This shows (55.19), which implies that

(55.21) B := {B ⊆ A ∪ A−1 | degin
B ∈ P}

forms the collection of bases of a matroid M2 on A ∪ A−1, provided that B
is nonempty; equivalently, provided that each directed cut in D has size at
least k. (That M2 is a matroid can also be derived from Corollary 49.7a.)

To test independence in M2, it suffices to have one base of M2 (which we
have: A−1), and to have a test of being a base. Equivalently, we should be
able to test membership of P . Let x ∈ ZV

+ with x(V ) = |A|. By Theorem
51.3, we can find a nonempty proper subset U of V minimizing

(55.22) x(U) − |A[U ]| + (k + |A|)din(U)

= x(U) −
∑

v∈U

degout(v) + dout(U) + (k + |A|)din(U),

in strongly polynomial time. If this minimum is at least k, then x belongs
to P . If this minimum is less than k, then din(U) = 0, and hence x(U) <
|A[U ]| + k, implying that x does not belong to P .

Now a subset C of A is a directed cut k-cover if and only if B := (A \
C) ∪ C−1 is a common base of M1 and M2. Hence:

Theorem 55.5. Given a digraph D = (V, A), a length function l : A → Q+,
and k ∈ Z+, a minimum-length directed cut k-cover can be found in strongly
polynomial time.

Proof. Directly from the above, with Theorem 41.8. We apply the weighted
matroid intersection algorithm to find a maximum-length common base B in
the matroids M1 and M2 on A ∪ A−1, defining l(a−1) := 0 for a ∈ A. Then
A \ B is a minimum-length directed cut cover.

55.5a. Finding a dual solution

Also a maximum packing of directed cuts can be found in polynomial time. Let
B be the maximum-length base found and let C be the directed cut k-cover with
B = (A \ C) ∪ C−1.

The weighted matroid intersection algorithm also yields a dual solution. Indeed,
if l is integer-valued, it gives length functions l1, l2 : A∪A−1 → Z such that l = l1+l2
and such that B is an li-maximal base of Mi, for i = 1, 2 (cf. Section 41.3a).

Define

(55.23) F := {U ⊆ V | din
A (U) = 0, dout

C (U) = k},

and define a pre-order � on V by:

(55.24) u � v ⇐⇒ each U ∈ F containing u also contains v,
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for u, v ∈ V . It can be checked in polynomial time whether u � v holds, since it
is equivalent to: degin

B −χu + χv ∈ P . Indeed, degin
B −χu + χv belongs to P if and

only if v ∈ U for each U ∈ U satisfying u ∈ U and
∑

s∈U degin
B (s) = |A[U ]| + k.

Now
∑

s∈U degin
B (s) = |A[U ]| + dout

C (U). So it is equivalent to: u � v.
Next define for each u ∈ V :

(55.25) p(u) := max{l2(a) | ∃v � u : a−1 ∈ δout
B (v)}.

Let h0 < · · · < ht be the elements of the set {p(u) | u ∈ V }. For j = 1, . . . , t, define
Vj := {u | p(u) ≥ hj}. Let K be the collection of all weak components of D − Vj ,
over all j = 1, . . . , t, and for each K ∈ K, let

(55.26) yK :=
∑

(hj − hj−1 | j = 1, . . . , t; K is a weak component of D − Vj).

So

(55.27) P = h0χ
V +

∑

K∈K

yKχK .

Then:

Theorem 55.6. Each K ∈ K belongs to F . Moreover, for each a = (u, v) ∈ A:

(55.28) (i)
∑

(yK | K ∈ K, a ∈ δout(K)) ≤ l(a) if a ∈ A \ C,

(ii)
∑

(yK | K ∈ K, a ∈ δout(K)) ≥ l(a) if a ∈ C.

Proof. Consider any j = 1, . . . , t. By definition of p(u), we know that Vj is a lower
ideal with respect to �. That is, if v ∈ Vj and u � v, then u ∈ Vj . (Indeed, if
v ∈ Vj , then p(v) ≥ hj , hence l2(a) ≥ hj for some a with a−1 ∈ δout

B (w) for some
w � v. Since w � u we have p(u) ≥ l2(a) ≥ hj .)

Hence, for each v ∈ Vj and u �∈ Vj we have u �� v. Therefore, there is a U ∈ F
with u ∈ U and v �∈ U . This implies, as F is a crossing family, that there is a
partition of V \ Vj into sets in F . As din

A (U) = 0 and dout
C (U) = k, it follows that

this partition is equal to the collection of weak components of the digraph D − Vj .
So each weak component K of D − Vj satisfies din

A (K) = 0 and dout
C (K) = k; that

is, K belongs to F .
Consider any arc a = (v, u) ∈ B. As B is an l1-maximal base of M1, we

have l1(a
−1) ≤ l1(a). Let p(u) = l2(b) for some b−1 ∈ δout

B (w) and some w � u.
Since u � w, we know that degin

B −χu + χw ∈ P . So (B ∪ {b}) \ {a} is again a
base of M2. Hence we have (as B is an l2-maximal base of M2) l2(b) ≤ l2(a). So
l2(a) ≥ l2(b) ≥ p(u). Also p(v) ≥ l2(a

−1), by definition of p(v). Hence

(55.29) l(a) − l(a−1) = l1(a) + l2(a) − l1(a
−1) − l2(a

−1) ≥ l2(a) − l2(a
−1)

≥ p(u) − p(v).

If a ∈ A \ C, we have l(a−1) = 0, and obtain (55.28)(i), since a enters no K ∈ K
and so p(u) ≥ p(v). Hence

(55.30) l(a) ≥ p(u) − p(v) =
∑

(yK | K ∈ K, a ∈ δout(K)).

If a ∈ C−1, we have l(a) = 0 and obtain (55.28)(ii), since a−1 enters no K ∈ K,
and so p(u) ≤ p(v). Hence

(55.31) l(a−1) ≤ p(v) − p(u) =
∑

(yK | K ∈ K, a−1 ∈ δout(K)).
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For each a ∈ C, let s(a) be the difference of the two terms in (55.28)(ii), and
for a ∈ A \ C let s(a) := 0. Then

(55.32)
∑

K∈K

yKχδout
A (K) − s ≤ l

and

(55.33) k
∑

K∈K

yK − s(A) =
∑

K∈K

yK |δout
A (K) ∩ C| − s(A)

=
∑

a∈C

∑
(yK | K ∈ K, a ∈ δout(K)) − s(A) = l(C).

Thus we have an integer optimum dual solution to maximizing lTx over the system
0 ≤ x ≤ 1, x(Y ) ≥ k (Y directed cut). If k = 1, we can do with s = 0, and obtain
an integer optimum packing of directed cuts subject to l.

So we have:

Theorem 55.7. Given a digraph D = (V, A) and a length function l : A → Z+, an
optimum packing of directed cuts subject to l can be found in strongly polynomial
time.

Proof. See above.

55.6. Further results and notes

55.6a. Complexity survey for minimum-size directed cut cover

O(n5 log n) Lucchesi [1976]

O(n3m) Frank [1981b]

O(n2M(n)) Frank [1981b]

∗ O(n2m) Gabow [1993b,1995c]

∗ O(nM(n)) Gabow [1993b,1995c]

As before, ∗ indicates an asymptotically best bound in the table. M(n) denotes the
time to multiply n×n matrices. Also Karzanov [1979c,1981] gave a polynomial-time
algorithm to find a minimum-size directed cut cover. Lucchesi [1976] gave also a
polynomial-time algorithm to find a minimum-weight directed cut cover, and Frank
[1981b] and Gabow [1993a,1993b,1995c] gave strongly polynomial-time algorithms
for this.

55.6b. Feedback arc sets in linklessly embeddable digraphs

An undirected graph is called linklessly embeddable if it can be embedded in R3

such that any two vertex-disjoint circuits C1 and C2 are unlinked (that is, there
is a topological sphere S such that C1 is in the interior of S and C2 is in the
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exterior of S). A digraph is called linklessly embeddable if its underlying undirected
graph is linklessly embeddable. (Linklessly embeddable graphs are characterized by
Robertson, Seymour, and Thomas [1995] in terms of ‘forbidden minors’.)

Seymour [1996] showed that in an Eulerian linklessly embeddable directed
graph, the minimum-size of a feedback arc set is equal to the maximum number of
arc-disjoint directed circuits. We sketch the proof.

The basic combinatorial-topological part of the proof consists of showing:

Theorem 55.8. Let D be an Eulerian linklessly embeddable digraph. Suppose that
there exist 2k+1 directed circuits such that any arc is in at most two of them. Then
there exist k + 1 arc-disjoint directed circuits.

Sketch of proof. By a theorem of Robertson, Seymour, and Thomas [1995], D
can be embedded in R3 such that for each undirected circuit C in D there exists
an open disk B in R3 with boundary C and disjoint from D. (We identify D with
its embedding.)

Let C1, . . . , Ct be a maximum number of directed circuits in D such that any
arc of D is in at most two of them. So t ≥ 2k + 1. Moreover, each arc of D is
contained in exactly two of the Ci. Otherwise, the arcs not covered twice contain a
directed circuit (as D is Eulerian). This contradicts the maximality of t.

For each i = 1, . . . , t, let Bi by an open disk with boundary Ci and disjoint from
D. We can assume that the Bi are pairwise disjoint, as can be seen as follows. First,
we can assume that the Bi are tame and in general position. In particular, no point
is in four of the Bi. Any point p in three of the Bi is the intersection point of three
of the Bi, pairwise crossing at p. Any point p in two of the Bi is the intersection
point of two of the Bi, crossing at p. Moreover, any two distinct Bi and Bj intersect
each other in a finite number of closed and open curves, each representing crossings
of Bi and Bj . Let c(Bi, Bj) denote the number of such components.

We choose the Ci and Bi such that the sum of the c(Bi, Bj) for i �= j is
minimized.

Now it is elementary combinatorial topology to prove that there exist for any
distinct i, j, with Bi ∩ Bj �= ∅, directed circuits C′

i and C′
j in D with

(55.34) χAC′

i + χAC′

j = χACi + χACj

and open disks B′
i and B′

j with boundaries C′
i and C′

j respectively, such that B′
i ∩

B′
j = ∅ and c(B′

i, Bh) + c(B′
j , Bh) ≤ c(Bi, Bh) + c(Bj , Bh) for all h �= i, j.

Hence, by the minimality of the sum of the c(Bi, Bj), it follows that the Bi

are disjoint. So D, together with the Bi forms the union of a number of compact
surfaces, certain points of which are identified. As these surfaces are orientable
(since they are embedded in R3), the Bi fall apart into two classes: those with
boundary oriented clockwise, and those with boundary oriented counter-clockwise.
Each of these classes have arc-disjoint boundaries, and at least one of these classes
has size at least k + 1. This proves the theorem.

Seymour [1996] next continues by deriving (for linklessly embeddable graphs)
the total dual integrality of the following system in x ∈ RA:

(55.35) x(C) ≥ 1 for each directed circuit C in D.
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Note that nonnegativity of x is not required here.

Corollary 55.8a. For any linklessly embeddable digraph D = (V, A), system (55.35)
is totally dual integral.

Proof. Let w ∈ ZA be such that the minimum of wTx over (55.35) is finite. Let
C be the collection of directed circuits in D. By Theorem 5.29, it suffices to show
that the maximum value µ of

∑
C∈C y(C) taken over y : C → 1

2
Z+ satisfying

(55.36)
∑

C∈C

yCχAC ≤ w

is attained by an integer-valued y.
Now (as the minimum is finite) w belongs to the cone generated by the incidence

vectors of directed circuits, and hence w is a nonnegative circulation. Replace any
arc a = (u, v) by w(a) parallel arcs from u to v, giving the Eulerian digraph D′ =
(V, A′). Then µ is equal to half of the maximum number µ′ of directed circuits in
D′ such that any arc of D′ is in at most two of these circuits. By Theorem 55.8, D′

contains at least ⌈ 1
2
µ′⌉ arc-disjoint directed circuits. Since ⌈ 1

2
µ′⌉ ≥ µ, this gives in

D an integer vector y : C → Z+ as required.

This finally gives:

Theorem 55.9. The minimum size of a feedback arc set in an Eulerian linklessly
embeddable digraph D = (V, A) is equal to the maximum number of arc-disjoint
directed circuits.

Proof. Consider the LP-duality relation for maximizing x(U) over (55.35):

(55.37) min{x(A) | x(C) ≥ 1 for each directed circuit C}
= max{

∑

C

yC | yC ≥ 0,
∑

C

yCχAC = 1},

where C ranges over all directed circuits. By Corollary 55.8a and the theory of total
dual integrality (Theorem 5.22), both optima have an integer optimum solution.
So the maximum is equal to the maximum number of arc-disjoint directed circuits.
Let x attain the minimum. By Theorem 8.2, there exists a (‘potential’) p : V → Z

with xa ≥ p(v) − p(u) for each arc a = (u, v) of D. Define x′(a) := xa − p(v) + p(u)
for each arc a = (u, v). Then x′ ∈ ZA

+, x′(C) = x(C) ≥ 1 for each directed circuit
C, and x′(A) = x(A) (since D is Eulerian). Hence the set of arcs a with x′(a) ≥ 1
forms a feedback arc set of size at most x(A), proving the theorem.

System (55.35) can be tested in polynomial time, for any digraph (with the Bell-
man-Ford method). It implies that in an Eulerian linklessly embeddable digraph, a
minimum-size feedback arc set can be found in polynomial time (with the ellipsoid
method).

55.6c. Feedback vertex sets

A feedback vertex set in a digraph D = (V, A) is a subset U of V with D − U
acyclic — that is, U intersects every directed circuit. Reed, Robertson, Seymour,
and Thomas [1996] proved:
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(55.38) for each integer k ≥ 0 there exists an integer nk ≥ 0 such that each
digraph D = (V, A) having no k vertex-disjoint directed circuits, has
a feedback vertex set of size at most nk.

(For k = 2 this answers a question of Gallai [1968b] and Younger [1973].)
Reed, Robertson, Seymour, and Thomas also showed that for each fixed integer

k, there is a polynomial-time algorithm to find k vertex-disjoint directed circuits in
a digraph if they exist.

Earlier, progress on (55.38) was made by McCuaig [1993], who proved it for
k = 2, where n2 = 3, by Seymour [1995b], who proved a fractional version of it (if
there is no fractional packing of k directed circuits, then there is a feedback vertex
set of size at most nk), and by Reed and Shepherd [1996] for planar graphs.

According to Reed, Robertson, Seymour, and Thomas [1996], N. Alon proved
that nk is at least Ck log k for some constant C.

Cai, Deng, and Zang [1999,2002] characterized for which orientations D = (V, A)
of a complete bipartite graph the system

(55.39) xv ≥ 0 for v ∈ V ,
x(V C) ≥ 1 for each directed circuit C,

is totally dual integral. (Related results can be found in Cai, Deng, and Zang [1998].)
Guenin [2001b] gave a characterization of digraphs D = (V, A) for which the

linear system in RV ∪A for feedback arc and vertex sets:

(55.40) xv ≥ 0 for v ∈ V ,
xa ≥ 0 for a ∈ A,
x(V C) + x(AC) ≥ 1 for each directed circuit C,

is totally dual integral.
The undirected analogue of (55.38) was proved for k = 2 by Bollobás [1963],

and for general k by Erdős and Pósa [1965]. Ding and Zang [1999] characterized
the undirected graphs G = (V, E) for which the system

(55.41) xv ≥ 0 for v ∈ V ,
x(V C) ≥ 1 for each circuit C,

is totally dual integral. Their characterization implies that (55.41) is totally dual
integral if and only if it defines an integer polyhedron.

A polyhedral approach to the feedback vertex set problem was investigated by
Funke and Reinelt [1996]. Approximation algorithms for feedback problems were
given by Monien and Schulz [1982], Eades, Lin, and Smyth [1993], Bar-Yehuda,
Geiger, Naor, and Roth [1994,1998], Becker and Geiger [1994,1996], Bafna, Berman,
and Fujito [1995,1999], Even, Naor, Schieber, and Sudan [1995,1998], Even, Naor,
and Zosin [1996,2000], Goemans and Williamson [1996,1998], Chudak, Goemans,
Hochbaum, and Williamson [1998], Bar-Yehuda [2000], and Cai, Deng, and Zang
[2001]. More on the feedback vertex set problem was presented by Smith and Wal-
ford [1975], Kevorkian [1980], Rosen [1982], Speckenmeyer [1988], Stamm [1991],
Hackbusch [1997], and Pardalos, Qian, and Resende [1999].

55.6d. The bipartite case

McWhirter and Younger [1971] (cf. Younger [1970], Vidyasankar [1978b]) proved
the Lucchesi-Younger theorem in case the arcs of D form a directed cut; that is, in



960 Chapter 55. Minimum directed cut covers and packing directed cuts

case the underlying undirected graph is bipartite, while all arcs are oriented from
one colour class to the other. It amounts to the following:

Theorem 55.10. Let G = (V, E) be a connected bipartite graph and let F be the
collection of subsets E[U ] of E for which U is a vertex cover with E[U ] nonempty.
Then the minimum size of a set of edges intersecting each set in F is equal to the
maximum number of disjoint sets in F .

Proof. Let U and W be the colour classes of G and let digraph D be obtained from
G by orienting each edge from U to W . Then a set of edges belongs to F if and only
if it is a directed cut of D. Hence the theorem follows from the Lucchesi-Younger
theorem.

D.H. Younger (cf. Frank [1993b]) showed that the maximum number of disjoint
nonempty cuts in a bipartite graph G is equal to the maximum number of disjoint
directed cuts in the directed graph obtained from G by orienting all edges from one
colour class to the other (cf. Corollary 29.13b). (Vidyasankar [1978b] showed that
a set of edges J intersecting each set in F attains the minimum in Theorem 55.10
if and only if J intersects any circuit C of G in at most 1

2
|EC| edges; that is, if and

only if J is a join — cf. Section 29.11d.)
As noted by Younger [1979], the Lucchesi-Younger theorem, in the form of

Corollary 55.2b, implies the Kőnig-Rado edge cover theorem (Theorem 19.4): the
minimum size of an edge cover in a bipartite graph G = (V, E) is equal to the
maximum size of a stable set in G. To obtain this as a consequence, let U and W
be the colour classes of G and let D = (V, A) be the directed graph with vertex
set V and arcs all pairs (u, v) with u ∈ U and v ∈ W . Define a weight function
w : A → Z by w(u, v) := 1 if uv ∈ E, and ∞ otherwise. Then the minimum weight
of a directed cut cover in D is equal to the minimum size of an edge cover in G. With
this correspondence, Corollary 55.2b gives the Kőnig-Rado edge cover theorem.

55.6e. Further notes

Frank, Tardos, and Sebő [1984] showed that the Lucchesi-Younger theorem implies
that in a digraph D = (V, A), the minimum size of a directed cut cover is equal to
the maximum value of

(55.42)

k∑

i=1

number of weak components of D − Vi,

where ∅ �= V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ V are such that no arc leaves any Vi and enters
at most one of the Vi.

Frank and Tardos [1989] showed that a weakly connected digraph D = (V, A)
has a branching that intersects all directed cuts if and only if for each nonempty
U ⊆ V , the number of weak components K of D − U with din(K) = 0, is at most
|U |.

Younger [1965] proved the Lucchesi-Younger theorem for digraphs having an
arborescence, and, more generally, Younger [1979] proved it for source-sink con-
nected digraphs (that is, each strong component not left by any arc is reachable by
a directed path from each strong component not entered by any arc).
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Tuza [1994] showed that for any planar directed graph D = (V, A) and any
collection T of directed triangles in D, the minimum number of arcs intersecting
each triangle in T is equal to the maximum number of arc-disjoint triangles in T .



Chapter 56

Minimum directed cuts and
packing directed cut covers

A minimum-capacity directed cut can be found in strongly polynomial
time, by applying the minimum-capacity s − t cut algorithm, for all s, t, in
some modified digraph.
As for packing directed cut covers it is unknown if it is polynomial-time
tractable. Also it is unknown if the maximum number of disjoint directed
cut covers is equal to the minimum size of a directed cut — this is Woodall’s
conjecture. But the capacitated version of it does not hold.
In this chapter we consider a few cases where Woodall’s conjecture has
been proved, in particular for the source-sink connected digraphs.

56.1. Minimum directed cuts and packing directed cut
covers

The Lucchesi-Younger theorem states that in a digraph D = (V, A), the
minimum size of a directed cut cover is equal to the maximum number of
disjoint directed cuts. Woodall [1978a,1978b] ventured the conjecture that
this min-max relation would be maintained after interchanging the terms
directed cut and directed cut cover:

Conjecture (Woodall’s conjecture). In a digraph, the minimum size of a
directed cut is equal to the maximum number of disjoint directed cut covers.

This conjecture is open.
A capacitated version of Woodall’s conjecture (conjectured by Edmonds

and Giles [1977] and D.H. Younger) is however not true. Note that the Lucch-
esi-Younger theorem is equivalent to its weighted version, by replacing arcs by
directed paths of length l(a) if l(a) ≥ 1, and contracting an arc a if l(a) = 0.
We could attempt this approach to obtain an equivalent capacitated version
from Woodall’s conjecture, by replacing any arc a by c(a) parallel arcs, but
there is a problem here: if c(a) = 0, we delete a and can create new directed
cuts.

A capacitated version with capacities 0 and 1 amounts to the statement
that each directed cut k-cover can be partitioned into k directed cut covers.
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Figure 56.1 gives a counterexample to this for the case k = 2 (Schrijver
[1980a]). Note that the counterexample is planar, and that therefore the
‘planar dual’ assertion (on packing feedback arc sets) also does not hold.

x y

z

Figure 56.1

A directed cut 2-cover that cannot be split into two directed

cut covers. Let C be the set of heavy arcs. Then C is a directed cut
2-cover, since for each arc c ∈ C, the set C \ {c} is a directed cut cover,
which is easy to check since up to symmetry there are only two types
of arcs in C.
However, C cannot be split into directed cut covers C1 and C2. To see
this, observe that each of these Ci must contain exactly one of the two
arcs in C meeting any source or sink. Moreover, each Ci must contain
at least one of the arcs labeled x, y, z, since the set of arcs from the
inner hexagon to the outer hexagon forms a directed cut. Hence we
may assume without loss of generality that C1 contains the arcs x and
y, but not z. But then C1 does not intersect the directed cut of those
arcs going from the right half of the figure to the left half.

To interpret this polyhedrally, consider the system:

(56.1) (i) 0 ≤ xa ≤ 1 for each a ∈ A,
(ii) x(B) ≥ 1 for each directed cut cover B.

With Corollary 55.2b, the theory of blocking polyhedra gives that system
(56.1) determines the convex hull of the incidence vectors of arc sets contain-
ing a directed cut. However, by the example in Figure 56.1, system (56.1)
generally is not TDI, as total dual integrality amounts to the capacitated
version of Woodall’s conjecture.

In a number of special cases, Woodall’s conjecture, and its capacitated
extension, have been proved. In the remainder of this chapter we will consider
such cases.
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Two more counterexamples to the conjecture of Edmonds and Giles were
given by Cornuéjols and Guenin [2002c], and they asked if, together with
the example of Figure 56.1, these form all minimal counterexamples to the
Edmonds-Giles conjecture.

56.2. Source-sink connected digraphs

Feofiloff and Younger [1987] and Schrijver [1982] showed that for source-sink
connected digraphs, the min-max relation for packing directed cut covers does
hold. Here a digraph is called source-sink connected if each strong component
not left by any arc is reachable by a directed path from each strong component
not entered by any arc. So an acyclic digraph is source-sink connected if each
sink is reachable by a directed path from each source. We follow the proof of
Schrijver [1982].

Theorem 56.1. Let D = (V, A) be a source-sink connected digraph and let
k ∈ Z+. Then any directed cut k-cover C can be partitioned into k directed
cut covers.

Proof. Choose a counterexample with |V | + |C| as small as possible. Then
D is acyclic, since any strong component can be contracted to one vertex.

We may assume that if v is reachable in D from u and v �= u, then
(u, v) ∈ A. We first show:

(56.2) for any nonempty proper subset U of V with δout(U) = ∅ and
|δin

C (U)| = k, one has |U | = 1 or |U | = |V | − 1.

Suppose not. Let D′ := D/U and D′′ := D/U be the digraphs obtained from
D by contracting U and U := V \ U , respectively. Note that D′ and D′′ are
source-sink connected again. Let C ′ be the set of arcs in C with tail in U ,
and let C ′′ be the set of arcs in C with head in U .

Now each directed cut in D′ intersects C ′ in at least k arcs, as it is
a directed cut in D and hence intersects C in at least k arcs. So by the
minimality of |V | + |C|, C ′ can be split into k directed cut covers B′

1, . . . , B
′
k

for D′. As |δin
C (U)| = k, each B′

i has exactly one arc entering U . Similarly,
C ′′ can be split into k directed cut covers B′′

1 , . . . , B′′
k for D′′, such that each

B′′
i has exactly one arc entering U . By choosing indices appropriately, we

can assume that B′
i and B′′

i have an arc entering U in common, for each
i = 1, . . . , k (as |δin

C (U)| = k).
Then each B′

i ∪ B′′
i is a directed cut cover for D. For suppose that there

is a nonempty proper subset W of V with δout(W ) = ∅ and δin(W ) disjoint
from B′

i ∪ B′
i. Then U ∩ W �= ∅ and U �⊆ W , since otherwise δin(W ) is a

directed cut of D′, and hence some arc in B′
i enters W . So some arc in B′′

i

enters U ∩ W . Similarly, some arc in B′
i enters U ∪ W . Since exactly one arc
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in B′
i ∪ B′′

i enters U , it follows that at least one arc in B′
i ∪ B′′

i enters W ,
contradicting our assumption.

So each B′
i ∪ B′′

i is a directed cut cover for D. As they are disjoint, this
contradicts our assumption, thus proving (56.2).

We next show the following. Let X be the set of sources of D and let Y
be the set of sinks of D. Then:

(56.3) for each a = (u, v) ∈ C we have u ∈ X or v ∈ Y .

For suppose not. Then by (56.2), each directed cut of D intersects C \ {a}
in at least k arcs (as any directed cut intersecting C in exactly k arcs and
containing a is equal to δin({v}) or δin(V \ {u}), implying that v is a sink or
u is a source). So by the minimality of |V | + |C|, we can split C \ {a} into k
directed cut covers. This implies that also C can be split into k directed cut
covers, contradicting our assumption. This proves (56.3).

Next:

(56.4) if a = (u, v) ∈ C, a′ = (u′, v′) ∈ C, and v is reachable from u′,
then u′ ∈ X or v ∈ Y .

For suppose not. By (56.3), u ∈ X and v′ ∈ Y , and hence (since D is source-
sink connected), a′′ = (u, v′) ∈ A. Now a �= a′, as u ∈ X and u′ �∈ X. So
C ′ := (C \ {a, a′}) ∪ {a′′} is smaller than C. Moreover, C ′ is a directed cut
k-cover. Indeed, let U be a nonempty proper subset of V with δout(U) = ∅.
If |U | = 1 or |U | = |V | − 1, then δin

C′(U) = δin
C (U), since then U = {r} for

some sink r or U = V \ {s} for some source s. If 1 < |U | < |V | − 1, then

(56.5) |δin
C′(U)| ≥ |δin

C (U)| − 1 ≥ k,

since if both a and a′ enter U , then u �∈ U and v′ ∈ U , and hence a′′ enters
U .

So C ′ is a directed cut k-cover, and hence, by the minimality of |V |+ |C|,
C ′ can be split into k directed cut covers. Let B be the directed cut cover
containing a′′. Then B′ := (B \ {a′′}) ∪ {a, a′} is a directed cut cover, since
any directed cut δin(W ) containing a′′, contains at least one of a, a′. Indeed,
otherwise u, v �∈ W , u′, v′ ∈ W , but then u′ �= v and arc (u′, v) leaves W ,
contradicting the fact that W determines a directed cut.

So by replacing B by B′ we obtain a splitting of C into k directed cut
covers, contradicting our assumption. This proves (56.4).

This implies:

(56.6) V can be partitioned into sets R and S such that δin(R) = ∅,
X ⊆ R, Y ⊆ S, and if any (u, v) ∈ C leaves R, then u ∈ X and
v ∈ Y .

For define

(56.7) C ′ := {(u, v) ∈ C | u �∈ X or v �∈ Y },
R := {v ∈ V | D′ = (V, A ∪ C−1) has a directed v − X path},
S := V \ R.
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Then X ⊆ R, δin
A (R) = ∅, and any (u, v) ∈ C leaving R satisfies u ∈ X and

v ∈ Y . To see that Y ⊆ S, suppose to the contrary that D′ has a directed
Y − X path P . Choose P shortest. Then by (56.3), P has of at most three
arcs. Let (v′, u′) and (v, u) be the first and last arc of P . So v′ ∈ Y and
u ∈ X. These arcs belong to C ′−1, and v is reachable from u′ in D. So by
(56.4), u′ ∈ X or v ∈ Y . This contradicts the definition of C ′. This shows
(56.6).

Fix R, S as in (56.6). Let D′ = (V, A′) be the digraph arising from D by
replacing any arc (u, v) of D by k parallel arcs from v to u. Then

(56.8) |δin
A′∪C(U)| ≥ k

for each nonempty proper subset U of V . So by Theorem 54.11, A′ ∪ C can
be split into k R − S bibranchings. Let B1, . . . , Bk be the intersections of
these bibranchings with C. We show that each Bi is a directed cut cover,
contradicting our assumption, and therefore finishing the proof.

Suppose that say B1 is not a directed cut cover. Let U be a nonempty
proper subset of V with δout(U) = ∅, and suppose that no arc in B1 enters
U . Note that if U contains any source, it contains all sinks, since no arc of D
leaves U . So U contains no sources or contains all sinks.

First assume that U contains no sources of D. As U contains at least one
sink (as U �= ∅ and δout(U) = ∅), we know U �⊆ R. As A′ ∪ B1 is an R − S
bibranching, we know that

(56.9) δin
A′∪B1

(U ∩ S) �= ∅.

As δout
A (U ∩S) = ∅ (since δout

A (U) = ∅ and δin
A (R) = ∅), we have δin

A′(U ∩S) =
∅. Hence some arc (u, v) in B1 enters U ∩ S. As by assumption (u, v) does
not enter U , (u, v) enters S, and u ∈ U . However, by (56.6), u belongs to X.
This contradicts our assumption that U contains no sources of D.

The case that U contains all sinks is symmetric, and leads again to a
contradiction.

A special case of Theorem 56.1 is Woodall’s conjecture for source-sink
connected digraphs:

Corollary 56.1a. Let D = (V, A) be a source-sink connected digraph. Then
the minimum size of a directed cut is equal to the maximum number of disjoint
directed cut covers.

Proof. This is the case C = A of Theorem 56.1.

Also, a capacitated version can be derived from the theorem:

Corollary 56.1b. Let D = (V, A) be a source-sink connected digraph and let
c : A → Z+ be a capacity function. Then the minimum capacity of a directed
cut is equal to the maximum number of directed cut covers such that no arc
a is in more than c(a) of these directed cut covers.
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Proof. Directly from Theorem 56.1, by adding, for any arc a of D, c(a) arcs
parallel to a, and by taking for C the set of newly added arcs.

Equivalently, in TDI terms:

Corollary 56.1c. If D = (V, A) is a source-sink connected digraph, then
system (56.1) is totally dual integral.

Proof. This is a reformulation of Corollary 56.1b.

Feofiloff [1983] gave a polynomial-time algorithm to find a maximum num-
ber of disjoint directed cut covers in a source-sink connected digraph. Also
the proof above implies a polynomial-time algorithm.

A polynomial-time algorithm for the capacitated case can be derived from
the ellipsoid method (cf. Grötschel, Lovász, and Schrijver [1988]). A semi-
strongly polynomial-time algorithm also follows from Section 57.5 below.

Notes. Frank [1979b] showed the special case of Woodall’s conjecture for digraphs
having an arborescence. (Such digraphs are source-sink connected.) J. Edmonds
observed that this can be derived from Edmonds’ disjoint arborescences theorem
(Corollary 53.1b): Let D = (V, A) have an r-arborescence. Let k be the minimum
size of a directed cut in D. Add to D, for each arc (u, v) of D, k parallel arcs
from v to u. This makes the digraph D′ = (V, A′) with |δin

A′(U)| ≥ k for each
nonempty U ⊆ V \ {r}. Hence D′ has k disjoint r-arborescences (by Edmonds’
disjoint arborescences theorem). Now for any r-arborescence B in D′, the set B ∩A
is a directed cut cover in D, since if U is a nonempty proper subset of V with
δout

A (U) = ∅, then δin
A′(U) = δin

A (U), and hence δin
B∩A(U) = δin

B (U) �= ∅. So we
obtain k disjoint directed cut covers in D.

56.3. Other cases where Woodall’s conjecture is true

Another case where Woodall’s conjecture holds is given in:

Theorem 56.2. Let D = (V, A) be a digraph arising from a directed tree
T = (V, A′) such that (u, v) ∈ A if and only if v is reachable in T from u. Let
c : A → Z+ be a capacity function. Then the minimum capacity of a directed
cut is equal to the maximum number of directed cut covers such that each arc
a is in at most c(a) of them.

Proof. The proof is by induction on the minimum capacity k of a directed
cut. Then it suffices to show that there exists a directed cut cover B with
χB ≤ c and with (c − χB)(C) ≥ k − 1 for each directed cut C.

Let M be the A′ × A network matrix generated by T and D (cf. Section
13.3). Then the rows of M are precisely the incidence vectors of inclusionwise
minimal directed cuts. So it suffices to show that there exists an integer
solution x of
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(56.10) 0 ≤ x ≤ c, Mx ≥ 1, M(c − x) ≥ (k − 1)1,

since for any such x there is a directed cut cover B satisfying χB ≤ x.
Since M is totally unimodular, it suffices to show that (56.10) has any

solution. Define x := 1
k c. Then x satisfies (56.10), since Mc ≥ k1 and hence

Mx ≥ 1 and M(c − x) = k−1
k Mc ≥ (k − 1)1.

The theorem can also be formulated in terms of partitioning directed cut
k-covers:

Corollary 56.2a. Let D = (V, A) be a digraph such that A contains a directed
spanning tree T with the property that for each arc (u, v) in A there exists a
directed u−v path in T . Then any directed cut k-cover in D can be partitioned
into k directed cut covers.

Proof. This follows from Theorem 56.2 by taking c(u, v) equal to the number
of times there is an arc from u to v in the directed cut k-cover.

A. Frank also noted that Woodall’s conjecture is true if the minimum size
of a directed cut is at most 2:

Theorem 56.3. Let D = (V, A) be a digraph such that each directed cut has
size at least two. Then there are two disjoint directed cut covers.

Proof. As the underlying undirected graph is 2-edge-connected, it has a
strongly connected orientation D′ = (V, A′) (see Corollary 61.3a). Let B1 be
the set of arcs of D that have the same orientation in D′ and let B2 := A\B1.
Then B1 and B2 are disjoint directed cut covers.

Figure 56.1 shows that this cannot be generalized to each directed cut
2-cover being partitionable into two directed cut covers.

56.3a. Further notes

Karzanov [1985c] gave a strongly polynomial-time algorithm to find a minimum-
mean capacity directed cut (cf. McCormick and Ervolina [1994]).



Chapter 57

Strong connectors

A strong connector is a set of new arcs whose addition to a given digraph
D makes it strongly connected. If each potential new arc has been given a
length, then finding a shortest strong connector is NP-complete, even if D
has no arcs at all: finding a directed Hamiltonian circuit is a special case.
(So even if each length is 0 or 1, the problem is NP-complete.)
However, there are a few cases where finding a shortest strong connector
is tractable and where min-max relations and polyhedral characterizations
hold — for instance, if D is source-sink connected. For these digraphs,
packing strong connectors is similarly tractable. These results follow by
reduction to directed cut covers discussed in the previous two chapters.

57.1. Making a directed graph strongly connected

Let (V, A) and (V, B) be digraphs. The set B is called a strong connector for
D if the digraph (V, A ∪ B) is strongly connected.

Consider the following strong connectivity augmentation problem:

(57.1) Given a digraph D = (V, A) and a cost function k : V × V → Q,
find a minimum-cost strong connector for D.

Theorem 57.1. The strong connectivity augmentation problem is NP-com-
plete, even if A = ∅.

Proof. The problem of finding a Hamiltonian circuit in a digraph D′ =
(V, A′) is equivalent to the existence of a strong connector for (V, ∅) of cost
|V |, where k(u, v) := 1 if (u, v) ∈ A′, and k(u, v) := 2 otherwise.

Eswaran and Tarjan [1976] showed that if the cost of each new arc equals
1, then there is an easy solution:

Theorem 57.2. If D = (V, A) is an acyclic digraph with at least 2 vertices,
and with ρ sources and σ sinks, then the minimum size of a strong connector
for D equals max{ρ, σ}.
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Proof. To see that the minimum is at least max{ρ, σ}, note that for each
source r one should add at least one arc entering r; similarly, for each sink s
one should add at least one arc leaving s.

That the bound can be attained is shown by induction on max{ρ, σ}.
If there is a pair of a source r and a sink s such that s is not reachable
from r, add an arc (s, r). This reduces both ρ and σ by 1, while maintaining
acyclicity, and induction gives the result.

So we can assume that each sink is reachable from each source. We can
also assume that ρ ≥ σ (otherwise, reverse all orientations). Let r1, . . . , rρ

be the sources and let s1, . . . , sσ be the sinks. Then adding arcs (si, ri) for
i = 1, . . . , σ, and arcs (si, r1) for i = σ+1, . . . , ρ makes D strongly connected,
proving the theorem.

This implies for not necessarily acyclic digraphs:

Corollary 57.2a. Let D = (V, A) be a digraph which is not strongly con-
nected, let ρ be the number of strong components K of D with din(K) = 0
and let σ be the number of strong components K of D with dout(K) = 0.
Then the minimum size of a strong connector for D equals max{ρ, σ}.

Proof. Apply Theorem 57.2 to the digraph obtained from D by contracting
each strong component of D to one vertex.

These proofs also give a polynomial-time algorithm to find a minimum-
size strong connector. Eswaran and Tarjan [1976] describe a linear-time im-
plementation.

57.2. Shortest strong connectors

Let D0 = (V, A0) and D = (V, A) be digraphs. Call a subset A′ of A a D0-
cut (in D) if A′ = δin

A (U) for some nonempty proper subset U of V with
δin
A0

(U) = ∅.
It is easy to see that a set B of arcs of D is a strong connector for D0

if and only if B intersects each D0-cut in D. The following consequence of
the Lucchesi-Younger theorem was given in Schrijver [1982]. It gives a min-
max relation for the minimum length of a strong connector, if the following
condition holds for digraphs D0 = (V, A0) and D = (V, A):

(57.2) for each (u, v) ∈ A there exist u′, v′ ∈ V such that in D0, u′ is
reachable from u and from v′, and v from v′.

We mention two special cases where this condition is satisfied:

• A is a subset of A−1
0 ,

• D0 is source-sink connected.
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We derive from the Lucchesi-Younger theorem (Schrijver [1982]):

Theorem 57.3. Let D0 = (V, A0) and D = (V, A) be digraphs satisfying
(57.2) and let l : A → Z+ be a length function. Then the minimum length of
a strong connector in D for D0 is equal to the maximum number of D0-cuts
in D such that no arc a of D is in more than l(a) of these cuts.

Proof. We can assume that D0 is acyclic, and that for any u, v ∈ V , if v is
reachable in D0 from u, then (u, v) ∈ A0. (So (v, v) ∈ A0 for each v ∈ V .)

We show the theorem by induction on the number τ of arcs a = (u, v)
of D for which (v, u) �∈ A0. If τ = 0, the theorem is equivalent to Corollary
55.2a.

If τ > 0, choose (u, v) ∈ A with (v, u) �∈ A0. By assumption, there exist
u′, v′ ∈ V with (u, u′), (v′, u′), (v′, v) ∈ A0. Introduce two new vertices, u′′

and v′′, and add arcs

(57.3) (u, u′′), (u′′, u′), (v′′, u′′), (v′′, v), (v′, v′′)

to A0. Moreover, replace arc (u, v) of A by (u′′, v′′), with length equal to

that of the original arc (u, v). Let D̃0 = (Ṽ , Ã0) and D̃ = (Ṽ , Ã) denote the
modified graphs.

This transformation decreases the number τ by 1. Moreover,

(57.4) any subset C of A is a strong connector for D0 if and only if the

set C̃ ⊆ Ã is a strong connector for D̃0.

Here C̃ arises from C by replacing (u, v) by (u′′, v′′) if (u, v) ∈ C. Proving
(57.4) suffices, since it implies that the two numbers in the theorem are
invariant under the transformation.

(57.4) can be seen as follows. Choose C ⊆ A. First let C be a strong

connector for D0. If (u, v) �∈ C, then C̃ = C is also strong connector for D̃0

(since in D̃0 the new vertex u′′ is on a u − u′ path, and the new vertex v′′

is on a v′ − v path). If (u, v) ∈ C, then C̃ = (C \ {(u, v)}) ∪ {(u′′, v′′)} is a

strong connector for D̃0, since A0∪C contains the u−v path (u, u′′), (u′′, v′′),
(v′′, v).

Conversely, let C̃ be a strong connector for D̃0. If (u′′, v′′) �∈ C̃, then

C = C̃ is also a strong connector for D0, since any directed path in Ã0 ∪ C̃
connecting two vertices in V and traversing any of the new vertices u′′, v′′,
can be shortcut to a path avoiding u′′ and v′′.

If (u′′, v′′) ∈ C̃, then C = (C̃ \ {(u′′, v′′)}) ∪ {(u, v)} is a strong connector

for D0, since any directed path in Ã0 ∪ C̃ connecting two vertices in V and
traversing arc (u′′, v′′), must traverse (u, u′′), (u′′, v′′), and (v′′, v), and hence
gives a path in A0 ∪ C, by replacing this by (u, v).

The proof gives also an algorithmic reduction to the problem of find-
ing a minimum-length directed cut cover, and hence (by Theorem 55.5) a
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minimum-length strong connector for D0 can be found in strongly polyno-
mial time.

Theorem 57.3 includes several theorems considered earlier:

• s, t ∈ V and A0 := {(u, v) | u = t or v = s}: max-potential min-work
theorem (Theorem 8.3);

• V is the disjoint union of U and W , A0 := {(u, w) | u ∈ U, w ∈ W} and
A ⊆ {(w, u) | w ∈ W, u ∈ U}: weighted version of the Kőnig-Rado edge
cover theorem(Theorem 19.4);

• A0 = {(v, r) | v ∈ V } for some r ∈ V : optimum arborescence theo-
rem(Theorem 52.3);

• V is the disjoint union of U and W and A0 := {(u, w) | u ∈ U, w ∈
W}:optimum bibranching theorem(Corollary 54.8b);

• A ⊆ {(u, v) | (v, u) ∈ A0}: Lucchesi-Younger theorem (Theorem 55.2).

A cardinality version of the previous theorem is:

Corollary 57.3a. Let D0 = (V, A0) and D = (V, A) be digraphs satisfying
(57.2). Then the minimum size of a strong connector in D for D0 is equal to
the maximum number of disjoint D0-cuts in D.

Proof. This is the case l = 1 of Theorem 57.3.

We formulate this for the special case of source-sink connected digraphs.
Recall that a digraph D = (V, A) is called source-sink connected if each
strong component not left by any arc is reachable by a directed path from
each strong component not entered by any arc.

Corollary 57.3b. Let D0 = (V, A0) and D = (V, A) be digraphs, with D0

source-sink connected. Let l : A → Z+ be a length function. Then the min-
imum length of a strong connector in D for D0 is equal to the maximum
number of D0-cuts in D such that no arc a of D is in more than l(a) of these
cuts.

Proof. Directly from Theorem 57.3, since condition (57.2) is implied by the
fact that D0 is source-sink connected.

The cardinality version is:

Corollary 57.3c. Let D0 = (V, A0) and D = (V, A) be digraphs, with D0

source-sink connected. Then the minimum size of a strong connector in D
for D0 is equal to the maximum number of disjoint D0-cuts in D.

Proof. This is the case l = 1 in Corollary 57.3b.
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57.3. Polyhedrally

Theorem 57.3 can be equivalently formulated in TDI terms:

Corollary 57.3d. Let D0 = (V, A0) and D = (V, A) be digraphs satisfying
(57.2). Then the system

(57.5) (i) xa ≥ 0 a ∈ A,
(ii) x(δin

A (U)) ≥ 1 U ⊂ V, U �= ∅, δin
A0

(U) = ∅,

is TDI and determines the convex hull of the strong connectors of D0.

Proof. This is a reformulation of Theorem 57.3.

In fact, system (57.5) is box-TDI, as will follow from Theorem 60.3.
By the theory of blocking polyhedra, Corollary 57.3d implies:

Corollary 57.3e. Let D0 = (V, A0) and D = (V, A) satisfy (57.2). Then the
system

(57.6) (i) 0 ≤ xa ≤ 1 a ∈ A,
(ii) x(B) ≥ 1 B strong connector for D0

determines the convex hull of subsets of A containing a D0-cut.

Proof. System (57.6) determines the blocking polyhedron of the polyhedron
determined by (57.5), and hence its vertices are the incidence vectors of sub-
sets of A that intersect all strong connectors for D0. These are precisely the
sets of arcs in A containing a D0-cut.

System (57.6) generally is not TDI, by Figure 56.1. But if D0 is source-sink
connected, system (57.6) is totally dual integral, as is shown in the following
section.

57.4. Disjoint strong connectors

Similarly to the derivation of Theorem 57.3 from the Lucchesi-Younger theo-
rem, the following generalization can be derived as a consequence of Theorem
56.1 (Schrijver [1982]):

Theorem 57.4. Let D0 = (V, A0) and D = (V, A) be digraphs, with D0

source-sink connected. Then the minimum size of a D0-cut in D is equal to
the maximum number of disjoint strong connectors in D for D0.

Proof. The proof is similar to the derivation of Theorem 57.3 from the Luc-
chesi-Younger theorem. We can assume that for any u, v ∈ V , if v is reachable
in D0 from u, then (u, v) ∈ A0.
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We show the theorem by induction on the number τ of arcs (u, v) of D
for which (v, u) �∈ A0. If τ = 0, the theorem is equivalent to Theorem 56.1
(by taking C := {(u, v) | (v, u) ∈ A}).

If τ > 0, choose (u, v) ∈ A with (v, u) �∈ A0. Let u′ be a sink of D0 with
(u, u′) ∈ A0 and let v′ be a source of D0 with (v′, v) ∈ A0. As D0 is source-
sink connected we know that (v′, u′) ∈ A0. Now introduce two new vertices,
u′′ and v′′, and add arcs

(57.7) (u, u′′), (u′′, u′), (v′′, u′′), (v′′, v), (v′, v′′)

to A0. Moreover, replace arc (u, v) of A by (u′′, v′′). Let D̃0 = (Ṽ , Ã0) and

D̃ = (Ṽ , Ã) denote the modified graphs.
This transformation decreases τ by 1. Again (57.4) holds. This implies

that the two numbers in the theorem are invariant under the transformation.
Hence the theorem follows by induction.

The condition given in this theorem cannot be relaxed to condition (57.2),
as Figure 56.1 shows.

Theorem 57.4 has the following special cases:

• s, t ∈ V and A0 := {(u, v) | u = t or v = s}: Menger’s theorem (Corollary
9.1b);

• V is the disjoint union of U and W , A0 = {(u, w) | u ∈ U, w ∈ W} and
A ⊆ {(w, u) | w ∈ W, u ∈ U}: Gupta’s edge-colouring theorem (Theorem
20.5);

• r ∈ V and A0 = {(v, r) | v ∈ V }: Edmonds’ disjoint arborescences theorem
(Corollary 53.1b);

• V is the disjoint union of U and W and A0 = {(u, w) | u ∈ U, w ∈ W}:
disjoint bibranchings theorem(Theorem 54.11);

• D0 = (V, A0) is source-sink connected and A ⊆ {(u, v) | (v, u) ∈ A0}:
Corollary 56.1b.

An equivalent capacitated version of Theorem 57.4 reads:

Corollary 57.4a. Let D0 = (V, A0) and D = (V, A) be digraphs, with D0

source-sink connected, and let c ∈ ZA
+ be a capacity function. Then the min-

imum capacity of a D0-cut in D is equal to the maximum number of strong
connectors in D for D0 such that any arc a of D is in at most c(a) of them.

Proof. Directly from Theorem 57.4 by replacing any arc a of D by c(a)
parallel arcs.

Equivalently, in TDI terms:

Corollary 57.4b. Let D0 = (V, A0) and D = (V, A) be digraphs, with D0

source-sink connected. Then system (57.6) is totally dual integral.
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Proof. This is a reformulation of Corollary 57.4a.

57.5. Complexity

As for the complexity of finding disjoint strong connectors for a source-sink
connected digraph, the proof of Theorem 57.4 gives a polynomial-time reduc-
tion to finding a maximum number of disjoint directed cut covers in a subset
of the arcs of a source-sink connected graph. The latter problem is solvable
in polynomial time by the methods of Section 56.2.

The capacitated case can be solved in semi-strongly polynomial time (that
is, where rounding is taken as one arithmetic operation) with the ellipsoid
method (cf. Grötschel, Lovász, and Schrijver [1988]). A combinatorial semi-
strongly polynomial-time algorithm is as follows.

Let be given a source-sink connected digraph D0 = (V, A0), a digraph
D = (V, A), and a capacity function c : A → Z+. We show that an optimum
fractional packing of strong connectors subject to c can be found in strongly
polynomial time. Then an integer packing can be found by rounding (like in
Section 51.4), thus yielding a semi-strongly polynomial-time algorithm.

Define C := {U | ∅ �= U ⊂ V, din
A0

(U) = 0}. To find an optimum fractional

packing, let κ be the minimum of c(δin
A (U)) taken over sets U ∈ C. (κ can be

computed with a maximum flow algorithm.) We keep a subcollection U of C
with c(δin

A (U)) = κ for each U ∈ U .
Choose a strong connector B ⊆ A for A0 with din

B(U) = 1 for each U ∈ U .
(This can be found in strongly polynomial time, by finding a minimum-length

strong connector for length function l :=
∑

U∈U χδinB (U). It exists by Theorem
57.4.)

If c = 0, we are done. If c �= 0, determine a rational λ as follows. First
set λ := min{c(a) | a ∈ B}. Next, iteratively, find a U ∈ C minimizing

(57.8) (c − λ · χB)(δin
A (U)).

If this minimum value is less than κ − λ, reset

(57.9) λ :=
c(δin

A (U)) − κ

din
B(U) − 1

,

and iterate. If the minimum is equal to κ − λ, this ends the inner iterations.
Then we reset c := c − λ · χB , κ := κ − λ, and U := U ∪ {U}, and (outer)
iterate.

In each outer iteration, the number of arcs a with c(a) > 0 decreases
or the intersecting family generated by U increases (since for the U added
we have din

B(U) > 1). Hence the number of outer iterations is bounded by
|A| + |V |3 (see the argument given in the proof of Theorem 53.9).

In each outer iteration, the number of inner iterations is at most |B|. To
see this, consider any inner iteration, and denote by λ′ and U ′ the objects λ
and U in the next inner iteration. As U minimizes (57.8), we know
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(57.10) (c − λ · χB)(δin
A (U)) ≤ (c − λ · χB)(δin

A (U ′)).

Moreover, if the next iteration is not the last iteration, then

(57.11) (c − λ′ · χB)(δin
A (U ′)) < κ − λ′ = (c − λ′ · χB)(δin

A (U))

(the equality follows from definition (57.9), replacing λ by λ′). Now (57.10)
and (57.11) imply

(57.12) λ′(din
B(U) − din

B(U ′)) < c(δin
A (U)) − c(δin

A (U ′))
≤ λ(din

B(U) − din
B(U ′)).

Since λ′ < λ (as (57.8) is less than κ − λ), we have din
B(U ′) < din

B(U). Hence
the number of inner iterations is at most |B|.

57.5a. Crossing families

Theorem 57.4 and part of Theorem 57.3 were generalized by Schrijver [1983b]. Let
C be a crossing family of subsets of a set V ; that is:

(57.13) if U, W ∈ C and U ∩ W �= ∅ and U ∪ W �= V , then U ∩ W ∈ C and
U ∪ W ∈ C.

Let D = (V, A) be a digraph. Call B ⊆ A a C-cut if B = δin(U) for some U ∈ C.
Call B ⊆ A a C-cover if B intersects each C-cut.

Let C be a crossing family of nonempty proper subsets of a set V . In Schrijver
[1983b] it is shown that the following are equivalent:

(57.14) (i) for each digraph D = (V, A), the minimum size of a C-cut is equal
to the maximum number of disjoint C-covers;

(ii) for each digraph D = (V, A) and each length function l : A → Z+,
the minimum length of a C-cover is equal to the maximum number
of C-cuts such that no arc a is in more than l(a) of these cuts;

(iii) there are no V1, V2, V3, V4, V5 in C with V1 ⊆ V3 ⊆ V5, V1 ⊆ V2,
V2 ∪ V3 = V , V3 ∩ V4 = ∅, and V4 ⊆ V5.

The configuration described in (iii) is depicted in Figure 57.1. As directed graphs
may have parallel arcs, property (57.14)(i) is equivalent to its capacitated version.
So condition (57.14)(i) is equivalent to the total dual integrality of

(57.15) xa ≥ 0 for a ∈ A,
x(B) ≥ 1 for each C-cover B ⊆ A,

for each digraph (V, A). Similarly, condition (57.14)(ii) is equivalent to the total
dual integrality of

(57.16) xa ≥ 0 for a ∈ A,
x(B) ≥ 1 for each C-cut B ⊆ A,

for each digraph (V, A).
Frank [1979b] showed that (57.14)(i) holds if C is an intersecting family. (For

any intersecting family C, (iii) holds if V �∈ C, which we may assume without loss
of generality.)
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Figure 57.1

The configuration excluded in (57.14)(iii). In this Venn-diagram,
the collection is represented by the interiors of the ellipses and by the
exteriors of the rectangles.

In (57.14)(i) and (ii) we require the min-max relation for cuts and covers to
hold for all directed graphs on V . It is a more general problem to characterize pairs
(C, D) of a crossing family C on V and a directed graph D = (V, A) having the
properties described in (57.14)(i) and (ii), respectively. For example, the Lucchesi-
Younger theorem (Theorem 55.2), and its extension by Edmonds and Giles [1977],
assert that if C is a crossing family on V and no arc of D leaves any set U ∈ C,
then (C, D) has the properties described in (ii). However, the example in Figure
56.1 shows that it generally does not have the property described in (57.14)(i). So
for fixed graphs D, (57.14)(i) and (ii) are not equivalent.

Theorem 60.3 implies that a pair (C, D) has property (ii) if C is a crossing family
and D a directed graph such that if U1, U2, U3 ∈ C with U1 ⊆ V \ U2 ⊆ U3, then no
arc enters both U1 and U3. This generalizes the Lucchesi-Younger theorem.

We show the equivalence of (57.14)(ii) and (iii), for which we show a lemma
indicating that condition (57.14)(iii) has a natural characterization in terms of total
unimodularity.

For any collection C of subsets of a set V , let A be the collection of all ordered
pairs of elements of V (making the complete directed graph D = (V, A)), and let
MC be the C × A matrix with

(57.17) (MC)U,a :=

{
1 if a enters U ,
0 otherwise.

Lemma 57.5α. Let C be a cross-free collection of nonempty proper subsets of a set
V . Then MC is totally unimodular if and only if C satisfies (57.14)(iii).

Proof. To see necessity, let MC be totally unimodular. Suppose that condition
(57.14)(iii) is violated. So there exist V1, V2, V3, V4, V5 in C with V1 ⊆ V3 ⊆ V5,
V1 ⊆ V2, V2 ∪ V3 = V , V3 ∩ V4 = ∅, and V4 ⊆ V5. Choose v1 ∈ V1, v2 ∈ V \ V2,
v4 ∈ V4, and v5 ∈ V \ V5. Define

(57.18) A0 := {(v2, v1), (v4, v1), (v2, v4), (v5, v4), (v5, v2)}
(cf. Figure 57.2). Consider the submatrix of MC with rows indexed by V1, . . . , V5,
and columns indexed by the arcs in A0. Then, as one easily checks:
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Figure 57.2

(57.19) each set in C0 is entered by exactly two arcs from A0, and each arc in
A0 enters exactly two sets in C0.

So this submatrix has exactly two 1’s in each row and each column, and hence is
not totally unimodular.

To see sufficiency, let C satisfy (57.14)(iii). To prove that MC is totally unimod-
ular, we use the following characterization of Ghouila-Houri [1962b] (cf. Theorem
19.3 in Schrijver [1986b]): a matrix M is totally unimodular if and only if each
collection R of rows of M can be partitioned into classes R1 and R2 such that the
sum of the rows in R1, minus the sum of the rows in R2, is a vector with entries
0, ±1 only.

To check this condition, we can assume that we have chosen all rows of MC (as
any subset of the rows gives a matrix of the same type as MC). Make a digraph
D = (C, A′), where A′ consists of all pairs (T, U) from C such that

(57.20) T ⊂ U , and there is no W ∈ C with T ⊂ W ⊂ U .

We show that the undirected graph underlying D′ is bipartite, which will verify
Ghouila-Houri’s criterion: let C1 and C2 be the two colour classes; then any arc
a = (u, v) of D enters a chain of subsets in C (as C is cross-free), which subsets are
alternatingly in C1 and C2. Hence the sum of the rows with index in C1 minus the
sum of the rows with index in C2, has an entry 0 or ±1 in position a.

To show that D′ is bipartite, suppose that it has an (undirected) circuit of odd
length. Since this circuit is odd, and since D′ is acyclic, it follows that there are
distinct U0, U1, . . . , Uk, Uk+1 in C, with k ≥ 3, such that

(57.21) (U1, U0), (U1, U2), (U2, U3), . . . , (Uk−1, Uk), (Uk+1, Uk)

belong to A′. So U0 and U2 are distinct minimal sets in C containing U1 as a
subset. As C is cross-free, U0 ∪ U2 = V . Similarly, Uk−1 and Uk+1 are distinct
maximal subsets of Uk, and hence Uk−1 ∩ Uk+1 = ∅. As U2 ⊆ Uk−1, it follows that
U1 ⊆ U0 ∩ U2, U0 ∪ U2 = V , U2 ∪ Uk+1 ⊆ Uk, and U2 ∩ Uk+1 = ∅. This contradicts
(57.14)(iii).

This gives the box-TDI result:

Theorem 57.5. Let C be a crossing family of nonempty proper subsets of a set V
satisfying (57.14)(iii) and let D = (V, A) be a digraph. Then the system
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(57.22) xa ≥ 0 for a ∈ A,

x(δin(U)) ≥ 1 for U ∈ C,

is box-TDI.

Proof. Let w : A → R+. Consider the maximum value of

(57.23)
∑

U∈C

yU

where y : C → R+ satisfies

(57.24)
∑

U∈C

yUχδin(U) ≤ w.

Choose y : C → R+ attaining the maximum, such that

(57.25)
∑

U∈C

yU |U ||V \ U |

is minimized. We show that the collection F := {U ∈ C | yU > 0} is cross-free; that
is, for all T, U ∈ F one has

(57.26) T ⊆ U or U ⊆ T or T ∩ U = ∅ or T ∪ U = V .

Suppose that this is not true. Let α := min{yT , yU}. Decrease yT and yU by α,
and increase yT∩U and yT∪U by α. Now (57.24) is maintained, and (57.23) did not
change. However, (57.25) decreases (Theorem 2.1), contradicting our minimality
assumption.

So F is cross-free. As MF is totally unimodular by Lemma 57.5α, this gives the
box-total dual integrality of (57.22) by Theorem 5.35.

Condition (57.14)(iii) is necessary and sufficient for integrality of the polyhe-
dron:

Corollary 57.5a. For any crossing family C of nonempty proper subsets of a set
V , (57.22) defines an integer polyhedron for each digraph D = (V, A) if and only if
condition (57.14)(iii) holds.

Proof. Sufficiency follows from Theorem 57.5. To see necessity, suppose that
(57.22)(iii) does not hold. Let V1, . . . , V5 in C with V1 ⊆ V3 ⊆ V5, V1 ⊆ V2,
V2 ∪ V3 = V , V3 ∩ V4 = ∅, and V4 ⊆ V5. Let C0 := {V1, . . . , V5} and C1 := C \ C0.
Choose v1 ∈ V1, v2 ∈ V \ V2, v4 ∈ V4, v5 ∈ V \ V5. Let D = (V, A) be a digraph,
with A = A0 ∪ A1, where A0 is as defined in (57.18) and where

(57.27) A1 := {(u, v) | u, v ∈ V such that (u, v) enters no Vi (i = 1, . . . , 5)}.

Then

(57.28) each set in C1 is either entered by at least one arc in A1 or by at least
two arcs in A0.

To see this, by definition of A1, a subset U of V is entered by no arc in A1 if and
only if U belongs to the lattice generated by C0 (with respect to inclusion). This
lattice consists of the sets
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(57.29) ∅, V, V1, . . . , V5, V1 ∪ V4, V2 ∩ V3, (V2 ∩ V3) ∪ V4, V3 ∪ V4, V2 ∩ V5,

as (57.29) is closed under taking unions and intersections, and as each set in (57.29)
is generated by taking unions and intersections from C0. Since each of the sets in
(57.29), except ∅ and V , is entered by at least two arcs in A0, we have (57.28).

(57.19) and (57.28) give:

(57.30) any C-cover in A contains at least three arcs in A0, and any C-cut
contains at least one arc in A1 or at least two arcs in A0.

Define x : A → Q be x := χA1 + 1
2
χA0 and a length function l : A → Z by l := χA0 .

Then x satisfies (57.22) and lTx = 5
2
. However, l(C) ≥ 3 for each C-cover C. So

(57.22) determines no integer polyhedron.

Theorem 57.5 and Corollary 57.5a imply the equivalence of (57.14)(ii) and (iii).
For the proof of the equivalence of (57.14)(i) and (iii), we refer to Schrijver [1983b].



Chapter 58

The traveling salesman problem

The traveling salesman problem (TSP) asks for a shortest Hamiltonian cir-
cuit in a graph. It belongs to the most seductive problems in combinatorial
optimization, thanks to a blend of complexity, applicability, and appeal to
imagination.
The problem shows up in practice not only in routing but also in vari-
ous other applications like machine scheduling (ordering jobs), clustering,
computer wiring, and curve reconstruction.
The traveling salesman problem is an NP-complete problem, and no
polynomial-time algorithm is known. As such, the problem would not fit
in the scope of the present book. However, the TSP is closely related to
several of the problem areas discussed before, like 2-matching, spanning
tree, and cutting planes, which areas actually were stimulated by ques-
tions prompted by the TSP, and often provide subroutines in solving the
TSP.
Being NP-complete, the TSP has served as prototype for the development
and improvement of advanced computational methods, to a large extent
utilizing polyhedral techniques. The basis of the solution techniques for
the TSP is branch-and-bound, for which good bounding techniques are
essential. Here ‘good’ is determined by two, often conflicting, criteria: the
bound should be tight and fast to compute. Polyhedral bounds turn out to
be good candidates for such bounds.

58.1. The traveling salesman problem

Given a graph G = (V, E), a Hamiltonian circuit in G is a circuit C with
V C = V . The symmetric traveling salesman problem (TSP) is: given a graph
G = (V, E) and a length function l : E → R, find a Hamiltonian circuit C of
minimum length.

The directed version is as follows. Given a digraph D = (V, A), a directed
Hamiltonian circuit, or just a Hamiltonian circuit, in D is a directed circuit C
with V C = V . The asymmetric traveling salesman problem (TSP or ATSP)
is: given a digraph D = (V, A) and a length function l : A → R, find a
Hamiltonian circuit C of minimum length.
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In the context of the traveling salesman problem, vertices are sometimes
called cities, and a Hamiltonian circuit a traveling salesman tour. If the ver-
tices are represented by points in the plane and each pair of vertices is con-
nected by an edge of length equal to the Euclidean distance between the two
points, one speaks of the Euclidean traveling salesman problem.

58.2. NP-completeness of the TSP

The problem of finding a Hamiltonian circuit and (hence) the traveling sales-
man problem are NP-complete. Indeed, in Theorem 8.11 and Corollary 8.11b
we proved the NP-completeness of the directed and undirected Hamiltonian
circuit problem. This implies the NP-completeness of the TSP, both in the
undirected and the directed case:

Theorem 58.1. The symmetric TSP and the asymmetric TSP are NP-
complete.

Proof. Given an undirected graph G = (V, E), define l(e) := 0 for each edge
e. Then G has a Hamiltonian circuit if and only if G has a Hamiltonian circuit
of length ≤ 0. This reduces the undirected Hamiltonian circuit problem to
the symmetric TSP.

One similarly shows the NP-completeness of the asymmetric TSP.

This method also gives that the symmetric TSP remains NP-complete if
the graph is complete and the length function satisfies the triangle inequality :

(58.1) l(uw) ≤ l(uv) + l(vw) for all u, v, w ∈ V .

Indeed, to test if a graph G = (V, E) has a Hamiltonian circuit, define l(uv) :=
1 if u and v are adjacent and l(uv) := 2 otherwise (for u �= v). Then G has
a Hamiltonian circuit if and only if there exists a traveling salesman tour of
length ≤ |V |.

Garey, Graham, and Johnson [1976] and Papadimitriou [1977a] showed
that even the Euclidean traveling salesman problem is NP-complete. (Simi-
larly for several other metrics, like l1.) More on complexity can be found in
Section 58.8b below.

58.3. Branch-and-bound techniques

The traveling salesman problem is NP-complete, and no polynomial-time
algorithm is known. Most exact methods known are essentially enumerative,
aiming at minimizing the enumeration. A general framework is that of branch-
and-bound. The idea of branch-and-bound applied to the traveling salesman
problem roots in papers of Tompkins [1956], Rossman and Twery [1958],
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and Eastman [1959]. The term ‘branch and bound’ was introduced by Little,
Murty, Sweeney, and Karel [1963].

A rough, elementary description is as follows. Let G = (V, E) be a graph
and let l : E → R be a length function. For any set C of Hamiltonian circuits,
let µ(C) denote the minimum length of the Hamiltonian circuits in C.

Keep a collection Γ of sets of Hamiltonian circuits and a function λ : Γ →
R satisfying:

(58.2) (i)
⋃

Γ contains a shortest Hamiltonian circuit;
(ii) λ(C) ≤ µ(C) for each C ∈ Γ .

A typical iteration is:

(58.3) Select a collection C ∈ Γ with λ(C) minimal. Either find a circuit
C ∈ C with l(C) = λ(C) or replace C by (zero or more) smaller
sets such that (58.2) is maintained.

Obviously, if we find C ∈ C with l(C) = λ(C), then C is a shortest Hamilto-
nian circuit.

This method always terminates, but the method and its efficiency heavily
depend on how the details in this framework are filled in: how to bound (that
is, how to define and calculate λ(C)), how to branch (that is, which smaller
sets replace C), and how to find the circuit C.

As for branching, the classes C in Γ can be stored implicitly: for example,
by prescribing sets B and F of edges such that C consists of all Hamiltonian
circuits whose edge set contains B and is disjoint from F . Then we can split C
by selecting an edge e ∈ E\(B∪F ) and replacing C by the classes determined
by B ∪ {e}, F and by B, F ∪ {e} respectively.

As for bounding, one should choose λ(C) that is fast to compute and close
to µ(C). For this, polyhedral bounds seem good candidates, and in the coming
sections we consider a number of them.

For finding the circuit C ∈ C, a heuristic or exact method can be used. If
it returns a circuit C with l(C) > λ(C), we can delete all sets C′ from Γ with
λ(C′) ≥ l(C), thus saving computer space.

58.4. The symmetric traveling salesman polytope

The (symmetric) traveling salesman polytope of an undirected graph G =
(V, E) is the convex hull of the incidence vectors (in RE) of the Hamiltonian
circuits. The TSP is equivalent to minimizing a function lTx over the traveling
salesman polytope. Hence this is NP-complete.

The NP-completeness of the TSP also implies that, unless NP=co-NP, no
description in terms of inequalities of the traveling salesman polytope may be
expected (Corollary 5.16a). In fact, as deciding if a Hamiltonian circuit exists
is NP-complete, it is NP-complete to decide if the traveling salesman polytope
is nonempty. Hence, if NP�=co-NP, there exist no inequalities satisfied by
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the traveling salesman polytope such that their validity can be certified in
polynomial time and such that they have no common solution.

58.5. The subtour elimination constraints

Polynomial-time computable lower bounds on the minimum length of a
Hamiltonian circuit can be obtained by including the traveling salesman poly-
tope in a larger polytope (a relaxation) over which lTx can be minimized in
polynomial time.

Dantzig, Fulkerson, and Johnson [1954a,1954b] proposed the following
relaxation:

(58.4) (i) 0 ≤ xe ≤ 1 for each edge e,
(ii) x(δ(v)) = 2 for each vertex v,
(iii) x(δ(U)) ≥ 2 for each U ⊆ V with ∅ �= U �= V .

The integer solutions of (58.4) are precisely the incidence vectors of the Hamil-
tonian circuits. If (ii) holds, then (iii) is equivalent to:

(58.5) (iii’) x(E[U ]) ≤ |U | − 1 for each U ⊆ V with ∅ �= U �= V .

These conditions are called the subtour elimination constraints.
It can be shown with the ellipsoid method that the minimum of lTx over

(58.4) can be found in strongly polynomial time (cf. Theorem 5.10). For this
it suffices to show that the conditions (58.4) can be tested in polynomial
time. This is easy for (i) and (ii). If (i) and (ii) are satisfied, we can test (iii)
by taking x as capacity function, and test if there is a cut δ(U) of capacity
less than 2, with ∅ �= U �= V .

No combinatorial polynomial-time algorithm is known to minimize lTx
over (58.4). In practice, one can apply the simplex method to minimize lTx
over the constraints (i) and (ii), test if the solution satisfies (iii) by finding
a cut δ(U) minimizing x(δ(U)). If this cut has capacity at least 2, then x
minimizes lTx over (58.4). Otherwise, we can add the constraint x(δ(U)) ≥ 2
to the simplex tableau (a cutting plane), and iterate. (This method is implicit
in Dantzig, Fulkerson, and Johnson [1954b].)

Branch-and-bound methods that incorporate such a cutting plane method
to obtain bounds and that extend the cutting plane found to all other nodes
of the branching tree to improve their bounds, are called branch-and-cut.

System (58.4) generally is not enough to determine the traveling salesman
polytope: for the Petersen graph G = (V, E), the vector x with xe = 2

3 for
each e ∈ E satisfies (58.4) but is not in the traveling salesman polytope of G
(as it is empty).

Wolsey [1980] (also Shmoys and Williamson [1990]) showed that if G is
complete and the length function l satisfies the triangle inequality, then the
minimum of lTx over (58.4) is at least 2

3 times the minimum length of a
Hamiltonian circuit. It is conjectured (cf. Carr and Vempala [2000]) that



Section 58.6. 1-trees and Lagrangean relaxation 985

for any length function, a lower bound of 3
4 holds (which is best possible).

Related results are given by Papadimitriou and Vempala [2000] and Boyd
and Labonté [2002] (who verified the conjecture for n ≤ 10).

Maurras [1975] and Grötschel and Padberg [1979b] showed that, if G is
the complete graph on V and 2 ≤ |U | ≤ |V |−2, then the subtour elimination
constraint (58.4)(iii) determines a facet of the traveling salesman polytope.

Chvátal [1989] showed the NP-completeness of recognizing if the bound
given by the subtour elimination constraints is equal to the length of a short-
est tour. He also showed that there is no nontrivial upper bound on the
relative error of this bound.

58.6. 1-trees and Lagrangean relaxation

Held and Karp [1971] gave a method to find the minimum value of lTx over
(58.4), with the help of 1-trees and Lagrangean relaxation.

Let G = (V, E) be a graph and fix a vertex, say 1, of G. A 1-tree is a subset
F of E such that |F ∩ δ(1)| = 2 and such that F \ δ(1) forms a spanning tree
on V \ {1}. So each Hamiltonian circuit is a 1-tree with all degrees equal to
2.

It is easy to find a shortest 1-tree F , as it consists of a shortest spanning
tree of the graph G − 1, joined with the two shortest edges incident with
vertex 1. Corollary 50.7c implies that the convex hull of the incidence vectors
of 1-trees is given by:

(58.6) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(δ(1)) = 2,
(iii) x(E[U ]) ≤ |U | − 1 for each nonempty U ⊆ V \ {1},
(iv) x(E) = |V |.

Then (58.4) is equivalent to (58.6) added with (58.4)(ii).
The Lagrangean relaxation approach to find the minimum of lTx over

(58.4) is based on the following result. For any y ∈ RV define

(58.7) ly(e) := l(e) − yu − yv

for e = uv ∈ E, and define

(58.8) f(y) := 2y(V ) + min
F

ly(F ),

where F ranges over all 1-trees. Christofides [1970] and Held and Karp [1970]
observed that for each y ∈ RV :

(58.9) f(y) ≤ the minimum length of a Hamiltonian circuit,

since if C is a shortest Hamiltonian circuit, then f(y) ≤ 2y(V )+ly(C) = l(C).
The function f is concave. Since a shortest 1-tree can be found fast, also

f(y) can be computed fast. Held and Karp [1970] showed:
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Theorem 58.2. The minimum value of lTx over (58.4) is equal to the max-
imum value of f(y) over y ∈ RV .

Proof. This follows from general linear programming theory. Let Ax = b be
system (58.4)(ii) and let Cx ≥ d be system (58.6). As (58.4) is equivalent to
Ax = b, Cx ≥ d, we have, using LP-duality:

(58.10) min
Ax = b
Cx ≥ d

lTx = max
y, z

z ≥ 0

yTA + zTC = lT

yTb + zTd

= max
y

(yTb + max
z ≥ 0

zTC = lT − yTA

zTd) = max
y

(
yTb + min

Cx≥d
(lT − yTA)x

)

= max
y

f(y).

The last inequality holds as Cx ≥ d determines the convex hull of the inci-
dence vectors of 1-trees.

This translates the problem of minimizing lTx over (58.4) to finding the
maximum of the concave function f . We can find this maximum with a
subgradient method (cf. Chapter 24.3 of Schrijver [1986b]). The vector y
(the Lagrangean multipliers) can be used as a correction mechanism to urge
the 1-tree to have degree 2 at each vertex. That is, if we calculate f(y), and
see that the 1-tree F minimizing ly(F ) has degree more than 2 at a vertex
v, we can increase ly on δ(v) by decreasing yv. Similarly, if the degree is less
than 2, we can increase yv. This method was proposed by Held and Karp
[1970,1971].

The advantage of this approach is that one need not implement a lin-
ear programming algorithm with a constraint generation technique, but that
instead it suffices to apply the more elementary tools of finding a shortest
1-tree and updating y. More can be found in Jünger, Reinelt, and Rinaldi
[1995].

58.7. The 2-factor constraints

A strengthening of relaxation (58.4) is obtained by using the facts that each
Hamiltonian circuit is a 2-factor and that the convex hull of the incidence
vectors of 2-factors is known (Corollary 30.8a) (this idea goes back to Robin-
son [1949] for the asymmetric TSP and Bellmore and Malone [1971] for the
symmetric TSP, and was used for the symmetric TSP by Grötschel [1977a]
and Pulleyblank [1979b]):

(58.11) (i) 0 ≤ xe ≤ 1 for each edge e,
(ii) x(δ(v)) = 2 for each vertex v,
(iii) x(δ(U)) ≥ 2 for each U ⊆ V with ∅ �= U �= V ,
(iv) x(δ(U) \ F ) − x(F ) ≥ 1 − |F |

for U ⊆ V , F ⊆ δ(U), F matching, |F | odd.
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Since a minimum-length 2-factor can be found in polynomial time, the in-
equalities (i), (ii), and (iv) can be tested in polynomial time (cf. Theorem
32.5). Hence the minimum of lTx over (58.11) can be found in strongly pol-
ynomial time.

System (58.11) generally is not enough to determine the traveling sales-
man polytope, as can be seen, by taking the Petersen graph G = (V, E) and
xe := 2

3 for each edge e.
Grötschel and Padberg [1979b] showed that, for complete graphs, each

of the inequalities (58.11)(iv) determines a facet of the traveling salesman
polytope (if |F | ≥ 3). Boyd and Pulleyblank [1991] studied optimization over
(58.11).

58.8. The clique tree inequalities

Grötschel and Pulleyblank [1986] found a large class of facet-inducing inequal-
ities, the ‘clique tree inequalities’, that generalize the ‘comb inequalities’ (see
below), which generalize both the subtour elimination constraints (58.4)(iii)
and the 2-factor constraints (58.11)(iv). However, no polynomial-time test of
clique tree inequalities is known.

A clique tree inequality is given by:

(58.12)
r∑

i=1

x(δ(Hi)) +
s∑

j=1

x(δ(Tj)) ≥ 2r + 3s − 1,

where H1, . . . , Hr are pairwise disjoint subsets of V and T1, . . . , Ts are pair-
wise disjoint proper subsets of V such that

(58.13) (i) no Tj is contained in H1 ∪ · · · ∪ Hr,
(ii) each Hi intersects an odd number of the Tj ,
(iii) the intersection graph of H1, . . . , Hr, T1, . . . , Ts is a tree.

(Here, the intersection graph is the graph with vertices H1, . . . , Hr, T1, . . . , Ts,
two of them being adjacent if and only if they intersect. Each Hi is called a
handle and each Tj a tooth.)

Theorem 58.3. The clique tree inequality (58.12) is valid for the traveling
salesman polytope.

Proof. It suffices to show that each Hamiltonian circuit C satisfies:

(58.14)
r∑

i=1

dC(Hi) +
s∑

j=1

dC(Tj) ≥ 2r + 3s − 1.

We apply induction on r, the case r = 0 being easy (as it implies s = 1). For
each i = 1, . . . , r, let βi be the number of Tj intersecting Hi.
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If there is an i with dC(Hi) ≥ βi, say i = 1, then, by parity, dC(H1) ≥ β1+
1. The sets H2, . . . , Hr, T1, . . . , Ts fall apart into β1 collections of type (58.13),
to which we can apply induction. Adding up the inequalities obtained, we get:

(58.15)
r∑

i=2

dC(Hi) +
s∑

j=1

dC(Tj) ≥ 2(r − 1) + 3s − β1.

Then (58.14) follows, as dC(H1) ≥ β1 + 1.
So we can assume that dC(Hi) ≤ βi −1 for each i. For all i, j, let αi,j := 1

if Tj ∩ Hi �= ∅ and C has no edge connecting Tj ∩ Hi and Tj \ Hi, and let
αi,j := 0 otherwise. Then

(58.16) dC(Tj) ≥ 2 + 2
r∑

i=1

αi,j ,

since C restricted to Tj falls apart into at least 1 +
∑r

i=1 αi,j components
(using (58.13)(i)).

Moreover, for each i = 1, . . . , r, there exist at least βi − dC(Hi) indices j
with αi,j = 1. Hence

(58.17)
s∑

j=1

dC(Tj) ≥ 2s + 2
r∑

i=1

s∑

j=1

αi,j ≥ 2s + 2
r∑

i=1

(βi − dC(Hi))

≥ 2s + r +

r∑

i=1

(βi − dC(Hi)) = 2r + 3s − 1 −
r∑

i=1

dC(Hi),

since
∑r

i=1 βi = r + s − 1, as the intersection graph of the Hi and the Tj is
a tree with r + s vertices, and hence with r + s − 1 edges.

(58.17) implies (58.14).

Notes. Grötschel and Pulleyblank [1986] also showed that, if G is a complete graph,
then any clique tree inequality determines a facet if and only if each Hi intersects
at least three of the Tj .

The clique tree inequalities are not enough to determine the traveling salesman
polytope, as is shown again by taking the Petersen graph G = (V, E) and xe := 2

3

for all e ∈ E.
The special case r = 1 of the clique tree inequality is called a comb inequality,

and was introduced by Grötschel and Padberg [1979a] and proved to be facet-
inducing (if G is complete and s ≥ 3) by Grötschel and Padberg [1979b].

The special case of the comb inequality with |H1 ∩Tj | = 1 for all j = 1, . . . , s is
called a Chvátal comb inequality, introduced by Chvátal [1973b]. The special case of
the Chvátal comb inequalities with |Tj | = 2 for each j = 1, . . . , s gives the 2-factor
constraints (58.11)(iv) (since 2x(F ) +

∑
f∈F x(δ(f)) = 4|F |).

No polynomial-time algorithm is know to test the clique tree inequalities, or the
comb inequalities, or the Chvátal comb inequalities. Carr [1995,1997] showed that
for each constant K, there is a polynomial-time algorithm to test the clique tree
inequalities with at most K teeth and handles. (This can be done by first fixing
intersection points of the Hi ∩ Tj (if nonempty) and points in Tj \ (H1 ∪ · · · ∪ Hr),
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and next finding minimum-capacity cuts separating the appropriate sets of these
points (taking x as capacity function). We can make them disjoint where necessary
by the usual uncrossing techniques. As K is fixed, the number of vertices to be
chosen is also bounded by a polynomial in |V |.)

Letchford [2000] gave a polynomial-time algorithm for testing a superclass of the
comb inequalities in planar graphs. Related results are given in Carr [1996], Fleis-
cher and Tardos [1996,1999], Letchford and Lodi [2002], and Naddef and Thienel
[2002a,2002b].

58.8a. Christofides’ heuristic for the TSP

Christofides [1976] designed the following algorithm to find a short Hamiltonian
circuit in a complete graph G = (V, E) (generally not the shortest however). It
assumes a nonnegative length function l satisfying the following triangle inequality :

(58.18) l(uw) ≤ l(uv) + l(vw)

for all u, v, w ∈ V .
First determine a shortest spanning tree T (with the greedy algorithm). Next,

let U be the set of vertices that have odd degree in T . Find a shortest perfect
matching M on U . Now ET ∪ M forms a set of edges such that each vertex has
even degree. (If an edge occurs both in ET and in M , we take it as two parallel
edges.) So we can make a closed path C such that each edge in ET ∪M is traversed
exactly once. Then C traverses each vertex at least once. By shortcutting we obtain
a Hamiltonian circuit C′ with l(C′) ≤ l(C).

How far away is the length of C′ from the minimum length µ of a Hamiltonian
circuit?

Theorem 58.4. l(C′) ≤ 3
2
µ.

Proof. Let C′′ be a shortest Hamiltonian circuit. Then l(T ) ≤ l(C′′) = µ, since C′′

contains a spanning tree. Also, l(M) ≤ 1
2
l(C′′) = 1

2
µ, since we can split C′′ into

two collections of paths, each having U as set of end vertices. They give two perfect
matchings on U , of total length at most l(C′′) (by the triangle inequality (58.18)).
Hence one of these matchings has length at most 1

2
l(C′′). So l(M) ≤ 1

2
l(C′′) = 1

2
µ.

Combining the two inequalities, we obtain

(58.19) l(C′) ≤ l(C) = l(T ) + l(M) ≤ 3
2
µ,

which proves the theorem.

The factor 3
2

seems quite large, but it is the smallest factor for which a
polynomial-time method is known. Don’t forget moreover that it is a worst-case
bound, and that in practice (or on average) the algorithm might have a much
better performance.

Wolsey [1980] showed more strongly that (if l satisfies the triangle inequality)
the length of the tour found by Christofides’ algorithm, is at most 3

2
times the

lower bound based on the subtour elimination constraints (58.4). If all distances
are 1 or 2, Papadimitriou and Yannakakis [1993] gave a polynomial-time algorithm
with worst-case factor 7

6
. Hoogeveen [1991] analyzed the behaviour of Christofides’

heuristic when applied to finding shortest Hamiltonian paths.
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58.8b. Further notes on the symmetric traveling salesman problem

Adjacency of vertices of the symmetric traveling salesman polytope of a graph
G = (V, E) is co-NP-complete, as was shown by Papadimitriou [1978].

Norman [1955] remarked that the symmetric traveling salesman polytope of the
complete graph Kn has dimension 1

2
n(n−3) =

(
n
2

)
−n (if n ≥ 3). Proofs were given

by Maurras [1975] and Grötschel and Padberg [1979a].
The symmetric traveling salesman polytopes of Kn for small n were studied by

Norman [1955], Boyd and Cunningham [1991], Christof, Jünger, and Reinelt [1991]
(n = 8), and Naddef and Rinaldi [1992,1993]. Weinberger [1974a] showed that the
up hull of the symmetric traveling salesman polytope of K6 is not determined by
inequalities with 0, 1 coefficients only.

Rispoli and Cosares [1998] showed that the diameter of the symmetric traveling
salesman polytope of a complete graph is at most 4. Grötschel and Padberg [1985]
conjecture that it is at most 2. (See Sierksma and Tijssen [1992] and Sierksma,
Teunter, and Tijssen [1995] for supporting results.) Further work on the symmetric
traveling salesman polytope includes Naddef and Rinaldi [1993], Queyranne and
Wang [1993], Carr [2000], Cook and Dash [2001], and Naddef and Pochet [2001].

Rispoli [1998] showed that the monotonic diameter of the symmetric traveling
salesman polytope of Kn is ⌊n/2⌋ − 1 if n ≥ 6. (The monotonic diameter of a
polytope is the minimum λ such that for each linear function lTx and each pair of
vertices y, z such that lTx is maximized over P at z, there is a y − z path along
vertices and edges of the polytope such that the function lTx is monotonically
nondecreasing and such that the number of edges in the path is at most λ.)

Sahni and Gonzalez [1976] showed that for any constant c, unless P=NP, there
is no polynomial-time algorithm finding a Hamiltonian circuit of length at most c
times the minimum length of a Hamiltonian circuit. Johnson and Papadimitriou
[1985a] showed that unless P=NP there is no fully polynomial approximation scheme
for the Euclidean traveling salesman problem (that is, there is no algorithm that
gives for any ε > 0, a Hamiltonian circuit of length at most 1+ε times the minimum
length of a Hamiltonian circuit, with running time bounded by a polynomial in the
size of the problem and in 1/ε).

However, Arora [1996,1997,1998] showed that for the Euclidean TSP there is
a polynomial approximation scheme: there is an algorithm that gives, for any n
vertices in the plane and any ε > 0, a Hamiltonian circuit of length at most 1 + ε
times the minimum length of a Hamiltonian circuit, in nO(1/ε) time. The method
also applies to several other metrics. Mitchell [1999] noticed that the methods of
Mitchell [1996] imply similar results. Related work is reported in Trevisan [1997,
2000], Rao and Smith [1998], and Dumitrescu and Mitchell [2001]. Earlier work on
plane TSP includes Karp [1977], Steele [1981], Moran [1984], Karloff [1989], and
Clarkson [1991].

A polynomial-time approximation scheme for the traveling salesman problem
where the length is determined by the shortest path metric in a weighted planar
graph was given by Arora, Grigni, Karger, Klein, and Woloszyn [1998] (extending
the unweighted case proved by Grigni, Koutsoupias, and Papadimitriou [1995]).

Yannakakis [1988,1991] showed that the traveling salesman problem on Kn can-
not be expressed by a linear program of polynomial size that is invariant under the
symmetric group on Kn. (A similar negative result was proved by Yannakakis for
the perfect matching polytope.)
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More valid inequalities for the symmetric traveling salesman polytope were
given by Grötschel [1980a], Papadimitriou and Yannakakis [1984], Fleischmann
[1988], Boyd and Cunningham [1991], Naddef [1992], Naddef and Rinaldi [1992],
and Boyd, Cunningham, Queyranne, and Wang [1995].

Jünger, Reinelt, and Rinaldi [1995] gave a comparison of the values of vari-
ous relaxations for several instances of the symmetric traveling salesman problem.
Johnson, McGeoch, and Rothberg [1996] report on an ‘asymptotic experimental
analysis’ of the Held-Karp bound. A probabilistic analysis of the Held-Karp bound
for the Euclidean TSP was presented by Goemans and Bertsimas [1991].

A worst-case comparison of several classes of valid inequalities for the traveling
salesman polytope was given by Goemans [1995]. Several integer programming for-
mulations for the TSP were compared by Langevin, Soumis, and Desrosiers [1990].
Althaus and Mehlhorn [2000,2001] showed that the subtour elimination constraints
solve traveling salesman problems coming from curve reconstruction, under appro-
priate sampling conditions.

Semidefinite programming was applied to the symmetric TSP by Cvetković,
Čangalović, and Kovačević-Vujčić [1999a,1999b] and Iyengar and Çezik [2001].

Let G = (V, E) be an undirected graph. The symmetric traveling salesman
polytope of G is a face of the convex hull of all integer solutions of

(58.20) (i) xe ≥ 0 for each e ∈ E,
(ii) x(δ(U)) ≥ 2 for each U ⊆ V with ∅ �= U �= V .

Fonlupt and Naddef [1992] characterized for which graphs G each vertex x of (58.20)
is integer and has x(δ(v)) ≡ 0 (mod 2) for each vertex v of G.

Grötschel [1980a] studied the monotone traveling salesman polytope of a graph,
which is the convex hull of the incidence vectors of subsets of Hamiltonian circuits.

Cornuéjols, Fonlupt, and Naddef [1985] considered the related problem of find-
ing a shortest tour in a graph such that each vertex is traversed at least once, and the
related polytope (cf. Naddef and Rinaldi [1991]). Further and related studies (also
on shortest k-connected spanning subgraphs, on the ‘Steiner network problem’,
and on the (equivalent) ‘survivable network design problem’) include Bienstock,
Brickell, and Monma [1990], Grötschel and Monma [1990], Monma, Munson, and
Pulleyblank [1990], Kelsen and Ramachandran [1991,1995], Barahona and Mahjoub
[1992,1995], Chopra [1992,1994], Goemans and Williamson [1992,1995a], Grötschel,
Monma, and Stoer [1992], Han, Kelsen, Ramachandran, and Tarjan [1992,1995],
Khuller and Vishkin [1992,1994], Nagamochi and Ibaraki [1992a], Cheriyan, Kao,
and Thurimella [1993], Gabow, Goemans, and Williamson [1993,1998], Garg, San-
tosh, and Singla [1993], Naddef and Rinaldi [1993], Queyranne and Wang [1993],
Williamson, Goemans, Mihail, and Vazirani [1993,1995], Aggarwal and Garg [1994],
Goemans, Goldberg, Plotkin, Shmoys, Tardos, and Williamson [1994], Khuller,
Raghavachari, and Young [1994,1995a,1996], Mahjoub [1994,1997], Agrawal, Klein,
and Ravi [1995], Khuller and Raghavachari [1995], Ravi and Williamson [1995,
1997], Cheriyan and Thurimella [1996a,2000], Didi Biha and Mahjoub [1996], Fer-
nandes [1997,1998], Carr and Ravi [1998], Cheriyan, Sebő, and Szigeti [1998,2001],
Auletta, Dinitz, Nutov, and Parente [1999], Czumaj and Lingas [1998,1999], Jain
[1998,2001], Fonlupt and Mahjoub [1999], Fleischer, Jain, and Williamson [2001],
Cheriyan, Vempala, and Vetta [2002], and Gabow [2002]. This problem relates to
connectivity augmentation — see Chapter 63.
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58.9. The asymmetric traveling salesman problem

We next consider the asymmetric traveling salesman problem. Let D = (V, A)
be a directed graph. The (asymmetric) traveling salesman polytope of D is
the convex hull of the incidence vectors (in RA) of Hamiltonian circuits in
D. Again, since the asymmetric traveling salesman problem is NP-complete,
we know that unless NP=co-NP there is no system of linear inequalities that
describes the traveling salesman polytope of a digraph such that their validity
can be certified in polynomial time.

Again, we can obtain lower bounds on the minimum length of a Hamil-
tonian circuit in D by including the traveling salesman polytope in a larger
polytope (a relaxation) over which lTx can be minimized in polynomial time.
The analogue of relaxation (58.4) for the directed case is:

(58.21) (i) 0 ≤ xa ≤ 1 for a ∈ A,
(ii) x(δin(v)) = 1 for v ∈ V ,
(iii) x(δout(v)) = 1 for v ∈ V ,
(iv) x(δin(U)) ≥ 1 for U ⊆ V with ∅ �= U �= V .

With the ellipsoid method, the minimum of lTx over (58.21) can be found in
strongly polynomial time. However, no combinatorial polynomial-time algo-
rithm is known. (The relaxation (i), (ii), (iii) is due to Robinson [1949].)

Grötschel and Padberg [1977] showed that each inequality (58.21)(iv) de-
termines a facet of the traveling salesman polytope of the complete directed
graph, if 2 ≤ |U | ≤ |U | − 2. (This result was announced in Grötschel and
Padberg [1975].)

(58.21) is not enough to determine the traveling salesman polytope, even
not for digraphs on 4 vertices only. This is shown by Figure 58.1. Another
example is obtained from the Petersen graph, by replacing each edge by two
oppositely oriented edges and putting value 1

3 on each arc.

Figure 58.1

Setting xa := 1
2

for each arc a, we have a vector x satisfying (58.21)
but not belonging to the traveling salesman polytope.
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58.10. Directed 1-trees

As in the undirected case, Held and Karp [1970] showed that the minimum
of lTx over (58.21) can be obtained as follows.

Let D = (V, A) be a digraph and fix a vertex 1 of D. Call a subset F of A
a directed 1-tree if F contains exactly one arc, a say, entering 1 and if F \{a}
is a directed 1-tree such that exactly one arc leaves 1.7 Each Hamiltonian
circuit is a directed 1-tree, and a minimum-length directed 1-tree can be
found in strongly polynomial time (by adapting Theorem 52.1).

From Corollary 52.3b one may derive that the convex hull of the incidence
vectors of directed 1-trees is determined by:

(58.22) (i) 0 ≤ xa ≤ 1 for a ∈ A,
(ii) x(δin(v)) = 1 for each v ∈ V ,
(iii) x(δout(1)) = 1,
(iv) x(δin(U)) ≥ 1 for each nonempty U ⊆ V \ {1}.

Again, a Lagrangean relaxation approach can find the minimum of lTx over
(58.21), for l ∈ RA. For any y ∈ RV define

(58.23) ly(a) := l(a) − y(u)

for any arc a = (u, v) ∈ A, and define

(58.24) f(y) := min
F

ly(F ) + y(V ),

where F ranges over directed 1-trees.
Then the minimum of lTx over (58.21) is equal to the maximum of f(y)

over y ∈ RV . The proof is similar to that of Theorem 58.2.

58.10a. An integer programming formulation

The integer solutions of (58.21) are precisely the incidence vectors of Hamiltonian
circuits, so it gives an integer programming formulation of the asymmetric traveling
salesman problem. The system has exponentially many constraints. A.W. Tucker
showed in 1960 (cf. Miller, Tucker, and Zemlin [1960]) that the asymmetric TSP
can be formulated as the following integer programming problem, of polynomial
size only. Set n := |V |, fix a vertex v0 of D, and minimize lTx where x ∈ ZA and
z ∈ RV are such that

(58.25) (i) xa ≥ 0 for a ∈ A,

(ii) x(δin(v)) = 1 for v ∈ V ,

(ii) x(δout(v)) = 1 for v ∈ V ,
(iv) zu − zv + nxa ≤ n − 1 for a = (u, v) ∈ A with u, v �= v0.

7 Held and Karp used the term 1-arborescence for a directed 1-tree. To avoid confusion
with r-arborescence (a slightly different notion), we have chosen for directed 1-tree.
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The conditions (i), (ii), and (iii) and the integrality of x guarantee that x is the
incidence vector of a set C of arcs forming directed circuits partitioning V . Then
condition (iv) says the following. For any arc a = (u, v) not incident with v0,
one has: if a belongs to C, then zu ≤ zv − 1; if a does not belong to C, then
zu − zv ≤ n − 1. This implies that C contains no directed circuit disjoint from v0.
Hence C is a Hamiltonian circuit.

Conversely, for any incidence vector x of a Hamiltonian circuit, one can find
z ∈ RV satisfying (58.25).

Unfortunately, the linear programming bound one may derive from (58.25) is
generally much worse than that obtained from (58.21).

58.10b. Further notes on the asymmetric traveling salesman

problem

Bartels and Bartels [1989] gave a system of inequalities determining the traveling
salesman polytope of the complete directed graph on 5 vertices (correcting Heller
[1953a] and Kuhn [1955a]).

Padberg and Rao [1974] showed that the diameter of the asymmetric traveling
salesman polytope of the complete directed graph on n vertices is equal to 1 if
3 ≤ n ≤ 5, and to 2 if n ≥ 6. Rispoli [1998] showed that the monotonic diameter
of the asymmetric traveling salesman polytope of the complete directed graph on
n vertices equals ⌊n/3⌋ if n ≥ 3. (For the definition of monotonic diameter, see
Section 58.8b.)

Adjacency of vertices of the asymmetric traveling salesman polytope of a graph
G = (V, E) is co-NP-complete, as was shown by Papadimitriou [1978]8. The number
of edges of the asymmetric traveling salesman polytope was estimated by Sarangara-
jan [1997].

H.W. Kuhn (cf. Heller [1953a], Kuhn [1955a]) claimed that the dimension of
the asymmetric traveling salesman polytope of the complete directed graph on n
vertices is equal to n2 −3n+1 (if n ≥ 3). A proof of this was supplied by Grötschel
and Padberg [1977]. Further work on this polytope is reported in Kuhn [1991].

More valid inequalities for the asymmetric traveling salesman polytope were
given by Grötschel and Padberg [1977], Grötschel and Wakabayashi [1981a,1981b],
Balas [1989], Fischetti [1991,1992,1995], Balas and Fischetti [1993,1999], and Quey-
ranne and Wang [1995].

A polytope generalizing the directed 1-tree polytope and the asymmetric trav-
eling salesman polytope, the ‘fixed-outdegree 1-arborescence polytope’, was studied
by Balas and Fischetti [1992]. Another polyhedron related to the asymmetric trav-
eling salesman polytope was studied by Chopra and Rinaldi [1996].

Billera and Sarangarajan [1996] showed that each 0,1 polytope is affinely equiv-
alent to the traveling salesman polytope of some directed graph.

Frieze, Karp, and Reed [1992,1995] investigated the tightness of the assignment
bound (determined by (58.21)(i)-(iii)). Williamson [1992] compared the Held-Karp
lower bound for the asymmetric TSP with the assignment bound.

Carr and Vempala [2000] related the relative error of the asymmetric TSP bound
obtained from (58.21) to that of the symmetric TSP bound obtained from (58.4).

8 Murty [1969] gave a characterization of adjacency that was shown to be false by Rao
[1976].
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Padberg and Sung [1991] compared different formulations of the asymmetric
traveling salesman problem.

An analogue of Christofides’ algorithm (Section 58.8a) for the asymmetric case
is not known: no factor c and polynomial-time algorithm are known that give a
Hamiltonian circuit in a digraph of length at most c times the length of a shortest
Hamiltonian circuit, even not if the lengths satisfy the triangle inequality.

58.11. Further notes on the traveling salesman problem

58.11a. Further notes

There is an abundance of papers presenting algorithms, heuristics, and computa-
tional results for the traveling salesman problem. We give a short selection of it.

Milestones in solving large-scale symmetric traveling salesman problems were
achieved by Dantzig, Fulkerson, and Johnson [1954b] (42 cities), Held and Karp
[1962] (48 cities), Karg and Thompson [1964] (57 cities), Held and Karp [1971] (64
cities), Helbig Hansen and Krarup [1974] (80 cities), Camerini, Fratta, and Maffioli
[1975] (100 cities), Grötschel [1980b] (120 cities), Crowder and Padberg [1980] and
Padberg and Hong [1980] (318 cities), Padberg and Rinaldi [1987] (532 cities),
Grötschel and Holland [1991] (666 cities), Padberg and Rinaldi [1990b,1991] (2392
cities), Applegate, Bixby, Chvátal, and Cook [1995] (7397 cities), and Applegate,
Bixby, Chvátal, and Cook [1998] (13,509 cities). Although the complexity of a TSP
instance is not simply a function of the number of cities, these papers represent
substantial steps forward in developing computational techniques for the traveling
salesman problem.

Dynamic programming approaches were proposed by Bellman [1962] and Held
and Karp [1962]. Several methods were compared by computer experiments by
Lin [1965]. The Lagrangean relaxation technique was introduced by Christofides
[1970] and Held and Karp [1970,1971]. The Held-Karp method was implemented
and extended by Helbig Hansen and Krarup [1974], Smith and Thompson [1977],
and Volgenant and Jonker [1982,1983]. Related work includes Bazaraa and Goode
[1977].

Miliotis [1976,1978] described a constraint generation approach, mixing sub-
tour elimination constraints with Gomory cuts or with branching. Focusing on
the asymmetric TSP are Little, Murty, Sweeney, and Karel [1963] (first reports
on a branch-and-bound method), Bellmore and Malone [1971] (on the effect of
the subtour elimination constraints), (cf. Garfinkel [1973], Smith, Srinivasan, and
Thompson [1977], Lenstra and Rinnooy Kan [1978], Carpaneto and Toth [1980b],
Zhang [1997a]), Balas and Christofides [1981] (a Lagrangean approach based on
the assignment problem, solving randomly generated asymmetric TSP’s with up to
325 cities), Miller and Pekny [1989,1991], Pekny and Miller [1992], and Carpaneto,
Dell’Amico, and Toth [1995].

Further bounds for the symmetric and asymmetric TSP were given by Christo-
fides [1972], Carpaneto, Fischetti, and Toth [1989] and Fischetti and Toth [1992].

Important heuristics (algorithms that yield a tour that is expected to be short,
but not necessarily shortest) and local search techniques include the nearest neigh-
bour heuristic: always go to the closest city not yet visited (Menger [1932a], Gavett
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[1965], Bellmore and Nemhauser [1968]), the Lin-Kernighan heuristic: start with
a Hamiltonian circuit and iteratively replace a limited number of edges by other
edges as long as it makes the circuit shorter (Lin and Kernighan [1973]), and Chris-
tofides’ heuristic discussed in Section 58.8a. From the further work on, and analyses
of, heuristics and local search techniques we mention Christofides and Eilon [1972],
Rosenkrantz, Stearns, and Lewis [1977], Cornuéjols and Nemhauser [1978], Frieze
[1979], d’Atri [1980], Bentley and Saxe [1980], Ong and Moore [1984], Golden and
Stewart [1985] (survey), Johnson and Papadimitriou [1985b] (survey), Karp and
Steele [1985] (survey), Johnson, Papadimitriou, and Yannakakis [1988], Kern [1989],
Bentley [1990,1992], Papadimitriou [1992] (showing that unless P=NP, any local
search method taking polynomial time per iteration, can lead to a locally optimum
tour that is arbitrarily far from the optimum), Fredman, Johnson, McGeoch, and
Ostheimer [1993,1995], Chandra, Karloff, and Tovey [1994,1999], Tassiulas [1997],
and Frieze and Sorkin [2001]. A survey and comparison of heuristics and local search
techniques for the traveling salesman problem was given by Johnson and McGeoch
[1997].

Polynomial-time solvable special cases of the traveling salesman problem were
given by Gilmore and Gomory [1964a,1964b], Gilmore [1966], Lawler [1971a], Sys�lo
[1973], Cornuéjols, Naddef, and Pulleyblank [1983], and Hartvigsen and Pulleyblank
[1994]. Surveys of such problems were given by Gilmore, Lawler, and Shmoys [1985]
and Burkard, Dĕıneko, van Dal, van der Veen, and Woeginger [1998].

The standard reference book on the traveling salesman problem, covering a
wide variety of aspects, was edited by Lawler, Lenstra, Rinnooy Kan, and Shmoys
[1985]. In this book, Grötschel and Padberg [1985] considered the traveling salesman
polytope, Padberg and Grötschel [1985] computation with the help of polyhedra,
Johnson and Papadimitriou [1985a] the computational complexity of the TSP, and
Balas and Toth [1985] branch-and-bound method methods. Computational methods
and results are surveyed in the book by Reinelt [1994].

Survey articles on the traveling salesman problem were given by Gomory [1966],
Bellmore and Nemhauser [1968], Gupta [1968], Tyagi [1968], Burkard [1979], Chris-
tofides [1979], Grötschel [1982] (also on other NP-complete problems), and Johnson
and McGeoch [1997] (local search techniques). Introductions are given in the books
by Minieka [1978], Sys�lo, Deo, and Kowalik [1983], Cook, Cunningham, Pulley-
blank, and Schrijver [1998], and Korte and Vygen [2000]. An insightful survey of
the computational methods for the symmetric TSP was given by Jünger, Reinelt,
and Rinaldi [1995]. A framework for guaranteeing quality of TSP solutions was
presented by Jünger, Thienel, and Reinelt [1994]. An early survey on branch-and-
bound method techniques was given by Lawler and Wood [1966].

Barvinok, Johnson, Woeginger, and Woodroofe [1998] showed that there is a
polynomial-time algorithm to find a longest Hamiltonian circuit in a complete graph
with length determined by a polyhedral norm. Related work was done by Barvinok
[1996]. More on the longest Hamiltonian circuit can be found in Fisher, Nemhauser,
and Wolsey [1979], Serdyukov [1984], Kostochka and Serdyukov [1985], Kosaraju,
Park, and Stein [1994], Hassin and Rubinstein [2000,2001], and Bläser [2002].

58.11b. Historical notes on the traveling salesman problem

Mathematically, the traveling salesman problem is related to, in fact generalizes, the
question for a Hamiltonian circuit in a graph. This question goes back to Kirkman



Section 58.11b. Historical notes on the traveling salesman problem 997

[1856] and Hamilton [1856,1858] and was also studied by Kowalewski [1917b,1917a]
— see Biggs, Lloyd, and Wilson [1976]. We restrict our survey to the traveling
salesman problem in its general form.

The mathematical roots of the traveling salesman problem are obscure. Dantzig,
Fulkerson, and Johnson [1954a] say:

It appears to have been discussed informally among mathematicians at mathe-
matics meetings for many years.

A 1832 manual

The traveling salesman problem has a natural interpretation, and Müller-Merbach
[1983] detected that the problem was formulated in a 1832 manual for the successful
traveling salesman, Der Handlungsreisende — wie er sein soll und was er zu thun
hat, um Aufträge zu erhalten und eines glücklichen Erfolgs in seinen Geschäften
gewiß zu sein — Von einem alten Commis-Voyageur9 (‘ein alter Commis-Voyageur’
[1832]). (Whereas the politically correct nowadays prefer to speak of the traveling
salesperson problem, the manual presumes that the ‘Handlungsreisende’ is male,
and it warns about the risks of women in or out of business.)

The booklet contains no mathematics, and formulates the problem as follows:

Die Geschäfte führen die Handlungsreisenden bald hier, bald dort hin, und es
lassen sich nicht füglich Reisetouren angeben, die für alle vorkommende Fälle
passend sind; aber es kann durch eine zweckmäßige Wahl und Eintheilung der
Tour, manchmal so viel Zeit gewonnen werden, daß wir es nicht glauben umgehen
zu dürfen, auch hierüber einige Vorschriften zu geben. Ein Jeder möge so viel
davon benutzen, als er es seinem Zwecke für dienlich hält; so viel glauben wir aber
davon versichern zu dürfen, daß es nicht wohl thunlich sein wird, die Touren durch
Deutschland in Absicht der Entfernungen und, worauf der Reisende hauptsächlich
zu sehen hat, des Hin- und Herreisens, mit mehr Oekonomie einzurichten. Die
Hauptsache besteht immer darin: so viele Orte wie möglich mitzunehmen, ohne
den nämlichen Ort zweimal berühren zu müssen.10

The manual suggests five tours through Germany (one of them partly through
Switzerland). In Figure 58.2 we compare one of the tours with a shortest tour, found
with ‘modern’ methods. (Most other tours given in the manual do not qualify for
‘die Hauptsache’ as they contain subtours, so that some places are visited twice.)

Menger’s Botenproblem 1930

K. Menger seems to be the first mathematician to have written about the traveling
salesman problem. The root of his interest is given in his paper Menger [1928c]. In

9 ‘The traveling salesman — how he should be and what he has to do, to obtain orders
and to be sure of a happy success in his business — by an old traveling salesman’

10 Business brings the traveling salesman now here, then there, and no travel routes can
be properly indicated that are suitable for all cases occurring; but sometimes, by an
appropriate choice and arrangement of the tour, so much time can be gained, that we
don’t think we may avoid giving some rules also on this. Everybody may use that much
of it, as he takes it for useful for his goal; so much of it however we think we may
assure, that it will not be well feasible to arrange the tours through Germany with
more economy in view of the distances and, which the traveler mainly has to consider,
of the trip back and forth. The main point always consists of visiting as many places as
possible, without having to touch the same place twice.
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Figure 58.2

A tour along 45 German cities, as described in the 1832 traveling sales-
man manual, is given by the unbroken (bold and thin) lines (1285 km).
A shortest tour is given by the unbroken bold and by the dashed lines
(1248 km). We have taken geodesic distances — taking local conditions
into account, the 1832 tour might be optimum.

this, he studies the length l(C) of a simple curve C in a metric space S, which is,
by definition,

(58.26) l(C) := sup

n−1∑

i=1

dist(xi, xi+1),

where the supremum ranges over all choices of x1, . . . , xn on C in the order deter-
mined by C. What Menger showed is that we may relax this to finite subsets X of
C and minimize over all possible orderings of X. To this end he defined, for any
finite subset X of a metric space, λ(X) to be the shortest length of a path through
X (in graph terminology: a Hamiltonian path), and he showed that

(58.27) l(C) = sup
X

λ(X),

where the supremum ranges over all finite subsets X of C. It amounts to showing
that for each ε > 0 there is a finite subset X of C such that λ(X) ≥ l(C) − ε.

Menger [1929a] sharpened this to:

(58.28) l(C) = sup
X

κ(X),

where again the supremum ranges over all finite subsets X of C, and where κ(X)
denotes the minimum length of a spanning tree on X.

These results were reported also in Menger [1930]. In a number of other papers,
Menger [1928b,1929b,1929a] gave related results on these new characterizations of
the length function.

The parameter λ(X) clearly is close to the practical interpretation of the trav-
eling salesman problem. This relation was made explicit by Menger in the session
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of 5 February 1930 of his mathematisches Kolloquium in Vienna. Menger [1931a,
1932a] reported that he first asked if a further relaxation is possible by replacing
κ(X) by the minimum length of an (in current terminology) Steiner tree connect-
ing X — a spanning tree on a superset of X in S. (So Menger toured along some
basic combinatorial optimization problems.) This problem was solved for Euclidean
spaces by Mimura [1933].

Next Menger posed the traveling salesman problem, as follows:

Wir bezeichnen als Botenproblem (weil diese Frage in der Praxis von jedem
Postboten, übrigens auch von vielen Reisenden zu lösen ist) die Aufgabe, für
endlichviele Punkte, deren paarweise Abstände bekannt sind, den kürzesten die
Punkte verbindenden Weg zu finden. Dieses Problem ist natürlich stets durch
endlichviele Versuche lösbar. Regeln, welche die Anzahl der Versuche unter die
Anzahl der Permutationen der gegebenen Punkte herunterdrücken würden, sind
nicht bekannt. Die Regel, man solle vom Ausgangspunkt erst zum nächstgelegenen
Punkt, dann zu dem diesem nächstgelegenen Punkt gehen usw., liefert im allge-
meinen nicht den kürzesten Weg.11

So Menger asked for a shortest Hamiltonian path through the given points. He was
aware of the complexity issue in the traveling salesman problem, and he realized
that the now well-known nearest neighbour heuristic might not give an optimum
solution.

Harvard, Princeton 1930-1934

Menger spent the period September 1930-February 1931 as visiting lecturer at Har-
vard University. In one of his seminar talks at Harvard, Menger presented his results
(quoted above) on lengths of arcs and shortest paths through finite sets of points.
According to Menger [1931b], a suggestion related to this was given by Hassler
Whitney, who at that time did his Ph.D. research in graph theory at Harvard. This
paper of Menger however does not mention if the practical interpretation was given
in the seminar talk.

The year after, 1931-1932, Whitney was a National Research Council Fellow
at Princeton University, where he gave a number of seminar talks. In a seminar
talk, he mentioned the problem of finding the shortest route along the 48 States of
America.

There are some uncertainties in this story. It is not sure if Whitney spoke about
the 48 States problem during his 1931-1932 seminar talks (which talks he did give),
or later, in 1934, as is said by Flood [1956] in his article on the traveling salesman
problem:

This problem was posed, in 1934, by Hassler Whitney in a seminar talk at Prince-
ton University.

That memory can be shaky might be indicated by the following two quotes. Dantzig,
Fulkerson, and Johnson [1954a] remark:

11 We denote by messenger problem (since in practice this question should be solved by
each postman, anyway also by many travelers) the task to find, for finitely many points
whose pairwise distances are known, the shortest route connecting the points. Of course,
this problem is solvable by finitely many trials. Rules which would push the number of
trials below the number of permutations of the given points, are not known. The rule
that one first should go from the starting point to the closest point, then to the point
closest to this, etc., in general does not yield the shortest route.
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Both Flood and A.W. Tucker (Princeton University) recall that they heard about
the problem first in a seminar talk by Hassler Whitney at Princeton in 1934
(although Whitney, recently queried, does not seem to recall the problem).

However, when asked by David Shmoys, Tucker replied in a letter of 17 February
1983 (see Hoffman and Wolfe [1985]):

I cannot confirm or deny the story that I heard of the TSP from Hassler Whitney.
If I did (as Flood says), it would have occurred in 1931-32, the first year of the old
Fine Hall (now Jones Hall). That year Whitney was a postdoctoral fellow at Fine
Hall working on Graph Theory, especially planarity and other offshoots of the
4-color problem. ... I was finishing my thesis with Lefschetz on n-manifolds and
Merrill Flood was a first year graduate student. The Fine Hall Common Room
was a very lively place — 24 hours a day.

(Whitney finished his Ph.D. at Harvard University in 1932.)
Another uncertainty is in which form Whitney has posed the problem. That he

might have focused on finding a shortest route along the 48 states in the U.S.A., is
suggested by the reference by Flood, in an interview on 14 May 1984 with Tucker
[1984a], to the problem as the ‘48 States Problem of Hassler Whitney’. In this
respect Flood also remarked:

I don’t know who coined the peppier name ‘Traveling Salesman Problem’ for
Whitney’s problem, but that name certainly has caught on, and the problem has
turned out to be of very fundamental importance.

TSP, Hamiltonian paths, and school bus routing

Flood [1956] remembered that in 1937, A.W. Tucker pointed out to him the con-
nections of the TSP with Hamiltonian games and Hamiltonian paths in graphs:

I am indebted to A.W. Tucker for calling these connections to my attention, in
1937, when I was struggling with the problem in connection with a schoolbus
routing study in New Jersey.

In the following quote from the interview by Tucker [1984a], Flood referred to school
bus routing in a different state (West Virginia), and he mentioned the involvement
in the TSP of Koopmans, who spent 1940-1941 at the Local Government Surveys
Section of Princeton University (‘the Princeton Surveys’):

Koopmans first became interested in the “48 States Problem” of Hassler Whitney
when he was with me in the Princeton Surveys, as I tried to solve the problem
in connection with the work by Bob Singleton and me on school bus routing for
the State of West Virginia.

1940

In 1940, some papers appeared that study the traveling salesman problem, in a
different context. They seem to be the first containing mathematical results on the
problem.

In the American continuation of Menger’s mathematisches Kolloquium, Menger
[1940] returned to the question of the shortest path through a given set of points in
a metric space, followed by investigations of Milgram [1940] on the shortest Jordan
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curve that covers a given, not necessarily finite, set of points in a metric space. As
the set may be infinite, a shortest curve need not exist.

Fejes [1940] investigated the problem of a shortest curve through n points in
the unit square. In consequence of this, Verblunsky [1951] showed that its length is
less than 2 +

√
2.8n. Later work in this direction includes Few [1955], Beardwood,

Halton, and Hammersley [1959], Steele [1981], Moran [1984], Karloff [1989], and
Goddyn [1990].

Lower bounds on the expected value of a shortest path through n random points
in the plane were studied by Mahalanobis [1940] in order to estimate the cost of a
sample survey of the acreage under jute in Bengal. This survey took place in 1938
and one of the major costs in carrying out the survey was the transportation of men
and equipment from one survey point to the next. He estimated (without proof)
the minimum length of a tour along n random points in the plane, for Euclidean
distance:

It is also easy to see in a general way how the journey time is likely to behave.
Let us suppose that n sampling units are scattered at random within any given
area ; and let us assume that we may treat each such sample unit as a geometrical
point. We may also assume that arrangements will usually be made to move from
one sample point to another in such a way as to keep the total distance travelled
as small as possible ; that is, we may assume that the path traversed in going
from one sample point to another will follow a straight line. In this case it is
easy to see that the mathematical expectation of the total length of the path
travelled in moving from one sample point to another will be (

√
n − 1/

√
n). The

cost of the journey from sample to sample will therefore be roughly proportional
to (

√
n − 1/

√
n). When n is large, that is, when we consider a sufficiently large

area, we may expect that the time required for moving from sample to sample
will be roughly proportional to

√
n, where n is the total number of samples in

the given area. If we consider the journey time per sq. mile, it will be roughly
proportional to

√
y, where y is the density of number of sample units per sq. mile.

This research was continued by Jessen [1942], who estimated empirically a similar
result for l1-distance (Manhattan distance), in a statistical investigation of a sample
survey for obtaining farm facts in Iowa:

If a route connecting y points located at random in a fixed area is minimized, the
total distance, D, of that route is12

D = d

(
y − 1
√

y

)

where d is a constant.
This relationship is based upon the assumption that points are connected by direct
routes. In Iowa the road system is a quite regular network of mile square mesh.
There are very few diagonal roads, therefore, routes between points resemble
those taken on a checkerboard. A test wherein several sets of different members
of points were located at random on an Iowa county road map, and the minimum
distance of travel from a given point on the border of the county through all the
points and to an end point (the county border nearest the last point on route),
revealed that

D = d
√

y

works well. Here y is the number of randomized points (border points not in-
cluded). This is of great aid in setting up a cost function.

12 at this point, Jessen referred in a footnote to Mahalanobis [1940].



1002 Chapter 58. The traveling salesman problem

Marks [1948] gave a proof of Mahalanobis’ bound. In fact he showed that
√

1
2
A(

√
n−

1/
√

n) is a lower bound, where A is the area of the region. Ghosh [1949] showed
that this bound asymptotically is close to the expected value, by giving a heuris-
tic for finding a tour, yielding an upper bound of 1.27

√
An. He also observed the

complexity of the problem:

After locating the n random points in a map of the region, it is very difficult to
find out actually the shortest path connecting the points, unless the number n is
very small, which is seldom the case for a large-scale survey.

TSP, transportation, and assignment

As is the case for several other combinatorial optimization problems, the RAND
Corporation in Santa Monica, California, played an important role in the research
on the TSP. Hoffman and Wolfe [1985] write that

John Williams urged Flood in 1948 to popularize the TSP at the RAND Corpo-
ration, at least partly motivated by the purpose of creating intellectual challenges
for models outside the theory of games. In fact, a prize was offered for a significant
theorem bearing on the TSP. There is no doubt that the reputation and author-
ity of RAND, which quickly became the intellectual center of much of operations
research theory, amplified Flood’s advertizing.

(John D. Williams was head of the Mathematics Division of RAND at that time.)
At RAND, researchers considered the idea of transferring the successful methods

for the transportation problem to the traveling salesman problem. Flood [1956]
mentioned that this idea was brought to his attention by Koopmans in 1948. In the
interview with Tucker [1984a], Flood remembered:

George Dantzig and Tjallings Koopmans met with me in 1948 in Washington,
D.C., at the meeting of the International Statistical Institute, to tell me excitedly
of their work on what is now known as the linear programming problem and with
Tjallings speculating that there was a significant connection with the Traveling
Salesman Problem.

The issue was taken up in a RAND Report by Julia Robinson [1949], who, in
an ‘unsuccessful attempt’ to solve the traveling salesman problem, considered, as a
relaxation, the assignment problem, for which she found a cycle reduction method.
The relation is that the assignment problem asks for an optimum permutation, and
the TSP for an optimum cyclic permutation.

Robinson’s RAND report might be the earliest mathematical reference using
the term ‘traveling salesman problem’:

The purpose of this note is to give a method for solving a problem related to the
traveling salesman problem. One formulation is to find the shortest route for a
salesman starting from Washington, visiting all the state capitals and then return-
ing to Washington. More generally, to find the shortest closed curve containing n
given points in the plane.

Flood wrote (in a letter of 17 May 1983 to E.L. Lawler) that Robinson’s report
stimulated several discussions on the TSP of him with his research assistant at
RAND, D.R. Fulkerson, during 1950-195213.

It was noted by Beckmann and Koopmans [1952] that the TSP can be formu-
lated as a quadratic assignment problem, for which however no fast methods are
known.

13 Fulkerson started at RAND only in March 1951.
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Dantzig, Fulkerson, Johnson 1954

Fundamental progress on the traveling salesman was made in a seminal paper by
the RAND researchers Dantzig, Fulkerson, and Johnson [1954a] — according to
Hoffman and Wolfe [1985] ‘one of the principal events in the history of combinatorial
optimization’. The paper introduced several new methods for solving the traveling
salesman problem that are now basic in combinatorial optimization. In particular,
it shows the importance of cutting planes for combinatorial optimization.

While the subtour elimination constraints (58.4)(iii) are enough to cut off the
noncyclic permutation matrices from the polytope of doubly stochastic matrices
(determined by (58.4)(i) and (ii)), they generally do not yield all facets of the
traveling salesman polytope, as was observed by Heller [1953a]: there exist doubly
stochastic matrices, of any order n ≥ 5, that satisfy (58.4) but are not a convex
combination of cyclic permutation matrices.

The subtour elimination constraints can nevertheless be useful for the TSP,
since it gives a lower bound for the optimum tour length if we minimize over the
constraints (58.4). This lower bound can be calculated with the simplex method,
taking the (exponentially many) constraints (58.4)(iii) as cutting planes that can
be added during the process when needed. In this way, Dantzig, Fulkerson, and
Johnson were able to find the shortest tour along cities chosen in the 48 U.S. states
and Washington, D.C. Incidentally, this is close to the problem mentioned by Julia
Robinson in 1949 (and maybe also by Whitney in the 1930s).

The Dantzig-Fulkerson-Johnson paper gives no algorithm, but rather gives a
tour and proves its optimality with the help of the subtour elimination constraints.
This work forms the basis for most of the later work on large-scale traveling sales-
man problems.

Early studies of the traveling salesman polytope were reported by Heller
[1953a,1953b,1955a,1955b,1956a,1956b], Kuhn [1955a], Norman [1955], and Ro-
backer [1955b], who also made computational studies of the probability that a
random instance of the traveling salesman problem needs the subtour elimination
constraints (58.4)(iii) (cf. Kuhn [1991]). This made Flood [1956] remark on the
intrinsic complexity of the traveling salesman problem:

Very recent mathematical work on the traveling-salesman problem by I. Heller,
H.W. Kuhn, and others indicates that the problem is fundamentally complex.
It seems very likely that quite a different approach from any yet used may be
required for succesful treatment of the problem. In fact, there may well be no
general method for treating the problem and impossibility results would also be
valuable.

Flood mentioned a number of other applications of the traveling salesman problem,
in particular in machine scheduling, brought to his attention in a seminar talk at
Columbia University in 1954 by George Feeney.

Other work on the traveling salesman problem in the 1950s was done by Mor-
ton and Land [1955] (a linear programming approach with a 3-exchange heuristic),
Barachet [1957] (a graphic solution method), Bock [1958], Croes [1958] (a heuris-
tic), and Rossman and Twery [1958]. In a reaction to Barachet’s paper, Dantzig,
Fulkerson, and Johnson [1959] showed that their method yields the optimality of
Barachet’s (heuristically found) solution.



1004 Chapter 58. The traveling salesman problem

In 1962, the soap company Proctor and Gamble run a contest, requiring to
solve a traveling salesman problem along 33 U.S. cities. Little, Murty, Sweeney,
and Karel [1963] report:

The traveling salesman problem recently achieved national prominence when a
soap company used it as the basis of a promotional contest. Prizes up to $10,000
were offered for identifying the most correct links in a particular 33-city prob-
lem. Quite a few people found the best tour. (The tie-breaking contest for these
successful mathematicians was to complete a statement of 25 words or less on “I
like...because...”.) A number of people, perhaps a little over-educated, wrote the
company that the problem was impossible—an interesting misinterpretation of
the state of the art.
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Matching forests

Giles [1982a,1982b,1982c] introduced the concept of a matching forest in a
mixed graph (V, E, A), which is a subset F of E ∪ A such that F ∩ A is a
branching and F ∩ E is a matching only covering roots of the branching
F ∩ A. Equivalently, F contains no circuit (in the underlying undirected
graph) and each v ∈ V is head of at most one e ∈ F . (Here, for an
undirected edge e, both ends of e are called head of e.)
Matching forests generalize both matchings in undirected graphs and
branchings in directed graphs. Giles gave a polynomial-time algorithm to
find a maximum-weight matching forest, yielding as a by-product a charac-
terization of the matching forest polytope (the convex hull of the incidence
vectors of matching forests).
Giles’ results generalize the polynomial-time solvability and the polyhe-
dral characterizations for matchings (Chapters 24–26) and for branchings
(Chapter 52).

59.1. Introduction

A mixed graph is a triple (V, E, A), where (V, E) is an undirected graph and
(V, A) is a directed graph. In this chapter, a graph can have multiple edges,
but no loops. The underlying undirected graph of a mixed graph is the undi-
rected graph obtained from the mixed graph by forgetting the orientations
of the directed edges.

As usual, if an edge e is directed from u to v, then u is called the tail and
v the head of e. In this chapter, if e is undirected and connects u and v, then
both u and v will be called head of e.

A subset F of E ∪ A is called a matching forest if F contains no circuits
(in the underlying undirected graph) and any vertex v is head of at most one
edge in F . We call a vertex v a root of F if v is head of no edge in F . We
denote the set of roots of F by R(F ).

It is convenient to consider the relations of matching forests with match-
ings in undirected graphs and branchings in directed graphs: M is a matching
in an undirected graph (V, E) if and only if M is a matching forest in the
mixed graph (V, E, ∅). In this case, the roots of M are the vertices not covered
by M . Similarly, B is a branching in a directed graph (V, A) if and only if B
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is a matching forest in the mixed graph (V, ∅, A). In this case, the concept of
root of a branching and root of a matching forest coincide.

In turn, we can characterize matching forests in terms of matchings and
branchings: for any mixed graph (V, E, A), a subset F of E ∪A is a matching
forest if and only if F ∩ A is a branching in (V, A) and F ∩ E is a matching
in (V, E) such that F ∩ E only covers roots of F ∩ A.

It will be useful to observe the following formulas, for any matching forest
F in a mixed graph (V, E, A), setting M := F ∩ E and B := F ∩ A:

(59.1) R(F ) = R(M) ∩ R(B) and V = R(M) ∪ R(B).

In fact, for any matching M in (V, E) and any branching B in (V, A), the set
M ∪ B is a matching forest if and only if R(M) ∪ R(B) = V .

59.2. The maximum size of a matching forest

Giles [1982a] described a min-max formula for the maximum size of a match-
ing forest. It can be derived from the Tutte-Berge formula with the following
direct formula:

Theorem 59.1. Let (V, E, A) be a mixed graph and let K be the collection of
those strong components K of the directed graph (V, A) that satisfy din

A (K) =
0. Consider the undirected graph H with vertex set K, where two distinct
K, L ∈ K are adjacent if and only if there is an edge in E connecting K and
L. Then the maximum size of a matching forest in (V, E, A) is equal to

(59.2) ν(H) + |V | − |K|.

Here ν(H) denotes the maximum size of a matching in H.

Proof. Let M ′ be a matching in H of size ν(H). Then M ′ yields a matching
M of size ν(H) in (V, E), where each edge in M connects two components
in K. Now there exists a branching B in (V, A) such that B has exactly |K|
roots, such that each K ∈ K contains exactly one root, and such that each
vertex covered by M is a root of B. (To see that such a branching B exists,
choose, for any K ∈ K not intersecting M , an arbitrary vertex in K. Let X
be the set of chosen vertices together with the vertices covered by M . As X
intersects each K ∈ K, each vertex in V is reachable in (V, A) by a directed
path from X. Hence there exists a branching B with root set X. This B has
the required properties.)

Then M ∪ B is a matching forest, of size ν(H) + |V | − |K| (as B has size
|V | − |K|).

To see that there is no larger matching forest, let F be any matching
forest. Let U :=

⋃
K. Then F has at most |V \ U | edges with at least one

head in V \U . Since no directed edge enters U , all other edges are contained in
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U . So it suffices to show that F has at most ν(H)+ |U |− |K| edges contained
in U .

Let N be the set of (necessarily undirected) edges in F connecting two
different components in K. For each K ∈ K, let αK be the number of edges
in N incident with K. Then

(59.3) |N | −
∑

K∈K

max{0, αK − 1} ≤ ν(H),

since by deleting, for each K ∈ K, at most max{0, αK − 1} edges from N
incident with K, we obtain a matching in the graph H defined above.

We have moreover that any K ∈ K spans at most |K|−max{1, αK} edges
of F . With (59.3) this implies that the number of edges in F contained in U
is at most

(59.4) |N | +
∑

K∈K

(|K| − max{1, αK}) ≤ ν(H) +
∑

K∈K

(|K| − 1)

= ν(H) + |U | − |K|,

as required.

The method described in this proof also directly implies that a maximum-
size matching forest can be found in polynomial time (Giles [1982a]).

59.3. Perfect matching forests

e f

a

b

Figure 59.1

{e, f} and {e, a, b} are perfect matching forests.

A matching forest F is called perfect if each vertex is head of exactly
one edge in F . (So a perfect matching forest need not be a maximum-size
matching forest — cf. Figure 59.1.) The following is easy to see:

(59.5) A mixed graph (V, E, A) contains a perfect matching forest F
if and only if the graph (V, E) contains a matching M such that
each strong component K of (V, A) with din(K) = 0 is intersected
by at least one edge in M .

Indeed, if a perfect matching forest F exists, then M := F ∩ E is such a
matching. Conversely, if such a matching M exists, any vertex is reachable
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by a directed path from at least one vertex covered by M ; hence M can be
augmented with directed arcs to a perfect matching forest.

This shows (59.5), which implies the following characterization for perfect
matching forests of Giles [1982b]:

Theorem 59.2. Let (V, E, A) be a mixed graph and let K be the collection of
strong components K of (V, A) with din

A (K) = 0. Then (V, E, A) has a perfect
matching forest if and only if for each U ⊆ V and L ⊆ K the graph (V, E)−U
has at most |U | +

∣∣ ⋃
L

∣∣ − |L| odd components that are contained in
⋃

L.

Proof. Extend G = (V, E) by, for each K ∈ K, a clique CK of size |K| − 1,
such that each vertex in CK is adjacent to each vertex in K. This makes the
undirected graph H. Then (V, E, A) has a perfect matching forest if and only
if graph H has a matching covering

⋃
K. So we can apply Corollary 24.6a.

This method also gives a polynomial-time algorithm to find a perfect
matching forest.

59.4. An exchange property of matching forests

As a preparation for characterizing the matching forest polytope, we show
an exchange property of matching forests. It generalizes the well-known and
trivial exchange property of matchings in an undirected graph, based on
considering the union of two matchings.

Lemma 59.3α. Let F1 and F2 be matching forests in a mixed graph (V, E, A).
Let s ∈ R(F2)\R(F1). Then there exist matching forests F ′

1 and F ′
2 such that

F ′
1 ∩ F ′

2 = F1 ∩ F2, F ′
1 ∪ F ′

2 = F1 ∪ F2, s ∈ R(F ′
1), and

(59.6) (i) |F ′
1| < |F1|,

or (ii) |F ′
1| = |F1| and |R(F ′

1)| > |R(F1)|,
or (iii) |F ′

1| = |F1|, R(F ′
1) = (R(F1) \ {t}) ∪ {s} for some

t ∈ R(F1), and |R(F ′
1 ∩ A) ∩ K| = |R(F1 ∩ A) ∩ K| for

each strong component K of the directed graph (V, A).

Proof. We may assume that F1 and F2 partition E ∪ A, as we can delete
edges that are not in F1 ∪ F2, and add parallel edges to those in F1 ∩ F2.

Define Mi := Fi ∩E and Bi := Fi ∩A for i = 1, 2. Let K be the collection
of strong components K of the directed graph (V, A) with δin

A (K) = ∅. Then
each set in K intersects both R(B1) and R(B2), and {v} ∈ K for each v ∈
R(B1) ∩ R(B2).

So each K ∈ K with |K| ≥ 2 intersects R(B1) and R(B2) in disjoint
subsets. Hence we can choose for each such K
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(59.7) a pair eK ⊆ K consisting of a vertex in R(B1) \ R(B2) and a
vertex in R(B2) \ R(B1).

Let N be the set of pairs eK for K ∈ K with |K| ≥ 2. So N consists of
disjoint pairs.

Then the undirected graph H on V with edge set

(59.8) M1 ∪ M2 ∪ N

consists of a number of vertex-disjoint paths and circuits, since no vertex in
R(B1) \ R(B2) is covered by M2, and no vertex in R(B2) \ R(B1) is covered
by M1.

Moreover, s has degree at most one in H. Indeed, s is not covered by M2,
as s ∈ R(F2) = R(M2) ∩ R(B2). If s is covered by M1, then s ∈ R(B1), and
so s ∈ R(B1) ∩ R(B2), implying that s is not covered by N .

So s is the starting vertex of a path component P of H (possibly only
consisting of s). Let Y be the set of edges in M1 ∪ M2 occurring in P , and
set

(59.9) M ′
1 := M1△Y and M ′

2 := M2△Y

(where △ denotes symmetric difference). Since Y is the union of the edge
sets of some path components of the graph (V, M1 ∪ M2), we know that M ′

1

and M ′
2 are matchings again.

Then, obviously, R(M ′
1) and R(M ′

2) arise from R(M1) and R(M2) by
exchanging these sets on V P ; that is:

(59.10) R(M ′
1) = (R(M1) \ V P ) ∪ (R(M2) ∩ V P ) and

R(M ′
2) = (R(M2) \ V P ) ∪ (R(M1) ∩ V P ).

We show that a similar operation can be performed with respect to B1 and
B2; that is, we show that there exist disjoint branchings B′

1 and B′
2 in (V, A)

satisfying

(59.11) R(B′
1) = (R(B1) \ V P ) ∪ (R(B2) ∩ V P ) and

R(B′
2) = (R(B2) \ V P ) ∪ (R(B1) ∩ V P ).

By Lemma 53.2α, it suffices to show that each K ∈ K intersects both sets in
(59.11). If |K| = 1, then K is contained in both R(B1) and R(B2), and hence
in both sets in (59.11). If |K| ≥ 2, then eK intersects both R(B1) and R(B2).
Since eK is either contained in V P or disjoint from V P , eK intersects both
sets in (59.11). Hence, as eK ⊆ K, also K intersects both sets in (59.11).
Therefore, branchings B′

1 and B′
2 satisfying (59.11) exist.

(59.10) and (59.11) imply:

(59.12) F ′
1 := M ′

1 ∪ B′
1 and F ′

2 := M ′
2 ∪ B′

2 are matching forests.

To see this, we must show that R(M ′
1)∪R(B′

1) = V and R(M ′
2)∪R(B′

2) = V .
Since R(M1)∪R(B1) = V and R(M2)∪R(B2) = V , this follows directly from
(59.10) and (59.11). This shows (59.12).
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Since R(F ) = R(M)∩R(B) for any matching forest F (with M := F ∩E
and B := F ∩ A), (59.10) and (59.11) imply that also R(F ′

1) and R(F ′
2) arise

from R(F1) and R(F2) by swapping on P ; that is:

(59.13) R(F ′
1) = (R(F1) \ V P ) ∪ (R(F2) ∩ V P ) and

R(F ′
2) = (R(F2) \ V P ) ∪ (R(F1) ∩ V P ).

This implies:

(59.14) s ∈ R(F ′
1) \ R(F ′

2),

since s ∈ V P and s ∈ R(F2) \ R(F1).
We study the effects of the exchanges (59.10) and (59.11), to show that

one of the alternatives (59.6) holds. It is based on the following observations
on the sizes of M ′

1 and B′
1. Let t be the last vertex of P (possible t = s).

Suppose that none of the alternatives (59.6) hold. If s = t, then s is
not covered by M1, and so M ′

1 = M1 and R(B′
1) = R(B1) ∪ {s}, implying

|F ′
1| < |F1|, which is alternative (59.6)(i). So s �= t.
By the exchanges made, |M1| − |M ′

1| = |M1 ∩ EP | − |M2 ∩ EP | and
|R(F1)| − |R(F ′

1)| = |R(F1) ∩ V P | − |R(F2) ∩ V P |. This gives, as |F ′
1| ≥ |F1|,

since alternative (59.6)(i) does not hold:

(59.15) |M1 ∩ EP | − |M2 ∩ EP | + |R(F1) ∩ V P | − |R(F2) ∩ V P |
= |M1| + |R(F1)| − |M ′

1| − |R(F ′
1)| = |F ′

1| − |F1| ≥ 0.

(The last equality holds as |F ′
i | = |V | − |M ′

i | − |R(F ′
i )| for i = 1, 2, since

|F ′
i | + |M ′

i | is the number of heads of edges in F ′
i .)

We next note:

(59.16) no intermediate vertex v of P belongs to R(F1) ∪ R(F2).

For suppose that v ∈ R(F1). Then (as v is an intermediate vertex of P ) v is
covered by M2 and some eK ∈ N . Hence v ∈ R(B2), and therefore v �∈ R(B1)
(by (59.7)), contradicting the fact that v ∈ R(F1). One similarly shows that
v �∈ R(F2), proving (59.16).

As s ∈ R(F2) \ R(F1), (59.16) implies that

(59.17) |R(F1) ∩ V P | ≤ |R(F2) ∩ V P |, with equality if and only if t ∈
R(F1) \ R(F2).

With (59.15) this gives that |M1 ∩ EP | ≥ |M2 ∩ EP |.
Let k be the number of edges in M1 ∪ M2 on P . Note that the edges in

M1 ∪ M2 occur along P alternatingly in M1 and M2, as any intermediate
eK ∈ N on P connects an edge in M1 and an edge in M2 (as by (59.7),
eK ∈ N consists of a vertex not in R(B2) and a vertex not in R(B1)).

Suppose that k is odd. Then |M1 ∩EP | = |M2 ∩EP |+1. So the last edge
in M1 ∪ M2 along P (seen from s) belongs to M1. Moreover, one has that
t �∈ R(F1). For if t ∈ R(F1), then t is not covered by M1, and hence t belongs
to some eK = {v, t} ∈ N with v covered by M1. Hence v ∈ R(B1), and hence
t �∈ R(B1) (by (59.7)), contradicting the fact that t ∈ R(F1). So t �∈ R(F1).
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Then (59.17) implies that |R(F2) ∩ V P | > |R(F1) ∩ V P |. This implies with
(59.15) that |F ′

1| = |F1| (as |M1 ∩ EP | = |M2 ∩ EP | + 1), and with (59.13)
that |R(F ′

1)| > |R(F1)|. So (59.6)(ii) holds, a contradiction.
So k is even, and hence |M1 ∩ EP | = |M2 ∩ EP |, which implies with

(59.13), (59.15), and (59.17) that |R(F1)| = |R(F2)| and t ∈ R(F1) \ R(F2).
Therefore, |F ′

1| = |F1| (by (59.16)) and R(F ′
1) = (R(F1) \ {t}) ∪ {s}.

Finally, |R(B′
1) ∩ K| = |R(B1) ∩ K| for each strong component K of D.

This follows directly (with (59.11)) from the fact that for any v ∈ K ∩ V P
one has either K = {v} (if |K| = 1) or v ∈ eK (if |K| ≥ 2). For suppose
that v ∈ V P is incident with no eK ∈ N . We show that v ∈ R(B1) ∩ R(B2),
implying {v} ∈ K. If v is an intermediate vertex of P , then v is covered
by M1 and M2 and hence v belongs to R(B1) and R(B2). If v = s, then
v ∈ R(F2) (so v ∈ R(B2)) and v is covered by M1, so v ∈ R(B1). If v = t,
then v ∈ R(F1) (so v ∈ R(B1)) and v is covered by M2, so v ∈ R(B2).

59.5. The matching forest polytope

The matching forest polytope of a mixed graph (V, E, A) is the convex hull of
the incidence vectors of the matching forests. So the matching forest polytope
is a polytope in RE∪A.

Giles [1982b] showed that the matching forest polytope is determined by
the following inequalities:

(59.18) (i) xe ≥ 0 for each e ∈ E ∪ A,
(ii) x(δhead(v)) ≤ 1 for each v ∈ V ,
(iii) x(γ(L)) ≤

⌊∣∣ ⋃
L

∣∣ − 1
2 |L|

⌋
for each subpartition L of V
with |L| odd and all classes
nonempty.

Here we use the following notation and terminology. δhead(v) denotes the set
of edges with head v. A subpartition of V is a collection of disjoint subsets of
V . As usual,

⋃
L denotes the union of the sets in L. For each subpartition

L, we define:

(59.19) γ(L) := the set of undirected edges spanned by
⋃

L and directed
edges spanned by any set in L.

The inequalities (i) and (ii) in (59.18) are trivially valid for the incidence
vector of any matching forest F . To see that (iii) is valid, we can assume that
F ⊆ γ(L) and that V =

⋃
L. Then |R(F ∩ A)| ≥ |L|, since each set in L

contains at least one root of F ∩ A (since no directed edge enters any set in
L). Moreover, |F ∩E| ≤ ⌊ 1

2 |R(F ∩A)|⌋, since F ∩E is a matching on a subset
of R(F ∩ A). As |F ∩ A| = |V | − |R(F ∩ A)|, this gives:

(59.20) |F | = |F ∩ E| + |F ∩ A| ≤ ⌊1
2 |R(F ∩ A)|⌋ + (|V | − |R(F ∩ A)|)

= ⌊|V | − 1
2 |R(F ∩ A)|⌋ ≤

⌊∣∣ ⋃
L

∣∣ − 1
2 |L|

⌋
,
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as required.
Each integer solution x of (59.18) is the incidence vector of a matching

forest. Indeed, as x is a 0, 1 vector by (i) and (ii), we know that x = χF

for some F ⊆ E ∪ A. By (ii), each vertex is head of at most one edge in F .
Hence, if F would contain a circuit (in the underlying undirected graph), it
is a directed circuit C. But then for L := {V C}, condition (iii) is violated.
So F is a matching forest.

We show that system (59.18) is totally dual integral. This implies that
it determines an integer polytope, which therefore is the matching forest
polytope.

The proof method is a generalization of the method in Section 25.3a
for proving the Cunningham-Marsh formula, stating that the matching con-
straints are totally dual integral.

The total dual integrality of (59.18) is equivalent to the following. For
any weight function w : E ∪ A → Z, let νw denote the maximum weight of a
matching forest. Call a matching forest F w-maximal if w(F ) = νw. Let Λ be
the set of subpartitions L of V with |L| odd and with all classes nonempty.

Then the total dual integrality of (59.18) is equivalent to: for each weight
function w : E ∪ A → Z, there exist y : V → Z+ and z : Λ → Z+ satisfying

(59.21)
∑

v∈V

yv +
∑

L∈Λ

z(L)
⌊∣∣⋃L

∣∣ − 1
2 |L|

⌋
≤ νw

and

(59.22)
∑

v∈V

yvχδhead(v) +
∑

L∈Λ

z(L)χγ(L) ≥ w.

Now we can derive (Schrijver [2000b]):

Theorem 59.3. For each mixed graph (V, E, A), system (59.18) is totally
dual integral.

Proof. We must prove that for each mixed graph (V, E, A) and each function
w : E ∪ A → Z, there exist y, z satisfying (59.21) and (59.22).

In proving this, we can assume that w is nonnegative. For suppose that
w has negative entries, and let w′ be obtained from w by setting all negative
entries to 0. As νw′ = νw and w′ ≥ w, any y, z satisfying (59.21) and (59.22)
with respect to w′, also satisfy (59.21) and (59.22) with respect to w.

Suppose that the theorem is not true. Choose a counterexample (V, E, A)
and w : E ∪ A → Z+ with |V | + |E ∪ A| +

∑
e∈E∪A w(e) as small as possible.

Then the underlying undirected graph of (V, E, A) is connected, since oth-
erwise one of the components will form a smaller counterexample. Moreover,
w(e) ≥ 1 for each edge e, since otherwise we can delete e to obtain a smaller
counterexample.

Next:
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(59.23) for each v ∈ V , there exists a w-maximal matching forest F with
v ∈ R(F ).

For suppose that no such matching forest exists. For any edge e, let w′(e) :=
w(e) − 1 if v is head of e and w′(e) := w(e) otherwise. Then νw′ = νw − 1.
By the minimality of w, there exist y, z satisfying (59.21) and (59.22) with
respect to w′. Replacing yv by yv + 1 we obtain y, z satisfying (59.21) and
(59.22) with respect to w, contradicting our assumption. This proves (59.23).

This implies:

(59.24) each weak component of the directed graph (V, A) is strongly
connected.

To see this, it suffices to show that each directed edge e = (u, v) is contained
in some directed circuit. By (59.23) there exists a w-maximal matching forest
F with v ∈ R(F ). Then the weak component of F containing v is an arbores-
cence rooted at v. As F has maximum weight, F ∪ {e} is not a matching
forest, and hence F ∩A contains a directed v−u path. This makes a directed
circuit containing e, and proves (59.24).

Let K denote the collection of strong components of (V, A). Define
w′(e) := w(e) − 1 for each edge e. The remainder of this proof consists of
showing that |K| is odd (so K ∈ Λ), and that

(59.25) νw ≥ νw′ + ⌊|V | − 1
2 |K|⌋.

This is enough, since, by the minimality of w, there exist y, z satisfying (59.21)
and (59.22) with respect to w′. Replacing z(K) by z(K) + 1 we obtain y, z
satisfying (59.21) and (59.22) with respect to w (note that γ(K) = E ∪ A),
contradicting our assumption.

To show (59.25), choose a w′-maximal matching forest F of maximum
size |F |. Under this condition, choose F such that it maximizes |R(F )|.

We show that for each s ∈ V the following holds, where r is the root of
the arborescence14 in F ∩ A containing s:

(59.26) there exist a t ∈ R(F ) and a w′-maximal matching forest F ′

satisfying |F ′| = |F |, R(F ′) = (R(F )\{t})∪{s}, and |R(F ′∩A)∩
K| = R(F ∩A)∩K| for each strong component K of (V, A); if r ∈
R(F ), then moreover t = r and R(F ′∩A) = (R(F ∩A)\{r})∪{s}.

Let F1 := F and let F2 be a w-maximal forest with s ∈ R(F2) (which exists
by (59.23)). We first find F ′

1 and F ′
2 as follows.

If r �∈ R(F ), then s �∈ R(F ) = R(F1) (since otherwise s is a root of F ∩A,
and hence r = s ∈ R(F )). Applying Lemma 59.3α to F1 and F2 yields the
matching forests F ′

1 and F ′
2.

If r ∈ R(F ), then s �∈ R(F ∩A). Apply Theorem 53.2 to B1 := F1 ∩A and
B2 := F2 ∩ A. It yields branchings B′

1 and B′
2 in (V, A) satisfying B′

1 ∩ B′
2 =

14 An arborescence in a branching B is a weak component of (V, B), or just the arc set of
it.
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B1 ∩B2, B′
1 ∪B′

2 = B1 ∪B2, and R(B′
1) = R(B1)∪{s} or R(B′

1) = (R(B1) \
{r})∪{s}. This implies R(B′

2) = R(B2)\{s} or R(B′
2) = (R(B2)\{s})∪{r}.

Now define F ′
i := (Fi ∩E)∪B′

i for i = 1, 2. Then the F ′
i are matching forests,

since r ∈ R(F1 ∩ E) and s ∈ R(F2 ∩ E).
In both constructions, |F ′

1| ≤ |F1|, and if |F ′
1| = |F1|, then |R(F ′

1)| ≥
|R(F1)|. Moreover,

(59.27) χF ′

1 + χF ′

2 = χF1 + χF2 ,

which implies that w(F ′
1) + w(F ′

2) = w(F1) + w(F2). Hence

(59.28) w′(F ′
1) + w(F ′

2) = w(F ′
1) + w(F ′

2) − |F ′
1| ≥ w(F1) + w(F2) − |F1|

= w′(F1) + w(F2).

Therefore, since F1 is a w′-maximal matching forest and F2 is a w-maximal
matching forest, we have equality throughout in (59.28). So F ′

1 is w′-maximal
and |F ′

1| = |F1|. Hence |R(F ′
1)| ≥ |R(F1)|. Then, by the maximality of |R(F )|,

we know that |R(F ′
1)| = |R(F1)|.

Set F ′ := F ′
1. If r �∈ R(F ), we know that (59.6)(iii) holds, which gives

(59.26). If r ∈ R(F ), then (59.26) holds for t := r, and R(B′
1) = (R(B1) \

{t})∪{s} or R(B′
2) = (R(B2)\{s})∪{t} (since |F ′

1| = |F1|, F ′
1 ∩E = F1 ∩E,

|F ′
2| = |F2|, F ′

2 ∩ E = F2 ∩ E). Moreover, s and t belong to the same strong
component of (V, A): as r = t is the root of the arborescence in F1 ∩ A
containing s, there exists a t − s path in (V, A); since each weak component
of (V, A) is a strong component (by (59.24)), there is a directed s − t path in
(V, A). This implies (59.26).

Note that (59.26) implies in particular that R(F ) �= ∅. Suppose |R(F )| ≥
2. Choose F under the additional condition that the minimum distance in
(V, E, A) between distinct vertices u, v ∈ R(F ) is as small as possible. Here,
the distance in (V, E, A) is the length of a shortest u−v path in the underlying
undirected graph.

Necessarily, this distance is at least two, since otherwise we can extend
F by an edge connecting u and v, thereby maintaining w′-maximality but
increasing the size. This contradicts the maximality of |F |.

So we can choose an intermediate vertex s on a shortest u − v path. Let
F ′ be the matching forest described in (59.26), with t ∈ R(F ). By symmetry
of u and v we can assume that t �= u. So u, s ∈ R(F ′), contradicting the
choice of F , as the distance of u and s is smaller than that of u and v.

This implies that |R(F )| = 1. Let R(F ) = {r} and let K be the strong
component of (V, A) containing r. We choose F (and r) under the additional
constraint that |R(F ∩ A) ∩ K| is as large as possible.

Suppose |R(F ∩ A) ∩ K| ≥ 2. Choose F under the additional constraint
that r has minimal distance in (V, A) from some root u of F ∩ A in K \ {r}.
In this case, the distance in (V, A) from u to r is the length of a shortest
directed u − r path. (Such a path exists, since K is strongly connected.)

Let T be the arborescence in F ∩A containing r. Let s be the first vertex
on a shortest directed u − r path Q in (V, A) that belongs to T . Necessarily
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s �= r, since otherwise we can extend F by the last edge of Q, contradicting
the maximality of |F |.

Let F ′ be the matching forest described in (59.26). Then s ∈ R(F ′) and
R(F ′ ∩ A) = (R(F ∩ A) \ {r}) ∪ {s}. Hence u remains a root of F ′ ∩ A, while
the distance in (V, A) from u to s is shorter than that from u to r. This
contradicts our choice of F (replacing K, r by L, s).

So |R(F ∩A)∩K| = 1. Suppose that there exists a component L of (V, A)
with |R(F ∩ A) ∩ L| ≥ 2. Choose s in L arbitrarily. Let F ′ be the matching
forest described in (59.26). Then s ∈ R(F ′) while |R(F ′ ∩ A) ∩ L| ≥ 2,
contradicting the choice of F .

So no such component L exists; that is, each L ∈ K contains exactly one
root of F ∩ A. So |F ∩ A| = |V | − |K|. Moreover, as |R(F )| = 1, |K| is odd
and |F ∩ E| = ⌊ 1

2 |K|⌋. So |F | = |F ∩ A| + |F ∩ E| = ⌊|V | − 1
2 |K|⌋. Hence

(59.29) νw ≥ w(F ) = w′(F ) + |F | = νw′ + |F | = νw′ + ⌊|V | − 1
2 |K|⌋,

thus proving (59.25).

We remark that the optimum dual solution y, z constructed in this proof
has the following additional property: if K,L ∈ Λ and z(K), z(L) > 0, then
K and L are ‘laminar’ in the following sense:

(59.30) ∀K ∈ K ∃L ∈ L : K ⊆ L,
or ∀L ∈ L ∃K ∈ K : L ⊆ K,
or ∀K ∈ K ∀L ∈ L : K ∩ L = ∅.

Theorem 59.3 implies the characterization of the matching forest polytope
of Giles [1982b]:

Corollary 59.3a. For each mixed graph (V, E, A), the matching forest poly-
tope is determined by (59.18).

Proof. By Theorems 59.3 and 5.22, the vertices of the polytope determined
by (59.18) are integer. Since the integer solutions of (59.18) are the incidence
vectors of matching forests, this proves the corollary.

59.6. Further results and notes

59.6a. Matching forests in partitionable mixed graphs

Call a mixed graph G = (V, E, A) partitionable (into R and S) if V can be par-
titioned into classes R and S such that each undirected edge connects R and S,
while each directed arc is spanned by R or by S.

Trivially, a mixed graph is partitionable if and only if each circuit has an even
number of undirected edges. That is, by contracting all directed arcs we obtain a
bipartite graph. (Another characterization is: the incidence matrix is totally uni-
modular.)
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In a different form, we have studied matching forests in partitionable mixed
graphs before. Let G = (V, E, A) be a mixed graph partitionable into R and S.
Orient the edges in E from R to S, and turn the orientation of any arc in A
spanned by R. We obtain a directed graph D′ = (V, A′). Then it is easy to see that:

(59.31) a set of edges and arcs of G is a matching forest ⇐⇒ the corresponding
arcs in D′ form an R − S bifurcation.

This implies that a number of theorems on matching forests in a partitionable mixed
graph can be obtained from those on R − S bifurcations. First we have:

Theorem 59.4. Let G = (V, E, A) be a partitionable mixed graph. Then the max-
imum size of a matching forest in G is equal to the minimum size of |V | − |L|,
where L is a collection of strong components K of the directed graph D = (V, A)
with din

D (K) = 0 such that no edge in E connects two components in L.

Proof. This is equivalent to Theorem 54.9.

We similarly obtain a min-max relation for the maximum weight of a matching
forest in a partitionable mixed graph, by the total dual integrality of the following
system:

(59.32) (i) xe ≥ 0 for each e ∈ E ∪ A,

(ii) x(δhead(v)) ≤ 1 for each v ∈ V ,
(iii) x(A[U ]) ≤ |U | − 1 for each nonempty U with U ⊆ R or U ⊆ S.

Here δhead(v) is the set of edges and arcs having v as head.

Theorem 59.5. If G is a mixed graph partitionable into R and S, then (59.32) is
TDI and determines the matching forest polytope.

Proof. This is equivalent to Corollary 54.10a.

For covering by matching forests in partitionable mixed graphs we have:

Theorem 59.6. Let G = (V, E, A) be a mixed graph partitionable into R and S.
Then E ∪ A can be covered by k matching forests if and only if

(59.33) (i) |δhead(v)| ≤ k for each v ∈ V ;
(ii) |A[U ]| ≤ k(|U | − 1) for each nonempty subset U of R or S.

Proof. This is equivalent to Corollary 54.11c.

The case A = ∅ is Kőnig’s edge-colouring theorem (Theorem 20.1).
An equivalent, polyhedral way of formulating Theorem 59.6 is:

Corollary 59.6a. If G is a partitionable mixed graph, then the matching forest
polytope has the integer decomposition property.

Proof. Directly from Theorem 59.6.



Section 59.6b. Further notes 1017

59.6b. Further notes

The facets of the matching forest polytope are characterized in Giles [1982c].
Matching forests form a special case of matroid matching. Let G = (V, E, A) be

a mixed graph. Consider the space RV × RV . Associate with any undirected edge
e = uv ∈ E, the pair (χu, 0), (χv, 0) of vectors in RV × RV . Associate with any
directed arc a = (u, v) ∈ A, the pair (χv, 0), (0, χu − χv) of vectors in RV × RV .
One easily checks that M ⊆ E ∪ A is a matching forest if and only if its associated
pairs form a matroid matching. Thus matroid matching theory implies a min-max
relation and a polynomial-time algorithm for the maximum size of a matching
forest. However, as we saw in Section 59.2, there is an easy direct method for this.



Chapter 60

Submodular functions on
directed graphs

At two structures we came across the proof technique of making a collection
of subsets cross-free: at submodular functions (like in polymatroid inter-
section) and at directed graphs (like in the proof of the Lucchesi-Younger
theorem).
Edmonds and Giles [1977] combined the two structures into one general
framework, consisting of a submodular function defined on the vertex set
of a directed graph. Johnson [1975a] and Frank [1979b] designed a variant
of Edmonds and Giles’ framework, containing the polymatroid intersection
theorem and the optimum arborescence theorem as special cases.
We first describe the results of Edmonds and Giles, and after that we
present a variant, from which the results of Frank can be derived. At the
base is the method of Edmonds and Giles to represent any cross-free family
by a directed tree (the tree-representation) and to derive a network matrix
if the family consists of subsets of the vertex set of a directed graph — see
Section 13.4.

60.1. The Edmonds-Giles theorem

Let D = (V, A) be a digraph and let C be a crossing family of subsets of V
(that is, if T, U ∈ C with T ∩ U �= ∅ and T ∪ U �= V , then T ∩ U, T ∪ U ∈ C).
A function f : C → R is called submodular on crossing pairs, or crossing
submodular, if for all T, U ∈ C with T ∩ U �= ∅ and T ∪ U �= V one has

(60.1) f(T ) + f(U) ≥ f(T ∩ U) + f(T ∪ U).

Given such D, C, f , a submodular flow is a function x ∈ RA satisfying:

(60.2) x(δin(U)) − x(δout(U)) ≤ f(U) for each U ∈ C.

The set P of all submodular flows is called the submodular flow polyhedron.
Equivalently, P is equal to the set of all vectors x in RA with the property

that the ‘gain’ vector of x is in the extended polymatroid EPf . (The excess
function of x equals Mx where M is the V × A incidence vector of D.)

Then Edmonds and Giles [1977] showed:
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Theorem 60.1 (Edmonds-Giles theorem). If f is crossing submodular, then
(60.2) is box-TDI.

Proof. Choose w ∈ RA, and let y be an optimum solution to the dual of
maximizing wTx over (60.2):

(60.3) min{
∑

U∈C

y(U)f(U) | y ∈ RC
+,

∑

U∈C

y(U)(χδin(U) − χδout(U)) = w}.

Choose y such that

(60.4)
∑

U∈C

y(U)|U ||V \ U |

is as small as possible. Let C0 := {U ∈ C | y(U) > 0}. We first prove that C0

is cross-free.
Suppose to the contrary that T, U ∈ C0 with T �⊆ U �⊆ T , T ∩ U �= ∅,

T ∪ U �= V . Let α := min{y(T ), y(U)} > 0. Then decreasing y(T ) and y(U)
by α, and increasing y(T ∩ U) and y(T ∪ U) by α, maintains feasibility of
z, u, y, while its value is not increased (hence it remains optimum). However,
sum (60.4) decreases (by Theorem 2.1). This contradicts the minimality of
(60.4).

As C0 is cross-free, the submatrix formed by the constraints corresponding
to C0 is totally unimodular (by Corollary 13.21a). Hence, by Theorem 5.35,
(60.2) is box-TDI.

Note that the proof also yields that the solution y in (60.3) can be taken
such that the collection {U ∈ C | y(U) > 0} is cross free.

Box-TDI implies primal integrality (a polyhedron P is box-integer if P ∩
{x | d ≤ x ≤ c} is integer for all integer vectors d, c):

Corollary 60.1a. If f is integer, the polyhedron determined by (60.2) is
box-integer.

Proof. By Theorem 60.1, max{wTx | x ∈ P} is achieved by an integer
solution x, for each vector w.

Complexity. The algorithmic results on polymatroid intersection of Cun-
ningham and Frank [1985] and Fujishige, Röck, and Zimmermann [1989] im-
ply that the optimization problem associated with the Edmonds-Giles theo-
rem can be solved in strongly polynomial time.

Indeed, let D = (V, A) be a digraph, let C be a crossing family, let f :
C → Q be crossing submodular, and let c, d, l : A → Q. If we want to find
a submodular flow x with d ≤ x ≤ c minimizing lTx, we can assume that
all arcs in A are vertex-disjoint. Moreover, we can assume that for each arc
a = (u, v) ∈ A we have f({v}) = c(a) and f({u}) = −d(a). Hence we
can ignore d and c, and assume that we want to find a submodular flow x
minimizing lTx.
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Now define C2 := {{u, v} | (u, v) ∈ A} and f2({u, v}) := 0, w(v) := l(u, v),
and w(u) := 0, for each (u, v) ∈ A. Then the problem is equivalent to finding
a vector x in EPf ∩ EPf2

with x(V ) = 0 and minimizing wTx. This can be
solved in strongly polynomial time by Theorem 49.9.

(Frank [1982b] gave a strongly polynomial-time algorithm for the special
case if f is integer, c = 1, and d = 0.)

A similar reduction of submodular flows to polymatroid intersection was
given by Kovalev and Pisaruk [1984].

60.1a. Applications

Network flows. If we take C := {{v} | v ∈ V } and f = 0, then (60.2) determines
circulations, and Theorem 60.1 passes into a theorem on minimum-cost circulations.
It may be specialized easily to several other results on flows in networks, e.g., to
the max-flow min-cut theorem (Theorem 10.3; take d = 0, c ≥ 0, and w(a) = 0 for
a �= (s, r) and w((s, r)) = 1) and to Hoffman’s circulation theorem (Theorem 11.2).

Lucchesi-Younger theorem. Let D = (V, A) be a digraph and define

(60.5) C := {U ⊆ V | ∅ �= U �= V and dout
A (U) = 0}.

So C consists of all sets U such that the collection of arcs entering U forms a directed
cut. Taking f := −1, c := 0, d := −∞, and w := 1, Theorem 60.1 passes into the
Lucchesi-Younger theorem (Theorem 55.2, cf. Corollary 55.2b): the minimum size
of a directed cut cover is equal to the maximum number of disjoint directed cuts.
For arbitrary w we obtain a weighted version.

Polymatroid intersection. Let f1 and f2 be nonnegative submodular set function
on S. Let S′ and S′′ be two disjoint copies of S, let V = S′ ∪ S′′, and define C by

(60.6) C := {U ′ | U ⊆ S} ∪ {S′ ∪ U ′′ | U ⊆ S}
where U ′ and U ′′ denote the sets of copies of elements of U in S′ and S′′. Define
f : C → R+ by

(60.7) f(U ′) := f1(U) for U ⊆ S,
f(V \ U ′′) := f2(U) for U ⊆ S,
f(S′) := min{f1(S), f2(S)}.

Then C and f satisfy (60.1). If we take d = 0 and c = ∞, Theorem 60.1 passes into
the polymatroid intersection theorem (Corollary 46.1a, cf. Theorem 46.1).

Frank and Tardos [1989] showed that also Theorem 44.7 (a generalization of Lovász
[1970a] of Kőnig’s matching theorem) fits into the Edmonds-Giles model. For ap-
plications of the Edmonds-Giles theorem to graph orientation, see Chapter 61.

60.1b. Generalized polymatroids and the Edmonds-Giles theorem

The Edmonds-Giles theorem (Theorem 60.1) also comprises the total dual integral-
ity of the system defining the intersection of two generalized polymatroids (Section
49.11b). Indeed, let S be a finite set, let, for i = 1, 2, Ci and Di be collections of
subsets of S, and let fi : Ci → R and gi : Di → R form a paramodular pair (fi, gi).
Then the system
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(60.8) x(U) ≤ f1(U) for U ∈ C1,
x(U) ≥ g1(U) for U ∈ D1,
x(U) ≤ f2(U) for U ∈ C2,
x(U) ≥ g2(U) for U ∈ D2,

is box-totally dual integral, which is Corollary 49.12b.
To see this as a special case of the Edmonds-Giles theorem, let S1 and S2 be

disjoint copies of S, and let V := S1 ∪ S2. For each s ∈ S, let as be the arc (s2, s1),
where s1 and s2 are the copies of s in S1 and S2 respectively. Let A := {as | s ∈ S}.

Let

(60.9) C := {U1 | U ∈ C1} ∪ {V \ U1 | U ∈ D1} ∪ {V \ U2 | U ∈ C2} ∪ {U2 |
U ∈ D2},

where Ui denotes the set of copies of the elements in U in Si (i = 1, 2). It is easy
to see that C is a crossing family.

Define f : C → R by:

(60.10) f(U1) := f1(U) for U ∈ C1,
f(V \ U1) := −g1(U) for U ∈ D1,
f(V \ U2) := f2(U) for U ∈ C2,
f(U2) := −g2(U) for U ∈ D2.

(In case that f(S1) or f(S2) would be defined more than once, we take the smallest
of the values.) Then f is submodular on crossing pairs. Now the system (in x ∈ RA)

(60.11) x(δin(U)) − x(δout(U)) ≤ f(U) for U ∈ C
is the same as (60.8) (after renaming each variable x(s) to x(as)). So the box-total
dual integrality of (60.8) follows from the Edmonds-Giles theorem.

Frank [1984b] showed that, conversely, the solution set of the ‘Edmonds-Giles’
system (60.2) is the projection of the intersection of two generalized polymatroids.

60.2. A variant

We now give a theorem similar to Theorem 60.1, which includes as special
cases again the Lucchesi-Younger theorem and the polymatroid intersection
theorem, and moreover theorems on optimum arborescences, bibranchings,
and strong connectors.

For any digraph D = (V, A) and any family C of subsets of V , define the
C × A matrix M by

(60.12) MU,a :=

{
1 if a enters U ,
0 otherwise,

for U ∈ C and a ∈ A.
This matrix is totally unimodular if C is cross-free and the following con-

dition holds:

(60.13) if X, Y, Z ∈ C with X ⊆ V \Y ⊆ Z, then no arc of D enters both
X and Z.
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Theorem 60.2. If C is cross-free and (60.13) holds, then M is totally uni-
modular.

Proof. Let T = (W, B) and π : V → W form a tree-representation for C. For
any arc a = (u, v) of D, the set of forward arcs in the undirected π(u) − π(v)
path in T is contiguous, that is, forms a directed path, say from u′ to v′. This
follows from the fact that there exist no arcs b, c, d in this order on the path
with b and d forward and c backward, by (60.13).

Define a′ := (u′, v′), and let D′ = (W, A′) be the digraph with A′ :=
{a′ | a ∈ A}. Then M is equal to the network matrix generated by T and D′

(identifying b ∈ B with the set Xb in C determined by b). Hence by Theorem
13.20, M is totally unimodular.

Recall that a function g on a crossing family C is called supermodular on
crossing pairs, or crossing supermodular, if for all T, U ∈ C:

(60.14) if T∩U �= ∅ and T∪U �= V , then g(T )+g(U) ≤ g(T∩U)+g(T∪U).

Consider the polyhedron P determined by:

(60.15) xa ≥ 0 for a ∈ A,
x(δin(U)) ≥ g(U) for U ∈ C.

Theorem 60.3. If g is crossing supermodular and (60.13) holds, then system
(60.15) is box-TDI.

Proof. Let w ∈ RA and let y achieve the maximum in the dual of minimizing
wTx over (60.15):

(60.16) max{
∑

U∈C

y(U)g(U) | y ∈ RC
+,

∑

U∈C

y(U)χδin(U) ≥ w},

in such a way that

(60.17)
∑

U∈C

y(U)|U ||V \ U |

is as small as possible. Define

(60.18) C0 := {U ∈ C | y(U) > 0}.

We first show that C0 is cross-free. Suppose to the contrary that there are T, U
in C with T �⊆ U �⊆ T , T ∩U �= ∅, and T ∪U �= V . Let α := min{y(T ), y(U)}.
Now decrease y(T ) and y(U) by α, and increase y(T ∩U) and y(T ∪U) by α.
Then y remains feasible and optimum, while sum (60.17) decreases (Theorem
2.1), a contradiction.

Since C0 determines a totally unimodular submatrix by Theorem 60.2, by
Corollary 5.20b system (60.15) is box-TDI.
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Note that the proof yields that (60.16) has a solution y with {U ∈ C |
y(U) > 0} cross-free. Condition (60.13) cannot be deleted, as is shown by
Figure 60.1.

Figure 60.1

A collection and a digraph showing that condition (60.13) can-

not be deleted in Theorem 60.3. In this Venn-diagram, the collec-
tion is represented by the interiors of the ellipses and by the exteriors
of the rectangles.

Again, there is the following standard corollary for primal integrality:

Corollary 60.3a. If g is integer, the polyhedron determined by (60.15) is
box-integer.

Proof. As before.

Notes. Johnson [1975a] proved Theorem 60.3 for the special case that C is the
collection of all nonempty subsets of V \ {r} (where r is a fixed element of V ), and
Frank [1979b] extended this result to the case where C is any intersecting family of
subsets of V \ {r}. Note that in this case condition (60.13) is trivially satisfied.

60.2a. Applications

We list some applications of Theorem 60.3, which may be compared with the ap-
plications of the Edmonds-Giles theorem (Section 60.1a).

Kőnig-Rado edge cover theorem. Let G = (V, E) be a bipartite graph, with
colour classes V1 and V2. Let D = (V, A) be the digraph arising from G by orienting
all edges from V2 to V1. Define C := {{v} | v ∈ V1} ∪ {V \ {v} | v ∈ V2} and let
d := 0, c := ∞, g := 1, w := 1. Then Theorem 60.3 gives the Kőnig-Rado edge
cover theorem (Theorem 19.4): the minimum size of an edge cover in a bipartite
graph is equal to the maximum size of a stable set. Taking w arbitrary gives a
weighted version.
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Optimum arborescence theorem. Let D = (V, A) be a digraph, let r ∈ V , and
let C be the collection of all nonempty subsets of V \ {r}. Let g := 1, d := 0,
c := ∞, and let w : A → Z+. Theorem 60.3 now gives the optimum arborescence
theorem (Theorem 52.3): the minimum weight of an r-arborescence is equal to the
maximum number of r-cuts such that no arc a is in more than w(a) of these r-cuts.

Optimum bibranching theorem. Let D = (V, A) be a digraph and let V be
split into sets R and S. Define C := {U ⊆ V | ∅ �= U ⊆ S or S ⊆ U ⊂ V } and
d := 0, c := ∞, g := 1, and let w : A → Z+. Then Theorem 60.3 gives Corollary
54.8b: the minimum weight of a bibranching is equal to the maximum number of
subsets in C such that no arc a enters more than w(a) of these subsets.

Lucchesi-Younger theorem. Let D = (V, A) be a digraph and let C be the
collection of all nonempty proper subsets U of V with δout

A (U) = ∅. Let g := 1,
d := 0, c := ∞, and w := 1. Then Theorem 60.3 gives the Lucchesi-Younger
theorem (Theorem 55.2): the minimum size of a directed cut cover is equal to the
maximum number of disjoint directed cuts. Taking w arbitrary, gives a weighted
version.

Strong connectors. Suppose that g = 1, d = 0, and c = ∞, and that for all
V1, V2 ∈ C we have: if V1 ∩ V2 �= ∅, then V1 ∩ V2 ∈ C, and if V1 ∪ V2 �= V , then
V1 ∪ V2 ∈ C. Then Theorem 60.3 is equivalent to Theorem 57.3.

Indeed, let D = (V, A) and D0 = (V, A0) be digraphs such that for each arc
a = (u, v) of D there are vertices u′ and v′ such that D0 contains directed paths
from u to u′, from v′ to v, and from v′ to u′. Let w : A → Z+. Then the minimum
weight of a strong connector in D for D0 is equal to the maximum number of
D0-cuts in D such that no arc a of D is in more than w(a) of these D0-cuts.

This can be derived from Theorem 60.3 by taking C := {U ⊆ V | ∅ �= U �= V ,
δin

A0
(U) = ∅}. Conversely, if C satisfies the condition given above, we can take

A0 := {(u, v) | u, v ∈ V, (u, v) enters no U ∈ C}.

Polymatroid intersection. Let g1 and g2 be integer supermodular nondecreasing
set functions on S with g1(∅) = g2(∅) = 0. Then

(60.19) min{x(S) | x ∈ Z
S
+, x(U) ≥ gi(U) for U ⊆ S, i = 1, 2}

= max
U⊆S

(g1(U) + g2(S \ U)).

This follows by taking disjoint copies S′ and S′′ of S, and setting V := S′ ∪ S′′,
C := {T ⊆ V | T ⊆ S′ or S′ ⊆ T}, A := {(s′′, s′) | s ∈ S}, g(U ′) := g1(U) and
g(V \ U ′′) := g2(U) for U ⊆ S (without loss of generality, g1(S) = g2(S)), d := 0,
c := ∞, w := 1.

By taking d, c, w arbitrary, several other (contra)polymatroid intersection the-
orems follow.
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60.3. Further results and notes

60.3a. Lattice polyhedra

In a series of papers, Hoffman [1976a,1978] and Hoffman and Schwartz [1978] de-
veloped a theory of ‘lattice polyhedra’, which extends results of Johnson [1975a].
This theory has much in common with the theories described above.

Let (L, ≤) be a partially ordered set and let ∧ : L × L → L be a function such
that

(60.20) for all a, b ∈ L: a ∧ b ≤ a and a ∧ b ≤ b.

Let S be a finite set and let φ : L → P(S) be such that

(60.21) if a < b < c, then φ(a) ∩ φ(c) ⊆ φ(b)

for a, b, c in L. Let ∨ : L × L → L and let f : L → R+ satisfy:

(60.22) f(a ∧ b) + f(a ∨ b) ≤ f(a) + f(b)

for all a, b in L. So f is, in a sense, submodular.
Define

(60.23) S′ := {u ∈ S | ∀a, b ∈ L : χφ(a∧b)(u) + χφ(a∨b)(u) ≤ χφ(a)(u) +
χφ(b)(u)} and
S′′ := {u ∈ S | ∀a, b ∈ L : χφ(a∧b)(u) + χφ(a∨b)(u) ≥ χφ(a)(u) +
χφ(b)(u)}.

The polyhedron determined by:

(60.24) xu ≥ 0 (u ∈ S \ S′),
xu ≤ 0 (u ∈ S \ S′′),
x(φ(a)) ≤ f(a) (a ∈ L).

is called a lattice polyhedron. Hoffman and Schwartz [1978] showed that system
(60.24) is box-totally dual integral.

Theorem 60.4. System (60.24) is box-TDI.

Proof. Choose w ∈ RS
+. Consider the dual of maximizing wTx over (60.24):

(60.25) min{yTf | y ∈ R
L
+,

∑

a∈L

yaχφ(a) ≤ w(u) if u ∈ S′ and
∑

a∈L

yaχφ(a) ≥

w(u) if u ∈ S′′}.

Order the elements of L as a1, . . . , an such that if ai ≤ aj , then i ≤ j. Let y attain
(60.25), such that y(L) is minimal, and, under this condition, such that

(60.26) (y(a1), . . . , y(an))

is lexicographically maximal.
Then the collection C := {a ∈ L | ya > 0} is a chain in L. For suppose to

the contrary that a, b ∈ C with a �≤ b �≤ a. Let α := min{ya, yb}. Reset y by
decreasing ya and yb by α, and increasing y(a ∧ b) and y(a ∨ b) by α. One easily
checks, using (60.22) and (60.23), that the new y again attains the minimum (60.25),
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and moreover that (y(a1), . . . , y(an)) lexicographically increases, contradicting our
assumption.

By (60.21) for each u in S, the set of a in C with u ∈ φ(a) forms an interval
in C. So the linear inequalities corresponding to C make up a totally unimodular
matrix (as it is a network matrix generated by a directed path and a directed graph
(Theorem 13.20)). Therefore, by Theorem 5.35, system (60.24) is box-TDI.

We give some applications of Theorem 60.4 (more applications are in Hoffman
[1976a], Hoffman and Schwartz [1978], and Gröflin [1984,1987]).

Shortest paths (Johnson [1975a]). Let D = (V, A) be a digraph and let s, t ∈ V .
Let L := {U ⊆ V | s ∈ U, t �∈ U} and let ≤:=⊆, ∧ := ∩, ∨ := ∪. Let S := A and
let for each U ∈ L, φ(U) := δout(U). These data satisfy (60.20) and (60.21), where
S′ := S. If f = −1, Theorem 60.4 gives: the minimum length of an s − t path is
equal to the maximum number of s− t cuts such that no arc a is in more than c(a)
of these s − t cuts — the max-potential min-work theorem (Theorem 7.1).

Matroid intersection (Hoffman [1976a]). Let (S, I) and (S, I2) be matroids, with
rank functions r1 and r2 and assume r1(S) = r2(S). Let S′ and S′′ be two disjoint
copies of S and let V := S′ ∪S′′. Let L := {U ⊆ V | U ⊆ S′ or S′ ⊆ U}. Let ≤:=⊆,
∧ := ∩, ∨ := ∪. Define for T ⊆ S:

(60.27) f(T ′) := r1(T ), φ(T ′) := T ,
f(V \ T ′′) := r2(T ), φ(V \ T ′′) := T.

As these data satisfy (60.20), (60.21), and (60.22), Theorem 60.4 yields the matroid
intersection theorem. Polymatroid intersection can be included similarly.

Chains and antichains in partially ordered sets (Hoffman and Schwartz
[1978]). Let (V, �) be a partially ordered set and let L be the collection of lower
ideals of V (a subset Y of V is a lower ideal if y � x ∈ V implies y ∈ V ). Define
≤:=⊆, ∧ := ∩, ∨ := ∪.

First, let S := V . For Y ∈ L, let φ(Y ) be the collection of maximal elements of
Y . These data satisfy (60.20) and (60.21), and S′ = S′′ = S.

Theorem 60.4 with f(Y ) := k for each Y ∈ L then gives the theorem of Greene
[1976] (Corollary 14.10b) that the maximum size of the union of k chains is equal
to the minimum value of |V \ Y | + k · c1(Y ), where Y ranges over all subsets of V
and where c1(Y ) denotes the maximum size of a chain contained in Y .

Indeed, Theorem 60.4 gives the total dual integrality of

(60.28) 0 ≤ xv ≤ 1 for v ∈ V ,
x(A) ≤ k for each antichain A.

Hence the maximum size of the union of k chains is, by Dilworth’s decomposition
theorem, equal to (where A denotes the collection of antichains in V )

(60.29) max{1Tx | x ∈ {0, 1}V , x(A) ≤ k for A ∈ A}
= min{k

∑

A∈A

yA + z(V ) | y ∈ Z
A
+ , z ∈ Z

V
+ ,

∑

A∈A

yAχA + z ≥ 1}

= min
Y ⊆V

(|V \ Y | + k·(minimum number of antichains covering Y ))

= min
Y ⊆V

(|V \ Y | + k · c1(Y )).
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Also the dual result (exchanging ‘chain’ and ‘antichain’) due to Greene and
Kleitman [1976] (Corollary 14.8b) can be derived. Let L, ≤, ∧, ∨ be as above and
let S := V ∪ {w}, where w is some new element. For Y ∈ L, let φ(Y ) be the
collection of maximal elements of Y together with w and let f(Y ) := −|φ(Y )|.
These data again satisfy (60.20) and (60.21), and S′ = S′′ = S.

Then Theorem 60.4 gives the box-total dual integrality of the system

(60.30) x(A) + λ ≤ −|A| for each antichain A,

and hence of the system

(60.31) x(A) + λ ≥ |A| for each antichain A.

Then the maximum union of k antichains is equal to

(60.32) max{
∑

A∈A

yA|A|
∣∣ y ∈ Z

A
+ ,

∑

A∈A

yAχA ≤ 1,
∑

A∈A

yA = k}

= min{x(V ) + k · λ | x ∈ Z
V
+ , λ ∈ Z, x(A) + λ ≥ |A| for each A ∈ A}

≥ min
Y ⊆V

(|V \ Y | + k·(maximum size of an antichain contained in Y )).

The equality follows from the box-total dual integrality of (60.31). The inequality
follows by taking Y := {v ∈ V | xv = 0}. Then λ is at least the maximum size of
an antichain contained in Y , since for any antichain A ⊆ Y : λ = x(A) + λ ≥ |A|.

Common base vectors in two polymatroids (Gröflin and Hoffman [1981]). Let
f1 and f2 be submodular set functions on S. The polymatroid intersection theorem
gives:

(60.33) f(T ) := max{x(T ) | x(U) ≤ fi(U) for U ⊆ S and i = 1, 2}
= min

U⊆T
(f1(U) + f2(T \ U)),

for T ⊆ S. Gröflin and Hoffman [1981] showed that Theorem 46.4 follows from
Theorem 60.4 above as follows. (The proof of Theorem 46.4 was modelled after the
proof of Theorem 60.4.)

Let L be the set of all pairs (T, U) of subsets of S with T ∩ U = ∅, partially
ordered by ≤ as follows:

(60.34) (T, U) ≤ (T ′, U ′) and only if T ⊆ T ′ and U ⊇ U ′.

Then (L, ≤) is a lattice with lattice operations ∧ and ∨ (say). Define φ(T, U) :=
|S \ (T ∪ U)| and f(T, U) := f1(T ) + f2(U) − f(S). As these data satisfy (60.20),
(60.21), and (60.22), Theorem 60.4 applies. We have S′ = S′′ = S. Hence the
system

(60.35) x(S \ (T ∪ U)) ≥ f1(T ) + f2(U) − f(S) for (T, U) ∈ L

is box-TDI. With the definition of f , this implies the box-total dual integrality of

(60.36) x(T ) ≤ f(S \ T ) − f(S) for T ⊆ S,

and (equivalently) of

(60.37) x(T ) ≥ f(S) − f(S \ T ) for T ⊆ S.
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That is, we have Theorem 46.4.

Convex sets in partially ordered sets (Gröflin [1984]). Let (S, ≤) be a partially
ordered set. A subset C of S is called convex if a, b ∈ C and a ≤ x ≤ b imply x ∈ C.
Then the system

(60.38) x(C) ≤ 1 for each convex subset C of S,

is box-TDI. Note that this system describes the polar of the convex hull of the
incidence vectors of convex sets.

To see the box-total dual integrality of (60.38), define

(60.39) L := {(A, B) | A lower ideal and B upper ideal in S with A ∪ B = S}.

(An upper ideal is a subset B such that if b ∈ B and x ≥ b, then x ∈ B. Similarly,
a lower ideal is a subset B such that if b ∈ B and x ≤ b, then x ∈ B.) Make L to a
lattice by defining a partial order � on L by:

(60.40) (A, B) � (A′, B′) ⇐⇒ A ⊆ A′, B ⊇ B′.

Define f : L → R and φ : L → P(S) by: f(A, B) := 1 and φ(A, B) := A ∩ B,
for (A, B) ∈ L. Applied to this structure, Theorem 60.4 gives the box-total dual
integrality of (60.38).

(‘Greedy’ algorithms for some lattice polyhedra problems were investigated by
Kornblum [1978].)

An extension of lattice polyhedra, to handle rooted-connectivity augmentation
of a digraph, was given by Frank [1999b].

60.3b. Polymatroidal network flows

Hassin [1978,1982] and Lawler and Martel [1982a,1982b] gave the following ‘poly-
matroidal network flow’ model equivalent to that of Edmonds and Giles. Let
D = (V, A) be a digraph. For each v ∈ V , let Cout

v and Cin
v be intersecting fam-

ilies of subsets of δout(v) and δin(v), respectively, and let fout
v : Cout

v → R and
f in

v : Cin
v → R be submodular on intersecting pairs. Then the system

(60.41) x(δout(v)) = x(δin(v)) for v ∈ V ,

x(B) ≤ f in
v (B) for each v ∈ V and B ∈ Cin

v ,

x(B) ≤ fout
v (B) for each v ∈ V and B ∈ Cout

v ,

is box-TDI. Frank [1982b] showed that this can be derived from the Edmonds-
Giles theorem (Theorem 60.1) as follows. Make a digraph D′ = (V ′, A′), where A′

consists of disjoint arcs a′ := (ua, va) for each a ∈ A. Let C consist of all subsets U
of V ′ such that there exists a v ∈ V satisfying:

(60.42) U = {va | a ∈ δin(v)} ∪ {ua | a ∈ δout(v)},
or ∃B ∈ Cin

v : U = {va | a ∈ B},
or ∃B ∈ Cout

v : U = V ′ \ {ua | a ∈ B}.

Define f(U) := 0, f(U) := f in
v (B), and f(U) := f in

v (B), respectively. Then the
box-total dual integrality of (60.41) is equivalent to that of

(60.43) x(δin
A′(U)) − x(δout

A′ (U)) ≤ f(U) for U ∈ C,



Section 60.3c. A general model 1029

which follows from Theorem 60.1.
Lawler [1982] showed that, conversely, the Edmonds-Giles model is a special case

of the polymatroidal network flow model. To see this, let D = (V, A) be a digraph,
let C be a crossing family of subsets of V , and let f : C → R be crossing submodular.
Let Ĉ be the collection of all sets U = U1 ∩ · · · ∩ Ut with U1, . . . , Ut ∈ C \ {V } such
that Ui ∪ Uj = V for all i, j with 1 ≤ i < j ≤ t. Define f̂ : Ĉ → R by

(60.44) f̂(U) := min(f(U1) + · · · + f(Ut)),

where the minimum ranges over sets U1, . . . , Ut as above. Then Ĉ is an intersecting
family and f̂ is intersecting submodular (Theorem 49.6).

Now extend D by a new vertex r, and arcs (v, r) for v ∈ V , thus making the
digraph D′ = (V ∪ {r}, A′). Let Cin

r consist of all subsets B of δin
A′(r) for which

there is a U ∈ Ĉ satisfying

(60.45) B = {(v, r) | v ∈ U}.

Define f in
r (B) := f̂(U). Then

(60.46) x(δout
A′ (v)) = x(δin

A′(v)) for v ∈ V ,

x(δin
A′(r)) = 0,

x(B) ≤ f in
r (B) for B ∈ Cin

r ,

is a special case of (60.41). Moreover, the box-total dual integrality of (60.46) implies
the box-total dual integrality of

(60.47) x(δin
A (U)) − x(δout(U)) ≤ f(U) for U ∈ C,

since in (60.46) we can restrict B to those B for which there exists a U ∈ C with
B = {(v, r) | v ∈ U} (since x(δin

A′(r)) = 0). Then

(60.48) x(B) =
∑

v∈U

(
x(δin

A (v)) − x(δout
A (v))

)
= x(δin

A (U)) − x(δout
A (U)).

So it implies the Edmonds-Giles theorem (Theorem 60.1).

60.3c. A general model

In Schrijver [1984a] the following general framework was given. Let S be a finite
set, let n ∈ Z+, let C be a collection of subsets of S, let b, c ∈ (R ∪ {±∞})n, and
let f : C → R and h : C → {0, ±1}n satisfy:

(60.49) (i) if {T1, T2, T3} is a cross-free subcollection of C, then for each j =
1, . . . , n, there exist u, v ∈ S such that for i = 1, 2, 3: h(Ti)j = +1
if and only if (u, v) enters Ti, and h(Ti)j = −1 if and only if (u, v)
leaves Ti;

(ii) if T and U are crossing sets in C, then there exist T ′, U ′ ∈ C such
that T ′ ⊂ T and

f(T ) + f(U) − f(T ′) − f(U ′) ≥ (h(T ) + h(U) − h(T ′) − h(U ′))x

for each x with b ≤ x ≤ c.

Then the system (in x ∈ Rn)



1030 Chapter 60. Submodular functions on directed graphs

(60.50) b ≤ x ≤ c,
h(T )x ≤ f(T ) for T ∈ C,

is box-TDI. This contains the Edmonds-Giles theorem (Theorem 60.1) and Theo-
rems 60.3 and 60.4 as special cases.

A proof of the box-total dual integrality of (60.50) can be sketched as follows.
If we maximize a linear functional wTx over (60.50), condition (60.49)(ii) implies
that there exists an optimum dual solution whose active constraints correspond to
a cross-free subfamily of C. Next, condition (60.49)(i) implies that these constraints
form a network matrix, hence a totally unimodular matrix, proving the box-total
dual integrality of (60.50) with Theorem 5.35.

60.3d. Packing cuts and Győri’s theorem

Let D = (V, A) be a digraph and let g : P(V ) → Z+ satisfy the supermodular
inequality

(60.51) g(U) + g(W ) ≤ g(U ∩ W ) + g(U ∪ W )

for all U, W ⊆ V such that δin(U) ∩ δin(W ) �= ∅ and g(U) > 0, g(W ) > 0.
The following was shown by Frank and Jordán [1995b] (in the terminology of

bisupermodular functions — see Corollary 60.5a):

Theorem 60.5. Let D = (V, A) be a digraph satisfying:

(60.52) V can be partitioned into two sets S and T such that A consists of all
arcs from S to T .

Let g be as above, with g(U) = 0 if δin(U) = ∅. Then the minimum of x(A) taken
over all x : A → Z+ satisfying

(60.53) x(δin(U)) ≥ g(U) for each U ⊆ V ,

is equal to the maximum value of
∑

U∈B g(U), where B is a collection of subsets U

such that the δin(U) for U ∈ B are disjoint.

Proof. Let τ(g) and ν(g) denote the minimum and maximum value, respectively.
Then ν(g) ≤ τ(g), since, if x : A → Z+ satisfies (60.53) and B is as described,

then

(60.54) x(A) ≥
∑

U∈B

x(δin(U)) ≥
∑

U∈B

g(U).

The reverse inequality τ(g) ≤ ν(g) is shown by induction on ν(g). If ν(g) = 0,
then g(U) = 0 for all U ⊆ V , and hence τ(g) = 0. Now let ν(g) ≥ 1.

For each a ∈ A, define a function ga by

(60.55) ga(U) :=

{
g(U) − 1 if a ∈ δin(U) and g(U) ≥ 1,
g(U) otherwise,

for U ⊆ V . In other words:

(60.56) ga(U) = max{g(U) − din
{a}(U), 0}.

Then
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(60.57) ga again satisfies (60.51).

Indeed, if δin(U) ∩ δin(W ) �= ∅, and ga(U) > 0 and ga(W ) > 0, then g(U) > 0 and
g(W ) > 0, and ga(U) = g(U) − din

{a}(U) and ga(W ) = g(W ) − din
{a}(W ). Hence

(60.58) ga(U) + ga(W ) = g(U) + g(W ) − din
{a}(U) − din

{a}(W )

≤ g(U ∩ W ) + g(U ∪ W ) − din
{a}(U ∩ W ) − din

{a}(U ∪ W )
≤ ga(U ∩ W ) + ga(U ∪ W ).

So ga satisfies (60.51).
The following is the key of the proof:

(60.59) there exists an arc a with ν(ga) ≤ ν(g) − 1.

Suppose to the contrary that ν(ga) = ν(g) for all a ∈ A. As ν(g) ≥ 1, there exists
a W ⊆ V with g(W ) ≥ 1. For each a ∈ δin(W ), as ν(ga) = ν(g), there exists
a collection Ba such that any arc of D enters at most one U ∈ Ba, such that
ga(Ba) = νg, and such that g(U) > 0 for each U ∈ Ba. As g(Ba) ≤ ga(Ba), a enters
no U ∈ Ba.

Now for each U ⊆ V , let w(U) be the number of times U occurs among the
Ba (over all a ∈ δin(W )). Reset w(W ) := w(W ) + 1. Then w has the following
properties:

(60.60) (i)
∑

U⊆V

w(U)χδout(U) ≤ |δin(W )| · 1 and

(ii)
∑

U⊆V

w(U)g(U) > |δin(W )|ν(g).

Moreover, g(U) ≥ 1 whenever w(U) > 0.
Now as long as there exist U, U ′ ⊆ V with w(U) > 0 and w(U ′) > 0 and not

satisfying:

(60.61) δin(U) ∩ δin(U ′) = ∅ or U ⊆ U ′ or U ′ ⊆ U ,

decrease w(U) and w(U ′) by 1, and increase w(U ∩ U ′) and w(U ∪ U ′) by 1. This
operation maintains (60.60) and decreases

(60.62)
∑

U∈P(V )

w(U)|U ||V \ U |

(by Theorem 2.1). So after a finite number of these operations, w satisfies (60.60)
and all U, U ′ with w(U) > 0 and w(U ′) > 0 satisfy (60.61).

Let F be the collection of U ⊆ V with w(U) > 0. We apply the length-width
inequality for partially ordered sets (Theorem 14.5) to (F , ⊆). By (60.60)(i), the
maximum of w(C) taken over chains in F is at most |δin(W )|, since by (60.52), there
is an arc a ∈ A entering all U ∈ C (as δin(U) �= ∅, since g(U) ≥ 1, for each U ∈ F).
Moreover, the maximum of g(B) taken over antichains B in F is at most ν(g), since
the elements in F satisfy (60.61), and therefore B gives a collection of disjoint cuts.
But then (60.60)(ii) contradicts the length-width inequality. This proves (60.59).

We now can apply induction, since trivially τ(g) ≤ τ(ga) + 1, as increasing xa

by 1 for any x satisfying (60.53) with respect to ga, gives an x satisfying (60.53)
with respect to g. So τ(g) ≤ τ(ga) + 1 = ν(ga) + 1 ≤ ν(g).

This theorem can be equivalently formulated as follows. Let S and T be finite
sets. Consider functions h : P(S) × P(T ) → R satisfying
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(60.63) h(X1 ∩ X2, Y1 ∪ Y2) + h(X1 ∪ X2, Y1 ∩ Y2) ≥ h(X1, Y1) + h(X2, Y2)
for all X1, X2 ⊆ S and Y1, Y2 ⊆ T with X1 ∩ X2 �= ∅, Y1 ∩ Y2 �= ∅,
h(X1, Y1) > 0, and h(X2, Y2) > 0.

Call a collection F ⊆ P(S) × P(T ) independent if X1 ∩ X2 = ∅ or Y1 ∩ Y2 = ∅
for all distinct (X1, Y1), (X2, Y2) in F . So F is independent if the sets X × Y for
(X, Y ) ∈ F are disjoint.

As usual,

(60.64) h(F) :=
∑

(X,Y )∈F

h(X, Y ).

Moreover, if z : S × T → R, denote

(60.65) z(X × Y ) :=
∑

(x,y)∈X×Y

z(x, y)

for X ⊆ S and Y ⊆ T .

Corollary 60.5a. Let h : P(S)×P(T ) → Z+ satisfy (60.63), such that h(X, Y ) = 0
if X = ∅ or Y = ∅. Then the minimum value of z(S × T ) where z : S × T → Z+

satisfies

(60.66) z(X × Y ) ≥ h(X, Y ) for all X ⊆ S, Y ⊆ T ,

is equal to the maximum value of h(F) where F is independent.

Proof. We can assume that S and T are disjoint. Let V := S ∪ T , and define a set
function g on V by:

(60.67) g(U) := h(S \ U, T ∩ U)

for U ⊆ V . Let D = (V, A) be the digraph with A consisting of all arcs from S to
T . Then D and g satisfy the condition of Theorem 60.5, and the min-max equality
proved in Theorem 60.5 is equivalent to the min-max equality described in the
present corollary.

Frank and Jordán showed that this theorem implies the following ‘minimax
theorem for intervals’ of Győri [1984]. Let I and J be collections of sets. Then
J is said to generate I if each set in I is a union of sets in J . Győri’s theorem
characterizes the minimum size of a collection of intervals generating a given finite
collection I of intervals. For this, we can take an ‘interval’ to be a finite, contiguous
set of integers.

To describe the min-max equality, consider the undirected graph GI = (VI , EI)
with

(60.68) VI := {(s, I) | s ∈ I ∈ I},

where two distinct pairs (s, I) and (s′, I ′) are adjacent if and only if s ∈ I ′ and
s′ ∈ I. Call a subset C of VI stable if any two elements of C are nonadjacent (in
other words, C is a stable set in GI).

Corollary 60.5b (Győri’s theorem). Let I be a finite collection of intervals. Then
the minimum size of a collection of intervals generating I is equal to the maximum
size of a stable subset of VI .
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Proof. To see that the minimum is not less than the maximum, observe that if J
generates I and C is a stable subset of VI , then for any J ∈ J , there is at most
one (s, I) ∈ C with s ∈ J ⊆ I, while for any (s, I) ∈ C there is at least one such
J ∈ J . So |J | ≥ |C|.

Equality is shown with Corollary 60.5a. Let S be the union of the intervals in
I. Define a function h : P(S) × P(S) → {0, 1} by

(60.69) h(X, Y ) = 1 if and only if X and Y are nonempty intervals such that
max X = min Y and X ∪ Y ∈ I, and such that there is no I ∈ I with
X ∩ Y ⊆ I ⊂ X ∪ Y ,

for X, Y ⊆ S. (Here max Z and min Z denote the maximum and minimum element
of Z, respectively.)

Then h satisfies (60.63). To see this, note first that each (X, Y ) with h(X, Y ) = 1
is characterized by a point s ∈ S and an inclusionwise minimal interval I ∈ I
containing s (inclusionwise minimal among all intervals in I containing s). The
relation is that {s} = X ∩ Y and I = X ∪ Y .

To see that h satisfies (60.63), let h(X1, Y1) = 1 and h(X2, Y2) = 1 and X1 ∩
X2 �= ∅ and Y1∩Y2 �= ∅. We show h(X1∩X2, Y1∪Y2) = 1 (then h(X1∪X2, Y1∩Y2) =
1 follows by symmetry).

In fact, this is straightforward case-checking. Let Xi = [ai, bi], Yi = [bi, ci], and
Ii := Xi ∪ Yi for i = 1, 2. As X1 ∩ I2 �= ∅ �= Y1 ∩ I2, we know that b1 ∈ [a2, c2],
and similarly b2 ∈ [a1, c1]. By symmetry, we can assume that a1 ≤ a2. Hence, by
the minimality of X1 ∪ Y1 as an interval containing b1, c1 ≤ c2. Now, if b2 ≤ b1,
we have X1 ∩ X2 = [a2, b2] = X2 and Y1 ∪ Y2 = [b2, c2] = Y2, and therefore
h(X1 ∩ X2, Y1 ∪ Y2) = h(X2, Y2) = 1. If b1 < b2, then X1 ∩ X2 = [a2, b1] and
Y1 ∪ Y2 = [b1, c2]. Suppose that there is an I ∈ I with b1 ∈ I ⊂ [a2, c2]. By the
minimality of [a2, c2] as an interval containing b2, we know b2 �∈ I. Hence I ⊂ [a1, c1],
contradicting the minimality of [a1, c1] as an interval containing b1. Therefore, no
such I exists, and hence we have h(X1 ∩ X2, Y1 ∪ Y2) = 1.

So Corollary 60.5a applies (taking T := S). Let z and F attain the minimum
and maximum respectively. Let J be the collection of intervals [s, t] with z(s, t) ≥ 1
and s ≤ t. Let C be the collection of pairs (s, I) with s ∈ S and I ∈ I such that
there is an (X, Y ) ∈ F with h(X, Y ) = 1, X ∩ Y = {s}, and X ∪ Y = I. Then J
generates I, since z(X × Y ) ≥ h(X, Y ) for all X, Y . Moreover, C is stable as F is
independent. Finally, |J | ≤ z(S × S) = h(F) = |C|.

(Frank [1999a] gave an alternative, algorithmic proof.)
Győri’s theorem in fact states that the colouring number of the complementary

graph of GI is equal to its clique number. It has the following consequence, proved
by Chaiken, Kleitman, Saks, and Shearer [1981] and conjectured by V. Chvátal.
Let P be a rectilinear polygon in R2 (where each side horizontal or vertical), such
that the intersection of P with each horizontal or vertical line is convex. Then the
minimum number of rectangles contained in P needed to cover P , is equal to the
maximum number of points in P no two of which are contained in any rectangle
contained in P .

Franzblau and Kleitman [1984] gave an O(|I|2)-time algorithm to find the op-
tima in Győri’s theorem, with a proof of equality as by-product.

Győri’s theorem was extended by Lubiw [1991a] to a weighted version. She
noted that a fully weighted version of the theorem does not hold; that is, taking
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integer weights w(s, I) on any pair (s, I), the maximum weight of a stable set need
not be equal to the minimum size of a family J of intervals such that for any (s, I)
there are at least w(s, I) intervals J in J satisfying s ∈ J ⊆ I. (In other words, GI

need not be perfect.)
However, as Lubiw showed, these two optima are equal if w(s, I) only depends

on s; that is, if w(s, I) = w(s) for some w : S → Z+. Also this can be derived from
Frank and Jordán’s theorem: instead of defining h(X, Y ) := 1 in (60.69), define
h(X, Y ) := w(s) where {s} = X ∩ Y .

As Frank and Jordán observed, their method extends Győri’s theorem to the
case where we take ‘interval’ to mean: interval on the circle (instead of just the real
line).

Other applications of Theorem 60.5 are to vertex-connectivity augmentation —
see Theorem 63.11.

60.3e. Further notes

For another model equivalent to that of Edmonds and Giles, based on distributive
lattices, see Gröflin and Hoffman [1982] — cf. Schrijver [1984b]. Grishuhin [1981]
gave a lattice model requiring total unimodularity as a condition.

Further algorithms for minimum-cost submodular flow were given by Fujishige
[1978a,1987], Zimmermann [1982b,1992], Barahona and Cunningham [1984], Cui
and Fujishige [1988], Chung and Tcha [1991], Gabow [1993a], McCormick and Er-
volina [1993], Iwata, McCormick, and Shigeno [1998,1999,2000,2002], Wallacher and
Zimmermann [1999], Fleischer and Iwata [2000], and Fleischer, Iwata, and Mc-
Cormick [2002]. A survey on algorithms for submodular flows was presented by
Fujishige and Iwata [2000].

Zimmermann [1982a,1982b,1985] considered group-valued extensions of some
of the models. Federgruen and Groenevelt [1988] extended some models to more
general objective functions. Zimmermann [1986] considered duality for balanced
submodular flows. Qi [1988a] and Murota [1999] gave generalizations of submodular
flows. Convex-cost submodular flows were considered by Iwata [1996,1997].

An algorithm for a model comprising the Edmonds-Giles and the lattice poly-
hedron model (Section 60.3a) was given by Karzanov [1983]. For 0,1 problems it is
polynomial-time.

The effectivity of uncrossing techniques is studied by Hurkens, Lovász, Schrijver,
and Tardos [1988] and Karzanov [1996].

The facets of submodular flow polyhedra were studied by Giles [1975].
For a comparison of models, see Schrijver [1984b], and for a survey, including

results on the dimension of faces of submodular flow polyhedra, see Frank and
Tardos [1988]. A survey of submodular functions and flows is given by Murota
[2002].



Chapter 61

Graph orientation

Orienting an undirected graph so as to obtain a k-arc-connected directed
graph is the object of study in this chapter. Recall that a directed graph
D is called an orientation of an undirected graph G if G is the underlying
undirected graph of D.
Central result is a deep theorem of Nash-Williams showing that each undi-
rected graph has an orientation that keeps at least half of the connectivity
(rounded down) between any two vertices.
It implies that a 2k-edge-connected undirected graph has a k-arc-connected
orientation. This can be proved alternatively and easier with the help of
submodular functions (cf. Section 61.4).

61.1. Orientations with bounds on in- and outdegrees

We first consider orientations obeying bounds on the indegrees and/or out-
degrees. The results follow quite directly from bipartite matching or (equiv-
alently) flow theory.

Hakimi [1965] considered lower bounds on the indegrees:

Theorem 61.1. Let G = (V, E) be an undirected graph and let l : V → Z+.
Then G has an orientation D = (V, A) with degin

A (v) ≥ l(v) for each v ∈ V
if and only if each U ⊆ V is incident with at least l(U) edges.

Proof. Let A be the family of subsets of E obtained by taking set δ(v)
with multiplicity l(v), for each v ∈ V . Then the existence of an orientation
as required is equivalent to the existence of a transversal of A. By Hall’s
marriage theorem (Theorem 22.1), this is equivalent to the condition in the
theorem.

A direct consequence is:

Corollary 61.1a. Let G = (V, E) be an undirected graph and let l : V → Z+.
Then G has an orientation D = (V, A) with degin

A (v) = l(v) for each v ∈ V if
and only if l(V ) = |E| and each U ⊆ V is incident with at least l(U) edges.

Proof. Directly from Theorem 61.1.
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Another consequence concerns upper bounds:

Corollary 61.1b. Let G = (V, E) be an undirected graph and let u : V → Z+.
Then G has an orientation D = (V, A) with degin

A (v) ≤ u(v) for each v ∈ V
if and only if each U ⊆ V spans at most u(U) edges.

Proof. For each v ∈ V , define l(v) := deg(v) − u(v). (We may assume that,
for each v ∈ V , u(v) ≤ deg(v), since otherwise resetting u(v) := deg(v) does
not change the conditions in the theorem.)

Now G has an orientation with degin(v) ≤ u(v) for each v if and only if
G has an orientation with degin(v) ≥ l(v) for each v (just by reversing the
orientation of all edges). By Theorem 61.1, the latter is equivalent to: each
U ⊆ V is incident with at least l(U) edges; that is: E[U ]| + |δE(U)| ≥ l(U).
Since

(61.1) l(U) =
∑

v∈U

(deg(v) − u(v)) = 2|E[U ]| + |δE(U)| − u(U),

it is equivalent to: |E[U ]| ≤ u(U), as required.

Frank and Gyárfás [1978] gave a characterization for the case of lower
bounds on both indegrees and outdegrees:

Theorem 61.2. Let G = (V, E) be an undirected graph and let l, u : V → Z+

with l ≤ u. Then G has an orientation D = (V, A) with l(v) ≤ degin
A (v) ≤

u(v) for each v ∈ V if and only if each U ⊆ V is incident with at least l(U)
edges and spans at most u(U) edges.

Proof. The condition trivially being necessary, we prove sufficiency. Let D =
(V, A) be an arbitrary orientation of G. It suffices to show that there exists
a function x : A → {0, 1} such that for each v ∈ V :

(61.2) l(v) ≤ degin
A (v) − x(δin

A (v)) + x(δout
A (v)) ≤ u(v),

since reversing the orientation of the arcs a with x(a) = 1 then gives an
orientation as required. Condition (61.2) is equivalent to:

(61.3) degin
A (v) − u(v) ≤ x(δin

A (v)) − x(δout
A (v)) ≤ degin

A (v) − l(v).

By Corollary 11.2i, such an x exists if and only if

(61.4) |δin
A (U)| ≥ max{

∑

v∈U

(degin
A (v) − u(v)),

∑

v∈V \U

(l(v) − degin
A (v))}

for each U ⊆ V . Since |δin
A (U)| +

∑
v∈V \U degin

A (v) is equal to the number of

edges incident with V \ U and since
∑

v∈U degin
A (v) − |δin

A (U)| is equal to the
number of edges spanned by U , this is equivalent to the condition given in
the theorem.
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Ford and Fulkerson [1962] observed that the undirected edges of a mixed
graph (V, E, A) can be oriented so as to obtain an Eulerian directed graph if
and only if

(61.5) (i) degE(v) + degin
A (v) + degout

A (v) is even for each v ∈ V ,

(ii) dout
A (U) − din

A (U) ≤ dE(U) for each U ⊆ V .

This can be proved similarly.

61.2. 2-edge-connectivity and strongly connected
orientations

Each 2k-edge-connected undirected graph has a k-arc-connected orientation,
which will be seen in Section 61.3. In the present section we consider the spe-
cial case k = 2, which goes back to a theorem of Robbins [1939]. Tarjan [1972]
showed that depth-first search is the tool behind. We follow his approach.

Theorem 61.3. Given an undirected graph G = (V, E) we can find an ori-
entation D of G, in linear time, such that for each u, v ∈ V , if G has two
edge-disjoint u − v paths, then D has a directed u − v path.

Proof. Choose s ∈ V arbitrarily, and consider a depth-first search tree T
starting at s. Orient each edge in T away from s. For each remaining edge
e = uv, there is a directed path in T that connects u and v. Let the path run
from u to v. Then orient e from v to u. This gives the orientation D of G.

Then any edge not in T belongs to a directed circuit in D. Moreover, any
edge f in T that is not a cut edge, belongs to a directed circuit in D (since
there is an edge e �∈ T connecting the two components of T −f). This implies
that D is as required.

This implies the theorem of Robbins [1939] on strongly connected orien-
tations:

Corollary 61.3a (Robbins’ theorem). An undirected graph G has a strongly
connected orientation if and only if G is 2-edge-connected.

Proof. Necessity is easy, and sufficiency follows from Theorem 61.3.

(The proof by Robbins [1939] uses the fact that each 2-edge-connected graph
has an ‘ear-decomposition’ — cf. Section 15.5a.)

The above proof also shows that a strongly connected orientation can be
found in linear time:

Corollary 61.3b. Given a 2-edge-connected graph G, a strongly connected
orientation of G can be found in linear time.
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Proof. Directly from Theorem 61.3.

Robbins’ theorem (Corollary 61.3a) extends to the following result of
Frank [1976a] and Boesch and Tindell [1980] for mixed graphs.

Theorem 61.4. Let G = (V, E) be a graph in which part of the edges is
oriented. Then the remainder of the edges can be oriented so as to obtain a
strongly connected digraph if and only if G is 2-edge-connected and there is
no nonempty proper subset U of V such that all edges in δ(U) are oriented
from U to V \ U .

Proof. Necessity being easy, we show sufficiency. Let G be a counterexample
with a minimum number of undirected edges. Then there is at least one
undirected edge, say e = uv. By the minimality assumption, orienting e from
s to t violates the condition. That is, there exists a U ⊆ V with u ∈ U ,
v ∈ V \ U , such that each edge �= e in δ(U) is oriented from U to V \ U .
Similarly, there exists a T ⊆ V with v ∈ T , u ∈ V \ T , such that each edge
�= e δ(T ) is oriented from T to V \ T .

Then each edge in δ(U ∩ T ) is oriented from U ∩ T to V \ (U ∩ T ), and
hence U ∩ T = ∅. Similarly, U ∪ T = V . Hence δ(U) = {e}, a contradiction.

The graph K2,3 shows that a 2-edge-connected graph need not have an
orientation in which each two vertices belong to a directed circuit; that is
an orientation such that for each two vertices s, t there exists an arc-disjoint
pair of an s − t and a t − s path.

Chung, Garey, and Tarjan [1985] gave a linear-time algorithm to find an
orientation as described in Theorem 61.4.

61.2a. Strongly connected orientations with bounds on degrees

Robbins’ theorem (Corollary 61.3a) states that an undirected graph G has a
strongly connected orientation if and only if G is 2-edge-connected. Frank and
Gyárfás [1978] extended this to the case where upper and lower bounds are pre-
scribed on the indegrees of the orientation.

Let κ(G) denote the number of its components of any graph G.

Theorem 61.5. Let G = (V, E) be a 2-edge-connected undirected graph and let
l, u ∈ ZV

+ with l ≤ u. Then G has a strongly connected orientation D = (V, A)
satisfying l(v) ≤ degin

A (v) ≤ u(v) for each v ∈ V if and only if for each U ⊆ V :

(61.6) (i) |E[U ]| + κ(G − U) ≤ u(U),
(ii) |E[U ]| + |δ(U)| − κ(G − U) ≥ l(U).

Proof. It is easy to see that condition (61.6) is necessary. To see sufficiency, let
(61.6) hold. Let D = (V, A) be a strongly connected orientation of G with



Section 61.2a. Strongly connected orientations with bounds on degrees 1039

(61.7)
∑

v∈V

max{0, degin
A (v) − u(v), l(v) − degin

A (v)}

as small as possible. (A strongly connected orientation exists by Corollary 61.3a.)
If sum (61.7) is 0, we are done, so assume that it is positive. Then there exists

a vertex v0 with degin
A (v0) > u(v0) or l(v0) > degin

A (v0). Suppose that degin
A (v0) >

u(v0). Let U be the set of vertices v for which D has two arc-disjoint v − v0 paths.
Then degin

A (v) ≥ u(v) for each v ∈ U , since otherwise we can reverse the orientation
on the arcs of one of the two arc-disjoint v−v0 paths, thereby keeping the orientation
strongly connected while decreasing sum (61.7).

We claim that U violates (61.6)(i). To this end, we show that

(61.8) each component K of G − U is left by exactly one arc of D.

This can be seen as follows. For each v ∈ K, there exists a Uv ⊆ V with dout
A (Uv) = 1

and v ∈ Uv, v0 �∈ Uv (as there exist no two arc-disjoint v0 − v paths). We choose
each Uv inclusionwise maximal.

It suffices to show that

(61.9) Uv = K for each v ∈ K.

To see this, note first that, for each v ∈ K, we have Uv ⊆ K. Indeed, Uv ∩ U = ∅,
since if say v1 ∈ U ∩ Uv, then there exist no two arc-disjoint v1 − v0 paths in D,
contradicting the definition of U . If Uv would intersect another component K′ of
G − U , then dout

A (Uv) = dout
A (Uv ∩ K) + dout

A (Uv ∩ K′) ≥ 2 — a contradiction.
Moreover, if v �= v′ and Uv ∩ Uv′ �= ∅, then Uv = Uv′ . This follows from:

(61.10) 1 ≤ dout
A (Uv ∪Uv′) ≤ dout

A (Uv)+dout
A (Uv′)−dout

A (Uv ∩Uv′) ≤ 1+1−1
= 1.

So, if Uv �= Uv′ , we would increase Uv or Uv′ by replacing it by Uv ∪ Uv′ — a
contradiction.

So the Uv partition K. Now if Uv �= K, there exist v and v′ such that Uv �= Uv′

and such that G has an edge connecting Uv and Uv′ . We can assume that it is
oriented from Uv′ to Uv. So it is the unique edge leaving Uv′ . Hence dout

A (Uv ∪Uv′) ≤
dout

A (Uv) = 1. So replacing Uv by Uv ∪ Uv′ would increase Uv — a contradiction.
This shows (61.9), and hence (61.8).

So dout
A (K) = 1 for each component K of G − U . Therefore

(61.11) |E[U ]| + κ(G − U) =
∑

v∈U

degin
A (v) > u(U).

Thus U violates (61.6)(i).
One similarly shows that degin

A (v0) < l(v0) implies violation of (61.6)(ii).

This implies an alternative characterization:

Corollary 61.5a. Let G = (V, E) be a 2-edge-connected undirected graph and let
l, u ∈ ZV

+ with l ≤ u. Then G has a strongly connected orientation D = (V, A)
satisfying l(v) ≤ degin

A (v) ≤ u(v) for each v ∈ V if and only if G has strongly
connected orientations D′ = (V, A′) and D′′ = (V, A′′) with l(v) ≤ degin

A′(v) and
degin

A′′(v) ≤ u(v) for each v ∈ V .
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Proof. Directly from Theorem 61.5, as (61.6)(i) is void if u = ∞ and as (61.6)(ii)
is void if l = 0 (since κ(G − U) ≤ dG(U)).

For further results, see Theorem 61.7.

61.3. Nash-Williams’ orientation theorem

The result of Robbins [1939] was extended deeply by Nash-Williams [1960].
Before stating and proving it, we give a useful lemma of Nash-Williams [1960].
Let φ : V × V → R be a symmetric function (that is, φ(u, v) = φ(v, u) for all
u, v ∈ V ). Define a set function R on V by:

(61.12) R(U) := max
u∈U,v∈V \U

φ(u, v) if ∅ ⊂ U ⊂ V , and

R(∅) := R(V ) := 0.

Lemma 61.6α. For all T, U ⊆ V :

(61.13) R(T ) + R(U) ≤ R(T ∩ U) + R(T ∪ U)
or R(T ) + R(U) ≤ R(T \ U) + R(U \ T ).

Proof. Suppose not. Then ∅ �= T �= V and ∅ �= U �= V . Choose s ∈ T ,
t ∈ V \T , u ∈ U , v ∈ V \U such that R(T ) = φ(s, t) and R(U) = φ(u, v). By
symmetry, we can assume that R(T ) ≤ R(U) and u ∈ T . So u ∈ T ∩ U , and
hence T ∩ U splits15 {u, v}. This implies that T ∪ U splits neither {s, t}, nor
{u, v}, as otherwise the first inequality in (61.13) holds (as φ(s, t) ≤ φ(u, v)).

Hence t, v ∈ T ∪ U , and so t ∈ U \ T and v ∈ T \ U . Then T \ U splits
{u, v}, and U \ T splits {s, t}, implying the second inequality in (61.13).

For any undirected graph G = (V, E) and s, t ∈ V , let λG(s, t) denote the
maximum number of edge-disjoint s−t paths in G. Similarly, for any directed
graph D = (V, A) and s, t ∈ V , let λD(s, t) denote the maximum number of
arc-disjoint s − t paths in D.

Theorem 61.6 (Nash-Williams’ orientation theorem). Any undirected graph
G = (V, E) has an orientation D = (V, A) with

(61.14) λD(s, t) ≥ ⌊ 1
2λG(s, t)⌋

for all s, t ∈ V .

Proof. Call a partition of a set T into pairs, a pairing of T . For any number
k, define

(61.15) k∗ := 2⌊ 1
2k⌋.

For any subset U of V , define

15 Set X splits set Y if both Y ∩ X and Y \ X are nonempty.
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(61.16) r(U) := max
u∈U,v 	∈U

λG(u, v),

setting r(U) := 0 if U = ∅ or U = V . Let T be the set of vertices of odd
degree of G.

I. It suffices to show that T has a pairing P such that

(61.17) dG(U) − dP (U) ≥ r(U)∗ for each U ⊆ V .

To see that this is sufficient, let G′ = (V, E ∪ P ). That is, G′ is the graph
obtained from G by adding all pairs in P as new edges (possibly in parallel).
Then all degrees in G′ are even, and hence G′ has an Eulerian orientation
D′ = (V, A′). So

(61.18) degout
D′ (v) = degin

D′(v) = 1
2 degG′(v)

for each v ∈ V . This implies that, for each U ⊆ V ,

(61.19) dout
D′ (U) = 1

2dG′(U).

Let A be the restriction of A′ to the original edges of G and let D = (V, A).
We claim that D is an orientation of G as required. Indeed, by (61.17), for
each U ⊆ V ,

(61.20) dout
D (U) ≥ dout

D′ (U) − dP (U) = 1
2dG′(U) − dP (U)

= 1
2 (dG(U) − dP (U)) ≥ ⌊ 1

2r(U)⌋.

Hence, for any u, v ∈ V , if U ⊆ V with u ∈ U , v �∈ U , and λD(u, v) = dout
D (U),

then

(61.21) λD(u, v) = dout
D (U) ≥ ⌊ 1

2r(U)⌋ ≥ ⌊ 1
2λG(u, v)⌋.

II. We now prove the theorem. Define for any Y ⊆ V and U ⊆ V ,

(61.22) rY (U) := max
u∈Y ∩U,v∈Y \U

λG(u, v),

setting rY (U) := 0 if Y ∩ U = ∅ or Y ⊆ U .
By Lemma 61.6α, for any U, W ⊆ V ,

(61.23) rY (U)∗ + rY (W )∗ ≤ rY (U ∩ W )∗ + rY (U ∪ W )∗

or rY (U)∗ + rY (W )∗ ≤ rY (U \ W )∗ + rY (W \ U)∗.

This follows from Lemma 61.6α by taking φ(u, v) := λG(u, v)∗ if u, v ∈ Y
and φ(u, v) := 0 otherwise.

Suppose that there exist graphs G for which T has no pairing P satisfying
(61.17). Choose G with |V | + |E| minimal.

Choose Y ⊆ V such that T has no pairing P satisfying

(61.24) dG(U) − dP (U) ≥ rY (U)∗ for each U ⊆ V ,

with |Y | as small as possible. Then

(61.25) For any subset X of V splitting Y and satisfying dG(X)∗ =
rY (X)∗, one has |X| = 1 or |X| = |V | − 1.
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For suppose 1 < |X| < |V | − 1. Consider the graph G1 = (V1, E1) obtained
from G by contracting V \X to one vertex, v1 say. Let T1 be the set of vertices
of odd degree of G1. By the minimality of |V |+ |E|, T1 has a pairing P1 such
that for each subset U of X:

(61.26) dG1
(U) − dP1

(U) ≥ r(U)∗.

(Note that r(U) ≤ maxu∈U,v∈V \U λG1
(u, v).)

Similarly, consider the graph G2 = (V2, E2) obtained from G by contract-
ing X to one vertex, v2 say. Let T2 be the set of vertices of odd degree of G2.
Again by the minimality of |V | + |E|, T2 has a pairing P2 such that for each
subset U of V \ X and for each u ∈ U , v ∈ V2 \ U :

(61.27) dG2
(U) − dP2

(U) ≥ r(U)∗.

Now define a pairing P of T as follows. (Observe that v1 ∈ T1 if and only
if v2 ∈ T2.) If v1 �∈ T1 and v2 �∈ T2, let P := P1 ∪ P2. If v1 ∈ T1 and v2 ∈ T2,
let u1 ∈ X and u2 ∈ V \ X be such that u1v1 ∈ P1 and u2v2 ∈ P2. Then
define

(61.28) P := (P1 \ {u1v1}) ∪ (P2 \ {u2v2}) ∪ {u1u2}.

We claim that P satisfies (61.24). To show this, we may assume by (61.23)
that rY (U ∩ X)∗ + rY (U ∪ X)∗ ≥ rY (U \ X)∗ + rY (X \ U)∗. (Otherwise,
replace U by V \ U .)

Set U1 := U ∩ X and U2 := V \ (U ∪ X). Then

(61.29) dG(U) + dG(X) ≥ dG(U1) + dG(U2) = dG1
(U1) + dG2

(U2)
≥ r(U1)

∗+dP1
(U1)+r(U2)

∗+dP2
(U2) ≥ rY (U)∗+rY (X)∗+dP (U)

≥ rY (U)∗ + dG(X) + dP (U) − 1,

using (61.26) and (61.27). As dG(U) + dP (U) is even, (61.24) follows. This
contradicts our assumption, showing (61.25).

We next show that

(61.30) each edge of G intersects Y .

For assume that G has an edge e = st disjoint from Y . By (61.25), there is
no U splitting Y with dG(U)∗ = rY (U)∗ and s ∈ U , t �∈ U . So deleting edge
e, changes no rY (U)∗. Let G′ be the graph obtained from G by deleting e.
Let T ′ be the set of vertices of G′ of odd degree. (So T ′ = T△{s, t}.) Then,
by the minimality of |V | + |E|, we know that T ′ has a pairing P ′ such that,
for each U ⊆ V ,

(61.31) dG′(U) − dP ′(U) ≥ r(U)∗ ≥ rY (U)∗.

It is not difficult to transform pairing P ′ of T ′ to a pairing P of T with the
property that |P \ P ′| ≤ 1.16 Then (61.24) holds. Indeed, dG(U) ≥ dG′(U)
16 If s, t ∈ T ′ and st ∈ P ′, define P := P ′ \ {st}. If s, t ∈ T ′ and st �∈ P ′, let s′ and t′ be

such that ss′ ∈ P ′ and tt′ ∈ P ′, and define P := (P ′ \ {ss′, tt′}) ∪ {s′t′}. If s ∈ T ′ and
t �∈ T ′, let s′ be such that ss′ ∈ P ′, and define P := (P ′ \ {ss′}) ∪ {ts′}. If s �∈ T ′ and
t ∈ T ′, let t′ be such that tt′ ∈ P ′, and define P := (P ′ \ {tt′}) ∪ {st′}. If s �∈ T ′ and
t �∈ T ′, define P := P ′ ∪ {st}.
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and dP (U) ≤ dP ′(U)+1 (as |P \P ′| ≤ 1). Hence (61.24) follows from (61.31),
with parity. This contradiction proves (61.30).

Next:

(61.32) |Y | ≥ 2.

For suppose that |Y | ≤ 1. In G there exist 1
2 |T | edge-disjoint paths such that

each vertex in T occurs exactly once as an end vertex of one of these paths.
(This can be seen by taking an arbitrary pairing Q of T , and considering
an Eulerian tour C in the graph G = (V, E ∪ Q). Then removing Q from
C decomposes C into paths as required.) Let P be the set of pairs of end
vertices of these paths. Then dG(U) ≥ dP (U) for each U ⊆ V , and (61.24)
follows, contradicting our assumption. So we know (61.32).

Choose a set X splitting Y with dG(X) minimal. Then dG(X) = rY (X).
By (61.25), we may assume that X = {x} for some x ∈ Y . So rY (U) = dG(x)
for any U splitting Y , since for any y ∈ Y \ U we have

(61.33) dG(x) ≤ dG(U) ≤ rY (U) ≤ λG(x, y) ≤ dG(x).

.
Define Y ′ := Y \ {x}. Then, by the minimality of |Y |, T has a pairing P

such that for each U ⊆ V ,

(61.34) dG(U) − dP (U) ≥ rY ′(U)∗.

We show that (61.24) holds, which forms a contradiction. To this end, choose
U ⊆ V .

First assume that U splits Y ′. Then rY ′(U) ≥ rY (U), since λG(x, y) =
dG(X) ≤ rY ′(U) for each y ∈ Y ′ (by the minimality of dG(X), since any
splitting of Y ′ also splits Y ). This implies (61.34).

So we can assume that U splits Y but does not split Y ′; that is, U ∩ Y =
{x}. Consider any u ∈ U \{x}. Let αu denote the number of edges connecting
u and x and let βu denote the number of edges connecting u and Y \{x}. By
(61.30), αu + βu = degG(u). Since X = {x} splits Y with dG(X) minimum,
we have dG({x, u}) ≥ degG(x). Hence βu ≥ αu, with strict inequality if u ∈ T
(since then αu + βu is odd).

Therefore, setting U ′ := U \ {x} and λ := number of edges connecting x
and V \ U ,

(61.35) dG(U) = λ+
∑

u∈U ′

βu ≥ λ+
∑

u∈U ′

αu + |U ′ ∩T | = degG(x)+ |U ′ ∩T |

= rY (U) + |U ′ ∩ T | ≥ rY (U) + |U ∩ T | − 1 ≥ rY (U) + dP (U) − 1.

Hence, with parity, we have (61.24).

(This is the original proof of Nash-Williams [1960]. Mader [1978a] and Frank
[1993a] gave alternative proofs.)

An orientation satisfying the condition described in Theorem 61.6 is called
well-balanced. Nash-Williams [1969] (giving an introduction to the proof
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above) remarks that with methods similar to those used in the proof of The-
orem 61.6, one can prove that for any graph G and any subgraph H of G,
there is a well-balanced orientation of G such that the restriction to H is
well-balanced again.

61.4. k-arc-connected orientations of 2k-edge-connected
graphs

Nash-Williams’ orientation theorem directly implies:

Corollary 61.6a. An undirected graph G has a k-arc-connected orientation
if and only if G is 2k-edge-connected.

Proof. Directly from Theorem 61.6.

A direct proof of this corollary, based on total dual integrality, was given
by Frank [1980b] and Frank and Tardos [1984b], and is as follows.

Orient the edges of G arbitrarily, yielding the directed graph D = (V, A).
Consider the system

(61.36) (i) 0 ≤ xa ≤ 1 for each a ∈ A,
(ii) x(δin(U)) − x(δout(U)) ≤ din(U) − k for each nonempty

U ⊂ V .

By the Edmonds-Giles theorem (Theorem 60.1), this system is TDI, and
hence determines an integer polytope P . If G is 2k-edge-connected, then P
is nonempty, since the vector x := 1

2 · 1 belongs to P .
As P is nonempty and integer, (61.36) has an integer solution x. Then G

has a k-arc-connected orientation D′: reversing the orientation of the arcs a
of D with xa = 1 gives a k-arc-connected orientation D′, since

(61.37) din
D′(U) = din

D(U) − x(δin
D(U)) + x(δout

D (U)) ≥ k

for any nonempty proper subset U of V .

Notes. The total dual integrality of (61.36) implies also the following result of
Frank, Tardos, and Sebő [1984] (denoting the number of (weak) components of a
(di)graph G by κ(G)). Let G = (V, E) be a 2-edge-connected undirected graph
and let U ⊆ V . Then the minimum number of arcs entering U over all strongly
connected orientations of G is equal to the maximum of

(61.38)
∑

T∈P

κ(G − T ),

taken over partitions P of U into nonempty classes such that no edge connects
different classes of P.

This implies another result of Frank, Tardos, and Sebő [1984]: Let D = (V, A)
be a digraph and let C = δin(U) be a directed cut. Then the minimum of |B ∩ C|
where B is a directed cut cover is equal to the maximum of
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(61.39)
∑

T∈P

κ(D − T ),

taken over partitions P of U into nonempty classes such that no arc of D connects
distinct classes of P.

As A. Frank (personal communication 2002) observed, the proof above yields
a stronger result of Nash-Williams [1969]: let G = (V, E) be a 2k-edge-connected
graph and let F ⊆ E have an Eulerian orientation; then the remaining edges have
an orientation so as to obtain a k-arc-connected digraph. This follows by taking for
A any orientation extending the orientation of F , and by setting xa := 0 for each
arcs in F , and xa := 1

2
for all other arcs a. Then x satisfies (61.36), and the result

follows as above.

61.4a. Complexity

By the results in Section 60.1 on the complexity of the Edmonds-Giles problem, one
can find a k-arc-connected orientation of a 2k-edge-connected undirected graph in
polynomial time; more generally, one can find a minimum-length k-arc-connected
orientation in strongly polynomial time, if we are given a length for each orientation
of each edge.

A direct method of finding a minimum-length k-arc-connected orientation can
be based on weighted matroid intersection, similarly to the method described in
Section 55.5 to find a minimum-length directed k-cover in a directed graph (such
that the k-arc-connected orientations form the common bases of two matroids).

61.4b. k-arc-connected orientations with bounds on degrees

Frank [1980b] extended Corollary 61.6a to the case where lower and upper bounds
on the indegrees of the vertices are prescribed:

Theorem 61.7. Let G = (V, E) be a 2k-connected undirected graph and let l, u ∈
ZV

+ with l ≤ u. Then G has a k-arc-connected orientation D with l(v) ≤ degin
D (v) ≤

u(v) for each v ∈ V if and only if

(61.40) |E[W ]| + |δ(P)| ≥ k|P| + max{
∑

v∈W

l(v),
∑

v∈W

(degG(v) − u(v))}

for each subpartition P of V with nonempty classes, where W := V \ ⋃P.

Proof. It is not difficult to see that the condition is necessary. To show sufficiency,
by Corollary 61.6a, G has a k-arc-connected orientation D. Choose D such that

(61.41)
∑

v∈V

max{0, degin
D (v) − u(v), l(v) − degin

D (v)}

is as small as possible. If sum (61.41) is 0 we are done, so assume that it is positive.
By symmetry, we can assume that there is a vertex r with degin

D (r) < l(r).
Let P be the collection of inclusionwise maximal nonempty subsets U of V \{r}

with din(U) = k, and let W := V \ ⋃P.
Then the sets in P are disjoint. For let U, W ∈ P with U ∩ W �= ∅. Then

(61.42) 2k ≤ din
D (U ∩ W ) + din

D (U ∪ W ) ≤ din
D (U) + din

D (W ) = 2k,
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implying din
D (U ∪ W ) = k, and so U = W = U ∪ W .

Suppose that there exists a vertex s ∈ W with degin
D (s) > l(s). Then reversing

the orientations of the arcs of any r − s path in D gives again a k-arc-connected
orientation (since there is no U ⊆ V with din

D (U) = k and s ∈ U , r �∈ U), but
decreases sum (61.41). This contradicts our minimality assumption.

So degin
D (v) ≤ l(v) for each v ∈ W , with strict inequality for at least one v ∈ W

(namely for r). Now each edge of G that is spanned by no set in P, either enters
some U ∈ P, or has its head in W . So the number of such edges is

(61.43) k|P| +
∑

v∈W

degin
D (v), which is less than k|P| +

∑

v∈W

l(v).

This contradicts the condition.

This has an alternative characterization as consequence:

Corollary 61.7a. Let G = (V, E) be an undirected graph, let k ∈ Z+, and let
l, u ∈ ZE

+ with l ≤ u. Then G has a k-arc-connected orientation D with l(v) ≤
degin

D (v) ≤ u(v) for each v ∈ V if and only if G has k-arc-connected orientations
D′ and D′′ with l(v) ≤ degin

D′(v) and degin
D′′(v) ≤ u(v) for each v ∈ V .

Proof. This follows from the fact that the condition in Theorem 61.7 can be de-
composed into a condition on l and one on u.

61.4c. Orientations of graphs with lower bounds on indegrees of

sets

Let G = (V, E) be an undirected graph and let l : P(V ) → Z+ be such that

(61.44) l(T ) + l(U) − d(T, U) ≤ l(T ∩ U) + l(T ∪ U), for all T, U ⊆ V with
T ∩ U �= ∅ and T ∪ U �= V ,

where d(T, U) denotes the number of edges connecting T \ U and U \ T .
Frank [1980b] showed with submodularity theory:

Theorem 61.8. Let G = (V, E) be a graph and let l : P(V ) → Z+ satisfy (61.44).
Then G has an orientation D = (V, A) with

(61.45) din
A (U) ≥ l(U)

for each U ⊆ V if and only if

(61.46) |δ(P)| ≥ max{
∑

U∈P

l(U),
∑

U∈P

l(V \ U)}

for each partition P of V into nonempty proper subsets, where δ(P) denotes the set
of edges of G connecting different classes of P.

Proof. The necessity of the condition is obvious. To prove sufficiency, let D = (V, A)
be an arbitrary orientation of G. Define for each nonempty proper subset U of V

(61.47) f(U) := din
A (U) − l(U).
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One easily checks, using (61.44), that f is crossing submodular. Moreover, if x :
A → {0, 1} is such that

(61.48) x(δin
A (U)) − x(δout

A (U)) ≤ f(U)

for each nonempty proper subset U of V , then the digraph D′ = (V, A′) obtained
from D = (V, A) by reversing the direction of the arcs a with xa = 1, has indegrees
as required by (61.45), since

(61.49) din
A′(U) = din

A (U) − x(δin
A (U)) + x(δout

A (U)) ≥ din
A (U) − f(U) = l(U).

Hence it suffices to show that (61.48) has an integer solution x with 0 ≤ x ≤ 1.
Consider x as a transshipment. The ‘excess function’ excessx ∈ RV of x is given

by:

(61.50) excessv := x(δin
A (v)) − x(δout

A (v))

for v ∈ V . Then (61.48) is equivalent to

(61.51) y(U) ≤ f(U).

Now y is the excess function of some x ∈ {0, 1}A if and only if x is an integer
y-transshipment with 0 ≤ x ≤ 1. So, by Corollary 11.2f, y is the excess function of
some x ∈ {0, 1}A if and only if y is integer, y(V ) = 0, and

(61.52) y(U) ≤ din
A (U)

for each U ⊆ V . Since l(U) ≥ 0, (61.52) is implied by (61.51).
So it suffices to show that (61.51) has an integer solution y with y(V ) = 0. By

Theorem 49.10, y exists if and only if

(61.53)
∑

U∈P

f(U) ≥ 0

for each partition or copartition P of V , where each set in P is a nonempty proper
subset of V . (A copartition of V is a collection of sets whose complements form a
partition of V .) This is equivalent to the condition given in the present theorem.

61.4d. Further notes

Frank [1980b] observed that Edmonds’ disjoint arborescences theorem implies:

Corollary 61.8a. Let G = (V, E) be an undirected graph and r ∈ V . Then G has
an orientation such that each nonempty subset U of V \ {r} is entered by at least k
arcs if and only if G contains k edge-disjoint spanning trees.

Proof. Necessity follows from the fact that if the orientation D = (V, A) as required
exists, then by Edmonds’ disjoint arborescences theorem (Corollary 53.1b), D has
k disjoint r-arborescences. Hence G has k edge-disjoint spanning trees.

Sufficiency follows from the fact that we can orient each spanning tree in G
so as to become an r-arborescence. Orienting the remaining edges arbitrarily, we
obtain an orientation as required.

Frank [1993c] gave a direct proof of the existence of this orientation from
the conditions given in the Tutte-Nash-Williams disjoint trees theorem (Corollary
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51.1a), yielding (with Edmonds’ disjoint arborescences theorem) a proof of the
Tutte-Nash-Williams disjoint trees theorem.

Frank [1982a] showed that each k-arc-connected orientation of an undirected
graph can be obtained from any other by reversing iteratively directed paths and
circuits, without destroying k-arc-connectivity. This can be derived from a result
of L. Lovász that two k-arc-connected orientations are adjacent on the polytope
determined by (61.36) if and only if they differ on a directed circuit or on a collection
of vertex-disjoint directed paths. Frank [1982b] showed that a minimum-cost k-arc-
connected orientation can be found in strongly polynomial time, by reduction to
the Edmonds-Giles model. Accelerations were given by Gabow [1993a,1993b,1994,
1995c].

Frank, Jordán, and Szigeti [1999,2001] and Frank and Király [1999,2002] stud-
ied graph orientations that satisfy parity and connectivity conditions. Orientations
preserving prescribed shortest paths are considered by Hassin and Megiddo [1989].

Chvátal and Thomassen [1978] showed that each 2-edge-connected graph of
radius r has a strongly connected orientation of radius at most r2 + r. This was
extended to mixed graphs by Chung, Garey, and Tarjan [1985].

For surveys on applying submodularity to orientation problems, see Frank
[1993a,1996b].



Chapter 62

Network synthesis

The network synthesis problem asks for a graph having prescribed connec-
tivity properties, with a minimum number of edges. If the edges have costs,
a minimum total cost is required.
The problem can be seen as the special case of the connectivity augmenta-
tion problem where the input graph is edgeless. Connectivity augmentation
in general will be discussed in Chapter 63.

62.1. Minimal k-(edge-)connected graphs

We first consider the easy problem of finding a graph of given connectivity,
with a minimal number of edges. First, vertex-connectivity:

Theorem 62.1. Let k and n be positive integers with n ≥ 2. The minimum
number of edges of a k-vertex-connected graph with n vertices is n−1 if k = 1,
⌈ 1

2kn⌉ if 1 < k < n, and 1
2n(n − 1) otherwise.

Proof. Since any k-vertex-connected graph contains a spanning tree, has
minimum degree at least k if k < n, and is a complete graph if k ≥ n, the
values given are lower bounds. Moreover, if k = 1 or k ≥ n, the bound is
tight. So we can assume 1 < k < n, and it suffices to show that there exists
a k-vertex-connected graph G = (V, E) with |V | = n and |E| = ⌈ 1

2kn⌉.
Let V := {1, . . . , n} and let C be the circuit on V with edge set {{i, i+1} |

i ∈ V }, taking addition mod n. Let G be the graph on V with edges all pairs
of vertices at distance at most 1

2k in C.
First assume that k is even. Then G has 1

2kn edges. We show that G is
k-vertex-connected. Suppose to the contrary that G has a vertex-cut U of
size less than k. There are at least two components K of C[U ] such that the
two neighbours of K in C belong to different components of G−U (as G−U
is disconnected). In particular, the two neighbours have distance more than
1
2k in C, and so these components each have size at least 1

2k. This contradicts
the fact that |U | < k.

Next, if k is odd, we add to G ⌈ 1
2n⌉ edges {i, j}, where i and j have

distance ⌊ 1
2n⌋ in C, and such that these edges cover all vertices in V . So G

has ⌈ 1
2kn⌉ edges. We show that G is k-vertex-connected.
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Suppose that G has a vertex-cut U of size less than k. By the above, C[U ]
consists of two components of size l := 1

2 (k − 1) each. We can assume that
U = [1, l]∪ [s+1, s+ l] for some s with l < s and s+ l < n. Now n is adjacent
to no vertex in [l +1, s], while n is adjacent to at least one of ⌊ 1

2n⌋ and ⌈ 1
2n⌉.

So ⌊ 1
2n⌋ < l + 1 or ⌈ 1

2n⌉ > s, implying n > 2s (as k < n). By symmetry
of the two components we similarly have n > 2(n − s), that is n < 2s, a
contradiction.

For edge-connectivity the answer is almost the same:

Theorem 62.2. Let k and n be positive integers with n ≥ 2. The minimum
number of edges of a k-edge-connected graph with n vertices is n−1 if k = 1,
and ⌈ 1

2kn⌉ otherwise. If k ≤ n − 1 the minimum is attained by a simple
graph.

Proof. Again, the values are lower bounds, as a k-edge-connected graph
contains a spanning tree and has each degree at least k. Clearly the lower
bound can be attained if k = 1, so assume k ≥ 2. Let C be a graph on
V := {1, . . . , n} with edges all pairs {i, i + 1} for i ∈ V (with addition mod
n). Let G be the graph obtained from C by replacing each edge by ⌊ 1

2k⌋
parallel edges.

If k is even, then G is k-edge-connected as required. If k is odd, add ⌈ 1
2n⌉

edges {i, j} to G, where i and j have distance ⌊ 1
2n⌋ in C, and such that these

edges cover all vertices in V . So G has ⌈ 1
2kn⌉ edges. We show that G is k-

edge-connected. Suppose that dG(U) < k for some nonempty proper subset U
of V . By symmetry, we can assume that |U | ≥ 1

2n. Now C[U ] is connected (as
otherwise dG[U ] ≥ 4⌊ 1

2k⌋ ≥ k, since k > 1). So we can assume that U = [1, s],
with s ≥ ⌈ 1

2n⌉. However, n ∈ V \ U is adjacent to at least one of ⌊ 1
2n⌋ and

⌈ 1
2n⌉. As both of these vertices belong to U , we have dG(U) ≥ 2⌊ 1

2k⌋+1 = k,
a contradiction.

Finally, if k ≤ n − 1, the minimum is attained by a simple graph. Indeed,
by Theorem 62.1, there is a k-vertex-connected graph G = (V, E) with n
vertices and ⌈ 1

2kn⌉ edges. Necessarily, G is simple. We show that G is k-
edge-connected. Suppose that there is a nonempty U ⊂ V with dG(U) < k.
Then |U ||V \U | ≥ n− 1 ≥ k, and hence there exist s ∈ U and t ∈ V \U that
are not adjacent. Hence G has k internally vertex-disjoint s − t paths, and
therefore k edge-disjoint s−t paths. This contradicts the fact that dG(U) < k.

The directed case is even simpler. For vertex-connectivity one has:

Theorem 62.3. Let k and n be positive integers with n ≥ 2. Then the min-
imum number of arcs of a k-vertex-connected directed graph with n vertices
is kn if k ≤ n − 1, and n(n − 1) otherwise.
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Proof. Since each vertex should have at least min{k, n − 1} outneighbours,
the values are lower bounds. Trivially it is attained if k ≥ n.

If k ≤ n − 1, let D be the directed graph on V := {1, . . . , n} with arcs
all pairs (i, i + l) with i ∈ V and 1 ≤ l ≤ k, taking addition mod n. Then
D has kn arcs. To see that D is k-vertex-connected, let U be a vertex-cut.
Choose i, j ∈ V \ U with j not reachable from i in D − U . We may assume
that 1 ≤ i < j ≤ n and that j − i is as small as possible. Then j − i > k and
i + 1, . . . , j − 1 belong to U . So |U | ≥ k.

Finally, for arc-connectivity (Fulkerson and Shapley [1971]):

Theorem 62.4. Let k and n be positive integers with n ≥ 2. Then the
minimum number of arcs of a k-arc-connected directed graph with n vertices
is kn. If k ≤ n − 1, the minimum is attained by a simple directed graph.

Proof. Since each vertex should be left by at least k arcs, kn is a lower
bound. It is attained by the directed graph obtained from a directed circuit
on n vertices, by replacing any arc by k parallel arcs.

If k ≤ n−1, the minimum is attained by a simple directed graph. Indeed,
by Theorem 62.3, there is a k-vertex-connected directed graph D = (V, A)
with n vertices and kn arcs. Necessarily, D is simple. We show that D is
k-arc-connected. Suppose that there is a nonempty U ⊂ V with dout

D (U) < k.
Then |U ||V \U | ≥ n− 1 ≥ k, and hence there exist s ∈ U and t ∈ V \U with
(s, t) �∈ A. Hence D has k internally vertex-disjoint s− t paths, and therefore
k arc-disjoint s − t paths. This contradicts the fact that dout

D (U) < k.

Notes. Edmonds [1964] showed that for each simple graph with all degrees at least
k, there exists a k-edge-connected simple graph with the same degree-sequence.

62.2. The network synthesis problem

Let V be a finite set and let r : V × V → R+. A realization of r is a pair of a
directed graph D = (V, A) and a capacity function c : A → R+ such that for
all s, t ∈ V , each s − t cut in G has capacity at least r(s, t). The pair D, c is
called an exact realization if for all s, t ∈ V with s �= t, the minimum capacity
of an s − t cut in D as equal to r(s, t).

Obviously, any function r has a realization. We say that r is exactly re-
alizable if it has an exact realization. The network synthesis problem is the
problem to find an exact or cheapest realization for a given r (or to decide
that none exist).

The following theorem due to Gomory and Hu [1961] characterizes the
exactly realizable symmetric17 functions. It also shows that if r : V × V → R

is exactly realizable and symmetric, then r has an undirected exact realization

17 A function r : V × V → R is called symmetric if r(u, v) = r(v, u) for all u, v ∈ V .
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(more precisely, an exact realization D, c where for each arc a = (u, v) of D,
also (v, u) is an arc, with c(u, v) = c(v, u)).

Theorem 62.5. A symmetric function r : V × V → R+ is exactly realizable
if and only if

(62.1) r(u, w) ≥ min{r(u, v), r(v, w)}

for all distinct u, v, w ∈ V . If r is exactly realizable, there is a tree that gives
an exact realization of r.

Proof. Necessity being easy, we show sufficiency. Let T = (V, E) be a tree
on V maximizing

(62.2)
∑

uv∈E

r(u, v).

Taking c(uv) := r(u, v) for each edge uv ∈ E gives an exact realization of
r. To see this, note that for all s, t, the minimum capacity of an s − t cut is
equal to minuv∈EP r(u, v), where P is the s− t path in T . By (62.1) we know
that r(s, t) is not smaller than this minimum. To show equality, suppose to
the contrary that r(u, v) < r(s, t) for some uv ∈ P . Then replacing T by
(T − uv) ∪ st gives a tree with larger sum (62.2).

Notes. Obviously, condition (62.1) remains necessary for exact realizability of non-
symmetric functions. Resh [1965] claimed that (62.1) also remains sufficient, but a
counterexample is given by the function r : V × V → R+ with V = {1, 2, 3, 4}, and
r(1, 2) = r(1, 3) = r(1, 4) = r(2, 4) = r(3, 4) = 1, and r(s, t) = 0 for all other s, t
(cf. Mayeda [1962]).

62.3. Minimum-capacity network design

Theorem 62.5 yields a tree as an exact realization of a given function r :
V × V → R+. A tree is a most economical realization in the sense of having
a minimum number of edges with nonzero capacity. It generally gives no
exact realization for which the sum of the capacities is minimum. Such an
exact realization has been characterized by Chien [1960] (extending Mayeda
[1960]), while Gomory and Hu [1961] showed that if r is integer, there is a
half-integer optimum exact realization.

As a preparation, we first show the following lemma of Gomory and Hu
[1961] (λG(s, t) denotes the maximum number of edge-disjoint s − t paths in
G):

Lemma 62.6α. Let r : V × V → R+ be symmetric and let T be a spanning
tree on V maximizing r(T ). Then any graph G = (V, E) satisfies

(62.3) λG(s, t) ≥ r(s, t)
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for all s, t ∈ V if and only if (62.3) is satisfied for each edge st of T .

Proof. Necessity being trivial, we show sufficiency. Let s, t ∈ V and let P be
the s − t path in T . By the maximality of r(T ), we know that r(s, t) ≤ r(e)
for each edge e on P . Hence

(62.4) λG(s, t) ≥ min
e=uv∈EP

λG(u, v) ≥ min
e∈EP

r(e) ≥ r(s, t),

as required.

We also use the following lemma:

Lemma 62.6β. If r : V × V → R+ is symmetric and exactly realizable, then
there exists a spanning tree T on V that maximizes r(T ) over all spanning
trees, and that moreover is a Hamiltonian path.

Proof. Let T maximize r(T ). Choose T and k such that T contains a path
v1, . . . , vk, with k as large as possible. Choose T, k moreover such that the
vector (degT (v1), . . . ,degT (vk)) is lexicographically minimal. If T is not a
path, there is a j with 1 < j < k and degT (vj) ≥ 3. Let vju be an
edge of T incident with vj , with u �= vj−1, vj+1. If r(vj+1, u) ≥ r(vj , u),
we can replace edge vju of T by vj+1u, contradicting the lexicographic
minimality. So r(vj , u) > r(vj+1, u), and so r(vj , vj+1) ≤ r(vj+1, u), since
r(vj+1, u) ≥ min{r(vj , vj+1), r(vj , u)} by (62.1). Hence replacing edge vjvj+1

of T by vj+1u would give a tree with a longer path, contradicting our as-
sumption.

Now we can formulate and prove the theorem. For any r : V × V → R

and u ∈ V define

(62.5) R(u) := max
v 	=u

r(u, v).

Theorem 62.6. Let r : V × V → R+ be symmetric and exactly realizable.
Then the minimum value of

∑
e∈E c(e) where G = (V, E) and c form an

(undirected) exact realization of r, is equal to

(62.6) 1
2

∑

u∈V

R(u).

Moreover, if r is integer, the minimum is attained by a half-integer exact
realization c.

Proof. We may assume that r is integer. (62.6) indeed is a lower bound,
since for each exact realization G = (V, E), c of r one has

(62.7)
∑

e∈E

c(e) = 1
2

∑

u∈V

∑

e∈δ(u)

c(e) ≥ 1
2

∑

u∈V

R(u).
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To see that the lower bound is attained by a half-integer exact realization,
let T be a spanning tree on V maximizing r(T ). By Lemma 62.6β, we can
assume that T is a path v1, . . . , vn.

Let k := maxu,v r(u, v). For i = 0, . . . , k, let Ei be the set of edges e of
T with r(e) ≤ i, and for each nonsingleton component P of T − Ei, make
a circuit consisting of edges parallel to P and one edge connecting the end
vertices of P . Let G = (V, E) arise by taking the edge-disjoint union of these
circuits. Let c(e) := 1

2 for each e ∈ E. Then

(62.8) λG(vj , vi) = 2r(vj , vi)

for all i, j with 1 ≤ j < i ≤ n.
Indeed, in proving ≥, we can assume that j = i − 1 (by Lemma

62.6α). As vi−1, vi are contained in r(vi−1, vi) edge-disjoint circuits, we have
λG(vi−1, vi) ≥ 2r(vi−1, vi).

Conversely, the inequality ≤ in (62.8) follows from

(62.9) λG(vj , vi) ≤ min
j<h≤i

2r(vh−1, vh) ≤ 2r(vj , vi).

The first inequality here follows from the fact that for each h with j < h ≤ i,
the number of edges connecting {v1, . . . , vh−1} and {vh, . . . , vn} is equal to
2r(vh−1, vh). The second inequality follows from (62.1).

Notes. Note that also any nonexact realization has size at least (62.6), and there-
fore, the theorem also characterizes the minimum size of any realization.

Wing and Chien [1961] observed that a minimum-capacity realization can be
found by linear programming, and Gomory and Hu [1962,1964] showed that also
the weighted case can be solved by linear programming. Indeed, the polyhedron P
of all realizations of a given function r : V × V → Q+ can be described as follows.
Let E is the collection of all unordered pairs of elements of V . Then P is determined
by:

(62.10) xe ≥ 0 for all e ∈ E,
x(δ(U)) ≥ R(U) for all nonempty U ⊂ V ,

where R(U) := maxu∈U,v∈V \U r(u, v).
This formulation was given by Gomory and Hu [1962] and applied to finding

a minimum-cost realization with linear programming, by a row-generating imple-
mentation of the simplex method (thus avoiding listing the exponential number of
constraints). Bland, Goldfarb, and Todd [1981] observed that description (62.10)
implies polynomial-time solvability with the ellipsoid method, since the constraints
(62.10) can be tested in polynomial time.

A direct, polynomial-size linear programming formulation was given by Gomory
and Hu [1964], by extending the number of variables. Indeed, P consists of those
x ∈ RE

+ such that for all distinct s, t ∈ V , there exists an s − t flow fs,t : E → RE
+

with f ≤ x and of value r(s, t).
The latter description implies that a minimum-weight realization can be deter-

mined in polynomial time, by solving an explicit linear programming problem —
in fact, in strongly polynomial time, with the method of Tardos [1986].



Section 62.4. Integer realizations and r-edge-connected graphs 1055

Note that the exact realizations do not form a convex set; for instance, if V =
{u, v, w} and r(s, t) = 1 for all s, t ∈ V , then x(uv) = x(vw) = x(uw) = 2

3
is a

convex combination of exact realizations, but is not itself an exact realization.

62.4. Integer realizations and r-edge-connected graphs

In Section 62.3, the fractional version of the minimum-capacity network de-
sign problem was discussed. We now consider the case where all capacities
are required to be integer. It relates to: given r : V × V → Z+, find an
r-edge-connected undirected graph G = (V, E) with a minimum number of
edges. Here a graph G = (V, E) is called r-edge-connected if λG(s, t) ≥ r(s, t)
for all s, t ∈ V with s �= t.

Eswaran and Tarjan [1976] observed that the weighted version of the
integer realization problem is NP-complete, as finding a Hamiltonian circuit
in an undirected graph can be reduced to it. (So even if r = 2 and all weights
belong to {0, 1}, it is NP-complete.)

Chou and Frank [1970] gave a polynomial-time algorithm for finding a
minimum-size integer realization, implying the following characterization of
the minimum number γ(r) of edges of an r-edge-connected graph18.

To this end we can assume that r is symmetric and exactly realiz-
able, that is, satisfies (62.1) (since resetting r(s, t) to the maximum of
mine=uv∈EP r(u, v) over all s − t paths P , does not change the problem).

Again, define for each u ∈ V ,

(62.11) R(u) := max
v 	=u

r(u, v).

Theorem 62.7. Let r : V × V → Z+ be symmetric and satisfy (62.1).
(i) If R(u) = 1 for some u ∈ V , then γ(r) = γ(r′) + 1, where r′ is the
restriction of r to (V \ {u}) × (V \ {u}).
(ii) If R(u) �= 1 for all u ∈ V , then

(62.12) γ(r) = ⌈ 1
2

∑

u∈V

R(u)⌉.

Proof. We first show (i). The inequality γ(r) ≤ γ(r′) + 1, is easy, since an
r-edge-connected graph can be obtained from an r′-edge-connected graph by
adding one edge connecting u with some v �= u with r(u, v) = 1.

To see the reverse inequality, let G = (V, E) be an r-edge-connected graph
with |E| = γ(r). As R(u) = 1, we have degG(u) ≥ 1. Let ut be an edge
incident with u. Let H be the graph obtained from G by contracting ut.
Then H is r′-edge-connected and has |E|−1 edges, showing γ(r′) ≤ |E|−1 =
γ(r) − 1.

18 The construction of Chou and Frank [1970] is lacunary, and does not apply, e.g., to the
case where r(u, v) = 3 for all u, v and |V | is odd.
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We next show (ii). Trivially, for any r-edge-connected graph G = (V, E):

(62.13) |E| = 1
2

∑

u∈V

degG(u) ≥ 1
2

∑

u∈V

R(u).

This proves ≥ in (62.12). To prove ≤, order the vertices as v1, . . . , vn such
that R(v1) ≥ R(v2) ≥ · · · ≥ R(vn). Note that R(v1) = R(v2).

Let k := ⌊ 1
2R(v1)⌋. Let W be the set of vertices v with R(v) odd. Let M

be a set of ⌈ 1
2 |W |⌉ edges covering W such that if v1, v2 ∈ W , then v1v2 ∈ M .

For i = 1, . . . , k, let Ci be a circuit on {v ∈ V | R(v) ≥ 2i}. So C1 is
a Hamiltonian circuit. We choose C1 in such a way that the components of
C1 − v1 − v2 span no edge in M . Let H be the (edge-disjoint) union of M
and C1. Then for any U ⊆ V :

(62.14) if dH(U) = 2 and U ∩ {v1, v2} = ∅, then U ∩ W = ∅.

Indeed, if dH(U) = 2, then U induces a path on C1. As U ∩ {v1, v2} = ∅, U
is contained in a component of C1 − v1 − v2. Hence each edge in M incident
with U belongs to dH(U). As dH(U) = 2, it follows that no edge in M is
incident with U . So U ∩ W = ∅, proving (62.14).

Let G be the (edge-disjoint) union of M,C1, . . . , Ck. Note that the number
of edges of G is equal to

(62.15) |M | +

k∑

i=1

|ECi| = |M | +
∑

u∈V

⌊ 1
2R(u)⌋ = ⌈ 1

2 |W |⌉ +
∑

u∈V

⌊ 1
2R(u)⌋

= ⌈ 1
2

∑

u∈V

R(u)⌉.

We finally show that G is r-connected, for which it suffices to show that
for i = 2, . . . , n:

(62.16) λG(vi−1, vi) ≥ R(vi).

To see that this is sufficient, note that for h < j one has

(62.17) λG(vh, vj) ≥ min
h<i≤j

λG(vi−1, vi) ≥ min
h<i≤j

R(vi)

= R(vj) ≥ r(vh, vj).

To prove (62.16), choose the smallest i ≥ 2 for which it is not true. Then G
has a cut δ(U) with vi ∈ U , vi−1 �∈ U , and dG(U) < R(vi). By the minimality
of i, δ(U) separates no pair among v1, . . . , vi−1, and hence v1, . . . , vi−1 �∈ U .
Now, setting l := ⌊ 1

2R(vi)⌋:

(62.18) 2l + 1 ≥ R(vi) > dG(U) ≥ dH(U) +
l∑

j=2

dCj
(U) ≥ 2l

(as Cj covers vi−1 and vi for j = 1, . . . , l). Hence dH(U) = 2 and R(vi) is odd.
So U ∩ W �= ∅. Hence, by (62.14), i = 2. Then v1v2 ∈ M , and so dH(U) ≥ 3,
a contradiction.
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Notes. In fact, by choosing M in this proof in such a way that degM (u) = 1 if
u ∈ W \ {v1}, and degM (u) = 0 if u ∈ (V \ W ) \ {v1}, we obtain a graph G with
degG(u) = R(u) for each u �= v1. Hence λG(u, v) = min{R(u), R(v)} for all distinct
u, v ∈ V .

The construction can be extended to obtain a strongly polynomial-time algo-
rithm that, for given integer function r, finds a minimum-capacity integer realization
c (Sridhar and Chandrasekaran [1990,1992]).

(Chou and Frank [1970] claim to give an algorithm to find a minimum-size exact
realization, but their construction fails when taking r(1, 2) := r(3, 4) := r(4, 5) := 5,
r(2, 3) := r(5, 6) := 3, and r(i, j) := mini<h≤j r(h−1, h) for i < j. The construction
gives 15 edges, while there is an exact realization with 14 edges only.)

Frank and Chou [1970] announced a polynomial-time algorithm for the problem:
given a symmetric r : V ×V → Z+, find a simple r-edge-connected graph G = (V, E)
(if any) with |E| minimal.

Wang and Kleitman [1973] characterized the degree-sequences of k-vertex-
connected simple undirected graphs.



Chapter 63

Connectivity augmentation

This last chapter of Part V is devoted to the connectivity augmentation
problem: given a graph, find the minimum number of edges to be added
to make it k-connected. There is an undirected and a directed variant, and
a vertex-connectivity and an edge/arc-connectivity variant. Thus we will
come across:
• making a directed graph k-arc-connected (Section 63.1),
• making an undirected graph k-edge-connected (Section 63.3),
• making a directed graph k-vertex-connected (Section 63.5),
• making an undirected graph k-vertex-connected (Section 63.6).
For the first three problems, min-max relations and polynomial-time al-
gorithms have been found. The core is formed by fundamental theorems
of Frank and Jordán. As for the fourth problem, only for fixed k the
polynomial-time solvability has been proved. The complexity for general k
is open.
Two special cases of connectivity augmentation have been considered be-
fore: making a digraph 1-arc-connected — that is, strongly connected
(Chapter 57), and making an edge- or arcless (di)graph k-vertex- or
edge/arc-connected — the network synthesis problem (Chapter 62).

63.1. Making a directed graph k-arc-connected

Let (V, A) and (V, B) be directed graphs. The set B is called a k-arc-connector
for D if the directed graph (V, A∪B) is k-arc-connected (where in A∪B arcs
are taken parallel if they occur both in A and in B). So 1-arc-connectors are
precisely the strong connectors, which we discussed in Chapter 57.

Frank [1990a,1992a] characterized the minimum size of a k-arc-connector
for a directed graph, with the help of the following result of Mader [1982] (we
follow the proof of Frank [1992a]).

Lemma 63.1α. Let D = (V, A) be a directed graph, let k ∈ Z+, and let
x, y : V → Z+. Then D has a k-arc-connector B with degin

B(v) = xv and
degout

B (v) = yv for each v ∈ V if and only if x(V ) = y(V ) and

(63.1) x(U) ≥ k − din
A (U) and y(U) ≥ k − dout

A (U)
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for each nonempty proper subset U of V .

Proof. Necessity is easy, since for each nonempty U ⊂ V ,

(63.2) k ≤ din
A∪B(U) = din

B(U) + din
A (U) ≤ x(U) + din

A (U),

and similarly for y.
To see sufficiency, choose a counterexample with x(V ) minimal. Trivially,

x(V ) ≥ 1. Let X be the collection of inclusionwise maximal proper subsets U
of V satisfying x(U)+din(U) = k, and let Y be the collection of inclusionwise
maximal proper subsets U of V satisfying y(U) + dout(U) = k. (We set din

and dout for din
A and dout

A .)
Let R := {v ∈ V | xv ≥ 1} and S := {v ∈ V | yv ≥ 1}. Then

(63.3) for all r ∈ R and s ∈ S, there exists a U ∈ X ∪ Y with r, s ∈ U .

Otherwise, we could augment D by a new arc (s, r) and decrease both xr and
ys by 1. Then (63.1) is maintained, and we obtain a smaller counterexample,
contradicting our assumption. This shows (63.3).

Now note that for each U ∈ X :

(63.4) y(V \ U) ≥ k − dout(V \ U) = k − din(U) = x(U).

This implies, for each U ∈ X :

(63.5) if S ⊆ U , then U ∩ R = ∅; if R ⊆ U , then U ∩ S = ∅.

Indeed, if S ⊆ U , then y(V \ U) = 0, implying (with (63.4)) that x(U) = 0,
that is, U ∩ R = ∅. Similarly, if R ⊆ U , then x(U) = x(V ), implying (with
(63.4)) that y(V \ U) = y(V ), that is, U ∩ S = ∅. This proves (63.5).

Now choose r ∈ R, s ∈ S, and let U ∈ X ∪Y with r, s ∈ U . By symmetry,
we may assume that U ∈ X . By (63.5), S �⊆ U . Choose t ∈ S \ U . Let
T ∈ X ∪ Y contain r and t.

First assume that T ∈ X . Then T ∪ U = V , by the maximality of T and
U and the submodularity of the set function x(W ) + din(W ). This implies
(using (63.4)):

(63.6) y(V ) ≥ y(V \U)+y(V \T ) ≥ x(U)+x(T ) = x(T ∪U)+x(T ∩U)
> x(V ) = y(V )

(since V \ U and V \ T are disjoint, and since r ∈ T ∩ U), a contradiction.
So T ∈ Y. But then

(63.7) 2k = x(T ) + din(T ) + y(U) + dout(U)
≥ x(T \ U) + din(T \ U) + y(U \ T ) + dout(U \ T ) + x(T ∩ U)
+ y(T ∩ U) ≥ 2k,

implying equality throughout. Hence x(T ∩ U) = 0, contradicting the fact
that r ∈ T ∩ U .

From this, the min-max relation for minimum-size k-arc-connectors of
Frank [1990a,1992a] (generalizing Corollary 57.2a) easily follows:
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Theorem 63.1. Let D = (V, A) be a directed graph and let k, γ ∈ Z+. Then
D has a k-arc-connector of size at most γ if and only if

(63.8) γ ≥
∑

X∈P

(k − din(X)) and γ ≥
∑

X∈P

(k − dout(X))

for each collection P of disjoint nonempty proper subsets of V .

Proof. Necessity follows since for each nonempty subset X of V , at least
k − din(X) arcs entering X must be in any k-arc-connector, and at least
k − dout(X) arcs leaving X must be in any k-arc-connector. As any new arc
can enter at most one set in P, we have (63.8).

To see sufficiency, choose x : V → Z+ satisfying x(U) ≥ k − din(U) for
each nonempty U ⊂ V , with x(V ) as small as possible.

We show x(V ) ≤ γ. Let P be the collection of inclusionwise maximal
proper subsets U of V satisfying x(U) = k − din(U). Any two distinct sets
T, U ∈ P satisfy T ∪ U �= V , since otherwise V \ T and V \ U are disjoint,
and we obtain the contradiction

(63.9) γ ≥ k − dout(V \ T ) + k − dout(V \ U) = 2k − din(T ) − din(U)
= x(T ) + x(U) ≥ x(T ∪ U) = x(V ) > γ.

Moreover, any two distinct T, U ∈ P are disjoint, since otherwise we obtain
the contradiction

(63.10) x(T )+x(U) = 2k−din(T )−din(U) ≤ 2k−din(T ∩U)−din(T ∪U)
< x(T ∩ U) + x(T ∪ U) = x(T ) + x(U),

by the maximality of T .
Now each v ∈ V with xv ≥ 1 is contained in some U ∈ P, as otherwise

we could decrease xv. This gives

(63.11) x(V ) =
∑

U∈P

x(U) =
∑

U∈P

(k − din(U)) ≤ γ.

Hence x(V ) ≤ γ. Similarly, there exists a y : V → Z+ satisfying y(U) ≥
k − dout(U) for each nonempty proper subset U of V and y(V ) ≤ γ. We can
assume that x(V ) = y(V ) = γ. So we can apply Lemma 63.1α, which gives
the theorem.

The proof yields a polynomial-time algorithm, as the proof reduces to a
polynomial-time number of tests if a given x : V → Z+ satisfies

(63.12) x(U) ≥ k − din(U) for each nonempty U ⊂ V .

(Similarly for y.) This can be done by maximum flow calculations: add a new
vertex s and for each v ∈ V , add xv (parallel) arcs from s to v and k parallel
arcs from v to s. Then (63.12) is satisfied if and only if in the extended graph
there exist k arc-disjoint u − v paths, for all u, v ∈ V .

Thus (Frank [1990a,1992a]):
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Theorem 63.2. Given a directed graph D = (V, A) and k ∈ Z+, a minimum-
size k-arc-connector can be found in time bounded by a polynomial in the size
of D and in k.

Proof. See above.

63.1a. k-arc-connectors with bounds on degrees

Frank [1990a,1992a] derived similarly characterizations of the existence of k-arc-
connectors of given size and satisfying given lower and upper bounds on the in- and
outdegrees:

Theorem 63.3. Let D = (V, A) be an undirected graph, let k, γ ∈ Z+, and let
lin, lout, uin, uout ∈ ZV

+ with lin ≤ uin and lout ≤ uout. Then D has a k-arc-
connector B of size at most γ satisfying lin(v) ≤ degin

B (v) ≤ uin(v) and lout(v) ≤
degout

B (v) ≤ uout(v) for each v ∈ V if and only if γ ≤ uin(V ), γ ≤ uout(V ),

(63.13) k − din(U) ≤ uin(U) and k − dout(U) ≤ uout(U)

for each nonempty proper subset U of V , and

(63.14) γ ≥ lin(V \ ⋃P) +
∑

X∈P

(k − din(X)) and

γ ≥ lout(V \ ⋃P) +
∑

X∈P

(k − dout(X))

for each collection P of disjoint nonempty proper subsets of V .

Proof. Necessity is easy. To see sufficiency, choose x : V → Z+ satisfying lin ≤ x ≤
uin, x(V ) ≥ γ, and x(U) ≥ k − din(U) for each nonempty U ⊂ V , with x(V ) as
small as possible.

We show x(V ) ≤ γ. Let P be the collection of inclusionwise maximal proper
subsets U of V satisfying x(U) = k − din(U). Any two distinct sets T, U ∈ P
satisfy T ∪ U �= V , since otherwise V \ T and V \ U are disjoint, and we obtain the
contradiction

(63.15) γ ≥ k − dout(V \ T ) + k − dout(V \ U) = 2k − din(T ) − din(U)
= x(T ) + x(U) ≥ x(T ∪ U) ≥ x(V ) > γ.

Moreover, any two distinct T, U ∈ P are disjoint, since otherwise we obtain the
contradiction

(63.16) x(T ) + x(U) = 2k − din(T ) − din(U) ≤ 2k − din(T ∩ U) − din(T ∪ U)
< x(T ∩ U) + x(T ∪ U) = x(T ) + x(U),

by the maximality of T .
Now each v ∈ V with xv > lin(v) is contained in some U ∈ P, as otherwise we

could decrease xv. This gives

(63.17) x(V ) = lin(V \⋃P)+
∑

U∈P

x(U) = lin(V \⋃P)+
∑

U∈P

(k −din(U)) ≤ γ.
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Hence x(V ) = γ. Similarly, there exists a y : V → Z+ satisfying lout ≤ y ≤ uout,
y(V ) = γ, and y(U) ≥ k − dout(U) for each nonempty U ⊂ V . So we can apply
Lemma 63.1α, which gives the theorem.

Again, this proof yields a polynomial-time algorithm to find a minimum-size
k-arc-connector satisfying prescribed bounds on the in- and outdegrees.

Notes. The following problem is NP-complete: given a directed graph D = (V, A),
a function r : V × V → Z+, and a cost function k : V × V → Q+, find a minimum-
cost set of new arcs whose addition to D makes the graph r-arc-connected. Frank
[1990a,1992a] showed that if there are functions k′, k′′ : V → Q+ with k(u, v) =
k′(u) + k′′(v) for all u, v ∈ V , then this problem is solvable in polynomial time.

Gusfield [1987a] gave a linear-time algorithm to find a minimum number of
directed arcs to be added to a mixed graph such that it becomes strongly connected
(that is, for all vertices u, v there is a u − v path traversing directed edges in the
right direction only).

Frank and Jordán [1995b] gave an alternative proof of Theorem 63.1 based on
bisubmodular functions, and showed a number of related results.

Frank [1993c] gave some further methods for the problems discussed in these
sections.

Kajitani and Ueno [1986] showed that the minimum size of a k-arc-connector for
a directed tree D = (V, A) is equal to the maximum of

∑
v∈V max{0, k − degin(v)}

and
∑

v∈V max{0, k − degout(v)}.
Frank [1990a,1992a] gave a polynomial-time algorithm for: given directed graph

D = (V, A), r ∈ V , and k ∈ Z+, find a minimum number of arcs to be added to
D such that for each s ∈ V there exist k arc-disjoint r − s paths in the augmented
graph. The complexity was improved by Gabow [1991b].

63.2. Making an undirected graph 2-edge-connected

Let (V, E) and (V, F ) be undirected graphs. The set F is called a k-edge-
connector for G if the graph (V, E ∪ F ) is k-edge-connected (where in E ∪ F
edges are taken parallel if they occur both in E and in F ).

The minimum size of a 1-edge-connector of a graph G trivially is one
less than the number of components of G. Eswaran and Tarjan [1976] and
Plesńık [1976] characterized the minimum size of a 2-edge-connector, by first
showing:

Theorem 63.4. Let G = (V, E) be a forest with at least two vertices and
with p vertices of degree 1 and q isolated vertices. Then the minimum size of
a 2-edge-connector for G equals ⌈ 1

2p⌉ + q.

Proof. Each vertex of degree 1 should be incident with at least one new edge,
and each vertex of degree 0 should be incident with at least two new edges.
So any 2-edge-connector has size at least 1

2p + q.
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To see that ⌈ 1
2p⌉ + q can be attained, first assume that G is not con-

nected. Choose vertices u and v in different components, with deg(u) ≤ 1
and deg(v) ≤ 1. Adding edge uv, reduces 1

2p + q by 1, as one easily checks.
So we can assume that G is a tree. If p ≤ 3, the graph is a path or a

subdivision of K1,3, and the theorem is easy.
If p ≥ 4, there is a pair of end vertices u, v such that at least two edges

of G leave the u − v path P in G. Let G′ be the tree obtained from G
by contracting P to one vertex. Then G′ has p − 2 end vertices. Applying
induction shows that G′ has a 2-edge-connector F of size ⌈ 1

2p⌉−1. By adding
edge uv we obtain a 2-edge-connector of G, proving the theorem.

This implies, for not necessarily forests:

Corollary 63.4a. Let G = (V, E) be a non-2-edge-connected undirected
graph. For i = 0, 1, let pi be the number of 2-edge-connected components
K with dE(K) = i. Then the minimum size of a 2-edge-connector equals
⌈ 1

2p1⌉ + p0.

Proof. Directly from Theorem 63.4, by contracting each 2-edge-connected
component to one vertex.

These proofs give polynomial-time algorithms to find a minimum-size 2-
edge-connector for a given undirected graph. Eswaran and Tarjan [1976] gave
a linear-time algorithm.

63.3. Making an undirected graph k-edge-connected

Watanabe and Nakamura [1987] gave a min-max formula and a polynomial-
time algorithm for the minimum size of a k-edge-connector for any undirected
graph. Cai and Sun [1989] and Frank [1992a] showed that the min-max rela-
tion can be derived from the following lemma (given, in a different, ‘vertex-
splitting’ terminology, by Mader [1978a] and Lovász [1979a] (Problem 6.53);
the proof below follows Frank [1992a]):

Lemma 63.5α. Let G = (V, E) be a graph, let k ∈ Z+, with k ≥ 2, and let
x : V → Z+. Then G has a k-edge-connector F with degF (v) = xv for each
v ∈ V if and only if x(V ) is even and

(63.18) x(U) ≥ k − dE(U)

for each nonempty proper subset U of V .

Proof. Necessity is easy, since for each nonempty U ⊂ V ,

(63.19) k ≤ dE∪F (U) = dF (U) + dE(U) ≤ x(U) + dE(U).
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To see sufficiency, choose a counterexample with x(V ) minimal. Trivially,
x(V ) ≥ 2.

Let S := {v ∈ V | xv ≥ 1}, and fix s ∈ S. Let U be the collection of
inclusionwise maximal sets U ⊂ V containing s and satisfying x(U)+dE(U) ≤
k + 1. Note that

(63.20) x(U) ≤ 1
2x(V ) for each U ∈ U ,

since otherwise x(V \ U) ≤ x(U) − 2, implying the contradiction k ≤ x(V \
U) + dE(V \ U) ≤ x(U) − 2 + dE(U) ≤ k − 1.

Moreover,

(63.21) for all t ∈ S \ {s}, there exists a U ∈ U containing t.

Otherwise, we could augment G by a new edge st and decrease both xs and
xt by 1. Then (63.18) is maintained, and we obtain a smaller counterexample,
contradicting our assumption. This shows (63.21).

Next:

(63.22) for any two distinct T, U ∈ U , G has an edge leaving T ∩ U , and
no edge connecting T ∩ U and V \ (T ∪ U).

Consider:

(63.23) 2(k + 1) ≥ x(T ) + dE(T ) + x(U) + dE(U)
= x(T \ U) + dE(T \ U) + x(U \ T ) + dE(U \ T )
+2|E[T ∩ U, V \ (T ∪ U)]| + 2x(T ∩ U) ≥ 2k + 2,

implying equality throughout. So x(T ∩U) = 1 and |E[T ∩U, V \(T ∪U)] = ∅.
Since dE(T ∩ U) ≥ k − x(T ∩ U) = k − 1 ≥ 1, this proves (63.22).

Now by (63.21) and (63.20) we can choose three sets T, U, W ∈ U . Then

(63.24) T ∩ U = T ∩ W = U ∩ W.

Indeed, by symmetry it suffices to prove that T ∩ U ∩ W = U ∩ W . Let
M := U ∩ W . Suppose T ∩ M �= M ; so M �⊆ T , and hence T ∪ M �= T .
Defining φ(X) := x(X) + dE(X) for X ⊆ V , we obtain the contradiction

(63.25) k ≤ φ(T ∩ M) ≤ φ(T ) + φ(M) − φ(T ∪ M)
≤ φ(T ) + φ(U) + φ(W ) − φ(U ∪ W ) − φ(T ∪ M)
≤ 3(k + 1) − 2(k + 2) = k − 1,

since the maximality of T , U , and W gives φ(U ∪W ) ≥ k+2 and φ(T ∪M) ≥
k + 2. This shows (63.24).

Now by (63.22), G has an edge leaving T ∩ U , while the other end should
be in each of T ∪U , T ∪W , and U ∪W , and hence in T ∩U , a contradiction.

From this, the min-max result for minimum-size k-edge-connectors of
Watanabe and Nakamura [1987] follows:
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Theorem 63.5. Let G = (V, E) be an undirected graph and let k, γ ∈ Z+,
with k ≥ 2. Then G has a k-edge-connector of size at most γ if and only if

(63.26) 2γ ≥
∑

U∈P

(k − d(U))

for each collection P of disjoint nonempty proper subsets of V .

Proof. Necessity follows since for each nonempty proper subset U of V , at
least k−d(U) edges entering U must be in any k-edge-connector. As any new
edge can enter at most two sets in P, we have (63.26).

To see sufficiency, choose x : V → Z+ satisfying (63.18), with x(V ) as
small as possible. By Lemma 63.5α it suffices to show that x(V ) ≤ 2γ.

Let P be the collection of inclusionwise maximal subsets U of V satisfying
x(U) = k − d(U). Any two distinct sets T, U ∈ P satisfy T ∪ U �= V , since
otherwise we obtain the contradiction

(63.27) 2γ < x(V ) = x(T ∪ U) ≤ x(T ) + x(U) = k − d(T ) + k − d(U)
= k − d(V \ T ) + k − d(V \ U) ≤ 2γ,

using (63.26). Moreover, any two distinct T, U ∈ P are disjoint, since other-
wise we obtain the contradiction

(63.28) x(T ) + x(U) = 2k − d(T ) − d(U) ≤ 2k − d(T ∩ U) − d(T ∪ U)
< x(T ∩ U) + x(T ∪ U) = x(T ) + x(U),

by the maximality of T . Now each v ∈ V with xv ≥ 1 is contained in some
U ∈ P, as otherwise we could decrease xv. This gives

(63.29) x(V ) =
∑

U∈P

x(U) =
∑

U∈P

(k − d(U)) ≤ 2γ,

which proves the theorem.

Similarly to the directed case, the proof implies that a minimum-size k-
edge-connector can be found in polynomial time (Watanabe and Nakamura
[1987]):

Theorem 63.6. Given an undirected graph G and k ∈ Z+, a minimum-size
k-edge-connector can be found in strongly polynomial time.

Proof. The proof method reduces to a polynomially bounded number of tests
of (63.18), which can be performed in strongly polynomial time by reducing
it to maximum flow computations.

Notes. Also Naor, Gusfield, and Martel [1990,1997], and Gabow [1991b] gave
polynomial-time algorithms to find a minimum-size k-edge-connector. Frank [1990a,
1992a] and Benczúr [1994,1999] gave strongly polynomial-time algorithms for the
(integer) capacitated version of the problem. More and related results can be found
in Gabow [1994], Benczúr [1995], Nagamochi and Ibaraki [1995,1996,1997,1999c],
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Nagamochi, Shiraki, and Ibaraki [1997], Benczúr and Karger [1998,2000], Nag-
amochi and Eades [1998], Bang-Jensen and Jordán [2000], and Nagamochi, Naka-
mura, and Ibaraki [2000].

63.3a. k-edge-connectors with bounds on degrees

Frank [1990a,1992a] derived similarly characterizations of the existence of k-edge-
connectors of given size and satisfying given lower and upper bounds on the degrees:

Theorem 63.7. Let G = (V, E) be an undirected graph, let k, γ ∈ Z+, with k ≥ 2,
and let l, u ∈ ZV

+ with l ≤ u. Then G has a k-edge-connector F of size at most γ
satisfying l(v) ≤ degF (v) ≤ u(v) for each v ∈ V if and only if 2γ ≤ u(V ),

(63.30) k − dE(U) ≤ u(U)

for each nonempty proper subset U of V , and

(63.31) 2γ ≥ l(V \ ⋃P) +
∑

U∈P

(k − dE(U)).

for each collection P of disjoint nonempty proper subsets of V .

Proof. The conditions can be easily seen to be necessary.
To see sufficiency, let x : V → Z+ satisfy l ≤ x ≤ u, x(V ) ≥ 2γ, x(U) ≥

k − dE(U) for each nonempty U ⊂ V , and with x(V ) as small as possible. Such an
x exists, by (63.30). By Lemma 63.5α, it suffices to show that x(V ) ≤ 2γ.

Let P be the collection of inclusionwise maximal proper subsets U of V satis-
fying x(U) = k − d(U). Any two distinct sets T, U ∈ P satisfy T ∪ U �= V , since
otherwise we obtain the contradiction

(63.32) 2γ < x(V ) = x(T ∪ U) ≤ x(T ) + x(U) = k − d(T ) + k − d(U)
= k − d(V \ T ) + k − d(V \ U) ≤ 2γ,

by (63.31). Moreover, any two distinct T, U ∈ P are disjoint, since otherwise we
obtain the contradiction

(63.33) x(T ) + x(U) = 2k − d(T ) − d(U) ≤ 2k − d(T ∩ U) − d(T ∪ U)
< x(T ∩ U) + x(T ∪ U) = x(T ) + x(U),

by the maximality of T . Now each v ∈ V with xv > l(v) is contained in some
U ∈ P, as otherwise we could decrease xv. This gives

(63.34) x(V ) = l(V \ ⋃P) +
∑

U∈P

x(U) = l(V \ ⋃P) +
∑

U∈P

(k − d(U)) ≤ 2γ,

as required.

Notes. T. Jordán (cf. Bang-Jensen and Jordán [1997]) showed that finding a mini-
mum number of edges that makes a given simple graph k-edge-connected and keeps
it simple, is NP-complete. On the other hand, Bang-Jensen and Jordán [1997,1998]
gave, for any fixed k, an O(n4)-time algorithm for this problem. Taoka, Watan-
abe, and Takafuji [1994] gave an O(m + n log n)-time algorithm for k = 4 and
an O(n2 + m)-time algorithm for k = 5 (assuming the input graph is k − 1-edge-
connected). Other fast algorithms for undirected edge-connectivity augmentation
were given by Benczúr [1999].

Ueno, Kajitani, and Wada [1988] gave a polynomial-time algorithm for finding
a minimum-size k-edge-connector for a tree.
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63.4. r-edge-connectivity and r-edge-connectors

Let G = (V, E) be an undirected graph and let r : V × V → Z+. G is called
r-edge-connected if for all u, v ∈ V there exist r(u, v) edge-disjoint paths
connecting u and v. So, by Menger’s theorem, G is r-edge-connected if and
only if dE(U) ≥ r(u, v) for all U ⊆ V and u ∈ U , v ∈ V \ U .

An r-edge-connector for G is a set F of edges on V such that the graph
G′ := (V, E ∪ F ) satisfies λG′(u, v) ≥ r(u, v) for all u, v ∈ V . (Again, E ∪ F
is the disjoint union, allowing parallel edges.) Define γ(G, r) as the minimum
size of an r-edge-connector for G.

Given an undirected graph G = (V, E), a function r : V × V → Z+, and
a cost function k : V × V → Q+, it is NP-complete to find a minimum-
cost r-edge-connector (since for E = ∅, r = 2, it is the traveling salesman
problem).

Frank [1990a,1992a] gave a polynomial-time algorithm and a min-max
formula for the cardinality case: given a graph G = (V, E) and r : V × V →
Z+, find the minimum number of edges to be added to make G r-edge-
connected. We describe the method in this section.

It is based on the following theorem of Mader [1978a] (conjectured by
Lovász [1976a]; we follow the proof of Frank [1992b]):

Lemma 63.8α. Let G = (V ∪ {s}, E) be an undirected graph, where s has
even and positive degree, and s is not incident with a bridge of G. Then s has
two neighbours u and v such that the graph G′ obtained from G by replacing
su and sv by one new edge uv satisfies

(63.35) λG′(x, y) = λG(x, y)

for all x, y ∈ V .

Proof. By induction on |V |+deg(s). For any U ⊆ V with ∅ �= U �= V , define

(63.36) R(U) := max
u∈U,v∈V \U

λG(u, v),

and set R(∅) := R(V ) := 0. So R(U) ≤ d(U) for each U ⊆ V .
Let P be the collection of nonempty proper subsets U of V with d(U) =

R(U), and let U be the collection of nonempty proper subsets U of V with
d(U) ≤ R(U) + 1 (hence P ⊆ U).

Note that u, v ∈ N(s) are as required in the lemma if and only if there is
no U ∈ U containing both u and v. So we can assume that

(63.37) for each pair u, v ∈ N(s) there is a U ∈ U containing u and v.

We first show:

(63.38) |T | = 1 for each T ∈ P.

Suppose not. Consider the graph G/T obtained from G by contracting T
(where T also denotes the vertex obtained by contracting T ). By induction,
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G/T has two edges su′ and sv such that for the graph H obtained from G/T
by replacing su′ and sv by a new edge u′v, one has

(63.39) λH(x, y) = λG/T (x, y)

for all x, y ∈ V (G/T ) \ {s}. By symmetry of u′ and v, we may assume that
v �= T , that is, v ∈ V \ T . Let u := u′ if u′ �= T and choose u ∈ T ∩ N(s) if
u′ = T .

Then for all Z ∈ U :

(63.40) if T ⊆ Z or T ∩ Z = ∅ then u �∈ Z or v �∈ Z.

Indeed, as R(Z) ≥ d(Z) − 1, there exist x, y ∈ V such that Z splits x, y
and λG(x, y) ≥ d(Z) − 1. Since T ⊆ Z or T ∩ Z = ∅, we may assume that
x �∈ T . Define y′ := y if y �∈ T , and y′ := T if y ∈ T . Define Z ′ := Z if
T ∩ Z = ∅, and Z ′ := (Z \ T ) ∪ {T} if T ⊆ Z. Suppose now u, v ∈ Z. Then
dH(Z ′) = dG(Z) − 2. This gives the contradiction

(63.41) λG/T (x, y′) ≥ λG(x, y) ≥ dG(Z) − 1 > dH(Z ′) ≥ λH(x, y′)
= λG/T (x, y′),

proving (63.40).
Now let U ∈ U contain u and v. By Lemma 61.6α, R(T ) + R(U) is at

most R(T ∩ U) + R(T ∪ U) or at most R(T \ U) + R(U \ T ).
If R(T ) + R(U) ≤ R(T ∩ U) + R(T ∪ U), then

(63.42) d(T ) + d(U) ≥ d(T ∩ U) + d(T ∪ U) ≥ R(T ∩ U) + R(T ∪ U)
≥ R(T ) + R(U) ≥ d(T ) + d(U) − 1,

implying R(T∪U) ≥ d(T∪U)−1. So T∪U ∈ U and u, v ∈ T∪U , contradicting
(63.40).

So R(T ) + R(U) ≤ R(T \ U) + R(U \ T ). Hence

(63.43) d(T ) + d(U) ≥ d(T \ U) + d(U \ T ) ≥ R(T \ U) + R(U \ T )
≥ R(T ) + R(U) ≥ d(T ) + d(U) − 1.

So d(T )+d(U) = d(T \U)+d(U \T ), and hence T ∩U contains no neighbours
of s. So u′ �= T (otherwise u ∈ T ∩ U ∩ N(s)). Hence u′ = u ∈ U \ T . By
(63.43) we also know R(U \T ) ≥ d(U \T )−1. So U \T ∈ U and u, v ∈ U \T ,
contradicting (63.40). This proves (63.38).

Note that (63.38) implies

(63.44) λG(u, v) = min{deg(u), deg(v)} for all u, v ∈ V ,

since λG(u, v) = dE(U) for some U ⊆ V splitting {u, v}. So U ∈ P, and
hence |U | = 1, implying (63.44).

Choose a vertex t ∈ N(s) of minimum degree. Let U ′ be a minimal collec-
tion of inclusionwise maximal sets in U containing t such that

⋃
U ′ ⊇ N(s)

(this exists by (63.37)). Note that for each U ∈ U one has |E[U, s]| ≤ 1
2 deg(s),

since otherwise d(V \ U) ≤ d(U) − 2 (since deg(s) is even), and hence

(63.45) R(V \ U) ≤ d(V \ U) ≤ d(U) − 2 ≤ R(U) − 1 = R(V \ U) − 1,
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a contradiction. Hence |U ′| ≥ 3 (as t ∈ U for each U ∈ U ′). Moreover,

(63.46) for each U ∈ U ′, there is a v ∈ N(s) such that U is the only set
in U ′ containing v.

(Otherwise we could delete U from U ′.)
Also,

(63.47) R(U \ {t}) ≥ R(U) for each U ∈ U ′.

Indeed, choose x ∈ U and y ∈ V \ U with R(U) = λG(x, y). If x �= t,
then R(U \ {t}) ≥ λG(x, y) = R(U), as required. If x = t, then for any
u ∈ N(s) ∩ (U \ {t}),

(63.48) R(U) = λG(t, y) = min{deg(t),deg(y)} ≤ min{deg(u), deg(y)}
= λG(u, y) ≤ R(U \ {t}).

This shows (63.47).
Moreover, for any distinct X, Y ∈ U ′ one has

(63.49) R(X) + R(Y ) ≤ R(X \ Y ) + R(Y \ X).

Suppose not. Then, by Lemma 61.6α we know R(X) + R(Y ) ≤ R(X ∩ Y ) +
R(X∪Y ), and by symmetry we can assume that R(X) > R(X \Y ). Hence by
(63.47), X ∩ Y �= {t}, and hence by (63.38), X ∩ Y �∈ P. By the maximality
of X and Y , R(X ∪ Y ) ≤ d(X ∪ Y ) − 2. This gives the contradiction

(63.50) R(X ∩ Y ) + R(X ∪ Y ) ≤ (d(X ∩ Y ) − 1) + (d(X ∪ Y ) − 2)
≤ d(X) + d(Y ) − 3 ≤ R(X) + R(Y ) − 1
≤ R(X ∩ Y ) + R(X ∪ Y ) − 1,

proving (63.49).
This implies that for any distinct X, Y ∈ U ′ one has

(63.51) |X \ Y | = |Y \ X| = 1, and st is the only edge connecting X ∩ Y
and (V ∪ {s}) \ (X ∪ Y ).

Indeed, by (63.49) (as st connects X ∩ Y and X ∪ Y ),

(63.52) d(X) + d(Y )
= d(X \ Y ) + d(Y \ X) + 2|E[X ∩ Y, (V ∪ {s}) \ (X ∪ Y )]|
≥ d(X \ Y ) + d(Y \ X) + 2 ≥ R(X \ Y ) + R(Y \ X) + 2
≥ R(X) + R(Y ) + 2 ≥ d(X) + d(Y ).

So we have equality throughout. Hence X \ Y, Y \ X ∈ P, and therefore, by
(63.38), |X \Y | = |Y \X| = 1. Moreover, d(X ∩Y, V \ (X ∪Y )) = 1, proving
(63.51).

Now choose X, Y, Z ∈ U ′. Then (63.51) and (63.46) imply that X ∩ Y =
X ∩Z = Y ∩Z. So st is the only edge leaving X ∩Y , and hence st is a bridge.
This contradicts the condition given in this lemma.

Note that



1070 Chapter 63. Connectivity augmentation

(63.53) the graph G′ arising in Lemma 63.8α again has no bridge incident
with s,

as for any two neighbours x, y of s in G′ one has λG′(x, y) = λG(x, y) ≥ 2.
The lemma therefore can be applied iteratively to yield:

Theorem 63.8. Let G = (V, E) be an undirected graph and let r : V × V →
Z+ be symmetric. Let x : V → Z+ be such that x(K) �= 1 for each component
K of G. Then G has an r-edge-connector F satisfying degF (v) = xv for each
v ∈ V if and only if x(V ) is even and

(63.54) x(U) + dE(U) ≥ r(u, v)

for all U ⊆ V and all u ∈ U , v ∈ V \ U .

Proof. Necessity of (63.54) follows from the fact that x(U) + dE(U) ≥
dF (U) + dE(U) ≥ r(u, v). To see sufficiency, extend V by a new vertex s
and, for each v ∈ V , xv edges connecting s and v (parallel if xv ≥ 2). Let H
be the extended graph. Then (63.54) implies

(63.55) dH(U) ≥ r(u, v)

for all U ⊆ V and all u ∈ U , v ∈ V \ U . Hence, for all u, v ∈ V ,

(63.56) λH(u, v) ≥ r(u, v).

Now by iteratively splitting s as in Lemma 63.8α (cf. (63.53)), we obtain a
set F of new edges such that adding F to G, the new graph G′ satisfies

(63.57) λG′(u, v) = λH(u, v) ≥ r(u, v)

for all u, v ∈ V . As moreover degF (v) = xv for each v ∈ V , F is an r-edge-
connector as required.

The condition that x(K) �= 1 for each component K cannot be deleted,
as can be seen by taking G = (V, ∅), r := 1, x := 1, with |V | ≥ 4.

We next give the theorem of Frank [1990a,1992a] characterizing the min-
imum size γ(G, r) of an r-edge-connector. To this end we can assume that r
satisfies:

(63.58) (i) r(u, v) = r(v, u) ≥ λG(u, v) for all u, v ∈ V ;
(ii) r(u, w) ≥ min{r(u, v), r(v, w)} for all u, v, w ∈ V .

Define

(63.59) R(U) := max
u∈U,v∈V \U

r(u, v) if ∅ ⊂ U ⊂ V , and

R(∅) := R(V ) := 0.

Call a component K of G marginal if K �= V , r(u, v) = λG(u, v) for all
u, v ∈ K, and r(u, v) ≤ 1 for all u ∈ K and v ∈ V \ K.
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Theorem 63.9. Let G = (V, E) be an undirected graph and let r : V × V →
Z+ satisfy (63.58).

(i) If K is a marginal component of G, then

(63.60) γ(G, r) = γ(G − K, r′) + R(K),

where r′ is the restriction of r to (V \ K) × (V \ K).
(ii) If G has no marginal components, then γ(G, r) is equal to the maxi-

mum value of

(63.61) ⌈ 1
2

∑

U∈P

(R(U) − dE(U))⌉

taken over all collections P of disjoint nonempty proper subsets of V .

Proof. We first show (i). Let K be a marginal component of G and define
α := R(K). As K is marginal, α ≤ 1. The inequality

(63.62) γ(G, r) ≤ γ(G − K, r′) + α

is easy, since an r-edge-connector for G can be obtained from an r′-edge-
connector F for G−K: if α = 0, then F is an r-edge-connector, and if α = 1,
we obtain an r-edge-connector by adding to F one edge connecting some pair
u ∈ K, v ∈ V \ K with r(u, v) = 1.

To see the reverse inequality, let F be a minimum-size r-edge-connector
for G. Let G′ := (V, E ∪ F ). So G′ is r-edge-connected.

If F contains no edges connecting K and V \K, then α = 0 and F contains
an r′-edge-connector for G − K. Hence γ(G, r) = |F | ≥ γ(G − K, r′) =
γ(G − K, r′) + α.

If F contains an edge uv with u ∈ K, v ∈ V \K, then the graph H obtained
from G′ by contracting (K ∪ {v}) to one vertex, is r′-edge-connected. Since
edge uv ∈ F is contracted, it implies that G − K has an r′-edge-connector of
size at most |F | − 1. So γ(G − K, r′) ≤ |F | − 1 ≤ γ(G, r) − α.

We next show (ii). Let G have no marginal components. Choose x : V →
Z+ such that x(U) + dE(U) ≥ R(U) for each U ⊆ V , with x(V ) as small
as possible. Let µ be the maximum value of (63.61). It suffices to show that
x(V ) ≤ 2µ, since then we can apply Theorem 63.8 (after increasing x(v) by
1 for some v ∈ V if x(V ) is odd). So assume x(V ) > 2µ. As µ > 0 (otherwise
x = 0), we know x(V ) > 2.

Then

(63.63) x(K) �= 1 for each component K of G.

For suppose x(K) = 1. We show that K is marginal, which is a contradiction.
First, K �= V , since x(V ) > 2. Second, for each u ∈ K, v ∈ V \ K, we have
r(u, v) ≤ x(K) + dE(K) = x(K) ≤ 1. Third, to prove that r(u, v) = λG(u, v)
for u, v ∈ K, there is a subset U of K with |U ∩{u, v}| = 1, λG(u, v) = dE(U),
and x(U) = 0. Then r(u, v) ≤ x(U) + dE(U) = dE(U) = λG(u, v). So K is
marginal, contradicting our assumption. This proves (63.63).
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By the minimality of x, there exists a collection P of nonempty proper
subsets U of V satisfying x(U) = R(U) − dE(U), such that P covers {v |
xv ≥ 1}. Choose P such that

(63.64)
∑

U∈P

|U |

is as small as possible. Then

(63.65) T ∩ U = ∅ for distinct T, U ∈ P.

For suppose T ∩ U �= ∅. Note that T �⊆ U �⊆ T , by the minimality of (63.64).
Observe also that T ∪ U �= V , since otherwise we obtain the contradiction

(63.66) 2µ < x(V ) = x(T ∪ U) ≤ x(T ) + x(U)
= R(T ) − d(T ) + R(U) − d(U)
= R(V \ T ) − d(V \ T ) + R(V \ U) − d(V \ U) ≤ 2µ.

(by definition of µ, since V \ T and V \ U are disjoint).
By Lemma 61.6α, R(T ) + R(U) is at most R(T ∩ U) + R(T ∪ U) or at

most R(T \ U) + R(U \ T ).
If R(T ) + R(U) ≤ R(T ∩ U) + R(T ∪ U), then

(63.67) x(T ) + x(U) = R(T ) − d(T ) + R(U) − d(U)
≤ R(T ∩ U) − d(T ∩ U) + R(T ∪ U) − d(T ∪ U)
≤ x(T ∩ U) + x(T ∪ U) = x(T ) + x(U),

and hence we have equality throughout. This implies that x(T ∪U) = R(T ∪
U) − dE(T ∪ U), and hence replacing T and U by T ∪ U would decrease
(63.64), a contradiction.

If R(T ) + R(U) ≤ R(T \ U) + R(U \ T ), then

(63.68) x(T ) + x(U) = R(T ) − d(T ) + R(U) − d(U)
≤ R(T \ U) − d(T \ U) + R(U \ T ) − d(U \ T )
≤ x(T \ U) + x(U \ T ) ≤ x(T ) + x(U),

implying equality throughout. This implies that x(T \U) = R(T \U)−dE(T \
U), and hence replacing T by T \ U would decrease (63.64), a contradiction.

This proves (63.65), yielding the contradiction

(63.69) 2µ < x(V ) =
∑

U∈P

x(U) =
∑

U∈P

(R(U) − d(U)) ≤ 2µ,

which proves the theorem.

Frank [1990a,1992a] also gave a polynomial-time algorithm to find a
minimum-cost r-edge-connector if the cost of any new edge uv is given by
k(u) + k(v), for some function k : V → Q+. This is done with the help of the
following auxiliary result:

Theorem 63.10. Let G = (V, E) be an undirected graph and let r : V ×V →
Z+ be symmetric. Define R(U) as in (63.59). Then
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(63.70) Q := {x ∈ RV
+ | x(U) ≥ R(U) − dE(U) for all U ⊆ V }

is a contrapolymatroid, with associated supermodular function given by, for
X ⊆ V :

(63.71) g(X) := max
U

∑

U∈U

(R(U) − dE(U)),

where the maximum ranges over collections U of disjoint nonempty subsets
of X.

Proof. Clearly, for any x ∈ RV
+ one has x ∈ Q if and only if x(U) ≥ g(X)

for each X ⊆ V .
To see that g is supermodular, choose X, Y ⊆ V . Let

(63.72) g(X) =
∑

U∈U

(R(U) − d(U)) and g(Y ) =
∑

T∈T

(R(T ) − d(T )),

where U and T are collections of disjoint nonempty subsets of X and of Y ,
respectively. The collections U and T together form a family S of nonempty
subsets of V satisfying

(63.73)
∑

S∈S

χS ≤ χX∩Y + χX∪Y and g(X) + g(Y ) ≤
∑

S∈S

(R(S) − d(S)).

We now choose S such that (63.73) is satisfied and such that

(63.74)
∑

S∈S

|S|(|V \ S| + 1)

is as small as possible.
We claim that S is laminar; that is,

(63.75) if T, U ∈ S, then T ⊆ U or U ⊆ T or T ∩ U = ∅.

Suppose not. By Lemma 61.6α, R(T )+R(U) is at most R(T ∩U)+R(T ∪U)
or at most R(T \U)+R(U \T ). If R(T )+R(U) ≤ R(T ∩U)+R(T ∪U), then
replacing T and U by T ∩U and T ∪U maintains (63.73) but decreases (63.74)
(by Theorem 2.1), contradicting the minimality assumption. If R(T )+R(U) ≤
R(T \ U) + R(U \ T ), then replacing T and U by T \ U and U \ T maintains
(63.73) but decreases (63.74) (again by Theorem 2.1), again contradicting
the minimality condition. This proves (63.75).

Now let P be the collection of inclusionwise maximal elements in S and
let Q be the collection of remaining sets in S. (If a set occurs twice in S, it
is both in P and in Q.) Then each set in P is contained in X ∪ Y , and each
set in Q is contained in X ∩ Y . Moreover, both P and Q are collections of
disjoint sets. Hence

(63.76) g(X ∪ Y ) + g(X ∩ Y ) ≥
∑

P∈P

(R(P ) − d(P )) +
∑

Q∈Q

(R(Q) − d(Q))

=
∑

S∈S

(R(S) − d(S)) ≥ g(X) + g(Y );
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that is, g is supermodular.

With this theorem, also good characterizations and polynomial-time algo-
rithms can be obtained for the minimum size of an r-edge-connector satisfying
prescribed lower and upper bounds on its degrees — see Frank [1990a,1992a].

Bang-Jensen, Frank, and Jackson [1995] extended these results to mixed
graphs.

63.5. Making a directed graph k-vertex-connected

Let (V, A) and (V, B) be directed graphs. The set B is called a k-vertex-
connector for D if the directed graph (V, A∪B) is k-vertex-connected. (Note
that parallel edges will not help the vertex-connectivity.)

Since, for directed graphs, 1-vertex-connectors and 1-arc-connectors coin-
cide, the problem of finding a minimum-size 1-vertex-connector for a given
directed graph is addressed in Section 57.1.

Frank and Jordán [1995b] showed the following min-max relation for
minimum-size k-vertex connector in directed graphs (which is a special case
of Frank and Jordán’s Theorem 60.5 above).

Call a pair (X, Y ) of subsets of V a good pair if X �= ∅, Y �= ∅, X ∩Y = ∅,
and D has no arc from X to Y . Call a collection F of good pairs a good
collection if X ∩ X ′ = ∅ or Y ∩ Y ′ = ∅ for all distinct (X, Y ), (X ′, Y ′) ∈ F .

Theorem 63.11. Let D = (V, A) be a directed graph and let k ∈ Z+. Then
the minimum size of a k-vertex-connector for D is equal to the maximum
value of

(63.77)
∑

(X,Y )∈F

(k − |V \ (X ∪ Y )|),

where F ranges over good collections of good pairs.

Proof. Let γ be the maximum value. The minimum is not less than γ, since
for any (X, Y ) ∈ F , at least k − |V \ (X ∪ Y )| arcs from X to Y should be
added, while such arcs do not run from X ′ to Y ′ for any other pair (X ′, Y ′)
in F (as X ∩ X ′ = ∅ or Y ∩ Y ′ = ∅).

To see equality, we can assume that D is not k-vertex-connected. Then
there exist disjoint nonempty subsets T and U of V such that D has no arc
from T to U and such that |V \ (T ∪ U)| < k.

If there exist t ∈ T and u ∈ U such that augmenting D with the arc (t, u),
the maximum decreases, we are done by induction. So we can assume that
no such pair t, u exists. Hence for each t ∈ T and u ∈ U , there exists a good
collection Ft,u of good pairs, with

(63.78)
∑

(X,Y )∈Ft,u

(k − |V \ (X ∪ Y )|) = γ,
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and with t �∈ X or u �∈ Y for all (X, Y ) ∈ Ft,u.
Concatenating these collections Ft,u for all t ∈ T , u ∈ U , and adding the

pair (T, U), we obtain a family G of good pairs satisfying:

(63.79) (i) for each x ∈ T , y ∈ U , there are at most |T ||U | pairs (X, Y )
in G with x ∈ X and y ∈ Y ;

(ii)
∑

(X,Y )∈G

(k − |V \ (X ∪ Y )|) > γ|T ||U |.

Among all families G satisfying (63.79), we choose one minimizing

(63.80)
∑

(X,Y )∈G

(|X| + |V \ Y |)(|Y | + |V \ X|).

Then

(63.81) for all (X, Y ), (X ′, Y ′) ∈ G one has X ∩ X ′ = ∅ or Y ∩ Y ′ = ∅ or
X ⊆ X ′, Y ′ ⊆ Y or X ′ ⊆ X, Y ⊆ Y ′.

Suppose not. Replace (X, Y ) and (X ′, Y ′) by (X ∩ X ′, Y ∪ Y ′) and (X ∪
X ′, Y ∩ Y ′). This maintains (63.79), while (63.80) decreases19, contradicting
our assumption. This proves (63.81).

Now consider the partial order ≤ on pairs (X, Y ) of subsets of V , defined
by (X, Y ) ≤ (X ′, Y ′) if X ⊆ X ′, Y ′ ⊆ Y . For each pair (X, Y ), let its ‘weight’
w(X, Y ) be the number of times (X, Y ) occurs in G, and let its ‘length’ l(X, Y )
be equal to k−|V \(X∪Y )|. Then by (63.79)(i), any chain has weight at most
|T ||U |. By (63.79)(ii), the sum of l(X, Y )w(X, Y ) over (X, Y ) ∈ G is more
than γ|T ||U |. Hence, by the length-width inequality for partially ordered sets
(Theorem 14.5), G contains an antichain F of length more than γ. Then F
is a good collection by (63.81). This contradicts the definition of γ.

The theorem implies that the minimum size of a k-vertex-connector for a
given directed graph D = (V, A) is equal to the minimum value of

(63.82)
∑

u,v∈V

xu,v

subject to

(63.83) (i) xu,v ≥ 0 for all u, v ∈ V ,

(ii)
∑

u∈X

∑

v∈Y

xu,v ≥ k − |V \ (X ∪ Y )|

for all disjoint nonempty X, Y ⊆ V
with no arc from X to Y .

19 This can be seen with Theorem 2.1: Make a copy Ṽ of V , and let Ỹ be the set of
copies of elements of Y . Define ZX,Y := X ∪ (Ṽ \ Ỹ ). Then |X| + |V \ Y | = |ZX,Y |
and |Y | + |V \ X| = |(V ∪ Ṽ ) \ ZX,Y |. Moreover, for (X, Y ) and (X′, Y ′) we have
ZX∩X′,Y ∪Y ′ = ZX,Y ∩ZX′,Y ′ and ZX∪X′,Y ∩Y ′ = ZX,Y ∪ZX′,Y ′ . So the replacements
decrease (63.80) by Theorem 2.1.
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This can be seen by observing that Theorem 63.11 implies that this LP-
problem has integer primal and dual solutions of equal value.

As Frank and Jordán [1995b] pointed out, this implies that a minimum-
size k-vertex-connector can be found in polynomial time with the ellipsoid
method, as follows.

Since the conditions (63.83) can be checked in polynomial time, the ellip-
soid method (as we discuss below) implies that the minimum size of a k-arc-
connector can be determined in polynomial time. Then an explicit minimum-
size k-vertex-connector can be found by testing, for each pair u, v ∈ V ,
whether augmenting D by the new arc (u, v) decreases the minimum size
of a k-arc-connector. If so, we add (u, v) to D and iterate.

The ellipsoid method applies, since given xu,v ≥ 0 (u, v ∈ V ), we can test
if (63.83)(ii) holds. Indeed, let B be a set of new arcs forming a complete
directed graph on V . Define a capacity function c on A∪B by: c(a) := ∞ for
each a ∈ A and c(b) = xu,v for each arc b ∈ B from u to v. Then (63.83)(ii)
is equivalent to: for each s, t ∈ V there is an s − t flow fs,t in (V, A ∪ B)
subject to c of value k, such that for any vertex v �= s, t, the amount of flow
traversing v is at most 1 (since the set of arcs in B from X to Y , together
with the vertices in V \ (X ∪ Y ), form a mixed arc/vertex-cut separating s
and t). As this can be tested in polynomial time, we have a polynomial-time
test for (63.83).

In fact, we can transform the problem into a linear programming problem
of polynomial size, by including the flow variables fs,t(a) (for s, t ∈ V and a ∈
A∪B), into the LP-problem. Thus the minimum size of a k-arc-connector can
be described as the solution of a linear programming problem of polynomial
size.

There is no combinatorial polynomial-time algorithm known to find a
minimum-size k-vertex-connector for a given directed graph. (Frank and
Jordán [1995a] describe a combinatorial polynomial-time algorithm for find-
ing a minimum-size 2-vertex-connector for a strongly connected directed
graph. Frank and Jordán [1999] extended it to a polynomial-time algorithm
(for any fixed k) to find a minimum-size k-vertex-connector.)

Notes. Frank and Jordán [1995b] also showed that a directed graph D = (V, A)
has a k-vertex-connector B with all in- and outdegrees at most k − κ(D) (where
κ(D) denotes the vertex-connectivity of D).

Frank [1994a] gave the following conjecture:

(63.84) (?) Let D = (V, A) be a simple acyclic directed graph. Then the min-
imum size of a k-vertex-connector for D is equal to the maximum of∑

v∈V max{0, k − degin(v)} and
∑

v∈V max{0, k − degout(v)}. (?)

An O(kn)-time algorithm finding a minimum-size k-vertex-connector for a
rooted tree was given by Masuzawa, Hagihara, and Tokura [1987]. Frank [1994a]
observed that this result easily extends to branchings.

Approximation algorithms for the minimum size of a k-vertex-connector for a
directed graph were given by Jordán [1993a].
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63.6. Making an undirected graph k-vertex-connected

Let (V, E) and (V, F ) be undirected graphs. The set F is called a k-vertex-
connector for G if the graph (V, E ∪ F ) is k-vertex-connected.

Trivially, the minimum size of a 1-vertex-connector for an undirected
graph G is equal to one less than the number of components of G.

The minimum size of a 2-vertex-connector for undirected graphs was given
by Eswaran and Tarjan [1976] and Plesńık [1976]. To this end, call a block
pendant if it contains exactly one cut vertex of G. Moreover, call a block
isolated if it contains no cut vertex of G. So an isolated block is a component
of G.

Theorem 63.12. Let G = (V, E) be a non-2-vertex-connected undirected
graph, with p pendant blocks and q isolated blocks. Let d be the maximum
number of components of G − v, maximized over v ∈ V . Then the minimum
size of a 2-vertex-connector for G is equal to

(63.85) k := max{d − 1, ⌈ 1
2p⌉ + q}.

Proof. One needs at least d−1 edges, since for any v ∈ V , after deleting v the
augmented graph should be connected. Any block containing no cut vertex
should be incident with at least two new edges, and any block containing one
cut vertex should be incident with at least one new edges. Hence the number
of new edges is at least 1

2p + q, and hence at least k.
To show that k can be attained, choose a counterexample G with k min-

imal. Then G is connected. Otherwise, we can choose two blocks B, B′ from
different components of G such that each of B, B′ is pendant or isolated. We
can choose a non-cut vertex from each of B, B′, and connect them by a new
edge to obtain graph G′. After that, k has decreased by exactly 1, and we
can apply induction to G′, implying the theorem.

So G is connected, and hence q = 0 (as G is not 2-vertex-connected).
Moreover, k ≥ 2, since otherwise p ≤ 2, and we can add one edge to make G
2-vertex-connected.

Let U be the set of vertices v for which G−v has at least three components
and let W be the set of vertices v for which G − v has k + 1 components. So
W ⊆ U . Moreover, |U | ≥ 2, since otherwise we can add d − 1 edges to make
G connected.

We show:

(63.86) there exist two distinct pendant blocks B, B′ such that each B −
B′ path traverses all vertices in W and at least two vertices in U .

If |W | ≤ 1, this is trivial. So we may assume that |W | ≥ 2. Then, as W ⊆ U ,
it suffices to show that there exists a path traversing all vertices in W . If
such a path would not exist, there exists a subset X of W with |X| = 3
that is not on a path. Then for each v ∈ X, one component K of G − v
contains X \ {v}. So for each v ∈ X, G − v has k components disjoint from
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X. Moreover, for distinct v, v′ ∈ X, if K and K ′ are components of G − v
and G − v′ (respectively) each disjoint from X, then K ∩ K ′ = ∅. Since for
each v ∈ X and each component K of G − v, K ∪ {v} contains at least one
pendant block, we know p ≥ 3k ≥ 3⌈ 1

2p⌉, contradicting the fact that p > 0.
This shows (63.86). Now augment G by an edge connecting non-cut ver-

tices in B and B′, giving graph G′. As this augmentation decreases k (by
the conditions given in (63.86)), we would obtain a counterexample with k
smaller.

This proof directly gives a polynomial-time algorithm to find a minimum-
size 2-vertex-connector for G. Eswaran and Tarjan [1976] mention that a
linear-time implementation of this algorithm was communicated to them in
1973 by R. Pecherer and A. Rosenthal — see Rosenthal and Goldner [1977].
(See also Hsu and Ramachandran [1991,1993].)

An equivalent form of Theorem 63.12 is:

Corollary 63.12a. Let G = (V, E) be a non-2-vertex-connected graph. Then
G has a 2-vertex-connector of size at most γ if and only if for each vertex v,
G − v has at most γ + 1 components and

(63.87)
∑

U∈P

(2 − |N(U)|) ≤ 2γ

for each collection P of disjoint nonempty subsets U of V with |U | ≤ |V |−3.

Proof. Directly from Theorem 63.12.

Jackson and Jordán [2001] showed that for each fixed k, a minimum-size
k-vertex-connector for an undirected graph can be found in polynomial time.

Notes. Watanabe and Nakamura [1988,1993] give a characterization of the min-
imum size of a 3-vertex-connector, and Watanabe and Nakamura [1993] describe
an O(n(n+m)2)-time algorithm (for a sketch, see Watanabe and Nakamura [1988,
1990]). Hsu and Ramachandran [1991] gave a linear-time algorithm for this prob-
lem. Hsu [1992,2000] gave an almost-linear-time algorithm to find a minimum-size
4-vertex-connector for a 3-connected undirected graph.

Note that the natural extensions of Corollary 63.12a does not hold for k-vertex-
connectors with k ≥ 4, as is shown by the complete bipartite graph K3,3.

For approximation algorithms, see Jordán [1993b,1995,1997a], Khuller and
Thurimella [1993], Cheriyan and Thurimella [1996b,1999], Nutov and Penn [1997],
Penn and Shasha-Krupnik [1997], and Jackson and Jordán [2000].

63.6a. Further notes

Corollary 53.6b implies the following characterization for connectivity augmenta-
tion, due to Frank [1979b].
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Theorem 63.13. Let D = (V, A) be a digraph, let r ∈ V , and let k ∈ Z+ be such

that D contains k disjoint r-arborescences. Moreover, let D′ = (V, A′) and l ∈ ZA′

+ .
Then the minimum of l(C) where C ⊆ A′ such that the digraph (V, A ∪ C) (taking
arcs multiple) has k + 1 disjoint r-arborescences is equal to the maximum size t
of a family of nonempty subsets U1, . . . , Ut of V \ {r} such that din

D (Uj) = k for
j = 1, . . . , t and such that each arc a of D′ enters at most l(a) of the Uj.

Proof. Consider the digraph D′′ = (V, A′′) with A′′ := A ∪ A′ (taking multiple
arcs for arcs occurring both in A and in A′). Now the minimum in this corollary is

equal to the minimum of
∑

a∈A′ l(a)xa where x ∈ ZA′′

satisfies

(63.88) 0 ≤ xa ≤ 1 if a ∈ A′,
x(δin

D′(U)) ≥ k + 1 − din
D (U) for each nonempty U ⊆ V \ {r}.

Since (63.88) is TDI by Corollary 53.6b, this minimum is equal to the maximum
described in the present corollary.

The problem of making a bipartite directed graph strongly connected while
preserving bipartiteness is considered by Gabow and Jordán [1999,2000a]. Aug-
menting the arc-connectivity while preserving bipartiteness is studied by Gabow
and Jordán [2000b]. Making a bipartite undirected graph k-edge-connected while
preserving bipartiteness, and, more generally, edge-connectivity augmentation with
partition constraints, is studied by Bang-Jensen, Gabow, Jordan, and Szigeti [1998,
1999].

For the ‘successive augmentation problem’, see Cheng and Jordán [1999]. For
NP-completeness and approximation results for connectivity augmentation, see
Frederickson and Ja’Ja’ [1981,1982]. Frank and Király [2001] studied problems that
combine graph orientation and connectivity augmentation.

Planar graph connectivity augmentation was considered by Provan and Burk
[1999].

Ishii, Nagamochi, and Ibaraki [1997,1998b,1998a,1999,2000,2001] considered the
problem of making an undirected graph both k-vertex- and l-edge-connected.

For surveys on connectivity augmentation, see Frank [1993a,1994a], Jordán
[1994,1997b], and Nagamochi [2000].
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Part VI: Cliques, Stable Sets, and Colouring

We now arrive at a class of problems that are in general NP-complete: finding a
maximum-size clique or stable set or a minimum vertex-colouring in an undirected
graph. These problems relate to each other: a stable set in a graph is a clique in
the complementary graph, a colouring is a partitioning of the vertex set into stable
sets, and the maximum size of a clique is a lower bound for the minimum number
of colours.
Graph colouring was motivated originally by the four-colour conjecture formulated
in the 1850s, stating that each planar map can be coloured with at most four colours
— since 1977 a theorem of Appel and Haken. Later, colouring turned out to have
several other applications, like in school scheduling, timetabling, and warehouse
planning and in bungalow, terminal, platform, and frequency assignment. Finding
optimum cliques of stable sets again can be used in frequency assignment, and in
set packing problems, which show up for instance in crew scheduling.
While these problems are in general NP-complete, some are polynomial-time solv-
able for special classes of graphs: perfect graphs, t-perfect graphs, claw-free graphs.
They form the body of this part.
Perfect graphs carry one of the deepest theorems in graph theory, the strong per-
fect graph theorem — recently proved by Chudnovsky, Robertson, Seymour, and
Thomas. The proof is highly complicated, and we cannot give it in this book.
We refer to Part III for stable sets in and colouring of line graphs — equivalently,
matchings and edge-colouring.
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Chapter 64

Cliques, stable sets, and

colouring

This chapter studies cliques, stable sets, and colouring for general graphs:
complexity, polyhedra, fractional solutions, weighted versions.
In studying later chapters of this part, one can do largely with-
out the results of the present chapter. Only some elementary
definitions and terminology will be needed. It suffices to use this
chapter just for reference.
In this chapter, all graphs can be assumed to be simple.

64.1. Terminology and notation

Let G = (V, E) be an undirected graph. A clique is a set of vertices any two of
which are adjacent. The maximum size of a clique in G is the clique number
of G, and is denoted by ω(G).

A stable set is a set of vertices any two of which are nonadjacent. The
maximum size of a stable set in G is called the stable set number of G, and
is denoted by α(G).

A vertex cover is a set of vertices intersecting all edges. The minimum size
of a vertex cover in G is called the vertex cover number of G, and is denoted
by τ(G).

A (vertex-)colouring of G is a partition of V into stable sets S1, . . . , Sk.
The sets S1, . . . , Sk are called the colours of the colouring. The minimum
number of colours in a vertex-colouring of G is called the (vertex-)colouring
number of G, denoted by χ(G). A graph G is called k-(vertex-)colourable if
χ(G) ≤ k, and k-chromatic if χ(G) = k. A minimum (vertex-)colouring is
a colouring with χ(G) colours. A k-(vertex-)colouring is a colouring with k
colours.

A clique cover of G is a partition of V into cliques. The minimum number
of cliques in a clique cover of G is called the clique cover number of G, and is
denoted by χ(G). A minimum clique cover is a clique cover with χ(G) cliques.

The following relations between these parameters are immediate:

(64.1) α(G) = ω(G), χ(G) = χ(G), ω(G) ≤ χ(G), α(G) ≤ χ(G),
τ(G) = |V | − α(G).
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64.2. NP-completeness

It is NP-complete to find a maximum-size stable set in a graph. To be more
precise, the stable set problem: given a graph G and a natural number k,
decide if α(G) ≥ k, is NP-complete (according to Karp [1972b] this is implicit
in the work of Cook [1971] and was also known to R. Reiter):

Theorem 64.1. Determining the stable set number is NP-complete.

Proof. We reduce the satisfiability problem to the stable set problem. Let
C1 ∧ · · · ∧ Ck be a Boolean expression, where each Ci is of the form y1 ∨
· · · ∨ ym, with y1, . . . , ym ∈ {x1, ¬x1, . . . , xn, ¬xn}. Call x1, ¬x1, . . . , xn, ¬xn

the literals. Consider the graph G = (V, E) with V := {(σ, i) | σ is a literal
in Ci} and E := {{(σ, i), (τ, j)} | i = j or σ = ¬τ}. Then the expression is
satisfiable if and only if G has a stable set of size k.

It can be shown that the stable set problem remains NP-complete if the
graphs are restricted to 3-regular planar graphs (Garey, Johnson, and Stock-
meyer [1976]) or to triangle-free graphs (Poljak [1974]).

Since a subset U of V G is a vertex cover if and only if V G \ U is a stable
set, we also have:

Corollary 64.1a. Determining the vertex cover number is NP-complete.

Proof. By Theorem 64.1, since the vertex cover number of a graph G is equal
to |V G| minus the stable set number.

A subset C of V G is a clique in a graph G if and only if C is a stable
set in the complementary graph G. So finding a maximum-size clique in G
is equivalent to finding a maximum-size stable set in G, and ω(G) = α(G).
Hence, as determining α(G) is NP-complete, also determining ω(G) is NP-
complete.

Also, it is NP-complete to decide if a graph is k-colourable (Karp [1972b]):

Theorem 64.2. Determining the vertex-colouring number is NP-complete.

Proof. We show that the stable set problem can be reduced to the vertex-
colouring problem. Let G = (V, E) be an undirected graph and let k ∈ Z+.
We want to decide if α(G) ≥ k. To this end, let V ′ be a copy of V and let
C be a set of size k, where V , V ′, and C are disjoint. Make a graph H with
vertex set V ∪ V ′ ∪ C as follows. A pair of vertices in V is adjacent in H if
and only if it is adjacent in G. The sets V ′ and C are cliques in H. Each
vertex in V is adjacent to each vertex in V ′ ∪ C, except to its copy in V ′. No
vertex in V ′ is adjacent to any vertex in C.

This defines the graph H. Then α(G) ≥ k if and only if χ(H) ≤ |V | + 1.
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Well-known is the four-colour conjecture (or 4CC ), stating that χ(G) ≤ 4
for each loopless planar graph G. This conjecture was proved by Appel and
Haken [1977] and Appel, Haken, and Koch [1977], and is now called the four-
colour theorem. (A shorter proof was given by Robertson, Sanders, Seymour,
and Thomas [1997], leading to an O(n2)-time 4-colouring algorithm for planar
graphs (Robertson, Sanders, Seymour, and Thomas [1996]).)

However, it is NP-complete to decide if a planar graph is 3-colourable, even
if the graph has maximum degree 4 (Garey, Johnson, and Stockmeyer [1976]).
Moreover, determining the colouring number of a graph G with α(G) ≤ 4
is NP-complete (cf. Garey and Johnson [1979]). Holyer [1981] showed that
deciding if a 3-regular graph is 3-edge-colourable is NP-complete (see Sec-
tion 28.3). Note that one can decide in polynomial time if a graph G is
2-colourable, since bipartiteness can be checked in polynomial time.

These NP-completeness results imply that if NP �=co-NP, then one may
not expect a min-max relation characterizing the stable set number α(G), the
vertex cover number τ(G), the clique number ω(G), or the colouring number
χ(G) of a graph G.

64.3. Bounds on the colouring number

A lower bound on the colouring number is given by the clique number:

(64.2) ω(G) ≤ χ(G).

This is easy, since in any clique all vertices should have different colours.
There are several graphs which have strict inequality in (64.2). We men-

tion the odd circuits Ck, with k odd and ≥ 5: then ω(Ck) = 2 and χ(Ck) = 3.
Moreover, for the complement Ck of any such graph we have: ω(Ck) = ⌊k/2⌋
and χ(Ck) = ⌈k/2⌉.

It was a conjecture of Berge [1963a] that these graphs are crucial. In
May 2002, M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas
announced that they have found a proof of this conjecture.

Strong perfect graph theorem: Each graph G with ω(G) < χ(G) has Ck

or Ck as induced subgraph for some odd k ≥ 5.

It is convenient to define a hole of a graph G to be an induced subgraph
of G isomorphic to Ck for some k ≥ 4. Moreover, an antihole is an induced
subgraph isomorphic to Ck for some k ≥ 4. A hole or antihole is odd if it
has an odd number of vertices. Then the strong perfect graph theorem can
be formulated as: each graph G with ω(G) < χ(G) has an odd hole or odd
antihole.

For more on this we refer to Chapter 65.
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64.3a. Brooks’ upper bound on the colouring number

There is a trivial upper bound on the colouring number:

(64.3) χ(G) ≤ ∆(G) + 1,

where ∆(G) denotes the maximum degree of G. This bound follows by colouring
the vertices ‘greedily’ one by one: at any stage, at least one colour (out of ∆(G)+1
colours) is not used by the neighbours.

Brooks [1941] sharpened this inequality as follows. We follow the proof given
by Lovász [1975d].

Theorem 64.3 (Brooks’ theorem). For any connected graph G one has χ(G) ≤
∆(G), except if G is a complete graph or an odd circuit.

Proof. We can assume that G is 2-connected, since otherwise we can apply induc-
tion. Moreover, we can assume that ∆(G) ≥ 3. Let k := ∆(G).

I. First assume that G has nonadjacent vertices u and w with G − u − w
disconnected. Let V1 and V2 be proper subsets of V such that V1∪V2 = V , V1∩V2 =
{u, w}, and no edge connects V1 \ {u, w} and V2 \ {u, w}. Let G1 := G[V1] and
G2 := G[V2].

For i = 1, 2, we know by induction that χ(Gi) ≤ k, since Gi is not complete
(as u and w are nonadjacent), and since ∆(Gi) ≤ k and k ≥ 3. By symmetry of
G1 and G2, we can assume that each k-colouring of G1 gives u and w the same
colour (otherwise G1 and G2 have k-colourings that coincide on u and w, yielding a
k-colouring of G). This implies that both u and w have degree at least k − 1 in G1.
Hence they have degree at most 1 in G2. Therefore, as k ≥ 3, G2 has a k-colouring
giving u and w the same colour. So G is k-colourable.

II. Now choose a vertex v of maximum degree. As G is not a complete graph,
v has two nonadjacent neighbours, say u and w. By part I, we can assume that
G − u − w is connected. Hence it has a spanning tree T . Orient T so as to obtain
a rooted tree, rooted at v. Hence we can order the vertices of G as v1, . . . , vn such
that v1 = v, vn−1 = u, vn = w, and such that each vi with i > 1 is adjacent to some
vj with j < i. Give u and w colour 1. Next successively for i = n − 2, n − 1, . . . , 1,
we can give a colour from 1, . . . , k to vi different from the colours given to the
neighbours vj of vi with j > i. Such a colour exists, since if i > 1, there are less
than k neighbours vj of vi with j > i; and if i = 1, there are k such neighbours,
but neighbours u and w have the same colour.

(A related proof was given by Ponstein [1969], and a strengthening of Brooks’
theorem by Reed [1999a]. For another proof of Brooks’ theorem, see Melnikov and
Vizing [1969].)

64.3b. Hadwiger’s conjecture

Another upper bound on the colouring number is conjectured by Hadwiger [1943].
Since there exist graphs with ω(G) < χ(G), it is not true that if χ(G) ≥ k, then G
contains the complete graph Kk on k vertices as a subgraph. However, Hadwiger
conjectured the following, where a graph H is called a minor of a graph G if H
arises from some subgraph of G by contracting some (possibly none) edges.
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Hadwiger’s conjecture: If χ(G) ≥ k, then G contains Kk as a minor.

In other words, for each k, the graph Kk is the only graph G with the property
that G is not (k − 1)-colourable and each proper minor of G is (k − 1)-colourable.

Hadwiger’s conjecture is trivial for k = 1, 2, 3, and was shown by Hadwiger
[1943] for k = 4 (also by Dirac [1952]):

Theorem 64.4. If G has no K4 minor, then χ(G) ≤ 3.

Proof. One may assume that G = (V, E) is not a forest or a circuit. Then G has
a circuit C not covering all vertices of G. Choose v ∈ V \ V C. If G is 3-connected,
there are three paths from v to V C, disjoint except for v. This creates a K4 minor,
a contradiction.

So G is not 3-connected, that is, G has a vertex-cut of size less than 3. Then
χ(G) ≤ 3 follows by induction: if G is disconnected or has a 1-vertex-cut, this is
trivial, and if G is 2-connected and has a 2-vertex-cut {u, w}, we can apply induction
to the graphs G − K after adding an edge uw, for each component K of G − u − w.

(For another proof, see Woodall [1992].)
As planar graphs contain no K5 minor, Hadwiger’s conjecture for k = 5 implies

the four-colour theorem. In fact, Wagner [1937a] showed that his decomposition
theorem (Theorem 3.3) implies that Hadwiger’s conjecture for k = 5 is equivalent to
the four-colour conjecture. (Young [1971] gave a ‘quick’ proof of this equivalence.)
The four-colour conjecture was proved by Appel and Haken [1977] and Appel,
Haken, and Koch [1977]. (Robertson, Sanders, Seymour, and Thomas [1997] gave
a shorter proof.)

Robertson, Seymour, and Thomas [1993] showed that Hadwiger’s conjecture is
true also for k = 6, by reducing it again to the four-colour theorem. For k ≥ 7,
Hadwiger’s conjecture is unsettled.

Halin [1964] has proved that if G has no Kk minor, then χ(G) ≤ 2k−2 (Wagner
[1964] gave a short proof). Further progress on Hadwiger’s conjecture was made
by Wagner [1960], Mader [1968], Jakobsen [1971], Duchet and Meyniel [1982], Kos-
tochka [1982], Fernandez de la Vega [1983], Thomason [1984], and Reed and Sey-
mour [1998].

Hajós’ conjecture. G. Hajós1 conjectured (more strongly than Hadwiger) that
any k-chromatic graph contains a subdivision of Kk as subgraph. For k ≤ 4, Hajós’
conjecture is equivalent to Hadwiger’s conjecture.

Hajós’ conjecture was refuted by Catlin [1979] for k = 8. He showed that the
line graph L(G) of the graph G obtained from the 5-circuit C5 by replacing each

1 According to Toft [1996], Hajós considered the conjecture already in the 1940s in con-
nection with the four-colour conjecture, but he never published it. (The paper Hajós
[1961] commonly referred to, does not give Hajós’ conjecture.) An early written record
of the conjecture is in the review of Tutte [1961b], in the January 1961 issue of Math-
ematical Reviews, of the book Färbungsprobleme auf Flächen und Graphen (Colouring
Problems on Surfaces and Graphs) by Ringel [1959]. This book itself however does not
mention the conjecture.
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edge by three parallel edges, has colouring number 8 (as L(G) has 15 vertices and
stable set number 2), but contains no subdivision of K8.

Catlin in fact gave a counterexample to Hajós’ conjecture for each k ≥ 7. Erdős
and Fajtlowicz [1981] showed that almost all graphs are counterexamples to Hajós’
conjecture.

Related is the following result of Hajós [1961]: any graph G with χ(G) ≥ k can
be obtained from the complete graph Kk by a series of the following operations on
graphs (each preserving χ ≥ k):

(64.4) (i) add vertices or edges;
(ii) identify two nonadjacent vertices;
(iii) take two disjoint graphs G1 and G2, choose edges e1 = u1v1 of G1

and e2 = u2v2 of G2, identify u1 and u2, delete e1 and e2, and add
edge v1v2.

64.4. The stable set, clique, and vertex cover polytope

The stable set polytope Pstable set(G) of a graph G = (V, E) is the convex hull
of the incidence vectors of the stable sets in G. Since finding a maximum-size
stable set is NP-complete, one may not expect a polynomial-time checkable
system of linear inequalities describing the stable set polytope (Corollary
5.16a). More precisely, if NP�=co-NP, then there do not exist inequalities
satisfied by the stable set polytope such that their validity can be certified in
polynomial time and such that the inequality 1Tx ≤ α(G) is a nonnegative
linear combination of them.

The clique polytope Pclique(G) of a graph G = (V, E) is the convex hull of
the incidence vectors of cliques. Trivially

(64.5) Pclique(G) = Pstable set(G).

Hence, similar observations hold for the clique polytope.
Another related polytope is the vertex cover polytope Pvertex cover(G) of

G, being the convex hull of the incidence vectors of vertex covers in G. Since
a subset U of V is a vertex cover if and only if V \ U is a stable set, we have

(64.6) x ∈ Pvertex cover(G) ⇐⇒ 1 − x ∈ Pstable set(G).

This shows that problems on the two types of polytopes can be reduced to
each other.

64.4a. Facets and adjacency on the stable set polytope

Padberg [1973] (for facets induced by odd circuits) and Nemhauser and Trotter
[1974] observed that

(64.7) each facet of the stable set polytope of an induced subgraph G[U ] of
G, is the restriction to U of some unique facet of Pstable set(G).
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More precisely, for each facet F of Pstable set(G[U ]) there is a unique facet F ′ of
Pstable set(G) with the property that F = {x ∈ RU | x′ ∈ F ′}, where x′

v = xv if
v ∈ U and x′

v = 0 if v ∈ V \ U .
To prove (64.7), it suffices to prove it for U = V \ {v} for some v ∈ V . Let F

be a facet of Pstable set(G − v). We can consider F as a face of codimension 2 of
Pstable set(G) (by extending F with a 0 at coordinate v). Define H := {x ∈ RV |
xv = 0}. As F is on the facet F ′′ := Pstable set(G) ∩ H of Pstable set(G), there is a
unique facet F ′ of Pstable set(G) with F = F ′′ ∩ F ′. This implies F = F ′ ∩ H, since

(64.8) F = F ′ ∩ F ′′ = F ′ ∩ Pstable set(G) ∩ H = F ′ ∩ H.

Suppose now that Pstable set(G) has another facet F ′′′ with F = F ′′′ ∩H. Then
F ⊆ F ′′′ ∩ F ′′ ⊆ F ′′′ ∩ H = F , and hence F = F ′′ ∩ F ′′′, contradicting the unicity
of F ′. This proves (64.7).

Padberg [1973] also showed the following:

Theorem 64.5. Let G = (V, E) be a graph and let a ∈ ZV
+. Then the inequality

(64.9) aTx ≤ 1

is valid for the stable set polytope of G if and only if a is the incidence vector of a

clique C. Moreover, (64.9) determines a facet if and only if C is an inclusionwise

maximal clique.

Proof. Trivially, inequality (64.9) is valid if a = χC for some clique C. Conversely,
if (64.9) is valid, then a is a 0, 1 vector, and hence the incidence vector of a subset
C of V . Then C is a clique, since otherwise C contains a stable set S of size 2,
implying that (64.9) is not valid for x := χS .

In proving the second statement, we can assume that a = χC for some clique
C. Suppose that (64.9) determines a facet, and that C is not an inclusionwise
maximal clique. Then there is a clique C′ properly containing C. Hence for each
x ∈ Pstable set(G), if x(C) = 1, then x(C′) = 1. This implies that the inequality
x(C) ≤ 1 is not facet-inducing, a contradiction.

Finally suppose that C is an inclusionwise maximal clique. To see that (64.9)
determines a facet, let aTx = β be satisfied by all x in the stable set polytope with
x(C) = 1. So a(S) = β for each stable set S with |S ∩ C| = 1. Then av = β for
each v ∈ C, as S := {v} is stable. Also, au = 0 for each u ∈ V \ C, since by the
maximality of C, there is a vertex v ∈ C that is not adjacent to u. So S := {u, v}
is stable, and hence au + av = β. So au = 0. Concluding, aTx = β is some multiple
of x(C) = 1, and hence x(C) ≤ 1 determines a facet.

Graphs for which the nonnegativity and clique inequalities determine all facets,
are precisely the perfect graphs — see Chapter 65.

Trivially, the vertices of the stable set polytope are precisely the incidence vec-
tors of the stable sets. Chvátal [1975a] characterized adjacency:

Theorem 64.6. The incidence vectors of two different stable sets R, S are adjacent

vertices of the stable set polytope if and only if R△S induces a connected subgraph

of G.

Proof. To see necessity, if G[R△S] is not connected, then (as it is bipartite) it has
two colour classes U and W with {U, W} �= {R\S, S\R}. Let U ′ := U ∪(R∩S) and
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W ′ := W ∪(R∩S). Then U ′ and W ′ are stable sets and 1
2
(χR+χS) = 1

2
(χU′

+χW ′

),
contradicting the adjacency of χR and χS .

To see sufficiency, if χR and χS are not adjacent, then there exist stable sets U
and W , and λ, µ ∈ (0, 1) such that λχR+(1−λ)χS = µχU +(1−µ)χW and {U, W} �=
{R, S}. So U ∩ W = R ∩ S. Hence U \ W, W \ U forms a bipartition of G[R△S]
different from the bipartition R \ S, S \ R. This contradicts the connectedness of
G[R△S].

64.5. Fractional stable sets

The incidence vectors of stable sets in an undirected graph G = (V, E) are
precisely the integer vectors x ∈ R

V satisfying

(64.10) (i) 0 ≤ xv ≤ 1 for v ∈ V ,
(ii) xu + xv ≤ 1 for {u, v} ∈ E.

(The inequalities (64.10)(ii) are called the edge inequalities.) Any (not nec-
essarily integer) solution x of (64.10) is called a fractional stable set. By
definition, its size is equal to x(V ).

The maximum size of a fractional stable set is called the fractional stable
set number and is denoted by α∗(G). By linear programming duality, α∗(G)
is equal to the fractional edge cover number ρ∗(G) (assuming that G has
no isolated vertices), which is the minimum value of y(E) over all y ∈ R

E

satisfying

(64.11) (i) 0 ≤ ye ≤ 1 for e ∈ E,
(ii) y(δ(v)) ≥ 1 for v ∈ V .

Any solution y of (64.11) is called a fractional edge cover.
This was also discussed in Section 30.11, where it was shown that each

vertex of the polytope determined by (64.11) (the fractional edge cover poly-
tope) is half-integer. A similar result holds for the fractional stable set poly-
tope, which is the polytope determined by (64.10) (the result is implicit in
Balinski [1965]):

Theorem 64.7. Each vertex of the fractional stable set polytope P is half-
integer.

Proof. Let x be a vertex of P . Let U := {v ∈ V | 0 < xv < 1
2
} and let

W := {v ∈ V | 1
2

< xv < 1}. Then there is an ε > 0 such that both
x+ ε(χU −χW ) and x− ε(χU −χW ) belong to P . As x is a vertex, it follows
that χU − χW = 0. So U = W = ∅.

(This proof was provided to Nemhauser and Trotter [1974] by a referee of
their paper.)
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The theorem also follows from the observation of Balinski [1965] that each
nonsingular submatrix of the incidence matrix of a graph has a half-integer
inverse.

Theorem 64.7 implies that α∗(G) = 1
2
α2(G), where α2(G) is the maximum

size of a 2-stable set, which is an integer vector x ∈ R
V satisfying

(64.12) (i) xv ≥ 0 for v ∈ V ,
(ii) xu + xv ≤ 2 for {u, v} ∈ E

(cf. Section 30.9).
Moreover, it implies a characterization of the 2-stable set polyhedron,

which is the convex hull of the 2-stable sets:

Corollary 64.7a. The 2-stable set polyhedron is determined by (64.12).

Proof. Directly from Theorem 64.7.

With the following construction, the problem of finding a maximum-
weight fractional stable set (and similarly, a maximum-weight 2-stable set),
can be reduced to the problem of finding a maximum-weight stable set in a
bipartite graph. The latter problem is strongly polynomial-time solvable, by
Theorem 21.10.

Let G = (V, E) be a graph. Let V ′ be a copy of V . For any v ∈ V , let v′

denote the copy of V in V ′. Define Ṽ := V ∪ V ′. Let Ẽ be the set of pairs
u′v and uv′, over all edges uv of G. Then G̃ := (Ṽ , Ẽ) is a bipartite graph.

For any weight function w : V → R+, define w̃ : Ṽ → R+ by w̃(v) :=

w̃(v′) := w(v) for v ∈ V . Then any stable set S in G̃ maximizing w̃(S) gives
a 2-stable set x in G maximizing wTx, by defining xv := |S ∩{v, v′}|. Indeed,

for any 2-stable set x′ in G we can define a stable set S′ in G̃ by

(64.13) S′ := {v ∈ V | x′

v ≥ 1} ∪ {v ∈ V ′ | x′

v ≥ 2}.

Then wTx′ = w̃(S′) ≤ w̃(S) = wTx. (Here we assume without loss of gener-
ality that G has no isolated vertices.)

64.5a. Further on the fractional stable set polytope

Nemhauser and Trotter [1974] characterized the vertices of the fractional stable set
polytope:

Theorem 64.8. A vector x ∈ RV is a vertex of the fractional stable set polytope

P of G if and only if x = χU2 + 1
2
χU1 , where U2 is a stable set of G, where U1 is

disjoint from U2 ∪ N(U2), and where each component of G[U1] is nonbipartite.

Proof. Necessity. Let x be a vertex of P , and define U2 := {v ∈ V | xv = 1} and
U1 := {v ∈ V | xv = 1

2
}. Then U2 is a stable set and no vertex in U1 is adjacent to

any vertex in U2. So U1 is disjoint from U2 ∪ N(U2).



1092 Chapter 64. Cliques, stable sets, and colouring

If some component of G[U1] would be bipartite, say with colour classes S and
T , then x± ε(χS −χT ) would belong to P for some ε �= 0. This contradicts the fact
that x is a vertex of P .

Sufficiency. Suppose that x satisfies the condition, and that x is not a vertex
of P . Then there is a nonzero vector y such that both x + y and x − y belong to
P . Necessarily, yv = 0 if v �∈ U1. Moreover, for each edge uw of G[U1] one has
yu + yw = 0, since xu + xw = 1. As each component of G[U1] contains an odd
circuit, this implies yv = 0 for each v ∈ U1. So y = 0, a contradiction.

A useful condition was given by Nemhauser and Trotter [1975]:

Theorem 64.9. Let G = (V, E) be a graph, let w : V → R be a weight function,

and let S ⊆ V be a stable set. If S is a maximum-weight stable set in the subgraph

of G induced by S ∪ N(S), then S is contained in some maximum-weight stable set

of G.

Proof. Let T be a maximum-weight stable set of G. Define U := (S ∪ T ) \ N(S).
Trivially, U is stable. Also, w(N(S)∩T ) ≤ w(S\T ), since w((S∪N(S))∩T ) ≤ w(S),
as S has maximum weight in G[S ∪ N(S)]. Hence

(64.14) w(U) = w(T ) + w(S \ T ) − w(N(S) ∩ T ) ≥ w(T ),

implying that U is a maximum-weight stable set in G.

This implies (Nemhauser and Trotter [1975]):

Corollary 64.9a. Let G = (V, E) be a graph, let w : V → R be a weight function,

and let x be a maximum-weight fractional stable set. Then S := {v | xv = 1} is

contained in a maximum-weight stable set.

Proof. This follows from Theorem 64.9, since S is a maximum-weight stable set in
G[S ∪N(S)]. For if T would be a stable set in G[S ∪N(S)] with w(T ) > w(S), then
x + ε(χT − χS) would belong to the fractional stable set polytope for some ε > 0,
while it has weight larger than x, a contradiction.

Picard and Queyranne [1977] showed that, for any graph G = (V, E) and any
weight function w : V → R, there is a unique minimal subset of vertices that has
fractional values in some optimum fractional stable set (solving a problem posed
by Nemhauser and Trotter [1975]):

Theorem 64.10. Let G = (V, E) be a graph, let w : V → R be a weight function,

and let x and y be maximum-weight fractional stable sets. Then there is a maximum-

weight fractional stable set z such that, for each vertex v, zv is integer if xv or yv

integer.

Proof. We can assume that x and y are half-integer (as we can assume that x and
y are vertices of the fractional stable set polytope). For i = 0, 1, 2, let Xi := {v |
xv = i/2} and Yi := {v | yv = i/2}. Then

(64.15) w(Y0 ∩ X2) ≤ w(X0 ∩ Y2),
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since

(64.16) y + 1
2
(χY0∩X2 − χX0∩Y2)

is a fractional stable set. Otherwise, since X2 is stable, there is an edge uv with
yu + yv = 1, u ∈ Y0 ∩ X2, and v �∈ X0 ∩ Y2. So yu = 0, and hence yv = 1. Also,
xu = 1, and hence xv = 0. So v ∈ X0 ∩ Y2, a contradiction. This shows (64.15).

Moreover,

(64.17) w(X0 \ Y0) ≤ w(X2 \ Y2),

since

(64.18) x + 1
2
(χX0\Y0 − χX2\Y2)

is a fractional stable set. Otherwise there is an edge uv with xu+xv = 1, u ∈ X0\Y0,
and v �∈ X2 \ Y2. So xu = 0, and hence xv = 1. Also, yu > 0, and hence yv < 1. So
v ∈ X2 \ Y2, a contradiction. This shows (64.17).

(64.15) and (64.17) imply that

(64.19) w(Y1 ∩ X2) = w(X2 \ Y2) − w(X2 ∩ Y0) ≥ w(X0 \ Y0) − w(Y2 ∩ X0)
= w(Y1 ∩ X0).

Hence

(64.20) z := y + 1
2
(χY1∩X2 − χY1∩X0)

has weight at least that of y. Moreover, z is a fractional stable set. Otherwise, as
X2 is stable, there is an edge uv with yu + yv = 1, u ∈ Y1 ∩ X2 and v �∈ Y1 ∩ X0.
So yu = yv = 1

2
, xu = 1, hence xv = 0. So v ∈ Y1 ∩ X0, a contradiction. Hence z is

a fractional stable set as required.

Nemhauser and Trotter [1975] and Picard and Queyranne [1977] gave a poly-
nomial-time algorithms to find a half-integer maximum-weight fractional stable set
attaining the minimum number of fractional values. (This can be derived from the
uniqueness of the minimal set of fractional vertices: just try xv = 0 and xv = 1 for
each v ∈ V , and see if the fractional stable set number drops.)

Pulleyblank [1979a] and Bourjolly and Pulleyblank [1989] characterized the
minimal set of fractional values. Related results were given by Grimmett [1986].

64.6. Fractional vertex covers

Similar results hold for fractional vertex covers, which are vectors x ∈ R
V

satisfying

(64.21) (i) 0 ≤ xv ≤ 1 for v ∈ V ,
(ii) xu + xv ≥ 1 for {u, v} ∈ E.

Trivially, a vector x is a fractional vertex cover if and only if 1 − x is a
fractional stable set.

The minimum size of a fractional vertex cover is called the fractional
vertex cover number, and is denoted by τ∗(G). So
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(64.22) τ∗(G) + α∗(G) = |V |.
Again, by linear programming duality, τ∗(G) is equal to the fractional match-
ing number ν∗(G), which is the maximum value of y(E) over all y ∈ R

E

satisfying

(64.23) (i) 0 ≤ ye ≤ 1 for e ∈ E,
(ii) y(δ(v)) ≤ 1 for v ∈ V .

Any solution y of (64.23) is called a fractional matching. This was also dis-
cussed in Section 30.3, where it was shown that each vertex of the polytope
determined by (64.23) (the fractional matching polytope) is half-integer. A
similar result holds for the fractional vertex cover polytope, which is the poly-
tope determined by (64.21):

Theorem 64.11. Each vertex of the fractional vertex cover polytope P is
half-integer.

Proof. Directly from Theorem 64.7, since x belongs to the fractional vertex
cover polytope if and only if 1−x belongs to the fractional stable set polytope.

Theorem 64.11 implies that τ∗(G) = 1
2
τ2(G), where τ2(G) is the minimum

size of a 2-vertex cover, which is an integer vector x ∈ R
V satisfying

(64.24) (i) xv ≥ 0 for v ∈ V ,
(ii) xu + xv ≥ 2 for {u, v} ∈ E

(cf. Section 30.10).
It also implies a characterization of the 2-vertex cover polyhedron, which

is the convex hull of the 2-vertex covers:

Corollary 64.11a. The 2-vertex cover polyhedron is determined by (64.24).

Proof. Directly from Theorem 64.11.

By the results on fractional stable sets and 2-stable sets given in Section
64.5, and using the reductions described above, a minimum-weight fractional
vertex cover and a minimum-weight 2-vertex cover can be found in strongly
polynomial time.

Notes. Corollary 64.9a and Theorem 64.10 have direct analogues for vertex covers:
given a graph G = (V, E) and a weight function w : V → R,

(64.25) for each minimum-weight fractional vertex cover x there is a minimum-
weight vertex cover contained in {v | xv �= 0},

and
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(64.26) for any two minimum-weight fractional vertex covers x and y there is
a minimum-weight fractional vertex cover z such that for each v ∈ V :
xv ∈ Z or yv ∈ Z ⇒ zv ∈ Z.

These statements can be derived from Corollary 64.9a and Theorem 64.10 by again
observing that a vector x is a (fractional) stable set if and only if 1 − x is a
(fractional) vertex cover. Similarly, Theorem 64.8 implies a characterization of the
vertices of the fractional vertex cover polytope.

64.6a. A bound of Lorentzen

The fractional stable set and vertex cover numbers give upper and lower bounds on
the stable set and vertex cover number, respectively. These bounds are computable
in polynomial time. A better polynomial-time computable bound was given by
Lorentzen [1966]:

Theorem 64.12. For each graph G = (V, E):

(64.27) 2ν∗(G) − ν(G) ≤ τ(G).

Proof. Since ν∗(G) = 2ν2(G) (cf. Section 30.2), there is a half-integer fractional
matching x : E → R+ with x(E) = ν∗(G), such that the support of x is the disjoint
union of a matching and a number t of odd circuits. We can assume that each
edge of G belongs to the support of x (as deleting edges increases neither ν(G) nor
τ(G)). Also we can assume that G has no isolated vertices. Then ν(G) = 1

2
(|V |− t),

τ(G) = 1
2
(|V | + t), and ν∗(G) = 1

2
|V |.

Bound (64.27) is generally a better lower bound on τ(G) than τ∗(G) (for ex-
ample, for G = K3). It implies an upper bound for α(G), generally better than
α(G) ≤ ρ∗(G):

Corollary 64.12a. For each graph G = (V, E) without isolated vertices:

(64.28) α(G) ≤ 2ρ∗(G) − ρ(G).

Proof. Using Theorem 30.9, we have α(G) = |V | − τ(G) ≤ |V | − 2ν∗(G) + ν(G) =
2(|V | − ν∗(G)) − (|V | − ν(G)) = 2ρ∗(G) − ρ(G).

64.7. The clique inequalities

A set of constraints stronger than the edge inequalities (64.10)(ii) is obtained
by the ‘clique inequalities’. Let P (G) be the polytope in R

V determined by

(64.29) (i) xv ≥ 0 for each v ∈ V ,
(ii) x(C) ≤ 1 for each clique C.

The inequalities (64.29)(ii) are called the clique inequalities.
Since the integer solutions of (64.29) are exactly the incidence vectors of

stable sets, the stable set polytope of G is equal to the integer hull of P (G)
(the convex hull of the integer vectors in P (G)).
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We call any vector x satisfying (64.29) a strong fractional stable set. We
denote

(64.30) α∗∗(G) := strong fractional stable set number := the maximum
size of a strong fractional stable set.

Since each strong fractional stable set is a fractional stable set, we know

(64.31) α(G) ≤ α∗∗(G) ≤ α∗(G).

So α∗∗(G) gives a better upper bound on α(G) than α∗(G) gives — however,
α∗∗(G) is generally more difficult to compute.

Note that P (G) is the antiblocking polyhedron of the clique polytope of
G:

(64.32) P (G) = A(Pclique(G)).

(For background on antiblocking polyhedra, see Section 5.9.)

64.8. Fractional and weighted colouring numbers

For any graph G = (V, E), the fractional colouring number χ∗(G) is the
minimum value of λ1 + · · · + λk with λ1, . . . , λk ∈ R+ such that there exist
stable sets S1, . . . , Sk with

(64.33) λ1χ
S1 + · · · + λkχSk = 1.

So if the λi are required to be integer, we have the colouring number.
By linear programming duality, the fractional colouring number is equal

to the maximum of 1Tx over the polytope P (G) in R
V
+ determined by

(64.34) xv ≥ 0 for each v ∈ V ,
x(S) ≤ 1 for each stable set S.

(So P (G) = P (G) and P (G) = A(Pstable set(G)).) Hence we have:

(64.35) χ∗(G) = α∗∗(G).

We denote

(64.36) χ∗(G) := χ∗(G),

which is called the fractional clique cover number of G.
No polynomial-time algorithm is known to calculate χ∗(G). Note that the

separation problem for P (G) is NP-complete, since the optimization problem
over Pstable set(G) is NP-complete.

Given a graph G = (V, E) and a weight function w : V → Z+, the
weighted colouring number χw(G) is the minimum value of λ1 + · · ·+λk with
λ1, . . . , λk ∈ Z+ such that there exist stable sets S1, . . . , Sk with

(64.37) λ1χ
S1 + · · · + λkχSk = w.
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So if w = 1, then χw(G) is equal to the colouring number χ(G) of G. Hence
determining χw(G) is NP-complete.

For w : V → Z+, let graph Gw arise from G by replacing each vertex by a
clique Cv of size w(v), two vertices in different cliques Cu,Cv being adjacent
if and only if u and v are adjacent. Then

(64.38) χw(G) = χ(Gw).

We denote

(64.39) χw(G) := χw(G),

called the weighted clique cover number of G.
The fractional version is the fractional weighted colouring number χ∗

w(G),
defined as the minimum value of λ1 + · · · + λk with λ1, . . . , λk ∈ R+ such
that there exist stable sets S1, . . . , Sk with

(64.40) λ1χ
S1 + · · · + λkχSk = w.

This value is equal to the maximum value of wTx over the antiblocking poly-
tope A(Pstable set(G)) pf Pstable set(G). Since the optimization problem over
Pstable set(G) is NP-complete, determining χ∗

w(G) is NP-hard.
We denote

(64.41) χ∗

w(G) := χ∗

w(G),

called the fractional weighted clique cover number of G.
The complexity results above can be specialized to classes of graphs. By

the results of Grötschel, Lovász, and Schrijver [1981,1984c]:

(64.42) For any collection G of graphs: there is a polynomial-time al-
gorithm to find the fractional weighted colouring number for
any graph in G and any weight function if and only there is a
polynomial-time algorithm to find a maximum-weight stable set
in any graph in G and for any weight function.

Since the problem of determining α(G) is NP-complete even if we restrict our-
selves to planar cubic graphs, determining χ∗

w(G) for such graphs is NP-hard.
As noticed in Grötschel, Lovász, and Schrijver [1981], determining χ∗

w(G) and
χ(G) seem incomparable with respect to complexity. For cubic graphs G,
χ(G) can be easily found in polynomial time (using Brooks’ theorem (The-
orem 64.3)), while determining χ∗

w(G) is NP-hard. In contrast to this, for
the line graph G of a cubic graph H, χ(G) is NP-complete to compute by
Holyer’s theorem that 3-edge colourability is NP-complete (see Section 28.3),
whereas χ∗

w(G) can be computed in polynomial time, since the separation
problem over A(Pstable set(G)) is polynomial-time solvable, as the optimiza-
tion problem over Pstable set(G) is polynomial-time solvable (as it amounts to
finding a maximum-weight matching in H).
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64.8a. The ratio of χ(G) and χ∗(G)

For later purposes we prove the following upper bound for the colouring number
in terms of the fractional colouring number, obtained by applying a greedy-type
algorithm (Johnson [1974a], Lovász [1975c]):

Theorem 64.13. For any graph G = (V, E):

(64.43) χ(G) ≤ (1 + ln α(G))χ∗(G).

Proof. Set k := α(G). Iteratively choose a maximum-size stable set S in G and
reset G to G − S. We stop if V G is empty.

The stable sets found form a colouring C of the (original) vertex set V . So
χ(G) ≤ |C|.

For each v ∈ V , define

(64.44) xv :=
1

|S| ,

where S is the set in C containing v. Then x(V ) = |C|, and hence

(64.45) χ(G) ≤ x(V ).

Consider any stable set S′ of G. Let S′ consist of vertices v1, . . . , vk, in the
order by which they are covered by stable sets S in the algorithm. Then for each
i = 1, . . . , k, we have

(64.46) xvi ≤ 1

k − i + 1
.

Indeed, let vi be covered by S ∈ C. When we selected S, the vertices vi, vi+1, . . . , vk

were uncovered yet. As we chose S, we know |S| ≥ |{vi, vi+1, . . . , vk}| = k − i + 1,
implying (64.46).

(64.46) implies

(64.47) x(S′) ≤
k∑

i=1

1

k − i + 1
=

k∑

i=1

1

i
≤ 1 + ln k ≤ 1 + ln α(G).

So (1 + ln α(G))−1 · x satisfies (64.34), and hence

(64.48) (1 + ln α(G))−1 · x(V ) ≤ χ∗(G).

Together with (64.45), this implies (64.43).

This theorem will be used in proving Theorem 67.17.

64.8b. The Chvátal rank

In Section 36.7a we defined the polyhedron P ′ for any rational polyhedron P and
the notion of the Chvátal rank of a polyhedron P .

Let P (G) denote the polytope of strong fractional stable sets, that is, the poly-
tope determined by (64.29) (the nonnegativity and clique constraints). For any
polyhedron P , let PI denote the integer hull of P , that is, the convex hull of the
integer vectors in P .
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Chvátal [1973a] showed that there is no fixed t such that P (G)(t) = P (G)I for
each graph G, even if we restrict G to graphs with α(G) = 2. Chvátal, Cook, and
Hartmann [1989] showed that t can be at least 1

3
log n for such graphs (where n is

the number of vertices).
We will see in Corollary 65.2e that the class of graphs G with P (G)I = P (G)

is exactly the class of perfect graphs. By Edmonds’ matching polytope theorem
(Corollary 25.1a) if G is the line graph of some graph H, then P (G)′ = P (G)I,
which is the matching polytope of H.

The smallest t for which P (G)(t) = P (G)I might be an indication of the compu-
tational complexity of the stable set number α(G). For each fixed t, the stable set
problem for graphs with P (G)(t) = P (G)I belongs to NP∩co-NP. Chvátal [1973a]
raised the question whether it belongs to P. (A negative indication is the result
of Eisenbrand [1999] that given a polytope P by linear inequalities and given x,
deciding if x belongs to P ′ is co-NP-complete.)

Another (weaker, but easier to compute) relaxation is: Q(G) is the polytope of
fractional stable sets; that is, the polytope in RV determined by

(64.49) (i) xv ≥ 0 for each v ∈ V ,
(ii) xv + xw ≤ 1 for each vw ∈ E.

Again Q(G)I = Pstable set(G). Since Q(G) ⊇ P (G), there is no fixed t with
Q(G)(t) = Q(G)I for each graph G. Chvátal [1973a] noticed that for G = Kn

the smallest t with Q(G)(t) = Pstable set(G) is about log n.
It is not difficult to see that Q(G)′ is the polytope determined by (64.49) to-

gether with

(64.50) (iii) x(V C) ≤ ⌊ 1
2
|V C|⌋ for each odd circuit C.

Graphs G with Q(G)′ = Pstable set(G) are called t-perfect. More on t-perfect graphs
can be found in Chapter 68.

Chvátal [1975b] conjectures that there is no polynomial p(n) such that for
each graph G with n vertices we can obtain the inequality x(V ) ≤ α(G) from
system (64.49) by adding at most p(n) cutting planes. (That is, a list of at most
p(n) inequalities aT

i x ≤ ⌊βi⌋ such that, for each i, ai is an integer vector and the
inequality aT

i x ≤ βi is a nonnegative combination of inequalities from (64.49) and
inequalities occurring earlier in the list.)

Chvátal, Cook, and Hartmann [1989] showed that the Chvátal rank of the
following relaxation of the stable set polytope:

(64.51) xv ≥ 0 for v ∈ V ,
x(U) ≤ α(G[U ]) for U ⊆ V ,

is Ω((n/ log n)
1
2 ), where G is a graph with n vertices. This relaxation is stronger

than the polytope determined by just the nonnegativity and clique constraints.

64.9. Further results and notes

64.9a. Graphs with polynomial-time stable set algorithm

In the remaining chapters of this part we will see that a maximum-weight stable set
can be found in strongly polynomial time in perfect graphs and their complements,
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in t-perfect graphs, and in claw-free graphs. In perfect graphs and their comple-
ments, also a minimum vertex-colouring can be found in polynomial time. In this
section we list some other classes of graphs where a maximum-size stable set or a
minimum vertex-colouring can be found in polynomial time.

A graph is a circular-arc graph if it is the intersection graph of a set of intervals
on a circle. Gavril [1974a] gave polynomial-time algorithms for finding a maximum-
size clique, a maximum-size stable set, and a minimum clique cover in these graphs.
Karapetyan [1980] showed that χ(G) ≤ 3

2
ω(G) for any circular-arc graph G (prov-

ing a conjecture of Tucker [1975]). More on circular-arc graphs can be found in
Klee [1969], Tucker [1971,1974,1975,1978,1980], Trotter and Moore [1976], Garey,
Johnson, Miller, and Papadimitriou [1980], Golumbic [1980], Orlin, Bonuccelli, and
Bovet [1981], Gupta, Lee, and Leung [1982], Skrien [1982], Leung [1984], Hsu [1985,
1995], Teng and Tucker [1985], Apostolico and Hambrusch [1987], Golumbic and
Hammer [1988], Masuda and Nakajima [1988], Spinrad [1988], Shih and Hsu [1989a,
1989b], Bertossi and Moretti [1990], Hell, Bang-Jensen, and Huang [1990], Hsu and
Tsai [1991], Deng, Hell, and Huang [1992,1996], Eschen and Spinrad [1993], Hsu
and Spinrad [1995], Bhattacharya, Hell, and Huang [1996], Bhattacharya and Kaller
[1997], Hell and Huang [1997], Feder, Hell, and Huang [1999], and McConnell [2001].
See also Section 65.6d.

A graph is a circle graph if its vertex set is a set of chords of the circle, two
chords being adjacent if they intersect or cross. For these graphs, Gavril [1973] gave
polynomial-time algorithms for finding a maximum-size clique and a maximum-size
stable set. Bouchet [1985,1987b,1994], Naji [1985], and Gabor, Supowit, and Hsu
[1989] showed that circle graphs can be recognized in polynomial time; this was
improved to quadratic time by Spinrad [1994]. (Related results can be found in
Fournier [1978], Garey, Johnson, Miller, and Papadimitriou [1980], Golumbic [1980],
Rotem and Urrutia [1981], de Fraysseix [1984], Hsu [1985], Naji [1985], Dagan,
Golumbic, and Pinter [1988], Gabor, Supowit, and Hsu [1989], Masuda, Nakajima,
Kashiwabara, and Fujisawa [1990], Felsner, Müller, and Wernisch [1994], Ma and
Spinrad [1994], Spinrad [1994], and Elmallah and Stewart [1998]. See also Section
65.6d.)

The weighted stable set problem was shown to be polynomial-time solvable
for graphs without K5 − e minor by Barahona and Mahjoub [1994b]. (The graph
K5−e is obtained from K5 by deleting one edge.) Descriptions of the corresponding
polytopes are given by Barahona and Mahjoub [1994b,1994c].

Hsu, Ikura, and Nemhauser [1981] gave, for each fixed k, a polynomial-time
algorithm for the weighted stable set problem for graphs without odd circuits of
length larger than 2k + 1. A ‘nice class for the vertex packing problem’ (obtained
from bipartite graphs and claw-free graphs by repeated substitution) was given by
Bertolazzi, De Simone, and Galluccio [1997]. Another nice class was given by De
Simone [1993].

In Section 60.3d (Corollary 60.5b) we gave a proof of Győri’s theorem (Győri
[1984]), stating that the following class of graphs G satisfies α(G) = χ(G). Let A
be a {0, 1} matrix such that the 1’s in each row form a contiguous interval. Then
G has vertex set {(i, j) | ai,j = 1}, where two pairs (i, j) and (i′, j′) are adjacent if
and only if ai,j′ = ai′,j = 1. The method of Frank and Jordán [1995b] also yields a
polynomial-time algorithm to find a maximum-size stable set and a minimum clique
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cover. Frank [1999a] gave an alternative algorithmic proof. This class of graphs is
not closed under taking induced subgraphs, and they need not be perfect.

Hammer, Mahadev, and de Werra [1985], Balas, Chvátal, and Nešetřil [1987],
Balas and Yu [1989], De Simone and Sassano [1993], Hertz and de Werra [1993],
Hertz [1995,1997], Brandstädt and Hammer [1999], Mosca [1999], and Lozin [2000]
gave further classes of graphs for which the maximum-size or maximum-weight
clique problem is polynomial-time solvable.

64.9b. Colourings and orientations

Let D = (V, A) be an orientation of an undirected graph G = (V, E). The following
was shown by Gallai [1968a] and Roy [1967] (referring to conjectures by P. Erdős
and C. Berge, respectively):

(64.52) χ(G) ≤ λ(D),

where

(64.53) λ(D) := the maximum number of vertices on a directed path in D.

To see this, consider an inclusionwise maximal subset A′ of A with the property
that D′ = (V, A′) is acyclic. For any v ∈ V , let h(v) be the number of vertices in a
longest directed path in D′ ending at v. If h(u) = h(v) for distinct vertices u and
v, then u and v are nonadjacent, since otherwise we can add the arc joining u and
v to A′. So h defines a colouring of V , with no more colours than the number of
vertices in a longest directed path in D′.

This proves (64.52). Note that (64.52) implies that each tournament (≡ ori-
entation of a complete graph) has a Hamiltonian path (a theorem of Rédei [1934]
(Corollary 14.14a)).

Roy [1967] also observed that each undirected graph G = (V, E) has an acyclic
orientation in which the number of vertices in a longest directed path is equal to
the colouring number of G. (This follows by colouring the vertices with colours
1, . . . , χ(G), and orienting any edge from u to v if the colour of u is smaller than
that of v, which gives a digraph D with λ(D) ≤ χ(G).)

This result is equivalent to the fact that for any undirected graph G = (V, E):

(64.54) χ(G) = min
D

λ(D),

where D ranges over all acyclic orientations of G.
These results are essentially based on the (easy) fact that the minimum num-

ber of antichains needed to cover a partially ordered set is equal to the size of a
maximum chain (Theorem 14.1).

Minty [1967] showed that for each graph G = (V, E):

(64.55) χ(G) ≤ k ⇐⇒ G has an orientation such that each undirected circuit
has at least 1

k
|V C| forward arcs.

Necessity follows by colouring the vertices with colours 1, . . . , k, and orienting any
edge from u to v if colour(u) < colour(v). To see sufficiency, let D be an orientation
as described. Give each arc a length k − 1, and add an arc in the reverse direction
of length −1. Then each directed circuit in the extended digraph has nonnegative
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length. Hence there is a ‘potential’ p : V → Z with 1 ≤ p(v)− p(u) ≤ k − 1 for each
arc (u, v) of D. Reducing p mod k gives a k-colouring as required.

Note that each orientation as in (64.55) is acyclic, and that any orientation
D with λ(D) ≤ k is as in (64.55). The equivalence (64.55) gives a vertex-free
description of the colouring number, and implies that χ(G) only depends on the
cycle matroid of G.

Deming [1979a] showed that dual statements can be derived from Dilworth’s
decomposition theorem (Theorem 14.2), where ‘chain’ and ‘antichain’ are inter-
changed.

First one has, as a dual to (64.52), that for any orientation D = (V, A) of an
undirected graph G = (V, E):

(64.56) α(G) ≥ ξ(D),

where

(64.57) ξ(D) := the minimum number of directed paths in D needed to cover
V .

To see (64.56), again consider an inclusionwise maximal subset A′ of A with
D′ = (V, A′) acyclic. By Dilworth’s decomposition theorem, V has a subset U of
size ξ(D) such that no two vertices in U are connected by a directed path in D.
Then U is a stable set in G, since if two distinct u, v ∈ U are adjacent in G, say
(u, v) ∈ A, then (u, v) �∈ A′, and hence A′ ∪ {(u, v)} is not acyclic. But then A′

contains a directed path from v to u, a contradiction.
This shows (64.56). Deming [1979a] showed also a dual form of (64.54):

(64.58) α(G) = max
D

ξ(D),

where D ranges over all acyclic orientations of G. Indeed, ≥ in (64.58) follows from
(64.56). To see ≤, let U be a maximum-size stable set in G. Let D be any acyclic
orientation of G in which each vertex in U is a source. Then ξ(D) ≥ |U | = α(G).

64.9c. Algebraic methods

Lovász [1994] gave the following relations between stable sets, cliques, and colour-
ings, using Hilbert’s Nullstellensatz (extending Li and Li [1981] and unpublished
work of D.J. Kleitman and L. Lovász). For any graph G = (V, E), define the poly-
nomial pG in the variables xv (v ∈ V ) by:

(64.59) pG :=
∏

uv∈E

(xu − xv)

(fixing some orientation of the edges). Then α(G) ≤ k if and only if there are graphs
H1, . . . , Ht on V satisfying

(64.60) pG = pH1 + · · · + pHt ,

with χ(Hi) ≤ k for i = 1, . . . , t. The number t can be exponentially large — hence
(64.60) gives no good characterization for the stable set number. Similarly, χ(G) ≥ k
if and only if there are graphs satisfying (64.60) with ω(Hi) ≥ k for i = 1, . . . , t.

Let G = (V, E) be a (simple) graph, with adjacency matrix AG. Motzkin and
Straus [1965] showed that the maximum value of xTAGx over x : V → R+ satisfying
x(V ) = 1, is equal to 1 − ω(G)−1.
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The proof of this is easy: for any two nonadjacent vertices u, v with xu > 0 and
xv > 0, we can reset xu := xu + ε, xv := xv − ε for some ε �= 0 without decreasing
xTAGx. Hence the maximum value is attained by a vector x whose support is a
clique C. As x takes the maximum value, we should have xv = 1/|C| for each v ∈ C.
Then xTAGx is maximized if C is a maximum-size clique.

Motzkin and Straus’ theorem implies the result of Korn [1968] that the minimum
value of xT(I + AG)x over x : V → R+ with x(V ) = 1, is equal to α(G)−1. Indeed,

(64.61) min
x

xT(I + AG)x = min
x

xT(J − AG)x = 1 − max
x

xTAGx = ω(G)−1

= α(G)−1.

More on this can be found in Gibbons, Hearn, Pardalos, and Ramana [1997].
Lovász [1982,1994] gave surveys of algebraic, topological, and other methods

for the stable set and the vertex colouring problem.

64.9d. Approximation algorithms

Lund and Yannakakis [1993,1994] showed that unless NP=P, there do not exist a
constant c and a polynomial-time algorithm that finds a vertex-colouring of any
graph G using at most cχ(G) colours. (This was proved for c < 2 by Garey and
Johnson [1976].)

More generally, Lund and Yannakakis [1993,1994] showed that there exists an
ε > 0 such that, unless NP=P, there is no polynomial-time algorithm to find the
colouring number of a graph up to a factor of nε (where n is the number of vertices).

A similar result for maximum-size stable sets was proved by Arora, Lund, Mot-
wani, Sudan, and Szegedy [1992,1998]. H̊astad [1996,1999] showed that, if NP �=P,
then there is no ε > 0 and a polynomial-time algorithm that finds a clique that is
maximum-size up to a factor n1/2−ε. Under a slightly stronger complexity assump-
tion (NP�=ZPP), H̊astad proved a factor of n1−ε.

For background, see Johnson [1992] and Papadimitriou [1994]. Related results
can be found in Hochbaum [1983a], Wigderson [1983], Berger and Rompel [1990],
Feige, Goldwasser, Lovász, Safra, and Szegedy [1991,1996], Berman and Schnitger
[1992], Boppana and Halldórsson [1992], Bellare, Goldwasser, Lund, and Russell
[1993], Khanna, Linial, and Safra [1993,2000], Bellare and Sudan [1994], Feige and
Kilian [1994,1996,1998a,1998b,2000], Karger, Motwani, and Sudan [1994,1998], Bel-
lare, Goldreich, and Sudan [1995,1998], Feige [1995,1997], Fürer [1995], H̊astad
[1996,1999], Alon and Kahale [1998], Arora and Safra [1998], Engebretsen and
Holmerin [2000], Srinivasan [2000], and Khot [2001].

In contrast, there is an easy algorithm to obtain a vertex cover in a graph
G = (V, E) of size at most 2τ(G) (F. Gavril 1974 (cf. Garey and Johnson [1979])):
choose any inclusionwise maximal matching M (greedily); then the set of vertices
covered by M is a vertex cover of size 2|M |. Since τ(G) ≥ |M |, this is a vertex
cover as described.

No polynomial-time algorithm yielding a factor better than 2 is known. H̊astad
[1997,2001] showed that, if NP �=P, no factor better than 7

6
is achievable in polyno-

mial time.
See also Section 67.4f below.
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64.9e. Further notes

Yannakakis [1988,1991] showed that the stable set polytope of the line graph L(Kn)
of a complete graph Kn cannot be represented as the projection of a polytope in
higher dimensions that is symmetric under the automorphism group of L(Kn). Cao
and Nemhauser [1998] characterized line graphs as those graphs whose stable set
polytope is determined by the inequalities corresponding to the matching polytope
constraints.

Euler, Jünger, and Reinelt [1987] extended results of Padberg [1973] on facets
of the stable set polytope, to more general ‘independence’ polytopes.

More on the stable set polytope can be found in Fulkerson [1971a], Chvátal
[1973a,1975a,1985a], Padberg [1973,1974b,1977,1979,1980,1984], Nemhauser and
Trotter [1974], Trotter [1975], Wolsey [1976], Balas and Zemel [1977], Naddef
and Pulleyblank [1981a], Sekiguchi [1983], Ikura and Nemhauser [1985], Grötschel,
Lovász, and Schrijver [1986], Lovász and Schrijver [1989,1991], Cheng and Cunning-
ham [1995,1997], Cánovas, Landete, and Maŕın [2000], Lipták and Lovász [2000,
2001], and Cheng and de Vries [2002a,2002b].

The convex hull of the incidence vectors of the stable sets of size at most a
given k is studied by Janssen and Kilakos [1999]. Generalizations of the stable
set polytope to more general 0, ±1 programming and satisfiability problems were
studied by Johnson and Padberg [1982], Hooker [1996], and Sewell [1996].

Methods for and computational results on the stable set problem (or the equiva-
lent clique, vertex cover, and set packing problems) are given by Balas and Samuels-
son [1977], Chvátal [1977], Houck and Vemuganti [1977], Tarjan and Trojanowski
[1977], Geoffroy and Sumner [1978], Gerhards and Lindenberg [1979], Hansen
[1980b], Bar-Yehuda and Even [1981,1982,1985], Billionnet [1981], Chiba, Nishizeki,
and Saito [1982] (planar graphs), Hochbaum [1982,1983a], Loukakis and Tsouros
[1982], Baker [1983,1994], Clarkson [1983], Monien and Speckenmeyer [1983,1985],
Balas and Yu [1986], Jian [1986], Robson [1986], Shindo and Tomita [1988], Hurkens
and Schrijver [1989], Carraghan and Pardalos [1990], Nemhauser and Sigismondi
[1992], Balas and Xue [1991,1996], Boppana and Halldórsson [1992], Pardalos and
Rodgers [1992], Paschos [1992], Khuller, Vishkin, and Young [1993,1994], Berman
and Fürer [1994], Mannino and Sassano [1994], Halldórsson [1995], Balas, Ceria,
Cornuéjols, and Pataki [1996], Bourjolly, Laporte, and Mercure [1997], Halldórsson
and Radhakrishnan [1997], Alon and Kahale [1998], Arkin and Hassin [1998], Feige
and Kilian [1998a], Kleinberg and Goemans [1998], Chandra and Halldórsson [1999,
2001], Nagamochi and Ibaraki [1999b], Bar-Yehuda [2000], Halperin [2000,2002],
Krivelevich and Vu [2000], Chen, Kanj, and Jia [2001], Krivelevich, Nathaniel, and
Sudakov [2001a,2001b], and Guha, Hassin, Khuller, and Or [2002].

Methods for graph colouring are proposed and investigated by Christofides
[1971], Brown [1972], Matula, Marble, and Isaacson [1972], Corneil and Graham
[1973], Johnson [1974b], Wang [1974], Lawler [1976a], McDiarmid [1979], Matula
and Beck [1983], Sys�lo, Deo, and Kowalik [1983], Wigderson [1983], Edwards [1986],
Berger and Rompel [1990], Hertz [1991], Halldórsson [1993], Blum [1994], Demange,
Grisoni, and Paschos [1994], Karger, Motwani, and Sudan [1994,1998], Schiermeyer
[1994], Beigel and Eppstein [1995], Blum and Karger [1997], Krivelevich and Vu
[2000], Eppstein [2001], Halperin, Nathaniel, and Zwick [2001], Molloy and Reed
[2001], Stacho [2001], Alon and Krivelevich [2002], and Charikar [2002].
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For computational results on clique, stable set, and colouring problems, consult
also Johnson and Trick [1996].

A survey of graph colouring algorithms was given by Matula, Marble, and Isaac-
son [1972]. Chiba, Nishizeki, and Saito [1981], Thomassen [1994], and Robertson,
Sanders, Seymour, and Thomas [1996] gave linear-time 5-colouring algorithms for
planar graphs. The worst-case behaviour of graph colouring algorithms was inves-
tigated by Johnson [1974b].

Mycielski [1955] showed that triangle-free graphs can have arbitrarily large
colouring number. King and Nemhauser [1974] and Gyárfás [1987] and Fouquet,
Giakoumakis, Maire, and Thuillier [1995] studied classes of graphs for which the
colouring number can be bounded by a function of the clique number.

Gyárfás [1987] conjectures that there exists a function g : Z+ → Z+ such that
χ(G) ≤ g(ω(G)) for each graph G without odd holes. Equivalently, for ω ∈ Z+, let
g(ω) be the maximum colouring number of a graph without odd holes and cliques of
size > ω. Then Gyárfás’ conjectures that g is finite. It is easy to see that g(2) = 2.
N. Robertson, P.D. Seymour, and R. Thomas announced that they proved g(3) = 4
(this was conjectured by G. Ding).

Upper bounds for the stable set number of a graph in terms of the degrees were
presented by Hansen [1979,1980b]. Relations between the colouring number and the
fractional colouring number are investigated by Kilakos and Marcotte [1997]. Reed
[1998] discussed bounding the chromatic number of a graph by a convex combina-
tion of its clique number and its maximum degree plus 1. Gerke and McDiarmid
[2001a,2001b] investigated the ratio of the weighted colouring and the weighted
clique number.

A theorem of Turán [1941] implies that any simple graph G with n vertices and
m edges satisfies:

(64.62) α(G) ≥ n2

n + 2m
.

Bondy [1978] showed that m ≥ 2τ(G)−1 if G is connected. A study of the relations
between several parameters derived from stability and colouring was given by Hell
and Roberts [1982].

A survey on the stable set problem is given by Padberg [1979], on approximation
methods for the stable set problem by Halldórsson [1998], and on colourings by
Jensen and Toft [1995] and Toft [1995]. Colouring is also discussed in most graph
theory books mentioned in Chapter 1.



Chapter 65

Perfect graphs: general theory

In this and the next two chapters, we consider the ‘perfect’ graphs, intro-
duced by C. Berge in the 1960s. They turn out to unify several results in
combinatorial optimization, in particular, min-max relations and polyhe-
dral characterizations.
Berge proposed two conjectures, the weak and the strong perfect graph
conjecture. The second implies the first.
The weak perfect graph conjecture says that perfection is maintained under
taking the complementary graph. This was proved by Lovász [1972c]: the
perfect graph theorem.
The strong perfect graph conjecture characterizes perfect graphs by exclud-
ing odd holes and odd antiholes. A proof of this was announced in May
2002 by Chudnovsky, Robertson, Seymour, and Thomas, resulting in the
strong perfect graph theorem. The announced proof is highly complicated,
and we cannot give it here.
Many of the results described in this and the next chapter follow directly as
a consequence of the strong perfect graph theorem (while some of them are
used in the proof). Where possible and appropriate, we give direct proofs
of these consequences.
In this chapter, we give general theory, in Chapter 66 we discuss classes of
perfect graphs, and in Chapter 67 we show the polynomial-time solvability
of the maximum-weight clique and minimum colouring problems for perfect
graphs.

65.1. Introduction to perfect graphs

As we saw before, the clique number ω(G) and the colouring number χ(G)
of a graph G = (V, E) are related by the inequality

(65.1) ω(G) ≤ χ(G).

Strict inequality can occur, for instance, for any odd circuit of length at least
five, and its complement.

Having equality in (65.1) does not say that much about the internal
structure of a graph: any graph G = (V, E) can be extended to a graph
G′ = (V ′, E′) satisfying ω(G′) = χ(G′), simply by adding to G a clique of
size χ(G), disjoint from V .
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However, the condition becomes much more powerful if we require that
equality in (65.1) holds for each induced subgraph of G. The idea for this was
formulated by Berge [1963a]. He defined a graph G = (V, E) te be perfect if
ω(G′) = χ(G′) holds for each induced subgraph G′ of G.

Various classes of graphs could be shown to be perfect, like the bipartite
graphs (trivially) and the line graphs of bipartite graphs (by Kőnig’s edge-
colouring theorem).

Berge [1960a,1963a] observed the important phenomenon that for several
of these classes, also the complementary graphs are perfect. Berge therefore
conjectured that the complement of any perfect graph is perfect again — the
weak perfect graph conjecture. This conjecture was proved by Lovász [1972c],
by proving an equivalent form of the conjecture given by Fulkerson [1972a]
(the replication lemma — see Corollary 65.2c below).

As mentioned, obvious examples of imperfect graphs are the odd circuits
of length at least five, and their complements. Berge [1963a] and P.C. Gilmore
(cf. Berge [1966]) made the conjecture that this characterizes perfect graphs,
which is the strong perfect graph conjecture. A proof was announced in May
2002 by Chudnovsky, Robertson, Seymour, and Thomas.

To simplify formulation, it is convenient to introduce the notions of ‘hole’
and ‘antihole’. A hole in a graph G is an induced subgraph of G isomorphic to
a circuit with at least four vertices. An antihole in G is an induced subgraph
of G isomorphic to the complement of a circuit with at least four vertices. A
hole or antihole is odd if it has an odd number of vertices.

Theorem 65.1 (Strong perfect graph theorem). A graph G is perfect if and
only if G contains no odd hole and no odd antihole.

A graph containing no odd hole or odd antihole is called a Berge graph2.
So the strong perfect graph theorem says that Berge graphs are precisely the
perfect graphs.

An alternative formulation is in terms of minimally imperfect graphs. A
minimally imperfect (or critically imperfect) graph is an imperfect graph such
that each proper induced subgraph is perfect. Then the strong perfect graph
theorem says that the only minimally imperfect graphs are the odd circuits
of length at least five, and their complements.

It is (as yet) unknown if perfection of a graph can be tested in polynomial
time. (Lovász [1986] ‘would guess’ that such an algorithm exists.) The clique
number of a perfect graph can be determined in polynomial time, with the
help of the ellipsoid method — see Chapter 67. However, no combinatorial
polynomial-time algorithm is known.

We will next discuss perfect graph theory in greater detail (although we
cannot give a proof of the strong perfect graph theorem). Let us make a useful
observation:

2 This term was introduced by Chvátal and Sbihi [1987].
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(65.2) any minimally imperfect graph G = (V, E) has no stable set S
with ω(G − S) < ω(G).

Otherwise, ω(G) ≥ ω(G − S) + 1 = χ(G − S) + 1 ≥ χ(G), since we can use
S as colour.

Similarly, for any class G of graphs closed under taking induced subgraphs:

(65.3) each graph G ∈ G is perfect ⇐⇒ each graph G ∈ G with V G �= ∅
has a stable set S with ω(G − S) < ω(G).

Here necessity follows from the fact that we can take for S any of the colours in
a minimum colouring of G. Sufficiency follows by induction on |V G|: χ(G) ≤
χ(G − S) + 1 = ω(G − S) + 1 ≤ ω(G).

65.2. The perfect graph theorem

Lovász [1972a] proved the weak perfect graph conjecture in the following
stronger form (suggested by A. Hajnal), which we show with the elegant
linear-algebraic proof found by Gasparian [1996].

Theorem 65.2. A graph G is perfect if and only if ω(G′)α(G′) ≥ |V G′| for
each induced subgraph G′ of G.

Proof. Necessity is easy, since if G is perfect, then ω(G′) = χ(G′) for each
induced subgraph G′ of G, and since χ(G′)α(G′) ≥ |V G′| for any graph G′.

To see sufficiency, it suffices to show that each minimally imperfect graph
G satisfies |V G| ≥ α(G)ω(G) + 1. We can assume that V G = {1, . . . , n}.
Define ω := ω(G) and α := α(G).

We first construct

(65.4) stable sets S0, . . . , Sαω such that each vertex is covered by exactly
α of the Si.

Let S0 be a stable set in G of size α. By the minimality of G, we know that
for each v ∈ S0, the graph G − v is perfect, and that hence χ(G − v) =
ω(G−v) ≤ ω. Therefore, V \{v} can be partitioned into ω stable sets. Doing
this for each v ∈ S0, we obtain stable sets as in (65.4).

Now for each i = 0, . . . , αω, there exists a clique Ci of size ω with Ci∩Si =
∅ (by (65.2)). Then, for distinct i, j with 0 ≤ i, j ≤ αω, we have |Ci ∩Sj | = 1.
This follows from the fact that Ci has size ω and intersects each Sj in at most
one vertex, and hence, by (65.4), it intersects αω of the Sj . As Ci ∩ Si = ∅,
we have that |Ci ∩ Sj | = 1 if i �= j.

Now consider the (αω+1)×n incidence matrices M and N of S0, . . . , Sαω

and C0, . . . , Cαω respectively. So M and N are {0, 1} matrices, with Mi,j =
1 ⇐⇒ j ∈ Si, and Ni,j = 1 ⇐⇒ j ∈ Ci, for i = 0, . . . , αω and j = 1, . . . , n.
By the above, MNT = J −I, where J is the (αω +1)× (αω +1) all-1 matrix,
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and I the (αω + 1) × (αω + 1) identity matrix. As J − I has rank αω + 1, we
have n ≥ αω + 1.

Theorem 65.2 implies (Lovász [1972c]):

Corollary 65.2a (perfect graph theorem). The complement of a perfect
graph is perfect again.

Proof. Directly from Theorem 65.2, as the condition given in it is invariant
under taking the complementary graph.

As was observed by Cameron [1982], Theorem 65.2 implies that the ques-
tion ‘Given a graph, is it perfect?’ belongs to co-NP. Indeed, to certify im-
perfection of a graph, it is sufficient, and possible, to specify:

(65.5) (i) an induced subgraph G = (V, E),
(ii) integers α, ω ≥ 2 with |V | = αω + 1, and
(iii) for each v ∈ V , an ω-colouring of G − v and an α-colouring of

G − v.

This is possible, since, by Theorem 65.2, a minimally imperfect subgraph G
has these properties for ω := ω(G) and α := α(G). It is also sufficient to
certify imperfection, since (65.5)(iii) implies that ω(G) ≤ ω and α(G) ≤ α,
and hence by (65.5)(ii), that G is not perfect.

Theorem 65.2 implies:

Corollary 65.2b. Each minimally imperfect graph G satisfies

(65.6) |V G| = α(G)ω(G) + 1.

Proof. We have |V G| ≤ α(G)ω(G)+1, since for any vertex v of G, the graph
G − v is perfect, and hence

(65.7) |V G| − 1 = |V (G − v)| ≤ α(G − v)ω(G − v) ≤ α(G)ω(G).

Conversely, |V G| ≥ α(G)ω(G) + 1, since if |V G| ≤ α(G)ω(G), then
|V G′| ≤ α(G′)ω(G′) for each induced subgraph G′ of G (by the minimal
imperfection of G). This implies with Theorem 65.2 that G is perfect, a con-
tradiction.

65.3. Replication

Let G = (V, E) be a graph and let v ∈ V . Extend G with some new vertex, v′

say, which is adjacent to v and to all vertices adjacent to v in G. In this way
we obtain a new graph H, which we say is obtained from G by duplicating v.
Repeated duplicating a vertex is called replicating. Replicating a vertex v by
a factor k means duplicating v k − 1 times if k ≥ 1, and deleting v if k = 0.
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Corollary 65.2c (replication lemma). Let H arise from G by duplicating
vertex v. Then if G is perfect, also H is perfect.

Proof. By the perfect graph theorem, it suffices to show that H is perfect,
and hence (as we can apply induction) that ω(H) = χ(H).

By the perfect graph theorem, if G is perfect, then G is perfect. Hence
ω(H) = ω(G) = χ(G) = χ(H).

Repeated application of Corollary 65.2c implies the following (the weight-
ed colouring number is defined in Section 64.8):

Corollary 65.2d. Let G be a perfect graph and let w : V → Z+ be a ‘weight’
function. Then the maximum weight of a clique is equal to the weighted colour-
ing number χw(G) of G.

Proof. Let Gw be the graph arising from G by replicating any vertex v by
a factor w(v). By Corollary 65.2c, Gw is perfect, and so ω(Gw) = χ(Gw).
Since ω(Gw) is equal to the maximum weight of a clique in G and since
χ(Gw) = χw(G), the corollary follows.

65.4. Perfect graphs and polyhedra

The clique polytope of a graph G = (V, E) is the convex hull of the incidence
vectors of the cliques. Clearly, any vector x in the clique polytope satisfies:

(65.8) (i) xv ≥ 0 for each v ∈ V ,
(ii) x(S) ≤ 1 for each stable set S.

Fulkerson [1972a] and Chvátal [1975a] showed that Corollary 65.2d implies a
polyhedral characterization of perfect graphs:

Corollary 65.2e. A graph G is perfect if and only if its clique polytope is
determined by (65.8).

Proof. Necessity. Let G be perfect. To prove that the clique polytope is
determined by (65.8), it suffices to show that for each weight function w :
V → Z+, the maximum weight t of a clique in G is not less than the maximum
of wTx over (65.8). By Corollary 65.2d, there exist stable sets S1, . . . , St with

(65.9) w = χS1 + · · · + χSt .

Hence for each x satisfying (65.8) we have

(65.10) wTx = x(S1) + · · · + x(St) ≤ t.

Sufficiency. Let the clique polytope of G be determined by (65.8). Suppose
that G is not perfect. Choose a minimal set U with ω(G[U ]) < χ(G[U ]). Let
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w := χU . The function wTx is maximized over Pclique(G) by the incidence
vector of each maximum-size clique of G[U ]. Moreover, by linear programming
duality, there exists a stable set S with x(S) = 1 for each optimum solution
x. So S intersects each maximum-size clique of G[U ], and hence

(65.11) ω(G[U \ S]) ≤ ω(G[U ]) − 1 < χ(G[U ]) − 1 ≤ χ(G[U \ S]),

contradicting the minimality of U .

Corollary 65.2e is equivalent to: G is perfect if and only if Pclique(G) =
A(Pstable set(G)). (Here A(P ) is the antiblocking polyhedron of P .) Hence it
implies the perfect graph theorem (using the theory of antiblocking polyhedra
(cf. Section 5.9)):

(65.12) G is perfect ⇐⇒ Pclique(G) = A(Pstable set(G))
⇐⇒ Pstable set(G) = A(Pclique(G))
⇐⇒ Pclique(G) = A(Pstable set(G)) ⇐⇒ G is perfect.

Corollary 65.2d also implies that perfect graphs can be characterized by total
dual integrality:

Corollary 65.2f. A graph G is perfect if and only if system (65.8) is totally
dual integral.

Proof. Directly from Corollaries 65.2d and 65.2e.

So for any graph G we have that (65.8) determines an integer polytope if
and only if it is totally dual integral.

65.4a. Lovász’s proof of the replication lemma

The proof of Lovász [1972c] of the weak perfect graph theorem is based on proving
the ‘replication lemma’ (Corollary 65.2c above), as follows.

By (65.2), it suffices to find a stable set S in H intersecting all maximum-size
cliques of H, since any induced subgraph of H is an induced subgraph of G or arises
from it by replication.

Consider an ω(G)-colouring of G, and let S be the colour containing v. Then
S intersects each maximum-size clique C of H. Indeed, if v′ �∈ C, then C is a
maximum-size clique of G, and so it intersects S. If v′ ∈ C, then also v ∈ C (as
C ∪ {v} is a clique), and so C intersects S.

This proves the replication lemma, which by repeated application gives Corol-
lary 65.2d. Since the proof of Corollary 65.2e given above only uses Corollary 65.2d,
this shows (with (65.12)) that the replication lemma implies the perfect graph the-
orem. This is Fulkerson’s proof of the equivalence of the replication lemma and the
weak perfect graph conjecture (≡ perfect graph theorem).
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65.5. Decomposition of Berge graphs

The proof of the strong perfect graph conjecture is based on a decomposition
theorem of Berge graphs, stating that each Berge graph can be decomposed
into ‘basic’ graphs: bipartite graphs and their complements, and line graphs
of bipartite graphs and their complements. We formulate the decomposition
rules.

Let G = (V, E) be a graph. A 2-join of G is a partition of V into sets
V1 and V2 such that for i = 1, 2, |Vi| ≥ 3 and Vi contains disjoint nonempty
subsets Ai, Bi with the property that for all v1 ∈ V1 and v2 ∈ V2:

(65.13) v1 and v2 are adjacent ⇐⇒ v1 ∈ A1, v2 ∈ A2, or v1 ∈ B1,
v2 ∈ B2.

A skew partition of G is a partition V1, V2 of V such that G[V1] and G[V2]
are disconnected. An homogeneous pair of G is a pair A, B of disjoint subsets
of V such that 3 ≤ |A| + |B| ≤ |V | − 2 and such that for all x, y ∈ A ∪ B and
z ∈ V \ (A ∪ B), if xz ∈ E and yz �∈ E, then x and y belong to distinct sets
A, B.

M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas announced
in May 2002 that they proved the following3:

Theorem 65.3. Let G be a Berge graph. Then G or G is bipartite or the line
graph of a bipartite graph, or has a 2-join, a skew partition, or a homogeneous
pair.

Unfortunately, we cannot give the (highly complicated) proof of this the-
orem. M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas also
showed that any minimum-size imperfect Berge graph has no skew parti-
tion4. Since such a graph has no 2-join (Cornuéjols and Cunningham [1985]
and Kapoor [1994] — see Corollary 65.7a below) and no homogeneous pair
(Chvátal and Sbihi [1987]), and since bipartite graphs and their line graphs
are perfect (Kőnig [1916] — see Section 66.1), this implies:

Theorem 65.4 (strong perfect graph theorem). A graph is perfect if and
only if it is a Berge graph.

65.5a. 0- and 1-joins

A 0-join of a graph G = (V, E) is a partition of V into nonempty sets V1 and V2

such that no edge connects V1 and V2. Let G1 := G[V1] and G2 = G[V2]. Then G is
called the 0-join of G1 and G2. Trivially:

3 This was conjectured by M. Conforti, G. Cornuéjols, N. Robertson, P.D. Seymour,
R. Thomas, and K. Vušković (cf. Cornuéjols [2002]). It builds on work of Roussel
and Rubio [2001], and it was stimulated by interaction with concurrent work of Con-
forti, Cornuéjols, Vušković, and Zambelli [2002] and Conforti, Cornuéjols, and Zambelli
[2002b].

4 conjectured by Chvátal [1985c].
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Theorem 65.5. G is perfect ⇐⇒ G1 and G2 are perfect.

Proof. This follows from the facts that ω(G) = max{ω(G1), ω(G2)} and χ(G) =
max{χ(G1), χ(G2)}, and that induced subgraphs of G arise by the same construc-
tion from induced subgraphs of G1 and G2.

Hence

(65.14) no minimally imperfect graph has a 0-join.

A 1-join (or join) of a graph G = (V, E) is a partition of V into subsets V1 and
V2 such that |V1| ≥ 2, |V2| ≥ 2, and such that there exist nonempty A1 ⊆ V1 and
A2 ⊆ V2 with the property that for all v1 ∈ V1 and v2 ∈ V2:

(65.15) v1 and v2 are adjacent ⇐⇒ v1 ∈ A1 and v2 ∈ A2.

Choose v1 ∈ A1 and v2 ∈ A2, and define G1 := G[V1 ∪{v2}] and G2 := G[V2 ∪{v1}].
Then G is called the 1-join of G1 and G2.

Bixby [1984] proved (generalizing a result of Lovász [1972c]):

Theorem 65.6. G is perfect ⇐⇒ G1 and G2 are perfect.

Proof. Necessity follows from the fact that G1 and G2 are induced subgraphs of G.
To prove sufficiency, it suffices to show ω(G) = χ(G), since each induced subgraph
of G arises by the same construction, or by a 0-join from induced subgraphs of G1

and G2. Let ω := ω(G) and ai := ω(G[Ai]) for i = 1, 2. It suffices to show that for
each i = 1, 2,

(65.16) G[Vi] has an ω-colouring such that Ai uses ai colours only,

since then we can assume that we use different colours for A1 and A2 (as a1 +a2 ≤
ω), yielding an ω-colouring of G.

To prove (65.16), we may assume that i = 1. Let G′
1 be the graph obtained from

G1 by replicating v2 by a factor ω − a1. So ω(G′
1) = ω. By the replication lemma,

G′
1 is perfect. Hence ω(G′

1) = χ(G′
1). As the clique of vertices obtained from v2 has

size ω − a1, we use only a1 colours for A1, as required.

An alternative proof follows from Cunningham [1982b]. Cunningham [1982a]
described an O(n3)-time algorithm to find a 1-join (if any).

Theorem 65.6 implies:

(65.17) no minimally imperfect graph has a 1-join,

since it has no 0-join, and hence G1 and G2 as above are proper induced subgraphs
of G, implying that they are perfect. Therefore, by Theorem 65.6, G is perfect, a
contradiction.

65.5b. The 2-join

We next show that a minimally imperfect graph has no 2-join, except if it is an odd
circuit. This was shown by Cornuéjols and Cunningham [1985] (for a special case)
and Kapoor [1994].
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The proof uses the following ‘special replication lemma’ (Cornuéjols and Cun-
ningham [1985]). Let e = uv be an edge of a graph G. Let G′ be the graph obtained
from replicating v and deleting edge uv′, where v′ is the new vertex.

Lemma 65.7α (special replication lemma). If G is perfect and uv is not contained

in a triangle of G, then G′ is again perfect.

Proof. It suffices to show that G′ has a stable set S′ such that ω(G′ −S′) < ω(G′).
If ω(G′) > ω(G), we can take S′ = {v′}. So we may assume ω(G′) = ω(G). Let S
be the colour of an ω(G)-colouring of G with v ∈ S. Let S′ := (S \ {v}) ∪ {v′}.
Then S′ is a stable set in G′. If ω(G′ − S′) < ω(G′) we are done. So assume that
ω(G′−S′) = ω(G′). Let C be a clique in G′−S′ of size ω(G). Since ω(G−S) < ω(G)
and since G − S = G′ − S′ − v, we know v ∈ C. Since ω(G′) = ω(G), we know
u ∈ C. Hence, C = {u, v} (since uv is not in a triangle). So ω(G′) = 2, and hence
vv′ is not contained in a triangle of G′. But then v′ has degree 1 in G′, implying
χ(G′) = χ(G) = ω(G) = ω(G′).

Next we consider a special 2-join, namely where the sets Ai and Bi in the
definition of 2-join are connected by a path in G[Vi] (for i = 1, 2). For i = 1, 2, let Pi

be a shortest Ai−Bi path in G[Vi]. Define G1 := G[V1∪V P2] and G2 := G[V2∪V P1].

Theorem 65.7. G is perfect ⇐⇒ G1 and G2 are perfect.

Proof. Necessity follows from the fact that G1 and G2 are induced subgraphs of
G. To prove sufficiency, it is enough to prove ω(G) = χ(G), since each induced
subgraph of G arises by the same construction, or by 1- or 0-joins, from induced
subgraphs of G1 and G2. Define ω := ω(G), and

(65.18) ai := ω(G[Ai]) and bi := ω(G[Bi]) for i = 1, 2.

Note that perfection of G1 implies that |EP1| ≡ |EP2| (mod 2), since V P1∪V P2

induces a hole in G1.
For any colouring φ of a graph and any set X of vertices, let φ(X) denote the

set of colours used by X. We show that, for each i = 1, 2, G[Vi] has an ω-colouring
φ : V → {1, . . . , ω} such that

(65.19) (i) φ(Ai) = {1, . . . , ai};
(ii) if |EPi| is even, then φ(Bi) = {1, . . . , bi};
(iii) if |EPi| is odd, then φ(Bi) = {ω − bi + 1, . . . , ω}.

This yields an ω-colouring of G, by replacing the colour, i say, of any vertex in V2

by ω − i + 1. (The correctness follows from a1 + a2 ≤ ω and b1 + b2 ≤ ω.)
To prove the existence of a colouring satisfying (65.19), we may assume i = 1.

Let v0, v1, . . . , vk be the vertices (in order) of the A2 − B2 path P2.
First assume that k > 1 or a1 + b1 ≥ ω. Let G′

1 be the graph arising from G1

by replicating vj by a factor

(65.20) ω − a1 if j < k − 1 and j is even,
a1 if j < k − 1 and j is odd,
min{ω − a1, b1} if j = k − 1 and j is even,
min{a1, b1} if j = k − 1 and j is odd,
ω − b1 if j = k.
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Then ω(G′
1) = ω, and any ω-colouring of G′

1 yields a colouring satisfying (65.19).
Indeed, if k is even, then (65.20) implies that the set of colours used by the copies
of v0 and the set of colours used by the copies of vk are comparable5. If k is odd,
then (65.20) implies that the set of colours used by the copies of v0 and the set of
colours not used by the copies of vk are comparable.

Next assume that k = 1 and a1 + b1 < ω. Extend G1 by a new vertex v′,
adjacent to all vertices in B1 and to v1. By the special replication lemma (Lemma
65.7α), the new graph G′′

1 is again perfect. Let G′
1 be the graph arising from G′′

1 by
replicating v0 by a factor ω − a1, v1 by a factor a1, and v′ by a factor ω − a1 − b1.
Again, ω(G′

1) = ω, and any ω-colouring of G′
1 yields a colouring satisfying (65.19).

This implies:

Corollary 65.7a. Any minimally imperfect graph having a 2-join is an odd circuit.

Proof. Let G be a minimally imperfect graph, and let Vi, Ai, Bi (for i = 1, 2) be
as in the definition of 2-join. If for some i, the graph G[Vi] has no Ai − Bi path,
then G has a 0- or 1-join, contradicting (65.14) or (65.17). So we can assume that,
for i = 1, 2, G[Vi] has an Ai − Bi path. Let Pi be a shortest such path.

By Theorem 65.7 and by symmetry, we may assume that G[V1 ∪ V P2] is not
perfect. Hence, by the minimal imperfection of G, G = G[V1 ∪ V P2].

We first show ω(G) = 2. Choose an internal vertex u on P2. (This exists,
since |V2| ≥ 3.) Choose v ∈ V \ {u}. By the minimal imperfection of G, we know
χ(G− v) = α(G− v). Therefore, V G\{v} can be partitioned into α(G− v) cliques.
Since |V G| = α(G)ω(G) + 1 (by (65.6)), each of these cliques has size ω(G). In
particular, u is in a clique of size ω(G). Hence, since u is an internal vertex of P2,
ω(G) = 2.

As ω(G) = 2, χ(G − v) ≤ 2 for each v ∈ V G; that is, G − v is bipartite for each
v ∈ V G. So each odd circuit is Hamiltonian. As G is not bipartite, G has an odd
circuit. This circuit has no chords, as otherwise there exists a shorter odd circuit.

Cornuéjols and Cunningham [1985] gave an O(n2m2)-time algorithm to find a
2-join in a given graph (if any).

65.6. Pre-proof work on the strong perfect graph

conjecture

In this section we survey research done on the strong perfect graph conjecture
before it was proved in general. Many of the results follow as a consequence
of the strong perfect graph theorem. Since the proof of this theorem is very
complicated, we will include proofs not based on the strong perfect graph
theorem.

5 Sets X and Y are called comparable if X ⊆ Y or Y ⊆ X.
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65.6a. Partitionable graphs

The strong perfect graph theorem implies that each minimally imperfect graph is a
circuit or its complement, and hence is highly symmetric. Before the strong perfect
graph theorem was proved, several regularity properties of minimally imperfect
graphs were shown, initiated by the work of Padberg [1974a].

A graph G = (V, E) is called partitionable if |V | = α(G)ω(G)+1 and χ(G−v) =
ω(G) and χ(G − v) = α(G) for each v ∈ V . By Corollary 65.2b, each minimally
imperfect graph is partitionable. As each partitionable graph is imperfect, the strong
perfect graph theorem is equivalent to: each partitionable graph has an odd hole or
odd antihole.

Partitionable graphs are characterized as follows6. Our proof of necessity is
based on Gasparian [1996] (and is similar to the proof of Theorem 65.2).

Theorem 65.8. A graph G is partitionable if and only if |V G| = α(G)ω(G) + 1
and each vertex is contained in exactly α(G) stable sets of size α(G) and in exactly

ω(G) cliques of size ω(G).

Proof. Define n := |V G|, α := α(G), and ω := ω(G).
I. To see necessity, let G be partitionable. Then the proof method of Theorem

65.2 applies: We again construct

(65.21) stable sets S0, . . . , Sαω such that each vertex is covered by exactly α
of the Si.

Indeed, let S0 be a stable set in G of size α. For each vertex v, as G is partitionable,
we know χ(G − v) = ω. Therefore, V G \ {v} can be partitioned into ω stable sets.
Doing this for each v ∈ S0, we obtain stable sets as in (65.21).

Next, for each i = 0, . . . , αω, there exists a clique Ci of size ω with Ci ∩ Si = ∅.
To see this, choose v ∈ Si. As G is partitionable, χ(G−v) = α, and hence V G\{v}
can be partitioned into α cliques. Since n = αω + 1, each clique has size ω. Since
|Si \ {v}| ≤ α − 1, at least one of these cliques is disjoint from Si.

Then, for distinct i, j with 0 ≤ i, j ≤ αω, we have |Ci ∩ Sj | = 1. This follows
from the fact that Ci has size ω and intersects each Sj in at most one vertex,
and hence, by (65.21), Ci intersects αω of the Sj . As Ci ∩ Si = ∅, we have that
|Ci ∩ Sj | = 1 if i �= j.

Now consider the (αω + 1) × n incidence matrices M and N of S0, . . . , Sαω and
C0, . . . , Cαω respectively. So M and N are {0, 1} matrices, with Mi,j = 1 ⇐⇒
j ∈ Si, and Ni,j = 1 ⇐⇒ j ∈ Ci, for i = 0, . . . , αω and j = 1, . . . , n. By the
above, MNT = J − I, where J is the (αω + 1) × (αω + 1) all-1 matrix, and I the
(αω + 1) × (αω + 1) identity matrix. So M and N are nonsingular.

It then suffices (by symmetry) to show that each maximum-size clique C occurs
among C0, . . . , Cn. Now (MχC)i is 1 if |C ∩Si| = 1, and is 0 otherwise. As |C| = ω
and as each v ∈ V belongs to exactly α of the Si, C intersects precisely αω of the
Si. That is, there is exactly one, say Sj , disjoint from C. Hence MχC = MχCj ,
and therefore C = Cj , as M is nonsingular.

6 Necessity of the condition for minimally imperfect graphs was shown by Padberg [1974a],
and for partitionable graphs in general by Bland, Huang, and Trotter [1979]. As to
sufficiency, Cameron [1982] referred to private communication with A. Lubiw in 1981,
and Whitesides [1982] called it ‘well known’.
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II. To see sufficiency, let G satisfy the condition. As each vertex of G is in exactly
α stable sets of size α, there are exactly n maximum-size stable sets. Similarly, there
are exactly n maximum-size cliques.

Let M and N be the incidence matrix of the maximum-size stable sets and
maximum-size cliques, respectively. We can order the rows such that MNT = J −I,
where J is the all-one n×n-matrix, and I the identity matrix of order n. To see this,
each maximum-size stable set S intersects precisely αω maximum-size cliques, since
|S| = α and each vertex v ∈ S is in precisely ω maximum-size cliques. Hence there is
a unique maximum-size clique C disjoint from S. Similarly, for each maximum-size
clique C there is a unique maximum-size stable set S disjoint from C.

So MNT = J − I, implying

(65.22) M(J − I)NT = MJNT − MNT = αJNT − (J − I) = αωJ − J + I
= nJ − 2J + I = (J − I)(J − I) = MNTMNT.

Since M and NT are nonsingular, this implies NTM = J − I.
Now choose v ∈ V . As NTM = J − I, for each u ∈ V \ {v} there exists a

unique pair of a maximum-size clique Cu and a maximum-size stable set Su with
u ∈ Cu, v ∈ Su, and Cu ∩ Su = ∅. Then for each w ∈ Cu we have Cw = Cu, since
w ∈ Cu and v ∈ Su. So the Cu partition V \ {v}, and hence χ(G − v) = α. Then
also χ(G − v) = ω by symmetry.

A partitionable graph G with α(G) = α and ω(G) = ω, is also called an (α, ω)-
graph.

The proof of Theorem 65.8 also implies the following further properties of parti-
tionable graphs (properties (i)-(iii) were proved for minimally imperfect graphs by
Padberg [1974a] and for partitionable graphs by Bland, Huang, and Trotter [1979];
property (iv) was shown by Whitesides [1982]):

Theorem 65.9. Let G be a partitionable graph with n vertices. Then:

(65.23) (i) G contains exactly n maximum-size cliques and exactly n maximum-

size stable sets;

(ii) the matrix N formed by the incidence vectors of the maximum-size

cliques is nonsingular, and the matrix M formed by the incidence

vectors of the maximum-size stable sets is nonsingular;

(iii) each maximum-size clique intersects all but one maximum-size sta-

ble sets, and each maximum-size stable set intersects all but one

maximum-size cliques;

(iv) for any two distinct vertices u, v of G there is a unique pair of

a maximum-size clique C and a maximum-size stable set S with

u ∈ C, v ∈ S, and C ∩ S = ∅.

Proof. See the proof of Theorem 65.8.

Notes. One may show that | det M | = α(G) and | det N | = ω(G) for any partition-
able graph. Indeed, since M1 = α(G) · 1, we have that M−11 = α(G)−1 · 1. Hence
α(G) divides det M (as (det M) ·M−1 is an integer matrix). Similarly, ω(G) divides
det N . Now | det M ·det N | = | det(MNT)| = | det(J − I)| = |V G| − 1 = α(G)ω(G).
So | det M | = α(G) and | det N | = ω(G).
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Shepherd [1994b] showed that a graph G is partitionable if and only if for some
p, q ≥ 2 with |V G| = pq + 1: (i) G has a family of |V G| stable sets of size p such
that each vertex is in precisely p of them, and (ii) G has no stable set S of size
p that intersects each clique of size q. A polynomial-time recognition algorithm of
partitionable graphs was given by Shepherd [2001].

65.6b. More characterizations of perfect graphs

It is not difficult to show that for any partitionable graph G one has:

(65.24) χ∗(G) = ω(G) +
1

α(G)
.

Indeed, let n := |V G|, α := α(G), ω := ω(G), χ∗ := χ∗(G). To see ≥, observe
that the vector α−1 · 1 satisfies all stable set inequalities (64.34), and hence χ∗ ≥
nα−1 = ω + α−1. To see ≤, give each stable set of size α a value α−1. This gives a
fractional colouring of size ω + α−1. So χ∗ ≤ ω + α−1, proving (65.24).

Hence perfect graphs can be characterized by:

Theorem 65.10. A graph G is perfect ⇐⇒ χ∗(G′) is an integer for each induced

subgraph G′ of G.

Proof. See above.

Berge [1973a] gave the following further characterization of perfect graphs. For
any graph G = (V, E), let χ2(G) denote the bicolouring number of G, being the
minimum number of stable sets S1, . . . , St such that each vertex is in two of the
Si. Alternatively, it is the minimum number of colours such that we can assign to
each vertex a pair of colours in such a way that any two adjacent vertices get two
disjoint pairs of colours.

Theorem 65.11. A graph G is perfect if and only if χ2(G
′) = 2χ(G′) for each

induced subgraph G′ of G.

Proof. To see necessity, we have 2ω(G) ≤ χ2(G) ≤ 2χ(G) for each graph G. Hence
if G is perfect, then ω(G) = χ(G), and hence χ2(G) = 2χ(G). As perfection is
closed under taking induced subgraphs, necessity of the condition follows.

To see sufficiency, let G be a minimally imperfect graph. Consider two nonad-
jacent vertices u and v. Then χ2(G) ≤ χ(G − u) + χ(G − v) + 1 (as we can take
{u, v} as a colour). Since, by the condition, χ2(G) = 2χ(G), we can assume, by
symmetry, that χ(G) ≤ χ(G − u). Hence χ(G) ≤ χ(G − u) ≤ ω(G − u) ≤ ω(G),
contradicting the fact that G is minimally imperfect.

(This proof does not use the perfect graph theorem.)

65.6c. The stable set polytope of minimally imperfect graphs

The following theorem of Padberg [1976] is a direct consequence of the strong
perfect graph conjecture, but we give a direct proof (we adapt the proof of Seymour
[1990b]):
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Theorem 65.12. Let G = (V, E) be a minimally imperfect graph. Then the polytope

determined by

(65.25) (i) xv ≥ 0 for v ∈ V ,
(ii) x(C) ≤ 1 for each clique C,

has precisely one noninteger vertex, namely ω−1 · 1, where ω := ω(G).

Proof. Let G = (V, E) be a minimally imperfect graph, and let x∗ be a noninteger
vertex of the polytope determined by (65.25). Set n := |V |.

First we have that

(65.26) x∗
v > 0 for each vertex v.

For suppose that x∗
v = 0. Then x∗|V \ {v} is a noninteger vertex of the polytope

(65.25) for G − v, contradicting the perfection of G − v (by Corollary 65.2e). This
proves (65.26).

Let C be a collection of cliques C such that x∗(C) = 1 for each C ∈ C and such
that {χC | C ∈ C} is a set of n linearly independent vectors. For v ∈ V , let Cv

denote the collection of C ∈ C with v ∈ C. Then:

(65.27) |Cv| ≤ ω for each v ∈ V .

To see this, consider any v ∈ V and any C ∈ C \ Cv. Since G − v is perfect, the
vector x∗|V \ {v} is a convex combination

∑
S λSχS of stable sets S in G − v. For

each u ∈ C, choose a stable set Su with u ∈ Su and λSu > 0. Then |C′ ∩ Su| = 1
for each C′ ∈ C \ Cv (since (x∗|V \ {v})(C′) = 1). So the incidence vectors χSu for
u ∈ C are linearly independent. This implies that the vectors χSu − x∗ for u ∈ C
have rank at least |C| − 1. As each of these vectors is orthogonal to χC′

for each
C′ ∈ C \ Cv, we have

(65.28) |C \ Cv| ≤ (n − 1) − (|C| − 1) = n − |C|.
Let U be the set of vertices not covered by all cliques in C. Then:

(65.29) n =
∑

C∈C
1 =

∑

C∈C

∑

v∈V \C

1

n − |C| =
∑

v∈U

∑

C∈C\Cv

1

n − |C|

≤
∑

v∈U

∑

C∈C\Cv

1

|C \ Cv| =
∑

v∈U

1 = |U | ≤ n.

So we have equality throughout; that is, U = V and |C \ Cv| = |V | − |C| for each
v ∈ V and each C ∈ C \ Cv. This gives equality in (65.28). So |Cv| = |C| ≤ ω,
proving (65.27).

Let C′ denote the collection of maximum-size cliques in G. By Theorem 65.9,
each v ∈ V is in precisely ω sets in C′. Hence

(65.30) n =
∑

C∈C
1 =

∑

C∈C
x∗(C) =

∑

v∈V

|Cv|x∗
v ≤ ω

∑

v∈V

x∗
v =

∑

C∈C′

x∗(C)

≤
∑

C∈C′

1 = n.

Hence we have equality throughout. Therefore, x∗ satisfies x∗(C) = 1 for each
maximum-size clique C. Hence x∗ = ω−1 · 1.
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By the antiblocking relation, Theorem 65.12 implies that the stable set polytope
of a minimally imperfect graph has precisely one facet not given by the clique and
nonnegative constraints:

Corollary 65.12a. Let G = (V, E) be a minimally imperfect graph. Then the stable

set polytope of G is determined by:

(65.31) xv ≥ 0 for v ∈ V ,
x(C) ≤ 1 for each clique C,
x(V ) ≤ α(G).

Proof. Directly from Theorem 65.12 applied to the antiblocking polytope of the
polytope determined by (65.25) (for G).

Shepherd [1990,1994b] calls a graph near-perfect if its stable set polytope is
determined by (65.31), and he showed that a graph G is minimally imperfect if and
only if both G and its complement G are near-perfect.

65.6d. Graph classes

Before a proof of the strong perfect graph theorem in general was announced in
2002, it had been proved for several classes of graphs. Next to the classes to be
discussed in Chapter 66, it was shown for (among other):

• claw-free graphs, that is, graphs not having K1,3 (a claw) as induced subgraph
(Parthasarathy and Ravindra [1976] (cf. Tucker [1979] and Maffray and Reed
[1999], and Giles and Trotter [1981] for a simpler proof)).
It follows that the line graph L(G) of a graph G is perfect if and only if G contains
no odd circuit with at least five vertices as (not necessarily induced) subgraph.
So these graphs have edge-colouring number χ′(G) equal to the maximum degree
∆(G) (if ∆(G) ≥ 3); moreover, the matching number ν(G) is equal to the mini-
mum number of stars and triangles needed to cover the edges of G; this extends
Kőnig’s edge-colouring and matching theorems (cf. Trotter [1977] and de Werra
[1978]).
Sbihi [1978,1980] and Minty [1980] showed that the weighted stable set problem
is solvable in strongly polynomial time for claw-free graphs (see Chapter 69). A
combinatorial polynomial-time algorithm for the colouring problem for claw-free
perfect graphs was given by Hsu [1981], and for the weighted clique and clique
cover problems by Hsu and Nemhauser [1981,1982,1984].
Chvátal and Sbihi [1988] gave a polynomial-time algorithm to recognize claw-
free perfect graphs, based on decomposition (cf. Maffray and Reed [1999]). Koch
[1979] gave a polynomial-time algorithm which for any claw-free graph either
finds a maximum-size stable set and a minimum-size clique cover of equal cardi-
nalities, or else finds an odd hole or odd antihole.
Perfection of line graphs was also studied by Cao and Nemhauser [1998]. The
validity of the strong perfect graph conjecture for claw-free graphs was extended
to ‘pan-free’ graphs by Olariu [1989b].

• K4-free graphs — graphs not having K4 as subgraph (Tucker [1977b], cf. Tucker
[1979,1987a]).
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• diamond-free graphs (Tucker [1987b]7) — graphs not having K4 − e (a diamond)
as induced subgraph (where K4 − e is the graph obtained from K4 by deleting
an edge) (Conforti [1989] gave an alternative proof). Tucker [1987b] gave an
O(n2m)-time algorithm to colour such graphs optimally. Fonlupt and Zemirline
[1987] and Conforti and Rao [1993] gave polynomial-time perfection tests for
diamond-free graphs. Related results can be found in Conforti and Rao [1989,
1992a,1992b] and Fonlupt and Zemirline [1992,1993].

• paw-free graphs — graphs not having a paw (a K4 with two incident edges deleted)
as induced subgraph. This follows from the perfection of Meyniel graphs (The-
orem 66.6). It also follows from a characterization of Olariu [1988e] of paw-free
graphs.

• square-free graphs (Conforti, Cornuéjols, and Vušković [2002]) — graphs not hav-
ing a C4 (a square) as induced subgraph.

• bull-free graphs (Chvátal and Sbihi [1987]) — graphs not having a bull as in-
duced subgraph, where a bull is the (self-complementary) graph on five vertices
a, b, c, d, e and edges ab, ac, bc, bd, ce (see Figure 65.1). Reed and Sbihi [1995]
gave a polynomial-time perfection test for bull-free graphs. More on bull-free
graphs can be found in de Figueiredo [1995], de Figueiredo, Maffray, and Porto
[1997,2001], and Hayward [2001].

• chair-free graphs (Sassano [1997]) — graphs not having a chair as induced sub-
graph, where a chair is the graph on five vertices a, b, c, d, e and edges ab, bc, cd,
be (see Figure 65.1).

• dart-free graphs (Sun [1991]) — graphs not having a dart as induced subgraph (a
dart is a graph with vertices a, b, c, d, e and edges ab, ac, ad, ae, bc, cd (see Figure
65.1)); Chvátal, Fonlupt, Sun, and Zemirline [2000,2002] gave a polynomial-time
recognition algorithm for dart-free perfect graphs.

• graphs having neither P5 nor K5 as induced subgraph (Maffray and Preissmann
[1994], Barré and Fouquet [1999]).

• circular-arc graphs (Tucker [1975]) — these are the intersection graphs of families
of intervals on a circle (cf. Section 64.9a).

• circle graphs (Buckingham and Golumbic [1984]) — these are the intersection
graphs of families of chords of a circle (cf. Section 64.9a).

• planar graphs (Tucker [1973b]). Tucker [1984b] showed that this can be derived
(without appealing to the four-colour theorem) from the validity of the strong
perfect graph conjecture for K4-free graphs: a K4 subgraph in a planar graph
G �= K4 contains a triangle that is a vertex-cut of G; hence one can apply
induction to find a 4-colouring of G.
Tucker and Wilson [1984] gave an O(n2) algorithm for finding a minimum colour-
ing of a planar perfect graph, Hsu [1987b] gave an O(n3)-time perfection test for
planar graphs, and Hsu [1988] described strongly polynomial-time algorithms for
the maximum-weight stable set, the weighted colouring, and the weighted clique
cover problems for planar perfect graphs.

• graphs embeddable in the torus or in the Klein bottle (Grinstead [1980,1981]).
• checked graphs (Gurvich and Temkin [1992]) — graphs whose vertex set is a

subset of R2, two vertices being adjacent if and only the line segment connecting
them is horizontal or vertical.

7 An partial proof was given by Parthasarathy and Ravindra [1979], cf. Tucker [1987b].
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bull chair dart

Figure 65.1

The perfect graph theorem implies that the strong perfect graph conjecture is true
also for the classes of graphs complementary to those listed above.

Since Ck and Ck (for odd k ≥ 5) are claw-free, the result of Parthasarathy and
Ravindra [1976] implies that, to show the strong perfect graph theorem, it suffices
to show that each minimally imperfect graph is claw-free.

Other classes of graphs for which the strong perfect graph conjecture holds were
found by Rao and Ravindra [1977], Olariu [1988d], Jamison and Olariu [1989b], Car-
ducci [1992], Galeana-Sánchez [1993], Lê [1993b], De Simone and Galluccio [1994],
Maire [1994b], Maffray and Preissmann [1995], Xue [1995,1996], Ait Haddadene and
Gravier [1996], Maffray, Porto, and Preissmann [1996], Aı̈t Haddadène and Maffray
[1997], Kroon, Sen, Deng, and Roy [1997], Babăıtsev [1998], Hoàng and Le [2000b,
2001], and Gerber and Hertz [2001].

65.6e. The P4-structure of a graph and a semi-strong perfect
graph theorem

V. Chvátal noticed that the collection of 4-sets inducing the 4-vertex path P4 as a
subgraph, provides a useful tool in studying perfection. (Note that P4 is isomorphic
to P4.) It led Chvátal [1984a] to conjecture the following ‘semi-strong perfect graph
theorem’, which was proved by Reed [1987] (announced in Reed [1985]).

Call two graphs G and H, with V G = V H, P4-equivalent if for each U ⊆ V one
has: U induces a P4-subgraph of G if and only if U induces a P4-subgraph of H.
Then Reed’s theorem states that

(65.32) if G and H are P4-equivalent and G is perfect, then H is perfect.

This theorem implies the perfect graph theorem, since G and G are P4-equivalent.
On the other hand, the theorem is implied by the strong perfect graph theorem,
since any graph P4-equivalent to an odd circuit of length at least 5 is equal to that
circuit or to its complement.

Other relations between the P4-structure and perfection were proved by Chvátal
and Hoang [1985] and Chvátal, Lenhart, and Sbihi [1990]. Let G = (V, E) be a graph
and let V be partitioned into classes V0 and V1, with both G[V0] and G[V1] perfect.
For each word x = x1x2x3x4 of length 4 over the alphabet {0, 1}, let Qx denote
the set of chordless paths in G with vertices v1, v2, v3, v4 (in order) with vi ∈ Vxi

for i = 1, 2, 3, 4. Then G is perfect if:

(65.33) (i) Q1000 = Q0100 = Q0111 = Q1011 = ∅, or
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(ii) Q0000 = Q0110 = Q1001 = Q1111 = ∅, or
(iii) Q1000 = Q0100 = Q0110 = Q1001 = Q1111 = ∅, or
(iv) Q1000 = Q0101 = Q0110 = Q1001 = Q1111 = ∅, or
(v) Q1000 = Q0101 = Q0110 = Q1001 = Q0111 = ∅, or
(vi) Q1000 = Q1001 = Q1011 = ∅.

Sufficiency of (i) was shown by Chvátal and Hoang [1985], and of the other cases
by Chvátal, Lenhart, and Sbihi [1990] ((ii) also by Gurvich [1993a,1993b]), who
also showed that (65.33) essentially covers all cases where perfection of G follows
from perfection of its constituents and the ‘colouring’ of the P4-subgraphs. In fact,
(65.33) and its symmetrical cases (interchanging V0 and V1 and/or replacing G by
G) describe exactly the cases excluded by G or G being an odd chordless circuit of
length ≥ 5 or its complement.

A theorem of Seinsche [1974] states that each graph without an induced P4

subgraph is perfect. (This follows from the perfection of Meyniel graphs (Theorem
66.6).8)

Hence, case (65.33)(ii) implies the result of Hoang [1985] that any graph is
perfect if there is a set U of vertices having an odd intersection with each chordless
path with 4 vertices. More generally, it implies perfection of any graph if there is
a set U of vertices such that each induced P4 subgraph has exactly one of its two
middle vertices in U or has exactly one of its ends in U .

Related (and more general than the results of Chvátal and Hoang quoted above)
is the following theorem of Chvátal [1987a]. Let G = (V, E) be a graph and let V
be partitioned into two classes X and Y such that there are no x ∈ X, y ∈ Y , and
U ⊆ V such that both U ∪{x} and U ∪{y} induce a P4 subgraph. Then G is perfect
if and only if G[X] and G[Y ] are perfect.

More work on the P4-structure related to perfection is reported in Jung [1978],
Jamison and Olariu [1989c,1992a,1992b,1995a,1995b], Hayward and Lenhart [1990],
Hoàng [1990,1995,1999], Olariu [1991], Ding [1994], Rusu [1995a,1999b], Giak-
oumakis [1996], Hoàng, Hougardy, and Maffray [1996], Hougardy [1996b,1997,1999,
2001], Babel and Olariu [1997,1998,1999], Giakoumakis, Roussel, and Thuillier
[1997], Giakoumakis and Vanherpe [1997], Hougardy, Le, and Wagler [1997], Babel
[1998a,1998b], Babel, Brandstädt, and Le [1999], Brandstädt and Le [1999,2000],
Roussel, Rusu, and Thuillier [1999], Brandstädt, Le, and Olariu [2000], Hoàng and
Le [2000a,2001], Barré [2001], and Hayward, Hougardy, and Reed [2002].

65.6f. Further notes on the strong perfect graph conjecture

Markosyan and Karapetyan [1984] showed that the strong perfect graph conjecture
is equivalent to: each minimally imperfect graph G is regular of degree 2ω(G) − 2.

For k, n ∈ Z+, let Cn,k be the graph obtained from the circuit Cn (with n
vertices) by adding all edges connecting two vertices at distance less than k. If
n ≡ 1 (mod k + 1) and n ≥ 2k + 3, then Cn,k is partitionable. Chvátal [1976]
showed that the strong perfect graph conjecture is equivalent to: each minimally
imperfect graph G has C|V G|,ω(G) as spanning subgraph (not necessarily induced).

8 Arditti and de Werra [1976] claimed that Seinsche’s result also follows from the ‘fact’
that any graph without induced P4 subgraph is the comparability graph of a branching,
therewith overlooking C4.
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Bland, Huang, and Trotter [1979] and Chvátal, Graham, Perold, and White-
sides [1979] gave examples of partitionable graphs G not containing C|V G|,ω(G) as a
spanning subgraph. Sebő [1996a] and Bacsó, Boros, Gurvich, Maffray, and Preiss-
mann [1998] showed that these constructions give no counterexamples to the strong
perfect graph conjecture. Related results are given by Chvátal [1984b]. A computer
search for partitionable graphs was reported by Lam, Swiercz, Thiel, and Regener
[1980].

Call a pair of vertices u, v in a graph an even pair if each induced u − v path
has even length. Meyniel [1987] showed that a minimally imperfect graph has no
even pair. (This was extended to partitionable graphs by Bertschi and Reed [1987].)
Hougardy [1996a] proved that the strong perfect graph conjecture is equivalent to:
each properly induced subgraph of a minimally imperfect graph has an even pair or
is a clique. Bienstock [1991] showed that it is NP-complete to test if a graph has no
even pair. More on even pairs can be found in Hoàng and Maffray [1989], Bertschi
[1990], Hougardy [1995], Rusu [1995c], Everett, de Figueiredo, Linhares-Sales, Maf-
fray, Porto, and Reed [1997] (survey), Linhares Sales, Maffray, and Reed [1997],
Linhares Sales and Maffray [1998], de Figueiredo, Gimbel, Mello, and Szwarcfiter
[1999], Rusu [2000], and Everett, de Figueiredo, Linhares Sales, Maffray, Porto, and
Reed [2001] (survey).

Prömel and Steger [1992] showed that ‘almost all Berge graphs are perfect’: the
ratio of the number of n-vertex perfect graphs and the number of n-vertex Berge
graphs, tends to 1 if n → ∞.

The role of uniquely colourable perfect graphs for the strong perfect graph con-
jecture was investigated by Tucker [1983b]. Bacsó [1997] studied the conjecture that
a uniquely colourable perfect graph G is either a clique or contains two maximum-
size cliques intersecting each other in ω(G) − 1 vertices. This is implied by the
strong perfect graph theorem. Related work was given by Sakuma [2000].

Corneil [1986] investigated families of graphs ‘complete’ for the strong perfect
graph conjecture (that is, proving the conjecture for these graphs suffices to prove
the conjecture in general).

Equivalent versions of the strong perfect graph conjecture were given by
Olaru [1972,1973b], Ravindra [1975], Markosyan [1981], Markosyan and Gasparyan
[1987], Olariu [1990b], Huang [1991], Markosian, Gasparian, and Markosian [1992],
Galeana-Sánchez [1993], De Simone and Galluccio [1994], Lonc and Zaremba [1995],
and Padberg [2001].

Giles, Trotter, and Tucker [1984], Hsu [1984], Fonlupt and Sebő [1990], Croitoru
and Radu [1992b], Sebő [1992], Panda and Mohanty [1997], and Rusu [1997] gave
further techniques for proving the strong perfect graph conjecture.

Several other properties of minimally imperfect and partitionable graphs were
derived by Olaru [1969,1972,1973a,1973b,1977,1980,1993,1998], Sachs [1970], Pad-
berg [1974a,1974b,1975,1976], Parthasarathy and Ravindra [1976], Tucker [1977b,
1983a], Olaru and Suciu [1979], Markosyan [1981,1985], Sridharan and George
[1982], Whitesides [1982], Buckingham and Golumbic [1983], Chvátal [1984c,1985c],
Grinstead [1984], Olaru and Sachs [1984], Chvátal and Sbihi [1987], Meyniel
[1987], Olariu [1988b,1988c,1990a,1991], Meyniel and Olariu [1989], Preissmann
[1990], Sebő [1992,1996a,1996b], Cornuéjols and Reed [1993], Hougardy [1993], Maf-
fray [1993], Olariu and Stewart [1993], Hayward [1995], Hoàng [1996c], Perz and
Zaremba [1996], Fouquet, Maire, Rusu, and Thuillier [1997], Gasparyan [1998],
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Barré and Fouquet [1999,2001], Croitoru [1999], de Figueiredo, Klein, Kohayakawa,
and Reed [2000], Barré [2001], Roussel and Rubio [2001], and Conforti, Cornuéjols,
Gasparyan, and Vušković [2002]. Surveys were given by Preissmann and Sebő [2001]
and Cornuéjols [2002].

65.7. Further results and notes

65.7a. Perz and Rolewicz’s proof of the perfect graph theorem

An interesting proof of the perfect graph theorem was given by Perz and Rolewicz
[1990]. It does not use the replication lemma, and is based on linear algebra, in a
manner different from the proof of Gasparian given in Section 65.2, namely on the
value of determinants.

In fact, Perz and Rolewicz [1990] show (in a different but equivalent terminol-
ogy) that a graph G = (V, E) is perfect if and only if Pstable set(G) and Pclique(G)
form an antiblocking pair of polytopes. They prove sufficiency in a way similar to
the proof of Fulkerson given for sufficiency in Corollary 65.2e above.

They proved necessity as follows. Choose a counterexample with |V | minimal.
So G is perfect, and Pstable set(G) and Pclique(G) do not form an antiblocking

pair. Hence there exist x ∈ A(Pstable set(G)) and y ∈ A(Pclique(G)) with xTy > 1.

Choose such x, y with xTy maximal. Let ν := xTy.
We first show

(65.34) ν ≤ n

n − 1
,

where n := |V |. Indeed, for each u ∈ V , deleting the uth component of x and y, we
obtain vectors in A(Pstable set(G − u)) and A(Pclique(G − u)), respectively. By the
minimality of G, we have

∑
v �=u xvyv ≤ 1. Hence

(65.35) ν =
∑

v

xvyv =
1

n − 1

∑

u

( ∑

v �=u

xvyv

)
≤ n

n − 1
.

This proves (65.34). By the minimality of G, we also have xv > 0 and yv > 0 for
each v.

Now ν−1 · x ∈ Pclique(G), since otherwise there is a z ∈ A(Pclique(G)) with

ν−1xTz > 1, contradicting the maximality of xTy. So there exist cliques C1, . . . , Cn

and λ1, . . . , λn > 0 such that

(65.36) x =

n∑

i=1

λiχ
Ci and

n∑

i=1

λi = ν.

Similarly, there exist stable sets S1, . . . , Sn and µ1, . . . , µn > 0 such that

(65.37) y =

n∑

j=1

µjχ
Sj and

n∑

j=1

µj = ν.

Then y(Ci) = 1 for i = 1, . . . , n, since y(Ci) ≤ 1 (as y ∈ A(Pclique(G))), and

(65.38) ν = xTy =

n∑

i=1

λiy(Ci) ≤
n∑

i=1

λi = ν.
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Similarly, x(Sj) = 1 for j = 1, . . . , n.
Consider, for some i = 1, . . . , n,

(65.39) 1 = y(Ci) =

n∑

j=1

µj |Ci ∩ Sj | ≤
n∑

j=1

µj = ν.

So the inequality is strict, and hence there is at least one j with Ci ∩ Sj = ∅. Then

(65.40) 1 = x(Sj) =
∑

i′

λi′ |Ci′ ∩ Sj | =
∑

i′ �=i

λi′ |Ci′ ∩ Sj | ≤
∑

i′ �=i

λi′ = ν − λi.

Hence with (65.34),

(65.41) n ≤
∑

i

(ν − λi) = nν − ν ≤ n,

implying equality in (65.40) for each i. So if Ci ∩ Sj = ∅, then Ci′ ∩ Sj �= ∅ for each
i′ �= i. Hence for each j, there is exactly one i with Ci ∩ Sj = ∅, and conversely. We
can assume that Ci ∩ Sj = ∅ if and only if i = j.

Let M and N be the incidence matrices of S1, . . . , Sn and of C1, . . . , Cn re-
spectively. So MNT = J − I. Hence | det M det N | = | det(J − I)| = n − 1. Since
y(Si) = 1 for each i, we have My = 1. So y′ := | det M | · y is a positive integer
vector. Similarly, x′ := | det N | · x is a positive integer vector. Then

(65.42) (x′)Ty′ = | det M det N |xTy = | det(J − I)|ν = n.

The kernel of the argument now is that this implies that x′ and y′ are the all-one
vectors, and therefore x and y each are scalar multiples of the all-one vector.

As x ∈ A(Pstable set(G)), x(S) ≤ 1 for any stable set S, and hence x = α′−1 · 1
for some α′ ≥ α(G). Similarly, y = ω′−1 · 1 for some ω′ ≥ ω(G). As G is perfect,
α′ω′ ≥ α(G)ω(G) ≥ n. Hence ν = xTy = (α′ω′)−1n ≤ 1, a contradiction.

65.7b. Kernel solvability

The following generalization of the Gale-Shapley theorem on stable matchings was
conjectured by Berge and Duchet [1986,1988a]9 and proved by Boros and Gurvich
[1996], using a technique from game theory due to Scarf [1967]. With the strong
perfect graph theorem it characterizes perfect graph by being kernel solvable.

Call a graph G = (V, E) kernel solvable if the following holds: if for each clique
C of G we have a total order <C of C, then there exists a stable set S such that
for each v ∈ V there is an s ∈ S and a clique C such that v, s ∈ C and v ≤C s.
Berge and Duchet conjectured that kernel solvable graphs are precisely the perfect
graphs. With Theorem 65.14 below, this conjecture is implied by the strong perfect
graph theorem.

Kernel solvability can be formulated equivalently in terms of kernels of digraphs.
A kernel of a directed graph D = (V, A) is a subset S of V such that S spans no
arc of D and such that for each v ∈ V \ S there is a u ∈ S with (v, u) ∈ A.

For any graph G = (V, E), a directed graph D = (V, A) is called a superorien-

tation of G if E = {{u, v} | (u, v) ∈ A}. (So {u, v} is an edge of G ⇐⇒ at least

9 Berge and Duchet [1986] refer to ‘Séminaire du Lundi, MSH, Paris, Janvier 1983’ (Mon-
day Seminar, MSH, Paris, January 1983). See Jensen and Toft [1995] p. 140 for further
references to the history of this conjecture.
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one of (u, v) and (v, u) belongs to A.) Then a graph G = (V, E) is kernel solvable if
and only if any superorientation D of G has a kernel if each clique C of G induces
a subgraph of D with a kernel.

Kernel solvability is closed under taking induced subgraphs: if U ⊆ V , and each
clique C of G[U ] has a total order <C , we can choose for each clique C of G a total
order which coincides with <C∩U on C ∩ U and which has C ∩ U as upper ideal.

Since neither Ck nor Ck is kernel solvable for odd k ≥ 5, the strong perfect
graph theorem implies that each kernel solvable graph is perfect.

Boros and Gurvich [1996] proved that a graph G is perfect if and only if each
graph H arising from G by replicating vertices is kernel solvable. It implies that the
strong perfect graph theorem is equivalent to: each Berge graph is kernel solvable
(since the class of Berge graphs is closed under replicating vertices).

To show that each perfect graph is kernel solvable, we follow the proof method
of Aharoni and Holzman [1998]. We first prove the following results of Scarf [1967].

Let M and N be disjoint finite nonempty sets, and for each i ∈ M let <i be
a total order of N . For any U , write y <i U if y <i u for each u ∈ U . Define
K := M ∪ N .

Call a subset L of K light if for each j ∈ N there is an i ∈ M \L with j ≤i L\M .
So any subset of a light set is light again. Let m := |M | and define

(65.43) S := {M} ∪ {L
∣∣ L light, |L| = m}.

Note that M is not light.
Now Scarf first proved:

Lemma 65.13α. Any light set L with |L| = m − 1 is contained in precisely two

sets in S.

Proof. Extend each <i to a total order on K, with i <i j <i i′ for all j ∈ N and
all i′ ∈ M \ {i}. Then

(65.44) any subset L of K is light if and only if for each k ∈ K there is an
i ∈ M with k ≤i L.

To see necessity in (65.44), let L ⊆ K be light and let k ∈ K. If k ∈ M , then
k ≤k L. If k ∈ N , then there is an i ∈ M \ L with k ≤i L \ M . As i �∈ L, we have
also k ≤i L ∩ M (since k ≤i M \ {i}). So k ≤i L.

To see sufficiency in (65.44), suppose ∀k ∈ K∃i ∈ M : k ≤i L. Let j ∈ N . Then
∃i ∈ M : j ≤i L. Then i �∈ L (as otherwise j ≤i i). Moreover, j ≤i L \ M . This
proves (65.44).

For any i ∈ M and any nonempty U ⊆ K, let mini U and maxi U denote the
minimal and maximal element of U with respect to <i.

First assume that L ⊆ M , say L = M \ {i}. Then L is contained in M , which
belongs to S. Moreover, z := maxi N is the unique element with L ∪ {z} light.10

This proves the lemma.
So henceforth we can assume that L �⊆ M . Define π : M → L by π(i) := mini L.

Then π is onto, since, as L is light, for each r ∈ L there is an i ∈ M with r ≤i L.
So r = mini L = π(i).

10 For let x ∈ N . Then L ∪ {x} is light ⇐⇒ ∀j ∈ N∃i ∈ M \ L : j ≤i (L ∪ {x}) \ M ⇐⇒
∀j ∈ N : j ≤i x ⇐⇒ x = maxi N .
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Hence, as |L| = |M |−1, there exist distinct i1, i2 ∈ M with π(i1) = π(i2), while
all other values of π are mutually distinct and different from π(i1).

For h = 1, 2, define

(65.45) Rh := {k ∈ K | k �≤i L for all i �= ih}.

Then Rh �= ∅, since ih ∈ Rh, as there is an r ∈ L \ M (as L �⊆ M), hence if i �= ih,
then ih �≤i r. Also, Rh ∩ L = ∅, since if r ∈ L, there is an i �= ih with π(i) = r,
so mini L = r, implying r ≤i L, and hence r �∈ Rh. Moreover, R1 ∩ R2 = ∅, since
otherwise there is a k ∈ K with k �≤i L for all i ∈ M , contradicting the fact that L
is light.

Define for h = 1, 2:

(65.46) rh := max
ih

Rh.

We first show that L∪{r1} and L∪{r2} are light. Suppose that (say) L∪{r1} is not
light. So there is a k ∈ K with k �≤i L∪{r1} for each i ∈ M . Since r1 �≤i L for each
i �= i1 (by definition of R1), it follows that k �≤i L for each i �= i1. Hence k ∈ R1.
However, r1 <i1 L, since r1 ∈ R1 and r1 ≤i L for some i ∈ M . So k ≤i1 r1 <i1 L,
and therefore k ≤i1 L ∪ {r1}, a contradiction. So L ∪ {r1} and L ∪ {r2} are light.

Finally we show that for any s ∈ K \ L, if L ∪ {s} is light, then s = r1 or
s = r2. So let L ∪ {s} be light. Then the function π′ : M → L ∪ {s} defined by
π′(i) := mini(L∪{s}) is onto (as L∪{s} is light), implying that it is one-to-one (as
|M | = |L∪{s}|). Hence π′ coincides with π on all but one element of M . Necessarily
the exceptional element belongs to {i1, i2}. Say π′(i) = π(i) for each i �= i1, while
π′(i1) = s. So mini L = π(i) = π′(i) <i s for each i �= i1; that is, s ∈ R1. Suppose
s �= r1. So s <i1 r1. Then r1 �≤i L ∪ {s} for each i ∈ M , contradicting the fact that
L ∪ {s} is light.

From this, Scarf derived:

Theorem 65.13 (Scarf’s lemma). Let A be a nonnegative m × n matrix and let

b ∈ Rm
+ be such that the polytope P := {x ∈ Rn

+ | Ax ≤ b} is nonempty and bounded.

For each i = 1, . . . , m, let <i be a total order on {1, . . . , n}. Then P has a vertex x
such that

(65.47) for each j ∈ {1, . . . , n} there is an i ∈ {1, . . . , m} such that aT

i x = bi

and such that xk = 0 for each k <i j.

Proof. We can assume, by slightly perturbing b, that for each vertex x of P there
are precisely n constraints among x ≥ 0, Ax ≤ b satisfied with equality. Add n
to each index i of <i. (So x <n+i y in the new notation ⇐⇒ x <i y in the old
notation.) Let N := {1, . . . , n}, M := {n + 1, . . . , n + m}, and K := N ∪ M . For
each face f of P define

(65.48) Kf := {k ∈ K | the kth constraint in x ≥ 0, Ax ≤ b is not tight at
some point in f}.

So |Kv| = m for any vertex v and |Ke| = m + 1 for any edge e. Call an edge e of
P good if 1 ∈ Ke and the set Ke \ {1} belongs to S (cf. (65.43)).

Now 0 is incident with precisely one good edge. Hence there is a vertex v �= 0
incident with an odd number of good edges. We show that Kv ∈ S, and hence Kv

is light (since Kv �= M , as v �= 0), implying that v satisfies (65.47).
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Let e be a good edge incident with v. Then Ke = Kv ∪ {k} for some k. As e is
good, we know that 1 ∈ Ke and Ke \ {1} ∈ S.

If 1 �∈ Kv, then k = 1 and hence Kv ∈ S. So we can assume that 1 ∈ Kv.
Applying Lemma 65.13α to the light set Kv \{1}, there is precisely one j �∈ Kv \{1}
with j �= k and Kv \ {1} ∪ {j} ∈ S. If j �= 1, then v is incident with precisely two
good edges, a contradiction. So j = 1, and hence Kv ∈ S.

This implies the theorem of Boros and Gurvich [1996]:

Corollary 65.13a. A perfect graph is kernel solvable.

Proof. Let G = (V, E) be a perfect graph, and for each clique C, let <C be a total
order on C. We must prove that

(65.49) there exist a stable set S such that for each v ∈ V there is a clique C
and an element s ∈ C ∩ S with v ∈ C and v ≤C s.

Extend each <C to a total order on V with w <C v for each w ∈ C, v ∈ V \ C.
Then by Theorem 65.13, the polytope in RV determined by x ≥ 0, x(C) ≤ 1 (C
clique), has a vertex x such that for each v ∈ V there is a clique C with x(C) = 1
and such that xu = 0 for each u <C v. By Corollary 65.2e, x is the incidence vector
of some stable set S. So for each v ∈ V there is a clique C with |C ∩ S| = 1 and
with u �∈ S if u <C v. Therefore, for the vertex s in C ∩ S we have v ≤C s, and
hence v ∈ C. This shows (65.49).

It was conjectured by Berge and Duchet that conversely, each kernel solvable
graph is perfect. This follows from the strong perfect graph theorem, since kernel
solvability is closed under taking induced subgraphs and since odd circuits of length
at least five and their complements are not kernel solvable.

It implies the following theorem found by Boros and Gurvich [1996], for which
we give a direct proof. A graph H is called a blow-up of a graph G, if H arises from
G by replicating vertices (replacing vertices by cliques).

Theorem 65.14. A graph G is perfect if and only if each blow-up of G is kernel

solvable.

Proof. Since each blow-up of a perfect graph is perfect again (by the replication
lemma (Corollary 65.2c)), necessity follows from Corollary 65.13a.

Sufficiency is shown by proving that each graph G = (V, E) with |V | ≥
α(G)ω(G) + 1 has a blow-up that is not kernel solvable. (This is sufficient by The-
orem 65.2.)

Let C be the collection of cliques in G, and for each vertex v, let Cv be the
collection of cliques containing v. Let n := |V | and define

(65.50) Y := {y : C → Z+ | y(C) ≤ n|C|}.

For each y ∈ Y , we choose a vertex vy of G with

(65.51) y(Cvy ) ≤ ω(G)|C|.
This is possible since
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(65.52)
∑

v∈V

y(Cv) =
∑

C∈C
|C|yC ≤ ω(G)

∑

C∈C
yC ≤ ω(G)n|C|.

Let H be the graph with vertex set Y , two distinct vertices y, z ∈ Y being adjacent
if vy = vz or vy and vz are adjacent in G. So H is a blow-up of G. We show that
H is not kernel solvable.

For each clique K ⊆ Y of H, the set C := {vy | y ∈ K} is a clique of G. Then
choose a total order <K on K such that for all y, z ∈ K:

(65.53) if yC < zC , then y <K z.

Assume that H is kernel solvable. Then H has a stable set Z ⊆ Y such that for
each y ∈ Y there is a z ∈ Z and a clique K of H with y, z ∈ K and y ≤K z. As Z
is stable in H, the vz for z ∈ Z are distinct and form a stable set S in G. So for
each clique C of G there is at most one z ∈ Z with vz ∈ C. Define y : C → Z+ by:

(65.54) yC :=

{
zC + 1 if vz ∈ C, for z ∈ Z,

0 if C ∩ S = ∅.

Then y belongs to Y , since

(65.55) y(C) =
∑

z∈Z

∑

C∈Cvz

(zC + 1) =
∑

z∈Z

(z(Cvz ) + |Cvz |) ≤ |Z|ω(G)|C| + |C|

≤ (α(G)ω(G) + 1)|C| ≤ n|C|.
(The first inequality follows from (65.51).) Hence there exist a z ∈ Z and a clique
K of H with y, z ∈ K and y ≤K z. So for C := {vx | x ∈ K} we have, by (65.53),
yC ≤ zC . Since vz ∈ C (as z ∈ K), this contradicts (65.54).

Before the strong perfect graph conjecture was settled, and hence the conjec-
ture of Berge and Duchet, partial and related results on the latter conjecture were
obtained by Blidia [1986], Maffray [1986,1992], Duchet [1987], Berge and Duchet
[1988b,1990], Champetier [1989], Blidia and Engel [1992], Blidia, Duchet, and Maf-
fray [1993,1994], Chilakamarri and Hamburger [1993], and Galeana-Sánchez [1995,
1996,1997].

65.7c. The amalgam

A composition generalizing the 1-join, the amalgam, was shown to preserve perfec-
tion by Burlet and Fonlupt [1984]. Let G1 = (V1, E1) and G2 = (V2, E2) be perfect
graphs such that K := V1 ∩V2 is a clique in both graphs. For i = 1, 2, let vi ∈ Vi \K
be such that each vertex in K is adjacent to vi and to each neighbour of vi. Let H
be the graph on (V1 \ {v1}) ∪ (V2 \ {v2}) obtained from the union of G1 − v1 and
G2 − v2 by adding all edges between N(v1) \ K and N(v2) \ K.

Theorem 65.15. If G1 and G2 are perfect, then H is perfect.

Proof. It suffices to show that ω(H) = χ(H), since each induced subgraph of H
arises by the same construction.

For i = 1, 2, let pi := ω(Gi[N(vi)]) and let G′
i be the graph obtained from Gi by

replicating vi by a factor ω(H) − pi. So ω(G′
i) = ω(H). By the replication lemma,

G′
i is perfect. Hence ω(H) = χ(G′

i).
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Consider colourings of G′
1 and G′

2 with colours 1, . . . , ω(H). So N(vi) uses pre-
cisely pi colours. As p1 + p2 − |K| ≤ ω(H), we have (ω(H) − p1) + (ω(H) − p2) ≥
ω(H) − |K|. Hence we can assume that in G1 and G2 the colourings of K are the
same, and that all colours are used by the replication vertices of v1 and v2 and by
K. Then N(v1) \ K and N(v2) \ K have no colours in common. Hence we obtain
an ω(H)-colouring of H.

Cornuéjols and Cunningham [1985] gave an O(n2m)-time algorithm to decide
if a graph is the amalgam of smaller graphs.

Perfection is trivially closed under ‘clique sums’, that is, identifying two cliques
in two graphs. Whitesides [1981] gave an O(nm) algorithm to find a clique cut in
a graph, that is, a vertex-cut that is a clique. Tarjan [1985] gave an O(nm)-time
algorithm to find for any graph a decomposition by clique cuts.

Fonlupt and Uhry [1982] gave conditions under which identification of two ver-
tices in a graph maintains perfection. Ravindra and Parthasarathy [1977], Ravin-
dra [1978], Mândrescu [1991], and Kwaśnik and Szelecka [1997] investigated the
behaviour of perfection under taking (various) products of graphs.

More on the (de)composition of perfect graphs can be found in Hsu [1986,1987a],
Conforti and Rao [1992a,1992b], Corneil and Fonlupt [1993], Burlet and Fonlupt
[1994], and Conforti, Cornuéjols, Kapoor, and Vušković [1995].

65.7d. Diperfect graphs

Berge [1982a] introduced a directed variant of perfect graphs. In fact, there are two
symmetric variants, as no complementary phenomenon holds in the directed case.

A stable set or clique in a directed graph is a stable set of clique in the underlying
undirected graph. A directed graph D = (V, A) is called α-diperfect if for every
induced subgraph D′ = (V ′, A′) of D and for each maximum-size stable set S in
D′ there is a partition of V ′ into directed paths each intersecting S in exactly one
vertex.

Then:

(65.56) if the underlying undirected graph G of D is perfect, then D is α-
diperfect.

Indeed, if G is perfect, there is a maximum-size stable set S and a partition of V
into cliques each intersecting S. Each clique C gives a tournament on C in D, and
hence, by Rédei’s theorem (Corollary 14.14a), it contains a directed path spanning
C.

Another class of α-diperfect digraphs is formed by the symmetric digraphs:
directed graphs D = (V, A) such that if (u, v) ∈ A, then (v, u) ∈ A:

(65.57) each symmetric digraph is α-diperfect.

To see this, let S be a maximum-size stable set in D, and let D′ arise from D by
deleting all arcs entering S. By the Gallai-Milgram theorem (Theorem 14.14), V
can be partitioned into |S| directed paths in D′. These paths are as required.

Berge offered the following conjecture characterizing α-diperfect digraphs:

(65.58) (?) A directed graph D = (V, A) is α-diperfect if and only if D has no
induced subgraph C whose underlying undirected graph is a chordless
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odd circuit of length ≥ 5, say with vertices v1, . . . , v2k+1 (in order)
such that each of v1, v2, v3, v4, v6, v8, . . . , v2k is a source or a sink. (?)

The odd circuit described is not α-diperfect, since {v1, v4, v6, v8, . . . , v2k} is a
maximum-size stable set, but there are no directed paths as required.

A ‘dual’ concept is that of a χ-diperfect graph, which is a digraph D = (V, A)
such that for each induced subgraph D′ = (V ′, A′) of D and for each minimum
vertex-colouring (in the underlying undirected graph of D′) there exists a directed
path intersecting each colour exactly once.

Again one has:

(65.59) if the underlying undirected graph G of D is perfect, then D is χ-
diperfect.

Indeed, any maximum-size clique C intersects each colour in each minimum vertex-
colouring, and, again by Rédei’s theorem (Corollary 14.14a), there is a path span-
ning C.

Also:

(65.60) any symmetric digraph is χ-diperfect.

To see this, let S1, . . . , Sk be an optimum vertex-colouring. Let D′ be the graph
obtained from D by deleting all arcs from Sj to Si for all j > i. By the theorem
of Gallai and Roy (see (64.52)), D′ has a directed path of length k. Necessarily, it
intersects each Si exactly once.

One may show that the odd undirected circuit described in (65.58) is not χ-
diperfect. So conjecture (65.58) would imply that each χ-diperfect digraph is α-
diperfect.

In fact, any odd undirected circuit that contains three consecutive vertices
v1, v2, v3 that are sources or sinks, is not χ-diperfect (since there is an optimum
3-vertex-colouring where {v2} is one of the colours — hence v2 should belong to
a directed path with 3 vertices). In particular, the undirected circuit with vertices
v1, . . . , v7 and arcs

(65.61) (v1, v2), (v3, v2), (v3, v4), (v4, v5), (v5, v6), (v6, v7), (v1, v7)

is α-diperfect but not χ-diperfect (cf. Figure 65.2).

Figure 65.2
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65.7e. Further notes

Cameron, Edmonds, and Lovász [1986] showed that if the edges of a complete graph
are coloured with three colours such that no triangle gets three different colours,
and two of these colours form perfect graphs, then so does the third. (This general-
izes the perfect graph theorem.) A generalization and a related characterization of
perfection in terms of decomposition was given by Cameron and Edmonds [1997].

Markosyan and Karapetyan [1976] characterize perfection with the help of criti-

cal edges (edges e with α(G−e) > α(G)) and essential edges (edges e with χ(G−e) >
χ(G)). More on such edges can be found in Markosyan [1975], Karapetyan [1976],
Sebő [1996a], and Markossian, Gasparian, Karapetian, and Markosian [1998]. Edge-
minimal perfect graphs are studied by Wagler [1999], colouring perfect ‘degener-
ate’ graphs by Aı̈t Haddadène and Maffray [1997], ‘Gallai graphs’ and ‘anti-Gallai
graphs’ by Le [1993a,1996b], and ‘edge perfect graphs’ by Müller [1996].

An alternative polyhedral characterization of perfection of graphs was given by
Zaremba and Perz [1982]. Related is the work of Zaremba [1991] and Hujter [1999].

Chandrasekaran and Tamir [1984] and Cook, Fonlupt, and Schrijver [1986]
showed that, for any perfect graph G = (V, E) and any weight w : V → Z+,
the weighted colouring number is attained by a weighted colouring using at most
|V | different stable sets.

Von Rimscha [1983] showed that if G = (V, E) and H = (V, F ) are graphs with
G − v isomorphic to H − v for each v ∈ V , then G is perfect if and only if H is
perfect.

Bienstock [1991] showed that it is NP-complete to decide if a given graph has
an odd hole containing a prescribed vertex. More on the complexity of finding odd
holes can be found in Reed [1990]. A survey on forbidding holes and antiholes was
given by Hayward and Reed [2001].

Le [1996a] showed that if a graph G is imperfect and has no odd hole, then
the intersection graph of the edge sets of chordless circuits in G has an odd hole.
Akiyama and Chvátal [1990] characterized for which graphs G = (V, E) the in-
tersection graph of the triples spanning at least two edges, is perfect. Olaru and
Mândrescu [1992] considered perfection of products of graphs, and de Werra and
Hertz [1999] perfection of sums of graphs. Hertz [1998] characterized the graphs for
which all graphs obtained by ‘switching’ are perfect.

Variants of the notion of perfect graph were studied by Kőrner [1973], Duchet
[1980], Galeana-Sánchez [1982,1986,1988], Duchet and Meyniel [1983], Galeana-
Sánchez and Neumann-Lara [1986,1991a,1991b,1994,1996,1998], Lehel and Tuza
[1986], Conforti, Corneil, and Mahjoub [1987], Cameron [1989], Brown, Corneil,
and Mahjoub [1990], Markosyan and Gasparyan [1990], Reed [1990], Scheinerman
and Trenk [1990,1993], Berge [1992b,1992a,1995], Kőrner, Simonyi, and Tuza [1992],
Lehel [1994], Trenk [1995], Cai and Corneil [1996], Markossian, Gasparian, and Reed
[1996], Tamura [1997,2000], Gutin and Zverovich [1998], De Simone and Kőrner
[1999], Huang and Guo [1999], Fachini and Kőrner [2000], and de Figueiredo and
Vušković [2000].

Introductions to and surveys of perfect graphs are given by Berge [1973b,1975,
1986], Golumbic [1980], Lovász [1983b], Berge and Chvátal [1984] (a collection of
papers on perfect graphs), Chvátal [1985b,1987b], Jensen and Toft [1995], Toft
[1995], Ravindra [1997], Brandstädt, Le, and Spinrad [1999], and Ramı́rez Alfonśın
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and Reed [2001] (a collection of survey papers on perfect graphs). The latter ref-
erence includes a bibliography on perfect graphs by Chvátal [2001]. Applications
of perfect graphs to graph entropy were surveyed by Simonyi [2001] (cf. Simonyi
[1995]). Algorithmic aspects are discussed in Golumbic [1984].

We refer for historical remarks on perfect graphs to Section 67.4g.



Chapter 66

Classes of perfect graphs

In this chapter we consider classes of perfect graphs. The phenomenon
observed by Berge that clique number and colouring number are equal
for bipartite graphs, their line graphs, comparability graphs, and chordal
graphs, and for their complements, formed the motivation for him to raise
the conjecture that the complement of a perfect graph is perfect again (≡
perfect graph theorem).
The perfection of the graphs considered in this chapter follows directly
from the strong perfect graph theorem. However, since its proof is highly
complicated, we will give direct proofs of the perfection of several of these
graphs.

66.1. Bipartite graphs and their line graphs

The perfect graph theorem can be used to prove several min-max relations
on bipartite graphs: Kőnig’s matching theorem, the Kőnig-Rado edge cover
theorem, and Kőnig’s edge colouring theorem.

We start from the trivial observation that:

Theorem 66.1. ω(G) = χ(G) for each bipartite graph G.

Proof. Trivial.

Since the class of bipartite graphs is closed under taking induced sub-
graphs, this gives:

Corollary 66.1a. Each bipartite graph is perfect.

Proof. See above.

Hence, by the perfect graph theorem, also the complements of bipartite
graphs are perfect. This amounts to the Kőnig-Rado edge cover theorem
(Theorem 19.4):

Corollary 66.1b (Kőnig-Rado edge cover theorem). For any bipartite graph
G, α(G) = χ(G). Equivalently, the stable set number of any bipartite graph
(without isolated vertices) is equal to its edge cover number.
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Proof. Directly from the perfect graph theorem, since by Theorem 66.1, any
bipartite graph is perfect. Note that if G is a bipartite graph, then its cliques
have size at most 2; hence χ(G) is equal to the edge cover number of G if G
has no isolated vertices.

We saw in Section 16.2 that by Gallai’s theorem (Theorem 19.1), the
Kőnig-Rado edge cover theorem implies Kőnig’s matching theorem (Theorem
16.2), saying that the matching number of a bipartite graph G is equal to its
vertex cover number. That is, the stable set number of the line graph L(G) of
G is equal to the minimum number of cliques of L(G) that cover all vertices
of L(G); in notation:

(66.1) α(L(G)) = χ(L(G)).

As this is true for any induced subgraph of L(G) we know that the comple-
ment L(G) of the line graph L(G) of any bipartite graph G is perfect.

Hence with the perfect graph theorem we know:

Corollary 66.1c. The line graph of any bipartite graph is perfect.

Proof. See above.

This amounts to Kőnig’s edge-colouring theorem (Theorem 20.1):

Corollary 66.1d (Kőnig’s edge-colouring theorem). If G is the line graph of
a bipartite graph, then ω(G) = χ(G). Equivalently, the edge-colouring number
of any bipartite graph is equal to its maximum degree.

Proof. Again directly from Kőnig’s matching theorem and the perfect graph
theorem.

Complexity. In Part II on bipartite matching and covering, we saw that the op-
timization problems corresponding to the perfect graph parameters are solvable in
polynomial time, and their weighted versions are solvable in strongly polynomial
time, mainly by utilizing network flow techniques. We review the results.

The maximum-weight clique and the minimum colouring problem for bipartite
graphs are trivially solvable in strongly polynomial time. Also the weighted colour-
ing problem for bipartite graphs is easily solvable in strongly polynomial time.

A maximum-size stable set and a minimum clique cover in a bipartite graph can
be found in polynomial time (cf. Corollary 19.3a). Note that in bipartite graphs, the
minimum clique cover problem amounts to the minimum-size edge cover problem.
Also the weighted versions are solvable in strongly polynomial time by max-flow
techniques (cf. Corollary 21.25a). In bipartite graphs, the minimum weighted clique
cover problem amounts to the minimum-size b-edge cover problem.

A bipartite graph is easily recognized, by checking if there is no odd circuit.
In line graphs of bipartite graphs, finding a maximum-weight clique is trivial (by

checking all stars of the graph). In Sections 20.1 and 20.2 we saw that a minimum
weighted colouring can be found in strongly polynomial time.
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Finding a maximum clique and a minimum colouring in the complement of the
line graph of a bipartite graph G amounts to finding a maximum-size matching
and a minimum-size vertex cover in G, which can be found in polynomial time
(cf. Theorem 16.3 and Corollary 16.6a). Their weighted versions can be found in
strongly polynomial time with the methods for the assignment and the minimum-
cost flow problems (cf. Theorems 17.4 and 17.6).

Van Rooij and Wilf [1965] showed that line graphs of bipartite graphs can be
recognized in polynomial time, and that the corresponding bipartite graph can be
reconstructed in polynomial time.

66.2. Comparability graphs

Also Dilworth’s decomposition theorem (Theorem 14.2) can be derived from
the perfect graph theorem. Let (V, ≤) be a partially ordered set. Let G =
(V, E) be the graph with:

(66.2) uv ∈ E if and only if u < v or v < u.

Any graph G obtained in this way is called a comparability graph.
In Theorem 14.1 we saw the following easy ‘dual’ form of Dilworth’s de-

composition theorem:

Theorem 66.2. In any partially ordered set (V, ≤), the maximum size of a
chain is equal to the minimum number of antichains needed to cover V .

Proof. For any v ∈ V define the height of v as the maximum size of a chain in
V with maximum element v. Let k be the maximum height of the elements of
V . For i = 1, . . . , k, let Ai be the set of elements of height i. Then A1, . . . , Ak

are antichains covering V , and moreover, there is a chain of size k, since there
is an element of height k.

Equivalently, we have ω(G) = χ(G) for any comparability graph. As the
class of comparability graphs is closed under taking induced subgraphs we
have:

Corollary 66.2a. Each comparability graph is perfect.

Proof. Directly from Theorem 66.2.

Hence, by the perfect graph theorem, also the complement of a compara-
bility graph is perfect. This implies:

Corollary 66.2b (Dilworth’s decomposition theorem). In any partially or-
dered set (V, ≤), the maximum size of an antichain is equal to the minimum
number of chains needed to cover V .

Proof. Directly from Corollary 66.2a.
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Complexity. The optimization problems corresponding to the perfect graph pa-
rameters for comparability graphs can be solved in strongly polynomial time by
path and flow techniques, as we saw in Chapter 14. With a greedy method, one can
find a maximum-weight clique in a comparability graph G = (V, E) with weight
function w : V → Q+ (if the underlying partial order ≤ is given): if all weights are
0, the problem is trivial; if there exist vertices of positive weights, find the set S of
minimal elements of positive weight, let α := minv∈S w(v), reset w(v) := w(v) − α
for v ∈ S, and find recursively a maximum-weight clique C for the new weights.
Then we can assume that C ∩ S �= ∅. Hence C is also a maximum-weight clique for
the original weight function.

This method also solves the weighted colouring problem in strongly polynomial
time. An O(n2) algorithm for the weighted colouring problem for comparability
graphs was given by Hoàng [1994]. The weighted stable set and clique cover prob-
lems can be solved in strongly polynomial time with flow techniques (see Chapter
14).

Trivially, recognizing comparability graphs belongs to NP (by giving the under-
lying partial order), and membership of co-NP follows from the characterizations of
Ghouila-Houri [1962a,1964] and Gilmore and Hoffman [1964]. A method of Gallai
[1967] implies that the problem in fact is polynomial-time solvable (cf. Pnueli, Lem-
pel, and Even [1971], Golumbic [1977], Spinrad [1985], Muller and Spinrad [1989],
and McConnell and Spinrad [1994,1997,1999] (the latter paper gives a linear-time
recognition algorithm)).

Golumbic, Rotem, and Urrutia [1983] and Lovász [1983b] characterized comple-
ments of comparability graphs as those graphs that are the intersection graph of a
family of continuous functions f : (0, 1) → R. (Here f and g intersect if f(x) = g(x)
for some x ∈ (0, 1).)

Permutation graphs. A permutation graph is a graph on {1, . . . , n} for which
there exists a permutation π of {1, . . . , n} such that i, j ∈ {1, . . . , n} are adjacent if
and only if (i−j)(π(i)−π(j)) > 0. A graph G is (isomorphic to) a permutation graph
if and only if both G and G are comparability graphs (Dushnik and Miller [1941]
(also Even, Pnueli, and Lempel [1972])). McConnell and Spinrad [1997] showed
that permutation graphs can be recognized in linear time (improving McConnell
and Spinrad [1994]). Another characterization was given by Baker, Fishburn, and
Roberts [1972].

The books by Even [1973] and Golumbic [1980] devote chapters to comparability
graphs and to permutation graphs.

66.3. Chordal graphs

We next consider a further class of perfect graphs, the ‘chordal graphs’ (or
‘rigid circuit graphs’ or ‘triangulated graphs’). A graph G is called chordal
if each circuit in G of length at least 4 has a chord. (A chord is an edge
connecting two vertices of the circuit that are nonadjacent in the circuit.)
Equivalently, a graph is chordal if it has no hole.
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For any set U of vertices, let N(U) denote the set of vertices not in U that
are adjacent to at least one vertex in U . Call a vertex v simplicial if N({v})
is a clique in G.

Dirac [1961] showed the following basic property of chordal graphs:

Theorem 66.3. Each chordal graph G contains a simplicial vertex.

Proof. We may assume that G has at least two nonadjacent vertices a, b.
Let U be a maximal nonempty subset of V with G[U ] connected and with
U ∪ N(U) �= V . Such a subset U exists as U := {a} induces a connected
subgraph of G and as {a} ∪ N({a}) �= V .

Let W := V \(U ∪N(U)). Then each vertex v in N(U) is adjacent to each
vertex in W , since otherwise we could increase U by v. Moreover, N(U) is
a clique, for suppose that u, w ∈ N(U) are nonadjacent. Choose v ∈ W . Let
P be a shortest path in U ∪ N(U) connecting u and w. Then P ∪ {u, v, w}
would form a chordless circuit of length at least 4, a contradiction.

Now inductively we know that G[W ] contains a vertex v that is simplicial
in G[W ]. Since N(U) is a clique and since each vertex in W is adjacent to
each vertex in N(U), v is also simplicial in G.

(The proof of Theorem 66.3 implies that, in a chordal graph, each vertex v
that is nonadjacent to at least one vertex w �= v, is nonadjacent to at least
one simplicial vertex w �= v. Hence each noncomplete chordal graph contains
at least two nonadjacent simplicial vertices.)

As was observed by Fulkerson [1972a], Theorem 66.3 implies a result
of Berge [1963a] (the result was announced (with partial proof) in Berge
[1960a]):

Theorem 66.4. Any chordal graph G satisfies ω(G) = χ(G).

Proof. By Theorem 66.3, G has a simplicial vertex v. By induction we have
ω(G − v) = χ(G − v). In particular, G − v has an ω(G)-vertex-colouring. As
|N(v)| ≤ ω(G) − 1 (since {v} ∪ N(v) is a clique), we can extend this to an
ω(G)-vertex-colouring of G.

As the class of chordal graphs is closed under taking induced subgraphs,
this implies:

Corollary 66.4a. Each chordal graph is perfect.

Proof. Directly from Theorem 66.4.

With the perfect graph theorem, this implies the following result of Hajnal
and Surányi [1958] (which also can be derived directly from Theorem 66.3):

Corollary 66.4b. For any chordal graph G, α(G) = χ(G).
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Proof. Directly from Corollary 66.4a and the perfect graph theorem (Corol-
lary 65.2a).

Complexity. Dirac’s theorem (Theorem 66.3) can be used to obtain strongly
polynomial-time algorithms for the basic optimization problems for chordal graphs.
The proof of Theorem 66.4 yields such an algorithm to find an optimum colouring
and clique, also for the weighted versions. Similarly, the strong polynomial-time
solvability of the weighted stable set and clique cover problems can be derived
(Gavril [1972], Frank [1976b]). O(n2) algorithms for minimum weighted colouring
for chordal graphs were given by Balas and Xue [1991] and Hoàng [1994].

Dirac’s theorem also directly gives a polynomial-time recognition algorithm
for chordal graphs: iteratively find and delete a simplicial vertex until the graph is
empty. Linear-time algorithms were given by Lueker [1974], Rose and Tarjan [1975],
Rose, Tarjan, and Lueker [1976], and Tarjan and Yannakakis [1984]. (Gavril [1974b]
gave another polynomial-time algorithm.)

Dirac’s theorem also implies the following other characterizations of chordal
graphs (Dirac [1961] (stated explicitly by Fulkerson and Gross [1965] and Rose
[1970])):

(66.3) A graph G = (V, E) is chordal ⇐⇒ each induced subgraph has a
simplicial vertex ⇐⇒ G has an acyclic orientation D = (V, A) such
that if (u, v), (u, w) ∈ A, then {v, w} ∈ E.

Dirac [1961] moreover showed that a graph is chordal if and only if each inclusion-
wise minimal vertex-cut is a clique.

Interval graphs. An interval graph is the intersection graph G of a family C of
nonempty intervals on the real line11. Trivially, such a graph is the complement of
a comparability graph: define I < J ⇐⇒ i < j for all i ∈ I, j ∈ J . This gives a
partial order, and the corresponding comparability graph is equal to G.

Perfection of the complements of interval graphs was observed by T. Gallai (see
Hajnal and Surányi [1958]) — that is, the maximum number of disjoint intervals
in C is equal to the minimum number of points intersecting all intervals in C. This
is not hard to prove, and can be proved similarly to the easy dual of Dilworth’s
decomposition theorem (Theorem 14.1). In fact, a graph is an interval graph if and
only if it is chordal and its complement is a comparability graph.

The clique, stable set, colouring, and clique cover problem and their weighted
versions can be solved in strongly polynomial time with the methods for compara-
bility graphs described above. If the intervals are given in the order of their max-
imal elements, and we consecutively assign to each interval the smallest available
colour (numbering the colours 1, 2, . . .), we obtain an optimum colouring. (Kier-
stead [1988] showed that if we get the intervals in an arbitrary order and we assign
to any given interval the smallest possible colour (‘on-line’), then we need at most
40χ(G) colours.)

In fact, for any clique C in G there is a point x such that all intervals in C contain
x (by Helly’s theorem: a family of pairwise intersecting intervals has a nonempty
intersection). So finding a maximum-weight clique is trivial. A maximum-size stable

11 The intersection graph of a family C is the graph with vertex set C, two sets in C being
adjacent if and only if they intersect.
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set can be found by a greedy method: first find an interval I ∈ C with sup I minimal.
Next find recursively a maximum-size stable set S among the intervals in C disjoint
from I. Then S ∪ {I} is a maximum-size stable set in G.

In reply to questions of Hajós [1957] and Benzer [1959], interval graphs have
been characterized by Lekkerkerker and Boland [1962] (cf. Halin [1982]), Gilmore
and Hoffman [1964], and Fulkerson and Gross [1965]. The latter paper gives a
polynomial-time recognition algorithm. A linear-time recognition algorithm was
given by Booth and Lueker [1975,1976]. This was simplified by Korte and Möhring
[1987], Corneil, Olariu, and Stewart [1998], Hsu and Ma [1999], and Hsu [2002].

More on interval graphs can be found in the books by Golumbic [1980], Skrien
[1982], Fishburn [1985], and Brandstädt, Le, and Spinrad [1999], and in the survey
article by Golumbic [1985].

Split graphs. A split graph is a graph G = (V, E) where V can be partitioned into
a clique C and a stable set S. Trivially, a split graph is perfect, since C is contained
in a maximum-size clique; hence we can assume that C is a maximum-size clique; so
for each s ∈ S there is a c ∈ C nonadjacent to s; this yields a |C|-vertex-colouring
of G.

A graph G is a split graph if and only if both G and G are chordal graphs
(Foldes and Hammer [1977], Hammer and Simeone [1981]). The book by Golumbic
[1980] devotes a chapter to split graphs.

Trivially perfect graphs. Golumbic [1978] calls a graph trivially perfect if for
each induced subgraph, the stability number is equal to the number of inclusion-
wise maximal cliques. Trivially, each trivially perfect graph is perfect. Choudom,
Parthasarathy, and Ravindra [1975] and Golumbic [1978] showed that a graph is
trivially perfect if and only if it has no induced subgraph equal to the path P4 or
the circuit C4 (each with 4 vertices). This implies (by a theorem of Wolk [1962]
(proof simplified in Wolk [1965])) that a graph is trivially perfect if and only if it
is the comparability graph coming from a branching. Another characterization of
trivially perfect graphs was given by Alexe and Olaru [1997].

Threshold graphs. A threshold graph is a graph on vertex set V given by a
function w : V → R, such that two distinct vertices u, v are adjacent if and only if
w(u)+w(v) > 0. Chvátal and Hammer [1977] showed that a graph G is a threshold
graph if and only if neither G nor G has an induced subgraph equal to the path
P4 or the circuit C4 (each with 4 vertices) — that is, both G and G are trivially
perfect.

Each threshold graph is a split graph (trivially) and a permutation graph (order
the vertices as v1, . . . , vn such that w(v1) ≤ w(v2) ≤ · · · ≤ w(vn), and let π be the
permutation given by ordering |w(v1)|, |w(v2)|, . . . , |w(vn)|). However, the path P4

with 4 vertices is both a split graph and a permutation graph, but no threshold
graph.

The book by Mahadev and Peled [1995] focuses on threshold graphs, and the
book by Golumbic [1980] devotes a chapter to threshold graphs. A related class of
graphs was described by Wang [1995,1996].
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‘Strongly chordal’ graphs have been studied by Farber [1983,1984] and Kaplan and
Shamir [1994], and an analogue of chordal graphs for bipartite graphs by Golumbic
and Goss [1978].

66.3a. Chordal graphs as intersection graphs of subtrees of a tree

Chordal graphs can be characterized as intersection graphs of subtrees of a tree, as
was shown by L. Surányi (see Gyárfás and Lehel [1970]) and also by Walter [1972,
1978], Buneman [1974], and Gavril [1974c].

Let S be a collection of nonempty subtrees of a tree T . The intersection graph

of S is the graph with vertex set S, where two vertices S, S′ are adjacent if and
only if S and S′ have at least one vertex in common.

The class of graphs obtained in this way coincides with the class of chordal
graphs. To see this, we first show the following elementary lemma:

Lemma 66.5α. Let S be a collection of pairwise intersecting subtrees of a tree T .

Then there is a vertex of T contained in all subtrees in S.

Proof. By induction on |V T |. If |V T | = 1 the lemma is trivial, so assume |V T | ≥ 2.
Let t be an end vertex of T . If there exists a subtree in S consisting only of t, the
lemma is trivial. Hence we may assume that each subtree in S containing t also
contains the neighbour of t. So deleting t from T and from all subtrees in S gives
the lemma by induction.

Then we have the subtree characterization of chordal graphs:

Theorem 66.5. A graph is chordal if and only if it is isomorphic to the intersection

graph of a collection of subtrees of some tree.

Proof. Necessity. Let G = (V, E) be chordal. By Theorem 66.3, G contains a simpli-
cial vertex v. By induction, the graph G−v is the intersection graph of a collection
S of subtrees of some tree T . Let S ′ be the subcollection of S corresponding to the
set N of neighbours of v in G. As N is a clique, S ′ consists of pairwise intersecting
subtrees. Hence, by Lemma 66.5α, these subtrees have a vertex t of T in common.
Now we extend T and all subtrees in S ′ with a new vertex s and a new edge st.
Moreover, we introduce a new subtree {s} representing v. In this way we obtain a
subtree representation for G.

Sufficiency. Let G be the intersection graph of some collection S of subtrees of
some tree T . By (66.3) it suffices to show that G has a simplicial vertex. Let s be
an end vertex of T . If S contains a subtree only consisting of s, it gives a simplicial
vertex in G. If S contains no such subtree, then each subtree in S containing s also
contains the neighbour t (say) of s. So deleting s from T and from all subtrees in
S, does not modify the graph G. Hence we are done by induction.

This theorem enables us to interpret the perfection of chordal graphs in terms
of trees:
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Corollary 66.5a. Let S be a collection of nonempty subtrees of a tree T . Then the

maximum number of pairwise vertex-disjoint trees in S is equal to the minimum

number of vertices of T intersecting each tree in S.

Proof. Directly from Corollary 66.4b and Theorem 66.5, using Lemma 66.5α.

(This result was also stated by Cockayne, Hedetniemi, and Slater [1979].)
Similarly we have:

Corollary 66.5b. Let S be a collection of subtrees of a tree T . Let k be the max-

imum number of times that any vertex of T is covered by trees in S. Then S can

be partitioned into subcollections S1, . . . , Sk such that each Si consists of pairwise

vertex-disjoint trees.

Proof. Directly from Theorems 66.4 and 66.5, again using Lemma 66.5α.

Variations of the problem of packing and covering a tree by subtrees were stud-
ied by Bárány, Edmonds, and Wolsey [1986]. More characterizations of chordal
graphs were offered by Benzaken, Crama, Duchet, Hammer, and Maffray [1990].
More on chordal graphs can be found in the book of Golumbic [1980] and in
Skrien [1982], Leung [1984], Seymour and Weaver [1984] (a generalization of chordal
graphs), Lubiw [1987], Wallis and Wu [1995], and Nakamura and Tamura [2000] (a
generalization to bidirected graphs).

66.4. Meyniel graphs

Markosyan and Karapetyan [1976] and Meyniel [1976] showed the perfection
of graphs in which each odd circuit of length at least five has at least two
chords (Meyniel graphs). This was conjectured by Olaru [1969,1972].

It implies the perfection of Gallai graphs — graphs in which each odd
circuit of length at least five has two noncrossing chords (Gallai [1962], cf.
Surányi [1968] for a shorter proof 12), parity graphs — graphs in which each
odd circuit of length at least five has two crossing chords (Olaru [1969,1972,
1977], cf. Sachs [1970]), and graphs that have no path P4 as induced subgraph
(Seinsche [1974]).

We follow the proof given by Lovász [1983b] (which is a simplification of
Meyniel’s original proof).

Theorem 66.6. Each Meyniel graph is perfect.

Proof. I. We first show that in a Meyniel graph G = (V, E):

(66.4) for each odd circuit C and each vertex v on C, C has a chord
disjoint from v or each vertex of C − v is adjacent to v.

12 Gallai [1962] published a proof that α(G) = χ(G) for graphs in which each odd circuit
of length at least 5 has two noncrossing chords. Berge [1997] wrote that Gallai informed
him in a letter that he knew that also ω(G) = χ(G) holds for these graphs.
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Let C have no chord disjoint from v. Then the subgraph of G induced by V C
is outerplanar, with C as boundary. As each odd circuit of size at least five
has a chord we know that each odd bounded face is a triangle. (A face is odd
(even) if its is incident with an odd (even) number of edges.)

Moreover, as C is odd, there is at least one odd bounded face. So if v is not
adjacent to all vertices of C − v, there is an even bounded face, neighbouring
an odd bounded face. But then the union of these two faces forms an odd
circuit with only one chord, contradicting the condition.

II. We now prove the theorem. It suffices to show that χ(G) = ω(G)
for any Meyniel graph G = (V, E), as the class of Meyniel graphs is closed
under taking induced subgraphs. We may assume that V = {1, . . . , n}. Let
k := χ(G).

For each colouring φ : V → {1, . . . , k}, let the (ordered) clique Kφ =
(v1, . . . , vt) be obtained recursively as follows. If v1, . . . , vi have been deter-
mined (for i ≥ 0), then vi+1 is the largest vertex of colour i+1 that is adjacent
to each of v1, . . . , vi. If no such vertex exists, we stop, setting t := i.

Let φ be a k-colouring with Kφ = (v1, . . . , vt) lexicographically minimal.
If t = k we are done, so assume t < k. Consider the subgraph of G induced
by the vertices coloured t and t + 1, and let H be its component containing
vt. Let ψ be the colouring obtained from φ by interchanging colours t and
t+1 in H. We show that Kψ is lexicographically less than Kφ, contradicting
our assumption.

Trivially, v1, . . . , vt−1 belong to Kψ (since we did not change any of the
colours 1, . . . , t−1). If no other vertex is in Kψ we are done, so we can assume
that Kψ contains a vertex w with ψ(w) = t.

Then w �= vt, since ψ(vt) = t + 1. If w < vt we are done, so we can
assume that w > vt. If φ(w) = t, this contradicts the choice of vt ∈ Kφ. So
φ(w) = t + 1, and H contains a shortest path P from vt to w. Necessarily,
this path is odd, and has no chords.

Let u be the second vertex on P . So φ(u) = t + 1. Since vt is the last
vertex in Kφ we know that there is an i ∈ {1, . . . , t − 1} with vi not adjacent
to u. Let C be the circuit made by P , vivt, and viw. As P has no chords, by
(66.4) vi is adjacent to u, a contradiction.

Ravindra [1982] showed that each Meyniel graph is strongly perfect (see
Section 66.5a below). This was extended by Hoàng [1987b], who showed that
Meyniel graphs are precisely those graphs with the property that for each
induced subgraph H and each vertex v of H, there exists a stable set in H
containing v and intersecting all inclusionwise maximal cliques of H. (This
was conjectured by Meyniel.)

Complexity. Burlet and Fonlupt [1984] showed that the class of Meyniel graphs
is closed under amalgamation (see Section 65.7c) and that each Meyniel graph
arises by amalgamation from chordal graphs and bipartite graphs added with one
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vertex connected to all vertices of the bipartite graph. They showed that it yields a
polynomial-time recognition algorithm (speeded up by Roussel and Rusu [1999b]).

Hoàng [1987b] gave an O(n8)-time algorithm to find a minimum colouring and
a maximum clique. An O(n3) algorithm was given by Hertz [1990a].

(Conforti, Cornuéjols, Kapoor, and Vušković [1999] consider an extension by
decomposing cap-free graphs (where a cap is a circuit with exactly one chord, con-
necting two vertices at distance two in the circuit) — a (not necessarily perfect)
generalization of Meyniel graphs.)

Gallai graphs. As mentioned, these are graphs in which each odd circuit of length
≥ 5 has two noncrossing chords. Polynomial-time recognition algorithms were given
by Burlet and Fonlupt [1984], Whitesides [1984], and Cicerone and Di Stefano
[1999b] (linear-time). The latter paper also gives a linear-time maximum-weight
clique algorithm. A linear-time colouring algorithm was found by Roussel and Rusu
[1999a].

Parity graphs. As mentioned, these are graphs in which each odd circuit of length
≥ 5 has two crossing chords. Parity graphs can be characterized alternatively as
those graphs such that for each pair u, v of vertices, all chordless u − v paths have
the same parity.

Combinatorial strongly polynomial-time algorithms to solve the weighted clique,
stable set, colouring, and clique cover problems in parity graphs were given by
Burlet and Uhry [1982], who also gave a polynomial-time recognition algorithm (by
decomposition of the graph into smaller parity graphs).

The parity graphs include the line-perfect graphs, which are graphs whose line
graph is perfect. They were characterized by Trotter [1977] — see the claw-free
graphs in Section 65.6d. More on parity graphs can be found in Adhar and Peng
[1990], Bandelt and Mulder [1991], Przytycka and Corneil [1991], Rusu [1995b],
Jansen [1998], and Cicerone and Di Stefano [1999a].

66.5. Further results and notes

66.5a. Strongly perfect graphs

Following Berge and Duchet [1984], a graph G = (V, E) is strongly perfect if each
induced subgraph H has a stable set intersecting all inclusionwise maximal cliques
of H. Each strongly perfect graph is perfect (by (65.2)). Berge and Duchet showed
that comparability graphs, chordal graphs, and complements of chordal graphs are
strongly perfect. Ravindra [1982] showed that Meyniel graphs are strongly perfect,
and Chvátal [1984d] that perfectly orderable graphs are strongly perfect.

Berge and Duchet also showed that the recognition problem for strongly perfect
graphs belongs to co-NP. No combinatorial polynomial-time algorithms are known
for the optimization problems for strongly perfect graphs.

Olaru [1996] showed that the graphs that are both minimally strongly imper-
fect and imperfect are precisely the odd circuits of length at least five and their
complements. Hence to prove the strong perfect graph theorem it suffices to show
that each minimally imperfect graph is also minimally strongly imperfect.
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More on strongly perfect graphs can be found in Ravindra [1981,1999], Berge
[1983], Basavayya and Ravindra [1985,1987], Preissmann [1985], Preissmann and
de Werra [1985], Olaru and Mı̂ndrescu [1986a,1986b], Olaru [1987,1993], Ravindra
and Basavayya [1988,1992,1994,1995], Olariu [1989a], W�loch [1995], Blidia, Duchet,
and Maffray [1996], Szelecka and W�loch [1996], and Alexe and Olaru [1997].

66.5b. Perfectly orderable graphs

A graph G = (V, E) is a perfectly orderable graph if it has an acyclic orientation
D = (V, A) such that if four vertices v1, v2, v3, v4 induce a chordless path in G with
edges v1v2, v2v3, v3v4, then (v1, v2) ∈ A or (v4, v3) ∈ A. Chvátal [1984d] showed
that perfectly orderable graphs are perfect — in fact, strongly perfect:

Theorem 66.7. Each perfectly orderable graph is strongly perfect.

Proof. We can assume that V = {1, . . . , n} and that if (i, j) ∈ A, then i < j. Let
S be the stable set with

∑
(2−i | i ∈ S) maximal. Then each v �∈ S has a neighbour

u ∈ S with u < v, since otherwise (S \ N(v)) ∪ {v} is better than S.
We show that each inclusionwise maximal clique K intersects S. Suppose K ∩

S = ∅. For s ∈ S, let Ks be the set of neighbours v ∈ K with s < v. Choose
s ∈ S with

∑
(2i | i ∈ Ks) maximal. As K is a maximal clique, s is nonadjacent

to some v ∈ K. Let u ∈ S be a neighbour of v with u < v. So v ∈ Ku \ Ks. By
the choice of s, there is a vertex i ∈ Ks \ Ku with i > v. So u < v < i, and hence
u and i are nonadjacent (otherwise i ∈ Ku). As u and s are nonadjacent (since
u, s ∈ S) and v and i are adjacent (since v, i ∈ K), u, v, i, s induce a P4 subgraph
with (u, v), (v, i), (s, i) ∈ A, a contradiction.

(Another proof, and a generalization, of this was given by Duchet and Olariu [1991].)
Note that the set S in this proof can be found by a greedy method. So we can

find an optimum colouring in polynomial time. Given an orientation as above, also
a maximum-size clique can be found in a greedy way — see Chvátal [1984d]. Hoàng
[1994] gave O(nm)-time algorithms, also for the weighted versions. Middendorf and
Pfeiffer [1990a] showed that it is NP-complete to decide if a graph is perfectly
orderable.

Comparability graphs, chordal graphs, and complements of chordal graphs are
perfectly orderable.

More on perfectly orderable graphs can be found in Cochand and de Werra
[1986], Preissmann, de Werra, and Mahadev [1986], Chvátal, Hoàng, Mahadev,
and de Werra [1987], Lehel [1987], Hertz [1988,1990b], Hoàng and Khouzam [1988],
Olariu [1988a,1993], Bielak [1989], Hoàng and Mahadev [1989], Hoàng and Reed
[1989a,1989b], Jamison and Olariu [1989a], Chvátal [1990,1993], Hoàng, Maffray,
and Preissmann [1991], Croitoru and Radu [1992a], Hoàng, Maffray, Olariu, and
Preissmann [1992], Gavril, Toledano Laredo, and de Werra [1994], Arikati and
Peled [1996], Giakoumakis [1996], Hoàng [1996a,1996b,2001], Rusu [1996], Hayward
[1997a], Hoàng, Maffray, and Noy [1999], and Hoàng and Tu [2000].

More classes of graphs based on orienting or colouring edges are given by Hoàng
[1987a].
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66.5c. Unimodular graphs

A graph G = (V, E) is unimodular if the following matrix M is totally unimod-
ular: the columns are indexed by V and the rows are the incidence vectors of all
inclusionwise maximal cliques of G. Any induced subgraph of a unimodular graph
is unimodular again, since for each v ∈ V and for each maximal clique C of G − v,
either C or C ∪ {v} is a maximal clique of G.

Unimodular graphs include bipartite graphs, line graphs of bipartite graphs,
and interval graphs.

Perfection of unimodular graphs and their complements was shown by Berge
[1963a]. Perfection of the complements of unimodular graphs follows from the Hoff-
man-Kruskal theorem (Hoffman and Kruskal [1956]), since

(66.5) α(G) = max{1Tx | x ≥ 0, Mx ≤ 1} = min{yT1 | y ≥ 0, yTM ≥ 1}
= χ(G),

as the LP-optima are attained by integer vectors x and y.
The perfection of a unimodular graph G = (V, E) can also be derived from the

Hoffman-Kruskal theorem, with an idea which Berge [1963a] attributed to M.H.
McAndrew. It suffices to find a stable set that intersects all maximum-size cliques.
Let M ′ be the submatrix of M corresponding to the maximum-size cliques. The
system 0 ≤ x ≤ 1, Mx ≤ 1, M ′x ≥ 1 has a solution (namely x = ω(G)−11). Hence,
as M is total unimodular, it has an integer solution x. This is the incidence vector
of a stable set as required.

By a result of Heller [1957] (cf. Theorem 21.4 in Schrijver [1986b]), a unimodular
graph has at most |V |(|V |+1) inclusionwise maximal cliques. As W.H. Cunningham
(cf. Grötschel, Lovász, and Schrijver [1988]) observed, this gives a polynomial-time
method to enumerate all maximal cliques: Choose v ∈ V . Enumerate the maximal
cliques C1, . . . , Ct of G− v (recursively). Then the maximal cliques of G are among
the cliques Ci (i = 1, . . . , t), and (Ci ∩ N(v)) ∪ {v} (i = 1, . . . , t). We can select the
maximal cliques among these cliques in polynomial time. Since t ≤ |V |(|V | + 1),
this gives a polynomial-time method.

This directly gives a strongly polynomial-time method to find a maximum-
weight clique. It also implies that the weighted versions of the stable set, colouring,
and clique cover problems can be solved in strongly polynomial time, by solving
an explicit linear programming problem (using Tardos [1986]). The colouring prob-
lem can be solved recursively by first finding (with LP-techniques) a 0, 1 vector x
satisfying x(C) ≤ 1 for each maximal clique C and x(C) = 1 for each maximum-
size clique C, and next colouring G − S recursively (where x = χS). The weighted
version can be solved similarly.

Since by a theorem of Seymour [1980a], totally unimodular matrices can be rec-
ognized in polynomial time, this also yields a polynomial-time method to recognize
a unimodular matrix.

Ghouila-Houri [1962b] showed that a graph G = (V, E) is unimodular if and
only if each nonempty subset U of V contains two disjoint sets U1 and U2 such that
U1 ∪ U2 �= ∅ and such that each maximal clique C of G with |C ∩ U | even, satisfies
|C ∩ U1| = |C ∩ U2|.
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66.5d. Further classes of perfect graphs

Weakly chordal graphs. A graph G = (V, E) is called weakly chordal (or weakly

triangulated) if neither G nor its complement contains a chordless circuit of length at
least 5. Hayward [1985] showed that weakly chordal graphs are perfect. Polynomial-
time algorithms for the optimization problems related to weakly chordal graphs
were given by Hayward, Hoàng, and Maffray [1989], Spinrad and Sritharan [1995],
and Hayward, Spinrad, and Sritharan [2000], and polynomial-time recognition al-
gorithms by Spinrad and Sritharan [1995] and Hayward, Spinrad, and Sritharan
[2000]. The class of weakly chordal graphs contains both the chordal graphs and
their complements.

More on weakly chordal graphs is given in Hoàng, Maffray, Olariu, and Preiss-
mann [1992], Hayward [1996,1997a,1997b], and McMorris, Wang, and Zhang [1998].
Weakly chordal comparability graphs were studied by Eschen, Hayward, Spinrad,
and Sritharan [1999].

Quasi-parity graphs. A graph G = (V, E) is a quasi-parity graph if each induced
subgraph H that is not a clique has two vertices that are not connected by a
chordless path of odd length. Meyniel [1987] showed that these graphs are perfect,
and that they include the Meyniel graphs and the perfectly orderable graphs. (A
short proof of this last is given by Hertz and de Werra [1988].)

Berge [1986] showed that the class of quasi-parity graphs can be enlarged to
those graphs in which for each induced subgraph H with at least two vertices,
there exist two vertices such that in H or H there is no chordless odd-length path
connecting them.

Edmonds-Giles graphs. Let D = (V, A) be a directed graph and let C be a
crossing collection of subsets of V with δout(U) = ∅ for each U ∈ C. Make an
undirected graph G with vertex set A, two arcs a, a′ being adjacent if and only if
there is a U ∈ C such that both a and a′ enter U . In Schrijver [1983a] such a graph
is called an Edmonds-Giles graph. Each such graph is perfect, as can be seen as
follows.

A special case of the Edmonds-Giles theorem (Theorem 60.1) is that the system
(in x ∈ RA)

(66.6) (i) 0 ≤ x(a) ≤ 1 for a ∈ A,

(ii) x(δin(U)) ≤ 1 for U ∈ C,

is totally dual integral. Hence it determines an integer polytope. Now the integer
vectors x satisfying (66.6) are exactly the incidence vectors of the stable sets of
G. Each inequality (66.6)(ii) is a clique inequality. The stable set polytope of G
therefore is determined by the clique inequalities, and hence G is perfect (Corollary
65.2e). It in particular implies that each clique of G is contained in δin(U) for some
U ∈ C.

A special case of Edmonds-Giles graphs was given by Kahn [1984], where D =
(V, A) is a directed graph and C is the collection of nonempty proper subsets U of V
with δout(U) = ∅ and |δin(U)| minimal. With the perfect graph theorem this implies
that the arcs of a digraph can be coloured in such a way that each minimum-size
directed cut contains each colour exactly once.
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p-comparability graphs. Cameron and Edmonds [1992] showed perfection of the
following graphs. Let D = (V, A) be a directed graph and let U ⊆ V be such that
each directed circuit of D has precisely one vertex in U . Let G be the undirected
graph on V \ U with any two u, v ∈ V \ U adjacent if and only if there is a
directed circuit containing u and v. Cameron and Edmonds [1992] call such graphs
p-comparability graphs. Any comparability graph is a p-comparability graph, but
not conversely.

Each such graph G is perfect. The proof is by reduction to minimum-cost flow,
using the facts that each clique of G is contained in some directed circuit of D
and that by Theorem 65.11 it suffices to show that χ∗(G) = χ(G). (The class of
p-comparability graphs is closed under taking induced subgraphs, since adding all
arcs (u, v) for which there is a directed u − v path avoiding U , maintains the above
property of D.)

Now a minimum fractional clique cover of G corresponds to a minimum frac-
tional covering of V \ U by directed circuits. By the integer flow theorem, this last
is attained by an integer covering of V \U by directed circuits. Hence, the minimum
fractional clique cover in G is attained by an integer clique cover. This amounts to
χ∗(G) = χ(G).

Polyominoes. A polyomino is a union of unit squares in the plane. (A unit square
is a square with integer coordinates and area 1.)

Given a polyomino P , make a graph G with vertices all unit squares contained
in P , two of them being adjacent if and only if P contains a rectangle (with hor-
izontal and vertical sides) containing both squares. Győri [1984] showed that if P
is horizontally convex, then α(G) = χ(G) (see Section 60.3d). (P is horizontally

convex if each horizontal line has a convex intersection with P .) This extends a
result of Chaiken, Kleitman, Saks, and Shearer [1981], who proved α(G) = χ(G)
if P is orthogonally convex. (P is orthogonally convex if each horizontal or vertical
line has a convex intersection with P .) The latter paper also mentions that E. Sze-
merédi gave an example that one cannot delete orthogonal convexity, and it gives
an example of F.R.K. Chung (1979) showing that one cannot relax it to simple
connectivity.

Saks [1982] showed that if P is orthogonally convex, then the subgraph of G
induced by the boundary squares is perfect. (A boundary square of P is a unit
square having a neighbouring square not in P .) (This was proved for the subset of
corner squares by Chaiken, Kleitman, Saks, and Shearer [1981]. (A corner square

of P is a unit square having at least two neighbouring squares not in P .))
Shearer [1982] showed that also the following graph G arising from a simply

connected polyomino P is perfect: the vertices of G are the rectangles contained in
P , where two of them are adjacent if and only if they have a unit square in common.

Motwani, Raghunathan, and Saran [1989] showed that the visibility graph of
a horizontally convex polyomino is perfect; in fact, a permutation graph. More on
this and related problems can be found in Berge, Chen, Chvátal, and Seow [1981],
Győri [1985], Motwani, Raghunathan, and Saran [1988,1990], and Maire [1994a].

66.5e. Further notes

Hayward [1990] showed that graphs containing neither C5 nor P6 nor P6 as induced
subgraphs, are perfect. Other classes of perfect graphs were studied by Ravindra
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[1976], Payan [1983], Golumbic, Monma, and Trotter [1984], Hammer and Ma-
hadev [1985], Monma, Reed, and Trotter [1988], Hertz [1989a,1989b,1989c], Hoàng
and Maffray [1989,1992], Bertschi [1990], Lubiw [1991b], Sun [1991], Croitoru and
Radu [1993], Gurvich, Temkin, Udalov, and Shapovalov [1993], Thomas [1993],
Maire [1994b,1996], Rusu [1995b,1999c,1999a], Cheah and Corneil [1996], Gyárfás,
Kratsch, Lehel, and Maffray [1996] Giakoumakis [1997], Giakoumakis and Rusu
[1997], and Maffray and Preissmann [1999]. Le [2000] gave conjectures on the per-
fection of certain classes of graphs. A survey of several classes of perfect graphs and
their recognition and interrelations, is given in the book by Brandstädt, Le, and
Spinrad [1999]. The book of Simon [1992] studies efficient algorithms for classes
some of perfect graphs.

Conforti, Cornuéjols, Kapoor, and Vušković [1997] investigated ‘universally
signable’ graphs, a generalization of chordal graphs.

Hammer and Maffray [1993] introduced ‘preperfect’ graphs, and showed that
each preperfect graph is perfect, and that preperfect graphs include the Gallai and
the parity graphs (cf. Section 66.4).

Corneil and Stewart [1990] studied the complexity of finding minimum-size dom-
inating sets in several classes of perfect graphs. (A dominating set is a set U of
vertices with U ∪ N(U) = V .)

Berge and Las Vergnas [1970] showed that a graph G is perfect if for each odd
circuit C and each maximal clique K, the intersection of C and K does not consist
of two vertices that form an edge of C.

Vertex cuts in perfect and minimally imperfect graphs were surveyed by Rusu
[2001]. A characterization of perfect total graphs was given by Rao and Ravindra
[1977].

Figure 66.1

Lovász [1983b] calls a graph k-perfect if for each induced subgraph G = (V, E)
one has:

(66.7) ωk(G) = min
U⊆V

(kχ(G − U) + |U |)

where ωk(G) is the maximum size of a union of k cliques. By the results of Greene
and Kleitman (Corollaries 14.8a and 14.10a), comparability graphs and their com-
plements are k-perfect for each k. Also, complements of line graphs of bipartite
graphs are k-perfect, by Corollary 21.4b. On the other hand, the line graph of the
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bipartite graph in Figure 66.1 is not 2-perfect (Greene [1976]). Related results were
given by Berge [1989b,1992a,1992b] and Cameron [1989].

A.J. Hoffman and E.L. Johnson (cf. Golumbic [1980]) proposed the following
sharpening of perfection. Let G = (V, E) be a graph and let w : V → Z+. A k-

interval colouring is an assignment to each vertex v of an open subinterval of [0, k]
of length w(v) such that adjacent vertices obtain disjoint intervals. Let χint(G, w)
denote the minimum value of k for which G has a k-interval colouring. If w(v) = 1
for each vertex v, then χint(G, w) = χ(G). Call G superperfect if χint(G, w) is equal
to the maximum of w(K) over all cliques K in G. As Hoffman observed, each com-
parability graph is superperfect (this can be derived from Dilworth’s decomposition
theorem), but none of the other known interesting classes of perfect graphs have
this property.

A survey on subclasses of ‘classical’ perfect graphs (comparability graphs and
chordal graphs) was given by Duchet [1984]. More examples and applications of
perfect graphs were given by Shannon [1956], Berge [1967], and Tucker [1973a].



Chapter 67

Perfect graphs: polynomial-time

solvability

In this chapter we show that a maximum-weight stable set and a minimum
weighted clique cover in a perfect graph can be found in strongly polyno-
mial time. This was shown by Grötschel, Lovász, and Schrijver [1981,1988]
with the help of the ellipsoid method and of the function ϑ(G), introduced
by Lovász [1979d] as upper bound on the Shannon capacity of a graph
G. No combinatorial polynomial-time algorithms for these problems are
known.
We should stress that the naive approach of applying the ellipsoid method
to the stable set polytope of a perfect graph using the clique inequalities
does not work: it reduces the problem of finding a maximum-weight stable
set to deciding for any x ∈ RV

+ if there is a clique C satisfying x(C) > 1.
This is equivalent to finding a maximum-weight clique, which is equivalent
to finding a maximum-weight stable set in the complementary graph, which
is perfect again. So this would give nothing but a reduction to itself.
In this chapter, all graphs can be assumed to be simple.

67.1. Optimum clique and colouring in perfect graphs

algorithmically

Lovász [1979d] introduced the following real number ϑ(G) for any graph
G = (V, E). Let MG be the collection of symmetric V ×V matrices satisfying
Mu,v = 0 for any two distinct adjacent vertices u and v and satisfying TrM =
1. Here TrM is the trace of M (sum of diagonal elements). Define

(67.1) ϑ(G) := max{1TM1 | M ∈ MG positive semidefinite}.

Here 1 denotes the all-one vector in R
V .

ϑ(G) has two important properties: it can be calculated (at least, approx-
imated) in polynomial time, and it gives an, often close, upper bound on the
stable set number α(G) (Lovász [1979d]).

First we show (where χ∗(G) denotes the fractional clique cover number
— cf. Section 64.8):

Theorem 67.1. For any graph G = (V, E):
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(67.2) α(G) ≤ ϑ(G) ≤ χ∗(G).

Proof. To see α(G) ≤ ϑ(G), let S be a maximum-size stable set and let M
be the matrix given by:

(67.3) M :=
1

|S|χ
S(χS)T.

Here χS is the incidence vector of S in R
V . Then M belongs to MG and is

positive semidefinite. Hence α(G) = |S| = 1TM1 ≤ ϑ(G).
To see ϑ(G) ≤ χ∗(G), let M attain the maximum in (67.1). Consider

cliques C1, . . . , Ck and λ1, . . . , λk ≥ 0 with

(67.4)
k∑

i=1

λiχ
Ci = 1 and

k∑

i=1

λi = χ∗(G).

Then, setting γ := χ∗(G):

(67.5) 0 ≤
k∑

i=1

λi(γ · χCi − 1)TM(γ · χCi − 1)

= γ2

k∑

i=1

λi(χ
Ci)TMχCi − 2γ

k∑

i=1

λi(χ
C1)TM1 + γ1TM1

= γ2TrM − 2γ1TM1 + γ1TM1 = γ2 − γϑ(G),

since TrM = 1, 1TM1 = ϑ(G), and Mu,v = 0 if u �= v and u, v ∈ Ci for some
i.

(67.5) implies that ϑ(G) ≤ γ = χ∗(G).

Moreover, ϑ(G) can be approximated in polynomial time (Grötschel,
Lovász, and Schrijver [1981]):

Theorem 67.2. There is an algorithm that for any given graph G = (V, E)
and any ε > 0, returns a rational closer than ε to ϑ(G), in time bounded by
a polynomial in |V | and log(1/ε).

Proof. This is a consequence of Corollary (4.3.12) in Grötschel, Lovász, and
Schrijver [1988], stating that we can solve a convex optimization problem ap-
proximatively in polynomial time, if we know a ball contained in the feasible
region and a ball containing the feasible region, and if we can test member-
ship of the feasible region in polynomial time. These conditions are satisfied,
if we restrict ourselves to the affine space MG. The convex body of all posi-
tive semidefinite matrices in MG contains the ball with center (1/|V |) ·I and
radius 1/|V |2, and is contained in the ball with center the all-zero matrix and
radius |V |2. Membership can be tested in polynomial time, since we can test
positive semidefiniteness in polynomial time.

The two theorems above imply:
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Corollary 67.2a. For any graph G satisfying α(G) = χ(G), the stable set
number can be found in polynomial time.

Proof. Theorem 67.1 implies α(G) = ϑ(G) = χ(G), and by Theorem 67.2 we
can find a number closer than 1

2
to ϑ(G) in time polynomial in |V |. Rounding

to the closest integer yields α(G).

To obtain an explicit maximum-size stable set, we need perfection of the
graph:

Corollary 67.2b. A maximum-size stable set in a perfect graph can be found
in polynomial time.

Proof. Let G = (V, E) be a perfect graph. Iteratively, for each v ∈ V , replace
G by G − v if α(G − v) = α(G). By the perfection of G, we can calculate
these values in polynomial time, by Corollary 67.2a.

We end up with a graph that forms a maximum-size stable set in the
original graph.

As perfection is closed under taking complements, also a maximum-size
clique in a perfect graph can be found in polynomial time.

The method described in the proof of Corollary 67.2b applies to all graphs
G for which α(H) = ϑ(H) holds for each induced subgraph H of G; but, as
we shall see in Corollary 67.14a, these are precisely the perfect graphs.

From Corollary 67.2b one can derive that a minimum colouring of a perfect
graph can also be found in polynomial time (we follow the method given in
Grötschel, Lovász, and Schrijver [1988]):

Corollary 67.2c. A minimum colouring in a perfect graph can be found in
polynomial time.

Proof. Let G = (V, E) be a perfect graph. It suffices to find a stable set S
intersecting each maximum-size clique in G; applying recursion to G−S does
the rest.

Starting with t = 0, we iteratively extend a list of maximum-size cliques
K1, . . . , Kt as follows. First, find a stable set S intersecting each of K1, . . . , Kt.
This can be done by considering

(67.6) c := χK1 + · · · + χKt ,

and finding a stable set S maximizing c(S). This can be found by replacing
each vertex v by c(v) nonadjacent vertices (adjacent to the new vertices that
replace vertices adjacent to v), and finding a maximum-size stable set in the
new graph. This gives a stable set S in the original graph maximizing c(S).

Necessarily, c(S) = t, since G has a stable set intersecting each maximum-
size clique (as G is perfect). So S intersects each Ki.
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If ω(G − S) < ω(G), then S intersects each maximum-size clique in G,
and we are done. If ω(G − S) = ω(G), we find a maximum-size clique Kt+1

in G − S, add it to our list, and iterate.
The number of iterations is bounded by |V |, since in each iteration the

dimension of the space Lt of vectors x ∈ R
V with x(Ki) = 1 for each i drops,

as for the S found we have χS ∈ Lt and χS �∈ Lt+1.

67.2. Weighted clique and colouring algorithmically

In a straightforward way, the results of the previous section can be extended
to the weighted case. Let G = (V, E) be a graph and let w : V → Z+ be
a weight function. Let Gw be the graph obtained from G by replacing each
vertex v by a stable set Sv of size w(v), where vertices in distinct Su and
Sv are adjacent if and only if u and v are adjacent in G. So the maximum
weight of a stable set in G is equal to the maximum size of a stable set in
Gw. Define:

(67.7) αw(G) := α(Gw), ϑw(G) := ϑ(Gw), χw(G) := χ(Gw),
χ∗

w(G) := χ∗(Gw).

So αw(G) is equal to the maximum weight of a stable set in G. The definitions
of χw(G) and χ∗

w(G) agree with those in Section 64.8.
Theorem 67.1 gives the following inequalities:

Theorem 67.3. For any graph G = (V, E) and w : V → R+:

(67.8) αw(G) ≤ ϑw(G) ≤ χ∗

w(G).

Proof. Directly from Theorem 67.1 and (67.7).

In order to calculate ϑw(G), we need not construct Gw and calculate
ϑ(Gw). This would not be a polynomial-time method. We can calculate ϑw(G)
more concisely as follows.

Define
√

w : V → R+ by:

(67.9)
√

w(v) :=
√

w(v)

for v ∈ V . Then:

Theorem 67.4. For any graph G and w : V G → Z+:

(67.10) ϑw(G) = max{√w
T
M

√
w | M ∈ MG positive semidefinite}.

Proof. We may assume that w > 0. Let D be the V Gw ×V G matrix defined
by

(67.11) Du,v :=

{
w(v)−

1
2 if u ∈ Sv,

0 if u �∈ Sv,
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for u ∈ V Gw and v ∈ V G.
First let M attain the maximum in (67.10). Then M ′ := DMDT is posi-

tive semidefinite, and, moreover, belongs to MGw
. Indeed, for adjacent ver-

tices u, u′ of Gw, say u ∈ Sv and u′ ∈ Sv′ , with v and v′ adjacent vertices of
G, we have Mv,v′ = 0, and hence

(67.12) M ′

u,u′ = (DMDT)u,u′ =
∑

t,t′∈V G

Du,tMt,t′Du′,t′

= w(v)−
1
2 w(v′)−

1
2 Mv,v′ = 0.

Also (setting vu := v if u ∈ Sv):

(67.13) TrM ′ = Tr(DMDT) =
∑

u∈V Gw

∑

v,v′∈V G

Du,vDu,v′Mv,v′

=
∑

u∈V Gw

w(vu)−1Mvu,vu
=

∑

v∈V G

w(v)−1w(v)Mv,v = TrM = 1.

So M ′ ∈ MGw
. Hence

(67.14) ϑw(G) = ϑ(Gw) ≥ 1TM ′1 = 1T(DMDT)1 =
√

w
T

M
√

w.

This shows ≥ in (67.10).
To see the reverse inequality, let M ′ be a positive semidefinite matrix in

MGw
with 1TM ′1 = ϑ(Gw). Then M := DTM ′D is positive semidefinite,

and, moreover, belongs to MG. Indeed, for adjacent v, v′ ∈ V G we have

(67.15) Mv,v′ = (DTMD)v,v′ =
∑

u,u′∈V Gw

Du,vDu′,v′M ′

u,u′

=
∑

u∈Sv

∑

u′∈Sv′

w(v)−
1
2 w(v′)−

1
2 M ′

u,u′ = 0.

Also:

(67.16) TrM =
∑

v∈V G

∑

u,u′∈V Gw

Du,vDu′,vM ′

u,u′

=
∑

v∈V G

∑

u∈Sv

∑

u′∈Sv

w(v)−1M ′

u,u′ ≤
∑

v∈V G

∑

u∈Sv

M ′

u,u = TrM ′ = 1.

The inequality holds as for any positive semidefinite matrix A one has:
1TA1 ≤ 1T1 · TrA, since the largest eigenvalue of A is at most TrA. This is
applied to the Sv × Sv submatrix of M , for each v ∈ V .

Hence the matrix M̃ := (TrM)−1·M belongs to MG, and so the maximum

in (67.10) is at least
√

w
T
M̃

√
w, and hence at least

(67.17)
√

w
T

M
√

w =
√

w
T

DTM ′D
√

w = 1TM ′1 = ϑw(G).

This implies that ϑw(G) can be approximated in polynomial time:
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Theorem 67.5. There is an algorithm that for any given graph G = (V, E),
any w : V → Z+, and any ε > 0, returns a rational closer than ε to ϑw(G),
in time bounded by a polynomial in |V |, log ‖w‖∞, and log(1/ε).

Proof. Similar to the proof of Theorem 67.2.

The two theorems above imply:

Corollary 67.5a. For any graph G and weight function w : V → Z+ satis-
fying αw(G) = χw(G), the weighted stable set number can be found in poly-
nomial time.

Proof. Theorem 67.3 implies αw(G) = ϑw(G) = χw(G), and by Theorem
67.5 we can find a number closer than 1

2
to ϑw(G) in time polynomial in |V |.

Rounding to the closest integer yields αw(G).

To obtain a maximum-weight stable set explicitly, we again need perfec-
tion of the graph:

Corollary 67.5b. A maximum-weight stable set in a perfect graph can be
found in polynomial time.

Proof. Let G = (V, E) be a perfect graph and w : V → Z+. Iteratively, for
each v ∈ V , replace G by G − v if αw(G − v) = αw(G). By the perfection of
G, we can calculate these values in polynomial time, by Corollary 67.5a.

We end up with a graph that forms a maximum-weight stable set in the
original graph.

As perfection is closed under taking complements, also a maximum-weight
clique in a perfect graph can be found in polynomial time. So for any w :
V → Z+, we can determine

(67.18) ωw(G) :=maximum of w(C) over cliques C of G

in polynomial time.
Moreover, a minimum weighted colouring of a perfect graph can be found

in polynomial time (again, we follow the method given in Grötschel, Lovász,
and Schrijver [1988]):

Corollary 67.5c. Given a perfect graph G = (V, E) and a weight function
w : V → Z+, a minimum weighted colouring can be found in polynomial
time.

Proof. Let G = (V, E) be a perfect graph and let w : V → Z+. As in
the proof of Corollary 67.2c, we can find a stable set S intersecting each
maximum-weight clique in G, as follows. Starting with t = 0, we iteratively
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extend a list of maximum-weight cliques K1, . . . , Kt. First find a stable set S
intersecting each of K1, . . . , Kt. This can be done by considering

(67.19) c := χK1 + · · · + χKt ,

and finding a stable set S maximizing c(S). This can be found by replacing
each vertex v by c(v) nonadjacent vertices (adjacent to the new vertices that
replace vertices adjacent to v), and finding a maximum-size stable set in the
new graph. This gives a stable set S maximizing c(S).

Necessarily, c(S) = t, since G has a stable set intersecting each maximum-
weight clique (as Gw is perfect). So S intersects each Ki.

If ωw(G − S) < ωw(G), then S intersects each maximum-weight clique in
G, and we have the required S. If ωw(G − S) = ωw(G), we find a maximum-
weight clique Kt+1 in G − S, add it to our list, and iterate.

The number of iterations is bounded by |V |, since in each iteration the
dimension of the space Lt of vector x ∈ R

V with x(Ki) = 1 for each i drops,
since for the S found we have χS ∈ Lt and χS �∈ Lt+1.

This describes the method to find a stable set intersecting all maximum-
weight cliques. To find a minimum weighted colouring, we iteratively find
stable sets S1, . . . , Si, λ1, . . . , λi ∈ Z+, and a weight function wi as follows.
Set w1 := w. Next iteratively for i = 1, 2, . . ., as long as wi �= 0, find a stable
set Si intersecting all cliques C maximizing wi(C), calculate

(67.20) λi := ωwi
(G) − ωwi

(G − Si),

and set wi+1 := wi − λiχ
Si .

Then the λi, Si form a minimum weighted colouring, since

(67.21)
∑

i

λiχ
Si = w and

∑

i

λi = ωw(G) = χw(G).

To prove this, we first show:

(67.22) ωwi+1
(G) = ωwi+1

(G − Si) = ωwi
(G − Si) = ωwi

(G) − λi.

Here the second equality is trivial (since wi and wi+1 coincide outside Si). The
third inequality follows from definition (67.20) of λi. For the first equality,
≥ is trivial. To see ≤, consider a clique C intersecting Si. Then wi+1(C) =
wi(C) − λi|C ∩ Si| ≤ ωwi

(G) − λi. This proves (67.22), which implies the
second equality in (67.21).

Moreover, the number of iterations is at most |V |, since in each iteration
the face of the clique polytope spanned by the cliques C maximizing wi(C),
increases in dimension: each clique C in G maximizing wi(C) also maximizes
wi+1(C) (since wi+1(C) ≥ wi(C)−λi = ωwi

(G)−λi = ωwi+1
(G), by (67.22)),

and there is a clique C maximizing wi+1(C) but not wi(C) (namely any clique
C of G − Si maximizing wi(C), since wi+1(C) = wi(C) = ωwi

(G − Si) =
ωwi+1

(G)).
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67.3. Strong polynomial-time solvability

In the previous section we showed the polynomial-time solvability of the
weighted versions of the stable set and colouring problems in perfect graphs.
By Theorem 5.11 of Frank and Tardos [1985,1987], this can be strengthened
to strong polynomial-time solvability.

Theorem 67.6. A maximum-weight clique and a minimum weighted colour-
ing in a perfect graph can be found in strongly polynomial time.

Proof. A maximum-weight clique can be found in strongly polynomial time
by Theorem 5.11, since the class of clique polytopes of perfect graphs is
polynomial-time solvable by Corollary 67.5b.

Next, a minimum weighted colouring can be found with the method de-
scribed in the proof of Corollary 67.5c: it is strongly polynomial-time because
we can find (by the above) a maximum-weight clique in strongly polynomial
time.

This implies:

Corollary 67.6a. A maximum-weight stable set and a minimum-weight ver-
tex cover in a perfect graph can be found in strongly polynomial time.

Proof. Directly from Theorem 67.6, since stable sets in a perfect graph are
precisely the cliques in the complementary graph, which is again perfect.
Moreover, the vertex covers are precisely the complements of stable sets.

67.4. Further results and notes

67.4a. Further on ϑ(G)

In this section we give some further results on the function ϑ(G), and we consider
the related convex body TH(G). We use the following notation, for vector a, b ∈ RV

+ :

(67.23) b/a is the vector in RV with vth entry b(v)/a(v),√
b = b

1
2 is the vector in RV with vth entry b(v)

1
2 ,

b− 1
2 is the vector in RV with vth entry b(v)− 1

2 ,
∆b is the V × V diagonal matrix with diagonal b.

We set (b/a)v := 0 if av = 0 and (b− 1
2 )v := 0 if bv = 0. (This will turn out not to

harm the consistency.)
Moreover, we define, for any graph G = (V, E) and any symmetric matrix M :

(67.24) LG := the set of symmetric V × V matrices A with Au,v = 0 if u = v
or u and v are nonadjacent;
Λ(M) := the largest eigenvalue of M ,
PSD := the set of symmetric positive semidefinite matrices.
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We usually restrict PSD to appropriate dimensions, like V × V . We define for any
two matrices X, Y (of equal dimensions) the ‘inner product’ X • Y by

(67.25) X • Y := Tr(XY T).

So if X ∈ MG and Y ∈ LG, then X • Y = 0.

A min-max relation for ϑw(G)

ϑw(G) is defined as a maximum. Applying convex duality, we can describe ϑw(G)
alternatively as a minimum (Lovász [1979d]):

Theorem 67.7. For each w ∈ RV
+:

(67.26) ϑw(G) = min{Λ(W + A) | A ∈ LG},

where W :=
√

w
√

w
T
.

Proof. Let M maximize
√

w
T
M

√
w over PSD ∩ MG. So ϑw(G) =

√
w

T
M

√
w.

To prove ≤ in (67.26), let A ∈ LG attain the minimum in (67.26) and let
λ := Λ(W + A). Then Y := λI − W − A is positive semidefinite, and hence

(67.27) 0 ≤ Y • M = (λI − W − A) • M = λTrM − W • M = λ − √
w

T
M

√
w

= Λ(W + A) − ϑw(G).

To prove ≥ in (67.26), we use convexity theory. Since M maximizes W •M over
the intersection of the convex sets PSD and MG, there exist supporting hyperplanes
{X | C • X = γ} of PSD and {X | D • X = δ} of MG such that

(67.28) PSD ⊆ {X | C • X ≥ γ}, MG ⊆ {X | D • X ≥ δ}, C • M = γ,
D • M = δ, and W = C + D.

Since PSD and MG consist of symmetric matrices only, we can assume that C and
D are symmetric (we can replace them by 1

2
(C + CT) and 1

2
(D + DT)).

Since PSD is a convex cone, we have γ = 0. Then C ∈ PSD, as xxT ∈ PSD for
each x ∈ RV , hence xTCx = C • (xxT) ≥ 0.

Since MG is an affine space and since D •M = δ, we have MG ⊆ {X | D •X =
δ}. This implies that D = δ · I − A for some A ∈ LG (since each symmetric 0, 1
matrix containing precisely one 1 belongs to MG; the matrix remains to belong to
MG after putting a nonzero entry in any nonadjacent position and its transpose).
So

(67.29) δ = D • M = (W − C) • M = W • M .

As C is positive semidefinite, δ · I − W − A is positive semidefinite. Hence

(67.30) Λ(W + A) ≤ δ = W • M = ϑw(G).

The product ϑ(G)ϑ(G) is at least |V |

For perfect graphs G = (V, E), we have α(G)ω(G) ≥ |V |, and hence ϑ(G)ϑ(G) ≥
|V |. The latter inequality holds for any graph G. To prove it, we use the following
fact from matrix theory:
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(67.31) If X and Y are symmetric positive semidefinite n × n matrices, then
also X ∗ Y is positive definite,

where X ∗ Y is the n × n matrix given by: (X ∗ Y )i,j = Xi,jYi,j . (67.31) follows
from the fact that there exist vectors u1, . . . , un and v1, . . . , vn with Xi,j = uT

i uj

and Yi,j = vT

i vj for all i, j. Hence (X ∗ Y )i,j = (ui ◦ vi)
T(uj ◦ vj) for all i, j, where

◦ denotes tensor product13. So X ∗ Y is positive semidefinite.

Theorem 67.8. ϑ(G)ϑ(G) ≥ |V | for each graph G = (V, E).

Proof. By (67.26), there exist A ∈ LG and B ∈ LG with

(67.32) ϑ(G) = Λ(J + A) and ϑ(G) = Λ(J + B).

So C := ϑ(G) · I − J − A and D := ϑ(G) · I − J − B are positive semidefinite. Now

(67.33) C ∗ D + C ∗ J + J ∗ D = (C + J) ∗ (D + J) − J ∗ J
= (ϑ(G) · I − A) ∗ (ϑ(G) · I − B) − J = ϑ(G)ϑ(G) · I − J

(as A ∗ I = I ∗ B = A ∗ B is the all-zero matrix). By (67.31), the first matrix in
(67.33) is positive semidefinite, hence also the last. So

(67.34) 0 ≤ 1T(ϑ(G)ϑ(G) · I − J)1 = ϑ(G)ϑ(G)|V | − |V |2,
implying the theorem.

The convex body TH(G)

The function ϑw(G) is related to a convex body TH(G) defined in Grötschel, Lovász,
and Schrijver [1986]. The following equivalent representation of TH(G) was given
by Lovász and Schrijver [1991].

For any symmetric matrix A, define the matrix R(A) by:

(67.35) R(A) :=

(
1 aT

a A

)
,

where a := diagA (the diagonal vector of A; that is, ai = Ai,i for each coordinate
i).

Given a graph G = (V, E), consider the collection RG of symmetric V × V
matrices A with R(A) positive semidefinite and with Au,v = 0 for distinct adjacent
u, v. Then define:

(67.36) TH(G) = {diagA | A ∈ RG}.

Theorem 67.9. TH(G) is convex and down-monotone in RV
+.

Proof. TH(G) is convex, as it is a projection of the convex set RG. Moreover, if
a ∈ TH(G) and 0 ≤ b ≤ a, then b ∈ TH(G). Indeed, since a ∈ TH(G), there exists
a matrix A ∈ RG with a = diagA. Then the matrix

(67.37)

(
1 0
0 ∆b/a

) (
1 aT

a A

) (
1 0
0 ∆b/a

)
=

(
1 bT

b ∆b/aA∆b/a

)

13 The tensor product of vectors x ∈ R
U and y ∈ R

V is the vector x ◦ y in R
U×V defined

by: (x ◦ y)(u,v) := xuyv for u ∈ U and v ∈ V .
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is positive semidefinite. As the vth entry on the diagonal of ∆b/aA∆b/a is equal to
b(v)2/a(v) (or 0 if a(v) = 0), which is at most b(v), we have that

(67.38) ∆b/aA∆b/a + (∆b−b2/a)

belongs to RG and has diagonal equal to b. This proves that b ∈ TH(G), and hence
TH(G) is down-monotone.

To obtain a relation of TH(G) with the function ϑw(G), we first show the
following, where for x, y ∈ RV , x ∗ y is the vector in RV defined by:

(67.39) (x ∗ y)v := xvyv for v ∈ V .

Theorem 67.10. Let M maximize
√

w
T
M

√
w over PSD ∩ MG. Then

(67.40) M
√

w = ϑw(G) · b ∗ w− 1
2 ,

where b := diagM .

Proof. The maximum of

(67.41)
√

w
T

∆xM∆x

√
w

over x ∈ RV satisfying xT∆bx = 1, is attained by x = 1. (Otherwise we can replace

M by ∆xM∆x to increase
√

w
T
M

√
w.) Now (67.41) is equal to

(67.42) xT∆√
wM∆√

wx.

So the maximum of (67.42) over x ∈ RV satisfying xT∆bx = 1, is attained by x = 1.
Hence, by Lagrange’s theorem, there exists a µ ∈ R with

(67.43) ∆√
wM∆√

w1 = µ · ∆b1 = µ · b.

Then

(67.44) ϑw(G) =
√

w
T

M
√

w = 1T∆√
wM∆√

w1 = µ1Tb = µTrM = µ.

(67.43) and (67.44) give

(67.45) M
√

w = M∆√
w1 = µ · w− 1

2 ∗ b = ϑw(G) · b ∗ w− 1
2 ,

which is (67.40).

Now the relation of TH(G) with ϑw(G) is:

Theorem 67.11. For each w ∈ RV
+:

(67.46) ϑw(G) = max{wTx | x ∈ TH(G)}.

Proof. I. We first show ≤ in (67.46). Let M be a matrix maximizing
√

w
T
M

√
w

over the positive semidefinite matrices M ∈ MG. It suffices to show that the matrix

(67.47) A := ϑw(G) · ∆
w

−
1
2
M∆

w
−

1
2

belongs to RG, since wTdiagA = ϑw(G)TrM = ϑw(G).
Trivially, Au,v = 0 for distinct adjacent u, v (since Mu,v = 0 for distinct adjacent

u, v). To see that R(A) is positive semidefinite, write a := diagA, b := diagM ,

and ϑ := ϑw(G). By (67.40) we have M
√

w = ϑ · b ∗ w− 1
2 . So ∆

w
−

1
2
M

√
w =

ϑ · ∆
w

−
1
2
(b ∗ w− 1

2 ) = ϑ · (b/w). Hence
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(67.48) R(A) =

(
1 aT

a A

)
=

(
1 ϑ · (b/w)T

ϑ · (b/w) ϑ · ∆
w

−
1
2
M∆

w
−

1
2

)

=

(
ϑ−1√w

T
M

√
w

√
w

T
M∆

w
−

1
2

∆
w

−
1
2
M

√
w ϑ · ∆

w
−

1
2
M∆

w
−

1
2

)
= ϑ−1 · UTMU,

where U is the matrix given by

(67.49) U := (
√

w ϑ · ∆
w

−
1
2
).

So R(A) is positive semidefinite.
II. To see ≥ in (67.46), let A ∈ RG maximize wTdiagA. Define a := diagA,

η := wTa, and

(67.50) M := η−1 · ∆
w

1
2
A∆

w
1
2
.

Trivially, M is positive semidefinite and belongs to MG. Also

(67.51) 0 ≤ (η, −wT)

(
1 aT

a A

) (
η

−w

)
= η2 − 2η · wTa + wTAw

= η
√

w
T

M
√

w − η2.

Therefore
√

w
T
M

√
w ≥ η, which proves ≥ in (67.46).

(67.46) implies that ϑw(G) is a convex function of w and that

(67.52) TH(G) = {x ∈ RV
+ | wTx ≤ ϑw(G) for each w ∈ RV

+}.

By (67.8),

(67.53) αw(G) ≤ ϑw(G) ≤ χ∗
w(G).

This gives:

Corollary 67.11a. For each graph G = (V, E):

(67.54) Pstable set(G) ⊆ TH(G) ⊆ A(Pclique(G)).

Proof. This follows directly from Theorem 67.11 with the inequalities (67.53), since
for each w ∈ RV

+ :

(67.55) αw(G) = max{wTx | x ∈ Pstable set(G)},
ϑw(G) = max{wTx | x ∈ TH(G)},
χ∗

w(G) = max{wTx | x ∈ A(Pclique(G))}.

The antiblocking body of TH(G)

It turns out that taking the antiblocking body A(TH(G)) of TH(G) corresponds to
replacing G by its complement (Grötschel, Lovász, and Schrijver [1986]). We first
observe that

(67.56) A(TH(G)) = {w ∈ R
V
+ | ϑw(G) ≤ 1},
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since for each w : V → R+: w ∈ A(TH(G)) ⇐⇒ max{wTx | x ∈ TH(G)} ≤ 1
⇐⇒ ϑw(G) ≤ 1.

Theorem 67.12. A(TH(G)) = TH(G).

Proof. I. We first show A(TH(G)) ⊆ TH(G). Let w ∈ A(TH(G)); that is (by
(67.56)), ϑw(G) ≤ 1. To show that w belongs to TH(G) we should show by (67.52)
that

(67.57) wTa ≤ ϑa(G)

for each a ∈ RV
+ .

By (67.26), there exist A ∈ LG and B ∈ LG such that

(67.58) ϑw(G) = Λ(
√

w
√

w
T

+ A) and ϑa(G) = Λ(
√

a
√

a
T

+ B).

So C := ϑw(G) · I − √
w

√
w

T − A and D := ϑa(G) · I − √
a
√

a
T − B are positive

semidefinite. Therefore, the matrix

(67.59) ϑw(G)ϑa(G)·I−
√

w ∗ a
√

w ∗ a
T

= C∗D+C∗(
√

a
√

a
T

)+(
√

w
√

w
T

)∗D

is positive semidefinite by (67.31) (note that A ∗ I = I ∗ B = A ∗ B is the all-zero
matrix). Hence

(67.60) 0 ≤ √
w ∗ a

T
(ϑw(G)ϑa(G) · I − √

w ∗ a
√

w ∗ a
T
)
√

w ∗ a

= ϑw(G)ϑa(G)
√

w ∗ a
T√

w ∗ a − √
w ∗ a

T√
w ∗ a

√
w ∗ a

T√
w ∗ a

= ϑw(G)ϑa(G)wTa − (wTa)2,

implying (67.57).
II. To prove TH(G) ⊆ A(TH(G)), let w ∈ TH(G). By (67.56) we should prove

ϑw(G) ≤ 1.

Let B maximize
√

w
T
B

√
w over PSD ∩ MG. Let b := diagB and define

(67.61) C := ∆√
w/b

B∆√
w/b

.

Then, with (67.40),

(67.62) C
√

b = ∆√
w/b

B
√

w = µ · ∆√
w/b

b ∗ w− 1
2 = µ ·

√
b,

where µ := ϑw(G). So C has
√

b as eigenvector, with eigenvalue µ. Since C is
positive semidefinite, also the matrix

(67.63) C − µ(
√

b
√

b
T

)

is positive semidefinite. Hence the matrix

(67.64) ∆
w

−
1
2
(C − µ ·

√
b
√

b
T

)∆
w

−
1
2

= ∆
b
−

1
2
B∆

b
−

1
2

− µ ·
√

b/w
√

b/w
T

is positive semidefinite.
Define A := I −∆

b
−

1
2
B∆

b
−

1
2

and z := b/w. So A ∈ LG and µ ·√z
√

z
T

+A has

largest eigenvalue at most 1. Hence ϑz(G) ≤ µ−1, and so

(67.65) ϑw(G)ϑz(G) = µϑz(G) ≤ 1 = TrB = bT1 = wTz ≤ ϑz(G),

where the last inequality holds as w ∈ TH(G). Hence ϑw(G) ≤ 1.
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Facets of TH(G)

A subset F of TH(G) is called a facet of TH(G) if there is an inequality cTx ≤ γ
(with c �= 0) which is valid for TH(G), such that F is the set of vectors in TH(G)
having equality and such that F has dimension |V | − 1. Then (Grötschel, Lovász,
and Schrijver [1986]):

Theorem 67.13. For each graph G = (V, E), each facet F of TH(G) is determined

by an inequality xv ≥ 0 for some v ∈ V or by x(C) ≤ 1 for some clique C of G.

Proof. Let F be determined by the inequality cTx ≤ γ. If there is a v ∈ V with
xv = 0 for each x ∈ F , then F is determined by the inequality xv ≥ 0. So we can
assume that x > 0 for some x ∈ F . Since TH(G) = A(TH(G)), there is a w ∈ RV

+

with ϑw(G) = 1 and F is determined by wTx ≤ 1. So w ∈ TH(G), and therefore
there is a matrix A ∈ RG with diagA = w. As A ∈ RG, the matrix R(A) is positive

semidefinite. Hence there exist linearly independent vectors

(
αi

ai

)
(i = 1, . . . , k)

such that

(67.66)

(
1 wT

w A

)
= R(A) =

k∑

i=1

(
αi

ai

)
(αi, a

T

i ).

We can assume that αi ≥ 0 for each i = 1, . . . , k. Now

(67.67) aT

i x = αi for each x ∈ F and each i = 1, . . . , k.

To see this, choose x ∈ F . As x ∈ TH(G), there is a matrix B ∈ RG with diagB = x.
Since R(B) is positive semidefinite, also the matrix

(67.68) B′ :=

(
1 −xT

−x B

)

is positive semidefinite. We therefore have (where again X • Y := Tr(XY T)):

(67.69)

k∑

i=1

(αi, a
T

i )B′
(

αi

ai

)
= R(A)•B′ = 1−2wTx+A•B = 1−2wTx+wTx

= 0.

(Here A • B = wTx follows from the fact that A ∈ RG, B ∈ RG, diagA = w, and
diagB = x.)

Since B′ is positive semidefinite, (67.69) implies that, for each i = 1, . . . , k:

(67.70) (αi, a
T

i )B′
(

αi

ai

)
= 0,

and therefore

(67.71) B′
(

αi

ai

)
= 0.

In particular,

(67.72) (1, −xT)

(
αi

ai

)
= 0,



1166 Chapter 67. Perfect graphs: polynomial-time solvability

that is, aT

i x = αi, proving (67.67).

Since F is a facet, and since the

(
αi

ai

)
are linearly independent, we know k = 1.

So

(67.73)

(
1 wT

w A

)
=

(
α1

a1

)
(α1, a

T

1 ).

Since α1 ≥ 0, this implies α1 = 1 and a1 = w. Since diagA = w, we know w(v)2 =
w(v) for each v ∈ V , and so w ∈ {0, 1}V . Hence A = χC(χC)T for some C ⊆ V . As
Au,v = 0 for distinct nonadjacent u, v, we know that C is a clique.

This gives as consequence:

Corollary 67.13a. TH(G) is a polytope if and only if G is perfect.

Proof. If G is perfect, we have

(67.74) Pstable set(G) ⊆ TH(G) ⊆ A(Pclique(G)) = Pstable set(G),

implying that TH(G) = Pstable set(G), and therefore is a polytope.
To see the reverse implication, if TH(G) is a polytope, by (67.54) and Theorem

67.13, TH(G) is fully determined by the nonnegativity and clique inequalities; that
is,

(67.75) TH(G) = A(Pclique(G)).

Since also A(TH(G)) = TH(G) is a polytope, we know similarly that TH(G) =
A(Pclique(G)). Hence

(67.76) TH(G) = A(TH(G)) = Pclique(G) = Pstable set(G).

(67.75) and (67.76) imply that Pstable set(G) = A(Pclique(G)), and therefore G is

perfect by Corollary 65.2e.

Characterizing perfection by ϑ(G)

Lovász [1983b] showed that perfection can be characterized by the function ϑ(G).
To this end, Lovász first proved:

Theorem 67.14. If G is a partitionable graph, then

(67.77) α(G) < ϑ(G) < χ∗(G).

Proof. Let M be the incidence matrix of the maximum-size stable sets in G and
let N be the incidence matrix of the maximum-size cliques of G. Define n := |V G|,
α := α(G), and ω := ω(G). We first show the second inequality.

Let λ be the smallest eigenvalue of NTN . Since N is nonsingular (Theorem
65.9), we know λ > 0, and since Tr(NTN) = nω and NTN1 = ω2 · 1, we know
λ < ω (otherwise Tr(NTN) ≥ ω2 + (n − 1)ω > nω). So

(67.78) NTN − λI − ω2 − λ

n
J
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is positive semidefinite, and therefore

(67.79)
n(ω − λ)

ω2 − λ
I − J +

n

ω2 − λ
(NTN − ωI)

is positive semidefinite. So (using (67.26) and (65.24))

(67.80) ϑ(G) ≤ Λ(J − n

ω2 − λ
(NTN − ωI)) ≤ n(ω − λ)

ω2 − λ
<

n

ω
= χ∗(G).

So we have the second inequality in (67.77), which implies the first, since:

(67.81) ϑ(G) ≥ n

ϑ(G)
>

n

χ∗(G)
= α,

by (65.24) and Theorem 67.8.

This implies a characterization of perfect graphs:

Corollary 67.14a. For any graph G, the following are equivalent:

(67.82) (i) G is perfect,

(ii) α(H) = ϑ(H) for each induced subgraph H of G,

(iii) ϑ(H) = χ∗(H) for each induced subgraph H of G,

(iv) ϑ(H) is an integer for each induced subgraph H of G.

Proof. Directly from Theorem 67.14, using (65.24).

67.4b. The Shannon capacity Θ(G)

Shannon [1956] introduced the following parameter Θ(G), now called the Shannon
capacity of a graph G.

The strong product G · H of graphs G and H is the graph with vertex set
V G×V H, with two distinct vertices (u, v) and (u′, v′) adjacent if and only if u and
u′ are equal or adjacent in G and v and v′ are equal or adjacent in H.

The strong product of k copies of G is denoted by Gk. Then the Shannon

capacity Θ(G) of G is defined by:

(67.83) Θ(G) = sup
k

k
√

α(Gk).

(The interpretation is that if V is an alphabet, and adjacency means ‘confusable’,
then α(Gk) is the maximum number of k-letter words any two of which have un-
equal and inconfusable letters in at least one position. Then Θ(G) is the maximum
possible ‘information rate’.)

Since α(Gk+l) ≥ α(Gk)α(Gl), we know by Fekete’s lemma (Corollary 2.2a) that

(67.84) Θ(G) = lim
k→∞

k
√

α(Gk).

Guo and Watanabe [1990] showed that there exist graphs G for which Θ(G) is not
achieved by a finite product (that is, k

√
α(Gk) < Θ(G) for each k).

Since α(Gk) ≥ α(G)k, we have

(67.85) α(G) ≤ Θ(G),
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while strict inequality may hold: the 5-circuit C5 has α(C5) = 2 and α(C2
5 ) = 5. (If

C5 has vertices 1, . . . , 5 and edges 12, 23, 34, 45, and 51, then (1, 1), (2, 3), (3, 5),
(4, 2), (5, 4) is a stable set in C2

5 .) So Θ(C5) ≥
√

5, and Shannon [1956] raised the
question if equality holds here. Shannon proved Θ(C5) ≤ 5

2
; more generally, he

proved, for any graph G:

(67.86) Θ(G) ≤ χ∗(G),

where χ∗(G) is the fractional clique cover number. This bound can be proved by
showing that

(67.87) χ∗(G · H) ≤ χ∗(G)χ∗(H).

This follows from the fact that if C and D are cliques of G and H respectively,
then C × D is a clique of G · H; hence if λ : C → R+ and µ : D → R+ are
minimum fractional clique covers for G and H respectively, where C and D denote
the collections of cliques of G and H respectively, then (where ◦ denotes tensor
product — see footnote on page 1161, and 1U denotes the all-one vector in RU , for
any set U)

(67.88)
∑

C∈C

∑

D∈D
λCµDχC×D =

∑

C∈C

∑

D∈D
λCµD(χC ◦ χD)

=
( ∑

C∈C
λCχC)

◦
( ∑

D∈D
µDχD)

= 1V G ◦ 1V H = 1V G×V H

and hence

(67.89) χ∗(G · H) ≤
∑

C∈C

∑

D∈D
λCµD =

( ∑

C∈C
λC

)( ∑

D∈D
µD

)
= χ∗(G)χ∗(H).

This proves (67.87) (in (67.112) we show equality).
(67.87) implies (67.86), since

(67.90) k
√

α(Gk) ≤
√

χ∗(Gk) ≤
√

χ∗(G)k = χ∗(G).

This bound was improved by Lovász [1979d] as follows (which will imply that
Θ(C5) =

√
5):

Theorem 67.15. Θ(G) ≤ ϑ(G) for each graph G.

Proof. Since α(G) ≤ ϑ(G), it suffices to show that for each k: α(Gk) ≤ ϑ(G)k. For
this it suffices to show that

(67.91) ϑ(G · H) ≤ ϑ(G)ϑ(H)

for any graphs G and H.
By (67.26), there exist matrices A ∈ LG and B ∈ LH such that

(67.92) ϑ(G) = Λ(JV G + A) and ϑ(H) = Λ(JV H + B),

where JU denotes the U × U all-one matrix, for any set U . Hence the matrices

(67.93) C := ϑ(G) · IV G − JV G − A and D := ϑ(H) · IV H − JV H − B

are positive semidefinite, where IU denotes the U × U identity matrix, for any set
U .

Therefore, also the following matrix14 is positive semidefinite:

14 The tensor product of a W × X matrix M and a Y × Z matrix N (where W, X, Y, Z are
sets), is the (W × Y ) × (X × Z) matrix M ◦ N defined by
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(67.94) C ◦ D + C ◦ JV H + JV G ◦ D = (C + JV G) ◦ (D + JV H) − JV G ◦ JV H

= (ϑ(G) · IV G − A) ◦ (ϑ(H) · IV H − B) − JV G×V H

= ϑ(G)ϑ(H) · IV G×V H − JV G×V H − M ,

where M := ϑ(G) · IV G ◦ B + ϑ(H)A ◦ IV H − A ◦ B. Since IV G ◦ B, A ◦ IV H , and
A ◦ B belong to LG·H ,15 also M belongs to LG·H . Therefore,

(67.95) ϑ(G · H) ≤ Λ(JV G×V H + M) ≤ ϑ(G)ϑ(H),

giving (67.91).

This proof consists of showing the inequality (67.91) for any two graphs G and
H. In fact, equality holds (Lovász [1979d]):

(67.96) ϑ(G · H) = ϑ(G)ϑ(H).

Indeed, let M and N attain the maximum in definition (67.1) for ϑ(G) and ϑ(H)
respectively. Then M ◦ N ∈ MG·H , and hence

(67.97) ϑ(G · H) ≥ 1T

V G×V H(M ◦ N)1V G×V H = (1T

V GM1V G)(1T

V HN1V H)
= ϑ(G)ϑ(H).

Theorem 67.15 implies that Θ(C5) =
√

5. One may give an explicit construction
to prove this, but it also follows from the following general result (Lovász [1979d]):16

Theorem 67.16. For each graph G = (V, E): ϑ(G)ϑ(G) ≥ |V |, with equality if G
is vertex-transitive.

Proof. The inequality is Theorem 67.8. If G is vertex-transitive, then 1Tx is max-
imized over TH(G) at a vector x = µ · 1 for some µ ∈ R, since if it is maximized at
x we can replace it by

(67.98)
1

|Γ |
∑

P∈Γ

Px,

where Γ is the group of permutation matrices representing automorphisms of G.
(This follows from the fact that Px ∈ TH(G) and 1TPx = 1Tx.)

As the maximum value is equal to ϑ := ϑ(G), we know 1Tx = ϑ, and so
µ = ϑ/n, where n := |V |. Since x ∈ TH(G) = A(TH(G)) (by Theorem 67.12), we
have ϑx(G) ≤ 1; hence (as x = µ ·1) ϑ(G) ≤ µ−1 = n/ϑ. This shows ϑ(G)ϑ(G) ≤ n.

(M ◦ N)(w,y),(x,z) := Mw,xNy,z

for w ∈ W , x ∈ X, y ∈ Y , z ∈ Z. If M and N are symmetric positive semidefinite
matrices, then M ◦ N is symmetric and positive semidefinite again, since if M = UTU

and N = V TV , then M ◦ N = (U ◦ V )T(U ◦ V ).
15 To see this, let (u, v) and (u′, v′) be equal or nonadjacent. Then (by definition of G ·H)

u = u′ and v = v′, or u 
= u′ and u and u′ are nonadjacent, or v 
= v′ and v and v′ are
nonadjacent. Hence (IV G)u,u′ = 0 or Bv,v′ = 0, and Au,u′ = 0 or (IV H)v,v′ = 0, and
Au,u′ = 0 or Bv,v′ = 0.

16 An automorphism of a graph G = (V, E) is a permutation π : V → V with E =
{{π(u), π(v)} | {u, v} ∈ E}. The graph G is vertex-transitive if for all u, v ∈ V there
exists an automorphism π with π(u) = v.
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Since C5 is isomorphic to C5, Theorem 67.16 gives ϑ(C5) =
√

5. So Θ(G) ≤
√

5.
As Θ(G) ≥

√
α(C2

5 ) =
√

5, one has Θ(G) =
√

5.
Another consequence of Theorem 67.16 is that for any vertex-transitive graph

G: Θ(G · G) = |V G|, since the pairs (v, v) for v ∈ V G form a stable set in G · G (so
Θ(G · G) ≥ |V G|), and since Θ(G · G) ≤ ϑ(G · G) = ϑ(G)ϑ(G) = |V G|. If moreover
G is self-complementary (like C5), then Θ(G) =

√
|V G|.

For graphs that are not vertex-transitive, ϑ(G)ϑ(G) > |V G| may hold, even
α(G)α(G) > |V G|, for instance for G = K1,2.

Lovász [1979d] also gave the value of ϑ(Cn) for any odd circuit Cn:

(67.99) ϑ(Cn) =
n cos(π/n)

1 + cos(π/n)
for odd n.

For odd n ≥ 7, it is unknown if this is the value of Θ(Cn). Since each Cn is vertex-
transitive, by Theorem 67.16 we can derive from (67.99) the value of ϑ(Cn) for odd
n.

Lovász asked the question if Θ(G) = ϑ(G) for each graph G. This was answered
in the negative by Haemers [1979], by giving the following alternative upper bound
on the Shannon capacity of a graph G = (V, E). Let η(G) be the minimum rank of
a V ×V matrix M (over any field) such that Mv,v = 1 for each v ∈ V and Mu,v = 0
for distinct nonadjacent u and v. Then

(67.100) Θ(G) ≤ η(G).

This follows from the facts that α(G) ≤ η(G) (since any stable set S in G gives an
S×S identity submatrix of M), and that η(G·H) ≤ η(G)η(H) (since rank(M◦N) =
rank(M)rank(N) for any two matrices (over the same field)). Moreover, one has
η(G) ≤ χ(G) (by considering, for any clique cover of G, the {0, 1} matrix M with
Mu,v = 1 if and only if u and v belong to some clique in the clique cover).

Haemers gave a graph G on 27 vertices (the complement of the ‘Schläfli graph’)
with η(G) ≤ 7 and ϑ(G) = 9, implying Θ(G) ≤ 7 < ϑ(G). Since ϑ(G) = 3, this
also gives an example of a graph G satisfying Θ(G)Θ(G) < |V G| and (hence)
Θ(G)Θ(G) < Θ(G · G). (This disproves the conjecture of Shannon [1956] that
Θ(G)Θ(H) = Θ(G · H) for all graphs G, H, and answering to the negative the
question of Lovász [1979d] whether Θ(G)Θ(G) ≥ |V G| for all graphs G.)

It is unknown if Haemers’ bound η(G) can be computed in polynomial time.
(Peeters [1996] reports results on this. More work on Haemers’ bound in Haemers
[1981].)

The following bound follows with a method of Rosenfeld [1967]:

(67.101) α(G · H) ≤ χ∗(G)α(H).

To see this, let C1, . . . , Ck be cliques in G and λ1, . . . , λk ≥ 0 be such that

(67.102) λ1χ
C1 + · · · + λkχCk = 1V G and λ1 + · · · + λk = χ∗(G).

Let S ⊆ V G × V H be a stable set in G · H of size α(G · H). For each u ∈ V G, let
Su := {v ∈ V H | (u, v) ∈ S}. Then Su is a stable set of H, and if u and u′ are
adjacent vertices of G, then Su ∩ Su′ = ∅. For each i = 1, . . . , k, let

(67.103) Ti := {v ∈ V H | ∃u ∈ Ci : (u, v) ∈ S} =
⋃

u∈Ci

Su.

Since Ci is a clique in G, Ti is a stable set in H, and |Ti| =
∑

u∈Ci
|Su|. Hence
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(67.104) |S| =
∑

u∈V G

|Su| =

k∑

i=1

λi

∑

u∈Ci

|Su| =

k∑

i=1

λi|Ti| ≤
k∑

i=1

λiα(H)

= χ∗(G)α(H).

This shows (67.101).
Rosenfeld [1967] showed that for each graph G:

(67.105) α(G · H) = α(G)α(H) for each graph H ⇐⇒ α(G) = χ∗(G).

Here ⇐= follows from (67.101). To see =⇒, let x ∈ QV G
+ be a vector satisfying

x(C) ≤ 1 for each clique C, and 1Tx = χ∗(G). Let K be a positive integer such
that w := K · x is integer. Let Gw be the graph obtained from G by replacing each
vertex u by a clique Cu of size w(u) (where vertices in distinct Cu, Cu′ are adjacent
if and only if u and u′ are adjacent). Then ω(Gw) ≤ K. Hence for H := Gw we
have α(H) ≤ K.

Now let

(67.106) S := {(u, v) | u ∈ V G, v ∈ Cu}.

Then S is a stable set in G · H, since if (u, v) and (u′, v′) are distinct elements in
S, then, if u = u′, v and v′ belong to Cu and hence are nonadjacent in H, and, if
u �= u′, u and u′ are nonadjacent in G or v and v′ are nonadjacent in H.

So |S| ≤ α(G · H) = α(G)α(H). Hence

(67.107) χ∗(G) = 1Tx =
1

K
1Tw =

1

K
|S| ≤ 1

K
α(G)α(H) ≤ α(G).

Hence χ∗(G) = α(G).
More results on the stable set number of products of graphs are given by Vizing

[1963], Barnes and Mackey [1978], and Jha and Slutzki [1994].

The stable set number of products of circuits

The following equality was given by Baumert, McEliece, Rodemich, Rumsey, Stan-
ley, and Taylor [1971] and Markosyan [1971]:

(67.108) α(C2
2k+1) = k2 + ⌊ 1

2
k⌋.

≤ directly follows from (67.101), since α(C2k+1) = k and χ∗(C2k+1) = k + 1
2
. To

see ≥, we may assume that the vertices of C2k+1 are 0, 1, . . . , 2k, in order. Then
the pairs (2i, ⌊2i/k⌋), for i = 1, . . . , k2 + ⌊ 1

2
k⌋, where we take integers mod 2k + 1,

form a stable set of size k2 + ⌊ 1
2
k⌋ in C2

2k+1.
Baumert, McEliece, Rodemich, Rumsey, Stanley, and Taylor [1971] showed

moreover the following inequalities (next to several other estimates for α(Ck
n)):

(67.109) α(Ck
n+2) ≥ 1 +

(n + 2)k − 2k

nk
α(Ck

n),

α(Ck
n) ≤ nk − nk−1

2k
,

α(C3
5 ) = 10, α(C4

5 ) = 25, α(C3
7 ) = 33.

Hales [1973] extended (67.108) to:

(67.110) α(C2k+1 · C2l+1) = kl + ⌊ 1
2

min{k, l}⌋.
Related results on the stable set number of products of circuits are given by Sonne-
mann and Krafft [1974], Stein [1977], Hell and Roberts [1982], Mead and Narkiewicz
[1982], Vesel [1998], and Vesel and Žerovnik [1998].
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67.4c. Clique cover numbers of products of graphs

As for the analogue of the Shannon capacity for clique cover numbers, McEliece
and Posner [1971] showed that it gives no new parameter. We follow the proof of
Lovász [1975c].

Theorem 67.17. For any graph G:

(67.111) inf
k

k
√

χ(Gk) = lim
k→∞

k
√

χ(Gk) = χ∗(G).

Proof. We first show that for any two graphs G, H:

(67.112) χ∗(G · H) = χ∗(G)χ∗(H).

Here ≤ follows from (67.87). To see ≥, choose vectors x : V G → R+ with x(C) ≤ 1
for each clique, and with x(V G) = χ∗(G), and z : V H → R+ with z(C) ≤ 1 for
each clique, and with z(V H) = χ∗(H). Define y : V G × V H → R+ by

(67.113) y(u, v) := x(u)z(v)

for (u, v) ∈ V G × V H. Then y(C) ≤ 1 for each clique C of G · H, since there
are cliques C′ and C′′ of G and H, respectively, such that C ⊆ C′ × C′′; then
y(C) ≤ y(C′ × C′′) = x(C′)z(C′′) ≤ 1.

Hence

(67.114) χ∗(G · H) ≥ y(V G × V H) = x(V G)z(V H) = χ∗(G)χ∗(H).

This proves (67.112).
To prove (67.111), the first equality follows from Fekete’s lemma (Corollary

2.2a), since χ(Gk+l) = χ(Gk) · χ(Gl). Also we have by (67.112):

(67.115) inf
k

k
√

χ(Gk) ≥ inf
k

k
√

χ∗(Gk) = χ∗(G),

So it suffices to prove the reverse inequality in (67.115). Since ω(Gk) = ω(G)k

and since χ∗(Gk) = χ∗(G)k, we have by Theorem 64.13 (applied to Gk):

(67.116) inf
k

k
√

χ(Gk) ≤ inf
k

k
√

(1 + ln ω(Gk))χ∗(Gk)

= inf
k

k
√

(1 + k ln ω(G))χ∗(G) = χ∗(G),

as required.

An alternative proof was given by Hell and Roberts [1982]. A related infor-
mation-theoretic characterization of perfect graphs was given by Csiszár, Kőrner,
Lovász, Marton, and Simonyi [1990] (proving a conjecture of Kőrner and Mar-
ton [1988]). More on the colouring number of products of graphs can be found in
Borowiecki [1972], Greenwell and Lovász [1974], Vesztergombi [1980,1981], Turźık
[1983], Duffus, Sands, and Woodrow [1985], El-Zahar and Sauer [1985], Puš [1988],
Soukop [1988], Linial and Vazirani [1989], and Klavžar [1996] (survey).

Hales [1973] showed that for all graphs G, H:

(67.117) χ(G · H) ≥ χ∗(G)χ(H),

and

(67.118) χ(C2k+1 · C2l+1) = (k + 1)(l + 1) − ⌈ 1
2

min{k, l}⌉.
McEliece and Taylor [1973] showed that χ(C2

n,t) = ⌈n/t⌈n/t⌉⌉, where Cn,t is the
graph obtained from the circuit Cn by adding all chords connecting vertices at
distance less than t in Cn.
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67.4d. A sharper upper bound ϑ′(G) on α(G)

McEliece, Rodemich, and Rumsey [1978] and Schrijver [1979a] gave the following
sharper bound ϑ′(G) on the stable set number α(G), generally sharper than ϑ(G).
Again, let MG be the collection of symmetric V × V matrices satisfying Mu,v = 0
for any two distinct adjacent vertices u and v, and TrM = 1. (Here TrM is the
trace of M (sum of diagonal elements).) Then define

(67.119) ϑ′(G) := max{1TM1 | M ∈ MG nonnegative and positive semi-
definite}.

Here 1 denotes the all-one vector in RV . Similarly to ϑ(G), the value of ϑ′(G) can
be calculated in polynomial time. Moreover

(67.120) α(G) ≤ ϑ′(G) ≤ ϑ(G)

for each graph G. The first inequality is proved similarly to the proof of the first
inequality in Theorem 67.1, while the second inequality follows from the fact that
the range of the maximization problem for ϑ′(G) is contained in that for ϑ(G).

ϑ′(G) indeed can be a sharper upper bound on the stable set number than ϑ(G),
as M.R. Best (cf. Schrijver [1979a]) found the following example of a graph G with
ϑ′(G) < ϑ(G). The vertex set is {0, 1}6, two vectors being adjacent if and only if
their Hamming distance17 is at most 3. Then ϑ′(G) = 4 whereas ϑ(G) = 16/3.

Schrijver [1979a] gave relations of ϑ′(G) with the linear programming bound
for codes of Delsarte [1973]. Related work can be found in Schrijver [1981a] and
Miklós [1996]. (The polynomial-time computable upper bound for α(G) given by
Luz [1995] is at least ϑ′(G) for all graphs G.)

67.4e. An operator strengthening convex bodies

The matrix method describing TH(G) given in Section 67.4a can be seen as a special
case of a method of improving approximations of the stable set polytope — in fact,
of any polytope with {0, 1} vertices (Lovász and Schrijver [1989,1991]).

Let K be a convex set, let R(A) be defined as in (67.35), and define

(67.121) NK := the collection of symmetric n×n matrices A with R(A) positive
semidefinite, and with Ai ∈ Ai,i · K and diagA − Ai ∈ (1 − Ai,i) · K
for each i = 1, . . . , n,

where Ai denotes the ith column of A.
Define the following new convex set N+(K):

(67.122) N+(K) := {diagA | A ∈ NK}.

Then N+(K) ⊆ [0, 1]n, since R(A) is positive semidefinite. The ellipsoid method
gives, for any collection K of convex sets:

(67.123) if the optimization problem over K is polynomial-time solvable for each
K ∈ K, then also the optimization problem over N+(K) is polynomial-
time solvable for each K ∈ K.

17 The Hamming distance of two vectors of equal dimension is equal to the number of
coordinates in which they differ.
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Indeed, if the optimization problem over K is polynomial-time solvable, then the
membership problem over K is polynomial-time solvable. Hence the membership
problem over NK is polynomial-time solvable, implying that the optimization prob-
lem over NK is polynomial-time solvable. Therefore, the optimization problem over
N+(K) is polynomial-time solvable. (Cf. Chapter 4 of Grötschel, Lovász, and Schrij-
ver [1988].)

Before proving further properties of the operator N+, we note that it commutes
with the following reflection. Define r : Rn → Rn by r(x)1 := 1−x1 and r(x)i := xi

for i = 2, . . . , n, for x ∈ Rn: Then

(67.124) N+(r(K)) = r(N+(K)).

To see this, let, for any n × n matrix A, the matrix A′ be defined by:

(67.125) A′
1,1 := 1 − A1,1; A′

1,i := A′
i,1 := Ai,i − Ai,1 for i = 2, . . . , n;

A′
i,j := Ai,j for i, j = 2, . . . , n.

Then R(A) is positive semidefinite if and only if R(A′) is positive semidefinite, since

(67.126) R(A′) =




1 0 0
1 −1 0
0 0 I


 R(A)




1 1 0
0 −1 0
0 0 I


 .

Moreover, A ∈ NK ⇐⇒ A′ ∈ Nr(K) and diagA′ = r(diagA). This gives (67.124).
From this one can derive, if K is compact and convex and intersects [0, 1]n:

(67.127) N+(K) ⊆ K.

For let A ∈ NK and define a := diagA. If a �∈ K, there exists a w ∈ Rn and β ∈ R

with wTx ≤ β for each x ∈ K and wTa > β. Since by (67.124) we can flip signs if
necessary, we can assume w ≥ 0. Then, since for each i the vector Ai belongs to
Ai,i · K,

(67.128) wTAw =
∑

i

wi

( ∑

j

wjAi,j

)
=

∑

i

wi(w
TAi) ≤

∑

i

wiAi,iβ = βwTa.

Hence

(67.129) 0 ≤ (wTa, −wT)

(
1 aT

a A

) (
wTa
−w

)
= (wTa)2 − 2(wTa)2 + wTAw

≤ −(wTa)2 + β · wTa = (β − wTa)wTa < 0,

since β − wTa < 0 and wTa > β ≥ 0 (since β ≥ wTx ≥ 0 for any x ∈ K ∩ [0, 1]n).
This is a contradiction, showing (67.127).

Moreover, if K ⊆ [0, 1]n, then N+(K) remains to contain the integer hull of K:

(67.130) (N+(K))I = KI.

To see this, it suffices to show that x ∈ N+(K) for each 0,1 vector x in K. Obviously,
A := xxT belongs to NK . Hence x = diagA belongs to N+(K). This proves (67.130).

Finally, if K ⊆ [0, 1]n, then repeated application of the N+ operator gives the
integer hull KI of K. In fact, one has:

(67.131) Nn
+(K) = KI.

This follows from the fact that for each j = 1, . . . , n:



Section 67.4f. Further notes 1175

(67.132) N+(K) ⊆ conv.hull{x ∈ K | xj ∈ {0, 1}}.

To see this, we may assume that j = n. Let a ∈ N+(K), with a = diagA and
A ∈ NK . Then An ∈ an · K and (a − An) ∈ (1 − an) · K. If an ∈ {0, 1}, then a
belongs to the right-hand side of (67.132). So we can assume that 0 < an < 1. Set

(67.133) a′ := 1
an

An and a′′ := 1
1−an

(a − An).

Then a′ and a′′ belong to K, and a′
n = 1, a′′

n = 0. As a = an · a′ + (1 − an) · a′′, we
have that a belongs to the right-hand side of (67.132). This proves (67.132).

(67.131) implies that, when starting with K := TH(G), we can obtain better
and better approximations of Pstable set(G) by applying the N+ operator. After any
fixed number of iterations, we can optimize over the convex body in polynomial
time, by (67.123).

Stephen and Tunçel [1999] showed that for the line graph G = L(K2n+1) of the
complete graph K2n+1, when starting with the polytope determined by the non-
negativity and edge constraints ((64.10) in Section 64.5), the number of iterations
is precisely n. Related results were given by Cook and Dash [2001].

Leaving out the positive semidefiniteness condition in NK yields a weaker oper-
ator N(K), which however still satisfies a number of the above properties, including
(67.131). The operator N(K) is a special case of a more general operator introduced
by Sherali and Adams [1990].

Results relating a related operator to perfection of graphs were given by Aguil-
era, Escalante, and Nasini [2002].

67.4f. Further notes

Juhász [1982] showed that for a random graph G on n vertices, ϑ(G) is of the order√
n, while Θ(G) is ‘likely’ to be of the order log n. Knuth [1994] asked if there is

a constant c such that ϑ(G) ≤ c
√

nα(G) for each graph G. This was answered
negatively by Feige [1995,1997], who showed that there is a constant c > 0 such
that

(67.134) ϑ(G) > α(G)n/2c
√

log n

for infinitely many graphs G (where n := |V G|).
The results of Kashin and Konyagin [1981] and Konyagin [1981] imply that if

α(G) ≤ 2, then ϑ(G) ≤ 2
2
3 n

1
3 and (in the worst case) ϑ(G) = Ω(n

1
3 /

√
log n).

Karger, Motwani, and Sudan [1994,1998] showed the existence of a constant
c > 0 such that

(67.135) χ(G) ≤ n
1− c

ϑ(G)

for each graph G (where n := |V G|). More on approximating α(G) or χ(G) by ϑ(G)
can be found in Szegedy [1994] and Charikar [2002].

Kleinberg and Goemans [1998] observed that for any graph G:

(67.136) τ(G) ≤ 2(|V | − ϑ(G)) ≤ 2τ(G)

(where τ(G) is the vertex cover number of G), and they showed that the factor 2
cannot be improved. Thus the factor 2 as relative error of ν(G) for approximating
τ(G) is not improved by 2(|V | − ϑ(G)).
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Fast practical algorithms to compute ϑ(G), based on interior-point methods,
were developed by Alizadeh [1991,1995]. The latter paper also gives a survey on
applying semidefinite programming to combinatorial optimization.

A colouring algorithm for perfect graphs based on decomposition was described
by Hsu [1986]. An on-line colouring algorithm for perfect graphs (not necessarily
yielding an optimum colouring) was given by Kierstead and Kolossa [1996]. An
algorithm for colouring some perfect graphs was given by Aı̈t Haddadène, Gravier,
and Maffray [1998]. Kratochvil and Sebő [1997] studied the complexity of colouring
a perfect graph if some vertices are pre-coloured. Brandstädt [1987] showed the NP-
completeness of several optimization problems for special classes of perfect graphs,
like finding a minimum feedback vertex set or a minimum dominating set.

Introductory surveys were given by Knuth [1994] and Goemans [1997] on ϑ(G),
by Grötschel, Lovász, and Schrijver [1984c] on polynomial-time algorithms for clique
and colouring problems in perfect graphs, and by Reed [2001a] on semi-definite
programming in relation to perfect graphs. Another characterization of perfection
in terms of TH(G) was given by Shepherd [2001].

A generalization of ϑ(G) was given by Narasimhan and Manber [1990]. A gen-
eralization of the Shannon capacity to directed graphs was studied by Bidamon and
Meyniel [1985]. An analogue of the Shannon capacity based on the ‘independent
domination number’ of a graph, was investigated by Farber [1986]. The Shannon
capacity of probabilistic graphs was investigated by Marton [1993].

Further investigations of eigenvalue methods to bound the Shannon capacity are
reported by Haemers [1995] and Fiol [1999]. Further convex programming duality
phenomena for perfect graphs were found by Wei [1988].

67.4g. Historical notes on perfect graphs

Shannon

As Berge [1997] mentioned, the perfect graph conjectures root in work of Shannon
[1956] concerning the ‘zero error capacity of a noisy channel’. It amounts to a study
of what we now call the Shannon capacity of a graph. Shannon gave the example
of C5 where α(C5) = 2 and α(C2

5 ) = 5, implying Θ(C5) ≥
√

5 > α(C5). Denoting
the logarithm of the Shannon capacity by C0, Shannon remarked:

No method has been found for determining C0 for the general discrete channel,
and this we propose as an interesting problem in coding theory.

Shannon proved the following lower and upper bounds on the Shannon capacity
Θ(G) of a graph G = (V, E). First:

(67.137) max
p

( ∑
(pupv | u, v ∈ V, u = v or uv ∈ E)

)−1 ≤ Θ(G),

where p ranges over all p ∈ RV
+ with

∑
v∈V p(v) = 1. It was observed by Korn [1968]

that this lower bound (and also the lower bound given by Gallager [1965]) is equal
to the stable set number α(G): if pu > 0 and pv > 0 for two adjacent vertices u and
v, either resetting pu := pu +pv and pv := 0, or resetting pv := pu +pv and pu := 0,
would increase the value in (67.137), a contradiction. So the set S := {v | pv > 0}
is a stable set. Then the value in (67.137) is maximized by taking pv := 1/|S| for
v ∈ S. (As we saw in Section 64.9c, this also follows from a theorem of Motzkin
and Straus [1965].)

The upper bound given by Shannon [1956] amounts to:
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(67.138) Θ(G) ≤ χ∗(G).

Shannon formulated and proved this upper bound in terms of information theory
as follows. Let V be an alphabet, let Σ be a set of ‘signals’, and for v ∈ V and
σ ∈ Σ, let pv,σ be the probability that when transmitting symbol v, signal σ is
received. So

∑
σ∈Σ pv,σ = 1 for each v ∈ V . Let G be the graph on V where two

elements u, v ∈ V are adjacent if and only if there is a signal σ with pu,σ > 0 and
pv,σ > 0. For each σ ∈ Σ, define the clique Kσ := {v ∈ V | pv,σ > 0} and the real
number λσ := max{pv,σ | v ∈ V }. So

(67.139)
∑

σ∈Σ

λσχKσ ≥ 1.

Hence, by definition of χ∗(G),

(67.140) χ∗(G) ≤
∑

σ∈Σ

λσ.

Moreover, for any fixed G, the minimum of the right-hand side in (67.140) is equal
to the left-hand side.

For any v = (v1, . . . , vk) ∈ V k and s = (s1, . . . , sk) ∈ Σk define

(67.141) pv,s :=

k∏

i=1

pvi,si and λs :=

k∏

i=1

λsi .

So pv,s is the probability that transmitted word v is received as word s.
Now consider any nonempty ‘code’ C ⊆ V k. The ‘error probability’ of C is

equal to

(67.142) q(C) := min
φ

1

|C|
∑

v∈C

∑
(pv,s | s ∈ Σk, φ(s) �= v),

where φ ranges over all functions φ : Σk → C. So it is the minimum error probability
taken over all possible ‘decoding schemes’ φ. Trivially, this minimum is attained by
the function φ with φ(s) equal to any v ∈ C maximizing pv,s over v ∈ C. So

(67.143) 1 − q(C) =
1

|C|
∑

s∈Σk

max
v∈C

pv,s ≤ 1

|C|
∑

s∈Σk

λs =
1

|C|
( ∑

σ∈Σ

λσ

)k
.

Therefore,

(67.144) k
√

|C| ≤

∑

σ∈Σ

λσ

k
√

1 − q(C)
.

Now q(C) = 0 if and only if C is stable in Gk. Minimizing over all Σ and probability
distributions pv,σ then yields

(67.145) k
√

|C| ≤ χ∗(G).

So this gives (67.138).
Shannon next observed that if a graph G = (V, E) has a function f : V → V

such that f(u) �= f(v) for any distinct nonadjacent vertices u and v, and such that
f(V ) is a stable set, then Θ(G) = α(G). The condition clearly is equivalent to:
α(G) = χ(G). Shannon noticed that this yields the value of Θ(G) for all graphs G
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with at most 5 vertices, except for C5, for which he derived
√

5 ≤ Θ(C5) ≤ 5
2

from
(67.138). Shannon observed that on 6 vertices all but four graphs have α(G) = χ(G),
and that the Shannon capacity of these four graphs can be expressed in terms of
Θ(C5). On 7 vertices, he stated that ‘at least one new situation arises’, namely C7.

Shannon proved that if G and H are disjoint graphs, then Θ(G + H) ≥
Θ(G)+Θ(H) and Θ(G ·H) ≥ Θ(G) ·Θ(H), and that equality holds if α(G) = χ(G).
Moreover, he conjectured equality for all G, H, but for the product this was dis-
proved by Haemers [1979], and for the sum by Alon [1998].

Berge

As remarked, in developing the concept of perfect graph Berge was motivated by
Shannon’s problem on the capacity of graphs. We quote from the article ‘Motiva-
tions and history of some of my conjectures’ of Berge [1997]:

June 1957: When he heard that I was writing a book on graph theory, my friend
M.P. Schützenberger drew my attention on an interesting paper of Shannon [51]
which was presented at a meeting for engineers and statisticians, but which could
have been missed by mathematicians working in algebra or combinatorics.

(Berge’s reference [51] is Shannon [1956].)
In his book ‘Théorie des graphes’ (Theory of Graphs), Berge [1958b] called a

function σ : V G → V G a preserving function (‘application préservante’), if for any
two distinct nonadjacent vertices u, v, also σ(u) and σ(v) are distinct and nonad-
jacent. Then, like Shannon, he considered graphs G having a preserving function σ
mapping V G to a stable subset of V G. Clearly, these are exactly the graphs with
α(G) = χ(G).

Berge [1958b] also mentioned that M.P. Schützenberger conjectured that

(67.146) Θ(G) = lim
k→∞

k
√

α(Gk),

which was shown by Lyubich [1964] to follow directly from Fekete’s lemma (Corol-
lary 2.2a).

According to Berge [1997], the problem of finding the minimal graphs G with
α(G) < Θ(G) was discussed in January 1960 at the Seminar of R. Fortet, where
he asked (prompted by graphs found by A. Ghouila-Houri) if it is true that each
graph G not having an odd hole or odd antihole satisfies α(G) = Θ(G):

This conjecture, somewhat weaker than the Perfect Graph Conjecture, was mo-
tivated by the remark that for the most usual channels, the graphs representing
the possible confusions between a set of signals (in particular the interval graphs)
have no odd holes and no odd antiholes, and are optimal in the sense of Shannon.

At the first international meeting on graph theory held at Dobogókő (Hungary)
in October 1959, Hajnal and Surányi [1958] presented the result that α(G) = χ(G)
for each chordal graph G. This motivated Berge to show that the same holds for
complements of chordal graphs. This result was announced, with partial proof,
in the paper Berge [1960a], which moreover mentions that several known results
yield other classes of graphs G with ω(G) = χ(G). In particular, it is observed that
theorems of Kőnig imply that ω(G) = χ(G) if G or G is the line graph of a bipartite
graph — ‘propriétés remarquables’ (remarkable properties) according to Berge.
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These results were presented at the Second International Symposium on Graph
Theory at the Martin-Luther-Universität in Halle an der Saale (German Democratic
Republic) in April 1960. In his memoirs, Berge [1997] mentioned that18

At that time, we were pretty sure that there were no other minimal obstructions;
for that reason, at the end of my talk in Halle, I proposed the following open
problem: If a graph G and its complement are semi-Gallai graphs, is it ture that
γ(G) = ω(G)?

where a graph is semi-Gallai if it has no odd hole, and where γ(G) is Berge’s
notation for the colouring number of G.

So, according to Berge, the strong perfect graph conjecture was stated in 1960
in Halle. It seems however that Berge was hesitating in putting the conjecture in
print. It is not quoted in the written abstract of the talk (Berge [1961]), which in
this respect only says that

Angesichts einer solchen Menge von Beispielen könnte man vermuten, daß für
jeden semi-Gallaischen Graphen G die Beziehung ω(G) = γ(G) gilt. Aber das
stimmt nicht, wie das folgende, von einem unserer Schüler, Herrn Ghouila-Houri,
angegebene Gegenbeispiel zeigt:
G ist ein Graph mit den Knoten a, b, c, d, e, f, g und den Kanten ac, ad, ae, af, bd,
be, bf, bg, ce, cf, cg, df, dg, eg. Man kann leicht zeigen, daß G ein semi-Gallaischer
Graph ist mit ω(G) = 3, aber γ(G) = 4 (siehe Abbildung 1).19

(This example (C7) was also given by Shannon [1956].) Incidentally, in this paper,
Berge called graphs G satisfying α(G) = χ(G) perfect graphs of Shannon (‘vol-
lkommenen Graphen von Shannon’).

About the strong perfect graph conjecture, Berge and Chvátal [1984] wrote:

An early effort of Alain Ghouila-Houri failed to produce a counterexample to this
conjecture. Despite this encouraging sign, Berge felt that the conjecture might be
too ambitious. Therefore he restricted himself to a weaker conjecture in the hope
that it might be easier to settle.

According to Berge and Chvátal [1984] (where a triangulated graph is a chordal
graph),

After the meeting at Halle an der Saale in 1960, the Strong Perfect Graph Con-
jecture received the enthusiastic support of G. Hajós and T. Gallai. In fact, Gallai
provided further evidence in support of the conjecture by strengthening the re-
sults on triangulated graphs: he proved that a graph is α-perfect and γ-perfect
whenever each of its odd cycles of length at least five has at least two non-crossing
chords.

In Gallai [1962], only a proof of α(G) = χ(G) is given, for graphs G in which any
odd circuit of length at least 5 has two noncrossing chords. Berge [1997] reported
that Gallai informed him in a letter that he knew that also ω(G) = χ(G) holds
for such graphs. However, Gallai’s paper does not mention this, and no reference is
made to Berge’s conjectures.

Berge and Chvátal [1984] continued:

18 As we aim at verbatim quotations, we leave the typo unchanged.
19 In view of such a multitude of examples one could conjecture that for each semi-Gallai

graph G the relation ω(G) = γ(G) holds. But that does not hold, as the following
counterexample, presented by one of our students, Mr Ghouila-Houri, shows:

G is a graph with nodes a, b, c, d, e, f, g and edges ac, ad, ae, af, bd, be, bf, bg, ce,
cf, cg, df, dg, eg. One can easily show, that G is a semi-Gallai graph with ω(G) = 3,
but γ(G) = 4 (see Figure 1).
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Nevertheless, Berge still felt that the weak conjecture was more promising. At a
conference at Rand Corporation in the summer of 1961, he had fruitful discussions
with Alan Hoffman, Ray Fulkerson and others. Later on, discussions between Alan
Hoffman and Paul Gilmore led Gilmore to a rediscovery of the Strong Perfect
Graph Conjecture and to an attempt to axiomatize the relevant properties of
cliques in perfect graphs.

Berge [1997] wrote that the discussions at the RAND Corporation with Alan Hoff-
man encouraged him to write a paper ‘in English’. This paper might have been the
first version of the paper ‘Some classes of perfect graphs’ (Berge [1963a]), published
in a booklet ‘Six Papers on Graph Theory’ by the Indian Statistical Institute in
Calcutta, which Berge visited in March-April 1963 and where he gave a series of
lectures. The booklet contains no year of publication, and the preface mentions
that it is intended for private circulation, and that the papers will be given for
publication by journals.

The paper contains as new results that ω(G) = χ(G) for unimodular graphs and
their complements, and also a full proof that it holds for chordal graphs (announced
earlier). The paper seems to be the first written account of the concept of perfect
graph, and of the perfect graph conjectures, in the last section of the paper:

V. CONJECTURES
The problem of characterizing α-perfect and γ-perfect graphs seems diffi-

cult, but the preceding results enable us to state several conjectures. For instance
:

Conjecture 1. A graph is α-perfect if and only if it is γ-perfect
Conjecture 2. A graph is γ-perfect if and only if it does not contain an

elementary odd cycle of one of the following types :
type 1 : the cycle is of length greater than 3 and does not possess any chord

;
type 2 : the cycle is of length greater than 3, and does not possess any

triangular chord, but possesses all its non-triangular chords ( a chord is triangular
if it determines a triangle with the edges of the cycle)

Conjecture 3. A graph is α-perfect if and only if it does not contain an
elementary odd cycle of type 1 or 2.

It is easy to show that conjecture 2 is equivalent to conjecture 3, and implies
conjecture 1. It is also easy to show that if a graph is γ-perfect (or α-perfect),
then it does not contain an elementary odd cycle of type 1 or 2.

At the General Assembly of the U.R.S.I. (Union Radio Scientifique Interna-
tionale) in Tokyo in September 1963, Berge developed further on the relations
between perfection and optimum codes in the sense of Shannon. We quote the
abstract (Berge [1963b]):

3. Claude Berge : Sur une conjecture relative au problème des codes optimaux de
Shannon, on considère un émetteur qui peut émettre un ensemble de signaux, par
suite du bruit chaque signal peut donner plusieurs interprétations à la réception.
On trace le graphe dont les sommets représentent les différents signaux, deux
points étant liés par une arête si les signaux correspondants peuvent être confon-
dus à la réception. Le problème essentiel est de caractériser les graphes que l’on
peut enrichir, on aboutit ainsi à une conjecture que l’on démontre pour certaines
classes particulières.20

20 3. Claude Berge : On a conjecture related to the problem of the optimal codes of
Shannon, we consider a transmitter that can transmit a set of signals, as a consequence
of noise each signal can give several interpretations at the reception. We make the graph
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Berge [1997] wrote that the paper Berge [1963a] was distributed to all participants
of the U.R.S.I. meeting in 1963, and that a French version of it was published
as Berge [1966], added with some new results and an appendix with some results
proved in Berge [1967], in order to make the conjecture more plausible and more
interesting.

The paper Berge [1966] is more descriptive, but gives more relations to the
Shannon problem, and also mentions the strong perfect graph conjecture, attribut-
ing it jointly to P.C. Gilmore. After remarking that α(G) �= χ(G) for odd circuits
of length at least 5 and their complements, the paper states:

Nous nous sommes proposés de voir si la réciproque était vraie, et sommes arrivés
à la conjecture suivante avec P. Gilmore:
Conjecture. Soit G un graphe de signaux; il est parfait si et seulement s’il ne
contient pas un cycle impair sans cordes (de longueur > 3), ni le complémentaire
d’un cycle impair sans cordes (de longueur > 3).21

Berge [1966] also claimed, without proof, that Θ(G) = α(G) if and only if χ(G) =
α(G):

On voit aussi que la condition nécessaire et suffisante pour que la capacité du
graphe de signaux G soit égale à α(G) est que α(G) = θ(G).22

(Italics of Berge, who denoted the clique cover number χ(G) of G by θ(G).) However,
the line graph L(K6) of K6 is a counterexample to this (it has α = Θ = χ∗ = 3
and χ = 4).

The paper ‘Some classes of perfect graphs’ was published again in a book on
Graph Theory and Theoretical Physics edited by F. Harary (Berge [1967]). Accord-
ing to Berge [1997], this paper is ‘a final version’ of the manuscript, with suggestions
by Hoffman, and was handed over to Harary at the end of a NATO Advanced Study
Institute on Graph Theory in Frascati, Italy in March-April 1964. Compared with
Berge [1963a], the paper contains no new results, and moreover the last section
with the perfect graph conjectures (quoted above) has been omitted.

This paper was published also in the Proceedings of a Conference on Combi-
natorial Mathematics and Its Applications at the University of North Carolina at
Chapel Hill, 10–14 April 1967. It is followed by a ‘Discussion on Professor Berge’s
Paper’ by M.E. Watkins stating that ‘it seems likely that G is perfect if and only
if G is perfect’. Berge [1996] mentioned that this addendum

contributed to make the perfect graph conjecture popular. Before the Chapel Hill
conference, I did not get much interest for my problems from the mathematics
community; the first symposium lecture about perfect graphs from other mathe-
maticians was delivered by Horst Sachs [20] at the Calgary conference in 1969.

(Berge’s reference [20] is Sachs [1970].)

the vertices of which represent the different signals, two points being connected by an
edge if the corresponding signals can be confused at the reception. The essential problem
is of characterizing the graphs that one can enrich, we arrive this way at a conjecture
that we prove for certain particular classes.

21 We have resolved to see if the reverse would be true, and have arrived at the following
conjecture with P. Gilmore:

Conjecture. Let G be a graph of signals; it is perfect if and only if it neither
contains an odd circuit without chords (of length > 3), nor the complement of an odd
circuit without chords (of length > 3).

22 One also sees that the necessary and sufficient condition for that the capacity of the
graph of signals G is equal to α(G) is that α(G) = θ(G).



1182 Chapter 67. Perfect graphs: polynomial-time solvability

Fulkerson

The results on perfect graphs obtained until then being restricted to specific classes
of graphs, the first serious dent in solving the perfect graph conjectures in general
was made by Fulkerson in a RAND Report of 1970 on antiblocking polyhedra. They
led Fulkerson to prove a ‘pluperfect graph theorem’, but also to doubt the validity
of the weak perfect graph conjecture, which blocked him finishing it off.

The RAND Report (Fulkerson [1970c]) was published as Fulkerson [1972a], and
the results were presented at the Second Chapel Hill Conference on Combinatorial
Mathematics and Its Applications at the University of North Carolina at Chapel
Hill in May 1970 (Fulkerson [1970d]), and at the 7th International Mathematical
Programming Symposium in 1970 in The Hague, for which a survey paper on
blocking and antiblocking pairs of polyhedra was written (Fulkerson [1970a,1971a]).

Fulkerson called a graph G γ-pluperfect if χ(H) = ω(H) for each graph H ob-
tained from G by deleting and replicating vertices. In particular, if G is γ-pluperfect,
then G is γ-perfect.

What Fulkerson [1970a,1971a] proved is that:

(67.147) G is γ-pluperfect ⇐⇒ G is γ-pluperfect.

The proof is not hard, but is based on a series of pioneering observations and general
polyhedral insights that are now fundamental in polyhedral combinatorics. It uses
the linear programming duality equality

(67.148) max{wTx | x ≥ 0, Mx ≤ 1} = min{yT1 | y ≥ 0, yTM ≥ wT},

where M is the incidence matrix of the stable sets of G and where w : V → R+.
Then:

(67.149) G = (V, E) is γ-pluperfect
1⇐⇒ ∀w : V → Z+, both optima in (67.148) are attained by integer

solutions x and y
2⇐⇒ ∀w : V → Z+, the maximum in (67.148) is attained by an integer

solution x
3⇐⇒ ∀w : V → Q+, the maximum in (67.148) is attained by an integer

solution x
4⇐⇒ ∀w : V → R+, the maximum in (67.148) is attained by an integer

solution x
5⇐⇒ each vertex of the polytope {x | x ≥ 0, Mx ≤ 1} is integer
6⇐⇒ the clique polytope of G is determined by the nonnegativity and

stable set constraints.

The first equivalence in (67.149) follows by observing that a weight w(v) of a vertex
v corresponds to replacing v by a clique of size w(v); this is equivalent to duplicating
v w(v)−1 times, or, if w(v) = 0, deleting v. The second equivalence can be derived
by considering, for any w : V → Z+ an inequality x(S) ≤ 1 in Mx ≤ 1 satisfied
with equality by all optimum solutions; hence replacing w by w −χS the maximum
decreases, hence by at least 1 (as it has an integer value); as the minimum decreases
by at most 1, we obtain an integer optimum dual solution by induction. The third
and fourth equivalences follow by scaling w and by continuity. The fifth equivalence
is general polyhedral theory, and the sixth one follows by observing that the integer
solutions of x ≥ 0, Mx ≤ 1 are precisely the incidence vectors of cliques.
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Now by Fulkerson’s theory of antiblocking polyhedra, the last statement in
(67.149) is invariant under interchanging ‘clique’ and ‘stable set’; that is, under
replacing G by the complementary graph G. Hence the same holds for the first
statement.

Fulkerson [1970c,1970a,1971a,1972a] gave another, symmetrical characteriza-
tion of γ-pluperfect graphs:

(67.150) a graph G = (V, E) is γ-pluperfect if and only if for all l, w : V → Z+,
the maximum of l(S)w(C) over all stable sets S and cliques C is at
least

∑
v l(v)w(v).

For this, Fulkerson was inspired by the length-width inequality for blocking pairs
of hypergraphs given in a 1965 preprint of Lehman [1965,1979].

The weak perfect graph conjecture implies that each perfect graph G is γ-
pluperfect, since trivially if χ(H) = ω(H) for each induced subgraph H of G, then
χ(H) = ω(H) for each H obtained from G by deleting and replicating vertices.
(Note that χ(H) = χ(G) and ω(H) = ω(G) if H arises from G by duplicating a
vertex.)

So, as Fulkerson [1970a,1971a] remarked (‘theorem 14’), the perfect graph con-
jecture is equivalent to: each γ-perfect graph is γ-pluperfect; or: γ-perfection is
maintained under duplicating vertices (later called the replication lemma):

Thus to prove the perfect graph conjecture, it would suffice to prove that γ-
perfection implies γ-pluperfection. For this it would suffice to show that if G is
γ-perfect, and if we duplicate an arbitrary vertex v in G and join v to its duplicate
vertex, the new graph G′ is again γ-perfect.

Another way of stating it is: if for each w : V → {0, 1} both optima in (67.148)
have integer solutions, then likewise for each w : V → Z+. This might seem too
strong from a general polyhedral point of view, and it made Fulkerson [1970a,1971a]
mistrust the conjecture:

It is our feeling that theorem 14 casts some doubt on the validity of the perfect
graph conjecture.

Lovász

The weak perfect graph conjecture was finally proved by Lovász [1972c], stating:

Fulkerson [5] reduced the problem to the following conjecture, using the theory
of antiblocking polyhedra:
Duplicating an arbitrary vertex of a perfect graph and joining the obtained two
vertices by an edge, the arising graph is perfect.
In §1 we prove a theorem which contains this conjecture.

(Reference [5] is Fulkerson [1972a].) Lovász also wrote:

It should be pointed out that thus the proof consists of two steps and the more
difficult second step was done first by Fulkerson.

With respect to this, Fulkerson [1973] remarked in his comments ‘On the perfect
graph theorem’:
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Concerning this proof, Lovász states: “It should be pointed out that thus the proof
consists of two steps, and the most difficult second step was done first by Fulker-
son.” I would be less than candid if I did not say that I agree with this remark,
at least in retrospect. But the fact remains that, while part of my aim in develop-
ing the anti-blocking theory had been to settle the perfect graph conjecture, and
that while I had succeeded via this theory in reducing the conjecture to a simple
lemma about graphs [3,4] (the “replication lemma”, a proof of which is given
in this paper) and had developed other seemingly more complicated equivalent
versions of the conjecture [3,4,5], I eventually began to feel that the conjecture
was probably false and thus spent several fruitless months trying to construct a
counterexample. It is not altogether clear to me now just why I felt the conjecture
was false, but I think it was due mainly to one equivalent version I had found
[4,5], a version that does not explicitly mention graphs at all.

(The references [3,4,5] correspond to Fulkerson [1972a,1971a,1970d].)
In the preprint of this article, Fulkerson [1972b] wrote moreover, after stating

the replication lemma:

Actually I knew more: Namely that the truth or falsity of the perfect graph
conjecture rested entirely on the truth or falsity of the replication lemma. I tried
for awhile to prove this lemma, without success, and then, as was mentioned
earlier, became convinced on other grounds that the perfect graph conjecture was
probably false, and began to look for a graph that was perfect but not pluperfect.
(I knew that it would do no good to look at known classes of perfect graphs, since
I had been able to prove that all of these were pluperfect.) The fact is that such
graphs don’t exist, of course. After some months of sporadic effort along these
lines, I quit working on the perfect graph conjecture, thinking that I would come
back to it later. There were other aspects of anti-blocking pairs of polyhedra, and
of blocking pairs of polyhedra, that I wanted to study, and, in any event, I felt
that the pluperfect graph theorem was a beautiful result in its own right.
In the spring of 1971 I received a postcard from Berge, who was then visiting the
University of Waterloo, saying that he had just heard that Lovász had a proof of
the perfect graph conjecture. This immediately rekindled my interest, naturally,
and so I sat down at my desk and thought again about the replication lemma.
Some four or five hours later, I saw a simple proof of it.

After having given a simple proof of the replication lemma, Fulkerson [1972b] con-
tinued:

As can be seen, there is nothing deep or complicated about the proof of this
lemma. Perhaps the fact that I saw a proof of it only after knowing it had to
be true may say something about the psychology of invention (or, better yet,
anti-invention) in mathematics, at least for me.

This is indeed an instructive illustration that believing a conjecture may help in
proving it.

In a subsequent paper, Lovász [1972a] proved more strongly that a graph G
is perfect if and only if α(H)ω(H) ≥ |V H| for each induced subgraph H of G.
This generalizes the perfect graph theorem, and was suggested by A. Hajnal. It
also sharpens Fulkerson’s result (67.150), implying that one may restrict l and w
to {0, 1}-valued functions with l = w.

The problem of Shannon [1956] concerning the Shannon capacity of C5 was
solved by Lovász [1979d].

In May 2002, M. Chudnovsky, N. Robertson, P.D. Seymour, and R. Thomas an-
nounced that they found a proof of the strong perfect graph conjecture, by proving
a number of deep results, and building on and inspired by earlier results of, among
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others, V. Chvátal, M. Conforti, G. Cornuéjols, W.H. Cunningham, A. Kapoor, F.
Roussel, P. Rubio, N. Sbihi, K. Vušković, and G. Zambelli.

More historical notes are given by Berge and Ramı́rez Alfonśın [2001] and Reed
[2001b].



Chapter 68

T-perfect graphs

The class of t-perfect graphs is defined polyhedrally: the stable set poly-
tope should be determined by the nonnegativity, edge, and odd circuit
constraints. It implies that a maximum-weight stable set in such graphs
can be found in polynomial time. LP duality gives a min-max relation for
the maximum-weight of a stable set in t-perfect graphs.
A characterization of t-perfect graphs is not known. The widest class of t-
perfect graphs known consists of those not containing certain subdivisions
of K4 as subgraph.

68.1. T-perfect graphs

A graph G = (V, E) is called t-perfect23 if the stable set polytope of G is
determined by

(68.1) (i) 0 ≤ xv ≤ 1 for each v ∈ V ,
(ii) xu + xv ≤ 1 for each edge uv ∈ E,
(iii) x(V C) ≤ ⌊ 1

2
|V C|⌋ for each odd circuit C.

A prominent non-t-perfect graph is K4. Below we shall see that, on the other
hand, if K4 does not occur in a graph in a certain way, then the graph is
t-perfect. But no exact characterization of t-perfection is known.

A motivation for studying t-perfection is algorithmic, since the definition
implies:

Theorem 68.1. A maximum-weight stable set in a t-perfect graph can be
found in strongly polynomial time.

Proof. By Theorems 5.10 and 5.11, it suffices to show that the separation
problem over the stable set polytope is polynomial-time solvable. Conditions
(i) and (ii) in (68.1) can be tested one by one. If they are satisfied, define a
function y : E → R+ by:

(68.2) ye := 1 − xu − xv

for each e = uv ∈ E. Then condition (iii) is equivalent to:

23 t stands for ‘trou’ (French for ‘hole’).
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(68.3) y(EC) ≥ 1 for each odd circuit C

(since y(EC) = |EC| − 2x(V C)). The latter condition can be checked in
polynomial time: Consider y as a length function, and for each u ∈ V , find an
odd circuit C through u with y(EC) minimal. This can be done by replacing
each vertex v by two vertices v′, v′′, and each edge e = vw by two edges v′w′′

and v′′w′, each of length ye; then a shortest path from u′ to u′′ gives the
required circuit.

If y(EC) < 1, we have a violated inequality.

A combinatorial polynomial-time algorithm to find the stable set number
of a t-perfect graph was given by Eisenbrand, Funke, Garg, and Könemann
[2002]. It is based on finding (by a greedy method similar to that used in
the proof of Theorem 64.13) an approximative fractional dual solution to the
problem of maximizing 1Tx over (68.1). with relative error less than 1/|V |.
Rounding then gives the stable set number. Applying this iteratively gives
an explicit maximum-size stable set.

Notes. The construction given in the proof of Theorem 68.1 shows that the
maximum-weight stable set problem in a t-perfect graph can be described by a
‘compact’ linear programming: the stable set polytope is the projection of a poly-
tope whose dimension and number of facets are polynomially bounded. To see this,
introduce, next to the variables y ∈ RE

+, a variable zu,v for each u, v ∈ V . Requiring:

(68.4) zv,v ≥ 1 for each v ∈ V ,
zu,v ≤ yuv for each edge uv ∈ E,
zt,w ≤ zt,u + yuv + yvw for all t, u, v, w ∈ V with uv, vw ∈ E,

is equivalent to the odd circuit constraints. (In fact, one can do without the variables
ye, as they can be expressed in the xv.) So a maximum-weight stable set in a t-
perfect graph can be found in polynomial time with any polynomial-time linear
programming algorithm.

T-perfection can also be characterized in terms of the vertex cover polytope:

Theorem 68.2. A graph G = (V, E) is t-perfect if and only if the vertex cover

polytope of G is determined by:

(68.5) (i) 0 ≤ xv ≤ 1 for each v ∈ V ,
(ii) xu + xv ≥ 1 for each edge uv ∈ E,
(iii) x(V C) ≥ ⌈ 1

2
|V C|⌉ for each odd circuit C.

Proof. System (68.5) arises from (68.1) by the reflection x → 1 − x. So integrality
of the two polytopes is equivalent.

68.2. Strongly t-perfect graphs

A graph G = (V, E) is called strongly t-perfect if system (68.1) is totally dual
integral. So each strongly t-perfect graph is t-perfect (Theorem 5.22). It is
unknown if the reverse implication holds:
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(68.6) Is every t-perfect graph strongly t-perfect?

Strong t-perfection can be characterized by the weighted version of the
stable set number and a certain weighted ‘edge and circuit’ cover number.
Let G = (V, E) be a graph and let w : V → Z+. In this chapter, a w-cover
is a family of vertices, edges, and odd circuits covering each vertex v at least
w(v) times. By definition, the cost of a vertex or edge is 1, and the cost of an
odd circuit C is ⌊ 1

2
|V C|⌋. The cost of a w-cover F is the sum of the costs of

the elements of F . Define

(68.7) αw(G) := the maximum weight of a stable set in G,
ρ̃w(G) := the minimum cost of a w-cover.

Obviously, αw(G) ≤ ρ̃w(G) for any graph G. Moreover:

(68.8) G is strongly t-perfect ⇐⇒ αw(G) = ρ̃w(G) for each w : V →
Z+.

This follows directly from a combinatorial interpretation of total dual inte-
grality.

Notes. W.R. Pulleyblank (cf. Gerards [1989a]) observed that, even for w = 1,
determining ρ̃w(G) is NP-complete, since the vertex set of a graph G can be par-
titioned into triangles if and only if ρ̃w(G) = 1

3
|V | where w = 1. The problem of

partitioning a graph into triangles is NP-complete. Since partitioning into trian-
gles remains to be NP-complete for planar graphs (Dyer and Frieze [1986]), even
determining ρ̃w(G) for planar graphs is NP-complete.

Again, strong t-perfection is equivalent to the total dual integrality of the vertex
cover constraints (68.5).

68.3. Strong t-perfection of odd-K4-free graphs

K4 is the smallest graph that is not t-perfect. Gerards and Schrijver [1986]
showed that any graph not containing an ‘odd K4-subdivision’ is t-perfect —
in fact, as Gerards [1989a] showed, strongly t-perfect. We will prove this in
this section (with a method inspired by Geelen and Guenin [2001]).

Call a subdivision of K4 odd if each triangle of K4 has become an odd
circuit — equivalently, if the evenly subdivided edges of K4 form a cut of K4.
We say that a graph contains no odd K4-subdivision if it has no subgraph
which is an odd K4-subdivision.

Theorem 68.3. A graph containing no odd K4-subdivision is strongly t-
perfect.

Proof. Let G = (V, E) be a counterexample with |V | + |E| minimum. Then
G has no isolated vertices. So we can assume that any minimum-cost w-cover
contains no vertices (for any w).



Section 68.3. Strong t-perfection of odd-K4-free graphs 1189

For any weight function w : V → Z+, denote αw := αw(G) and ρ̃w :=
ρ̃w(G). As G is a counterexample, there exists a w : V → Z+ with αw < ρ̃w.

For any such w we have, for each edge e = uv,

(68.9) if S maximizes w(S) over stable sets S of G − e, then S contains
u and v.

Otherwise, S is a stable set of G, implying that (by the minimality of |V | +
|E|):
(68.10) αw(G) ≥ αw(G − e) = ρ̃w(G − e) ≥ ρ̃w(G),

a contradiction.
This implies

(68.11) w ≥ 1,

since if w(v) = 0 for some vertex v, then for any edge e incident with v
there is a stable set S of G − e maximizing w(S) and not containing v (since
deleting v from S does not decrease w(S)). This contradicts (68.9).

We next show that we can assume w to have some additional properties
(for an edge e = uv, χe is the incidence vector of the set {u, v}, that is, it is
the 0, 1 vector in R

V having 1’s in positions u and v):

Claim 1. There exist w : V → Z+ and f ∈ E such that

(68.12) ρ̃w+χf = αw + 1 = ρ̃w = αw+χf

and such that

(68.13) αw−χV C = ρ̃w−χV C

for each odd circuit C.

Proof of Claim 1. As G is not bipartite (by Theorem 19.7) and not just
an odd circuit (as this is trivially strongly t-perfect), we know that H has a
chordless odd circuit C0 that has at least one vertex of degree at least 3. Let
v be such a vertex, and let e be an edge incident with v but which is not on
C0.

Let B := V C0 \ {v}. We choose w such that w(V \ B) is minimal. There
exists a k ∈ Z+ such that for w′ := w + k · χB , each stable set S of G − e
maximizing w′(S) satisfies |S ∩ B| = 1

2
|B|. Hence no such set S contains v,

and therefore, by (68.9), αw′ = ρ̃w′ .
Now let M be the perfect matching in C0 − v. For y : M → Z+ define

(68.14) wy := w +
∑

f∈M

yfχf .

As αw′ = ρ̃w′ , there exists a y : M → Z+ such that

(68.15) αwy = ρ̃wy .
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We choose such a y with
∑

f∈M yf minimal. Since αw < ρ̃w, there exists an
f ∈ M with yf ≥ 1. Then, by the minimality of y, we have αwy−χf < ρ̃wy−χf .
So we can assume that yf = 1 and yf ′ = 0 for each f ′ ∈ M \ {f}. We show
that w and f are as required.

To show (68.12), we have αw+χf ≤ αw +1, since any stable set S satisfies
(w + χf )(S) = w(S) + |f ∩ S| ≤ w(S) + 1. This implies

(68.16) αw + 1 ≤ ρ̃w ≤ ρ̃w+χf = αw+χf ≤ αw + 1,

implying (68.12).
Next, consider any odd circuit C in G. Then (w−χV C)(V \B) < w(V \B),

since V C is not contained in B. Therefore, by the choice of w, we have (68.13).
End of Proof of Claim 1

As from now we fix w and f satisfying (68.12) and (68.13). Let f connect
vertices u and u′. Since by the minimality of G, G has no isolated vertices,
there exists a minimum-cost w+χf -cover F consisting only of edges and odd
circuits, say, e1, . . . , et, C1, . . . , Ck. We choose them such that

(68.17) |V C1| + · · · + |V Ck|
is as small as possible. Then:

(68.18) at least two of the Ci traverse f .

To see this, let G′ := G − f (the graph obtained by deleting edge f). If
αw(G′) = αw(G), then by the minimality of G, G′ has a w-cover of cost αw.
As this is a w-cover in G as well, this would imply αw = ρ̃w, a contradiction.

So αw(G′) > αw(G). That is, there exists a stable set S in G′ with w(S) >
αw. Necessarily, S contains both u and u′. Then for any circuit C traversing
f :

(68.19) |V C ∩ S| ≤ ⌊ 1
2
|V C|⌋ + 1.

Also, f is not among e1, . . . , et, since otherwise F \ {f} is a w-cover of cost
ρ̃w+χf −1 = ρ̃w−1, contradicting the definition of ρ̃w. Setting l to the number
of Ci traversing f , we obtain:

(68.20) ρ̃w+χf ≤ αw + 1 ≤ w(S) = (w + χf )(S) − 2

≤ −2 +

t∑

j=1

|ej ∩ S| +
k∑

i=1

|V Ci ∩ S| ≤ −2 + t +
k∑

i=1

⌊ 1
2
|V Ci|⌋ + l

= ρ̃w+χf + l − 2.

So l ≥ 2, which is (68.18).
By (68.18) we can assume that C1 and C2 traverse f . It is convenient to

assume that EC1 \ {f} and EC2 \ {f} are disjoint; this can be achieved by
adding parallel edges. So EC1 ∩ EC2 = {f}.

Then:
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(68.21) if C is an odd circuit with EC ⊆ EC1 ∪ EC2, then f ∈ EC and
EC1△EC2△EC is again an odd circuit.

Indeed, as EC1△EC2△EC is an odd cycle, it can be decomposed into circuits
C ′

2, . . . , C
′

p, with C ′

2, . . . , C
′

q odd and C ′

q+1, . . . , C
′

p even (q ≥ 2). Then

(68.22)

p∑

i=2

|EC ′

i| = |EC1△EC2△EC|

= |EC1| + |EC2| − |EC| − 2|{f} \ EC|.
Choose for each i = q + 1, . . . , p a perfect matching Mi in C ′

i. Let e′

1, . . . , e
′

r

be the edges in the matchings Mi and in {f} \ EC. Then, defining C ′

1 := C,

(68.23) χV C1 + χV C2 =

q∑

i=1

χV C′

i +
r∑

j=1

χe′

j

and (using (68.22))

(68.24) ⌊ 1
2
|V C1|⌋ + ⌊ 1

2
|V C2|⌋ = 1

2
|EC1| + 1

2
|EC2| − 1

= −1 + |{f} \ EC| + 1
2

p∑

i=1

|EC ′

i| = −1 + r + 1
2

q∑

i=1

|EC ′

i|

≥ r +

q∑

i=1

⌊ 1
2
|V C ′

i|⌋.

So replacing C1, C2 by C ′

1, . . . , C
′

q and adding e′

1, . . . , e
′

r to e1, . . . , et, gives

again a w + χf -cover of cost at most ρ̃w+χf . This also implies q = 2, since
otherwise we have strict inequality in (68.24), and we would obtain a w-cover
of cost less than ρ̃w.

If f �∈ EC, then f is among e′

1, . . . , e
′

r. Hence deleting f gives a w-cover
of cost at most ρ̃w+χf − 1 ≤ αw, contradicting (68.12). So f ∈ EC. As this
is true for any odd circuit in EC1 ∪ EC2 we know that f ∈ EC ′

i for i = 1, 2.
If p ≥ 3 or r ≥ 1, then |EC ′

1| + |EC ′

2| < |EC1| + |EC2|, contradicting the
minimality of (68.17). So p = q = 2 and r = 0, which proves (68.21).

First, it implies

(68.25) a circuit in EC1 ∪ EC2 is odd if and only if it traverses f .

A second consequence is as follows. Let Pi be the u − u′ path Ci \ {f}.
Orient the edges occurring in the path Pi := Ci \ {f} in the direction from u
to u′, for i = 1, 2. Then

(68.26) the orientation is acyclic.

For suppose that it contains a directed circuit C. Then (EC1 ∪ EC2) \ EC
contains a directed u−u′ path, and hence an odd circuit C ′. Hence by (68.21),
EC1△EC2△EC ′ is an odd circuit, however containing the even circuit EC,
a contradiction.

Define
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(68.27) W := V P1 ∪ V P2 and F := EP1 ∪ EP2.

Consider the graph (W, F ). It is bipartite, as it contains no odd circuits by
(68.25). Moreover, u and u′ belong to the same colour class. Let A and B be
the colour classes of (W, F ), such that u, u′ ∈ A. So

(68.28) A := {v ∈ W | there exists an even-length directed u − v path},
B := {v ∈ W | there exists an odd-length directed u − v path}.

(Here and below, when speaking of a directed path, it is assumed to use only
the edges in EP1 ∪ EP2.) Define

(68.29) X := V P1 ∩ V P2 and

U := {v ∈ V | w(v) =
t∑

j=1

|ej ∩ {v}| +
k∑

j=1

|V Cj ∩ {v}|}.

So u, u′ �∈ U , u, u′ ∈ X, and X \ {u, u′} is the set of vertices in W having
degree 4 in the graph (W, F ).

We next show the following technical, but straightforward to prove, claim:

Claim 2. Let z ∈ A, let Q be an even-length directed u − z path, and let S
be a stable set in G. Then

(68.30) (w − χV Q)(S) ≥ αw − ⌊ 1
2
|V Q|⌋ + 1

if and only if

(68.31) (i) |ej ∩ S| = 1 for each j = 1, . . . , t,
(ii) |V Cj ∩ S| = ⌊ 1

2
|V Cj |⌋ for j = 3, . . . , k,

(iii) S ⊆ U ,
(iv) S contains B \ V Q and is disjoint from A \ V Q,
(v) S contains B ∩ X and is disjoint from A ∩ X.

Proof of Claim 2. By rerouting C1 and C2, we can assume that EQ ⊆ EC1.
Define Z := V C1 \ V Q. So |Z| is even. Consider the following sequence of
(in)equalities:

(68.32) (w − χV Q)(S) = w(S) − |V Q ∩ S|

≤
t∑

j=1

|ej ∩ S| +

k∑

j=1

|V Cj ∩ S| − |V Q ∩ S|

=
t∑

j=1

|ej ∩S|+
k∑

j=2

|V Cj ∩S|+ |Z ∩S| ≤ t+
k∑

j=2

⌊ 1
2
|V Cj |⌋+ |Z ∩S|

= ρ̃w+χf − ⌊ 1
2
|V C1|⌋ + |Z ∩ S| ≤ ρ̃w+χf − ⌊ 1

2
|V C1|⌋ + 1

2
|Z|

= αw + 1 − ⌊ 1
2
|V Q|⌋.

Hence (68.30) holds if and only if equality holds throughout in (68.32), which
is equivalent to (68.31). Note that (68.31)(iv) and (v) are equivalent to: S
contains V C2 ∩ B and is disjoint from V C2 ∩ A, and S contains Z ∩ B and
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is disjoint from Z ∩ A. Hence it is equivalent to (as u, u′ �∈ S by (68.31)(iii)):
|V C2 ∩ S| = ⌊ 1

2
|V C2|⌋ and |Z ∩ S| = 1

2
|Z|. End of Proof of Claim 2

By (68.26), we can order the vertices in X as x0 = u, x1, . . . , xs = u′ such
that both P1 and P2 traverse them in this order. For j = 0, . . . , s, let Pj be
the collection of directed u − x paths, where x = xj if xj ∈ A, and x is an
inneighbour of xj if xj ∈ B. So x ∈ A and each path in each Pj has even
length.

Let j be the largest index for which there exists a path Q ∈ Pj with

(68.33) αw−χV Q ≤ αw − ⌊ 1
2
|V Q|⌋.

Such a j exists, since (68.33) holds for the trivial directed u − u path, as
αw−χu ≤ αw. Also, j < s, since otherwise V Q = V C for some odd circuit C,
and hence, with (68.13) we have

(68.34) ρ̃w ≤ ρ̃w−χV C + ⌊ 1
2
|V C|⌋ = αw−χV C + ⌊ 1

2
|V C|⌋ ≤ αw,

contradicting (68.12).
Let Q1 and Q2 be the two paths in Pj+1 that extend Q. By the maximality

of j, we know

(68.35) αw−χV Qi ≥ αw − ⌊ 1
2
|V Qi|⌋ + 1.

So there exist stable sets S1 and S2 with

(68.36) (w − χV Qi)(Si) ≥ αw − ⌊ 1
2
|V Qi|⌋ + 1

for i = 1, 2. So for i = 1, 2, (68.31) holds for Qi, Si. By (68.31)(iv), S1 and
S2 coincide on W \ (V Q1 ∪ V Q2), and they coincide on X. In other words:

(68.37) (S1△S2) ∩ W ⊆ (V Q1 ∪ V Q2) \ X.

Let H be the subgraph of G induced by S1△S2. So H is a bipartite graph,
with colour classes S1 \ S2 and S2 \ S1. Define

(68.38) Yi := V Qi \ V Q

for i = 1, 2. Then

(68.39) H contains a path connecting Y1 and Y2.

For suppose not. Let K be the union of the components of H that intersect
Y1. So K is disjoint from Y2. Define S := S1△K. Then S ∩ Y1 = S2 ∩ Y1 and
S ∩ Y2 = S1 ∩ Y2. This implies that Q, S satisfy (68.31). Hence (68.30) holds,
contradicting (68.33). This proves (68.39).

Let C be the (even) circuit formed by the two directed xj − xj+1 paths.
So Y1 and Y2 are subsets of V C. Let R be a shortest path in H that connects
Y1 and Y2; say it connects y1 ∈ Y1 and y2 ∈ Y2.

Since y1, y2 ∈ S1△S2, we know by (68.37) that y1, y2 �∈ X. By (68.31)(iv),
if y1 ∈ S1 \ S2, then y1 ∈ A (since if y1 ∈ B, then y1 ∈ B \ V Q2, and so
y1 ∈ S2), and if y1 ∈ S2 \S1, then y1 ∈ B (since if y1 ∈ A, then y1 ∈ A\V Q2,
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and so y1 �∈ S2). Similarly, if y2 ∈ S2 \ S1, then y2 ∈ A and if y2 ∈ S1 \ S2,
then y2 ∈ B.

So if R is even, then y1 and y2 belong to the same set among S1 \ S2,
S2 \ S1, and hence they belong to different sets A, B. Similarly, if R is odd,
then y1 and y2 belong to the same set among A, B. Hence R forms with part
of C an odd circuit.

By (68.37), there exist a directed u−xj path N ′ and a directed xj+1 −u′

path N ′′ that are (vertex-)disjoint from S1△S2. Concatenating N ′, f , and N ′′

makes an xj+1 −xj path N . Then N , R, and C make an odd K4-subdivision,
with 3-valent vertices xj , xj+1, y1, y2.

(The above proof of Claim 1 was given by D. Gijswijt.)

Notes. Theorem 68.3 includes the t-perfection of series-parallel graphs (conjectured
by Chvátal [1975a], and proved by M.J. Clancy in 1977 and by Mahjoub [1988]), the
strong t-perfection of series-parallel graphs (Boulala and Uhry [1979], who also gave
a polynomial-time algorithm to find a maximum-weight stable set in series-parallel
graphs), the t-perfection of almost bipartite graphs — graphs G having a vertex v
with G − v bipartite (Fonlupt and Uhry [1982]), the strong t-perfection of almost
bipartite graphs (this is implicit in Sbihi and Uhry [1984]), and the t-perfection of
odd-K4-free graphs (Gerards and Schrijver [1986]).

68.4. On characterizing t-perfection

The problem if a given graph G = (V, E) is t-perfect, belongs to co-NP:
non-t-perfection can be certified by a noninteger vertex x∗ of the polytope
determined by (68.1), together with a nonsingular system of constraints that
are tight for x∗. One must check that x∗ satisfies all constraints among (68.1)
— this can be done in polynomial time by the methods described in the
proof of Theorem 68.1. A polynomial-time algorithm for, or a combinatorial
certificate of, non-t-perfection is not known.

T-perfection and strong t-perfection are not closed under taking sub-
graphs, as is shown by Figure 68.1. However, t-perfection is closed under
taking induced subgraphs. This is easy to check, as well as that it is closed
under the following operation:

(68.40) choose a vertex v with N(v) a stable set, and contract all edges
in δ(v).

So one may ask for the minimally non-t-perfect graphs — minimal with
respect to taking induced subgraphs and applying operation (68.40). Known
minimal graphs include the wheels24 with an even number of vertices and
the graphs consisting of a circuit of length 4k and all chords connecting a

24 A wheel is a graph obtained from a circuit C by adding a new vertex, adjacent to all
vertices in C.
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e

C

Figure 68.1

A strongly t-perfect graph G with G − e not t-perfect. The
strong t-perfection of G can be derived from the fact that each in-
clusionwise maximal stable set intersects the triangle C. Hence for any
integer weight function, subtracting the incidence vector of V C, reduces
the maximum weight of a stable set by 1. We therefore can assume that
at least one of the vertices of C has weight 0, and hence we can delete
it. We are left with a graph containing no odd K4-subdivision — hence
being strongly t-perfect (Theorem 68.3).

vertex with its opposite vertex (k ≥ 1). Also strong t-perfection is closed
under taking induced subgraphs and the operation (68.40). So one may ask
a similar question for strong t-perfection.

A characterization that has been achieved is of those graphs for which
each, also noninduced, subgraph is t-perfect. Here subdivisions of K4 play a
role. Call a subdivision of K4 bad if it is not t-perfect.

It has been shown by Gerards and Shepherd [1998] that any graph without
bad K4-subdivision is t-perfect. Hence, each subgraph of a graph G is t-
perfect if and only if G contains no bad K4-subdivision. This was extended
to: any graph without bad K4-subdivision is strongly t-perfect (Schrijver
[2002b]). So each subgraph of a graph is t-perfect if and only if each subgraph
is strongly t-perfect.

The K4-subdivisions that are bad have been characterized by Barahona
and Mahjoub [1994c]. They showed that a K4-subdivision is not t-perfect if
and only if it is an odd K4-subdivision such that the following does not hold:
the edges of K4 that have become an even path, form a 4-cycle in K4, while
the two other edges of K4 are not subdivided. One may check that this is
equivalent to the fact that one cannot obtain K4 by the operations (68.40). So
necessity in this characterization follows from the closedness of t-perfection
under operation (68.40).
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68.5. A combinatorial min-max relation

A subdivision of K4 is called totally odd if it arises from K4 be replacing
each edge by an odd-length path. So a totally odd K4-subdivision is an odd
K4-subdivision. A graph containing no totally odd K4-subdivision need not
be t-perfect (see Figure 68.2, from Chvátal [1975a]). However, Sewell and
Trotter [1990,1993] showed that for weight function w = 1, the min-max
relation is maintained for totally odd K4-free graphs.

1/31/3

1/3

1/3 1/3

1/3

2/3

Figure 68.2

A graph containing no totally odd K4-subdivision and not be-
ing t-perfect. The values at the vertices represent a vector satisfying
(68.1) but not belonging to the stable set polytope.

This can be formulated in terms of the nonweighted version ρ̃(G) of ρ̃w(G)
defined in (68.7):

(68.41) ρ̃(G) := the minimum cost of a family of vertices, edges, and odd
circuits covering V .

One easily checks that the minimum is attained by a vertex-disjoint family.
Obviously, for any graph G,

(68.42) α(G) ≤ ρ̃(G).

So Sewell and Trotter [1990,1993] showed that equality holds for graphs with-
out totally odd K4-subdivision (generalizing a result of Gerards [1989a], who
proved it for graphs without odd K4-subdivision — a consequence of Theo-
rem 68.3; Chvátal [1975a] proved it for series-parallel graphs).

Theorem 68.4. For any graph G containing no totally odd K4-subdivision,
the stable set number α(G) is equal to ρ̃(G).

Proof. Let G = (V, E) be a counterexample with |V | + |E| minimal. Set
α := α(G). Then G is connected, and
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(68.43) α(G − v) = α for each v ∈ V and α(G − e) > α for each e ∈ E,

since otherwise G − v or G − e would be a smaller counterexample.
Hence for each vertex v, there exists a vertex-disjoint collection of vertices,

edges, and odd circuits, covering V \ {v} and of cost α. Let Fv be the set of
edges contained in this collection or in one of the circuits in it. Let Gv be the
graph (V \ {v}, Fv). So

(68.44) α(Gv) = α,

and Gv has maximum degree at most 2. Moreover, the minimality of G im-
plies:

(68.45) Fu ∪ Fv = E \ {uv} for each edge uv.

To see this, trivially, uv �∈ Fu ∪ Fv. Suppose that e �= uv is an edge not
contained in Fu ∪Fv. As α(G− e) > α, G− e has a stable set S of size α+1.
By symmetry, we can assume that v �∈ S. Then S is a stable set in the graph
Gv, contradicting (68.44).

This proves (68.45), which gives:

(68.46) for each edge uv, each edge e �= uv incident with u belongs to Fv.

This follows directly from (68.45), since e �∈ Fu (as u ∈ e).
This is used in proving:

(68.47) G is 3-regular.

For if vertex v has degree 1, with neighbour u, then α(G − v − u) < α; since
moreover ρ̃(G) ≤ ρ̃(G−u−v)+1 (since we can add edge uv to any collection
attaining the minimum for G − u − v), we have α(G) ≥ α(G − u − v) + 1 =
ρ̃(G−u−v)+1 ≥ ρ̃(G). This contradicts the fact that G is a counterexample.

If v has degree 2, let G′ be the graph obtained by contracting the edges
incident with v. Then G′ contains no totally odd K4-subdivision. Moreover,
it is straightforward to check that α(G) ≥ α(G′) + 1 and ρ̃(G) ≤ ρ̃(G′) + 1.
As G′ is smaller than G, we have ρ̃(G′) = α(G′). Hence α(G) ≥ α(G′) + 1 =
ρ̃(G′)+1 ≥ ρ̃(G). Again, this contradicts the fact that G is a counterexample.

So v has degree at least 3. Let u be one of its neighbours. Then δ(v) ⊆ Fu∪
{uv} by (68.46). As Gu has maximum degree at most 2, we have |δ(v)| = 3.
This proves (68.47).

By (68.45) and (68.47),

(68.48) for each edge uv of G, u is traversed by an odd circuit in Fv.

Moreover:

(68.49) Let uv be an edge of G and let C be the odd circuit in Fv travers-
ing u. Consider any edge e = xy on C with e �∈ Fu. Then both x
and y have even distance from u along C − e.
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Let S be a stable set of G−e of size α+1. So x, y ∈ S. Moreover, u ∈ S, since
otherwise α(Gu) > α (since e �∈ Fu), contradicting (68.44). So v �∈ S, and
hence S \{y} is a maximum-size stable set of G−v. Hence, S \{y} intersects
C in ⌊ 1

2
|V C|⌋ vertices. Therefore, S intersects C in ⌈ 1

2
|V C|⌉ vertices. As

x, y ∈ S, (68.49) follows.
Now choose a vertex, r say, and its neighbours, u1, u2, u3 say. For each

i ∈ {1, 2, 3}, Fui
contains an odd circuit Ci traversing r (by (68.48)), and

hence traversing the edges rui+1 and rui+2 (taking indices mod 3). We will
construct a totally odd K4-subdivision from them, which contradicts the
condition of the theorem.

For i = 1, 2, 3, let Pi be the path in Ci from ui+1 to ui+2 obtained by
deleting vertex r from Ci. Since α(G − rui) > α, G has a stable set Si

of size α, intersecting {r, u1, u2, u3} precisely in {ui}. Then for all distinct
i, j ∈ {1, 2, 3}:

(68.50) Sj contains all vertices along Pi at even distance from uj .

To see this, we may assume that i = 1, j = 2. Since S2 is a maximum-size
stable set in G − u1, it intersects C1 in ⌊ 1

2
|V C1|⌋ vertices. Since r, u3 �∈ S2,

S2 contains all vertices along P1 at even distance from u2, proving (68.50).
This implies, for distinct i, j, k ∈ {1, 2, 3}:

(68.51) V Pi ⊆ Sj△Sk.

One similarly shows, for distinct i, j, k ∈ {1, 2, 3}:

(68.52) Pi contains an edge that splits Pi into two even-length paths Pi,j

(containing uj) and Pi,k (containing uk), in such a way that Si

contains all vertices along Pi,j at odd distance from uj and all
vertices along Pi,k at odd distance from uk.

To prove this, we may assume that i = 1, j = 2, k = 3. Since S := S1 \{u1}∪
{r} is a maximum-size stable set in G − u1, it intersects C1 in ⌊ 1

2
|V C1|⌋

vertices. Since S contains r, there is precisely one edge on P1 not intersected
by S. This gives the edge as required in (68.52).

This implies, for distinct i, j ∈ {1, 2, 3}:

(68.53) V Pi,j = V Pi ∩ (Si△Sj),

and hence, for distinct i, j, k ∈ {1, 2, 3}:

(68.54) V Pi ∩ V Pj = V Pi,k ∩ V Pj,k,

since

(68.55) V Pi,k ∩ V Pj,k = V Pi ∩ (Si△Sk) ∩ V Pj ∩ (Sj△Sk) = V Pi ∩ V Pj

(using (68.51)).
For each i = 1, 2, 3, vertex ui+2 is on Pi and Pi+1. Hence there is a first

vertex vi on Pi (starting from ui+1), that also belongs to Pi+1. By (68.54), vi

occurs after vi+2 along Pi (seen from ui+1), since vi ∈ V Pi∩V Pi+1 ⊆ V Pi,i+2

and vi+2 ∈ V Pi+2 ∩ V Pi ⊆ V Pi,i+1. Moreover,
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(68.56) vi has even distance from ui+2 along Pi and along Pi+1.

To prove this, we may assume that i = 1. Suppose that v1 has odd distance
from u3 along P1. Let f and e be the previous and next edge along P1 (seen
from u2) and let g be the third edge incident with v1. Since v1 is the first
vertex along P1 belonging to P2, we know that f is not on P2. So f �∈ Fu2

,
and hence (by (68.45)) f ∈ Fr. Since g is not on P1, we have g �∈ Fu1

, and
hence (again by (68.45)) g ∈ Fr. Therefore (as Fr has maximum degree at
most degree 2), e �∈ Fr. Then (68.49) implies that v1 has even distance from
u3 along P1. Hence v1 ∈ S3, and so v1 has also even distance from u3 along
P2 (by (68.50)). This proves (68.56).

For i = 1, 2, 3, let Qi be the ui+1 − vi part of Pi. Then Qi and Qi+1

intersect each other only in vi (since vi is the first vertex along Pi that is on
Pi+1). This implies that Q1, Q2, Q3 together with the edges ru1, ru2, and
ru3, form a totally odd K4-subdivision, a contradiction.

Recall that a graph is bipartite if and only if for each subgraph H, the
stable set number α(H) is equal to the edge cover number ρ(H). An extension
of this is implied by the theorem above:

Corollary 68.4a. A graph G contains no totally odd K4-subdivision if and
only α(H) = ρ̃(H) for each subgraph H of G.

Proof. Necessity follows from Theorem 68.4. Sufficiency follows from the fact
that if G is a totally odd K4-subdivision, then α(G) < ρ̃(G). This can be seen
by induction on |V G|. If |V G| = 4, then G = K4, and α(G) = 1, ρ̃(G) > 1.
If |V G| > 4, G has a vertex v of degree 2. Let G′ arise by contracting the
two edges incident with v. Then, using the induction hypothesis, α(G) ≤
α(G′) + 1 < ρ̃(G′) + 1 ≤ ρ̃(G).

Theorem 68.4 also implies (in fact, is equivalent to) the following. A graph
G = (V, E) is called α-critical if α(G − e) > α(G) for each e ∈ E. Then each
connected α-critical graph is either K1, or K2, or an odd circuit, or contains
a totally odd K4-subdivision (answering a question of Chvátal [1975a]).

We note that Theorem 68.4 implies that the stable set number α(G) of a
graph G without totally odd K4-subdivision can be determined in polynomial
time, as α(G) is equal to the maximum of 1Tx over (68.1) (since the separa-
tion problem is polynomial-time solvable — see Theorem 68.1). This implies
that an explicit maximum-size stable set can be found in polynomial time
(just by deleting vertices as long as the stable set number does not decrease).

The vertex cover number. Another consequence of Theorem 68.4 concerns the
vertex cover number τ(G) of a graph G = (V, E). Trivially, τ(G) + α(G) = |V |.
Define the profit of an edge to be 1, and the profit of a circuit C to be ⌈ 1

2
|V C|⌉.

The profit of a family of edges and circuits is equal to the sum of the profits of its
elements. Let ν̃(G) denote the maximum profit of a collection of pairwise vertex-
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disjoint edges and odd circuits in G. Then there is the following analogue to Gallai’s
theorem (Theorem 19.1):

Theorem 68.5. For any graph G = (V, E): ν̃(G) + ρ̃(G) = |V |.

Proof. Define the profit of any vertex to be 0. Then ν̃(G) is equal to the maximum
profit of a collection of vertices, edges, and circuits partitioning V . Similarly, ρ̃(G) is
equal to the minimum cost of a collection of vertices, edges, and circuits partitioning
V . Now for any collection C of vertices, edges, and circuits partitioning V we have
cost(C)+profit(C) = |V |. Hence the minimum cost over all such collections equals
|V | minus the maximum profit over all such collections. This gives the required
equality.

With Theorem 68.4, this implies a min-max relation for the vertex cover number
of totally-odd-K4-free graphs:

Corollary 68.5a. For any graph G containing no totally odd K4-subdivision, the

vertex cover number τ(G) is equal to ν̃(G).

Proof. Directly from Theorems 68.4 and 68.5, and from the fact that α(G)+τ(G) =
|V | for any graph G.

68.6. Further results and notes

68.6a. The w-stable set polyhedron

The t-perfection of odd-K4-free graphs can be extended to apply to w-stable sets.
Given a graph G = (V, E) and a function w : E → Z+, a w-stable set is a function
x : V → Z+ such that xu +xv ≤ we for each edge e = uv. So if w = 1 and G has no
isolated vertices, w-stable sets are the incidence vectors of stable sets. The w-stable

set polyhedron is the convex hull of the w-stable sets.
Theorem 68.3 implies a characterization of the w-stable set polyhedron of odd-

K4-free graphs. Consider the following system:

(68.57) (i) xv ≥ 0 for each v ∈ V ,
(ii) x(e) ≤ we for each e ∈ E,
(iii) x(V C) ≤ ⌊ 1

2
w(EC)⌋ for each odd circuit C,

where x(e) = xu + xv for e = uv.

Theorem 68.6. For any graph G = (V, E) containing no odd K4-subdivision and

for any w : E → Z+, system (68.57) determines the w-stable set polyhedron.

Proof. We show that (68.57) determines an integer polyhedron, and hence is equal
to the w-stable set polyhedron. Let x be a noninteger vertex of P . By resetting
we := we − ⌊xu⌋ − ⌊xv⌋ for e = uv ∈ E and xv := xv − ⌊xv⌋ for v ∈ V , x remains a
noninteger vertex of the new P . So we can assume that 0 ≤ xv < 1 for each v ∈ V .

Let E′ be the set of edges e of G with we = 1. Then G′ = (V, E′) contains
no odd K4-subdivision, and hence is t-perfect (Theorem 68.3). So x is a convex
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combination of incidence vectors of stable sets of G′. As each such incidence vector
satisfies (i) and (ii) of (68.57) (since xu +xv ≤ 1+1 = 2 ≤ we for each edge e = uv
in E \ E′), it also satisfies (iii) (as it is integer). Hence x is a convex combination
of integer solutions of (68.57). So P is integer.

It was shown by Gijswijt and Schrijver [2002] that system (68.57) is totally dual
integral for each w : E → Z+ if and only if G contains no bad K4-subdivision.

68.6b. Bidirected graphs

We saw bidirected graphs before in Chapter 36. We recall some definitions and ter-
minology. A bidirected graph is a triple G = (V, E, σ), where (V, E) is an undirected
graph and where σ assigns to each e ∈ E and each v ∈ e a ‘sign’ σe,v ∈ {+1, −1}.
The graph (V, E) may have loops, but we will assume that the ‘two’ ends of the
loop have the same sign. (Other loops will be meaningless in our discussion.)

The edges e for which σe,v = 1 for each v ∈ e are called the positive edges, those
with σe,v = −1 for each v ∈ e are the negative edges, and the remaining edges are
the directed edges.

Clearly, undirected graphs and directed graphs can be considered as special
cases of bidirected graphs. Graph terminology extends in an obvious way to bidi-
rected graphs. The undirected graph (V, E) is called the underlying undirected graph

of G. We also will need the underlying signed graph G = (V, E, Σ), where Σ is the
family of positive and negative edges. We call a circuit C in (V, E) odd or even, if
|EC ∩ Σ| is odd or even, respectively.

A signed graph G = (V, E, Σ) is called an odd K4-subdivision if (V, E) is a
subdivision of K4 such that each triangle has become an odd circuit (with respect
to Σ). A bidirected graph is called an odd K4-subdivision if its underlying signed
graph is an odd K4-subdivision.

The E × V incidence matrix of a bidirected graph G = (V, E, σ) is the E × V
matrix M defined by, for e ∈ E and v ∈ V :

(68.58) Me,v :=

{
σe,v if e is not a loop,

2σe,v if e is a loop,

setting σe,v := 0 if v �∈ e.
For b ∈ ZE , we consider integer solutions of the system Mx ≤ b. To this end,

define for any circuit C (in the undirected graph (V, E)) and any vertex v:

(68.59) aC,v := 1
2

∑

e∈EC

Me,v and dC := ⌊ 1
2

∑

e∈EC

be⌋.

As C is a circuit, aC,v is an integer. Hence each integer solution x of Mx ≤ b
satisfies

(68.60)
∑

v∈V

aC,vxv = 1
2

∑

e∈EC

∑

v∈V

Me,vxv ≤ ⌊ 1
2

∑

e∈EC

be⌋ = dC .

Therefore, each integer solution of Mx ≤ b satisfies:

(68.61) (i) Mx ≤ b,

(ii)
∑

v∈V

aC,vxv ≤ dC for each odd circuit C.
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(Again, ‘odd’ is with respect to Σ.) Then Theorem 68.6 implies:

Corollary 68.6a. If a bidirected graph G contains no odd K4-subdivision, then

system (68.61) determines an integer polyhedron.

Proof. Make from the bidirected graph G = (V, E, σ) the following auxiliary undi-
rected graph G′ = (V ′, E′). For each e ∈ E which is not a positive loop, let ce := 1
if e is positive, ce := 2 if e is directed, and ce := 3 if e is negative. Then replace e
by a path Pe of length ce connecting the two vertices in V incident with e. Let ẽ
be the unique edge on Pe that is not incident with a vertex v of G with σe,v = −1.

If e is a positive loop at v, make a circuit Pe of length 3 starting and ending at
v. Let ẽ be one of the two edges on Pe incident with v.

Let F be the set of edges f of G′ that are on Pe for some e ∈ E and satisfy
f �= ẽ. As G has no odd K4-subdivision (as a bidirected graph), G′ has no odd
K4-subdivision (as an undirected graph). Hence by Theorem 68.6, the following

system (in x ∈ RV ′

) determines an integer polyhedron:

(68.62) (i) x(ẽ) ≤ be for each edge e ∈ E,
(ii) x(f) = 0 for each edge f ∈ F ,
(iii) x(V C) ≤ ⌊ 1

2
|V C|⌋ for each odd circuit C in G′.

(Here ‘odd’ refers to the length of the circuit. As usual, x(f) := xu + xv where u
and v are the ends of f for f ∈ E′.) This implies that system (68.61) determines an
integer polyhedron, since the conditions (68.62)(ii) allow elimination of the variables
xv for v ∈ V ′ \ V .

This theorem may be used to characterize odd-K4-free bidirected graphs. Let
G = (V, E, σ) be a bidirected graph, with E ×V incidence matrix M . For a, b ∈ ZE

consider integer solutions of

(68.63) a ≤ Mx ≤ b.

As the matrix

(68.64)

(
M

−M

)

is again the incidence matrix of some bidirected graph, we can consider the inequal-
ities (68.61)(ii) corresponding to matrix (68.64). They amount to:

(68.65)
∑

v∈V

1
2

( ∑

e∈F

Me,v −
∑

e∈EC\F

Me,v

)
xv ≤ ⌊ 1

2

( ∑

e∈F

be −
∑

e∈EC\F

ae

)
⌋ for each

odd circuit C and each F ⊆ EC.

To describe the characterization, we define ‘minor’ of a signed graph G =
(V, E, Σ). For e ∈ E, deletion of e means resetting E and Σ to E \ {e} and Σ \ {e}.
Deletion of a vertex v means deleting all edges incident with v, and deleting v from
V . If e is not a loop, contraction of e means the following. Let e have ends u and
v. If e ∈ Σ, reset Σ := Σ△δ(u). Otherwise, let Σ be unchanged. Next contract
e in (V, E). This definition depends on the choice of the end u of e, but for the
application below this will be irrelevant. A resigning means choosing U ⊆ V and
resetting Σ to Σ△δ(U). A signed graph H is called a minor of a signed graph G if
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H arises from G by a series of deletions of edges and vertices, contractions of edges,
and resignings.

Then we have the following characterization (Gerards and Schrijver [1986]),
where odd-K4 stands for the signed graph (V K4, EK4, EK4).

Corollary 68.6b. For any bidirected graph G the following are equivalent:

(68.66) (i) G contains no odd K4-subdivision as subgraph;

(ii) the signed graph underlying G has no odd-K4 minor;

(iii) for all integer vectors a, b, system (68.63)(68.65) determines a box-

integer polyhedron.

Proof. The implication (ii)⇒(i) follows from the easy fact that any odd K4-
subdivision in G would yield an odd-K4 minor of the signed graph underlying
G.

The implication (i)⇒(iii) can be derived from Corollary 68.6a as follows. Replace
any ‘box’ constraint dv ≤ xv ≤ cv by 2dv ≤ 2xv ≤ 2cv, and incorporate it into M ,
by adding loops at v. Then the constraint (68.65) corresponding to such a loop C
at v is xv ≤ cv or −xv ≤ −dv. This gives a reduction to Corollary 68.6a.

To see the implication (iii)⇒(ii), note that (iii) is invariant under deleting rows
of M and under multiplying rows or columns by −1. It is also closed under contrac-
tions of any edge e, as it amounts to taking ae = be = 0 in (68.63). So, in proving
(iii)⇒(ii), if the signed graph underlying G has an odd-K4 minor, we may assume
that it is odd-K4. By multiplying rows and columns of M by −1, we may assume
that M is nonnegative. Then we do not have an integer polytope for a = 0, b = 1,
d = 0, c = 1.

In other words, the bidirected graphs without odd K4-subdivision are precisely
those whose E ×V incidence matrix has strong Chvátal rank at most 1 (cf. Section
36.7a, where it is shown that the transpose of each such matrix has strong Chvátal
rank at most 1).

68.6c. Characterizing odd-K4-free graphs by mixing stable sets
and vertex covers

A similar characterization can be formulated in terms of just undirected graphs, by
mixing stable sets and vertex covers. Call a graph H an odd minor of a graph G
if H arises from G by deleting edges and vertices, and by contracting all edges in
some cut δ(U) (in the graph without the deleted edges). The following is easy to
show:

(68.67) A graph G contains an odd K4-subdivision ⇐⇒ G contains K4 as
odd minor.

For a graph G = (V, E) and F ⊆ E, a subset U of V is called F -stable if U
is a stable set of the graph (V, F ). U is called an F -cover if U is a vertex cover of
(V, F ). Let F1 and F2 be disjoint subsets of E, and consider the system:
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(68.68) 0 ≤ xv ≤ 1 for v ∈ V ,
x(e) ≤ 1 for e ∈ F1,
x(e) ≥ 1 for e ∈ F2,∑

e∈EC∩F1

x(e) −
∑

e∈EC∩F2

x(e) ≤ |EC ∩ F1| − |EC ∩ F2| − 1

for each odd circuit C with EC ⊆ F1 ∪ F2

(where x(e) := xu + xv for e = uv ∈ E).

Corollary 68.6c. For any graph G = (V, E) the following are equivalent:

(68.69) (i) G contains no odd K4-subdivision;

(ii) for all disjoint F1, F2 ⊆ E, the convex hull of the incidence vectors

of the F1-stable F2-covers is determined by (68.68).

Proof. The implication (i)⇒(ii) follows from Corollary 68.6a. To see (ii)⇒(i), we
first show that (ii) is maintained under taking odd minors. Maintenance under
deletion of edges or vertices is trivial. To see that it is maintained under contraction
of cuts, let U ⊆ V and let G′ = (V ′, E′) be the contracted graph. Let F ′

1 and F ′
2 be

disjoint subsets of E′, and let x′ satisfy (68.68) for G′, F ′
1, F ′

2. Define x : V → R as
follows, where, for v ∈ V , v′ denotes the vertex of G′ to which v is contracted:

(68.70) xv :=

{
x′

v′ if v ∈ U ,
1 − x′

v′ if v ∈ V \ U .

Moreover, define F1 and F2 by:

(68.71) F1 := (F ′
1 ∩ E[U ]) ∪ (F ′

2 ∩ E[V \ U ]) ∪ δ(U),
F2 := (F ′

2 ∩ E[U ]) ∪ (F ′
1 ∩ E[V \ U ]).

Then x satisfies (68.68) with respect to G, F1, F2. Hence x is a convex combination
of integer solutions of (68.68). Applying the construction in reverse to (68.70), we
obtain x′ as a convex combination of integer solutions of (68.68) with respect to
G′, F ′

1, F
′
2.

This shows that (68.69)(ii) is maintained under taking odd minors. Moreover,
K4 violates the condition (taking F1 := E, F2 := ∅, xv := 1

3
for each v ∈ V ). This

shows sufficiency of the condition.

68.6d. Orientations of discrepancy 1

A directed graph D = (V, A) is said to have discrepancy k if for each (undirected)
circuit, the number of forward arcs differs by at most k from the number of backward
arcs.

The proof of Gerards [1989a] of the strong t-perfection of odd-K4-free graphs
(Theorem 68.3) is by showing that each such graph can be decomposed into graphs
that have an orientation of discrepancy 1, using a characterization of Gerards [1994]
of orientability of discrepancy 1 and a decomposition theorem of Gerards, Lovász,
Schrijver, Seymour, Shih, and Truemper [1993] (cf. Gerards [1990]). As the graphs
having an orientation of discrepancy 1 can be shown to be strongly t-perfect with
minimum-cost flow techniques (see Theorem 68.7 below), and as the composition
maintains total dual integrality of (68.1), the required result follows.
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It is not difficult to show that the underlying undirected graph of any digraph of
discrepancy 1, contains no odd K4-subdivision. So, by Theorem 68.3, any undirected
graph having an orientation of discrepancy 1, is strongly t-perfect. Gerards gave
a direct proof of the strong t-perfection of such graphs, based on the following
minimum-cost circulation argument:

Lemma 68.7α. Let D = (V, A) be a directed graph and let b : A → Z+. Then the

following system is totally dual integral:

(68.72) (i) xv ≥ 0 for v ∈ V ,
(ii) x(V C) ≤ b(AC) for each directed circuit C in D.

Proof. Choose w : V → Z+. We must show that the dual of maximizing wTx over
(68.72) has an integer optimum solution.

Make another directed graph D̃ = (Ṽ , Ã) as follows. For each vertex v of D,
make two vertices v′, v′′ and an arc (v′, v′′), and for each arc (u, v) of D, make an

arc (u′′, v′). This defines D̃.

Define g, f : Ã → Z+ by:

(68.73) g(v′, v′′) := w(v) and f(v′, v′′) := 0 for v ∈ V ,
g(u′′, v′) := 0 and f(u′′, v′) := b(u, v) for (u, v) ∈ A.

Then the maximum of wTx over (68.72) is equal to the maximum of gTz where

z : Ã → R+ satisfies

(68.74) z(AC̃) ≤ f(AC̃) for each directed circuit C̃ in D̃.

So if we consider f −z as length function on Ã, then (68.74) says that each directed

circuit in D̃ has nonnegative length. Hence, by Theorem 8.2, the maximum is equal
to the maximum of gTz over z : Ã → R+ for which there exists a p : Ṽ → R such
that

(68.75) z(ã) + p(t) − p(s) ≤ f(ã) for each ã = (s, t) ∈ Ã.

The latter system has a totally unimodular constraint matrix, and hence the LP
has integer optimum primal and dual solutions. The dual asks for the minimum of
yTf where y : Ã → Z+ satisfies

(68.76) y(ã) ≥ g(ã) for each ã ∈ Ã,

y(δin(ṽ)) = y(δout(ṽ)) for each ṽ ∈ Ṽ .

So y is a circulation in D̃. Hence y is a nonnegative integer combination of incidence
vectors of directed circuits C̃ in D̃:

(68.77) y =
∑

C̃

λ
C̃

χAC̃ .

For each directed circuit C̃ in D̃, let C denote the corresponding directed circuit in
D (obtained by contracting all arcs (v′, v′′) occurring in C̃). Then

(68.78) yTf =
∑

C̃

λ
C̃

(χAC̃)Tf =
∑

C̃

λ
C̃

f(AC̃) =
∑

C̃

λ
C̃

b(AC)

and
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(68.79)
∑

C̃

λ
C̃

χV C ≥ w.

Hence we have obtained an integer dual solution for the problem of maximizing
wTx over (68.72).

This lemma implies:

Theorem 68.7. Let G = (V, E) be an undirected graph having an orientation D of

discrepancy 1. Then G is strongly t-perfect.

Proof. Let D′ = (V, A′) be the digraph obtained from D by adding a reverse arc
(v, u) for each arc (u, v) of D, defining b(u, v) := 1 and b(v, u) := 0. Then the total
dual integrality of (68.1) follows directly from the total dual integrality of (68.72).
Note that each directed circuit C′ in D′ gives an undirected circuit C in D, with
b(AC′) equal to the number of forward arcs in C. As D has discrepancy 1, ⌊ 1

2
|V C|⌋

is equal to the minimum value of b(AC′) and b(AC′−1
).

This immediately implies the strong t-perfection of almost bipartite graphs —
graphs having a vertex v with G − v bipartite, since they have an orientation of
discrepancy 1, as one easily checks.

68.6e. Colourings and odd K4-subdivisions

Zang [1998] and Thomassen [2001] showed that any graph G without totally odd
K4-subdivision satisfies χ(G) ≤ 3.25 We may interpret this in terms of the integer
decomposition and rounding properties. Consider the antiblocking polytope Q of
the stable set polytope of a graph G = (V, E):

(68.80) xv ≥ 0 for each v ∈ V ,
x(S) ≤ 1 for each stable set S.

If G is t-perfect, the vertices of Q are: the origin, the unit base vectors, the incidence
vectors of the edges, and the vectors χV C/⌊ 1

2
|V C|⌋ where C is an odd circuit.

(This follows from the definition of t-perfection with antiblocking polyhedra theory.)
Hence the fractional colouring number χ∗(G) of G, which is equal to the maximum
of 1Tx over (68.80) (cf. Section 64.8), is equal to

(68.81) max{2, max{ |V C|
⌊ 1

2
|V C|⌋ | C odd circuit}}

(assuming E �= ∅). For nonbipartite graphs, this value is equal to 3. So for graphs
G without totally odd K4-subdivision, the colouring number χ(G) is equal to the
round-up ⌈χ∗(G)⌉ of the fractional colouring number.

25 This was conjectured by Toft [1975], and extends results of Hadwiger [1943] that a 4-
chromatic graph contains a K4-subdivision, of Catlin [1979] that it contains an odd K4-
subdivision, and of Gerards and Shepherd [1998] that it contains a bad K4-subdivision.
Zeidl [1958] showed that any vertex of a minimally 4-chromatic graph lies in a subdi-
vided K4 that contains an odd circuit. Other partial and related results were found by
Krusensjterna-Hafstrøm and Toft [1980], Thomassen and Toft [1981], and Jensen and
Shepherd [1995].
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A.M.H. Gerards (personal communication 2001) showed that system (68.80)
has the integer rounding property if G has no odd K4-subdivision. It implies that
the corresponding stable set polytope has the integer decomposition property. This
is equivalent to:

(68.82) χw(G) = ⌈χ∗
w(G)⌉

for each odd-K4-free graph G and each w : V G → Z+.
This does not hold for any t-perfect graph: M. Laurent and P.D. Seymour

showed in 1994 that the complement of the line graph of a prism (complement of
C6) is t-perfect, but is not 3-colourable; hence its stable set polytope does not have
the integer decomposition property.

68.6f. Homomorphisms

Let G and H be simple graphs. A homomorphism G → H is a function φ : V G →
V H such that if uv ∈ EG, then φ(u)φ(v) ∈ EH (in particular, φ(u) �= φ(v)).
Obviously, if there exists a homomorphism G → H, then χ(G) ≤ χ(H).

For any k, let K
(k)
4 be the graph obtained from K4 by replacing each edge by

a path of length k. Then one may check that for odd k there is no homomorphism
K

(k)
4 → C2k+1.

Catlin [1985] showed that this is essentially the only counterexample: if G is a
connected graph of maximum degree 3 and k ∈ Z+, such that any two vertices of
G of degree 3 have distance at least k, and such that there is no homomorphism
G → C2k+1, then k is odd and G = K

(k)
4 . (This extends Brooks’ theorem (Theorem

64.3) for k = 1.)
Gerards [1988] extended this to: if a nonbipartite graph G has no odd minor

equal to K4 or to the graph obtained from the triangle by adding for each edge a
new vertex adjacent to the ends of the edge, then there is a homomorphism G → Ct,
where t is the shortest length of an odd circuit of G. Further results are given by
Catlin [1988].

68.6g. Further notes

Sbihi and Uhry [1984] call a graph G = (V, E) h-perfect26 if the stable set polytope
is determined by

(68.83) (i) xv ≥ 0 for v ∈ V ,
(ii) x(C) ≤ 1 for each clique C,
(iii) x(V C) ≤ ⌊ 1

2
|V C|⌋ for each odd circuit C.

So perfect graphs and t-perfect graphs are h-perfect. Sbihi and Uhry showed
that substituting bipartite graphs for edges of a series-parallel graph preserves h-
perfection.

The t-perfection of line graphs, and classes of graphs that are h-perfect but not
t-perfect, were studied by Cao and Nemhauser [1998]. Gerards [1990] gave a survey
on signed graphs without odd K4-subdivision.

26 h stands for ‘hole’ (English for ‘trou’).



Chapter 69

Claw-free graphs

Claw-free graphs are graphs not having K1,3 as induced subgraph. We show
the result of Minty and Sbihi that a maximum-size stable set in a claw-
free graph can be found in strongly polynomial time, and the extension of
Minty to the weighted case.

69.1. Introduction

A graph G = (V, E) is called claw-free if no induced subgraph of G is iso-
morphic to K1,3. Minty [1980] and Sbihi [1980] showed that a maximum-size
stable set in a claw-free graph can be found in polynomial time. Since the line
graph of any graph is claw-free, this generalizes Edmonds’ polynomial-time
algorithm for finding a maximum-size matching in a graph.

Sbihi’s algorithm is an extension of Edmonds’ blossom shrinking tech-
nique, while Minty gave a reduction to the maximum-size matching prob-
lem. Minty [1980] also indicated that his algorithm can be extended to the
weighted case by reduction to Edmonds’ weighted matching algorithm. The
final argument for this was given by Nakamura and Tamura [2001].

In Section 69.2, we describe Minty’s method for finding a maximum-size
stable set in claw-free graphs, and in Section 69.3 we describe the extension
to the weighted case.

69.2. Maximum-size stable set in a claw-free graph

An important property of claw-free graphs is that any vertex has at most
two neighbours in any stable set. This enables us to augment stable sets by
S-augmenting paths, which we define now.

Let G = (V, E) be a graph and let S be a stable set in G. A walk P =
(v0, v1, . . . , vk) (given by its vertex-sequence) is called S-alternating if pre-
cisely one of vi−1, vi belongs to S, for each i = 1, . . . , k. It is an S-augmenting
path if moreover P is a path, v0, vk �∈ S, and (S \ {v1, v3, . . . , vk−1}) ∪
{v0, v2, . . . , vk} is stable. This implies that (if k ≥ 2) each of v0 and vk

has precisely one neighbour in S, and each of v2, v4, . . . , vk−2 precisely two.



Section 69.2. Maximum-size stable set in a claw-free graph 1209

It is easy to see that if G is claw-free, then there is a stable set larger
than S if and only if there exists an S-augmenting path. Indeed, sufficiency
follows from the definition of S-augmenting path. To see necessity, let S′ be
a stable set larger than S. Then the subgraph of G induced by S△S′ has a
component K with more vertices in S′ than in S. Since G is claw-free, this
subgraph has maximum degree 2, and hence K forms an S-augmenting path.

So in order to find a maximum-size stable set, it suffices to have a
polynomial-time algorithm to find for given S, an S-augmenting path, if
any. For this, it suffices to describe a polynomial-time algorithm to find an
S-augmenting a− b path for prescribed a, b ∈ V \S (if any). Varying over all
a, b ∈ V \ S, we find an S-augmenting path (if any).

Therefore, from now on we fix a, b ∈ V \ S. Then we can assume:

(69.1) a �= b; a and b have degree 1, each with neighbour in S, say sa

and sb; sa �= sb; each v ∈ V \ S with v �= a, b has precisely two
neighbours in S; for each s ∈ S with s �= sa, sb there are at least
two vertices in S at distance two from s; G is connected.

Indeed, otherwise finding an S-augmenting path is trivial, or it does not exist;
moreover, we can delete all neighbours of a or b distinct from sa or sb, and
all vertices in S \ {sa, sb} that have less than two vertices in S at distance
two.

The assumptions (69.1) imply that any S-augmenting path connects a
and b. Consider an S-alternating path

(69.2) P = (v0, s1, v1, . . . , sk, vk)

(given by its vertex-sequence), with v0 = a and vk = b. So s1 = sa and
sk = sb. Then (under the assumptions (69.1)):

Lemma 69.1α. P is S-augmenting if and only if vi−1 and vi are nonadjacent
for each i = 2, . . . , k − 1.

Proof. Necessity being trivial, we show sufficiency. It suffices to show that
(S \ {s1, . . . , sk}) ∪ {v0, . . . , vk} is a stable set. Any two vertices in S are
nonadjacent. All neighbours in S of any vi are among s1, . . . , sk. Finally,
suppose that any vi, vj are adjacent, with i < j. Then j ≥ i + 2, since vi

and vi+1 are nonadjacent by the condition. But then vi is adjacent to the
three pairwise nonadjacent vertices si, si+1, and vj . This contradicts the
claw-freeness of G.

We next prove a basic lemma of Minty [1980]. Define, for u, v ∈ V \ S:

(69.3) u ∼ v ⇐⇒ N(u) ∩ S = N(v) ∩ S.

Clearly, ∼ is an equivalence relation. We call any equivalence class a similarity
class, and if u ∼ v we say that u and v are similar. So for each s ∈ S, N(s)
is a union of similarity classes.
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We call a vertex s ∈ S splittable if N(s) can be partitioned into two classes
X, Y such that

(69.4) uv ∈ E ⇐⇒ u, v ∈ X or u, v ∈ Y

for all u, v ∈ N(s) with u �∼ v. If s is splittable, we call X and Y the classes
of s. Define

(69.5) S′ := {s ∈ S | s is splittable} and S′′ := S \ S′.

Then sa, sb ∈ S′, since N(sa)\{a} is a clique, as a has no neighbours in N(sa)
(by assumption (69.1)) and as G is claw-free — similarly for sb. Moreover:

Lemma 69.1β. Each vertex s ∈ S having at least three vertices in S at
distance two, belongs to S′.

Proof. Since sa, sb ∈ S′, we may assume that s �= sa, sb. Let G′ = (N(s), F )
be the subgraph of G with

(69.6) F := {uv ∈ E | u, v ∈ N(s), u �∼ v}.

Then

(69.7) each component of G′ induces a clique of G.

Suppose not. Let P = (v0, v1, . . . , vk) be a shortest path in G′ with v0vk �∈ E.
If k = 2, then v0 �∼ v1 �∼ v2, and hence v1 has a neighbour t ∈ S which is not
a neighbour of v0 or v2. But then v1 is adjacent to the pairwise nonadjacent
t, v0, v2, contradicting the claw-freeness of G.

If k = 3, then as P is shortest, v0v2, v1v3 ∈ E \ F . So v0 ∼ v2 and
v1 ∼ v3. Choose a vertex p with p �∼ v0 and p �∼ v1. (This is possible since
N(s) contains at least three similarity classes.) Then p has a neighbour t in S
which is not a neighbour of any of v0, v1, v2, v3. Since N(s) contains no three
pairwise nonadjacent vertices (as G is claw-free), we know that v0p ∈ E or
v3p ∈ E. By symmetry, we can assume that v0p ∈ E, and hence v0p ∈ F .
Then, by the minimality of k, we know successively that v1p ∈ F , v2p ∈ F ,
and v3p ∈ F . But then v0p and pv3 are in F , and hence, by the minimality
of k, v0v3 ∈ E.

If k ≥ 4, then v0v2, v0v3 ∈ E, hence (since v2 �∼ v3) v0v2 ∈ F or v0v3 ∈ F ,
contradicting the minimality of k. This proves (69.7).

Since G is claw-free, G′ has at least one component, X say, that intersects
at least two of the similarity classes. If G′ has at most two components,
or if X contains all but at most one similarity class, we are done, taking
Y := N(s) \ X. If G′ has at least three components and N(s) \ X intersects
at least two similarity classes, then G′ has two other components Y, Z for
which there exist x ∈ X, y ∈ Y , and z ∈ Z with x �∼ y �∼ z �∼ x, as one easily
checks27. But then s is adjacent to the three pairwise nonadjacent vertices
x, y, z, contradicting the claw-freeness of G.

27 Let y ∈ N(s) \ X be such that there exist x′, x′′ ∈ X with y 
∼ x′ 
∼ x′′ 
∼ y. Let Y be
the component of G′ containing y. Let Z be a third component, if possible containing
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vertex in S vertex not in S

Figure 69.1

A typical bone

Now consider the subgraph

(69.8) (V \ S′, δ(S′′))

of G. It is a bipartite graph, with colour classes S′′ and V \ S. We call each
component of this graph a bone. (A typical bone is depicted in Figure 69.1.)
By Lemma 69.1β, each s ∈ S′′ has at most two vertices in S at distance two.
Hence any bone B consists of a series of vertices s1, . . . , sk in S′′, together
with disjoint nonempty sets V0, V1, . . . , Vk of vertices such that si is incident
with each vertex in Vi−1 ∪ Vi for each i = 1, . . . , k. Moreover, B has two
neighbours in S′, say s and t, where s is adjacent to all vertices in V0 and t is
adjacent to all vertices in Vk. (It might be that s = t.) The degenerate case
is that k = 0, where B is a singleton vertex in V \ S with two neighbours in
S′.

The relevance of bones is that if we leave out from any S-augmenting path
the vertices that belong to S′, we are left with a number of subpaths, each of
which is an S′′-augmenting path contained in some bone. So in constructing
or analyzing an S-augmenting path, we can decompose it into S′′-augmenting
paths, glued together at vertices in S′. Here the classes of the vertices in S′

come in, since the ends of the two subpaths glued together at s ∈ S′ should
belong to different classes of s. This motivates the following graph H (called
the Edmonds graph by Minty [1980])28.

H has vertex set

(69.9) {(s, X) | s ∈ S′, X class of s} \ {(sa, {a}), (sb, {b})}
and the following edges:

(69.10) (i) {(s, X), (s, Y )} for s ∈ S′ \ {sa, sb} and X, Y the classes of s;

a vertex nonsimilar to y. Then, if Z contains a vertex z 
∼ y, we can take for x one of
x′, x′′. If Z contains no such vertex, let z ∈ Z. Then Y contains a vertex y′ 
∼ z. As
z 
∼ x′ and z 
∼ x′′, we are done again.

28 We note that in constructing H we could restrict S′ to those vertices in S that have at
least 3 vertices in S at distance two, together with sa and sb. However, for the extension
to the weighted case, we need S′ as defined above (namely, by being splittable).
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(ii) {(s, X), (t, Y )} for vertices (s, X), (t, Y ) of H such that there
exists an S′′-augmenting X − Y path P .

So the path P is contained in the bone B containing x and y for some x ∈ X
and some y ∈ Y . Its existence can be checked as follows. Let V0, V1, . . . , Vk be
as above. Make the digraph D on V0 ∪V1 ∪ . . .∪Vk with an arc from u ∈ Vi−1

to v ∈ Vi if uv �∈ E (for i = 1, . . . , k). Then a directed X −Y path in D gives
a path P as required, and conversely.

Let M be the matching of edges in (69.10)(i). So M covers all vertices of
H, except the vertices (sa, N(sa) \ {a}) and (sb, N(sb) \ {b}). Then (under
the assumptions (69.1)):

Lemma 69.1γ. G has an S-augmenting path ⇐⇒ H has an M -augmenting
path. We can obtain one from the other in polynomial time.

Proof. Let P = (v0, s1, v1, . . . , sk, vk) be an S-augmenting path in G, with
v0 = a and vk = b. Let si1 , . . . , sit

be those vertices in P that belong to S′

(in order). So i1 = 1 and it = k. For j = 1, . . . , t, let Xj and Yj be the classes
of sij

that contain vij−1 and vij
, respectively. Then Xj �= Yj , since vij−1 and

vij
are nonsimilar and nonadjacent. Moreover, the subpath of P between any

two sij
and sij+1

forms an S′′-augmenting Yj − Xj+1 path. Hence

(69.11) ((si1 , Y1), (si2 , X2), (si2 , Y2), . . . , (sit−1
, Xt−1), (sit−1

, Yt−1),
(sit

, Xt))

is an M -augmenting path in H.
We can reverse this construction. Indeed, any M -augmenting path Q

yields an S-alternating a − b walk P in G, by inserting appropriate S′′-
augmenting paths.

In fact, P is a path. For suppose that P traverses some vertex u of G
more than once. Then u belongs to two of the inserted paths. Necessarily,
they belong to the same bone B. Hence B has a neighbour in S′ that is
traversed more than once. But then Q traverses some matching edge more
than once, a contradiction.

So P is a path. Moreover, any two vertices at distance two in P are
nonadjacent, by construction of P . So P is S-augmenting, by Lemma 69.1α.

Concluding, we have obtained the result of Minty [1980] and Sbihi [1980]:

Theorem 69.1. A maximum-size stable set in a claw-free graph can be found
in polynomial time.

Proof. From Lemma 69.1γ, since finding an M -augmenting path in H
is equivalent to finding a perfect matching in M . The latter problem is
polynomial-time solvable by Corollary 24.4a.
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69.3. Maximum-weight stable set in a claw-free graph

There is an obvious way of extending the above construction to the weighted
case, but there is a catch in it. The idea was noted by Minty [1980], and
finalized by Nakamura and Tamura [2001].

Let G = (V, E) be a graph and let w : V → R+ be a weight function.
Call a stable set S extreme if it has maximum weight among all stable sets
of size |S|. It suffices to describe an algorithm to derive from any extreme
stable set S, an extreme set of size |S| + 1, if any (since then we can start
with S := ∅, enumerate extreme stable sets of all possible sizes, and choose
one of maximum weight among them).

The following observations are basic:

Lemma 69.2α. Let G = (V, E) be a claw-free graph, let w : V → R+, and
let S be an extreme stable set. Then:

(69.12) (i) each S-alternating chordless circuit satisfies w(V C \ S) ≤
w(V C ∩ S);

(ii) if P is an S-augmenting path maximizing w(V P \S)−w(V P ∩
S), then S△V P is an extreme stable set of size |S| + 1.

Proof. (i) follows from the fact that S△V C is a stable set of size |S|, and
hence w(S) ≥ w(S△V C) = w(S) + w(V C \ S) − w(V C ∩ S).

(ii) can be seen as follows. Let S̃ be an extreme stable set of size |S|+1. The

subgraph induced by S△S̃ has a component K with |K ∩ S̃| > |K ∩S|. Since
G is claw-free, K has maximum degree at most 2. So K is an S-augmenting
path, and hence |K ∩ S̃| = |K ∩ S| + 1. Let L := (S△S̃) \ K. Then S△L and

S̃△L are stable sets of size |S| and |S| + 1 respectively. Since S is extreme,

w(L ∩ S̃) ≤ w(L ∩ S). Hence w(S̃△L) ≥ w(S̃). So S̃△L is extreme again.
Hence we can assume that L = ∅. Then, since K is an S-augmenting path:

(69.13) w(S△V P ) = w(S) + w(V P \ S) − w(V P ∩ S)

≥ w(S) + w(K \ S) − w(K ∩ S) = w(S̃).

So S△V P is extreme.

Statement (ii) of Lemma 69.2α implies that, to find an extreme stable
set of size |S| + 1, it suffices to find an S-augmenting path P maximizing
w(V P \S)−w(V P ∩S). By enumerating over all pairs a, b ∈ V \S, it suffices
to find, for each fixed a, b ∈ V \S, an S-augmenting a− b path P maximizing
w(V P \ S) − w(V P ∩ S) (if any). Then we can make again the assumptions
(69.1), and construct the graph H. Define a weight function ω on the edges
of H (following the items in (69.10)) as follows:

(69.14) (i) ω({(s, X), (s, Y )}) := w(s),
(ii) ω({(s, X), (t, Y )}) := the maximum of w(V P \ S′′) − w(V P ∩

S′′) over all S′′-augmenting X − Y paths P .
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The maximum in (69.14)(ii) can be found in strongly polynomial time, since
it amounts to finding a longest directed X − Y path in the acyclic digraph
D described just after (69.10).

Now a maximum-weight perfect matching in H need not yield a maximum-
weight stable set in G, as was pointed out by Nakamura and Tamura [2001],
since there might exist M -alternating circuits that increase the weight of M ,
while they do not correspond to a chordless S-alternating circuit. However,
this can be avoided by preprocessing as follows.

We can assume that for each v ∈ V \ S with v �= a, b:

(69.15) (i) there exist s, t, x, y such that (x, s, v, t, y) is a chordless S-
alternating path and such that N(x) ∩ N(y) ∩ S = ∅;

(ii) there exist s, t ∈ S′ and classes X of s and Y of t such that
there exists an S′′-augmenting X − Y path and such that
each S′′-augmenting X − Y path P attaining the maximum
in (69.14)(ii), traverses v.

Otherwise v is on no maximum-weight S-augmenting path, and hence we can
delete v. The conditions (69.15) can be tested in strongly polynomial time
(for (ii) using digraph D). Hence the deletions take strongly polynomial time
only.

Fix for each edge e of H in (69.14)(ii), a path Pe attaining the maximum.
Then we can transform any M -alternating path or circuit to an S-alternating
walk or closed walk, by replacing each such edge e by Pe. We call this the
corresponding walk or closed walk in G.

Lemma 69.2β. Under the assumptions (69.15), each M -alternating circuit
C in H satisfies ω(EC \ M) ≤ ω(EC ∩ M).

Proof. Suppose not. Choose C maximizing ω(EC \ M) − ω(EC ∩ M). Let
Γ be the corresponding S-alternating closed walk in G. Then Γ is not a
chordless circuit, since otherwise

(69.16) w(V Γ \ S) − w(V Γ ∩ S) = ω(EC \ M) − ω(EC ∩ M) > 0,

which contradicts (i) of Lemma 69.2α.
Since each Pe is simple and chordless, it follows that EC \ M contains

distinct edges e, f for which there exist u ∈ V Pe and v ∈ V Pf with u = v
or uv ∈ E. This implies that C has length 4, and that e and f are the only
edges in EC \ M . So Pe and Pf are in the same bone B. Let s and t be the
neighbours of B in S′. Let s have classes Y, Z and t have classes W, X such
that Pe connects Y and W and Pf connects Z and X. Write

(69.17) Pe = (u0, s1, u1, . . . , sk, uk) and Pf = (v0, s1, v1, . . . , sk, vk)

for some k ≥ 0 and s1, . . . , sk ∈ S′′, where u0 ∈ Y , uk ∈ W , v0 ∈ Z, vk ∈ X.
We define s0 := s and sk+1 := t. Now

(69.18) for each i = 1, . . . , k: ui−1vi ∈ E or vi−1ui ∈ E.
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Otherwise, we can ‘switch’ Pe and Pf at si to obtain the S′′-augmenting
paths

(69.19) Q := (u0, s1, . . . , ui−1, si, vi, . . . , sk, vk) and
R := (v0, s1, . . . , vi−1, si, ui, . . . , sk, uk).

Hence H has edges {(s, Y ), (t, X)} and {(s, Z), (t, W )}, and

(69.20) ω({(s, Y ), (t, X)}) + ω({(s, Z), (t, W )})
≥ ω({(s, Y ), (t, W )}) + ω({(s, Z), (t, X)}).

By the choice of C, we have equality, and hence the paths Q and R attain the
corresponding maxima in (69.14)(ii). It implies, by assumption (69.15)(ii),
that ui−1, vi−1, ui, and vi are the only neighbours of si. Since none of
ui−1, vi−1 are adjacent to any of ui, vi, we have that si is splittable, that
is, si ∈ S′, a contradiction. This proves (69.18).

Next

(69.21) u0v0 �∈ E and ukvk �∈ E.

For suppose that (say) u0v0 ∈ E. By (69.15)(i), there exist x, y ∈ V \ S such
that (x, s, u0, s1, y) is a chordless path and such that N(x) ∩ N(y) ∩ S = ∅.
As x is nonadjacent to u0, and as u0 ∈ X, we have x ∈ Y , and so (as v0 ∈ Y )
xv0 ∈ E.

If k = 0, we have similarly yv0 ∈ E. Then v0 is adjacent to the pairwise
nonadjacent x, u0, y, a contradiction.

So k ≥ 1. Then y ∼ u1 and N(y) ∩ S = {s1, s2}. So xs1, xs2 �∈ E (since
N(x) ∩ N(y) ∩ S = ∅). This implies xu1 �∈ E, since otherwise u1 is adjacent
to the pairwise nonadjacent s1, s2, x. Hence v0u1 �∈ E, since otherwise v0 is
adjacent to the pairwise nonadjacent x, u0, u1. By symmetry, also u0v1 �∈ E.
This contradicts (69.18), and hence proves (69.21).

Moreover,

(69.22) there is an i with 0 ≤ i ≤ k and uivi ∈ E,

as otherwise each circuit (si, ui, si+1, vi, si) is S-alternating and chordless,
which implies w(ui) + w(vi) − w(si) − w(si+1) ≤ 0 by Lemma 69.2α. This
gives the contradiction

(69.23) 0 < ω(EC \ M) − ω(EC ∩ M)
= w(V Pe \ S′′) − w(V Pe ∩ S′′) + w(V Pf \ S′′) − w(V Pf ∩ S′′)

− w(s) − w(t) =
k∑

i=0

(w(ui) + w(vi) − w(si) − w(si+1)) ≤ 0,

proving (69.22).
Now let i be the smallest index with uivi ∈ E. By (69.21), we know 1 ≤

i ≤ k−1. By (69.18) and by symmetry we can assume that viui+1 ∈ E. Since
si is adjacent to ui−1, vi−1, and vi, and since ui−1vi−1 �∈ E and vi−1vi �∈ E,
we know ui−1vi ∈ E. Then vi is adjacent to the pairwise nonadjacent ui−1,
ui, and ui+1, a contradiction.
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Now find a maximum-weight perfect matching N in H, with the maxi-
mum-weight perfect matching algorithm (Chapter 26). By Lemma 69.2β, we
can assume that N = M△EQ for some M -augmenting path Q in H (since if
N△M contains a circuit C, then N△EC again is a maximum-weight perfect
matching in H). Then Q maximizes ω(EQ \ M) − ω(EQ ∩ M) over all M -
augmenting paths. Let P be the corresponding path in G. Then P is an
S-augmenting path in G maximizing w(V P \ S) − w(V P ∩ S), as required.

We conclude:

Theorem 69.2. A maximum-weight stable set in a claw-free graph can be
found in strongly polynomial time.

Proof. See above.

69.4. Further results and notes

69.4a. On the stable set polytope of a claw-free graph

The polynomial-time solvability of the maximum-weight stable set problem for
claw-free graphs implies that the optimization problem over the stable set polytope
Pstable set(G) of a claw-free graph G = (V, E) is polynomial-time solvable. Hence
also the separation problem is polynomial-time solvable (with the ellipsoid method
(Theorem 5.10)). It implies (cf. Theorem 5.11) that, given a vector x ∈ QV , one
can decide in strongly polynomial time if x belongs to Pstable set(G), and if not,
find a facet-inducing inequality violated by x.

So in this respect, the stable set polytope of a claw-free graph is under control.
However, no explicit description is known of a system that determines Pstable set(G).
As we saw in Section 25.2, such a description is known for the special case where
G is the line graph of some graph H — that is, for the matching polytope of H. In
this special case, each facet can be described by an inequality with coefficients in
{0, 1}.

The latter fact does not generalize to claw-free graphs. Giles and Trotter [1981]
showed that for each k ∈ Z+ there exists a claw-free graph such that its stable set
polytope has a facet that is described by a linear inequality with coefficients k and
k + 1. (This refutes a conjecture of Sbihi [1978].)

Galluccio and Sassano [1997] characterized those facets of the stable set poly-
tope of a claw-free graph that can be described by an inequality with all coefficients
in {0, 1} (the rank facets).

More on facets of the stable set polytope of special classes of claw-free graphs
can be found in Ben Rebea [1981] and Oriolo [2002] (for graphs such that for each
vertex v, the graph induced by N(v) is the complement of a bipartite graph) and
Pulleyblank and Shepherd [1993] (for claw-free graphs such that no vertex has three
pairwise nonadjacent vertices at distance two).
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69.4b. Further notes

Minty [1980] observed that finding a maximum-size stable set in a graph without
induced K1,4 is NP-complete. This follows from the fact that the 3-dimensional
assignment problem can be reduced to it (its intersection graph has no induced
K1,4).

Poljak [1974] showed that finding a maximum-size stable set in a triangle-free
graph is NP-complete. It implies that finding a maximum-size clique in a claw-free
graph is NP-complete.

Shepherd [1995] characterized the stable set polytope of near-bipartite graphs,
that is, graphs with G− N(v) bipartite for each v ∈ V G. They include the comple-
ments of line graphs, and the complement of any near-bipartite graph is claw-free.

Ben Rebea [1981] showed that each connected claw-free graph G with α(G) ≥ 3
not containing an induced C5, contains no odd antihole. This was extended by
Fouquet [1993] who showed that each connected claw-free graph G with α(G) ≥ 4
contains no odd antihole with at least 7 vertices.

Lovász and Plummer [1986] gave a variant of Minty’s reduction of the maximum-
size stable set problem in claw-free graphs to the maximum-size matching problem.

Beineke [1970] (for simple graphs), N. Robertson (unpublished), Hemminger
[1971] (abstract only), and Bermond and Meyer [1973] characterized line graphs by
means of forbidden induced subgraphs (six graphs next to K1,3).

The polynomial-time solvability of the weighted stable set problem for claw-
free graphs was extended to claw-free bidirected graphs by Nakamura and Tamura
[1998]. A linear-time algorithm for ‘triangulated’ bidirected graphs was given by
Nakamura and Tamura [2000].
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Part VII: Multiflows and Disjoint Paths

The problem of finding a maximum flow from one source s to one sink t in a
directed graph is highly tractable. There is a very efficient algorithm, which outputs
an integer maximum flow if all capacities are integer. Moreover, the maximum
flow value is equal to the minimum capacity of a cut separating s and t. If all
capacities are equal to 1, the problem reduces to finding arc-disjoint paths. Some
direct transformations give similar results for vertex capacities, for vertex-disjoint
paths, and for undirected graphs.
Often in practice however, one is not interested in connecting only one pair of source
and sink by a flow or by paths, but several pairs of sources and sinks simultaneously.
One may think of a large communication or transportation network, where several
messages or goods must be transmitted all at the same time over the same network,
between different pairs of terminals. Also railway circulation with different types
of rolling stock gives a multicommodity flow problem. A recent application is the
design of very large-scale integrated (VLSI) circuits, where several pairs of pins must
be interconnected by wires on a chip, in such a way that the wires follow a given
grid and that the wires connecting different pairs of pins do not intersect each other.
This leads to the area of multicommodity flows (briefly: multiflows) and disjoint
paths. Most polyhedral and polynomial-time methods for 1-commodity flows and
paths do not extend to multicommodity flows and paths. Yet a number of cases can
be solved efficiently, in particular when the terminals have a special structure or
when the graph is planar or, more generally, can be embedded in a specific surface.

Chapters:
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72. Three or more commodities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1266
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74. Planar graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1296
75. Cuts, odd circuits, and multiflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1326
76. Homotopy and graphs on surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1352



Chapter 70

Multiflows and disjoint paths

We discuss basic, general facts and terminology on multiflows and disjoint
paths. In particular, we study general interrelations between fractional mul-
tiflows, integer multiflows, disjoint paths, the ‘cut condition’, and the ‘Euler
condition’.

70.1. Directed multiflow problems

Given two directed graphs, a supply digraph D = (V, A) and a demand digraph
H = (T, R) with T ⊆ V , a multiflow is a function f on R where fr is an s− t
flow in D for each r = (s, t) ∈ R.1 In this context, each pair in R is called a
net, and each vertex covered by R is called a terminal.

For k := |R|, we also speak of a k-commodity flow. Occasionally, we will
list the nets as (s1, t1), . . . , (sk, tk). Then for r = (si, ti) we denote fr also by
fi. The indices 1, . . . , k are called the commodities.

The value of f is the function φ : R → R+ where φr is the value of fr.
The total value, or (if no confusion may arise) just the value, is

∑
r∈R φr.

Given a ‘capacity’ function c : A → R+, we say that a multiflow f is
subject to c if

(70.1)
∑

r∈R

fr(a) ≤ c(a)

for each arc a.
The multiflow problem or k-commodity flow problem (for k := |R|) is:

(70.2) given: a supply digraph D = (V, A), a demand digraph H =
(T, R) with T ⊆ V , a capacity function c : A → R+, and a
demand function d : R → R+,

find: a multiflow subject to c of value d.

Given c and d, a multiflow subject to c of value d is called a feasible multiflow,
or just a multiflow if no confusion is expected to arise. We call the problem
feasible if there exists a feasible multiflow.

1 Throughout, we use the terms ‘multicommodity flow’ and ‘multiflow’ as synonyms.
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If we require each fr to be an integer flow, the problem is called the inte-
ger multiflow problem or the integer k-commodity flow problem. Similarly for
half-integer, quarter-integer, etc. For clarity, we sometimes add the adjective
fractional if no integrality is required.

Related is the maximum-value multiflow problem or maximum-value k-
commodity flow problem:

(70.3) given: a supply digraph D = (V, A), a demand digraph H =
(T, R) with T ⊆ V , and a capacity function c : A → R+,

find: a multiflow subject to c, of maximum total value.

Again we add integer (half-integer, etc) if we require the fr to be integer
(half-integer, etc.).

We can reduce a multiflow problem with demands d1, . . . , dk to a maxi-
mum-value multiflow problem, by extending the graph by an arc from a new
vertex s′

i to si of capacity di (for i = 1, . . . , k). Then the multiflow problem in
the original graph is feasible if and only if the maximization problem in the
new graph, with nets (s′

i, ti), has maximum total value equal to d1 + · · ·+dk.

70.2. Undirected multiflow problems

The problems described above have a natural analogue for undirected graphs.
Let be given two undirected graphs, a supply graph G = (V, E) and a demand
graph H = (T, R) with T ⊆ V . Again, each pair in R is called a net, and each
vertex covered by R is called a terminal.

For s, t ∈ V , a function f : E → R+ is called an s − t flow if there exists
an orientation (V, A) of G such that f is an s − t flow in D.

A multiflow is a function f on R such that fr is an s − t flow for each
r = st ∈ R. For k := |R|, the multiflow is also called a k-commodity flow.
Again, occasionally we will list the nets as {s1, t1}, . . . , {sk, tk}.

The value of a multiflow f is the function φ : R → R+ where φr is the
value of fr. The total value, or just the value, is

∑
r∈R φr.

Given a capacity function c : E → R+, we say that a multiflow f is subject
to c if

(70.4)
∑

r∈R

fr(e) ≤ c(e)

for each edge e. Note that generally for each r = st ∈ R, there is a different
orientation Dr of G that makes fr into an s − t flow in Dr. So in (70.4), the
sum of the flows through both orientations of a given edge e are bounded
above by c(e).

In this way we obtain the undirected multiflow problem or undirected k-
commodity flow problem, and the undirected maximum-value multiflow prob-
lem or undirected maximum-value k-commodity flow problem. Again, we add
integer (half-integer, etc.) if we require the fr to be integer (half-integer, etc.)
flows. We skip the adjective ‘undirected’ if it is clear from the context.
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70.3. Disjoint paths problems

If all capacities and demands are equal to 1, the integer multiflow problem is
equivalent to the (k) arc- or edge-disjoint paths problem:

(70.5) given: a directed (or undirected) graph D = (V, A) and pairs
(s1, t1), . . . , (sk, tk) of vertices of G,

find: arc- (or edge-)disjoint paths P1, . . . , Pk where Pi is an si−ti
path (i = 1, . . . , k).

For undirected graphs, the pairs si, ti need not be ordered.
A fractional solution (half-integer solution respectively) of the arc- or

edge-disjoint paths problem is a fractional (half-integer respectively) multi-
flow for all capacities and demands 1.

Related is the (vertex-)disjoint paths problem (or k (vertex-)disjoint paths
problem):

(70.6) given: a (directed or undirected) graph D = (V, A) and pairs
(s1, t1), . . . , (sk, tk) of vertices of G,

find: vertex-disjoint paths P1, . . . , Pk where Pi is an si − ti path
(i = 1, . . . , k).

70.4. Reductions

Above we mentioned two versions of the multiflow problem: directed and
undirected, and four versions of the disjoint paths problem: directed vertex-
disjoint, directed arc-disjoint, undirected vertex-disjoint, and undirected edge-
disjoint. There are a number of constructions that reduce versions among
them.

First, the undirected edge-disjoint paths problem can be reduced to the
undirected vertex-disjoint paths problem by replacing the graph by its line
graph. Similarly, the directed arc-disjoint paths problem can be reduced to
the directed vertex-disjoint paths problem by replacing the digraph by its line
digraph.

Conversely, the directed vertex-disjoint paths problem can be reduced to
the directed arc-disjoint paths problem by replacing each vertex

(70.7) by .

So far, these reductions do not maintain planarity.
The undirected vertex-disjoint paths problem can be reduced to the di-

rected vertex-disjoint paths problem by replacing each edge
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(70.8) by .

Trivially, this construction maintains planarity.
Finally, there is the following reduction of the undirected edge-disjoint

paths problem to the directed arc-disjoint paths problem: replace each edge

(70.9) by .

This reduction also applies to (integer, half-integer, fractional) multiflow
problems. Again, this construction maintains planarity.

We represent these reductions in the following diagram, where a double
arrow means a reduction maintaining planarity:

(70.10)

undirected edge-disjoint −→ undirected vertex-disjoint

⇓ ⇓

directed arc-disjoint ←→ directed vertex-disjoint

Notes. These reductions maintain the set of nets and the demand values. Even,
Itai, and Shamir [1975,1976] gave an interesting construction reducing the directed
arc-disjoint paths problem to the undirected edge-disjoint paths problem. It reduces
the directed arc-disjoint paths problem with k commodities of demands d1, . . . , dk

in a digraph D = (V, A), to the undirected edge-disjoint paths problem with k
commodities of demands d1 + |A|, . . . , dk + |A|. The construction does not maintain
planarity.

70.5. Complexity of the disjoint paths problem

In Section 70.6 we shall see that the fractional multiflow problem is solvable
in strongly polynomial time, since it is a linear programming problem.

The integer multiflow problem is NP-complete, even the disjoint paths
problem is NP-complete, in any mode (directed/undirected, vertex/edge-
disjoint), even for planar graphs. In some cases, however, the problem is
polynomial-time solvable if we fix the number k of commodities. We survey
the complexity results in the following table:
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directed undirected
arc-disjoint vertex-disjoint edge-disjoint vertex-disjoint

general NP-complete2 NP-complete2 NP-complete3 NP-complete2

planar NP-complete4 NP-complete5 NP-complete4 NP-complete5

for fixed k:

general NP-complete6 NP-complete6 polynomial-time7 polynomial-time7

planar ?8 polynomial-time9 polynomial-time7 polynomial-time7

Complexity of the k disjoint paths problem

By the reduction described at the end of Section 70.1, the NP-completeness
of the integer multiflow and disjoint paths problems implies that also the cor-
responding maximization problems are NP-complete.

70.6. Complexity of the fractional multiflow problem

The fractional multiflow problem can easily be described as one of solving a
system of linear inequalities in the variables fi(a) for i = 1, . . . , k and a ∈ A.
The constraints are the flow conservation laws and the demand constraint for
each flow fi separately, together with the capacity constraints (70.1). There-
fore, the fractional multiflow problem can be solved in polynomial time with
any polynomial-time linear programming algorithm. Tardos [1986] showed
that the fractional multiflow problem is solvable in strongly polynomial time,

2 D.E. Knuth, 1974 (cf. Karp [1975]), who proved the NP-completeness of the undirected
vertex-disjoint version. It implies the NP-completeness of the directed vertex-disjoint
case (by reduction (70.8)), which in turn implies the NP-completeness of the directed
arc-disjoint version (by reduction (70.7)). Even, Itai, and Shamir [1975,1976] showed
that the directed arc-disjoint paths problem is NP-complete even if the digraph is acyclic
and s2 = · · · = sk and t2 = · · · = tk.

3 Even, Itai, and Shamir [1975,1976] — NP-complete even if |{{s1, t1}, . . . , {sk, tk}}| = 2;
equivalently, the integer 2-commodity flow problem is NP-complete even if all capacities
are 1.

4 Kramer and van Leeuwen [1984], who proved the NP-completeness of the planar undi-
rected edge-disjoint paths problem, implying the NP-completeness of the planar directed
arc-disjoint paths problem, by reduction (70.9). Kramer and van Leeuwen showed NP-
completeness even if the graphs are restricted to rectangular grids.

5 Lynch [1975], who proved the NP-completeness of the planar undirected vertex-disjoint
paths problem. It implies the NP-completeness of the planar directed vertex-disjoint
paths problem, by reduction (70.8). The problems remain NP-complete for cubic planar
graphs (Richards [1984]), and also if the graph together with the nets is planar and
cubic (Middendorf and Pfeiffer [1993]).

6 Fortune, Hopcroft, and Wyllie [1980] — NP-complete even for k = 2 opposite nets (s, t)
and (t, s).

7 Robertson and Seymour [1995], who proved the polynomial-time solvability of the k

vertex-disjoint paths problem in undirected graphs, for any fixed k. By replacing a
graph by its line graph, it implies the polynomial-time solvability of the k edge-disjoint
paths problem in undirected graphs, for any fixed k.

8 unknown also if k = 2 and the two nets are opposite.
9 Schrijver [1994a].
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by proving that any linear programming problem with {0, ±1} constraint
matrix is solvable in strongly polynomial time.

Onaga [1970] gave the following good characterization for the feasibility of
the fractional multiflow problem, which can be derived (as Iri [1971] observed)
from Farkas’ lemma (distl(s, t) denotes the length of a shortest s − t path
with respect to a length function l):

Theorem 70.1. The (directed or undirected) fractional multiflow problem
(70.2) has a solution if and only if

(70.11)
k∑

i=1

di · distl(si, ti) ≤
∑

a∈A

l(a)c(a)

for each length function l : A → Z+.

Proof. For i = 1, . . . , k, let Pi denote the collection of arc sets of si − ti
paths. Then there is a feasible multiflow if and only if there exist λi,P ≥ 0
(for i = 1, . . . , k and P ∈ Pi), such that

(70.12)
∑

P∈Pi

λi,P = di for i = 1, . . . , k,

k∑

i=1

∑

P∈Pi

λi,P χP (a) ≤ c(a) for a ∈ A.

By Farkas’ lemma, this is equivalent to: for all b1, . . . , bk ∈ R and l : A → R+,
if

(70.13) bi ≤
∑

a∈P

l(a) for i = 1, . . . , k and P ∈ Pi,

then

(70.14)
k∑

i=1

bidi ≤
∑

a∈A

l(a)c(a).

Now we may assume that each bi is chosen maximal such that it satisfies
(70.13). Then bi is equal to the minimum of

∑
a∈P l(a) taken over all P ∈ Pi,

that is, to distl(si, ti). Hence the condition is equivalent to (70.11).

(Onaga and Kakusho [1971] gave an alternative proof. If we restrict l to {0, 1}-
valued functions, we obtain a necessary condition (a ‘multicut condition’),
as was observed by Naniwada [1969], who raised the question if the above
theorem may hold.)

A min-max relation for the maximum-value multiflow problem can be
derived similarly from LP-duality (cf. Lomonosov [1978a]):

Theorem 70.2. Let D = (V, A) be a directed or undirected graph, let
(s1, t1), . . . , (sk, tk) be nets, and let c : A → R+ be a capacity function. Then
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the maximum total value of a multiflow subject to c is equal to the minimum
value of

∑
a∈A l(a)c(a) taken over all l : A → R+ satisfying

(70.15) distl(si, ti) ≥ 1 for each i = 1, . . . , k.

Proof. Let P denote the collection of arc sets of paths running from si to ti
for some i = 1, . . . , k. Then the maximum total value of a multiflow is equal
to the maximum of

∑
P∈P λP , where λP ≥ 0 for P ∈ P, such that

(70.16)
∑

P∈P

λP χP (a) ≤ c(a) for a ∈ A.

By LP-duality, this value is equal to the minimum value of
∑

a∈A l(a)c(a)
where l : A → R+ such that

(70.17)
∑

a∈P

l(a) ≥ 1 for each P ∈ P.

As (70.17) is equivalent to (70.15), we have the theorem.

70.7. The cut condition for directed graphs

In Theorem 70.1 we saw a good characterization for the feasibility of the
fractional multiflow problem. In some cases, it can be replaced by a weaker
condition, the cut condition:

(70.18) c(δout
A (U)) ≥ d(δout

R (U)) for each U ⊆ V .

The cut condition indeed is a direct consequence of condition (70.14)
described in Theorem 70.1. For define l(a) := 1 if a ∈ δout(U), and l(a) := 0
otherwise. Then (70.11) implies:

(70.19) c(δout
A (U)) =

∑

a∈A

l(a)c(a) ≥
k∑

i=1

di · distl(si, ti) ≥ d(δout
R (U)).

However, the cut condition is in general not sufficient, even not in the two
simple cases given in Figure 70.1.

For directed graphs, the cut condition is known to be sufficient for the
existence of a fractional multiflow only if s1 = · · · = sk or t1 = · · · = tk (this
follows from the (one-commodity) max-flow min-cut theorem). In a sense,
this is the only case:

Theorem 70.3. Let H = (T, R) be a demand digraph, where R contains no
loops. Then for each supply digraph D = (V, A) with V ⊇ T , the cut condition
(70.18) is sufficient for the existence of a fractional multiflow if and only if
all arcs of H have a common head, or they all have a common tail.

Proof. Let R = {(s1, t1), . . . , (sk, tk)}.



1228 Chapter 70. Multiflows and disjoint paths

s1

t2

s2 = t1 s2 = t1s1 = t2

Figure 70.1

Two digraphs where the cut condition holds, but no fractional

multiflow exists (taking all capacities and demands equal to 1). The
nonexistence of a fractional multiflow can be shown with Theorem 70.1,
by taking l(a) := 1 for each arc a.

To see sufficiency, by symmetry we can assume that s1 = · · · = sk. Let
s := s1, and let t be a new vertex. For i = 1, . . . , k, add a new arc (ti, t),
with capacity di. Then, by the max-flow min-cut theorem, the cut condition
implies that the extended graph has an s−t flow of value d1+· · ·+dk, subject
to the capacity. Restricted to the original graph, we can decompose the flow
into a feasible k-commodity flow of values d1, . . . , dk.

To see necessity, if the condition is not met, then there exist nets (si, ti)
and (sj , tj) with si 	= sj and ti 	= tj . We can assume that i = 1, j = 2.
Then {s1, t2} is disjoint from {s2, t1}, and then the second example in Figure
70.1 can be adapted to obtain an example with net set R, and where the cut
condition holds but no fractional multiflow exists.

As for maximizing the total value of a multiflow, in a directed triangle,
with as nets the opposites of all arcs and all capacities equal to 1, the maxi-
mum total value is 3

2 , while the minimum capacity of an arc set disconnecting
all nets is 2.

70.8. The cut condition for undirected graphs

Similarly, one can formulate the cut condition in the undirected case:

(70.20) c(δE(U)) ≥ d(δR(U)) for each U ⊆ V .

In the special case of the edge-disjoint paths problem (where all capacities
and demands are equal to 1), the cut condition amounts to:

(70.21) dE(U) ≥ dR(U) for each U ⊆ V .

As was observed by Tang [1965], in the undirected case the cut condition
is equivalent to the ‘disconnecting set condition’:

(70.22) c(F ) ≥ d(discR(F )) for each F ⊆ E,
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where discR(F ) denotes the family of nets st where s and t are in different
components of G − F .

Indeed, trivially, the cut condition is implied by (70.22). To see the reverse
implication, let K be the set of components of G−F . Then the cut condition
implies

(70.23) c(F ) ≥ 1
2

∑

K∈K

c(δE(K)) ≥ 1
2

∑

K∈K

d(δR(K)) = d(discR(F )),

which is (70.22).

s4 t4

t3 = s1

t1 = s2

t2 = s3

Figure 70.2

An undirected graph where the cut condition holds, but no

fractional multiflow exists (taking all capacities and demands equal
to 1). This last can be shown with Theorem 70.1, by taking l(e) := 1
for each edge e.

Figure 70.2 shows that, also in the undirected case, the cut condition is
not sufficient10. Hu [1963] showed that, in the undirected case, if k = 2, then
the cut condition is sufficient for the existence of a fractional multiflow. This
is Hu’s 2-commodity flow theorem (Theorem 71.1b). In Section 70.11, we will
list more cases where the cut condition is sufficient for the existence of a
fractional multiflow.

Hu’s 2-commodity flow theorem implies the max-biflow min-cut theorem
(Corollary 71.1d): in the undirected case with k = 2, the maximum value of a
2-commodity flow is equal to the minimum capacity of a cut separating both
s1 and t1 and s2 and t2.

10 Hakimi [1962b] and Tang [1962] claimed erroneously to give proofs that the cut condition
is sufficient for any number k of commodities. According to Hu [1963], a counterexample
was first found by L.R. Ford, Jr.

A strengthening of the cut condition that Hu [1964] claimed to be necessary (and
conjectured to be sufficient) for the existence of a fractional multiflow, was shown to be
not necessary by Tang [1965].
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A similar ‘maximum-triflow min-cut theorem’ does not hold, even not if
the three nets form a triangle: take K1,3 and all pairs of end vertices as nets,
all capacities being 1; then the minimum number of edges disconnecting each
commodity is equal to 2, while the maximum total value of a fractional
multiflow is equal to 3

2 (example of Ford and Fulkerson [1954,1956b]).
Anyway, if the nets form a triangle, finding a minimum-size set of edges

disconnecting each net, is NP-complete (Dahlhaus, Johnson, Papadimitriou,
Seymour, and Yannakakis [1992,1994]).

It will be useful to note that the cut condition only needs to be required
for cuts with both sides connected (if G is connected):

Theorem 70.4. Let G = (V, E) an H = (T, R) be a supply and demand
graph, with G connected. Let c : E → R+ and d : R → R+. If the cut
condition (70.20) is violated, then it is violated by some U ⊆ V for which
both G[U ] and G[V \ U ] are connected.

Proof. Let U violate the cut condition; that is, c(δE(U)) < d(δR(U)). Choose
U such that |δE(U)| is as small as possible. We show that G[U ] and G[V \U ]
are connected. By symmetry, it suffices to show that G[U ] is connected. Let
K1, . . . , Kt be the components of G[U ]. Suppose t ≥ 2. Then

(70.24)

t∑

j=1

c(δE(Kj)) = c(δE(U)) < d(δR(U)) ≤
t∑

j=1

d(δR(Kj)).

So c(δE(Kj)) < d(δR(Kj)) for at least one j. As |δE(Kj)| < |δE(U)| (by the
connectivity of G), this contradicts the minimality of |δE(U)|.

Notes. Călinescu, Fernandes, and Reed [1998] gave a polynomial-time approxima-
tion algorithm for finding a minimum multicut in an unweighted graph of bounded
degree and bounded ‘tree-width’. More on the minimum multicut problem can
be found in Klein, Agrawal, Ravi, and Rao [1990], Garg, Vazirani, and Yannakakis
[1993a,1993b,1996,1997], Tardos and Vazirani [1993], Klein, Rao, Agrawal, and Ravi
[1995], and Naor and Zosin [1997,2001].

70.9. Relations between fractional, half-integer, and

integer solutions

There are the following implications for the multiflow problem:

(70.25) ∃ integer multiflow =⇒ ∃ half-integer multiflow =⇒ ∃ fractional
multiflow.

As the existence of a fractional multiflow can be tested in strongly polynomial
time, it yields a useful necessary condition for the existence of an integer
multiflow.
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s1

t1s2

t2

Figure 70.3

There is a half-integer, but no integer multiflow (where all ca-
pacities and demands are 1).

As has been discussed in Chapter 10, for 1-commodity flow problems with
integer capacities, we can turn all implications around in (70.25). For general
multiflow problems, however, this is not the case. For undirected graphs,
Figure 70.3 shows that a half-integer multiflow does not imply the existence
of an integer multiflow (for integer capacities and demands). Middendorf and
Pfeiffer [1993] showed that the half-integer multiflow problem in undirected
graphs is NP-complete, even if all capacities and demands are equal to 1.

For undirected 2-commodity flows, Hu [1963] showed that the existence
of a fractional multiflow implies the existence of a half-integer multiflow, if
all capacities and demands are integer. Figure 70.3 shows that an integer
multiflow need not exist. In fact, the undirected integer 2-commodity flow
problem is NP-complete (Even, Itai, and Shamir [1975,1976]).

Hu’s theorem prompted Jewell [1967] to conjecture that if a k-commodity
flow problem with integer capacities and demands has a fractional solution,
then it has a 1/p-integer solution for some p ≤ k. More strongly, Seymour
[1981d] conjectured that a fractional multiflow implies the existence of a half-
integer multiflow (for integer capacities and demands).

This was disproved by a series of examples of Lomonosov [1985], which
even imply that there is no integer p such that each undirected 3-commodity
flow problem has a 1/p-integer solution when it has a fractional solution (for
integer capacities and demands). A simplified version of Lomonosov’s example
is given in Figure 70.4. It consists of an integer-capacitated 3-commodity flow
problem with demands 1, 2k, and 2k, such that each feasible multiflow has
1
2k

among its values.
A simpler counterexample to Seymour’s conjecture was given by Pfeiffer

[1990] — see Figure 70.5, showing that a quarter-integer multiflow need not
imply the existence of a half-integer multiflow (for integer capacities and
demands).

With construction (70.9) we obtain similar results for directed graphs.
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v0

= v4k

= s1

s2

s3

v2
v4

v4k

v1 v3

v4k−1

v1

v2

v3

v4

v2k+1
v2k+2

v2k+3v2k+4

v2k−1v2k−2

v2k−3

v2k−4

v4k−1

v4k−2 v4k−3

v4k−4
s2

s2 s2 s2
s2

s2

s2
s2

s2s2

s3

s3

s3

s3s3 s3

s3s3

a

b

v2k = t1 t2
t3

cap k

cap kcap
2k − 1

Figure 70.4

A feasible integer-capacitated 3-commodity flow problem with demands

1, 2k, and 2k, such that each feasible multiflow has 1

2k
among its values.

The nets are the pairs s1t1, s2t2, and s3t3. The graph consists of a circuit C of
length 4k, with vertices v1, . . . , v4k (in order), vertices s2 and t3 adjacent to each
vi with i even, a vertex s3 adjacent to each vi with i odd, a vertex a adjacent to t3
and to each vi with i odd and 0 < i < 2k, a vertex b adjacent to t3 and to each vi

with i odd and 2k < i < 4k, and a vertex t2 adjacent to a and b. Set s1 := v0 := v4k

and t1 := v2k. Let P and Q be the paths v0, v1, . . . , v2k and v4k, v4k−1, . . . , v2k,
respectively.

Edges t2a and t2b have capacity k, and edge bt3 capacity 2k−1. All other edges
have capacity 1. Let d(s1t1) := 1 and d(s2t2) := d(s3t3) := 2k.

To see that there exists a feasible multiflow, reset (temporarily) the capacities
of at3 and bt3 to 0 and 2k respectively. Then a feasible multiflow (f1, f2, f3) is given
as follows. Flow f1 consists of the incidence vector of path Q. Flow f2 takes value
1 on the edges t3vi for i = 2k + 2, 2k + 4, . . . , 4k − 2, on avi for i = 1, 3, . . . , 2k − 1,
and on s2vi for i = 2, 4, . . . , 4k, value 1

2
on the edges of P , and on t3v0 and t3v2k,

value k on t3b, t2a, and t2b, and value 0 on all other edges. Flow f3 takes value
1 on t3vi for i = 2, 4, . . . , 2k − 2, on s3vi for i = 1, 3, . . . , 4k − 1, and on bvi for
i = 2k +1, 2k +3, . . . , 4k −1, value 1

2
on the edges of P , and on t3v0 and t3v2k, and

value k on bt3. By symmetry, also after resetting the capacities of at3 and bt3 to 2k
and 0 respectively, there exists a feasible solution. Hence also the original capacity
function (which is a convex combination of the modified capacity functions) has a
feasible solution.

To see that any feasible multiflow contains a value 1
2k

, note that the s1 − t1
flow can only use edges on the circuit C: each edge leaving C is in a tight cut
(= a cut having equality in the cut condition) not separating s1 and t1 (consider
the cuts determined by {s2}, {s3}, and {t2, t3, a, b}). So in any feasible multiflow,
the s1 − t1 flow f1 is a convex combination of the incidence vectors of P and
Q. Consider now the cut determined by U := {t2, s3, a, v1, v3, . . . , v2k−1}. It has
capacity 4k + 1 and demand 4k, it does not split s1 and t1, and contains all edges
of P . Hence the capacity left for f1 is at most 1. As P has length 2k, it implies that
f1 can send a flow of value at most 1

2k
along P . Similarly, the cut determined by
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U := {t2, s3, b, v2k+1, v2k+3, . . . , v4k−1} has capacity 6k − 1 and demand 4k, it does
not split s1 and t1, and contains all edges of Q. Hence the capacity left for f1 is at
most 2k −1. As Q has length 2k, it implies that f1 can send a flow of value at most
1 − 1

2k
along Q. Concluding, f1 sends 1

2k
flow along P and 1 − 1

2k
flow along Q.

1 122 33 4 455 66

7

7

Figure 70.5

There is a quarter-integer, but no half-integer multiflow. The 7 nets are
indicated by indices 1, . . . , 7 at the terminals. All capacities and demands are equal
to 1.

In fact, there is a unique fractional multiflow. Since the distance between the
terminals in any net is 2 and since there are 14 edges, any multiflow uses the capacity
of each edge fully, and each of the flows is a convex combination of incidence vectors
of paths of length 2. Also, the edges incident with any vertex v of degree 2 can only
be used by the nets that have a terminal at v.

Let β be the fraction of flow for net 7 that traverses the leftmost vertex. For
i = 1, . . . , 6, let αi be the fraction of flow for net i that traverses the topmost
vertex. Then α2 + α3 = 1 and α1 + α3 = 1, and hence α1 = α2. So β + α1 + α2 = 2
and β + (1 − α1) + (1 − α2) = 1, hence α1 + α2 = 1 + β = 2 − β. So β = 1

2
and

α1 = α2 = 3
4
.

70.10. The Euler condition

In some cases adding the following Euler condition turns out to be of help:

(70.26) c(δE(v)) + d(δR(v)) is even, for each vertex v.

In case all capacities and demands are equal to 1, that is, for the edge-disjoint
paths problem, the Euler condition is equivalent to
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(70.27) the graph G + H = (V, E ∪ R) is Eulerian

(taking multiplicities into account).
If k = 2 and the capacities and demands are integer and satisfy the

Euler condition, then the cut condition implies the existence of an integer
multiflow. This result, also due to Rothschild and Whinston [1966a], implies
Hu’s 2-commodity flow theorem, as mentioned in Section 70.8 (by multiplying
all capacities and demands by 2, so as to achieve the Euler condition).

We will see several other cases where the existence of a half-integer mul-
tiflow, together with the Euler condition, implies the existence of an integer
multiflow. But it is not sufficient in general, as otherwise a quarter-integer
multiflow would always imply the existence of a half-integer multiflow (by
multiplying all capacities and demands by 2), and to this we saw the coun-
terexample of Pfeiffer [1990] in Figure 70.511. The NP-completeness of the
half-integer multiflow problem, with all capacities and demands equal to 1
(Middendorf and Pfeiffer [1993]), implies that the edge-disjoint paths problem
is NP-complete even if the Euler condition holds.

Fractional and integer multiflows for digraphs. As for the directed case, Fig-
ure 70.5 implies with construction (70.9) that a quarter-integer multiflow does not
imply the existence of a half-integer multiflow. The graph in Figure 70.6 (Hurkens,
Schrijver, and Tardos [1988]) shows that a half-integer multiflow does not imply
the existence of an integer multiflow, even if the directed analogue of the Euler
condition holds (the graph obtained from the supply digraph and the reverse of the
demand digraph is an Eulerian digraph). Note that in Figure 70.6 the union D +H
of D and H is planar.

70.11. Survey of cases where a good characterization

has been found

Let G = (V, E) be an undirected graph and let R = {s1t1, . . . , sktk} be a
family of nets. Let c : E → R+ be a capacity function and let d1, . . . , dk be
demands (so d(siti) := di).

In the following cases of the undirected multiflow problem, the cut con-
dition has been proved to imply the existence of a fractional multiflow; if
moreover the capacities and demands are integer, there is a half-integer mul-
tiflow; if moreover the Euler condition holds, there is an integer solution12:

(70.28) (i) if there exist two vertices u, v such that each siti intersects uv
(Hu [1963], E.A. Dinits — see Corollary 71.1b),

11 A more complicated (planar) example satisfying the Euler condition and where a half-
integer but no integer multiflow exists, was given by Hurkens, Schrijver, and Tardos
[1988]. Earlier, a nonplanar example with these properties was given by P.D. Seymour
(personal communication).

12 For graphs G = (V, E) and H = (T, R), G+H is the graph (V ∪T, E ∪R), where E ∪R

is the disjoint union (as families).
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Figure 70.6

A directed example where the Euler condition holds, with

D + H is planar, and where a half-integer, but no integer

multiflow exists. All capacities and demands are 1. The half-integer
multiflow is indicated by the indices of the nets: index i at arc a means
fi(a) = 1

2
.

(ii) if |{s1, t1, . . . , sk, tk}| ≤ 4 or s1t1, . . . , sktk form a five-circuit
(Papernov [1976], Lomonosov [1976,1985], Seymour [1980c] —
see Section 72.1),

(iii) if G + H has no K5 minor, in particular if G + H is planar
(Seymour [1981a] — see Sections 74.2 and 75.6),

(iv) if G is planar and there exist two faces F1 and F2 such that for
each i = 1, . . . , k: si, ti ∈ bd(F1) or si, ti ∈ bd(F2) (Okamura
and Seymour [1981], Okamura [1983] — see Theorems 74.1 and
74.4),

(v) if G is planar and has a vertex r on the outer boundary such
that for each i either both si and ti are on the outer boundary,
or r ∈ {si, ti} (Okamura [1983] — Theorem 74.5).

(vi) if G is planar and has two bounded faces F1 and F2 such
that s1, . . . , sk occur clockwise around bd(F1) and t1, . . . , tk
occur clockwise around bd(F2) (Schrijver [1989b] — cf. Sec-
tion 74.3b).

Here bd(F ) denotes the boundary of F .
In particular, in each of these cases, if the capacities and demands are

integer and satisfy the Euler condition, the existence of a fractional multi-
flow implies the existence of an integer multiflow. Next to the cases listed
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in (70.28), this property has been proved in the following cases (extending
(70.28)(ii) and (iv)):

(70.29) (i) if |{s1, t1, . . . , sk, tk}| ≤ 5 (Karzanov [1987a] — see Section
72.2a),

(ii) if G is planar and there exist faces F1, F2, F3 such that for each
i = 1, . . . , k there is a j ∈ {1, 2, 3} such that si, ti ∈ bd(Fj)
(Karzanov [1994b] — see Section 74.3c).

This in particular implies that if the capacities and demands are integer and
there exists a fractional multiflow, then there exists a half-integer multiflow.

In the following case (extending (70.29)(ii)), it has been proved that if
c and d are integer and a fractional multiflow exists, then a quarter-integer
multiflow exists; if moreover the Euler condition holds, then a half-integer
solution exists:

(70.30) if G is planar and there are four faces such that each net is
spanned by one of these faces (Karzanov [1995] — see Section
74.3c).

(We say that a pair of vertices is spanned by a face F if it is spanned by the
boundary of F .)

In Section 73.1c we shall see that an integer multiflow can be found in
polynomial time also if the nets form a triangle (no Euler condition is re-
quired).

70.12. Relation between the cut condition and fractional

cut packing

As was noted by Karzanov [1984] and Seymour [1979b], if the cut condition
is sufficient for the existence of a fractional multiflow, one can derive an
interesting polarity relation between multiflows and fractional packing of cuts.

Let G = (V, E) and H = (V, R) be graphs. Consider the cone K in
RR × RE generated by the vectors13

(70.31) (χr; χEP ) for r ∈ R and r-path P in G,
(0; χe) for e ∈ E.

Here EP denotes the set of edges of P . For any r = st ∈ R, an r-path is a
path connecting s and t. χr and χe denote the rth and eth unit base vectors
in RR and RE , respectively.

For any c : E → R+ and d : R → R+, the existence of a feasible multiflow
subject to c and of value d is equivalent to the fact that (d; c) belongs to K.
So we have that the property:

13 We write (x; y) for

(

x

y

)

.
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(70.32) for each c : E → R+ and d : R → R+, the cut condition implies
the existence of a feasible multiflow,

is equivalent to the fact that K consists of all vectors (d; c) ∈ RR × RE

satisfying:

(70.33) d(δR(U)) ≤ c(δE(U)) for U ⊆ V ,
dr ≥ 0 for r ∈ R,
ce ≥ 0 for e ∈ E.

Let K∗ be the polar cone of K (cf. Section 5.7). Then (70.32) is equivalent
to −K∗ being generated by the vectors:

(70.34) (−χδR(U); χδE(U)) for U ⊆ V ,
(χr;0) for r ∈ R,
(0; χe) for e ∈ E.

Also, by definition of K, −K∗ consists of all vectors (m; l) ∈ RR × RE satis-
fying:

(70.35) mr + l(EP ) ≥ 0 for r ∈ R and r-path P in G,
le ≥ 0 for e ∈ E.

This implies the following theorem relating the cut condition to distances
and fractional packings of cuts:

Theorem 70.5. Let G = (V, E) and H = (V, R) be supply and demand
graphs. Then for each c : E → R+ and d : R → R+, the cut condition implies
the existence of a feasible fractional multiflow if and only if for each length
function l : E → R+ there exist λU ≥ 0 for U ⊆ V such that

(70.36)
∑

U

λUχδE(U) ≤ l

and

(70.37) distl(s, t) =
∑

U

λUχδR(U)(r),

for each r = st ∈ R. Here distl(s, t) denotes the minimum length of an s − t
path in G, with respect to l.

Proof. As we saw above, (70.32) is equivalent to the fact that −K∗ is gener-
ated by the vectors (70.34). It is equivalent to: each (m; l) ∈ RR × RE satis-
fying (70.35) is a nonnegative combination of vectors (70.34). Since (χr;0) is
one of the vectors (70.34), we can restrict the (m; l) to those for which mr is
smallest so as to satisfy (70.35). That is, we can assume that mr = −distl(s, t)
where r = st. Hence (70.32) is equivalent to: for each l : E → R+, the vector
(−distl; l) is a nonnegative combination of vectors (70.34). This is equivalent
to the condition stated in the theorem.
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This is based on interpreting feasibility of multiflows in terms of cones. We
next consider an interpretation of the maximization of multiflows in terms of
polyhedra.

Let P be the collection of r-paths for all r ∈ R. Let B be the collection
of subsets of E that intersect each path in P.

Consider the inequality system:

(70.38) xe ≥ 0 for e ∈ E,
x(EP ) ≥ 1 for P ∈ P.

Then by the theory of blocking polyhedra:

Theorem 70.6. The up hull of the incidence vectors of the sets in B is
determined by (70.38) if and only if the up hull of the incidence vectors of
paths in P is determined by

(70.39) xe ≥ 0 for e ∈ E,
x(B) ≥ 1 for B ∈ B.

Proof. Directly from the theory of blocking polyhedra.

In terms of flows this is equivalent to:

Corollary 70.6a. Let G = (V, E) and H = (V, R) be supply and demand
graphs. For each c : E → R+, the maximum total value of a multiflow subject
to c is equal to the minimum capacity of a set in B if and only if for each
length function l : E → R+ satisfying distl(s, t) ≥ 1 for each r = st ∈ R,
there exist λB ≥ 0 for B ∈ B such that

(70.40)
∑

B∈B

λB = 1 and
∑

B∈B

λBχB ≤ l.

Proof. The first statement is equivalent to the fact that the up hull of the
incidence vectors of sets in B is determined by (70.38). The second statement
is equivalent to the fact that the up hull of the incidence vectors of paths in
P is determined by (70.39). The equivalence is stated by Theorem 70.6.

70.12a. Sufficiency of the cut condition sometimes implies an

integer multiflow

As was also noted by Karzanov [1984,1987a] and Seymour [1979b], in certain col-
lections of graphs+nets, if the cut condition implies the existence of a fractional
multiflow, we can derive integrality of solutions. This can be made explicit as fol-
lows.

Consider an Eulerian graph G = (V, E), and let e and f be distinct edges
incident with a vertex v of degree ≥ 4. We describe the operation of separating e
and f at v: introduce a new vertex v′, rejoin half of the edges incident with v to
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v′, such that e remains incident with v and f becomes incident with v′, and add
1
2

degE(v) − 2 parallel edges connecting v and v′.
Call any graph G′ arising in this way a splitting of G separating e and f at v.

Note that, if G′ = (V ′, E′) denotes the new graph, then degE′(v) = degE′(v′) =
degE(v) − 2.

Let I be a collection of pairs (G, R) of an Eulerian graph G = (V, E) and a
subset R of E, with the following property:

(70.41) for each (G, R) ∈ I, for each vertex v of G of degree at least 4 with
degE\R(v) > degR(v), and for each two edges e and f of G incident
with v, not both in R, I contains a pair (G′, R′) where G′ is a splitting
of G separating e and f at v, and where R′ is the set of edges arising
from R by this splitting.

As examples we can take for I the set of all pairs (G, R) consisting of an Eulerian
graph G = (V, E) and R ⊆ E such that one of the following holds (the first four
examples follow from the fact that for each fixed graph H = (T, R), the class of
pairs (G, R) with G = (V, E) Eulerian and R ⊆ E satisfies (70.41)):

(70.42) (i) R consists of two parallel classes of edges;
(ii) there are two vertices intersecting all edges in R;
(iii) R covers at most four vertices;
(iv) the edges in R form a pentagon, with parallel edges added;
(v) (V, E) is planar;
(vi) (V, E \ R) is planar, such that all vertices covered by R are on the

outer boundary of (V, E \ R);
(vii) (V, E \ R) is planar, such that it has two faces with the property

that each edge in R is spanned by one of these faces.

As we shall see in later chapters, in each of these cases the premise, and hence the
conclusion, of the following theorem hold. The theorem applies to the multiflow
problem with supply graph (V, E \R) and demand graph (V, R), with all capacities
and demands equal to 1 (so to the edge-disjoint paths problem):

Theorem 70.7. Let I satisfy (70.41) and have the property that for each (G, R) ∈
I, the cut condition implies the existence of a fractional multiflow. Then, for each
(G, R) ∈ I, the cut condition implies the existence of an integer multiflow.

Proof. Consider a counterexample (G, R) ∈ I with

(70.43)
∑

v∈V

2degG(v)

minimal. So the cut condition holds, and hence there is a fractional multiflow. It
implies that there is a collection C of circuits in G, each intersecting R in exactly
one edge, and, for each C ∈ C, there is a λC > 0 such that for each edge e:

(70.44)
∑

C∈C

λCχC(e) ≤ 1,

with equality if e ∈ R. Here we consider circuits as edge sets.
Note that:
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(70.45) for each C ∈ C and each U ⊆ V with |δR(U)| = |δE\R(U)|, if U splits
at least one edge of C, then U splits the edge in C ∩R and exactly one
edge in C \ R.

(Here U splits e if e ∈ δ(U).) This follows from the fact that if U splits an edge in
C, then it splits at least one edge in C \ R, and hence

(70.46) |δR(U)| =
∑

C

λCχC(δR(U)) ≤
∑

C

λCχC(δE\R(U)) ≤ |δE\R(U)|.

Here we use |C ∩ δR(U)| ≤ |C ∩ δE\R(U)|, since |C ∩ δR(U)| ≤ 1 and |C ∩ δE(U)|
is even. Equality throughout in (70.46) implies (70.45).

Now it suffices to show that

(70.47) for any two C, D ∈ C, if (C \ R) ∩ (D \ R) �= ∅, then C \ R = D \ R.

That this is sufficient follows from the following. (70.47) implies that for each par-
allel class in R consisting of (say) µ edges connecting s and t, there are at least µ
different s − t paths among the C \ R for C ∈ C. Since they are edge-disjoint (by
(70.47)), there exists an obvious integer solution.

To prove (70.47), suppose to the contrary that C \R and D \R have an edge in
common and that C \R �= D \R. Then (possibly after exchanging C and D), there
is a vertex v on the paths made by C \ R and D \ R such that C \ R and D \ R
have an edge f incident with v in common and such that C \ R contains another
edge, e say, incident with v with e �∈ D. Let g be the edge in D incident with v and
satisfying g �= f . So g �= e. Possibly g ∈ R.

So v has degree at least 4. Moreover, degE\R(v) > degR(v), by (70.45), since
C contains two edges in E \ R incident with v. Let G′ = (V ′, E′) be a splitting
of e and g at v with (G′, R′) ∈ I, where R′ is the set of edges arising from R by
this splitting. By symmetry, we can assume that, in G′, edge f is incident with v′.
(We leave open which of e and g is incident with v′.) Then (G′, R′) has no integer
multiflow, as it would give an integer multiflow in (G, R) (by contracting the new
edges). Hence, as for G′ the sum (70.43) is reduced, the cut condition is violated
for (G′, R′). Let U ⊆ V ′ violate the cut condition. That is, |δR′(U)| > |δE′\R′(U)|.
Then, as G′ is Eulerian, |δR′(U)| ≥ |δE′\R′(U)| + 2. Also, U separates v and v′,
since otherwise it would give a cut violating the cut condition for G, R. So we can
assume that v ∈ U and v′ �∈ U . Hence U ⊆ V .

Let G′ have γ parallel edges connecting v and v′. So degE′(v′) = 2γ + 2. Let
α := degR′(v′). Then:

(70.48) |δR(U)| ≤ |δE\R(U)| = |δE′\R′(U ∪ {v′})|
≤ |δE′\R′(U)| + degE′\R′(v

′) − 2γ

= |δE′\R′(U)| + degE′(v
′) − 2γ − degR′(v

′) = |δE′\R′(U)| + 2 − α
≤ |δR′(U)| − α ≤ |δR(U)|.

Hence we have equality throughout. In particular, |δR(U)| = |δE\R(U)| (as the first
inequality is an equality), U splits all edges in E \ R that become incident in G′

with v′ (as the second inequality becomes equality), and U splits no edge in R
that becomes incident in G′ with v′ (as the last inequality becomes equality). In
particular, U splits f .

Now one of e and g is (in G′) incident with v′. If e is incident with v′, then U
splits e, and we have a contradiction with (70.45) for circuit C. If g is incident with
v′, then if g ∈ E \ R, U splits g, and if g ∈ R, U does not split g; in both cases we
have a contradiction with (70.45) for circuit D.
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70.12b. The cut condition and integer multiflows in directed

graphs

Nagamochi and Ibaraki [1989] showed that for directed graphs, if the cut condi-
tion implies the existence of a fractional multiflow, and if this holds in a certain
hereditary way, then it implies the existence of an integer multiflow:

Theorem 70.8. Let D = (V, A) and H = (V, R) be a supply and demand digraph,
respectively. Suppose that for each c : A → Z+ and d : R → Z+, the cut condition
implies the existence of a fractional multiflow. Then it implies the existence of an
integer multiflow.

Proof. Let c and d be such that the cut condition holds, but no integer multiflow
exists. Choose such c, d with c(A) + d(R) minimal. By assumption, there exists a
fractional multiflow (fr : A → R+ | r ∈ R). Then for each a ∈ A we have

(70.49) c(a) =
∑

r∈R

fr(a),

for otherwise we have, for any U ⊆ V with a ∈ δout
A (U):

(70.50) c(δout
A (U)) =

∑

a∈δout

A
(U)

c(a) >
∑

a∈δout

A
(U)

∑

r∈R

fr(a) ≥
∑

r∈δout

R
(U)

d(r)

= d(δout
R (U)).

Hence (by integrality of c and d), we can replace c(a) by c(a) − 1 without violating
the cut condition, and obtain a smaller counterexample — a contradiction.

This proves (70.49). It implies that the directed analogue of the Euler condition
holds, since for any vertex v:

(70.51) c(δout
A (v)) − c(δin

A (v)) =
∑

r∈R

(fr(δ
out
A (v)) − fr(δ

in
A (v)))

= d(δout
R (v)) − d(δin

R (v)).

The latter equality holds as each fr is a flow.
Now consider any r′ ∈ R with d(r′) ≥ 1, say r′ = (s, t). Replacing d(r′) by

d(r′)−1, the cut condition is maintained. Hence (by the minimality of c, d) there is
an integer multiflow (f ′

r | r ∈ R) satisfying the new demands. Consider the capacity
function

(70.52) c′ := c −
∑

r∈R

f ′
r.

By (70.51), there is at least one s − t path traversing only arcs a with c′(a) ≥ 1.
Hence we can increase f ′

r′ along this path by 1, to obtain an integer multiflow
satisfying the original demands.
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70.13. Further results and notes

70.13a. Fixing the number of commodities in undirected graphs

Robertson and Seymour [1995] showed that for each fixed k, the k vertex-disjoint
paths problem in undirected graphs is polynomial-time solvable.14 Describing the
algorithm would require more space than fits within the limits of this book. The
methods are quite different in nature from the more polyhedral methods discussed
here, and are based on the deep graph minors techniques developed by Robertson
and Seymour. For an outline of the disjoint paths algorithm, see Robertson and
Seymour [1990].

The running time of Robertson and Seymour’s algorithm is bounded by O(n3)
(where the constant depends (heavily) on k). It implies a polynomial-time algorithm
for the k edge-disjoint paths problem for fixed k, by considering the line graph.

More generally, Robertson and Seymour gave for each fixed k an O(n3)-time
algorithm for the vertex-disjoint trees problem:

(70.53) given: a graph G = (V, E) and subsets W1, . . . , Wp of V ,
find: vertex-disjoint subtrees T1, . . . , Tp in G such that Ti spans Wi,

for i = 1, . . . , p,

taking k := |W1 ∪ · · · ∪ Wp|.
For planar graphs, Reed, Robertson, Schrijver, and Seymour [1993] gave a

linear-time algorithm for the disjoint trees problem, fixing |W1∪· · ·∪Wp|. Moreover,
Schrijver [1991c] showed that for each fixed q, there is a polynomial-time algorithm
for the disjoint trees problem in planar graphs such that W1 ∪ · · · ∪ Wp can be
covered by the boundary of at most q faces. The method is based on enumerat-
ing homotopy classes (see Section 76.7a), and here the degree of the polynomial
depends on q.

Sebő [1993c] showed that for each fixed k, if G + H is planar and |V H| ≤ k,
then the integer multiflow problem is polynomial-time solvable. (The demands and
capacities can be arbitrarily large, so there is no reduction to the edge-disjoint paths
problem for a fixed number of paths.) Sebő showed this by proving a more general
result on the complexity of packing T -cuts for fixed |T |.

Related is the following. For any k, let f(k) be the smallest number such that
in any f(k)-connected graph, any instance of the k vertex-disjoint paths problem
has a solution. Jung [1970] showed that f(k) ≤ 23k (a larger bound was shown by
Larman and Mani [1970]). Thomassen [1980] proved f(2) = 6 and conjectures that
f(k) = 2k + 2 for k ≥ 2.

For any k, let g(k) be the smallest number such that in each g(k)-edge-connected
graph, any instance of the k edge-disjoint paths problem has a solution. This
value is finite — in fact, g(k) ≤ 2k, since a 2k-edge-connected graph has k edge-
disjoint spanning trees (by the Tutte-Nash-Williams disjoint trees theorem (Corol-
lary 51.1a)). These trees contain k edge-disjoint paths as required.

Trivially g(k) ≥ k. Moreover, for even k one has g(k) ≥ k + 1, as is shown
by replacing each edge of the circuit C2k by 1

2
k parallel edges, taking as nets the

14 The correctness of the algorithm depends on a lemma proved in the preprint Robertson
and Seymour [1992], which did not appear yet.
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k pairs of opposite vertices. Cypher [1980] and Thomassen [1980] conjecture that
g(k) = k if k is odd and g(k) = k + 1 if k is even.

It is known that g(2) = 3 (as follows from a result of Dinits and Karzanov [1979]
and Seymour [1980b] (see Section 71.4a)), g(3) = 3 (Okamura [1984a]), g(4) = 5
(Mader [1985], Hirata, Kubota, and Saito [1984], H. Enomoto and A. Saito (cf.
Hirata, Kubota, and Saito [1984])), g(k) ≤ k + 1 if k is odd, and g(k) ≤ k + 2 if k
is even (Huck [1991]).

Earlier, partial results were obtained by Cypher [1980] showing that g(k) ≤ k+2
for k ≤ 5, Hirata, Kubota, and Saito [1984] showing that g(k) ≤ 2k − 3 if k ≥ 4,
and Okamura [1987,1988,1990]. Related results can be found in Enomoto and Saito
[1984] and Huck [1992]. See also the notes in Section 72.2b.

The corresponding result for directed graphs has been shown for any k — see
Section 70.13b.

70.13b. Fixing the number of commodities in directed graphs

For directed graphs, Fortune, Hopcroft, and Wyllie [1980] showed that deciding
if two given vertices of a digraph belong to a directed circuit, is NP-complete. It
implies that the arc-disjoint paths problem is NP-complete for k = 2 commodities,
even if the nets are ‘opposite’ (that is, s2 = t1 and t2 = s1). It also implies that the
directed vertex-disjoint paths problem is NP-complete (as the arc-disjoint problem
can be reduced to vertex-disjoint by considering the line digraph).

Shiloach [1979a] observed that Edmonds’ disjoint arborescences theorem im-
plies that in any k-arc-connected digraph the k arc-disjoint problem always has a
solution. (This can be shown by adding a new vertex r and new arcs (r, si) for each
beginning terminal si. As the original digraph is k-arc-connected, by Edmonds’ dis-
joint arborescences theorem (Corollary 53.1b) the new digraph has k arc-disjoint
r-arborescences. They contain paths as required.)

If we restrict ourselves to planar digraphs, then for each fixed k, the k vertex-
disjoint paths problem is polynomial-time solvable (Schrijver [1994a]). The method
is based again on enumerating homotopy types of paths. (The polynomial-time
solvability for k = 2 opposite nets (requiring only internally vertex-disjoint paths),
was shown by Seymour [1991].)

It can be extended to the polynomial-time solvability, for any fixed q, of the
problem of finding vertex-disjoint rooted subarborescences in a planar graph, with
prescribed roots and terminals to be covered, provided that these roots and termi-
nals can be covered by the boundaries of at most q faces.

An open problem is the complexity of the k arc-disjoint paths problem in di-
rected planar graphs, for any fixed k ≥ 2. This is even unknown for k = 2, also if
we restrict ourselves to two opposite nets.

For acyclic digraphs, the k vertex-disjoint paths problem is polynomial-time
solvable for each fixed k. This was shown by Fortune, Hopcroft, and Wyllie [1980]
(extending an earlier result for k = 2 of Perl and Shiloach [1978]) — see Section
70.13c. By considering line digraphs, it implies the polynomial-time solvability of
the k arc-disjoint paths problem in acyclic digraphs for each fixed k.
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70.13c. Disjoint paths in acyclic digraphs

Fortune, Hopcroft, and Wyllie [1980] showed that the vertex-disjoint paths problem
is NP-complete for digraphs, even when fixing the number of paths to k = 2.
Moreover, Even, Itai, and Shamir [1975,1976] showed that the arc-disjoint paths
problem in acyclic digraphs is NP-complete, even if the nets form two parallel
classes. By taking the line digraph, it implies that the vertex-disjoint paths problem
is NP-complete for acyclic digraphs. Vygen [1995] showed that the arc-disjoint
paths problem in acyclic digraphs remains NP-complete, even if the nets form three
parallel classes and the Euler condition holds; and also if the digraphs are restricted
to acyclic and planar.

On the other hand, Fortune, Hopcroft, and Wyllie [1980] proved that for each
fixed k, the k vertex-disjoint paths problem in acyclic digraphs can be solved in
polynomial time. (This was proved for k = 2 by Perl and Shiloach [1978].)

Theorem 70.9. For each fixed k, there exists a polynomial-time algorithm for the
k vertex-disjoint paths problem for acyclic digraphs.

Proof. Let D = (V, A) be an acyclic digraph and let (s1, t1), . . . , (sk, tk) be pairs
of vertices of D (the nets), all distinct. To solve the disjoint paths problem we may
assume that each si is a source of D and each ti is a sink of D.

Make an auxiliary digraph D′ = (V ′, A′) as follows. The vertex set V ′ consists
of all k-tuples (v1, . . . , vk) of distinct vertices of D. In D′ there is an arc from
(v1, . . . , vk) to (w1, . . . , wk) if and only if there exists an i ∈ {1, . . . , k} such that:

(70.54) (i) vj = wj for all j �= i;
(ii) (vi, wi) is an arc of D;
(iii) for each j �= i there is no directed path in D from vj to vi.

Now the following holds:

(70.55) D contains vertex-disjoint directed paths P1, . . . , Pk such that Pi runs
from si to ti (i = 1, . . . , k) ⇐⇒ D′ contains a directed path P from
(s1, . . . , sk) to (t1, . . . , tk).

To see =⇒, let Pi follow the vertices vi,0, vi,1, . . . , vi,pi for i = 1, . . . , k. So
vi,0 = si and vi,pi = ti for each i. Choose j1, . . . , jk such that 0 ≤ ji ≤ pi for each
i and such that:

(70.56) (i) D′ contains a directed path from (s1, . . . , sk) to (v1,j1 , . . . , vk,jk
),

(ii) j1 + · · · + jk is as large as possible.

Let I := {i | ji < pi}. If I = ∅ we are done, so assume I �= ∅. Then by the
definition of D′ and the maximality of j1 + · · · + jk there exists for each i ∈ I an
i′ �= i such that there is a directed path in D from vi′,ji′

to vi,ji . Since ti′ is a
sink we know that vi′,ji′

�= ti′ and that hence i′ belongs to I. So each vertex in
{vi,ji | i ∈ I} is end vertex of a directed path in D starting at another vertex in
{vi,ji | i ∈ I}. This contradicts the fact that D is acyclic.

To see ⇐= in (70.55), let P be a directed path from (s1, . . . , sk) to (t1, . . . , tk)
in D′. Let P follow the vertices (v1,j , . . . , vk,j) for j = 0, . . . , p. So vi,0 = si and
vi,p = ti for i = 1, . . . , k. For each i = 1, . . . , k, let Pi be the path in D following
vi,j for j = 0, . . . , p, taking repeated vertices only once. So Pi is a directed path
from si to ti.
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Then P1, . . . , Pk are vertex-disjoint. For suppose that P1 and P2 (say) have a
vertex in common. That is v1,j = v2,j′ for some j �= j′. Without loss of generality,
j < j′ and v1,j �= v1,j+1. By definition of D′, there is no directed path in D from
v2,j to v1,j . However, this contradicts the facts that v1,j = v2,j′ and that there
exists a directed path in D from v2,j to v2,j′ .

One can derive from Theorem 70.9 that for fixed k also the k arc-disjoint paths
problem is solvable in polynomial time for acyclic digraphs (by considering the line
digraph).

Similarly to the proof of Theorem 70.9, one can prove that for each fixed k,
the following problem is solvable in polynomial time: given an acyclic digraph D =
(V, A), pairs (s1, t1), . . . , (sk, tk) of vertices, and subsets A1, . . . , Ak of A, find arc-
disjoint directed paths P1, . . . , Pk, where Pi runs from si to ti and traverses only
arcs in Ai (i = 1, . . . , k).

Thomassen [1985] characterized the solvability of the 2 vertex-disjoint paths
problem for acyclic digraphs, similarly to characterization (71.26). (Metzlar [1993]
gave a generalization.)

70.13d. A column generation technique for multiflows

The (fractional) multiflow problem is a linear programming problem, and hence
can be solved with linear programming techniques (in strongly polynomial time).
Ford and Fulkerson [1958a] suggested a different LP-formulation of the multiflow
problem, and a column generation technique to solve it with the simplex method.

As we saw in Section 70.1, the multiflow (feasibility) problem can be reduced
to the maximum-value multiflow problem. This is equivalent to the following LP-
problem. Let D = (V, A) be a digraph, let (s1, t1), . . . , (sk, tk) be nets, and let
c : A → R+ be a capacity function. Let P denote the collection of all si − ti paths
for all i = 1, . . . , k (taken as arc sets). Then the maximum-value multiflow problem
can be formulated as:

(70.57) maximize
∑

P∈P

zP

subject to (i) zP ≥ 0 (P ∈ P).

(ii)
∑

P∈P

zP χP (a) ≤ c(a) (a ∈ A).

This is a linear programming problem with an exponential number of variables. Ford
and Fulkerson [1958a] showed that this large number of variables can be avoided
when solving the problem with the simplex method. The variables can be handled
implicitly by using a column generation technique as follows.

When solving (70.57) with the simplex method we first should add a slack
variable za for each a ∈ A. Let M denote the A × P matrix with the incidence
vectors of all paths in P as its columns and let w be the vector in R

P × R
E with

wP := 1 for P ∈ P and wa := 0 for a ∈ A. Then (70.57) is equivalent to:

(70.58)
maximize wTz
subject to [M I]z = c,

z ≥ 0.
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If we solve (70.58) with the simplex method, each simplex tableau is completely
determined by the set of variables in the current base. So it is determined by subsets
P ′ of P and A′ of A, giving the indices of variables in the base. This is enough to
know implicitly the whole tableau. Note that |P ′| + |A′| = |A|. So although the
tableau is exponentially large, it can be represented in a concise way.

Let B be the matrix consisting of those columns of [M I] corresponding to P ′

and A′. So the rows of B are indexed by A and the columns by P ′ ∪ A′. The basic
solution corresponding to B is easily computed: the vector B−1c gives the values
for zP if P ∈ P ′ and for za if a ∈ A′, while we set zP := 0 if P �∈ P ′ and za := 0 if
a �∈ A′. Initially, B = I, that is P ′ = ∅ and A′ = A, implying zP = 0 for all P ∈ P
and za = c(a) for all a ∈ A.

Now we describe pivoting (that is, finding variables leaving and entering the
base) and checking optimality. Interestingly, it turns out that this can be done by
solving a set of shortest path problems.

First consider the dual variable corresponding to an arc a. It has value (in the
current tableau):

(70.59) wT

BB−1χa − wa = wT

B(B−1)a,

where, as usual, wB denotes the part of vector w corresponding to B (that is,
corresponding to P ′ and A′) and where χa denotes the ath unit base vector in R

A

(which is the column corresponding to a in [M I]). Note that the columns of B−1

are indexed by A; then (B−1)a is the column corresponding to a. Note also that
wa = 0 by definition.

Similarly, the dual variable corresponding to a path P in P has value:

(70.60) wT

BB−1χP − wP =
( ∑

a∈P

wT

B(B−1)a

)
− 1.

In order to pivot, we should find a negative dual variable. To this end, we first
check if (70.59) is negative for some arc a. If so, we choose such an arc a and
take za as the variable entering the base. Selecting the variable leaving the base
now belongs to the standard simplex routine. For that, we only have to consider
that part of the tableau corresponding to P ′, A′, and a. We select an element f
in P ′ ∪ A′ for which the quotient zf/(B−1)f,a has positive denominator and is as
small as possible. Then zf is the variable leaving the base.

Suppose next that (70.59) is nonnegative for each arc a. We consider wT

B(B−1)a

as the length l(a) of a. Then for any path P ,

(70.61)
∑

a∈P

wT

B(B−1)a

is equal to the length
∑

a∈P l(a) of P . Hence, finding a dual variable (70.60) of
negative value is the same as finding a path in P of length less than 1.

Such a path can be found by applying a shortest path algorithm: for each
i = 1, . . . , k, we find a shortest si−ti path (with respect to l). If each of these shortest
paths has length at least 1, we know that all dual variables have nonnegative value,
and hence the current basic solution is optimum.

If we find some si − ti path P of length less than 1, we choose zP as variable en-
tering the base. Again selecting a variable leaving the base is standard: we select an
element f in P ′ ∪A′ for which the quotient zf/(B−1χP )f has positive denominator
and is as small as possible.
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This describes pivoting. In order to avoid cycling and to guarantee termination,
a lexicographic rule can be incorporated for selecting the variable leaving the base
as usual. (This only requires ordering A.)

The length function l in the final tableau has the properties described in The-
orem 70.2.

70.13e. Approximate max-flow min-cut theorems for multiflows

In general, the cut condition is not sufficient for the existence of a feasible multiflow.
Leighton and Rao [1988,1999] gave an upper bound (only depending on the number
of vertices) on the relative error in case each pair of vertices forms a net, with all
demands equal.

Let G = (V, E) and H = (V, R) be a supply and a demand graph, and let
c : E → Z+ and d : R → Z+ be a capacity and a demand function. Let λ be the
maximum value for which there exists a multiflow subject to c of demand λ · d. By
the cut condition,

(70.62) λ ≤ µ := min
U

c(δE(U))

d(δR(U))
,

where the minimum is taken over all subsets U of V with d(δR(U)) > 0.
Leighton and Rao proved that if R is the collection of all pairs from V and d

is constant, then µ/λ = O(log n) where n := |V |. They also showed that O(log n)
is best possible, and that a set U attaining the minimum in (70.62) up to a factor
O(log n) can be found in polynomial time.

Klein, Agrawal, Ravi, and Rao [1990] (cf. Klein, Rao, Agrawal, and Ravi [1995])
showed that if H is any demand graph, then µ/λ = O(log C log D), where C and
D denote the sum of the capacities and demands, respectively. This was improved
to O(log n log D) by Tragoudas [1996], to O(log |R| log D) by Garg, Vazirani, and
Yannakakis [1993a,1996], and to O(log2 |R|) by Plotkin and Tardos [1993,1995].
These papers also give polynomial-time algorithms to find a subset U attaining the
minimum (70.62) up to the corresponding factor.

For planar graphs, Klein, Plotkin, and Rao [1993] gave a bound of O(log D),
improved to O(log |R|) by Plotkin and Tardos [1993,1995], and of O(1) if R consists
of all pairs of vertices.

More results on approximate multiflows are given by Raghavan and Thompson
[1987], Klein, Stein, and Tardos [1990], Shahrokhi and Matula [1990], Leighton,
Makedon, Plotkin, Stein, Tardos, and Tragoudas [1991,1995], Goldberg [1992],
Klein, Plotkin, and Rao [1993], Leong, Shor, and Stein [1993], Tardos and Vazi-
rani [1993], Awerbuch and Leighton [1994], Klein, Plotkin, Stein, and Tardos
[1994], Kamath and Palmon [1995], Linial, London, and Rabinovich [1995], Radzik
[1995,1997], Aumann and Rabani [1998], Garg and Könemann [1998], Fleischer
[1999a,2000a], Guruswami, Khanna, Rajaraman, Shepherd, and Yannakakis [1999],
Leighton and Rao [1999], Baveja and Srinivasan [2000], Srivastav and Stangier
[2000], Cheriyan, Karloff, and Rabani [2001], Fleischer and Wayne [2002], Günlük
[2002], Karakostas [2002], and Kolman and Scheideler [2002]. A survey is given by
Shmoys [1997]. Approximation algorithms for Steiner and directed multicuts are
given by Klein, Plotkin, Rao, and Tardos [1997].

For approximating minimum-cost multiflows, see Plotkin, Shmoys, and Tar-
dos [1991,1995], Kamath, Palmon, and Plotkin [1995], Karger and Plotkin [1995],
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Grigoriadis and Khachiyan [1996b,1996a], Garg and Könemann [1998], Goldberg,
Oldham, Plotkin, and Stein [1998], and Karakostas [2002].

The ‘quickest multicommodity flow problem’ was investigated by Fleischer and
Skutella [2002].

For surveys on approximation algorithms, see Shmoys [1995] and the book by
Vazirani [2001].

70.13f. Further notes

Ford and Fulkerson [1958a] designed a (non-polynomial-time) algorithm for the
fractional multiflow problem, based on the simplex method, with column gener-
ation — see Section 70.13d. Jewell [1958,1966] described a primal-dual simplex
method, Sakarovitch [1966] gave a labeling algorithm solving a sequence of one-
commodity flow problems after allocating the total capacity of each arc to each
net, and Saigal [1967] developed an algorithm based on an arc-circuit formulation,
using a column generation technique to handle the circuits. Dantzig-Wolfe decom-
position was applied to multiflow problems by Chen and DeWald [1974]. Kapoor
and Vaidya [1986,1996] and Kamath and Palmon [1995] study the complexity of
applying interior point algorithms to multiflows.

Grinold [1968,1969] described a primal-dual algorithm for the maximum-value
multiflow problem, based on allocating capacities to commodities and iteratively
adapt the allocation. A simplex-based algorithm for minimum-cost and maximum-
value multiflow problems was given by Hartman and Lasdon [1972]. Also Tomlin
[1966], Wollmer [1972], Dragan [1974], and Nagamochi, Fukushima, and Ibaraki
[1990] studied minimum-cost multiflows. A ‘partitioning’ algorithm for the multi-
flow problem was given by Grigoriadis and White [1972]. Related work was done
by Kennington [1977], Farvolden, Powell, and Lustig [1993], and Hadjiat, Maurras,
and Vaxes [2000]. Jarvis [1969] noticed the equivalence of vertex-arc and arc-chain
formulations of the multiflow problem.

Bellmore, Greenberg, and Jarvis [1970] and Jarvis and Tindall [1972] described
algorithms to find a minimum-capacity set disconnecting all nets in a directed
multiflow problem.

Swoveland [1973] studied a generalization of the multiflow problem, where upper
bounds can be prescribed for the sum of the flows of subsets of the nets on arcs.
Ferland [1974] and Klessig [1974] studied nonlinear costs.

Computational work on multiflows is reported by Minoux [1975], Ulrich [1975],
Helgason and Kennington [1977a], Kennington [1977,1978] (also minimum-cost),
Kennington and Shalaby [1977], Ali, Helgason, Kennington, and Lall [1980], Ken-
nington and Helgason [1980], Ali, Barnett, Farhangian, Kennington, Patty, Shetty,
McCarl, and Wong [1984], Saviozzi [1986], Boland and Mees [1990], Nagamochi,
Fukushima, and Ibaraki [1990], Barnhart [1993], Leong, Shor, and Stein [1993], Bi-
enstock and Günlük [1995], Barnhart, Hane, and Vance [1996], Castro and Nabona
[1996], Barnhart, Hane, and Vance [1997], McBride and Mamer [1997], McBride
[1998], and Frangioni and Gallo [1999].

Surveys on multiflows were given by Hu [1969], Frank and Frisch [1971], Assad
[1978], Kennington [1978], Phillips and Garcia-Diaz [1981], Gondran and Minoux
[1984], Bazaraa, Jarvis, and Sherali [1990], Ahuja, Magnanti, and Orlin [1993], and
Korte and Vygen [2000], on disjoint paths by Frank [1990e,1993a,1995], and on
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maximum-value multiflows by Karzanov [1991]. A bibliography on network opti-
mization, including multicommodity flows, was compiled by Golden and Magnanti
[1977].

70.13g. Historical notes on multicommodity flows

We review a few papers on multicommodity flows that are of historical interest.
In his monograph Mathematical Methods of Organizing and Planning Produc-

tion, Kantorovich [1939] introduced linear programming methods for the multicom-
modity flow problem, giving as example the problem of a railroad network on which
several connections have to be made simultaneously:

Let us mention still another problem of different character which, although it does
not lead directly to questions A, B, and C, can still be solved by our methods.
That is the choice of transportation routes.

B

A C

E

D

Let there be several points A, B, C, D, E (Fig. 1) which are connected to one
another by a railroad network. It is possible to make the shipments from B to
D by the shortest route BED, but it is also possible to use other routes as well:
namely BCD, BAD. Let there also be given a schedule of freight shipments; that
is, it is necessary to ship from A to B a certain number of carloads, from D to
C a certain number, and so on. The problem consists of the following. There is
given a maximum capacity for each route under the given conditions (it can of
course change under new methods of operation in transportation). It is necessary
to distribute the freight flows among the different routes in such a way as to
complete the necessary shipments with a minimum expenditure of fuel, under the
condition of minimizing the empty runs of freight cars and taking account of the
maximum capacities of the routes. As was already shown, this problem can also
be solved by our methods.

A problem analogous to the multicommodity flow problem, the multi-index trans-
portation problem, was considered by Motzkin [1952] and Schell [1955].

It was noted by Ford and Fulkerson [1954,1956b] that the max-flow min-cut
theorem does not extend to maximum multiflows:

It is worth pointing out that the minimal cut theorem is not true for networks
with several sources and corresponding sinks, where shipment is restricted to be
from a source to its sink.

Ford and Fulkerson give the example of the graph K1,3, with nets all pairs of vertices
of degree 1.

Robacker [1956a] observed that the following ‘decomposition theorem’ applies:
for a graph G = (V, E), nets {s1, t1}, . . . , {sk, tk}, and a capacity function c : E →
R+, the maximum total value of a multiflow subject to c is equal to
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(70.63) max
c1,...,ck

k∑

i=1

min
C∈Ci

ci(C).

Here the maximum ranges over all k-tuples of vectors c1, . . . , ck in R
E
+ with c1 +

· · · + ck = c. Moreover, Ci denotes the set of all si − ti cuts and ci(C) denotes the
capacity of cut C with respect to the capacity function ci.

So the theorem decomposes the maximum multicommodity flow problem into
k maximum single-commodity flow problems. The problem is reduced to finding
the optimum decomposition of the capacity function c into k functions c1, . . . , ck.
Robacker [1956a] remarked:

At present there are no computational techniques other than those of linear pro-
gramming for determining maximal flow through multicommodity networks. It
is hoped, however, that the decomposition theorem may lead to new methods as
did the minimum-cut, maximum-flow theorem for single-commodity networks.

Kalaba and Juncosa [1956] described applications of the multicommodity flow
problem to telecommunication networks. In particular they mention:

In a system such as the Western Union System, which has some 15 regional
switching centers all connected to each other, an optimal routing problem of this
type would have about 450 conditions and involve around 3000 variables. If solved
using the simplex method in its most general form, this would be at the threshhold
of the capacity of modern large-scale computers and would require several hours
for solution.

They express the expectation that developments in computer technology and possi-
ble extensions of the combinatorial methods for one-commodity flows, will improve
the situation greatly.

It turned out, however, that the combinatorial techniques that made the single-
commodity flow problem so tractable, do not extend to multicommodity flows.
Ford and Fulkerson [1958a] suggested a variant of the simplex method based on
a column-generation technique, where each simplex step consists of determining a
shortest path. Although they did not carry out computations, they expected that
their method is more practicable than the direct simplex method, at least in space
required. A primal-dual algorithm for multiflows was designed by Jewell [1958] (cf.
Jewell [1966]).

Hu [1963] gave a combinatorial algorithm for the 2-commodity flow problem,
but doubted whether it could be extended to general multicommodity flows:

Although the algorithm for constructing maximum bi-flow is very simple, it is un-
likely that similar techniques can be developed for constructing multicommodity
flows. The linear programming approach used by Ford and Fulkerson to construct
maximum multicommodity flows in a network is the only tool now available.

For remarks on the early history of multicommodity flows, see Jewell [1966].



Chapter 71

Two commodities

The integer 2-commodity flow problem is NP-complete, even if all capac-
ities are 1 (Even, Itai, and Shamir [1975,1976]). Equivalently, the edge-
disjoint paths problem in undirected graphs is NP-complete, even if the
nets form two parallel classes.
However, if we add the Euler condition, the problem has a good charac-
terization and can be solved in polynomial time. It is a generalization of
Hu’s 2-commodity flow theorem, stating that the cut condition implies the
existence of a half-integer multiflow (for integer capacities and demands).
This and related results form the topic of this chapter.
Except if stated otherwise, throughout this chapter G = (V, E) and H =
(T, R) denote the supply and demand graph, in the sense of Chapter 70.
The pairs in R are called the nets. If s1, t1, . . . , sk, tk are given, then R :=
{s1t1, . . . , sktk}. In fact, often in this chapter, k = 2, so R = {s1t1, s2t2}. If
demands d1, . . . , dk are given, then d(siti) = di. We denote G+H = (V, E∪
R), where the disjoint union of E and R is taken, respecting multiplicities.

71.1. The Rothschild-Whinston theorem and Hu’s

2-commodity flow theorem

It is a basic theorem of Hu [1963], that for 2-commodity flow problems in
undirected graphs, the cut condition implies the existence of a feasible 2-
commodity flow. Recall that the cut condition (in the undirected case) states
that

(71.1) c(δE(U)) ≥ d(δR(U))

for each U ⊆ V . This theorem, ‘Hu’s 2-commodity flow theorem’, will be
shown below as Corollary 71.1b.

Hu also showed that if moreover all capacities are integer, there is a half-
integer 2-commodity flow. Generally, an integer multiflow need not exist, as
is shown by Figure 70.3. In fact, the undirected integer 2-commodity flow
problem is NP-complete (Even, Itai, and Shamir [1975,1976]).

Rothschild and Whinston [1966a] extended Hu’s theorem by showing
that adding the Euler condition guarantees the existence of an integer 2-
commodity flow. We recall that the Euler condition states that
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(71.2) c(δE(v)) + d(δR(v)) is even for each v ∈ V .

Theorem 71.1 (Rothschild-Whinston theorem). Let G = (V, E) be a graph,
let {s1, t1} and {s2, t2} be pairs of vertices of G, and let c : E → Z+

and d1, d2 ∈ Z+ satisfy the Euler condition. Then there exists an integer
2-commodity flow subject to c and with value d1, d2 if and only if the cut
condition is satisfied.

Proof. Necessity being trivial, we show sufficiency. Suppose that the cut
condition holds. Orient the edges of G arbitrarily, yielding the digraph D =
(V, A). For any a ∈ A, we denote by c(a) the capacity of the underlying
undirected edge. For i = 1, 2, define pi : V → Z by

(71.3) pi := di · (χti − χsi).

s1

s2 t1

t2

Gs′ t′

Figure 71.1

Extend G by two new vertices, s′ and t′, and new edges s′s1 and t1t
′,

each of capacity d1, and new edges s′s2 and t2t
′, each of capacity d2 (Figure

71.1). This gives the graph G′.
By the max-flow min-cut theorem, G′ contains an integer s′ − t′ flow g of

value d1 + d2, since by the cut condition the minimum capacity of an s′ − t′

cut in G′ is equal to d1 + d2. By the Euler condition we can assume that
g(e) ≡ c(e) (mod 2) for each e ∈ E: the edges e with g(e) 	≡ c(e) (mod 2)
form an Eulerian graph; that is, each vertex is incident with an even number
of such edges. Hence we can add a unit flow along a circuit, so as to decrease
the number of such edges e.

Now in D, g gives a function g′ : A → Z satisfying

(71.4) g′(a) ≡ c(a) (mod 2) and |g′(a)| ≤ c(a) for each a ∈ A, and
excessg′ = p1 + p2.

(Here excessg′(v) := g′(δin(v)) − g′(δout(v)) for v ∈ V .)
Similarly, by extending G by two new vertices, s′′ and t′′, and new edges

s′′s1 and t1t
′′, each of capacity d1, and s′′t2 and s2t

′′, each of capacity d2

(Figure 71.2), we obtain a function g′′ : A → Z satisfying
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s1

s2 t1

t2

G

s′′

t′′

Figure 71.2

(71.5) g′′(a) ≡ c(a) (mod 2) and |g′′(a)| ≤ c(a) for each a ∈ A, and
excessg′′ = p1 − p2.

Now define f1 := 1
2 (g′ + g′′) and f2 := 1

2 (g′ − g′′). Then f1 and f2 form a 2-
commodity flow as required. Indeed, since g′ ≡ c ≡ g′′ (mod 2), we know that
f1 and f2 are integer. Moreover, |f1(a)|+ |f2(a)| = 1

2 (|g′(a)|+ |g′′(a)|) ≤ c(a)
for each a ∈ A. Finally, excessfi

= pi for i = 1, 2, as follows directly from
(71.4) and (71.5).

This method of proof was given by Rothschild and Whinston [1966a]
(similar proofs were given by Sakarovitch [1973] and Seymour [1978]).

A combinatorial form of Theorem 71.1 is:

Corollary 71.1a. Let G = (V, E) be a graph, let s1, t1, s2, t2 ∈ V , and let
d1, d2 ∈ Z+, such that each vertex v 	= s1, t1, s2, t2 has even degree, while
degG(si) ≡ degG(ti) ≡ di (mod 2) for i = 1, 2. Then there exist d1 s1 − t1
paths and d2 s2 − t2 paths, all edge-disjoint if and only if the cut condition
(70.21) is satisfied.

Proof. Directly from Theorem 71.1 by taking all capacities equal to 1.

Conversely, Theorem 71.1 follows from Corollary 71.1a by replacing each
edge e by c(e) parallel edges.

Theorem 71.1 also implies a half-integer 2-commodity flow theorem, given
by Hu [1963]15:

Corollary 71.1b (Hu’s 2-commodity flow theorem). Let G = (V, E) be a
graph, let s1, t1 and s2, t2 be pairs of vertices of G, let c : E → R+, and

15 Hakimi [1962b] gave an erroneous proof of this theorem.
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let d1, d2 ∈ R+. Then there exists a 2-commodity flow subject to c and with
value d1, d2 if and only if the cut condition is satisfied. If all capacities and
demands are integer, then we can take the flow half-integer.

Proof. By continuity and compactness, we can assume that c and the di

are rational-valued, and hence, by scaling, even-integer-valued. So the Euler
condition holds. Let the cut condition be satisfied. Then Theorem 71.1 gives
the existence of a 2-commodity flow.

If c and the di are integer-valued, multiplying them by 2 and applying
Theorem 71.1 gives an integer 2-commodity flow, and hence a half-integer
multiflow for the original c and di.

Notes. The proof of Theorem 71.1 yields a strongly polynomial-time algorithm to
find a feasible integer 2-commodity flow if the Euler condition holds, of the same
time order as that of finding a maximum one-commodity integer flow. It implies
a strongly polynomial-time algorithm to find a half-integer 2-commodity flow, for
integer capacities and demands.

Also Cherkasskĭı [1973] gave a strongly polynomial-time (O(n2m)) algorithm to
find a feasible half-integer 2-commodity flow. Hu [1963] gave a combinatorial algo-
rithm, which Itai [1978] showed to have a strongly polynomial-time implementation
(O(n3)). A similar algorithm was described by Arinal [1969].

71.1a. Nash-Williams’ proof of the Rothschild-Whinston theorem

An alternative simple proof of the Rothschild-Whinston theorem was given by
C.St.J.A. Nash-Williams (cf. Lovász [1979a] p. 289). We give the proof for the
equivalent Corollary 71.1a. As necessity is easy, we show sufficiency.

By Menger’s theorem (undirected version), G has d1+d2 edge-disjoint {s1, s2}−
{t1, t2} paths such that di of them start at si, and di of them end at ti, for i = 1, 2.
(But the paths starting at s1 may end at t2, and those starting at s2 may end at
t1.) Hence G has an orientation D = (V, A) with (V, A ∪ B) Eulerian, where B
consists of di parallel arcs from ti to si, for i = 1, 2.

Then Menger’s theorem (directed version) implies that D has d1 arc-disjoint
directed s1 − t1 paths. Indeed, consider any U ⊆ V with s1 ∈ U , t1 �∈ U . We show
dout

A (U) ≥ d1. As (V, A ∪ B) is Eulerian, we have

(71.6) dout
A (U) + dout

B (U) = dout
A∪B(U) = din

A∪B(U) = din
A (U) + din

B (U).

If dout
B (U) = 0, this gives dout

A (U) ≥ din
B (U) ≥ d1. If dout

B (U) > 0, then t2 ∈ U ,
s2 �∈ U , hence din

B (U) = d1 and dout
B (U) = d2. So

(71.7) dout
A (U) = 1

2
(dout

A (U) + din
A (U) + d1 − d2) = 1

2
(dE(U) + d1 − d2) ≥ d1,

since dE(U) ≥ d1 + d2.
So D contains d1 arc-disjoint s1 − t1 paths. Now delete from (V, A ∪ B) all arcs

occurring in these paths, and delete the d1 parallel arcs from t1 to s1. We are left
with an Eulerian digraph, and hence the d2 parallel arcs from t2 to s2 belong to d2

arc-disjoint directed circuits. This gives the d2 paths from s2 to t2 as required.
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71.2. Consequences

E.A. Dinits (cf. Adel’son-Vel’skĭı, Dinits, and Karzanov [1975]) observed that
Hu’s 2-commodity flow theorem and the Rothschild-Whinston theorem im-
ply:

Corollary 71.1c. Let G = (V, E) be an undirected graph and let {s1, t1}, . . . ,
{sk, tk} be pairs of vertices, such that there exist a two vertices intersecting
each {si, ti}. Let c : E → R+ and d1, . . . , dk ∈ R+. Then the cut condition
implies the existence of a feasible multiflow. If c and the di are integer, there
exists a half-integer multiflow. If moreover the Euler condition holds, there
exists an integer multiflow.

Proof. We can assume that si = s for i = 1, . . . , l, and that ti = t′ for
i = l + 1, . . . , k. Let t and s′ be two new vertices. For each i = 1, . . . , l, add
a new edge connecting ti and t, of capacity di. For each i = l + 1, . . . , k, add
a new edge connecting s′ and si, of capacity di. This makes the graph H.
Define d := d1 + · · · + dl and d′ := dl+1 + · · · + dk.

Then the cut condition for G implies that each cut δH(U) in H has ca-
pacity at least d + d′ if it is both s − t and s′ − t′ separating; at least d if
it separates s and t; and at least d′ if it separates s′ and t′. Hence, by Hu’s
2-commodity flow theorem, H has a feasible 2-commodity flow. Restriction
to G gives a feasible multiflow.

The last two statement of this corollary follow similarly.

Another consequence of Theorem 71.1 is what Hu called the max-biflow
min-cut theorem16:

Corollary 71.1d (max-biflow min-cut theorem). Let G = (V, E) be a graph,
let {s1, t1} and {s2, t2} be pairs of vertices, and let c : E → R+. Then the
maximum total value M of a 2-commodity flow subject to c is equal to the
minimum capacity m of a cut which is both s1 − t1 and s2 − t2 separating.
If c is integer, the maximum is attained by a half-integer multiflow. If c is
integer and c(δ(v)) is even for each vertex v 	= s1, t1, s2, t2, the maximum is
attained by an integer multiflow.

Proof. By continuity, compactness, and scaling, we can assume that c is
integer and that c(δ(v)) is even for each v 	= s1, t1, s2, t2. By replacing edges
by parallel edges, we can assume that c(e) = 1 for each e ∈ E. So M is equal
to the maximum number of edge-disjoint paths, each connecting either s1

and t1, or s2 and t2. As trivially M ≤ m, it suffices to prove M ≥ m. We can
assume that m > 0.

16 due to Hu [1963] and (the last statement) to Rajagopalan [1994] (who also showed a
hole in the proof by Sakarovitch [1973] of this); it sharpens a result of Rothschild and
Whinston [1966b], who required that c(δ(v)) is even for all vertices v.
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First assume that degG(s1) ≡ degG(t1) (mod 2) and (hence) degG(s2) ≡
degG(t2) (mod 2). For i = 1, 2, let mi be the minimum size of an si − ti cut.
We show that

(71.8) there exists d1, d2 ∈ Z+ such that d1 ≤ m1, d2 ≤ m2, d1+d2 = m,
d1 ≡ degG(s1) (mod 2), and d2 ≡ degG(s2) (mod 2).

To see this, note that m ≤ m1 + m2 (since the union of an s1 − t1 cut
and an s2 − t2 cut separates both s1 and t1, and s2 and t2), m1 ≤ m, and
m ≡ degG(s1) + degG(s2) (mod 2). As m > 0, by symmetry we may assume
that m2 > 0. If m1 ≡ degG(s1) (mod 2), then we can take d1 := m1 and
d2 := m − m1. If m1 	≡ degG(s1) (mod 2), then we can take d1 := m1 − 1
and d2 := m−m1 +1. Indeed, as m1 	≡ degG(s1) (mod 2), any minimum-size
s1 − t1 cut also separates s2 and t2. So m = m1. Hence d1 ≥ 0 (as m > 0)
and d2 = 1 ≤ m2 (as m2 > 0).

This shows (71.8). By Corollary 71.1a, there exist d1 s1 − t1 paths and d2

s2 − t2 paths, any two of which are edge-disjoint. So M ≥ d1 + d2 = m.
Next assume that degG(s1) 	≡ degG(t1) (mod 2) and (hence) degG(s2) 	≡

degG(t2) (mod 2). By symmetry, we may assume that m is attained by a cut
with s1, s2 at one side and t1, t2 at the other side. So the size of any cut with
s1, t2 at one side and t1, s2 at the other side, has parity different from that of
m; hence its size is at least m+1. Therefore, adding a new edge connecting s2

and t1 increases the minimum m by 1. Moreover, the maximum M increases
by at most 1. In the new situation, the degrees of s1 and t1 have the same
parity, and similarly for s2 and t2. Hence the first part of this proof applies,
showing M ≥ m.

(An alternative proof was given by Lovász [1976b].)

s1

s2 t1

t2

Figure 71.3

The maximum total value of a 2-commodity flow (subject to capacity 1)
is equal to 2, but the maximum total value of an integer 2-commodity
flow is equal to 1.

The graph in Figure 71.3 shows that in the max-biflow min-cut theorem
(Corollary 71.1d) we cannot delete the parity conditions (example of Roth-
schild and Whinston [1966b]). This example is critical, as is shown by the
following result, which is a special case of a general hypergraph theorem of
Seymour [1977b] (Theorem 80.1).
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Theorem 71.2. Let G = (V, E) be a graph and s1, t1, s2, t2 ∈ V . Then for
each capacity function c : E → Z+, the maximum total value of an integer
2-commodity flow is equal to the minimum capacity of a cut separating both
s1 and t1, and s2 and t2, if and only if G has no subgraph contractible to the
graph of Figure 71.3, up to exchanging s1 and t1, and s2 and t2.

Here we assume that the subgraph contains the si and ti, and that these
vertices are contracted to the vertices indicated by si and ti in the figure. For
a proof, we refer to Section 80.5a.

A similar result for feasibility can be derived (Seymour [1981a]):

(71.9) Let G = (V, E) be a graph and s1, t1, s2, t2 ∈ V . Then for each
capacity function c : E → Z+ and each demands d1, d2 ∈ Z+, the
cut condition implies the existence of an integer multiflow if and
only if the graph of Figure 70.3 is not a minor of G.

We derive this result from Theorem 71.2. By taking c(e) large one can see
that the property described is closed under contractions of edges. As Figure
70.3 satisfies the cut condition but has no integer multiflow (for c = 1, d = 1),
we have necessity of the condition in (71.9).

To derive sufficiency from Theorem 71.2, let G have no subgraph con-
tractible to Figure 70.3 and let c : E → Z+ and d1, d2 ∈ Z+ satisfy the cut
condition. Let s′

1 and s′
2 be two new vertices, and let s′

1s1 and s′
2s2 be two

new edges, of capacity d1 and d2 respectively. Then the extended graph G′

has no subgraph contractible to the graph of Figure 71.3, with si replaced by
s′

i (i = 1, 2), up to exchanging s′
1 and t1, and s′

2 and t2. Also, the minimum
capacity of a cut in G′ separating both s′

1 and t1, and s′
2 and t2, is equal to

d1 + d2. Hence by Theorem 71.2, G′ has an integer multiflow of total value
d1 + d2. Restricted to G this gives a multiflow satisfying d1, d2.

Notes. For the case where G + H is planar, Lomonosov [1983] characterized for
fixed integer capacity function c, when the maximum and minimum in Theorem
71.2 are equal. He also showed that if G+H is planar, the maximum and minimum
differ by at most 1.

71.3. 2-commodity cut packing

By Theorem 70.5, Hu’s 2-commodity flow theorem implies that if G = (V, E)
is an undirected graph, s1, t1, s2, t2 ∈ V , and l : E → R+, then there exist
λU ≥ 0 for U ⊆ V such that

(71.10)
∑

U

λUχδE(U) ≤ l

and

(71.11) distl(si, ti) =
∑

U

λUχδR(U)(siti),
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for i = 1, 2, where R := {s1t1, s2t2}. (Here distl(s, t) is the distance of s and
t, taking l as length function.)

We shall see that if l is integer, we can take the λU half-integer. More
precisely, and more strongly:

(71.12) if l is integer such that each circuit in G has even length, then we
can take the λU integer.

This was proved by Seymour [1978]. Equivalently (by replacing each edge e
by a path of length l(e); distG(s, t) denotes the distance of s and t in G (for
length function 1)):

Theorem 71.3. Let G = (V, E) be a bipartite graph and let s1, t1, s2, t2 ∈ V .
Then there exist disjoint cuts such that si and ti are separated by distG(si, ti)
of these cuts, for i = 1, 2.

Proof. We may assume that G is connected. Denote d(u, v) := distG(u, v)
for u, v ∈ V . Define for each vertex v:

(71.13) ϕ(v) := 1
2 (d(s1, v) + d(s2, v) − d(s1, s2)),

ψ(v) := 1
2 (d(s1, v) − d(s2, v) + d(s1, s2)).

These numbers are nonnegative and integer, by the triangle inequality and
by the fact that each circuit in G has even length.

If u and v are adjacent vertices of G, then either ϕ(u) = ϕ(v) and |ψ(v)−
ψ(u)| = 1, or ψ(u) = ψ(v) and |ϕ(v)−ϕ(u)| = 1, since d(s1, v)−d(s1, u) = ±1
and d(s2, v) − d(s2, u) = ±1. Let Ai be the set of edges uv with ϕ(v) = i − 1
and ϕ(u) = i. Let Bi be the set of edges uv with ψ(v) = i − 1 and ψ(u) = i.
So the sets A1, A2, . . . , B1, B2, . . . are cuts partitioning E.

Now ϕ(s1) = ψ(s1) = 0 and ϕ(t1) + ψ(t1) = d(s1, t1). So there exist
d(s1, t1) cuts among A1, A2, . . . , B1, B2, . . . that separate s1 and t1.

Moreover

(71.14) |ϕ(t2) − ϕ(s2)| + |ψ(t2) − ψ(s2)| =
1
2 |d(s1, t2)+d(s2, t2)−d(s1, s2)|+

1
2 |d(s1, t2)−d(s2, t2)−d(s1, s2)|

= d(s2, t2).

This implies that there exist d(s2, t2) cuts among A1, A2, . . . , B1, B2, . . . that
separate s2 and t2.

A consequence of Theorem 71.3 is a min-max relation for the maximum
number of disjoint cuts that are both s1 − t1 and s2 − t2 separating, in a
bipartite graph (Seymour [1978]):

Corollary 71.3a. Let G = (V, E) be a bipartite graph and let s1, t1, s2, t2 ∈
V . Then the maximum number of disjoint cuts each separating both s1 and
t1, and s2 and t2, is equal to the minimum of distG(s1, t1) and distG(s2, t2).
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Proof. We may assume that G is connected. Let d(u, v) := distG(u, v) for
u, v ∈ V . Let k := min{d(s1, t1), d(s2, t2)}. Let C1, . . . , Ct be the cuts de-
scribed in Theorem 71.3. At least k of these cuts separate s1 and t1, and at
least k of these cuts separate s2 and t2. If Ci separates s1 and t1 and Cj

separates s2 and t2, then Ci ∪ Cj contains a cut separating both s1 and t1,
and s2 and t2. Thus by properly combining the Ci, we obtain k disjoint cuts
as required.

(To see this, we can assume that C1, . . . , Ck separate s1 and t1, and that
Cl+1, . . . , Cl+k separate s2 and t2, where 0 ≤ l ≤ k. Then each of the (disjoint)
sets C1 ∪Ck+1, . . . , Cl ∪Cl+k, Cl+1, . . . , Ck contains a cut separating both s1

and t1, and s2 and t2.)

Let G = (V, E) be a graph and let s1, t1, s2, t2 ∈ V . Let C be the collection
of all cuts that are both s1 − t1 and s2 − t2 separating. Consider a length
function l : E → R+. Corollary 70.6a applied to the max-biflow min-cut
theorem gives:

(71.15) min{distl(s1, t1), distl(s2, t2)} is equal to the maximum value of∑
C∈C y(C), where y : C → R+ is such that

∑
C∈C y(C)χC ≤ l.

Then Corollary 71.3a implies (Seymour [1978], Pevzner [1979b]):

Corollary 71.3b. If l is integer-valued, we can take y half-integer valued.

Proof. Replace each edge e by a path of length 2l(e). This makes the bipartite
graph H. Applying Corollary 71.3a to H does the rest.

Bipartiteness is necessary in Corollary 71.3a, since otherwise the graph
in Figure 71.4 (Seymour [1977b], cf. Hu [1973]) would yield a contradiction.
(This answers a question of Fulkerson [1971a].)

s1

s2

t1

t2

Figure 71.4

The minimum of the distances of s1 and t1 and of s2 and t2 is equal to
2, but there exist no two disjoint cuts each separating both s1 and t1,
and s2 and t2.
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From a more general hypergraph result of Seymour [1977b] (Theorem
80.1), it follows that Figure 71.4 is critical for the existence of an integer-
valued packing of cuts:

Theorem 71.4. Let G = (V, E) be a graph and let s1, t1, s2, t2 ∈ V . Then for
each l : E → Z+, the maximum in (71.15) is attained by an integer-valued y
if and only if G has no subgraph contractible to the graph in Figure 71.4, up
to permuting indices and permuting s1 and t1.

Again, we assume that the subgraph contains the si and ti, and that these
vertices are contracted to the vertices indicated by si and ti in the figure. For
a proof, we refer to Section 80.5a.

Notes. Seymour [1981a] showed the following related result: let G = (V, E) be a
bipartite graph, and choose s1, t1, s2, t2 ∈ V , with s1, s2 in one colour class and t1, t2
in the other. Choose odd integers d1 ≤ distG(s1, t1) and d2 ≤ distG(s2, t2) such that
d1 + d2 ≤ distG(s1, s2) + distG(t1, t2) and d1 + d2 ≤ distG(s1, t2) + distG(t1, s2).
Then there exist disjoint cuts, d1 of which separate s1 and t1 and not s2 and t2,
and d2 of which separate s2 and t2 and not s1 and t1.

Let S be a collection of nonempty proper subsets of a finite set T . Let G = (V, E)
be a graph with V ⊇ T . Let A be the collection of subsets U of V with U ∩ T ∈ S.

Consider any length function l : E → R+ and any d : S → R+. The multicut
analogue of the multiflow problem asks for a function y : A → R+ such that

(71.16)
∑

U∈A

y(U)χδE(U) ≤ l

and such that

(71.17)
∑

(y(U) | U ∈ A, U ∩ T = X) = d(X)

for each X ∈ S. A necessary condition for the existence of y is that

(71.18) distl(s, t) ≥
∑

(d(X) | X ∈ S, X splits s, t)

for all distinct s, t ∈ T . (Here X splits s, t if X contains precisely one of s, t.)
Karzanov [1984] showed that this condition is sufficient for each graph G and each
l if and only if S contains no three pairwise crossing sets. If moreover l and d are
integer, there is a half-integer y. If moreover l(C) is even for each circuit C and
both sides of (71.18) have the same parity for all s, t, then there is an integer y.
Karzanov [1984] also gave a polynomial-time greedy-type algorithm to find y.

As for the corresponding maximization problem, consider any length function
l : E → R+ and the problem

(71.19) min{lTx | x ∈ R
E
+ : x(δE(U)) ≥ 1 for each U ∈ A}.

By linear programming duality, this minimum is equal to the maximum value of

(71.20)
∑

U∈A

y(U),

where y : A → R+ satisfies (71.16). Karzanov [1984] showed the following. Let S
have the following property: for any three pairwise crossing sets A1, A2, A3 in S,
there exist γ1, γ2, γ3 ≥ 0 and z : S → R+ such that
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(71.21)

3∑

i=1

γi ≤
∑

U∈S

zU and

3∑

i=1

γiχ
δR(Ai) >

∑

U∈S

zUχδR(U),

where R := {st | s, t ∈ T, s �= t}. Then the maximum value of (71.20) is equal to
the minimum value of

(71.22)
∑

r∈R

β(r)distl(r),

where β : R → R+ satisfies β(δR(U)) ≥ 1 for each U ∈ S. (We write distl(r) for
distl(s, t) if r = st.) This specifies the above x : E → R+ as a function

(71.23) x =
∑

r∈R

β(r)χPr ,

where Pr is a shortest r-path with respect to l, since

(71.24) lTx =
∑

r∈R

β(r)l(Pr) and x(δE(U)) ≥
∑

r∈δR(U)

β(r) = β(δR(U)) ≥ 1

for each U ∈ S. (An r-path is a path connecting the vertices in r.) Again this
characterization is tight.

This has as special cases theorems on packing s − t cuts (Theorem 6.1), 2-
commodity cuts (Theorem 71.3), and T -cuts (Corollary 29.9a).

These cases are further characterized by the following result of Karzanov
[1985a]. Let T be a finite set and let S be a collection of nonempty proper subsets
of T such that (i) if U ∈ S, then T \U ∈ S, (ii) for each t ∈ T there is a U ∈ S with
t ∈ U and U \{t} �∈ S, (iii) for all distinct s, t ∈ T there is a U ∈ S separating s and
t. Let G be the complete graph on vertex set V with V ⊃ T and |V | ≥ |T |+2. Then
minimum (71.19) is attained by an integer optimum solution x for each l : E → R+

if and only if:

(71.25) (i) there exist s, t ∈ T such that each set in S contains exactly one
of s and t, and such that the collection of sets in S containing s,
is closed under unions and intersections,

or (ii) T = {s1, t1, s2, t2} and S = {{s1, s2}, {s1, t2}, {t1, s2}, {t1, t2}},
or (iii) S is equal to the collection of odd-size subsets of T , where |T | is

even.

71.4. Further results and notes

71.4a. Two disjoint paths in undirected graphs

The polynomial-time solvability of the 2 vertex-disjoint paths problem in undirected
graphs was shown by Seymour [1980b], Shiloach [1980b], and Thomassen [1980]. As
was observed by Seymour [1980b], this can be derived from the following charac-
terization of Seymour [1980b] and Thomassen [1980] (as usual, N(K) denotes the
set of vertices not in K adjacent to at least one vertex in K):

Theorem 71.5. Let G = (V, E) be a graph and let s1, t1, s2, t2 be distinct vertices.
Then G has disjoint paths P1 and P2, where Pi connects si and ti (i = 1, 2), if and
only if there is no subset U of V such that:
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(71.26) (i) s1, t1, s2, t2 ∈ U ,
(ii) |N(K)| ≤ 3 for each component K of G − U ;
(iii) the graph H obtained from G[U ] by adding, for each component K

of G − U and each distinct u, v ∈ N(K), an edge connecting u and
v, is planar, with s1, s2, t1, t2 in this order cyclically on the outer
boundary of H.

In fact, condition (ii) is superfluous. (Theorem 71.5 was proved for 4-connected
graphs by Jung [1970], generalizing Watkins [1968] who proved it for 4-connected
graph containing a subdivision of K5.)

The polynomial-time solvability of the 2 vertex-disjoint paths problem can
be derived by observing that we can reduce the problem if there is a K ⊆
V \ {s1, t1, s2, t2} with |N(K)| ≤ 3 (remove K and add edges as in (71.26)(iii)). So
we can assume that no such K exists. Hence, by the characterization, if no paths
as required exist, the graph should be planar with the terminals in the cyclic order
s1, s2, t1, t2 along the outer boundary — this can be tested in polynomial time.
(Khuller, Mitchell, and Vazirani [1992] gave a parallel implementation.)

A related result for the 2 edge-disjoint paths problem was given by Dinits and
Karzanov [1979] and Seymour [1980b]:

(71.27) Let G = (V, E) be a connected graph and let s1, t1, s2, t2 ∈ V . Then
G has edge-disjoint paths P1 and P2, where Pi connects si and ti

(i = 1, 2) if and only if the cut condition holds and there is no F ⊆ E
such that the graph G/F , obtained from G by contracting all edges
in F , is connected and planar and has maximum degree ≤ 3, while
s1, s2, t1, t2 are distinct, all have degree at most 2, and occur in this
order around the outer boundary of G/F .

This implies in particular that if G is 3-edge-connected, then the 2 edge-disjoint
paths problem has a solution, for any choice of two nets.

71.4b. A directed 2-commodity flow theorem

Frank [1989] observed that a directed version of the 2-commodity flow theorem
holds:

Theorem 71.6. Let D = (V, A) be as digraph, and let R consist of two parallel
classes of arcs, with (V, A∪R−1) Eulerian. Then the cut condition is necessary and
sufficient for the solvability of the arc-disjoint paths problem.

Proof. Let R consist of ki parallel arcs from si to ti, for i = 1, 2. With Menger’s
theorem, the cut condition implies that there exist k1 arc-disjoint s1 − t1 paths in
D. After deleting the arcs of these paths from D, the remainder has k2 arc-disjoint
s2 − t2 paths, as adding k2 parallel t2 − s2 arcs makes the remainder Eulerian.

This proof also gives a polynomial-time algorithm. We should note that in
the directed case, Eulericity is rather prohibitive: unlike in the undirected case we
cannot make a digraph Eulerian by some simple doubling argument.

Frank, Ibaraki, and Nagamochi [1995,1998] gave a characterization and poly-
nomial-time algorithm for the problem: given an Eulerian digraph D = (V, A) and



Section 71.4c. Kleitman, Martin-Löf, Rothschild, and Whinston’s theorem 1263

s1, t1, s2, t2 ∈ V , find two arc-disjoint directed paths P1 and P2, where Pi connects
si and ti, in one way or the other (i = 1, 2). The characterization is analogous to
Theorem 71.5.

It implies a characterization and algorithm of Ibaraki and Poljak [1991] for the
3 arc-disjoint paths problem if the Euler condition holds. For let D = (V, A) be a
digraph, and let s1, t1, . . . , s3, t3 ∈ V , such that for R := {(s1, t1), (s2, t2), (s3, t3)},
the digraph (V, A ∪ R−1) is Eulerian. Extend D by four new vertices x1, y1, x2, y2

and arcs (t1, x2), (x2, s2), (t3, y1), (y1, s1), (t2, y2), (y2, x1), (x1, s3). Then the new
digraph is Eulerian. Moreover, it has arc-disjoint directed xi −yi paths (for i = 1, 2)
if and only if D has arc-disjoint si − ti paths (for i = 1, 2, 3).

71.4c. Kleitman, Martin-Löf, Rothschild, and Whinston’s theorem

Let G be an undirected graph. Suppose that we have four disjoint sets S1, T1, S2, T2

of vertices, and that we want to know the maximum number of edge-disjoint paths,
each connecting either S1 and T1, or S2 and T2. Generally it is not true that
the maximum number of such paths is equal to the minimum number of edges
intersecting each such path. This even is not the case if the graph is Eulerian, as
is shown by the graph in Figure 71.5 (cf. Rothschild and Whinston [1966b]). (One

S1 S1

S2

S2

T1 T1

T2

T2

Figure 71.5

The maximum number of edge-disjoint paths each connecting vertices
labeled Si and Ti for some i, is equal to 4, whereas the minimum size
of an edge set intersecting each such path is equal to 5. Note that the
graph is Eulerian.

could think of a proof method based on adding 4 new vertices s1, t1, s2, t2, adjacent,
by a large number of parallel edges, to all vertices in S1, T1, S2, T2 respectively,
and then applying Corollary 71.1d. But this procedure can create new paths, for
instance, from S1 to T1 via s2.)

However, if S1, T1, S2, T2 partition the vertex set, such a generalization holds,
as was shown by Kleitman, Martin-Löf, Rothschild, and Whinston [1970]. In fact,
they showed a more general result, that can be proved with the help of the following
theorem equivalent to (the edge-disjoint undirected version of) Menger’s theorem
(which is the special case where A and B are stars).

If G = (V, E) a graph and A, B ⊆ E, we say that a path connects A and B if it
traverses at least one edge in A and at least one edge in B.

Theorem 71.7. Let G = (V, E) be a graph and let A, B ⊆ E. Then the maximum
number of edge-disjoint paths each connecting A and B is equal to the minimum
number of edges intersecting each such path.
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Proof. We can assume that A ∩ B = ∅, since deleting any edge in A ∩ B reduces
both optima by 1.

Construct a new graph H as follows. Add two new vertices s and t. For each
edge e ∈ A ∪ B, put a new vertex ve on e, and connect it to s if e ∈ A and to t if
e ∈ B.

We apply Menger’s theorem to the s − t paths in H. Let Q1, . . . , Qk be a
maximum number of edge-disjoint s − t paths in H. Consider any of these paths
Qj . We can assume that the second vertex, va say, and the one but last vertex,
vb say, of Qj are the only two vertices on Qj that belong to {ve | e ∈ A ∪ B}
(otherwise we can shortcut Qj , since each vertex ve has degree 3). Replacing the
first two edges of Qj by edge a of G, and the last two edges of Qj by edge b of G,
we obtain a path Pj in G connecting A and B.

This gives k edge-disjoint paths in G each connecting A and B. By Menger’s
theorem, there exists a set D of k edges of H intersecting each s − t path. For
e ∈ A ∪ B, replacing (in D) any edge sve and any of the split-offs of e, by e, we
obtain a set C of at most k edges in G that intersects each path connecting A and
B. Indeed, consider any path P in G connecting A and B. We can assume that it
intersects A and B only at its ends. So we can transform P to an s − t path Q in
H, by deviating the end edges towards s and t. Then Q intersects D, implying that
P intersects C. This shows the theorem.

This implies the theorem of Kleitman, Martin-Löf, Rothschild, and Whinston
[1970]:

Corollary 71.7a. Let G = (V, E) be a graph, let S1, T1, . . . , Sk, Tk be subsets of V ,
with Si ∩ Ti = ∅ for i = 1, . . . , k, and define Ui := V − Si − Ti for i = 1, . . . , k.
If U1, . . . , Uk are disjoint, then the maximum number of edge-disjoint paths among
{P | ∃i : P is an Si −Ti path} is equal to the minimum number of edges intersecting
each such path.

Proof. We can assume that the Ui partition V , since we can add an extra pair
S0, T0 with S0 := V − U1 − · · · − Uk and T0 := ∅. We can also assume that, for any
i, no edge connects Si and Ti, since deleting it reduces both optima by 1.

Let R be the set of edges connecting distinct sets among U1, . . . , Uk. Then for
each i, any inclusionwise minimal Si − Ti path has its end edges in R and has no
other edges in R (since all internal vertices belong to Ui). Let A be the set of edges
e in R such that e is disjoint from an even number of S1, . . . , Sk, and let B := R−A.

The sets A and B have the following property. Let P be a path with only its
end edges in R. Then:

(71.28) P connects Si and Ti for some i if and only if P connects A and B.

With Theorem 71.7, this immediately proves the present corollary.
To prove (71.28), let u and w be the first and last vertex of P , let I be the set

of internal vertices of P , and let c and d be the first and last edge of P . Since only
the end edges of P are in R, we know by definition of R that there exists an i such
that each internal edge of P only meets Ui and such that u, v �∈ Ui. In other words,
I ⊆ Ui and u, w ∈ Si ∪ Ti.
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Consider any j �= i. As I ⊆ Ui and Ui ∩Uj = ∅, we know I ⊆ Sj ∪Tj . As no edge
connects Sj and Tj , either I ⊆ Sj and u, w ∈ Uj ∪Sj , or I ⊆ Tj and u, w ∈ Uj ∪Tj .
So c ∩ Sj = ∅ if and only if d ∩ Sj = ∅. Hence, by definition of A and B:

(71.29) P connects A and B ⇐⇒ precisely one of c∩Si and d∩Si is nonempty
⇐⇒ precisely one of u, w belongs to Si, the other belongs to Ti ⇐⇒
P connects Si and Ti.

So we have (71.28).

The proof method directly gives an algorithmic reduction to the (one-com-
modity) disjoint paths problem. (Kleitman [1971] and Kant [1974] describe other
methods.)

71.4d. Further notes

Itai and Zehavi [1984] showed that if G = (V, E) is a graph and s1, t1, s2, t2 ∈ V are
such that for i = 1, 2, there exist k edge-disjoint si −ti paths, then for each choice of
d1, d2 with d1+d2 = k, there exist d′

1 and d′
2 with d′

1+d′
2 = k, d1 ≤ d′

1 ≤ d1+1, and
a collection of edge-disjoint paths such that d′

i of them connect si and ti (i = 1, 2).
The integer 2-commodity flow problem is solvable in polynomial time if G + H

is planar — see Section 74.2b.
Rebman [1974] studied a generalization of totally unimodular matrices appro-

priate for 2-commodity flows.



Chapter 72

Three or more commodities

Hu’s 2-commodity theorem concerns multiflows where the demand graph
H consists of two edges — whatever the supply graph is. In this chapter
we consider to which extent Hu’s theorem can be generalized to other de-
mand graphs. That is, we study for which graphs H = (T, R) it is true
that for each graph G = (V, E) with V ⊇ T and each capacity and demand
functions the phenomena described in the previous chapter are maintained
(sufficiency of the cut condition, existence of a half-integer multiflow, suf-
ficiency of the Euler condition to obtain an integer multiflow).
Results of Papernov [1976], Lomonosov [1976,1985], and Seymour [1980c]
give an answer to this question: the graphs H are those containing neither
of the two graphs in Figure 72.1 below as a subgraph. These are exactly
the graphs H that are the union of two stars or are equal to K4 or C5 (up
to adding isolated vertices, loops, and parallel edges).
Except if stated otherwise, throughout this chapter G = (V, E) and H =
(T, R) denote the supply and demand graph, in the sense of Chapter 70.
The pairs in R are called the nets. If s1, t1, . . . , sk, tk are given, then R :=
{s1t1, . . . , sktk}. If demands d1, . . . , dk are given, then d(siti) = di. We
denote G + H = (V, E ∪ R), where the disjoint union of E and R is taken,
respecting multiplicities.

72.1. Demand graphs for which the cut condition is

sufficient

Consider for any graph H = (T, R) the following property:

(72.1) H has neither of the two graphs of Figure 72.1 as a subgraph.

Theorem 72.1. Let H = (T, R) be a simple graph without isolated vertices.
Then H satisfies (72.1) if and only if H = K4, or H = C5, or H is the union
of two stars.

Proof. Sufficiency is direct. Necessity is shown by induction on |R|. If all
degrees of H are at most 2, the theorem is easy. Assume now that H has a
vertex u of degree at least 3. For any edge e = uw incident with u, if H − e
is K4 or C5 (after deleting any isolated vertex), then H contains one of the
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(a) (b)

Figure 72.1

graphs in Figure 72.1. So H − e 	= K4 and H − e 	= C5. Hence, by induction,
there exist two vertices s, t such that each edge of H − e intersects {s, t}. If
u ∈ {s, t}, then H is the union of two stars. So we can assume that u 	∈ {s, t}.
Hence each neighbour v of u with v 	= w belongs to {s, t}. So u has degree 3,
and each edge f of H not incident with u connects two neighbours of u (as
any neighbour of u can serve as w). So H = K4.

The following theorem extends Theorem 71.1 and Corollary 71.1c, and
was proved by Lomonosov [1976,1985] and Seymour [1980c] for H = K4, and
by Lomonosov [1976,1985] for H = C5. The proof below is inspired by the
direct proof given by Frank [1990e]. (Here G + H is the graph (V, E ∪ R),
taking multiplicities of edges into account.)

Theorem 72.2. Let G = (V, E) and H = (T, R) be supply and demand
graphs, with T ⊆ V . Let H = (T, R) satisfy (72.1), with G + H Eulerian.
Then there exist edge-disjoint paths Pr (for r ∈ R) such that Pr connects the
vertices in r if and only if the cut condition holds.

Proof. Necessity being easy, we show sufficiency. Let G, H form a counterex-
ample with |E| + |R| minimal. Then G is connected. Also, there is no net
r ∈ R parallel to an edge e ∈ E, since otherwise deleting r and e would give
a smaller counterexample.

Call a subset U of V tight if dE(U) = dR(U).17 By the minimality of the
counterexample we have18

(72.2) for each pair of edges e and f incident with a vertex v there is a
tight set splitting both e and f .

Otherwise we can replace e = uv and f = wv by a new edge uw to obtain a
smaller counterexample.

Another observation is:19

17 As usual, dE(U) = |δE(U)| and dR(U) = |δR(U)|.
18 A set X splits a pair uv if X contains exactly one of u and v.
19 F [X, Y ] denotes the set of pairs xy in F with x ∈ X and y ∈ Y .



1268 Chapter 72. Three or more commodities

(72.3) for each tight set X and each v ∈ V \ X we have |E[X, v]| −
|R[X, v]| ≤ 1

2 (degE(v) − degR(v)),

since, setting X ′ := X ∪{v} we have dE(X ′) = dE(X)+degE(v)−2|E[X, v]|
and dR(X ′) = dR(X) + degR(v) − 2|R[X, v]|. Then dE(X) = dR(X) and
dE(X ′) ≥ dR(X ′) give (72.3).

The following is also useful to observe:

(72.4) if X and Y are tight, and no net connects X \Y and Y \X, then
X ∩ Y and X ∪ Y are tight again, and no edge connects X \ Y
and Y \ X.

To see this, consider:

(72.5) dR(X) + dR(Y ) = dE(X) + dE(Y )
= dE(X ∩ Y ) + dE(X ∪ Y ) + 2|E[X \ Y, Y \ X]|
≥ dE(X ∩ Y ) + dE(X ∪ Y ) ≥ dR(X ∩ Y ) + dR(X ∪ Y )
= dR(X) + dR(Y ).

So we have equality throughout, proving (72.4).
This implies:

(72.6) let B be a set of vertices intersecting all nets, and let X and Y
be tight sets with X ∩ B = Y ∩ B. Then X ∩ Y and X ∪ Y are
tight.

Otherwise, by (72.4) there is a net connecting X \ Y and Y \ X, and hence
not intersecting B, a contradiction.

We next show that for each terminal t:20

(72.7) degE(t) = degR(t).

Assume degE(t) > degR(t). Let X be the collection of inclusionwise maximal
tight subsets of V \{t}. For each edge or net p, let Xp denote the set of U ∈ X
splitting p.

We have |Xe| ≥ 2 for each edge e ∈ δE(t), since by (72.2), each pair of
edges incident with t is split by some U ∈ X , and since no tight set X splits
all edges incident with t simultaneously, as it would imply

(72.8) dE(X ∪ {t}) = dE(X) − degE(t) = dR(X) − degE(t)
< dR(X) − degR(t) ≤ dR(X ∪ {t}).

Also we have |Xr| ≤ 2 for each r ∈ δR(t), and we have |X | ≤ 4. Indeed, let
r = st. By (72.1), there exists a vertex u such that each net intersects B :=
{s, t, u}. Therefore, by (72.6), any two sets in X have a different intersection
with B (as otherwise their union is tight, contradicting their maximality). As
no set in X contains t, we have the required inequalities.

This gives with (72.3):

20 A terminal is a vertex covered by at least one net.
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(72.9) 2(degE(t) − degR(t)) ≤
∑

e∈δE(t)

|Xe| −
∑

r∈δR(t)

|Xr|

=
∑

U∈X

(|E[U, t]| − |R[U, t]|) ≤ 1
2 |X |(degE(t) − degR(t))

≤ 2(degE(t) − degR(t)).

Hence equality holds throughout in (72.9). So |X | = 4, |Xe| = 2 for each
e ∈ δE(t), and |Xr| = 2 for each r ∈ δR(t). Hence the Xe form a graph
on the vertex set X , such that any two of its edges intersect (by (72.2)),
but no vertex is in all edges (since no tight set splits all edges in δE(t)). So
there is a U ∈ X contained in no Xe; that is, E[U, t] = ∅. Since we have
equality in (72.3) (as we have equality throughout in (72.9)), it follows that
degE(t) − degR(t) = 0, that is, we have (72.7).

(72.7) implies that

(72.10) no two terminals s and t are adjacent,

since otherwise dE({s, t}) < degE(s) + degE(t) = degR(s) + degR(t) =
dR({s, t}), contradicting the cut condition.

Now choose st ∈ R. By (72.1), there is a vertex u 	∈ {s, t} such that each
commodity disjoint from st intersects u. We can assume that u is a terminal,
as otherwise s and t are the only terminals, in which case the theorem follows
from Menger’s theorem. Since, by (72.7), V \ {u} is tight, there exists a tight
subset Z which is inclusionwise minimal under the conditions that s, t ∈ Z
and u 	∈ Z.

Then s has a neighbour v ∈ Z. Otherwise we have

(72.11) dE(Z) = degE(s)+dE(Z \{s}) ≥ degR(s)+dR(Z \{s}) > dR(Z)

(as s, t ∈ Z), contradicting the tightness of Z.
Let Y be the collection of all inclusionwise maximal tight subsets of V \{v}

containing s. By (72.10), v is not a terminal. Hence, by (72.3), |E[Y, v]| ≤
1
2 degE(v) for each Y ∈ Y. Therefore, since (by (72.2)) each edge incident
with v is split by at least one Y ∈ Y, we have |Y| ≥ 3.

Then by (72.6), the sets in Y all have different intersections with {t, u}.
(By definition, each set in Y contains s.) Moreover, Y ∩ {t, u} 	= {t} for each
Y ∈ Y, since otherwise also Y ∩ Z is tight (by (72.6), as Z ∩ {t, u} = {t}),
contradicting the minimality of Z (note that v 	∈ Y ∩ Z).

So |Y| = 3 and the sets in Y intersect {t, u} in ∅, {u}, and {t, u} — denote
these sets by S, U , and W , respectively (cf. Figure 72.2).

By the maximality of S, U , and W , S ∪ U and U ∪ W are not tight.
Hence, by (72.4), there is a net γ connecting S \ U and U \ S, and a net δ
connecting W \ U and U \ W . Then γ and δ intersect {s, t, u}. As s, t 	∈ γ
(since s, t ∈ S ∩ U) and u 	∈ S \ U , we know γ = uw for some w ∈ S \ U . As
s, u 	∈ δ (since s ∈ S ∩ W and u 	∈ S ∪ W ) and t 	∈ U \ W , we know δ = tx for
some x ∈ U \ W . As st and tx are disjoint from uw, each net disjoint from
uw contains t.
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S

W

U

s tu v

Figure 72.2

However, as edge sv connects W ∩ S and V \ (W ∪ S), by (72.4) (applied
to X := W and Y := V \ S), there is a net sa connecting these two sets.
Then a 	= u, w, t, and therefore sa is disjoint from u, w, t, a contradiction.

(a) (b)

Figure 72.3

Examples where the cut and Euler conditions hold, but no

fractional multiflow exists. The heavy lines are the nets and the
other lines the edges. All capacities and demands are equal to 1.

Theorem 72.2 also holds if H consists of three disjoint edges — see The-
orem 72.3. The examples in Figure 72.3 (from Papernov [1976]) show that
the condition on the demand graph H in Theorem 72.2 is close to tight.
This is made more precise in the following characterization implied by Theo-
rem 72.2 (the equivalence (i)⇔(iv)⇔(v) is due to Papernov [1976], the other
equivalences to Lomonosov [1976,1985] and (for K4) to Seymour [1980c]):

Corollary 72.2a. For each simple graph H = (T, R) without isolated ver-
tices, the following are equivalent:

(72.12) (i) for each graph G = (V, E) with V ⊇ T , and each c : E → R+

and d : R → R+, the cut condition implies the existence of a
fractional multiflow;
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(ii) for each graph G = (V, E) with V ⊇ T , and each c : E → Z+

and d : R → Z+, the cut condition implies the existence of a
half-integer multiflow;

(iii) for each graph G = (V, E) with V ⊇ T , and each c : E →
Z+ and d : R → Z+, the cut and Euler conditions imply the
existence of an integer multiflow;

(iv) H contains none of the graphs in Figure 72.1 as subgraph;
(v) H = K4, or H = C5, or H is the union of two stars.

Proof. The equivalence (iv)⇔(v) was shown in Theorem 72.1. The implica-
tions (iii)⇒(ii)⇒(i) are general multiflow theory, while (i)⇒(iv) follows from
the examples of Figure 72.3. The implication (iv)⇒(iii) follows from Theorem
72.2, by replacing each edge of G by c(e) parallel edges and each edge of H
by d(e) parallel edges.

Karzanov [1979b] gave a strongly polynomial-time algorithm finding a
half-integer multiflow as required if H satisfies (72.12)(iv) (or finding a cut
violating the cut condition).

72.2. Three commodities

An important case excluded by the theorems in the previous sections is that
of a demand graph consisting of three disjoint edges, with d = 1.

Theorem 72.3. Let G = (V, E) and H = (T, R) be graphs, with T ⊆ V ,
such that G + H is Eulerian and such that R consist of three disjoint edges.
Then there exist edge-disjoint paths Pr (for r ∈ R) such that Pr connects the
vertices in r if and only if the cut condition holds.

Proof. Let R = {r1, r2, r3}. Let G be a counterexample with a minimum
number of edges. Then G is connected, and each vertex of G has degree at
least two. Call U ⊆ V tight if dE(U) = dR(U). Also:

(72.13) dR(U) = 3 for each tight nonempty proper subset U of V .

To see this, let U be a counterexample with dE(U) smallest. Then G[U ] and
G−U are connected. (Otherwise we could replace U by one of the components
K of G[U ] or G − U , while dE(K) < dE(U).) Also, dR(U) = dE(U) ≥ 1 as
G is connected. So we can assume that r1 ∈ δR(U) and that V \ U spans
r2. Contract U to obtain graph G/U . As the cut condition remains to hold,
and as G/U is smaller than G (since |U | ≥ 2, as dE(v) ≥ 2 > dR(v) for
each v ∈ V ), G/U contains edge-disjoint paths Q1 and Q2 where Qi connects
(the contractions of) the vertices in ri (i = 1, 2). As G[U ] is connected, G[U ]
contains a path connecting the vertex in r1 ∩ U and the end of the edge in
δE(U) that is traversed by Q1. It follows that G contains two edge-disjoint
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paths P1 and P2 where Pi connects the vertices in ri (i = 1, 2). Removing
the edges of P1 and P2 from G, we are left with a graph with exactly two
vertices of odd degree, namely the vertices in the pair r3. Hence this graph
contains a path P3 connecting the vertices in r3. Then P1, P2, and P3 are as
required. This is a contradiction, proving (72.13).

Consider now any r = st ∈ R and any edge tu of G incident with t.
Let R′ := (R \ {st}) ∪ {su}. Let G′ = (V, E′) be the graph obtained from
G by deleting edge tu. If the cut condition holds for G′, R′, we obtain (by
induction) three paths in G′ that directly yields paths as required in G. So we
can assume that there is a subset U of V with dR′(U) > dE′(U) and t 	∈ U .
As G′ + H ′ is Eulerian, we know dR′(U) ≥ dE′(U) + 2. Then

(72.14) dR(U) ≥ dR′(U) − 1 ≥ dE′(U) + 1 ≥ dE(U) ≥ dR(U).

So we have equality throughout, and hence dE(U) = dR(U), and s 	∈ U ,
u ∈ U (otherwise dR′(U) ≥ dR(U)). So dR(U) ≤ 2, contradicting (72.13).

With Theorem 72.2, this implies the following characterization:

Corollary 72.3a. For any loopless graph H = (T, R) without isolated ver-
tices, the following are equivalent:

(72.15) (i) for each graph G = (V, E) with V ⊇ T satisfying the cut and
Euler condition (with respect to H), the edge-disjoint paths
problem has a solution;

(ii) T has two vertices intersecting all pairs in R, or |T | ≤ 4, or H
is C5 with parallel edges added, or R consists of three disjoint
edges;

(iii) H has no subgraph equal to , , , , or .

Proof. The implication (iii)⇒(ii) follows from Theorem 72.1. The implica-
tion (ii)⇒(i) follows from Theorems 72.2 and 72.3. The implication (i)⇒(iii)
follows from the examples in Figure 72.3, since from each of graphs given
in (iii) we can obtain or , by identifying some vertices. Then from the
examples in Figure 72.3 we can obtain examples for the graphs in (iii) by
adding two parallel edges between any pair of identified vertices.

Notes. For |R| = 3, Okamura [1984a] showed that the cut condition implies the
existence of a half-integer solution for the edge-disjoint paths problem. (This seems
not to follow from Theorem 72.3. On the other hand, having Okamura’s result,
to prove Theorem 72.3 it suffices to show that if the Euler condition holds and a
half-integer solution exists, there is an integer solution.)

This implies the following characterization, extending Corollary 72.3a.

Theorem 72.4. For any loopless graph H = (T, R) without isolated vertices, the
following are equivalent:

(72.16) (i) for each graph G = (V, E) with V ⊇ T satisfying the cut condition,
the edge-disjoint paths problem has a fractional solution;



Section 72.2a. The K2,3-metric condition 1273

(ii) for each graph G = (V, E) with V ⊇ T satisfying the cut condition,
the edge-disjoint paths problem has a half-integer solution;

(iii) for each graph G = (V, E) with V ⊇ T satisfying the cut and Euler
condition, the edge-disjoint paths problem has a solution;

(iv) T has two vertices intersecting all pairs in R, or |T | ≤ 4, or H is
C5 with parallel edges added, or R consists of three disjoint pairs;

(v) H has no subgraph equal to , , , , or .

Figure 70.4 shows that there is no integer p such that if a 3-commodity problem,
with integer capacities and demands, has a fractional solution, then it has a 1/p-
integer solution. More precisely, for each integer k ≥ 2, there is a graph G = (V, E)
and a collection R of three disjoint pairs from V , such that for c : E → Z+ defined
by c(e) = 1 for each edge e and d : R → Z+ with values 1, 2k, 2k respectively, there
is a fractional multiflow, but each feasible solution has some of its values equal to
1/2k.

By doubling capacities and demands, one obtains an example of a 3-commodity
flow problem satisfying the Euler condition, where a fractional but no half-integer
multiflow exists. A variant of the example gives a 3-commodity flow problem satis-
fying the Euler condition, where a half-integer but no integer solution exists.

M. Middendorf and F. Pfeiffer (cf. Pfeiffer [1990]) showed that it is NP-complete
to decide if the edge-disjoint paths problem has a half-integer solution, even if the
nets consist of three disjoint parallel classes of edges. This implies a result of Vygen
[1995] that it is NP-complete to decide if the edge-disjoint paths problem has a
solution, even if the nets consist of three disjoint parallel classes of edges and the
Euler condition holds.

Let H6 be the graph obtained from K3,3 by adding in each of the two colour
class one new edge (cf. Figure 72.3(a)). Seymour [1981a] showed for each graph
G = (V, E):

(72.17) G has no H6 minor if and only if for each R ⊆ E with |R| ≤ 3 and
each c : E \ R → Z+ and d : R → Z+ satisfying the Euler condition,
the cut condition implies the existence of an integer multiflow (where
(V, E \ R) is the supply graph).

The proof is by showing that each 3-connected graph without H6 minor is K5 or
has no K5 minor, and hence can be decomposed into planar graphs and copies of
V8 (Wagner’s theorem (Theorem 3.3)).

72.2a. The K2,3-metric condition

Karzanov [1987a] showed that a strengthened form of the cut condition, the ‘K2,3-
metric condition’, is sufficient for having a fractional multiflow for a class of demand
graphs larger than described in Section 72.1.

This is described as follows. Let Γ be a graph and let V be a finite set. A metric
µ on V is called a Γ -metric if there is a function φ : V → V Γ with

(72.18) µ(u, v) = distΓ (φ(u), φ(v))

for all u, v ∈ V . (Here distΓ (x, y) denotes the distance of x and y in Γ .)
Γ -metrics give rise to the following necessary condition, the Γ -metric condition,

for the existence of a feasible fractional multiflow:
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(72.19)
∑

r=st∈R

d(r)µ(s, t) ≤
∑

e=uv∈E

c(e)µ(u, v) for each Γ -metric µ on V .

This is a specialization of condition (70.11). Since each cut gives a K2-metric, and
hence a K2,3-metric, condition (72.19) includes the cut condition.

Karzanov [1987a] showed:

Theorem 72.5. Let G = (V, E) be a graph and let H = (T, R) be a complete graph
with |T | = 5 and T ⊆ V . Let c : E → R+ and d : R → R+. Then there exists a
fractional multiflow if and only if the K2,3-metric condition holds. If moreover c
and d are integer, there is a half-integer multiflow. If moreover the Euler condition
holds, there is an integer multiflow.

Theorem 72.5 implies the following characterization:

Corollary 72.5a. For each simple graph H = (T, R) without isolated vertices, the
following are equivalent:

(72.20) (i) for each graph G = (V, E) with V ⊇ T , and each c : E → Z+

and d : R → Z+, the existence of a fractional solution implies the
existence of a half-integer solution;

(ii) for each graph G = (V, E) with V ⊇ T , and each c : E → Z+ and
d : R → Z+, the Euler condition and the existence of a fractional
solution imply the existence of an integer solution;

(iii) H has no three disjoint edges and no two disjoint triangles;
(iv) |V H| = 5, or H is the union of a triangle and a star, or H is the

union of two stars.

That (72.20)(iv) implies (72.20)(i) follows from Theorem 72.5, as we can replace
a star with center s by an edge sw, where w is a new vertex, with the construc-
tion of Dinits given in the proof of Corollary 71.1c. Conversely, (72.20)(i) implies
(72.20)(iii). It requires giving a counterexample if H consists of three disjoint edges,
and one if H consists of two disjoint triangles. If H consists of three disjoint edges,
a counterexample was given in Figure 70.4. If H consists of two disjoint triangles, a
counterexample follows (by doubling all capacities and demands) from Figure 72.4
(A.V. Karzanov, personal communication 2000), where c and d are integer, and
where a quarter-integer, but no half-integer solution exists.

Karzanov [1991] conjectures that if R consists of two disjoint triangles and c
and d are integer and satisfy the Euler condition, then the existence of a fractional
solution implies the existence of a half-integer solution21. This would imply that
for each fixed graph H = (T, R) the following equivalences holds:

(72.21) (?) there is an integer k such that for each graph G = (V, E) with
V ⊇ T and each c : E → Z+ and d : R → Z+, if there is a feasible
multiflow, then there exists a 1

k
-integer multiflow

⇐⇒ for each graph G = (V, E) with V ⊇ T and each c : E → Z+

and d : R → Z+, if there is a feasible multiflow, then there exists a
1
4
-integer multiflow

⇐⇒ H has no three disjoint edges. (?)

21 A proof of this was announced in Karzanov [1987a], but A.V. Karzanov communicated
to me that the proof failed.
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A quarter-integer multiflow exists, but no half-integer multi-

flow. The nets (indexed by 1, . . . , 6) are indicated by indices at ver-
tices. All capacities and demands are 1. The quarter-integer multiflow
is indicated by indices at the edges: k times index i at edge e means
fi(e) = k

4
.

The nonexistence of a half-integer multiflow can be seen as follows.
Give each of the (three) edges that connect terminals length 2, and any
other edge length 1. Then the distance between the two terminals in
any net is 4. Also, the sum of the lengths of the edges equals 24. So
any flow fi in a half-integer multiflow, can be decomposed as half of
the sum of two flows following si − ti paths Pi,1 and Pi,2 of length 4.
Moreover, on each edge, the capacity is fully used. Hence, each vertex v
of degree 3 not being a terminal, is traversed by three paths Pi,j , each
using a different pair of edges incident with v. One easily checks that
this is not possible.

Karzanov [1998d] studied the existence of an integer multiflow if the nets form a
disjoint union of a triangle and an edge.

72.2b. Six terminals

Okamura [1987] showed the following. Let G = (V, E) and H = (T, R) be a supply
and a demand graph. If |T | ≤ 6 and k := |R| is odd, and if moreover G has k
edge-disjoint s − t paths, for each st ∈ R, then there exists a family (Pr | r ∈ R) of
edge-disjoint paths in G, where Pr connects the ends of r (for r ∈ R). (For |T | ≤ 5
this was proved in Okamura [1984b].)

Okamura [1998] showed that if |T | ≤ 6 and G is l-edge-connected, where

(72.22) l := max
U⊆V

dR(U),
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then the edge-disjoint paths problem has a half-integer solution (that is, for each
r ∈ R there exist paths P ′

r and P ′′
r connecting the ends of r, such that each edge

of G is in at most two of the paths P ′
r, P

′′
r (over all r ∈ R)). She conjectures that

here the condition |T | ≤ 6 can be deleted.

72.3. Cut packing

By Theorem 70.5, Corollary 72.2a implies a fractional cut packing theorem.
A stronger (integer) version of it was proved by Karzanov [1985b], which
generalizes Theorem 71.3 (we follow the proof given in Schrijver [1991e]):

Theorem 72.6. Let G = (V, E) be a connected bipartite graph and let H =
(T, R) be a simple graph satisfying (72.1), with T ⊆ V . Then G has disjoint
cuts such that for each st ∈ R, distG(s, t) is equal to the number of these cuts
separating s and t.

Proof. Let G = (V, E) be a counterexample with |E| as small as possible.
Define d(u, v) := distG(u, v) for u, v ∈ V . We first show:

(72.23) for each nonempty cut C there exist a pair st ∈ R and an s − t
path P with |EP \ C| ≤ d(s, t) − 2.

If not, contract all edges in C, giving graph G′. Then for all st ∈ R we have

(72.24) d′(s′, t′) =

{
d(s, t) − 1 if C separates {s, t},

d(s, t) if C does not separate {s, t}.

(Here and below, v′ denotes the image of v in G, and d′ denotes the distance
function of G′.) As G is a smallest counterexample, G′ has disjoint cuts
C1, . . . , Ct such that d′(s′, t′) is equal to the number of cuts separating s′ and
t′, for each st ∈ R. Together with C this gives, in the original graph G, cuts
as required, by (72.24). This proves (72.23).

From (72.23) we derive:

(72.25) for all u, w ∈ V , there exists a pair st ∈ R such that {s, t} ∩
{u, w} = ∅ and such that

d(s, t) + d(u, w) ≥ d(s, w) + d(u, t) and
d(s, t) + d(u, w) ≥ d(s, u) + d(w, t).

To prove this, let X be the set of vertices that are on at least one shortest
u − w path.

First, suppose that X = V . By (72.23), there exist st ∈ R and an s − t
path P with |EP \ δ(u)| ≤ d(s, t)− 2. So P is a shortest s− t path traversing
u, and u 	= s, t. To see that w 	= s, t, suppose w = t, say. Then, as d(u, w) =
d(u, s) + d(s, w) (since s ∈ X),

(72.26) |EP \ δ(u)| = |EP | − 2 = d(s, u) + d(u, t) − 2
= d(s, u) + d(u, w) − 2 = 2d(s, u) + d(s, w) − 2 > d(s, w) − 2
= d(s, t) − 2,
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a contradiction. So {s, t} ∩ {u, w} = ∅. Moreover,

(72.27) d(s, t) + d(u, w) = d(s, t) + d(u, s) + d(s, w) ≥ d(s, w) + d(u, t).

One similarly shows the second inequality in (72.25).
Second, suppose that X 	= V . Let C := δ(X), and let G′ be the graph

obtained from G by contracting all edges in C. Then for each vertex x:

(72.28) d′(u′, x′) ≥ d(u, x) − 1 and d′(w′, x′) ≥ d(w, x) − 1.

To see the first inequality, let P be a u−x path in G with |EP \C| = d′(u′, x′).
Choose P with |EP ∩ C| smallest. If the first inequality does not hold, then
|EP ∩ C| ≥ 2. Then we can split P as P ′P ′′ such that |EP ′ ∩ C| = 2. Let
P ′ connect u and v. As |EP ′ ∩ C| = 2 and u ∈ X we know v ∈ X. Since P ′

is not fully contained in X, we know that |EP ′| ≥ d(u, v) + 2. Let Q be a
shortest u − v path in G. Then |EQ| = d(u, v) ≤ |EP ′| − 2, and Q is fully
contained in X. Let R be the concatenation QP ′′. Then |ER \C| ≤ |EP \C|
and |ER∩C| = |EP ∩C|−2, contradicting the minimality of |EP ∩C|. This
shows the first inequality in (72.28); the second inequality is proved similarly.

By (72.23), there exists st ∈ R such that d′(s′, t′) ≤ d(s, t) − 2. Then
(72.28) implies {s, t} ∩ {u, w} = ∅. Moreover, there exist a v ∈ X and a
shortest s′ − t′ path in G′ traversing v′. Hence

(72.29) d(s, t) + d(u, w) ≥ d′(s′, t′) + d(u, w) + 2
= d′(s′, v′) + d′(v′, t′) + d(u, v) + d(v, w) + 2
≥ d′(s′, v′) + d′(v′, t′) + d′(u′, v′) + d′(v′, w′) + 2
≥ d′(s′, w′) + d′(u′, t′) + 2 ≥ d(s, w) + d(u, t).

This gives the first inequality in (72.25); the second inequality is proved
similarly.

(72.25) implies that for each pair {u, w} of vertices of G there exists an
st ∈ R disjoint from {u, w}. So H is not the union of two stars, and hence
H = K4 or H = C5 (up to isolated vertices, which we can ignore).

If H = K4, let T = {r1, r2, r3, r4}. Then by (72.25):

(72.30) d(r1, r2) + d(r3, r4) ≥ d(r1, r3) + d(r2, r4) ≥ d(r1, r4) + d(r2, r3)
≥ d(r1, r2) + d(r3, r4).

Hence we have equality throughout, that is

(72.31) d(t, u) + d(v, w) = d(t, v) + d(u, w) for all distinct t, u, v, w ∈ T .

This implies that there exists a function φ : T → R+ such that d(u, v) =
φ(u) + φ(v) for each two distinct u, v ∈ T . (Indeed, let φ(v) := 1

2 (d(u, v) +
d(v, w) − d(u, w)) for arbitrary u, w with v 	= u 	= w 	= v. That this is
independent of the choice of u, w follows from (72.31).)

Since all vertices are distinct, d(u, v) > 0 for all distinct u, v ∈ T , and
so φ(v) > 0 for at least one v ∈ T . By (72.23), there exist st ∈ R and
an s − t path P such that |EP \ δ(v)| ≤ d(s, t) − 2. So P traverses v, and
|EP | = d(s, t) = φ(s) + φ(t). However,
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(72.32) |EP | ≥ d(s, v) + d(v, t) = φ(s) + 2φ(v) + φ(t) > φ(s) + φ(t),

a contradiction.
If H = C5, let T = {r1, . . . , r5} and R = {riri+1 | i = 1, . . . , 5}, taking

indices mod 5. Applying (72.25) to u := ri and w := ri+2, we obtain st =
ri+3ri+4 (as it is the unique pair in R disjoint from {u, w}), and hence

(72.33) d(ri, ri+2) + d(ri+3, ri+4) ≥ d(ri, ri+3) + d(ri+2, ri+4)
(i = 1, . . . , 5),

d(ri, ri+2) + d(ri+3, ri+4) ≥ d(ri, ri+4) + d(ri+2, ri+3)
(i = 1, . . . , 5).

Adding up these ten inequalities, we obtain the same sum at both sides of
the inequality sign. So we have equality in each of (72.33). This is equivalent
to (72.31), and we obtain a contradiction in the same way as above.

(a) (b)

Figure 72.5

The heavy lines are the edges of H, the other lines those of G. In both
cases, G has no disjoint cuts such that for any edge r in H, the distance
in G between the vertices in r is equal to the number of cuts separating
them.

We cannot delete condition (72.1) in Theorem 72.6, as is shown by the
examples given in Figure 72.5.

Notes. Karzanov [1985b] gave an O(n3) algorithm to find the cut packings of
Theorem 72.6 (also for the weighted case). Theorem 72.2 can also be derived from
Theorem 72.6, with the help of Theorems 70.5 and 70.7.

Karzanov [1990b] extended these cut packing results to packing K2,3-metrics
(cf. Section 72.2a):

(72.34) Let G = (V, E) be a bipartite graph and let T ⊆ V with |T | = 5. Then
there exist K2,3-metrics µ1, . . . , µk such that distG(u, v) ≥ µ1(u, v) +
· · · + µk(u, v) for all u, v ∈ V , with equality if u, v ∈ T .
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T -paths

We now go over to the problem of finding a maximum number of disjoint
paths whose ends are two different vertices in a given set T of vertices — the
T -paths. (So the nets are all pairs of distinct vertices in T .) Fundamental
theorems of Mader imply min-max relations for this.

73.1. Disjoint T -paths

Let G = (V, E) be a graph and let T ⊆ V . A path is called an T -path if its
ends are distinct vertices in T and no internal vertex belongs to T .

Mader [1978c] gave a min-max formula for the maximum number of in-
ternally vertex-disjoint T -paths. It generalizes the undirected, vertex-disjoint
version of Menger’s theorem (by taking |T | = 2) and the Tutte-Berge for-
mula (by adding to each vertex v of a graph G a copy v′ of v and an edge
vv′; taking for T the set of new vertices, the maximum number of internally
vertex-disjoint T -paths is equal to the matching number of G).

As in Schrijver [2001], we derive Mader’s theorem from a theorem of Gallai
[1961], which we derive (as Gallai did) from matching theory (the Tutte-Berge
formula):

Theorem 73.1 (Gallai’s disjoint T -paths theorem). Let G = (V, E) be an
undirected graph and let T ⊆ V . The maximum number of disjoint T -paths
is equal to the minimum value of

(73.1) |U | +
∑

K

⌊ 1
2 |K ∩ T |⌋

taken over U ⊆ V , where K ranges over the components of G − U .

Proof. The maximum is at most the minimum, since for each U ⊆ V , each
T -path intersects U or has its ends in K ∩T for some component K of G−U .

To see equality, let µ be equal to the minimum value of (73.1). Let the

graph G̃ = (Ṽ , Ẽ) arise from G by adding a disjoint copy G′ of G − T , and
making the copy v′ of each v ∈ V \ T adjacent to v and to all neighbours of

v in G. By the Tutte-Berge formula (Theorem 24.1), G̃ has a matching M of

size µ + |V \ T |. To see this, we must prove that for any Ũ ⊆ Ṽ :
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(73.2) |Ũ | +
∑

K̃

⌊ 1
2 |K̃|⌋ ≥ µ + |V \ T |,

where K̃ ranges over the components of G̃ − Ũ . Now if for some v ∈ V \ T

exactly one of v, v′ belongs to Ũ , then we can delete it from Ũ , thereby not
increasing the left-hand side of (73.2).

So we can assume that for each v ∈ V \ T , either v, v′ ∈ Ũ or v, v′ 	∈ Ũ .

Define U := Ũ ∩ V . Then each component K of G − U is equal to K̃ ∩ V for
some component K̃ of G̃ − Ũ . Hence

(73.3) |Ũ | +
∑

K̃

⌊ 1
2 |K̃|⌋ = |U | +

∑

K

⌊ 1
2 |K ∩ T |⌋ + |V \ T | ≥ µ + |V \ T |,

where K ranges over the components of G − U . Thus we have (73.2).

So G̃ has a matching M of size µ + |V \ T |. Let N be the matching

{vv′ | v ∈ V \T} in G̃. As |M | = µ+ |V \T | = µ+ |N |, the union M ∪N has
at least µ components with more edges in M than in N . Each such component
is a path connecting two vertices in T . Then contracting the edges in N yields
µ disjoint T -paths in G.

We now derive Mader’s theorem. Let G = (V, E) be a graph and let S
be a collection of disjoint subsets of V . A path in G is called an S-path if it
connects two different sets in S and has no internal vertex in any set in S.
Denote T :=

⋃
S.

Theorem 73.2 (Mader’s disjoint S-paths theorem). The maximum number
of disjoint S-paths is equal to the minimum value of

(73.4) |U0| +
n∑

i=1

⌊ 1
2 |Bi|⌋,

taken over all partitions U0, . . . , Un of V such that each S-path intersects
U0 or traverses some edge spanned by some Ui. Here Bi denotes the set of
vertices in Ui that belong to T or have a neighbour in V \ (U0 ∪ Ui).

Proof. Let µ be the minimum value of (73.4). Trivially, the maximum num-
ber of disjoint S-paths is at most µ, since any S-path disjoint from U0 and
traversing an edge spanned by Ui, traverses at least two vertices in Bi.

Fixing V , choose a counterexample E, S minimizing

(73.5) |E| − |{{x, y} | x, y ∈ V, ∃X, Y ∈ S : x ∈ X, y ∈ Y, X 	= Y }|.

Then each X ∈ S is a stable set of G, since deleting any edge e spanned by X
does not change the maximum and minimum value in Mader’s theorem (as
no S-path traverses e and as deleting e does not change any set Bi), while it
decreases (73.5).
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If |X| = 1 for each X ∈ S, the theorem reduces to Gallai’s disjoint T -
paths theorem (Theorem 73.1): we can take for U0 any set U minimizing
(73.1), and for U1, . . . , Un the components of G − U .

So |X| ≥ 2 for some X ∈ S. Choose s ∈ X. Define

(73.6) S ′ := (S \ {X}) ∪ {X \ {s}, {s}}.

Replacing S by S ′ decreases (73.5), but it does not decrease the minimum
in Mader’s theorem (as each S-path is an S ′-path and as

⋃
S ′ = T ). Hence

there exists a collection P of µ disjoint S ′-paths.
Necessarily, there is a path P0 ∈ P connecting s with another vertex in

X (otherwise P forms µ disjoint S-paths). Then all other paths in P are
S-paths. Let u be an internal vertex of P0 (u exists, since X is a stable set).
Define

(73.7) S ′′ := (S \ {X}) ∪ {X ∪ {u}}.

Replacing S by S ′′ decreases (73.5), but it does not decrease the minimum in
Mader’s theorem (as each S-path is an S ′′-path and as

⋃
S ′′ ⊇ T ). So there

exists a collection Q of µ disjoint S ′′-paths. Choose Q such that Q uses a
minimal number of edges not used by P.

Necessarily, u is an end of some path Q0 ∈ Q (otherwise Q forms µ disjoint
S-paths). Then all other paths in Q are S-paths. As |P| = |Q| and as u is
not an end of any path in P, there exists an end r of some path P ∈ P that
is not an end of any path in Q.

Then P intersects some path in Q (otherwise (Q \ {Q0}) ∪ {P} would
form µ disjoint S-paths). So when following P starting from r, there is a first
vertex w that is on some path in Q, say on Q ∈ Q. Let Q be split at w into
subpaths Q′ and Q′′ say (possibly of length 0). Let P ′ be the r − w part of
P .

If EQ′ 	⊆ EP and EQ′′ 	⊆ EP , we may assume that r is not in the same
class of S ′′ as the end of Q′ is. Then after replacing part Q′′ of Q by P ′, Q
remains an S ′′-path disjoint from the other paths in Q. This contradicts our
minimality assumption on Q.

So we can assume that EQ′ ⊆ EP . If P 	= P0, then after resetting Q
to P , Q remains an S ′′-path disjoint from the other paths in Q. Again this
contradicts our minimality assumption on Q.

So P = P0, and hence (since EQ′ ⊆ EP ) we have Q = Q0. Then replacing
part Q′ of Q by P ′, we obtain µ disjoint S-paths as required.

(The case splitting finishing this proof is due to A. Frank (personal commu-
nication 2002).)

Theorem 73.2 is equivalent to the original form of Mader’s theorem on
internally vertex-disjoint T -paths (instead of fully disjoint S-paths), which
reads as follows.

For any graph G, let BG(U) denote the set of vertices in U having a
neighbour that is not in U .
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Corollary 73.2a (Mader’s internally disjoint T -paths theorem). Let G =
(V, E) be a graph and let T be a stable subset of V . Then the maximum
number of internally vertex-disjoint T -paths is equal to the minimum value
of

(73.8) |U0| +
n∑

i=1

⌊ 1
2 |BG−U0

(Ui)|⌋,

where U0, U1, . . . , Un partition V \ T such that each T -path intersects U0 or
traverses some edge spanned by some Ui.

Proof. Trivially, the maximum is not more than the minimum (since each
T -path not intersecting U0 traverses at least two vertices in some Ui, hence
it traverses at least two vertices in Ui that have a neighbour out of Ui ∪ U0).

To see equality, we can assume that no two vertices in T have a common
neighbour v. Otherwise we can apply induction by deleting v, which reduces
both the maximum and the minimum by 1.

Now the present corollary follows from Theorem 73.2 applied to G − T
and the collection S := {N(s) | s ∈ T}.

Mader’s internally disjoint T -paths theorem in turn implies the edge-
disjoint version, proved by Mader [1978b]:

Corollary 73.2b (Mader’s edge-disjoint T -paths theorem). Let G = (V, E)
be a graph and let T ⊆ V . Then the maximum number of edge-disjoint T -
paths is equal to the minimum value of

(73.9) 1
2

( ∑

s∈T

dE(Xs) − κ
)
,

where the Xs are disjoint sets with s ∈ Xs (for s ∈ T ), and where κ denotes
the number of components K of the graph G −

⋃
s∈T Xs with dE(K) odd.

Proof. Let t be the maximum number of edge-disjoint T -paths. It is easy to
see that t cannot exceed the minimum value of (73.9).

To see equality, first observe that, if G has an edge e such that by delet-
ing e, the maximum drops by 1, we can apply induction on |E|, since the
minimum drops by at most 1.

So we can assume that no such edge exists. We make an auxiliary graph
G′ = (V ′, E′) as follows. For each u ∈ V \ T , let Wu be a stable set of size
3t + 1. For each edge e ∈ E, let ve be a new vertex. Let ve be adjacent to all
vertices in Wu if u ∈ e, and to s ∈ T if s ∈ e. This defines the graph G′ (with
vertex set V ′ = T ∪ {ve | e ∈ E} ∪

⋃
u∈V \T Wu).

Then t is equal to the maximum number of disjoint T -paths in G′. Hence,
by Corollary 73.2a, there exist disjoint subsets U0, . . . , Un of V ′ \T such that

(73.10) each T -path in G′ intersects U0 or traverses an edge spanned by
some Ui,
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and such that

(73.11) t ≥ |U0| +
n∑

i=1

⌊ 1
2 |Bi|⌋,

where Bi is the set of vertices in Ui having a neighbour in V ′ \ (U0 ∪ Ui).
By our assumption that the maximum does not drop by deleting any edge

e, we know that U0 contains no vertex ve.
We may assume that |Bi| ≥ 2 for each i, since if |Bi| ≤ 1, we can delete

Ui, as no T -path in G′ avoiding U0 traverses any edge spanned by Ui. This
implies that |Bi| ≤ 3⌊ 1

2 |Bi|⌋, and hence

(73.12) |U0| +
n∑

i=1

|Bi| ≤ 3(|U0| +
n∑

i=1

⌊ 1
2 |Bi|⌋) < 3t + 1.

So for each u ∈ V \ T , there exists a wu ∈ Wu with wu 	∈ U0 ∪ B1 ∪ · · · ∪ Bn.
For u ∈ T , let wu := u.

For each i = 1, . . . , n, let Yi := {u ∈ V \ T | wu ∈ Ui} and let Ei be the
set of edges e ∈ E with ve ∈ Bi. Then

(73.13) δE(Yi) ⊆ Ei

for each i = 1, . . . , n. To see this, let e ∈ δE(Yi), with e = uv and u ∈ Yi and
v 	∈ Yi. Then u ∈ Yi implies wu ∈ Ui. Hence wu ∈ Ui \ Bi, implying ve ∈ Ui.
As v 	∈ Yi, we know wv 	∈ Ui. Hence ve has a neighbour out of U0 ∪ Ui, and
so ve ∈ Bi. Therefore, e ∈ Ei, proving (73.13).

Hence no edge of G connects two different Yi and Yj (since Ei ∩ Ej = ∅).
Suppose now that G−Y1−· · ·−Yn contains a T -path P . Route P as a T -path
P ′ in G′, by replacing each edge of P by ve and any u ∈ V \ T by wu. Then
P ′ is disjoint from U0. So P ′ traverses an edge spanned by some Ui. Then
P ′ traverses a vertex wu ∈ Ui for some u ∈ V \ T . Hence P traverses Yi, a
contradiction.

For s ∈ T , let Xs be the set of vertices of G reachable in G−Y1 −· · ·−Yn

from s. Then we have

(73.14) t ≥
n∑

i=1

⌊ 1
2 |Ei|⌋ ≥ 1

2

( ∑

s∈T

dE(Xs) − κ
)
,

where κ is the number of components K of G −
⋃

s∈T Xs with dE(K) odd.

(This min-max formula was proved also in an unpublished manuscript of
Lomonosov [1978b].)

73.1a. Disjoint T -paths with the matroid matching algorithm

As Lovász [1980a] showed, Mader’s theorem can be derived from matroid matching
theory, and also a polynomial-time algorithm to find a maximum packing of T -
paths follows from it. We restrict ourselves to deriving polynomial-time solvability,
and consider the equivalent problem of finding a maximum packing of S-paths.
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Let G = (V, E) be a graph and let S1, . . . , Sk be disjoint subsets of V . Let
S := {S1, . . . , Sk} and T := S1 ∪ · · · ∪ Sk.

We can assume that each Si is a stable set. Consider the linear space (R2)V ,
considered as the set of functions x : V → R

2. For each edge e = uw of G, let Le

be the linear subspace of (R2)V given by:

(73.15) Le := {x ∈ (R2)V | x(v) = 0 for each v ∈ V \{u, w}, x(u)+x(w) = 0}.

So dim Le = 2.
Choose distinct 1-dimensional subspaces l1, . . . , lk of R

2. For each v ∈ V , let
Lv := li if v ∈ Si for some i, and Lv := {0} otherwise. Define

(73.16) Q := {x ∈ (R2)V | ∀v ∈ V : x(v) ∈ Lv}.

Let E be the collection of subspaces Le/Q (for e ∈ E) of (R2)V /Q. Then
dim(Le/Q) = 2 for each edge e, since e connects no two vertices in the same
Si (so Le ∩ Q = {0}).

For any F ⊆ E, let LF denote the corresponding collection of lines in E :

(73.17) LF := {Le/Q | e ∈ F}.

We show that for each F ⊆ E:

(73.18) LF is a matching if and only if F is a forest such that each component
of (V, F ) has at most two vertices in common with T , and at most one
with each Si.

Let X :=
∑

(Le | e ∈ F ). Then one easily checks that X consists of all x : V → R
2

with
∑

v∈K x(v) = 0 for each component K of (V, F ). So dim(X) = 2(|V | − κ),
where κ is the number of components of (V, F ). Also, dim(X ∩ Q) = 0 if and only
if each component of (V, F ) has at most two vertices in common with T , and at
most one with each Si. Now

(73.19) dim(LF ) = dim(X/Q) = dim(X) − dim(X ∩ Q) ≤ dim(X) ≤ 2|F |.
Hence LF is a matching if and only if dim(X) = 2|F | and dim(X ∩ Q) = 0. By the
previous this gives (73.18).

(73.18) then implies the following relation to S-paths:

(73.20) if G is connected, the maximum number of disjoint S-paths is equal
to ν(E) − |V | + |T |.

To see this, let t be the maximum number of disjoint S-paths. Let Π form a packing
of t S-paths and let F ′ be the set of edges contained in these paths. Extend F ′ to
a forest F such that each component of (V, F ) contains either a unique path in
Π or a unique vertex in T . Then F satisfies the condition given in (73.18), and
|F | = t + |V | − |T |. So LF forms a matching of size t + |V | − |T |, and hence
ν(E) ≥ t + |V | − |T |.

Conversely, let F ⊆ E be a matching of size ν(E). Then F = LF for some forest
F ⊆ E satisfying the condition in (73.18). Let t be the number of components of
(V, F ) intersecting T twice. Then deleting t edges from F , we obtain a forest such
that each component intersects T at most once. So |F | − t ≤ |V | − |T |, and hence
t ≥ ν(E) − |V | + |T |. This shows (73.20).

Theorem 43.4 implies with (73.20) the polynomial-time solvability of finding a
maximum packing of S-paths:

(73.21) Given a graph G = (V, E) and a collection S of disjoint subsets of V ,
a maximum number of disjoint S-paths can be found in polynomial
time.
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73.1b. Polynomial-time findability of edge-disjoint T -paths

J.C.M. Keijsper, R.A. Pendavingh, and L. Stougie (personal communication 2000)
showed that with the ellipsoid method one can derive from Mader’s edge-disjoint T -
paths theorem (Corollary 73.2b) that a maximum number of edge-disjoint T -paths
can be found in polynomial time.

To see this, let G = (V, E) be a graph and let T ⊆ V . Consider the polyhedron
P in R

E consisting of all x ∈ R
E satisfying

(73.22) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(δ(U)) ≤ |δ(U)| − 1 for each U ⊆ V \ T with |δ(U)| odd,
(iii) x(δ(s)) ≤ x(δ(X)) for each s ∈ T and X ⊆ V

with X ∩ T = {s}.

These conditions can be tested in polynomial time: (i) is easy (one by one). To test
(ii), let G′ be the graph obtained from G by contracting T to one vertex. Moreover,
define T ′ := {v ∈ V G′ | degG′(v) odd}. Define a capacity function c by ce := 1−xe

for e ∈ E. Then (ii) is valid if and only if the minimum capacity of a T ′-cut in G′ is
at least 1. This can be tested in polynomial time (Corollary 29.6a). Finally, testing
(iii) amounts to finding a cut separating s and T \{s} of minimum capacity, taking
x as capacity function.

So by the ellipsoid method, we can optimize any linear function over P in
polynomial time. Now the maximum value λ of

(73.23) 1
2

∑

s∈T

x(δ(s))

over x ∈ P is equal to the maximum number µ of edge-disjoint T -paths in G.
The inequality λ ≥ µ follows from the fact that the incidence vectors of µ edge-

disjoint T -paths sum up to a vector x satisfying (73.22) and having (73.23) equal
to µ.

To see equality, by Corollary 73.2b there exist disjoint sets Xs (s ∈ T ) such
that s ∈ Xs and such that

(73.24) µ = 1
2

( ∑

s∈T

dE(Xs) − κ
)
,

where κ denotes the number of components K of the graph G′ := G − ⋃
s∈T Xs

with d(K) odd. This implies a dual solution of the linear program defining λ, of
value at most µ. Indeed, let x attain the maximum value of (73.23) over P . Let
W := V G′, let K be the collection of components of G′, and let F be the set of
edges connecting different sets Xs. Then

(73.25) 2λ =
∑

s∈T

x(δ(s)) ≤
∑

s∈T

x(δ(Xs)) = 2x(F ) + x(δ(W ))

= 2x(F ) +
∑

K∈K

x(δ(K)) ≤ 2|F | +
∑

K∈K

x(δ(K))

≤ 2|F | +
∑

K∈K

2⌊ 1
2
dE(K)⌋ =

∑

s∈T

dE(Xs) − κ = 2µ.

Concluding, we have λ = µ.
This implies that µ can be determined in polynomial time. The paths can be

found explicitly by iteratively deleting edges if it does not reduce µ. Similarly, we
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can replace pairs of adjacent edges uv, vw by one edge uw, if it does not reduce µ.
We end up with a graph with µ edges spanned by T . Working our way back, we
find the required paths in the original graph.

This approach can be extended to obtain a strongly polynomial-time algorithm
for the capacitated case, where each edge e has an integer capacity c(e) and we
want to find a maximum number of T -paths such that each edge e is contained in
at most c(e) of them.

73.1c. A feasibility characterization for integer K3-flows

Seymour [1980b] showed that Corollary 73.2b also implies the following feasibility
characterization for integer K3-flows (we follow the formulation and proof given by
Frank [1990e]). The cut condition is applied to R = {s1s2, s1s3, s2s3} with demand
d(sisj) = di,j , and capacity 1:

Corollary 73.2c. Let G = (V, E) be a graph, let s1, s2, s3 ∈ V , and let d1,2, d1,3, d2,3

∈ Z+. Then there exists a collection of edge-disjoint paths such that di,j of them
connect si and sj (1 ≤ i < j ≤ 3), if and only if the cut condition holds and

(73.26) s(U1) + s(U2) + s(U3) ≥ κ

for each choice of disjoint sets U1, U2, U3 with si ∈ Ui (i = 1, 2, 3). Here s(X) :=
|δE(X)| − d(δR(X)) and κ is number of components K of G − U1 − U2 − U3 with
|δE(K)| odd.

Proof. Necessity is easy: we have

(73.27) d(δR(U1))+d(δR(U2))+d(δR(U3)) ≤ |δE(U1)|+|δE(U2)|+|δE(U3)|−κ,

since from any component K of G−U1 −U2 −U3 with |δE(K)| odd, we cannot use
all edges of δE(K).

Next we show sufficiency. We can assume that G is connected. For i = 1, 2, 3,
extend G by a new vertex ri and ki := degR(si) parallel edges connecting ri and
si. Let G′ = (V ′, E′) be the extended graph, and let T := {r1, r2, r3}. It suffices to
show that G′ has d1,2 + d1,3 + d2,3 = 1

2
(k1 + k2 + k3) edge-disjoint T -paths (since

then 1
2
(k1 + k2 − k3) = d1,2 of them connect r1 and r2; similarly for d1,3 and d2,3).

For this we can invoke Corollary 73.2b. Hence suppose to the contrary that there
exist three disjoint subsets X1, X2, X3 of V ′ with ri ∈ Xi (i = 1, 2, 3) such that

(73.28)

3∑

i=1

|δE′(Xi)| − κ < k1 + k2 + k3,

where κ denotes the number of components K of the graph G′ − X1 − X2 − X3

with dE′(K) odd.
We can assume that each Xi induces a connected subgraph of G′. For suppose

that L is a component of G′[X1] not containing r1. Let X ′
1 := X1 \ L, and let κ′

be the number of components K of G′ − X ′
1 − X2 − X3 with |δE′(K)| odd. Then

κ′ ≥ κ − |δE′(L)|, and hence

(73.29) |δE′(X ′
1)| = |δE′(X1)| − |δE′(L)| ≤ |δE′(X1)| − κ + κ′.
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So replacing X1 by X ′
1 preserves (73.28).

If si ∈ Xi for i = 1, 2, 3, then Ui := Xi \{ri} for i = 1, 2, 3 would violate (73.26).
So we can assume that s3 �∈ X3, and so X3 = {r3}.

Then we can assume that G−X1 −X2 −X3 has only one component. Otherwise
it has a component L not containing s3, and so L is not connected to X3. We can
assume that |E′[L, X1]| ≥ |E′[L, X2]|. Let X ′

1 := X1 ∪ L and let κ′ be the number
of components K of G′ − X ′

1 − X2 − X3 with |δE′(K)| odd. Then |δE′(X ′
1)| ≤

|δE′(X1)| − κ + κ′, and so replacing X1 by X ′
1 preserves (73.28).

So we may assume κ ≤ 1, and hence, as by parity the left-hand side in (73.28)
is even, we obtain the contradiction

(73.30) k1 + k2 + k3 ≥
3∑

i=1

|δE′(Xi)| − κ + 2 >

3∑

i=1

|δE′(Xi)| ≥ k1 + k2 + k3,

where the last inequality follows from the cut condition.

A polynomial-time algorithm to find a circuit traversing three prescribed ver-
tices in an undirected graph, was given by LaPaugh and Rivest [1978,1980].

73.2. Fractional packing of T -paths

If all vertices not in T have even degree, Mader’s edge-disjoint T -paths the-
orem (Corollary 73.2b) reduces to the following result of Cherkasskĭı [1977b]
and Lovász [1976b] (thus answering a question of Kupershtokh [1971]):

Corollary 73.2d. Let G = (V, E) be a graph and let T ⊆ V , with degG(v)
even for each v ∈ V \T . Then the maximum number of edge-disjoint T -paths
in G is equal to

(73.31) 1
2

∑

s∈T

γG(s).

Here γG(s) denotes the minimum size of a cut in G separating s and T \{s}.

Proof. Directly from Corollary 73.2b, since κ = 0.

This corollary has the following consequence on multiflows, also due to
Cherkasskĭı [1977b] (the fractional version was stated, with incorrect proof,
by Kupershtokh [1971]):

Corollary 73.2e. Let G = (V, E) be a graph, let T ⊆ V , and let c : E → R+

be a capacity function. Then the maximum total value of a multiflow for the
nets {st | s, t ∈ T, s 	= t} is equal to

(73.32) 1
2

∑

s∈T

γc(s),



1288 Chapter 73. T -paths

where γc(s) denotes the minimum capacity of a cut separating s and T \ {s}.
If all capacities are integer there is a half-integer maximum-value multiflow.
If moreover c(δ(v)) is even for each v ∈ V \T , there is an integer maximum-
value multiflow.

Proof. By continuity and compactness, we can assume that c is integer and
that c(δ(v)) is even for each v ∈ V \ T .

Replacing each edge e by c(e) parallel edges we obtain a graph to which
we can apply Corollary 73.2d. The paths obtained in the new graph give an
integer multiflow as required in the original graph.

Notes. Karzanov [1979a] gave an O(MF(n, m) · log |T |) algorithm to find a half-
integer maximum-value multiflow for integer c. (MF(n, m) is the time needed to find
a maximum flow in a digraph with n vertices and m arcs.) Ibaraki, Karzanov, and
Nagamochi [1998] extended this algorithm to obtain an integer solution if c(δE(v))
is even for each v ∈ V \ T . They also gave an extension to directed graphs.

Lovász [1976b] mentioned the following consequence of Corollary 73.2b:

(73.33) Let G = (V, E) be a graph and let c : E → Z+ be a capacity function
with c(δ(v)) even for each v ∈ V . Then for each u ∈ V , the maximum
number of circuits in G that traverse u, such that no edge e is in more
than c(e) of these circuits, is equal to half of the minimum capacity of
a family of edges meeting each circuit through u at least twice.

To prove this, let s1, . . . , sd be the neighbours of u. Replace u by d new vertices
u1, . . . , ud, and for each i = 1, . . . , d, add c(usi) parallel edges connecting ui and
si. Moreover, replace each edge e of G not containing u by c(e) parallel edges.
Then the assertion follows from Corollary 73.2b applied to the new graph and to
T := {u1, . . . , ud}.

73.2a. Direct proof of Corollary 73.2d

Let G, T form a counterexample with |V | + |E| as small as possible. Let µ be equal
to (73.31). Then:

(73.34) for any s ∈ T and any minimum-size cut δ(U) separating s and T \{s},
with U ∩ T = {s}, one has U = {s}.

To see this, suppose U �= {s}. Contract U to one vertex, s′ say, obtaining graph
G′. Let T ′ := (T \ {s}) ∪ {s′}. By the minimality of G, G′ contains µ′ edge-disjoint
T ′-paths, where µ′ equals (73.31) for G′, T ′. Each edge in δ(U) belongs to one of
these T ′-paths (as in G′ it is a minimum-size cut separating s′ and T ′ \ {s′}). Let
G′′ be the graph obtained from G by contracting V \U to one new vertex, u say. By
the minimality of δ(U), G′′ contains dE(U) edge-disjoint s − u paths (by Menger’s
theorem). By concatenation, we find µ′ edge-disjoint T -paths in G. As µ′ ≥ µ, this
contradicts the fact that G is a counterexample. This proves (73.34).

As G, T form a counterexample, there is at least one vertex v ∈ V \ T with at
least two different neighbours. Let uv and vw be two of the edges incident with v,
with u �= w. Replacing these two edges by one new edge uw, we obtain a graph G′′′.
As G is a counterexample, G′′′ has no µ edge-disjoint T -paths. As G′′′ is smaller
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than G, it is no counterexample, and so there is an s ∈ T with γG′′′(s) < γG(s).
Hence there is a U ⊆ V with U ∩ T = {s} and dG′′′(U) < γG(s). Then, by parity,
dG′′′(U) ≤ γG(s) − 2, and hence dG(U) ≤ γG(s). So by (73.34), U = {s}. Hence
dG(U) = dG′′′(U) < γG(s), a contradiction.

By similar methods one may prove an analogous result for directed graphs,
due to M.V. Lomonosov (cf. Karzanov [1979b]) and Frank [1989]: Given a digraph
D = (V, A) and T ⊆ V , call a directed path P an T -path if its end vertices are
distinct and belong to T , and no internal vertex of P belongs to T . Then, if D
is Eulerian, the maximum number of edge-disjoint T -paths in G is equal to the
minimum value of

(73.35)
∑

s∈T

dout
A (Xs),

taken over disjoint sets Xs ⊆ V with s ∈ Xs for s ∈ T .

73.3. Further results and notes

73.3a. Further notes on Mader’s theorem

In general it is not true that given any subset T of the vertex set of a graph, the
maximum number M of edge-disjoint T -paths is equal to the minimum size m of an
edge set intersecting each T -path: the complete bipartite graph Kt,n, with t odd and
T the colour class with t vertices, has M = 1

2
n(t − 1) and m = n(t − 1). Mader’s

edge-disjoint T -paths theorem (Corollary 73.2b) implies the conjecture of Gallai
[1961] (cf. Lovász [1976b]) that M ≥ 1

2
m for any graph. (Lovász [1976b] showed

that M ≥ 1
4
m, and P.D. Seymour (personal communication 1977) that M ≥ 1

3
m.)

For Eulerian graphs, Corollary 73.2d implies the sharper inequality

(73.36) M ≥ t

2(t − 1)
m,

where t := |T |. Indeed, for each s ∈ T , let Es be a minimum-size s − T \ s cut. Let
Et have the largest size among them. Then

⋃
s�=t Es intersects each T -path. Hence

(73.37) m ≤
∣∣ ⋃

s �=t

Es

∣∣ ≤
∑

s�=t

|Es| ≤ (1 − 1

t
)
∑

s∈T

|Es| =
t − 1

t
2M.

This proves Gallai’s conjecture that M ≥ 1
2
m for Eulerian graphs.

The graph which arises from the complete bipartite graph Kt,n by replacing each
edge by two parallel edges, with T the colour class with t elements, has M = tn
and m = 2(t − 1)n. So inequality (73.36) is sharp for Eulerian graphs.

Gallai [1961] derived, from matching theory, the following on edge-disjoint paths
with both ends in T (not necessarily distinct). Let G = (V, E) be a graph and
T ⊆ V . Call a path a weak T -path if it has length at least 1, and connects two (not
necessarily distinct) vertices in T , while no internal vertex belongs to T . For any
U ⊆ V , let KU denote the set of components of G−U . Then the maximum number
of edge-disjoint weak T -paths is equal to the minimum value of

(73.38) |E[U ]| +
∑

K∈KU

⌊dE(K)

2
⌋,
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over U with T ⊆ U ⊆ V . The maximum number of internally vertex-disjoint weak
T -paths is equal to the minimum value of

(73.39) |E[U ]| + |W \ U | +
∑

K∈KW

⌊dE(K)

2
⌋,

over U, W satisfying T ⊆ U ⊆ W ⊆ V .
A min-max relation and a polynomial-time algorithm for the minimum cost of

a maximum collection of edge-disjoint T -paths were given by Karzanov [1993,1997].
A corresponding polyhedron was described by Burlet and Karzanov [1998].

Nash-Williams [1961a] gave necessary and sufficient conditions for a graph G =
(V, E) and a function g : V → Z+ such that the edges of G can be partitioned into
(nonclosed) paths such that g(v) of these paths end at v, for each v ∈ V .

More on Mader’s theorem can be found in Mader [1989], and on Gallai’s theorem
in Mader [1980].

73.3b. A generalization of fractionally packing T -paths

The following theorem was announced by Karzanov and Lomonosov [1978] and
proved by Karzanov [1985d,1987d] and Lomonosov [1985] (the latter paper does
not consider the parity case). Taking H to be a complete graph we obtain Corollary
73.2d.

Theorem 73.3. Let G = (V, E) and H = (T, R) be graphs, where H is the comple-
ment of the line graph of some triangle-free graph H0. Let c : E → Z+ be a capacity
function. Then there exists a quarter-integer maximum-value multiflow. If H0 is
bipartite, there exists a half-integer maximum-value multiflow. If c(δ(v)) is even for
each v ∈ V \ T , there exists a half-integer maximum-value multiflow. If c(δ(v)) is
even for each v ∈ V and H0 is bipartite, there exists an integer maximum-value
multiflow.

(For the special case where H is the union of two complete bipartite graphs H ′

and H ′′ such that V H ′ ⊆ V H ′′ or such that H ′ = K2, Cherkasskĭı [1976] showed
that the maximum multiflow is attained by a half-integer multiflow (for integer
capacities).)

Related is the following characterization of the maximum value of a multiflow,
announced by Karzanov and Lomonosov [1978], and proved by Karzanov [1979b,
1985d,1987d] and Lomonosov [1985]:

Theorem 73.4. Let G = (V, E) and H = (T, R) be graphs, where H is the com-
plement of the line graph of some triangle-free graph. Let c : E → R+ be a capacity
function. Let U denote the collection of subsets U of V such that U ∩ T is a stable
set of H. Then the maximum total value of a multiflow subject to c is equal to the
minimum value of

(73.40)
∑

U

λUc(δG(U))

taken over λ : U → R+ satisfying

(73.41)
∑

U

λUχδR(U) ≥ 1R.
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It implies that if H is the complement of the line graph of some triangle-free
graph, then in Theorem 70.2 one can restrict the length functions l to nonnegative
combinations of cut functions. Karzanov and Pevzner [1979] showed that if H is
not the line graph of a triangle-free graph, then Theorem 73.4 does not hold for
some G, c.

Karzanov [1987b,1989] proved that for any graph H = (T, R):

(73.42) if there exists an integer k ≥ 1 such that for any graph G = (V, E)
with T ⊆ V and any c : E → Z+, there is a 1

k
-integer maximum-value

multiflow, then any three pairwise intersecting inclusionwise maximal
stable sets A, B, C of H satisfy A ∩ B = A ∩ C = B ∩ C.

Karzanov [1991] conjectured that the reverse implication holds and that k = 4
will do. (Karzanov [1987a] announced a proof of this, but the proof failed.) The
techniques of Karzanov [1987d] yield a strongly polynomial-time algorithm for the
problems in Theorems 73.3 and 73.4.

73.3c. Lockable collections

Let T be a set and let H = (T, R) be the complete graph on T . A collection A of
subsets of T is called lockable if for each (supply) graph G = (V, E) with V ⊇ T
and for each capacity function c : E → R+, there is a multiflow for demand graph
H such that

(73.43) for each U ∈ A, the sum of the flow values of those nets split by U
is equal to the minimum of c(δE(X)) taken over X ⊆ V satisfying
X ∩ T = U .

(Here U splits a pair of vertices if precisely one of them is in U .)
The following characterization of lockable collections was proved jointly by

Karzanov [1979b,1984] and Lomonosov [1985] (announced in Lomonosov [1979b]).
Recall that two subsets X, Y of T are called crossing if each of X ∩ Y , X \ Y ,
Y \ X, and T \ (X ∪ Y ) is nonempty. (The 1979 references did not consider the
Euler condition.) A short proof was given by Frank, Karzanov, and Sebő [1992,
1997].

(73.44) A collection A is lockable if and only if A contains no three pairwise
crossing sets. If A is lockable and c is integer, there is a half-integer
multiflow satisfying (73.43). If moreover c(δ(v)) is even for each v ∈
V \ T , there is an integer multiflow satisfying (73.43).

We show that this generalizes two results proved earlier. First we show that
Corollary 73.2d can be derived. Let G = (V, E) be a graph and let T ⊆ V be
such that each vertex v ∈ V \ T has even degree. Let A := {{v} | v ∈ T}. Then
A contains no three pairwise crossing sets, and hence (73.44) applies. Let c := 1.
By (73.44), there exists a collection P of edge-disjoint T -paths such that for each
v ∈ T , there are γG(v) paths in P with end vertex v. So |P| = 1

2

∑
v∈T γG(v), and

we have Corollary 73.2d.
Second we derive Theorem 72.2 for H = C5. Let G = (V, E) be a graph and

let H = (T, R) be the graph C5, with T ⊆ V . Let c : E → Z+ and d : R → Z+ be
a capacity and demand function satisfying the Euler and cut conditions. We show
that there is a feasible integer multiflow. To this end we can assume that
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(73.45) c(δE(v)) = d(δR(v)) for each v ∈ T .

If this is not the case, add an edge e = v′v, where v′ is a new vertex, define
c(e) := d(δR(v)), and replace v by v′ in H. This does not violate the Euler and cut
conditions.

Define

(73.46) A := {{v} | v ∈ T} ∪ {{u, v} | u, v ∈ T, u �= v, uv �∈ R}.

Then no three sets in A are pairwise crossing, and so (73.44) applies; that is, there
is an integer multiflow (xr | r ∈ R′) such that (73.43) holds, where

(73.47) R′ := {st ∈ T | s, t ∈ T, s �= t}.

. (So xr is an s− t flow in G for r = st ∈ R′.) We show that the value of xr is equal
to dr for each r ∈ R, and is equal to 0 for each r ∈ R′ \ R, as required.

Let br be the value of xr, for r ∈ R′. By (73.43) and the cut condition,

(73.48) b(δR′(U)) ≥ d(δR(U)) for each U ∈ A,

since there exists an X ⊆ V with X ∩ T = U and

(73.49) b(δR′(U)) = c(δE(X)) ≥ d(δR(X)) = d(δR(U)).

Moreover, equality holds if |U | = 1, since for v ∈ T we have b(δR′(v)) ≤ c(δE(v)) =
d(δR(v)), by (73.45). Now add up all inequalities (73.48) for those U ∈ A with
|U | = 1. Similarly, add up all inequalities (73.48) for those U ∈ A with |U | = 2.
Both sums have the same terms at the right-hand sides of the inequality sign. But
the first sum has more terms at the left-hand side than the second sum has. As the
first one has equality, the second one also has equality, and the terms are equal.
That is, equality holds in (73.48) for each U ∈ A. This implies that br = dr for
each r ∈ R and br = 0 for each r ∈ R′ \ R, as (73.48) yields a nonsingular system
of equations.

This shows Theorem 72.2 for the case H = C5. Lomonosov [1985] argued how
also the case H = K4 can be derived from (73.44).

Pevzner [1987] studied the maximum size of a collection of sets no three of which
are pairwise crossing. For a short proof, see Fleiner [2001b]. More on lockable col-
lections and related structures can be found in Ibaraki, Karzanov, and Nagamochi
[1998], Ilani, Korach, and Lomonosov [2000], and Ilani and Lomonosov [2000].

73.3d. Mader matroids

The exchange phenomenon for S-paths used in the proof of Mader’s disjoint S-paths
theorem (Theorem 73.2) gives rise to a matroid as follows.

Let G = (V, E) be an undirected graph and let S = {S1, . . . , Sk} be a collection
of disjoint subsets of V . Define T := S1 ∪ · · · ∪ Sk. Let I be the collection of all
subsets I of T with the property that there exists a collection P of disjoint S-paths
with I ⊆ ends(P). Here ends(P) denotes the set of ends of the paths in P.

Theorem 73.5. M = (T, I) is a matroid.

Proof. I trivially is nonempty and closed under taking subsets. To see that it gives
a matroid, we apply Theorem 39.1. For any collection R of paths, let ER denote
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the set of edges traversed by the paths in R. Choose I, J ∈ I with |I \ J | = 1 and
|J \ I| = 2. We show that I + j ∈ I for some j ∈ J \ I. The proof of this is by
induction on |EQ \ EP|, where P and Q are collections of disjoint S-paths with
I ⊆ ends(P) and J ⊆ ends(Q).

Let I \ J = {r}. Let r be an end of path P ∈ P, and let r belong to Si say. If
P is disjoint from all paths in Q, then J + r ⊆ ends(Q ∪ {P}), and hence I + j ∈ I
for each j ∈ J \ I.

If P intersects some path in Q, follow path P starting at r, until we meet, at
vertex v say, a path in Q, Q say. Let Q have ends s and t. Let Qs and Qt be the
s − v and t − v part of Q. By symmetry, we may assume that

(73.50) EQs �⊆ EP and t �∈ Si.

Indeed, if EQs �⊆ EP and EQt �⊆ EP , then by symmetry we can assume t �∈ Si (as
s �∈ Si or t �∈ Si). If EQs ⊆ EP or EQt ⊆ EP , then by symmetry we can assume
EQt ⊆ EP , hence EQs �⊆ EP (as Q �= P ) and t �∈ Si (as t is the other end of P
and as r ∈ Si). So we may assume (73.50).

Let Q′ be the path obtained by concatenating Qt and the v − r part of P . Then
Q′ is an S-path disjoint from all paths in Q \ {Q}. Define Q′ := (Q \ {Q}) ∪ {Q′}
and J ′ := J − s + r. So J ′ ⊆ ends(Q′). Hence J ′ ∈ I.

If s �∈ I, we are done, since then there is a j ∈ J \ I with I + j ⊆ J − s + r. If
s ∈ I, then J ′ \ I = J \ I, and we can apply the induction hypothesis, since

(73.51) |EQ′ \ EP| < |EQ \ EP|.
Hence, by induction, there is a j ∈ J \ I with I + j ∈ I as required.

We call a matroid M = (T, I) obtained in this way a Mader matroid. If k = 2,
we call the Mader matroid also a Menger matroid. The matching matroids (cf.
Section 39.4a) are the special case of Mader matroids where S = {{v} | v ∈ V }.

The question is how Mader matroids relate to known classes of matroids. The
class of gammoids seems close to Mader matroids. Hence the question:

(73.52) Is each Mader matroid a gammoid?

What can be proved is that each Menger matroid is a gammoid. More precisely:

Theorem 73.6. A matroid is a gammoid if and only if it is a contraction of a
Menger matroid.

Proof. To see necessity, each gammoid is the contraction of a transversal matroid
(Corollary 39.5a). Hence it suffices to show that each transversal matroid M =
(T, I) is a contraction of a Menger matroid. We can assume that the transversal
matroid is obtained from a bipartite graph G with colour classes S and T , such
that the independent sets of M are the subsets of T covered by some matching in
G, and such that G has a matching of size |S|. Let M ′ be the Menger matroid on
S ∪ T obtained from G by taking S := {S, T}. Then contracting S in M ′ gives M .
So M is the contraction of a Menger matroid.

To prove sufficiency, it suffices to show that each Menger matroid is a gammoid
(as the class of gammoids is closed under contractions). Let G = (V, E) be an
undirected graph and let S1 and S2 be disjoint subsets of V . Define S := {S1, S2}.
Let M be the Menger matroid obtained this way. So a subset B of S1 ∪S2 is a base
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of M if and only if there exists a maximum-size collection of disjoint S-paths in G
such that B is the set of ends of these paths. We can assume that neither S1 nor
S2 spans an edge of G (as it is not in any S-path).

Let D = (V, A) be the directed graph obtained from G by orienting each edge
incident with S1 away from S1 and by orienting each edge incident with S2 towards
S2, and by replacing each remaining edge e by two oppositely oriented arcs con-
necting the ends of e. So a subset B of S1 ∪ S2 is a base of M if and only if there
exists a maximum-size collection of disjoint directed paths in D from S1 to S2, such
that B is the set of ends of these paths.

Derive an undirected graph G̃ from D as follows. Replace each vertex v �∈ S1∪S2

by two vertices, v′ and v′′. For v ∈ S1 define v′ := v, and for v ∈ S2 define
v′′ := v. Replace each arc (u, v) of D by an edge u′v′′ of G̃. Moreover, for each

v ∈ V \ (S1 ∪ S2), make an edge v′v′′ of G̃. This makes the undirected graph G̃.
Then for any subset I of S1 ∪ S2 one has, by a well-known argument (cf. Theorem
39.5):

(73.53) D contains disjoint directed paths from S1 to S2, such that I is the

collection of the ends of these paths ⇐⇒ G̃ contains a matching N
which covers all vertices except those in (S1 ∪ S2) \ I.

So a subset B of S1 ∪ S2 is a base of M if and only if G̃ has a maximum-size
matching N which covers all vertices except those in (S1 ∪ S2) \ B. So M is the

matroid obtained from the matching matroid of G̃ by contracting all vertices in
V \(S1 ∪S2). As each matching matroid is a transversal matroid (cf. Section 39.4a),
this proves that each Menger matroid is the contraction of a transversal matroid,
and hence is a gammoid (Corollary 39.5a).

By the results in Section 39.4a, the class of gammoids is also equal to the class
of contractions of matching matroids. So contractions of Menger matroids and those
of matching matroids (two special cases of Mader matroids) coincide.

A question related to (73.52) is:

(73.54) Is each Mader matroid linear?

As gammoids are representable over all large enough fields, a positive answer to
question (73.52) implies a positive answer to question (73.54). The constructions
given in Section 73.1a suggest a positive answer to (73.54).

73.3e. Minimum-cost maximum-value multiflows

Karzanov [1979d] showed that if H is a complete graph and all capacities are integer,
there exists a half-integer minimum-cost maximum-value multiflow (and he gave a
pseudo-polynomial-time algorithm to find it). This can be directly extended to the
case where H is a complete multipartite graph.

A short proof, together with a strongly polynomial-time algorithm, was given
by Karzanov [1994a], where also the existence of a half-integer optimum dual solu-
tion was shown. Other algorithms (based on scaling) were given by Goldberg and
Karzanov [1997].

On the other hand, Karzanov [1987b] showed that if H = (T, R) is not a com-
plete multipartite graph (that is, H contains two intersecting inclusionwise maximal
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stable sets), then there is no fixed integer k such that for each graph G = (V, E)
with V ⊇ T and each integer capacity function and each cost function, there is a
1
k
-integer minimum-cost maximum-value multiflow.

73.3f. Further notes

Lomonosov [1985] (announced in Lomonosov [1979a]) gave a min-max formula for
the maximum total value of a multiflow if H is the union of two (not necessarily
disjoint) cliques.

Karzanov and Manoussakis [1996] showed: Let G = (V, E) and H = (T, R) be
graphs, with T ⊆ V , where H = K2,r, and where degG(v) is even for each v ∈ V \T .
For any T -path P , let α(P ) denote the distance in H between the ends of P . Then
the maximum value of

(73.55)
∑

P∈P

α(P ),

where P is a collection of edge-disjoint T -paths, is equal to the minimum value of

(73.56)
∑

u,v∈T

|E[Xu, Xv]| · distH(u, v),

where (Xu | u ∈ T ) is a partition of V with u ∈ Xu for u ∈ T . (As usual, E[X, Y ]
is the set of edges connecting X and Y .) Extensions and related results are given
by Karzanov [1998a,1998b,1998c].

Rothfarb and Frisch [1969] showed that the maximum total value of a 3-
commodity flow equals the minimum capacity of a set of edges disconnecting all
nets, if |V | = 3.

Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis [1992,1994] show-
ed that it is NP-complete to find a minimal number of edges disconnecting any two
vertices among three given vertices in an undirected graph. Chopra and Rao [1991]
studied the corresponding polyhedron.
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Planar graphs

Finding disjoint paths in planar graphs is of interest not only for planar
communication or transportation networks, but especially also for the de-
sign of VLSI-circuits. The routing of the wires should follow certain chan-
nels on layers of the chip. On each layer, these channels form a planar
graph.
Even for planar graphs, disjoint paths problems are in general hard. How-
ever, for some special cases, polynomial-time algorithms and good char-
acterizations have been found. In this chapter we discuss some of these
cases.
Except if stated otherwise, throughout this chapter G = (V, E) and H =
(T, R) denote the supply and demand graph, in the sense of Chapter 70.
The pairs in R are called the nets. If s1, t1, . . . , sk, tk are given, then R :=
{s1t1, . . . , sktk}. If demands d1, . . . , dk are given, then d(siti) := di. We
denote G + H = (V, E ∪ R), where the disjoint union of E and R is taken,
respecting multiplicities.
Recall that the Euler condition states that G + H is Eulerian.

74.1. All nets spanned by one face: the

Okamura-Seymour theorem

The complexity of the edge-disjoint paths problem for planar graphs with all
nets on the outer boundary, is open. However, Okamura and Seymour [1981]
showed that if the Euler condition holds, the edge-disjoint paths problem is
polynomial-time solvable, and the cut condition is sufficient for solvability.
We follow their method of proof.

Theorem 74.1 (Okamura-Seymour theorem). Let G = (V, E) be a planar
graph and let H = (T, R) be a graph where T is the set of vertices of G
incident with the unbounded face of G. Let the Euler condition hold. Then
the edge-disjoint paths problem has a solution if and only if the cut condition
holds.

Proof. Necessity of the cut condition being trivial, we show sufficiency. The
cut condition implies that |R| ≤ |E| (assuming that each r ∈ R consists of
two distinct vertices), since
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(74.1) 2|R| =
∑

v∈V

degR(v) ≤
∑

v∈V

degE(v) = 2|E|.

So we can consider a counterexample with 2|E| − |R| minimal. Then

(74.2) G is 2-connected.

Indeed, if G is disconnected, we can deal with the components separately.
Suppose next that G is connected and has a cut vertex v. We may assume
that for no r = st ∈ R, the vertices s and t belong to different components of
G − v, since otherwise we can replace r by sv and vt, without violating the
Euler or cut condition. For any component K of G − v consider the graph
induced by K ∪ {v}. Again, the Euler and cut conditions hold (with respect
to those nets contained in K ∪ {v}). So by the minimality of 2|E| − |R|, we
know that paths as required exist in K ∪ {v}. As this is the case for each
component of G − v, we have paths as required in G. This proves (74.2).

Let C be the circuit formed by the outer boundary of G. If some r ∈ R
has the same ends as some edge e of G, we can delete e from G and r from
R, and obtain a smaller counterexample. So no such r exists.

Call a subset X of V tight if dE(X) = dR(X). Then

(74.3) there exists a tight subset X of V such that δE(X) intersects EC
in precisely two edges.

Indeed, if there is no tight set X with ∅ 	= X 	= V , we can choose an edge
e ∈ EC, and replace E and R by E \ {e} and R ∪ {e}. This does not violate
the cut condition, and hence would give a smaller counterexample.

So there exists a tight proper nonempty subset X of V . Choose X with
|δE(X)| minimal. Then G[X] and G − X are connected. For suppose that
(say) G[X] is not connected. Let K be a component of G[X]. Then

(74.4) |δE(K)| + |δE(X \ K)| ≥ |δR(K)| + |δR(X \ K)| ≥ |δR(X)|
= |δE(X)| = |δE(K)| + |δE(X \ K)|.

So K is tight, while |δE(K)| < |δE(X)|, contradicting the minimality as-
sumption. Hence G[X] and G − X are connected, implying (74.3).

Choose a set X as in (74.3) with |X| minimal. Let e be one of the two
edges in EC that belong to δE(X). Say e = uw with u 	∈ X and w ∈ X.

Since dR(X) = dE(X) ≥ 2, we know δR(X) 	= ∅. For each r ∈ δR(X), let
sr be the vertex in r ∩ X, and tr the vertex in r \ X. Choose r ∈ δR(X) such
that tr is as close as possible to u in the graph C − X.

Since sr and tr are nonadjacent, we know that {sr, tr} 	= {u, w}. So we
can choose v ∈ {u, w} \ {sr, tr}. Let R′ := (R \ {r}) ∪ {srv, vtr}. Trivially
the Euler condition is maintained. We show that also the cut condition is
maintained, yielding a contradiction as 2|E| − |R′| < 2|E| − |R| and as a
solution for R′ yields a solution for R.

To see that the cut condition is maintained, suppose to the contrary that
there is a Y ⊆ V satisfying
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(74.5) dE(Y ) < dR′(Y ).

By Theorem 70.4, we can take Y such that G[Y ] and G − Y are connected.
So δE(Y ) has two edges on C. By symmetry we can assume that tr 	∈ Y . By
the Euler condition, (74.5) implies dE(Y ) ≤ dR′(Y ) − 2. So

(74.6) dR′(Y ) ≥ dE(Y ) + 2 ≥ dR(Y ) + 2 ≥ dR′(Y ).

Hence we have equality throughout. So δR′(Y ) contains both srv and vtr,
that is, sr, tr 	∈ Y and v ∈ Y . Moreover, dE(Y ) = dR(Y ).

By the choice of r, there is no pair r′ in R connecting X \ Y and Y \ X
(since then tr′ ∈ Y \ X, and hence tr′ is closer than tr to u in C − X). So
(using Theorem 3.1)

(74.7) dR(X ∩ Y ) + dR(X ∪ Y ) = dR(X) + dR(Y ).

Moreover,

(74.8) dE(X ∩ Y ) + dE(X ∪ Y ) ≤ dE(X) + dE(Y ).

As the cut condition holds for X ∩ Y and X ∪ Y , we have equality in (74.8),
and therefore X ∩Y is tight. Since sr ∈ X \Y , we know |X ∩Y | < |X|. So by
the minimality of X we have X ∩ Y = ∅. So w 	∈ Y , hence u = v ∈ Y . Then
edge e = uw connects X \ Y and Y \ X, contradicting equality in (74.8).

For multiflows, the Okamura-Seymour theorem implies the following re-
sult of H. Okamura (cf. note on p. 80 of Okamura and Seymour [1981]):

Corollary 74.1a. Let G = (V, E) be a planar graph, let R be a set of pairs
of vertices on the outer boundary of G, and let c : E → R+ and d : R → R+.
Then there exists a feasible multiflow if and only if the cut condition holds.
If moreover c and d are integer, there is a half-integer multiflow.

Proof. By compactness, continuity, and scaling, we can assume that c and d
are integer. Replacing any edge e by 2c(e) parallel copies, and any pair r ∈ R
by 2d(r) parallel nets, we can apply the Okamura-Seymour theorem. The
paths in the new graph give the multiflow in the original graph as required.

Notes. The proof of Theorem 74.1 yields a polynomial-time algorithm for finding
the edge-disjoint paths, since we can determine a minimum-size cut containing e′

and e′′, for any pair of edges e′, e′′ on the outer boundary of G (by finding a shortest
path in the dual graph). Frank [1985] outlined that it in fact leads to an O(n3 log n)-
time algorithm. (As P.D. Seymour observed, also the splitting-off technique used
by Lins [1981] to prove Corollary 74.1b below yields a polynomial-time algorithm
to find paths as required.)
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74.1a. Complexity survey

Complexity survey for the disjoint paths problem in planar graphs with all ter-
minals on the outer boundary and satisfying the Euler condition (∗ indicates an
asymptotically best bound in the table):

O(n4) Hassin [1984] (also capacitated case)

O(n3 log n) Frank [1985] (also capacitated case)

O(n2 log∗ n)
Matsumoto, Nishizeki, and Saito [1985]:
feasibility test (also capacitated case)

O(tn
√

log n)
Matsumoto, Nishizeki, and Saito [1985]:
feasibility test (also capacitated case)

O(kn + n2√log n)
Matsumoto, Nishizeki, and Saito [1985] (also
capacitated case)

∗ O(tn + n
√

t log n)
Frederickson [1987b]: feasibility test (also
capacitated case)

O(n2) Becker and Mehlhorn [1986]

O(tn) Becker and Mehlhorn [1986]: feasibility test

O(n5/3(log log n)1/3) Kaufmann and Klär [1991]

O(kn + n
√

log n) Weihe [1993] (also capacitated case)

∗ O(n) Wagner and Weihe [1993,1995]

∗ O(kn)
Weihe [1997c] (using Klein, Rao, Rauch, and
Subramanian [1994], Henzinger, Klein, Rao, and
Subramanian [1997]): capacitated case

Here k := |R|, t is the number of vertices that belong to at least one pair in R, and
log∗ n is the minimum l such that log(l) n ≤ 1, where log(l) n is obtained from n by
taking l times the logarithm.

For sketches of the linear-time method of Wagner and Weihe [1993,1995], see
Wagner [1993] or Ripphausen-Lipa, Wagner, and Weihe [1995].
Research problem. Is the undirected edge-disjoint paths problem polynomial-
time solvable for planar graphs with all nets on the outer boundary? Is it NP-
complete?

74.1b. Graphs on the projective plane

The Okamura-Seymour theorem is equivalent to a theorem of Lins [1981] on Eu-
lerian graphs embedded in the projective plane. A closed curve in the projective
plane is called orientation-reversing if after one turn the meaning of ‘left’ and ‘right’
is flipped. If a graph is embedded in a space S, we identify G with its image in S.

Corollary 74.1b (Lins’ theorem). Let G = (V, E) be an Eulerian graph embedded
in the projective plane P 2. Then the maximum number of edge-disjoint orientation-
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reversing circuits in G is equal to the minimum number of intersections with G of
any orientation-reversing closed curve in P 2 \ V .

Proof. Since any two orientation-reversing closed curve in the projective plane
intersect, the maximum does not exceed the minimum. To see equality, let D be
an orientation-reversing closed curve in P 2 \ V having a minimum number, k say,
of intersections with G. Necessarily, any intersection of D with G is a crossing of
D and an edge of G. Let R be the set of edges of G intersected by D and let
G′ := (V, E \R). Then G′ is a planar graph, embedded in the open sphere obtained
from P 2 by deleting D. Each pair in R connects two vertices on the outer boundary
of G′. It suffices to show that G′ contains edge-disjoint paths Pr for r ∈ R, where Pr

connects the vertices in r. Then the Pr ∪{r} for r ∈ R form a set of k edge-disjoint
orientation-reversing circuits in G as required.

To show that the paths Pr exist, we can apply the Okamura-Seymour theorem.
To this end, we must test the cut condition for G′, R. Note that the pairs in R
can be ordered as r1, . . . , rk such that when following the boundary of P 2 \ D, in
one round we first meet r1, . . . , rk consecutively, and next we meet again r1, . . . , rk

consecutively.
Let X ⊆ V , with G′[X] and G′ − X connected, and with dR(X) > 0. Then

δE\R(X) contains exactly two edges on the outer boundary of G′. Hence we can
find an orientation-reversing closed curve in P 2 intersecting the edges of G′ in
δE\R(X) and those in R \ δR(X). Hence

(74.9) dE\R(X) + |R| − dR(X) ≥ k = |R|,
that is, dE\R(X) ≥ dR(X). So the cut condition holds for G′ and R.

In turn, the Okamura-Seymour theorem can be derived from Lins’ theorem.
To this end, we first show that in the Okamura-Seymour theorem one can make
a number of assumptions that do not restrict the generality. Let G = (V, E) be a
planar graph, and let R be a set of pairs of vertices on the outer boundary of G,
such that the Euler condition and the cut condition hold.

First one can assume that the pairs in R are disjoint: if r = st and r′ = st′ are
two pairs in R, we can add a new vertex s′ in the outer face, and a new edge s′s,
and reset r′ := s′t′. Second one may assume that any two pairs r = st, r′ = s′t′

in R are ‘crossing’ around the outer boundary of G; that is, s, s′, t, t′ occur in
this order cyclically around the outer boundary. If this is not the case, there exist
two pairs r = st and r′ = s′t′ such that s, s′, t′, t occur in this order cyclically
around the outer boundary and such that no vertex between s and s′ (along the
outer boundary) belongs to any pair in R. Now we can add three new vertices, q,
q′ and p, and edges qp, q′p, ps, ps′, and reset r := qt and r′ := q′t′ (Figure 74.1).

Let G′ = (V ′, E′) be the new graph, and let R′ be the new set of pairs. This
construction maintains the cut condition. To see this, let X ⊆ V ∪{q, q′, p}. Without
loss of generality, p ∈ X. Suppose dE′(X) < dR′(X). Then (using parity)

(74.10) dR′(X) − 2 ≥ dE′(X) ≥ dE(X ∩ V ) ≥ dR(X ∩ V ) ≥ dR′(X) − 2,

and hence we have equality throughout. In particular, none of the new edges belong
to δE′(X), and so s, s′, q, q′ ∈ X. But then dR(X ∩ V ) = dR′(X), a contradiction.

So the cut condition is maintained. Also, any edge-disjoint pair of a q − t path
P and a q′ − t′ path P ′ in G′ contains an edge-disjoint pair of an s − t path Q and
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s′s′

t′ t′

′

Figure 74.1

an s′ − t′ path Q′: if P traverses s and P ′ traverses s′, this is trivial; if P traverses
s′ and P ′ traverses s, then P and P ′ intersect necessarily in V (as the pairs s′t and
st′ cross), and hence we can exchange P and P ′ at this intersection to obtain Q
and Q′ as required.

As we can embed G′ such that q, q′, t, t′ occur in this order cyclically around
the outer boundary of G′, we have decreased the number of noncrossing pairs in R.
Repeating this we can assume that all pairs in R are crossing.

Now, assuming that G is embedded in R
2, we can embed R

2 in the projective
plane P 2. Then P 2\R

2 is a ‘cross-cap’ (Möbius strip). We can extend the embedding
of G to an embedding of the Eulerian graph G + H = (V, E ∪ R), by embedding
any r ∈ R as an edge over the cross-cap. (Since any two nets cross in R

2, they can
be drawn disjoint in P 2 \ R

2.)
We derive from Lins’ theorem that G + H has |R| edge-disjoint orientation-

reversing circuits: this gives paths as required for the Okamura-Seymour theorem,
as each of the circuits must contain at least one edge traversing the cross-cap,
and hence at least one edge in R. As there are |R| circuits, each contains exactly
one edge in R, and so deleting the edges in R we obtain paths as required in the
Okamura-Seymour theorem.

In order to apply Lins’ theorem, we must show that each orientation-reversing
closed curve D in P 2 \ V has at least |R| intersections with G + H. To show this,
we can assume that D traverses any face of G + H at most once (otherwise we
can shortcut D). As D is orientation-reversing, it traverses the cross-cap an odd
number of times. Between any two traversals of D over the cross-cap, we can reroute
D (in R

2) such that instead of intersecting edges of G, it intersects edges in R, in
such a way that the number of new intersections with R is not more than the
number of deleted intersections with E (this follows from the cut condition in the
Okamura-Seymour theorem). Doing this between any two traversals of the cross-
cap, we obtain an orientation-reversing closed curve only intersecting edges in R.
As each of the edges in R must be intersected (since D is orientation-reversing), we
see that D has at least |R| intersections with G+H. This shows that we can apply
Lins’ theorem.
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74.1c. If only inner vertices satisfy the Euler condition

Frank [1985] showed an interesting extension of the Okamura-Seymour theorem,
to the case where the parity condition is only required for the vertices not on the
outer boundary. The proof amounts to appropriately pairing those vertices v on
the outer boundary for which degE(v) + degR(v) is odd. To this end, Frank first
showed the following ‘pairing lemma’. We say that a pair u, v of vertices of a circuit
C crosses a pair e, f of edges of C, if u and v are in different components of the
graph C − e − f .

For any set X let
(

X
2

)
denote the collection of unordered pairs from X. A pairing

of a set is a partition into pairs.

Lemma 74.2α (pairing lemma). Let C = (V, E) be a circuit with |V | even, and
let s :

(
E
2

)
→ Z be such that, for each x ∈

(
E
2

)
, s(x) has the same parity as the size

of any of the two components of C − x. Then V has a pairing M such that each
x ∈

(
E
2

)
is crossed by at most s(x) pairs in M if and only if

(74.11)
∑

x∈B

s(x) ≥ 1
2
q

for each collection B consisting of disjoint pairs in
(

E
2

)
. Here q denotes the number

of odd components of the graph G obtained from the complete graph on V by deleting
all edges crossing at least one pair in B.

Proof. For any x ∈
(

E
2

)
and any R ⊆

(
V
2

)
, let crR(x) denote the number of pairs

in R crossing x.
Necessity of the condition is easy: if M as required exists, let N ⊆ M be the

set of those pairs in M leaving at least one odd component of G. Since each odd
component of G is left by at least one pair in N , we have |N | ≥ 1

2
q. On the other

hand, each pair in N crosses at least one pair in B, and so

(74.12) 1
2
q ≤ |N | ≤

∑

x∈B

crN (x) ≤
∑

x∈B

s(x),

proving (74.11).
To see sufficiency, first assume that s(x) > 0 for each x ∈

(
E
2

)
. Let M be any

of the two perfect matchings in C. Then for any x ∈
(

E
2

)
, crM (x) is at most 2 and

has the same parity as s(x); therefore crM (x) ≤ s(x).
Hence we can assume that there is a y ∈

(
E
2

)
with s(y) = 0. Let K be a

component of C − y. Among all such y, K, choose y, K such that K is smallest. Let
V ′ := V \K, let u and w be the end vertices of the path C−K, and let C′ = (V ′, E′)
be the circuit obtained from C − K by adding the new edge f = uw. As s(y) is
even, both K and V ′ have even size. Let N be the unique perfect matching in the
path C[K].

For each x ∈
(

E′

2

)
, define s′(x) by: s′(x) := s(x) if f �∈ x, and

(74.13) s′(x) :=
min{min{s({e, g}) | g ∈ E \ E′, g �∈ N}, min{s({e, g}) − 1 | g ∈ N}}

if x = {e, f}. Trivially, s′(x) has the same parity as any component of C′ − x for

each x ∈
(

E′

2

)
.

We show that condition (74.11) holds for the smaller structure. That is, for any

collection B′ of disjoint pairs in
(

E′

2

)
one has
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(74.14)
∑

x∈B′

s′(x) ≥ 1
2
q′,

where q′ is the number of odd components of the graph G′ obtained from the
complete graph on V ′ by deleting all edges crossing at least one pair in B′.

If f �∈ x for each x ∈ B′, let B := B′. Then (74.14) follows from (74.11), as
s′(x) = s(x) for each x ∈ B and as q′ = q.

If f ∈ x for some x ∈ B′, this x is unique. Let z = {e, g} ∈
(

E
2

)
attain the

minimum in (74.13). If g �∈ N , let B := (B′ \ {x}) ∪ {z}. Again (74.14) follows from
(74.11), as q′ = q.

If g ∈ N , let B := (B′ \{x})∪{y, z}. Then q = q′ +2 (as each component of G is
a component of G′ or is one of the odd components of C[K] − g). Also s′(a) = s(a)
for each a ∈ B′ \{x}, while s(z) = s′(x)−1 and s(y) = 0. Hence by (74.11) we have
(74.14).

Hence, by (74.14), there exists a pairing M ′ of V ′ such that for each x ∈
(

E′

2

)
,

crM′(x) ≤ s′(x). Then M := N ∪M ′ is a pairing of V . We show that crM (z) ≤ s(z)

for each z ∈
(

E
2

)
. If z ∈

(
E′

2

)
, then crM (z) = crM′(z) ≤ s′(z) = s(z). If z �∈

(
E′

2

)
,

let z = {e, g} with g ∈ E \ E′. If e ∈ E′, let x := {e, f}. If g �∈ N , then crM (z) =
crM′(x) ≤ s′(x) ≤ s(z). If g ∈ N , then crM (z) = crM′(x) + 1 ≤ s′(x) + 1 ≤ s(z).
Finally, if e ∈ E \ E′, then crM (z) = crN (z) ≤ s(z), since, by the choice of y, s(z)
is positive and has the same parity as crN (z), while crN (z) ≤ 2.

The proof gives a polynomial-time algorithm to find the pairing: iteratively one
finds a pair x with s(x) = 0 and applies the reduction described in the proof; if no
pair x with s(x) = 0 exists, one takes any perfect matching in C.

The pairing lemma implies (Frank [1985]):

Theorem 74.2. Let G = (V, E) be a planar graph such that each vertex not on
the outer boundary has even degree. Let R be a set of pairs of vertices on the outer
boundary of G. Then there exist edge-disjoint paths Pr for r ∈ R, where Pr connects
the vertices in r, if and only if

(74.15)

l∑

j=1

(dE(Xj) − dR(Xj)) ≥ 1
2
q

for each collection of subsets X1, . . . , Xl. Here q denotes the number of components
K of G′ := G − δE(X1) − · · · − δE(Xl) with dE(K) + dR(K) odd.

Proof. Call a vertex v or a subset X of V odd if degE(v)−degR(v) or dE(X)−dR(X)
is odd.

Necessity of (74.15) is easy: let E′ be the set of edges not used by the Pr. Then
for any set X, dE′(X) ≤ dE(X) − dR(X), while on the other hand dE′(X) ≥ 1 if
X is odd. Thus at least 1

2
q edges from

⋃
j δE(Xj) belong to E′. So

(74.16) 1
2
q ≤

∣∣ ⋃

j

δE′(Xj)
∣∣ ≤

∑

j

dE′(Xj) ≤
∑

j

(dE(Xj) − dR(Xj));

that is, we have (74.15).
Sufficiency follows from the pairing lemma (Lemma 74.2α) and the Okamura-

Seymour theorem. Indeed, let v1, . . . , v2n be the odd vertices, in cyclic order along
the outer boundary. Let C be the circuit with vertices v1, . . . , v2n and edges vi−1vi

for i = 1, . . . , 2n, setting v0 := v2n. For each pair x of edges e, e′ of C, define
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(74.17) s(x) := min{dE(U) − dR(U) | U ⊆ V, δF (U) = {e, e′}}.

Then s satisfies the conditions described in the pairing lemma. Indeed, the parity
condition is easily checked. To see (74.11), let B be a collection of disjoint pairs from
EC. For each x ∈ B, let Ux attain the minimum (74.17). Let G′ := G−⋃

x∈B δE(Ux).
Let H be the graph obtained from the complete graph on V C by deleting all edges
crossed by at least one pair in B. Then for each component K of G′ one has: the
odd vertices in K are contained in some component of H (since K ∩ V C ⊆ Ux

or K ∩ V C ⊆ V \ Ux for each x ∈ B; so no two vertices in K ∩ V C cross any x
in B). Hence the number of odd components of G′ is at least the number of odd
components of H. So the condition in the pairing lemma follows from condition
(74.15).

Applying the pairing lemma, we obtain a matching M of the odd vertices with
dM (U) ≤ dE(U) − dR(U) for each U ⊆ V . Also we have that degE(v) + degR(v) +
degM (v) is even for each v ∈ V . So for R′ := R ∪ M , we can apply the Okamura-
Seymour theorem, to obtain in G for each r = st ∈ R′ an s − t path Pr, such that
the Pr are edge-disjoint. Restriction to R gives paths as required.

In the theorem one can assume that l ≤ |E|, since for each edge e of G we need
at most one Xi splitting e. So the theorem is a good characterization.

As the pairing lemma is polynomial-time constructive, one can find edge-disjoint
paths as required if the condition is met — similarly for the capacitated case. Frank
[1985] showed that under the conditions of Theorem 74.2, the edge-disjoint paths
problem, and its capacitated version, can be solved in O(n3 log n) time. Also Becker
and Mehlhorn [1986] showed that this problem is polynomial-time solvable, and
they gave a time bound of O(tn + T (n)), where T (n) is the time needed to solve a
problem where the Euler condition holds, and where t is the number of vertices on
the outer boundary. Weihe [1999] finally gave a linear-time algorithm.

The special case where G is a rectangular grid was solved by Frank [1982c],
showing that condition (74.15) can be simplified in this case.

74.1d. Distances and cut packing

With planar duality one may derive another, dual result of the Okamura-Seymour
theorem, that relates distances to packings of cuts in planar graphs (Hurkens, Schrij-
ver, and Tardos [1988]):

Corollary 74.2a. Any planar bipartite graph G contains disjoint cuts such that
any two vertices s, t on the outer boundary of G are separated by distG(s, t) of these
cuts.

Proof. Let X be the set of pairs e, e′ of edges along the outer boundary of G such
that if e = st and e′ = s′t′ where s, t, s′, t′ occur in this order cyclically around the
outer boundary, then

(74.18) distG(s, s′) + distG(t, t′) − distG(s, t′) − distG(s′, t) = 2.

(Note that for any e, e′, the left-hand side equals 0 or 2, by the triangle inequality,
and by the fact that each s − s′ path intersect each t − t′ path.)
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We say that a pair e, e′ of edges along the outer boundary crosses a pair u, v
of vertices along the outer boundary if any u − v path along the outer boundary
traverses exactly one of e and e′. We show that for any two vertices u, v on the
outer boundary of G:

(74.19) distG(u, v) = number of pairs in X that cross u, v.

To see this, assume that v1, . . . , vn are the vertices of G cyclically along the outer
boundary, and let u = vn and v = vk. Then (setting v0 := vn):

(74.20) number of pairs in X that cross u, v

= 1
2

k∑

i=1

n∑

j=k+1

(distG(vi−1, vj−1) + distG(vi, vj) − distG(vi−1, vj)

−distG(vi, vj−1)) =

1
2

k∑

i=1

(
distG(vi−1, vk) − distG(vi−1, vn) + distG(vi, vn) − distG(vi, vk)

)

= 1
2
distG(v0, vk) + 1

2
distG(vk, vn) = distG(u, v)

(by cancellation).
This shows (74.19), which implies that it suffices to show that we can find

disjoint cuts Cπ for π ∈ X , such that Cπ intersects the outer boundary of G in the
two edges in π. To show that these cuts exist, we can apply the Okamura-Seymour
theorem to a modification of the planar dual graph G∗ of G. Indeed, we must show
that there exist edge-disjoint circuits Dπ in G∗, for π ∈ X , such that Dπ traverses
the two edges of G∗ dual to the edges of G in π. The existence of these circuits
follows from the Okamura-Seymour theorem applied to the graph G′ obtained from
G∗ by deleting the vertex of G∗ dual to the unbounded face of G, and all edges
incident with it. Let R be the set of pairs of vertices of G′ that are ends of pairs of
edges dual to π ∈ X . Then (74.19) implies that the cut condition holds, and that
paths in G′, and hence circuits in G∗, as required exist.

This corollary is related to the Okamura-Seymour theorem by two different
forms of duality: by planar duality and by polarity. As for planar duality, this is
shown in the proof of this corollary. For polarity, this can be seen with Theorem
70.5, which gives that there exist λU ∈ R+ for U ⊆ V such that

(74.21)
∑

U

λUχδR(U)(r) ≥ distG(s, t) for each r = st ∈ R and

∑

U

λUχδE(U)(e) ≤ 1 for each e ∈ E.

Now Corollary 74.2a asserts that the λU can be taken integer if G is bipartite.

74.1e. Linear algebra and distance realizability

As for the results on distances and cut packings discussed in Section 74.1d, the
following further observations were made by Hurkens, Schrijver, and Tardos [1988].
Let C = (V, E) be a circuit with n vertices and n edges, say:

(74.22) V = {v1, . . . , vn}, E = {e1 = v0v1, . . . , en = vn−1vn},
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where v0 := vn. Again, let
(

V
2

)
and

(
E
2

)
denote the sets of unordered pairs of distinct

elements from V and E, respectively. Let M be the
(

V
2

)
×

(
E
2

)
matrix given by:

(74.23) M{vi,vj},{eg,eh} :=

{
1 if {vi, vj} and {eg, eh} cross,
0 otherwise,

where {vi, vj} and {eg, eh} are said to cross if vi and vj belong to different compo-
nents of the graph C − eg − eh. Then the matrix M is nonsingular, with

(
E
2

)
×

(
V
2

)

inverse N given by:

(74.24) N{eg,eh},{vi,vj} :=





+ 1
2

if {i, j} = {g, h} or {i, j} = {g − 1, h − 1},
− 1

2
if {i, j} = {g, h − 1} or {i, j} = {g − 1, h},

0 otherwise.

To see

(74.25) N = M−1,

choose {eg, eh}, {ea, eb} ∈
(

E
2

)
. Then

(74.26) (NM){eg,eh},{ea,eb} = 1
2
M{vg,vh},{ea,eb} + 1

2
M{vg−1,vh−1},{ea,eb} −

1
2
M{vg,vh−1},{ea,eb} − 1

2
M{vg−1,vh},{ea,eb}.

If {g, h} = {a, b}, then it is easy to see that this last expression is equal to 1. If
{g, h} �= {a, b}, then without loss of generality g �∈ {a, b}. Then

(74.27) M{vg,vh},{ea,eb} = M{vg−1,vh},{ea,eb} and
M{vg,vh−1},{ea,eb} = M{vg−1,vh−1},{ea,eb},

which implies that (74.26) equals 0. This proves (74.25). (It can be shown that

| det M | = 2(n−1

2
).)

(74.25) implies that for any function d :
(

V
2

)
→ R there is a unique b :

(
E
2

)
→ R

such that

(74.28) d({vi, vj}) =
∑

(b({eg, eh}) | {eg, eh} ∈
(

E
2

)
where {eg, eh} crosses

{vi, vj}).

Indeed, (74.28) is equivalent to: d = Mb. Hence b := Nd is the unique b satisfying
(74.28).

This can be applied to d = distG for some bipartite planar graph G = (V ′, E′)
with C = (V, E) being the outer boundary of G. Consider the collection X of pairs
of edges on the outer boundary of G defined in the proof of Corollary 74.2a. (X is a
partition of E into pairs.) Then the uniqueness of b in (74.28) yields that X is the
unique collection of pairs of edges on the boundary of G with the property that for
any two vertices s, t on the outer boundary of G, the distance distG(s, t) is equal
to the number of pairs in X crossing {s, t}.

Another consequence of (74.25) is as follows. Consider again the circuit C =
(V, E) given by (74.22). Call a function m :

(
V
2

)
→ R+ realizable as the distance

function of a planar graph with boundary C, or briefly realizable, if there exists a
planar graph G = (V ′, E′), with V ′ ⊇ V , E′ ⊇ E such that v1, . . . , vn occur in this
order cyclically around the outer boundary, and a length function l : E′ → R+ such
that for all s, t ∈ V , m({s, t}) = distG(s, t). Then

(74.29) a function m :
(

V
2

)
→ R+ is realizable if and only if for all i, j = 1, . . . , n

we have

m({vi, vj}) + m({vi−1, vj−1}) ≥ m({vi, vj−1}) + m({vi−1, vj}),
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setting m({vi, vi}) := 0 for all i.
Necessity of the condition is trivial, since any vi − vj path in G crosses any

vi−1 − vj−1 path in G. To see sufficiency, we construct a graph G as follows. Let
w1, . . . , wn be points on the unit circle, in this cyclic order. Set w0 := wn. Add all
line-segments wgwh (g, h = 1, . . . , n; g �= h). The figure now forms a planar graph
H, with vertices the points that are on two or more of these line segments. Let H∗

be the dual graph. Put a new point vi on the edge of H∗ dual to the edge wiwi+1

of H (i = 0, . . . , n − 1). Next delete the vertex of H∗ dual to the outer face of H
and delete all edges incident with it. This makes the graph G = (V ′, E′).

Let d := Nm. By the condition given in (74.29), d ≥ 0. For each edge e of G,
define l(e) := d({eg, eh}) if e is dual to an edge of H which is on the line segment
wgwh. Using the fact that Md = m it is easy to see that this gives a realization as
required.

Also the ‘pairing lemma’ (Lemma 74.2α) can be interpreted in terms of the
matrix M : it characterizes when there exists an x :

(
V
2

)
→ Z+ with x(δ(v)) odd for

each v ∈ V and with xTM ≤ s for some given s :
(

E
2

)
→ Z+.

74.1f. Directed planar graphs with all terminals on the outer

boundary

It was observed by Diaz and de Ghellinck [1972] that if the supply graph is
directed and planar, and all terminals are on the outer boundary in the order
s1, . . . , sk, tk, . . . , t1, then the integer multicommodity flow problem is solvable in
polynomial time, and the cut condition suffices. This follows by a reduction to a
minimum-cost circulation problem: add arcs from ti to si for i = 1, . . . , k.

Related, and more difficult, is the following result of Nagamochi and Ibaraki
[1990]. Let the supply digraph D = (V, A) be planar and acyclic, and let the demand
digraph H = (T, R) have all terminals on the outer boundary of D. Then for each
c : A → Z+ and d : R → Z+ satisfying the directed analogue of the Euler condition
(that is, (V, A ∪ R−1) is Eulerian), if there is a fractional multiflow, there is an
integer multiflow.

Nagamochi and Ibaraki also gave a polynomial-time algorithm to find the in-
teger multiflow. Moreover, they extended the results to the case where the set of
vertices that violate the Euler condition, all lie on the outer boundary of D, in such
a way that the vertices v with c(δout

A (v)) − d(δin
R (v)) > c(δin

A (v)) − d(δout
R (v)) can

be separated (on the outer boundary of D) by two vertices from those vertices v
where the opposite strict inequality holds.

74.2. G + H planar

Seymour [1981d] gave another tractable case of the planar edge-disjoint paths
problem if the Euler condition holds: the case where the graph together with
all its nets (taken as edges) is a planar graph; that is, if G = (V, E) and
H = (V, R) are graphs with

(74.30) G + H := (V, E ∪ R)
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planar (where E ∪ R is the disjoint union, respecting multiplicities in E
and R). This case can be handled with the help of matching theory (more
specifically, minimum-size T -joins and disjoint T -cuts).

Theorem 74.3. Let G = (V, E) and H = (V, R) be supply and demand
graphs with G+H planar and Eulerian. Then the edge-disjoint paths problem
has a solution if and only if the cut condition holds.

Proof. Necessity being trivial, we show sufficiency. Let the cut condition be
satisfied. Consider the dual graph (G+H)∗ of G+H. Let R∗ be the family of
edges of (G+H)∗ dual to those in R. Let T be the set of vertices of (G+H)∗

which are incident with an odd number of edges in R∗. So R∗ is a T -join in
(G + H)∗.

In fact, R∗ is a minimum-size T -join in (G + H)∗. For suppose not. Then
there exist E0 ⊆ E and R0 ⊆ R such that E∗

0 ∪R∗
0 is a T -join and |E0|+|R0| <

|R|. As E∗
0 ∪ R∗

0 is a T -join, each vertex of (G + H)∗ is incident with an even
number of edges in

(74.31) (E∗
0 ∪ R∗

0)△R∗ = E∗
0 ∪ (R \ R0)

∗.

Hence E0 ∪ (R \ R0) forms a cut in G + H. Since |E0| < |R \ R0|, this
contradicts the cut condition.

So R∗ is a minimum-size T -join in (G + H)∗. As (G + H)∗ is bipartite,
by Theorem 29.2, there exist disjoint cuts D1, . . . , Dt in (G + H)∗ such that
(i) each cut Dj intersects R∗ in exactly one element and (ii) each edge of R∗

is in exactly one of the Dj . Condition (i) implies that the dual Cj of each
Dj is a circuit in G + H containing exactly one edge in R. Hence the Cj give
edge-disjoint paths in G as required.

Notes. The reduction to matching theory given in this proof implies that feasibility
can be tested, and edge-disjoint paths can be found, in strongly polynomial time
(also for the capacitated case). Matsumoto, Nishizeki, and Saito [1986] showed that
feasibility can be tested in O(n3/2 log n) time, and edge-disjoint paths can be found
in O(n5/2 log n) time (also for the capacitated case). The latter bound was improved
by Barahona [1990] to O(n3/2 log n).

With the help of Wagner’s theorem (Theorem 3.3), Theorem 74.3 can be ex-
tended to the case where G + H has no K5 minor. We derive this result from
Guenin’s theorem in Section 75.6.

The fractional version of Theorem 74.3 was published in Seymour [1979b].

74.2a. Distances and cut packing

By Theorem 70.5, Theorem 74.3 implies that if G = (V, E) and H = (V, R) are
graphs with G+H planar, then there is a fractional packing of cuts in G such that
for any r = st ∈ R, s and t are separated by distG(s, t) of these cuts. A.V. Karzanov
(personal communication 1986) observed that in fact from a theorem of Seymour
[1979b] the existence of a half-integer packing can be derived. More generally:
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(74.32) Let G = (V, E) and H = (V, R) be graphs with G bipartite and G+H
planar. Then there exist disjoint cuts in G such that for each r = st ∈
R, s and t are separated by distG(s, t) of these cuts.

This can be derived from Theorem 29.3 above (of Seymour [1979b]), saying:

(74.33) Let G = (V, E) be a planar graph and let p : E → Z+. Then p is
a nonnegative integer sum of incidence vectors of circuits of G if and
only if p(δ(v)) is even for each v ∈ V and p(e) ≤ p(D \ {e}) for each
cut D of G and each e ∈ D.

Applying planar duality, (74.33) becomes:

(74.34) Let G = (V, E) be a planar graph and let p : E → Z+. Then p is a
nonnegative integer sum of incidence vectors of cuts of G if and only
if p(C) is even for each circuit C of G and p(e) ≤ p(C \ {e}) for each
circuit C of G and each e ∈ C.

(Here we consider circuits as edge sets.) We apply this to the graph G+H, where G
is bipartite and G + H is planar. Define p(e) := 1 for e ∈ E and p(r) := distG(s, t)
for r = st ∈ R. Then p(C) is even for each circuit C of G+H and p(e) ≤ p(C \{e})
for each circuit of G + H and each e ∈ E. (The latter property is trivial if e ∈ E.
If e = st ∈ R, we can replace any occurrence of an r in C \ {e} with r = uv ∈ R,
by a shortest u − v path in G. This does not increase p(C \ {e}). Repeating this,
we can assume that C ∩ R = {e}, and so C \ {e} is an s − t path in G, implying
p(e) = distG(s, t) ≤ |C \ {e}| = p(C \ {e}).)

Therefore, by (74.34), p is a nonnegative integer sum of incidence vectors of
cuts of G + H. By definition of p, this gives edge-disjoint cuts in G as required in
(74.32).

74.2b. Deleting the Euler condition if G + H is planar

Middendorf and Pfeiffer [1993] showed that if G + H is planar (but not necessarily
Eulerian), then the edge-disjoint paths problem is NP-complete. (With construction
(70.9), it implies the same result for the directed case.) In fact they showed that if
G + H is planar and cubic, then the edge-disjoint paths problem is NP-complete.
Hence, also the vertex-disjoint paths problem is NP-complete if G+H is planar and
cubic. (Assuming P �=NP, this disproves a conjecture of Schrijver [1990b].) Midden-
dorf and Pfeiffer [1990b,1993] showed that, on the other hand, if G + H is planar
and the edges of H belong to a bounded number of faces of G, then the edge-disjoint
paths problem is polynomial-time solvable.

Middendorf and Pfeiffer [1990b,1993] also presented a counterexample to a con-
jecture of A. Frank (cf. Sebő [1988a]) that if G+H is planar, then the edge-disjoint
paths problem has a solution if and only if G contains a fractional packing of paths
as required and of a T ′-join, where T ′ is the set of vertices having odd degree in
G + H.

Korach and Penn [1992] showed that if G + H is planar and the cut condition
holds, then there is an ‘almost complete’ packing of paths as required: there is at
most one edge in R on each bounded face of G such that leaving out these edges
from R, the problem has a solution. A generalization of this was given by Frank and
Szigeti [1995]. (Related work can be found in Granot and Penn [1992,1993,1996].)

Seymour [1981d] also showed the following:
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(74.35) Let G = (V, E) and H = (V, R) be supply and demand graphs such
that G + H is planar and such that R consists of two classes of par-
allel edges. Then there exist edge-disjoint paths if and only if the cut
condition holds and we cannot contract edges of G to obtain a graph
G′ with at most four vertices in which the corresponding edge-disjoint
paths do not exist.

Frank [1990d] observed that the latter condition can be formulated as:

(74.36) dE∪R(X ∩ Y ) is even for any two tight sets X, Y ⊆ V ,

which Frank called the intersection criterion. (A subset X of Y is called tight if
dE(X) = dR(X).)

The intersection criterion is a necessary condition for the existence of edge-
disjoint paths: if paths as required exists, then for each tight X all edges in δE(X)
are used by these paths; hence if X and Y are tight, all edges in δE(X ∩ Y ) are
used; hence dE(X ∩ Y ) ≡ dR(X ∩ Y ) (mod 2), that is, dE∪R(X ∩ Y ) is even.

In other words, Frank observed that (74.35) is equivalent to:

(74.37) Let G = (V, E) and H = (V, R) be graphs such that G+H is planar and
such that R consists of two classes of parallel edges. Then there exist
edge-disjoint paths if and only if the cut condition and the intersection
criterion hold.

This was extended by Frank [1990d] to:

(74.38) Let G = (V, E) and H = (V, R) be graphs such that G + H is planar
and such that the edges of H are on at most two of the faces of G.
Then there exist edge-disjoint paths if and only if the cut condition
and the intersection criterion hold.

Lomonosov [1983] proved a maximization version of (74.35), which Frank [1990e]
showed to follow from (74.35). Korach and Penn [1993] gave an O(n

√
log n)-time

algorithm for the edge-disjoint paths problem if G + H is planar and H consists of
two parallel classes of nets.

Sebő [1993c] showed that for each fixed k, if G + H is planar and |V H| ≤ k,
then the integer multiflow problem is polynomial-time solvable. (The demands can
be arbitrarily large, so there is no reduction to the edge-disjoint paths problem for
a fixed number of paths. It was shown for k = 3 by Korach [1982].) Sebő showed
this by proving a more general result on the complexity of packing T -cuts for fixed
|T |.

It is an open question if one may relax this condition to H being spanned by a
fixed number of faces of G. (For demand d = 1 this was shown by Middendorf and
Pfeiffer, as mentioned above.)

Pfeiffer [1990] raised the question if the edge-disjoint paths problem has a half-
integer solution if G + H is embeddable in the torus and there is a quarter-integer
solution. He gave the example of Figure 70.5 with 8 vertices to show that this
generally does not hold if G + H is embeddable in the double torus.

Pfeiffer [1994] showed that the half-integer multiflow problem is NP-complete
if G + H is apex. (An apex graph is a graph having a vertex whose deletion makes
the graph planar.) Pfeiffer also showed that the half-integer multiflow problem is
NP-complete if the supply and demand digraphs form a directed planar graph.
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74.3. Okamura’s theorem

Okamura [1983] gave the following extension of the Okamura-Seymour theo-
rem. We follow the proof found in 1984 by G. Tardos (cf. Frank [1990e]). The
first half of the proof below is similar to the proof of the Okamura-Seymour
theorem (Theorem 74.1).

Theorem 74.4 (Okamura’s theorem). Let G = (V, E) be a planar graph and
let F1 and F2 be two of its faces. Let R be a set of pairs of vertices of G
such that each r = st ∈ R satisfies s, t ∈ bd(F1) or s, t ∈ bd(F2). Let the
Euler condition hold. Then the edge-disjoint paths problem has a solution if
and only if the cut condition holds.

Proof. Necessity of the cut condition being trivial, we show sufficiency. The
cut condition implies that |R| ≤ |E| (assuming that each r ∈ R consists of
two distinct vertices), since

(74.39) 2|R| =
∑

v∈V

degR(v) ≤
∑

v∈V

degE(v) = 2|E|.

So we can consider a counterexample with 2|E| − |R| minimal. Then

(74.40) G is 2-connected.

Indeed, if G is disconnected, we can deal with the components separately.
Suppose next that G is connected and has a cut vertex v. We may assume
that for no r = st ∈ R, the vertices s and t belong to different components of
G − v, since otherwise we can replace r by sv and vt, without violating the
Euler or cut condition. For any component K of G − v consider the graph
induced by K ∪ {v}. Again, the Euler and cut conditions hold (with respect
to those nets contained in K ∪ {v}). So by the minimality of 2|E| − |R| we
know that paths as required exist in K ∪ {v}. As this is the case for each
component of G − v, we have paths as required in G. This proves (74.40).

If some r ∈ R is parallel to an edge of G we can delete this edge from
G, and r from R, to obtain a smaller counterexample. Hence such r, e do not
exist.

Call a subset X of V tight if dE(X) = dR(X). Let C1 and C2 be the
circuits forming the boundaries of F1 and F2 respectively. Then

(74.41) Each tight set X with |δE(X) ∩ EC1| = 2 intersects V C2.

For suppose that X ∩V C2 = ∅. Choose such a set X with |X| minimal. Let e
be one of the two edges in δE(X)∩EC1. Say e = uw with u 	∈ X and w ∈ X.

Since dR(X) = dE(X) ≥ 2, we know δR(X) 	= ∅. For each r ∈ δR(X), let
sr be the vertex in r ∩ X, and tr the vertex in r \ X. Choose r ∈ δR(X) such
that tr is as close as possible to u in the graph C1 − X.

Since {u, w} 	= {sr, tr}, we can choose v ∈ {u, w} with v 	∈ {sr, tr}. Let
R′ := (R \ {r}) ∪ {srv, vtr}. Trivially the Euler condition is maintained. We
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prove that also the cut condition is maintained, which is a contradiction as
2|E| − |R′| < 2|E| − |R| and as a solution for R′ yields a solution for R.

To see that the cut condition is maintained, suppose to the contrary that
there is a Y ⊆ V satisfying

(74.42) dE(Y ) < dR′(Y ).

By Theorem 70.4, we can take Y such that G[Y ] and G − Y are connected.
By symmetry we can assume that tr 	∈ Y . By the Euler condition, (74.42)
implies dE(Y ) ≤ dR′(Y ) − 2. So

(74.43) dR′(Y ) ≥ dE(Y ) + 2 ≥ dR(Y ) + 2 ≥ dR′(Y ).

Hence we have equality throughout. So δR′(Y ) contains both srv and vtr,
that is, sr, tr 	∈ Y and v ∈ Y . Moreover, dE(Y ) = dR(Y ).

As Y and V \ Y intersect V C1 and as G[Y ] and G − Y are connected,
we know |δE(Y ) ∩ EC1| = 2. By the choice of r, there is no pair r′ in R
connecting X \ Y and Y \ X (otherwise, tr′ ∈ Y \ X and hence tr′ would be
closer than tr to u in C1 − X). So (using Theorem 3.1)

(74.44) dR(X ∩ Y ) + dR(X ∪ Y ) = dR(X) + dR(Y ).

Moreover,

(74.45) dE(X ∩ Y ) + dE(X ∪ Y ) ≤ dE(X) + dE(Y ).

As the cut condition holds for X ∩Y and X ∪Y , we have equality in (74.45),
and therefore X ∩Y is tight. Since sr ∈ X \Y , we know |X ∩Y | < |X|. So by
the minimality of X we have X ∩ Y = ∅. So w 	∈ Y , hence u = v ∈ Y . Then
edge e = uw connects X \ Y and Y \ X, contradicting equality in (74.45).
This proves (74.41).

Now choose r = st ∈ R. By symmetry of F1 and F2, we may assume
that s, t ∈ V C1. Let P and Q be the two s − t paths along C1. Deleting the
edges of P from G and r from R, must violate the cut condition (as the Euler
condition is maintained, and as for the new data there is no solution, since
with P it gives a solution for the original data). So |δE\EP (K)| < |δR\{r}(K)|
for some K ⊆ V , with G[K] and G − K connected (by Theorem 70.4 taking
c := χE\EP and d := χR\{r}). Since G[K] and G − K are connected, and
using (74.41), |δE(K) ∩ ECi| = 2 for i = 1, 2. Moreover, K is tight, δE(K)
contains two edges of P , and K does not split r. So we may assume that
s, t 	∈ K. Similarly, there is a tight subset L of V such that |δE(L)∩ECi| = 2
for i = 1, 2, such that δE(L) contains two edges of Q, and such that s, t 	∈ L.

As each of K, V \ K, L, and V \ L intersects V C2, each s − t path in G
intersects K ∪ L (since K contains a path from V P to V C2 and L contains
a path from V Q to V C2). Hence we can partition V \ (K ∪ L) into sets M
and N , with s ∈ M , t ∈ N , and E[M, N ] = ∅. (Here and below, E[X, Y ] and
R[X, Y ] denote the set of pairs xy in E and R respectively with x ∈ X and
y ∈ Y .)
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We can assume by symmetry that R[M, K ∩ L] = ∅. For suppose that
R[M, K ∩ L] 	= ∅ and R[N, K ∩ L] 	= ∅. Since K ∩ L does not intersect V C1,
it would follow that both M and N intersect V C2. However, this implies
K ∩ L = ∅, and hence R[M, K ∩ L] = ∅.

Then we have the contradiction

(74.46) dR(K) + dR(L) = dE(K) + dE(L)
= (dE(K ∪ M) + |E[M, K]| − |E[M, L \ K]| − |E[M, N ]|)
+(dE(L ∪ M) + |E[M, L]| − |E[M, K \ L]| − |E[M, N ]|)
≥ dE(K ∪ M) + dE(L ∪ M) ≥ dR(K ∪ M) + dR(L ∪ M)
= (dR(K) − |R[M, K]| + |R[M, L \ K]| + |R[M, N ]|)
+ (dR(L) − |R[M, L]| + |R[M, K \ L]| + |R[M, N ]|)
> dR(K) + dR(L).

This follows from a straightforward count of edges, and from the facts that
E[M, L \ K] ⊆ E[M, L], E[M, K \ L] ⊆ E[M, K], E[M, N ] = ∅, R[M, K] =
R[M, K \ L] (as R[M, K ∩ L] = ∅), R[M, L] = R[M, L \ K] (similarly), and
R[M, N ] 	= ∅ (as st ∈ R[M, N ]).

Notes. Suzuki, Nishizeki, and Saito [1985b,1989] gave an O(kn + nt1 · SP+(n))-
time algorithm for finding the edge-disjoint paths in this case (similarly for the
capacitated case), where k := |R|, t1 is the number of vertices on the boundary of
F1, and SP+(n) is any upper bound on the time needed to find a shortest path in
a planar n-vertex graph with nonnegative edge lengths.

The example of Figure 70.2 shows that Okamura’s theorem cannot be extended
to more than two selected faces, and also is not maintained if we allow ‘mixed pairs’;
that is, nets that connect the two selected faces. Under certain conditions one can
allow such pairs — see (74.55) and (76.50) below.

74.3a. Distances and cut packing

By Theorem 70.5, Okamura’s theorem implies that for any planar graph G = (V, E)
and any choice of two faces F1 and F2, there is a fractional packing of cuts such that
any two vertices s, t that are either both incident with F1 or both incident with F2,
are separated by distG(s, t) of these cuts. In fact, there is a half-integer packing, as
follows from the following result of Schrijver [1989a], generalizing Corollary 74.2a:

(74.47) Let G = (V, E) be a bipartite planar graph and let F1 and F2 be two of
its faces. Then there exist edge-disjoint cuts such that any two vertices
s, t with s, t ∈ bd(F1) or s, t ∈ bd(F2) are separated by distG(s, t) of
these cuts.

Karzanov [1990a] gave an alternative proof of this, yielding a strongly polynomial-
time algorithm for finding the cuts, also for the weighted case (that is, for length
function l : E → Z+ with l(C) even for each circuit C of G, finding an integer
packing of cuts).
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74.3b. The Klein bottle

In Schrijver [1989b] the following relation between Okamura’s theorem and graphs
embedded in the Klein bottle is given. It generalizes the relation between the Oka-
mura-Seymour theorem and graphs embedded in the projective plane, as described
in Section 74.1b.

We can represent the Klein bottle as obtained from the 2-sphere by adding two
cross-caps. A closed curve C on the Klein bottle is called orientation preserving if
after one turn of C the meaning of ‘left’ and ‘right’ is unchanged. Otherwise, it is
called orientation-reversing.

Thus a closed curve is orientation-preserving if and only if it traverses the cross-
caps an even number of times. It is orientation-reversing if and only if it traverses
the cross-caps an odd number of times. So, if G = (V, E) is a graph embedded in the
Klein bottle, there is a subset R of E such that a circuit in G is orientation-reversing
if and only if it traverses the edges in R an odd number of times.

Let G = (V, E) be a graph embedded in the Klein bottle. Define

(74.48) C := collection of orientation-reversing circuits in G;
D := collection of edge sets intersecting each orientation-reversing cir-
cuit of G.

(Here we take circuits as edge sets.)
In Schrijver [1989b], the following is derived from (74.47):

(74.49) Let G = (V, E) be a bipartite graph embedded in the Klein bottle.
Then the minimum length of an orientation-reversing circuit in G is
equal to the maximum number of disjoint sets in D.

(In fact it suffices to require, instead of bipartiteness, that each face of G is sur-
rounded by an even number of edges.)

(74.49) implies that the up hull of the incidence vectors of sets in C is determined
by:

(74.50) xe ≥ 0 for e ∈ E,
x(D) ≥ 1 for D ∈ D.

This follows from the fact that for any l : E → Z+ \ {0}, the minimum value of

(74.51)
∑

e∈E

l(e)xe

over (74.50) is achieved by an integer vector x. To see this, we may assume that
l(e) is even for each e ∈ E. Now replace each edge e of G by a path of length
l(e). We obtain a bipartite graph G′. Let C′ be a minimum-length orientation-
reversing circuit in G′. By (74.49), there exist disjoint edge sets D′

1, . . . , D
′
t in G′

each intersecting all orientation-reversing circuits in G′, such that t is equal to the
number of edges in C′. Let C, D1, . . . , Dt be the edge sets in G corresponding to
C′, D′

1, . . . , D
′
t. So D1, . . . , Dt ∈ D. Then

(74.52)
∑

e∈E

l(e)χC(e) = t =

t∑

i=1

1 and

t∑

i=1

χDi ≤ l.
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So D1, . . . , Dt give a dual solution to minimizing (74.51) over (74.50) of value t,
and hence x := χC is an optimum solution.

So the vertices of the polyhedron determined by (74.50) are incidence vectors
of orientation-reversing circuits. By the theory of blocking polyhedra, this implies
that the up hull of the incidence vectors of the sets in D is determined by:

(74.53) xe ≥ 0 for e ∈ E,
x(C) ≥ 1 for C ∈ C.

From this the following stronger property has been derived in Schrijver [1989b],
generalizing Lins’ theorem (Corollary 74.1b):

(74.54) Let G = (V, E) be an Eulerian graph embedded in the Klein bot-
tle. Then the maximum number of edge-disjoint orientation-reversing
circuits is equal to the minimum number of edges intersecting all
orientation-reversing circuits.

This result cannot be extended to compact surfaces with more than two cross-caps,
as we can embed K5 in such a surface in such a way that the orientation-reversing
circuits are exactly the odd-size circuits of K5. Then the maximum number of edge-
disjoint orientation-reversing circuits is equal to 2, while at least 4 edges are needed
to intersect all orientation-reversing circuits.

From (74.54) one can derive Okamura’s theorem (Theorem 74.4) and also an-
other disjoint paths theorem for planar graphs (Schrijver [1989b]):

(74.55) Let G = (V, E) be a planar graph, and let H = (V, R) be a graph,
with R = {s1t1, . . . , sktk}, such that G has two bounded faces F1 and
F2 with the property that s1, . . . , sk occur in clockwise order along
bd(F1) and t1, . . . , tk occur in clockwise order along bd(F2). Let G+H
be Eulerian. Then there exist edge-disjoint paths Pr, where Pr is an
r-path for r ∈ R, if and only if the cut condition holds.

(Here G+H is the graph (V, E ∪R), taking multiplicities of edges into account. An
r-path is a path connecting the vertices in r.) To see this, we can extend the plane
to a Klein bottle, by adding a cylinder between the boundaries of F1 and F2. (That
is, we first make the plane to a sphere, next take out the interiors of the faces F1

and F2, and then add the cylinder, in such a way that we obtain a nonorientable
surface.) By the condition on the orders of the si and ti along the boundaries of F1

and F2, we can extend the embedding of G to an embedding of G + H in the Klein
bottle, by embedding the edges siti over the cylinder. Then a circuit in G + H is
orientation-reversing if and only if it contains an odd number of edges in R. So it
suffices to show that G + H contains k orientation-reversing circuits.

By (74.54) one must show that each set D of edges of G + H intersecting
all orientation-reversing circuits has size at least k. We may assume that D is a
minimal set of edges in G+H intersecting all orientation-reversing circuits in G+H.
This implies that for each circuit C of G + H, |D ∩ C| is odd if and only if C is
orientation-reversing. (Indeed, for each e ∈ D ∩ C there is an orientation-reversing
circuit Ce disjoint from D \ {e} (by the minimality of D). As Ce intersects D we
know e ∈ Ce. Hence the symmetric difference X of C and the Ce for e ∈ D ∩ C
is disjoint from D. So X contains no orientation-reversing circuit. Therefore, X is
the symmetric difference of an even number of orientation-reversing circuits. So C
is orientation-reversing if and only if |D ∩ C| is odd.)
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In particular, |D ∩ C| is even for each circuit C in G. So D ∩ E is a cut δE(X)
in G. Then for each i = 1, . . . , k:

(74.56) if X does not separate si and ti, then siti ∈ D.

Indeed, if X does not separate si and ti, then there is an si − ti path P in G
containing an even number of edges in D. As P ∪ {siti} is an orientation-reversing
circuit, it intersects D an odd number of times, and hence siti ∈ D.

(74.56) implies |D ∩ R| ≥ |R \ δR(X)|. Hence

(74.57) |D| = |D ∩ E| + |D ∩ R| ≥ |δE(X)| + |R \ δR(X)| ≥ |R| = k,

since |δE(X)| ≥ |δR(X)| by the cut condition. So |D| ≥ k as required.
One can similarly derive Okamura’s theorem. First one may assume, with-

out loss of generality, that R = {s1t1, . . . , sktk} such that s1, . . . , sl, t1, . . . , tl oc-
cur cyclically around bd(F1) and sl+1, . . . , sk, tl+1, . . . , tk occur cyclically around
bd(F2). This can be achieved with the construction described in Section 74.1b (cf.
Figure 74.1).

Now we can obtain a Klein bottle by adding a cross-cap in the interior of F1

and a cross-cap in the interior of F2 (assuming that G is embedded in the 2-sphere).
We can extend the embedding of G to an embedding of G + H, by adding edges
siti for i = 1, . . . , l over the first cross-cap, and adding edges siti for i = l+1, . . . , k
over the second cross-cap. Applying (74.54), we obtain Okamura’s theorem.

74.3c. Commodities spanned by three or more faces

Karzanov [1994c,1994b] showed that Okamura’s theorem and the dual cut packing
result (74.47) can be extended in a certain way to planar graphs where the nets are
on three or more faces. These results can be compared to those in Section 72.2a.

We repeat the definition of Γ -metric. Let Γ be a graph, and let V be a finite
set. A metric µ on V is called a Γ -metric if there is a function φ : V → V Γ with

(74.58) µ(u, v) = distΓ (φ(u), φ(v))

for all u, v ∈ V . (Here distΓ (x, y) denotes the distance of x and y in Γ .)
The Γ -metric condition, a necessary condition for the existence of a feasible

multiflow in a supply graph G = (V, E) with demand graph H = (V, R), capacities
c : E → R+ and demands d : R → R+, reads:

(74.59)
∑

r=st∈R

d(r)µ(s, t) ≤
∑

e=uv∈E

c(e)µ(u, v) for each Γ -metric µ on V .

The K2,3-metric condition generalizes the cut condition.
For the edge-disjoint paths problem, Karzanov [1994b] showed that for extend-

ing Okamura’s theorem to three faces, adding the K2,3-metric condition suffices:

(74.60) Let G = (V, E) be a planar graph, let F1, F2, and F3 be three of its
faces, and let H = (V, R) be a graph such that for each r = st ∈ R
there is an i = 1, 2, 3 with s and t on the boundary of Fi. Let G + H
be Eulerian. Then there exist edge-disjoint paths Pr for r ∈ R, where
Pr connects the vertices in r, if and only if the K2,3-metric condition
holds.
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In particular, if a fractional solution exists, then an integer solution exists.
Karzanov [1994b] derived (74.60) from a dual result on packing cuts and K2,3-

metrics, proved in Karzanov [1994c]:

(74.61) Let G = (V, E) be a bipartite planar graph and let F be a set of
three of its faces. Then there exist K2,3-metrics µ1, . . . , µk such that
distG(u, v) ≥ µ1(u, v) + · · · + µk(u, v) for all u, v ∈ V , with equality if
there is an F ∈ F with both u and v incident with F .

Sebő [1993a] showed that a related result on surfaces with three cross-caps also
holds (in the same way as the results on the Klein bottle above relate to Okamura’s
theorem (Theorem 74.4)). Let S be the compact surface with three cross-caps. Let
G = (V, E) be a graph embedded in S, and consider the system:

(74.62) xe ≥ 0 for each e ∈ E,
x(C) ≥ 1 for each orientation-reversing circuit C.

Sebő showed that the polyhedron determined by (74.62) has half-integer vertices
only. Moreover, if Z denotes the set of minimal {0, 1

2
, 1} solutions of (74.62), then

the system

(74.63) xe ≥ 0 for each e ∈ E,

zTx ≥ 1 for each 0,1 vector z ∈ Z,

2zTx ≥ 2 for each z ∈ Z

(which determines the blocking polyhedron of (74.62)) is totally dual half-integral.
More strongly, for each c : E → Z+ with c(C) even for each circuit C of G, the dual
of minimizing cTx over (74.63) has an integer optimum solution.

From this, Sebő derived a result related to (74.61), in the same was as (74.54)
is related to Okamura’s theorem (Theorem 74.4):

(74.64) Let G = (V, E) be a bipartite planar graph and let F1, F2, F3 be three
of its faces, with F1 and F2 bounded. Let s1, . . . , sk occur clockwise
along bd(F1) and let t1, . . . , tk occur clockwise along bd(F2). Then
there exist K2,3-metrics µ1, . . . , µk such that distG(u, v) ≥ µ1(u, v) +
· · ·+µk(u, v) for all u, v ∈ V , with equality if there is an i with u = si,
v = ti, or if both u and v are incident with F3.

For the extension of (74.61) to four or more faces, there is not a finite collection
G of graphs such that in (74.60) and (74.61) one can consider Γ -metrics for Γ in
G. However, for four faces, Karzanov [1994c] proved:

(74.65) Let G = (V, E) be a bipartite planar graph and let F be a set of four of
its faces. Then there exists a collection of metrics µ1, . . . , µk such that
each µi is a Γ -metric for some bipartite planar graph Γ with four faces,
and such that distG(u, v) ≥ µ1(u, v) + · · · + µk(u, v) for all u, v ∈ V ,
with equality if there is an F ∈ F with both u and v incident with F .

This implies, with the usual polarity argument, that if G = (V, E) is a planar graph,
F a set of four of its faces, H = (V, R) a graph such that for each r = st ∈ F there
is an F ∈ F with s and t incident with F , c : E → R+, and d : R → R+, then there
is a feasible multiflow if and only if the Γ -metric condition (74.59) holds for each
planar bipartite graph Γ with four faces.
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Figure 74.2

An example of a planar graph where each commodity is

spanned by one of the four 4-sided faces and where there

exists a half-integer, but no integer multiflow, while the Eu-

ler condition holds. The nets are indicated by pairs of indices at the
vertices. All capacities and demands are 1. The half-integer multiflow
is obtained by putting, for each index i, a flow of value 1

2
along each

of the two paths along the boundary of the (unique) face incident with
both vertices i.

However, if G + H is Eulerian, an integer solution (for c = 1, d = 1) need
not exist, as is shown in Karzanov [1994b]. In fact, Karzanov gave an example
where G + H is Eulerian and where a half-integer solution exists, but no integer
solution (Figure 74.2). Karzanov [1995] however showed that if c and d are integer
and satisfy the Euler condition, then the existence of a fractional multiflow implies
the existence of a half-integer multiflow. Hence, if c and d are integer (but not
necessarily satisfy the Euler condition), then the existence of a fractional multiflow
implies the existence of a quarter-integer multiflow.

Karzanov [1994c] showed that (74.65) cannot be extended to a set F of five
faces by adding Γ -metrics for planar bipartite graphs Γ with five faces.

74.4. Further results and notes

74.4a. Another theorem of Okamura

Next to Theorem 74.4 (‘Okamura’s theorem’), Okamura [1983] gave another gener-
alization of the Okamura-Seymour theorem:

Theorem 74.5. Let G = (V, E) be a planar graph. Let R be a set of nets such that
there is a vertex q on the outer boundary of G with the property that each net is
spanned by the outer boundary of G or it contains q. Let the Euler condition hold.
Then the edge-disjoint paths problem has a solution if and only if the cut condition
holds.
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Proof. Necessity being trivial, we show sufficiency. As in the proof of Theorem 74.4
we consider a counterexample with 2|E| − |R| minimal. It again implies that G is
2-connected, and that no r ∈ R is parallel to an edge of G. Moreover, R contains at
least one pair r with q �∈ r, as otherwise the theorem follows easily from Menger’s
theorem.

Let C be the circuit formed by the outer boundary of G. Consider any pair
g = xy in R with q �∈ g (so x, y ∈ V C), such that the x − y path P along C
not containing q, is as short as possible. Deleting the edges in P from G, and net
g from R, the cut condition is not maintained (as otherwise we have a smaller
counterexample). As in the proof of Theorem 74.4 it implies that there exists a
tight X with x, y �∈ X and such that X intersects C in a subpath of P . Choose X
with |X| minimal. Note that by the choice of g, X spans no pair in R.

If δR(X) contains no pair r = st with both ends on C, it contains only pairs
qv with v ∈ X. Hence we can contract X to one vertex and obtain a smaller
counterexample (note that |X| ≥ 2, since any net in δR(X) is equal to qv ∈ R for
some v ∈ X with v �∈ V C).

So we can assume that δR(X) contains a pair with both ends on C. Let e be
one of the (two) edges in EC that belong to δE(X). We choose e such that there
is a pair r = st in δR(X) such that s, t ∈ V C and such that the s − t path along C
containing e does not traverse q except possibly at its ends. Let e = uw with u �∈ X
and w ∈ X. For each r ∈ δR(X), let sr be the vertex in r ∩ X, and tr the vertex
in r \ X. Since q �∈ X, we know that each such tr is on C. Choose r ∈ δR(X) such
that sr belongs to V C, such that the sr − tr path along C containing e does not
traverse q except possibly at its ends, and such that tr is as close as possible to u
when following C − X. By the choice of e, such an r exists.

Since sr and tr are nonadjacent, we know that {sr, tr} �= {u, w}. So we can
choose v ∈ {u, w} with v �∈ {sr, tr}. Let R′ := (R \ {r}) ∪ {srv, vtr}. Trivially the
Euler condition is maintained. We show that also the cut condition is maintained,
contradicting the minimality of the counterexample.

To see that the cut condition is maintained, suppose to the contrary that there
is a Y ⊆ V satisfying

(74.66) dE(Y ) < dR′(Y ).

By Theorem 70.4, we can assume that G[Y ] and G−Y are connected. By symmetry
we can assume that tr �∈ Y . By the Euler condition, (74.66) implies dE(Y ) ≤
dR′(Y ) − 2. So

(74.67) dR′(Y ) ≥ dE(Y ) + 2 ≥ dR(Y ) + 2 ≥ dR′(Y ).

Hence we have equality throughout. So δR′(Y ) contains both srv and vtr, that is,
sr, tr �∈ Y and v ∈ Y . Moreover, dE(Y ) = dR(Y ).

By the choice of r, there is no pair in R connecting X \ Y and Y \ X. So (using
Theorem 3.1)

(74.68) dR(X ∩ Y ) + dR(X ∪ Y ) = dR(X) + dR(Y ).

Moreover,

(74.69) dE(X ∩ Y ) + dE(X ∪ Y ) ≤ dE(X) + dE(Y ).

As the cut condition holds for X ∩ Y and X ∪ Y , we have equality in (74.69), and
therefore dE(X ∩ Y ) = dR(X ∩ Y ). Since sr ∈ X \ Y , we know |X ∩ Y | < |X|. So
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by the minimality of X we have X ∩ Y = ∅. So w �∈ Y , hence u = v ∈ Y . Then
edge e = uw connects X \ Y and Y \ X, contradicting equality in (74.69).

Suzuki, Nishizeki, and Saito [1985a,1985b] gave an O(t2n + n · SP+(n))-time
algorithm for finding the edge-disjoint paths in this case (similarly for the capac-
itated case), where t is the number of vertices on the outer boundary, and where
SP+(n) is any upper bound on the time needed to find a shortest path in a planar
n-vertex graph with nonnegative edge lengths.

With Theorem 70.5, Theorem 74.5 implies that for any planar graph G = (V, E)
and any vertex q on the outer boundary, there is a fractional cut packing such that
any pair s, t of vertices, with s, t both on the outer boundary or s = q, is separated
by distG(s, t) of these cuts. It seems to be open if the corresponding integer packing
theorem for bipartite planar graphs holds.

74.4b. Some other planar cases where the cut condition is

sufficient

It was announced by Gerards [1993] that if G = (V, E) is a bipartite planar graph
and s, t ∈ V , then there exist disjoint cuts such that for each u, v ∈ V with u, v
both on the outer boundary, or with u = s, v = t, the distance of u and v is equal
to the number of cuts separating u and v. By Theorem 70.5, this implies that the
cut condition implies the existence of a fractional multiflow, if each net is spanned
by the outer boundary or is equal to some fixed pair {s, t} of vertices.

Gerards [1993] also announced that if G is a graph embedded in the Möbius
strip, and if {s1, t1}, . . . , {sk, tk} are nets such that the terminals are either in the or-
der s1, . . . , sk, t1, . . . , tk along the boundary, or in the order or s1, . . . , sk, tk, . . . , t1,
then the cut condition and the Euler condition imply the existence of an integer
multiflow.

74.4c. Vertex-disjoint paths in planar graphs

Let G = (V, E) be a planar graph, embedded in the plane R
2 and let {s1, t1}, . . . ,

{sk,tk} be disjoint pairs of vertices (the ‘nets’). Robertson and Seymour [1986]
observed that there is an easy greedy-type algorithm for the vertex-disjoint paths
problem if all vertices s1, t1, . . . , sk, tk belong to the outer boundary of G. That is,
there exists a polynomial-time algorithm for the following problem:

(74.70) given: a planar graph G = (V, E) and disjoint pairs {s1, t1}, . . . ,
{sk, tk} of vertices on the outer boundary of G,

find: vertex-disjoint paths P1, . . . , Pk in G, where Pi connects si and
ti (i = 1, . . . , k).

We describe the simple intuitive idea of the method. (Pinter [1983] attributed this
idea to C.P. Hsu (1982), and applied it to the vertex-disjoint paths problem in
rectangular grids.)

We say that two disjoint pairs {s, t} and {s′, t′} cross (around G) if there exist
no disjoint curves in the unbounded face, connecting s and t, and connecting s′ and
t′. The following noncrossing condition is a necessary condition for (74.70) to have
a solution:
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(74.71) No two distinct nets {si, ti}, {sj , tj} cross.

The noncrossing condition implies that there exists an i such that at least one of
the two si − ti paths along bd(F ) contains no sj or tj for j �= i: just choose i
such that the shortest si − ti path along the outer boundary is shortest among all
i = 1, . . . , k.

Without loss of generality, i = k. Let Q be a shortest sk − tk path along the
outer boundary. Let G′ := G − V Q. Next solve the vertex-disjoint paths problem
for input G′, {s1, t1}, . . . , {sk−1, tk−1}. If this gives a solution P1, . . . , Pk−1, then
P1, . . . , Pk−1, Q forms a solution to the original problem (trivially).

If the reduced problem turns out to have no solution, then the original problem
also has no solution. This follows from the fact that if P1, . . . , Pk−1, Pk would be
a solution to the original problem, we may assume without loss of generality that
Pk = Q, since we can ‘push’ Pk ‘against’ the outer boundary. Hence P1, . . . , Pk−1

would form a solution to the reduced problem. This intuitive idea is the basis of a
polynomial-time algorithm for problem (74.70):

Theorem 74.6. The vertex-disjoint paths problem is polynomial-time solvable for
planar graphs with all terminals on the outer boundary.

Proof. See above.

Linear-time implementations were given by Suzuki, Akama, and Nishizeki
[1988c,1990] and Liao and Sarrafzadeh [1991].

The method implies moreover a characterization by means of a cut condition for
the existence of a solution to (74.70). A simple closed curve C in R

2 is by definition
a one-to-one continuous function from the unit circle to R

2. We will identify the
function C with its image.

We say that C separates the pair {s, t} if each curve connecting s and t intersects
C. (In particular, if s or t is on C.) Now the following cut condition clearly is
necessary for the existence of a solution to the vertex-disjoint paths problem in
planar graphs:

(74.72) each simple closed curve in R
2 intersects G at least as often as it

separates pairs {s1, t1}, . . . , {sk, tk}.

Robertson and Seymour [1986] showed with the method above:

Theorem 74.7. Let G = (V, E) be a planar graph embedded in R
2 and let

{s1, t1}, . . . , {sk, tk} be pairs of vertices on the outer boundary of G. Then there
exist vertex-disjoint paths P1, . . . , Pk where Pi connects si and ti (i = 1, . . . , k) if
and only if the noncrossing condition (74.71) and the cut condition (74.72) hold.

Proof. Necessity of the conditions is trivial. We show sufficiency by induction on k,
the case k = 0 being trivial. Let k ≥ 1 and let (74.71) and (74.72) be satisfied. Sup-
pose that paths P1, . . . , Pk as required do not exist. Trivially, {s1, t1}, . . . , {sk, tk}
are disjoint (otherwise there would exist a simple closed curve C with |C ∩ G| = 1
and intersecting two nets, thus violating the cut condition).

We may assume that G is connected, as we can decompose G into its compo-
nents. (If some si and ti would belong to different components, there trivially exists
a closed curve C violating the cut condition.) We can also assume that there is no
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cut vertex v such that G− v has a component K containing no terminal (otherwise
we could delete K from G without violating the cut condition).

Now there exists an i and a simple si − ti path Pi such that Pi follows the
outer boundary and traverses no other terminals than si and ti. We can assume
that i = k. Let G′ := G − V Pk.

Then G′ contains no vertex-disjoint si − ti paths (i = 1, . . . , k − 1), since other-
wise G contains vertex-disjoint si − ti paths (i = 1, . . . , k). Hence, by the induction
hypothesis, there exists a simple closed curve C with |C ∩ G′| smaller than the
number of pairs {s1, t1}, . . . , {sk−1, tk−1} separated by C.

We can assume that C traverses the unbounded face of G′ exactly once and
that it intersects G only in vertices of G. We choose C such that it has a minimum
number of intersections with Pk. Then C intersects Pk at most once. If C does not
intersect Pk, then |C ∩ G| = |C ∩ G′|, and C violates the cut condition also for G.
If C intersects Pk, then |C ∩ G| = |C ∩ G′| + 1 and C separates sk and tk, and so
again C violates the cut condition for G.

It is easy to extend the algorithm and Theorem 74.7 to the directed case, and
also to the following vertex-disjoint trees problem:

(74.73) given: a planar graph G = (V, E) and sets S1, . . . , Sk of vertices on
the outer boundary of G,

find: vertex-disjoint subtrees T1, . . . , Tk of G such that Ti covers Si

(i = 1, . . . , k).

More generally, with similar techniques, Ding, Schrijver, and Seymour [1992]
generalized Theorem 74.7 (and the polynomial-time algorithm) as follows.

Theorem 74.8. Let D = (V, A) be a directed planar graph, let B be a family of
ordered pairs of vertices on the outer boundary of D (with s �= t if (s, t) ∈ B), for
each b ∈ B let Ab ⊆ A, and let H be a set of unordered pairs from B. Then there
exist paths Pb for b ∈ B such that:

(74.74) (i) for b = (s, t) ∈ B, Pb is a directed s − t path in (V, Ab),
(ii) Pb and Pc are vertex-disjoint for each {b, c} ∈ H,

if and only if the following two conditions hold: the ‘noncrossing condition’:

(74.75) if {(r, s), (t, u)} ∈ H, then (r, s) and (t, u) are disjoint and do not
cross,

and the ‘cut condition’:

(74.76) for each curve C starting and ending in the unbounded face and not
intersecting any s, t with (s, t) ∈ B and for each choice of b1, . . . , bn ∈
B satisfying:
• {bj , bj+1} ∈ H for j = 1, . . . , n − 1,
• f, x1, . . . , xn, l, yn, . . . , y1 are all distinct and occur in this order

clockwise around the outer boundary, where xj and yj are such that
bj = (xj , yj) or bj = (yj , xj), and where f and l denote the first and
last point of intersection of C with D,

there exist distinct points p1, . . . , pn traversed by C in this order such
that for each j = 1, . . . , n:
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• pi is on the image of D in R
2, if bj = (xj , yj), then some arc in Abj

is entering C at pj from the left and some arc in Abj
is leaving C

at pj from the right,
• if bj = (yj , xj), then some arc in Abj

is entering C at pj from the
right and some arc in Abj

is leaving C at pj from the left.

(The points pi can be vertices of D or be on arcs of D.)
Theorem 74.8 implies an even more general characterization and algorithm for

disjoint rooted subarborescences. Let D = (V, A) be a planar digraph, let B be a
collection of ordered pairs (r, S) where r is a vertex on the outer boundary of D,
and S is a set of vertices on the outer boundary of D with r �∈ S. For each b ∈ B, let
Ab ⊆ A, and let H be a set of unordered pairs from B. Then Theorem 74.8 implies
necessary and sufficient conditions for the existence of rooted subarborescences Tb

in D (for b ∈ B), with the property that

(74.77) (i) for b = (r, S) ∈ B, Tb is rooted at r, covers S, and is contained in
Ab,

(ii) Tb and Tc are vertex-disjoint for each {b, c} ∈ H.

The reduction to Theorem 74.8 is by replacing each pair (r, S) in B by the pairs (r, s)
for s ∈ S, and reset H to all pairs {(r, s), (r′, s′)} coming from pairs {(r, S), (r′, S′)}
in the original H.

Notes. Suzuki, Akama, and Nishizeki [1988c,1990] and Liao and Sarrafzadeh [1991]
gave linear-time algorithms for problem (74.73). For a description, see also Wagner
[1993].

Theorem 74.6 implies that the vertex-disjoint paths problem is polynomial-time
solvable for outerplanar graphs. This was generalized to series-parallel graphs by
Korach and Tal [1993].

Takahashi, Suzuki, and Nishizeki [1992] gave an O(n log n)-time algorithm to
find pairwise noncrossing paths of minimum total length, connecting prescribed
terminals in a planar graph with all terminals on two specified face boundaries.

74.4d. Grid graphs

Grid graphs form a class of planar graphs that are of special interest for disjoint
paths problem, as they arise in the design of VLSI-circuits, in particular in routing
the wires on the layers of a chip.

Any finite subgraph of the 2-dimensional rectangular grid is called a grid graph.
So its vertex set is a finite subset of Z

2, and any two adjacent vertices have Euclidean
distance 1. (It is not required conversely that any two vertices at Euclidean distance
1 are adjacent; so the subgraph need not be an induced subgraph.)

Kramer and van Leeuwen [1984] showed that both the vertex-disjoint and the
edge-disjoint paths problems are NP-complete even when restricted to grid graphs.
Pinter [1983] showed that the vertex-disjoint paths problem remains NP-complete
for grid graphs in which all faces are bounded by a rectangle (including a square).

A rectangular grid is a grid graph whose outer boundary is a rectangle and
whose bounded faces all are unit squares. The channel routing problem is the vertex-
disjoint paths problem in a rectangular grid, where all nets connect a vertex on
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the upper horizontal border with one on the lower horizontal border. A criterion
for the feasibility of the channel routing problem was given by Dolev, Karplus,
Siegel, Strong, and Ullman [1981], while Rivest, Baratz, and Miller [1981] gave a
heuristic algorithm approximating the minimal height of the rectangle, given the
positions of the terminals (cf. Preparata and Lipski [1984] and Mehlhorn, Preparata,
and Sarrafzadeh [1986]). A linear-time algorithm for channel-routing, allowing also
multiterminal nets, was given by Greenberg and Maley [1992].

The feasibility criterion was extended by Pinter [1983] to switchboxes, which are
rectangular grids in which the terminals can be anywhere along the outer boundary.
For the vertex-disjoint paths problem in switchboxes, Pinter showed Theorem 74.7
and described the corresponding greedy-type algorithm. He attributes the idea to
C.P. Hsu (1982).

Algorithms for the edge-disjoint paths problem in a switchbox were given by
Frank [1982c] (O(n log n)) and Mehlhorn and Preparata [1986] (O(u log u), where
u is the circumference of the rectangle — note that this is sufficient to specify the
graph). Frank also showed that solvability only depends on horizontal and vertical
cuts.

A generalized switchbox is a grid graph with all bounded faces being unit squares.
Nishizeki, Saito, and Suzuki [1985] gave an O(n2)-time algorithm for routing in gen-
eralized switchboxes for which any two vertices on the outer boundary are connected
by a path with at most one bend; all terminals are on the outer boundary. They also
showed that in this case one may restrict the cuts to those that are either horizontal
or vertical, if the global Euler condition holds. (A correction and generalization was
given by Lai and Sprague [1987].)

Kaufmann and Mehlhorn [1986] described an O(n log2 n + q2)-time algorithm
for the edge-disjoint paths problem in a generalized switchbox, with all terminals on
the outer boundary. Here q denotes the number of vertices v with degG(v)+degH(v)
odd. So if the Euler condition holds, the time bound is O(n log2 n).

Kaufmann and Mehlhorn [1986] also showed that in a generalized switchbox
satisfying the Euler condition and such that no vertex is end point of more than
two curves, the cut condition holds whenever it holds for all 1-bend cuts. (A cut is
called a 1-bend cut if it is the set of edges crossed by the union of some horizontal
and some vertical halfline with one common end vertex.)

Kaufmann and Klär [1993] gave an O(u log2 u)-time algorithm for generalized
switchboxes, whose outer boundary is simple and has no ‘rectilinearly visible cor-
ners’. (Two corners p and q of the outer boundary are called rectilinearly visible
if the (unique) rectangle of which p and q are opposite vertices, has a nonempty
interior and intersects the outer boundary only in p and q.)

Wagner and Weihe [1993,1995] showed that for such problems, if G + H is
Eulerian, then there is even a linear-time algorithm, even for general planar graphs.
(This improves earlier results of Becker and Mehlhorn [1986] and Kaufmann [1990].)

If G is a rectangle with one rectangular hole, and all nets join two vertices either
on the outer rectangle or on the inner rectangle, and if the Euler condition holds,
Suzuki, Ishiguro, and Nishizeki [1990] gave a linear-time algorithm. Related results
are given in Frank, Nishizeki, Saito, Suzuki, and Tardos [1992].

Takahashi, Suzuki, and Nishizeki [1993] gave a polynomial-time algorithm for
the minimum-length ‘noncrossing’ paths problem in certain grid graphs.
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The problem of finding edge-disjoint trees connecting specified sets of vertices
on the outer boundary of a rectangle is NP-complete (Sarrafzadeh [1987b]). More
on channel routing can be found in Preparata and Sarrafzadeh [1985], Sarrafzadeh
and Preparata [1985], Mehlhorn, Preparata, and Sarrafzadeh [1986], Sarrafzadeh
[1987a], Formann, Wagner, and Wagner [1991,1993], Greenberg and Shih [1995,
1996], and Chan and Chin [1997,2000]. Surveys on disjoint paths problems in grid
graphs are given by Kaufmann and Mehlhorn [1990] and in the book by Lengauer
[1990].

74.4e. Further notes

The Lucchesi-Younger theorem (Theorem 55.2) implies the following. Let D =
(V, A) and H = (V, R) be digraphs with D acyclic and (V, A ∪ R) planar. Then D
has arc-disjoint paths Pr for r ∈ R, where Pr runs from s to t if r = (s, t), if and
only if for each B ⊆ A:

(74.78) |B| ≥ number of r = (s, t) ∈ R such that B intersects each s − t path
in D.

Trivially, this condition is necessary. The derivation of sufficiency from the Lucchesi-
Younger theorem is as follows. Consider the planar digraph Q = (V, A ∪ R−1). We
need to show that if (74.78) holds for each B ⊆ A, then Q contains |R| arc-disjoint
directed circuits. Equivalently, the planar dual Q∗ contains |R| disjoint directed
cuts. Applying the Lucchesi-Younger theorem to Q∗ yields for Q that we should
show that (74.78) implies that each set C of arcs of Q intersecting each directed
circuit of Q has size at least |R|. Set B := C ∩A and R′ := C−1 ∩R. Then for each
r = (s, t) ∈ R \ R′, each s − t path in D intersects B. So by (74.78), |B| ≥ |R \ R′|,
and hence |C| = |B| + |R′| ≥ |R|.

Similarly the polynomial-time solvability of the corresponding arc-disjoint paths
problem follows (using Theorem 55.7).

Korte, Prömel, and Steger [1990] showed that the edge-disjoint trees problem
is NP-complete, even if we ask for two disjoint trees in a planar graph, where the
trees should cover two prescribed sets of vertices.

Surveys on linear-time methods for disjoint paths problems in planar graphs
were given by Wagner [1993] and Ripphausen-Lipa, Wagner, and Weihe [1995]. For
extensions to nets spanned by a fixed number of faces, see Section 76.7a.



Chapter 75

Cuts, odd circuits, and

multiflows

Minimum-size cuts in a graph are well under control from an algorithmic
point of view, as we saw in Parts I and V. Finding a maximum-size cut is
however an NP-complete problem.
The complement of a maximum-size cut is a minimum-size odd circuit
cover — a set of edges intersecting all odd circuits. By duality, this relates
to maximum collections of edge-disjoint odd circuits. This in turn relates
to multiflows.
Weakly bipartite graphs are those graphs where the polyhedral approach
works. It makes that the maximum cut problem is polynomial-time solvable
for these graphs.
Key result in this chapter is a theorem of Guenin characterizing weakly bi-
partite graphs, and its extension by Geelen and Guenin to evenly bipartite
graphs. These results turn out to unify several multiflow and odd circuit
packing theorems.

75.1. Weakly and strongly bipartite graphs

Let G = (V, E) be an undirected graph. Call a subset B of E bipartite if
(V, B) is bipartite; equivalently, if B does not contain the edge set of any odd
circuit; equivalently, if B is contained in some cut C. So finding a maximum-
size bipartite set of edges is equivalent to finding a maximum-size cut, and
hence it is NP-complete (cf. Section 75.1a).

The bipartite subgraph polytope Pbipartite subgraph(G) of G is the convex
hull of the incidence vectors (in RE) of bipartite subsets B of E:

(75.1) Pbipartite subgraph(G) := conv.hull{χB | B ⊆ E bipartite}.

Any vector x in the bipartite subgraph polytope satisfies

(75.2) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(C) ≤ |C| − 1 for each odd circuit C.

In general, these constraints are not enough to determine the bipartite sub-
graph polytope: for the complete graph K5, the vector x with xe = 2

3 for
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each edge e satisfies (75.2), but does not belong to the bipartite subgraph
polytope (since the largest bipartite subgraph has 6 edges, while 10 · 2

3 > 6).
Following Grötschel and Pulleyblank [1981], a graph G is called weakly

bipartite if its bipartite subgraph polytope is determined by (75.2). An equiv-
alent characterization is in terms of odd circuit covers. An odd circuit cover in
an undirected graph G = (V, E) is a set of edges intersecting all odd circuits.
The odd circuit cover polytope is the convex hull of the incidence vectors of
odd circuit covers. It is contained in the polytope determined by

(75.3) 0 ≤ xe ≤ 1 for each e ∈ E,
x(C) ≥ 1 for each odd circuit C.

Then a graph is weakly bipartite if and only the odd circuit polytope is
determined by (75.3). This follows directly from the facts that a set of edges
is an odd circuit cover if and only if its complement is bipartite, and that x
satisfies (75.2) if and only if 1 − x satisfies (75.3).

The relevance of weakly bipartite graphs comes from the fact that a
maximum-capacity cut in these graphs can be found in strongly polyno-
mial time, with the ellipsoid method, since the separation problem over the
polytopes (75.2) is polynomial-time solvable (cf. Section 5.11). Indeed, check-
ing (75.2) is equivalent to checking (75.3). One can check the constraints in
(75.3)(i) one by one, and so one may assume that 0 ≤ x ≤ 1. Next, consid-
ering x as length function, one checks if there is an odd circuit of length < 1
(like in Theorem 68.1). If so, we find a violated constraint. If not, x satisfies
(75.3).

Weakly bipartite graphs were characterized by Guenin [1998a,2001a],
proving a conjecture of Seymour [1981a]. This characterization also holds
for the more general structure of signed graphs, for which it is easier to prove
as it allows a finer contraction operation — see Sections 75.2 and 75.5. For
just undirected graphs the characterization can be formulated as follows.

Call a graph H an odd minor of a graph G if H arises from G by deleting
edges and vertices and by contracting all edges in a cut. The class of weakly
bipartite graphs is closed under taking odd minors. To see this, it is easily
seen that this class is closed under deleting edges and vertices. To see that it
is closed under contracting a cut, let G = (V, E) be a weakly bipartite graph,
let U ⊆ V and G′ = G/δ(U), and take x ∈ RE′

, where E′ = E \ δ(U) is
the edge set of G′. Let x satisfy (75.3) with respect to G′. Define xe := 0 for
each e ∈ δ(U). Then the extended x satisfies (75.3) with respect to G. So the
extended x belongs to the odd circuit cover polytope of G, implying that the
original x belongs to the odd circuit cover polytope of G′.

Now Guenin’s characterization reads for undirected graphs:

(75.4) an undirected graph G is weakly bipartite ⇐⇒ K5 is not an
odd minor of G.
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Related is a characterization of those graphs for which (75.2) is totally
dual integral. These graphs are called strongly bipartite22. A general hyper-
graph theorem of Seymour [1977b] implies a characterization of strongly
bipartite graphs. They are precisely the graphs containing no odd K4-
subdivision — equivalently, the graphs not having K4 as odd minor. Again,
this is easier to handle in the context of signed graphs — see Section 75.4.

75.1a. NP-completeness of maximum cut

In this section we show (Karp [1972b]):

Theorem 75.1. Finding the maximum size of a cut in an undirected graph is
NP-complete.

Proof. We reduce the problem of finding the minimum size of a vertex cover in a
graph G = (V, E) to the maximum-size cut problem. This is sufficient, since the
first problem is NP-complete by Corollary 64.1a.

We can assume that G has no isolated vertices, since they will not occur in any
minimum-size vertex cover. Extend G by a new vertex u and, for each v ∈ V , by
degG(v)−1 parallel edges connecting v and u. Let G′ be the extended graph. Then

(75.5) the minimum size of a vertex cover in G is equal to 2|E| minus the
maximum size of a cut in G′.

To see this, we have for any U ⊆ V :

(75.6) |δG′(U)| = |δG(U)| +
∑

v∈U

(degG(v) − 1)

= 2|{e ∈ E | e intersects U}| − |U |.
Hence, if U is a minimum-size vertex cover of G, then |δG′(U)| = 2|E|−|U |, proving
≥ in (75.5).

To see the reverse inequality, choose a subset U of V that determines a
maximum-size cut δG′(U) in G′. Then U is a vertex cover of G. Otherwise, V \ U
spans an edge e of G. Then extending U by one of the ends of e increases (75.6), a
contradiction. So U is a vertex cover and |U | = 2|E|−|δG′(U)|, proving ≤ in (75.5).

75.1b. Planar graphs

Although we do not use these results in later sections, we first show that planar
graphs are weakly bipartite, as it gives an interesting relation with T -joins (Bara-
hona [1980]):

Theorem 75.2. A planar graph is weakly bipartite.

Proof. Consider the dual graph G∗ = (V ∗, E∗). An odd circuit in G corresponds
to an odd-size cut in G∗, that is, to a T -cut, where T is the set of vertices of G∗ of

22 A strongly bipartite graph need not be bipartite, as is shown by K3.
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odd degree. For G it means that an odd circuit cover in G corresponds to a set of
edges of G∗ containing a T -join. By Corollary 29.2b, the convex hull of these edge
sets in G∗ is determined by

(75.7) 0 ≤ x(e∗) ≤ 1 for e∗ ∈ E∗,
x(C) ≥ 1 for each T -cut C in G∗.

Hence the odd circuit cover polytope of G is determined by (75.3).

With the help of the decomposition theorem of Wagner [1937a] (Theorem 3.3),
this result can be extended to graphs without K5 minor (Fonlupt, Mahjoub, and
Uhry [1992]). We will however derive this from Guenin’s more general characteri-
zation of weakly bipartite graphs.

75.2. Signed graphs

Guenin’s characterization of weakly bipartite graph is valid, and easier to
prove, in the more general context of signed graphs. In this section we collect
some general terminology and facts on signed graphs.

A signed graph is a triple G = (V, E, Σ), where (V, E) is an undirected
graph and Σ ⊆ E. The graph (V, E) is called the underlying graph and Σ is
called a signing.

Call a set of edges, or a path, or a circuit odd (even, respectively) if it
contains an odd (even, respectively) number of edges in Σ. An odd circuit
cover is a set of edges intersecting all odd circuits.

It is easy to show that, for any undirected graph (V, E),

(75.8) Two signings Σ and Σ′ give the same collection of odd circuits
⇐⇒ Σ△Σ′ is a cut of (V, E).

If Σ△Σ′ is a cut, we call the two signed graphs, or the two signings,
equivalent. The following is an important observation: for any signed graph
G = (V, E, Σ),

(75.9) the collection of inclusionwise minimal odd circuit covers of G is
equal to the collection of inclusionwise minimal signings equiva-
lent to Σ.

Indeed, any signing Σ′ equivalent to Σ intersects each odd circuit in an
odd number of edges, and hence is an odd circuit cover. Conversely, any
inclusionwise minimal odd circuit cover B intersects each odd circuit C in an
odd number of edges: by the minimality of B, for each e ∈ B ∩C there exists
an odd circuit Ce disjoint from B \ {e}. If |B ∩ C| is even, the symmetric
difference of C and the Ce gives an odd cycle disjoint from B, a contradiction.

(75.9) has several consequences. The inclusionwise minimal sets among
Σ△δ(U) (for U ⊆ V ) are precisely the inclusionwise minimal odd circuit
covers. For any two inclusionwise minimal odd circuit covers B1, B2 there
exists a subset U of V with
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(75.10) B1△B2 = δ(U)

(since B1 = Σ△δ(U1) and B2 = Σ△δ(U2) for some U1, U2 ⊆ V , hence
B1△B2 = δ(U1)△δ(U2) = δ(U1△U2)).

(75.9) also implies that for each inclusionwise minimal odd circuit cover
B of G, the set B△Σ is a cut. (We recall that, by definition, the empty set
is also a cut.)

We can define the concepts of deletion, contraction, subgraph, and minor
in a signed graph G = (V, E, Σ). Deleting an edge e means replacing G by
G − e := (V, E \ {e}, Σ \ {e}). Similarly, deleting a vertex v means deleting v
in V and deleting in E and Σ all edges incident with v.

Contracting a (nonloop) edge e means: if e 	∈ Σ, replacing G by G/e :=

(Ṽ , Ẽ, Σ), where (Ṽ , Ẽ) is obtained from (V, E) by contracting e; if e ∈ Σ,
choose v ∈ e, replace Σ by Σ△δ(v), and apply the previous operation. So the
operation of contraction is not uniquely defined, but the outcome is unique
up to equivalence of signings. This is sufficient for our purposes.

A subgraph of a signed graph is obtained by a series of deletions of vertices
and edges. A minor is obtained by a series of deletions of vertices and edges
and contractions of edges, and by replacing the signing by an equivalent
signing.

For any complete graph Kn, let odd-Kn be the signed graph

(75.11) odd-Kn := (V Kn, EKn, EKn).

A signed graph (V, E, Σ) is called an odd K4-subdivision if (V, E) is a subdi-
vision of K4 such that each triangle has become an odd circuit (with respect
to Σ). It is not difficult to show that:

(75.12) a signed graph contains an odd K4-subdivision if and only if it
has odd-K4 as minor.

75.3. Weakly, evenly, and strongly bipartite signed

graphs

In an obvious way, the notions of weakly and strongly bipartite graphs can
be lifted to signed graphs. A signed graph G = (V, E, Σ) is weakly bipartite
if each vertex of the polyhedron (in RE) determined by:

(75.13) (i) 0 ≤ xe ≤ 1 for each edge e,
(ii) x(C) ≥ 1 for each odd circuit C,

is integer, that is, the incidence vector of an odd circuit cover.
System (75.13) gives rise to two stronger properties. First, a signed graph

is called strongly bipartite if (75.13) is totally dual integral. Equivalently,
for each function w : E → Z+ the minimum of wTx over (75.13) has integer
primal and dual optimum solutions. Or: for each weight function w : E → Z+,
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the minimum weight of an odd circuit cover is equal to the maximum size of
a family of odd circuits such that each edge e is in at most w(e) of them.

We also define an intermediate property (only seemingly intermediate,
since it will turn out to be equivalent to weakly bipartite). A signed graph
G = (V, E, Σ) is called evenly bipartite if for each w : E → Z+ with w(δ(v))
even for each v ∈ V , the minimum of wTx over (75.13) is attained by integer
primal and dual optimum solutions. Equivalently, for each weight function
w : E → Z+ with w(δ(v)) even for all v ∈ V , the minimum weight of an odd
circuit cover is equal to the maximum size of a family of odd circuits such
that each edge e is in at most w(e) of them.

There are the following direct implications:

(75.14) strongly bipartite =⇒ evenly bipartite =⇒ weakly bipartite.

It is easy to check that the classes of weakly, evenly, and strongly bipartite
signed graphs are closed under taking minors. So each class can be charac-
terized by forbidden minors.

Now a theorem of Seymour [1977b] implies that a signed graph G is
strongly bipartite if and only if it has no odd-K4 minor (Corollary 75.3a
below). Guenin [1998a,2001a] showed that G is weakly bipartite if and only
if it has no odd-K5 minor. This was sharpened by Geelen and Guenin [2001],
who proved that G is evenly bipartite if and only if G has no odd-K5 minor
(Corollary 75.4a below). So weakly and evenly bipartite are equivalent.

75.4. Characterizing strongly bipartite signed graphs

A general hypergraph theorem of Seymour [1977b] (Theorem 80.1) implies
a characterization of strongly bipartite signed graphs. This will be derived
from the following equivalent result, which we prove with a method of Geelen
and Guenin [2001]:

Theorem 75.3. In a signed graph G without odd-K4 minor, the maximum
number of edge-disjoint odd circuits is equal to the minimum size of an odd
circuit cover.

Proof. For any signed graph G = (V, E, Σ), let π(G) denote the minimum
size of an odd circuit cover and let µ(G) denote the maximum number of
edge-disjoint odd circuits. We must show µ(G) = π(G) for any signed graph
G without odd-K4 minor.

Suppose that this is not true. Choose a counterexample G = (V, E, Σ),
with π(G) minimum, |V | minimum, and |E| maximum, in this order of pri-
ority. Such a graph exists, since if there are more than π(G) parallel edges
connecting two vertices, we can contract them to obtain a counterexample
with |V | smaller.
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Define π := π(G). Fix an edge e = xy not contained in every minimum-
size odd circuit cover. By adding a parallel edge connecting x and y, we do
not change π(G) or |V |, but we increase |E|. Hence in the extended graph
there exist π edge-disjoint odd circuits. This means that in the original graph
G there exist odd circuits C1, . . . , Cπ with e ∈ C1 ∩ C2 and with C1 \ {e},
C2 . . . , Cπ disjoint. (Here we take circuits as edge sets.) We choose the Ci

with |C1 ∪ C2| minimal.
For i = 1, 2, let Pi be the x− y path Ci \ {e}, for i = 1, 2. (Also the paths

are taken as edge sets.) Then

(75.15) P1 ∪ P2 contains no odd circuit C.

Otherwise, replacing C1 and C2 by C and C1△C2△C gives π edge-disjoint
odd circuits, a contradiction.

Moreover, let x = v0, v1, . . . , vk = y be the common vertices of P1 and
P2, in the order on which they occur along P1. Then

(75.16) v0, v1, . . . , vk occur in this order also along P2.

Indeed, orient P1 and P2 from x to y. Then we create no directed circuit,
since otherwise there exist circuits C ′

1, C ′
2 ⊆ C1 ∪C2 with C ′

1 ∩C ′
2 = {e} and

|C ′
1∪C ′

2| < |C1∪C2|. Then C ′
1 and C ′

2 are odd (since otherwise C1△C ′
1 is odd,

and hence contains an odd circuit, contradicting (75.15)). This contradicts
the minimality of |C1 ∪ C2|.

Now choose j with 0 ≤ j ≤ k such that

(75.17) π(G − (P ∪ {e})) ≤ π − 2

for each vj − y path P in P1 ∪ P2 and such that j is as large as possible.
Such a j exists, as (75.17) holds for each x − y path P in P1 ∪ P2 (otherwise,
G− (P ∪{e}) contains π−1 disjoint odd circuits; hence, with P ∪{e} it gives
π disjoint odd circuits in G as required).

Since π(G) = π we know π(G − {e}) ≥ π − 1, and hence j < k. By the
maximality of j, there is a vj+1 − y path R in P1 ∪ P2 such that

(75.18) π(G − (R ∪ {e})) ≥ π − 1.

Let Q1 and Q2 be the two vj − vj+1 paths in P1 ∪ P2. By (75.17) we know

(75.19) π(G − (Qi ∪ R ∪ {e})) ≤ π − 2

for i = 1, 2. Hence for each i = 1, 2 there exists an inclusionwise minimal odd
circuit cover Bi with |Bi \ (Qi ∪R∪{e})| ≤ π −2. So Bi contains one edge of
C3, . . . , Cπ each, and consists for the rest of edges in Qi ∪R∪{e}. As C1 ∪C2

contains an odd circuit disjoint from Qi ∪ R, we know e ∈ Bi.
Since B1 and B2 are minimal odd circuit covers, there exists a subset U

of V with

(75.20) B1△B2 = δ(U)
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and U disjoint from e (as e 	∈ B1△B2). So U is disjoint from all x − vj paths
and from the vj+1 − y path R′ in P1 ∪ P2 edge-disjoint from R (since B1 and
B2 are edge-disjoint from these paths).

As G has no odd-K4 minor, there is no path contained in U that connects
V Q1 and V Q2 and that consists only of edges out of B1. (It creates with
Q1, Q2, R′, e and any x − vj path in P1 ∪ P2 an odd K4-subdivision, as B1

can serve as a signing.) So U has a subset X such that V Q1 ∩ U ⊆ X and
X ∩ V Q2 = ∅ and such that each edge connecting X and U \ X belongs to
B1. So δ(X) ⊆ B1 ∪ δ(U) ⊆ B1 ∪ B2. Define

(75.21) B := B1△δ(X).

Then B is an odd circuit cover. We show that |B \ (R ∪ {e})| ≤ π − 2,
contradicting (75.18).

Since U ∩ V Q1 ⊆ X ⊆ U , we know that B1 ∩ Q1 ⊆ δ(U) ∩ Q1 ⊆ δ(X),
and hence B ∩ Q1 = ∅. Also B ∩ Q2 = ∅, as δ(X) contains no edge of Q2,
since X is disjoint from V Q2.

As δ(X) ⊆ B1 ∪ B2, we know that B ⊆ B1 ∪ B2. As |Bi ∩ Ch| = 1 for
each h = 3, . . . , π, this implies that |B ∩ Ch| ≤ 2, and hence |B ∩ Ch| = 1 (as
it is odd). So we have |B \ (R ∪ {e})| ≤ π − 2. This contradicts (75.18).

This theorem implies a characterization of strongly bipartite graphs:

Corollary 75.3a. A signed graph G is strongly bipartite if and only if G has
no odd-K4 minor.

Proof. Necessity follows from the fact that odd-K4 is not strongly bipartite.
To see sufficiency, let G = (V, E, Σ) be a signed graph without odd-K4 minor.
Let w : E → Z+. We must show that minimizing wTx over (75.13) has an
integer optimum dual solution.

Let G′ arise from G by replacing (in E and in Σ) any edge e by w(e) par-
allel edges. Then the minimum value of wTx over integer vectors x satisfying
(75.13) is equal to the minimum size of an odd circuit cover in G′. As G′ has
no odd-K4 minor, by Theorem 75.3 this is equal to the maximum number of
edge-disjoint odd circuits in G′. This gives an integer optimum dual solution
to minimizing wTx over (75.13).

To interpret this characterization for (nonsigned) undirected graphs, and
to get some subtleties straight, it is good to realize that for any undirected
graph G = (V, E) one has:

(75.22) the signed graph (V, E, E) has odd-K4 as minor ⇐⇒ the undi-
rected graph (V, E) has K4 as odd minor ⇐⇒ the undirected
graph (V, E) contains an odd K4-subdivision.

(Recall that an undirected graph H is an odd minor of an undirected graph
G if H arises from G by deleting edges and vertices and contracting all edges
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in some cut. A subdivision of K4 is called odd if each triangle of K4 becomes
an odd circuit.)

Hence:

Corollary 75.3b. An undirected graph is strongly bipartite if and only if it
contains no odd K4-subdivision as subgraph.

Proof. See above.

For multiflows, Seymour’s theorem implies (where we take (V, E \ R) as
supply graph and (V, R) as demand graph, and where c|E \ R and c|R are
the capacity and demand function, respectively):

Corollary 75.3c. Let G = (V, E) be a graph and let R ⊆ E be such that the
signed graph (V, E, R) has no odd-K4 minor. Then for each c : E → Z+, the
cut condition implies the existence of an integer multiflow.

Proof. Let c : E → Z+ satisfy the cut condition. So for each cut D we have
c(D ∩ R) ≤ c(D \ R). Hence for each cut D:

(75.23) c(D△R) = c(D \ R) + c(R \ D) ≥ c(D ∩ R) + c(R \ D) = c(R).

So R minimizes c(R) over all odd circuit covers. Therefore, as (V, E, R) has
no odd-K4 minor, by Corollary 75.3a, there exist odd circuits C1, . . . , Ck such
that each edge e is in at most c(e) of the Ci and such that k = c(R). Hence

(75.24)
k∑

i=1

|Ci ∩ R| ≤ c(R) = k.

This implies, since each |Ci ∩ R| is odd, that |Ci ∩ R| = 1 for each i, and
hence we have equality in (75.24). This gives the required multiflow.

75.5. Characterizing weakly and evenly bipartite signed

graphs

Guenin [1998a,2001a] showed that odd-K5 is the only minor-minimal signed
graph that is not weakly bipartite (unique up to resigning). It proves a special
case of a hypergraph conjecture of Seymour [1977b] (cf. Section 78.3). We
prove Guenin’s theorem using shortenings of his proof found by Geelen and
Guenin [2001] (yielding a similar characterization of evenly bipartite graphs)
and Schrijver [2002a].

We use the following lemma on undirected graphs. (Recall that a K4-
subdivision is called odd if each triangle of K4 has become a circuit with an
odd number of edges.)
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Lemma 75.4α. Let G = (V, E) be a graph, let u be a vertex of G, and let v1,
v2, and v3 be three of its neighbours. Let S1, S2, and S3 be disjoint stable sets
in G, with vi ∈ Si for i = 1, 2, 3. Suppose that for all distinct i, j ∈ {1, 2, 3},
the subgraph induced by Si ∪ Sj contains a vi − vj path. Then G contains an
odd K4-subdivision containing the edges uv1, uv2, and uv3.

Proof. Consider a counterexample with |V |+ |E| minimal. So V = S1 ∪S2 ∪
S3 ∪ {u} and E consists of the edges uv1, uv2, and uv3, and of the edges
contained in the paths as described. Hence for distinct i, j, there is a unique
path Pi,j from vi to vj contained in Si ∪ Sj . Then

(75.25) for distinct i, j: Si ∪ Sj = V Pi,j .

For if (say) v ∈ S1 \ V P1,2, then v is only on P1,3, and hence has degree
2. Then we can contract the two edges incident with v to obtain a smaller
counterexample, a contradiction.

(75.25) implies |S1| = |S2| = |S3|. If |S1| = 1, G = K4 and we are done.
So we can assume that each |Si| ≥ 2. Hence each path Pi,j has length at least
3. Let v′

2 be the second vertex along P1,2, v′
3 the second vertex along P2,3,

and v′
1 the second vertex along P3,1. Contract the edges incident with u. The

new vertex u′ is adjacent to v′
1, v′

2, and v′
3. For i = 1, 2, 3, let S′

i := Si \ {vi}.
So S′

i contains v′
i and is a stable set in the contracted graph G′. Moreover,

(75.26) for distinct i, j, S′
i ∪ S′

j contains a v′
i − v′

j path.

To prove this, we can assume i = 1, j = 2. By (75.25), since v′
1 ∈ S1, we

know that v′
1 is on P1,2. Since also v′

2 is on P1,2, S1 ∪ S2 contains a v′
1 − v′

2

path avoiding v1 and v2. This proves (75.26).
As G′ is smaller than G, G′ contains an odd K4-subdivision containing

u′v′
1, u′v′

2, and u′v′
3. By decontracting we obtain an odd K4-subdivision in G

as required.

(The proof implies that the odd K4-subdivision found in fact is a bad K4-
subdivision (cf. Section 68.4).)

This lemma is used in the characterization of Geelen and Guenin [2001] of
evenly bipartite signed graphs. The following is the kernel of this characteri-
zation (a signed graph is called Eulerian if its underlying graph is Eulerian):

Theorem 75.4. In an Eulerian signed graph without odd-K5 minor, the
maximum number of edge-disjoint odd circuits is equal to the minimum size
of an odd circuit cover.

Proof. For any signed graph G = (V, E, Σ), let π(G) denote the minimum
size of an odd circuit cover and let µ(G) denote the maximum number of
edge-disjoint odd circuits. It suffices to show µ(G) = π(G) for any Eulerian
signed graph G without odd-K5 minor.

Suppose that this is not true. Choose a counterexample G = (V, E, Σ),
with π(G) minimum, |V | minimum, and |E| maximum, in this order of pri-
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ority. Such a graph exists, since if there are more than π(G) parallel edges
connecting two vertices, we can contract them to obtain a counterexample
with |V | smaller.

Fix an edge e = xy not contained in every minimum-size odd circuit
cover. By adding two parallel edges connecting x and y, we do not change
π(G) or |V |, but we increase |E|. Hence in the extended graph there exist
π(G) edge-disjoint odd circuits. This means that in the original graph G

(75.27) there exist odd circuits C1, . . . , Cπ(G) with e ∈ C1 ∩ C2 ∩ C3 and
with C1 \ {e}, C2 \ {e}, C3, C4, . . . , Cπ(G) disjoint

(describing circuits by edge sets). G, C1, . . . , Cπ(G) moreover satisfy:

(75.28) π(G − C) ≤ π(G) − 3 for each odd circuit C ⊆ C1 ∪ C2 ∪ C3 such
that ((C1 ∪ C2 ∪ C3) \ C) ∪ {e} contains an odd circuit.

Otherwise, by the minimality of π(G), G − C contains disjoint odd circuits
C ′

1, . . . , C
′
π(G)−2. Then E′ := E\(C∪C ′

1∪· · ·∪C ′
π(G)−2) contains an odd circuit

C ′′, since E is Eulerian and since G has a minimum-size odd circuit cover B
of size π(G); so, as B is an equivalent signing of G, |E′ ∩ B| is odd. Hence
C, C ′′, C ′

1, . . . , C
′
π(G)−2 form π(G) disjoint odd circuits in G, contradicting

our assumption. This proves (75.28).
We show that for signed Eulerian graphs G, conditions (75.27) and (75.28)

imply that G has an odd-K5 minor, which finishes the proof.
We delete our earlier minimality assumptions, and now choose a coun-

terexample to this with |E| minimal and (secondly) |C1 ∪ C2 ∪ C3| minimal.
Let Pi be the x − y path Ci \ {e} for i = 1, 2, 3 (describing paths by edge
sets). Then:

Claim 1. P1, P2, P3 are internally vertex-disjoint.

Proof of Claim 1. Suppose not. Define F := P1 ∪ P2 ∪ P3. We first show:

(75.29) F contains no odd circuit.

To see this, first observe that any Pi ∪ Pj contains no odd circuit, since
otherwise, for the third path Pk there exist π(G) − 2 disjoint odd circuits in
G − (Pk ∪ {e}), contradicting (75.28).

Hence there exists an inclusionwise minimal odd circuit cover B disjoint
from P1 ∪ P2. Then for each vertex v in V P3 that is also in V P1 ∪ V P2, the
x − v part of P3 has an even number of edges in B (as it forms with part of
P1 or P2 an even cycle). Hence between two contacts of P3 with V P1 ∪ V P2,
P3 has an even number of edges in B. This implies (75.29).

Orient the edges in C1 ∪ C2 ∪ C3 by orienting each Pi from x to y, and
by orienting edge e from y to x. Then

(75.30) F contains no directed circuit C,
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for otherwise F \ C contains three edge-disjoint x − y paths. They yield odd
circuits C ′

1, C ′
2, C ′

3 avoiding C, with e ∈ C ′
1 ∩ C ′

2 ∩ C ′
3 and with C ′

1 \ {e},
C ′

2 \ {e}, C ′
3 \ {e} disjoint. This contradicts the minimality of C1 ∪ C2 ∪ C3.

So F is acyclic, and hence there exists a total order ≤ on V with s < t
for each arc (s, t) in F . So all vertices v in V P1 ∪V P2 ∪V P3 have x ≤ v ≤ y.

Then for each undirected x − y path P in F :

(75.31) P is a directed path ⇐⇒ (C1 ∪ C2 ∪ C3) \ P contains an odd
circuit.

To prove ⇒, let P be a directed path. Then there exists a directed x − y
path edge-disjoint from Q. Hence Q ∪ {e} is an odd circuit disjoint from
(C1 ∪ C2 ∪ C2) \ P .

To prove ⇐, let C be an odd circuit in (C1 ∪C2 ∪C3)\P . Then C \{e} is
an x − y path Q edge-disjoint from P . If P is not directed, there is a vertex
v such that P traverses two arcs entering v. Now there exist precisely three
arcs (s, t) with s < v ≤ t. Hence P contains all three, and nothing is left for
Q, a contradiction.

This proves (75.31). So any circuit C qualifies for (75.28) if and only if it
is a directed circuit.

Let W be the set of vertices that are in at least two of the Pi. Since P1, P2,
and P3 are not internally vertex-disjoint by assumption, we know |W | ≥ 3.

Call a directed path in F a link if it connects two distinct vertices in W ,
while each internal vertex is not in W . Then:

(75.32) there exist vertices u, v and a u − v link Q such that u 	= x and
such that there is at least one directed u − v path edge-disjoint
from Q and such that each directed x − u path is a link.

To see this, first observe that there is a directed x − y path P traversing all
vertices in W . Indeed, for all s, t ∈ W with s < t, there is a directed s − t
path. This follows from the fact that at least two of the Pi leave s and at
least two of the Pi enter t, and that hence at least one of the Pi leaves s and
enters t.

Now to prove (75.32), let u be the smallest vertex in W with u 	= x. Then
each directed x − u path is a link. Let Q be a link leaving u which is not on
P . Taking for v the end vertex of Q, we obtain (75.32).

Let X be the set of edges that are on directed u − v paths 	= Q. We may
assume that if Ci intersects X, then Ci traverses both u and v. So X consists
of one or two u − v paths. Then

(75.33) (C1 ∪ C2 ∪ C3) \ (Q ∪ X) contains no arc leaving u or no arc
entering v.

Otherwise, by (75.32), F has three arcs leaving u and three arcs entering
v. So each Ci contains a u − v path, which hence is in Q ∪ X. This proves
(75.33).
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Consider G′ := G/Q and C ′
i := Ci \ (Q ∪ X) for i = 1, 2, 3. Then (75.27)

is maintained for G′, C ′
1, C

′
2, C

′
3. Hence, by the minimality of C1 ∪ C2 ∪ C3,

there is a directed circuit C ′ in G′ with

(75.34) π(G′ − C ′) ≥ π(G′) − 2.

Now π(G′) ≥ π(G) (as this is true for any contraction of G). If C ′ is also a
directed circuit in G, we have π(G − C ′) ≤ π(G) − 3 by (75.28), and hence
G−C ′ has an odd circuit cover B of size ≤ π(G)− 3. By (75.27), B does not
intersect Q. Hence B is an odd circuit cover of G − C ′/Q = G′ − C ′ of size
≤ π(G) − 3, a contradiction.

So C ′ is not a directed circuit in G. Then C ′ ∪ Q forms a circuit in G,
and, by (75.33), it is a directed circuit. Hence C ′ contains a link R entering
u. As u ∈ W , there is another link, S say, entering u.

Consider G′′ := (G − R)/S and C ′′
i := Ci \ (R ∪ S) for i = 1, 2, 3. Then

(75.27) is maintained. Moreover, π(G′′) ≥ π(G). For suppose that G′′ has an
odd circuit cover B of size π(G′′) ≤ π(G) − 1. By (75.27), |B| = π(G) − 2
(since it intersects each Ci in an odd number of edges), B does not intersect
Q, and contains e. Hence π((G − (R ∪ {e}))/Q) ≤ π(G) − 3. This implies
(since R ∪ {e} ⊆ C ′):

(75.35) π(G′ −C ′) ≤ π(G′ −(R∪{e})) = π(G−(R∪{e})/Q) ≤ π(G)−3,

contradicting (75.34). This proves that π(G′′) ≥ π(G).
Now, by the minimality of G, C1, C2, C3, (75.28) is not maintained. So

there is a directed circuit C ′′ in G′′ with π(G′′ −C ′′) ≥ π(G)−2. Then C ′′ ∪S
contains an odd circuit of G, hence also C ′′ ∪ R contains an odd circuit of G
(since R and S are parallel links). So (by (75.28) for G) π(G − (C ′′ ∪ R)) ≤
π(G) − 3. Hence G − (C ′′ ∪ R) has an odd circuit cover B of size π(G) − 3,
which by (75.27) is disjoint from F ∪ {e}. Then B is an odd circuit cover of
G − (C ′′ ∪ R)/S = G′′ − C ′′, and so π(G′′ − C ′′) ≤ π(G) − 3, contradicting
our assumption. End of Proof of Claim 1

Set π := π(G). Since by (75.28), for each i = 1, 2, 3, π(G − Ci) ≤ π − 3,
there is an inclusionwise minimal odd circuit cover Bi of G with |Bi \ Ci| ≤
π − 3. By (75.27), we know that Bi ∩ Pj = ∅ for j ≤ 3 with j 	= i, and that
|Bi ∩Cj | = 1 for j ≥ 4. Since Bi intersects each of C1, C2, C3, we have e ∈ Bi.

By (75.10), there exist U1, U2, U3 ⊆ V such that

(75.36) Bj△Bk = δ(Ui)

for distinct i, j, k ∈ {1, 2, 3}. We can assume that each Ui is disjoint from
e, since e 	∈ Bj△Bk (as e ∈ Bj ∩ Bk). Moreover, we can assume that U3 =
U1△U2 — otherwise, just reset U3 := U1△U2. (This works, since δ(U1△U2) =
δ(U1)△δ(U2) = (B2△B3)△(B1△B3) = B1△B2.)

Define

(75.37) Si := Uj ∩ Uk
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for distinct i, j, k ∈ {1, 2, 3}. So S1, S2, S3 are disjoint and

(75.38) Ui = Sj ∪ Sk

for distinct i, j, k ∈ {1, 2, 3} (since U1△U2△U3 = ∅). Define

(75.39) S0 := V \ (S1 ∪ S2 ∪ S3).

Then

(75.40) each f ∈ E \ (B1 ∪ B2 ∪ B3) is spanned by S0, S1, S2, or S3.

Otherwise, f belongs to some δ(Ui), and hence to some Bj , by (75.36).
Moreover,

(75.41) V Pi ⊆ S0 ∪ Si

for each i ∈ {1, 2, 3}, since V Pi ∩ δ(Ui) = ∅ by (75.36) and since x, y 	∈ Ui.
We in fact have for each i ∈ {1, 2, 3}:

(75.42) Ci ⊆ Bi.

For suppose that f ∈ C1 \ B1. Then G/f again satisfies (75.27) and (75.28),
for C ′

1 := C1 \ {f}, C ′
2 := C2, C ′

3 := C3. Indeed, each odd circuit C of G/f
contained in C ′

1 ∪ C ′
2 ∪ C ′

3 is equal to one of the C ′
i, and moreover

(75.43) π((G/f) − C ′
i) ≤ |Bi \ Ci| ≤ π(G) − 3 ≤ π(G/f) − 3.

This contradicts the minimality of |E|. So we have (75.42).
Similarly,

(75.44) each f ∈ E \ (B1 ∪ B2 ∪ B3) is spanned by V P1 ∪ V P2 ∪ V P3.

Otherwise, we can contract f to obtain a smaller example satisfying (75.27)
and (75.28) (by (75.43) for C ′

i := Ci).
Now let E′ be the set of edges in B1△B2△B3 that are in C1 ∪ C2 ∪ C3

or connect two distinct sets among S1, S2, S3. So C1 ∪ C2 ∪ C3 ⊆ E′. As
E′ ⊆ B1△B2△B3 and as B1△B2△B3 is a signing equivalent to Σ, it suffices
to show that the undirected graph G′ = (V, E′) has K5 as odd minor.

By definition of E′, for each i ∈ {1, 2, 3}:

(75.45) Si is a stable set of G′.

Moreover, for all distinct i, j ∈ {1, 2, 3},

(75.46) G′ has a path contained in Si ∪Sj and connecting V Pi and V Pj .

To see this, we may assume i = 1, j = 2. Suppose that no such path exists.
Then U3 (= S1∪S2) has a subset X such that S1∩V P1 ⊆ X and X∩V P2 = ∅
and such that no edge of G′ connects X and U3 \ X. So

(75.47) δE′(X) ⊆ δ(U3).

Then

(75.48) δE(X) ⊆ B1 ∪ B2 ∪ B3.



1340 Chapter 75. Cuts, odd circuits, and multiflows

Indeed, let f ∈ δE(X) \ (B1 ∪ B2 ∪ B3). By (75.44), f is spanned by V P1 ∪
V P2 ∪ V P3. Moreover, by (75.40), as f is incident with X, f is spanned by
S1 or S2. So f is spanned by S1 ∩V P1 or by S2 ∩V P2, contradicting the fact
that f leaves X. This proves (75.48).

Define

(75.49) B := B1△δE(X).

Then B is an odd circuit cover of G. So |B| ≥ π. Since S1 ∩ V P1 ⊆ X
and P1 ⊆ B1, we know that P1 ⊆ δ(X), and so B is disjoint from P1. For
i = 2, 3, B is disjoint from Pi, as δ(X) contains no edge of Pi, since X is
disjoint from V Pi. Hence, as B ⊆ B1 ∪ B2 ∪ B3 by (75.48), we know that
|B ∩ Cj | ≥ 2 for some j = 4, . . . , π. Then |B ∩ Cj | ≥ 3. As |B1 ∩ Cj | = 1
and |B2 ∩ Cj | = 1, it follows that there exists an edge f ∈ B ∩ Cj with
f 	∈ B1 ∪ B2. So f ∈ δE(X), hence f ∈ B3, therefore f ∈ δ(U1) ∩ δ(U2),
and so f ∈ E′. Therefore, f ∈ δE′(X), and hence by (75.47), f ∈ δ(U3),
contradicting (75.36). This proves (75.46).

Consider the minor H of G′ obtained by contracting, for each i = 1, 2, 3,
V Ci \ {x, y} to one vertex, zi say. By Lemma 75.4α, H − y has an odd K4-
subdivision containing the edges xz1, xz2, and xz3. Since y is adjacent to x,
z1, z2, and z3, H has K5 as odd minor.

A consequence of this is a characterization of weakly and evenly bipar-
tite graphs. (The equivalence of (i) and (iii) is Guenin’s theorem (Guenin
[1998a,2001a]), and the equivalence with (ii) was found by Geelen and Guenin
[2001].)

Corollary 75.4a. For any signed graph G the following are equivalent:

(75.50) (i) G is weakly bipartite;
(ii) G is evenly bipartite;
(iii) G has no odd-K5 minor.

Proof. The implications (ii)⇒(i)⇒(iii) follow from (75.14) and from the facts
that weak bipartiteness is closed under taking minors and that odd-K5 is not
weakly bipartite.

The implication (iii)⇒(ii) follows from Theorem 75.4. Let G = (V, E, Σ)
be a signed graph without odd-K5 minor and let c : E → Z+ be such that
c(δ(v)) is even for each v ∈ V . We must show that the dual of minimizing
cTx over (75.13) has an integer optimum dual solution.

Let G′ arise from G by replacing (in E and in Σ) any edge e by c(e)
parallel edges. So G′ is Eulerian. Then the minimum value of cTx over integer
vectors x satisfying (75.13) is equal to the minimum size of an odd circuit
cover in G′. As G′ has no odd-K5 minor, by Theorem 75.4 this is equal to the
maximum number of edge-disjoint odd circuits in G′. This gives an integer
optimum dual solution to minimizing cTx over (75.13).
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For (nonsigned) undirected graphs, this characterization can be described
in terms of odd minors as follows. (Recall that an undirected graph H is an
odd minor of an undirected graph G if H arises from G by deleting edges
and vertices and contracting all edges in some cut.) Then for any undirected
graph G = (V, E):

(75.51) the signed graph (V, E, E) has odd-K5 as minor ⇐⇒ the undi-
rected graph (V, E) has K5 as odd minor.

(This is a simple exercise.) Hence:

Corollary 75.4b. An undirected graph G is weakly bipartite if and only if
K5 is not an odd minor of G.

Proof. See above.

Notes. Special cases of the equivalence of (i) and (iii) in Corollary 75.4a were shown
by Barahona [1980] (for planar graphs; cf. Theorem 75.2), Fonlupt, Mahjoub, and
Uhry [1992] (for graphs without K5 minor), Barahona [1983a] (for graphs G such
that G − u − v is bipartite for two of its vertices u, v), and Gerards [1992a] (for
graphs G such that G − v is planar with at most two odd faces, for some vertex v).

75.6. Applications to multiflows

Geelen and Guenin’s theorems also have consequences for multiflows (where
again we take (V, E \ R) as supply graph and (V, R) as demand graph, and
where c|E \ R and c|R are the capacity and demand function, respectively):

Corollary 75.4c. Let G = (V, E) be a graph and let R ⊆ E be such that
the signed graph (V, E, R) has no odd-K5 minor. Then for each c : E → R+,
the cut condition implies the existence of a fractional multiflow. If moreover
c is integer, there is a half-integer multiflow. If moreover the Euler condition
holds, there is an integer multiflow.

Proof. By Corollary 75.4a, (V, E, R) is weakly bipartite. Let c satisfy the cut
condition. So for each cut D we have c(D ∩ R) ≤ c(D \ R). Hence for each
cut D:

(75.52) c(D△R) = c(D \ R) + c(R \ D) ≥ c(D ∩ R) + c(R \ D) = c(R).

So R minimizes c(R) over all odd circuit covers. Therefore, as (V, E, R) is
weakly bipartite, there exist odd circuits C1, . . . , Ck and λ1, . . . , λk > 0 with

(75.53)
k∑

i=1

λiχ
Ci ≤ c and

k∑

i=1

λi = c(R).

Hence
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(75.54)
k∑

i=1

λi|Ci ∩ R| ≤ c(R) =
k∑

i=1

λi.

This implies, since each |Ci ∩R| is odd, that |Ci ∩R| = 1 for each i, and that
we have equality in (75.54). This gives the required multiflow.

The integrality results follow from Theorem 75.4.

This implies the following generalization of Theorem 74.3, due to Seymour
[1981a] (who derived it from Theorem 74.3 by using Wagner’s theorem on
the decomposition of K5-free graphs (Theorem 3.3)):

Corollary 75.4d. A graph G = (V, E) has no K5 minor if and only if for
each R ⊆ E and each c : E → R+, the cut condition implies the existence
of a multiflow. Moreover, if G has no K5 minor and c is integer, the cut
condition implies the existence of a half-integer multiflow. If moreover the
Euler condition holds, then it implies the existence of an integer multiflow.

Proof. Directly from Corollary 75.4c.

For planar graphs, these integrality results can be derived also from results
on packing T -cuts (Theorem 29.2), using duality like in Theorem 75.2 (cf.
Theorem 74.3).

75.7. The cut cone and the cut polytope

Let G = (V, E) be an undirected graph. Recall that a subset C of E is called
a cut if C = δ(U) for some U ⊆ V . The cut polytope Pcut(G) of G is the
convex hull of the incidence vectors (in RE) of cuts in G:

(75.55) Pcut(G) := conv.hull{χC | C cut in G}.

As ∅ is a cut, the cut polytope contains the origin.
Since a set of edges is bipartite if and only if it is contained in a cut, the

bipartite subgraph polytope can be expressed in terms of the cut polytope:

(75.56) Pbipartite subgraph(G) = {x ∈ RE
+ | ∃y ≥ x : y ∈ Pcut(G)}.

Any vector x in the cut polytope of G satisfies

(75.57) (i) 0 ≤ xe ≤ 1 for each e ∈ E,
(ii) x(F ) − x(C \ F ) ≤ |F | − 1 for each circuit C and

F ⊆ C with |F | odd.

A full characterization is known of those graphs for which (75.57) determines
the cut polytope: they are the graphs without K5 minor (Seymour [1981a],
Barahona [1983b]). This can be deduced from the characterization of weakly
bipartite graphs.
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This characterization can be formulated equivalently in terms of the cut
cone of a graph G = (V, E), which is the convex cone generated by the
incidence vectors of the cuts. Necessary conditions for its elements are:

(75.58) xe ≥ 0 for e ∈ E,
xf ≤ x(C \ {f}) for each circuit C and f ∈ C.

The graph K5 shows that these conditions generally are not sufficient: fix
distinct u, v ∈ V K5; then x := 2−χδ({u,v}) satisfies (75.58). However, x does
not belong to the cut cone of K5, since the incidence vector z of any cut
satisfies 2z(δ({u, v})) ≥ z(EK5).

K5 is the only minor-minimal example, as Seymour [1981a] showed:

Corollary 75.4e. The cut cone is determined by (75.58) if and only if G has
no K5 minor.

Proof. Necessity is shown by the example above, and by the closedness of
the property under taking minors. If G has the property, and we contract an
edge e, then any x satisfying (75.58) for G/e can be extended to a vector x
satisfying (75.58) for G by defining xe := 0. Then the extended x is in the
cut cone of G, and hence the original x is in the cut cone of G/e.

If we delete e, extend x satisfying (75.58) for G−e by defining xe to be the
distance in G − e between the end vertices of e, taking x as length function.
Again, the extended x is in the cut cone of G, and hence the original x is in
the cut cone of G − e. This shows necessity.

To see sufficiency, let G have no K5 minor. Let cTx ≥ 0 be a valid in-
equality for the cut cone. Define R := {e ∈ E | c(e) < 0}. Taking (V, E \ R)
as supply graph and (V, R) as demand graph, the cut condition holds for
capacity function c|E \ R and demand function −c|R. By Corollary 75.4d,
there exists a multiflow subject to c|E \ R and of value −c|R. It means that
c is a nonnegative combination of vectors −χf + χC\{f} where C is a circuit
and f ∈ C, and of vectors χe where e ∈ E \ R. Hence the inequality cTx ≥ 0
is a nonnegative linear combination of the inequalities (75.58).

Using the symmetry of the cut polytope (as observed by Barahona and
Grötschel [1986]), Corollary 75.4e has as a consequence (Barahona [1983b]):

Corollary 75.4f. The cut polytope of a graph G = (V, E) is determined by
(75.57) if and only if G has no K5 minor.

Proof. By Corollary 75.4e, it suffices to show that the cut polytope is deter-
mined by (75.57) if and only if the cut cone is determined by (75.58).

First assume that the cut polytope is determined by (75.57). Since the ori-
gin belongs to the cut polytope, the cut cone is determined by the inequalities
among (75.57) with right-hand side 0 — that is, by (75.58).

Conversely, assume that the cut cone is determined by (75.58). Then
(75.58) determines the cut polytope in the neighbourhood of the origin.
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Consider now any vertex χD of the cut polytope, where D is a cut of G.
For each x ∈ RE , define x̃ ∈ RE by:

(75.59) x̃e :=

{
1 − xe if e ∈ D,

xe if e 	∈ D.

The function x → x̃ brings the cut polytope to itself (since D′△D is a cut
for any cut D′ and x̃ = χD′△D if x = χD′

), and χD to 0. Since the cut cone
is determined by (75.58), it implies that in the neighbourhood of χD, the cut
polytope is determined by the inequalities (75.58) applied to x̃:

(75.60) (i) x̃e ≥ 0 for e ∈ E,
(ii) x̃f ≤ x̃(C \ {f}) for each circuit C and f ∈ C.

Now inequality (75.60)(i) follows from (75.57)(i). To see inequality (75.60)(ii),
we first consider the case f 	∈ D. Define F := (C ∩ D) ∪ {f}. Then, using
(75.57)(ii), (75.60)(ii) follows from

(75.61) x̃f = xf = x(F ) − x(C ∩ D) ≤ x(C \ F ) − x(C ∩ D) + |F | − 1
= x̃(C \ F ) + x̃(C ∩ D) = x̃(C \ {f}).

If f ∈ D, define F := (C ∩D) \ {f}. Then, again using (75.57)(ii), (75.60)(ii)
follows from

(75.62) x̃f = 1 − xf = 1 + x(F ) − x(C ∩ D) ≤ x(C \ F ) − x(C ∩ D) + |F |
= x(C \ D) + xf − x(C ∩ D) + |C ∩ D| − 1 = x̃(C \ {f}).

Notes. By Corollary 75.4f, the cut polytope of any planar graph is determined by
(75.57). As cuts in planar graphs correspond to ∅-joins (≡ cycles) in the dual graph
(Orlova and Dorfman [1972]), one may also derive this from Corollary 29.2e on the
T -join polytope.

Hadlock [1975] showed in a similar way that a maximum-capacity cut in a planar
graph can be found in strongly polynomial time. Using the decomposition of graphs
without K5 minors into planar graphs and copies of V8 (Theorem 3.3), Barahona
[1983b] derived from this a combinatorial strongly polynomial-time algorithm to
find a maximum-capacity cut in graphs without K5 minor.

Poljak [1992] showed that for each graph G, the polytope determined by (75.2)
is the down hull of the polytope determined by (75.57).

Karzanov [1985b] showed that the separation problem for the cut cone is co-
NP-complete.

Barahona and Mahjoub [1986] showed that the separation problem over (75.57)
is polynomial-time solvable, hence any linear objective function can be optimized
over (75.57) in strongly polynomial time (with the ellipsoid method).

Integer decomposition. What about integer decomposition in the cut cone? A
theorem of Chvátal [1980] implies that it is NP-complete to decompose a given
metric as a nonnegative integer sum of incidence vectors of cuts. Let H be the
class of graphs such that each integer vector x in the cut cone with x(C) even for
each circuit C, is a nonnegative integer combination of incidence vectors of cuts.
(Equivalently, the incidence vectors of the cuts form a Hilbert base.)
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By (74.34), each planar graph belongs to H. This was extended (using Wagner’s
theorem (Theorem 3.3)) by Fu and Goddyn [1999] who showed that each graph
without K5 minor belongs to H.

Goddyn [1993] also conjectured that each graph not having the Petersen graph
as minor, belongs to H. However, Laurent [1996b] showed that K6 does not belong
to H. She also showed that all proper subgraphs of K6 belong to H. (More on this
can be found in Laburthe [1995] and in the survey by Goddyn [1993].)

Fu and Goddyn [1999] asked: is H closed under taking minors?

Metrics and hypermetrics. The following metric inequalities are valid for the
vectors in the cut cone of the complete graph KV on a vertex set V :

(75.63) (i) xuv ≥ 0 for distinct u, v ∈ V ,
(ii) xuv + xvw ≥ xuw for distinct u, v, w ∈ V .

The cone determined by these inequalities is called the metric cone.
Tylkin [1960,1962] (= M.M. Deza) introduced a stronger set of valid inequalities,

the hypermetric inequalities:

(75.64) (i) xuv ≥ 0 for distinct u, v ∈ V ,

(ii)
∑

u, v ∈ V
u �= v

cucvxuv ≤ 0 for each c : V → Z with c(V ) = 1.

These inequalities are valid for the vectors in the cut cone, since for each cut δ(U)
one has (setting x := χδ(U)):

(75.65)
∑

u, v ∈ V
u �= v

cucvxuv = 2
∑

u∈U

∑

v∈V \U

cucv = 2c(U)c(V \ U)

= 1
2
(c(U) + c(V \ U))2 − 1

2
(c(U) − c(V \ U))2

= 1
2

− 1
2
(c(U) − c(V \ U))2 ≤ 0,

since |c(U) − c(V \ U)| ≥ 1, as c(V ) = 1 and c is integer.
Hypermetric inequalities generalize the metric inequalities, since (75.63)(ii) is

equivalent to taking c := χu + χw − χv in (75.64)(ii).
The cone determined by (75.64) is called the hypermetric cone. Deza, Gr-

ishukhin, and Laurent [1993] showed that this cone is polyhedral (despite that
there are infinitely many inequalities in (75.64)(ii)).

Avis and Grishukhin [1993] showed that it is co-NP-complete to decide if a
given vector is in the hypermetric cone. Relations with the geometry of numbers
are given in Deza, Grishukhin, and Laurent [1995]. More on the metric cone can be
found in Avis [1980b,1980c], Grishukhin [1992], Laurent and Poljak [1992,1995b],
Lomonosov and Sebő [1993], and Laurent [1996a], and on metrics and hypermetrics
in the book by Deza and Laurent [1997].

75.8. The maximum cut problem and semidefinite

programming

The maximum-capacity cut problem has a natural semidefinite relaxation.
Let V be a finite set and denote
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(75.66) MV := the set of all symmetric positive semidefinite V × V ma-
trices M with Mv,v = 1 for each v ∈ V .

Let c : V × V → R+ be a ‘capacity’ function, with c(u, v) = c(v, u) for
all u, v ∈ V . Consider c as a capacity function on the complete graph KV

on V . Let C be the V × V matrix with (u, v)th entry equal to c(u, v). The
maximum-capacity cut problem asks for the maximum of

(75.67)
∑

u∈U

∑

v∈V \U

c(u, v).

Theorem 75.1 implies that this is an NP-complete problem.
A relaxation is to maximize

(75.68) 1
4TrC(J − M)

over M ∈ MV . If we restrict M to matrices of rank 1 (so M = xxT for some
{−1, +1} vector x in RV ), we have the maximum-capacity cut problem.

Goemans and Williamson [1994,1995b] showed the following surprising
bound (surprising also since the proof is very simple). Define

(75.69) α := min
0<φ≤π

φ

1 − cos φ

2

π
= 0.87856....

(The latter estimate results from a numerical computation.)

Theorem 75.5. Let µ be the maximum capacity of a cut and let ν be the
maximum value of (75.68). Then

(75.70) αν ≤ µ ≤ ν.

Proof. The inequality µ ≤ ν was shown above. To see the first inequality,
let M maximize (75.68). As M is positive semidefinite, there exist vectors
xv ∈ Rn for v ∈ V such that xT

uxv = Mu,v for all u, v ∈ V . (Here n := |V |.)
So ‖xv‖ = 1 for each v ∈ V .

For any hyperplane H in Rn with 0 ∈ H, let D be the set of edges uv of
KV with u and v at different sides of H. Choosing H at random, the set D
is a cut, with probability 1. Any edge uv of KV is in D with probability

(75.71)
� (xu, xv)

π
.

(� (a, b) is the angle of a and b.) This follows from the fact that (75.71) is the
probability that xu and xv are at different sides of H.

So the expected value of the capacity of D is equal to

(75.72)
∑

uv∈EKV

� (xu, xv)

π
c(u, v).

Now if φ = � (xu, xv), then xT

uxv = cos φ. Hence, by definition of α,
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(75.73)
� (xu, xv)

π
=

φ

π
≥ 1

2α(1 − cos φ) = 1
2α(1 − xT

uxv).

Hence (75.72) is at least

(75.74)
∑

uv∈EKV

α · 1
2c(u, v)(1 − xT

uxv) = 1
4αTrC(J − M) = αν.

Concluding, there exists a cut of capacity at least αν. So µ ≥ αν.

Since the separation problem over MV is solvable in polynomial time, in
a certain approximation model (cf. Grötschel, Lovász, and Schrijver [1988]),
with the ellipsoid method, one can optimize any linear objective function over
MV in strongly polynomial time, or rather approximate the optimum. Hence
the value of ν can be approximated in polynomial time. As Goemans and
Williamson [1994,1995b] pointed out, this gives a randomized polynomial-
time algorithm to find a cut of capacity at least αν ≥ 0.87856ν: choosing a
random hyperplane H as above gives a random cut of expected capacity as re-
quired. By derandomization, such a cut can in fact be found deterministically
in polynomial-time (Mahajan and Ramesh [1995,1999]).

This approach also gives a relaxation (≡ superset) of the cut polytope.
Indeed, let G = (V, E) be an undirected graph. For any M ∈ MV , define
xM : E → R+ by:

(75.75) xM (e) := 1
2 (1 − Mu,v)

for e = uv ∈ E. Then

(75.76) Pcut(G) ⊆ K := {xM | M ∈ MV },

since for each cut δ(U), the matrix M given by

(75.77) M := (1 − 2χU )(1 − 2χU )T

belongs to MV and satisfies xM = χδ(U).
So K is a relaxation of the cut polytope. With the ellipsoid method,

one can optimize over MV , and hence over K in polynomial time. What
Goemans and Williamson’s theorem tells is that for nonnegative c : E →
R+, maximizing cTx over K has only a small relative error compared to
maximizing over Pcut(G). In other words:

(75.78) K ⊆ α−1 · Pbipartite subgraph(G).

Here we use that Pbipartite subgraph(G) is the down hull in RE
+ of Pcut(G).

Feige and Schechtman [2001,2002] showed that for each ε > 0 there is a
graph for which the ratio of the semidefinite programming bound ν and the
maximum cut-size is no better than α + ε.

Notes. Before Goemans and Williamson found their theorem, only a factor of 2 was
known to be achievable in polynomial time, by just taking c(E) as upper bound.
This gives a factor 2, since a random cut has expected capacity 1

2
c(EKV ), as each
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edge has probability 1
2

to be in the random cut (Johnson and Lafuente [1970] and
Sahni and Gonzalez [1976]).

H̊astad [1997,2001] showed that if NP �=P, then there is no polynomial-time
algorithm that finds a cut of capacity more than 16

17
of the maximum cut-capacity

(cf. Trevisan, Sorkin, Sudan, and Williamson [1996,2000]).
Related work can be found in Bellare, Goldreich, and Sudan [1995,1998], Karloff

[1996,1999], Zwick [1999b], Alon and Sudakov [2000], and Alon, Sudakov, and Zwick
[2001,2002].

Earlier eigenvalue methods for the maximum cut problem include Poljak [1992]
and Delorme and Poljak [1993a,1993b,1993c].

Surveys on semidefinite methods for the maximum cut problem (and more gen-
erally in combinatorial optimization) are given by Goemans [1997], Reed [2001a],
and Laurent and Rendl [2002]. Alizadeh [1995] gives a survey of applying interior-
point methods to semidefinite programming in combinatorial optimization. More
on the semidefinite relaxation of the cut polytope can be found in Laurent and
Poljak [1995a,1996a,1996b]. Other approximation algorithms for the maximum cut
problem were given by Arora, Karger, and Karpinski [1995,1999], Fernandez de
la Vega [1996], Frieze and Kannan [1996,1999], Fernandez de la Vega and Kenyon
[1998,2001], Feige and Langberg [2001], and Halperin, Livnat, and Zwick [2002].

An extension of the semidefinite programming bound to 3-cuts was given by
Goemans and Williamson [2001]. For extensions to directed graphs, see Feige and
Goemans [1995], Matuura and Matsui [2001], and Lewin, Livnat, and Zwick [2002].

For a survey on approximation algorithms, see Shmoys [1995] and the book by
Vazirani [2001].

75.9. Further results and notes

75.9a. Cuts and stable sets

The vertex cover polytope of a graph G = (V, E) can be considered as a face of the

cut polytope of the graph G̃ = (Ṽ , Ẽ) obtained from G by adding one new vertex
u adjacent to all vertices of G. Since the stable set polytope can be expressed in
terms of the vertex cover polytope (as S is a stable set if and only if V \ S is a
vertex cover), this gives a relation between cuts and stable sets.

To see the relation between Pvertex cover(G) and Pcut(G̃), first note that each

x ∈ Pcut(G̃) satisfies

(75.79) x(T ) ≤ 2 for each triangle T ⊆ Ẽ.

Therefore, the set of vectors x in Pcut(G̃) satisfying

(75.80) x(T ) = 2 for each triangle T = {uv, uw, vw} containing u

(so vw is an edge of G), forms a face F of Pcut(G̃).

Now we project R
Ẽ on R

Ẽ\E by deleting the coordinates indexed by E. More-
over, we identify any edge uv in Ẽ \E with vertex v of G. This brings F one-to-one
to the vertex cover polytope of G.

More precisely, define a projection π : R
Ẽ → R

V by π(x)v := xuv for v ∈ V and

x ∈ R
Ẽ . Then:
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Theorem 75.6. π|F is a bijection between F and Pvertex cover(G).

Proof. First, π|F is injective, since if π(x) = π(y) for x, y ∈ F , then for each
v ∈ V , xuv = yuv. Hence, by (75.80), for each vw ∈ E, xvw = 2 − xuv − xuw =
2 − yuv − yuw = yvw. So x = y.

To see that π(F ) ⊆ Pvertex cover(G), let C be a cut in G̃ with χC ∈ F (that is,
χC is a vertex of F ). Then for each edge vw of G, precisely two of the edges uv,
uw, vw belong to C. Hence at least one of uv, uw belongs to C. So π(χC) is the
incidence vector of a vertex cover of G.

Conversely, to see Pvertex cover(G) ⊆ π(F ), let U be a vertex cover of G. So

U ⊆ V . Let C be the cut in G̃ determined by U . Then χC belongs to F , since for
each edge vw of G we have that precisely two of uv, uw, vw belong to C. Moreover,
π(χC) = χU , since for each v ∈ V : v ∈ U ⇐⇒ uv ∈ C.

The relation given in this theorem can be useful when we have a good descrip-
tion of the cut polytope for certain classes of graphs. The description then can
be transferred to the vertex cover polytope, hence to the stable set polytope, for
certain derived classes of graphs.

In particular, we can derive from Guenin’s theorem the t-perfection of graphs
without odd K4-subdivision (a consequence of Theorem 68.3 (Gerards and Schrijver
[1986])):

Theorem 75.7. A graph G without odd K4 subdivision as subgraph is t-perfect.

Proof. Let G = (V, E) be a graph without odd K4-subdivision as subgraph. By

(75.22), G has no K4 as odd minor. Let G̃ = (Ṽ , Ẽ) be the graph obtained from G
by adding a new vertex u, adjacent to all vertices in V .

Then G̃ has no K5 as odd minor. For suppose it has. Then by deleting the vertex
from the K5 to which u has been contracted (if any) we obtain a graph being K4

or K5. It implies that G has K4 as odd minor, a contradiction.
Now let y ∈ R

V satisfy

(75.81) 0 ≤ yv ≤ 1 for v ∈ V ,
yu + yv ≤ 1 for uv ∈ E,
y(V C) ≤ ⌊ 1

2
|V C|⌋ for each odd circuit C.

Define x ∈ R
Ẽ by

(75.82) x(vw) := yv + yw for each edge vw of G,
x(uv) := 1 − yv for each v ∈ V .

Then x satisfies (75.2) with respect to G̃. Indeed, (75.2)(i) trivially holds. To see
(ii), we can restrict ourselves to chordless odd circuits C. If C traverses u, it is a
triangle containing u, and we have x(EC) = 2 = |V C| − 1. If C does not traverse
u, then x(EC) = 2y(V C) ≤ |V C| − 1.

So by Corollary 75.4a, x is a convex combination of incidence vectors of bipartite
subgraphs B:

(75.83) x =
∑

B

λBχB .
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Since x(C) = 2 for each triangle C containing u, those B with λB > 0 intersect

each such C in precisely two edges. Hence (since each circuit in G̃ is a symmetric
difference of triangles containing u) B intersects each circuit in an even number of

edges. So B is a cut δ(U) of G̃. We can assume that u �∈ U . Then V \ U is a stable
set of G, and

(75.84) y =
∑

U

λδ(U)χ
V \U

describes y as a convex combination of incidence vectors of stable sets.

It should be noted that the face F of the cut polytope described above is at
the same time a face of the (larger) bipartite subgraph polytope (while the cut
polytope need not be a face of the bipartite subgraph polytope). Indeed, also the
bipartite subgraph polytope satisfies (75.79). Moreover, any set B of edges having
even intersection with the triangle {uv, uw, vw} for each edge vw of G, has even

intersection with each circuit of G̃, as it is a binary sum of such triangles. So B is
a cut.

Laurent, Poljak, and Rendl [1997] showed how the set TH(G) (defined in Section
67.4a) can be derived as an affine image from the convex body K in Section 75.8.

75.9b. Further notes

Chvátal, Cook, and Hartmann [1989] showed that the Chvátal rank of system (75.2)
is at least 1

4
|V | − 1 for complete graphs G = (V, E).

Conforti and Gerards [2000] described (by forbidden odd minors) another class
of Eulerian graphs for which the maximum number of edge-disjoint odd circuits is
equal to the minimum size of an odd circuit cover.

Barahona [1983b] showed that the maximum-size cut problem is NP-complete
for apex graphs, that is graphs G having a vertex v with G − v planar. (More
strongly, Barahona proved NP-completeness if G − v is cubic and planar.)

Grötschel and Nemhauser [1984] showed that for each fixed k there is a
polynomial-time algorithm to solve the maximum-capacity cut problem for graphs
without odd circuits of length ≥ k.

Facets of the bipartite subgraph polytope were studied by Barahona, Grötschel,
and Mahjoub [1985] (cf. Gerards [1985]), and facets of the cut polytope and cut cone
by Barahona and Mahjoub [1986], De Simone [1989,1990], Deza and Laurent [1990,
1992a,1992b], Deza, Laurent, and Poljak [1992], and Laurent and Poljak [1996a].
Compositions in the bipartite subgraph polytope were given by Fonlupt, Mahjoub,
and Uhry [1992].

Conforti and Rao [1987] showed that a minimum-weight odd circuit cover can
be found in strongly polynomial time, if its weight is less than the minimum weight
of a nonempty cut.

For more geometric background on the cut cone and the cut polytope, see
the book by Deza and Laurent [1997]. Gerards [1990] gave a survey on signed
graphs without odd K4-subdivision. For more background on the relations between
odd circuits and multicommodity flows, see Sebő [1990a] and Gerards [1993]. For
surveys on maximum cut and the cut cone, see Deza, Grishukhin, and Laurent [1995]
(hypermetrics) and Poljak and Tuza [1995]. For related work, see Conforti, Rao, and
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Sassano [1990a,1990b], Jerrum and Sorkin [1993,1998], Feige and Goemans [1995],
Frieze and Jerrum [1995,1997], Ageev and Sviridenko [1999], Ageev, Hassin, and
Sviridenko [2001], Feige and Langberg [2001], Halperin and Zwick [2001a,2001b,
2002], Ye [2001], Han, Ye, and Zhang [2002], and Lewin, Livnat, and Zwick [2002].



Chapter 76

Homotopy and graphs on

surfaces

As we saw in Chapter 74, disjoint paths and multiflow problems are gen-
erally hard even for planar graphs. In some special cases, these problems
are polynomial-time solvable.
If we require the paths (or flows) to have certain homotopies, the range
of polynomial-time solvable problems can be extended. By enumerating
homotopies, it sometimes implies polynomial-time solvability for nonho-
motopic versions of the problems.
This can be extended to general surfaces and yield polyhedral characteri-
zations for circulations, flows, and paths of prescribed homotopies.

76.1. Graphs, curves, and their intersections:

terminology and notation

Let S be a compact surface. A closed curve on S is a continuous function
C : S1 → S, where S1 is the unit circle in C. It is simple if C is one-to-one.

Two closed curves C and C ′ are called freely homotopic, in notation C ∼
C ′, if there exists a continuous function bringing C to C ′; that is, a continuous
function Φ : S1 × [0, 1] → S with Φ(z, 0) = C(z) and Φ(z, 1) = C ′(z) for each
z ∈ S1.

For any pair of closed curves C, D on S, let cr(C, D) denote the number
of intersections of C and D, counting multiplicities:

(76.1) cr(C, D) := |{(w, z) ∈ S1 × S1 | C(w) = D(z)}|.

Moreover, mincr(C, D) denotes the minimum of cr(C ′, D′) where C ′ and D′

range over closed curves freely homotopic to C and D, respectively:

(76.2) mincr(C, D) := min{cr(C ′, D′) | C ′ ∼ C, D′ ∼ D}.

Similarly, cr(C) denotes the number of self-intersections of C:

(76.3) cr(C) := 1
2 |{(w, z) ∈ S1 × S1 | C(w) = C(z), w 	= z}|,

and mincr(C) denotes the minimum of cr(C ′) where C ′ ranges over all closed
curves freely homotopic to C:
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(76.4) mincr(C) := min{cr(C ′) | C ′ ∼ C}.

As is well-known, mincr(C, D) and mincr(C) are finite numbers.
Let G = (V, E) be an undirected graph embedded in S. We identify G

with its topological graph, and with its embedding in S.
For any closed curve D on S, cr(G, D) denotes the number of intersections

of G and D (counting multiplicities):

(76.5) cr(G, D) := |{z ∈ S1 | D(z) ∈ G}|.

Moreover, mincr(G, D) denotes the minimum of cr(G, D′) where D′ ranges
over all closed curves freely homotopic to D and not intersecting V :

(76.6) mincr(G, D) := min{cr(G, D′) | D′ is a closed curve in S \ V
freely homotopic to D}.

(It would seem more consistent with definition (76.2) if we would also allow
to shift G over S so as to obtain G′ and minimize cr(G′, D′), where G′ is
possibly not one-to-one mapped in S. However, Theorem 76.1 below implies
that this would not change the minimum value.)

We say that a closed curve C is in a graph G if C : S1 → G.

76.2. Making curves minimally crossing by Reidemeister

moves

The proof of Theorem 76.1 below is based on the following result of de Graaf
and Schrijver [1997b]. Let C1, . . . , Ck be closed curves on S. Call C1, . . . , Ck

minimally crossing if

(76.7) (i) cr(Ci) = mincr(Ci) for each i = 1, . . . , k;
(ii) cr(Ci, Cj) = mincr(Ci, Cj) for all i, j = 1, . . . , k with i 	= j.

Call C1, . . . , Ck regular if C1, . . . , Ck have only a finite number of (self-
)intersections, each being a crossing of only two curve parts. (That is, each
point of S traversed twice by the C1, . . . , Ck has a disk-neighbourhood on
which the curve parts are topologically homeomorphic to two crossing straight
lines.)

In de Graaf and Schrijver [1997b] the following was shown:

(76.8) Any regular system of closed curves on a compact surface S can
be transformed to a minimally crossing system by a series of
Reidemeister moves: replacing by (type 0 ); replacing

by (type I ); replacing by (type II ); replacing by

(type III ).

The pictures in (76.8) represent the intersection of the union of C1, . . . , Ck

with a closed disk on S — no other curve parts than those shown intersect
this disk.
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It is important to note that in (76.8) we do not allow to apply the op-
erations in the reverse direction — otherwise the result would follow quite
straightforwardly with the techniques of simplicial approximation, and would
not be powerful enough for our purposes. The Reidemeister moves given in
(76.8) do not increase the number of intersections.

76.3. Decomposing the edges of an Eulerian graph on a

surface

We first show a homotopic analogue of the theorems in previous chapters
relating distances and cut packings. It will be used to derive that the cut
condition is sufficient for the existence of a fractional packing of circuits of
prescribed homotopies in a graph on a surface (analogous to the line of proof
developed in Section 70.12).

A graph is called Eulerian if each vertex has even degree. (We do not
assume connectedness of the graph.) Moreover, decomposing the edges into
closed curves C1, . . . , Ck means that C1, . . . , Ck are closed curves in G such
that each edge is traversed by exactly one Ci, and by that Ci exactly once.

We now give the theorem, due to de Graaf and Schrijver [1997a], which
was proved for the projective plane by Lins [1981] (Corollary 74.1b above)
and for compact orientable surfaces by Schrijver [1991a].

Theorem 76.1. Let G = (V, E) be an Eulerian graph embedded in a com-
pact surface S. Then the edges of G can be decomposed into closed curves
C1, . . . , Ck such that

(76.9) mincr(G, D) =

k∑

i=1

mincr(Ci, D)

for each closed curve D on S.

Proof. First note that the inequality ≥ in (76.9) trivially holds, for any
decomposition of the edges into closed curves C1, . . . , Ck: by definition of
mincr(G, D), there exists a closed curve D′ ∼ D in S \V with mincr(G, D) =
cr(G, D′), and hence

(76.10) mincr(G, D) = cr(G, D′) =
k∑

i=1

cr(Ci, D
′) ≥

k∑

i=1

mincr(Ci, D).

The content of the theorem is that there exists a decomposition attaining
equality.

To prove this, we may assume that each vertex v of G has degree at most
4. If v would have a degree larger than 4, we can replace G in a neighbourhood
of v like
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by .

This modification does not change the value of mincr(G, D) for any D. More-
over, closed curves decomposing the edges of the modified graph satisfying
(76.9), directly yield closed curves decomposing the edges of the original
graph satisfying (76.9).

For any graph G embedded in S with each vertex having degree 2 or 4, we
define the straight decomposition of G as the regular system of closed curves
C1, . . . , Ck such that G = C1 ∪ · · · ∪ Ck. So each vertex of G of degree 4
represents a (self-)crossing of C1, . . . , Ck.

Up to some trivial operations, such a decomposition is unique, and con-
versely, it uniquely describes G. Moreover, any Reidemeister move applied to
C1, . . . , Ck carries over a modification of G. So we can speak of Reidemeister
moves applied to G. Then straightforwardly:

(76.11) if G′ arises from G by one Reidemeister move of type III, then
mincr(G′, D) = mincr(G, D) for each closed curve D.

Call any graph G = (V, E) that is a counterexample to the theorem
such that each vertex has degree at most 4 and such that it has a minimum
number of faces, a minimal counterexample. (A face is a connected component
of S \ G.)

From (76.11) it directly follows that:

(76.12) if G′ arises from a minimal counterexample G by one Reidemeis-
ter move of type III, then G′ is a minimal counterexample again.

Moreover:

(76.13) if G is a minimal counterexample, then no Reidemeister move of
type 0, I or II can be applied to G.

For suppose that a Reidemeister move of type II can be applied to G. Then
G contains the following subconfiguration: . Replacing this by would
give a smaller counterexample (since the function mincr(G, D) does not
change by this operation), contradicting the minimality of G. One similarly
sees that no Reidemeister move of type I can be applied. No Reidemeister
move of type 0 can be applied, as otherwise we can delete the circuit to obtain
a smaller counterexample. This proves (76.13).

The proof now is finished by showing that the straight decomposition
C1, . . . , Ck of any minimal counterexample G satisfies (76.9) — contradicting
the fact that G is a counterexample.

Choose a closed curve D. We may assume that D, C1, . . . , Ck form a
regular system. By (76.8) we can apply Reidemeister moves so as to obtain
a minimally crossing system D′, C ′

1, . . . , C
′
k. Let G′ be the graph formed by

C ′
1, . . . , C

′
k.
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By (76.12) and (76.13) we did not apply Reidemeister moves of type 0, I
or II to C1, . . . , Ck. Hence, by (76.11), mincr(G′, D) = mincr(G, D). So

(76.14) mincr(G, D) = mincr(G′, D) = mincr(G′, D′) ≤ cr(G′, D′)

=
k∑

i=1

cr(C ′
i, D

′) =
k∑

i=1

mincr(C ′
i, D

′) =
k∑

i=1

mincr(Ci, D).

Since the converse inequality holds by (76.10), we have (76.9).

The theorem can be sharpened to include compact surfaces with holes,
just by replacing holes by handles.

76.4. A corollary on lengths of closed curves

Using surface duality we derive the following consequence of Theorem 76.1
(Schrijver [1991a], de Graaf and Schrijver [1997a]). If G is a graph embedded
in a surface S and C is a closed curve in G, then minlengthG(C) denotes the
minimum length of any closed curve C ′ ∼ C in G. Here the length lengthG(C ′)
of C ′ is the number of edges traversed by C ′, counting multiplicities. So

(76.15) minlengthG(C) = min{lengthG(C ′) | C ′ ∼ C, C ′ in G}.

Corollary 76.1a. Let G = (V, E) be a bipartite graph embedded in a compact
surface S and let C1, . . . , Ck be closed curves in G. Then there exist closed
curves D1, . . . , Dt in S \V such that each edge of G is crossed by exactly one
Dj and by this Dj only once, and such that

(76.16) minlengthG(Ci) =

t∑

j=1

mincr(Ci, Dj)

for each i = 1, . . . , k.

Proof. Let

(76.17) d := max{minlengthG(Ci) | i = 1, . . . , k}.

We can extend G to a bipartite graph L embedded in S, such that each
face of L is an open disk. By inserting d new vertices on each edge of L not
occurring in G, we obtain a bipartite graph H satisfying minlengthH(Ci) =
minlengthG(Ci) for each i = 1, . . . , k (since the new edges cannot be used to
obtain a closed curve shorter than minlengthG(Ci)).

Consider a surface dual graph H∗ of H. Then for each i = 1, . . . , k,

(76.18) mincr(H∗, Ci) = minlengthH(Ci) = minlengthG(Ci).

Since H is bipartite, H∗ is Eulerian. Hence by Theorem 76.1, the edges of
H∗ can be decomposed into closed curves D1, . . . , Dt such that
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(76.19) mincr(H∗, C) =
t∑

j=1

mincr(Dj , C)

for each closed curve C. With (76.18), this gives (76.16).

Notes. This proof also implies that we can replace C1, . . . , Ck by the set of all
closed curves on S if G is cellularly embedded (i.e., each face is an open disk) — in
that case we need not extend G to L and H.

It is not difficult to see that this also holds for not-cellularly embedded bipartite
graphs in the torus, since then there is essentially only one closed curve C in G to
consider.

This is not true for the double torus (a surface with two handles), as is shown
by the example of Figure 76.1 (from Schrijver [1991a]).

76.5. A homotopic circulation theorem

By linear programming duality (Farkas’ lemma) we derive from Corollary
76.1a the following ‘homotopic circulation theorem’ — a fractional packing
theorem for closed curves of given homotopies in a graph on a compact sur-
face.

Let G = (V, E) be a graph embedded in a compact surface S. For any
closed curve C in G define the vector trC in ZE

+ by:

(76.20) trC(e) := number of times C traverses e,

for e ∈ E.
Let C0 be a closed curve on S. Call a function f : E → R a circulation

freely homotopic to C0 (of value 1) if f is a convex combination of functions
trC , where the C are closed curves in G freely homotopic to C0.

Corollary 76.1b (homotopic circulation theorem). Let G = (V, E) be an
undirected graph embedded in a compact surface S and let C1, . . . , Ck be
closed curves on S. Then there exist circulations f1, . . . , fk freely homotopic
to C1, . . . , Ck respectively, such that

(76.21) f1(e) + · · · + fk(e) ≤ 1

for each edge e, if and only if

(76.22) cr(G, D) ≥
k∑

i=1

mincr(Ci, D)

for each closed curve D in S \ V .

Proof. Necessity. First note that if f is a circulation freely homotopic to a
closed curve C0, then
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a

b

c

d

e

f

g

h

u

u

v w

x

x Q

R

Q′

R′

Figure 76.1

A not-cellularly embedded bipartite graph G in the double torus S for
which Corollary 76.1a is not true if we replace C1, . . . , Ck by all closed
curves on S. The double torus is obtained from the square by identifying
R and R′ and identifying Q and Q′ (so as to obtain the torus) and
next deleting the interiors of the two hexagons and identifying their
boundaries (so as to obtain the double torus).
For i = 0, 1, 2, . . . let Ci be the closed curve in G which, starting at v,
follows e and f once, and next follows i times the closed curve a, b, c, d.
Then minlengthG(Ci) = 4i+2. Suppose now that D1, . . . , Dt are closed
curves as described in Corollary 76.1a. Choose an arbitrary curve P
from v to w. Then Ci is homotopic to the closed curve C̃i obtained by,
starting at v, first following e and f , next following P , then following
i times the closed curve g, h, and finally following P back from w to v.
Hence for each i (where B is the closed curve from w to w following g
and h):

4i + 2 = minlengthG(Ci) =

t∑

j=1

mincr(Ci, Dj)

≤
t∑

j=1

cr(C̃i, Dj) =

t∑

j=1

(cr(C0, Dj)+2 ·cr(P, Dj)+ i ·cr(B, Dj))

=

t∑

j=1

(cr(C0, Dj) + 2 · cr(P, Dj)) + 2i.

As the first term in the last sum is independent of i, this is a contra-
diction.
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(76.23)
∑

e∈E

f(e)cr(e, D) ≥ mincr(C0, D).

for each closed curve D in S \V (denoting by cr(e, D) the number of times D
intersects edge e). This follows from the fact that (76.23) holds for f := trC

for each C freely homotopic to C0 as

(76.24)
∑

e∈E

trC(e)cr(e, D) = cr(C, D) ≥ mincr(C0, D),

and hence also for any convex combination of such functions.
Suppose now that there exist circulations f1, . . . , fk as required. Let D be

a closed curve in S \ V . Then, using (76.23):

(76.25) cr(G, D) =
∑

e∈E

cr(e, D) ≥
∑

e∈E

cr(e, D)
k∑

i=1

fi(e)

=
k∑

i=1

∑

e∈E

fi(e)cr(e, D) ≥
k∑

i=1

mincr(Ci, D).

Sufficiency. Suppose that (76.22) is satisfied for each closed curve D in S \V .
Let I := {1, . . . , k} and let K be the convex cone in RI × RE generated by
the vectors23

(76.26) (χi; trC) (i ∈ I; C closed curve in G with C ∼ Ci),
(0I ; χ

e) (e ∈ E).

Here χi denotes the ith unit base vector in RI and χe denotes the eth unit
base vector in RE . Moreover, 0I denotes the all-zero vector in RI .

Although generally there are infinitely many vectors (76.26), K is finitely
generated. This can be seen by observing that, for each i ∈ I, we can restrict
the vectors (χi; trC) in the first line of (76.26) to those that are minimal with
respect to the usual partial order ≤ on ZI

+ × ZE
+ (with (x; y) ≤ (x′; y′) ⇐⇒

xi ≤ x′
i for all i ∈ I and ye ≤ y′

e for all e ∈ E). They form an ‘antichain’ in
ZI

+ × ZE
+ (i.e., a set of pairwise incomparable vectors). Since each antichain

in ZI
+ × ZE

+ is finite, K is finitely generated.
We must show that the vector (1I ;1E) belongs to K. Here 1I and 1E

denote the all-one vectors in RI and RE , respectively. By Farkas’ lemma, it
suffices to show that each vector (d; l) ∈ QI × QE having nonnegative inner
product with each of the vectors (76.26), also has nonnegative inner product
with (1I ;1E). Thus let (d; l) ∈ QI ×QE have nonnegative inner product with
each vector among (76.26). This is equivalent to:

(76.27) (i) di +
∑

e∈E

l(e)trC(e) ≥ 0 (i ∈ I; C closed curve in G

with C ∼ Ci),
(ii) l(e) ≥ 0 (e ∈ E).

23 We write (x; y) for

(

x

y

)

.



1360 Chapter 76. Homotopy and graphs on surfaces

Suppose now that (d; l)T(1I ;1E) < 0. By increasing l slightly, we may assume
that l(e) > 0 for each e ∈ E. Next, by multiplying (d; l) appropriately, we
may assume that each entry in (d; l) is an even integer.

Let G′ be the graph arising from G by replacing each edge e of G by a
path of length l(e). That is, we insert l(e) − 1 new vertices on e. Then by
(76.27)(i),

(76.28) −di ≤ minlengthG′(Ci)

for each i ∈ I. Since G′ is bipartite, by Corollary 76.1a there exist closed
curves D1, . . . , Dt intersecting no vertex of G′ such that each edge of G′ is
intersected by exactly one Dj and only once by that Dj and such that

(76.29) minlengthG′(Ci) =
t∑

j=1

mincr(Ci, Dj)

for each i ∈ I. So

(76.30) l(e) =
t∑

j=1

cr(e, Dj)

for each edge e of G. Hence (76.22), (76.28) and (76.29) give

(76.31)
∑

e∈E

l(e) =
t∑

j=1

∑

e∈E

cr(e, Dj) =
t∑

j=1

cr(G, Dj)

≥
t∑

j=1

k∑

i=1

mincr(Ci, Dj) =

k∑

i=1

t∑

j=1

mincr(Ci, Dj)

=
k∑

i=1

minlengthG′(Ci) ≥ −
k∑

i=1

di.

So (d; l)T(1I ;1E) ≥ 0.

This corollary has an equivalent capacitated version. Let C0 be a closed
curve on S. Call a function f : E → R a circulation freely homotopic to C0 of
value d if f is a nonnegative linear combination of functions trC , where the
C are closed curves in G freely homotopic to C0 and where the scalars add
up to d.

Corollary 76.1c. Let G = (V, E) be an undirected graph embedded in a
compact surface S and let C1, . . . , Ck be closed curves on S. Let c : E → R+

and d1, . . . , dk ∈ R+. Then there exist circulations f1, . . . , fk freely homotopic
to C1, . . . , Ck respectively and of values d1, . . . , dk respectively, such that

(76.32)

k∑

i=1

fi(e) ≤ c(e)
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for each edge e if and only if

(76.33)
∑

e∈E

c(e)cr(e, D) ≥
k∑

i=1

di · mincr(Ci, D)

for each closed curve D in S \ V .

Proof. Using the argument on the finite generation of the convex cone K in
the proof of Corollary 76.1b, we can assume that c and the di are rational,
and hence integer. Replace each edge e of G by c(e) parallel edges, and replace
any Ci by di copies of Ci. Then the present corollary follows from Corollary
76.1b.

Notes. Frank and Schrijver [1992] showed that if S is the torus and each Ci is a
simple closed curve, then there exist half-integer circulations in Corollary 76.1b —
that is, where the scalars of the trC are 1

2
(similarly, in Corollary 76.1c if c and the

di are integer). More generally, it is shown that there are integer circulations if the
following Euler condition holds:

(76.34) for each closed curve D in S \ V , the number of crossings of D with G
has the same parity as the number of crossings with C1, . . . , Ck.

This condition in particular implies that each vertex of G has even degree. This
result can be formulated equivalently as:

(76.35) Let G = (V, E) be a graph embedded in the torus S and let C1, . . . , Ck

be simple closed curves on S such that the Euler condition (76.34)
holds. Then G has edge-disjoint closed walks C′

1, . . . , C
′
k (each travers-

ing no edge more than once) with C′
i freely homotopic to Ci for

i = 1, . . . , k, if and only if condition (76.22) holds.

The C′
i need not be simple; they may have self-intersections at vertices. (See Schrij-

ver [1992] for a survey on disjoint circuits in graphs on the torus.)
Figures 76.2 and 76.3 show that we cannot delete in (76.35) the Euler condition

or the condition that the Ci are simple. Moreover, Figure 76.4 shows that (76.35)
does not extend to the double torus (a surface with two handles).

76.6. Homotopic paths in planar graphs with holes

As was shown in Schrijver [1991a], Corollary 76.1b gives a ‘homotopic flow-
cut theorem’, stating that a homotopic cut condition implies the existence of
a fractional solution for the planar edge-disjoint paths problem, if the paths
have prescribed homotopies in the surface obtained from the plane by deleting
the interiors of certain faces covering all terminals. (This answers a question
of C.St.J.A. Nash-Williams.)

Before formulating the result, we introduce some notation and termi-
nology. Fix some subset T of R2. A curve in T is a continuous function
D : [0, 1] → T . The points D(0) and D(1) are the end points of D.
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v

R

′

R′

C1

C2

Figure 76.2

A graph G and curves C1, C2 on the torus satisfying the cut condition
(76.22) (but not the Euler condition (76.34)), where G has no edge-
disjoint circuits C′

1 and C′
2 with C′

i freely homotopic to Ci (i = 1, 2).

v

R

′

R′

C1

Figure 76.3

A graph G and a nonsimple curve C1 on the torus satisfying the cut
condition (76.22) and the Euler condition (76.34), where G has no closed
curve C′

1 freely homotopic to C1 such that C′
1 traverses any edge of G

at most once.

Two curves D, D′ are called homotopic (in T ), denoted by D ∼ D′, if
there exists a continuous function Φ : [0, 1] × [0, 1] → T with Φ(x, 0) = D(x),
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Figure 76.4

A graph G and curves C1, C2 on the double torus satisfying the cut
condition (76.22) and Euler condition (76.34), but where no integer
feasible circulations exist. The double torus is obtained from the square
by identifying R and R′ and identifying Q and Q′ (so as to obtain
the torus) and next deleting the interiors of the two hexagons and
identifying their boundaries (so as to obtain the double torus). The
graph G has two vertices, v and w, and four loops, a, b, c, d, at v,
and one loop, e, at w. Curve C1 follows the edges a and b, and curve
C2 follows the edges b and c — in the directions indicated. The cut
condition (76.22) and the Euler condition (76.34) hold, but G has no
edge-disjoint closed walks freely homotopic to C1 and C2 respectively.
(The cut condition follows from the existence of a fractional solution.)

Φ(x, 1) = D′(x), Φ(0, x) = D(0), Φ(1, x) = D(1) for each x ∈ [0, 1]. (It follows
that D(0) = D′(0) and D(1) = D′(1).)

If C and D are curves in T , then we denote:

(76.36) cr(C, D) := |{(x, y) ∈ [0, 1] × [0, 1] | C(x) = D(y)}|,
mincr(C, D) := min{cr(C ′, D′) | C ′ ∼ C, D′ ∼ D}.

Let G = (V, E) be a graph embedded in T . For any curve D in T and any
e ∈ E, let

(76.37) cr(e, D) := |{x ∈ [0, 1] | D(x) ∈ e}|,



1364 Chapter 76. Homotopy and graphs on surfaces

and

(76.38) cr(G, D) =
∑

e∈E

cr(e, D).

For any walk P in G, let trP be the vector in ZE
+ defined by

(76.39) trP (e) := number of times P traverses e,

for e ∈ E. For any curve C in T , a flow homotopic to C (of value 1) is a
convex combination of functions trP where P is a walk in G being (as a
curve) homotopic to C in T .

Corollary 76.1d. Let G = (V, E) be a planar graph embedded in R2. Let
F1, . . . , Fp be (the interiors of) some of the faces of G, including the un-
bounded face. Let T := R2 \ (F1 ∪ · · · ∪ Fp). Let C1, . . . , Ck be curves in T
with ends points being vertices of G on the boundary of T . Then there exist
flows f1, . . . , fk homotopic to C1, . . . , Ck respectively, each of value 1, such
that

(76.40) f1(e) + · · · + fk(e) ≤ 1

for each edge e of G if and only if

(76.41) cr(G, D) ≥
k∑

i=1

mincr(Ci, D)

for each curve D in T \ V with end points on the boundary of T .

Proof. Necessity is shown similarly as in the proof of Corollary 76.1b. To see
sufficiency, let the condition hold. We construct a compact orientable surface
S. First embed R2 in the 2-dimensional sphere S2. Next for each i = 1, . . . , k
make a handle Hi between the faces among F1, . . . , Fk incident with the end
points of Ci. This yields S.

Let G′ be the graph obtained from G by adding, for each i = 1, . . . , k,
an edge fi between the end points of Ci, by routing fi over Hi. This can be
done in such a way that the new edges do not intersect each other, and do
no intersect the edges of G. Each curve Ci now can be extended to a closed
curve C ′

i by adding fi.
We apply Corollary 76.1b to G′ and S. The circulations described in

Corollary 76.1b give flows as required in the present corollary. So it suffices
to check condition (76.22) for G′ and S. That is, for any closed curve D in
S \ V we must show

(76.42) cr(G′, D) ≥
k∑

i=1

mincr′(C ′
i, D).

Here mincr′ denotes the function mincr with respect to S. To show (76.42),
we distinguish three cases.
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Case 1: D is contained in T . Let y be some point on D, let z be some point
on the boundary of T with z 	∈ V , and let R be some curve in T connecting
z and y, such that R does not intersect V , and intersects G only a finite
number of times. For n ∈ Z+, let Qn be the curve from z to z which follows
R from z to y, then follows n times the closed curve D, and next returns from
y to z over R. Let r := cr(G, R). Let Dn be the closed curve that follows n
times D. Then for all n ∈ Z+,

(76.43) n ·
k∑

i=1

mincr′(C ′
i, D) =

k∑

i=1

mincr′(C ′
i, D

n) ≤
k∑

i=1

mincr(Ci, Qn)

≤ cr(G, Qn) = 2r + n · cr(G′, D).

Here the first equality is a general relation for curves on compact orientable
surfaces (see Proposition 5 in Schrijver [1991a]). The first inequality holds as
any curve homotopic to Qn is equal to a closed curve freely homotopic to Dn.
The second inequality follows from (76.41). The last equality follows from
the definition of Qn. Since (76.43) holds for each n, while r is fixed, we have
(76.42).

Case 2: D does not intersect T . Then

(76.44) cr(G′, D) =

k∑

i=1

cr(C ′
i, D) ≥

k∑

i=1

mincr′(C ′
i, D).

Case 3: D intersects both T and S \ T . Set H := S \ T . Then we can split
D into curves D1, D2, . . . , D2q, such that for odd i, Di is contained in T and
connects two points on the boundary of T , while for even i, Di is contained
in H, except for its end points. Then we have:

(76.45) cr(G′, D) =

q∑

j=1

cr(G, D2j−1) +

q∑

j=1

k∑

i=1

cr(fi, D2j)

≥

q∑

j=1

k∑

i=1

mincr(Ci, D2j−1) +

q∑

j=1

k∑

i=1

cr(fi, D2j)

=
k∑

i=1

q∑

j=1

(mincr(Ci, D2j−1) + cr(fi, D2j)) ≥
k∑

i=1

mincr′(C ′
i, D).

The first inequality follows from (76.41). The last inequality can be derived as

follows. Fix i = 1, . . . , k. Then there exist curves C̃i ∼ Ci and D̃2j−1 ∼ D2j−1

(j = 1, . . . , q) with mincr(Ci, D2j−1) = cr(C̃i, D̃2j−1) for j = 1, . . . , q. (This

can be derived, for instance, from (76.8).) Hence C̃i attains the minimum
simultaneously for all D2j−1. So

(76.46)

q∑

j=1

mincr(Ci, D2j−1) =

q∑

j=1

cr(C̃i, D̃2j−1).
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Hence, where D̃ is the concatenation of D̃1, D2, D̃3, D4, . . . , D̃2q−1, D2q, and

C̃ ′
i is the concatenation of C̃i and fi,

(76.47)

q∑

j=1

(mincr(Ci, D2j−1) + cr(fi, D2j))

=

q∑

j=1

(cr(C̃i, D̃2j−1) + cr(fi, D2j)) = cr(C̃ ′
i, D̃) ≥ mincr′(C ′

i, D),

proving the last inequality in (76.45).

Notes. Related is the following homotopic edge-disjoint paths problem:

(76.48) given: a planar graph G = (V, E), a subcollection F1, . . . , Fp of the
faces of G (including the unbounded face), curves C1, . . . , Ck in
T := R

2 \ (F1 ∪ · · · ∪ Fp), with end points in vertices of G on the
boundary of T ,

find: edge-disjoint walks P1, . . . , Pk, such that Pi traverses any edge at
most once and is homotopic to Ci in T (i = 1, . . . , k).

In this context, the faces F1, . . . , Fp are called the holes.
Clearly, the homotopic cut condition (76.41) is a necessary condition for the

feasibility of (76.48), while Figure 70.3 shows that it is generally not sufficient. By
Corollary 76.1d, it is equivalent to the existence of a fractional solution of (76.48).

We can add the following Euler condition (or local Euler condition):

(76.49) for each vertex v ∈ V , the degree of v in G has the same parity as the
number of times v is end point of the Ci (counting for 2 if Ci begins
and ends at v).

By the Okamura-Seymour theorem, if p = 1 the homotopic cut and local Euler
conditions are sufficient for the feasibility of (76.48). This was extended to p = 2
by van Hoesel and Schrijver [1990]:

(76.50) if p = 2 and the local Euler condition (76.49) holds, then the homotopic
edge-disjoint paths problem (76.48) has a solution if and only if the
homotopic cut condition (76.41) holds.

It implies that if p = 2, we can take the flows in Corollary 76.1d half-integer.
(76.50) cannot be extended to p = 3, as is shown by Figure 76.5. In fact,

Kaufmann and Maley [1993] showed that it is NP-complete to solve the homotopic
edge-disjoint paths problem even if the local Euler condition (76.49) holds and the
graph is a grid graph (with as holes all faces enclosed by more than four edges).

We can consider a stronger parity condition, the global Euler condition:

(76.51) cr(G, D) ≡
k∑

i=1

mincr(Ci, D) (mod 2) for each curve D in T \ V with

end points on bd(T ) and having no touchings with G.

Kaufmann and Mehlhorn [1992] showed that if G is a grid graph and the holes
are those faces enclosed by more than four edges, and if the global Euler condition
holds, then the homotopic edge-disjoint paths problem has a solution if and only if
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C1 C2

F1 F2

F3

Figure 76.5

This graph G with curves C1 and C2 satisfies the cut condition (76.41)
(as there is a fractional solution) and the (local) Euler condition, but G
has no edge-disjoint walks P1 ∼ C1 and P2 ∼ C2 (in R

2\(F1∪F2∪F3)).

the homotopic cut condition holds. Kaufmann and Mehlhorn also gave an O(n2)-
time algorithm to find the paths. This was improved to a linear-time algorithm by
Kaufmann [1987] and Kaufmann and Mehlhorn [1994].

Other types of grids, like the hexagonal and the octo-square grid, were con-
sidered by Kaufmann [1987]. A generalization to ‘straight-line planar graphs’ was
given by Schrijver [1991d]. A straight-line planar graph is a planar graph G such
that each edge is a straight line segment, where F1, . . . , Fp are such that for each
edge e of G and each vertex v on e, when extending the line segment forming e
slightly at v we arrive either in another edge of G or in one of the faces Fi. In this
case, if the global Euler condition holds, then the homotopic edge-disjoint paths
problem has a solution if and only if the homotopic cut condition holds. Moreover,
the problem is solvable in polynomial time in this case.

76.7. Vertex-disjoint paths and circuits of prescribed

homotopies

76.7a. Vertex-disjoint circuits of prescribed homotopies

As for the vertex-disjoint analogue of the results studied above, the existence of
vertex-disjoint circuits of prescribed homotopies in a graph on a compact surface
can be fully characterized.

Let G = (V, E) be a graph embedded in a compact surface S and let C1, . . . , Ck

be pairwise disjoint simple closed curves on S. We say that a closed curve D on a
surface S is doubly odd (with respect to G, C1, . . . , Ck), if D is the concatenation
of two closed curves D1 and D2, with common end point not on G, such that

(76.52) cr(G, Dj) �≡
k∑

i=1

mincr(Ci, Dj) (mod 2) for j = 1, 2.

Then the following was shown in Schrijver [1991b] (conjectured by L. Lovász and
P.D. Seymour):

Theorem 76.2. There exist disjoint circuits C′
1, . . . , C

′
k in G where C′

i is freely
homotopic to Ci (i = 1, . . . , k) if and only if for each closed curve D on S one has
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(76.53) cr(G, D) ≥
k∑

i=1

mincr(Ci, D),

with strict inequality if D is doubly odd.

We only show necessity of the condition. To that end, we can assume that
C1, . . . , Ck are disjoint circuits in G. Then the inequality follows from

(76.54) cr(G, D) ≥
k∑

i=1

cr(Ci, D) ≥
k∑

i=1

mincr(Ci, D).

Moreover, if D is doubly odd, let D1 and D2 be as above. Then:

(76.55) cr(G, D) = cr(G, D1) + cr(G, D2) >

k∑

i=1

(cr′(Ci, D1) + cr′(Ci, D2))

=

k∑

i=1

cr′(Ci, D) ≥
k∑

i=1

mincr(Ci, D).

Here cr′(C, D) counts the number of crossing (and not touchings) of C and D. The
strict inequality holds as

(76.56) cr(G, Dj) �≡
k∑

i=1

mincr(Ci, Dj) ≡
k∑

i=1

cr′(Ci, Dj) (mod 2)

for j = 1, 2.
For the proof of sufficiency, based on solving a system of linear inequalities in

integers, we refer to Schrijver [1991b]. The proof also implies a polynomial-time
algorithm to find disjoint circuits as required in Theorem 76.2.

For the torus, the condition in Theorem 76.2 on the strictness of the inequality
is superfluous, and the characterization can be formulated as:

(76.57) Let G be a graph embedded in the torus T , and let C be a simple closed
curve on T . Then G contains k disjoint circuits each freely homotopic
to C if and only if

cr(G, D) ≥ k · mincr(C, D)

for each closed curve D on T .

This was extended to directed graphs by Seymour [1991] (including polynomial-time
solvability). A shorter proof of this, together with an extension to the Klein bottle,
was given by Ding, Schrijver, and Seymour [1993]. A survey is given in Schrijver
[1992].

76.7b. Vertex-disjoint homotopic paths in planar graphs with

holes

In a similar way one can prove (or derive from Theorem 76.2 as in the proof of Corol-
lary 76.1d for the fractional edge-disjoint case) results on vertex-disjoint homotopic
paths in a planar graph with holes.

Consider the following disjoint homotopic paths problem:
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(76.58) given: A planar graph G = (V, E), faces F1, . . . , Fp of G, including the
unbounded face, disjoint curves C1, . . . , Ck in T := R

2 \ (F1 ∪· · ·∪
Fp), each with end points in vertices of G on the boundary of T ,

find: disjoint paths P1, . . . , Pk in G, where Pi is homotopic to Ci in T
(i = 1, . . . , k).

Frank and Schrijver [1990] and Schrijver [1991c] gave polynomial-time algo-
rithms for this problem, and gave the following characterization (the first paper
gives an algorithm using the ellipsoid method, the second paper a combinatorial
algorithm):

Theorem 76.3. Problem (76.58) has a solution if and only if for each curve D in
T with end points on bd(T ) we have

(76.59) cr(G, D) ≥
k∑

i=1

mincr(Ci, D),

and for each doubly odd closed curve D in T traversing no fixed point of any Ci we
have

(76.60) cr(G, D) >

k∑

i=1

mincr(Ci, D).

Here a point p is called a fixed point of C if each curve homotopic to C traverses
p. (In particular, the ends points of C are fixed points of C.)

Figure 76.6 (due to L. Lovász, cf. Robertson and Seymour [1986]) shows that
condition (76.60) cannot be deleted in Theorem 76.3.

Theorem 76.3 was proved by Cole and Siegel [1984] for the special case where G
is a grid graph (a subgraph of the rectangular grid), and the Fi are precisely the faces
that are not surrounded by exactly four edges of the grid, and the boundary of each
face Fi is a rectangle. In this case, condition (76.60) is superfluous. Cole and Siegel
[1984] also gave a polynomial-time (O(n log n)) algorithm for this case (answering a
question of Pinter [1983]), using an oracle to test homotopy of curves. A polynomial-
time algorithm for such graphs, not using a homotopy testing oracle, was given by
Leiserson and Maley [1985]. Maley [1987] gave an O(n2 log n)-time algorithm (where
the solution has the additional property that each of the paths found is shortest
among all possible solutions), while Maley [1996] gave an O(n log n)-time algorithm
to test routability (not constructing the solution), under some mild conditions on
the routing rules and the input layout.

Theorem 76.3 and the polynomial-time solvability of (76.58) was proved for p ≤
2 by Robertson and Seymour [1986], where again condition (76.60) is superfluous.
(A linear-time algorithm for p = 2 was given by Ripphausen-Lipa, Wagner, and
Weihe [1993a], if at least one of the curves Ci connects F1 and F2.) A short proof
for the case p = 2 was given by Frank [1990c], which also extends to the directed
case, implying a result of Seymour [1991].

The polynomial-time solvability of (76.58) implies the following for nonhomo-
topic disjoint paths (Schrijver [1991c]):

(76.61) for each fixed p, the vertex-disjoint paths problem is polynomial-time
solvable for planar graphs if the terminals can be covered by the bound-
aries of at most p faces.
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Figure 76.6

The three holes are indicated by grey regions, and the curves by dashed
lines. We assume that the graph is embedded in the 2-sphere, such that
there is no unbounded face.
The cut condition (76.59) holds, as there is a fractional solution, but
no vertex-disjoint paths homotopic to the given curves exist.

(This was conjectured by Robertson and Seymour [1986], who proved it for p ≤ 2
(see Section 74.4c for p = 1). For p ≤ 2, Suzuki, Akama, and Nishizeki [1988a,
1988b,1988c,1990] gave an O(n log n)-time algorithm, improved to linear-time by
Ripphausen-Lipa, Wagner, and Weihe [1993a,1993b]. (The algorithm of Suzuki,
Akama, Nishizeki is linear-time if each net is spanned by F1 or by F2.) For p = 3,
a linear-time algorithm if each net is spanned by F1, F2, or F3 was announced by
H. Suzuki, T. Kumagai, and T. Nishizeki (1993; cf. Ripphausen-Lipa, Wagner, and
Weihe [1995]).)

The idea of proof of (76.61) is that for each net r we choose a curve Cr connecting
the points in r such that the Cr are disjoint, and next try to find paths as in (76.58);
it can be proved that we need to consider only a polynomially bounded number of
homotopy classes of curves Cr (for fixed p), which gives the required result.

In Schrijver [1993] this was extended, by similar methods, to the directed case:

(76.62) for each fixed p, the disjoint paths problem is polynomial-time solv-
able for directed planar graphs if the terminals can be covered by the
boundaries of at most p faces.

This remains the case if we prescribe for each net (si, ti) a subset Ai of the arc set
that path Pi is allowed to use.

For a sketch of the method for (76.58), see Schrijver [1990b].
Robertson and Seymour [1995] proved that if the number of terminals is fixed,

the vertex-disjoint paths problem in undirected graphs is O(n3)-time solvable, also
for nonplanar graphs. If moreover the graph is planar, Reed, Robertson, Schrij-
ver, and Seymour [1993] gave a linear-time algorithm. This connects to the results
described in Section 70.13a.
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76.7c. Disjoint trees

The polynomial-time solvability of finding paths (76.58) can be generalized to dis-
joint trees (Schrijver [1991c]). The following problem is solvable in polynomial
time:

(76.63) given: a planar graph G, faces F1, . . . , Fp of G (including the un-
bounded face), curves C1,1, . . . , C1,t1 , . . . , Ck,1, . . . , Ck,tk

in the
space S := R

2 \ (F1 ∪ · · · ∪ Fp), with end points in vertices of
G on bd(S), such that for each i = 1, . . . , k, Ci,1, . . . , Ci,ti have
the same starting vertex;

find: disjoint subtrees T1, . . . , Tk of G such that for each i = 1, . . . , k
and j = 1, . . . , ti, Ti contains a path homotopic to Ci,j in S.

Again, by enumerating homotopy classes, it can be derived that, for each fixed p,
the problem

(76.64) given: a graph G = (V, E) and disjoint subsets W1, . . . , Wk of V ;
find: disjoint subtrees T1, . . . , Tk of G such that Ti spans Wi for i =

1, . . . , k,

is polynomial-time solvable if G is planar and W1, . . . , Wk can be covered by the
boundaries of at most p faces of G. (For p ≤ 2, Suzuki, Akama, and Nishizeki [1988a,
1988b,1988c,1990] gave an O(n log n)-time algorithm, improved to linear-time by
Ripphausen-Lipa, Wagner, and Weihe [1993a,1993b].)

Robertson and Seymour [1995] showed that for each fixed p, (76.64) is O(n3)-
time solvable for any graph if |W1 ∪ · · · ∪ Wk| ≤ p. If moreover the graph is planar,
Reed, Robertson, Schrijver, and Seymour [1993] gave a linear-time algorithm.

For minimum-length homotopic routing in grid graphs, see Ho, Suzuki, and
Sarrafzadeh [1993]. Surveys of homotopic routing methods are given by Schrijver
[1990b,1994b], and of applications of polyhedral combinatorics to multiflows on
surfaces by Schrijver [1990a]. ‘Gridless’ homotopic routing (that is, routing in the
plane (not in a graph), observing mutual distances between curves) was studied by
Tompa [1981] and Maley [1988].
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Part VIII: Hypergraphs

Hypergraphs form a framework in which many of the min-max relations discussed
before can be formulated. This is not to say that they all can be derived from general
hypergraph theory. Rather, hypergraph theory yields relations between different
min-max relations, for instance through the blocking and antiblocking relations of
hypergraphs and of polyhedra. Moreover, certain hereditary min-max relations can
be characterized by equivalent but weaker conditions. This can be helpful in proving
min-max relations for special classes of hypergraphs.
The material in this part is grouped by the hypergraph generalizations of four no-
tions that also played a central role in the earlier parts on graphs: matching, vertex
cover, edge cover, and stable set. Among the landmarks of this part are theorems of
Lehman on minimally nonideal hypergraphs and of Seymour characterizing binary
Mengerian hypergraphs.
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Chapter 77

Packing and blocking in

hypergraphs: elementary notions

Packing in hypergraphs asks for a maximum number of disjoint edges.
Blocking concerns the minimum number of vertices intersecting each edge.
In this chapter we give basic concepts of hypergraphs, in particular those
related to packing and blocking.

77.1. Elementary hypergraph terminology and notation

We start with some elementary definitions and notation on hypergraphs. A
hypergraph1 is a pair H = (V, E), where V is a finite set and E is a family of
subsets of V . Any element of V is called a vertex of H and any set in E an edge
of H. We sometimes denote the vertex set and the edge set of H by V H and
EH respectively. In our discussions, we can assume without loss of generality
that E is a collection of subsets (rather than a family, with multiplicities).

Graphs are special cases of hypergraphs: they are the hypergraphs that
have all its edges of size 2.

The E × V incidence matrix of H is the E × V matrix M with MF,v = 1
if v ∈ F and MF,v = 0 if v �∈ F (for v ∈ V , F ∈ E). For most of our pur-
poses, studying a hypergraph is equivalent to studying its incidence matrix.
Any result on hypergraphs is simultaneously a result on 0, 1 matrices, and
conversely. We will go back and forth between both interpretations and often
choose the most appropriate one.

The dual hypergraph H∗ of a hypergraph H = (V, E) is the hypergraph
with vertex set E and edges all sets {E ∈ E | v ∈ E} for v ∈ V . So the
incidence matrix of H∗ is the transpose of the incidence matrix of H.

For any hypergraph H = (V, E) we denote

(77.1) rmin(H) := min{|E|
∣∣ E ∈ E} and rmax(H) := max{|E|

∣∣ E ∈ E}.

1 Berge [1996] said that the name ‘hypergraph’ was invented in 1969 by J.-M. Pla, after
earlier attempts to call it ‘graphoid’ (e.g. Berge [1969]).
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77.2. Deletion, restriction, and contraction

We describe two operations on a hypergraph H = (V, E), deletion and con-
traction. Let v ∈ V , and define:

(77.2) E \ v := {E ∈ E | v �∈ E}, H \ v := (V \ {v}, E \ v),
E/v := {E \ {v} | E ∈ E}, H/v := (V \ {v}, E/v).

Replacing H by H \ v is called deleting v and replacing H by H/v is called
contracting v. We say that H ′ is a restriction of H if it arises by a series of
deletions, and a contraction of H if it arises by a series of contractions. The
restriction to U ⊆ V is H \ (V \ U).

Deletions and contractions commute in the ways one may expect: for
distinct u, v ∈ V one has

(77.3) (H/u)/v = (H/v)/u, (H \ u) \ v = (H \ v) \ u, and (H/u) \ v =
(H \ v)/u.

Deletion of an edge E means replacing E by E \ {E}. A hypergraph H ′

is called a minor of H, if H ′ arises from H by a series of deletions and
contractions of vertices, and deletions of edges that are not inclusionwise
minimal edges.

77.3. Duplication and parallelization

Let H = (V, E) be a hypergraph and let v ∈ V . Duplicating v means extending
V by a new vertex, v′ say, and replacing E by

(77.4) E ∪ {(E \ {v}) ∪ {v′} | v ∈ E ∈ E}.

A hypergraph obtained from H by a sequence of deletions and duplications
of vertices, is called a parallelization of H. If w : V → Z+, we denote by
Hw the result of deleting any vertex v with w(v) = 0, and duplicating any
vertex v w(v) − 1 times, if w(v) ≥ 2. So restrictions correspond to functions
w : V → {0, 1}. In a certain sense, contractions correspond to functions
w : V → {1, ∞}.

77.4. Clutters

For any hypergraph H = (V, E), define

(77.5) Hmin := (V, {F ∈ E | there is no E ∈ E with E ⊂ F}) and
H↑ := (V, {F ⊆ V | there is an E ∈ E with E ⊆ F}).

A hypergraph H = (V, E) is called a clutter if no two sets in E are contained
in each other2. So for any hypergraph, Hmin is a clutter.

2 The term ‘clutter’ was introduced by Edmonds and Fulkerson [1970].
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77.5. Packing and blocking

Let H = (V, E) be a hypergraph. The following notions generalize the corre-
sponding notions defined for graphs.

A vertex cover is a set of vertices intersecting each edge of H. A matching
is a collection of pairwise disjoint edges of H. Define

(77.6) τ(H) := the minimum size of a vertex cover in H,
ν(H) := the maximum size of a matching in H.

Determining these numbers is NP-complete, since determining τ(G) and (the
stability number) α(G) of a graph G = (V, E) is NP-complete (cf. Theorem
64.1), and since α(G) = ν(G∗).

We should note that replacing H by Hmin or H↑ does not change the
value of τ(H) or ν(H). So τ(H) = τ(H↑) = τ(Hmin) and ν(H) = ν(H↑) =
ν(Hmin).

There is the following straightforward inequality:

(77.7) ν(H) ≤ τ(H).

In the previous parts we met several classes of hypergraphs where equality
holds in (77.7), and the purpose of this and the coming chapters is to treat
them in a unifying and clarifying framework.

77.6. The blocker

For any hypergraph H = (V, E), the blocking hypergraph, or blocker, of H is
the hypergraph b(H) = (V, B) where B is the collection of all inclusionwise
minimal vertex covers of H. So b(H) is a clutter and

(77.8) τ(H) = rmin(b(H)).

Moreover, b(H)↑ is the collection of vertex covers.
The following important duality relation was noticed by Lawler [1966]

(also by Edmonds and Fulkerson [1970]):

Theorem 77.1. For any hypergraph H = (V, E), b(b(H)) = Hmin. In partic-
ular, if H is a clutter, then b(b(H)) = H.

Proof. It suffices to show b(b(H))↑ = H↑. If U ∈ H↑, then U intersects each
set in b(H). Hence U is a vertex cover of b(H), and so U ∈ b(b(H))↑.

Conversely, if U �∈ H↑, then V \U is a vertex cover of H. So V \U ∈ b(H).
Hence U is not a vertex cover of b(H). So U �∈ b(b(H))↑.

One may check that the operations of deletion and contraction interchange
when passing to the blocker. More precisely, for any vertex v of a hypergraph
H one has:

(77.9) b(H/v) = b(H) \ v and b(H \ v) = (b(H)/v)min.
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77.7. Fractional matchings and vertex covers

Let H = (V, E) be a hypergraph. A fractional vertex cover is a function
x : V → R+ satisfying

(77.10)
∑

v∈F

xv ≥ 1 for each F ∈ E .

A fractional matching is a function y : E → R+ satisfying

(77.11)
∑

F∋v

yF ≤ 1 for each v ∈ V .

(Here and below, F ranges over the edges of H.) Let τ∗(H) denote the min-
imum size of a fractional vertex cover and let ν∗(H) denote the maximum
size of a fractional matching (where the size of a vector is the sum of its
components).

We can describe τ∗(H) and ν∗(H) by linear programs3:

(77.12) τ∗(H) = min{1Tx | x ∈ RV
+, Mx ≥ 1},

where M is the E × V incidence matrix of H. Similarly,

(77.13) ν∗(H) = max{yT1 | y ∈ RE
+, yTM ≤ 1T}.

As these linear programs are each others dual, this gives:

(77.14) ν∗(H) = τ∗(H).

77.8. k-matchings and k-vertex covers

There is an alternative interpretation of the parameters ν∗(H) and τ∗(H),
in terms of ‘k-vertex covers’ and ‘k-matchings’.

A k-vertex cover is a function x : V → Z+ such that

(77.15)
∑

v∈F

xv ≥ k for each F ∈ F .

Let τk(H) denote the minimum size of a k-vertex cover. Since (minimal) 1-
vertex covers are precisely the incidence vectors of the vertex covers, we have
τ1(H) = τ(H).

A k-matching is a function y : E → Z+ such that

(77.16)
∑

F∋v

yF ≤ k for each v ∈ V .

Let νk(H) denote the maximum size of a k-matching in H. As 1-matchings
are the incidence vectors of the matchings, we have ν1(H) = ν(H).

Then for any k ∈ Z+:

3
1 stands for all-one column vectors of appropriate sizes.
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(77.17) νk(H) ≤ τk(H),

since for any k-vertex cover x and any k-matching y:

(77.18)
∑

F

yF ≤
1

k

∑

F

yF

∑

v∈F

xv =
1

k

∑

v

xv

∑

F∋v

yF ≤
∑

v

xv.

More extensively, one has for each k ≥ 1:

(77.19) ν(H) ≤
νk(H)

k
≤ ν∗(H) = τ∗(H) ≤

τk(H)

k
≤ τ(H).

The first two inequalities follow from the facts that if y is a 1-matching, then
k ·y is a k-matching, and that if y is a k-matching, then k−1 ·y is a fractional
matching. The last two inequalities are shown similarly.

We will investigate classes of hypergraphs where some or all of the in-
equalities in (77.19) are satisfied with equality. Obviously, if ν(H) = τ(H),
then all terms in (77.19) are equal.

ν∗(H) can be described in terms of the νk(H) (Lovász [1974]):

(77.20) ν∗(H) = max
k

νk(H)

k
= lim

k→∞

νk(H)

k
.

Here the left-hand side equality holds as the maximum in (77.13) is attained
by a rational optimum solution y. If k is the common denominator of the
components of y, then k · y is a k-matching, and hence k · ν∗(H) ≤ νk(H); so
equality follows by (77.19).

The right-hand side equality follows from Fekete’s lemma (Theorem 2.2),
using the fact that for all k, l ≥ 1:

(77.21) νk+l(H) ≥ νk(H) + νl(H),

since if y′ and y′′ are a k- and an l-matching respectively, then y′ + y′′ is a
k + l-matching.

Similarly we have:

(77.22) τ∗(H) = min
k

τk(H)

k
= lim

k→∞

τk(H)

k
,

using (77.12) and the fact that for all k, l ≥ 1:

(77.23) τk+l(H) ≤ τk(H) + τl(H).

77.9. Further results and notes

77.9a. Bottleneck extrema

Edmonds and Fulkerson [1970] showed that for any clutter H = (V, E), its blocker
(V, B) is the unique clutter with the property that for each f : V → R the following
equality holds:

(77.24) min
E∈E

max
x∈E

f(x) = max
B∈B

min
y∈B

f(y).
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(These extrema are called bottleneck extrema.) To see that the collection B of mini-
mal vertex covers of H has this property, let E ∈ E and x ∈ E attain the first min-
imum and first maximum. Then each F ∈ E contains a vertex z with f(z) ≥ f(x).
Hence {z ∈ V | f(z) ≥ f(x)} contains a set B in B. So f(x) ≤ miny∈B f(y).
This shows ≤ in (77.24). Moreover, for any B ∈ B, as E intersects B, we have
f(x) ≥ miny∈B f(y). This gives ≥ in (77.24).

To see that this property characterizes the blocker, let B be any clutter satisfying
(77.24) for each f : V → R. Then for each B ∈ B and E ∈ E we have B ∩ E �= ∅,
since otherwise we can define f such that f(x) < 0 for all x ∈ E and f(y) > 0 for
each y ∈ B, giving < in (77.24), a contradiction.

Finally, each vertex cover B of E contains a set in B. If not, we can define f
such that f(x) > 0 for each x ∈ B and f(y) < 0 for each y ∈ V \ B. Then we have
> in (77.24), again a contradiction.

77.9b. The ratio of τ and τ∗

The following theorem of Johnson [1974a] and Lovász [1975c] bounds τ(H) in terms
of τ∗(H) and the maximum degree of H. (The degree of a vertex v is the number
of edges containing v. The maximum degree of H is the maximum of the degrees of
its vertices.) The method is similar to that of Theorem 64.13.

Theorem 77.2. For any hypergraph H = (V, E) of maximum degree d one has:

(77.25) τ(H) ≤ (1 + ln d)τ∗(H).

Proof. Iteratively choose vertices v1, v2, . . ., where, for each i = 1, 2, . . . , vertex vi

is chosen such that it is contained in a maximum number of edges not intersecting
{v1, . . . , vi−1}. We stop if the set {v1, . . . , vk} of chosen vertices is a vertex cover.
So τ(H) ≤ k.

For each i = 1, . . . , k, let di be the number of edges containing vi but not
intersecting {v1, . . . , vi−1}. For each F ∈ E , define

(77.26) yF :=
1

di

,

where i is the smallest index with vi ∈ F . Then

(77.27)
∑

F∈E

yF =

k∑

i=1

di
1

di

= k,

and hence

(77.28) τ(H) ≤
∑

F∈E

yF .

We next show that (1+ln d)−1 ·y is a fractional matching. To this end, consider
any vertex v. Let F1, . . . , Ft be the edges of H containing v, in the order by which
they are intersected by v1, . . . , vk. Then for each j = 1, . . . , t, we have

(77.29) yFj
≤

1

t − j + 1
.
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For let i be the smallest index with vi ∈ Fj . So yFj
= 1/di. Moreover, di ≥ t−j +1,

since v is contained in at least t − j + 1 edges not intersected by {v1, . . . , vi−1}.
This proves (77.29).

Hence

(77.30)
t∑

j=1

yFj
≤

t∑

j=1

1

t − j + 1
=

t∑

j=1

1

j
≤ 1 + ln t ≤ 1 + ln d.

As this holds for each vertex v, (1 + ln d)−1 · y is a fractional matching.
This implies

(77.31) τ(H) ≤
∑

F∈E

yF ≤ (1 + ln d)ν∗(H) = (1 + ln d)τ∗(H),

as required.

(Related work can be found in Balas [1984].)
The proof shows that one can find a vertex cover of size less than (1 + ln d)τ∗,

by iteratively selecting a vertex of maximum degree and deleting it.
The proof method of Theorem 67.17 gives that for any hypergraph H = (V, E):

(77.32) τ∗(H) = lim
k→∞

k
√

τ(Hk),

where Hk is the hypergraph on V k with edges all sets E1×· · ·×Ek with E1, . . . , Ek ∈
E .

77.9c. Further notes

Füredi, Kahn, and Seymour [1993] showed that each hypergraph H = (V, E) has a
matching M ⊆ E such that

(77.33)
∑

F∈M

(|F | − 1 +
1

|F |
) ≥ ν∗(H).

In particular, for any hypergraph H:

(77.34) ν(H) ≥
rmax

r2
max − rmax + 1

ν∗(H),

where rmax := rmax(H) (the maximum edge size of H). (For uniform hypergraphs
H (that is, all edges of H have the same size), this was proved by Füredi [1981]
(confirming a conjecture of L. Lovász (cf. Füredi [1988])).)

Füredi, Kahn, and Seymour [1993] conjecture the following weighted extension
of (77.33):

(77.35) (?) For each hypergraph H = (V, E) and each w : E → R+, there exists
a matching M ⊆ E such that

∑

F∈M

(
|F | − 1 +

1

|F |

)
w(F ) ≥ ν∗

w(H),
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where ν∗
w(H) is the maximum weight wTy of a fractional matching y : E → R+.

Füredi, Kahn, and Seymour [1993] proved this conjecture for uniform hypergraphs,
and also for hypergraphs H with ν(H) = 1.

Related work on the relations between fractional and integer packing and cov-
ering was reported by Chvátal [1979], Dobson [1982], Fisher and Wolsey [1982],
Aharoni, Erdős, and Linial [1985,1988], Raghavan [1988], Feige [1996,1998], and
Slav́ık [1996,1997].

Lovász [1975b] showed that for each choice of ν, τ ∈ Z+ and r ∈ Q+ satisfying
1 ≤ ν ≤ r ≤ τ and r > 1, there exists a hypergraph H with ν(H) = ν, τ∗(H) = r,
and ν(H) = ν. Chung, Füredi, Garey, and Graham [1988] showed that for each
rational number r, there exists a 3-uniform hypergraph H with τ∗(H) ≡ r (mod
1). (For each 2-uniform hypergraph (= graph) H, τ∗(H) belongs to 1

2
Z (cf. Section

64.6).)
Saks [1986] studied the behaviour of the parameters τ and ν under taking unions

of edges and vertex covers.
The hypergraph analogue of matching augmenting paths in graphs was studied

by Edmonds [1962].
Seymour [1977a] gave a forbidden minor characterization of those clutters H

that come from an undirected graph G = (V, E) and s, t ∈ V , by taking as edges
of H all edge sets of s − t paths. (Related work can be found in Novick and Sebő
[1995].)

Determining the vertex cover number τ(H) of a hypergraph H is equivalent
to the set covering problem. In Section 82.6b we give further references for this
problem. Determining the matching number ν(H) of H is equivalent to the vertex
packing (equivalently, the set packing) problem. In Section 64.9e we gave further
references for this problem.

Connectivity augmentation for hypergraphs was studied by Bang-Jensen and
Jackson [1999], Benczúr [1999], Benczúr and Frank [1999], Cheng [1999], and Szigeti
[1999].

The problems of finding a maximum-size matching and a minimum-size vertex
cover in a hypergraph are equivalent to finding a maximum-size stable set in a
graph and a minimum-size edge cover in a hypergraph. For references to general
methods for these problems, we refer to Sections 64.9e and 82.6b, respectively.

Extensions of Gallai’s theorem (Theorem 19.1) to hypergraphs were given by
Tuza [1991], and generalizations of Kőnig’s and Hall’s theorems to hypergraphs by
Aharoni and Haxell [2000] and Aharoni, Berger, and Ziv [2002].

Surveys on packing and covering in hypergraphs were given by Berge [1973b,
1973c,1978a,1979b,1989a], Schrijver [1979b], Füredi [1988], and Cornuéjols [2001].



Chapter 78

Ideal hypergraphs

Ideal hypergraphs are those hypergraphs for which the convex hull of the
vertex covers is given by the edge inequalities. They therefore form a class
of hypergraphs where polyhedral methods apply. Since the relations of
blocking hypergraphs and of blocking polyhedra coincide in this case, the
class of ideal hypergraphs is closed under taking blockers.
The class of ideal hypergraphs is also closed under taking minors. A charac-
terization of ideal hypergraphs in terms of forbidden minors is not known,
but a theorem of Lehman gives powerful properties of minimally nonideal
hypergraphs.

78.1. Ideal hypergraphs

For any hypergraph H = (V, E), let PH be the set of all fractional vertex
covers; that is, PH is the solution set of

(78.1) (i) xv ≥ 0 for v ∈ V ,
(ii) x(F ) ≥ 1 for F ∈ E .

A hypergraph H = (V, E) is called ideal if PH is integer4. Obviously, H is
ideal ⇐⇒ Hmin is ideal ⇐⇒ H↑ is ideal.

Note that each integer vertex of PH is a 0,1 vector, and hence the incidence
vector of some vertex cover of H. So H is ideal if and only if (78.1) determines
the up hull of the incidence vectors of the vertex covers of H. By Theorem
5.19, H is ideal if and only if the convex hull of the incidence vectors of the
vertex covers of H is determined by

(78.2) (i) 0 ≤ xv ≤ 1 for v ∈ V ,
(ii) x(F ) ≥ 1 for F ∈ E .

By the theory of blocking polyhedra (cf. Theorem 5.8), H is ideal if and
only if each vertex of the polyhedron determined by

4 Alternatively, such hypergraphs are called Fulkersonian, or said to satisfy the length-

width inequality or the width-length inequality, or to have the max-flow min-cut property,
the Q+-max-flow min-cut property, shortly the MFMC property or the Q+-MFMC

property. Sakarovitch [1975,1976] used the term quasi-balanced.
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(78.3) (i) xv ≥ 0 for v ∈ V ,
(ii) x(B) ≥ 1 for B ∈ b(H)

is integer — that is, is the incidence vector of an edge of H. This gives the
following important theorem of Fulkerson [1970b,1971a]:

Theorem 78.1. A hypergraph H is ideal ⇐⇒ its blocker b(H) is ideal.

Proof. See above.

The class of ideal hypergraphs is also closed under taking minors (Lehman
[1965,1979]):

Theorem 78.2. Any minor of an ideal hypergraph is ideal again.

Proof. Let H = (V, E) be ideal and let v ∈ V . Choose x ∈ PH/v. Let x̃ ∈ RV

be defined by x̃u := xu for u ∈ V \ {v} and x̃v := 0. Then x̃ ∈ PH . Hence x̃
is a convex combination of integer vectors z in PH . Each of these vectors z
satisfies zv = 0. Hence we obtain x as a convex combination of integer vectors
in PH/v.

Next choose x ∈ PH\v. Now let x̃ ∈ RV be defined by x̃u := xu for
u ∈ V \ {v} and x̃v := 1. Then x̃ ∈ PH . Hence x̃ is a convex combination of
integer vectors z in PH . Now deleting the vth component from any such z, we
obtain an integer vector in PH\v. Hence we obtain x as a convex combination
of integer vectors in PH\v.

78.2. Characterizations of ideal hypergraphs

We will give several characterizations of ideal hypergraphs — albeit not by
forbidden minors, since such a characterization is not known.

In the present section we discuss some equivalent properties each char-
acterizing ideality. In Section 78.4, we show Lehman’s theorem, which gives
properties of minimally nonideal hypergraphs. From this, some further char-
acterizations of ideality will be derived.

The definition of ideal hypergraph can be stated equivalently as:

(78.4) H is ideal if and only if for each w : V → R+, the minimum of
wTx over (78.1) is attained by an integer vector x.

As we can restrict ourselves to rational-valued w, and hence to integer-valued
w, we have equivalently:

(78.5) H is ideal if and only if for each w : V → Z+, the minimum of
wTx over (78.1) is attained by an integer vector x.

We can formulate this in terms of the ‘parallelization’ Hw (defined in Section
77.3). To this end, it is good to observe that, for any ‘weight’ function w :
V → Z+:
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(78.6) τ(Hw) = the minimum weight of a vertex cover of H

and

(78.7) ν(Hw) = the maximum number t of edges E1, . . . , Et of H such
that each v ∈ V is in at most w(v) of the Ei.

The values of τ∗(Hw) and ν∗(Hw) can be described by dual linear programs:

(78.8) τ∗(Hw) = min{wTx | x ∈ RV
+, Mx ≥ 1}

= min{yT1 | y ∈ RE
+, yTM ≤ wT} = ν∗(Hw),

where M is the E × V incidence matrix of H. So we have:

(78.9) H is ideal if and only if τ∗(Hw) = τ(Hw) for each w : V → Z+.

The following further characterizations were found5:

Theorem 78.3. For any hypergraph H = (V, E) the following are equivalent:

(78.10) (i) H is ideal, that is τ∗(H ′) = τ(H ′) for each parallelization H ′

of H;
(ii) τ∗(H ′) is an integer for each parallelization H ′ of H;
(iii) b(H) is ideal;
(iv) τ∗(b(H)′) is an integer for each parallelization b(H)′ of b(H);
(v) PH and Pb(H) form a pair of blocking polyhedra;

(vi) τ(Hw)τ(b(H)l) ≤ wTl for all w, l : V → Z+.

Proof. The implications (i)⇒(ii) and (iii)⇒(iv) are trivial. The equivalences
(i) ⇐⇒ (iii) ⇐⇒ (v) were shown above.

The implication (ii)⇒(i) is shown as follows6. We must show that (ii)
implies that each vertex x∗ of the polyhedron PH defined by (78.1) is integer.
Suppose not. Choose v ∈ V with x∗

v not integer. As x∗ is a vertex, there is
a weight function w : V → R+ such that the minimum of wTx over PH is
attained uniquely by x∗. By scaling, we can assume that w is integer and
that for w̃ := w + χv, also the minimum of w̃Tx over PH is attained at x∗.
So wTx∗ and w̃Tx∗ are integers (by (ii)), and hence x∗

v = w̃Tx∗ − wTx∗ is an
integer, contradicting our assumption.

This proves (ii)⇒(i) and similarly (iv)⇒(iii). So conditions (i), (ii), (iii),
(iv), and (v) are equivalent. We finally consider condition (vi).

Necessity of (vi) can be seen as follows. Choose w, l : V → Z+. Let
α := τ(Hw) = τ∗(Hw) and β := τ(b(H)l) = τ∗(b(H)l). So w(B) ≥ α for each
edge B of b(H) (= minimal vertex cover of H), and hence α−1 · w(B) ≥ 1

5 (i)⇔(vi)⇔(iii) was shown by Lehman [1965,1979], (i)⇔(v) by Fulkerson [1970b,1971a],
and (i)⇔(ii) and (iii)⇔(iv) by Lovász [1977b].

Lehman called condition (i) the max-flow min-cut property, and condition (vi) the
width-length inequality (motivated by work of Moore and Shannon [1956] who proved
this inequality for the width (minimum cut-capacity) and length (shortest path) of a
network).

6 It also follows directly from general polyhedral theory (Theorem 5.18).
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for each edge of b(H). So α−1 · w ∈ Pb(H). Similarly, β−1 · l belongs to PH .

As Pb(H) is the blocking polyhedron of PH , we have (α−1 · w)T(β−1 · l) ≥ 1,

that is wTl ≥ αβ, as required.
To see sufficiency of (vi), suppose that PH has a noninteger vertex x∗.

Then there is a hyperplane separating x∗ from the integer vectors in PH . So
there is a y ∈ QV

+ with yTx∗ < 1 while yTx ≥ 1 for each integer vector x in
PH . Let α > 0 and β > 0 be such that w := α · y and l := β · x∗ are integer
vectors. As yTx ≥ 1 for each integer vector x in PH , we have wTx ≥ α for
each integer vector x in PH , and so w(B) ≥ α for each vertex cover B of
H; that is τ(Hw) ≥ α. Since x∗ belongs to PH , we have that x∗(F ) ≥ 1 for
each F ∈ E , and hence l(F ) ≥ β for each F ∈ E ; that is τ(b(H)l) ≥ β. This
implies

(78.11) τ(Hw)τ(b(H)l) ≥ αβ > αβ · yTx∗ = wTl,

contradicting (vi).

78.3. Minimally nonideal hypergraphs

A hypergraph H = (V, E) is called minimally nonideal if H is nonideal and
each proper minor of H is ideal. In particular, H is a clutter.

So being ideal can be characterized by not having a minimally nonideal
hypergraph as a minor. Since the class of ideal hypergraphs is closed un-
der taking the blocker, the blocker of any minimally nonideal hypergraph is
minimally nonideal again.

There turn out to be infinitely many minimally nonideal hypergraphs.
Known examples are7:

(78.12) (i) for each n ≥ 3: Jn := the hypergraph with vertex set {1, . . . , n}
and edges {2, . . . , n}, {1, 2}, . . . , {1, n};

(ii) the odd circuits C2k+1 and their blockers b(C2k+1) (k ≥ 1);
(iii) F7 := the hypergraph with vertex set the points of the projec-

tive plane of order 2, and edges all lines (the Fano hypergraph)8;
(iv) O(K5) := the hypergraph with vertex set EK5 and edges all

odd circuits of K5, and its blocker b(O(K5)) (having edges the
complements of the nonempty cuts of K5);

(v) the hypergraph with vertex set EK5 and edges all triangles of
K5, and its blocker;

7 Examples (i), (ii), (iii) were given by Lehman [1965,1979], example (iv) by Seymour
[1977b], examples (v) and (vi) by Cornuéjols and Novick [1994], example (vii) by P.D.
Seymour (cf. Ding [1993]), C3

5
and C4

7
by Lehman [1965,1979] (they are the blockers of

the circuits C5 and C7), C3
8

by Cornuéjols and Novick [1994] and Ding [1993], C5
9

and
C6
11

by Qi [1989], and the other Ck
n by Cornuéjols and Novick [1994].

8 Equivalently, V F7 = {1, . . . , 7} and EF7 = {{i, i + 1, i + 3} | i = 1, . . . , 7}, taking
addition mod 7.
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(vi) the hypergraph with vertex set EK5 and edges the comple-
ments of maximum-size cuts, and its blocker;

(vii) the hypergraph D8 with vertex set {1, . . . , 8} and edges {1, 2,
6}, {2, 3, 5}, {3, 4, 8}, {4, 5, 7}, {2, 5, 6}, {1, 6, 7}, {4, 7, 8}, and
{1, 3, 8}, and its blocker b(D8);

(viii) the hypergraphs C3
5 , C3

8 , C3
11, C3

14, C3
17, C4

7 , C4
11, C5

9 , C6
11, C7

13

(where Ck
n has vertex set V Cn and edges all consecutive k-

tuples from V Cn), and their blockers.

Note that b(F7) = F7 and b(Jn) = Jn for each n. The hypergraphs given
in (viii) are all the minimally nonideal hypergraphs of the form Ck

n with
k ≥ 3. This was proved by Cornuéjols and Novick [1994], who also gave
several thousands of other minimally nonideal hypergraphs. A ‘catalogue’ of
minimally nonideal hypergraphs was given by Lütolf and Margot [1998].

Seymour [1981a]9 conjectures that O(K5), b(O(K5)), and F7 are the only
binary minimally nonideal hypergraphs (see Chapter 80).

We saw in Section 75.5 that O(K5) is the unique minimally nonideal hy-
pergraph among the hypergraphs obtained from a signed graph G = (V, E, Σ)
by taking EG as vertex set and the circuits C in G with |C ∩Σ| odd as edges.

To see that F7 is nonideal, the vector x : V F7 → R+ defined by xv := 1
3

for each v ∈ V F7, is a fractional vertex cover of size 7
3 , but F7 has no vertex

cover of size ≤ 7
3 . Moreover, F7 is minimally nonideal: if we contract any

vertex v ∈ V F7, we obtain the hypergraph Q6 isomorphic to the hypergraph
O(K4) (the hypergraph with vertex set EK4 and edges all triangles). As this
is a proper minor of O(K5), it is ideal. Since b(F7) = F7, also deleting any
vertex of F7 results in an ideal hypergraph.

78.4. Properties of minimally nonideal hypergraphs:

Lehman’s theorem

A full list of minimally nonideal hypergraphs is not known, but the following
theorems of Lehman [1990] show that minimally nonideal hypergraphs dif-
ferent from Jn (n ≥ 3) are remarkably regular (shorter proofs were given by
Padberg [1993] and Seymour [1990b] — we follow the latter):

Theorem 78.4. Let H = (V, E) be a minimally nonideal hypergraph with
H �= Jn for n := |V |. Then PH has a unique noninteger vertex, namely
r−1 ·1, where r := rmin(H). Moreover, H has precisely n edges of size r, and
each vertex of H is contained in precisely r of them.

Proof. Let x be a noninteger vertex of PH . Then

(78.13) 0 < xv < 1 for each v ∈ V .

9 Seymour [1981a] said that this conjecture was presented in Seymour [1977b], but the
latter paper presents the three hypergraphs only as minimally nonideal hypergraphs.
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For suppose first that xv = 0. Then x|V \ {v} is a noninteger vertex of PH/v,
contradicting the minimality of H. Similarly, if xv = 1, then x|V \ {v} is
a noninteger vertex of PH\v, again contradicting the minimality of H. This
proves (78.13).

Let F be the collection of sets F ∈ E having equality for x in (78.1)(ii).
As x is a vertex, F has dimension n. (Here and below, the dimension of
a collection of subsets of V , is the dimension of the collection of incidence
vectors of these subsets.) Let Fv and F \ v be the collections of sets in F
containing v and not containing v, respectively. Then

(78.14) (i) For each F ∈ F and v ∈ V \ F : dim(F \ v) ≤ n − |F |;
(ii) for each F ∈ F and v ∈ F : dim(Fv) ≤ n − |F | + 1.

To see (i), choose F ∈ F and v ∈ V \ F . Since H \ v is ideal, x|V \ {v} is a
convex combination of incidence vectors of vertex covers of H \ v. For each
u ∈ F , since xu > 0, there is a vertex cover Bu of H\v having positive scalar in
this convex decomposition and with u ∈ Bu. So Bu ∩F = {u} (as x(F ) = 1).
Hence the incidence vectors χBu for u ∈ F are linearly independent. This
implies that the vectors χBu − x for u ∈ F have dimension at least |F | − 1.
As each of these vectors is orthogonal to χF ′

for each F ′ ∈ F \ v, we have
dim(F \ v) ≤ (n − 1) − (|F | − 1) = n − |F |, proving (78.14)(i).

We prove (ii) similarly. Choose F ∈ F and v ∈ F . Define z := (1−xv)−1 ·
x|V \ {v}. Then z ∈ PH/v, since x(F ′ \ {v}) ≥ 1 − xv for each F ′ ∈ F .
Hence, since H/v is ideal, z is a convex combination of incidence vectors
of vertex covers of H/v. For each u ∈ F \ {v}, since zu > 0, there is a
vertex cover Bu of H/v having positive scalar in this convex decomposition
and with u ∈ Bu. So Bu ∩ F = {u} (since z(F \ {v}) = 1). Hence the
incidence vectors χBu for u ∈ F \ {v} are linearly independent. This implies
that the vectors χBu − x for u ∈ F have affine dimension at least |F | − 1.
As each of these vectors is orthogonal to χF ′

for each F ′ ∈ Fv, we have
dim(Fv) ≤ (n − 1) − (|F \ {v}| − 1) = n − |F | + 1, proving (78.14)(ii).

Now (78.14)(i) implies:

(78.15) |F| = n and |F \ v| = n − |F | for each v ∈ V and F ∈ F \ v.

Indeed, let F ′ be a subcollection of F of dimension and size n. By (78.14)(i),
|F ′ \ v| ≤ n − |F | for each v ∈ V and each F ∈ F \ v. Let U be the set of
v ∈ V not covered by all sets in F ′. Then:

(78.16) n =
∑

F∈F ′

1 =
∑

F∈F ′

∑

v∈V \F

1

n − |F |
=

∑

v∈U

∑

F∈F ′\v

1

n − |F |

≤
∑

v∈U

∑

F∈F ′\v

1

|F ′ \ v|
=

∑

v∈U

1 = |U | ≤ n.

So we have equality throughout; that is, U = V and |F ′ \ v| = n − |F | for
each v ∈ V and each F ∈ F ′ \ v.
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We deduce that F ′ = F . For suppose that there exists an F ∈ F \ F ′.
Then there is an F ′ ∈ F ′ such that F ′′ := (F ′ \ {F ′}) ∪ {F} has dimension
n. Choose v ∈ F \ F ′ and F ′′ ∈ F ′′ \ v. So F ′′ �= F and hence F ′′ ∈ F ′ \ v.
Hence |F ′′ \ v| = n − |F ′′| = |F ′ \ v|, contradicting the fact that v ∈ F \ F ′.
Concluding, F ′ = F and we have (78.15).

(78.15) and (78.14)(ii) imply:

(78.17) |F | + |F ′| ≤ n + 1 for any two distinct F, F ′ ∈ F .

For choose v ∈ F ′ \ F . Then

(78.18) n = |F| = |F \v|+|Fv| ≤ n−|F |+n−|F ′|+1 = 2n−|F |−|F ′|+1,

implying (78.17).
Let G be the graph on V where distinct u, v ∈ V are adjacent if there

is an F ∈ F with u, v �∈ F . So by (78.15), |F \ u| = |F \ v| for adjacent
u, v. Hence, if G is connected, then |F \ v| is independent of v, and hence by
(78.15), all sets in F have the same size, p say. Hence x = p−1 · 1 and p ≥ r
(as r is the minimum size of the sets in E). On the other hand, the inequality
x(E) ≥ 1 for any minimum-size E ∈ E , gives that r ≥ p. So p = r, and the
theorem follows.

So we can assume that G is not connected. Then there exists a partition
of V into nonempty sets V1, V2 with V1 ⊆ F or V2 ⊆ F for each F ∈ F .
Let Fi be the collection of sets F ∈ F with Vi ⊆ F (for i = 1, 2). So F1, F2

partition F . By (78.17) we can assume that F1 ⊆ {V1} (since |V1|+ |V2| = n).
Then (78.17) gives moreover that F2 ⊆ {V2 ∪ {v} | v ∈ V1} (as |F| = n ≥ 3,
so F �= {V1, V2}). Since |F1| + |F2| = n, it follows that |V1| = n − 1, and
(V, F) = Jn. Since any subset of V is contained in or contains one of the sets
in F , we know that H = Jn, a contradiction.

This theorem implies:

Corollary 78.4a. Let H be a minimally nonideal hypergraph. Define n :=
|V H|, r := rmax(H), and s := τ(H). Then τ(H) − 1 < τ∗(H) < τ(H). If
moreover H �= Jn, then rs > n and τ∗(H) = n/r.

Proof. First assume that H = Jn. Then τ(H) = 2 and τ∗(H) = (2n −
3)/(n − 1) = 2 − 1

n−1 as one easily checks. So we can assume that H �= Jn.

Consider a pair x ∈ PH and y ∈ Pb(H) minimizing xTy. So xTy < 1 (since
PH and Pb(H) form no blocking pair of polyhedra). We can assume that x and
y are vertices of PH and Pb(H) respectively. Moreover, x and y are noninteger,
for if, say, x is integer, it is the incidence vector of a vertex cover of H, and
hence xTy ≥ 1, since y ∈ Pb(H).

As H and b(H) are minimally nonideal, we know by Theorem 78.4 that
x = r−1 · 1 and y = s−1 · 1. Then xTy < 1 implies rs > n.

Let z minimize 1T z over z ∈ PH , where z is a vertex of PH . So z is a
minimum-size vertex cover, and hence 1Tz = τ∗(H). If z is integer, then
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1Tz ≥ s > n/r. If z is noninteger, then z = r−1 · 1 by Theorem 78.4, and
hence 1Tz = n/r. So τ∗(H) = n/r.

As rs > n, we have n/r < s and so τ∗(H) < τ(H). Moreover, for any
v ∈ V H we have τ∗(H \ v) ≤ (n − 1)/r, since r−1 · 1V \{v} is a fractional
vertex cover of H. Hence

(78.19) τ∗(H) =
n

r
>

n − 1

r
≥ τ∗(H \ v) = τ(H \ v) ≥ τ(H) − 1,

as required.

Corollary 78.4a implies a number of further characterizations of ideal hy-
pergraphs, partly sharpening Theorem 78.3 (Lehman [1990], Padberg [1993],
Seymour [1990b]; the equivalence (i)⇔(iv) answers a question of P.D. Sey-
mour (personal communication 1976)):

Corollary 78.4b. For any hypergraph H = (V, E), the following are equiva-
lent:

(78.20) (i) H is ideal, that is, τ(Hw) = τ∗(Hw) for each w : V → Z+;
(ii) H ′ �= Jn (for all n ≥ 3) and τ(H ′)rmin(H ′) ≤ |V H ′|, for each

minor H ′ of H;
(iii) τ∗(H ′) ∈ Z for each minor H ′ of H;
(iv) τ(H ′) = τ∗(H ′) for each minor H ′ of H;
(v) τ(Hw) = τ∗(Hw) for each w : V → {0, 1, |V |}.

Proof. Condition (i) implies each of (ii)-(v), since ideality is closed under
taking minors and parallelization. The implication (iv)⇒(iii) is direct. The
implications (ii)⇒(i) and (iii)⇒(i) follow from Corollary 78.4a: if H is not
ideal, it has a minor H ′ that is minimally nonideal; then Corollary 78.4a
contradicts (ii) and (iii). So it suffices to show (v)⇒(iv).

Let (v) hold. Let H ′ be a minor obtained from H by contracting the
vertices in a set U and deleting the vertices in a set W . Define w(v) := 0 if
v ∈ W , w(v) := |V | if v ∈ U , and w(v) := 1 otherwise. We assume that τ(H ′)
is finite (so ∅ ∈ EH ′). We show

(78.21) τ(H ′) ≤ τ(Hw) = τ∗(Hw) ≤ τ∗(H ′),

which implies (iv).
We first show the first inequality in (78.21). If τ(H ′) ≥ |V |, then τ(H ′) ≥

|V H ′|, and hence each singleton is an edge of H ′. So τ(H ′) = |V H ′|, and
hence τ(Hw) ≥ |V H ′| = τ(H ′). So we can assume that τ(H ′) < |V |. Then
τ(H ′) ≤ τ(Hw), since otherwise τ(Hw) < |V |, and hence H has a vertex cover
B contained in V \ U with |B \ W | = τ(Hw). So τ(H ′) ≤ |B \ W | = τ(Hw).
This proves the first inequality in (78.21).

To see the second inequality, let x ∈ RV \(U∪W ) be a minimum-size frac-
tional vertex cover of H ′. We can extend x to a fractional vertex cover x̃ ∈ RV

of H by defining x̃v := 0 if v ∈ U and x̃v := 1 if v ∈ W . Then
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(78.22) τ∗(Hw) ≤ wTx̃ = 1Tx = τ∗(H ′).

Hence τ∗(Hw) ≤ τ∗(H ′), proving (78.21).

With Theorem 78.4 some more properties of minimally nonideal hyper-
graphs can be derived (Lehman [1990]), where J denotes an all-one matrix:

Theorem 78.5. Let H = (V, E) be a minimally nonideal hypergraph with
H �= Jn where n := |V |. Let r := rmin(H) and s = τ(H). Let F and C be the
collections of minimum-size edges of H and b(H) respectively. Let M and N
be the F ×V and C ×V incidence matrices of F and C respectively. Then the
rows of M can be ordered such that

(78.23) MNT = J + (rs − n)I = NTM.

Proof. For each B ∈ C we have:

(78.24)
∑

F∈F

|F ∩ B| = rs,

since |B| = s and since each v ∈ V is in exactly r sets in F (by Theorem
78.4).

As |F ∩ B| ≥ 1 for each F ∈ F , (78.24) gives:

(78.25) |F ∩ B| ≤ rs − n + 1 for each F ∈ F , and |F ∩ B| ≥ 2 for at least
one F ∈ F .

Choose for each B ∈ C a set FB ∈ F with |B ∩ FB | ≥ 2. Then

(78.26) for each v ∈ V there are at least rs − n + 1 sets B ∈ C with
v ∈ B ∩ FB .

To see this, consider H \ v and the vector x := r−1 · 1 in RV \{v}. Then x
satisfies (78.1) for H \ v. As H \ v is ideal, there exist distinct B1, . . . , Bm ∈
b(H) and λ1, . . . , λm > 0 with

(78.27) x ≥
m∑

i=1

λiχ
Bi\{v} and

m∑

i=1

λi = 1.

We can assume that v ∈ Bi ∈ C holds for i = 1, . . . , k, and v �∈ Bi or Bi �∈ C
for i > k. So |Bi \ {v}| ≥ s for i > k. Then (78.27) implies

(78.28)
n − 1

r
= xT1 ≥

m∑

i=1

λi|Bi \ {v}| ≥
k∑

i=1

λi(s − 1) +
m∑

i=k+1

λis

= s −
k∑

i=1

λi ≥ s −
k

r
,

since λi ≤ 1/r for each i, by (78.27). (78.28) implies k ≥ rs − n + 1. Now
for each i ≤ k, we have v ∈ FBi

, since otherwise x(FBi
) = 1, implying

|Bi ∩ FBi
| = 1 (by (78.27)), a contradiction. So we have (78.26).

This implies
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(78.29) n(rs − n + 1) ≥
∑

B∈C

|B ∩ FB |

=
∑

v∈V

(number of B ∈ C with v ∈ B ∩ FB) ≥ n(rs − n + 1),

and hence we have equality throughout. So for each B ∈ C we have |B∩FB | =
rs − n + 1 and |B ∩ F | = 1 for each F ∈ F with F �= FB . By symmetry we
have, for each F ∈ F , that |B ∩ F | = 1 for all but one B ∈ C, which has
|B∩F | = rs−n+1. So the set of pairs (B, F ) with |B∩F | = rs−n+1 forms
a perfect matching covering C and F . Hence we can reorder the rows of M
such that MNT = J + (rs − n)I. In particular, M and N are nonsingular.

This implies

(78.30) MNTMNT = (J + (rs − n)I)(J + (rs − n)I)
= (n + 2(rs − n))J + (rs − n)2I = rsJ + (rs − n)(J + (rs − n)I)
= MJNT + (rs − n)MNT = M(J + (rs − n)I)NT.

So NTM = J + (rs − n)I (as M and N are nonsingular).

Notes. Seymour [1990b] asked the following related questions. Suppose that H =
(V, E) is a hypergraph without Jn minor (n ≥ 3). Let l, w : V → Z+ be such that

(78.31) τ(Hw) · τ(b(H)l) > lTw.

Is there a minor H ′ of H and l′, w′ : V H ′ → {0, 1} such that

(78.32) τ((H ′)w′

) · τ(b(H ′)l′) > l′
T

w′

and such that τ((H ′)w′

) ≤ τ(Hw) and τ(b(H ′)l′) ≤ τ(b(H)l)?
A second question of Seymour is: Let H = (V, E) be a nonideal hypergraph. Is

the minimum of τ(H ′) over all parallelizations and minors H ′ of H with τ∗(H ′) <
τ(H ′) attained by a minor of H?

78.4a. Application of Lehman’s theorem: Guenin’s theorem

Lehman’s theorem can be used as a tool in proving the characterization of Guenin
[1998a,2001a] of weakly bipartite graphs (Corollary 75.4a). We follow the derivation
as given in Schrijver [2002a].

Recall that a signed graph G = (V, E, Σ) is called weakly bipartite if each vertex
of the polyhedron (in RE) determined by:

(78.33) (i) xe ≥ 0 for each edge e,
(ii) x(C) ≥ 1 for each odd circuit C,

is integer, that is, the incidence vector of an odd circuit cover. Equivalently, if the
hypergraph with vertex set E and edge set all odd circuits of G, is ideal.

Again, let odd-K5 be the signed graph (V K5, EK5, EK5). Then:

Theorem 78.6 (Guenin’s theorem). A signed graph is weakly bipartite if and only

if it has no odd-K5 minor.
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Proof. Necessity follows from the fact that weak bipartition is closed under taking
minors and that odd-K5 is not weakly bipartite.

To see sufficiency, let G = (V, E, Σ) be a minimally non-weakly bipartite signed
graph (minimal under taking minors). We show that G = (V, E, Σ) contains an
odd-K5 minor. Note that the operations of deletion and contraction in the signed
graph G correspond to deletion and contraction in the hypergraph defined above.

Let n := |E|, let r be the minimum size of an odd circuit, and let s be the
minimum size of an odd circuit cover. Let M (N , respectively) be the matrix whose
rows are the incidence vectors of the minimum-size odd circuits (minimum-size odd
circuit covers, respectively). By Lehman’s theorem (Theorem 78.5), we know that
both M and N have precisely n rows, that rs > n, and that the rows of M can be
ordered such that

(78.34) MNT = J + (rs − n)I = NTM.

This implies that we can index the minimum-size odd circuits as C1, . . . , Cn and
the minimum-size odd circuit covers as B1, . . . , Bn in such a way that for all i, j =
1, . . . , n:

(78.35) |Ci ∩ Bj | = 1 if i �= j and |Ci ∩ Bj | = q if i = j,

where q := rs − n + 1. Since q = |C1 ∩ B1| is odd and ≥ 2 (as rs > n), we have
q ≥ 3.

The fact that NTM = J + (rs − n)I is equivalent to:

(78.36) (i) for each e ∈ E there are precisely q indices i with e ∈ Ci ∩ Bi,

(ii) for all distinct e, f ∈ E there is precisely one index i with e ∈ Bi

and f ∈ Ci.

Then for all distinct i, j = 1, . . . , n:

(78.37) the only odd circuits contained in Ci ∪Cj are Ci and Cj ; the only odd
circuit covers contained in Bi ∪ Bj are Bi and Bj .

For let C be an odd circuit contained in Ci ∪ Cj . Then Ci△Cj△C contains an odd
circuit, C′ say. This implies that C ∪ C′ ⊆ Ci ∪ Cj and C ∩ C′ ⊆ Ci ∩ Cj (for if
e ∈ C ∩ C′, then e �∈ Ci△Cj). Hence |C| + |C′| ≤ |Ci| + |Cj |. So also C and C′

are minimum-size odd circuits and C ∪ C′ = Ci ∪ Cj . As |Ci ∩ Bi| ≥ 3 we have
|C ∩ Bi| ≥ 2 or |C′ ∩ Bi| ≥ 2. Therefore, C or C′ is equal to Ci, and the other is
equal to Cj . The proof for odd circuit covers is analogous. This shows (78.37).

We now construct an odd-K5 minor. Fix an edge e ∈ E, with ends v1 and v2,
say. By (78.36)(i) we can assume that e is contained in Ci ∩ Bi for i = 1, . . . , q.
Then, by (78.36):

(78.38) any two sets among C1 \ {e}, . . . , Cq \ {e}, B1 \ {e}, . . . , Bq \ {e} are
disjoint, except that |(Ci \ {e}) ∩ (Bi \ {e})| = q − 1 for i = 1, . . . , q.

To see this, choose distinct i, j = 1, . . . , q. Then Ci ∩ Bj = {e}, as |Ci ∩ Bj | = 1.
Moreover, Ci ∩ Cj = {e}, for suppose f ∈ Ci ∩ Cj with f �= e. Then f ∈ Ci ∩ Cj

and e ∈ Bi ∩ Bj , contradicting (78.36)(ii). One similarly shows that Bi ∩ Bj = {e}.
This proves (78.38).

(78.37) implies:
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(78.39) V Ci ∩ V Cj = {v1, v2} for distinct i, j = 1, . . . , q.

Otherwise (Ci ∪ Cj) \ {e} contains a path P from v1 to v2 different from Ci \ {e}
and Cj \ {e}. By (78.37), (Ci ∪ Cj) \ {e} contains no odd circuit. Hence P and
Ci \ {e} have the same parity (with respect to Σ), and so P ∪ {e} is an odd circuit
in Ci ∪ Cj , contradicting (78.37). This proves (78.39).

Since Bi△Σ is a cut for each i = 1, 2, 3, there exist U1, U2, U3 ⊆ V such that

(78.40) δ(Ui) = Bj△Bk = (Bj ∪ Bk) \ {e}

for all distinct i, j, k ∈ {1, 2, 3}. As e �∈ Bj△Bk, we can assume v1, v2 �∈ Ui. Also

(78.41) Ui induces a connected subgraph of G.

If not, there is a K ⊆ Ui such that δ(K) is a nonempty proper subset of δ(Ui).
Then Bj△δ(K) is an odd circuit cover contained in Bj ∪ Bk, distinct from Bj and
Bk, contradicting (78.37).

By (78.40), δ(U1△U2△U3) = δ(U1)△δ(U2)△δ(U3) = ∅, and hence U1△U2△U3

=∅ (as G is connected). So there exist pairwise disjoint sets V1, V2, V3 of vertices
with Ui = Vj ∪ Vk for all distinct i, j, k ∈ {1, 2, 3}. Define V0 := V \ (V1 ∪ V2 ∪ V3).

(78.38) and (78.40) imply that δ(Uj)∩δ(Uk) = Bi \{e} for distinct i, j, k. Hence
Bi \ {e} is the set of edges connecting either Vi and V0, or Vj and Vk. So any edge
not in (B1 ∪ B2 ∪ B3) \ {e} is spanned by one of the sets V0, V1, V2, V3.

Let {i, j, k} = {1, 2, 3}. Since Ci contains no edge in (Bj ∪ Bk) \ {e} = δ(Ui),
the set V Ci is disjoint from Ui = Vj ∪ Vk. As |Ci ∩ Bi| ≥ 3 we know that V Ci

intersects Vi.
We can reset Σ to an equivalent signing

(78.42) Σ := B1△B2△B3△δ(V0).

So Σ consists of e and all edges connecting distinct sets among V1, V2, V3. For each
i = 1, 2, 3 and k = 1, 2, let ei,k be the first edge along the path Ci \{e} that belongs
to Bi, when starting from vertex vk. So both ei,1 and ei,2 connect V0 and Vi.

Let H be the minor of G obtained by deleting all edges except those in C1 ∪
C2 ∪ C3 and those spanned by V1 ∪ V2 ∪ V3, and contracting all remaining edges
that are not in Σ ∪ {ei,k | i = 1, 2, 3; k = 1, 2}.

H can be described as follows. H contains the edge e, connecting the vertices
v1 and v2 to which v1 and v2 are contracted (we have v1 �= v2 by (78.39)). For each
i = 1, 2, 3, the part of the path Ci \ {e} that is between ei,1 and ei,2 belongs to one
contracted vertex of H, call it zi. This vertex zi is adjacent to v1 and v2 by the
edges ei,1 and ei,2. For each i = 1, 2, 3, Vi has been contracted to zi and a number
of other vertices, together forming the stable set Si (say) in H. Any further edge
of H connects Si and Sj for some distinct i, j ∈ {1, 2, 3}.

By (78.41), the subgraph of H induced by Si ∪ Sj is connected (for all distinct
i, j = 1, 2, 3). So by Lemma 75.4α, the graph H − v2 has an odd K4-subdivision
as subgraph, containing the edges v1z1, v1z2, and v1z3. As v2 is adjacent to v1, z1,
z2, and z3, it follows that H has an odd-K5 minor.

78.4b. Ideality is in co-NP

Seymour [1990b] showed (upon a suggestion of J. Edmonds) that Lehman’s theorem
(Theorem 78.5) implies that the question ‘Given a hypergraph, is it ideal?’ belongs
to co-NP.
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In this, we should be careful in the way the hypergraph (V, E) is given. In most
classes of examples, the number of edges is exponential in the number of vertices,
and we have no full list of all edges at hand. We can however assume that we have
an oracle telling us, for any subset U of V , if U contains an edge of H; that is, if
U ∈ H↑. This gives us a polynomial-time test if a subset belongs to Hmin, and also
a polynomial-time test if a subset B is a vertex cover (since B is a vertex cover if
and only if V \ B �∈ H↑). So if we have such an oracle for H, we can derive one for
its blocker b(H), and conversely.

Moreover, for any v ∈ V , an oracle for H gives oracles for H/v and H\v. Indeed,
for any U ⊆ V \ {v}: U ∈ (H/v)↑ ⇐⇒ U ∪ {v} ∈ H↑ and U ∈ (H \ v)↑ ⇐⇒ U ∈
H↑.

Now to certify that a hypergraph is nonideal, it is sufficient and possible to
specify either a minor H with H = Jn for n := |V H|, or a minor H together with
numbers r, s, edges F1, . . . , Fn, and vertex covers B1, . . . , Bn (where n := |V H|) of
H such that

(78.43) (i) rs > n,
(ii) |Fi| = r, |Bi| = s, and |Bi ∩ Fi| = rs − n + 1 for each i = 1, . . . , n;
(iii) each v ∈ V H is in precisely r of the Fi and in precisely s of the Bi.

This is possible by Theorem 65.2. If H = Jn, this can be tested easily with the
oracle. If H �= Jn, then the sets Fi (Bi respectively) can be taken to be minimal
edges of H (b(H) respectively); the oracle can tell us that they belong to H (b(H)
respectively).

It is also sufficient to certify nonideality: (78.43) implies that τ(H) ≥ s: a vertex
cover B of H intersects at most r|B| of the Fi, and hence r|B| ≥ n, implying |B| ≥ s
(since otherwise (s − 1)r ≥ n and hence rs − n + 1 > r, contradicting (78.43)(ii)).
Similarly, (78.43) implies that rmin(H) ≥ r. As rs > n, this implies that H is
nonideal.

78.5. Further results and notes

78.5a. Composition of clutters

Billera [1971] described the following composition of hypergraphs. Let H ′ = (V ′, E ′)
and H ′′ = (V ′′, E ′′) be hypergraphs with V ′ and V ′′ disjoint, and choose v ∈ V ′.
Let V := (V ′ \ {v}) ∪ V ′′, and define E by:

(78.44) E := {E′ ∈ E ′ | v �∈ E′} ∪ {(E′ \ {v}) ∪ E′′ | E′ ∈ E ′, v ∈ E′, E′′ ∈ E ′′}.

Let H = (V, E). Then H is ideal if and only if H ′ and H ′′ are ideal. (The ‘only if’
part was shown by Billera [1971] and the ‘if’ part by Bixby [1971].)

Related results were reported by Chopra [1995]. An extension of these results
to clutter amalgam was given by Nobili and Sassano [1993a] (cf. Nobili and Sassano
[1993b]).

78.5b. Further notes

Cornuéjols and Novick [1994] conjecture that there are only finitely many minimally
nonideal hypergraphs H with rmin(H) > 2 and τ(H) > 2. This would confirm the
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question of Ding [1993] whether there exists a number t such that each minimally
nonideal hypergraph H satisfies rmin(H) ≤ t or τ(H) ≤ t.

Since by Lehman’s theorem, each minimally nonideal hypergraph H �= Jn sat-
isfies τ∗(H) = r−1τr(H) < τ(H), where r := rmin(H), the existence of such a t
would imply that the following property characterizes ideality of a hypergraph H:

(78.45) H contains no Jn minor (n ≥ 3) and satisfies τk(H ′) = k · τ(H ′) and
τk(b(H ′)) = k · τ(b(H ′)) for each minor H ′ of H and each k ≤ t.

Ding wondered if t = 3 would do.
Ding [1993] conjectures that for each fixed k ≥ 2, each minor-minimal hyper-

graph H with τk(H) < k · τ(H), contains some Jn minor (n ≥ 3) or satisfies the
regularity conditions of Lehman’s theorems (Theorem 78.4 and 78.5). Ding [1993]
proved this for k = 2: if H is minor-minimal with the property τ2 < 2τ and if H
has no Jn minor (n ≥ 3), then the minimum-size vertex covers form an odd circuit
on V H.

A {0, ±1} matrix M is called ideal if the polytope

(78.46) {x | 0 ≤ x ≤ 1, Mx ≥ 1 − b}

is integer, where b is the vector with bi equal to the number of −1’s in the ith row of
M . These matrices generalize the incidence matrices of ideal hypergraphs. Guenin
[1998b] and Nobili and Sassano [1995,1998] showed that they can be characterized
in terms of ideal hypergraphs.

Related work on ideal hypergraphs was reported by Novick and Sebő [1996]. A
survey on ideal hypergraphs was given by Cornuéjols and Guenin [2002b].



Chapter 79

Mengerian hypergraphs

Mengerian hypergraphs form a subclass of the ideal hypergraphs. They are
characterized by the total dual integrality of the edge inequalities (where
ideal hypergraphs require only totally primal integrality). So Mengerian
hypergraphs satisfy min-max relations that are combinatorial at both op-
tima.
This chapter gives a few characterizations of Mengerity. No characterization
in terms of forbidden minors is known. In Chapter 80 we will give Seymour’s
forbidden minor characterization of binary Mengerian hypergraphs.

79.1. Mengerian hypergraphs

A hypergraph H = (V, E) is called Mengerian if ν(H ′) = τ(H ′) for each
parallelization H ′ of H.10 Equivalently:

(79.1) H is Mengerian ⇐⇒ system (78.1) is totally dual integral.

By (77.19) (or by the theory of total dual integrality), each Mengerian hyper-
graph is ideal. Like ideal hypergraphs, the class of Mengerian hypergraphs is
closed under taking minors:

Theorem 79.1. Any minor of a Mengerian hypergraph is Mengerian again.

Proof. As restriction is a special case of parallelization, any restriction of a
Mengerian hypergraph is again Mengerian. As for contraction, let H = (V, E)
be a Mengerian hypergraph and let v ∈ V and w : V \ {v} → Z+. Define
w′ : V → Z+ by w′(u) := w(u) if u ∈ V \ {v} and w′(v) := τ((H/v)w). Then

(79.2) τ((H/v)w) ≤ τ(Hw′

) = ν(Hw′

) ≤ ν((H/v)w).

So τ((H/v)w) = ν((H/v)w). Concluding, H/v is Mengerian.

Unlike ideal hypergraphs, the class of Mengerian hypergraphs is not closed
under taking blockers, as we shall see in Section 79.2.

10 Alternatively, such hypergraphs are said to have the Z+-max-flow min-cut property,
shortly the Z+-MFMC property.
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Theorem 78.3 implies some characterizations of Mengerian hypergraphs
(Lovász [1975a] showed (i)⇔(ii), and Lovász [1976c] (i)⇔(iii); the equivalence
(i)⇔(ii) also follows from a more general theorem of Hoffman [1974]):

Theorem 79.2. For any hypergraph H = (V, E), the following are equivalent:

(79.3) (i) H is Mengerian, that is, ν(H ′) = τ(H ′) for each parallelization
H ′ of H;

(ii) ν∗(H ′) = ν(H ′) for each parallelization H ′ of H;
(iii) ν2(H

′) = 2ν(H ′) for each parallelization H ′ of H.

Proof. The equivalence (i) ⇐⇒ (ii) follows from Theorem 78.3, since
(79.3)(ii) implies that ν∗(H ′) is an integer and since ν∗(H ′) = τ∗(H ′). The
implications (ii)⇒(iii) follows from (77.19), since ν∗(H ′) ≥ 1

2ν2(H
′) ≥ ν(H ′).

So it suffices to prove (iii)⇒(ii).
First observe that for each w : V → Z+ and all j, k ∈ Z+ we have

νjk(Hw) = νk(Hjw). Hence, if (79.3)(iii) holds, then for each w : V → Z+

and each i:

(79.4) ν2i+1(Hw) = ν2(H
2iw) = 2ν(H2iw) = 2ν2i(Hw).

So by induction on i we find that for all i:

(79.5) ν2i(Hw) = 2iν(Hw), that is,
ν2i(Hw)

2i
= ν(Hw).

As

(79.6) ν∗(Hw) = lim
k→∞

νk(Hw)

k

(by (77.20)), this gives (79.3)(ii).

Another characterization, in terms of the blocker, is:

Theorem 79.3. Let H = (V, E) be a hypergraph. Then the blocker b(H) of
H is Mengerian if and only if for each natural number k, each k-vertex cover
is the sum of k 1-vertex covers.

Proof. By definition, b(H) is Mengerian if and only if ν(b(H)l) = τ(b(H)l)
for each l : V → Z+. Now τ(b(H)l) is equal to the minimum value of l(E) for
E ∈ E (by Theorem 77.1). In other words, τ(b(H)l) is equal to the maximum
number k for which l is a k-vertex cover.

Moreover, ν(b(H)l) is equal to the maximum number k of vertex covers
B1, . . . , Bk with

(79.7) χB1 + · · · + χBk ≤ l.

So ν(b(H)l) = τ(b(H)l) for each l : V → Z+ if and only if for each k, each
k-vertex cover l is the sum of k 1-vertex covers.
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Note that the right-hand side of the equivalence in this theorem directly
implies, by definition of τk, that τk(H) = k ·τ(H) for each k; that is, τ∗(H) =
τ(H).

79.1a. Examples of Mengerian hypergraphs

Bipartite graphs. Let G = (V, E) be a bipartite graph. It is very easy to show that
ν2(G) = 2ν(G). (It amounts to the fact that each bipartite graph G of maximum
degree at most 2 has a matching of size at least 1

2
|EG|.)

Since the class of bipartite graphs is closed under parallelization, Theorem 79.2
gives ν(G) = τ(G); that is, the matching number of G is equal to the vertex cover
number of G. This is Kőnig’s matching theorem (Theorem 16.2).

Network flows. Let D = (V, A) be a directed graph and let s, t ∈ V . Let P be
the collection of arc sets of s− t paths. Consider the hypergraph H = (A, P). Then
b(H) is the hypergraph with edge set all inclusionwise minimal s − t cuts.

Now ν(b(H)) = τ(b(H)), since the minimum size k of an s − t path is equal
to the maximum number of pairwise disjoint s − t cuts. This is an easy result, by
considering the cuts δout(Vi) for i = 1, . . . , k, where Vi is the set of vertices at
distance < i from s.

Since the class of hypergraphs b(H) obtained in this way is closed under paral-
lelization (it corresponds to replacing arcs by paths), b(H) is Mengerian. Hence b(H)
is ideal, and hence H is ideal. That is, for each weight function w : A → Z+ we have
τ(Hw) = τ∗(Hw) = ν∗(Hw). This gives that the minimum weight of an s − t cut
is equal to the maximum of

∑
P∈P λP where λ : P → R+ with

∑
P∈P λP χP ≤ w.

That is, we have the max-flow min-cut theorem.
By Menger’s theorem, we even know that ν(H) = τ(H). As the class of these

hypergraphs is closed under parallelization (it corresponds to adding parallel arcs
to arcs), we know that H is Mengerian. By Theorem 79.2, to prove the existence of
an integer maximum flow, it suffices to show that ν2(H) = 2ν(H), since this class
of hypergraphs is closed under parallelization.

Arborescences. Let D = (V, A) be a directed graph and let r ∈ V . Recall that
a subset B of A is called an r-arborescence if (V, B) is a rooted tree with root r.
An r-cut is a set δin(U) of arcs, where U is a nonempty subset of V \ {r}. Let H
be the hypergraph with vertex set A and edges all r-arborescences. So the blocker
b(H) of H has edges all inclusionwise minimal r-cuts.

Since this class of hypergraphs is closed under parallelization, Edmonds’ dis-
joint arborescences theorem (Theorem 53.1b) implies that H is Mengerian. By the
optimum arborescence theorem (Theorem 52.3) also b(H) is Mengerian.

Directed cuts. Let D = (V, A) be a directed graph. Recall that a directed cut is
a set of arcs of the form δin(U) where U is a nonempty proper subset of V with
δout(U) = ∅. A directed cut cover is a set of arcs intersecting all directed cuts. Let
H be the hypergraph with vertex set A and edges all directed cuts. So the blocker
b(H) of H has edges all inclusionwise minimal directed cut covers.

One may show that ν2(H) = 2ν(H), as was done in the proof of the Luc-
chesi-Younger theorem (Theorem 55.2). Since again this class of hypergraphs is
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closed under parallelization, Theorem 79.2 implies that H is Mengerian. This is the
Lucchesi-Younger theorem.

So H is ideal, and hence also b(H) is ideal. The example of Figure 56.1 in
Section 56.1 shows that b(H) in general is not Mengerian.

79.2. Minimally non-Mengerian hypergraphs

By Theorem 79.1, the class of Mengerian hypergraphs is closed under taking
minors. It is not closed under taking blockers, since the hypergraph

(79.8) Q6 := O(K4)

(the hypergraph with vertex set EK4 and edges all triangles of K4) is
non-Mengerian, while its blocker is Mengerian: Q6 is non-Mengerian, since
ν(Q6) = 1 (K4 has no two edge-disjoint triangles), while τ(Q6) = 2 (no edge
is contained in all triangles). Its blocker H := b(Q6) has edges all comple-
ments of nonempty cuts of K4. To see that it is Mengerian, we show that
ν(H l) = τ(H l) for each ‘length’ function l : EK4 → Z+. Then τ(H l) is the
minimum length of a triangle in K4. To calculate ν(H l), observe that the
edges of H are the triangles and the perfect matchings of K4. Consider any
perfect matching M of K4 with l(e) > 0 for both edges e ∈ M . Then replac-
ing l by l − χM reduces τ(H l) by 1 and ν(H l) by at least 1. So inductively
we can assume that each perfect matching of K4 contains an edge e with
l(e) = 0. So l is 0 on all edges of a triangle, in which case τ(H l) = 0 ≤ ν(H l),
or on all edges of a star, in which case both τ(H l) and ν(H l) are equal to
the minimum length of the edges of the complementary triangle.

Call a hypergraph H = (V, E) minimally non-Mengerian if H is a non-
Mengerian hypergraph and each proper minor of H is Mengerian.

The hypergraph Q6 is minimally non-Mengerian. Indeed, choose a vertex
e of Q6. The restriction Q6 \ e has only two edges, and hence is trivially
Mengerian. The contraction Q6/e is isomorphic to b(Q6) \ e, and hence is
Mengerian, as we saw above.

In Section 80.5 we will see that Q6 is the only binary minimally nonideal
hypergraph (binary is defined in Chapter 80). We list this and other examples
of minimally non-Mengerian hypergraphs ((i) was given by Lovász [1974], and
(ii)-(vi) by Seymour [1977b]):

(79.9) (i) Q6 = O(K4), the hypergraph with vertex set EK4, and edges
all triangles;

(ii) any odd circuit;
(iii) the blocker of any odd circuit;
(iv) Jn for n ≥ 3 (cf. (78.12));
(v) the circuit on 1, 2, 3, 4, 5, 6, 7, 9 (in order) added with the edge

{3, 6, 9};
(vi) the blocker of the hypergraph in (v);
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(vii) the hypergraph with vertex set {0, 1, 2, 3} and edges {0, 1, 2},
{0, 1, 3}, {0, 2, 3}, and its blocker.

Example (vii) shows that a minimally non-Mengerian hypergraph H can
satisfy ν(H) = τ(H).

Notes. Seymour [1977b] conjectured that Q6 is the only minimally non-Mengerian
hypergraph with Mengerian blocker. However, the example of Figure 56.1 gives
a minimally non-Mengerian hypergraph on 9 vertices. Its blocker is Mengerian
(by the Lucchesi-Younger theorem). Two other examples of hypergraphs consisting
of directed cut covers in a directed graph were given by Cornuéjols and Guenin
[2002c] and yield two more minimally non-Mengerian hypergraphs with Mengerian
blockers.

Seymour [1977b] indicated by a construction that it might be hard to charac-
terize all minimally non-Mengerian hypergraphs.

79.3. Further results and notes

79.3a. Packing hypergraphs

A hypergraph H = (V, E) is called packing if ν(H ′) = τ(H ′) for each minor H ′ of
H. So we have for any hypergraph H (using Theorem 79.1 and Corollary 78.4b):

(79.10) H Mengerian ⇒ H packing ⇒ H ideal.

Q6 is an example which is ideal but not packing, but no example is known of a non-
Mengerian packing hypergraph. In fact, Conforti and Cornuéjols [1993] conjecture
that both concepts coincide. Cornuéjols, Guenin, and Margot [1998,2000] proved
this for dyadic hypergraphs, that is, hypergraphs H with |E ∩ B| ≤ 2 for each edge
E of Hmin and each edge B of b(H).

The definition of packing implies that it is closed under taking minors. Call
a hypergraph minimally nonpacking if it is nonpacking, but each proper minor is
packing. So it is a minor-minimal hypergraph satisfying ν < τ .

Cornuéjols, Guenin, and Margot [1998,2000] showed that if a hypergraph is
both minimally nonideal and minimally nonpacking, then H = Jn for some n ≥ 3
or rmin(H)τ(H) = |V H| + 1. They conjecture that, conversely, each minimally
nonideal hypergraph H with rmin(H)τ(H) = |V H| + 1 is minimally nonpacking.
By a computer program, this conjecture was verified for all hypergraphs with ≤ 14
vertices.

Another conjecture of Cornuéjols, Guenin, and Margot [1998,2000] is that
τ(H) = 2 for each ideal minimally nonpacking hypergraph H. This implies the
above conjecture of Conforti and Cornuéjols that each packing hypergraph is Men-
gerian. For suppose that H = (V, E) is packing and minimally non-Mengerian. Since
H is non-Mengerian, there is a w : V → Z+ with Hw nonpacking. Choose w with
w(V ) minimal. Then Hw is minimally nonpacking. So by the second conjecture,
τ(Hw) = 2. As H is packing, w(v) ≥ 2 for some v ∈ V . Now τ(Hw/v) ≥ τ(Hw) = 2.
Hence ν(Hw/v) ≥ 2. So there exist edges E1, E2 of H with χE1\{v} +χE2\{v} ≤ w.
Since w(v) ≥ 2, this implies χE1 +χE2 ≤ w, and hence ν(Hw) ≥ 2. This contradicts
the fact that Hw is minimally nonpacking.

For a survey, see Cornuéjols and Guenin [2002b].
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79.3b. Restrictions instead of parallelizations

It is tempting to conjecture that a hypergraph H is Mengerian if and only if ν(H ′) =
τ(H ′) for each restriction H ′ of H (instead of for each parallelization H ′ of H).
Similarly, one may speculate that H is ideal if and only if τ∗(H ′) = τ(H) for each
restriction H ′ of H. But these characterizations are not valid, as is shown by the
hypergraph of (79.9)(vii): then ν(H ′) = τ(H ′) for each restriction H ′ of H (as soon
as we delete any vertex we obtain a hypergraph with at most one edge); but H is
nonideal, since if we duplicate vertex 0, we obtain a hypergraph with τ = 2 and
τ∗ = 3

2
.

So in Theorem 78.3, we cannot restrict H ′ to restrictions of H instead of par-
allelizations. But the equivalence of (78.10)(i) and (ii) is maintained if we restrict
H ′ to restrictions of H:

Theorem 79.4. For any hypergraph, H = (V, E), the following are equivalent:

(79.11) (i) τ(H ′) = τ∗(H ′) for each restriction H ′ of H;

(ii) τ∗(H ′) is an integer for each restriction H ′ of H.

Proof. Since obviously (i)⇒(ii), we prove (ii)⇒(i). Choose a counterexample with
|V | smallest. Let x be a fractional vertex cover of size τ∗(H). Choose a vertex v
with xv > 0. As x|V \ {v} is a fractional vertex cover of H \ v, we know:

(79.12) τ∗(H \ v) ≤ x(V \ {v}) < x(V ) = τ∗(H).

As τ∗(H) and τ∗(H \ v) are integer, this implies that τ∗(H \ v) ≤ τ∗(H) − 1. By
the minimality of V we know τ∗(H \ v) = τ(H \ v). Therefore,

(79.13) τ(H) ≤ 1 + τ(H \ v) = 1 + τ∗(H \ v) ≤ τ∗(H),

and so τ(H) = τ∗(H).

As a direct consequence one has (Lovász [1974]):

Corollary 79.4a. For any hypergraph, H = (V, E), the following are equivalent:

(79.14) (i) τ(H ′) = ν(H ′) for each restriction H ′ of H;

(ii) ν∗(H ′) = ν(H ′) for each restriction H ′ of H.

Proof. Directly from Theorem 79.4.

(Lovász [1974] called hypergraphs with the properties (79.14) seminormal.)
Symmetry suggests the question if we can replace in Theorem 79.4 or Corollary

79.4a ‘restriction’ by ‘contraction’.

79.3c. Equivalences for k-matchings and k-vertex covers

Some of the equivalences in Theorems 78.3 and 79.2 can be generalized as follows
(Lovász [1977b] (k ≤ 2), Schrijver and Seymour [1979] (general k)).

Theorem 79.5. For any hypergraph H = (V, E) and any k ∈ Z+, the following are

equivalent:
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(79.15) (i) k · τ∗(H ′) = τk(H ′) for each parallelization H ′ of H;

(ii) k · τ∗(H ′) is an integer for each parallelization H ′ of H.

Proof. Similar to the proof of Theorem 78.3.

This implies a result proved by Schrijver and Seymour [1979] (just by adapting
the proof methods of Lovász [1975a] for the equivalence (i)⇔(ii) for k ≤ 2 and of
Lovász [1977b] for the equivalence (i)⇔(iii) for k = 1):

Corollary 79.5a. For any hypergraph H = (V, E) and any k ∈ Z+, the following

are equivalent:

(79.16) (i) νk(H ′) = τk(H ′) for each parallelization H ′ of H;

(ii) k · ν∗(H ′) = νk(H ′) for each parallelization H ′ of H;

(iii) ν2k(H ′) = 2νk(H ′) for each parallelization H ′ of H.

Proof. Similar to the proof of Theorem 79.2.

As an application, let G = (V, E) be an undirected graph. Then ν4(G) = 2ν2(G)
is not difficult to show. Since the class of graphs is closed under parallelization,
Corollary 79.5a implies that ν2(G) = τ2(G), which is Theorem 30.1.

79.3d. A general technique

The following general result (derived with a method given by Lovász [1976c]) gives
some more equivalences:

Theorem 79.6. Let H = (V, E) be a hypergraph and w : V → Z+. Let f : ZV
+ −→

R+ satisfy

(79.17) (i) f(x + y) ≥ f(x) + f(y) for all x, y ∈ ZV
+;

(ii) if u ≤ w, then f(u) ∈ Z+;

(iii) if x ≤ w + 1, then f(2x) = 2f(x);
(iv) f(χU ) > 0 for each U ∈ E.

Then τ(Hw) ≤ f(w).

Proof. By induction on 1Tw, the case where τ(Hw) = 0 being trivial. Assume
τ(Hw) > 0. That is, the support U of w contains an edge of H. Choose x ∈ ZV

+

with w ≤ x ≤ w + χU such that f(x) = f(w) and such that 1Tx is as large as
possible. Then x �= w + χU , since f(w + χU ) ≥ f(w) + f(χU ) > f(w), by (i)
and (iv) (note that f is monotone by (i)). So xv < wv + 1 for some v ∈ U . By
the maximality of x we know that f(x + χv) > f(x). Moreover, by induction,
τ(Hw−χv

) ≤ f(w − χv), and hence

(79.18) τ(Hw) ≤ 1 + τ(Hw−χv

) ≤ 1 + f(w − χv) ≤ 1 + f(x − χv)
≤ 1+f(2x)−f(x+χv) = 1+2f(x)−f(x+χv) < 1+f(x) = 1+f(w),

and hence, since f(w) ∈ Z we have τ(Hw) ≤ f(w).

This gives the following equivalent form of Theorem 79.4:
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Corollary 79.6a. Let H = (V, E) be a hypergraph and let w ∈ ZV
+ be such that

τ∗(Hx) ∈ Z for each x ≤ w. Then τ(Hw) = τ∗(Hw).

Proof. Define f(x) := τ∗(Hx) for x ∈ ZV
+ and apply Theorem 79.6.

We also obtain a generalization of Theorem 79.2:

Corollary 79.6b. Let H = (V, E) be a hypergraph and let w ∈ ZV
+ be such that

ν(Hx) = 1

2
ν2(H

x) for each x ≤ w + 1. Then τ(Hw) = ν(Hw).

Proof. Define f(x) := ν(Hx) for x ∈ ZV
+ and apply Theorem 79.6.

A special case of this is:

Corollary 79.6c. Let H = (V, E) be a hypergraph with ν2(H
w) = 2ν(Hw) for each

w : V → {0, 1, 2}. Then ν(H) = τ(H).

Proof. This follows by taking w = 1 in Corollary 79.6b.

This gives a generalization to arbitrary k (instead of k = 2), since if ν(H) =
1

k
νk(H) for some k ≥ 2, then ν(H) = 1

k−1
νk−1(H). This follows from

(79.19) νk−1(H) ≤ νk(H) − ν(H) = k · ν(H) − ν(H) = (k − 1)ν(H).

Hence ν(H) = 1

2
ν2(H).

Another consequence of Theorem 79.6 is:

Corollary 79.6d. For any hypergraph H = (V, E) and any k ∈ Z+, the following

are equivalent:

(79.20) (i) τk(H ′) = k · τ(H ′) for each restriction H ′ of H;

(ii) 1

k
τk(H ′) ∈ Z for each restriction H ′ of H.

Proof. Define f(x) := 1

k
τk(Hx) for x ∈ ZV

+ and apply Theorem 79.6 to w = 1.

79.3e. Further notes

Seymour [1979a] gave the following example of an ideal hypergraph H with τ(H) �=
1

2
ν2(H). Replace each edge of the Petersen graph by a path of length 2, making the

graph G. Let T := V G \ {v}, where v is an arbitrary vertex of v of degree 3. Let
E be the collection of T -joins. Let T30 := (EG, E). Then τ(H ′) = ν∗(H ′) for each
parallelization H ′ of T30, by Theorem 29.5. On the other hand, τ(T30) = 2 while
G has no T -joins J1, J2, J3, J4 containing each edge of G at most twice. Otherwise,
the sets J1△J2, J1△J3, and J1△J4 are cycles, together containing every edge of
G precisely twice. Hence their complements give a 3-edge-colouring of the Petersen
graph. This is not possible.

In this example, T30 is not only ideal, but also satisfies τ(b(T30)
′) = 1

2
ν2(b(T30)

′)
for each parallelization b(T30)

′ of b(T30) (by Corollary 29.2a). Seymour [1981a]
conjectures that T30 is the unique minor-minimal binary ideal hypergraph with the
property ν2 < 2τ .
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P.D. Seymour (personal communication 1975) conjectures that for each ideal
hypergraph H one has νk(H) = k · τ(H) where k is some power of 2. He also asks
if k = 4 would do in all cases. Moreover, Seymour [1979a] conjectures that for each
ideal hypergraph H, the g.c.d. of those k with νk(H) = k · τ(H) is equal to 1 or 2.

In Schrijver and Seymour [1979] it is shown that, for each hypergraph H there
is an integer k such that νk(H ′) = τk(H ′) for each parallelization H ′ of H.



Chapter 80

Binary hypergraphs

Several hypergraphs coming from graphs are binary. Binary hypergraphs
are hypergraphs such that the symmetric difference of any odd number of
edges contains an edge as subset.
Binary hypergraphs have a convenient algebraic structure, that enables
to handle packing and blocking problems better than for general hyper-
graphs. Key result of this chapter is Seymour’s characterization of binary
Mengerian hypergraphs.

80.1. Binary hypergraphs

A hypergraph H = (V, E) is called binary if

(80.1) for all odd s and E1, . . . , Es ∈ E there is an E ∈ E with E ⊆
E1△ · · · △Es.

Trivially, for each binary hypergraph H = (V, E), the hypergraph Hmin is
again binary.

In previous chapters we have seen several examples of binary hypergraphs:
given an undirected graph G = (V, E), binary hypergraphs on E are formed
by the odd circuits, by the complements of cuts, by the s−t paths, by the s−t
cuts (given s, t ∈ V ), by the T -joins, by the T -cuts (given T ⊆ V ), and by
the paths that connect either s1 and t1, or s2 and t2 (given s1, t1, s2, t2 ∈ V ).

It is not difficult to show that the class of binary hypergraphs is closed
under taking minors, parallelizations, and blockers (see also Section 80.3 be-
low).

80.2. Binary hypergraphs and binary matroids

Binary hypergraphs have a strong linear algebraic structure over the field
GF(2), and are strongly related to binary matroids. It will be good to under-
stand these relations.

For a binary hypergraph H = (V, E), a cycle is the symmetric difference
of any number of edges of H. Call the cycle odd (even, respectively), if it is
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the symmetric difference of an odd (even, respectively) number of edges of
H.

The odd cycles of H form again a binary hypergraph, say H ′. By defi-
nition of binarity, the inclusionwise minimal edges of H ′ coincide with the
inclusionwise minimal edges of H. So from a packing and blocking point of
view there is no difference in considering any of the binary hypergraphs H,
H ′, or Hmin.

If ∅ �∈ E , there is no cycle that is both odd and even. The even cycles form
a subspace of the boolean space P(V ), and (if ∅ �∈ E) the odd cycles form a
cospace of it.

A clutter H = (V, E) is binary if and only if there is a binary matroid
M = (V, I) such that, for some B ⊆ V :

(80.2) E is equal to the collection of circuits C of M with |C ∩ B| odd.

The matroid M is unique and is equal to the binary matroid whose circuits
are the minimal nonempty cycles of H. The set B (generally) is not unique:
any set B qualifies for it if and only if |B ∩ E| is odd for each e ∈ E.

Another way of obtaining a binary hypergraph H from a binary matroid
M = (V, I) is by choosing a vertex v ∈ V , and taking as edges of H the
sets C \ {v} where C is a circuit of M containing v. This hypergraph will
be denoted by HM,v and is called a matroid port. Each binary clutter can be
obtained in this way.

80.3. The blocker of a binary hypergraph

The following is an important observation:

(80.3) The blocker b(H) of a binary hypergraph H = (V, E) is equal
to the collection of all inclusionwise minimal sets B satisfying
|B ∩ E| odd for each E ∈ E .

To see this, if |B ∩ E| is odd for each E ∈ E , then B is a vertex cover, and
hence it contains a set in b(H). Conversely, if B ∈ b(H), then |B ∩ E| is odd
for each E ∈ E . For suppose that |B ∩ E| is even. As B is a minimal vertex
cover, for each v ∈ B ∩ E there is an Ev ∈ E with Ev ∩ B = {v}. Then by
(80.1) the symmetric difference of E and the sets Ev for v ∈ B ∩ E contains
a set F ∈ E . Then F ∩ B = ∅, a contradiction.

This proves (80.3), which implies that:

(80.4) if H is binary, then b(H) is binary; if H is a clutter, then: H is
binary ⇐⇒ b(H) is binary.

The second statement follows from the fact that b(b(H)) = H if H is a clutter.
If H = HM,v for some binary matroid M and v ∈ V M , then the blocker

satisfies b(HM,v) = HM∗,v.
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80.3a. Further characterizations of binary clutters

Lehman [1964] and Seymour [1976b] gave further characterizations of binary clut-
ters. They showed that the following are equivalent for any clutter H = (V, E):

(80.5) (i) H is binary, that is, satisfies (80.1);
(ii) for all E1, E2, E3 ∈ E there is an E ∈ E with E ⊆ E1△E2△E3;
(iii) |B ∩ E| is odd for all E ∈ H and B ∈ b(H);
(iv) |B ∩ E| �= 2 for all E ∈ H and B ∈ b(H);
(v) H has no minor equal to P4 := ({1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 4}})

or to Jn for any n ≥ 3 (defined in (78.12)).

(The equivalence of (i) and (iii) was shown by Lehman [1964], the equivalence
of (i) and (ii) by A. Lehman (unpublished) and Seymour [1976b], and the other
equivalences by Seymour [1976b].)

80.4. On characterizing binary ideal hypergraphs

Since the class of binary ideal hypergraphs is closed under taking minors,
it can be characterized by specifying the collection of binary minimally non-
ideal hypergraphs. Seymour [1981a] offered the conjecture that this collection
consists precisely of O(K5), b(O(K5)), and F7 (see (78.12)).

This conjecture is still open. As we saw in Sections 75.5 and 78.4a, the
conjecture has been proved for the class of hypergraphs formed by the odd
circuits of signed graphs, by Guenin [1998a,2001a]. For this class, only O(K5)
is a forbidden minor, since b(O(K5)) and F7 do not arise in this way.

By Corollary 29.2b, the conjecture is also true for the class of hypergraphs
of T -joins since neither of the three proposed forbidden minors comes from
T -joins.

This was extended by Cornuéjols and Guenin [2002a] to binary hyper-
graphs without Q+

6 or Q+
7 minor. Here for any hypergraph H = (V, E), the

hypergraph H+ arises by adding a new vertex u to V and by taking as edges
all sets E ∪ {u} with E ∈ E . The hypergraph Q7 arises from Q+

6 by adding
as edges the perfect matchings of K4.

This implies that for any regular matroid M = (V, I) and any Σ ⊆ V ,
the collection of circuits C of M with |C ∩ Σ| odd, form a hypergraph for
which Seymour’s conjecture holds. Other cases where Seymour’s conjecture
holds were given by Guenin [2001c,2002c].

Adding an Eulerian condition. In Section 79.3e we saw that the following ideal
hypergraph H does not satisfy ν2(H) = 2τ(H). Let G be obtained from the Petersen
graph P10 by replacing each edge by a path of length 2. Let T := V G \ {v} for
some degree-3 vertex v of G. Let T30 be the hypergraph of T -joins on EG.

Seymour [1981a] conjectured that any binary ideal hypergraph H = (V, E) with-
out T30 minor satisfies 1

2
ν2(H) = τ(H). If moreover all edges of b(H) have the same

parity, then ν(H) = τ(H). However, as A.M.H. Gerards and B. Guenin observed,
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the Petersen graph gives a simpler counterexample to the second conjecture: the hy-
pergraph T15 of V P10-joins in P10 is a binary ideal hypergraph without T30 minor
and having all edges of b(T15) odd, while ν(T15) = 2 < 3 = τ(T15). This suggests
the question if for each binary hypergraph H = (V, E):

(80.6) (?) ν(Hw) = τ(Hw) for each w : V → Z+ with w(B) even for all
B ∈ b(H) ⇐⇒ ν2(H

w) = 2τ(Hw) for each w : V → Z+ ⇐⇒ H has
no O(K5), b(O(K5)), F7, or T15 minor. (?)

80.5. Seymour’s characterization of binary Mengerian

hypergraphs

For binary Mengerian hypergraphs, the forbidden minors are known: Seymour
[1977b] showed that the only binary minimally non-Mengerian hypergraph is
Q6 = O(K4). In this section we give a proof based on Seymour [1977b] and
on the short proof by Guenin [2002a].

Theorem 80.1. A binary hypergraph is Mengerian if and only if it has no
Q6 minor.

Proof. We have seen necessity in Section 79.2. We prove sufficiency.
Call a hypergraph H = (V, E) critical if each vertex is contained in a vertex

cover of size τ(H). Call a subset of V a cycle if it is a symmetric difference
of edges, a k-cycle if it is a symmetric difference of k edges, an even cycle
if it is a k-cycle for some even k, and a circuit if it is a minimal nonempty
cycle. Call two vertices x, y parallel if {x, y} is a 2-cycle. By the definition of
binary hypergraph, for each cycle C and each edge E, the set C△E contains
an edge. Hence, if x and y are parallel, then for any inclusionwise minimal
edge F of H with x ∈ F , one has y �∈ F and (F \ {x})∪{y} is again an edge.
So any minimal vertex cover containing x also contains y.

To see sufficiency, it suffices to show that ν(H) = τ(H) for each binary
hypergraph without Q6 minor (since the class of binary hypergraphs without
Q6 minor is closed under parallelization). Choose a counterexample H =
(V, E) to this with |V | minimal. So H has no Q6 minor while ν(H) < τ(H).
Choose H moreover such that the number of pairs of parallel elements is as
large as possible.

Note that the minimality of V implies that H is critical (as any vertex
that belongs to no minimum-size vertex cover can be deleted to obtain a
smaller counterexample). Define τ := τ(H) and, for each v ∈ V define:

(80.7) βv := {B | B vertex cover, |B| = τ, v ∈ B}.

Define U to be the set of vertices u with βu inclusionwise minimal:

(80.8) U := {u | there is no v ∈ V with βv ⊂ βu}.
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So U is nonempty. Note that if u and v are parallel, then βu = βv. Let M be
the set of pairs of nonparallel elements u, v in U with βu = βv. Then:

(80.9) each element u ∈ U is contained in a pair in M .

Suppose not. By the minimality of V , ν(H \ u) = τ(H \ u) = τ − 1 (since
τ − 1 ≤ τ(H \ u) = ν(H \ u) ≤ ν(H) < τ). So V \ {u} contains a subset Y
that is the union of τ − 1 disjoint edges of H. So Y is a (τ − 1)-cycle.

Let K be the parallel class of u. By the minimality of V , ν(H/K) =
τ(H/K) ≥ τ . So V \K contains a collection F of disjoint edges of H/K with
|F| = τ . Then F partitions V \ K, since for each v ∈ V \ K there exists a
B ∈ βv \βu (since βv �⊆ βu, as u is contained in no pair in M , by assumption).
So u �∈ B, hence B∩K = ∅. As |B| = τ , B intersects each edge in F precisely
once. Hence F covers v. Concluding, F partitions V \ K.

This implies that V \ K is contained in some τ -cycle L. So L△Y is a
(2τ − 1)-cycle, and hence contains a minimal edge E of H. As K is a parallel
class, |E ∩ K| ≤ 1. If E ∩ K = ∅ let E′ := E; if E ∩ K �= ∅, let E′ :=
(E \ K) ∪ {u}. Then E′ is disjoint from Y , so ν(H) ≥ τ , contradicting our
assumption. This proves (80.9).

Next:

(80.10) each pair e ∈ M contains a vertex u such that H has edges
E1, . . . , Eτ with E1∩E2 = {u} and with E1\{u}, E2\{u}, E3, . . . ,
Eτ partitioning V \ e.

Indeed, let e = {u, v} be such that u has at least as many parallel elements as

v has. Let H̃ be obtained from H by deleting v and adding an extra parallel
element to u (that is, we duplicate u). This increases the number of pairs

of parallel elements. So, by the choice of H, ν(H̃) = τ(H̃). Moreover, since

βu = βv, we have that τ(H̃) = τ and H̃ is critical. So V H̃ can be partitioned

into τ edges of H̃. This gives (80.10).
A consequence of (80.10) is that V \ e is a τ -cycle of H. Hence

(80.11) e△f is an even cycle of H, for all e, f ∈ M ,

since e△f = (V \ e)△(V \ f).
Now fix a pair e ∈ M , and let u, E1, . . . , Eτ be as in (80.10). Then

(80.12) E1△E2 contains no edge E of H,

since otherwise replacing E1 and E2 by E and E1△E2△E would show ν(H) ≥
τ .

Let H ′ be a smallest minor of H such that H ′ = H\Y/X for some disjoint
subsets X, Y of E1△E2 and such that, defining C := (E1△E2) \ (X ∪ Y ):

(80.13) (i) X ∪ Y is a union of circuits of H;
(ii) C is a cycle of H ′;
(iii) C ∪ {u} contains an edge of H ′;
(iv) τ(H ′) ≥ τ ;
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(v) each edge E of H ′ contained in C ∪ {u} satisfies τ(H ′ \ E) ≤
τ − 2.

Such an H ′ exists, since H has these properties. Then:

Claim 1. C is a circuit of H ′.

Proof of Claim 1. Suppose that C is not a circuit of H ′. Then, as C is a
cycle, C can be partitioned into two nonempty cycles C1 and C2 of H ′. By
(80.12), C1 and C2 are even cycles.

Define

(80.14) H1 := H ′/C2.

We show that H1 satisfies (80.13)(i)-(iv).
To see (80.13)(i) for H1, X ∪ Y ∪ C2 is a union of cycles of H, since

C2 = C ′ \ (X ∪ Y ) for some cycle C ′ of H. To see (80.13)(ii) for H1, C1 is a
cycle of H ′, hence also of H1. To see (80.13)(iii) for H1, C ∪ {u} contains an
edge of H ′, hence C1 ∪ {u} = (C ∪ {u}) \ C2 contains an edge of H1. To see
(80.13)(iv) for H1, we have τ(H ′/C2) ≥ τ(H ′) ≥ τ .

So H1 satisfies (80.13)(i)-(iv). Hence, by the minimality of H ′, H1 has an
edge E ⊆ C1 ∪{u} with τ(H1 \E) ≥ τ − 1. Define P := E \ {u}, Q = C1 \E,
and

(80.15) H2 := H ′ \ P/Q.

We show that H2 satisfies (80.13), which contradicts the minimality of H ′.
To see (80.13)(i) for H2, X ∪ Y ∪ C1 is a union of circuits of H, since C1 =
C ′ \ (X ∪ Y ) for some cycle C ′ of H. To see (80.13)(ii) for H2, C2 is a cycle
of H ′, hence also of H2. To see (80.13)(iii) for H2, E = E′ \ C2 for some
edge E′ of H ′. Then E′△C1 contains an edge E′′ of H ′. Then E′′ ∩ P = ∅,
since E′△C1 is disjoint from P (as P ⊆ E′ ∩ C1). So E′′ \ Q = E′′ \ C1 ⊆
(E′△C1) \ C1 ⊆ C2 ∪ {u}. This proves (80.13)(iii) for H2.

To see (80.13)(iv) for H2, suppose to the contrary that B is a minimum-
size vertex cover of H2 of size ≤ τ − 1. Then B intersects each of E3, . . . , Eτ

at least once, and hence does not intersect C2 (as |B ∩ C2| is even). So B is
a vertex cover of H2/C2. As C2 ∪ {u} contains an edge of H2, we also know
that u ∈ B. So B \ {u} is a vertex cover of H2/C2 \ {u} = H ′ \E/(C2 ∪Q) =
H1\E/Q, and hence of H1\E. This contradicts the fact that τ(H1\E) ≥ τ−1.
So H2 satisfies (80.13)(iv).

To see (80.13)(v) for H2, let F be an edge of H2 contained in C2 ∪ {u}.
As H2 = H ′ \ P/Q, there exists a Q′ ⊆ Q such that F ∪ Q′ is an edge of H ′.

Suppose that Q′ �= Q. Choose r ∈ Q \ Q′. Let B be a vertex cover of H
of size τ containing r. Then B intersects each of E3, . . . , Eτ at least once. As
r ∈ B, B intersects E1△E2 at least once, hence at least twice (as E1△E2 is
an even cycle). Hence, as |B| = τ , u �∈ B and B intersects each Ei in precisely
one element. Moreover, B is disjoint from C2 ∪ X ∪ Y , as this last set is a
union of circuits of H, implying that if B intersects C2 ∪X ∪Y at least once,
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then at least twice; since r �∈ C2 ∪X ∪Y , this is not possible. So B is a vertex
cover of H1. Hence B ∩ E �= ∅. So B contains a second element in C1, say s.
As F ∪ Q′ ∪ X contains an edge of H, it intersects B. So s ∈ Q′. This would
mean that B is disjoint from E, a contradiction.

So Q′ = Q. Then R := F ∪ P = (F ∪ Q)△C1 contains an edge of H ′. By
(80.13)(v), H ′ \ R has a vertex cover B of size τ − 2. As B intersects each of
E3, . . . , Eτ , B is disjoint from Q. So B is a vertex cover of H ′\R/Q = H2\F ,
proving τ(H2 \ F ) ≤ τ − 2. So H2 satisfies (80.13)(v), contradicting the
minimality of H ′. End of Proof of Claim 1

By (80.13)(ii)(iii), H ′ has edges F1, F2 with F1 ∩ F2 = {u} and F1 ∪ F2 =
C ∪ {u}. By (80.13)(v), there exist vertex covers B1 and B2 of H ′ with
|Bi \ Fi| ≤ τ − 2. So B1 ∩ F2 = B2 ∩ F1 = {u}. Then

(80.16) H ′ has an edge F3 disjoint from (B1 \ F1) ∪ (B2 \ F2) ∪ {u}.

Otherwise, the latter set contains a minimal vertex cover B of H ′. Now each
Bi intersects each of the edges E3, . . . , Eτ precisely once. So B intersects
each of these Ei at most twice, hence precisely once. Therefore |B| ≤ τ − 1,
contradicting (80.13)(iv). This proves (80.16).

Choose F3 in (80.16) with F3 \ C minimal. Let H ′′ arise from H ′ by
deleting all vertices not in F1 ∪F2 ∪F3. Then τ(H ′′) ≥ 2, since F1 ∩F2 ∩F3 =
{u}∩F3 = ∅. Moreover, ν(H ′′) = 1, for suppose that H ′′ has disjoint edges F
and F ′, with u �∈ F . By the minimality of F3\C we know that F \C = F3\C.
So F ′ ⊆ C∪{u}. But then, since C is a circuit, F ′ = F1 or F ′ = F2 (otherwise
F ′△F1 is a nonempty cycle properly contained in C). However, F intersects
B1 and B2, hence F intersects B1 ∩ F1 and B2 ∩ F2, and hence it intersects
F1 and F2, a contradiction. So ν(H ′′) = 1 < τ(H ′′).

The minimality of H implies H ′′ = H ′ = H and τ = 2. The equality τ = 2
implies that U = V and M forms a perfect matching on V : if v ∈ V \U , then
βu ⊂ βv for some u ∈ U , and hence (using (80.9)) any minimum-size vertex
cover containing u has at least three elements — a contradiction, since τ = 2;
similarly, if u ∈ V would be in two pairs in M , there is a minimum-size vertex
cover of size ≥ 3 — again a contradiction.

Also, V \ e = E1△E2 = F1△F2, whence it is a circuit (by Claim 1). As
any two pairs from M form an even cycle (by (80.11)), we know |V \ e| = 4.
So |V | = 6, |M | = 3, giving H = Q6.

Notes. Tseng and Truemper [1986] gave a decomposition theorem for binary Men-
gerian hypergraphs. It implies that the property of being Mengerian belongs to
NP for binary hypergraphs. Shorter proofs of the decomposition result were given
by Bixby and Rajan [1989] and Truemper [1987]. The latter paper also gives
polynomial-time algorithms for testing Mengerity of a binary hypergraph and for
finding a minimum-weight vertex cover and a maximum packing of edges subject to
a weight function in binary Mengerian hypergraphs. A description of this algorithm
was given in Bixby and Cunningham [1995]. Also Hartvigsen and Wagner [1988]
gave a polynomial-time algorithm to test Mengerity of a binary hypergraph.
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More background can be found in the book of Truemper [1992].

80.5a. Applications of Seymour’s theorem

We describe a number of applications of Theorem 80.1, some of which we have seen
in previous parts of this book. Except for those in the first two applications below,
the theorems are due to Seymour [1977b].

s − t cuts. Let G = (V, E) be a graph and let s, t ∈ V . The collection of s − t cuts
forms a binary hypergraph on E, without Q6 minor. Hence Theorem 80.1 implies
the edge-disjoint version of (the easy) Theorem 6.1: the maximum number of edge-
disjoint s−t cuts is equal to the minimum length of an s−t path (the max-potential
min-work theorem).

s − t paths. Let G = (V, E) be a graph and let s, t ∈ V . The collection of s − t
paths forms a binary hypergraph on E, without Q6 minor. Hence Theorem 80.1
implies the edge-disjoint undirected version of Menger’s theorem (Corollary 9.1b):
the maximum number of edge-disjoint s − t paths is equal to the minimum size of
an s − t cut.

T -cuts. Let G = (V, E) be a graph and let T ⊆ V . The collection of T -cuts
forms a binary hypergraph on E. If it is Q6, then G = K4 and T = V K4. Hence
Theorem 80.1 implies Corollary 29.9a: If K4, V K4 is not a minor of G, T (in the
sense of Section 29.11b), then the minimum size of a T -join is equal to the maximum
number of disjoint T -cuts.

T -joins. Let G = (V, E) be a graph and let T ⊆ V . The collection of T -joins
forms a binary hypergraph on E. If it is Q6, then G = K2,3 and T = V K2,3 \ {u},
where u is a vertex of degree 3. Hence Theorem 80.1 implies Theorem 29.10: If
K2,3, V K2,3 \ {u} is not a minor of G, T (in the sense of Section 29.11b), then the
minimum size of a T -cut is equal to the maximum number of disjoint T -joins.

s1

s2

t1

t2

Figure 80.1

s1 and t1, and s2 and t2, have distance 2, but there exist no two disjoint
cuts each separating both s1 and t1, and s2 and t2.
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s1 − t1 and s2 − t2 cuts. Let G = (V, E) be a graph and let s1, t1, s2, t2 ∈ V .
The collection of cuts that separate both s1 and t1, and s2 and t2 forms a binary
hypergraph on E. If it is Q6, then G is the graph in Figure 80.1 up to permuting
indices and exchanging s1 and t1. Hence Theorem 80.1 implies Theorem 71.4: if G
has no subgraph contractible to the graph in Figure 80.1 up to permuting indices
and exchanging s1 and t1, then the minimum length of a path connecting either
s1 and t1, or s2 and t2 is equal to the maximum number of pairwise disjoint cuts
each separating both s1 and t1, and s2 and t2. (Here we assume that the subgraph
contains the si, ti, and that these vertices are contracted to the vertices indicated
by si and ti in the figure.)

s1

s2 t1

t2

Figure 80.2

The maximum total value of a 2-commodity flow (subject to capacity 1)
is equal to 2, but the maximum total value of an integer 2-commodity
flow is equal to 1.

s1 − t1 and s2 − t2 paths. Let G = (V, E) be a graph and let s1, t1, s2, t2 ∈ V .
The collection of paths that connect either s1 and t1, or s2 and t2 forms a binary
hypergraph on E. If it is Q6, then it is the graph of Figure 80.2 up to exchanging
s1 and t1, and s2 and t2. Hence Theorem 80.1 implies Theorem 71.2: If G has no
subgraph contractible to the graph of Figure 80.2 up to exchanging s1 and t1, and
s2 and t2, then the maximum number of edge-disjoint paths, each connecting either
s1 and t1, or s2 and t2, is equal to the minimum size of a cut separating both s1

and t1, and s2 and t2.

Odd circuits. Let G = (V, E, Σ) be a signed graph; that is G = (V, E) is an
undirected graph and Σ ⊆ E. Call a circuit C odd if |C ∩ Σ| is odd. The collection
of odd circuits forms a binary hypergraph on E. If it is Q6, then G = (V, E, Σ) is
the odd-K4; that is, V = V K4 and E = Σ = EK4. Hence Theorem 80.1 implies
Corollary 75.3a: if G = (V, E, Σ) has no odd-K4 minor, then the maximum number
of edge-disjoint odd circuits is equal to the minimum size of an odd circuit cover.
In other words, if G = (V, E, Σ) has no odd-K4 minor, then G is strongly bipartite.

Odd circuit covers. Let G = (V, E, Σ) be a signed graph. The collection of
inclusionwise minimal odd circuit covers forms a binary hypergraph on E. If it is
Q6, then G = K2

3 and Σ = ∆, where ∆ is a triangle in K2
3 . Here K2

3 is the graph with
three vertices, each pair of which connected by two parallel edges. Hence Theorem
80.1 implies: if G = (V, E, Σ) has no (V K2

3 , EK2
3 , ∆) as minor, then the maximum

number of edge-disjoint odd circuit covers is equal to the minimum length of an
odd circuit.
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Notes. Gan and Johnson [1989] developed a framework that includes the above
examples on T -joins, T -cuts, odd circuits, and odd circuit covers, and derived al-
gorithms for the corresponding optimization problems.

80.6. Mengerian matroids

Seymour’s characterization of binary Mengerian hypergraphs implies a full
characterization of matroids that have the corresponding matroidal Menge-
rian property. In this case, we need not restrict the characterization to binary
matroids, since binarity of the matroid follows from the Mengerian property.

Again, for any matroid M = (V, I) and any v ∈ V , let HM,v be the
hypergraph on V \ {v} with edges all sets C \ {v}, where C is a circuit of M
containing v. Call M Mengerian if HM,v is a Mengerian hypergraph for each
v ∈ V .

Theorem 80.1 implies the following conjecture of Th. Chang of the late
1960s (cf. Seymour [1977b]):

Corollary 80.1a. A matroid is Mengerian if and only if it is binary and has
no F ∗

7 minor.

Proof. As the 2-uniform matroid U2
4 on 4 elements and F ∗

7 are not Mengerian
(since HM,v = K3 or HM,v = Q6 for these matroids), necessity follows (using
the fact that each matroid without U2

4 minor is binary (Theorem 39.4)). To
see sufficiency, observe that, if M = (V, I) is a binary matroid, then for each
v ∈ V , the hypergraph HM.v is binary, and that if M contains no F ∗

7 minor (in
the matroidal sense), then HM,v contains no Q6 minor (in the hypergraphical
sense).

Notes. As was outlined by Seymour [1980a,1981a] and Bixby [1982], there is an
easier direct proof of this corollary, based on the fact that binary matroids without
F ∗

7 minor can be decomposed into regular matroids (coming from totally unimodu-
lar matrices) and copies of F7. (This follows from the ‘splitter theorem’ of Seymour
[1980a].)

Mengerity of regular matroids follows from the total unimodularity of the matrix
representing the matroid, as was shown by Gallai [1959b] (and also by Minty [1966]
(an alternative proof was given by Fulkerson [1968])).

Bixby [1982] described that this decomposition gives a polynomial-time algo-
rithm finding the optima in Corollary 80.1a. For background we refer to the book
of Truemper [1992].

80.6a. Oriented matroids

Matroids generalize undirected graphs, and one may ask for an extension of ma-
troid theory to include directed structures, in order to investigate the max-flow
min-cut theorem in greater generality. Bland and Las Vergnas [1978] and Folkman
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and Lawrence [1978], following work of Minty [1966], Fulkerson [1968], Rockafellar
[1969], and Lawrence [1975], developed a theory of oriented matroids. It may be
seen as the abstraction of a linear subspace of Rn; the abstraction of any vector is
a {0, +1, −1} vector, having 0, +1, or −1 in the positions where the original vector
has a zero, positive, or negative entry, respectively. If we have a digraph D = (V, A)
and we take as {0, +1, −1} vectors all x ∈ {0, ±1}A for which there is an undirected
circuit C with xa = 1 for forward arcs a of C, xa = −1 for backward arcs a of C,
and xa = 0 for all other arcs a, then we obtain an oriented matroid. Again, one
may define the Mengerian property for oriented matroids; its characterization by
excluded minors is unsolved.

More on oriented matroids can be found in Bachem and Kern [1992] and
Björner, Las Vergnas, Sturmfels, White, and Ziegler [1993].

A different approach to extending Menger’s theorem to matroids was given by
Tutte [1965b] — see Section 41.5a.

80.7. Further results and notes

80.7a. τ2(H) = 2τ (H) for binary hypergraphs H

Lovász [1975a] showed:

Theorem 80.2. τ2(H) = 2τ(H) for each binary hypergraph H.

Proof. Let x be a minimum-size 2-vertex cover of H. Let U := {v ∈ V | xv = 0}
and W := {v ∈ V | xv = 2}. Let H ′ := H/U \ W and V ′ := V \ (U ∪ W ). Then H ′

is binary and each edge of H ′ has size at least 2, since for any edge F of H ′ there
is an edge E of H with E ∩ W = ∅ and E \ U = F . Then |F | = x(E) ≥ 2.

As rmax(H
′) ≥ 2, for each v ∈ V ′ there is a B ∈ b(H ′) with v �∈ B. Consider

now the cospace

(80.17) C := {B ⊆ V ′
∣∣ |B ∩ F | is odd for each edge F of H ′}.

Then for each v ∈ V ′ there is a B ∈ C with v �∈ B. As C is a cospace, it follows
that v is in at most half of the sets in C. As this is true for each v ∈ V ′, C contains
a set B of size at most 1

2
|V ′|. Then W ∪ B is a vertex cover of H of size at most

1

2
x(V ) = 1

2
τ2(H). So τ(H) ≤ 1

2
τ2(H) as required.

Lovász [1975a] showed more generally:

Theorem 80.3. Let H = (V, E) be a hypergraph such that

(80.18) if X, Y, Z ∈ E, y ∈ (X ∩ Y ) \ Z and z ∈ (X ∩ Z) \ Y , then there is an

F ∈ E satisfying F ⊆ (X ∪ Y ∪ Z) \ {y, z}.

Then τ2(H) = 2τ(H).

Proof. Consider a counterexample with |V | minimal. Let x be a minimum-size
2-vertex cover of H. Then

(80.19) xv = 1 for each v ∈ V .
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For if xv = 0, then x|V \{v} is a 2-vertex cover of H/v, and hence, since H/v again
satisfies (80.18):

(80.20) 2τ(H) ≤ 2τ(H/v) = τ2(H/v) ≤ x(V \ {v}) = x(V ) = τ2(H),

contradicting the fact that H is a counterexample. Similarly, if xv = 2, then x|V \{v}
is a 2-vertex cover of H \ v, and hence, since H \ v again satisfies (80.18):

(80.21) 2τ(H) ≤ 2τ(H\v)+2 = τ2(H\v)+2 ≤ x(V \{v})+2 = x(V ) = τ2(H),

again contradicting the fact that H is a counterexample.
This proves (80.19). Hence |E| ≥ 2 for each E ∈ E and we must show that

there is a vertex cover of size ≤ 1

2
|V |. By the minimality of x, there is an edge X

of size 2 (otherwise we can reset xv := 0 for some v ∈ V ), say X = {y, z}. Then
τ2(H \ {y, z}) ≤ |V | − 2 = τ2(H) − 2, and so, by the minimality of |V |:

(80.22) τ(H \ {y, z}) = 1

2
τ2(H \ {y, z}) ≤ 1

2
τ2(H) − 1 < τ(H) − 1,

and hence τ(H \ {y, z}) ≤ τ(H) − 2. Let U ⊆ V \ {y, z} be a minimum-size vertex
cover of H \ {y, z}. Since U ∪ {y} and U ∪ {z} are not vertex covers of H (since
τ(H) ≥ |U | + 2), there are edges Y and Z in H disjoint from U ∪ {z} and U ∪ {y}
respectively. As U ∪{y, z} does intersect all edges, we know y ∈ Y and z ∈ Z. Then
X, Y, Z contradict (80.18).

Condition (80.18) is closed under taking minors. The hypergraph ({1, 2}, {{1},
{2}, {1, 2}}) is the unique minor-minimal hypergraph violating (80.18).

80.7b. Application: T -joins and T -cuts

Let G = (V, E) be an undirected graph and let T ⊆ V with |T | even. Let C be
the collection of T -cuts. Then H = (E, C) is a binary hypergraph, and its blocker
consists of the minimal T -joins.

We will derive

(80.23) ν2(H) = 2τ(H), and ν(H) = τ(H) if G is bipartite,

from general hypergraph theory and from the result that

(80.24) ν2(H) = 2ν(H) if G is bipartite

(Seymour [1981d]).
We first give Seymour’s proof of (80.24). Let U1, . . . , Ut be subsets of V with

each |Ui ∩ T | odd such that each edge of G is in at most two of the δ(Ui) and such
that t = ν2(H). Such Ui exist by the definition of ν2(H). Choose them such that

(80.25)

t∑

i=1

|Ui||V \ Ui|

is as small as possible. Then the Ui are cross-free, that is, for all i, j = 1, . . . , t one
has

(80.26) Ui ⊆ Uj or Uj ⊆ Ui or Ui ∩ Uj = ∅ or Ui ∪ Uj = V .
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If this would not hold, we can replace Ui and Uj either by Ui ∩ Uj and Ui ∪ Uj (if
|Ui ∩Uj ∩T | is odd) or by Ui \Uj and Uj \Ui (otherwise), therewith decreasing the
sum (80.25) — a contradiction.

So (80.26) holds. By symmetry, we can assume that |Ui| ≤ |V \Ui| for each i. If
each Ui is a singleton, then the Ui form a 2-stable set in the subgraph G[T ] induced
by T , and hence G[T ] has a stable set of size at least 1

2
t (as G[T ] is bipartite). This

implies ν(H) ≥ 1

2
ν2(H).

If some Ui is a singleton and Ui = Uj for some j �= i, we can contract δ(Ui)
and obtain a bipartite graph G′ = (V ′, E′) and T ′ ⊆ V ′, and a 2-packing of T ′-cuts
of G′ of size t − 2. Hence, inductively, G′ has a packing of T -cuts of size at least
1

2
(t − 2). With δ(Ui) this gives a packing of T cuts in G, of size at least 1

2
t.

So we can assume that each singleton occurs at most once among the Ui and that
not each Ui is a singleton. Then we can assume that U1 is a minimal nonsingleton
set among the Ui. Let U2, . . . , Ur be the sets properly contained in U1. So U2, . . . , Ur

are singletons from T ∩ U1. Hence r − 1 ≤ |T ∩ U1|. As |T ∩ U1| is odd and G is
bipartite, there is a stable set S ⊆ T ∩ Ui with 2|S| ≥ |T ∩ Ui| + 1 ≥ r. Replacing
U1, . . . , Ur by twice the singletons from S, gives a 2-packing of t T -cuts with smaller
sum (80.25) — a contradiction. This proves (80.24).

Now (80.24) implies:

(80.27) ν4(H) = 2ν2(H) for any graph G.

Indeed, replace each edge by a path of length 2, thus obtaining the bipartite graph
G′ = (V ′, E′), with T ⊆ V ′. Let H ′ be the corresponding hypergraph of T -cuts.
Then by (80.24):

(80.28) ν4(H) = ν2(H
′) = 2ν(H ′) = 2ν2(H),

which is (80.27).
As the class of hypergraphs H obtained in this way from graphs is closed under

parallelization (since it corresponds to replacing edges by paths), Corollary 79.5a
then implies ν2(H) = τ2(H). Hence, with Theorem 80.2 we obtain ν2(H) = 2τ(H),
and, using (80.24), we have (80.23).

80.7c. Box-integrality of k · PH

A polyhedron P is called box-integer if for all c, d ∈ ZV , the polytope

(80.29) P ∩ {x ∈ R
V | d ≤ x ≤ c}

is integer. Gerards and Laurent [1995] showed that the following are equivalent for
any binary hypergraph H = (V, E), where PH is defined by (78.1):

(80.30) (i) k · PH is box-integer for each k ≥ 1;
(ii) k · PH is box-integer for some k ≥ 2;
(iii) H has no Q6 or b(Q6)

+ minor.

As in Section 80.4, the hypergraph H+ arises from a hypergraph H = (V, E) by
adding a new vertex, u say, and taking as edges all sets F ∪ {u} for F ∈ E .

This characterization extends results of Laurent and Poljak [1995b] for the
bipartite subgraph polytope.
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Matroids and multiflows

Corollary 80.1a gives a forbidden minor characterization of matroids for
which the corresponding generalization of the integer max-flow min-cut
theorem holds. Seymour [1981a] showed that several theorems on multi-
flows can be generalized similarly to the level of matroids. We give a survey
of these results, without proofs.

81.1. Multiflows in matroids

Let M = (E, I) be a matroid, let R ⊆ E, and let c : E → R+. Let CR be the
collection of circuits C of M with |C ∩ R| = 1.

The multiflow problem in M asks for a function y : CR → R+ satisfying

(81.1)
∑

C ∈ CR

e ∈ C

yC ≥ ce if e ∈ R,

∑

C ∈ CR

e ∈ C

yC ≤ ce if e ∈ E \ R.

We call any y satisfying (81.1) a multiflow in M (relative to R and c). So R
plays the role of the ‘demand edges’, and E \R the role of the ‘supply edges’.

The corresponding cut condition is:

(81.2) (cut condition) c(D ∩ R) ≤ c(D \ R) for each cocircuit D of M .

This condition is necessary for the existence of a multiflow y, since

(81.3) c(D∩R) ≤
∑

C∈CR

yC |C ∩D∩R| ≤
∑

C∈CR

yC |C ∩D \R| ≤ c(D \R).

Here we use that |C ∩ D| �= 1 for any circuit C and cocircuit D, implying
|C ∩ D ∩ R| ≤ |C ∩ D \ R| if |C ∩ R| = 1.

In this terminology, Corollary 80.1a can be formulated as:

(81.4) for each R ⊆ E with |R| = 1 and each c : E → Z+, the cut
condition implies the existence of an integer multiflow ⇐⇒ M
has no U2

4 or F ∗
7 minor.
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So Corollary 80.1a concerns integer 1-commodity flows in a matroid.
Let k ∈ Z+. Seymour [1981a] called a matroid M = (V, I) k-flowing if

(81.5) for each R ⊆ E with |R| ≤ k and for each c : E → R+, the cut
condition implies the existence of a multiflow y.

The matroid is integer k-flowing if for integer c we can take y integer.
As was the case for multiflows in graphs, the following Euler condition

(for c : E → Z+) will turn out to be helpful:

(81.6) (Euler condition) c(D) is even for each cocircuit D.

M is called k-cycling if

(81.7) for each R ⊆ E with |R| ≤ k and for each c : E → Z+, the cut
and Euler condition implies the existence of an integer multiflow
y.

For each k, there are the following direct implications:

(81.8) integer k-flowing =⇒ k-cycling =⇒ k-flowing.

As Seymour [1981a] showed, for each fixed k ≥ 2 the concepts of k-cycling
and k-flowing are equivalent.

M is called ∞-flowing, integer ∞-flowing, ∞-cycling, respectively, if M
is k-flowing, integer k-flowing, k-cycling, respectively, for each k. Seymour
[1981a] showed that the concepts of 4-flowing, 4-cycling, ∞-flowing, and ∞-
flowing are equivalent.

We will now discuss Seymour’s results in some greater detail.

81.2. Integer k-flowing

By definition, a matroid is integer 1-flowing if and only if M is Mengerian
(Section 80.6). Corollary 80.1a therefore characterizes integer 1-flowing ma-
troids, by forbidding U2

4 and F ∗
7 as minors.

Also for other values of k, a forbidden minor characterization of binary
integer k-flowing matroids is known. In fact, Seymour [1981a] proved that
for binary matroids, the concepts of integer ∞-flowing and integer 2-flowing
coincide:

Theorem 81.1. For any binary matroid M = (E, I) the following are equiv-
alent:

(81.9) (i) M is integer ∞-flowing, that is, for each R ⊆ E and each
c : E → Z+, the cut condition implies the existence of an
integer multiflow;

(ii) M is integer 2-flowing, that is, for each R ⊆ E with |R| ≤ 2
and each c : E → Z+, the cut condition implies the existence
of an integer multiflow;
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(iii) M has no M(K4) minor.

Restricted to graphic and cographic matroids, this bears upon series-
parallel graphs.

In Theorem 81.1, the implications (i)⇒(ii)⇒(iii) are easy. The proof of
(iii)⇒(i) is based on showing that each binary matroid without M(K4) minor
can be decomposed into matroids with at most 3 elements.

81.3. 1-flowing and 1-cycling

As before, for any matroid M = (V, I) and any v ∈ V , let HM,v be the
hypergraph on V \ {v} with edges all sets C \ {v}, where C is a circuit of M
containing v (like in Section 80.6). Then M is 1-flowing if and only if HM,v

is ideal for each v ∈ V (cf. Chapter 78). Since no forbidden minor charac-
terization of ideal hypergraphs is known, we cannot infer a characterization
of 1-flowing matroids. While the latter characterization yet might be easier
to prove, no such characterization is known. Similarly, no characterization
of 1-cycling matroids is known. Seymour [1981a] conjectures that for binary
matroids both concepts are equivalent; in fact, that for any binary matroid
M :

(81.10) (?) M is 1-cycling ⇐⇒ M is 1-flowing ⇐⇒ M has no AG(3,2),
T11, or T ∗

11 minor. (?)

Here T11 is the binary matroid represented by the 11 vectors in {0, 1}5 with
precisely 3 or 5 ones. Moreover, AG(3,2) is the matroid with 8 elements,
obtained from the 3-dimensional affine geometry over GF(2); equivalently,
AG(3,2) is the binary matroid represented by the columns of the matrix11:

(81.11)




1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0


.

The second equivalence in conjecture (81.10) is a consequence of Seymour’s
conjecture that O(K5), b(O(K5)), and F7 are the only binary minimally
nonideal hypergraphs.

81.4. 2-flowing and 2-cycling

The next theorem of Seymour [1981a] lifts Hu’s 2-commodity flow theorem
to matroids. It shows that for binary matroids, the concepts of 2-flowing and
2-cycling coincide.

11 Seymour [1981a] used the notation AG(2,3) instead of the (more standard) AG(3,2) (for
the 3-dimensional affine geometry over GF(2)).
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Theorem 81.2. For any binary matroid M = (E, I) the following are equiv-
alent:

(81.12) (i) M is 2-cycling, that is, for each R ⊆ E with |R| ≤ 2 and each
c : E → Z+, the Euler and cut conditions imply the existence
of an integer multiflow;

(ii) M is 2-flowing, that is, for each R ⊆ E with |R| ≤ 2 and
each c : E → R+, the cut condition implies the existence of a
multiflow;

(iii) M has no AG(3,2) or S8 minor.

Here S8 is the binary matroid represented by the columns of the matrix

(81.13)




1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 1


.

Since AG(3,2) and S8 are self-dual, this describes a self-dual property. These
matroids are nongraphic and (hence) noncographic. For graphic matroids,
Theorem 81.2 amounts to the results on 2-commodity flows described in
Chapter 71. For cographic matroids, it amounts to the theorem mentioned
in the Notes at the end of Section 71.3.

In Theorem 81.2, the implications (i)⇒(ii)⇒(iii) are easy. The proof of
(iii)⇒(i) is based on showing that each binary matroid without AG(3,2) or
S8 minor can be decomposed into regular matroids and copies of F7 and F ∗

7 .

81.5. 3-flowing and 3-cycling

Also the concepts of 3-flowing and 3-cycling are equivalent, as follows from
the following characterization, again of Seymour [1981a]:

Theorem 81.3. For any binary matroid M = (E, I) the following are equiv-
alent:

(81.14) (i) M is 3-cycling, that is, for each R ⊆ E with |R| ≤ 3 and each
c : E → Z+, the Euler and cut conditions imply the existence
of an integer multiflow;

(ii) M is 3-flowing, that is, for each R ⊆ E with |R| ≤ 3 and
each c : E → R+, the cut condition implies the existence of a
multiflow;

(iii) M has no F7, R10, or M(H6) minor.

Here H6 is the graph obtained from K3,3 by adding in each colour class
one additional edge.
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For graphic matroids, Theorem 81.3 gives a theorem on 3-commodity
flows. For cographic matroids, this gives nothing new compared with Theorem
81.4 below.

In Theorem 81.3, the implications (i)⇒(ii)⇒(iii) are easy. The proof of
(iii)⇒(i) is based on showing that each binary matroid without F7, R10, or
M(H6) minor, can be decomposed into cographic matroids and copies of
M(K5).

81.6. 4-flowing, 4-cycling, ∞-flowing, and ∞-cycling

Trivially, one has the implications:

(81.15) ∞-cycling =⇒ ∞-flowing =⇒ 4-flowing.

Seymour [1981a] showed that these implications can be reversed for binary
matroids, and gave the following characterization:

Theorem 81.4. For any binary matroid M = (E, I) the following are equiv-
alent:

(81.16) (i) M is ∞-cycling, that is, for each R ⊆ E and each c : E → Z+,
the Euler and cut conditions imply the existence of an integer
multiflow;

(ii) M is ∞-flowing, that is, is for each R ⊆ E and each c : E →
R+, the cut condition implies the existence of a multiflow;

(iii) M is 4-flowing, that is, for each R ⊆ E with |R| ≤ 4 and
each c : E → R+, the cut condition implies the existence of a
multiflow;

(iv) M has no F7, R10, or M(K5) minor.

The matroid R10 is the matroid on EK5 with all minimally nonempty
even cycles of K5 as circuits. (Equivalently, the circuits of R10 are the even
circuits of K5 and their complements.) An alternative characterization is that
R10 is the binary matroid represented by all vectors in {0, 1}5 with precisely
three 1’s. So R10 arises from T11 by deleting one element.

For graphic matroids, Theorem 81.4 implies Corollary 75.4d on multiflows
if the underlying graph added with the demand edges has no K5 minor. For
cographic matroids, this gives Theorem 29.2 that in bipartite graphs the
minimum-size of a T -join is equal to the maximum number of disjoint T -
cuts.

In Theorem 81.4, the implications (i)⇒(ii)⇒(iii)⇒(iv) are easy. The proof
of (iv)⇒(i) is based on showing that each binary matroid without F7, R10,
or M(K5) minor can be decomposed into cographic matroids and copies of
F ∗

7 and of M(V8) (Figure 3.2).
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Notes. Schwärzler and Sebő [1993] extended Theorem 81.4 so as to include
Karzanov’s Theorem 72.5 that characterizes when the K2,3-metric condition suf-
fices for the existence of a multiflow. Related work can also be found in Marcus and
Sebő [2001].

81.7. The circuit cone and cycle polytope of a matroid

Circuits in matroids generalize both circuits and cuts in graphs. Hence study-
ing the cone generated by the circuits in a matroid, bears on the circuit cone
of a graph considered in Section 29.7 (sums of circuits) and on the cut cone
of a graph considered in Section 75.7.

Studying the circuit cone of a matroid relates to multiflows, as it concerns
the question under which conditions equality holds in the inequalities (81.1).

Let M = (E, I) be a matroid. The circuit cone is the convex cone gen-
erated by the incidence vectors of the circuits. Each vector x in the circuit
cone satisfies:

(81.17) xe ≥ 0 for e ∈ E,
xf ≤ x(D \ {f}) for each cocircuit D and each f ∈ D.

Indeed, if x = χC for some circuit C, then

(81.18) x(D \ {f}) =
∑

C∈C

|(C ∩ D) \ {f}| ≥
∑

C∈C

|C ∩ {f}| = xf ,

since C ∩ D �= {f}.
Seymour [1981a] says that M has the sums of circuits property if the

circuit cone is determined by (81.17). He derived from Theorem 81.4 the
following characterization of this property:

Corollary 81.4a. For any matroid M the following are equivalent:

(81.19) (i) M has the sums of circuits property;
(ii) M is binary and ∞-flowing;
(iii) M is binary and has no F ∗

7 , R10, or M∗(K5) minor.

Since none of these forbidden minors are graphic, this generalizes Corol-
lary 29.2f (due to Seymour [1979b]). For cographic matroids, this generalizes
Corollary 75.4e.

The derivation of Corollary 81.4a from Theorem 81.4 is similar to the
derivation of Corollary 75.4e from Corollary 75.4d.

The cycle polytope of a binary matroid M = (E, I) is the convex hull of
the incidence vectors of cycles. (A cycle is the disjoint union of circuits.)

For each x in the cycle polytope the following is necessary:

(81.20) 0 ≤ xe ≤ 1 for each e ∈ E,
x(F ) − x(D \ F ) ≤ |F | − 1 for each cocircuit D and each

F ⊆ D with |F | odd.
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Barahona and Grötschel [1986] showed that Corollary 81.4a gives (in fact, is
equivalent to) the following cycle polytope result:

Corollary 81.4b. For any binary matroid M the following are equivalent:

(81.21) (i) the cycle polytope of M is determined by (81.20);
(ii) M is ∞-flowing;
(iii) M has no F ∗

7 , R10, or M∗(K5) minor.

The derivation of this from Corollary 81.4a is similar to the derivation of
Corollary 75.4f from Corollary 75.4e.

Barahona and Grötschel [1986] characterized adjacency and facets of the
cycle polytope of matroids with the sums of circuits property. Grötschel and
Truemper [1989] gave an alternative proof of Corollary 81.4b.

81.8. The circuit space and circuit lattice of a matroid

The circuit space and the circuit lattice of M = (E, I) are the linear space
and the lattice, respectively, generated by the incidence vectors of the circuits
of M .

Barahona and Grötschel [1986] showed that for any matroid M = (E, I),
a vector x ∈ RE belongs to the circuit space of M if and only if

(81.22) xe = 0 if e is a bridge; xe = xf if e and f are in series.

The proof is based on an idea of Seymour [1981a]. Necessity being direct,
we prove sufficiency, by induction on |E|. We may assume that M has no
bridges. For each series class P of M , the vector 1E\P belongs to the circuit
space of M \ P . (Here 1X denotes the all-one vector in RX .) This follows by
induction, as M \ P has no bridges. Hence 1E − χP belongs to the circuit
space of M . As this is true for each series class P , we have the theorem.

Now let M be binary. Then each vector x in the circuit lattice satisfies
(81.22) and the Euler condition:

(81.23) x(D) is even for each cocircuit D.

Lovász and Seress [1993] showed that for any binary matroid M this is enough
to characterize the circuit lattice if and only if M∗ has no restriction that
is a binary sum of copies of the Fano matroid F7. In particular, if M has
no F ∗

7 minor, then the circuit lattice is characterized by (81.22) and (81.23).
(Further work on this in Goddyn [1993], Lovász and Seress [1995], and Fleiner,
Hochstättler, Laurent, and Loebl [1999].)

81.9. Nonnegative integer sums of circuits

A necessary condition that a vector x is a nonnegative integer combination
of incidence vectors of circuits is that x is integer and satisfies the Euler
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condition (81.23). This is not sufficient, as is shown by the cycle matroid
M(P10) of the Petersen graph P10 (which is graphic, and hence has the
sums of circuits property): choose a perfect matching N in P10 and let x be
2 on the edges of N , and 1 on the other edges.

Fu and Goddyn [1999] characterized when this necessary condition is suf-
ficient, thus proving a conjecture of Seymour [1981a]:

Theorem 81.5. For any matroid M = (E, I) the following are equivalent:

(81.24) (i) each vector x ∈ ZE
+ satisfying (81.17) and (81.23) is a nonneg-

ative integer combination of incidence vectors of circuits;
(ii) M is binary and has no F ∗

7 , R10, M∗(K5), or M(P10) minor.

For graphic matroids, this reduces to Theorem 29.4 of Alspach, Goddyn,
and Zhang [1994], and for cographic matroids, results on the cut cone men-
tioned in Section 75.7.

The proof of Theorem 81.5 is by decomposing any matroid satisfying
(81.24)(ii) into graphic matroids without M(P10) minor (to which Theorem
29.4 applies), and copies of F7 and M∗(V8) (cf. Figure 3.2).

Goddyn [1993] conjectured (more strongly than Theorem 81.5) that for
each matroid without P10 minor, the circuits form a Hilbert base. However,
Laurent [1996b] showed that this is not true for M∗(K6).

A survey on this type of problems was given by Goddyn [1993].

81.10. Nowhere-zero flows and circuit double covers in

matroids

Let M = (E, I) be a binary matroid. A flow over GF(4) is a function f : E →
GF(4) with f(D) = 0 for each cocircuit D of M . The flow is nowhere-zero
if f(e) �= 0 for each e ∈ E. By linear algebra, each flow over GF(4) can be
decomposed as a sum of vectors α · χC , where α ∈ GF(4) and C is a circuit.

Seymour [1981c] proved that the 4-flow conjecture of Tutte [1966] (‘each
bridgeless graph without a Petersen graph minor has a nowhere-zero 4-flow’
— see Section 28.4) is equivalent to the following stronger conjecture, also
given by Tutte [1966]:

(81.25) (?) each bridgeless matroid without F ∗
7 , M∗(K5), or M(P10) mi-

nor has a nowhere-zero flow over GF(4). (?)

For graphic matroids, this clearly includes the 4-flow conjecture. For co-
graphic matroids, the existence of a nowhere-zero flow over GF(4) is equiv-
alent to the 4-vertex-colourability of the underlying graph G. By the four-
colour theorem and Wagner’s theorem (cf. Section 64.3b), any graph without
K5 minor is 4-vertex-colourable — so conjecture (81.25) includes this.

The existence of a nowhere-zero 4-flow is equivalent to the existence of
three cycles (= disjoint unions of circuits) that cover each e ∈ E precisely
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twice. Indeed, for each nonzero z ∈ GF(4), let Cz := {e ∈ E | f(e) �= z}.
Then the Cz are cycles as required, and the construction can be reversed.

Weaker is the concept of a circuit double cover in a binary matroid, which
is a family of circuits covering each element precisely twice. Trivially, each
bridgeless cographic matroid has a circuit double cover (just take all stars in
the corresponding (loopless) graph). The circuit double cover conjecture (cf.
Sections 29.8 and 38.8) asserts that also each bridgeless graphic matroid has
a circuit double cover. Jamshy and Tarsi [1989] proved that this conjecture
is equivalent to a generalization to matroids:

(81.26) (?) each bridgeless binary matroid without F ∗
7 minor has a circuit

double cover. (?)

The property of having a circuit double cover need not be closed under taking
deletions. So (81.26) gives no necessary and sufficient conditions. One may
not relax the condition in (81.26) to requiring that M is binary and 2 belongs
both to the circuit lattice and to the circuit cone, as is shown by the matroid
whose circuits are the even-size cuts of K12 (M. Laurent (cf. Goddyn [1993])).
This matroid M has an F ∗

7 minor, and hence does not contradict (81.26).
What has been proved by Jamshy and Tarsi [1989] is:

(81.27) each bridgeless binary matroid without F ∗
7 minor has a family of

circuits covering each element precisely four times.

This extends the corresponding result for graphic matroids of Bermond, Jack-
son, and Jaeger [1983].

More on nowhere-zero flows and circuit covers in matroids can be found
in Tarsi [1985,1986], Jamshy, Raspaud, and Tarsi [1987], and Jamshy and
Tarsi [1989].



Chapter 82

Covering and antiblocking in

hypergraphs

In this chapter we study the notions of stable set and edge cover in hyper-
graphs. These concepts are dual to those of matching and vertex cover, by
taking the dual hypergraph. Yet, the way we study them is not dual: the
classes of hypergraphs considered are closed under operations performed on
the vertex set (like contraction), while when dualizing the results obtained
above, would lead to operations on the edge set.
So, although several of the concepts considered in this chapter are just the
duals of concepts considered before, we do not dualize the way we studied
them above.
As it will turn out, the antiblocking analogues corresponding to the block-
ing concepts of ideal and Mengerian hypergraphs, all boil down to perfect
graph theory.

82.1. Elementary concepts

Let H = (V, E) be a hypergraph. A subset S of V is called stable if |F ∩S| ≤ 1
for each F ∈ E . An edge cover is a collection of edges covering V . So a stable
set of H can be considered as a matching of the dual hypergraph H∗, and an
edge cover of H as a vertex cover of H∗.

For any hypergraph H = (V, E), define

(82.1) α(H) := the maximum size of a stable set in H,
ρ(H) := the minimum size of an edge cover in H.

Determining these numbers is NP-complete, since finding a maximum-size
stable set or a minimum-size vertex cover in a graph can be easily reduced
to it.

There is the following straightforward inequality:

(82.2) α(H) ≤ ρ(H).

For any hypergraph H = (V, E), define

(82.3) Hmax := (V, {F ∈ E | there is no E ∈ E with E ⊃ F}) and
H↓ := (V, {F | there is an E ∈ E with E ⊇ F})
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So for any hypergraph, Hmax is a clutter. Moreover, we have α(H) =
α(Hmax) = α(H↓) and ρ(H) = ρ(Hmax) = ρ(H↓).

82.2. Fractional edge covers and stable sets

Let H = (V, E) be a hypergraph. A fractional stable set is a function x : V →
R+ satisfying

(82.4)
∑

v∈F

xv ≤ 1 for each F ∈ F .

A fractional edge cover is a function y : E → R+ satisfying

(82.5)
∑

F∋v

yF ≥ 1 for each v ∈ V .

(Here and below, F ranges over the edges of H.) Let α∗(H) denote the
maximum size of a fractional stable set and let ρ∗(H) denote the minimum
size of a fractional edge cover (where the size of a vector is the sum of its
components).

So ρ∗(H) can be described as

(82.6) ρ∗(H) = min{yT1 | y ∈ RE
+, yTM ≥ 1T},

where M is the E × V incidence matrix of H. Similarly,

(82.7) α∗(H) = max{1Tx | x ∈ RV
+, Mx ≤ 1}.

As these represent dual linear programs, this gives:

(82.8) ρ∗(H) = α∗(H).

82.3. k-edge covers and k-stable sets

Like in the blocking case, there is an alternative interpretation of the pa-
rameters ρ∗(H) and α∗(H). A k-stable set is a function x : V → Z+ such
that

(82.9)
∑

v∈F

xv ≤ k for each F ∈ F .

Let αk(H) denote the maximum size of a k-stable set. As 1-stable sets are
precisely the incidence vectors of the stable sets, α1(H) = α(H).

A k-edge cover is a function y : E → Z+ such that

(82.10)
∑

F∋v

yF ≥ k for each v ∈ V .
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Let ρk(H) denote the minimum size of a k-edge cover in H. The minimal 1-
edge covers are precisely the incidence vectors of the edge covers, and hence
ρ1(H) = ρ(H).

One easily checks that, for any k ∈ Z+:

(82.11) αk(H) ≤ ρk(H).

In fact, for each k ≥ 1:

(82.12) α(H) ≤
αk(H)

k
≤ α∗(H) = ρ∗(H) ≤

ρk(H)

k
≤ ρ(H).

Also one has (Lovász [1974]):

(82.13) ρ∗(H) = min
k

ρk(H)

k
= lim

k→∞

ρk(H)

k
.

Here the left-hand side equality holds as the minimum in (82.6) is attained
by a rational optimum solution y. The right-hand side equality follows from
Fekete’s lemma (Theorem 2.2), using the fact that for all k, l ≥ 1:

(82.14) ρk+l(H) ≤ ρk(H) + ρl(H),

since the sum of a k-edge cover and an l-edge cover is a k + l-edge cover.
Similarly we have:

(82.15) α∗(H) = max
k

αk(H)

k
= lim

k→∞

αk(H)

k
,

using (82.7) and the fact that for all k, l ≥ 1:

(82.16) αk+l(H) ≥ αk(H) + αl(H).

82.4. The antiblocker and conformality

For any hypergraph H = (V, E), the antiblocking hypergraph, or the an-
tiblocker, of H is the hypergraph a(H) with vertex set V and edges all in-
clusionwise maximal stable sets of H. So a(H) is a clutter, and α(H) =
rmax(a(H)) (=the maximum edge-size of a(H)).

In Section 77.6 we saw that for any clutter H we have b(b(H)) = H. A
similar duality phenomenon does not hold for antiblockers. For instance, for
the hypergraph H = K3 (with V := {1, 2, 3} and E := {{1, 2}, {1, 3}, {2, 3}})
one has a(H) = (V, {{1}, {2}, {3}}), and hence a(a(H)) = (V, {{1, 2, 3}}) �=
H.

However, by adding a further condition, we can restore this duality rela-
tion for the antiblocking operation. Call a hypergraph H = (V, E) conformal
if for each U ⊆ V :

(82.17) if each pair in U is contained in some edge of H, then U is con-
tained in some edge of H.
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So H is conformal ⇐⇒ Hmax is conformal ⇐⇒ H↓ is conformal. Moreover:

(82.18) H is conformal ⇐⇒ there exists a graph G on V such that Hmax

consists of the inclusionwise maximal cliques of G.

One may check that for each hypergraph H, the hypergraph a(H) is confor-
mal. Also:

Theorem 82.1. A hypergraph H is conformal if and only if a(a(H)) = Hmax.
In particular, if H is a conformal clutter, then a(a(H)) = H.

Proof. If H is conformal, there is a graph G on V such that Hmax is the
collection of inclusionwise maximal cliques of G. Then a(H) is the collection
of inclusionwise maximal stable sets of G. Hence a(a(H)) is the collection of
inclusionwise maximal cliques of G. So a(a(H)) = Hmax.

82.4a. Gilmore’s characterization of conformality

Conformality of hypergraphs has been characterized by Gilmore [1962] as follows:

Theorem 82.2. A hypergraph H = (V, E) is conformal if and only if V = ∪E and

for all E1, E2, E3 ∈ E there is an E ∈ E with

(82.19) E ⊇ (E1 ∩ E2) ∪ (E1 ∩ E3) ∪ (E2 ∩ E3).

Proof. Necessity follows from the definition of conformality, since any two vertices
in (E1 ∩ E2) ∪ (E1 ∩ E3) ∪ (E2 ∩ E3) are contained in some Ei.

To see sufficiency, suppose that the condition is satisfied, but that H is not
conformal. Let U be a minimal set such that any pair of vertices in U is contained
in some edge of H, but U is contained in no edge of H. So |U | ≥ 3. Choose distinct
u1, u2, u3 ∈ U and let Fi := U \{ui} for i = 1, 2, 3. By the minimality of U , each Fi

is contained in some edge, Ei say, of H. Now U = (F1 ∩F2)∪(F1 ∩F3)∪(F2 ∩F3) ⊆
(E1 ∩ E2) ∪ (E1 ∩ E3) ∪ (E2 ∩ E3). By the condition, the latter set is contained in
an edge of H, and hence also U is contained in an edge of H. This contradicts our
assumption.

As was noted by M. Conforti, Theorem 82.2 implies a polynomial-time test of
conformality of a hypergraph, if all maximal edges are given.

82.5. Perfect hypergraphs

We now define the antiblocking analogue of the blocking concept of ideal
hypergraph. A hypergraph H = (V, E) is called perfect, if

⋃
E = V and each

vertex of the polyhedron QH in RV determined by:

(82.20) (i) xv ≥ 0 for v ∈ V ,
(ii) x(F ) ≤ 1 for F ∈ E
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is integer. (Lovász [1972c] called a hypergraph H normal if its dual H∗ is
perfect.)

We first observe:

Theorem 82.3. A perfect hypergraph is conformal.

Proof. Suppose that H = (V, E) is perfect but not conformal. Let U be a
minimal subset of V such that any two vertices are contained in an edge of
H, but U is contained in no edge of H. So |U | ≥ 3 and U \ {u} is contained
in an edge of H, for each u ∈ U . Define z : V → R+ by:

(82.21) z :=
1

|U | − 1
χU .

Then z belongs to QH , and hence z is a convex combination of integer vectors
in QH . However, each integer vector x satisfies x(U) ≤ 1 (since x(U \{u}) ≤ 1
for each u ∈ U and since |U | ≥ 3). As z(U) = |U |/(|U | − 1) > 1, this is a
contradiction.

Note that each integer vector in QH is a 0,1 vector, and hence is the
incidence vector of a stable set of H. So H is perfect if and only if QH is
the convex hull of the incidence vectors of stable sets of H. By the theory of
antiblocking polyhedra, this implies that if H is perfect, then each vertex of
the polytope Qa(H), by definition determined by

(82.22) (i) xv ≥ 0 for v ∈ V ,
(ii) x(S) ≤ 1 for S ∈ a(H),

is integer — hence a(H) is perfect.
We cannot simply reverse this implication: if H is the complete graph K3,

then H is not perfect (as 1
2 · 1 is a noninteger vertex of QH), but a(H) is

perfect: its edges are all singleton vertices of K3.
However, if we require H to be conformal, the duality is restored (Fulk-

erson [1971a,1972a]):

Corollary 82.3a. A hypergraph H is perfect ⇐⇒ H is conformal and its
antiblocker a(H) is perfect.

Proof. If H is perfect, then H is conformal by Theorem 82.3. Moreover,
a(H) is perfect, by the theory of antiblocking polyhedra.

Conversely, if a(H) is perfect, then a(a(H)) is perfect. As H is conformal,
H = a(a(H)), and hence H is perfect.

The following theorem implies that most of hypergraph theory related to
antiblocking boils down to the theory of perfect graphs (the ‘only if’ part is
due to Fulkerson [1972a] and the ‘if’ part to Lovász [1972c]):
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Corollary 82.3b. A hypergraph H = (V, E) is perfect if and only if Hmax

consists of the maximal cliques of some perfect graph G = (V, E).

Proof. To see necessity, as H is perfect, it is conformal, and hence Hmax

consists of the maximal cliques of some graph G = (V, E). Then G is a
perfect graph, by Corollary 65.2e.

To see sufficiency, if Hmax consists of the maximal cliques of a perfect
graph, then (82.20) has integer vertices (again by Corollary 65.2e) and hence
H is perfect.

Perfect hypergraphs can be characterized by a weaker, and also by
stronger, conditions than the definition. In the following corollary we collect
some of them (Fulkerson [1972a]: (iii)⇔(iv)⇔(v), Lovász [1972c]: (i)⇔(ii)⇔
(iv)⇔(vi), Lovász [1972a]: (i)⇔(viii), Berge [1973a]: (i)⇔(vii)).

Theorem 82.4. For any hypergraph H = (V, E) with
⋃

E = V the following
are equivalent, where M denotes the E × V incidence matrix of H:

(82.23) (i) Hmax consists of the maximal cliques of some perfect graph;
(ii) α(H ′) = ρ(H ′) for each contraction H ′ of H;
(iii) H is perfect, that is, {x ≥ 0 | Mx ≤ 1} is an integer polytope;
(iv) the system x ≥ 0, Mx ≤ 1 is totally dual integral;
(v) a(H) is perfect;
(vi) α∗(H ′) is an integer for each contraction H ′ of H;
(vii) ρ2(H

′) = 2ρ(H ′) for each contraction H ′ of H;
(viii) α(H ′)rmax(H

′) ≥ |V H ′| for each contraction H ′ of H.

Proof. The equivalence of (i) and (iii) is Corollary 82.3b. The equivalence
of (i), (iii), and (v) then follows from the perfect graph theorem (Corollary
65.2a). The implication (i)⇒(iv) follows from Corollary 65.2f. Since contrac-
tions of H correspond to taking induced subgraphs of G, the implication
(i)⇒(ii) is the definition of perfect graph. The implication (ii)⇒(viii) is di-
rect, as ρ(H ′)rmax(H

′) ≥ |V H ′| for any hypergraph H ′. The implications
(ii)⇒(vi) and (ii)⇒(vii) follow from (82.12). The implication (iv)⇒(iii) is
general polyhedral theory (Theorem 5.22).

So it suffices to show that each of (vi), (vii), and (viii) implies (i). We first
show that each of (vi), (vii), and (viii) implies that H is conformal.

Suppose that H is not conformal. Then there is a minimal subset U of V
such that each pair in U is covered by an edge of H, but U is not covered by
any edge of H. So |U | ≥ 3. Let H ′ be obtained from H by contracting V \U .

Then H ′ has a 2-edge cover of size 3 (taking U \ {u} for three vertices
u ∈ U), while ρ(H ′) ≥ 2, contradicting (vii). Moreover, α(H ′) = 1 and
rmax(H

′) = |U | − 1 < |U | = |V H ′|, contradicting (viii).
As U is contained in no edge of H, we know that α∗(H ′) ≥ |U |/(|U | − 1),

since (|U |−1)−1·1 is a fractional stable set of H ′. Also, α∗(H ′) ≤ |U |/(|U |−1),
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since for any fractional stable set x of H ′ we have x(U \ {u}) ≤ 1 for each
u ∈ U (as U \ {u} is contained in an edge of H), and hence

(82.24) x(U) =
1

|U | − 1

∑

u∈U

x(U \ {u}) ≤
|U |

|U | − 1
.

So α∗(H ′) is not an integer, contradicting (vi).
So each of (vi), (vii), and (viii) implies that H is conformal. Knowing

that H is conformal, let Hmax consist of the maximal cliques of a graph
G = (V, E). To show that H is perfect, it suffices to show that G is perfect if
(vi), (vii), or (viii) holds. This follows from Theorems 65.10, 65.11, and 65.2,
respectively (using that G is perfect if G is perfect, and that α∗(H) = χ∗(G)).

By definition, ‘perfect hypergraph’ is the antiblocking analogue of ‘ideal
hypergraph’. By Theorem 82.4, we know that the antiblocking analogue of
‘Mengerian hypergraph’ coincides with ‘perfect hypergraph’ (since (82.23)(iii)
and (iv) are equivalent). So perfect hypergraph theory reduces to perfect
graph theory, and minimally imperfect hypergraphs can be characterized with
the strong perfect graph theorem. We will not expand further on this but refer
to the chapters in Part VI on perfect graphs.

82.6. Further notes

82.6a. Some equivalences for the k-parameters

Let H = (V, E) be a hypergraph and let v ∈ V . Adding a serial vertex to v means
extending V by a new vertex v′ and replacing E by

(82.25) {E | v �∈ E ∈ E} ∪ {E ∪ {v′} | v ∈ E ∈ E}.

A hypergraph obtained from H by a sequence of contractions of vertices and adding
serial vertices, is called a serialization of H. If w : V → Z+ indicates the size of the
final series classes of the vertices, we denote the serialization by Hw. So contractions
are special cases of serializations and correspond to functions w : V → {0, 1}. In a
certain sense, also restrictions are special cases of parallelizations and correspond
to functions w : V → {1, ∞}.

Theorem 82.5. For any hypergraph H = (V, E) with ∪E = V and any k ∈ Z+, the

following are equivalent:

(82.26) (i) k · α∗(H ′) = αk(H ′) for each serialization H ′ of H;

(ii) k · α∗(H ′) is an integer for each serialization H ′ of H.

Proof. Similar to the proof of Theorem 78.3.

This is used in proving:
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Theorem 82.6. For any hypergraph H = (V, E) with ∪E = V and any k ∈ Z+, the

following are equivalent:

(82.27) (i) ρk(H ′) = αk(H ′) for each serialization H ′ of H;

(ii) k · ρ∗(H ′) = ρk(H ′) for each serialization H ′ of H;

(iii) ρ2k(H ′) = 2ρk(H ′) for each serialization H ′ of H.

Proof. Similar to the proof of Theorem 79.2.

Are Theorems 82.5 and 82.6 maintained if serializations are replaced by just
contractions? As we will see, this is the case for k = 2 and k = 3 but not for general
k.

As for k = 2, Lovász [1977b] showed:

Theorem 82.7. For any hypergraph H = (V, E) with ∪E = V the following are

equivalent:

(82.28) (i) α∗(H ′) = 1

2
α2(H

′) for each contraction H ′ of H;

(ii) α∗(H ′) ∈ 1

2
Z for each contraction H ′ of H.

Proof. The implication (i)⇒(ii) is trivial. To see the reverse implication, we can
assume that (ii) holds and that α∗(H ′) = 1

2
α2(H

′) for each contraction H ′ �= H of
H, while α∗(H) > 1

2
α2(H).

Since α∗(H) > 1

2
α2(H) and α∗(H) ∈ 1

2
Z, we know α∗(H) ≥ 1

2
α2(H) + 1

2
. Let

x be a fractional stable set of H of size α∗(H). Then for each v ∈ V , x|V \ {v} is a
fractional stable set of H/v, and so

(82.29) x(V \ {v}) ≤ α∗(H/v) = 1

2
α2(H/v) ≤ 1

2
α2(H) ≤ α∗(H) − 1

2
= x(V ) −

1

2
.

So xv ≥ 1

2
for each v ∈ V . Hence |F | ≤ 2 for each F ∈ E . So H is (essentially)

a graph, and hence α2(H) = ρ2(H) (by Corollary 30.9a). This implies α2(H) =
1

2
α∗(H).

As a consequence one has (Lovász [1975a]: (i)⇔(ii)):

Corollary 82.7a. For any hypergraph H = (V, E) with ∪E = V the following are

equivalent:

(82.30) (i) α2(H
′) = ρ2(H

′) for each contraction H ′ of H;

(ii) 2α∗(H ′) = ρ2(H
′) for each contraction H ′ of H;

(iii) ρ6(H
′) = 3ρ2(H

′) for each contraction H ′ of H.

Proof. The equivalence of (i) and (ii) follows directly from Theorem 82.7. Also the
implication (i)⇒(iii) is direct, since α2(H) ≤ 1

3
ρ6(H) ≤ ρ2(H) for any hypergraph

H.
To see (iii)⇒(i), let H = (V, E) be a counterexample with |V | minimal. So

ρ2(H
′) = α2(H

′) for each contraction H ′ �= H of H, and ρ6(H) = 3ρ2(H). If each
edge of H has size at most 2, then ρ2(H) = α2(H), by Corollary 30.9a. So H has
an edge F of size at least 3. Choose distinct v1, v2, v3 ∈ F . Then for each i = 1, 2, 3
we have;

(82.31) ρ2(H/vi) = α2(H/vi) ≤ α2(H) < ρ2(H).



1436 Chapter 82. Covering and antiblocking in hypergraphs

Hence ρ2(H/vi) ≤ ρ2(H) − 1.
For i = 1, 2, 3, let yi be a 2-edge cover of H/vi of size ρ2(H/vi). Then y1 + y2 +

y3 + 2χ{F} is a 6-edge cover of H of size

(82.32) ρ2(H/v1) + ρ2(H/v2) + ρ(H/v3) + 2 ≤ 3(ρ2(H) − 1) + 2 < 3ρ2(H).

This contradicts the fact that ρ6(H) = 3ρ2(H).

Lovász [1977b] showed that Theorem 82.7 also holds if we replace 2 by 3:

Theorem 82.8. For any hypergraph H = (V, E) with ∪E = V the following are

equivalent:

(82.33) (i) α∗(H ′) = 1

3
α3(H

′) for each contraction H ′ of H;

(ii) α∗(H ′) ∈ 1

3
Z for each contraction H ′ of H.

Proof. The implication (i)⇒(ii) being direct, we prove (ii)⇒(i). Let H = (V, E)
be a counterexample with |V | minimal. So α∗(H) ∈ 1

3
Z, α∗(H) > 1

3
α3(H), and

α∗(H ′) = 1

3
α3(H

′) for each contraction H ′ �= H of H. So α∗(H) ≥ 1

3
α3(H) + 1

3
.

Let x be a fractional stable set of H with x(V ) = α∗(H). Then for each v ∈ V ,
x|V \ {v} is a fractional stable set of H/v, and hence:

(82.34) x(V \ {v}) ≤ α∗(H/v) = 1

3
α3(H/v) ≤ 1

3
α3(H) ≤ α∗(H) − 1

3

= x(V ) − 1

3
.

So xv ≥ 1

3
for each v ∈ V . Therefore, |F | ≤ 3 for each F ∈ E . Let U be the union

of the edges of H of size 3. Then xv = 1

3
for each v ∈ U .

Let W := V \ U . Then the edges of H contained in W form a bipartite graph.
Otherwise, it contains an odd circuit C, and then H ′ := H/(V \ V C) satisfies
α∗(H ′) = 1

2
|V C|. So α∗(H ′) does not belong to 1

3
Z, a contradiction.

Let N be the set of vertices w in W for which there is a u ∈ U with {u, w} ∈ E .
Since x is a maximum-size fractional stable set of H and since xv = 1

3
for each v ∈ U ,

we know that x|W attains the maximum in the linear program of maximizing z(W )
over z ∈ RW satisfying

(82.35) 0 ≤ z(v) ≤ 1 for each v ∈ V ,
z(v) ≤ 2

3
for each v ∈ N ,

z(u) + z(v) ≤ 1 for each edge {u, v} ⊆ W of H.

Since the constraint matrix of this LP-problem is totally unimodular and since
the right-hand side is 1

3
-integer, there is a 1

3
-integer optimum solution z. We can

assume that x|W = z. So x ∈ 1

3
ZV , implying that 3x is a 3-stable set. Hence

α3(H) ≥ 3α∗(H), contradicting our assumption.

This implies (Lovász [1977b]):

Corollary 82.8a. For any hypergraph H = (V, E) with ∪E = V the following are

equivalent:

(82.36) (i) α3(H
′) = ρ3(H

′) for each contraction H ′ of H;

(ii) 3α∗(H ′) = ρ3(H
′) for each contraction H ′ of H.



Section 82.6b. Further notes 1437

Proof. Directly from Theorem 82.8.

Lovász [1977b] raised the question if in these results 3 can be replaced by
any arbitrary integer k. However, Schrijver and Seymour [1979] gave the following
example of a hypergraph H = (V, E) satisfying α60(H) < ρ60(H) while 60α∗(H ′) =
ρ60(H

′) for each contraction H ′ of H:

(82.37) V := {1, 2, 3, 4, 5, 6, 7}, E := {V \ {1, 2}, V \ {1, 3}, V \ {1, 4}, V \
{2, 3}, V \ {2, 4}, V \ {3, 4}, V \ {5}, V \ {6}, V \ {7}}.

To see that ρ60(H
′) = 60α∗(H ′) for each contraction H ′ of H, observe that if we

contract two of the vertices 1, 2, 3, 4 or one of the vertices 5, 6, 7, there is an edge
covering all vertices, and α = ρ follows. So by symmetry it suffices to show that
ρ60(H

′) = 60α∗(H ′) for H ′ := H and for H ′ := H/1.
The fractional stable set x of H/1 defined by x := 1

5
·1 shows that α∗(H/1) ≥ 6

5
.

Then the 5-edge cover y of H/1 defined by: y(V \ {1, i}) := 1 for i = 2, . . . , 7,
and y(E) := 0 for any other edge E of H/1, shows that ρ5(H/1) ≤ 6. Hence
ρ60(H/1) ≤ 12ρ5(H/1) ≤ 72 ≤ 60α∗(H/1).

Finally we consider H. Let x be the fractional stable set defined by:

(82.38) x(1) := x(2) := x(3) := x(4) := 1

8
, x(5) := x(6) := x(7) := 1

4
,

and let y be the fractional edge cover defined by:

(82.39) y(V \ {i, j}) := 1

12
for all 1 ≤ i < j ≤ 4 and y(V \ {i}) := 1

4
for

i = 5, 6, 7.

So x(V ) = 5

4
= y(E). Hence α∗(H) = 5

4
. However, x is the only fractional stable

set of size 5

4
. Indeed, for any fractional stable set x of size 5

4
one has x({i, j}) ≥ 1

4

for all 1 ≤ i < j ≤ 4 and x({i}) ≥ 1

4
for all 5 ≤ i ≤ 7. So x({5, 6, 7}) ≥ 3

4
, hence

x({1, 2, 3, 4}) ≤ 1

2
. Therefore, x({i}) = 1

4
for all 5 ≤ i ≤ 7 and x({i, j}) = 1

4
for all

1 ≤ i < j ≤ 4. This gives x({i}) = 1

8
for each 1 ≤ i ≤ 4.

As 60x �∈ Z, this shows that α60(H) < 60α∗(H).

82.6b. Further notes

The complete graphs show that ρ(H) cannot be bounded in terms of α(H). Ding,
Seymour, and Winkler [1994] showed that for each fixed k, ρ(H) is bounded by
a polynomial in α(H) if we restrict H to hypergraphs not having the complete
graph on k vertices as partial subhypergraph. Here, apartial subhypergraph arises
by deleting edges and contracting vertices.

A {0, ±1} matrix M is perfect if the polytope

(82.40) {x | 0 ≤ x ≤ 1, Mx ≤ 1 − b}

is integer, where b is the vector with bi equal to the number of −1’s in the ith row
of M . These matrices generalize the incidence matrices of perfect hypergraphs and
were studied by Conforti, Cornuéjols, and de Francesco [1997] (who gave a char-
acterization in terms of perfect graphs), Boros and Čepek [1997], Guenin [1998b],
and Tamura [2000].

An extension of the equivalence of (iii) and (iv) in Theorem 82.4 was proved by
Korach [1982]: Let M1 and M2 be integer matrices such that each row of M2 is a
nonnegative linear combination of rows of M1. Consider the system
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(82.41) M1x ≥ 0, M2x ≤ 1.

Then (82.41) is TDI if and only if M1x ≥ 0 is TDI and (82.41) determines an
integer polyhedron.

The intersection of the polyhedra made by perfect and ideal hypergraphs was
investigated by Sebő [1998]. Related results were given by Shepherd [1994a] and
Gasparyan [1998]. Monma and Trotter [1979] gave an alternative proof of the rela-
tion between perfect graphs and perfect hypergraphs.

Determining the stable set number α(H) of a hypergraph H is equivalent to the
vertex packing problem (equivalently, the set packing problem). In Section 64.9e
we gave further references for this problem. Determining the edge cover number
ρ(H) of H amounts to the set covering problem. This NP-complete problem is
studied by Lawler [1966], Roth [1969], Lemke, Salkin, and Spielberg [1971], Thiriez
[1971], Balas and Padberg [1972,1975a], Garfinkel and Nemhauser [1972b] (sur-
vey), Even [1973], Guha [1973], Salkin and Koncal [1973], Christofides and Kor-
man [1974], Fulkerson, Nemhauser, and Trotter [1974], Johnson [1974a], Gondran
and Laurière [1975], Lovász [1975c], Etcheberry [1977], Chvátal [1979], Padberg
[1979], Avis [1980a], Balas [1980], Balas and Ho [1980], Baker [1981], Bar-Yehuda
and Even [1981], Ho [1982], Hochbaum [1982,1983b], Lifschitz and Pittel [1983],
Vasko and Wilson [1984a,1984b], Beasley [1987,1990], Bertolazzi and Sassano [1987,
1988], Balas and Ng [1989a,1989b], Cornuéjols and Sassano [1989], Feo and Re-
sende [1989], Nobili and Sassano [1989,1992], Sassano [1989], Fisher and Kedia
[1990], Karmarkar, Resende, and Ramakrishnan [1991], El-Darzi and Mitra [1992],
Goldschmidt, Hochbaum, and Yu [1993], Khuller, Vishkin, and Young [1993,1994],
Lorena and Lopes [1994], Mannino and Sassano [1995], Halldórsson [1995,1996],
Caprara, Fischetti, and Toth [1996,1999], Feige [1996,1998], Duh and Fürer [1997],
Bar-Yehuda [2000], Halperin [2000,2002], and Holmerin [2002].

The related set partitioning problem was investigated by Garfinkel and Nemhau-
ser [1969], Michaud [1972], Marsten [1973], Nemhauser, Trotter, and Nauss [1973],
Gondran and Laurière [1974], Balas and Padberg [1975a,1975b,1976], Balas [1977],
Nemhauser and Weber [1979], Johnson [1980], Hwang, Sun, and Yao [1985], John
[1988], Fisher and Kedia [1990], El-Darzi and Mitra [1992], and Sherali and Lee
[1996].



Chapter 83

Balanced and unimodular

hypergraphs

In the preceding chapters we investigated conditions under which τ(H) =
ν(H) or α(H) = ρ(H) holds for all hypergraphs H obtained by deleting
or multiplying vertices of some hypergraph. Although these parameters
transfer to each other by taking the dual hypergraph, the study was un-
symmetric as we considered only deleting or multiplying of vertices, not of
edges. In the applications, generally the number of edges is exponentially
large in the number of vertices.
In the present chapter we study hypergraphs for which these equalities
hold in a symmetric fashion. This leads to the classes of balanced and
unimodular matrices.

83.1. Balanced hypergraphs

A 0,1 matrix M is called balanced if M has no submatrix which is the inci-
dence matrix of an odd circuit. A hypergraph H is balanced if its incidence
matrix is balanced.

Another way of characterizing balancedness of a hypergraph H = (V, E)
is by the associated bipartite graph G with colour classes V and E , and v ∈ V
and F ∈ E adjacent if and only if v ∈ F :

(83.1) H is balanced ⇐⇒ the length of each chordless circuit in G is a
multiple of 4.

The class of balanced hypergraphs is closed under taking ‘partial subhy-
pergraphs’. A partial hypergraph of a hypergraph H is a hypergraph (V, E ′)
with E ′ ⊆ E . A partial subhypergraph of H is a contraction of a partial hyper-
graph of H. So the incidence matrices of partial subhypergraphs of H arise by
deleting rows and columns of the incidence matrix of H. In this terminology,

(83.2) a hypergraph H is balanced ⇐⇒ H has no odd circuit as partial
subhypergraph.

Trivially, the dual of a balanced hypergraph is again balanced. Also, the class
of balanced hypergraphs is closed under contractions and restrictions. More
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generally, it is closed under parallelization and serialization. Hence also the
class of blockers of balanced hypergraphs is closed under parallelization and
serialization.

Note that for graphs (that is, hypergraphs with each edge of size 2),
balancedness coincides with bipartiteness.

In a deep theorem, Conforti, Cornuéjols, and Rao [1999] showed that bal-
ancedness of a hypergraph can be tested in polynomial time. The method is
based on decomposition of balanced matrices into totally unimodular matri-
ces. An outline of the method was given by Conforti and Cornuéjols [1990].
Related work is reported in Conforti, Cornuéjols, and Rao [1995].

83.2. Characterizations of balanced hypergraphs

Balanced hypergraphs can be characterized in several ways in terms of poly-
hedra and optimization, as in the following theorem. As before, the hyper-
graphs b(H) and a(H) denote the blocker and antiblocker of H, respectively.
(Berge and Las Vergnas [1970] proved (i)⇔(ii)⇔(iii) and Berge [1972] proved
(i)⇔(iv). Given the equivalence of (i) and (iii), the pluperfect graph theorem
of Fulkerson [1971a] implies the equivalence of (i), (iii), and (v) (conjectured
by Berge [1969]), since balancedness is closed under parallelization.)

Theorem 83.1. For any hypergraph H = (V, E), the following are equivalent:

(83.3) (i) H is balanced;
(ii) ν(H ′) = τ(H ′) for each partial subhypergraph H ′ of H;
(iii) α(H ′) = ρ(H ′) for each partial subhypergraph H ′ of H;
(iv) ν(b(H ′)) = rmin(H ′) for each partial subhypergraph H ′ of H;
(v) ρ(a(H ′)) = rmax(H

′) for each partial subhypergraph H ′ of H.

Proof. Each of (ii), (iii), (iv), (v) implies (i), since if H is not balanced, it has
a partial subhypergraph that is an odd circuit. It is easy to see that none of
(ii)-(v) hold for any odd circuit. To show the reverse implications, it suffices
to derive from (i) that each of the equalities holds for H ′ = H, since the class
of balanced matrices is closed under taking partial subhypergraphs.

We first show (i)⇒(ii). Since the class of balanced hypergraphs is closed
under parallelization, by Theorem 79.2 it suffices to show that ν2(H) =
2ν(H). Let y : E → Z+ be a 2-matching of size ν2(H). Let M := {E ∈
E | y(E) = 2} and F := {E ∈ E | y(E) = 1}. The dual of the hypergraph
(V, F) is a graph G, added with some edges of size ≤ 1. Since H is balanced,
G is bipartite. Let N be the largest of the two colour classes of G. Then
|N | ≥ 1

2 |F|, and hence M ∪ N is a matching of size ≥ 1
2ν2(H).

This shows (i)⇒(ii). By taking the dual of H, we see (i)⇒(iii). By Theo-
rem 82.4, (iii) implies that the maximal edges of H are the maximal cliques of
some perfect graph G on V . Then χ(G) = ω(G) implies ρ(a(H)) = rmax(H).

We finally show (i)⇒(iv). We first show that
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(83.4) the vertex set V of a balanced hypergraph H = (V, E) can be
partitioned into two sets, each intersecting each edge of size ≥ 2.

The proof is by induction on |V |. Let E be the collection of pairs in E . Then
the graph G = (V, E) contains a vertex u such that any two neighbours of
u belong to the same component of G − u. (This is true for any graph. To
see it, we can assume that G is connected. Then choose an arbitrary vertex
v and let u be a vertex at maximum distance from v.)

By induction, we can partition V \{u} into two sets V1, V2 each intersecting
each edge F of H with |F \ {u}| ≥ 2. Now any two neighbours of u in G are
connected by a path in G − u of even length, since G is bipartite (as H
is balanced). Hence the neighbours belong either all to V1 or all to V2. By
symmetry, we can assume that they all belong to V1. Then V1, V2 ∪ {u} is a
partition as required. This shows (83.4).

To show (i)⇒(iv), we prove ν(b(H)) = rmin(H), that is, the maximum
number of disjoint vertex covers of H is equal to the minimum edge size
r. This is shown by induction on |E|. Choose F ∈ E and define E ′ := E \
{F}. Then, by induction, the hypergraph (V, E ′) has r disjoint vertex covers
B1, . . . , Br. We can assume that they partition V . Choose B1, . . . , Br such
that a maximum number of the Bi intersect F .

If each Bi intersects F we are done, so we may assume that B1 ∩ F = ∅.
As |F | ≥ r, we can assume that |B2 ∩ F | ≥ 2. Now apply (83.4) to the
contraction H ′ of H to B1 ∪ B2. Then rmin(H ′) ≥ 2. So, by (83.4), B1 ∪ B2

can be partitioned into two vertex covers of H ′, hence of H. Replacing B1, B2

by B′
1, B

′
2 gives a partition of V into vertex covers of H ′ thereby increasing

the number of them intersecting F . This contradicts our assumption.

Since the incidence matrix of a bipartite graph is balanced, Theorem
83.1 generalizes several theorems of Kőnig, like Kőnig’s matching theorem
(Theorem 16.2), the Kőnig-Rado edge cover theorem (Theorem 19.4), and
Kőnig’s edge-colouring theorem (Theorem 20.1).

Theorem 83.1 implies some more extensive characterizations (cf. Fulker-
son, Hoffman, and Oppenheim [1974], Berge [1980]):

Corollary 83.1a. For any hypergraph H = (V, E), the following are equiva-
lent:

(83.5) (i) H is balanced;
(ii) τ∗(H ′) ∈ Z for each partial subhypergraph H ′ of H;
(iii) each partial hypergraph of H is ideal;
(iv) each partial hypergraph of H is Mengerian;
(v) the blocker of each partial hypergraph of H is Mengerian;
(vi) α∗(H ′) ∈ Z for each partial subhypergraph H ′ of H;
(vii) each partial hypergraph of H is perfect.
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Proof. We know the implications (iv)⇒(iii) (Section 79.1), (iii)⇒(ii) (Corol-
lary 78.4b), (vii)⇒(vi) (Theorem 82.4), and (v)⇒(iii) (Theorem 78.1). Since
the class of balanced hypergraphs is closed under parallelization, (i)⇒(ii)
and (i)⇒(iii) in Theorem 83.1 give (i)⇒(iv) and (i)⇒(vii) in (83.5). Also
the class of blockers of balanced hypergraphs is closed under parallelization
(as the class of balanced matrices is closed under duplicating columns); so
(i)⇒(iv) in Theorem 83.1 gives (i)⇒(v) in (83.5).

So it suffices to show (ii)⇒(i) and (vi)⇒(i). Suppose that H is not bal-
anced. Let U ⊆ V and E ′ ⊆ E induce a partial subhypergraph that is an odd
circuit. We can assume that U = V and E ′ = E . Then 1

2 · 1 is a minimum-
size vertex cover and a maximum-size stable set of H, and hence τ∗(H) and
α∗(H) are noninteger.

These characterizations imply that certain linear programs have integer
optimum solutions (taking ∞ · 0 = 0):

Corollary 83.1b. For any {0, 1}-valued m × n matrix M , the following are
equivalent:

(83.6) (i) M is balanced;
(ii) ∀b ∈ {1, ∞}m ∀w ∈ {0, 1}n : min{yTb | y ≥ 0, yTM ≥ wT}

has an integer optimum solution y;
(iii) ∀b ∈ {1, ∞}m ∀w ∈ Zn

+ : min{yTb | y ≥ 0, yTM ≥ wT} has
an integer optimum solution y;

(iv) ∀b ∈ Zm
+ ∀w ∈ {0, 1}n : min{yTb | y ≥ 0, yTM ≥ wT} has an

integer optimum solution y;
(v) ∀b ∈ {1, ∞}m ∀w ∈ {0, 1}n : max{wTx | x ≥ 0, Mx ≤ b} has

an integer optimum solution x;
(vi) ∀b ∈ {1, ∞}m ∀w ∈ Zn

+ : max{wTx | x ≥ 0, Mx ≤ b} has an
integer optimum solution x;

(vii) ∀b ∈ Zm
+ ∀w ∈ {0, 1}n : max{wTx | x ≥ 0, Mx ≤ b} has an

integer optimum solution x;
(viii) ∀b ∈ {0, 1}m ∀w ∈ {1, ∞}n : min{wTx | x ≥ 0, Mx ≥ b} has

an integer optimum solution x;
(ix) ∀b ∈ Zm

+ ∀w ∈ {1, ∞}n : min{wTx | x ≥ 0, Mx ≥ b} has an
integer optimum solution x.

(x) ∀b ∈ {0, 1}m ∀w ∈ Zn
+ : min{wTx | x ≥ 0, Mx ≥ b} has an

integer optimum solution x;
(xi) ∀b ∈ {0, 1}m ∀w ∈ {1, ∞}n : max{yTb | y ≥ 0, yTM ≤ wT}

has an integer optimum solution y;
(xii) ∀b ∈ Zm

+ ∀w ∈ {1, ∞}n : max{yTb | y ≥ 0, yTM ≤ wT} has
an integer optimum solution y;

(xiii) ∀b ∈ {0, 1}m ∀w ∈ Zn
+ : max{yTb | y ≥ 0, yTM ≤ wT} has

an integer optimum solution y.
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Proof. Observe that each of (ii)-(vii) is equivalent to each of (viii)-(xiii),
respectively, after replacing M by MT. The implications (iii)⇒(ii)⇒(i),
(iv)⇒(ii), (vi)⇒(v)⇒(i), and (vii)⇒(v) are direct. Here we use that (ii) and
(v) are closed under taking submatrices, and that the incidence matrix of an
odd circuit does not satisfy (ii) and (v) for b = 1 and w = 1.

Finally, (i)⇒(iii) and (i)⇒(vi) follow from (83.5)(i)⇒(vii), (i)⇒(x) (hence
(i)⇒(iv)) follows from (83.5)(i)⇒(iii), and (i)⇒(xiii) (hence (i)⇒(vii)) follows
from (83.5)(i)⇒(iv).

Berge [1970] gave the following further characterization:

(83.7) a hypergraph is balanced ⇐⇒ each partial subhypergraph is
bicolourable,

where a hypergraph is bicolourable if its vertex set can be coloured with two
colours such that each edge of size at least 2 gets both colours. While ⇐ in
(83.7) is easy, ⇒ can be shown with the proof of (83.4).

More generally, Theorem 83.1 gives the following generalization of Theo-
rem 20.6 for bipartite graphs (Berge [1973b]):

Corollary 83.1c. Let H = (V, E) be a balanced hypergraph and let k ∈ Z+.
Then V can be partitioned into V1, . . . , Vk such that each E ∈ E is intersected
by min{k, |E|} of the Vi.

Proof. Choose F ∈ E . By induction on |E|, there is a partition V1, . . . , Vk

of V such that each E ∈ E with E �= F is intersected by min{k, |E|} of the
Vi. Choose the partition such that F is intersected by a maximum number
of the Vi. If F is not intersected by min{k, |F |} of the Vi, there exist Vi, Vj

with Vi ∩ F = ∅ and |Vj ∩ F | ≥ 2. The hypergraph H ′ obtained from H by
contracting V \ (Vi ∪ Vj) and after that deleting all edges of size ≤ 1, has
rmin(H ′) ≥ 2. Hence by Theorem 83.1, ν(b(H ′)) ≥ 2, that is Vi ∪ Vj can be
partitioned into two vertex covers V ′

i and V ′
j of H ′. Then replacing Vi, Vj by

V ′
i , V ′

j increases the number of intersections with F , a contradiction.

Another consequence was given by Conforti, Cornuéjols, Kapoor, and
Vušković [1996]. Call a matching M in a hypergraph H = (V, E) perfect if M
covers all vertices — that is, if M is a partition of V .

Corollary 83.1d. Let H = (V, E) be a balanced hypergraph. Then H has
a perfect matching if and only if there are no disjoint vertex sets B, R with
|B| > |R| and |B ∩ E| ≤ |R ∩ E| for each E ∈ E.

Proof. Necessity is easy, since if M is a perfect matching, then

(83.8) |B| =
∑

E∈M

|B ∩ E| ≤
∑

E∈M

|R ∩ E| = |R|.
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To see sufficiency, let M be the E × V incidence matrix of H. Suppose that
H has no perfect matching. Since {y ≥ 0 | yTM ≤ 1T} is an integer polytope
(by (83.6)(xii)), it implies that there is no vector y ≥ 0 with yTM = 1T.
Hence, by Farkas’ lemma, there is an x with Mx ≥ 0 and 1Tx < 0. We can
assume −1 ≤ x ≤ 1. Set z := 1 − x. Then 0 ≤ z ≤ 2, Mz ≤ M1, and
1Tz > 1T1. By (83.6)(vii), applied to the balanced matrix

(83.9)

(
I
M

)
,

we can assume that z is integer. Hence we can assume that x is integer and
−1 ≤ x ≤ 1. Then B := {v ∈ V | xv = −1} and R := {v ∈ V | xv = +1}
contradict the condition of the corollary.

A combinatorial proof of this theorem was given by Huck and Triesch
[2002].

83.2a. Totally balanced matrices

A 0, 1 matrix is called totally balanced if it has no submatrix that is the incidence
matrix of a circuit of length at least 3. Obviously, each totally balanced matrix is
balanced.

Totally balanced matrices have several nice properties so as to apply ‘perfect
elimination’ and ‘greedy’ methods when solving optimization problems. They might
be considered as the bipartite analogue of chordal graphs.

Call a bipartite graph totally balanced (or chordal bipartite) if it has no chordless
circuit of length at least 6. So a 0, 1 matrix is totally balanced if and only if the
associated bipartite graph is totally balanced. (The bipartite graph associated to
an m × n matrix M is the bipartite graph with colour classes {u1, . . . , um} and
{v1, . . . , vn}, where ui and vj are adjacent if and only if Mi,j �= 0.)

The first important property of totally balanced matrices was found by Golumbic
and Goss [1978]. Call an entry Mi0,j0 of a {0, 1}-valued m × n matrix M simplicial

if

(83.10) (i) Mi0,j0 = 1,
(ii) for all i = 1, . . . , m and j = 1, . . . , n: if Mi0,j = Mi,j0 = 1, then

Mi,j = 1.

Theorem 83.2. Each nonzero totally balanced matrix M has a simplicial entry.

Proof. Let G = (V, E) be the bipartite graph associated to M , with colour classes
U and W . To prove that M has a simplicial entry, we must show that G has an
edge uw such that each vertex in N(u) is adjacent to each vertex in N(w).

We can assume that G is not a complete bipartite graph, since otherwise M
trivially has a simplicial entry. Choose an inclusionwise maximal nonempty set
X ⊆ V such that

(83.11) the subgraph G[X] of G induced by X is connected and G has an edge
disjoint from X ∪ N(X).
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Such a set X exists, since X := {u} satisfies (83.11) for any vertex u that is isolated
or (if no isolated vertices exist) any vertex u ∈ U nonadjacent to at least one vertex
in W .

Define Z := V \ (X ∪ N(X)). The maximality of X gives:

(83.12) each vertex y in N(X) is adjacent to one of the ends of any edge
contained in Z,

since otherwise we can add y to X without violating (83.11), contradicting the
maximality of X.

Also we have:

(83.13) each vertex in N(X) ∩ U is adjacent to each vertex in N(X) ∩ W .

For choose y ∈ N(X) ∩ U and z ∈ N(X) ∩ W . Let uw be an edge in Z, with u ∈ U
and w ∈ W . As G[X] is connected, there is a path P in G[X] connecting N(y) and
N(z). Choose P shortest. Then y, P, z, u, w, y is a circuit of length at least 6 in G.
Hence it has a chord. It cannot connect {u, w} and P , since u, w �∈ N(X). So it is
a chord of the path y, P, z. Since P is shortest, it follows that y and z are adjacent.
This proves (83.13).

Now by induction we know that Z contains an edge uw such that N({u, w})∩Z
induces a complete bipartite graph. Then (83.12) and (83.13) imply that N({u, w})
induces a complete bipartite graph.

Most of the properties of totally balanced matrices (including that described
in the theorem above, which however is used in the proof) follow from the next
theorem, saying that the rows and columns of a totally balanced matrix can be
permuted such that it has no submatrix

(83.14)

(
1 1
1 0

)

(in this order). Following Lubiw [1982], we call such a matrix Γ -free. In other words,
M is Γ -free if for all row indices i < i′ and column indices j < j′ one has

(83.15) if Mi,j = Mi′,j = Mi,j′ = 1, then Mi′,j′ = 1.

The following was shown by Hoffman, Kolen, and Sakarovitch [1985] and Lubiw
[1982]:

Theorem 83.3. The rows and columns of a totally balanced matrix M can be

permuted such that the matrix becomes Γ -free.

Proof. We apply induction on the number of nonzero entries of M . If M is all-zero,
the theorem is trivial. So we can assume that M has at least one nonzero entry. By
Theorem 83.2, M has a simplicial entry Mi0,j0 .

Reset Mi0,j0 to 0, to obtain matrix M̃ . Then M̃ is again totally balanced. For

suppose that M̃ has a submatrix C that is the incidence matrix of a circuit of length
≥ 3. Since M is totally balanced, C contains the entry M̃i0,j0 . Row i0 has two 1’s
in C and column j0 has two 1’s in C. Hence, by (83.10), C has a row with three
1’s, a contradiction.

So M̃ is totally balanced again. By induction, we can permute the rows and
columns of M̃ such that it becomes Γ -free. We can assume that entry M̃i0,j0 of M̃
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has moved to position i0, j0. We can also assume that among all valid permutations,
we have chosen one which minimizes i0 + j0. Then

(83.16) Mi,j0 = 0 for each i < i0 and Mi0,j = 0 for each j < j0.

For suppose that Mi,j0 = 1 for some i < i0. By the minimality of i0 + j0, we cannot

exchange rows i0 and i0 − 1 of M̃ without violating Γ -freeness. Hence there exist
j, j′ with j < j′ with Mi0,j = Mi0,j′ = 1 and Mi0−1,j = 1, Mi0−1,j′ = 0. Since
Mi0,j = Mi0,j′ = 1 and Mi,j0 = 1 we know by (83.10) that Mi,j = Mi,j′ = 1.

So i �= i0 − 1 and hence i < i0 − 1. But then Mi,j = Mi,j′ = Mi0−1,j = 1 while

Mi0−1,j′ = 0, contradicting the Γ -freeness of M̃ .
This proves (83.16). Then resetting the (i0, j0)th entry to its original value 1,

the matrix remains Γ -free (by (83.10) and (83.16)).

Call a hypergraph H = (V, E) totally balanced if its incidence matrix is totally
balanced. Call two sets X and Y comparable if X ⊆ Y or Y ⊆ X. Then (Brouwer
and Kolen [1980], Anstee and Farber [1984]):

Corollary 83.3a. Each totally balanced hypergraph H = (V, E) with V �= ∅, has a

vertex v such that any two edges containing v are comparable.

Proof. By Theorem 83.3, we can assume that the incidence matrix M of H is
Γ -free. Then the vertex of H corresponding to the first column of M is as required.

Other consequences of Theorem 83.3 are algorithmic. It gives a good characteri-
zation of total balancedness. In fact, the method gives a polynomial-time algorithm
to test total balancedness: we iteratively find a simplicial entry and set it to 0. If we
succeed in this until the matrix is all-zero, the original matrix is totally balanced,
and otherwise not.

Lubiw [1982] gave the following simple algorithm to permute the rows and
columns of a totally balanced matrix such that it becomes Γ -free. Iteratively, choose
a column j such that the supports of the rows with a 1 in column j form a chain,
and remove column j. The order in which we remove the columns, gives the permu-
tation of the columns. Next order the rows lexicographically (reading from right to
left). The final matrix is Γ -free. (Hoffman, Kolen, and Sakarovitch [1985] gave an
O(nm2)-time algorithm to transform a totally balanced m × n matrix to a Γ -free
matrix, speeded up by Paige and Tarjan [1987] and Spinrad [1993].)

Also, if A is a nonsingular matrix whose support is totally balanced, then we can
solve a system Ax = b of linear equalities with Gaussian elimination, by repeatedly
choosing a simplicial entry and pivoting on it. If we create no 0’s ‘by accident’,
then we can keep pivoting on simplicial entries throughout the process (since then
we never change any zero entry to nonzero). So if the initial matrix is sparse, it
remains sparse during the Gaussian elimination.

Lubiw [1982], Farber [1984], and Hoffman, Kolen, and Sakarovitch [1985] gave
polynomial-time algorithms for optimization problems over a totally balanced ma-
trix.

Call a hypergraph H = (V, E) a tree-hypergraph if V is the vertex set of a
tree T and each edge E ∈ E of H induces a subtree of T . Lehel [1985] showed
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that a hypergraph H is totally balanced if and only if each contraction of H is a
tree-hypergraph.

Lubiw [1982] showed that for any totally balanced hypergraph H = (V, E), its
intersection matrix (the {0, 1}-valued E × E matrix N with NE,E′ = 1 if and only
if E ∩ E′ �= ∅) is totally balanced.

Chvátal [1993] pointed out that a bipartite graph is totally balanced (≡ chordal
bipartite) if and only if its complementary graph is perfectly orderable (cf. Hoàng
[1996a]). More results on totally balanced matrices are reported by Golumbic [1980],
Lubiw [1982,1987], Anstee and Farber [1984], and Dragan and Voloshin [1996], and
applications by Tamir [1987].

83.2b. Examples of balanced hypergraphs

A graph G = (V, E) is balanced if and only if it is bipartite. This follows directly
from the definition of balancedness.

A second example was given by Frank [1977]. Let D = (V, A) be a rooted tree.
Let P1, . . . , Pm and Q1, . . . , Qn be directed paths in D. Define the m×n matrix M
by:

(83.17) Mi,j :=

{
1 if V Pi ∩ V Qj �= ∅,
0 otherwise,

for i = 1, . . . , m and j = 1, . . . , n. Then M is a balanced matrix, as one easily
checks. M need not be totally unimodular, as example (83.22) below shows. As
Lubiw [1982] observed, these matrices are even totally balanced. The fact that for
the corresponding hypergraphs α(H) = ρ(H) and (equivalently) ν(H) = τ(H) hold
was shown by Meir and Moon [1975]. Related results can be found in Slater [1977].

A third example was given by Giles [1978a]. Let G = (V, E) be an (undirected)
tree. For each a : V → Z+, define

(83.18) Uv := {u ∈ V | distG(v, u) ≤ av}.

Then (V, {Uv | v ∈ V }) is a balanced hypergraph. Lubiw [1982] showed that these
hypergraphs are in fact totally balanced.

83.2c. Balanced 0, ±1 matrices

Truemper [1982] extended the concept of balancedness to 0, ±1 matrices: A 0, ±1
matrix is balanced if in each square submatrix with precisely two nonzeros in each
row and in each column, the sum of the entries is a multiple of 4.

Most of the results described above for balanced 0, 1 matrices, can be extended
to 0, ±1 matrices. Conforti and Cornuéjols [1995b] showed that for any balanced
0, ±1 matrix M the following systems are TDI, and hence determine an integer
polytope:

(83.19) 0 ≤ x ≤ 1, Mx ≤ 1 − b,

and

(83.20) 0 ≤ x ≤ 1, Mx ≥ 1 − b,
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where b is the vector with bi equal to the number of negative entries in the ith row
of M . So balanced matrices are both perfect and ideal. By requiring this for each
submatrix, each of this characterizes balancedness.

Conforti and Cornuéjols [1995b] also proved a bicolouring theorem extending
Corollary 83.1c:

(83.21) the columns of a balanced 0, ±1 matrix M can be split into two sets
such that each row of M with at least two nonzeros, has nonzero entries
of the same sign in both sets, or of opposite signs in one of the two
sets.

Again, by requiring this for each submatrix, this characterizes balancedness.
Finally, the decomposition results and algorithms for balanced 0, 1 matrices

were extended to 0, ±1 matrices by Conforti, Cornuéjols, Kapoor, and Vušković
[1994,2001a,2001b]. For surveys, see Conforti, Cornuéjols, Kapoor, Vušković, and
Rao [1994], Conforti and Cornuéjols [2001], and Cornuéjols [2001].

83.3. Unimodular hypergraphs

A hypergraph H = (V, E) is called unimodular if its incidence matrix M is
totally unimodular; that is, each square submatrix of M has determinant 0,
+1, or −1.

Since the incidence matrix of an odd circuit has determinant ±2, each
unimodular hypergraph is balanced. Not every balanced hypergraph is uni-
modular, as is shown by the hypergraph with incidence matrix

(83.22)




1 1 1 1
1 1 0 0
1 0 1 0
1 0 0 1


 .

Trivially, the dual of a unimodular hypergraph is again unimodular. Also,
contracting vertices and deleting edges maintain unimodularity of a hyper-
graph.

For graphs (that is, hypergraphs with each edge of size 2), the concept of
unimodular coincides with bipartite.

Characterizations of totally unimodular matrices imply corresponding
characterizations of unimodular hypergraphs. We describe some of them in
the following theorem. (The equivalence of (i)-(vii) is due to Hoffman and
Kruskal [1956], characterization (viii) to Ghouila-Houri [1962b], characteri-
zation (ix) to Camion [1963,1965], and characterization (x) to R.E. Gomory
(cf. Camion [1965]).)

For the proof we refer to Chapter 19 of Schrijver [1986b].

Theorem 83.4. Let H = (V, E) be a hypergraph, with incidence matrix M .
Then the following are equivalent:
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(83.23) (i) H is unimodular, that is, each square submatrix of M has de-
terminant in {0, ±1};

(ii) for each b ∈ ZE
+, the polyhedron {x ≥ 0 | Mx ≤ b} is integer;

(iii) for each b ∈ RE
+, the system x ≥ 0, Mx ≤ b is totally dual

integral;
(iv) for each b ∈ ZE

+, the polyhedron {x ≥ 0 | Mx ≥ b} is integer;
(v) for each b ∈ RE

+, the system x ≥ 0, Mx ≥ b is totally dual
integral;

(vi) for all a, b ∈ ZE and c, d ∈ ZV , the polyhedron {x | c ≤ x ≤
d, a ≤ Mx ≤ b} is integer;

(vii) for all a, b ∈ RE and c, d ∈ RV , the system c ≤ x ≤ d, a ≤
Mx ≤ b is totally dual integral;

(viii) each U ⊆ V can be partitioned into sets U1 and U2 such that
each E ∈ E satisfies

∣∣|E ∩ U1| − |E ∩ U2|
∣∣ ≤ 1;

(ix) the sum of the entries in any square submatrix of M with even
row and column sums, is divisible by 4;

(x) no square submatrix of M has determinant ±2.

Proof. See Chapter 19 of Schrijver [1986b].

This implies a characterization similar to Corollary 83.1b:

Corollary 83.4a. For any {0, 1}-valued m × n matrix M , the following are
equivalent:

(83.24) (i) M is totally unimodular;
(ii) ∀b ∈ Zm

+ ∀w ∈ Zn
+ : min{yTb | y ≥ 0, yTM ≥ wT} has an

integer optimum solution y;
(iii) ∀b ∈ Zm

+ ∀w ∈ Zn
+ : max{wTx | x ≥ 0, Mx ≤ b} has an

integer optimum solution x;
(iv) ∀b ∈ Zm

+ ∀w ∈ Zn
+ : max{yTb | y ≥ 0, yTM ≤ wT} has an

integer optimum solution y;
(v) ∀b ∈ Zm

+ ∀w ∈ Zn
+ : min{wTx | x ≥ 0, Mx ≥ b} has an integer

optimum solution x.

Proof. From Theorem 83.4.

Unimodular hypergraphs have the following property stronger than was
shown for balanced hypergraphs in Corollary 83.1c:

Theorem 83.5. Let H = (V, E) be a unimodular matrix and let k ∈ Z+ with
k ≥ 1. Then V can be partitioned into sets V1, . . . , Vk such that

(83.25)
⌊ |E|

k

⌋
≤ |E ∩ Vi| ≤

⌈ |E|

k

⌉

for each E ∈ E and each i = 1, . . . , k.
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Proof. Choose F ∈ E . By induction, there is a partition V1, . . . , Vk as required
for the hypergraph H ′ := (V, E \ {F}). Choose the partition with

(83.26)
k∑

i=1

|F ∩ Vi|
2

as small as possible. Suppose that (83.25) does not hold for E := F . Then
there exist i and j such that

(83.27) |F ∩ Vi| ≥ |F ∩ Vj | + 2.

Consider the contraction of H to Vi ∪Vj . By (83.23)(viii), we can split Vi ∪Vj

into V ′
i and V ′

j such that
∣∣|E∩V ′

i |−|E∩V ′
j |

∣∣ ≤ 1 for each E ∈ E . So replacing
Vi, Vj by V ′

i , V ′
j gives again a valid partition, but decreases the sum (83.26),

a contradiction.

A basic theorem of Seymour [1980a] states that each totally unimodu-
lar matrix can be decomposed into network matrices, their transposes, and
two special 5 × 5 matrices. As J. Edmonds noted, it yields a polynomial-
time test of total unimodularity of matrices, and hence of unimodularity of
hypergraphs — Bixby [1982], Schrijver [1986b], and Truemper [1990,1992]
described implementations.

83.3a. Further notes

Truemper and Chandrasekaran [1978] proved the following characterization, that
includes the polyhedral characterizations of both the balanced and the totally uni-
modular matrices. For any pair of an {0, 1}-valued m × n matrix A and a vector
b ∈ Zn

+, the following are equivalent:

(83.28) (i) the polyhedron {x ≥ 0 | A′x ≤ d′} is integer for each row submatrix
A′ of A and each integer vector d′ with 0 ≤ d′ ≤ b′, where b′ is the
part of b corresponding to A′;

(ii) A has no square submatrix M with the following properties: det M =
±2, each entry of M−1 is ± 1

2
, and M1 ≤ 2b′, where b′ is the part

of b corresponding to M .

For b = 1 this characterizes balanced matrices. For b sufficiently large, it character-
izes total unimodularity. Related results can be found in Conforti, Cornuéjols, and
Truemper [1994] and Conforti, Cornuéjols, and Zambelli [2002a].

Conforti and Rao [1992c] reduced testing if a hypergraph is balanced, to testing
if some derived hypergraphs are perfect. Conforti and Rao [1993] gave a polynomial-
time algorithm to test if a given hypergraph H is balanced, provided that any two
edges of H intersect in at most one vertex. Related results can be found in Lubiw
[1988] and Conforti and Rao [1989,1992d].

Berge and Hoffman [1978] gave a formula for the minimum number of stable
vertex covers needed to cover the vertex set of a unimodular hypergraph. Dahlhaus,
Kratochvil, Manuel, and Miller [1997] described a polynomial-time algorithm to find
a maximum number of disjoint vertex covers of a balanced hypergraph.
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Conforti and Cornuéjols [1995a] applied balanced matrices to logic problems.
Conforti, Cornuéjols, and Vušković [1999] gave a linear-time algorithm to find a
chordless circuit in a bipartite graph of length ≡ 0 (mod 4).



Survey of Problems, Questions,

and Conjectures

We here collect unsolved problems, questions, and conjectures mentioned in

this book. For terminology and background, we refer to the pages indicated.

1 (page 41). Is NP�=P?

2 (page 42). Is P=NP∩co-NP?

3 (page 65). The Hirsch conjecture: A d-dimensional polytope with m facets
has diameter at most m − d.

4 (page 161). Is there an O(nm)-time algorithm for finding a maximum flow?

5 (page 232). Berge [1982b] posed the following conjecture generalizing the
Gallai-Milgram theorem. Let D = (V, A) be a digraph and let k ∈ Z+. Then
for each path collection P partitioning V and minimizing

(1)
∑

P∈P

min{|V P |, k},

there exist disjoint stable sets C1, . . . , Ck in D such that each P ∈ P intersects
min{|V P |, k} of them. This was proved by Saks [1986] for acyclic graphs.

6 (page 403). The following open problem was mentioned by Fulkerson
[1971b]: Let A and B be families of subsets of a set S and let w ∈ ZS

+.
What is the maximum number k of common transversals T1, . . . , Tk of A and
B such that

(2) χT1 + · · · + χTk ≤ w?

7 (page 459). Can the weighted matching problem be formulated as a linear
programming problem of size bounded by a polynomial in the size of the
graph, by extending the set of variables? That is, is the matching polytope
of a graph G = (V, E) equal to the projection of some polytope {x | Ax ≤ b}
with A and b having size bounded by a polynomial in |V | + |E|?

8 (pages 472,646). The 5-flow conjecture of Tutte [1954a]:

(3) (?) each bridgeless graph has a nowhere-zero 5-flow. (?)
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(A nowhere-zero k-flow is a flow over Zk in some orientation of the graph,
taking value 0 nowhere.)

9 (pages 472,498,645,1426). The 4-flow conjecture of Tutte [1966]:

(4) (?) each bridgeless graph without Petersen graph minor has a
nowhere-zero 4-flow. (?)

This implies the four-colour theorem. For cubic graphs, (4) was proved by
Robertson, Seymour, and Thomas [1997], Sanders, Seymour, and Thomas
[2000], and Sanders and Thomas [2000].

Seymour [1981c] showed that the 4-flow conjecture is equivalent to the
following more general conjecture, also due to Tutte [1966]:

(5) (?) each bridgeless matroid without F ∗
7 , M∗(K5), or M(P10) mi-

nor has a nowhere-zero flow over GF(4). (?)

Here P10 denotes the Petersen graph.

10 (page 472). The 3-flow conjecture (W.T. Tutte, 1972 (cf. Bondy and Murty
[1976], Unsolved problem 48)):

(6) (?) each 4-edge-connected graph has a nowhere-zero 3-flow. (?)

11 (page 473). The weak 3-flow conjecture of Jaeger [1988]:

(7) (?) there exists a number k such that each k-edge-connected graph
has a nowhere-zero 3-flow. (?)

12 (page 473). The following circular flow conjecture of Jaeger [1984] gener-
alizes both the 3-flow and the 5-flow conjecture:

(8) (?) for each k ≥ 1, any 4k-connected graph has an orientation
such that in each vertex, the indegree and the outdegree differ by
an integer multiple of 2k + 1. (?)

13 (pages 475,645). The generalized Fulkerson conjecture of Seymour [1979a]:

(9) (?) ⌈χ′∗(G)⌉ = ⌈ 1

2
χ′(G2)⌉ (?)

for each graph G. (Here χ′∗(G) denotes the fractional edge-colouring number
of G, and G2 the graph obtained from G by replacing each edge by two
parallel edges.) This is equivalent to the conjecture that

(10) (?) for each k-graph G there exists a family of 2k perfect match-
ings, covering each edge precisely twice. (?)

(A k-graph is a k-regular graph G = (V, E) with |δ(U)| ≥ k for each odd-size
subset U of V .)
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14 (pages 476,645). Fulkerson [1971a] asked if in each bridgeless cubic graph
there exist 6 perfect matchings, covering each edge precisely twice (the Fulk-

erson conjecture). It is a special case of Seymour’s generalized Fulkerson
conjecture.

15 (page 476). Berge [1979a] conjectures that the edges of any bridgeless
cubic graph can be covered by 5 perfect matchings. (This would follow from
the Fulkerson conjecture.)

16 (page 476). Gol’dberg [1973] and Seymour [1979a] conjecture that for each
(not necessarily simple) graph G one has

(11) (?) χ′(G) ≤ max{∆(G) + 1, ⌈χ′∗(G)⌉}. (?)

An equivalent conjecture was stated by Andersen [1977].

17 (page 476). Seymour [1981c] conjectures the following generalization of
the four-colour theorem:

(12) (?) each planar k-graph is k-edge-colourable. (?)

For k = 3, this is equivalent to the four-colour theorem. For k = 4 and k = 5,
it was derived from the case k = 3 by Guenin [2002b].

18 (pages 476,644). Lovász [1987] conjectures more generally:

(13) (?) each k-graph without Petersen graph minor is k-edge-colour-
able. (?)

This is equivalent to stating that the incidence vectors of perfect matchings
in a graph without Petersen graph minor, form a Hilbert base.

19 (page 481). The following question was asked by Vizing [1968]: Is there a
simple planar graph of maximum degree 6 and with edge-colouring number
7?

20 (page 481). Vizing [1965a] asked if a minimum edge-colouring of a graph
can be obtained from an arbitrary edge-colouring by iteratively swapping
colours on a colour-alternating path or circuit and deleting empty colours.

21 (page 482). Vizing [1976] conjectures that the list-edge-colouring number
of any graph is equal to its edge-colouring number.

(The list-edge-colouring number χl(G) of a graph G = (V, E) is the mini-
mum number k such that for each choice of sets Le for e ∈ E with |Le| = k,
one can select le ∈ Le for e ∈ E such that for any two incident edges e, f one
has le �= lf .)

22 (page 482). Behzad [1965] and Vizing [1968] conjecture that the total
colouring number of a simple graph G is at most ∆(G)+2. (The total colouring
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number of a graph G = (V, E) is a colouring of V ∪ E such that each colour
consists of a stable set and a matching, vertex-disjoint.)

23 (page 482). More generally, Vizing [1968] conjectures that the total colour-
ing number of a graph G is at most ∆(G) + µ(G) + 1, where µ(G) is the
maximum edge multiplicity of G.

24 (pages 497,645). Seymour [1979b] conjectures that each even integer vector
in the circuit cone of a graph is a nonnegative integer combination of incidence
vectors of circuits.

25 (pages 497,645,1427). A special case of this is the circuit double cover

conjecture (asked by Szekeres [1973] and conjectured by Seymour [1979b]):
each bridgeless graph has circuits such that each edge is covered by precisely
two of them.

Jamshy and Tarsi [1989] proved that the circuit double cover conjecture
is equivalent to a generalization to matroids:

(14) (?) each bridgeless binary matroid without F ∗
7 minor has a circuit

double cover. (?)

26 (page 509). Is the system of T -join constraints totally dual quarter-
integral?

27 (page 517). L. Lovász asked for the complexity of the following problem:
given a graph G = (V, E), vertices s, t ∈ V , and a length function l : E → Q

such that each circuit has nonnegative length, find a shortest odd s − t path.

28 (page 545). What is the complexity of deciding if a given graph has a
2-factor without circuits of length at most 4?

29 (page 545). What is the complexity of finding a maximum-weight 2-factor
without circuits of length at most 3?

30 (page 646). Tarsi [1986] mentioned the following strengthening of the
circuit double cover conjecture:

(15) (?) in each bridgeless graph there exists a family of at most 5
cycles covering each edge precisely twice. (?)

31 (page 657). Is the dual of any algebraic matroid again algebraic?

32 (page 892). A special case of a question asked by A. Frank (cf. Schrijver
[1979b], Frank [1995]) amounts to the following:

(16) (?) Let G = (V, E) be an undirected graph and let s ∈ V . Suppose
that for each vertex t �= s, there exist k internally vertex-disjoint
s−t paths. Then G has k spanning trees such that for each vertex
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t �= s, the s − t paths in these trees are internally vertex-disjoint.
(?)

(The spanning trees need not be edge-disjoint — otherwise G = K3 would
form a counterexample.) For k = 2, (16) was proved by Itai and Rodeh [1984,
1988], and for k = 3 by Cheriyan and Maheshwari [1988] and Zehavi and Itai
[1989].

33 (page 962). Can a maximum number of disjoint directed cut covers in a
directed graph be found in polynomial time?

34 (page 962). Woodall [1978a,1978b] conjectures (Woodall’s conjecture):

(17) (?) In a digraph, the minimum size of a directed cut is equal to
the maximum number of disjoint directed cut covers. (?)

35 (page 985). Let G = (V, E) be a complete undirected graph, and consider
the system

(18) 0 ≤ xe ≤ 1 for each edge e,
x(δ(v)) = 2 for each vertex v,
x(δ(U)) ≥ 2 for each U ⊆ V with ∅ �= U �= V .

Let l : E → R+ be a length function. Is the minimum length of a Hamiltonian
circuit at most 4

3
times the minimum value of lTx over (18)?

36 (page 990). Padberg and Grötschel [1985] conjecture that the diameter of
the symmetric traveling salesman polytope of a complete graph is at most 2.

37 (page 1076). Frank [1994a] conjectures:

(19) (?) Let D = (V, A) be a simple acyclic directed graph. Then
the minimum size of a k-vertex-connector for D is equal to the
maximum of

∑

v∈V max{0, k − degin(v)} and
∑

v∈V max{0, k −

degout(v)}. (?)

(A k-vertex-connector for D is a set of (new) arcs whose addition to D makes
it k-vertex-connected.)

38 (page 1087). Hadwiger’s conjecture (Hadwiger [1943]): If χ(G) ≥ k, then
G contains Kk as a minor.

Hadwiger’s conjecture is trivial for k = 1, 2, 3, was shown by Hadwiger
[1943] for k = 4 (also by Dirac [1952]), is equivalent to the four-colour theorem
for k = 5 (by a theorem of Wagner [1937a]), and was derived from the four-
colour theorem for k = 6 by Robertson, Seymour, and Thomas [1993]. For
k ≥ 7, the conjecture is unsettled.

39 (page 1099). Chvátal [1973a] asked if for each fixed t, the stable set prob-
lem for graphs for which the stable set polytope arises from P (G) by at most
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t rounds of cutting planes, is polynomial-time solvable. Here P (G) is the
polytope determined by the nonnegativity and clique inequalities.

40 (page 1099). Chvátal [1975b] conjectures that there is no polynomial p(n)
such that for each graph G with n vertices we can obtain the inequality
x(V ) ≤ α(G) from the system defining Q(G) by adding at most p(n) cutting
planes. Here Q(G) is the polytope determined by the nonnegativity and edge
inequalities. (This conjecture would be implied by NP�=co-NP.)

41 (page 1105). Gyárfás [1987] conjectures that there exists a function g :
Z+ → Z+ such that χ(G) ≤ g(ω(G)) for each graph G without odd holes.

42 (page 1107). Can perfection of a graph be tested in polynomial time?

43 (page 1131). Berge [1982a] conjectures the following. A directed graph D =
(V, A) is called α-diperfect if for every induced subgraph D′ = (V ′, A′) and
each maximum-size stable set S in D′ there is a partition of V ′ into directed
paths each intersecting S in exactly one vertex. Then for each directed graph
D:

(20) (?) D is α-diperfect if and only if D has no induced subgraph C

whose underlying undirected graph is a chordless odd circuit of
length ≥ 5, say with vertices v1, . . . , v2k+1 (in order) such that
each of v1, v2, v3, v4, v6, v8, . . . , v2k is a source or a sink. (?)

44 (page 1170). Is ϑ(Cn) = Θ(Cn) for each odd n?

45 (page 1170). Can Haemers’ bound η(G) on the Shannon capacity of a
graph G be computed in polynomial time?

46 (page 1187). Is every t-perfect graph strongly t-perfect?
Here a graph is t-perfect if its stable set polytope is determined by the

nonnegativity, edge, and odd circuit constraints. It is strongly t-perfect if this
system is totally dual integral.

47 (page 1195). T-perfection is closed under taking induced subgraphs and
under contracting all edges in δ(v) where v is a vertex not contained in a
triangle. What are the minimally non-t-perfect graphs under this operation?

48 (page 1242). For any k, let f(k) be the smallest number such that
in any f(k)-connected undirected graph, for any choice of distinct ver-
tices s1, t1, . . . , sk, tk there exist vertex-disjoint s1 − t1, . . . , sk − tk paths.
Thomassen [1980] conjectures that f(k) = 2k + 2 for k ≥ 2.

49 (page 1242). For any k, let g(k) be the smallest number such that
in any g(k)-edge-connected undirected graph, for any choice of vertices
s1, t1, . . . , sk, tk there exist edge-disjoint s1−t1, . . . , sk −tk paths. Thomassen
[1980] conjectures that g(k) = k if k is odd and g(k) = k + 1 if k is even.
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50 (page 1243). What is the complexity of the k arc-disjoint paths problem
in directed planar graphs, for any fixed k ≥ 2? This is even unknown for
k = 2, also if we restrict ourselves to two opposite nets.

51 (page 1274). Karzanov [1991] conjectures that if the nets in a multiflow
problem form two disjoint triangles and if the capacities and demands are
integer and satisfy the Euler condition, then the existence of a fractional
multiflow implies the existence of a half-integer multiflow.

52 (page 1274). The previous conjecture implies that for each graph H =
(T, R) without three disjoint edges, there is an integer k such that for each
graph G = (V, E) with V ⊇ T and any c : E → Z+ and d : R → Z+, if there
is a feasible multiflow, then there exists a 1

k
-integer multiflow.

53 (page 1276). Okamura [1998] conjectures the following. Let G = (V, E) be
an l-edge-connected graph (for some l). Let H = (T, R) be a ‘demand’ graph,
with T ⊆ V , such that dR(U) ≤ l for each U ⊆ V . Then the edge-disjoint
paths problem has a half-integer solution.

54 (page 1293). Is each Mader matroid a gammoid?

55 (page 1294). Is each Mader matroid linear?

56 (page 1299). Is the undirected edge-disjoint paths problem for planar
graphs polynomial-time solvable if all terminals are on the outer boundary?
Is it NP-complete?

57 (page 1310). Is the integer multiflow problem polynomial-time solvable if
the graph and the nets form a planar graph such that the nets are spanned
by a fixed number of faces?

58 (page 1310). Pfeiffer [1990] raised the question if the edge-disjoint paths
problem has a half-integer solution if the graph G + H (the union of the
supply graph and the demand graph) is embeddable in the torus and there
exists a quarter-integer solution.

59 (page 1320). Let G = (V, E) be a planar bipartite graph and let q be a
vertex on the outer boundary. Do there exist disjoint cuts C1, . . . , Cp such
that any pair s, t of vertices with s and t on the outer boundary, or with
s = q, is separated by distG(s, t) cuts?

60 (page 1345). Fu and Goddyn [1999] asked: Is the class of graphs for which
the incidence vectors of cuts form a Hilbert base, closed under taking minors?

61 (page 1382). Füredi, Kahn, and Seymour [1993] conjecture that for each
hypergraph H = (V, E) and each w : E → R+, there exists a matching M ⊆ E
such that
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(21)
∑

F∈M

(

|F | − 1 +
1

|F |

)

w(F ) ≥ ν∗
w(H),

where ν∗
w(H) is the maximum weight wTy of a fractional matching y : E →

R+.

62 (pages 1387,1408). Seymour [1981a] conjectures:

(22) (?) a binary hypergraph is ideal if and only if it has no O(K5),
b(O(K5)), or F7 minor. (?)

63 (page 1392). Seymour [1990b] asked the following. Suppose that H =
(V, E) is a hypergraph without Jn minor (n ≥ 3). Let l, w : V → Z+ be such
that

(23) τ(Hw) · τ(b(H)l) > lTw.

Is there a minor H ′ of H and l′, w′ : V H ′ → {0, 1} such that

(24) τ((H ′)w′

) · τ(b(H ′)l′) > l′
T
w′

and such that τ((H ′)w′

) ≤ τ(Hw) and τ(b(H ′)l′) ≤ τ(b(H)l)?
Here, for each n ≥ 3: Jn := the hypergraph with vertex set {1, . . . , n} and

edges {2, . . . , n}, {1, 2}, . . . , {1, n}.

64 (page 1392). Seymour [1990b] also asked the following. Let H = (V, E) be
a nonideal hypergraph. Is the minimum of τ(H ′) over all parallelizations and
minors H ′ of H with τ∗(H ′) < τ(H ′) attained by a minor of H?

65 (page 1395). Cornuéjols and Novick [1994] conjecture that there are only
finitely many minimally nonideal hypergraphs H with rmin(H) > 2 and
τ(H) > 2.

66 (page 1396). Ding [1993] asked whether there exists a number t such that
each minimally nonideal hypergraph H satisfies rmin(H) ≤ t or τ(H) ≤ t.

(The above conjecture of Cornuéjols and Novick [1994] implies a positive
answer to this question.)

67 (page 1396). Ding [1993] conjectures that for each fixed k ≥ 2, each
minor-minimal hypergraph H with τk(H) < k ·τ(H), contains some Jn minor
(n ≥ 3) or satisfies the regularity conditions of Lehman’s theorems (Theorem
78.4 and 78.5).

68 (page 1401). Conforti and Cornuéjols [1993] conjecture:

(25) (?) a hypergraph is Mengerian if and only if it is packing. (?)

69 (page 1401). Cornuéjols, Guenin, and Margot [1998,2000] conjecture:

(26) (?) each minimally nonideal hypergraph H with rmin(H)τ(H) =
|V H| + 1 is minimally nonpacking. (?)
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70 (page 1401). Cornuéjols, Guenin, and Margot [1998,2000] conjecture that
τ(H) = 2 for each ideal minimally nonpacking hypergraph H.

71 (page 1404). Seymour [1981a] conjectures that T30 is the unique minor-
minimal binary ideal hypergraph H with the property ν2(H) < 2τ(H).

Here the hypergraph T30 arises as follows. Replace each edge of the Pe-
tersen graph by a path of length 2, making the graph G. Let T := V G \ {v},
where v is an arbitrary vertex of v of degree 3. Let E be the collection of
T -joins. Then T30 := (EG, E).

72 (page 1405). P.D. Seymour (personal communication 1975) conjectures
that for each ideal hypergraph H there exists an integer k such that νk(H) =
k · τ(H) and such that k = 2i for some i. He also asks if k = 4 would do in
all cases.

73 (page 1405). Seymour [1979a] conjectures that for each ideal hypergraph
H, the g.c.d. of those k with νk(H) = k · τ(H) is equal to 1 or 2.

74 (page 1409). Is the following true for binary hypergraphs H:

(27) (?) ν(Hw) = τ(Hw) for each w : V → Z+ with w(B) even for all
B ∈ b(H) ⇐⇒ 1

2
ν2(H

w) = τ(Hw) for each w : V → Z+ ⇐⇒
H has no O(K5), b(O(K5)), F7, or T15 minor. (?)

Here T15 is the hypergraph of V P10-joins in the Petersen graph P10.

75 (page 1421). Seymour [1981a] conjectures that for any binary matroid M :

(28) (?) M is 1-cycling ⇐⇒ M is 1-flowing ⇐⇒ M has no AG(3,2),
T11, or T ∗

11 minor. (?)

Here T11 is the binary matroid represented by the 11 vectors in {0, 1}5 with
precisely 3 or 5 ones. Moreover, AG(3,2) is the matroid with 8 elements
obtained from the 3-dimensional affine geometry over GF(2).



Survey of Problems, Questions,

and Conjectures

We here collect unsolved problems, questions, and conjectures mentioned in

this book. For terminology and background, we refer to the pages indicated.

1 (page 41). Is NP�=P?

2 (page 42). Is P=NP∩co-NP?

3 (page 65). The Hirsch conjecture: A d-dimensional polytope with m facets
has diameter at most m − d.

4 (page 161). Is there an O(nm)-time algorithm for finding a maximum flow?

5 (page 232). Berge [1982b] posed the following conjecture generalizing the
Gallai-Milgram theorem. Let D = (V, A) be a digraph and let k ∈ Z+. Then
for each path collection P partitioning V and minimizing

(1)
∑

P∈P

min{|V P |, k},

there exist disjoint stable sets C1, . . . , Ck in D such that each P ∈ P intersects
min{|V P |, k} of them. This was proved by Saks [1986] for acyclic graphs.

6 (page 403). The following open problem was mentioned by Fulkerson
[1971b]: Let A and B be families of subsets of a set S and let w ∈ ZS

+.
What is the maximum number k of common transversals T1, . . . , Tk of A and
B such that

(2) χT1 + · · · + χTk ≤ w?

7 (page 459). Can the weighted matching problem be formulated as a linear
programming problem of size bounded by a polynomial in the size of the
graph, by extending the set of variables? That is, is the matching polytope
of a graph G = (V, E) equal to the projection of some polytope {x | Ax ≤ b}
with A and b having size bounded by a polynomial in |V | + |E|?

8 (pages 472,646). The 5-flow conjecture of Tutte [1954a]:

(3) (?) each bridgeless graph has a nowhere-zero 5-flow. (?)
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(A nowhere-zero k-flow is a flow over Zk in some orientation of the graph,
taking value 0 nowhere.)

9 (pages 472,498,645,1426). The 4-flow conjecture of Tutte [1966]:

(4) (?) each bridgeless graph without Petersen graph minor has a
nowhere-zero 4-flow. (?)

This implies the four-colour theorem. For cubic graphs, (4) was proved by
Robertson, Seymour, and Thomas [1997], Sanders, Seymour, and Thomas
[2000], and Sanders and Thomas [2000].

Seymour [1981c] showed that the 4-flow conjecture is equivalent to the
following more general conjecture, also due to Tutte [1966]:

(5) (?) each bridgeless matroid without F ∗
7 , M∗(K5), or M(P10) mi-

nor has a nowhere-zero flow over GF(4). (?)

Here P10 denotes the Petersen graph.

10 (page 472). The 3-flow conjecture (W.T. Tutte, 1972 (cf. Bondy and Murty
[1976], Unsolved problem 48)):

(6) (?) each 4-edge-connected graph has a nowhere-zero 3-flow. (?)

11 (page 473). The weak 3-flow conjecture of Jaeger [1988]:

(7) (?) there exists a number k such that each k-edge-connected graph
has a nowhere-zero 3-flow. (?)

12 (page 473). The following circular flow conjecture of Jaeger [1984] gener-
alizes both the 3-flow and the 5-flow conjecture:

(8) (?) for each k ≥ 1, any 4k-connected graph has an orientation
such that in each vertex, the indegree and the outdegree differ by
an integer multiple of 2k + 1. (?)

13 (pages 475,645). The generalized Fulkerson conjecture of Seymour [1979a]:

(9) (?) ⌈χ′∗(G)⌉ = ⌈ 1

2
χ′(G2)⌉ (?)

for each graph G. (Here χ′∗(G) denotes the fractional edge-colouring number
of G, and G2 the graph obtained from G by replacing each edge by two
parallel edges.) This is equivalent to the conjecture that

(10) (?) for each k-graph G there exists a family of 2k perfect match-
ings, covering each edge precisely twice. (?)

(A k-graph is a k-regular graph G = (V, E) with |δ(U)| ≥ k for each odd-size
subset U of V .)
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14 (pages 476,645). Fulkerson [1971a] asked if in each bridgeless cubic graph
there exist 6 perfect matchings, covering each edge precisely twice (the Fulk-

erson conjecture). It is a special case of Seymour’s generalized Fulkerson
conjecture.

15 (page 476). Berge [1979a] conjectures that the edges of any bridgeless
cubic graph can be covered by 5 perfect matchings. (This would follow from
the Fulkerson conjecture.)

16 (page 476). Gol’dberg [1973] and Seymour [1979a] conjecture that for each
(not necessarily simple) graph G one has

(11) (?) χ′(G) ≤ max{∆(G) + 1, ⌈χ′∗(G)⌉}. (?)

An equivalent conjecture was stated by Andersen [1977].

17 (page 476). Seymour [1981c] conjectures the following generalization of
the four-colour theorem:

(12) (?) each planar k-graph is k-edge-colourable. (?)

For k = 3, this is equivalent to the four-colour theorem. For k = 4 and k = 5,
it was derived from the case k = 3 by Guenin [2002b].

18 (pages 476,644). Lovász [1987] conjectures more generally:

(13) (?) each k-graph without Petersen graph minor is k-edge-colour-
able. (?)

This is equivalent to stating that the incidence vectors of perfect matchings
in a graph without Petersen graph minor, form a Hilbert base.

19 (page 481). The following question was asked by Vizing [1968]: Is there a
simple planar graph of maximum degree 6 and with edge-colouring number
7?

20 (page 481). Vizing [1965a] asked if a minimum edge-colouring of a graph
can be obtained from an arbitrary edge-colouring by iteratively swapping
colours on a colour-alternating path or circuit and deleting empty colours.

21 (page 482). Vizing [1976] conjectures that the list-edge-colouring number
of any graph is equal to its edge-colouring number.

(The list-edge-colouring number χl(G) of a graph G = (V, E) is the mini-
mum number k such that for each choice of sets Le for e ∈ E with |Le| = k,
one can select le ∈ Le for e ∈ E such that for any two incident edges e, f one
has le �= lf .)

22 (page 482). Behzad [1965] and Vizing [1968] conjecture that the total
colouring number of a simple graph G is at most ∆(G)+2. (The total colouring
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number of a graph G = (V, E) is a colouring of V ∪ E such that each colour
consists of a stable set and a matching, vertex-disjoint.)

23 (page 482). More generally, Vizing [1968] conjectures that the total colour-
ing number of a graph G is at most ∆(G) + µ(G) + 1, where µ(G) is the
maximum edge multiplicity of G.

24 (pages 497,645). Seymour [1979b] conjectures that each even integer vector
in the circuit cone of a graph is a nonnegative integer combination of incidence
vectors of circuits.

25 (pages 497,645,1427). A special case of this is the circuit double cover

conjecture (asked by Szekeres [1973] and conjectured by Seymour [1979b]):
each bridgeless graph has circuits such that each edge is covered by precisely
two of them.

Jamshy and Tarsi [1989] proved that the circuit double cover conjecture
is equivalent to a generalization to matroids:

(14) (?) each bridgeless binary matroid without F ∗
7 minor has a circuit

double cover. (?)

26 (page 509). Is the system of T -join constraints totally dual quarter-
integral?

27 (page 517). L. Lovász asked for the complexity of the following problem:
given a graph G = (V, E), vertices s, t ∈ V , and a length function l : E → Q

such that each circuit has nonnegative length, find a shortest odd s − t path.

28 (page 545). What is the complexity of deciding if a given graph has a
2-factor without circuits of length at most 4?

29 (page 545). What is the complexity of finding a maximum-weight 2-factor
without circuits of length at most 3?

30 (page 646). Tarsi [1986] mentioned the following strengthening of the
circuit double cover conjecture:

(15) (?) in each bridgeless graph there exists a family of at most 5
cycles covering each edge precisely twice. (?)

31 (page 657). Is the dual of any algebraic matroid again algebraic?

32 (page 892). A special case of a question asked by A. Frank (cf. Schrijver
[1979b], Frank [1995]) amounts to the following:

(16) (?) Let G = (V, E) be an undirected graph and let s ∈ V . Suppose
that for each vertex t �= s, there exist k internally vertex-disjoint
s−t paths. Then G has k spanning trees such that for each vertex
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t �= s, the s − t paths in these trees are internally vertex-disjoint.
(?)

(The spanning trees need not be edge-disjoint — otherwise G = K3 would
form a counterexample.) For k = 2, (16) was proved by Itai and Rodeh [1984,
1988], and for k = 3 by Cheriyan and Maheshwari [1988] and Zehavi and Itai
[1989].

33 (page 962). Can a maximum number of disjoint directed cut covers in a
directed graph be found in polynomial time?

34 (page 962). Woodall [1978a,1978b] conjectures (Woodall’s conjecture):

(17) (?) In a digraph, the minimum size of a directed cut is equal to
the maximum number of disjoint directed cut covers. (?)

35 (page 985). Let G = (V, E) be a complete undirected graph, and consider
the system

(18) 0 ≤ xe ≤ 1 for each edge e,
x(δ(v)) = 2 for each vertex v,
x(δ(U)) ≥ 2 for each U ⊆ V with ∅ �= U �= V .

Let l : E → R+ be a length function. Is the minimum length of a Hamiltonian
circuit at most 4

3
times the minimum value of lTx over (18)?

36 (page 990). Padberg and Grötschel [1985] conjecture that the diameter of
the symmetric traveling salesman polytope of a complete graph is at most 2.

37 (page 1076). Frank [1994a] conjectures:

(19) (?) Let D = (V, A) be a simple acyclic directed graph. Then
the minimum size of a k-vertex-connector for D is equal to the
maximum of

∑

v∈V max{0, k − degin(v)} and
∑

v∈V max{0, k −

degout(v)}. (?)

(A k-vertex-connector for D is a set of (new) arcs whose addition to D makes
it k-vertex-connected.)

38 (page 1087). Hadwiger’s conjecture (Hadwiger [1943]): If χ(G) ≥ k, then
G contains Kk as a minor.

Hadwiger’s conjecture is trivial for k = 1, 2, 3, was shown by Hadwiger
[1943] for k = 4 (also by Dirac [1952]), is equivalent to the four-colour theorem
for k = 5 (by a theorem of Wagner [1937a]), and was derived from the four-
colour theorem for k = 6 by Robertson, Seymour, and Thomas [1993]. For
k ≥ 7, the conjecture is unsettled.

39 (page 1099). Chvátal [1973a] asked if for each fixed t, the stable set prob-
lem for graphs for which the stable set polytope arises from P (G) by at most
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t rounds of cutting planes, is polynomial-time solvable. Here P (G) is the
polytope determined by the nonnegativity and clique inequalities.

40 (page 1099). Chvátal [1975b] conjectures that there is no polynomial p(n)
such that for each graph G with n vertices we can obtain the inequality
x(V ) ≤ α(G) from the system defining Q(G) by adding at most p(n) cutting
planes. Here Q(G) is the polytope determined by the nonnegativity and edge
inequalities. (This conjecture would be implied by NP�=co-NP.)

41 (page 1105). Gyárfás [1987] conjectures that there exists a function g :
Z+ → Z+ such that χ(G) ≤ g(ω(G)) for each graph G without odd holes.

42 (page 1107). Can perfection of a graph be tested in polynomial time?

43 (page 1131). Berge [1982a] conjectures the following. A directed graph D =
(V, A) is called α-diperfect if for every induced subgraph D′ = (V ′, A′) and
each maximum-size stable set S in D′ there is a partition of V ′ into directed
paths each intersecting S in exactly one vertex. Then for each directed graph
D:

(20) (?) D is α-diperfect if and only if D has no induced subgraph C

whose underlying undirected graph is a chordless odd circuit of
length ≥ 5, say with vertices v1, . . . , v2k+1 (in order) such that
each of v1, v2, v3, v4, v6, v8, . . . , v2k is a source or a sink. (?)

44 (page 1170). Is ϑ(Cn) = Θ(Cn) for each odd n?

45 (page 1170). Can Haemers’ bound η(G) on the Shannon capacity of a
graph G be computed in polynomial time?

46 (page 1187). Is every t-perfect graph strongly t-perfect?
Here a graph is t-perfect if its stable set polytope is determined by the

nonnegativity, edge, and odd circuit constraints. It is strongly t-perfect if this
system is totally dual integral.

47 (page 1195). T-perfection is closed under taking induced subgraphs and
under contracting all edges in δ(v) where v is a vertex not contained in a
triangle. What are the minimally non-t-perfect graphs under this operation?

48 (page 1242). For any k, let f(k) be the smallest number such that
in any f(k)-connected undirected graph, for any choice of distinct ver-
tices s1, t1, . . . , sk, tk there exist vertex-disjoint s1 − t1, . . . , sk − tk paths.
Thomassen [1980] conjectures that f(k) = 2k + 2 for k ≥ 2.

49 (page 1242). For any k, let g(k) be the smallest number such that
in any g(k)-edge-connected undirected graph, for any choice of vertices
s1, t1, . . . , sk, tk there exist edge-disjoint s1−t1, . . . , sk −tk paths. Thomassen
[1980] conjectures that g(k) = k if k is odd and g(k) = k + 1 if k is even.
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50 (page 1243). What is the complexity of the k arc-disjoint paths problem
in directed planar graphs, for any fixed k ≥ 2? This is even unknown for
k = 2, also if we restrict ourselves to two opposite nets.

51 (page 1274). Karzanov [1991] conjectures that if the nets in a multiflow
problem form two disjoint triangles and if the capacities and demands are
integer and satisfy the Euler condition, then the existence of a fractional
multiflow implies the existence of a half-integer multiflow.

52 (page 1274). The previous conjecture implies that for each graph H =
(T, R) without three disjoint edges, there is an integer k such that for each
graph G = (V, E) with V ⊇ T and any c : E → Z+ and d : R → Z+, if there
is a feasible multiflow, then there exists a 1

k
-integer multiflow.

53 (page 1276). Okamura [1998] conjectures the following. Let G = (V, E) be
an l-edge-connected graph (for some l). Let H = (T, R) be a ‘demand’ graph,
with T ⊆ V , such that dR(U) ≤ l for each U ⊆ V . Then the edge-disjoint
paths problem has a half-integer solution.

54 (page 1293). Is each Mader matroid a gammoid?

55 (page 1294). Is each Mader matroid linear?

56 (page 1299). Is the undirected edge-disjoint paths problem for planar
graphs polynomial-time solvable if all terminals are on the outer boundary?
Is it NP-complete?

57 (page 1310). Is the integer multiflow problem polynomial-time solvable if
the graph and the nets form a planar graph such that the nets are spanned
by a fixed number of faces?

58 (page 1310). Pfeiffer [1990] raised the question if the edge-disjoint paths
problem has a half-integer solution if the graph G + H (the union of the
supply graph and the demand graph) is embeddable in the torus and there
exists a quarter-integer solution.

59 (page 1320). Let G = (V, E) be a planar bipartite graph and let q be a
vertex on the outer boundary. Do there exist disjoint cuts C1, . . . , Cp such
that any pair s, t of vertices with s and t on the outer boundary, or with
s = q, is separated by distG(s, t) cuts?

60 (page 1345). Fu and Goddyn [1999] asked: Is the class of graphs for which
the incidence vectors of cuts form a Hilbert base, closed under taking minors?

61 (page 1382). Füredi, Kahn, and Seymour [1993] conjecture that for each
hypergraph H = (V, E) and each w : E → R+, there exists a matching M ⊆ E
such that
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(21)
∑

F∈M

(

|F | − 1 +
1

|F |

)

w(F ) ≥ ν∗
w(H),

where ν∗
w(H) is the maximum weight wTy of a fractional matching y : E →

R+.

62 (pages 1387,1408). Seymour [1981a] conjectures:

(22) (?) a binary hypergraph is ideal if and only if it has no O(K5),
b(O(K5)), or F7 minor. (?)

63 (page 1392). Seymour [1990b] asked the following. Suppose that H =
(V, E) is a hypergraph without Jn minor (n ≥ 3). Let l, w : V → Z+ be such
that

(23) τ(Hw) · τ(b(H)l) > lTw.

Is there a minor H ′ of H and l′, w′ : V H ′ → {0, 1} such that

(24) τ((H ′)w′

) · τ(b(H ′)l′) > l′
T
w′

and such that τ((H ′)w′

) ≤ τ(Hw) and τ(b(H ′)l′) ≤ τ(b(H)l)?
Here, for each n ≥ 3: Jn := the hypergraph with vertex set {1, . . . , n} and

edges {2, . . . , n}, {1, 2}, . . . , {1, n}.

64 (page 1392). Seymour [1990b] also asked the following. Let H = (V, E) be
a nonideal hypergraph. Is the minimum of τ(H ′) over all parallelizations and
minors H ′ of H with τ∗(H ′) < τ(H ′) attained by a minor of H?

65 (page 1395). Cornuéjols and Novick [1994] conjecture that there are only
finitely many minimally nonideal hypergraphs H with rmin(H) > 2 and
τ(H) > 2.

66 (page 1396). Ding [1993] asked whether there exists a number t such that
each minimally nonideal hypergraph H satisfies rmin(H) ≤ t or τ(H) ≤ t.

(The above conjecture of Cornuéjols and Novick [1994] implies a positive
answer to this question.)

67 (page 1396). Ding [1993] conjectures that for each fixed k ≥ 2, each
minor-minimal hypergraph H with τk(H) < k ·τ(H), contains some Jn minor
(n ≥ 3) or satisfies the regularity conditions of Lehman’s theorems (Theorem
78.4 and 78.5).

68 (page 1401). Conforti and Cornuéjols [1993] conjecture:

(25) (?) a hypergraph is Mengerian if and only if it is packing. (?)

69 (page 1401). Cornuéjols, Guenin, and Margot [1998,2000] conjecture:

(26) (?) each minimally nonideal hypergraph H with rmin(H)τ(H) =
|V H| + 1 is minimally nonpacking. (?)
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70 (page 1401). Cornuéjols, Guenin, and Margot [1998,2000] conjecture that
τ(H) = 2 for each ideal minimally nonpacking hypergraph H.

71 (page 1404). Seymour [1981a] conjectures that T30 is the unique minor-
minimal binary ideal hypergraph H with the property ν2(H) < 2τ(H).

Here the hypergraph T30 arises as follows. Replace each edge of the Pe-
tersen graph by a path of length 2, making the graph G. Let T := V G \ {v},
where v is an arbitrary vertex of v of degree 3. Let E be the collection of
T -joins. Then T30 := (EG, E).

72 (page 1405). P.D. Seymour (personal communication 1975) conjectures
that for each ideal hypergraph H there exists an integer k such that νk(H) =
k · τ(H) and such that k = 2i for some i. He also asks if k = 4 would do in
all cases.

73 (page 1405). Seymour [1979a] conjectures that for each ideal hypergraph
H, the g.c.d. of those k with νk(H) = k · τ(H) is equal to 1 or 2.

74 (page 1409). Is the following true for binary hypergraphs H:

(27) (?) ν(Hw) = τ(Hw) for each w : V → Z+ with w(B) even for all
B ∈ b(H) ⇐⇒ 1

2
ν2(H

w) = τ(Hw) for each w : V → Z+ ⇐⇒
H has no O(K5), b(O(K5)), F7, or T15 minor. (?)

Here T15 is the hypergraph of V P10-joins in the Petersen graph P10.

75 (page 1421). Seymour [1981a] conjectures that for any binary matroid M :

(28) (?) M is 1-cycling ⇐⇒ M is 1-flowing ⇐⇒ M has no AG(3,2),
T11, or T ∗

11 minor. (?)

Here T11 is the binary matroid represented by the 11 vectors in {0, 1}5 with
precisely 3 or 5 ones. Moreover, AG(3,2) is the matroid with 8 elements
obtained from the 3-dimensional affine geometry over GF(2).
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[1990] J. Akiyama, V. Chvátal, Packing paths perfectly, Discrete Mathematics 85
(1990) 247–255. [1133]

[1985a] J. Akiyama, M. Kano, Almost-regular factorization of graphs, Journal of
Graph Theory 9 (1985) 123–128. [593]

[1985b] J. Akiyama, M. Kano, Factors and factorizations of graphs — a survey,
Journal of Graph Theory 9 (1985) 1–42. [431, 593]

[1999] D. Alevras, Small min-cut polyhedra, Mathematics of Operations Research
24 (1999) 35–49. [254]

[1996] K.S. Alexander, A conversation with Ted Harris, Statistical Science 11
(1996) 150–158. [166]

[1997] G. Alexe, E. Olaru, The strongly perfectness of normal product of t-perfect
graphs, Graphs and Combinatorics 13 (1997) 209–215. [1141, 1146]

[1984] I. Ali, D. Barnett, K. Farhangian, J. Kennington, B. Patty, B. Shetty, B.
McCarl, P. Wong, Multicommodity network problems: applications and
computations, IIE Transactions 16 (1984) 127–134. [1248]

[1978] A.I. Ali, R.V. Helgason, J.L. Kennington, H.S. Lall, Primal simplex net-
work codes: state-of-the-art implementation technology, Networks 8 (1978)
315–339. [196]

[1980] A. Ali, R. Helgason, J. Kennington, H. Lall, Computational comparison
among three multicommodity network flow algorithms, Operations Re-
search 28 (1980) 995–1000. [1248]



1468 References

[1991] F. Alizadeh, A sublinear-time randomized parallel algorithm for the maxi-
mum clique problem in perfect graphs, in: Proceedings of the Second Annual
ACM-SIAM Symposium on Discrete Algorithms, Association for Comput-
ing Machinery, New York, 1991, pp. 188–194. [1176]

[1995] F. Alizadeh, Interior point methods in semidefinite programming with ap-
plications to combinatorial optimization, SIAM Journal on Optimization
5 (1995) 13–51. [1176, 1348]

[1993] F. Alizadeh, A.V. Goldberg, Implementing the push-relabel method for
the maximum flow problem on a connection machine, in: Network Flows
and Matching — First DIMACS Implementation Challenge (D.S. Johnson,
C.C. McGeoch, eds.) [DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science 12], American Mathematical Society, Providence,
Rhode Island, 1993, pp. 65–95. [163]

[1966] M. Almond, An algorithm for constructing university timetables, The Com-
puter Journal 8 (1966) 331–340. [336]

[1990] N. Alon, Generating pseudo-random permutations and maximum flow al-
gorithms, Information Processing Letters 35 (1990) 201–204. [161]

[1993] N. Alon, Restricted colorings of graphs, in: Surveys in Combinatorics, 1993
(K. Walker, ed.) [London Mathematical Society Lecture Note Series. 187],
Cambridge University Press, Cambridge, 1993, pp. 1–33. [335]

[1998] N. Alon, The Shannon capacity of a union, Combinatorica 18 (1998) 301–
310. [1178]

[2000] N. Alon, A simple algorithm for edge-coloring bipartite multigraphs, pre-
print. [274]

[1991] N. Alon, Z. Galil, O. Margalit, On the exponent of the all pairs shortest
path problem, in: Proceedings 32nd Annual Symposium on Foundations
of Computer Science (32nd FOCS, San Juan, Puerto Rico, 1991), IEEE
Computer Society Press, Los Alamitos, California, 1991, pp. 569–575. [93,
113]

[1997] N. Alon, Z. Galil, O. Margalit, On the exponent of the all pairs shortest
path problem, Journal of Computer and System Sciences 54 (1997) 255–
262. [93, 113]

[1998] N. Alon, N. Kahale, Approximating the independence number via the ϑ-
function, Mathematical Programming 80 (1998) 253–264. [1103–1104]

[2002] N. Alon, M. Krivelevich, Testing k-colorability, SIAM Journal on Discrete
Mathematics 15 (2002) 211–227. [1104]

[2000] N. Alon, B. Sudakov, Bipartite subgraphs and the smallest eigenvalue,
Combinatorics, Probability & Computing 9 (2000) 1–12. [1348]

[2001] N. Alon, B. Sudakov, U. Zwick, Constructing worst case instances for
semidefinite programming based approximation algorithms, in: Proceed-
ings of the Twelfth Annual ACM-SIAM Symposium on Discrete Algorithms
(Washington, D.C., 2001), The Association for Computing Machinery, New
York, and Society for Industrial and Applied Mathematics, Philadelphia,
Pennsylvania, 2001, pp. 92–100. [1348]



References 1469

[2002] N. Alon, B. Sudakov, U. Zwick, Constructing worst case instances for
semidefinite programming based approximation algorithms, SIAM Jour-
nal on Discrete Mathematics 15 (2002) 58–72. [1348]

[1985] N. Alon, M. Tarsi, Covering multigraphs by simple circuits, SIAM Journal
on Algebraic and Discrete Methods 6 (1985) 345–350. [646]

[1994] B. Alspach, L. Goddyn, C.-Q. Zhang, Graphs with the circuit cover prop-
erty, Transactions of the American Mathematical Society 344 (1994) 131–
154. [497, 645, 1426]

[1993] B. Alspach, C.-Q. Zhang, Cycle covers of cubic multigraphs, Discrete Math-
ematics 111 (1993) 11–17. [497, 645–646]

[1936] F. Alt, Axiomatik der affinen Verknüpfungsbeziehungen, Ergebnisse eines
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[2000] A.A. Benczúr, D.R. Karger, Augmenting undirected edge connectivity in
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graphe, Journal de mathématiques pures et appliquées 52 (1973) 299–308.
[1217]

[1984] R. Bernstein, Shortest paths in undirected graphs with negative edges, in:
Proceedings of the Fifteenth Southeastern Conference on Combinatorics,
Graph Theory and Computing (Baton Rouge, Louisiana, 1984; F. Hoffman,
R.C. Mullin, K.B. Reid, R.G. Stanton, eds.) [Congressus Numerantium 43],
Utilitas Mathematica, Winnipeg, Manitoba, 1984, pp. 117–126. [517]

[1997] P. Bertolazzi, C. De Simone, A. Galluccio, A nice class for the vertex
packing problem, Discrete Applied Mathematics 76 (1997) 3–19. [1100]

[1987] P. Bertolazzi, A. Sassano, An O(mn) algorithm for regular set-covering
problems, Theoretical Computer Science 54 (1987) 237–247. [1438]

[1988] P. Bertolazzi, A. Sassano, A class of polynomially solvable set-covering
problems, SIAM Journal on Discrete Mathematics 1 (1988) 306–316. [1438]

[1990] A.A. Bertossi, S. Moretti, Parallel algorithms on circular-arc graphs, In-
formation Processing Letters 33 (1990) 275–281. [1100]

[1990] M.E. Bertschi, Perfectly contractile graphs, Journal of Combinatorial The-
ory, Series B 50 (1990) 222–230. [1124, 1150]

[1987] M. Bertschi, B.A. Reed, A note on even pairs, Discrete Mathematics 65
(1987) 317–318 [erratum: Discrete Mathematics 71 (1988) 187]. [1124]

[1981] D.P. Bertsekas, A new algorithm for the assignment problem, Mathematical
Programming 21 (1981) 152–171. [291]

[1985] D.P. Bertsekas, A unified framework for primal-dual methods in minimum
cost network flow problems, Mathematical Programming 32 (1985) 125–145.
[195]



References 1491

[1987] D.P. Bertsekas, The auction algorithm: a distributed relaxation method for
the assignment problem, Annals of Operations Research 14 (1987) 105–123.
[291]

[1991] D.P. Bertsekas, An auction algorithm for shortest paths, SIAM Journal on
Optimization 1 (1991) 425–447. [118]

[1992] D.P. Bertsekas, The auction algorithm for assignment and other network
flow problems: a tutorial, Interfaces 20 (1992) 133–149. [195, 291]

[1988] D.P. Bertsekas, J. Eckstein, Dual coordinate step methods for linear net-
work flow problems, Mathematical Programming 42 (1988) 203–243. [190,
291]

[1987] D.P. Bertsekas, P.A. Hosein, P. Tseng, Relaxation methods for network
flow problems with convex arc costs, SIAM Journal on Control and Opti-
mization 25 (1987) 1219–1243. [196]

[1988] D.P. Bertsekas, P. Tseng, Relaxation methods for minimum cost ordinary
and generalized network flow problems, Operations Research 36 (1988) 93–
114. [195–196]

[1992] P.P. Bhattacharya, L. Georgiadis, P. Tsoucas, Extended polymatroids:
properties and optimization, in: Integer Programming and Combinatorial
Optimization (Proceedings 2nd IPCO Conference, Pittsburgh, Pennsylva-
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[1992] R. Boppana, M.M. Halldórsson, Approximating maximum independent
sets by excluding subgraphs, BIT 32 (1992) 180–196. [1103–1104]
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Brno [Acta Societatis Scientiarum Naturalium Moravi[c]ae] 3 (1926) 37–58.
[50, 856, 859, 868, 871, 874]
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d’Études de Recherche Opérationnelle 5 (1963) 181–190. [1448]

[1965] P. Camion, Characterization of totally unimodular matrices, Proceedings
of the American Mathematical Society 16 (1965) 1068–1073. [1448]
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eds.) [Lecture Notes in Computer Science 1412], Springer, Berlin, 1998, pp.
126–136. [991]
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network], Èkonomika i Matematicheskie Metody 13 (1977) 143–151. [1287]
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[1973b] V. Chvátal, Edmonds polytopes and weakly Hamiltonian graphs, Mathe-
matical Programming 5 (1973) 29–40. [988]
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[1977] V. Chvátal, Determining the stability number of a graph, SIAM Journal
on Computing 6 (1977) 643–662. [1104]
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[1995] M. Conforti, G. Cornuéjols, M.R. Rao, Decomposition of wheel-and-par-
achute-free balanced bipartite graphs, Discrete Applied Mathematics 62
(1995) 103–117. [1440]
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graphs containing proper wheels, preprint, 2002. [1112]
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[1980b] G. Cornuéjols, W.R. Pulleyblank, Perfect triangle-free 2-matchings, Math-
ematical Programming Study 13 (1980) 1–7. [541, 544]
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[1900] R. Dedekind, Über die von drei Moduln erzeugte Dualgruppe, Mathema-
tische Annalen 53 (1900) 371–403 [reprinted in: Richard Dedekind Gesam-
melte mathematische Werke, Zweiter Band (R. Fricke, E. Noether, Ö. Ore,
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mizatsii [Russian; Studies in Discrete Optimization] (A.A. Fridman, ed.),
Izdatel’stvo “Nauka”, Moscow, 1976, pp. 333–348. [290]

[1974] E.A. Dinits, A.V. Karzanov, Ob èksponentsial’nŏı slozhnosti algoritmov
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Computing Machinery, New York, 1994, pp. 172–183. [1103]

[1996] U. Feige, J. Kilian, Zero knowledge and the chromatic number, in: Pro-
ceedings Eleventh Annual IEEE Conference on Computational Complexity
(Philadelphia, Pennsylvania, 1996; S. Homer, J.-Y. Cai, eds.), IEEE Com-
puter Society Press, Los Alamitos, California, 1996, pp. 278–287. [1103]

[1998a] U. Feige, J. Kilian, Heuristics for finding large independent sets, with ap-
plications to coloring semi-random graphs, in: Proceedings 39th Annual
Symposium on Foundations of Computer Science (39th FOCS, Palo Alto,
California, 1998), IEEE Computer Society Press, Los Alamitos, California,
1998, pp. 674–683. [1103–1104]

[1998b] U. Feige, J. Kilian, Zero knowledge and the chromatic number, Journal of
Computer and System Sciences 57 (1998) 187–199. [1103]

[2000] U. Feige, J. Kilian, Two-prover protocols—low error at affordable rates,
SIAM Journal on Computing 30 (2000) 324–346. [1103]

[2001] U. Feige, M. Langberg, Approximation algorithms for maximization prob-
lems arising in graph partitioning, Journal of Algorithms 41 (2001) 174–
211. [1348, 1351]

[2001] U. Feige, G. Schechtman, On the integrality ratio of semidefinite relax-
ations of MAX CUT, in: Proceedings of the 33rd Annual ACM Symposium
on Theory of Computing (33rd STOC, Hersonissos, Crete, 2001), The As-
sociation for Computing Machinery, New York, 2001, pp. 433–442. [1347]

[2002] U. Feige, G. Schechtman, On the optimality of the random hyperplane
rounding technique for MAX CUT, Random Structures & Algorithms 20
(2002) 403–440. [1347]
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An algorithm for finding shortest paths], in: Issledovaniya po Diskretnŏı
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SIAM Journal on Discrete Mathematics 10 (1997) 158–170. [1291]
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[1987] H. Gröflin, On switching paths polyhedra, Combinatorica 7 (1987) 193–204.
[1026]
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[1999] C.T. Hoàng, F. Maffray, M. Noy, A characterization of P4-indifference
graphs, Journal of Graph Theory 31 (1999) 155–162. [1146]
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[1989] C.T. Hoàng, N.V.R. Mahadev, A note on perfect orders, Discrete Mathe-
matics 74 (1989) 77–84. [1146]
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[Czech; On a minimal problem (from a letter to Mr Bor̊uvka)], Práce
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kovskom matematicheskom obshchestve) [Russian; My journey in science
(proposed report to the Moscow Mathematical Society)], Uspekhi Matem-
aticheskikh Nauk 42:2 (1987) 183–213 [English translation: Russian Math-
ematical Surveys 42:2 (1987) 233–270 [reprinted in: Functional Analysis,
Optimization, and Mathematical Economics, A Collection of Papers Ded-
icated to the Memory of Leonid Vital’evich Kantorovich (L.J. Leifman,
ed.), Oxford University Press, New York, 1990, pp. 8–45]; also in: L.V.
Kantorovich Selected Works Part I (S.S. Kutateladze, ed.), Gordon and
Breach, Amsterdam, 1996, pp. 17–54]. [366, 369–370]

[1949] L.V. Kantorovich, M.K. Gavurin, Primenenie matematicheskikh metodov
v voprosakh analiza gruzopotokov [Russian; The application of mathemati-
cal methods to freight flow analysis], in: Problemy povysheniya effectivnosti
raboty transporta [Russian; Collection of Problems of Raising the Efficiency
of Transport Performance], Akademiia Nauk SSSR, Moscow-Leningrad,
1949, pp. 110–138. [179, 370–371, 377]

[1999] M.-Y. Kao, T.-W. Lam, W.-K. Sung, H.-F. Ting, A decomposition theorem
for maximum weight bipartite matchings with applications to evolutionary
trees, in: Algorithms — ESA ’99 (Proceedings 7th Annual European Sym-
posium, Prague, 1999; J. Nes̆etr̆il, ed.) [Lecture Notes in Computer Science
1643], Springer, Berlin, 1999, pp. 438–449. [290]

[2001] M.-Y. Kao, T.-W. Lam, W.-K. Sung, H.-F. Ting, A decomposition theorem
for maximum weight bipartite matchings, SIAM Journal on Computing 31
(2001) 18–26. [290]

[1994] H. Kaplan, R. Shamir, The domatic number problem on some perfect graph
families, Information Processing Letters 49 (1994) 51–56. [1142]

[1994] A. Kapoor, On the Structure of Balanced Matrices and Perfect Graphs,
Ph.D. Thesis, Graduate School of Industrial Administration, Carnegie Mel-
lon University, Pittsburgh, Pennsylvania, 1994. [1112–1113]

[1996] S. Kapoor, On minimum 3-cuts and approximating k-cuts using cut trees,
in: Integer Programming and Combinatorial Optimization (Proceedings 5th
IPCO Conference, Vancouver, British Columbia, 1996; W.H. Cunningham,



1632 References

S.T. McCormick, M. Queyranne, eds.) [Lecture Notes in Computer Science
1084], Springer, Berlin, 1996, pp. 132–146. [254]

[2000] A. Kapoor, R. Rizzi, Edge-coloring bipartite graphs, Journal of Algorithms
34 (2000) 390–396. [334–335]

[1986] S. Kapoor, P.M. Vaidya, Fast algorithms for convex quadratic program-
ming and multicommodity flows, in: Proceedings of the Eighteenth Annual
ACM Symposium on Theory of Computing (18th STOC, Berkeley, Cali-
fornia, 1986), The Association for Computing Machinery, New York, 1986,
pp. 147–159. [195–196, 1248]

[1996] S. Kapoor, P.M. Vaidya, Speeding up Karmarkar’s algorithm for multi-
commodity flows, Mathematical Programming 73 (1996) 111–127. [1248]

[1979] C.H. Kappauf, G.J. Koehler, The mixed postman problem, Discrete Ap-
plied Mathematics 1 (1979) 89–103. [518]

[2002] G. Karakostas, Faster approximation schemes for fractional multicommod-
ity flow problems, in: Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (San Francisco, California, 2002), The
Association for Computing Machinery, New York, and Society for Indus-
trial and Applied Mathematics, Philadelphia, Pennsylvania, 2002, pp. 166–
173. [1247–1248]

[1976] I.A. Karapetyan, Kriticheskie i sushchestvennye rebra v sovershennykh
grafakh [Russian; Critical and essential edges in perfect graphs] Doklady
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graph], in: Trudy Tret’ĕı Zimnĕı Shkoly po Matematicheskomu Program-
mirovaniyu i Smezhiym Voprosam [Proceedings of the Third Winter School
on Mathematical Programming and Related Topics] (Drogobych, 1970),
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[1932] D. Kőnig, Über trennende Knotenpunkte in Graphen (nebst Anwendun-
gen auf Determinanten und Matrizen), Acta Litterarum ac Scientiarum
Regiae Universitatis Hungaricae Francisco-Josephinae, Sectio Scientiarum
Mathematicarum [Szeged] 6 (1932-34) 155–179. [142–146, 281–282, 322]
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Matematicko-Fyzikálny Časopis Slovenskej Akadémie Vied 9 (1959) 136–
159. [428, 430, 435]
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madaires des Séances de l’Académie des Sciences [Paris] Série A 270 (1970)
733–735. [702]

[1975a] M. Las Vergnas, A note on matchings in graphs, [Actes du Colloque sur
les graphes et les hypergraphes, Paris, 1974], Cahiers du Centre d’Études
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[1993] M. Lomonosov, A. Sebő, On the geodesic-structure of graphs: a polyhedral
approach to metric decomposition, in: Integer Programming and Combina-
torial Optimization (Proceedings 3rd IPCO Conference, Erice (Italy) 1993;
G. Rinaldi, L.A. Wolsey, eds.), CORE, Louvain-la-Neuve (Belgium), 1993,
pp. 221–234. [1345]

[1995] Z. Lonc, L.S. Zaremba, SPGC is true if it holds for all doubly short chord
graphs, Ulam Quarterly 3 (1995) 1–7. [1124]

[1977] J.Q. Longyear, Common transversals in partitioning families, Discrete
Mathematics 17 (1977) 327–329. [409]

[1952] F.M. Lord, Notes on a problem of multiple classification, Psychometrika
17 (1952) 297–304. [297]

[1994] L.A.N. Lorena, F.B. Lopes, A surrogate heuristic for set covering problems,
European Journal of Operational Research 79 (1944) 138–150. [1438]

[1966] L.-C. Lorentzen, Notes on Covering of Arcs by Nodes in an Undirected
Graph, Technical Report ORC 66-16, Operations Research Center, Univer-
sity of California, Berkeley, California, 1966. [1095]

[1982] E. Loukakis, C. Tsouros, Determining the number of internal stability of a
graph, International Journal of Computer Mathematics 11 (1982) 207–220.
[1104]

[1970a] L. Lovász, A generalization of Kőnig’s theorem, Acta Mathematica Acade-
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[1995] B. Novick, A. Sebő, On combinatorial properties of binary spaces, in: Inte-
ger Programming and Combinatorial Optimization (Proceedings 4th IPCO
Conference, Copenhagen, 1995; E. Balas, J. Clausen, eds.) [Lecture Notes
in Computer Science 920], Springer, Berlin, 1995, pp. 212–227. [1382]
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(Serie Nouă) Informatică 2 (1993) 45–59. [1124, 1146]

[1996] E. Olaru, The structure of imperfect critically strongly-imperfect graphs,
Discrete Mathematics 156 (1996) 299–302. [1145]

[1998] E. Olaru, On strongly stable graphs and some consequences for partition-
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rie Nouă) Informatică 7 (1998) 33–41. [1124]

[1992] E. Olaru, E. Mândrescu, S-strongly perfect Cartesian product of graphs,
Journal of Graph Theory 16 (1992) 297–303. [1133]

[1986a] E. Olaru, E. Mı̂ndrescu, On stable transversals and strong perfectness
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Matematický Časopis (Vydavatel’stvo Slovenskej Akadémie Vied) 22 (1972)
310–318. [430]
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[1987] A. Sebő, A quick proof of Seymour’s theorem on t-joins, Discrete Mathe-
matics 64 (1987) 101–103. [488]
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Mercado, eds.) [Lecture Notes in Computer Science 1412], Springer, Berlin,
1998, pp. 310–324. [196]

[1972] R. Tarjan, Depth-first search and linear graph algorithms, SIAM Journal
on Computing 1 (1972) 146–160. [90, 242–243, 248, 1037]

[1974a] R.E. Tarjan, A good algorithm for edge-disjoint branching, Information
Processing Letters 3 (1974) 51–53. [905, 918, 922]

[1974b] R.E. Tarjan, A note on finding the bridges of a graph, Information Pro-
cessing Letters 2 (1973-74) 160–161. [94]



1742 References

[1974c] R.E. Tarjan, Edge-Disjoint Spanning Trees, Dominators, and Depth-First
Search, Report STAN-CS-74-455, Computer Science Department, Stanford
University, Stanford, California, 1974. [922]

[1974d] R. Tarjan, Finding dominators in directed graphs, SIAM Journal on Com-
puting 3 (1974) 62–89. [89]

[1974e] R.E. Tarjan, Testing graph connectivity, in: Conference Record of Sixth
Annual ACM Symposium on Theory of Computing (6th STOC, Seattle,
Washington, 1974), The Association for Computing Machinery, New York,
1974, pp. 185–193. [136–139, 163, 264]

[1975] R.E. Tarjan, Efficiency of a good but not linear set union algorithm, Jour-
nal of the Association for Computing Machinery 22 (1975) 215–225. [421]

[1976] R.E. Tarjan, Edge-disjoint spanning trees and depth-first search, Acta In-
formatica 6 (1976) 171–185. [889–890, 922]

[1977] R.E. Tarjan, Finding optimum branchings, Networks 7 (1977) 25–35. [895,
902]

[1979] R.E. Tarjan, Applications of path compression on balanced trees, Journal
of the Association for Computing Machinery 26 (1979) 690–715. [865]

[1982] R.E. Tarjan, Sensitivity analysis of minimum spanning trees and shortest
path trees, Information Processing Letters 14 (1982) 30–33. [105, 118, 865]

[1983] R.E. Tarjan, Data Structures and Network Algorithms, Society for Indus-
trial and Applied Mathematics, Philadelphia, Pennsylvania, 1983. [49, 98,
103–104, 106, 119, 129, 163, 197, 270, 277, 377, 431, 856, 859, 864, 871]

[1984] R.E. Tarjan, A simple version of Karzanov’s blocking flow algorithm, Op-
erations Research Letters 2 (1984) 265–268. [155, 160]

[1985] R.E. Tarjan, Decomposition by clique separators, Discrete Mathematics 55
(1985) 221–232. [1131]

[1986] R.E. Tarjan, Algorithms for maximum network flow, [in: Netflow in Pisa
(G. Gallo, C. Sandi, eds.)] Mathematical Programming Study 26 (1986)
1–11. [163]

[1991] R.E. Tarjan, Efficiency of the primal network simplex algorithm for the
minimum-cost circulation problem, Mathematics of Operations Research
16 (1991) 272–291. [195]

[1997] R.E. Tarjan, Dynamic trees as search trees via Euler tours, applied to the
network simplex algorithm, Mathematical Programming 78 (1997) 169–177.
[163, 195]

[1977] R.E. Tarjan, A.E. Trojanowski, Finding a maximum independent set,
SIAM Journal on Computing 6 (1977) 537–546. [1104]

[1984] R.E. Tarjan, M. Yannakakis, Simple linear-time algorithms to test chordal-
ity of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic
hypergraphs, SIAM Journal on Computing 13 (1984) 566–579 [Addendum:
SIAM Journal on Computing 14 (1985) 254–255]. [1140]

[1895] G. Tarry, Le problème des labyrinthes, Nouvelles Annales de Mathémati-
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[1978] V.A. Trubin, Èffektivny̆ı algoritm dlya zadachi Webera s pryamougol’nŏı
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hen [Review 22-235], Mathematical Reviews 22 (1961) 41–42. [1087]

[1965a] W.T. Tutte, Lectures on matroids, Journal of Research National Bureau
of Standards Section B 69 (1965) 1–47 [reprinted in: Selected Papers of
W.T. Tutte, Vol. II (D. McCarthy, R.G. Stanton, eds.), Charles Babbage
Research Centre, St. Pierre, Manitoba, 1979, pp. 439–496]. [213–214, 672]

[1965b] W.T. Tutte, Menger’s theorem for matroids, Journal of Research National
Bureau of Standards Section B 69 (1965) 49–53. [720, 1416]

[1966] W.T. Tutte, On the algebraic theory of graph colorings, Journal of Combi-
natorial Theory 1 (1966) 15–50. [466, 472, 476, 498, 644–645, 1426, 1454]

[1967] W.T. Tutte, On even matroids, Journal of Research National Bureau of
Standards Section B 71 (1967) 213–214. [214]

[1971] W.T. Tutte, Introduction to the Theory of Matroids, American Elsevier,
New York, 1971. [672]

[1974] W.T. Tutte, Spanning subgraphs with specified valencies, Discrete Math-
ematics 9 (1974) 97–108 [reprinted in: Selected Papers of W.T. Tutte Vol-
ume II (D. McCarthy, R.G. Stanton, eds.), The Charles Babbage Research
Centre, St. Pierre, Manitoba, 1979, pp. 757–768]. [569, 574]

[1978] W.T. Tutte, The subgraph problem, in: Advances in Graph Theory (Pro-
ceedings Cambridge Combinatorial Conference, Cambridge, 1977; B. Bol-



References 1751

lobás, ed.) [Annals of Discrete Mathematics 3], North-Holland, Amster-
dam, 1978, pp. 289–295. [574, 591]

[1981] W.T. Tutte, Graph factors, Combinatorica 1 (1981) 79–97. [570]

[1984] W.T. Tutte, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1984.
[277, 431, 574]

[1963] H. Tu.y, Grafy i transportnye zadachi [Russian; Graphs and transportation
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[1998] A. Vesel, J. Žerovnik, The independence number of the strong product of
odd cycles, Discrete Mathematics 182 (1998) 333–336. [1171]

[1980] K. Vesztergombi, Some remarks on the chromatic number of the strong
product of graphs, Acta Cybernetica 4 (1980) 207–212. [1172]

[1981] K. Vesztergombi, Chromatic number of strong product of graphs, in: Al-
gebraic Methods in Graph Theory, Vol. II (Colloquium Szeged, 1978; L.
Lovász, V.T. Sós, eds.) [Colloquia Mathematica Societatis János Bolyai,
25], North-Holland, Amsterdam, 1981, pp. 819–825. [1172]

[1978a] K. Vidyasankar, Covering the edge set of a directed graph with trees, Dis-
crete Mathematics 24 (1978) 79–85. [911, 913]

[1978b] K. Vidyasankar, Minimum strong cover in circuit-balanced graphs, Utilitas
Mathematica 14 (1978) 287–303. [959–960]

[1975] K. Vidyasankar, D.H. Younger, A minimax equality related to the longest
directed path in an acyclic graph, Canadian Journal of Mathematics 27
(1975) 348–351. [116, 218]

[1963] V.G. Vizing, Dekartovo proizvedenie grafov, Vychislitel’nye sistemy —
sbornik trudov — Instituta matematiki SO AN SSSR 9 (1963) 30–43 [En-
glish translation: Cartesian product of graphs, Computer Elements and
Systems [Collection of Papers, published by the Israel Program for Scien-
tific Translations, Jerusalem] 1-9 (1966) 352–365]. [1171]

[1964] V.G. Vizing, Ob otsenke khromaticheskogo klassa p-grafa [Russian; On an
estimate of the chromatic class of a p-graph], Diskretny̆ı Analiz 3 (1964)
25–30. [465, 467]
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Èkonomicheskŏı Literatury, Moscow, 1959, pp. 390–399. [190, 377]

[1988] M. Yannakakis, Expressing combinatorial optimization problems by linear
programs, in: Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing (20th STOC, Chicago, Illinois, 1988), The Associa-
tion for Computing Machinery, New York, 1988, pp. 223–228. [460, 990,
1104]

[1991] M. Yannakakis, Expressing combinatorial optimization problems by linear
programs, Journal of Computer and System Sciences 43 (1991) 441–466.
[460, 990, 1104]

[1975] A.C.-C. Yao, An O(|E| log log |V |) algorithm for finding minimum spanning
trees, Information Processing Letters 4 (1975) 21–23. [864]



References 1763

[1982] A.C.-C. Yao, On constructing minimum spanning trees in k-dimensional
spaces and related problems, SIAM Journal on Computing 11 (1982) 721–
736. [865]

[1977] A.C. Yao, D.M. Avis, R.L. Rivest, An Ω(n2 log n) lower bound to the
shortest paths problem, in: Conference Record of the Ninth Annual ACM
Symposium on Theory of Computing (9th STOC, Boulder, Colorado, 1977),
The Association for Computing Machinery, New York, 1977, pp. 11–17.
[105]

[2001] Y. Ye, A .699-approximation algorithm for Max-Bisection, Mathematical
Programming 90 (2001) 101–111. [1351]

[1971a] J.Y. Yen, Finding the K shortest loopless paths in a network, Management
Science 17 (1971) 712–716. [105]

[1971b] J.Y. Yen, On Hu’s decomposition algorithm for shortest paths in a network,
Operations Research 19 (1971) 983–985. [105]

[1972] J.Y. Yen, Finding the lengths of all shortest paths in N -node nonnegative-
distance complete networks using 1

2
N3 additions and N3 comparisons,

Journal of the Association for Computing Machinery 19 (1972) 423–424.
[105]

[1975] J.Y. Yen, Shortest Path Network Problems [Mathematical Systems in Eco-
nomics 18], Anton Hain, Meisenheim am Glan (Germany), 1975. [119]

[1971] H.P. Young, A quick proof of Wagner’s equivalence theorem, The Journal
of the London Mathematical Society (2) 3 (1971) 661–664. [1087]

[1978] H.P. Young, On permutations and permutation polytopes, Mathematical
Programming Study 8 (1978) 128–140. [952]

[1963a] D.H. Younger, Feedback in a Directed Graph, Ph.D. Thesis, [Electrical En-
gineering,] Faculty of Pure Science, Columbia University, New York, 1963.
[947]

[1963b] D.H. Younger, Minimum feedback arc sets for a directed graph, IEEE
Transactions on Circuit Theory CT-10 (1963) 238–245. [953]

[1965] D.H. Younger, A Conjectured Minimax Theorem for Directed Graphs, Tech-
nical Report 42, Digital Systems Laboratory, Department of Electrical En-
gineering, Princeton University, Princeton, New Jersey, 1965. [947, 951,
960]

[1969] D.H. Younger, Maximum families of disjoint directed cut sets, in: Recent
Progress in Combinatorics (Proceedings of the Third Waterloo Conference
on Combinatorics, Waterloo, Ontario, 1968; W.T. Tutte, ed.), Academic
Press, New York, 1969, pp. 329–333. [947]

[1970] D.H. Younger, Hall’s theorem and strong covering, in: Proceedings of the
Louisiana Conference on Combinatorics Graph Theory and Computing
(Baton Rouge, Louisiana, 1970; R.C. Mullin, K.B. Reid, D.P. Roselle, eds.)
[Congressus Numerantium I], Utilitas Mathematica, Winnipeg, Manitoba,
1970, pp. 362–373. [959]

[1973] D.H. Younger, Graphs with interlinked directed circuits, in: Proceedings of
the Sixteenth Midwest Symposium on Circuit Theory — Volume II (Wa-
terloo, Ontario, 1973), IEEE, New York, 1973, pp. XVI 2.1-XVI 2.7. [959]



1764 References

[1979] D.H. Younger, From shortest paths to directed cut transversals, [in: Second
International Conference on Combinatorial Mathematics (A. Gewirtz, L.V.
Quintas, eds.)] Annals of the New York Academy of Sciences 319 (1979)
555–562. [960]

[1983] D.H. Younger, Integer flows, Journal of Graph Theory 7 (1983) 349–357.
[473]
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Bárány, I. 1143, 1480
Baratz, A.E. 163, 1324, 1480, 1715
Barnes, B.H. 1171, 1480
Barnes, G. 94, 1480–1481
Barnes, J.W. 163, 196–197, 1625
Barnett, D. 1248, 1467
Barnhart, C. 1248, 1481
Barr, R. see Barr, R.S.
Barr, R.S. (= Barr, R.) 195, 291, 1481
Barraclough, E.D. 336, 1481
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Benczúr, A.A. 163, 253, 519, 785,

845, 1065–1066, 1382, 1485
Bentley, J.L. 865, 996, 1485–1486
Benzaken, C. 1143, 1486
Benzer, S. 1141, 1486
Berge, C. 7, 88, 93, 95, 106, 125, 128,

130, 163, 173, 196, 232, 413–414,
421, 430–431, 435–436, 442, 461,
468, 476, 482, 526–527, 547, 560–
561, 591, 593, 723, 745, 1006, 1085,
1101, 1106–1107, 1112, 1118, 1124,
1126–1127, 1129–1131, 1133, 1135,
1139, 1143, 1145–1151, 1176, 1178–
1181, 1184–1185, 1279, 1375, 1382,
1433, 1440–1441, 1443, 1450, 1453,
1455, 1458, 1486–1489

Berger, B. 953, 1103–1104, 1489–1490
Berger, E. 1382, 1464
Bergmann, G. 664, 667–668, 673, 677,

785, 1490
Berlekamp, E.R. 672, 1490
Berman, P. 959, 1103–1104, 1474,

1490
Bermond, J.C. 645–646, 1217, 1427,

1490
Bernays, P. 673, 680, 684–686, 1609
Bernstein, F. 266, 278
Bernstein, R. 517, 1490
Bertolazzi, P. 1100, 1438, 1490
Bertossi, A.A. 1100, 1490
Bertschi, M. see Bertschi, M.E.
Bertschi, M.E. (= Bertschi, M.) 1124,

1150, 1490

Bertsekas, D.P. 118, 190, 195–196,
291, 1490–1491, 1747–1748

Bertsimas, D.J. 991, 1583
Best, M.R. 1173
Bhattacharya, B. see Bhattacharya,

B.K.
Bhattacharya, B.K. (= Bhattacharya,

B.) 1100, 1491
Bhattacharya, P.P. 784, 1491
Bidamon, E. 1176, 1491
Biedl, T. see Biedl, T.C.
Biedl, T.C. (= Biedl, T.) 430, 1491–

1492
Bielak, H. 1146, 1492
Bienstock, D. 142, 991, 1124, 1133,

1248, 1492
Biggs, N.L. 483, 997, 1492
Billera, L.J. 994, 1395, 1492
Billionnet, A. 1104, 1492
Birkhoff, G. 295, 301–303, 650, 657,

668, 673–674, 681–682, 686, 785,
1492–1493

Bixby, R. see Bixby, R.E.
Bixby, R.E. (= Bixby, R.) 210, 214,

672, 777, 995, 1113, 1395, 1412,
1415, 1450, 1470, 1493

Björner, A. 765, 1416, 1493–1494
Blair, C. 313, 1494
Blake, D.V. 336, 1470
Bland, R.G. 190, 196, 212, 1054,

1116–1117, 1124, 1415, 1494
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1259, 1376–1377, 1379, 1384–1385,
1415–1416, 1432–1433, 1438, 1440–
1441, 1453–1455, 1527–1528, 1538,
1552–1554, 1565–1567

Fulkerson, R. see Fulkerson, D.R.
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Graves, S.C. 197, 1590
Gravier, S. 1122, 1176, 1467
Gray, R.S. 52, 97, 104, 113, 121–122,

126–127, 1661
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1097, 1104, 1147, 1152–1154, 1157,
1161, 1163, 1165, 1174, 1176, 1327,
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Guan, M. see Guan, M.-g.
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Gupta, R.P. 324–325, 466, 478–479,

591, 974, 1596
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Kőrner, J. 1133, 1172, 1524, 1529,

1543, 1651
Korte, B. 8, 106, 119, 163, 197, 278,

291, 431, 460, 672, 699, 757, 762,
784, 871, 873, 996, 1248, 1325,
1605, 1625, 1651

Korte, N. 1141, 1651
Kosaraju, S.R. 90, 996, 1651
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Nöbeling, G. 145–146, 674, 685–686,
1605, 1692

Nobert, Y. 518, 1692
Nobili, P. 1395–1396, 1438, 1692
Noether, E. 678
Noon, C.E. 118, 1765
Norman, R.Z. 316, 435, 437, 464, 990,

1003, 1692–1693
Norton, C.H. 195, 1693
Noshita, K. 104, 1693
Novick, B. 1382, 1386–1387, 1395–

1396, 1460, 1523, 1693
Noy, M. 1146, 1611
Nutov, Z. 952, 991, 1078, 1473, 1496,

1693

O’hEigeartaigh, M. 8, 1693
O’Neil, E.J. 94, 1693
O’Neil, P.E. 94, 310, 1693
O’Neil, P.V. 133, 1693
Obraztsov, V.N. 370
Okamura, H. 1235, 1243, 1272, 1275,

1296, 1298–1305, 1311, 1313–1318,
1366, 1459, 1693–1694
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Surányi, L. 1142–1143, 1737
Suri, S. 460, 1671
Suurballe, J.W. 212, 1737
Suzuki, A. 1371, 1610
Suzuki, H. 140, 871, 1313, 1320–1321,

1323–1324, 1370–1371, 1558, 1737–
1738, 1740

Suzuki, K. 1324, 1692
Sviridenko, M. see Sviridenko, M.I.
Sviridenko, M.I. (= Sviridenko, M.)

1351, 1463–1464
Swamy, M.N.S. 197, 1738
Sweeney, D.W. 983, 995, 1004, 1662
Swiercz, S. 1124, 1655
Swoveland, C. 1248, 1738
Sylvester, J.J. 431–432, 434, 1738
Sys�lo, M.M. 8, 94, 106, 119, 163, 197,

431, 871, 996, 1104, 1738–1739

Szegedy, M. 1103, 1175, 1472, 1545–
1546, 1739
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bases, disjoint common ∼ 740–741
min-max 740

basic path-matching 763

Bellman-Ford method 109–110, 122–
125

bend cut, 1-∼ 1324

Berge graph 1107, 1112, 1124, 1127
bibranching, R − S ∼ 934–945, 972,

1024
minimum-size 934–935

algorithm 935
min-max 935

shortest 935–937, 972, 1024
algorithm 937
min-max 936–937

bibranching polytope, R − S ∼ 937,
942

bibranching theorem, optimum ∼ 937,
972, 1024

bibranchings, disjoint R − S ∼ 940–
944, 974

min-max 941–942
bibranchings, disjoint R − S-∼ 942

algorithm 942
bibranchings theorem, disjoint ∼ 941–

943, 974
bicircular matroid 743

bicolourable hypergraph 1443

bicolouring number 1118

biconnector, R − S ∼ 928–930, 944
minimum-size 929

min-max 929
shortest 928–930

algorithm 930
min-max 929–930

biconnector polytope, R − S ∼ 929–
930

biconnectors, disjoint R − S ∼ 931–
934, 944

algorithm 933
min-max 933

bicritical graph 503, 614, 619

bicritical graph, b-∼ 560

bicut, R − S ∼ 935, 940–943, 972,
974, 1024

minimum-size 940–943, 974
min-max 941–942

bicuts, disjoint R − S ∼ 937, 972, 1024
min-max 937

bidirected graph 594–608, 1201–1203
bidirected graph, claw-free ∼ 1217
biforest, R − S ∼ 930–931, 944–945

longest 930–931
algorithm 931
min-max 930

biforest polytope, R − S ∼ 931

biforests, covering by R − S ∼ 934,
944–945

algorithm 934
min-max 934

bifurcation, R − S ∼ 937–940, 944–
945, 1016

longest 938–940
algorithm 940
min-max 938–940

maximum-size 937–938
min-max 938

bifurcation polytope, R − S ∼ 940,
944

bifurcations, covering by R − S ∼ 943–
945

algorithm 944
min-max 943–944

bijection 13

bimatroid 671

binary hypergraph 1406–1418
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binary ideal hypergraph 1408–1409,
1460–1461

binary matroid 655–656, 1406–1407,
1415, 1420–1427, 1456, 1461

binary matroid, cycle in ∼ 655

binary Mengerian hypergraph 1409–
1415

characterization 1409–1412
bipartite edge-colouring 1136
bipartite edge set 1326

bipartite graph 24, 259–377, 959–960,
1135–1137

bipartite graph, almost ∼ 336, 1206

bipartite graph, complete ∼ 24

bipartite graph, near-∼ 1217

bipartite graph, strongly ∼ 1328,
1333–1334, 1414

bipartite graph, weakly ∼ 1326–1327–
1329, 1334–1341, 1392

bipartite signed graph, evenly ∼ 1331,
1340

characterization 1340
bipartite signed graph, strongly ∼

1330–1333
characterization 1333

bipartite signed graph, weakly ∼
1330–1331, 1340

characterization 1340
bipartite subgraph polytope 1326,

1350
facets 1350

Birkhoff’s theorem 302–303
bisubmodular function 851

bisupermodular function 851

bit 38

block 242–243, 633

algorithm 242–243
block, isolated ∼ 1077

block, pendant ∼ 1077

blocker 1377

blocking collection of paths 135

blocking flow 154–156
blocking hypergraph 1377

blocking pair 66

blocking pair of polyhedra 66

blocking polyhedron 66, 70, 82
blocking type, polyhedron of ∼ 66

blossom, M -∼ 416

blow-up 1129

body, antiblocking ∼ 67

body, convex ∼ 59

bone 1211

Boolean expression 44

border, reduced T -∼ 507

border, T -∼ 501

Bor̊uvka’s method 859, 871–874
bottleneck assignment problem 291
bottleneck extremum 1380

bottleneck maximum 1379–1380
bottleneck minimum 1379–1380
bottleneck shortest path 117–118, 130
boundary square of polyomino 1149

bounded face of planar graph 26

box 75

box-integer polyhedron 75, 1418

box-TDI ≡ box-totally dual integral
box-totally dual integral 83

brace 614

branch-and-bound method 982–984,
996

branch-and-cut method 984

branching 34, 893, 895–896, 900–901,
909–911, 960

exchange properties 909–910
longest 895–896, 900–901

algorithm 895–896
min-max 900–901

branching, co∼ 937, 942

branching, mixed ∼ 926

branching polytope 901, 909
adjacency 901
facets 901

branchings, covering by ∼ 908–909,
911, 922

complexity 922
min-max 908–909

branchings, disjoint ∼ 904–905, 922
characterization 904–905
complexity 922

branchings, union of ∼ 915–918
min-max 916–918

branchings theorem, Edmonds’ disjoint
∼ 904

breadth-first search 88

brick 614–617, 630–643, 647
brick decomposition 612–613
bridge

of graph 21
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of matroid 653

bridgeless graph 21

Brooks’ theorem 1086

bucket 102
bull 1121

bull-free graph 1121

c-capacitated b-edge cover polytope
580

c-capacitated b-matching polytope
342, 564–567

bipartite 342
facets 567

C-cover 976

c-covering 36

c-covering, fractional ∼ 37

C-cut 976

c-packing 36

c-packing, fractional ∼ 36

cactus 253

cap 1145

cap-free 1145

capacitated b-edge cover 350–353,
579–580, 583

bipartite 350–353
minimum-size 350–351

min-max 350–351
minimum-weight 351–353

algorithm 351–353
min-max 351

minimum-size 579–580, 583
algorithm 580
min-max 579–580

minimum-weight 580
algorithm 580
min-max 580

capacitated b-edge cover polytope, c-∼
580

capacitated b-matching 341–343, 357–
358, 361, 562–568, 583

bipartite 341–343, 357–358
maximum-size 341–343, 358

algorithm 342–343
complexity 358
min-max 341–342

maximum-weight 342–343, 357
algorithm 342–343
complexity 357
min-max 342

maximum-size 562–564, 567, 583
min-max 562–564

maximum-weight 566–567
algorithm 567
min-max 566

capacitated b-matching polytope, c-∼
342, 564–567

bipartite 342
facets 567

capacitated b-transportation 357–358,
361–377

minimum-cost 357–358, 361–377
complexity 357–358

capacitated common transversal 407
capacitated disjoint r-arborescences

922
complexity 922

capacitated perfect b-matching 342–
343, 358, 564, 567

bipartite 342–343, 358
characterization 342
complexity 358

characterization 564
minimum-weight 567

algorithm 567
capacitated perfect b-matching

polytope, c-∼ 565

capacitated transportation 357–358,
361–377

minimum-cost 357–358, 361–377
complexity 357–358

capacity 13

of cut 149

of path 117

capacity, Shannon ∼ 1167–1171,
1176–1178, 1184–1185

capacity function 13

capacity-scaling 159–160
Carathéodory’s theorem 59, 63

cellularly embedded graph 1357

certificate 41

chain 217–236, 1026–1027
maximum-size 217

min-max 217
chain, maximal ∼ 235

chain, symmetric ∼ 236

chain of sets 10

chain polytope 221–222
chains, covering by ∼ 218
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min-max 218
chains, disjoint maximal ∼ 235

min-max 235
chains, union of ∼ 228–229, 1026–1027

min-max 228–229
chair 1121

chair-free graph 1121

channel routing problem 1323

characteristic cone 60

characterization, good ∼ 42–43

checked graph 1121

χ-diperfect digraph 1132

child 99

Chinese postman problem 487–488,
518–519

algorithm 487–488
complexity 488, 518
history 519
windy postman problem 518

Chinese postman problem, directed ∼
192, 518

Chinese postman problem, mixed ∼
518

Chinese postman tour 487

chord
of circuit 20, 1138

of path 19

chordal bipartite graph 1444

chordal graph 1138–1143
chordal graph, strongly ∼ 1142
chordal graph, weakly ∼ 1148

chordless circuit 20

chordless path 19

Christofides’ heuristic for the symmetric
traveling salesman problem 989

chromatic graph, k-∼ 23, 1083

chromatic graph, k-edge-∼ 24

Chvátal comb inequality 988

Chvátal rank 607–608, 1098–1099
Chvátal rank, strong ∼ 608

circle graph 1100, 1121

circuit 20, 500–501, 746–747

in digraph 32

minimum-mean length 500–501
algorithm 500–501

of binary hypergraph 1409

of matroid 651, 662–664, 672
shortest 672

circuit, chordless ∼ 20

circuit, directed ∼ 32

circuit, directed Hamiltonian ∼ 115,
981

NP-completeness 115
circuit, even ∼ 1329

in bidirected graph 1201

circuit, Hamiltonian ∼ 24, 34, 981–
982, 996

longest 996
shortest 981–982

circuit, k-∼ 20

circuit, odd ∼ 1326–1329–1341, 1414
in bidirected graph 1201

in signed graph 1414

circuit, shortest directed ∼ 94
circuit, undirected ∼ 32

circuit cone
of graph 493–498, 605, 1456
of matroid 1424–1426

circuit cover, odd ∼ 1327, 1329,
1335–1340, 1414

min-max 1335–1340
circuit double cover 1427

circuit double cover conjecture 497,
645–646, 1427, 1456

circuit-free vertex set 870–871
circuit lattice of matroid 1425–1426
circuit space of matroid 1425

circuits, disjoint directed ∼ 958–959,
1368

complexity 959
planar 958

min-max 958
circuits, disjoint odd ∼ 1335–1340

min-max 1335–1340
circuits, sums of ∼ 493–498, 1424–1426

in matroid 1424–1426
circular-arc graph 1100, 1121

circular flow conjecture 473, 1454

circulation 171–172, 175–191, 195–
197, 207

algorithm 175–176
characterization 171–172
minimum-cost 177–191, 195–197

algorithm 179–182, 189–190
complexity 190–191
simplex method 195

circulation, feasible ∼ 178
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circulation freely homotopic to 1357,
1360

circulation problem, minimum-cost ∼
177

circulation theorem, Hoffman’s ∼
171–172, 1020

circulation theorem, homotopic ∼
1357–1360

city 982

class 9

of partition 10

of splittable vertex 1210

claw 24, 1120

claw-free bidirected graph 1217
claw-free graph 1120, 1208–1217
claw-free graph, perfect ∼ 1120
clique 23, 1083–1085, 1097, 1102–

1185, 1458
in digraph 1131
in perfect graph 1106–1134, 1154,

1157, 1159
maximum-size 1106–1134, 1154

algorithm 1154
maximum-weight 1157, 1159

algorithm 1157, 1159
maximum-size 1084–1085, 1102–

1185
NP-completeness 1084–1085

maximum-weight 1097, 1157
clique cover 1083

clique cover, minimum ∼ 1083

clique cover number 1083

clique cover number, fractional ∼
1096

clique cover number, fractional weighted
∼ 1097

clique cover number, weighted ∼ 1097

clique inequality 1095–1096
clique number 23, 1083

clique polytope 1088, 1110–1111
of perfect graph 1110–1111

clique tree inequality 987–989
closed curve 1352

closed curve, doubly odd ∼ 1367

closed curve, simple ∼ 1321, 1352

closed directed walk 32

closed walk 20

clutter 1376

co-NP 42, 71–72

coarborescence, r-∼ 941

cobranching 937, 942

cocircuit of matroid 653, 663–664
coclique ≡ stable set
cocycle matroid 657–658
cographic matroid 657–658
collection 9

coloop of matroid 653

colour 23, 321, 465, 1083

colour, edge-∼ 465

colour, have ∼ 321

colour classes 24

colourable graph, 3-∼ 1085–1087
colourable graph, k-∼ 23, 1083

colourable graph, k-edge-∼ 24, 465

colourable graph, k-list-edge-∼ 335

colourable graph, k-vertex-∼ 23, 1083

coloured tree 703
colouring 23, 1083–1088, 1098, 1101–

1185, 1206–1207, 1458
colouring, edge-∼ 23, 321–331, 333–

336, 465–484, 1016, 1136, 1455
bipartite 321–331, 333–336, 1016,

1136
algorithm 322–323, 333–334
complexity 334–335
min-max 321–322

complexity 466–467
history 482–484
NP-completeness 468–470

colouring, fractional edge-∼ 474–478,
1455

complexity 477–478
min-max 474–475

colouring, k-∼ 1083

colouring, k-edge-∼ 321, 465

colouring, k-interval ∼ 1151

colouring, list-∼ 737–738, 892
of matroid 737–738

colouring, minimum ∼ 23, 1083–1088,
1098, 1102–1185, 1206–1207

NP-completeness 1084–1085
of perfect graph 1106–1134, 1154–

1155
algorithm 1154–1155

colouring, minimum edge-∼ 24

colouring, minimum fractional ∼ 1096,
1098
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colouring, minimum fractional vertex-∼
1096, 1098

colouring, minimum fractional weighted
∼ 1097

NP-completeness 1097
colouring, minimum vertex-∼ 23,

1083–1088, 1098, 1102–1185,
1206–1207

NP-completeness 1084–1085
of perfect graph 1106–1134, 1154–

1155
algorithm 1154–1155

colouring, minimum weighted ∼ 1096–
1097, 1157–1159

NP-completeness 1096–1097
of perfect graph 1157–1159

algorithm 1157–1159
colouring, minimum weighted vertex-∼

1096–1097, 1157–1159
NP-completeness 1096–1097
of perfect graph 1157–1159

algorithm 1157–1159
colouring, supermodular ∼ 849–851,

943
colouring, total ∼ 482, 1455–1456
colouring, vertex-∼ 23, 1083–1088,

1098, 1101–1185, 1206–1207
colouring number ≡ vertex-colouring

number 23, 1083

colouring number, edge-∼ 23, 321,
465

colouring number, fractional ∼ 1096

colouring number, fractional edge-∼
474

colouring number, fractional weighted ∼
1097

colouring number, list-edge-∼ 335,
482

colouring number, total ∼ 482

colouring number, vertex-∼ 23, 1083

colouring number, weighted ∼ 1096

colouring theorem, Kőnig’s edge-∼
321–322, 324–325, 331, 934,
1016, 1136, 1441

column generation technique 1245–
1247

column strategy 296

comb inequality 988

comb inequality, Chvátal ∼ 988

combinatorics, polyhedral ∼ 2, 6–7
history 6–7

commodity 1221

commodity flow, 2-∼ 1251–1265, 1414
characterization 1252–1254

commodity flow, 3-∼ 1230–1232, 1244,
1270–1275, 1295

commodity flow, half-integer 2-∼
1251–1256

algorithm 1254
commodity flow, k-∼ 1221–1222

commodity flow problem, integer k-∼
1222

commodity flow problem, k-∼ 1221

commodity flow problem,
maximum-value k-∼ 1222

commodity flow problem, undirected
k-∼ 1222

commodity flow problem, undirected
maximum-value k-∼ 1222

commodity flow theorem, Hu’s 2-∼
1253–1254

common base 701, 710, 715, 740–743
characterization 701
minimum-weight 710, 715

algorithm 710
min-max 715

common base polytope 715, 719–720,
741–743

dimension 719
common bases, covering by ∼ 741–743

min-max 741
common bases, disjoint ∼ 740–741

min-max 740
common independent set 700–701,

705–724, 768, 1026
exchange property 721–722
maximum-size 700–701, 705–707,

710, 1026
algorithm 705–707
complexity 707, 710
min-max 700–701

maximum-weight 707–712, 714–715
algorithm 707–712
min-max 714–715

of three matroids 700, 707
NP-completeness 700, 707

common independent set, extreme ∼
707
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common independent set augmenting
algorithm 705–706

common independent set augmenting
algorithm, maximum-weight ∼
707–709

common independent set polytope
712–714–719, 741–743

facets 718–719
common independent sets, covering by

∼ 739–740
min-max 740

common partial transversal 393–395,
397–399

maximum-size 394
min-max 394

maximum-weight 397–399
algorithm 397
min-max 398–399

common partial transversal polytope
399–400

common partial transversals, covering
by ∼ 402–403, 406

min-max 402
common spanning set 701, 716, 741

minimum-size 701
min-max 701

minimum-weight 716
min-max 716

common spanning set polytope 715–
716

common spanning sets, disjoint ∼ 741
min-max 741

common system of restricted
representatives 407

characterization 407
common transversal 393–409, 703

algorithm 394
characterization 393–394
exchange property 407–408
minimum-weight 395–397

algorithm 396
min-max 396–397

NP-completeness 408
common transversal, capacitated ∼

407
common transversal polytope 401–402
common transversals, covering by ∼

405–406
min-max 405–406

common transversals, disjoint ∼ 402–
405

min-max 402–403
comparability graph 1137–1138, 1151
comparability graph, p-∼ 1149

comparable sets 10, 1446

complement of graph 18

complementary graph 18

complementary slackness 63

complete bipartite graph 24

complete directed graph 30

complete graph 18

complete problem, NP-∼ 43–44, 72
component

of graph 20, 90–91, 94–95
algorithm 90–91
complexity 94–95

of hypergraph 36

of vector 11

component, 2-edge-connected ∼ 247–
248

algorithm 248
component, connected ∼

of graph 20, 90–91, 94–95
algorithm 90–91
complexity 94–95

of hypergraph 36

component, even ∼ 20

component, inverting ∼ 469

component, k-connected ∼ 242

component, k-edge-connected ∼ 248

component, marginal ∼ 1070

component, odd ∼ 20, 413

component, splitting ∼ 469

component, weak ∼ 208

component of digraph, strong ∼ 32

component of digraph, strongly
connected ∼ 32

component of digraph, weak ∼ 32

component of digraph, weakly
connected ∼ 32

component of hypergraph, nontrivial ∼
757

concatenation of walks 19, 31

concave-cost flow 196–197
cone 60

cone, convex ∼ 60

cone, finitely generated ∼ 60

cone, polar ∼ 65



1820 Subject Index

cone, polyhedral ∼ 60

cone generated by 60

conformal hypergraph 1430–1431
conjugate partition 230

connect vertices, edge ∼ 17

connected component
of graph 20, 90–91, 94–95

algorithm 90–91
complexity 94–95

of hypergraph 36

connected component, 2-edge-∼ 247–
248

algorithm 248
connected component, k-edge-∼ 248

connected digraph, k-∼ 238, 1050–
1051

minimum-size 1050–1051
connected digraph, k-arc-∼ 238, 1051

minimum-size 1051
connected digraph, k-vertex-∼ 238,

1050–1051
minimum-size 1050–1051

connected digraph, source-sink ∼
964–967, 972–976

connected digraph, strongly ∼ 32, 93
connected digraph, strongly k-∼ 238,

1051
minimum-size 1051

connected digraph, weakly ∼ 32

connected graph 20

connected graph, k-∼ 237, 1049–1050
minimum-size 1049–1050

connected graph, k-edge-∼ 238, 1050
minimum-size 1050

connected graph, k-vertex-∼ 237,
1049–1050

minimum-size 1049–1050
connected graph, r-edge-∼ 1055,

1067

connected hypergraph 36

connected matroid 653, 698

connected orientation, k-arc-∼ 1044–
1046

algorithm 1045
characterization 1044–1046

connected orientation, strongly ∼
1037–1040, 1048

algorithm 1037–1038
characterization 1037–1040

connected orientation, strongly k-∼
1044–1046

algorithm 1045
characterization 1044–1046

connected subgraph, k-∼ 991
shortest 991

connected vertices 17, 29

connecting edge sets, path ∼ 1263

connectivity 237–238–243, 253–255,
1049–1051, 1074–1078, 1458

algorithm 239–241
complexity 241

connectivity, 2-∼ 243
algorithm 243

connectivity, 2-vertex-∼ 243
algorithm 243

connectivity, arc-∼ 238, 243–244, 246–
247, 254–255, 1044–1046, 1048,
1051, 1058–1062

algorithm 244
complexity 246–247

connectivity, edge-∼ 237–238, 244–
251, 253–255, 1037–1040, 1044–
1046, 1048, 1050, 1055–1057,
1062–1074, 1458

algorithm 244–246
complexity 246–247

connectivity, vertex-∼ 237–238–243,
253–255, 1049–1051, 1074–1078,
1458

algorithm 239–241
complexity 241

connectivity augmentation 969, 1058–
1079, 1457

for hypergraphs 1382

NP-completeness 969, 1062, 1066–
1067, 1079

connectivity augmentation, strong ∼
969–973

algorithm 971–972
connectivity augmentation problem,

strong ∼ 969

connector 855

connector, 2-edge-∼ 1062–1063
minimum-size 1062–1063

formula 1062–1063
connector, 2-vertex-∼ 1077–1078

minimum-size 1077–1078
min-max 1077–1078
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connector, k-arc-∼ 1058, 1060–1061
minimum-size 1060–1061

algorithm 1061
min-max 1060

connector, k-edge-∼ 1062, 1065–1066
minimum-size 1065–1066

algorithm 1065
min-max 1065–1066

connector, k-vertex-∼ 1074–1075,
1077

minimum-size 1074–1075
min-max 1074–1075

connector, r-edge-∼ 1067

connector, s − t ∼ 203

connector, strong ∼ 969–980, 1024
minimum-size 972

min-max 972
shortest 969–973, 1024

algorithm 971–972
min-max 971–972

connector polytope 863, 878, 881–882,
884–887

facets 863
connector polytope, s − t ∼ 203–204

dimension 203
connectors, disjoint ∼ 877–880, 888–

889
algorithm 879–880, 888–889
min-max 877–878

connectors, disjoint strong ∼ 973–976
algorithm 975–976
min-max 973–974

connects vertices, arc ∼ 29

connects vertices, path ∼ 19, 31

conservation law, flow ∼ 148

conservative function 494

contains 18

contractible to K4, oddly ∼ 503

contracting arc 35

contracting edge
in pair G, T 504

of graph 25

of signed graph 1202, 1330

contracting elements of matroid 653

contracting vertex of hypergraph 1376

contracting vertex set in digraph 35

contracting vertex set in graph 25,
416

contraction, F-∼ 610

contraction of hypergraph 1376

contrapolymatroid, extended ∼ 774

contrapolymatroid intersection 797–
799, 818–819, 837

convex body 59

convex cone 60

convex-cost flow 196
convex hull 59

convex polyomino, horizontally ∼
1149

convex polyomino, orthogonally ∼
1149

convex subset
of partially ordered set 1028

of Rn

59

coparallel elements of matroid 653

copartition 838, 841, 1047

copartition, proper ∼ 838

corner square of polyomino 1149

coroot 942

correct word 45

corresponding walk 1214

cost 13

of circuit 1188

of circulation 177

of edge 1188

of family of vertices, edges, and odd
circuits 1188

of flow 177

of transshipment 177

of vertex 1188

cost b-transshipment, minimum-∼
182–183, 186–189, 191–192, 345–
346

algorithm 182–183, 186–189
complexity 191
min-max 191–192

cost function 13, 63

cost transshipment, minimum-∼ 182–
183, 186–189, 191–192, 345–346

algorithm 182–183, 186–189
complexity 191
min-max 191–192

cover 9, 17, 29, 668

cover, C-∼ 976

cover, F -∼ 1203

cover, matroid ∼ 756–757
cover, w-∼ 1188

cover in partially ordered set 234
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covering 36

covering, c-∼ 36

covering, fractional ∼ 36

covering, fractional c-∼ 37

covering, k-∼ 36

covering by antichains 217, 220
min-max 217, 220

covering by bases 726–727, 729, 732,
735–736

algorithm 732, 735–736
min-max 727, 729

covering by branchings 908–909, 911,
922

complexity 922
min-max 908–909

covering by chains 218
min-max 218

covering by common bases 741–743
min-max 741

covering by common independent sets
739–740

min-max 740
covering by common partial transversals

402–403, 406
min-max 402

covering by common transversals 405–
406

min-max 405–406
covering by directed cuts 218

acyclic 218
min-max 218

covering by forests 878–879, 888–890
algorithm 888
complexity 889–890
min-max 879

covering by independent sets 726–727,
729, 732, 735–736

algorithm 732, 735–736
min-max 727, 729

covering by matching forests 1016
min-max 1016

covering by partial transversals 386–
387

min-max 386
covering by paths 219, 222–224

algorithm 222–224
min-max 219

covering by perfect matchings 329–331
bipartite 329–331

min-max 329–330
covering by r-arborescences 911–913

min-max 912–913
covering by R − S biforests 934, 944–

945
algorithm 934
min-max 934

covering by R −S bifurcations 943–945
algorithm 944
min-max 943–944

covering by s − t paths 219–221
acyclic 219–220

min-max 219–220
min-max 220–221

covering problem, set ∼ 1438

covers vertex, edge ∼ 17

covers vertex, matching ∼ 413

critical edge 1133

critical graph, α-∼ 1199

critical graph, b-∼ 559

critical graph, factor-∼ 424–425–426,
446, 544–545

critical graph, P -∼ 544

critical hypergraph 1409

critical vertex set, F-∼ 545

critically imperfect graph ≡
minimally imperfect graph
1107

cross 1302, 1306

cross-free collection of cuts 488, 610

cross-free cuts 610

cross-free family 37, 214–216, 842,
1021–1022

crosses vertex pair, edge pair ∼ 1305

crossing family 838–851, 976–980,
1018–1023

crossing submodular function 838,
1018

crossing subsets 1291

crossing supermodular function 1022

crossing system of curves, minimally ∼
1353

cubic graph 17, 415, 432, 434

Cunningham-Marsh formula 440–441–
443

curve 1361

curve, closed ∼ 1352

curve, doubly odd closed ∼ 1367
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cut 21, 33, 244–246, 253–254, 486,
1328, 1342, 1345–1350

maximum-capacity 486, 1345–1350
approximative algorithm 1345–

1348
planar 486

algorithm 486
maximum-size 1328, 1350

complexity 1350
NP-completeness 1328

minimum-capacity 253–254
minimum-size 244–246

algorithm 244–246
cut, 1-bend ∼ 1324

cut, all-pairs minimum-size ∼ 248–251
cut, C-∼ 976

cut, D0-∼ 970–976
minimum-capacity 974

min-max 974
minimum-size 973–976

min-max 973–974
cut, directed ∼ 33, 116, 218–220,

946–968, 972, 1020, 1024, 1399

acyclic 219–220
maximum-size 219–220

min-max 219–220
minimum-capacity 966–967
minimum-mean capacity 968
minimum-size 962–968

min-max 967–968
source-sink connected 966–967

minimum-capacity 966–967
min-max 966–967

minimum-size 966
min-max 966

cut, fundamental ∼ 449, 499

cut, k-∼ 21, 33

cut, k-vertex-∼ 22, 33

cut, maximum ∼ ≡ maximum-size cut
cut, minimum ∼ ≡ minimum-size cut

238

cut, minimum vertex-∼ ≡
minimum-size vertex-cut 237–
238

cut, nontrivial ∼ 21, 33, 610

cut, odd ∼ 449, 609

minimum-capacity 449
algorithm 449

cut, r-∼ 896, 905–907, 918, 974, 1399

minimum-capacity 907
min-max 907

minimum-size 905–906, 918, 974
algorithm 918
min-max 905–906

cut, S − T ∼ 21, 33

cut, s − t ∼ 21, 33, 87, 131–132–169,
200–201, 974, 1020, 1413

minimum-capacity 150–156, 159–
161, 200–201, 974, 1020, 1413

algorithm 151–156, 159–160
complexity 160–161
min-max 150–151

minimum-size 131–169
min-max 132

planar 139–140, 161–162
minimum-capacity 161–162

complexity 161–162
minimum-size 139–140

complexity 139–140
cut, S − T vertex-∼ 22, 34

cut, s − t vertex-∼ 22, 33, 132

minimum-size 132
min-max 132

cut, T -∼ 488–519, 1413, 1417–1418
minimum-capacity 498–500, 507–

510
algorithm 499–500

minimum-size 499, 507–508, 1413
min-max 499, 507–508

cut, tight ∼ 609, 619

cut, trivial ∼ 619

cut, vertex-∼ 22, 33, 239–241, 243,
253

minimum-size 239–241
algorithm 239–241
complexity 241

cut arc 33

cut condition 1227–1230, 1321, 1419

∼ for digraphs 1227–1228
cut condition, homotopic ∼ 1366

cut cone 1342–1343–1345, 1350, 1459
facets 1350

cut covers, disjoint directed ∼ 962–968
min-max 967–968
source-sink connected 966–967

algorithm 967
min-max 966–967

cut function 769
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cut polytope 1342–1344, 1348–1350
facets 1350

cut polytope, r-∼ 907

cut polytope, s − t ∼ 199, 203
adjacency 203
vertices 203

cut polytope, T -∼ 498–499, 507–510
cut problem, all-pairs minimum-size ∼

248

cut vertex 22

cuts, covering by directed ∼ 218
acyclic 218

min-max 218
cuts, disjoint ∼ 960, 1030–1031, 1236–

1237, 1257–1261, 1276–1278,
1304–1305, 1309, 1313, 1316,
1320, 1354, 1414

2-commodity 1257–1261
cuts, disjoint D0-∼ 971–973

min-max 971–972
cuts, disjoint directed ∼ 947–949, 954–

956, 960, 972, 1020, 1024
algorithm 954–956
min-max 947–949

cuts, disjoint r-∼ 896–897, 972, 1024
min-max 896

cuts, disjoint s − t ∼ 87–88, 96–97,
126, 1026, 1413

min-max 88, 96–97
cuts, disjoint T -∼ 488–490, 501–507,

518, 1413, 1417–1418
complexity 518
min-max 489–490

cuts, union of directed ∼ 224–226
acyclic 224–226

cuts, union of disjoint s − t ∼ 211–212
algorithm 212
min-max 211–212

cutting plane 84, 984

cycle 645

in graph 20

of binary hypergraph 1406, 1409

of binary matroid 1424

cycle, directed ∼ 32

cycle, k-∼ 1409

cycle-cancelling 179–181
cycle in binary matroid 655

cycle matroid 657

cycle of binary hypergraph, even ∼
1406, 1409

cycle of binary hypergraph, odd ∼
1406

cycle polytope of binary matroid
1424–1425

adjacency 1425
facets 1425

cycling matroid, 1-∼ 1421, 1461
cycling matroid, 2-∼ 1421–1422
cycling matroid, 3-∼ 1422–1423
cycling matroid, 4-∼ 1423–1424
cycling matroid, ∞-∼ 1420, 1423–

1424
cycling matroid, k-∼ 1420

D0-cut 970–976
minimum-capacity 974

min-max 974
minimum-size 973–976

min-max 973–974
D0-cuts, disjoint ∼ 971–973

min-max 971–972
dart 1121

dart-free graph 1121

decision problem 40

decomposing edges into closed curves
1354

decomposition, brick ∼ 612–613
decomposition, ear-∼ 93, 252–253,

425–427, 511, 647
decomposition, odd ear-∼ 425

decomposition, proper ear-∼ 252

decomposition, straight ∼ 1355

decomposition property, integer ∼ 82–
83, 204

decomposition theorem, Dilworth’s ∼
218–220, 232, 235–236, 1137

defect form of Hall’s marriage theorem
380–381

degree
of vertex of graph 17

of vertex of hypergraph 1380

degree, maximum ∼
of graph 17

of hypergraph 1380

degree of graph, minimum ∼ 17

degree of vertex of graph, total ∼ 518

degree-sequence 573
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degree-sequence of vector 568

degrees, subgraph with prescribed ∼
586

deleting arc of digraph 30
deleting arc set of digraph 30

deleting edge
in pair G, T 504

of graph 18

of hypergraph 1376

of signed graph 1202, 1330

deleting edge set of graph 18

deleting element of matroid 653

deleting vertex
of digraph 30

of graph 18

of hypergraph 1376

of signed graph 1202, 1330

deleting vertex set
of digraph 30

of graph 18

deltoid 660–661
demand 13

demand digraph 1221

demand function 13

demand graph 1222

dependent set in matroid 651, 746

depth-first search 89

depth-first search tree 89

deshrinking 453

detachment, b-∼ 704

determined by, polyhedron ∼ 60

diameter
of graph 19

of polytope 65

diameter, monotonic ∼
of polytope 990

diamond 1121

diamond-free graph 1121

digraph ≡ directed graph 28

Dijkstra’s method 97–101, 126–128
Dilworth truncation 820–821–825
Dilworth’s decomposition theorem

218–220, 232, 235–236, 1137
diperfect digraph 1131–1132
diperfect digraph, α-∼ 1131, 1458

diperfect digraph, χ-∼ 1132

directed 1-tree 993

shortest 993

directed Chinese postman problem
192, 518

directed circuit 32

directed circuit, shortest ∼ 94
directed circuits, disjoint ∼ 958–959,

1368
complexity 959
planar 958

min-max 958
directed cut 33, 116, 218–220, 946–

968, 972, 1020, 1024, 1399

acyclic 219–220
maximum-size 219–220

min-max 219–220
minimum-capacity 966–967
minimum-mean capacity 968
minimum-size 962–968

min-max 967–968
source-sink connected 966–967

minimum-capacity 966–967
min-max 966–967

minimum-size 966
min-max 966

directed cut cover 946–968, 972, 1020,
1024, 1399

minimum-size 947–949, 953–954,
956, 960, 972, 1020, 1024

algorithm 953–954
complexity 956
min-max 947–948

minimum-weight 948–949, 953–
954, 956, 972, 1020, 1024

algorithm 953–954
complexity 956
min-max 948–949

directed cut cover polytope 949–950
directed cut covers, disjoint ∼ 962–968

min-max 967–968
source-sink connected 966–967

algorithm 967
min-max 966–967

directed cut k-cover 950–951, 953–
954, 964–966, 968

minimum-size 950–951, 953–954
algorithm 953–954
min-max 950–951

minimum-weight 950, 953–954
algorithm 953–954
min-max 950
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directed cuts, covering by ∼ 218
acyclic 218

min-max 218
directed cuts, disjoint ∼ 947–949, 954–

956, 960, 972, 1020, 1024
algorithm 954–956
min-max 947–949

directed cuts, union of ∼ 224–226
acyclic 224–226

directed cycle 32

directed edge 28

directed edge of bidirected graph 594,
1201

directed forest 34

directed graph 28

directed Hamiltonian circuit 115, 981

NP-completeness 115
directed Hamiltonian path problem

114

NP-completeness 114
directed path 31, 218

acyclic 218
maximum-size 218

min-max 218
directed tree 34

directed walk 31

directed walk, closed ∼ 32

directed walk, Eulerian ∼ 34

disconnect 21

disconnecting arc set 33

disconnecting arc set, S − T ∼ 33

disconnecting arc set, s − t ∼ 33

disconnecting edge set 21

disconnecting edge set, S − T ∼ 21

disconnecting edge set, s − t ∼ 21

disconnecting vertex set 22, 33

disconnecting vertex set, S − T ∼ 22,
34, 131–132

minimum-size 131–132
min-max 131–132

disconnecting vertex set, s − t ∼ ≡
s − t vertex-cut 22, 33

disconnects sets, vertex set ∼ 22, 34

disconnects vertices, vertex set ∼ 22,
33

discrepancy of digraph 1204

discrete sandwich theorem, Frank’s ∼
799

disjoint 10

disjoint arborescences 905, 908, 923–
926

min-max 905, 908
disjoint arborescences theorem,

Edmonds’ ∼ 905, 974, 1047,
1399

disjoint arcs 29

disjoint bases 727, 732, 734, 736
algorithm 732, 734, 736
min-max 727

disjoint bibranchings theorem 941–
943, 974

disjoint branchings 904–905, 922
characterization 904–905
complexity 922

disjoint branchings theorem, Edmonds’
∼ 904

disjoint common bases 740–741
min-max 740

disjoint common spanning sets 741
min-max 741

disjoint common transversals 402–405
min-max 402–403

disjoint connectors 877–880, 888–889
algorithm 879–880, 888–889
min-max 877–878

disjoint cuts 960, 1030–1031, 1236–
1237, 1257–1261, 1276–1278,
1304–1305, 1309, 1313, 1316,
1320, 1354, 1414

2-commodity 1257–1261
disjoint D0-cuts 971–973

min-max 971–972
disjoint directed circuits 958–959, 1368

complexity 959
planar 958

min-max 958
disjoint directed cut covers 962–968

min-max 967–968
source-sink connected 966–967

algorithm 967
min-max 966–967

disjoint directed cuts 947–949, 954–
956, 960, 972, 1020, 1024

algorithm 954–956
min-max 947–949

disjoint edge covers 324–325, 478–479,
974

bipartite 324–325, 974
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min-max 324–325
disjoint edge covers, union of ∼ 350

bipartite 350
min-max 350

disjoint edges 17

disjoint forests 892
disjoint homotopic paths problem

1368

disjoint maximal chains 235
min-max 235

disjoint odd circuits 1335–1340
min-max 1335–1340

disjoint on, path ∼ 140

disjoint paths 1223–1225, 1228, 1233–
1234, 1239, 1242–1245, 1248,
1251, 1254, 1261–1265, 1267,
1271–1273, 1279–1296, 1298–
1300, 1303–1304, 1307–1311,
1313, 1315–1316, 1318, 1320–
1325, 1352, 1361, 1366–1371,
1458–1459

complexity 1224–1225, 1243–1244,
1273, 1309, 1323, 1366, 1459

directed 1223–1225, 1243–1245,
1262–1263, 1289, 1309, 1322,
1368–1370

NP-completeness 1234
planar 1299

complexity 1299
disjoint paths, arc-∼ 132, 906, 1307
disjoint paths, edge-∼ 1253, 1255,

1285, 1296–1299, 1308, 1311–
1313, 1318–1320

planar 1296–1299, 1308, 1311–
1313, 1318–1320

algorithm 1298
characterization 1296–1298,

1308, 1311–1313, 1318–
1320

complexity 1299
disjoint paths, internally vertex-∼ 132

disjoint paths, openly ∼ ≡ internally
vertex-disjoint paths

disjoint paths, vertex-∼ 1224–1225,
1243, 1299, 1320–1323, 1368–
1370

complexity 1224–1225, 1243
planar 1299, 1320–1323, 1368–1370

algorithm 1320–1323

characterization 1320–1323
complexity 1299

disjoint paths problem 1223

fractional solution 1223

half-integer solution 1223

disjoint paths problem, arc-∼ 1223

disjoint paths problem, edge-∼ 1223

disjoint paths problem, homotopic
edge-∼ 1366

disjoint paths problem, k ∼ 1223

disjoint paths problem, k arc-∼ 1223

disjoint paths problem, k edge-∼ 1223

disjoint paths problem, k vertex-∼
1223

disjoint paths problem, vertex-∼ 1223

disjoint perfect matchings 326–328,
340

bipartite 326–328, 340
min-max 327

disjoint r-arborescences 905–907, 918–
922, 925, 974, 1078–1079

algorithm 918–921
complexity 921–922
min-max 905–907

disjoint r-arborescences, capacitated ∼
922

complexity 922
disjoint r-cuts 896–897, 972, 1024

min-max 896
disjoint R − S bibranchings 940–944,

974
min-max 941–942

disjoint R − S-bibranchings 942
algorithm 942

disjoint R − S biconnectors 931–934,
944

algorithm 933
min-max 933

disjoint R − S bicuts 937, 972, 1024
min-max 937

disjoint S-paths 1280–1281
min-max 1280–1281

disjoint S-paths, vertex-∼ 1280–1281
min-max 1280–1281

disjoint S-paths theorem, Mader’s ∼
1280–1281

disjoint s − t cuts 87–88, 96–97, 126,
1026, 1413

min-max 88, 96–97
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disjoint s − t cuts, union of ∼ 211–212
algorithm 212
min-max 211–212

disjoint S − T paths 131–132, 140–147
exchange properties 140–141
min-max 131–132

disjoint s − t paths, arc-∼ 132, 134–
140, 142–147, 151

algorithm 134–138
complexity 138–139
min-max 132
planar 139–140

complexity 139–140
disjoint s − t paths, edge-∼ 139, 254,

974, 1413
planar 139

complexity 139
disjoint s − t paths, internally ∼ 132,

137–140, 142–147, 275–276
algorithm 137–138
complexity 139, 276
min-max 132
planar 140

complexity 140
disjoint s − t paths, internally vertex-∼

132, 137–140, 142–147, 275–276
algorithm 137–138
complexity 139, 276
min-max 132
planar 140

complexity 140
disjoint spanning trees 877–880, 888–

892, 1456
algorithm 879–880, 888–889
complexity 889–890
fractional 891

complexity 891
min-max 877–878

disjoint strong connectors 973–976
algorithm 975–976
min-max 973–974

disjoint subgraphs 18, 30

disjoint subgraphs, arc-∼ 30

disjoint subgraphs, edge-∼ 18

disjoint subgraphs, vertex-∼ 18, 30

disjoint T -cuts 488–490, 501–507, 518,
1413, 1417–1418

complexity 518
min-max 489–490

disjoint T -joins 507–510, 519, 1413,
1456

min-max 507–508
disjoint T -paths 1279–1295

algorithm 1283–1284
min-max 1279–1280

disjoint T -paths, edge-∼ 1282–1283,
1285–1286

algorithm 1285–1286
min-max 1282–1283

disjoint T -paths, internally ∼ 1282
min-max 1282

disjoint T -paths, internally vertex-∼
1282

min-max 1282
disjoint T -paths, vertex-∼ 1279–1280,

1283–1284
algorithm 1283–1284
min-max 1279–1280

disjoint T -paths theorem, Gallai’s ∼
1279–1280

disjoint T -paths theorem, Mader’s
edge-∼ 1282–1283, 1289

disjoint T -paths theorem, Mader’s
internally ∼ 1282

disjoint transversals 385–386, 728
min-max 385, 728

disjoint trees 1242, 1322, 1325, 1371
complexity 1325
planar 1242

algorithm 1242
disjoint trees problem, vertex-∼ 1242,

1322

disjoint trees theorem,
Tutte-Nash-Williams’ ∼ 877–
878, 931, 1048

disjoint walks 20, 32

disjoint walks, arc-∼ 32

disjoint walks, edge-∼ 20

disjoint walks, internally ∼ 20, 32

disjoint walks, internally vertex-∼ 20,
32

disjoint walks, vertex-∼ 20, 32

distance 19, 31, 87, 96, 1226–1227,
1237–1238, 1257–1260, 1276,
1278, 1295, 1304–1306, 1308–
1309, 1313, 1317, 1320

distance, tentative ∼ 97
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distinct representatives, system of ∼ ≡
transversal

distributive lattice 233–235, 1034
dominant 66

dominating set 1150

double cover, circuit ∼ 1427

double cover conjecture, circuit ∼
497, 645–646, 1427, 1456

doubly linked list 48–49
doubly odd closed curve 1367

doubly stochastic matrix 302–303, 314
down hull 59

down-monotone ideal 11

down-monotone in Rn

+ 66

down-monotone subset of Rn

65

dual
of linear programming problem 63

of matroid 652

of planar digraph 35

of planar graph 27–28
of polymatroid 782

of submodular function 782

dual greedy algorithm 859–860

dual hypergraph 1375

dual lattice 81

dual matroid 652–653
dual problem 63

dual solution 63, 71
dual transportation polyhedron 347

diameter 347
dimension 347
vertices 347

duality 62–63
duality, weak ∼ 62

duality equation, linear programming ∼
63

duality theorem of linear programming
62–63

duplicating vertex 1109

of hypergraph 1376

dyadic hypergraph 1401

dynamic flow 192–195

ear 93, 252, 511

ear, adding ∼ 93, 252, 511

ear, odd ∼ 425

ear, proper ∼ 252

ear-decomposition 93, 252–253, 425–
427, 511, 647

ear-decomposition, odd ∼ 425

ear-decomposition, proper ∼ 252

edge
of graph 16

of hypergraph 36, 1375

of polyhedron 65

edge, directed ∼ 28

edge-colour 465

edge-colourable graph, k-∼ 24, 465

edge-colourable graph, k-list-∼ 335

edge-colouring 23, 321–331, 333–336,
465–484, 1016, 1136, 1455

bipartite 321–331, 333–336, 1016,
1136

algorithm 322–323, 333–334
complexity 334–335
min-max 321–322

complexity 466–467
history 482–484
NP-completeness 468–470

edge-colouring, fractional ∼ 474–478,
1455

complexity 477–478
min-max 474–475

edge-colouring, k-∼ 321, 465

edge-colouring, list-∼ 335–336, 1455
bipartite 335–336

edge-colouring, minimum ∼ 24

edge-colouring number 23, 321, 465

edge-colouring number, fractional ∼
474

edge-colouring number, list-∼ 335,
482

edge-colouring theorem, Kőnig’s ∼
321–322, 324–325, 331, 934,
1016, 1136, 1441

edge-connected component, 2-∼ 247–
248

algorithm 248
edge-connected component, k-∼ 248

edge-connected graph, k-∼ 238, 1050
minimum-size 1050

edge-connected graph, r-∼ 1055,
1067

edge-connectivity 237–238, 244–251,
253–255, 1037–1040, 1044–1046,
1048, 1050, 1055–1057, 1062–
1074, 1458

algorithm 244–246
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complexity 246–247
edge-connector, 2-∼ 1062–1063

minimum-size 1062–1063
formula 1062–1063

edge-connector, k-∼ 1062, 1065–1066
minimum-size 1065–1066

algorithm 1065
min-max 1065–1066

edge-connector, r-∼ 1067

edge cover 23, 315–320, 461–464, 536–
539, 972, 1023, 1095, 1135

bipartite 316–320, 1023, 1135
history 319–320
minimum-size 316–317, 1023,

1135
algorithm 316
min-max 317

minimum-weight 317–318
algorithm 317
min-max 318

in hypergraph 1428

minimum-size 315–316, 461–462,
464, 536–539, 972, 1095, 1135

algorithm 461–462
bipartite 972
min-max 461

minimum-weight 317, 462–464
algorithm 317, 462
min-max 462–464

nonbipartite 464
history 464

edge cover, 2-∼ 531–532, 534
minimum-size 531–532

algorithm 532
min-max 532

minimum-weight 534
min-max 534

edge cover, b-∼ 347–354, 361, 575–583
bipartite 347–354, 361

minimum-size 348, 352, 361
algorithm 352, 361
min-max 348

minimum-weight 348, 352–353
algorithm 352–353
min-max 348

minimum-size 351–352, 575–576,
578

algorithm 576
min-max 576, 578

minimum-weight 577–578
algorithm 577–578
min-max 577–578

edge cover, capacitated b-∼ 350–353,
579–580, 583

bipartite 350–353
minimum-size 350–351

min-max 350–351
minimum-weight 351–353

algorithm 351–353
min-max 351

minimum-size 579–580, 583
algorithm 580
min-max 579–580

minimum-weight 580
algorithm 580
min-max 580

edge cover, fractional ∼ 532–533,
1090

in hypergraph 1429

edge cover, k-∼ 578–579
in hypergraph 1429

minimum-size 579
min-max 579

edge cover, simple 2-∼ 535–536
minimum-size 535–536

algorithm 535
min-max 535

minimum-weight 535–536
algorithm 536

edge cover, simple b-∼ 349–354, 581–
582

bipartite 349–354
minimum-size 349–350

min-max 349
minimum-weight 350–353

algorithm 350–353
min-max 350

minimum-size 581–582
algorithm 581–582
min-max 581–582

minimum-weight 581
min-max 581

edge cover, simple k-∼ 582

minimum-size 582
min-max 582

edge cover number 23, 315–317, 461
edge cover number, fractional ∼ 533,

1090
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edge cover packing number 324, 479

edge cover polyhedron, 2-∼ 533–534
edge cover polyhedron, b-∼ 348, 576–

577
bipartite 348

edge cover polyhedron, fractional ∼
533

edge cover polytope 318–319, 462–464
adjacency 464
bipartite 318–319
diameter 464

edge cover polytope, c-capacitated b-∼
580

edge cover polytope, simple 2-∼ 536

edge cover polytope, simple b-∼ 350,
581

bipartite 350
edge cover theorem, Kőnig-Rado ∼

317–320, 392, 703, 960, 972,
1023, 1135–1136, 1441

edge covers, disjoint ∼ 324–325, 478–
479, 974

bipartite 324–325, 974
min-max 324–325

edge covers, union of disjoint ∼ 350
bipartite 350

min-max 350
edge-disjoint paths 1253, 1255, 1285,

1296–1299, 1308, 1311–1313,
1318–1320

planar 1296–1299, 1308, 1311–
1313, 1318–1320

algorithm 1298
characterization 1296–1298,

1308, 1311–1313, 1318–
1320

complexity 1299
edge-disjoint paths problem 1223

edge-disjoint paths problem, homotopic
∼ 1366

edge-disjoint paths problem, k ∼ 1223

edge-disjoint s − t paths 139, 254, 974,
1413

planar 139
complexity 139

edge-disjoint subgraphs 18

edge-disjoint T -paths 1282–1283,
1285–1286

algorithm 1285–1286

min-max 1282–1283
edge-disjoint T -paths theorem, Mader’s

∼ 1282–1283, 1289
edge-disjoint walks 20

edge inequalities 1090

edge of graph, multiple ∼ 16

edges, disjoint ∼ 17

edges of graph, parallel ∼ 16

Edmonds-Gallai decomposition 423–
425, 518–519, 545, 574, 765

Edmonds-Giles graph 1148

Edmonds-Giles theorem 1019–1021,
1028–1030, 1034

Edmonds graph 1211

Edmonds-Johnson property 608

Edmonds’ disjoint arborescences
theorem 905, 974, 1047, 1399

Edmonds’ disjoint branchings theorem
904

Edmonds’ matching polytope theorem
440, 442–443

Edmonds’ perfect matching polytope
theorem 438–439

efficient algorithm 39

Egerváry’s theorem 285–286, 304, 318

elementary arithmetic operations 39

ellipsoid method 68–71
embedded graph, cellularly ∼ 1357

embedding of graph 25

end
of arc 29

of directed walk 31

of edge 17

of walk 19

end arc of walk 31

end edge of walk 19

end point of curve 1361

end vertex
of graph 17

of walk 19, 31

enter 29

entry of vector 11

equality, implicit ∼ 64

equivalent graphs, P4-∼ 1122

equivalent signed graph 1329

equivalent signing 1329

essential edge 1133

Euclidean traveling salesman problem
982, 990
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Euler 1420
condition in matroid 1420

Euler condition 1233–1236, 1241,
1244, 1251–1252, 1254–1255,
1262–1263, 1266–1267, 1271–
1274, 1289, 1291–1292, 1296–
1299, 1301–1302, 1304, 1307–
1309, 1311–1312, 1315–1316,
1318–1320, 1324, 1341–1342,
1361, 1366–1367, 1459

in matroid 1420, 1422–1423,
1425–1426

Euler condition, global ∼ 1366

Euler condition, local ∼ 1366

Euler’s formula 26

Eulerian digraph 34, 952, 957–958,
1234, 1254, 1262–1263, 1289

Eulerian directed walk 34

Eulerian graph 24, 472, 488, 518,
1238–1240, 1252, 1263, 1289,
1299, 1301, 1315, 1336, 1340,
1350, 1354, 1356

Eulerian orientation 34, 91

algorithm 91
Eulerian signed graph 1335

Eulerian walk 24

even circuit 1329

in bidirected graph 1201

even component 20

even cycle of binary hypergraph 1406,
1409

even edge set 1329

even face of planar graph 1144

even pair of vertices 1124

even path 1329

even set 9

even walk 19

evenly bipartite graph 1340–1341
evenly bipartite signed graph 1331,

1340
characterization 1340

exact realization 1051

exactly realizable function 1051

excess function 149, 1047

exchange properties of bases 669–671,
722, 728–729

exchange properties of branchings
909–910

exchange properties of disjoint paths
140–141

exchange properties of forests 867–868
exchange properties of independent sets

654, 669–671
exchange property, Steinitz’ ∼ 654,

676

exchange property of common
independent sets 721–722

exchange property of common
transversals 407–408

exchange property of matching forests
1008–1011

exchange property of matchings 266–
267

exchange property of transversals 381,
386–387

extended contrapolymatroid 774

extended polymatroid 767

extension, linear ∼ 11

extension, parallel ∼ 739

extremal ray of polyhedron 65

extreme common independent set 707

extreme forest 867

extreme function 183–184
extreme matching 287

extreme stable set 1213

f -augmenting path 151

F-contraction 610

F -cover 1203

F-critical vertex set 545

f -flat 777

f -inseparable subset of polymatroid
777

F-matching 545

F-matching, maximum ∼ 545

F-matching, perfect ∼ 545

F -stable set 1203

face
of embedded graph 1355

of planar graph 25

of polyhedron 63–64
face-determining inequality 64

face-inducing inequality 64

face of planar graph, bounded ∼ 26

face of planar graph, even ∼ 1144

face of planar graph, odd ∼ 1144

face of planar graph, unbounded ∼ 26
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face of polyhedron, minimal ∼ 64

facet
of convex set 1165

of polyhedron 64–65
facet, rank ∼ 1216

facet-determining inequality 64

facet-inducing inequality 64

facet of polyhedron 64–65
factor, 1-∼ ≡ perfect matching 414–

415, 425–428, 431–436
factor, 2-∼ 527–528, 531, 545, 986–

987, 1456
algorithm 528
characterization 527–528
complexity 545
minimum-weight 528, 531, 986–987

algorithm 528
min-max 531

factor, b-∼ 340–343, 358, 569–574,
621

algorithm 572
bipartite 340–343, 358

algorithm 342–343
characterization 340
complexity 358
minimum-weight 341–343

algorithm 342–343
min-max 341

characterization 570
minimum-weight 571–572

algorithm 572
min-max 571

factor, k-∼ 327, 340, 572–574
bipartite 327, 340

characterization 327, 340
characterization 572

factor, replicating vertex by ∼ 1109

factor-critical graph 424–425–426,
446, 544–545

factor polytope, 2-∼ 530

diameter 530
facets 530

factor polytope, b-∼ 570–571
factor theorem, Tutte’s 1-∼ 414–415,

425, 435–436
family 9

family, cross-free ∼ 37, 214–216, 842,
1021–1022

family, crossing ∼ 838–851, 976–980,
1018–1023

family, intersecting ∼ 832–837
family, laminar ∼ 37, 214–215, 441,

453, 712, 820, 832

family, lattice ∼ 826–832, 834–835
Fano hypergraph 1386

Fano matroid 655

Farkas’ lemma 61

fattest augmenting path 159

feasible circulation 178

feasible direction 73

feasible multiflow 1221

feasible problem 63, 1221

feasible region 63

feasible solution 14, 63

feasible spanning tree 207

feasible system of linear inequalities 61

feedback arc set 951–953, 956–958
minimum-size 951–953, 956–958
planar 951, 958

min-max 951
minimum-size 958

min-max 958
shortest 951–953

complexity 951
feedback vertex set 958–959
Fekete’s lemma 14–15
Fibonacci forest 99–100
Fibonacci heap 99–100–101
finite matroid 746

finitely generated cone 60

first arc of walk 31

first edge of walk 19

first vertex of walk 19, 31

fixed point of curve 1369

flat, f -∼ 777

flat of matroid 666–668, 698

flow 148–169, 172–173, 176–191, 195–
197, 205–207, 1020

in matroid 1426

in undirected graph 1222

maximum 1020
minimum-cost 177–191, 195–197

algorithm 185
simplex method 195

flow, 2-commodity ∼ 1251–1265, 1414
characterization 1252–1254

flow, blocking ∼ 154–156
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flow, concave-cost ∼ 196–197
flow, convex-cost ∼ 196
flow, dynamic ∼ 192–195
flow, generalized ∼ 196
flow, maximum ∼ 148–149–169, 173,

200–201, 1020, 1453
algorithm 151–160, 1453
complexity 160–161
history 164–169
min-max 150–151
planar 161–162

complexity 161–162
simplex method 162–163

flow, maximum s − t ∼ 149

flow, multicommodity ∼ ≡ multiflow
flow, nowhere-zero ∼ 470–473, 646,

1426–1427, 1454

in matroid 1426–1427
flow, nowhere-zero k-∼ 472

flow, polymatroidal network ∼ 1028–
1029

flow, s − t ∼ 148

flow, submodular ∼ 1018–1021, 1034
minimum-cost 1019–1020, 1034

algorithm 1019–1020, 1034
min-max 1019

flow, unsplittable ∼ 196

flow-augmenting algorithm 151

flow-augmenting path 151

flow conjecture, 3-∼ 472, 1454

flow conjecture, 4-∼ 472, 498, 645,
1426, 1454

flow conjecture, 5-∼ 472, 646, 1453

flow conjecture, weak 3-∼ 473, 1454

flow conservation law 148

flow homotopic to 1364

flow over group 470

flow polyhedron, submodular ∼ 1018,
1034

dimension 1034
facets 1034

flow problem, maximum ∼ 149

flow problem, minimum-cost s − t ∼
177

flow with upper and lower bounds
172–173

flow with upper and lower bounds,
maximum ∼ 173

flower, M -∼ 416

flowing matroid, 1-∼ 1421, 1461
flowing matroid, 2-∼ 1421–1422
flowing matroid, 3-∼ 1422–1423
flowing matroid, 4-∼ 1423–1424
flowing matroid, ∞-∼ 1420, 1423–

1424
flowing matroid, integer ∞-∼ 1420

flowing matroid, integer k-∼ 1420–
1421

flowing matroid, k-∼ 1420

Floyd-Warshall method 110–111
Ford’s method 115
forest 22, 855, 860–861, 867–868

exchange properties 867–868
in hypergraph 755

longest 860–861
algorithm 860
min-max 860–861

forest, directed ∼ 34

forest, M -alternating ∼ 420

forest, matching ∼ 1005–1017
exchange property 1008–1011
maximum-size 1006–1007, 1016

min-max 1006–1007
maximum-weight 1012–1016

min-max 1012–1016
forest, maximal ∼ 855

forest, perfect matching ∼ 1007–1008
algorithm 1008
characterization 1007–1008

forest, rooted ∼ 34

forest cover 869–870
forest cover polytope 870

forest-merging method 857–859, 871,
874

forest-merging method, parallel ∼
859, 871–874

forest polytope 861, 879–884, 886
forest polytope, matching ∼ 1011–

1017
facets 1017

forests, covering by ∼ 878–879, 888–
890

algorithm 888
complexity 889–890
min-max 879

forests, covering by matching ∼ 1016
min-max 1016

forests, disjoint ∼ 892
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forests, union of ∼ 877, 890
maximum-size 890

complexity 890
maximum-weight 890

complexity 890
min-max 877

forward arc 31

four-colour conjecture 1085

four-colour theorem 26–27, 470–471,
473, 476, 482–484, 498, 1085,
1087

fractional arboricity 891

fractional b-matching polytope 561
vertices 561

fractional c-covering 37

fractional c-packing 36

fractional clique cover number 1096

fractional colouring, minimum ∼ 1096,
1098

fractional colouring number 1096

fractional covering 36

fractional edge-colouring 474–478,
1455

complexity 477–478
min-max 474–475

fractional edge-colouring number 474

fractional edge cover 532–533, 1090

in hypergraph 1429

fractional edge cover number 533,
1090

fractional edge cover polyhedron 533

fractional matching 521, 1094

in hypergraph 1378

fractional matching number 521, 1094

fractional matching polytope 522

fractional multiflow 1222, 1224–1231,
1234–1239, 1241, 1245–1249,
1270, 1272–1274, 1287, 1307–
1308, 1317–1318, 1320, 1341–
1342, 1354, 1357, 1361, 1368,
1459

algorithm 1225–1226
maximum-value 1226–1227

fractional packing 36

fractional solution of disjoint paths
problem 1223

fractional stable set 532–533, 1090–
1093, 1095–1096, 1099

in hypergraph 1429

maximum-weight 1091
algorithm 1091

fractional stable set, strong ∼ 1096,
1098–1099

maximum-size 1096
fractional stable set number 533,

1090

fractional stable set number, strong ∼
1096

fractional stable set polytope 1090–
1093

vertices 1091–1092
fractional vertex-colouring, minimum ∼

1096, 1098
fractional vertex cover 521, 1093–

1095
in hypergraph 1378, 1380–1381

minimum-size 1380–1381
minimum-weight 1094

algorithm 1094
fractional vertex cover number 521,

1093

fractional vertex cover polytope 1094–
1095

vertices 1094
fractional weighted clique cover number

1097

fractional weighted colouring, minimum
∼ 1097

NP-completeness 1097
fractional weighted colouring number

1097

Frank’s discrete sandwich theorem 799

freely homotopic closed curves 1352

freely homotopic to, circulation ∼
1357, 1360

Frobenius’ theorem 261–263, 276–277,
280

Fulkerson conjecture 476, 1455

Fulkerson conjecture, generalized ∼
476, 509–510, 645, 1454

Fulkersonian hypergraph 1383

function, extreme ∼ 183–184
function, integer ∼ 11

function, modular ∼ 766

function, nondecreasing ∼ 766

function, nonincreasing ∼ 766

function, submodular ∼ 665, 766–
826–852, 1018–1034
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operations on 781–782
function, supermodular ∼ 766, 774–

775, 1022–1023
function, symmetric ∼ 1051

fundamental circuit in matroid
matching 747

fundamental cut 449, 499

Gale-Ryser theorem 359–361
Gale-Shapley theorem 311–312, 335
Gale’s theorem 174

Gallai graph 1143, 1145
Gallai-Milgram theorem 232–233,

1453
Gallai’s disjoint T -paths theorem

1279–1280
Gallai’s theorem 316

Γ -free matrix 1445–1446
Γ -metric 1273, 1316

Γ -metric condition 1273, 1316

γ-pluperfect graph 1182

gammoid 659–661, 739, 765
gammoid, strict ∼ 659–661
generalized flow 196
generalized Fulkerson conjecture 476,

509–510, 645, 1454

generalized matroid 852

generalized polymatroid 845–849,
1020–1021

generalized polymatroid, dimension of
∼ 849

generalized polymatroid intersection
847–849

generalized submodular function 851

generalized switchbox 1324

generated by, cone ∼ 60

generated by tree and digraph, network
matrix ∼ 213

generates a collection, collection ∼
1032

geometric lattice 668

global Euler condition 1366

Gomory-Hu tree 248–253
algorithm 250–251
complexity 251

Gomory-Hu tree for vertex set 250

good algorithm 39

good characterization 42–43

good collection 1074

good connector 859

good forest 856, 866, 868

good pair 1074

gradient method 73
graph 16

graph, bidirected ∼ 594–608, 1201–
1203

graph, directed ∼ 28

graph, equivalent signed ∼ 1329

graph, k-∼ 475, 644–645, 1454

graph, mixed ∼ 30, 926, 1005–1017,
1037–1038, 1048, 1062, 1074

graph, signed ∼ 1329

graph, topological ∼ 25

graph, undirected ∼ 16

graphic matroid 657, 754–755, 823
greedy algorithm 688–690, 699, 771–

773, 856–859
greedy algorithm, dual ∼ 859–860

grid 1323–1325
grid, rectangular ∼ 1323

grid graph 1323

group, flow over ∼ 470

Guenin’s theorem 1329–1340–1341,
1392–1394

Győri’s theorem 1032–1034, 1100–
1101

H minor 25

h-perfect graph 1207

H-subdivision 25

H subgraph 18

Hadwiger’s conjecture 1086–1087,
1457

Hajós’ conjecture 1087–1088
half-integer 2-commodity flow 1251–

1256
algorithm 1254

half-integer multiflow 1222, 1230–
1231, 1234, 1236, 1238, 1251,
1253–1255, 1258, 1266, 1271–
1274, 1288, 1290–1291, 1294,
1298, 1310, 1318, 1341–1342,
1361, 1459

complexity 1231, 1234, 1273, 1310
half-integer multiflow problem 1222

half-integer solution of disjoint paths
problem 1223

half-integer vector 79
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half-integral, totally dual ∼ 81

halfspace, affine ∼ 59, 607

halfspace, linear ∼ 59

halfspace, rational affine ∼ 607

Hall’s condition 379

Hall’s marriage theorem 379–380, 392
Hall’s marriage theorem, defect form of

∼ 380–381
Hall’s theorem 379–380, 392
Hamiltonian circuit 24, 34, 981–982,

996
longest 996
shortest 981–982

Hamiltonian circuit, directed ∼ 115,
981

NP-completeness 115
Hamiltonian circuit, undirected ∼ 115

NP-completeness 115
Hamiltonian digraph 34

Hamiltonian graph 24

Hamiltonian path 24, 34, 114

Hamiltonian path problem, directed ∼
114

NP-completeness 114
Hamiltonian path problem, undirected

∼ 114–115
NP-completeness 114–115

Hamming distance 1173

handle 987

have colour 321

head of arc 29

heap 98–99, 128–129
heap, 2-∼ 98–99, 128–129
heap, Fibonacci ∼ 99–100–101
heap, k-∼ 98–99, 128–129
height

of element of partially ordered set
217, 312, 429, 1137

Hilbert base 81–82
Hilbert base, integer ∼ 81

Hirsch conjecture 65, 1453

history of assignment problem 292–300
history of bipartite edge cover 319–320
history of bipartite matching 278–284
history of Chinese postman problem

519
history of edge-colouring 482–484
history of edge cover 319–320, 464

bipartite 319–320

history of efficiency and complexity
49–58

history of machine configuration 45

history of matroid union 743–744
history of matroids 672–687
history of maximum flow 164–169
history of Menger’s theorem 142–147
history of multiflow 1249–1250
history of nonbipartite matching 431–

437
history of perfect graphs 1176–1185
history of polyhedral combinatorics 6–

7
history of shortest path 119–130
history of shortest spanning tree 871–

876
history of transportation 362–377
history of transshipment 362–377
history of transversals 390–392
history of traveling salesman problem

996–1004
history of weighted bipartite matching

292–300
Hitchcock-Koopmans transportation

problem 344

Hitchcock’s theorem 344–345

Hoffman’s circulation theorem 171–
172, 1020

hole 1085, 1107, 1366

hole, anti∼ 1085, 1107

hole, odd ∼ 1085, 1107

hole, odd anti∼ 1085, 1107

homeomorph 25

homeomorphic graphs 25

homogeneous pair 1112

homomorphism 1207

homotopic 1362

homotopic circulation theorem 1357–
1360

homotopic closed curves, freely ∼
1352

homotopic cut condition 1366

homotopic edge-disjoint paths problem
1366

homotopic paths problem, disjoint ∼
1368

homotopic to, circulation freely ∼
1357, 1360

homotopic to, flow ∼ 1364
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homotopy 1352–1371
horizontally convex polyomino 1149

Hu’s 2-commodity flow theorem
1253–1254

hull, convex ∼ 59

hull, down ∼ 59

hull, integer ∼ 83–84, 607, 1098

hull, up ∼ 59

Hungarian method 286–290, 294, 298–
300, 305–307

hypergraph 36, 755, 1375–1451
hypergraph, blocking ∼ 1377

hypergraph, connected ∼ 36

hypergraph, contracting vertex of ∼
1376

hypergraph, dual ∼ 1375

hypergraph, k-uniform ∼ 36, 755

hypergraph, parallelization of ∼ 1376

hypergraph, partial ∼ 1439

hypermetric cone 1345

hypermetric inequalities 1345

hyperplane 12

hyperplane, supporting ∼ 63

ideal 233

ideal, lower ∼ 11, 233, 1026, 1028

ideal, upper ∼ 11, 1028

ideal hypergraph 1383–1396, 1460–
1461

ideal hypergraph, binary ∼ 1408–1409,
1460–1461

ideal matrix 1396

ILP ≡ integer linear programming
image 25, 417

imperfect graph, critically ∼ ≡
minimally imperfect graph
1107

imperfect graph, minimally ∼ 1107–
1109, 1113, 1115–1125, 1145,
1150

implicit equality 64

improve a collection of matroid
matchings 757

incidence matrix
of bidirected graph 594, 1201

of digraph 35, 204

of family of sets 12

of graph 28

of hypergraph 1375

incidence vector 11

incident 17, 25, 29

incident with edge, set ∼ 17

inclusionwise maximal 10

inclusionwise minimal 10

indegree of vertex 29

independence testing oracle 689

independent collection of pairs of
subsets 1032

independent path-matching 764

independent path-matching vector 764

independent set 651, 654, 669–671,
688–692, 746

exchange properties 654, 669–671
maximum-weight 688–692

algorithm 688–690
min-max 690–691

independent set, common ∼ 700–701,
705–724, 768, 1026

exchange property 721–722
maximum-size 700–701, 705–707,

710, 1026
algorithm 705–707
complexity 707, 710
min-max 700–701

maximum-weight 707–712, 714–715
algorithm 707–712
min-max 714–715

of three matroids 700, 707
NP-completeness 700, 707

independent set augmenting algorithm,
common ∼ 705–706

independent set in graph ≡ stable set
independent set polytope 690–699,

730–731, 733
adjacency 698–699
facets 698

independent set polytope, common ∼
712–714–719, 741–743

facets 718–719
independent sets, covering by ∼ 726–

727, 729, 732, 735–736
algorithm 732, 735–736
min-max 727, 729

independent sets, covering by common
∼ 739–740

min-max 740
independent sets, union of ∼ 726

matroid union theorem 726
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min-max 726
independent transversal 702

characterization 702
independent vectors, affinely ∼ 13

independent vectors, linearly ∼ 13

induced by, subgraph ∼ 18, 30

induced subgraph 18, 30

induction of matroid 736–737
induction of polymatroid 782–783
inequality, active ∼ 63

inequality, facet-determining ∼ 64

inequality, facet-inducing ∼ 64

inequality, tight ∼ 63

inequality, valid ∼ 60

inequality problem, most violated ∼
697–698, 733

infeasible problem 63

infinite matroid 745

injection 13

injective function 13

inneighbour 29

input of problem 40

input size 39

input size of vector 69

inseparable subset of matroid 698

inseparable subset of polymatroid, f -∼
777

instance of problem 40

integer ∞-flowing matroid 1420

integer decomposition property 82–83,
204

integer function 11

integer Hilbert base 81

integer hull 83–84, 607, 1098

integer k-commodity flow problem
1222

integer k-flowing matroid 1420–1421
integer linear programming 73–74–84
integer multiflow 1222–1225, 1230–

1231, 1234–1235, 1239–1241,
1251, 1254–1255, 1257, 1266,
1271–1274, 1286–1288, 1290–
1292, 1307, 1318, 1320, 1334,
1342

complexity 1224–1225, 1231, 1251
integer multiflow, half-∼ 1222, 1230–

1231, 1234, 1236, 1238, 1251,
1253–1255, 1258, 1266, 1271–
1274, 1288, 1290–1291, 1294,

1298, 1310, 1318, 1341–1342,
1361, 1459

complexity 1231, 1234, 1273, 1310
integer multiflow, quarter-∼ 1231,

1233–1234, 1236, 1274, 1318
integer multiflow problem 1222

integer polyhedron 74–81
integer polyhedron, box-∼ 75, 1418

integer rounding property 82–83
integer vector 11, 73

integer vector, half-∼ 79

integrality, primal ∼ 77

integrity theorem 151, 206
interior-point method 68
internal vertex

of directed walk 31

of walk 19

internally disjoint s − t paths 132,
137–140, 142–147, 275–276

algorithm 137–138
complexity 139, 276
min-max 132
planar 140

complexity 140
internally disjoint T -paths 1282

min-max 1282
internally disjoint T -paths theorem,

Mader’s ∼ 1282

internally disjoint walks 20, 32

internally vertex-disjoint paths 132

internally vertex-disjoint s − t paths
132, 137–140, 142–147, 275–276

algorithm 137–138
complexity 139, 276
min-max 132
planar 140

complexity 140
internally vertex-disjoint T -paths 1282

min-max 1282
internally vertex-disjoint walks 20, 32

intersect 17, 29

intersecting family 832–837
intersecting submodular function 832

intersecting supermodular function
837

intersection, contrapolymatroid ∼
797–799, 818–819, 837

intersection, generalized polymatroid ∼
847–849
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intersection, matroid ∼ 700–724, 739–
743, 768, 1026

complexity 700, 707
weighted 707–712

intersection, optimization over
polymatroid ∼ 795–797

intersection, polymatroid ∼ 795–819,
825–837, 840–841, 1020, 1024,
1026–1028

algorithm 805–819, 829–832, 835–
837, 840–841

intersection criterion 1310

intersection graph 1140, 1142

intersection theorem, matroid ∼ 700–
701, 704, 714–715, 768

interval colouring, k-∼ 1151

interval graph 1140–1141
inverse Ackermann function 864

inverting component 469

irredundant system 64

isolated block 1077

isolated vertex 17

Jarńık-Prim method 856–858, 872–
873, 875

job assignment 428–429
join 233, 510–515, 668, 960

maximum-size 511–515
min-max 511–515

join, 0-∼ 1112–1113
join, 1-∼ 1113

join, 2-∼ 1112–1115
join, special 2-∼ 1114

join, T -∼ 485–519, 1417–1418
minimum-size 488–490, 502, 504

min-max 489–490, 502, 504
shortest 485–486, 488–491, 501–

507, 517–518
algorithm 485–486
complexity 486, 518
min-max 491

join-irreducible 233

join polytope, T -∼ 490–492, 501–507,
517

adjacency 517
diameter 517

joins, disjoint T -∼ 507–510, 519, 1413,
1456

min-max 507–508

jump system 722–723

k-arc-connected digraph 238, 1051
minimum-size 1051

k-arc-connected orientation 1044–1046
algorithm 1045
characterization 1044–1046

k-arc-connector 1058, 1060–1061
minimum-size 1060–1061

algorithm 1061
min-max 1060

k arc-disjoint paths problem 1223

k-chromatic graph 23, 1083

k-circuit 20

k-colourable graph 23, 1083

k-colouring 1083

k-commodity flow 1221–1222

k-commodity flow problem 1221

k-commodity flow problem, integer ∼
1222

k-commodity flow problem,
maximum-value ∼ 1222

k-commodity flow problem, undirected
∼ 1222

k-commodity flow problem, undirected
maximum-value ∼ 1222

k-connected component 242

k-connected digraph 238, 1050–1051
minimum-size 1050–1051

k-connected digraph, strongly ∼ 238,
1051

minimum-size 1051
k-connected graph 237, 1049–1050

minimum-size 1049–1050
k-connected orientation, strongly ∼

1044–1046
algorithm 1045
characterization 1044–1046

k-connected subgraph 991
shortest 991

k-cover, directed cut ∼ 950–951, 953–
954, 964–966, 968

minimum-size 950–951, 953–954
algorithm 953–954
min-max 950–951

minimum-weight 950, 953–954
algorithm 953–954
min-max 950

k-covering 36
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k-cut 21, 33

k-cycle 1409

k-cycling matroid 1420

k disjoint paths problem 1223

k-edge-chromatic graph 24

k-edge-colourable graph 24, 465

k-edge-colouring 321, 465

k-edge-connected component 248

k-edge-connected graph 238, 1050
minimum-size 1050

k-edge-connector 1062, 1065–1066
minimum-size 1065–1066

algorithm 1065
min-max 1065–1066

k-edge cover 578–579
in hypergraph 1429

minimum-size 579
min-max 579

k-edge cover, simple ∼ 582

minimum-size 582
min-max 582

k edge-disjoint paths problem 1223

k-factor 327, 340, 572–574
bipartite 327, 340

characterization 327, 340
characterization 572

k-flow, nowhere-zero ∼ 472

k-flowing matroid 1420

k-flowing matroid, integer ∼ 1420–
1421

k-graph 475, 644–645, 1454

k-heap 98–99, 128–129
k-interval colouring 1151

k-list-edge-colourable graph 335

k-matching 558–559
in hypergraph 1378

maximum-size 558
min-max 558

k-matching, perfect ∼ 558–559
characterization 558

k-matching, perfect simple ∼ ≡
k-factor

k-matching, simple ∼ 572
maximum-size 572

min-max 572
k-matching, simple perfect ∼ ≡

k-factor
k-matching polytope 559

k-packing 36

k-perfect graph 1150

k-regular edge function 269

k-regular graph 17

k-regularizable graph 330, 561

bipartite 330
characterization 330

characterization 561
k shortest paths 129
k shortest s − t paths 105
k-stable set

in hypergraph 1429

k-sum of graphs 26

k-truncation of matroid 654

k-uniform hypergraph 36, 755

k-uniform matroid 654

k-valent vertex 17

k-vertex-colourable graph 23, 1083

k-vertex-colouring 1083

k-vertex-connected digraph 238,
1050–1051

minimum-size 1050–1051
k-vertex-connected graph 237, 1049–

1050
minimum-size 1049–1050

k-vertex-connector 1074–1075, 1077

minimum-size 1074–1075
min-max 1074–1075

k-vertex cover
in hypergraph 1378

k-vertex-cut 22, 33

k vertex-disjoint paths problem 1223

K4-free graph 1120

K4-subdivision, bad ∼ 1195

K4-subdivision, odd ∼ 1188, 1201,
1330, 1334

K4-subdivision, totally odd ∼ 1196

kernel 1126

kernel solvable graph 1126–1130
Klein bottle, graph on ∼ 1314–1316,

1368
Kőnig property 536

Kőnig-Rado edge cover theorem 317–
320, 392, 703, 960, 972, 1023,
1135–1136, 1441

Kőnig’s edge-colouring theorem 321–
322, 324–325, 331, 934, 1016,
1136, 1441

Kőnig’s matching theorem 144, 260–
263, 275–277, 281–284, 304–305,
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392, 703, 783, 930, 1136, 1399,
1441

Kruskal’s method 857–859, 871, 874
Kuratowski’s theorem 26

Lagrangean multipliers 986

Lagrangean relaxation 985–986, 993
laminar collection of paths 270

laminar family 37, 214–215, 441,
453, 712, 820, 832

laminar vector 616

last arc of walk 31

last edge of walk 19

last vertex of walk 19, 31

lattice 81, 233, 668–669, 674–675,
677, 681–682

lattice, distributive ∼ 233–235, 1034
lattice, dual ∼ 81

lattice, geometric ∼ 668

lattice, matroid ∼ 668–669
lattice, modular ∼ 674–675, 681

lattice, point ∼ 668–669
lattice, upper semimodular ∼ 669,

675, 677, 681–682
lattice family 826–832, 834–835
lattice polyhedron 1025–1028
leaf 434

leave 29

legal order 245

Lehman’s theorem 1387–1392
length 13

of closed curve 1356

of walk 19, 31

length function 13

length of walk 96

length-width inequality 94, 221, 1383

light 1127

Lin-Kernighan heuristic for the
symmetric traveling salesman
problem 996

line digraph 30

line graph 18

line of graph ≡ edge of graph
line-perfect graph 1145

linear extension 11

linear halfspace 59

linear matroid 654–655, 676–679, 728,
753

linear order 11

linear ordering problem 953

linear programming 61–63, 67–68, 84
linear programming, duality theorem of

∼ 62–63
linear programming, integer ∼ 73–74–

84
linear programming duality equation

63

linear time, problem solvable in ∼ 47

linear-time algorithm 47

linear-time solvable problem 47

linearly independent vectors 13

link 1337

linked list 48

linked list, doubly ∼ 48–49
linked sets in digraph 140, 659, 737

linking system 671

linklessly embeddable graph 956–958
Lins’ theorem 1299–1300
list 48–49
list, doubly linked ∼ 48–49
list, linked ∼ 48

list-colouring 737–738, 892
of matroid 737–738

list-edge-colourable graph, k-∼ 335

list-edge-colouring 335–336, 1455
bipartite 335–336

list-edge-colouring number 335, 482

literal 1084

local Euler condition 1366

lockable collection 1291–1292
longest ≡ maximum-length 13

longest branching 895–896, 900–901
algorithm 895–896
min-max 900–901

longest forest 860–861
algorithm 860
min-max 860–861

longest Hamiltonian circuit 996
longest path 114–117

acyclic 116–117
min-max 116–117

NP-completeness 114–115
longest R − S biforest 930–931

algorithm 931
min-max 930

longest R − S bifurcation 938–940
algorithm 940
min-max 938–940
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loop
in digraph 29

in graph 16

of matroid 651

loopless digraph 29

loopless graph 16

loopless vertex 16

lower ideal 11, 233, 1026, 1028

LP ≡ linear programming
Lucchesi-Younger theorem 947–948,

972, 977, 1020, 1024, 1399–1400

M -alternating forest 420

M -alternating walk 416

M -augmenting path 259–260, 263–
264, 413

M -blossom 416

M -flower 416

M -posy 537

Mader matroid 1293–1294
Mader’s disjoint S-paths theorem

1280–1281
Mader’s edge-disjoint T -paths theorem

1282–1283, 1289
Mader’s internally disjoint T -paths

theorem 1282

marginal component 1070

marriage theorem, defect form of Hall’s
∼ 380–381

marriage theorem, Hall’s ∼ 379–380,
392

matchable set 23, 262, 359, 450–452,
624

matchable set polytope 359, 450–452
bipartite 359

matched to 23

matching 23, 259–316, 321–347, 359–
362, 378–409, 413–460, 536–539,
1095, 1136, 1453

bipartite 260–316, 321–347, 359–
362, 378–409, 1136

history 278–284
maximum-size 260–267, 275–

278, 304–305, 316, 1136
algorithm 263–265, 277–

278, 316
complexity 267, 276–277
min-max 260–261

maximum-weight 285–288, 290–
300, 304–307

algorithm 286–288, 305–307
complexity 290
history 292–300
min-max 285–286
simplex method 290–291

exchange property 266–267
in hypergraph 1377

in matroid 746

maximum-size 259–260, 315–316,
413–425, 429–437, 536–539,
1095, 1136

algorithm 415–421, 429–430,
436–437

complexity 422–423
min-max 413–414

maximum-weight 438–444, 448–
449, 453–460, 1453

algorithm 448–449, 456–458
complexity 458–459
min-max 440–442

nonbipartite 431–437
history 431–437

matching, 2-∼ 341, 520–521, 523–526,
531–532

maximum-size 520–521, 524–526,
531–532

algorithm 521
min-max 520–521

maximum-weight 523–524
algorithm 523
min-max 523

matching, b-∼ 337–347, 351–356, 358–
362, 546–576

bipartite 337–347, 353–356, 358–
362

maximum-size 338, 342–343,
358

algorithm 342–343
complexity 358
min-max 338

maximum-weight 337–338, 342–
343, 355–356

algorithm 342–343
complexity 355–356
min-max 338

maximum-size 351–352, 546–547,
556–557, 575–576
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min-max 546–547, 557
maximum-weight 550–559, 561

algorithm 554–556, 561
complexity 559
min-max 550–553, 558

matching, basic path-∼ 763

matching, bottleneck ∼ 423

matching, capacitated b-∼ 341–343,
357–358, 361, 562–568, 583

bipartite 341–343, 357–358
maximum-size 341–343, 358

algorithm 342–343
complexity 358
min-max 341–342

maximum-weight 342–343, 357
algorithm 342–343
complexity 357
min-max 342

maximum-size 562–564, 567, 583
min-max 562–564

maximum-weight 566–567
algorithm 567
min-max 566

matching, capacitated perfect b-∼
342–343, 358, 564, 567

bipartite 342–343, 358
characterization 342
complexity 358

characterization 564
minimum-weight 567

algorithm 567
matching, F-∼ 545

matching, fractional ∼ 521, 1094

in hypergraph 1378

matching, independent path-∼ 764

matching, k-∼ 558–559
in hypergraph 1378

maximum-size 558
min-max 558

matching, matroid ∼ 746–765, 1283–
1284

linear ∼ 757–762
algorithm 757–762

NP-completeness 762–763
matching, maximum F-∼ 545

matching, path-∼ 763–764
matching, perfect 2-∼ 521, 524

characterization 521
complexity 521

minimum-weight 524
min-max 524

matching, perfect ∼ 23, 261–263, 267–
274, 276–279, 288–289, 304–307,
327, 414–415, 418, 422–423,
425–428, 430–436, 438–444, 448–
449, 453–460

algorithm 418
bipartite 261–263, 267–274, 276–

279, 288–289, 304–307
characterization 261
complexity 277
minimum-weight 288–289, 304–

307
algorithm 288, 305–307
min-max 288–289

regular 261–262, 267–274
algorithm 267–274

regular.history 278–279
characterization 414
complexity 422–423, 430
in hypergraph 1443

minimum-weight 438–444, 448–
449, 453–460

algorithm 448–449, 453–458
complexity 458–459
min-max 444

matching, perfect b-∼ 338, 343, 358,
547, 553–554, 556–557, 567–568

bipartite 338, 343, 358
characterization 338
complexity 358
minimum-weight 343

algorithm 343
characterization 547, 557
minimum-weight 553–554, 556

algorithm 556
min-max 553–554

matching, perfect F-∼ 545

matching, perfect k-∼ 558–559
characterization 558

matching, perfect simple 2-∼ ≡
2-factor

matching, perfect simple b-∼ ≡
b-factor

matching, perfect simple k-∼ ≡
k-factor

matching, simple 2-∼ 526–531, 535
maximum-size 526–528, 535
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algorithm 528
min-max 526–527

maximum-weight 531
min-max 531

matching, simple b-∼ 339–343, 354,
358, 569–574, 582

bipartite 339–343, 354, 358
maximum-size 339, 342–343,

358
algorithm 342–343
complexity 358
min-max 339

maximum-weight 340–343
algorithm 342–343
min-max 340–341

maximum-size 569, 572–573, 582
algorithm 572
min-max 569

maximum-weight 571–573
algorithm 571–572
min-max 571

matching, simple k-∼ 572
maximum-size 572

min-max 572
matching, simple perfect 2-∼ ≡

2-factor
matching, simple perfect b-∼ ≡

b-factor
matching, simple perfect k-∼ ≡

k-factor
matching, stable ∼ 311–314

bipartite 311–314
algorithm 312–314
maximum-weight 313–314

algorithm 313–314
matching, triangle-free 2-∼ 539–544

maximum-size 542–544
matching, triangle-free perfect 2-∼ 544

algorithm 544
matching-augmenting algorithm 418

matching-augmenting path 259

matching-covered graph 314, 332,
426–428, 430, 512, 609–613,
617–619

matching forest 1005–1017
exchange property 1008–1011
maximum-size 1006–1007, 1016

min-max 1006–1007
maximum-weight 1012–1016

min-max 1012–1016
matching forest, perfect ∼ 1007–1008

algorithm 1008
characterization 1007–1008

matching forest polytope 1011–1017
facets 1017

matching forests, covering by ∼ 1016
min-max 1016

matching lattice 331–332, 619–647
bipartite 331–332

matching lattice, perfect 2-∼ 647

matching lattice, perfect ∼ 331–332,
619–647

bipartite 331–332
matching matroid 661, 1293–1294
matching number 23, 260, 315–316,

413–414
matching number, fractional ∼ 521,

1094

matching polytope 302–305, 310–311,
439–448, 452, 459, 477–478

adjacency 444–445
bipartite 305, 310–311
diameter 445
facets 446–448

matching polytope, 2-∼ 522, 560
facets 560
vertices 560

matching polytope, b-∼ 338–339,
547–553, 557, 559–561

adjacency 549
bipartite 338–339
diameter 549
facets 559

matching polytope, c-capacitated b-∼
342, 564–567

bipartite 342
facets 567

matching polytope, c-capacitated
perfect b-∼ 565

matching polytope, fractional ∼ 522

matching polytope, fractional b-∼ 561
vertices 561

matching polytope, k-∼ 559

matching polytope, matroid ∼ 765
matching polytope, perfect 2-∼ 522–

524
matching polytope, perfect ∼ 301–

304, 307–310, 314, 327–328, 330–
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331, 438–439, 443–445, 452, 459,
609–612

adjacency 307, 445
bipartite 307–310, 314, 327–328,

330–331
diameter 307, 445, 452
dimension 308, 609–612

matching polytope, perfect b-∼ 549,
553–554

matching polytope, simple 2-∼ 528–
531

facets 530
matching polytope, simple b-∼ 340,

570–571, 574
adjacency 574
bipartite 340
facets 574

matching polytope, stable ∼ 312–313
bipartite 312–313

matching polytope, triangle-free 2-∼
539–544

facets 544
matching polytope theorem, Edmonds’

∼ 440, 442–443
matching polytope theorem, Edmonds’

perfect ∼ 438–439
matching problem, 3-dimensional ∼

408

matching problem, matroid ∼ 745–765
matching space, perfect 2-∼ 646–647
matching space, perfect ∼ 308–309,

331, 611–612
bipartite 308–309
dimension 308–309, 611–612

matching theorem, Kőnig’s ∼ 144,
260–263, 275–277, 281–284, 304–
305, 392, 703, 783, 930, 1136,
1399, 1441

matching vector, independent path-∼
764

matchings, covering by perfect ∼ 329–
331

bipartite 329–331
min-max 329–330

matchings, disjoint perfect ∼ 326–328,
340

bipartite 326–328, 340
min-max 327

matchings, union of ∼ 340

bipartite 340
min-max 340

matchoid problem 765

mate 23

matroid 651–765, 768, 775–776
history 672–687

matroid, algebraic ∼ 656–657, 675–
679, 753–754, 765

matroid, binary ∼ 655–656, 1406–
1407, 1415, 1420–1427, 1456,
1461

matroid, cocycle ∼ 657–658
matroid, cographic ∼ 657–658
matroid, cycle ∼ 657

matroid, cycle in binary ∼ 655

matroid, dual ∼ 652–653
matroid, Fano ∼ 655

matroid, finite ∼ 746

matroid, generalized ∼ 852

matroid, graphic ∼ 657, 754–755, 823
matroid, induction of ∼ 736–737
matroid, infinite ∼ 745

matroid, linear ∼ 654–655, 676–679,
728, 753

matroid, matching ∼ 661, 1293–1294
matroid, pseudomodular ∼ 765

matroid, regular ∼ 656, 1408, 1415,
1422

matroid, representable ∼ 654–655
matroid, strongly base orderable ∼

738–743
matroid, transversal ∼ 658–659, 727–

728, 739
matroid base covering theorem 727,

729
matroid base packing theorem 727

matroid cover 756–757
matroid intersection 700–724, 739–743,

768, 1026
complexity 700, 707
weighted 707–712

matroid intersection theorem 700–701,
704, 714–715, 768

matroid lattice 668–669
matroid matching 746–765, 1283–1284

linear ∼ 757–762
algorithm 757–762

NP-completeness 762–763
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matroid matching, fundamental circuit
in ∼ 747

matroid matching polytope 765
matroid matching problem 745–765
matroid matching theorem 751–752
matroid port 1407
matroid union 725–744

history 743–744
matroid union theorem 726, 782
matroids, union of ∼ 726

max-biflow min-cut theorem 1255–
1256

max-flow min-cut property 1383,
1385

max-flow min-cut property, Q+-∼
1383

max-flow min-cut property, Z+-∼
1397

max-flow min-cut theorem 150–151,
174, 198, 200, 205–206, 1020,
1399

max-potential min-work theorem 96–
97, 108, 972, 1026, 1413

maximal 10

maximal, inclusionwise ∼ 10

maximal chain 235

maximal chains, disjoint ∼ 235
min-max 235

maximal forest 855

maximum 10

maximum-capacity cut 486, 1345–1350
approximative algorithm 1345–

1348
planar 486

algorithm 486
maximum-capacity path problem 117

maximum cut ≡ maximum-size cut
maximum degree

of graph 17

of hypergraph 1380

maximum F-matching 545

maximum flow 148–149–169, 173,
200–201, 1020, 1453

algorithm 151–160, 1453
complexity 160–161
history 164–169
min-max 150–151
planar 161–162

complexity 161–162

simplex method 162–163
maximum flow problem 149

maximum flow with upper and lower
bounds 173

maximum reliability 117–118, 866–867
maximum reliability problem 117

maximum s − t flow 149

maximum-size 2-matching 520–521,
524–526, 531–532

algorithm 521
min-max 520–521

maximum-size 2-stable set 531–532
algorithm 532
min-max 532

maximum-size antichain 218
min-max 218

maximum-size b-matching 338, 342–
343, 351–352, 358, 546–547, 556–
557, 575–576

bipartite 338, 342–343, 358
algorithm 342–343
complexity 358
min-max 338

min-max 546–547, 557
maximum-size capacitated b-matching

341–343, 358, 562–564, 567, 583
bipartite 341–343, 358

algorithm 342–343
complexity 358
min-max 341–342

min-max 562–564
maximum-size chain 217

min-max 217
maximum-size clique 1084–1085, 1102–

1185
in perfect graph 1106–1134, 1154

algorithm 1154
NP-completeness 1084–1085

maximum-size common independent set
700–701, 705–707, 710, 1026

algorithm 705–707
complexity 707, 710
min-max 700–701

maximum-size common partial
transversal 394

min-max 394
maximum-size cut 1328, 1350

complexity 1350
NP-completeness 1328
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maximum-size directed cut 219–220
acyclic 219–220

min-max 219–220
maximum-size directed path 218

acyclic 218
min-max 218

maximum-size join 511–515
min-max 511–515

maximum-size k-matching 558
min-max 558

maximum-size matching 259–267, 275–
278, 304–305, 315–316, 413–425,
429–437, 536–539, 1095, 1136

algorithm 415–421, 429–430, 436–
437

bipartite 260–267, 275–278, 304–
305, 316, 1136

algorithm 263–265, 277–278,
316

complexity 267, 276–277
min-max 260–261

complexity 422–423
min-max 413–414

maximum-size matching forest 1006–
1007, 1016

min-max 1006–1007
maximum-size partial transversal 379–

381
min-max 379–381

maximum-size R − S bifurcation 937–
938

min-max 938
maximum-size simple 2-matching 526–

528, 535
algorithm 528
min-max 526–527

maximum-size simple b-matching 339,
342–343, 358, 569, 572–573, 582

algorithm 572
bipartite 339, 342–343, 358

algorithm 342–343
complexity 358
min-max 339

min-max 569
maximum-size simple k-matching 572

min-max 572
maximum-size stable set 315–317,

536–539, 972, 1023, 1084–1085,

1095, 1098–1185, 1196–1199,
1208–1212, 1217

bipartite 316–317, 972, 1023, 1135
algorithm 316
min-max 317

in claw-free graph 1208–1212
algorithm 1208–1212

in perfect graph 1106–1134, 1153–
1154

algorithm 1153–1154
NP-completeness 1084–1085, 1217

maximum-size strong fractional stable
set 1096

maximum-size triangle-free 2-matching
542–544

maximum-size union of forests 890
complexity 890

maximum-size w-stable set 318, 534
bipartite 318

min-max 318
even w 534

min-max 534
maximum-value fractional multiflow

1226–1227
maximum-value k-commodity flow

problem 1222

maximum-value k-commodity flow
problem, undirected ∼ 1222

maximum-value multiflow 1222, 1225–
1228, 1230, 1237–1238, 1248–
1249, 1255–1257, 1287–1288,
1290–1291, 1294–1295

maximum-value multiflow problem
1222

maximum-value multiflow problem,
undirected ∼ 1222

maximum-weight 2-matching 523–524
algorithm 523
min-max 523

maximum-weight 2-stable set 578,
1091

algorithm 1091
min-max 578

maximum-weight antichain 220
min-max 220

maximum-weight b-matching 337–338,
342–343, 355–356, 550–559, 561

algorithm 554–556, 561
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bipartite 337–338, 342–343, 355–
356

algorithm 342–343
complexity 355–356
min-max 338

complexity 559
min-max 550–553, 558

maximum-weight capacitated
b-matching 342–343, 357, 566–
567

algorithm 567
bipartite 342–343, 357

algorithm 342–343
complexity 357
min-max 342

min-max 566
maximum-weight clique 1097, 1157,

1159
in perfect graph 1157, 1159

algorithm 1157, 1159
maximum-weight common independent

set 707–712, 714–715
algorithm 707–712
min-max 714–715

maximum-weight common independent
set augmenting algorithm 707–
709

maximum-weight common partial
transversal 397–399

algorithm 397
min-max 398–399

maximum-weight fractional stable set
1091

algorithm 1091
maximum-weight independent set 688–

692
algorithm 688–690
min-max 690–691

maximum-weight matching 285–288,
290–300, 304–307, 438–444, 448–
449, 453–460, 1453

algorithm 448–449, 456–458
bipartite 285–288, 290–300, 304–

307
algorithm 286–288, 305–307
complexity 290
history 292–300
min-max 285–286
simplex method 290–291

complexity 458–459
min-max 440–442

maximum-weight matching forest
1012–1016

min-max 1012–1016
maximum-weight partial transversal

382–383
algorithm 382
min-max 383

maximum-weight simple 2-matching
531

min-max 531
maximum-weight simple b-matching

340–343, 571–573
algorithm 571–572
bipartite 340–343

algorithm 342–343
min-max 340–341

min-max 571
maximum-weight stable matching

313–314
bipartite 313–314

algorithm 313–314
maximum-weight stable set 348, 352,

361, 1099–1101, 1155–1157,
1159, 1186–1195, 1213–1216

bipartite 348, 352, 361
algorithm 352, 361
min-max 348

in claw-free graph 1213–1216
algorithm 1213–1216

in perfect graph 1155–1157, 1159
algorithm 1155–1157, 1159

in t-perfect graph 1186–1195
algorithm 1186–1187

maximum-weight union of forests 890
complexity 890

maximum-weight w-stable set 348,
578, 1200–1201

bipartite 348
min-max 348

even w 578
min-max 578

mean capacity directed cut, minimum-∼
968

mean length 111, 500

mean length circuit, minimum-∼ 500–
501

algorithm 500–501
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mean length directed circuit,
minimum-∼ 111–112

algorithm 111–112
complexity 112

meet 17, 29, 233, 668

membership problem 70

Menger matroid 1293–1294
Menger’s theorem 131–133, 142–147,

151, 164, 275–276, 720–721, 974,
1399, 1413

history 142–147
Menger’s theorem, directed arc-disjoint

version of ∼ 132

Menger’s theorem, directed internally
vertex-disjoint version of ∼ 132

Menger’s theorem, directed
vertex-disjoint version of ∼
131–132

Mengerian hypergraph 1397–1402,
1460–1461

Mengerian hypergraph, binary ∼
1409–1415

characterization 1409–1412
Mengerian matroid 1415

metric 10

metric, Γ -∼ 1273, 1316

metric condition, Γ -∼ 1273, 1316

metric cone 1345

metric inequalities 1345

Meyniel graph 1143–1145
MFMC ≡ max-flow min-cut
min-flow max-cut theorem 220

minimal 10

minimal, inclusionwise ∼ 10

minimal face of polyhedron 64

minimal system of inequalities 64

minimal totally dual integral 82
minimally crossing system of curves

1353

minimally imperfect graph 1107–1109,
1113, 1115–1125, 1145, 1150

minimally non-Mengerian hypergraph
1400

minimally nonideal hypergraph 1386,
1460

minimally nonpacking hypergraph
1401, 1461

minimization, submodular function ∼
786–794

algorithm 786–792
complexity 791–792

minimization, symmetric submodular
function ∼ 792–793

algorithm 792–793
minimum 10

minimum-capacity cut 253–254
minimum-capacity D0-cut 974

min-max 974
minimum-capacity directed cut 966–

967
source-sink connected 966–967

min-max 966–967
minimum-capacity odd cut 449

algorithm 449
minimum-capacity r-cut 907

min-max 907
minimum-capacity s − t cut 150–156,

159–162, 200–201, 974, 1020,
1413

algorithm 151–156, 159–160
complexity 160–161
min-max 150–151
planar 161–162

complexity 161–162
minimum-capacity T -cut 498–500,

507–510
algorithm 499–500

minimum clique cover 1083

minimum colouring 23, 1083–1088,
1098, 1102–1185, 1206–1207

NP-completeness 1084–1085
of perfect graph 1106–1134, 1154–

1155
algorithm 1154–1155

minimum-cost b-transportation 344–
346, 356–357, 361–377

algorithm 344–346
complexity 356–357

minimum-cost b-transshipment 182–
183, 186–189, 191–192, 345–346

algorithm 182–183, 186–189
complexity 191
min-max 191–192

minimum-cost capacitated
b-transportation 357–358, 361–
377

complexity 357–358
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minimum-cost capacitated
transportation 357–358, 361–
377

complexity 357–358
minimum-cost circulation 177–191,

195–197
algorithm 179–182, 189–190
complexity 190–191
simplex method 195

minimum-cost circulation problem 177

minimum-cost flow 177–191, 195–197
algorithm 185
simplex method 195

minimum-cost multiflow 1247–1248,
1294–1295

minimum-cost s − t flow problem 177

minimum-cost submodular flow 1019–
1020, 1034

algorithm 1019–1020, 1034
min-max 1019

minimum-cost transportation 344–346,
356–357, 361–377

algorithm 344–346
complexity 356–357
min-max 345

minimum-cost transshipment 182–183,
186–189, 191–192, 345–346

algorithm 182–183, 186–189
complexity 191
min-max 191–192

minimum-cost union of s − t paths
212–213

complexity 212–213
minimum cut ≡ minimum-size cut

238

minimum degree of graph 17

minimum edge-colouring 24

minimum fractional colouring 1096,
1098

minimum fractional vertex-colouring
1096, 1098

minimum fractional weighted colouring
1097

NP-completeness 1097
minimum-mean capacity directed cut

968
minimum-mean length circuit 500–501

algorithm 500–501

minimum-mean length directed circuit
111–112

algorithm 111–112
complexity 112

minimum-requirement spanning tree
251–252

minimum-size 2-edge-connector 1062–
1063

formula 1062–1063
minimum-size 2-edge cover 531–532

algorithm 532
min-max 532

minimum-size 2-vertex-connector
1077–1078

min-max 1077–1078
minimum-size 2-vertex cover 520–521,

531–532
algorithm 521
min-max 520–521

minimum-size b-edge cover 348, 351–
352, 361, 575–576, 578

algorithm 576
bipartite 348, 352, 361

algorithm 352, 361
min-max 348

min-max 576, 578
minimum-size capacitated b-edge cover

350–351, 579–580, 583
algorithm 580
bipartite 350–351

min-max 350–351
min-max 579–580

minimum-size common spanning set
701

min-max 701
minimum-size cut 244–246

algorithm 244–246
minimum-size cut, all-pairs ∼ 248–251
minimum-size cut problem, all-pairs ∼

248

minimum-size D0-cut 973–976
min-max 973–974

minimum-size directed cut 962–968
min-max 967–968
source-sink connected 966

min-max 966
minimum-size directed cut cover 947–

949, 953–954, 956, 960, 972,
1020, 1024
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algorithm 953–954
complexity 956
min-max 947–948

minimum-size directed cut k-cover
950–951, 953–954

algorithm 953–954
min-max 950–951

minimum-size edge cover 315–317,
461–462, 464, 536–539, 972,
1023, 1095, 1135

algorithm 461–462
bipartite 316–317, 972, 1023, 1135

algorithm 316
min-max 317

min-max 461
minimum-size feedback arc set 951–

953, 956–958
planar 958

min-max 958
minimum-size fractional vertex cover

1380–1381
in hypergraph 1380–1381

minimum-size k-arc-connected digraph
1051

minimum-size k-arc-connector 1060–
1061

algorithm 1061
min-max 1060

minimum-size k-connected digraph
1050–1051

minimum-size k-connected graph
1049–1050

minimum-size k-edge-connected graph
1050

minimum-size k-edge-connector 1065–
1066

algorithm 1065
min-max 1065–1066

minimum-size k-edge cover 579
min-max 579

minimum-size k-vertex-connected
digraph 1050–1051

minimum-size k-vertex-connected graph
1049–1050

minimum-size k-vertex-connector
1074–1075

min-max 1074–1075
minimum-size r-cut 905–906, 918, 974

algorithm 918

min-max 905–906
minimum-size R − S bibranching 934–

935
algorithm 935
min-max 935

minimum-size R − S biconnector 929
min-max 929

minimum-size R − S bicut 940–943,
974

min-max 941–942
minimum-size s − t cut 131–169

min-max 132
planar 139–140

complexity 139–140
minimum-size S − T disconnecting

vertex set 131–132
min-max 131–132

minimum-size s − t vertex-cut 132
min-max 132

minimum-size simple 2-edge cover
535–536

algorithm 535
min-max 535

minimum-size simple b-edge cover
349–350, 581–582

algorithm 581–582
bipartite 349–350

min-max 349
min-max 581–582

minimum-size simple k-edge cover 582
min-max 582

minimum-size strong connector 972
min-max 972

minimum-size strongly k-connected
digraph 1051

minimum-size T -cut 499, 507–508,
1413

min-max 499, 507–508
minimum-size T -join 488–490, 502, 504

min-max 489–490, 502, 504
minimum-size vertex cover 260–262,

265, 277, 304–305, 315–316, 536–
539, 1084–1085, 1095, 1103–
1105, 1136, 1175, 1199–1200,
1380–1381

bipartite 260–262, 265, 277, 304–
305, 1136

algorithm 265
complexity 277
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min-max 260–261
in hypergraph 1380–1381
NP-completeness 1084–1085

minimum-size vertex-cut 239–241
algorithm 239–241
complexity 241

minimum-size w-vertex cover 285–286,
289–290, 304, 523

bipartite 285–286, 289–290, 304
algorithm 289–290
min-max 285–286

even w 523
min-max 523

minimum vertex-colouring 23, 1083–
1088, 1098, 1102–1185, 1206–
1207

NP-completeness 1084–1085
of perfect graph 1106–1134, 1154–

1155
algorithm 1154–1155

minimum vertex-cut ≡ minimum-size
vertex-cut 237–238

minimum-weight 2-edge cover 534
min-max 534

minimum-weight 2-factor 528, 531,
986–987

algorithm 528
min-max 531

minimum-weight 2-vertex cover 556–
557, 1094

algorithm 1094
min-max 557

minimum-weight b-edge cover 348,
352–353, 577–578

algorithm 577–578
bipartite 348, 352–353

algorithm 352–353
min-max 348

min-max 577–578
minimum-weight b-factor 341–343,

571–572
algorithm 572
bipartite 341–343

algorithm 342–343
min-max 341

min-max 571
minimum-weight base 689–690, 692,

699
algorithm 689–690

min-max 692
minimum-weight capacitated b-edge

cover 351–353, 580
algorithm 580
bipartite 351–353

algorithm 351–353
min-max 351

min-max 580
minimum-weight capacitated perfect

b-matching 567
algorithm 567

minimum-weight common base 710,
715

algorithm 710
min-max 715

minimum-weight common spanning set
716

min-max 716
minimum-weight common transversal

395–397
algorithm 396
min-max 396–397

minimum-weight directed cut cover
948–949, 953–954, 956, 972,
1020, 1024

algorithm 953–954
complexity 956
min-max 948–949

minimum-weight directed cut k-cover
950, 953–954

algorithm 953–954
min-max 950

minimum-weight edge cover 317–318,
462–464

algorithm 317, 462
bipartite 317–318

algorithm 317
min-max 318

min-max 462–464
minimum-weight fractional vertex cover

1094
algorithm 1094

minimum-weight perfect 2-matching
524

min-max 524
minimum-weight perfect b-matching

343, 553–554, 556
algorithm 556
bipartite 343
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algorithm 343
min-max 553–554

minimum-weight perfect matching
288–289, 304–307, 438–444, 448–
449, 453–460

algorithm 448–449, 453–458
bipartite 288–289, 304–307

algorithm 288, 305–307
min-max 288–289

complexity 458–459
min-max 444

minimum-weight simple 2-edge cover
535–536

algorithm 536
minimum-weight simple b-edge cover

350–353, 581
bipartite 350–353

algorithm 350–353
min-max 350

min-max 581
minimum-weight spanning set 693

min-max 693
minimum-weight transversal 382–383

algorithm 382
min-max 382–383

minimum-weight vertex cover 338,
343, 1159, 1187

bipartite 338, 343
algorithm 343
min-max 338

in perfect graph 1159
algorithm 1159

in t-perfect graph 1187
minimum-weight w-vertex cover 337–

338, 557–558
bipartite 337–338

min-max 338
even w 558

min-max 558
minimum weighted colouring 1096–

1097, 1157–1159
NP-completeness 1096–1097
of perfect graph 1157–1159

algorithm 1157–1159
minimum weighted vertex-colouring

1096–1097, 1157–1159
NP-completeness 1096–1097
of perfect graph 1157–1159

algorithm 1157–1159

minor
of graph 25, 1086

of hypergraph 1376

of matroid 654

of pair G, T 504

of signed graph 1202, 1330

minor, H ∼ 25

minor, odd ∼ 1203, 1327, 1333,
1341

minor, proper ∼ 25

misses vertex, edge ∼ 17

misses vertex, matching ∼ 413

mixed branching 926

mixed Chinese postman problem 518
mixed graph 30, 926, 1005–1017,

1037–1038, 1048, 1062, 1074
mixed graph, partitionable ∼ 1015

mixed r-arborescence 926

modular function 766

modular lattice 674–675, 681

modular law 674

monotone ideal, down-∼ 11

monotone ideal, up-∼ 11

monotone in Rn

+, down-∼ 66

monotone subset of Rn, down-∼ 65

monotone subset of Rn, up-∼ 65

monotone traveling salesman polytope
991

monotonic diameter
of polytope 990

most violated inequality problem 697–
698, 733

multicommodity flow ≡ multiflow
multicut 254, 1230, 1295

complexity 254, 1230, 1295
NP-completeness 254

multiflow 1221–1222–1325, 1334,
1341–1342, 1419–1427

history 1249–1250
in matroid 1419–1427
maximum-value 1222, 1225–1228,

1230, 1237–1238, 1248–1249,
1255–1257, 1287–1288, 1290–
1291, 1294–1295

minimum-cost 1247–1248, 1294–
1295

multiflow, directed ∼ 1221, 1223,
1226–1228, 1234, 1241, 1243–
1244, 1248, 1262–1263, 1289,
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1307, 1309–1310, 1322, 1325,
1368–1370

multiflow, feasible ∼ 1221

multiflow, fractional ∼ 1222, 1224–
1231, 1234–1239, 1241, 1245–
1249, 1270, 1272–1274, 1287,
1307–1308, 1317–1318, 1320,
1341–1342, 1354, 1357, 1361,
1368, 1459

algorithm 1225–1226
maximum-value 1226–1227

multiflow, half-integer ∼ 1222, 1230–
1231, 1234, 1236, 1238, 1251,
1253–1255, 1258, 1266, 1271–
1274, 1288, 1290–1291, 1294,
1298, 1310, 1318, 1341–1342,
1361, 1459

complexity 1231, 1234, 1273, 1310
multiflow, integer ∼ 1222–1225, 1230–

1231, 1234–1235, 1239–1241,
1251, 1254–1255, 1257, 1266,
1271–1274, 1286–1288, 1290–
1292, 1307, 1318, 1320, 1334,
1342

complexity 1224–1225, 1231, 1251
multiflow, quarter-integer ∼ 1231,

1233–1234, 1236, 1274, 1318
multiflow problem 1221

multiflow problem, half-integer ∼
1222

multiflow problem, integer ∼ 1222

multiflow problem, maximum-value ∼
1222

multiflow problem, quarter-integer ∼
1222

multiflow problem, undirected ∼ 1222

multiflow problem, undirected
maximum-value ∼ 1222

multiflow problem in matroid 1419

multiflow subject to capacity 1221–
1222

multiple arc 29

multiple edge of graph 16

multiplicity
of arc of digraph 29

of edge of graph 16, 467

of element of family 9

Nash-Williams covering forests theorem
934

Nash-Williams’ covering forests theorem
879

Nash-Williams’ disjoint trees theorem,
Tutte-∼ 877–878, 931, 1048

Nash-Williams’ orientation theorem
1040–1044

near-bipartite graph 1217

near-perfect graph 1120

nearest neighbour heuristic for the
symmetric traveling salesman
problem 995

nearest neighbour heuristic for the
traveling salesman problem 999

negative edge of bidirected graph 594,
1201

neighbour 17, 22

neighbour, in∼ 29

neighbour, out∼ 29

net 1221–1222

network flow, polymatroidal ∼ 1028–
1029

network matrix 213–214
network synthesis 1049–1057
network synthesis problem 1051

node of digraph ≡ vertex of digraph
node of graph ≡ vertex of graph
non-Mengerian hypergraph, minimally

∼ 1400

noncrossing condition 1320–1322

nondecreasing function 766

nonideal hypergraph, minimally ∼
1386, 1460

nonincreasing function 766

nonpacking hypergraph, minimally ∼
1401, 1461

nontrivial component of hypergraph
757

nontrivial cut 21, 33, 610

normal hypergraph 1432

north-west rule 372

nowhere-zero flow 470–473, 646,
1426–1427, 1454

in matroid 1426–1427
nowhere-zero flow in matroid 1454
nowhere-zero k-flow 472

NP 40–41, 71–72
NP, co-∼ 42, 71–72
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NP-complete problem 43–44, 72

objective function 63

odd antihole 1085, 1107

odd-blocking 516

odd circuit 1326–1329–1341, 1414
in bidirected graph 1201

in signed graph 1414

odd circuit cover 1327, 1329, 1335–
1340, 1414

min-max 1335–1340
odd circuit cover polytope 1327
odd circuits, disjoint ∼ 1335–1340

min-max 1335–1340
odd closed curve, doubly ∼ 1367

odd component 20, 413

odd cut 449, 609

minimum-capacity 449
algorithm 449

odd cycle of binary hypergraph 1406

odd ear 425

odd ear-decomposition 425

odd edge set 1329

odd face of planar graph 1144

odd-H 517

odd hole 1085, 1107

odd K4-subdivision 1188, 1201,
1330, 1334

odd K4-subdivision, totally ∼ 1196

odd-Kn 1330

odd minor 1203, 1327, 1333, 1341

odd path 515–517, 1329, 1456
odd set 9

odd submodular function minimization
793–794, 842–845

algorithm 793–794, 842–845
odd walk 19, 593

oddly contractible to K4 503

Okamura-Seymour theorem 1296–
1307

Okamura’s theorem 1311–1318
openly disjoint paths ≡ internally

vertex-disjoint paths
optimization problem 69–71
optimum arborescence theorem 896,

898, 972, 1024, 1399
optimum bibranching theorem 937,

972, 1024
optimum ear-decomposition 512

optimum solution 14, 63

order, lexicographic ∼ 11

order, linear ∼ 11

order, partial ∼ 11

order, pre-∼ 11

order, pre-topological ∼ 89–90
algorithm 89–90

order, topological ∼ 89–90
algorithm 90

order, total ∼ 11

orderable graph, perfectly ∼ 1146

orderable matroid, strongly base ∼
738–743

ordered set, partially ∼ 11, 217–236,
1026–1028

orientation 29, 1035–1048, 1101–1102,
1204–1206

characterization 1035–1036, 1047
orientation, Eulerian ∼ 34, 91

algorithm 91
orientation, k-arc-connected ∼ 1044–

1046
algorithm 1045
characterization 1044–1046

orientation, strongly connected ∼
1037–1040, 1048

algorithm 1037–1038
characterization 1037–1040

orientation, strongly k-connected ∼
1044–1046

algorithm 1045
characterization 1044–1046

orientation, well-balanced ∼ 1043

orientation-preserving closed curve
1314

orientation-reversing closed curve
1299, 1314

orientation theorem, Nash-Williams’ ∼
1040–1044

oriented matroid 1415–1416
orthogonally convex polyomino 1149

outdegree of vertex 29

outer boundary of planar graph 26

outerplanar graph 28

outneighbour 29

output pairs 469

P 40

p-comparability graph 1149
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P -critical graph 544

P4-equivalent graphs 1122

packing 36

packing, 2-∼ 502

packing, c-∼ 36

packing, fractional ∼ 36

packing, fractional c-∼ 36

packing, k-∼ 36

packing hypergraph 1401, 1460–1461
pairing 1040, 1302

pairing lemma 1302–1303
parallel arcs 29

parallel class of edges 16

parallel edges of graph 16

parallel elements of matroid 651

parallel extension 739

parallel forest-merging method 859,
871–874

parallel vertices of binary hypergraph
1409

parallelization of hypergraph 1376

paramodular collections 845

parent 99

parity 9

parity graph 1143, 1145
parity graph, quasi-∼ 1148

partial hypergraph 1439

partial order 11

partial r-arborescence 918

partial subhypergraph 1437, 1439

partial transversal 379–380–383
maximum-size 379–381

min-max 379–381
maximum-weight 382–383

algorithm 382
min-max 383

partial transversal, common ∼ 393–
395, 397–399

maximum-size 394
min-max 394

maximum-weight 397–399
algorithm 397
min-max 398–399

partial transversal polytope 383–385
partial transversal polytope, common ∼

399–400
partial transversals, covering by ∼

386–387
min-max 386

partial transversals, covering by
common ∼ 402–403, 406

min-max 402
partially ordered set 11, 217–236,

1026–1028
partially ordered set, symmetric ∼ 236

partition 10

partition, co∼ 838, 841, 1047

partition, conjugate ∼ 230

partition, proper ∼ 834

partition, proper co∼ 838

partition matroid 659

partition problem 46–47
NP-completeness 46–47

partitionable graph 1116–1118, 1123–
1125, 1166

partitionable mixed graph 1015

partitioning problem, set ∼ 1438

path 19, 114–117
acyclic 116–117

longest 116–117
min-max 116–117

longest 114–115, 117
acyclic 117
NP-completeness 114–115

path, augmenting ∼ 134, 151

path, bottleneck shortest ∼ 117–118,
130

path, chordless ∼ 19

path, directed ∼ 31, 218
acyclic 218

maximum-size 218
min-max 218

path, f -augmenting ∼ 151

path, Hamiltonian ∼ 24, 34, 114

path, M -augmenting ∼ 259–260, 263–
264, 413

path, odd ∼ 515–517, 1329, 1456
path, r-∼ 1236, 1261, 1315

path, S-∼ 1280

path, s − t ∼ 31, 87–89, 91–130, 200–
201, 487, 1026

shortest 87–89, 91–130, 200–201,
487, 1026

arbitrary-length 107–119, 487
acyclic 117
algorithm 109–111
complexity 112–113
planar 113
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complexity 113
undirected 487

algorithm 487
complexity 487

history 119–130
nonnegative-length 96–106

algorithm 97–102
complexity 103–104
min-max 96–97
planar 104

complexity 104
NP-completeness 114–115
unit-length 87–89, 91–93, 95

algorithm 88–89
min-max 88

zero-length 94
path, shortest ∼ see shortest s − t

path
path, T -∼ 1279, 1289

path, weak T -∼ 1289

path in digraph 31

path-matching 763–764
path-matching, basic ∼ 763

path-matching, independent ∼ 764

path-matching vector, independent ∼
764

path polytope, s − t ∼ 198–203
adjacency 202
facets 202–203
vertices 202

path problem, maximum-capacity ∼
117

paths, all-pairs shortest ∼ 91–94, 104–
105, 110–111, 113–114, 122, 125,
127, 129, 517

arbitrary-length 110–111, 113–114,
517

complexity 113
planar 113–114
undirected 517

algorithm 517
complexity 517

nonnegative-length 104–105
complexity 104–105
planar 105

complexity 105
unit-length 91–93

algorithm 91–92
complexity 93

zero-length 94
complexity 94

paths, arc-disjoint ∼ 132, 906, 1307
paths, arc-disjoint s − t ∼ 132, 134–

140, 142–147, 151
algorithm 134–138
complexity 138–139
min-max 132
planar 139–140

complexity 139–140
paths, covering by ∼ 219, 222–224

algorithm 222–224
min-max 219

paths, covering by s − t ∼ 219–221
acyclic 219–220

min-max 219–220
min-max 220–221

paths, disjoint ∼ 1223–1225, 1228,
1233–1234, 1239, 1242–1245,
1248, 1251, 1254, 1261–1265,
1267, 1271–1273, 1279–1296,
1298–1300, 1303–1304, 1307–
1311, 1313, 1315–1316, 1318,
1320–1325, 1352, 1361, 1366–
1371, 1458–1459

complexity 1224–1225, 1243–1244,
1273, 1309, 1323, 1366, 1459

directed 1223–1225, 1243–1245,
1262–1263, 1289, 1309, 1322,
1368–1370

NP-completeness 1234
planar 1299

complexity 1299
paths, disjoint S-∼ 1280–1281

min-max 1280–1281
paths, disjoint S − T ∼ 131–132, 140–

147
exchange properties 140–141
min-max 131–132

paths, disjoint T -∼ 1279–1295
algorithm 1283–1284
min-max 1279–1280

paths, edge-disjoint ∼ 1253, 1255,
1285, 1296–1299, 1308, 1311–
1313, 1318–1320

planar 1296–1299, 1308, 1311–
1313, 1318–1320

algorithm 1298
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characterization 1296–1298,
1308, 1311–1313, 1318–
1320

complexity 1299
paths, edge-disjoint s − t ∼ 139, 254,

974, 1413
planar 139

complexity 139
paths, edge-disjoint T -∼ 1282–1283,

1285–1286
algorithm 1285–1286
min-max 1282–1283

paths, internally disjoint s − t ∼ 132,
137–140, 142–147, 275–276

algorithm 137–138
complexity 139, 276
min-max 132
planar 140

complexity 140
paths, internally disjoint T -∼ 1282

min-max 1282
paths, internally vertex-disjoint ∼ 132

paths, internally vertex-disjoint s − t ∼
132, 137–140, 142–147, 275–276

algorithm 137–138
complexity 139, 276
min-max 132
planar 140

complexity 140
paths, internally vertex-disjoint T -∼

1282
min-max 1282

paths, k shortest s − t ∼ 105
paths, openly disjoint ∼ ≡ internally

vertex-disjoint paths
paths, union of s − t ∼ 210–213, 227–

228
algorithm 212
complexity 212
min-max 210–211
minimum-cost 212–213

complexity 212–213
paths, vertex-disjoint ∼ 1224–1225,

1243, 1299, 1320–1323, 1368–
1370

complexity 1224–1225, 1243
planar 1299, 1320–1323, 1368–1370

algorithm 1320–1323
characterization 1320–1323

complexity 1299
paths, vertex-disjoint S-∼ 1280–1281

min-max 1280–1281
paths, vertex-disjoint T -∼ 1279–1280,

1283–1284
algorithm 1283–1284
min-max 1279–1280

paths problem, arc-disjoint ∼ 1223

paths problem, disjoint ∼ 1223

fractional solution 1223

half-integer solution 1223

paths problem, disjoint homotopic ∼
1368

paths problem, edge-disjoint ∼ 1223

paths problem, homotopic edge-disjoint
∼ 1366

paths problem, k arc-disjoint ∼ 1223

paths problem, k disjoint ∼ 1223

paths problem, k edge-disjoint ∼ 1223

paths problem, k vertex-disjoint ∼
1223

paths problem, vertex-disjoint ∼ 1223

paths theorem, Gallai’s disjoint T -∼
1279–1280

paths theorem, Mader’s disjoint S-∼
1280–1281

paths theorem, Mader’s edge-disjoint
T -∼ 1282–1283, 1289

paths theorem, Mader’s internally
disjoint T -∼ 1282

paths tree, shortest ∼ 88, 97–101,
105, 107, 109, 118, 871

paw 1121

paw-free graph 1121

pendant block 1077

perfect 2-matching 521, 524
characterization 521
complexity 521
minimum-weight 524

min-max 524
perfect 2-matching, simple ∼ ≡

2-factor
perfect 2-matching, triangle-free ∼ 544

algorithm 544
perfect 2-matching lattice 647

perfect 2-matching polytope 522–524
perfect 2-matching space 646–647
perfect b-matching 338, 343, 358, 547,

553–554, 556–557, 567–568
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bipartite 338, 343, 358
characterization 338
complexity 358
minimum-weight 343

algorithm 343
characterization 547, 557
minimum-weight 553–554, 556

algorithm 556
min-max 553–554

perfect b-matching, capacitated ∼
342–343, 358, 564, 567

bipartite 342–343, 358
characterization 342
complexity 358

characterization 564
minimum-weight 567

algorithm 567
perfect b-matching, simple ∼ ≡

b-factor
perfect b-matching polytope 549, 553–

554
perfect b-matching polytope,

c-capacitated ∼ 565

perfect claw-free graph 1120
perfect F-matching 545

perfect graph 1106–1107–1185, 1458
history 1176–1185

perfect graph, h-∼ 1207

perfect graph, k-∼ 1150

perfect graph, line-∼ 1145

perfect graph, near-∼ 1120

perfect graph, strongly ∼ 1144–1145–
1146

perfect graph, strongly t-∼ 1187–
1195, 1458

perfect graph, super∼ 1151

perfect graph, t-∼ 1099, 1186–1195,
1207, 1349–1350, 1458

perfect graph, trivially ∼ 1141

perfect graph conjecture, strong ∼
1107, 1123–1124, 1178–1181,
1184–1185

perfect graph conjecture, weak ∼ 1107

perfect graph theorem 1108–1109–
1110, 1125–1126, 1182–1185

perfect graph theorem, strong ∼ 1085,
1107, 1116, 1120–1127, 1145

perfect hypergraph 1431–1434
perfect k-matching 558–559

characterization 558
perfect k-matching, simple ∼ ≡

k-factor
perfect matching 23, 261–263, 267–

274, 276–279, 288–289, 304–307,
327, 414–415, 418, 422–423,
425–428, 430–436, 438–444, 448–
449, 453–460

algorithm 418
bipartite 261–263, 267–274, 276–

279, 288–289, 304–307
characterization 261
complexity 277
minimum-weight 288–289, 304–

307
algorithm 288, 305–307
min-max 288–289

regular 261–262, 267–274
algorithm 267–274

regular.history 278–279
characterization 414
complexity 422–423, 430
in hypergraph 1443

minimum-weight 438–444, 448–
449, 453–460

algorithm 448–449, 453–458
complexity 458–459
min-max 444

perfect matching cone 644

perfect matching forest 1007–1008
algorithm 1008
characterization 1007–1008

perfect matching lattice 331–332,
619–647

bipartite 331–332
perfect matching on set of vertices 670

perfect matching polytope 301–304,
307–310, 314, 327–328, 330–331,
438–439, 443–445, 452, 459,
609–612

adjacency 307, 445
bipartite 307–310, 314, 327–328,

330–331
diameter 307, 445, 452
dimension 308, 609–612

perfect matching polytope theorem,
Edmonds’ ∼ 438–439

perfect matching space 308–309, 331,
611–612



Subject Index 1861

bipartite 308–309
dimension 308–309, 611–612

perfect matchings, covering by ∼ 329–
331

bipartite 329–331
min-max 329–330

perfect matchings, disjoint ∼ 326–328,
340

bipartite 326–328, 340
min-max 327

perfect matrix 1437

perfect simple 2-matching ≡ 2-factor
perfect simple b-matching ≡ b-factor
perfect simple k-matching ≡ k-factor
perfectly orderable graph 1146

permutation graph 1138

permutation matrix 13, 302

Petersen graph 26–27, 466–467, 474,
477–478, 483–484, 497, 509, 620–
621–622, 634, 636, 644, 984, 987,
992, 1404, 1408–1409, 1426, 1461

Petersen’s theorem 415

planar digraph 35, 951, 1323, 1325
planar graph 25–26, 104–105, 113–114,

139–140, 145, 161–162, 164, 251,
470–471, 476, 480–484, 486, 494–
497, 518, 658, 951–952, 959, 963,
1084–1085, 1087, 1097, 1121,
1188, 1224–1225, 1234–1236,
1239, 1242–1244, 1247, 1257,
1265, 1296–1325, 1328–1329,
1341, 1345, 1361–1371, 1459

planar graph, straight-line ∼ 1367

pluperfect graph, γ-∼ 1182

point lattice 668–669
point of digraph ≡ vertex of digraph
point of graph ≡ vertex of graph
point of lattice 668, 677

pointed polyhedron 64

pointer 48–49
polar 65

polar cone 65

polarity 65

polyhedral combinatorics 2, 6–7
history 6–7

polyhedral cone 60

polyhedron 60–61, 84
polyhedron, integer ∼ 74–81
polyhedron, pointed ∼ 64

polyhedron, rational ∼ 61

polyhedron determined by 60

polymatroid 766–767–852
adjacency 777
facets 777
operations on 781–782
vertices 776–777

polymatroid, characterization of ∼
779–780

polymatroid, contra∼ 774–775, 798–
799, 818–819, 837

intersection with polymatroid 798–
799, 818–819, 837

polymatroid, dimension of generalized
∼ 849

polymatroid, extended ∼ 767

polymatroid, face of ∼ 778
polymatroid, generalized ∼ 845–849,

1020–1021
polymatroid, induction of ∼ 782–783
polymatroid, optimization over ∼ 771–

773
polymatroid, structure of ∼ 776–778
polymatroid intersection 795–819,

825–837, 840–841, 1020, 1024,
1026–1028

algorithm 805–819, 829–832, 835–
837, 840–841

polymatroid intersection, contra∼
797–799, 818–819, 837

polymatroid intersection, generalized ∼
847–849

polymatroid intersection, optimization
over ∼ 795–797

polymatroid intersection theorem 796

polymatroidal network flow 1028–1029
polynomial time, problem solvable in ∼

39–40
polynomial time, problem solvable in

strongly ∼ 47

polynomial-time algorithm 39–40
polynomial-time algorithm,

semi-strongly ∼ 48

polynomial-time algorithm, strongly ∼
47–48, 69–70

polynomial-time algorithm, weakly ∼
48

polynomial-time solvable problem 39–
40
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polynomial-time solvable problem,
strongly ∼ 47

polynomial-time solvable system of
polyhedra 69

polyomino 1149

polytope 60–61, 84
polytope, 0, 1 ∼ 75

positive edge of bidirected graph 594,
1201

postman problem, asymmetric ∼ 518

postman problem, Chinese ∼ 487–
488, 518–519

algorithm 487–488
complexity 488, 518
history 519
windy postman problem 518

postman problem, directed Chinese ∼
192, 518

postman problem, windy ∼ 518

posy, M -∼ 537

potential 107–110, 126, 287

pre-order 11

pre-topological order 89–90
algorithm 89–90

preflow 156

prescribed degrees, subgraph with ∼
586

Prim’s method 856–858, 872–873, 875
primal-dual iteration 73

primal-dual method 72–73, 305–307
primal integrality 77

primal problem 63

prism 517

problem 40

problem, decision ∼ 40

problem, dual ∼ 63

problem, input of ∼ 40

problem, instance of ∼ 40

problem, linear-time solvable ∼ 47

problem, polynomial-time solvable ∼
39–40

problem, primal ∼ 63

problem, strongly polynomial-time
solvable ∼ 47

problem, well-characterized ∼ 42

problem solvable in linear time 47

problem solvable in polynomial time
39–40

problem solvable in strongly polynomial
time 47

processor, two-∼ 428

processor scheduling, two-∼ 428–429
product, tensor ∼

of matrices 12, 1168

of vectors 12, 1161

product of graphs, strong ∼ 1167

profit 13

of circuit 1199

of edge 1199

of family of edges and circuits
1199

profit function 13

projection 417, 609, 622

projective plane, graph on ∼ 1299–
1301

proper copartition 838

proper ear 252

proper ear-decomposition 252

proper minor 25

proper partition 834

proper subgraph 18, 30

proper subset 9

proper substructure 9

pseudomodular matroid 765

push 157

push, saturating ∼ 158

push-relabel method 156–157–159

Q+-max-flow min-cut property 1383

quarter-integer multiflow 1231, 1233–
1234, 1236, 1274, 1318

quarter-integer multiflow problem
1222

quarter-integral, totally dual ∼ 81

quasi-balanced hypergraph 1383

quasi-parity graph 1148

quotient space 13

r-arborescence 34, 254, 893–897,
902–903, 972, 1024, 1399

shortest 893–897, 902–903, 972,
1024

algorithm 893–895
complexity 902
min-max 896

r-arborescence, mixed ∼ 926

r-arborescence, partial ∼ 918
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r-arborescence polytope 897–899, 907
r-arborescences, capacitated disjoint ∼

922
complexity 922

r-arborescences, covering by ∼ 911–
913

min-max 912–913
r-arborescences, disjoint ∼ 905–907,

918–922, 925, 974, 1078–1079
algorithm 918–921
complexity 921–922
min-max 905–907

r-arborescences, union of ∼ 913–915
min-max 913, 915

r-coarborescence 941

r-cut 896, 905–907, 918, 974, 1399

minimum-capacity 907
min-max 907

minimum-size 905–906, 918, 974
algorithm 918
min-max 905–906

r-cut polytope 907

r-cuts, disjoint ∼ 896–897, 972, 1024
min-max 896

r-edge-connected graph 1055, 1067

r-edge-connector 1067

r-path 1236, 1261, 1315

R − S bibranching 934–945, 972, 1024
minimum-size 934–935

algorithm 935
min-max 935

shortest 935–937, 972, 1024
algorithm 937
min-max 936–937

R − S bibranching polytope 937, 942
R − S bibranchings, disjoint ∼ 940–

944, 974
min-max 941–942

R − S-bibranchings, disjoint ∼ 942
algorithm 942

R − S biconnector 928–930, 944
minimum-size 929

min-max 929
shortest 928–930

algorithm 930
min-max 929–930

R − S biconnector polytope 929–930
R − S biconnectors, disjoint ∼ 931–

934, 944

algorithm 933
min-max 933

R − S bicut 935, 940–943, 972, 974,
1024

minimum-size 940–943, 974
min-max 941–942

R − S bicuts, disjoint ∼ 937, 972, 1024
min-max 937

R − S biforest 930–931, 944–945
longest 930–931

algorithm 931
min-max 930

R − S biforest polytope 931

R − S biforests, covering by ∼ 934,
944–945

algorithm 934
min-max 934

R − S bifurcation 937–940, 944–945,
1016

longest 938–940
algorithm 940
min-max 938–940

maximum-size 937–938
min-max 938

R − S bifurcation polytope 940, 944
R − S bifurcations, covering by ∼ 943–

945
algorithm 944
min-max 943–944

ractional stable set, strong f∼ 1096,
1098–1099

maximum-size 1096
Rado-Hall theorem 702

Rado’s theorem 702

RAM ≡ random access machine
random access machine 39

rank
of element of partially ordered set

668

of matroid 651

rank facet 1216

rank function
of matroid 651, 664–665
of polymatroid 779

rational affine halfspace 607

rational polyhedron 61

ray of polyhedron, extremal ∼ 65

reach 31

reachable from 31
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reachable to 31

realizable as the distance function of a
planar graph with boundary C

1306

realizable function 1306

realizable function, exactly ∼ 1051

realization 1051

realization, exact ∼ 1051

realization problem 1055
NP-completeness 1055

rectangular grid 1323

rectilinearly visible corners 1324

Rédei’s theorem 232, 1101

reduced T -border 507

reducible to problem, problem ∼ 43

region, feasible ∼ 63

regular bipartite perfect matching
261–262, 267–274, 278–279

algorithm 267–274
history 278–279

regular edge function, k-∼ 269

regular edge set, almost ∼ 268

regular graph 17

regular graph, k-∼ 17

regular matroid 656, 1408, 1415, 1422
regular system of closed curves 1353

regularizable graph 560–561
characterization 560–561

regularizable graph, k-∼ 330, 561

bipartite 330
characterization 330

characterization 561
Reidemeister move 1353–1354
relabel 157

relaxation 984, 992, 1347

reliability 866

of path 117, 866

of vertex pair 866

reliability, maximum ∼ 117–118, 866–
867

reliability problem, maximum ∼ 117

replicating vertex
of graph 1109

replicating vertex by factor 1109

replication lemma 1110–1111
representable matroid 654–655
representation of matroid 654

representatives, common system of
restricted ∼ 407

characterization 407
representatives, system of distinct ∼ ≡

transversal
representatives, system of restricted ∼

388, 407

characterization 388
represented by vectors, linear matroid

∼ 654

residual graph 150

resigning of signed graph 1202

restricted linear program 73

restricted representatives, common
system of ∼ 407

characterization 407
restricted representatives, system of ∼

388, 407

characterization 388
restriction

of hypergraph 1376

of matroid 653

reverse digraph 30

reverse walk 19

rigid-circuit graph ≡ chordal graph
rigid graph 824

rigidity 824
Robbins’ theorem 1037–1038
root

of branching 893

of matching forest 1005

of rooted forest 34

of rooted tree 34

root, co∼ 942

root vector 923

rooted at, arborescence ∼ 893

rooted at, rooted tree ∼ 34

rooted forest 34

rooted tree 34

rooted tree-representation 215

Rothschild-Whinston theorem 1252–
1254

routing problem, channel ∼ 1323

row strategy 296

run 19, 29, 31

S-alternating walk 1208

S-augmenting path 1208

S-path 1280

S-paths, disjoint ∼ 1280–1281
min-max 1280–1281
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S-paths, vertex-disjoint ∼ 1280–1281
min-max 1280–1281

S-paths theorem, Mader’s disjoint ∼
1280–1281

s − t connector 203

s − t connector polytope 203–204
dimension 203

S − T cut 21, 33

s − t cut 21, 33, 87, 131–132–169,
200–201, 974, 1020, 1413

minimum-capacity 150–156, 159–
161, 200–201, 974, 1020, 1413

algorithm 151–156, 159–160
complexity 160–161
min-max 150–151

minimum-size 131–169
min-max 132

planar 139–140, 161–162
minimum-capacity 161–162

complexity 161–162
minimum-size 139–140

complexity 139–140
s − t cut polytope 199, 203

adjacency 203
vertices 203

s − t cuts, disjoint ∼ 87–88, 96–97,
126, 1026, 1413

min-max 88, 96–97
s − t cuts, union of disjoint ∼ 211–212

algorithm 212
min-max 211–212

S − T disconnecting arc set 33

s − t disconnecting arc set 33

S − T disconnecting edge set 21

s − t disconnecting edge set 21

S − T disconnecting vertex set 22, 34,
131–132

minimum-size 131–132
min-max 131–132

s − t disconnecting vertex set ≡ s − t

vertex-cut 22, 33

s − t flow, maximum ∼ 149

s − t flow problem, minimum-cost ∼
177

S − T path 31

s − t path 31, 87–89, 91–130, 200–201,
487, 1026

shortest 87–89, 91–130, 200–201,
487, 1026

arbitrary-length 107–119, 487
acyclic 117
algorithm 109–111
complexity 112–113
planar 113

complexity 113
undirected 487

algorithm 487
complexity 487

history 119–130
nonnegative-length 96–106

algorithm 97–102
complexity 103–104
min-max 96–97
planar 104

complexity 104
NP-completeness 114–115
unit-length 87–89, 91–93, 95

algorithm 88–89
min-max 88

zero-length 94
s − t path polytope 198–203

adjacency 202
facets 202–203
vertices 202

s − t paths, arc-disjoint ∼ 132, 134–
140, 142–147, 151

algorithm 134–138
complexity 138–139
min-max 132
planar 139–140

complexity 139–140
s − t paths, covering by ∼ 219–221

acyclic 219–220
min-max 219–220

min-max 220–221
S − T paths, disjoint ∼ 131–132, 140–

147
exchange properties 140–141
min-max 131–132

s − t paths, edge-disjoint ∼ 139, 254,
974, 1413

planar 139
complexity 139

s − t paths, internally disjoint ∼ 132,
137–140, 142–147, 275–276

algorithm 137–138
complexity 139, 276
min-max 132
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planar 140
complexity 140

s − t paths, internally vertex-disjoint ∼
132, 137–140, 142–147, 275–276

algorithm 137–138
complexity 139, 276
min-max 132
planar 140

complexity 140
s − t paths, k shortest ∼ 105
s − t paths, union of ∼ 210–213, 227–

228
algorithm 212
complexity 212
min-max 210–211
minimum-cost 212–213

complexity 212–213
S − T separating edge set 21

s − t separating edge set 21

S − T separating vertex set 22, 34

s − t separating vertex set 22, 33

S − T vertex-cut 22, 34

s − t vertex-cut 22, 33, 132

minimum-size 132
min-max 132

S − T walk 19, 31

S − t walk 19

s − T walk 19

s − t walk 19, 31

sandwich theorem, Frank’s discrete ∼
799

satisfiability problem 44–46
NP-completeness 44–45

satisfiability problem, 3-∼ 46

NP-completeness 46
satisfiable word 46

saturating push 158

scaling, capacity-∼ 159–160
scanning vertex 89

Scarf’s lemma 1128–1129
scheduling, two-processor ∼ 428–429
SDR ≡ transversal
search, breadth-first ∼ 88

search, depth-first ∼ 89

semi-strongly polynomial-time
algorithm 48

semidefinite programming 991, 1152–
1176, 1345–1348

semimodular lattice, upper ∼ 669,
675, 677, 681–682

seminormal hypergraph 1402

sending flow over path 185

separates pair, curve ∼ 1321

separates pair, set ∼ 9

separates set, set ∼ 9

separates sets, vertex set ∼ 22, 34

separates vertex pair, edge set ∼ 21

separates vertex sets, edge set ∼ 21

separates vertices, vertex set ∼ 22, 33

separating edge set, S − T ∼ 21

separating edge set, s − t ∼ 21

separating vertex set, S − T ∼ 22, 34

separating vertex set, s − t ∼ 22, 33

separation 22

separation problem 69–71
serial vertex in hypergraph 1434

serialization of hypergraph 1434

series elements of matroid 653

series-parallel graph 28

set covering problem 1438

set function 766

set packing problem 1104, 1382
set partitioning problem 1438

Seymour graph 518

Shannon capacity 1167–1171, 1176–
1178, 1184–1185

shore 610

shortest ≡ minimum-length 13

shortest 1-tree 985
shortest arborescence 902

min-max 902
shortest circuit of matroid 672

NP-completeness 672
shortest directed 1-tree 993
shortest directed circuit 94
shortest feedback arc set 951–953

complexity 951
shortest Hamiltonian circuit 981–982
shortest k-connected subgraph 991
shortest path see shortest s − t path
shortest path, bottleneck ∼ 117–118,

130
shortest paths, all-pairs ∼ 91–94, 104–

105, 110–111, 113–114, 122, 125,
127, 129, 517

arbitrary-length 110–111, 113–114,
517
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complexity 113
planar 113–114
undirected 517

algorithm 517
complexity 517

nonnegative-length 104–105
complexity 104–105
planar 105

complexity 105
unit-length 91–93

algorithm 91–92
complexity 93

zero-length 94
complexity 94

shortest paths tree 88, 97–101, 105,
107, 109, 118, 871

shortest r-arborescence 893–897, 902–
903, 972, 1024

algorithm 893–895
complexity 902
min-max 896

shortest R − S bibranching 935–937,
972, 1024

algorithm 937
min-max 936–937

shortest R − S biconnector 928–930
algorithm 930
min-max 929–930

shortest s − t path 87–89, 91–130,
200–201, 487, 1026, 1413

arbitrary-length 107–119, 487
acyclic 117
algorithm 109–111
complexity 112–113
planar 113

complexity 113
undirected 487

algorithm 487
complexity 487

history 119–130
nonnegative-length 96–106

algorithm 97–102
complexity 103–104
min-max 96–97
planar 104

complexity 104
NP-completeness 114–115
unit-length 87–89, 91–93, 95

algorithm 88–89

min-max 88
zero-length 94

shortest s − t paths, k ∼ 105
shortest spanning tree 855–860, 862–

866, 868–869, 871–876
algorithm 856–860
complexity 864–865
history 871–876
min-max 862–863
uniqueness 868–869

shortest strong connector 969–973,
1024

algorithm 971–972
min-max 971–972

shortest T -join 485–486, 488–491, 501–
507, 517–518, 1413, 1417–1418

algorithm 485–486
complexity 486, 518
min-max 491

shortest tree see shortest spanning
tree

shrinking 416

sift-down 99

sift-up 99

signature method 291
signed graph 1329

signed graph, equivalent ∼ 1329

signed graph, resigning of ∼ 1202

signed graph of bidirected graph,
underlying ∼ 1201

signing 1329

signing, equivalent ∼ 1329

similar vertices 1209

similarity class 1209

simple 2-edge cover 535–536
minimum-size 535–536

algorithm 535
min-max 535

minimum-weight 535–536
algorithm 536

simple 2-edge cover polytope 536

simple 2-matching 526–531, 535
maximum-size 526–528, 535

algorithm 528
min-max 526–527

maximum-weight 531
min-max 531

simple 2-matching, perfect ∼ ≡
2-factor
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simple 2-matching polytope 528–531
facets 530

simple b-edge cover 349–354, 581–582
bipartite 349–354

minimum-size 349–350
min-max 349

minimum-weight 350–353
algorithm 350–353
min-max 350

minimum-size 581–582
algorithm 581–582
min-max 581–582

minimum-weight 581
min-max 581

simple b-edge cover polytope 350, 581

bipartite 350
simple b-matching 339–343, 354, 358,

569–574, 582
bipartite 339–343, 354, 358

maximum-size 339, 342–343,
358

algorithm 342–343
complexity 358
min-max 339

maximum-weight 340–343
algorithm 342–343
min-max 340–341

maximum-size 569, 572–573, 582
algorithm 572
min-max 569

maximum-weight 571–573
algorithm 571–572
min-max 571

simple b-matching, perfect ∼ ≡
b-factor

simple b-matching polytope 340, 570–
571, 574

adjacency 574
bipartite 340
facets 574

simple barrier 624

simple closed curve 1321, 1352

simple digraph 29

simple graph 16

simple k-edge cover 582

minimum-size 582
min-max 582

simple k-matching 572
maximum-size 572

min-max 572
simple k-matching, perfect ∼ ≡

k-factor
simple perfect 2-matching ≡ 2-factor
simple perfect b-matching ≡ b-factor
simple perfect k-matching ≡ k-factor
simple vector 11, 339, 349

simplex method 67–68, 118, 162–164,
167, 195–196, 290–291, 295, 297–
298, 300, 344, 361, 367, 372,
374–375, 460, 561, 984, 1003,
1054, 1245–1248, 1250

simplicial entry of matrix 1444

simplicial vertex 1139

sink 30

sink-optimal 162

size
of data 38

of fractional c-covering 37

of fractional c-packing 36

of fractional covering 37

of fractional packing 36

of fractional stable set 1090

of linear inequality 68

of rational number 38, 68

of vector 11, 286, 318, 520, 531,
546, 1378, 1429

of word 40

size of vector, input ∼ 69

skeleton, 1-∼ 65

skew partition 1112

skew-symmetric matrix 429

solution, feasible ∼ 14, 63

solution, optimum ∼ 14, 63

solvable in linear time, problem ∼ 47

solvable in polynomial time, problem ∼
39–40

solvable in strongly polynomial time,
problem ∼ 47

solvable system of linear inequalities
61

source 30

source-optimal 162

source-sink connected digraph 964–
967, 972–976

span function 666–667
spanned by face 1236

spanning set 693
minimum-weight 693
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min-max 693
spanning set, common ∼ 701, 716, 741

minimum-size 701
min-max 701

minimum-weight 716
min-max 716

spanning set of matroid 651

spanning set polytope 692–693, 730,
734

spanning set polytope, common ∼
715–716

spanning sets, disjoint common ∼ 741
min-max 741

spanning subgraph 18, 30

spanning tree 22, 251–252, 855–860,
862–866, 868–869, 871–876

minimum-requirement 251–252
shortest 855–860, 862–866, 868–

869, 871–876
algorithm 856–860
complexity 864–865
history 871–876
min-max 862–863
uniqueness 868–869

spanning tree polytope 861–862, 882–
885

facets 862
spanning trees, disjoint ∼ 877–880,

888–892, 1456
algorithm 879–880, 888–889
complexity 889–890
fractional 891

complexity 891
min-max 877–878

spanning vector 775

spans arc, set ∼ 29

spans edge, set ∼ 17

special 2-join 1114

splaying 271

split graph 1141

splits a set, set ∼ 792, 1040

splits vertex pair, set ∼ 1267

splittable vertex 1210

splitting component 469

splitting of graph 1239

square 1121

square-free 2-matching 341

square-free graph 1121

SRR ≡ system of restricted
representatives

stable matching 311–314
bipartite 311–314

algorithm 312–314
maximum-weight 313–314

algorithm 313–314
stable matching polytope 312–313

bipartite 312–313
stable set 23, 315–317, 348, 352, 361,

536–539, 972, 1023, 1083–1085,
1095, 1098–1199, 1208–1217

bipartite 316–317, 348, 352, 361,
972, 1023, 1135

maximum-size 316–317, 972,
1023, 1135

algorithm 316
min-max 317

maximum-weight 348, 352, 361
algorithm 352, 361
min-max 348

in claw-free graph 1208–1216
maximum-size 1208–1212

algorithm 1208–1212
maximum-weight 1213–1216

algorithm 1213–1216
in digraph 1131

in hypergraph 1428

in perfect graph 1106–1134, 1153–
1157, 1159

maximum-size 1106–1134,
1153–1154

algorithm 1153–1154
maximum-weight 1155–1157,

1159
algorithm 1155–1157, 1159

in t-perfect graph 1186–1195
maximum-weight 1186–1195

algorithm 1186–1187
maximum-size 315–316, 536–539,

1084–1085, 1095, 1098–1185,
1196–1199, 1208–1212, 1217

NP-completeness 1084–1085,
1217

maximum-weight 1099–1101, 1155–
1157, 1186–1195, 1213–1216

stable set, 2-∼ 531–532, 578, 1091

maximum-size 531–532
algorithm 532
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min-max 532
maximum-weight 578, 1091

algorithm 1091
min-max 578

stable set, extreme ∼ 1213

stable set, F -∼ 1203

stable set, fractional ∼ 532–533,
1090–1093, 1095–1096, 1099

in hypergraph 1429

maximum-weight 1091
algorithm 1091

stable set, k-∼
in hypergraph 1429

stable set, strong fractional ∼ 1096,
1098–1099

maximum-size 1096
stable set, w-∼ 318, 347–349, 534,

578, 1200–1201
bipartite 318, 347–349

maximum-size 318
min-max 318

maximum-weight 348
min-max 348

even w 534, 578
maximum-size 534

min-max 534
maximum-weight 578

min-max 578
maximum-size 534
maximum-weight 1200–1201

stable set number 23, 315–317, 1083

stable set number, fractional ∼ 533,
1090

stable set number, strong fractional ∼
1096

stable set of pairs 1032

stable set polyhedron, 2-∼ 1091

stable set polyhedron, w-∼ 349,
1200–1201

bipartite 349
stable set polytope 319, 1088–1090,

1104, 1111, 1119–1120, 1186–
1195, 1216, 1348–1350, 1457–
1458

adjacency 1089–1090
bipartite 319
facets 1088–1089, 1216
of claw-free graph 1216
of perfect graph 1111

of t-perfect graph 1186–1195
stable set polytope, fractional ∼

1090–1093
vertices 1091–1092

stable set problem 1084

star 21, 24

starting arc of walk 31

starting edge of walk 19

starting vertex of walk 19, 31

Steiner network problem 991
Steinitz’ exchange property 654, 676

step 722

step in algorithm 39

straight decomposition 1355

straight-line planar graph 1367

strategy, column ∼ 296

strategy, row ∼ 296

strength 878, 891

strict gammoid 659–661
strong Chvátal rank 608

strong component 90, 94–95
algorithm 90
complexity 94–95

strong component of digraph 32

strong connectivity augmentation 969–
973

algorithm 971–972
strong connectivity augmentation

problem 969

strong connector 969–980, 1024
minimum-size 972

min-max 972
shortest 969–973, 1024

algorithm 971–972
min-max 971–972

strong connectors, disjoint ∼ 973–976
algorithm 975–976
min-max 973–974

strong fractional stable set 1096,
1098–1099

maximum-size 1096
strong fractional stable set number

1096

strong perfect graph conjecture 1107,
1123–1124, 1178–1181, 1184–
1185

strong perfect graph theorem 1085,
1107, 1116, 1120–1127, 1145

strong product of graphs 1167



Subject Index 1871

strongly base orderable matroid 738–
743

strongly bipartite graph 1328, 1333–
1334, 1414

strongly bipartite signed graph 1330–
1333

characterization 1333
strongly chordal graph 1142
strongly connected component 90, 94–

95
algorithm 90
complexity 94–95

strongly connected component of
digraph 32

strongly connected digraph 32, 93
strongly connected orientation 1037–

1040, 1048
algorithm 1037–1038
characterization 1037–1040

strongly k-connected digraph 238,
1051

minimum-size 1051
strongly k-connected orientation 1044–

1046
algorithm 1045
characterization 1044–1046

strongly perfect graph 1144–1145–
1146

strongly polynomial time, problem
solvable in ∼ 47

strongly polynomial-time algorithm
47–48, 69–70

strongly polynomial-time algorithm,
semi-∼ 48

strongly polynomial-time solvable
problem 47

strongly t-perfect graph 1187–1195,
1458

subdivision 25

subdivision, H-∼ 25

subgraph
of digraph 30

of graph 18

of signed graph 1330

subgraph, H ∼ 18

subgraph, induced ∼ 18, 30

subgraph, proper ∼ 18, 30

subgraph, spanning ∼ 18, 30

subgraph induced by 18, 30

subgraph with prescribed degrees 586
subgraphs, arc-disjoint ∼ 30

subgraphs, disjoint ∼ 18, 30

subgraphs, edge-disjoint ∼ 18

subgraphs, vertex-disjoint ∼ 18, 30

subgraphs with prescribed degrees
588, 591–593

subhypergraph, partial ∼ 1437, 1439

subject to capacity, flow ∼ 148

subject to capacity, multiflow ∼
1221–1222

submodular flow 1018–1021, 1034
minimum-cost 1019–1020, 1034

algorithm 1019–1020, 1034
min-max 1019

submodular flow polyhedron 1018,
1034

dimension 1034
facets 1034

submodular function 665, 766–826–
852, 1018–1034

operations on 781–782
submodular function, crossing ∼ 838,

1018

submodular function, generalized ∼
851

submodular function, intersecting ∼
832

submodular function, symmetric ∼
792

submodular function minimization
786–794

algorithm 786–792
complexity 791–792

submodular function minimization, odd
∼ 793–794, 842–845

algorithm 793–794, 842–845
submodular function minimization,

symmetric ∼ 792–793
algorithm 792–793

submodular on crossing pairs, function
∼ 838, 1018

submodular on intersecting pairs,
function ∼ 832

subpartition 908, 929

subpermutation matrix 311

substar 323, 477

substar polytope 323



1872 Subject Index

subtour elimination constraint 984–
985

subtree 22

subtree diameter 770
subtrees of tree 1142–1143
sum of graphs, k-∼ 26

sums of circuits 493–498, 1424–1426
in matroid 1424–1426

sums of circuits property 1424

supermodular colouring 849–851, 943
supermodular function 766, 774–775,

1022–1023
supermodular function, crossing ∼

1022

supermodular function, intersecting ∼
837

supermodular on crossing pairs,
function ∼ 1022

supermodular on intersecting pairs,
function ∼ 837

superorientation 1126

superperfect graph 1151

superstar 325

superstar polytope 325

supply digraph 1221

supply graph 1222

support of vector 11

supporting hyperplane 63

surface 1316–1317, 1352–1371
surface, graph on ∼ 1316–1317, 1352–

1371
surjection 13

survivable network design problem 991
swap 98

switchbox 1324

switchbox, generalized ∼ 1324

Sylvester’s graph 434

symmetric chain 236

symmetric collection 845

symmetric difference 9

symmetric digraph 1131

symmetric partially ordered set 236

symmetric set function 792

symmetric submodular function 792

symmetric submodular function
minimization 792–793

algorithm 792–793
symmetric traveling salesman polytope

983–991, 995–996, 1457

adjacency 990
diameter 990, 1457
dimension 990
facets 985, 987–988

symmetric traveling salesman problem
981–991, 995–1004

Christofides’ heuristic 989

Lin-Kernighan heuristic 996
nearest neighbour heuristic 995

NP-completeness 982
synthesis, network ∼ 1049–1057
synthesis problem, network ∼ 1051

system 9

system of distinct representatives ≡
transversal

system of restricted representatives
388, 407

characterization 388
system of restricted representatives,

common ∼ 407
characterization 407

T -border 501

T -border, reduced ∼ 507

T -cut 488–519, 1413, 1417–1418
minimum-capacity 498–500, 507–

510
algorithm 499–500

minimum-size 499, 507–508, 1413
min-max 499, 507–508

T -cut polytope 498–499, 507–510
T -cuts, disjoint ∼ 488–490, 501–507,

518, 1413, 1417–1418
complexity 518
min-max 489–490

T -join 485–519, 1417–1418
minimum-size 488–490, 502, 504

min-max 489–490, 502, 504
shortest 485–486, 488–491, 501–

507, 517–518
algorithm 485–486
complexity 486, 518
min-max 491

T -join polytope 490–492, 501–507, 517
adjacency 517
diameter 517

T -joins, disjoint ∼ 507–510, 519, 1413,
1456

min-max 507–508
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T -path 1279, 1289

T -path, weak ∼ 1289

T -paths, disjoint ∼ 1279–1295
algorithm 1283–1284
min-max 1279–1280

T -paths, edge-disjoint ∼ 1282–1283,
1285–1286

algorithm 1285–1286
min-max 1282–1283

T -paths, internally disjoint ∼ 1282
min-max 1282

T -paths, internally vertex-disjoint ∼
1282

min-max 1282
T -paths, vertex-disjoint ∼ 1279–1280,

1283–1284
algorithm 1283–1284
min-max 1279–1280

T -paths theorem, Gallai’s disjoint ∼
1279–1280

T -paths theorem, Mader’s edge-disjoint
∼ 1282–1283, 1289

T -paths theorem, Mader’s internally
disjoint ∼ 1282

t-perfect graph 1099, 1186–1195,
1207, 1349–1350, 1458

t-perfect graph, strongly ∼ 1187–
1195, 1458

table set, strong fractional s∼ 1096,
1098–1099

maximum-size 1096
tail of arc 29

TDI ≡ totally dual integral
TDI, box-∼ ≡ box-totally dual

integral
tensor product

of matrices 12, 1168

of vectors 12, 1161

tentative distance 97

terminal 1221–1222, 1268

TH(G) 1161–1166, 1169, 1176, 1350
threshold graph 1141

tight constraint 64

tight cut 609, 619

tight inequality 63

tight subset 379, 1267, 1297, 1310–
1311

tooth 987

topological graph 25

topological order 89–90
algorithm 90

topological order, pre-∼ 89–90
algorithm 89–90

total colouring 482, 1455–1456
total colouring number 482

total degree of vertex of graph 518

total order 11

total value
of collection of T -borders 502

of multiflow 1221–1222

totally balanced bipartite graph 1444

totally balanced hypergraph 1446–
1447

totally balanced matrix 1444–1447
totally dual half-integral 81

totally dual integral 76–83
totally dual integral, box-∼ 83

totally dual integral, minimal ∼ 82
totally dual quarter-integral 81

totally odd K4-subdivision 1196

totally unimodular matrix 75–76, 82
tournament 30

transitive closure 94
transitive graph, vertex-∼ 1169

transportation 344–346, 356–357,
361–377

history 362–377
minimum-cost 344–346, 356–357,

361–377
algorithm 344–346
min-max 345

transportation, b-∼ 343–346, 356–357,
361–377

minimum-cost 344–346, 356–357,
361–377

algorithm 344–346
complexity 356–357

transportation, capacitated ∼ 357–
358, 361–377

minimum-cost 357–358, 361–377
complexity 357–358

transportation, capacitated b-∼ 357–
358, 361–377

minimum-cost 357–358, 361–377
complexity 357–358

transportation, history of ∼ 362–377
transportation polyhedron, dual ∼

347
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diameter 347
dimension 347
vertices 347

transportation polytope 346–347
dimension 346–347

transportation problem 344

transportation problem,
Hitchcock-Koopmans ∼ 344

transshipment 173–176, 182–183, 186–
189, 191–192, 207–210, 345–346,
362–377

algorithm 176
characterization 174–175
history 362–377
minimum-cost 182–183, 186–189,

191–192, 345–346
algorithm 182–183, 186–189
complexity 191
min-max 191–192

transshipment, b-∼ 173–175, 182–184,
186–189, 191–192, 345–346

characterization 174–175
minimum-cost 182–183, 186–189,

191–192, 345–346
algorithm 182–183, 186–189
complexity 191
min-max 191–192

transshipment, history of ∼ 362–377
transshipment polytope, b-∼ 207–210
transshipment space, b-∼ 208

dimension 208
transversal 378–392

algorithm 379
characterization 379
exchange property 381, 386–387
history 390–392
minimum-weight 382–383

algorithm 382
min-max 382–383

transversal, capacitated common ∼
407

transversal, common ∼ 393–409, 703
algorithm 394
characterization 393–394
exchange property 407–408
minimum-weight 395–397

algorithm 396
min-max 396–397

NP-completeness 408

transversal, common partial ∼ 393–
395, 397–399

maximum-size 394
min-max 394

maximum-weight 397–399
algorithm 397
min-max 398–399

transversal, independent ∼ 702
characterization 702

transversal, partial ∼ 379–380–383
maximum-size 379–381

min-max 379–381
maximum-weight 382–383

algorithm 382
min-max 383

transversal matroid 658–659, 727–728,
739

transversal polymatroid 785
transversal polytope 384–385
transversal polytope, common ∼ 401–

402
transversal polytope, common partial ∼

399–400
transversal polytope, partial ∼ 383–

385
transversals, covering by common ∼

405–406
min-max 405–406

transversals, covering by common
partial ∼ 402–403, 406

min-max 402
transversals, covering by partial ∼

386–387
min-max 386

transversals, disjoint ∼ 385–386, 728
min-max 385, 728

transversals, disjoint common ∼ 402–
405

min-max 402–403
traveling salesman polytope 983–992–

996, 1003
traveling salesman polytope,

asymmetric ∼ 992–996, 1003
adjacency 994
diameter 994
dimension 994
facets 992

traveling salesman polytope, monotone
∼ 991
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traveling salesman polytope, symmetric
∼ 983–991, 995–996, 1457

adjacency 990
diameter 990, 1457
dimension 990
facets 985, 987–988

traveling salesman problem 981–1004,
1457

history 996–1004
NP-completeness 982

traveling salesman problem, asymmetric
∼ 981–982, 992–1004

NP-completeness 982
traveling salesman problem, Euclidean

∼ 982, 990
traveling salesman problem, symmetric

∼ 981–991, 995–1004
Christofides’ heuristic 989

Lin-Kernighan heuristic 996
nearest neighbour heuristic 995

NP-completeness 982
traveling salesman tour 982

traverse 19, 31

tree 22, 855

tree, 1-∼ 985–986
shortest 985

tree, directed 1-∼ 993

shortest 993
tree, directed ∼ 34

tree, Gomory-Hu ∼ 248–253
algorithm 250–251
complexity 251

tree, rooted ∼ 34

tree, shortest ∼ see shortest spanning
tree

tree, spanning ∼ 22, 251–252, 855–
860, 862–866, 868–869, 871–876

minimum-requirement 251–252
shortest 855–860, 862–866, 868–

869, 871–876
algorithm 856–860
complexity 864–865
history 871–876
min-max 862–863
uniqueness 868–869

tree-growing method 856–858, 871–
873, 875

tree-hypergraph 1446

tree polytope, spanning ∼ 861–862,
882–885

facets 862
tree-representation 215

tree-representation, rooted ∼ 215

trees, disjoint ∼ 1242, 1322, 1325, 1371
complexity 1325
planar 1242

algorithm 1242
trees, disjoint spanning ∼ 877–880,

888–892, 1456
algorithm 879–880, 888–889
complexity 889–890
fractional 891

complexity 891
min-max 877–878

trees problem, vertex-disjoint ∼ 1242,
1322

trees theorem, Tutte-Nash-Williams’
disjoint ∼ 877–878, 931, 1048

triangle 20, 539

triangle cluster 542

triangle-free 2-matching 539–544
maximum-size 542–544

triangle-free 2-matching polytope
539–544

facets 544
triangle-free perfect 2-matching 544

algorithm 544
triangle inequality 982, 989

triangulated graph ≡ chordal graph
trivial cut 619

trivially perfect graph 1141

truncation, Dilworth ∼ 820–821–825
truncation of matroid, k-∼ 654

TSP ≡ traveling salesman problem
981–1004

Tutte-Berge formula 413–414, 440–
442, 723

Tutte matrix 429–430
Tutte-Nash-Williams’ disjoint trees

theorem 877–878, 931, 1048
Tutte’s 1-factor theorem 414–415,

425, 435–436
two-processor 428

two-processor scheduling 428–429

unbounded face of planar graph 26

under capacity, flow ∼ 148



1876 Subject Index

underlying signed graph of bidirected
graph 1201

underlying undirected graph
of bidirected graph 1201

of directed graph 29

of signed graph 1329

undirected circuit 32

undirected graph 16

undirected graph, underlying ∼
of bidirected graph 1201

of directed graph 29

of signed graph 1329

undirected Hamiltonian circuit 115
NP-completeness 115

undirected Hamiltonian path problem
114–115

NP-completeness 114–115
undirected k-commodity flow problem

1222

undirected maximum-value
k-commodity flow problem
1222

undirected maximum-value multiflow
problem 1222

undirected multiflow problem 1222

undirected walk
in digraph 31

uniform hypergraph 1381

uniform hypergraph, k-∼ 36, 755

uniform matroid 654

uniform matroid, k-∼ 654

unimodular graph 1147

unimodular hypergraph 1448–1451
characterization 1448–1449

unimodular matrix, totally ∼ 75–76,
82

union, matroid ∼ 725–744
history 743–744

union of antichains 226, 235, 1027
min-max 226

union of arborescences 916–918
union of branchings 915–918

min-max 916–918
union of chains 228–229, 1026–1027

min-max 228–229
union of directed cuts 224–226

acyclic 224–226
union of disjoint edge covers 350

bipartite 350

min-max 350
union of disjoint s − t cuts 211–212

algorithm 212
min-max 211–212

union of forests 877, 890
maximum-size 890

complexity 890
maximum-weight 890

complexity 890
min-max 877

union of independent sets 726
matroid union theorem 726
min-max 726

union of matchings 340
bipartite 340

min-max 340
union of matroids 726

union of r-arborescences 913–915
min-max 913, 915

union of s − t paths 210–213, 227–228
algorithm 212
complexity 212
min-max 210–211
minimum-cost 212–213

complexity 212–213
union theorem, matroid ∼ 726, 782
unit base vector 12

unsplittable flow 196

up hull 59

up-monotone ideal 11

up-monotone subset of Rn

65

upper ideal 11, 1028

upper semimodular lattice 669, 675,
677, 681–682

valent vertex, k-∼ 17

valid inequality 60

value
of flow 148

of homotopic circulation 1360

of multiflow 1221–1222

of T -border 502

value, total ∼
of collection of T -borders 502

of multiflow 1221–1222

value giving oracle 771

valued vector, {0, 1}-∼ 11

variable 44

vector, 0, 1 ∼ 11



Subject Index 1877

vector, {0, 1}-valued ∼ 11

vector, integer ∼ 11, 73

vertex
of digraph 28

of graph 16

of hypergraph 36, 1375

of polyhedron 64–65
vertex-colourable graph, k-∼ 23, 1083

vertex-colouring 23, 1083–1088, 1098,
1101–1185, 1206–1207

vertex-colouring, k-∼ 1083

vertex-colouring, minimum ∼ 23,
1083–1088, 1098, 1102–1185,
1206–1207

NP-completeness 1084–1085
of perfect graph 1106–1134, 1154–

1155
algorithm 1154–1155

vertex-colouring, minimum fractional ∼
1096, 1098

vertex-colouring, minimum weighted ∼
1096–1097, 1157–1159

NP-completeness 1096–1097
of perfect graph 1157–1159

algorithm 1157–1159
vertex-colouring number 23, 1083

vertex-connected digraph, k-∼ 238,
1050–1051

minimum-size 1050–1051
vertex-connected graph, k-∼ 237,

1049–1050
minimum-size 1049–1050

vertex-connectivity 237–238–243,
253–255, 1049–1051, 1074–1078,
1458

algorithm 239–241
complexity 241

vertex-connectivity, 2-∼ 243
algorithm 243

vertex-connector, 2-∼ 1077–1078
minimum-size 1077–1078

min-max 1077–1078
vertex-connector, k-∼ 1074–1075,

1077

minimum-size 1074–1075
min-max 1074–1075

vertex cover 23, 260–263, 265, 277,
304–305, 315–316, 338, 343, 536–
539, 1083–1085, 1095, 1103–

1105, 1136, 1159, 1175, 1187,
1199–1200

bipartite 260–263, 265, 277, 304–
305, 338, 343

minimum-size 260–262, 265,
277, 304–305

algorithm 265
complexity 277
min-max 260–261

minimum-weight 338, 343
algorithm 343
min-max 338

in hypergraph 1377, 1380–1381
minimum-size 1380–1381

in perfect graph 1159
minimum-weight 1159

algorithm 1159
in t-perfect graph 1187

minimum-weight 1187
minimum-size 315–316, 536–539,

1084–1085, 1095, 1103–1105,
1136, 1175, 1199–1200

bipartite 1136
NP-completeness 1084–1085

minimum-weight 1187
vertex cover, 2-∼ 520–521, 531–532,

556–557, 1094

minimum-size 520–521, 531–532
algorithm 521
min-max 520–521

minimum-weight 556–557, 1094
algorithm 1094
min-max 557

vertex cover, fractional ∼ 521, 1093–
1095

in hypergraph 1378, 1380–1381
minimum-size 1380–1381

minimum-weight 1094
algorithm 1094

vertex cover, k-∼
in hypergraph 1378

vertex cover, w-∼ 285–286, 289–290,
304, 337–338, 343, 523, 557–558

bipartite 285–286, 289–290, 304,
337–338, 343

minimum-size 285–286, 289–
290, 304

algorithm 289–290
min-max 285–286
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minimum-weight 337–338
min-max 338

even w 523, 558
minimum-size 523

min-max 523
minimum-weight 558

min-max 558
minimum-size 523
minimum-weight 557–558

vertex cover number 23, 260, 315–
316, 1083

vertex cover number, fractional ∼
521, 1093

vertex cover polyhedron, 2-∼ 1094

vertex cover polyhedron, w-∼ 339

bipartite 339
vertex cover polytope 305, 1088,

1187, 1348–1350
bipartite 305

of t-perfect graph 1187
vertex cover polytope, fractional ∼

1094–1095
vertices 1094

vertex-cut 22, 33, 239–241, 243, 253
minimum-size 239–241

algorithm 239–241
complexity 241

vertex-cut, k-∼ 22, 33

vertex-cut, minimum ∼ ≡
minimum-size vertex-cut 237–
238

vertex-cut, S − T ∼ 22, 34

vertex-cut, s − t ∼ 22, 33, 132

minimum-size 132
min-max 132

vertex-disjoint paths 1224–1225, 1243,
1299, 1320–1323, 1368–1370

complexity 1224–1225, 1243
planar 1299, 1320–1323, 1368–1370

algorithm 1320–1323
characterization 1320–1323
complexity 1299

vertex-disjoint paths, internally ∼ 132

vertex-disjoint paths problem 1223

vertex-disjoint paths problem, k ∼
1223

vertex-disjoint S-paths 1280–1281
min-max 1280–1281

vertex-disjoint s − t paths, internally ∼
132, 137–140, 142–147, 275–276

algorithm 137–138
complexity 139, 276
min-max 132
planar 140

complexity 140
vertex-disjoint subgraphs 18, 30

vertex-disjoint T -paths 1279–1280,
1283–1284

algorithm 1283–1284
min-max 1279–1280

vertex-disjoint T -paths, internally ∼
1282

min-max 1282
vertex-disjoint trees problem 1242,

1322

vertex-disjoint walks 20, 32

vertex-disjoint walks, internally ∼ 20,
32

vertex-transitive graph 1169

violated inequality problem, most ∼
697–698, 733

Vizing’s theorem 465–467–468
void 48

w-cover 1188

w-stable set 318, 347–349, 534, 578,
1200–1201

bipartite 318, 347–349
maximum-size 318

min-max 318
maximum-weight 348

min-max 348
even w 534, 578

maximum-size 534
min-max 534

maximum-weight 578
min-max 578

maximum-size 534
maximum-weight 1200–1201

w-stable set polyhedron 349, 1200–
1201

bipartite 349
w-vertex cover 285–286, 289–290, 304,

337–338, 343, 523, 557–558
bipartite 285–286, 289–290, 304,

337–338, 343
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minimum-size 285–286, 289–
290, 304

algorithm 289–290
min-max 285–286

minimum-weight 337–338
min-max 338

even w 523, 558
minimum-size 523

min-max 523
minimum-weight 558

min-max 558
minimum-size 523
minimum-weight 557–558

w-vertex cover polyhedron 339

bipartite 339
w-weight 13

Wagner’s theorem 26–27

walk
in digraph 31

in undirected graph 19

walk, closed ∼ 20

walk, closed directed ∼ 32

walk, directed ∼ 31

walk, Eulerian ∼ 24

walk, Eulerian directed ∼ 34

walk, even ∼ 19

walk, odd ∼ 19, 593

walk, reverse ∼ 19

walk, S − T ∼ 19, 31

walk, S − t ∼ 19

walk, s − T ∼ 19

walk, s − t ∼ 19, 31

walk, undirected ∼
in digraph 31

weak 3-flow conjecture 473, 1454

weak component 208

weak component of digraph 32

weak duality 62

weak perfect graph conjecture 1107

weak T -path 1289

weakly bipartite graph 1326–1327–
1329, 1334–1341, 1392

weakly bipartite signed graph 1330–
1331, 1340

characterization 1340
weakly chordal graph 1148

weakly connected component of digraph
32

weakly connected digraph 32

weakly polynomial-time algorithm 48

weakly triangulated graph ≡ weakly
chordal graph 1148

weight 13, 523, 554

weight, w-∼ 13

weight function 13

weighted clique cover number 1097

weighted clique cover number, fractional
∼ 1097

weighted colouring, minimum ∼ 1096–
1097, 1157–1159

NP-completeness 1096–1097
of perfect graph 1157–1159

algorithm 1157–1159
weighted colouring, minimum fractional

∼ 1097
NP-completeness 1097

weighted colouring number 1096

weighted colouring number, fractional ∼
1097

weighted vertex-colouring, minimum ∼
1096–1097, 1157–1159

NP-completeness 1096–1097
of perfect graph 1157–1159

algorithm 1157–1159
well-balanced orientation 1043

well-characterized 43

wheel 1194

width-length inequality 1383, 1385

windy postman problem 518

Woodall’s conjecture 962–964, 966–
968, 1457

word 40

Young diagram 230

Z+-max-flow min-cut property 1397



Greek graph and hypergraph

functions

α(G) stable set number of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
α(H) stable set number of H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1428
α∗(G) fractional stable set number of G . . . . . . . . . . . . . . . . . . . . . 1090
α∗(H) fractional stable set number of H . . . . . . . . . . . . . . . . . . . . . 1429
α∗∗(G) strong fractional stable set number of G . . . . . . . . . . . . . . . . 1096
α2(G) 2-stable set number of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
αk(H) k-stable set number of H . . . . . . . . . . . . . . . . . . . . . . . . . . . 1429
αw(G) weighted stable set number of G . . . . . . . . . . . . . . . . . . . . . . 1155
∆(G) maximum degree of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
δ(G) minimum degree of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
η(G) Haemers bound on Θ(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1170
Θ(G) Shannon capacity of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167
ϑ(G) Lovász bound on Θ(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1152
ϑ′(G) variant of ϑ(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1173
ϑw(G) weighted version of ϑ(G) . . . . . . . . . . . . . . . . . . . . . . . . . . . 1155
κ(D) (vertex-)connectivity of D . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
κ(G) (vertex-)connectivity of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
λ(D) arc-connectivity of D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
λ(G) edge-connectivity of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
µ(G) maximum edge multiplicity of G . . . . . . . . . . . . . . . . . . . . . . . 467
ν(G) matching number of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
ν(H) matching number of H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1377
ν∗(G) fractional matching number of G . . . . . . . . . . . . . . . . . . . . . . 521
ν∗(H) fractional matching number of H . . . . . . . . . . . . . . . . . . . . . 1378
ν2(G) 2-matching number of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
νk(H) k-matching number of H . . . . . . . . . . . . . . . . . . . . . . . . . . . 1378
ν̃(G) edge and circuit packing number of G . . . . . . . . . . . . . . . . . . 1199
ξ(G) edge cover packing number of G . . . . . . . . . . . . . . . . . . . . . . . 324
o(G) number of odd components of G . . . . . . . . . . . . . . . . . . . . . . . 413
ρ(G) edge cover number of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
ρ(H) edge cover number of H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1428
ρ∗(G) fractional edge cover number of G . . . . . . . . . . . . . . . . . . . . . . 533
ρ∗(H) fractional edge cover number of H . . . . . . . . . . . . . . . . . . . . 1429
ρ2(G) 2-edge cover number of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
ρk(H) k-edge cover number of H . . . . . . . . . . . . . . . . . . . . . . . . . . 1430
ρ̃(G) edge and circuit cover number of G . . . . . . . . . . . . . . . . . . . . 1196
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ρ̃w(G) weighted edge and circuit cover number of G . . . . . . . . . . . . . 1188
τ(G) vertex cover number of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
τ(H) vertex cover number of H . . . . . . . . . . . . . . . . . . . . . . . . . . . 1377
τ∗(G) fractional vertex cover number of G . . . . . . . . . . . . . . . . . . . . 521
τ∗(H) fractional vertex cover number of H . . . . . . . . . . . . . . . . . . . 1378
τ2(G) 2-vertex cover number of G . . . . . . . . . . . . . . . . . . . . . . . . . . 520
τk(H) k-vertex cover number of H . . . . . . . . . . . . . . . . . . . . . . . . . 1378
χ(G) (vertex-)colouring number of G . . . . . . . . . . . . . . . . . . . . . . . . . 23
χ∗(G) fractional colouring number of G . . . . . . . . . . . . . . . . . . . . . . 1096
χw(G) weighted colouring number of G . . . . . . . . . . . . . . . . . . . . . . 1096
χ∗

w
(G) fractional weighted colouring number of G . . . . . . . . . . . . . . . 1097

χ′(G) edge-colouring number of G . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
χ′∗(G) fractional edge-colouring number of G . . . . . . . . . . . . . . . . . . . 474
χ(G) clique cover number of G . . . . . . . . . . . . . . . . . . . . . . . . . . . 1083
χ∗(G) fractional clique cover number of G . . . . . . . . . . . . . . . . . . . . 1096
χw(G) weighted clique cover number of G . . . . . . . . . . . . . . . . . . . . 1097
χ∗

w
(G) fractional weighted clique cover number of G . . . . . . . . . . . . . 1155

ω(G) clique number of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
ωw(G) weighted clique number of G . . . . . . . . . . . . . . . . . . . . . . . . . 1157


