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Preface 

The explosion of new results in integer and combinatorial optimization that began about 
fifteen years ago inspired us to write a book that would unify theory and algorithms and 
could serve as a graduate text and reference for researchers and practitioners. We have 
been very excited about many of the new developments that have made it possible to solve 
large-scale integer programming problems and that have opened up new areas of research 
which surely will yield more robust and efficient algorithms. Little did we realize the 
enormity of the task. Both of us worked steadily on this project for more than four years. 
The end result was a manuscript of nearly 1400 typewritten pages which, although it does 
not come close to covering all of the literature, covers those topics that we believe 
constitute the most significant theoretical and algorithmic developments. 

Optimization means to maximize (or minimize) a function of many variables subject to 
constraints. The distinguishing feature of discrete, combinatorial, or integer optimization 
is that some of the variables are required to belong to a discrete set, typically a subset of 
integers. These discrete restrictions allow the mathematical representation of phenomena 
or alternatives where indivisibility is required or where there is not a continuum of 
alternati ves. 

Discrete optimization problems abound in everyday life. An important and widespread 
area of applications concerns the management and efficient use of scarce resources to 
increase productivity. These applications include operational problems such as the distri
bution of goods, production scheduling, and machine sequencing. They also include 
planning problems such as capital budgeting, facility location and portfolio selection, and 
design problems such as telecommunication and transportation network design, VLSI 
circuit design and the design of automated production systems. Discrete optimization 
problems also arise in statistics (data analysis), physics (determination of minimum 
energy states), cryptography (designing unbreakable codes), politics (selecting fair election 
districts), and mathematics (as a powerful technique for proving combinatorial theorems). 
Moreover, applications of discrete optimization are in a period of rapid development 
because of the widespread use of microcomputers and the data provided by information 
systems. This is particularly relevant in the manufacturing sector of the economy where 
increased competition and flexibility provided by new technology make it imperative to 
seek better solutions from larger and more complex sets of alternatives. 

This book is about the mathematics of discrete optimization, which includes the 
representation of problems by mathematical models and, especially, the solution of the 
models. The focus is on understanding the mathematical underpinnings of the algorithms 
that make it possible to solve (exactly or approximately) the large and complex models 
that arise in practical applications. 

Chapter I.l discusses problem formulation, which is important not only to demonstrate 
the scope of applications, but also because the structure of the formulation is of crucial 
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viii Preface 

importance to solving the model. Chapter 1.1 gives a comprehensive treatment of this 
subject. 

The remainder of Part I presents mathematics and algorithms that are the foundations 
for the discrete optimization theory and techniques of Parts II and III. There are chapters 
on well-established subjects including linear programming (Chapter 1.2), graphs and 
networks (Chapter 1.3), and computational complexity (Chapter 1.5). The presentation of 
polyhedral theory (Chapter 1.4) begins with basic results from linear algebra and then 
emphasizes precisely those results that are essential to a fundamental understanding of the 
algebra and geometry of the convex hull of a discrete set. Chapter 1.6 gives new algorithms 
and results on linear programming and, in particular, establishes the fundamental 
connection between separation and optimization. Chapter I. 7 presents a modern treat
ment of the classical problem of solving linear equations in integers and also includes an 
introduction to the recent work on reduced bases for integer lattices. 

Parts II and III present basic approaches and algorithms for solving discrete optimiza
tion problems. Part II deals with general problems and those that contain some structure. 
These are the problems that are hard to solve but, for the most part, they are the ones that 
arise in practical applications. 

Chapters 11.1 and 11.2 treat the problem of describing the set of feasible solutions to an 
integer program by a set of linear inequalities. It begins with elementary ideas, but also 
includes a thorough development of advanced topics such as superadditive valid inequali
ties and the use of structure to obtain facet-defining inequalities. Objective functions for 
integer programs are introduced in Chapter 11.3 where the fundamental approaches of 
relaxation and duality are developed for the purpose of obtaining upper bounds on the 
optimal value. Most of the advanced material in these chapters has appeared only in 
research articles and monographs, but is essential for the development of future genera
tion algorithms for solving integer programs. 

Algorithms are presented in Chapters 11.4, 11.5 and 11.6. Chapter 11.4 presents classical 
branch-and-bound and cutting plane algorithms. Specialized algorithms that use varying 
degrees of structure to obtain exact or approximate solutions are presented in 
Chapters 11.5 and 11.6. Here we study and illustrate a number of techniques that, for the 
most part, have been developed over the last decade and are not covered in the currently 
available textbooks. These include strong cutting plane algorithms, primal and dual 
heuristic analysis, decomposition and reduced bases, and their applications to 0-1 integer 
programs, the traveling salesman problem and fixed-charge network flow problems. 

Part III treats highly structured combinatorial optimization problems for which elegant 
results are known. Chapter 111.1 studies polyhedra with integral extreme points. It includes 
classical results on total unimodularity and recent results on totally balanced, balanced, 
and perfect matrices and on the blocking and antiblocking theory of polyhedra. Chapters 
111.2 and 111.3 are on the classical combinatorial problems of matching and matroids, 
respectively. In both of these chapters the emphasis is on optimization algorithms, 
polyhedral combinatorics and duality. Chapter 111.3 also introduces the significant role of 
submodular and supermodular functions in combinatorial optimization. 

Notes appear at the end of each chapter. Their purpose is to reference our source 
materials, and to comment briefly on extensions and related topics that are not discussed 
in the body of the text. The citations and references are selective. With the exception of 
Chapter 1.1, in Part I our objective is to provide foundation material, and thus the notes 
are limited to a small number of references that cover the corresponding topics in much 
greater detail than is done here. However, in Parts II and III we have attempted to cite the 
original papers in which the material appears as well as some other influential works. 

The book can be used as a graduate text or for self-guided reading in several ways. Since 
we cannot imagine a reader who would want to undertake a straight cover-to-cover 
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reading and since our experience has shown that it is not possible to cover the whole book 
in even a two-semester, graduate level course, it is necessary to be selective in a first 
reading. 

For graduate students in mathematical programming, especially those planning to 
undertake research in discrete optimization, we suggest a full academic year course 
(course AY). Three one-semester options are: a course emphasizing practical algorithms 
(course PA), a course emphasizing general theory (course GT), and a course in polyhedral 
combinatorics (course PC). 

Each course should begin with some exposure to Chapter 1.1 on model formulation, 
which is important not only to demonstrate the scope of applications, but also because the 
structure of the formulation is of crucial importance in solving the model. 

Chapters 1.2 and 1.3 are only for review, since it is wise for any reader of the book to have 
studied linear programming as a prerequisite. But a typical linear programming course, 
unfortunately, does not cover polyhedral theory. Therefore, all courses should cover 
Chapter 104. In course PA, just enough of the first four sections should be covered (without 
proofs) for the student to understand the concept of facets of polyhedra and the idea of 
Theorem 6.1 on the convex hull of a discrete set of points. 

The coverage of Chapter 1.5 on computational complexity will depend on the students' 
backgrounds and the instructor's taste; but at the very least, students in all courses should 
be introduced to the concepts of polynomial computation and NP-completeness. Simi
larly, students in all courses should be introduced to the concept of separation and the 
polynomial equivalence of separation and optimization (Section 1.6.3). This should be 
done very informally in course PA. Sections 1.6.2, 1.604 and 1.6.5 are independent reading 
and should be omitted in a first reading of the book. Chapter 1.7, and then Section 11.6.5, 
might be covered only in courses AY and GT if time permits at the end of the course. They 
can also be omitted in a first reading. 

Courses PA and GT focus on different parts of Part II. Course PC can omit Part II 
altogether, but would be more interesting if Sections 11.1.1, 11.1.2 (first-half), 11.2.1, 11.2.3, 
and 1I.6.3 also were included. 

The following sections from Part II are common to courses AY, PA, and GT: 11.1.1, 
11.2.1, 11.2.2, 1I.3.l, 11.3.6, 11.3.7, 1104.1, 11.5.1, 11.5.2 and 11.5.3. 

Course PA should also cover Sections 1104.2, 11.504, 11.5.5, 11.6.1 (knapsack problem) 
and 11.6.2, and, if time permits, Sections 11.204 and 11.6.4. The instructor may find some 
time for the important class of problems and algorithms discussed in the later two sections 
by omitting or only sketching some proofs from the earlier sections. 

Course GT should also cover Sections 11.1.2 (leaving out the subsection on bounded 
integer variables), 11.1.3, 11.1.4, 11.1.5, 11.2.3, 11.3.2, and 11.3.3, and the first two sections of 
Chapter 111.1. If time permits, additional theoretical material could be selected from 
Sections 11.1.6, 11.1.7, 11.304, 11.3.5, or some algorithms could be studied from Sections 
11.4.3,11.5.4 and the first three sections of Chapter 11.6. 

With respect to Part II, course AY is the union of the material covered in courses PC 
and GT. From Part III, course AY should also cover sections 111.1.1, 111.1.2, 111.1.4 and the 
first three sections of Chapter 111.2. Any remaining time could be spent on either 
sections 111.1.5, 111.1.6, or the first few sections of Chapter 111.3. 

The material to be selected from Part III for course PC can vary according to taste. We 
suggest all of Chapter 111.1 except for Section 111.1.3, the first 3 sections of Chapter 111.2 
and the first 5 sections of Chapter 111.3. 

This book could not have been written without the tremendous support that we 
received from the Center for Operations Research and Econometrics (CORE) of the 
Universite Catholique de Louvain, and thus we are extremely grateful to Jacques Dreze, 
the founder and intellectual leader of CORE. 
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We met at CORE in the winter of 1970. Nelnhauser spent the academic year 1969-1970 
at CORE and Wolsey presented a seminar on his early work on the group-theoretic 
approach to integer programming. Subsequently, Wolsey became a permanent member of 
CORE and Nemhauser returned to CORE for the period 1975-1977 as Research 
Director. During this period, the authors collaborated extensively on research in the 
analysis of heuristics and other topics in integer and combinatorial optimization stimu
lated by an active research group that included Jack Edmonds, Bob Bland, Guy de 
Ghellinck, Rick Giles, Bob Jeroslow, Tom Magnanti, Bill Pulleyblank, Mike Ball and 
Gerard Cornuejols. All of these people, as well as our Dutch neighbors, Jan-Karel Lenstra 
and Alexander Rinnooy Kan, contributed to our understanding of the subject and 
motivation to write a book. 

A NATO research grant made it possible for us to continue our research collaboration 
through the late seventies and early eighties, and we began to draft the manuscript 
earnestly during Nemhauser's fourth year at CORE in 1983-1984. During the writing of 
the book we benefitted from numerous discussions with our friends and professional 
colleagues including Egon Balas, Vasek Chvatal, Marshall Fisher, Martin Grotschel, Ellis 
Johnson, Manfred Padberg. Lex Schrijver, Jorgen Tind and Les Trotter. We are particu
larly grateful to Gerard Cornuejols who read Parts I and II and provided extensive 
comments and suggestions and to Bill Pulleyblank who did the same for Part III. We are 
also thankful for the comments we received on various drafts of the text from Jorgen Tind, 
Bob Jeroslow, Alan Goldman, Anton Kolen, Jan-Karel Lenstra, Lex Schrijver, Donna 
Crystal Llewellyn, Martin Dyer, Mike Todd, Jean-Philippe Vial and John Vande Vate. 
Our students in courses given at CORE, Cornell and Georgia Tech found typos and other 
mistakes that otherwise would have been missed~ special thanks are due to Ronny Aboudi, 
Yves Pochet and Gabriele Sigismondi. 

The chores of deciphering our untidy handwritten drafts and of retyping endless 
revisions were done graciously and with utmost care and patience by the late Elizabeth 
Pecquereau, formerly a secretary at CORE. We are very sad that we will not be able to 
share the joy of seeing the final product with our dear friend Elizabeth. Fabienne Henry of 
CORE and Yvonne Kissi of Georgia Tech also did excellent jobs in typing parts of the 
manuscript. Sheila Verkaren of CORE always managed to spare some of Elizabeth's or 
Fabienne's time for our book, even though we were using far more than our fair share of 
CORE's secretarial resources. 

Over a period of four years, Ellen Nemhauser and Marguerite Wolsey were frequently 
ignored while their husbands spent evenings and weekends writing, and occasionally were 
imposed upon by a boarder who ate and slept at their house, but otherwise was too 
involved in mathematics to engage in civil conversation or to wash the dishes. We thank 
them for their love and patience and hope to make amends. 

Allan/a, Georgia, USA 
Louvain-Ia-Neuve, Belgium 
February, 1988. 

GEORGE L. NEMHAUSER 

LAURENCE A. WOLSEY 
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Part I 
FOUNDATIONS 



1.1 
The Scope of Integer 
and Combinatorial 
Optimization 

1. INTRODUCTION 

Integer and combinatorial optimization deals with problems of maximizing or minimiz-
ing a function of many variables subject to (a) inequality and equality constraints and 
(b) integrality restrictions on some or all of the variables. Because of the robustness of the 
general model, a remarkably rich variety of problems can be represented by discrete 
optimization models. 

An important and widespread area of application concerns the management and 
efficient use of scarce resources to increase productivity. These applications include 
operational problems such as the distribution of goods, production scheduling, and 
machine sequencing. They also include (a) planning problems such as capital budgeting, 
facility location, and portfolio analysis and (b) design problems such as communication 
and transportation network design, VLSI circuit design, and the design of automated 
production systems. 

In mathematics there are applications to the subjects of combinatorics, graph theory, 
and logic. Statistical applications include problems of data analysis and reliability. Recent 
scientific applications involve problems in molecular biology, high-energy physics, and 
x-ray crystallography. A political application concerns the division ofa region into election 
districts. 

Some of these discrete optimization models will be developed later in this chapter. But 
their number and variety are so great that we only can provide references for some of 
them. The main purpose of this book is to present the mathematical foundations of integer 
and combinatorial optimization models along with the algorithms that can be used to 
solve the problems. 

Throughout most of this book, we assume that the function to be maximized and the 
inequality restrictions are linear. Note that minimizing a function is equivalent to 
maximizing the negative of the same function and that an equality constraint can be 
represented by two inequalities. It is also common to require the variables to be nonnega-
tive. Hence we write the linear mixed-integer programming problem as 

(MIP) max{cx + hy: Ax + Gy ~ b, x E Z~, Y E R~}, 

where Z~ is the set of nonnegative integral n-dimensional vectors, R~ is the set of 
nonnegative realp-dimensional vectors, and x = (Xl, ... ,xn) andy = (Yb ... ,Yp) are the 
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4 1.1. The Scope of Integer and Combinatorial Optimization 

variables or unknowns. An instance of the problem is specified by the data (c, h, A, G, b), 
with can n-vector, hap-vector, A an m x n matrix, G an m x p matrix and ban m-vector. 
We do not distinguish between row and column vectors unless the clarity of the presenta-
tion makes it necessary to do so. This problem is called mixed because of the presence of 
both integer and continuous (real) variables. 

We assume throughout the text that all of the data sets are rational, that is, that each of 
the individual numbers is rational. Although in making this assumption we sacrifice some 
theoretical generality, it is a natural assumption for solving problems on a digital computer. 

The set S = {x E Z~, Y E R~, Ax + Gy ::::; b} is called the feasible region, and an 
(x, y) E S is called a feasible solution. An instance is said to be feasible if S * 0. The 
function 

z = cx + hy 

is called the objectivefunction. A feasible point (XO, yO) for which the objective function is 
as large as possible, that is, 

cxO + hyo ~ cx + hy for all (x, y) E S, 

is called an optimal solution. If (XO, yO) is an optimal solution, cxo + hyo is called the 
optimal value or weight of the solution. 

A feasible instance ofMIP may not have an optimal solution. We say that an instance is 
unbounded if for any OJ E R 1 there is an (x, y) E S such that cx + hy > OJ • We use the 
notation z = 00 for an unbounded instance. 

In Section 1.4.6, we will show that every feasible instance ofMIP either has an optimal 
solution or is unbounded. This result requires the assumption of rational data. With 
irrational data, it is possible that no feasible solution attains the least upper bound on the 
objective function. 

Thus to solve an instance ofMIP means to produce an optimal solution or to show that 
it is either unbounded or infeasible. 

The linear (pure) integer programming problem 

(IP) max{cx: Ax ::::; b, x E Z~} 

is the special case of MIP in which there are no continuous variables. The linear 
programming problem 

(LP) max{hy: Gy ::::; b, y ERn 

is the special case of MIP in which there are no integer variables. 
In many models, the integer variables are used to represent logical relationships and 

therefore are constrained to equal 0 or 1. Thus we obtain the 0-1 MIP (respectively 0-1 IP) 
in which x E Z~ is replaced by x E Bn, where Bn is the set of n-dimensional binary 
vectors. 

While there is no generally agreed-upon definition of a combinatorial optimization 
problem, most problems so named are 0-1 IPs that deal with finite sets and collections of 
subsets. The following is a generic combinatorial optimization problem. Let N = 

{l, ... , n} be a finite set and let c = (Cb ... , cn) be an n-vector. For F £; N, define c(F) = 
LjEF Cj. Suppose we are given a collection of subsets @P of N. The combinatorial optimiza-
tion problem is 
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(CP) max{c(F):F E BF}. 

Some examples of combinatorial optimization problems will be given later in this chapter. 
This book is divided into three parts. This chapter is concerned with the formulation of 

integer optimization problems, which means how to translate a verbal description of a 
problem into a mathematical statement of the form MIP, Ip, or CPo The rest of Part I 
contains prerequisites, including linear programming, graphs and networks, polyhedral 
theory, and computational complexity, which are necessary for Parts II and III. 

Part II is concerned with the theory and algorithms for problems IP and MIP. Part III is 
devoted to some combinatorial optimization problems whose structure makes them 
relatively easy to solve. 

2. MODELING WITH BINARY VARIABLES I: KNAPSACK, ASSIGNMENT 
AND MATCHING, COVERING, PACKING AND PARTITIONING 

An important and very common use of 0-1 variables is to represent binary choice. 
Consider an event that mayor may not occur, and suppose that it is part of the problem to 
decide between these two possibilities. To model such a dichotomy, we use a binary 
variable x and let 

{
I if the event occurs 

x = 0 if the event does not occur. 

The event itself may be almost anything, depending on the specific situation being 
considered. Several examples follow. 

The 0-1 Knapsack Problem 

Suppose there are n projects. Thejth project,} = 1, ... , n, has a cost of aj and a value of Cj. 
Each project is either done or not, that is, it is not possible to do a fraction of any of the 
projects. Also there is a budget of b available to fund the projects. The problem of choosing 
a subset of the projects to maximize the sum of the values while not exceeding the budget 
constraint is the 0-1 knapsack problem 

Here the jth event is the }th project. This problem is called the knapsack problem because 
of the analogy to the hiker's problem of deciding what should be put in a knapsack, given a 
weight limitation on how much can be carried. In general, problems of this sort may have 
several constraints. We then refer to the problem as the multidimensional knapsack 
problem. 

The Assignment and Matching Problems 

Another classical problem involves the assignment of people to jobs. Suppose there are n 
people and m jobs, where n ~ m. Each job must be done by exactly one person; also, each 
person can do, at most, one job. The cost of person} doing job i is c ij. The problem is to 
assign the people to the jobs so as to minimize the total cost of completing all of the jobs. 
To formulate this problem, which is known as the assignment problem, we introduce 0-1 
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variables Xij, i = 1, ... , m,} = 1, ... ,n corresponding to the ijth event of assigning 
person} to job i. Since exactly one person must do job i, we have the constraints 

(2.1) 
n 

I Xi) = 1 for i = 1, ... , m. 
)=1 

Since each person can do no more than one job, we also have the constraints 

(2.2) 
m 

I Xi) ~ 1 for} = 1, ... , n. 
i=1 

It is now easy to check that if X E Bmn satisfies (2.1) and (2.2), we obtain a feasible solution 
to the assignment problem. The objective function is min L~I L}=I cijxij. 

In the assignment problem the m + n elements are partitioned into disjoint sets of jobs 
and people. But in other models of this type, we cannot assume such a partition. Suppose 
2n students are to be assigned to n double rooms. Here each student must be assigned 
exactly one roommate. Let the ijth event, i <}, correspond to assigning students i and} 
to the same room; also suppose that there is a value of c ij when students i and} are 
roommates. The problem 

(2.3) {max
2I1 I CijXij: I Xki + I Xij = 1, i = 1, ... , 2n, X E Bn(2n-I)} 
i=i )=i+i k<i j>i 

is known as the perfect matching problem. We will see later that it is a generalization of the 
assignment problem. If the equality constraints in (2.3) are replaced by equal-to-or-Iess-
than inequalities, then the problem is called the matching problem. 

Each of the above problems fits into the context of CPO In the knapsack problem, N = 

{l, ... , n} and F E:JP if and only if LjEF aj ~ b. In the assignment problem, N = {ij: i = 

1, ... , m,} = 1, ... , n} and F E :JP if and only if IF n {i 1, ... , in} I = 1 for all i and 
IF n {l}" ... ,m}} I ::::; 1 for all}. 

Set-Covering, Set-Packing, and Set-Partitioning Problems 

A common way of defining gji leads to important classes of combinatorial optimization 
problems known as set-covering, set-packing, and set-partitioning problems. Let M = 
{l, ... , m} be a finite set and let {M) for j EN = {l, ... , n} be a given collection of 
subsets of M. For example, the collection might consist of all subsets of size 
k, for some k ~ m. We say that F ~ N covers M if UjEF M j = M. In the CP known as the 
set-covering problem, gji = {F: F covers M}. We say that F ~ N is a packing with respect to 
M if M j n Mk = 0 for all}, kEF,} * k. In the CP known as the set-packing problem, 
gji = {F: F is a packing with respect to 1\1}. If F ~ N is both a covering and a packing, then 
Fis said to be a partition of M. In the set-covering problem, c) is the cost of M) and we seek 
a minimum-cost cover; in the set-packing problem, however, Cj is the weight or value of M j 

and we seek a maximum-weight packing. 
These problems are readily formulated as 0-1 IPs. LetA be the m x n incidence matrix 

of the family (M) for} EN; that is, for i EM, 

{
I if} E F 

Xj = 0 if} $. F. 
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Then F is a cover (respectively packing, partition) if and only if x E En satisfies 
Ax ~ 1 (respectively Ax ~ 1, Ax = 1), where 1 is an m-vector all of whose components 
equal 1. We see, for example, that the set-packing problem is the special case of the 0-1 IP 
withA a 0-1 matrix (i.e., a matrix all of whose elements equal 0 or 1) and b = 1. Note that an 
assignment problem with m jobs and m people is a set-partitioning problem in which 
M = {l, ... ,m, m + 1, ... ,2m} and M j for} = 1, ... , m2 is a subset of M consisting of 
one job and one person. 

Many practical problems can be formulated as set-covering problems. A typical 
application concerns facility location. Suppose we are given a set of potential sites N = {I, 
... , n} for the location offire stations. A station placed at} costs Cj. We are also given a set 
of communities M = {I, ... , m} that have to be protected. The subset of communities 
that can be protected from a station located at} is M j • For example, M j might be the set of 
communities that can be reached from} in 10 minutes. Then the problem of choosing a 
minimum-cost set of locations for the fire stations such that each community can be 
reached from some fire station in 10 minutes is a set-covering problem. There are many 
other applications of this type, including assigning customers to delivery routes, airline 
crews to flights, and workers to shifts. 

3. MODELING WITH BINARY VARIABLES II: FACILITY LOCATION, 
FIXED-CHARGE NETWORK FLOW, AND TRAVELING SALESMAN 

The set-packing, set-partitioning, and set-covering models of the previous section illus-
trated how we can use linear constraints on binary variables to represent relationships 
among the variables or the events that they represent. A packing constraint, Lj Xj ~ 1, 
states that at most one of a set of events is allowed to occur. Similarly, covering and 
partitioning constraints state, respectively, that at least one and exactly one of the events 
can occur. Here we show how more complex relationships can be modeled with binary 
variables, and we also formulate some models that use these relationships. 

The relation that neither or both events 1 and 2 must occur is represented by the linear 
equality X2 - XI = 0 in the binary variables Xl and X2. Similarly, the relation that event 2 
can occur only if event 1 occurs is represented by the linear inequality X2 - Xl ~ O. More 
generally, consider an activity that can be operated at any level y, 0 ~ y ~ u. Now suppose 
that the activity can be undertaken only if some event represented by the binary variable x 
occurs. This relation is represented by the linear inequality y - ux ~ 0 since X = 0 implies 
y = 0 and x = 1 yields the original constraint y ~ u. We now consider two models that use 
this relationship. 

Facility Location Problems 

These problems, as does our illustration of the set-covering model, concern the location of 
facilities to serve clients economically. We are given a set N = {I, ... , n} of potential 
facility locations and a set of clients 1= {l, ... , m}. A facility placed at} costs Cj for} EN. 
This problem is more complicated than the set-covering application because each client 
has a demand for a certain good, and the total cost of satisfying the demand of client i from 
a facility at} is hi). The optimization problem is to choose a subset of the locations at which 
to place facilities and then to assign the clients to these facilities so as to minimize total 
cost. In the uncapacitated facility location problem, there is no restriction on the number 
of clients that a facility can serve. 

In addition to the binary variable Xj = 1, if a facility is placed at} and Xj = 0 otherwise, 
we introduce the continuous variable Yij, which is the fraction of the demand of client i 
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that is satisfied from a facility at }. The condition that each client's demand must be 
satisfied is given by 

(3.1) L Yij = 1 for i E I. 
JEN 

Moreover, since client i cannot be served from} unless a facility is placed at}, we have the 
constraints 

(3.2) Yij - Xj:::::; 0 for i E I and} EN. 

Hence the uncapacitated facility location problem is the MIP 

min L CjXj + L L hijYij 
JEN iEI JEN 

subject to the constraints (3.1), (3.2) and x E Bn, Y E R,:n. 
It may be unrealistic to assume that a facility can serve any number of clients. Suppose 

a facility located at} has a capacity of Uj and the ith client has a demand of bi. Now we let 
Y ij be the quantity of goods sent from facility} to client i and let h ij be the shipping cost per 
unit. To formulate the capacitated/acility location problem as an MIP, we replace (3.1) by 

(3.3) 

and (3.2) by 

(3.4) 

I Yij = hi for i E I, 
JEN 

L Yij - UjXj:::::; 0 for} EN. 
iEI 

The Fixed-Charge Network Flow Problem 

We are given a network (see Figure 3.1) with a set of nodes V (facilities) and a set of arcs d. 
An arc e = (i,}) that points from node i to node} means that there is a direct shipping 
route from node i to node}. Associated with each node i, there is a demand hi. Node i is a 
demand, supply, or transit point depending on whether bi is, respectively, positive, 
negative, or zero. We assume that the net demand is zero, that is, LiEV b i = O. Each arc (i,}) 
has a flow capacity U ii and a unit flow cost h ij. 

Let Y ij be the flow on arc (i, i). A flow is feasible if and only if it satisfies 

(3.5) 

(3.6) 

(3.7) 

Y E R'11 

Yo:::::; uij for (i,}) Ed 

L Yji - L Yij = bi for i E V. 
JEV JEV 

The constraints (3.7) are the flow conservation constraints. The problem 

(3.8) min{ L hijYij: Y satisfies (3.5), (3.6) and (3.7)} 
(i,j)Esd 

is known as the networkflow problem. It will be discussed in Chapter 1.3. 
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e = (i,j) j 

Figure 3.1 

The fixed-charge network flow problem is obtained by imposing a fixed cost of c ij if 
there is positive flow on arc (i,}). Now we introduce a binary variable xij to indicate 
whether arc (i,}) is used. The constraint Yij = 0 if Xij = 0 is represented by 

(3.9) Yij - uijxij ~ 0 for (i,}) E stl. 

Hence we obtain the formulation 

(3.10) min{ L (cijxij + hijYij): x E Bldl, Y E R':I satisfies (3.7), (3.9)}. 
(i,j)Ed 

The fixed-charge flow model is useful for a variety of design problems that involve 
material flows in networks. These include water supply systems, heating systems, and road 
networks. 

The formulations of the traveling salesman problem given below provide another 
example of the use of binary variables in the modeling of logical relations. They also 
exhibit another important property of integer programming formulations, namely, that it 
may be appropriate to use an extraordinarily large number of constraints in order to 
obtain a good formulation. 

The Traveling Salesman Problem 

We are again given a set of nodes V = {l, ... ,n} and a set ofarcsstl. The nodes represent 
cities, and the arcs represent ordered pairs of cities between which direct travel is possible. 
For (i,}) E stl, C ij is the direct travel time from city i to city}. The problem is to find a tour, 
starting at city 1, that (a) visits each other city exactly once and then returns to city 1 and 
(b) takes the least total travel time. 

To formulate this problem, we introduce variables x ij = 1 if} immediately follows i on 
the tour, x ij = 0 otherwise. Hence 

(3.11) 

The requirements that each city is entered and left exactly once are stated as 

(3.12) 2: xij = 1 for} E V 
u: (i,j)Ed) 
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and 

(3.13) I Xu = 1 for i E V. 
U:(i,j)Ed) 

The constraints (3.11)-(3.13) are not sufficient to define the tours since they are also 
satisfied by subtours; for example for n = 6, X12 = X23 = X31 = X4S = XS6 = X64 = 1 satisfies 
(3.11)-(3.13) but does not correspond to a tour (see Figure 3.2). 

One way to eliminate subtours is to observe that in any tour there must be an arc that 
goes from {l, 2, 3} to {4, 5, 6} and an arc that goes from {4, 5, 6} to {l, 2, 3}. In general, for 
any V C V with 2 ~ I VI ~ I VI - 2, the constraints 

(3.14) I Xu ~ 1 
{(i,j)Ed: iEU,jEV\U) 

are satisfied by all tours, but every subtour violates at least one of them. Hence the 
traveling salesman problem can be formulated as 

(3.15) min{ I CijXU: x satisfies (3.1l)-(3.14)}. 
(i,j)Ed 

An alternative to the set of constraints (3.14) is 

(3.16) I x u ~ I V I - 1 for 2 ~ I V I ~ I V I - 2, 
{(i,j)Ed: iEU,jEU} 

which also excludes all subtours but no tours. 
However, regardless of whether we use (3.14) or (3.16), the number of these constraints 

is nearly 21Vl. This huge number of constraints might motivate us to seek a more compact 
formulation. In fact, we will give such a formulation in Section 1.1.5. But we will argue that 
the compact formulation is inferior and we will show, in Parts II and III, that a very large 
number of constraints can frequently be handled successfully. 

4. MODELING WITH BINARY VARIABLES III: NONLINEAR FUNCTIONS 
AND DISJUNCTIVE CONSTRAINTS 

In this section, we present two important uses of binary variables in the modeling of 
optimization problems. The first concerns the representation of nonlinear objective 
functions of the form Lj !j(Yj) using linear functions and binary variables. The second 
concerns the modeling of disjunctive constraints. In the usual statement of an optimiza-
tion problem, it is assumed that all of the constraints must be satisfied. But in some 
applications, only one ofa pair (or, more generally, k ofm) constraints must hold. In this 
case, we say that the constraints are disjunctive. 

4 

~----------------~ 6 

Figure 3.2 
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Piecewise Linear Functions 

A function of the formf(Yb ... ,Yp) = ''II}=I jj(yJ is said to be a separable function. Here we 
consider separable objective functions and suppose thatjj(Yj) is piecewise linear for each} 
(see Figure 4.1). Note that an arbitrary continuous function of one variable can be 
approximated by a piecewise linear function, with the quality of the approximation being 
controlled by the size of the linear segments. 

Suppose we have a piecewise linear function f(y) specified by the points 
(ai,f(ai)} for i = 1, ... ,r. Then, any al ~ Y ~ ar can be written as 

r r 

Y = I Ai ai, I Ai = 1, A = (AI, ••• , Ar) E R:. 
i=1 i=1 

The Ai are not unique, but if ai ~ Y ~ ai+1 and A is chosen so that Y = Aiai + Ai+lai+1 and 
Ai + Ai+1 = 1, then we obtainf(y) = A!(aJ + Ai+1 f(ai+I)' In other words, 

r r 

(4.1) fey) = I Aif(ai), I Ai = 1, A E R: 
i=1 i=1 

if at most two of the A/S are positive and if Aj and Ak are positive, then k = } - 1 or} + 1. 
This condition can be modeled using binary variables Xi for i = 1, ... , r - 1 (where 
Xi = 1 if ai ~ Y ~ ai+1 and Xi = 0 otherwise) and the constraints 

Al ~XI 

Ai ~ X i-I + Xi for i = 2, . . . , r - 1 

(4.2) 

X E B r
-

I • 

Note that if xi = 1, then ;\ = 0 for i =1= {j,j + I}. 
Piecewise linear functions that are convex (concave) can be minimized (maximized) by 

linear programming because the slope of the segments are increasing (decreasing) (see 
Figure 4.2). But general piecewise linear functions are neither convex nor concave, so 
binary variables are needed to select the correct segment for a given value of y. 

f(y) 

~--------~----~----~------~--~------~y 

Figure 4.1 
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fey) 

~----------------------------------~y 

Figure 4.2. A convex piecewise linear function. 

Disjunctive Constraints 

Disjunctive constraints arise naturally in many models. A simple illustration is when we 
need to define a variable equal to the minimum of two other variables, that is, 
y = min(ul' U2). This can be done with the two inequalities 

together with one of two inequalities 

A typical disjunctive set of constraints states that a point must satisfy at least k of m sets 
of linear constraints. The case of k = 1, m = 2 is shown in Figure 4.3, where the feasible 
region is shaded. 

Suppose pi = {y ER~:Aiy ~ bi, y ~ d} for i = 1, ... , m. Notethatthereisa vectorw 
such that, for all i, A iy ~ bi + w is satisfied for any y, 0 ~ y ~ d. Hence there is a y 
contained in at least k of the sets pi if and only if the set 

(4.3) 

y~d 

Figure 4.3 
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is nonempty. This follows since Xi = 1 yields the constraint A iy ~ bi while Xi = 0 yields the 
redundant constraints A iy ~ bi + ro. 

When k = 1, an alternative formulation is 

A iyi ~ Xibi for i = 1, ... , m 

yi ~ X id for i = 1, ... , m 

(4.4) 

X E Bm, y E R~, yi E R~ for i = 1, ... ,m. 

Now we claim that UZ!,l pi =1= 0 if and only if(4.4) is nonempty. First, given thaty E UZ!,l pi, 
suppose without loss of generality that y E pl. Then a solution to (4.4) is Xl = 1, Xi = 0 
otherwise, yl = y, and yi = 0 otherwise. On the other hand, suppose (4.4) has a solution 
and, without loss of generality, suppose Xl = 1 and Xi = 0 otherwise. Then we obtain 
yi = 0 for i = 2, ... , m and y = yl. Thus y E pl and UZ!,l pi.=I= 0. 

The models (4.3) and (4.4) are quite different formulations of the same problem. This 
choice of formulation is typical. A significant issue to be discussed in the next section is 
what constitutes a good formulation? 

A Scheduling Problem 

Disjunctive constraints arise naturally in scheduling problems where several jobs have to 
be processed on a machine and where the order in which they are to be processed is not 
specified. Thus we obtain disjunctive constraints of the type either "job k precedesjob} on 
machine i" or vice versa. 

Suppose there are n jobs and m machines and each job must be processed on each 
machine. For each job, the machine order is fixed, that is, job} must first be processed on 
machine}(l) and then on machine}(2), and so on. A machine can only process one job at 
a time, and once a job is started on any machine it must be processed to completion. The 
objective is to minimize the sum of the completion times of all the jobs. The data that 
specify an instance of the problem are (a) m, n, andpij for} = 1, ... ,n and i = 1, ... ,m, 
which is the processing time of job} on machine i, and (b) the machine order, }(l), ... , 
}(m), for each job}. 

Let tij be the start time of job} on machine i. Since the (r + l)stoperation onjob) cannot 
start until the rth operation has been completed, we have the constraints 

(4.5) t}(r+l),} ~ t}(r),} + P}(r),} for r = 1, ... , m - 1 and all}. 

To represent the disjunctive constraints for jobs} and k on machine i, let X ilk = 1 if job} 
precedes job k on machine i andxi}k = 0 otherwise where} < k. Thus 
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and 

Given an upper-bound OJ on tij - tik + Pij for all i, j, and k, we obtain the disjunctive 
constraints 

(4.6) 
tij - tik ~ -Pij + W(l-Xijk) 

tik - tij ~ -Pik + OJXijk for all i,j and k. 

Hence the problem is to minimize L}=l tj(m),j subject to (4.5), (4.6), tij ~ 0 for all i andj and 
Xijk E {a, 1} for all i,j, and k. 

This model requires m G) binary variables. In contrast to the integer programming 
models introduced previously, this mixed-integer programming model has not been 
successfully solved for values of m and n that are of practical interest. This formulation, 
which is based on (4.3), is cumbersome partly because of the large number of binary 
variables needed to represent the large number of disjunctions. Note that a formulation 
based on (4.4) would also have a large number of binary variables. In fact, a large number 
of binary variables may be unavoidable for this scheduling problem. 

Good formulations are essential to solving integer programming problems efficiently. 
In the next section, we will give some reasons why some formulations may be better than 
others; we will also suggest how formulations can be improved. 

5. CHOICES IN MODEL FORMULATION 

We have formulated several integer optimization problems in this chapter to motivate the 
richness and variety of applications. Although a formulation may give insight into the 
structure of the problem, our goal is to solve the problem for an optimal or nearly optimal 
solution. As we have already indicated, most integer programming problems can be 
formulated in several ways. Moreover, in contrast to linear programming: 

In integer programming, formulating a "good" model is of crucial importance to 
solving the model. 

Indirectly, the subject of "good" model formulation is a major topic of this book and is 
closely related to the algorithms themselves (see Chapters 11.2 and 11.5). 

A model is specified by the variables, objective function, and constraints. Typically, 
defining the variables is the first question addressed in formulating a model. Often the 
variables are chosen simply from the definition of a solution. That is a solution specifies 
the values of certain unknowns, and we define a variable for each unknown. Once the 
variables and an objective function have been defined, say in an IP, we can speak of an 
implicit representation of the problem 

max{cx: xES C Z~}, 

where S represents the set of feasible points in Z~. Now we say that 



5. Choices in Model Formulation 15 

max{ex: Ax ~ b, X E Z~} 

is a valid IP formulation if S = {x E Z1: Ax ~ b}. 
In general, when there is a valid formulation, there are many choices of (A, b), and it is 

usually easy to find some (A, b) that yields one. But an obvious choice may not be a good 
one when it comes to solving the problem. We believe that the most important aspect of 
model formulation is the choice of (A, b). 

The following example illustrates different representations of an S ~ Z1 by linear 
inequality and integrality restrictions. 

Example 5.1 

S = {(OOOO), (l000), (0100), (0010), (0001), (0110), (0101), (001l)} ~ B4. 

The reader can easily check that 

(a) 

gives a valid formulation. Two other formulations that are easily established to be valid 
are: 

(b) S = {x E B4: 2XI + X2 + X3 + X4 ~ 2} 

(c) S = {x E B4: 2XI + X2 + X3 + X4 ~ 2 

Xl + X2 ~ 

Xl + X3 ~ 

Xl + X4 ~ 1}. 

We will see that, in a certain sense, formulation (b) is better than (a), and (c) is better than 
(b). 

How should we compare different formulations? Later we will see that most integer 
programming algorithms require an upper bound on the value of the objective function, 
and the efficiency of the algorithm is very dependent on the sharpness of the bound. An 
upper bound is determined by solving the linear program 

ZLP = {max ex: Ax ~ b, X E R1} 

since P = {x E R1 :Ax ~ b} 2 S. Now given two valid formulations, defined by (A i, bi) 
for i = 1, 2, let pi = {X E R1:A iX ~ bi} and zLp = max{ex: X E Pi}. Note that if pI ~ p2, 

then z Lp ~ Z[p. Hence we get the better bound from the formulation based on (A I, b I) and 
we say that it is the better formulation. We leave it to the reader to check that in Example 
5.1, formulation (c) gives a better bound than (b), which, in turn, gives a better bound than 
(a). 

A striking example of one formulation being better than another, in the sense just 
described, is provided by the uncapacitated facility location problem. We obtain a 
formulation with fewer constraints than the one given in Section 3 by replacing (3.2) with 

(5.1) 2 Yij - mXj ~ 0 for all} EN. 
iEI 
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When Xj = 0, (5.1) says that no clients can be served from facility); and when Xj = 1, there 
is no restriction on the number of clients that can be served from facility). In fact, by 
summing (3.2) over i E I for each), we obtain (5.1). Although with x E Bn

, (3.2) and (5.1) 
give the same set offeasible solutions, with x E R~, (3.2) gives a much smaller feasible set 
than (5.1). Our ability to solve the formulation with (3.2) is remarkably better than with 
the more compact formulation that uses (5.1). 

We belabor this point because it is instinctive to believe that computation time 
increases and computational feasibility decreases as the number of constraints increases. 
But, trying to find a formulation with a small number of constraints is often a very bad 
strategy. In fact, one of the main algorithmic approaches involves the systematic addition 
of constraints, known as cutting planes (see Part II). 

A nice illustration of the suitability of choosing (A, b) with a very large number of rows 
concerns the traveling salesman problem. In Section 3, we gave two different sets of 
constraints, (3.14) and (3.16), for eliminating subtours. Both formulations contain a huge 
number of constraints, far too many to write down explicitly. Nevertheless, algorithms for 
the traveling salesman problem that solve these formulations have been successful on 
problems with more than 2000 cities. On the other hand, there is a more subtle way of 
eliminating subtours that only requires a small number of constraints. 

Let U E Rn
-

l and consider the constraints 

(5.2) 

Ifx E Bldl satisfies (3.12) and (3.13) and does not represent a tour, then x represents at least 
two subtours, one of which does not contain node 1. By summing (5.2) over the arc setd' 
of some subtour that does not contain node 1, we obtain 

(5.3) I Xij ~ 1.91' I· (1 - lIn). 
(i,j)Ed' 

Thus (5.2) excludes all subtours that do not contain node 1 and hence excludes all 
solutions that contain subtours. 

Now we prove that no tours are excluded by (5.2) by showing that for any tour there 
exists a corresponding U satisfying (5.2). In particular, we set Uj = k, where k is the position 
(2 ~ k ~ n) of node i in the tour. Now if xij = 0, Uj - Uj + nXij ~ n - 2, while if 
xij = 1, Uj = k and Uj = k + 1 for some k, and so Uj - Uj + nXij = n - 1. Hence {x E Bldl: x 
satisfies (3.12), (3.13), and (5.2)} is the set of incidence vectors of tours. 

Now let pI = {x E Rifl: x satisfies (3.12), (3.13), (3.16)} and p2 = {x E Rif': x satisfies 
(3.12), (3.13), and (5.2) for some u}. It is easy to see that p2 $: pl. For example, if n ~ 4, 
then U2 = U3 = U4 = 0 and X23 = X34 = X42 = (n - l)/n > j satisfies (5.2) but not (3.16). In 
fact, it can be shown that pI ~ p2. 

We have emphasized the choice of constraints in obtaining a good formulation, given 
that the variables have already been defined, because for most problems this is the part of 
the formulation where there is the greatest freedom of choice. There are, however, 
problems in which the quality of the formulation depends on the choice of variables. 

In our formulation of network flow problems, we defined the variables to be the arc 
flows. However, in certain situations it is more advantageous to define variables that 
represent the flow on each path between two given nodes. Such a formulation involves 
many more variables but eliminates the need for some flow conservation constraints and 
can be preferable for finding integral solutions. 

We now give two radically different formulations of a production lot-sizing problem 
that depend on the choice of variables. The object is to minimize the sum of the costs of 
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production, storage, and set-up, given that known demands in each of T periods must be 
satisfied. For t = 1, ... , T, let dt be the demand in period t, and let Ct, Pt,and ht be the set-
up, unit production, and unit storage costs, respectively, in period t. 

One formulation is obtained by defining Y t, S t as the production and end storage in 
period t and by defining a binary variable x t, indicating whether Y t > 0 or not. This leads to 
the model 

(5.4) 

T 

minI (PIYt + htSt + CtXt) 
t=1 

Yl=d 1 +S1 

St-I+Yt=dt+st fort=2, ... , T 

for t = 1, ... , T 

where w = 'LT::1 dt is an upper bound on Y t for all t. 
A second possibility is to define q it as the quantity produced in period i to satisfy the 

demand in period t ~ i, and X t as above. Now we obtain the model 

T t T 

minI I (Pi + hi + hi+l + ... + ht- 1)qit + I CtXt 
(=1 i=1 (=1 

(5.5) 
for t = 1, ... , T 

qit ~ dtXi for i = 1, ... , T and t = i, ... , T 

In (5.5) if we replace x E BT by 0 ~ X t ~ 1 for all t, then the resulting linear program-
ming problem has an optimal solution with x E jjT. But this is not necessarily the case 
for (5.4), which is the inferior formulation for soliving the problem by certain integer 
programming techniques. It is interesting to observe that (5.5) is a special case of the 
uncapacitated facility location problem. This can be seen by substituting Yit = q it/dt for all 
i and t ~ i. 

There is a similar result for the formulations (4.3) and (4.4) for finding a point that 
satisfies one of m sets oflinear constraints. In (4.4), one can replace the condition x E B m 

with 0 ~ x ~ 1 and use linear programming to find a point in one of the pi. But this is not 
true for (4.3), which is therefore considered to be the inferior formulation. 

6. PREPROCESSING 

Given a formulation, preprocessing refers to elementary operations that can be performed 
to improve or simplify the formulation by tightening bounds on variables, fixing values, 
and so on. Preprocessing can be thought of as a phase between formulation and solution. It 
can greatly enhance the speed of a sophisticated algorithm that might, for example, be 
unable to recognize the fact that some variable can be fixed and then eliminated from the 
model. Occasionally a small problem can be solved in the preprocessing phase or by 
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combining preprocessing with some enumeration. Although this approach had been 
advocated as a solution technique in the early development of integer programming, 
under the name of implicit enumeration, this is not the important role of these simple 
techniques. Their main purpose is to prepare a formulation quickly and automatically for 
a more sophisticated algorithm. Unfortunately, it has taken a long time for researchers to 
recognize the fact that there is generally a need for both phases in the solution of practical 
problems. 

Tightening Bounds 

We have seen that a common constraint in MIPs is Yj ~ Ujxj, where Uj is an upper bound 
on Yj and Xj is a binary variable. Provided thatxj E CO, 1}, the tightness of the upper bound 
doesn't matter. But if we replace Xj E CO, 1} by 0 ~ Xj ~ 1, it becomes important to have a 
tight bound. Suppose, for example, that the largest feasible value of Yj is u; < U j and that 
there is a fixed costjj > 0 associated with Xj' If Yj = u; in an optimal solution, and we use 
the constraint Yj ~ Ujxj, we will obtain Xj = u;/Uj < 1. On the other hand, if we use the 
constraint Yj ~ U ;Xj' we obtain Xj = 1. 

In some cases, good bounds can be determined analytically. For example, in the lot-
sizing problem, rather than using a common bound for each Y t, it is more efficient to use 
the bounds Yt ~ Cr.!::t dJxt. In general, tight bounds can be determined by solving a linear 
program with the objective of maximizing Yj. Doing this for each variable with an upper 
bound constraint may be prohibitively time consuming, so a good compromise is to 
approximate the upper bounds heuristically. 

Example 6.1. We show a fixed-charge model in Figure 6.1 with the accompanying 
formulation: 

= 1.46 

= 0.72 

- Y2 - Y3 + Ys =0 

Y6 = 0.32 

- Ys - Y6 + Y7 = 0 

where (j) is a large positive number because the arcs do not have capacity constraints. 
It is easy to tighten the bounds, giving 

Yl ~ 1.46xI, Y2 ~ 1.46x2 

Y3 ~ 0.72x3, Y4 ~ 0.72x4 

Ys ~ (1.46 + 0.72)xs 

Y6 = 0.32 

Y7 ~ (1.46 + 0.72 + 0.32)X7' 

In addition, we can set X6 = X7 = 1 because the flow into node 7 must use these arcs. 
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1.46 

0.72 
Y2 

Y3 
3~--~ 

0.32 

Figure 6.1 

Adding Logical Inequalities, Fixing Variables, and Removing Redundant Constraints 

Preprocessing of this sort is most useful for binary IPs. Consider a single inequality in 
binary variables, that is, S = {x E Bn: LjEN ajxj ::S; b}. If aj < 0, we can replace Xj by 1 - x; 

and obtain the constraint LjEN:aj>o ajxj + LjEN:aj<O I aj I xj ~ b - LjEN:aj<O aj. Thus without 
loss of generality, we can assume that aj > ° for j EN. Now if LjEC aj > b for C ~ N, we 
obtain the inequality 

(6.1) I Xj::S; ICI - 1. 
jEe 

Obviously, the best inequalities of this type are obtained when LjEC\{k} aj ::S; b for all k E C. 
Once some inequalities of this type have been obtained, it may be possible to combine 

some of them to fix variables. For example, XI + X2 ::S; 1 andxl + (l - X2) ~ 1 yield XI = 0. 
The application of these simple ideas is easy to see by considering an example. 

Example 6.2 

3x~ + 2x~ ::S; 3) 

-4xl - 3xz - 3X3 ~ -6 (4xi + 3xz + 3X3 ~ 4) 

2Xl - 2Xl + 6X3::S; 5 (2Xl + 2Xl + 6X3 ~ 7) 

xEB3. 

The first constraint yields Xl + x~ ~ 1 or Xz + X3 ~ 1. The third constraint yields 
Xl + X3 ~ 1 or X3 ~ Xl. Combining these two yields Xl = 1. Now the first constraint is 
redundant and the second and third reduce to 4x~ + 3X3 ~ 4 and 2xr + 6X3 < 7. From 
these two, we obtain Xl + X3 ::S; 1 and Xl + X 3 ::S; 1, or Xl + X 3 = 1. Thus, by substitution, we 
can eliminate either X 1 or X 3. 
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Other simplifications of this type are considered as exercises. 
A second stage of preprocessing can be carried out after an upper bound has been 

obtained by linear programming. In particular, variables can be fixed by using the reduced 
prices that are obtained from a linear programming solution (see Section 11.5.2). 

7. NOTES 

Section 1.1.1 

Here we list bibliographies, other books, proceedings, and some of the main journals that 
contain a great deal of material on integer programming and/or combinatorial optimiza-
tion. Four volumes of comprehensive bibliographies on integer programming have been 
prepared at Bonn University [see Kastning (1976), Hausmann (1978) and von Randow 
(1982, 1985)]. Each volume contains an alphabetical listing by authors, a subject classifica-
tion, and a third part that enables one to find items by an author who is not listed first. The 
first volume contains items published through 1975 and includes 4704 entries classified 
under 41 subject headings. The last volume covers items published in the period 1981-
1984 and contains 4751 entries classified under 50 subject headings. A much briefer, but 
annotated, bibliography is the subject ofO'hEigertaigh et al. (1985). 

Several books on integer programming and combinatorial optimization have appeared 
in the 1980s. In chronological order, these are Papadimitriou and Steiglitz (1982), Gondran 
and Minoux (1984), Lawler, Lenstra et al. (1985), Schrijver (1986a), and Grotschel, Lovasz, 
and Schrijver (1988). Papadimitriou and Steiglitz emphasize algorithms and computa-
tional complexity from the point of view of computer scientists. Gondran and Minoux 
also stress algorithms and focus on problems associated with graphs. Lawler et al. is 
restricted to the traveling salesman problem, but we mention it here because of the 
prominent role played by the traveling salesman problem as a generic difficult combina-
torial optimization problem. Schrijver gives an encyclopedic treatment of the theory of 
linear and integer programming from the polyhedral point of view. Grotschel et al. is a 
monograph whose subject matter is motivated by the consequences of ellipsoid algorithms 
in combinatorial optimization. It also contains information on algorithmic approaches to 
problems in geometric number theory. The applications of this branch of mathematics in 
discrete optimization have just begun to be investigated. 

Earlier general textbooks on integer programming are Hu (1969), Greenberg (1971), 
Garfinkel and Nemhauser (1972a), Salkin (1975), and Taha (1975). Lawler (1976) 
emphasizes the roles of network flows and matroids in combinatorial optimization. 
Christofides (1975a) studies a variety of combinatorial optimization problems associated 
with graphs. Johnson (1980a) is a monograph on integer programming theory that 
emphasizes subadditivity and group theory. 

Beale (1968) and Williams (1978a) are general texts on mathematical programming that 
are of some interest here because they emphasize modeling and problem formulation. 

General survey articles appeared early in the development of the field [see Beale (1965), 
Balinski (1965, 1967, 1970a), Balinski and Spielberg (1969), Garfinkel and Nemhauser 
(1973), Geoffrion and Marsten (1972) and Geoffrion (1976)]. Some recent surveys on 
combinatorial optimization are by Klee (1980), Pulleyblank (1983), Schrijver (1983a), and 
Grotschel (1984); Grotschel (1985) gives an annotated bibliography. More specialized 
surveys will be cited in the appropriate chapters. 

Numerous proceedings and study volumes have been devoted to integer and combina-
torial optimization. These include Balinski (1974), Hammer, Johnson, Korte, and 
Nemhauser (1977), Balinski and Hoffman (1978), Hammer, Johnson, and Korte 
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(1979a,b), Christofides, Mingozzi et al. (1979), Padberg (1980a), Hansen (1981), Pulley-
blank (1984), and Monma (1986). The Hammer, Johnson, and Korte volumes and the 
book by Christofides et al. are collections of surveys. For the most part, the others are 
collections of research articles that complement the journals that contain a substantial 
number of papers on integer programming and combinatorial optimization. 

Some of the more prominent j ournals published in English are Mathematical Program-
ming, Mathematical Programming Studies, Operations Research, Operations Research 
Letters, Annals of Operations Research, Networks, SIAM Journal on Algebraic and 
Discrete Methods, Discrete Mathematics, Discrete Applied Mathematics, Annals of 
Discrete Mathematics, Combinatorica, Journal of the Associationfor Computing Machin-
ery, Management Science, Operational Research Quarterly, The European Journal of 
Operations Research, Naval Research Logistics Quarterly, lIE Transactions, and Trans-
portation Science. 

The scope of each of these journals relative to their coverage of integer and combina-
torial optimization is difficult to specify. A rough guideline is the following. The first five 
purport to cover the subject broadly, although there is unfortunately a dearth of papers on 
applications. The same can be said for Networks within its more narrowly defined scope of 
problems. The next five emphasize theory. The remainder contain some methodology 
oriented toward specific models and a few applications. 

The periodical Interfaces publishes an annual issue on successful case studies in 
operations research and management science. Some of these studies involve the use of 
integer programming techniques. Applications of integer programming are also discussed 
in journals of finance, marketing, production, economics, and the various branches of 
engineering. 

Sections 1.1.2-1.1.4 

Dantzig (1957, 1960) formulated several integer programming models and showed how a 
variety of nonlinear and nonconvex optimization problems could be formulated as 
mixed-integer programs. References on the models presented in these sections will be 
given in the notes for the chapters in which the models are discussed in detail. In 
particular, knapsack problems are considered in Sections 11.2.2 and 11.6.1, matching 
problems are discussed in Chapter 111.2, set covering is presented in Section 11.6.2 and 
Chapter II1.1, fixed-charge network problems are considered in Sections 11.2.4 and 11.6.4, 
and the traveling salesman problem is discussed in Sections 11.2.3 and 11.6.3. 

Section 1.1.5 

Strong formulations is one of the major themes of this book. See Williams (1974, 1978b) 
and Jeroslow and Lowe (1984) for a comparison of alternative formulations for some 
general integer programs. 

Systematic reformulation of knapsack problems was treated by Bradley et al. (1974). 
Formulation (5.2) appears in Miller et al. (1960). The strength of reformulation (5.5) was 
shown by Krarup and Bilde (1977), and that of the disjunctive formulation (4.4) was 
shown by Balas (1979). Many other citations will be made in the notes for Chapters 11.2, 
11.5, and 11.6. 

Section 1.1.6 

Preprocessing techniques are frequently attributed to folklore because the references are 
difficult to pin down. Bound tightening, variable fixing, and row elimination schemes 
used in mathematical programming systems are discussed in Brearley et al. (1975). 
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Preprocessing techniques that use boolean inequalities have been studied by Guignard 
and Spielberg (1977, 1981). Also see Guignard (1982), Johnson and Suhl (1980), Crowder, 
Johnson, and Padberg (1983), Johnson and Padberg (1983), and Johnson, Kostreva, and 
Suhl (1985). 

8. EXERCISES 

1. Show that the integer program with irrational data max{x 1 - (2)1/2X2: 
Xl ~ (2)1/2x2, Xl ~ 1, X E Z~) has no optimal solution, even though there exist 
feasible solutions with value arbitrarily close to zero. 

2. The BST Delivery Company must make deliveries to 10 customers whose respective 
demands are dj for} = 1, ... , 10. The company has four trucks available with 
capacities Lk and daily operating costs Ck for k = 1, ... ,4. A single truck cannot 
deliver to more than five customers, and customer pairs {l, 7}, {2, 6}, and {2, 9} 
cannot be visited by the same truck. Formulate a model to determine which trucks to 
use so as to minimize the cost of delivering to all the customers. 

3. An airline has fixed its daily timetable for flights between five cities. It now has the 
problem of scheduling the crews. There are certain legal limits on how much time 
each crew can work within any 24-hour period. The problem is to propose a crew 
schedule using the minimum number of crews in which each flight leg is covered. 
Formulate a generic problem of this type as a set covering problem. 

4. The DuFour Bottling Company has two machines for its bottle production. The 
problem each year is to devise a maintenance schedule. Maintenance of each 
machine lasts 2 months. In addition, only half the workforce is available in July and 
August, so that only one machine can be used during that period. Monthly demands 
for bottles are dt , t = 1, ... , 12. Machine k, k = 1, 2, produces bottles at the rate of 
ak bottles per month but can produce less. There is also a labor constraint. Machine 
k requires h labor days to produce ak, and the total available days per month are L t 

for t = 1, ... , 12. Formulate the problem offinding a feasible maintenance schedule 
in which all demands are satisfied. Modify your formulation to handle the following 
objectives. 

i) Minimize the sum of the monthly fluctuations in labor utilization. 

ii) Minimize the largest monthly fluctuation. 

5. Integer and mixed-integer programming models are used on Wall Street to select 
bond portfolios. The idea is to pick a mix of bonds to maximize average yield subject 
to constraints on quality, length of maturity, industrial and government percentages, 
and total budget. Integrality arises because certain bonds only come in 100-unit lots. 
Formulate a model for this generic problem. 

6. A company has two products k = 1, 2, one factory, two distribution centers i = 1, 2, 
and five major clients} = 1, ... , 5 whose product demands djk are known. The 
company must decide which products should be handled by each center and how 
each client should be serviced. The problem is to minimize total costs, where the 
costs include: 

i) a fixed costhk if product k is handled by distribution center i; 

ii) fixed coStShjk if the demand of client} for product k is satisfied by center i; and 
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iii) unit shipping costs C ijk per unit of product k shipped to client} via center i. 

How does your model change if demands can be split between distribution centers? 

7. Formulate the traveling salesman problem using the variables Xijb where Xijk = 1 if 
(i, }) is the kth arc of the tour and x ijk = 0 otherwise. 

8. a) Given a graph G = (V, E) with weights We for e E E, formulate the following 
problems (see Chapter 1.3 for some of the definitions) as integer programs. 

i) Find a maximum-weight tree. 

ii) Find a maximum-weight s-t cut. 

iii) Find a minimum-weight covering of nodes by edges. 

iv) Find a maximum-weight cycle with an odd number of edges. 

v) Find a maximum-weight bipartite subgraph. 

vi) Find a maximum-weight eulerian subgraph. 

b) Given a graph G = (V, E) with weights Cj for} E V, formulate the following 
problems. 

i) Find a maximum-weight clique. 

ii) Find a minimum-weight dominating set (a set of nodes U ~ V such that 
every node of V is adjacent to some node in U). 

9. Suppose k trucks can be used to serve n clients from a single depot. Each client must 
be visited once. The time for truck k to travel from i to} is C ijk. The tour of each truck 
cannot take longer than L k• Formulate the problem of finding a feasible schedule. 

10. Consider the quadratic 0-1 knapsack problem 

By introducing a variable Yij to represent XiXj, reformulate the problem as a linear 
mixed-integer programming problem. 

11. Show that the BIP max{cx: Ax ~ b, x E En} may be solved by solving the quadratic 
program 

max{cx - MxT(l - x): Ax ~ b, 0 ~ Xj ~ 1 for all}}, 

where M is a large positive number. Given A, b, c, how large should M be? 

12. Let H E R'J!xn and C E R~. Let [!F be the collection of all the nonempty subsets of 
{l, 2, ... , n}. For FE [!F define 

m 

z(F) = I IJ?ax h ij - I Cj. 
i=l JEE jEF 

i) Show that the problem max{z(F): FE [!F} can be formulated as the following 
integer program: 
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m n n 

max I I hijYij - I CjXj 
i=1 j=1 j=1 

m 

I Y ij = 1 for i = 1, ... , m 
j=1 

Y ij ~ Xj for i = 1 , ... , m and j = 1, ... , n 

ii) Show that the problem max{z(F): F E ~) can also be formulated as the integer 
program: 

m n 

max I U i-I CjXj 
i=1 j=1 

n 

Ui ~ hik + I (hi} - hiktXj for k = 0, ... , nand i = 1, ... , m 
j=' 

U E R'J}, 

where a+ denotes max(O, a) and h iO = ° for i = 1, ... , m. 

13. Consider the scheduling problem of Section 4 with only one machine. Each job has 
processing time Ph a deadline dh and a weight Wj > 0. 

i) Formulate the problem of finding a feasible schedule in which the weighted sum 
of completion times is minimized. Avoid using ()) as in (4.6) by writing an exact 
expression for the finish time of job j. 

ii) Give an alternative formulation using the variables Xjl' where Xjl = 1 if job j is 
completed at time t. (Assume Ph dj are integers). 

14. Suppose the departure times of trucks A and B have to be scheduled. Each truck can 
leave at 1, 2, 3, or 4 p.m. Truck B cannot leave until at least 1 hour after truck A. Let 
Xi (Yi) = 1 if truck A (B) leaves at time i. Give two formulations of the feasible region 
and compare them. 

15. Show that 

s = {x E B4: 97x, + 32x2 + 25x3 + 20X4 ~ 139) 

= {x E B4: 2x I + X 2 + X 3 + X4 ~ 3) 

X,+ X2+ X3 
XI + X3+ 
XI+ X2+ + 

Which formulation do you think is most effective for solving max{cx: xES}? 
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16. Consider the 0-1 feasible region 

s = { x E En: j~ ajXj ,,; b} with aj, b E Zl for j E N. 

Formulate as an integer program the problem of finding weights cj, d E zl such that 

and d is minimized. Formulate and solve the example with 

17. Consider the two formulations of the traveling salesman problem in Section 5. Show 
that PI C P2• 

18. To show that (4.4) gives a tight formulation ofU7!l Pi when 

let 

and 

i) Show that ify* E U~l Pi, there exists (yi, x) such that (yi, y*, x) E T**. 

ii) Show that if (yi, y*, x) E T**, then y* E U~l Pi. 

iii) Show that if(yi, y*, x) E T*, then y* E conv(U~l Pi)' 

iv) What difficulties can arise if the polyhedra Pi are unbounded, that is, the 
constraints z ~ d are not present? 

19. Given a linear inequality in 0-1 variables and the region 

s = {x E B/N I/+/N2
/. " ax· - " ax· ~ b} 'L)) L)) 

JEN1 jEN2 

where aj > 0 for j EN} U N 2, write necessary and sufficient conditions for 

i) S = 0, 

ii) S = En, 

iii) Xj = 0 

iv) Xj = 1 

for all xES, 

for all xES, 
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v) Xi + X) ~ 1 for all xES, 

vi) Xi ~ Xi for all xES, and 

vii) Xi + Xi ~ 1 for all xES. 

20. If x E Bn, what is implied by 

i) Xi + x) ~ 1 and X i ~ xh 

ii) Xi + Xi ~ 1 and Xi + Xi ~ 1, and 

iii) Xi ~ x) and Xj + Xk ~ 1 ? 

21. Use the results of Exercises 19 and 20 to solve the following problem without having 
recourse to enumeration: 

max 2x, - 2X2 + 3X3 + lx4 + 2X5 

7x, + 3X2 + 9X3 - 2X4 + 2X5 ~ 7 

-6x, + 2X2 - 3X3 + 4X4 + 9X5 ~ -2 

xEB5. 



1.2 
Linear Programming 

1. INTRODUCTION 

The general linear programming problem is 

(LP) ZLP = max{cx: Ax ~ b, x E R~}, 

where the data are rational and are given by the m x n matrix A, the 1 x n matrix c, and the 
m x 1 matrix b. This notation is different from that of Section I.1.1 but is preferable here 
because of its widespread use in linear programming. Recall that, as we observed in 
Section 1.1.1, equality constraints can be represented by two inequality constraints. 

Problem LP is well-defined in the sense that if it is feasible and does not have 
unbounded optimal value, then it has an optimal solution. 

A good understanding of the theory and algorithms of linear programming is essential 
for understanding integer programming for several reasons that can be summed up by the 
statement that "one has to learn to walk before one can run". Integer programming is a 
much harder problem than linear programming, and neither the theory nor the computa
tional aspects of integer programming are as developed as they are for linear program
ming. So, first of all, the theory of linear programming serves as a guide and motivating 
force for developing results for integer programming. 

Computationally, linear programming algorithms are very often used as a subroutine in 
integer programming algorithms to obtain upper bounds on the value of the integer 
program. Let 

(IP) ZIP = max{cx: Ax ~ b, x E Z~} 

and observe that ZLP ~ ZIP since Z~ C R~. The upper bound ZLP sometimes can be used to 
prove optimality for IP; that is, if XO is a feasible solution to IP and cxo = Z LP, then XO is an 
optimal solution to IP. 

A deeper connection between linear and integer programming is that corresponding to 
any integer programming problem there is a linear programming problem max{cx: Ax 
~ b, A IX ~ b l , X E R~} that has the same answer as IP. 

Our presentation oflinear programming is by necessity very terse and is not intended as 
a substitute for a full treatment. The reader who has already studied linear programming is 
advised to scan this section to become familiar with our notation or, perhaps, to review an 
unfamiliar topic. 

In the next section, we consider the duality theory of linear programming which, 
among other things, provides necessary and sufficient optimality conditions. In the 
following two sections, we present algorithms for solving linear programs. 

27 
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The simplex algorithms are used to prove the main duality theorem and also to show 
that every feasible instance of LP that is not unbounded has an optimal solution. But, 
more importantly, they are the practical algorithms that are part of linear programming 
software systems and many integer programming software systems as well. The perform
ance of simplex algorithms, observed over years of practical experience, shows that they 
are very robust and efficient. Typically the number of iterations required is a small 
multiple of m. Although there exist simplex algorithms that converge finitely, these are 
inefficient; and the ones used in practice can fail to converge. Moreover, there are 
examples which show that finitely convergent simplex algorithms may require an expo
nential number of iterations. But this bad behavior does not seem to occur in the solution 
of practical problems. 

Section 4 deals with subgradient optimization. There are convergent subgradient 
algorithms, but, as described, they are not finite. However, on certain classes of linear 
programs that arise in solving integer programs, they tend to produce good solutions very 
quickly. 

In Chapter 1.6, we consider two other linear programming algorithms. These have been 
deferred to a later chapter because some of the motivation for considering them concerns 
the theoretical complexity of computations, which is studied in Chapter 1.5. 

2. DUALITY 

Duality deals with pairs of linear programs and the relationships between their solutions. 
One problem is called the primal and the other the dual. 

We state the primal problem as 

(P) ZLP = max{ex: Ax ~ b, x E R~}. 

Its dual is defined as the linear program 

(D) WLP = min{ub: uA ~ e, u E R':}. 

It does not matter which problem is called the primal because: 

Proposition 2.1. The dual of the dual is the primal. 

Proof To take the dual of the dual, we need to restate it as a maximization problem 
with equal-to-or-Iess-than constraints. Once this is done, the result follows easily. We leave 
the details to the reader. • 

Feasible solutions to the dual provide upper bounds on ZLP and feasible solutions to the 
primal yield lower bounds on WLP. In particular: 

Proposition 2.2 (Weak Duality). If x* is primal feasible and u· is dual feasible, then 
ex* ~ ZLP ~ WLP ~ u*b. 

Proof ex* ~ u*Ax* ~ u*b, where the first inequality uses u*A ~ e andx* ~ 0, and the 
second uses Ax· ~ band u* ~ 0. Hence WLP ~ ex for all feasible solutions x to P, and 
ZLP ~ ub for all feasible solutions u to D, so that WLP ~ ZLP. • 

Corollary 2.3. If problem P has unbounded optimal value, then D is infeasible. 
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Proof By weak duality, WLP ;::: A for all A E R I. Hence D has no feasible solution. • 

We now come to the fundamental result oflinear programming duality, which says that 
if both problems are feasible their optimal values are equal. A constructive proof will be 
given in the next section. 

Theorem 2.4 (Strong Duality). If ZLP or WLP is finite, then both P and D have finite 
optimal value and ZLP = WLP. 

Corollary 2.5. There are only four possibilities for a dual pair of problems P and D. 

i. ZLP and WLP arefinite and equal. 
ii. ZLP = 00 and D is infeasible. 

111. WLP = -00 and P is infeasible. 

iv. Both P and D are infeasible. 

A problem pair with property iv is max{xi + X2: XI - X2 ~ -1, -Xl + X2 ~ -1, X E R~} and 
its dual. 

Another important property of primal-dual pairs is complementary slackness. Let 
s = b - Ax ;::: 0 be the vector of slack variables of the primal and let t = uA - c ;::: 0 be the 
vector of surplus variables of the dual. 

Proposition 2.6. If x* is an optimal solution ofP and u* is an optimal solution ofD, then 
x/,lj*= 0 for all j, and uisi= 0 for all i. 

Proof Using the definitions of s* and t*, we have 

cx* = (u*A - t*) x* = u*Ax* - t*x* 

= u*(b - s*) - t*x* = u*b - u*s* - t*x*. 

By Theorem 2.4, cx* = u*b. Hence u*s* + t*x* = 0 with u*, s*, t*, x* ;::: 0 so that the result 
follows. • 

Example 2.1. The dual of the linear program 

(P) 

is 

(D) 

ZLP = max 7xI + 2X2 

-XI + 2X2 ~ 4 

5Xl + X2 ~ 20 

-2Xl - 2X2 ~-7 

xER~ 

WLP = min 4uI + 20U2 - 7U3 

-u, + 5U2 - 2U3;::: 7 

2u I + U2 - 2U3 ;::: 2 

u ERI. 
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It is easily checked that x* = (if 1¥) is feasible in P, and hence Z LP ~ cx* = 30ft-. 
Similarly, u* = (n -if 0) is feasible in D, and hence, by weak duality, ZLP ~ u*b = 30n-. 
The two points together yield a proof of optimality, namely, x* is optimal for P and u* is 
optimal for D. 

Note also that the complementary slackness condition holds. The slack variables in P 
are (sT, s~, sj) = (0 0 6-&), and the surplus variables in Dare (tT, t~) = (0 0). Hence 
xjtj= 0 for} = 1,2 and u7s7= 0 for i = 1,2,3. • 

It is important to be able to verify whether a system of linear inequalities is feasible or 
not. Duality provides a very useful characterization of infeasibility. 

Theorem 2.7 (Farkas' Lemma). Either {x E R~: Ax ~ b} =1= 0 or (exclusively) there 
exists v ERr: such that vA ~ 0 and vb < O. 

Proof Consider the linear program ZLP = max{Ox: Ax ~ b, x E R~} and its dual 
WLP = min{vb: vA ~ 0, v E R':}. As v = 0 is a feasible solution to the dual problem, only 
possibilities i and iii of Corollary 2.5 can occur. 

i. ZLP = WLP = O. Hence {x E R~: Ax ~ b} =1= 0 and vb ~ 0 for all v ERr: with vA ~ 0; 

iii. ZLP = WLP = -00. Hence {x E R~: Ax ~ b} = 0 and there exists v ERr: with vA ~ 0 
and vb < O. • 

There are many other versions of Farkas' Lemma. Some are presented in the following 
proposition. 

Proposition 2.8. (Variants of Farkas' Lemma) 

a. Either {x E R~: Ax = b} =1= 0, or {v E Rm: vA ~ 0, vb < O} =1= 0. 

b. Either {x ERn: Ax ~ b} =1= 0, or {v E R':: vA = 0, vb < O} =1= 0. 

c. IfP = {r E R~: Ar = a}, either P \ {O} =1= 0, or {u E Rm: uA > O} =1= 0. 

3. THE PRIMAL AND DUAL SIMPLEX ALGORITHMS 

Here it is convenient to consider the primal linear program with equality constraints: 

(LP) ZLP = max{cx: Ax = b, x E R~}. 

Its dual is 

(DLP) WLP = min{ub: uA ~ c, u E Rm}. 

We suppose that rank(A) = m ~ n, so that all redundant equations have been removed 
from LP. 

Bases and Basic Solutions 

LetA = (a b a2, ... , an) where aj is the}th column of A. Since rank(A) = m, there exists an 
m x m nonsingular submatrix AB = (aB

I
, ••• ,aBJ. Let B = {B b '" ,Bm} and let N = 
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{l, ... , n} \ B. Now permute the columns of A so that A = (AB' AN). We can write Ax = b 
asABxB + ANxN = b, where x = (XB' XN). Then a solution to Ax = b is given by XB = Aiib 
andxN = O. 

Definition 3.1 

a. The m x m nonsingular matrix A B is called a basis. 

b. The solution XB = Ai1b, XN = 0 is called a basic solution of Ax = b. 
c. X B is the vector of basic variables and x N is the vector of nonbasic variables. 

d. If Ai1b ~ 0, then (XB' XN) is called a basic primalfeasible solution andAB is called a 
primal feasible basis. 

Now let C = (CB' CN) be the corresponding partition of c, that is, cx = CBXB + CNXN, and 
let u = cBAIl E Rm. This solution is complementary to x = (XB, XN), since 

andxN = O. Observe that u is a feasible solution to the dual ifand only if cBAi/AN - CN ~ O. 
This motivates the next definition. 

Definition 3.2. If C BA 11A N ~ C N, then A B is called a dual feasible basis. 

Note that a basis AB defines the point x = (XB' XN) = (Ai/b, 0) ERn and the point 
u = C BA i1 E R m • A B may be only primal feasible, only dual feasible, neither, or both. Bases 
that are both primal and dual feasible are of particular importance. 

Proposition 3.1. If AB is primal and dual feasible, then x = (XB, XN) = (ABI b, 0) is an 
optimal solution to LP and u = cBAB! is an optimal solution to DLP. 

Proof x = (AB1b, 0) is feasible to LP with value cx = cBAj/b. u = cBA B! is feasible in 
DLP and ub = cBAB!b. Hence the result follows from weak duality. • 

Changing the Basis 

We say that two bases AB and AS' are adjacent if they differ in only one column, that is 
IB \ B' I = IB' \ B I = 1. If AB and A B, are adjacent, the basic solutions they define are 
also said to be adjacent. The simplex algorithms to be presented in this section work by 
moving from one basis to another adjacent one. 

Given the basis A B , it is useful to rewrite LP in the form 

LP(B) 

ZLP = cBAB!b + max(cN - cBAB!AN)XN 

XB + A j/ANXN = Aj/b 

It is simple to show that problems LP(B) and LP have the same set of feasible solutions and 
objective values. 

We now define some additional notation that allows us to state things more concisely. 
Let AN = ABlAN' b = ABlb, and eN = CN - cBAi/AN so that 



32 

LP(B) 

Also, for j EN, we let aj = ARlaj and Cj = Cj - CBa) so that 

LP(B) 

ZLP = cBb + max L CjXj 
JEN 

XB + L ajxj = b 
JEN 

X B ~ 0, Xj ~ ° for j E N. 

Finally, we sometimes write the equations of LP(B) as 

XB; + L aijxj = bi for i = 1, ... , m, 
JEN 

1.2. Linear Programming 

that is, aj = (alj, ... , amj) and b = (bb ... , bm ). 

Let CN = CN - cBAN be the reduced price vector for the nonbasic variables. Then, by 
Definition 3.2, dual feasibility of basis AB is equivalent to CN ~ 0. 

Now given the representation LP(B), we show how to move from one basic primal 
feasible solution to another in a systematic way. 

Definition 3.3. A primal basic feasible solution x B = b, X N = ° is degenerate if b i = ° for 
some i. 

Proposition 3.2. Suppose all primal basic feasible solutions are nondegenerate. If AB is a 
primalfeasible basis and ar is any column of AN, then matrix (AB' ar) contains, at most, one 
primal feasible basis other than AB. 

Proof We consider the system 

(3.1) 
XB + arxr = b 

XB ~ 0, Xr ~ 0, 

that is, all components of XN except Xr equal zero. 
Case 1. ar ~ 0. Suppose Xr = A > 0. Then for all A> ° we obtain 

- -
xB = b - a

r 
A ;::: b> O. 

Thus for every feasible solution to (3.1) with Xr > 0, we have XB > ° so that AB is the only 
primal feasible basis contained in (AB,a r). 

Case 2. At least one component ofar is positive. Let 

(3.2) 1 • fbi - o} bs 
Ilr = mIn =-: air> = =-. 

air a sr 
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Hence b - arAr ~ 0 and bs - asrAr = O. So we obtain an adjacent primal feasible basis AB(r) 
by deleting Bs from B and replacing it with r, that is, B(r) = B U {r} \ {Bs}' Note that the 
nondegeneracy assumption implies that bi - airAr > 0 for i =1= S so that the minimum in 
(3.2) is unique. Consequently, any basis AB with B = B U {r} \ {k} for k E B \ {B s} is not 
primal feasible. • 

The new solution is calculated by: 
1. Dividing 

XBs + asrxr + I aSjXj = bs jEN\{r} 

by asr, which yields 

(3.3) 

2. Eliminating Xr from the remaining equations by adding -air multiplied by (3.3) to 

XB j + airXr + I aijXj = bi for i =1= S 
jEN\{r} 

and eliminating Xr from the objective function. 
This transformation is called a pivot. It corresponds precisely to a step in the well

known Gaussian elimination technique for solving linear equations. The coefficient asr is 
called the pivot element. 

Corollary 3.3. Suppose AB is a primal feasible nondegenerate basis that is not dual 
feasible and cr > O. 

a. If ar ~ 0, then ZLP = 00. 

b. If at least one component of ar is positive, then A B(r), the unique primal feasible basis 
adjacent to AB that contains a" is such that CB(r)XB(r) > CBXB. 

Proof 

a. x B = b - a rA, x r = A, Xj = 0 otherwise is feasible for all A > 0 and 

b. 

where the inequality holds since Ar defined by (3.2) is positive and c, > 0 by 
hypothesis. • 

Primal Simplex Algorithm 

We are now ready to describe the main routine of the primal simplex method called Phase 
2. It begins with a primal feasible basis and then checks for dual feasibility. If the basis is 
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not dual feasible, either an adjacent primal feasible basis is found with (in the absence of 
degeneracy) a higher objective value or ZLP = 00 is established. 

Phase 2 

Step 1 (Initialization): Start with a primal feasible basis A B• 

Step 2 (Optimality Test): If AB is dual feasible (i.e., CN < 0), stop. XB = b, XN = 0 is an 
optimal solution. Otherwise go to Step 3. 

Step 3 (Pricing Routine): Choose an r E N with cr > O. 

a. Unboundedness test. Ifar ~ 0, ZLP = 00. 

b. Basis change. Otherwise, find the unique adjacent primal feasible basis A B(r) that 
contains ar • Let B ~ B(r) and return to Step 2. 

Note that in Step 3, we can choose any j EN with Cj > O. A pricing rule commonly used 
is to choose r = arg(maXjENCj), since it gives the largest increase in the objective function 
per unit increase of the variable that becomes basic. But this computation can be time 
consuming when n is large, so that various modifications of it are used in practice. 

Theorem 3.4. Under the assumption that all basic feasible solutions are nondegenerate, 
Phase 2 terminates in a finite number of steps either with an unbounded solution or with a 
basis that is primal and dual feasible. 

Proof At each step the value of the basic feasible solution increases. Thus no basis can 
be repeated. Because there is only a finite number of bases, this procedure must terminate 
finitely. • 

When basic solutions are degenerate, and this happens often in practice, Proposition 
3.2 and Corollary 3.3 are not true. Consequently, the finiteness argument given in the 
proof of Theorem 3.4 does not apply. 

Note that when the basic feasible solution is degenerate, the arg(min) of (3.2) may not 
be unique. In this case, (AB' a r ) contains more than one primal feasible basis adjacent to 
A B, and in Step 3b of the algorithm an arbitrary choice is made. A complication arises 
when Ar = 0 in (3.2) since each primal feasible basis in (AB' ar) defines the same solution, 
namely, x B = b and x N = O. A sequence of such degenerate changes of basis can, although it 
rarely happens in practice, lead back to the original basis. This phenomenon is called 
cycling. 

Two methods for eliminating the possibility of cycling are known. One involves a 
lexicographic rule for breaking ties in (3.2), and the other involves both the choice of r in 
Step 3 and a tie-breaking rule for (3.2). By eliminating cycling, these algorithms establish 
the finiteness of Phase 2 for any linear programming problem. Hence there are primal 
simplex methods for which Theorem 3.4 holds without a nondegeneracy assumption. 

Example 3.1 

ZLP = max 7Xl + 2X2 

-Xl + 2X2 + X3 4 

20 
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x ~O. 

Step 1 (Initialization): The basisA B = (a3, a4, al) with 

yields the primal feasible solution 

and xN = (X2' xs) = (0 0), 

Iteration 1 

Step 2: 

Ali = (00
1 

~ 1) 
o -1 

+ X5 = -7 

AN = (a" as) = A.IAN = (-~ J). 
eN = Cr cRAN = (2 0) - (0 0 7)AN = (-5 n 

Thus LP(B) can be stated as 

1 
- 4X2 + 22xs 

1 
X2 - 2X5 

X~O. 

Step 3: The only choice for a new basic variable is X5. By (3.2), 

{ 
2! } 

A.s = min -, 21, - = 1. 

Hence X4 is the leaving variable. 

= 7! 
2 

= 2! 
2 

1 
+ Xl = 32 

35 
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Iteration 2 

Step2: All = (~ 
1 
5 
2 
5 
1 
5 !} 4), 

X 2 is the entering variable. 

Step 3: a2 = (¥ -~ !). By (3.2), ,12 = min(,ts, -, '/5) = 1¥. Hence X3 is the leaving variable. 
As +- (a2' a5, a,). 

Iteration 3 

( 

..i J.. 0) 11 I' 

Step 2: A Ii = 1 1 01 , 
-11 11 

- - -) (3 16) 0 
CN = (C3, C4 = - IT - IT ~ . 

Hence x = (Xl, X2, X3, X4, X5) = (if 1¥ 0 0 if) is an optimal solution to LP, and 
U = cBAli = err -W 0) is an optimal solution to DLP. 

We have shown that ifLP has a basic primal feasible solution, it either has unbounded 
optimal value or it has an optimal basic solution. It remains to show that if it has a feasible 
solution, then it has a basic feasible solution. This is accomplished by Phase 1 of the 
simplex algorithm. 

Phase 1. By changing signs in each row if necessary, write LP as max{cx: Ax = b, x E R1} 
with b ;?; O. Now introduce artificial variables xf for i = 1, ... , m, and consider the linear 
program 

Za = max { - ~ x7: Ax + Ixa = b, (x, x a) E R~+m l 
1. Lpa is a feasible linear program for which a basic feasible solution x a = b, x = 0 is 

available. Hence Lpa can be solved by the Phase 2 simplex method. Moreover Z a ~ 0 
so that Lpa has an optimal solution. 

2. i) A feasible solution (x, x a) to Lpa yields a feasible solution x to LP if and only if 
x a = O. Thus if Za < 0, Lpa has no feasible solution with x a = 0 and hence LP is 
infeasible. 

ii) If Za = 0, then any optimal solution to Lpa has x a = 0 and hence yields a feasible 
solution to LP. In particular, if all the artificial variables are nonbasic in some 
basic optimal solution to Lpa, a basic feasible solution for LP has been found. 

On the other hand, if one or more artificial variables are basic, it may be possible to 
remove them from the basis by degenerate basis changes. When this is not possible it can 
be shown that certain constraints in the original problem are redundant, and the equations 
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with basic artificial variables can be dropped. Again this leads to a basic feasible solution to 
LP. 

By combining Phases 1 and 2, we obtain a finite algorithm for solving any linear 
program. This establishes Theorem 2.4 and also Theorem 3.5: 

Theorem 3.5 

a. If LP is feasible, it has a basic primal feasible solution. 
b. If LP has a finite optimal value, it has an optimal basic feasible solution. 

Example 3.1 (continued). We will use Phase 1 to construct the initial basis (a3, a4, a I) 
that we used previously. The Phase 1 problem is 

Za = max 

- XI + 2X2 + X3 

5xI + X2 + X4 

- Xl - x~ - x~ 

+ x~ 

4 

20 

- X5 + x~ = 7 

Observe, however, that because X 3, X4 are slack variables and b I and b2 are nonnegative, 
the artificial variables xf and x~ are unnecessary. Hence we can start with (x 3, X4, xD as 
basic variables. Since - X~ = -7 + 2x I + 2x 2 - X 5, the Phase 1 problem is 

Z a = max - 7 + 2x I + 2X2 

- XI + 2X2 + X3 = 4 

5xI + X2 + X4 20 

- X5 + X~ = 7 

x ;?; 0, X3 ;?; o. 

Using the simplex algorithm (Phase 2) we introduce X I into the basis, and x~ leaves. The 
resulting basis (a3, a4, a 1) is a feasible basis for the original problem. 

Dual Simplex Algorithm 

The primal simplex algorithm works by moving from one primal feasible basis to another. 
In contrast, the dual simplex algorithm works by moving from one dual feasible basis to 
another. This latter approach is useful when we know a basic dual feasible solution but not 
a primal one. This occurs, for example, when we have an optimal solution to a linear 
programming problem that becomes infeasible because additional constraints have been 
added. 

Proposition 3.6. Let An be a dual feasible basis with bs < O. 

a. If as} ;?; 0 for all j E N, then LP is infeasible. 
b. Otherwise there is an adjacent dualfeasible basis AB(r), where B(r) = B U {r} \ {Bs} 

and r E N satisfies asr < 0 and 
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. {Cj _ } r = arg ~ln =-: a sj < 0 . 
JEN asj 

Proof 

a. XBs + LjEN asjXj = bs < O. Hence if asj ~ 0 for all} EN, every solution to Ax = b 
with Xj ~ 0 for all} EN has XBs < O. 

b. If Xr enters the basis and XBs leaves we have 

z = cBb + I CjXj - A(XBs + I aSjxJ + Abs 
jEN jEN 

= cBb + Abs + I (Cj - Aasj)Xj - AxBs, 
jEN 

where A = ~r ~ O. The basis AB(r) is dual feasible since A ~ 0, Cj - A asj ~ Cj for all} 
a sr 

with aSj ~ 0, and Cj - A aSj ~ 0 for all} with aSj < 0 by the choice of r. • 

Dual Simplex Algorithm (Phase 2) 

Step 1 (Initialization): A dual feasible basis A B. 

Step 2 (Optimality Test): If AB is primal feasible, that is, b = AI} b ~ 0, then XB = band 
x N = 0 is an optimal solution. Otherwise go to Step 3. 

Step 3 (Pricing Routine): Choose an s with bs < O. 

a. Feasibility Test. Ifasj ~ 0 for all} EN, LP is infeasible. 

b. Basis change. Otherwise let 

r = arg ~in{~j : aSj < O} 
JEN asj 

and B(r) = B U (r) \ (Bs)' Return to Step 2 with B <'- B(r). 

In contrast to the primal algorithm, in the dual simplex algorithm the objective 
function is nonincreasing. The magnitude of the decrease at each step is Icrbs/ars I. In the 
absence of dual degeneracy, cr < 0 and the decrease is strict. As with the primal algorithm, 
it is possible to give more specific rules that guarantee finiteness. Such an algorithm is 
presented in Section IIA.3. A Phase 1 may be required to find a starting dual feasible basic 
solution. 

Example 3.1 (continued). We apply the dual simplex algorithm. 

Step 1 (Initialization): Consider the basis AB = (a3, a2, as), which is dual feasible since 
CN = (cJ, (4) = (-3 -2). 

Iteration 1 

Step 2: The basis is not primal feasible since XB = (X3, X2, xs) = (-36 20 33). 

Step 3: The only possible choice is s = 1. We have all = -11, a14 = -2, and min(n, ~) = rr. 
Hence XB, = x3leaves the basis, Xl enters the basis, andA B ~ (ar, a2, as). 
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Iteration 2. We have seen earlier that A B is primal and dual feasible and hence optimal. 

The Simplex Algorithm with Simple Upper Bounds 

It is desirable for computational purposes to distinguish between upper-bound constraints 
of the form Xj ~ h j and other more general constraints. Hence we consider the problem 

(ULP) ZLP = max{cx: Ax = b, ° ~ Xj ~ hj for j E {l, ... , n}). 

Whereas the primal simplex algorithm described earlier would treat ULP as a problem 
with m + n constraints, the simplex algorithm with upper bounds treats it as a problem 
with m constraints. 

Now the columns of A are permuted so that A = (AB' ANI' AN)' where AB is a basis 
matrix as before, but the index set of the nonbasic variables N is partitioned into two sets 
Nl and N 2. Nl is the index set of variables at their lower bound (Xj = 0), and N2 is the index 
set of variables at their upper bound (Xj = hj ). 

Now we need to modify Definition 3.1. 

Definition 3.4 

a. The m x m nonsingular matrix A B is called a basis. 
b. For each partition Nt, N2 of N, we associate the basic solution XB = 

AIl(b - AN2hN) = b - AN2hN2' XNI = 0, XN2 = hN2. 

c. If ° ~ b - AN2hN2 ~ hB, then (XB, XNI, XN) is a basic primal feasible solution, and 
(B, Nt, N 2) indexes a primal feasible basis. 

Now consider the dual of ULp, 

min ub + vh 

uA+v~c 

v ~o, 

and let v = (VB, VNI, VN2) and c = (CB, CNI, CN). The dual basic solution complementary 
to (XB, XNI, XN2) is (u, VB, VNI, VN) = (cBAll, 0, 0, CN2 - cBANJ Observe that (u, v) is a 
feasible solution to the dual if and only ifcNI = eNl - cBANl ~ ° and CN2 = CN2 - cBA N2 ~ 0. 

Proposition 3.7. If (AB, ANI' AN2 ) is primal and dual feasible, then x = (XB, XNl, XNJ = 

(b -~N h
N2

, 0, hN) is an optimal solution to ULP and (u, vBl ' VNl ' vN2 ) = (c~Bl, 0,0, cN2 
- C BA N) is an optimal solution to its dual. 

The modifications to the simplex algorithms are straightforward. BasesAB andAB" are 
adjacent if (i) IB \ B' I = -IB' \ B I = 1 or (ii) B = B', and in both cases 
IN~ \ NIl + IN2 \ N21 = 1. In the latter case, one nonbasic variable changes from its 
lower to its upper bound, or vice versa. It is then easy to write out the rules for the choice of 
entering and leaving variable, leading to primal and dual simplex algorithms for ULP. 
Note that these algorithms choose the same pivots as the standard simplex algorithms, so 
the advantage lies in handling a basis that is m x m rather than (m + n) x (m + n). 

Addition of Constraints or Variables 

After solving LP to optimality, it is common that one or more new constraints or 
columns have to be added. In Part II, we will discuss cutting-place algorithms that add a 
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constraint cutting off the optimal solution ofLP; we will also discuss problems having such 
a large number of variables that we do not wish to introduce them all a priori. 

If LP has been solved by a simplex algorithm, there is a straightforward way to use the 
current optimal basisA B to solve the new problem. Suppose an inequality Ll=l djxj ~ do is 
added that is violated by the optimal solution (XB, XN) = (A1ib, 0). Now if Xn+l is the slack 
variable of the new constraint, then B' = B U {n + 1} indexes a new basis, and we obtain 
LP(B'): 

XB +ANXN = b 

Xn+l + (dN - dBAN)xN = do - dBb 

since 

We see immediately that this basis is dual feasible and that it is primal feasible in all but the 
last row, that is, d Bb > do. It is therefore desirable to reoptimize using the dual simplex 
algorithm. Since the current solution is "nearly" primal feasible, it is likely that only a few 
iterations will be required. 

The procedure to be followed in adding new columns is dual to that described above. 
Given a new variable Xn+l with column (~:::), we calculate its reduced price 
Cn+l = Cn+l - cBA1ian+1 to check if the basis AB remains optimal. If Cn+l ~ 0, AB is still 
optimal and the solution is unchanged. If Cn+l > 0, we can use the primal simplex 
algorithm as A B remains primal feasible. 

Example 3.1 (continued). We add the upper-bound constraint x I ~ 3, cutting off the 
optimal solution x = ("* WOO H). Let Xl + X6 = 3, so that X6 is the new basic 
variable. Starting from the optimal basis AB = (a2, as, at), we have dB = (0 0 1), 
dN = (0 0), do = 3, andA B , = (a2' as, at, a6). 

Iteration 1 

Step 2: XB' = (W H "* -n). 
Step 3: x6leaves the basis 

min{- 16j2} = 8. 
'11 11 

Iteration 2 
Step 2: XB' = G 6 3 ~) ~ O. Hence X = (3 ~ 0 ~ 6 0) is an optimal solution to 

the revised problem. 
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Noting that the added constraint is an upper-bound constraint means that we can also 
reoptimize without increasing the size of the basis by using the dual simplex algorithm 
with upper bounds. In this case we have: 

Iteration 1 

so the basis is dual feasible. 

XB = (40 
11 

75 
11 

36). 
11 

Because XB
I 

= Xl> hI, the basis is not primal feasible. 
The dual simplex algorithm then removes X 1 from the basis at its upper bound and 

calculates (as above) that X4 enters the basis. 

Iteration 2 

AB = (a2' as, a4), ANI = (a3), AN2 = (al)' 

CNI = (-1) ~ 0, CN
2 
= (8) ;>- 0, 

so the basis remains dual feasible. 
X B = (~ 6 ~). Because 0 ~ x ~ h B, the basis is primal feasible and hence optimal. 

4. SUBGRADIENT OPTIMIZATION 

Here we consider an algorithm for solving linear programs whose roots are in non
linear, nondifferentiable optimization. Consider the linear program 

I 

C= min I Ajdj 
j=l 

I 

I Aig ij = Cj for j = 1, ... , n 
i=l 

o ~ Ai ~ hi for i = 1, ... , I. 

By duality it can be shown (see Section II.3.6) that this problem can be restated as 

Now to solve the inner optimization problem for fixed x, we can set Ai = 0 if 
di - Ll=l gijXj > 0, and Ai = hi otherwise. Thus there are a finite number of candidate 
solutions Ak E R~, k E K, where A7 E CO, hJ. So we can rewrite the problem as 
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or more generally as 

(4.1) ,= max/(x), 
xERn 

where 

(4.2) I(x) = min (aix - bi) and 1= {l, ... ,m} is a finite set. 
iEl 

In other words a general linear program can be transformed to the nonlinear optimiza
tion problem (4.1), where typically m is much larger than n. In this section, we present an 
algorithm for problem (4.1). 

Figure 4.1 illustrates I given by (4.2) for n = 1. The heavy lines give I(x), and point B is 
the optimum solution x* with value' = I(x*). 

We now develop an important property of the function! 

Definition 4.1. A function g: Rn ..,. R I is concave if 

g(ax l + (1 - a)x2) ~ ag(xl) + (1 - a) g(X2) for all Xl, x 2 ERn 
and all 0 ~ a ~ 1. 

Note that the definition simply states that the function is underestimated by linear 
interpolation (see Figure 4.2). 

This suggests the following proposition. 

Proposition 4.1. Let/(x) = mini=!, ... , m (aix - bJ Then/(x) is concave. 

• 

~----------------------------~~x 

Figure 4.1 
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/(X) 

~--~----------------~--------~X 

Figure 4.2 

An alternative characterization of concave functions is given by the following proposi
tion. 

Proposition 4.2. A/unction g: R n ~ R I is concave if and only iffor any x* E Rn there exists 
an s E R n such that g(x*) + sex - x*) ~ g(x) for all x ERn. 

The characterization is illustrated in Figure 4.3. Note that s is the slope of the 
hyperplane that supports the set {(x, z) E R n

+
l
: z ~ g(x)} at (x, z) = (x*, g(x*)). 

Comparing Figures 4.1 and 4.3, we see that in Figure 4.1 there is not a unique supporting 
hyperplane at the points A, B, and C, while for the smooth function g in Figure 4.3, the 
supporting hyperplane is unique at each point. 

Figure 4.4 illustrates Proposition 4.2 for x E R2. Contours of {x: g(x) = c} are shown 
for different values of c along with the supporting hyperplane given by sex - x*) = O. By 
Proposition 4.2, if x satisfies sex - x*) ~ 0, then g(x) ~ g(x*). In other words, if 
g(x) > g(x*), then sex - x*) > O. Thus if we are at the point x* and want to increase g(x), 
we should move to a point x' with sex' - x*) > O. One possibility is to move in a direction 
normal to the hyperplane sex - x*) = O. This direction is given by the vector s, which is, 
when g is differentiable at x*, the gradient vector \l g(x*) = (ag(x*)j ax 1, ••• , ag(x*)j ax n) at 
x = x*. It is well known that the gradient vector is the local direction of maximum increase 
of g(x), and \lg(x*) = 0 implies that x* solves max{g(x): x ERn}. 

The classical steepest ascent method for maximizing g(x) is given by the sequence of 
iterations 

~----------~~----------------~x 

x* 

Figure 4.3 
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~~--g(x)=c=g(x*) 

~-+-+---g(x) =c+ 1 

1.2. Linear Programming 

Supporting hyperplane at x*: 8(X -x*) = 0 

~---Normal direction atx* 

~-------------------------------------------------~~x1 

Figure 4.4 

With appropriate assumptions on the sequence of step sizes {eJf }, the iterates {Xl} converge 
to a maximizing point. 

The potential problems that arise in applying this idea to a nondifferentiable concave 
function are illustrated in Example 4.1. 

Example 4.1 

The contours!(x) = c for c = 0, -1, and -2 are shown in Figure 4.5. 

f(x) = -2 

8 2 = (1,2) 
f(x) = -1 

f(x) = 0 

sl = (1, - 2) 

Figure 4.5 
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In addition, at the point x* = (-2 0) we show the supporting hyperplanes Si(X - x*) = 0, 
for i = 1, 2 where s 1 = (l - 2) and S2 = (l 2). 

Now consider what happens when we move from x* in the direction s 1. We have 

f(x* + 8s 1
) =f(-2 + 8, 0 - 28) = min{2 - 8, - 2 + 58, - 2 - 3 8} 

= - 2 - 3 8 for all 8 ~ O. 

Hencef(x* + 8s l
) <f(x*) for all 8> O. Similar behavior is observed for S2. 

The example illustrates the nonuniqueness of the supporting hyperplanes and also 
shows that a direction normal to a supporting hyperplane may not be a direction of 
increase. 

There is, however, an alternative point of view, which provides the intuitive justifica
tion for moving in a direction normal to any supporting hyperplane at x*. As we have 
already noted, if s(x - x*) = 0 is any supporting hyperplane at x*, then any point with a 
larger objective value than x* is contained in the half-space s(x - x*) > O. Now it is a 
simple geometric exercise to show that if x is an optimal solution, a small move in the direc
tion s gives a point that is closer to x. In particular, there exists 8 such that for any 0 < 8 < 8, 

IIx - (x* + 8s)1I < IIx - x*11 

(see Figure 4.6.). The notation \lull, u ERn, represents the euclidean distance from 0 to u, 

that is, .J uT u. 
We now formalize the discussion given above. 

Definition 4.2. rfg: Rn ~ Rl is concave, s ERn is asubgradientofg atx* ifs(x-x*) ~ 

g(x) - g(x*) for all x E Rn. 

Definition 4.3. The set ag(x) = {s ERn: s is a subgradient of g at x} is called the 
subdifferential of g at x. 

Note that by Proposition 4.2, ag(x) =1= 0. 

Proposition 4.3. Ifg is concave on Rn, x* is an optimal solution ofmax{g(x): x ERn} if 
and only if 0 E ag(x*). 

x*+ 8s 

Figure 4.6 

A 
X 
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Proof 0 E ag(x*) if and only ifO(x - x*) ~ g(x) - g(x*) for all x ERn if and only if 
g(x) ~ g(x*) for all x ERn. • 

Now we characterize the subdifferential off(x) given by (4.2). 

Proposition 4.4. Letf(x) = mini=I. ... ,m (dx - bi) and let I(x*) = U:f(x*) = dx* - bJ 

1. a i is a subgradient off at x* for all i E I(x*). 

2. af(x*) = {s ERn: S = LiEI(x*) Aiai, LiEI(x*) Ai = 1, Ai ~ Ofor i E I(x*)}. 

Proof 

1. Ifi E I(x*), then ai(x - x*) = (aix - bi) - (aix* - bi) ~ f(x) - f(x*) for all x ERn, so 
that ai E af(x*). 

2. A proof is obtained by using statement 1 of Proposition 4.4 along with the Farkas 
lemma. • 

The following algorithm can use any subgradient at each step, but for computational 
purposes one of the extreme directions a i will be chosen. 

The Subgradient Algorithm for (4.1) 

Step 1 (Initialization): Choose a starting point Xl and let t = 1. 
Step 2: Given xt, choose any subgradient Sf E af(xt). If st = 0, then xt is an optimal 

solution. Otherwise go to Step 3. 
Step 3: Let xt+l = Xl + Otst for some Ot> O. (Procedures for selecting Ot are given below.) 

Let t ~ t + 1 and return to Step 2. 

Two schemes for selecting {Ot} are the following: 

i. A divergent series: L~I Ot -+ 00, Ot -+ 0 as t -+ 00. 

ii. A geometric series: at = aopt, or at = [[ - J(xt)]pt/llstjj2 where ° < p < 1 andfis a 
target, or upper bound on the optimal value' of(4.1). 

Series i is satisfactory theoretically, since it converges to an optimal point. But in 
practice the convergence is much too slow. Series ii, which is recommended in practice, is 
less satisfactory theoretically. The convergence is "geometric", but the limit point is only 
an optimal point if the initial choices of (0o, p) or (j, p) are sufficiently large. In practice, 
appropriate values can typically be found after a little testing, and step sizes closely related 
to a geometric series of type ii will be used in our applications of the subgradient algorithm 
in Part II. 

Ideally the subgradient algorithm can be stopped when, on some iteration t, we find 
st = 0 E af(xt

). However, in practice this rarely happens, since the algorithm just chooses 
one subgradient st and has no way of showing 0 E af(xt) as a convex combination of 
subgradients. Hence the typical stopping rule is either to stop after a fixed number of 
iterations or to stop if the function has not increased by at least a certain amount within a 
given number of iterations. 



4. Subgradient Optimization 

Example 4.2. Consider maxlf(x): x E R2}, where 

and 

f(x) = min{h(x): i = 1, ... , 5} 

fl(X) = Xl - 2X2 + 4 

f2(X) = - 5x 1 - X2 + 20 

f3(X) = 2XI + 2X2 - 7 

f4(X) = Xl 

fs(X) = X2· 
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We apply the subgradient algorithm with Ot = (0.9Y and initial point Xl = (0 0). The 
results of25 iterations are shown in Table 4.1, in which the last column, i(t), gives the index 
of the function that defines the subgradient. The best solution of value 2.30 is found at 
iteration 13. The optimal solution is (Xl X2) = (~ ~) of value ~ = 2.353. 

Table 4.1. 

XII x~ I(x l
) pI i(t) 

1 0.000 0.000 -7.000 0.900 3 
2 1.800 1.800 0.200 0.810 3 
3 3.420 3.420 -0.520 0.729 2 
4 -0.225 2.691 -2.068 0.656 3 
5 1.087 4.003 -2.919 0.590 1 
6 1.678 2.822 0.033 0.531 1 
7 2.209 1.759 0.937 0.478 3 
8 3.166 2.716 1.455 0.430 2 
9 1.013 2.285 -0.402 0.387 3 

10 1.788 3.060 -0.332 0.349 1 
11 2.137 2.363 1.411 0.314 1 
12 2.451 1.735 1.372 0.282 3 
13 3.016 2.300 2.300 0.254 5 
14 3.016 2.554 1.907 0.229 1 
15 3.244 2.097 1.681 0.206 2 
16 2.215 1.891 1.212 0.185 3 
17 2.585 2.262 2.062 0.167 1 
18 2.752 1.928 1.928 0.150 5 
19 2.752 2.078 2.078 0.135 5 
20 2.752 2.213 2.213 0.122 5 
21 2.752 2.335 2.083 0.109 1 
22 2.862 2.116 2.116 0.098 5 
23 2.862 2.214 2.214 0.089 5 
24 2.862 2.303 2.256 0.080 1 
25 2.941 2.144 2.144 0.072 5 
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~--------------------------------~----~~Xl 

Figure 4.7 

We can also view the problem as one of finding (x 1, x 2) such that the smallest slack 
variable Y i of the constraints 

4 

+ Y2 20 

+ Y3 - 7 

+ Y4 0 

+ Ys = 0 

is as large as possible (see Figure 4.7). With this geometry, each subgradient step is in the 
direction of the normal to the constraint whose slack variable is smallest. 

Because the magnitudes of the constraint coefficients are different, the five subgra
dients have different magnitudes which can substantially bias the progress of the algo
rithm. This suggests the use of normalized subgradients slllsil in the subgradient algo
rithm. For Example 4.2, this gives the iterations shown in Table 4.2. Note that more rapid 
convergence is achieved using normalized subgradients. 

Finally suppose that x ERn must satisfy some linear constraints, say x E C. Thus we 
have the problem 

(4.3) 11 = max{f(x): x E C}, where/ex) = . min (aix - bJ. 
/=1, ... ,m 

The subgradient algorithm for (4.3) is as before, except that Step 3 is modified to maintain 
feasibility. 
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Table 4.2. 

xi x~ f(x t
) pt i(t) 

1 0.000 0.000 -7.000 0.900 3 
2 0.636 0.636 -4.454 0.810 3 
3 1.209 1.209 -2.163 0.729 3 
4 1.725 1.725 -0.101 0.656 3 
5 2.189 2.189 1.754 0.590 3 
6 2.606 2.606 1.394 0.531 1 
7 2.844 2.131 2.131 0.478 5 
8 2.844 2.609 1.626 0.430 1 
9 3.036 2.224 2.224 0.387 5 

10 3.036 2.611 1.813 0.349 1 
11 3.192 2.300 1.739 0.314 2 
12 2.885 2.238 2.238 0.282 5 
13 2.885 2.520 1.844 0.254 1 
14 2.998 2.293 2.293 0.229 5 
15 2.998 2.522 1.954 0.206 1 
16 3.090 2.338 2.211 0.185 2 
17 2.909 2.301 2.301 0.167 5 
18 2.909 2.468 1.972 0.150 1 
19 2.976 2.334 2.308 0.135 1 
20 3.036 2.213 2.213 0.122 5 
21 3.036 2.335 2.335 0.109 5 
22 3.036 2.444 2.148 0.098 1 
23 3.080 2.356 2.243 0.089 2 
24 2.993 2.339 2.316 0.080 1 
25 3.029 2.267 2.267 0.072 5 

Step 3': Let yt+l = Xl + Otst for some Ot > ° and let xt+1 = arg minxEc /Ix _ yt+lll. 

In other words, Xt+1 is the projection of yt+1 onto the feasible region C. A typical 
application is to have C = R~, in which case Xj+1 = max(x; + OtS;, 0) for j = 1, ... , n 

5. NOTES 

Sections 1.2.1-1.2.3. 

Chvatal (1983) gave a modern and comprehensive treatment oflinear programming, with 
the exception of the significant post-1983 developments covered in Sections 1.6.2-1.6.4. 
Some earlier books are Charnes and Cooper (1961), Dantzig (1963), Gass (1975), Hadley 
(1962), and Murty (1976). 

Section 1.2.4 

The use of subgradient directions in the solution of large-scale linear programs that arise 
from combinatorial optimization problems was instigated by Held and Karp (1970, 1971) 
in a study of the traveling salesman problem. Held et al. (1974) investigated the behavior of 
a subgradient algorithm in a variety of combinatorial problems. A theoretical analysis of 
the convergence of subgradient algorithms is given by Goffin (1977). Subgradients and 
subgradient algorithms are also discussed by Grinold (1970, 1972), Camerini et al. (1975), 
Shapiro (1979a, b), and Sandi (1979). 



1.3 
Graphs and Networks 

1. INTRODUCTION 

In this section we give the terminology and some elementary results of graph theory. For 
our purposes the language of graphs is nearly as important as the results, which are 
elementary and given without proof. 

In the remaining sections, we define some classical optimization problems on graphs 
and present algorithms to solve them. All of these problems are linear programming 
problems and, excluding the minimum-weight spanning tree problem, are in the class of 
linear programming problems known as network flow problems. Their structure makes it 
possible to solve them by special-purpose algorithms that are more efficient than the 
simplex method. 

These problems are of interest to us because they frequently arise as subproblems in the 
solution of integer programs. The algorithms presented in the following sections are 
examples of classes of algorithms that are used to solve some of the problems considered in 
Parts II and III. We will introduce the ideas of recursive, greedy, augmenting, primal-dual, 
and specialized simplex algorithms. So this chapter also has the pedagogical objective of 
introducing different algorithmic approaches in a simple setting. To explain the basic ideas 
succinctly, we have deliberately chosen to present simple, rather than efficient, versions of 
the algorithms. Thus, in this chapter, the reader should not necessarily expect the 
algorithmic details that yield efficient implementations. 

A graph G = (V, E) consists of a finite, nonempty set V = {l, 2, ... , m} and a set 
E = reb e2, ... ,en} whose elements are subsets of V of size 2, that is, ek = (i,}), where 
i,} E V. The elements of V are called nodes, and the elements of E are called edges. Thus 
graphs are a mechanism for specifying certain pairs of a set. 

Graphs can be represented pictorially in R2 by points and lines. The points or nodes are 
placed arbitrarily in the plane, and a line connects points i and} if e = (i,}) E E. A graph 
with five nodes and seven edges is shown in Figure 1.1. 

Graphs are useful models for many of the problems considered in combinatorial 
optimization. We have used graphs informally in Chapter 1.1 to model network flow 
problems, the traveling salesman problem, and so on. Generic examples of graph models 
are derived from transportation and communication networks. Here V is a set of cities, 
and E consists of those pairs of cities that are connected by a direct transportation or 
communication link. Another set of generic examples concerns relationships between 
objects. For example, Vis a set of people; and E are those pairs that are married, or of the 
same sex, religion, and so on. The list of examples could go on and on. We are just going to 
give one more that relates directly to some examples discussed in Chapter 1.1. 

A graph G = (V, E) is called bipartite if there is a partition of V into disjoint sets 
VI and V2 such that each edge joins a node in VI to a node in V2 (see Figure 1.2). Bipartite 

50 
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e3 4 

e7 

e1 e5 5 

e6 

2 e4 3 

Figure l.1. V = (I, 2, 3,4, 5) and E = {el = (I, 2), e2 = (\, 3), e3 = (\, 4), e4 = (2,3), es = (3, 4), e6 = (3,5), 
e, = (4, 5)}. 
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graphs arise in many applications. For example, in the assignment problem, VI is the set of 
workers, V2 is the set of jobs, and (i, j) E E if and only if worker i can do job j. In facility 
location problems, VI is the set of customers, V2 is the set offacilities, and (i, j) E E if and 
only if facility j can serve customer i. 

Unless otherwise specified, we assume that the edges are distinct and if e = (i,j), then 
i * j. Such graphs are called simple. 

We say that ei E E meets or is incident to v E V or that v is an endpoint of ei if v E ei' 
One way to represent a graph is by its m x n node-edge incidence matrix A = (aij), where 

au=g 
if ej is incident to node i 
otherwise. 

The incidence matrix of the graph of Figure 1.1 is 

el e2 e3 e4 es e6 e7 
1 1 1 0 0 0 0 1 
1 0 0 0 0 0 2 

A= 0 1 0 1 1 0 3 
0 0 1 0 1 0 4 
0 0 0 0 0 5 

Note that each column of A contains exactly two l's. The number of l's in row i equals the 
number of edges incident to node i and is called the degree of node i. The set of edges 
incident to node i is denoted by J(i). We have 0 ~ I J(i) I ~ m - 1 for all i E V. A graph is 
called complete if it contains all possible edges, that is, I J(i) I = m - 1 for all i E V. 

Figure 1.2 
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Another way to represent a graph is by its m x m adjacency matrix A' = (aij), where 

a'. = { 1 if (i,}) E E 
I) 0 otherwise. 

The adjacency matrix for the graph of Figure 1.1 is 

0 1 1 0 
0 1 0 0 

A'= 1 0 1 
1 0 0 1 
0 0 0 

The complement of G = (V, E) is G = (V, E), where E = {e: e $. E}. The complement 
of the graph of Figure 1.1 is shown in Figure 1.3. 

For U r;;. V, let E(U) = {(i,}): (i,}) E E, i E U,} E U}. E(U) is the set of edges with 
both endpoints in U. If V' r;;. VandE' r;;. E(V'), then G' = (V: E') is said to be a subgraph 
of G = (V, E). G' is a spanning subgraph if V' = V. G' is the subgraph induced by V' if 
E' = E(V'). Figure 1.4 gives the subgraph induced by V' = {l, 2, 3, 4} of the graph of 
Figure 1.1. 

Two of the most important definitions that we need are paths and cycles. To define 
these terms, we need another definition. A node sequence va, v I> ••• , V k> k ~ 1, is called a 
VO-Vk walk if (Vi-I> Vi) E E for i = 1, ... ,k. Node Vo is called the origin, node Vk is called 
the destination, and nodes {VI> ••• , Vk-l} are intermediate nodes. We can also represent a 
walk by its edge sequence el> e2, ... , ek, where ei = (Vi-I> V;) for i = 1, ... ,k. The length 
of the walk Vo, VI> ... , Vk or el> ... ,ek is k, the number of edges in it. A walk is called a 
path if there are no node repetitions. In the graph of Figure 1.1, 1, 3,4, 5 is a 1-5 path. Its 
edge sequence is e2, es, e7. A VO-Vk walk is said to be closed ifvo = Vk. A closed walk is said to 
be a cycle if k ~ 3 and va' VI> ••• , Vk-l is a path. In the graph of Figure 1.1,1,3,5,4,1 is a 
cycle oflength 4. A graph is said to be acyclic if it does not contain any cycles. 

Let w be a VO-Vk walk with node repetitions. Consider a subsequence of nodes Vi, Vi+), 
... , Vj = Vi that contains no node repetitions other than the beginning and end nodes. 
(The subsequence is a cycle unless it contains three nodes). By deleting Vi+1> ... , Vj from w 
we obtain a Vo- V k walk of smaller length. And by deleting all such subsequences, we obtain 
a VO-Vk path. Referring to Figure 1.1, by deleting the indicated subsequences from 

1, 3, 4, 1, 2, 3, 4, 3, 5 
'-.,---I '---v---/ 

we obtain the 1-5 path 1, 2, 3, 5. 

4 

5 

Figure 1.3 
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4 

2 

Figure 1.4 

Proposition 1.1. There is a unique partition of the nodes of a graph G into subsets VI, 
... , Vp with the property that nodes i and j are in the same subset if and only if G contains 
an i-j path. 

Let Vk be a subset of the partition. The subgraph Gk = (Vb E(Vk )) is called a component 
of G. G is said to be connected if it has one component. This means that there is a path 
between each pair of nodes. The graph of Figure 1.1 is connected. The graph of Figure 1.3 
has two components defined by V j = {l, 2, 4, 5} and V2 = {3}. When a component con
tains only one node, that node is said to be isolated. 

An acyclic graph is called a forest. A connected forest is called a tree. The subgraph 
obtained by deleting edges {e 4, e 5, e 6} from the graph of Figure 1.1 is a spanning tree (see 
Figure 1.5). 

The following proposition gives four useful characterizations of trees. 

Proposition 1.2. Let G = (V, E) be a graph on m nodes. The following statements are 
equivalent. 

1. G is a tree. 
2. There is a unique path between each pair of nodes in G. 
3. G contains m - 1 edges and is connected. 
4. G contains m - 1 edges and is acyclic. 

5. G is connected and acyclic. 

Trees are minimal (with respect to the number of edges) connected graphs. A leaf of a 
graph is a node of degree 1. It is easy to show that every component of a forest with at least 
two nodes contains at least two leaves. 

Corollary 1.3 

a. IfG =(V,E) isatreeand e' $. E, then G' = (V, E U {e'}) contains exactly one cycle. 
b. IfC is the edge set of the cycle ofG' and e* E C \ {e'}, G* = (V, E U {e'} \ {e*}) also 

is a tree. 

4 

2 3 

Figure 1.5 
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A walk is called odd or even according to whether its length is odd or even. The 
following proposition characterizes bipartite graphs. 

Proposition 1.4. A graph is bipartite if and only ifit has no odd cycles. 

An important generalization of graphs is directed graphs. A directed graph or digraph 
qz; = (V, d) consists ofa finite, nonempty set V = {I, ... , m} and a setd = {eb e2, ... , en} 
whose elements are ordered subsets of V of size 2 called arcs. (Note that we use e for both 
an edge of a graph and an arc of a digraph.) In a digraph, (i,}) and (j, i) are different 
elements and we may have neither, one, or both of these elements. In the pictorial 
representation of a digraph, arrows are used to indicate order. Figure 1.6 gives a digraph. 

Digraphs are useful for modeling one-way relationships. For example, it is possible to 
go directly from intersection i to intersection} directly (by a one-way street) but not 
conversely, i is the father of} but not conversely, and so on. 

By removing the directions from the arcs of a digraph qz;, that is, replacing the arcs by 
edges and removing any edge duplications, we obtain a graph G that is said to underlie qz;. 

The node-arc incidence matrix of a digraph qz; with m nodes and n edges is the m x n 
matrix A with 

aij~ { - ~ 
if ej = (k, i) for some k E V \ {i} 

if ej = (i, k) for some k E V \ {i} 

otherwise. 

The node-arc incidence matrix of the graph of Figure 1.6 is 

el e2 e3 e4 es e6 e7 eg e9 
-1 -1 -1 0 0 0 0 1 0 1 

1 0 0 -1 0 0 0 0 2 

A= 0 1 0 1 -1 -1 -1 0 0 3 
0 0 1 0 0 1 0 -1 -1 4 
0 0 0 0 0 0 0 5 

The node sequence vo, Vb ... , Vb k "'" 1, is a VO-Vk directed walk in qz; = (V, d) if 
(Vi-b Vi) Ed for i = 1, ... ,k. The walk is called a VO-Vk directed path if there are no node 
repetitions and is called a directed cycle if k "'" 2, and the only node repetition is Vo = Vk. In 
Figure 1.6,1,3,4,1 is a directed cycle, but 1, 4, 3, 5 is not a directed path since (4,3) $. d. 

2 

Figure 1.6. V = {t, 2, 3, 4, 5} andst = eel = (I, 2), e2 = (1,3), e) = (1, 4) 
e4 = (2,3), e, = (3, 2), e6 = (3, 4), 
e7 = (3,5), es = (4, 1), e9 = (4, 5)}. 

5 
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By deleting the cycles from a vo-v k directed walk with v k '*' va, we obtain a vo-v k directed 
path (see Figure 1. 7). Note that the figure does not unambiguously specify the walk. 

Generally when we deal with digraphs we use the term path to mean a directed path. 
However, there are times when we need to distinguish between a directed path in f!iJ and a 
path in its underlying graph. Then we use the term dipath to refer to the directed path in f!iJ. 
The same terminology applies to cycles. 

A directed graph f!iJ is called strongly connected if there is a directed path between each 
pair of nodes. When we say that f!iJ is connected, we mean that the underlying graph is 
connected. 

A digraph is called a tree if the underlying graph is a tree. A subgraph of f!iJ that is a tree 
and spans f!iJ is called a spanning tree. A tree is called a branching if there is a node called 
the root such that there is a directed path from the root to every other node. If the root r is 
specified a priori, we will refer to an r-branching or branching with specified root r. 

2. THE MINIMUM-WEIGHT OR SHORTEST-PATH PROBLEM 

One of the simplest and most widely applicable combinatorial optimization problems is 
the minimum-weight or shortest-path problem. An instance of the shortest-path problem 
is given by a digraph f!iJ = (V, A), a function w : d .... R I (where We is the weight of arc e), 
and designated origin and destination nodes 1 and m, respectively. The weight of a 1-m 
path is the sum of the arc weights over all arcs in the path. (All paths considered here are 
directed.) The problem is to find a 1-m path of minimum weight. Such a path is generally 
called a shortest path, but it may not be a minimum-length path unless all arcs have equal 
weight. Clearly iff!iJ is strongly connected, there is a shortest path since no path can contain 
more than m - 1 arcs where I VI = m. 

A generic example of the shortest-path problem is to find a minimum cost route 
between two cities where, if e = (i, i), then We is the cost of a direct route between nodes i 
and}. We will encounter many other examples throughout the text, including the finding 
of shortest paths as a subroutine in the solution of more complex problems. 

We first consider the special case in which all arc weights are nonnegative, that is, 
w: d .... Rl. Thus, if p is a 1-m path contained in a 1-m walk p: then the weight of p is not 
greater than the weight of p: 

The algorithm we present for solving this problem actually solves the slightly more 
general problem of finding minimum-weight paths from node 1 to all other nodes. It is 
based on the following fundamental property of minimum-weight paths. 

Vg 

Figure 1.7. Directed walk: Yo, Vb V2, VIO, V), VI, V2, V), V4, V5, V7, Vs, V9, V5, V6. Directed path: 
~ ~. 
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Proposition 2.1. Suppose k is an intermediate node on a minimum-weight l-i path Pi. 
Then the l-ksubpathpk a/pi is a minimum-weight l-kpath. 

Proof Let w(P) be the weight of path p. The proof is by contradiction. So we suppose 
thatlh is a l-k path and w(h) < W(Pk) (see Figure 2.1). 

Let Pi = (Ph Pk;). Then Pi = (fib Pki) is a l-i walk and 

This is a contradiction because Pi contains a l-i path Pi and W(jJi) ",;; W(fii) < W(Pi)' • 

Now let g(i) be the weight of a minimum-weight l-i path and define g(l) = 0. 

Dijkstra's Minimum-Weight Path Algorithm 

Step 1 (Initialization): g(1) = 0, U = {l}, h(j) = Wlj if(1,j) E.st1, h(j) = 00 otherwise. 
Step 2: Let i = arg(minjlw h(j». If the minimum is not unique, select any i that achieves 

the minimum. Set U .... U U {i} and g(i) = h(i). If U = V, stop. 

Step 3: For allj $. U with (i,j) E.st1, h(j) .... min(g(i) + Wij' h(j». Return to Step 2. 

As stated, the algorithm determines only the weights of paths. To determine the path, 
we simply keep a record of the node beforej on the path that has weight h(j). Thus, in the 
initialization, we let p(j) = 1 if (1, j) E.st1 and j otherwise, and in Step 3 we set p(j) to i if 
h(j) = g(i) + w ij. Thus when the algorithm terminates, p(j) is the node before j on some 
minimum-weight I-j path. 

Theorem 2.2. Dijkstra's algorithm is correct. 

Proof The proofis inductive. The induction hypothesis is that after t passes through 
Step 3, g(j) is correct for allj E U, and h(j) is the weight of a minimum-weight I-j path 
restricted to having intermediate nodes in the set U. This is true initially with U = {l} and 
g(1) = 0. 

From the induction hypothesis, h(j) ~ g(j) for allj $. U. Suppose now that h(i) > g(i), 
where i is as defined in Step 2. Then the minimum-weight l-i path must contain some 
intermediate node not in U. Let k $. U be the first such node. Then by Proposition 2.1 the 
subpath from 1 to k must be a minimum-weight l-k path so that its weight is g(k). But this 
l-k path contains only intermediate nodes in U. Thus h(k) = g(k) ",;; g(i) < h(i), contra
dicting the choice ofi. Hence h(i) = g(i). 

To see that for j $. U U {i}, h(j) now represents the weight of a minimum weight I-j 
path with intermediate nodes in U U {i}, it suffices to observe that any such path either 
remains as before or contains i as its last node, in which case h(j) = g(i) + wij. • 

Figure 2.1 
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In order to consider the number of computations required in Dijkstra's algorithm and 
other algorithms to be given later, we need to introduce some new notation. Given 
functionsf(n) andg(n) from zl to Zl, we saythatf(n) is O(g(n» if there is a constant c > 0 
and n' E Zl such thatf(n).-,s; cg(n)" for all n ~ n'. Thus, for example if 

f(n) = 7.2n3 + 4n 2 + 9n + 4, 

thenf(n) is O(n3). In other words, the "big 0" notation allows us to approximateffrom 
above by a simpler function cg with c unspecified. 

Letf(m) be the maximum number of basic operations (additions and comparisons) 
required by Dijkstra's algorithm on a graph with m nodes. At each step of the algorithm, 
I U I is increased by 1. When I V \ U I = k, 1 .-,s; k .-,s; m - 1, Step 3 requires no more than k 
additions and comparisons, and Step 2 requires finding the minimum of k numbers. 
Hence fim) is bounded by c Lr~l k for some constant c. Thus Dijkstra's algorithm is 
O(m2). 

The efficiency ofthe algorithm can be seen by observing that each arc is examined only 
once. Note that a slight improvement can be obtained by including in U at Step 2 all nodes 
for which the minimum is achieved. 

Example 2.1. We determine minimum-distance paths from Chicago to nine other 
midwestern cities. The distances shown in Table 2.1 are miles/lO, and W ij = Wji for all i '*' j. 

Table 2.2 gives the h(j) andp(j) at each iteration if they have changed from the previous 
iteration. An asterisk indicates that h(j) = g(j). 

Table 2.1. 

2 3 4 5 6 7 8 9 10 

l. Chicago 96 105 50 41 86 46 29 56 70 
2. Dallas 78 49 94 21 64 63 41 37 
3. Denver 60 84 61 54 86 76 51 
4. Kansas City (MO) 45 35 20 26 17 18 
5. Minneapolis 80 36 55 59 64 
6. Oklahoma City 46 50 28 8 
7. Omaha 45 37 30 
8. St. Louis 21 45 
9. Springfield (MO) 25 

10. Wichita 

Table 2.2. 

Iteration 2 3 4 5 6 7 8 9 10 

° (00,2) (00,3) (00,4) (00, 5) (00,6) (00, 7) (00, 8) (00,9) (00, 10) 
1 96, 1 105,1 50,1 41,1 86,1 46,1 29,1* 56,1 70,1 
2 92,8 * 79,8 50,8 
3 * 
4 100,7 * * 
5 91,9 78,9 68,4* 
6 76,10* 
7 * 
8 * 
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2 

Figure 2.2 

Figure 2.2 gives the solution. 
It is easy to see that the algorithm can fail when there are negative arc weights. An 

example is shown in Figure 2.3. The algorithm would set g(3) = 3 at iteration 1, but 
g(3) = W2.3 + g(2) = - 2 + 4 = 2. In particular, it is not valid to set g(i) = h(i) just because 
h(i) is the smallest value of h(j) for j $. U. 

However, if the graph does not contain any cycles of negative weight, the algorithm can 
be modified to treat negative arc weights. The essential modification is that none of the 
h(j) are set equal to g(j) until m iterations have taken place. 

Bellman-Ford Minimum-Weight Path Algorithm 

Step 1 (Initialization): hO (1) = 0, hO (j) = 00 for j E V \ {l}, k = 1. 
Step 2: For allj E V, 

Step 3: If hk(j) = hk-1(j) for all j E V, then g(j) = hk(j) for all j E V. Otherwise if 
k < m, k <-- k + 1 and return to Step 2. If k = m, the graph contains a cycle of negative 
weight. 

Theorem 2.3. The Bellman-Ford algorithm is correct. 

Proof We claim that hk(j) is the weight of a minimum-weight 1-j walk containing no 
more than k arcs. This is trivially true for k = o. Suppose it is true for k - 1. At iteration k, 
we consider all possible ways of adding an arc (i,j) to the end ofa minimum-weight l-i 
walk containing no more than k - 1 arcs, and then we compare the weights of these walks 
to the weight of a minimum-weight I-j walk containing k - 1 or fewer arcs. Thus, by 

2 

3 

Figure 2.3 
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enumeration, hk(j) is the weight of a minimum-weight 1-) walk containing no more than 
k arcs. Now if hm(j) = hm-1(j) for all) E V, then hk(j) = hm(j) for all k > m. Hence the 
minimum-weight 1-) walk is of bounded weight for all) E V. This implies that I}j) contains 
no cycles of negative weight so that hm-1(j) is the weight ofa minimum-weight 1-) path 
containing m - 1 or fewer arcs. But since any 1-) path contains no more than m - 1 arcs, 
hm-1(j) = g(j). On the other hand, if there exists a)* such that hmU*) < hm-1U*), there is a 
1-)* walk containing m arcs that has lower weight than any 1-)* walk containing m - 1 
arcs. Hence this walk contains a cycle of negative weight. • 

To find a minimum-weight path or a negative-weight cycle, we use the bookkeeping 
scheme proposed above for Dijkstra's algorithm. In other words if h\) = wi} + hk-1(i), 
then we set pk(j) = i. To avoid having cycles of zero weight, set pk(j) = pk-l(j) whenever 
hk(j) = hk-1(j). 

At each of the m steps of the algorithm, we do an addition for each of the n arcs and then 
for each node take the minimum over m numbers. Hence the number of computations is 
cm(n + m), where c is a constant. In the case of a complete digraph, the number of 
computations is O(m 3). 

Thus the price we pay for being able to deal with negative arc weights in the absence of 
negative-weight cycles is an increase in computation time by a factor of m. Although the 
algorithm is able to detect a negative-weight cycle, it is unable to find a minimum-weight 
path in this case. The general minimum-weight path problem is much more difficult. 

Example 2.2. The numbers on the edges of the digraph of Figure 2.4 are the weights. The 
problem is to find minimum-weight paths from node 1 to all other nodes or to detect a 
negative-weight cycle. Table 2.3 gives hk(j) and pk(j) for k = 1, ... , 7. 

The solution is shown in Figure 2.5. 

Table 2.3. 

Iteration 2 3 4 5 6 7 

0 (0, 1) (00,2) (00, 3) (00,4) (00, 5) (00,6) (00, 7) 
1 (8, 1) (4, 1) 
2 (14, 3) (3,3) 
3 (7,5) (5,5) 
4 (10,6) (6,7) 
5 (9,6) 
6 (7,4) 
7 No change 
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6 

7 

Spanning trees are used in the design of communication networks in which each node 
must be able to communicate with every other node. If the communication links are 
expensive, then it is desirable to have just one path between each pair of nodes so that the 
resulting network is a spanning tree. 

Given a connected graph G = (V, E), let E be those pairs of nodes that can be joined 
directly by a communication link. The weight of an edge e E E is W e ~ O. The problem is 
to build a spanning tree of G of minimum weight, where the weight of a tree 
T = (V, E (T)), E(T) s E, is LeEE(D We. 

lt is easy to build a spanning tree from a connected graph. We scan the edges in any 
order, say e!, e2, ... ,en, and include ei in the tree if and only if it does not create a cycle 
with those edges already chosen from {e!, ... , ei-l}. More precisely, we have 

Algorithm for Constructing a Spanning Tree 

Step 1 (Initialization): Edge ordering e!, e2, ... , en, EO = 0, k = 1. 
Step 2: If H = (V, E k-1 U {ek}) is acyclic, then Ek = E k-1 U {ek}. Otherwise Ek = E k-1• 

Step 3: If IEk I = m - 1, stop, (V, Ek) is a spanning tree. Otherwise k .... k + 1, and return 
to Step 2. 

To execute Step 2, we keep track of the components of (V, E k-1). Then ek is included if 
and only if it joins two nodes that are in different components of (V, E k- 1). Thus each time 
we add an edge, the number of components is decreased by 1. 

Now to find a minimum-weight spanning tree we simply order the edges according to 
increasing weight. Thus Step 1 is replaced by: 

Step l' (Initialization): Edge ordering e!, e2, ... ,en such that wee!) ~ w(e2) ~ ... 
~ ween). EO = 0, k = 1. 

The algorithm consisting of Steps 1', 2, and 3 is called a greedy algorithm because at 
each iteration the edge of least weight is considered and included in the tree if it does not 
create a cycle. The greedy algorithm does what is locally best without regard to future 
consequences. 

We now show that the greedy algorithm produces a minimum-weight spanning tree. 
However, for most combinatorial optimization problems, greedy algorithms are merely 
heuristics for finding a good feasible solution (see Section 11.5.3). 



3. The Minimum-Weight Spanning Tree Problem 61 

" T* T 

Figure 3.1 

Theorem 3.1. The greedy algorithm produces a minimum-weight spanning tree. 

Proof Suppose the greedy algorithm produces the tree ro = (V, EO) and ro is not 
optimal. Let T* = (V, E*) be an optimal tree with the property that I E* \ EO I is minimum 
over all optimal trees. Note that E* \ EO :f= 0 and EO \ E* :f= 0. Let eO be a smallest-weight 
edge in EO \ E*. Consider the set of edges E* U {eO}, which, by Corollary 1.3, contains a 
unique cycle. Let C be the edge set of the cycle. Now by Corollary 1.3, there is an edge 
e* E C \ EO such that the graph (V, E* U {eO} \ {e*}) is a tree, say t (see Figure 3.1). 
Moreover, t is an optimal tree, since w eO ~ We', where the inequality holds because the 
greedy algorithm selected eO. Finally I it \ EO I = I E* \ EO I - 1, which contradicts the 
choice of T*. So ro is optimal. • 

Unless G is a sparse graph, that is, contains a very small number of edges, the dominant 
step of the greedy algorithm with respect to the number of computations is Step 1'. Since it 
takes n log n computations to order the edges by increasing weight, the total number of 
computations is O(n log n). There are, in fact, more efficient greedy-like algorithms as 
well as others designed specifically for sparse graphs. 

The greedy algorithm is still applicable if the graph contains edges with negative weight. 
It also applies to the problem of finding a maximum-weight spanning tree. Here we order 
the edges by decreasing weight. Note that if there are some edges of negative weight, we 
might prefer to solve the problem of finding a maximum-weight acyclic subgraph. To 
solve this problem, we simply terminate the greedy algorithm as soon as the last edge of 
positive weight has been considered. 

Example 3.1. A minimum-weight spanning tree for the graph of Example 2.1 is shown in 
Figure 3.2. After including the two edges of weight 21, edges (9, 10) and (4,8) are skipped 
because they would create cycles. Several other edges are skipped before the final edge 
(3, 10) is included. The example suggests why a full sort is not needed. Note that after a tree 
has been found on V' = {2, 4, 6, 7, 8, 9, 1O}, only edges that are incident to n, 3, 5} need to 
be considered. 

5 

29 

6 

2 

Figure 3.2 
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4. THE MAXIMUM-FLOW AND MINIMUM-CUT PROBLEMS 

Network flow problems were introduced in Section 1.1.3. In the general linear minimum 
cost network flow problem, we are given a digraph fliJ = (V, d), a function d: d .... R~ where 
di) is called the capacity of arc (i, i), a function w: d .... Rn where wi) is the unit cost offlow 
on arc (i, i), a function b: v .... R m where b; is called the supply at node i (b; < 0 is called a 
demand), and L;Ev b; = O. Afeasibleflow in fliJ is an x: d --> R~ that satisfies 

(4.1) I Xi) - I Xj; = bi all i E V 
jEo-(i) jEo-(i) 

(4.2) Xij~dij all (i,}) Ed, 

where c5+ (i) = {j: (i,}) Ed} and c5- (i) = {j: (j, i) Ed}. 
The equations (4.1) express the node conservation relations indicating that flow out

flow in = supply, and (4.2) indicates that the flow in each arc has a specified upper bound. 
When there is no upper bound on xij, we take dij = 00. 

The general minimum-cost network flow problem is to find a feasible flow that 
minimizes the objective function 

(4.3) 

We will consider this problem in Section 6. 
An important special case is the transportation problem. Here CZiJ = (VI U V2, d) is 

bipartite and bi > 0 for all i E VI and b i < 0 for all i E V2• We will study the transportation 
problem in Section 5. 

In this section we consider the maximum-flow problem. Two nodes sand t, called the 
source and sink, respectively, are specified, bi = 0 for all i E V, wlS = - 1, wi) = 0 other
wise, and dts = 00. In other words, the problem is to find a feasible flow that maximizes the 
flow on arc (t, s) with no exogenous supplies or demands. Observe that any feasible flow 
that maximizes XIS will have X;s = 0 for i '*' t and Xlj = 0 for} '*' s (see Figure 4.1). Hence 
XIS = LjEo-(s) Xsj = LiEo-(t) Xi/. 

SO, stated in its customary form, the maximum-flow problem is to maximize the flow 
out of the source or, equivalently, the flow into the sink, subject to the constraints of flow 
out equal to flow in for all the other nodes. Thus the maximum-flow problem asks the 

Figure 4.1 

0+-) -----+-() 
Figure 4.2 
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Figure 4.3 

question of how much flow can be sent from the source to the sink subject to conservation 
at the nodes and capacities on the arcs. 

We now introduce the minimum-cut problem. Let (U, U) be a partition of V such that 
s E Uandt E U. The set of arcs J+(U) = {(i,j) Ed: i E U,j E U}iscalledans-tcut (see 
Figure 4.2). The capacity of the cut 15+( U) is ~(i,j)EO+(U) dij. The minimum-cut problem is to 
find a cut of minimum capacity. 

It is apparent from Figure 4.2 that all flow from s to t must pass through the arcs of 
J+( U). Hence for any feasible flow, we have 

and, in particular, 

(4.4) 

Xts ~ L dij for all s-t cuts U, 
(i,j)Eo+(U) 

max Xts ~ min L dij. 
x feasible (U:sEU,trf-U) (i,j)Eo+(U) 

The algorithm we present in this section finds a maximum flow and minimum cut for 
any maximum-flow problem and also proves the following two theorems. 

Theorem 4.1. The value of a maximum flow equals the capacity of a minimum cut. 

Theorem 4.2. If all of the arc capacities are integer-valued, then there is a maximum flow 
x E z:.. 

An important concept in finding a maximum flow is that of an augmenting path. Given 
a flow x, we say that arc (i,j) is saturated ifxij = dij. Let X be any feasible flow and letp be 
the arcs of an s-t path with no saturated arcs. Then min(i,j)EP (dij - xij) = 6. > 0, and x is 
not a maximum flow because we can increase Xts by 6. by increasing xij by 6. for all 
(i,j) E p. Ifno such path exists, x is said to be a blockingflow. A blocking flow may not be 
maximum. 

Example 4.1. In Example 4.1 (see Figure 4.3), the numbers on arc (i,j) are the pair 
(xij, dij).1t is easy to check that each of the four s-t paths contains a saturated arc. But we 
can increase X ts by 1 as shown in Figure 4.4, to obtain the flow given in Figure 4.5. The arc 
from 2 to 4 in Figure 4.4 indicates that we have returned to node 2 the unit of flow 
previously shipped from 2 to 4. 

Figure 4.4 
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Figure 4.5 

Note that the flow in Figure 4.5 is maximum because U = {l, 3, 4} generates the cut 
<5+( U) = {(l, 2), (3, 5), (4, 6)} of capacity 5 (see Figure 4.6). 

Given a flow x, define the digraph fi.iJ(x) = (V, d(x)) by 

d(x) = {(i,)): (i,)) Ed, Xij < dij} U {(i,)): (j, i) Ed, Xji > O} 
= dj(x) U dr(x). 

We say that dj(x) is the set of forward arcs and dr(x) is the set of reverse arcs. 
Corresponding to Figure 4.3, we obtain the graph shown in Figure 4.7. 

An s-t path in fi.iJ(x) is called an augmenting path with respect to x. 

Proposition 4.3. A feasible flow x is not maximum, if there is an augmenting path with 
respect to x. 

Proof Let p be the set of arcs in an augmenting path and let PI = p n d j(x) and 
Pr = P n dr(x). Let 

6 = min{ min (du - xu), min Xji}' 
(i,j)EPf (i,j)Ep, 

By the definition of dj(x) and dr(x), 6 > O. We claim that by increasing Xu by 6 for all 
(i,)) E PI and decreasing xji by 6 for all (i,)) E p" X Is increases by 6. By choice of 6, the 
capacity constraints are still satisfied. Also the flow out of s increases by 6, and the flow 
into t increases by 6, so XIS increases by 6. Now consider a node) on the path. If the arcs in 
and out of) are both forward (reverse) arcs, then the flow in and the flow out of i goes up 
(down) by 6. On the other hand, ifone of the arcs is a forward arc and the other is a reverse 
arc, there is no change of flow in or out. Hence conservation of flow is maintained. • 

2 

2 

Figure 4.6 
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Figure 4.7 

We will prove the converse of Proposition 4.3 by showing that when no augmenting 
path exists, there is a cut of capacity XIS' Before doing so, we present a simple algorithm for 
finding an augmenting path if one exists. 

In the algorithm, nodes) '* s get a label of the form (p(j), ll), where p(j) is the node 
from which) receives flow and II is the amount of flow sent fromp(j) to}. The source s is 
initialized with the label (s, (0) which means that s can receive any amount of flow 
exogenously. Figure 4.8 shows the labeling for forward and reverse arcs on .@(x). 

The labeling can also be done directly on the original graph, which is what we do in the 
algorithm given below, as shown in Figure 4.9. 

Augmenting Path Algorithm 

Step 1 (Initialization): x = ° (or any feasible flow). Source is labeled (s,oo). All nodes are 
unscanned, and all nodes except s are unlabeled. Let i = s. 

Step 2 (Scan node i): For all} such that (i,) E d(x), xij < dij, and) is unlabeled, label) 
(i, min(ll, dij - Xi)' For all) such that (j,i) E d(x),) is unlabeled, and Xji > 0, label 

} (i, min(ll, xji»' Node i is scanned. 
Step 3: Ifthe sink is labeled, go to Step 4. If not, choose a labeled and unscanned node i 

and go to Step 2. Ifnone exists, the current flow is maximum. 
Step 4: Suppose t has the label (P(t), ll}. An augmenting path has been found. Use the first 

element of each label to trace the path back to s. Increase the flow by II on all forward 
arcs of the path, and decrease the flow by II on all reverse arcs. Erase all labels and 
return to Step 1. 

Note that to find one augmenting path, the number of computations is proportional to 
n, since each arc is considered no more than once. 

Forward arc (xij < d ii ) 

(P(i), 6) (i, min(6, dij - Xij» 

C)----------~.Q) 
(Xij, dij) 

Reverse arc (Xii> 0) 

(P(i),6) f:\/' (i, min(6, Xii» 

~------------------~.-CZ) 
Figure 4.8 
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(P(i), ,0,) (i, min(,0" dij - Xij)) if xij < dij 

01---------..· 0 
(Xij, dij) 

(P(i), ,0,) (i, min(,0" Xj;)) if xji > 0 

0~·-----~Q) 
(Xji, dji) 

Figure 4.9 

Example 4.1 (continued). The algorithm is applied to the example shown in Figure 4.3. 
The labels are shown in Figure 4.10. Nodes are scanned in the order (1,3,4,2,5,6). The 
augmenting path has been shown in Figure 4.4. We now label again as shown in Figure 
4.11. 

Nodes 1,3, and 4 are scanned and no further labeling is possible. Now observe that the 
cut generated by the set oflabeled nodes U = {l, 3, 4}, that is, £5+( U) = {(1, 2), (3, 5), (4, 6)}, 
has capacity equal to 5 so that this flow is maximum. 

Theorem 4.4. A feasible flow x is maximum if and only if there is no augmenting path 
with respect to x. 

Proof We have already shown (Proposition 4.3) that the existence of an augmenting 
path implies that the flow is not maximum. Now suppose there is no augmenting path and 
let U = {i E V: i is scanned in the augmenting~ath algorithm}. Then s E U, 
t $. u, xij = dij for all (i,j) E £5+cU), and xij = 0 if i E U andj E U. Hence the flow into 
node t equals LU,j)E&'(U) xij = LU,j)E&'(U) dij. In other words, we have shown that if the 
algorithm does not find an augmenting path, it defines a cut of capacity equal to the flow 
into node t. • 

Note that we have also proved Theorem 4.1, which also can be proved by linear 
programming duality. Theorem 4.2 also is a consequence of the augmenting path 
algorithm. The flow change in Step 4 either equals x ij for some (i, j) E sti with positive flow 
or dij - xij for some (i,j) E sti with xij < dij. Hence if we begin the algorithm with any 
integral flow, we terminate with an integral maximum flow when all of the arc capacities 
are integral. 

Therefore, when the capacities are integral, the number of augmentations is bounded 
above by the value of the maximum flow. In fact the bound can be achieved with a poor 

(4, 1) (3,4) 

(1,6) (2, 1) 

Figure 4.10 
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(3,3) 

0,5} 

Figure 4.11 

choice of augmenting paths. In the example of Figure 4.12, each of the arcs except (2,3) 
has capacity K, where K is a large positive integer. The maximum flow of2K can be found 
with augmentations of K along the paths s, 2, t and s, 3, t. On the other hand, it is possible 
to send one unit of flow along the augmenting paths s, 2, 3, t, then one unit along the 
augmenting path s, 3, 2, t, and so on. To achieve the maximum flow in this way requires 
2K augmentations. 

Fortunately, a very natural way of selecting a next node to be scanned in the augment
ing path algorithm yields a bound on the number of augmentations that is independent of 
the capacities. 

Proposition 4.5. If at each step of the augmenting path algorithm a shortest-length 
augmenting path is found, then the number of augmentations is bounded by mn. 

Although we omit the details, the essential idea of the proofis to show that after, at most, 
n augmentations, the length of an augmenting path increases. 

Note that we don't need a general shortest-path algorithm to find an augmenting path 
with the fewest number of arcs. We simply use breadth-first search to choose the next node 
to be scanned. That is, after s is scanned, all labeled nodes} with (s,}) Ed are scanned. 
These are the labeled nodes of distance 1 from s. In general, all labeled nodes of distance k 
from s are scanned before any of distance k + 1 from s. 

Figure 4.12 
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There is another class of algorithms for the maximum-flow problem that are not based 
on augmenting paths, and some of these have a smaller bound on the number of 
computations than the breadth-first algorithm for finding augmenting paths. We will not 
give the details here. The basic idea is that a set of, at most, n - 1 blocking flows are found 
and then combined into a maximum flow. 

5. THE TRANSPORTATION PROBLEM: A PRIMAL-DUAL ALGORITHM 

The transportation problem introduced in the previous section can be formulated as a 
minimum-cost flow problem on a bipartite digraph gz; = (Vj U V2, si), where Vj = {l, ... , 
m j} is the set of sources, V2 = {m j + 1, ... , m} is the set of sinks, and si = 

{(i,}): i E V),} E V2}. Thus we make the assumption, without loss of generality, that there 
is an arc from each supply node to each demand node. The unit shipping cost from i E V j 

to} E V2 is wij. Thus if there is really no arc from i to}, we take wij to be very large. Node 
i E V j has a positive integral supply ai, and node} E V2 has a positive integral demand of 
bj • The flow out of a source is required to equal its supply, and the flow into a sink must 
equal its demand. Thus a necessary condition for feasibility is LiEV, ai = LjEV, b j • 

The transportation problem is to find a flow x E R~, n = lsi I, that satisfies the supply
and-demand conservation equations at minimum cost. It can be formulated as the linear 
program 

(5.1) 

minI I WijXij 
iEV, jEV, 

I Xij = ai for i E Vj 

jEV, 

I Xij = bj for} E V2 
iEV, 

xER~. 

Note that the problem remains unchanged by adding a constant to all of the wij, so there is 
no loss of generality in assuming W ij ~ 0 for all i and j. 

When ai = bj = 1 for all i and j and m = 2m), (5.1) is the assignment problem (see 
Section 1.1.2). 

It is easy to accommodate some variations of the transportation problem in the 
formulation (5.1). For example, if LiEV, ai > LjEV, b j and the source node constraints are 
LjEV, xij ~ ai, then we add a "dummy" sink with demand LiEV, ai - LjEV, b j and set the 
unit shipping costs to zero for arcs from Vj to the dummy node. 

The dual of(5.1) is 

max I aiUi + I bjvj 

(5.2) iEV, jEV, 

The complementary slackness conditions for this pair oflinear programs are 

or 

(5.3) 
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Figure 5.1 

where wij = wij - Ui - Vj. Thus (u, v) E R m is dual feasible if 

(S.4) 

(We implement wij "very large" simply by assuming wij > 0; then, by complementarity, 
xij = 0.) Thus x E R~ and (u, v) E R m are optimal solutions to the primal and dual if they 
satisfy (S.3), (S.4), and 

(S.S) I Xij = ai for i E Vb I Xij = hj for} E V2• 
JEV, iEVI 

The primal-dual algorithm for the transportation problem maintains (S.3), (S.4), and 

(S.6) I xij";:; ai for i E Vb I Xij";:; hj for} E V2• 
JEV, iEVI 

It is easy to find an initial solution that satisfies these conditions. For example, take 
u? = minjEv, wij for i E VI and vJ = miniEVI (wij - u?) fori E V2, and XO = O. At each 
major iteration the algorithm increases LiEVI LjEV, xij by an integer and stops when (S.S) is 
satisfied. 

Given W, to see whether (S.S) can be satisfied, we consider the problem of maximizing 
LiEVI LjEV, xij subjectto (S.3), (S.6), and X E R~. This is ans-t maximum-flow problem on 
the digraph ~(w) = (VI U V2 U {s, t}, dew»~, where 

dew) = {(i,}) Ed: wij = O} U {(s, i): i E VI} U {(j, t):} E V2}. 

The capacity of arc (s, i) is ai for i E Vb and the capacity of arc (j, t) is hj for} E V2• All 
other arcs have "very large" capacities. If the maximum flow equals LiEVI ai, we have 
found an optimal solution. Ifnot, we change the dual variables. 

Consider the status of the node labels when the maximum-flow algorithm terminates 
(see Figure S.1). Note that ifi E T1 and} E V2 \ V;, then wij > 0 otherwise, we could label 
} from i. Also if i E VI \ T1 and} E V;, then xij = 0 otherwise, we could label i from}. 
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We now change the dual solution as follows. Let h = miniEVi,jEV,\V; Wij > 0 and define 
new values for the dual variables by 

(5.7) 

Hence the new reduced costs are 

(5.8) 

i E V;, } E V2 \ rz 
i E V j \ V;, } E rz 
otherwise. 

By the choice of h, dual feasibility is maintained. Complementary slackness is main
tained, since for i E V; and} E V2 \ rz we have Xij = 0 by definition of @(w), and for 
i E V; \ Vj and} E rz we have Xij = 0 by the labeling rules. 

The important outcome is that Wi'}' = 0 for some i* E V; and}* E V2 \ rz so that at 
least one new arc from i E V; to} E V2 \ rz is added to @(w) to obtain @(W). Some arcs 
may also be deleted from i E V j \ V; to} E rz. Now we can transfer the final labels from 
@(w) to @(W) and continue with the maximum-flow algorithm, with the assurance that at 
least one node in V2 \ rz will be labeled. This proves that after, at most m - m j such dual 
changes, the maximum flow will be increased by at least one unit. Thus the whole process 
is applied, at most, LiEV, ai times. 

Primal-Dual Algorithm for the Transportation Problem 

Step 1 (Initialization): t = 0, XO = 0, u7 = minjEv, Wij for i E Vb vJ = miniEv, (Wi) - u7) for 
} E V2, and wi} = wZ - u7 - vJ for all i and}. 

Iteration t 

Step 2: Solve the maximum-flow problem over @(w l). Let xij be the flow from i E Vj to 
} E V2 for all i and}. 

Step 3: If the maximum flow equals LiEV, ai, then Xl = (x~j) is an optimal solution. 
Otherwise, adjust the dual variables and reduced costs using (5.7) and (5.8). Keep the 
labels from the solution of the maximum-flow problem and return to Step 2 with 
t<-t+1. 

We have already proved the following theorem. 

Theorem 5.1. The primal-dual algorithm solves the transportation problem with, at 
most, LiEV, ai applications of the maximum-flow routine, 

Corollary 5.2. There is an integral optimal solution to the transportation problem. 

Proof At each iteration, the solution Xl is obtained as the solution to a maximum-
flow problem with integral capacities and hence is integral. • 
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Example 5.1 

w~ ( ~ 
3 7 3 8 

1; ) 6 12 5 7 a = (4 5 3 5) 
8 3 4 8 2 ' b = (3 3 6 2 1 2) 

11 6 10 5 10 9 

UO = (3 5 2 5), VO = (0 0 1 0 2 0), and 

w"~G 
0 3 0 3 

n 1 6 0 0 
6 0 2 4 

4 0 3 

Solving the maximum-flow problem on 0J(WO) yields 

-/ -/ -/ -/ 

/c 3 0 0 

D xO= -/ ~ 0 0 1 1 
0 3 0 0 

-/ 0 0 0 0 0 

Rows and columns corresponding to labeled nodes are noted with a check mark. Hence 
h = W;6 = 2, u l = (5 7 2 7), VI = (-2 -2 1 -2 0 0), 

and 

-/ 

x'~/u 
-/ 0 

-/ -/ 

o 103 
1 400 
804 6 

2 0 3 

-/ -/ 
3 0 0 0 
0 0 1 1 
0 3 0 0 
0 0 0 D 
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N h -I -I 2 ow = W22 = W42 = 1, U = (5 8 2 8), v2 = (-3 -2 1 -3 -1 0), 

w'~u 
0 1 4 

n 0 3 0 0 
8 0 5 7 
0 0 3 

and 

./ ./ ./ ./ ./ 

'C 
2 0 0 0 

n x 2=./ ~ 0 0 1 1 
0 3 0 0 

./ 0 0 0 

N h -2 -2 3 ow = W 13 = W 43 = 1, U = (6 9 2 9), v3 = (-4 -3 1 -4 -2 -1), 

w'~o 
0 0 1 4 

r} 0 2 0 0 
9 0 6 8 
0 0 0 3 

and we obtain an optimal flow given by 

x'~o 
2 0 0 0 

n 0 0 1 1 
0 3 0 0 

3 0 

When the total supply is large, there is a simple way to reduce the maximum number of 
possible augmentations from LiEVI ai to m [log2 (maxi,j (ai,bj ))]. The technique is called 
scaling. An integer a < 2k can be written as a = L7.:6 6i 2i, where 6i E {O, 1} for i = 1, ... , 
k - 1. The binary representation of a is the string (6k-1 6k-2 ... 6o). The scaling technique 
represents each supply and demand in binary. If2k- 1 <s; maXi,j (ai, bj) < 2\ then the length 
of each string is k. Hence in Example 5.1, al = 100, a2 = 101, a3 = 011, and so on. 

We now consider an approximate problem with supply-and-demand vectors (aD, bD) 

in which only the leading digit is considered, that is, aD = 1 if a. ~ 2k- 1, aO = 0 other-
I I I 

wise, or a? = [aJ2k-Ij for i E VI and bJ = [b)2k-Ij for j E V2. In example 5.1, k = 3, aU = 
(1 1 0 1) and bO = (0 0 1 0 0 0). As the example shows, supply and demand 
may now be unequal. Without loss of generality, assume LiEVI a7 ~ LjEV, bJ, so there may 
be a need for a dummy sink node. Since LiEVI a? + LjEV, bJ <s; m, the first approximation 
can be solved with m or fewer augmentations. Suppose the solution is (XO, WO), where 
XO E Z,:, does not include shipments to the dummy sink. 

We now begin the next approximation with the optimal reduced costs WO, the flow 2xo, 
and the supplies and demands a} = [aJ2k-2j for i E VI and b) = [b)2k-2j for j E V2. Since 
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~iEVI a? ~ ~jEV, bJ, we have ~iEVI x~ = bj for all} E V2• Thus the unsatisfied supplies and 
demands are 

ti) = a) - 2 2: x~.;;;; 3 for i E VI 
jEV, 

and 

Hence ~jEV2 bJ .;;;; m, so no more than m augmentations are required, other than the trivial 
ones to the dummy source or sink. 

The procedure continues in this way. In the pth approximation, af-I = 

[a;/2 k -Pj for i E VI and bj-I = [bj /2 k- Pj for} E V2• The primal solution from the previous 
approximation is doubled to get the unsatisfied supply and demand, at least one of which 
does not exceed m. The dual variables are kept from one iteration to the next. The 
procedure is applied k = [log2 (maxi,j (ai, bj »] times to find an optimal solution. 

Example 5.1 (continued). We apply the scaling technique to solve this problem. The 
initial supplies and demands are aO = (1 1 0 1) and bO = (0 0 1 0 0 0), so to 
accommodate the imbalance, we add a dummy sink with a demand of 2 and costs of 
Wi7 = 0 for all i. An optimal solution is given by UO = (0 0 -4 0), 
VO = (0 0 7 0 0 0 0), 

wo~ ( ; 

3 0 3 8 5 

n 6 5 5 7 11 
12 0 8 12 6 

11 6 3 5 10 9 

and 

~~G 
0 1 0 0 0 

D· 
0 0 0 0 0 
0 0 0 0 0 
0 0 0 0 0 

The initial flow for the second approximations is 2xo, and the supplies and demands are 
~ven by a l = (2 2 1 2) and b l = (1 1 3 1 0 1). Thus til = (0 2 1 2) and 
b l = (1 1 1 1 0 1). Now there are five units of unsatisfied supply. Since 
~iEVI a) = ~jEV2 bJ, no extra source or sink is needed. 
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An optimal solution to the second approximation is u l = (0 7 -4 3), 
VI = (0 1 5 0 2 -2), 

and 

o 0 
020 
9 0 6 
o 0 0 

o 
1 
o 
o 

1 
o 

o 
o 
o 
1 

4 
o 
8 
3 

o 
o 
o 
o 

The initial flow for the third approximation is x = 2XI, and a2 = a = 

(4 5 3 5), b2 = b = (3 3 6 2 1 2), il2 = (0 1 1 1), and .52 = (1 1 0 
o 1 0). Hence there are three units of unsatisfied supply. No dual variable change is 
required, and we immediately obtain an optimal solution given by 

o 
1 
o 
2 

2 
o 
3 

o 
o 
o 
2 

o 
1 
o 
o 

There is another interpretation and implementation of the primal-dual algorithm that 
is also of interest. Note that for any u and v, the instances of the transportation problem 
with cost matrix W = (wij) and W = (wij - Ui - Vj) have the same optimal solutions, since 
for any feasible x we have 

L L wijxi} - L L WijXij = L L (Ui + Vj) xi} 
iEV\ JEV, iEV\ JEV2 iEV\ JEV, 

= L Uiai + L vjbj. 
iEV\ JEV, 

The dual part of the primal-dual algorithm eventually finds a matrix W ~ 0 such that 
there is a feasible solution x of cost LiEV\ LjEV2 W ijX i} = O. Since zero is a lower bound on the 
cost of any solution with W ~ 0, such a solution must be optimal. The primal part of the 
algorithm uses maximum flow to find the solution of cost zero when one exists. In other 
words, with respect to the matrix w, all flow is sent over paths of zero cost. 

We want to point out that this can be achieved by a different implementation that uses 
a minimum-cost path algorithm to calculate the dual variables. Consider the digraph 
@ = (VI U V2 U {s, t}, .s!1), where there is a directed arc from the source s to each node in 
VI, a directed arc from each node in V2 to the sink t, and arcs (i,j), i E VI,j E V2 if it is 
possible to ship directly from i to j. Arcs going out of the source or into the sink have zero 
cost and a capacity equal to the corresponding supply or demand. Arc (i,j), 
i E VI,j E V2, has cost wi} and infinite capacity. 
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Minimum-Cost Path Augmentation Algorithm 

Step 1 (Initialization): k = 0, XO = 0, f00 = f0. 

75 

Step 2 (Iteration k): Let the current flow be Xk. Find a minimum-cost path from s to t of 
the form (s, iO, ... ,l, t). Let 

Let 

L2 = min{xt: (j, i) is on the path with i E VI, and) E V2}. 

Ifno arcs from) E V2 to i E VI are on the path, let L2 = 00. Let L = min(LI, L 2). 

Step 3 (Flow augmentation): Increase the flow in (s, iO) and (l, t) by L. For all arcs (i,)) 
on the path with i E VI and) E V2, increase the flow by L. For all arcs (j, i) on the path 
with i E VI and j E V2, decrease the flow in (i, j) by L. If the new flow Xk+1 satisfies 
x~tl = ai for all i E V), stop. Xk+1 is an optimal solution. 

Step 4 (Arc and cost change): Add (j, i),) E V2, i E V), to the graph ifxt = ° andxt+1 > 0, 
and assign it the cost (-wij). Delete (s, iO) ifx~ibl = aiD, delete (l, t) ifxfoil = bjD, and delete 
(j,i))E V2,iE V1 ifxt+1 =0.k .... k+ 1. 

Each time a minimum-cost path is found, we can interpret the costs on the nodes of that 
path as the incremental values of dual variables such that when the dual change 
wij - Uj - Vj is made, the cost of the path is reduced to zero. By augmenting over 
minimum-cost paths, the flow at iteration k is the minimum-cost solution to the 
transportation problem with supplies LjEV, xt for i E VI and demands LiEV, xt for j E V2. 

In fact it is possible to implement the primal-dual approach given above to produce the 
same augmentations as those determined by minimum-cost paths. 

Example 5.1 (continued). We find an optimal solution by finding minimum-cost path 
augmentations. Table 5.1 shows the paths, quantity of flow, and cost per unit of flow for 
each augmentation. Arcs from V2 to VI are noted by overbars. 

Table 5.1. 

Augmentation Path Flow Cost 

1 (s, 3), (3, 1), (1, t) 3 2 
2 (s, 1), (1, 2), (2, t) 3 3 
3 (s, 1), (1, 4), (4, t) 1 3 
4 (s, 4), (4, 4), (4, t) 1 5 
5 (s, 2), (2, 1), (1, 3), (3, 6), (6, t) 2 5 
6 (s, 2), (2, 1), (1, 3), (3, 3), (3, t) 1 6 
7 (s, 2), (2, 5), (~ 1 7 
8 (s, 4), (4, 4), (4, 1), (1, 6), (6, 3), (3,3), (3, t) 1 8 
9 (s, 2), (2,3), (2,1), (1, 6), (6,3), (3, 3), (3, t) 1 9 

10 (s, 3), (3, 3), (3, t) 3 20 
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The optimal solution found is 

2 
1 
o 
o 

o 
o 
3 
3 

o 0 
o 1 
o 0 
2 0 

1.3. Graphs and Networks 

The primal-dual method is readily extended to handle the general minimum-cost flow 
problem. However, in the next section we give a primal simplex algorithm that seems to be 
more practical for solving large-scale minimum-cost network flow problems. 

6. A PRIMAL SIMPLEX ALGORITHM FOR NETWORK FLOW PROBLEMS 

The simplex method works very efficiently on network flow problems because the basis 
matrices have a very simple structure that greatly simplifies the calculations required in 
the pivot operations. Graphically, the arcs corresponding to basic variables induce 
subgraphs that are spanning trees. The trees provide a very simple way of calculating 
primal and dual solutions and the other quantities needed to do simplex pivots. 

Let f!lJ = (V, d), where V = {l, ... ,m} and .14 = {el> ... ,en} be the connected digraph 
of an instance of a network flow problem, and let A be the coefficient matrix of the 
conservation equations (4.1). Note that A = (a ij) is the node-arc incidence matrix of f!lJ, that 
is, if ej = (k, I) then atq = -1, a/j = 1, and aij = 0 otherwise. 

Proposition 6.1. If A is the node-arc incidence matrix of a connected digraph f!lJ with m 
nodes, then rank(A) = m - 1 (see Definition 1.3 of Section I.4.1). 

Proof 1:7!1 a ij = 0 for all j, hence rank(A) < m. 
To show that rank(A) = m - 1, let T = (V, .14 ') be a spanning tree of f!lJ and let AT be the 

m x (m - 1) incidence matrix of T. The idea of the proof is to permute the rows and 
columns of AT so that the (m - 1) x (m - 1) submatrix consisting of the first m - 1 rows is 
lower triangular with the magnitude of each diagonal element equal to 1. 

Let i 1 be a leaf of T so that the row of A T corresponding to i 1 is a unit vector or its 
negative. Put row i 1 and the column corresponding to the arc ei 1 incident to node i 1 as the 
first row and column, respectively. Then delete node i 1 from T. The resulting graph is 
again a tree and thus contains a leaf, say i2. Now the row corresponding to i2 contains, at 
most, two nonzero elements, one corresponding to an arc ei2 * ei 1, and ifthere is another it 
corresponds to ei 1• Hence by putting row i2 and the column corresponding to ei2 second, 
the first two rows are in lower triangular form. Now a straightforward induction yields the 
hypothesized lower triangular matrix with 1 's (or -1 's) on the diagonal. • 

We have seen, in the proof of Proposition 6.1, how a spanning tree on f!lJ yields an 
(m - 1) x (m - 1) nonsingular incidence matrix. But if (V, .14'), .14' s; .14, 1.14' 1 = m - 1 is 
not a spanning tree, then the underlying graph contains a cycle. Thus the incidence matrix 
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of (V, .sIi') contains a submatrix, which, after appropriate permutation of columns and 
multiplication of some columns by -1, is of the form 

o 

-1 
o 

o 
o 

-1 

-~) o . 
1 

Hence the incidence matrix of (V, .sIi') is singular, and we have shown the following: 

Proposition 6.2. There is a one-to-one correspondence between spanning trees on qj) and 
(m - 1) x (m - 1) nonsingular submatrices of A. 

Thus each spanning tree on qj) yields a basis matrix for the conservation equations (4.l), 
and if there are no upper-bound constraints (4.2), the tree corresponds to a primal feasible 
basis if the corresponding solution to (4.l) is nonnegative. Moreover, it is simple to 
compute the unique solution of (4.1) given that xi} == 0 for all (i, j) E.sIi that are not tree 
arcs. We arbitrarily designate some node to be the root of the tree, say node r. Then we 
compute the solution of (4.1) recursively along each path from a leaf to the root, beginning 
with the arcs adjacent to the leaves. 

An example of this computation is shown in Figure 6.1. Suppose we are given 
T == (V, .sIi'), a spanning tree of qj). We first compute the flows for the arcs incident to the 
leaves, that is, X2r == b2, X61 == -bI, X36 == b3, X47 == b4, and X75 == -b5• Then X67 == -(b7 

+ X47 - X75) is determined, and finally X r6 == -(b6 - X61 + X36 - xd. Note that flows bal
ance at node r since b2 + br = xr6 = - (b l + b3 + b4 + bs + b6 + b7), and we have assumed 
that '2.;=1 bi + br = O. 

Our computational scheme is nothing more than the obvious way of solving the lower 
triangular system beginning with the first variable, and so on. It illustrates that ifthe b i are 
integral, then the solution will be integral, which is, of course, a consequence of the 
diagonal elements of the lower triangular basis matrix having a magnitude of 1. 

The primal feasibility of a basis depends only on the vector b. For example, if 
b == (bI, b2, ••• , b7) == (-3 2 3 4 -5 -10), the induced spanning tree of Figure 6.l yields 
the basic feasible primal solution X2r == 2, X61 == 3, X36 == 3, X47 == 4, X75 == 5, X67 == 1, Xr6 == 2. 

Figure 6.1 
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Figure 6.2 
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A Phase I procedure that uses artificial arcs may be necessary to determine an initial 
primal feasible basic solution. 

Now suppose we have a basic feasible primal solution that is not optimal. The criterion 
for optimality (i.e., dual feasibility) will be discussed subsequently. A primal simplex pivot 
corresponds to adding an arc to the tree and then deleting an arc from the cycle (in the 
underlying undirected graph). The arc to be deleted is chosen to maintain primal 
feasibility. 

The cycle of Figure 6.2 has been created by adding the arc (i!, i k ) Ed. Now observe 
that if we set Xilik = t:, > 0 the conservation equations will be satisfied by increasing the 
flow by t:, on all arcs of the cycle that have the same orientation as (i!, i k ) and by decreasing 
the flow by t:, on all arcs of the cycle that have the opposite orientation. Thus ifall arcs of 
the cycle have the same orientation as (i!, i k), the flow can be increased without bound. 
Otherwise, there is a unique largest value of t:, ;;?; 0 (> 0 in the absence of degeneracy) given 
by 

t:, = min{x ij: (i, j) is an arc of the cycle whose orientation is 
opposite from (i!, i k )). 

Suppose t:, = x ipip• I ' Then we obtain a new basis by deleting arc (i P' i p+l) from the cycle. The 
new solution x is given by 

and 

{
X ij + t:, if (i, j) has the same orientation as (i!, i k) in the cycle 

Xu = xij - t:, if(i,j) ~as the opposite orientation from (i!, h) in the cycle 
x ij otherwIse. 

In the absence of degeneracy, t:, > 0 and x '* x. 
Suppose in the example of Figure 6.1 with b = (-3 2 3 4 -5 -1 0) we add the arc (3,4) 

(see Figure 6.3). Then t:, = min(x36, X67) = min(3, 1) = 1 and arc (6, 7) is deleted. The 
resulting spanning tree is shown in Figure 6.4. 

We now consider the complementary dual solution and the computation of the reduced 
costs to establish optimality conditions and to find the arc to enter the tree when the 
optimality conditions do not hold. 
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Figure 6.3 

Corresponding to the equations (4.1) and x E R~ we obtain the dual constraints 
Y i - Yj ,;;; C ij for all (i,}) E .sti. By complementary slackness, Y i - Yj = C ij for all tree arcs. We 
can arbitrarily set Yr = 0 and then use these m - I equations to compute the remainder of 
the dual variables. Then ifYi - Yj ,;;; cij is satisfied for all nontree arcs, the present solution 
is optimal. Otherwise, following the standard simplex criterion, we introduce an arc (i,}) 
for which the reduced price cij = cij - Yi + Yj is minimum. 

The dual variables are computed by starting at the root of the tree with Yr = 0 and 
progressing toward the leaves (see Figure 6.5). 

As with the primal variables, after changing the basis it is not necessary to recalculate all 
of the dual variables. For example, if we add the arc (3,4) and delete the arc (6,7), then the 
dual variables change only at nodes 4, 7, and 5, and we obtain the new solution 
Y; = Y; for i = 1,2,3, 6'Y4 = Y4 - C34'Y7 = Y7 -C34, andys = Ys -C34· 

As in the general primal simplex algorithm, the dual variables are needed only to 
calculate the reduced prices. But since the number of nontree arcs is generally much 
greater than the number of nodes, it makes sense to calculate and store the dual variables. 

Figure 6.4 
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Yl = -crG - c61 

Yr=O 

Figure 6.5 

Example 6.1. We continue with the example that has been used to demonstrate the 
calculations. The data are 

8 5 9 2 4 r 0 
7 3 4 1 -3 
2 7 5 2 2 

c= 0 7 7 3 b= 3 
6 4 2 4 4 

9 3 3 5 -5 
5 2 2 4 8 2 6 -1 
6 2 2 3 4 7 0 

r 2 3 4 5 6 7 

In Figure 6.6, the number adjacent to the nodes are the dual variables for the first 
primal basic feasible solution, solid lines are tree arcs, and the numbers adjacent to them 

-4 5 -2 

o 

Figure 6.6 
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-4 5 4 

-1 

o 

Figure 6.7 

are the flows. With dotted lines, we show the arcs with negative reduced price, that is, the 
ones that want to enter the basis; the adjacent numbers are the reduced costs. 

Arc (3, 4) enters the solution and arc (6, 7) leaves (see Figure 6.7). Now arc (4, 5) enters 
the solution. There is a tie for the leaving arc between (4, 7) and (7, 5). We choose (7, 5) and 
obtain the degenerate optimal solution shown in Figure 6.8. Now it can be checked that all 
reduced prices are nonnegative, so the solution shown in Figure 6.8 is optimal. 

It is a simple matter to include arc capacities in the network simplex algorithm by 
treating upper-bound constraints implicitly. Thus, in the absence of degeneracy, if a 
variable is at its upper bound, the corresponding arc is not in the tree. The optimality 
conditions and pivot rules need to be modified accordingly. 

Finally, it is important to observe that the effectiveness of the network simplex 
algorithm depends very substantially on the use of appropriate data structures for 
representing trees so that the calculations can be done efficiently. 

-4 5 4 

o 

o 

Figure 6.8 
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7. NOTES 

Section 1.3.1 

Berge (1973), and Bondy and Murty (1976) are general books on graph theory. 
Data structures are extremely important to the implementation of efficient graph 

algorithms (see Tarjan, 1983). Although we have not dealt with this important aspect of 
graph and network algorithms, the notes for each of the following sections contains a 
reference to an article that gives some of the recent results on efficient algorithms. 

Section 1.3.2 

The shortest-path algorithm for nonnegative arc weights is due to Dijkstra (1959). The 
other algorithm appears in Ford and Fulkerson (1962). An earlier variant was given by 
Bellman (1958). 

Gallo and Pallotino (1986) presented a survey of shortest-path algorithms. 

Section 1.3.3 

The minimum-weight spanning tree algorithm is due to Kruskal (1956). Another classical 
algorithm is that of Prim (1957). 

Gabow et al. (1986) have presented results on efficient spanning tree algorithms. 

Section 1.3.4 

The classical reference for network flows is Ford and Fulkerson (1962). More recent texts 
are Bazarra and Jarvis (1977), Christo fides (1975a), Jensen and Barnes (1980), Kennington 
and Helgason (1980), and Lawler (1976). 

The maximum-flow algorithm presented is that ofFord and Fulkerson (1956). 
Edmonds and Karp (1972) showed the efficiency of augmenting along shortest-length 

paths. 
Tarjan (1986) gave a survey of efficient maximum-flow algorithms. 

Section 1.3.5 

The primal-dual algorithm is due to Ford and Fulkerson (1962). Scaling was introduced 
by Edmonds and Karp (1972). 

Bertsekas (1985) gave a unified framework of primal-dual network flow algorithms. 

Section 1.3.6 

Kennington and Helgason (1980) gave a detailed presentation of primal simplex network 
flow algorithms, including a computer code for solving large-scale problems. Also see 
Glover, Karney, and Klingman (1974), Bradley et al. (1977) and Bland and Jensen (1987). 

Ikura and Nemhauser (1986) gave a polynomial time dual simplex algorithm for the 
transportation problem and also investigated the use of scaling. A strongly polynomial 
network flow algorithm was described by Tardos (1985). 



1.4 
Polyhedral Theory 

1. INTRODUCTION AND ELEMENTARY LINEAR ALGEBRA 

A considerable portion of this book involves the description of a set of points in R n by a set 
oflinear inequalities. In linear programming, we are given a description of the feasible set 
of points by a set of linear inequalities P = {x E R~: Ax ~ b}. When we solve a linear 
program by the simplex method, issues such as the dimension of P and which inequalities 
are necessary for the description of P do not need to be addressed. 

Integer programming is different. Typically, we are given a set S s:; Z~ of feasible points 
described implicitly, for example, the set of integer solutions to a linear inequality system 
S = {x E Z~: Ax ~ b}, the set of binary vectors corresponding to tours in a graph, and so 
on. One of our objectives is to find a linear inequality description of the set. 

Definition 1.1. Given a set S ~ R n, a point x ERn is a convex combination of points of S 
if there exists a finite set of points {xi}i=l in S and a A E R~ with L;'=l Ai = 1 and x = L}=l AiXi. 
The convex hull of S, denoted by conv(S), is the set of all points that are convex 
combinations of points in S. 

Figure 1.1 shows the convex hull ofa set of integral points in R2. We see that conv(S) can 
be described by a finite set of linear inequalities and that max{cx: xES} = 

max{cx: x E conv(S)}. Moreover, the latter problem is a linear program. The validity of 
these observations for general integer programs is shown in Section 6. 

Finding an inequality description of conv(S) is not easy, and questions such as the 
dimension of conv(S), the necessity of a certain inequality for the description of conv(S), 
and so on, are very important. Most of Chapter 11.1 is devoted to finding such a 
description. To facilitate the later developments, we collect together in this chapter some 
basic results on polyhedra. 

In this section we give, without proof, some standard results from linear algebra. 

Definition 1.2. A set of points Xl, ... ,Xk E Rn is linearly independent if the unique 
solution OfL1=1 AiXi = 0 is Ai = 0, i = 1, ... , k. 

Note that the maximum number oflinearIy independent points in Rn is n. 

83 
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2 
conv(S) = {x E R2: 

~------------~~~==~---------Xl 

2 3 

Figure 1.1. The black dots represent points in S; conv(S) is shaded. 

Proposition 1.1. If A is an m x n matrix, the maximum number of linearly independent 
rows a/A, viewed as vectors d ERn, equals the maximum nwnber of linearly independent 
columns of A, viewed as vectors aj ERin. 

Definition 1.3. The maximum number of linearly independent rows (columns) of A is 
the rank of A and is denoted by rank(A). 

Now we give a basic result for systems oflinear equalities. 

Proposition 1.2. Thefollowing statements are equivalent: 

a. {x ERn: Ax = b} *' 0. 
b. rank(A) = rank(A, b). 

When dealing with linear equalities and inequalities it is often more appropriate to use 
the concept of affine independence. 

Definition 1.4. A set of points Xl, ... , Xk E Rn is affinely independent if the unique 
solution of L1=1 (XiXi = 0, L1=1 (Xi = 0 is (Xi = 0 for i = 1, ... , k. 

Linear independence implies affine independence, but the converse is not true. 

Proposition 1.3. Thefollowing statements are equivalent: 

a. Xl, ' •. , Xk E R 11 are a/finely independent. 

b. x 2 - X I, ... , Xk - X I are linearly independent. 

c. (Xl, - 1), ... , (x k
, - 1) E Rn+l are linearly independent. 

Note that the maximum number of affinely independent points in Rn is n + 1 (e.g., n 
linearly independent points and the zero vector). 

The following proposition will be used frequently in proving results concerning 
polyhedra. 
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Proposition 1.4. If{x ERn: Ax = b} "* 0, the maximum number of affinely independent 
solutions of Ax = b is n + 1 - rank(A). 

Example 1.1. Suppose 

( 
1 -4 -3) 

(A, b) = -2 8 6' 

Then rank(A) = rank(A, b) = 1. By Proposition 1.4, the maximum number of affinely 
independent solutions of Ax = b is 3 - 1 = 2. Two such solutions are Xl = (5 2) and 
x 2 = (1 1). 

Definition 1.5. H ~ R n is a subspace if x E H implies Ax E H for all A E RI and if 
x,y E Himpliesx + y E H. 

Proposition 1.5. The following are equivalent: 

a. H ~ Rn is a subspace. 
b. There is an m x n matrix A such that H = {x ERn: Ax = O}. 
c. There is a k x n matrix B such that H = {x ERn: x = uB, u E Rk}. 

Proposition 1.6. If H ~ Rn is a subspace, then {x E Rn: xy = 0 for y E H} is a subspace. 

This subspace is called the orthogonal subspace of H and is denoted by H.i. 

Proposition 1.7. If H = {x ERn: Ax = a}, with A being an m x n matrix, then 
H.i = {x E R n: x = AT U, u E Rm}. 

Example 1.2. H = {x E R2: Xl = 2X2} is a subspace. Here A = (1 -2) and B = (2 1). 

= {x E R2: 2Xl + X2 = O} (see Figure 1.2). 

Definition 1.6. If p ERn and H is a subspace, the projection of p on H is the vector q E H 
such that p - q E H.i. The projection of S on H is denoted by projH(S) = {q: q is the 
projection of p on H for some pES}. 

2. DEFINITIONS OF POLYHEDRA AND DIMENSION 

Definition 2.1. A polyhedron P ~ Rn is the set of points that satisfy a finite number of 
linear inequalities; that is, P = {x ERn: Ax ::::; b}, where (A, b) is an m x (n + 1) matrix. A 
polyhedron is said to be rational if there exists an m' x (n + 1) matrix (A " b ') with rational 
coefficients such that P = {x ERn: A IX ::::; b'}. 



86 1.4. Polyhedral Theory 

H.l. 

Figure 1.2 

Throughout the text we consider only rational polyhedra and assume that if P is stated 
as {x ERn: Ax ~ b}, then (A, b) has rational coefficients. 

Definition 2.2. A polyhedron P ~ Rn is bounded if there exists an w E Rl such that 
P ~ {x ERn: - w ~ Xj ~ w for j = 1, ... ,n}. A bounded polyhedron is called a polytope. 

Definition 2.3. T ~ Rn is a convex set if Xl, x 2 E T implies that Axl + (l - A)X2 E T for 
allO~A~ 1. 

Proposition 2.1. A polyhedron is a convex set. 

Definition 2.4. C ~ Rn is a cone if x E C implies Ax E C for all A E Rl. 

Proposition 2.2. The polyhedron {x E Rn: Ax ~ O} is a cone. 

Definition 2.5. A polyhedron P is of dimension k, denoted by dim(P) = k, if the 
maximum number of affinely independent points in P is k + 1. 

Definition 2.6. A polyhedron P ~ R n isfull-dimensional if dim(P) = n. 

Below we will show that if P is not full-dimensional, then at least one of the inequalities 
aix ~ bi is satisfied at equality by all points of P. 

Let M = {l, 2, ... ,m}, M= = {i EM: aix = b i for all x E P} and let M~ = 

{i EM: aix < bi for some x E P} = M \ M=. Let (A=, b=), (A~, b~) be the corresponding 
rows of (A , b). We refer to the equality and inequality sets of the representation (A, b) of P, 
that is, P = {x ERn: A=x = b=, A~x ~ b~}. Note that if i E M~, then (ai, bJ cannot be 
written as a linear combination of the rows of (A =, b=). 

Definition 2.7. x E P is called an inner point of P if aix < bi for all i E M~. 

Definition 2.8. x E P is called an interior point of P if aix < bi for all i EM. 
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Proposition 2.3. Every nonempty polyhedron P has an inner point. 

Proof If M~ = 0, every point of P is inner. Otherwise, for each i E M~ there exists a 
point Xi E P with aixi < bi' Now x = (1/ IM~ I) LiEM" Xi E P since P is convex. Since 
aix < b i for all i E M~, x is an inner point. • 

Now we relate the dimension of P to the rank of its equality matrix (A =, b=). Below we 
will always assume that P =1= 0. However, the next result is still valid with the convention 
that if P = 0, then dim(P) = - 1. 

Proposition 2.4. IfP ~ Rn, then dim(P) + rank(A=, b=) = n. 

Proof Suppose rank(A=) = rank(A=, b=) = n - k, where 0 ~ k ~ n. Then by Proposi
tion 1.4 there are k + 1 affinely independent solutions of A =X = O. Let yl, ... , yk+l denote 
any such solutions, and let x be an inner point of P. Now for E sufficiently small, x + Eyi 

for i = 1, ... ,k + 1 are affinely independent points in P. Thus dim(P) ~ k and we have 
that dim(P) + rank(A=, b=) ~ n. 

Now suppose that dim(P) = k and that Xl, ... ,Xk+l are affinely independent points of 
P. Since A=xj = b= for j = 1, ... ,k + 1, by Proposition 1.4 we have 
rank(A=, b=) ~ (n + 1) - (k + 1) = n - k. Hence dim(P) + rank(A=, b=) ~ n. • 

Corollary 2.5. A polyhedron P is full-dimensional if and only if it has an interior point. 

Note that we have shown that rank(A=, b=) is independent of the particular inequality 
description of P. 

Example 2.1. Suppose PeR 3 is given by 

Xl + X2 + X3 ~ 

- Xl - X2 - X3 ~ -1 

Xl + X3~ 1 

-Xl ~ 0 

- X2 ~ 0 

X3 ~ 2 

Xl + X2 + 2X3 ~ 2 

(see Figure 2.1). 

The three points (1 0 0), (0 1 0), (0 0 1) lie in P and are affinely independent. 
Hence dim(P) ~ 2. Because all points of P satisfy the equality Xl + X2 + X3 = 1, we have 
rank(A =, b=) ~ 1; hence, by Proposition 2.4, dim(P) ~ 2. Therefore dim(P) = 2. 
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(0,0, 1) 

Figure 2.1 

3. DESCRIBING POLYHEDRA BY FACETS 

Given a polyhedron P = {x ERn: Ax :::s; b}, the question we address below is to find out 
which of the inequalities aix :::s; bi are necessary in the description of P and which can be 
dropped. In fact we will show that those necessary to describe P are the same, whatever the 
initial inequality description of P. 

Definition 3.1. The inequality nx :::s; no [or (n, no)] is called a valid inequality for P if it is 
satisfied by all points in P. 

Note that (n, no) is a valid inequality if and only if P lies in the half-space 
{x ERn: nx :::s; no}, or equivalently if and only if max{nx: x E P} :::s; no (see Figure 3.1). 

Definition 3.2. If(n, no) is a valid inequality for P, and F = {x E P: nx = no}, F is called 
aface of P, and we say that (n, no) represents F. A face F is said to be proper if F =1= 0 and 
F=t-P. 

The face F represented by (n, no) is nonempty if and only if max{nx: x E P} = no. 
When F is nonempty, we say that (n, no) supports P. 

As a first step in discarding superfluous inequalities, note that we can discard inequali
ties aix :::s; bi that are not supports of P. Hence from now on we suppose that all the 
inequalities aix :::s; b i for i EM support P and therefore represent nonempty faces. 

Proposition 3.1. If P = {x E Rn: Ax :::s; b} with equality set M= ~ M, and F is a nonempty 
face of P, then F is a polyhedron and F = {x E Rn: dx = bifor i E ME, dx :::s; bifor i EM;} 
where M;. ~ M= and M; = M \ M;'. The number of distinct faces of P is finite. 
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Figure 3.1 

Proof Suppose F is the set of optimal solutions to the linear program 
no = max{nx: Ax ~ b). Let u* be an optimal solution to the dual linear program 
min{ub: uA = n, u E R':}, and let 1* = {i EM: u7> a}. Now consider the polyhedron 
F* = {x ERn: aix = bi for i E 1*, aix ~ bi for i EM \ I*}. We claim that F = F*. 

Note first that if x E F*, then 

* ~ * i ~ *1-nx = u Ax = L... Uia x = L... UWi = no. 
iEI* iEI* 

But if x E P \ F*, then akx < bk for some k E 1*, so Uk > 0 and nx = LiEI* u7a ix < 
LiEI* u7bi = no. Hence F = F* and F is a polyhedron. Since F s; P, the equality set (A;, b;) 
of F must have the required property. 

Finally, since M is finite, the possible equality subsets M; [corresponding to the rows of 
(A;, b;)] are finite in number, so the number of distinct faces is finite. • 

Note that by Proposition 2.4, if F is a proper face of P, then dim (F) < dim(P). In 
particular, the dimension ofF is k if the maximum number of affinely independent points 
that lie in F is k + 1. 

Definition 3.3. A face F of Pis afacet of P if dim(F) = dim(P) - 1. 

Proposition 3.2. If F is a facet of P, there exists some inequality akx ~ bk for k E M~ 
representing E 

Proof Since dim (F) = dim(P) - 1, it follows from Proposition 2.4 that rank(A'F, b'F) = 
rank(A =, b=) + 1. The result follows. • 

Example 2.1 (continued). (n, no) = (-1 -1 1, 1) is a valid inequality for P because 
max{-xi - X2 + X3: x E P} = 1 = no. Also FI = {x E P: -Xl - X2 + X3 = 1} = {(O 0 I)} is 
a face of P. Note that the face F\ is not generated by any of the inequalities aix ~ bi in the 
description of P. 
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Now consider the face F2 generated by the valid inequality 2Xl - 7X2 + 2X3 ~ 2, that is, 
F2 = {x E P: 2Xl - 7X2 + 2X3 = 2}. The two points (l 0 0) and (0 0 1) lie in F2 and 
are affinely independent. In addition, the point (0 1 0) E P does not lie on F 2, so 
F2 C P. Since dim(P) = 2 and dim(F2) ~ 1, we have dim(F2) = 1. Thus F2 is a facet of P. 

Now from Proposition 3.2, one of the initial inequalities must represent F 2• In fact, 
both Xl + X 3 ~ 1 and -X 2 ~ 0 represent the facet F 2. 

Finally consider (n, no) = (0 0 1, 2). Now max{x3: x E P} = 1 < no, so X3 ~ 2 is a 
valid inequality but not a support of P. Hence x 3 ~ 2 can be discarded from the 
description of P. 

Proposition 3.3. For each facet F ofP, one of the inequalities representing F is necessary in 
the description of P. 

Proof Let P F be the polyhedron obtained from P by removing all the inequalities 
representing F. We will show that P F \ P *- 0 so that at least one of the inequalities is 
necessary. Let x be an inner point of the facet F and let arx ~ br be an inequality 
representing F. Since ar is linearly independent of the rows of A =, it follows from the 
Farkas lemma that there exists ayE Rn such that A =y = 0 and ary > O. Because x is an 
inner point of F, aix < bi for all inequalities i E M~ that do not represent F. But now 
x + eyE P F \ P for sufficiently small e > O. • 

Besides being necessary, the facets are sufficient for the description of P. 

Proposition 3.4. Every inequality arx ~ br for r E M~ that represents a face of P of 
dimension less than dim(P) - 1 is irrelevant to the description of P. 

Proof Suppose ar x ~ b r represents a face F of P of dimension dim(P) - k with k > 1, 
and the inequality is not irrelevant. In other words, there exists x* ERn such that 
A=x* = b=, aix* ~ bifor i E M~ \ {r}, andarx* > b,. Let x be an inner point ofP. Then on 
the line between x* and x there exists a point z in F satisfying A =z = b=, aiz < bi 
for i E M~ \ {r}, and arz = b,. Hence the equality set of F is (A=, b=) and (a r, br), which is 
of rank n - dim(P) + 1. Therefore the dimension of F is dim(P) - 1, which is a contradic
tion. • 

Example 2.1 (continued). We verify that the face F2 = {x E R3: Xl + X3 = 1, x E P} is a 
facet of P. The equality set of F2 is 

(

-1 

(AJ;" bJ;,) = i 
-1 -1 

1 1 
o 1 

-1 0 

-: ) 
1 ' 
o 

which is a matrix of rank 2. Hence, by Proposition 2.4, F2 is of dimension 1. Thus F2 is a 
facet represented either by Xl + X3 ~ 1 or -X2 ~ O. In fact, since 

F2 is also represented by 2Xl - 7X2 + 2X3 ~ 2, which is the representation we gave earlier. 
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Similarly it can be shown that -Xl ~ 0 defines a facet. Now consider Xl + X2 + 2X3 ~ 2, 
which is a support of P. Let 

F 3 = {X E P: Xl + X 2 + 2x 3 = 2} 

= {X E P: Xl + X2 + X3 = 1, Xl + X2 + 2X3 = 2, Xl + X3 = 1, -Xl = 0, -X2 = O}. 

Hence (A p3, bp) is of rank 3. Thus the face F3 is of dimension O. In fact F3 = Fl = 
{(O 0 I)}, and hence X I + X2 + 2X3 ~ 2 is redundant. Therefore a minimal description of 
P is given by 

~ 0 

~ 0 

The example raises the question as to when two inequalities (e.g., Xl + X3 ~ 1, -X2 ~ 0) 
are "equivalent". The answer is straightforward. The set {x: A =X = b=, nx ~ no} = 
{x: A =X = b=, (An + uA =)x ~ Ano + ub=} for all A > 0 and all u E RIM~I. Hence we say that 
(nt, n6) and (n2

, n5) are equivalent, or identical inequalities with respect to P when 
(n2, 7r5) = A(nl, n6) + u(A =, b=) for some A > 0 and u E RIM~I. Now we can summarize the 
main result given so far. 

Theorem 3.5 

a. A full-dimensional polyhedron P has a unique (to within scalar multiplication) 
minimal representation by a finite set of linear inequalities. In particular, for each 
facet Fi ofP there is an inequality aix ~ bi (unique to within scalar multiplication) 
representing Fi and P = ex ERn: aix ~ bi for i = 1, ... , n. 

b. Ifdim(P) = n - k with k > 0, then P = ex ERn: aix = bifor i = 1, ... ,k, aix ~ bi 
for i = k + 1, ... , k + t}. For i = 1, ... , k, (ai, bi) are a maximal set of linearly 
independent rows of(A=, b=), andfor i = k + 1, ... ,k + t, (ai, bi) is any inequality 
from the equivalence class of inequalities representing the facet F i• 

We now give a theorem that characterizes facets and that is useful in establishing when 
a valid inequality is a facet. 

Theorem 3.6. Let (A=, b=) be the equality set of P ~ Rn and let F = {x E P: nx = no} be a 
proper face of P The following two statements are equivalent: 

i. F is afacet ofP. 
ii. If Ax = Aofor all X E F then 

(3.1) (A, Ao) = (an + uA=, ano + ub=)for some a E Rl and some u E RIM~I. 
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Proof ii => i. Let L = {(A, Ao) E R n
+

l
: (A, Ao) IS of the form (3.1)} and L' = 

{(A, Ao) E Rn+l: Ax = Ao for all x E F}. L s; L', since 

anx + uA=x = ano + ub= for all x E F. 

By the hypothesis, L' s; L. Hence L = L'. 
Suppose that dim(P) = n - k so that rank(A=, b=) = k. Since F is a proper face, (n, no) is 

not a linear combination of the rows of (A =, b=). Thus L is a (k + I)-dimensional subspace. 
N ow let x I, ... ,x' be a maximal set of affinely independent points in F and let 

D = (~' -~) 
xr -1 

be an r x (n + 1) matrix. Clearly r ~ n - k. 
By Proposition 1.4, the maximum number of affinely independent solutions of 

(A, Ao)D T = 0 is (n + 1) + 1 - rank(D) = n + 2 - r. Thus L' is an (n + 1 - r)-dimensional 
subspace. Since L = L', r = n - k. Hence F is a facet of P. 

i => ii. As above, L ~ L'. Here we need to show that L = L'. Suppose dim(P) = n - k. 
Since F is a facet of P, F contains n - k affinely independent points. Thus, as in the proof 
ofii => i, dim(L') = k + 1. Since dim(L) = k + 1 and L ~ L', L = L'. • 

4. DESCRIBING POLYHEDRA BY EXTREME POINTS AND EXTREME RAYS 

Here we consider a representation of polyhedra in terms of lowest-dimensional faces. 

Proposition 4.1. If P = {x E Rn: Ax ~ b} =1= 0 and rank(A) = n - k, P has a face of 
dimension k and has no proper face of lower dimension. 

Proof For any face F "* 0 of P, rank(A:F, b:F) ~ n - k. Hence, by Proposition 2.4, the 
dimension of F is greater than or equal to k. Now let F be a face of P of minimum 
dimension. If dim (F) = k = 0, there is nothing to prove. So suppose dim(F) > O. 

Let x be an inner point of F. Since dim(F) > 0, there exists some other point y of F. 
Consider the line joining x and y, that is, Z(A) = x + A(Y - x) where A E R I. Suppose that 
the line intersects aix = bi for some i E Mi:. Let A* = min{ IAi I: i E Mi:, Z(Ai) lies in 
aix = bi}' and A* = IAi"l. Then A* =1= 0 because x is an inner point. Thus 
Fi' = {x E P: A:Fx = b:F, ai*x = bi'} =1= 0 is a face of P of smaller dimension than F, which is 
a contradiction. 

Therefore the line does not intersect aix = b i for any i E Mi:. But this means that 
Ax + A2(y - x) ~ b for all 2 E R I. Since Ax ~ b, this implies that A(y - x) = ° for all 
y E F. Thus F = {y: Ay = Ax}. Since rank(A) = n - k, Proposition 2.4 implies that 
dim (F) = k. • 

Example 4.1. P = {x E R2: Xl + X2 ~ 1}. See Figure 4.1. We have rank(A) = 1. A face of 
minimum dimension is the one-dimensional face F = {x E R2: XI + X2 = n. 
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(1,0) 

Figure 4.1 

In practice, we frequently deal with polyhedra lying within the nonnegative orthant R~. 

For such polyhedra, rank(A) = n; and by Proposition 4.1, these polyhedra have zero
dimensional faces. For this reason and for simplicity, we assume for the next two sections 
that rank(A) = n. Note also that if P = {x ERn: Ax ~ b} is a polytope, then rank(A) = n. 

Definition 4.1. x E P is an extreme point of P if there do not exist Xl, x 2 E P, Xl :1= X2, 

such that x = !Xl + ~X2. 

For x E P, let (A;, b;) be the equality set of x, i.e. (A;, b;) = (A F, bF) where F is the face 
of minimum dimension containing x, and x is an inner point of F. 

Proposition 4.2. x is an extreme point of P if and only if x is a zero-dimensional face of P. 

Proof Suppose x is a zero-dimensional face of P. By Proposition 2.4, rank(A;) = n. 
Let (A, b) be a submatrix of (A~, b~) with A n x nand nonsingular, so x = A-lb. If 
x = ~Xl + ~X2, Xl, x 2 E P, then since Axi ~ b for i = 1, 2, Axl = Ax2 = E. Hence 
x I = x 2 = x, so x is an extreme point. 

If x E P is not a zero-dimensional face of P, then by Proposition 2.4 we have 
rank(A~) < n. But now there exists y :1= ° satisfying A;y = 0, and for sufficiently small €, 

Xl = X + sy E P and x 2 = x - sy E P. Now x = 1Xl + 1x2
, so x is not an extreme point. • 

Definition 4.2. Let pO = {r ERn: Ar ~ O}. If P = {x ERn: Ax ~ b} =1= 0, then 
r E pO \ CO} is called a ray of P. 

A point r ERn is a ray of P if and only if for any point x E P, the set 
{y ERn: y = X + Ar, A E R!} r;;. P. 
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Definition 4.3. A ray r of P is an extreme ray if there do not exist rays rl, r2 E pO, rl =1= Ar2 
for any A E Ri, such that r = !rl + !r2. 

Proposition 4.3. If P =1= 0, r is an extreme ray of P if and only if {Ar: A E RD is a one
dimensionalface of pO. 

Proof Let A; = {a i: i EM, air = a}. If {Ar: A E RD is a one-dimensional face of pO, 
rank(A;) = n - 1. Hence all solutions of A;y = 0 are of the form y = Ar, A E R I. If 
r = ~rl + ~r2, we obtain a contradiction as in the previous proposition. 

Ifr E pO and rank (A;) < n - 1, there exists f =1= Ar, A E RI, such thatA;f = O. The rays 
r1 = r + sf, r2 = r - sf show that r is not an extreme ray. • 

Corollary 4.4. A polyhedron has a finite number of extreme points and extreme rays. 

Example 2.1 (continued). Since the inequalities describing P include 

it is clear that rank(A) = 3. 
The face FI = {(O 0 I)} has the equality set 

XI + X2 + X3 = 1 (also the negative of this row which is omitted) 

XI =0 

X2 = 0 

and since (: b b) is of rank 3, (0 0 1) is a zero-dimensional face, or extreme point. o I 0 

Note that rl = (l 0 -1) satisfies 

XI+X2+ X 3=0 

XI +X3=0 

X2 = 0 

and a1rl < 0 for all other constraints. Since I ° I is of rank 2, rl is an extreme ray. A . . (I I I) 
° 1 0 

similar argument shows that r2 = (0 1 -1) is another extreme ray. The polyhedron pO 
for Example 2.1 is shown in Figure 4.2. 

A polyhedron can be represented in terms of its extreme points and extreme rays. Some 
preliminaries are needed to obtain this fundamental result. 

Theorem 4.5. If P =1= 0, rank(A) = n, and max{cx: X E P} is finite, then there is an 
optimal solution that is an extreme point. 
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(0,0,0) 

Figure 4.2 

Proof The set of optimal solutions is a nonempty face F = {x E P: cx = co}. By 
Proposition 4.1, F contains an (n - rank(A»-dimensional face. Since n - rank(A) = 0, by 
Proposition 4.2, F contains an extreme point. • 

Theorem 4.6. For every extreme point {xkhEK ofP, there exists acE zn such that Xk is the 
unique optimal solution of max{cx: x E P}. 

Proof Let M;k be the equality set of Xk. Let c* = LiEM~k a i
• Since the ai are rational 

vectors, there exists a A > ° such that c = AC* E zn. Since Xk is a zero-dimensional face of P, 
for all x E P \ {Xk} there exists an i E M;k such that aix < bi. Hence for x E P \ {xk}, 

ex = L Aaix < L Ab i = L Aaixk = exk. 
iEM~k iEM~k iEM~k • 

Theorem 4.7. If P =1= 0, rank(A) = n, and max{ex: x E P} is unbounded, P has an 
extreme ray r* with er* > 0. 

Proof Since max{ex: Ax ~ b} is unbounded, by linear programming duality, the set 
{u E R:;!: uA = c} = 0. By Farkas' lemma, this implies there exists an r ERn such that 
Ar ~ ° and er > O. Now consider the linear program max{cr: Ar ~ 0, er ~ 1} = 1. By 
Theorem 4.5, this linear program has an optimal extreme point solution. An optimal 
extreme point is a point r* E po such that the equality set A~. is of rank n - 1, and cr* > O. 
Now by Proposition 4.3, r* is an extreme ray of P. • 

We now prove one of the fundamental results on the representation of polyhedra. 
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Theorem 4.8 (Minkowski's Theorem). If P =1= 0 and rank(A) = n, then 

where {x khEK is the set of extreme points of P and {rj}jEJ is the set of extreme rays of P. 

Proof Let 

Since Xk E P for k E K, and P is convex, x' = LkEK AkXk E P for any A satisfying 
LkEK Ak = 1, Ak ~ 0 for k E K. Also since r j for j E J are rays, Xl + LjEJ f.1jrj E P for any 
f.1j ~ 0 for j E J. Hence Q ~ P. 

Now suppose that Q * P, so there exists yEP \ Q. In other words there do not exist A, 
f.1 satisfying 

2 AkXk + 2 f.1jrj = Y 
kEK jEJ 

= -1 

Ak ~ 0 for k E K, 

f.1j ~ 0 for j E J. 

Then by Farkas' lemma, there exists (n, no) E Rn+l such that nxk - no ~ 0 for k E K, 
nr j 

~ 0 for j E J and ny - no > O. Now consider the linear program max{nx: x E P}. Ifit 
has a finite optimal value, by Theorem 4.5 the optimum value is attained at an extreme 
point. However, yEP and ny > nxk for all extreme points {Xk}kEK, which is a contradic
tion. On the other hand, if the linear program has an unbounded optimum, by Theorem 
4.7 there exists an extreme ray r j with nr j > o. Again there is a contradiction. Hence 
Q=P. • 

Example 2.1 (continued). Since P has one extreme point Xl = (0 0 1) and two 
extreme rays rl = (1 0 -1) and r2 = (0 1 -1), we have an alternative description of P 
given by 

Combining Minkowski's theorem and linear programming duality leads to a character
ization of certain projections of polyhedra; it also leads to an important converse to 
Minkowski's theorem, which says that every set obtained as a convex combination of a 
finite set of vectors in R n plus a nonnegative combination of some other finite set of 
vectors in R n is a polyhedron. 
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First we restate the basic results for the dual pair of linear programs 

z = max{cx: x E P} with P = {x E R~: Ax ~ b} 

and 

w = min{ub: u E Q} with Q = {u E R':: uA ~ c} 

in terms of extreme points and extreme rays. Note that this is partially a repeat of 
Theorems 4.5 and 4.7. Let {Xk}kEK and {Ui}iEI be the sets of extreme points of P and Q, 
respectively, and let {rj}jEJ and {Vt}tET be the sets of extreme rays of pO and QO, respectively. 

Theorem 4.9 

i. Thefollowing are equivalent: 
a) The primal problem is feasible, that is, P =1= 0; 
b) vtb ~ Ofor all t E T. 

ii. The following are equivalent when the primal problem is feasible: 
a) z is unboundedfrom above; 
b) there exists an extreme ray rj of P with cri > 0; 
c) the dual problem is infeasible, that is, Q = 0. 

iii. If the primal problem is feasible and z is bounded, then 

z = max cxk = w = min ui b. 
kEK iEI 

Proof 

i. By the Farkas lemma, P =1= 0 if and only if vb ~ 0 for all v E R': with vA ~ O. By 
Minkowski's theorem, 

QO = {v E R':: vA ~ O} = {v E R':: v = I /1tvt, /1t ~ 0 for t E T}. 
lET 

Hence vb ~ 0 for all v E QO if and only if vt b ~ 0 for all t E T. 
ii. Again by Minkowski's theorem, 

Ak ;;. 0 for k E K, /l-j ;;. 0 for j E J } '*' 0. 

Thus z is bounded if and only if crj ~ 0 for all} E J. The equivalence of statements 
ii.b and ii.c is obtained by applying statement i to the dual problem. 

iii. This also follows from strong duality and Minkowski's theorem applied to P and Q . 

• 
Now we consider the projection of a polyhedron. Note first that the projection of a 

point (x, y) ERn x RP onto the subspace H = {(x, y): y = O} is the point (x, 0). Therefore 
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it is natural to consider a projection of a polyhedron P ~ Rn x RP onto y = 0 as a 
projection from the (x, y)-space to the x-space, denoted by projxCP). 

Theorem 4.10. Let P = {(x, y) ERn x RP: Ax + Gy ~ b}, then 

projxCP) = {x ERn; v t(b - Ax) ~ 0 for all t E T}, 

where {Vt}tET are the extreme rays of Q = {v E R';!: vG = O}. 

Proof If H = {(x, y) ERn x RP: y = O}, then projH(P) = {(x, 0) ERn x RP: (x, y) 
E P}. Applying statement i.b of Theorem 4.9 to {y E RP: Gy ~ b - Ax} gives 

• 
Corollary 4.11. The projection of a polyhedron is a polyhedron. 

Given two polyhedra PC Rn x RP and Q eRn, the question will arise of showing 
whether Q = projxCP) or not. 

Corollary 4.12. If P = {(x, y) ERn x RP: Ax + Gy ~ b} and Q = {x ERn: Dx ~ d}, 
where D is q x n, then Q = projxCP) if and only if: 

i. For i = 1, ... ,q, dix ~ db is a valid inequality for P. 
ii. For each x* E Q, there exists a y* such that (x*, y*) E P. 

Proof 

i. Equivalent to Q ;2 projxCP). 
ii. Equivalent to Q ~ projx(P). • 

Another immediate consequence of Theorem 4.10 is the converse of Minkowski's 
theorem. 

Theorem 4.13 (Weyl's theorem). If A is a rational ml x n matrix, B is a rational m2 x n 
matrix, and 

then Q is a rational polyhedron. 

Proof Q = projxCP), where 

P = {(X, y, z) ERn x R';!! x R';!2: x - yA - zB = 0, I Yk =1}. 
k=l • 

5. POLARITY 

Here we consider a polyhedron n ~ Rn+l whose feasible points are the valid inequalities of 
P. We will characterize the facets of P in terms of the extreme rays of n and establish a 
duality between P and n. 
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Definition 5.1. IT = {en, no) E R n+l: nx - no::S:; 0 for all x E P} is called the polar of the 
polyhedron P = {x ERn: Ax ::s:; b}. 

Note that (n, no) E IT if and only if (n, no) is a valid inequality for P. For simplicity, 
assume that rank(A) = n. 

Proposition 5.1. Given a nonempty polyhedron P ~ Rn with rank(A) = n, IT is a 
polyhedral cone described by 

nxk - no ::s:; 0 for k E K 

nr j ::s:; 0 for j E J 

where {xkhEK, {rj}jEJ are the extreme points and extreme rays ofP. 

Proof Let IT' = {en, no) E Rn+l: nxk - no ::s:; 0 for k E K, nrj ::s:; 0 for j E J}. Suppose 
(n, no) E IT. Since Xk + f.1rj E P for any Xk, any r1, and all f.1 ~ 0, we have n(xk + f.1rj) ::s:; no 
for all f.1 ~ O. But this implies nxk ::s:; no and nrj 

::s:; O. Hence (n, no) E IT', so IT ~ IT'. 
Conversely if(n, no) E IT' and x E P, then, by Theorem 4.8, x = L-kEK AkXk + L-jEJ f.1jrj 

for some A, f.1 satisfying L-kEK Ak = 1, Ak ~ 0 for k E K, and f.1j ~ 0 for j E J. Hence 

Therefore (n, no) E IT, so IT' ~ IT. • 
Example 2.1 (continued). A polyhedral description of IT ~ R4 is as follows: 

n3 - no::s:; 0 

nl - n3 ::s:; 0 

n2 - n3 ::s:; o. 

Now we are ready to prove the main result on polarity. 

Theorem 5.2. If dim(P) = n, rank(A) = n, and n* * 0, then (n*, n~) is an extreme ray of IT 
if and only if (n*, no) defines a facet of P. 

Proof By Proposition 4.3, (n*, no) =1= 0 is an extreme ray of IT ifand only ifits equality 
set is of rank (n + 1) - 1 = n. Using the description of IT from Proposition 5.1, this means 
there exist (Xl, ... ,x t

, rl+l, ... , rn) such that n*xi - no = 0 for i = 1, ... , t and n*rj = 0 for 
j = t + 1, ... , nand 
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is of rank n. (Note that t ~ 1, since re*rj = 0 for) = 1, ... ,n would imply re* = 0.) But this 
implies that the vectors (Xl, -1), ... ,(Xl, -1), (Xl + rl+l, -1), ... ,(Xl + rn, -1) are linearly 
independent. Hence by Proposition 1.3, Xl, ... ,Xl, Xl + rl+l, ... ,Xl + rn are affinely 
independent. Therefore (re*, re~) defines a facet of P. 

Conversely if (n*, reo) defines a facet of P, there exist n affinely independent points 
{X i}7=1 of P, with re* Xi = reo for i = 1, ... , n. But now considering the polyhedral cone TI, the 
equality set of (re*, reo) includes (Xl, -1), ... , (xn, -1) and hence is of rank at least n. If the 
equality set is of rank n + 1, then (re*, reo) = (0, 0). Hence its rank is n, so 
{ere, reo) E Rn+l: (re, reo) = A(re*, reo), A E Rl} is a one-dimensional face ofTI. It follows from 
Proposition 4.3 that (n*, reo) is an extreme ray ofTI. .. 

We have also implicitly proved a dual result to Theorem 5.2. 

Theorem 5.3. If dim(P) = nand rank(A) = n, rex* - reo ~ 0 defines afacet ofTI if and only 
if x* is an extreme point of P, and rer* ~ 0 defines a facet ofTI if and only if r* is an extreme 
rayofP. 

Proof. By Proposition 5.1, every facet ofTI is either of the required form rex k 
- reo ~ 0 

for k E K or rerj ~ 0 for} E J. To show that each of these inequalities defines a facet, 
remember that x* is an extreme point only if its equality set (A~., b~.) is of rank n. Hence 
there exist (rei, -n6), ... , (nn, -re3) such that rei, ... ,ren are linearly independent, and 
retx* - reb = 0 for t = 1, ... , n. Now these n vectors plus (0, 0) are affinely independent, 
and hence rex* - reo ~ 0 defines a facet. A similar argument shows that rer* ~ 0 defines a 
facet. .. 

Now we specialize further and assume that P is a full-dimensional polytope. By 
translation we can take the origin 0 to be an interior point, so if aix ~ bi is an equality 
describing P, then bi > O. Hence we can rewrite P as P = {x ERn: Ax ~ 1}, where 1 = 

(1 ... 1). Now every valid inequality (n, reo) must also have reo > 0, so we can normalize the 
polar and consider the so-called l-polar of P: TIl = {re ERn: (re, 1) E TI}. Furthermore, 
since P is a polytope, by Theorem 4.7 we have 

and by Proposition 5.1 we have TIl = {re ERn: rex k ~ 1 for k E K}. 

Proposition 5.4 IfP = {x ERn: Ax ~ 1} is afull-dimensional polytope, then TIl is afull
dimensional polytope and P is the l-polar of TIl. 

Proof. Since 0 is an interior point of TIl, by Corollary 2.5, TIl is full-dimensional. 
Suppose TIl has a ray y, so that yx k ~ 0 for k E K. This implies that (y, 0) is a valid 
inequality for P, which is a contradiction. Hence TIl is bounded. 

Now consider P = {y: rey ~ 1 for all re E TIl}. If x E P, then rex ~ 1 for all re E TIl and 
hence P ~ P. Suppose yEP \ P. Then there exists no solution to 

Ak ~ 0 for k E K. 
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So there exists a (n, no) such that nxk - no:;;::;; 0 for all k E K and ny - no > O. Since 0 E P, 
we can ~gain normalize so that no = 1. Then n E III but ny > 1, which is a contradiction. 
HenceP=P. • 

Now we observe that there is complete symmetry between P and III. 

Theorem 5.5 If P is full-dimensional and bounded, and 0 is an interior point of P, then 

a. P = {x: ntx :;;::;; 1 for t E T, where {nt}tET are the extreme points of III}, and 
b. III = {n: nxk :;;::;; 1 for k E K, where {xkhEK are the extreme points of P}. 

Moreover, each of the inequalities in descriptions a and b defin e facets. 

Proof We have already proven b, and a follows from Proposition 5.4. 

Corollary 5.6. IfP is as described in Theorem 5.5, then 

x* E P if and only if max{nx*: n E III} :;;::;; 1 

and 

n* E III if and only if max{n*x: x E P} :;;::;; 1. 

• 

Proof x* E P if and only if n x* :;;::;; 1 for all n E III, which holds if and only if 
max{nx*: n E III} :;;::;; 1. The second equivalence is merely a dual statement. • 

Corollary 5.6 is important in establishing the equivalence between separation and 
optimization (see Section 1.6.3). 

Example 5.1 (See Figure 5.1.) 

(P) :;;::;; 1 

There are two other polars that are of special interest in combinatorial optimization. 
For the remainder of this section we assume that A is a nonnegative m x n matrix. 

Suppose that P = {x E R1: Ax ~ 1}, where A has no zero rows. The blocker p B of Pis 
the polyhedron: 

p B = {n E R1: nx ~ 1 for all x E P}. 

Let B be a I K I x n matrix whose rows are the extreme points {xkhEK of P. 

Proposition 5.7. Let P = {x E R1: Ax ~ 1}, where A is a nonnegative matrix with no zero 
rows. Then 

i. p B = {n E R1: Bn ~ 1} and 
ii. (PB)B = P. 
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(-1, 1) (0,1) (3,1) 

--(---1-, 0 .... )-----+--+---- Xl ---'(-_-l-,-O)-r---~~-------~l 

(-1, -1) 

(1, - 2) 

p 

Figure 5.1 

Proof Note that since A has no zero rows, P * 0. Also, since pO = R~, the extreme 
rays of P are the unit vectors ej for j = 1, ... , n. This means that nj ~ 0 for all (n, no) E II, 
so II = {en, no) E R~ x Rl: nx ~ no for x E P} and so n E pB if and only if (-n, -1) E II. 
Now by Proposition 5.1, pB = {n E R~: nxk ~ 1 for k E K}, where {Xk} are the extreme 
points of P, and statement i is verified. 

Since P is full-dimensional and rank (1) = n, we obtain from Theorem 5.2 that (-n*, -1) 
is an extreme ray of n if and only if n*x ~ 1 defines a facet of P. But since 
pB = {en, no): (-n, -no) E II, no = -l}, it follows that (-n*, -1) is an extreme ray of II if and 
only if n* is an extreme point of pB. Now we consider (PB)B. By statement i, 
(PB)B = {x E R~: Qx ~ l}, where the rows of Q are the extreme points of pB, or, as we have 
just shown, the facets of P. Hence statement ii holds. • 

Example 5.2. Let 

The reader can check that the extreme points of P = {x E Rl: Ax ~ l} are (l 1 0), 
(1 0 1), (0 1 1), and (1 1 1). Hence 

B~ (1 
1 
o 
1 
:2 

We note that all the extreme points of P are minimal points because pO = R~ and they 
are all necessary in the description of pB. 

Finally, we consider polytopes of the form P = {x E R~: Ax ~ l}, where A is a nonnega
tive matrix with no zero columns. The antiblocker pC of P is the polytope 

pC = {n E R~: nx ~ 1 for all x E P}. 
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Let C be an r x n matrix whose rows are the extreme points of P. 

Proposition 5.8. If P = {x E R~: Ax ~ 1}, where A is a nonnegative matrix with no zero 
columns, then 

i. pC = {n E R~: Cn ~ 1} and 
ii. (pC)C = P. 

Proof Since A has only nonzero columns, P is a polytope. Statement i follows by 
replicating the proof of Proposition 5.1 with n ~ 0, no = 1, and J = 0. To establish 
statement ii, observe that if x E P, it follows that nx ~ 1 for all n E pC and hence 
x E (pC)c. Now suppose that x E (pC)c. Since a i E pC, it follows that aix ~ 1. Hence 
p = (pC)c. • 

Example 5.3. Let 

The reader can check that the extreme points of P = {x E Rl: Ax ~ 1} are (l 0 0), 
(0 1 0), (0 0 1), and (1 1 D. Hence 

The extreme points of pC are the rows of A and the points (1 0 0), (0 1 0), (0 0 1), 
and (0 0 0). 

This example shows the difference between the blocking and antib10cking cases. We see 
that not all the extreme points of P are needed to describe its antiblocker. In fact, it is not 
difficult to show: 

Proposition 5.9. If P = {x E R~: Ax ~ 1} where A ~ 0 and has no zero columns, then 

i. The facet defining inequalities of pC are the inequalities xr n ~ 1, r = 1, ... , R, 
where {X'}~=l are the extreme points of P that are maximal in P. 

ii. If X O is an extreme point of P that is not maximal in P, there exists a maximal 
extreme point x' for which xJ = xj for all j such that xJ > O. 

The main results of blocking and antiblocking can also be interpreted as problems 
involving the (fractional) packing and (fractional) covering by rows of A. 

Definition 5.2. If A and B are nonnegative matrices with the property that 
{n E R1: Bn ~ 1} is the blocker of {x E R1: Ax ~ 1}, then A, B is called a blocking pair. 
Antiblocking pairs are defined similarly. 

Definition 5.3 

i. The max-min inequality holds for a pair ofm x nand r x n nonnegative matrices 
A, B if for all w E R1 

max{ly: yA ~ W, Y E R':} = min bjw. 
lsjg 
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ii. The min-max inequality holds for a pair ofm x nand r x n nonnegative matrices 
A, C if for all w E R~ 

min{1y: yA ~ w, Y E R~}= m~x cjw. 
l:S:j:s:r 

Theorem 5.10. The max-min (min-max) inequality holdsfor a pair A, B if and only if A 
and B form a blocking (antiblocking) pair of matrices. 

Proof We consider only the blocking case. If the max-min inequality holds, then 

max{1y: yA ~ w, y E R~} = min{wx: Ax ~ 1, y E R~} 

= min{wxk
: Xk is an extreme point of P}. 

It follows that the rows of B are precisely the extreme points of P and that any other row of 
B is equal to or greater than a convex combination of these extreme points. Hence B is a 
blocking matrix associated with A. The converse is an immediate consequence of linear 
programming duality. • 

6. POLYHEDRAL TIES BETWEEN LINEAR AND INTEGER PROGRAMS 

Now, as promised in the introduction to this chapter, we will show that an integer program 
can, in theory, be reduced to a linear program. 

Given P = {x E R~: Ax ~ b}, where (A, b) is an integer m x (n + 1) matrix, and 
S = P n zn, we are going to show that conv(S) is a rational polyhedron. Whenever P is 
bounded, S is either empty or a finite set of points, so the result is a consequence of 
Theorem 4.13. 

To obtain the result when S contains an infinite number of points, we will show that 
conv(S) can be generated from a finite number of points in S and a finite number of 
integral-valued rays. The idea of the proof is shown in Figure 6.1. Geometrically, we see 
that conv(S) is the polyhedron generated by convex combinations of the points {(l, 2), 
(2, 1), (4, 0)) plus nonnegative linear combinations of the rays rl and r2, which are the 
extreme rays of P. 

The important step in the proof is to show that the set of integer points in a polyhedron 
can be finitely generated. We will give a finite set Q C S (in Figure 6.1, the integral points 
in the shaded region of P) and then show that S can be generated by taking a point in Q 
plus a nonnegative integer linear combination of the extreme rays of P. 

Theorem 6.1. If P = {x E R~: Ax ~ b} =1= 0 and S = P n zn, where (A, b) is an integer 
m x (n + 1) matrix, then thefollowing statements are true: 

i. There exist a finite set of points {q I} lEL of S and a finite set of rays {ri} iEJ of P such 
that 
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ii. IfP is a cone (b = 0), there exists ajinite set of rays {vhhEH ofP such that 

Proof 

105 

i. Let {xk E R~: k E K} be the finite set of extreme points of P and let {rJ E R~: j E J} be 
the finite set of extreme rays of P. Since P is a rational polyhedron, all of these extremal 
vectors have rational coordinates. We have 

Without loss of generality, we can assume that {r j
} for} E J are integer vectors. 

Let 

Q = {x E Z~: x = L AkXk + L fl.Jri, L Ak = 1, Ak ~ 0 for k E K, 0 ~ fl.J < 1 for} E J}. 
kEK jEJ kEK 

Q is a finite set, say Q = {ql E Z1: IE L}, and Q s S. Now observe that Xi E S if and only 
ifxi E Z~ and 

Xi = {L A~Xk + L (fl.) - lfl.)J)rJ} + {L lfl.)JrJ}, L Ak = 1, Ak, fl.J ~ 0 
kEK jEJ jEJ kEK 

(6.1) for k EK and} E J. 
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The first term of(6.1) is a point of Q, so there exists I(i) E L such that 

(6.2) Xi = ql(i) + L pJri , pj = [,ujJ for all} E J. 
iEJ 

The result follows. 

ii. Observe that if P is a cone, then ql E S implies yl E S for all Y E Zl. Therefore it 
suffices to take 

from part i. • 
Now we easily obtain the following theorem. 

Theorem 6.2. IfP = {x E R~: Ax ~ b}, where (A, b) is an integer m x (n + 1) matrix, and 
S = P n zn, then conv(S) is a rational polyhedron. 

Proof Since any point Xi E S can be written in the form (6.2), any convex combina
tion of points {Xi E S, i E I} can be written as 

= L ( L Yi)ql + L (L YiPJ)ri 
tEL (iEf: l(i)=l) iEJ iEf 

= L alql + L Piri , 
'EL iEJ 

where a, = LUEf: t(i)=l) Yi ~ 0 for I E L, LIEL a, = LiEf Yi = 1, and Pi = LiE! YiP} ~ 0 for} E J. 
Now it follows that 

conv(S) = {x E R~: x = L a,ql + L Piri, L a, = 1, a" Pi ~ 0 for I ELand} E J}, 
'EL iEJ IEL 

with ql, ri E Z~ for I ELand} E J. Hence by Theorem 4.13, conv(S) is a rational 
polyhedron. • 

The above proof extends straightforwardly to mixed-integer sets with rational data. As a 
consequence, all of the following results given in this section apply to mixed-integer sets 
and mixed-integer programs. The above proof also shows that if P n zn '* 0, then the 
extreme rays of P = {x E R~: Ax ~ b} and conv(P n zn) coincide. 

Theorem 6.2 suggests that we can solve the integer program 

(IP) max{cx: xES} where S = P n zn 

by solving the linear program 

(eIP) max{cx: x E conv(S)}. 

This important, but elementary, result is formalized in the following theorem. 
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Theorem 6.3. Given S = P n zn =1= 0, P = {x E R~: Ax ~ b}, and any cERn, it follows 
that: 

a. The objective value of IP is unboundedfrom above if and only if the objective value of 
CIP is unbounded from above. 

b. If CIP has a bounded optimal value, then it has an optimal solution (namely, an 
extreme point of conv(S» that is an optimal solution to IP. 

c. If Xo is an optimal solution to Ip, then Xo is an optimal solution to CIP. 

Proof Let Zo and z* be the optimal values of IP and Clp, respectively, with the 
convention that Zo or z* = 00 if the objective value is unbounded from above. Note that 
conv(S) ;2 S implies that 

(6.3) 

a. Inequality (6.3) implies that if Zo = 00, then z* = 00. On the other hand, if z* = 00, 

then there is an integral extreme point Xo E conv(S) and a ray r E Z~ such that 
cr > 0 and Xo + (Jr E conv(S) for all 8 ~ O. But then Xo + (Jr E S for all (J E Zl, 
which implies that Zo = 00. 

b. Since conv(S) is a polyhedron, if CIP has an optimal solution, then it has an 
extreme point optimal solution, say xo. Thus Xo E S, so ZO ~ cxo = z*. By (6.3), 
Zo = z*. 

c. This follows from parts a and b along with X O E conv(S). • 
Corollary 6.4. IP is either infeasible or unbounded or has an optimal solution. 

Theorem 6.3 states that we can solve the integer program IP by solving the linear 
program CIP. In fact, if we knew a polyhedral representation of conv(S) in terms of linear 
inequalities, this would be a nice way to describe our integer program. But generally we do 
not know a set of linear inequalities that define conv(S). Thus we formulate our integer 
program using some polyhedron P = {x E R~: Ax ~ b} such that S = P n zn. Viewed in 
this framework, reducing an integer program to a linear program amounts to deducing a 
linear inequality representation of conv(S), or at least the relevant inequalities with 
respect to an objective function c, from the linear inequality representation of P and the 
integrality requirement. This is the principal topic of Chapter ILL 

Until now we have only considered valid inequalities for polyhedra. We say that (n, no) 
is a valid inequality for a set S if nx ~ no for all xES. 

Proposition 6.5 If nx ~ no is valid for S, it is also valid for conv(S). 

Proof Consider an x E conv(S). Then x = LiE] Jvxi, where Xi E S for j E J, and 
LjE] )/ = 1 and Aj ~ 0 for j E J. Hence 

nx = I Ainxi) ~ I AinO = no· 
jE] jE] 

• 
To establish the dimensionality of a face of conv(S), it suffices to consider points of S. 
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Proposition 6.6. If nx ~ no dejines a face of dimension k - 1 of conv(S), there are k 
afjinely independent points xl, ... ,Xk E S such that nxi = nofor i = 1, ... , k. 

Proof. By definition, there are k affinely independent points XI, ... ,Xk E conv(S) 
such that nxi = no for i = 1, ... , k. If Xi E S for i = 1, ... ,k, there is nothing more to 
prove, that is, take Xi = Xi for i = 1, ... , k. So suppose Xl $. S. Then Xl = I.iEJ Aixi, where 
xi E S and Ai > 0 for all} E J, and ~EJ Ai = 1. Now nx2 = no and nxi ~ no for} E J imply 
that nxi = no for all} E J. Since Xl, ... , Xk are affinely independent, there exists}* E J 
such that xi·, X2, ... ,Xk are affinely independent. The proof is completed by repeating 
this process until the resulting set contains only elements of S. • 

Consider the problem 

(LP) max{cx: Ax ~ b, x E R~}. 

Previously we have related IP to CIP. Now we relate IP to LP. 
Let 

zed) = max{cx: Ax ~ d, x E z~} 

and 

zLP(d) = max{cx: Ax ~ d, x E R~}, 

so that z(b) = max{cx: x E P n zn} and zLP(b) = max{cx: x E P} with 
P = {x E R~: Ax ~ b}. 

Proposition 6.7 

a. ZLP(O) = z(O). 
b. z(O) = 0 ifand only ifQ = {u E R':: uA ~ c} =1= 0. 
c. z(O) = 00 if and only if Q = 0. 
d. IfQ =1= 0, then S = P n zn = 0 or z(b) isjinite. 
e. IfQ = 0, then S = 0 or z(b) = 00. 

Proof. Clearly 0 ~ z(O) ~ ZLP(O). If Q "* 0, then ZLP(O) = 0 by duality and hence 
z(O) = ZLP(O) = O. If Q = 0, then from Theorem 4.9 there exists an extreme ray rJ of P with 
crJ > O. Since rJ can be taken to be integer, z(O) = 00 = ZLP(O). This proves statements a, b, 
andc. 

If Q =1= 0, then it follows, by duality, that P = 0 or zLP(b) is finite. Hence statement d 
follows. Similarly if Q = 0, then it follows, by duality, thatP = 0 or zLP(b) = ZLP(O) = 00. If 
S =1= 0, then from statement c it follows that z(O) = z( b) = 00. Hence statement e follows .• 

Corollary 6.8 

a. If P = 0, then S = 0. 
b. IfzLp(b) isjinite, then S = 0 or z(b) isjinite. 
c. IfzLp(b) = 00, then S = 0 or z(b) = 00. 
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Note that by solving the linear program max{cx: x E P}, we establish which of the cases 
a, b, or c occurs. Corollary 6.8 says that, except for the fact that S may be empty when Pis 
not empty, IP and LP have the same status. 

7. NOTES 

Sections 1.4.1-1.4.4 

Halmos (1959) and Strang (1976) are basic reference books on linear algebra. The 
fundamental works on general polyhedral theory and convexity are Grunbaum (1967), 
Rockafellar (1970), and Stoer and Witzgall (1970). 

Chapter I of Pulley blank's Ph.D. dissertation (1973) focuses on the aspects of polyhedral 
theory used in combinatorial optimization. Also see Bachem and Grotschel (1982) and 
Pulleyblank (1983). 

Section 1.4.5 

The basic reference on polarity is Rockafellar (1970). The study of blocking and antiblock
ing polyhedra is due to Fulkerson (1968, 1970a, 1971, 1972). Also see Tind (1974, 1977, 
1979). 

Section 1.4.6 

The proof of Theorem 6.1 is taken from Giles and Pulleyblank (1979). Also see Meyer 
(1974, 1975) and Meyer and Wage (1978). 

8. EXERCISES 

1. Consider the polyhedron P described by 

i) Find the dimension of P. 

XI-X2 S 0 

-xl+x2 s1 

2X2;::: 5 

8Xl -X2 S 16 

ii) Find an interior point (if one exists). 

iii) Describe all the faces of P. 

iv) Consider each of the faces Fi = P n {x E R2: aix = bJ for i = 1, ... , 5. 
What is the dimension of pi? 
Which inequalities define facets of P? 

v) Give a "minimal" representation of P. 
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2. Consider the assignment polytope 

P = {x E R~2: ± Xij = 1, i = 1, ... , n, ± xi) = l,j = 1, ... , n}. 
)=1 i=1 

i) Determine its dimension and its facets. 

ii) What happens if we replace the equality constraints by 

n 

L xi) S 1, i = 1, ... ,n and 
)=1 

n 

LXi) 2 1, j = 1, ... , n. 
i=1 

3. A wheel Wn=(V,E) is a graph defined by V={vo,vt, ... , vn} and 
E = {(va, vJ: i = 1, ... , n} U {(Vi, Vi+I): i = 1, ... , n -l} U {(v m VI)}' 

Let P = {x E RIEl: 1:(xe: e contains node v) = 2 for all v E V, 0 S Xe S 1 for all 
eEE}. 

i) Find the dimension of P. 

ii) Show that the inequalities xe 2 0 are redundant. 

iii) Show that the inequalities Xe S 1 are redundant for e = (vo, Vi) for i = 1, ... , n. 

iv) Give a minimal representation of P by a system of linear inequalities and 
equalities. 

v) Give a representation of P by means of its extreme points. 

4. Let F be the face of optimal solutions of the linear program max{cx: x E P}, where 
P = {x ERn: Ax S b}. Let Mp be the equality set of F and let u* be any optimal 
solution of the dual linear program. Show that Ui* = 0 if i tE Mp. 

5. Show that if Hand G are two faces of a polyhedron P of dimension rand r + s, 
respectively, and H is a face of G, there exists a sequence of faces {FJf=o with: 

i) Fo = H, Fs = G; 

ii) Fi is a facet of Fi+1 for i = 0, ... , s - 1. 

6. Find all extreme points and extreme rays of: 

i) the polyhedron in Exercise 1; 

ii) the polyhedron 

XI + 2X3 2 2 

-X2 + X3 2-4 

XER3. 

7. For each face F of P in Exercise 1, find the values of c such that max{cx: x E P} has 
F as the set of optimal solutions. 
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8. (Fourier-Motzkin Elimination). Given a polyhedron P ~ Rn+l described by the 
inequalities 

a1x + y ~ ab for I = 1, ... , L 

bk X - Y ~ b~ for k = 1, ... , K 

cix ~ cb for i = 1, ... , I, 

where x ERn, y E Rl: 

i) Show that 

ii) Find projAP), where 

P = {(x, y) E R2: x - y ;;;:: -2, x + y ~ 3, x - y ~ -1, y ;;;:: O}. 

9. i) Given a polyhedron P, let {Fj}iEI and {Gj}jEJ be polyhedra with F j, G j ~ P. Show 
that 

ii) Show that the inequality is strict in the following example: 

Let Fi = P n {x E R~: Xl = i} for i = 0, 1,2 

and Gj = P n {x E R~: X2 = i} for j = 0, 1, 2 

with P as in Figure 8.1. Note that l) (Fi n Gj ) = P n Z~. 
I,) 

X2 

(1,2) (2,2) 
(0,2) 

2 

Figure 8.1 
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iii) Show that equality holds in part i when the {FJ, {Gj } are faces of P. 

iv) Suppose P is contained in the unit hypercube in R 2• Take 
Fa = P n {x E R2: Xl = l5} and G a = P n {x E R2: Xi E l5} for <:5 E {O, n. Interpret 
the equality in this case. 

10. Find the polar and its extreme rays for the polyhedron in Exercise 1. 

11. Let S = {x E Z~: Xl - X2:::;; 1, 4XI + X2:::;; 28, Xl + 4X2:::;; 27}. 

i) Find an inequality description of conv(S). 

ii) Find the extreme points of conv(S). 

iii) Find the polar of conv(S). 

iv) Find the extreme rays of the polar of conv(S). 

12. Find the I-polar of 

13. Find the blocker of 

P = {x E R~: ixl + tx2 ~ 1, 1XI + 1x2 ;;::: 1, ixl + ~X2 ~ n. 

14. Prove Proposition 5.9. 

15. Prove the min-max version of Theorem 5.10. 

16. Let P = {x ERn: Ax :::;; b}, where rank(A) = k < n. Let L = {x ERn: Ax = O}, 
L.1 = {x ERn: Bx = O} and P* = P n L .i. 

i) Show that P = P* + L. 

ii) Derive Minkowski's theorem when rank(A) < n. 

iii) Demonstrate it for 

17. Find a finite set of generators for the set S = P n Z2, where 

P = {x E R~: 5XI + 3X2 ~ 10, 5XI - 5X2 ~ -1, -Xl + 2X2 ~ -2}. 

18. Give examples of pairs, 

(LP) 

(IP) 

where 

max{cx: Ax :::;; b, X E R~} 

max{cx: Ax :::;; b, X E Z~}, 

i) LP and IP are unbounded, 

ii) LP and IP have finite optimum value, 

iii) LP is unbounded, and IP is infeasible, 

iv) LP is bounded, and IP is infeasible. 
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19. Using the polyhedron of Exercise 1 of Section 1.1.8, show that Theorem 6.2 does not 
hold for irrational polyhedra. 

20. Consider the graph G = (V, E), where V = {l, 2, ... , 2k + 1}, k ~ 2, and 
E = {(l, 2), (2, 3), ... , (2k + 1, I)}. Let S = P n Z2k+l be the set of node packings on 
G where P = {x E Rik+l: Xi + Xj S 1 for (i,}) E E}. Show that conv(S) ~ P. Find 
another facet of conv(S). Now do you have conv(S)? Why? 



1.5 
Computational Complexity 

1. INTRODUCTION 

The purpose of this chapter is to describe a theory of computational complexity that yields 
insights into how difficult a problem may be to solve. 

At the easy end of our spectrum, there are problems like the minimum-weight spanning 
tree problem. Recall that in Section 1.3.3 we gave an algorithm for the minimum-weight 
spanning tree problem with running time O(n log n) for a graph with n edges. One 
fundamental issue to be discussed here is when a problem can be solved in time O(lk), 
where k is a constant and I is an appropriate measure of the length of the input needed to 
describe the data. 

For most integer programming problems, no such algorithm is known. We will show 
that there are integer programming problems much more specific than the general pure
integer programming problem (e.g., maximum cardinality node packing) with the follow
ing property. If maximum cardinality node packing for a graph with m nodes can be 
solved in time O(mk) for some fixed k, then there exists a k such that the pure-integer 
programming problem can be solved in O(lk), where I measures the input needed to 
describe the data A, b, c. 

A very important concept introduced in this chapter is a "certificate of optimality." 
Given a certificate of optimality, one can prove in O(lk) time, for some fixed k, that a given 
solution is indeed optimal. 

After introducing some basic concepts in this section and Section 2, we will show in 
Section 3 that primal and dual basic optimal solutions provide a certificate of optimality 
for linear programming. 

Although no certificate of optimality is known for the general pure-integer program
ming problem, in Section 4 we will develop some results for pure-integer programs that 
will enable us to establish a weaker result, namely, a "certificate offeasibility." This means 
that given an appropriate feasible solution, we will be able to check feasibility quickly. The 
result is not trivial, since one can imagine feasible integer programs for which the only 
solutions have a large number of digits, so checking feasibility by substitution is a 
formidable task. 

In Section 5, we formalize the concept of a feasibility problem and the class offeasibility 
problems with a certificate of feasibility. In Section 6, we show that there are hardest 
feasibility problems in the above class and relate these results to optimization problems. In 
Section 7, we consider the complexity of problems associated with polyhedra such as 
whether nx ~ no is satisfied by all points in a given polyhedron. 

The presentation here represents a compromise between the rigor found in computer 
science texts, which would require many new definitions and concepts, and a very 
informal presentation that can lead to fundamental misconceptions. Thus it is necessary 
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for us to define rather precisely the meanings of terms such as problem, instance of a 
problem, polynomial solvability, and so on. But we will avoid using terms such as Turing 
machine, language, and so forth. 

Mixed-integer programming is the problem written generically as 

max{cx + hy: Ax + Gy ~ b, x E Z~, Y E Rf}, 

where m is any positive integer, p and n are any nonnegative integers with 
p + n ~ 1, and c, h, A, G, b are matrices with integral coefficients; the dimensions of 
these matrices are as follows: cis 1 x n, h is 1 x p, A is m x n, Gis m x p, and b is m x 1. 
We could just as well have assumed that the matrices have rational coefficients, but the 
assumption of integer coefficients is no less general and is more convenient. 

A problem consists of an infinite number of instances. An instance is specified by 
assigning numerical values called data to the problem parameters. In the case of mixed
integer programming, the data that specify an instance are integers m, n, and p as well as 
integral matrices c, h, A, G, and b of appropriate dimension. 

It is desirable to delineate special cases of the mixed-integer programming problem. 
This is done by restricting the parameters in natural ways. Pure-integer programming is 
the special case of mixed-integer programming in which p = 0, and hence the matrices h 
and G do not appear. Linear programming is the special case in which n = 0, and hence 
the matrices c and A do not appear. 

Every instance of a linear or pure-integer program is also an instance of a mixed-integer 
program. Thus an algorithm that can solve all instances of mixed-integer programming 
can, by definition, solve all instances of the special cases of pure-integer and linear 
programming. An obvious conclusion is that mixed-integer programming is at least as 
hard as pure-integer and linear programming. 

Figure 1.1 is a directed graph that shows relationships among some of the problems that 
have been formulated in Chapter 1.1. The problem at the head of an arc is a special case of 
the problem at the tail. The relationship extends transitively to directed paths. Thus, if 
there is a directed path from problem Xl to problem X 2, then every instance of X 2 is also an 
instance of Xl. 

Most of the arcs in Figure 1.1 are easily justified. For example, 0-1 integer programming 
contains those instances of pure-integer programming in which 

A = ( ~') and b = ( ~'), 

where I is an n x n identity matrix and 1 is an n x 1 matrix of I's. Set packing contains 
those instances of 0-1 integer programming in which each coefficient of matrix A is ° or 1 
and b is a column of I's. Node packing contains those instances of set packing in which 
each row of A has exactly two 1 'so 

In attempting to classify these problems, an extreme view is to ignore the special cases. 
All of our problems are just mixed-integer programs to be solved by the same algorithm. 
While there are good reasons for having a robust algorithm, by carrying it to this extreme 
we would fail to take advantage of the structure and simplicity of important special cases. 
On the other hand, there are so many interesting special cases of mixed-integer program
ming that it would be foolish, if not hopeless, to consider each separately. The fundamen
tal issue is to find natural divisions. One possible way of achieving this is to attempt to add 
arcs to the graph of Figure 1.1 to create directed cycles. Then if problems Xl and X 2 are 
contained in a directed cycle, they are equivalent in the sense that each is a special case of 
the other. 
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By the end of this chapter we will have shown that apart from the problems that are 
well-solved, all the other problems in Figure 1.1 lie on common cycles and are theoretically 
"equally difficult". However, in parts II and III we will see that there remain many reasons 
to distinguish between problem classes by using structure in developing algorithms. 

Example 1.1 (Set Packing is a special case a/Node Packing). LetA be an m x n matrix, 
all of whose coefficients are 0 or 1, and let 1 be a column vector of 1 'so We will construct a 
p x n 0-1 matrixA' withp ~ n(n - 1)/2 and 'L}=l aij = 2 for i = 1, ... ,p such that 

Since a 0-1 matrix with exactly two l's in each row and no duplicate rows is the edge-node 
incidence matrix of a graph, it suffices to specify matrix A' as the edge-node incidence 
matrix of some graph. Let G A = (V, E) be the graph with V = {l, 2, ... , n} and 
E = {(j, k): a ij = a ik = 1 for some i}. G A is called the intersection graph of matrix A. The 
construction is illustrated in Figure 1.2. 

Now it is easy to see that XO E B n satisfies Axo ~ 1 if and only if the node set 
VO = {j E V: xJ = 1} is such that}, k E VO implies (j, k) $. E. Hence there is one-to-one 
correspondence between feasible solutions to the set packing problem with matrix A and 
feasible solutions to the node packing problem on graph GA' Finally, we note that VO is a 
feasible solution to the node packing problem if and only if A' XO ~ 1, where A' is the edge
node incidence matrix of GA. 

Later in this chapter we will be more precise in what we mean by a special case. We want 
to have a definition that insofar as possible conveys the idea that if X 2 is a special case of 
Xl, then an algorithm that can solve instances of Xl efficiently can also efficiently solve 
those instances of Xl that belong to X 2• For example, we could say that integer program
ming is a special case of linear programming by replacing the constraint set of an integer 
program by a linear inequality description of its convex hull. While this is true, it is 
misleading because the efficiency of the algorithm for linear programming may be a 
function of the linear inequality description of the convex hull, and in addition it may be 
extremely difficult to find these linear inequalities. 

2. MEASURING ALGORITHM EFFICIENCY AND PROBLEM COMPLEXITY 

It is common practice to relate computation time to problem size. Traditionally, the size 
of an instance of an optimization problem has been described by its number of variables 
and number of constraints. These two parameters, however, may not be adequate. There 
are algorithms whose number of steps depends explicitly on the magnitude of the 
numerical data. For example, there is an algorithm for the integer knapsack problem 

~-----2 

3--------44 

GA 

Figure 1.2 
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whose number of computations is proportional to the number of variables times the right
hand side of the constraint. In the ellipsoid method for linear programming, the number of 
computations depends on the volume of the initial ellipsoid, which in turn depends on the 
magnitude of the numerical data. The size of numbers involved in elementary calcula
tions, such as additions and multiplications, may also be of concern. It is frequently 
reasonable to assume that these operations are done in constant or unit time. For example, 
if a and b are integers that are part of the data, then a reasonable assumption is that a is 
read in unit time, b is read in unit time and a + b is calculated in unit time. However, it 
may not be reasonable to assume that huge integers such as factorials can be added in unit 
time. 

We say that the size of a problem instance is the amount of information required to 
represent the instance. The data needed are generally obvious; for example, an instance of 
integer programming is specified by integers m and n and matrices A, b, and c. How 
should we represent the information? A model that is robust with respect to representing 
the essence of real computation is to use a two-symbol or binary (0, 1) alphabet for the 
representation of numerical and logical data. In this model, a positive integer x, 
2n ~ x < 2n

+
1, is represented by the vector (tSo, tSI, ... , tSn), where 

n 

X = 2 tSi2i and tSi E {O, 1} for i = 1, ... , n. 
i=O 

Note that n ~ log2x < n + 1. An additional digit is necessary to represent the sign of x, and 
rational numbers are represented by pairs of integers. We always assume that the initial 
numerical data are integral or rational. Only rarely do we have to be concerned with 
irrational numbers in intermediate calculations. In such situations (e.g., in the ellipsoid 
algorithm, which requires square roots), we have to take care to specify the precision of the 
arithmetic calculations. However, for the most part, integer arithmetic suffices. 

Subsets of a set can be represented by incidence or characteristic vectors. Thus if 
Q = {l, 2, ... , n}, the subset Qj is given by the vector (qI, q2, ... , qn), where qi = 1 if 
i E Qj and q i = 0 otherwise. This, of course, is a way of representing graphs, since an edge 
of a graph is just a subset of nodes of cardinality 2. Thus a graph G = (V, E) with m nodes 
and n edges can be represented by an m x n node-edge incidence matrix. Alternatively, it 
can be represented by the m x m symmetric adjacency matrix A, where a ij = 1 if nodes i 
andj are joined by an edge and aij = 0 otherwise. Another data structure for subsets and 
graphs is to represent a subset by a list of its elements. 

While choosing a good data structure can be very important in implementing an 
algorithm efficiently, it is fortunate that our primary classification scheme of algorithm 
efficiency is very insensitive to the choice of data representation. There are, however, 
some restrictions. 

The alphabet used to represent data must contain at least two symbols. In particular, for 
reasons to be explained later, a one-symbol representation of integers is not permitted. The 
second restriction deals with the amount of information that we agree to call data. We will 
explain this point by considering the symmetric traveling salesman problem on a complete 
graph G = (V, E), where c e for e E E is the cost of edge e. The natural representation of the 
data is a list of edges, named by their endpoints, and their costs. A representation of the 
data that is not permitted is a list of all (n - 1)!/2 tours and their costs. The number of tours 
grows exponentially with the size of the graph, and if an algorithm required this informa
tion, we would regard its generation to be part of the algorithm, not part of the data 
description. Similarly, the integer programming formulation of the symmetric traveling 
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salesman problem given in Chapter I.l, which requires an inequality for each U ~ V with 
2 ~ I U I ~ I V I - 2, is not permitted as a description of the data. Here the number of rows 
in the constraint coefficient matrix A grows exponentially with the size of the graph. If an 
algorithm required this formulation, we would regard its generation to be part of the 
algorithm. 

Having set up a model for describing a problem and the data of its instances, we now 
consider computation time. We want our measure of time to be independent of the 
characteristics of particular computers, so we basically count the number of elementary 
operations such as additions, multiplications, comparisons, and so on; that is, we assume 
that each elementary operation is done in unit time. This is a reasonable assumption as 
long as the size of the numbers does not grow too rapidly as the calculations progress. We 
will see later that one may need to be very careful in checking that this is the case. 

Consider an optimization problem X consisting of an infinite number of instances 
(db d2, ••• ), where the data for the instance d j is given by a binary string of length 
Ii = I(d j ). Let A be an algorithm that can solve every instance of X in finite time. We 
assume that the running time of A is specified by a function gA: X -+ Rl. We would like to 
express running time as a function of I. Since it is not necessarily the case that if two 
instances have the same length, they have the same running time, we must use some 
statistic to aggregate the running times for all instances of the same length. Our approach is 
to use a worst-case analysis. In other words, the running time that we associate with all 
instances of size k is 

This highly conservative measure of running time, which only considers the worst
possible outcome for each size, has three advantages: 

1. It gives an absolute guarantee on running time. 
2. It is independent of a probability distribution of the instances. 
3. It appears to be the easiest measure to analyze. 

However, it also has disadvantages. Foremost among these is its failure to give a true 
picture when a large percentage of instances of a given size can be solved rapidly and only 
a very small percentage require considerably more time. In these situations, measures such 
as expected running time may be preferable. But measures that require a probability 
distribution of the instances appear to be more difficult to analyze and require assump
tions about an underlying probability distribution. 

Rather than attempting to get a precise expression for the functionfA(k), it will suffice 
here to approximate it from above. Recall that we say f(k) is O(g(k)) whenever there exists 
a positive constant c and a positive integer k' such thatf(k) ~ cg(k) for all integers k ~ k'. 
With this convention, a polynomial l:f=o cjk i is O(kP). In other words, we ignore all of the 
terms of degree less than p and all of the constants. This means that only the asymptotic 
behavior of the function as k -+ 00 is being considered, since for "small" values of k, 
depending on the constants, the lower-degree terms may dominate. 

Algorithm A is said to be a polynomial time algorithm for problem X iffA(k) is O(kP) for 
some fixed p. Let PJ> be the class of problems that can be solved in polynomial time. 
Problem X is in PP if and only if there is a polynomial time algorithm for solving X. A main 
theme of computational complexity is the inherent difference between problems known 
to be in PJ> and others for which no polynomial time algorithm is known. 
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The functionJis said to be exponential if for some constants Cb C2 > 0 and db d2 > 1 
and a positive integer k' we have 

A typical example of exponential time calculation is the enumeration of the 2k 0-1 k
dimensional vectors. The functionJ(k) = 2k is not bounded by any polynomial in k, and it 
does not require very large values of k for 2k to exceed polynomial functions of reasonably 
small degree. For example, with k = 60, an algorithm that required 2k calculations, each of 
which took a microsecond, could not be completed in 300 centuries, whereas one that 
required k S calculations would be done in less than 15 minutes. 

Although most of the algorithms that we consider can be shown to either run in 
polynomial or exponential time, there are other possibilities. There are functions whose 
rate of growth is faster than polynomial but slower than exponential-for example, 
J(k) = k1ogk

• There are also functions whose rate of growth is faster than exponentially-for 
example,J(k) = kkk. 

Exponential time can also occur when the number of computations is a function of the 
size of the numbers in the input. Let 8 be the largest integer in a given instance. Since the 
binary encoding of 8 only requires a string of length O(log 8), an algorithm that requires 8 
steps is at least exponential. This is one reason for our having stressed the encoding of 
numbers earlier in this section. We ruled out a one-symbol alphabet because it would 
permit 8 steps to be carried out in polynomial time. 

Also, if an algorithm computed very large numbers, such as 20
, that are not bounded by 

a polynomial function in 8, their encoding would require strings of length not polynomi
ally bounded in log 8. However, as long as the numbers remain polynomially bounded in 
8, the assumption of unit time calculations has no bearing on whether the algorithm runs 
in polynomial time. Besides being convenient, this assumption is made because comput
ers work with "words" in unit time, and quite large integers are represented by a single 
word. Thus when we say that an algorithm runs in O(kP ) time, we generally have ignored a 
factor in log 8 that would be required if we had assumed that the time for an elementary 
calculation was proportional to the logarithm of the numbers involved. However, we will 
not ignore the possibility of exponential growth in the size of numbers. 

In this regard, we must consider the representation of rationals that are not integers. We 
assume that a rational a Ibis encoded by the pair of integers a and b. Thus 2-0 represented 
as (1, 28) is a very large number. A more subtle point is that 2 represented as 20

+
1/20 is a very 

large number. We avoid the latter problem by assuming that a rational alb is represented 
by two relatively prime integers p and q (i.e., alb = plq and the greatest common divisor 
of p and q equals 1). In fact, in Section 1.7.2 we will give a version of the euclidean 
algorithm, which, given a and b, finds p and q in polynomial time. So the assumption of 
representing rationals by two relatively prime integers is theoretically justified. 

While the distinction between polynomial time algorithms and the rest is important 
theoretically, it is not a satisfactory practical division. We will begin to see in the next 
section, and then in Part II, that some polynomial time algorithms are inefficient and that 
some algorithms known to be exponential in the worst case are very reliable algorithms for 
solving practical problems. Of course, polynomial time algorithms that run in, say, linear 
time are fast. The problems with the division occur with polynomial time algorithms in 
which the degree of the polynomial is not small and with exponential time algorithms that 
are fast in most cases. 
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We have chosen here to emphasize computation time, but the space or memory needed 
to solve a problem is also important. Observe that if X E PP there must be an algorithm for 
X whose space requirements are a polynomial function of the length of the input. 
However, the converse is false. In other words, there are exponential time algorithms 
whose space requirements are polynomially bounded. 

So far, we have ignored the question of whether integer programming problems can be 
solved finitely. Obviously they can be when the variables are bounded, since the enumera
tion of all points within the hypercube defined by the bounds is a finite process. In Section 
4, we will show that upper bounds on the variables can be found as a function of 
(A, b, c, m, n) for pure-integer programming problems with the property that if 
max{cx: Ax ~ b, x E z~} has an optimal solution, then it has an optimal solution within 
the specified bounds. This result, along with schemes for resolving infeasibility and 
unboundedness, shows that every pure-integer programming problem can be solved 
finitely. It also can be proved that mixed-integer programs can be solved finitely. Thus it is 
interesting to observe that some nonlinear problems with integer variables are impossible 
to solve. For example, it is impossible to describe an algorithm that decides whether 
{x E zm:f(x) = O} is nonempty or not, wherefcan be any polynomial function. 

3. SOME PROBLEMS SOLVABLE IN POLYNOMIAL TIME 

In this section, we briefly discuss the complexity of some of the problems in Figure 1.1 that 
are known to be in PP. 

To point out some distinctions between the complexity of problems in PP, we consider 
five problems. 

1. The minimum-weight path problem with nonnegative data (see Section 1.3.2). An 
instance is specified by any m node graph and integral nonnegative edge weights. 

Dijkstra's algorithm requires O(m2) elementary calculations. Note that the 
number of calculations is independent of the numerical values of the edge weights. 
Moreover, each of the numerical operations is an addition or comparison, so the 
numbers involved only grow slowly. The performance of this algorithm is very 
satisfactory, since a complete graph on m nodes contains m(m - 1)/2 edges, and thus 
O(m2) integers are needed to describe some of the m node instances. 

2. The minimum-weight path problem (see Section 1.3.2). An instance is specified by 
any m node graph and integral edge weights. 

The Bellman-Ford algorithm either finds a minimum-weight path or detects a 
negative weight cycle with O(m3) elementary calculations. It is not known whether 
more theoretically efficient algorithms [e.g., an algorithm with running time O(m2) 
or O(m2 log m)] are possible. In general, establishing lower bounds on the complex
ity of a problem is extremely difficult. 

3. Solving linear equations. Given an n x n system of equations Ax = b, where A is 
nonsingular, x = A-I b can be found by Gaussian elimination. The basic elimination 
method requires n pivots, each of which requires O(n2) calculations. 

The size of the numbers that occur is bounded from above by the largest 
magnitude of the determinant of any square submatrix of (A, b). Now since det A 
involves n! < nn terms, the largest number is less than (nfJY, where fJA = maxi,) I aij I, 
fJb = maXi I b i I, and () = max«()A,fJb). Hence Gaussian elimination is polynomial in n. 
By considering (A, I), where A is m x n, Gaussian elimination also yields polyno
mial time algorithms for calculating rank(A) and det(A) and for solving m x n linear 
systems. 
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4. The transportation problem (see Section 1.3.5). An instance is specified by an 
ml x m2 (m! + m2 = m) integral matrix C, where cij is the unit shipping cost from 
supply point i to demand pointj, an ml-vector of integral supplies (ab ... , am), 
and an mrvector of integral demands (b l , ••• ,bmJ, where 1:7,:~ ai = 1:}:j bj = a. 

The primal-dual algorithm (without scaling) requires no more than a steps and 
O(m2) computations in each step. This is not a polynomial time algorithm, since the 
number of steps is exponential in log a. However, when scaling is included, the 
number of steps is reduced to m rlog 01, where 8 = max(maxiai, maxjbj ). Thus we 
obtain a polynomial time algorithm whose running time is O(m 3 10g 8). 

Very recently, polynomial time algorithms with running time bounds that are 
independent of the numerical data have been found. The practical efficiency of 
these algorithms is not yet known. Furthermore, the practical significance of scaling 
is unresolved. Presently, it is generally believed that the most practical algorithm is a 
primal simplex algorithm, which is known to be exponential. So here we have an 
indication that the polynomial/exponential dichotomy is a dubious way to measure 
the practical efficiency of algorithms. 

5. The linear programming problem (see Chapter 1.2). An instance is given by 
max{cx: Ax:::::; b, x E R~}, where (A, b) is an integral m x (n+l) matrix and c is an 
integral n-vector. 

The simplex method, which is used in all commercial linear programming codes, 
is not a polynomial time algorithm. There are classes of linear programs for which 
the simplex method takes exponential time. This fact is the outstanding evidence for 
the argument against worst-case analysis of algorithms, since the simplex method 
has been enormously successful in the solution of real-world instances. Recently, the 
efficiency of the simplex method has been supported even further by probabilistic 
analysis, which shows that under rather general assumptions on the underlying 
distribution of instances, the expected running time of the simplex method is 
bounded by a polynomial in m and n. 

In Chapter 1.6 we will give two polynomial time algorithms for linear programming. 
The older of these two methods is the ellipsoid algorithm. It certainly seems to be inferior 
to the simplex algorithm as a computational tool. However, it provides an important proof 
technique for showing that some combinatorial optimization problems are in 1P. The 
more recent method, Karmarkar's algorithm, appears to be a promising technique for 
practical computation. But as of this writing, not enough empirical evidence is available. 

Prior to the development and analysis of the ellipsoid algorithm, many researchers 
believed that linear programming was in 1P, but no proof was known. The reason for this 
conjecture assumes a central role in the development and analysis of algorithms for integer 
optimization problems. Here we give an informal explanation of the reason. In Section 5, 
we reexamine it in the language of computational complexity. 

Suppose we owned a supercomputer that ran as fast as an exponential number of 
standard computers running in parallel. We could then solve a bounded instance of linear 
programming by using Gaussian elimination to enumerate all basic solutions. Each basic 
solution could be checked for nonnegativity, and from the feasible ones we could pick one 
that maximizes the objective function. 

Having determined an optimal solution in this way, how could we, in polynomial time, 
convince someone else, who did not have access to the supercomputer, that we really had 
found an optimal solution? One answer, of course, is to apply a polynomial-time ellipsoid 
algorithm. But there is a much simpler answer that was known long before the ellipsoid 
algorithm. 
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Suppose we ask our computer to produce an optimal dual solution UO as well as an 
optimal primal solution xO. Then given (XO, un), with O(mn) calculations, we could 
convince anyone that XO and UO were optimal. We would show the feasibility of XO and UO 
(i.e., {Axo ~ b, XO E R~} and {unA ~ c, UO E R':}) and then show that cxo = uOb. Thus the 
duality theorem of linear programming gives the proof. One subtle point remains. We 
must show that the coefficients of XO and UO are polynomial in the length of the encoding of 
the data. Fortunately this is true for basic solutions and extreme rays. The argument is 
essentially a repeat of that used above to observe that the intermediate numbers in 
Gaussian elimination are polynomial in the input length. 

The following notation will be used throughout the text. 

B A = ~~x I a ij I, Bb = m~x I b ii, 
I,} I 

B = BA,b = max(BA,Bb). 

Proposition 3.1. Let xO, rO be an extreme point and extreme ray ofP = {x E R~: Ax ~ b}, 
where (A, b) is an integral m x (n + 1) matrix. Then for j = 1, ... , n: 

i. xJ = pj/q, where Pf,q are integers such that 0 ~ Pj < nBb(nBAt-1 and 1 ~ q < (nBAt. 
ii. rJ = pj/q, where Pj and q are integers such that 0 ~ Pj < ((n - I)BA)n-l and 

1 ~ q < ((n - I)BA)n-l. 

Proof i. By the characterization of extreme points of P, XO is a solution to A IX = b I, 
where A I is n x nand nonsingular and each row of A I is either of the form aix = bi or 
Xj = O. Then, byCramer'srule,xJ = pj/q, whereq ~ 1 is the magnitude of the determinant 
of A I and Pi is the magnitude of the determinant of the matrix obtained by replacing the 
jth column of A I by b' . Each of these determinants contains n! < nn terms. Hence 
1 ~ q < (nBAt and 0 ~ Pi < nBb(nBAt-l

• 

ii. Similarly rO is determined by n - 1 equations, either of the form aix = 0 or 
Xj=O. • 

The bound of Proposition 3.1 states that the number of binary digits needed to represent 
XO is less than 2n 10g(nBt = 2n210g(nB), which is polynomial in n and log B. Intuitively, 
Proposition 3.1 states that if a polyhedron has extreme points with both large and small 
integral coordinates, then it has very sharp angles (see Figure 3.1). But in order to obtain 
very sharp angles, the defining hyperplanes must have some very large coefficients. 

(0, 1)I~~~~~~~~~~~~~Xl~+~2~~~2~2~a~~~~~ (a, 1/2 ) 

Xl +2~2 0 
(0,0) xl 

Figure 3.1 
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A theoretical consequence of this bound is that if P = {x E R1: Ax ~ b} is an 
unbounded polyhedron and max{cx: x E P} is finite, it suffices to solve max{cx: x E P'}, 
where P' = {x E R1: Ax ~ b, x ~ (nO)n) is a polytope whose length of description 
I' = I + O(n2(log nO» is not significantly longer than the description length I ofP. This will 
be used in the ellipsoid and projection algorithms in the next chapter. 

Information that can be used to check optimality in polynomial time is called a 
certificate of optimality or a good characterization. A binary string is said to be short if its 
length is a polynomial function of the length of the input. 

For linear programming, a certificate consists of basic optimal primal and dual 
solutions. To use it we simply verify primal and dual feasibility and the equality of the 
objective function values. Of course, if a problem is in '!P it has a good characterization. 
Although it is not known whether a good characterization implies that a problem is in '!P, 
for nearly all optimization problems for which a good characterization is known, a 
polynomial-time algorithm is also known. Until 1979, linear programming was one of the 
rare exceptions. Some other exceptions in combinatorial optimization were also resolved 
through the use of the ellipsoid algorithm. 

We now consider a problem that may properly be designated an integer optimization 
problem and is a generalization of the assignment problem. 

6. The weighted matching problem. An instance is specified by a graph G = (V, E) with 
m nodes, n edges, and integral weights Ce for e E E. 

We have previously given the integer programming formulation 

(3.1) 

max L CeXe 
eEE 

I Xe ~ I for i E V 
eEJ(i) 

xEZ1, 

where J(i) is the set of edges incident to node i. Here the linear program obtained by 
replacingx E Z1 by x E RZ does not necessarily have an integral solution. However, 
there is an algorithm for weighted matching that only requires O(m3) calculations. 

All of the known polynomial-time algorithms for weighted matching implicitly use a 
linear inequality description of the convex hull of matchings. We will show later that 
x E R1 is a matching ifand only ifit is an extreme point of the polytope given by x E R1, 
(3.1), and the odd set constraints 

'" IUI-l L Xe ~ --'----
eEE(U) 2 

for all U ~ V such that I U I = 2k + 1, k = 1, 2, . . . , 

where E( U) is the set of edges with both ends in U. An odd set constraint states the obvious 
fact that when I U I is odd, no matching can have more than (I U I - 1)/2 edges internal to 
U. 

One should note that this formulation, together with the fact that linear programming 
is in pjJ, does not immediately yield a polynomial-time algorithm for weighted matching. 
The reason is that the linear programming formulation has a number of constraints that 
are exponential in the size of the data needed to describe the weighted matching problem. 

Nevertheless, this formulation readily produces a good characterization. Again, duality 
provides the certificate of optimality. Although there is a very large number of dual 
variables, a basic dual solution contains no more than n positive variables. Moreover, it 
can be shown that in a basic dual solution, the values of the dual variables are not "too 
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large". A certificate then consists of an optimal matching, an optimal dual solution, and 
those odd sets with positive dual variables. Note that it is not necessary to check the odd set 
constraints to verify the feasibility of a matching. 

4. REMARKS ON 0-1 AND PURE-INTEGER PROGRAMMING 

In the previous section we mentioned that linear programming and matching, and hence 
all special cases of them in Figure 1.1, are in PP. The status of all of the other problems 
shown in Figure 1.1 is much less settled. It is not known whether any are in PP, but there is a 
theory that leads us to believe that none are in PP. This theory is the subject of Sections 5 
and 6. In this section we will make a few remarks on worst-case running times for some of 
the problems and, in particular, give bounds on the magnitude of the values of variables in 
an optimal solution to the pure-integer programming problem. 

1. The 0-1 integer programming problem. An instance of the general problem 
max{cx: Ax ~ b, x E Bn} is specified by an integral m x (n + 1) matrix (A, b) and 
an integral n-vector c. 

It can be solved by a brute-force enumerative algorithm in O(2nmn) time. Even 
for such special cases as the node packing problem, no significantly better worst-case 
result is known. However, there are many special cases (e.g., matching, node packing 
on appropriately restricted classes of graphs, and some matroid optimization 
problems) that are in @J. These problems are the subject of Part III of this book. 

2. The integer knapsack problem. An instance of the general problem 
max{cx: ax ~ b, x E z~} is specified by integral n-vectors c and a, and an integer b. 

There is an O(nb) algorithm, but it is exponential unless we restrict b to be a 
polynomial function of n. Although in some applications the magnitude of b can be 
restricted, large values cannot be dismissed. One reason is that rather general integer 
programs can be easily transformed into an equality-constrained version of the 
knapsack problem with constraints ax = b and upper bounds Xj ~ dj for j = 1, ... , 
n. What makes this transformation uninteresting is that the magnitudes of the 
resulting constraint coefficients are generally exponential in the length of the 
encoding of the data. 

3. The pure-integer programming problem. An instance of the general problem 
max{cx: Ax ~ b, x E Z~} is specified by an integral m x (n + 1) matrix (A, b) and 
an integral n-vector c. 

Let P = {x E R1: Ax ~ b}. If P is bounded, by Proposition 3.1, we know that 
Xj ~ (nB)n for j = 1, ... ,n. Hence it is possible to solve the problem 
max{cx: x E P n z~} by enumerating the finite number of points in z~ satisfying 
xj~(nBtforj= 1, ... ,no 

We now show that even if P is unbounded, the integer programming problem can 
be solved by enumeration. By Theorem 6.3 of Section 1.4.6 we know that if the 
problem has a finite optimum value, there is an optimal solution at an extreme point 
of conv(S), where S = P n zn. We will obtain a bound on the magnitude of any such 
extreme point. 

Theorem 4.1. Let P = {x E R~: Ax ~ b} and S = P n zn. If XO is an extreme point of 
conv(S), then 

xJ ~ «m + n)nBY for j = 1, ... , n. 
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Proof In the proofs of Theorem 6.1 and 6.2 of Section I.4.6 we have shown that 

conv(S) = {x E R~: x = I a,q' + I Jijr j
, I a, = 1, a E RJL I, Ji E RjJ I}, 

'EL JEJ tEL 

where qt, rj E Z~ for I ELand} E J. Any extreme point of conv(S) must be one of the 
points {q'}IEL, that is, Xo E Q, where 

where {xkhEK are the extreme points of P and {rj}jEJ are the extreme rays. 
Since IJ I ~ (~~~), Ix71 ~ (ne)n, and 1 r11 ~ (ne)n, it follows that 

Ix? I ~ (net (1 + IJ I) < «m + n)ne)n. • 
Note that «m + n)net ~ (2fl2et\ where fl = max(m, n). We will use WA,b = (2ffe)fi as 

notation for this value from now on. 
Theorem 4.1 combined with Theorem 6.3 of Section I.4.6 implies that we can add the 

constraints IXj I ~ WA,b to any integer program, and because no extreme points are 
removed we can test for feasibility (unboundedness) and optimality by enumerating the 
integer points in S n {x E Z~: x ~ WA,b}' We can now show that any instance of a pure
integer program can be transformed in polynomial time to an instance of a 0-1 integer 
program. 

For} = 1, ... , n let Xj = Lf=o 2kXjk, where (XjO, ... ,Xjd) E Bd+l and d = ffllog (2fl28)1. 
With this substitution, we obtain the 0-1 integer program max{c'x': 
A 'x' ~ b, x' E Bn(d+l)}, where c' is 1 x ned + 1) and A' is m x ned + 1). Note that the 
largest coefficient of A' has magnitude less than 2de = ()(2fi2()fi and that the largest 
coefficient of c' has magnitude less than (2fl 28)fi x (maXj=l, ... , nCj). Thus the length of the 
data needed to describe the transformed 0-1 integer program is a polynomially bounded 
function of the length of the data needed to describe the original integer program. Hence 
we have the following proposition. 

Proposition 4.2. An instance of a pure-integer programming problem can be transformed 
in polynomial time to an instance of a 0-1 integer programming problem. 

We have observed that Theorem 4.1 gives a finite algorithm-namely, enumeration
for integer programming. Now consider the class of integer programs with n fixed. For 0-1 
integer programming, enumeration is polynomial. However, for pure-integer program
ming, enumeration is not polynomial, since the upper bound WA,b depends polynomially 
on e. Furthermore, the transformation of pure-integer programming to 0-1 integer 
programming given above yields d + 1 variables and 2d is polynomial in (J, so enumeration 
on the transformed problem is not polynomial for n fixed. In fact, it is a theorem that 
integer programming with a fixed number of variables is in P;, but the proof requires much 
deeper results than Proposition 4.2 (see Section II.6.S). 

Analogous to the results we have given on the size of numbers in feasible and optimal 
solutions to integer programs, there is a result on the size of numbers that can arise in a 
description of the convex hull of feasible solutions by linear inequalities. The following 
theorem can be obtained from Theorem 4.1 and polarity. 
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Theorem 4.3. Suppose S = {x E 2':-: Ax ~ b}, where (A, b) is an integral (m + 1) x n 
matrix. If (n, no) defines a facet of conv(S), then the length of the description of the 
coefficients of(n, no) is bounded by a polynomialfunction ofm, n, and log G. 

5. NONDETERMINISTIC POLYNOMIAL-TIME ALGORITHMS AND}(~ 

PROBLEMS 

The theoretical model that we study in both this section and the next one addresses the 
question of whether integer programming and many special cases are solvable in polyno
mial time. The model does not provide a definite answer, but one of the main conclusions 
is that it is just as unlikely that there are polynomial-time algorithms for most special cases 
of integer programming (e.g., integer knapsack, node packing) as there are for the general 
integer programming problem. We will prove that if, for example, integer knapsack or 
node packing is solvable in polynomial time, then general integer programming is solvable 
in polynomial time. 

Although we can use the model to draw conclusions about optimization problems, it 
has been developed for so-called decision, recognition, or feasibility problems. We will use 
the term feasibility problem because of the close connection with feasibility testing in an 
optimization problem. 

A feasibility problem X is a pair (D, F) with F ~ D, where the elements of D are finite 
binary strings. D is called the set of instances of X, and F is called the set of feasible 
instances. Given an instance d E D, we want to determine whether dE F. Given d E D, 
the answer is either yes or no. 

In the remainder of this chapter we will follow the notation commonly used in 
complexity theory and we will define ~ to be the class of feasibility problems that are 
solvable in polynomial time. 

Associated with an optimization problem we define a feasibility problem in which an 
instance corresponds to a description of a constraint set. F is the set of instances for which 
the constraint set is nonempty. 

Example 5.1 (0-1 integer programming feasibility). D is the set of all integral matrices 
(A, b), where b contains one column and the same number of rows as A. An instance is 
specified by integers m and n, the dimensions of A, and numerical values for the 
coefficients of A and b. 
This is the feasibility problem for S = {x E B n: Ax ~ b}. Hence F = {(A, b): 
{x E En: Ax ~ b} =1= 0}. Here a yes answer is commonly established by exhibiting a feasible 
x. 

A second feasibility problem concerns a lower bound on the objective function. Here 
we augment each instance by an objective function c and an integer z. The lower-bound 
feasibility problem is the feasibility problem with the additional constraint ex ~ z. 

Example 5.2 (0-1 integer programming lower-bound feasibility). D = {(A, b, c, z)} 
is the set of all integral matrices A, b, c and integers z, where b (respectively, c) 
contains one column (row) and the same number of rows (columns) as A. 
F = {(A, b, c, z): {x E En: Ax ~ b, cx ~ z} =1= 0}. 

Note that if b E Z::, the feasibility problem for 0-1 integer programming is trivial, but 
the lower-bound feasibility problem is not. This is frequently the situation as, for example, 
in node packing. 
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The lower-bound feasibility problem is closely connected to the optimization problem. 
If(A, b, c, ZO) E F and (A, b, c, ZO + 1) $:. F, then max{cx: Ax ~ b, x E Bn} = zoo Thus if 
it is known that z L ~ ZO ~ Z u, we can find ZO by solving, at most, z u - Z L + 1 lower-bound 
feasibility problems. Note that Zu - ZL is not polynomial in the input length. 

There is, however, a more efficient method for finding zO, called binary search. Suppose 
we are given a function h: ZI ~ Bl of the form 

hex) = {O for x ~ Xo 
1 for x > Xo, 

where Xo is unknown. We are also given integers XL and Xu with h(xL) = 0 and h(xu) = 1. 
The problem is to find xo. By putting h(z) = 0 if (A, b, c, z) E F and h(z) = 1 otherwise, 
we see that the problem of finding ZO is of this form. 

The following binary search algorithm finds Xo with, at most, flog(x u - x L)l evaluations 
of the function h. 

Step 1: If Xu - XL ~ 1, stop. Xo = XL. Otherwise go to Step 2. 
Step 2: Let x = l(XL + xu)/2J. If hex) = 0, set XL = X; otherwise set Xu = x. Go to Step 1. 

Each function evaluation halves the length of the interval that contains Xo. Hence the 
number of evaluations is bounded by flog(xu - xL)l. An example is shown in Figure 5.1. 

Thus with binary search, we can find ZO by solving flog(zu - ZL + 1)1 lower-bound 
feasibility problems. Since flog(zu - ZL + 1)1 is polynomial in the length of the input of the 
0-1 lower-bound feasibility problem, we obtain the following proposition. 

Proposition 5.1. If the 0-1 integer programming lower-bound feasibility problem can be 
solved in polynomial time, the 0-1 integer programming problem can be solved in 
polynomial time. 

This proposition has an obvious generalization to other optimization problems. In 
particular, it applies to the integer programming problem, where Theorem 4.1 is used to 
give bounds Zu and ZL such that flog(zu - ZL + 1)1 is polynomial in the length of the input. 

Certificates of Feasibility, the Class .Hpj), and Nondeterministic Algorithms 

Analogous to certificates of optimality, information that can be used to check feasibility in 
polynomial time is called a certificate offeasibility. Given X = (D, F), for each instance 
d E F we let Qd denote such a certificate. We know that if Qd exists it must be short. Here 
we are interested in the class of feasibility problems having a certificate of feasibility. 

One might imagine an algorithm that makes a large number of guesses in the hope of 
eventually guessing Qd. This leads to the concept of a nondeterministic algorithm for a 
feasibility problem X = (D, F). The reader should take note that such algorithms cannot 
be realized in practical computation. 

5 4 3 xu=34 

• • • • • 
9 10 12 17 

XL=O 2 
• • 

8 

Figure 5.1 
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A nondeterministic algorithm consists of two stages. The input to the algorithm is a 
d ED. The first stage is a guessing stage. Here we guess a binary string Q which is then 
passed on to the second stage. The second stage, called the checking stage, is an algorithm 
that works with the pair (d, Q) and may provide the output that d E F. For example, the 
checking stage may verify that xES and thus output that dE F. Two properties are 
required: 

1. If d E F, there is a certificate Qd such that when the pair (d, Qd) is given to the 
checking stage, the algorithm gives the answer that d E F. 

2. If d $. F, there is no output. Hence whenever there is output, d E F. 

We measure the work done by a nondeterministic algorithm only in the checking stage 
and only when the checking stage is given a d E F and a certificate of feasibility. We say 
that the nondeterministic algorithm is polynomial if, for each d E F, its running time in 
the checking stage is a polynomial function of the length of the encoding of d for some Qd 
for which it replies that d E F. This means that when d E F, there is a short (polynomial
time) proof of feasibility. 

We define.Kg> to be the class of feasibility problems such that for each instance with dE 
F, the answer d E F is obtained in polynomial time by some nondeterministic algorithm. 
Nothing is said when d $. F. 

We will also encounter feasibility problems that are not in .Kg>. Many of these are in a 
related set called Cfio.Ng>, which will be defined and discussed later in this section. 

Example 5.3 (Nondeterministic polynomial-time algorithm for 0-1 integer feasibility). 

Guessing stage: Guess an x E Bn. 
Checking stage: If Ax ~ b, output (A, b) E F; otherwise return. 

The algorithm for 0-1 integer programming lower-bound feasibility is similar. Now 
consider general integer programming feasibility. The same algorithm works with the 
guesses being x E Z~ because Theorem 4.1 stipulates that if {x E Z~: Ax ~ b} =1= 0, then 
there is a feasible x such that the logarithm of its largest coefficient is bounded by a 
polynomial in the length of the encoding of (A, b). This is one of the few nontrivial .Kg> 
results that we need. 

Proposition 5.2. General integer programmingjeasibility is in .Kg>. 

The Hamiltonian cycle problem is to determine whether a graph G = (V, E) contains a 
Hamiltonian cycle. A Hamiltonian cycle is a cycle that contains all of the nodes of G. 

Proposition 5.3. Hamiltonian cycle is in .Kg>. 

Proof We give a nondeterministic polynomial-time algorithm for Hamiltonian cycle. 

Input: 
Guessing stage: 
Checking stage: 

A graph G = (V, E). 

Guess an E' ~ E. 
Step a. If the degree of each node ofG' = (V, E') is two, go to Step 
b; otherwise return. 
Step b. If G' = (V, E') is connected, output G E F; otherwise 
return. • 
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We have simply used the facts that (a) a graph G' is a Hamiltonian cycle if each node is 
of degree 2 and the graph is connected and (b) each of these properties is easily checked in 
polynomial time. The upper-bound feasibility problem associated with the minimum-cost 
traveling salesman problem is also in .Kr!J. This is shown by slightly generalizing the 
algorithm given in Proposition 5.3. 

A nondeterministic algorithm does not completely solve the feasibility problem, since it 
ignores d $. F. However, by being just a little bit intelligent about our guesses, we can 
simulate a nondeterministic polynomial-time algorithm by a deterministic exponential
time algorithm. For each d E F there is a structure Qd whose length I( Qd) is polynomial in 
the length of d, say I(Qd) = c(l(d))p. Therefore, for a given dE D we can limit our guesses 
to binary strings of length equal to or less than L = c(l(d))P. Hence we need to consider, at 
most, 2L

+! structures. But there is a polynomial functionf(l(d)) that gives an upper bound 
on the running time of the checking stage for d E F when Qd is guessed. Hence for each of 
the 2L

+! structures, we run the checking stage for f(l(d)) time and then go on to the next 
structure if the checking stage has not verified d E F. Thus if a feasibility problem is in 
.K[!fJ, it can be completely solved in exponential time. 

The Class CfioJ(r!J 

§.ach feasibility problem X = (D, F) has a related feasibility problem X = (D, F), where 
F = D \ F, called the complement of X. In the complement of 0-1 integer programming 
feasibility we have F = {(A, b): {x E Bn: Ax ~ b} = 0}. It is not known whether the 
complement of 0-1 integer programming feasibility is in .K[!fJ. In fact, it is not known 
whether the complements of any of the feasibility problems mentioned so far in this 
section are in .Kr!J. 

For the complement of the 0-1 integer programming lower-bound feasibility problem 
F = {(A, b, c, z): {x E Bn: Ax ~ b, cx ~ z} = 0}, which is equivalent to showing that 
cx < z is a valid inequality for {x E B n

: Ax ~ b}. Thus if the lower-bound feasibility 
problem and its complement are in .Kr!J we would have a good characterization for the 
optimization problem. 

To establish terminology for complements of .Kr!J problems, let CfioJ(r!J = {X: X is a 
feasibility problem, X E .K[!fJ}. 

Proposition 5.4. ffX is a feasibility problem and X E r!J, then X E J{r!J n CfioJ(r!J. 

Proof Every polynomial-time algorithm is also a nondeterministic polynomial-time 
algorithm. We simply ignore the guessing stage and apply the polynomial-time algorithm 
in the checking stage. Hence X E r!J => X E .K[fJ>. But if X E r!J so isX E [fJ>, since if d $. F, it 
follows that our polynomial-time algorithm, which needs no guesses, will also tell us this in 
polynomial time. Hence X E [fJ> implies X E.K[fJ> or, equivalently, X E CfioJ(r!J. • 

Figure 5.2 
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The linear programming feasibility problem for sets of the form {x E R~: Ax ~ b} is in 
~ by virtue of the ellipsoid method. Hence we can use Proposition 5.4 to establish its 
membership in j(~ n <{6oJfP}. But this fact was known long before the ellipsoid method, 
since membership in <{6oJf~ is a consequence of linear programming duality. We leave it to 
the reader to show membership in j(~. Here we show membership in <{6oJf~. The reader 
should refer back to the good characterization of linear programming given in Section 3 
which essentially does the same thing. 

Example 5.4 (Nondeterministic algorithmfor linear programming infeasibility). 

Input: An integral m x n matrix (A, b). 
Guessing stage: Guess a u ERr;. 

Checking stage: If uA ~ ° and ub < 0, output (A, b) E F; otherwise return. 

We have used the Farkas lemma-that is, if there exists a u ERr; such that uA ~ ° and 
ub < 0, then {x E R~: Ax ~ b} = 0-and Proposition 3.1, which guarantees the existence 
of suitably small rational u so that the checking can be done in polynomial time. 

The sets P}, j(~, and <{6oJf~ for feasibility problems are shown in Figure 5.2. 

The answers to the following questions are unknown. 

1. Does ~ = <{6oJf~ n j(~? 

2. Does <{6oJf(f} = }((f}? 

3. Does (f} = j(P}? 

An affirmative answer to question 3 implies affirmative answers to question 1 and 2, 
since, by Proposition 5.4, we have (f} ~ }(P} n <{6oJfP}. Similarly, affirmative answers to 
questions 1 and 2 imply an affirmative answer to question 3. 

In the next section, we will study the class}(~ further; at the end of that section, we will 
make some remarks about the impact on integer programming of answers to the above 
questions. 

6. THE MOST DIFFICULT j(P} PROBLEMS: THE CLASS }(P}<{6 

The main result of this section is that}(~ contains hardest problems. By this we mean that 
there is a subset of j(~, called }(~<{6, such that if there exists X E }(P}<{6 n ~, then every 
problem in j(~ is in ~, that is, ~ = }(~. Problems in }(~cg are called }(~-complete. 

Moreover, we will show that amongst these hardest problems are feasibility problems 
associated with integer optimization and many special cases. 

The technique used here is that of polynomially transforming one problem into 
another. Suppose Xi = (Di' F i), i = 1, 2, are two' feasibility problems and there exists a 
function g: DJ ~ Dz such that for every dE DJ we have g(d) E Fz if and only if dE Fl. If 
the function g is computable in time that is polynomial in the length of the encoding of d, 
then Xl is said to be polynomially transformable to X 2• The consequence of this definition 
is clear. 
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Proposition 6.1. If Xl is polynomially transformable to X 2 and X 2 E P, then Xl E P. 

Proof The polynomial-time algorithm for Xl is to compute the function g and then 
apply the polynomial-time algorithm for X 2• • 

The transformation idea is surely familiar. When confronted with a new problem, a 
traditional approach to solving it is to restate it as a problem we already know how to solve. 
The only thing we have added is the requirement that the transformation be done in 
polynomial time. 

We say that Xl is a "special case" of X 2 if DI C D2 and FI = DI n F 2• Here g(d) = dis 
the identity transformation. Many of the arcs in the graph of Figure 1.1 were determined by 
identity transformations. But we have also done nontrivial transformations. In particular, 
we have shown that integer programming feasibility is polynomially transformable to 0-1 
integer programming feasibility (see Proposition 4.2). Also, in Example 1.1 we have shown 
that set-packing lower-bound feasibility is polynomially transformable to node-packing 
lower-bound feasibility. This means that the problem "Given a 0-1 m x n matrix A, an 
integral n-vector c, and an integer z, determine whether {x E Bn: Ax ;:;::;; 1, cx ~ z} "* 0" is 
polynomially transformable to the problem "Given a 0-1 m' x n matrix A ' with, at most, 
two I's per row, an integral n-vector c, and an integer z, determine whether 
{x E B n

: A' x ;:;::;; 1, cx ~ z} "* 0". 
There is a technique, called polynomial reduction, that appears to be a more general 

approach than polynomial transformation for establishing that one problem can be solved 
in polynomial time given that another can. We say that X I is polynomially reducible to X 2 

if there is an algorithm for X I that uses an algorithm for X 2 as a subroutine and runs in 
polynomial time under the assumption that each call of the subroutine takes unit time. 
Note that transformation is the special case of reduction in which the subroutine is used 
only once; that is, it is applied directly to the transformed data g( d). 

A generalization of Proposition 6.1 is the following. 

Proposition 6.2. If Xl is polynomially reducible to X 2 and X 2 E gp, then Xl E C!P. 

Although polynomial reducibility appears to be more general than polynomial 
transformability, it is not known whether it really is. In any case, all of the polynomial 
reductions needed in this section can be accomplished through the simpler technique of 
polynomial transformation. 

We now address the question of the existence of hardest problems in }(gp. X E}(gp is 
said to be }(r!/>-complete if all problems in.Hgp can be polynomially reduced to X. The set of 
}(gp-complete problems, which we will soon claim to be nonempty, is denoted by }(r!/>C(i. 
The implication of the existence of an }(r!/>-complete problem is given by the following 
proposition. 

Proposition 6.3. If X is }(gp-complete, then gp = }(r!/> if and only if X E gp. 

Proof X E }(r!/> and r!/> = }(r!/> implies X E gp. On the other hand, if X is }(gp-complete 
and in r!/>, then by Proposition 6.2 there is a polynomial algorithm for any problem in .Hr!/> . 

• 
Once we have an }(gp-complete problem, we may be able to find others by polynomial 

reduction. 

Proposition 6.4. If Xl is }(C!P-complete and Xl is polynomially reducible to X 2 E }(C!P, then 
X 2 is }(gp-complete. 
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The proofis obvious, but it is important to note the direction of the statement to avoid 
making the mistake of concluding that X 2 is K9J-complete by reducing X 2 to Xl. 

The satisfiability problem, which is a classical problem in logic, is of historical interest 
because it was the first problem in K9J shown to be K9J-complete. It is described by a finite 
set N = {l, ... , n} and m pairs of subsets of N, denoted by C i = (Cj, Cn for i = 1, ... , m. 

An instance is feasible if the set 

(6.1) 
{

X E Bn: L. Xj + L. (1 - Xj) ;:?; 1 for i = 1, ... , m} 
JECr JECr 

is nonempty. 
The satisfiability problem is in K9J. We use subsets Jfl of N as guesses, set Xj = 1 if 

j E N° and Xj = 0 otherwise, and then simply check for feasibility in (6.1). 

Theorem 6.5 (Cook). The satisfiability problem is K9J-complete. 

We will not prove this famous theorem. The proof is technical but is not very difficult 
mathematically. To comprehend it, one must understand the formal model of a nondeter
ministic Turing machine that can solve any problem in K9J in polynomial time. The proof 
then amounts to a polynomial transformation of the nondeterministic Turing machine 
into the satisfiability problem. 

Since we have described the satisfiability problem as a 0-1 integer feasibility problem, 
we obtain the following proposition. 

Proposition 6.6. The 0-1 integer programming feasibility problem is K9J-complete. 

Soon after the appearance of Cook's theorem, the list of K9J-complete problems was 
substantially enriched. This list includes lower-bound feasibility versions of all of the 
problems in Figure 1.1 that we have not already stated are in 9J. It is important to 
understand that showing that a problem is in K9Jce is a negative result about the likelihood 
of finding a polynomial time algorithm for it. 

To illustrate the use of polynomial transformations, we now show that some problems 
are Kgp-complete. In choosing candidates, it is important to try to get as close to the 
boundary (if it exists) between gp and Kgpce. By this we mean the following: Given a 
problem in gp, what are the most simple generalizations of it that make it Xgp-complete? 
For example, lower-bound feasibility testing for matching can be solved in polynomial 
time. In terms of linear inequalities, this problem is to determine if 
{x E Bn: Ax ~ 1, cx ;:?; z} =1= 0, where A is an m x n 0-1 matrix with two l's in each column 
(the node-edge incidence matrix of a graph), c is an integral n-vector, and z is an integer. 
However, if we allow matrix A to contain three 1's in each column, the problem becomes 
Kgp-complete, even if we restrict c to be a vector of 1 'so 

A similar situation occurs when we limit the number of I's in each row of A. When the 
0-1 matrix A contains one 1 in each row, the feasibility problem for the set 
{x E Bn: Ax ~ 1, cx ;:?; z} is trivial. However, if we allow matrix A to contain two l's in 
each row, the problem becomesK9J-complete, even if we restrict c to be a vector ofl's. We 
now prove this result by a polynomial transformation from the satisfiability problem. 

An instance of the unweighted node-packing problem is: Given a graph G = (V, E) and 
an integer k, is there a U ~ V such that I U I ;:?; k and U is a node packing? Alternatively, is 
{x E B I v I: Ax ~ 1, LjEV Xj ;:?; k} =1= 0, where A is the edge-node incidence matrix ofG (i.e., 
where A is a 0-1 matrix with two 1 's in each row)? 

Proposition 6.7. The lower-bound feasibility problem for unweighted node packing is 
Kgp-complete. 
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(1, 1) 

(2, 1) 

cr Ci 
1 {l,2} {3} (6,3) 

2 {2,3} {4} 
3 {4} {l,2} 

4 {3} 0 

(8,2) (2,2) 

Figure 6.1. 

Proof The problem is a special case of 0-1 integer programming feasibility, so it is in 
)(PJ. Membership in )(PJcg is established by polynomial transformation from the satisfia
bility problem. 

Given an instance of the satisfiability problem specified by N = {I, ... ,n} and 
C i = (Ct,Cn for i = 1, ... ,m, we set k = m and construct G = (V, E) as follows. Let 

Vi = {(j, i):j E cn, Vi = {en + j, i):j E cn, 
m 

Vi = Vi U Vi for i = 1, ... ,m and V = U Vi. 
i=l 

Each pair of nodes in Vi is joined by an edge; and for j = 1, ... ,n and I =1= i, nodes (j, i) 
and (n + j, I) are joined by an edge. 

An example of the construction of G is shown in Figure 6.1. A feasible solution to the 
satisfiability problem is N° = {l, 3} or Xl = X3 = 1 and X2 = X4 = O. A node packing of size 4 
is {(I, 1), (8, 2), (6, 3), (3, 4)}. 

In general, any node packing of size m is of the form {Cab 1), (a2, 2), ... , (am, m)} and 
such a packing exists if and only if N° = {ai: ai ~ n} is a solution to the satisfiability 
~~m. • 

An instance of the set partitioning feasibility problem is: Given an m x n 0-1 matrix A, 
is {x E Bn: Ax = 1} =1= 0? 

Proposition 6.8. The set partitioning feasibility problem is )(PJ-complete. 

Proof The problem is a special case of 0-1 integer programming feasibility, so it is in 
)(PJ. We prove membership in )(PJcg by transformation from the unweighted node-packing 
lower-bound feasibility problem. Given a graph G = (V, E) and an integer k, let IE be an 
I E I x I E I identity matrix, let A G be the edge-node incidence matrix of G, and let 1 be a 
row vector of I V II's. Construct the ( I E I + k) x ( I E I + k I V I ) matrix 

I I I I .iE_t.- A~~ A~r:~J..~£... 
I 1 I 0 I I 0 
I I I I 

o I 0 I I'" I 0 
I 6 I 6 I ! 

A= 
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Suppose Ax = 1, where x E B~ft-kIVJ. This can be the case if and only if the columns of A for 
which Xj = 1 have the following structure. There is exactly one column from B i for i = 1, 
... ,k. If bip is the column chosen from B i, and b1q is the column chosen from B l, then the 
nodes corresponding to these columns are not joined by an edge. Hence the k columns 
chosen from (Bb ... ,Bk) define a node packing of size k. The partition is completed by 
choosing appropriate columns from B 0; these correspond to edges of G that are not met by 
any nodes in the packing. An example is shown in Figure 6.2. Nodes 1 and 3 yield a 
packing of size 2, and a partition is indicated by the checked columns. • 

Proposition 6.9. The set partitioning!easibility problem in which matrix A has, at most, 
three 1 s per column is .H1P-complete. 

Proof We polynomially transform the general set partitioning feasibility problem 
with an arbitrary 0-1 m x n matrix A into a 0-1 m I x n I matrix A I such that matrix A I has 
no more than three 1's per column and there is a one-to-one correspondence between 
solutions of {x E Bn: Ax = 1} and {y E B n': A 'y = 1}, where n' ~ n(2m - 1) and 
m' ~ m + 2n(m - 1). We assume that A has at least one column, say a[, with t ~ 41's; 
otherwise there is nothing to prove. Let A = (a r, An-I) and 

A' = (~I A n- I 

I HI 0 

where ~I is an m x t matrix of unit columns such that ei is a column of ~I if and only if 
ail = 1, and 0 1 is an m x (t - 1) null matrix. HI and KI are 0-1 matrices that will be 
described subsequently. Consider the equations 

~Iyl + A n_Iy2 = 1 

Hlyl + K ly3 = 1 

yl E B t , y2 E Bn-I, y3 E B t- I. 

Suppose HI and KI are such that the only two solutions to 

are yl = (1, 1, ... , 1), y3 = (0, 0, ... ,0), and yl = (0, 0, ... ,0), y3 = (1, 1, ... , 1). This 
condition can be achieved if H 1 and K 1 each have 2t - 2 rows and the following structure: 

Note that if yl = 1, then yi = 0 and Y1 = 1. Similarly, if YI = 1, then yi = yi = 0 and y~ = 1. 
We then proceed inductively to obtain the result. 
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2 

4 

./ ./ ./ 

1 0 0 0 0 1 1 0 0 1 1 0 0 
0 1 0 0 0 1 0 0 1 1 0 0 1 
0 0 1 0 0 0 1 0 0 1 0 

A= 0 0 0 1 0 0 1 0 0 1 0 
0 0 0 0 0 0 1 0 0 

0 0 0 0 0 1 1 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 

Figure 6.2. 

The solution with y3 = (1, 1, ... ,1) yields A n_Iy2 = 1, and we note that 
{x E B n

: Ax = 1, Xl = O} = {CO, y2) E B n
: A n_ly2 = 1}. Also the solution with yl = (1, 1, ... , 

1) yields Lllyl = a b so 

It is important to observe that HI and KI have been chosen so that each column of 

has no more than three 1 'so 
Now suppose that A = (Ab A n- k), where each column of Ak has more than three l's and 

each column ofA n- k has three or fewer l's. By applying the above procedure recursively, we 
eventually obtain the desired m' x n' matrix 

( 

LlJ Ll2 
HI 0 

A' 0 H2 

6 0 

Llk A n- k 

o 0 
o 0 

o 0 

Since k ~ nand t ~ m, it follows that m' ~ m + 2n(m - 1) and n' ~ n(2m - 1). • 

Next we consider the 0-1 integer programming feasibility problem with only one linear 
equation. Let N = {l, ... , n}. An instance of the subset sum problem is: Given an integer 
n, an integral n-vector (at, ... ,an), and an integer b, is {x E Bn:LjEN ajxj = b} =1= 0? 
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Proposition 6.10. The subset sum problem is JV[ljJ-complete. 

Proof Membership in,K[ljJ is shown by guessing subsets of N. We show membership in 
,K[ljJC(i by polynomially transforming the set-partitioning feasibility problem to the subset 
sum problem. Given a 0-1 m x n matrix A, define 

and 

m 

aj = I (n + 1)i-1aij for j = 1, ... , n 
i=1 

b = I (n + 1)i-l = (n + l)m - 1. 
i=l n 

Since LjEN ajxj = b is a linear combination of Ax = 1 obtained by weighting the ith row by 
(n + 1)i-l, we have {x E Bn: Ax = 1} ~ {x E Bn: LjEN ajxj = b}. Now to show that the two 
sets are identical, we note that the unique solution to L7!l (n + l)i-

1
Ui = b, Ui E BI is Ui = 1 

for i = 1, ... ,m. Thus if LjES aj = b so that LjES L7!1 (n + 1)i-1aij = L7!1 (n + 1)i-l, then 
LjES a ij = 1 for i = 1, ... , m. • 

An instance of the 0-1 knapsack lower-boundfeasibility problem is: Given an integer n, 
integral n-vectors (at, ... ,an) and (ct, ... , cn), and integers band z, is 

Corollary 6.11. The 0-1 knapsack lower-boundfeasibility problem is ,K[ljJ-complete. 

Proof The problem is in ,K[ljJ, since it is a special case of the 0-1 feasibility problem. 
The subset sum problem can be reformulated as the feasibility problem for the set 
{x E Bn: LjEN ajxj ~ b, LjEN ajxj ;?; b}. Hence it is a special case of the 0-1 knapsack lower
bound feasibility problem. • 

Membership in JV[ljJrl for the 0-1 knapsack lower-bound feasibility problem does not 
immediately imply that the integer knapsack lower-bound feasibility problem is in ,K[ljJC(i 
because upper-bound constraints are needed in the obvious transformation of a 0-1 
knapsack problem to an integer problem. Nevertheless, there is a polynomial transforma
tion of the 0-1 knapsack problem to the integer knapsack problem. This is left as an 
exercise. 

Figure 6.3 shows the class JV[ljJ and the two subsets [ljJ and ,K[ljJC(i, which are disjoint unless 
[ljJ = ,K[ljJ. If [ljJ =1= ,K[ljJ, it can be shown that [ljJ U ,K[ljJrl =1= }([ljJ. 

Within the class ,K[ljJrl, it is useful to make some distinctions. The subset sum problem 
can be solved in O(nb) time. Although this is not polynomial, it is less formidable than 
O(2n). We say that an algorithm runs in pseudopolynomial time, if its running time is a 
polynomial function of the length of the data encoded in unary (a one-symbol alphabet). 
The principal significance of unary encoding is that an integer k is represented by a string 
of k symbols. The O(nb )-time algorithm for the subset sum problem is pseudopolynomial 
because the unary encoding of the integer b requires a string oflength b. It should be noted 
that a polynomial transformation of Xl E ,K[ljJ to X 2, which is solvable in pseudopolyno
mial time (e.g., set partition feasibility to subset sum), does not imply a pseudopolynomial 
algorithm for X I. (Why?) 
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o 
Figure 6.3 

At the other extreme, there are K9P-complete problems for which the existence of a 
pseudopolynomial algorithm would imply rtP = K9P. These problems are called strongly 
K9P-complete. Existence is obvious because there are K9P-complete problems for which 
the length of a unary encoding of the data is a polynomial function of the length of a binary 
encoding. An example is 0-1 integer feasibility in which all of the constraint coefficients 
are either 0 or ±1. Figure 6.4 shows the relationships among the subsets of K9P that we have 
discussed. 

Note thatK9Pcg n cgo.N'9P appears in Figure 6.4. The implication of K9Pcg n cgo.N'9P * 0 is 
given in the following proposition. 

Proposition 6.12. If K9Pcg n cgo.N'rtP * 0, then K9P = cgo.N'9P. 

A polynomial-time algorithm for determining Zo = max{ex: xES} obviously implies a 
polynomial-time algorithm for the lower-bound feasibility problem {x E S: ex ~ z} * 0. 
Hence if the feasibility problem is K9P-complete, a polynomial-time algorithm for the 
optimization problem would imply g; = Kg;. But since the optimization problem is not in 
K9P, it is not K9P-complete. 

In speaking about these problems, we need to extend the notion of polynomial 
reducibility to problems other than feasibility problems. We call a problem Kg;-hard if 
there is an K9P-complete problem that can be polynomially reduced to it. Thus if a 
problem is KrtP-hard it is at least as difficult as any K9P-complete problem. It also follows 
that a polynomial algorithm for an K9P-hard problem implies 9P = KrtP. 

There is also a converse for optimization problems such as the integer programming 
problem. We have already observed that a polynomial-time algorithm for the lower-bound 
feasibility problem and binary search yields a polynomial-time algorithm for the optimi-

Pseudo- __ -..........., 
polynomial 

Figure 6.4 

Strongly 
,!V.o/"t6' 

See proposition 
6.12 
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zation problem (see Proposition 5.1). Hence if9J =.N9J the integer programming problem 
is solvable in polynomial time. The point is that when an optimization problem has this 
property, it serves the same role as an .N9J-complete problem with regard to the question of 
whether 9J = .N9J. 

The classification scheme presented in this chapter can be very useful when we begin to 
study an integer optimization problem. Our knowledge of q'J and .N9J-hard problems 
makes it likely that most problems that we encounter will be classifiable. If 9J *- .Nq'J, our 
expectations of what can be accomplished algorithmically should be guided by the 
classification. If we know that the problem is .Nq'J-hard, we can expect that some large 
instances will be difficult for any algorithm. However, this definitely does not mean that 
we will be unable to solve many large instances in a reasonable amount of time. And even 
when we cannot find an optimal solution or prove that a known solution is optimal, it may 
very well be possible to obtain a good feasible solution and to show this feasible solution is 
within a specified tolerance of being optimal. If this were not the case, we would not have 
written this book. 

Part II of this book develops theory and algorithms largely for dealing with .N9J-hard 
integer optimization problems. Once one departs from the worst-case point of view, we 
will see that much can be accomplished. 

Above we observed that 9J =.Nq'J would imply the existence of a polynomial-time 
algorithm for integer programming. However, it is difficult for us to imagine the impact of 
the existence of polynomial-time algorithms on the computational aspects of integer 
programming, since it is not clear what kind of algorithms would result. In the next 
chapter we will give two polynomial-time algorithms for linear programming. One of 
these certainly appears to be computationally inferior to exponential-time simplex 
algorithms. The other is more promising, but its practical implementations ignore some of 
the details required to prove polynomiality. 

7. COMPLEXITY AND POLYHEDRA 

We begin this section by considering the relationships among three feasibility problems 
associated with polyhedra. 

1. The membership problem for a family of polyhedra. An instance is given by an 
integer n, a polyhedron in the family peR n, and an x ERn. The instance is feasible 
if x EP. 

2. The validity problem for a family of polyhedra. An instance is given by an integer n, 
a polyhedron in the family P eRn, and a (n, no) E Rn+l. The instance is feasible if 
(n, no) is a valid inequality for P. 

3. The lower-boundfeasibility problem for a family of polyhedra. An instance is given 
by an integer n, a polyhedron in the family PC Rn, and a (n, no) E Rn+l. The 
instance is feasible if P n {x ERn: nx ~ no} *- 0. 

Proposition 7.1. The following problems are equivalent: 

a. the validity problem; 

b. the membership problem for the family of polars; and 
c. the complement of the lower-bound feasibility problem. 
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Proof. The equivalence of problems a and b follows immediately from the definition 
of polarity, that is, (n, no) is a valid inequality for P ifand only if(n, no) belongs to the polar 
of P. Recall that the polar of P is a polyhedron in Rn+l. 

By definition of validity, (n, no) is valid for P if and only if {x E P: nx > no} = 0. But 
this is just the complement of the lower-bound feasibility problem with input P and 
(n, no + e) for some suitably small e > O. • 

The complexity of these problems depends on the description of the polyhedra and the 
points x or (n, no). We will assume throughout this section that the allowable inputs for the 
points x and (n, no) are polynomial in the description of the polyhedra. Such vectors are 
called short. By restricting the input in this way, it is sufficient to consider the description 
of P alone. The results of Section 4 on the size of numbers that can arise in optimal 
solutions and coefficients of facet defining inequalities (Theorems 4.1 and 4.3) justify the 
assumption of short vectors in integer programming. 

Suppose P is described by a set of linear inequalities, that is, P = {x ERn: Ax ~ b}. 
Then the membership problem for P is solved by substitution. The validity and lower
bound feasibility problems for P can be answered by solving the linear program 
z = max{nx: Ax ~ b}, since (n, no) is valid for P if and only if no ~ z, and 
P n {x ERn: nx ~ no} =1= 0 if and only if no ~ z. Hence, given a linear inequality descrip
tion of P, there are polynomial-time algorithms for all three problems. We also obtain 
polynomial algorithms when P is described by a list of its extreme points and rays. 

However, in many integer and combinatorial optimization problems, P is the convex 
hull of a set of integral points. We may have an implicit description of the extreme points 
of P (e.g, the node packings of a graph), or we may have a set oflinear inequalities such that 
P is the convex hull of integral points that satisfy these inequalities, or we may even have a 
linear inequality description of P, but with the number of inequalities exponential in the 
natural description of P. With these descriptions, there is not an obvious polynomial-time 
algorithm for any of the three problems. 

Example 7.1 (The family of polytopes for 0-1 integer programming). An instance is 
specified by integers m and n, an m x (n + 1) matrix (A, b), and a short vector x ERn or 
(n, no) E Rn+l. The polytope for an instance is P = conv{x E Bn: Ax ~ b}. 

a. Lower-bound feasibility. P n {x ERn: nx ~ no} =1= 0 if and only if 
{x E Bn: Ax ~ b, nx ~ no} =1= 0. We have already established that the latter lower-bound 
feasibility problem is Kg;-complete. Hence lower-bound feasibility for the family of 0-1 
integer programming polytopes is also Kg;-complete. 

b. Validity. By Proposition 7.1, the validity problem for 0-1 integer programming 
polytopes is in cgo.Hg;. However, if it was in Kg;, the lower-bound feasibility problem for 
0-1 integer programming polytopes would be in Kg; n cgo.Hg;. 

c. Membership, We claim that the membership is in Kg;. First, an instance is trivial if 
either x $. {x E R~: Ax ~ b, Xj ~ 1 for all}} or if x E Bn. So suppose 
x E {x E R~ \ Bn: Ax ~ b, Xj ~ 1 for all}}. Observe that ifdim(P) = n, any x E P can be 
written as a convex combination of a set of n + 1 binary vectors in P. Now the nondeter
ministic algorithm for membership is to guess vectors Xi E B n for i = 1, ... , n + 1. If each 
of these vectors are in P, we continue. Otherwise we guess a new set. Next we consider the 
linear system 

n+l n+l 
I AjX i = x and I Ai = 1. 
i=l i=! 
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If this system has a solution AO E R~+I, we conclude that x E P; otherwise we return to the 
guessing stage. 

Proposition 7.2. If lower-bound feasibility (validity) for a family of polyhedra is HPJ
complete and validity (lower boundfeasibility) is in HPJ, then HPJ = cgoJ(PJ. 

Proof Suppose validity is in HrJ>. Then by Proposition 7.1, lower-bound feasibility is 
in CfioJ(PJ. Hence lower-bound feasibility is in HPJcg n CfioJ(PJ. Now by Proposition 6.12 we 
obtain HPJ = cgoJ(PJ. • 

In other words, if one of the problems is HPJ-complete, it is very unlikely that the other 
is in .HrJ>. We frequently encounter the case (as in Example 7.1) where the lower-bound 
feasibility problem is HPJ-complete, so it is unlikely that the validity problem is in HrJ>. The 
following example, however, illustrates an .HPJ validity problem. 

Example 7.2 (Fractional node-packing polytopes). An instance is specified by a graph 
G = (V, E) and a (n,no) E RJ v I + I. Let A be the incidence matrix of maximal cliques by 
nodes of G and P = {x E RJ v I: Ax ~ n. Note that the number of rows of A is generally 
exponential in the size of G. Here (n, no) is valid if and only if, for some k ~ n, 

k k 

n ~ L Uiai and no ~ LUi, 
i=1 i=1 

where {a i
}7=1 are rows of A and Ui ~ 0 for i = 1, ... ,k. Since there is a polynomial-time 

algorithm for determining whether a 0-1 vector a i is the incidence vector of a maximal 
clique of G, there is an .HPJ algorithm for the validity problem. 

In Examples 7.1 and 7.2 we have implicitly considered the extreme point membership 
problem for a family of polytopes. The input is the same as in the membership problem, 
but it is feasible only if x is an extreme point of P. Note that in Example 7.2, extreme point 
membership was with respect to the polar; that is, a 0-1 vector ai is the incidence vector of 
a maximal clique of G only if it is an extreme point of the polar of the fractional node
packing polytope. In both examples, we have sketched proofs of the following proposition. 

Proposition 7.3. If the extreme point membership problem for a family of polytopes is in 
HPJ, then the membership problem for thefamily is also in HPJ. 

We now put together Propositions 7.2 and 7.3 by considering the facet validity problem 
for a family of polyhedra. The input is the same as in the validity problem, but it is feasible 
only if(n, no) defines a facet of P. 

Proposition 7.4. If lower-bound feasibility is .HrJ>-complete for a family of polyhedra and 
facet validity is in HPJ, then .HPJ = CfioJ(PJ. 

Proof Suppose facet validity is in HPJ. Then by Proposition 7.3, applied to the family 
of po lars, validity is in .HPJ. Now Proposition 7.2 implies that HPJ = CfioJ(PJ. • 

Proposition 7.4 says that for an HPJ-complete lower-bound feasibility problem, a good 
characterization of all of the facets of the family of polyhedra is not possible unless 
.H(!P = CfioJ(PJ. In other words, there is some class of facets for the family of polyhedra for 
which there is no short proof that they are facets unless HPJ = CfioJ((!P. 
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Example 7.3 (Node-packing polytopes). An instance is specified by a graph G = (V, E) 
and a (n, no) E Rl v I +1. Here P is the convex hull of node packings. If facet validity is in 
,Hf5JJ, then,Hf5JJ = Cf£oJ(g}, since lower-bound feasibility is ,Hf5JJ-complete. The reader should 
note the subtle difference between Examples 7.2 and 7.3. 

8. NOTES 

Sections 1.5.1 and 1.5.2 

Basic reference books on computational complexity are Aho et al. (1974), Garey and 
Johnson (1979), Knuth (1979, 1981), and Lewis and Papadimitriou (1981). Two surveys and 
an annotated bibliography prepared for the combinatorial optimization community are, 
respectively, Lenstra and Rinnooy Kan (1979), Johnson and Papadimitriou (1985a), and 
Papadimitriou (1985). 

Jeroslow (1972) discusses the unsolvability of quadratic integer programs. 

Section 1.5.3 

Polynomial-time algorithms for the minimum-weight path problem were presented in 
Section 1.3.2. 

Edmonds (1967a) pointed out that very large numbers could arise in Gaussian elimina
tion if rationals were not necessarily represented by a pair of relatively prime numbers. He 
also gave a modified elimination scheme and proved that with this scheme the size of 
integer numbers used to represent rationals was polynomially bounded. 

Tardos (1985) gave a polynomial-time algorithm for the transportation problem with 
the bound being independent of the numerical data. Her approach will be presented in 
Section 1.6.5 in the more general setting of linear programming. 

Klee and Minty (1972) have shown that the simplex algorithm with a standard pivoting 
rule does not have a polynomially bounded number of pivots. The expected behavior of 
the simplex algorithm has been analyzed by Borgwardt (1982a, b), Smale (1983a, b), and 
others. Shamir (1987) gives a survey of these results. 

Edmonds (1965a, c) proposed the concept of a good characterization. This was done in 
the context of the maximum-weight matching problem (see Chapter 111.2). 

Section 1.5.4 

Bell (1977) proved that the formulation ofa feasible n-variable integer program with linear 
inequalities and integrality restrictions requires no more than 2n 

- 1 inequalities. 
The results on the size of numbers that arise in general integer programming problems 

have been obtained independently by several people, including Borosh and Treybig (1976), 
Von zur Gathen and Sieveking (1978), Kannan and Monma (1978), and Papadimitriou 
(1981a). The simple proof given in the text was suggested to us by Gerard Cornuejols. 

Sections 1.5.5 and 1.5.6 

The basic references for these sections are Garey and Johnson (1979) and the more recent 
survey by Johnson and Papadimitriou (1985a). 

The class,Hg} was formally introduced by Cook (1971). A slightly different definition of 
,Hf5JJ was used by Karp (1972, 1975). Cook used polynomial reducibility in the definition of 
,HPJ and proved the fundamental result of the existence of complete problems in ,Hg}. Karp 
defined ,Hg} by polynomial transformability and showed that numerous combinatorial 
optimization problems are ,Hf5JJ-complete. The proofs of Propositions 6.9 and 6.10 are 
taken from Lenstra and Rinnooy Kan (1979). 
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Section 1.5.7 

Facet complexity problems have been studied by Karp and Papadimitriou (1982) and 
by Papadimitriou and Yannakakis (1984). A survey of these results is contained in 
Papadimitriou (1984). 

Also see the notes for Section I.6.3. 

9. EXERCISES 

1. Verify the relations implied in Figure 1.1. 

2. Give a tight bound for the magnitude of coefficients in the extreme points of 
p = {x E R1: 1:)=1 ajxj ::%; b}, where aj, b E Zl. Compare this bound with the bound 
of Proposition 3.1. 

3. Can you find an example for which the bounds of Proposition 3.1 are tight? 

4. Give a certificate of optimality that x = [W W] is optimal in Example 3.1 of Chapter 
I.2. 

5. Give a short proof that M = {(1, 2), (3, 5)} is a maximum-weight matching in the 
graph of Figure 9.1. 

6. Show that if there is a polynomial algorithm to test feasibility of 
p = {x ERn: Ax ::%; b}, there is a polynomial algorithm to find a minimal face of P. 

7. Give a tight bound for the magnitude of coefficients in extreme points of conv(S), 
where S = P n zn and P = {x E R1: 1:)=1 ajxj::%; b}. Compare it to the bound of 
Theorem 4.1. 

8. Can you find an example for which the bound of Theorem 4.1 is tight? 

9. Prove Proposition 5.7 of Section I. 6.5. 

10. Given A and b, prove that if x E R1 satisfies 

I ± aijxj - b i I ::%; E for i = 1, ... , m 
)=1 

with E = (2mnlog(}mntl, {x E R1: Ax = b} * 0. (See Proposition 4.6 of Section I.6.4). 

Figure 9.1 
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11. Give algorithms to show that the following problems on graphs are in q>. 

i) Does G contain a cycle? 

ii) Is G bipartite? 

In i and ii, how would you give a short proof when the answer is no? 

12. A graph G = (V, E) is a hole if it contains a single cycle through all of the nodes and 
no other edges. Show that the problem "Does G or its complement contain a node
induced subgraph that is a hole of odd length?" is in C(ioJrq>. 

13. Is the problem "Is b E zl \ {a} a prime number?" in .Nq>, C(ioJrq>, neither, or both? 

14. Given that the node-packing problem is .Nq>-complete, show that the following 
problems are .Nq>-complete: 

i) Node cover. Given a graph G = (V, E) and an integer K, is there a subset S ~ V 
with I S I ~ K such that every edge of E is incident to a node of S? 

ii) Un capacitated facility location. Given sets M and N and integers cij for 
i E M,j EN, jj for j EN and K, is there a set S ~ N such that 
LiEM minjEs c ij + LjES jj ~ K? 

15. Show that the following problems are .Nq>-complete: 

i) Set covering: Given an m x n 0-1 matrix A and an integer K, does there exist 
x E Bn such that Ax ~ 1 and L7~1 Xi ~ K? 

ii) Directed Hamiltonian circuit. Given a directed graph [!J) = (V, stl), is there a 
directed cycle passing through each vertex exactly once? 

iii) Matching with bonds. Given a graph G = (V, E), pairwise disjoint subsets B i for 
i = 1, ... ,p of E, and an integer K, does there exist a matching Min G such that 
1M I ~ K and, for i = 1, ... ,p, either Bi n M = Bi or Bi n M = 0 (i.e., either all 
the edges in B i are in the matching or none are)? The subsets B i are called bonds. 

16. Asetfunctionf(S) = LT<;;S cTforS ~ Nisdescribed by the data {T, CT}, wherecT =1= O. 
A set function is sub modular on N if 

f(S) + f(T) ~ f(S U T) + r(S n T) for all S, T ~ N. 

Show that the problem: "Isf not submodular?" is .Nq>-complete. 

17. Show that the traveling salesman problem is .Nq>-hard. 

18. Show that the minimum-weight path problem (with positive and negative edge 
weights) is .Nq>-hard. 

19. Give a polynomial transformation of 0-1 knapsack to integer knapsack. 

20. Show that the fixed-charge network flow problem is .Nq>-hard. 

21. Show that the maximum-cut problem "Given [!J) = (V, stl) and c E R~, find 
max(i,)EO+(U)C ij" is .Nq>-hard, where l5+( U) = {(i, j) E stl: i E U, j E V \ U}. 



9. Exercise 

22. Show that the problem 

is Kg}}-hard. 

n n 

max L L cijxij 
i=l j=l 

n 

L x ij = 1 for all i 
j=l 

n 

L Xij = 1 for all) 
i=l 

n n 

L 'LtijXij ~ T 
i=l j=! 

23. Show that the single-machine scheduling problem with due dates is Kgp-hard. 
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24. Let S = {x E Z1: Ax ~ b}. Which of the following problems (if any) are known to be 
in gp, Kg}}, cgoJfgp? Which are unlikely to be in Kgp? Justify your answers. 

i) Membership for conv(S). 

ii) Extreme point membership for conv(S). 

iii) Validity for conv(S). 

iv) Facet validity for conv(S). 



1.6 
Polynomial-Time Algorithms 
for Linear Programming 

1. INTRODUCfION 

Simplex methods (see Chapter 1.2) are practical techniques for solving linear programs. 
But, according to the model of computational complexity presented in the previous 
chapter, they are unsatisfactory because their running time can grow exponentially with 
the size of the input. Here we give some polynomial-time algorithms for linear program
ming and discuss their consequences in combinatorial optimization. 

The ellipsoid algorithm, which will be presented in Section 2, was acclaimed on the 
front pages of newspapers throughout the world when it appeared in 1979. Although the 
algorithm turned out to be computationally impractical, it yielded important theoretical 
results. It was the first polynomial-time algorithm for linear programming. Also, as will be 
discussed in Section 3, it is a tool for proving that certain combinatorial optimization 
problems can be solved in polynomial time. 

In Section 4, we will present a version of a polynomial-time projective algorithm for 
linear programming. Remarkably good computational results have been claimed for 
projective algorithms, but only time will tell whether they are superior to, or a serious rival 
of, simplex methods. 

The running times of these polynomial-time algorithms typically depend on m, n, and 
log 8A ,b.c where 

8A ,b,c = max{max laij I, max Ib; I, max ICj I}. 

In Section 5, it will be shown how the dependence on band c can be eliminated. Thus, for 
example, when A is a (0, 1) matrix, there are linear programming algorithms that are 
polynomial in m and n. 

To present polynomial-time versions of the ellipsoid and projective algorithms, some 
basic questions about linear programming must be addressed. 

1. Unlike the simplex methods, the ellipsoid and projective algorithms are naturally 
described as algorithms to find a feasible point in a polyhedron. Hence, we must convert a 
feasibility algorithm into an optimization algorithm. The standard approach is to formu
late a linear program as the feasibility problem: Find x E R~, u E R':' satisfying 

Ax ~ b, uA ~ c, cx ~ ub. 
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But this approach is computationally unsatisfactory, so we will need to consider other 
methods. 

2. Neither the ellipsoid nor the projective algorithm search extreme points. Whereas 
extreme points and extreme rays can be described in polynomial time, arbitrary points 
cannot. So care has to be taken that the points obtained have polynomial descriptions. 

3. The last step of the ellipsoid and projective algorithms requires the conversion of an 
"almost feasible/almost optimal" point to a basic feasible/optimal solution. We need to 
show that this operation can be executed in polynomial time. An intermediate step in this 
process is the perturbation of a constraint or of the objective function so that the resulting 
linear program has a unique primal or dual feasible solution. 

2. THE ELLIPSOID ALGORITHM 

To describe the ellipsoid algorithm, we need a few basic properties of ellipsoids. 

Definition 2.1. An n x n symmetric matrix D is positive definite if xTDx > 0 for all 
x ERn except x = O. 

Definition 2.2. An ellipsoid with center y is a set E = {x ERn: (x - yfD-1(x - y) ~ 1}, 
written as E(D, y), where D is an n x n positive definite matrix and y ERn. 

Definition 2.3. A sphere with center y and radius r is a set of the form 
S = {x ERn: (x - y)T(X - y) ~ r2}, written as S(y, r). 

Evidently a sphere is a special case of an ellipsoid with D = r2 I n, where In is the n x n 
identity matrix (see Figure 2.1). We let sn denote the unit sphere in R n with center 0, that is, 
sn = S(O, 1). 

x2 Z2 

(x-y}TD-l(X-Y) s 1 

(0, I) 

----------~--~----~~-----xl --------+-----~----~-------Zl 
(l,O) 

Figure 2.1 
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----------~r-;-~E++7~~---xl 

E 

Figure 2.2 

The following property is crucial to the ellipsoid algorithm. 

The Ellipsoid Property. Given an ellipsoid E = E(D, y), the half-ellipsoid 
H = E(D, y) n {x ERn: dx ~ dy}obtained byintersectingEwithanyinequalitydx ~ dy 
through its center is contained in an ellipsoid E' with the property that vol(E' )/vol(E) 
~ e-1I2(n+l), where vol denotes volume (see Figure 2.2). A constructive proof of this property 
will be given below. 

We begin by describing the ellipsoid algorithm for a membership problem. 

Strict Membership Problem. Given integers m and n, an integer m x n matrix A, and 
an integer m-vector b, find a point in P< = {x ERn: Ax < b} or show that P< = 0. [The 
notation Ax < b means that aix < bi for i = 1, ... ,m where (ai, bi) is the ith row of 
(A, b).] 

Throughout this section we will assume that given a point y ERn we check whether 
y E P< by testing whether aiy < bi for i = 1, ... ,m. 

We will also assume that P< is bounded, so that there exists an w such that if 
x E P<, then IXj I < w for all j EN. This means that P< s S(O, s), where s = win, and 
hence vol(P<) ~ vol(S(O, s» = sn vol(sn). 

A second important observation concerns the volume of polyhedra. 

The Strict Feasibility Property. If P< =1= 0, then vol(P<) > O. More precisely, given a point 
y E P<, there is an r > 0 such that S(y, r) S P<. This implies that vol(P<);a. 
vol(S(y, r» = rnvol(Sn). 

Now suppose we are given (a) a number v such that vol(P<) > v if P< =1= 0 and (b) a 
number V such that vol(Eo) = V, where Eo = E(Do, xo) is an ellipsoid containing P<. Let 
t* = [2(n + 1) (loge V -logev)]. 



2. The Ellipsoid Algorithm 

The Ellipsoid Algorithm for P< 

Initialization: Eo = E(Do, xo). 
Sett = 0. 

Iteration t: If Xt E P<, stop. A feasible solution has been found. 
If t ~ t*, stop. P< = 0. 
If Xt $. P<, suppose ai(t)xt ~ bitt). 
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(Note that we have departed from our usual notation here in that Xt ERn; that is, Xt is 
not the tth component of x.) 
Find an ellipsoid Et+l containing the half-ellipsoid H t = E t n {x ERn: ai(t) x ~ ai(t)xt} 
as specified by the Ellipsoid Property. 
Let Et+l = E(Dt+b Xt+l) and t .... t + 1. 

Theorem 2.1. Given v, V, and t* as defined above, the ellipsoid algorithmfor P< terminates 
correctly after no more than t* iterations. 

Proof Since Xt E P< is readily verifiable, we only have to show that if Xt $. P< for t = 0, 
... , t*, then P< = 0. 

First we use induction to show that P< s; Etforallt ~ t*. We have constructed Eo so that 
P< s; Eo. Now suppose that P< s; E k. Then as ai(k)xk ~ bi(k), we have 

Hence 

Now consider the volume of E t •. Since vol(Et+1)/vol(Et) ~ e- lf2(n+1), it follows that 
vol(Et.)/vol(Eo) ~ e-t'/2(n+l). Hence 

vol(Et.) ~ Ve-t'/2(n+l) = Ve- f2(n+l)(logV-logv)1!2(n+l) 

~ Ve-1og(v/v) = v. 

But now if P< *" 0, it would follow that vol(P<) > v, vol(Et·) ~ v, and P< s; Et" which is 
impossible. Hence P< = 0. • 

The actual details of how Et+l = E(Dt+b Xt+l) is constructed from E t = E(Dt> Xt) are 
given by the following expressions. We assume n > 1. 

Let d = ai(t) and D = D t. 

(2.1) 
1 Dd 

Xt+l = Xt - n+1 ,jdTDd 

(2.2) 

We will now show that these transformations lead to a new ellipsoid satisfying the 
ellipsoid property. Without loss of continuity the reader can go directly to Example 2.1. 
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Proposition 2.2. Every symmetric positive-definite n x n matrix D has a decomposition 
D = QfQl, where Ql is an n x n nonsingular matrix. 

Definition 2.4. If A is an n x n nonsingular matrix, bERn, and TA : Rn .... Rn is defined 
by TA(x) = Ax + b, then TA is called an affine transformation. 

Affine transformations have several important properties. We let TA(L) = 

{~E R n: ~ = Ax + b, x E L}. Affine transformations preserve set inclusion. 

Proposition 2.3. IfL ~ L' ~ R n, then TA(L) ~ TA(L') ~ Rn. 

Volumes are changed by a constant factor, so relative volumes are preserved. 

Proposition 2.4. If L ~ Rn is full-dimensional and convex, then vol(TA(L» = 

I detA I vol(L). 

Given an ellipsoid, there exists an affine transformation mapping it into a sphere 
centered at the origin. 

Proposition 2.5. Let E = E(D, y) be an ellipsoid with D = QfQl and let T be the affine 
transformation given by T(x) = (Qf)-lx - (Qf)-ly. Then T(E) = sn. 

Proof 

T(E) = {~: ~ = (Qf)-l(X - y): (x - yfD-1(x - y) ~ 1} 

= {~: «QD~fD-l(QD~ ~ l) 

= {~: ~TQID-IQr~ ~ l} 

= {~: ~T~ ~ n. • 
In Figure 2.3 we see what happens to E, E', and the half-ellipsoid H when the above 

transformation is applied to E = E(D, y). 

X2 Z2 

dx=dy 

dQiz=o 

E 

Xl zl 

E 

E' 

E' 

(a) (b) 
Figure 2.3 



2. The Ellipsoid Algorithm 151 

Affine transformations corresponding to rotations can be represented by transforma
tion matrices Q2 with the property that QfQ2 = I. Such matrices are called orthonormal. 

Proposition 2.6. Given an arbitrary nonzero vector d ERn. there exists an n x n orthonor
mal matrix Q2 such that Q2d = - IIdllel, where IIdll is the length of d and where el = 
(1,0, ... , Of 

Applying this proposition to the vector Q1d, we can rotate the sphere in Figure 2.3(b) so 
that the shaded area is just the half-sphere with ~I ~ O. Setting Q = Q 1 Q2, the effect of the 
transformation ~ = (QTtl(X - y) is to map E, E', and H as shown in Figure 2.4. 

Now we use the above transformations to show that the ellipsoid property holds for (2.1) 
and (2.2) with E = Et, E' = Et+b and y = Xt. 

We define 

1. QI to be any matrix such that Qi QI = D, 
2. Q2 to be the rotation matrix such that Q2Q 1d = - IIQ1dlieb and 

3. Q = Q2Qb 

and we use the transformation x = QT~ + Xt, or T(x) = (QTtl (x - Xt). Simple calcula
tions give the following proposition. 

Proposition 2.7 

i. IIQdll = ~dTDd. 
ii. QD-1QT = I. 

111. (QTtID = Q. 
iv. T(Et ) = {~: ~T~ ~ 1}. 

v. T({x: dx ~ dxt}) = {~: ~l ~ O}. 

vi. (a) T(xt+l) = n~1 el. 
(b) T(Et+l) = {~: (~ - n ~ I)T(l~ 1 (I - n ~ 1 elem-I(~ - n ~ I) ~ 1}. 

Zz 

-+-I~W--ZI ---+---+--++8@..@4¥1---- ~1 

Figure 2.4 
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Proof 

i. IIQ2Ql dll = ../(Q2Q1df(Q2Q 1d) = "/dTQfQ[Q2Qld = ../dTDd because Q[ = Q21 
since Q2 is orthonormal. 

ii. QD-IQT = Q2Ql(QfQlt1(Q2Qlf = Q2QIQ1l(Qf)-IQfQ[ = Q2Q[ = I. 
iii. By ii, QD-IQT = I, and hence (QTt1D = Q. 
IV. T(Et) = {~: (QT~fD-l(QT~) ~ 1} = {~: ~T (QD-IQT)~ ~ 1} = {~: ~T~ ~ 1}. 

v. T({x: dx ~ dxt }) = {~: dTQT~ ~ O} = {~: (Q2Qldf~ ~ O) = {~: ~1 ~ a}. 
VI. T(xt) = (QTt1(xt - Xt) = o. 

T(Et+l) = {~: QT~ = X - Xt, (x - xt+lfDiMx - Xt+l) ~ 1} 
= {~: (QT(~ - ~l+l)fDil1QT(~ - ~t+l) ~ 1} 
= {~: (~- ~t+lfQDil1QT(~ - ~t+l) ~ 1} 
= {~: (~ - ~t+lf«QTtlDt+l Q-ltl(~ - ~t+l) ~ 1}. 

We note that (2.2) yields 

n2 [I 2 (Qd)(Qd)T] . . .. 
= n2 _ 1 - n+l dTDd usmg 1ll 

= n2n~ 1 [I - n:l e1ef] using i and the definition of Q . 

Now we have what is needed to show that Et+l satisfies the ellipsoid property. 

Proposition 2.8 

i. D 1+1 is positive definite. 
ii. vol(Et+l)/vol(Et ) ~ e- 1I2(n+l). 

iii. H t = E t n {x: dx ~ dxt} s; E t+1. 

• 

Proof i. From statement vi of Proposition 2.7, we see thatDl+l = QT I':,.Q, where I':,. is a 
diagonal matrix with positive diagonal entries 0; for i = 1, ... ,n. Let 1':,.112 denote the 
diagonal matrix with diagonal entries 0)12 for i = 1, ... , n. It follows that 
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ii. Using Propositions 2.5 and 2.6, we have 

where the inequality is derived by two applications of the standard inequality (l + a) .-;;; ea 

for all la I. 
iii. Under the transformation, we have 

and 

It follows that T(Ht ) !;; T(E t+l ) since 0 .-;;; ~l .-;;; 1 for ~ E T(H t ). Applying Proposition 2.3 
to the inverse transformation of T, it follows that H t !;; El+l. • 

Example 2.1. P< = {x E R2: Xl + X2 < 2, - 2Xl + 2X2 < 1, - X2 < O}. 
We suppose it is known that Ix} I .-;;; 3 for j = 1,2 if xE P< and that 

vol(P<) > 1(\0 if P< * 0. 
We take Eo = {x E R2: rsxf + rsx~ .-;;; 1} with Xo = (0 0) and Do = e~ l~) so that 

vol(Eo) .-;;; vol{x E R2: Ix} I .-;;; 3 for j = 1, 2} = 81. 
We then calculate t* = [2(n + 1) (log 81 - log 160)] = [6 loge81OO] = 54. 
The numerical calculations of the iterations are given below. The shrinking of the el

lipses is shown in Figure 2.5 and the solutions are shown in Figure 2.6. 

Iteration O. Xo = (0 0) $. P< because -2Xl + 2X2 < -1 is violated. 
Using the updating formulas (2.1) and (2.2) with d = (-2 2) and D = eg 1~) gives 

( 16 
Xl = (1 -1) and Dl = 8 
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Iteration 1. Xl = (l -1) $. P< because -X2 < 0 is violated. 

Iteration 2. X2 = (i 1) $. P< because Xl + X2 < 2 is violated. 

( 11.06 -1.58) 
X3 = (0.41 -0.30) and D3 = -1.58 6.32 

Iteration 3. X3 = (0.41 -0.30) $. P< because -X2 < 0 is violated. 

Iteration 4. X4 = (0.20 0.54) $. P< because -2XI + 2X2 < -1 is violated. 

x5=(1.37 0.27) and D5=(~"~~ 

Iteration 5. Since X5 E P<, the algorithm terminates. 

1.60) 
3.16 . 

Note that in contrast to the subgradient algorithm of Section I.2.4, the steps XI - XI+I 
taken in the ellipsoid algorithm are not normal to the violated inequality ai(t)x < bi(t) 

except in special cases such as when the ellipsoid EI is a sphere. 
Now we describe how the ellipsoid algorithm can be modified to find nearly optimal 

solutions to a linear program. For convenience we will distinguish between the problem of 
maximizing ex over an arbitrary polytope 

Figure 2.5 
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(2.3) ZLP = max{cx: X E P} 

and the linear program where P is explicitly described by a set oflinear constraints 

(2.4) ZLP = max{cx: x E P}, where P = {x ERn: Ax ~ b}. 

In both cases we assume that P is nonempty and bounded and that P< * 0. Then by first 
running the ellipsoid algorithm for P< we can determine an initial point ao E P<. We then 
set Xo = ao and consider the strict inequality system P< n {x ERn: -cx < -cxo}. 

The idea behind the modification is simple. Every time a better feasible point XI E P< is 
found, we take P< n {x ERn: -cx < -CXt} as our new strict inequality system and reapply 
the ellipsoid algorithm. This approach, called the sliding objective function method, has 
the nice feature that the algorithm is always being applied to a feasible system unless XI is 
an optimal point. 

The Sliding Objective Function Approximate Ellipsoid Algorithm for (2.1) 

Initial assumptions: A feasible point ao E P< is given. There exists a sphere S(ao, r) C P. 
There exists a sphere S(ao, s) :J P. A value for E is chosen. 

N = 2n(n + 1) r log 2s;~clIl 

Initialization: Xo = ao, Do = s2I, (0 = cao, t = O. 
Iteration t: If XI $. P<, set d = ai(t), where ai(t)xI ~ bi(l) and (1+1 = (I' If Xt E Pq set 

d = -c, (1+1 = max{(t, cXI), and x .... XI if CXI > (I' Use formulas (2.1) and (2.2) to obtain 
XI+I and D I+I. 1ft> N, stop x E P< and cx ~ ZLP - E. Otherwise set t .... t + 1. 

To analyze this algorithm we need the following results on volumes. 

2 

Xo 
--~--~--------~--------------Xl 2 3 

Figure 2.6 
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y 

Figure 2.7 

Proposition 2.9 

a. vol(sn+I)/vol(sn) < 2n/n. 

b. vol(E(D, y» =.J Idet D Ivol(sn). 
c. IfC is a cone with vertex y, and H is a hyperplane intersecting C, then the truncated 

cone TC = conv({y}, C n H) with base C n H and vertex y has volume given by 

1 
vol(TC) = - vol(C n H)d(y, H), where d(y, H) = min{lIy - zll: z E H} 

n 

(see Figure 2.7). 

Theorem 2.10. When the approximate ellipsoid algorithm terminates, we have x E P and 
eN = eX ~ ZLp - E. 

Proof. We use the volume argument given in the proof of Theorem 2.1. Suppose x* is 
an optimal solution to LP. Because P<:::> S(ao, r), the initial feasible region 
P< n {x ERn: cx > cao} contains the truncated cone TC with base S(ao, r) n {x: cx = cao} 
and vertex x*, and after N iterations the final ellipsoid EN contains the truncated cone 
TC' = TC n {x ERn: cx > eN}' By Proposition 2.9, we have 

1 c(x* - ao) 
vol(TC) = n vol(S(ao, r) n {x: cx = cao}) Ilcll ' 

since the distance from x* to the hyperplane cx = cao is c(x* - ao)/ IIcli. Also 

vol(S(ao, r) n {x: cx = cao}) = rn- I vol(sn-I), 

since the intersection of a sphere with a hyperplane through its center is again a sphere with 
the same radius but of one dimension less. Finally 

vol(TC') = ( ZLp - eN)n vol(TC), 
ZLP - cao 

since the height of TC' is (ZLP - eN )/(ZLP - cao) times the height of TC. Hence 
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vol(TC') =!( ZLp - CN)n rn-I vol(sn-I) cx· - cao. 
n ZLP - cao IIcll 

Since TC' £; EN, it follows that 

vol(TC') :s::; e-NI2(n+l) vol(Eo) = e-NI2(n+l) snvol(sn). 

Therefore 

( _ r ) ,,::::-NI2n(n+l) n vo II Ili/n ZLP - cao ( l(sn») lin ( ) (n-I)ln 
ZLp 'oN "" e s vol(sn-I) cr' 

Also 

ZLP - cao = c(x* - ao):S::; Ilcllllx* - aoll :s::; s Ilcll, 

and hence 

Z _ r :s::; e-NI2n(n+l) S2 Ilcll (n VOI(~n»)l/n < 2e-N/2n(n+l) S2 Ilcll. 
LP 'oN r vol(sn I) r 

Since N = 2n(n + I) [log (2 S2 Ilcll Ire)], it follows that ZLp - CN < e. • 
Several results are needed to show that an ellipsoid algorithm solves the linear 

programming problem in polynomial time. 
We must deal with the precision of the arithmetic calculations. Square roots occur in 

the ellipsoid updating formula (2.2), and the assumption we have made so far is that these 
irrational numbers are found exactly. But, of course, this precludes the possibility of digital 
calculation, which requires finite representation of numbers. Thus we must specify a 
maximum number of digits permitted in the calculations. In particular, we now assume 
that the initial data and all intermediate numbers produced during the calculations are 
rational numbers represented by the ratio of two integers, each of which is specified with p 
binary digits of precision. 

With finite precision calculation it is still possible to obtain an approximate solution to 
linear programming problems. We need, however, to ensure that the feasible region, if any, 
remains inside the half-ellipsoid, given the numerical errors produced by the finite 
precision. This is done by using slightly larger ellipsoids. Then we compensate by using a 
larger number of iterations. 

The algorithm so modified is called the finite precision approximate ellipsoid algo
rithm. The following theorem, which we will not prove, gives the precision and number of 
iterations required provided there exists ao such that S(ao, r) C P C S(ao, s). 

Theorem 2.11. When N = 4n2[log (2s211cll Ire)], p = 5N,formula (2.2) is replaced by 

(2.5) D _ 2n2 + 3(D 2 (Dd) Ddf) 
1+1 - 2n2 - n+1 dTDd ' 

and D1+ I and Xl+ I are calculated to p binary digits of precision, the finite precision ellipsoid 
algorithm applied to (2.3) terminates with a solution x E P such that eX ~ ZLp - e. 
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The precise values of Nand p are not important in this theorem. What is important is 
that N andp are polynomial functions ofn, log s, log r, log lIell, and 10g(1/E). In addition, 
the amount of calculation needed to update X t and D t at each iteration is polynomial in n 
and p. Furthermore, the theorem applies to (2.4) provided a violated inequality 
ai(t)x :::;; bi(t) can be expressed with p digits of precision (independently of the question of 
how it is found). 

Now we consider how to relate the values of rand s to the initial description of the 
polytopeP. 

Definition 2.5. T is the largest numerator or denominator of any component of an 
extreme point of P. T' is the largest numerator or denominator of any component of a 
facet-defining inequality. (The components of these vectors are rationals expressed as the 
ratio of integers.) 

Propositi01l2.12. For any full-dimensional polytope P, the following statements are true: 

1. T':::;; (nTt2+n. 

11. T:::;; (nT')n, 

iii. There exists ao E P sueh that S(ao, r) C P C S(ao, s) with r = (nT)-2n2-2n and 
s = 2nT. 

Proof i. Suppose ax :::;; b is a facet-defining inequality of P. Without loss of generality, 
we assume that b = ±1 or O. Then there are extreme points Xi for i = 1, ... , n such that a 
is the unique solution to axi = b for i = 1, ... , n. 

Now we can write xj=Pij/qij with Ipijl, Iqijl integers not exceeding T. Taking 
Oi = ITJ=I qij, the system (aOi)xi = Oib, i = 1, ... ,n, has integer coefficients bounded in 
magnitude by Tn+l. Then by Cramer's rule we have aj = Pj/q, where Pj and q are integers 
with Ipjl, Iql :::;; n! (Tn+lt < (nT)n2+n. 

ii. The proof is similar to i using polarity. 
iii. For all x E P, we have IXi I :::;; T. Hence (x - aoV(x - ao) :::;; n(2T)2 < (2nT)2, and 

Pc S(ao, s) with s = 2nT. 
Finally we show that there is an inscribed sphere of the given radius. Take n + 1 affine1y 

independent extreme points {x i }7,:l, and let ao = [1/(n + 1)] '£7:/ Xi. Clearly, ao E P<. The 
distance from ao to any facet ax = b is (b - a Tao)/ lIall. Our goal is to find a lower-bound r 
on this distance, since this will provide us with the imbedded sphere S(ao, r). Since 
(a, b) E zn+l, it follows that b - aTao;:: 1/1f/, where If/is the common denominator' of the 
components aOj of ao. Since xj = p/q with p, q E Zl, it follows that 
Ip I, Iq I :::;; T, aOj = pj/q' with pi, q' E zl, and Iq'l :::;; (n + l)rn+1• Thus ao = (Pi: ... , 

p~')/ql/ with Iq"l :::;; (n + l)nrn2+n:::;; (nT)n2+n. Hence b - aTao;:: 1/1f/= 1/q";:: (nT)-n2-n. 
Now lIall :::;; n(nT)n2+n, and for each ai we have lai I < (nT)n2+n. Hence (b - aTao)/llall 

> (nTt2n2-2n = r. • 

We have established that log s and log r are polynomial in n and log T, or equivalently 
in n and log T'. Hence Nand p in Theorem 2.11 are polynomial in n, log T, log lIell, and 
log (1/E) 

To convert the E-approximate solution obtained in Theorem 2.11 to an optimal 
solution, we perturb the objective function of(2.3) so that the resulting linear program has 
a unique solution. 
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Proposition 2.13. Given P, let Q = 2T2n and c' = Qnc + (1, Q, ... , Qn-l). Then the linear 
program 

(2.6) ZLP' = max{c'x: x E P} 

has a unique optimal solution x*, and x* is an optimal solution of(2.3), 

Proof Let Xl be some other vertex of P. Letting x* = (Pf/q7, ... ,p~/q~) and 
Xl = (Pl!ql, ... ,p~/q~), we have 

Hence we can write x* - Xl = z/ex, where ex < T 2n , and Z is an integer vector with 
I Zj I < 2T2n for all}. 

Since x* is optimal, 

But because I Zj I < Q for all}, it follows that 

Since Qncz ~ - LJ~1 Qj-Iz, and cz is integer, we have cz ~ O. Hence we have shown that 
cx* ~ ex l for any extreme point Xl, and x* is optimal to (2.3). 

Finally we observe that because Z * ° and I Zj I < Q for all}, LJ~1 Qj-l Zj * 0. This implies 
that c'(x* - Xl) * 0, and hence x* is the unique optimum of(2.6). • 

The next step is to show that if we choose 8 appropriately in the finite precision 
approximate ellipsoid algorithm we can get very close to x*. 

Proposition 2.14. Ifthefinite precision approximate ellipsoid algorithm is applied to (2.6) 
and E = (1/4n)r- 4n- 2, the algorithm terminates with x E P satisfying c'x ~ hp' - E and 
Ilx* - xii ~ 1/2T2, where x* is an extreme point optimal solution of(2.3). 

Proof Since x E P, x is a convex combination of extreme points, say{x;};~l' We claim 
that one of these extreme points is x*. If not, let cx I = min;cxi. Then 

c'x* - c'x ~ e'x* - C'XI =! c'z ~ ! > _l_ 
ex ex T 2n' 

contradicting c'x* - c'x ~ E. 
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Therefore we can write x = l:7=1 AiXi + A..x* with l:7=1 Ai + A* = 1, Ai ~ 0 for i = 1, ... , n, 
and A* > O. Now observe that since c/(x* - Xi) > 1/T2n for all extreme points Xi '* x*, it 
follows that 

n 

c'x = I C'AiXi + C'A..x* 
i=1 

< Z A{ c'x* - i2n )+ C'A..x* 

= c'x* - i2n (1 - A*). 

But since c'x ~ c'x* - e, it follows that e > (1/T2n) (1 - A*). 
Now 

for some yEP, since l:?=1 Ai = 1 - A*, and y is thus a convex combination of Xi for i = 

1, ... ,n. However, Ily - x*1I ~ 2nT2n, and therefore 

IIx - x*1I ~ eT2n 2nT2n < 2~2' 

• 
Proposition 2.15. Let x and x* be as described in Proposition 2.14. The vector obtained by 
rounding each coefficient Xj of x to the nearest rational multiple of{ 1, liz, ... , liT} is x*. 

Proof Since x* is an extreme point of P, it follows that xjis some rational multiple of 
{l, liz, ... , 1/T} for all j = 1, ... ,n. Suppose x* is not obtained as described. Then 
xj- Xj > 1/2T2 for somej, and hence IIx - x*1I > 1/2T2, contradicting Proposition 2.14 .• 

One approach to finding x* from x is by the method of continued fractions. In Section 
I. 7 .3, we will describe this method and show that it can be executed in time polynomial in 
n and log T. 

We have established how the finite precision approximate ellipsoid algorithm produces 
an optimal solution to (2.3) or (2.4) when P is a full-dimensional polytope. We have also 
shown that each step (except that of finding a violated inequality) requires a number of 
calculations that are polynomial in n, log T, and log IIcll (see Theorem 2.11 and 
Propositions 2.13-2.15). For the linear program (2.3), this number is polynomial in the 
length of the input description, since to find a violated inequality we simply check whether 
the p-digit number Xl satisfies each constraint. This requires O(mnp) calculations. Hence 
we obtain the following theorem. 

Theorem 2.16. There is a polynomial algorithm to solve the linear programming problem 
over full-dimensional polytopes with description (m, n, A, b, c). 
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3. THE POLYNOMIAL EQUIVALENCE OF SEPARATION AND 
OPTIMIZATION 

161 

The importance of the ellipsoid algorithm in combinatorial optimization is as a tool to 
prove that certain problems can be solved in polynomial time. 

To illustrate this idea, consider the minimum-weight s-t cut problem (see Section 
1.3.4). Given a graph G = (V, E) with I E I = n, s, t E V, and a nonnegative weight vector 
c E R~ on the edges of G, the problem is to find a minimum-weight set of edges that 
intersects every s-t path in G. Let J{ be the family of s-t paths in G. 

One way to formulate this problem is as the linear program 

(3.1) 

min I CeYe 
eEE 

I y e ~ 1 for Kj E J{ 
eEKj 

o :::;; Ye :::;; 1 for e E E. 

This is true because y E B n is a feasible solution if and only if it is the incidence vector of an 
s-t cut and, as will be shown in Section III.1.6, all of the extreme points of the polytope 
defined by the constraint set of (3.1) are in Bn. 

There is one difficulty in solving (3.1) by the ellipsoid algorithm given in Section 2. This 
is that I J{ I is an exponential function of n, which means that the feasibility of a point y* 
determined from an iteration of the ellipsoid algorithm cannot be decided efficiently by 
the usual method of substitution. However, in this case there is an alternate way of 
checking feasibility. 

Suppose 0 :::;; y* :::;; 1, since this can be checked by substitution. Consider the problem of 
finding a minimum-weight s-t path with weight vector y*. This can be done efficiently by 
the algorithm given in Section 1.3 .2. Let <! be the weight of a minimum-weight path. Then 
l:eEKj yj ~ 1 for all K j E J{ if and only if <! ~ 1. Moreover, if <! < 1, any minimum-weight 
path yields an inequality that is most violated by y*. 

So for this problem we have overcome the apparent difficulty of a large number of 
constraints by providing an efficient subroutine that implicitly checks feasibility and 
provides a violated inequality when the point in question is not feasible. 

This example motivates the separation problem, which combines both the membership 
and validity problems. 

The Separation Problem/or a Family o/Polyhedra. An instance is given by an integer n, 
a description of a polyhedron P s;; R n in the family, and an x* E Rn. 

A solution is an answer to the membership problem and, if x* ff: P, a valid inequality 
(n, no) for P such that nx* > no. (Note that the separation problem is not a feasibility 
problem because it requires that we exhibit a valid inequality.) 

Our objective here is to relate the complexity of the separation problem to the 
complexity of the linear programming problem over the family of polyhedra. 

We now formally describe the linear programming problem. 

The Linear Programming Problem/or a Family o/Polyhedra. An instance is given by 
an integer n, a description ofa polyhedron PC R n in the family, and acE Rn. Assuming 
that P =/= 0 and cx is bounded for all x E P, a solution is an X O E P such that 
cxo = max{cx: x E P}. 
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The principal result is that, under certain technical assumptions, the linear program
ming problem for a family of polyhedra is solvable in polynomial time if and only if the 
separation problem is solvable in polynomial time. 

As in the previous section, we confine the analysis to full-dimensional polytopes. But 
here we do not assume that the number of constraints is part of the description of P. 
Instead, we assume that for P eRn the length of the input I needed to encode P is bounded 
from below by a polynomial in n and log T, where T is given in Definition 2.5. This 
assumption enables us to work with the parameters nand T as well as to establish the 
polynomiality of an algorithm by showing that its running time is polynomial in n and log 
T. Note that by Proposition 2.l2 this assumption is equivalent to assuming that the length 
of the input needed to encode P is bounded from below by a polynomial in n and log T' 
(T' is also given in Definition 2.5). 

This assumption is reasonable for the families of polytopes of interest to us, because if 
log Twas superpolynomial in the true input length, we would have no hope of describing 
an optimal solution to the linear programming problem over the family in polynomial 
time. 

More specifically, consider the case where we are dealing with a family of full
dimensional polytopes where either P = {x ERn: Ax s b} or P = conv(S) with 
S = {x E ZZ: Ax s b} and where the standard input is the m x (n + 1) integer matrix 
(A, b). The input length needed to describe these problems is 1= O(mn log e), where 
e = max(maxij I aij I, max; I b; I). 

When P = {x ERn: Ax s b}, by Proposition 3.l of Section I.5.3, the largest value that 
can be taken by the numerator or denominator of any extreme point is T = (net. Hence, 
since log T = n log e + n log n, it follows that log T is certainly, at most, a polynomial 
function of I. A similar result holds when P = conv(S) (see Theorem 4.l of Section I.5.4). 

As illustrated by problem (3.1), it may not be efficient to solve the separation problem 
by substitution. Moreover, if x f{:. P, we need to establish that we can find a violated 
inequality whose encoding length is polynomial in I. But this follows, since if x f{:. P, then 
x does not satisfy some facet-defining inequality whose encoding length is O(log(nT')). 
Moreover, a facet-defining inequality can be described exactly using the precision speci
fied in Theorem 2.l1. 

In the previous section we gave an ellipsoid algorithm in which each step, except that of 
finding a violated inequality, requires a number of calculations that are polynomial in n, 
log T, and log IIcli. We have just seen that a violated inequality can be described by a 
polynomial in n and log T, and it is easily checked that this meets the requirement of the 
precision required in the algorithm. 

The only step that remains is to solve the separation problem at each iteration. 
Immediately we can conclude that Theorem 2.l6 generalizes to: 

Theorem 3.1. Given a family of full-dimensional polytopes P(n, T) whose description 
length is at least a polynomial in n and log T, if the separation problem over the family is 
solvable in polynomial time, then the linear programming problem over the family is 
solvable in polynomial time. 

We can also make use of polarity to give a polynomial algorithm for the separation 
problem based on a polynomial algorithm for the linear programming problem. 

Theorem 3.2. The following statements are equivalent for a family of full-dimensional 
polytopes having the origin in their interior and whose input length is at least a polynomial 
in n and log T. 
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a. There is a polynomial-time algorithm for the separation problem. 
b. There is a polynomial-time algorithm for the linear programming problem. 
c. There is a polynomial-time algorithm for the separation problem over the family of 

l-polars. 
d. There is a polynomial-time algorithm for the linear programming problem over the 

family of l-polars. 

Proof a ~ b. This is Theorem 3.1. 
b ~ c. We apply the results of Section 1.4.5 to relate the optimization problem for P to 

the separation problem for its I-polar III. By Proposition 5.4, III is also full-dimensional 
and bounded and contains 0 in its interior. 

Given n* ERn, let x* be an optimal solution to max{n*x: x E Pl. By Corollary 5.6, 
n* E III if and only if n*x* :s 1. If n*x* > 1, then by Theorem 5.5 it follows that (x*, 1) is a 
valid inequality for III that cuts off n*. Finally, by Proposition 2.12, T' is a polynomial 
function of n and log T, so the length of the input needed to described III is polynomial in 
n and log T. 

c ~ d. Because III is a full-dimensional polytope, we can apply Theorem 3.1 to the 
family of I-polars. 

d ~ a. The proof is the same as b ~ c with the roles of P and III interchanged. • 

Now observe that any family offull-dimensional polytopes can be translated so that the 
origin becomes an interior point. The above argument then shows the equivalence of 
statements a and b for full-dimensional polytopes. This result extends to arbitrary rational 
polyhedra, though certain steps of the algorithms need modification, and for unbounded 
polyhedra we need to redefine T to include extreme rays. 

The following theorem justifies what we call the equivalence of separation and optimi
zation throughout this book. 

Theorem 3.3. For a family of rational polyhedra P(n, T) whose input length is at least 
polynomial in n and log T, there is a polynomial-time reduction of the linear programming 
problem over the family to the separation problem over the family, and conversely there is a 
polynomial-time reduction of the separation problem to the linear programming problem. 

Theorem 3.3 implies that the linear programming problem is solvable in polynomial 
time if and only if the separation problem is solvable in polynomial time. In Part III we 
will use this result to develop polynomial-time algorithms for some combinatorial 
optimization problems by giving polynomial-time algorithms for the separation problem. 
In contrast to the minimum-cut example, we will see an example where this provides the 
only known polynomial-time algorithm. 

Theorem 3.3 also implies that the linear programming problem is ,N"g}l-hard if and only 
if the separation problem is ,N"9P-hard. However, as we shall see in Chapters II.5 and 11.6, 
separation is extremely important in the solution of ,N"g}l-hard optimization problems 
where we know some classes of strong valid inequalities and are able to solve or 
approximate the solution of the separation problem efficiently. 

We close this section by using Theorem 3.3 to show that the linear optimization 
problem over the fractional node packing polytope is ,N"9P-hard. 

Example 3.1 (Example 7.2 of Section 1.5.7 continued). The I-polar of the fractional 
node-packing polytope is a polytope whose extreme points are the incidence vectors of the 
maximal cliques of G. Hence the linear programming problem over the I-polar is ,N"9P
hard because it is equivalent to the maximum-weight clique problem on G or the 
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maximum-weight node-packing problem on the complement of G. Now, by polarity, the 
separation problem over the fractional node-packing polytope is .Ngp-hard. Finally, by 
Theorem 3.3, we can reduce the linear program problem to the separation problem, so the 
linear programming problem over the fractional node-packing polytope is also .Ngp-hard. 

4. A PROJECfIVE ALGORITHM FOR LINEAR PROGRAMMING 

Recently, remarkable claims have been made concerning the computational efficiency of 
a new algorithm based on projections. Here we describe a conceptually simple variant of 
that algorithm whose geometric rate of convergence is easily established. Our objective is 
just to show the significance of projections in solving linear programs. We neither claim 
that the version of the algorithm given here is efficient, nor do we prove polynomiality. 

We will need the formula for the projection of a vector onto a subspace. 

Proposition 4.1. Let A be an m x n matrix, with rank(A) = m and H = {x ERn: Ax = O}. 
The projection olp onto H is given by q = [J - AT(AATtIA]p. 

Proof q E H so Aq = O. Also, since p - q E Hi, by Proposition 1.6 of Section 1.4.1, 
there exists u E R m such that A T u = P - q. Therefore 

AA T U = Ap - Aq = Ap and u = (AA TtlAp 

because AA T is nonsingular when rank(A) = m. 
Hence q = p - ATu = [J - AT(AA TtIA]p. • 
We first apply the projective algorithm to the homogeneous feasibility problem. 

Homogeneous Feasibility Problem. Given an integer m x n matrix A with 
rank(A) = m, find a ray rEP \ {O}, where P = {r E R~: Ar = a}, or show that P = {O}. 

The algorithm works with candidate rays rk > 0 for k = 1, 2, ... and attempts to satisfy 
Ar = O. Suppose rl = 1 $. P because AI", O. To obtain a point closer to being a solution 
than rl, we attempt to preserve nonnegativity by finding the closest point to 1 that satisfies 
Aq = O. This is the problem min{III - qll: Aq = O}. Its solution isq, the projection of! onto 
Aq =0. 

Now if q:2:: 0, then q E P and we are done. Otherwise (unless we can deduce that 
P = 0), we modify q to obtain a vector q' > 0 that is "closer" to being a solution in P than 
the initial vector 1. We take a positive linear combination of q and 1, giving q' = 1 + aq 
with a> O. a must be chosen so that q' > 0, so a cannot be chosen arbitrarily large. 
Alternatively, the larger a is, the "closer" q' is to q and hence to satisfyingAq = O. We have 
described one iteration of the algorithm from the point rk = 1 to the new point 
rk+1 = 1 + aq. 

We observe that even if rk '" 1, the same iterative step can be applied when rk > 0 but 
rk $. P. Let Dk be a diagonal matrix with dt = r} > 0 forj = 1, ... , n, letA k = ADk, and let 
p k = {r E R~: Akr = O} be a cone. Clearly P '" {O} if and only if p k '" {O}. Also, Ark = Ak1. 
Now we can describe iteration k in terms of the feasibility problem for pk. A candidate 
vector 1 is given. If Akl '" 0, so 1 $. pk, we derive a new vector q' > 0 that is "closer" to 
being a solution of pk. Let q' = 1 + akqk, where ak > 0 and qk is the projection of 1 onto 
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Akq = O. Restated with respect to P, the new point is rk+1 = Dk(l + akqk) because 
Ark+1 =Ak(1 + akqk) =Akq'. 

We need to make precise what it means for rk+1 > 0 to be "closer" to the cone P than 
rk > O. Comparing the values of Ark+1 and Ark is relatively meaningless. To obtain a useful 
measure of comparison we need to work with a homogeneous version of r, such as 

r r 
(l/n) 1:J=1 rj or (Ili=1 rj )l/n' 

which is invariant under the transformation r .... A.r with A. > O. Throughout this section we 
use the homogeneous version 

~ r 
r = (Il'! .)l/n· :/=1 r, 

Thus when comparing violations, if IAi'-k+11 < lArk I, it makes sense to say than rk+1 is 
closer than rk to being a ray of p, 

Without specifying ak, we can already analyze the basic behavior of an iteration of the 
algorithm. 

Proposition 4.2 

n n 

I'. "" a,;;r,~+1 = "" a,;;r,k flor z' - 1 m L, L, - ,00', . 
j=1 j=1 

where 

Proof 

1. Substituting rj+1 = rj(l + akqj) yields 

11. rj /rj+1 = 1/(l + akqj). Therefore 

n 

= I aijrj since Akqk = O. 
j=1 

n -:k = n k =fik [ n ( rk )Jl1n [n ( 1 )Jl1n 
j=1 rj j=1 1 + akqj) 
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and by i it follows that 

= C~ aurJ )[J} (,]+1) rn 
= C~ au'J )[J} (:f1) rn 

• 
Hence we see that from one iteration to the next, the values of all the terms of A ,k 

change by a constant factor Pk. By specifying a choice of ak for which Pk < P < 1, we will 
obtain an algorithm with the property that A ,k .... 0 geometrically. 

The Projective Algorithm to Find an e-Approximate Ray 

Iteration k 

Step 1: If I LJ~l au,J I ~ e for all i, stop. ,k is an e-approximate ray. 
Step 2: Find the projection qk of 1 onto the subspace A kq = O. 
Step 3: If qk ~ 0, stop. r = Dkqk E P \ {O}. 

Step 4: IfmaxjqJ < 1, stop. P = {O}. 

Step 5: Find a point ak in the set 

[ n ( 1 )]lln 
{a E Rl: 1 + aqJ > 0 for j = 1, ... , n, Pk = I1 1 k ~ P < n. 

}~1 + aq} 

Step 6: rJ+1 = rJ(1 + akqJ) for j = 1, ... ,n, 

A k+1 = ADk+1. 

Set k <-- k + 1 and return to Step 1. 

The validity of Step 4 and the feasibility of Step 5 require verification. First we consider 
Step 4. 

Proposition 4.3. I/max;qJ < 1, there is no ray in P / {a}. 

Proof Since qk is the projection of 1 onto H = {q: Akq = a}, it follows that 
1 - qk E H-\ and hence there exists u E R m such that uA k = 1 - qk > 0 or 
uA = (1 - qk)(Dkt1 > O. 

Therefore by Farkas' lemma applied to the cone P = {r E R~: Ar = a}, we obtain 
P = {O}. • 
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The following result, which is not difficult to prove, shows that for certain values of 
P < 1, the set in Step 5 is nonempty and so the algorithm converges geometrically. 

Proposition 4.4. Taking Cik = 1/(1 + IIqkll) as the step size in Step 5 of the projective 
algorithm, itfollows that rk+1 > 0 and 

Theorem 4.5. The Projective Algorithm to find an 8-approximate ray terminates after no 
more than 

iterations. 

Proof After k iterations, we have 

\ ± aurj+l\ = IT PI \ ± au\ ::::;, pk\ ± au\ for all i. 
J=I 1=1 J=I J=I 

With k as claimed, pk I I:J=I a ij I ::::;, 8 for all i. 

Now we consider the nonhomogeneous feasibility problem: 

(4.1) Find X E P, where P = {x E RZ: Ax = b}, or show that P = 0 

Observe that if we take r = (x, rn+l) E R n+1 andA = (A, -b), we can apply the projective 
algorithm to the cone P = {r E RZ+I: Ar = O}. 

We suppose that P is bounded, so there does not exist (rio' .. ,rn, O) E RZ+I \ {O} such 
thatAr = O. Hence if the cone P has a nonzero ray r, then necessarily rn+1 > 0, and then 
x = (rdrn+h"" rn/rn+l) is a solution of (4.1). This suggests that at each iteration of the 
projective algorithm, we should normalize candidate rays so that r n+1 = 1. In other words, 
we will choose a normalization factor Pk so that r~+1 = 1 at each iteration. 

The Projective Algorithm for Problem (4.1) 

Initialization. rl = 1, DI = In+h Al = A, k = 1. 

Iteration k 

Step 1: (xk, 1) = rk. If lArk I ::::;, 8, then Xk = (rt, ... , r~) is an 8-approximate solution to 
(4.1) with IAxk - b I ::::;, 8 and Xk > O. 

Step 2: This is unchanged. 
Step 3: If qk > 0, stop. Xk E P where, xj = (l/q~+I)rjqj forj = 1, ... ,n. 
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Step 4: Ifmaxj~I .. " .n+lqj < 1, stop. P = 0. 
Step 5: This is unchanged except that n .... n + 1. 
Step 6: rj+1 = Pkrj(1 + akqj) for j = 1, ... , n + 1, where Pk = 1/(1 + akq~+I)' The rest of the 

step is as before. 

Now using Proposition 4.2, we can analyze the behavior of the algorithm on the 
feasibility problem (4.1). We also use the following result, which can be proved using 
estimates of the size of solutions as in Section 1.4.5. 

Proposition 4.6 (The Perturbation Lemma). Given A and b, there exists e(A, b) > 0 such 
that if x E R~ satisfies 

II aijXj - bil:s; e(A, b) for i = 1, ... ,m, 
J~I 

then there exists x* E R~ satisfying Ax = b. 

Proposition 4.7. If the projective algorithm is applied to Problem (4.1) and rk+1 = (xk+ I, 1), 
then: 

1.1 I aijxj+1 - bil = Pkl I aijxj - bil for all i; 
J~l J~l 

11. There exists w(A, b) E Rl such that 

I I aijxj+l - bil :S; Pkw(A, b)1 I aij - bil for all i. 
J~l J~l 

Proof We observe first that because 

[
n+l 1 ]l/(n + I) 

Pt = JJ 1 + atq5 and 

we have 

[ n (xJ+1 )]l/(n + I) = 
Pt JJ X] Pt· 

Statement i follows immediately from statement i of Proposition 4.2. Now substituting for 
PI in statement i, we obtain 
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since PI :::; p, and because the geometric mean does not exceed the arithmetic mean. Now 
dividing both sides by "£'1=1 Xj+1 and setting Yj = Xj+I/"£J~1 xj+I > 0, we obtain 

If "£'1=1 Xj+1 is unbounded as k .... 00 , then as P" .... 0, there exists a k for which I "£J~laijyj I 
:::; E(A, 0), where E(A, 0) is as in Proposition 4.6. HenceAy = 0, y E R~, has a solution with 
y =f: 0, contradicting the boundedness assumption. Hence "£'1=1 Xj+1 remains bounded, and 
the claim follows. • 

Note that this algorithm has the property that the violation in each constraint decreases 
at exactly the same rate. 

Example 4.1. We apply the projective algorithm to the feasibility problem 

with A. = 30. 

-XI + 2xz:::; 4 

5xI + Xz:::; 20 

-2xI - 2X2 :::; -7 

ex = 7xI + 2X2 ~ A. 

xER; 

Converting into equality form; we have A = (A -b) with 

( 

-1 

- 5 A= -2 
7 

2 1 
1 0 

-2 0 
2 0 

o 0 0 
1 0 0 
o 1 0 
o 0 -1 

-4) -20 
7 . 

-30 

We use the starting point Xl = (l 1 1 1 1 1) and rl = (Xl, 1). 

Initialization. DI = h Al = A. 

Iteration 1 

Step 1: 

Step 2: The projection of 1 on Aq = 0 is the vector 

ql = (0.9907 0.6622 0.8254 -0.1806 1.337 0.08659 0.2698) 

Step 5: al = 4.433, pz = 0.425, PI = 0.455. 
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Step 6: r2 = (x2, 1) = (2.455 l. 711 2.l22 0.091 3.l55 0.630 1) 

3.423 2.l22 0 0 0 

12 = 12.277 1.711 0 0.0909 0 0 
-4.911 -3.423 0 0 3.l55 0 

( -2.455 

17.l88 3.423 0 0 0 -0.6302 

Iteration 2 

(
-0.911) 

2 -2 -5.921 1 
Ax - b = A 1 = l.821 = Pl(Ax - b). 

-10.02 

Step 2: q2 = (0.8328 1.205 0.1850 0.7620 1.232 -0.1514 0.6178) 

Step 5: 0:2 = 5.431, P2 = 0.326, P2 = 0.230. 

Step 6: r3 = (x 3, 1) = (3.l14 2.964 0.9766 0.1072 5.574 0.02569 1) 

Iteration 3 

(
-0.209 ) 

3 -1.36 
Ax = 0.418. 

-2.30 

Step 2: q3 = (1.060 1.189 0.2750 0.5488 1.1878 0.9252 1.0044). 

Step 3: Because q3 > 0, it follows that 

x 3 = (3.286 3.509 0.2674 0.05859 6.592 0.02366). 

Stop. x" = (3.286 3.509) is feasible and ex" > 30. 

Now we consider the linear programming problem: 

(4.2) ZLP = max{ex: Ax = b, x E R~}. 

Viewed in terms offeasibility, we solve 

-4 ) -20 
7 . 

-30 
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where P(O = {x E R~: Ax - b = 0, cx - (= O}. We letA = (A -b), c, = (c -O, and 

-b) 
-( . 

We only describe an algorithm for Phase 2, that is, we assume a feasible point Xl E R~ 

satisfying Ax I = b and x I > ° is known. 
We apply the feasibility algorithm to P( O. The algorithm is motivated by the following 

observations. 

i. Let rk = (x\ 1). By the choice of Xl, we have Arl = 0. Because Ark+1 = PkArk for each 
k, we have Ark = ° or AXk = b for all k. 

ii. Since the only violated constraint is cx - ( = 0, the projective algorithm works to 
decrease ( - cxk geometrically at each iteration. To maintain geometric conver
gence, we need projection vectors with maxjqJ ~ 1. However, if ( is a strict upper 
bound on ZLP, then P(O = 0 and hence the algorithm will stop with maxjqJ < 1. 

We overcome this difficulty by viewing (and calculating) the projection vector qk 
as a function of (. qk is of the form a + P( with a, p E Rn+l. Therefore if 
maxjqJ( ° < 1, it is easy to calculate (' < (such that maxjqJ( n = 1. C is a new upper 
bound for ZLP, and the algorithm can now proceed to find a new iterate rhl. 

iii. If (k is the value of (at iteration k we can associate a dual feasible solution Uk to (4.2) 
with ukb S (k> so the algorithm simultaneously produces primal and dual feasible 
solutions. 

As before we assume that {x E R~: Ax = b} is a polytope. 

The Projective Algorithm for the Linear Program (4.2) 

Initialization. Given Xl feasible in (4.2) with Xl > 0, set rl = (Xl, 1). If a specific upper 
bound on Z LP is known, set (I to be this bound. If none is known, take 

(I = max jCj jnw(A, b), 
} 

Al = (A _b)(rl ... I ), 
r n+1 

Iteration k 

Step 1: Let Vk = (k - cxk. Ifvk S E, stop. Xk is an E-optimal solution of(4.2) withAxk = b, 
Xk E R~, and ZLp - cxk S E. 

Step 2: Find the projection qk(O ofl onto the subspace Akr = 0, ctr = 0. 
Step 3: If qk((k) ~ 0, stop. Let r = Dkqk((k)' Then x = [rI/rn+b ... ,rn/rn+d is optimal in 

(4.2). 

Step 4: If qk( (k) < 1, find I;' < (k such that maxj~l, , .. , n+1 qJ( 1;') = 1, and set (k+1 = C. Other
wise set (hi = (k' 
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Step 5: Take qk = qk(Ck+l), and find ak as before. 
Step 6: This is unchanged. 

Proposition 4.8. Suppose the projective algorithm is applied to problem (4.2) starting 
from afeasiblepointx l. At iteration k + 1, xk+l is afeasibiepoint and Ck+l is an upper bound 
on ZLP satisfying 

1. Ck+l - CXk+l S Pk(Ck - cxk) and 
ii. Ck+l - CXk+l s /fw(A, b)(Cl - cx l). 

Proof i. We just need to verify what happens during one iteration of the algorithm. 
Initially Vk = Ck - cxk = 1 CCkrk I. After Step 5, 

V k+l = Ck+l - CXk+l = 1 C ch,rk+l 1 

= Pk 1 CCk.,rk 1 = Pk( Ck+l - cxk) by statement i of Proposition 4.2 
s Pk(Ck - cxk) = PkVk since Ck+l S Ck from Step 4. 

ii. This follows from statement ii of Proposition 4.7 because Xl is feasible and hence 
bounded. • 

Example 4.2. The Projection Algorithm is applied to the linear program 

with E = 10-5, 

ZLp = max 7Xl + 2X2 

-Xl + 2xz + X3 

5Xl + X2 + 

-2Xl - 2xz + 

xER~ 

= 4 

= 20 

Xs = -7 

We initialize with Xl = (1.01 2.5 0.01 12.45 0.02), Cl = 200. The calculations are shown 
in Table 4.1. 

It can be shown that at each iteration the algorithm yields a dual feasible solution. Also, 
by combining the algorithms for problems (4.1) and (4.2), one can describe a single-phase 
primal-dual algorithm for linear programming. The remarkable convergence rate of the 
projective algorithm means that, in practice, never more than about 30 iterations seem to 
be necessary. The key practical question is how to carry out the projection step efficiently. 

5. A STRONGLY POLYNOMIAL ALGORITHM FOR COMBINATORIAL 
LINEAR PROGRAMS 

We generally bound the running time of an optimization or feasibility algorithm by the 
number of variables n, the number of constraints m, and the size of the largest coefficient 
8 in the data. Polynomial-time algorithms require a bound that is a polynomial function of 
m, n, and log 8. An algorithm is strongly polynomial if the bound only depends on m and 
n. Thus for the family of instances in which log 8 is a polynomial function of m and n, we 
can trivially eliminate the dependence on 8 and say that the algorithm is strongly 
polynomial. 
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Here we show that for the linear programming problem 

max{cx: Ax::; b, x ~ O} 

it is possible to eliminate the dependence of the running time on ()b and ()e for any 
algorithm that finds primal and dual feasible and complementary solutions. This is done 
by replacing the original problem by a sequence of problems in which the coefficients b 
and c are a polynomial function of m, n, and log ()A. In particular, the bounds in the 
projective and ellipsoid algorithm will depend only on m, n, and log ()A. 

Also, if A is a (0, I)-matrix, as in a network flow problem or the linear programming 
relaxation of a set covering problem, a polynomial-time linear programming algorithm 
can be refined to a strongly polynomial algorithm. For example, the primal-dual 
algorithm for the transportation problem given in Section 1.3.5 enjoys this property. 

First we will show how the dependimce on c is eliminated. The problem is reduced to 
solving a sequence of no more than n linear programs in each of which the coefficients of 
the cost vector are bounded by n2~, where~isan upper bound on I~(A) I, the maximum 
absolute value of any subdeterminant of A. We will assume throughout this section that 
either ~(A) is known and we set~ = ~(A) orthat~ = (n()A)n which, given m ::; n, is known 
to be an upper bound on ~(A). Now log (n 2M is a polynomial function ofm, n, and log ()A, 

and so the dependence on c disappears. 
We consider linear programs of the form 

(5.1) max{cx: x E P), where P = {x E R~: Ax = b}. 

The dual problem is 

(5.2) min{ub: u E U}, where U = {u E Rm: uA ~ c}. 

The first result we need concerns primal and dual solutions (x, u) that are close to 
satisfying the optimality conditions. We let U(e) = {u E Rm: uA ~ c - en. 
Definition 5.1. (x, u) are a pair of e-approximate solutions for problem (5.1) if 

i. xEP 

ii. u E U(e); 

iii. if uaj > Ch then Xj = O. 

Proposition 5.1. Given an e-approximate pair (x, u) jor problem (5.1), let 
J = {j EN: uaj ~ Cj + en~}. Then ijx* is any optimal solution to (5.1), xj= Ojor allj E J. 

Proof Suppose the contrary, so there exists a k such that Uak ~ Ck + en~ and an 
optimal solution x* to (5.1) with xZ > O. 

The vector Z = x* - x satisfies Az = 0 because Ax* = Ax = b, Zk > 0 since uak> Ck 
implies Xk = 0; also, Zj ~ 0 whenever Xj = 0 because xj ~ O. Hence z is a feasible solution 
to 

Az=O 

(5.3) Zk >0 

Zj ~ 0 for allj with Xj = O. 
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Moreover, cz ~ 0 because x* is optimal to (5.1). 
Now there exists an integer basic feasible solution Z to (5.3) with cZ ~ O. Furthermore, 

we know from Cramer's rule that maxj I Zj I :s; Ll(A) s Ll. In addition, ifZj < 0 we know that 
Xj > 0 and hence, by condition iii of Definition 5.1, that uaj :s; Cj. 

Now 

cz = (c - uA)z 
:s; (Ck - uak)Zk + EL IZj I 

/"k 
:s; - EnLl + E(n - l)Ll 

= - ELl 

sinceAz = 0 
since u E U(E) implies Cj - uaj :s; E 

However, cz ~ 0, so there is a contradiction. • 
A simple way to obtain I-approximate solutions for (5.1) is to let c' = IcJ and to solve the 

linear program 

(5.4) max{c'x: x E Pl. 

Proposition 5.2. Let (x, u) be an optimal solution pair for the linear program (5.4), then 
(x, u) is a i-approximate pair for the linear program (5.1). 

Proof Since x is optimal in (5.4), x E P. Since u is dual feasible, 

uA ~ Ie] = C - (c - leD ~ C - 1. 

Finally, uaj> Cj implies uaj> lej]; and hence, by complementary slackness for (5.4), 
~=Q • 

Combining Propositions 5.2 and 5.1, we obtain 

Corollary 5.3. Let u be a dual optimal solution of(5.4) and let J = {j E N: uaj ;;:.. Cj + nLl}. 
If x* is any optimal solution to (5.i), then xl= 0 for all} E J. 

Proof Let (x, u) be an optimal solution pair for (5.4). Then by Proposition 5.2, (x, u) 
is a I-approximate pair for (5.1). Hence by Proposition 5.1, if J = {j EN: uaj ~ Cj + nLl} 
and x* is any optimal solution to (5.1), then xj= 0 for all} E J. • 

Example 5.1. We consider the transportation problem of Example 5.1 of Section 1.3.5 
with weights wij = 4wu + CPu for all i and}, where 0 :s; CPu < 1. Since the constraint matrix A 
of a transportation problem is totally unimodular (see Section m.l.2), Ll = 1. 

To find a I-approximate pair (x*, u*), we solve problem (5.4), which has weights 
cij = Iwij] = 4wij. From Section 1.3.5 we know a dual optimal solution of (5.4): 

u* = (24 36 8 36) 

v* = (-16 -12 4 -16 -8 -4) 
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with 

( 

12 
- 0 
C = 16 

24 

o 0 4 16 
o 8 0 0 

36 0 24 32 
o 0 0 12 

1~ ) 4 . 

4 

Now applying Corollary 5.3, we see that n!J. = 24. Hence J = {(i,}): cij ~ 24}, and 
X32 = X34 = X35 = X41 = 0 in any optimal solution. 

In Example 5.1, 4 of the 24 variables were eliminated on the basis of Corollary 5.3. The 
next proposition shows that if the weight vector c is appropriately normalized and scaled, 
it is always possible to set at least one variable to zero. Hence after applying the procedure 
no more than n times, the original linear program is solved. 

Definition 5.2. For any !J. satisfying !J.(A) s!J. s (ney, we say that c is polynomially 
normalized for (5.1) if c = 0 or Ac = 0 and maxj I Cj I = n2!J.. 

Proposition 5.4. Given the linear program (5.1) with n> 1 and a polynomially normal
ized weight vector C * 0, let u be a dual optimal solution to the linear program (5.4). Then 
J = {j: uaj> Cj + n!J.} * 0. 

Proof Let Cj = uaj - Cj. We need to show that maxA ~ n!J.. 
Since u is dual feasible in (5.4), uaj ~ c; = ICjJ ~ Cj - 1, and hence Cj ~ -1 for all}. 
The projection of C onto H = {x: Ax = O} is the vector -c since uA E Hl. and -c E H. 

Therefore, Ilcll ~ IIcli. 
Now observe that 

n 

IIcW = I c] s n (max I Cj 1)2 < (n max I Cj 1)2. 
]~1 ] ] 

Therefore 

max I C] I ~ .!.. IIcll ~ .!.. Ilcll ~ .!.. (max I C] I) = .!.. n2!J. = n!J.. j n n n j n 

Since Cj ~ -1 for all}, we must have maxA ~ n!J. as required. • 
The final step is to show that the objective function vector of any linear program (5.1) 

can be put in polynomially normalized form without affecting the set of optimal solutions. 

An Algorithm to Polynomially Normalize C 

Step 1: Find the projection C of C onto H = {x: Ax = O}. Ifc = 0, set d = 0 and stop. 

Step 2: Set a = n2!J./maxjlcj I and d = ac, where !J.(A) s !J. s (neA)n. d is the required 
objective function vector. 

Proposition 5.5. Let F(c) be theface ofP of optimal solutions to (5.1) with weight vector c, 
and let d be as derived above: 
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i. F(c) = F(d) 
ii. If d = 0, then F(c) = P. 

Proof i. The scaling in Step 2 does not affect the set of optimal solutions, so 
F(e) = F(d). Since e is the projection of c onto H, and H = {z: z = yA, Y E R m}, it follows 
that e = e - yA for some y E Rm. But for all x E P, we have ex = cx - yAx = ex -yb. 
Since yb is a constant, x is optimal for e if and only if it is optimal for c. Hence 
F(c) = F(e) = F(d). 

ii. F(O) = P, and hence F(c) = P. • 

Now we can describe the algorithm. 

An ''Objective Rounding" Algorithm for the Linear Program (5.1) with P *' 0 

Step 1 (Initialization): N 1 = N, t = 1, n 1 = 1 N 1 I. 
Step 2 (Iteration t): Consider the linear program 

max{cx: I ajXj = b, Xj E R~ forj E NI}. 
jEN' 

a. Put c into polynomiaHy normalized form with d(A):::; d:::; (n(JA)n. 

b. If e = 0, stop. The feasible solutions of (5.1 I) are the set of optimal solutions to (5.1). 
c. Otherwise solve the linear program 

d. If (5.41) is unbounded, stop. (5.1) is unbounded (since if uaj ~ lCjJ for j E N I is 
infeasible, then uA ~ c is infeasible). 

e. Otherwise, let u l be an optimal dual solution and let 

Sett<-t+1 

Theorem 5.6. If the linear program (5.1) is feasible, the objective rounding algorithm 
either shows that (5.1) is unbounded or it terminates with the set of optimal feasible 
solutions to (5.1) after no more than n iterations. 

Example 5.2. We apply the objective rounding algorithm to the feasible linear program
ming problem (5.1) 

max 931xl + 724x2 + 296x3 

8Xl + 5X2 + 3X3 = 527 

xER! 
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We initialize with ~ = ~(A) = 8, N 1 = {l, 2, 3}, n1 = 3, t = 1. 

Iteration 1. Consider (S.11) = (S.1). 

a. Projecting C onto 8X1+SX2+3x3=0, we obtain C=(-4S 114 -70). Also, 
maxjlcjl = 114. Therefore a=n2~/maxlcjl =72/114. Now d=ac= (-28.42 72 
-44.21). 

b. d*O. 
c. We solve the linear program (S.41) with objective function [dj, 

max - 29x1 + 72X2 - 4SX3 

8X1+ SX2+ 3X3=S27 

X :2: 0, 

giving an optimal dual solution u = 72/S. 
d. Now 

ua1 - d 1 = S~6 + 28.42 > n~ = 24 

ua2 - d2 = ° 
- d 216 
ua3 - 3 = 5 + 44.21 > 24. 

Hence J 1 = {l, 3}, N 2 = {2}, n2 = 1, t <- 2. 

Iteration 2. Solve (S.12) 

a. Projecting C = (724) onto SX2 = 0, we obtain c = (0). 
b. The set of optimal solutions to (S.1) is given by 

Given a feasible linear program (S.1), we have seen how the dependence of the running 
time on C can be eliminated. Now we consider the dependence on b . Note that the running 
time of the linear program (S.4t) still depends on b. Furthermore, although the objective 
rounding algorithm terminates with the face P* = {x E R~: Ax = b, Xj = O,j EN \ N*} of 
optimal solutions, finding an optimal solution still involves finding a feasible solution to a 
linear program when the face P* is not just a point. 

So now we consider the elimination of the dependence on b. For convenience we 
consider inequalities here, that is P = {x ERn: Ax :s; b}. Also, we first consider the 
feasibility problem, 

Is P = 0? If not, find x* E P. 

We will need the following result, which makes precise how to perturb the objective 
function so that all dual feasible basic solutions are nondegenerate. (Applied to b, this is 
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precisely the perturbation approach to avoiding cycling in the simplex algorithm; see 
Section 1.2.3). 

Proposition 5.7. Consider the linear program max{cx: x E P} with P = {x ERn: Ax s b} 
and c = L;:;l(~ + 1Yd. Suppose its dual min{ub: uA = c, u E R':'} has a finite optimal 
solution u*. Let 1* = {i EM = {1, ... , m}: ur> O} and let x* be any solution of dx = bJor 
i E 1*. Then x* is an optimal solution to the linear program. 

Feasibility Algorithm for P = {x ERn: Ax s b}. 

1. Take c as in Proposition 5.7. Note that c is polynomial in the size of A . 
2. The dual problem 

(5.5) min{ub: uA = c, u E R':'} 

has a feasible solution u = (~ + 1,(~ + 1)2, ... , (~ + 1)m). Hence we can apply the 
objective rounding algorithm to (5.5). 

3. If the dual problem is unbounded, then P = 0. 
4. Otherwise the algorithm terminates with the face of optimal solutions {u E R':': 

uA = C, Ui = 0 for i EM \ I'}. 

5. Find a point u in this face using a linear programming algorithm. Let I* = {i: Ui > O}. 
6. Use Gaussian elimination to find a solution x* to the system of linear equations 

aix = b i for i E I*. 
7. By Proposition 5.7, x* E P. 

Now observe that in Step 2 when we apply the objective rounding algorithm, the 
subproblems (5.4t) have a modified objective b and the right-hand side c that are 
polynomial in m, n, and log eA' Finally, in Step 6 the running time of Gaussian elimina
tion does not depend on b. Hence, if a polynomial-time algorithm is used to solve each of 
the linear programs, Steps 1-7 can be executed in polynomial time. 

Proposition 5.8. The feasibility problem can be solved in time polynomial in m, n, and 
log eA. 

Putting together the objective rounding and feasibility algorithms it is now possible to 
solve any linear program in time polynomial in m, n, and log eA' 

The only question that needs to be dealt with is the resolution of the feasible linear 
programs (5.4t) in Step c of the objective rounding algorithm, which are of the form 

max{ctx: Ax = b, x E R~}, 

where ct is polynomial in the size of A. The steps are: 

1. Check whether {u E Rm: uA ~ ct } is feasible with a polynomial linear programming 
algorithm. If not, the primal is unbounded. 

2. Use the objective rounding algorithm to solve the dual of (5.4t): min{ub: uA ~ ct}. 

Here the subproblems are linear programs with both the modified objective band 
the right-hand side ct polynomial in the size of A. The basic algorithm terminates 
with the face of optimal solutions. 
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3. Use a polynomial linear programming algorithm to find an optimal solution 1/ lying 
on the face. 

4. An optimal dual solution lit for problem (5.4t) is precisely what is required in Step e 
of the objective rounding algorithm. 

Again it is easy to check that the data for each problem solved are polynomial in the size 
of A. Hence we have shown the following: 

Theorem 5.9. The linear programming problem can be solved in time polynomial in m, n, 
and log eA. 

6. NOTES 

Section 1.6.1 

Until the summer of 1979, it was not known whether linear programming was solvable in 
polynomial time. However, there were theoretical and empirical reasons for believing that 
there existed a polynomial-time algorithm for linear programming. It had been known for 
several years that linear programming belonged to the complexity class.NPJ' n Cf5o.N'PJ', and 
although the simplex method does not have a polynomial time bound (see Klee and Minty, 
1972), it is empirically very efficient. 

Section 1.6.2 

An ellipsoid algorithm for linear programming, as well as a proof of its polynomial-time 
bound, first appeared in a brief Russian article by Khachian (1979). It was brought to the 
attention of Western researchers at a meeting in Oberwolfach, West Germany in June 
1979. An English version of Khachian's results, including many missing details, was 
produced by Gacs and Lovasz (1981). Their article appeared as a technical report toward 
the end of the summer of1979, and the results were announced to the research community 
at the Xth Mathematical Programming Symposium in Montreal, Canada in August 1979. 
A flood of articles on ellipsoid algorithms subsequently appeared [see Bland, Goldfarb, 
and Todd (1981) for a survey]. However, the flood subsided nearly as quickly as it had 
appeared when it was realized that ellipsoid algorithms were not empirically efficient. 
Lawler (1980) discussed the reaction of the popular press. 

Section 1.6.3 

"The use of ellipsoid algorithms in combinatorial optimization - in particular, the polyno
mial equivalence of optimization and separation-is due to Grotschel, Lovasz, and 
Schrijver (1981) and was also studied by Karp and Papadimitriou (1982). Also see 
Grotschel, Lovasz, and Schrijver (1984a,b,c); and their monograph (1987), which gives all 
of the technical details. 

Section 1.6.4 

Projective algorithms for linear programming and their polynomiality were introduced by 
Karmarkar (1984). The variant of Karmarkar's approach given here is taken from de 
Ghellinck and Vial (1986, 1987). 

The choice of homogenization r = r /IIJ~l r/n is one of the key ideas in Karmarkar's 
algorithm. It encourages the successive iterates to stay away from the boundaries and 
thereby avoid the combinatorial problems associated with extreme points. This idea had 
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been used earlier by Huard (1967) in the method of centers and in Frisch's (1955) barrier 
method for nonlinear programming. 

Also, de Ghellinck and Vial (1987) show that the projective algorithm to find an E

approximate ray produces the same sequence of points as Karmarker's algorithm applied 
to the phase I problem: 

min{y: Ax - (A l)y = 0, Ix + y = n + 1, x E R~, y E Rl). 

The idea of a primal-dual approach to Karmarkar's algorithm is due to Todd and 
Burell (1986). 

At this time there is some indication that projective algorithms may compete with, or be 
superior to, simplex algorithms for some, or maybe even all, classes of linear programs. 
This issue is unresolved and is the subject of some controversy. Todd (1987) gives a survey 
of results on this topic. 

Section 1.6.5 

The strongly polynomial-time algorithm for linear programming is due to Tardos (1986). 
This article was a sequel to her article on a strongly polynomial-time algorithm for 
network flow problems [Tardos (1985); also see Orlin (1984)]. Fujishige (1986) and Orlin 
(1986) discuss dual versions of Tar dos' algorithm. Frank and Tardos (1987) have extended 
these results to linear programs in which the number of constraints is not polynomially 
bounded in the number of variables. 



1.7 
Integer Lattices 

1. INTRODUCTION 

In this chapter the basic problem is: 

The Linear Equation Integer Feasibility Problem. Given m, n, and an integral m x (n + 1) 
matrix (A, b), find a point x E zn satisfying Ax = b or show that no such point exists. 

Definition 1.1 The set L(A) = {y E R m
: y = Ax, x E zn}, where A is an m x n matrix, is 

called the lattice generated by the columns of A . 

In lattice terms, the linear equation integer feasibility problem becomes 

(1.1) Determine if bE L(A) and if so give a representation of b 
as an integral linear combination of the columns of A. 

A natural generalization of problem (1.1) is: 

The Closest Vector Problem. Given m, n, and A as above, along with bERm, find 

(1.2) min{llb - yll: y E L(A)}. 
y 

Taking b = 0 and excluding y = 0 yields: 

The Shortest Vector Problem: Given m, n, andA, find 

(1.3) min{llyll: y E L(A), y * O}. 
y 

Example 1.1. In Figure 1.1 we see the lattice generated by a ~). The closest lattice point 

to b = (:i) is y @' and the shortest vector is v = (D. 

An important difference between problem (1.1) and problems (1.2) and (1.3) is their 
respective complexities. There is a polynomial-time algorithm for solving (1.1), whereas 
(1.2) is .N'9J>-hard, and (1.3) is suspected to be .N'9J>-hard. Also, the problems obtained by 
replacing the euclidean norm by the maximum norm in (1.2) and (1.3) are .N'9J>-hard. 
However, there are algorithms for problems (1.2) and (1.3) that run in polynomial time for 
a fixed value of n. Since these algorithms and the algorithm for (1.1) depend upon finding 
an appropriate representation of the lattice L(A), this is the main theme of the chapter. 

182 
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Figure 1.1. al = (~), a2 = (~) 

Definition 1.2. The greatest common divisor of the integers a 1 and a2, not both zero, 
denoted by gcd(a}, a2), is the largest positive integer r such that r divides a 1 and a2 exactly; 
that is, there exist integers Z i such that rz i = a i for i = 1, 2. If gcd( a b a 2) = 1, then a 1 and a2 
are relatively prime. 

When n = 1, problems (1.1)-(1.3) essentially reduce to the problem of finding 
gcd(a}, a2). In the next section, we will describe the euclidean algorithm to find gcd(a h a2). 
This will be interpreted as an algorithm that either solves the system 

(1.4) 

or shows it to be infeasible. It also provides the basic step in finding alternative descriptions 
of the lattice L(A). 

In Section 3, we will establish the connection between the euclidean algorithm and the 
continued fraction expansion of a rational number at/a2' This allows us to solve, in 
polynomial time, the following problem. 

The Rational Approximation Problem. Given positive integers at, a2, and K, determine 
integers p and q that solve 



184 1.7. Integer Lattices 

A solution to this problem is required in the ellipsoid algorithm (see Section 1.6.2). 
An important generalization of this problem is: 

The Simultaneous Diophantine Approximation Problem. Given n positive rationals {ai}f:=1 
and an integer K, determine positive integers q h ••• , q nand p that solve 

(1.5) min{ m,a+~; - ~;I: p E Z~, q E Z~, P '" K}. 

This problem is X9J>-hard. 
In Section 4, we will introduce some basic properties of the lattice L(A). We will then 

develop a canonical representation of L(A), called the Hermite normalform, and sketch a 
polynomial-time algorithm for finding the Hermite normal form. This also provides a 
polynomial-time algorithm for problem (1.1). 

In Section 5, we will introduce an alternative representation of L(A), called a reduced 
basis, which can also be obtained in polynomial time. Such bases have various interesting 
properties. We use them to give an algorithm for problem (1.3) that is polynomial for fixed 
n and a polynomial algorithm for an approximate version of(1.5). Other applications-in 
particular, an outline of a polynomial-time algorithm for the linear inequality integer 
feasibility problem with a fixed number of variables-will be given in Section 11.6.5. 

2. THE EUCLIDEAN ALGORITHM 

In this section we present a polynomial algorithm to find gcd( a, b), where a and bare 
integers satisfying a ;;?; b > 0. We use the notation u I v to mean that u divides v. The 
algorithm will terminate with integers p and q such that p and q are relatively prime and 
pa - qb = gcd(a, b). 

Note that for any positive integers a and b, with b ~ a, we have a = la/bJb + c, where ° ~ c < b. The basic idea of the euclidean algorithm is embodied in the following 
proposition. 

Proposition 2.1. Suppose a and b, a ;;?; b, are positive integers and c = a - la/bJb. 

i. If c * 0, then gcd(a, b) = gcd(b, c). 
ii. If c = 0, then gcd(a, b) = b. 

Proof i. Let r = gcd(a, b) and s = gcd(b, c). Since c = a - db and d is an integer, ria 
and rib imply that ric. Hence r Is. Similarly sir. 

ii. This is obvious. • 

Notethatbecausec < b ~ a, we can apply the proposition first to the pair (a, b), then to 
the pair (b, c), and so on. 

In the description of the euclidean algorithm given below, c t is the remainder at 
iteration t. We also carry along integers (Pt, qt), which will be used later. 

The Euclidean Algorithm To Find gcd(a, b) 

Initialization: Order so that a ;;?; b. 
(C-h co) = (a, b), (P-I, Po) = (1, 0), (q-b qo) = (0, 1). 
Set t = 1. 



2. The Euclidean Algorithm 

Iteration t: dt = lCt-2J 
C'-l 

Ct = Ct-2 - dtCt-l 
Pt = Pt-2 + dtpt-I 
qt = qt-2 + dtqt-I 
If Ct = 0, stop. Set T = t. gcd(a, b) = CT-l. 
Otherwise set t +- t + 1. 

Proposition 2.2. The euclidean algorithm is correct and 

Ct = (-I)t+I[pta - qtb] for t = -1, 0, ... , T. 

185 

Proof We use Proposition 2.1. By using statement i repeatedly, we have gcd(a, b) = 
gCd(C-b co) = gcd(co, CI) = ... = gCd(CT-2, CT-l). Since CT-2 - dTcT-l = 0, we note that 
gCd(CT_2, CT-l) = CT-I follows from statement ii. 

Note also that 

and 

Thus by induction, 

Co = (_1)1 (poa - qob) = b. 

= (-ly-l(Pt_2a - qt-2b) - (-I)tdt(pt_Ia - qt-l b) 
= (-I)t+l[(Pt_2 + dtpt-l)a - (qt-2 + dtqt-l)b] 
= (-IY+l[pta - qtb ]. 

Example 2.1. Find gcd(51, 36). Using the euclidean algorithm we get 

Hence 

and 

d t Ct Pt qt 

-1 51 1 ° ° 36 ° 1 
1 1 15 1 1 
2 2 6 2 3 
3 2 3 5 7 
4 2 0 12 17 

T = 4, gcd(51, 36) = 3, 

(-1)4(5·51 - 7·36) = 3, 

(-1)\12·51 - 17·36) = 0, etc. 

• 
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To show that the euclidean algorithm runs in polynomial time, we need to show that the 
number of iterations and the size of the numbers produced are polynomial in log(a). For 
later use, we also consider the values taken by P t, q t as t increases. 

Proposition 2.3 

i. (Ptqt+1 - Pt+lqt) = (-ly+1 for t = -1, 0, ... , T; 
ii. gcd(Pb qt) = 1 for t = 1, ... , T; 

iii. alb = qT/PT; 
iv. F T ~ q T ~ a, where Ft is the Fibonacci number given by F -I = 0, F 0 = 1, and 

Ft = Ft-2 + Ft-1for t = 1, ... , T. 

Proof i. For t = -1, we obtain (Ptqt+1 - Pt+lqt) = 1 = (_I)t+I. Using induction, 

(Ptqt+1 - Pt+lqt) = Pt(qt-l + dtqt) - (Pt-I + dtpt)qt 

= (-I)(pt-lqt - Ptqt-l) = (-I)(-IY 

= (_I)t+I. 

ii. Since Pt-Iqt - Ptqt-I = (-IY andpt, qt > ° for t ~ 1, it follows that gcd(pt, qt) = 1. 
iii. CT = 0 = PTa - qTb. Hence qT/PT = a/b. 
iv. Since d t is a positive integer for all t > 0, it follows that 

qt = qt-2 + dtqt-I ~ qt-2 + qt-l. 

Since F-I = q_1 = 0, Fo = qo = 1, and Ft = Ft-2 + Ft-h we have qt ~ Ft for all t. Finally we 
observe from statements ii and iii that qT ~ a. • 

Proposition 2.4. The euclidean algorithm runs in polynomial time. 

Proof Since the Fibonnaci series grows exponentially fast and F T ~ qT ~ a, it follows 
that T is, at most, D(log a). Furthermore, the size of the numbersPt and qt never exceeds 
the size of a. • 

Now consider the equation 

(2.1) 

Proposition 2.5. Let r = gcd(ab a2) with r = pal - qa2, where P and q are relatively prime. 
Equation (2.1) has a solution if and only if r I ao. If r I ao the set of solutions of (2.1) is 
described by 

Proof For any x satisfying (2.1), we obtain (adr)xI + (a2/r)x2 = ao/r. Since 
(adr)xI + (a2/r)x2 E Zl, (2.1) is infeasible if(ao/r) $:. Zl. On the other hand, if ao/r E Zl, 
then x* = (ao/r)(!!q) is a solution, since pal - qa2 = r. But any solution can be written as 
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x = x* + y, where alYI + a2Y2 = 0, Y E Z2. Hence Y = YI(-a:/a2) E Z2. Since gcd(ab a2) = r, 

it follows that YI must be a multiple of a2lr, and x is as claimed. • 

Example 2.1. (continued). We determine the set of solutions to 

By Proposition 2.5 with p = 5, q = 7, and r = 3, the solution set is non empty because 
3127. The complete set of solutions is 

3. CONTINUED FRACTIONS 

The problem of finding the gcd of two positive integers a and b is equivalent to the 
problem 

min{p: ~ - ~ = 0, p, q > ° and integer}-

By adding the constraint p ~ K, we obtain the diophantine approximation problem 

(3.1) min{l~ - ~I: p, q > ° and integer, p .,; K}-

This problem arose in Section 1.6.2, where we needed to find the rational point i = (qt!Pb 
... ,qnIPn) nearest to x* with Pi and qj being integers for i = 1, ... , nand 1 ~ Pi ~ K. 

To solve this problem we need to represent rationals as continued fractions. 

Definition 3.1. Given a rational /1, its continued fraction expansion, denoted by <db 
... , dj >, is an expression of the form 

/1= 

d l +--------------------

1 
dj - l + d· 

} 

where db' .. , dj are integers, all positive except possibly d I. 
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We also use partial expansions of the form 

d 1 + ----------

p= 

d2 + --------

+ 1 
d i - 1 +

X 

with x ~ 1, denoted by <db' .. ,di-l; x>. 

Example 3.1. Let p = alb = *' 
1 

P = 1 + 36/15 = <1; ~> 

= 1 + 1 = <1 2·.!S.> 1 " 6 

2 + 15/6 

... = <1, 2, 2; 1> 

= 1 + 1 = <1, 2, 2, 2>. 
2+~ +2 

1.7. Integer Lattices 

The example indicates that the continued fraction expansion is unique, and a compari
son with Example 2.1 suggests that there is a close relationship between the continued 
fraction expansion of a rational P = alb and the euclidean algorithm applied to (a, b). 

We suppose, without loss of generality, that P = a I b ~ 1. 

Proposition 3.1. Let dt, Ct, Pt, qt and T be as in the euclidean algorithm: 

i. P = <db d2, ••• , dt; ct-dct> for t = 0, ... , T; 
ii. P = <db d2, ••• ,dT> = qTlpT; 

iii. <db d2, ... ,dt> = qt!ptfor t = 1, ... , T. 

Proof i. We use induction. For r = 0, we have P = alb = c-llco. Now assume 
P = <d!, d2, ... , dr-I; cr-2/c r-I>. Expanding l/x with x = cr-2/c r -1 we obtain 

=d+- =d+--( 
C r )-1 ( 1 )-1 

r Cr-l r cr-l/c r • 
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Hence p = <dj, ... , d,; C,_I/C,>, 
ii. We know from the euclidean algorithm that 0 = CT = PTa - qTb with PT and qT 

relatively prime. 
iii. This follows from applying the euclidean algorithm to the rational P' = <d 1, 

... ,dt>. • 

To solve the diophantine approximation problem (3.1), note that the successive values 
qt/Pt approach p. Therefore suppose we truncate the continued fraction expansion just 
before the value of Pt exceeds K. 

Letting} = max{t: Pt ~ K), a candidate for the best approximation is qjPj = <d" d2, 

. , . ,dj >. However, this does not always solve the problem. 

Proposition 3.2. Let} = max{t: Pt ~ K} and k = t(K - pj-d/pjJ. Then either q/Pj or 
(qj_1 + kqj)/(Pj-l + kpj) solves problem (3.1). 

The idea of the proof is to show that any rational between these two values necessarily 
has a denominator exceeding K. 

Example 3.1 (continued). Suppose we wish to find the best approximation q / P to ~ with 
P ~ 10. 

For t = 1, 2, 3, 4, we have qt/Pt = 1, ~, ~,H, respectively. Since P3 ~ 10 < P4, we take 
} = 3, and one estimate is q3/P3 =~. Since k = t(10 - 2)/5J = 1, the other estimate is 
(3 + 1· 7)/2 + 1· 5) = f. Since I H - 51 = to, and If - HI = ii, the best approximation is f. 

4. LATTICES AND HERMITE NORMAL FORM 

Here we consider the lattice 

L(A) = {y E zm: y =Ax, x E zn), 

where A is an m x n integer matrix. In this and the next sections we will consider different 
ways to represent L(A), The basic operations that can be carried out on the matrix A are 
column operations that do not change the lattice. 

Definition 4.1. An n x n matrix C is unimodular if it is integer and I det C I = 1. 

Proposition 4.1. If A is an integer m x n matrix, and C is a unimodular n x n matrix, then 
L(AC) = L(A). 

Proof By substituting x = Cw, we have that 

L(A) = {y E zm: y =Ax, x E zn) = {y E zm: y = ACw, Cw E zn), 

The result follows by showing that {w: Cw E zn) = {w: w E zn). Since C is an integer 
matrix, wE zn implies Cw E zn. Conversely, since C is unimodular, C-I is an integer 
matrix and hence Cw E zn implies C-1Cw = w E zn. • 
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Definition 4.2. An m x m nonsingular integer matrix H is said to be in Hermite normal 
form if: 

a. H is lower triangular and h ij = 0 for i < j; 

b. hu > 0 for i = 1, ... ,m; and 
c. h ij ~ 0 and I h ij I < h ii for i > j. 

The main result of this section is: 

Theorem 4.2. If A is an m x n integer matrix with rank(A) = m, then there exists an n x n 
unimodular matrix C such that: 

a. AC = (H, 0) and H is in Hermite normalform; 
b. H-IA is an integer matrix. 

(H,O) is called the Hermite normal form of A. We will outline a polynomial-time 
algorithm for finding C and H which will serve as a constructive proof of Theorem 4.2. It 
also can be shown that H is unique. 

Example 4.1 

It is readily verified that the matrices 

satisfy the conditions of Theorem 4.2. 

3 
-1 
o 

There are several immediate consequences of Theorem 4.2. The first, a canonical 
description of L(A), uses Proposition 4.1. 

Proposition 4.3. L(H) = L(A). 

Definition 4.3. If L(A) = L(B) and B is nonsingular, then B is a basis for the lattice 
L(A). 

Corollary 4.4. Every lattice L(A) with rank(A) = m has a basis. 

Given the above characterization of L(A), we can solve the Linear Equation Integer 
Feasibility Problem. Let S = {x E zn: Ax = b} and let Hand C = (C I , C2) be as in 
Theorem 4.2, with Clan n x m matrix and C 2 an n x (n - m) matrix. Observe that S *" 0 
if and only if b E L(A). 
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Theorem 4.5 

i. S =1= 0 if and only if H- I b E zm. 

ii. If S =1= 0, every solution ofS is oftheform 

Proof 

S = {x E zn: Ax = b) 
= {x: x = Cw, ACw = b, w E zn) (since C is unimodular) 
= {x: x = Cw, (H, 0) w = b, w E zn) 
= {x: x = C1WI + C2W2, HWI = b, WI E zm, W2 E zn-m) 
= {x: x = C 1H-1b + C2W2, H-1b E zm, W2 E zn-m). 

Example 4.2. Find the set of integer solutions, if any, to 

2x I + 6x 2 + 1 x 3 = 7 

4Xl+7x2+ 7x3=4. 
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• 

Hand C were given in Example 4.1. Now, by Theorem 4.5, the solution set is nonempty 
since 

The general solution is 

w,(~) = ~G n(~) = G) E Z2. 

(~:) = c,G) + C,W2 

= C~ -DG) + CDw, 

~ un + (=Dw" w,E Z'. 

We also obtain an integer version of Farkas' lemma. 

Corollary 4.6. Either S = {x: Ax = h, x E zn) =1= 0 or (exclusively) there exists u E R m 

such that uA E zm, ub fl:. Zl. 

Proof Both cannot hold, since this would imply uAx = ub with uAx E ZI and 
ub $. Zl. If S = 0, then by Theorem 4.5 we have H-1 b $. zm. Suppose the ith coefficient 
of H-1b $. ZI, and then take u to be the ith row of H- I

• • 
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Example 4.2 (continued). If b = (~), then 

and hence S = 0. 
Taking u = a ~), we we obtain uA = (2 5 2) and ub = -¥; in other words, any xES 

must satisfy 

which is impossible. 

Now let gcd(a b ... , an) denote the greatest common divisor of a b ... , an. An obser
vation that is used later is: 

Corollary 4.7. Let S = {x E zn: L~I ajXj = b} with aj' b E ZI. If gcd(al' ... , an) I b, there 
exist n affinely independent points in S. 

Proof Let A = (ai, ... ,an) and let Hand C = (C I , C2) be as described in Theorem 
4.2. C 1 is an n x 1 matrix, and C 2 is n x (n - 1) withACI = hll = gcd(ab a2, ... ,an), and 
AC2 = (0, ... ,0). Hence using Theorem 4.5, we obtain 

s = {x: x = :1 C1 + C,w, wE zn-I} 
Since rank( C) = n, it follows that rank( C 2) = n - 1, and the claim is true. • 

We now turn to the proof of Theorem 4.2 and define the elementary column operations 
that correspond to right multiplication by a unimodular matrix C. 

The elementary column operations of interest are: 

a. Interchange columns} and k. 
b. Multiply column} by-I. 

c. Add A E ZI times column k to column}. 

The corresponding unimodular matrices C are easily constructed. Figure 4.1 shows an 
example with m = n = 6. 

C= 

o 

o 

} = 2, k = 5 
(a) 

-1 

C= 

}=2 
(b) 

Figure 4.1 

C= 

3 
1 

} = 2, k = 5, A = 3 
(c) 



4. Lattices and Hermite Normal Form 193 

Now we give an algorithm that constructs the Hermite normal form of an m x n integer 
matrix A with rank(A) = m. The basic operation of the algorithm involves a row i, as well 
as columns sand t of the matrix A with s < t. A sequence of elementary column 
operations are performed so that ais +- gcd(ais, ail), ail +- O. 

Proposition 4.8. Let A = (ai, ... , an), gcd(ais, ail) = r, and pais + qait = r, where p and q 
are relatively prime. There exists an n x n unimodular integer matrix C such that AC = A', 
where 

a; = at for I =1= s, t 

a· a· 
a' = --.!!...a + -.!:!..a. 

t r s r 1 

In particular, ais = rand ait = o. 

Proof Take C to be an identity matrix in all but columns sand t. In column s, we 
have Css = p, cts = q, and Cis = 0 otherwise. In column t, we have Cst = -ail/r, Ctl = ais/r, and 
Cit = 0 otherwise. It is readily verified that A C = A' , and det C = pa is/ r + qa it/ r = 1. • 

The Hermite Normal Form Algorithm 
Initialization: i = 1. 

Step 1: Work on row i. Set} +- i + 1. 
Step 2: Work on row i and columns i and} > i. If au = 0, do nothing. Otherwise use the 

euclidean algorithm to find r = gcd(aii' au) and p, q relatively prime such that 
paii + qau = r. Set A +- AC, where C is the unimodular matrix described in 
Proposition 4.8, with s = i, t =}. If} < n, set} +- } + 1 and return to Step 2. If} = n, 
go to Step 3. 

Step 3: Work on row i and column i. If au < 0, setA +- AC, where C multiplies column aj 
by -1. 

Step 4: Work on row i and column} < i. Set} +- 1. Set A +- A C, where C replaces column 
aj by aj - rau/aulai' If} = i-I, set i +- i + 1. If i > m, stop. Otherwise return to 
Step 1. If} < i-I, set} +- } + 1 and return to Step 4. 

Proposition 4.9. The Hermite normalform algorithm terminates with matrices Hand C 
as described in Theorem 4.2. 

Proof All the operations performed are column operations corresponding to right 
multiplication by a unimodular matrix. Hence the product C of these matrices is 
unimodular. Let H' = AC be the final matrix. Note that after Step 2, hij = 0 for all} > i; 
after Step 3, hij ~ 0; and after Step 4, hij < 0 and I hij I < hii for} < i unless hii = O. 
Furthermore, these values are never changed in later steps. Hence we only need to show 
that after completing Step 2 for row i, we obtain I hii I > O. 

Suppose hJi > 0 for} < i but hij = O. LetA I be the matrix consisting of the first i rows of 
A. Then the algorithm has produced a unimodular matrix C* such that A I C* = H*, where 
ht = 0 for all k ~ i and} ~ i. Hence rank(H*) = i-I. However, since C* is unimodular, 
rank(A I) = rank(A 1 C*) = i-I, which contradicts rank(A) = m. • 
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Example 4.3. We find the Hermite Normal Form of matrix A given below. 

A=( 
2 6 

D 
i= l,j=2. 

C
1 =( 

1 -3 n 4 7 (a 11, a 12) = (2 6). 0 1 
0 0 (p, q) = (1 0), r = 2. 0 0 

A=( 
2 0 

D 
i = l,j = 3. 

C'= ( 
0 0 -D 4 -5 (a 11, a 13) = (2 1). 0 1 

0 0 (p, q) = (1 0), r = 1. 
0 

A=( 
0 

ID i = l,j = 1. No change. 

C3 = ( 
1 0 

-~) 7 -5 i=2,j=3. 0 -1 
0 (a22, a23) = (-5 10). 0 0 -1 (p,q)=(-10),r=5. 

A=( 
0 j) i = 2,j = 2. No change. 

C
4 

= ( -i 0 n 7 5 i = 2,j = 1. 1 
0 0 

A = (-~ 
0 

-D 
i=3,j=3. 

c' = ( I -J 5 
0 

A = (-~ 
0 n i = 3,j = 1. 

C6 = ( 1 J 5 
0 -1 

A = (-~ 
0 n i = 3,j = 2. No change. 

H= (-~ 
0 

~} 5 5 
-1 0 -1 0 

Finally, 

6 (1 3 -7) 
C = TI C i = 0 -1 22. 

i=1 -1 0 

Although the number of iterations of the HNF algorithm is polynomially bounded, it is 
not known whether the size of the numbers is polynomially bounded. In practice, they get 
so large that the algorithm is difficult to execute on a computer. We now modify the 
algorithm to guarantee that the numbers remain sufficiently small. We assume first that A 
ism x m. 

Observe that if b E L(A), then L(A, b) = L(A). Hence the Hermite normal form of 
(A, b) is the same as that of (A, 0). 

The following proposition gives multiples of the unit vectors in L(A). Note that 
D = det H = II;!1 h ii • 
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Proposition 4.10. Let di = n~i hkkfor i = 1, ... , m. Then diek E L(A)for k = i, ... , m. 

Proof The vector Xk = (DA-1)ek is integer because DA-1 is integer and AXk = 

ADA-1ek = Dek. Hence Dek E L(A). Now observe that hi, ... ,hm E L(A) and apply the 
above result to the lattice L(h i, ... , hm) with D replaced by d i = n~i hkk . • 

The way to use these results is to calculate D first and then add the vectors die k for k = i, 
... ,m and i = 1, ... , m to the lattice L(A) as soon as we have calculated hll' ... ,hi-I,i-I' 
This allows us to reduce all components in rows i, ... , m modulo (dJ 

Based on this observation, a modified Hermite normal form algorithm is easily 
described in which no intermediate numbers in the computation ever exceed 2D2 in 
absolute value. The resulting algorithm runs in polynomial time. 

Simple modifications of the algorithm give the Hermite normal form of a general 
m x n integer matrix A when rank(A) = k < mine m, n). Specifically we obtain 

where C is an n x n unimodular matrix and H is a k x k Hermite matrix. 
The construction of the Hermite normal form of a matrix A depends on column 

operations. By also doing similar transformations on the rows, we obtain another 
canonical representation. 

Theorem 4.11. If A is an m x m nonsingular integer matrix, there exist unimodular 
matrices Rand C such that 

i. RAC=6, 
ii. 6 is a diagonal matrix with diagonal entries J i E Zl \ CO}, 

iii. JtI J2 ••• I Jm , 

iv. 6. is unique. 

The matrix 6 is called the Smith normal form of A. Using an algorithm based on the 
Hermite normal form algorithm, 6 can be constructed in polynomial time. 

5. A REDUCED BASIS OF A LATTICE 

Suppose that L(A) s; R n is a full-dimensional lattice. In the previous section the Hermite 
basis for L(A) was used to solve the Linear Equation Integer Feasibility Problem. Here we 
construct another basis B for L(A), called a reduced basis, and indicate how it can be used 
to solve the shortest vector problem. In addition, two applications of reduced bases in 
integer programming will be given in Section 11.6.5. 

Before we can define and explain the use of a reduced basis, we need to introduce 
several facts about bases and how they relate to determinants. First we introduce the 
Gram -Schmidt orthogonalization of a basis. 
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Definition 5.1. A basis B = (bb ... ,bn) is said to be orthogonal if bibj = ° for i,j = 1, 
... , n, i *j. 

The Gram-Schmidt Orthogonalization of a Basis B 

(5.1) 

Proposition 5.1 

bf = b l 

b! = b2 - al2bT 

k-l 

b'k = bk - I ajkbj for k = 3, ... , n, 
j=l 

i. The Gram-Schmidt procedure constructs an orthogonal basis B* = (bf, ... ,b~) 
for Rn, 

ii. b'k is the component of bk orthogonal to the subspace generated by bf, ... ,btl, 
iii. Idet B I = Idet B* I = TIJ=1 IIbjll. 

To examine how the lengths of the vectors of a basis are related to det B, we need to 
work with a more general definition of a determinant. 

Definition 5.2. Idet(b l, ... ,bk) I = TIj=1 IIbjll for all k ::::; n. 

We see from the definition that det(b}, ... , bk ) is the k-dimensional volume of the 
parallelepiped with vertices given by Lj=l bjxj, where Xj E {a, 1} for j = 1, ... ,k (see 
Figure 5.1). Furthermore, since bj is the component of bj orthogonal to the subspace 
generated by bf, ... , bj-l, it follows that IIbjll ::::; Ilbjll. 

Given a full-dimensional lattice L, we know by statement iii of Proposition 5.1 that 
I det B I has the same value for all bases B of the lattice. Let d(L) be this common value 
and let a(B) = TIJ=1 IIb j ll. From the above observations we obtain the following proposi
tion. 

Figure 5.1 
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Proposition 5.2 (The Hadamard Inequality). For all bases B ofL, we have a(B) ~ d(L). 

Example 5.1. We consider a full-dimensional lattice L with basis 

(
2 6 1) 

B= 4 7 7 . 
001 

We have d(L) = Idet B I = 10. Note that a(B) = (20·85·51)1/2 = (86,700)'12 is much larger 
than I det B I. The Gram -Schmidt Orthogonalization Procedure applied to B gives 

Now we show how a(B) relates to the shortest vector problem (1.3). 

Proposition 5.3. Given a full-dimensional lattice L ~ Rn and a basis B of L, let XO be a 
solution of the problem 

. { . ~ a(B) fi 0 } mIn IIBxll· IXj I "" Idet B I or j = 1, ... , n, x E zn \ { } . 

Then v = Bxo is a shortest vector in the lattice L. 

Proof Let v = Bx be a shortest nonzero vector with x E zn \ {O}. Using Cramer's 
rule, we have Ix}1 = IdetB}/lldetBI, where B}=(b" ... ,bj_"v,bj+b ... ,bn). By 
Hadamard's inequality (Proposition 5 .2), we have 

However, since b} E L, it follows that Ilvll ~ Ilb}ll. Hence Idet Bj I ~ la(B) I, and so 
Ix} I ~ a(B)/ Idet B I. • 

As a consequence of Proposition 5.3, we are motivated to find a basis such that 
a(B)1 I det B I is small; in particular, we would like to find one with rlog (a(B)/ I det B /)1 
polynomial in n. 

We also have the following lower bound on the shortest vector in the lattice. 

Proposition 5.4. If bEL, b =1= 0, and B is a basis of L, with B* being its Gram-Schmidt 
orthogonalization, then IIbll ~ minj IIb~l. 
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Proof Since bEL, there exists a k ~ n such that b = :r.j=1 biz} with z E Zk and Zk =1= O. 
By substituting for b}, using (5.1), we obtain b = :r.j=1 bjzjwith Zk = Zk E Zl. Since the {bj} 
are orthogonal, IIbli ~ IZk I IIbZ" ~ min} IIbjll· • 

Unfortunately, B* is typically not a basis for L because {aij}i<J are not all integer. This 
does suggest, however, the need to find a basis that is "ne~r1y orthogonal". 

Definition 5.3. Let L be a full-dimensional lattice, let B be a basis of L, and let B* be the 
basis obtained from the Gram-Schmidt orthogonalization procedure. B is a reduced basis 
if: 

a. aij ~ ! for all i < j and 
b. IIbj+1 + a},}+lbjll2 ~ ~ IIb~12 for j = 1, ... , n - 1. 

The interest in a reduced basis lies in the following results, giving an upper bound on 
lib III (and hence on the shortest vector) and an upper bound on a(B). 

Theorem 5.5. Let B be a reduced basis for the full-dimensional lattice L. Then 

i. IIbjll2 ~ 211bj+III2. 
11. lib III ~ 2(n-l)/4 (d(L ))l/n. 

111. lib III ~ 2(n-l)/2 min{llbll: bEL, b =1= a}. 
iv. a(B) ~ 2n(n-l)/4 d(L). 

Proof i. Since bjand bj+l are orthogonal, by statement b in the definition of a reduced 
basis we have 

By statement a of Definition 5.3, we have aJ,}+1 ~ ~ and hence IIbj+11I2 ~ ~lIbjIl2. 
ii. By i, it follows that IIbjll2 ~ 2-u-1) IIbrll2 and since b l = br, we obtain 

n 

(d(L)? = 11 IIbjl12 ~ 2-kJ~1(j-I) IIbIll 2n = 2-n(n-I)/2 IIbdfn. 
}=1 

iii. From the proof of ii, we have 

Hence, using Proposition 5.4, we obtain 

Ilbll ~ m~nllbjll ~ 2-(n-l)/2 IIbdl. 
1 

iv. Since bj = L{,=I aijbT and the vectors bT are orthogonal, it follows that 

} 

IIbj ll 2 
= L a~ IIbrll2 (with ajj = 1) 

i=l 

j-I 
~ IIbjll2 + ~ I IIbrll2 by statement a of Definition 5.3. 

i=1 
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Now, using i, we obtain Ilb;U2 ~ 2j-i IIbjll2 and hence 

Finally, 
n n 

(a(B»2 = TI IIbj ll 2 ~ 2n(n-I)/2 TI IIbjll2 = 2n(n-l)/2(d(L »2 
j=l j=l 

Example 5.1 (continued). The following computations show that 

is a reduced basis for the lattice L: 

M= b, = G) so a'2 = 0 and al3 =1. 

b;=b2-a'2M= (-I) so a23=O. 

bj = b3 - al3M - a23bi = ( ~ ). 
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• 

Hence part a in the definition of a reduced basis holds. We will now check b of 
Definition 5.3 as follows: 

lib; + a12bfll2 = 5 ~ illbfl1 2 = i· 4 = 3 

IIbi + a23bill2 = 5 ~ ~lIbill2 = ~. 5 = ~. 

Hence B is a reduced basis. 
Checking the bounds in Theorem 5.5, we observe 

ii. lib III s 21/2 (d(L»1/3 = 21/2 101/3 and 

iv. a(B) = TI]=l IIbjll = (120)1/2 ~ 23/2d(L) = 20.2 1/2. 

A Reduced Basis Algorithm for a Full-Dimensional Lattice L 

Step 0: Let B be a basis of the lattice L. 
Step 1: Let (bf, ... , b~) be the Gram-Schmidt orthogonalization of (b l, ... , bn) with 

aij = b7b)lIbrIl2. 
Step 2: For j = 2, ... , n and for i = j - 1, ... , 1 replace bj by bj - aijb i, where aij is the 

integer closest to aij. 
Step 3: If IIbj+1 + aj,j+lb~12 < ~lIb~12 for some j, interchange bj and bj+1 and return to Step 1 

with the new basis B. 
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Theorem 5.6. The above algorithm finds a reduced basis for L in polynomial time. 

We will not prove this result. However, the reader may observe that even though the 
basis B changes in Step 2, the corresponding B* does not change. This implies that on 
termination of Step 2, I ai} I ~ ~ for all i < j, so condition a for a reduced basis is satisfied. 

Now we return to the shortest vector problem. We have seen that a reduced basis can be 
found in polynomial time and that for such a basis we obtain a(B)/ Idet B I ~ 2n(n-I)/4. By 
Proposition 5.3 it suffices to enumerate over x E zn \ {a} with Ix) I ~ 2n(n-I)/4. Hence we 
have shown the following: 

Theorem 5.7. For fixed n, the shortest vector problem can be solved in polynomial time. 

Example 5.1 (continued). Find a shortest vector in L. We already have a reduced basis 

2 
-1 
o 

For n = 3, it suffices to enumerate the 53 - 1 vectors v = Bx with I x) I ~ l23/2J = 2, and 
x E Z3 \ {a}, giving 

v=G) 
as a shortest vector. 

The final item in this section is to show how a reduced basis can be used to solve 
"approximately" a feasibility version of (1.5), namely: 

The Simultaneous Diophantine Approximation Feasibility Problem (SDAF). Given 
rationals ab ... ,am e, and an integer K > 0, decide if there exist integers q" ... , qn and 
p > 0 such that p ~ K and I paj - q i \ ~ e for i = 1, ... , n. 

The approach is to reformulate a "weak" version of SDAF as a problem of finding a 
short vector in a lattice. 

Theorem 5.8. There is a polynomial-time algorithm which either 

i. determines that SDAF is infeasible or 
ii. finds integers qI, ... , qn and p > 0 such that \paj - qi I < 2n/2 e (n + 1)1/2 for i =1, 

... , nand p < 2n/2 K (n + 1)1/2. 

Proof Let a = (a" ... ,an, elK) E Rn+' and let ei be the ith unit vector in Rn+'. 
Consider the lattice L generated by (e" ... , en, - a). For any (qI, ... ,qn, p) E zn+l, we 
have w = 1:7=1 qiei - pa E L. Furthermore, if (q" ... ,qn, p) is a solution to SDAF, then 
IWi 1= Iqi - aiP I ~ efori = 1, ... ,n and IWn+l\ = IPe/KI ~ e. Hence IIwil ~ e(n + 1)1/2• 

Now let B be a reduced basis for L with b 1 being its first column. By Theorem 5.6, B can 
be found in polynomial time. 



6. Notes 201 

By iii of Theorem 5.5, if lib 1 II > 2(n-l)/2 E (n + 1)1/2, then lib II ~ 2-(n-l)/2 lib 1 II > E(n + 1)1/2 

for all bEL \ {O}. Hence SDAF has no solution. If Ilbtll ~ 2(n-l)/2 E (n + 1)1/2, choose 
(q', p') E zn+l such that b1 = L7=1 qiej - p'a. If p' =1= 0, then (q', p') satisfies the conditions 
ofii because 

Iqj - p'ai I ~ 2(n-l)/2 E(n + 1)1/2 for i = 1, ... , n 

and 

If p' = 0, then b 1 = (qi, ... ,q~, 0) and IlbIlI ~ 1. Hence 2(n-l)/2 E(n + 1)1/2 ~ 1, and 
p = 1, q i = laiJ satisfies ii. • 

6. NOTES 

Section 1.7.1 

The problems considered in this chapter are related to classical topics in number theory 
(see, e.g., Cassels, 1971). Our study of these topics arises from the interest in polynomial
time algorithms and applications in integer programming. Also see Section 11.6.5. 

Section I.7.2 

The euclidean algorithm is surely the oldest algorithm in this book. Its complexity is 
analyzed in detail by Knuth (1981). 

Section 1.7.3 

In the preparation of this section and Section 5, we have made liberal use of both the 
article and the monograph by Grotschel, Lovasz, and Schrijver (1984b, 1988). Proposition 
3.2 is due to Khintchine (1930). 

Section 1.7.4 

Kannan and Bachem (1979) give a provably polynomial-time algorithm for computing 
Hermite normal form. The algorithm sketched here is due to Domich et al. (1987). 

The integral Farkas lemma, Corollary 4.6, appears in Edmonds and Giles (1977). 

Section 1.7.5 

Lagarias (1985) has shown that the simultaneous diophantine approximation problem is 
.H~-complete. It is also the case that the nearest vector problem is .H~-hard (see Van Emde 
Boas, 1981). 

The polynomial-time algorithm for finding a reduced basis and a short vector in a 
lattice is due to Lenstra, Lenstra and Lovasz (1982). These and related problems are also 
discussed by Bachem and Kannan (1984) and Kannan (1987b). 
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7. EXERCISES 

1. i) Find the gcd of27,692 and 100,000. 

ii) Find the continued fraction expansion of 100,000/27,692. 

iii) Find the best rational approximation of 100,000/27,692 with denominator of 
100 or less. 

2. Show that the continued fraction expansion of a rational number is unique. 

3. Prove Proposition 3.2. 

4. i) Find the Hermite normal form of (l~ ~ J). 
ii) Find all solutions (if any) to the system of equations 

12x 1 + 6x 2 + 7 x 3 = 8 

2x 1 + 9x 2 + 4x 3 = 7 

xEZ3
• 

5. Show that the Hermite normal form is unique. 

6. Describe, in detail, a polynomial Hermite normal form algorithm based on Proposi
tion 4.10. Apply the algorithm to the matrix 

A = (-I -6 
-1 
-2 

7. Describe a polynomial algorithm to find the Smith normal form of a matrix. 

8. Use the reduced basis algorithm to find a reduced basis of L(B), where 

is the basis of Example 5.1. 

6 
7 
o 

9. Solve the simultaneous diophantine approximation feasibility problem with 
(at, a2, a3) = (~ ~ ~), € = t and K = 18. 
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11.1 
The Theory 
of Valid Inequalities 

1. INTRODUCTION 

We consider the discrete optimization problem max{cx: xES}, where S ~ Z1, and we 
formulate it as an integer program by specifying a rational polyhedron 
p = {x E R1: Ax ~ b} such that S = zn n P. Hence S = {x E Z1: Ax ~ b}, and the integer 
program can be written as 

max{cx: Ax ~ b, x E Z1). 

Throughout this chapter, unless otherwise specified, A and bare m x nand m x 1 
matrices, respectively, with rational coefficients. 

The topics to be studied in this chapter and the next one concern the representation of 
an integer program by a linear program that has the same optimal solution. We have 
already established the existence of such a representation, namely, 

max{cx: xES} = max{cx: x E conv(S)} 

(see Theorem 6.3 of Section 1.4.6). 
Here we are interested in the constructive aspects of the representation. This will be 

done by using integrality and valid inequalities for P to construct suitable valid inequal
ities for the set S. 

Example 1.1. S = {x E Z1: Ax ~ b}. 

( 

-1 
A = 5 

-2 
~), 

-2 

Figure 1.1 shows the polytope defined by the constraints Ax ~ b and x ~ 0 (the outer 
polytope), the feasible integral points (black dots), and conv(S) (the inner polytope). 

We have 

s = {(;), G), G), (;), G), (~)} = {Xl, x 2
, ••• , x 6

}. 

205 
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4 

3 

2 

o '---------2----3-....a..-.-·
4
----- Xl 

Figure 1.1 

conv(S) is a polytope defined by the four extreme points 

In this small example, it is a simple matter to obtain a linear inequality representation of 
conv(S) from the four lines defined by the adjacent pairs of extreme points. In particular, 
conv(S) is defined by the constraints A'x ~ b', where 

(

-1 

A'= 0 
-1 

3 
-;} b'= (~f} 

From the extreme points of conv(S) we can obtain its polar set, which is the set of valid 
inequalities for conv(S) (see Proposition 5.1 of Section 1.4.5). This is also the set of valid 
inequalities for S, since S ~ conv(S) and any valid inequality for S is also valid for 
conv(S) (see Proposition 6.5 of Section 1.4.6). 

Thus the set of valid inequalities for S is given by 

2nl + 2n2 - no ~o 

2nl + 3n2 - no ~o 

3nl + 3n2 - no ~o 

4nl - no ~o. 
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The polyhedral cone defined by these four half-spaces is shown in Figure 1.2. 

The valid inequalities 1CX :::::; no and yx :::::; Yo are said to be equivalent if (y, Yo) = A(n, no) 
for some A> O. If they are not equivalent and there exists Jl > 0 such that y ~ Jln and 
Yo:::::; Jl1Co, then {x E R~: yx :::::; Yo} c {x E R~: nx :::::; no}. In this case we say that yx :::::; Yo 
dominates or is stronger than 1CX :::::; no or that nx :::::; 1Co is dominated by or is weaker than 
yx :::::; Yo. A maximal valid inequality is one that is not dominated by any other valid 
inequality. Any maximal valid inequality for S defines a nonempty face of conv(S), and 
the set of maximal valid inequalities contains all of the facet-defining inequalities for 
conv(S). 

Example 1.1 (continued). The valid inequality 3XI + 4X2 :::::; 24 is not maximal since it is 
dominated by the maximal valid inequality Xl + X2 :::::; 6. The valid inequality Xl :::::; 4 
defines the zero-dimensional face {( 4 O)}, but it is not maximal since it is dominated by the 
facet-defining inequality 3x I + X2 :::::; 12. (see Figure 1.3). 

Given P = {x E R~: Ax:::::; b} and S = P n zn, facets of conv(S) can be constructed 
iteratively using integrality and the linear inequality description of P. This means that we 
start with the valid inequalities Ax :::::; band, if they are not enough to define conv(S), we 
progressively construct stronger valid inequalities. 

We obtain valid inequalities for P by taking nonnegative linear combinations of rows of 
Ax :::::; b. (These can be weakened by adding in nonnegative linear combinations of 
-x:::::; 0). This gives the infinite family of valid inequalities 

(1.1) (uA - v)x :::::; ub + a for all u E R':, v E R~, and a ~ O. 

Moreover, under some technical assumptions stated below, all valid inequalities for P 
can be obtained in this way, and the linear combinations can be restricted to using, at 
most, min(m, n) rows of A. 

(0,4, 12) 

(3, I, 12) 

(-6,0, -12) ~_----------::0(o,o,o) 

(-3,-3,-12) 

Figure 1.2 
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3 

3Xl +x2 = 12 

Xl +x2 =6 

o 2 3 

Figure 1.3 

Proposition 1.1. Let nx ~ no be any valid inequality for P = {x E R~: Ax ~ b}. Then 
nx ~ no is either equivalent to or dominated by an inequality of the form uAx ~ ub, 
u E R': if any of the following conditions hold: 

a. P =1= 0 (in this case no more than min(m, n) components of u need be positive). 
b. {u E R':: uA ~ n} =1= 0. 
c. A = (J '), where I is an n x n identity matrix. 

Proof a. Since (n, no) is valid and P =1= 0, the linear program max{nx: Ax ~ b, 
x E R~} has a feasible solution and its value is bounded by no. Hence the dual linear 
program has a basic feasible solution Uo E R': with uOA ~ nand uOb ~ no. The vector UO 
has no more than min(m, n) positive components and nx ~ (uOA)x ~ uOb ~ no. 

b. If P =1= 0, see part a. So assume P = 0 and u E R': satisfies uA ~ n. If ub ~ no, we are 
done. Otherwise, since P = 0 there exists li E R': such that liA ~ 0 and lib < O. Hence for 
some P > 0 we obtain (u + pli)A ~ nand (u + pli)b ~ no. 

c. It is a simple exercise in linear programming duality to show that for any n there exists 
a u E R': with uA ~ n. • 

When P = 0, every inequality is valid for P. However, if conditions a and b fail, which 
is equivalent to the primal and dual linear programs being infeasible, then we cannot 
generate the valid inequality by nonnegative linear combinations. 

Example 1.2 

Ox! + X2 ~ 1 

Ox! - X2 ~ -2 

xERi. 



1. Introduction 209 

Here P = 0. Consider the valid inequality x I ~ 1. The dual feasibility region given by 

OUI + OU2 ~ 1 

UI - U2 ~ 0 

U ER~ 

is also empty. Thus conditions a and b fail. Moreover, it is obvious that x I ~ 1 is not 
equivalent to or dominated by an inequality of the form (Ou 1 + OU2)X 1 

+ (UI - U2)X2 ~ UI - 2U2. 

To avoid the trouble that can arise when P = 0 we frequently assume that the linear 
inequality description of P contains explicit bounding constraints, that is, A = (1 '). 

Since S ~ P, the inequalities (1.1) are also valid for S. However, unless conv(S) = P, 
there are valid inequalities for S that are not valid for P and hence cannot be obtained just 
from nonnegative linear combinations. 

Integrality must be used to obtain the inequalities for S that are not valid for P. We now 
consider techniques that use integrality to obtain valid inequalities. 

Integer Rounding 

This approach is based on the simple principle that if a is an integer and a ~ b, then 
a ~ lbJ, where lbJ is the largest integer less than or equal to b. 

Consider the matching problem on the graph G = (V, E). For V ~ V, let E( V) be the set 
of edges with both ends in V and let 6( V) be the set of edges with one end in V. A subset of 
edges is a matching if 

(1.2) 

(1.3) 

L x e ~ 1 for all i E V 
eE6({i}) 

xEZJ
E

" 

where Xe = 1 if e is in the matching and Xe = 0 otherwise. 
For any set V ~ V, the number of edges in a matching with both ends in V is at most 

HI VIJ. Thus if I VI = 2k + 1, then 

(1.4) 

is a valid inequality for all k ~ 1. 

L xe~k 
eEE(U) 

The inequalities 0.4) cannot be obtained just by taking nonnegative linear combina
tions of the constraints (1.2). However, they can be justified algebraically by the following 
three-step argument. 

i. Take a linear combination of the constraints (1.2) with weights Ui = 1 for all i E V 
and Ui = 0 for all i E V \ V. This yields the valid inequality 

(1.5) 
1 1 

I Xe + -2 L Xe ~ -2 I V I· 
eEE( U) eEJ( U) 
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11. Since Xe ~ 0 for all e E E, it follows that 

(1.6) 

(1. 7) 

1 -- L Xe ~ 0 
2eEt5(u) 

is a valid inequality. Adding (1.5) and (1.6) yields 

1 L xe~-2IUI. 
eEE(U) 

11.1. The Theory of Valid Inequalities 

iii. From (1.3), the left-hand side of(1. 7) is an integer. Therefore, the right-hand side can 
be replaced by the largest integer equal to or less than it; that is, if 1 U 1 = 2k + 1, 
then l~ 1 u 11 = k is a valid right-hand side. Thus (1.4) is a valid inequality for all 
k ~ 1. 

In Section 111.2.3 we will prove that the convex hull of matchings is given by (1.2) and 
(1.4) for all odd sets U with 1 U 1 ~ 3, and Xe ~ 0 for all e E E. But, in general, the three-
step procedure must be applied recursively. 

For S = {x E Z~: Ax ~ b}, where A = (a I, a2, ... , an) and N = {l, ... ,n}, the three
step procedure yields the following: 

i. LjEN (uaj)xj ~ ub for all u ~ 0; 

ii. LjEN (luajj)xj ~ ub, since x ~ 0 implies -LjEN (uaj -luajJ)xj ~ 0; and 
iii. LjEN (luajj)xj ~ lub1, since x E zn implies LjEN (luajJ)xj is an integer. 

The crucial step is iii, where we invoke integrality to round down the right-hand side. 
The valid inequality 

(1.8) I (luajj)xj ~ lubJ 
JEN 

can be added to Ax ~ b, and then the procedure can be repeated by combining generated 
inequalities and/or original ones. As noted in Proposition 1.1, in one application of the 
procedure it is sufficient to combine, at most, n inequalities. The procedure is called the 
Chvatal-Gomory (C-G) rounding method, and the inequalities it produces are called 
C-G inequalities. In Section 2, we will prove that by repeating the C-G procedure a finite 
number of times, all of the valid inequalities for S can be generated. 

In Example 1.1, u = (fr fz 0) in step i yields 

Then 

and 

100 
X2~-

22 
(step ii) 

(step iii). 

A geometric explanation of the procedure is shown in Figure 1.4. 
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4 • 

3 

2 

o 2 3 4 

Figure 1.4 

In Example 1.1, u = Crr -rr 0) yields Xl + X 2 ~ W. But since there are no points of S such that 
Xl + X2 = W, it is permissible to push the hyperplane inward until it meets a point in S. 
However, step iii does not, in general, allow the hyperplane to be pushed in this far. It can 
be pushed in no further than an intersection with some point of Z2, and perhaps not even 
this far if the integral coefficients of X I and X2 are not relatively prime. It is fortuitous in the 
example that the line Xl + X 2 = 6 happens to contain a point in S. Note, however, that if we 
started with the equivalent inequality 2x 1 + 2X2 = W, then step iii would have yielded 
2x I + 2X2 ~ 13. The line 2x 1 + 2X2 = 13 contains no points of Z2. 

The above discussion is summarized by the following result. Let the greatest common 
divisor of the integers a and b be denoted by gcd{a, b}. 

Proposition 1.2. Let S = {x E zn: LjEN ajxj ~ b}, where aj E ZI for j EN, and let 
k = gcd{al, ... , an}. Then conv(S) = {x ERn: LjEN (a/k)xj ~ lb/kj). 

Proof Using steps i and iii of the C-G procedure with u = l/k, it follows that 
LjEN (aJlk)aj ~ l~J is a valid inequality for S. Since gcd{at!k, ... , an/k) = 1, it follows 
from Corollary 4.7 of Section 1.7.4 that LjEN (aj/k)xj = lb/kJ contains an infinite number 
of points of S - in particular, n affinely independent ones. Therefore the inequality 
represents a facet of conv(S). But conv(S) contains no other facets, since if nx ~ no is a 
different facet, then nx ~ no for all x ERn such that LjEN (aj/k)xj = lb/kJ, which is 
impossible. • 

Proposition 1.2 shows the limitations of one application of the C-G rounding method. 
The step i inequality LjEN (uaj)xj ~ ub must be weakened in step ii if there exists aj such 
that ua j is not integral. Then the best we can hope for from step iii is to intersect 
{x E R~: Ax ~ b} with conv{x E zn: LjEN luajjxj ~ lubj}. 
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Many other arguments can be used to generate valid inequalities. Some are explained 
and illustrated below. 

Modular Arithmetic 

Here we derive a valid inequality for the set of solutions to one linear equation in 
nonnegative integers, that is, S = {x E Z~: LjEN ajXj = ao}, where aj E R' for allj. 

Let d be a positive integer and 

Sd = {x E Z~: I ajXj = ao + kd for some integer k}. 
JEN 

We are going to derive a valid inequality for S d. Then, since S s; S d, the inequality is valid 
for S. 

Let aj = bj + ajd for j = 0, 1, ... , n, where 0 ~ bj < d and aj is an integer, that is, bj is 
the remainder when aj is divided by d. Then 

Sd = {x E Z~: I bjxj = bo + kd for some integer k}. 
JEN 

Now LjEN bjxj ~ 0 and bo < dimply k ~ 0; hence we obtain the valid inequality 

(1.9) IbjXj ~ boo 
JEN 

Inequality (1.9) is nontrivial only if d does not divide ao, that is, only if bo > O. 
For the set S given by 

XEZ!, 

inequality (1.9) with d = 12 yields Xl + 4X2 + 6X3 + X4 ~ 9. 
An important set of inequalities of this type arises when d = 1 and ao is not an integer. 

Then (1.9) yields the valid inequality 

(1.10) I (aj - lajJ)xj ~ ao - laoL 
JEN 

which is called a Gomory cutting plane (see Section 3). 
For example, suppose Xo = 3i - !x, + lx2 - *X3 is an equation obtained in the solution 

of a linear program and we also require the variables to be nonnegative integers. Then 
(1.10) yields !x, + tx2 + ix3 ~ i. 

Disjunctive Constraints 

Proposition 1.3. If LjEN n}xj ~ nJ is valid for S, C R~ and LjEN nJxj ~ n6 is valid for 
S2 C R~, then 

(1.11) I min(n), nJ)xj ~ max(n6, n~) 
JEN 

is validfor S, U S2' 
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In other words, if we must satisfy one set of constraints or another set, but not 
necessarily both, and we know valid inequalities for each set, then (1.11) is a valid 
inequality for the disjunction of the two sets. 

This yields another systematic way, called the disjunctive procedure, of generating valid 
inequalities for the region S = {x E Z~: Ax ~ b}. The two steps of the procedure are: 

i. LjEN (uaj)xj ~ ub for all u ~ O. 
ii. Given 6 E Zl, if 

(a) I njx) - a(Xk - 6) ~ no 
JEN 

is valid for S for some a ~ 0 and 

(b) I n)x) + P(x k - 6 - 1) ~ no 
JEN 

is valid for S for some P ~ 0, then 

(c) 

is valid for S. 

Note that (a) shows that (c) is valid for Sl = S n {x E Z~: Xk ~ 6} and (b) shows that (c) 
is valid for S2 = S n {x E Z~: Xk ~ 6 + n. Since S = Sl U S2, Proposition 1.3 establishes 
that (c) is valid for S. 

Inequalities generated by repeated application of the disjunctive procedure are called 
D-inequalities. 

Example 1.3. An example of the D-inequalities is shown in Figure 1.5, where 

The first two inequalities can be rewritten as 

1 3 1 
--Xl + X2 - -Xl ~ -

4 4 2 

and 

Using the disjunction Xl ~ 0 or Xl ~ 1 leads to the valid inequality -txl + X2 ~! for 
S =P n Z2. 
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o 2 

Figure 1.5 

An interesting property of the disjunctive procedure is that if we just consider a 
disjunction on a single variable, then every valid inequality for the disjunction is a 
D-inequality. 

Proposition 1.4. Let P = {x E R~: Ax ~ b} and suppose A = (1'). Then nx ~ no is a valid 
inequality for 

P f = (P n {x': x k ~ J}) U (P n {x : x k ~ is + I}) 

only if there exist a, p ~ ° such that LjEN 1!jX} - a(xk - is) ~ no and L}EN njX} + 
P(Xk - is - 1) ~ no are valid/or P. 

Proof Suppose that 1!X ~ no is valid for P'. Then 1!X ~ 1!o is valid for P n {x: Xk ~ J} 
and P n {x: Xk ~ is + n. Hence by Proposition 1.1, there exists (u l

, a) ~ ° and (u 2
, P) ~ 0 

such that 

and 

where ek is the kth unit vector. Since u 1 ~ 0 and u2 ~ 0, the inequalities uiAx ~ uib for 
i = 1, 2, are valid for P and are equal to or dominate 

• 
In the next section we will show that for 0-1 problems it is possible to use this procedure 

variable by variable to produce all valid inequalities for S = P n Bn. 
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Another application of Proposition 1.3 is to derive a valid inequality for the system 

(1.12) 

where aj E RI for all}. The feasible set S of(1.12) is contained in SI U S2, where 

and 

Note that when ao is not integral, S 1 U S2 is the standard disjunction used in enumeration, 
that is Xo ~ laoJ or Xo ~ laoJ + 1. Since 

and 

we obtain from (1.11) the valid inequality LjEN 1CjXj ~ - 1, where 

(1.13) . (a j aj ) fi . N 
1Cj = mIn l J 'l J 1 or } E . ao - ao ao + - ao 

If Xo = 3~ - ~Xl + ix2 - ¥X3, where Xo E Zl and x E R~, then (1.13) yields the valid 
inequality 1xI + 7X2 + ~X3 ~ 1. Note that this inequality is weaker than the one obtained 
previously where we required x E zl. 

Boolean Implications 

Here we derive some valid inequalities that require the assumption 
S C B n = {x E Z~: Xj ~ 1 for} EN}. 

Suppose 

(1.14) 

where the aj's and b are positive integers, that is, S is the feasible set for a 0-1 knapsack 
problem. Let C C Nbe such that LjEC aj > b. Then a valid inequality for (1.14) is 

(1.15) L Xj ~ ICI -1. 
JEC 
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Valid inequalities of this form are used in the solution of general 0-1 integer programs (see 
Sections 11.2.2 and 11.6.2). 

The system 

(1.16) T= {x EBl, Y ER1: L Yj ~ nx, Yj ~ 1 for} EN} 
JEN 

arises in many models. Here we see that Yj = 0 if x = 0 and Yj ~ 1 if x = 1. Hence 

(1.17) Yj ~ x for} EN 

are valid inequalities for (1.16). 
These are just two examples of a variety of ad hoc tricks for obtaining valid inequalities 

from Boolean implications. 

Geometric or Combinatorial Implications 

The valid inequalities that we illustrate here are related to the logical implications 
considered above but are associated with combinatorial systems such as graphs and 
matroids. One example is the set of constraints (1.4) for the matching problem. 

To give another, consider the node-packing problem on the graph G = (V, E). A subset 
of nodes is a packing if 

(1.18) Xi + Xj ~ 1 for all (i,}) E E 

and 

(1.19) 

where Xi = 1 ifnode i is in the packing and Xi = 0 otherwise. In the graph of Figure 1.6, no 
more than one of the pairwise adjacent nodes {4, 5, 6, 7} can be in a packing and no more 
than two of the nodes from the cycle {l, 2, 3, 4, 5} can be in a packing. Thus we obtain the 
valid inequalities 

(1.20) 

and 

(1.21) 

neither of which can be obtained from nonnegative linear combinations of (1.18) and 
non negativity. 

Figure 1.6 
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Valid Inequalities and Model Formulation 

At this point, we suggest that the reader go back to Chapter 1.1 to observe that valid 
inequalities, particularly those derived from Boolean and combinatorial implications, 
have been used to formulate models. So where should we draw the line between using valid 
inequalities in formulating models and using them in the solution of the model? There is 
no right answer to this question. It is sufficient to formulate the model so that 
{x E z~: Ax ~ b} is precisely the set of feasible points. But the formulation is not unique 
and, in particular, any valid inequalities can be added. 

In some cases, such valid inequalities imply the ones from which they are derived, so the 
original ones can be deleted from the formulation. For example, by summing the 
constraints (1.17) we obtain the linear constraint of(1.16), which can then be deleted from 
the formulation. By using the constraint (1.20), we can delete the constraints (1.18) for the 
six edges joining nodes 4, 5, 6, and 7. However, (1.21) does not imply any of the edge 
constraints (1.18). 

With hindsight, the valid inequalities that we would like to have in our formulation are 
precisely those that are active in an optimal solution. Thus, given a formulation, a guiding 
principle is to include any additional valid inequalities that we know, which we believe 
might be active in an optimal solution. 

The methods given above for generating valid inequalities do not exhaust all possibil
ities, and others will be introduced later. Usually, a valid inequality can be obtained by a 
variety of different arguments, although one method may produce it directly while 
another requires repeated applications of the procedure. For example, two applications of 
the C-G procedure are needed to derive (1.20) from (1.18) and (1.19). 

2. GENERATING ALL VALID INEQUALITIES 

Given S = {x E z~: Ax ~ b}, where A = (aI, ... ,an), in Section 1 we used the C-G 
procedure to develop the valid inequalities 

L luajJxj ~ lubJ 
JEN 

for any u ~ 0 and showed how integrality can be used to develop D-inequalities for S. We 
will show now, by using these procedures a finite number of times, that it is possible to 
generate all valid inequalities for S. To simplify exposition, we say that any valid 
inequality dominated by a C-G inequality (D-inequality) is also a C-G inequality 
(D-inequality). 

0-1 Problems 

We consider 0-1 problems with P = {x E R~: Ax ~ b, x ~ 1} and S = P n zn. First we will 
show that all valid inequalities for S are D-inequalities. 

Define pn = P, and for t = n - 1, ... ,0 define 

pt = conv[(pt+1 n {x: Xt+1 = O}) U (pt+1 n {x: Xt+1 = l})J. 

For n = 2, p2 = P, pI and po are shown in Figure 2.1. Note that in this example, 
conv(S) = po. 
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(0,1) p2 (1,1) 

(0,0) (1,0) 

Figure 2.1. p2 is the outer polytope. pI is the shaded polytope. po is the line joining (0, 1) and (1, 0). 

Since pO contains all of the integral points in P, in general we have conv(S) ~ pO. We 
prove that all valid inequalities for S are D-inequalities by showing that all valid 
inequalities for S are D-inequalities for pO. This also yields pO ~ conv(S), so pO = conv(S). 

Suppose nx ~ no is valid for S and OJ > 0, then so are the inequalities 

where NJ n N' = 0, NJ U N' = {l, ... ,t}, and t = 0, ... ,n (t = ° means that 
~ = N' = 0). We will show that if nx ~ no is valid for S, then It(~, N') is aD-inequality 
for pt. In particular, when t = 0, we obtain that nx ~ no is a D-inequality for pO. 

The proof uses a backward induction that is convenient to represent by an enumeration 
tree in which the nodes at level t represent all partitions of {l, ... , t} (see Figure 2.2). The 
intention of the figure is to show that ItCN\ N') is derived from It+'(~ U (t + l), N') and 
It+,(NJ, Nt U {t + l). 

Proposition 2.1. Iflt+'(~ U {t + I}, N') and Il+'(~' N I U {t + 1}) are D-inequalitiesfor 
pl+', then It(~, N') is aD-inequality for pt. 

Proof By hypothesis, we have 

nx - OJ L Xj - OJ L (1 - Xj) ~ no 
jENllU{t+l} JENI 

and 

nx - OJ L Xj - OJ L (1 - Xj) ~ no 
jENll jEN1U{t+1} 

are D-inequalities for pt+l. Since Xt+, E {o, l), step ii of the disjunctive procedure estab
lishes that It(~, N') is a D-inequality for pt. • 
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Therefore if we can establish that the inequalities I n(~' Nt) are D-inequalities for 
P = pn, then Proposition 2.1 yields that It(~, Nt) is a D-inequality for pt for all partitions 
(~, Nt) of {l, ... , t} and all t = 0, 1, ... , n - 1. In fact, it suffices to show that all of the 
inequalities In(~' Nt) are valid for P, since any valid inequality for P can, by Proposi
tion 1.1, be obtained by step 1 of the disjunctive procedure. 

Proposition 2.2. If I.jEN njXj ~ no is a valid inequality for S, there exists an (JJ ~ 0 such 
that all of the inequalities In(~, Nt) are valid for P. 

Proof If P = 0, the result follows immediately from Proposition 1.1. If P "* 0, con
sider the extreme points {Xk}kEK of P. If Xk E S, then Xk satisfies the inequality In(~' Nt) 
because nxk ~ no by hypothesis and (JJ ~ O. 

If Xk $. S, let 

and a = min a k > O. Thus for Xk $. S we obtain 
(kEK:xk$S} 

-(JJ I xj - (JJ I (l - xj) ~ - (JJa. 
jEJVO JENI 

Now let y = maxxEP(nx - no). Hence nxk ~ y + no for all k E K. Thus for Xk $. S we have 

1CXk - (JJ I xj - (JJ I (1 - xj) ~ y + no- ma. 
jENO JENI 

The result follows by taking m ~ yja and observing that an inequality valid for the 
extreme points of P is valid for P. • 

NO= 0, Nl= 0 

NO = 0, N 1 = {I, 2} 

Figure 2.2 
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Theorem 2.3. Every valid inequality for S = P n zn with P = {x E R~: Ax ~ b, x ~ I} is 
aD-inequality. 

Theorem 2.4. pO = conv(S). 

Theorem 2.4 indicates a surprising property of 0-1 integer programs-namely, that it 
suffices to integralize one variable at a time to obtain the convex hull. 

We have actually shown a somewhat stronger result that will be used in Section 6. 
Let Ql = conv{x E P: (xt+[, ••• ,xn) E zn-l}, so Ql s; pt for t = 0, 1, ... ,n and 
QO = conv(S). By assuming that nx ~ no is a valid inequality for Qt, the proof we have 
given shows: 

Theorem 2.5. Every valid inequality for Qt, t = 0, ... , n, is a D-inequality and pt = Qt, 

Now we show that all valid inequalities for the 0-1 problem are also C-G inequalities. 
The structure of the proof is the same as for D-inequalities, with two differences. The 
induction step requires the inequalities 

L 7CjXj - L Xj - L (1 - Xj) ~ 7Co. 
JEN jENO JENl 

Note that I;(NJ, N 1
) is the inequality It(NJ, N 1

) with 0) = 1. Also, we need to assume that 
7CX ~ no + 1 is a C-G inequality to prove that TCX ~ 7Co is a C-G inequality. 

Proposition 2.6. If (n, no) E zn+ 1
, LjEN njXj ~ no + 1 is a C-G inequality, and 

LjEN njXj ~ no is validfor S, then 

L njXj - L Xj - L (l - Xj) ~ no 
JEN jENO JENI 

is a C - G inequality for S for all partitions ~, N 1 of N. 

Proof By Proposition 2.2, inequality In(NJ, N 1
) is a C-G inequality. If 0) < 1, we add 

(1 - (j) times the inequality Xj ~ 1 for j E N 1
. The resulting inequality is then dominated 

by I~(~, N 1
). If OJ > 1, then combining I n(~' N l

) with weight 1/0) and LjEN njxj ~ 7Co + 1 
with weight (0) - 1)/0) and rounding gives I~(~, N 1

). • 

Theorem 2.7. If (7C, 7Co) E zn+ 1
, LjEN njXj ~ 7Co + 1 is a C-G inequality, and LjEN 

7CjXj ~ no is validfor S, then I;(NJ, Nt) is a C-G inequality for all disjoint subsets~, N 1 of 
N. 

Proof Here again we argue by working up through the nodes of an enumeration tree. 
Suppose NJ U N 1 = {l, ... , t}. Then by the induction hypothesis, it follows that 

and 

are C-G inequalities. Combining these two inequalities with weights of! and rounding 
establishes that I;(NJ, N 1

) is a C-G inequality. • 
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We now show that every valid inequality for S with integral coefficients is a C-G 
inequality. 

Theorem 2.8. Let nx ~ no with (n, no) E zn+ t be a valid inequality for S = P n zn with 
P = {x E R~: Ax ~ b, x ~ 1}. Then nx ~ no is a C-G inequality for S. 

Proof Let 

(2.1) n~P = max{nx: x E P}. 

If P = 0, the result is immediate from Case b of Proposition 1.1. Otherwise 1r~P is finite 
because P is bounded. Let (VO, WO) be an optimal solution to the dual of(2.1). Consider the 
C-G inequality 

(2.2) 

By dual feasibility, it follows that lvoa} + wJJ ~ 1r} for j EN, so if ln~PJ ~ no we are done. 
Otherwise we apply Theorem 2.7 to (2.2) l1r~PJ - no times. • 

Example 2.1. Given a set S = P n Z2, where P is given by 

xER~, 

we show that the valid inequality 9Xl + 7X2 ~ 10 is a C-G inequality. To prove this it 
suffices to show that 9xI + 7X2 - XI ~ 10 and 9xI + 7X2 - (l - xd ~ 10 are C-G inequal
ities. 

Solving max{9xI + 7X2: X E P}, we obtain an optimal dual solution u = a ~ 0) and the 
inequality 9xI + 7X2 ~~. Rounding gives us the C-G inequality 

(2.3) 

Now we construct a tree as in Figure 2.2. For the leaves of the tree we determine 
inequalities that are equivalent to or dominate 

By examining all the leaves of the tree we establish a priori that it suffices to take ill = 9. We 
then consider the leaves with ~ U N I = {l, 2} and 1 E N I. 

For ~ = {2} and Nt = {l}, weights of (0 18 0) on the original inequalities give the valid 
inequality 18x I ~ 18, or 

(2.4) 

which dominates 9xI + 7X2 - 9(1 - XI) - 9X2 ~ 10. 
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Now as explained in the proof of Proposition 2.6, we weight (2.4) by ~ and (2.3) by, 
and round to obtain 

(2.5) 

For ftJ = 0 and Nt = {l, 2}, weights of(2 8 4) on the original inequalities give the valid 
inequality 18xI + 16x2 ~ 26 for P, which is the same as 

(2.6) 

Using the rounding procedure to combine (2.3) and (2.6) with respective weights of~ and ~ 
yields 

(2.7) 

Now we move up the tree as explained in Theorem 2.7. For ftJ = 0 and N 1 = {l}, (2.5) 
and (2.7) combined with weights (!!) and rounded yield 

(2.8) 

Similarly, for ftJ = {I} and N 1 = 0, we obtain the C-G inequality 

(2.9) 

The integer rounding procedure applied to (2.8) and (2.9) with weights (!!) gives the 
desired result. 

Bounded Integer Variables 

We now consider the case where S = P n zn and where P = {x E R~: Ax ~ b, x ~ d} is a 
polytope but is not contained in the unit cube. Again we will establish constructively that 
every valid inequality is a C-G inequality by showing that if nx ~ no + 1 is a C-G 
inequality and nx ~ no is valid for S, then nx ~ no is also a C-G inequality. 

The approach, however, is different and more complicated than our approach to the 
0-1 case because for bounded integer variables we cannot obtain conv(S) by imposing 
integrality one variable at a time. 

We are given that nx ~ no is valid for S and that x ~ d = (d, d, ... , d) is valid for P
the bounded variable assumption. Now let Si be any integer between 0 and d and let k be 
any integer between 0 and n. Then the following inequality is valid for S: 

k k k 

f1 (d + 1 - sJ (nx - no) + I TI (d + 1 - Sj) (Xi - d) ~ O. 
i=1 i=1 j=i+l 

We denote this inequality by L(s h ... , S k). If k = 0, the inequality is simply nx - no ~ 0 
and is denoted by L(0). N(s h ... , S k) denotes the same inequality with right-hand side 
of 1, and Mk denotes the inequality Xk - d ~ O. Thus we are given that N(0) is a C-G 
inequality, and we wish to establish that L(0) is a C-G inequality. 
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Example 2.2. With d = 2 and n = 2, the inequalities L(Sb ... ,Sk) are: 

L(2, 2) (nx - no) + (xl-2)+ (X2 - 2) ~ 0 

L(2, 1) 2(nx - no) + 2(x! - 2) + (X2 - 2) ~ 0 

L(2, 0) 3(nx - no) + 3(x! - 2) + (X2 - 2) ~ 0 

L(2) (nx - no) + (Xl - 2) ~O 

L(l,2) 2(nx - no) + (x!-2)+ (X2 - 2) ~ 0 

L(l, 1) 4(nx - no) + 2(x! - 2) + (X2 - 2) ~ ° 
L(l,O) 6(nx - no) + 3(Xl - 2) + (X2 - 2) ~ ° 
L(l) 2(nx - no) + (x! - 2) ~o 

L(O, 2) 3(nx - no) + (x!-2)+ (X2 - 2) ~ ° 
L(O, 1) 6(nx - no) + 2(x! - 2) + (x! - 2) ~ 0 

L(O, 0) 9(nx - no) + 3(x! - 2) + (Xl - 2) ~ ° 
L(O) 3(nx - no) + (Xl - 2) ~O 

L(0) (nx - no) ~ 0. 

An important component of the proof is the order in which we show that the 
inequalities L(s b ••• , S k) are C-G inequalities. We say that t = (t h ••• , t n) is lexicograph
ically larger than S = (Sb ••. ,sn), t 5. s, if, for some i, 1 ~ i ~ n, tj = Sj for} < i and ti > Si. 

We then show that the inequalities are C-G in lexicographically decreasing order using the 
convention that if k < n, (SI, ..• ,Sk) is regarded as the n-vector (sJ, ... ,Sk, -1, ... ,-1). 
Thus (t b ••• , tt) 5. (Sb ... , Sk) either if, for some i ~ min(l, k), tj = Sj for} < i and ti > Si 

or if I > k and tj = Sj for} = 1, ... , k. This order is shown in Example 2.2. 
The order can also be interpreted as a right-to-Ieft search through an enumeration tree 

(see Figure 2.3). 
We will be repeatedly adding together valid inequalities. 

(0,2) (1,2) (2,2) 

Figure 2.3 
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Proposition 2.9 

i. L(sJ, ... ,Sk - 1) = L(sJ, ... ,Sk) + L(sJ, ... ,Sk-I) for 1 ~ Sk ~ d. 

ii. L(sJ, ... ,Sk-J, d) = L(sJ, ... , Sk-I) + Mk 

iii. L(sJ, ... , Sk-J, Sk) = L(sJ, ... , Sk-I) (d + 1 - Sk) + Mk 

By repeated application of equalities i and ii, we obtain the following proposition. 

Proposition 2.10 

i. L(SJ"",Sk)= I L(SJ, ... ,Si-J,Si+ 1)+L(0)+ I M i; 
{i:isk,s;<d} {i: isk,s;=d} 

ii. N(sJ, ... ,Sk) = I L(sJ, ... , Si-J, Si + 1) + N(0) + I Mi. 
{i:isk,s;<d} {i:isk,s;=d} 

The proofs of these two propositions are elementary exercises. 
Observe from statement ii of Proposition 2.10 that if L(tJ, ... , t{) is a C-G inequality 

for all (tJ, ... , t{) $. (sJ, ... , Sk), it follows that N(sJ, ... ,sd is a sum ofC-G inequal
ities and hence is a C-G inequality. Therefore the critical step is to deduce from this that 
L(sJ, ... , Sk) is also a C-G inequality. 

Proposition 2.11. For any S E Zk with (SI, ... , sd/; 0, if x ERn satisfies at equality the 
inequalities L(SI, ... , Si + 1) for i ~ k, Si < d, Mi for i ~ k, Si = d,and N((), then Xi = Si 
for i = 1, ... , k. 

Proof We argue by induction. If k = 1 and Sk-I < d, we obtain 

(d + 1 - (SI + l)(nx - no) + (XI - d) = 0, 

or (d - SI) + XI - d = 0, or XI = s], since nx - no = 1. If SI = d, then XI = SI is immediate, 
since Ml holds at equality. Now suppose by induction that the claim holds for k - 1, that 
is, Xi = S i for i = 1, ... , k - 1. If S k = d, the result is immediate, since M k is satisfied at 
equality. If Sk < d, we observe that since N(sJ, ... ,Sk-l) is a sum of inequalities satisfied at 
equality, it also is satisfied at equality; it follows that L(sJ, ... , Sk-I) has a slack of 1. But by 
statement iii of Proposition 2.9, 

Since L(sJ, ... , Sk + 1) is satisfied at equality, it follows that d - Sk + Xk - d = 0. • 

We now associate with (s], ... ,Sk) a polytope P(sJ, ... ,Sk) given by 

{X E R~: Ax ~ b, X ~ d, nx ~ no + 1, X satisfies L(t], ... , t{) 

for (tJ, ... , tl) $. (sJ, ... , Sk)}. 



2. Generating all Valid Inequalities 225 

Proposition 2.12. L(sl, ... , sd is a C-G inequality for pes!, ... , Sk) n zn. 

Proof If k < n, then L(st, ... ,Sk, 0) is an inequality defining pest, ... ,Sk)' By 
statement iii of Proposition 2.9, 

L(st, ... , Sk, 0) = (d + 1) L(st, ... , Sk) + Mk+l' 

Multiplying the inequality L(sb ... , Sk, 0) by 1/(d + 1), followed by rounding, establishes 
that L(st, ... ,Sk) is a C-G inequality for pes!, ... ,Sk) n zn. 

Now suppose k = nand S '* d. By statement ii of Proposition 2.10, the inequality N(s!, 
... , S n) is valid for pes b ... , S n). Suppose it is satisfied at equality. Then each of the 
inequalities appearing in the statement of Proposition 2.11 is satisfied at equality, and it 
follows that Xi = Si for i = 1, ... , n. Moreover, since N(0) is satisfied at equality, we obtain 
nx = no + 1. However, since S = pes b .•• , S n) n zn and nx ~ no is valid, there is no 
feasible integer point with nx = no + 1. Hence N(s h ••• , S n) cannot be satisfied at equality 
for any point in pes b ••• , S n). This means that N(s b .•• , S n) with its right-hand side 
reduced bYe> 0 is a valid inequality for P(Sl, ... ,sn)' Hence by rounding this inequality 
we obtain L(s b ••• , S n). Thus L(s h .•. , S n) is a C-G inequality for pes t, ••• , S n) n zn. 

Finally, the proof that L(d) is a C-G inequality for P(d) n zn is similar to the proof of 
Proposition 2.2 and is not repeated here. • 

In particular, Proposition 2.12 states that L(0) is a C-G inequality for P(0) n zn = S. 
Thus 

Theorem 2.13. Let P= {x E R~: Ax ~ b, x ~ d} and let S = P n zn. lfnx ~ no + 1 is a 
C-G inequality for Sand nx ~ no is validfor S, then nx ~ no is a C-G inequality for S. 

Corollary 2.14. IfS = 0, then Ox ~ -1 is a C-G inequality for S. 

Finally, using the argument given in the proof of Theorem 2.8, we establish the 
generality of C-G inequalities. 

Theorem 2.15. Let nx ~ no with (n, no) E zn+ 1 be a valid inequality for S = P n zn with 
P = {x E R~: Ax ~ b, x ~ d}. Then nx ~ no is a C-G inequality for s. 

Theorem 2.15 also holds for unbounded sets in zn, but the only known proof of the 
result uses a very different technique. 

Theorem 2.16 Let nx ~ no with (n, no) E zn+l be a valid inequality for S = {x E 2':.: 
Ax ~ b} '* 0. Then nx ~ no is a C-G inequality for s. 

We now consider how many applications of step iii of the C-G procedure are necessary 
to define the convex hull of S = P n zn, when P is a nonempty rational polytope. We saw 
earlier that ifmax{nx: x E P} = n~P, then the inequality nx ~ ln~PJ can be obtained by one 
application of the C-G procedure. 

Define the elementary closure of P to be 

e(P) = {en, no): nj = luajJ for j EN, no = lubj for some u E R':}. 

Then, by definition of the C-G procedure, e(P) contains all of the nondominated C-G 
inequalities that can be obtained by one application of the procedure. 
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Proposition 2.17. ll(n, no) E e(P), then no ~ ln~Pj. 

Proof Since (n, no) E e(P), there exists u E R:;Z such that luajJ = nj for j EN and 
lubJ = no. Consider any such u. Since uaj ~ luajJ for j EN, it follows that u is a feasible 
solution to the dual ofmax{nx: x E Pl. Thus ub ~ n&P and no = lubJ ~ In&PJ. • 

For Example 2.1, the inequality 9xI + 7X2 ~ 11 is of the form LjEN luajJxj ~ tubJ since it 
has been obtained from an optimal dual solution. Hence (n = (9,7), no = 11) E e(P). 
Proposition 2.17 implies that if n = (9, 7) and no ~ 10, then (n, no) $. e(P). Thus, it would 
be interesting to know, for example, the minimum number of repetitions of the C-G 
procedure needed to derive 9xI + 7X2 ~ 9 and, more generally, any valid inequality. 

We say that a valid inequality nx ~ no for S = zn n P =1= 0 is of rank k with respect to 
P ~ R1 if nx ~ no is not equivalent to or dominated by any nonnegative linear combina
tion of C-G inequalities, each of which can be determined by no more than k-1 
applications of the C-G procedure, but is equivalent to or dominated by a nonnegative 
linear combination of some C-G inequalities that require no more than k applications of 
the procedure. Thus the rank 0 inequalities are those that are equivalent to or dominated 
by a nonnegative linear combination of the defining inequalities of P, and the rank 1 
inequalities are those that are not of rank 0 but are equivalent to or dominated by a 
nonnegative linear combination of the defining inequalities of P and those in e(P). 

Theorem 2.16 shows that every valid inequality for S = zn n P =1= 0 is of finite rank for 
any rational polyhedron P. 

In Example 2.1, 9Xl + 7X2 ~ 11 is of rank 1. The construction of9xl + 7X2 ~ 10 shows 
that its rank is, at most, 4. By constructing an inequality by the C-G procedure, we 
determine an upper bound on its rank, but determining the actual rank appears to be very 
difficult. 

We use the notation r(n, no) = k to represent the rank of a valid inequality nx ~ no for 
S = zn n P. The rank of P is defined to be 

pep) = max{r(n, no): (n, no) is valid for S = P n zn}. 

Thus pep) is the number of applications of the C-G procedure needed to determine some 
facet of conv(S) if we begin with S = P n zn. Note that p = 0 if and only if conv(S) = P. If 
S is the set of matchings of a graph and P = {x E R~: x satisfies (l.2)}, then 
conv(S) = P n {x: x satisfies (1.4)}. Since inequalities (1.4) are rank 1, it follows that 
pep) = 1. Matching is a rare example of a family of polyhedra of positive and bounded 
rank. 

For most integer programming problems, the rank of the polyhedron increases without 
bound as a function of the dimension of the polyhedron. For example, suppose 

pn = {x E R1: Xi + Xj ~ 1 for i, j E iV, i =1= j} and sn = pn n zn. 

We note that LjEN Xj ~ 1 is a valid inequality for sn, and it is not hard to show that 
conv(Sn) = {x E R1: LjEN Xj ~ 1}. But the rank of LjEN Xj ~ 1 is O(log(n ». 

Even when the dimension of P is fixed, there are families of polyhedra such that the 
rank increases without bound as a function of the magnitude of the coefficients in the 
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linear inequality description of P. For example, suppose pt is defined by the inequalities 

[Xl + X2 .::::; 1 + [ 

XJ,X2 ~ 0 

and St = pt n Z2. Here it can be shown that p(pt) = [ - 1 for [ = 1, 2, .... 

An infinite family of polyhedra fF is said to have bounded rank if there is an integer k 
such that pep) .::::; k for all P E 3f. Thus if P E fF and nx .::::; no is valid for S = P n zn, we 
have r(n, no) .::::; k. Hence to verify the validity of nx .::::; no, we need to produce no more 
than n inequalities that are obtained by rounding inequalities of rank no higher than k - 1 
and weights (uJ, ... , un) to combine them. Each of these lower-rank inequalities can be 
produced from n inequalities of still lower rank. Thus, altogether we need the original 
inequalities and 1 + n + ... + nk

-
l 

.::::; nk weight vectors to prove the validity of nx .::::; no for 
any P E fF of dimension n. 

This observation leads to an important implication concerning the computational 
complexity of integer programs. Let @f be an infinite family of polyhedra and consider the 
integer programming problem whose instances are given by max{cx: xES}, where 
S = Z1 n p for each P E @f of dimension n. The optimality of X O E S can be established 
by showing that ex .::::; ZO is a valid inequality, where cxo = zo. Hence if @f is of bounded 
rank, the optimality of a proposed solution can be checked by displaying no more than n 
of the original inequalities of P and nk weight vectors for some fixed integer k. Thus, 
provided that the weight vectors are polynomial in the description of P, we have an 
optimality proof whose length is a polynomial function of n, which suggests that it is highly 
unlikely that the problem is .H9P-hard. In other words, it may well be the case that if an 
integer programming problem is ,N9P-hard, then the family of polyhedra over which it is 
defined does not have bounded rank. 

3. GOMORY'S FRACTIONAL CUTS AND ROUNDING 

Although the results on rounding in the previous section were developed by V. Chvatal, we 
have attributed the procedure to him and R. Gomory. The reason is that, from a rather 
different viewpoint, these results appear in Gomory's much earlier work on finite cutting
plane algorithms. In this section, we will show the relationship between the valid 
inequalities used by Gomory and the rounding procedure. 

Here we write the constraints S = {x E Z1: Ax .::::; b} in equality form as 
se = {x E z~+m: (A, I)x = b), where the original variables are (Xl, ••• ,xn) and the slack 
variables are (x n+J, ... , X n+m)' We assume that (A, b) is an integral m x (n + 1) matrix. 

Let A = (AI, ... , Am) be a weight vector and consider the linear combination of equa
tions given by A(A, I)x = Ab. Suppose N = {l, ... ,n}, ~ = {l, ... ,m}, A = (ab ... ,an), 
and 1= (eJ, ... ,em) and define a} = Aa} for j EN and b = Ab. Then A(A, I)x = Ab can be 
written as 

(3.1) 
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In Section 1 [see (1.10)], we used modular arithmetic and x E z~+m to derive the valid 
inequality 

(3.2) I fjXj + I giXn+i ~ /0, 
jEN iEM 

wherefj = aj -lajJ for j EN, gi = Ai -lAd for i EM, andfo = b -lbJ. 
Inequality (3.2) is the Gomory fractional cut. 

Example 3.1. We return to Example 1.1, where se = {x E Z~: (A, /)x = b} and 

(A, /) = ( -; ; ~ ~ ~ ), b = ( _2~7). 
-2 -2 0 0 1 

Let A = (11- rr 0), which yields the equation 

(3.3) 

Applying (3.2) to (3.3) yields the valid inequality 

(3.4) 

Now we eliminate the slack variables from (3.4) to obtain 

or 

(3.5) 

10 2 3 
-( 4 + Xl - 2x 2) + -(20 - 5x 1 - x 2) ~ -
11 11 11 

2X2::::'::; 7. 

To obtain (3.5) by rounding, use the weight vector u = (W, rr, 0) on the original inequalities 
and round. 

Observe that in the example Ui = Ai -lAil for i EM. This, in fact, is the general 
relationship. 

Theorem 3.1. Let S = {x E Zi-: Ax::::.::; b}, where (A, b) is an m x (n + 1) matrix with 
integral coefficients. Thefractional cut (3.2) derived from (3.1) is a C-G inequality for S 
obtained with weights Ui = Ai - lAilfor i EM. 

Proof Let lAJ = (lAd, ... , lAmD and U = A -lAl ~ O. Then 

(3.6) uAx = AAx - lAJAx ::::.::; Ab - lAJb = ub 

or 

(3.7) 
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Since the au's and b/s are integers, rounding (3.7) yields 

or since x n+i = b i - L'1EN a ijXj we obtain 

(3.8) 

Subtracting (3.8) from (3.1) yields (3.2). • 
There is an obvious converse to Theorem 3.1, which states that every rank 1 C-G 

inequality can be obtained as a fractional cut. Thus, analogous to Theorem 2.16, we have 
that every valid inequality for S = {x E z~+m: (A, I)x = b} is equivalent to or dominated 
by an inequality obtained from the recursive generation offractional cuts of the form (3.2). 
Gomory's proof of this result was algorithmic. He showed that the integer program 
max{ex: xES} could be solved by solving a finite sequence of linear programs, each of 
which was obtained from its predecessor by the addition of an inequality (3.2). Thus if 
ZO = exo = max{ex: xES}, the algorithm derived the valid inequality ex ~ zoo We will 
study this algorithm in Section 11.4.3. 

4. SUPERADDITIVE FUNCfIONS AND VALID INEQUALITIES 

Suppose S = zn n P, where P = {x E R~: Ax ~ b}. Our first objective in this section is to 
give a functional description of valid inequalities for S. For example, the C-G rank 1 
inequality '£.jEN luajJxj ~ lubJ, where aj is the jth column of A and u E R,:!, can be 
described functionally by 

(4.1) L F(aj)xj ~ F(b), 
JEN 

where F(d) = ludJ for all d E Rm. 
A function F: D f; R m ... R I is called superadditive over D if 

(4.2) 

Notethatd l = OyieldsF(O) + F(d2) ~ F(d2) or F(O) ~ o. Throughout the book, whenFis 
superadditive, we assume F(O) = 0 and 0 ED. 

A function F: D ... RI is called nondeereasing over D if d l , d2 E D and d 1 :::::; d2 implies 
F(dd ~ F(d2). 

Functions with these two properties yield valid inequalities. 

Proposition 4.1. If F: R m 
... Rl is superadditive and nondeereasing, then (4.1) is a valid 

inequality for S = zn n {x E R~: Ax ~ b} for any (A, b). 

Proof There are three steps in showing that (4.1) holds for all xES: 

i. L.jEN F(aj)xj ~ L.jEN F(ajxj). 

ii. L.jEN F(ajxJ ~ F(Ax). 
iii. F(Ax) ~ F(b). 
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Since Ax ~ b for all xES and F is nondecreasing, inequality iii holds. The first two steps 
use superadditivity, and the first also uses F(O) = 0. 

i. It suffices to show that F(aj)xj ~ F(ajxj) for all j. If Xj = 0, then F(aj)xj = ° = F(O) = F(ajxj). If Xj = 1, then F(aj)xj = F(aj) = F(ajxj). Suppose it is true for 
Xj = k - 1. Then 

ii. 

kF(aj) = F(aj) + (k - l)F(aj) 
~ F(aj) + F«k - l)aj) 
~ F(aj + (k - l)aj) ~ F(kaj). 

n n 

L F(ajxj) = (F(atxt) + F(a2x 2» + L F(ajxj) 
j=l j=3 

n 

~ F(alxl + a2x2) + I F(ajxj) ~ ... ~ F(Ax). 
j=3 • 

When the linear constraints are equalities (i.e., Ax = b), then step iii of the proof is 
irrelevant. Thus we obtain the following corollary. 

Corollary 4.2. Ij F: Rm 
-+ R 1 is superadditive and F(O) = 0, then (4.1) is a valid inequality 

jor se = zn n {x E R~: Ax = b}. 

Corollary 4.2 (and Proposition 4.1) suggest the following terminology. IfF is superaddi
tive (and nondecreasing) with F(O) = 0, we call (4.1) a superadditive valid inequality jor 
seeS). 

Linear functions are obviously superadditive. Starting with this simple fact and 
applying some elementary operations that preserve superadditivity allows us to construct 
some useful superadditive functions. 

Proposition 4.3. Let H: Rk -+ Rt be superadditive and nondecreasing and let Fi: Rm -+ Rt 
be superadditive jor i = 1, ... , k. 

a. The compositejunction H(Fl' ... , Fk) is superadditive. 

b. If, in addition, Fj,jor i = 1, ... ,k, is nondecreasing, then H(Ft, ... ,Fk) is nonde
creasing. 

Proof a. We have 

H(Ft(d l + d2), ... , Fk(d1 + d2» ~ H(Fl(d l) + F t(d2), ... , Fk(d t) + F k(d2» 
~ H(Fl(dd, ... , Fk(d 1» + H(Fl(d2), ... , F k(d2», 

where the first inequality holds since the F/s are superadditive and H is nondecreasing, 
and the second inequality holds since H is superadditive. 

b. Suppose d 2 ~ 0 in the proof of a. Since the F/s are nondecreasing, F i ( d 2) ~ ° for i = 1, 
... , k. Since H is nondecreasing, H(F1(d2), ••• , Fk(d2» ~ 0. Hence 

so H(Ft, ... , F k) is nondecreasing. • 
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Corollary 4.4. Let F, G: Rm ~ R I be superadditive. Then the following functions are 
superadditive. 

1. K = AF for all A ~ O. 
2. K=lFJ. 
3. K=F+G. 
4. K = min(F, G). 

Proof We apply Proposition 4.3. 

1. FJ = F and H: Rl ~ Rl is given by H(d) = Ad. 
2. FI = F and H: Rl .... RI is given by H(d) = ldJ. Clearly, H is nondecreasing. H is 

superadditive since 

H( b) = {laJ + lbJ + 1 
a + laJ + lbJ 

~ laJ + tbJ. 

if a + b - (la J + lb J) ~ 1 
if a + b - Cla J + lb 1) < 1 

3. FI = F, F2 = G, and H: R2 ~ RI is given by H(a, b) = a + b, which is linear and 
nondecreasing. 

4. H: R2 ~ Rl is given by H(a, b) = min(a, b). Clearly, His nondecreasing. Also, H is 
superadditive since 

H(a [, b 1) + H(a2' b2) = min(a 1, b 1) + min(a2' b2) 

~ min{(a I + a2), (b I + b2)} 
= H(al + a2, b l + b2). 

F(d) = ldJ 

4 

3 

2 

• 

----------------------~--------------------------------d 
-2 -1 o 2 3 4 

-1 

-2 

-3 

-4 

Figure 4.1 
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We now give several illustrations of superadditive valid inequalities. Some of them have 
been developed previously in the text. 

1. Integer Rounding: C-G Rank 1 Inequalities. Let F: Rm ~ R I be defined by F(d) = 

ludj, u E R';!. Here we apply statement 2 of Corollary 4.4 to a linear function to conclude 
that F is superadditive. Moreover, F is also nondecreasing since if d l < d2, then u E R';! 
implies ludd ~ lud2J. This function is illustrated in Figure 4.1 with m = 1 and u = 1. 

2. Integer Rounding: General Inequalities Constructed by the C-G Rounding Procedure. 
This is illustrated by the example presented below. 

Example 4.1. To construct the function that yields the inequality 9xI + 7X2 ~ 10 for 
Example 2.1, we use the earlier calculations. Note that t = I"NJ U Nil. 

t = 0: 
t = 2: 

1. 9xI+7x2~1l 

2. 9XI+7xz-9xl-7xz~0 

3. 9xI + 7X2 - 9xI - 9(1 - X2) ~ 7 
4. 9xI+7xz-9(I-XI)-7xz~9 

5. 9XI + 7X2 - 9(1 - Xl) - 9(1 - Xz) ~ 9 

is given by 
is given by 
is given by 
is given by 
is given by 

FI(d) = lid l + ~d2J 
F2(d) = 0 
F3(d) = 16d3 
F4(d) = 18d2 
F5(d) = ~dl + ¥dz + lJd3 

t = 1: 11. 9XI + txz - (1 - Xl) ~ 10 is given by Fll (d) = Hl~FI + ~F4J + H~Fl + ~F5JJ 
t = 0: 12. 9xI + txz ~ 10 is given by 

F12 = l~ Hl~Fl + ~F2j + ~ l~FI + ~F3jJ + ! H l~Fl + ~F4J + ~ l~Fl + ~F5JJJ. 

We see that each of these functions is superadditive because it is obtained by taking 
nonnegative linear combinations of superadditive functions and then rounding. In 
general, we have the following result. 

Proposition 4.5. If TCX ~ TCo is a valid inequality for S = zn n {X E R~: Ax ~ b} con
structed by the C-G rounding procedure, then there is a superadditive and nondecreasing 
F: Rm ~ Rl such that 71:j = F(aj)for j EN and no = F(b). 

Proof Suppose 71:X ~ no is of rank k. Then the C-G construction procedure yields 
nj = F(aj) for j EN and no = F(b), where F is obtained by recursive application of 
nonnegative linear combinations and rounding and hence is nondecreasing and superad
~~. . 
Theorem 4.6. Every valid inequality for a nonempty S = zn n {X E R~: Ax ~ b} is equiv
alent to or dominated by a superadditive valid inequality. 

Proof By Theorem 2.16, every valid inequality for S is equivalent to or dominated by 
an inequality constructed by the C-G procedure. By Proposition 4.5, every inequality 
constructed by the C-G procedure can be obtained from a superadditive nondecreasing 
function. • 
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We have shown that all maximal valid inequalities for S are superadditive. Moreover, 
they can be obtained from the family of superadditive functions generated by the recursive 
application of linear combinations and rounding. But as we have seen in Example 4.1, to 
determine a particular valid inequality from one of these functions can require a very long 
expression. In other words, although the basic formula is simple, it must be applied 
recursively to obtain particular inequalities. Perhaps with more complex basic functions, 
the number of recursive applications can be decreased. 

3. Strengthened Integer Rounding. Consider the set 

Applying the function F(d) = ldJ gives the valid inequality 

We will show that this inequality is not maximal by producing a superadditive nondecreas
ing function that yields an inequality that dominates it. 

Consider the family of functions Fa: R 1 -+ R 1 with 0 ~ a ~ 1 defined by 

(4.3) 

whereld = d - ldj. 

{

ldJ 

Fa(d) = 1: 
ldj + Id - a 

-a 
forld> a, 

Let (at = max(O, a) for any a E RI. Then 

(4.4) Fa(d) = ldJ + ct; = ~t for a < 1. 

The function F 1(d) = ldJ, but here we are interested in a < 1. The function Fl/3 is drawn 
in Figure 4.2. 

Proposition 4.7. Fa is continuous, nondecreasing, and superadditive lor 0 ~ a < 1. 

Proof Fa is continuous and nondecreasing because it is piecewise linear with slope of 
either 0 or 1/(1 - a) and has no jumps. To prove superadditivity, let 
j; = d i - ldd for i = 1, 2. 

Case 1./1 + h < 1. 

F (d ) + F (d ) = ld J + (11 - at + ld J + (12 - at 
a 1 a 2 I I-a 2 1-a 

ld d J 
(11 + 12 - at 

~ I + 2 + 1 = Fa( d I + d 2)' -a 
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Case 2.11 + 12 ~ l,fi ~ a. 

d d ld J 
([1 - at 

Fa( 1) + Fa< 2) = 1 + 1 _ a + l d 2J 

< ldd + ld2J + 1 = ld1 + d2j ~ Pa(d1 + d2). 

(The same argument applies if/1 ~ a.) 

II-a fi-a 
Pa( d 1) + Pa( d 2) = l d d + 1 _ a + l d 2J + 1 _ a 

II+/2- 1 - a 
= ld d + l d 2J + 1 + 1 _ a ~ Pa( d 1 + d 2). • 

Consider S = {x E Z~: '1:.jEN ajxj ~ b} with b E RI. If 10 = b -lbj > 0, then when 
10 ~ a < 1 it follows that }2jEN F'a(aj)xj ~ Pa(b) dominates '1:.jEN FI (aj)xj ~ Ft(b) since 
Pa( b) = Fl (b) and Pa( a j) ~ Fl (a j) for all j. Moreover, the strongest of these cuts is obtained 
with a = 10 since forlo ~ a < 1 we have Ffo(aj) ~ Fa(aj) for allj. 

In the above example with a = 1 we obtain the valid inequality 

3 1 
3X1 - 6"4X2 + 22x3 + X4 ~ 4. 

------------------------~--~---------------------d 
-2 - 5 

3 
-1 - 2 

3 

-1 

-2 

Figure 4.2 

4 

3 

2 



4. Superadditive Functions and Valid Inequalities 235 

The practical disadvantage of this inequality in comparison with the C-G inequality is 
that when x E Z~, the slack variable Fa(b) - LjEN Fa(aj)xj is not necessarily integer. 

4. A Two-Dimensional Function. The only nonlinear superadditive functions considered 
so far have been one-dimensional. Here we introduce a two-dimensional function, based 
on Fa. Let 

(4.5) 

The contours of this function are exhibited in Figure 4.3. 

Proposition 4.8. Thefunction Fa given by (4.5) is nondecreasing and superadditive. 

Proof Since Fa is nondecreasing, Fa is nondecreasing in d 2. With respect to d I, the first 
term of (4.5) has slope 1/(1 - a) and the second term is piecewise linear with slope of 
-1/(1 - a) or O. Hence Fa is nondecreasing in d l • 

Since the first term in (4.5) is linear, to prove that Fa is superadditive it suffices to show 
that the second term is superadditive. The second term is Fa(G(d)), where G(d) = d2 - d l 

is linear. Hence by Propositions 4.3 and 4.7, the second term is superadditive. • 

Combining Propositions 4.3 and 4.8 yields the following corollary. 

Corollary 4.9. If FI and F2 are superadditive on Rm, the function F(Fb Pz) = 

1/(1 - a )FI + Fa(Pz - FI) is superadditive on Rm. If FI and F2 are also nondecreasing, then 
F(Fb F2) is also nondecreasing. 
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As an example of the use of the function Fa to construct a valid inequality, consider the 
set 

CX - P( nx - no) ~ Co 

cx + P( nx - no - 1) ~ Co 

xEZ~ 

with (n, no) E zn+l, (c, co) E Rn+l andp > O. 
Let F(dI, d2) = PFI/2(d l /2P, d2/2P). Then 

'" (co - pno Co + pno + P) [( Co - pno) ( 1 )] [C 0 ] 
PFlf2 2P' 2P = P 2 2P + FI/2 no + 2 = P P - no + no = Co, 

and we obtain the valid inequality cx ~ Co. 
This shows that Fa permits us to generate the disjunctive inequality in one step, while 

with F(d) = l~dl + !d2J and c, Co, and p restricted to be integral, we only obtain 
cx ~ Co + IP/2j. Thus, except for p = 1, this example suggests that it can be advantageous 
to use functions other than the rounding function F( d) = I udJ. 

5. Modular Arithmetic and Gomory Fractional Cuts. Let F: RI -+ RI be defined by 
F(d) = -d(mod t5), where J is a positive integer, that is, -F(d) is the remainder when d is 
divided by J (see Figure 4.4). 

Since d/o = ld/oj - F(d)/o, we have F(d) = o(l~j - ~). We claim that F(d) is superadditive. 
Note that F(d) = J(lG(d)j - G(d», where G(d) is the linear function d/o. Since IGJ is 
superadditive (by statement 2 of Corollary 4.4) and -G is linear, IGJ - Gis superadditive 
by statement 3 of Corollary 4.4. Finally 0> 0 and statement 1 of Corollary 4.4 yield that F 
is superadditive. 

When 0 = 1, we obtain F(d) = IdJ - d = -Id' The m-dimensional version of this func
tion, F: R m 

-+ R 1, given by F(d) = ludj - ud for u E R': generates the Gomory fractional 
cut, LjENjjXj ~ 10, wherejj = uaj -luajJ forj EN and/o = ub -lubJ. 

F(d) = - d (mod 0) 

-30 -20 -0 o 25 35 ----__ ------__ ----__ ~----~------ __ ------~------~--d 

-0 

Figure 4.4 
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6. A Stronger Fractional Cut. Let ~a: R I ~ R I be defined by 

forO ~fd ~ a 

for a <fd < 1, 
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where 0 < a ~ 1. Note that ~I(d) = -Id for all d. The function is shown in Figure 4.5 for 
a=i. 

Since ~a(d) = Fa(d) - d, the superadditivity of ~a is a corollary to Proposition 4.7. The 
fractional cut obtained from ~fo is 

(4.6) I jjXj + ~ I (1 - jj)Xj ~fo, 
(jEN:!j-vo) 1 - !o UEN:!j>fo) 

which dominates I.jEN jjXj ~ 10' Valid inequalities of the form (4.6) are important for 
mixed-integer regions (see Section 7). 

5. A POLYHEDRAL DESCRIPTION OF SUPERADDITIVE VALID 
INEQUALITIES FOR INDEPENDENCE SYSTEMS 

An S C Z~ is called an independence system if 

i. 0 E Sand 
ii. Xl E S, X2 E Z~ and X2 ~ Xl => X2 E S. 

It is easy to see that {x E Z~: Ax ~ b} is an independence system if all of the coefficients of 
(A, b) are nonnegative integers. Here we consider independence systems generated in this 
way. We also assume that bi ~ max{aij: for allj} so that the n vectors ej forj EN are in S. 

All valid inequalities have no ~ 0 since nx ~ -1 is not satisfied by x = O. The n 
constraints x ~ 0 are valid and define facets of conv(S) since Xj = 0 is satisfied by the n 
affinely independent points (0, e), ... , ej_I, ej+l, ... , en) forj = 1, ... , n. Since ej E S for 
allj, any other valid inequality of the form nx ~ 0 has n ~ 0 and therefore is not maximal. 
Thus, except for x ~ 0, all facets ofconv(S) are of the form nx ~ 1. Moreover, all of these 
facets have n ~ 0 because if nx ~ 1 is valid and nj < 0, then nl with n1 = nb k =1= j, and 
nJ = 0 is valid. 

Let A = (ab ... ,an), where aj E D(b) = {d E Z~: d ~ b} for all j. Here we give a 
polyhedral description of the valid inequalities of the form I.jEN F(aj)xj ~ F(b), where F is 
superadditive and nondecreasing, that contains all of the maximal valid inequalities other 
than X ~ O. 

-2 -% o ~ % 2 ~ 3 
~--~----~ __ --~----~~~------~--~----~ __ --~----~d 

-1 -% 

Figure 4.5 
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Since we are dealing with functions on the finite domain D(b), any such function F can 
be represented by a vector (F(O), F(el), F(e2), ... , F(b» with n~l (b i + 1) components. In 
addition, we assume that F(O) = 0 for all F, and we normalize the functions so that 
F(b) = 1 for all F. 

Proposition 5.1. F: D(b) ~ [0, 1] is nondecreasing and superadditive if and only if its 
corresponding vector is in the polytope given by 

F(d l) + F(d2) - F(d l + d2) ~ 0 for dt, d2 E D(b), d 1 + d2 ~ b 

(5.1) F(d) ;::: 0 for d E D(b) 

F(b) = 1. 

Since F is defined for all d E D(b), it is natural to consider the constraint set where the 
matrix A has a column for each d E D(b). In other words, S(b) = Z ID(b) I n PCb), where 
PCb) = {x E RjD(b) I: LdED(b) dx(d) ~ b}. 

We call conv(S(b» the master polytope for the independence system with right-hand 
side b. In this section we will first derive results for S( b) and then show how they carryover 
to our given constraint set S involving only a subset {aj}jEN of the vectors in D(b). 

Example 5.1. Consider S(3) = {x E Z~: x(1) + 2x(2) + 3x(3) ~ 3}. The system (5.1) 
yields 

2F(l) - F(2) ~ 0 

F(1) + F(2) - F(3) ~ 0 

F(l), F(2) ;::: 0 

F(3) = 1. 

The feasible solutions are shown in (F(l), F(2» space in Figure 5.1. The feasible region 
contains all of the maximal superadditive inequalities. We will see that the maximal 
extreme points (0 1), G j) define the facets of conv(S(3» (other than x ;::: 0). Thus 
conv(S(3» is defined by the inequalities 

1 2 
3x (1) + 3x(2) + x(3) ~ 1 

x(2) + x(3) ~ 1 

x(1), x(2), x(3) ;::: O. 

Since the maximal points of S(3) are {(3 0 0), (l 1 0), (0 0 1)}, the 1-polar 
restricted to n ;::: 0 and no = 1 yields 

(see Figure 5.2). 
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F(2) 

o 

(0, 1) 

F(1) 

Figure 5.1 

Thus we see that the superadditive inequalities are properly contained in the I-polar. 
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Note that in the example, all of the maximal inequalities lie on the line 
F(1) + F(2) == F(3) == F(b) == 1. This is a necessary and sufficient condition for maximality, 
which is made precise in the following proposition. 

From Theorem 4.6, we have that all maximal valid inequalities for S(b) are superaddi
tive. Hence the statement that F is a maximal feasible solution to (5.1) is identical to the 
statement that the superadditive inequality LdED(b) F(d)x(d) ~ I is a maximal valid 
inequality for S(b). 

11"2 

(0,1) 
1 

(0, 0) (1/3, 0) 

o 

Figure 5.2 
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Proposition 5.2. F is a maximal feasible solution to (5.1) if and only ifF isfeasible and 
F(d) + F(b - d) = 1 for all dE D(b). 

Proof If F satisfies (5.1) and F(d) + F(b - d) = 1 for all d, then no component of F 
can be increased while maintaining feasibility. Hence F is maximal. 

We now prove that if there exists a dO such that F( dO) + F( b - dO) < 1, then 
LdED(b) F( d)x( d) ~ F( b) is not a maximal inequality for S( b). There are two cases, namely 
dO = b/2 and dO *' b/2. 

Case 1. dO = b/2 and F(dO) <!. We will show that LdED(b) n(d)x(d) ~ 1 is valid for S(b), 
where ned) = F(d) for d *' dO and n(dO) =!. We have x(dO) E {a, 1, 2} for all x E S(b). If 
x(dO) = 0, then LdED(b) n(d)x(d) = LdED(b) F(d)x(d) ~ 1 is valid for S(b). If x(dO) = 2, then 
xed) = ° for d *' dO and LdED(b) n(d)x(d) = 2n(dO) = 1. If x(dO) = 1, then Ld*dO dx(d) ~ dO. 
Hence 

where the first inequality follows from superadditivity and the second one follows from 
monotonicity. Thus 

1 1 I n(d)x(d) = I F(d)x(d) + n(dO) < -2 + -2 = 1. 
dED(b) d*do 

Case 2. dO =1= b /2 and F(dO) + F(b - dO) < 1. Without loss of generality, we can assume 
that for some i we have d? > bd2. Hence x(dO) E {a, 1} for all x E S(b). We will show 
that LdED(b) n(d)x(d) ~ 1 is valid for S(b), where ned) = F(d) for d *' dO and 
n(do) = 1 - F(b - dO). Ifx(dO) = 0, then LdED(b) n(d)x(d) = LdED(b) F(d)x(d) ~ 1 is valid for 
S(b). If x(dO) = 1, then Ld*dO dx(d) ~ b - dO. Hence 

Thus 

I n( d)x( d) = I F( d)x( d) + n( dO) 
dED(b) d*do 

• 
Proposition 5.2 allows us to tighten the system (5.1) by ruling out functions that fail to 

satisfy F(d}) + F(d2) = 1 when d} + d2 = b. Thus we obtain the polytope defined by 

F(d}) + F(d2) - F(d} + d2) ~ ° for all db d2 E D(b), d} + d2 < b 
F(d) + F(b - d) = 1 for all d E D(b) 

(5.2) F(d) ~ ° for all d E D(b) 
F(b) = 1. 
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In Example 5.1, the system (5.2) in (F(1), F(2» space is given by 

2F(l) - F(2) ~ 0 

F(l) + F(2) = 1 

F(I), F(2) ~ O. 
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The feasible region is the line joining the points (i ~) and (0 1) in Figure 5.1, that is, 
precisely the set of maximal points. 

Besides characterizing the maximal valid inequalities for conv(S(b» (other than 
nonnegativity), the system (5.2) gives a useful description of the facets of conv(S(b ». We 
thus obtain the main result of this section. 

Theorem 5.3. LdED(b) F(d)x(d) ~ 1 is afacet ofconv(S(b» (other than nonnegativity) if 
and only ifF is an extreme point solution of(5.2). 

Proof All feasible solutions to (5.2) generate valid inequalities for S(b). Suppose that 
F generates a facet of conv(S(b» but that F = 1Fl + 1F2, where Fl and F2 satisfy (5.2). 
Then Fl and F2 generate valid inequalities, and LdED(b) F(d)x(d) ~ 1 is a convex combina
tion of LdED(b) Fk(d)x(d) ~ 1 for k = 1, 2, which is a contradiction. 

On the other hand, suppose F is an extreme point solution of(5.2) but does not generate 
a facet of conv(S(b ». By Proposition 5.2, LdED(b) F(d)x(d) ~ 1 is maximal and, by the 
hypothesis, is a convex combination of valid inequalities. In other words, it is dominated 
by a convex combination of maximal valid inequalities. Thus there exist Fi "* F for i = 1, 
... ,p such that for all d E D(b) we have F(d) ~ Lf=l AiFi(d), where Lf=l Ai = 1 and Ai ~ 0 
for i = 1, ... ,p. However, maximality of the inequality generated by F implies that 
F(d) = Lf=1 AiFi(d) for all d E D(b), which is a contradiction. • 

Now we use projection and Theorem 5.3 to go from the master polytope to the general 
polytope. 

Theorem 5.4. Let S = zn n P, where P = {x E R~: Ax ~ b} and all coefficients of (A, b) 
are nonnegative and integral. Then 

conv(S) = conv(S(b» n {x: xed) = 0 if d =1= aj for somej EN}. 

Proof Since xed) ~ 0 is a facet of conv(S(b» for all d E D(b), it follows that conv(S) 
is the face of conv(S(b» obtained by setting xed) = 0 if d =1= aj for somej EN. • 

Example 5.2. Consider S(5). The extreme points of (5.2) with F(5) = 1 are 

(F(l), F(2), F(3), F(4» = G 2 3 
~) 5 5 

(F(l), F(2), F(3), F(4» = (0 0 1) 

(F(l), F(2), F(3), F(4» = (0 1 
1 ). 2 2 
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Hence conv(S(S» is given by the inequalities 

1 2 3 4 
S-x(l) + S-x(2) + S-x(3) + S-x(4) + x(S) ~ 1 

x(3) + x(4) + x(S) ~ 1 

1 1 
2"x(2) + 2"x(3) + x(4) + x(S) ~ 1 

x(d) ~ 0 for d = 1, ... , S. 

Now given S = {x E Z!: x(l) + 2x(2) + 4x(4) ~ S} it follows from Theorem S.4 that 
conv(S) is given by the inequalities 

1 2 4 
S-x(l) + S-x(2) + S-x(4) ~ 1 

x(4) ~ 1 

1 
2"x(2) + x(4) ~ 1 

x(l), x(2), x(4) ~ o. 

Note here that the first and third inequalities are facets of conv(S) but the second one is 
redundant. 

6. VALID INEQUALITIES FOR MIXED-INTEGER SETS 

Suppose we are given the mixed-integer region 

T = {x E Z1, y E R~: Ax + Gy ~ b}, 

where (A, G, b) is an m x (n + p + 1) rational matrix. Our objective in this section is to 
develop a procedure for generating valid inequalities for T. Note that the C-G procedure 
does not work when there are continuous variables. In particular, we cannot round down 
the right-hand side of an inequality to its integer part when all of the coefficients on the 
left-hand side are integers. However, we will be able to obtain a procedure, related to the 
disjunctive procedure, that generalizes the C-G procedure. 

To motivate the approach, consider the example with T defined by 

x E Z~, Y ER~. 

In the absence of the y variables, we obtained the valid inequality 3Xl - 7X2 + 2X3 ~ 4. 
Can one find a valid inequality for T of the form 

(6.1) 
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i. A Bound on j1+. Suppose there is a feasible solution with 3xI - 7X2 + 2X3 = 4, 
Y2 = 0, and YI > 0. The inequality (6.1) can only be valid if 4 + j1+YI - ° ~ 4 or j1+ ~ 0. 

ii. A Bound on j1-. Suppose there is a feasible solution with 3Xl - 7X2 + 2X3 = 5, Yl = 
0, and Y2 = ~. Validity of(6.1) implies that 5 - 2j1-/3 ~ 4 or j1- ~ 3/2. 

Letting b = lbj + fo, the example indicates that j1+ ~ 0, j1- ~ 1 / (1 - fo) and motivates 
the following proposition. 

Proposition 6.1. Let T = {x E ZZ, Y E R~: LjEN ajXj + LjEJ gjYj ~ b}, where N = {I, ... , 
n}, J = {I, ... ,p}, and aj' gj, b E Rl for all}. The inequality 

(6.2) 

where J- = {} E J: gj < O} and fo = b -lbj, is validfor T 

Proof Suppose LjEJ gjYj > fo - 1. Then 

L lajjxj ~ L ajxj ~ b - L gjYj < b - (fo - 1) = lbJ + 1. 
JEN JEN jEJ 

Since LjEN lajJxj is an integer, we have LjEN lajJ Xj ~ lbj. Adding this inequality to 
1 ~fo LjEJ- gjYj ~ ° yields (6.2). 

Now suppose that LjEJ gjYj ~ fo - 1 so that LjEJ- gjYj ~ fo - 1. Hence 

= b + 1 fo {' ( I gjYj) ~ b - fo = lbJ. 
-)0 jEJ- • 

Example 6.1. T = {Xl E Zl, Yl E Rl: Xl + Yl ~ 1}. From (6.2), we obtain the valid 
inequality Xl ~ 2. The geometry is shown in Figure 6.1. Note that 

{(X" y,) E R2: x, + y, ,,; ~, x, ,,; 2, y, ;;. o} = conv{ x, E ZI, y, E R~: x, + y, ,,; ~l 

Now let T = {Xl E Zl, Yl E Rl: Xl - YI ~ !}. From (6.2), we obtain the valid inequality 
Xl - 2YI ~ 2 (see Figure 6.2). Note that 

Example 6.1 illustrates the following proposition. 

Proposition 6.2. Let T = {x E zn, Y E R~: LjEN ajXj + LjEJ gjYj ~ b}, where aj E ZI for 
} EN, gcd{aJ, ... , an} = 1, and b ~ Z1. Then (6.2) is afacet ofconv(T). 

Proof We have already shown that (6.2) is valid for T. To show that it is a facet of 
conv(T), we first take n affinely independent points, x\ ... ,xn E zn, that satisfy 
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LjEN ajXj = [bJ. Let PI = IJ \ J-I. We represent points in T as triples (u, v, w), where 
u E zn, v E R~', and W E R~-p,. We get n affinely independent points in T that satisfy 
(6.2) at equality by taking ui = Xi, Vi = 0, and Wi = ° for i = 1, ... , n, and we get another 
PI points by taking ui = xr, Vi = 6ei, and Wi = 0, where ei is the ith unit vector in R~' and 
6 > ° is suitably small. Now let x E zn be a solution to LjEN a jXj = [b J + 1. The final set of 
P - PI points are obtained by taking ui = x, Vi = ° and Wi = Yiei, where ei is the ith unit 
vector in R~-P' and Yi = (fo - 1) / gi. These last points satisfy (6.2) since 

"A 1 (fo-1) L ajxj + -- -- gi = [bJ + 1 - 1 = [bJ 
JEN 1 - fo gi 

and are in T since 

• 
As we saw in the derivation of (6.2), it was necessary to use the non negativity of the 

continuous variables. In particular, we must use the non negativity of slack variables to 
generate other valid inequalities. We now give a procedure based on (6.2) for generating 
valid inequalities for the set T = {x E Z1, Y E R~: Ax + Gy ~ b}. 

Mixed-Integer Rounding (MIR) Procedure 

Step 1: The inequalities 

L (uaj)xj + L (ugj)Yj ~ ub are valid for all u E R';!. 
JEN JEJ 

Step 2: Given two valid inequalities 

(6.3) L n}xj + L f.1}Yj ~ n6 for i = 1, 2, 
JEN JEJ 

construct the third valid inequality 

(6.4) L [n] - nJJxj + -1 1 {' (L nJxj + L min(u), f.1])Yj - nb) ~ [n6 - nbJ, 
JEN -)0 JEN JEJ 

where n6 - nb = [n6 - nbJ + fo. 

Yl 

2 

Cutoff region 

o 2 
~-----------------Xl 

Figure 6.1 
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Yl 

~ __ K---- Cutoff region 

------~------O+-----~----~2-=~--------------------Xl 

Figure 6.2 

Proposition 6.3. Given the two valid inequalities (6.3) for T, it follows that (6.4) is also 
validfor T. 

Proof Since (6.3) is valid for T and Y ~ 0, it follows that 

(6.5) I n}xj + I minCu}, J1])Yj ~ nb for i = 1, 2 
JEN iEJ 

is valid for T. Rewrite (6.5) for i = 2 as 

I (n] - n})xj - (nb - I n}xj - I min(J1), J1]) Yi) ~ n5 - nb. 
JEN JEN JEJ 

Now (6.5) with i = 1 implies 

s = nb - L n}xj - I min(J1J, J1]) Yj ~ 0. 
JEN JEJ 

Thus we can apply Proposition 6.1 to 

I (n] - n})xj - S ~ n5 - n6 
JEN 

to obtain (6.4). • 
We say that any valid inequality equivalent to or dominated by an inequality con

structed by the MIR procedure is an MIR inequality. 

Example 6.2. T = {x E B2, Y E R~: YI + Y2 ~ 7, Yi ~ 5xi for i = 1, 2}. Using Step 1, we 
obtain the two valid inequalities 

1 7 
3" (YI + Y2) ~ 3" 

5 1 
- 3" (Xl + X2) +"3 (YI + Y2) ~ 0. 
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Taking the first of these as the i = 1 inequality, and the second as the i = 2 inequality, we 
obtain from (6.4) the valid inequality given by: 

or 

Proposition 6.4. Let T = {x E Z~, Y E R~: - (Uk + CX + hy ~ Co, PXk + CX + hy ~ Co + P} 
with a, P > O. Then cx + hy ~ Co is an MIR inequality for T. 

Proof Scale each of the inequalities in the definition of T by 1/( a + P) to obtain 

-a 1 Co 
a + [?k + a + P (cx + hy) ~ a + P [i = 1 in (6.3)] 

P --nXk + _1_ (cx + hy) ~ Co + P [i = 2 in (6.3)]. 
a+p a+p a+p 

We obtain from (6.4) the valid inequality: 

1/(a + P) l P J Xk + a/(a + P) (- (Uk + CX + hy - Co) ~ a + P = 0 

or 

1 Co 
Xk - Xk + -(CX + hy) ~ -

a a 

or 

CX + hy ~ Co. • 
Proposition 6.4 shows that the MIR procedure accomplishes what is done in the 

disjunctive procedure. Now if x E Bn, we can invoke Theorem 2.5 to conclude that every 
valid inequality for conv(T) is a D-inequality. Thus we obtain the following theorem. 

Theorem 6.5. Suppose T = {x E Bn
, y E R~: Ax + Gy ~ b, x ~ I} =I: 0 where (A, G, b) is 

an m x (n + p + 1) matrix with rational coefficients. Any valid inequality 
nx + I1Y ~ nofor T is an MIR inequality. 

Theorem 6.5 is false for bounded integer variables. A counterexample is discussed in 
Exercise 22. 

7. SUPERADDITIVITY FOR MIXED-INTEGER SETS 

In this section, we extend the development of superadditive valid inequalities to mixed
integer constraint sets. Suppose T = {x E Z1, y E R~: Ax + Gy ~ b} and F and Hare 
functions from R m to R 1. We first consider conditions for which 
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(7.1) I F(aj)xj + I H(gj)Yj ~ F(b) 
JEN jEi 

is valid for T for all A, G, and b. Since we want to generalize the results for the pure-integer 
constraint set, we assume throughout this section that F is nondecreasing and superaddi
tive and that F(O) = O. The problem is to determine the appropriate conditions to be 
imposed on H. 

We first develop two necessary conditions. 

Positive Homogeneity. Since the substitution y; = AYj for A > 0 is permissible and makes 
no essential change to T, we must have 

(a) H(Ad) = AH(d) for all A ~ 0 and d E Rm. 

Dominance. If some valid inequality is satisfied at equality by a solution (x, y) with 
Ax = d, and some continuous activity is a multiple of d (i.e., gj = Ad), then we must have 
H(Ad)/A ~ F(d). Positive homogeneity then implies 

(b) H(d) ~ F(d) for all d E Rm. 

Conditions (a) and (b) also are sufficient for the generation of valid inequalities. 

Theorem 7.1. If F is superadditive and nondecreasing and F(O) = 0, and H satisfies 
conditions (a) and (b), then (7.1) is a valid inequality for T for all A, G, and b. 

Proof We have LjEN Fiaj)xj ~ F(Ax) by superadditivity and 

where we use, respectively, property (a), property (b), and the superadditivity of F. Finally, 
since F is superadditive and nondecreasing and Ax + Gy ~ b, it follows that 
F(Ax) + F(Gy) ~ F(Ax + Gy) ~ F(b). • 

Note that superadditivity of H is not required here. However, we shall see below why it 
is natural also to impose the conditions that H be superadditive and nondecreasing. 

From conditions (a) and (b), it follows that 

(7.2) 
H(Ad) F(Ad) 

H(d) = -A- ~ -A- for all d E Rm and A> O. 

The condition (7.2) restricts the class of superadditive nondecreasing functions that can be 
used in (7.1) for F. For example, suppose F is the C-G function F(d) = ldj. Then (7.2) 
implies, with d = -1, 

H(-I) ~ F(-A) = -1 for all 0 < A ~ 1 
A A 

or H(-l) = -00. 

We define limA, \0 0+ g(x, A) = g(x) to mean that for each x and any E> 0 there exists a 
J(x, E) > 0 such that Ig(x, A) - g(x) I < e whenever 0 < A ~ J(x, e). The C-G function is 
not useful for T since limA, \0 0+ F(Ad)/A ~ -00 for d = - 1. 
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However, suppose F is superadditive and nondecreasing and 

(7.3) 

exists and is finite for all d. Then from (7.2) we see that 

(7.4) H(d) ~ F(d) 

is necessary in (7.1). 
Since for a given F we would like to have the function H that gives the strongest possible 

valid inequality, we would like to choose H as large as possible, subject to the conditions 
(a), (b), and (7.4). Thusi(F satisfies conditions (a) and (b), the desired function is H = F. 
Fortunately, whenever F exists and is finite for all d E Rm, it satisfies conditions (a) and 
(b). 

Proposition 7.2. Given a nondecreasing superadditive function F, for which F given by 
(7.3) is defined andfiniteJor all d, itJollows that (i) F is positively homogeneous and (ii) F 
is dominated by F 

Proof i. For any given.u > 0 and any dE Rm, we have 

ii. For any k > 0, let t = lkJ and r = k - lkJ. Then 

Now let A = 11k so that 

~ F(t(~)) + F(r(~)) by superadditivity 

~ tF(~) + F(r(~)) by superadditivity 

Taking the limit as A '\. 0+ gives F(d) ~ F(d). 

We get a bonus by taking H = F since F shares the properties of F. 

• 

Proposition 7.3. IJ the F given by (7.3) is defined and finite Jor all d, then it is 
superadditive and nondecreasing. 
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Proof Since F exists, given any e > 0 there exists Ai for i = 1, 2 such that 
I F(di) - F(Ad j ) / A I ~ e for all 0 < A ~ Ai, and there exists a A3 such that I F(d! + d2) -
F(A(d! + d2» / A I ~ e for all 0 < A ~ A3. Taking A ~ min{AJ, A2, A3}, we have that 

Hence F(d!) + F(d2) ~ F(d! + d2), and F is superadditive. Since F is nondecreasing, 
F(Ad2) / A - F(Ad!) / A ~ 0 for all A> 0 and d2 ~ d!. Hence, taking the limit as A \. 0+ 
yields F(d2) - F(d!) ~ O. Thus F is nondecreasing. • 

Thus we have justified the use of F in place of H in (7.1). 

Theorem 7.4. IfF is superadditive and nondecreasing, F(O) = 0, and F exists, then 

(7.5) 2: Fj(aj)xj + L F(gj) Yj ~ F(b) 
JEN JEI 

is a superadditive valid inequality for T for all A, G, and b. 

The Function Fa and the Gomory Mixed-Integer Cuts. Consider the function 

given by (4.4). We obtain 

{
o for d ~ 0 

Fa( d) = _1_ d for d < 0 
I-a 

(see Figure 7.1). Thus, with H = Fa, we obtain a generalization of Proposition 6.1. 

----------------------~-----------------------d 
-3 -2 2 3 

Figure 7.1 
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Proposition 7.5. Let T = {x E~, Y E R~: LjEN ajXj + LjE] gjYj ~ b}, whereaj, gj, b E Rl 
for all j. The inequality 

is valid/or T, where J- = {j E J: gj < O}. 

N ow consider the system 

(7.6) 
x E z~, Y ER~ 

with b = lb J + /0, 0 < fo < 1. Replacing the equality in (7.6) by an inequality and then 
applying Proposition 7.5 with ex = fo, we obtain the valid inequality 

for the system (7.6). 
Combining the equality of (7.6) with the above inequality yields 

or 

where J+ = U E J: gj > O} andjj = aj -lajJ for j EN. This is the Gomory mixed-integer 
cut. 

We can derive this cut for the original mixed-integer set T = {x E Z~, Y E R~: 

Ax + Gy ~ b} and can also express it in terms of the original variables. The procedure to 
do this involves the introduction of slack variables s E R'J!, the use of row multipliers 
u E Rm to produce the system 

{x E Z~, Y E R~, s E R'J!: uAx + uGy + uIs = ub} 

of the form (7.6), generation of the cut, and then elimination of the slack variables by 
substitution. We leave as an exercise the task of showing that the resulting inequality is 

where 
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and Fa(d}, d2) = [1/(1- a)]d l + Fa.(d2 - d l ) is the two-dimensional function given by (4.5). 

We now derive a property of Fa. 

Proposition 7.6. IfF = [1/(1 - a)]FI + Fa.(F2 - Fd, where FI and F2 are superadditive and 
!londecreasing and _ w!lere PI and P2 exist and are finite with a > 0, then 
F = [1/(1 - a)] min(Fb F2)' 

Proof First we show that F(Ad)/A ~ min(FI(d), F2(d». For A ~ 0, we obtain 

F(Ad) = _1_ FI(Ad) +! F(F2(Ad) _ FI(Ad» 
A I-a A A a 

1 FI(Ad) 1-
~ 1 - a -A - + X Fa(FiAd) - FI(Ad» 

1 FI(Ad) 1 1 . 
= 1 - a -A - + 1 _ a ;:mIn(F2(Ad) - FI(Ad), 0) 

__ 1_ . (FI(Ad) F2(Ad») 
- 1 - a mIn A ' A 

Now we must show the inequality in the opposite direction for sufficiently small 
positive A._Since FI and F2 exist, given d and e > 0, there exists A* such that 
Fi(Ad)/A ~ Fi(d) + e for i = 1, 2 and for all 0< A < A*. Hence 

F(Ad) = _1_ FI(Ad) ! F(F(Ad) _ F(Ad» 
A I-a A + A a 2 I 

since Fa. is nondecreasing, and FI(Ad) ~ FI(Ad) = AFI(d). Now for A sufficiently small, we 

see from Figure 4.2 that Fa(Ax) = -1 _1_ mineO, Ax). So 
-a 

F(Ad) ~ _1_ FI(Ad) + _1_ min(O, F
2
(d) _ FI(d) + e) 

A I-a A I-a 

_ 1 . (FI(Ad) F-(d) Fl(Ad) F-(d) ) 
- 1 - a mIn -A-' 2 + -A- - I + e 

and 

F(Ad) 1 --
-A- ~ 1 _ a [min(FI(d), F2(d» + 2e]. 

Hence F = [1/(1 - a)] min(FJ, F2)' • 
Thus Fa(dJ, d2) = [1/(1 - a)] mined!, d2). UsingF = FaandH = lin (7.1) we obtain the 

following proposition. 
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Proposition 7.7. If T = {x E 2';., y E R~: (c - pn)x + hy ~ Co - Pno, (c + pn)x + hy 
~ Co + P7Co + P), where (c, h, co) E Rn+p+1 and (n, 7Co) E zn+ l

, then cx + hy ~ Co is a 
superadditive valid inequality for T. 

Proof Taking the function F(d l , d2) = PFl/idd2P, d2/2P), we obtain 

F(c} - fin}, c} + fin}) = fi [2(Cj ;/n) + F1/2( Cj ;/n} _ Cj ;/nj
)] 

= Cj - P7Cj + pFI/2(nj) = Cj - P(7Cj - 7Cj) = cf, 

F( _ P P P) - P [2 (co - P7Co) F (Co + pno + P _ Co - pno)] 
Co no, Co + 7Co + - 2P + 1/2 2P 2P 

= Co - fino + fiF1/2( no + 4) = co· 

This yields the superadditive valid inequality cx + hy ~ Co. • 
As a result of Proposition 7.7 and Theorem 6.5 we can establish the generality of 

superadditive inequalities. 

Theorem 7.8. Given T = {x E zn, Y E R~: Ax + Gy ~ b, x ~ I} =1= 0, every valid inequal
ity nx + IlY ~ 7Co is equal to or dominated by some superadditive valid inequality 

L F(aj)xj + L F(gj)yj ~ F(b). 
JEN JEJ 

Theorem 7.8 holds for mixed-integer regions of the form T = {x E zn, y E RP} n P, 
where P is any rational polyhedron. However, the proofs are not constructive. 

Note that the function F in Theorem 7.8 can be constructed iteratively using nonnega
tive linear functions and Fl/2 a tinite number of times. Furthermore, since the procedure 
starts with linear functions and FI/2 is the minimum of linear functions, the corresponding 
function F is the minimum of a finite number of linear functions and is therefore 
piecewise linear and concave. 

Example 7.1. T = {x E B2, Y E R~: YI + Y2 ~ 7, Yi ~ 5Xi, i = 1, 2). We construct the 
functions representing the valid inequality YI + Y2 - 2x I - 2X2 ~ 3. Consider the enumer
ation tree shown in Figure 7.2. Let the linear constraints be given in matrix form by 

0 0 1 1 7 
-5 0 1 0 

XI 0 
0 -5 0 1 

X2 
~ 0 

1 0 0 0 YI 

0 0 0 Y2 

x,y~O. 
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7 

Xl =0 

5 

2 4 

Figure 7.2 

At each node (NJ, Nt) with NJ U Nt = N, we use a linear function to construct an 
inequality dominating the inequality 

(7.7) - 3 L Xj - 3 L (1 - Xj) - 2x t - 2x 2 + Y t + Y2 ~ 3. 
jE}/O JEN! 

1. NJ = {l, 2}, Nt = 0. Ft(d) = (0 1 1 0 O)d gives 

which is stronger than (7.7), 
2. NJ = {l}, Nt = {2}. F2(d) = (0 1 0 6)d gives 

- 3xt - 3(1 - X2) + (- 2xt - 2X2 + Yt + Y2) ~ 3. 

3. NJ = {2}, Nt = {l}. F3(d) = (0 1 1 6 O)d gives 

4. NJ = 0, Nt = {l, 2}. F4(d) = (1 0 0 1 l)d gives 

Now to obtain the inequalities that dominate (7.7) for the sets (NJ, N l
) with 

NJ U Nt = {l}, we combine the superadditive functions generating the above inequalities 
as in the proof of Proposition 7.7. 

Combining the function Ft generating the NJ = {l, 2}, Nt = 0 inequality and the 
function F2 generating the NJ = {l}, Nt = {2} inequality yields the following: 

5. JIO = {l}, Nt = 0. Fs = 3FI/2(Ft/6, F2/6) gives 

Combining F3 and F4 yields the following: 
6. JIO = 0, Nt = {l}. F6 = 3Ft/2(F3/6, F4/6) gives 
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To obtain the inequality at the root, we combine Fs and F6: 

7. NJ = 0, N 1 = 0. F7 = 3F1/2(Fs/6, F6/6) gives 

- 2x I - 2x 2 + Y I + Y2 .::::;; 3. 

8. NOTES 

Section 11.1.1 

Valid inequalities that are implied by integrality constraints were introduced by Dantzig, 
Fulkerson, and 10hnson (1954, 1959) in a study of the traveling salesman problem. Their 
pioneering work demonstrates the derivation of logical or combinatorial inequalities that 
can be obtained from problem structure and 0-1 variables. Another early study of this type 
is Markowitz and Manne (1957). 

The initial study of valid inequalities for general integer programs was carried out 
almost single-handedly by Gomory in the late 1950s and early 1960s. His work emphasized 
the generation of a finite number of valid inequalities to solve the general integer 
programming problem. The integer rounding procedure appears implicitly in Gomory 
(1958, 1960a, 1963a,b) and explicitly in Chvatal (1973a). Its derivation uses a modular 
argument which was exploited to a greater extent by Gomory (1965) in his derivation of all 
valid inequalities for the group relaxation of an integer program (see Section II.3.5). 

The valid inequalities of exercise 11 of Section II.4.5 were introduced by Dantzig (1959) 
and refined by Charnes and Cooper (1961) and Bowman and Nemhauser (1970). 

Surveys on algebraic methods for obtaining valid inequalities were given by Garfinkel 
and Nemhauser (1972a, Chapter 4), and leroslow (1978, 1979a,c). 

Gomory (1960b) used a disjunctive argument to develop valid inequalities for mixed
integer regions. A general disjunctive approach for obtaining valid inequalities appears in 
Balas (1975b). The D-inequalities were studied by Blair (1976). leroslow (1977, 1979a,c) 
and Balas (1979) gave surveys of disjunctive methods. 

Valid inequalities that can be deduced from combinatorial structures and 0-1 variables 
appear throughout the text and, in particular, in Chapter II.2. References will be given in 
the notes for the corresponding sections. 

Section 11.1.2 

Chvatal (1973a) contains all of the results of this section with the exception of Theorem 
2.16, although a few of the results are given only implicitly. 

Blair (1976) also showed that the D-inequalities suffice for 0-1 problems (Theorem 2.3). 
The close connection between this theorem when P is empty with the inequality Ox .::::;; -1 
and the resolution method of propositional logic of Davis and Putnam (1960) is discussed 
in Blair, leroslow, and Lowe (1986). General conditions under which the convex hull can 
be obtained sequentially by imposing disjunctions one-by-one, as in the proof of Theorem 
2.5, were studied by Balas (1979); see Section 6 of that article and Exercise 9 of Section 
1.4.8. 

Theorem 2.16 is due to Schrivjer (1980). He showed that for any integer k, the linear 
inequality system consisting of all of the inequalities of rank equal to or less than k defines 
a rational polyhedron, and then he used total dual integrality (see Section 111.1.1) to show 
that there existed some k for which the system defines the convex hull of integer solutions. 

The example of the two-dimensional family of polyhedra of unbounded rank is from 
Chvatal (1973a). Related results are given in leroslow (1971) and leroslow and Kortanek 
(1971). 
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Section 11.1.3 

The fractional cuts are due to Gomory (1958). The connection between them and integer 
rounding in the space of the original variables is implicit in that article and Chvatal 
(1973a). 

Section 11.1.4 

Connections between valid inequalities for integer programs and superadditive functions 
originated with the work of Gomory (1965, 1967, 1969, 1970) on the group problem 
relaxation of a general integer program (see Section 11.3.5). The explicit use of superaddi
tive functions in the generation of valid inequalities for general (pure) integer programs 
was developed in a series of articles by Gomory and Johnson (1972, 1973) and Burdet and 
Johnson (1974), again in the context of the group problem. 

Araoz (1973) investigated superadditive valid inequalities for packing and covering 
problems and showed that the modular arithmetic requirement of the group relaxation 
was not essential to the superadditive theory. For general (pure) integer programs, the 
superadditive representation of all facet-defining inequalities (Proposition 4.5 and Theo
rem 4.6) appears in the articles by Burdet and Johnson (1977) and Jeroslow (1978). The 
function of Figure 4.5 was used by E. L. Johnson (1974), and the two-dimensional function 
given by (4.5) and exhibited in Figure 4.3 appears in Nemhauser and Wolsey (1984). Some 
other classes of superadditive functions that have been proposed for the purpose of 
generating valid inequalities are given by Burdet and Johnson (1974, 1977). 

Surveys by Jeroslow (1978, 1979a,c) and Johnson (1979), and a monograph by Johnson 
(1980a) provide comprehensive treatments of the use of superadditivity in integer and 
mixed-integer programming. These references are also relevant to the following three 
sections. 

Section 11.1.5 

A polyhedral description of superadditive valid inequalities for the group problem was 
given by Gomory (1967,1969, 1970). He also introduced the concept of master polytopes 
in these articles and showed how facets for lower-dimensional polytopes could be obtained 
from the master polytope by projection. 

Gomory's approach was extended to independence systems or packing problems and to 
dependence systems or covering problems by Araoz (1973) as well as to general pure
integer programs by Burdet and Johnson (1977). See also Johnson (1979, 1980a, 1981a) and 
Araoz and Johnson (1981). 

Superadditive inequalities for 0-1 problems were studied by Wolsey (1977), and those 
for multiple right-hand side problems were studied by Johnson (1981b). 

Section 11.1.6 

This section is based on Nemhauser and Wolsey (1984). The motivation for the MIR 
inequalities came from the mixed-integer cuts of Gomory (1960b). 

Schrijver gave us the example in Exercise 22, which shows that Theorem 6.5 is false 
unless each integer variable belongs to the set {O, 1}. This is related to the absence of finite 
convergence of Gomory's mixed-integer cutting-plane algorithm, as shown by White 
(1961). White's counterexample appears in Salkin (1975). 

Section 11.1.7 

The extension of the superadditive theory to mixed-integer programs began with the work 
ofE. L. Johnson (1974) on a mixed-integer group problem. 
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Theorem 7.8, for bounded mixed-integer constraint sets, appears in Jeroslow (1979b). 
Its generalization to unbounded sets is given by Bachem and Schrader (1980) and by 
Bachem, Johnson, and Schrader (1982). Also see Blair (1978) and Jeroslow (1985). 

9. EXERCISES 

1. LetS = {x E Z~: 4Xl + X2 S 28, Xl + 4X2 s 27, Xl - X2 S 1}. Determine the facets of 
conv(S) graphically (see Exercise 10 of Section I.4.8). Then derive each of the facets 
of conv(S) as a C-G inequality. 

2. Let S = {x E Z~: I9x, + 28x2 - I84x3 = 8}. Derive the valid inequality x, + 
X 2 + 5x 3 ~ 8 using modular arithmetic. 

3. For S = {x E B4: 9XI + 7X2 - 2X3 - 3X4 S 12, 2x, + 5X2 + IX3 - 4X4 S IO} show that 
4XI + 5X2 - 2X3 - 4X4 S 12 is a valid inequality by disjunctive arguments. 

4. Consider the node-packing problem on the graph of Figure 9.1. Show that L[=I Xi S 2 
is a valid inequality, both combinatorially and algebraically. 

5. Prove the following: 

i) Let P = {x ERn: Ax s b} *" 0. nx s no is a valid inequality for P if and only if 
there exists u E R'.;! such that uA = nand ub s no. 

ii) Let P = {x E R':: Ax s b, X s d}. nx s no is a valid inequality for P if and only 
if there exist u E R': and wE R1 such that uA + w ~ nand ub + wd s no. 

6. Let Pi = {x E R1: Ai x s b J for i = 1, 2. Show that nx s no is a valid inequality for 
PI U P2 if there exists ui E R': such that uiAi ~ nand uib i s no for i = 1,2. Under 
what restrictions on PI and P2 does the converse hold? 

7. (The Davis-Putnam Procedure). Consider the satisfiability problem for S s Bn 
defined by 

L Xj + L (1 - x) ~ 1 for k = 1, ... , K, x E Bn 
JECk JECk 

where Ck n Ck = 0 and Ck , Ck s N for k = 1, ... ,K. 

i) Given q EN and a pair of constraints k, I such that q E Ck n C" show that 

L Xj + L (1 - Xj) ~ 1 
jE(CkUC,)\{q} jE:(CkUC,)\{q) 

is a valid inequality for S. 

Figure 9.1 
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ii) Show that the inequality is aD-inequality. 

iii) Show that if S = 0, it is possible to generate the valid inequality Ox :s -1 by a 
finite number of replications of the procedure i. 

iv) Show that the resulting algorithm is polynomial if I Ck U Ck I :s 2 for all k. 

8. What is the rank of conv(S) in Exercise I? 

9. Prove Propositions 2.9 and 2.10. 

10. Show that the rank of conv(St) is t - 1, where st = pt n Z2 and 

11. Show that if P = {x E RZ: Xi + Xj :S 1 for 1 :S i <j :S n} and S = P n En, the rank of 
"£J=l Xj :S 1 is O(log n). 

12. Use Theorem 2.5 to show that every valid inequality is a D-inequality for mixed 0-1 
programs. 

13. Consider the integer program max{2x 1 + 5x2: xES}, where S is given in Exercise 1. 
Using the optimal basis of the corresponding linear program, the problem can be 
rewritten as 

maxz 

z = 38 

17 
3 

1 4 16 
X2 -EX3 + E X 4 3 

1 1 2 
- 3X3 + 3X4 + X5 = 3 

xEZ!. 

Derive a Gomory fractional cut from each equation. Express each cut in terms of the 
original variables (xt, X2). Derive each cut as a rank 1 C-G inequality. 

14. For S = P n Z2 as given in Exercise 1 show that 

i) Xl :S 5, 

ii) Xl + 2X2 :S 15, and 

iii) 2x 1 + 5X2 :S 36 
are superadditive valid inequalities. 

15. What conditions must be imposed on F so that "£7=1 F(a)xj :S F(b), is a valid 
inequality for S = {x E zn: Ax :S b}? 

16. Show that the following functions are superadditive: 

i) G(d) = max{o:, F(d)}, where 0: < 0 and F is superadditive. 

ii) G(d) = maXhEZm {Fl(h) + F2(d - h)}, where Fl and F2 are superadditive on zm. 

iii) G a(d) = max{o:, mineO, d)} for d E R 1 and 0: < O. 
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17. i) Draw G a, which was defined in iii of Exercise 16. 

ii) Use G a to show that - 3x 1 - 2x 2 - 2x 2 ::;;; - 3 is a valid inequality for 
S = {x E zl: - 7Xl - 4X2 - 4X3::;;; - 6}. 

iii) Can you show by repeated use of G a that - 2x 1 - X2 - X3 ::;;; - 2 is valid for S? 

iv) ForS = {x E B3: -7Xl - 4X2 - 4X3:S;; - 6} use Ga to showthat- Xl - X2::;;; - 1 is 
valid for S. 

18. Suppose that we define the disjunctive rank of an inequality via the function Fa. 
What is the maximum disjunctive rank of conv(S), where 

i) S = {x ERn: Ax ::;;; b, x :s;; 1, x ~ O} n Zn, 

ii) S = {x ERn: Ax::;;; b, x:s;; d, x ~ O} n zn, 

iii) S = {x E R~: Ax :s;; b} n zn? 

19. Let cf>(d) = max{cx: Ax :s;; d, x E Z~} and suppose the problem is feasible for all 
dE Rm. Show that cf> is superadditive on Rm. 

20. Find the convex hull of S= (x E Z:; Xl + 2X2 + 3X3 + 4x4 :5 4). 

21. Write an implicit polyhedral description of the set of valid inequalities for 

i) Xl + X2 + X3 + X4 = 4, x E Z!. 
ii) Xl +X2 +X3 +X4 ~ 4, x E Z!. 
iii) (b)Xl + (~)X2 + (~)X3 + (:)X4 + (~)X5 + (~)X6 + (~)X7 + (;)Xg ::;;; (;), x E Z!. 

22. Show that the set 

T = {(x, y) E Z~ x Rl: Xl + X2 + y:s;; 2, - Xl + y:s;; 0, - X2 + y::;;; O} 

and the valid inequality y ::;;; 0 give a counterexample to Theorem 6.5 when the 
constraints x :s;; 1 are not present. 

23. Given T = {(xo, x, y) E Zl X Z~ x R~: Xo + LjEN ajxj + LjE] gjYj = b} with b = lbJ 
+ fo and 0 <fo < 1, derive (by a disjunctive and modular argument) the Gomory 
mixed-integer cut 

where J+ = {j E J: gj > a}, J- = J \ J+, andjj = aj - lajJ for j EN. 

24. Verify that the Gomory mixed-integer cut for 

T' = {(x, y, s) E Z~ x R~ x Rl: uAx + uGy + us = ub} 

is equivalent to the superadditive valid inequality 

L F(aj)xj + L F(gj)Yj :s;; F(b) 
JEN jE] 

forT = {(x, y) E Z~ x R~: Ax + Gy::;;; b}, whereF(d) = F:x(-Lui<o uidi,Lui>o uidJand 
a= ub -lubJ. 



11.2 
Strong Valid Inequalities 
and Facets for Structured 
Integer Programs 

1. INTRODUCTION 

In the preceding chapter we presented a general theory of valid inequalities for integer 
and mixed-integer programs and techniques for generating all valid inequalities. How
ever, these general techniques can be quite inefficient in deriving facets or even lower
dimensional faces of the convex hull of a set of integral points. 

The theme of this chapter is to use structure to determine strong valid inequalities for 
the constraint sets of some .N9J>-hard integer programming problems. The determination 
of families of strong valid inequalities is more of an art than a formal methodology. Thus 
our presentation will largely be a series of examples that convey the basic ideas. The 
mathematics enters in proving that classes of inequalities, which are often easily shown to 
be valid, are indeed strong in the sense that they define facets or faces of reasonable 
dimension. A related mathematical problem, which is considered in Part III, is to prove 
that a given family of inequalities represents all of the facets of the convex hull. We defer 
this topic because the results are limited almost exclusively to those combinatorial 
optimization problems for which polynomial-time algorithms are known. 

There are many interesting problems for which strong valid inequalities have been 
obtained. Only a small selection of these results can be given here, so we have picked a few 
prototype problems. To motivate some basic ideas, in this section we consider the node
packing polytope. In the following sections, we study the 0-1 knapsack polytope, the 
symmetric traveling salesman polytope, and a class of generic mixed-integer sets that we 
call 0-1 variable upper-bound flow models. The attention given to polyhedra for which the 
integer variables are binary reflects the fact that most of the known results are in this 
domain. 

In the preceding chapter, we derived some valid inequalities for the node-packing 
problem. Here we will establish the strength of the inequalities. Recall that a node packing 
in a graph G = (V, E) is a set of nodes such that no pair in the set is joined by an edge. Thus 
the set of node packings S is given by 

S = {x E Bn: Xi + Xj ~ 1 for all (i,j) E E}, 

where n = 1 V I. The vector xES is the characteristic vector of a packing; that is, Xi = 1 if 
node i is in the packing and Xi = 0 otherwise. Since S contains the zero vector and the n 
unit vectors, dim(conv(S)) = n. 

259 
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2 

6 3 

5 4 

Figure 1.1 

A set C ~ V is called a clique if each pair of nodes in C is joined by an edge. Thus a node 
packing can contain no more than one node from each clique. For the graph of Figure 1.1, 
the maximal cliques yield the inequalities 

Xl 

X2 

(1.1) X3 
~ 

X4 

Xs 

X6 

corresponding to the cliques {l, 2, 3}, {l, 3, 4}, {l, 4, 5}, {l, 5, 6}, and {l, 2, 6}. 
When C is a maximal clique, the clique constraint 

(1.2) L Xj~ 1 
jEC 

defines a facet of conv(S). This is an easy result to prove directly from the definition of a 
facet. A facet of conv(S) is of dimension n - 1 and thus contains n affine1y independent 
points ofconv(S). Moreover, as noted in Proposition 6.6 of Section 1.4.6, a facet contains 
n affinely independent points of S. Since the hyperplane LjEC Xj = 1 does not contain the 
origin, any set of affinely independent points on it are also linearly independent. Thus we 
will exhibit n linearly independent points of S that satisfy (1.2) at equality. 

Suppose, for simplicity of notation, that C = {l, ... , k}. Since C is maximal, for each 
j $. C there is a node /(j) such that /(j) ~ k and {j, /(j)} is a node packing. The 
characteristic vectors of the packings {l}, ... , {k}, {k + 1, /(k + I)}, ... , en, /(n)} are easily 
shown to be linearly independent. 

The rows of the matrix given below are six linearly independent vectors which establish 
that Xl + X 2 + X 3 ~ 1 is facet for the graph of Figure 1.1. 
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Although there is an important class of node-packing problems for which the maximal 
clique constraints and nonnegativity give all the facets of conv(S), this is not true in our 
example. In particular, Xl = ~(O 1 1 1 1 1) is an extreme point of the polytope given by (1.1) 
and x ~ 0. This can be seen by solving the linear program max LY=I Xj subject to (1.1) and 
x ~ 0. The unique optimal solution is Xl. 

To cut off Xl, we consider another family of valid inequalities. Suppose there is an 
H ~ V that induces a chordless cycle, that is, the nodes of H can be ordered as (i I, i 2, ••• , 

ip ) such that (i" is) E E if and only if s = r + 1 or s = 1 and r = p. Ifp is odd and at least 5, 
then H is called an odd hole. If H is an odd hole, then 

(1.3) 2: x. ~ IHI - 1 
jEH J 2 

is satisfied by all node packings. Moreover, the clique constraints Xi + Xj ~ 1 for i, j E H 
do not imply (1.3). 

In our example, H = {2, 3, 4, 5, 6} is an odd hole and we obtain the constraint 

(1.4) 

which cuts off the solution x I . 
Since (1.4) is satisfied at equality by the five linearly independent characteristic vectors 

corresponding to the packings {2, 4}, {2, 5}, {3, 5}, {3, 6}, and {4, 6}, inequality (1.4) gives a 
facet of the convex hull of node packings for the subgraph with node set H. But it does not 
give a facet of conv(S) for the graph G, since there are no other packings that satisfy (1.4) at 
equality. If we added (1.4) to the clique constraints, we would obtain the new extreme point 
t(1 22222). 

Since (1.4) is a four-dimensional face of conv(S) but not a facet, it can perhaps be 
strengthened by tilting it to produce a facet. In other words, is there a valid inequality of the 
form 

(1.5) 

with a > O? And if so, what is the largest value of a that preserves validity? To answer these 
questions, we must consider x I = ° and Xl = 1. When x I = 0, (1.5) is valid for any a > 0. 
When XI = 1, we have a ~ 2 - (X2 + X3 + X4 + Xs + X6)' But Xl = 1 implies X2 = X3 = X4 = 
X 5 = X 6 = 0, so a ~ 2. Thus 

(1.6) 

is a valid inequality. Moreover, it gives a facet of conv(S) since it is satisfied at equality by 
the characteristic vector of {l} and the characteristic vectors of the five packings given 
above that satisfy (1.4) at equality. 

We have just illustrated a general principle called lifting whereby a valid inequality for 
S n {x E Bn: Xl = o} is extended to a valid inequality for S. 

Proposition 1.1. Suppose S s; Bn, So = S n {x E Bn: x I = 6} lor £5 E {o, I}, and 

(1. 7) 
n 

L TCjXj ~ TCo 
j=2 

is validlor So. 1iSI = 0, then XI ~ ° is validfor S. 1iSI =1= 0, then 
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(1.8) 
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n 

alXl + I njXj ~ no 
j=2 

is valid for S for any al ~ no -" where ,= max{L1=2 njXj: x E SI}. Moreover, if 
al = no - 'and (1.7) gives a face of dimension k of conv(SO), then (1.8) gives a face of 
dimension at least k + 1 ofconv(S). [1f(1.7) gives afacet ofconv(~), then (1.8) gives a 
facet ofconv(S).] 

Proof Ifx E So, then 

n n 

alxl + L n)x) = L n)x) ~ no 
)=2 )=2 

since (1.7) is valid for So. 
Ifx E Sl, then 

n n 

alxI + I n)x) = al + I n)x) ~ al +, ~ no 
)=2 j=2 

by definition of the quantities al and ,. 
Since (1.7) gives a k-dimensional face of conv(SO), there exist Xi E So for i = 1, ... , 

k + 1 that are affinely independent and satisfy (1. 7) at equality. Since x\ = 0, it follows that 
Xi satisfies (1.8) at equality for i = 1, ... , k + 1. Let, = 'L)=2 njxj, where x* E Sl. With 
al = no - " x* satisfies (1.8) at equality. Finally, since xT = 1, it follows that x* cannot be 
written as an affine combination of {Xl, ... , Xk+l}, so the k + 2 vectors {X*, Xl, ... , Xk+l} 
are affinely independent. • 

The lifting principle is also applicable to extending a valid inequality from SI to S. 
Using the same notation as in Proposition 1.1, we have the analogous result: 

Proposition 1.2. Suppose (1.7) is valid for SI. If SO = 0, then Xl ~ 1 is valid for S. If 
SO =1= 0, then 

(1.9) 
n 

YIX I + L njx) ~ no + Y I 
)=2 

is valid for S for any YI ~ ,- no, where ,= max{'L)=2 njXj: X E SO}. Moreover, if 
Yl = , - no and (1. 7) gives a face of dimension k of conv(SI), then (1.9) gives a face of 
dimension at least k + lofconv(S). 

When a1 = no - 'in Proposition 1.1 or when YI = ,- no in Proposition 1.2, we say that 
the lifting is maximum. 

Propositions 1.1 and 1.2 are meant to be used sequentially. Given an NI eN = {l, ... , 
n} and an inequality LjEN! n)xj ~ no that is valid for S n {x E Bn: Xj = 0 for} EN \ N 1}, we 
lift one variable at a time to obtain a valid inequality 

(1.10) L ajxj + I njx} ~ no 
jEN\N! JEN! 

forS. 
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The coefficients {ai} in (1.10) are dependent on the order in which the variables are 
lifted. So by considering different orderings of the elements of N \ Nb we can get a family 
of valid inequalities for S. 

It is insightful to examine the lifting process in the polar space III = {n ERn: nx ~ 1 for 
all xES ~ Bn}. If L1=2 nixi ~ 1 is valid for So, maximum lifting can be described by the 
one-dimensional optimization problem in III-space: 

The geometry is illustrated in Figure 1.2 for the case n = 2. We suppose that III has the 
three extreme points {nO, nl, n2}. Since~ > max(n~, nD, wehavethatn~x2 ~ 1 givesafacet 
of conv(SO), where SO = S n {x: Xl = O}. Maximum lifting is equivalent to moving from 
(0, n~) in the direction (1 0) to obtain the extreme point nO of III or, equivalently, the facet 
of conv(S) defined by n?x I + n~x2 ~ 1. Similarly, by a maximum lifting from nIX 1 ~ 1, we 
obtain the facet ofconv(S) defined by JrtXI + n~x2 ~ 1. We also see that there is no way to 
generate the facet of conv(S) defined by nix 1 + n~x2 ~ 1 by sequential lifting. 

To interpret sequential lifting geometrically, suppose we begin with the trivial inequality 
o ~ 1. Maximum lifting in the order (1, 2) yields the facet corresponding to the extreme 
point n2

, and maximum lifting in the order (2, 1) yields the facet corresponding to the 
extreme point nO. Neither order gives nl. 

In principle, lifting is not restricted to choosing one coefficient at a time. If we observe 
that maximum sequential lifting is equivalent to finding an extreme point in a one
dimensional polyhedron, it is not surprising that in the simultaneous lifting of k coeffi
cients, the "best" liftings are obtained by finding the extreme points of a k-dimensional 
polyhedron. Hence if we start from the inequality 0 ~ 1 and allow the simultaneous lifting 
of(nl n2), we can indeed obtain nO, nl, and n2. 

As we have already seen, the values of the coefficients in (1.10) depend on the ordering 
of the variables in the sequential lifting. The following proposition, which will be useful in 
the next section, indicates how the coefficient of one variable depends on the ordering. 

(0,0) L--________ -+ ____ 11"1 

Figure 1.2 
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Proposition 1.3. Let N \ N[ = {I, 2, ... , t} and suppose when Proposition 1.1 is applied 
sequentially using maximum lifting in the order (iI, i2, ... , h-I' ik, ••. , it), the inequality 

I aixi + I nixi::::;; no 
iEN\Nl JENl 

is obtained. Then for any order (iI, i2, ... , i£_[, i£, ... , i;) with i; = ii for j = 1, ... , k - 1, 
the resulting inequality 

I a;Xi + I n}x}::::;; no 
iEN\Nl iENl 

obtained by maximum lifting has aL ::::;; ai
k

• 

Proof ik = i; for some s > k. Then 

{

k-I 

ah = no - max IaijXjj + I nixi: xES n {x E Bn: Xh = 1 
i=l iEN, 

and Xij = 0 for j > k}} 

= no - max IaijXij + I nix}: xES n {x E Bn: Xi's = 1 
{

k-I 

i=l iEN, 

and x i'j = 0 for k ~ j ~ t, j '* s} } 

~ no - max IaijXjj + I nixi + Iaj,jXij: xES n {x E Bn: 
{

k-l s-I 

i=! iENl }=k 

Xi's = 1 and Xi'j = 0 for j > s}} 

• 
Corollary 1.4. In any sequential maximum lifting of the variables in N \ N I , the mini
mum value of aik is obtained by lifting Xh last and the maximum value is obtained by lifting 
xhfirst. 

Although this discussion has focused on maximum lifting, , can be hard to compute. 
Thus, in practice, a and yare generally determined from easily computable upper bounds 
on ,. We will illustrate these computations in Section 11.6.2. 

We have given two ways of showing that a valid inequality gives a facet of conv(S). The 
first approach was to apply the definition, the second approach was by maximum lifting of 
a lower-dimensional facet. We now consider a third approach, which is to apply Proposi
tion 3.6 of Section 1.4.3. 

We illustrate this approach by showing that (1.6) gives a facet of conv(S) in the node
packing example of Figure 1.1. Consider a valid inequality LY=I nixi ::::;; no and suppose that 
it is satisfied at equality by the packings {2, 4}, {2, 5}, {3, 5}, {3, 6}, and {4, 6}. From {2, 4} 
and {2, 5} we obtain n2 + n4 = n2 + ns = no or n4 = ns. Similarly from {2, 5} and {3, 5} we 
obtain n2 = n3, from {3, 5} and {3, 6} we obtain ns = n6, and from {2, 4} and {4, 6} we obtain 
n2 = n6. Hence any equality that is satisfied by these five packings must be of the form 
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Now if the packing {l} also lies on the above hyperplane, we must have reI = 2a and the 
equality must be of the form 

Finally, the inequality a(2x I + X2 + ... + X6) ~ 2a must hold for x = O. Thus a > 0, and 
it suffices to take a = 1. 

Here we have applied Proposition 3.6 of Section 1.4.3 with n = 6, k = 0, and Xl, ••• ,x6 

being the characteristic vectors of the six packings given above. The argument shows that 
all solutions to the linear system hi = ..to for i = 1, ... , 6 are of the form A = are and 
..to = areo with a E R I. Finally, we used x = 0 to establish that a > O. Other applications of 
this technique will be given in Sections 3 and 4. 

We close this section with a pessimistic reminder regarding the possibility of obtaining 
all facets of the convex hull of a feasible set of points for an .N9P-hard optimization 
problem, but we add a note of optimism with respect to using the strong inequalities that 
can be obtained. 

In Proposition 7.4 of Section 1.5.7, it was established that for an .N9P-complete lower
bound feasibility problem, a good characterization of all of the facets of the convex hull of 
feasible solutions is not possible unless.N9P = C€oJY9P. Thus our use of structure to obtain a 
polyhedral representation of the constraint set is limited by the inherent complexity of the 
problem. For this reason the results of this chapter are only partial descriptions of the 
convex hull of the constraint set of the problem being studied. However, there are some 
experimental results which indicate that simple classes of strong valid inequalities that can 
be identified efficiently are extremely useful in solving a variety of integer programming 
problems by cutting-plane algorithms. In Chapter II.5, we will show how the results of this 
chapter can be incorporated in such cutting-plane algorithms. 

2. VALID INEQUALITIES FOR THE 0-1 KNAPSACK POLYTOPE 

We consider the constraint set of a 0-1 knapsack problem 

(2.1) 

where N = {l, ... , n}, aj E Z! for j EN, and b E Z!. Note that S is an independence 
system (see Section 11.1.5). Since aj > b implies Xj = 0 for all XES, we assume aj ~ b for 
allj EN. Thus dim(conv(S)) = n. It is convenient to order the coefficients monotonically 
so that a I ~ a2 ~ ... ~ an. We represent elements of Bn by characteristic vectors so that 
for R £.; N the vector xR has components xf = 1 if j E Rand xf = 0 otherwise. If XC E S, 
we say that C is an independent set; otherwise C is a dependent set. 

As we observed in Section 11.1.5, the n constraints x ~ 0 give facets of conv(S). In 
addition, Xj ~ 1 gives a facet if {j, k} is an independent set for all kEN \ {j}. We leave 
these results as exercises and go on to more interesting inequalities. 

Proposition 2.1. If C is a dependent set, then 

(2.2) L Xj ~ ICI - 1 
jEe 

is a valid inequality for S. 
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Proof Suppose XR E Sand LjEC Xf;?; I C I. This means that R ;2 C so that R is 
dependent, which contradicts XR E S. • 

A dependent set is minimal if all of its subsets are independent. Note that if a dependent 
set C is not minimal, then LjEC Xj ~ I C I - 1 is the sum ofLjEc' Xj ~ I c' I - 1 and Xj ~ 1 for 
j E C \ C', where C' is a minimal dependent set. 

Example 2.1. S = {x E B 5: 79xI + 53x2 + 53x3 + 45x4 + 45x5 ~ 178}. The minimal 
dependent sets and corresponding valid inequalities are: 

C I = {l, 2, 3} Xl + X2 + X3 ~ 2 

C2 = {l, 2, 4, 5} XI +X2 +X4 +X5 ~ 3 

C 3 = {l, 3,4, 5} XI + X3 + X4 + X5 ~ 3 

C4 = {2, 3,4, 5} X2 + X3 + X4 + X5 ~ 3. 

While the constraints (2.2) are quite simple, they are nontrivial with respect to the 
polytope P ;2 S obtained by replacing X E En by X E R~ and Xj ~ 1 for allj EN, that is, 
the linear programming relaxation with P = {x E R~: LjEN a jXj ~ b, Xj ~ 1 for j E N}. If 
LjEN aj > b, then every nonintegral extreme point x of Pis of the form 

Xj = 1 for j E C \ {k} 

Xj = 0 for j E N \ C 

Xk = (b - I aj) / ak > 0, 
jEC\{k} 

where C is a dependent set, k E C, and C \ {k} is independent. However, x does not satisfy 
the inequality (2.2). 

Proposition 2.1 applies to any independence system. We now begin to use some 
particular properties of the knapsack problem. 

The extension E(C) of a minimal dependent set C is the set C U {k EN \ C: ak ;?; aj for 
allj E C}. In Example 2.1, E(CJ = Cj for i = 1,2,3 and E(C4 ) = C4 U {t}. 

Proposition 2.2. If C is a minimal dependent set, then 

(2.3) 

is a valid inequality for s. 

I Xj ~ ICI - 1 
jEE(C) 

Proof Suppose XR E Sand LjEE(C) xf ~ IC 1 so that IR n E(C)I ~ IC I. Now 
LjER aj ;?; LjERnE(C) aj and by definition of E(C) we obtain LjERnE(C) aj ;?; LjEC aj > b, which 
contradicts XR E S. • 

In Example 2.1, LJ=I Xj ~ 3 is a valid inequality obtained from Proposition 2.2 with 
E(C4). It dominates the inequalities (2.2) generated by C2, C3, and C4• 

In some instances the inequalities (2.3) give facets of conv(S). 

Proposition 2.3. Let C = UI, ... , jr} be a minimal dependent set withjl <h < ... <jr' If 
any of the following conditions holds, then (2.3) gives afacet of conv(S). 
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a. C=N. 
b. E(C) = N and (i) (C \ {jI,}2}) U {l} is independent. 
c. C = E(C) and (ii) (C \ {jl}) U {p} is independent, where p = min{j:) EN \ E(C)}. 
d. C C E( C) C N and (i) and (ii). 

Proof The following n independent sets satisfy (2.3) at equality. 

1. lj = C \ {}j} for}j E C. There are I C I of these. 
2. lk = (C \ {jj,}2}) U {k} for k E E(C) \ C. Ilk n E(C) I = I C I - 1 andlk isindepen

dent by (i) and ak :::::;; al' There are IE(C) \ C I of these. 
3. I j = (C \ {it}) U {j} for) EN \ E(C}. IIj n E(C) I = I C I - 1 and I j is independent 

by (ii) and aj :::::;; ap • 

We leave it to the reader to show that the corresponding characteristic vectors are 
linearly independent. • 

In Example 2.1, Proposition 2.3 establishes that (2.3) with C = C I gives a facet of 
conv(S) since C I = E(C I } and (C I \ {jl}) U {p} = {2, 3, 4} is independent. Also, since 
E(C4) = Nand (C4 \ {2, 3}) U {l} = {l, 4, 5} is independent, (2.3) with C = C4 gives a facet 
ofconv(S}. 

A simple consequence of Proposition 2.3 is: 

Corollary 2.4. IfC is a minimal dependent setfor Sand (C I , C2 ) is any partition ofC with 
C I =1= 0, then LjEC1 Xj:::::;; I C I I -1 gives afacet of conv(S(CJ, C2», where 

S(Ct, C2) = S n {x E Bn: Xj = 0 for} EN \ C, Xj = 1 for} E C2}. 

Proof For any C2, 0 S C2 C C, it follows that C I = C \ C2 is a minimal dependent 
set for S(C!, C2) since 

LjEC1 aj > b - LjECz ah and LjEC1\{k} aj :::::;; b - LjEC2 aj for all k E Ct. Now Proposition 2.3 
applies with S = S(C!, C2) and N = E(C l ) = C j • • 

We can use Corollary 2.4 and the lifting results of Section 1 to generate facets of conv(S). 

Proposition 2.5. IfC is a minimal dependent setfor Sand (Cl> C2 ) is any partition ofC 
with C I =1= 0, then conv(S) has afacet represented by 

I CijXj + I YjXj + I Xj:::::;; I C j I - 1 + I Yh 
jEN\C jECz JEC1 JEC2 

where Cij ~ Of or all} E N\ C and where Yj ~ 0 for all} E C2• 

Proof We start with the inequality LjEC1 Xj:::::;; I C j I - 1, which gives a facet of 
conv(S(CI, C2», and do lifting by applying Proposition 1.1 for each} EN \ C and 
Proposition 1.2 for each} E C 2. The nonnegativity of the coefficients is implied by their 
definitions in Propositions 1.1 and 1.2. • 
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As we observed previously, the order of the variables in the lifting affects the coeffi
cients. However, we should begin with a j EN \ C, because beginning with k E C2 is 
equivalent to starting with LjECtU{k} Xj ~ I C I I. 

a. C = {l, 4, 5} is a minimal dependent set and E( C) = {l, 4, 5}. By Proposition 2.3, 
XI + X4 + Xs ~ 2 gives a facet ofconv(S). 

b. C = {l, 4, 5}, C I = {4, 5}, C2 = {l}. By Corollary 2.4, X4 + Xs ~ 1 gives a facet of 

First we lift with respect to the variable X 3 by applying Proposition 1.1. This yields 

Hence a3 = 1 andx3 + X4 + Xs ~ 1 gives a facet ofconv{x E B3: X3 + X4 + Xs ~ n. Now we 
lift with respect to X I by applying Proposition 1.2. Hence 

Thus 2xI + X3 + X4 + Xs ~ 3 gives a facet ofconv{x E B4: 3xI + X3 + X4 + Xs ~ 4}. Finally, 
we lift with respect to x 2 by applying Proposition 1.1. Hence 

Thus a2 = 0 and 2xI + X3 + X4 + Xs ~ 3 gives a facet of conv(S). 
By symmetry, lifting in the order (X2, Xl, X3) yields the facet represented by 

2xI + X2 + X4 + Xs ~ 3. The orders (X2' X3, XI) and (X3, X2, XI) show that the original 
inequality 3Xl + X2 + X3 + X4 + Xs ~ 4 also gives a facet of conv(S). We have not consid
ered lifting X I first because, as explained before the example, this yields Xl + X4 + X S ~ 2, 
which we already know gives a facet. 

To apply Proposition 2.5, we must solve IN \ CII 0-1 knapsack problems. However, 
unlike the general 0-1 knapsack problem, these knapsack problems can be solved in 
polynomial-time by dynamic programming (see Section 11.5.5) because the objective 
coefficients are polynomial in n. Nevertheless, for computational purposes, it may suffice 
to get lower bounds on the aj and upper bounds on the Yj. We will return to these 
computational issues in Section II.6.2, where we will give an algorithm for solving general 
0-1 integer programs that uses strong valid inequalities derived from 0-1 knapsack 
problems. 

When C2 = 0 in Proposition 2.5, there is a formula that nearly determines all of the 
lifting coefficients. 

Proposition 2.6. Let C = {j 1, ••• , j,} be a minimal dependent set with j 1 < h < . . . < Jr. 
Let flh = LZ= I aA for h = 1, ... , r,' also let flo = 0 and A = fl, - b ;?; 1. Every valid inequality 
a/the/arm 

(2.4) I ajXj + I Xj ~ I C I - 1 
jEN\C JEC 
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that represents afacet of conv(S) satisfies the following conditions: 

i. IfJ.1h ~ aj ~ J.1h+l - A, then aj = h. 
ii. If J.1h+l - A + 1 ~ aj ~ J.1h+l - 1, then (a) aj E {h, h + 1} and (b) there is at least one 

facet of the form (2.4) with aj = h + 1. 

Proof The proof is based on lifting LjEC Xj ~ I C I - 1. Suppose, for j* E N \ C, that 
aj* ~ J.1h. We will prove that aj* ~ h in any lifting in which Xj* is lifted last. Then from 
Corollary 1.4, it follows that aj* ~ h in allliftings. 

Suppose we have obtained the inequality 

(2.5) I ajXj + I Xj ~ I C I - 1 
jEN\(CUU*}) JEC 

after determining all of the lifting coefficients except aj. Let 

(2.6) 

G(d) = max I ajXj + I Xj 
jEN\(CUU*}) JEC 

I ajXj ~ d 
jEN\(j*} 

Then aj* = I C I - 1 - G(b - aj*). Since (2.5) is valid when xj* = 0, we have G(b) ~ I C I - 1 
so that aj* ~ G(b) - G(b - aj*). 

Now we show that G(b) - G(b - aj*) ~ h. Consider (2.6) with d = b - aj*. We have 

r h 

'" a· =b+A- '" a· ~b+A-a·*>b-a·* L 1k L )k ) ) 

k=h+l k=l 

since aj* ~ LZ=l alk and A> O. Hence there is no feasible solution with Xjk = 1 for k = h + 1, 
... , r, and since mink=l, ... , h a jk ~ maXk=h+l, ... , r a jk there exists an optimal solution x with 
Xlk = 0 for k = 1, ... , h. Define x by Xjk = 1 for k = 1, ... , hand Xj = Xj otherwise. Since 
Lt.l ah ~ aj" it follows that x is a feasible solution to (2.6) with d = b. Hence 

h 

G(b) ~ G(b - aj*) + I Xjk = G(b - aj*) + h. 
k=l 

Thus we have shown that aj* ~ h in allliftings when aj* ~ J.1h. 
Now suppose that J.1h ~ ak ~ J.1h+l - A and Xk is lifted first. We will show that ak = h, so 

by Corollary 1.4 we obtain ak ~ h in allliftings. From Proposition 1.1, ak = (r - 1) - (, 
where 

( = max{ I Xj: I a jXj ~ b - a k, x E Br} 
JEC JEC 

= max{r + 1 - i: ± aJt ~ b - ak } 
1=1 
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since ak ~ J.1h+l - A. Also, 

r 

I aj, = b - (J.1h+l - A) ~ b - ak 
l=h+2 

r 

I aj, = b + A - J.1h > b - ak 
l=h+l 

since A > 0 and ak ~ /.1h. Hence (= r + 1- (h + 2) = r - h -1 and Cik = (r -1) - (r - h -1) = h. 
Putting these two results together establishes i and ii(a). To obtain ii(b), note that if 

ak > /.1h+l - A, it follows that L/=h+2 aj, > b -- ak, which implies Cik = h + 1 if Xk is lifted first. 

• 
Example 2.3. S = {x E BlO: 35xl + 27x2 + 23x3 + 19x4 + 15x5 + 15x6 + 12x7 + 8xs + 6X9 + 
3XlO ~ 39}. 

Let C = {6, 7, 8, 9}. Then /.10 = 0, /.11 = 15, J.12 = 27, /.13 = 35, /.14 = 41, and A = 2. Proposi
tion 2.6 yields 

0 if 0 ~ aj ~ 13 

o or 1 if aj = 14 

if 15 ~ aj ~ 25 

Cij = 1 or 2 if aj = 26 

2 if27 ~ aj ~ 33 

2 or 3 if aj = 34 

3 if35 ~ aj ~ 39. 

Hence the only facet that can be obtained from lifting X6 + X7 + Xg + X9 ~ 3 is represented 
by 

3. VALID INEQUALITIES FOR THE SYMMETRIC TRAVELING SALESMAN 
POLYTOPE 

A Hamiltonian cycle or tour ofa graph is a cycle that contains all of the nodes. Thus, given 
a graph G = (V, E), the edge set E' ~ E induces a tour if and only if the subgraph 
G' = (V, E') is connected and each node is met by exactly two edges. Our reason for 
studying tours is that they are the feasible solutions to the symmetric traveling salesman 
problem. 

The results of this section are of two types. We develop inequalities that are valid for all 
graphs and prove that some of these inequalities are facets for complete graphs. Thus it is 
convenient to assume throughout the section that G is a complete graph on m nodes, that 
is, there is an edge between each pair of nodes so that IE I = n = m(m - 1)/2. The reader 
should observe, however, that all of the classes of valid inequalities given subsequently are 
derived without assumptions about which edges are in the graph. 
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We represent subsets of edges by their characteristic vectors x E B n so that E' is 
represented by the vector XE', where xr = 1 if e EE' and x;' = 0 otherwise. Thus the set of 
feasible solutions S is the set of characteristic vectors whose edge sets induce tours. We will 
study conv(S) and another closely related polytope. 

Let T = {x E Bn: x ~ x' for some x' E S}. Note that T is the independence system 
whose maximal members define S. Because T::J S, any valid inequality for T is also valid 
for S. Since 0 E T and the n unit vectors are in T, dim(conv(T)) = n. Our reason for 
considering T is that conv(T) is full-dimensional and thus easier to analyze than conv(S), 
which is not. Later in this section, we will show that dim(conv(S)) = n - m. 

T is also of practical interest since we can construct an objective function such that XO is 
optimal over S if and only if XO is optimal over T. 

Proposition 3.1. For any cERn and ill> max{ I Ce I: e E E}, the following statements are 
equivalent. 

1. XO is an optimal solution to the symmetric traveling salesman problem 
min{cx: xES}. 

2. XO is an optimal solution to max{cx: xES}, where ce = ill - cefor all e E E. 

3. XO is an optimal solution to max{cx: x E T}. 

Proof 1 <=> 2. XO is an optimal solution to min{cx: xES} if and only if XO is an 
optimal solution to max{-cx: xES}. But for any xES we have ill LeEE xe = mill, so 1 
and 2 are equivalent. 

2 <=> 3. Since ce > 0 for all e E E, it follows that if XO is an optimal solution to 
max{cx: xED, then XO is a maximal element of T. But XO E S if and only if XO is a 
maximal element of T. • 

We begin our study of valid inequalities by first considering the lower- and upper
bound constraints 

(3.1) 

(3.2) 

xe ~ 0 for all e E E 

Xe :::s;; 1 for all e E E, 

which are obviously valid for T and S. 

Proposition 3.2. For all e E E, (3.1) and (3.2) givefacets of conv(T). 

Proof All of the inequalities (3.1) are facets since T is a full-dimensional indepen
dence system. 

For any e, e' E E, we have x(e,e'l E T. The n vectors x(el and x(e,e'l for all e' =1= e are 
linearly independent and satisfy Xe = 1. Hence, all of the inequalities (3.2) are facets. • 

The relative complexity of conv(S) in comparison with conv( T) is already seen by 
observing that for m = 3, conv(S) contains the single point x = (l 1 1), so, for example, 
(3.1) is not even a supporting hyperplane for any e E E. It can be shown, however, that 
(3.1) yields facets of conv(S) for all e E E when m ~ 5, and all of the inequalities (3.2) yield 
facets for m ~ 4. 
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We now introduce the two sets of constraints that are usually used in the integer 
programming formulation of the symmetric traveling salesman problem. For U ~ V let 
J(U) = {e E E: e has exactly one end in U}. If XES, then 

(3.3) 

and if x E T, then 

(3.4) 

I Xe = 2 for all v E V; 
eEJ({v)) 

I Xe ~ 2 for all v E V. 
eEJ({v)) 

The constraints (3.3) and (3.4) are the degree constraints for Sand T, respectively. 

Proposition 3.3. For all v E V, the inequality (3.4) gives afacet of conv(T). 

Proof Suppose that J({v}) = {e[, e2, ... ,em-I} and that {e[, e2, en} forms a cycle. 
Consider the n vectors: x{eJ,ej) for} = 2, ... , m - 1; x{e2,e3), x{e 1,e2,ej} for} = m, ... , n - 1; 
and x{eJ,e3,en

). Each of these vectors is in T and satisfies (3.4) at equality, and it is easy to 
check that they are linearly independent. • 

We now consider the dimension of conv(S). 

Proposition 3.4. dim(conv(S» = n - m = m(m - 1)/2 - m. 

Proof Let Q = {x E Bn: x satisfies (3.3)}. The equation system (3.3) defines a con
straint matrix of rank m. Hence, by Proposition 2.4 of Chapter 1.4, we have 
dim(conv(Q» = n - m. Since conv(S) ~ conv(Q), it follows that dim(conv(S» ~ n - m. 

To prove that dim(conv(S» = dim(conv(Q» = n - m, it suffices to show that if the 
hyperplane nx = no, n =1= 0, contains the incidence vector of every tour, then nx = no is a 
linear combination of the constraints (3.3). 

The edge set of the graph G is E = {(i,}): i = 1, ... ,m - I,} = i+ 1, ... ,m}. The 
variable x e for e = (i,}) is written as x ij. 

Let} E {4, ... ,m} and Pj3 be a path from} to 3 through all of the points {4, ... , m}. 
Now consider the pairs of tours T} = Pj3 U {(I, i), (1, 2), (2, 3)} and TJ = Pj3 U 
{(2, i), (1, 2), (1, 3)}, shown in Figure 3.1. Since T} and TJ lie on the hyperplane nx = no, it 
follows that nlj + n23 = n2j + nl3 or n2j - nlj = n23 - nl3 for} = 3, ... , m. Let AI = n2j - 1Clj 

for} = 3, ... , m. By an identical argument, we obtain the following for i = 1, ... , m: 
Ai = 1Ci+IJ - 1Cij for} > i + 1 and Ai = 1Cj,i+1 - 1Cji for} < i. 

j 1 j 

~ 1 
Pj3 

3 2 3 2 

Tl T2 
j j 

Figure 3.1 
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Thus for any coefficient nil' we have 

nil = (ni) - ni-I,j) + ni-I,j 

= (nu - ni-I) + ... + (n2j - nlj) + nlj 

i-I 

= L At + nlj 
t=1 

i-I 

= L At + (nlj - nl,j_l) + nlJ-I 
1=1 

i-I 

= L At + (nlj - nl,j_I) + ... + (n13 - n12) + nl2 
t=1 

i-I j-I 
= L At + L At + nl2 

t=1 1=2 

where Ui = ~::l At for i > 1 and UI = O. Let a = nl2 - U2. Hence 

m-I m m-I m 

L neXe = L L ni)xU = L L (Ui + Uj + a) xi) 
eEE i=1 j=i+1 i=1 j=i+1 

= I [(Ui + ~)(~ Xji + ~ Xi))] 
1=1 2 J<l J>l 

= L U v + - L Xe , [( a)( )] 
vEV 2 eEJ«(v}) 
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which establishes that the constraint is a linear combination of degree constraints with 
no = 2LvE V U v + mao • 

A cycle of G that does not contain all of the nodes is called a subtour. In a cycle, each 
vertex is of degree 2. Hence if XE' E Bn satisfies (3.3) for all v E V, then the subgraph 
G' = (V, E') is either a tour or a set of disjoint subtours (see Figure 3.2). Such subgraphs 
are called 2-matchings. 

We now introduce a set of constraints that are valid for T and are not satisfied by any 
subtours. For W s V, let E(W) = {e E E: both ends of e are in W}. If E' ~ E and 
IE' n E( W) I ~ I WI, the subgraph G' = (V, E') contains at least one subtour. This yields 
the subtour elimination constraints 

(3.5) L x e ~ I WI - 1 for all W C V, 2 ~ I W I ~ m - 1. 
eEE(J.V) 

Figure 3.2 
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We have included the case I WI = 2 in (3.5), although it is not a subtour elimination 
constraint, since these are simply the upper-bound constraints Xe ;::::; 1 for e = (u, v) and 
W = {u, v}. Thus we no longer need to consider (3.2). 

In addition, if the degree constraints (3.3) are satisfied for all v E V, then (3.5) is 
superfluous for all W with I W I ~ lm/2j + 1. This is obvious when I W I ~ m - 2. In 
general, when each node is of degree 2 and LeEE(W) Xe ~ I W I, then every v E W is in a 
subtour and there can be no edges between Wand V \ W. Hence LeEE(W) Xe = I WI and 
LeEE(v\W) Xe = I V \ W I. Thus it suffices to use (3.5) for either Wor V \ W. 

Proposition 3.5. The subtour elimination inequalities (3.5) give facets of conv(S) for 
m ~ 4 for all Wwith 2 ;::::; I WI ;::::; lm/2j. 

Proof We show the result for m ~ 6 and 3 ~ I W I, where W = {l, ... ,k} and 
k ~ lm/2j. The remaining cases are left as exercises. Note that the inequalities (3.5) 
represent proper faces since each of them is satisfied at equality by some tour and is a strict 
inequality for some other tour. 

We prove the result by showing that the conditions of Theorem 3.6 of Section 1.4.3 
hold. Here nx ~ no represents a subtour elimination inequality (3.5), A =X = b= represents 
the degree constraints (3.3), and we are concerned with solutions to the linear system 
AxT; = Ao, where {Ta7::t is a set of tours that satisfy nxT; = no. Hence it suffices to 
demonstrate that all solutions (A, Ao) to AxT, = Ao for i = 1, ... , n - m are of the form 
A = om + uA=, Ao = ana + ub= for some a E R I and u E Rm. 

First observe that if (A, Ao) is a solution, there is a solution (X, AD) with X = A + u 'A =, 
where Ai) = 1 for j = 2, ... ,k, A23 = 1, and Ai) = 0 for j = k + 1, ... ,m. To see this, we 
observe that the m x m node-edge incidence matrix 

el2 e13 e23 el4 elm 

1 1 0 I 1 1 

2 0 1 1 0 0 1 
3 0 1 1 1 0 0 

B= 4 
------1------

1 

0 
1 

I 1 
1 

m I 

is nonsingular. Hence the appropriate m components of X can be fixed by solving the 
m x m system 

We now show in the following series of steps that: Au = 1 if i, JEW; Au = 0 if i E W, 
j tf:- W; and AU = pfor i,j tf:- W 

Consider the two tours T, = PI U {l, 3} U P2 U {2, i} and T2 = PI U {l, i} U P2 U {2, 3} 
shown in Figure 3.3 that are assumed to satisfy (3.5) at equality. We leave it to the reader to 
establish the existence of such tours. Since T, and T2 contain k - 1 edges in E( W), we 
require A'XTI = XXT2 = AD. Thus Ai3 + A2i = Aii + A23, so A2i = 1 if 4 ;::::; i ~ k and A2i = 0 if 
k < i ~ m. 
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1 3 3 

2 2 

~~igure 3.3 

The remaining cases are similar. We stipulate tours TI and T2 with k - 1 edges in E(W) 
and n - k - 1 edges in E( V \ W) containing paths PI and P2 with specified endpoints 
whose intermediate nodes are the remaining nodes of Wand V \ W, respectively. 

Suppose 3 ~ i ~ k and consider two tours TI = PI U {i, j} U P2 U {l, 2} and T2 = PI U 
{l, j} U P2 U {2, i} with Ph P2 having endnodes 2, j and 1, i, respectively. This gives .,1;2 + 
Au = A;j + Ali, or Au = 1 for all j with 3 ~ i < j ~ k and Au = 0 for all j with k < j ~ m. 

The final case involves p, q, r ff:. W, tours TI = PI U {I, p} U P2 U {q, r} and T2 = PI U 
{l, r} U P2 U {p, q} and paths Ph Pz with endpoints 1, q and p, r, respectively. Then we have 
Alp + A~r = Air + A;q so that A;q is a constant P for all p, q $- W. 

Hence we have shown that A' x ~ = AD is of the form 

I X ~i + P I x P = I WI - 1 + P( I V \ WI - 1) 
eEEUV) eEE( V\ 11') 

for any xTi that satisfies (3.5) at equality. 
Now defining u2 E Rm by uT = P/2, i E W, UT = -P/2, i E V \ W, we have that 

(A' + u 2A=)xTi = (A' + u2b=) is of the form 

(1 + P) I X ~i = I WI - 1 + P( I V \ WI - 1) + PI WI - PI V \ WI 
eEE(W) 

= (1 + jJ)( I WI - 1), 

so that (1 + jJ)n = A' + u2A= and (1 + p)no = ~ + u2b=. Hence Theorem 3.6 of Section 1.4.3 
applies with 

• 
Let p LP = {x ERn: x satisfies (3.1), (3.3), and (3.5)}. For m ~ 5, it can be shown that 

conv(S) = p LP
• A subgraph on six nodes is shown in Figure 3.4. The reader can check that 

X~l = ~ for i = 1, ... , 6, X~i = 1 for i = 7, 8, 9, and X~i = 0 otherwise is an extreme point of 
p LP since it is the unique optimal solution to min{cx: x E pLP}, where Cei = 1 for i = 

1, ... , 6, cel = 0 for i = 7, 8, 9, and Cel is suitably large otherwise. To define a polytope that 
contains conv(S) but not xo, we use a rank 1 C-G inequality. Use weights of 1 on the degree 
constraints for nodes 1, 2, and 3, weights of 1 for the constraints xei ~ 1, for i = 7, 8, 9, 
weights of ~ on -xe, ~ 0 for all other edges with one end in {l, 2, 3}, and round down the 
right-hand side. This yields 
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Figure 3.4 

In general, let H be any subset of nodes with 3 ::::; I HI::::; I V I - 1 and let E C E be an 
odd set of disjoint edges, each of which has one end in H. Then using weights of! on the 
degree constraints for all v E H, weights of! on -xe::::; 0 for all e E 6(H) \ E, weights of! 
on Xe ::::; 1 for all e E E, and rounding yields that 

(3.6) 

is a valid inequality for T. Note that if I E I = 1, (3.6) is dominated by subtour elimination 
constraints, so we only consider (3.6) for I E I ~ 3. 

The inequalities (3.6) are called 2-matching inequalities since they are needed to define 
the convex hull of 2-matchings. Now we have that conv(S) ~ pLPI = {x ERn: x satisfies 
(3.6)} n pLP. In fact it can be shown that pLPI = conv(S) on all graphs with six or fewer 
nodes. But, for m ~ 7, more general inequalities are needed. 

A subgraph for generating a 2-matching inequality is shown in Figure 3.5. It resembles 
a comb with handle H and teeth U'j = {Ui, Vi} for i = 1, ... , k, where k ~ 3 is odd. We can 
restate (3.6) as 

• H • 

Figure 3.5 
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A general comb is shown in Figure 3.6. Here the teeth JIJIj for i = 1, ... , k, can contain 
more than two nodes and can have more than one node in common with the handle. 
Specifically a comb is a subgraph generated by a node set {H, Wt, ... , Wd with the 
following properties: 

1. I H n JIJIj I ~ 1 for i = 1, . . . , k. 
2. I JIJIj \ H I ~ 1 for i = 1, ... , k. 
3. 2 ~ I JIJIj I ~ m - 2 for i = 1, ... , k. 
4. JIJIj n Uj. = 0 for i "* j. 
5. k is odd and at least 3. 

Proposition 3.6. For any subgraph ofG that is a comb, the comb inequality 

(3.7) 
k k k + 1 

I Xe + I I Xe ~ IH I + I (I JIJIj I - 1) - -2-
cEE(H) i=l eEE(W;) i=l 

is valid for T. 

Proof First weight the degree constraints for v E H by ~ and sum them. This yields 

(3.8) 
1 I x e +-2 I Xe~ IHI. 

eEE(H) eEO(H) 

Now add -~Xe ~ 0 for all e E ,J(H) \ U7=1 E( JIJIj) to (3.8) to obtain 

(3.9) 
1 k 

I xe+-I I Xe~ IHI. 
eEE(H) 2 i=1 eEO(H)nE( W;) 

Consider the subtourelimination constraints for UIj, H n UIj, and UIj \ H, respectively: 

(3.10) 

(3.11) 

(3.12) 

I Xe ~ I JIJIj I - 1 for i = 1, ... , k 
eEE(W;) 

I Xe ~ IH n JIJIj I - 1 for i = 1, ... , k 
eEE(Hnw;) 

I Xe ~ I UIj \ HI - 1 for i = 1, ... , k. 
eEE(W;\H) 

Figure 3.6 
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The edge e appears in (a) (3.10) and (3.11) if e E E(H n Wi), (b) (3.10) and (3.12) if 
e E E(Wi \ H), and (c) (3.10) and the left-hand side of (3.9) with a coefficient of ~ if 
e E J(H) n E(Wi). Also note that (3.11) [respectively, (3.12)] is trivial when IH n Wi I = 1 
[respectively, I Wi \ H I = 1]. Hence by multiplying each of the inequalities (3.10)-(3.12) 
by! and adding them to (3.9), the result is 

k 

I Xe + I I Xe 
eEE(H) i=l eEE(W';) 

1 k 
~ IH I + 2 ~ [( I Wi I - 1) + (IH n Wi I - 1) + (I Wi \ HI - 1)] 

1 k 

= IH I + 2 ~ [( I Wi I - 1) + (IH n Wi I - 1) + (I Wi I - 1 - IH n Wi I)] 

k 1 
= IH I + I (Ilf': I - 1) - -k. 

i=l 2 

Then, since k is odd, by rounding we obtain 

k k k + 1 
I xe+I I xe~IHI+I(IWiI-l)--2-' 

eEE(H) i=1 eEE(W;) i=1 

Consider the comb C shown in Figure 3.7. The comb inequality (3.7) is 

12 3 + 1 
~ xe; + x e2 ~ I HI + I WI I - 1 + I U121 - 1 + I U'31 - 1 - -2-

=4+2+2+ 1-2=7. 

W2 

Figure 3.7 

• 
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The comb inequalities have coefficients in {a, 1, 2} and the 2's appear on Xe if 
e E E( fVi n H) for some i. These inequalities are rank 1 C-G inequalities with respect to 
the inequalities (3.1), (3.3), and (3.5). 

The comb inequalities can be generalized to obtain higher-rank C-G inequalities by 
considering generalized combs that have teeth which themselves are combs. Consider the 
graph of Figure 3.8. The handle HI has three teeth, namely, Wt, W2, and C, where Cis 
comb. We require that C n HI contain no vertices of H 2 and that each original tooth fVi 
has at least one node that is not contained in any handle. To derive a valid inequality for 
the graph of Figure 3.8, we proceed as we did in deriving the comb inequalities. Hence the 
following inequalities are weighted by ~ and summed, and then the resulting right-hand 
side is rounded down: 

1. degree constraints for HI; 

2. nonnegativity constraints for e E J(H I ) \ (E(WI) U E(~) U E(Ws»; 
3. subtour elimination constraints for Tfj, Tfj n HI and Tfj \ HI for i = 1, 2 and for 

Hin Ws; 
4. comb inequalities (3.7) for C and C \ HI. 

The result for the graph of Figure 3.8 is 

2 S 2 4 k+l 
(3.13) I I Xe + I I Xe ~ I IHiI + I (I W;I - 1) + (I Wsl - 2) - -2-' 

i=1 eEE(H;) i=1 eEE(W;) i=1 i=I 

where k = 5. The left-hand side 0[(3.13) is clear. The contributions to the right-hand side 
are, respectively, from 

1. IHtI, 
3. ![(21 WI I - 3) + (21 ~ I -3) + I HI n Ws I -1] = I WI I - 1 + I ~ I - 1 - i + 

~IH,nWsI,and 

4. H(21ff31-2)+(21W41-2)+(IWsI-l)+(IWs\H11-1)]-2+ IH21. 

Hence rounding yields 

IHd + IH21 + ~ (lit; I - I) + l-~J 
4 k + 1 

= IHII + IH21 + ~ (I Jfj 1- 1) + (I Ws 1 - 2) - -2-' 

Figure 3.8 
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Figure 3.9 

Inductively, we can build still more complicated generalized combs (see Figure 3.9). 
Besides properties 1-5 given in the definition of a comb, it is required for a graph with k 
teeth and r handles that: 

6. Hi n H j = 0 for i =1= j; 

7. Uj \ Uf=1 Hi =1= 0 for j = 1, ... , k; and 
8. if Hi n Uj =1= 0 and Hi n Uj is deleted from the generalized comb graph, then the 

resulting graph is disconnected. 

When these conditions are satisfied it can be shown inductively that the generalized 
comb inequality 

(3.14) 

where Wi is the number of handles met by HIi, is valid for T. Moreover, for a complete 
graph we have the following theorem. 

Theorem 3.7. The generalized comb inequalities (3.14) givefacets ofconv(S). 

The proof of this theorem is much too long to give here. 
Theorem 3.7 generates a very large class of facets, but there are yet other classes. For 

example, the famous Petersen graph G = (V, E') on 10 nodes (see Figure 3.10) does not 
contain a tour, which means ~eEE' X e :::::; 9 is valid for the complete graph on 10 nodes. In 
fact, it can be proved to represent a facet of conv(S). But it does not belong to any of the 
families of valid inequalities introduced in this section. 

Figure 3.10 
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The Petersen graph belongs to a certain infinite family of graphs G == (V, E') that do not 
contain any tours. From some graphs in this class, we obtain facets of conv(S) represented 
by valid inequalities of the form LeEE' Xe ~ I V I - 1. Yet these graphs are not likely to have 
a good characterization. So one cannot expect to have a good characterization of the 
corresponding facets. 

Fortunately, such facets have not been necessary in the solution of many symmetric 
traveling salesman problems in the literature by algorithms that use cutting planes and 
branch-and-bound. 

4. VALID INEQUALITIES FOR VARIABLE UPPER-BOUND FLOW MODELS 

We consider a single-node flow model with an exogenous supply of band n outflow arcs 
(see Figure 4.1). For each} EN == {l, ... , n} the flow Yj E Rl on the}th arc is bounded by 
the capacity aj ifarcj is open (Xj = 1) and ° otherwise. We call this relationship a variable 
upper bound on the flow Yj. Since the total outflow cannot exceed b, this model can be 
represented by the mixed-integer region 

(4.1) 

Our initial objective is to find strong valid inequalities for T. Consider the polytope 

used in the formulation of T, that is, T = P n {x E zn, Y ERn}. The fractional extreme 
points of P are characterized in the following proposition. 

Proposition 4.1. All fractional extreme points of P are of the form 

Yj = 0, Xj E {O,l} for} $. C. 

where C ~ N is a dependent set of S = {x E Bn: LjEN ajXj ~ b}, k E C and C \ {k} is 
independent. 

~---b 

Figure 4.1 
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There are simple valid inequalities for T that cut off these fractional extreme points of 
P. Let A = 1:jEC aj - b be the excess capacity of the arcs in a dependent set C. For k E C, 
the capacity of the set C \ {k} is 

and for any C' C C, the capacity of the set C \ C' is 

Thus we have proved 

Proposition 4.2. lfC 5; N is a dependent set ofS and A = 1:jEC aj - b, then 

(4.2) I Yj ~ b - I (aj - At (1 - Xj) 
jEC jEC 

is a valid inequality for T given by (4.1). 

Since the point (x, y) given in Proposition 4.1 is such that 1:jEC Yj = b, ak - A > 0, and 
Xk < 1, it follows that (x, y) does not satisfy (4.2). 

Example 4.1. Consider the set T given by: 

T = {x E B4, Y E R!: I Yj ~ 9, YI ~ 5Xb Y2 ~ 5X2, Y3 ~ X3, Y4 ~ 3X4}. 
jEN 

C = {l, 2, 3, 4}, A = 5: (4.2) yields YI + Yz + Y3 + Y4 ~ 9 
(the original inequality) 

C = {l, 2, 4}, A = 4: (4.2) yields YI + Yz + Y4 ~ 9 - (1 - XI) - (1 - Xz) 
or Y I + Yz + Y 4 - X I - X 2 ::;:;; 7. 

C = {l, 2, 3}, 

C = {l, 2}, 

A = 2: (4.2) yields 
YI + Y2 + Y3 ~ 9 - 3(1 - XI) - 3(1 - X2) 
or YI + Yz + Y3 - 3xI - 3xz ~ 3 

A = 1: (4.2) yields YI + Yz ~ 9 - 4(1 - Xl) - 4(1 - X2) 
or YI + Y2 - 4xI - 4X2 ~ 1. 

b 

Figure 4.2 
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Each of the inequalities of Example 4.1 can be shown to give a facet of conv(T). 
Moreover ifmaxjEc aj > A, then the inequality (4.2) gives a facet of conv(T). We postpone 
the proof of this result to consider a more general model that also includes inflow arcs. 

Let 

(4.3) T={XEBn,YER~: L Yj- L yj~b,Yj~ajXjfOrjEN}, 
jEN+ jEN-

where N+ U N- = N (see Figure 4.2). Here aj E Rl for j EN and b E R I, that is, b can be 
negative. We say that C f; N+ is a dependent set if LjEC aj > b. Note, for example, that if 
b < 0, every subset of N+ is dependent. 

We can now generalize Proposition 4.2. 

Proposition 4.3. If C f; N+ is a dependent set, A = LjEC aj - b, and L f; N-, then 

(4.4) L [Yj + (a j - At (l - Xj)] ~ b + L AXj + L Yj 
JEC jEL jEN-\L 

is a valid inequality for T given by (4.3). 

Proof Let C+ = {j E C: aj > A}. Suppose a feasible point (x, y) E T is given and 
N I = {j EN: Xj = 1}. Note that ifj $:. N I

, then Yj = Xj = O. 

Case 1. C+ \ N I = 0 and L n N I = 0. 

= L Yj 
jECnNI 

~ L Yj 
jEN+nN' 

~ b + L Yj 
jEN-nN' 

~ b + L Yj 
jEN-\L 

= b + L Yj + L Axj 
jEN-\L jEL 

Case 2. (C+ \ N I
) U (L n N I

) * 0. 

(since C+ \ N l = 0) 

(since C ~ N+) 

[by (4.3) and Yj = 0 ifj $:. N I
]. 

(since L n N I = 0) 

(since L n N 1 = 0 and Xj = 0 for j $:. N I
). 

~ L aj + L aj - A I C+ \ N I I (since Yj ~ aj for allj) 
jECnNI jEC+\Nl 

~ L aj-A+A IL nNII 
JEC 

= b + L Axj 
jEL 

(since Xj = 1 for j E N I and A = L aj - b) 
JEC 

~ b + L Axj + L Yj (since Yj ~ 0 for j EN). 
jEL jEN-\L • 
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Example 4.2. The feasible set T is given by 

Yl + Y2 + Y3 + Y4 ~ 9 + Ys + Y6 

Yl ~ 5xI, Y2 ~ 5X2, Y3 ~ X3, Y4 ~ 3X4, Ys ~ 3xs, Y6 ~ X6, 

Y ER~,x EB6. 

Taking C = (1, 2, 3) and L = {5), we have A = 2 and (4.4) yields 

(4.5) 
[Yl + 3(1 - Xl)] + [Y2 + 3(1 - X2)] + Y3 ~ 9 + 2xs + Y6, or 

Yl + Y2 + Y3 - Y6 - 3X l - 3X2 - 2xs ~ 3. 

We can establish the dimension of the face formed by (4.5) by specifying a set of linearly 
independent points that satisfy it at equality: 

C N+\C L N-\L 

r * , 
Yl Xl Y2 X2 Y3 X3 Y4 X4 Ys XS Y6 X6 
3 1 5 1 1 1 0 0 0 0 0 0 Zl 

5 1 3 1 1 1 Z2 

3+£ 1 5 1 1-£ 1 Z3 

0 0 5 1 1 1 Zl 

5 1 0 0 1 1 Z2 

4 1 5 1 0 0 Z3 

0 0 5 1 1 1 0 1 24 
0 0 5 1 1 1 £ 1 -4 

Z 
5 5 0 0 2 1 Ws 

5 5 0 0 2+£ 1 Ws 

3 5 0 0 0 0 0 w6 

3+£ 5 0 0 0 0 £ w6 

where e is a small positive number. 
An ad hoc argument shows that these 12 points are linearly independent so that (4.5) 

gives a facet of conv(T). 

More generally, we have the following theorem. 

Theorem 4.4. !fmax.EC a. > A, and a. > Afor j E L, then (4.4) gives afacet ofconv(T), 
J J J 

where T is given by (4.3). 

Proof We prove the theorem by giving 2n points of T that define the coefficients in 
(4.4) up to a scalar multiple; that is, the unique solution (n, f.1..) to nxi + f.1..y i = no for i = 

1, ... ,2n is a scalar multiple of the coefficients in (4.4). 
Let Zi = (yi, Xi) E T for i = 1, ... ,2n. For clarity, we write 

where Cyi, IXi) are the (y, x) values for the arcs in C, eyi, 2X i) are those for the arcs in 
N+ \ C, Cyi, 3X i) are those for the arcs in L, and (4yi, 4X i) are those for the arcs in N- \ L. 

Suppose that al = maXjEC aj > A. Let ei be the ith unit vector, l' = (1, 1, ... , 1) and let e 
be a small positive number. By ly = a, we mean lYj = aj for all j E C. The points given 
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below are the general versions of the points given in Example 4.2. We leave it to the reader 
to check that they are in T and satisfy (4.4) at equality. We first describe a set of 21 N+ 1 
points: 

i. Zk = (a - Aeb 1, 0, 0, 0, 0, 0, 0) 
= (a - (A - e)el -eek, 1,0,0,0,0,0,0) 

for k E C with ak ~ A 
for k E C with ak < A. 

11. Zk = (a - akek, 1 - eb 0, 0, 0, 0, 0, 0) for k E C with ak ~ A 
= (a - (A - ak)el - akek, 1 - ek, 0, 0, 0, 0, 00) for k E C with ak < A. 

iii. zj = (a - ale!, 1 - eI, 0, ej, 0, 0, 0, 0) 

iv. ? = (a - ale!, 1 - e!, eej, ej, 0, 0, 0, 0) 

for} E N+ \ C. 

for} E N+ \ C. 

Suppose these points satisfy LjEN (njxj + /-ljYj) = no. By comparing Zl, zj, and zj, we see 
that '!Cj = /-lj = ° for} E N+ \ C. For each of the points Zk, we have LjEC /-ljyj = '!Co - LjEC '!Cj. 
It can then be seen that /-lj = /-lo for all} E C. Moreover, since LjEC yj = b, we also have 
!-lob + LjEC '!Cj = '!Co. 

From the points Zk, we see that when k E C and ak ~ A we obtain 

/-lO( I aj ) + I '!Cj = '!Co· jEC\{k} jEC\{k} 

Thus /-loeb - LjEC\{kl aj) + '!Ck = 0. Since LjEC aj = b + A, we obtain /-lo(A - ak) = '!Ck when 
ak ~ A. On the other hand, when ak < A, we have 

Hence 

or '!Ck = 0. 

I yj = I a j + a I + a k - A = b. 
JEC jEC\{i,k} 

!-lob + I '!Cj = '!Co 
jEC\{k} 

In summary, our inequality must be of the form 

Now we describe another set of21L 1 points: 

v. for k E L 

wk = (a, 1, 0, 0, (A + e)eb eb 0, 0) for k E L. 

From wk and wk, we obtain /-lk = ° for k ELand that 

or 

'!Ck = !-lo(b - I aj ) = -/-loA for k E L. 
JEC 
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The final 21 N- \ L 1 points are: 

VI. 

-k -
W = (a - (A - a)e), 1,0,0,0,0, aeb ed 

for k E N- \ L 

for k E N- \ L. 

Comparing Z 1 and wk, we see that Jrk = ° for k E N- \ L. Comparing wk and wk
, we 

see that a(J.lo + J.ld = ° or J.lk = -/10 for k E N- \ L. 

Using the results ofv and vi, the inequality must be of the form 

(4.6) 

Now with J.lo = 1, we obtain (4.4). 
It remains to show that not all points (x, y) E T satisfy (4.6) at equality. Since b> 0 is 

implied, the point given by y. = 0 for) EN, x. = 1 for) E N+, andx. = 0 for) E N- is in T, 
and, when substituted in (4.6), one obtains z~o on the left-hand side and b > 0 on the right. 

Additional results along these lines are known. For example, if we require 
LjEN+ Yj - LjEN- Yj = b in (4.3), then (4.4) is, of course, still a valid inequality for T. 
Moreover, under some mild additional assumptions, (4.4) still gives a facet of conv( T). 
Also, some other valid inequalities for T given by (4.3) are known (see Section 11.6.4). 

The flow model with constraint set T given by (4.3) is much more general than it 
appears. With some additional simple constraints, it can be used to represent any linear 
inequality involving both continuous and 0-1 variables in which some of the continuous 
variables have simple upper bounds while the others have variable upper bounds. 

Suppose T' is the set of feasible solutions to 

L (ajzj + ajxj) + L a)z) + L ajx) ~ b 
jEll )Eh jEh 

° ~ z) ~ k)x) for) E 1) 

° ~ z) ~ k) for) E 12 

x) E {a, 1} for) E J] U J 3 , 

In addition we assume for simplicity that (X; > 0 for) E 13 and alai ~ 0 for) E 1 1• 

Now let 1T = (j E 1 1: a) > a}, 11 = 1) \ 1t, 1~ = (j E 12: a) > o} and 12 = 12 \ 1i. Define 
Xj E {a, 1} for) E 12, 

(4.7) Y) = 

and 

ajZj + a;x) 
-(a)z) + n;x) 

a)z) 
-a)z) 

a;x) 

for) E 11 
for) E 11 
for) E 12 
for) E 12 
for) E 13, 
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ajkj + a; 
-(ajkj + a;) 

aj = ajkj 
-ajkj 

a; 

Now T' is given by the flow model constraints 

for} EJt 
for} E J1 
for} E J2 
for} E J2 
for}EJ3• 

I Yj ~ b + I Yj 
jEN+ jEN-

287 

where N+ = Jt u J2 U J 3 and N- = J1 U J2, together with the additional constraints Xj = 1 
for} E J 2, Yj = ajxj for} E J 3, and (4.7). Thus (4.4) is a valid inequality for T'. 

We now give some examples of the use of(4.4) in different models. 

Example 4.3. (The 0-1 Knapsack Problem: S = {x E Bn: LjEN ajXj ~ b} with aj E R~ for 
j EN and b E Rl). Here N+ = Nand Yj = ajxj for} EN. Let C be a minimal dependent 
set so that A = LjEC aj - b > 0 and aj > A for} E C. Then (4.4) yields 

I (ajxj + (aj - A)(l - Xj)) ~ b 
JEC 

or 

A I Xj ~ b - I a j + A I C I = A( I C I - 1), 
JEC JEC 

which is precisely the constraint (2.2). 

Example 4.4 (Facility Location). Suppose 

where 0 < aj < ao for all} E N+. Here ao is the capacity of a facility and Xo = 1 if and only if 
the facility is open. The flow from the facility to client} is Yh and aj is the maximum 
requirement of client}. Here b = 0, N- = {a}, and Yo = aoXo. Take C = {j} so that A = aj and 
take L = N-. Then (4.4) yields Yj ~ ajXO for} E N+, that is, Yj = 0 if Xo = 0 and Yj ~ aj if 
Xo = 1. 

Example 4.5 (Machine Scheduling). Suppose that two jobs must be executed on the 
same machine. The ithjob for i = 1,2 has an earliest start time of Ii and a processing time 
of Pi> O. The machine can only process one job at a time, and our objective is to model 
this restriction. 
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Let J = 1 if job 1 is processed before job 2 and let J = 0 otherwise; for i = 1, 2, let t i be the 
time at which the machine begins to process job i. Then we have the model 

-t I + t 2 ~ PI - w( 1 - J) 

ti ~ Ii for i = 1,2 and J E BI, 

where W is a suitably large number so that the first constraint is valid when J = 1 and the 
second is valid when J = O. 

Suppose 12 + P2 > 11' By substituting Yi = t i -Ii and X3 = J, the first constraint becomes 

whereYb Y2 ~ 0 andx3 E BI. HereN+ = {2}, N- = {l, 3}, Y3 = WX3, and b = II -/2 - P2 < O. 
Take C = 0 so that ..1= -b > 0 and take L = {3}. Then (4.4) yields 0 ~ -A + AX3 + YI. 

Translating back into the original variables, we obtain 

that is, tJ ~ II and if J = 0, then tl ~ 12 + P2. 

While the general inequalities (4.4) can be quite useful, still more valid inequalities may 
be obtained by using the structure of a problem. We illustrate this by considering the 
constraint set of an uncapacitated lot-size problem that involves production planning over 
a horizon of T periods [see (5.4) of Section 1.1.5]. 

In period t, t = 1, ... , T, there is a given demand of dt E Rl that must be satisfied by 
production in period t and by inventory carried over from previous periods. The 
production in period t iSYt, 0 ~ Yt ~ WXt, where W is a large positive number, andxt E BI 
equals 1 if the plant operates during period t and equals 0 otherwise. Let St be the inventory 
at the end of period t. Thus we obtain the constraints 

YI=dl+S I 

(4.8) 
St-I + Yt = dt + St for t = 2, ... , T 

Yt ~ WXt for t = 1, ... , T 

ST = 0, S E RI, Y E RI, x E BT. 

The constraints for a single period, namely, 

are an equality-constrained version of the flow model (4.3). Thus from (4.4), we obtain the 
valid inequalities 

(4.9) 

which simply state the obvious facts that St ~ 0 when X t = 0 and St ~ Yt - dt when X t = 1. 
We now develop a more general set of inequalities for the system given by (4.8). 
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Proposition 4.5. For any 1 ~ I ~ T, L = {I, ... , !}, and C £ L, 

(4.10) 

is a valid inequality for (4.8). 

Proof Take any feasible solution (y, s, x) to (4.8). If Xi = 0 for all i E C, thenYi = 0 for 
all i E C and (4.10) reduces to s I ~ O. 

Now suppose that Xi = 1 for some i E C and let k = min{i E C: Xi = n. Hence Yi = 0 
for all i E C with i < k and thus 

I I I 

L Yi ~ L Yt = L dt + SI - Sk-I ~ L dt + SI 
iEC t=k t=k t=k 

(since Xk = 1). • 
Note that when C = {l}, (4.10) yields (4.9). There is, in fact, a much stronger result here 

whose proofwill not be given. 

Theorem 4.6. The convex hull of solutions to (4.8) is given by the constraints S E RI, 
Y E RI, x E RI, Xt ~ 1 for all t, Sr= 0, YI = d l + SI> and St-I + Yt = dt + stfor t = 2, ... , T 
and by the inequalities (4. 10) for alii and C =1= 0. 

Example 4.6. Suppose Cd!, d2, d3, d4) = (4 2 7 3). The convex hull of solutions to (4.8) 
is given by the inequalities 

1= 1, C = {l} YI ~ 4xI + SI 

1= 2, C = {2} Y2 ~ 2X2 + S2 

1= 3, C = {2} Y2 ~ 9X2 + S3 

1= 3, C = {3} Y3 ~ 7X3 + S3 

I = 3, C = {2, 3} Y2 + Y3 ~ 9X2 + 7X3 + S3 

1= 4, C = {2} Y2 ~ l2x2 + S4 

1= 4, C = {3} Y3 ~ 10x3 + S4 

1=4,C={4} Y4 ~ 3X4 + S4 

1=4, C = {2, 3} Y2 + Y3 ~ 12x2 + 10x3 + S4 

I = 4, C = {2, 4} Y2 + Y4 ~ l2x2 + 3X4 + S4 

I = 4, C = {3, 4} Y3 + Y4 ~ 10x3 + 3X4 + S4 

1=4, C = (2, 3, 4) Y2 + Y3 + Y4 ~ l2x2 + 10x3 + 3X4 + S4 

YI=dl+s l 

St-1 + Yt = dt + St for t = 2,3,4 

S4 = 0, S ER!, Y ER!, x ER!, Xt ~ 1 for t = 1, ... , 4. 
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The reader is asked to check that the I = 1, C = {l} inequality is equivalent to x, = 1, 
since y, = 4 + s 1 and x 1 ~ 1. It then follows that all the other inequalities that could be 
generated with 1 E C are superfluous. All the inequalities given above with 1 $. C give 
facets except the last four. The last four inequalities are superfluous because S4 = O. 

Although most production planning problems are much more complicated than our 
simple model in that they involve plant capacities, multiple items, and multistage 
production, they frequently have the system (4.8) as part of their formulation. Hence the 
theoretical results for the system (4.8) can be used in improving the formulation of more 
realistic production planning problems (see Section 11.6.4). 

5. NOTES 

Section 11.2.1 

The idea of using structure to obtain strong valid inequalities for ffg}-hard integer 
programs has its roots in the work of Dantzig, Fulkerson and Johnson (1954, 1959) on the 
traveling salesman problem and in the work of Gomory (1965, 1967, 1969, 1970) on the 
group problem. 

Facet-defining inequalities for the node-packing problem were given by Padberg (1973), 
Nemhauser and Trotter (1974), Chvatal (1975), Trotter (1975), and Giles and Trotter 
(1981). 

Gomory (1969) introduced the idea of lifting in the context of the group problem. Its 
computational possibilities were emphasized by Padberg (1973), and the approach was 
generalized by Wolsey (1976), Zemel (1978), and Balas and Zemel (1984). 

The significance of having a partial description of the convex hull of integer solutions is 
strongly emphasized in the survey by Padberg (1979). 

Section 11.2.2 

Facet-defining inequalities for the knapsack polytope were studied simultaneously by 
Balas (1975a), Hammer, Johnson and Peled (1975), and Wolsey (1975). Proposition 2.6 is 
due to Balas (1975a). Also see Balas and Zemel (1978), Padberg (1980b), and Zemel (1986). 

The problem of extending these results to two or more general constraints remains an 
important open question. 

Section 11.2.3 

The study of the convex hull of tours for the symmetric traveling salesman problem is 
largely due to Grotschel and Padberg (1979a,b, 1985). The proof of Proposition 3.4 is due 
to Maurras (1975). A different proof is given by Grotschel and Padberg (1979a). 

Subtour elimination constraints were introduced by Dantzig, Fulkerson and Johnson 
(1954, 1959) and were shown to define facets of the convex hull of tours by Grotschel and 
Padberg (1979b). 

Comb inequalities in which each tooth contains only one node of the handle are due to 
Chvatal (1973b). Chvatal's combs were generalized and were shown to define facets by 
Grotschel and Padberg (1979b). The inequalities (3.14) are due to Grotschel and Pulley
blank (1986). They called them clique-tree inequalities and proved that they define facets 
of the convex hull of tours. 

The facet-defining inequality obtained from the Petersen graph is due to Chvatal 
(l973b). The Petersen graph is the smallest of a large class of graphs known as hypo
hamiltonian graphs that give facets for which no good characterization is known (see 
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Grotschel, 1980b). Another such class of graphs has been studied by Papadimitriou and 
Yannakakis (1984). 

Other polyhedral results for the symmetric traveling salesman problem have been 
obtained by Cornuejols and Pulleyblank (1982), Cornuejols, Naddef and Pulleyblank 
(1983), and Cornuejols, Fonlupt and Naddef (1985). 

Facets for the convex hull of tours on a directed graph have been studied by Grotschel 
and Padberg (1975) and Grotschel and Wakabayashi (1981a,b). Grotschel and Padberg 
(1985) surveyed these results. 

Section 11.2.4 

The basic results for the variable upper-bound flow model are from Padberg, Van Roy and 
Wolsey (1985). Martin and Schrage (1985) obtained similar inequalities using different 
arguments. Van Roy and Wolsey (1986) have generalized these results to handle variable 
lower bounds. 

The facet-defining inequalities for the lot-size model (4.8) were developed in Barany et 
al. (1984). Extensions to handle capacities are given in Leung and Magnanti (1986) and 
Pochet (1988), and those to treat backlogging are given in Pochet and Wolsey (1988). Valid 
inequalities for more general fixed-cost network problems are given in Van Roy and 
Wolsey (1985). 

6. EXERCISES 

1. Use clique inequalities, odd hole inequalities, and lifting to derive facets for the 
convex hull of node pac kings for the graph in Figure 6.1. 

2. Prove Proposition 1.2. 

3. Consider the uncapacitated facility location problem (UFL) introduced in Sec
tion 1.1.3, with 

T = {x E Bn, y E R';!n: I Yij = 1 for i EM, Yij ~ Xj for all i E M,j EN}. 
JEN 

i) Show that dim(conv(1) = mn - m + n. 

ii) Show that Y ij ~ Xj define facets of conv( T). 

Figure 6.1 
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4. Let G = (V, E) be a graph where each node has degree at least 3. Consider the set 

S = {x E B I E I : xi - L x e ~ 0 for all j E c5( v) and v E v} 
eEc5(v)\{j} 

where c5( v) denotes the set of edges incident to node v. 

i) Show that the inequalities Xe ~ 1 define facets of conv(S). 

ii) Show that the inequalities xi - LeEJ(v)\{j} Xe ~ 0 define facets of conv(S). 

5. Consider the linear ordering problem of determining a permutation n: {l, ... , 
n} ... {l, ... , n} formulated as 

max L cijc5ij 
ij 

c5ij + c5ji = 1 for all i < j 

c5j,h + ... + c5j,j, ~ I C I - 1 for all cycles C = {jJ, ... ,jr} 

c5 E Bn(n-I), 

where c5ij = 1 if i precedes j. 

i) Show that the inequalities with I C I ;::: 4 are unnecessary in the description of 
the problem. 

ii) Show that for I C I = 3, the inequalities define facets. 

6. For S = {x E Bn: LjEN ajxj ~ b}, showthatxj;::: 0 andxj ~ 1 define facets ofconv(S) 
when a E Z~ and aj + ak ~ b for allj, kEN withj '* k. 

7. For Example 2.3 use Propositions 2.3 and 2.6 to find as many facets as you can. Use 
these results to solve 

max 12xI + 5X2 + 8X3 + 7X4 + 5xs + 5X6 + 4X7 + 3xg + 2X9 + XIO 

35xl + 27x2 + 23x3 + 19x4 + 15xs + 15x6 + 12x7 + 8xs + 6X9 + 3xIO ~ 39 

X EBIO 

as a linear programming problem. 

8. Let S = {x E B6: 27xJ + 23x2 + 17x3 + 12x4 + 8xs + 2X6 ~ 40}. 

i) Describe as many facet-defining inequalities as possible for S based on Proposi
tion 2.3 and Corollary 2.4. 

ii) What inequalities are obtained for S from Proposition 2.6? 

9. Let S = {x E Bn: LiE! LiEQ; ajXj ~ b, LjEQ; Xi ~ 1 for i E I} with N = UiE1Qi' 

i) Show that if C is a minimal dependent set with I C n Qi I ~ 1, C n Qi = (j(i)} 
when C n Qi '* 0, and 

iCC) = E(C) u. U (j E Qi: aj;::: aj(i)}, 
{1:cnQr*'I2'J} 

then LjEE(C) Xj ~ I C I - 1 is a valid inequality for S. 

ii) Specify conditions under which this valid inequality defines a facet of conv(S). 
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10. Let 

(see Exercise 14 of Section 1.1. 8). 

i) Derive facets for conv(S). 

~ 1 

ii) Can you show that these facet-defining inequalities give conv(S)? 
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11. Consider the symmetric traveling salesman polytope for the complete graphs on 5 
and 7 nodes, respectively. Try to write down all of the facet-defining inequalities and 
see if you can give a proof that you have them all. 

12. Give a nontrivial lower bound on the number of facets of the symmetric traveling 
salesman polytope for complete graphs with n = 5, 7,10, 100, and 1000 nodes. 

13. Prove the validity of the generalized comb inequalities (3.14), 

14. Prove that LeEE' Xe ~ 9 is valid for the complete graph on 10 nodes, where 
G = (V, E') is the Petersen graph, by showing it to be a C-G inequality. 

15. Prove Proposition 4.1. 

16. i) Use Proposition 4.3 to derive valid inequalities for 

ii) Which of these inequalities define facets? 

17. Under what conditions does (4.4) define a facet of 

18. Consider the capacitated facility problem with feasible region 

T ~ {X E En, y E R,:,n: t y ij ~ ai for i E M, t Y ij .;; bjxj for j E N l 
Let I ~ M and Zj = LiE! Yij so that the Zj satisfy 

2: Zj = 2: ai and 
jEN iE! 

i) Derive valid inequalities for T. 

ii) Can you show that the inequalities define facets? 



294 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs 

19. Consider the mixed 0-1 region with lower and upper bounds 

with lj,a j ~ 0 and the region 

where Yj is a variable representing production time, and Pj is the associated set-up 
time. 

i) Show the equivalence between T and T'. 

ii) Derive valid inequalities for T (or T'). 

20. For the fixed-cost networks shown below, show that the proposed inequalities are 
valid. 

a) 

b) 

J----~ 2 )----~~ 

6 2 10 2 5 
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c) 

4 2 3 6 

Y12 + Y13 ::::; 6X 12 + 4X13 + Y27 + Y36 + Y37· 



11.3 
Duality 
and Relaxation 

1. INTRODUCTION 

In the preceding two chapters we studied polyhedral descriptions of the set of feasible 
solutions to linear inequalities in nonnegative integer variables. Now we introduce an 
objective function and consider the integer optimization problem 

(IP) ZIP = max{cx: xES}, S = {x E Z~:Ax.;:; b}, 

where c is an n-vector with integral coefficients and (A, b) is an m x (n + 1) matrix with 
integral coefficients. 

The theme of this chapter is to develop a theory for determining ZIP, or at least a good 
upper bound on ZIP, without explicitly solving IP. This can be considered to be a theory of 
optimality, since a tight bound on ZIP provides the fundamental way of proving optimality 
of a feasible solution to IP. Suppose we are given an XO E S that is claimed to be an optimal 
solution to IP. How can we decide whether this claim is true? 

Our previous results provide one answer. Consider the linear program 

z* = max{cx: x E conv(S)}. 

Then XO is an optimal solution to IP if and only if cxo = z* (see Theorem 6.4 of 
Section I.4.6). Although this answer is correct, it depends on knowing conv(S), which is an 
assumption we do not make here. 

Observe that the answer just given tells us if XO is optimal or not; that is, cxo = z* is a 
necessary and sufficient condition for the optimality of xO. Suppose we just ask for a 
sufficient condition for the optimality of xO. We prefer to focus on sufficiency rather than 
necessity because if a sufficient condition is satisfied, the optimality claim is proved. 

Here is a simple, but rather naive, sufficient condition. Consider the linear program 

(1.1) ZLP = max{cx: x E P}, 

where P = {x E R~: Ax .;:; b}. Then XO E S is an optimal solution to IP if cxo = hp. We said 
this condition is naive because without further assumptions, it is unlikely to hold. 

An equivalent sufficient condition arises from considering the linear programming 
dualofIP: 

296 
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(1.2) 

where PD = {u E R':': uA ;,- c}. But now we can phrase the sufficient condition in a subtly 
different way; that is, XO is optimal to IP ifthere is a UO E PD such that cxo = uOb. 

Problem (1.1) is called a relaxation ofIp, and problem (1.2) is called a (weak) dual ofIP. 
Relaxation and duality are the two fundamental ways of determining ZIP and upper 
bounds on ZIP. These notions will be made precise after we give an example. 

Example 1.1. Consider the maximum cardinality node-packing problem on the graph 
shown in Figure 1.1. We use the clique constraints, that is no more than one node can be 
chosen from each clique, to obtain the integer programming formulation 

ZIP = max Xl +X2 +X3 +X4 +Xs +X6 

XI+X2 +X6~1 

X2+X3 ~ 1 

X3+X4 ~ 1 

X4+XS ~ 1 

XS+X6~ 1 

The solution x? = xg = xg = 1, xJ = 0 otherwise, is feasible. We want to prove that it is 
optimal. The relaxation (1.1) is obtained by replacing x E B6 by x E R~, and the dual of 
this linear program is 

Ul + U2 ;,- 1 

U2 + U3 ;,- 1 

+ us;'- 1 

u ;,-0. 

2 3 

1<] >, 
6 5 

Figure 1.1 
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A feasible solution to the dual is u? = u~ = u~ = 1, u? = 0 otherwise. Since 
~J-l xJ = ~r-l u? = 3, it follows that XO is an optimal solution to IP and that ZIP = ZLP = 3. 
The reader can check that in this example the clique constraints and nonnegativity are not 
sufficient to give the convex hull of node packings. However, for the given objective 
function, we have the good fortune that the linear programming relaxation has an integral 
optimal solution. This example shows that it is not necessary to have the convex hull of 
feasible solutions to obtain or prove the optimality of an integral solution. 

Another simple argument that does not use linear programming also establishes the 
optimality of xo. Consider any set of cliques such that each node is contained in at least one 
of them, for example, C 1 = n, 2, 6}, C 2 = {3, 4}, and C 3 = {4, 5}. Such a set of cliques is 
called a clique cover. Any node packing contains no more than one node from each of the 
cliques in a clique cover. Hence we obtain the max-min relationship that the maximum 
number of nodes in any node packing is equal to or less than the minimum number of 
cliques in any clique cover. Thus from the cover {Cl> C2, C3}, we obtain ZIP ~ 3. This is an 
example of a combinatorial duality, which is a principle that is fundamental to the solution 
of combinatorial optimization problems. 

A relaxation ofIP is any maximization problem 

(RP) 

with the following two properties: 

(Rl) 

(R2) 

S s; SR 

ex ~ ZR(X) for xES. 

Proposition 1.1. fjRP is irifeasible, so is IP. fjIP isjeasible, then ZIP ~ ZR. 

Proof From (Rl), if SR = 0, then S = 0, so the first statement holds. 
Now suppose that ZIP is finite and let XO be an optimal solution to IP. Then 

ZIP = exo ~ ZR(XO) ~ ZR, where the first inequality follows from (R2) and the second one 
follows from (Rl). Finally, if ZIP = 00, (Rl) and (R2) imply that ZR = 00. • 

If x· E S satisfies ex* ~ ZIP - E for some fixed E > 0, then we say that x* is an E-optimal 
solution to IP. Since it is sometimes too costly to find a provably optimal solution, we may 
have to be satisfied with a provably E-optimal solution for a given tolerance E. Although 
the upper-bound ZR may fail to prove optimality, RP may allow us to establish 
E-optimality. In particular, ifx* E S satisfies ex* ~ ZR - E, thenx* is an E-optimal solution. 

The most common way to obtain a relaxation is to satisfy (Rl) by dropping one or more 
of the constraints that define S and to satisfy (R2) by setting ZR(X) = ex. 

The linear programming relaxation of IP is (1.1). The so-called group relaxation is 
obtained by dropping certain nonnegativity conditions. In many problems, the con
straints can be partitioned into a set of simple ones that can be handled easily and 
complicated ones. A relaxation is obtained by removing the complicated constraints and 
including them in the objective function in such a way that (R2) is satisfied. This 
technique is called Lagrangian relaxation. The latter two approaches will be considered in 
Sections 5 and 6 of this chapter. 

Dropping constraints is not the only way to satisfy (Rl). We can combine equalities by 
taking linear combinations an9 inequalities by taking nonnegative linear combinations. A 
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right-hand side b of a constraint can be replaced by a set of right-hand sides that contains 
b. In particular, if S = {x E R~: Ax ~ b} and S = UdEB{X E R~: Ax ~ d}, where B s; Rm, 
then S s; S. 

Adding and/or changing variables can also be used to obtain relaxations. For example, 
we obtain a relaxation if S = {x E ZZ: Ax ~ b} is replaced by S' = {(x, x') E Z~+P: 

Ax + A x' ~ b} since S = {x E Z~: (x, 0) E S'}. Such a relaxation can be useful if matrix 
(A, A') is easier to work with than A. These ideas for relaxation will be used in the 
algorithms to be developed subsequently. 

A distinct disadvantage of using relaxation to obtain bounds is that only an optimal 
solution to the relaxed problem guarantees an upper bound on ZIP. Duality eliminates this 
difficulty since the dual problem is defined so that any dual feasible solution yields an 
upper bound on ZIP. 

A weak dual ofIP is any minimization problem 

(DP) 

that satisfies 

(D1) ZD(U) ~ cx for all xES and u E SD' 

Analogous to Proposition 1.1, we have the following proposition. 

Proposition 1.2. ffDP isfeasible, then ZIP ~ ZD. ffDP has an unbounded objective value, 
then IP is infeasible. 

A strong dual of IP is a weak dual that also satisfies 

(D2) If S '* 0 and ZIP is bounded from above, then there exists 
UO E SD and XO E S such that ZD(UO) = cxo. 

By solving a strong dual we find ZIP, since ZIP = ZD when both problems have finite 
optimum values. By solving a weak dual we can approximate ZIP from above. We call 
Il.D = ZD - ZIP the absolute value of the duality gap. 

Weak duals are easy to construct. For example, by taking the dual of a linear 
programming relaxation ofIP we obtain a weak dual to IP. 

Combinatorial structures are used to construct dual problems. A typical combinatorial 
optimization problem exemplified by the node-packing problem is the following. Let V = 
n, 2, ... , n} be a finite set and let ce = {C b C 2, ••• , C m} be a finite collection of subsets of 
V. A subset VO s; V is called a packing if I VO n C i I ~ 1 for i = 1, ... , m. A subset ceO s; ce 
is called a cover if UC,E'€" C j = V. Suppose VO is any packing and ceO is any cover. Then 

IVOI ~ I IvonCI ~ lceol, 
(i: C;E'€") 

where the first inequality follows from UC,E'€" C i ::2 VO and the second one follows from 
I VO n C I ~ 1 for all i. In other words, the cardinality of any packing is equal to or less 
than the cardinality of any covering, so the minimum covering problem is a weak dual of 
the maximum packing problem. A fundamental problem of combinatorial optimization 
is to characterize packing and covering problems for which strong duality holds. 

The general relationship between duality and relaxation is given in the following 
proposition. 
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Proposition 1.3. If a problem is dual to a relaxation of IP, then it is also dual to IP. 

Proof Suppose ZOR = min{zoR(u): u E SOR} is dual to RP. Then ZR(X) .;; ZOR(U) for all 
x E SR and all u E SOR. By relaxation, cx .;; ZR(X) for all xES S SR. Hence cx .;; ZOR(U) 
for all xES and u E SOR. • 

As with relaxations, algorithms generally use a weak dual to obtain bounds and 
iteratively refine the dual to strengthen the bounds. 

2. DUALITY AND THE VALUE FUNCfION 

Here we consider a family of integer programs 

(2.1) z(d) = max{cx: x E S(d)}, S(d) = {x E z~: Ax.;; d} for d E D, 

where A and c are fixed and d is a parameter in D s Rm. Depending on our need we may 
take D = R m or D = zm or D = (d E R m: S(d) *' 0}. The function z(d) for dE D is called 
the value function of IP. We say that z(d) = -00 if S(d) = 0 and that z(d) = + 00 if the 
objective value is unbounded from above. 

The following propositions give some elementary properties ofthe value function. 

Proposition 2.1. The value function ofIP is non decreasing over Rm. 

• 
Proposition 2.2. Z(O) E{O,oo}. Ifz(O) = oo,thenz(d)=± ooforalldERm.Ifz(O) = 0, 
then z(d) < 00 for all dE Rm. 

Proof See Proposition 6.7 of Section 1.4.6. • 
Problems with z(d) = ± 00 for all d E R m (e.g., max{xl: 2Xl - X2';; d, x E Zm reduce 

to feasibility problems. Thus, for simplicity of exposition, it is convenient to ignore them 
here. Hence, unless otherwise specified, we assume z(O) = 0, so z(d) < 00 for all d E Rm. 

Proposition 2.3. The valuefunction ofIP is superadditive over D = {d E Rm: S(d) *' 0}. 

Proof Suppose Xi E Z~ and AXi.;; di for i = 1, 2. Then (Xl + x 2) E Z~ and 
A(xl + x 2) .;; d l + d2. Thus if c.xi = z(di) for i = 1,2, then 

• 
The problem of finding an upper bound on the optimal value ofIP can be generalized to 

the problem offinding a function g(d): Rm ... R I such that g(d) ;;;. z(d) for all d E Rm (see 
Figure 2.1). Thus a dual problem to IP can be formulated as 

(2.2) min{g(b): g(d);;;. z(d) for d E Rm, g: Rm ... Rl} 

or, equivalently, as 

(2.3) min{g(b): g(d);;;. cx for x E S(d) and d E Rm}. 
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Figure 2.1 

This dual is strong since there are feasible solutions with g(b) = z(b); for example, 
g(d) = z(d) when z(d) > - 00 and g(d) :;:: 0 otherwise. 

Some restrictions on g are needed to obtain a useful dual problem. Since z(d) is 
nondecreasing, it is natural to assume that g(d) is nondecreasing. Then g satisfies 
g(d) ~ ex for x E S(d) if and only if g(Ax) ~ ex for x E Z~. Thus when g is nondecreas
ing, (2.3) can be stated as 

(2.4) 

ming(b) 

g(Ax) ~ ex for x E Z~ 

g nondecreasing. 

Now suppose that g is linear; that is, g(d) = ud with u E R':'. Thus we require uAx ~ ex 
for all x E Z~. This last condition is equivalent to uA ~ e. Thus we obtain the weak dual 

(2.5) min{ub: uA ~ C, u E R':'}, 

which is the dual of the linear programming relaxation ofIP. 
Linear functions are generally too restrictive to obtain strong duality. In the following 

example, we first consider the value function and the linear dual and then we give two 
illustrations of strong dual functions. 

Example 2.1 

z(d) = max 3XI + 6X2 + llx3 + 12X4 

Xl + 2X2 + 3X3 + 4X4'::; d 

xEZ! 



302 11.3. Duality and Relaxation 

ex 

30 

20 • 
g(d) = 'y'd -----O!~ 

• 
• 

10 z(d) = 3[dJ + 2 [V3dJ • 

~----------------------------------------------Ax 
o 2 3 4 5 6 7 8 9 

Figure 2.2 

Figure 2.2 gives a plot of (Ax, ex) for the feasible points. The upper envelope of these 
points gives the value function 

~1 d, d = 0, 3, 6, ... 

z(d) = 
11 

3 + 3 (d - 1), d = 1, 4, 7, ... 

11 
6 + 3 (d - 2), d = 2, 5, 8, .... 

z(d) = z(ldJ) for d positive and not integral, and z(d) = - 00 if d < 0. We can also express 
the value function over R~ by z(d) = 3[dj + 2[1dj, which shows that z is superadditive over 
R~. 

ex 

30 

20 

g(d) = 3d+2, OSds4 

10 
z(d} 

~------------------------------------d 
o 2 3 4 5 6 7 8 9 

Figure 2.3 
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Figure 2.2 also shows the function g(d) = lfd, which is the optimal dual solution wheng 
is restricted to be linear; that is, u = If is the optimal solution to (2.5). We see this 
graphically by observing that any line through the origin with slope < If is not dual feasible 
and that if the slope is greater than If, ud > lfd for all d E Rl. Note that the optimal linear 
function only provides a strong dual when d is an integer multiple of 3. 

Figure 2.3 shows zed) and the function 

where gl(d) = 3d + 2 and g2(d) = 4d - 2. We can see from the picture that go is dual 
feasible. 

We now give an algebraic justification of its dual feasibility. We have 

and 

gl(Ax) = 3xI + 6X2 + 9X3 + 12x4 + 2 

= ex + 2(1 - x 3) 

~ ex for x E {Z!: X3 ~ 1} 

g2(Ax) = 4xI + 8X2 + 12x3 + 16x4 - 2 

~ ex + (X3 - 2) 

~ ex for x E {Z!: X3 ~ 2}. 

Hencego(Ax) ~ ex for all x E Z!. Note thatgo(4) = z(4) so that strong duality is obtained 
ford = 4. 

Figure 2.4 shows zed) and the superadditive function F(d) = 3d + l~dl. Note that 
F(1) = 3 = eJ, F(2) = 7 > e2, F(3) = 11 = e3, and F(4) = 14> e4. Thus F(aj) ~ ej for j = 

1, ... , 4 and hence superadditivity implies 

4 4 

F(Ax) ~ I F(aJxj ~ I ejXj for x E Z!. 
j~1 j~1 

F(d) 

30 

20 

10 

~---------------------------------------------------d 
o 2 3 4 5 6 7 8 9 

Figure 2.4 



304 11.3. Duality and Relaxation 

Thus F is dual feasible. Strong duality is obtained for d = 4 since F( 4) = 14. 

The three functions used in the example illustrate important classes of dual functions 
that are used in integer programming algorithms. Linear functions are the simplest, but 
they do not generally yield strong duality. The function go(d) exemplifies the type of dual 
function used to prove optimality in branch-and-bound algorithms with linear program
ming relaxations. Superadditive functions are used to prove optimality in cutting-plane 
algorithms. 

3. SUPERADDITIVE DUALITY 

There are two important reasons for restricting the function g to be superadditive in the 
dual problem (2.4): 

a. The purpose of the dual problem is to estimate the value function from above, and 
the value function is superadditive over the domain for which it is finite. 

b. If g is superadditive, the condition g(Ax) ;;. cx for x E ZZ is equivalent to g(aj) ;;. Cj 
for j EN. This is true since g(Aej) ;;. cej is the same as g(aj) ;;. Cj for j EN; and if g 
is superadditive, then g(aj) ;;. Cj for j EN implies 

g(Ax);;. I g(aJxj;;' I CjXj = CX 
jEN jEN 

for x E ZZ. 
Condition b enables us to state a superadditive dual problem independent of x. 

(SDP) 

w = minF(b) 

F(aj) ;;. Cj for j EN 

F(O) = 0 

F: Rm ... Rl, nondecreasing and superadditive. 

We now establish results analogous to linear programming duality for the primal 
problem IP and the dual problem SDP. 

Proposition 3.1. (Weak Duality). IfF isfeasible to SDP and x isfeasible to IP, then cx ~ 

F(b). 

Proof 

I CjXj ~ I F(aJxj since Cj ~ F(aj) for j EN and x E R~ 
jEN jEN 

~ F(Ax) 

~F(b) 

since F is superadditive, F(O) = 0, and x E Z~ 

since F is nondecreasing. • 
Weak duality allows us to take care of the case of an unbounded primal objective 

function that we dismissed earlier. 
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Corollary 3.2 (Unbounded Primal Objective Function). IfIP isfeasible and z(b) = 00, 

then the superadditive dual is infeasible. 

Proof If z(b) = 00, then z(O) = 00, so no dual solution can satisfy F(O) = O. • 

Weak duality establishes that if F is a feasible solution to the superadditive dual, then F 
provides an upper bound on the value function for all dE Rm. It remains to be shown that 
the objective min F( b), which we did not use in the proof of weak duality, yields strong 
duality. 

For the remainder of this section, we assume that P = {x E R~: Ax ~ b} contains 
explicit bound constraints so that we can use Corollary 2.14 of Section n.1.2. 

Theorem 3.3 (Strong Duality). 

1. IfIP isfeasible, then SDP isfeasibleand w = z(b). 
2. If IP is infeasible, then the dual objective function is unbounded from below 

(w = -00). 

Proof 1. LjEN CjXj ~ z(b) is a valid inequality for S. Hence Theorem 4.6 of Sec
tion n.l.4 implies that there exists a superadditive and nondecreasing function F (with 
F(O) = 0) such that LjEN F(aJxj ~ F(b) is valid for S and dominates LjEN CjXj ~ z(b). This 
means that F(aJ ~ Cj for j EN and F(b) ~ z(b). Hence F is dual feasible. But then 
F(b) ~ z(b), so F is an optimal dual solution with w = F(b) = z(b). 
2. Since P contains explicit bound constraints, there exists u E R'; such that uA ~ c (see 
Proposition Ll of Section n.Ll). Let Fl(a) = ua for all a E Rm. By Corollary 2.14 of 
Section n.l.2, we have Ox ~ - 1 is a C-G inequality for S. Hence there is a superadditive 
and nondecreasing function F2 with F2(aj) ~ 0 for j EN and F2(b) ~ - l. Thus for any 
A E Ri, it follows that Fl + AF2 is a feasible dual solution; also, Fl(b) + AFlb) .... -00 as 
A .... 00. • 

The familiar complementary slackness property oflinear programming duality carries 
over to superadditive integer programming duality. In particular, if XO is an optimal 
solution to IP and FO is an optimal superadditive dual solution, then 

(3.1) 

We prove (3.1) as a corollary to a slightly more general result. 

Theorem 3.4. If XO is an optimal solution to IP and FO is an optimal solution to the 
superadditive dual, then 

for all x E Z~ such that x ~ xc. 

Proof 

cxO = cx + c(XO - x) ~ I FO(aj)xj + I FO(aJ(xJ - Xj) 
JEN JEN 

~ FO(Ax) + FO(A(xO - x» ~ FO(Ax) + FO(b - Ax) 

~ FO(b) = cxo. 
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Hence the second equality holds. The first equality holds since we also have FO(Ax) ~ cx 
and FO(A(xO - x» ~ c(XO - x). • 

Note that (3.1) is trivial when xJ = O. When xJ ~ 1, we obtain (3.l) from FO(Aej) = cej' 
The next two results describe optimal solutions to the superadditive dual. The first 

result comes from a superadditive description of conv(S) and linear programming duality. 

Theorem 3.5. If S * 0 and max{cx: xES} < 00, then there exist au E R~ and finite 
rank C-G functions Fk for k = 1, ... , t with t < n such that pc = Lk~l UkFk is an optimal 
solution to the superadditive dual. 

Proof By Proposition 4.5 of Section 11.1.4 there exist C-G functions Fk for 
k = 1, ... , t such that 

conv(S) = {x E R~: 2: Fk(aj)xj < Fk (b) for k = 1, ... , t}. 
JEN 

Now apply linear programming duality. • 
The value function zed) ofIP would be a feasible (and hence optimal) solution to SDP 

except for the fact that it is superadditive only on the domain D where IP is feasible. The 
following theorem tells us that z can always be extended to a (finite-valued) superadditive 
function over Rm. 

Theorem 3.6. There are C-G functions pi for i = 1, ... ,q such that zed) = 

mini~l", ,q Fi(d)for all d with zed) > - 00. 

We will not prove this theorem. We observe, however, that F(d) = minH"" q Fi(d) is 
superadditive over Rm since it is the minimum of a finite number of superadditive 
functions. The functions pi are optimal solutions to the superadditive dual for certain 
values of d. Hence, implicit in the result is that it is possible to calculate zed) for all d E D 
by solving IP for only a finite number of d ED. 

Example 3.1 (Example 2.1 continued). We showed in the previous section that 
F(d) = 3d + l~dj is an optimal dual solution for d = 4. This solution can be obtained by 
applying Theorem 3.5 as explained below. It can be shown that conv(S) is given by the 
inequalities 

Xl + 2X2 + 3X3 + 4X4 < 4 

X2 + 2X3 + 2X4 < 2 

xER! 

and thus is generated from P by the functions FI(d) = d and Fl(d) = l~dj. For 
c = (3 6 11 12), an optimal solution to the dual of the linear program 
max{cx: x E conv(S)} is u = (3 1). Hence F = 3FI + Fl is an optimal solution to the 
superadditive dual. Note that the optimal solution to IP is x = (1 0 1 0). Since 
F(l) = CI and F(3) = C3, the complementary slackness conditions are satisfied. 

Theorem 3.6 is trivial for this example. We take F(d) = 3ldj + 2ltdj for d E R I and note 
that F(d) = zed) whenever zed) is finite. 
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Example 3.2. This integer program has the constraint set of the example presented in 
Section 11.1.1. 

The superadditive dual is 

max 7Xl + 2X2 

-Xl + 2X2 ~ 4 

SXl + X2 ~ 20 

-2Xl - 2X2 ~-7 

xEZ;. 

minP (=n 
PCD>7, 
F(O) = 0, F superadditive and nondecreasing. 

1. A dual feasible solution is F(d) = ndl + *d2 + Od3• This is the linear solution 
obtained from an optimal dual solution to the linear programming relaxation. It 
yields the bound Z IP ~ 30n. 

2. Rounding yields the better dual solution F(d) = [ndl + *d21. 
3. An optimal dual solution (see Section 4 of Chapter 11.1) is given by the complicated 

function F 12. 

Example 3.3. We reconsider the node-packing example of Section 1 (see Figure 1.1) with 
the objective function c = (l 3 3 3 3 3). Solutions to the dual of the linear pro
gramming relaxation correspond to assigning nonnegative weights Ui to the cliques C i so 
that for all} E V the sum of the weights over all cliques containing node j is at least Cj. 

Given the cliques C l = {l, 2, 6}, C2 = {2, 3}, C3 = {3, 4}, C4 = {4, S}, and Cs = {S, 6}, we see 
that a feasible solution is U = (1 2 1 2 2), which yields the superadditive dual 
feasible solution Fl(d) = d l + 2d2 + d 3 + 2d4 + 2ds. Thus we obtain ZIP ~ Fl(b) = 

1 + 2 + 1 + 2 + 2 = 8. Now the odd hole induced by the nodes {2, 3, ... , 6} yields the valid 
inequality X2 + X3 + ... + X6 ~ 2, which is generated by the superadditive function 
F 2(d) = Hdl + ... + 1dsl. Note that F 2(al) = 0 and F 2(a) = 1 for j > 1. Hence a feasible 
dual solution is given by F(d) = 3F2(d) + d l. Since F(b) = 3 x 2 + 1 = 7, we have ZIP ~ 7. 
To show that F is an optimal dual solution, we observe that XO = (l 0 1 0 1 0) is a 
feasible node packing and cxo = 7. 

Neither the extended value function of Theorem 3.6 nor the C-G function of Theo
rem 3.S are useful for computing bounds. The value function is not available, even after 
the problem is solved, and the C-G function depends on having a linear inequality 
description of conv(S). Both functions, in a sense, provide more information than we 
need. The extended value function is optimal for all d E R m for which IP is feasible, and 
the C-G function is a nonnegative linear combination of the same C-G functions for all c. 
Unfortunately, we do not know how to characterize a locally optimal function (e.g., one 
that is optimal only in a neighborhood of a particular band C of interest). Thus for 
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algorithmic purposes, we must restrict the class of dual feasible functions to computable 
ones that do not necessarily yield strong duality. In the following sections we will consider 
some classes of dual feasible functions that are useful algorithmically. 

To complete this section, we state without proof the analogous result on superadditive 
duality for mixed-integer programs. 

Theorem 3.7. Let T = {x E Z;, Y E R~: Ax + Gy ~ b} and z(b) = max{cx + hy: (x, y) E 
n. A strong dual to the mixed-integer programming problem is 

w = minF(b) 

F(aj) ~ Cj 

F(gj) ~ hj 

forj EN 

forj EJ 

F nondecreasing and superadditive, 

F(d) = lim F(Ad). 
'\>0, A 

F(O) = 0 

Ifz(O) = 0 and T* 0, then z(b) = w. Ifz(O) = 0 and T= 0, the dual is irifeasible or its 
objective value is unbounded. Ifz(O) = 00, the dual is infeasible. 

4. THE MAXIMUM-WEIGHT PATH FORMULATION AND SUPERADDITIVE 
DUALITY 

Consider the integer programming problem ZIP = max{cx: xES}, where S = P n Z~, 

p = {x E R~: Ax ~ b}, and (A, b) ~ 0 with integral coefficients. By using the polyhedral 
characterization of superadditive functions developed in Section 11.1.5, the superadditive 
dual problem can be written explicitly as a linear program: 

(SDLP) 

w = minF(b) 

F(aj) ~ Cj forj EN 

F(d l ) + F(d2) - F(d l + d2) ~ 0 for dJ, d2, d l + d2 E D(b) 

F(O) = 0, F(d) ~ 0 for d E D(b), 

where D(b) = {d E Z~: d ~ b} and F is a vector with ID(b) I coordinates. 

Example 4.1 (Example 2.1 continued). For the knapsack problem 

SDLPis 

max 3XI + 6X2 + llx3 + 12X4 

Xl +2X2 + 3X3 + 4X4 ~ 4 

xEZ!, 
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min F(4) 
F(1) ;;;. 3 

F(2) ;;;. 6 

F(3) ;;;. 11 

F(4) ;;;. 12 

2F(1) - F(2) ... 0 

F(1) + F(2) - F(3) ... 0 

F(1) + F(3) - F(4)... 0 

2F(2) - F(4)... 0 

F(O) = 0, F(d);;;. 0 for d E D(4). 

Since SDLP is a linear program that is strongly dual to IP, we can use linear program
ming duality to express IP as a linear program. The purpose of this section is to study the 
structure of this dual pair oflinear programs. We will discover that IP can be formulated as 
the linear program of finding a maximum-weight path joining two specified nodes in a 
directed graph and that SDLP can be interpreted as the dual of this maximum-weight path 
problem. We will establish the duality after formulating IP as a maximum-weight path 
problem. 

To formulate IP as a maximum-weight path problem when S is an independence 
system, consider the digraph ~ = (V, .stl), where V = D(b) = {d E Z';: d ... b}, and 
.stl =.stl 1 U .stl2, where 

.stl 1 = {(d, d + aj): d, d + aj E D(b), j EN} and .stl2 = {(d; b): dE D(b )}. 

Since aj > 0 for allj EN and b ;;;. d for all dE V, ~ has no cycles. 
The arc e = (d, d + aj) forj EN is called a variablej arc and is assigned weight We = Cj. 

For d * b, node d represents the subset of feasible solutions S*(d) = {x E Z~: Ax = d} 
since every path from node 0 to node d has the property that l:.jEN ajxj = d, where Xj is the 
number of variable j arcs in the path. The weight of any such path is l:.jEN CjXj. Arcs 
(d, b) E Sli2 are called slack arcs and are assigned a weight ofO. If there is aj such that 
d + aj = b, then a variable j arc and a slack arc join the same pair of nodes. Node b 
represents the set of all feasible solutions since every path from node 0 to node b has the 
property that l:.jEN ajxj'" b, where Xj is the number of variable j arcs in the path. Hence 
any maximum-weight path from node 0 to node b corresponds to an optimal solution to 
IP. 

11 

O-'------~~----~~~----~._----~~4 

12 

Figure 4.1 
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Table 4.1. 

Path 

[(0, 1), (1, 2), (2, 3), (3, 4)] (4 ° [(0, 1), (1, 2), (2, 4)] (2 1 
[(0, 1), (1, 3), (3, 4)] (2 1 
[(0, 2), (2, 3), (3, 4)] (2 1 
[(0, 1), (1, 4)] (1 ° [(0, 3), (3, 4)] (1 ° [(0,4)] (0 ° 

x 

° ° ° ° 1 
1 

° 

0) 
0) 
0) 
0) 
0) 
0) 
1) 

Weight 

12 
12 
12 
12 
14 
14 
12 

The digraph for Example 4.1 is shown in Figure 4.1. The slack arcs have been omitted. 
Actually they are unnecessary in the example since each slack arc is "parallel" to a non
slack arc of positive weight. The paths from node ° to node 4, along with the correspond
ing feasible solutions, are given in Table 4.1. We see that there is at least one path 
corresponding to each feasible solution and that the weight of the path equals the value of 
the corresponding solution. In general, many paths correspond to the same feasible 
solution because each path is an ordering of the set of arcs that represent the solution. 

We now give the standard flow formulation of the maximum-weight path representa
tion ofIP. Each arc is represented by a binary variable with the interpretation that an arc is 
in the solution if and only if the corresponding variable equals 1. The variable for the arc 
(d,d + aj) is Yj(d), and the variable for a slack arc (d, b) is Yo(d). 

The constraints that are satisfied only by paths from node ° to node bare: 

i. Exactly one arc leaves node 0, that is, 

(4.1) - L Yj(O) - Yo(O) = -1. 
JEN 

11. Exactly one arc enters node b, that is, 

(4.2) 

iii. For d * 0, b, the number of arcs that enter node d equals the number that leave, that 
is, 

(4.3) L y/d - aj) - L y/d) - Yo(d) = ° for d * 0, b. 
(jEN: d-ap,O) (jEN: d+ar"b) 

Note that (4.1) implies that the number of arcs entering each node d * ° is already 
constrained to be ° or 1. Finally note that (4.1) also implies that it suffices to allow the 
variables to be nonnegative integers. Thus we obtain an integer program representation of 
the maximum-weight path formulation ofIP given by 

(MP) ZMP= max L 
(jEN,dED(b): d+aF"b) 

subject to (4.1)-(4.3) and 

(4.4) yAd) E Zl for allj and d. 
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We have ZMP = ZIP as explained above; also, ZIP = w by strong duality (Theorem 3.3). 
We now consider the dual of the linear programming relaxation of MP, which is given 

by 

ZLP = min (u(b) - u(O)) 

(4.5) u(d + aj) - u(d) ~ Cj for} EN, dE D(b), d + aj ~ b 

u(b) - u(d) ~ 0 for d E D(b), d,* b, 

where u(d) is the dual variable for the node d constraint. Note that if u is a feasible 
solution to (4.5) with u(O) '* 0, then so is u* where u*(d) = u(d) - U(O) for all d E D(b). 
Since u*(b) = u*(b) - u*(O) = u(b) - u(O), we can set u(O) = O. 

In Example 4.1, (4.5) is 

min u(4) 

u(l) ~ 3 

u(2) ~ 6 

u(3) ~11 

u(4) ~ 12 

-u(1) + u(2) ~ 3 

-u(l) + u(3) ~ 6 

-u(l) + u(4) ~ 11 

- u(2) + u(3) ~ 3 

-u(2) +u(4)~ 6 

- u(3) + u(4) ~ 3. 

We have omitted u(O) = 0 and the constraints u(b) - u(d)?3 0, which are superfluous here. 
Now we return to SDLp, introduced at the beginning of this section. Consider the 

constraints 

(4.6) 

We are going to relax (4.6) in three different ways, depending on d 1 and d2• 

i. If d 1 = aj for some} EN, then we replace (4.6) by F(aj + d 2) - F(d2) ~ Cj. This is a 
relaxation since F(aj) ~ Cj. 

ii. If d 1 + d 2 = b, then we replace (4.6) by F(d2) - F(b) ~ O. This is a relaxation since 
F(d1) ~ O. 

iii. Otherwise we drop (4.6). 

Finally, we omit the non negativity constraints. 
This yields the relaxation ofSDLP: 
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(4.7) 

WR = min F(b) 

F(aj) ~ Cj 

F(d + aJ - F(d) ~ Cj 

F(b) - F(d) ~ ° 
F(O) = 0. 

By relaxation, WR ~ w. 
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for} EN 

for} EN, dE D(b), d + aj ~ b 

for d E D(b), d,* b 

Now observe that (4.5) and (4.7) are identical. Hence WR = ZLP. Thus 

and all of these objective values are equal. 
In conclusion, we have interpreted the superadditive dual of an integer program whose 

constraints generate an independence system as the linear programming dual of a 
maximum-weight path formulation of the integer program. 

The maximum-weight path formulation is oflimited use in computation because of the 
size of the digraph. The number of nodes ID(b) I grows exponentially with the number of 
constraints m and, even for fixed m, grows linearly with the size of the coefficients of b E 
Z,:,. Generally, its use is restricted to knapsack problems that have constraint coefficients 
of modest size. 

Despite these practical limitations, the fundamental idea is applicable to any integer 
program. In particular, any integer programming constraint set S = {x E Z~: Ax ~ b} can 
be represented by a digraph with the property that directed walks from node ° to node d E 
zm correspond to solutions with Ax = d. As before, an arc e = (d, d + aj) is a variable} arc 
and is assigned weight We = Cj. However, when matrix A has negative coefficients, we must 
determine a finite subset D(b) c zm to which we can restrict d. Note that D(b) = D(b) 
does not suffice since d + aj ~ d is no longer true. 

To determine D(b), we use the result that if S,* 0 there is an OJ which depends onA, b, 
and C, such that Xj ~ OJ for all} EN in some optimal solution (see Theorem 4.1 of 
Section 1.5.4). Thenxj ~ OJ for} E Nimpliesd- ~ Ax ~ d+, wheredi = OJ LjEN min(O, au) 
and di = OJ LjEN max(O, au) for i = 1, ... , m. ThusD(b) = {d E zm: d- ~ d ~ d+}. 

5. MODULAR ARITHMETIC AND THE GROUP PROBLEM 

In this section, we consider relaxations of the maximum-weight path formulation that 
reduce the size of the digraph. In fact, we will be able to choose the number of nodes, 
although the quality of the bounds produced by the relaxation will generally deteriorate as 
the digraph gets smaller. 

Consider the set S = {x E Z~: LjEN ajxj = b}, where aj E ZI for} EN and b E ZI. 
Suppose k E zl and we relax S to 

This means that multiples of k can be subtracted from each coefficient and the right-hand 
side of the original constraint. Thus xES k if and only if x E Z~ and for each (Ilo, AI, ... , 
An) E zn+l there exists a w' E ZI such that 
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L (aj - kAj)Xj = (b - kAo) + kw'. 
jEN 
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By choosingA;- = [alkj forj EN andAo = [b/kj, we have that X E Sk ifand only if X E Z~ 
satisfies 

(modulo k), 

where ¢k(d) = d - k [d/kj; that is, ¢id) = d(mod k) is the remainder when d is divided 
byk. 

We can now represent S k by directed walks in a digraph that contain only k nodes. The 
graph is qj;k = (Vb slh), where 

The arc e/d) = (d, ¢k(d + aj» is called a variablej arc. A directed walk in qj;k from node 0 
to node ¢k(b) with Xj variablej arcs generates a feasible solution x E Sk; conversely, any 
xES k generates directed walks from node 0 to node ¢k( b). 

Any directed walk from node 0 to node ¢k(b) can be decomposed into a dipath from 
node 0 to node ¢k(b) and (possibly) directed cycles. Correspondingly, any x E Sk can be 
decomposed into x* + l:l=l Xi, where ¢k(l:jEN a jxj) = ¢k( b) and x* generates dipaths from 
node 0 to node ¢k(b) and where ¢k(l:jEN ajxJ) = 0 and Xi generates directed cycles, for 
i = 1, ... ,t. 

Later in this section, we will consider the problem of finding a maximum-weight dipath 
from node 0 to node ¢k(b) in qj;b where the arcs have nonpositive weights. Hence the 
solution will be a dipath corresponding to an x* E S k. However, there is no guarantee that 
dipaths correspond to elements of S; that is, it could be the case that some, or even all, 
elements of S correspond to directed walks from node 0 to node ¢k(b) that contain 
directed cycles. 

e4(5) 

Figure 5.1. eM) = (d, ¢M + aj». 
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Example 5.1. S = {x E Z!: 78xl - 68x2 + 37x3 + X4 = 141} and k = 6. We have 
CP6(al) = 0, CP6(a2) = 4, CP6(a3) = CP6(a4) = 1, and CP6(b) = 3. Hence S6 = {x E Z!: OXl + 
4X2 + X3 + X4 = 3 (mod 6)}. 

The digraph ~6 is shown in Figure 5.1. Table 5.1 gives all of the solutions corresponding 
to dipaths, and Table 5.2 gives some directed cycles. More cycles can be generated by 
replacing any of the variable 3 arcs by variable 4 arcs. 

Any x in Table 5.1 plus a nonnegative integer multiple of an x in Table 5.2 is in S6; for 
example, 

(4 3 1 2) = (0 0 1 2) + 4 (1 0 0 0) + (0 3 0 0). 

Any such x is in S if and only if:EjEN ajxj = b; for example, 

(9 11 5 2) = (0 0 1 2) + 9 (1 0 0 0) + 3 (0 3 0 0) + 2 (0 1 2 0). 

Now we introduce weights on the arcs of ~k. For any positive integer k and PER l, the 
problem 

(5.1) 

zk(b) = max L CjXj - pw 
jEN 

L ajxj - kw = b 
jEN 

xEZ~, WEZ l 

is a relaxation of our original problem 

(IP) 

This is true because any feasible solution to IP can be extended to a feasible solution to 
(5.1) of the same value by putting w = O. We now show how (5.1) can be formulated as a 
maximum-weight path problem from node 0 to node CPk(b) in the digraph ~k. 

We can eliminate w from the objective function by substituting 

w = (L ajxj - b)/k 
jEN 

and we have already shown how to describe the relaxed solution set S k. Hence (5.1) can be 
reformulated as the group prob{em 

Table 5.1. 

Acyclic Paths 
[romOto 3 x 

e3(0), e3(1), e3(2) (0 0 3 0) 
e3(0), e3(1), e4(2) (0 0 2 1) 

e3(0), e4(1), e4(2) (0 0 1 2) 
e4(0), e4(1), e4(2) (0 0 0 3) 
e2(0), e2( 4), e3(2) (0 2 1 0) 
e2(0), e2(4), e4(2) (0 2 0 1) 
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Table 5.2. 

Simple Cycles x 

el(O) (1 0 0 0) 
e2(0), e2(4), ei2) (0 3 0 0) 
e2(0), e3(4), e3(5) (0 1 2 0) 
e3(0), e3(1), e3(2), e3(3), e3(4), e3(5) (0 0 6 0) 

(GP) (mod k) 

xEZ~. 

We use the term group because of the modulo addition in the constraint, which is 
equivalent to addition in the cyclic abelian group of order k. 

If c. - {3a'/k > 0, we can choose x. so that ¢k(a.)x. = 0 and (c. - {3a./k)x. is arbitrarily 
} } }}}} J ( 

large. Thus if Sk * 0, we can choose x so that GP has an unbounded optima value. Hence 
we impose the condition Cj - pa) k ~ 0 for} E N or 

which implies that zk(b) ~ Pb/k. Thus we can restate GP as 

zk(b) = ub + max I (Cj - uaj)xj 
jEN 

xEZ~, 

(mod k) 

where u = P/k and PI ~ u ~ P2. Note that PI ~ u ~ P2 if and only if u is a dual feasible 
solution to the linear programming relaxation of (5.1). Moreover, the term ub, which is 
independent of x, is minimized by an optimal dual solution to the linear programming 
relaxation of(5.1); that is, u = PI if b > O. With u = PI, we obtain 

zk(b) = zLP(b) - min I - CjXj 
jEN 

xEZ~, 

(mod k) 

where Cj = Cj - Plaj ~ 0 for} EN. Thuszk(b) ~ zLP(b), and we also observe that GPyields 
a minimum-weight correction to the linear programming relaxation subject to the 
constraint x E Sk. 
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The correction term 

is the same for all dE ¢,/(b). Hence zk(b) is the sum ofalinearterm in b and a correction 
term that is cyclic with period k. 

An interesting observation is that '11k(d) is superadditive; that is, for any d l , d2 E ZI we 
obtain 

The inequality holds because the left-hand side can be interpreted as the weight of a 
maximum-weight path from node 0 to node d l + d2 that is constrained to contain node dl • 

Example 5.1 (continued). Suppose c = (4 -4 1 0). Then !9 = PI = cdal .s:;; 
P/6 .s:;; C2/a2 = P2 = f.;. Since b > 0, we choose u = P/6 = PI and obtain the group problem 

OXI + 4X2 + X3 + X4 = 3 

xEZ!. 

(mod 6) 

To find a maximum-weight path from node 0 to node 3 in ~6, we can eliminate the loop 
arcs eI(d) since CI = 0, and we can also eliminate the e3(d) arcs since they are parallel to the 
e4(d) arcs and C3 < C4. This yields the digraph shown in Figure 5.2, where the number on 
each arc is its weight times 39. 

A path of maximum weight is (e4(0), e4(1), e4(2», corresponding to the solution 
x = (0 0 0 3). Since r.jEN ajxj = 3, it follows that x $. S. The weight of this path is 
'l'6(b) = -f9, so we obtain the upper bound of z6(b) = zu.(b) + 'l'6(b) = [2(141) - 61/39 = 7rr. 

-2 

-20 

Figure 5.2 
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8 

7 

6 

5 Linear function ZLP (d) 

4 Step function Z6 (d) 

3 

2 

~---------------------------------------------------------d 
o 60 120 180 

Figure 5.3 

It is clear from the digraph of Figure 5.2 that, for any d E ZI, only the variable 4 arcs 
are used in a maximum-weight path from node 0 to node ¢6(d). Thus If/6(d) = -f9¢6(d) for 
all d E ZI. The functions ZLp(d) and z6(d) are shown in Figure 5.3 for dE Zl. 

So far, the development of the group problem has been done for an arbitrary positive 
integer k. Now we consider a meaningful choice of k that is motivated by trying to 
enhance the possibility of an optimal solution to GP being feasible to IP. 

Suppose bE Zl and cl/al = max{cjlaj: aj > O,j EN}. With k = all OP can be 
restated as 

(5.2) 

j = 2, .,. , n. 

Note that any feasible solution to (5.2) yields an integer value for Xl. This is true since 
LjEN\(!) ajxj = ta 1 + ¢alb) for some t E ZI. Thus 

Xl = J.- (b - L ajXj) = b - ¢a,(b) - t, 
a 1 jEN\(!) a 1 

which is integer for all bE ZI since ¢a,(b - ¢a,(b) = O. However, Xl maybe negative. This 
should not be surprising since, in this case, (5.1) is 
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za,(b) = max L CjXj-CIW 
jEN 

L ajxj - a I W = b 
JEN 

11.3. Duality and Relaxation 

which is the same as 

za,(b) = max L CjXj 
JEN 

L ajxj = b 
jEN 

X I EZ I,Xj EZlforj=2, ... ,no 

When can we be sure that LjEN\{l} ajxj will be small enough to guarantee x I ;. O? To 
answer this question, we use the fact that Xj for j = 2, ... , n is determined by solving a 
maximum-weight path problem on a graph with a I nodes and nonpositive weights on the 
arcs. Hence there is a maximum-weight path with no more than a I - 1 arcs; that is, the 
corresponding solution {xJ} satisfies LjEN\(l} xJ ~ a I - 1. Thus 

where 7i = max{aj:j E N\{l}}, so that x?;' (l/al)(b - (al - l)a). Consequently if 
b ;. (a I - l)a and k = a [, then GP yields an optimal solution to IP. Thus the relaxation GP 
is asymptotically exact in the sense that for suitably large b we obtain za,(b) = z(b). 

Example 5.1 (continued). Suppose u = PI = ct/al and k = al = 78. Here the digraph is 
too large to draw, but an optimal solution is easy to deduce. We have ¢78(a2) = 10, 
¢78(aJ) = 37, ¢78(a4) = 1, and ¢78(b) = 63. With (e2 (:3 (4) = -i9(20 35 2), an optimal 
solution is xg = 0, x~ = 1, x~ = 26, which yields 

x? = ~ (b - L ajX~) = ~ (141 - 37 - 26) = 1. 
a I jEN\(l)· 78 

Hence we obtain a feasible, and thus optimal, solution to IP given by XO = (1 0 26). 
Note that 141 < 77·37 = (al - 1)a; that is, the condition b ;. (al - l)a is by no means 
necessary for an optimal solution of the group problem to solve IP. 

The approach we have taken here generalizes straightforwardly to integer programs 
with more than one constraint. Consider an equality-constrained version ofIP: 

(IP) max{cx: Ax = b, x E Z~}, 

where (A, b) is an integral m x (n + 1) matrix and C is an integral n-vector. We relax IP to 
the so-called group problem 

zK(b) = max cx - pw 
(GP) Ax - Kw = b 
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whereK = (kJ, ... ,kp)isan m X p integer matrix withp ..; m andpisap-vector. Our goal 
is to determine the canonical form or simplest possible path representation ofGP. 

Suppose that IP has bounded optimum value. To ensure that GP also has bounded 
optimum value, recall that a feasible integer program is bounded only if its linear 
programming relaxation is dual feasible. Thus we require that the dual of the linear 
programming relaxation ofGP has a feasible solution, that is, there exists a u E R m such 
that uA ~ c and uK = p. Given such a u, we can rewrite GP as 

zK(b) = ub + max(c - uA)x 

x E SK(b), 

where SK(b) = {x E z~: Ax - Kw = b for some w E ZP} and c - uA ..; O. 
To obtain a unique canonical representation of the maximum-weight path representa

tion ofGp, we use the Smith normal form of matrix K (see Theorem 4.11 of Section 1.7.4), 
which is stated here in greater generality. We say that a square integral matrix R is 
unimodular if I det R I = 1. 

Theorem 5.1. (Smith Normal Form). Given an m x p integer matrix K of rank p ..; m, 
there exist unimodular integer matrices Rand C, where R is m x m and C is p x p such that 
RKC = ~. Matrix ~ is of the form Oij = 0 for all i * j and i > p; and the elements Ou = oJor 
i = 1, ... ,p, are positive integers such that 0; is a divisor of 0;+1 for i = 1, ... ,p - 1. 
Moreover, matrix ~ is unique. 

For dE zm, let ¢fi(d) = d, where d; = d;(mod 0;) for i = 1, ... ,p, and d; = d; for i > p. 
We can now give a canonical form of S~b) and, hence, ofGP. 

Theorem 5.2. A canonical representation ofSK(b) is given by: 

that is,for i = 1, ... , p, the ith equation must be satisfied mod Ob andfor i > p the equation 
is an ordinary equality. 

Proof We have 

SK(b) = {x E Z~: Ax - Kw = b for some wE ZP} 

= {x E Z~: RAx - RKw = Rb for some w E ZP} 

since R is a nonsingular matrix. 
Now if Cw' = w, where C is a unimodular integer matrix, then w E ZP if and only if 

w' E ZP. Hence 

SK(b) = {x E Z~: RAx - RKCw' = Rb for some w' E ZP} 

= {x E Z~: RAx = Rb + ~w' for some w' E ZP} 

= {x E Z~: ¢fi(RA)x = ¢fi(Rb) (mod M}. • 
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Therefore GP can be stated as 

(GP) 

zK(b) = ub + max L (Cj - uaj)xj 
jEN 

xEZ~. 

(mod .1) 

To make each of the m equations modular, we choose K to be m x m and nonsingular. 
Then .1 is an m x m diagonal matrix with 6i E Z~ for i = 1, ... , m and n7!l 6i = 1 det K I. 

Corollary 5.3. I! K is an m x m nonsingular integer matrix, GP is a maximum-weight 
path problem on a digraph with n;:; 1 6i = 1 det K 1 nodes. 

Here qjJK = (VK, sl/x), where 

VK = {cp",,(d): dE Rm} = {d E Z'{': d i < 6i for i = 1, ... ,m} and 

.sdK = {(d, cp",,(d + Raj»: dE VK,j EN}. 

Note that if 6i = 1, the ith modular equation holds trivially for all x E Z~ and can be 
omitted from the formulation. Correspondingly, in the digraph qjJK, if 6i = 1, then di = 0 for 
all d E VK • In particular, if 6m = 1 det K I, we obtain a cyclic group as in the case of a single 
constraint problem. 

By choosing u = uo, an optimal solution to the dual of the linear programming 
relaxation of IP, we obtain the minimum value of ub = uOb = hp(b). In this case, 
zK(b) = hp(b) + If/K(b), where 

If/K(b) = -min{ L - (Cj - uOa)xj: x E SK(b)}. 
jEN 

So as before, zK(b) ~ zLP(b) and GP yields a minimum-weight correction to the linear 
programming relaxation subject to x E SK. We also see that If/K(d) is a cyclic function; that 
is, If/K(d) = If/K(d + Kw) for all d, wE zm. 

By using the same argument as in the single constraint case, we obtain the following 
corollary. 

Corollary 5.4. If/K(d) is superadditive!or dE zm. 

If, in addition, we choose K as an optimal basis matrix for the linear programming 
relaxation of IP, we may enhance the possibility of obtaining a feasible solution to IP. 
Suppose A = (AB, AN) (where AB is m x m and nonsingular), x = (XB, XN), and 
C = (cB, CN)' LetK = AB and suppose that A lilb ~ 0 andcN - cBAlilAN ~ O. If.1 is the Smith 
Normal Form ofAB , then GP is 

(5.3) 

ZAB(b) = zLP(b) + max(cN - cBAlilAN)XN 

cp",,(RAN)XN = cp",,(Rb) (mod .1) 

Problem (5.3) is the group problem originally considered by Gomory. Note that if x~ is an 
optimal solution to (5.3), it yields an optimal solution to IP if x~ = Alil(b - ANX~) ~ O. 
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We have seen that choosing K = AB is equivalent to dropping non negativity on XB, 
which leads to the following corollary. 

Corollary 5.5. The group problem (5.3) is equivalent to the integer program 

(5.4) 

ZAB(b) = max CBXB + CNXN 

ABxB + ANxN = b 

where AB is an optimal basis matrixfor the linear programming relaxation ofIP. 

Note that a Gomory group problem can be generated from any dual feasible basis 
matrix AB and that Corollary 5.5 holds for any such basis. Dual feasibility (i.e., 
CN - cBAliA N ~ 0) is necessary to boundzA.(b) from above. 

Gomory began with problem (5.4) and derived the canonical form (5.3). The motiva
tion for considering problem (5.4) is that at an optimal solution to the linear programming 
relaxation ofIP, the constraints XB ~ 0 are inactive-if there is degeneracy they may be 
tight. Thus, there is some hope that they will be inactive in an optimal solution to IP. In fact 
when b is "suitably large", this is true. This asymptotic behaviour of GP is given by the 
following proposition. 

Theorem 5.6. Let AB be any dualfeasible basis to the linear programming relaxation ofIP 
and let (f) = max;,j I (A"BIAN)lj I. The group problem (5.3) defined by AB solves IP for all 
b E zm such that A"B' b ~ (f) I det AB 11, where 1 is the vector of aliI s. An optimal solution to 
IP is given by x~ = A"Bl (b - ANX~ )for some x~ that is an optimal solution to (5.3). 

Proof It suffices to show that there exists an optimal solution xRr to (5.3) such that 
x~ = A"Bl(b - ANxRr) ~ O. Since GP is a maximum-weight path problem on a digraph with 
I det AB I nodes, it follows that there is an optimal solution xRr such that Lj xRrj < I det AB I. 
Hence A "BIA NXRr < (f) IdetAB 11. Since, by assumption, A "BIb ~ (f) Idet AB 11, itfollows that 
x~~O. • 

ExampleS.2 

max 7Xl + 2X2 

-Xl + 2X2+ X3 2 

5xl+ X2 +X4 19 

-2x,- 2X2 +Xs =-5 

xEZ~. 

An optimal LP basis is given by AB = (al. a2, as), and u = cBA"B' = (n- -If 0). 
It is readily checked that the Smith Normal Form of AB is 

o 
1 
o 
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with 

c 0 D and c~O 
0 

D R = -~ 0 0 

We have 

RA~ (~ 
-2 -1 0 D and Rb~(;n -6 -2 0 
11 5 

Since t51 = t52 = 1, only the bottom row of R (A, b) is needed to define the group problem. 
Because c - uA = (0 0 --rl- -if 0), the group problem is 

5x3 + X4 = 7 

(X3' X4) E Z~. 

(mod 11) 

This problem can be solved on a digraph with 11 nodes, and the optimal solution is x~ = 8, 
x~ = O. Thus 

( X? ) 1 (36) 8 (-1) (4 ) x~= ;~ =Ajib-8Ajia3=TI ;~ -TI ~ = -~ . 

Since x~ < 0, it follows that XO is not feasible to IP. Had we taken b = (.:~), we would have 

obtained the same group problem. But in this case we have 

1 (36) 8 (-1) ( 4 ) x~ = Aji(b - 8a3) = TI ~~ - TI ~ = ~ ~ 0, 

so XO is an optimal solution to the original problem. 
Dropping nonnegativity on the basic variables yields the problem offinding an optimal 

integral solution in the cone generated by the active constraints. This is shown graphically 
in Figure 5.4, where Xl = 4, X2 = -1 is the optimal integral point in the "cone" defined by 
the constraints -Xl + 2X2 ~ 2 and 5xl + X2 ~ 19. 

An interesting application of the asymptotic behavior of GP is that it can be used to 
show that by solving a finite number of group problems, zIP(b) can be obtained for all but 
a finite number of points in zm. Hence, as we remarked in Section 3, the complete value 
function of IP can be found by solving a finite number of integer programs. 
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• • • \-0 
2 

• 
5xl+X2:s19 

• • • • 

01----....... ---_------11....----+ ....... -----Xl 

2 3 

-1 • • • 

• • • • 

Figure 5.4. The optimal solution is Xl = 4, X2 =-1. 

6. LAGRANGIAN RELAXATION AND DUALITY 

Consider an integer program 

ZIP = max{cx: xES}, where S = {x E Z~: Ax ~ b}, 

which can be rewritten as 

(IP) 

ZIP = max ex 

AIX~bl 

xEZ~, 

(complicating constraints) 

(nice constraints) 

323 

where A = (~:) and b = (g:). We suppose thatA 2x ~ b2 are m - ml "nice constraints", say 

those of a network problem. By dropping the m 1 complicating constraints Al X ~ b 1 we 
obtain a relaxation that is easier to solve than the original problem. There are many 
problems for which the constraints can be partitioned in this way. We will give some 
examples later. 
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The idea of dropping constraints can be embedded into a more general framework 
called Lagrangian relaxation. It is convenient to consider a generalization oflP: 

IP(Q) 

ZIP = max ex 

A1X~bl 

xEQ. 

However, when we are discussing results that are specific to IP, it is assumed that 
Q = {x E Z~: A 2X ~ b2} oF 0. Again it has to be understood that the problem obtained 
from IP(Q) by dropping the complicating constraints is much easier to solve than IP(Q). 

Now for any A E R':", consider the problem 

LR(A) ZLR(A) = max{z(A, x): x E Q}, where Z(A, x) = ex + A(b l - A IX). 

The problem LR(A) is called the Lagrangian relaxation of IP(Q) with respect to 
A IX ~ b 1. This terminology is used because the vector A plays a role in LR(A) similar to the 
role of Lagrange multipliers in constrained continuous optimization problems. 

LR(A) does not contain the complicating constraints. Instead we have included these 
constraints in the objective function with the "penalty" term A(b l - A IX). Since A ~ 0, 
violations of A IX ~ b l make the penalty term negative, and thus intuitively A IX ~ b l will 
be satisfied if A is suitably large. 

Proposition 6.1. LR(A) is a relaxation ofIP(Q)for all A ~ o. 

Proof If x is feasible in IP(Q), then x E Q and hence x is feasible for LR(A). Also, 
,.Z(A, x) = ex + A (b l - A IX) ~ ex for all x feasible in IP(Q) since A IX ~ b l and A ~ o. • 

As a consequence of Proposition 6.1, ZLR(A) ~ ZIP for all A ~ O. The least upper bound 
available from the infinite family of relaxations {LR(A)h?o is ZLR(A*), where A* is an optimal 
solution to 

(LD) 

Problem LD is called the Lagrangian dual of IP(Q) with respect to the constraints 
A1X~bl. 

The following example from Section 11.1.1, but with the constraints Xl ~ 2, X2 ~ 4 
added, will be used throughout this section to illustrate the concepts and results presented. 

Example 6.1 

max 7Xl + 2X2 

-Xl + 2X2 ~ 4 

5Xl+ X2 ~ 20 

-2X l- 2X2 ~ -7 

~ -2 

X2 ~ 4 

xEZ;. 
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The Lagrangian relaxation with respect to -Xl + 2x 2 ~ 4 is 

max(7 + A)Xl + (2 - 2A)X2 + 4A 

5Xl + X2 ~ 20 

-2Xl - 2X2 ~ -7 

XEZ~, 

where Q is the finite set of points 

(see Figure 6.1). 
The example suggests at least two different viewpoints. The first is to view 

Z(A, x) = (c - M l)X + Ab 1 as an affine function ofx for A fixed. It then follows that hR(A) 
can be determined by solving the linear program 

ZLR(A) = max{z(A, x): x E conv(Q)}, 

4 

3 
11=0 

2 

11=2 

o~------------------------~--~------o 2 

Figure 6.1 
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where as usual we assume that conv(Q) is a rational polyhedron. 
In the example (see Figure 6.1), 

Thus 

conv(Q) = {x E R~: -Xl';;; -2, X2 .;;; 4, -Xl - X2 .;;; -4, 4Xl + X2 .;;; 16}. 

hR(O) = max{7xl + 2X2: X E conv(Q)} = z(O, x 7) = 29 

ZLR(1) = max{8xl + OX2 + 4: X E conv(Q)} = z(1, X8) = 36; 

and as one increases A from 0, ZLR(A) first decreases until A = <!- and then it increases. In 
general we obtain 

1 
ZLR(A) = Z(A, x 7) = 29 - A for 0.;;; A .;;; 9 

1 
ZLR(A) = Z(A, X8) = 28 + 8A for A? 9. 

Hence Zw = ZLR(<!-) = z(<!-, x 7) = z(<!-, X8) = 28~ and A* = <!-. 

All of these calculations can be seen in Figure 6.1, where we have shown the objective 
function max(c - AA I)X + Ab l for different values of A. 

z(>., xi) 

36 

30 

24 

~r-----------~~ .. -e~--------------------------2 

~=------------------------------------------------->. 
2 

Figure 6.2. The numbers assigned to each line denote the following; (I) 18 + 2.1; (2) 20; (3) 22 - 2.1; (4) 23 + 5.1; 
(5) 25 + 3.1; (6) 27 + A; (7) 29 - A; (8) 28 + 8.1. 
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The second viewpoint is to consider ZLR(A) to be determined by maximization over a set 
of discrete points, that is, 

ZLR(A) = max Z(A, xt 
x'EQ 

and to observe that for fixed Xi, Z(A, Xi) = exi + A(b l - A IX i) is an affine function of A. See 
Figure 6.2, where we have drawn the affine functions Z(A, Xi) for Xi E Q. 

In Figure 6.2 one can read off the value of ZLR(A) for any value of A. We see that hR(A) is 
piecewise linear and convex (the heavy lines in Figure 6.2) and that Zw = 28~. 

Formally, one solves the linear program 

ZLR(A) = min{w: w ~ Z(A, Xi) for i = 1, ... , 8}, 

which shows that ZLR(A) is the maximum of a finite number of affine functions and is 
therefore piecewise linear and convex. 

We now study how the solution of the Lagrangian dual relates to the solution of the 
original problem IP(Q). Returning to Figure 6.1, note that when A = t we obtain 

28~ = z(t, X 7) = z(t, x 8) 

= z(§, ~X7 + §x8) since Z(A, x) is affine in x 

= z(§J (34) + § (4 0)) 

= z(§, (ZJ! Jj)) = z(§, x*) with x* = (ZJ! Jj) 

= ex* + §(4 + x~ - 2x;) 

= ex* since x* satisfies -x I + 2X2 = 4. 

In other words, by taking a convex combination of points in Q, in the example x 7 and 
x 8, we obtain a point x* in conv(Q) satisfying the complicating constraint, for which 
ex* = Zw. This shows that for the example we obtain 

Zw = max{ex: A IX ~ b I, x E conv(Q)}. 

We now formalize the results suggested by the example. The major result is that the 
primal linear programming problem offinding a convex combination of points in Q that 
also satisfy the complicating constraint A I X ~ b I is dual to the Lagrangian dual. 

Theorem 6.2. Zw = max{ex: A IX ~ b l , x E conv(Q)}. 

Proof 

= max (c - AA I)X + Ab I 
xEconv(Q) 

(since the objective function is linear) 

= max [ex + A(b l - A IX)]. 
xEconv(Q) 
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Hence 

= min max [cx + A(b l - A IX)]. 
",,0 xEconv(Q) 

If Q = 0 the inner max equals -00 for all A. Hence ZLD = -00 as desired. Otherwise, let 
{xk E R~: k E K} and {ri E R~: j E J}, respectively, be the sets of extreme points and 
extreme rays of conv( Q). Thus 

I I {ooif(C-MI)ri>O forsomejEJ 
x~~v1Q) [cx + A(b - A x)] = cxk + A(b l _ A IXk) for some k E K otherwise. 

Hence 

A~O, 

which can be restated as 

ZLD = min 17 
~,A 

(6.1) 
~ cri forj E J 

A~ O. 

Thus by linear programming duality, we obtain 

(6.2) 

ZLD = max c( I o/xk + I piri) 
kEK iE! 

= 1 

uk, pi ~ 0 for k E K and j E J 

= max{cx: A IX ~ b l , X E conv(Q)}. 

Corollary 6.3. ZLD can be calculated/rom the linear programs (6,1) or (6.2). 

• 

The reader familiar with linear programming decomposition will recognize the linear 
program (6.2) as the reformulation obtained when Dantzig-Wolfe price decomposition is 
applied to 
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where conv( Q) = {x E R~: A 2X ~ b2} and A are the "dual prices" associated with the 
constraints A IX ~ b l . It follows that (6.1) is the dual of the Dantzig-Wolfe reformulation. 
Alternatively, (6.1) is the reformulation obtained by applying resource or Benders' 
decomposition to the dual linear program 

(see the next section). 

Corollary 6.4. ZLR(A) is piecewise linear and convex on the domain over which it isjinite. 

Proof ZLR(A) is finite if and only if A lies in the polyhedron {A E R';": AA I rj ~ cr j for 
j E J}. On this polyhedron, ZLR(A) = Ab l + maXkEK (c - AA I)Xk and is the maximum ofa 
finite number of affine functions. Convexity follows from Proposition 4.1 of Section I.2.4 . 

Since 

we have that 

ZIP = max cx ~ ZLD = max{cx: A IX ~ b l , X E conv(Q)}. 
xES 

• 

The duality gap ZLD - ZIP depends on the relative sizes of conv(S), conv(Q) n 
{x: A IX ~ bl}, and the objective coefficients c. 

Corollary 6.5. ZIP = zLDfor all c if and only if 

When Q = {x E Z~: A 2x ~ b2}, it is also of considerable interest to compare ZLD with 
ZLP = max{cx: Ax ~ b, x E R~}. In Example 6.1, ZIP = 28 < ZLD = 28~ < ZLP = 30n-. 

Corollary 6.6. ZLD = ZLP for all c if all the extreme points of {x E R~: A2x ~ b2} are 
integral. 

Proof Under the hypothesis of the corollary we obtain 
{x E R~: A 2x ~ b2}, and the result follows from Theorem 6.2. 

In Example 6.1, a natural choice of the "complicating constraints" is 

Thus 

conv(Q) = 

• 

Obviously {x E R;: -XI ~ -2, X2 ~ 4} only has integral extreme points, so that, by Corol
lary 6.6, this Lagrangian relaxation would terminate with ZLD = ZLP = 30-fi-. 
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In summary, 

conv(S) s conv(Q) n {X E R~: A IX ~ b l } S {X E R~: Ax ~ b} 

and thus ZIP ~ Zw ~ ZLP. But because some faces of the respective polyhedra can coincide, 
we may obtain ZIP = Zw or Zw = ZLP for particular c even if the conditions of the two 
previous corollaries do not hold. Figure 6.3 illustrates this. The inner polytope is conv(S). 
The outer polytope is {x E R~: Ax ~ b}. The inner polytope, together with the shaded 
region, is conv(Q) n {x E R~: A IX ~ bl}. Four different objective functions are indicated, 
and the results are summarized as follows: 

Objective Functions 
c l 

c2 

c3 

c4 

Objective Values 
ZIP = ZLD = ZLP 

ZIP < ZLD = ZLP 

ZIP < ZLD < ZLP 

ZIP = ZLD < ZLP 

It is possible to characterize problems where ZIP = Zw in terms of a complementarity 
condition. We will obtain this result as a corollary to the following theorem. 

Theorem 6.7. ZIP ~ Zw - e if and only if there exists A* ~ 0 and x* E S such that 
A*(b l - A IX*) ~ oj, Z(A*,X*) ~ ZLR(A*) - 02, and 01 + 02 ~ e. 

Proof To show sufficiency, we have 

~ ZIP + e (since x* E S). 

/11 
/ I 

/ I 
/ I 

// ) , 
I 
I 

Figure 6.3 
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To show necessity, let x* be an optimal solution of IP(Q) and let},,* be an optimal 
solution ofLD. We have 

ZLD = ZLR(}"*) = z(}"*, x*) + ZLR(}"*) - z(},,*, x*) 

= cx* + }"*(b l - A lX*) + hR(},,*) - z(},,*, x*) 

= ZIP + }"*(b l - A lX*) + ZLR(}"*) - z(}"*, x*). 

Hence ZIP ~ ZLD - e implies 

}"*(b l - A lX*) + (ZLR(},,*) - z(},,*, x*)) .:;; e. 

• 
By putting 61 = 62 = e = ° in Theorem 6.7, we obtain necessary and sufficient condi

tions for the duality gap to be 0. 

Corollary 6.8. ZIP = ZLD if and only if there exists }" * ~ ° and x* E S such that 
}"*(b l - A lX*) = ° and ZLR(}"*) = z(},,*, x*). 

Theorem 6.7 can also be helpful in identifying (nearly) optimal solutions to IP(Q). For 
example, in the process of solving LR(}") we may find an xES that is nearly optimal in 
LR(}") and nearly satisfies complementary slackness. 

Corollary 6.9. Ifx* E S satisfies }"(bl - A lX*) .:;; 61 and z(}", x*) ~ ZLR(},,) - 62 for some 
}" ~ 0, then cx* ~ ZIP - 15 1 - 152• 

InExample6.1,x6 = (33) E S. ForA = Ts, weobtainzLR(},,) = 28t!, }"(b l - A lX6) = Ts = 610 
and ZLR(},,) - z(}", x 6) = l~ = 62. Hence cx6 ~ ZIP - It!. 

The complementary slackness conditions are also useful in right-hand-side parametrics 
as shown in the following corollary to Theorem 6.7. 

Corollary 6.10. Let x* be an optimal solution to LR(}"*), where },,* ~ 0, and define 
d* = A lX*. Then x* is an optimal solution to 

max{cx: A IX':;; d l , X E Q} 

In Example 6.1, x 7 = (3 4) is an optimal solution to LR(i\i). Hence x 7 is an optimal 
solution when the first constraint is -Xl + 2X2 .:;; 5. 

Lagrangian relaxation and duality also apply to equality constraints. Suppose that 
A IX = b l in Problem IP(Q). Then defining LR(}") as before, we have the following 
proposition. 

Proposition 6.11. If A IX = bl in IP, then LR(}") is a relaxation ofIP for all }" E Rml. 

The only difference between the equality and inequality cases is that in the equality case 
the multipliers are unrestricted in sign. 

We now give one problem to illustrate the formulation of Lagrangian relaxations. 
Others will be given later when we discuss computation. 
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Example 6.2 (A Flow Problem with Budget Constraint). Suppose there is a set of n jobs 
to be assigned to a set of n workers, with N = {l, ... ,n}. Suppose that cij is the value of 
assigning worker i to job j, that t ij is the cost of training worker i to do job j, and that we 
have a training budget of b units. We wish to maximize the total value of the assignment 
subject to the budget constraint, that is, 

max 2: 2: cijxij 
iEN jEN 

2: x ij = 1 fori E N 
jEN 

2: xij = 1 for j EN 
iEN 

(1) 

(2) 

(3) 

First we observe that the problem is .N'9P-hard. Ifwe then wish to choose a Lagrangian 
relaxation, there are four options to consider. Note that in each option the relaxed 
problem LR(A) is considerably easier to solve than the original problem. 

1. Lagrangian relaxation with respect to (3). Then LR1(A), A E Rl, is an assignment 
problem with objective function 

2. Lagrangian relaxation with respect to (1) and (2). Then LR2(u, v), U ERn, vERn, is 
a knapsack problem with objective function 

2: Ui + 2: Vj + 2: 2: (Cij - Ui - Vj)Xij. 
iEN jEN iEN jEN 

3. Lagrangian relaxation with respect to (1) or (2), say (1). Then LR3(U), U ERn, is a 
knapsack problem with generalized upper-bound constraints and objective function 

2: Ui + 2: 2: (Cij - Ui)Xij. 
iEN iEN jEN 

4. Lagrangian relaxation with respect to (1) or (2) and (3), say (1) and (3). Only 
generalized upper-bound constraints remain. Thus the Lagrangian L~(u, A), 
U ERn, A E Rl, with objective function 

Ab + 2: Ui + 2: 2: (Cij - Ui - Atij)Xij 
iEN iEN jEN 

is trivial to solve. For each j, an i is chosen to maximize cij - Ui - Atij, and the 
corresponding x ij is set to 1. 

In choosing a relaxation there are two major questions to consider: How strong is the 
bound zw, and how difficult to solve is the Lagrangian dual (LD)? We defer discussion of 
the latter question until we discuss computation, and now we just consider the bounds. 
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When Q is a set of assignment constraints or a set of generalized upper-bound 
constraints, Corollary 6.6 applies and zLo = zto = ZLp. Since 

and 

we have 

C Q2 = {x E En': I I ti}Xi}';; b} 
iEN JEN 

conv(Q2) C {x E R:': I I ti}Xi}';; b, Xi}';; 1 for i,j EN}, 
iEN JEN 

and each of the inequalities is strict for some objective function. 

We now consider two ways of strengthening the Lagrangian dual of problem IP. The 
first approach yields a dual whose optimal value equals 

This dual is obtained by applying Lagrangian duality to the reformulation ofIP given by 

ZIP = maxcxl 

AIXI .;; b I 

(RIP) 
A 2X2 .;; b 2 

Xl _X2 = 0 

Xl E Z:, X2 E Z:. 

Taking Xl - x 2 ::= 0 as the complicating constraints, we obtain the Lagrangian dual of 
RIP: 

where u = c2• 

zcso = min {max{(c - u)x l + ux2}} 
u 

Xl E Z:, X2 E Z: 

= min {max CIXI + max C2X2} 
C I+C2=C 

AIXI';;b l , A2X2.;;b2 

xIEZ~, x2EZ:, 
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From Theorem 6.2, we obtain a polyhedral interpretation of the dual. 

Corollary 6.12 

and Zcso ~ Zw. 

We have used the terminology CS since the technique has been called cost splitting. The 
technique is useful when: 

1. conv{x E z~: A IX ~ bl} C (x E R~: A IX ~ bl}, so for some objective functions e we 
obtain Zcso < Zw. 

2. The sets of constraints A iX ~ bi are simple to deal with separately; that is, the 
difficulty is caused by their interaction. 

In Example 6.2, we could take A IX ~ b l to be constraint set (1) and (3) and take 
A 2x ~ b2 to be constraint sets (2) and (3). This yields Zcso ~ ZLo with the inequality strict 
for some objective functions. 

Another approach that dominates the Lagrangian dual is the "surrogate" dual. Starting 
from IP(Q), with weights A E R';" for the complicating constraints, consider the problem 

SD(A) 

The problem SD(A) is called the surrogate relaxation ofIP(Q) with respect to A IX ~ bl. 
SD(A) contains a single "complicating" constraint. For instance, when Q = Z~ the surro
gate relaxation is a knapsack problem. The surrogate dual ofIP(Q) is the problem 

(SD) 

Proposition 6.13. LR(A) is a relaxation ofSD(A)for A ~ 0 and Zw ~ Zso. 

Proof The feasible region ofSD(A) is contained in that ofLR(A). In addition, when x 
is feasible in SD(A) we obtain A(b l - A IX) ~ 0 and hence 

Z(A, x) = ex + A(b l - A IX) ~ ex. • 
Although the surrogate dual can be used computationally, it does not have such nice 

theoretical properties as the Lagrangian dual. 
We close this section by relating Lagrangian duality to the general duality theory of 

Section 2. Given the initial problem IP( Q), we define its value function zQ by 

for all d l E Rm,. Note that when Q = (x E Z~: A 2X ~ b2}, it follows that ZQ is a projection 
of the IP value function Z onto d2 = b2• Thus zQ(dl) = z(dl, b2) for all d l E Rm,. Now using 
a similar approach to that of Section 2, with SQ(dl) = (x E Q: A IX ~ d l} in place of Sed), 
we obtain as the equivalent of(2.4) the dual problem 
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min g(b l ) 

(6.3) g(Alx)?cx forxEQ 

g non decreasing, g: Rm, --> R I. 

Example 6.1 (continued). The dual problem is 

or 

w = min g(4) 

g(-xI + 2X2)? 7xI + 2X2 for x E Q 

g nondecreasing, g: R I .... R I 

min g(4) 

g(2) ? 18, Xl = (2 2) 

g(4) ? 20, x 2 = (2 3) 

g(6) ? 22, x 3 = (2 4) 

g(-I) ? 23, X4 = (3 1) 

g(l) ? 25, x 5 = (3 2) 

g(3) ? 27, x 6 = (3 3) 

g(5) ? 29, x 7 = (3 4) 

g(-4) ? 28, x 8 = (4 0) 

g nondecreasing. 

It is readily seen from Figure 6.4 that 

if d l <-4 
if -4.:;; d l < 5 
if d l ? 5. 
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Since zQ(O) = z(O, b2), we cannot expect zQ(O) = 0. Hence the simplest class of functions 
that are candidates for the dual (6.3) are affine functions g(d l ) = An + Adl , A E R';". In 
particular, if we take g to be the affine function supporting ZQ and passing through the 
points (-4 28) and (5 29) (see Figure 6.4), then g is clearly dual feasible and 
g(4) = 28~ = Zw. 

This leads us to examine the restricted dual 

WOR = min g(b l ) 

(6.4) g(A IX)? cx for x E Q 

g affine and nondecreasing, g: Rm, .... R I, 

which can be rewritten as 
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32 

g(d l ) 

28 
xl 

XB 
.X*=X6 

• x 5 

24 
.x4 

·x3 

20 • x 2 

• xl 

16 d l 
-4 -2 0 2 4 6 

Figure 6.4 

When Q = {x E Z~: AZx ~ bZ}, it is also interesting to examine the dual (2.4) in Rm, 
where we restrict the dual functions g: R m .... RI to be of the form g(dl , dZ) = )"d l + gz(dZ) 
with dZ E Rm-m" and)" E R';". This gives the alternative dual 

Wo = min )"b l + gz(bZ) 

(6.5) AA IX + gz(AZx) ~ cx for x E Z~ 

),. ~ 0, gz nondecreasing, gz: Rm, .... R I, 

which can be rewritten as 

Wo = min wo(),.), 
;.,,0 

where 

We now compare these two restrictions [i.e., (6.4) and (6.5)] of the general dual with the 
Lagrangian dual. 

Theorem 6.14. The relationships among the Lagrangian dual and the restricted duals are 
given by: 

a. ZLR(),.) = WOR(),.) for all ),. ~ 0. Hence the Lagrangian dual and the restricted dual 
(6.4) are equivalent. 

b. IJQ = {x E Z1: AZx ~ bZ}, then ZLR(),.) = WOR(),.) = wo(),.). Hence the Lagrangian dual 
and the two restricted duals (6.4) and (6.5) are equivalent. 
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Proof 

a. WDR(A) = min).o{Ao + Ab 1: Ao + MIX;;;' ex for x E Q} 

= Ab l + max (ex - MIX) = hR(A). 
xEQ 

b. Wo(A) = Ab l + min gz(bZ) 

Using (2.4), we obtain 

g2(A 2x);;;. (e - M I)X for x E Z~ 

g z nondecreasing. 

WD(A) = Ab l + max{(e - M l)X: A 2x ~ bZ, x E Z~} 

= ZLR(A). 
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• 
The reader should now verify, for Example 6.1, that g(d1) = 28~ + ~dl is an optimal 

solution to the restricted dual (6.4) and that 

is an optimal solution to the restricted dual (6.5). Both evidently give the same objective 
value Zw = 28~. 

7. BENDERS'REFORMULATION 

In the preceding section we gave a method for handling complicating constraints. We now 
consider the dual notion of complicating variables. In particular, in the mixed-integer 
program 

(MIP) 

z = max ex + hy 

Ax+Gy ~ b 

x EX f; Z~,y ER~, 

we can view the integer variables x as complicating variables to what would otherwise be a 
linear program, and we can view the continuous variables y as complicating variables to 
what would otherwise be a pure-integer program. For example, in a fixed-charge network 
flow problem where the integer variables represent decisions about which arcs to use in a 
network, the problem in the y-space is an ordinary network flow problem once x is 
specified. 

The procedure described below shows how MIP can be reformulated as a problem in 
X x R I; that is, there is only one continuous variable. However, this formulation generally 
contains a huge number of linear constraints. Since one expects only a small subset of 
these constraints to be active in an optimal solution, a natural relaxation is obtained by 
dropping most of them. 
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As a first step, we suppose that the integer variables x have been fixed. The resulting 
linear program is 

LP(x) ZLP(X) = max {hy: Gy ~ b - Ax, y E R~} 

and its dual is 

min (u(b - Ax): uG ~ h, u E Rr;'}. 

We can characterize whether LP(x) is infeasible or has a bounded optimal value or has 
an unbounded optimal value by using the representation of the dual polyhedron in terms 
of its extreme points and extreme rays. Let {Uk ERr;': k E K} be the set of extreme points 
of Q = {u ERr;': uG ~ h} and let {v j E Rr;':} E J} be the set of extreme rays of 
{u ERr;': uG ~ O}.NotethatifQ =1= 0, then{v j ERr;':} EJ}isalsothesetofextremerays 
of Q. From Theorem 4.10 of Section 1.4.4 we can characterize ZLP(X). 

Proposition 7.1. Thefunction ZLP(x) is characterized asfollows: 

i. IfQ = 0, then ZLP(X) = 00 ifvj(b - Ax) ~ Of or all j E J, and ZLp(X) = -00 otherwise. 

ii. IfQ =1= 0, then ZLP(X) = minkEK uk(b - Ax) < 00 if ~(b - Ax) ~ 0 for all j E J, and 
ZLP(X) = -00 otherwise. 

An immediate consequence of Proposition 7.1 is that when Q =1= 0, MIP can be stated as 

(7.1) 

Z = max (cx + min uk(b - AX») 
x kEK 

vj(b-Ax)~O for}EJ 

xEX. 

This yields the Benders' representation ofMIP given by the following theorem. 

Theorem 7.2. MIP can be reformulated as 

(MIP') 

z=max1] 

1] ~ cx + uk(b - Ax) for k E K 

vj(b - Ax) ~ 0 for} E J 

X EX,1]ER 1• 

Proof If there is no x E X such that vj(b - Ax) ~ 0 for all} E J, then ZLP(X) = -00 for 
all x E X and Z = -00. If there is an x E X such that vj(b - Ax) ~ 0 for all} E J and 
Q = 0, then K = 0 so that Z = 00; otherwise MIP' is equivalent to (7.1). • 

MIP' is Benders' reformulation. Since it typically has an enormous number of 
constraints, a natural approach is to consider relaxations obtained by generating only 
those constraints corresponding to a small number of extreme points and extreme rays. 
An algorithm based on such a relaxation will be discussed in the next chapter. 
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2 

L-----~----------------------------Ul 234 

Example 7.1 

Figure 7.1 

max 5xI - 2X2 + 9X3 + 2YI - 3Y2 + 4Y3 

5xI- 3X2 + 7X3 + 2YI + 3Y2 + 6Y3 ~-2 

4xI + 2X2 + 4X3 + 3YI - Yz + 3Y3 ~ 10 

Xj ~ 5 for j = 1, 2, 3 

x E Z!, Y ER!. 

Here we suppose that X = {x E Z!: Xj ~ 5 for j = 1, 2, 3}. 
In Figure 7.1 we show the polyhedron {u E R~: uG ;;;, h} 

2uI + 3U2;;;' 2 

3uI - u2;;;,-3 

6Ul + 3U2;;;' 4 

u ER;. 
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The extreme points of this polyhedron are u 1 = (1 0), u2 = (~ 1), u3 = (0 ~), and 
u4 = (0 3), and its extreme rays are VI = (1 0) and v2 = (1 3). 

The resulting reformulation of the mixed-integer program is 
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z = max 'I 

'I ~ 5Xl - 2X2 + 9X3 + (-2 - 5Xl + 3X2 - 7X3) 

'I ~ 5Xl - 2X2 + 9 X 3 + 1(-2 - 5Xl + 3X2 - 7X3) + t (10 - 4Xl - 2X2 - 4X3) 

'I ~ 5Xl - 2X2 + 9X3 + 1 (10 - 4Xl - 2X2 - 4X3) 

'I ~ 5Xl - 2X2 + 9 X 3 + 3(10 - 4Xl - 2X2 - 4X3) 

~o 

(-2 - 5Xl + 3X2 - 7X3) + 3(10 - 4Xl - 2X2 - 4X3) ~ 0 

Xj ~ 5 for) = 1, 2, 3 

x E zI, 'I E R 1. 

The reader should check that an optimal solution is x = (0 3 1) and 'I = 3. 

Example 7.2 (Uncapacitated Facility Location). Here we use the alternative formula
tion ofMIP given by 

z = max cx + 'I' 

'I' ~ uk(b - Ax) for k E K 

vj(b -Ax) ~ 0 for) E J 

x EX, 'I' ERI. 

We consider the formulation given in Section 1.1.3: 

z = max - I jjXj + I I CuYu 
JEN iEI JEN 

I Y u = 1 for i E I 
JEN 

-Xj + Yu ~ 0 for i E I,) EN 

x E Bn, Y E R~rn, 

where N = {l, ... , n} and 1= {l, ... , m}. 
In this case, LP(x) is 

ZLP(X) = max I I CuYu 
iEI JEN 

I Y u = 1 for i E I 
JEN 

Yu~Xj foriEI,)EN 

Y E Rr;zn. 

Now rather than applying the Benders' reformulation directly, we will take advantage of 
the fact that LP(x) can be decomposed into m subproblems. For i E I, let 



8. Notes 

zLP(X) = max I CijYij 

and note that hp(X) = I.iEI zLp(x). 

jEN 

I Yij= 1 
jEN 

Y ij .;;; Xj for j E N 

yER~ 
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Clearly, LPi(X) is feasible and bounded for x E Bn/{o}. Hence to describe zLP(x), it 
suffices to find the extreme points of 

where Wi = (Wi!, ••• , Win)' It is easily seen that these extreme points are 

Hence 

As a result we can write the Benders' reformulation: 

(7.2) 

z = max - I jjXj + I t7i 
jEN iEI 

t7i .;;; Cik + I (Cij - CiktXj for i E I and kEN 
jEN 

which has no more than mn + 1 constraints. The standard Benders' reformulation, 
obtained directly from LP(x) without decomposition, has an exponential number of 
constraints. 

8. NOTES 

Section 11.3.1 

The concepts of relaxation and weak duality might best be attributed to the folklore of the 
field. Geoffrion and Marsten (1972) were among the first to use the term relaxation 
explicitly in the context of discrete optimization. Nemhauser (1985) gave an annotated 
bibliography of the uses of duality in integer programming and combinatorial optimiza
tion. 

Section 11.3.2 

The value function ofa discrete optimization problem appeared in Everett's (1963) rather 
informal treatment of Lagrangian relaxation and duality. Its importance was brought out 
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in much greater depth in Geoffrion's (1974) treatment of Lagrangian duality for integer 
programs. 

The value function of a knapsack problem was studied and shown to be superadditive 
by Gilmore and Gomory (1966). Gomory (1965, 1967) extended these results to group 
problems. 

The value functions of pure- and mixed-integer programs have been studied extensively 
by Blair and Jeroslow (1977, 1982, 1984, 1985). 

The general dual problem (2.4) comes from Wolsey (1981a) and Tind and Wolsey (1981). 

Section 11.3.3 

An explicit statement of a superadditive dual appears in Johnson (1973) in the context of a 
cyclic group problem. Obviously, superadditive duality is closely related to the superaddi
tive characterization of all valid inequalities (see the notes for Sections 11.2.4-11.2.7). 

Blair and Jeroslow (1977) use the superadditivity of the value function to study the 
sensitivity of the optimal value as b varies. Jeroslow (1978), Wolsey (1981b), and Blair and 
Jeroslow (1982) studied the representation of the value function by a finite number of 
C-G functions. Cook, Gerards et al. (1986) generalized these results and also derived 
upper bounds on the Chvatal rank as a function of n, independent of the data. 

Section 11.3.4 

This longest-path view of integer programs is based on Gilmore and Gomory's (1966) 
dynamic programming recursion for the knapsack problem. Also see Shapiro (1968a). 

Section 11.3.5 

The group problem was introduced by Gomory (1965), and the results of this section are 
from that article. Also see Shapiro (1970) and Wolsey (1971a,b). 

The literature on methods for solving the group problem and using it as relaxation for 
solving the general integer programming problem will be given in the notes for Sec
tion 11.6.1. 

Section 11.3.6 

Lorie and Savage (1955) proposed a simple heuristic for 0-1 integer programming that is 
equivalent to a Lagrangian relaxation with respect to all of the linear constraints. 
Nemhauser and Ullman (1968) showed that with respect to this relaxation, the problem of 
finding an optimal set of multipliers is equivalent to solving the dual of the linear 
programming relaxation; they also showed that this set of multipliers yields the same 
bound as that obtained from the linear programming relaxation. 

Everett (1963) introduced the concept of Lagrangian relaxation for structured discrete 
optimization problems, and he proved Corollaries 6.5 and 6.6, Theorem 6.7, and Corol
laries 6.8-6.10 without explicitly using Theorem 6.2. 

Brooks and Geoffrion (1966) established the connection between Lagrangian relaxation 
and column generation methods for solving large-scale linear programs [see Dantzig and 
Wolfe 1960]. Geoffrion (1974) formalized the ideas of Lagrangian duality for general 
integer programs and, among other things, proved the main theorem (Theorem 6.2). 
Related articles are Shapiro (1971) and Fisher and Shapiro (1974). 

Several approaches to closing the duality gap that arises in Lagrangian duality have 
been proposed [see, e.g., Bell and Shapiro (1977)]. 

The use of Lagrangian duality in solving structured combinatorial optimization 
problems was stimulated by Held and Karp's (1970, 1971) very successful application of it 
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to the traveling salesman problem. Some of these applications will be elaborated on in 
Sections 11.5.4 and II.6.1-1I.6.3, and several others will be cited in the notes for Sec
tion II.5.4. 

The idea of using cost splitting (Corollary 6.12) to obtain a Lagrangian dual problem 
equivalent to a linear program over the convex hull of the integer points in the intersection 
of two polyhedra appears in Ribeiro and Minoux (1985), Jornsten and Nasberg (1986), and 
Trick (1987). 

In a somewhat different manner, this approach was used by Nemhauser and Weber 
(1979) to solve set partitioning problems using a matching relaxation and by Edmonds 
(1970) and Frank (1981) in matroid intersection problems (~ee Section 111.3.5). 

Surveys of the theory, computational aspects, and applications of Lagrangian duality 
are given by Shapiro (1979b) and Fisher (1981). 

Surrogate duality is due to Glover (1968b, 1975) and Greenberg and Pierskalla (1970). 
Karwan and Rardin (1979) discussed the relationship between surrogate and Lagrangian 
duality. Fisher, Lageweg et al. (1983) applied surrogate duality to job shop scheduling 
problems. 

Section 11.3.7 

Resource or Benders' decomposition for mixed-integer programming is described in 
Benders (1962). Lemke and Spielberg (1967) described a variation of Benders' algorithm 
that is designed for 0-1 MILPs. Geoffrion (1970, 1972) extended Benders' decomposition 
to handle a more general class of none on vex optimization problems. Magnanti and Wong 
(1981) described techniques for obtaining stronger Benders-type reformulations. Wolsey 
(198lc) and Holm and Tind (1985) provided theoretical extensions to the decomposition of 
integer programs. Van Roy (1983, 1986) proposed a procedure called cross-decomposition, 
which simultaneously uses Lagrangian and Benders' decomposition. 

9. EXERCISES 

1. Formulate the packing and covering problems discussed in this chapter as integer 
programs and thereby show that they are dual problems. Do you know any cases 
where strong duality holds? 

2. Find a maximum-weight node packing on the graph shown in Figure 9.1. The 
numbers on the nodes are the weights. Give a short proof that this packing is optimal. 

Figure 9.1 
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3. A restriction ofIP is any maximization problem 

where (a) ST c;; S, and (b) ZT(X) ~ cx for x EST. 

i) What use is a restriction ofIP? 

ii) What can be said about its dual? 

4. i) Calculate the value function of the knapsack problem 

z(d) = max 7Xl + 4X2 + X3 

5Xl+3x2+2x3~d 

xEZ~. 

ii) Show that z is superadditive and nondecreasing for d E Zl. 
iii) Express z in such a way that there is a short proof that it is superadditive and 

nondecreasing. 

5. Let 

(P) z = max{cx: Ax ~ b, x EX} 

and 

(P;) Zi = max{cx: Ax ~ b, x E Xi} for i = 1, ... , n. 

Show that if Fi is dual feasible for (Pi) for i = 1, ... ,n, and X = U7~1 Xi, then 
F = maxi {F;} is dual feasible for (P). 

6. Show that the problem minxEB' fix) has a dual problem given by 

max Yo + I Yj 
JEN 

Yo + I Yj ~f(xS) for all S c;; N 
jES 

Hint: Take :Ji = {F: F(d) = Yo + yd}, the class of affine functions. 

7. i) Show that the superadditive dual of 

(IP) max{cx: Ax ~ b, x E Z"} 

is 

min F(b) 

(SD) F(aj) = Cj for j EN 

F superadditive and nondecreasing with F(O) = O. 
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ii) Show that if F is feasible in (SD), then F(Ax) = - F( -Ax) for all x E zn. 

iii) Show that LjENF(aj)xj ~ F(b) is a valid inequality for IP. 

iv) Show that ifIP is feasible for all d, the value function 

zed) = max{cx: Ax ~ d, x E zn} 

is dual optimal for all d. 

8. i) Give the superadditive dual of 

(see exercise 4). 

z = max 7Xl + 4X2 + 1x3 

5Xl+3x2+2x3~b 

xEZ~ 

ii) Find at least two dual feasible solutions when b = 13. 

iii) Use these solutions to obtain bounds when b = 15. 

9. i) Give the superadditive dual of 

max 5Xl + llx2 + 16x3 + 20X4 

Xl+ 2X2+ 3X3+ 4x4~14 

xEZ!. 
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ii) Use the superadditive description of conv(S) (see Example 3.1) to find an 
optimal dual solution. 

10. i) Formulate the problem 

XEZ~ 

as a shortest-path problem. 

ii) Solve the problem by Dijkstra's shortest-path algorithm. 

iii) Give a dual feasible solution. 

11. Use the group problem to solve 

for b = 217, 495, and 621. 

max 7Xl + 4X2 + X3 

5Xl+3x2+2x3~b 

xEZ~ 
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12. Use the group problem to solve 

max 2Xl + 5X2 

4Xl + X2 ~ 28 

xl+4x2~27 

(See exercises 1 and l3 of Section 11.1.9). 

13. Use Lagrangian duality to solve the problem of exercise 10 with b = (~). 

i) What bound is obtained by dualizing the first constraint? 

ii) What bound is obtained by dualizing the second constraint? 

iii) For what values of b is the optimal solution easily obtained? (See Corollary 6.10.) 

14. Apply Lagrangian relaxation to the integer program in exercise 12. 

i) Show that if any two constraints are dualized, the value of the Lagrangian dual 
equals the value of the linear programming relaxation. 

ii) Find a different objective function for which i is false. 

iii) Show that if any single constraint is dualized, the value of the Lagrangian dual is 
an improvement on the value of the linear programming relaxation. 

iv) Apply cost splitting to get a better Lagrangian dual. 

v) Demonstrate i-iv graphically. 

15. Consider two different Lagrangian duals for the generalized assignment problem: 

max I I CijXij 
i j 

for i EM 

I lixij ~ bj for j EN 
i 

x EBmn. 

Discuss their relative merits according to the following three criteria: 

i) ease of solution of the subproblem, 

ii) ease of solution of the Lagrangian dual, 

iii) strength of the upper bound obtained by solving the dual. 
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16. Discuss the merits of different Lagrangian duals for the capacitated facility location 
problem 

mIll I I hijYij + I CjXj 
iEM jEN jEN 

I Y ij ~ ai for i EM 
jEN 

I Yij ~ bjxj for) EN 
iEM 

Yij ~ min(ai, bJxj for i EM,) E N 

17. Consider the problem of processing n jobs on one machine. Let Pj denote the 
processing time of job), let rj denote the earliest start time, and let Wj denote the 
weight associated with job). The problem is to minimize LjEN Wjtj, where tj is the 
start time of job). Without release dates (rj = 0 for all)), the optimal job ordering is 
given by Smith's rule: Processthejobsin order 1, ... , n, where WI/PI ~ ... ~ wn/Pn. 
How can Lagrangian relaxation be used to obtain a lower bound for the problem 
with release dates? 

18. Consider the capacitated lot-sizing problem, that is, the uncapacitated problem 
formulated in Section 1.1.4 (see also Section 11.2.4) with additional capacity con
straints on the production levels Yt ~ UtXt for t = 1, ... , T. After dualizing these 
constraints, the Lagrangian subproblem is an uncapacitated problem that can be 
solved rapidly by dynamic programming (see Section 11.5.5). 
The Lagrangian dual is equivalent to a linear programming problem. Describe this 
linear programming problem in polyhedral terms. 

19. Solving the Lagrangian duals in exercise 15 is equivalent to solving the dual problem 

F( ei ) ~ cij for all i and) 
liej 

FEYft 

for certain classes of functions Yft, where ei is the ith unit vector. For each of your 
proposed Lagrangians, what is Yft? 

20. Describe the class of dual functions that correspond to the cost splitting and 
surrogate duals, respectively. Show that neither dual dominates the other. 

21. Suggest how to find optimal multipliers in the surrogate dual. 

22. Apply Benders' reformulation to the fixed-charge network problem described in 
Section 1.1.4. Discuss possible advantages of such a reformulation. 
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23. Apply Benders' reformulation to UFL (without separating the subproblems by 
client) and compare this formulation with (7.2). 

24. Write out explicitly the Benders' reformulation of the mixed-integer program 

max 2XI + X2 + 3X3 + 7YI + 5Y2 

9XI + 4X2 + 14x3 + 35YI + 24Y2 ~ 80 

-Xl - 2X2 + 3X3 - 2YI + 4Y2 ~ 10 

X E Z~, Y ER~. 



11.4 
General Algorithms 

1. INTRODUCTION 

Here we discuss approaches for finding an optimal, or E-approximate, solution of the 
linear integer programming problem 

(IP) ZIP = max{ex: xES}. 

For simplicity, in this introductory discussion, we assume S =1= 0 and ZIP < 00. Therefore, 
to solve an instance of IP, an algorithm must produce a feasible solution XO E S and an 
upper bound WO on the value of all feasible solutions such that exo = woo A general iterative 
scheme for finding XO and WO is shown in Figure 1.1. 

Many integer programming algorithms focus on the dual step by systematically 
reducing the upper bound w* but generally not producing an xES until w* = ZIP. 

Relaxation algorithms are of this type. At each iteration a relaxation of IP is solved and if 
an optimal solution of the relaxation does not yield an optimal solution of IP, the 
relaxation is refined. A general relaxation algorithm is the following. 

General Relaxation Algorithm 

Initialization: Set t = 1, w* = 00, and z* = -00. Choose S1 ;2 Sand z1 (x) ~ ex for xES. 
Iteration t: 

Step 1: Solve the relaxation ofIP: 

zk = max{zk(x): x E Sk}. 

Step 2: Optimality test. Let the solution be Xl. If Xl E Sand zk = ext, then 
w* = ext = z* and xt is an optimal solution to IP. 

Step 3: Refinement. Set w* = zk, z* = ext if xt E S, and t ~ t + 1. Choose Sit! to satisfy 
S S st;! s Sk and zt;!(x) to satisfy ex ~ zt;!(x) ~ zk(x) for xES with either Sit! =1= Sk 
or zit!(x) =1= zk(x). 

Note that in this algorithm, the sequence of upper bounds satisfies zt;! ~ zk for all t. In 
many specific instances of the general relaxation algorithm, zk(x) = ex for all t so that 
optimality is achieved as soon as an xt E S is produced. In this case, the refinement step 
satisfies Sit! C Sk for all t. It is then desirable to choose st;! s Sk \ ext}; otherwise 
zt;! = zk. 

349 
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Input 

t= 1 

Upper bound w* (possibly + (0) 

Feasible solution x* E S (may be omitted) 

z* = { ex* if x* is specified 
- 00 otherwise 

Dual iteration 

w*- min (w*, wt) 

Figure 1.1 

y 

Output 

Optimal solution x* 

ZIP =z* 

y 

Optimality test 

z*=w* 

Dual step 

N 

Primal interation 

Primal step 

xt ES 
and 

ext> z* 
? 

y 

z* - ext 
x* - xt 

N 

N 
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An important example of this type of relaxation algorithm is a/ractional cutting-plane 
algorithm. Here we assume that S = {x E Z~: Ax ~ b}. Note that to specify the algorithm, 
it suffices to give the initial relaxation and the rule for constructing Rpt+l from RPt. 

Fractional Cutting-Plane Algorithm (FCPA) 

Initialization: z1(x) = cx for all x E R~; S1 = {x E R~: Ax ~ b}. 
Refinement: zitl(X) = zk(x) for all x E R~; Sitl = Sk n {x E R~: ntx ~ nb}, where (nt, nb) 

is a valid inequality for S such that ntxt > nb. 

Observe that max{cx: x E Sk} is a linear program whose optimal dual solution ut is 
readily extended to the feasible solution (u t

, 0) to the dual ofmax{cx: x E Sit!}. The dual 
variable for the new constraint nt x ~ nb equals zero. Thus it is desirable to solve the 
sequence of linear programs 

max{cx: x E Sk} 

by a dual algorithm. Hence we can interpret the fractional cutting-plane algorithm as a 
dual linear programming algorithm for solving IP. The dual ofLpt is weakly dual to IP. The 
generation of a valid inequality corresponds to the generation of a column in the dual 
space and, consequently, to a relaxation of the dual ofLPl. 

Figure 1.2 illustrates the application of FCPA to the two-variable integer programming 
problem introduced in Chapter 11.1. 

We will not discuss here the very important question of how to choose the valid 
inequality (nt, nb) that separates xt from Sitl. In Section 3, we will give an FCPA for general 
integer programs that uses C-G inequalities. In Chapters 11.5 and 11.6 we will show how 
strong valid inequalities can be used in FCPAs for some structured integer programs and 
the general 0-1 integer program. 

4 

3 

2 

O~--------------2-------3--~---'4--------Xl 

Figure 1.2 
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Another very important type of relaxation algorithm uses an enumerative approach. 
We say that {Si: i = 1, ... , k} is a division of S if U7=l Si = S. A division is called a partition 
if Si n Sj = 0 for i, j = 1, ... , k, i *' j. 
Proposition 1.1 Let 

where {Si}7=l is a division of S. Then ZIP = maXi=l, ... , k z{P. 

Proposition 1.1 expresses the familiar concept of divide and conquer. In other words, if it 
is too difficult to optimize over S, perhaps the problem can be solved by optimizing over 
smaller sets and then putting the results together. 

The division is frequently done recursively as shown in the tree of Figure 1.3. Here the 
sons of a given node [e.g., (Sl1, S12, S13) are the sons of Sl] represent a division of the 
feasible region of their father. 

When S ~ Bn, a simple way of doing the recursive division is shown in Figure 1.4. Here 
Sb1 •• • bk = S n {x E Bn: Xj = Jj E CO, 1} for j = 1, ... , k}, and the division is a partition of 
S. 

Carried to the extreme, division can be viewed as total enumeration of the elements of 
S. Total enumeration is not viable for problems with more than a very small number of 
variables. To have any hope of working, the enumerative approach needs to avoid dividing 
the initial set into too many subsets. 

Suppose S has been divided into subsets {Sl, ... , Sk}. Ifwe can establish that no further 
division of Si is necessary, we say that the enumeration tree can be pruned at the node 
corresponding to Si or, for short, that Si can be pruned. 

Proposition 1.2. The enumeration tree can be pruned at the node corresponding to Si if 
anyone of the following three conditions holds. 

1. Infeasibility: Si = 0. 
2. Optimality: An optimal solution ifIpi is known. 

3. Value dominance: z'p ~ ZIP. 

8 22 

Figure 1.3 
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s 

sa 

SOOO SOOl SOlO SOIl S100 S101 S110 SIll 

Figure 1.4 

We would like to be able to apply Proposition 1.2 without necessarily having to solve IPi. 
To accomplish this, we use relaxation or duality. Let Rpi be a relaxation oflpi with Si s; Sk 
and zk(x) ~ cx for x E Si. 

Proposition 1.3. The enumeration tree can be pruned at the node corresponding to Si if 
anyone of the following three conditions holds. 

1. Rpi is infeasible. 

2. An optimal solution xk to Rpi satisfies xk E Si and zk = cxk. 

3. zk ~ ~IP' where ~IP is the value of some feasible solution ofIP. 

Proof Condition 1 implies Si = 0. Condition 2 implies thatxk is an optimal solution 
to IPi. Condition 3 implies z~p ~ ZIP. • 

Let Dpi be (weakly) dual to IPi. 

Proposition 1.4. The enumeration tree can be pruned at the node corresponding to Si if 
one of the following two conditions holds. 

1. The objective value ofDpi is unboundedfrom below. 

2. Dpi has afeasible solution of value equal to or less than ~IP. 

Proof Condition 1 implies Si = 0. Condition 2 implies zip ~ ZIP. • 
Comparing Propositions 1. 3 and 1.4, we see that Rpi must be solved to optimality before 

value dominance can be applied, but value dominance may be applicable with respect to 
dual feasible solutions that are not optimal. On the other hand, Rpi may yield a feasible 
solution to Ipi that establishes or improves the lower bound ~IP. 
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Example 1.1 

ZIP = max - 100Xl + 72x2 + 36x3 

- 2Xl + X2 ~ 0 

-4Xl + X3~0 

Xl + X2 + X3 ~ 1 

xEB3. 

A division is shown in the tree of Figure 1. 5. 

11.4. General Algorithms 

We use linear programming relaxation and Proposition 1.3 for pruning. The infeasibil
ity condition holds for SO since 

The optimality condition holds for S110 and S111 since these sets contain the unique 
solutions (l 1 0) and (l 1 1), respectively. Since zf~o < zl~l = 8, we have ZIP = zl~l = 8. 
Now we can apply the value dominance criterion to SIO since zj? = - 64"< ZIP. Hence 
X O = (1 1 1) is an optimal solution to IP, and ZIP = 8. -

When relaxations are used for pruning, the enumerative approach fits into the context 
of the general relaxation algorithm. Suppose we have just solved a relaxation ofIPi. In the 
refinement step, we first divide Si, say Si = Uj=l Sij. Then we form relaxations for the sets 
Sij in such a way that Uj=l S~ C Sk. 

An enumerative relaxation algorithm is frequently called branch-and-bound or implicit 
enumeration. We now give a general branch-and-bound algorithm for solving IP. In the 
description of the algorithm, :£ is a collection of integer programs {lpi}, each of which is of 
the form zip = max{cx: X E Si} where Si ~ S. Associated with each problem in :£ is an 
upper bound Zi ~ zip. 

8 

8 0 

Figure 1.5 
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General Branch-and-Bound Algorithm 

Step 1 (Initialization): 2 = {IP}, SO = S, ZO = 00, and ~IP = - 00. 

Step 2 (Termination test): If 2 = 0, then the solution XO that yielded ~IP = cxo is optimal. 
Step 3 (Problem selection and relaxation): Select and delete a problem Ipi from 2. Solve 

its relaxation RPi. Let zk be the optimal value of the relaxation and let xk be an optimal 
solution if one exists. 

Step 4 (Pruning): a. If zk ~ ZIP, go to Step 2. (Note if the relaxation is solved by a dual 
algorithm, then the step is applicable as soon as the dual value reaches or falls below ~IP') 

b. If xk $ Si, go to Step S. 
c. If xk E Si and cxk > ZIP, let ZIP = cxk. Delete from 2 all problems with Zi ~ ZIP. If 

cx~ = zk, go to Step.f; otherwise go to Step S. -

Step 5 (Division): Let {Sij}j=! be a division of Si. Add problems {lPij}j=! to 5£, where zU = zk 
for} = 1, ... ,k. Go to Step 2. 

Commercial codes for general mixed-integer programming problems use linear pro
gramming relaxations and division. We will study this class of algorithms in the next 
section. In Chapters II.S and 11.6 we will consider some special purpose branch-and-bound 
algorithms that use different relaxations or duals and other division tactics. We will also 
present cutting-plane algorithms that sometimes fail to find strong valid inequalities and 
then resort to branch-and-bound to complete the solution. 

2. BRANCH-AND-BOUND USING LINEAR PROGRAMMING RELAXATIONS 

Here we consider the general integer programming problem 

(IP) ZIP = max{cx: xES}, where S = {x E Z~: Ax ~ b}. 

We study its solution by a branch-and-bound algorithm that uses linear programming 
relaxations. This is the basic algorithm used by all commercial codes for solving mixed
integer programming problems. Merely for simplicity of notation, we confine the presen
tation to IP. Essentially, however, all of the ideas carryover unchanged to the mixed
integer program 

(MIP) ZMIP = max{cx + hy: (x, y) E T}, where T = {x E Z1, y E R~: Ax + Gy ~ b}. 

This setting is simple but general enough to enable us to discuss various properties of 
branch-and-bound algorithms such as types of divisions, tree development strategies, 
finiteness of the resulting tree, the smallest possible tree, and so on. 

In the initial relaxation, S is replaced by S~p = {x E R1: Ax ~ b}. We also take 
z R(X) = cx in each relaxation. 

Pruning Criteria 

When solving linear programming relaxations, the pruning criteria of infeasibility, 
optimality, and value dominance given in Propositions 1.3 and 1.4 are directly applicable. 
Suppose the linear programming relaxation at node i of the enumeration tree is 
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If Lpi has an optimal solution, we denote the one found by Xi. 

The pruning conditions are: 

1. SLp = 0 (infeasibility); 
2. Xi E Z1 (optimality); and 

3. zh ~ ~IP where ~IP is the value ofa known feasible solution to IP (value dominance). 
Note that if Lpi is solved by a dual algorithm, we may be able to prune before an 
optimal solution to Lpi is found. Also, we may wish to use the weaker condition 
zh ~ ~IP + E for some given tolerance E > O. 

Division 

Since we use a linear programming relaxation at each node, the division is done by adding 
linear constraints. An obvious way to do this is to take S = S1 U S2 with 
S1 = S n {x E R1: dx ~ do} and S2 = S n {x E R1: dx ~ do + 1}, where (d, do) E zn+1. If 
Xo is the solution to the relaxation 

z~p = max{cx: x E R1, Ax ~ b}, 

we can choose (d, do) so that do < dxo < do + 1. This is highly desirable since it yields 
Xo $. Sh U S[p and therefore gives the possibility that for i = 1, 2 we will obtain 
zh = max {cx: x E SLP} < z~P. 

In practice, only very special choices of(d, do) are used. 

i. Variable dichotomy. Here d = ej for some j EN. Then Xo will be infeasible in the 
resulting relaxations ifxJ $. Z1 and do = lxJJ (see Figure 2.1). Note that ifxj E B1, then the 
left branch yields Xj = 0 and the right branch yields Xj = 1. 

An important practical advantage of this division is that only simple lower- and upper
bound constraints are added to the linear programming relaxation. Thus it is only 
necessary to keep track of the bounds, and the size of the basis does not increase. 

ii. GUB dichotomy. Suppose the problem contains the generalized upper-bound con
straint I:jEQ Xj = 1 for some Q ~ N. The division is shown in Figure 2.2. Note that XO will 
be infeasible in the resulting relaxations if 0 < I:jEQ\ xJ < 1, where Q 1 is a nonempty subset 
ofQ. 

iii. Assuming that Xj is bounded (0 ~ Xj ~ k j ), we can consider each integral value of Xj 
separately (see Figure 2.3). This approach, however, is not used in commercial integer 
programming codes. 

Note that each of the divisions i-iii is a partition. 
We now consider the size of the enumeration tree. For most of the remainder of this 

section, we will assume that the division is done by variable dichotomy. 

Figure 2.1 
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Figure 2.2 

Proposition 2.1. If P = {x E R~: Ax ::::;; b} is bounded, an enumeration tree developed on 
variable dichotomies will be finite provided that at each node i that requires division, a 
dichotomy of the form (xi::::;; lxJJ, Xi ~ lxJJ + 1) is chosen where xJ is not integral. In 
particular, if wi = r max {Xi: X E P}], no path of the tree can contain more than LiEN Wi 
edges. . 

Proof Once we have added the constraint xi::::;; d for some dE {O, ... , wi - 1}, the 
only other constraints that can subsequently appear on a path from the root to a leaf of the 
tree are xi ~ d' for d' E {O, ... , d - 1} and xi ~ d for dE {l, ... , d}. It follows that the 
largest number of constraints involving Xj will occur by adding Xi ::::;; d for all d E {O, ... , 
Wi - 1}, or Xi ~ d for all dE {l, ... ,wi}, or Xi ~ d for and E {l, .. ; ,a} andxj::::;; d for all 
d E {a, ... , Wi - I}. In each of these cases, we require Wi constraints on x) and hence 
LiEN Wi in total on any path. • 

We can use Proposition 2.1 and the upper bounds given in Theorem 4.1 of Section 1.5.4 
to enforce the finiteness of the enumeration tree even when P is not bounded. 

The size of the enumeration tree is very dependent on the quality of the bounds 
produced by the (linear programming) relaxation. In particular, we have the following 
proposition. 

Proposition 2.2. If node t of the enumeration tree with constraint set Sf is such that 
max{cx: X E S~} > ZIP, then node t cannot be pruned. 

Proposition 2.2 indicates that, regardless of how we develop the tree, the bounds 
(quality of relaxations) are the primary factor in the efficiency of a branch-and-bound 
algorithm. Nevertheless, tree development strategies, such as which subproblem 
corresponding to an unpruned node should be considered next and which fractional 
variable should be selected for the dichotomous division, are also important. We now 
consider these problems. 

Figure 2.3 
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N ode Selection 

Given a list:£ of active subproblems or, equivalently, a partial tree of un pruned or active 
nodes, the question is to decide which node should be examined in detail next. Here there 
are two basic options: (1) a priori rules that determine, in advance, the order in which the 
tree will be developed; and (2) adaptive rules that choose a node using information 
(bounds, etc.) about the status of the active nodes. 

A widely used (essentially) a priori rule is depth-jirst search plus backtracking, which is 
also known as last in, first out (LIFO). In depth-first search, if the current node is not 
pruned, the next node considered is one of its two sons. Backtracking means that when a 
node is pruned, we go back on the path from this node toward the root until we find the 
first node (if any) that has a son that has not yet been considered. Depth-first search plus 
backtracking is a completely a priori rule if we fix a rule for choosing branching variables 
and specify that the left son is considered before the right son. An example of depth-first 
search plus backtracking with left sons first is given in Figure 2.4. The nodes are numbered 
in the order in which they are considered. An underlined node is assumed to have been 
pruned. 

Depth-first search has two principle advantages: 

1. The linear programming relaxation for a son is obtained from the linear program
ming relaxation of its father by the addition of a simple lower- or upper-bound 
constraint. Hence given the optimal solution for the father node, we can directly 
reoptimize by the dual simplex algorithm without a basis rein version or a transfer of 
data. 

2. Experience seems to indicate that feasible solutions are more likely to be found deep 
in the tree than at nods near the root. The- success of a branch-and-bound algorithm 
is very dependent on having a good lower-bound g:IP for value dominance pruning. 

The default option in most commercial codes is depth first when the current node is not 
pruned. At least one son is considered immediately. Rules for choosing a son will be 
discussed later. However, when a node is pruned, the next node is not generally deter
mined by the backtracking strategy. Before explaining how this selection is done, we 
mention one other essentially a priori rule, which is the opposite of depth-first search. The 

Figure 2.4 
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level of a node in an enumeration tree is the number of edges in the unique path between it 
and the root. In breadth-first search, all of the nodes at a given level are considered before 
any nodes at the next lower level. While this means of node selection is not practical for 
solving general integer programs using linear programming relaxations, it has some 
interesting properties, one of which is its use in heuristics. 

Several reasonable criteria can be given for choosing an active node: 

a. Choose a node that has to be considered in any case. By Proposition 2.2, if there is a 
unique node with the largest upper bound it must be considered. This argument mitigates 
for the rule best upper bound; that is, when a node has been pruned, next select from all 
active nodes one that has the largest upper bound. Thus if it is the set of active nodes, 
select an i E it that maximizes Zi. 

b. Choose a node that is more likely to contain an optimal solution. The reason for this 
is that once we have found an optimal solution, even if we are unable to prove immedi
ately that it is optimal, we will have obtained the largest possible value of ZIP' This is very 
important for subsequent pruning. Later we will give a simple procedure for estimating 
zip. Suppose Zi ~ Zi is an estimate of zip. The rule best estimate is to choose an i E it that 
maximizes Zi. 

c. Although trying to find an optimal solution is highly desirable, it may be more 
practical to try to find quickly a feasible solution x such that cx > ~IP' The criterion 

(2.1) 
-i 
Z - ZIP 

max -i "," 
iE.2 Z - Zl 

which we call quick improvement, attempts to achieve this objective. Note that node i with 
Zi > ~IP will be preferred to node} with zj ~ ~IP' Moreover, preference will be given to 
nodes for which Zi - Zi is small. One expects that such nodes will yield a feasible solution 
quickly. Quick improvement is used in some commercial codes as the default option once 
a feasible solution is known. 

Branching Variable Selection 

Suppose we have chosen an active node i. Associated with it is the linear programming 
solution Xi. Next we must choose a variable to define the division. We restrict it to the 
index set N i = {j EN: xj $. Zl}. Empirical evidence shows that the choice of a} E Ni can 
be very important to the running time of the algorithm. Frequently, there are a few 
variables that need to be fixed at integer values and then the rest turn out to be integer
valued in linear programming solutions. Because robust methods for identifying such 
variables have not been established, a common way of choosing a branching variable is by 
user-specified priorities. This means that an ordering of the variables is specified as part of 
the input and that branching variables are selected from N i according to this order. For 
example, a 0-1 variable corresponding to whether a project should be done would be given 
higher priority than 0-1 variables corresponding to detailed decisions within the project. 

Other possibilities involve degradations or penalties. Degradation attempts to esti
mate the decrease in Zi that is caused by requiring Xj to be integral. Suppose 
Xj = xj = lxjj + Ij and/j > O. Then by branching on xj, we estimate a decrease of 
Dt = pji Ij for the left son and Dt = pt(1 - Ij) for the right son. The coefficients {Pji, pt} 
can be specified as part of the input or estimated in several different ways (e.g., by using 
dual information at the node or by using information on previous branchings involving 
Xj). 
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Penalties involve more elaborate calculations to determine the coefficients {pji, pt} 
and yield a lower bound on the decrease in Zi. They were used in early commercial codes 
but are not in favor now because they are too costly to compute relative to the value of the 
information they give. An illustration of penalty calculations will be given in Example 2.1. 

Given {Dji, Dt} for j E N i
, a common way to choose the branching variable is by the 

criterion 

(2.2) max min{Dj--:i , Dj"!-i}. 
JEN' 

The idea is that a variable whose smallest degradation is largest is most important for 
achieving integrality. When Dji = fj and Dji = 1 - fj, criterion (2.2) is called maximum 
integer infeasibility. 

Other rules are also used, for example, maXjENi max{Dji, Dt}. Here the idea is that one 
branch may easily be pruned by value dominance. 

When the branching variable is chosen by (2.2), it is recommended that we next 
consider the subproblem corresponding to the son that yields the smaller degradation. 
Thus we select the subproblem corresponding to the left son if and only if Df :::::; Dt. 

Now we can compute Zi by assulning that the degradations for each variable are 
independent. Thus if Dji ~ Dt, we estimate 

Zi = zh - Df - I min{Dki
, Dti

}. 
kENi\{j} 

Note that if we are required to branch to the right son of node i, the estimate becomes 

Example 2.1 

Zi = zLp - Dt - I min{Dki
, Dti}. 

kENi\{j} 

ZIP = max 7xJ + 2X2 

- XI + 2X2 ~ 4 

5xI + X2 ~ 20 

- 2x I - 2x 2 :::::; -7 

xEZ~. 

We introduce slack variables (X3, X4, X5) E R~. Although the slack variables will be integral 
when X I, X 2 are integral, there is no need to require them to be integral. 

Solving the linear programming relaxation gives the optimal basic solution 

3 16 332 
ZLP + TIX 3 + TIX 4 11 

1 2 36 
Xl - -X3 

11 + TIX 4 11 

5 1 40 
X2 + TIX 3 + TIX 4 11 

8 6 75 
TIX

3 + TIX 4 + X5= 
11 

(Xl, X2) E Z~, (X3, X4, X5) E R~. 
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Thus z~P = 30n and Xo = (1f WOO ff). 
Since (x?, x~) $. Z2, one must branch on either Xl or X2. We use (2.2) to choose between 

them. 
Suppose we consider the criterion of maximum infeasibility; then Djo = fJ and 

DjO = 1 - fJ for j = 1, 2. Hence DJo = It, DtO = ft, D"2° = n, and D 20 = n. By (2.2), we obtain 

. (D-O D+O) (3 4) 4 D+O 
m~£ mIn j, j = max TI' TI = TI = 2· 

Hence we would branch on X2 (X2 ~ 3, X2 ~ 4) and examine the right son. 
Now we illustrate the use of penalties to determine the branching variable. From the 

representation of the optimal solution, we see that if x 3 or x 4 increases, x 2 decreases. Hence 
we can set P 2° = 00 • Following this approach, Z LP decreases by ~ (~) per unit decrease in x 2 

if X3 (X4) is made basic; hence we can set P20 = mina, ~) ==~. Similarly, pta = 3 and 
p~ = ~ = 8. Hence 

Now 

. (D-o D+O) (24 21) 24 D- D+ mr£ mIn j, j = max TI' 55 = TI = 1 = 1· 

Thus we would branch on x 1. Empirical evidence indicates that these calculations are not 
worthwhile for large problems. 

We choose to branch on X2 (see Figure 2.5). Adding the constraint X2 ~ 4 (X2 - t = 

4, t ~ 0) to the current optimal solution gives the node 1 relaxation. The full set of 
equations is given by 

3 16 332 
ZLP + TIX 3 + TIX 4 11 

1 2 36 
Xl - -X3 

11 + TIX 4 11 

5 1 40 
X2 + TIX3 + rrX4 

11 

8 6 75 
TIX 3 + rrX4 + Xs TI 
5 1 4 
TIX

3 + rrX4 +t=--
11 

x, t ~ O. 

Note that in a computer system the bound constraints would not be added explicitly. The 
dual simplex algorithm shows immediately that this problem is primal infeasible (see the 
last constraint). Hence node 1 is pruned by infeasibility. 
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The only remaining node on the candidate list (node 2) corresponds to the original IP 
with X2 ~ 3 (X2 + s = 3, s ~ 0) added. The resulting linear programming relaxation is 

3 16 332 
ZLP + TIX3 + rrX4 11 

1 2 36 
Xl - -X3 

11 + TIX4 
11 

5 1 40 
X2 + TIX3 + TIX4 

11 

8 6 75 
TIX3 + TIX4 + X5 11 

5 1 7 
- -X3 

11 
- -X4 

11 
+ s = 

11 

After one iteration of the dual simplex algorithm we obtain the optimal solution 

7 3 
ZLP + -X4 

5 
+ -s 

5 

1 1 
Xl + -X4 

5 
- -s 

5 

X2 + s 

2 8 
-X4 
5 

+ X5+ -s 
5 

1 11 
X3 + -X4 

5 
- -s 

5 

Thus zip = 29~ and X2 = (~ 3 7 0 2f). "5 

Feasible solution Feasible solution 

z 3 = 27 = Z Z 4 = 28 = Z = Z 
LP - IP LP - IP IP 

x4 = (4 080 1) 

. Figure 2.5 

149 
5 

17 
5 

3 

29 
5 

7 
5 

Fathomed by 
infeasibility 
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Since XI is not integral, we branch on X I and examine the left son first since IT < 1. The 
tree is shown in Figure 2.5. Adding XI ~ 3 and reoptimizing by the dual simplex method 
gives an integral solution X3 = (3 3 1 2 5) with zip = 27. Hence node 3 is pruned and 
we set ZIP = 27. 

The-only remaining node is node 4. By solving the linear programming relaxation of 
the node 4 problem, we obtain X4 = (4 0 8 0 1) and ztp = 28. Hence node 4 is 
pruned and ZIP = 28. The list of active nodes is now empty, so the algorithm terminates 
with the optimal solution X = X4 and ZIP = 28. 

Example 2.2 

ZIP = max 77xI + 6X2 + 3X3 + 6X4 + 33xs + 13x6 + 1l0x7 + 21xs + 47x9 

774xI + 76x2 + 22x3 + 42x4 + 21xs + 760X6 + 818x7 + 62xs + 785x9 ~ 1500 

67xI + 27x2 + 794x3 + 53x4 + 234xs + 32x6 + 797x7+ 97xs + 435x9 ~ 1500 

xEB9 

We solved this problem by a branch-and-bound algorithm contained in a mathematical 
programming system. The tree is shown in Figure 2.6. Additional information about the 
nodes of the tree is given in Table 2.1. The linear programming relaxations are solved in the 
order given by the node numbers. 

The algorithm begins by solving the initial linear programming relaxation. As indicated 
in Table 2.1, its value is z~p = 225.7 and there are two fractional variables. Associated with 
each fractional variable are two reduced costs. One is the reduced cost of the nonbasic 
variable that becomes basic if the fractional basic variable goes to its upper bound of 1; the 
other is the reduced cost of the nonbasic variable that becomes basic if the fractional 
variable goes to its lower bound ofO. By multiplying each of these costs by the distance that 

Figure 2.6 
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the fractional variable must move to achieve the corresponding bound, we estimate 
upward and downward costs. (lfthe reduced cost is less that 0.1, the algorithm uses 0.1 in 
place of the reduced cost.) The smaller of the upward and downward costs is used for the 
estimated cost of a fractional variable, and then the fractional variable with the largest 
estimated cost is chosen for branching. In the example, it is Xl. 

Now we choose a direction for branching by comparing the upward and downward 
estimated costs for Xl, and we branch in the direction of the smaller of the two estimated 
costs. In the example, we set x I = 1 and solve the resulting linear program to obtain the 
solution at node 1. The algorithm next decides whether to consider the opposite branch 
X I = 0 or to branch from node 1. This is done by comparing the estimated solution value i 1 

with the estimated solution value at node 0 had the degradation been computed using the 
downward cost for x 1. The larger of these two values determines the next node. In the 
example, we solve the problem with X I = O. 

In general, after considering the first branch from a node, the algorithm either considers 
the opposite branch or branches down from the node just created. If the first branch is 
pruned, the algorithm next considers the opposite branch. If the first branch is not pruned, 
the algorithm chooses between the two possibilities as indicated above. 

When both branches of a node have been considered in turn, there are three possibili
ties. If neither has been pruned, the algorithm selects the node corresponding to one of 
them. This selection is made by the criterion of higher estimated solution value until an 
integral solution has been found; thereafter it is made by the quick improvement rule 
given by (2.1). In the example, node 2 is chosen for division before node 1 because 
i 2 = 175.9> 162.6 = i 1

• If one of the two branch nodes has been pruned, the algorithm 
selects the node corresponding to the other. If both have been pruned, all active nodes are 
considered according to the criterion of highest estimated value until an integral solution 
has been found; thereafter they are considered according to the quick improvement rule. 

Table 2.1. 

LP Solution Number of Variable Chosen First Estimated 
Nodei Value (zLp) Fractional Variables for Branching Direction Solution Zi 

0 225.7 2 XI 200.2 
1 217.8 2 X7 1 162.6 

2 204.8 2 X9 0 175.9 
3 185.1 2 X6 0 175.9 
4 177.1 1 X3 0 175.9 

5 176 0 
6 122.2a 
7 42.4a 

8 176.0 2 X9 0 142.8 

9 155.3a 

10 170.6a 

11 186.4 2 X7 132.3 
12 148a 

13 154.3a 

14 167.6a 

a The node was terminated without necessarily achieving primal feasibility because the LP value fell below the 
value of a feasible integer solution. 

b The first feasible integer solution is found at node 5. It is x 5 = (0 1 0 1 1 0 1 1 0). 
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In the example, we branch down from node 2 to node 5, where we find the integral 
solution x = (0 1 0 1 1 0 1 1 0) of value 176. The opposite branch node 6 is 
pruned because of its linear programming bound. Now nodes 1, 2, and 3 are candidates 
and node 1 is selected by the quick improvement rule. The rest of the calculation is self
explanatory. 

Generalized U pper-Bound Constraints 

Many integer programs with binary variables have generalized upper-bound constraints of 
the form 

(2.3) L Xj = 1 for i = 1, ... ,p, 
jEQ, 

where the Q/s are disjoint subsets of N. Here we explore the branching scheme given in 
Figure 2.2, which has proved to be a very efficient way of handling these constraints and is 
widely used in mathematical programming systems. 

Suppose in a solution ofa linear programming relaxation we have 0 < Xk < 1 for some 
k E Qi' Conventional branching on Xk is equivalent to Xk = 0 or LjEQ,\{k} Xj = 0 since the 
latter equality is equivalent to Xk = 1. Nowunless there is a good reason for singling out Xk 

as the variable that is likely to equal 1, the Xk = 1 branch probably contains relatively few 
solutions as compared to the Xk = 0 branch. If this is the case, almost no progress will have 
been made since the node with x k = 0 corresponds to nearly the same feasible region as 
that of its father. 

It appears to be more desirable to try to divide the feasible region of the father roughly 
equally between the sons. To accomplish this, we consider the branching rule 

(2.4) L Xj = 0 or 
jEQ) 

The conventional rule is the special case of(2.4) with QJ = {k}. We can use (2.4) for any Ql 
such that k E Q} and LjEQ! Xj < 1. It seems reasonable to take Q} and Q \ Ql of nearly 
equal cardinality. 

A simple implementation of the branching rule (2.4) is obtained by indexing the 
variables in (2.3) as XiI' Xi z' ••• ,Xi,. The choice of Q] is then specified by an index j, 
1 ~j ~ t - 1, and QJ = {iJ, ... , i). 

Example 2.3 

ZIP = max 50Xl + 47x2 + 44x3 + 41x4 + 38xs + 36x6 + 31x7 + 29x8 + 27x9 
+ 25xlO + 23x ll + 21xl2 + 20x!3 
13 

L (21 - j)Xj ~ 22 
j=l 

The solution is shown in the tree of Figure 2.7, where beside each node the solution of 
the linear programming relaxation is given. 
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0000. 
ZLP = 55, Xl = 1, X13 = %, Xj = 0, otherwise 

I I I 
zLP = 50, Xl = 1, Xj = 0, 

otherwise 

2 2 2 
zLP = 54o/t1, xl = ~1' xl2 = ';1, 

X} = 0, otherwise 

3 3 3 
zLP = 51, x7 = 1, Xj = 0, Infeasible 

otherwise 

(optimal solution) 

Figure 2.7 

We leave it to the reader to show that if conventional branching had been used at node 
2, a much larger enumeration tree would have resulted. 

Piecewise Linear Functions 

In Section I.1.4 we showed how a piecewise linear functionf(y) (see Figure 2.8) could be 
represented by a linear function with constraints on the variables. 

For any y = I:J=o a)I,j, where 

(2.5) 

we have 

t 

I Aj = 1 and Aj E R~ for j = 0, ... , t, 
j=O 

t 

fey) = If(a)Aj, 
j=O 

provided that no more than two A/s are positive; and if Aj > ° and Ak > 0, then k = j - 1 or 
j + 1. 

f(y) 

~----~----~--------------~----------~---------y 

Figure 2.8 
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k 

E 
j=O 

Figure 2.9 

t 
E }..)=o 

j=k+2 

367 

As noted in Section 1.1.4, these conditions on the A/S can be represented using linear 
constraints and binary variables. But, within the scope of a branch-and-bound algorithm, 
it is more efficient to enforce the nonlinear constraints through branching. The approach 
is similar to the treatment of generalized upper-bound constraints. 

If Ak > 0, then either An = ... = Ak-l = ° or Ak+l = ... = At = 0. Hence 

(2.6) 
k-l 

I A; = ° or 
j=O 

t 

I Aj = ° for k = 1, ... , t - 1. 
j=k+l 

Moreover,if1 = (10, ... , 1t)satisfies(2.5)with1k > ° and 1, > ° for some I ~ k + 2, we can 
use (2.6) with index k + 1 for branching (see Figure 2.9). It is important to note that the 
solution 1 is infeasible along both branches. 

Branching strategies for using the constraints (2.4) and (2.6) are left for the reader to 
develop. 

3. GENERAL CUTTING-PLANE ALGORITHMS 

We begin this section with a fractional cutting-plane algorithm (FCPA) for pure-integer 
programs that uses Gomory cuts. The main result is that the Gomory FCPA is finitely 
convergent. We then extend the algorithm to mixed-integer programs. The last topic of 
this section is a primal cutting-plane algorithm for pure-integer programs. It progresses by 
generating adjacent extreme points of the convex hull of feasible integral solutions. 

Consider an equality-constrained integer program 

max {ex: x Ese}, where se = {x E Z~: Ax = b}, 

which for the rest of this section will be written as 

(IP) max{xo: (xo, x) E SO}, where SO = {xo E ZI, X E Z~: Xo - ex = 0, Ax = b}. 

We suppose that an optimal basis for the linear programming relaxation has been 
obtained, so IP can be written as 

(3.1) 

maxxO 

XB i + I aijxj = aiO for i = 0, 1, ... , m 
jEH 

XBo E Z, XBi E Zl for i = 1, ... , m, Xj E Zl for j E H, 

where Xo = x Bo' X Bi for i = 1, ... ,m are the basic variables and where Xj for 
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j E HeN = {l, ... , n} are the nonbasic variables. Since the basis is primal and dual 
feasible, we have aiD ~ 0 for i = 1, ... ,m and aO) ~ 0 for j E H. 

Suppose in (3.1) there exists an i such that aiD $:. Zl. The results of Section II. 1.3 yield the 
following proposition. 

Proposition 3.1. (Gomory fractional cut) !faiO f£. Zl, then 

L fijx) = fiD + Xn+h Xn+1 E Zl, 
)EH 

where fij = aij - laijJ for j E Hand fiD = aiD - laiDJ, is a valid equality for so. 

Example 3.1. Our standard example written in equality form is 

maxxo 

Xo - 7xI - 2X2 o 
- XI + 2X2 + X3 4 

5xI + X2 + X4 20 

- 2x I - 2x 2 + X 5 - 7 

Xo E ZI, x) E Zl for j = 1, ... , 5. 

An optimal solution to the linear programming relaxation is 

3 16 332 
Xo + TIX3 + TIX4 11 

1 2 36 
XI - TIX3 + TIX4 11 

5 1 40 
X2 + TIX3 + TIX4 11 

8 6 75 
TIX 3 + TIX 4 + X5 = U' 

where X3 = X4 = o. 
Generating the fractional cut from row 0, we obtain 

In terms of the original variables, the cut is 2x I + X2 ~ 10. 
The Gomory FCPA is just the general FCPA given in Section 1, with all of the generated 

valid inequalities being Gomory cuts. 

Initialization: Set t= 1, z1(x) = Xo, S1 = {xo E R 1, X E R~: Xo - ex = 0, Ax = b}. 
Iteration t: 
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Step 1: Solution of the linear programming relaxation. Solve 

max{xo: (xo, x) E Sk}. 

IfRpl is feasible and has an optimal solution, suppose the solution is (xb, Xl). (See the 
remark below ifRp1 has unbounded optimal value.) 

Step 2: Optimality test. If Xl E Z~, then Xl is an optimal solution. 

Step 3: Infeasibility test. IfRpl is infeasible, then IP is infeasible. 

Step 4: Addition of a cut. Choose a row X Bi + LjcHt a~jxj = a~o with a~o ff Z 1. Let 

L fUXj - Xn+t = fiO, Xn+t E Zl 
jcHt 

be the fractional Gomory cut for the row. Set 

Step 5: t +- t + 1. 

When the cut is added, the new basis, which includes x n+t as a basic variable, is dual 
feasible. Primal feasibility is violated only by X n+l < O. Hence it is natural to solve Rpt+l by 
the dual simplex method. 

If Rpl is unbounded, then by Corollary 6.8 of Section 1.4.6 we have that IP is either 
unbounded or infeasible. Moreover, by Theorem 4.1 of Section 1.5.4, ifIP is feasible, then 
there is a feasible solution with LicN Xi ~ d, where d is a suitably large integer. Hence we 
can add the constraint LicN Xj ~ d to RPI. Then IP is unbounded if and only if the 
modified problem has a feasible solution. 

Example 3.1 (continued). As noted above, the solution of the linear programming 
relaxation Rp1 is 

(xA,x') = (X6, xl, ... ,xl) = C~2 ~~ ~~ 0 0 ~n. 

Also, X2 + nX3 + TIX4 = 1? Generating the fractional cut from this row yields 

An optimal solution to Rp2 is 

( 2 2 2) (149 17 Xo, X b ••• ,X6 = -5- 5 3 ~ 0 2: 0). 
Also, Xo + ~X4 + ~X6 = 29~. Generating the next fractional cut from this row yields 



370 11.4. General Algorithms 

An optimal solution to Rp3 is (29 1f i ¥ ° 1f 1 0). Also, X2 - !X4 + iX 7 = i. 
From this row, the fractional cut is 

Xg E Zl. 

The optimal solution to Rp4 is (28 4 0 8 0 1 3 
to IP. 

0), which is also optimal 

In terms of the variables Xj, and X2, the three added cuts are X2 ~ 3, 
2x, + X2 ~ 9, and 3x, + X2 ~ 12 (see Figure 3.1). 

Finite Convergence 

We now give some additional specifications on the Gomory FCPA which guarantee that it 
converges finitely. We suppose that 

{x E R1: Ax = b} ~ {x E R1: L xi ~ d} 
iEN 

for some suitably large d E Zl. As noted above, this is without loss of generality. 
The convergence argument depends on a lexicographic decreasing sequence of solution 

vectors {Xh, Xl}, t = 1, 2, ... , which can be obtained, as will be explained soon, by solving 
a sequence oflinear programs by a lexicographic dual simplex algorithm. Recall that x ~ Y 
if there exists a k such that Xk < Yk and Xi = Yi for i < k. Also, x 1;. Y if x ~ Y or x = y. 

The algorithm finds the lexicographically largest element in Sa or shows that So is 
empty. Since the objective value is the first component of (xo, x), a lexicographically 
largest element is optimal. Let cj = max(O, cJ and Cj = mineO, ci)' Since ° ~ xi ~ d for 
j E N, it follows that if (xo, x) E SO we obtain 

(d L Cj, 0, ... , 0) 1;. (xo, x) 1;. (d L ci, d, ... , d). 
iEN iEN 

3 

2 

o 2 3 4 

Figure 3.1 
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Let ci = (d LjEN cj, d, ... ,d). We will show that the cuts in the Gomory FCPA can be 
chosen so that after t cuts have been added it will follow that (xo, x) E SO implies 
(xo, x) l;;. at, where at E zn+1 and at !::. at-I. It then follows that the total number of cuts is 
bounded. 

The Lexicographic Dual Simplex Algorithm 

Consider a basic solution to the linear programming relaxation of(3.1) written in the form 

(3.2) 

maxxo 

Xi + I aUxj = aiQ for i = 0, 1, ... , n 
jEH 

Xi ?:: 0 for i = 1, ... , n, 

where H is the index set of non basic variables. The representation (3.2) contains a row for 
each variable. Thus for i E H we have the trivial identity Xi - Xi = 0, that is, 
aii = -1, ajQ = 0, and au = 0 for} E H \ {i}. The basic solution obtained from (3.2) is 
Xi = aiQ for i = 0, ... , n. 

Since the constraint set is bounded, there is a dual feasible basis, that is, a basis with 
aOj ?:: 0 for all } E H. Thus if aOj > 0 or (alj, ... , anJ ~ 0, we have aj = (aoh alj, ... , 
anj) ~ O. However, ifaOi = 0 and (alh ... , anj) f 0 we add the redundant equation 

(3.3) y + I Xj = d, y ?:: 0 
jEH 

as the second row of(3.2). Now (1, alh ... , anJ ~ 0 so that (aOh 1, a lh ... , anj) ~ O. Hence 
we assume that we have a basic solution to the linear program that satisfies aj ~ 0 for 
}EH. 

Proposition 3.2. If aiQ?:: 0 for i = I, ... ,n and aj ~ 0 for } E H, then 
(xo, x) = ao = (aoo, alO, ... , ano) is the lexicographically largest feasible solution to (3.2) 
and is optimal. 

Proof By hypothesis, (xo, x) = ao is feasible. Moreover, ao is the lexicographically 
largest feasible solution since any other feasible solution is of the form ao - LjEH ajxj 
and aj ~ 0 with Xj?:: 0 for all } E H. Finally, the lexicographically largest solution 
maximizes Xo. • 

We now give a finite simplex algorithm for finding the lexicographically largest feasible 
solution to (3.2). 

Proposition 3.3. Suppose (xo, x) = aoP - LjEHP a)Xj is a basic solution with dj ~ 0 for 
} E HP andafo < O. A dual simplex pivot that makes Xi nonbasic yields ag+ 1 !::. al. 

Proof Suppose k E HP and x k is the variable to become basic. Then afk < 0 and 
a~+l = a~ - (afo I afk)a~ !::. ab since a~ ~ 0 and (afo I afk) > O. • 

Thus we need to give a rule for choosing the variable to enter the basis so that af+l ~ 0 
for all} E HP+l. 
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Proposition 3.4. Suppose amP < 0, O!j !> 0 for} E HP, and Xi is chosen as the variable to 
leave the basis. Let Hf = {j E HP: (fij < a}. If Hf = 0, then there is no feasible solution. 
Otherwise choose k E Hf to satisfy 

1 -P L 1 -P It II· HP \ {k} _P ak > -P aj or a ) E i 
aik aij 

(3.4) 

and also choose Xk as the variable to become basic. Then ar I !> 0 for all} E HP+ 1 • 

Proof If Hf = 0, then Xi = afo - LjEHP a~xj < 0 for all feasible solutions since afo < 0 
and a~ ~ 0 for all} E HP. 

Now suppose k E Hf is chosen to satisfy (3.4). Note that because the system of 
equations contains the identitiesxj - Xj = 0 for all} E HP, a~ cannot be a scalar multiple of 
af for any} E Hf\{k}. Hence (3,4) uniquely determines k. We have 

a. af'tl = - (l / afk)a~ !> 0 since afk < 0 and a~ !> o. 
b. For) E HP \ {k}, we have ar1 

= CPj - (a~ / afk)a~. There are two cases. If 
. h -p+l L o· -P L 0 -P L 0 d (-P / -P) 0 If· HP \ {k} ) E HP \ Hf, t en a j > SInce a k > ,a j > an a ij a ik ::::; . ) E i , 

then at1 !> 0 by (3.4). • 

Theorem 3.5. If we begin with a basic solution satisfying aJ !> 0 for all} E SO and apply 
the dual simplex pivoting rule given in Proposition 3.4, then in afinite number of pivots we 
either show that (3.2) has no feasible solution or find the lexicographically largest solution. 

Proof Since the sequence {aiD is lexicographically decreasing, no basis can be 
repeated. • 

Now we return to the Gomory FCPA and suppose that we have found (Xb, xt), the 
lexicographically largest solution to RPt. If (Xb, xt) E zn+l, we have solved IP. So suppose 
this is not the case. 

Proposition 3.6. Let (Xb, xt) be the lexicographically largest solution to Rpt and suppose 
.xi E Zlfor i = 0, ... , s - 1 and Xs fJ. ZI. Let at = (xb, ... ,Xs-I> [XsJ, d, ... , d). If(xo, x) 
is afeasible solution to IP, then (xo, x) 1; at. 

Proof If (xo, x) is feasible to IP, then (xo, x) E zn+l, Xj ::::; d for} EN, and 
(xo, x) J, (xb, xt). The vector at is the lexicographically largest vector that satisfies these 
properties. • 

Now all we need to do is produce a Gomory cut so that (xb+1
, xt+l), the lexicographically 

largest solution to Rpt+1, satisfies (xb+1, xt+l) !( at. Then, either (xb+1, xt+l) E zn+l and we are 
done or at+1 !( at. 

Proposition 3.7. Let (Xb, xt) and at be defined as in Proposition 3.6. By adding the cut 
~ I' I' ZI d .. . b· (t+l 1+1) L t ~jEHljsjXj - Xn+t = jsO, Xn+t E +, an reoptlmlzlng, we 0 tam Xo ,X ::::; a. 

Proof It suffices to consider the first pivot. In this pivot, the variable that becomes 
nonbasic isxn+t sincexn+t = - Iso < 0 andxt ~ O. Letxk be the variable to become basic and 
let (Xb, .:e) be the solution after one pivot. Then 
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where a~ !;.. ° and Iso / Isk > 0. There are two cases. 

i. There exists an i ~ s - 1 such that a~k =#= 0. Since a~ !;.. 0, its first nonzero component 
a~k is positive and q ~ s - 1. Hence, we obtain x~ = x~ for i = 0, ... , q - 1 and 
x~ < x~. Thus (Xb, xt) ~ cl. 

ii. Here a~k = ° for i = 1, ... , s - 1. Since Isk =#= ° and a~ !;.. 0, we have a~k ~ Isk > 0. 
Hence x~ = x~ for i = 0, ... ,s - 1 and x~ ~ lx~J. Hence (Xb, xt) k; at. • 

We preserve the order of the original equations by putting the equations for the cuts at 
the end. Moreover, since the slack variable x n+t for the tth cut becomes nonbasic after the 
cut is added, we have the trivial equation Xn+t - Xn+t = 0. If Xn+t becomes basic in a 
subsequent pivot, its value is positive and the cut is no longer active. At this point, we drop 
the cut, and hence X n+(, from the problem. This implies that, for computational purposes, 
we only need to keep the n + 1 equations Xi + LjEHI a~jxj = a~o for i = 0, ... ,n. Note that 
these equations will, in general, contain slack variables from cuts. The remaining equa
tions are trivial identities. By Proposition 3.4, the vectors {aJ}jEH are lexicographically 
positive, so the addition and deletion of cut equations does not affect the properties of the 
lexicographic dual simplex method. 

Theorem 3.8. If the Gomory FCPA is executed by choosing thefractional cut from the row 
of lowest index whose corresponding variable is not an integer, and the resulting linear 
program is solved to obtain a lexicographically largest solution (i.e., by the lexicographic 
dual simplex method), then after at most (d + 1 )n+l (dLjEMCl - Cj + 1)) cuts, the algorithm 
finds an optimal solution or shows that IP is infeasible. 

Proof By Propositions 3.6 and 3.7, the number of cuts is bounded by the number of 
vectors y E zn+l that satisfy 

( d ,2 Cj, 0, ... , 0) k; y k; (d ,2 cl, d, ... , d). 
JEN JEN 

In addition, we have added another factor of (d + 1) to the bound to accommodate the 
upper-bound constraint LjEN Xj ~ d. • 

Example 3.1 (continued). Here we apply the finite Gomory FCPA. After pivoting, each 
cut row is discarded. 

The solution to Rp l is (xb, Xl) = (3on- if WOO tT). Since Xo + rrX3 + 1fX4 = 30n, 
we add the cut ftX3 + nX4 = n + X6, X6 E Zl. 

The solution to Rp2 is (30 ~ .if j ° .If). Since x I + 1X4 - tX6 = .if, we add the cut 
tx 4 + 1X 6 = 1 + X 7, X 7 E Z l. 

The solution to Rp3 is (29t 1 1 1 ° 5). Since Xo + 1X4 + ~X7 = 291, we add the cut 
tX4 + !X7 = ! + Xg, Xg E Zl. 

The solution to Rp4 is (28~ ~ f ° ~ ~). Since Xo + §X3 + ~X8 = 28~, we add the 
cut -§X3 + ~X8 = ~ + X9, X9 E Z~. 

Reoptimizing yields the optimal solution (28 4 ° 8 ° 1). 
Note that the bounds Xl ~ 4andx2 ~ 4 are easy to obtain from theoriginalinequalities. 
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Hence Xo ~ 36, X3 ~ 8, X4 ~ 20, and Xs ~ 9. Thus any solution is lexicographically 
equal to or less than aO = (36 4 4 8 20 9). Now the solution to RP' 
yields a' = (30 4 4 8 20 9) ~ an. The successive linear programming solutions 
yield a 2 = (30 3 4 8 20 9) ~ a', a 3 = (29 4 4 8 20 9) ~ a2

, a 4 = 
(28 4 4 8 20 9) ~ a 3

, and as = (28 4 0 8 0 1) ~ a 4
• Thus we see how the 

lexicographic upper bound is reduced at each iteration. 
There is a nice interpretation of the sequence {ak}k=o on an enumeration tree (see Figure 

3.2). Here we have enumerated all possible integral values for the variables where 
x = (x" X2, X3) E B3 and 0 ~ Xo ~ 3. Note that the leaves of the tree, read from left to right, 
give the possible values of (xo, x) in increasing lexicographic order. Now suppose the 
solution ofRP' gives X6 = 3 and 0 < xl < 1. Figure 3.2 shows the integral vectors that are 
eliminated by this solution and also shows those eliminated by Rp2 if X6 = 3, XI = 0, and 
o < x~ < 1. Each cut eliminates at least the rightmost leaf that is still a candidate. Hence we 
can think of the cutting-plane procedure as a lexicographic search through the integral 
vectors until the lexicographically largest one that is feasible to IP is found. This suggests 
that it is important to choose a cut so that the subsequent pivot yields a large lexicographic 
decrease in 710. Insofar as we know, strategies of this type have not been systematically 
investigated. Perhaps some such strategy would improve the reputably poor performance 
of fractional cutting-plane algorithms. 

Extension to Mixed-Integer Programming 

The Gomory FCPA extends straightforwardly to mixed-integer programs. Suppose, in the 
solution of the linear programming relaxation of an Mlp, Xi E Zl is a basic variable given 
by 

Xi + I aijXj + I aijYj = aiD, 
hEHI jEH\HI 

where HI is the index set of nonbasic integer variables and where aiD $. Z'. Here we use the 
Gomory mixed-integer cut 

(see Proposition 7.4 of Section 11.1.7). Everything else remains as above except for the 
finite convergence argument. 

In mixed-integer programming, it is not reasonable to assume that the objective 
variable Xo is integer-valued. Hence we cannot use the objective row for obtaining cuts. 
But our finite convergence argument depended on deriving a cut from the lowest-index 
fractional variable. In fact, by excluding Xo as a candidate the convergence argument fails 
to hold (see the example given in exercise 12). 

The only way we know to salvage finite convergence is to scale the problem so that Xo is 
integral. But this is definitely unsatisfactory for computational purposes. 

Primal Cutting-Plane Algorithm 

A disadvantage of fractional cutting-plane algorithms is that no feasible solution is found 
until the algorithm terminates. Here we sketch a cutting-plane algorithm that circumvents 
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Figure 3.2 

this problem. Unfortunately, it is not a practical algorithm because it tends to require an 
exorbitant number of cuts. 

Suppose we have a nonoptimal extreme point of the convex hull of feasible integral 
solutions. The idea of a primal cutting-plane algorithm is to use cuts to enable pivoting to 
an adjacent extreme point of the convex hull whose objective value is greater. 

The geometry is shown in Figure 3.3, where S = {x E Z2: Ax ~ b} and the outer 
polytope is P = {x E R 2: Ax ~ b}. If x I happens to be an integral extreme point of P, then 
it must also be an extreme point of conv(S). Given a basic representation of x , in which the 
active constraints are Xk = ° and Xk' = 0, our objective is to pivot from Xl to x 2 or to x 3

• 

However, a standard simplex pivot will yield a fractional extreme point of P, either X4 or 
x 5

• To pivot from Xl to x 2
, the polytope that contains conv(S) must contain the facet

defining inequality a*x ~ b* and any other valid inequality defining a face that supports 
conv(S) at x 2

, say aOx ~ bOo By first adding the constraint Xp = b* - a*x, a degenerate 
pivot that makesxp nonbasic andxk basic can be performed, and we still have the extreme 
point Xl. We then add the constraint x p' = bO - aOx and make xp' nonbasic and Xk' basic. 
This yields the extreme point x 2

• Thus, in two dimensions, we need the facet of conv(S) 
that defines the edge joining Xl and Xl to be able to pivot from Xl to x 2

• 

Y Objective function 

a*x = b* 

Figure 3.3 
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Analogously, in n dimensions we need n - 1 valid inequalities that contain the one
dimensional face joining Xl to X2 and another valid inequality that defines a face which 
supports conv(S) at X2 to be able to pivot from x I to X2. These very stringent requirements 
explain why a primal cutting-plane algorithm for general integer programming is likely to 
be very slow. Besides the problem of finding an initial integral point, it will be necessary to 
produce valid inequalities that contain the one-dimensional faces (edges) on a path from 
the initial point to an optimal point. In contrast, a fractional cutting-plane algorithm can 
succeed with a much weaker family of cuts, and a nondegenerate pivot occurs immedi
ately after the addition of each cut. 

We now study how these primal cuts can be derived algebraically. Consider a basis for 
the linear programming relaxation of IP given by (3.1) in which the coefficients au are 
integral for i = 0, 1, ... , m and all} E H. A basis that satisfies these conditions is available 
if A = (A " J) and b ~ 0. Otherwise, a Phase I procedure may be required. 

If the basis is dual feasible, the integral solution (xo, x) = ao is optimal. So suppose 
aOk < ° for k E H. Consider a primal pivot in which Xk becomes basic. Suppose 

aiO min _. 
i=l, ... ,m:aik>O aik 

If ark = 1, we can pivot on the row XB,+ LjEHarjXj =aro and maintain integrality. If 
ark * 1, we add a C-G cut derived from the inequality LjEH arjXj ~ aro. In particular, 
multiply this inequality by 1 / ark> 0 and then round to obtain 

Adding a slack variable yields the equation 

(3.5) arj aro 
Xn+l + Xk + I =- Xj = =- , l-J l- J 

jEH\{k} ark ark 
Xn+1 E Zl. 

Figure 3.4 
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Since ark> 0, larO/arkJ ~ arO/ark and the coefficient Ofxk in (3.5) is one, we can pivot 
on the row (3.5) and maintain integrality. 

The geometry of the cut is shown in Figures 3.4 and 3.5. In Figure 3.4, assume we are at 
the point Xl and we want to pivot along the line Xz = O. An ordinary simplex pivot would 
yield the fractional point X3. Instead we introduce the cut Xl + laz / adxz ~ lb/ad, which 
enables us to pivot to the integral point xZ. The cut is obtained by adding 
(taz / ad - az / al)xZ ~ 0 to Xl + Caz / al)xZ ~ b/al and then rounding. Thus the cut gives 
the convex hull of the region {x E R Z: Xl + ta2 / adx2 ~ b/al}' 

In Figure 3.5, there are no feasible integral points along the line a21Xl + a22X2 = b2, 
so it is not possible to move from X 1 along this line. However from an appropriate 
nonnegative linear combination of ailXl + ai2X2 ~ bi for i = 1, 2, we obtain the inequality 
alxl + a2x2 ~ b, with 0 < b < a h Az < O. Now we proceed as above to obtain the 
inequality Xl + la2 / adX2 ~ b/al and then the cut Xl + [az / adx2 ~ [b/ad. 

Example 3.2 

max Xo = XI + 2xz 

-4xl+ X2+X3 = 0 

7Xl + 4X2 + X4 = 14 

xEZ!. 

An integral solution to the linear programming relaxation is 

Xo = 0 + X I + 2x 2 

X3 = a + 4x 1 - Xz 

x4=14-7xl-4xz 

Xl = X2 = O . 

• 
.I'iE--- Xl + 1l~21al JX2 s {jlal 

~--~~----~~-----------------Xl 

Figure 3.5 
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2 

4th cut 

~------------~------------~~----------Xl 
o 2 

Figure 3.6 

Suppose we choose to increase X2. The variable that becomes nonbasic is X3, and no cut is 
required since the coefficient of X2 is one. This degenerate pivot yields the equations 

Now we make x I basic and derive the cut x I - X 3 ~ 0 from 23x I - 4x 3 ~ 14. We then do 
a degenerate pivot on the row Xs = 0 - XI + X3. Three more cuts and pivots are required 
(see Figure 3.6). The last pivot is the only nondegenerate one and it yields the optimal 
solution (x" X2) = (1 1). 

It is a fact that with an appropriate choice of pivot columns and rows from which to 
generate the cuts, a finite algorithm can be obtained. But for the reasons stated above, 
primal cutting-plane algorithms are likely to be slower than fractional cutting-plane 
algorithms. 
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4. NOTES 

Section 11.4.1 

Geoffrion and Marsten (1972) proposed a somewhat different framework for discrete 
optimization algorithms. 

Enumerative methods go under the general names of branch-and-bound, implicit 
enumeration, and divide-and conquer. The latter term is frequently used in the computer 
science literature, and the first two terms are commonly used in the mathematical 
programming/operations research literature. Algorithms that focus on pruning by bounds 
that are obtained from relaxations or dual solutions are generally referred to as branch
and-bound algorithms, a term coined by Little et al. (1963). Those that focus on pruning 
based on logical tests and inequalities derived from Boolean implications (see Section 
I.1.6) are called implicit enumeration algorithms, a term apparently coined by Geoffrion 
(1967). Many algorithms use both of these ideas, so a classification of enumeration 
algorithms along these lines is not particularly relevant. Furthermore, although logical 
testing is important, pruning by bounds has emerged as the fundamental tool of enumera
tive algorithms. 

Land and Doig (1960) gave the first branch-and-bound algorithm for general integer 
programs. However, the popularity of this approach increased substantially after the 
publication of the branch-and-bound algorithm for the traveling salesman problem by 
Little et al. (1963) because it demonstrated that large (at that time) problems could be 
solved by controlled enumeration. Balas (1965) gave the first implicit enumeration 
algorithm for general 0-1 IP's 

General expositions and survey articles on enumerative methods are by Lawler and 
Wood (1966), Agin (1966), Mitten (1970), Tomlin (1970), Geoffrion and Marsten (1972), 
Beale (1979), Garfinkel (1979), and Spielberg (1979). 

Sensitivity and parametric analysis for integer programs has been discussed by Geof
frion and Nauss (1977), Shapiro (1977), Nauss (1979), Holm and Klein (1984), Schrage and 
Wolsey (1985), and Cook et al. (1986). 

Parallel processing presents new opportunities for computational advances in discrete 
optimization. Kindervater and Lenstra (1985, 1986) give an annotated bibliography and 
an introduction to parallelism in combinatorial optimization. In an empirical study, Pruul 
(1975) simulated parallel computation and showed that by exploring several nodes of an 
enumeration tree simultaneously it is possible to reduce substantially the total number of 
nodes that need to be considered. His results have been summarized in Pruul et al. (1988). 

Another developing area is interactive optimization. Fisher (1985) surveyed results and 
opportunities for using interactive methods in discrete optimization. 

Section 11.4.2 

Almost all general MILP codes use a branch-and-bound framework with linear program
ming relaxations. As noted above, the first algorithm of this type was described by Land 
and Doig (1960). They proposed the division scheme shown in Figure 2.3. The now 
commonly used variable dichotomy scheme (Figure 2.1) was proposed by Dakin (1965). 
Penalties were introduced by Driebeek (1966) and were sharpened by Tomlin (1971). 

The treatment of generalized upper-bound constraints by the division scheme shown in 
Figure 2.2, together with the indexing scheme described below (2.4), was introduced by 
Beale and Tomlin (1970). They called such sets specially ordered sets. This terminology is 
now widely used, and the concept is very important in the global maximization of 
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piecewise linear nonconcave functions. Beale and Forrest (1976) developed this approach, 
which enables the implementation of the division scheme (2.6) without the explicit use of 
auxiliary integer variables. 

Various strategies for exploring the enumeration tree, together with experimental 
comparison, are given by Benichou et al. (1971, 1977), Breu and Burdet (1974), Forrest et 
al. (1974), Gauthier and Ribiere (1977), and Mitra (1973). The strategy described in the text 
is used in the commercial code SCICONIC as described by Beale (1979). 

Eleven commercial mixed-integer programming systems, including all of the available 
options for branching, node, and variable selection as well as other characteristics of the 
codes, have been described by Land and Powell (1979). This article also includes a 
comparison of two of these codes on a small number of test problems, as well as brief 
descriptions of several "academic" codes. Powell (1985) is an annotated bibliography that 
updates the Land and Powell article. 

The XMP system of Mars ten (1981) has been updated to include branch-and-bound for 
general MIPs. It is a highly modular system, which makes it very useful for research, and is 
available in both microcomputer and main-frame versions. Several other linear program
ming systems for microcomputers also have branch-and-bound capabilities. One of the 
most widely used is the LINDO system of Schrage (1986). 

The art involved in using commercial codes to solve large scale MIPs is discussed in the 
context of solving practical problems by Beale (1983) and Suhl (1985). 

leroslow (1974), Ibaraki (1976, 1977), Rinnooy Kan (1976), and Fox et al. (1978) have 
presented some theoretical results on node selection and branching strategies. 1 eroslow 
gives a family of problems for which the number of nodes that must be searched is 
exponential with respect to the size of the problem, regardless of which strategies are used. 

Section 11.4.3 

Gomory (1958, 1960a, 1963a) shows that the FCPA is finitely convergent with appropriate 
use of the lexicographic dual simplex algorithm. The proof given here is based on that 
given by Nourie and Venta (1982), which is really just a reinterpretation ofGomory's proof 
that provides additional insight into the nature of the convergence. 

Given a fractional LP solution, Gomory and Hoffman (1963) showed that the cuts 
Lj Xj ~ 1, where the sum is taken over all nonbasic variables cannot yield a finite FCPA. 
Bowman and Nemhauser (1970) proved that the stronger cuts given in exercise 11 yield a 
finite algorithm. 

The mixed-integer cutting-plane algorithm and its finite convergence under the 
assumption that the objective function variable must be an integer is given in Gomory 
(1960b). Without this assumption, no finite cutting-plane algorithm for MILPs is known. 

A primal cutting-plane algorithm for general integer programs was proposed by Ben
Israel and Charnes (1962). A finitely convergent primal cutting-plane algorithm was given 
by Young (1965), and simplified versions were obtained by Glover (1968a) and Young 
(1968). Because of poor computational experience, this line of research has been very 
inactive. An exception is a primal cutting-plane algorithm for the traveling salesman 
problem developed by Padberg and Hong (1980). Although this algorithm has been 
moderately successful, it seems to be inferior to an FCPA for the traveling salesman 
problem (see Section 11.6.3). 

Another strategy for cutting-plane algorithms is to maintain integrality and dual 
feasibility and then to use cuts to obtain primal feasibility. A finite algorithm of this type 
has been given by Gomory (1963b). Other such algorithms have been obtained by Glover 
(1965, 1967). 



5. Exercises 381 

5. EXERCISES 

1. Solve the integer program 

by branch-and-bound. 
Examine the procedure graphically. 
Investigate how the branch-and-bound tree changes with different branching 
strategies. 

2. Solve the integer knapsack problem 

by branch-and-bound. 

3. Solve the problem of exercise 2 with the additional constraint x E B4. 

4. Propose various ways to estimate degradations. Test them on the above problems. 

5. Solve Example 2.3 using a branch-and-bound algorithm, with the conventional 
branching rule. Draw the branch-and-bound tree. 

6. Modify the general branch-and-bound algorithm if, instead of an optimum solution, 
we only want to find a feasible solution within a given percentage, say p% of the 
optimum value. 

7. Consider the integer program 

max - Xn+! 

2x I + 2x 2 + . . . + 2x n + X n+1 = n 

x E Bn+!. 

Show that any branch-and-bound algorithm using the linear programming relaxa
tion to compute upper bounds will require the enumeration of an exponential 
number of nodes when n is odd. 

8. Consider a mixed-integer program with one integer variable. Show that the branch
and-bound tree for this problem will have no more than three nodes. Why? 
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9. Consider the integer program of exercise 1. The optimal linear programming basis 
gives the information 

maxz 

1 6 
= 38 Z +-X3+-X 4 

5 5 

4 1 17 
Xl + T5X3 - T5X 4 3 

(lP) 
1 4 16 

X2 - T5X3 + T5X4 3 

1 1 2 
--X3+-X 4+XS 

3 3 3 

xEZ~ 

i) Solve using Gomory's FCPA. 

ii) Solve using Gomory's finitely convergent FCPA. 

iii) Use the solutions ofi and ii to give optimal dual solutions ofIP. 

iv) . Use iii to find an upper bound on the optimal value ofIP when 

10. What is the maximum number of Gomory cuts needed to verify that a 0, 1 IP is 
feasible or infeasible. (Hint: Consider the enumeration tree.) 

11. i) Let S = {x E ZZ: LjEN ajxj = b} with aj, bE Rl, and b $. Z!. Show that 
LjEN* Xj ~ 1 is a valid inequality for S, where N* = {j EN: aj $. Zl}. 

ii) Show that a finitely convergent FCPA is obtained by using these cuts in place of 
Gomory cuts. 

iii) Carry out several iterations on the IP of exercise 7, and compare the correspond
ing enumeration trees. 

12. i) Use Gomory mixed-integer cuts to solve the integer program 

max y 

Xl+X2+y~2 

-Xl +y~O 

- X2 + Y ~ 0 

X E Zi, Y E Z!. 

ii) Replace the constraint y E Z! in i by y E Rl to give a mixed-integer program 
(see exercise 22 of Section 11.1.9). What happens now using the Gomory mixed
integer cuts? 

13. Describe a Phase 1 procedure for a primal cutting-plane algorithm. 



11.5 
Special-Purpose 
Algorithms 

1. INTRODUCTION 

The algorithms presented in the previous chapter have the great advantage of robustness. 
They can, in principle, be applied to all linear integer programs. However, there is often a 
heavy price to pay for this generality. 

Three major reasons why a problem class may not be solved satisfactorily by a general 
algorithm are: 

l. size of the formulation, 
2. weakness of the bounds, and 
3. speed of the algorithm. 

On the other hand, when instances of a class of highly structured integer programs are 
to be solved, the structure can often be used to improve the performance substantially in 
one or all of the three areas cited above. In this chapter we will show how structure can be 
used either to devise special-purpose algorithms or to improve the performance of general 
algorithms for several classes of problems. 

Integer programming formulations frequently have a very large number of variables or 
constraints. For example, in the strong formulation of the uncapacitated facility location 
problem described in Section I. 1.3, an instance with n = 50 locations and m = 200 clients 
has more than mn = 10,000 variables and more than mn = 10,000 constraints. Similarly 
for the traveling salesman problem on m nodes, the formulation given in Chapter 1.1 has 
O(m2) variables and O(2m) subtour elimination constraints. 

The computation of bounds requires the choice of a relaxation. Typically this choice 
involves a tradeoff between the strength of the bound obtained from the relaxation and the 
speed with which it can be calculated. For the symmetric traveling salesman problem there 
is a large hierarchy of relaxations. For the uncapacitated facility location problem the 
tradeoff is between the linear programming relaxation of the weak form ulation, which can 
be solved by a formula but gives weak bounds, and the linear programming relaxation of 
the strong formulation, which gives very good bounds but is much harder to solve. 

Very often the relaxation is embedded in a branch-and-bound algorithm. Here struc
ture may make it possible to find nearly optimal solutions to the dual of the relaxation 
very quickly, providing the upper bounds needed for the branch-and-bound algorithm. 
Structure may also help us to find good feasible solutions quickly, which are also 
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important in pruning the branch-and-bound tree. Furthermore, it is often the case that 
nearly optimal primal and dual solutions are a satisfactory solution to the problem. 

Structure frequently suggests decomposition. Both Lagrangian (row) decomposition 
and Benders (column) decomposition have been introduced in Chapter 11.3. For a given 
problem, several Lagrangian relaxations may be available. In addition, algorithms for the 
Lagrangian dual provide alternative ways to solve large linear programs. However, both 
row and column decompositions typically lead to a large number of variables or con
straints, so again the question of finding effective algorithms for large-sized problems is an 
issue. Finally for some structures, dynamic programming provides a decomposition 
which makes it possible to solve problems by a recursive algorithm that uses dominance to 
eliminate nonoptimal solutions. 

Thus if we want to make efficient use of structure, we must deal effectively with the 
following three issues. 

1. A choice of formulation and "strong" linear programming (or combinatorial) 
relaxation must be made. 

2. The chosen relaxation typically has a very large number of constraints (and possibly 
columns). An algorithm that finds an optimal (or a good dual feasible) solution to 
the relaxation as quickly as possible has to be selected. It also may be desirable to 
have a heuristic for finding good primal feasible solutions rapidly. 

3. Since the solution to the relaxation rarely solves the original problem, a procedure is 
needed, typically embedding the relaxation into branch-and-bound, to arrive at an 
optimal solution to the original problem. 

In the following four sections we will present some methods that take advantage of 
structure. First we discuss strong cutting-plane (or constraint generation) algorithms. 
Then we present some ways of quickly finding nearly optimal dual and primal feasible 
solutions. Next we discuss the algorithms that can be used in combination with Lagran
gian and Benders' decomposition, as well as some of the problems that arise in their 
implementation. Finally we describe dynamic programming and illustrate its application 
to certain discrete optimization problems. 

The first four sections of the next chapter are each devoted to a particular structured 
problem, knapsack problems, 0-1 problems, the symmetric traveling salesman problem, 
and fixed-charge flow problems, respectively. For each problem we exhibit how some of 
the practical choices are made that lead to a relatively efficient special-purpose algorithm. 

We will use the uncapacitated facility location problem as an example of a structured 
problem throughout this and the next three sections. As a starting point we know the two 
formulations presented in Chapter I.1, the so-called "strong formulation" 

(UFL) 

z = max I I C ijY ij - I jjXj 
iEi JEN JEN 

I Yij = 1 for i E J 
JEN 

Yij - Xj ~ 0 for i E J,j EN 

yERr;n, xEBn, 

where J = {l, ... , m} and N = {l, ... , n}, and the "weak formulation" 
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(WUFL) 

z = max L L cijYij - L jjXj 
iEi jEN jEN 

L Yij = 1 for i E I 
jEN 

L Y ij - mXj ~ 0 for j E N 
iEi 

385 

We have already remarked on the size of these formulations. Another important 
observation is that once we have decided which facilities Q <;; N are to be opened, then the 
optimal allocation of the clients to the facilities is obvious. In particular, client i is served 
by a facility k E Q such that Cik = maXjEQ cij' Hence there exists an optimal solution to 
UFL and WUFL with Y E Bmn. 

Proposition 1.1. The value %pening/acilities at Q <;; N is 

v(Q) = L max cij - L jj. 
iEi JEQ jEQ 

Now suppose we wish to make a choice between the linear programming relaxations of 
UFL and WUFL. Note that there is a closed-form solution to the linear programming 
relaxation ofWUFL. 

Proposition 1.2. When fJ ;;" 0 for all j E N, there exists an optimal solution (x*, y*) to the 
linear programming relaxation of WUFL with YUi = 1, where ji = arg maXjEN (cij - fJlm) 
for all i E I, Yu = 0 otherwise, and where x;*= (l/m) "LiEi Yu for all j E N. 

From Proposition 1.2 it follows that "LjEN xj = 1, independent of the number offacilities 
opened in an optimal solution. Hence the fixed costs jj for j E N are largely ignored, and 
the relaxation cannot provide a good upper bound on the optimal value z. 

In contrast, the upper bound provided by the linear programming relaxation ofUFL is 
usually very strong and no larger than the bound obtained from the linear programming 
relaxation of WUFL. The strength of this bound will be discussed further in Section 3. 

Example 1.1. Consider the uncapacitated location problem with the following data: 

m =6, n = 5, 

12 13 6 0 1 
8 4 9 1 2 

C = (cij) = 
2 6 6 0 1 
3 5 2 10 8 
8 0 5 10 8 
2 0 3 4 

/ = (jj) = (4 3 4 4 7). 

Using Proposition 1.2, we obtain the optimal solution to the LP relaxation of WUFL 
given by yi2 = Y23 = Y32 = Y44 = YS4 = Y64 = 1, X2 = t xj = t X4 == ! with value 481. 
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The LP relaxation of UFL has an optimal solution (derived later) given by 
y71 = y72 = Y21 = Y23 = Y!2 = Y!3 =~, Y44 = Y54 = Y64 = 1, xT = xi = x! = ~, X4 = 1 with value 
ZLP = 41~. The optimal value ofUFL is Z = 41. 

From now on, we only consider the strong LP relaxation of UFL and concentrate on 
developing fast algorithms that solve it exactly or approximately. 

2. A CUITING-PLANE ALGORITHM USING STRONG VALID 
INEQUALITIES 

Here we consider linear programs of the form 

(LP (.'J'» 

ZLP(.'J') = max ex 

Ax<b 

nx < no for (n, no) E.'J' 

xER~, 

where .'J' generally contains a large number of constraints. Linear programs of this form 
anse as: 

i. relaxations of an integer program max{ex: xES}, where S = {x E ZZ: Ax < b} 
and .'J' is a set of "strong" valid inequalities for S; and 

11. linear programs with a large number of constraints. 

As an example of i, S is the set of solutions to a 0-1 knapsack problem, .'J' represents the 
set of cover inequalities, and LP(.'J') represents the linear program consisting of the 
knapsack constraint and the cover inequalities. 

As an example of ii, LP(.'J') is the LP relaxation of UFL, where Ax < b are the 
constraints of the weak formulation WUFL without integrality and .'J' represents the mn 
variable upper-bound constraints Yu - Xj < 0 for all i E I, j EN. 

The question we need to answer is how to solve the linear program LP(.'J'). The "brute 
force" approach of adding all the constraints in .'J' a priori is impractical when the number 
of inequalities in .'J' is very large. Furthermore, most of the inequalities in .'J' are 
unnecessary for the solution of LP(.'J'). However, a priori addition of a subset of the 
inequalities from .'J' may be very desirable. 

A more general approach uses the inequalities of .'J' as cutting planes. Only those 
inequalities in .'J' that are likely to be active in the neighborhood of an optimal solution to 
LP(.'J') are generated. 

Fractional Cutting-Plane Algorithm (FCPA) for LP(.'J') 

Initialization: Sk = {x E R~: Ax < b}. Set t = 1. 
Iteration t: 

Step 1: Solve the relaxation of LP(.'J') 

z~ = max {ex: x E S~} 
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and let Xl be an optimal solution. (Note that the dual solution complementary to 
X l - I is a dual feasible solution to LPI. Hence Lpi can be solved by a dual algorithm 
starting from the point Xl-I.) 

Step 2: Optimality Test. If nxl .:(; no for all (n, no) E f!f, then Xl is an optimal solution to 
LP( f!f). Stop. 

Step 3: Refinement. Let f!fl C f!f be a set of one or more inequalities (n, no) with nxl > no 
and 

S~I = Sk n {x E R~: nx .:(; no for (n, no) E f!fl}. 

Step 4: t <- t + 1. 

Given the solution Xl to the relaxation LpI, we must show that Xl is a feasible solution to 
LP(f!f) or find a valid inequality (n, no) E f!f for which nxl > no. This is the separation 
problem that we introduced in Section 1.6.3. 

The Separation Problem for f!f 

Given a point x* E R~, show that x* satisfies all the valid inequalities in f!f, or find one or 
more valid inequalities (7(, no) E f!f with nx* > no. 

Based on the polynomial equivalence of "separation" and "optimization" (see Theo
rem 3.3 of Section 1.6.3), we make the following observations. 

1. Under the assumption that we can check whether x* satisfies the constraints Ax .:(; b 
in polynomial time, LP(f!f) can be solved in polynomial time if and only if the 
separation problem for LP(f!f) can be solved in polynomial time. 

ii. If we are dealing with an integer program max{cx: Ax .:(; b, x E Z~} that is .Nr!P
hard, and f!f represents one or more families offacets, there may be some families of 
facets for which the separation problem is in r!P, but there will be others for which 
the separation problem is .Nr!P-hard. More precisely, based on Proposition 7.4 of 
Section 1.5.7, we cannot expect to have a good characterization of all the facet 
classes for the problem, and hence there will certainly be problem instances for 
which FCPA will terminate with a solution Xl that is not integral. 

To demonstrate the FCPA with separation, we return to the uncapacitated facility 
location problem. Suppose that the number of constraints in formulation UFL is too large 
to solve its linear programming relaxation directly. So we start with the LP relaxation of 
the formulation WUFL and let f!f consist of the mn constraints Yij.:(; Xj for all 
i E I and) EN. 

Now given a point (x*, y*) E R~ x R';", the separation problem for f!f is to find whether 
one or more of the mn variable upper-bound constraints is violated. This is easily done by 
enumeration, and a violation occurs if and only if maXiE! yij > xj for some) E N. Several 
implementations are possible, depending on the number of violated constraints added. In 
the implementation given below, for each) for which a violation occurs, we add one most 
violated constraint. 

Example 1.1 (continued). We implement the FCPA with separation. 
Iteration 1. It has been seen earlier that the optimal solution ofLp l is yb = y13 = yj2 = 

y~4 = y~4 = Y64 = 1, xi = t, xj =~, x~ = ~ with zLp = 48t. Since Xl is not integral we apply the 
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separation algorithm to (Xl, y l) and find that three constraints from fJi, namely 
Y12";; X2, Y23";; X3, and Y44";; X4, are violated. These constraints are now added to S1. 

Iteration 2. The linear program Lp2 is solved, giving the solution Ytl = 0.8, Y12 = 0.2, 
Y~l = 1, yj2 = 1, ya4 = 0.4, yas = 0.6, Y~4 = 1, Y~4 = 1, x1 = 0.3, x~ = 0.2, xa = 0.4, x~ = 0.1 
with Zf.p = 44.9. The separation algorithm now generates the four violated inequalities 
hI";; Xl> Y32";; X2, Y54";; X4, andY45";; Xs· 

Iteration 3. The linear program Lp3 has an optimal solutionY?I= 1, Y~l = 0.2, Y~3 = 0.8, 
Y~3 = 1, Yl4 = 1, Y~4 = 1, Y~4 = 1, x? = 0.2, x~ = 0.8, xl = 1, and Z[p = 42.8. The separation 
algorithm now generates the violated inequalities Yu ,,;; Xl and Y33 ,,;; X3. 

Iteration 4. The linear program Lp4 has an optimal solution ytl = yt2 = Y!l = Y!3 = yj2 = 
yj3 =~, Y~4 = Y~4 = Y~4 = 1, xt = x! = x1 =~, x~ = 1, and z~p = 41.5. No violated inequalities 
are generated by the separation algorithm, so (x\ y 4) is an optimal solution of the LP 
relaxation of UFL. 

Note that only 9 out of the 30 possible variable upper-bound constraints Yij";; Xj have 
been added in the course of the algorithm. Since the optimal solution (x\ y 4) of LP(fJi) is 
not integral, we need to proceed further. One approach described below is to embed the 
FCPA into a branch-and-bound algorithm. Another is to enlarge the family fJi of strong 
valid inequalities (see exercise 5). 

A Strong Cutting-Plane/Branch-and-Bound Algorithm for IP. 
Given the problem 

(IP) max{cx: Ax ,,;; b, x E Z~} 

and a class fJi of "strong" valid inequalities, we use the following 2-phase algorithm. 

Phase 1. Solve LP(fJi) by the FCPA. On termination, let Xl be an optimal solution of 
LP(fJi). If Xl E Z~, stop. Xl solves IP. Otherwise, go to Phase 2. 

Phase 2. Let fJi' C fJi be the cuts generated in Phase 1, that is fJi' = U~=l fJiS. Solve the 
reformulation ofIp, 

(IP') max{cx: Ax,,;; b, 1CX";; 1CO for (1C, 1Co) E fJi', x E Z~}, 

by branch-and-bound. 

Example 1.1 (continued). The branch-and-bound tree for the problem IP' with the nine 
inequalities added is shown in Figure 2.1. 

On the first branch, node 2, x 1 is set to the value 1; the linear program has an optimal 
solution with x integer of value 40. The only remaining node is 3, where x I is set to zero. 
Here again the linear program has an optimal solution with x integer of value 41. The 
corresponding solution is X2 = X3 = X4 = 1, Y12 = Y23 = Y32 = Y44 = YS4 = Y64 = 1. Since the 
tree has no active nodes, the solution found at node 3 is optimal. 

41 

41 

Figure 2.1 

40 

40 
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It may be possible to eliminate some variables from IP'. Given an optimal solution to 
LP(@'), the reduced prices Cj are nonpositive for all nonbasic variables Xj at their lower 
bound, and nonnegative for all nonbasic variables at their upper bound. We suppose that z 
is the value of the best feasible solution known. -

Proposition 2.1. If Xj is nonbasic at its lower (upper) bound in the solution of LP(@,), 
Xj E Zi, and ZLP(S1') + Cj ..;; ~ (hp(S1') - Cj ..;; ~), there exists an optimal solution to the integer 
program with Xj at its lower (upper) bound. 

This means that the set of variables needed in the branch-and-bound phase is 
N* = N \ U EN: Xj is nonbasic, hp(S1') - ICj I ..;; ~}. 

Example 1.1 (continued). We exhibit the use of Proposition 2.1. 
Suppose we have observed that the solution in which location 1, 2, and 4 are open has 

value v({1, 2, 4}) = 40. Since Yij equals 0 or 1 in an optimal solution, the reduced prices for 
the LP relaxation of UFL can be used to fix any variable with reduced price 
I Cij I ~ 41.5 - 40 = 1.5. In this case we can set Y13 = Y14 = Y15 = Y22 = Y24 = Y25 = Y31 = Y34 = Y35 

= Y41 = Y42 = Y43 = Y52 = YS3 = YS5 = Y62 = Y6S = 0 before entering the branch-and-bound phase. 

Example 2.1. This is an instance of UFL with 33 facilities and clients. Each of the 33 
cities is a client and a potential location for a facility. Here cij is the negative of the distance 
between cities i and}. The distances are given in Table 2.1, and the geographic locations 
are shown in Figure 2.2. The fixed costs are 2000 for each facility. 

Figure 2.2. Thirty-three city problem: I, Chicago, Ill.; 2, Indianapolis, Ind.; 3, Marion, Ohio; 4, Erie, Pa.; 5, 
Carlisle, Pa.; 6, Wana, w.v.; 7, Wilkesboro, N.C.; 8, Chattanooga, Tenn.; 9, Barnwell, S.c.; 10, Bainbridge, Ga.; 
11, Baton Rouge, La.; 12, Little Rock, Ark.; 13, Kansas City, Mo.; 14, La Crosse, Wis.; 15, Blunt, S.D.; 16, Lincoln, 
Neb.; 17, Wichita, Kan.; 18, Amarillo, Tex.; 19, Truth or Consequences, N .M.; 20, Manuelito, N .M.; 21, Colorado 
Springs, Colo.; 22, Butte, Mont.; 23, Lewiston, Idaho; 24, Boise, Idaho; 25, Twin Falls, Idaho; 26, Salt Lake City, 
Utah; 27, Mexican Hat, Utah; 28, Marble Canyon, Ariz.; 29, Reno, Nev.; 30, Lone Pine, Calif.; 31, Gustine, 
Calif.; 32, Redding, Calif.; 33, Portland, Ore. 
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Table 2.3. 

{j: Xj = 1}: 20,24. 
{j: Xj = 1}: 3,7,8,13, 16. 
{(i,i): Yij = 1}: (18,20), (19, 20), (20, 20), (21, 20), (22, 24), (23, 24), (24, 24), (25, 24), (26, 24), (27, 

20), (28, 20), (29, 24), (30, 20), (31, 24), (32, 24), (33, 24). 
{(i,i): Yij = !}: (1,3), (1,13), (2, 3), (2, 8), (3,3), (3, 7), (4, 3), (4, 7), (5, 3), (5, 7), (6,3), (6, 7), 

(7,7), (7, 8), (8, 7), (8,8), (9, 7), (9, 8), (10,7), (10, 8), (11, 8), (11,13), (12, 8), 
(12, 13), (13, 13), (13, 16), (14, 13), (14, 16), (15, 13), (15, 16), (16, 13), (16, 16), (17, 13), 
(17, 16). 

When the FCPA/branch-and-bound algorithm is applied, the initial LP relaxation 
(with no variable upper-bound constraints) has value -2000. After adding 230 variable 
upper-bound constraints (see Table 2.2), the linear programming relaxation of UFL is 
solved with value -20,346. The solution is given in Table 2.3. 

When branch-and-bound is applied, an integral solution of value -20,393 is found at 
node 2, and an integral solution of value -20,363 is found and proved optimal at node 3 
(see Figure 2.3). The optimal solution is shown in Table 2.4 

We have tacitly assumed that the number of variables in LP(~) does not cause 
computational difficulties. But this may not be the case. For example, if m = 500 and 
n = 100 in UFL, then FCPA could not be used directly to solve LP(@'). 

To handle a very large number of variables in addition to, perhaps, a very large number 
of constraints, we used a standard linear programming technique. We first solve LP(~) 

with a suitably chosen subset of variables eliminated; that is, we choose N' C N and set 
Xj = 0 for j E N'. After solving the restricted version of LP(~), we check for optimality 
with respect to LP(~) by calculating the reduced prices of the variables Xj withj E N' . If all 
of these reduced prices are nonpositive, LP(~) is solved. Otherwise, we delete from N' all 
j such that the reduced price ofxj is positive. We then continue with the solution ofLP(~). 

Note that after adding variables it is preferable to reoptimize with a primal algorithm since 
the current solution is primal feasible. Hence if this technique is used within an FCPA, it is 
desirable to have primal and dual linear programming algorithms available. 

-20363 -20393 

-20363 -20393 

Table 2.4. 

{j: Xj = 1}: 

{i: Yi,7 = 1}: 

{i: Yi.13 = 1}: 

{i: Yi,20 = l}: 

{i: Yi,24 = 1}: 

Figure 2.3 

7,13,20,24 
3,4,5,6,7,8,9,10 
1,2, 11, 12, 13, 14, 15, 16, 17 
18,19,20,21,27,28,30 
22,23,24,25,26,29,31,32,33 
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3. PRIMAL AND DUAL HEURISTIC ALGORITHMS 

Heuristic or approximate algorithms are designed to find good, but not necessarily 
optimal, solutions quickly. For a varit:ty of problems with structure, it is easy to devise 
heuristic algorithms to find primal and dual feasible solutions. It is particularly desirable 
to find both primal and dual feasible solutions since the dual solution provides an upper 
bound on the deviation from optimality of the primal solution. Depending on the quality 
of the solution required, an approximate solution can be the final answer to a problem or 
can be an input to an exact algorithm. The lower and upper bounds provided by 
approximate solutions can be of great help in decreasing the running time of branch-and
bound algorithms. 

Though it is difficult to describe completely general heuristic algorithms, three ideas are 
applicable in a wide variety of cases. The first is that of a "greedy", alternatively called a 
"steepest ascent/descent" or "myopic", algorithm. 

Greedy algorithms are frequently applied to the maximization of set functions. Let 
v(Q) be a real-valued function defined on all subsets of N = {l, ... , n} and consider the 
problem max{v(Q): Q £; N}. 

A Greedy (Heuristic) Algorithm for Maximizing a Set Function 

Initialization: QO = 0, t = 1. 
Iteration t: 

Step 1: Letj, = arg maxjEN\Q,-1 V(Q'-l U U}) with ties broken arbitrarily. 
Step 2: Ifv(Qt-1 U U,}) ~ V(Q'-l), stop. Q'-l is a greedy solution. 
Step 3: Ifv(Qt-l U U/}) > V(Q'-l), set Q' = Q'-l u U,}. 

Step 4: If Q' = N, stop. N is a greedy solution. Otherwise let t +- t + 1. 

The idea of this greedy algorithm is simple. Given a set Q', the next element chosen is 
one that gives the greatest immediate increase in value, provided that such an element 
exists. Moreover, once an element is chosen, it is kept throughout the algorithm. Recall 
that we used the greedy algorithm to find an optimal solution to the minimum-weight 
spanning tree problem (see Section 1.3.3). In general, however, we cannot expect the 
greedy algorithm to yield an optimal solution. 

In the uncapacitated facility location problem, we obtain 

{ 2: max cij - 2: jj for 0 C Q £; N 
v(Q) = iEI JEQ jEQ 

- 00 for Q = 0 (since Q = 0 is infeasible). 

Example 1.1 (continued). We apply the greedy heuristic described above. 

Iteration 1. QO = 0. 

j: 2 3 4 5 

v(Qo U U}): 31 25 27 21 14 
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Iteration 2. Ql = {l}, V(Ql) = 31. 

}: - 2 3 4 5 

V(QI U {j)): 35 33 38 29 

Iteration 3. Q2 = {l, 4), V(Q2) = 38. 

}: - 2 3 5 

V(Q2 U {j}): 40 39 31 

Iteration 4. Q3 = {I, 2, 4), V(Q3) = 40. 

}: - 3 5 

V(Q3 U {j)): 37 33 

Since V(Q3 U {j)) ~ V(Q3) for all} $. Q3, it follows that Q3 = {l, 2, 4) is a greedy solution 
with value 40. 

There are generally several greedy heuristics for a given problem, and common sense 
must be used to convert the "greedy" idea into a reasonable greedy heuristic. An equally 
valid greedy approach for the uncapacitated facility location problem is to start with all 
facilities open and then, one-by-one, close a facility whose closing leads to the greatest 
increase in profit. 

For the 0-1 packing problem max{cx: Ax ~ 1, x E B n ), where A is a 0-1 matrix, one 
greedy approach is to recursively set that variable to one for which the resulting solution is 
still feasible and for which Cj is as large as possible. However, examination of a few 
examples quickly leads to the idea that Cj should be divided by the number of l's in the 
column aj; that is, the "improved" greedy criterion is to choose a column for which the 
average increase in profit per row covered, Cj / LiEM ail> is maximum. 

The second important idea is that of "local search" or "interchange" heuristics. As the 
name implies, a heuristic of this type takes a given feasible solution and, by making only 
limited changes in it, tries to find a better feasible solution. 

A k-Interchange Heuristic for max{c(x): xES S Bn). 

Given a positive integer k, k ~ n, let 

Initialization: Find a point Xl E S. 
Iteration t: Given a point Xl E S, if there is a point x' E Nk(XI) n S with c(x') > c(xl), 

then let Xt+l = x' and t <-- t + 1. Otherwise stop; x' is a k-interchange solution. 

Clearly the amount of work per iteration in this algorithm depends crucially on k, and 
for the heuristic to be fast we typically limit k to values of 1, 2, or 3. Observe that when 
k = n, the algorithm asks for an examination of all the points in Bn. Again, depending on 
the problem structure, it is usual to make variations in the definition of Nk(X). For the 



3. Primal and Dual Heuristic Algorithms 395 

uncapacitated facility location problem, one reasonable choice (given a set Q of open 
facilities) is to look at the neighborhood in which either (a) one of the existing facilities is 
closed or (b) one new facility is opened, or where both a and b occur simultaneously, that 
is, 

N2(Q)={F~N: IF\QI ~ 1 and IQ\FI ~ 1}. 

The third general principle is that often primal and dual heuristic solutions can be 
found in pairs. The complementary slackness conditions (see Section 1.2.2) are one way of 
pairing heuristic solutions. 

We use the 0-1 packing problem max{cx: Ax ~ 1, x E Bn} to illustrate this idea. The 
dual of its linear programming relaxation is min{L7!1 Ui: uA ~ c, u E R';'}. Given a 
heuristic solution u* to this dual, let N* = {j EN: L7!1 u7ai} = c). Then the choice of an 
associated primal heuristic solution is restricted to the vectors x with Xj = 1 only if} E N*. 
Moreover, if such a primal feasible vector x* can be found that also satisfies LjEN a i}xj = 1 
for all i with u7 > 0, then by complementary slackness it follows that x* and u* are optimal 
solutions. 

The pairing of primal and dual heuristics is now demonstrated for the uncapacitated 
facility location problem. First we consider the dual of the linear programming relaxation 
ofUFL: 

hp = min 2:: Ui + 2:: tj 
iEf JEN 

Ui+ wi} ~ci} foriEI,}EN 

- 2:: wi} + tj ~ -fJ for} EN 
iEf 

Wi},tj~O foriEI,jEN. 

We can eliminate constraints and variables from this formation by observing that: 

a. For given wi}, the only constraints on tj are nonnegativity and tj ~ LiEf Wi} - fJ, and 
hence in any optimal solution we have tj = (LiE1 wi) - jj)+, where x+ denotes 
max(x, 0). 

b. Forgiven Ui, we have that LjEN (LiEf Wi) - fJt is minimized by setting wi} as small as 
possible, that is wi} = (ci) - Uit. 

Hence the dual can be rewritten as 

(3.1) ZLP = min w(u), where w(u) = 2:: Ui + 2:: (2:: (ci) - Uit - fJ)+. 
uER'" iE1 JEN iEf 

Alternatively, if we assume that fJ ~ 0 for all j E N, it is easy to see that the constraints 
Xj ~ 1 can be dropped from the linear programming relaxation ofUFL. Thus tj disappears 
from the dual and it becomes 

(3.2) 
ZLP = min 2:: Ui 

iEf 

2:: (ci) - Uit ~fJ for j EN. 
iEf 
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The two condensed duals (3.1) and (3.2) are of interest because they only depend on 
u E Rm. The dual (3.1) is particularly useful since it gives an upper bound for any u E Rm. 

Now we consider the association of primal and dual solutions. Given a primal solution 
with Q s N being the set of open facilities, one way to associate a dual solution is to take Ui 

equal to the second largest C ij over} E Q. The motivation for this lies in the complemen
tary slackness condition (Yij - x)wij = O. For) E Q, we have Xj = 1 in the primal solution; 
and for each i, there is one Y ij = 1 with} E Q. Hence if the complementary slackness 
condition is to hold, we must have no more than one wij > 0 for each i E I and} E Q. 
Since wij = (cij - Ui)+' this leads to the heuristic choice of Ui suggested above. Taking the 
greedy solution Q = {l, 2, 4} obtained for Example 1.1, the associated dual solution is 
U = (12 4 2 5 8 2). Using the formula in (3.1), we obtain w(u) = 33 + 
(0 + 2 + 6 + 5 + 0) = 46. 

Now conversely, suppose we are given a dual solution U that is feasible to (3.2) and we 
wish to associate a primal feasible solution with it. The linear programming complemen
tarity conditions suggest associating a primal solution in whichxj = 0 ifLiEI (cij - Uit <jj. 
Let leu) = {j EN: LiEI (cij - uJ+ = jj}. The best solution that satisfies complementarity is 
obtained by solving 

max {I max cij - I jj}. 
Qf;J(U) iEI jEQ jEQ 

However, this problem may not be much easier to solve than the original problem UFL. 
Therefore we take as a primal heuristic solution Q(u) any minimal set Q(u) S leu) 
satisfying 

(3.3) max Ci = max Ci for all i E I. 
jEQ(u) 1 jEJ(u) 1 

The following proposition tells us when (Q( u), u) are optimal to UFL and the dual of its 
linear programming relaxation, respectively. 

Proposition 3.1. Given a u that isfeasible to (3.2) with Ui ~ maXjEJ(U) cijfor i E I, and a 
primal solution Q(u) defined by (3.3), let k i = 1 (j E Q(u): Cij > uJ I. Ifki ~ 1 for all i E I, 
then Q( u) is an optimal set of open facilities. 

Proof 

v(Q(u» = I max cij - I jj. 
iEI jEQ(u) jEQ(u) 

If k i = 0, then 

max cij = Ui = Ui + I (Cij - Uit; 
jEQ(u) jEQ(u) 

and if k; = 1, then 

max cij = Ui + I (Cij - Uit. 
jEQ(u) jEQ(u) 
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Hence, if k i ~ 1 for all i E I, then 

v(Q(U» = I I (Cij - uJ+ - I jj + I Ui 
iE! jEQ(u) jEQ(u) iE! 

= I (I (Cij - Uit - jj) + I Ui 
jEQ(u) iE! iE! 

= I Ui (by definition of J(u» 
iE! 

= hp (since U is feasible in (3.2». 

Since v(Q(u» achieves the upper bound of ZLP, it follows that Q(u) is an optimal set of 
open facilities. • 

Now we present a heuristic algorithm for the dual problem (3.2) that uses the ideas of 
greedy and interchange. After finding a dual solution, the algorithm constructs a primal 
solution from (3.3) and then uses Proposition 3.1 to check optimality. 

Dual Descent [A Greedy Algorithm for (3.2)] 

Begin with u7 = maXjEN cij for i E I. Cycle through the indices i E I one-by-one attempt
ing to decrease Ui to the next smaller value of cij' If one of the constraints 

(3.4) I (Cij-Uit~jj forjEN 
iE! 

blocks the decrease of Ui to the next smaller cij, then decrease Ui to the minimum value 
allowed by the constraint. When all of the u/s are blocked from further decreases, the 
procedure terminates. 

A possible improvement of this greedy heuristic is obtained by modifying the order in 
which the u/s are considered as candidates to decrease. The reasoning is the same as in the 
case of the 0-1 packing problem. Let Hi(u) = {j EN: cij - Ui? O}. Rather than just cycling 
through the u/s, we choose Us next if IHs(u) I ~ IHj(u) I for all i E I, since this implies the 
smallest increase in LjEN LiE! (Cij - Uit per unit decrease in LiE! Ui. This discussion also 
justifies decreasing Uj only to the next smaller cij rather than to the smallest permissible 
value. 

Now suppose that dual descent terminates with a solution u* and that the associated 
primal solution Q(u*) given by (3.3) fails to verify the optimality conditions of Proposition 
3.1. Then there exists an i such that k i > 1. In an attempt to find an improved dual 
solution, we adopt the neighborhood search idea. 

Interchange Step. Increase some uifor which k i > 1 to its previous value. Use the resulting 
U as the starting solution and reapply the dual greedy algorithm terminating with u' 
satisfying LiE! u; ~ LiE! ui. 

If u* = u', stop. u* is the heuristic solution. 
If u* satisfies the optimality conditions, stop. 
Otherwise, repeat the interchange step. 

Example 1.1 (continued). Applying dual descent yields the results shown in Table 3.1. 
For the first five steps, Uj, i = 1, ... , 5, is decreased to the second maximum in the row. 
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Table 3.1. 

U jj - LiEf (Cu - Uir 

Step 1: 2 3 4 5 6 j: 2 3 4 5 

0 13 9 6 10 10 4 4 3 4 4 7 
1 12 9 6 10 10 4 4 2 4 4 7 
2 12 8 6 10 10 4 4 2 3 4 7 
3 12 8 6 10 10 4 4 2 3 4 7 
4 12 8 6 8 10 4 4 2 3 2 7 
5 12 8 6 8 8 4 4 2 3 0 7 
6 10 8 6 8 8 4 2 0 3 0 7 
7 10 6 6 8 8 4 0 0 0 7 

Now U6 cannot be decreased because the constraint (3.4) for) = 4 would be violated. Next, 
U I is decreased toward the third maximum in the row but is only decreased by two units 
because constraint (3.4) becomes tight for) = 2. Finally, U2 is decreased until (3.4) becomes 
tight for) = 1. This completes the dual descent with u = (10 6 6 8 8 4), w(u) = 42, 
and J(u) = {l, 2, 4}. Now we associate a primal solution as described in (3.3) and obtain 
Q(u) = J(u), with a primal solution value of 40. 

The proposed modification given above to the order of decreasing the u/s produces the 
same result. The solution (u, Q(u)) fails to satisfy the optimality conditions since 
k 1 = IJ E Q( u): eli> u I} I = 2. To apply the interchange step, we increase u I back to its 
previous value of 12 and then restart the dual descent. In Table 3.2, we see that U3 can now 
be decreased by one unit and then no further move is possible except to decrease U I again. 
Hence u = (11 6 5 8 8 4) and w(u) = 42 as before, but now J(u) = {2, 3, 4}. From 
(3.3) we obtain the associated primal solution Q(u) = J(u) with the improved primal value 
of41. 

There is a branch-and-bound algorithm for the un capacitated facility location problem, 
called DUALOC, that obtains primal and dual feasible solutions at each node of the 
branch-and-bound tree using dual descent, the primal heuristic given by (3.3), and 
interchange. If a node is not pruned by these heuristics, then branching is accomplished by 
taking a) EN and considering the two problems with Xj = ° and Xi = 1. 

Example 2.1 (continued). When DUALOC is applied, the algorithm iterates six times 
through the interchange step. The values of the corresponding dual lower bounds and 
primal upper bounds are shown in Table 3.3. Hence before entering the branch-and
bound phase we have -20,503 ~ z ~ -20,340. Branching on X3 = 0, an optimal integer 
solution of value -20,363 is found. Branching on X3 = 1, an optimal integer solution of 
value -20,393 is found. Hence an optimal solution has value -20,363 (see Figure 2.2 and 
Table 2.4). 

Table 3.2. 

U jj - LiEf (Cu - Uit 

Step 1: 2 3 4 5 6 j: 2 3 4 5 

8 12 6 6 8 8 4 2 2 1 0 7 
9 12 6 5 8 8 4 2 1 0 0 7 
10 11 6 5 8 8 4 1 0 0 0 7 



3. Primal and Dual Heuristic Algorithms 399 

Table 3.3. 

Iteration Dual Bound Primal Bound 

1 -20,294 -20,503 
2 -20,326 -21,553 
3 -20,337 -20,503 
4 -20,338 -21,021 
5 -20,340 -20,503 
6 -20,340 -20,853 

Analysis of Heuristics 

We have emphasized the importance of finding both primal and dual feasible solutions, 
particularly when a primal feasible solution is taken as an approximation to an optimal 
solution. The dual solution provides an upper bound on the deviation from optimality of 
the primal solution and thus gives an a posteriori evaluation of the quality of the primal 
solution. 

In addition to this evaluation of an instance, it is frequently possible to give an a priori 
evaluation of a heuristic algorithm over all instances. One way to obtain results of this type 
is by worst-case analysis. 

The essential idea of worst-case analysis is simple. Consider a maximization problem 
consisting of instances: 

P(I) z(I) = max{cf(x): x E Sf '*' 0} for J E§;. 

Suppose we have a heuristic algorithm (H) that finds a feasible solution of value ZH(I). 
Worst-case analysis is based on calculating some maximum deviation between z(I) and 
ZH(J). The analysis depends crucially on the function that is used to measure deviation. 

Perhaps the simplest function is just the absolute difference z(I) - ZH(I). But for most 
problems the maximum value ofthe absolute difference is not a meaningful measure since 
it can be made arbitrarily large by scaling the objective function. (However, in Part III, we 
will consider a class of integer programs in which the objective function coefficients are all 
1 and the difference between the optimal value of the linear programming relaxation and 
the optimal value of the integer program always is less than or equal to 1). 

Relative values, which are independent of objective function scaling, are usually a more 
meaningful measure of deviation. To consider relative values, it is convenient to assume 
that Cf(X) "" 0 for all x E Sf and all J E .10. We say that heuristic algorithm H has a worst
case relative performance or performance guarantee of rH if 

rH = inf{r(I): ZH(I) = r(I)z(I)} 
fE.J 

= sup{r: zH(H) "" rz(I) for all J E .1o}. 

If a heuristic algorithm is not completely specified (e.g., as a result of the absence of a tie
breaking rule), we assume the worst possible outcome. By definition, 0.::;; rH'::;; 1 and H 
guarantees to find a feasible solution of value at least rH x 100% of the maximum value for 
all instances. Note that rH = 1 - f>H, where 

CH = inf{ c: C "" z(I) Z(~H(I) for all J E .10 with z(I) > 0 }, 

is the largest possible relative error. 
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To keep the same scale for mmlmlzation problems of the form 
z(I) = min{clx): x E SI '*' 0} with Cl(X) ~ o for all x E SlandI E~, we use the reciprocal 
ratio and define 

rH = sup{r: z(l) ~ rZH(J) for all I E ~}. 

Thus 0 ~ rH ~ 1 and H guarantees to find a solution of value at most rIJ x 100% of the 
minimum value for all instances. It is not at all unusual to obtain dramatically different 
results for maximization and minimization versions of what otherwise would be the same 
problem. 

Worst-case analysis is a very conservative approach since it takes only one bad instance 
to give a poor result. The alternative approaches of a probabilistic or statistical analysis will 
be considered briefly at the end of this section. 

There is one general principle that is used to obtain nearly all results on worst-case 
analysis. Consider a dual heuristic (DH) that produces an upper bound for P(J); that is, 
ZDH(l) ~ z(l) for all I E~. Let 

rDH = sup{r: ZH(J) ~ rZDH(l) for all I E~} 

so that rH ~ rDH. Now if there is a simple relationship between Hand DH it is often 
possible to calculate rDH directly and hence a lower bound on rHo Moreover, in some cases, 
we can find an instance 10 with ZH(J°) = rDHzDH(l°) and ZDH(l°) = z(IO) so that rH = rDH. 

Example 3.1. We give a simple illustration of this approach by analyzing a greedy 
heuristic for the maximum-weight matching problem. This is the special case of maxi
mum-weight packing in which matrix A is the node-edge incidence matrix of a graph 
G = (V, E). Thus L7!! aij = 2 for allj, and the greedy heuristic, introduced earlier in this 
section, chooses edges of maximum weight such that each chosen edge does not meet any 
of the edges chosen previously. The algorithm stops when no such edge exists. (We assume 
that all edge weights are positive.) Let EH be the set of edges chosen by the greedy heuristic. 
Then EH is a maximal matching; that is, e E E \ EH meets an e' E EH. 

The dual of the linear programming relaxation of the matching problem is 

min L Ui 
iEV 

Ui+Uj~Cij for(i,j)EE 

Ui ~ 0 for i E V, 

where C ij is the weight of edge (i, j). Consider the dual solution u H given by 

if(i,j) E EH 
otherwise. 

Figure 3.1 
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We claim that uH is dual feasible. Suppose u{l + u1 < cij for some (i,) E E. Then 
(i,) $. EH. Hence either i or) or both are met by an e E E H, and one ofthese edges, say 
(i,},), has been chosen before (i,) was considered. Hence u{l = cij' ;;. cu, which contra
dicts u{l + u1 < cij' 

Now 

ZOH = L u{l = 2 L cij and ZH = L cij ~ Z ~ ZOH, 
iEV (i,j)EEH (i,j)EEH 

so rH ;;. rOH ;;. !. In the graph of Figure 3.1, in which each edge has weight equal to 1, by 
choosing e = (2, 3) first, we obtain EH = {(2, 3)}, uH = (0 1 1 0), ZOH = Z = 2, and 
ZH = !ZOH' Hence rH = rOH =~. 

Although a solution whose value is only half of the optimal value is unlikely to be 
satisfactory, one must remember that a performance guarantee of 50% means that 50% is 
the worst possible outcome, and it is likely that for most instances the relative error will be 
much smaller. Moreover, it is not unusual for a heuristic to have performance guarantee of 
zero. Indeed, this is the case when the greedy heuristic is applied to the set-packing 
problem. 

Consider the family of set-packing problems 

for k = 1, 2, ... , 

where 

and h is the k x k identity matrix; lk and Ok are k x 1 matrices of alII's and all O's 
respectively. Since :E7!, ail = k < :E7!, aij = k + 1 for all) > 1, the greedy heuristic first sets 
x, = 1 and then stops. The optimal solution is x, = 0 and Xj = 1 for j = 2, ... , k + 1. 
Hence zH(k) / z(k) = 1 / k and rH = O. So, in the worst case, the greedy heuristic is 
arbitrarily bad for the set-packing problem. 

This raises a question in computational complexity. Suppose PP * ,NPP. Given an ,NPP
hard optimization problem and 0 < r < 1, does there exist a polynomial-time heuristic 
algorithm (H) with rH ;;. r? The answer to this question depends on the problem. In fact, 
both extremes are possible. 

There are some problems for which the approximation problem is ,NPP-hard for rH ;;. r 
for any r > O. We will show below that this is the case for a minimization version of a p
facility location problem. For the problem of finding the minimum number of colors 
needed to color the nodes of a graph such that no pair of nodes joined by an edge have the 
same color, the approximation problem is ,NPP-hard for r ;;. ~. But no polynomial-time 
heuristic algorithm H is known that yields rH ;;. r for any r > O. 

At the other extreme, there are ,NPP-hard optimization problems such that for any 
0< r < 1, there is an algorithm with performance rH;;' r, whose running time is polyno
mial in the length of the input and in 1 / (1 - r). We call such an algorithm a fully 
polynomial approximation scheme. In Section 11.6.1, we will give a fully polynomial 
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approximation scheme for the knapsack problem. A more modest result is a polynomial 
approximation scheme, which is an algorithm with performance rH ~ r, whose running 
time is polynomial in the length of the input for any fixed r, 0 < r < 1. 

To illustrate some of these results, we now consider the analysis of some heuristics for a 
p-facility variation of the uncapacitated facility location problem. Here there are no fixed 
costs, but we can open no more than p facilities. Suppose c ij ~ 0 is the cost of assigning 
client i to facility j so that the objective function is 

We call the problem 

v(Q) = I min cij for 0 C Q ~ N. 
iE! jEQ 

z=min{v(Q): 1 ~ IQI ~p} 

the p-facility minimization problem. 

Proposition 3.2. The p-facility minimization problem with performance guarantee 
rH ~ r is }(r;j/J-hardfor any r > O. 

Proof Given a graph G = (V, E), we say that G has a node cover of its edges of size 
I U I if there is a U ~ V such that every edge of G is incident to a node of U. Given an 
integer k < I V I, the problem of determining whether a graph has a node cover of size k is 
}(r;j/J-complete (see exercise 14 of Section 1.5.9). We now show that a polynomial-time 
algorithm for the p-facility minimization problem with performance guarantee rH ~ r for 
any r > 0 implies a polynomial-time algorithm for the node-cover problem. 

Consider the family of p-facility minimization problems with 1= E, N = V, p = k, and 

if ei is incident to node j 

otherwise. 

Now G contains a node cover of size k if and only if z = I E I. Hence an algorithm with a 
performance guarantee of r > 0 yields a solution with v(Q) ~ IE I/r. This implies that G 
contains a node cover of size k since any feasible solution that does not cover all of the 
edges has cost of at least 

IE 1- 1 + IE 1+ 1 > ill. 
r r • 

A dramatically different result is obtained for the p-facility maximization problem. 
Here cij ~ 0 is the profit obtained from assigning client i to facility j so that 

and the problem is 

v(Q) = I max cij for 0 C Q ~ N, 
iE! jEQ 

z=max{v(Q): 1 ~ IQI ~p}. 
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We analyze the greedy heuristic for this problem. To accommodate the constraint 
I Q I ~ p in the greedy heuristic for maximizing a set function, we just modify the stopping 
rule: If t = p, stop; QP is a greedy solution. Otherwise, t <- t + 1. Moreover, since C ij ;:;. 0 for 
all i and j, we can assume that the greedy heuristic produces a solution Ql with t = p. 

Let PI = V(QI) and PI = V(QI) - v(Qt-1) for t = 2, ... ,p. Thus the value of the greedy 
solution is ZG = Lf~l Pl' 

Theorem 3.3 

ZG ( (P - 1 )P) e - 1 z;:;' 1 - P ;:;. -e- ~ 0.63 for p = 1, 2, ... 

(e is the base of the natural logarithm). Moreover, for each p there is an instance for which 
the bound is tight; that is, rG = 1 - «p - 1) / p)P for a p-facility maximization problem. 

We prove Theorem 3.3 using a series of propositions. 

Proposition 3.4. If SeT C Nand k fl. T, then v( T U {k}) - v( T) ~ v(S U {k}) - v(S). 

Proof We have maxp:=s cij ~ maxjET cij' Hence 

max(Cik - mas x cij' 0) ;:;. max(Cik - maT X Cij, 0) 
JE JE 

and 

v(S U {k}) - v(S) = I max(cik - max Cij, 0) ;:;. I max(cik - max Cij, 0) 
iEi JES iEi JET 

= v(T U {k}) - v(T). • 
This property of set functions is known as submodularity and is the essential property 

used to prove Theorem 3.3. In fact, Theorem 3.3 can be generalized to the maximization 
of submodular set functions (see Section III.3.9). 

Proposition 3.5. Z ~ PPI and Z ~ Ll~l Pi + PPt+Iior t = 1, ... ,p - 1. 

Proof Let Q* be an optimal solution, that is, Z = v(Q*). Since QI is the set obtained 
after t steps of the greedy algorithm, we have V(QI) = L:~l Pi. Suppose Q* \ Ql = {j}, ... , 
jk}' We have k ~ p since I Q* I ~ p. Now 

v(Q*) ~ v(Q* U QI) 

k 

= V(QI) + I (V(QI U {j), ... ,N) - V(QI U {j), ... ,ji-l})) 
i~l 

k 

~ V(QI) + I (V(QI U {jJ) - V(QI» 
i~l 

~ V(QI) + PPI+), 

where the first inequality follows because v is nondecreasing, the second inequality follows 
by Proposition 3.4, and the last inequality follows since p;:;. k and 
PI+I ;:;. V(QI U {jJ) - V(QI) by the definition of the greedy algorithm. • 
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Proposition 3.6. If ZG = 1 - «p - l)/p Y', then Z ~ 1. 

Proof By Proposition 3.5 we have 

z~max11 

I 

11 ~ L Pi + PPt+1 for t = 0, ... ,p - 1 
i~1 

LPi=l- -p (P-1)P 
i~1 P 

Pi ~ ° for i = 1, ... ,p. 

To show that Z ~ 1, we consider the dual 

p-I 
L Ui= 1 
i=O 

I-I 

- L Ui - PUt + up ~ ° for 
i=O 

Ui~ ° for 

t = 0, ... ,p - 1 

i = 0, ... ,p - 1. 

Now observe that a feasible solution to the dual is given by 

and Ui = (p - l/PY up for i = 0, ... ,p - l. 
p 

This is true since 

p-I U ( (P - 1 )P) L Ui =..J!. 1 - -- P 
1=0 P P 

and 

I-I U ( ( 1 )1) ( 1)1 ~ Ui + PUI =; 1 - P; P + P; up = up. 

• 
This proves the first part of Theorem 3.3. Now we show that the bound is tight for 

P = 2, 3, ... (p = 1 is trivial). 

Proposition 3.7. For the family ofp-facility location problems defined by cP = (cfj) with 
III =p(p- l)and INI = 2p- 1; and with (a)forj= 1, ... ,p- 1 

{ (p _ 1) pP-2(P - 1 )j-I 
cfj = P 

° 
for i = (j - l)p + 1, ... ,jp 

otherwise 



3. Primal and Dual Heuristic Algorithms 405 

(b) for j = p, ... , 2p - 1 

P _ {pP-l for i = 1 + j + (l - 2)p and I = 1, ... , p - 1 
c ij - 0 otherwise, 

we have 

Proof An optimal solution is given by the last p columns, so 
z = p(p - 1)pP-l = (p - 1)pp. 

We now show that the greedy algorithm can select the first p columns. We have 

2: Cfl = p(p - 1)pP-2 ~ 2: cIij for j = 2, ... , p - 1 
iEI iEI 

and 

2: cIij = (p - l)pp-l for j = p, ... , 2p - 1. 
iEI 

Hence the greedy algorithm can choose the first column first. Now suppose that the greedy 
algorithm has chosen the first t - 1 columns and let QH = {l, ... , t - 1}. Then 

Table 3.4. 

6 0 9 0 0 

C ~), 
6 0 0 9 0 

C2 = 
2 C3 = 

6 0 0 0 9 
0 0 4 9 0 0 

0 4 0 9 0 
0 4 0 0 9 

48 0 0 64 0 0 0 
48 0 0 0 64 0 0 
48 0 0 0 0 64 0 
48 0 0 0 0 0 64 
0 36 0 64 0 0 0 

C4 = 
0 36 0 0 64 0 0 
0 36 0 0 0 64 0 
0 36 0 0 0 0 64 
0 0 27 64 0 0 0 
0 0 27 0 64 0 0 
0 0 27 0 0 64 0 
0 0 27 0 0 0 64 
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( 1 )/-1 V(QI-I U (t}) - V(QI-I) = p(p - l)pP-2 p~ 

> V(QI-I U (j» - v(Qt-l), for j = t + 1, ... , p - 1. 

But forj > p - 1, we obtain 

V(QI-I U (j» - V(QI-I) = (p - l)pP-' - (p - l)pP-2 I ~ 1-2 ( 1)1 
I~O P 

= (p _ l)pP-' (P ~ 1 r'. 
Hence the greedy heuristic can choose column t next. Thus 

ZG = (p - l)pP-' I p-- + (p - l)pP-' p-- = (p - 1)(PP - (p - 1)P) p-2 ( _ 1)1 ( _ 1 )P-I 

I~O P P 

and 

ZG = pP - (p - 1)P = 1 _ (P - 1 )P. 
Z pP P • 

Empirical evaluation of the greedy heuristic for the p-facility location problem shows 
that it performs reasonably well (above 80% of the optimal value) on most real and 
randomly generated instances. Moreover, the solution obtained by the greedy heuristic 
frequently can be improved by applying the interchange heuristic, which begins with a set 
of size p and recursively replaces an element in the set with one not in the set as long as the 
objective improves. However, there is a family of instances, like those given in Proposition 
3.7, where the greedy heuristic obtains a solution that achieves its worst-case performance 
and the solution cannot be improved by applying the interchange heuristic. In addition, 
when the interchange heuristic begins with an arbitrary set of size p, its worst-case 
performance is inferior to that of the greedy heuristic. 

Let Z I be the value of a solution produced by the interchange heuristic. 

Proposition 3.8 ZI ~ [P/(2p - 1)]z andfor each p there is an instancefor which the bound 
is tight, that is, rI = p/(2p - 1). 

Proof Let QI C N be the set chosen by the interchange heuristic. Now apply the 
greedy heuristic to QI so that ZI = V(QI) = Lf~1 Pi, where Pi = V(Qi) - V(Qi-l) for i = 2, ... , 
P,PI = V(QI), and QP = QI. Let Q* be an optimal solution and Q* \ QP-I = {jl, ... ,h}. By 
the termination rule of the interchange heuristic, V(QP-I U (ji» - V(QP-I) ~ PP' By Propo
sition 3.4 we have 

k 

v(Q*) ~ V(QP-l) + I (V(QP-I U (j;}) - V(QP-I» 
i~1 

Now since Pp ~ p;for i < p, we have pp ~ (1!P)ZI and Z ~ [(2p - 1)/P]ZI. 
See exercise 13 for a family of instances which establishes that the bound is tight. • 
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Simulated Annealing 

The interchange heuristic stops when it finds a "locally optimal" solution relative to the 
chosen neighborhood structure. As combinatorial optimization problems may have many 
local optima, it is typical to run the interchange heuristic many times with randomly 
chosen starting points. 

A different approach for trying to obtain a global optimum using an interchange 
heuristic is called simulated annealing. Despite the fancy name, the idea is very simple. 
While the interchange heuristic produces a sequence of solutions with increasing objective 
value, here we allow the objective value to decrease occasionally to avoid getting stuck at a 
local optimum. 

Consider the problem 

(3.5) max {c(Q): Q E ~}. 
Q~M 

Suppose QO is the current solution and we find a point QI in the neighborhood N(QO) of 
QO. If C(QI) > c(QO), we proceed as before by replacing QO with QI. On the other hand if 
c( Q I) ~ c( QO), we replace QO with Q I with probability p, where p is a decreasing function 
of c(QO) - C(QI). The motivation for moving to a point with a smaller objective value is 
that if we are stuck in a shallow local optimum, there is a chance of escaping by moving to 
a neighbor having a lower objective value. The probability p can also be decreased as a 
function of the number of iterations. One reason for doing this is to obtain convergence; 
another reason is that as the global optimum is approached, making steps away from the 
optimum becomes less attractive. 

Simulated Annealing Algorithm for (3.5) 

Initialization: Let ao > 0, 0 < P < 1, QO E ~ and i = O. 

Step 1: Given Qi, generate Q' ~ N(Qi). 
Step 2: a) If c(Q') > C(Qi), then Qi+1 = Q'. 

b) If c(Q') ~ C(Qi), then Qi+1 = Q' with probability p = {exp[c(Q') - c(Qi)]la.} 
and Qi+1 = Qi with probability 1- p. I 

Step 3: ai+1 = ai(1 - p) and i ... i + 1. 

Now provided that 

i. it is possible to move from any set Q E ~ to any other Q' E ~ in a finite number of 
iterations, 

ii. each set in a neighborhood is chosen with equal probability, and 
iii. the neighborhoods are symmetric in the sense that Q E N(Q') if and only if 

Q' EN(Q), 

it can be shown that the algorithm converges to the global optimum. However, the 
provable rate of convergence is exponential. 

The empirical efficiency of simulated annealing depends on the neighborhood struc
ture and the rate at which a is decreased. For some combinatorial optimization such as the 
traveling salesman problem and a variety of problems related to circuit design, simulated 
annealing has found much better solutions than those obtained by a random-start 
interchange algorithm. 

Probabilistic Analysis 

Experiments and statistical analysis can be done to draw conclusions about typical 
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behavior of heuristics. In some cases, it is even possible to do a probabilistic analysis to 
obtain a priori results about average behavior. With this approach, one must be careful to 
use a probability distribution of the instances that is both realistic and mathematically 
tractable. 

We mention three general types of stochastic models that are amenable to analysis. One 
such model deals with problems on graphs and uses random graphs as the underlying 
stochastic model. A random graph on n nodes is one in which the edges in the graph are 
selected at random. In the simplest of these models, the events of the graph containing any 
edge are identically and independently distributed random variables; that is, the probabil
ity that (i, j) E E is q for all i, j E V. When q = 1, all possible graphs on n nodes are equally 
likely. Then the probability of some property Q occuring on such a random graph with n 
nodes is simply the fraction of n-nodes graphs that possess property Q. We say that almost 
all graphs possess property Q if the probability approaches 1 as n .... 00. For our purposes, 
property Q could be that a certain heuristic finds an optimal solution to a given problem 
whose instance is specified by an n-node graph. 

To illustrate this idea, consider the p-facility maximization problem in which C is the 
edge-node incidence matrix of a graph. The problem is then to choose p nodes so that the 
number of edges incident to the chosen set is maximum. The greedy heuristic begins by 
choosing a node of maximum degree; then this node and all edges incident to it are 
deleted, and the process is repeated until p nodes have been chosen. It is a fact that for the 
random graph model given above, if p does not grow too fast as a function of n, then the 
greedy heuristic finds an optimal solution for almost all graphs. In addition, the greedy 
solution is optimal to the linear programming relaxation. We will not prove these results. 
But they are an easy consequence of an interesting theorem which says that in almost all 
graphs, if p does not grow too rapidly with n, then no two nodes in the set of p nodes of 
largest degree have the same degree. 

Another stochastic model deals with problems in which the data are points in the plane. 
For example, the p-median problem in the plane is the special case of the p-facility 
minimization problem in which C is an n x n matrix and C ij is the euclidean distance 
between points i and j. Here we assume that the points are placed randomly in a unit 
square using a two-dimensional uniform distribution. 

For this problem, a very sharp estimate has been obtained on the asymptotic value of 
ZIP. By this we mean that as p and n approach infinity in a well-defined way, ZIP (p, n) 
approaches c/(P, n) with a probability that goes to 1 (almost surely), where c is a constant. 
Here c = 0.377 and/(p, n) = nip}. Results of this type are generally proved by comparing 
the asymptotic value of ZIP to the objective value of a continuous problem. These results 
can be used to analyze the asymptotic performance of heuristics since, as we have already 
shown, it is frequently not hard to analyze the behavior of the objective values produced 
by simple heuristics. For the p-median problem it has indeed been proved that there is a 
fast heuristic (H) that almost always finds a solution with rH ~ 1 - t for any t > o. Similar 
analyses have been done for the linear programming relaxation of the p-median problem. 
Here it has been shown that ZLp(P, n) converges to 0.376 nip} almost surely. Consequently, 
for this stochastic model of the p-median problem, the asymptotic value of the absolute 
value of the duality gap is very small. 

A third type of stochastic model deals with random objective or constraint coefficients. 
For example, in the p-median problem, we could assume that the c;/s are drawn randomly 
from a uniform distribution. Here it has been shown that (ZIP - ZLP) I ZLP converges to 
(p - 1) I 2p almost surely when p grows slowly with n, so a positive duality gap is to be 
expected. This has been confirmed by computational experiments as well. 

A final comment on these models and results concerns what is deducible from 
(ZIP - ZLP) I ZLP regarding the number of nodes L in a branch-and-bound algorithm that 
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uses linear programming relaxation. For the euclidean problems it has been shown that 
(ZIP - ZLP) / ZIP converges to 0.00284 almost surely. Nevertheless, it has also been shown 
that a branch-and-bound algorithm will almost surely explore nP/200 nodes. 

4. DECOMPOSITION ALGORITHMS 

In this section, we will consider algorithms based on Lagrangian duality (Section 11.3.6) 
and Benders' decomposition (Section 11.3.7). 

Solving the Lagrangian Dual by Subgradient Optimization 

Recall that to obtain the Lagrangian dual of an integer programming problem, we 
partitioned the constraints into a set oflinear constraints (A I x ~ b I) and a second set Q so 
that 

IP(Q) ZIP = max{cx: A IX ~ b l , X E Q}. 

Then we obtained the Lagrangian dual with respect to the constraints A IX ~ b I given by 

(LD) 

where the Lagrangian relaxation for a given A is 

(LR(A» 

It is essential to choose Q so that for fixed A, LR(A) is easy to solve. As we have already 
shown in Example 6.2 of Section 11.3.6, there may be several ways of choosing Q and 
there generally is a tradeoff between the simplicity of solving LR(A) and the quality of the 
bound Zw. In this section, we will present a subgradient algorithm and a cut generation 
algorithm for solving the Lagrangian dual and use these algorithms to solve UFL. 
Applications to the traveling salesman problem will be presented in Section 11.6.3. 

It has been shown in Section 11.3.6 (Corollary 6.4) that ZLR(A) is a piecewise linear 
convex function of A. Furthermore, in Section I.2.4 we presented a subgradient algorithm 
for maximizing a piecewise linear concave function or, equivalently, minimizing a 
piecewise linear convex function. Here we use the subgradient algorithm to solve LD. 

Proposition 4.1. If XO is an optimal solution to LR(AO), then SO = b l - A IXO is a subgra
dient ofzLR(A) at ..1=..1°. 

Proof The result is a direct consequence of Proposition 4.2 of Section 1.2.4. • 

We now consider a Lagrangian dual for UFL. One option is to take the dual with respect 
to the constraints LjEN Yu = 1 for i E I. Then 

Q = {x E Bn, Y E R':'": Yu - Xj ~ 0 for i E I,j EN}, 

ZLR(U) = max (L L (cij - u;)YiJ - L jjXj + LUi) 
(x,y)EQ iEi JEN JEN iEi 
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and 

Recall (Proposition 6.11 of Section 11.3.6) that u is unconstrained since we have taken the 
dual with respect to equality constraints. Here we have used u rather than .Ie for the 
multipliers because of their connection with the dual variables introduced in the linear 
programming relaxation of UFL. 

With this formulation it is very easy to solve the Lagrangian relaxation for fixed u. 

Proposition 4.2. For the Lagrangian relaxation of UFL, the following statements are 
true. 

a. ZLR(U) = LjEN (LiE! (Cij - u;)+ - jjt + LiE! Ui. 

b. Zw = ZLP. 

c. A subgradient of hR(U) at U = UO is given by Si = 1 - LjEN Yij(UO) for i E I, where 

{ 
1 if Cij - u? > 0 and L (cij - u?t - jj > 0 

Yij(UO) = 0 iE! 
otherwise. 

Proof Optimizing first over the Y variables, we set Yij = 0 if Cii - Ui <S 0 and Yij = Xj 
otherwise. Hence 

Now, maximizing over Xj, we set Xj = 0 if LiE! (Cij - Uit - jj <S 0 and Xj = 1 otherwise. 
Hence statement a is true. 

Statement b follows from the observation that ZLR(U) = w(u) as defined in (3.1). 
Statement c follows from the optimal values of the variables given in the proof of a and 

Proposition 4.1. • 

Although the Lagrangian dual of UFL is not a stronger relaxation than the linear 
programming relaxation ofUFL, the Lagrangian dual is still of interest since subgradient 
optimization is reportedly a very efficient algorithm for minimizing ZLR(U). 

Example 1.1 (continued). We apply the subgradient algorithm to LD. 
We start with u' = (12 8 6 8 8 3), where u} is the second max in row i. We use 

the subgradient direction s given in Proposition 4.2 and a "geometric" sequence for 
determining step size. In particular, ul+' = U' - e,s', where e, = 2 and e, is halved every 
three iterations thereafter. 

The results of the first 11 iterations are shown in Table 4.1. 
We observe that even though w( u) has attained its minimum value of 411, the algorithm 

does not terminate since s * O. To establish that s = 0 is a subgradient at U 10, we would 
need to generate multiple optimal solutions to LR(UIO) and then take a convex combina
tion of the corresponding subgradients. 
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Table 4.1. 

Iteration t 

1 12 8 6 8 8 3 46 1 1 1 0 0 0 2 

2 10 6 4 8 8 3 43 0 0 -1 0 0 0 2 

3 10 6 6 8 8 3 42 1 1 1 0 0 0 2 

4 8 4 4 8 8 3 47 -1 -1 -1 0 0 0 1 

5 9 5 5 8 8 3 44 -1 -1 -1 0 0 0 1 

6 10 6 6 8 8 3 42 1 1 1 0 0 0 1 

7 9 5 5 8 8 3 44 -1 -1 -1 0 0 0 1 
2 

8 9~ 5~ 5~ 8 8 3 421 -1 0 0 0 0 0 1 
2 

9 10 51 51 8 8 3 42 -1 0 0 0 0 0 1 
2 

10 101 51 51 8 8 3 411 1 1 1 0 0 0 1 
4 

11 1O± 5! 5! 8 8 3 42! 1 1 1 0 0 0 1 
4 

The example illustrates the difficulty of stopping the subgradient algorithm. 
However, since the Lagrangian relaxation is to be embedded within a branch-and

bound algorithm, subgradient optimization can be used to obtain good bounds easily and 
quickly without having to wait for the algorithm to "converge". In particular, we use three 
criteria for stopping the subgradient algorithm at iteration (, namely: 

a. Sl = 0; 

b. if the data are integral, then hR(UI ) - ~ < 1, where ~ is the value of the best available 
feasible solution; and 

c. after a specific number of sub gradient iterations has occurred, that is { ~ (max. 

It is also important to use the multipliers to construct primal feasible solutions. For 
example, when solving UFL with a Lagrangian dual relaxation, for each u we can 
construct the solution Q(u) given by (3.3). 

Finally, the reduced prices and z can be used to fix variables at each node of the branch
and-bound tree (see Proposition il). 

Example 4.1. We consider a p-facility variant of Example 2.1 having the same matrix 
(cij) as before, with fixed-costsJi = 0 for all} EN and where exactly four facilities must be 
opened. We solve this instance using a Lagrangian dual/subgradient optimization/branch
and-bound algorithm. 

Using the greedy-interchange heuristic described in Section 3, a feasible solution of 
value -12,509 is found. The subgradient algorithm is then initialized with u} = second 
max cij for all i. The step size is halved every n = 33 iterations. After 102 iterations, an 
upper bound of -12,336 and a feasible solution of value -12,363 are found. By this stage, 
using reduced prices as in Proposition 2.1, two of the variables Xj can be fixed to 1, and 28 
of the Xj variables can be set to O. The remaining problem is to open facilities at two of the 
three remaining sites (a problem that is easily solved), and -12,363 is indeed shown to be 
the optimal value. The optimal solution is shown in Table 2.4. 

Solving the Lagrangian Dual by Constraint Generation 

It has been shown in Corollary 6.3 of Section 11.3.6 that if {xk E R~: k E K} and {r j E R~: 
} E J} are the extreme points and extreme rays of conv(Q), then 
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Zw = min r, 
~.A 

r, + A(A I Xk - b I) ~ exk for k E K 

(MLD) ~ er j forj E J 

Since MLD has a very large number of rows, it is a suitable candidate for the FCPA of 
Section 2. Assuming that all but the nonnegativity constraints are in g;;, we now describe 
the separation algorithm for g;;. 

Separation Algorithm for MLD. Given (r,*, A*), with A* ~ 0, calculate 

hR(A*) = max ex + A*(b l _AIX). 
xEconv(Q) 

If Yf* ~ ZLR(A *), stop. Yf = ZLR(A *), A = A * is an optimal solution ofMLD. 
If r,* < ZLR(A*), an inequality in g;; is violated. 

a. If ZLR(A*) .... 00, then there exists a ray r j for j E J such that (e - A*A I)rj > O. Hence 
the inequality M I r j ~ er j is violated. 

b. If ZLR(A*) < 00, then there exists an extreme point Xk for k E K such that ZLR(A*) = 
exk + A*(b l - A IXk). Since r,* < ZLR(A*), the inequality r, + A(A IXk - b l ) ~ exk is 
violated. 

For UFL, with Q = {x E Bn, Y E R';zn: Yij - Xj';;;; 0 for i E I,j EN}, 

the extreme points {x\ ykhEK of conv(Q) are 

{xEBn,yEBmn:yij-Xj';;;;O for iEI,jEN}. 

HenceMLDis 

Zw = min r, 
~.u 

r, + I Ui(-l + I yt) ~ I I eijyt - I jjxJ for k E K, 
iEI JEN iEI JEN JEN 

where yt = 0 if xJ = 0 and yt E {o, l} if xJ = l. 
In the separation algorithm, the constraints are generated by solving for ZLR(U) as 

indicated in Proposition 4.2. 

Benders'Decomposition 

We have seen in Section 11.3.7 that the problem 

Z = max ex + hy 

(MIP) Ax + Gy.;;;; b 

x EX s; Z~, 

yER~ 
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can be reformulated as 

z= max l1 

(MIP') 
11 ~ ex + uk(b - Ax) for k E K 

vj(b -Ax) ~ 0 for) E J 

xEX, I1ERI, 

where {Uk E R'J': k E K} are the extreme points of Q = {u E R'J': uG ~ h}, and 
{v j E R'J':) E J} is the set of extreme rays of{u E R'J': uG ~ O}. 

Though MIP' is not a linear program, the large number of constraints suggests the use 
of a cut generation algorithm. It suffices to adapt the FCPA for LP(Bl') by replacing the 
linear programming relaxation Lpl with a mixed-integer programming relaxation MIpt 
and to describe the separation algorithm. 

Constraint Generation Algorithm for MIP' 

Initialization: Find (possible empty) sets KI s: K, JI s: J. Let 

Iteration t: 

S1 = {11 E R 1, x EX: 11 ~ ex + uk(b - Ax) for k E KI, 
vj(b - Ax) ~ 0 for) E P}. 

Sett = 1. 

Step 1: Solve the relaxation ofMIP': 

Zl = max{l1: (11, x) E Sk, x EX} 

a. IfMIpl is infeasible, stop. MIP' is infeasible. 
b. IfMIpl is unbounded, find a feasible solution pair (I1 t , Xl) with 111 > w for some large 

value w. 
c. Otherwise let the optimal solution be (111, Xl). 

Step 2: Separation. Solve the linear program (see Section 11.3.7) 

ZLP(Xl) = max hy 

or its dual. 

a. If ZLP(Xl) .... 00, stop. MIP' is unbounded. 

Gy ~b -Axt 

yERf 

b. If ZLP(Xl) is finite, let the primal solution be yt, and the dual solution ut• 

c. If LP(xt) is infeasible, let VI be a dual ray with vt(b - Axt) < O. (Note that at the 
indication ofinfeasibility, we also get a dual extreme point ut .) 

d. Optimality test. If ext + hi ~ I1 t , stop. (xt, i) is an optimal solution ofMIP'. 

e. Violation. If ext + hi < 111 or LP(xt) is infeasible, at least one constraint ofMIP' is 
violated. 
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i. If ZLP(Xt) is finite, 11 ~ ex + ut(b - Ax) is violated. Set K t+1 = Kt U {f}, that is, 

S)71 = S~ n ((11, x): 11 ~ ex + ut(b - Ax)}. 

ii. If LP(xt) is infeasible, vt(b - Ax) ~ 0 is violated. Set p+l = Jt U {f}, that is, 

(Although it is not necessary, we can also update Kt by setting Kt+l = Kt U {t} so that 

f.t<-t+1. 

There are several difficulties in implementing Benders' decomposition that concern 
solving the relaxation 

zt = max 11 

11 ~ ex + uk(b - Ax) for k E Kt 

vi(b - Ax) ~ 0 for) E P 

11 E R I, x EX S Z~, 

where Kt and P are the index sets of inequalities available after the first t iterations. 
One difficulty is that MIpt is a mixed-integer program with one continuous variable. A 

way of alleviating this difficulty is to replace 11 by a threshold value 11* in MIP'. We then 
replace MIP' by the pure-integer feasibility problem for the constraint set 

{x EX: 11* ~ ex + uk(b -Ax) for k E K, vi(b -Ax) ~ 0 for) E J}. 

Then if the resulting problem is feasible (infeasible), 11* is increased (decreased) and the 
feasibility problem is solved again. If lower and upper bounds on zt are known, then 
binary search can be used to specify the sequence of values for the parameter 11*. 

A second difficulty is that very often there is primal degeneracy in the problem LP(xt), 
so there is not a unique dual solution ut • The choice of the dual extreme point ut leading to 
a "good" violated constraint can be very important. One approach is to generate cuts that 
are not dominated by any other constraint. 

A third problem lies in the choice of the initial subset of constraints Kl, P. If care is not 
taken with this choice, very unstable behavior of the algorithm may be observed. One 
proposal is to solve the linear programming relaxation ofMIP' and to take Kl and P to be 
the index sets of the extreme points and extreme rays required to generate the optimal 
linear programming solution. A second alternative is to use a heuristic to generate a 
"good" solution (x*, y*) to MIP' and then to derive initial cuts from the solution of LP(x*). 

Example 7.1 of Section 11.3.7 (continued) 

max 5Xl - 2X2 + 9X3 + 2Yl - 3Y2 + 4Y3 

5Xl - 3X2 + 7X3 + 2Yl + 3Y2 + 6Y3 ~ -2 

4Xl + 2X2 + 4X3 + 3Yl - Y2 + 3Y3 ~ 10 

Xi ~ 5 for) = 1,2,3 

x E zl, y ERl. 



4. Decomposition Algorithms 

Initialization. KI = JI = 0. t = 1. 

Iteration 1 

ZI = max{11: 11 E R I , X E ZI, Xj';;; 5 forj = 1,2, 3}. 

Step 2: Separation. Solve the linear program 

hp(XI) = max 2YI - 3Y2 + 4Y3 

2YI + 3Y2 + 6Y3 ,;;; -2 

3YI - Y2 + 3Y3 ,;;; 10 

YERI. 
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LP(x I) is infeasible since its dual is unbounded, which is verified by the dual extreme 
point u l = (1 0) and the extreme ray VI = (1 0) (see Figure 7.1 of Section 11.3.7). 
~ = KI U {l}, P = JI U {l}. 

Iteration 2 

Step 1: 

-2 - 5XI + 3X2 - 7X3 ~ 0 

Xj ,;;; 5 for j = 1, 2, 3 

11 E R I, X £; Z;. 

An optimal solution is Z2 = 5, X2 = (0 5 1). 

Step 2: min 6UI - 4U2 

2UI + 3U2 ~ 2 

3UI- u2~-3 

6UI+3u2~ 4 

u ER~. 

The dual is unbounded, which is verified by the extreme point u2 = (0 3) and the 
extreme ray v2 = (1 3). K3 = K2 U {2}, J3 = P U {2}. 
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Iteration 3 

Step 1: 

11.5. Special-Purpose Algorithms 

Z3 = max Yf 

Yf ~ -2 + 1X2 + 2X3 

Yf ~ 30 - 7Xl - 8X2 - 3X3 

-2 - 5Xl + 3X2 - 7X3 ~ 0 

28 - 17xl - 3X2 - 19x3 ~ 0 

Xj ~ 5 for j = 1, 2, 3 

Yf E R 1, x E Z!. 

An optimal solution is Z3 = 3, X3 = (0 3 1). 

Step 2: hp(X3) = max 2Yl - 3Y2 + 4Y3 

2Yl + 3Y2 + 6Y3 ~ 0 

3Yl - Y2 + 3Y3 ~ 0 

yER!. 

An optimal solution is ZLP(X3) = 0, y3 = (0 0 0) and an optimal dual solution 
is u3 = (0 }). CX3 + hp(X3) = 3 = Yf3. Hence (x 3, y3) = (0 3 1 0 0 0) is an optimal 
solution. 

As we observed in Section II.3.7, Benders' decomposition is useful algorithmically 
when LP(x) has structure. There we used the structure ofUFL to obtain the reformulation 
(7.2) given by 

Z = max - I jjXj + I Yfi 
jEN iE! 

Yfi ~ Cik + I (cij - Cikt Xj for kEN and i E I 
jEN 

I Xj ~ 1 
jEN 

We now illustrate the solution of this reformulation using the constraint generation 
algorithm. 

Example 1.1 (continued) 

Initialization 
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Iteration 1 

Step 1: '11 = 13, '1i = 9, '1j = 6, '1i = 10, '1~ = 10, '1A = 4, Xl = (0 
LiE! '1i - LjEN iJXj = 49. 

Step 2: Separation for each client i. exl + ZLP(XI) = 25: 

i = 2: '12 ~ 1 + 7XI + 3X2 + 8X3 + X5 

i = 4: '14 ~ 2 + Xl + 3X 2 + 8X4 + 6X5 

i = 5: '15 ~ 0 + 8XI + 5X3 + lOx4+ 8X5 

i = 6: '16 ~ 0 + 2XI + 3X3 + 4X4 + X5 

Iteration 2 

Step 1: '1T = 13, '1i = 9, '13 = 6, '1l = 10, '1~ = 10, '1l = 4, X2 = (0 0 
Step 2: Separation. ex2 + ZLP(X2) = 37. 

'11 ~ 0 + 12xI + 13x2 + 6X3 + X5 is violated. 

Iteration 3 

o 0 0). Zl 

is violated 

is violated 

is violated 

is violated 

0). Z2 = 44. 

Step 1: '1f = 13, '11 = 9, '1} = 6, '1J = 10, '1~ = 10, '1g = 4, X3 = (0 0). Z3 = 41. 
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Step 2: ex3 + ZLP(X3) = 41. Since the upper and lower bounds are equal, the solution X3 is 
optimal. 

5. DYNAMIC PROGRAMMING 

Dynamic programming provides a framework for decomposing certain optimization 
problems into a nested family of subproblems. This nested structure suggests a recursive 
approach for solving the original problem from the solutions of the subproblems. 

Dynamic programming was originally developed for the optimization of sequential 
decision processes. In a discrete-time sequential decision process, there are T periods, 
t = 1, ... , T. At the beginning of period t, the process is in state St-b which depends on (a) 
the initial given state so, and (b) the decision variablesxb ... ,Xt-l for periods 1, ... , t - 1. 
The significance of the state is that the contribution to the objective function in period t 
depends only on St-l and Xt, and the state in period t + 1 depends only on Sl-I and Xl. 

Formally we describe a sequential decision process by the model 

(5.1) 

T 

Z = max I gt(St-b Xl) 
x], ... , XT t::::l 

St = CPt (St-" Xt) for t = 1, ... , T - 1 

So is given. 

The domains of the state and decision variables depend on the particular application 
being considered. 
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We can consider the 0-1 knapsack problem 

(5.2) 

as a sequential decision process. An instance is specified by integers nand b and positive 
integral n-vectors c = (cl, ... ,cn) and a = (ai, ••. ,an). 

In period k, k = 1, ... , n, the decision is whether to putthe kth item into the knapsack. 
The state of the process in period k is the number of units of the knapsack that are 
available after we have made the decisions regarding items 1, ... , k-l, that is, 

Thus 

k-l 

Sk-l = b - I ajXj = Sk-2 - ak-lXk-t
j~l 

and So = b. For k = 1, ... ,n, the feasible domain is given by ° ~ Sk ~ b, and Xk E {O, n. 
Another problem that can be viewed as a sequential decision process is the uncapaci

tated lot-size problem (ULS), which has been formulated in Section 1.1.5 as 

(5.3) 

T 

min I (PtYt + CtXt + htst ) 
t~l 

St-l + Yt = dt + St for t = 1, ... , T 

for t = 1, ... , T 

So = 0, ST = ° 
S E RI+l, Y E RI, x E BT. 

The data are the unit production costs {pJ~l, unit storage costs {htr{~l, set-up costs 
{clr~l, and demands {dlr{~l. All of the data are assumed to be nonnegative and integral. The 
variable YI is the production in period t. If YI > 0, we must pay the set-up cost Ct. This is 
achieved by the constraint YI ~ {J)X t , where (J) is a suitably large positive number. The 
variable St is the inventory available at the end of period t. Since demand cannot be 
backlogged, we have St ~ 0. 

The formulation (5.3) is of the form (5.1) with 

and 

Here the decision variables are both X t and Yt. 
We now develop a recursive optimization scheme for the sequential decision process 

(5.1). For k = T, T - 1, ... , 1, let 
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T 

Zk(Sk-l) = max I gt(St-b Xt) 
(5.4) x" ... ,XTt~k 

St = ¢Mt-b Xt) for t = k, ... , T - 1. 

Thus Z = ZI(SO) for the given value of So. 

Proposition 5.1 Zk(Sk-d = max{gk(sk-l, Xk) + Zk+l (Sk)} 
Xk 

Proof By the definition of Zk+l given in (5.4), the term on the right equals 

~~x {gk(Sk-b Xk) + Xk'~~\T t~t gMt-b X t)} 

St = ¢Mt-b Xt) for t = k, ... , T - I 

= ~~x Xk,~a.~XT {gk(Sk-b Xk) + t~t gt(St-b Xt)} 

St = ¢t(St-b Xt) for t = k, ... , T - I 

The first equality holds since gk is not a function of Xk+b ... , XT, and the second equality 
follows from (5.4). • 

The recursion given in Proposition 5.1 transforms the original optimization problem 
(5.1) with T decision variables, T - I state variables, and T - I state constraints into a 
sequence of T subproblems. The kth subproblem 

(5.5) 

has only one decision variable and one state constraint but must be solved for all possible 
values of Sk+ Thus the efficiency of solving (5.5) depends on the number of values of Sk-b 

unless it is possible to determine Xk analytically as a function of Sk+ 

The recursion expresses an intuitive principle of optimality for sequential decision 
processes; that is, once we have reached a particular state, a necessary condition for 
optimality is that the remaining decisions must be chosen optimally with respect to that 
state. 

The shortest-path problem between specified nodes provides a nice illustration of the 
principle of optimality. Suppose that PO,T is a path from node 0 to node T and that node k, 
k * 0, T, is on PO,T' Hence PO,T decomposes into the two paths PO,k and P k,T. The principle of 
optimality says that a necessary condition for PO,T to be a shortest-path between nodes 0 
and T is that Pk,T be a shortest path between nodes k and T. We have used this fact in 
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developing the shortest-path algorithms of Section 1.3.2, which therefore may be consid
ered as dynamic programming algorithms. 

The principle of optimality is a means of excluding non optimal decisions by domina
tion. In the general sequential decision process given by (5.1), if x?, ... ,x~ is a feasible set 
of decisions that yields Sk = sZ, then a necessary condition for its optimality is that 
XZ+b ... ,x~ be an optimal set of decisions with respect to the problem that begins in 
period k + 1 with Sk = s2. 

A Dynamic Programming Algorithm for the 0-1 Knapsack Problem 

We now demonstrate the solution of a recursive formulation by developing a classical 
dynamic programming algorithm for the 0-1 knapsack problem (5.2). Although the 
recursion (5.5) can be applied to the 0-1 knapsack problem, it is easier to develop the 
standard dynamic programming algorithm using a slightly different approach that 
reverses the order of the recursion. 

For k = 1, ... , n, define Nk = {I, ... , k} and 

Thus znCb) = zCb). 
We will proceed recursively to calculate zn(b) from Zn-l, which in turn is calculated from 

Z n-2, and so on. The recursion is initialized with 

Now observe that if Xk = 1 in an optimal solution to (5.6) then d - ak ~ 0 and 

On the other hand, if Xk = 0 in an optimal solution to (5.6), then 

Hence for k = 2, ... , nand d = 0, ... ,b, we obtain 

(5.7) 

Relation (5.7) is the basic recursion for determining zn(b). It also applies for k = 1 by 
defining zo(d) = 0 for d ~ O. To put it in a slightly more compact form, we define 
zkCd) = - 00 for d < O. Thus for k = 1, ... ,n and d = 0, 1, ... ,b, we obtain 

(5.8) 

where for all k, we have zkCd) = -00 if d < O. 
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For fixed k and d, a constant number of calculations is needed to solve (5.8); hence 
O( nb ) calculations are required to determine Z A b ). 

Given Zk for k = 0, 1, ... , n, a recursion in the opposite direction is used to determine 
an optimal solution XO = (x?, ... ,x~). We have 

XO = {O if zn(b) = zn_l(b) 
n 1 otherwise. 

Now let d2 = b - LJ~k+1 ajxJ. Then, for k = n - 1, ... , 1, we obtain 

The amount of work required in the backward recursion to determine an optimal 
solution is dominated by the work in the forward recursion (5.8). Hence the overall 
running time of the algorithm is O(nb). Thus we have obtained a pseudopolynomial-time 
algorithm (but not polynomial) for the 0-1 knapsack problem. 

Example 5.1 

max 16xI + 19x2 + 23x3 + 28x4 

2xI + 3X2 + 4X3 + 5X4 ~ 7 

xEB4. 

zl(d) = { ° for ° ~ d ~ 1 
16 for 2 ~ d ~ 7 

{ ° forO ~ d ~ 1 

z2(d) = 16 for d=2 
19 for 3 ~ d ~ 4 [max(16, 19 + 0)] 
35 for 5 ~ d ~ 7 [max(16, 19 + 16)] 

z,cd) = ( 

zz(d) forO ~ d~3 

23 for d = 4 [max(19, 23 + 0)] 
35 for d = 5 [max(35, 23 + 0)] 
39 for d = 6 [max(35, 23 + 16)] 
42 for d = 7 [max(35, 23 + 19)]. 

Finally, 

Z4(7) = max(42, 28 + z3(2» = 44. 

Hence xS = 1, x~ = xg = ° since z3(2) = z2(2) = zl(2), and x? = 1 since Z 1(2) > 0. 

The recursion (5.7) can be interpreted as a method for solving a maximum-weight path 
formulation of the 0-1 knapsack problem. The directed graph has a node s and has nodes 
(k, d)for k = 0, 1, ... , nand d = 0, 1, ... ,b. For 1 ~ k ~ n - 1 and all d, there is an arc 
of the form «k - 1, d), (k, d» of weight ° that corresponds to setting Xk = 0, given 
LjENk_1 ajxj = d. For 1 ~ k ~ n - 1 and all d ~ ab there is an arc of the form «k - 1, 
d - ak), (k, d» of weight Ck that corresponds to setting Xk = 1, given LjENk-I ajxj = d - ak. 
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In addition, there are arcs (s, (0, d»)for all d of weight ° (see Figure 5.1). The objective is to 
find a maximum-weight path that starts at node s and terminates at node (n, b). The 
recursion (5.7) chooses a maximum-weight path to node (k, d), given the weights of 
maximum-weight paths to nodes (k - 1, d) and (k - 1, d - ak). 

The algorithm given above generalizes straightforwardly to the bounded variable 
knapsack problem 

(5.9) z(b)=max{ I CjXj: I ajXj':;;b,Xj,:;;pjfOr)EN,xEZ~}, 
JEN JEN 

where the a/s, c/s, P/s, and b are positive integers. Note that (5.2) is the special case of 
(5.9) with pj = 1 for all) EN. 

We simply replace (5.8) by the recursion 

for k = 1, ... ,n and d = 0, 1, ... ,b, where zo(d) = ° for all 0.:;; d .:;; b. 
The number of calculations needed to solve (5.10) for fixed k is O(b(fJk + 1), which 

gives an overall running time of O(nb2). Finally, note that explicit bounds on the variables 
are not required since we can always take Xj':;; lb/aj] for all) EN. However, in Section 
II.6.1 we will give an O(nb) algorithm for the knapsack problem without explicit upper 
bounds on the variables. 

A Dynamic Programming Algorithm for the Uncapacitated Lot-Size Problem (ULS) 

For k = T - 1, ... , 1, the recursion (5.4) for ULS is 

(5.11) 

and 

(5.12) 

Zk(Sk-l) = min {PkYk + CkXk + hk(Sk-l + Yk - dk) + Zk+l(Sk-l + Yk - dk)} 
xkE{O.l} 

O~Yk~WXk 

mm 
X1E {O,1} 

O~Yr:OS;WXT 

Figure 5.1 
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Figure 5.2 

Since the demands are integral-valued, it can be shown that the production and storage 
variables will also be integers. The difficulty is that since demand in period k can be met by 
production in any period t ~ k, it follows that Sk-l can be as large as "'L~k dt, and it appears 
that a very large number of combinations of (Sk-b Yk) must be considered to solve (5.11). 

Fortunately, as the following theorem demonstrates, this is not the case. 

Theorem 5.2. There is an optimal solution to (5.3) is which 

a. St-1Yt = 0for t = 1, ... , T. 
b. IfYt > 0, then Yt = "'Lk~t dkforsome r, t ~ r ~ T. 
c. If St-l > 0, then St-l = "'L~~t dkfor some q, t ~ q ~ T. 

Proof We represent (5.3) as a fixed-charge flow problem on the network shown in 
Figure 5.2. 

Let (x*, y*, s*) be an optimal solution to (5.3). x* specifies those arcs pointing out of 
node ° that are available for flow. Thus, given x*, we can delete arc (0, j) if xi = ° and then 
determine (y*, s*) by solving a minimum-cost flow problem on the resulting network. 

By Proposition 6.2 of Section 1.3.6, the arcs with positive flow define a spanning forest 
rooted at node 0. Suppose (j - 1, j) is in the forest. Then there is a path from ° to j - 1 in 
the forest. If (0, j) is also in the forest, we obtain a cycle. Hence it cannot be the case that 
both arcs (j - 1, j) and (0, j) are in the forest. 

Parts band c are simple consequences of a. • 

From Theorem 5.2, it follows that 2(T - t) combinations of (St-l, Yt) must be consid
ered in solving (5.11) and (5.12). Thus the overall running time is O(T2), and recursive 
optimization yields a polynomial-time algorithm for ULS. 

Example 5.2 

t 1 2 3 4 5 

p, 3 3 4 5 5 

h, 1 1 1 2 2 

c, 30 30 30 30 30 

dt 32 41 48 36 20 
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t = 5: S4 E {O, 20} and S4 + Y5 = 20 

Z5(0) = 20P5 + C5 = 130, Y5 = 20 

Z5(20) = 0, Y5 = O. 

t = 4: S3 E {O, 36, 56}, 

zi56) = his3 - d4) + z5(20) = 2(20) = 40, Y4 = 0 

z4(36) = Z5(0) = 130, Y4 = 0 

Z4(0) = min{36p4 + C4 + Z5(0), 56p4 + 20h4 + C4 + z5(20)} 

= min{340, 350} = 340, Y4 = 36. 

t = 3: S2 E {O, 48, 84, 104}, 

z3(104) = h3(S2 - d3) + z4(56) = 56 + 40 = 96, Y3 = 0 

z3(84) = 36 + z4(36) = 36 + 130 = 166, Y3 = 0 

z3(48) = 0 + Z4(0) = 340, Y3 = 0 

Z3(0) = min{48p3 + C3 + Z4(0), 84p3 + C3 + 36h3 + z4(36), 
104p3 + C3 + 56h3 + z4(56)} 

= min{562, 532, 542} = 532, Y3 = 84. 

t = 2: Sl E {O, 41, 89, 125, 145} 

z2(125) = 84 + z3(84) = 250 _ 0 
zl145) = 104 + z3(104) = 200} 

z2(89) = 48 + z3(48) = 388 Y2 -
z2(41) = 0 + Z3(0) = 532 

Z2(0) = min{41p2 + C2 + Z3(0), 89p2 + C2 + 48h2 + z3(48), 
125p2 + C2 + 84h2 + z3(84), 145p2 + C2 + 104h2 + z3(104)} 

= min{685, 685, 655, 665} = 655, Y2 = 125. 

t = 1: ZI(O) = min{32pl + Cl + Z2(0), 73Pl + Cl + 41hl + z2(41), 
121Pl + Cl + 89h l + z2(89), 157Pl + Cl + 125h l + z2(125), 
177Pl + Cl + 145h l + z2(145)} 

= min{781, 822, 870, 876, 906} = 781, Yl = 32. 

Hence. the optimal solution is Yl = 32, Xl = 1, Y2 = 125, X2 = 1, Y3 = Y4 = X3 = X4 = 0, 
Y5 = 20, X5 = 1, and the optimal cost is z = 781. 

6. NOTES 

Section 11.5.1 

Efroymson and Ray (1966) have given a classical branch-and-bound algorithm for the 
uncapacitated facility location problem that uses bounds obtained from the weak formu
lation. Spielberg (1969a,b), among others, recognized the importance of the strong 
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formulation. Bilde and Krarup (1977) gave a family of UFLs for which the linear 
programming relaxation of the strong formulation always has an integral optimal solu
tion. 

Survey articles on the uncapacitated facility location problem are by Krarup and 
Pruzan (1983) and Cornuejols, Nemhauser and Wolsey (1984). An annotated bibliography 
of articles on location problems that were published from 1980-1985 appears in Wong 
(1985). Francis and Mirchandani (1988) is a collection of survey articles on various aspects 
of discrete location models. 

Section 11.5.2 

The strong cutting-plane algorithm described in this section was implemented by 
Morris (1978). 

Schrage (1975) showed how variable upper-bound constraints could be treated implic
itly within the simplex algorithm. Todd (1982) presented an alternative approach that 
circumvents degeneracy problems. 

The test problem data (Table 2.1) is from Kuehn and Hamburger (1963). 
Facets of the un polytope have been studied by Cornuejols, Fisher and Nemhauser 

(1977b), Guignard (1980), Cornuejols and Thizy (1982b), Cho et al. (1983), and Cho, 
Johnson et al. (1983). 

Strong cutting planes and FCPAs have been developed for a variety of other hard 
combinatorial problems. These include the capacitated plant location problem, Leung 
and Magnanti. (1986), the matching problem, Grotschel and Holland (1985); the assign
ment problem with side constraints, Aboudi and Nemhauser (1987); the three-index 
assignment problem Balas and Saltzman (1986); the max cut problem, Barahona, 
Grotschel, and Mahjoub (1985) and Barahona and Mahjoub (1986); the linear ordering 
problem, Grotschel, Junger, and Reinelt (1984, 1985b), and the acyclic subgraph problem, 
Grotschel, Junger, and Reinelt (1985a). Several others will be cited in the notes for 
Chapter II.6. 

Section 11.5.3 

Ball and Magazine (1981) and Rinnooy Kan (1986) gave general introductions on the 
design and analysis of heuristics for discrete optimization problems. 

A greedy algorithm for maximizing a (constrained) set function was used by Kruskal 
(1956) to solve the maximum-weight spanning tree problem exactly. This is one of the first 
formal uses of the greedy algorithm in combinatorial optimization. However, it must have 
been used for centuries as a common sense tool for problem solving. Kuehn and 
Hamburger (1963), Spielberg (1969b), and others have used greedy heuristics to obtain 
solutions to UFL. 

Much the same can be said for local search\interchange heuristics. Kuehn and 
Hamburger (1963), Manne (1964), and many other researchers have used interchange 
heuristics to obtain solutions to UFL. Reiter and Sherman (1965) described an interchange 
scheme for a rather general class of combinatorial optimization problems and carried out 
a statistical analysis of the results based on random starting solutions; also see Reiter and 
Rice (1966). Many other uses of the greedy and interchange heuristics will be cited later in 
these notes and in the notes for Chapter II.6. 

Using primal and dual heuristics simultaneously is a more recent idea. The primal
dual heuristic described for UFL is essentially the DUALOC algorithm of Erlenkotter 
(1978). The projection algorithm of Conn and Cornuejols (1987) for UFL also can be given 
a primal-dual interpretation. A primal-dual vehicle routing algorithm has been given by 
Fisher and Jaikumar (1981). 



426 11.5. Special-Purpose Algorithms 

The worst-case analysis of heuristics can be traced to a result of Graham (1966) on a 
scheduling problem. Another classical paper on worst-case analysis is the work of D.S. 
Johnson et al. (1974) on the bin-packing problem. Johnson (1974) also analyzed a variety 
of heuristics for several combinatorial optimization problems. Jenkins (1976), Korte and 
Hausmann (1976), and Hausmann et al. (1980) gave worst-case analyses of greedy-type 
algorithms for finding a maximum-weight subset in an independence system. Hausmann 
and Korte (1978) showed that in a certain well-defined way, no polynomial-time algorithm 
could improve on the performance of the greedy algorithm for this problem. Zemel (1981) 
discussed and evaluated various ways of measuring the quality of approximate solutions. 

Surveys on the worst-case analysis of heuristics for combinatorial optimization prob
lems are Sahni (1977), Chapter 6 of Garey and Johnson (1979), Korte (1979), and Fisher 
(1980). Wolsey (1980) explained how worst-case bounds are obtained from primal and 
dual feasible solutions and illustrated this idea with several examples. 

Golden and Stewart (1985) presented general techniques for the statistical analysis of 
the performance of heuristics. Proposition 3.2 appeared in Fisher (1980). The results on 
the greedy and interchange heuristics for the p-facility maximization problem appeared in 
Cornuejols, Fisher, and Nemhauser (1977a). Babayev (1974) and Frieze (1974) showed the 
submodularity of the set function objective of UFL. Extensions of the Cornuejols et al. 
results to submodular set functions will be presented in Section III.3.9. 

The term simulated annealing arises from an analogy with the physical process of 
cooling physical substances and how the state of the system depends on the rate at which 
the temperature is dropped. The method is described in Metropolis et al. (1953), Kirkpa
trick et al. (1983), and Kirkpatrick (1984). Hajek (1985) gave a survey on theory and 
applications of simulated annealing. Lundy and Mees (1986) studied the convergence of 
the algorithm. Applications of simulated annealing were given by Bonomi and Lutton 
(1984) and Vecchi and Kirkpatrick (1983). 

The probabilistic models for UFL come from Cornuejols, Nemhauser, and Wolsey 
(1980b), Fisher and Hochbaum (1980), Papadimitriou (1981b), and Ahn et al. (1988). 
Surveys of techniques and results in this field appeared in Karp (1976) and Karp and 
Steele (1985). An annotated bibliography was given by Karp, Lenstra et al. (1985). 

Algorithms iri which random or probabilistic choices are made are at an early stage of 
development in combinatorial optimization. Maffioli et al. (1985) gave an annotated 
bibliography on this subject, and Welsh (1983) and Maffioli (1986) gave surveys. Rabin 
(1976) published one of the first articles in this area. 

Section 11.5.4 

Subgradient optimization and the Lagrangian dual for UFL have been used by Cor
nuejols, Fisher, and Nemhauser (1977a) to solve a float maximization problem, by Mulvey 
and Crowder (1979) to solve a problem in cluster analysis, and by Neebe and Rao (1983) to 
solve a problem of assigning users to sources. Geoffrion and McBride (1978) have used a 
similar approach to solve capacitated location problems. 

The results of Example 4.1 were obtained by D. Peeters (private communication). 
Applications of Lagrangian duality to the group problem, to set covering and partition

ing, and to the traveling salesman problem will be presented or cited in Chapter II.6. Some 
other applications from the literature are: combinatorial scheduling [Fisher (1973, 1976), 
Fisher, Northup, and Shapiro (1975), and Potts (1985)]; multiperiod scheduling of power 
generators [Muckstadt and Koenig, 1977); generalized assignment problem [Ross and 
Soland (1975), Chalmet and Gelders (1977), and Fisher, Jaikumar, and Van Wassenhove 
(1986)]; and hierarchical production planning [Graves (1982)]. 
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Grinold (1972) gave an alternative approach to solving the Lagrangian dual. 
Other decomposition methods for solving UFL and the closely related p-median 

problem include: Dantzig-Wolfe decomposition [see Garfinkel, Neebe, and Rao (1974)]; 
Benders' reformulation [see Magnanti and Wong (1981) and Nemhauser and Wolsey 
(1981)]; primal subgradient optimization [see Cornuejols and Thizy (1982a)]; and a 
disaggregation scheme [see Cornuejols, Nemhauser, and Wolsey (1980a)]. 

Benders' decomposition has been applied by Geoffrion and Graves (1974) to the design 
of a multicommodity distribution system. A combined Lagrangian/Benders' scheme has 
been used by Van Roy (1986) to solve a capacitated location problem. 

Section 11.5.5 

Richard Bellman coined the terms dynamic programming and principle oj optimality, 
pioneered the development of the theory and applications, and wrote the first book on this 
subject [Bellman (1957)]. 

The recursion for the 0-1 knapsack problem appeared in Dantzig (1957) and Bellman 
(1957). Some computational improvements and generalizations to multiple constraints 
have been given by Weingartner and Ness (1967) and Nemhauser and Ullman (1969). 

Dynamic programming algorithms for the lot-size problem have been given by Wagner 
and Whitin (1958) and Zangwill (1966). 

Some general texts on dynamic programming are Bellman and Dreyfus (1962), 
Nemhauser (1966), White (1969), Dreyfus and Law (1977), and Denardo (1982). 

7. EXERCISES 

1. Solve the linear programming relaxation of WUFL for the problem instance with: 

C~(; 
3 5 0 6 

i) 9 7 7 7 
2 4 6 4 
6 6 6 0 

and 

J= (3 2 3 3 2 2). 

2. Prove Proposition 1.2. 

3. Show that: every noninteger extreme point (x, y) of the linear programming relaxa
tion ofUFL is of the form 

i) Xj = maXi Yij for all) E Nb 

ii) there is, at most, one) with 0 < Y ij < Xj for each i E I, and 

iii) the rank of A equals IN I I , 

whereNI = {j EN: 0 < Xj < l},ll = {i E I:Yij = Oor xJorall), andYij $. Zl for some 
)}, and A is an 1111 x INI 10,1 matrix with aij = 1 ifYij > O. 

4. Consider the problem instance of UFL in exercise 1. Which variable upper-bound 
constraints are violated by the solution found in exercise I? Use a linear program
ming system to solve the linear programming relaxation of UFL by adding such 
constraints. 
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5. i) Show that if i * j * k and r * s* t, then 

Yri + Yrj + Ysj + Ysk + Ytk + Yli ~ 1 + Xi + Xj + Xk 

is a valid inequality for UFL. 

ii) Find an inequality of this form that cuts off the fractional solution (y4, x4) of 
Example 1.1 (continued) in Section 2. 

iii) Generalize to show that if, for 1 ~ t < I, All is a 0, 1 matrix with <D rows and 1 
columns whose rows are all the different 0, 1 vectors with t 1's and 1 - to's with 
1 ~ n, CD ~ m, then for any l' ~ I, N' ~ N with If'I = CD, IN' I = 1 it follows that 

L L a0Y ij - L Xj ~ CD + t - I -1 
iEJ' JEN' JEN' 

is a valid inequality for UFL. 

iv) Find an inequality cutting off the point (x*, y*) given in Table 2.3. 

6. Consider the problem that arises when we solve IP over N' C N using valid 
inequalities LjEN' njxj ~ no. To solve the problem over N we need to lift the 
inequalities so that LjEN' njxj + LjEN\N' njxj ~ no is valid for the IP over N. Suppose 
we have solved UFL with a subset Xj for j EN' and a subset of the Yu for i E 1', 
j EN'. Is it easy to lift the inequalities of exercise 5? 

7. Apply the following heuristics to the instance ofUFL in exercise 1: 

i) greedy; 

ii) reverse-greedy (close one facility at a time); 

iii) I-interchange; 

iv) I-interchange plus greedy; 

v) design your own heuristic. 

8. The k-enumeration plus greedy heuristic for maximizing a set function can be 
described as follows: 

1. Enumerate all subsets S ~ N with I S I = k. 

2. For each such S, apply the greedy heuristic to the problem max{vS(Q): 
Q ~ N \ S}, where VS(Q) = v(S U Q). Let QS be the greedy solution. 

3. Let S* U Q* = arg max{v(S U QS): IS I = k, S ~ N}. 

i) Apply the I-enumeration plus greedy heuristic to the example of exercise 1. 

ii) Show that the k-enumeration plus greedy heuristic for the p-facility maximiza
tion problem has worst-case behavior given by 

z - ZH ~ (~) (p - k - 1 )P-k. 
Z P p-k 
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9. i. Given cij ~ 0 for i E I and} EN, show that the set function v(Q) = LiE[ 
maXjEQ C ij for Q s:::; N can always be written in the canonical form 

v(Q) = L rT with rT ~ 0 for T s:::; N. 
TnQ*0 

ii) Write the set function arising from exercise 1 in canonical form. 

iii) Write the resulting linear programming formulation and its dual. 

iv) Which LP formulation would you choose and why? 

v) Propose a branch-and-bound algorithm based on your choice. 

10. i) Apply DUALOC to the instance ofUFL in exercise 1. 

ii) Apply DUALOC to the instance written in canonical form (see exercise 9). 

11. Describe greedy and interchange heuristics for the capacitated facility location 
problem. 

12. i) Formulate the problem of choosing k nodes to cover the maximum number of 
nodes in a graph G = (V, E). (Note that i E V covers) E Vif(i,}) E E.) 

ii) State and interpret a greedy heuristic. 

iii) Study the performance of this heuristic when I V I is large. 

13. Show that for the family of instances of the p-facility maximization problem with 
2p - 1 clients and 2p facilities, and with weights CP given by Cj = ej for} = 1, ... , 
2p - 1, C i,2p = 1 for i = 1, ... , p, and C i,2p = 0 otherwise, for example, 

1 
o 
o 
o 

the interchange heuristic satisfies Z1 = [p/(2p - 1)]z when it starts with 
S = {I, 2, 3, 4}. 

14. Described a simulated annealing algorithm for UFL. 

15. For the instance in exercise 1, solve the Lagrangian dual ofUFL by using each of the 
following: 

i) the subgradient algorithm; 

ii) a constraint generation algorithm. 

16. Solve the instance of exercise 1 by Benders' decomposition. Investigate the choice of 
violated constraints at each iteration. 
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17. Let 

z = mm I I CijYij + I jjXj 
iEI jEN jEN 

D: I Yij= 1 for all i E I 
jEN 

c: I diYij ~ SjXj foralljEN 
iEI 

B: o ~Yij ~Xj for all iE I,j EN 

s: I SjXj ~ I d i 
jEN iEI 

I: Xj E {O, 1} forallj EN, 

where C ~ O,f~ 0, d ~ 0, and S ~ 0 are given. Denote by ZA the bound obtained 
from this formulation by deleting constraint A, and denote by z A the bound given by 
the Lagrangian dual. For example, 

where 

zi = max zi(u), 
u 

z~(u) = min I I CijYij + I jjXj + I Ui (1 - I Yij ) 
iEI jEN jEN iEI jEN 

I diYij ~ SjXj for allj EN 
iEI 

Xj E {O, 1} 

for all i E I,j EN 

for allj EN. 

i) Prove that ZI = zi. 

ii) Prove that z~ ~ z~. 

iii) Prove that z~ = Zsc. 

iv) Show that z'i; < z~ for the following data: 

(1 0 0) 
C= 0 1 0 , 

001 

S = (3 3 3), f = (1 1). 

18. Let 

w(X) = max{ I jjXj + I I CijYij: I Yij = 1 for i E I, 
jEN iEI jEN jEN 

Yij ~ Xj for i E I, j E N, Y E R~n}. 

i) Show that w(x) is concave. 
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ii) Show that maXO<;x<;1 w(x) = ZLP. 

iii) Use the subgradient algorithm to solve maXO<;x<;1 w(x) for the instance of 
exercise 1. 

19. Consider the Dantzig-Wolfe formulation ofUFL where Lj Yij = 1 for i E I are taken 
as the global constraints and where the feasible region of subproblem} is 

Interpret the columns and costs of the resulting master problem. 

20. Derive a dynamic programming algorithm to solve 

max{cx + hy: 2: Yj ~ b, Yj ~ ajxj for} EN, x E Bn, Y E R~}. 
JEN 

21. Derive an O(J'l) dynamic programming algorithm for the uncapacitated lot-sizing 
problem with backlogging: 

T 

min 2: (PtYt + CtXt + htst + gtft) 
t~l 

St-l - ft-l + Yt = dt + St - f t for t = 1, ... , T 

Yt ~ WXt for t = 1, ... , T 

So = fo = ST = fT = 0 

S,f E RI+I, Y E RI, x E BT. 

See (5.3), where f t denotes the amount backlogged at the end of period t. 

22. Derive an O(n 2cmax) dynamic programming algorithm for the 0,1 knapsack problem 
(5.2) where Cmax = maxjcj. 

23. i) Derive a dynamic programming recursion for the traveling salesman problem 

24. 

usingf(S,}) = the length of the minimum-weight partial tour starting at node 1, 
traversing the nodes S ~ N \ {I,}), and terminating at} EN \ S. 

ii) Use the recursion to solve the five-city problem with costs 

2 6 4 7 
1 3 8 5 

c= 9 2 4 12 
8 I 9 2 
3 2 9 4 

(State Space Relaxation). Let 

g(k,})= min (f(S,}):ISI=k), 
S~N\(I,j) 

wheref(S,}) is defined in exercise 23. What is g(k,})? Write a recursion for g(k, i), 
and show that g( n, 1) is a lower bound on the weight of an optimal tour. 
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25. Apply the approach of exercise 24 to the multidimensional knapsack problem with 

fk(d) = maxL~ CjXj: j~ ajXj ~ d, x E Bk} 

= max{jk_l(d), fk-l(d - ak) + Ck}. 

26. Derive a dynamic programming algorithm for 

max{ I hjy/ Yi + Yi+l ~ Ui for i = 1, ... , n - 1, Y E R~}. 
JEN 

27. The amount of work to multiply together a p x q and a q x r matrix is pqr. Given k 
matricesMi of dimension d i x d i+1 whose product M 1M 2 • • • Mk must be formed, use 
dynamic programming to derive the optimal way in which to form the product. 



11.6 
Applications of 
Special-Purpose Algorithms 

1. KNAPSACK AND GROUP PROBLEMS 

The structure invoked in this section is that the problems have only one constraint other 
than bounds and integrality on the variables. We consider the integer knapsack problem, 
the group problem, and the 0-1 knapsack problem. 

Many of the algorithms developed in Chapter II.5 can be specialized when there is only 
one constraint, and some other more specific approaches are also applicable. 

The Integer Knapsack Problem 

The integer knapsack problem is 

(1.1) 

where ch aj E Z~ for j EN, bE Z~, aj ~ b for j EN, and there are no explicit upper 
bounds on the variables. In vector notation, (1.1) is stated as 

z(b) = max{cx: ax~ b, x E Z~}. 

We suppose throughout this section that c1/ai ~ c2/a2 ~ · · · ~ Cn/an, so the optimal 
solution of the linear programming relaxation is x 1 = b I a J. Xj = 0 otherwise. 

Dynamic Programming 

Since Xj ~ [b/aj] ~ b in any feasible solution to (1.1), we can use the recursion (5.8) of 
Section II.5.5 to obtain an algorithm with worst-case running time O(nb2). However, it is 
possible to do better. The recursion we now describe directly calculates the value function 

z(d) =max{ I cjxj: I ajxj ~ d, x E z~} ford E D(b) = {0, 1, ... , b}. 
jEN jEN 

We begin with z(d) = 0 for d = 0, ... , minjEN aj- 1, with corresponding optimal 
solution x 0 = 0. Given z(d') for all d' < d, we claim that 

(1.2) z(d) = max{cj + z(d- aj):j EN, d ~ aj} ford E D(b), d ~ !]!~ aj. 

433 
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To prove the validity of (1.2), we first observe that if x0 is an optimal solution to (1.1) 
with b = d- ah then x 0 + ej is a feasible solution to (1.1) with b = d. Hence 

On the other hand, if xis an optimal solution to (1.1) with b = d ~ minjEN ah then xk > 0 
for some k with d ~ ak> and x- ek is a feasible solution to (1.1) with b = d- ak. Hence 
z(d- ak) ~ z(d)- ck> and (1.2) holds. 

The recursion (1.2)requires O(n) calculations for each d, minjEN aj ~ d ~b. Hence the 
overall running time is O(nb ), which is better than the recursion (5.8) of Section II.5.5 by 
a factor of b. 

Examplel.l 

max 11xt + 7x2 + 5x3 + X4 

6x1 + 4x2 + 3x3 + X4 ~ 25 

xEZ!. 

z(O) = 0 

z(l) = C4 = 1 

z(2) = C4 + z(1) = 2 

z(3) = max(5 + z(O), 1 + z(2)) = 5 

z(4) = max(7 + z(O), 5 + z(l), 1 + z(3)) = 7 

z(5) = max(7 + z(1), 5 + z(2), 1 + z(4)) = 8 

z(6) = max(11 + z(O), 7 + z(2), 5 + z(3), 1 + z(5)) = 11 

z(7) = max(11 + 1, 7 + 5, 5 + 7, 1 + 11) = 12 

z(8) = max(11 + 2, 7 + 7, 5 + 8, 1 + 12) = 14 

z(9) = 11 + z(3) = 16 

z(lO) = 11 + z(4) = 18 

z(d) = 11 + z(d- 6) ford~ 11. 

Hence z(25) = 11 + z(19) = 22 + z(13) = 33 + z(7) = 44 + z(1) = 45, and an optimal solu
tionisx0=(4 0 0 1). 

As d increases, the recursion (1.2) has many redundant terms, since z(d) = 
ck + z(d- ak) for any k for which xk > 0 in some optimal solution to (1.1) with b =d. Let 
p(d) = minU EN: Xj is positive in some optimal solution to (1.1) with b = d}. Then, since 
p(d - aj) ~ p(d), it follows that 

(1.3) z(d) = max{cj + z(d- aj):j E N,j ~ p(d- aj)}. 

Ford sufficiently large, no comparisons at all are needed. Let 7i = maxjEN\{1) aj. 

Proposition 1.1. If p(d- a)= p(d- a+ 1) = · · · = p(d- 1) = 1, then z(b) = c1 + 
z(b- a1 )for all b ~d. 
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Proof For j > 1, we have p(d- aj) = 1 <). Hence by (1.3), we obtain z(d) = Ct + 
z(d- at). By induction we obtain the result. • 

In Example 1.1 it is readily checked that p(d) = 1 for 9 ~ d ~ 12. It then follows from 
Proposition 1.1 thatp(d) = 1 for all d;;. 9. It is important to observe that for any knapsack 
problem there exists a value of d for which the condition of Proposition 1.1 holds. The 
proof of the following proposition is a consequence of Proposition 5.6 of Section 11.3.5. 

Proposition 1.2. In problem (1.1), we have p(d) = 1/or all d;;. (at - 1 )a. 

Note that in Example 1.1, we have (at- 1)a = 5 x 4 = 20 so that a priori we can 
conclude that p(d) = 1 for all d ;;. 20. However, the computation establishes that p(d) = 1 
for all d;;. 9. 

It is interesting to observe that the recursions (1.2) and (1.3) are algorithms for the 
maximum-weight path formulation developed in Section Il.3.4. For eachj EN there is an 
arc ofweight cj from node d- aj to node d, and z(d) is the weight of a maximum-weight 
path from node 0 to node d. Thus (1.2) states that the weight of a maximum-weight path 
from node 0 to node dis the maximum over j E N of the weight of a variable j arc plus the 
weight of a maximum-weight path from node 0 to node d- aj. 

A Superadditive Dual Algorithm 
Here we give an algorithm that solves (1.1) and its superadditive dual 

(1.4) min{n(b ): n(aj);;. cj for j EN, n(O) = 0, n;;. 0, n superadditive}. 

The idea of the algorithm is as follows. At each iteration, we have a dual feasible solution 
that also satisfies the complementarity slackness conditions 

n(d) + n(b- d)= n(b) for all dE [0, b] 

ofProposition 5.2 of Section 11.1.5. 
Let S = {x E Z~: I:-jeN ajXj ~ b}, and for any dual feasible n define H" = 

{xES: n(ax) =ex}. Then if there exists xt, x 2 E H, such that x = xt + x 2 E S and 
n(axt) + n(ax2) = n(b), it follows that x is an optimal solution to (1.1) and that n is an 
optimal solution to the superadditive dual. This result is a consequence of 

At the ith iteration of the algorithm we have a feasible ni that also satisfies complemen
tary slackness and an H; !;;; H"'· The initial solution is given by 

which is easily shown to be dual feasible, and H 0 = {0, e~o ... , [b/adet}. 

Suppose that (n;, H;) does not satisfy the optimality condition given above. Let 
D; ={ax: x E Hi}. The dual solution ni+t is of the form 
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ni(d)- 8 if b -dEDi 
{ 

ni(d) if dEDi 

ni+1(d) = a( d) otherwise, where a( d) is determined 
by linear interpolation between the points 
{d, b - d: d E Di) 

An example is shown in Figure 1.1, where b = 10 and Di = {0, 4, 8}. 
To specify the numerical value of 8, the algorithm works with a candidate set 

C ={xES: xis a minimal vector not in Hi and ax* d for any dE Dt 

Since the optimality condition is not satisfied, C * 0. The algorithm sets 8 = Oi, where 

ni+1(ax)- ex- ;;;;. 0 for all x E C 

and 

ni+1(ax)- ex- = 0 for some x E Ci. 

Let yi+I be any point in Ci such that ni+1(ayi+I)- e/+1 = 0. The algorithm sets 
Hi+ I = Hi U {yi+I} and then checks the points x + yi+I, x E Hi, for optimality with respect 
to the function ni+I. If optimality is not proved, then ci+l = ci u ({X + yi+I: 
x E Hi+1} \ {yi+1)). Note that we can augment Hi by all points y E C such that 
ni+1(ay)- ey = 0. 

Although there is the possibility of a degenerate dual change (i.e., Oi = 0), by definition 
of ci we have ayi+I $. Di. Hence Di+I =Diu {ayi+l) ::J Di. 

Now we claim that the algorithm stops after no more than i* = [( b + 1 )/2J + 1 iterations. 
Otherwise, on iteration i* we obtain IDi'l > (b + 1)/2, and hence there must exist values 
d 1, d2 E Di* with d 1 = b- d2• Now ifx 1, x 2 are the associated points of Hi*, the optimality 
criterion is satisfied for x = x 1 + x 2• 

0 2 4 6 8 10 

Figure 1.1 
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Theorem 1.3. The algorithm terminates with an optimal solution. 

Proof We only need to show that ni+I is dual feasible and satisfies complementary 
slackness given that ni has these properties. We have already said that n° has these 
properties. Also, for all i we have that ni(aJ) ~ eJ for j EN is satisfied since, (1) for all 
j EN, either aJ E Di or eJ E Ci, and (2) n(aJ) = eJ if aJ E Di, and n(a1) ~ e1 if e1 E C. 

Now consider superadditivity. We will show that 

However, it suffices to consider the subset of [0, b] given by {d, b - d: dEDi} since the 
result for all other points in [0, b] can be shown to follow from linear interpolation. There 
are two cases. 

Case 1 (b - dr orb - d2 E Di). Then 

ni+l(dr) + ni+l(d2),:;; ni(dr) + ni(d2)- ei 
,:;; ni(dr + d2)- ei 
,:;; ni+1(dr + d2). 

The first and third inequalities follow from the construction of the dual solution, and the 
second inequality follows from the superadditivity of ni. 

Case 2 (dr, d2 E Di). Then ni+1(dJ) = ni(d) for j = 1, 2, and there exists x 1, x 2 E Hi such 
that ax1 = dh ex1 = ni(d1) forj = 1, 2. Letx = x 1 + x 2 and d = d 1 + d2. 

If dEDi, then 

Also if x E Ci, then 

(by the choice of ei) 

and 

The final possibility is d $. Di and x $.C. We have 

(by the dual change) 

and, as above, ex= ni+1(d1) + ni+1(d2). So it remains to show that ex,:;; ni(d)- ei. 
Since x E S \ (Hi U Ci), there exists x' < x such that x' E Ci and (x - x') E S. By the 

superadditivity ofni, we have 

Also ex = ex' + e(x - x'). Hence 

ni(d)- ex~ [n;(ax')- ex']+ [ni(a(x- x'))- e(x- x')]. 
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By the choice ei, we have n;(a.x')- ex'~ e;; and by the feasibility of n;, we obtain 
n;(a(x - x'))- e(x - x') ~ 0. Hence n;(d)- ex ~ e;. • 

Example1.2 

max 20xl + 9xz + 6x3 

10x 1 + 5xz + 4x3 ~ 13 

xEZ~. 

Initialization. n°(d) = 2d for 0 ~ d ~ 13, H 0 = {(0 0 0), (1 0 0)}, 
C 0 = {(0 1 0), (0 0 1)}, and k = 0. The dual functions nk(d) are shown in Figure 1.2. 

Iteration 1. n 1(13) = 26- e, n1(3) = 6- e, n1(10) = 20, n1(5) ~ 9, and n 1(4) ~ 6. Hence 
by linear interpolation we obtain ~(6- e)+ ~(20) ~ 9, so e ~ ~' and ¥(6- e)+ 7(20) ~ 6, 
so e ~ Jf-. Hence e = ~' y 1 = (0 I 0), and 

H 1 = H 0 U {(0 1 0)}, 

forO~ d ~ 3 
for3~d~ 10 
for 10 ~ d ~ 13 

C 1 = {(0 0 1), (0 2 0)}. 

Iteration 2. n2(13) = 24i- e, n2(3) = 4i- e, n2(8) = lSi- e, n2(4) ~ 6, n2(10) ~ 18, 
n2(10) = 20, and n2(5) = 9. Hence }(4~- e)+ }(9) = 6, so e =~and y2 = (0 0 1). 
Now 

·~d)= ( 

d forO~ d ~ 3 
3d - 6 for 3 ~ d ~ 5 
id + ~ for 5 ~ d ~ 8 
3d -10 for8 ~ d ~ 10 
10 +d for 10 ~ d ~ 13 

H 2 =H1 U {0 0 1}, C2 = {(0 2 0), (0 1 1), (0 0 2)}. 

Iteration 3. n3(13) = 23 - e, n\3) = 3 - e, n3(8) = 14- e, n3(9) = 17- e, n3(10) = 20, 
n3(5) = 9, n3(4) = 6, n\10) ~ 18, n3(9) ~ 15, and n3(8) ~ 12. Hence e = 14- 12 = 17-
15 = 2, y 3 = (0 1 1) or (0 0 2), and n(b) = 21. Since (0 1 0) and (0 0 1) are in 
H, and (0 1 0) + (0 0 2) = (0 0 1) + (0 1 1) = (0 1 2) is feasible with value 
21, the algorithm stops with x = (0 1 2). The optimal dual function is 

td 
-14 + 5d 
- 6 +3d 

4 + d 
-12 +3d 
-30 + 5d 

~ + td 

forO~ d ~ 3 
for 3 ~ d ~ 4 
for4 ~ d ~ 5 
for 5 ~ d ~ 8 
for 8 ~ d ~ 9 
for 9 ~ d ~ 10 
for 10 ~ d ~ 13. 
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Heuristic Algorithms 

A very simple greedy heuristic for the knapsack problem (1.1) is obtained by considering 
the variables in order of decreasing Cjlaj and then making each variable as large as 
possible. Since we have assumed cdat;;;:. · · · ;;;:. cnlan, a greedy solution is Xj = [bjlaj] for 
j E N, where bt = b and bj+t = bj- aj lbj/a.J for j = 1, ... , n - 1. Its value is 
zn = r.jeN cj [bjlaA. The running time is O(n log n), smce the time required to sort the 
cj/aj's in decreasing order is the most time-consuming step. 

Since an optimal solution to the linear programming relaxation of (1.1) is x t = b I at and 
Xj = 0 otherwise, we have that hP = hP(b) = Ctblat. Now let zR = ct[blad be the value of 
the rounding heuristic with Xt = [blad and Xj = 0 otherwise. We have Zn;;;:. zR and 
ZLP;;;:. z(b) = ZIP• 

We can use the optimal linear programming value to bound the worst-case relative 
errors of the greedy and rounding heuristics. 

Proposition 1.4 

a. ZR > izLp, 
b. ZR > ZLP- max C1·• 

jEN 

Proof 

a. Letf =blat -[blad < 1. Now 

ZR = [b/ ad = 1 _ _j_ ;;;:. 1 _ _j_ > ! 
ZLP blat blat 1 + f 2' 

Note that the first inequality holds since 1 + f ,;;; blat and that the second inequal
ity is true since f < 1. 

b. zLP- zR = ctf.;;; max c1f < max C1·. 
jEN jEN • 

To prepare for the presentation of a heuristic that always yields a relative error of no 
more than e and that runs in time that is a polynomial function of n and e-t, we introduce 
a scaling heuristic that uses dynamic programming to solve a formulation of the knapsack 
problem with the roles of the objective function and constraint reversed. Let 

(1.5) 

where tis a positive integer. Note that w(t) is a nondecreasing function oft. 
Analogous to (1.2), we have the recursion 

(1.6) w(t) = min{a1· + w(t - c1)} 
jEN 

fort > 0, and w(t) = 0 fort ,;;; 0. The work required to solve (1.6) is O(nt). 
Now we show that with a suitable choice oft, an optimal solution to (1.5) yields an 

optimal solution to (1.1). 
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Proposition 1.6. Suppose x0 is an optimal solution to (1.5) with t = t0. Then x0 is an 
optimal solution to the knapsack problem 

for all d satisfying w(t0) ~ d < w(t0 + 1 ). 

Proof Suppose w(t0) ~ d < w(t0 + 1). Then x 0 is feasible since T.jeN ajxJ = w(t0) ~d. 
Now suppose that x 0 is not optimal; that is, there is a feasible x* =1= x 0 and 
T.jeN cjxj ~ T.jeN cjxJ + 1. Hence T.jeN cjxj ~ t0 + 1 and T.jEN ajxj ~ d, which contradicts 
the assumption that w(t0 + 1) >d. • 

As a consequence of Proposition 1.6, we can take tin (1.5) equal to any known upper 
bound on z1p; for example, t = [zLpj. Then for some 1° ~ t, we will obtain 
w(t0) ~ b < w(t0 + 1). Hence to solve (1.1) using (1.6), the running time is O(nZLp). This 
does not appear to be an improvement on the dynamic programming recursion (1.2) 
unless the c/s are small relative to the a/s. 

The scaling heuristic works by replacing the objective function coefficients cj by 
pj = [cj Kj for some K > 0. The resulting knapsack problem 

(1.7) 

is solved using the recursion (1.6). We denote an optimal solution to (1. 7) by x(K) and say 
that x(K) is a scaling heuristic solution. Its value is zs = T.jeN cjxj{K). 

Proposition 1.7. IfK ~ 8 minjeN Cj, then ~/z 1 p > 1 - 8. 

Proof Since pj = [cj/ Kj, it follows that pj ~ cj( K < pj + 1. Hence 

zs = I cjxj(K) ~ K I pjxj(K) ~ K I pjxJ, 
jEN jEN jEN 

where the last inequality holds because x(K) is an optimal solution to (1.7). Also, 

Therefore 

The running time of the scaling heuristic is O(nZLP! K). Therefore it is of interest only if 
K is large-that is, if minjeN cj is much larger than 8-1• This, unfortunately, for any 
reasonable choice of 8 requires large profit coefficients. 

Observe that the greedy (or rounding) heuristic needs small profit coefficients to 
perform effectively and that the scaling heuristic requires large ones to run efficiently. By 
combining the two heuristics we are able to take advantage of the best features of each of 
them. The result is a heuristic that guarantees a relative error of no more than 8 for any 
8 > 0 and whose running time is O(n/82). 
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We partition the set N into (N8, N \ N 8), where N 8 = {j EN: c1 > 8} and 8 = (E/4) [ZLpj. 
The rounding heuristic is applied to a knapsack problem that contains only the items in 
N \ N 8, and the scaling heuristic with K = (E/2)8 is applied to a knapsack problem that 
contains only the items in N 8• The two solutions are then combined as explained below. 

The Scaling/Rounding (SR) Heuristic 

p1 = liJ for all} EN. 

Step 1: Solve the family of knapsack problems 

by the recursion (1.6) for all nonnegative integers t with w(t) ~ b. Let x 8(t) be the 
solution that yields w{t). 

Step 2: Let c,ja, = maxJEN\No (c1ja1). Define x(t) E Z~ by xj(t) = xJ(t) for j E N 8, 

x,(t) = [(b - w(t))ja,j, and xj(t) = 0 otherwise. 
Step 3: Suppose max1 {LJENo c1x1(t) + c,x,(t)} is attained with t = t~ Then x(t*) is the SR 

heuristic solution of value zsR = LJEN c1x1(t* ). 

The SR heuristic produces a feasible solution to the knapsack problem since all of the 
variables are nonnegative integers and, by definition of x,(t), LJENo a1xj(t) + a,x,(t) ~ b 
for all t. 

Proposition 1.8. The running time of the SR heuristic is O(nE-2). 

Proof To solve the family of knapsack problems in Step 1 by the recursion (1.6), we 
need to consider no more than [zLP/KJ = 1 values oft. But 

Thus the running time of (1.6) is O(nE-2). Steps 2 and 3 take O(E-2) time, so the proof is 
complete. • 

Theorem 1.9. zsR;;;. (1 - E)ziP· 

Proof Suppose x 0 is an optimal solution to (1.1) and Lp,:oNo c1xJ = t 0. Since 

Proposition 1. 7, restricted to the variables in N 8, yields 
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Hence 

(1.8) 

since N 8 s; N. 
Now by b of Proposition 1.4 and bye~ maxjeN\Ne cj, the rounding heuristic yields 

(1.9) 

(since j~ cjxJ ~ ~ [hP(b )j by a of Proposition 1.4). 

Adding the inequalities (1.8) and (1.9) yields 

I CjXj(t0) ~ I CjxJ- E I CjXJ, 
jEN jEN jEN 

The proof is completed by observing that zsR ~ LjEN cjxj(t0). • 
There are some refinements of the SR heuristic that yield improvements on the relative 

error bound. 

Example 1.3. We apply the SR heuristic to 

ziP= max 592xi + 381x2 + 273x3 + 55x4 + 48x5 + 37x6 + 23x7 

3534xl + 2356x2 + 1767x3 + 589x4 + 528x5 + 451x6 + 304x7 ~ 119,567 

xEz:. 

Suppose we are given E = 0.2. Hence e = 0.05 [zLP] = 1001.45 and K = 100.15. Now 
observe that cj ~ e for allj E N. Hence N 8 = 0, and the SR heuristic is trivial to execute. It 
yields x 1 = [119,567 /3534] = 33, Xj = 0 otherwise, and zsR = 19,536. It is not hard to show 
that an optimal solution isx? = 33, xg = x~ = 1, andxj = 0 otherwise and that z1p = 19,972. 
Hence the actual relative error is 436/19,972 = 0.0218. 

Note that if we replace the rounding heuristic by the greedy heuristic we obtain the 
optimal solution. 

If E = 0.02, then e = 100.15 and K = 1.00. Hence N 8 = {1 2 3}. Now in Step 1, with 
t = 19,917 we obtain x 8(t) = (33 1 0) and w(t) = 118,978. Since b - w(t) = 589 = a4, 

this solution is completed to x = (33 1 0 1 0 0 0), which we have already indi
cated is optimal. 
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The Group Problem 

In Section 11.3.5 we have shown how the problem 

(IP) z1p = max{cx: Ax= b, x E Z~} 

can be relaxed by choosing u E R m, an appropriate m x m unimodular matrix R, and a 
nonsingular diagonal matrix L\ with positive integer entries 6; for i = 1, ... , m to give the 
problem 

z(u, L\) = ub + max{(c- uA)x: x E S11(b)}, 

where S11(b) = {x E Z~: RAx = Rb + L\w for some wE zm}. 
In this section we consider what to do when the group problem for the given choices of 

u, R, and L\ does not yield a feasible solution to IP. We assume here that z1p < oo, and we 
have chosen a u such that p = uA - c ~ 0. In this case the group problem is a minimum
weight path problem on a digraph 9iJ11 = ( ~, .s!l11) having 1 det L\ 1 = I17!1 J; nodes. We state 
the minimum-weight path problem as 

lf/(d) =min I p1x1 
jEN 

SP(d) I (Ra1)x1 = d (modL\) 
jEN 

xEZ~, 

where z(u, L\ = ub -lji(Rb). Here ~={dE Z';': d; < J; fori= 1, ... , m}, .s!l11 = {(d, d + 
Ra1 (mod L\)): dE~ for j = 1, ... , n}, the weight of the arc (d, d + Ra1 (mod Ll)) is Pi> 
and we seek a minimum-weight path from node 0 to node Rb (mod L\). 

The reader should recall that the relaxation simply replaces the ith equation a; x = b; by 
the modular equation aix = b; (mod J;) and that u has been chosen so that the objective 
function of the relaxation is bounded from above. In particular, any feasible solution to IP 
corresponds to some path from node 0 to node Rb (mod L\). 

The connection between knapsack and group problems is motivated by taking 
u = cBAi} and L\ to be the Smith normal form of AB, where AB is an optimal basis for the 
linear programming relaxation of IP [see (5.3) of Section 11.3.5]. In this case, p1 = 0 and 
Ra1 = 0 (mod Ll) if x1 is a basic variable. Thus SP(d) only involves the nonbasic variables. 
Moreover, L\ = I det AB I, and it is frequently the case that 61 = · · · = Jm-t = 1 and 
Jm = I det AB 1. (This must be the case if I det AB I is a prime number.) Since the ith 
equation ofSP(d) is trivially satisfied when J; = 1, this choice of u and L\ frequently leads 
to a single-constraint problem in nonnegative integer variables, which is an integer 
knapsack problem with ordinary arithmetic replaced by modular arithmetic. 

When 1 det L\ 1 is not too large, the minimum-weight path problem SP(d) is easily solved 
by Dijkstra's algorithm (see Section 1.3.2). Here we consider how algorithms can be 
constructed for IP that make use of this shortest-path viewpoint. 

The following proposition motivates the construction of an implicit path enumeration 
algorithm. 

Proposition 1.10. If IP is feasible and p1 > 0 for all j E N, then there exists a positive 
integer k such that an optimal solution to IP corresponds to a kth best minimum-weight 
path in 9iJ t.· 
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To enumerate we need to specify how to branch. One way is to subdivide the set of all 
solutions (paths) into sets in which each variable x1 (arc type) occurs at least y1 times. The 
following proposition tells us how to calculate an optimal solution at a node of the tree. Let 
x(d) be an optimal solution to SP(d) such that the corresponding path in 0h is acyclic. 

Proposition 1.11. Given y E zr:_, an optimal solution to SP(Rb) satisfying x ~ y is 
x* = y + x (R(b- Ay)), with weight py + 1/f(R(b- Ay)). 

Proof Setting x = y + x', x' E Z~, and substituting in SP(Rb) gives 

I P;Y; + min I P;X} 
}EN }EN 

I (Ra;)xJ = Rb -RAy (modLl) 
jEN 

x'EZ~. 

Hence to find an optimal solution x* to SP(Rb) that satisfies x ~ y, we find a 
minimum-weight path from node 0 to node R(b- Ay) mod Ll. • 

The next proposition tells us how to define the new nodes when we branch; and it uses 
the fact that if x* is defined as in Proposition 1.11, then there is no vector x satisfying 
y ~ x ~ x* that is feasible in SP(Rb ). 

Proposition 1.12. Ifx* = y+x(R(b- Ay)), then anyx =t= x* that corresponds to apathfrom 
0 to Rb (mod Ll) subject to the restriction x ~ y must satisfy 

fork =t= j 

for some}. 

Now we describe a straightforward path enumeration algorithm. We start from the 
group problem (5.3) of Section 11.3.5 mentioned above. Hence we let As denote the basis 
of an optimal solution to the linear programming relaxation and let AN denote the 
columns of the nonbasic variables. Now SP(Rb) only involves the non basic variables, 
which we suppose are numbered 1, 2, ... , n - m, and the enumeration is carried out only 
over these variables. Also at this point, x, y, and p are dimensioned appropriately. 

A Shortest-Path Enumeration Algorithm for IP 

We begin by solving the shortest-path problem from node 0 to node d for all d E Vt- and let 
x(d) be an acyclic optimal solution to SP(d) of cost I/!( d). If there is no path from 0 to d, let 
1/f(d) = oo. We then construct a branch-and-bound tree where the node labeled y 
corresponds to the feasible set x ~ y. 

Initialization: x( d) and 1/1( d) are given for all d E vt-. If 1/!(Rb) = oo, stop; IP is infeasible. 
Otherwise put 0 E z~-m with lower bound ~(0) = 1/f(Rb) on the node list. z = +oo. 

Iteration t 

Step 1: If the node list is empty, stop. Then (a) ifz = +oo, IP is infeasible and (b) ifz is 
finite, xis an optimal solution. Otherwise choose a vector yon the node list and remove 
it from the list. Go to Step 2. 
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Step 2 (Feasibility check): If lfi(R(b - Ay)) = oo, return to Step 1. Otherwise let 
x* = y + x(R(b - Ay)). If Ai/(b - ANx*);;. 0, go to Step 3. Otherwise go to Step 4. 

Step 3 (Pruning by optimality): Set .X<-- x*, z <-- py + lf/(R(b- Ay)). Delete from the node 
list any node y with ~(y) ;;. z. Return to Step 1. 

Step 4 (Branching): Fori= 1, ... , n- m, define yi by 

. {Yi 
yj = x; + 1 

forj * i 
for}= i 

and let ~(y;) = py; + lfi(R( b - Ay;)). If ~(y;) < z, add (y;, ~(i)) to the node list. Return to 
Step 1. 

When the algorithm terminates, it solves IP. One way to guarantee finiteness is to 
impose upper bounds on the variables and to modify Step 4 accordingly. 

Example 1.4 (Example 5.2 of Section I/.3.5 continued) 

max 7xt + 2x2 

-Xt+ 2x2 + X3 

5Xt+ X2 

-2Xt- 2x2 

xEZ~ 

+X4 

+Xs 

= 2 

= 19 

= -5 

leads to the relaxation SP(7): 

lf/(7) =min -frx3 + -l¥x4 

Sx3 + X4 = 7 (mod 11) 

(x3, X4) E Z~ 

with u = cBAi/ = (rr -1¥ 0), and z(u, .1) = ¥f- lf/(7). 
The shortest paths and corresponding solution values found by Dijkstra's shortest-path 

algorithm are given in Table 1.1. 
To test the feasibility of proposed paths involving the values of the non basic variables 

(x3, x4), we use XB = Ai/b- A!/ANXN given by 

Initialization: y = 0, ~(0) = W, z =+co. 

Table 1.1. 

d: 
x(d) = (XJ X4): 

II If/( d): 

0 I 2 3 4 5 6 7 8 9 10 
(0 0) (0 I) (7 0) (5 0) (3 0) (I 0) (I I) (8 0) (6 0) (4 0) (2 0) 

0 16 21 15 9 3 19 24 18 12 6 
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Iteration 1: 

1. Picky = (0 0) from the node list. 
2. x*= (x3 x4) = (8 0). 

XB=(XI X 2 X 5)=(4 -1 1);t0. 
4. Add the nodes (9 0) and (0 1) to the list, with lower bounds ~(y) = 'tf-, ti-, respec

tively. 

Iteration 2: 

1. Picky= (9 0) from the node list. [Note that (0 1) would be chosen if we followed 
the rule of smallest lower bound.] 

2. x* = (9 0) + X(6) = (10 1). XB =(XI X 2 X5) = (4 -2 -1) ;t 0. 
4. Add the nodes (11 0), (9 2) to the list with bounds ~(y) = fl-, ¥t-, respectively. 

Iteration 3: 

1. Picky = (0 1) from the list. 
2. x*= (0 1) + (1 I)= (1 2). xB = (3 2 5). 
3. z .... ti-, x = (1 2). Delete the nodes (11 0) and (9 2) from the list since their lower 

bounds exceed z. 

Iteration 4: 

I. The node list is empty. Stop. (xi Xz Xs) = XB = (3 2 5), XN = (x3 X4) = (1 2) 
is an optimal solution. 

The enumeration tree is shown in Figure 1.3. 

The relaxation SP(d) can also be used as a basis for several other algorithms. One 
obvious approach is to consider the dual problem minu,A z(u, A). For fixed Rand Ll, we 
can consider the standard Lagrangian dual minuERm z(u, Ll). Based on Theorem 6.2 of 
Section 11.3.6, we have the following result on the Lagrangian dual. 

y=(ll,O) 
~=5~1 

Figure 1.3 

y=(O, 1) 

~ = '7b feasible 
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Proposition 1.13. minu<=Rm z(u, Ll) = max{cx: Ax= b, x E conv(Sd(b) )}. 

A different dual is obtained by fixing u and allowing Ll to vary over the set of m x m 
integer nonsingular diagonal matrices, giving the dual problem mind z(u, Ll). 

The algorithm described below for IP involves the solution of minimum-weight path 
problems over a series of digraph 7iJ d that increase in size from one iteration to the next but 
remain finite. The algorithm solves minimum-weight path problems of the form 

ID(Ll) 

lf/d =min I pjXj 
jEN 

.L (Raj)xj = (Rb) 
jEN 

xEZ~, 

(mod Ll) 

where R and p = uA - c > 0 are fixed, Ll varies, and z( u, Ll) = ub - 1f1 d· Also we no longer 
require J; I Ji+I for i = 1, ... , m - 1. 

The Increasing Group Algorithm 

Initialization: Choose 

with J) E Zl \ {0} for all i. Set t = 1. (A reasonable choice is Ll 1 equal to the Smith 
normal form of A8 , but this is not necessary.) 

Iterption t: 

Step 1: Solve the minimum-weight path problem ID(Ll1). Let x 1 be the resulting solution. 
Step 2: If RAx1 = Rb, stop. x 1 is an optimal solution ofiP. 

Step 3: If RAx1 * Rb, calculate 

Step 4: Set k; = 1 if wl = 0, and otherwise let k; be the smallest integer greater than 1 such 
that gcd{ I wll, k;} = 1. Set 

and t .... t + 1. 

Theorem 1.14. IfiP has a finite optimal value and p > 0, the increasing group algorithm 
terminates after a finite number of iterations with an optimal solution to IP. 

Proof Let Sd,(b) = {x E R~: RAx = Rb (mod Ll1)}. As in the generic relaxation algo
rithm of Section 11.4.1, we show that if x 1 is not feasible for IP, then SN+'(b) s Sd,(b) \ {x1}. 
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Since 

with k; E Zl \ {0} for all i, RAx = Rb (mod Ll1+1) implies RAx = Rb (mod Ll1), and hence 
S11,,(b) s S11,(b). Now X 1 E S11,+,(b) only if(L11+1t 1(Rb- RAx1) E zm. But 

Since wl * 0 for some i, and k; is chosen such that wl/k; $. Z 1, x 1 $. S11,,(b ). 
Finally asp > 0, we know from Proposition 1.10 that the optimal solution to IP is a qth 

best solution to S11{b). Hence the algorithm must terminate after no more than q 
iterations. • 

Corollary 1.15. Given p > 0, there exists a diagonal integer matrix Ll such that an optimal 
solution to ID(il) is an optimal solution to IP. 

Example 1.4 (continued) 

max ?x1 + 2xz 

-x~ + 2xz+X3 

Sx1 + Xz 

-2xl- 2xz 

xEZ~. 

= 2 

+ X4 = 19 

+ Xs = -5 

Taking u = (1 2 ~),As, and R = (=~ ~ n as previously, we obtain ID(Ll), namely 

lf/11=min X1 + Xz + X3 + 2x4 + ~Xs 
X1 - 2xz - X3 = -2 

- 6xz - 2x3 + Xs = -9 
11xz + 5x3 + X4 = 29 

xEZ~, 

and z(u, Ll) = 37~- lf/11. 
Now we apply the increasing group algorithm. 

Initializatian: C.'~ ( 
1 

Iteration 1: 
Step 1: x 1 = (0 0 1 2 0), If/""' = px 1 = 5. 

(mod J1) 
(mod Jz) 
(mod 63) 
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Step 3: Rb- RAx 1 = (;;) = ~ 1 w 1 with w1 = (=;)· 
Step 4: k1 = k2 = 2, k3 = 3, ~ 2 = ( 2 33 )· 

Iteration 2: 

Step 1: x2 = (1 2 2 1), !f/c,.' = px2 = 8:!:. 

Step 3: Rb- RAx2 = 0) = ~ 2 w 2 with w2 = 0)-
Step 4: k 1 = 2, kz = 3, k3 = 1, ~ 3 = ( 6 33 )· 

Iteration 3: 

Step 1: x 3 = (3 2 2 5), !f/c,.' = px3 = 12~. 

Step 2: RAx3 = Rb. x 3 solves IP with cx3 = 37~- 12~ = 25. 

The 0-1 Knapsack Problem 

In many cases, 0-1 knapsack problems have to be solved repeatedly and quickly. For 
instance, in Example 6.2 of Section 11.3.6, one of the Lagrangian relaxations resulted in a 
knapsack problem. In the next section, we will use the 0-1 knapsack problem as a 
subroutine in a fractional cutting-plane algorithm for 0-1 integer programs. 

When the constraint coefficients are small integers, the dynamic programming recur
sion of Section 11.5.5 is an efficient algorithm; and when the objective function coeffi
cients are small integers, an efficient recursion is obtained by reversing the roles of 
the objective and constraint as in (1.5). In addition, there is a scaling/rounding heur
istic similar to the one we have given for the integer knapsack problem with running time 
O(nje3) that guarantees a solution with a relative error of no more than e for any e > 0. 

Nevertheless, a linear-programming-based branch-and-bound algorithm is still used to 
solve 0-1 knapsack problems. Here we examine the simple techniques that make such an 
algorithm effective. 

Given the 0-1 knapsack problem 

(1.10) 

without loss of generality we suppose that ah cj > 0 for all) and LjEN aj > b. We note that if 
the variables are ordered so that c1/a 1 ~ • • • ~ Cn/an, an optimal solution of the linear 
programming relaxation is 

for j = 1, ... , r - 1, 
b .._,r-1 _ - .:..j=I aj _ 0 Xr- , Xj-

ar 
for j = r + 1, ... , n, 

where r is such that Lj;;! aj ~band L}=1 aj > b. Hence the solution is essentially character
ized by r or, more definitely, by A,*= Cr/ar. 

The optimal value function zLP(b) of the linear programming relaxation is shown in 
Figure 1.4. Note that ..1* is the slope of the function zLP at the point b. 

Since sorting the {cja)jEN into nondecreasing order can be done in O(n log n) time, 
there is an obvious O(n log n) algorithm for solving the linear programming relaxation. 
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Figure 1.4 

However, if It* is known, the linear programming relaxation can be solved in linear time 
since X;= 1 if c;/a; >It* and X;= 0 if c;/a; <It*. We now give an algorithm that solves the 
linear programming relaxation in O(n) time. 

An Algorithm for the Linear Programming Relaxation 

Let N 1 and N° denote the variables fixed to 1 and 0, respectively, and let Nf be the free 
variables. Given a candidate value It, let 

Initialization: N 1 = N° = 0, Nf = N. 
Step 1: Let It be the median of {c1ja1: j E Nf). 
Step 2: Construct the sets N>, N~, N< and calculate S1(/t) and Sz(lt). 

i. S 1(/t) > b implies that It is too small. Let N° .... N° UN~ UN<, Nf = N>. Return to 
Step 1. 

ii. S 2(/t) < b implies that It is too big. Let N 1 ... N 1 UN> UN~, b ... b - I:JEWuN- a;, 
Nf = N<. Return to Step 1. 

iii. Otherwise, S1(/t) < b < Sz(lt). If S1(1t) or S2(/t) = b, we immediately obtain an 
optimal integer solution. Otherwise, take the elements ofN~ in arbitrary order. If 
N~ = {}), ... ,jp}, find q such that S1(/t) = I:t:l a1, < b and S1(lt) = 1:1~ 1 a;,> b. Set 
N 1 <- N 1 U {j b ••• ,jq_1}, r = )q, and N° <- N° U {}q+~> ... ,)p}. Stop. 

The algorithm terminates with an optimal solution to the linear program with X; = 1 
for j E Ni, X;= 0 for j E N°, and x, = (b - LJEN' a;)/ a,. To verify that the algorithm has 
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O(n) running time, we use the result that the median of k numbers can be found in O(k) 
time. Because A. is chosen as the median, we have that INfl is at least halved at each 
iteration since IN< I -'S; ~ IN I and IN> I -'S; ~ IN 1. Hence the total running time is 
O(n) + O(n/2) + · · · + O(n/21) • • • = O(n). 

Once N 1, N°, and A.* are determined, a natural greedy heuristic yields a solution to 
(1.10). 

Primal Heuristic Algorithm 

Step 1: Set xj= 1 for all) E N 1, and x:= 0. Let N° = {r + 1, ... , n}. 
Step 2: Set b ..._ b -LiEN' a1• 

Step 3: For) E N°, if a1 > b, set xj= 0; otherwise, set xj= 1 and b..._ b- a1. Return. 

An obvious improvement of the heuristic is to order the elements of N° so that 
Cr+l/ar+l? Cr+2/ar+2? · · · ? Cn/an. 

Given a lower bound z equal to the value of the best feasible solution found so far to 
(1.10) and zLP, we now present two tests that may allow us to fix some variables. The first is 
just a restatement of Proposition 2.1 of Section 11.5.2. 

Variable Elimination Test 1. If k E N 1 and zLP- (ck- A.*ak) -'S; z, then Xk = 1. Similarly if 
k E N° and zLP + (ck- A.*ak) -'S; z, then xk = 0. -

Note that ck- A.*ak is just the reduced price of non basic variable xk at either its upper or 
lower bound. 

If k E N 1 and we impose the condition xk = 0, the new linear programming relaxation 
IS 

ztp = I c1 + max I c1x1 
jEN 1\(k) )EN°U{r) 

I aixi -'S; bk 
)EN°U(r) 

0-'S;XJ-'S; 1 forjEN°U{r}, 

where bk = b - LJEN'\(kJ a1. Thus we have the following test. 

Variable Elimination Test 2. If k E N 1 and ztp -'S; z, xk can be fixed at 1. A similar test 
exists for fixing xk = 0 fork E N°. -

A weakened version of Test 2 uses an upper bound on ztp. Since 

ztp -'S; I c1 + A.*bk = zLP- ck + A.*ak> 
)EN1\(k) 

and equality holds only if L1 {a1: j E N° U {r}, cjai =A.*}? bk. This validates Test 1 and 
shows that Test 2 dominates Test 1. 

To obtain a better upper bound on ztp, it suffices to find a set of variables in N° with 
the largest values of c1jai-that is, a set {r + 1, ... , q} ~ N° such that A.*= c,/a,? 
Cr+t/a,+t? · · · ? Cq/aq and Cq/aq? cja1 for j E N°\{r + 1, ... , q}. Then 
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if aq"" bk- a,- · · · - aq-! > 0 

and 

These values can be used in Test 2. 

The problem remaining after all the elimination tests have been carried out is called the 
reduced problem. Note that A.* for the reduced problem is the same as for the original 
problem. 

Example1.5 

max 16xl + 12x2 + 14x3 + 17x4 + 20x5 + 27x6 + 4x7 + 6x8 + 8x9 + 20x 10 + llx 11 + 
10x12 + 7x!3 

7xl + 6xz + 5x3 + 6x4 + 7xs + 10x6 + 2x7 + 3xs + 3x9 + 9x 10 + 3xu + 
5x12 + 5x13 ~ 48 

X E B 13• 

First we solve the linear programming relaxation. 

Initialization: N1 = {1, ... , 13}, N1 = N° = 0, b = 48. 
Step 1: A. = .\f 
Step 2: N> = {3, 4, 5, 6, 9, 11}, N= = {1}, N< = {2, 7, 8, 10, 12, 13}. 

i. S1(A.)=34. 
ii. S 2(A.) = 41 <b. A. is too big. 

N 1 = {1, 3, 4, 5, 6, 9, 11}, b = 7. 

Step 1: Nf = {2, 7, 8, 10, 12, 13}, A.= 2. 
Step 2: N> = {10}, N= = {2, 7, 8, 12}, N< = {13}. 

i. S 1(A.) = 9 >b. A. is too small. 
N° = {2, 7, 8, 12, 13}. 
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Step 1: N1 = {10}, A-= f. 
Step 2: N> = 0, N~ = {10}, N< = 0. 

i. S 1(A-)=0<b. 
ii. S 2(A-) = 9 >b. 

111. r = 10. 

Hence the linear programming solution is x1 = 1 for j = 1, 3, 4, 5, 6, 9, 11, x 10 = ~ and 
x1 = 0 otherwise, with zLP = 128~ and A,*= f. 

Applying the primal heuristic algorithm, we first set x1 = 1 for j = 1, 3, 4, 5, 6, 9, 11, 
x w = 0, and then fill the remaining 7 units in greedy fashion. This gives x 2 = 1, with x1 = 0 
otherwise. The solution has value 125. Hence 125 ~ z1p ~ 128~. 

We calculate the reduced prices c1 - A-*a1 for j EN: 

1 
9 

2 3 
22 
9 

4 
11 
9 

5 
40 
9 

6 
,u 
9 

7 8 9 
12 
9 

10 

0 

11 
.12_ 
9 

12 
10 

-9 

13 

Applying Variable Elimination Test 1, we can fix x 4 = x 5 = x 6 = x 11 = 1, and x 13 = 0 as 
lc1 - A-*a1 I ~ zLP- z = ¥. 

To apply Variable Elimination Test 2, we observe that cja1 ~ 2 for allj E N°. Thus we 
can take q = r + 1 with c,+Ja,+1 = 2. For k = 3, we have bk = 12; and we obtain 
z[p ~ 99 + 20 + 2(12- 9) = 125 ~ ~' and hence we can fix x 3 = 1. None of the other 
variables can be fixed. Hence we are left with the reduced problem 

z = 89 +max 16x1 + 12x2 + 4x7 + 6xs + 8x9 + 20xw + 10x12 

7x1 + 6x2 + 2x7 + 3xs + 3x9 + 9xw + 5x12 ~ 17 

Branch-and-Bound 

We suppose that (1.10) is a reduced problem in which as many variables as possible have 
been fixed. The variables are now ordered so that c 1/a 1 ~ • • • ~en/an. The order of 
branching is fixed to be x ~> x2, ... , Xn. Each variable is first set to 1 and then to 0. 

A node t is completely specified by its level k, and a set N 1 ~ {1, ... , k}. Node t 
represents the set of x E Bn for which x1 = 1 for j EN and x1 = 0 for j E {1, ... , k} \ N. 
We let z 1 = L.JEN' c1 and let b1 = b- LJEN' a1• Note that node t corresponds to a nonempty 
set of feasible solutions if and only if b1 ~ 0, and when this holds Zt is a lower bound on the 
optimal value of the solutions in this set. 

An upper bound is given by 
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z=36 

Figure 1.5 

Since the variables are appropriately ordered, zLP can be determined by a greedy algo
rithm. The node is pruned by bound ifz1 ~~and is pruned by optimality ifz1 = z1• If the 
node is not pruned by bound, there are three cases: 

1. ak+l < bt. If k + 1 < n, we branch on Xk+l = 1. If k + 1 = n, an optimal solution for 
node tis Xn = 1. We set~<- Z1 and prune node t by optimality. 

ii. ak+I = b1• An optimal solution for node tis obtained by setting xk+l = 1 and xj = 0 
for j > k + 1. We set~ .... z1, and we prune node t by optimality. 

111. ak+l > b1• We prune the node with Xk+l = 1 by infeasibility, and we branch on 
Xk+1 = 0. 

Backtracking from t. N ={}I. ... ,)r} c:; {1, ... , k} with) 1 <h < · · · <),. 
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Case 1. k $. N; that is, the last branch is xk = 0. We move back up to level}, and set 
Xj, = 0. Hence node t + 1 is at level}, with N+1 = {}1, ... ,J,_a. 

Case 2. k EN'; that is, the last branch is xk = 1. Here we move back up to level} ,_1 and 
set Xj,_, = 0. Hence node t + 1 is at levelJr-1 with N 1+1 = {jb ... ,),_2}. 

Note that in Case 2 we do not branch on xk = 0. To show that it is unnecessary to do so, 
first observe that because of the ordering of the variables the upper bound on the branch 
with xk = 1 is at least as great as the upper bound on the branch with xk = 0. Hence if node 
tis pruned by bound, the branch with xk = 0 would have been as well. Alternatively, if 
node t is pruned by finding a feasible solution in i or ii, no better solution can be found on 
the branch with xk = 0 because of the ordering of the variables. 

The algorithm terminates when a node t with N' = 0 is pruned. We also repeat the 
variable elimination tests each time the value z of the best feasible solution found 
increases. 

Example 1.5 (continued). After reordering and renaming the variables, the reduced 
problem is 

max 8x1 + 16xz + 20x3 + 12x4 + 6xs + 10x6 + 4x7 

3x 1 + 7x2 + 9x3 + 6x4 + 3x5 + 5x6 + 2x7 ~ 17 

X EB7• 

The optimal solution to the linear programming relaxation is x 1 = x 2 = 1, x 3 = ~' Xj = 0 
otherwise, zLP = 39~, N1 = {1, 2}, r = 3, N° = {4 5 6 7}, ..1.*= ~as observed earlier. 

The enumeration algorithm for the reduced problem leads to the tree shown in Figure 
1.5. At each node t we give the values of b,, z, and z,. 

The first feasible solution found at node 7 is precisely the primal heuristic solution. 
Node 10 is fathomed by bound. A feasible solution of value 38 is found at node 12 (with 
x 7 = 1). Nodes 13 and 14 are fathomed by bound. Hence Xj = 1 for j = 1, 2, 6, 7 and Xj = 0 
otherwise is an optimal solution to the reduced problem of value 38. 

2. 0-1 INTEGER PROGRAMMING PROBLEMS 

The general 0-1 integer programming problem 

(BIP) max{cx: Ax~ b, x E Bn}, 

where A is an m x n integral matrix and b E zm, typically is solved by a general branch
and-bound algorithm with linear programming relaxations (see Section 11.4.2). However, 
·BIP possesses a few properties that can be used to refine a general algorithm and make it 
more efficient. 

As we have already noted in Section 1.1.6, preprocessing can be quite useful for BIPs to 
reduce the number of variables and constraints. We assume here that preprocessing 
operations have already been done. But it is important to remember that they can be 
applied recursively and, perhaps, should be considered at each node of a branch-and
bound tree. 

Linear programming relaxations can yield more information for BIPs than for general 
integer programs because of the following proposition. 



2. 0-1 Integer Programming Problems 457 

Proposition 2.1. Every feasible solution to BIP is an extreme point of P = {x E R~: 
Ax~ b, X~ 1}. 

Proof If xis not extreme, then x = !x1 + !x2, x 1, x 2 E P with x 1 =1= x 2, which implies 
0 < Xj < 1 for somej EN; that is, x $. Bn. • 

This result motivates a heuristic that systematically searches the integral extreme points 
of P in the neighborhood of an optimal solution to the linear programming relaxation for 
good feasible solutions to BIP. 

Another useful fact is that by complementing variables, the individual constraints of 
BIP can be written as the constraint sets of 0-1 knapsack problems. Specifically, the ith 
constraint can be restated as 

(2.1) 

where xj = Xj if aij > 0 and Xj = 1 - xj if aij < 0. This transformation enables us to use 
strong valid inequalities for the 0-1 knapsack constraint set (see Section II.2.2) as valid 
inequalities for BIP in an FCP \ branch-and-bound algorithm. 

After developing these ideas, we will invoke a bit more structure and consider 
set-covering and -packing problems in which A is a 0-1 matrix and b; = 1 for i E M = 
{1, ... 'm}. 

A Simplex-Based Heuristic for BIP 

Suppose we solve the linear programming relaxation of BIP by a simplex algorithm that 
treats the upper bounds Xj ~ 1 for j E N as implicit constraints. If, in an optimal solution, 
Xj is nonbasic for allj EN or, equivalently, the slack variables Xn+i are basic for all i EM, 
then the solution is integral. 

This suggests the idea of finding good integral solutions by pivoting out of the basis the 
regular (non-slack) variables and replacing them by slack variables. These pivots, other 
related ones, and the rounding of the values of the fractional basic variables are attempted, 
with the objective of finding a feasible integral solution. If a feasible integral solution is 
found, then we try to improve it by local search. This is done by complementing non basic 
regular variables (switching their values from 0 to 1 and vice versa). 

Algorithm 

Phase 0. Solve the linear programming relaxation. If the solution is integral or there is no 
feasible solution, stop. Otherwise go to Phase I. Let X;= aw be the value of the ith basic 
regular Variable; then let Q = r_iEN' min(a;o, 1 - a;o) be the ValUe Of integer infeasibility, 
where N' = {i: X; is basic and a regular variable}. 

Phase I (Feasibility Search) 

Step 1: If there is at least one pivot that maintains primal feasibility and reduces the 
number of basic regular variables, then do that pivot which yields the largest value of 
the objective function. If the resulting solution is integral, go to Phase II; otherwise 
return. If no such pivot exists, go to Step 2. 

Step 2: If there is at least one pivot that maintains primal feasibility, leaves unchanged the 
number of basic regular variables, and reduces q, then do the first one found. If the 
resulting solution is integral, then go to Phase II and otherwise return to Step 1. If no 
such pivot exists, go to Step 3. 
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Step 3: Round each basic regular variable to the nearest integer. If the solution is feasible, 
go to Phase II; otherwise reduce each fractional regular variable to zero. If the solution 
is integral, go to Phase II; otherwise go to Step 4. 

Step 4: Among those pivots that make a slack variable basic and positive and that make a 
regular variable nonbasic, do the one that minimizes the resulting primal infeasibility 
given by h =LiEN' max(O, -a;o, aiO- 1). Go to Step 5. 

Step 5: If there is a nonbasic regular variable that can be complemented to reduce h, 
complement the one that yields the largest reduction in infeasibility. Then if h = 0, go to 
Step 3; otherwise return. If no such variable exists, go to Step 6. 

Step 6: If there is a pair of nonbasic regular variables that can be simultaneously 
complemented to reduce h, then do the first such complementation that is found. Then 
if h = 0, go to Step 3; otherwise go to Step 5. If no pair exists, the feasibility search has 
failed. 

Phase I either produces a feasible solution and we go to Phase II, or it ends in failure and 
the heuristic terminates. 

Phase II (Local Search for Improvement) 

Step 1: Fix variables using the reduced-profit criterion ofProposition 2.1 ofSection II.5.2. 
Go to Step 2. 

Step 2: If a better feasible solution can be found by complementing one non basic regular 
variable, do the complementation that yields the largest improvement and go to Step I. 
Otherwise go to Step 3. 

Step 3: For i = 2, 3, if a better feasible solution can be found by complementing i 
non basic regular variables, do the first such complementation found and go to Step I. 
Otherwise terminate. 

This heuristic has performed well in practice on a variety of types and sizes of binary 
integer programs. It is typical for such heuristics to work reasonably well for the larger, 
more complicated instances where other alternatives are not available; however, for small 
instances and restricted problem classes, such heuristics usually fail or do what much 
simpler heuristics are capable of doing. 

For example, in a 0-1 knapsack problem, Step 1 of Phase I immediately pivots out the 
fractional variable and pivots in the slack variable, yielding the solution that would have 
been obtained by the greedy algorithm if it were stopped upon first encountering an item 
that did not fit into the knapsack. Such a solution would be completed to a greedy solution 
in Step 1 of Phase II. 

Example2.1 

max z = 9x1 + 10x2 

3x1+3X2+X3 

4xl + 5x2 

where x 3 and x 4 are slack variables. 

=4 

+ X4 = 6 
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The optimal solution to the linear programming relaxation is 

X1=!-!x3+X4 

X2=!+h3-X4 

459 

In Step 1 if x3 becomes basic, the pivot yields x2 = 1, x1 =~'and z = ~· If x4 becomes 
basic, the pivot yields x1 = 1, x2 =~,and z = Jf. Hence we choose to make x4 basic. The 
resulting basic solution is 

X4 = 1 + hJ- (l - Xt) 

x2 = 1 -hJ + (1 - Xt) 

Xt=l,xJ=O. 

Step I is repeated, and the next pivot yields the integral solution x 1 = 1, x 2 = 0. Hence 
Phase I terminates. 

An FCP/Branch-and-Bound Algorithm 

We have observed that the individual constraints ofBIP can be stated in the form (2.1) and 
in Section 11.2.2 we studied strong valid inequalities for S = {x E Bn: LJEN a1xi < b }, 
where a1 E Z~ for j E Nand b E Z~. In particular, we gave the class :JP of cover inequalities 

I Xj < ICI- 1, 
jEC 

where C s; N is a cover if LJEC a J > b. 
Now to be able to apply the FCPA of Section 11.5.2, we formalize the separation 

problem for the class:¥. Here Cis an unknown subset ofN, and given apointx*E R~ \ Bn 
we want to find a C (assuming that one exists) with LJEC ai > b and LJEC xj > I C I - 1. 
Introducing a vector z E Bn to represent the unknown set C, we attempt to choose z such 
that Ljr=N a1zi > b and LJEN xjz1 > LJEN z1 - I. The second inequality is equivalent to 
LJr=N (1 - xj)z1 < 1. 

Thus we obtain the Separation Problem for Cover Inequalities: 

(2.2) 

Note that, since the constraint coefficients are integral, Ljr=N aizJ > b is equivalent to 
LJr=N aizJ ~ b + 1. Let zc be the characteristic vector of C s; N. 

Proposition 2.2. Let ( (, zc) be an optimal solution to (2.2). Then: 

a. if ( ~ 1, then x* satisfies all the cover inequalities for S; and 
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b. if C < 1, then L1Ec x1 ~ 1 C 1 - 1 is a most violated cover inequality for S, and it is 
violated by the amount 1 - C. 

Proof If C ~ 1, then all z E Bn satisfying LJEN a1z1 > b also satisfy LJEN xjz1 ~ 

LJEN z1 - 1; that is, for all covers C, the corresponding cover inequality is satisfied by x~ 

If C < 1, then LJEN (1 - xj)zf = C < 1; hence 

I xj = I Ci - C > I c I - 1. 
jEC 

Since zc is optimal in (2.2), the maximum violation is by the amount 1 - C. • 

Example 2.2 S = {x E B 5: 47xi + 45x2 + 79x3 + 53x4 + 53x5 ~ 178} and x*= (0 0 1 
1 ~). To check whether there is a cover inequality for S violated by x~ we solve: 

C =min 1z 1 + 1z2 + Oz3 + Oz4 + nzs 

47z 1 + 45z2 + 79z3 + 53z4 + 53z5 ~ 179 

z EB 5, 

having optimal solution C = -0, zc = (0 0 
x 3 + X4 + Xs ~ 2 is violated by x~ 

1). As C < 1, the cover inequality 

It is now straightforward to implement the FCPA with separation for BIP. As the initial 
relaxation we take S1 = {x E R~: Ax~ b, x ~ 1}. The separation algorithm for BIP 
involves the solution of the knapsack separation problem (2.2) for each constraint 
LJEN aux1 ~ b;, restated as the knapsack set (2.1). Note that if we find a violated cover 
inequality specified by C, we can easily strengthen it to LJEE(C) x1 ~ ICI- 1, where 
E(C) = {j $. C: a1 ~ ak for all R E C}, (see Section 11.2.2). Thus when A and b are 
nonnegative, the algorithm will terminate with a solution satisfying L1Ec x1 ~ I C I - 1 for 
all C with L1Ec a1 'f b, x E R~, where a1 is the jth column of A, and the original con
straints. 

Example 2.3. We apply the FCPA of Section 11.5.2 to the BIP 

max 77xi + 6x2 + 3x3 + 6x4 + 33xs + 13x6 + llOx1 + 21xs + 47x9 

774x 1 + 76x2 + 22x3 + 42x4 + 21x5 + 760x6 + 818x7 + 62xs + 785x9 ~ 1500 

67x 1 + 27x2 + 794x3 + 53x4 + 234x5 + 32x6 + 797x7 + 97xs + 435x9 ~ 1500 

xEB 9• 

Iteration I. Solution of the linear programming relaxation LP1 of BIP yields 
xi= x3 = x~ = x~ = 1, xl = 0.71, xj = 0.35, x) = 0 otherwise, and zLP = 225.7. 
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Solution of the separation problem (2.2)forrow 1 yields'= 0.29, z 1 = z 7 = 1, and z1 = 0 
otherwise, giving the violated cover inequality x 1 + x1 ~ 1. Here E( C)= C. 

Solution of the separation problem (2.2) for row 2 yields'= 0.65, z 3 = z 7 = 1, and z1 = 0 
otherwise, giving the violated cover inequality x 3 + x1 ~ 1. Again E(C) =C. 

Iteration 2. Solution of the linear programming relaxation LP2 of BIP with the two 
additional constraints x 1 + x7 ~ 1 and x 3 + x7 ~ 1 yields xi= x~ = x~ = x~ = x~ = 1, 
x§ = 0.61, xJ = 0 otherwise, and z[p = 204.8. 

Solution of the separation problem (2.2) gives the violated cover inequalities x7 + x9 

~ 1 for row 1 and x4 + x5 + x7 + x9 ~ 3 for row 2. 
Iteration 3. x3 = (0.63, 1, 0.60, 1, 1, 0, 0.37, 1, 0.63). The separation routines give C = 

{ 1, 9} and the extended cover inequality x 1 + x7 + x9 ~ 1 for row 1, and C = {3, 5, 8, 9} 
and the extended cover inequality x3 + x5 + x7 + x8 + x9 ~ 3 for row 2. 

Iteration 4. x4 = (0, 1, 0, 1, 1, 0.63, 1, 1, 0). The cover inequality x6 + x7 ~ 1 is added. 
Iteration 5. x5 = (0, 1, 0, 1, 1, 0, 1, 1, 0) is integer and thus solves BIP. 

Example 2.3 raises two issues. Given that the separation problem (2.2) is a knapsack 
problem, which is an JV'g}l-hard problem, should we solve (2.2) exactly or use a fast heuristic 
algorithm? In practice, heuristics have been used very effectively. But this, of course, 
means that some cover inequalities may be missed by the separation procedure. 

The second issue stems from the observation that the first two cuts generated from 
row 1 in the course of the algorithm, namely x 1 + x 7 ~ 1, x 7 + x 9 ~ 1, are dominated by 
the third cut x 1 + X7 + x 9 ~ 1. Hence, we could speed up the algorithm if we could obtain 
this stronger cut from row 1 on the first iteration. 

To obtain the stronger cuts, remember from Proposition 2.5 of Section 11.2.2 that every 
cover inequality generated from a minimal cover C gives rise to a lifted cover inequality of 
the form 

(2.3) 

where C 1 n C 2 = 0 and C 1 U C2 = C. Moreover, {a) and {y) can be chosen so that (2.3) 
defines a facet of the knapsack convex hull. 

The coefficients in (2.3) are obtained by sequential lifting. Unfortunately we know of 
no efficient way to consider all possible ordering of the elements of N \ C that can be used 
in sequential lifting. From a practical point of view, we avoid this difficulty by choosing an 
ordering of the elements of N \ C in a greedy fashion. 

A Lifting Heuristic to obtain a lifted cover inequality of the form (2.3) with C 2 = 0 

Initialization: Given x~ solve the knapsack problem (2.2) to obtain a cover C. (Note that 
the cover inequality may not be violated.) Let L 1 = N \ C and let k = 1. Set a1 = 1 for all 
jEC. 
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Iteration k: For all j E L k find ph which is the maximum value of n1 such that 
n1x1 + 'L;EN\Lk a;x; ~ I C I - 1 is valid. Let j* = arg max1Eu P1xj. Set L k+l = L k \ {j*} 
and a1• =Pi'· If L k+l = 0, test whether r.JEN a1xj > 1 C 1 - 1. If so, add the cut 
r.JEN a1x1 ~ I C I - 1. If L k+l * 0, k .._ k + 1. Return. 

As shown in Section 11.2.2, we have P1 = I C I - 1 - 'h where 

(2.4) 

Note that because of the small size of the coefficients a1 ~ I C I - 1, the knapsack problem 
(2.4) can be solved efficiently by dynamic programming (see Proposition 1.6). 

A simple extension of the lifting heuristic suggests how we can also search for extended 
cover inequalities of the form (2.3) with C2 * 0. 

Separation Algorithm to obtain lifted cover inequalities (2.3) 

Step 1: Apply the lifting heuristic described above. If a violated inequality is found, stop. 

Step 2: If not, choose k = arg(max1Ec a1xj). Set C2 = {k}, and use the lifting heuristic to 
generate a facet-defining inequality for conv(Sk) from the cover C \ {k}, where 
sk = {x E Bn-l: LjEN\{k) ajXj ~ b - ak}. 

Step 3: Convert this inequality into a facet-defining inequality of the form (2.3) for S by 
lifting back in the variable Xk· (See Example 2.2 of Section II.2.2). 

Step 4: Check the resulting inequality for violation. Stop. 

Example 2.2 (continued) 

and x* = (~ ~ 1 ~ 1). The knapsack problem (2.1) gives the cover inequality 
x 3 + x 4 + x 5 ~ 2, which is not violated by x~ The separation algorithm starts with 
c = {3, 4, 5}. 

Step 1: The lifting heuristic leads to the same inequality. 
Step 2: C2 = {3} is chosen, and the lifting heuristic is called, starting with the cover 

inequality X4 + Xs ~ 1 for S 3 = {x E B 4: 47xt + 45x2 + 53x4 + 53xs ~ 99}. 
Iteration 1: L 1 = {1, 2} and P1 = 1, P2 = 0. Hence xi'= x 1 is lifted with coefficient a1 = 1. 
Iteration 2: L 2 = {2}, Pz = 0. The resulting inequality for S 3 is X l + x4 + X 5 ~ 1. 
Step 3: Variable x 3 is lifted in giving the inequality x 1 + 2x3 + X4 + x 5 ~ 3, which defines a 

facet of conv(S) that is violated by x~ 

Given the heuristic nature of the above separation algorithm, we can no longer 
determine a priori what problem will be solved at the termination of the FCPA with 
separation. We can only assert that the cuts generated at least include all the cover 
inequalities. Remember that even this assertion may be false if we use a heuristic 
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algorithm for the knapsack problem (2.2). However, as the example below suggests, and as 
computational experience shows, the use of the lifted cover inequalities (2.3) in place of 
the cover inequalities leads to significant improvements in performance. 

Example 2.3 (continued). We apply the FCP/branch-and-bound algorithm, where the 
separation algorithm for extended cover inequalities is applied to each row ofBIP. 

Phase 1 (FCPA) 

Iteration 1: Solution of the relaxation LP1 ofBIP yields xl = x~ = x~ = x~ = 1, xl = 0.71, 
x~ = 0.35, x} = 0 otherwise, and zf..p = 225.7. 
Row 1. Cut x 1 + x6 + x7 + x9 ::s:; 1 is generated. 

Row 2. Cut x3 + x1 .,;;;; 1 is generated. 

Iteration 2: Solution of the relaxation LP2 yields x~ = x~ = x~ = x~ = x~ = 1, xJ = 0 other
wise, and z[p = 176. Because x 2 is integer, it is an optimal solution ofBIP. 

An alternative or complement to the use of the heuristic lifting algorithms is to use 
Proposition 2.6 of Section II.2.2, which provides upper and lower bounds on the values 
taken by aj for j E N \ C in the lifting heuristic. In particular, we obtain conditions for the 
existence of a violated inequality (2.3) when Cis a minimal cover and C2 = 0. 

Proposition 2.3. Let C = U ~> ... , j,} be a minimal cover with aj, ~ ah ~ · · · ~ aj,• and 
for h = 0, ... , r let 

where J.lh = I:ti aj •• J.lo = 0, and A.= J.lr- b > 0. 

l. If I:jec xj + I:h I:jeQ, hxj + I:h I:jeR, (h + 1)xj.,;;;; I C I - 1, there is no violated lifted 
inequalityforCwith C2 = 0. 

2. Ifl:jec xj + I:h I:jeQ, hxj + I:h I:jeR, hxj + maxjeu,R, xj > I C I - 1, then 

L, Xj + L, L, hxj + L. L. hxj + Xr .,;;;; I C I - 1, 
jEC h jEQ, h jER, 

where t = arg(maxjeu,R, xj), is a valid inequality violated by x*. 

The proof is an immediate application of Proposition 2.6 of Section II.2.2. This 
proposition can be used to speed up the lifting heuristic by stopping the algorithm if 
condition 1 is satisfied, or otherwise fixing the values of a.j for j E UhQh. Alternatively, we 
can simply use the valid inequality given in condition 2. 

Example 2.3 (continued). At iteration 1 we have xi= x! = x~ = x~ = 1, xl = 0.71, 
x~ = 0.35, Xj = 0 otherwise. For row 1 the knapsack problem (1.1) gives the cover C = {1, 7}. 
From Proposition 2.3 we have Q0 = {2, 3, 4, 5, 8} and r0 = {6, 9}. It follows without 



464 11.6. Applications of Special-Purpose Algorithms 

further calculations that both x 1 + x6 + x7 ~ 1 and x 1 + x7 + x9 ~ 1 are valid inequalities. 
To establish the validity ofx1 + x6 + x7 + x9 ~ 1, we must lift one of the above inequalities. 

Example 2.4. This is a 0-1 minimization problem with 15 constraints and 33 variables. 
The data, as well as the 20 cuts added in seven iterations (six sets of cuts) of the FCPA, are 
given in Table 2.1. Note that the value of the initial LP relaxation is zLP = 2520.7, and after 
adding the cuts the lower bound given by the LP relaxation of the reformulation 
max{cx: x E S[p} is zLP = 2962.2. 

The corresponding solution x 7 for which no cuts are found is 

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

(0 0 0 0 .83 .17 .83 .83 0 .83 0 .17 .66 0 1 0 

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 

1 0 0 0 0 1 0 1 .67 1 .50 1 1 0 0 .83). 

Applying branch-and-bound to the reformulated problem, a solution of value 3095 is 
found at node 17, and an optimal solution of value 3089 is found at node 65. Optimality is 
proved (i.e., the search is completed) at node 77. The optimal solution isx 1 = x 7 = x 8 = x 10 

= X14 = X1s = X21 = X23 = Xz5 = Xz6 = Xn = Xzs = Xz9 = X3o = 1, and x 1 = 0 otherwise. 
If branch-and-bound is applied without adding cuts, the best solution found after 1000 

nodes has value 3095, and the tree still contains 163 active nodes. 

Set Covering and Packing 

When (A, b) is a 0-1 matrix, each individual constraint is already in the form of a covering 
or packing inequality, and no mileage can be gained from the cutting-plane approach 
developed above. Some simple combinatorial ideas can yield cuts. For example, in a 
packing problem the constraints 

imply the inequality x 1 + x 2 + x 3 ~ 1. And in a covering problem, the constraints 

imply the inequality x 1 + x 2 + x 3 "" 2. More generally, if we have constraints for all sets of 
size k from k + 1 variables, then we can derive a nontrivial valid inequality involving all 
k + 1 variables. 

The disjunctive approach can also be used to derive valid inequalities for covering and 
packing problems. Here we leave the cutting-plane approach and consider some other 
features of covering and packing problems. 
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The greedy heuristic has a natural realization for the set-covering problem 

(SC) Zsc =min{ I cixi: I auxi ~ 1 fori EM, x E Bn}, 
jEN jEN 

where au E {0, 1} for all i andj. We assume that I:.jeN au~ 1 fori EM, which is necessary 
and sufficient for a feasible solution. Let Mi = {i: au= 1}. 

Greedy Heuristic for Set Covering 

Initialization: M 1 = M, N 1 = N, t = 1. 
Iteration t: Select/ E N 1 to min{cj IMi n M 1 1}. LetN+1 = N 1\UZ} andM1+1 = M 1\Mp. If 

M 1+1 = 0, the greedy solution is given by xi = 1 for j ~ Nl+1 and by xi = 0 otherwise. Its 
cost is ZG = r.iff-NI+' ci. If M 1+1 * 0, then lett .... t + 1 and return. 

We see that at each step the greedy heuristic selects the column that meets the largest 
number of uncovered rows per unit cost and then stops when a feasible solution has been 
found. 

Although we cannot give a positive, data-independent performance guarantee for the 
greedy heuristic, we will show that it has a performance guarantee that is independent of n 
and the objective coefficients, and that decreases only logarithmically with 1M 1. 

For any positive integer k, let H(k) = 1 +! + · · · + t and let d = maxjeN r.iEM au. We 
will use the following elementary result. 

Proposition 2.4. Let u = (ub ... , Un) E R~ and v = (vb ... , Vn) E Z~. If 0 < Ut ~ U2 
~ · · · ~ Un and V1 ~ V2 ~ · · · ~ Vn then 

n-1 

I ui(vi- vi+I) + UnVn ~ max(uivi)H(vt). 
i~l I 

Theorem 2.5. zsdzG ~ 1/H(d). 

Proof We use the approach presented in Section II.5.3 for worst-case analysis of 
heuristics. In particular, we construct a feasible solution u* to the dual of the linear 
programming relaxation ofSC. Then, by duality, we obtain zsc ~ I:.7,!1 uj. The result then 
follows by showing that I:.7,!1 ui= zG!H(d). 

Suppose that the greedy heuristic terminates on iteration T, and let ()I = 
mini {ci/ IMi n M 1 1}. The dual vector u*is defined by ui= ()ljH(d) fori E M 1\Mt+1• 

We will show dual feasibility for eachj E N by using Proposition 2.4. Since M 1 ::J M 1+1, 

it follows that IMj n M 1 I ~ IMj n Ml+l I for all t. Hence if VI= IMj n M 1 I, then 
v1 ~ v2 ~ • • • ~ Vr ~ 0. We also have from its definition that 0 < 81 ~ • • • ~ (JT. 

Now 

I u~a-·=I- I a· T (}I ( ) 

iEM I I) 1~1 H(d) iEM1\MI+i I} 

= - 1- f 81 (IM1 nMjl- IMI+l nMjl) 
H(d) 1~1 

1 T 

= H(d) ~ 81 (vi- vi+I), 
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and applying Proposition 2.4 to the last term gives 

Since IM1 n Mj I = Li:t aij.:;; d, and 81( IM1 n Mj I).:;; Cj for all t by definition of 81, we 
obtain L;EM u7aij.:;; Cj, and u*is dual feasible. 

Finally, the dual objective value is 

• 
We leave it as an exercise to show that the bound of Theorem 2.5 can be asymptotically 

achieved. 
We now turn to set-packing problems and, in particular, to the node-packing problem. 

An instance of the node-packing problem is given by a graph G = ( V, E) and a weight 
function c: V .... R 1• A feasible solution is any subset of nodes such that no pair in the subset 
is joined by an edge. The weight of a solution U £ Vis c( U) = L;Eu c ;, and the objective is 
to find a solution of maximum weight. Node packing is K9P-hard (see Section 1.5.6). 
Moreover, any set-packing problem is easily transformed to a node-packing problem on 
the intersection graph ofthe family of sets. 

Here we are going to present a rather unusual property of node packing that does not 
appear to be shared by any other K9ll-hard problem and that may yield a substantial 
reduction in the size of an instance once the linear programming relaxation has been 
solved. If the linear programming relaxation of an integer program has an optimal integral 
solution, that solution is, of course, also optimal to the integer program. But if just one 
variable is fractional in the optimal linear programming solution, we can no longer deduce 
anything about the variables in the integer program. On the other hand, in node packing, 
all of the variables that are integral in the solution of the linear programming relaxation (if 
any) keep these same integer values in some optimal solution to the integer program. 
Hence, having solved the linear programming relaxation, we can fix the values of the 
integral variables and then eliminate them from the problem. 

A binary integer programming formulation of the node-packing problem on 
G = (V, E) is 

(NP) 
X;+Xj.:;; 1 for(i,j)EE 

xEBn, 

where n = I vI. Its linear programming relaxation (LNP) is obtained by replacing X E sn 
byx ER~. 

We need the following proposition that relates local and global optimality. For U C V, 
the neighbors of U_are the set N(U) = {i E V: i $ U, (i,j) E E for some j E U}. Let 
S(U) = U U N(U), S(U) = V\(U U N(U)), and let G(S(U)) be the subgraph induced by 
S( U). A property that we use several times is the following: 

(P.l) There are no edges joining a node of U and S( U). 
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Proposition 2.6. If U is an optimum packing on G(S(U)), then there is an optimum 
packing VO on G with VO ;2 U. 

Proof Let V* = VT U V! be an optimum packing on G, where vr = V* n S( U). By 
(P.1), U U Ji1isapacking on G. By hypothesis, c(U);;;;. c(VT); hence c(U) + c(Vi);;;;. c(V*). 

Theorem 2. 7. If x0 is an optimal solution to LNP, then there is an optimal solution x* to 
NP with xj*= xJ for all j such that xJ is integral. 

Proof The result is trivial if x 0 is integral, so we suppose that it is not. We first show 
thatifU = U: xJ = 1}, there exists an optimal solutionx* toNPwithxj= 1 forallj E U. By 
Proposition 2.6, we need to show that U is an optimal packing on G(S(U)). Note that 
xJ = 0 for j E N( U). Also, for some k E S( U), x2 > 0; otherwise x 0 is integral. 

Suppose that 0 * U is an optimal packing on G(S(U)) and that c(0) > c(U). We will 
show that this contradicts the optimality of x 0• Let 

forj E 0 
forj E S(U)\0 

forj E S(U) 

andx = A.x0 + (1- .A.).X, where .A.= max{xJ:j E S(U)}. SinceO ~ xJ < 1 forallj E S(U), we 
obtain 0 < A. < 1. We claim that x is a feasible solution to LNP; that is, X; + X".i_ ~ l for 
(i,j) E E. This is clear ifi,j E S (U) (since U and 0 are packings) and ifi,j E S(U). By 
(P.l), the remaining case is i E N(U) andj E S(U). Thenx; = A.x? + (1- A.).X; ~ 1- A. since 
x? = 0, and Xj = xJ since xJ = Xj. Hence X; + Xj ~ (1 - A.) + xJ ~ 1 by the definition of A.. 
Now 

I CjXj = A.c( U) + (1 - A.)c( 0) + I cjxJ 
jEV jES(U) 

> c(U) + I cjxJ = I CjxJ, 
jES(U) jEV 

which contradicts the hypothesis that x0 is an optimal solution to LNP. 
Finally, xj = 1 for j E U implies xj = xJ = 0 for j E N( U), and if xJ = 0 for j E S( U), 

then cj ~ 0 so that xj = 0 as well. • 

The use of Theorem 2.7 is enhanced by the fact that LNP can be solved in polynomial 
time, essentially as an assignment problem on a graph with 2n nodes. On the other hand, 
the theorem will be useful only if an optimal solution to LNP contains a significant 
number of integer-valued variables. It is also important to observe that the bound obtained 
from the linear programming relaxation of a set-packing problem is stronger than the 
bound obtained from LNP when the set-packing problem is transformed to a node
packing problem. 

These advantages and disadvantages must be balanced, but if we decide to use LNP as a 
relaxation to NP in a branch-and-bound algorithm, then Theorem 2. 7 should be applied 
at every node of the branch-and-bound tree. 

Example 2.5. Consider the node-packing problem on the graph of Figure 2.1 with 
c = (3 1 1 2 2 3). An optimal solution to LNP is x = (l 0 0 i ! i). Hence 
there is an optimal solution to NP with x 1 = 1 andx2 = x 3 = 0. Now it is trivial to solve NP 
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6 

Figure 2.1 

on the subgraph induced by nodes {4, 5, 6}; that is, the solution isx4 = x 5 = 0 and x 6 = 1. 
Hence an optimal solution to NP on the whole graph is x = (1 0 0 0 0 1). 

3. THE SYMMETRIC TRAVELING SALESMAN PROBLEM 

An instance of the symmetric traveling salesman problem is given by a graph G = ( V, E) 
and a weight vector c E RIEl. A tour T of G is a subgraph of G that is a cycle on V; that is, if 
T = ( V, Er ), then each node of T is of degree 2, T is connected and I ET 1 = I V 1. The 
feasible solutions are all of the tours of G (if any), and assuming that G contains at least 
one tour, the objective is to find a tour of minimum weight. The weight of a tour T with 
edge set Er C E is LeEET Ce. Let 

ZTs =min{ I Ce: T = (V, Er) is a tour of G}. 
eEET 

Several special-purpose algorithms originally were developed to solve the traveling 
salesman problem, which has become a prototype problem for illustrating, testing, and 
comparing algorithms. We begin this section by describing and comparing various 
relaxations. We then present and analyze some heuristics for obtaining good feasible 
solutions. Finally, we give some algorithms that use a heuristic for finding feasible 
solutions and upper bounds, a relaxation or dual problem for finding lower bounds, and, if 
necessary, a branch-and-bound phase for finding an optimal solution and proving 
optimality. 

Relaxations 

We first consider two relaxations that can be obtained by considering families of subgraphs 
that contain all of the tours of G. First we drop connectedness and consider the family of 
subgraphs of G that contain I VI edges and in which each node is of degree 2. These 
subgraphs are called 2-matchings (see Figure 3.2 of Section 11.2.3). 

Let 

zM =min{ I Ce: M = (V, EM) is a 2-matching ofG}. 
eEEM 

Since every tour is a 2-matching, we have 

(3.1) 
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Next we drop the degree-2 requirement on all nodes except node 1, but we keep 
connectedness and the requirement that the subgraph contains I VI edges. This means 
that the subgraph on nodes V \ {1} is connected and contains I VI - 2 edges. By Proposi
tion 1.2 of Section 1.3.1, it is a tree. Hence the subgraph on G is a spanning tree on V \ {1}, 
together with 2 edges incident to node 1. These subgraphs are called 1-trees (see Fig
ure 3.1). Let 

Zn =min{ 2: Ce: T = (V, ET) is a 1-tree of G}. 
eEET 

Note that a 1-tree is a tour if and only if each node of the 1-tree is of degree 2. Since every 
tour is a 1-tree, we have 

(3.2) ZTS ~ ZtT 

The above discussion implies the following proposition. 

Proposition 3.1. T = ( V, ET) is a tour of G if and only if Tis both a 2-matching and a 
1-tree. 

We now consider integer programming formulations of these relaxations. For F C E, 
let xF E B1EI be the characteristic vector ofF; that is, x: = 1 if e E F, and x: = 0 if e $.F. 

The characteristic vectors of2-matchings are simply described by 

(3.3) 

(3.4) 

xEBIEI 

2: X e = 2 for v E V 
eEO{(v}) 

(degree constraints), 

where for any U C V, 6( U) is the set of edges with one end in U. 
Let£( U) be the set of edges with both ends in U. The characteristic vectors of1-trees are 

described by (3.3), (3.4) for v = 1, 

(3.5) 2: Xe ~ I U I - 1 for all U ~ V \ {1} with 3 ~ I U I 
eEE(U) 

(subtour elimination constraints) 

and 

(3.6) L Xe = I VI. 
eEE 

2 6 

4 5 8 

3 7 

Figure 3.1 
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Thus by applying Proposition 3.1, we get that tours are described by (3.3)-(3.6). 
However, there are redundancies that can be eliminated. First observe that (3.4) implies 
(3.6). Then, as we observed in Section 11.2.3, the subtour elimination constraint for V \ U 
is implied by the subtour elimination constraint for U. Hence the characteristic vectors of 
tours are given by (3.3), (3.4), and (3.5) for U C Vwith 3 ~ I VI~ [!I VI]. 

Two relaxations that are themselves relaxations of 2-matchings are fractional 2-
matchings and integer 2-matchings. In fractional 2-matchings, the variables are not 
required to be integral, so (3.3) is replaced by 

(3.7) X E Rif1 

and 

(3.8) Xe ~ 1 fore E E. 

In integer 2-matchings, the variables are not required to be binary, so (3.3) is replaced by 

(3.9) xEZ~. 

We have 

zFM =min{ I CeXe: X satisfies (3.4), (3.7) and (3.8)} ~ zM 
eEE 

and 

z1M =min{ I CeXe: x satisfies (3.4) and (3.9)} ~ zM. 
eEE 

Furthermore, we will prove in Chapter III.l that all of the extreme points of the polytope 
{x E R~: x satisfies (3.4)} are integral. Hence 

z,M =min{ I CeXe: X satisfies (3.4) and (3.7)} ~ zFM· 
eEE 

Example 3.1 Consider the graph shown in Figure 3.2. The numbers on the edges are 
their weights. Figure 3.3 shows an optimal tour, an optimal 2-matching, an optimal 
fractional2-matching, an optimal integer 2-matching, and an optimall-tree. 

2 

4 

3 

5 

4 

Figure 3.2 

6 

5 
8 
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2 6 

2 2 

4 1 5 Optimal tour 8 
ZTs = 13 

3 4 7 

2 6 

5 8 
Optimal2-matching 

4 zu = 12 

3 7 

2 

2 2 

4 5 Optimall-tree 8 
ZIT= J0 

3 

2 6 

Optimal fractional 

4 5 
8 

2-matching; wavy 
lines indicate edges 
withXe=~ 
ZFM = J0 

3 7 

2 6 

Optimal integer 

4 5 
2-matching; 

8 the thick line 
indicates an edge with 
Xe = 2 
ZIM = 8 

3 7 

Figure 3.3 

We now consider two more powerful relaxations that combine 2-matchings and 1-trees. 
In the first of these, we seek a minimum-weight convex combination of 1-trees that 

satisfies the degree constraints. To formulate this problem, let xi E B IE 1 be the character
istic vector of the ith 1-tree fori= 1, ... , p, where pis the number ofl-trees of G, and let 
ci = LeEE CeX~ be the weight of the ith 1-tree. The problem is 



1 

1 
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(3.10) 

p 

zMn = min 2.: A;C; 
i=l 

I A;( 2.: x~) = 2 for v E V 
i=I eEo({v)) 

p 

2.: A;= 1 
i=l 

AER~. 

473 

The linear program (3.10) is a relaxation of the traveling salesman problem because if xi 
is the characteristic vector of a tour, then A; = 1 and Ak = 0 for k * i is a feasible solution. 
The problem contains an enormous number of variables, since p is generally exponential 
in the size of the graph. 

Figure 3.4 shows a feasible solution to (3.10) that is not a tour. Note, however, that it is a 
fractional2-matching. 

To see the relationship between (3.10) and the previous relaxations, we substitute 
x = I:f=1 A;X; and use the fact that for all i, x; satisfies (3.5). Thus x satisfies (3.4), (3.5), 
(3.7), and (3.8), so 

zMn ~min{ 2.: CeXe: x satisfies (3.4), (3.5), (3.7), and (3.8)}. 
eEE 

2 6 

One-tree with three edges incident 
4 5 to node 4, one edge incident to node 7, 

8 and all other degree constraints 
satisfied 

3 7 

2 6 

One-tree with three edges incident to 
4 5 8 node 7, one edge incident to node 4, 

and all other degree constraints 
satisfied 

3 7 

2 6 

Feasible solution to (3.10) obtained 

5 by weighting each of the above 
8 !-trees by! (i.e., At = A.2 = !); 

wavy lines indicate edges with 
x, =! 

3 7 

Figure 3.4 
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Moreover, we will prove in Section III.3.3 that the convex hull of 1-trees is given by the 
polytope {x E RJE I: x satisfies (3.4) for v = 1, (3.5) and (3.8)}. Hence if x satisfies (3.4), 
(3.5), (3. 7), and (3.8), there is a A, that satisfies the constraints of (3.10) such that 
x = !:f~1 A-ixi. Hence 

(3.11) ZMn =min{ I CeXe: x satisfies (3.4), (3.5), (3.7), and (3.8)}, 
eEE 

and we obtain the result that the linear program (3.10) is equivalent to the linear 
programming relaxation of the integer programming formulation with the degree con
straints and subtour elimination inequalities. 

Also note that 

ZM!T ~ min Ci = ZIT and ZM!T ~ ZFM 
i~l, ... ,p 

since fractional 2-matching is a relaxation of (3.11) with the constraints (3.5) omitted. 

Example 3.2. In Example 3.1, it can be shown that zMIT = zTs· The graph of Figure 3.5 
provides an example with zMIT < zTs· 

Analogous to the previous relaxation, we can consider the problem of finding a 
minimum-weight convex combination of 2-matchings that satisfies the constraints (3.5). 
This relaxation, as we will see, yields a bound that dominates all of the ones given above. 
Let yi E B 1 E I be the characteristic vector of the ith 2-matching fori = 1, ... , s, where sis 
the number of2-matchings ofG, and let di = LeEE CeY~ be the weight of the ith 2-matching. 

2 

2 

Optima11-tree 
zn =9 

2 

5 

2 

6 2 

Another optimal 
1-tree 

Figure 3.5 

2 

3 4 

Optimal tour, 
ZTS = 10 

2 

5 

2 

2 

6 

Optimal solution to (3.10); 
wavy edges have Xe = V2 , 

ZMn=9 
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The problem is 

s 

zTM =min :2: cx.;d; 
i~l 

(3.12) 

± ex.; ( :2: y~) ~ I u I - 1 for 3 ~ I u I ~ l1 v2 I J 
i~l eEE(U) 

and U s V\{1}, 
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The linear program (3.12) is a relaxation of the traveling salesman problem because ifyi 
is the characteristic vector of a tour, then CX.; = 1 and cx.k = 0 for k * i is a feasible solution. 

To see the relationship between (3.12) and the previous relaxations, we first substitute 
y = I:f~ 1 cx.;y; and use the fact that for all i, yi satisfies the degree constraints. This yields 
ZTM ~ ZMJT [See (3.11)]. 

Moreover, additional valid inequalities for the convex hull of 2-matchings are the 
2-matching inequalities (3.6) of Section 11.2.3. It can be shown that the 2-matching 
inequalities, together with (3.4), (3.7), and (3.8), define the convex hull of 2-matchings. 
Hence 

zTM =min{ :2: CeXe: X satisfies (3.4), (3.5), (3.7), (3.8), 
eEE 

and the 2-matching inequalities}. 

(3.13) 

Example 3.3. In Example 3.2, we have zTM = zTs > zMm which shows that (3.13) may 
give a strictly better bound than (3.11). The graph of Figure 3.6 shows that it is possible to 
have zTs > zTM· An optimal solution to (3.13) is obtained by taking ~ of each of the 
2-matchings in Figure 3.6. Wavy edges have value of~, and z™ = 21. 

Figure 3.7 summarizes the bound information from the various relaxations. 
The two relaxations that are most interesting are (3.11) and (3.13) since they alone use 

both the degree constraints and the subtour elimination constraints. In fact, we will see 
later in this section that both of these relaxations can be solved in polynomial time. 
Unfortunately, the only polynomial-time algorithms known for solving them require 
combining a cutting-plane or separation algorithm with an ellipsoid linear programming 
algorithm. Although this is not practical, a good (but not polynomial) approach is to use an 
FCPA for the subtour elimination constraints and to solve the resulting linear programs by 
a simplex algorithm. The other four relaxations can be solved efficiently by combinatorial 
polynomial-time algorithms. 

Primal Heuristics 

The general heuristic approaches proposed in Section 11.5.3 are applicable to the sym
metric traveling salesman problem. Several greedy-type algorithms can be constructed. 

1. Nearest Neighbor. Start at an arbitrary node i 1 and construct a path i ~> i 2, .•• , ih 

ij+h ... , in, where ij+I = arg(min{c;jk: k E V \ {i~> i 2, •.. , ij}), with ties broken arbitrarily. 



476 

4 3 
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4 1 3 v 
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Optimal 2-matching, 
ZM = 15 

Optimal solution to (3.12), 
ZTM = 21 
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4 3 

5 2 

6 
Optimal tour, 

zrs=23 

4 3 

9 

~ 2 5 
7 2 8 

6 6 

Feasible 2-matching 
of weight 27 

Complete the path to a tour by adding the edge (i~> in). Note that unless the graph is 
complete, the procedure may fail to find a tour even if one exists. Moreover, even on 
complete graphs it can perform very badly by being forced to choose edges of very large 
weight in the last steps. In Example 3.1, nearest neighbor, starting at node 4, can choose the 
optimaltour(4 5 6 8 7 3 1 2 4),butitcanalsogetstuckat(4 5 6 7 8). 

2. Greedy Feasible. Start with E 0 = 0. Given a set E 1 at step t < n - 1 such that 
(i) ( V, E 1) is acyclic and (ii) each node is of degree equal to or less than 2, add a minimum
weight edge e E E \ E 1 (if one exists) sothat(V, E 1 U {e})has propertiesiandii. Complete 
( V, En-I) to a tour (if possible) by joining the two nodes of degree 1. The remarks we made 
about nearest neighbor also apply to greedy feasible. In particular, in Example 1.1, greedy 
feasible can find the optimal tour by taking edges in the order (1 2), (1 3), (6 8), 
(7 8), (4 5), (2 4), (5 6), (3 7), but it can also fail to find a tour by beginning with 
the edges (6 7), (6 8). 
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zrs 
(Traveling 
salesman) 

(3.10) or (3.11) 

ZMlT 

ZM 

(2-matching) 

Figure 3.7 
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(Fractional 
2-matching) 

(1-tree) 
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ZJM 

(Integer 
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3. Nearest Insertion. (Here we suppose that G is a complete graph.) Given a subtour T 
and a node i E V \ T, let d(i, T) = milljET ciJ, and let i*= arg(min{d(i, T): i E V \ T}). 
Suppose)*= arg(min{c;•J:) E T}). Thus i* is the "closest" node toT, and)* is the node in 
T that is closest to i~ Now construct a subtour on T U {i*} by inserting i* between)* and 
one of its neighbors in T; that is, if(j1, )*)and () 2, )*) are edges ofT and c;,, ~ c;,,, insert i* 
between j 1 and j*. This process terminates with a tour, but again we cannot guarantee that 
it will be a good tour. 

4. k-Interchange. Local search heuristics are also useful for the traveling salesman 
problem. Given a tour, the k-interchange heuristic replaces k edges in the tour by k edges 
that are not in the tour if such a change yields a tour oflower weight. When k = 2, the two 
edges to be replaced cannot be adjacent, and there is a unique pair of replacement edges (if 
they exist) (see Figure 3.8) where the edges (i,j) and (i + I,j +I) replace (i, i +I) and 
(j, j + I). Unfortunately, it is possible for a locally optimal tour to be poor for any k that is 
small relative to I V 1. 

The negative remarks we have made about each of the heuristics is to be expected. In 
fact, for complete graphs and arbitrary edge weights, we cannot expect any fast heuristic to 
provide a good performance guarantee. The proof of the following proposition, which is 
similar to the proof of Proposition 3.2 of Section 11.5.3, is left as an exercise. 

Proposition 3.2. The traveling salesman problem with performance guarantee rH ~ r for 
any r > 0 is .NrP-hard. 

Example 3.4. We apply the four heuristics given above to the traveling salesman 
problem on the 10-city distance matrix given in Table 2.1 of Section 1.3.2. 

I. Nearest neighbor starting at city 1. This yields the tour (1 8 9 4 7 10 
6 2 3 5 1) of weight or distance 349. 

i+ 1 

j+ 1 j 

Figure 3.8 
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2. Greedy feasible. This yields the edge set (6 10), (4 9), (4 10), (2 6), (8 9), 
(1 8), (5 7), (1 5), (3 7), (2 3) and the tour (1 8 9 4 10 
6 2 3 7 5 1) of distance 323. 

3. Nearest insertion beginning with the triangle. (4 9 10 4). The successive sub
tours are (4 9 6 10 4), (4 9 6 10 7 4), (4 9 6 2 10 7 4), 
(4 8 9 6 2 10 7 4), (4 1 8 9 6 2 10 7 4). The resulting tour 
(1 8 9 6 2 10 3 7 5 4 1) has weight 372. 

4. 2-Interchange beginning with the tour produced by nearest insertion. We find the 
following sequence of improving tours (l 8 9 2 6 10 3 7 5 4 1) of 
weight 353, (1 8 9 2 6 10 3 7 4 5 1) of weight 328, and 
(1 8 9 2 6 10 3 4 7 5 1) of weight 325. 

To obtain performance guarantees on the performance of the heuristics, the weight 
matrix must have structure. A natural structure to impose is nonnegativity and the 
triangle inequality, that is, 

Cu + Cjk ~ C;k for all i,j, k E V. 

The triangle inequality is, for example, satisfied by euclidean and rectilinear distances. We 
use the following property implied by the triangle inequality which is easily proved by 
induction. 

Proposition 3.3. If the triangle inequality is satisfied, then L.~:J C;,;,+l ~ C;0;k. 

When the triangle inequality is satisfied, performance guarantees can be established for 
several heuristics. Some of these results are given as exercises. Here we present the 
polynomial-time heuristic, called spanning tree-matching, that has a performance guaran
tee of two-thirds. No other polynomial-time heuristic is known that has a performance 
guarantee that is as good. Moreover, it is not known if a polynomial-time heuristic with a 
better performance guarantee exists. 

Before describing and analyzing this heuristic and a related one, we need to present a 
few additional definitions and results from graph theory. A graph G = ( V, E) in which 
there may be more than one edge joining a pair of nodes is called a multigraph. A eulerian 
cycle of a multigraph is a walk with the same beginning and end points that contains each 
edge of the graph exactly once. The graph of Figure 3.9 contains the eulerian cycle with 
node sequence (l 2 3 4 2 3 1) and edge sequence (e1 e3 e6 es e4 e2). 

The following classic result from graph theory will be used to establish the performance 
bounds. 

3 

2 

Figure 3.9 

4 



3. The Symmetric Traveling Salesman Problem 479 

Proposition 3.4. A multigraph contains a eulerian cycle if and only if each node is of even 
degree. 

Moreover, there is a simple and fast procedure (linear in the number of edges) for 
finding a eulerian cycle when one exists. 

Now suppose we are given a complete graph G = (V, E) and a spanning tree G' = (V, 
E') of G. Here is a procedure for constructing a tour on G. Construct the multigraph G 
from G' by duplicating each e E E'. Since each node of G is of even degree, G contains a 
eulerian cycle Q. Delete all node repetitions from Q except for the final return to the first 
node. The resulting node sequence T is a tour on G. 

The procedure is illustrated in Figure 3.10. The node sequence of a eulerian cycle on G 
is Q = (1 2 3 4 5 4 6 7 6 8 6 4 3 2 9 2 1). Hence T = (1 2 
3 4 5 6 7 8 9 1). 

Double Spanning-Tree Heuristic. Find a minimum-weight spanning tree G' = (V, E') of 
G. Duplicate each e E E and find a eulerian cycle Q on the resulting graph. Extract a tour 
T on G from Q by deleting node repetitions. 

Theorem 3.5. If the edge weights are nonnegative and satisfy the triangle inequality, then 
any tour produced by the double spanning-tree heuristic is of weight not greater than twice 
the weight of an optimal tour. 

5 5 

4 3 2 

9 9 

7 
7 

8 

G' T 

5 

7 

A 

G 

Figure 3.10 
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Proof Let T 0 be an optimal tour with edge set Ero. Let Er be the edge set formed by 
the heuristic, let E Q be the edge set of the eulerian cycle, and let E' be the edge set of a 
minimum-weight spanning tree. Then 

I Ce ~ I Ce = 2 I Ce ~ 2 I c_, 
eEET eEEQ eEE' eEETo 

where the first inequality follows from the triangle inequality, and the second one follows 
from nonnegativity because if an edge is deleted from a tour, the resulting subgraph is a 
spanning tree. • 

To produce a heuristic of this type that has a better performance guarantee, we need to 
find a smaller-weight set of edges to add to the minimum-weight spanning tree while 
maintaining the property that the resulting subgraph is eulerian. 

Consider the nodes U ~ V of G' = ( V, E ') that are of odd degree. Since the sum of the 
nodedegreesforanygraphiseven, I U I is even. Hence if we add I U 112 edges toG', each of 
which is incident to two nodes of U, the resulting graph is eulerian. To find a minimum
weight set of such edges, we find a minimum-weight perfect matching M on the induced 
subgraph G(U) = (U, E(U)) of G. (In a perfect matching, each node is of degree 1.) This 
can be done in polynomial time (see Section III.2.3). 

Now observe that a tour Tis a sequence ofpathsP1 U P2 U · · · UP 1 u 1, whereP;joins 
the ith and (i + l)st nodes}; andj;+1 of U on the tour T (see Figure 3.11). By the triangle 
inequality, the length of path Pk is greater than or equal to c1Jk+l' Moreover, edge sets 
M1 = {(}~>}2), (}3,}4), ... , (j IUI-~>i 1u1} and M2 = {(}2,}3), ... , (j IUI,}I)} are both per
fect matchings on G( U). Hence 

2 I Ce ~ I Ce + I Ce ~ I Ce• 
eEM eEM1 eEM, eEET 

Spanning-Tree/Perfect-Matching Heuristic. Find a minimum-weight spanning tree G' = 
( V, E') of G. Find a minimum-weight perfect matching on the induced subgraph G( U) of 
G, where U ~ Vis the set of nodes of V that are of odd degree in G '. Let M be the edge set 
of the perfect matching. Find a eulerian cycle Q on the multigraph G = (V, E' U M). 
Extract a tour T on G from Q by deleting node repetitions. 

The heuristic is illustrated in Figure 3.12. 

jfUI-1 · .............. ·. ' .. ' .. .... 
l4 p3 

Figure 3.11 
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We have sketched a proof of the following theorem: 
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Theorem 3.6. If the edge weights are nonnegative and satisfy the triangle inequality, then 
any tour produced by the spanning-treejperfect-matching heuristic is of weight not greater 
than three-halves the weight of an optimal tour. 

In fact there are families of graphs for which the bound is asymptotically achieved. 

Example 3.4. (continued). A minimum-weight spanning tree and a minimum-weight 
perfect matching on the nodes of odd degree in the tree are shown in Figure 3.13. 

A eulerian cycle obtained from the double spanning-tree heuristic is 
(1 8 9 4 10 6 2 6 10 3 10 4 7 5 7 4 9 8 1), yielding the tour 
(1 8 9 4 10 6 2 3 7 5 1) of distance 323. 
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G and an integer 2-matching 
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Gs and the corresponding perfect 
matching; wavy edges denote matching 
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Figure 3.14 

A eulerian cycle obtained from the spanning-tree/perfect-matching heuristic is 
(1 8 9 4 10 6 2 3 10 4 7 5 1), which yields the same tour. Note that 
each of these heuristics could have produced several other tours, depending on the 
eulerian cycle chosen. 

Relaxation/Branch-and-Bound Algorithms 
Here we use the relaxations developed earlier in the section, together with primal 
heuristics and branch-and-bound, to develop algorithms for the traveling salesman 
problem that are capable of finding an optimal solution and proving optimality. 

An Assignment Problem/Branch-and-Bound Algorithm. One of the earliest approaches 
for solving the traveling salesman problem used the integer 2-matching relaxation. In fact, 
the integer 2-matching relaxation can be solved as a I V 1 x 1 V 1 assignment problem or, 
equivalently, as a perfect-matching problem on a bipartite graph. 

Figure 3.15 
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X = 1 

x =1De1 

X =1 e4 e2 

X = 1 
e3 

Figure 3.16 

The bipartite graph Gs = ( VL U VR, E*) is constructed from G as follows. Given 
V = {1, 2, ... , m}, then VL = V and VR = {m + 1, m + 2, ... , 2m}. Corresponding to 
each edge e = (i,j) E E, Gs contains two edges, eL = (i, m +))and eR = (), m + i). Also 
CeL = Ce• = Ce for all e E E. The construction is illustrated in Figure 3.14. It is easy to see 
that if y 0 E B 2 IE I is the characteristic vector of an optimal perfect matching in Gs, then x0 

with x~ = y~~. + y~. is an optimal integer 2-matching on G. Figure 3.14 also shows an 
integer 2-matching on G and a corresponding matching on Gs. 

If we want to consider an integer 2-matching on G with Xe = 0, where e = (i,j), then in 
Gs we delete eLand eR. Similarly, to obtain an integer 2-matching on G with Xe = 1, we 
delete nodes i and)+ m and all of the edges adjacent to them. 

Now suppose we have solved the integer 2-matching problem and it is not a tour. To 
eliminate a solution with Xe = 2, we branch as shown in Figure 3.15. 

To eliminate a subtour, we branch as shown in Figure 3.16. Multibranching is necessary 
in the case of a subtour in order to produce a tree in which the current infeasible solution is 
violated along every branch. Note that in the kth branch with Xek = 0, k ~ 2, we set 
Xe, = Xe, = · · · = Xe,_, = 1 since any tour that does not contain all of the edges e,, ... , ek-I 

is contained in one of the branches 1, ... , k - 1. To avoid creating many branches, it is 
desirable to choose a subtour containing the fewest number of edges. 

Example 3.1 (continued). We solve this problem using the integer 2-matching relaxa
tion. The initial solution of weight 8 is shown in Figure 3.3. We choose to branch on the 
edge (4, 5) since X4s = 2 (see Figure 3.17). 

The node 1 and 2 solutions are shown in Figure 3.18. Branching from node 1, as shown 
in Figure 3.19, we find that none of the remaining nodes are feasible. Hence the solution at 
node 2 is optimal. 

Weight 12 Weight 13 

Figure 3.17 
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Node 1 solution Node 2 solution 

Figure 3.18 

A 1-Tree, Subgradient Optimization, Branch-and-Bound Algorithm. Now we consider 
a branch-and-bound algorithm that uses a Lagrangian dual relaxation. For A = (A 1 = 0, A2, 

..• , }yVI) E R 1Vi, let 

(3.14) 

where x satisfies (3.5) and, for node I, also satisfies (3.4); that is, x is the characteristic 
vector of a 1-tree. Let 

zw =max z 1T(A). 
j:ERIVl 

At~O 

As noted above, the vertices of the polytope {x E R'.;1: x satisfies (3.5), (3.4) for node 1, 
and (3.8)} are precisely the 1-trees. Hence from Corollary 6.6 of Section II.3.6, we have 

(3.15) 

For a given A, problem (3.14) is to find a minimum-weight 1-tree with respect to the 
weights ciJ- Ai- A1. In Section 1.3.3, we gave an efficient "greedy" algorithm for finding a 
minimum-weight spanning tree of a graph. To find a minimum-weight 1-tree, we first find 
a minimum-weight spanning tree for the subgraph induced by nodes V \ {1} and then we 
add the two smallest-weight edges incident to node 1. 

If the resulting 1-tree is a tour, then by Corollary 6.8 of Section II.3.6, zIT( A) = zw = zTs· 
If the resulting 1-tree is not a tour, we can iterate on the A's. An intuitive scheme, suggested 
by the objective function in (3.14), is to increase Ai when the degree of node i in the 1-tree is 
equal to 1 and to decrease Ai when the degree of node i in the 1-tree is greater than 2. In fact, 

Figure 3.19 
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2 6 

2 

4 5 
7 

3 8 

Figure 3.20 

for a given A.*, the vector J(A.*) with O;(A.*) = (2- degree of node i in an optimal1-tree) is a 
subgradient to the objective function z n(A.) at A.= A.*. Hence we only need to specify a step 
size to solve the Lagrangian dual by subgradient optimization (see Section 1.2.4). An 
intuitive explanation of the Lagrangian relaxation is that by transforming the edge weights 
to cij = cij- A.;- A.h the weight of all tours decreases by 2 LA.;. Thus we get an equivalent 
problem with weight vector c'. However, minimum-weight 1-trees are a function of A, so 
the objective is to find a A such that the minimum-weight 1-tree is a tour. 

It may be difficult to solve the Lagrangian dual to optimality, particularly when 
zw < zTs· Corollary 6.9 of Section 11.3.6 can be used to find a nearly optimal A; alterna
tively, we can stop with z n(A*) if I z n(A* ) - :ZTs I < e, where e > 0 is a prescribed tolerance 
and :ZTs is the weight of some feasible tour. 

When we terminate without having found an optimal tour, the calculations can be 
continued using branch-and-bound. Suppose Zn(A*) is the largest known value of zn(A), 
and letx* be the characteristic vector of the 1-tree obtained from solving (3.14) with A= A.*. 
This 1-tree contains a subtour. Thus we can proceed as we did with the integer matching 
relaxation algorithm to develop a branch-and-bound tree. 

Example 3.1 (continued). With A0 = 0, an optimal1-tree is shown in Figure 3.3 and we 
obtain z n(A.0) = 10. Since node 2 is of degree 3 and node 8 is of degree 1, we decrease A2 

and increase A8• Let A1 = (0 -1 0 0 0 0 0 1). An optimal 1-tree is shown in 
Figure 3.20 and we obtain zn(A1) = 10. 

Continuing in this manner, after several iterations, we find A*= (0 -2 -2 -1 
0 2 1 2). The weights cij- A7- Ajand an optimal1-tree are shown in Figure 3.21. Thus 
we have found an optimal tour. 

An FCP/Branch-and-Bound Algorithm. Here we consider an FCP/branch-and-bound 
algorithm of the type described in Section 11.5.2. As shown above, the characteristic 
vectors of tours are given by (3.3), (3.4), and (3.5) for U C V with 3 .;;; I U I .;;; [11 V 1]. 
Hence the formulation we work with is 

I Xe=2 for v E V (3.4) 

(STSP) 
eEJ(v) 

I Xe .;;; I U I - 1 for U C V, 131 .;;; I U I .;;; l12V I J 
eEE(U) 

(3.5) 

(3.3) 
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5 5 

Figure 3.21 

In Section 11.2.3 we derived some classes of facets for the convex hull of solutions to 
STSP, so we now investigate the separation problems for these classes. First we examine 
the separation problem for the subtour elimination inequalities (3.5). Though these 
appear in our formulation ofSTSP, the exponential number of these inequalities makes it 
impossible to consider all of them as part of the initial LP relaxation. Therefore we 
typically start with the relaxation LP1 involving just the degree constraints (3.4),' nonnega
tivity, and the upper bounds (3.8), namely, 

Sk = {x E R';1: x satisfies (3.4) and (3.8)}. 

Proposition 3.7. If x* E Sk, then LeEE(WJ x; = I WI - 1 + E if and only if LeEJ(WJ x; = 
2- 2E. 

Proof From (3.4), we obtain 

21 w I = 2( I x;) + I x;; 
eEE( W) eEJ( W) 

or in other words, 

2- I x;=2 ( I x;-(IWI-1)). 
eEJ(W) eEE(W) • 

It follows that a subtour inequality (3.5) is violated by x* if and only if some cut-set 
inequality 

L Xe ~ 2 
eEJ(W) 

is violated by x~ Hence to determine whether there exists W C V with I WI ~ 3 for which 
LeEJ(WJ x; < 2, it suffices to solve 

(3.16) 

and check whether ( < 2 or not. 
Now if we imposes E U, and t E U, then 

min{ L x;: u c v, s E U, t E u} 
eEJ(U) 
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is a minimum s - t cut problem and can be solved by the maximum s - t flow algorithm 
(see Section 1.3.4). It follows that (3.16) can be solved efficiently by solving a set of 
maximum s - t flow problems. 

Based on the symmetry LeEb(U) x; = LeEJ(UJ x;, an alternative to (3.16) is 

(3.17) '=min{ I x;: 3 < I u I < I VI - 3, 1 E u}. 
eEb(U) 

Note that the choice of the node fixed in U is arbitrary. To solve (3.17), let 

(3.18) (j=min{ I x;:{1,2, ... ,j-l}CU,jEU,3< lUI< IVI-3} 
eEb(U) 

for j = 2, ... , I VI - 2. 

Then ( = minj=2, ... ,1vr-2 (h since the minimum cut is a I - j cut for some j. Imposing the 
condition {2, ... , j - 1} C U in the 1 - j cut problem is easily carried out by replacing the 
capacities xfk by oo for k = 2, ... ,} - 1. Thus the separation algorithm is to solve the 
maximum 1 - j flow problem for j = 2, ... , I V 1 - 2. 

Proposition 3.8. Let ( (, U) be an optimal solution resulting from the separation algo
rithm: 

a. If (;;;. 2, no subtour elimination constraint is violated. 
b. If ( < 2, the subtour elimination inequality (3.5) with W = U is a most violated 

inequality. 

It is very often possible to reduce the size of the separation problem for subtour 
elimination constraints. Let x* be a feasible solution of S1 and let G(x*) = (V, E(x*)), 
where e E E(x*) only if x; > 0. The simplest case is when G(x*) is not connected (see, e.g., 
Figure 3.22). For each component with node set U, we obtain LeEE(U) Xe = I U I because of 
the degree constraints, and hence the violated inequalities are found by testing G(x*) for 
connectedness. 

The second case is where G(x*) is connected, but x: = 1 for some e E E. All the edges 
with x; = 1 can be shrunk by the following procedure. 

Shrinking an Edge e = (i,j) of G(x*) with x:= 1 

Step 1: Replace nodes i and} by a single node!. 
Step 2: Every pair of edges e 1 = {i, k}, e2 = {}, k} is replaced by a single edge e* = (!, k) 

with edge weight x;. = x;, + x;,. 
Step 3: All other edges (i,p) and(}, q) are replaced by the edges (l,p) and (1, q), 

respectively, with the same weight as before. 

Figure 3.22. Wavy lines indicate Xe = !. 
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Let G(x') = (V', E(x')) be the new graph obtained after shrinking. 

Proposition 3.9. There exists a W C V, W * {i, j}, such that LeEE(WJ x; > I WI - 1 if and 
only if there exists a W' C V' such that LeEE(W) x; > I W' I - 1 in the reduced graph. 

Proof If {i, j} C W, then it suffices to take W' = ( W \ {i, j}) U /. 
If i E W, j $. Wand the subtour inequality constraint for W is violated, then the one for 

W = W U {j} is violated by at least as much. Now{i,j} C W, and the argument is as above. 
If i $. W, j $. W, then take W' = W. • 

(a) 

(b) 

(c) 

Figure 3.23. (a) Shrinking edge (1, 2) leads to the graph in (b). (b) Shrinking edge (5, 6) leads to the graph in (c). 



3. The Symmetric Traveling Salesman Problem 489 

Obviously this procedure can be applied iteratively, so the separation algorithm need 
only be applied to the reduced graph in which all the initial edges with x; = 1 (and possibly 
others created during the procedure) have been shrunk (see Figure 3.23). 

There is also no doubt that the human eye is very good at detecting anomalies in tours, 
routes, and so on, and several researchers have very successfully found violated inequali
ties in this way. The reader should therefore have no difficulty in finding a violated subtour 
inequality in the last graph of Figure 3.23, which can then be converted into a violated 
inequality for the initial graph. 

Now we describe a modification of the FCP/branch-and-bound algorithm of Sec
tion 11.5.2 with fJf equal to the set of subtour elimination inequalities. A modification is 
required because all the subtour elimination constraints are needed to correctly describe 
the integer programming formulation of STSP, and the branch-and-bound algorithm is 
applied to a formulation involving only a subset of these constraints. Thus the linear 
programming relaxation at any node other than the initial node may yield an integer 
solution that is a 2-matching but not a tour. (At the initial node 2-matchings are always cut 
offby subtour elimination inequalities.) 

We describe three options that differ only in their treatment of the problem at nodes of 
the tree other than the initial node. In option 1, the remaining nodes are pruned when an 
integer solution is found. Hence the branch-and-bound phase terminates with an integer 
solution that may be a tour or a 2-matching. If it is a tour, it is an optimal solution of 
STSP. Otherwise we add the subtour elimination inequalities that are violated by the 
2-matchings that have been found and not pruned by bounding, and we restart the 
branch-and-bound algorithm from the beginning. 

Option 2 is to apply the separation algorithm at each node of the tree. Then the linear 
programming relaxation of STSP is solved exactly, and the lower bound obtained at each 
node is identical with that obtained by Lagrangian duality. 

A third option, which is a compromise between the first two, is to apply the separation 
algorithm only at those nodes of the tree that yield an integer solution that is not a tour. A 
justification for this option is that the separation routine for integral solutions only 
involves a test for connectedness and allows us to exclude infeasible integral solutions. 

Example 3.3 (continued). We apply the modified FCP/branch-and-bound algorithm. 

Phase 1 

Iteration 1: The solution is the optimal 2-matching given in Figure 3.6 and we obtain 
zLr = 15. Because G(x 1) is not connected, the connected components immediately give 
the cuts 

X12 +XIs+ Xzg ~ 2, 

Xs6 +X 57+ X67 ~ 2, 

X34 + X39 + X49 ~ 2. 

Iteration 2: z[r = 21. Applying the separation algorithm, no violated subtour elimination 
inequalities are found. The solution x 2 is the fractional solution shown in Figure 3.6. 

Phase 2. The branch-and-bound tree has three nodes (see Figure 3.24). With x 16 = 0, the 
relaxation has an integer optimal solution that is a tour of weight 23, given in Figure 3.6. 
With x 16 = 1, the branch is pruned by bounding. 
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Figure 3.24 

The second class of facets of interest for STSP are the 2-matching inequalities [see (3.6) 
of Section 11.2.3]. There is a polynomial algorithm, again involving the solution of 
maximum-flow problems, to detect whether a point x* feasible in S1 violates a 2-matching 
inequality. This separation algorithm is based on the fact that the 2-matching inequalities 
are valid inequalities for the set 

s2M = {x E BIEI: I Xe = 2 for all v E v}. 
eE<i(v) 

Note that ifFCPA is applied with both subtour elimination and 2-matching constraints, it 
terminates with an optimal solution to (3.13) with value zTM· The same modifications as 
before must be made in the branch-and-bound phase. 

For more general comb inequalities and clique tree inequalities (see Section 11.2.3), no 
polynomial-time separation algorithm is known. However, using heuristics to reduce the 
size of the problem and inspection is sometimes a viable way of finding violated comb 
inequalities. 

Example 3.3 (continued). We apply the FCPA with separation where subtour elimina
tion, 2-matching, and comb inequalities are added. 

Iteration 1: As before, zh = z2M = 15. 
Iteration 2: After adding subtour elimination inequalities, we obtain ziP = ZMtT = 21. 

Applying a separation algorithm for 2-matching inequalities to the solution x 2 in 
Figure 3.6, no violated inequalities are found. Hence ziP = zTM· However, the comb 
inequality (3. 7) of Section 11.2.3 with H = {7 8 9}, WI = {1 2 8}, w2 = {3 4 9}, 
w3 = {5 6 7}, 

is violated by x 2• 

Iteration 3: After adding this constraint, we obtain ztp = 23; the resulting solution is the 
optimal tour shown in Figure 3.6. 

Solution of a Large Problem 

Example 3.5. The problem is to find the shortest tour through 67 cities in Belgium. The 
intercity distances, in kilometers, are shown in Table 3.1. 

The nearest-neighbor heuristic, starting at city 1, leads to a tour oflength 2045 km. The 
greedy heuristic gives a tour oflength 1805; and when the 2-interchange heuristic is applied 
to the greedy tour, a solution oflength 1691 is found (see Figure 3.25). 
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Figure 3.25. Greedy/2-interchange tour oflength 1691 km. 

Table 3.2. 

Subtour 1. W = {1 2 3 11 15 16 25 31 33 34 36 37 39 52 53 54 56 
59 60 63 67} 

2. {4 22 35 55 64 66} 
3. {4 35 66} 
4. {22 55 64} 
5. {1 2 3 11 15 16 25 31 33 34 36 39 53 54 59 60 63 67} 
6. {4 47 50} 
7. {2 16 25 31 33 36 54 59 60 67} 
8. {2 16 63} 
9. {5 14 21 23 29 32 40 45 47 48 49 50 58 61 62} 

10. {5 14 21 23 29 32 40 45 47 49 50 58 62} 
11. {2 16 25 31 33 36 54 59 60 63 67} 
12. {12 43 57} 
13. {17 28 65} 
14. {25 33 36 54 59 60 67} 
15. {5 8 10 14 17 20 21 23 24 28 29 32 44 45 48 49 58 

61 62 65} 
16. {5 8 10 14 17 20 21 23 24 28 29 32 40 44 45 47 48 

49 50 58 61 62 65} 
17. {25 33 36 54 60 67} 
18. {22 37 55 56 64} 
19. {22 37 52 55 56 64} 
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To find the optimal tour, we apply the FCP /branch-and-bound algorithm using subtour 
elimination inequalities and the first option described above so that subtour elimination 
constraints are only added at the initial node. 

Phase 0. The initial LP problem with the degree constraints (3.4) and the upper-bound 
constraints (3.8) has value zFM = 1571.5. 

Phase 1. LP(81') is solved after adding 19 subtour elimination inequalities (3.5), with the 
sets W given in Table 3.2. zLP = zMn = 1606.75. 

Phase 2. t = 1. Branch-and-bound applied to LP(81') finds a tour of length 1615 at 
node 22, a 2-matching oflength 1614 at node 37, and a 2-matching oflength 1613 at node 
55, and then it terminates at node 78. 

t = 2. Two subtour elimination constraints are added, with W = {1 15 53} and 
w = {8 10 14 17 20 24 28 29 32 44 45 48 49 58 61 62 65} 
eliminating the 2-matching solutions of length 1613 and 1614, respectively. Branch-and
bound is now applied with a cutoff of 1615; and the search terminates after 73 nodes, with 
no solution of value less than 1615. Hence an optimal tour is of length 1615 (see 
Figure 3.26). 

Figure 3.26. Optimal tour oflength 1615 km. 
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Table 3.3. 

11.6. Applications of Special-Purpose Algorithms 

1-Tree relaxation 
Fractional matching 
Linear programming (Lagrangian 1-tree) 
Optimal tour 
Greedy + 2-interchange heuristic 
Greedy heuristic 
Nearest neighbor 

1401 
1571.5 
1606.75 
1615 
1691 
1805 
2045 

A smaller branch-and-bound tree would be obtained if the 1-tree Lagrangian relaxation 
was used to obtain the bounds at each node. The subgradient algorithm was used to solve 
the Lagrangian dual having value zMIT = 1606.75 at node 1. The length of the initial1-tree 
with the multipliers at zero is zIT= 1401. Using an initial step-size of 5 and decreasing by a 
factor of2 every N = 67 iterations, a bound exceeding 1600 was first obtained on iteration 
197, a bound exceeding 1605 was obtained on iteration 276, and a bound of 1606.23 was 
obtained on iteration 399. A summary of the bounds obtained is given in Table 3.3. 

--20 h--/ 
2~ ~15I ,4

:39 

1 ........... 31 

45 23 •'. 11 
21 •• •• : .. · : 

---- Xe=l 

-·- Xe='lil 

--- Xe='l2 

............ Xe=V• 

Figure 3.27. zLr = zMIT = 1606.75. 
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--- Xe=l 

-·-Xe=:Y.. 

--- Xe=V2 

•••••••••••• Xe= '14 

63 

3 ~--~ 
:··y' \ 

15 !'. 31 ~16 
11 _( / 

Figure 3.28. Length= 1609.75. 
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Finally we consider briefly the addition of2-matching and comb inequalities which are 
found by inspection. The fractional solution to LP($), obtained by the addition of the 
subtour elimination constraints, is shown in Figure 3.27. Inspection of the figure readily 
reveals that at least four 2-matching inequalities are violated. Adding the inequalities with 

1. H = {3 34 63} 
2. H = {28 29 48} 
3. H = {25 54 60} 
4. H = {22 33 55 64 67} 

£ = {(3 53), (34 39) , (16 63)} 
£ = {(17 28), (29 62), (48 61)} 
£ = {(25 36), (54 59), (33 60)} 
£ = {(33 60), (55 56), (36 67)} 

leads to the solution of value 1609.75 shown in Figure 3.28. It is left to the reader to find 
further violated inequalities. 

4. FIXED-CHARGE NETWORK FLOW PROBLEMS 

So far in this chapter, we have considered classes of pure-integer programming problems. 
Here we consider an important class of mixed-integer problems. The fixed-charge network 
flow problem (FN) was formulated in Section 1.1.3 as 
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(4.1) 

min I cuxiJ + I hiJYiJ 
(i,j)E.s4 (i,j)E.s4 

(4.1a) L YiJ- L YJi = b; fori E V 
JEo•(i) JE&-(i) 

(4.1b) Yv~UiJXiJ for(i,j)E.stl 

y ER~ 1 , x EB',st/1, 

where g; = (V, .stl) is a digraph, J+(i) = U E V: (i,j) E .stl}, J-(i) = (j E V: U, i) E .stl}, b; is 
the supply at node i, cu is the fixed cost of having flow on arc (i,j), hiJ is the variable cost 
per unit of flow on arc ( i, j), and u iJ is the capacity of arc ( i, j). Recall that the difference 
between FN and the linear minimum-cost flow problem is that in FN ifyiJ > 0, then the 
cost of the flow is c iJ + hiJy iJ· This is achieved by the capacity constraints ( 4.1b ), which force 
Xu= 1 whenyiJ > 0. 

A necessary condition for feasibility, assumed throughout this section, is :E;Ev b; = 0. 
We also assume that ciJ;?; 0 for all (i,j) E .stl since if ciJ < 0, we can set xu= 1 and·eliminate 
xu from the problem. Similarly, we assume that with respect to the hiJ there are no 
negative-cost directed cycles. This assures that the objective function is bounded from 
below. 

Besides being an important model in its own right for a variety of network design 
problems, several special cases of FN are of substantial interest. A simple way to obtain 
special cases is to restrict the network structure (e.g., as in the transportation problem). 

Another simplification concerns the capacity constraints. When uiJ is sufficiently 
large-for instance, UiJ;?;-! :E;Ev 1 b; 1-there is no feasible flow with Yu > uiJ, and the 
capacity constraint only serves to force the fixed cost to be included in the objective 
function when the flow is positive. We call such problems uncapacitated and denote them 
by(UFN). 

Yet another important subclass of FN s are those in which 1 i E V: b; > 0 I = 1. We call 
these problems single source (SFN) and use the notation (SUFN) for single-source 
uncapacitated problems. 

Several interesting problems can be modeled as SUFNs-for instance, the uncapaci
tated facility location problem (UFL) considered in Chapter II.5. Figure 4.1a gives the 
digraph for a UFL with m = 2 and n = 3. The arcs joining the dummy node to the facility 
nodes are uncapacitated and have only the fixed cost of opening the jth facility. The arcs 
that join facility ito customerj are also uncapacitated and have the variable cost hu. Note 
that since UFL is .N9Jl-hard, SUFN is .N9Jl-hard. 

Another interesting SUFN is the Steiner r-branching problem. Given a subset D £ V, a 
root r E D, and weights on the arcs, a Steiner r-branching is a minimum-weight branching 
that spans D. Here fortherootnode rED weletb, = ID 1 - 1, b; = -1 fori ED\ {r}, and 
b; = 0 fori E V \D. The objective function is accommodated by letting ciJ be the weight 
of arc (i,j) and letting h;J = 0 for all (i,j). It then follows that feasible solutions without 
directed cycles are branchings that span D (see Figure 4.1b). Note that when D = V we 
obtain the minimum-weight directed r-branching problem (see Section III.3.5), and when 
ID 1 = 2 we obtain the shortest-path problem (see Section 1.3.2). Although both of these 
problems can be solved in polynomial time, the general Steiner branching problem is 
.N9P-hard. 

In several practical models, FN or special cases arise as subproblems. For example, 
production planning problems frequently contain the uncapacitated lot-size problem, 
which is an SUFN (see Figure 5.2 of Section 11.5.5). Thus algorithms based on Lagrangian 
relaxations and techniques for solving FNs can be used to solve practical problems that are 
FNs with additional constraints. This hierarchy ofFNs is displayed in Figure 4.2. 
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Dummy D={l,3,4} 

r= 1 

Facilities 

Customers 

(a) (b) 

Figure 4.1 

In this section, we begin by mentioning briefly a standard branch-and-bound algorithm 
for FN primarily to point out its advantages and limitations. We then propose an FCPA for 
FN and apply it to the fixed-cost uncapacitated transportation problem. 

Next we given another IP formulation for SFN and show that its linear programming 
relaxation is stronger than the linear programming relaxation of ( 4.1). This formulation 
simplifies for SUFNs, and we illustrate it with the Steiner branching problem and the 
uncapacitated lot-size problem. In the case of the uncapacitated lot-size problem, this 
serves as the basis for other reformulations, one of which is a shortest-path problem. The 
shortest-path reformulation has been used in a linear programming relaxation of multi
item lot-size problems and appears to have the capability of solving quite large instances. 

A Branch-and-Bound Algorithm for FN 

An obvious way to solve (4.1) is by a branch-and-bound algorithm that uses linear 
programming relaxations. An advantage of this approach is that the linear programming 

Figure 4.2 
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relaxation of(4.1) is a network flow problem. Network flow problems can be solved very 
efficiently by, for instance, the network simplex algorithm (see Section 1.3.6). In addition, 
several other parameters used in a branch-and-bound algorithm (e.g., penalties) are easy 
to obtain from optimal basic solutions to network flow problems. 

Proposition 4.1. The linear programming relaxation of FN is the network flow problem 

(4.2) min{ 2: (hu + cu)Yu= (4.la), Yu ~ uu for (i,j) Ed, y E R~ 1 }. 
(i,j)Ed Uij 

Proof Replacing x E Blsfi1 by xu~ 1, the only constraints on xu are Yuluu ~xu~ 1. 
Because cu;?; 0, there exists an optimal solution with xu= Yuluu. This substitution gives 
the network flow problem (4.2). • 

Unfortunately, the bounds obtained from these relaxations are frequently .very poor 
primarily because they do not accurately represent the fixed costs. This is true, as we have 
noted earlier, because if the optimal solution y has 0 < Yu < uu, then only the fraction 
Yuluu of the fixed cost is included in the objective function. Another disadvantage of this 
approach is its inflexibility in accommodating additional constraints. If the problem to be 
solved has additional constraints, the network structure of the linear programming 
relaxation will be destroyed unless another technique such as Lagrangian relaxation is 
used. 

An FCPA for FN 

To improve the bounds obtained from the network flow relaxation and to accommodate 
additional constraints within the scope of a linear programming relaxation, we now 
consider an FCPA for FN that uses strong cutting planes. 

We will use three classes of valid inequalities for FN. Observe first that for fixed i E V, 
any solution of(4.1) satisfies 

(i) 

and 

(ii) 

Using the separation procedure described in Section 11.6.2, violated extended cover 
inequalities can be generated from knapsack set (i) if bi > 0 and from (ii) if bi < 0. 

Also observe that any solution of(4.1) satisfies 

Replacing this equality by two inequalities gives sets having the form of the single-node 
flow model introduced in Section 11.2.4. Thus to obtain the second and third types of 
inequalities we consider the region 
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wheren = iN+uN-1. 
For the set ofT, we have derived the class of valid inequalities [see ( 4.4) of Section 11.2.4] 

(4.4) 

where C s;;: N+ is a dependent set (i.e., A.= I a.i- b > 0 and L s;;: N-). 
jEC 

These can be generalized to the following larger class of valid inequalities, called 
generalized flow cover inequalities (GFC) 

where C+ s;;: N+, c- s;;: N-, L s;;: N- \ c- and A.= 1:jec• a.i -1:jec- a.i - b > 0. We leave it as an 
exercise to show that these are valid for T. 

The separation problem for the family ( 4.5) is: Given a point (x*, y*), check whether for 
any sets C+, c-, and L, inequality ( 4.5) is violated. 

We let a E BIN~ be the characteristic vector of c+ s;;: N+ and let p E BW1 be the character
istic vector of c- s;;: N-. The definition of A. yields the equality knapsack constraint 

(4.6) I a.ia.i - I a.iP.i = b +A., subject to A.> 0. 
jEN' jeN-

The violation to be maximized is 

where the last term is derived from the observation that for j E N- \ c-, any violation is 
maximized by taking} E L if A.xj < yj and j E N- \ ( c- U L) if A.xj > yj. 

The resulting separation problem is the nonlinear integer program 
max{( 4. 7): ( 4.6), a E B1N1, p E B1N1). This problem is equivalent to solving the family of 
equality knapsack problems 

(4.8) ';. = max{(4.7): (4.6), a E BIN1, p E B'N1) 

for all positive integral values of A.. Hence we have shown the following: 

Proposition 4.2. An inequality of the form (4.5) with A.= A.*> 0 is violated by the point 
(x*, y*) if and only if';.· > 0. 

Unfortunately, there are two difficulties with this separation problem. Equality knap
sack problems are hard to solve, and the function ';.is not well behaved as a function of A.. 
Therefore we look for a heuristic solution to the problem of choosing the sets c+ and c- for 
which inequality (4.5) is niost violated by (x*,y*). As a first step we consider a subclass of 
the inequalities in which L = N- \ c-, and then we relax these inequalities by reducing the 
term (a.i- A.t (1 - Xj) to (a.i -A.) (1 -xi). The resulting valid inequalities are 
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(4.9) I [y1 + (a1 - ,1,) (1 - x1)] ~ b + I a1 + I ..tx1. 
~~ ~~ ~~~ 

Finding the sets c+ and c- for which ( 4.9) is most violated is still not computationally 
easy, so we take a second heuristic step which is to work with an upper bound on the 
violation for any set c+, c- in (4.9). 

Because y1 ~ a1x1 for all), an upper bound on the violation of (4.9) is obtained by 
replacing yjby the possibly larger value a1xj. This gives the upper bound 

I [a1xj + (a1 - ,1,) (1 - xj)] - b - I a1 - I ..txj. 
jEC' jE~ jEN-\C-

Substituting b = LJEC' a1 - LJE~ a1 - ,1, and canceling terms, the upper bound on the 
violation of(4.9) is equal to 

..t[-I (1-xj)+Ixj-(I xj-1)]· 
;EC' ;EC- ;EN-

To find the maximum value of this upper bound, we solve the knapsack problem 

~ = max{ I (xj- 1)a1 + I xjP1} 
jEN' jEN-

(4.10) L a1a1 - I a1P1 > b 
jEN' )EN-

We now know that if some inequality (4.9) is violated, then ..t[~- (LJEN- xj- 1)], which is 
an upper bound on the value of the violation, must be positive. 

Proposition 4.3. A necessary condition for the violation of an inequality of the form (4.9) 
is ~ > LJEN- xl- 1. This condition is also sufficient if Yl= aJXlfor all j E c+, where C is 
determined by an optimal solution to (4.10). 

The above discussion leads to the following heuristic separation algorithm for general
ized flow cover inequalities. 

Separation Algorithm for Generalized Flow Cover Inequalities 

Step 1: Solve the knapsack problem ( 4.10) exactly or approximately to obtain an optimal 
or "near-optimal" pair c+, c-. 

Step 2: Given c+ and c-, test whether (x*, y*) violates the inequality (4.5), where for 
j EN-\ c- we put) E L if ..txj < yjandj EN-\ (L U c-) otherwise. 

Note that even if ~ < LJEN- xj- 1, the inequality ( 4.5) may be violated because our 
arguments have been based on approximations to the violation of ( 4.5). 

Example 4.1. Consider the mixed 0-1 constraint 
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with Y1 ~ 6500, Y1 E Rl, x E B3, and the point (y7, xi, x!, x:) = (6500 0 1 0.296). We can 
rewrite the above constraints in the form of a single-node variable upper-bound set T: 

with the additional constraints x1 = 1, Yz = 2250xz, y3 = 4500x3, Y4 = 6750x4. 
Applying the heuristic separation algorithm for generalized flow cover inequalities 

( 4.5), we obtain the knapsack problem ( 4.10): 

~=max Oa1 + OPz + 1P3 + 0.296P4 

6500al- 2250Pz- 4500P3- 6750P4 > o 
aEB1, PEB3 

with optimal solution a 1 = 1, P3 = 1, and ~ = 1. 
With c+ = {1} and c- = {3}, we have A= 2000 and L = {2, 4}, and the resulting inequal

ity (4.5) is 

y 1 + (6500- 2000) (1 - x1) ~ 0 + 4500 + 2000xz + 2000x4; 

or, using the additional constraint x 1 = 1, we obtain 

Y1 ~ 4500 + 2000xz + 2000x4, 

which is violated by (x*, y*). 
Note that because~> I.J~z xj- 1 = 0.296, the necessary condition of Proposition 4.3 is, 

in fact, satisfied. Since YT is at its upper bound, the sufficient condition also happens to 
hold. 

Valid inequalities of the third class are called extended GFCs and are of the form 

(4.11) ~ b + I aj- I min{A, [aj- (a- A)J+} (1 - xj) 
jec- jec-

+ I max{A, aj - (a- A)}xj + I Yh 
jEL- jEN-\(C-uL -) 

where a= maxjec+ ah aj = max(a, aj), L + <;; N+ \ C+, and L- <;; N- \ c-, and we require 
a~ A> o. 

We do not develop a separation routine for the extended GFCs. Instead we use the sets 
c+ and c- derived in the separation routine for GFCs, together with sets L + and L
constructed by 

and 

L- = {j EN-\ c-: max{A, aj- (a- A)}xj < yj}, 

to find a violated inequality of the form (4.11). 
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In summary, for each constraint ( 4.1a) of ( 4.1), we try to find violated extended cover 
inequalities, GFCs, and extended GFCs as indicated above. Note that since sets of the 
form T given by (4.3) arise in relaxations of general mixed 0-1 programs (see Section 
II.2.4), the FCPA can be used to generate violated inequalities for general mixed 0-1 
models. 

We now illustrate the FCPA by applying it to the fixed-charge uncapacitated transporta
tion problem. 

Solving a Fixed-Charge Uncapacitated Transportation Problem by an FCPA and 
Branch-and-Bound 

For a transportation problem we obtain V = ( V 1 U V2), and all arcs are directed from V 1 to 
V2• Hence ( 4.1) simplifies to 

min I I hiJYiJ + I I ciJxiJ 
iEV1 jEV, iEV1 jEV, 

I Yii = b; fori E V1 
jEV, 

I YiJ = d1 for j E V2 
iEV1 

where uiJ = min(b;, dj) for i E V1 and} E Vz; V1 = {1, ... , m}; Vz = {1, ... , n}; and 
L;EV, b; = LjEV, dj. 

The initial linear programming relaxation LP1 is obtained by replacing the integrality 
constraints by 0 ~ xiJ ~ 1 fori E Vt.i E V2• Note that LP1 is a transportation problem 
with hij = hiJ + ciJ/uiJ because we can set xiJ = YiJ/uiJ fori E V1 andj E V2• However, once 
cutting planes are added we no longer have a transportation problem. 

In the cutting-plane part of the algorithm we add three types of cuts: 

Step a: Extended cover inequalities are obtained from the knapsack sets 

I UijXij ~ I Uij- b;, (x;l' ... 'x;n) E sn fori E VI 
jEV2 jEV2 

and 

where xij = 1 - XiJ. These constraints are obtained from 

I uiJxu;;:. b; and I uuxu;;:. d1• 
jEV2 iEV1 

Steps b and c: GFC and extended GFC flow inequalities are obtained from the following 
sets of inequalities: 

(i) I Yu ~ b;, Yu ~ uuxu forj E Vz, 
jEV, 

fori E V1 
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(ii) - L Yu ~ -b;, Yu ~ UuXu for} E v2, fori E V1 
jEV2 

(iii) L Yu ~ dh Yu ~ uuxu fori E V1, for} E V2 
iEV1 

(iv) - L Yu ~ -dh Yu ~ uuxu fori E V1, for} E V2. 
iEV1 

Example 4.2. We solve the instance of the fixed-charge uncapacitated transportation 
problem given by the following data: 

m =4, n=6 

c69 0.64 0.71 0.79 1.70 283) 
(hu) = ~:~~ 0.75 0.88 0.59 1.50 2.63 

1.06 1.08 0.64 1.22 2.37 
1.94 1.50 1.56 1.22 1.98 1.98 

c 
16 18 17 10 20 

) 14 17 17 13 15 13 
(cu) = 12 13 20 17 13 15 

16 19 16 11 15 12 

b = (45 35 20 15), d = (35 30 25 15 5 5). 

Phase I 

Iteration 1: zLP = 185.6. The corresponding solution is shown in Figure 4.3, where 
(yU, xb) is indicated for each edge. 

Figure 4.3 
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Applying the separation routine at source row 1, we combine the constraint 

Yu + Y12 + Yl3 + Yl4 + Y1s + Y16 = 45 

with the variable upper-bound constraints Yn.:;;;; 35xn, Y12.:;;;; 30xl2• y13.:;;;; 25x13, Yl4.:;;;; 
15xl4• Y1s.:;;;; 5xls, and Y16.:;;;; 5xl6 to obtain 

35xn + 30xl2 + 25xl3 + 15xl4 + 5xls + 5xl6 ~ 45, 

which is the knapsack inequality 

The separation routine for extended cover inequalities with x'= (0 0.67 1 1 1 1) then 
gives a violated constraint 

or 

Similarly, from source rows 2, 3, and 4, we obtain the violated inequalities 

X31 + X32 + X33 + X34 ~ 1 

X41 + X42 + X43 + X44 ~ 1 

and from demand row 2, we obtain the violated inequality 

~1. 

6 5 

Figure 4.4 
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Iteration 2: After addition of the above constraints and reoptimizing the linear program, 
we obtain ZLP = 198.67 and the solution shown in Figure 4.4. 

Now the knapsack inequality 

35x2l + 30x22 + 25x23 + 15x24 + 5x2s + 5x26 ~ 35 

(x21, ... , x26) E B6 

yields the violated cover inequality 

Also, in Step b the set 

Y21 + Y22 + · · · + Y26 ~ 35, 

Y21 ~ 35x2~> Y22 ~ 30x22, Y23 ~ 25x23, 

Y24 ~ 15x24' Y2s ~ 5x2s, Y26 ~ 5x26 

yields the violated GFC inequality (4.5) 

Y21 + Y22 ~ 30 + 5x2~> 

which is obtained with C = {1,2} and c- = 0. 

Iterations 3 and 4: We obtain ZLP = 200.4. The cuts (4.11) 

Y22 + Y23 + Y24 ~ 20 + l0x22 + 5x23 + l0x24 

and 

Y21 + Y22 + Y23 + Y24 ~ 20 + 15x2l + l0x22 + 5x23 + 10x24 

are both derived from source row 2, the first with C = {2, 3}, c- = 0, L + = {4}, and 
L- = 0 and the second with c+ = {2, 3}, c- = 0, L + = {1, 4}, and L- = 0. 

Iteration 5: The lower bound increases to ztp = 200.61. On Iteration 5 no more cuts are 
generated, so the cut generation phase terminates. 

Phase 2. Branch-and-bound is now applied. The solution shown in Figure 4.5 is found at 
node 3, and it is proved to be optimal at node 5. Its cost is 202.35. 

If the problem is solved directly by branch-and-bound, a tree containing 129 nodes is 
needed to prove optimality. 

For larger fixed-charge transportation problems, this FCPA is often successful in 
substantially increasing the lower bounds obtained from the linear programming relaxa
tion. However, it remains an open question to find and develop separation algorithms for 
other classes of valid inequalities that will make it possible to obtain lower bounds that are 
reliably close to the optimal cost. 
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35 

30 

25 

15 

5 

5 

Figure 4.5 

A Reformulation of the Single Source Problem (SFN) 

The idea of the reformulation is to decompose the flows by destination. We suppose that 
node 1 is the source and let U = {k E V: bk < 0}. Thus b1 = LkEu lbk 1. Now let zuk be the 
flow in arc (i,j) destined for node k E U. The reformulation of(4.1) is 

min I hiJYiJ + I cuxu 
(i,j)Ed (i,j)Ed 

(4.12a) I zuk - I ziik = 0 for i E V \ {1, k} and k E U 
)Ec5'(i) jEJ-(i) 

(4.12b) - I Zjkk = bk for k E U 
jEJ-(k) 

(4.12) (4.12c) zuk-min( I bk I, uu)xu ~0 for (i, j) E .sli and k E U 

(4.12d) I Zijk- YiJ =0 for (i, j) E .sli 
kEU 

YiJ- UijXij ~0 for (i, j) E .sli 

z ER~IIUI, yERI'/1, xEBidl. 

The important difference between (4.12) and (4.1) is the upper-bound constraints 
zuk ~ lbk lxiJ, which, for fractional X;Jo can restrict the flows more than Yu ~ uuxu can. 

Proposition 4.4. For SFN, the optimal cost of the linear programming relaxation of 
formulation (4.12) is not less than the optimal cost of the linear programming relaxation of 
formulation (4.1). and it may be strictly greater. 

Proof By summing the constraints ( 4.12a), ( 4.12b) over k for fixed i, we see that if z iJk 
is feasible in (4.12), then Yu = LkEU Z;Jk is feasible in (4.1). It follows that every solution 
(zijk> yij, xij) to the linear programming relaxation of ( 4.12) gives rise to a feasible solution 
ofthe linear programming relaxation of(4.1). 

Example 4.3 shows that the linear programming relaxation of(4.12) can yield a larger 
lower bound, and thus it completes the proof. • 
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Example 4.3. The graph and data are shown in Figure 4.6. 
An optimal solution to the linear programming relaxation of (4.1) is x 12 = x 13 = 

!, Xz3 = 0, Y12 = YD = 1, Yz3 = 0 with cost~- An optimal solution to the linear programming 
relaxation of (4.12) is X12 = Xz3 = 1, x 13 = 0, Y12 = 2, Yz3 = 1, y 13 = 0 with cost 4. Note that 
the constraint z 133 ~ x 13 makes it infeasible to have x 12 = x 13 = 1: and y 13 = 1. 

Thus from the point of view ofbounds, (4.12) is preferable to (4.1). However, (4.12) has 
one major disadvantage-its size-which makes it impractical for all but very small 
problems. Benders' decomposition sometimes provides a way around this problem. We 
will illustrate this approach with the Steiner branching problem. 

For uncapacitated single-source problems, the reformulation ( 4.12) can be simplified 
because the variables Yu can be eliminated. Thus for SUFNs we obtain the reformulation 

(4.13) 

min{ I I huz;jk + I cuxu: (4.12a), (4.12b), 
kEU (i,j)Esfi (i,j)Ed 

ZiJk- bkxiJ ~ 0 for (i,j) Ed and k E U, z E Rlf'IIUI, x E Bldl}· 

Proposition 4.5. Formulation (4.13) is stronger than the formulation (4.1) for SUFNs. 

Steiner Branchings 

We now consider the formulation (4.13) for the Steiner r-branching problem that we 
defined at the beginning of the section. Recall that we want to find a minimum-weight 
r-branchingon a subset ofnodesD 5; V. Let r = 1 and U = D \ {1}. The formulation (4.13) 
yields the constraints for each k E U: 

(4.14) 

for i E U \ {k} and k E U 

fork E U 

zuk ~xu for (i,j) Ed and k E U 

z E Rlf'IIUI, x E Bldl. 

Figure 4.6. The c;1 appear on each arc; uu = 2 and hu = 0 for (i, j) E s/1. 
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Observe that if we fix x, say x = x, (4.14) decomposes into 1 U 1 separate feasibility 
problems. The kth problem is to determine whether there exists a feasible flow of one unit 
from node 1 to node k with arc capacities:Xij. By the max-flow-min-cut theorem of Section 
1.3.4, such a flow exists if and only if :Eies :EjeV\s Xij;;;;. 1 for all S with 1 E S, and 
k E V \ S. Hence if Benders' decomposition is applied to the linear programming 
relaxation of(4.14), the resulting master problem is 

min I CijXij 
(i,j)Ed 

I Xij;;;;. 1 for all s £ v with 1 E S, (V \ S) n u =I= 0 
(i,j)eo•(S) 

which states that every cutset having 1 E S and ( V \ S) n U =1= 0 has weight at least 1. For 
x E B1J41 this is precisely the requirement that the subgraph induced by the arcs with x ij = 1 
contains a !-branching that spans the nodes of D. 

Reformulations ofthe Uncapacitated Lot-Size Problem (ULS) 

We first introduced the uncapacitated lot-size problem (ULS) in Section 1.1.5 using the 
formulation 

(4.15) 

T 

min I (PtYt + htst + CtXt) 
1=1 

Y1 =dl +S1 

St-1 + Yt = dt + s, fort = 2, ... , T 

fort= 1, ... , T 

Sr= 0 

s,yERr, xEBr, 

and then we reformulated it as an uncapacitated facility location problem. 
We let S s R!T denote the set of feasible solutions to (4.15). In Section 11.2.4 we 

described the convex hull of S, and in Section 11.5.5 we gave an O(T'l) dynamic 
programming algorithm for solving ULS. Here we take a different point of view. We 
assume that ULS is part of a more complicated problem. For example, we can add 
capacity constraints on the productions or inventories or assume that the actual problem 
to be solved involves several items. In this case, the model contains a copy ofULS for each 
product, and they are linked together by capacity constraints. 

Our objective is to solve the complicated model by a linear-programming/branch-and
bound algorithm. Thus it is important that a tight formulation ofULS, with respect to the 
bounds obtained from linear programming relaxation, be used in the overall model. One 
possibility is to use the description of conv(S) given in Section 11.2.4. However, since this 
description contains an exponential number of constraints, an FCPA will be required. 

Here we consider some other options that are derived from the SUFN formulation 
(4.13) on the network of Figure 5.2 of Section 11.5.5 (see Figure 4.7). 
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Figure 4.7 

To obtain the formulation (4.13), we introduce variables YJk equal to the amount 
produced in period) to satisfy demand in period k and s1k equal to the stock at the end of 
period j destined for period k. This yields 

(4.16a) 

( 4.16) ( 4.16b) 

T T T-1 T-1 T 

min I I PJYJk + I I s1k + I c1x 1 
)=1 k=j )=1 k=j+1 )=1 

Sj-1,k + YJk = Sjk for all j and k > j 

for all k 

To simplify the presentation we will not bother to explicitly state the constraints y 11 = d1 

and Y1k = s1k fork> 1, and we assume dk > 0 fork= 1, ... , T. 
Now we use s1k = L)=1 Y;k to eliminate the inventory variables from the objective 

function <;1nd constraints. This yields 

( 4.17) 

T T T 

min I I (PJ + hi + · · · + hk-1)YJk + I CJXJ 
)=1 k=) )=1 

fork= 1, ... , T 

YJk ~ dkxJ for all) and k ~ j 

y E RI<T+1)12 , X E BT. 

Since s1k ~ 0 are implied by Yii ~ 0, no other conditions are needed. Note that (4.17) is 
precisely the formulation (5.5) given in Section 1.1.5. As noted there, we obtain a 
formulation ofULS as an uncapacitated facility location problem by letting w1k = YJk!dk 

for all) and k for which YJk is defined. This yields 
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( 4.18) ( 4.18a) 

(4.18b) 
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T T T 

min I I (p1 + h 1 + · · · + hk-l)dkwJk +I c1x1 
J~l k~J )~I 

k 

I w1k = 1 for k = 1, ... , T 
J~l 

w1k ~xi for all} and k ~ j 

wE RI(T+I)/2, X E BT. 

Now if we were to solve the formulation (4.18), the original variables Yt.S 1 fort = 1, ... , 
T would be obtained from 

T T 

Yt =I Ytk =I dkwJk 
k~t k~t 

( 4.19) 
T T t T t 

St = I Stk = I IY;k = I I dkwik· 
k~t+l k~t+l i~l k~l+l i~l 

The observation we need to make is that corresponding to any feasible solution in the 
original variables (s, y, x) there can be an infinity of feasible solutions in the variables 
( w, x) with the same cost. For example, corresponding to the solution shown in Figure 4.8, 
we note that x 1 = x 2 = 1, x3 = 0, w" = 1, W12 = W23 = ~. W13 = W22 = 1- ~ is a feasible 
solution to (4.17) of cost c1 + c2 + 2p 1 + p 2 + h 1 + h 2 for any~~ 0. 

We claim that we will still have a valid formulation of ULS by adding the constraints 

(4.20) w1r ~ w1,r-1 ~ · · · ~ w11 for j = 1, ... , T- 1 

to ( 4.18). In other words, we claim that the formulation 

( 4.21) ( 4.21a) 

(4.21b) 

is valid for ULS. 

T T T 

min I I (p1 + h 1 + · · · + hk-l)dkwJk +I CJXJ 
j~l k~J J~l 

k 

I w1k = 1 for k = 1, ... , T 
J~l 

wJr ~ wJ,T-1 ~ · · · ~ w 11 ~ x1 for j = 1, ... , T 

w E RI(T+I)/2, X E BT. 

To establish this claim, note that we have already shown in Section 11.5.5 that every 
extreme point of conv(S) is of the following form: For some subset {i 1, ••• , i,} c:; {1, ... , 
n} with 1 = i 1 < i 2 < · · · < i, we obtain 

X;,= 1 for l = 1, ... , r, x1 E {0, 1} otherwise 

i/+!-1 

Y;, = I dt, y1 = 0 otherwise. 
t=ij 

Using (4.19), this corresponds to a feasible solution (x, w) of(4.21) with the same values of 
x1 for j = 1, ... , T, and with w;,1 = 1 fort= i 1, ••• , i 1+1 -1 and l = 1, ... , r and Wu = 0 
otherwise. 
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Figure 4.8 

Now let Q( QLP) be the image in (y, s, x )-space under transformation ( 4.19) of the points 
(w, x) feasible in (4.21) [the linear programming relaxation of (4.21)]. The above discus
sion shows that: 

Proposition 4.6. S = Q (and conv(S) s QLP)o 

Our interest in ( 4.21) arises from a final formulation ofULS as a minimum-weight path 
problem. Fork = 2, ... , T, we subtract the (k - I)st constraint from the kth constraint in 
(4.21a). This leads to the T- 1 constraints 

(4.22) 
k-1 

wkk- I (wj 0k-l - wjk) = 0 fork= 2, ... , T. 
j~l 

Now define Zjk = Wjk - wjok+l ~ 0 for 1 ,;;;;; j ,;;;;; k < T, and define zjT = wjT ~ 0 for j = 1, 
0 •• , T. Then wkk = r.T::,k zk1, and we obtain the reformulation 

(4.23a) = 1 

k-1 T 

(4.23) (4.23b) -I zj
0
k-l +I Zkt = 0 fork= 2,. 0. , T 

j~l l~k 

(4.23c) ,;;;;; 0 fork = 1, ... , T 

where (4.23c) comes from wkk,;;;;; Xk for all k. 
If ck ~ 0, then in the linear programming relaxation of(4.23) we can take (4o23c) as an 

equality. Substituting this equality into (4.23a) and (4.23b) yields 
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(4.24) 

(4.24a) 

(4.24b) 

(4.24c) 
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= 1 
k-1 

-I zj,k-1 + xk = 0 fork = 2, ... , T 
j~1 

T 

I zkt - xk = 0 fork= 1, ... , T. 
t~k 

Now observe that by constructing a digraph with node set { 1, ... , T + 1, 1', ... , T'} 
and by letting Xk be the flow from k to k' and letting Zjk be the flow from}' to k + 1, then 
(4.24b) and (4.24c) are the flow conservation equations at nodes k = 2, ... , T and at 
nodes k = 1', ... , T', respectively. See Figure 4.9 for T = 3. 

Moreover, if ck < 0 we can set Xk = 1, and (4.23c) is superfluous. In terms of the graph, 
the arc corresponding to xk is deleted, and the nodes k and k' are coalesced. 

Proposition 4.7. The linear programming relaxations o/(4.21) and (4.23) have optimal 
solutions with x E BT for any objective function (p, h, c). 

An important consequence of Propositions 4.6 and 4. 7 concerns the polyhedron QLP 
representing the set of feasible solutions to the linear programming relaxation of(4.21) in 
terms of the original variables. · 

Theorem 4.8. QLP = conv(S). 

Proof We show that QLP ~ conv(S). If not, let (y*, s*, x*) obtained from 
(y*, s*, x*, w*) be an extreme point of QLP that is not in conv(S). There exists an objective 
function (p, h, c) for which (y*, s*, x*) is the unique optimal solution to 
min{py + hs +ex: (y, s, x) E QLp}. But this implies that (x*, w*) is a feasible solution to 
(4.21) whose objective value is less than that of any point (x, w) corresponding to an 
extreme point of conv(S). Thus x* $. B T, which contradicts Proposition 4. 7. Hence QLP ~ 

conv(S). QLP 2 conv(S) was shown in Proposition 4.6. • 

It can be shown that Proposition 4.7 also holds for formulation (4.18). Thus we can 
conclude that the corresponding version of Theorem 4.8 holds for formulation (4.18). 

We now consider the problem stated at the beginning of this section of choosing a 
formulation to embed in a more complicated model. To formalize the problem, we wish to 
solve 

(4.25) z' = min{py + hs +ex: (y, s, x) E S n P'}, 

where P' ~ R!T represents the set of complicating constraints. For each of the three 
models ( 4.18), ( 4.21), ( 4.23), it is easy to represent the constraints of P' in terms of the new 

Figure 4.9 



5. Applications of Basis Reduction 

Table 4.1. 

Formulation 

(4.18) and (4.21) 
(4.23) 
(4.15) & conv(S) 

513 

Number of variables Number of constraints 

variables, so we then obtain three reformulations of problem ( 4.25). The values of their 
respective linear programming relaxations are denoted by zLp for i = 1, 2, 3. 

For each of these formulations we are interested in two things, namely, the tightness of 
the linear programming relaxation and the size of the formulation. Considering the 
bounds first, we have, by Theorem 4.8 and the identical result for formulation (4.18), the 
following proposition: 

Proposition 4.9. zl_p = min{py + hs +ex: (y, s, x) E conv(S) n P'}for i = 1, 2, 3. 

Hence each of the formulations is as tight as it can be made without studying the 
structure of the complicating constraints P'. Therefore to choose among the formulations 
we turn to the question of size, and we consider the number of variables and constraints in 
each formulation (see Table 4.1). The last formulation shown in Table 4.1 is to add the 
facet-defining inequalities described in Section 11.2.4 to the formulation (4.15) of ULS. 

The figures in the table suggest that a model based on (4.23) significantly dominates 
formulations (4.18) and (4.21) with respect to the number of constraints. Recently, 
problems with 200 items and T = 10 periods have been solved by a standard linear
programming/branch-and-bound algorithm using reformulation (4.23). 

The last formulation, which involves only O(T) variables but an exponential number 
of constraints, might be competitive with (4.23) using an FCP algorithm because the 
number of facet-defining inequalities needed at an optimal extreme point is bounded by 
the number of variables. 

5. APPLICATIONS OF BASIS REDUCTION 

The use of basis reduction in lattices is new to integer programming. To indicate its 
potential, we outline two applications. The first is a simple heuristic algorithm to find a 
feasible solution to a 0-1 equality knapsack constraint. The second is an algorithm for 
integer programming that is polynomial for fixed n. Although this is an important 
theoretical result, the algorithm is not practical. The result has, however, motivated the 
application ofbasis reduction techniques to a variety of problems. 

The Subset Sum Problem 

Here we consider the .N':?P-hard problem of finding a feasible solution to a 0-1 knapsack 
equality constraint: 

(5.1) 
n 

I ajxj =M, 
j~I 

This problem is of particular interest in cryptography where problems of the form ( 5.1) are 
constructed to have a unique solution that corresponds to a message to be transmitted. 
In such a system the coefficients aj for j EN are public information, the message 
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transmitted is M, and the problem (5.1) must have "very large" coefficients and be 
"impossible" to solve, except by the receiver who knows a trick for any M. 

Here we describe a fast heuristic algorithm for (5.1), which uses the reduced basis 
algorithm of Section 1.7.5. Let 

c 1 = ( I 0) 
-a M' 

where a = (a I. ... , an) and I is then x n identity matrix. Consider the lattice L( C 1) s Rn+l 

given by {v E zn+l: v = C 1y, y E zn+l}. Now observe that if X E Bn is a feasible solution to 
(5.1), then 

is an element of the lattice. Moreover, v 1 is a short vector in L( C 1) because il v 1 11 :S; n vz, 
which is much smaller than the bound given in Theorem 5.5 of Section 1.7 .5. 

In addition, by setting x1 = 1 - x1 for j = 1, ... , n and by treating 

n n 

2: a1x1 = M' = 2: a1 - M, 
J~l J~l 

similarly, we see that v2 = @ is a short vector in the associated lattice L( C2), where 

Now min(llv 1ll, llv2 11) :S; (n/2)lf2• 

The idea of the algorithm is that if v; is a very short, and possibly the shortest, vector in 
L( C) for i = 1 or 2, there is a good chance that it will appear in a reduced basis for L( C;). 
Thus it suffices to check whether the reduced basis contains a vector of the form(±;) with 
xEBn. 

The Reduced Basis Algorithm to Find a Solution of (5.1) 
Step 1: Consider the lattice L( C 1) s Rn+l, where C1 is the matrix given above. 
Step 2: Find a reduced basis ir of L( C). 
Step 3: Check if 13* contains a column of the form(±~') with x 1 E Bn. If so, stop. x 1 solves 

(5.1). 
Step 4: Repeat Steps 1 to 3 with C replaced by C2• If a vector x 2 E Bn is found, 1 - x 2 

solves (5.1). Otherwise, stop. No solution has been found. 

The reduced basis algorithm has a very high probability of finding a feasible solution 
for certain classes of knapsack problems. We define the density d(a) of a set of weights 
(ab ... 'an) by 

d(a)= .,-------,-----n------,-
log(max1 aJf 
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It can be shown, under appropriate distribution assumptions, that there exist constants 
a and p such that: 

a. For "nearly all" feasible instances (5.1) with d(a) <a, (5.1) has a unique solution 
x E Bn; this solution is the shortest nonzero vector in L(C). 

b. For "nearly all" feasible instances with d(a) < P/n, the reduced basis algorithm 
finds a solution. 

The proof of statement b is demonstrated by showing that all other vectors in the lattice 
L(C) are much longer than v1 = (~). In particular, if llwll ~ 2"-1llv 1ll for all 
wE L(C) \ {0, v1}, then we know by Theorem 5.5(iii) of Section 1.7.5 that ±v 1 is in the 
reduced basis. 

The Linear Inequality Integer Feasibility Problem 

Here we outline an algorithm for the linear inequality integer feasibility problem 

(5.2) Find x E P n zn or show P n zn = 0, 

where P = {x E R": Ax~ b} and n is fixed. From Section 1.5.4, it can be assumed that if 
p * 0 there exists WA,b such that IXJ I ~ WA,b for some X E p n zn. 

The algorithm is essentially enumerative. If we could show, for all x E P, that lx1 1 ~ y 
where y is any function polynomial in log BA,b, where BA,b is the largest coefficient in (A, b), 
then we would immediately obtain a polynomial algorithm by enumerating the (2y + lY 
points with IXj I ~ y and X E zn. Since the bound WA,b is not polynomial in log eA,b, this 
simple approach does not work. However, by using a reduced basis it is possible to obtain 
a polynomial-time enumeration algorithm. 

The first important concept in the algorithm is the idea of a family of polytopes being 
"round". Let S(p, r) be ann-dimensional sphere with center p and radius r. 

Definition 5.1. A family of full-dimensional polytopes in Rn is round if there exist a 
function c I such that for each p in the family, there exist rationals p E R n' r' q E R l such 
that 

i. S(p, r) s; P s; S(p, q) and 
ii. qjr ~ c1• 

To motivate the algorithm, let us first consider the solution of problem (5.2) for a full
dimensional and round family of polytopes. Here we will see that straightforward 
enumeration is polynomial. There are two cases to be considered, as demonstrated in 
Figure 5.1. 

Case 1. r ~ ~n 112• In this case, the unit hypercube with center pis contained in S(p, r) and 
hence in P. Now let p* be a closest integer point top; that is, p1 = [p1j + jj for j EN, 
pj= [PJJ ifjj ~ ~' andpj= [p1j + 1 otherwise. Thenp* E P n zn, and hence (5.2) is solved. 
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• • • • 
• 

• • • • • • 
p 

• • ~s;,,, • 
• • • • • 

• • • • • • 
• • • • • 

(a) (b) 

Figure 5 .1. (a) Case I: The closest integer point p* top is feasible. (b) Case 2. Enumerate the integer points in 
S(p, q). 

Case 2. r < ~ nlf2• In this case, q < ~n 1 1 2 c 1 • But now because P ~ S(p, q), we have that if 
X E P, then 

for all). Thus total enumeration gives a polynomial algorithm for fixed n. 

Now we indicate how for any polytope P, we can find a linear transformation 
K: Rn ... Rn depending on P such that the transformed family of polytopes {K(P)} is round. 
For simplicity, we consider only the case of full-dimensional polytopes. 

Using linear programming and Gaussian elimination, we start by finding n + 1 affinely 
independent extreme points {vi}7~o of P. The convex hull of n + 1 affinely independent 
points in R" is called ann-simplex. Thus, {v0, v1, ••• , v"} is ann-simplex Q ~ P. 

Next we find a "large" n-simplex Q' ~ P. In particular, for each i = 0, 1, ... , n, we 
attempt tO find a new extreme point Vi of p SO that the Simplex {v0, V1, ••• , Vi-I, Vi, Vi+l, 

... , v"} has a volume more than 50% larger than that of Q. To do this, for each i we find 
the facet nix= ai of the simplex opposite the vertex vi. We find ni ERn by using Gaussian 
elimination to solve the linear system nivi = ai for all j * i. We then solve the linear 
program max{nix: x E P} whose optimal solution is vi. 

If I nivi- ai I > ~ 1 nivi- ai 1, we replace vi by vi and start again with a larger simplex. If 
not, we replace ni by -ni and resolve the linear program. Every time the simplex changes, 
its volume increases by at least 50% (see Figure 5.2a). Thus the number oflinear programs 
that need to be solved cannot be too large. We stop when no change occurs for any i = 0, 
1, ... , n. The final simplex Q' = {v0, v 1, ••• , vn} is a "large" simplex within P. Further
more, we know that Plies inside a polytope with no more than 2n + 2 facets, namely, the 
polytope 

(see Figure 5.2.b). 
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(a) 

e d 

(b) 

Now a linear transformation K can be found so that K(Q') becomes a regular 
n-simplex. Clearly K(Q') ~ K(P) ~ K(P*). 

What has been achieved? Taking p = [1/(n + 1)] ~?=0 K(vi), we can construct a hyper
sphere S(p, r) inside K(Q'). K(P*) has no more than 2n + 2 facets, so its vertices can be 
computed, and we can construct a hypersphere S(p, q) containing K(P*). Hence 
S(p, r) ~ K(P) ~ S(p, q). Simple calculations give that qfr < kn 312 for some constant k. 
Figure 5.3 shows Figure 5.2 after the transformation K; it also shows the spheres S(p, r) 
andS(p, q). 

Although many technical details have been omitted, we have motivated the result that 
the family of all n-dimensional polytopes can be made round by a suitable linear 
transformation. 

Proposition 5.1. There exists a constant c1 such that for any n-dimensional polytope 
P = {x ERn: Ax =:;; b}, there exists a rational nonsingular matrix K and rationals 
p ERn, r E R.!. and q E R.!. such that K(P) = {y ERn: AK- 1y =:;; b} satisfies 

i. S(p, r) ~ K(P) ~ S(p, q) and 

ii. qfr =:;; c 1• 

K(fl 

K(e) 

Figure 5.3 



518 11.6. Applications of Special-Purpose Algorithms 

The initial problem (5.2) has now been transformed to the problem 

(5.3) Find a vector y E K(P) n L(K), 

where L(K} is the lattice with basis K. In addition, we have rationals p, q, and r such that i 
and ii of Proposition 5.1 hold. This resembles the earlier situation in that we have a family 
of polytopes that is round, but now L(K) has replaced zn. 

The second transformation we introduce involves finding a reduced basis B for the 
lattice L(K). Problem (5.2) is now equivalent to the problem 

(5.4) Find a vector y E K(P) n L(B). 

The geometry for n = 2 is shown in Figure 5.4, where S(p, r) s;;; K(P) s;;; S(p, q) and the 
points of the lattice L(B) are given. 

We will now show how (5.4) can be solved by enumeration in polynomial time. As 
before, the algorithm breaks up into the case where r is large and the case where ·r is small. 
Previously when r was large, we used rounding to find a lattice point "close" top. Now we 
will use a simple construction underlying the proof of the following proposition. 

Proposition 5.2. Given a lattice L(B) and p ERn, there exists z E L(B) such that 
liz- Pii 2 ~ ~L.f..t llbjll 2. 

We now consider the two cases of r large and small. Without loss of generality we 
assume that the columns of Bare ordered so that maxj=t ... . ,n llbjll = llbnll· 

• 

• 
0 bl 

Figure 5.4. Note that 0 denotes points of L(B). 
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Case 1. Ifr;::: 1nl!2llbnll, apply Proposition 5.2 to find a pointy E L(B) such that 

n 

IIY- Pll 2 .5 ± L llbjll 2 .5 ±nllbnll 2• 
j~l 

Since 

it follows that y E S(p, r) ~ K(P). Therefore y E K(P) n L(K), and x = K-1 y is feasible in 
(5.2). 

Case 2. If r < 1n1!2llbnll, we will show that it is possible to enumerate in the direc
tion of bn and only test feasibility for a polynomial number of points. Let L n-I = L(b h ... , 
b n-I ), and let H"-1 be the associated subspace. We let h denote the distance from b n to H"-1. 
By Definition 5.2 of Section 1.7.5, we have det B = h det(b1, ... , bn-I). Since B is a 
reduced basis, we know from Theorem 5.5iii of that section that 

n 
llllbjll .5 2n(n-!)14d(L) = 2n(n-!)l4h det(bl, ... , bn-I), 

j~l 

and we know from Hadamard's inequality that det(bh ... , bn-I) .5 ITJ:i llbjll. Therefore, 
by canceling terms we obtain 

Nowobservethatify E L(B)withy = Bz,z E Z", theny = yn-I + bnzn,Zn E 2 1, where 
yn-! E L n-!, and hence y E Hn-! + bnZn for some Zn E 2 1. Hn-! + bnZn, Zn E 2 1, is a family 
of hyperplanes separated by a distance h. The number y of such hyperplanes that can 
intersect S(p, q) is no more than 2qjh + 1 (see Figure 5.5). 

~ --........._ S(p, q) 

/ ~ 
I \ 
I \ 

• p 

\ J Hn-1 +2bn 

~}h 

""' 
/ Hn-1+bn 

~ / Hn-1 

Hn-l-bn 

Figure 5.5 
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We now have that y s 2q/h + 1 and q/r s c1 because K(P) is round, h ;;::: llbnll2-n(n-I)/4 

because the basis is reduced, and r < ~n 112 llbnll by assumption. Thus we have 

2q 2r nlf2llb II 
Y - 1 <- <- cl < n cl < nlf2c12n(n-1)/4 -h-h - h - . 

Therefore it is possible to enumerate over these y possible values of z E Z 1, and each of the 
resulting problems reduces to finding an integer point in a polytope whose dimension is no 
greater than n - 1. 

In integer programming terms we have shown that 

So we have outlined a basic inductive step. Either P is not full-dimensional, or we find a 
point in P n zn, or we reduce to a polynomial number of similar problems in n - 1 
variables. It can be verified that for fixed n, all the steps indicated above can be carried out 
in time that is polynomial in the input length. Hence, we obtain Lenstra's theorem: 

Theorem 5.3. For fixed n, there is a polynomial algorithm for the linear inequality integer 
feasibility problem (5.2). 

Using bisection on the objective function value and the bounds given in Theorem 4.1 of 
Section 1.5.4, Theorem 5.3 leads immediately to a result for integer programs. 

Theorem 5.4. For fixed n, there is a polynomial algorithm for the integer programming 
problem. 

Another immediate consequence of Theorem 5.3 is: 

Theorem 5.5. For fixed m, there is a polynomial algorithm for the linear inequality 
integer feasibility problem (5.2) and for the integer programming problem. 

Proof If m ;;::: n, the claim is immediate. If m < n, we find the Hermite normal form 
of A given by (H, 0) = AC. This can be done in polynomial time (see Section 1.7.4). Now 
if y = c-1x, then {x: Ax s b, x E zn} * 0 if and only if {y: ACy s b, y E zn} * 0. 
Hence the problem is reduced to the feasibility problem for {u E zm: Hu s b }, where 
u = (y~, ... , Ym). Thus by Theorems 5.3 and 5.4 the claim follows. • 

6. NOTES 

Section 11.6.1 

The dynamic programming recursion (1.2) and the asymptotic properties given in 
Propositions 1.1 and 1.2 appeared in Gilmore and Gomory (1966); also see Shapiro and 
Wagner (1967). 

The superadditive dual algorithm is due to Johnson (1973, 1980b). 
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The heuristic analysis presented here also applies with some small variations to the 0-1 
knapsack problem, and the references cited analyze either the integer or 0-1 knapsack 
problem or both. Sahni (1975) combined the greedy heuristic with enumeration to obtain 
a polynomial approximation scheme for the knapsack problem. Ibarra and Kim (1975) 
used scaling to obtain a fully polynomial approximation scheme. The scaling/rounding 
heuristic is due to Lawler (1979). By adding the rounding feature, Lawler improved the 
running time of Ibarra and Kim's heuristic by a multiplicative factor of epsilon. A 
different fully polynomial approximation scheme for the 0-1 knapsack problem was given 
by Magazine and Oguz (1981). 

Gomory (1965) gave a dynamic programming algorithm for solving the group problem. 
Shortest-path algorithms for the group problem were given by Shapiro (1968a), Glover 
(1969), and Hu (1970). A comparison of algorithms for solving the group problem was 
presented by Chen and Zionts (1976). 

Shapiro (1968b) used the group problem and branch-and-bound to obtain an algorithm 
for general pure-integer programs [also see Garry and Shapiro (1971), Garry, Shapiro, and 
Wolsey (1972), and Crowder and Johnson (1973)]. An extensive computational study with 
this type of algorithm was carried out by Garry, Northup, and Shapiro (1973). A shortest
path enumeration scheme was described in general terms by Lawler (1972) and was 
developed in the context of the group/branch-and-bound algorithm by Wolsey (1973). 

The increasing group algorithm is a variant of an algorithm of Bell and Shapiro (1977). 
Shapiro (1971), Fisher and Shapiro (1974), Bell and Fisher (1975), and Fisher, Northup, 

and Shapiro (1975) investigated how the group theoretic and Lagrangian dual approaches 
can be combined to solve general integer programs. 

Kolesar (1967) gave one of the first branch-and-bound algorithms for the 0-1 knapsack 
problem. The computational efficiency of the basic algorithm has been improved by 
many researchers who have refined the node selection, branching and pruning rules, the 
variable fixing tests, and the method of solving the linear programming relaxation [see, 
among others, lngargiola and Karsh (1973), Fayard and Plateau (1975, 1982), Lauriere 
(1978), Suhl (1978), and Balas and Zemel (1980)]. The presentation given here is largely 
based on the article by Lauriere (1978). Martello and Toth (1979) have given a comprehen
sive survey of methodology and an empirical comparison of algorithms. Another survey 
was given by Salkin and de Kluyver (1975). 

Despite the excellent empirical results that have been obtained in solving knapsack 
problems by branch-and-bound, there are difficult families of knapsack problems for 
which any branch-and-bound algorithm with linear programming relaxations will enu
merate an exponential number of nodes of the search tree [see Chvatal (1980)]. 

Some of the approaches and results for knapsack problems have been generalized to 
deal with problems having more than one knapsack-type constraint (i.e., the multidimen
sional knapsack problem). Polynomial approximation schemes have been obtained by 
Chandra et al. (1976) and Frieze and Clarke (1984). However, the problem of finding a 
fully polynomial approximation scheme for the multidimensional knapsack problem is 
.N2P-hard. Korte and Schrader (1980) showed this for the 0-1 problem, and Magazine and 
Chern (1984) obtained the result for bounded and unbounded integer variables. Various 
practical heuristics have been proposed and evaluated [see, e.g., Loulou and Michaelides 
(1979), and Martello and Toth (1981b)]. Martello and Toth (1981a) also have given a 
branch-and-bound algorithm. 

There have also been many studies of the knapsack problem with general upper-bound 
constraints including heuristics, branch-and-bound algorithms, and efficient methods for 
solving the linear programming relaxation [see Frieze (1976), Sinha and Zoltners (1979), 
Zemel (1980, 1984), Johnson and Padberg (1981), and Dyer (1984)]. 



522 11.6. Applications of Special-Purpose Algorithms 

Section 11.6.2 

The heuristic for BIP, called pivot and complement, is due to Balas and Martin (1980). 
The FCP/branch-and-bound algorithm is from Crowder, Johnson and Padberg (1983) 

[also see Johnson and Padberg (1983), Johnson, Kostreva, and Suhl (1985), and Hoffman 
and Padberg (1985)]. The algorithm has been implemented in the mathematical program
ming systems PIPEX ofiBM, MPSARX ofScicon, and XMP ofMarsten (1981). Example 
2.4 is a test problem from Crowder et al. (1983), and the results were obtained using the 
MPSARX system [see Van Roy and Wolsey (1987)]. 

Earlier approaches for solving BIPs emphasized implicit enumeration [see Balas (1965), 
Geoffrion (1967), and Petersen (1967)]. This type of algorithm was improved by the 
addition of surrogate constraints [see Balas (1967), Glover (1968c), and Geoffrion (1969)]. 
Spielberg (1979) gave a survey of these algorithms. 

Specialized versions of the implicit enumeration approach have been used to solve set
partitioning and -covering problems [see Pierce (1968), Garfinkel and Nemhauser (1969), 
Pierce and Lasky (1973), and Marsten (1974)]. 

Several implicit enumeration and branch-and-bound algorithms for set-covering and 
-partitioning problems have incorporated special techniques fqr solving the linear pro
gramming relaxation and tightening it. Etcheberry (1977) gave an implicit enumeration 
algorithm that uses Lagrangian relaxation and subgradient optimization. Nemhauser, 
Trotter, and Nauss (1974) used a combinatorial relaxation based on finding a minimum
weight chain decomposition in a partially ordered set. This relaxation can be solved as a 
network flow problem. Combined with Lagrangian duality to accommodate side con
straints, it yields the same bound as the linear programming relaxation. Nemhauser and 
Weber (1979) used a weighted matching problem relaxation that, when combined with 
Lagrangian duality to accommodate side constraints, yields a tighter bound than the linear 
programming relaxation. Ali and Thiagarajan (1986) reformulated the set-covering prob
lem as a network flow problem with side constraints. Again, Lagrangian duality is used to 
accommodate the side constraints. This relaxation yields a bound equal to the bound 
obtained from the linear programming relaxation. Marsten and Shepardson (1981) gave a 
linear programming based branch-and-bound algorithm. 

Fulkerson, Nemhauser, and Trotter (1974) gave a family of set-covering problems 
arising in the statistical design of experiments that are difficult to solve. Avis (1980) showed 
that these problems cannot be solved in polynomial time by branch-and-bound algo
rithms that use linear programming relaxations. 

Some work has been done on using Gomory cuts to solve covering and partitioning 
problems [see, e.g., Balinski and Quandt (1964) and Salkin and Koncal (1973)]. Other 
cutting-plane approaches have been investigated by Bellmore and Ratliff(1971) and Balas 
(1980). Balas' cutting-plane approach, which is based on conditional bounds, has been 
implemented into an algorithm that also uses heuristics and subgradient optimization [see 
Balas and Ho (1980)]. 

Another approach to solving the set-partitioning problem uses Proposition 2.1. Balas 
and Padberg (1972, 1975) have given an algorithm that starts with an integer feasible 
solution and then uses pivoting to obtain a sequence of integer solutions of increasing 
weight which terminates with an optimal solution. The sequence is short, and its length is 
bounded by m, but exponential time may be required to find the appropriate pivots. Ikura 
and Nemhauser (1985) extended these ideas on pivoting from an integer solution to an 
adjacent one. For the set-packing problem, they showed that starting with any integer 
feasible solution and an associated unimodular basis matrix (see Section III.1.2), there 
exists a short sequence of primal simplex pivots, where each pivot element equals 1, to an 
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optimal solution. This result also applies to set partitioning since, as shown by Lemke et al. 
(1971), by a linear transformation ofthe weight vector, a set-partitioning problem can be 
reformulated as either a set-packing or a set-covering problem. 

Heuristics have been used to obtain good solutions to very large set-covering problems 
[see Baker (1981) and Baker and Fisher (1981)]. Worst-case analyses of the bounds between 
heuristic, optimal, and dual solutions have been given by Lovasz (1975), Chvatal (1979), 
Dobson (1982), Fisher and Wolsey (1982), Hochbaum (1982), and Wolsey (1982a). The 
analysis of the greedy heuristic given here comes from Fisher and Wolsey. 

Crew-scheduling problems have been a fertile application area for set-covering and 
-partitioning models [see Arabeyre et al. (1969) and Marsten and Shepardson (1981)]. 

Theorem 2. 7 is due to Nemhauser and Trotter (1975). They used this result to develop a 
branch-and-bound algorithm for the node-packing problem. This property has been 
studied further by Picard and Queyranne (1977). Grimmett and Pulleyblank (1985) 
showed that in large random graphs, LNP with a cardinality objective function is very 
unlikely to have an optimal solution with any of the variables equal to an integer. 

Nemhauser and Sigismondi (1988) gave an FCP /branch-and-bound algorithm for node 
and set packing. The algorithm uses classes of facets for the convex hull of node packings 
[see Padberg (1973, 1975a, 1977), Nemhauser and Trotter (1974), and Trotter (1975)]. 

Facets of the convex hull of set covers have been studied by Sassano (1985), Balas and 
Ng (1985), and Cornuejols and Sassano (1986). 

The literature on packing and covering problems for which the polyhedron of the linear 
programming relaxation has only integer extreme points will be presented in the notes for 
Chapter Ill. I. 

Surveys on covering and partitioning problems have been given by Garfinkel and 
Nemhauser (1972b), Christofides and Korman (1975), Balas and Padberg (1976), and 
Padberg (1979). An annotated bibliography on combinatorial aspects of packing and 
covering was given by Trotter (1985). 

Section 11.6.3 
All of the material presented in this section and much more can be found in the collection 
of survey articles on the traveling salesman problem, edited by Lawler, Lenstra, Rinnooy 
Kan, and Shmoys [LLRS (1985)]. 

Although the section treats the symmetric traveling salesman problem (STSP), many of 
the articles cited here deal with the slightly more general asymmetric problem (ATSP)
that is, the problem on a directed graph. We generally do not distinguish between these two 
versions in the citations and just use the acronym TSP. 

As we have observed previously, the linear programming relaxation of (3.3)-(3.5) was 
introduced by Dantzig, Fulkerson, and Johnson (1954). The integer 2-matching or 
assignment problem relaxation was used by Eastman (1958) and Little et al. (1963). 
Although this is the weakest of our bounds, Balas and Toth (1985) reported a statistical 
experiment with 400 randomly generated problems in which the ratio of the cost of an 
optimal assignment solution to the cost of an optimal TSP solution is 99.2%. A modified 
assignment problem relaxation that tends to avoid the difficulty of creating numerous 
small subtours was given by Jonker, Deleve et al. (1980). Bellmore and Malone (1971) 
introduced the 2-matching relaxation. A tighter relaxation is the 2-matching problem 
where triangles are excluded. Cornuejols and Pulleyblank (1982, 1983) gave a polynomial
time algorithm for the integer 2-matching problem where triangles are excluded. They also 
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showed that the problem of finding 2-matchings with no circuits of size 5 or smaller is 
.Ng}l-hard [also see Cornuejols, Naddef, and Pulleyblank (1983)]. 

Held and Karp (1970, 1971) introduced the 1-tree relaxation and, by combining it with a 
Lagrangian relaxation with respect to the degree constraints, arrived at the relaxation 
(3.11). Related work on this approach was done by Christofides (1970) and Helbig-Hansen 
and Krarup (1974). Balas and Christofides (1981) used the 2-matching relaxation in 
conjunction with a Lagrangian relaxation with respect to the subtour elimination con
straints to obtain the relaxation (3.13). 

The tightest relaxations have been used by Padberg and Grotschel (1985) and Padberg 
and Rinaldi (1987a,b). Their cutting-plane algorithms use the degree constraints, all of the 
active subtour elimination constraints, and some 2-matching and comb inequalities. 

The LLRS collection of articles contains three surveys on the analysis of heuristics for 
the TSP: empirical analysis by Golden and Stewart (1985), worst-case analysis by Johnson 
and Papadimitriou (1985b), and probabilistic analysis by Karp and Steele (1985) [also see 
Golden et al. (1980)]. 

Interchange heuristics for the TSP were developed by Croes (1958), Lin (1965), and Lin 
and Kernighan (1973). The k-interchange heuristic of Lin and Kernighan, where k varies 
by iteration, has proved to be very powerful. It is, however, much more complicated than 
using k = 2 or 3 and repeating the procedure from several initial tours. An alternative way 
of using an interchange heuristic is to combine it with simulated annealing [see Bonomi 
and Lutton (1984)]. 

Insertion procedures were introduced by Clarke and Wright (1964). Some rules for 
choosing the next node to insert and where to insert it are described by Rosenkrantz et al. 
(1977) and Norback and Love (1979). 

Several composite heuristics that begin with a tour construction procedure followed by 
an interchange procedure were investigated by Golden and Stewart (1985). They also 
discussed the statistical comparison of heuristics. 

Karp (1972) proved that determining whether an arbitrary graph contains a Hamil
tonian circuit is .N'g}l-complete. Subsequently, many special cases have been shown to be 
.Ng}l-complete [see Johnson and Papadimitriou (1985a) for a survey of these results]. Sahni 
and Gonzales (1976) proved Proposition 3.2. 

Papadimitriou and Steiglitz (1977, 1978) have analyzed the worst-case behavior of 
interchange algorithms. They have shown that, ifg> * .Ng>, interchange algorithms whose 
neighborhood search time is polynomially bounded cannot be guaranteed to find an 
optimal solution, even with an exponential number of iterations. 

Rosenkrantz et al. (1977) have analyzed the worst-case behavior of several tour 
construction heuristics for TSPs that satisfy the triangle inequality. The spanning-tree/ 
perfect-matching heuristic and Theorem 3.6 are due to Christofides (1975b). Cornuejols 
and Nemhauser (1978) showed that this bound is tight. 

Fisher, Nemhauser, and Wolsey (1979) gave worst-case bounds for several heuristics for 
the maximum-weight Hamiltonian circuit problem; and Jonker, Kaas, and Volgenant 
(1980) gave data-dependent bounds for the general TSP. Frieze, Galbiati, and Maffioli 
(1982) analyzed the worst-case performance of some algorithms for the ATSP. Much more 
information on the worst-case analysis of heuristics for the TSP is contained in Johnson 
and Papadimitriou (1985b). 

The probabilistic analysis of TSP algorithms was surveyed by Karp and Steele. Karp 
gave two polynomial-time algorithms that asymptotically have a very high probability of 
finding an optimal solution. The first algorithm, by Karp (1977) [also see Halton and 
Terada (1982)], is for random euclidean problems on ad-dimensional cube. (Originally, 
Karp considered random points on a unit square.) The idea of the algorithm is to divide 
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the square into a large number of very small subsquares. On each subsquare the problem 
can solved for an optimal solution in polynomial time. Finally, the small cycles are 
assembled into a tour. The second algorithm, by Karp (1979) and Karp and Steele (1985), 
deals with the ATSP with costs taken from the uniform distribution. Here the idea is to 
solve the assignment problem relaxation and then to patch the subtours together. 

Surveys ofbranch-and-bound algorithms for the traveling salesman problem have been 
presented by Carpento and Toth (1980) and Balas and Toth (1985). The branching rule 
shown in Figure 3.16 is due to Garfinkel (1973). Cutting-plane/branch-and-bound algo
rithms for the TSP were initiated by Dantzig, Fulkerson, and Johnson (1954, 1959). 
Systematic algorithms of this type were developed by Miliotis (1976, 1978), Padberg and 
Hong (1980), Crowder and Padberg (1980), Grotschel (1980a), Padberg and Grotschel 
(1985), and Pad berg and Rinaldi (1987a,b ). The Padberg-Grotschel article surveyed these 
results and reported computational experience. The Padberg-Hong algorithm uses primal 
cutting planes; the other algorithms are FCPAs of the type described in this section. The 
Padberg-Rinaldi FCPA has solved a 2,392-city problem to optimality. 

The separation algorithm for subtour elimination constraints is due to Gomory and Hu 
(1961). The shrinking procedure illustrated in Figure 3.23 is taken from Padberg and 
Grotschel (1985). Padberg and Rao (1982) have given a polynomial-time separation 
algorithm for 2-matching inequalities. In particular, they have shown that the separation 
problem is a minimum odd-cut problem (see Section III.3.7). 

An interactive computer package with various TSP heuristics and exact algorithms has 
been developed by Boyd et al. (1987). 

Some very restricted families ofTSPs can be solved in polynomial time. An application 
of this type of result appeared in Ratliff and Rosenthal (1983), and a survey of these results 
was given by Gilmore et al. (1985). 

A generalization of the traveling salesman problem is the vehicle routing problem in 
which there are k salesmen located at a given city, and each must choose a subtour so that 
all cities are covered. Bodin et al. (1983), Christofides (1985a,b), and Golden and Assad 
(1986) surveyed results on this problem. Cullen et al. (1981) presented an approach that 
formulates routing problems as set-partitioning problems. Also see Laporte et al. (1985), 
Fisher, Greenfield et al. (1982), and Kolen et al. (1987). 

Another generalization is the quadratic assignment problem [see Burkhard (1984) for a 
survey of this topic]. 

Section 11.6.4 

The fixed-charge network flow problem belongs to a family of problems known as 
network design problems. Magnanti and Wong (1984) gave a survey of models and 
algorithms in this area, and Wong (1985) gave an annotated bibliography. A Benders' 
decomposition approach to network design has been given by Magnanti et al. (1986), and 
a heuristic approach has been given by Lin (1975). 

A branch-and-bound algorithm of the type described can be found in Barret al. (1981) 
[also see Cabot and Erenguc (1984), Guignard (1982), MacKeown (1981), Neebe and Rao 
(1983), and Suhl (1985)]. 

The generalized flow cover inequalities (see the notes for Section II.2.4) and their 
separation heuristics come from Padberg, Van Roy, and Wolsey (1985), Van Roy and 
Wolsey (1986, 1987), and Wolsey (1987). 

Example 4.2 is problem 2 from Gray (1971). The results were obtained using MPSARX. 
The multicommodity reformulation is part of the folklore. It can be found explicitly in 

Rardin and Choe (1979). 
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Algorithms for finding optimal Steiner trees and branchings appeared in Shore et al. 
(1982), Beasley (1984), Wong (1984), and Prodon et al. (1985). 

Reformulations of the lot-size problem were discussed in Sections 1.1.5 and 11.5.5. The 
shortest-path reformulation given here is due to Eppen and Martin (1988), and our 
development is based on Pochet and Wolsey (1988) [also see Martin (1987)]. Versions of 
Theorem 4.8 appeared in Rosling (1983) and Barany et al. (1984). 

The idea of introducing auxiliary variables to tighten a formulation has recently 
attracted considerable attention. Balas and Pulleyblank (1983) gave an example, like the 
lot-size problem, where the convex hull of solutions has an exponential number offacets, 
but the enlarged system contains a polynomial number of constraints and variables. 
Martin (1984) discussed how a dynamic programming algorithm can be used to derive a 
tight formulation with auxiliary variables, and in Martin (1987) it is observed how a linear 
programming separation algorithm also leads to a reformulation with auxiliary variables. 

Section 11.6.5 

The feasibility algorithm for the subset sum problem is due to Lagarios and Odlyzko 
(1985). Frieze (1986) gave simpler proofs of these results. Related results have been 
obtained by Furst and Kannan (1987). 

See Lenstra (1984) for a general discussion of integer programming and cryptography. 
The polynomial-time algorithm for the integer feasibility problem for fixed n is due to 

Lenstra (1983) [also see Kannan (1983)]. Earlier results for n = 2 were obtained by Kannan 
(1980) and Scarf (1981a,b). Rubin (1985) gave a polynomial-time algorithm for 
m x (m + 1) integer programs. 

7. EXERCISES 

1. Solve the knapsack problem 

max 18xt + 7x2 + 5x3 + X4 

9xt + 4x2 + 3x3 + 2x4 ~ b 

xEZ! 

by dynamic programming for all values of b from 1 to 100. 

2. Prove Proposition 1.2. 

3. Apply the superadditive dual algorithm to the instance in exercise 1 with b = 16. 

4. i) Suggest other superadditive functions to be used in the superadditive dual 
algorithm. 

ii) Interpret the dynamic programming algorithm as a superadditive dual algo
rithm. 

5. Use the SR heuristic to find a solution to the knapsack problem: 

max 537xt + 636x2 + 849x3 + 712x4 + 834xs + 219x6 + 832x? 

924x1 + 1123x2 + 1501x3 + 1402x4 + 1579x5 + 498x6 + 1649x7 ~ 23,762 

xEz:, 
which is within 1% of optimal. 
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6. Solve the integer program (see exercise 13 of section 11.1.9) 

max 2xt + Sx2 

4xt + x2:::; 28 

Xt + 4x2:::; 27 

i) by the shortest-path enumeration algorithm and 

ii) by the increasing group algorithm. 
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7. Describe a fully polynomial approximation scheme based on a scaling/rounding 
heuristic for the 0-1 knapsack problem. 

8. Solve the 0-1 knapsack problem 

max 43xt + 41x2 + 27x3 + 32x4 + 15x5 + 50x6 + 19x7 + 2lxs 

20xt + I9xz + 14x3 + 16x4 + 7xs + 28x6 + 12x7 + 14xs :::; 61 

xEB8 

by the branch-and-bound algorithm of Section l. 

9. For the 0-1 knapsack problem, 

i) propose a neighborhood search algorithm, 

ii) propose a simulated annealing algorithm, and 

iii) suggest alternative neighborhoods for use in i and ii. 

10. Consider the 0-l knapsack problems with cja1 =constant for all} EN. Why might 
these be difficult? Suggest a way to solve such problems. 

11. Propose heuristic algorithms for the 0-l multidimensional knapsack problem 

max{ I c1x1: I aux1 :::; b; for i EM, x E Bn}, 
jEN jEN 

where au E Z~ for all i E M,j EN. 

12. Describe an efficient algorithm for the linear programming relaxation of the 
multiple-choice knapsack problem 

L Xj :::; 1 for i E J+ U 1-
jEQ; 

where r n /- = 0, Q; n Qk = 0 fori * k, and N = uiE/'U/- Q;. 
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13. Apply the simplex-based heuristic BIP to the following problems. 

i) max 9xl + 2x2- 3x3 

4x 1 + x2 - 5x3 :::::: 1 

4x 1 - 2x2 + 6x3 :::::: 7 

x EB3; 

ii) the covering problem min{lx: Ax~ 1, x E B9}, where 

I 
z 
0 
I 

1 
0 

14. Let S = {x E B6: 40x 1 + 40x2 + 35x3 + 35x4 + 15x5 + 15x6 :::;; 100}. Find violated 
inequalities for S that cut off 

i) Xa = (1 ~ 0 ~ ~ 1), 

1 1 1 1 
3 3 3 1). 

15. Apply the FCP/branch-and-bound algorithm to the problem 

max 43xl + l0x2 + 18x3 + 12x4 + 36xs + 22x6 

12xl + 2x2 + 3x3 + 2x4 + 4xs + 3x6 :::;; 20 

3xl + 8x2 + 12x3 + 13x4 + 20xs + 14x6 :::;; 36 

xEB 6• 

16. In Section 11.2.2 the extended cover inequalities 

2.: X;:::;; I c I - 1 
}EE(C) 

were defined for 0-1 knapsack problems. Formulate the separation problem for 
extended cover inequalities and propose a heuristic algorithm to solve it. 

17. Let 

i) Show that x 1 + X2 + X4 + x 5 + x 6 :::;; 2 is a valid inequality. 

ii) Find a valid inequality that cuts off x* = (0 0 ~ 0). 

iii) Formulate the separation problem for the families of valid inequalities in 
exercise 9 of Section 11.2.6. 
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18. Consider the set S = S n {x E Bn: ex s c0} with S = {x E Bn: Ax ~ b }. Given t 
inequalities LjeQ. Xj ~ 1 fork = 1, ... , t, suppose there exists v E R~ such that 

I 

I vkscj forjEN and I vk>Co. 
(k:Q.3j) k~J 

Show the following: 

i) If x E S, then for some k E {1, ... , t}, we have xj = 0 fQr allj E Qk (i.e., at least 
one of the t inequalities is violated by every point xES). 

ii) If S = {x E Bn: LjeN, Xj ~ 1 fori EM}, then for any subset {i(1), ... , i(t)} of M, 

is a valid inequality for S. 

' I Xj ~ 1 
jE .'-;!, (Ni!k)\Qk) 

iii) Apply these observations to the covering problem with an additional constraint 

Derive the valid inequalities x 1 s 0 and X4 ~ 1. 

19. Apply the greedy heuristic to the set-covering problem 

+ Xs ~ 

+ Xs ~ 

What lower bounds on the optimal value are given by the heuristic? Can you derive 
stronger lower bounds? 

20. Prove Proposition 2.4. 

21. Show that the bound of Theorem 2.5 can be achieved asymptotically. 

22. Solve the weighted node-packing problem on the graph shown in Figure 7.1 
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4 4 

1 3 

Figure 7.1 

i) by solving LNP and fixing variables, 

ii) by adding cuts of the type discussed Section 11.2.1. 

23. Show that LNP can be solved as an assignment problem. 

24. Find a minimum road distance tour of the midwest visiting each city exactly once 
and returning to the city from which you started. Distances are in tens of miles 
(revised since Chapter 1.3): 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 

2 3 4 5 6 7 8 9 10 

Chicago 92 99 50 41 79 46 29 50 70 
Dallas 78 49 94 21 64 63 42 37 
Denver 60 84 61 54 86 76 51 
Kansas City 45 35 20 26 17 20 
Minneapolis 80 36 55 59 64 
Oklahoma City 46 50 29 16 
Omaha 45 37 30 
St. Louis 21 45 
Springfield (Mo.) 25 
Wichita 

i) Use any method that you like, but you must prove optimality of your solution. 
Your grade will be decreasing function of the length of your proof. 

ii) Calculate as many of the bounds given in Figure 3.7 as possible. 

iii) Test the primal heuristics given in Section 3. 

iv) Solve by an FCP algorithm. 

25. Some other heuristic algorithms for the symmetric traveling salesman problem 
include: 

i) Furthest insertion. 

ii) Sweep. Locate an "origin" in the center of the map, and then denote each city by 
its rectangular coordinates (r, B). Order the cities by increasing e. 

Apply them to the examples in Section 3. 

26. Prove Proposition 3.2. 
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27. Devise a simulated annealing algorithm for the asymmetric traveling salesman 
problem. 

28. Find a family of graphs for which the worst-case bound of the spanning-tree/perfect
matching heuristic is asymptotically achieved. 

29. Find one or more violated inequalities for the fractional solution shown in Figure 
3.28. 

30. i) Solve the uncapacitated fixed-charge network problem exhibited in Figure 7.2 
by branch-and-bound. 

ii) Find generalized flow cover inequalities that cut off the initial linear program
ming solution. 

iii) Solve the multicommodity reformulation of the problem. 

31. Consider the following fixed-charge transportation problem with 3 suppliers and 7 
customers. The supplies are 15, 25, and 33; the demands are 5, 7, 8, 10, 12, 15, and 16; 
and the variable and fixed costs are 

hij = ( ~ 1 
4 2 

2 
3 
3 

2 1 
2 1 3 
3 2 2 

31 
12 
32 

10 6 
32 46 
17 16 

Solve this problem by an FCP /branch-and-bound algorithm. 

32. Show that the inequalities (4.5) are valid. 

19 
29 
15 

12 
11 
24 

14 ) 
14 . 
12 

33. Another way to reformulate a fixed-charge network flow problem is to define 
variables y{j, where y{j is the flow along the path p passing through arc ( i, j). Write out 
and solve the arc-path reformulation for Example 4.3. 

Figure 7.2. Costs (hu, cu) appear on each arc. Bounds are U;J = 3 for (i,j) E Jil. 
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34. Show that it is always possible to convert a capacitated fixed-charge network 
problem into an uncapacitated problem by increasing the number of nodes and arcs. 

35. Consider the problem of finding a minimum-weight !-branching. It can be shown 
that the linear program 

min I wuxu 
{i,j)Ed 

I xu 2': I for S C V with 1 E S 
(i,j)Eo'(S) 

X ERJsil 

always has an optimal solution with x E Bn when w E Rjsi I, and it is unbounded 
otherwise. 

i) Show that this linear program solves the minimum-weight branching_problem. 

ii) Give a linear program having a polynomial in I VI number of constraints and 
variables that solves the minimum-weight branching problem. 

iii) Give a linear program with similar characteristics that solves the minimum
weight spanning-tree problem. 

36. Consider the problem of finding a minimum-weight Steiner !-branching when there 
are two demand nodes ( I D I = 2): 

i) What structure do the branchings have? 

ii) Give a polynomial algorithm to solve this problem. 

37. Prove that the linear programming relaxation of (4.18) always has an optimal 
solution with x E BT. 



Part III 
COMBINATORIAL 
OPTIMIZATION 



111.1 
Integral Polyhedra 

1. INTRODUCfION 

In Part III we will continue to study feasible regions of the form S = {x E Z~: Ax..;; b}, 
where (A, b) is an m x (n + 1) integral matrix, and integer programs of the form 
max{cx: xES}. However, for most of the problems considered here a nice description of 
conv(S) is known. This is the essential distinction between the Part II and Part III 
problems. 

We will encounter some problems with the property that conv(S) = {x E R~: Ax..;; b}, 
and we will encounter others for which we can specify an explicit set of constraints 
A x..;; b' such that 

conv(S) = {x E R~: Ax..;; b, A x..;; b/} 

Frequently, in these cases, we also obtain an efficient combinatorial algorithm for solving 
the linear optimization problem. Conversely, such an algorithm for solving the optimiza
tion problem may provide a proof that the inequalities define the convex hull. 

The minimum-weight s-t path problem on a digraph q; = Cv,.s4) (see Section 1.3.2) is 
an example of a Part III problem. It is a network flow problem where we require one unit 
of flow out of node s, one unit of flow into node t, and conservation of flow at all other 
nodes. For this formulation, we gave an algorithm in Section 1.3.6 which, for an arbitrary 
weight function, either (a) yields an integral optimal solution and thus provides a mini
mum-weight s-t path or (b) shows that the objective value is unbounded. Thus, the 
algoritlim provides a proof that the polyhedron of feasible solutions only has integral 
extreme points. In Section 2, we will establish an important property of node-arc inci
dence matrices, which gives a different proof of this result. 

A second formulation arises from considering the relationship between s -t dipaths and 
s-t dicuts. Let (U, U) be any partitiol!...9f V with s E U and t E U. Then the set of arcs 
whose tail is in U and whose head is in U is an s-t dicut. Let Id I = n, M = {l, ... , m} be 
the index set of all s-t dicuts, and let a i E Bn for i EM be the incidence vectors of the 
s-t dicuts. Now a dipath must intersect each dicut. Thus, if x E Bn is the incidence vector 
of an s-t dipath, then aix ~ 1 for all i EM. It is not difficult to show that all of the 
incidence vectors of s-t dipaths are extreme points ofthe polyhedron 

{x E R~: aix ~ 1 for all i EM}. 

Much more significantly, they are the only extreme points. 

535 
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Now let K be the index set of all s-t dipaths, and let Xi E Bn for i E K be the 
corresponding incidence vectors of the s-t dipaths. Then, by polarity, we obtain another 
integral polyhedron 

{a E R~: Xi a ~ 1 for all i E K} 

whose extreme points are the s-t dicuts. This approach will be pursued further in 
Section 6. 

In both formulations of the minimum-weight path problem, we obtain a polyhedron 
having only integral extreme points. We now state this property precisely. 

Definition 1.1. A nonempty polyhedron P £ Rn is said to be integral if each of its 
nonempty faces contains an integral point. 

It is sufficient to consider the minimal faces. Now, since each minimal nonempty face is 
an extreme point if and only ifrank(A) = n (see Proposition 4.2 of Section 1.4.4), we have 

Proposition 1.1. A nonempty polyhedron P = {x E Rn: Ax ~ b} with rank(A) = n is 
integral if and only if all of its extreme points are integral. 

Also, if P = {x ERn: Ax ~ b} £ R~ and is not empty, then rank(A) = n. Thus, we have 
the following corollary: 

Corollary 1.2. A nonempty polyhedron P £ R~ is integral if and only if all of its extreme 
points are integral. 

We assume hereafter, unless otherwise stated, that nonempty polyhedra have extreme 
points. 

Consider the linear programming problem over the polyhedron P given by 

(LP) ZLP = max{cx: x E P}. 

Integral polyhedra can be characterized by optimal solutions to LP. 

Proposition 1.3. Thefollowing statements are equivalent. 

1. P is integral. 
2. LP has an integral optimal solution for all cERn for which it has an optimal 

solution. 
3. LP has an integral optimal solution for all c E zn for which it has an optimal 

solution. 
4. ZLP is integralfor all c E zn for which LP has an optimal solution. 

Proof 1 .... 2. If LP has an optimal solution, it has an optimal solution at an extreme 
point of P (see Theorem 4.5 of Section 1.4.4). 

2 .... 3 and 3 .... 4 are obvious. 
4 .... 1. We prove the contrapositive using the fact that if x E P is an extreme point, there 

is acE zn such that x is the unique optimal solution to LP (see Theorem 4.6 of 
Section 1.4.4). 
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Thus if statement 1 is false, there exists c E zn such that x' is the unique optimal 
solution to LP, and some component of x', say xi, is fractional. Now it follows that there 
exists a (suitably large) integer q such that x' is also optimal for the objective vector 
c' = c + (l/q)ej and for the objective vector qc ' = qc + ej. But qc'x' - qcx ' = xi, which 
means that ZLP is fractional for at least one of the objectives qc ' or qc. Hence statement 4 is 
~. . 

Statement 4 of Proposition 1.3 provides a technique for establishing the integrality of P 
by studying the dual polyhedron. 

Definition 1.2. A system of linear inequalities Ax ~ b is called totally dual integral 
(TDI) if, for all integral c such that ZLP = max{cx: Ax ~ b} is finite, the dual 
min{yb: yA = c, y E R':'} has an integral optimal solution. 

Note that the definition is not given in terms of a polyhedron P but, instead, is given 
more specifically in terms of a linear inequality description of it. 

Corollary 1.4. If Ax ~ b is TDI and b is integral, then P = {x ERn: Ax ~ b} is integral. 

Proof Since the dual has an integral optimal solution and b is integral, the optimal 
objective value of the dual is integral. Hence for all c for which ZLP is finite, ZLP is integral. 
Now the result follows from Proposition 1.3. • 

Example 1.1. We are given a complete bipartite graph with node partItion Vi = 
{l, ... ,m}, Vi = {m + 1, ... n}, node weights Cj for} E V; U Vi = V, and edge weights bij 
for i E V; and} E V2• The problem is to assign node numbers Xj for} E V to solve the 
linear program 

Its dual is 

max I CjXj 
JEV 

Xi + Xj ~ b ij for i E Vi and} E V2• 

I Yij = Ci for i E Vi 
JEV, 

I Yij = Cj for} E Vi 
iEV, 

Yij ;;;. 0 for i E Vi and} E Vi, 

The dual problem is the transportation problem (see Section 1.3.5), which has an 
integral optimal solution if it is feasible and if Cj is integral for allj E V. Hence, the linear 
system Xi + Xj ~ bijfor i E Vb} E V2 is TDI. Hence, if the b;/sareintegers, the polyhedron 
{x ERn: Xi + Xj ~ bi} for i E Vb} E V2} is integral. 

The fact that Ax ~ b with bERm is a TDI system says nothing about integrality unless 
b E zm. In fact, the TDI property is sensitive to scaling the rows of A. 
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Proposition 1.5. If Ax ~ b is any linear system with rational coefficients, there exists a 
positive integer q such that (ljq)Ax ~ (ljq)b is TO!. 

Proof Consider the dual constraints yA = c, Y E R';' with c E zn. By Proposition 3.1 
of Section 1.5.3, there is a positive integer q such that every extreme point can be written as 
y = (1!q)(PI>'" ,Pm), where Pi is an integer for i = 1, ... , m. Now let y' = qy. Hence 
every extreme point of (l/q)y:4 = c, Y'E R';' is integral, and the dual system 
(1!q)Ax ~ (l/q)b is TOL • 

Corollary 1.6. Any polyhedron P = {x ERn: Ax ~ b} can be represented by a TOI linear 
inequality system. 

Integral polyhedra are distinguished by the existence of a TOI representation with an 
integral right-hand side. 

Proposition 1.7. If P = {x ERn: Ax ~ b} is an integral polyhedron, then P can be repre
sented as P = {x ERn: Ax ~ b'}, where Ax ~ b' is TOI and b' is integral. 

Proof Consider acE zn for which max{cx: x E P} is bounded. Let F be the face of P 
of optimal solutions with equality set MI<. Now consider the polyhedral cone 

C(F) = {d ERn: d = I Uia i, U E RJ M , I}. 
iEM, 

By Theorem 6.1(ii) of Section 1.4.6, C(F) n zn is finitely generated with generators 
nk E zn for k E K(F); that is, 

C(F) n zn = {d ERn: d = I Ykn\ y E ZJK(F) I}. 
kEK(F) 

Also, since P is integral and nk E zn, we obtain max{nkx: x E P} = nZ E zt. In addition 
since nk E C(F), we have ~x = nZ for all x E F. 

We now add the finite set of inequalities nkx ~ n~ for k E K(F) to the description of P 
for each of the finite number off aces F of P. This gives the dual problem 

min I Uibi + I I Ykn~ 
F kEK(F) 

UER';', Y E Rl IK(F)1 

Now since c E C(F) n zn, there exists y~ E Zl, k E K(F) such that e = LkEK(F) y~~. 
Finally, y* is an optimal dual solution because for any optimal primal solution x· E F, we 
have ex' = LkEK(F) y~~x' = LkEK(F) y~nZ since ~x· = nZ. • 

A linear inequality description of an integral polyhedron may not be TOI. This is 
illustrated in the following example. 
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Example 1.2. The problem is to find a minimum cardinality covering of the nodes of a 
graph by its edges. In particular, given a complete graph on four nodes we consider the 
linear program: 

min Xl2 + Xl3 + Xl4 + X23 + X24 + X34 

Xl2 + X13 + Xl4 ~ 1 

(1.1) ~ 1 

Xl3 

Xl4 + X24 + X34~ 1 

xER~. 

There are three optimal solutions: Xu = X34 = 1, xij = 0 otherwise; X13 = X24 = 1, xij = 0 
otherwise; X 14 = X 23 = 1, X ij = 0 otherwise. 

It can be shown that these solutions, together with the four solutions obtained by setting 
the edge variables for the edges incident to node i equal to 1 and the others equal to zero, 
are the only extreme points of the linear system (1.1). We leave the details to the reader. 

Now consider the dual, which is the fractional node-packing problem 

max{~ Yi: Yi + Yj ~ 1 for all i andj withj > i, Y E R!}. 

Its unique optimal solution is Yi =! for i = 1, ... ,4. Hence the linear system Ax ~ 1, 
x ~ 0 is not TDI, but the polyhedron P = {x ERn: Ax ~ 1, x ~ 0} is integral. 

All of the results of this section hold regardless of whether P has extreme points or not. 
However, for full-dimensional integral polyhedra, Proposition 1.7 can be strengthened. 

Proposition 1.8. For a/ull-dimensional integral polyhedron, there exists a unique mini
mal (with respect to removing constraints) TDI representation with an integral right-hand 
side. 

We now outline the rest of this chapter and briefly describe the topics of the following 
two chapters. In Section 2, we describe a class of matrices for which the integrality of 
P(b) = {x E R~: Ax ~ b} holds for all integral b. A subset of these matrices, including 
node-arc incidence matrices of digraphs, are studied in Section 3. We provide a recogni
tion algorithm for these matrices and observe that the associated linear programming 
problem can be solved by network flow algorithms. 

Thereafter, we consider packing polytopes of the form P = {x E R~: Ax ~ l} and 
covering polyhedra of the form Q = {x E R~: Ax ~ n, where A is a (0, 1) matrix. In 
Section 4, we describe matrices, in terms of forbidden submatrices, such that both the 
packing and covering polyhedra are integral. Here the linear systems are TDI, and for a 
subclass of the matrices we give a recognition algorithm and an efficient combinatorial 
algorithm for solving the associated linear programming problems. 
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In Section 5 we give a complete description of integral packing polytopes 
p = {x E R~: Ax ~ 1}. Here the matrices A are defined by incidence vectors of cliques of a 
class of graphs, and the extreme points of the polytopes are incidence vectors of node 
packings. Then by invoking antiblocking polarity we obtain a proof of the famous perfect 
graph theorem. In Section 6, we study blocking polarity and obtain results of the type 
exemplified by the polarity between incidence vectors of paths and cuts in a graph. 

Chapters III.2 and III.3 deal with combinatorial objects known as matchings and 
matroids, respectively. Matchings generalize network flows and matroids generalize 
forests of a graph. Both of these combinatorial settings yield interesting polyhedral results 
and efficient optimization algorithms. 

2. TOTALLY UNIMODULAR MATRICES 

Definition 2.1. An m x n integral matrix A is totally unimodular (TU) if the determinant 
of each square submatrix of A is equal to 0, 1, or -1. 

It is evident that aij = 0,1, or -1 if A is TU; that is, A is a (0, 1, -1) matrix. 

Example 2.1. The matrix 

is not TU since I det A ' I = 2, where A' is the submatrix of A consisting of the first three 
rows and columns. 

Note that the example illustrates that recognizing TU matrices is in CfioJV2P. That is, to 
give a short proof that a matrix is not TU, we only need to give an appropriate submatrix 
because determinants can be calculated in polynomial time (see Section 1.5.3). On the 
other hand, the definition does not give a clue about how to give a short proof that a matrix 
is TU, since the number of square submatrices is exponential in the description of the 
matrix. We will discuss the recognition question in the next section. 

The following proposition, which follows directly from the definition of total unimodu
larity, provides ways of constructing other TV matrices from a given TV matrix. 

Proposition 2.1. Thefollowing statements are equivalent. 

1. A is TV. 
2. The transpose of A is TV. 
3. (A, l) is TV. 
4. A matrix obtained by deleting a unit row (column) of A is TV. 

5. A matrix obtained by multiplying a row (column) of A by -1 is TU. 
6. A matrix obtained by interchanging two rows (columns) of A is TV. 
7. A matrix obtained by duplicating columns (rows) of A is TU. 
8. A matrix obtained by a pivot operation on A is TV. 
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Proof We will only prove statement 8. Suppose I aij I = 1. Recall from Section 1.2.3 
that a simplex pivot on a (0, ±l) matrix A with pivot element aij involves the following 
steps. 

1. If aij = -1, multiply the ith row of A by -1. Call the new row ai • 

2. For k *' i, we obtain 

Now consider a square submatrix B of.4. Let B be the matrix obtained after the pivot 
has been executed. We will prove that det B E {-1, 0, l}. 

Case 1. The ith row of A appears in B. Then Idet B 1= Idet B I. 
Case 2. The jth column, but not the ith row, appears in B. Then I det B I = 0. 
Case 3. Neither the ith row nor thejth column appear in B. 

Let 

( ~ij ... a iP ) 

C= : B . 
alj 

Then after pivoting we have 

Hence I det B I = I det C I = I det CI. • 

Proposition 2.2. If A is TV, then P(b) = {x E RZ: Ax.::;; b) is integral for all bE zm for 
which it is not empty. 

Proof Consider the linear program with constraint set Ax + Iy = b, x E R~, Y E R:, 
where A is TV and b is integral. Let (A, I) = (A B, AN)' where A B is a basis matrix for the 
linear program. By statement 8 of Proposition 2.1, it follows that All is an integral matrix. 
Thus A Ii b is integral, so the correspondence between basic feasible solutions and extreme 
points yields the result. • 

A similar argument yields the following generalization of Proposition 2.2. 

Proposition 2.3. If A is TV, if b, b', d, and d' are integral, and if P(b, b', d, d') = 

{x ERn: b' .::;; Ax .::;; b, d' .::;; x .::;; d} is not empty, then P(b, b', d, d') is an integral 
polyhedron. 

Because the transpose of a TV matrix is TV, the dual polyhedron is also integral. 
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Corollary 2.4. If A is TU, c is integral, and Q(c) = {u E R':': uA ? c} is not empty, then 
Q(c) is an integral polyhedron. 

The sufficiency of total unimodularity for P(b) to be integral is not the least bit 
surprising. But the converse is not so obvious. 

Theorem 2.5. If P(b) = {x E R~: Ax ~ b} is integral for all b E zm for .vhich it is not 
empty, then A is TO. 

Proof Let A I be an arbitrary k x k nonsingular submatrix of A, and let 

be the m x m nonsingular submatrix of (A, I) generated from A I by taking the appropriate 
m-k unit vectors from I. Let b = AZ + e;, where z E zm and e; is the ith unit vector. Then 
A -I b = z + a:;I, where ail is the ith column of A -I. Choose z so that z -+- ail? 0. Thus 
z + ail is the vector of basic variables of an extreme point of P(b). By hypothesis, 
z + ail E zm and z E zm; hence ail E zm and A -I is an integral matrix. Thus A II is an 
integral matrix. 

Finally, det A I and det A II are integers and 

Thus, Idet A II = 1. • 
Theorem 2.5 is false if P(b) = {x E R~; Ax = b}. A counterexample is given in exer

cise 5. 
Now we consider sufficient conditions for a matrix to be totally unimodular. 

Proposition 2.6. If the (0, 1, -1) matrix A has no more than two nonzero entries in each 
column, and if'f.; au = ° if column j contains two nonzero coefficients, then A is TO. 

This result is very easy to prove; but rather than giving a direct proof, we will establish it 
as a corollary to a much more general result. Its significance is that it implies that a node
arc incidence matrix of any digraph is TU, thus establishing that the sets of feasible 
solutions to a network flow problem and its dual are integral polyhedra. Consequently, 
linear programming duality yields integral min-max results such as the max-flow-min
cut theorem (see Theorem 4.1 of Section 1.3.4). 

We now present a characterization of total unimodularity that yields Proposition 2.6 
and some other sufficient conditions as corollaries. 

Theorem 2.7. Thefollowing statements are equivalent. 

i. A is TO. 
ii. For every I s; N = {l, ... , n}, there exists a partition II. 12 of I such that 

I I au - I a;jl ~ I for i = 1, ... , m. 
jEll jEl, 
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Proof i .... ii. Let J be an arbitrary subset of N. Define Z by Zj = 1 if j E J, Zj = 0 
otherwise. Also let d' = 0, d = z, g = Az, hi = bi = -!gi if gi is even, and bi = -!(gi - 1), 
b; = hi + 1 if g; is odd. Now consider 

P(b, b', d, d') = {x ER~: b' ~ Ax ~ b, d' ~ x ~ d}. 

Note that x = z/2 E P(b, b', d, d'). Since A is TV, we have b', b E zm, d', dE zn and 
P =#= 0. Proposition 2.3 states that P is integral. Thus there exists XO E P n Bn with xJ = 0 
for j EN \ J and xJ E {D, l} for j E J. Note that Zj - 2xJ = ± 1 for j E J. 

LetJI = {j E J: Zj - 2xJ = 1} andJ2 = {j E J: Zj - 2xJ = -l}. We have 

'" '" _ '" ( 2 0) _ {g; -g; = 0 if gi is even 
L..., aij - L..., aij - L..., aij Zj - Xj - . • 

JEJI jEJ, jEJ g; - (g; ± 1) = ±1 If g; IS odd. 

Thus 

I I aij - I aijl ~ 1 for i = 1, ... , m. 
JEJI jEJ, 

ii .... i. IJ I = 1 in statement ii yields aij E {D, ±1} for all i andj. The proof is by induction 
on the size of the nonsingular submatrices of A using the hypothesis that the determinant 
of every (k - 1) x (k - 1) submatrix of A equals 0, ±1. 

Let B be a k x k nonsingular submatrix of A, and let r = I det B I. Our objective is to 
prove that r = 1. 

By the induction hypothesis and Cramer's rule, we have B-1 = B*/r, where bij = {D, ±1}. 
By the definition of B~ we have Bbi = reh where bt is the first column of B~ 

Let J = {i: MI =#= O} and J; = {i E J: MI = 1}. Hence for i = 2, ... , k, we have 

(Bbi); = I bij - I bij = O. 
JEJi jEJ\Ji 

Thus I {i E J: b ij =#= O} I is even; so for any partition (JI> J2) of J, it follows that 
I:.jEJI bij - ~EJ, bij is even for i = 2, ... ,k. Now by hypothesis, there is a partition (JI> J2) 

of J such that I I:.jEJI bij - I:.jEJ, bij I ~ 1. Hence 

I bij - I bij = 0 for i = 2, ... , k. 
JEJI jEJ, 

Now consider the value of al = I I:.jEJI blj - I:.jEJ, blj I. If al = 0, define y E Rk by y; = 1 
for i E J 10 y; = -1 for i E J 2, and y; = 0 otherwise. Since By = 0 and B is nonsingular, we 
have y = 0, which contradicts J =#= 0. Hence by hypothesis we have al = 1 and By = ±el' 

However, Bbi = rei. Since y and bi are (0, ±1) vectors, it follows that bi = ±yand Ir I = 1.. 

Note that because A is TV if and only if its transpose is TV, statement ii can 
equivalently be phrased in terms of partitions of subsets of rows of A; that is, for every 
Q s.;; M = n, ... , m}, there exists a partition QI> Q2 of Q such that 

I I aij - I aijl ~ 1 forj = 1, ... , n. 
;EQI ;EQ, 
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Corollary 2.8. Let A be a (0, 1, -1) matrix with no more than two nonzero elements in 
each column. Then A is TU if and only if the rows of A can be partitioned into two subsets 
Q 1 and Q2 such that if a column contains two nonzero elements, the following statements 
are true: 

a. Ifboth nonzero elements have the same sign, then one is in a row contained in QI 
and the other is in a row contained in Q2' 

b. If the two nonzero elements have opposite sign, then both are in rows contained in 
the same subset. 

Proof The partitioning of statement ii of Theorem 2.7 is applied to the rows of A. 
Conditions a and b provide the partition for any Q ~ M. • 

Corollary 2.8 immediately yields Proposition 2.6 as well as the following corollary: 

Corollary 2.9. The node-edge incidence matrix of a bipartite graph is TV. 

Another consequence of Corollary 2.8 is a linear-time algorithm for recognizing 
whether a (0, 1, -1) matrix A with, at most, two nonzero entries per column is TU. 
Without loss of generality, assume that every column of A contains two nonzero elements 
and every row of A contains at least one nonzero element. Let B(j) = {i: au * O}. 
Arbitrarily put row 1 in Q I. Then Corollary 2.8 fixes the assignment of all rows i such that 
there existsj with B(j) = (l, n. Once i is assigned, Corollary 2.8 fixes the assignment of all 
rows k such that there existsj with BU) = {i, k}. The process is repeated in this way until 
either the partition is completed or an incompatibility with the conditions of the corollary 
is discovered. The latter occurs when a row already assigned is required to be placed in the 
complementary set. Note that for a (0, 1) matrix, the procedure simply tests whether the 
graph of the given node-edge matrix is bipartite. 

Definition 2.2. An m x n (0, 1) matrix A is called an interval matrix if in each column 
the I's appear consecutively; that is, if au = akj = 1 and k > i + 1, then au = 1 for alII with 
i < I < k. 

Corollary 2.10. Interval matrices are TV. 

Proof This follows from statement ii of Theorem 2.7 by observing that the interval 
property of a matrix is closed under row deletions and, for Q = {l, ... ,m}, taking 
QI = {i: i is odd} and Q2 = Q \ QI' • 

An integer programming problem that involves assigning workers to shifts can be 
modeled using an interval matrix. Suppose the work day consists of m hours. A shift is a 
set of consecutive hours. Suppose that n different shifts are possible. The jth shift is 
represented by a 0-1 m-vector aj, where aij = 1 if hour i is in the jth shift. Thus A is an 
m x n interval matrix of specified shifts. Let b E Z,:" where b i is the minimum number of 
workers required in the ith hour. The set of feasible solutions is given by 
S = {x E Z~: Ax ~ b}, where Xj is the number of workers assigned to thejth shift. 

In the next section we will show that if A is an interval matrix and b E Z,:" then integer 
programs of the form 

(2.1) min{cx: Ax ~ b, x E Z~} 
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are network flow problems. Moreover, for any (0, 1) matrix, a problem of the form (2.1) 
can be relaxed to another nontrivial problem of the form (2.1) in which the constraint 
matrix is an interval matrix. 

To see this, suppose that the (0, 1) matrix A I is not an interval matrix. Then some 
column of A I is not an m x 1 interval matrix (column). However, any noninterval column 
can be uniquely written as the sum of p interval columns, where p < ml2 (see Figure 2.1). 
Now replace each noninterval column a; by the p interval columns defined in its 
decomposition, and give the new columns an objective function coefficient Cjk for k = 1, 
... ,p with Cj = L£~l Cjk. We then obtain a problem of the form (2.1) in which the matrix A 
is an m x s interval matrix with s ~ mn 12. This is a relaxation of the original problem 
since we have omitted the constraints that each of the variables associated with the p 
interval columns that have replaced aj must be equal. 

We leave as an exercise the comparison of the bounds obtained from this relaxation 
with those obtained from the linear programming relaxation. The advantage of this 
relaxation lies in the efficiency of solving flow problems with side constraints. 

We close this section by presenting a composition procedure for TU matrices that is 
used in Section 3 to describe a characterization ofTU matrices. 

Proposition 2.11. Let 

(~ 
a 

° 
a) (1 dO Bb ) 1 and d 

be m x nand n x m TU matrices respectively, where A is (m - 1) x (n - 2), a is (m - 1) 
x 1,cis1x(n-2),Bis(n-1)x(m-2),bis1x(m-2),dis(n-1)x 1, and ° and 1 
are scalars. Then the (m + n - 2) x (m + n - 4) matrix 

isTU. 

This proposition can be proved by applying Theorem 2.7. 

0 0 
I I 0 0 
0 0 0 0 

0 0 
I 0 + + 0 
I 0 I 0 
0 0 0 0 

0 0 

Figure 2.1 
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Example 2.2. Given that 

A·=(-i J J -g -n and A,= 
o 0 

1 1 0 
111 
001 
001 

are TV, Proposition 2.11 yields the TV matrix 

1 0 1 0 
-1 1 0 0 

A3= 
0 -1 -1 0 
0 -1 -1 1 
0 0 0 1 
0 0 0 1 

3. NETWORK MATRICES 

This section relies on, and is motivated by, the graphical representation of a system of 
equations A 'x = b, where A' is the node-arc incidence matrix of a digraph (see Sec
tion I.3.6). We begin with a brief review of the results of Section 1.3.6 that are needed here. 

Let g; = (V, SIt) be a digraph with m + 1 nodes and n arcs, and let A' be the node-arc 
incidence matrix ofg;. Suppose the graph underlying g; is connected. 

1. rank(A ') = m. Since it convenient to work with a matrix offull row rank, we letA be 
the m x n matrix obtained by deleting any row of A'. 

2. Let A = (A 1, A 2) where A 1 is an m x m nonsingular submatrix of A. The arcs 
(el, ... ,em) that correspond to the columns of Al induce a spanning tree in g;, 
denoted by fF = (V, SIt 1)' 

3. The representation ofa column of A 2, corresponding to the arc ej = (u, v) as a linear 
combination of the columns of A h is given by the incidence vector aj of the unique 
dipath P j in fF from u to v, where 

if Pj passes ei in a forward direction 
if Pj passes ei in a backward direction 
otherwise. 

V sing the terminology oflinear programming, A 1 is a basis matrix and A 2 = AliA 2 is the 
incidence matrix of the dipaths corresponding to the columns aj. Since we are not 
concerned with primal or dual feasibility here, b and an objective vector are both 
irrelevant. 

Definition 3.1. Given a directed tree fF = (V, SIt 1) and a digraph g; = (V, Slt 2), where 
IVI = m + 1, I SIt 1 I = m, and I SIt 2 I = n, the m x n arc-dipath incidence matrix M(fF, g;) 
corresponding to the dipaths in fF whose endpoints are defined by the arcs of SIt 2 is called a 
network matrix. (For convenience, it is desirable to allow Slt2 to contain edge repetitions.) 
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Note that in this definition the arcs offJ mayor may not be arcs of'2lJ. This gives us the 
freedom to avoid, if we wish, having an identity matrix as a submatrix of every network 
matrix. 

4. Let er E.sIl I and es E.sIl 2, and suppose that fJ'= (V, (.sill \ {er}) U {es}) is acyclic. A 
. pivot in M(fJ, '2lJ) corresponds to forming the tree fJ' and the digraph '2lJ' = (V, 

(.sIl2 \ {e s }) U {er}) and then computing the updated incidence matrix M(fT', '2lJ'). 

Hence a network matrix is precisely a matrix whose columns represent arcs of a node
arc incidence matrix of a digraph after one row has been deleted and any number of 
simplex pivots have been executed. 

Example 3.1. Consider the digraph '2lJ and tree fJ shown in Figure 3.1. 
The incidence matrix of qy is 

c 
0 0 -1 1 

} , 1 0 0 0 1 2 
A = ~ -1 -1 0 -1 o 3 

0 0 -1 4 
el e2 e3 e4 es e6 

Let A be the submatrix consisting of the first three rows of A " and let 

C 
0 

-D Al= ~ 1 
-1 

be the submatrix consisting of the first three rows and columns of A. Then we obtain the 
network matrix M(fT, '2lJ) given by 

o 
1 
o 

o 
o -1 

PI P2 P3 P4 Ps P6 
Network matrix M(fJ, '2lJ) 

Forming a new tree fJ' by adding e5 to fJ and excluding e2 as shown in Figure 3.1, we 
obtain the network matrix M(fJ', '2lJ') given by 

1 
o 

o 
o 

o 0 
-1 1 

o 

Note that M(fJ', '2lJ') is obtained by pivoting on the second row and fifth column of 
M(fJ, '2lJ). 
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"~~ 
~ 
1 e4 4 

Figure 3.1 

Proposition 3.1. Network matrices have thefollowing properties: 

I1I.1. Integral Polyhedra 

1. They are closed under row and column deletions and duplications. 
2. They are closed under multiplication of a column by -1. 
3. If A is a network matrix, then (A, I) is a network matrix. 
4. They are closed under pivoting. 
5. They are TV. 

Proof 

1. Deleting a column means just to ignore the corresponding dipath. Duplicating a 
column means simply to repeat the representation of the corresponding dipath. 
Removing a row is equivalent to removing the corresponding arc [say, e = (u, v)] 
from fJ and then constructing the tree fJ' by "identifying" nodes u and v as shown in 
Figure 3.2a. This operation is called a contraction of e. Duplicating a row is 
c4uivalent to splitting the corresponding arc as shown in Figure 3.2b. 

2. Multiplying a column by -1 means to reverse the direction of the corresponding 
path. 

e v x 
(al 

e u' e' 

(bl 

Figure 3.2. (a) Contracting e. (b) Splitting e. 
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s 

Figure 3.3 

3. Here we add a path for each tree arc. 
4 and 5. These have been shown above. 

549 

• 
Two classes of TV matrices presented in Section 2 are network matrices. In each case, 

we obtain the result simply by giving the appropriate class of trees. 

Proposition 3.2. If A is TV and contains no more than two nonzero elements in each 
column, then A is a network matrix. 

Proof. Let Q\, Q2 be the partition of the rows of A defined in Corollary 2.8, and let 
fF = ({s) U QI U Q2, .5111), where 

.511 1 = {(u, s): for all u E QJl U {(s, v): for all v E Q2} 

(see Figure 3.3). Let 9.0 = ({s) U QI U Q2, .5112 U .511 3 U .5114), All of the arcsind2 are from one 
node in Q 1 to another in Q 1 and correspond to the columns of A with two elements of 
opposite sign. The arcs in .511 3 are from a node in QI to a node in Q2 (or vice versa) and 
correspond to those columns of A with two elements of the same sign. The arcs in .5114 are 
arcs of fF and correspond to columns with only one nonzero entry. • 

Proposition 3.3. Interval matrices are network matrices. 

Proof. .Let V = {l, ... ,m + n. fF is a path from node 1 to node m + 1; that is, 
.511 1 = {(t, i + 1): i = 1, ... , m}. A column of A whose first 1 is in row p and whose last 1 is in 
row q is represented by the arc (p, q + 1) E .511 2• • 

Example 3.2. Consider a linear program with constraint set {(x, y) E R,:+n: 
Ax + Iy = b}, where 

A= 

o 0 
1 0 
1 1 
o 
o 

This is a network flow problem over the network shown in Figure 3.4. For the basic 
solution with y = b, x = 0, the tree arcs corresponding to basic variables are {e\, .•. , es}; 
the digraph arcs corresponding to nonbasic variables are {e6, e7, eg}. Note that with the 
supplies shown in Figure 3.4, it follows that Yi = bi for i = 1, ... ,5 is a feasible flow. 
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Figure 3.4 

Example 3.2 illustrates that if A is a network matrix associated with a known tree 
g = (V, d 1) and digraph !jlJ = (V, d 2), we can model and solve the linear program 
max{cx: Ax ~ b, x E R~} as a network flow problem. Furthermore, there is no need to 
transform A into a node-arc incidence matrix. We immediately obtain a basic solution 
Y = b, x = ° by setting Yi = bi, where Yi is the flow on the tree arc ei for i = 1, ... , m. The 
digraph arcsd 2 represent the nonbasic variables x. Then if b ;:;. 0, we have an initial primal 
feasible basic solution for the network simplex algorithm of Section 1.3.6. 

We now turn to the question of recognizing network matrices. This problem is in .H?J 
since, given the appropriate digraph and spanning tree, it is easy to verify that the matrix is 
the desired arc-dipath matrix. On the other hand, it is not so obvious how to give a short 
proof that a matrix is not a network matrix. There are, however, polynomial-time 
algorithms for recognizing network matrices. Before describing one, we note that it is 
extremely unlikely for a random {O, 1, -l} matrix to be a network matrix. Thus it would 
not be wise to use a network recognition algorithm unless there was some reason to believe 
that the matrix being checked had appropriate structure. 

By Proposition 3.2 and the algorithm based on Corollary 2.8 for recognizing TV 
matrices with no more than two nonzero elements in each column, we have a polynomial
time algorithm for recognizing whether a matrix with no more than two nonzero elements 
per column is a network matrix. The following recursive algorithm uses this result, by 
reducing the general question to a suitably small set of recognition problems in which each 
matrix has no more than two nonzero elements in each column. In the following 
presentation, we assume for simplicity that A has no zero rows or columns and no row or 
column duplications. 

The algorithm has two parts. In the first part, we ignore the signs of the coefficients and 
determine whether the matrix is an edge-path incidence matrix ofa tree (i.e., a connected 
forest). In the second part, we consider the orientations of the edges. 

LetM = {l, ... , m} andN = {l, ... ,n}. 

Definition 3.2. The m x n (0, 1) matrix A is the edge-path incidence matrix of a tree (an 
EPT matrix) if there is a tree T on m + 1 nodes such that each column of A is the 
characteristic vector of the edges ofa path in T. 

Definition 3.3. The row intersection graph G(A) of an m x n (0, 1) matrix A is the graph 
with node set M that has an edge between nodes i and k if there is a column j of A with 
aij '" ° and akj '" 0. 
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If G(A) contains k > 1 components, then A has the structure 

(
Ai ° ° A2 

° ° 
Thus the A i for i = 1, ... , k can be considered separately. So we assume k = 1. 

By ignoring edge orientations, we see that any (0, 1) network matrix is an EPT matrix. 
However, as shown below, the converse is false. 

Note that any (0, 1) matrix with no more than two l's in each column is an EPT matrix 
ofa star (see Figure 3.5). The reader can easily check that the EPT matrix 

is not a network matrix because the required orientations cannot be achieved. 
We need to establish some properties of EPT matrices. The following proposition is 

analogous to statement 1 of Proposition 3.1. Its proof is left as an exercise. 

Proposition 3.4. If A is an EPT matrix, then every submatrix of A is an EPT matrix. 

Every edge of a tree T is a cut edge in the sense that if e = (u, v) is deleted (not 
contracted) from T, then the resulting subgraph is a forest with two components Tu and Tv. 
An edge is called a proper cut edge if each component of the resulting forest contains at 
least one edge. Otherwise, the edge is called an end edge. 

Let Bi be the submatrix of A with row i deleted and all columns} with au = 1 deleted, 
and let G(Bi) be the row intersection graph of Bi. If au = 1 for all}, take Bi to be an identity 
matrix of size m - 1. 

Propositiori 3.5. If A is an EPT matrix and Li au "" 3 for some}, then: 

1. There exists a row k such that G(Bk) contains at least two components. 
2. For any k such that G(Bk) contains at least two components, A is an EPT matrix of 

some tree T for which ek is a proper cut edge. 

Figure 3.5. Star graph. 
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Proof 

1. By hypothesis, any tree T for which A is an EPT matrix contains at least one path of 
length at least 3. Hence T contains a proper cut edge, say ek. Now, since Bk is an EPT 
matrix of the tree obtained from T by contracting ek and ignoring all of the paths 
that contain ek, it follows immediately that G(Bk) contains at least two components. 

2. Suppose A is an EPT matrix of T. If ek = (u, v) is a proper cut edge of T', there is 
nothing to prove. So suppose that e" is an end edge of T. Since G(Bk) contains at 
least two components, there exists a partition (Mb M 2) of the rows of M \ {k} such 
that no path contains edges from both Ml and M 2• Furthermore, without loss of 
generality, it can be assumed that the subforests obtained from the edges of Ml and 
M2 meet at u and that v is of degree 1 (see Figure 3.6a). Hence A is also an EPT 
matrix for the tree T shown in Figure 3.6b, and ek is a proper cut edge of T. • 

Exampie3.3 

o 

1 
o 

Bi = C) for i = 1,2,3. Hence G(Bi) is connected for all i, and A is not an EPT matrix. 

In the following presentation the index k is fixed since we are assuming that ek is a 
proper cut edge. For simplicity of notation, the dependence on k is suppressed. 

Let U = {l, ... ,t} index the components of G(Bk) where t ~ 2. The components 
induce a partition of M \ {k}. Let Qq = {i EM: i is in the qth component}. Let 
Ri = {j: aij = 1}, let R; = Ri n Rk for i EM \ {k}, and let Rq = {U R;: i E Qq} for all 
q E U. If A is an EPT matrix of a tree T, then for each q the set of edges indexed by Qq is 
the edge set of a subtree P of T, Ri is the set of paths containing ei, R; is the set of paths 
containing ei and ek, and Rq is the set of paths that contain ek and some edge from P. 
Note that Rq "" 0 for any q since G(A) is connected. 

Now if A is an EPT matrix of T and ek = (u, v) is a proper cut edge of T, there exists at 
least one bipartition of U -say, (Uu, Uv) with Uw "" 0 for w E {u, v}-such that if q E Uw, 
then Tq is on the w side of ek. 

v 

(a) (b) 

Figure 3.6 
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Now we try to decide whether two subtrees Tq and P' can lie on the same side of ek. 
Suppose 

(3.1) for some i E Qq and q * q'. 

Then there is a path containing ek, e;, and an edge of Tq,; and there is another path 
containing ek and an edge of Tq" but not ej. Note that (3.1) does not preclude P and Tq' 
from being on the same side of ek (see Figure 3.7). But if(3.1) is true and Tq and Tq' are on 
the same side of ek, every path that contains ek and an edge of P must contain precisely 
the same set of edges from Tq'. This establishes an ordering between P and Tq" since ek 
must be closer to Tq, than to P. We say that q' precedes q when (3.1) holds. 

Similarly, when 

(3.2) R; n Rq * 0 and Rq \ R; * 0 for some I E Qq' and q * q' 

holds, we say that q precedes q'. Now it follows that if(3.1) and (3.2) hold, then P and p' 
must be on opposite sides of ek. 

This discussion motivates the use of the graph Hk = (U, Ek) to determine which pairs of 
subtrees must lie on opposite sides of ek, where (q, q') E Ek ifand onlyif(3.1) and (3.2) are 
true for the pair (q, q'). 

We now give necessary and sufficient conditions for A to be an EPT matrix. Moreover, 
the conditions yield an efficient and constructive algorithm for determining whether A is 
an EPT matrix. 

Theorem 3.6. A is an EPT matrix if and only if,for any k such that G(Bk) contains at least 
two components, the following statements are true: 

a. Hk is bipartite. 
b. The submatrices Aq with column index set N and row index set Qq U {k} are EPT 

matrices/or all q E U. 

Proof Suppose A is an EPT matrix. By Proposition 3.4, condition b must hold. 
We have already shown that ek = (u, v) is a proper cut edge and thatif(q, q') E E\ then 

P and pi must be on opposite sides of ek. But this cannot hold for all such pairs of 
subtrees if Hk contains an odd cycle. Hence if A is an EPT matrix, condition a must be 
true. 

Figure 3.7 



554 III.I. Integral Polyhedra 

Now we show that if conditions a and b are true, then A is an EPT matrix. From 
condition a, there exists a bipartition of U with the property that if(q, q') E Ek, thenq and 
q' are in different subsets; let (Uu, Uv) be any such partition. For wE {u, v}, let Aw be 
the submatrix of A consisting of the column index set N and row index set 
Qw = UqEUw Qq U {k}. 

The substance of the proofis to show thatAw is an EPT matrix ofa tree Tw with ek as an 
end edge. If this is true, it then follows immediately that A is an EPT matrix of the tree T 
obtained by joining Tu and Tv together on ek as sh9wn in Figure 3.8. 

We now show how to construct Tw from Aw. We begin by constructing a partial order on 
the set Uw. Consider q, q' E Uw. Since (q, q') $. Ef, either q and q' are unrelated, or q 
precedes q' or q' precedes q, but not both. 

We claim that if q precedes q' and q' precedes q", then q precedes q". Since q precedes 
q' and q' does not precede q, (3.2) and the complement of(3.1) yield: 

i. R; n Rq '* 0 for some I E Qq, 
ii. Either Rj n Rq, = 0 or Rq' \ Rj = 0 for all i E Qq. 

By statement i, we obtain Rj n Rq, '* 0. Hence by statement ii, we have Rj 2 Rq'. Since 
Rq 2 Rj, we have Rq 2 Rq' if q precedes q'. Now, since q' precedes q" and Rq 2 Rq" it 
follows that R; n Rq '* 0 and Rq \ R; '* 0 for some r E Qq". Hence q precedes q". 

So we have a partial order of the elements of Uw. We represent the partial order by any 
sequence ql, q2, ... ,qtw with the property that for 2.;;; r';;; tw and r' < r, q, does not 
precede q,' (see Figure 3.9). 

By hypothesis b of Theorem 3.6, we have that for all r, the matrix Aq, with column 
index set N and row index set Qq, U {k} is an EPT matrix of some tree. Furthermore, by 
the choice of k and Qq" there exists some such tree, say T', with the property that ek is an 
end edge of T'. This is true because the row intersection graph ofthe matrix A q, with row k 
deleted is connected; that is, it defines a component of G(Bk). 

Let ex = UI~1 Qq,. Now we proceed by induction with the hypothesis that the matrix 
with row index set Qtw-I U {k} and column index set N is an EPT matrix of some tree 1'tw-1 

in which ek is an end edge. 
We must show how to construct 1'twfrom 1'tw-1 and Plw. Sinceqt doesnotprecedeq,for 

any r < tw. we have either Rj n Rtw = 0 or Rtw \ Rj = 0 for all i E Qtw-I. For those i 
satisfying Rj n Rtw = 0, we have aij = 0 for allj E Rtw; for those i satisfying Rtw \ Rj ~ 0, 
we have aij = 1 for allj E Rtw. In other words, ifj,j' E Rtw, then aij = aij' for all i E Qtw-I. 

T 

Figure 3.8 
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qg 

Figure 3.9 

Let S = {i E Qlw-l: Rlw \ Rj = 0}. (S may be empty.) By the induction hypothesis, there 
is a pathp* in 1'lw-1 containing precisely the edges ei for i E S. One end node ofp* is u, call 
the other end node u*. (If S is empty, then U* = u.) 

The construction of 1'lw is shown in Figure 3.10. 
Finally, since Tu = 1'1. and Tv = 1'\ the proof is complete. • 

Proposition 3.5 and Theorem 3.6 yield a recursive polynomial-time algorithm for 
recognizing EPT matrices. The algorithm has two fundamental subroutines. The first one 
finds the components of a row intersection graph. The second one checks whether a graph 
is bipartite. 

Algorithm for Recognizing an EPT Matrix 

Step 1: Given a (0, 1) matrixA: (a) Ifl:i aij";:; 2 for allj, then A is an EPT matrix ofa star; 
(b) otherwise, partition A according to the components of its row intersection graph, 
and treat each component separately. 

Step 2 (Component Finding): Let k = 1, and let Bk be the matrix obtained from A by 
deleting row k and all columnsj with akj = 1 unless akj = 1 for allj. In the latter case, let 
Bk be an (m - 1) x (m - 1) identity matrix. Let G(Bk) be the row intersection graph of 

v 

v 

v 

u* 

Figure 3.10 
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Bk. Determine t, the number of components of G(Bk). If t > 1, go to Step 3. Otherwise, 
if k < m, then k .... k + 1, and go to Step 2; and if k = m, then A is not an EPT matrix. 

Step 3 (Bipartite Test): Construct the graph Hk = (U, Ek), where U = {l, ... , t} and Ek is 
determined by (3.1) and (3.2). If Hk is not bipartite, A is not an EPT matrix. Otherwise, 
let (Uu , U.) be any bipartition of U with the property that if (q, q') E E, then either 
q E Uu or q' E Uu, but not both. 

Step 4 (Recursion): Construct the matrices Aw for w E {u, v}, where Aw consists of row k 
and the rows i of A, with i in the qth component of G(Bk) and q E Uw. Mark row k of 
Aw, and call the algorithm for the matrices Au and Avo with the exception that marked 
rows may not be selected in Step 2. 

Step 5 (Constructing the Tree): If the recursion ends in Step 1, each pair of terminal 
submatrices is joined on the edge specified by the marked row. This procedure is 
applied recursively to determine some tree represented by A. 

To show that the algorithm runs in polynomial time, we first calculate f(m), the 
maximum number of passes through Steps 1-3 for a matrix with m rows. In Step 4, a 
matrix with m rows is split into two matrices, one with i rows and the other with m - i + 1 
rows where 2 ..;; i ..;; m - 1. Hence for m ;;;. 3, we obtain 

(3.3) f(m) = max [f(i) + f(m - i + 1)] + 1 
2.;,.;m-1 

and f(2) = 1. It is a simple exercise to show that the unique solution to (3.3) is f(m) = 

2m -3. 
Both Steps 2 and 3 can be executed in polynomial time by well-known algorithms. 

Step 2 dominates. It may require up to m executions offorming a row intersection graph 
and finding its components. The dominant step in each execution is the pairwise 
comparison of the rows ofA. Hence Step 2 is O( m 3n) for an m x n matrix, and the overall 
time complexity is O(m 4n). 

As suggested by Theorem 3.6, the algorithm can be modified to yield a finer decompo
sition of A at each step. In particular, instead of decomposing A into Au and Avo we 
decompose A into Aq for q E U. Then if Aq for all q E U are EPT matrices, we use the 
partial orders of the nodes in Uu and Uv to construct T. This will be illustrated in 
Example 3.5. 

Exampie3.4 

(
0 0 0 1 1 1 1) 
100 1 100 

A = 010 1 0 10· 
001 100 1 

The components of G(B') are QI = {2}, Q2 = {3}, Q3 = {4}. R; = R i - ' = {4, 3 + i} for 
i = 2, 3, 4; for each pair ofindices, (3.1) and (3.2) are true. Hence HI is a triangle, and A is 
not an EPT matrix. 
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.~ • 
e5 el el e4 el e6 • • • • • • • • • u v U v U v U v 

T3 T2 T4 

Figure 3.11 

Exampie3.5 

1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 1 1 1 1 1=k 
1 0 0 0 1 1 0 0 0 2 

A= 1 0 0 0 0 0 0 0 0 3 
0 0 1 0 0 0 1 1 0 4 
0 0 0 1 0 0 0 0 1 1 5 
0 0 0 0 0 0 0 6 

QI = {2, 3}, Q2 = {4}, Q3 = {5}, Q4 = {6}. R; = {6, 7, 8}, R2 = {7, 8, 1O}, R3 = {9, 1O}, 
R;' = {7, 8}. 

HI = (U, EI), where U = n, 2, 3, 4} and EI = {(1, 2), (1, 4), (2, 3)}. HI is bipartite with 
bipartition Uu = {l, 3} and Uv = {2, 4}. In the set Uu, nodes 1 and 3 are unrelated; and in the 
set U" node 2 precedes node 4. The matrices A q for q = 1, ... , 4 yield the stars shown in 
Figure 3.11. 

Since nodes 1 and 3 are unrelated and node 2 precedes node 4, the trees are put together 
as shown in Figure 3.12. 

Only a small modification of the EPT matrix recognition algorithm is required to 
obtain a recognition algorithm for network matrices. 

• • • • v u v 

• 

T 

Figure 3.12 
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Theorem 3.7. The (0, 1, - 1 ) matrix C is a network matrix if and only if: 

a. the matrix A obtainedfrom C by replacing each element ofC by its absolute value is 
an EPT matrix; and 

b. the submatrices of C with no more than two nonzero elements in each column, 
corresponding to the submatrices of A with no more than two 1 S in each column that 
are produced in the EPT recognition algorithm, are network matrices. 

Proof The necessity of condition b follows, since all submatrices of network matrices 
are network matrices. The necessity of condition a follows, since a dipath in a directed tree 
must be a path in the underlying tree. 

To prove sufficiency we only need to show that two directed subtrees gu and fJ., can be 
merged as in Figure 3.8. This is clear if both directed trees contain the arc (u, v) or both 
contain (v, u). So suppose that gu, the arc-dipath matrix of Au, contains (u, v) and that fJ." 
the arc-dipath matrix of Av, contains (v, u). Now observe that by reversing the direction of 
every arc in fJ." we obtain another directed tree g~ that also is an arc-dipath matrix of Av, 

since a dipath in g~ represented by the arc (r, s) corresponds to a dipath in g~ represented 
by the arc (s, r). • 

Example 3.6 

2 3 4 5 6 7 8 9 

0 0 0 0 1 -1 1 -1 1 
-1 1 0 0 0 1 0 0 0 2 

1 0 0 0 1 0 0 0 0 3 
0 1 0 0 0 0 1 0 0 4 

C= 0 0 0 1 0 0 1 0 5 

0 0 -1 0 0 1 0 0 0 6 
0 0 0 0 0 0 1 7 
0 0 0 1 0 0 1 0 0 8 
0 0 0 0 0 0 0 -1 9 

Let A be the matrix obtained from C by ignoring the signs of the coefficients. 

2 3 4 5 6 7 8 9 

0 0 0 0 1 1 1 1 1 
1 0 0 0 1 0 0 0 !}Q' 1 0 0 0 1 0 0 0 0 

0 1 0 0 0 0 1 0 0 
A= 0 0 0 1 0 0 1 0 ~ } Q2 0 0 1 0 0 1 0 0 0 

0 0 0 1 0 0 1 0 1 ~} Q3 0 0 0 1 0 0 1 0 0 
0 0 0 0 0 0 0 9} Q4 
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Now we determine if A is an EPT matrix. Since G(B I) has four components, the edge el 
corresponding to row 1 must be a proper cut edge. To see which subtrees lie on opposite 
sides of eJ, we let HI = (U, EI), where U = {t, 2,3, 4} andE I = {(I, 2), (1,3), (2,4), (3, 4)}. 
HI is bipartite, and UUI = {l, 4}, UV1 = {2, 3} is a bipartition of U. The components QI and 
Q4 are unrelated, as are the components Q2 and Q3. Hence we carryon, under the 
assumption that subtrees TI and r lie on one side of el and that subtrees T2 and T3 lie on 
the other side of e I. 

We now need to show that the matrices A i corresponding to potential subtrees Ti U {e I} 
are tree matrices with el an end edge. 

1 2 5 6 7 8 9 

A'~ (I 0 1 1 1 1 

0 
1 * 

1 0 1 0 0 2 
0 1 0 0 0 3 
1 0 0 1 0 4 

c,~u 
0 1 1 1 

-D 
1 * 

1 0 1 0 0 2 
0 1 0 0 0 3 

0 0 0 4 

5 6 7 8 9 

A 4 = (~ 1 1 
~) 1 * 

0 0 9 

C4 = (~ 1 -1 -D 1 * 
0 0 -1 9 

3 5 6 7 8 9 

A'~ ( 
0 1 1 

~) 
1 * 

1 0 0 1 5 
0 0 0 6 

C1 1 -1 1 -I) 1 * 
C2 = 1 1 0 0 1 0 5 

-1 0 1 0 o 0 6 

Since A 1, A 2, and A 4 contain no more than two 1 's in each column, we can immediately 
check that the corresponding submatrices of C are all dipath incidence matrices. The 
corresponding trees are shown in Figure 3.13. 
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Vj 

Figure 3.13 

4 5 6 7 8 9 

A;~O 
1 1 1 

1) * 
0 0 0 7 
0 0 0 8 

needs to be decomposed further. G(B7) has two components; QS = {1} and Q6 = {8}. 
H7 = (U, E 7), where U = (5, 6) and E7 = {(5, 6)}. H7 is bipartite; UU7 = {5} and UV7 = {6}. 

4 5 6 7 8 9 

AS = (~ 1 1 1 
~) * 

0 0 0 7 * 

CS = (~ 1 1 -1 1 -~) * 
0 0 1 0 7 * 

4 7 9 

A 6=C ~) 
7 * 
8 

C6 =C ~) 
7 * 
8 

The corresponding trees and their merger are shown in Figure 3.14. 

ej e7 e7 es . .. • )' . • )I • )I • 
Uj Vj =U7 V7 U7 V7 

lYu7 IYv7 

ej e7 es ... • )I • )I • 
Uj Vj v7 

1'7 3 

Figure 3.14 
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e6 

eJ e7 ea 

vJ uJ vJ 

eS 

ffuJ ffvJ 

Figure 3.15 

The merging of gl and g4 and of g2 and g3 are shown in Figure 3.15. 
The final merging of gUt and:!!v, is shown in Figure 3.16, and C is a network matrix of 

this tree. 

The final topic of this section is a brief discussion of the recognition problem for totally 
unimodular matrices. The following two matrices are not network matrices but are TU: 

1 -1 0 0 -1 1 1 1 
-1 1 -1 0 0 1 0 0 

0 -1 1 -1 0 0 1 0 
0 0 -1 -1 0 0 1 

-1 0 0 -1 0 0 

These two matrices and network matrices are the fundamental building blocks for 
constructing all TU matrices. This result is a deep theorem whose proof is beyond the 
scope of this presentation. 

Theorem 3.8. Every TU matrix that is not a network matrix or one of the two matrices 
given above can be constructed/rom these matrices using the rules of Proposition 2.1 and 
Proposition 2.11. 

A consequence of this theorem is that the TU recognition problem is in }(,{JjJ, since a 
short proof of total unimodularity for matrix A is to give easily recognizable TU matrices 
and the rules to construct A from them. Theorem 3.8 also yields a polynomial-time 
algorithm for the recognition problem and a polynomial-time algorithm for solving linear 
programs with TU constraint matrices. But the conclusion of practical importance to be 
drawn from Theorem 3.8 is that "nearly all" TU matrices are network matrices. 

Figure 3.16 
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4. BALANCED AND TOTALLY BALANCED MATRICES 

In the remainder of this chapter, we will study packing and covering problems. LetA be an 
m x n (0, 1) matrix. 

The fractional packing problem we consider is the linear program 

(FP) max{cx: x E P}, 

where P = {x E R~: Ax ",;; n. Its dual is 

(DFP) min{y1: yA ~ c, y E R';'}. 

Here it makes sense to eliminate primal unboundedness and dual infeasibility by assum
ing that A contains no zero columns; that is, a j "* ° for) E N = {l, ... , n}. We also assume 
that Cj > ° for) E N since if Cj ",;; 0, there is an optimal solution to FP with Xj = 0. 

The fractional covering problem we consider is the linear program . 

(FC) min{cx: x E Q}, 

where Q = {x E R~: Ax ~ 1}. Its dual is 

(DFC) max{yl: yA ",;; c, y E R';'}. 

Here it is sensible to eliminate primal infeasibility and dual unboundedness by assuming 
that A contains no zero rows; that is, a i "* ° for i EM = {l, ... ,m}. We also assume that 
Cj > ° for) E N because if Cj < 0, Fe is unbounded, and if Cj = 0, we can set Xj = 1. 

We can view the rows of A as incidence vectors ofa family of subsets Ni ~ N for i EM. 
To describe P, the maximal rows are necessary and sufficient; and to describe Q, the 
minimal rows are necessary and sufficient. Hence, in both cases, we can assume that the 
rows of A are incomparable (0, 1) vectors; that is, they are the incidence vectors of a set of 
subsets called a clutter. 

Our goal is to determine classes of matrices and classes of combinatorial optimization 
problems for which these linear programs have integral optimal solutions. Thus the 
fundamental questions are: 

1. When is P an integral polytope? 

2. When is the system Ax ",;; 1, x ~ ° TDI? 
3. When is Q an integral polyhedron? 

4. When is the system Ax ~ 1, x ~ ° TDI? 

As we have already seen, total unimodularity of A is a correct answer to all four 
questions. But, as we shall see, there are larger classes of(O, 1) matrices for which P and Q 
are integral, and the packing and covering systems are TDI. Let P(b) = {x E R~: Ax",;; b) 
and Q(b) = {x E R~: Ax ~ b). Note that if P is integral, then P(b) is integral for all 
bE Bm. This is true since if bE B m and M(b) = {i EM: bi = O}, then P(b) is the face of P 
determined by setting Xj = ° for all) with aij = 1 for some i E M(b). 

The integrality of P and Q are, in general, unrelated. To relate them it is necessary to 
consider families of polyhedra that are obtained by eliminating constraints. For the 
constraint aix ~ bi, setting bi = ° is just a way of saying that the ith constraint is 
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superfluous or has been eliminated. Similarly, for the constraint aix ~ bi, setting 
bi ~ LJ~l au has the same effect. Here we use the notation bi = 00. 

Proposition 4.1. Let A be a (0, 1) matrix with no zero rows or columns. The following two 
statements are equivalent. 

1. PCb) is integralforall b with bi E (l, oo}for i EM. 
2. Q( b) is integra/for all b E Bm. 

Proof Each member of each of the families is nonempty since ° E P(b) and 1 E Q(b). 
Consider Q(b) with bi = 1 for i E K ~ M and with bi = ° otherwise. Suppose x is a 
fractional extreme point of Q(b). Then there exist N~ ~ N and K~ ~ K such that 
IN~ I + IK~ I = n and x is a solution to 

. {I a'x = 
ai ~ 1 

for i E K~ 

otherwise, 
{o forjEN~ 

Xj = pj ~ ° otherwise. 

But then x is an extreme point of PCb), where bi = bi for i E K~ and bi = 00 otherwise. 
Thus 1 => 2. The proof of2 => 1 is similar. • 

The matrices we study in this section are precisely those for which statements 1 and 2 of 
Proposition 4.1 hold. Let..4tk, k ~ 3, be the family of k x k (0, 1) matrices, all of whose row 
and column sums equal 2, that do not contain the submatrix 

Definition 4.1. A (0, 1) matrix is totally balanced (TB) ifit does not contain a submatrix 
in..4tk for any k ~ 3. 

Definition 4.2. A (0, 1) matrix is balanced ifit does not contain a submatrix in..4tk for any 
k ~ 3 and odd. 

Note that a matrix A in..4tk, k ~ 3, that does not contain a submatrix in ..4t1, I < k, is a 
node-edge incidence matrix of a cycle (see Figure 4.1). By permuting rows and columns, 
we can write such a matrix in a canonical form with ajj = aj+l,j = 1 for j = 1, ... , k - 1, 
akk = alk = 1, and au = ° otherwise. Then IdetA 1= 2 when k is odd, and IdetA 1= ° 
when k is even. 

(! 
0 0 0 

r) 
0 1 1 
1 0 0 
o 0 1 2 

110 

4 

Figure 4.1 
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We now give simple consequences of the above definitions. 

Proposition 4.2. If A is a (totally) balanced matrix, then the following matrices are 
(totally) balanced. 

1. (A, I). 

2. The transpose of A. 
3. Any matrix obtained by permuting rows or columns of A. 
4. Any submatrix of A. 

Proposition 4.3. If A is a (0, 1) TV matrix, then A is balanced. 

Proof If A is not balanced, then it contains a submatrix A' E .;{,(k where k ~ 3 and odd. 
Hence I det A 'I = 2. • 

On the other hand, a (0, 1) TV matrix may not be a TB matrix. For example, any matrix 
in .;{,(4 is a TV matrix. The following example illustrates some of the properties of TB 
matrices. 

Example 4.1. Let 

The reader should check the following statements. 

1. A is not a TV matrix. 
2. A is a TB matrix. 
3. P is integral. (Its extreme points are the null vector and the four unit vectors.) 
4. P(b) with b = (2 1 1 1) contains the extreme point (i iii). 
5. The matrix 

where A 'E .;{,(4 is balanced, but not a TV or TB matrix. 

The relationship among these classes is given in Figure 4.2. 
Although there are nice polyhedral results for balanced matrices, no polynomial-time 

combinatorial methods are known for solving the corresponding linear programming 
problems. Moreover, the recognition problem also is unsolved except for the obvious 
result that it is in Cf6o.N'(fjJ. 

In contrast, the results for TB matrices are much richer because both optimization and 
recognition problems can be solved by efficient combinatorial methods. Hence, for most 
of the remainder of this section, we consider TB matrices. Also, since the theory and 
algorithms for FP (the fractional packing problem) and Fe (the fractional covering 
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Balanced 

Figure 4.2 

problem) are essentially the same for TB matrices, we only need to consider one of them in 
detail. Since more general results for FP will be given in the next section, we consider FC 
and its dual DFC here. We will give a polynomial-time algorithm that obtains integral 
optimal solutions to FC and DFC. We first need some preliminary results. 

Definition 4.3. A (0, 1) matrix A is called a row inclusion matrix ifit does not contain the 
submatrix 

F=C ~). 

In other words, all of the rows i with aij = 1 are ordered by inclusion with respect to the 
columns}, ... , n. The reader should keep in mind that the row inclusion property of a 
matrix is sensitive to the ordering of its rows and columns. Later in this section we will 
address the issue of whether the rows and columns ofa given (0, 1) matrix can be permuted 
to obtain a row inclusion matrix. 

Two obvious properties of row inclusion matrices are given in the following proposi
tions. 

Proposition 4.4. The recognition problem for row inclusion matrices is solvable in 
polynomial time. 

Proposition 4.5. Row inclusion matrices are totally balanced. 

Proof SupposeA contains a submatrixB in.4lb k ~ 3. Then there exists i,}, k, I with 
i < k and} < I such that bij = bi! = bkj = 1. Then bkl = 0, since otherwise B contains the 
submatrix (: :). Hence A contains the submatrix F. • 

The converse of Proposition 4.5 obviously is false, but later we will show that by row
and-column permutations of a TB matrix we can obtain a row inclusion matrix. 

Our next objective is to show that when A is a row inclusion matrix, the fractional 
covering problem (FC) and its dual (DFC) are easily solved. DFC is solved by greedily 
packing the rows of A into the vector c. That is, we first take as much as possible of row ai, 
then row a2, and so on. When a positive multiple of a row is taken, we note the largest 
column index} for which the remaining amount of Cj is reduced to zero. These columns 
are then used to find a primal optimal solution. The primal solution also is constructed 
greedily by processing these columns in the reverse order from which they were selected. 
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Algorithm for DFC and FC for Row Inclusion Matrices 

DFC: 
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Initialization: Let Ni = {j EN: aij = 1} for i = 1, ... , m, i = 1, c 1 = C > 0, Jo = 0. 
Iteration i: Let Yi = min{c): j EN;}. If Yi > 0, then let Ci+1 = c i - Yiai and J i = J i- 1 U {k}, 

where k = max{j E N i: Yi = cj}. Let a(k) = i. Otherwise J; = J i- 1 and Ci+1 = ci. If i = m, 
stop; (y), ... ,Yrn) is an optimal solution. Otherwise i ... i + 1. 

FC: 
Initialization: Let b = 1, Jrn = {k), ... ,kp } (from DFC), where a(ki) < a(ki+l) for i = 1, 

... ,p - 1. Setxj = ° forj $. Jrn , and set 1= p. 

Iteration I: Set Xk, = max(O, bCl.(k,) and b ... b - ak,xk,. If 1= 1, stop; x = (x), ... ,xn) is an 
optimal solution. Otherwise I ... I - 1. 

Theorem 4.6. The algorithm gives integral optimal solutions to DFC and FC when A is a 
row inclusion matrix. 

Proof It is clear that the solutions are integral and that the dual solution is feasible. 
Throughout the proof, we use the following facts: (a) If J rn = (k), ... ,kp}, then 
a(k;) < a(ki+1) for i = 1, ... ,p - 1, and (b) if Yi > 0, then there is a k E Jrn with a(k) = i, 
and either cj > ° or au = ° for allj. 

We now consider primal feasibility. By construction, we have x ~ 0. The proof of 
aix ~ 1 for i = 1, ... , m is divided into two cases. 

Case 1 (Yi > 0). Then for some k, E Jm , we have a(k,) = i and aik, = 1. At Step I, we set 
Xk, = max(O, bi), where bi is the current value of bi. If bi ~ 0, then aix ~ 1. If bi = 1, then 
Xk, = 1 and aix ~ 1. 

Case 2 (Yi = 0). Let M = Ni n {j EN: c5 = O}. Since Yi = 0, we obtain M *' 0. Let 
jl=max{j:jEM}. Suppose jl $.Ji-l- Now, since c5,=0, there is an il<i such that 
Yi, = cj: > 0, and ai,j, = 1. Sincejl $. J i-), there is ah E J i-1 withj2 > jl such that il = a(h), 
Yi, = cj;, and ai,h = 1. Also, by the definition ofj), we have au, = 1 and au, = 0. Hence we 
have the following submatrix of A: 

~) 

Since A is a row inclusion matrix, this is not possible, so j 1 E J i - 1• 

Now we can define i 1 by a(jl) = il < i. Hence if Xj, = 1, then aix ~ 1. 
On the other hand, if Xj, = 0, leth E J be such that xh = 1 and row i 1 was first covered 

by columnh. This means that ai,h = ai,j3 = 1, where i3 = a(h) > i 1• In addition, ai3j, = ° 
since a(jl) = il and Yi3 > 0. Now ifj3 <j), we have 
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Henceh > jl' Then, if aij, = 0, we have 

jl h 

G ~) ;1 

Hence aij, = 1 and aix ~ aij,x3 = 1. 
Next we establish the complementarity conditions 

(4.1) Xj(Cj - I aijYi) = 0 forj = 1, ... , n, 
1=1 

Yi(± aijXj - 1) = 0 for i = 1, ... , m. 
}=I 

(4.2) 

The conditions (4.1) are satisfied by the construction of Jm and Xj = 0 if j $. Jm• Now 
consider (4.2) and suppose Yi > 0 and a(k) = i. We need to show that 

L aijxj = I aijXj + aikXk + L aijXj = 1. 
jEJm jEJm: a(j)<i jEJm: a(j»i 

1. l:jEJm: a(j)<i aijXj = 0 since a(j) = i 1 < i implies cj = 0, and thus Yi > 0 implies aij = O. 
2. Since a(k) = i, it follows that aik = 1. By the construction of the primal solution, 

Xk = 1 ifand only ifl:jEJm:!>U»; aijxj = O. 
3. Now it suffices to show that l:jEJm: aU»; aijXj .;;; 1. If not, there exists j I, h E J m such 

that aij1xjl + aij,xh = 2 and a(h) > a(jl) > i. Then a a(j,),j I = 0 since C,!;(h) = 0, and 
aa(jl),h = 0 since Xjl = Xh = 1. Hence we have 

h jl 

or (11 01) i a(j2). 

Since neit):1er of these is possible, we have l:jEJm: aU»i aijxj .;;; 1. 

Example 4.2. min{cx: Ax ~ 1, x E R~} with c = (2 3 3 1) and 

( 1 1 0 0) o 1 1 0 
A= 0 0 1 1 . 

1 1 1 1 

It is easy to check that A is a row inclusion matrix. 

DFC: 

1. YI = 2, c2 = (2 3 3 1) - (2 2 0 0) = (0 1 3 1), k = 1, J 1 = {l}, a(l) = 1. 
2. Y2 = 1, c3 = (0 0 2 1), k = 2,J70. = {l, 2}, a(2) = 2. 
3. Y3 = 1, c4 = (0 0 1 0), k = 4,J3 = {l, 2, 4}, a(4) = 3. 
4. Y4 = 0, J4 = {l, 2, 4}; Y = (2 1 1 0) is an optimal solution. 

• 
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Fe: 

1. J4 = {l, 2, 4}, X3 = 0, b = (1 1). 

2. 1= 3, k3 = 4, X4 = b3 = 1, b = (1 0 0). 
3. 1= 2, k2 = 2, X2 = b2 = 1, b = (0 0 0 -1). 
4. 1= 1, kl = 1, XI = b l = O. Stop; X = (0 1 0 1) is an optimal solution of value 4. 

Next we show that the rows and columns of a TB matrix can be permuted so that the 
resulting TB matrix is a row inclusion matrix. 

Given a (0, 1) matrixA, let iii = (ain, ... ,ail) for i = 1, ... ,m be the elements of row i 
in reverse order, and let iij = (amj, ... , a Ij) for j = 1, ... , n be the elements of columnj in 
reverse order. 

Definition 4.4. The (0, 1) matrix A is called totally reverse lexicographic (TRL) if 
-i+1 L -i c . 1 1 d ·f - L - c . 1 1 a ~ a lor l = , ... , m - an 1 aj+1 ~ aj lOr} = , ... , n - . 

We now give an algorithm which shows that: 

Proposition 4.7. By permuting rows and columns, any (0, 1) matrix can be transformed 
to a TRL matrix in polynomial time. 

Proof For any partition M[, ... ,Mt of the rows of A, let dj E Z~ be given by 

dj = ( L aij, ... , L aij) for j EN. 
iEM, iEM, 

Initially, let t ='1 and MJ = M = {l, ... ,m}. Hence dj = 1:iEM aij' Suppose dj, = 

maxjEN dj • 

We now begin to construct the TRL permutation of A by making the following row and 
column permutations: 

1. j n is the last column. 
2. MI = {i EM: aij, = O} and M2 = M \ MI. Hereafter, all rows in MI precede those in 

M 2• 

Hence we have the m x 1 TRL matrix 

o 

and regardless of how we permute the rows withinMI andM2, we have iij J; iij , forj"* jn. 
Now for j"* jn, let dj = (1:iEM2 aij, 1:iEM, aij) and suppose dj'_l';; dj for j EN \ Un}. 

PartitionMk for k = 1,2 intoMk = {i E M k : aij'_l = O} andMk \ M k. Now put the rows in 
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Mk before those in Mk \ Mk and call the new partition Mh ... ,MI , where t ~ 4. Also 
move column I n- l to the (n - l)st position. Now we have an m x 2 TRL matrix 

with iij J; iijn_1 for) EN \ Un-l,}n}' 

}n-l }n 
o 

o 

1 
o 

o 
1 

o 

o 
o 

o 

1 
1 

The process can be continued by choosing a} E N \ U n-h} n} such that dj is lexico
graphically largest and then partitioning each of the M; to maintain the lexicographic 
ordering of the rows. • 

Example 4.3. 

1 2 3 4 5 6 7 

0 1 0 0 0 0 1 1 
0 0 1 0 0 2 

A= 
1 0 0 1 1 1 3 
1 0 0 0 1 1 4 
0 1 0 1 0 0 5 

0 0 0 0 6 

Step 1: dj = maxj=l ..... 7 dj = 4. Hence}7 = 3, MI = {l, 6}, andM2 = {2, 3,4, 5}. 
Step 2: d 5 = (3 0) {; db }"* 3. Hence}6 = 5, MJ = {l, 6}, Mz = {4}, andM3 = {2, 3, 5}. 
Step 3: d l = (1 1 1) {; dz, d 4, d 6, d 7• Hence }5 = 1, MI = {l}, Mz = {6}, M3 = {4}, 

M4 = {2, 5}, and M5 = {3}. 

Continuing in this manner, we obtain the TRL matrix 

4 2 6 7 1 5 3 

0 1 0 1 0 0 0 1 
1 1 0 0 1 0 0 6 
0 0 1 1 1 0 4 
1 0 0 0 0 2 
0 1 0 0 0 1 1 5 
0 0 1 1 3 

Now we can establish the equivalence of totally balanced TRL matrices and row 
inclusion matrices. 
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Proposition 4.8. Let A be a (0, 1) TRL matrix. A is totally balanced if and only if it does 
not contain the sub matrix F 

Proof If A is not TB, then it contains F (see Proposition 4.5). Now suppose A 
contains 

F=C 
Consider rows i l and iz, and leth be the last column of A with ai,j, * ai2j,' Since A is 

TRL,we obtaini3 > iz, ai,h = 0, andai2h = 1. Similarly, consideringcolumnsil andiz, with 
i3 being the last row with ai3j, * ai3h, we obtain i3 > i z, ai3j, = 0, and ai3h = 1. Let 

1 

° 

i3 

LJ 
i I 
iz 
i3 

If ai 3j3 = 1, thenA3 E.!U3 and A is not TB. If ai3h = 0, we repeat the argument using rows i2 
and i 3. So we obtaini4 > i3 with ai2j, = 0, ai3j, = 1, and ai,j = ai3j for alIi> i4' Now we also 
observe that by the definition ofi3, it follows that ai,j, = ai,j, = 0. Similarly, from columns 
iz andh, we obtain i4 > i3 with ai,j, = ai,h = ° and ai,j3 = 1. Let 

1 

° 1 

° 

° 1 

° ° 
° ) ° 1 . 

ai,j, 

Again, if ai,j, = 1, then A is not TB; and if ai,j, = 0, then i4 andi4 cannot be the last row and 
columnofA. 

After k steps, we get 

But this process is finite, so for some k we have Ak E .!Uk. • 
Now we have a polynomial-time algorithm for recognizing TB matrices. 

Algorithm for Recognizing TB Matrices 

Step 1: Given an arbitrary (0, 1) matrix A, permute its rows and columns to obtain a TRL 
matrix A '. (By Proposition 4.1, A is TB if and only if A' is TB. It can be shown that the 
algorithm in the proof of Proposition 4.7 runs in O(nZm) time). 

Step 2: Check all 2 x 2 submatrices of A' for the matrix F and then apply Proposition 4.8. 
(This takes O(mZnZ) time.) 
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2 11 

Figure 4.3 

Suppose A is TB and TRL. Then, by Proposition 4.8, A is a row inclusion matrix, and 
FC and DFC for A can be solved for integral optimal solutions by the algorithm given 
on p. 566. Furthermore, since submatrices of TB matrices are also TB, it follows that 
FC and DFC have integral optimal solutions for all bE Bm. 

Theorem 4.9. If A is a TB matrix, then Q(b) = (x E R:: Ax ~ b) is integral, and DFC 
has an integral optimal solution for all bE Bm. 

By proceeding in exactly the same way, we obtain analogous results for FP and DFP. 

Theorem 4.10. If A is a TB matrix, then PCb) = (x E R:: Ax ~ b) is integral, and DFP 
has an integral optimal solution for all b, with bi E { 1, 00) for all i. 

Totally balanced matrices arise in the formulation of some location problems as set
covering problems. Let T = (V, E) be a tree with nonnegative weights on its edges. The 
weight of the unique path joining nodes i and}, denoted by dij, is the sum of the edge 
weights over all edges in the path. In addition, for each} E V, there is an rj ~ 0 called the 
radius of node}. 

A neighborhood subtree of T rooted at node} is an induced subgraph Tj = (Jij, E j ), 

where Jij = {i E V: dij ~ r). Jij is the set of nodes that can be served by a facility placed at 
node}. Let Cj be the cost of Tj. 

The problem of finding a minimum-cost set of neighborhood subtrees that covers V is 
the set-covering problem min{cx: Ax ~ 1, x E B n ), where aij = 1 if i E Jij and aij = 0 
otherwise .. 

Example 4.4. We are given the tree in Figure 4.3. Let rj = 1 for all} E V, and let dij be the 
number of edges on the unique path joining nodes i and}. Then each neighborhood 
subtree contains a node and all of the nodes adjacent to it, and A is the node-star incidence 
matrix ofT. 

0 0 0 0 0 0 0 0 0 
1 1 1 1 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 
0 1 0 0 0 1 0 0 0 

A= 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 1 1 0 0 0 0 
0 0 0 0 1 0 0 1 0 1 
0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 0 0 
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v 2 

Figure 4.4 

Proposition 4.11. If A is a node by neighborhood subtree incidence matrix, then A is total
ly balanced. 

Proof Suppose A is not TB. Then we can assume that for some k ~ 3, A contains the 
k x k matrix ofacycle; that is, ajj = aj+I,J = 1 for} = 1, ... ,k - 1, akk = alk = 1, ~nd aij = 0 
otherwise. So for} = 1, ... , k - 1, 1j contains nodes} and} + 1 but no other nodes from {t, 
.. : ,k}, and Tk contains nodes 1 and k but no nodes in (2, ... ,k - 1). LetpJ be the unique 
path in T joining nodes} and} + 1, and let Pk be the unique path joining nodes 1 and k. 

Suppose k = 3. Then since T I, T2, and T3 are neighborhood subtrees, nodes 1,2, and 3 
cannot lie on a common path. Hence the paths Ph P2, and P3 intersect at some node v other 
than nodes 1, 2, or 3 (see Figure 4.4). 

Now let d/v = mini=I,2.3 div . Suppose I = 1. Let u be the node closest to V2 on P2. Hence 
diu';;; max(d2u , d3u ), and T2 contains node 1. By symmetry the same argument applies if 
1= 2 or 3. 

Now suppose k > 3. Define v to be the node closest to node 3 on the path PI' (Now we 
can have v = 1 or 2 since T3 contains nodes 3 and 4.) Define 

. ;, {minU: v is on the path joining nodes 3 and i + 1,3,;;; i ,;;; k - 1} 

) k otherwise. 

If} < k, the path from 3 to} does not contain v, and the path from 3 to} + 1 does. Thus 
v is on the path Pj (see Figure 4.5a). If} = k, the path from 3 to k does not contain v. But 
since v is on the path joining nodes 1 and 3, v is on Pk (see Figure 4.5b). 

In Figure 4.5a let dqv = mini=I,2.J.J+1 div' Then TI and Tj contain q, which is a contra
diction. Similarly, in Figure 4.5b, let dqv = mini=I,2.3.k div' Then T2 and Tk contain q, 
which again is a contradiction. So the k x k cycle matrix cannot occur and A is totally 
balanced. • 

j+l 

v 2 1 v 2 

C<. 
• 

(a) (b) 

Figure 4.5 
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The nodes Df a graph are trivial neighborhood subtrees Ti = «vJ, 0) for i = 1, ... , 
m. Hence a node by neighborhood-subtree incidence matrix is a special case of a 
neighborhood-subtree by neighborhood-subtree incidence matrix. Given two families of 
neighborhood subtrees ofa tree T, namely, Ti = (Vi' EJ for i = 1, ... ,m and Tj = (Vj, 
E}) forj = 1, ... ,n, let 

{ I ifv;nV;*0 
aij = ° otherwise. 

By using an argument similar to the one given in the proof of Proposition 4.11, we obtain 
the following generalization: 

Proposition 4.12 If A is a neighborhood subtree by neighborhood subtree incidence 
matrix, then A is totally balanced. 

We conclude this section by mentioning some results about balanced matrices. Note 
that if A is not balanced, and therefore contains a submatrix A' E AlZk+l for some k ~ 1, 
then Theorem 4.9 is false. This is an immediate consequence of the fact that the unique 
solution to A'x = 1 is x = 10 ... 1). Hence with b i = 1 for the rows of A' and b i = ° 
otherwise, Q(b) is not integral. The main result, which we will not prove here, is that 
Theorems 4.9 and 4.10 are still true when A is balanced. 

Theorem 4.13. Let A be a (0, 1) matrix with no zero rows or columns. The following 
statements are equivalent. 

1. A is balanced. 
2. PCb) = {x E R~: Ax ~ b} is integralfor all b with b i E {l, oo}. 

3. Q(b) = {x E R~: Ax ~ b} is integralfor all bE Brn. 

In Section 5 we will study matrices A for which P = {x E R~: Ax ~ 1} is integral but 
where A is not balanced. In Section 6 we will consider some matrices A for which 
Q = {x E R~: Ax ~ 1} is integral but where A is not balanced. 

5. NODE PACKING AND PERFECT GRAPHS 

Integrality results for the fractional packing polytope P = {x E R~: Ax ~ 1} can be general
ized to a larger class of(O, 1) matrices than that considered in Section 4. These matrices are 
clique matrices of a family of graphs known as perfect graphs. Recall that in Section 11.2.1 
we used clique matrices in the formulation of the node-packing problem. 

For completeness, some definitions are repeated here. 

Definition 5.1. A node packing on a graph G = (V, E) is a U <;; V with the property that 
no pair of nodes in U is joined by an edge. 

Definition 5.2. A clique in a graph G = (V, E) is a C <;; V with the property that every 
pair of nodes in C is joined by an edge. 

Unless otherwise specified, when we use the term clique we mean a maximal clique. 
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K= (j 
1 1 0 0 

!) 
1 0 1 0 
0 1 0 1 
1 1 0 0 

5 6 
3 

Figure 5.1 

Definition 5.3. The clique matrix K of a graph G is the (0, 1) incidence matrix whose 
rows correspond to all of the cliques of G and whose columns correspond to the nodes of 
G. 

Definition 5.4. The fractional node-packing polytope of a graph G is P = {x E R~: 

Kx.:;; 1}, wheren = I VI. 

Definition 5.5. A graph G is perfect if its fractional node-packing polytope is integral. 

This polyhedral definition of a perfect graph is not the standard definition. Later in this 
section, we will show that it is equivalent to the standard definition, which is given purely 
in graphical terms. Originally, graphs that satisfied Definition 5.5 were called pluperfect. 

Example 5.1. A graph and its clique matrix are shown in Figure 5.1. 
Matrix K is not balanced. Nevertheless, G is perfect since P is integral. The reader can 

check that its only extreme points are x = 0, x = ej for) = 1, ... , 6, x = ej + ek with 
) + k = 7, and x = (0 0 0 1 1 1). This is not inconsistent with Theorems 4.10 or 
4.13 since with b 1 = 00 and b i = 1 otherwise, P(b) contains the extreme point 
1(1 1 0 0 0), which is also an extreme point of Q = {x E R~: Kx ~ 1}. 

Before studying some classes of perfect graphs, we explain why it suffices to consider 
clique matrices. In particular, we will show that if A is the incidence matrix of clutter that 
is not a clique matrix, then P = {x E R~: Ax .:;; 1} is not integral. 

Proposition 5.1. Let A be the m x n incidence matrix of a clutter. The following statements 
are equivalent. 

1. A is a clique matrix. 
2. [fA containsap xpsubmatrixA' wherep ~ 3 and all of the row and column sums of 

A' equal p - 1, then A' is contained in a (p + 1) x p submatrix that contains a row of 
alii's. 

Proof 1 .... 2. Let G(A) be the intersection graph of A and, without loss of generality, let 
A' be the submatrix of A consisting of the first p rows and columns of A. If statement 2 is 
false, then the sets {l, ... ,p} \ {i} are contained in cliques for i = 1, ... ,p, but no clique 
contains {l, ... ,p}. This is impossible for a clique matrix. 

2 .... 1. Let Ni = {j: a ij = 1} for i = 1, ... , m. If statement 1 is false, there exists a minimal 
C ~ V with I C I ~ 3 such that the subgraph of G(A) induced by C is complete, and there 
is no i such that Ni ::2 C. Since C is minimal, for each) E C, there is a distinct i(j) such 
that Ni(j) n C = C \ {j}. Hence A contains a k x k submatrix A', all of whose row and 
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column sums equal k - 1, but there is no (k + 1) x k submatrix that contains A I and has a 
k-vector of ones. Thus statement 2 is false. • 

Proposition 5.2. Let A be an m x n incidence matrix of a clutter. If A is not a clique matrix, 
then P = {x E R~: Ax ~ 1} is not integral. 

Proof A contains the submatrixA I of Proposition 5.1. Suppose the columns of A I are 
indexed 1, ... ,p. Then it is easy to see that Xj = l!(p - 1) for j = 1, ... ,p, and Xj = 0 
otherwise is an extreme point of P. • 

We now consider two well-known classes of perfect graphs and a necessary condition 
for a graph to be perfect. 

Proposition 5.3. Bipartite graphs are perfect. 

Proof The cliques of a bipartite graph are its edges. Hence K is the edge-node 
incidence matrix of the graph. Thus, by Corollary 2.9, K is totally unimodular and, by 
Proposition 2.2, P is integral. • 

Definition 5.6 A chord of a cycle is an edge joining two nodes of the cycle that are not 
adjacent on the cycle. A graph with k nodes, k ~ 4, corresponding to a cycle without 
chords is called a k-hole. A graph that is the complement of a k-hole is called a k-antihole. 
A hole or antihole is odd (even) if k is odd (even). 

A 5-hole and a 7-antihole are shown in Figure 5.2. 

Proposition 5.4. If a graph G contains a node-induced subgraph that is an odd hole or an 
odd antihole, then G is not perfect. 

Proof Suppose G contains an odd hole on nodes {l, ... ,2k + n. Then we can write 
Kas 

where Kl is the edge-node incidence matrix of the odd hole, and K3 contains at most two 
positi ve elements in each row. Hence Xj = i for j = 1, ... , 2k + 1, and Xj = 0 otherwise is an 
extreme point of P. 

6 5 
2 

3 

4 4 

5-hole 7 -anti hole 

Figure 5.2 
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On the other hand, if G contains an odd antihole on nodes {t, ... , 2k + 1}, then each 
maximum clique of the subgraph is of size k. Hence Xj = 11k for j = 1, ... , 2k + 1, and 
Xj = 0 otherwise is an extreme point of P. • 

Many classes of graphs without induced odd holes or antiholes are known to be perfect. 
However, the converse of Proposition 5.4 is unresolved. It is known as the perfect graph 
conjecture and is considered to be one of the most challenging and difficult problems in 
graph theory and polyhedral combinatorics. 

We now consider a fundamental class of perfect graphs. 

Definition 5.7. A graph is called chordal if it does not contain any k-holes for k ~ 4. 

Proposition 5.5. If matrix A is a totally balanced incidence matrix of a clutter, then it is 
the clique matrix of a chordal graph. 

Proof If A is not a clique matrix, then by Proposition 5.2 it follows that 
P = {x E R~: Ax ~ 1} is not integral. Hence by Theorem 4.10, A is not TB. If A is a clique 
matrix of a graph that is not chordal, then by Definition 5.7 it follows that A contains a 
member of .;Uk for some k ~ 4. Hence A is not TB. • 

The chordal graph of Figure 5.1 shows that the converse is false. 
There is a nice characterization of chordal graphs that yields an efficient recognition 

algorithm as well as an algorithm that gives an integer solution (node packing) to the linear 
programming problem over the fractional node-packing polytope. Let N(v) = {u E 
V: (u, v) E E} be the nodes adjacent to v-that is, the set of neighbors ofv. 

Definition 5.8. A node v of G = (V, E) is called simplicial if it and its neighbors form a 
clique. 

In the graph of Figure 5.1, nodes 4, 5, and 6 are simplicial, but nodes 1, 2, and 3 are not. 

Definition 5.9. An ordering of V, (J' = [Vb V2, ••. , vn ] is a perfect elimination scheme 
(PES) if, for i = 1, ... , n - 1, viis a simplicial node of the subgraph induced by {v i, ... , 
vn}. 

In the graph of Figure 5.1, [6 5 4 3 2 1] is a PES. 
It is easy to see that the existence of a PES implies that a graph is chordal. For graph G let 

v be the first node of a PES that is contained in a k-hole with k ~ 4. If v does not exist, G is 
chordal. Otherwise, v and the two nodes u and w adjacent to v on the cycle are contained 
in a clique. Hence (u, w) E E so that the cycle contains a chord, and G is chordal. 

Moreover, it can be shown that every chordal graph has a PES. 

Theorem 5.6. A graph is chordal if and only if it contains a PES. 

By considering the nodes sequentially, a PES can be constructed in polynomial time or 
can be shown not to exist. 
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Now suppose that [1 2 n] is a PES for G. Let ki be the characteristic vector of 
the clique containing node i in the subgraph induced by the nodes (i, ... ,n). Then the 
n x n matrix K whose rows are k1, (0, kZ), ... , en contains the incidence vectors of all of 
the (maximal) cliques of G. K can, of course, also contain dominated rows corresponding 
to non maximal cliques. However, it is convenient to work with K since kii = 1 for i = 1, 
... , nand ki) = 0 for} < ;. Let S), ... , Sm be any partition of{1, ... , n) with the property 
that if IE Si, then kl ~ k i. 

For any c E Z~, we can write the fractional node-packing problem as 

(FNP) max{cx: Kx ~ 1, x E R:) = max{cx: Kx ~ 1, x E R~) 

and its dual as 

(DFNP) min{1u: uK;;. c, u E R~) = min{1y: yK;;. c, y E R':'). 

We obtain a feasible y from a feasible u with lu = ly by Yi = LIES, UI for i = 1, ... , m. 
We now give a greedy algorithm that finds integral optimal solutions to DFNP and FNP 

for chordal graphs. The algorithm is very similar to the greedy algorithm given in the 
previous section for the fractional covering problem with totally balanced matrices. 

Algorithm for DFNP and FNP for Chordal Graphs 

DFNP: 
Initialization: ; = 1, c 1 = C, Jo = 0 [12 ... n] is a PES. 

Iteration i: Ui = max{O, cD. If Ui > 0, let J i = J i- 1 U {i) and Ci+1 = c i - uk. If Ui = 0, then 
J i = J i- 1 and Ci+1 = ci• If i = n, stop; (u), ... , un) is an optimal solution. Otherwise, 
;<-i+1. 

FNP: 
Initialization: J = J n (from DFNP), Xj = 0 for} tf- J. 
Iteration: Let I be the last element of J. Set x, = 1 and J <- J \ (i: kit = 1). If J = 0, stop; 

x = (x), . : • , xn} is an optimal solution. Otherwise repeat. 

Proposition 5.7. The algorithm gives integral optimal solutions to DFNP and FNP. 

Proof By construction, the solutions are integral and the dual solution is feasible. 
Suppose that the ith constraint of FNP (with respect to the matrix K) is violated. Then 
there exists}l =I=}2 with kulxjl = kij,xj, = 1. Suppose}2 follows}1 in the PES. Then i =}1 or i 
precedes} 1 in the PES. Since} 1 was not deleted from J when we set xj, = 1, it follows that 
kjlj, = O. But this contradicts the assumption that i is a simplicial node of the subgraph 
induced by {i, ... ,}), ... ,}2, ... n}. 

To complete the proof, we show that complementary slackness is satisfied. By construc-
. 1 N • 

tion, we have 2:{:1 kijUi > c) only if cj < O. But then J) = J)-I. Hence} tf- J and Xj = O. Now 
suppose Ui > 0, i E J. By the construction of the primal solution, either Xi = I or there 
exists an I that comes after i in the PES with ki/x, = 1. Hence, L~1 kijxj = 1. • 
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Corollary 5.8. Chordal graphs are perfect. 

Example 5.1. (continued). We use the PES [4 5 6 1 2 3]. Then 

4 5 6 1 2 3 

1 0 0 1 1 0 
0 1 0 1 0 

K= 0 0 1 0 
0 0 0 1 
0 0 0 0 1 
0 0 0 0 0 

Letc=(3 1 2 4 6 3)= c l . 

DFNP: 

1. UI = 3, c2 = (0 1 2 

2. U2= 1,c3 =(0 0 2 

3. U3 = 2, c4 = (0 0 0 

4. U4 = 0, CS = c4, J4 = J3• 

5. Us= 1,c6 =(0 0 0 

6. U6 = 0, J6 = Js• 

FNP: 

1. J = {4, 5, 6, 2}, X2 = 1. 

2. J = {5}, Xs = 1. 

1 
0 

0 

0 

3 3), J I = {4}. 

3 2),12 = {4, 5}. 

0), J 3 = {4, 5, 6}. 

o -1),1s = {4, 5, 6, 2}. 

An optimal solution to FNP is x = (0 1 0 0 1 0). Let Yi = Ui for i = 1,2, 3 and let 
Y 4 = U4 + Us + U6. An optimal solution to DFNP is y = (3 1 2 1). 

We now give some general properties of perfect graphs and the corresponding 
polytopes. 

Let E = {e: e $. E}; then G = (V, E) is the complement of G. Let K be the clique matrix 
of G. Perfect graphs always come in pairs because: 

Proposition 5.9. Gis perfect if and only ifG is perfect. 

Proof If G is perfect, then by definition it follows that P = {x E R~: Kx ~ 1} is an 
integral polyhedron whose extreme points are the incidence vectors of node packings of G. 
Since there is a one-to-one correspondence between cliques of G and maximal node 
packings of G, the maximal extreme points of P are the rows of K. 

Now by antiblocking polarity-in particular, Proposition 5.8 of Section 1.4.5-
P = {x E R~: Kx ~ 1} is an integral polyhedron. Hence G is perfect. 

The converse follows trivially since G is the complement of G. • 
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Figure 5.3 

Example 5.2. In the graph of Figure 5.3, VI = (1, 2, 3) and V2 = {4, 5, 6} are cliques. 
Hence this graph is the complement ofa bipartite graph. By Proposition 5.3 and Proposi
tion 5.9, it is perfect. 

The fractional node-packing polytope on the subgraph induced by V \ U is 
P n {x E R~: Xj = 0 forj E U}, which is a face of P and therefore is integral if P is integral. 
Hence we have the following proposition: 

Proposition 5.10. Node-induced subgraphs of perfect graphs are perfect. 

Now consider P(b) = {x E R~: Kx ~ b} with b E Em. P(b) is the face of P with Xj = 0 if 
there is an i with b i = 0 and k ij = 1. Hence if P = P(l) is integral, then P( b) is integral for all 
bEEm. 

Let a( G) be the size of a maximum cardinality node packing in G, and let B( G) be the 
minimum number of cliques required to cover all the nodes of G. For any graph G with n 
nodes and m cliques, by relaxation and duality we have 

a(G) ~ max{lx: Kx ~ 1, x E R1} 

= min(1y: yK ~ 1, Y E R':'} ~ B(G). 

For perfect graphs, the first inequality is an equality; for an odd hole on 2k + 1 nodes, 
however, a(G) = k, B(G) = k + 1, and the linear programming relaxations have value 
k + t. 

To generalize a and B for graphs with node weights, let 

a(G, c) = max{cx: Kx ~ 1, x E En} 

z(G, c) = max{cx: Kx ~ 1, x E R~} 

= min{1y: yK ~ c, Y E R':'} 

B(G, c) = min(1y: yK ~ c, Y E Z':'}. 

Hence a(G, 1) = a(G), B(G, 1) = B(G), and for any c E En with U = {j E V: Cj = l} we 
have a( G, c) = a(H) and B( G, c) = B(H), where H is the subgraph of G induced by U. By 
duality and relaxation, we obtain 

a(G, c) ~ z(G, c) ~ B(G, c). 

For perfect graphs, we know that the first inequality is an equality for all c and, in 
particular, for c E En. The following result, which is the fundamental theorem of this 
section, establishes the second equality for c E En and also yields some interesting 
corollaries. 
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Theorem 5.11. Thefollowing statements are equivalent. 

1. P = {x E R~: Kx .",; 1} is integral. (G is perfect.) 

2. a(H) = ()(H) for all node-induced subgraphs H of G. 

Proof 1 = 2. Given that G is perfect, by Proposition 5.10 every subgraph H of G is 
perfect. Hence if H is the subgraph induced by U and if Cj = 1 for} E U and Cj = 0 
otherwise, we obtain 

(FNP) a(H) = max{cx: Kx .",; 1, x E R~}. 

Thus, by linear programming duality, we need to prove that 

(DFNP) min{1y: yK ? c, Y E R';'} 

has an integral optimal solution for all c E Bn. 
The proof is by induction on the number of positive components of c, which equals 

1 U I. Note that if c = 0, then y = 0 is an optimal solution to DFNP. Now it suffices to 
assume the hypothesis for all proper subgraphs of G and to prove that 
min{1y: yK? 1, Y E R';'} has an integral optimal solution. 

Let the rows of K be k i for i = 1, ... , m. Since y = 0 is not feasible to DFNp, there is an 
i, say i = r, such that y, > 0 in an optimal dual solution. Hence by complementary 
slackness, k'x = 1 for every optimal solution to FNP. 

If k' = 1, then r = 1 and an optimal solution to DFNP is Yl = 1. If k r < 1, by the 
induction hypothesis, min{1y: yK? 1 - k', y E R';'} has an integral optimal solution, 
say yO. 
Claim 1: yO + e, is an optimal solution to DFNP. Note it is feasible since 
(yO + e,)K? 1 - k' + k r = 1. Because G is perfect, any maximum cardinality node pack
ing on G is an optimal solution to FNp, and hence, by the definition of r, every maximum 
cardinality node packing on G contains a node in the clique C = {j E V: k rj = 1}. So for the 
subgraph H induced by V \ C, a maximum cardinality packing is obtained by deleting a 
node from C from a maximum cardinality packing on G. Hence a(H) = a( G) - 1, and 

1yO + 1 = ()(H) + 1 = a(H) + 1 = a(G).",; ()(G).",; 1(yO + e,) = 1yo + 1. 

So yO + e r is an integral optimal solution to DFNP. 

2 = 1. We will prove that a(G, c) = z(G, c) for all c E z~. Statement 2 says that 
a(G, c) = z(G, c)for all c E Bn. Now for any c E zn \ z~ let Cj = Cj if Cj ? 1 and let Cj = 0 
otherwise. Since Cj < 0 implies Xj = 0 in both the fractional and integer node-packing 
problems, a(G, c) = a(G, c) and z(G, c) = z(G, c). Hence from statement 2 we have 
a( G, c) = z( G, c) for all C E zn with C .",; 1. 

The proof for C E z~ is by induction with the hypothesis a(G, c') = z(G, c') for all 
c' < c. Consider c E z~ with Cj ? 2 for some}. Let c' = c - ej. Since C;? 1, it follows from 
complementary slackness that there is an r such that k rj = 1 and k'x = 1 in every optimal 
solution to max{c'x: x E P}. Let c = c - kr. Hence by the induction hypothesis, we have 
a(G, c) = z(G, c). 
Claim 2: a(G, c) = a(G, c) + 1. Since c > C, we have a(G, c)? a(G, c). 
Let y be an optimal solution to 

z(G, c) = min{1y: yK? C, Y E R';'}. 
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duplicate 1 

1 ' 

duplicate 2 

1 ' 

Figure 5.4 

Since (y + er)K;;. e + k' = c, we have z(G, c) ~ z(G, e) + l. Since a(G, c) ~ z(G, c) and 
a(G, e) = z(G, e), we have 

a(G, e) ~ a(G, c) ~ a(G, e) + 1. 

Finally, since the a's are integers, a( G, c) = a( G, e) or a( G, c) = a( G, e) + 1. 
Suppose a(G, c) = a(G, e) and let x be the characteristic vector of any node packing 

with ex = a(G, e). Then k'x = 0 and c'x = a(G, c') since a(G, e) ~ a(G, c') ~ a(G, c). 
This is a contradiction because we have already shown that k' x = 1 for any node packing x 
with c'x = a(G, c'). Hence a(G, c) = a(G, e) + 1. 

Now we have 

a(G, c) ~ z(G, c) ~ z(G, e) + I = a(G, e) + 1 = a(G, c). 

Hence z( G, c) = a( G, c), and the theorem is proved. • 
The standard definition of a perfect graph is statement 2 of Theorem 5.11. In the proof 

of 2 = 1 we first used the trivial implication 2 = 3, where 

3. max{cx: x E P} has an integral optimal solution for all c E Bn, 

and thus we proved 3 = 1. Hence the real content of 2 = 1 is the following result. 

Corollary 5.12. P = {x E R~: Kx ~ 1} is integral if max{cx: x E P} has an integral 
optimal solutionfor all c E Bn. 

Corollary 5.12 is rather surprising since, in general, we need integral optimal solutions 
for all c E zn to conclude that a polytope is integral. 

There is another interesting interpretation of this result, which involves duplicating the 
nodes of a graph. By duplicating a node v of a graph G, we mean that a new node v' is 
added to G and that v' is joined to all of the neighbors ofv but not to v (see Figure 5.4). 

It is easy to see that if G' is the graph obtained by duplicating node j Cj - 1 times in the 
graph G, then a(G') is the weight ofa maximum-weight node packing in G with weight Cj 

on node j. Hence if statement 2 holds for G and all of the graphs obtained from G by 
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duplicating nodes, then statement 1 is true. Thus Corollary 5.12 can also be interpreted in 
graphical terms. 

Corollary 5.13. If G is a perfect graph and G' is obtained from G by duplicating nodes, 
then G' is perfect. 

In polyhedral terms, since G' is perfect ifand only ifa(H') = B(H')for all subgraphsH' 
of G', we have that if G is perfect, then a( G, c) = B( G, c) for all c E zn. In other words: 

Corollary 5.14. IfG is a perfect graph, the linear system Kx ~ 1, x ~ 0 is TO!. 

Yet another corollary to Theorem 5.11 is obtained from Proposition 5.9. Let w(G) be 
the size of a maximum cardinality clique of G. Since cliques in G correspond to maximal 
node packings in G and conversely, we have 

w(G) = a(G) and w(G) = a(G). 

Also define the chromatic number of G, denoted by y( G), to be the minimum number 
of colors required to color the nodes of G so that no adjacent nodes have the same color. 
The celebrated four-color theorem says that every planar graph (a graph that can be drawn 
in the plane without crossing edges) has y(G) ~ 4. The complete graph on 4 nodes is a 
planar graph with y(G) = 4. A minimum cardinality node coloring for the graph of 
Figure 5.1 is shown in Figure 5.5. 

Note that in any feasible coloring, all of the nodes of the same color form a node 
packing. Thus y(G) is the minimum number of node packings needed to cover all ofthe 
nodes. Hence we have 

y(G) = B(G) and y(G) = B(G). 

Now from Proposition 5.9 and Theorem 5.11, we immediately obtain the following 
theorem: 

Theorem 5.15. Thefollowing statements are equivalent. 

1. a(H) = (J(H) for all node-induced subgraphs H of G. 
2. w(H) = y(H)for all node-induced subgraphs H ofG. 

Theorem 5.15 is known as the perfect graph theorem. 

B 

Yellow Blue Red 

Figure 5.5. w(G) = y(G) = 3. 
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Figure 5.6 G is perfect by Theorem 5.17. 

It would take us too far from the subject matter of this book to study additional classes 
of perfect graphs. The following two theorems, given without proofs, illustrate some of the 
progress that has been made in identifying classes of perfect graphs. They do not, however, 
give the most general results. 

Theorem 5.16. G is perfect if each odd cycle of length at least 5 contains at least two 
chords. 

Theorem 5.17. G is perfect if for each odd cycle there is an edge (i, j) of the cycle with the 
property that every clique that contains i and j also contains another node of the cycle. 

Theorem 5.17 is illustrated in Figure 5.6. Edge (1, 7) satisfies the hypothesis of the 
theorem, since the only clique that contains (1, 7) is C = {l, 6, 7}. However, the edge (6, 7) 
does not satisfy the hypothesis since it is contained in the clique {6, 7, 8}. 

Theorem 5.17 is an immediate corollary to Theorem 4.13, since the class of graphs 
defined in Theorems 5.17 is balanced. This follows since the hypothesis of the theorem 
forbids a submatrix in ';uk for k ~ 3 and odd by requiring that any (2k + 1) x (2k + 1) 
submatrix with all row and column sums at least 2 has at least one row with row sum at 
least 3. 

Although no characterization of perfect graphs is known in graphical terms, there is an 
important result which characterizes (0, 1) matrices that are clique matrices of perfect 
graphs in terms offorbidden submatrices. We will not prove this theorem. 

Theorem 5.18. Let A be the m x n incidence matrix of a clutter. The following statements 
are equivalent. 

1. A is the clique matrix of a perfect graph. 
2. If A contains a p x p nonsingular submatrix A' whose row and column sums are all 

equal to p, 2 ~ P ~ [n/2J, then there is a (p + 1) x p submatrix that contains A' and 
also contains a row with row sum greater than p or a row with row sum p that is not 
equal to any row of A'. 

The implication 1 = 2 is easy to prove since if statement 2 is false we obtain a fractional 
extreme point with Xj = p-' for each column of A " and Xj = 0 otherwise. 
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If statement 2 is false, then p = p - 1 implies that A is not a clique matrix (see 
Proposition 5.1), and P = 2 or [p /2] for p odd implies that the graph contains an odd hole 
or an odd anti hole (see Proposition 5.4). 

Thus, one approach to the perfect graph conjecture is to consider minimal imperfect 
graphs-that is, graphs that are imperfect but all of whose node-induced subgraphs are 
perfect. If the perfect graph conjecture were true, Theorem 5.18 says that for a minimally 
imperfect graph, statement 2 must have p odd and P = 2 or [p /2]. 

For some classes of graphs, the perfect graph conjecture is known to be true. For 
example, the planar graphs without odd holes and odd antiholes are perfect. 

Theorem 5.18 also establishes that the recognition problem for imperfect graphs is in 
JIPf'. This follows since (a) the clique matrix of an imperfect graph must have a (p + 1) x p 
submatrix for which statement 2 is false and (b) such a matrix can be validated in 
polynomial time. However, it is not known whether the recognition problem for perfect 
graphs is in .N'PJ'. 

In addition, it is not known whether recognizing graphs that contain no odd hole or 
antihole is in .N'PJ'. Obviously these two recognition problems are equivalent if the perfect 
graph conjecture holds. 

We close this section with a brief discussion of algorithms for solving node-packing 
problems. For general graphs, the maximum cardinality node-packing is .N'PJ'-hard (see 
Section I.5.6), and even the maximum-weight fractional node-packing problem is .N'PJ'
hard (see Section I.6.3). However, strong fractional cutting-plane algorithms (which use 
heuristics to find violated clique and other inequalities, and good feasible solutions) are 
quite successful in solving a variety of instances. 

For general perfect graphs, there is an ellipsoid algorithm that solves the maximum
weight node-packing problem in polynomial time. However, the fractional node-packing 
polytope is not the basis of the algorithm since the separation problem for clique 
inequalities is another weighted node-packing problem on a perfect graph. Instead, the 
algorithm uses a convex constraint set which, for a general graph, is contained in the 
fractional node-packing polytope and contains the convex hull of node packings. Hence 
for perfect graphs it coincides with the convex hull of node packings. The separation 
problem for this convex constraint set is solvable in polynomial time. But it is necessary to 
use a generalization of the ellipsoid algorithm to accommodate the nonlinear constraints. 

For some classes of perfect graphs, efficient combinatorial algorithms are known for the 
recognition problem and for solving the maximum-weight node-packing problem. We 
have already solved these problems for bipartite and chordal graphs. More generally, for 
the perfect graphs given in Theorem 5.16, the recognition problem and the maximum
weight node-packing problem can be solved in polynomial time. 

Efficient node-packing algorithms are not restricted to perfect graphs. 

Definition 5.10. A line graph L(G) ofa graph G is obtained by replacing each edge ofG 
by a node and joining two nodes by an edge if the two edges in G are incident to a common 
node (see Figure 5.7). 

4 5 

:k8~3 1 
7 6 

G L(G), L(G) is not perfect 

Figure 5.7 
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Figure 5.8 

It is easy to see that a subset of nodes in L( G) is a packing if and only if the 
corresponding set of edges in G is a matching. Hence for line graphs, the maximum-weight 
node-packing problem in L( G) is equivalent to a maximum-weight matching problem in 
G (see Chapter 1II.2). 

The graph in Figure 5.8 is called a claw. A graph is called claw-free if it does not contain 
a claw as a node-induced subgraph. By drawing a few pictures, the reader can establish that 
line graphs are claw-free, but the converse is false. 

It is easy to see that claw-free graphs need not be perfect since a 5-hole is claw-free. An 
interesting property of claw-free graphs is illustrated in Figure 5.9. The black nodes of the 
graph are a node packing. Nodes {l, 2, 3, 4, 5} induce a path whose nodes alternate 
between white and black and whose end nodes are white. By interchanging the colors of 
the nodes on this path, we increase the cardinality of the packing. 

This means of increasing the size of a packing works for claw-free graphs because if 
there were any edges between the nodes {l, 3, 5} or between one of these nodes and a black 
node not on the path, the graph would contain a claw. This approach leads to an efficient 
algorithm for solving the maximum-weight node-packing problem on claw-free graphs. 
The algorithm is closely related to the matching algorithm discussed in Section 1II.2.3. 

Claw-free graphs without odd holes and odd antiholes are perfect; that is, the perfect 
graph conjecture is true for these graphs. However, no description of the convex hull of 
node packings is known for claw-free graphs. 

2 3 4 5 

:"'Q-------!)'7 

8 

Figure 5.9 
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6. BLOCKING AND INTEGRAL POLYHEDRA 

In the previous sections of this chapter, we have considered the following types of 
questions: (1) Given a family of polyhedra of the form P = {x E R~: Ax ~ b}, under what 
conditions on (A, b) will P be integral? (2) When does the dual linear program 
min{yb: yA ;?; c, y E R':'} have an integral optimal solution? In particular, in the last 
section we completely characterized when P = {x E R~: Ax ~ 1} is integral when A is a 
0-1 matrix. Here we consider the question of when Q = {x E R~: Ax ;?; 1} is integral, and 
when the corresponding inequality system is TDI. However, there is no nice characteriza
tion known, so we start from a different point of view. Given a finite set N = {l, ... ,n} 
and a set :JP of subsets of N, we consider the problem 

(6.1) min{w(F): FE :JP}, 

where w E R~ is a weight function on the elements of Nand w(F) = LjEF Wj. 
We consider two questions: 

a. How can we formulate (6.1) as an integer program? 
b. How can we formulate (6.1) as a linear program? 

We will formulate (6.1) as an integer program of the form 

min( wx: Ax ;?; 1, x E Bn} 

where A is a 0-1 matrix, and then we will ask when the polyhedron Q = {x E R~: Ax ;?; 1} is 
integral. 

If Q is not integral, then to formulate (6.1) as a linear program 

(6.2) min{ wx: x E Q*} 

we will describe the polyhedron Q* whose extreme points are the characteristic vectors xF 

for FE:JP, and such that min{wx: x E Q*} is unbounded if and only ifw ERn \ R~. 

Many familiar examples of (6.1) are associated with graphs. Let G = (V, E) be a 
complete graph, let N = E and Wj be the weight of ej E E. Some problems are given below. 

1. The minimum-weight s-t path problem. FE:JP if F is the edge set of an s-t path. 
2. The minimum-weight s-t cut problem. FE :JP if F is the set of edges of a minimal 

s-t cut. 
3. The minimum-weight covering of nodes by edges. FE:JP if F is a minimal set of 

edges with the property that every node is met by some edge in F. 
4. The minimum-weight star problem. F E :JP if F is the set of edges incident to a node. 

F is called a star. 
5. The traveling salesman problem. FE :JP if F is the edge set of a Hamiltonian cycle. 

A significant difference between problem 4 and the others is that in problem 4, I:JP 1 = 

I V I, while in the others I:JP 1 grows exponentially with 1 V I. Hence problem 4 is easily 
solved by enumeration. Problems 1 and 2 are network flow problems (see Sections 1.3.2 
and 1.3.4). Problem 3 is closely related to the matching problems considered in Chap-
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ter III.2 and will be considered in Section III.2.4. It can be solved in polynomial time. 
Problem 5 is ,NflP-hard. 

To develop integer and linear programming formulations of(6.1), we consider another 
clutter. 

Definition 6.1. The blocking clutter of ~ is the clutter B(~) whose members H satisfy the 
following two conditions. 

1. Intersection: H n F '*' 0 for all F E~. 

2. Minimality: If H'C H, then H'n F = 0 for some F E~. 

Example 6.1. Suppose ~ is represented by the rows of the matrix 

(1 1 1 0) 
o 1 0 1 . 
o 0 1 1 

The reader can check that its blocking clutter is specified by the rows of the matrix. 

Proposition 6.1. B(B( g;» = ~. 

Proof For any clutter~, let ~+ = {R: R :2 F for some F E ~}. Suppose FE $P. By 
the definition ofB($P) we havethatifH E B(~), thenF n H '*' 0. HenceF E (B(B(~»t. 

Now we need to prove that the members of $P are the minimal elements of (B(B($P»t. 
Suppose T ~ ~+. Then for any G E~, we obtain G r;t T. Hence G n (N \ T) '*' 0 for 

all G E $P. So N \ T E (B($P)t and thus T ~ (B(B($P»t. Hence the minimal elements of 
(B(B(~»t are precisely the members of~; that is, ~ = B(B(~». • 

Thus we can interchange the roles of ~ and B( $P) and simply refer to a pair of clutters $P 
and ~ as blocking clutters when ~ = B(~) or ~ = B(~). 

The proof of Proposition 6.1 establishes the following theorem of the alternative, which 
characterizes blocking pairs of clutters. 

Corollary 6.2. The clutters $P and ~ are a pair of blocking clutters if and only if for all 
T s; N, there is either an F E ~ with F s; T or an H E 'J{ with H s; N \ T but not both. 

Proof We have already shown that if T ~ $P+, then N \ T E (B($P»+. Both statements 
cannot be true because of the intersection condition. The converse is proved similarly .• 

Example 6.2. Suppose ~ is the clutter of s -t paths in a connected graph. We have proved 
in Section 1.3.4 that G containsans-t path ifand onlyifevery s-t cutis nonempty. Hence 
every s-t path contains an edge belonging to every s-t cut and conversely. Thus B(~) is 
the clutter of minimal s-t cuts. Figure 6.1 shows a graph and the matrices of incidence 
vectors of s-t paths and minimal s-t cuts. 
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u 

8 

[) 

ej ez e3 e4 es ej ez e3 e4 es 
1 0 0 1 0 1 1 0 0 0 
1 0 0 1 1 0 0 1 
0 1 1 0 0 1 1 0 
0 0 0 0 0 0 0 

Path matrix Cut matrix 

Figure 6.1 

Example 6.3. Let:J' be the clutter of edge covers (covers of nodes by edges) in a graph 
G = (V, E) without isolated nodes. E' s; E is an edge cover if and only if every node in the 
subgraph G = (V, E') has degree at least l. Hence B(:J') are the stars ofG. Note that the star 
matrix is the node-edge incidence matrix of G. For the graph of Figure 6.1, the incidence 
matrices of minimal edge covers and stars are given below. 

ej e2 e3 e4 es ej ez e3 e4 es 
1 0 1 1 0 1 1 0 0 0 
1 0 0 0 1 0 1 0 
0 1 1 0 1 0 1 1 0 
0 1 0 0 0 0 0 

Minimal edge cover Star matrix 
matrix 

Example 6.4. There are some obvious members of the blocking clutter of tours. For 
example, every tour contains at least two edges incident to every node. Thus stars with an 
edge deleted are members of the blocking clutter. But a complete description of the 
minimal edge sets whose deletion would make the graph non-Hamiltonian is not known. 

From the perspective of integer programming, the importance of knowing B(:J') is that 
it gives a formulation of (6.1) as a set-covering problem. We use binary vectors x F for 
FE :J' to represent the elements of:J' and use binary vectors aH for HE B(:J') to represent 
elements of B(:J'). Let 

Q = (x E R~: ally; ;?; 1 for all H E B(:J')}. 

Q*= conv{x E z~: X;?; x F for some F E :J'}. 

QB = {a E R~: x F a;?; 1 for all F E :J'}. 

QiJ = conv{a E Z~: a ;?; aH for some H E B(:J')}. 
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Example 6.1 (continued). Q is the polyhedron given by 

xER!. 

The reader can check that (a) its extreme points are the incidence vectors of the members 
of!lF and the point (1 1 1 1) and (b) its extreme rays are the 4 unit vectors. Hence 
Q n Z4 is the set of integer vectors equal to or greater than some incidence vector of a 
member of!lF. Thus QI3 is the polyhedron given by 

a ER!. 

Its extreme points are the incidence vectors of the members of 'Je and the point 
(0 1 1 1). Again QB n Z4 is the set of integer vectors equal to or greater than some 
incidence vector ofa member of'Je, and Q1 = conv(QB n Z4). 

Proposition 6.3. The following statements are true. 

1. Q n zn = {x E zn: x ~ x F for some F E .9'}. 

2. Q* = conv(Q n zn). 

3. QB n zn = {x E zn: a ~ aH for some H E B(.9')}. 

4. Q1 = conv(QB n zn). 

Proof We will establish statement 1. Statement 2 follows immediately from state
ment 1. Statements 3 and 4 are proved similarly. 

If x E zn and x ~ x F for some FE.9', then ally; ~ 1 for all HE B(.9'). Hence 
x E Q n zn. Conversely, if x E Q n zn but x ~ x F fails to hold for all FE.9', let 
T = {j: Xj > O}. Then it follows from Corollary 6.2 that there exists HE B(.9') with 
H!;; N \ T. Hence aHx = 0 and x$. Q n Z". • 

Since w E R~ and any x E Q n zn satisfies x ~ x F for some FE.9', (6.1) can be 
reformulated as the set-covering problem min{wx: x E Q n Bn}. Moreover, since the 
extreme points of Q* are precisely x F for F E .9', we obtain 

min{wx: x E Q*} = min{wx: x E Q n Bn}. 
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We also obtain analogous results for the problem min{ w(H): HE B(:¥)}. In particular, 

min{w(H): H E B(:¥)} = min{wa: a E QB n Bn} 

= min{wa: a E Q~}. 

Example 6.1 (continued). Note that min{w(F): FE:¥} can be formulated as the set
covering problem 

min WIXI + W2X2 + WyX3 + W<!X4 

Xl + X4 ~ 

X2 + X3 ~ 

X2 + X4 ~ 

X3 + X4 ~ 

xEB4. 

Also min{w(H): H E i1t'} can be formulated as the set-covering problem 

min Wlal + W2a2 + W3a3 + W4a4 

al + az + a3 ~ 

az + a4 ~ 

a3 + a4 ~ 

a EB4. 

We now investigate the relationships among Q, Q~ QB, and Q~. 

Proposition 6.4. The following statements are true. 

a. Q* and QB are a blocking pair of polyhedra. 
b. Q and Q~ are a blocking pair of polyhedra. 

Proof The extreme points of Q* are XF for FE:¥. Hence by Proposition 5.7 of 
Section 1.4.5, its blocker is 

An identical argument yields statement b. • 

The relationships are summarized in Figure 6.2. 

Blockers 
Q-<<-------------~>~Q; 

Convex hUll! 1 Convex hull 

Blockers 
Q* E > QB 

Figure 6.2 
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Example 6.1. (continued). We have shown that the extreme points of QB are the 
incidence vectors of the members of'J{ and the point (0 ! ! ~). Hence min{ w(F): F 
E ~} can be reformulated as the linear program 

min WIXI + W2X 2 + W3X 3 + W04 

Xl + X4 ~ 

X2 + X3 ~ 

X2 + X4 ~ 

X3 + X4 ~ 

X2 + X3 + X4 ~ 

xER!. 

since these constraints define the polyhedron Q~ 

Similarly, min{w(H): HE 'J{} can be reformulated as 

al + a2 + a3 ~ 

a2 + a4 ~ 

a3 + a4 ~ 

al + a2 + a3 + a4 ~ 

a ER!. 

since these constraints define the polyhedron Q~. 

2 

2 

Now when Q is integral, Q = Q*. Hence their respective blockers Q~ and QB are equal 
(see Figure 6.2). Thus we obtain (see Theorem 5.10 of Section 1.4.5) a pair of max-min 
relationships. 

Theorem 6.5. Thefollowing statements are equivalent. 

1. Q is integral. 
2. QB is integral. 

3. For all w E R~, we have 

4. For all w E R~, we have 

The max-min equality of statement 4 says that for all wE RZ, the weight of a 
minimum-weight element of ~ equals the maximum number of elements of the blocking 
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clutter that can be packed fractionally into the weight vector w. Can more be said for 
w E z~? In general, the answer is no; we will consider some examples later. However, 
when the packing problem has an integral optimal solution for all w E z~, we say that the 
max-min equality holds strongly. This is equivalent to the system aHx ~ 1 for HE B(:¥) 
and x ~ 0 being TDI, since if w E zn \ z~, the packing problem is infeasible. By 
Proposition 6.1, all of the remarks made in this paragraph about statement 4 also apply to 
statement 3. 

The results of Proposition 6.4 and Theorem 6.5, together with the polynomial equiva
lence of optimization and separation (see Theorem 3.3 of Section I.6.3), relate the 
computational complexity of the linear programs over Q, Q~ QB, and Q~. 

Theorem 6.6. Each member of the following pairs of problems is solvable in polynomial 
time if and only if the other member of the pair is solvable in polynomial time. 

1. The linear programs over Q* and QB for all w E R~. 

2. The linear programs over Q~ and Qfor all w E R~. 

3. The linear programs over Q and QB when Q is integral. 

Example 6.2 (continued). The problem 

can be interpreted as the maximum number of s-t paths that can be packed fractionally 
into the weight or capacity vector w. Since we can think of each path as a flow of one unit 
from s to t, (6.3) is a formulation of the max-flow problem. Hence by the max-flow-min
cut theorem (see Theorem 4.1 of Section 1.3.4), statement 3 of Theorem 6.5 holds for all 
w E R~. Thus Q and QB are integral polyhedra. The extreme points of QB are the 
incidence vectors of all minimal s -t cuts, and the extreme points of Q are the incidence 
vectors of all s -t paths. Note from Figure 6.1 that neither the incidence matrix of s -t paths 
nor the matrix of minimal s-t cuts is balanced, which means that if certain rows were 
dropped from those matrices the corresponding polyhedra would no longer be integral. 

The weighted min-cut problem formulation given by the dual of(6.3), 

(6.4) min{wa: axF ~ 1 for FE:¥, a E R~}, 

can be solved by a constraint generation algorithm since for any a* E R~, it follows that 
a*xF ~ 1 for all FE :¥ifand only if the weight of a mini mum-weight s-t path with weight 
vector a* is at least 1. Although this algorithm is not practical, it illustrates the connection 
between optimization and separation and how the ellipsoid algorithm is used to prove that 
a combinatorial linear program with a large number of constraints can be solved in 
polynomial time. 

The max-min equality in statement 4 of Theorem 6.5 also holds strongly; that is, the 
maximum number of s-t cuts that can be packed into w E R~ equals the weight of a 
minimum-weight s-t path, and the packing problem has an integral optimal solution. 
Moreover, Dijkstra's algorithm can be used to construct an integral optimal solution to the 
cut packing problem. 

To show this, we refer to the algorithm in Section I.3.2, and we replace each edge by a 
pair of directed arcs. 
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Let g(j) be the weight of a minimum-weight path from node s to node}, and let 
g(s) = O. Let VO = {s}. At iteration i, we have a set Vi with 

max g(j) :s:; min g(j) with Vi = V \ Vi. 
JEU' JEU' 

Let s = }o, and define}i to be any} E Vi that satisfiesg(ji) = maXjEU' g(j). Hence 

g(ji+l) = max g(j) :s:; min g(j). 
JEVal jEU' 

The cut (Vi, Vi) is assigned the weight YU' = g(j i+l) - g(j i) for i = 0, 1, .... Thus 

i i 

(6.5) L YUI-l = L (g(jt) - gUt-I» = gUJ 
t~1 t~1 

Now if t = } k, we claim that an optimal integral solution to the cut packing problem is 
given by YU' = g(ji+l) - g(ji) for i = 0, ... , k - 1 and by Yu = 0 otherwise. 

Given W E Z~, we have YU' E Z!, and by (6.5), we obtain L7~1 YUi-l = get). Thus it 
remains to be shown that 

L YU'-I:S:; We for all e E E. 
(i:U'3e,i<;k) 

Let e = (j p,) q), where q > p. By definition of g(j), it follows that g(j q) ;;;. g(j p) and 
we;;;' g(jq) - g(jp). By (6.5), we have g(jq) - g(jp) = L7~p+I YU'-l and 

min(k,q) 

L YU'-I:S:; L YU'-l 
U: U!3e,i~k} i:::=p+l 

ifq > k 

Let W = (3 1 2 4) be a weight vector for the graph of Figure 6.1. Oijkstra's 
algorithm yields Vo={s}, g(s) = 0; VI ={s, v}, g(v) = 1; VZ={s,v,u}, g(u)=2; 
V 3 = {s, v, u, t}, get) = 4. Hence an optimal integral solution to the cut packing problem 
is obtained by assigning weigh~f(v) - g(s) = 1 to the cut (VO, If) = {ell ez}, weight 
g(u) =-l(v) = 1 to the cut (VI, V) = {e), e3, es}, and weight get) - g(u) = 2 to the cut 
(VZ, V) = {e4, es}. 

Example 6.2 shows the nicest possible behavior. Q and QB are integral, and both 
polyhedra are represented by TOI systems. Example 6.3 reveals other possibilities. 

Example 6.3 (continued) 

A. Bipartite Graphs. Since the matrix whose rows are the incidence vectors of stars in G 
is the node-edge incidence matrix, it is totally unimodular (Corollary 2.9). Hence, the 
polyhedron Q is integral and the linear system of inequalities is TO!. Since the packing of 
stars is the same as node packing, we obtain from statement 4 of Theorem 6.5 that the 
weight of a minimum-weight edge cover equals the maximum number of stars or nodes 
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that can be packed into w E Z~. In particular, for w = 1, this is the classical result that the 
minimum number of edges needed to cover all of the nodes equals the size of a maximum
cardinality node packing. 

Since Q is an integral polyhedron, so is QB' It can be shown that the packing problem in 
statement 4 of Theorem 6.5 has an integral optimal solution for w = 1. This says that the 
maximum number of edge disjoint edge covers equals the degree of the minimum degree 
node. 

B. General Graphs. Q is not integral for all graphs. For example, if G is a triangle, Q 
contains the extreme point (1 1 1). 

The edge-covering problem on the complete graph on 4 nodes, which we considered in 
Example 1.2, is interesting in that it reveals that the packing problems in statements 3 and 
4 of Theorem 6.5 can have different behavior. Q is integral, but with w = 1 the star packing 
problem has a unique optimal fractional solution. On the other hand, it can be shown that 
the problem of fractionally packing the edge covers has an integral optimal solution for all 
w E Z~. Thus, we have an example of a blocking pair of integral polyhedra for which the 
max-min equality holds strongly for one but not for the other. 

There is an analogous theory, which we consider only briefly, for finding a maximum
weight element of a clutter gjP. 

Definition 6.2. The antiblocking clutter of gjP is the clutter A(gjP) whose members H 
satisfy the following two conditions. 

1. Minimum intersection: I H n F I ~ 1 for F E gjP. 
2. Maximality: If H'::J H, then I H' n F I > 1 for some F E gjP. 

A familiar example of the antiblocking relation arises in the maximum-weight node
packing problem. Here gjP is the set of maximal node packings in a graph G, and A (gjP) = cg 
is the set of maximal cliques. Given the weight vector w E R~ on the nodes, the maximum
weight node packing problem is 

max{w(F): FE gjP} = max{wx: x E P n Bn}, 

where P = {x E R~: Fx ~ 1 for all C E cg}, and k C is the incidence vector of the clique C. 
P is the fractional node-packing polytope for G. 

In Section 5, we showed that if P is integral (G is perfect), then the system kCx ~ 1 for 
C E cg, x ~ 0 is TD I. We used the antiblocking theorem for packing polytopes correspond
ing to Theorem 6.5 (see Proposition 5.8 and Theorem 5.10 of Section 1.4.5) to show that G 
is perfect if and only if the complement of G is perfect. We also established that these 
results for perfect graphs characterize antiblocking pairs of integral polyhedra. In contrast, 
no simple characterization of blocking pairs of integral polyhedra is known. 

Integer Rounding 

We close this section by considering a related integrality issue regarding the packing 
problems 
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(6.6) 

(6.7) 

z(w) = max{1y: yA ~ w, Y ERr;') 

ZIP(W) = max{1y: yA ~ w, y E Zr;'), 

595 

where the rows of A, namely, a i E Z~ \ ° for i = 1, ... , m, are incomparable vectors and 
w E Z~. The problem is to determine when ZIP(W) = lz(w)J for all w E Z~. 

Definition 6.3. The system {y ERr;': yA ~ w) is IRD (integer round down) if 
ZIP(W) = lz(w)j for all W E Z~. 

Let Q = {w E Z~: w ~ 1:7!1 Aiai, 1:7!1 Ai = 1 for some A E R';'), and let kQ = {kw: 
w E Q), where k is a positive integer. Note that kQ ~ (k + l)Q for k = 1, 2, .... 

Proposition 6.7. For any positive integer r, z(w) ~ r if and only ifw E rQ. 

Proof z(w) ~ r ~ for some y ERr;', 

m m 

L Yi = rand L Yiai ~ w [by (6.6)] 
i=1 i=1 

~ for some A ERr;', 

~wErQ. • 
Corollary 6.8. r ~ z(w) < r + 1 if and only ifw E rQ \ (r + 1)Q. 

Hence IRD holds if and only if for all w E Z~, w E (rQ \ (r + 1)Q) n Z~, implies 
ZIP(W) = r. 

Let Sk = kQ n zn for k = 1,2, .... 

Definition 6.4. Q is integrally decomposable if for each integer k ~ 1 and each w E S k, 

there exist ai, ... , ak E SI (not necessarily distinct) such that w = 1:7=1 ai. 

To show that Q is integrally decomposable, it suffices to show that the minimal integral 
points of kQ can be expressed as a sum of k integral points of Q. This follows since if Wi, 

w2 E Sk, w2 > Wi, and Wi = 1:7=1 ai, where ai E SI for i = 1, ... ,k, then 

k-l 

w2 = L ai + (a k + w2 - Wi), 
i=1 

Theorem 6.9. The system {y ERr;': yA ~ w) is IRD if and only if Q is integrally 
decomposable. 

Proof We show that if r ~ z(w) < r + 1 and Q is integrally decomposable, then 
ZIP(w) = r. For r = 0, we have 0= ZIP(W) ~ z(w) < 1. Now suppose that r is a positive 
integer. By Proposition 6.7, wE rQ. Hence there are ai E Q n Z~ for i = 1, ... ,r such 
that 1:i=1 ai = w, and there are minimal points a lU) E Q n Z~, not necessarily distinct, such 
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that al(i) .;;; iii for i = 1, ... , r and I:~=I al(i) .;;; w. Now let yi be the number of times that al(i) 
appears in I:)=I al(i). Hence y* is a feasible solution to (6.7), and I:7!1 yj = r = Iz(w)J. 

To prove the converse, we observe that a feasible solution of value r to (6.7), together 
with the remark that preceded the statement of Theorem 6.9, yields a suitable decomposi
~. . 
Example 6.5. Suppose 

(1 1 0) 
A= 1 0 1 . 

o 1 1 

Note that with w = (1 1), the unique solution to (6.6) is y = (1 1 1) and z(w) = i. 
Now we show that Q is integrally decomposable. It is easy to check that all minimal 

points of kQ are of the form 

(AI + A2, Al + A3, A2 + A3), Al + A2 + A3 = k, A ~ 0 

= (al> a2, 2k - al - (2), 0.;;; al> a2 .;;; k, al + a2 ~ k. 

So we need to show that foral> a2 E Zl, al> a2';;; k,al + a2 ~ k, thereisay E Z~such that 
I:t=1 Yi = k and 

YI + Y2 = al 

YI + Y3 = a2 

Y2 + Y3 = 2k - al - a2· 

A solution is YI = al + a2 - k, Y2 = k - a2, and Y3 = k - al. 
Different behavior is observed for the matrix 

(

1 1 

A = 1 0 
o 1 
o 0 

1 0 0 0) o 1 1 0 
0011· 

o 1 

Note that 

1) E 2Q. 

But there are not two integral vectors in Q whose sum is w. Hence Q is not integrally 
decomposable. In particular, ZIP(W) = 1 and z(w) = 2. 

We now consider a network flow model whose integral solutions define a matrix A 
such that {Y E R';.': yA .;;; w} is IRD. Let gy = (V, SIl) be a directed graph with ISilI = n. A 
vector bE ZiVl with I:vEV bv = 0 is called a supply-demand vector. The nodes 
L = {v E V: bv > O} are called supply nodes, and the nodes T = {v E V: bv < O} are called 
demand nodes. Afeasible flow is a vector a E R~ that satisfies the conservation equations 

(6.8) bv + L auv - L avu = 0 for v E V. 
uEo-(v) UEo+(v) 
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Let A be the matrix whose rows are the vectors of minimal, integral feasible flows in qj). 

The problem we consider is packing the rows of A into w E Z~. 

Example 6.6. Consider the data given in Figure 6.3. It can be shown that the matrix of 
minimal integral feasible flows is 

2 0 1 2 0 
2 0 2 1 1 
2 0 3 0 2 

A= 
0 2 0 1 1 
0 2 1 0 2 

0 2 0 
1 1 1 
2 0 2 

It is easy to see that the packing problem does not have an integral optimal solution for 
all w E Z~ for which it is feasible; for example, take w = (1 0 1 1 0). 

To show that the system {y E R';': yA .;;; w} is IRD, we need to introduce a capacity 
vector d E Z~ on the arcs of qj). 

Proposition 6.10. Given any d E Z~, the following two statements are equivalent. 

i. There exists an a E Z~ that satisfies (6.8) and a .;;; d. 
ii. For all U 5; V, 

(6.9) I bv ';;; I de. 
vEU eE6'(U) 

Proof i => ii is obvious since for any U 5; V, the flow out of U must be at least 1:vEU b v• 

The proof of ii => i uses the max-flow-min-cut theorem on the graph qj)' = 
(V u {s, t}, .sil'), where 

.sil' =.sII U {(s, v): vEL} U {(v, t): v E n, 

The capacity of e E.sII is de. the capacity of esv for vEL is b v, and the capacity of evt for 
vET is -bv• We only sketch the proof. 

If (6.9) holds for all U 5; V, then it can be shown that a minimum-weight cut in qj)' is 
given by the set of arcs {(s, v): v E L}-that is, the cut generated by the node partition 
({s} U (V \ L), {t} U L). Then by the max-flow-min-cut theorem of Section I.3.4, there is 

b3 = -1 

Figure 6.3 
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an integral s-t flow in qj)' of size LVEL by. Thus in every maximum flow, the flow on eSV is bv 
for all vEL. It then follows that statement i is true. • 

Theorem 6.11. If A is an m x n matrix whose rows are the minimal integral flows in a 
digraph qj) with supply-demand vector b E z111, then {y E R':': yA ~ w} is IRD. 

Proof Let Sk = kQ n zn for k = 1,2, .... By Theorem 6.9, it suffices to prove that 
for any k and wE Sk, w can be written as the sum of k integral points in Sl. This is a 
triviality for k = 1. Now suppose it is true for Sk-l where k ~ 2. 

We must show that for any w E Sk, there exist an a E Sl such that w - a E Sk-lo Note 
that wE Sk means that for the supply-demand vector kb, there is a flow ak ~ w. But since 
the supply-demand system is totally unimodular, we can choose ak E z~. Hence 

kbv + I a~v - I a~u = ° for v E V, 
uEO-(v) uEO'(v) 

and for any U ~ V with LVEU bv ~ 0, we have 

I a~ = k I bv + I a~ ~ k I bv ~ I by. 
eEO'(U) vEU eEO-(U) vEU vEU 

Now taking ak to be the capacity vector in Proposition 6.10, there exists an a E z~ that 
satisfies (6.8) and a ~ ak. Thus a E S), ak - a E z~, and 

(k - l)bv + I (a~v - auv) - I (a~u - avu ) = ° for v E V. 
eEO-(v) uEO'(v) 

Hence (ak - a) E Sk-l and, since w ~ ak, we have (w - a) E Sk-lo • 
Theorem 6.11 generalizes to capacitated supply-demand systems where, in addition to 

(6.8), the flow must satisfy a ~ c where c E z~. This can be shown by transforming a 
capacitated supply-demand system to an uncapacitated one. It also generalizes to 
circulations; that is, bv = ° for all v E V, and I ~ a ~ c where I, C E z~. Thus a circulation 
is a solution to Ga = 0, I ~ a ~ c, where G is a node-arc incidence matrix. Finally, packing 
the minimal solutions of Ga = 0, I ~ a ~ c is IRD for any totally unimodular matrix G. 

7. NOTES 

Section 111.1.1 

The study of integral polyhedra has its roots in the theory of network flows [see Ford and 
Fulkerson (1962)] and, in particular, in the max-flow-min-cut theorem. Two early proofs 
of this theorem illustrate fundamental techniques in the theory of integral polyhedra. 
Dantzig and Fulkerson (1956) proved it using linear programming duality, and Ford and 
Fulkerson (1956) proved it by giving an algorithm that produces a feasible flow and an s-t 
cut of weight equal to the value of the flow (see Section I.3.4). 

Proposition 1.3 is due to Hoffman (1974). Edmonds and Giles (1977) independently 
proved Proposition 1.3 and Corollary 1.4, and they coined the term total dual integrality 
and expounded upon its significance. They also developed the notion of box TDI systems: 
A system Ax ~ b, c ~ x ~ d is box TDI ifit is TDI for all vectors c, d. 
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Giles and Pulleyblank (1979) proved Proposition 1.7. Schrijver (1981) proved Proposi
tion 1.8. 

Cook (1983a) studied operations that preserve total dual integrality [also see Cook 
(1986) for box TDI systems]. Computational issues regarding TDI systems have been 
studied by Chandrasekaran (1981) and Cook, Lovasz, and Schrijver (1984). 

Edmonds and Giles (1984) gave a survey of theoretical results on total dual integrality 
and classes ofTDI systems. 

Schrijver (1986b) gave a survey of proof techniques for establishing integrality and 
related properties of polyhedra. 

Section 111.1.2 

Hoffman and Kruskal (1956) proved Theorem 2.5 and thus established the fundamental 
part of the connection between total unimodularity and integer programming [also see 
Hoffman (1979)]. A substantially simpler proof, the one presented in the text, was 
discovered by Veinott and Dantzig (1968). 

Theorem 2.7 was proved by Ghouila-Houri (1962). The results on characterizations of 
totally unimodular matrices with no more than two nonzero elements in each column are 
due to Heller and Tompkins (1956), Hoffman and Kruskal (1956), and Dantzig and 
Fulkerson (1956). 

Interval matrices were studied by Fulkerson and Gross (1965). The relaxation of a set
covering problem to a problem with an interval constraint matrix was given by 
Nemhauser, Trotter, and Nauss (1974). 

Other conditions for total unimodularity were given by Camion (1965), Chan
drasekaran (1969), Heller (1957, 1963), Heller and Hoffman (1962), Padberg 
(1976a, 1988), Tamir (1976), and Truemper (1977, 1978). See Padberg (1975b) for a survey. 

In a study of the integrality of the matching polytope, Hoffman and Oppenheim (1978) 
proposed the idea oflocal unimodularity and thus gave another technique for establishing 
the integrality of a polyhedron. 

Section 111.1.3 

The significance of recognizing network structure has been stimulated, in part, by a 
number of practical linear programming models that can be reformulated as network flow 
problems [see Zangwill (1966), Cunningham (1983), and Bland (1988)] and was also 
motivated by the efficiency of network codes (see the notes for Chapter 1.3). 

The definition of network matrices was proposed by Tutte in his study of graphic 
matroids [see Tutte (1965)]. Further references to matroids will be given in the notes for 
Chapter III.3. 

Iri (1966) gave a polynomial-time algorithm for recognizing network matrices. A much 
more efficient algorithm was obtained by Bixby and Cunningham (1980). Their presenta
tion is in terms of matroids. The algorithm given here is adapted from Schrijver (1986a). 

Recently, attention has been given to finding large network submatrices [see Bixby and 
Cunningham (1980) and Bixby (1984)]. Several researchers have developed heuristics for 
this problem [see Brown and Wright (1984) and Gunawardane et al. (1981)]. The problem 
of finding a largest network submatrix is ,N'9P-complete [see Bartholdi (1981)]. 

Theorem 3.8 and the algorithm for recognizing totally unimodular matrices are due to 
Seymour (1980). For a restricted class of totally unimodular matrices, Yannakakis (1985) 
gave efficient recognition and optimization algorithms. 
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Section 111.1.4 

Balanced matrices were introduced by Berge (1972). He proved the fundamental result 
given by Theorem 4.13. Several other results on the integrality of polyhedra associated 
with balanced matrices were obtained by Fulkerson, Hoffman, and Oppenheim (1974). In 
particular, they showed that if A is balanced and the system Ax = 1, x ~ 0 is feasible, then 
the polytope defined by this system is integral. This result on set-partitioning polytopes 
can be used to prove Theorem 4.13. 

The restriction to totally balanced matrices was apparently proposed by Lovasz 
(1979b). The main results on totally balanced matrices given here (Proposition 4.4 through 
Theorem 4.10) come from Hoffman, Kolen, and Sakarovitch (1985). Proposition 4.11 is 
due to Giles (1978) and was used by Kolen (1983) to obtain integrality results for a class of 
uncapacitated facility location problems. Tamir (1983) gave the generalization stated in 
Proposition 4.12. Further generalizations were given by Tamir (1987). 

Farber (1983) and Anstee and Farber (1984) independently obtained nearly the same 
results as Hoffman et al. (1985). Their characterization of totally balanced matrices is in 
terms of node-node incidence matrices of graphs. Extensions have been obtained by 
Lubiw (1982) and Chang and Nemhauser (1984, 1985). Also see Sakarovitch (1975, 1976) 
and Farber (1984). 

Section 111.1.5 

The concept of perfect graphs is due to Berge (1960). It has led to a vast literature, mainly 
on graph theory, which we barely cite here. Instead, we refer the reader to the book by 
Golumbic (1980), the collection of articles edited by Berge and Chvatal (1984), and the 
chapter entitled "Stable Sets in Graphs" in the book by Grotschel, Lovasz, and Schrivjer 
(1987). 

Duchet (1984) presented a survey of classic results on perfect graphs. Fulkerson (1970b, 
1971, 1972, 1973) made the connection between perfect graphs and polyhedral combina
tories, and he introduced the concept of pluperfect graphs. 

Dirac (1961) established the connection between simplicial nodes and chordal graphs. 
Gavril (1972) solved the cardinality node-packing problem and the corresponding clique
covering problem for chordal graphs. Frank (1975) solved the weighted versions of these 
problems essentially by the linear-time algorithm given in the text. 

Theorem 5.11 and the perfect graph theorem, Theorem 5.15, were proved by Lovasz 
(1972). However, he acknowledges that much credit should be given to Fulkerson who had 
already shown that these theorems were true if and only if Corollary 5.12 was true. The 
proof of Theorem 5.11 given here comes from Chvatal (1975). 

Theorem 5.15 was proved by Meyniel (1976, 1984). A polynomial-time agorithm for 
recognizing these graphs has been obtained by Burlet and Fonlupt (1984). Theorem 5.16 
was proved by Berge (1972). 

Theorem 5.17 was proved by Padberg (1974). Some other articles related to Padberg's 
work on minimally imperfect graphs are by Padberg (1975b, 1976b, 1984), Bland, Huang, 
and Trotter (1984), and Whitesides (1984). 

A polynomial-time ellipsoid algorithm for maximum-weight node packing in perfect 
graphs was given by Grotschel, Lovasz, and Schrijver (1984a). Recently, they have 
obtained a polynomial-time ellipsoid algorithm for maximum-weight node packing in 
graphs for which the node-packing polytope is described by the clique and odd hole 
constraints [Grotschel, Lovasz, and Schrijver (1988)]. These graphs are called t-perfect. 
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Hsu (1984) gave a survey of graphs for which the strong perfect graph conjecture is true. 
It was proved for claw-free graphs by Parthasarathy and Ravindra (1976). Polynomial
time algorithms for solving the weighted node-packing problem on claw-free graphs have 
been given independently by Minty (1980) and Sbihi (1980). The convex hull of node 
packings for these graphs has been studied by Giles and Trotter (1981). Polynomial-time 
algorithms for maximum-weight cliques, minimum-weight clique covers, and minimum 
colorings for claw-free perfect graphs have been obtained by Hsu (1981) and Hsu and 
Nemhauser (1981, 1982, 1984). These problems are .N'~-hard for general claw-free graphs. 

Section III.1.6 

The theory of blocking and antiblocking polyhedra was developed in a series of articles by 
Fulkerson (1968, 1970a, 1971, 1972). Fulkerson's work was motivated by a 1965 paper of 
Lehman which was not published until 1979. A survey of results obtained in the 1970s has 
been presented by Tind (1979). [Also see Tind (1974, 1977), Johnson (1978), and Huang 
and Trotter (1980).] 

Proposition 6.1 was proved by Edmonds and Fulkerson (1970). Propositions 6.3 and 6.4 
and Theorem 6.5 were proved by Fulkerson (1970a). 

Fulkerson (1968) showed that the max-min inequality holds strongly for the s-t path 
and s-t cut clutters. There are several interesting pairs of clutters for which the max-min 
inequality holds, but not strongly, and for which one or both of the dual problems has an 
optimal solution that is half-integer for all nonnegative integers w. (A vector is said to be 
half-integer if each of its components is either an integer or an integer divided by 2.) An 
example where both of the clutters have this property is 2-commodity cuts and flows in 
graphs [see Hu (1969) and Seymour (1978)]. The max-min inequality holds for the T-join, 
T-cut clutters to be studied in Section III.2.4. However, here one of the packing problems 
has the half-integer property and the other does not [see Edmonds and Johnson (1973) and 
Seymour (1979)]. 

In general, the problem of characterizing pairs of clutters for which the max-min 
inequality holds (or holds strongly) or for which the half-integer property is obtained for 
one or both of the packing problems is unresolved. However, Seymour (1977) character
ized the strong max-min inequality for an interesting class of clutters known as binary 
clutters. Some other blocking relations will be studied in Section 111.2.4 and Chapter 
111.3. 

The connection between the integer round-down property and integral decomposabil
ity was established by Baum and Trotter (1977, 1981). Further results along these lines were 
obtained by McDiarmid (1983). 

The IRD property for network flows given in Theorem 6.11 is due to Fulkerson and 
Weinberger (1975). Additional integer-rounding results for network flow problems have 
been obtained by Weinberger (1976) and Trotter and Weinberger (1978). 

Marcotte (1985, 1986a) has established some families of knapsack problems for which 
the cutting stock problem has the integer-rounding property and has also given an instance 
of the cutting stock problem where the gap is equal to 1. 

Some literature on integer-rounding results for matroid problems will be cited in the 
notes for Section III.3.8. 

Computational complexity issues associated with problems with the IRD property have 
been studied by Baum and Trotter (1982) and Orlin (1982). 
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8. EXERCISES 

1. Consider the polytope P described by the linear inequality system 

x ",,0. 

i) Show that P is an integral polytope. 

ii) Show that the linear inequality system is not TO!. 

iii) Find the unique minimal TOI representation with an integral right-hand side. 

2. Find a TOI representation for the polytope 

P = {x E R~: 4Xl + X2 <S; 28, Xl + 4X2 <S; 27, Xl - X2 <s; n. 

3. A linear inequality system Ax <s; b is box TOI if Ax <s; b, I <s; X <s; u is a TDI system 
for alII and u ERn. 

4. 

5. 

i) Show that the system of exercise l(iii) is not box TO!. 

ii) Show that the system Xl + X2 + X3 <s; 4, X"" 0 is box TO!. 

iii) Show that the system of Example 1.1 is box TO!. 

Verify that the top two matrices are TU but the bottom two are not. 

-1 0 0 -1 1 1 
-1 1 -1 0 0 1 0 0 

0 -1 1 -1 0 0 1 0 
0 0 -1 -1 0 0 1 

-1 0 0 -1 0 0 

1 1 0 1 0 

U 
0 -1 

-D 
0 0 0 1 

1 1 
0 1 1 0 

0 0 
1 0 0 0 -1 
0 0 0 

Show that 

A ~ (-; 1 1) 
1 0 
o 0 

is not TV. Then show that P(b) = {x E R~: Ax = b} is integral for all bE zn for 
which it is nonempty. 

6. Show that if A is a 0, 1, -1 matrix in which the sum of the entries of every square 
submatrix with even row and column sums is divisible by 4, then A is TV. 
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7. Suppose that the 0, 1 matrix A is not an interval matrix and that the integer program 
(2.1) is relaxed by splitting columns as described. If each column is split into, at most, 
p columns, compare the bound from this relaxation with that from the standard 
linear programming relaxation. 

8. Prove Proposition 2.11. 

9. Verify whether the following are network matrices or not. 

i) 

0 -1 0 1 -1 1 0 -1 0 
0 1 0 0 -1 0 -1 1 0 
1 0 0 0 0 0 0 0 
0 1 -1 0 0 0 0 1 0 
1 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 
0 0 0 0 -1 1 -1 0 0 
0 -1 0 0 0 0 0 -1 -1 
0 0 -1 0 0 0 0 

ii) 

1 0 0 1 -1 0 
0 1 -1 0 0 0 
0 0 0 1 -1 -1 

0 0 0 0 -1 
1 0 0 1 0 
0 -1 0 -1 0 0 
0 0 0 0 

iii) 

-1 0 0 -1 
-1 -1 0 0 

0 -1 -1 0 
0 0 -1 1 -1 

-1 0 0 -1 

10. Modify the network recognition algorithm so as to find a maximal network sub-
matrix. 

11. Let A be a 0, 1 matrix with no zero rows or columns. Show that {x E R~: Ax = 1} is 
integral if and only if statement lor statement 2 of Proposition 4.1 holds. 

12. Are interval matrices (i) balanced, (ii) TB? 
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13. i) Show that 

1 1 0 0 0 
0 0 0 0 

A= 
0 0 
1 
0 1 1 
0 0 0 

is a row inclusion matrix. 

ii) Solve min{cx: Ax ~ 1, x E Z~} with c = (4 2 7 1 3 5). 

14. Convert the following matrix to a TRL matrix. 

o 0 
o 0 

001 
1 1 0 0 
001 o 0 

100 
001 
1 1 0 
000 
000 
000 
001 
010 
000 

1 1 
010 
000 
100 
o 0 
101 
000 
000 
000 

1 1 0 0 0 0 
o 0 0 0 0 0 
o 0 0 0 0 0 
o 0 0 0 0 0 
1 1 0 0 0 0 
1 1 0 0 0 0 
000 1 
o 0 1 0 
00001 
o 010 
o 100 
o 000 

Then give a short proof that the matrix is not totally balanced. 

15. Solve the problem of finding a minimum-weight set of nodes that can serve every 
node on the graph shown in Figure 4.3, where rj = 1 when} is even, rj = 2 when} is 
odd, and dij is the number of edges on the path joining i and}. The weights are given 
by c = (4 2 7 3 12 8 10 5 7 3 12). 

16. Prove Proposition 4.12. 

17. Prove Theorem 4.13. 

18. Let 

where E is the matrix of alII's. 

i) Prove that A * is a neighborhood matrix. 

ii) Prove that A is TB if and only if A * is TB. 

19. A strong elimination ordering of a graph G = (V, E) is a perfect elimination 
ordering Vb ••• , Vn of V satisfying the following additional conditions for each i,}, k, 
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I: If i <j < k < I and (Vi, Vk), (Vi, VI), (Vi> Vk) E E, then (vi> VI) E E. A graph is 
strongly chordal if it has a strong elimination ordering. 

i) Show that the graph of Figure 5.1 is not strongly chordal 

ii) Show that the graph of Figure 8.1 is strongly chordal. 

iii) Show that a graph is strongly chordal if and only if its neighborhood matrix is 
balanced. 

20. Is P = {x E R~: Ax ~ l} integral for the following matrices? Why? 

i) 

1 0 0 0 1 
0 1 1 0 0 1 

A= 1 0 0 1 0 0 
0 1 0 0 1 
0 0 0 0 

ii) 

0 1 0 0 1 
0 0 0 1 
0 0 0 1 0 1 

A= 0 0 0 0 1 0 0 
0 0 0 0 0 

1 0 0 0 
0 0 0 

21. A graph G = (V, E) is called an interval graph if there is an assignment of an interval 
of the real line to each V E V such that (u, v) E E if and only if the intervals 
corresponding to u and V intersect. Show that interval graphs are chordal and that 
there is a greedy algorithm for solving max{cx: Ax ~ 1, x E Bn} when A is an 
interval matrix. 

22. Describe a polynomial algorithm to check whether A is the clique matrix of some 
graph. 

23. i) Give a polynomial algorithm to find an odd cycle in a graph. 

ii) Use this to devise a heuristic algorithm to detect odd holes in a graph. 

24. Give an O( I E I) algorithm to construct a PES or to show that a graph is not chordal. 

25. Let N be a set of subtrees of a tree. Let A be the resulting node-tree incidence matrix. 
Show that A is the clique matrix of a chordal graph and conversely. 

<lZ1> 
Figure 8.1 
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26. Let A be the clique matrix of a chordal graph with PES = {l, ... ,n}. Give an 
algorithm to solve max{cx: Ax ~ b, x E z~}, where b l ~ b2 ~ ••• ~ bn • 

27. Give a polynomial algorithm for node coloring of chordal graphs. 

28. G = (V, E) is a comparability graph if there is an orientation of each edge e E E 
giving a digraph qz; = (V, d) having the properties that if (i, i), (j, k) Ed, then 
(i, k) E d. Show that comparability graphs are perfect. 

29. i) What is the rank 1 hull of the node-packing problem, where S = P n zn and 
P = {x E R~: Xi + Xj ~ 1 for e = (i,}) E E}? 

ii) Show that the rank 1 hull is not integral if G contains a node-induced subgraph of 
the form shown in Figure 8.2. 

30. Describe the convex hull of incidence vectors of node packings for line graphs. 

31. A clutter fliP is represented by the rows of the matrix 

1 0 0 0 
1 0 1 0 0 

A= 0 1 0 1 0 
0 0 1 
0 0 0 

i) Find its blocking clutter B(:Ji). 

ii) Find the polyhedron Q~ of the form {x E R~: Bx ~ 1} with B ~ 0 having the 
incidence vectors of the members of B(fliP) as extreme points. 

iii) Find a polyhedron Q* of the above form having the incidence vectors of the 
members of fliP as extreme points. 

32. Given a connected graph G = (V, E), let A be the incidence matrix of spanning trees 
by edges; that is, each row of A is the incidence vector of a spanning tree. 

i) Give a polynomial-time ellipsoid algorithm for solving the linear program 
min{cx: Ax ~ 1, 0 ~ x ~ n. 

ii) Specify r, q, and any other information needed by the ellipsoid algorithm. 

iii) Give a combinatorial interpretation of the problem. Do you know an efficient 
combinatorial algorithm for solving it? 

33. Let :Ji be the clutter of spanning trees of a graph G. 

i) Find its blocking clutter B(fliP). 

ii) Give an example to show that Q = {x E RI;I: aHx ~ 1 for HE B(:Ji)} is not 
integral. 

Figure 8.2. "Odd K 4,,; each wavy line denotes a path with an odd number of edges. 
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Figure 8.3 

34. Let:Ji be the clutter ofbranchings rooted at node 1 in ~. 

i) Find its blocking clutter B(:Ji). 

ii) Show that Q = {x E R~I: aHx ~ 1 for HE B(:Ji)} is integral. 

iii) Let A be the branching by arc incidence matrix. 

607 

a) Does the max-min inequality hold strongly for rooted branchings? That is, 
does 

max{ly: yA ~ W, Y E Z,:,} = min {aHw: w E Z~~? 
HEBW) 

b) Does the IRD property hold for {y E R':': yA ~ w}? 

35. Let :Ji be the clutter of cycles in a graph G. 

i) Find its blocking clutter B(:Ji). 

ii) Use the graph in Figure 8.3 with w = (4 3 2 1 8) to show that Q is not 
integral. 

iii) Give a polynomial combinatorial algorithm to find a minimum-weight cycle 
when w E Rif'. 

iv) Give a polynomial combinatorial algorithm to find a minimum-weight element 
of B(:Ji). 

36. For the graph of Figure 8.4, find the maximum number of s-t cuts that can be 
packed into w, where w is indicated in the figure. 

37. Let ~ be the set of minimal feasible solutions to S = {x E Bn: LjEN ajxj ~ b}. 

i) Find the blocking clutter B(:Ji). 

ii) Use this to give a reformulation ofmin{cx: xES} with c E R~. 

iii) Compare the inequalities of this form with the valid inequalities generated in 
Section 11.2.2. 

Figure 8.4 
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Matching 

1. INTRODUCTION 

In a graph G = (V, E), the number of edges that meet node i is called the degree 9f node i. 
Matching problems involve choosing a subset of the edges subject to degree constraints on 
the nodes. The simplest case is i-matching (or just matching). A matching M 5; E is a 
subset of edges with the property that each node in the subgraph G(M) = (V, M) is met by 
no more than one edge. Every graph G contains a matching, namely M = 0. An obvious 
generalization of I-matching is b-matching in which node i is met by no more than bi 

edges, where bi is a positive integer. In a b-matching problem, we may impose the 
restriction that each edge is chosen no more than once (O-i b-matching) or allow an edge to 
be chosen a nonnegative integer number of times (integer b-matching). A b-matching is 
called perfect if each of the degree constraints holds with equality. In particular, in a perfect 
i-matching each node is met by exactly one edge. Another variation on matchings is to 
require that each node i be met by at least b i edges. These problems are called node 
covering by edges. 

Let Ce be the weight of e E E and let c(E') = .l:eEE' Ce be the weight of E' 5; E. The 
weighted b-matching problem is to find a b-matching of maximum weight. In the case of 
perfect matchings, it also makes sense to consider minimum-weight matchings. When 
Ce = 1 for all e E E, the optimization problem is called an unweighted or cardinality 
problem. 

An integer programming formulation of the weighted 0-1 b-matching problem is 

maxcx 

Ax"",b 

where A is the node-edge incidence matrix of the graph, I E I = n, and x e = 1 means that e 
is in the matching. 

The important property of A for matching problems is that each of its columns contains 
exactly two is; in other words, .l:i aij = 2 for allj E E. Note that if the graph is bipartite, 
then A is totally unimodular so that the extreme points of {x E R~: Ax "'" b} are precisely 
the b-matchings. However, when G contains an odd cycle, the constraint set ofthe linear 
programming relaxation can contain fractional extreme points. For example, in the graph 
of Figure 1.1, x = (! ! n is the unique optimal solution to the linear programming 
relaxation with c = (1 1 1) and b = (1 1 1). 

The classic application of matching deals with the pairing of objects from two disjoint 
sets (e.g., workers with jobs, men with women, etc.). The perfect matching problem 

608 
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Figure 1.1 

associated with such pairings is on a bipartite graph, and the optimization problem is the 
assignment problem (see Section 1.3.5). Pairings, however, do not necessarily involve 
disjoint sets (e.g., the selection of roommates in a college dormitory). So we see that the 
weighted perfect I-matching problem is a meaningful generalization of the assignment 
problem. 

We have already mentioned some other applications of matching in connection with 
relaxations and heuristics for the traveling salesman problem (see Section II.6.3). For 
example, a perfect 0-1 2-matching is a relaxation of the traveling salesman problem. We 
have also used weighted I-matching in the spanning-tree matching heuristic for the 
euclidean traveling salesman problem. 

Another application of weighted I-matching is to the postman problem. Given a graph 
G with weights on the edges, the postman problem is to find a minimum-weight set of 
edges to add to G so that the resulting multigraph MG contains a eulerian cycle (i.e., a 
closed walk containing each edge of MG exactly once; see Section II.6.3). The eulerian 
cycle on MG translates to a minimum-weight closed walk on G in which each edge is 
visited at least once and therefore generates a minimum-weight delivery route for the 
postman. 

Recall that a multigraph is eulerian if and only if each node is of even degree. Let V' be 
the nodes of odd degree in G, and let C ij be the weight of a minimum-weight path between 
nodes i and} in V' (see Figure 1.2). Now consider the complete graph G' = (V', E'), and 

b 3 d 

'<]-' {?,f 
c 4 e 

G 

2~4 
c 4 e 

G' 

b d 

c e 

MG 
Figure 1.2 

Nodes of odd degree (b, c, d, e) 
Cbe = 2, Path (b, a, c) 
Cbd = 3, Path (b, d) 
Cbe = 6, Path (b, a, c, e) 
Ced = 5, Path (c, a, b, d) 
Gee = 4, Path (c, e) 
Cde = 4, Path (d,/, e) 

Minimum-weight perfect matching 
{(b, c), (d, e)l 

Postman solution 
(a, b, a, C, b, d, e,/, d,/, e, c, a) 
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let cij be the weight of e = (i,)) in E'. Let M' be a minimum-weight perfect matching on 
G'. For each edge (i,)) EM', add to G a minimum-weight path joining i and). We leave it 
as an exercise to show that the resulting multigraph generates an optimal solution to the 
postman problem. 

Matching problems are celebrated in the history of combinatorial optimization as the 
first true integer programs (i.e., integer programs that cannot be solved merely from the 
linear programming relaxation) for which polynomial-time algorithms were obtained. 
Moreover, these algorithms use a class of valid inequalities for the convex hull of 
matchings and, in fact, prove that these inequalities, together with the degree and 
nonnegativity constraints, give a linear inequality description of the convex hull of 
matchings. 

We will mainly study the weighted I-matching problem stated as the integer program 

(WM) 

max I CeXe 
eEE 

I Xe ~ 1 for v E V 
eEJ(v) 

xEB". 

The more general problem of weighted b-matching, as well as other generalizations that 
allow any constraint matrix A with L; I aij I ~ 2 for all), are examined in Section 4. 

We say that U ~ V is an odd set if I U I ~ 3 and is odd. We have already given the valid 
inequalities, called odd-set constraints: 

(1.1) I x ~ llQlJ for all odd sets U ~ V 
eEE(U) e 2 

for the convex hull of matchings. Recall that they are valid since each matching edge "uses 
up" two nodes. They can be obtained by one iteration ofthe integer-rounding procedure 
(see Sections II.1.1 and n.1.2). They are, of course, also valid when I U I is even, but they 
are not interesting because they can be obtained as a nonnegative linear combination of 
the degree and nonnegativity constraints. 

The main results of this chapter are a polynomial-time algorithm for WM and a linear 
inequality description of the convex hull of matchings. The algorithm solves the linear 
program 

(1.2) 

I Xe ~ 1 for v E V 
eEJ(v) 

I x ~ llQlJ for all odd sets U ~ V 
eEE(U) e 2 

xER~ 

and obtains an integral optimal solution, and therefore a matching, for any objective 
function vector c. Hence it provides a proof that the convex hull of matchings is given by 
the degree, non negativity, and odd-set constraints. 

An algorithm for maximum-weight matching can also be used to find a maximum-
weight perfect matching, when one exists, by a simple transformation of the objective 
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function. Let k = I VI/2, a = maxeEE max(ce, 0), b = mineEE Ce, (J = k(a - b) + 1, and 
c; = Ce + (J for e E E. The ranking of perfect matchings by weight is the same for C and c'. 
Moreover, with respect to the objective function c', a lower bound on the weight of a 
perfect matching is k( b + (J), and an upper bound on the weight of an imperfect matching 
is (k - 1) (a + 0). Now 

k(b + (J) - (k - l)(a + 0) = 0 + kb - (k - l)a = a + 1 > 0 

so that any perfect matching has greater weight than any imperfect matching. 
Our approach to solving (1.2) is by a primal-dual algorithm similar to the algorithm we 

gave for the transportation problem in Section 1.3.5. The main difficulty to overcome is 
the exponential number of odd-set constraints. 

The dual of (1.2) is 

w = min I llv + I II U2 I J Yu 
vEV odd sets U 

I llv + I Yu ~ C e for e E E 
(1.3) v:eEo(v) U:eEE(U) 

llv ~ 0 for v E V 

Yu ~ 0 for all odd sets U. 

The algorithm to be presented maintains primal and dual feasibility and achieves 
optimality when the complementary slackness conditions are satisfied. At each major 
iteration the cardinality ofthe matching is increased. This is done by solving a cardinality 
matching problem. So we begin the presentation of the general algorithm by studying 
maximum cardinality matching. 

2. MAXIMUM-CARDINALITY MATCHING 

In our study of the maximum-flow problem (see Section 1.3.4), we gave necessary and 
sufficient conditions for a flow to be maximum in terms of augmenting paths. That is, the 
flow could be increased if and only if an augmenting path existed with respect to the 
current flow. We then gave an efficient procedure for finding an augmenting path or 
showing that none existed. We use the same idea to find a maximum-cardinality 
matching. Thus we begin by defining an augmenting path with respect to a matching. 

Given a graph G and a matching M, a path in G is said to be alternating relative to M if 
its edges alternate between M and E \ M. (See Figure 2.1, where edges in M are repre-
sented by wavy lines.) A node v is said to be exposed relative to M if no edge of M meets v. 
A path in G is augmenting relative to M if it is alternating and both of its end nodes are 
exposed. This definition is natural since, if there is an augmenting path relative to M, a 
new matching M' with one more edge is obtained by deleting from M the matching edges 
in the path and adding to M the nonmatching edges in the path (see Figure 2.2). 

e EM e E M 
• • • • .. 

Alternating path 

Figure 2.1 
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Augmenting path 

Figure 2.2 

The interesting result is that ifthere is no augmenting path, the matching is maximum. 

Theorem 2.1. A matchingM is not maximum if and only if there exists an augmenting 
path relative to M. 

Proof Let E' be the edge set of the augmenting path, and let M' = (M U E') \ 
(M n E'). Then M' is a matching, and 1M' I = 1M I + 1. This formally establishes our 
claim that the existence of an augmenting path implies that the matching is not maximum. 

We now show that if M is not maximum, then there exists an augmenting path relative 
toM. If M is not maximum, there exists a matchingM' with 1M' I = 1M I + 1. LetD be 
the symmetric difference of M and M'; that is, D = (M U M') \ (M n M'). Thus 

IDI = IMI + IM'I-2IMnM'1 =21MI + 1-2IMnM'I. 

Hence I D I is odd. 
Consider the subgraph G(D) = (V, D). Since M and M' are matchings, the degree of 

each node is no more than 2; and if the degree is 2, then one edge is from M and the other 
is from M'. Hence each component of G(D) is either an isolated node, a cycle containing 
an even number of edges, or an alternating path relative to both M and M'. Since I D I is 
odd, there must be at least one alternating path of odd length. Moreover, since I M' I = 
I M I + 1, one of these alternating paths of odd length must be augmenting with respect 
~M • 

The basic idea of the augmenting-path algorithm is to grow a tree of alternating paths 
rooted at an exposed node. Then if a leaf of the tree is also exposed, an augmenting path 
has been found. We begin by describing an augmenting-path algorithm for bipartite 
graphs. Finding an augmenting path in a bipartite graph is much simpler than finding one 
in a general graph. In fact, in the primal-dual algorithm for the transportation problem, 
we have shown that an augmenting path in a bipartite graph can be found by finding a flow 
augmentation in a maximum-flow problem. The algorithm given below is essentially a 
flow-augmentation algorithm described with augmenting-path terminology. This termi-
nology will be useful in the description of the general algorithm. 

Cardinality Matching Algorithm for Bipartite Graphs 

Initialization: M is an arbitrary matching. All nodes are unlabeled and unscanned. 

Step 1 (Optimality Test): Ifno nodes are exposed and unlabeled, the current matching is 
maximum. Otherwise choose an exposed and unlabeled node r. Label it (E, -). (Here 
E stands for even and should not be confused with the usual use of E for an edge set. 
The first component of a node label is either E or O. A labeled node is said to be even if 
the first component of its label is E; otherwise it is odd.) 
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Step 2 (Grow an Alternating Tree): Choose a labeled and unscanned node i. If it is even, let 
J = (j E V: j is an unlabeled neighbor of i). Label all j E J with (0, i). Node i is 
scanned; go to Step 3. If i is odd and exposed, go to Step 4. If i is odd and not exposed, 
label the node joined to i by a matching edge (E, i). Node i is scanned; go to Step 3. 

Step 3: If there is a labeled and unscanned node, go to Step 2; otherwise go to Step 1. 
Step 4 (Augmenting-Path Identification): Use the second components of the labels to 

identify the augmenting path from node r to node i. Remove all labels, update the 
matching, and return to Step 1. 

Theorem 2.2. The algorithm produces a maximum-cardinality matching on a bipartite 
graph. 

Proof In Steps 2 and 3, we grow a forest of alternating paths. An odd node i yields an 
alternating path between rand i with an odd number of edges. Hence if i is exposed, the 
path is augmenting. 

Now we show that if there are no exposed and unlabeled nodes, the final matching MO 
is maximum. We do this by giving a feasible solution to the dual problem (1.3) with 
w = I ~ I. One way to obtain a feasible solution to (1.3) is to find a subset of nodes W s V 
such that each e E E is incident to a node in W. Then we set '/rv = 1 for all v E W, '/rv = 0 
otherwise, and Yu = 0 for all odd sets. Here our objective is to produce a dual feasible 
solution of this form with I WI = IMo I. 

When the algorithm terminates, we have a set oflabeled trees Ti = (Vi, E i) for i = 1, 
... , s - 1, and we also have a set of unlabeled nodes V, (see Figure 2.3). 

Since no nodes in V, are exposed, the subgraph induced by V" (V" Es) contains a 
perfect matching. Let (Vl, ~) be a bipartition of v" and let V? C V; be the odd nodes of Ti 
for i = 1, ... , s - 1. Set W = Uf:: V? U Vl. 

0 E 
x 

E 
Tl 

Xx T2 0 
Xx 

<== 
Xx 

E 
x~ • E 

0 x E 0 
x 

0 E ) 0 E 

x 

Figure 2.3. Crosses mean that the edge cannot be in E. 
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(E, -) (0,5) (E,7) 

2 

4 

(0,3) 

Maximum matching: MO = {(2, 7), (3, 6), (4, 10), (5, 8)} 

O . al d 1 1 . { 1 for v = 3, 7, 8, 10 pnm ua so utlOn: n, = 0 th . a efWlse. 

Figure 2.4 

m.2. Matching 

Augmenti ng path 
(5,8,3,6) 

New matching edges 
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W generates a dual feasible solution since: 

a. Each e E Ui~l Ei is incident to a node in W. 
b. In the subgraph induced by Vi, i = 1, ... , s - 1, there cannot be an edge joining two 

even nodes; otherwise there would be an odd cycle. 
c. There cannot be aI). edge joining even nodes in different trees; otherwise one of 

these nodes would have been labeled from the other. 
d. There cannot be an edge joining an even node and an unlabeled node; otherwise the 

unlabeled node would have been labeled from the even node. 

To show strong duality, note that 

• 
Example 2.1. An example of the algorithm is given in Figure 2.4. 

The algorithm may fail to find an augmenting path if the graph is not bipartite. An 
example is shown in Figure 2.5. Here there are two paths between nodes 1 and 4. The odd-
length path is augmenting, but we find it only by labeling in a particular way. 

We now develop a procedure that circumvents this problem. Let M be a matching. 
Suppose in the process of growing an alternating tree using the algorithm given above, we 
find that there are two alternating paths to node i, one of even length and the other of odd 
length. This can happen in two ways (see Figure 2.6): 

a. Node i is even and is adjacent to another even node in the tree; 
b. Node i is odd, adjacent to another odd node in the tree, and the edge that joins them 

isinM. 

By tracing the two paths back toward the root of the tree until the node where they 
intersect is reached, we identify a set of labeled nodes U £; V with I U I odd and 
1M n E( U)I = II U /211. Note that in both cases the intersection node, denoted by b( U), is 
even. 

(0, 1) 

2 

3 
(0,1) 

Node 4 cannot be labeled 

(E, -) 

4 

Figure 2.5 

(0, 1) 

2 

3 
(E,2) 

Augmenting path found 

4 
(0,3) 
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E 

o 

E E 

o o 

E 

An even node is adjacent to 
another even node in the tree 

Figure 2.6 

o 

E 

o 

Two odd nodes are joined by 
a match i ng edge 
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Thus relative to M, the odd-set constraint for U is satisfied at equality. The subgraph 
(U, E( U)) is called a blossom relative to M. Each u E U \ b( U) is met by an edge in M n 
E( U). Node b( U), which is called the base of the blossom, is either the root of the tree or is 
adjacent to a matching edge in the tree. 

Now we shrink the blossom as described below and illustrated in Figure 2.7. 

Procedure for Shrinking a Blossom 

Construct a reduced graph G by replacing (U, E( U)) by a node B( U) called a pseudonode. 
In G, each node that is adjacent to a node in U in the original graph is joined to the 
pseudonode. All of these edges are nonmatching edges unless there is a matching edge 
adjacent to b( U), in which case that edge remains a matching edge in the shrunken graph. 
The remainder of the graph remains the same. The resulting reduced matching on G is 
denoted M. B( U) receives the label previously assigned to b( U), and any node not in U 
that has been labeled from a node in U has the second component of its label changed to 
B( U). Also record the triple (B( U), b( U), U). After a blossom is shrunk, the labeling 
process continues on the reduced graph G. A reduced graph may be shrunk again, and it 
may happen that a blossom to be shrunk contains a pseudonode. In this case the 
pseudonode is treated like an ordinary node. Both the terminology reduced graph and the 
notation G are used for any graph that contains a pseudonode; and correspondingly, M is 
used to indicate a matching on the reduced graph. 

When an augmenting path is found in a reduced graph G with matching M, we also find 
an augmenting path in G with respect to M. A procedure for finding an augmenting path 
in G is given below and illustrated in Figure 2.8. 

Procedure for Obtaining an Augmenting Path in G 

Let B( U) be a pseudonode on the augmenting path in G. Let a( U) be the node adjacent to 
B(U) on the augmenting path that is joined toB(U) by a nonmatching edge, let G' be the 
graph obtained by replacing B(U) by the blossom (U, E(U)), and let b'(U) be a node in U 
that is adjacent to a(U) in G'. By construction, (U, E(U)) contains an even-length 
alternating path p joining b( u) and b' (u). Replace B( U) in the augmenting path on G by 
the path p. This yields an augmenting path in G'. The procedure is repeated for each 
pseudonode on the augmenting path. Note that old pseudonodes may reappear when a 
pseudonode is replaced by an alternating path. 
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GandM 

- -
GandM 

, • • B(lJ) 
(E, -) 0 

E 

(U, E(lJ) 

Figure 2.7 

a(u) 

• • 
0 E -

Augmenting path in G 

E 

<0, b(u» 

(E, -) 

An associated forest, with the odd set U 

(E,k) p(lJ) i 

(E, -) 

(0, i) 
k 

The associated reduced forest 

• 
0 

b'(u) 

• D- -- .. Pathp 
b(u) b'(u) 

;('" To be expanded 

• .. • B(U') ~ • • • • b(u) 
(E, -) b(u) b'(u) a(u) E 0 (U, E(lJ) 

Augmenting path in G' 

Figure 2.8 
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General Cardinality Matching Algorithm I 

Initialization: M is an arbitrary matching. a = G. Sf = M. All nodes are unlabeled and 
unscanned. 

Step 1 (Optimality Test): Ifno nodes in a are exposed and unlabeled, Sf is maximum in a 
and M is maximum in G. Otherwise choose an exposed and unlabeled node r in V. 
Label it (E, -). 

Step 2 (Grow an Alternating Forest): Choose a labeled and unscanned node or pseu-
donode i E V. If there is none, go to Step 1. 

a. If i is even and has an even neighbor, go to Step 4. 
b. If i is even and does not have an even neighbor, label all unlabeled neighbors of i 

with (0, i). Node i is scanned; go to Step 3. 
c. If i is odd and is exposed, go to Step 5. 
d. If i is odd and is not exposed, label the endpoint of the matching edge adjacent to 

node i with (E, i). Node i is scanned; go to Step 3. 

Step 3: If there is a labeled and unscanned node or pseudonode in a, go to Step 2. 
Otherwise go to Step 1. 

Step 4 (Shrink a Blossom): Use the second components of the labels on node i and its 
neighbors to identify a blossom (U, E(U» and its base b(U). Use the shrinking 
procedure described above to replace (U, E( U» by a pseudonode B( U). Complete the 
scanning of B( U) as in Step 2 [B( U) has an even label] and then go to Step 3. 

Step 5 (Augmentation in G): Use the second components of the labels to identify an 
augmenting path in a, and use the procedure given above for identifying an augment-
ing path in G. Find a new matching M' in G, and M .... M', a .... G, and Sf +- M. Return 
to Step 1. 

Theorem 2.3. The algorithm produces a maximum-cardinality matching. 

Proof When the algorithm terminates in Step 1, we have a reduced graph a, the 
associated matching Sf, and the matching MO in the original graph. We also have a set of 
labeled trees T; = (Vi, Ei) for i = 1, ... ,s - 1 and a set of unlabeled nodes f"s. The 
subgraph as induced by Vs contains a perfect matching since no nodes in f"s are exposed. 
Moreover, all of the matching edges e E Sf are either tree edges, edges internal to a 
shrunken blossom, or edges internal to as. 

We show that MO is maximum by giving a feasible solution to the dual linear program 
(1.3) with w = IMo I. The dual solution and the proof of its feasibility and optimality are 
similar to those given in the proof of Theorem 2.2. So only the details that are different are 
given here. 

When the algorithm terminates, all labeled pseudo nodes in the shrunken graph a are 
even. Let B( U) be a labeled pseudonode in a, and let 

R(U) = {v E V: v E U or v is in a blossom nested in B(U)}. 

Since U is an odd set and R (U) is obtained from U by replacing pseudo nodes by odd sets, 
R(U) is an odd set. The dual constraints for the edges in the graph induced by R(U) are 
satisfied by setting YR(U} = 1. 
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Now consider Gs. and let 

Q(V;) = {v E V: v E V; or v is in a blossom nested in a pseudonode in Gs}. 

Note that since 1 V;I is even and Q(V;) is obtained from V; by replacing pseudonodes by 
blossoms, 1 Q( V;) 1 is even and there is a perfect matching on the subgraph induced by 
Q( V;). If 1 Q( V;) 1 = 2, the dual constraints for edges in the subgraph are satisfied by setting 
'lt q = 1 for anyone q E Q( V;). Otherwise let q be an arbitrary node in Q( V;). Then 
Q(V;) \ {q} is an odd set containing (I Q(V;) 1 - 2)/2 matching edges. Hence the dual 
constraints for the edges in the subgraph induced by Q( V;) \ {q} are satisfied by setting 
YQ(V,)\(q} = 1. 

Let V? £; V; be the odd nodes of 1j for i = 1, ... , s - 1. A feasible solution to (1.3) is 
given by 

'ltv = 1 if v E V? for i = 1, ... , s - 1 

'lt q = 1 for anyone q E Q( V;) 

'ltv = 0 otherwise 

YR(U) = 1 if B(U) is a labeled pseudonode in the final graph 

YQ(V,)\(q} = 1 if 1 Q(V;) 1 > 2 

Yu = 0 otherwise. 

Now following the argument in the proof of Theorem 2.2, we obtain 

L 'ltv + L II U2 I J Yu':::; IMo I· 
vEV odd sets U 

So by weak duality, w = IMo I. • 
Let II U /21 J be the weight of the odd set U. 

Corollary 2.4. The maximum number of edges in a matching equals the minimum 
number of nodes plus weighted odd sets needed to cover all the edges. 

Now we consider the complexity of the algorithm, where m = I V I and n = I E I. The 
number of augmentations is no more than m /2. Between augmentations we need to create 
an alternating forest, contract pseudonodes, and then reexpand to find the new matching. 
Using the labels and storing blossoms appropriately, these steps can be carried out in such 
a way that each edge is considered only a constant number of times. 

Proposition 2.5. The complexity of the cardinality matching algorithm is O(mn). 
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Example].] 

G and a matching 

1. We grow an alternating tree rooted at node 1. Node 2 is chosen next, and (2,3) E M 
indicates the blossom with U, = {l, 2, 3} and b(U,) = 1. 

(0,1) 

Blossom indication 

(0,1) 

2. The pseudo node B(U,) = B, is created and becomes the root of the tree. B, is 
scanned. Node 4 is scanned. In scanning node 5, a blossom is identified with node set 
U2 = {B" 5, 6} and b(U2) = B,. 

(E,4) 

Blossom indication 
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3. The pseudonode B2 = B(U2) is created and becomes the root of the tree. In scanning 
B2, we find the blossom with U3 = {Bz, 4, 7} and b(U3) = B2• 

(0, B2) 

Blossom indication 

4. The pseudo node B3 = B(U3) is created and scanned. 

Node 8 is odd and exposed. Hence we find the augmenting path (B3, 8). 

5. The graph G and the new matching M are shown below. 

To find the corresponding matching M, we start with M = {(8, B3)' (9, IO)} and then 
expand B 3• Node 8 is joined to node 4 of B 3• So next we find an even-length path from 
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node 4 to B2, which is the base of B3• From the path (4, 7, B2) we identify the matching 
edges (8,4) and (7, B2)' Hence M = {(8, 4), (7 ~B2)' (9, to)}. 

Next we expand B 2. Node 7 is joined to node 6 of B 2, and the base of B 2 is B 1. From the 
even-length path (6, 5, B 1), we identify the matching edges (6, 7) and (5, B 1), and we find 
the matching M = {(8, 4), (6, 7), (5, B 1), (9, to)}. 

FinallybyexpandingBb weobtainM = M = {(8, 4), (7,6), (5,2), (3,1), (9, to)}. The new 
matching, along with the blossoms B 1, B 2, B 3, is shown below. 
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6. We grow an alternating tree rooted at node 11. Nodes 11, 10, 9, 1, 3, 2, and 5 are 
scanned. In the process of scanning node 6, a blossom with U4 = {2, 3, 5,6, 7} and 
b( U 4) = 3 is identified. 

(E, -) (0,11) (E,lO) (0,9) 

7. The pseudo node B4 = B( U4) is created, and labeling continues. 

(E, -) (0,11) (E,lO) (0,9) 

8. All n9des are labeled so that the current matching M is maximum. 

An optimal solution to the dual is given by 

lri = 0 otherwise 

Yu, = 1, Yu = 0 otherwise. 
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E 

E ... ----_~_---__t1 B(U) 
o !---_ .... EE-- Indication of augmentation 

a(U) 

e- • 

... • 

b'(U) 

Graph with 
(u, E(U) 
expanded 

b(u)=B(U') 

A----.... --... 'a(U) 

V3 ,.,...;.. __ .... V5 

aCU') 

(U~ E(U'» 

B(U) ~I------" a(U) 

Graph with 
CU', E(U'» 
expanded 
btU') =Vl 

.-e-----e-. --q t 
Figure 2.9 
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We have two reasons for modifying Algorithm I. First of all, restarting from scratch 
with a new matching after an augmentation is found can be inefficient, since many of the 
pseudonodes we had before may be recreated. Secondly, in the weighted algorithm given in 
the next section, we will need to keep some pseudo nodes after an augmentation is found. 

In Algorithm II given below, when an augmentation is found in G we update the 
matching in G, but we grow a new alternating forest in G with respect to the new matching 
M in G. Algorithm II has the same complexity as Algorithm I; however, for the reason 
mentioned above, it is likely to be more efficient. Some additional steps are needed as 
explained below. 

After an augmentation and a new matching M' are found in G, the bases of the 
pseudonodes in G on the augmenting path, as well as all of the pseudonodes nested within 
these pseudonodes, must be updated. This is done during the recursive process of finding 
the new matching M' in G and is illustrated in Figure 2.9. 

In addition, when we grow a new alternating forest for G, a previously created 
pseudonode may receive an odd label. In this case there may be no augmenting path in the 
reduced graph, whereas there is an augmenting path in the graph in which this odd 
pseudonode is expanded. Hence when a pseudonode B( U) receives an odd label, we 
expand it as shown in Figure 2.10; and in the alternating forest, we replace B( U) by a node 
a( U) E U that is joined by a nonmatching edge to the node from which B( U) was labeled. 
Note that in this case, the new matching contains fewer than II U 1/2] edges from the 
blossom B( U). This observation is important for the weighted matching algorithm that 
will be described in the next section. 

General Cardinality Matching Algorithm II 

Steps 1, 3, and 4: These are the same as in Algorithm I. 
Step 2': Modify Step 2c,d by: Ifi is an odd pseudonode go to Step 6. 

Step 5' (Augmentation in G and G): Modify Step 5 with the following additions: 

a. Use the augmenting path in G to find a new matching M' in G. Update the bases of 
all the pseudo nodes on the augmenting path and all of the pseudonodes nested 
within these pseudonodes. 

b. M <- M', M <- M', and return to Step 1. 

Step 6' (Expand a Pseudonode): Pseudonode i = B(U) has the label (O,}). Change G by 
expanding the blossom B(U) = (U, E(U». Find a(U) E U with (j, a(U» E E \ M. 
Replace B( U) by a( U) in the alternating forest and give a( U) the label (0 ,i). If a( U) is 
a pseudonode, the process is repeated. Go to Step 2' . 

Example 2.2 (continued). Here we apply Algorithm II. The first five steps are the same 
as before. Referring to the graph at the end of Step 5, we see that b(U3) = 4, b(Uz) = 6, and 
b(Ul ) = 2. 

6'. We grow an alternating tree rooted at node 11. 

~----~~----~{V~--~~ 
(E, -) (0, 11) (E, 10) (0,9) 
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E 

E o 

E o 

(E, -) 

III.2. Matching 

The labeled tree does not 
indicate an augmenting path 

Expansion of blossom 

(E, -) 

Labeling continues and augmenting path is found 

E o E o 
,...-..... --___ -_r-Indication of augmenting path 

E .... --.... 

E o (E, -) 

Figure 2.10 

7'. B 3 is odd, so it is expanded. a(B 3) = B 2; hence B 2 replaces B 3 in the tree. B 2 is odd, so 
it is expanded. a(B2) = B 1; hence BI replaces B2 in the tree. BI is odd, so it is expanded. 
a(B I) = 1; hence 1 replaces B 1 in the tree. Now the tree is 

~~--~~~--~~~--~G) 
(E, -) (0,11) (E,10) (0,9) 

8'. Nodes 1,3,2, and 5 are scanned. In the process of scanning node 6,--(carry on 
with point 6 of Example 2.2). 
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3. MAXIMUM-WEIGHT MATCHING 

Here we give a primal-dual algorithm for the linear program (1.2) and prove that the 
solution is integral for any objective function vector c. Such a solution is therefore a 
solution to the weighted matching problem. We can assume Ce > 0 for all e E E since 
Ce ~ 0 implies that there is an optimal solution with Xe = O. 

Given a matching M, let Xe = 1 for e EM, let Xe = 0 otherwise, and let 

C; = I nv + I Yu - Ceo 
v:eEa{v) odd sets U:eEE(U) 

The complementary slackness conditions for the linear programs (1.2) and (1.3) are 

(3.1) C;Xe = 0 for e E E (either c; = 0 or e tf. M) 

(3.2) (ll U 1/2] - I Xe) Yu = 0 for odd sets U 
eEE(U) 

(either Yu = 0 or M n E( U) = II U I /2]) 

(3.3) (1 - I Xe) nv = 0 for v E V (either nv = 0 or v is met by an e EM). 
eE,j(v) 

The primal-dual algorithm maintains primal and dual feasibility and also maintains 
the conditions (3.1) and (3.2). Therefore, optimality is achieved when (3.3) is satisfied. 

An initial integral primal feasible solution and a dual feasible solution that satisfy (3.1) 
and (3.2) are given by 

(3.4) 

Xe = 0 

YU=O 

1 
nv = 2 ~~x Ce 

for e EE 

for odd sets U 

for v E V. 

Note that c;, = 0 for all e' E E such that Ce' = maXeEE Ceo 

Let E"= {e E E: c; = O}. The graph G' = (V, E') is called the equality-constrained 
subgraph. Throughout the course of the algorithm, (3.1) is maintained by settingxe = 0 for 
e E E \ E'. We maintain (3.2) by requiring Yu = 0 unless (U, E(U» is a blossom in the 
equality-constrained subgraph that has been shrunk into a pseudonode. 

To see if (3.3) can be satisfied, we find a maximum-cardinality matching in the 
equality-constrained subgraph G'. Again, we will be dealing with reduced subgraphs (;' of 
G' that contain pseudonodes. There are two possibilities: 

i. A matching £1 is found in (;' with nv = 0 for all exposed nodes. The corresponding 
matching M in G' is an optimal solution to the weighted matching problem. 

ii. For the reduced graph (;' and matching £1, no augmenting path is found. 

In the latter case a dual change is made that maintains dual feasibility and also 
maintains (3.1) and (3.2). Then the equality-constrained subgraph G' and its reduced 
subgraph (;' are updated. In addition the edges of the alternating forest F' in (;' still have 
c; = 0, so that F' is kept. After a small number of dual changes, either an augmentation is 
obtained or nv = 0 for all exposed nodes. 
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After either a dual change or augmentation, all pseudonodes B( U) with dual variables 
Yu = 0 are expanded. However, pseudo nodes with Yu > 0 are not expanded. The implica-
tion of this is that an augmenting path ofthe type shown in Figure 2.10 may not be found 
immediately. It will be necessary to reduce Yu to zero before such an augmenting path can 
be found. The reason for this change is to maintain the complementary slackness 
condition (3.2). 

When new edges are added to a' after a dual change, we continue with the development 
of the alternating forest F' by adding edges, labeling nodes, and creating pseudonodes as 
described previously unless an edge (u, v) is added where u and v are both even and 
contained in different trees of F'. In this case, F' contains an augmenting path joining the 
roots of the two trees as shown in Figure 3.1. 

E 

(E'-':-~)---O~----E?-------~ E 
o 

E 0 

(E, -) o v 

o 

E 

Figure 3.1 

Weighted Matching Algorithm 

Initialization: Start with the primal and dual solutions given by (3.4). Let 
E' = {e E E: c; = O}, G' = (V, E'), a' = G', if = M = 0, andF' = 0. 

Step 1: Continue with the construction of the alternating forest F'. If an augmenting path 
is found, go to Step 2. Otherwise, go to Step 3. 

Step 2 (Augmentation): Update the primal solution M and expand all pseudonodes B( U) 
with Yu = O. Update the bases of the remaining blossoms. Let a' be the reduced 
equality-constrained subgraph with matching if'. If lrv = 0 for all exposed nodes, the 
current primal and dual solutions are optimal. Otherwise set F' = 0 and go to Step 1. 

Step 3 (Dual Change): Apply the dual change given by (3.5) and (3.6) below. If lrv = 0 for 
all exposed nodes, the current primal and dual solutions are optimal. Otherwise update 
a' and expand all pseudonodes B( U) with Yu = O. If an e = (u, v) has been added to a' 
where u and v are both even and contained in different trees of F', then identify an 
augmenting path and go to Step 2. Otherwise keep F' intact and go to Step 1. 

We need to ensure that (3.1) and (3.2) remain satisfied if an augmentation or a dual 
change occurs. In addition, we must ensure that dual feasibility and that part of the 
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equality subgraph corresponding to the alternating forest are preserved when a dual 
change occurs. 

Proposition 3.1. If conditions (3.1) and (3.2) are satisfied prior to an augmentation, then 
they are satisfied by the matching obtained/rom the augmentation. 

Proof Since c; = 0 for all edges in the equality-constrained subgraph, it is clear that 
(3.1) remains satisfied. The only way that (3.2) can be violated is by an augmentation that 
reduces the number of matching edges in E(U), where U is an odd set with Yu > O. 
However, ifyu > 0, (U, E(U» is represented by apseudonodein CT'. Any augmentation in 
G' translates into a new matching M with 1M n E( U) I = I U 1/2. • 

We now describe the dual change used in Step 3. Define the following sets: 

Let 

OU+ = {odd set U: U is the node set ofa shrunken blossom represented 
by an even pseudonode} 

ou- = {odd set U: U is the node set of a shrunken blossom represented 
by an odd pseudonode} 

ou- = {odd set U: U is the node set of a shrunken blossom represented 
by an unlabeled pseudonode} 

P = {v E V: v is even or v E U for some U E OU+} 

V- = {v E V: v is odd or v E U for some U E OU-} 

V- = {v E V: v is unlabeled or v E U for some U E OU-} 

E+ = {e = (i,j) EE: i E P,j E V-} 

E++ = {e = (i,j) E E: i E P,j E V+, no U E ou+ contains both i andj}. 

ifOU- =#= 0 

ifOU- = 0 

ifE++=#=0 

ifE++=0 

ifE+ =#= 0 

ifE+ = 0 

and 0 = min(o" 02, 03, 04)' 
The dual change is given by 

r-~ 
for v E V+ 

(3.5) ftv = ttv + 0 for v E V-
7tv otherwise 

and 

rU+2~ for U EOU+ 
(3.6) Yu= yu-2J for U EOU-

Yu otherwise. 
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The effect of the dual change on node weights trv and edge weights c; is shown in 
Figure 3.2. 

Proposition 3.2. The dual change is bounded and not degenerate; that is, 0 < 6 .;; 
~ maXeEE Ceo 

Proof 1. (61 > 0). Before the dual change, there is an exposed node u E V+ with tru > 0; 
otherwise the algorithm would have terminated prior to the dual change. Moreover, u has 
been exposed before all previous dual changes since once a node is met by a matching edge, 
it remains covered thereafter. Thus tru = minvEv' trv since tru has been decreased at every 
dual change and we started with tr v equal to a constant for all v E V. Hence 
{vEV+:7rv =0}=0. 

2. (62 > 0). All pseudo nodes with Yu = 0 are expanded after dual changes and augmen-
tations. Thus the only possibility for a labeled pseudonode with Yu = 0 is that U has been 
shrunk since the last augmentation or dual change. But then U E qj+. Hence 
{U EUfr: Yu= O} = 0. 

3. (63 ) 0). If c; = 0, then e is in the equality-constrained subgraph. Ifboth ends of E are 
even and c; = 0, then either an augmenting path is identified or both endnodes of e are 
contained in a shrunken blossom. Thus {e E E++: c; = O} = 0. 

4. (64 ) 0). If e E E+ and c; = 0, then the other end of e receives an odd label. Hence 
{e E E+: c; = O} = 0. Finally 6 = min(6I, 62, 63, 64) > 0 and 6 .;; 61 .;; ~ maXeEE Ceo • 

Proposition 3.3. If the primal and dual solutions satisfy (3.1) and (3.2), and c; = 0 for all 
edges of the alternatingforest, then these conditions are satisfied after a dual change. 

Proof a. (nv ~ 0 for v E V). We have 

nv ~ trv - 6 (by (3.5)) 

~ trv - 61 (by the definition of 6) 

~ 0 (by the definition of 61), 

b. CVu ~ 0 for odd sets U). We have 

Yu ~ Yu - 26 (by (3.6)) 

~ Yu - 262 (by the definition of 6) 

~ 0 (by the definition of 62). 

c. (c; ~ 0 for e E E). By (3.5) and (3.6) we only need to consider e E E+ U E++ or e is in 
a blossom whose pseudonode is labeled; otherwise c; ~ c; ~ O. 

i. (e E E+). We have 

c; = c; - 6 (by (3.5) and the definition of c;) 

~ c; - 64 (by the definition of 6) 

~ 0 (by the definition of 64), 
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11. (e E E++). We have 

c; = c; - 2<5 (by (3.5) and the definition of c;) 

~ c; - 2<53 (by the definition of <5) 

~ 0 (by the definition of <53), 

631 

Alternating 
forests 

111. (e is in a blossom whose pseudonode is even). Then both endnodes of e are in P. 
Thus 

c; = c; - 6 - 6 + 26 = c; (by (3.5), (3.6), and the definition of c;). 

iv. (e is in a blossom whose pseudo node is odd). Then both endnodes of e are in V-. 
Thus 

c; = c; + <5 + <5 - 2<5 = c; (for the reason given in iii). 

Thus the new solution is dual feasible. 
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Next, we establish that (3.1) is satisfied; that is, e EM implies c; = O. Since c; = 0 for 
e EM, it suffices to show that c; = c; for e EM. Consider an e EM and first suppose that 
e has not been shrunk; then either one endnode of e is odd and the other is even, or both 
endnodes are unlabeled. Then by (3.5), we have c; = c;. On the other hand, if e has been 
shrunk, then c; = c; by iii and iv above if the pseudonode is labeled, whereas c; = c; by 
(3.5) and (3.6) if the pseudonode is unlabeled. 

Next we show that (3.2) is satisfied; that is, if U is an odd set and 1 E( U) n M 1 < 
[I U 1/2], then Yu = Yu = O. This follows directly from (3.6) since if 1 E( U) n M 1 < 
[I U 1 /2], then (U, E( U» cannot be shrunk into a pseudonode. 

Finally, consider the edges of the alternating forest. If e is in a labeled blossom, we have 
shown above that c; = c; = O. Otherwise, one end of e is in v+ and the other end is in V-. 
Thus 

c; = c; - 0 + 0 = c; = O. • 
Proposition 3.4. There are no more than Sm/3 dual changes between augmentations. 

Proof We will use the fact that the alternating forest F' is kept between augmenta-
tions. The effect of the dual change depends on arg(min{oI, 02, 03, 04}). 

a. (0 = 01)' Since all exposed nodes are even in C', and 7Cv = 01 for all exposed nodes, we 
have ft~ = 0 for all expoded nodes. In this case the current primal and dual solutions 
are optimal. 

b. (0 = 02). Then Yu = 0 < Yu for some odd pseudonode. After an augmentation there 
can be no more than m/3 odd pseudonodes, and all new pseudonodes created 
between augmentations are even. Hence 0 = 02 can happen no more than m/3 
times between augmentations. 

c. (0 = 03). Then c; = 0 < c; for some e whose two endnodes are even. This edge is 
added to the equality-constrained subgraph. The result is an augmentation or the 
creation of a pseudonode. The latter can happen no more than m/3 times between 
augmentations because a newly created pseudo node B( U) is even so that its dual 
variable Yu can only increase between augmentations. 

d. (0 = 04). Then c; = 0 < c; for some e with one endnode even and the other un-
labeled. Then the unlabeled node becomes odd. This can happen no more than 
m - I times because there are no more than m - I unlabeled nodes. • 

Theorem 3.5. The weighted matching algorithm finds an integral optimal solution to 
(1.2) and also finds an optimal solution to its dual (1.3). Its complexity is O(m2n). 

Proof Integrality of the primal solution is maintained throughout the algorithm 
because each solution is a matching. When the algorithm terminates, both the primal and 
dual solutions are feasible and satisfy complementary slackness. 

The work between successive dual changes is O(n). By Proposition 3.4 the maximum 
number of dual changes between an augmentation is O(m), and the number of augmenta-
tions is Oem). 

Finally, observe that after p dual changes, it follows that 7C, y and c' are rationals with 
denominator 2k for some integer k, 0.;;; k .;;; p. Hence the numbers involved in the 
calculations remain polynomially bounded. • 
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Theorem 3.6. The polytope defined by the constraint set of (1.2) is the convex hull of 
matchings. 

Proof By Theorem 3.5, (l.2) has an integral optimal solution that is a matching for 
any objective function vector c. Thus, by Proposition 1.1 of Section III.1.1, each extreme 
point of the polytope defined by the constraints of(l.2) is integral. • 

Example 3.1 

1. Initialization 

C = (cel' ... , Ce,) = (8 9 8 7 9 4 5 2 1) 

77:v = 4.5 for all v E V 

yu=O for all U 

c' = (1 0 I 2 0 5 4 7 8) 

Equality 
constrained subgraph 

2. Equality-constrained subgraph and labels with M = {ez, es} 

o (E,-) 

(E, -) 
0(E,-) 
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3. Dual change 

n = (3.5 4.5 4.5 4.5 4.5 3.5 3.5) 

yu = 0 for all U 

c' =(0 0 1 2 0 4 3 6 6) 

el is added to the equality constrained subgraph. 

4. Equality-constrained subgraph and labels 

o (E,-) 

(E, -) (0,1) (E,2) o (E,-) 

5. Dual change 

111.2. Matching 

61 = 3.5, 62 = 00, 63 = 3, 64 = min{l 2 4 3 6} = c;, = 1, 6 = 64 = 1 

n = (2.5 5.5 3.5 4.5 4.5 2.5 2.5) 

yu = 0 for all U 

c' =(0 0 0 1 0 3 2 5 4) 

e3 is added to the equality constrained subgraph. 

6. Equality-constrained subgraph and labels 

(0,3) (E,-) 

o 

o 
(E,4) (E,-) 
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7. Dual change 

n = (2 6 3 5 4 2 2) 

yu = 0 for all U 

c' = (0 0 0 0 0 3 2 4 3) 

e4 is added to the equality-constrained subgraph. 

8. Reduced equality-constrained subgraph and labels 

(E, -) 

o 
G)------(01-------IG 

(E, -) (0,1) (E,2) 

(E, -) 

9. Dual change 

03 = 1 min (c;) = 1, 
1=6,7,8,9 

n = (1 7 2 4 3 1) 

Yu = 2 for U = (3, 4, 5), Yu = 0 otherwise 

c' = (0 0 0 0 0 1 0 2 1) 

e7 is added to the equality-constrained subgraph. 

U = {3, 4, 5} 

BI = B(U) 

b(U) = 3 

10. Augmentation in the reduced graph and new labeling. M = (eb e4, e7) 

(E, -) 

o 

635 
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11. Dual change 

7C = (1 7 2 4 3 0 1) 

Yu = 2 for UI = {3, 4, 5), Yu = 0 otherwise. 

12. Optimal solution 

Primal: xei = 1 for i = 1,4, 7, X ei = 0 otherwise 

Dual: 7C = (1 7 2 4 3 0 1) 

YU1 = 2 for UI = {3, 4, 5), Yu = 0 otherwise. 

III.2. Matching 

4. ADDITIONAL RESULTS ON MATCHING AND RELATED PROBLEMS 

This section contains a potpourri of topics related to matchings. We begin by presenting 
further results on the convex hull of matchings. Then we describe the polytope of the 
convex hull of perfect matchings and relate matchings to the problem of covering nodes by 
edges. 

The next topic is the reduction of integer and (0, 1) b-matching problems to matching 
problems. These reductions may also be viewed as a technique for obtaining linear 
inequality descriptions of b-matching polytopes. 

We then introduce a pair of combinatorial objects known as T-joins and T-cuts. T-joins 
include perfect matchings, s-t paths, and eulerian subgraphs. 

The final topic of this section is the problem of coloring the edges of a graph so that no 
pair of edges that are incident to the same node have the same color. This edge coloring 
problem is equivalent to partitioning the edges of a graph into matchings. 

The Matching Polytope 

Here we demonstrate an interesting nonalgorithmic proof technique for showing that a set 
of inequalities describes the convex hull of a set S by proving Theorem 3.6; that is, the 
convex hull of matchings in a graph G = (V, E) is given by 

(4.1) 

I xe:;;; 1 for v E V 
eEO(v) 

I xe:;;; II U2 I J for all odd sets U with I U I ;;. 3 
eEE(U) 

xER~. 

Let .;U be the set of matchings on G, let w be a weight vector on the edges of G, let 
w(M) = LeEM We, let 

z(w) = max{w(M): M E.;U}. 

and let.;U(w) be the set of maximum-weight matchings. We use the following property of 
.;U(w). 
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Proposition 4.1. If w > 0 and G is connected, then either 

1. there exists a v E V such that J( v) n M '* 0 for all M E .tU( w), or 
2. IMI = II VI/2]forall M E.tU(w), and I VI is odd. 

Proof Suppose that statement 1 is false and there exists an M E .tU( w) with 
1M I < II V I /2]. Since I M I < II V I /2], there are at least two exposed nodes relative to M. 
Now choose an M E.tU(w) so that there are exposed nodes u and v as close together as 
possible. Then (u, v) $. E; otherwise M U {(u, v)} E.tU and w(M U {(u, v)}) > z(w). 

Let t be any internal node on a minimum-length path joining u and v. By the choice of 
u and v, t is not exposed relative to M. Also, since statement 1 is false, there is another 
matching M' E .tU(w) such that t is exposed relative to M'. 

Now the graph a = (V; MUM') consists of a node disjoint union of paths and cycles in 
which the degrees of nodes t, u, and v are equal to 1. (If u or v was exposed relative to M', 
we would have a contradiction to the choice of M, u, and v.) The component at = (~, Et ) 

of a containing t is therefore a path with t as one endpoint. Hence this component cannot 
contain both u and v. Since the edges of E t alternate between M and M', it follows that 

are matchings, and 

w(M) + w(M') = w(M) + w(M') = 2z(w). 

Since w(M), w(M') .:;;; z( w), we have w(M) = z( w) and M E .tU( w). This is a contradiction 
because (a) u and t are exposed relative to M and (b) the path between u and t is shorter 
than the path between u and v. So either statement 1 is true or I M I = II V I /2] for all 
M E.tU(w). 

Finally, if I M I = II V I /2] and I V I is even, M is a perfect matching, so statement 1 is 
true. Thus if statement 1 is false, statement 2 is true. • 

Proof of Theorem 3.6. Let S be the set of incidence vectors of matchings in 
G = (V; E). Suppose 

(4.2) L WeXe':;;; Wo 
eEE 

defines a facet of conv(S). We consider two cases: 

1. wo':;;; 0 or We < 0 for some e E E. Since the set ofmatchings form an independence 
system, the only inequalities that define facets with Wo .:;;; 0 or We < 0 are -Xe .:;;; 0 for 
e E E (see Section 11.1.5). 

2. wo > 0 and we ~ 0 for e E E. (i) Since (4.2) defines a facet, Wo = z(w) and xM E S 
satisfies WXM = Wo if and only if M E .tU(w); and (ii) since conv(S) is full-dimen-
sional, by Theorem 3.6 of Section 1.4.3, the set of equations 

(4.3) L weX~ = Wo for M E .tU(w) 
eEE 

has a unique solution up to scalar multiplication. 
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Suppose there is a v E V such that I J( v) n M I = 1 for all M E .;/;l( w). Then a solution to 
(4.3) is We = 1 for e E J(v), We = 0 otherwise, and Wo = 1. Hence (4.2) is of the form 
L eE6(v) Xe ~ 1. 

If no such v exists, let E' = {e E E: We> O} and G' = (V', E') be the subgraph of G 
induced by E'. G' is connected; otherwise (4.2) is the sum of valid inequalities for G and 
thus cannot define a facet. Define w' on G' by w; = We fore E E', and let.;/;l'(w') be the set 
of maximum-weight matchings on G'. Hence M' E.;/;l' (w') if and only if M' = M n E' 
for some M E .;/;l( w). Hence, by hypothesis, statement 1 of Proposition 4.1 is false for the 
pair (G', w'). Thus 1M' I = II V'I/2j for all M' E.;/;l'(w'), and I V' I is odd. Now a solution 
to (4.3) is We = 1 for e E E( V'), We = 0 otherwise, and Wo = II V' 1/2j. Thus (4.2) is of the 
form LeEE(V') Xe ~ II V' 1/2j, where I V' I ~ 3 and is odd. • 

For any pair (G, w), we have z(w - 1) ~ z (w) -II V1/2j. However, when statement 10f 
Proposition 4.1 is false and w is integral, it can be shown that z(w - 1) = z(w) -II V1/2j, 
which implies 1M I = II VI/2j for all M E .;/;l(w). Thus we can state a stronger version of 
Proposition 4.1 forintegral w. 

Proposition 4.2. If w ~ 1 and is integral, and G is connected, either 

a. there exists a v E V such that J(v) n M '" o for all ME .;/;l(w), or 
b. WI is odd and z(w - 1) = z(w) -II V1/2j. 

By using Proposition 4.2, we obtain a simple proof that the dual ofmax{LeEE WeXe: x 
satisfies (4.1)} has an integral optimal solution for all w E zn. 

Theorem 4.3. The system of inequalities (4,1) is TDL 

Proof The proof is by induction on I V I + I E I + LeEE We. Clearly the result is true for 
a graph with two nodes and one edge. We can assume that G is connected; otherwise the 
induction hypothesis can be applied separately to each component. We can also assume 
w ~ 1; otherwise an edge can be deleted. Hence the hypotheses of Proposition 4.2 hold. 
Let n E R':' and y E R~ be the dual variables for the degree constraints and odd-set 
constraints, respectively. There are two cases according to Proposition 4.2. 

1. Statement a of Proposition 4.2 is true for v. Let w' be defined by w; = We - 1 for 
e E J(v) and by w; = We otherwise. Clearly, z(w') ~ z(w) - 1; but if z(w') = z(w), 
then statement a of Proposition 4.2 is false. Hence z(w') = z(w) - 1. Now by the 
induction hypothesis, there is an optimal dual solution (n', y') E Z':'+P of cost 
z(w) - 1. Now define (n, y) E Z':'+P by nv = n~ + 1, nu = n~ otherwise, and y = y'. 
Then it is a simple calculation to show that (n, y) is an optimal dual solution for the 
weight vector w. 

2. Statement b of Proposition 4.2 is true. Let w' = w - 1. Hence z(w') = z(w)-
II V1/2j, and I VI is odd. By the induction hypothesis, there is an optimal dual 
solution (n', y') E Z,:,+p. Now define (n, y) E Z':'+P by n = n', Yv = y~ + 1, and 
Yu = Yu otherwise. Again, it is easy to check that (n, y) E Z':'+P is an optimal dual 
solution for the weight vector w. • 

Perfect Matchings 

We now consider perfect matchings. Clearly, if I V I is odd, there are no perfect matchings. 
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Theorem 4.4. The convex hull of perfect matchings on a graph G = (V, E) with I VI even is 
given by 

(a) x E R~ 

(b) I Xe = 1 for v E V 
(4.4) eEo(v) 

(c) I x e ",;; II u2 I J for all odd sets U s V with I U I ~ 3 
eEE(U) 

or by (a), (b), and 

(d) I Xe ~ 1 for all odd sets Us V with I U I ~ 3. 
eEo(U) 

Proof Since the convex hull of perfect matchings is the face of the matching polytope 
with1:eEo(v) Xe = 1 for all v E V, the claim for (a), (b), and (c)followsfrom Theorem 3.6. We 
now show that an x satisfies (a), (b), and (c) if and only if it satisfies (a), (b), and (d). 

By summing the constraints of (b), we obtain 

I xe=1IVI. 
eEE 

Now since I VI is even and U is an odd set, V \ U is an odd set. Hence (c) yields the 
inequalities 

- I Xe ~ _lillj 
eEE(U) 2 

and 

- I Xe ~ - = -21 V I + -+ 1. l lV\Ulj 1 llUlj 
eEE(v\U) 2 2 

Summing the last three constraints yields (d). • 
The system (4.4 (a), (b), (c» is TDI since it is obtained from the TDI system (4.1) by 

changing some inequalities to equalities. The system (4.4 (a), (b), (d» is not TDI for all 
graphs (see exercise 9). However, it can be shown that the dual problem always has an 
optimal solution in which each variable is an integer or an integer divided by 2. 

Edge Coverings 

The theory and algorithmic aspects of edge coverings completely parallel those for 
matching. We illustrate this with two results. 

Proposition 4.5. Let M be a maximum-cardinality matching, and let C be a minimum-
cardinality covering of the nodes by edges in a graph G = (V, E). Then IMI + I CI = I VI. 
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Proof Given M, let V be the set of nodes of degree zero relative to M. Thus IV I = 

I V I - 21 M I. Since we obtain a cover by adding I V I edges to M, we have 

ICI ~ IMI + IVI = IMI + IVI-2IMI = IVI-IMI. 

Given C, let M be a maximum-cardinality matching in (V, C), and let -0 be the set of 
nodes of degree zero relative to M in (V, C). Then 

and 

Hence ICI + IMI = I VI. • 
To cover an odd set of nodes V, we need at least II V 1/2J + I edges. Thus we obtain the 

valid inequalities 

L Xe + L Xe ~ II V2 I J + 1 for all odd sets V. 
eEE(U) eEa(U) 

These inequalities, together with the degree and nonnegativity constraints, yield the 
convex hull of edge covers. 

Theorem 4.6. The convex hull of edge covers in a graph G = (V, E) is given by 

b-Matching 

L Xe ~ I for v E V 
eEa(v) 

L x ~ llQlJ + I for all odd sets V 
eEE(U)UO(U) e 2 

xER~. 

The next topic deals with the reduction of b-matching problems to I-matching problems. 
These reductions may be viewed as modeling devices for transforming harder problems to 
easier ones, and they can be used in contexts other than matching. Although they are not 
necessarily polynomial reductions, they serve three useful purposes. 

1. The transformed problem may yield theoretical results-for example, polyhedral 
descriptions of the convex hull of solutions in the original space. 

2. The transformed problem can be solved by a standard matching algorithm. This 
may be preferred, even when the transformation is not polynomial, to constructing 
a new algorithm. 

3. An efficient algorithm can often be developed for the original problem by studying 
the (possibly nonpolynomial) algorithm on the transformed problem. 
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We first consider the integer b-matching problem on G = (V, E). Its constraints are 
LeEo(v) Xe < bv for v E V and x E Z~. 

Suppose that bv = 2 for all v E V. In this case the edges M = {e E E: Xe > 0} of a feasible 
solution produce a graph (V, M) whose components are paths in which Xe = 1 for all edges 
of the path, cycles in which Xe = 1 for all edges of the cycle, isolated nodes, and single edges 
with Xe = 2. In perfect integer 2-matchings, only the cycles and single edges with Xe = 2 can 
occur. 

In Section II.6.3, we used perfect 2-matchings as a relaxation for the traveling salesman 
problem, and we reduced the perfect integer 2-matching problem on G = (V, E) to a 
perfect matching problem on a bipartite graph H = (Vl U P, E'), where V l and Pare 
copies of V, and el = (u l , v2), e2 = (v l , u2) are in E' if and only if e = (u, v) E E. The 
reduction does not depend on the matching being perfect. 

Let Y E B2n be the incidence vector of a matching on H, and let Xe = Yel + Ye" Then 
x E Z~ and 

2.: Ye+ 2.: Ye= 2.: Xe· 
eEo(v') eEo(v') eEO(v) 

Thus to find a maximum-weight integer 2-matching on G with weight vector wE Rn, 
we can find a matching on H with weight vector w' E R2n , where W~I = W~2 = We for all 
eEE. 

The reduction also yields a linear inequality description of the convex hull of integer 
2-matchings. 

Proposition 4.7. 

(4.5) 

The convex hull of integer 2-matchings on G = (V, E) is given by 

2.: Xe < 2 for v E V 
eEO(v) 

xER~. 

Proof The convex hull of matchings on the bipartite graph H is given by 

2.: Ye < 1 for Vi E Vi and i = 1, 2 
(4.6) eEO(v') 

We need to show that the projection onto Rn of the points that satisfy (4.6) and 
Xe = Yel + Ye' for e E E is precisely those points in Rn that satisfy (4.5). 

Every point x of the projection lies in R~ because Yel, Ye2 E R~ and Xe = Yel + Ye" Also, 
every such point satisfies (4.5) because 

2.: Xe= 2.: Ye+ 2.: Ye<2 
eEo(v) eEo(v') eEO(v') 

by (4.6). It remains to show that every point x E R~ satisfying (4.5) is a point of the 
projection. For this it suffices to take Yet = Ye' = ~xe for e E E. • 

This approach readily extends to integer b-matchings with bv even for all v E V and 
yields the result that when bv is even for all v E V, integer b-matching is a network flow 
problem on a graph with 21 V 1 nodes and 21E 1 edges. 
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Figure 4.1 

For general b E Z~, the transformation of integer b-matching on G to 1-matching is 
more complicated. Here each node is replaced by bv copies of itself, and for each pair of 
adjacent nodes in the original graph all the resulting copies are joined to form a complete 
bipartite graph. Formally, we construct a new graph H = (UVEV VV, U(u,V)EE EU,V), where 
VV = (VI, ... , Vb,) for v E V, EU'v = (e l, ... , eb•b,) for (u, v) E E, and (VU U VV, EU,V) is a 
complete bipartite graph with b u + b v nodes and bubv edges. Hence H contains 1:vEV b v 

nodes and n* = 1:(u,V)EE bubv edges. An example is given in Figure 4.1. This is not a 
polynomial reduction, since the new description of the problem is not a polynomial 
function of 1:vEV log by. 

Let y E Bn' be the incidence vector of a matching on H, and let x e = 1:7:1 Ye; for e E E. 
Then x E Z~ and 1:eE6(v) Xe = 1:eE6(V') Ye ~ b v for v E V. Hence x is an integer b-matching 
onG. 

Conversely, if x E Z~ is the vector of an integer b-matching on G, then we get a 
matching on H by setting Ye; = 1 for Xe node disjoint edges for all e E E. 

For the graph of Figure 4.1, Table 4.1 gives the maximal b-matchings on G and the 
corresponding matchings on H. 

Table 4.1. 

Y!J Y~J y!, y~2 y!, y~, y~, y:, 

o 1 0 0 0 0 0 1 0 
1 0 0 0 0 0 0 1 
0 1 0 0 1 0 0 0 
0 1 0 0 0 1 0 0 

o 0 0 1 0 0 1 0 0 
0 0 1 0 0 0 0 1 
0 0 0 1 1 0 0 0 
0 0 0 1 0 0 1 0 

o o 2 0 0 0 0 1 0 0 1 
0 0 0 0 0 1 1 0 
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We also obtain a linear inequality description of the convex hull of integer b-matchings. 

Theorem 4.8. The convex hull of integer b-matchings is given by 

(4.7) 

L xe";;;; bv for v E V 
eE.5(v) 

L Xe";;;; - L bv II J 
eEE(U) 2 vEU 

for U S V with L bv odd 
vEU 

xER~. 

Proof. Let y E R~' be a point in the convex hull of matchings on H; and for 
e = (u, v) E E, let Xe = ~f~f' Ye" Then x E R~ and, as above, 

Now suppose ~VEU bv is odd. Let S = UvEU VV so that I S I = ~VEU by. Hence from the 
odd-set constraints we obtain 

L Xe = L Ye";;;; -lSI = - L bv . l1 J l1 J eEE(U) eEE(S) 2 2 vEU 

So x satisfies (4.7). 
Conversely, suppose x satisfies (4.7). We need to show that for each such x there is a 

Y ERn' lying in the convex hull of I-matchings on H. For e = (u, v) E E, let 
Yu',vj = xu,v/bubv for i = 1, ... , bu andj = 1, ... , by. Then Y E R~' and 

L L Yu',vj = L Xbu,v,,;;;; 1 for vj E VV and v E V. 
uEV\{v} u'EV" uEV\{v} v 

Now consider an odd set S of nodes in H. 

Case 1. S = UVEU VV and ~VEU bv is odd. Hence I S I = ~VEV bv and 

L Ye = L Xe";;;; - L bv = -IS I II J II J eEE(S) eEE(U) 2 vEV 2 

Case 2. S contains kv > 0 nodes from VV for v E U and for some wE U, kw < bw. 
Hence I S I = ~VEU kv and 

~ ~ kukv 
L. Ye = L. b b Xu,V' eEE(S) u,vEU u v 

We will show that 

L kbukbv Xu,v ,,;;;; -21 ( L kv + (kw - 1») = l~ IS I J. 
u,vEU U v vEU\{w} 
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For v E U \ {w}, multiply the constraint LuEJ(v) Xu,v ~ bv by kv/2bv and multiply the 
degree constraint for w by (kw - 1)/2bw. By summing these inequalities and using x E R1 
to eliminate the coefficients of edges not in E( U), we obtain 

L. - + - XUV + L. - + -- Xuw ~ L. v + ( w - 1) '" (ku kv ) '" (ku kw - 1) ('" k k ) 
u,vEU\{w} 2bu 2bv ' uEU\{w} 2bu 2bw ' vEU\{w} 

Now for u, v E U \ {w}, we obtain 

For u E U \ {w}, we obtain 

and 

since 1 ~ kw ~ bw - 1 and 1 ~ ku ~ bu. Hence, 

'" kukv '" ( ku kv ) '" (ku kw - 1) L. --x ~ L. -+- X + L. -+-- X u,vEU bubv u,v u,vEU\{w} 2bu 2bv U,v uEU\{w} 2bu 2bw U,w 

• 
A triangle with bv = 2 for v = 1,2, 3 and c = (1 1) shows that the system (4.7) is not 

TDI. An interesting result that we will not prove is that by adding the superfluous 
constraints LeEE(U) Xe ~ t LVEU bv for U ~ V with LVEU bv even, we obtain a TDI system. 

Analogous to Theorem 4.4 and by an identical proof, which uses Theorem 4.8, we 
obtain the convex hull of perfect b-matchings. 

Corollary 4.9. The convex hull of perfect b-matchings is given by 

L Xe = bv for v E V 
eEJ(v) 

(4.8) L Xe ~ 1 for U ~ V with L bvodd 
eEJ(U) vEU 

xER1. 

This result will be used later to establish the convex hull of perfect binary 2-matchings. 

Binary b-matching problems can be reduced to integer b-matching problems. We will 
only study binary perfect 2-matching, denoted by BP2M. Here the feasible solutions are 
cycles that cover all of the nodes. We showed in Section II.6.3 that BP2M gives a tighter 
relaxation for the traveling salesman problem than does integer perfect 2-matching. 
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v 
• 

bu= 2 

Given a BP2M problem on G = (V, E), we construct a new graph G' = (V u V', 
E U E'), where each e E E is replaced by a path with three edges as shown in Figure 4.2. 
Hence I V' I = I E' I = 21E I. We let bv = 2 for v E V and bv = 1 for v E V'. 

Now every perfect b-matching on G' has either (i) Xel = X e' = 1 andxe2 = 0 or (ii) Xe2 = 1 
and Xel = X e' = O. So there is a one-to-one correspondence between BP2M's on G and 
perfect b-matchings on G' given by Xe = Xel = X e' = 1 - X e' for e E E. 

This reduction, together with the reduction of perfect integer b-matching with 
bv E (1, 2) to perfect matching, gives a polynomial-time algorithm for BP2M (i.e., the 
algorithm of Section 3). Figure 4.3 shows the transformation of BP2M for a triangle to 
perfect I-matching, and it also shows a perfect I-matching on the resulting graph. This 
reduction also yields a linear inequality description of the convex hull of BP2M. 

In Section II.2.3, we derived the rank 1 inequalities 

(4.9) I Xe+ I.xe~ IHI +lIE2
A

IJ forHC V, 
eEE(H) eEE 

where E ~ J(H) is an odd set of node disjoint edges. Here we will show that these 
inequalities, together with the degree constraints and 0 ~ x ~ 1, define the convex hull of 
0-1 perfect 2-matchings. 

First we restate (4.9) by subtracting:l: LeEo(V) Xe = 1 for v E H. This yields 

1 1 llEIJ - I Xe -- I Xe ~ --
2 eEE 2 eEo(H)\E 2 

or 

I Xe - I Xe ~ IE I - 1 
eEE eEo(H)\E 

or 

I (1 - xe) + I Xe ~ 1 for He V, E ~ J(H), IE I odd. 
eEE eEo(H)\E 



646 111.2. Matching 

2 

2~2 
BP2M 

2 

2 2 

Perfect integer b-matching with bu E { 1, 2} 

Perfect 1-matching 

Figure 4.3 
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Theorem 4.10. The convex hull of binary perfect 2-matchings is given by 

I Xe = 2 for v E V 
eEo(v) 

(4.10) I (l - Xe) + I Xe ~ 1 for H e V, where E <;; J(H) is an odd 
eEE eEo(H)\E 

set of node disjoint edges 

x ~ 1, XER~. 

Proof We transform BP2M to an integer perfect b-matching problem with b i E {t, 2} 
as shown in Figure 4.3, and then we apply Corollary 4.9 to the graph G ' = (V U V', 
EUE'). 

Suppose y E R!n satisfies (4.8) for the graph G'. For e E E, let Xe = 1 - Ye2 = Yel = Ye3 
(see Figure 4.3). Since 0 ~ Ye2 ~ 1, we have 0 ~ Xe ~ 1 for all e E E. Also ~eEO(v) Xe = 
~eEo(vl Yel = 2. 

Now for He V and EeE with lEI odd, define we V U V' by W=HU{u ' : 
(u, v) E E}. Then ~VEW bv is odd. Also 

J(W) = {(u ' , v'): ( u, v) E E} U {(u, u'): (u, v) E J(H) \ E}. 

Thus ~eEO(W) Ye ~ 1 yields 

I Ye2 + I Y e' ~ 1. 
e2~(u',v'): (u,v)EE e'~(u,v)Eo(H)\E 

Transforming to the variables x E R~ yields 

I (1 - xe) + I Xe ~ 1. 
eEE eEo(H)\E 

Hence x sa~isfies (4.10). 
Conversely, if x satisfies the constraints (4.10), then with Yel = Ye3 = 1 - Ye2 = x" we 

have Y E R!n; also, Y satisfies the degree constraints for G'. Now if ~VEW bv is odd, 
I W n V'I is odd and, in particular, I {u' E W: v I $. W} is odd. Define H = W n V and 
E = {(u, v) E E: u, u' E W, v, v' $. W}. Hence IE I is odd and J(H) = {(u, v) 
EE: u E W, v$. W}. Now from 

I (1 - xe) + I Xe ~ 1, 
eEE eEJ(H)\E 

we obtain 

I Yed I Yel = I Ye ~ 1. 
e2 ~ (u',v'):(u,V)EE e' ~ (u,v) EJ(H)\E eEo(W) 

Hence Y satisfies (4.8). • 
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Theorem 4.10 generalizes to perfect 0-1 matchings. The convex hull of these matchings 
is given by 

x.;;; 1, xER~ 

L Xe = bv for v E V 
eEa(v) 

where H £; V and E £; J(H) are such that I:VEH bv + I E I is odd. 
Moreover, these results can be generalized further to include the constraints x .;;; d for 

anydEZ~. 

T-Joins and T-Cuts 

Our next topic introduces parity conditions into matching problems and includes the 
postman problem and the minimum-weight s-t path problem. 

Definition 4.1. Given G = (V, E) and T £; V with I T I even, a subset of edges E' £; E is a 
T-join if, in the subgraph G' = (V, E'), the degree of v is odd if and only if vET. 

Proposition 4.11. Minimal T-joins areforests. 

Proof By deleting all of the edges from all cycles of the T-join, we obtain a smaller 
~~. . 
Example 4.1. In the graph of Figure 4.4, if T = V, the T-joins are {et, e4} and {e2, e3, e4}' 
If T = {l, 4}, the T-joins are {et. e2, e4} and {e3, e4}. If T = {3, 4} the T-joins are {e4} and 
{et. e2, e3, e4}. 

By choosing different types of sets T, the minimal T-joins yield forests with interesting 
properties. 

1. If T = {s, t} and E' £; E is a minimal T-join, then the forest is an s-t path. 
2. If T = V, E' £; E is a minimal T-join, and the edges of E' form a matching, then the 

forest is a perfect matching. 
3. If T = {u: u is of odd degree} and E' £; E is a minimal T-join, then E' is a minimal 

set of edges with the property that the multigraph obtained by duplicating E' is 
eulerian. 

2-------... 3 

4 

Figure 4.4 
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2~---~3 

4 

G 

Figure 4.5 

The minimum-weight T-join problem is solvable in polynomial time. We show this by 
reducing it to a perfect matching problem. Given G = (V, E) and T, replace each v E V by 
a clique Cv containing IJ(v) I + £Xv nodes, where 

_ {O if vET and I J( v) I is odd, or v $. T and I J( v) I is even 
£Xv - 1 otherwise. 

Then for each (u, v) E E, join a node in Cu to a node in Cv in such a way that no two of 
these edges are incident to the same node. Call the new graph G' = (V', E U E'), whereE' 
are the clique edges. 

For the graph of Example 4.1 and T = {l, 4}, we have £Xl = £X3 = 1 and £X2 = £X4 = o. A 
perfect matching on G' and the corresponding T-join are sho)J'n in Figure 4.5. 

Proposition 4.12. If E ~ E U E' is a perfect matching in G', then EnE is a T-join in G. 
Conversely, ijE* is a T-join in G, there exists an E ~ E' so that E U E* is a perfect matching 
in G'. 

Proof Suppose vET. By the definition of £Xv, I C v I is odd. Hence a perfect matching 
in G' contains an odd number of edges in J(Cv). Similarly, if v $. T, then I Cv I is even and 
a perfect matching in G' contains an even number of edges in J( C v). 

The argument for the converse is similar. • 

Next we consider a class of valid inequalities for the convex hull of T-joins. The 
following definition generalizes the definition of s-t cuts in a graph. 

Definition 4.2. Given G = (V, E) and T ~ V with I T I even, J( U) for U ~ V is a T-cut if 
I U n T I is odd. 
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o(U) n E' 

U V\U 

Figure 4.6 

Example 4.1 (continued). The minimal T-cuts with T = V are {e{, e2}, {e{, e3}, and {e4}. 

Suppose 6( U) is a T-cut and E' s; E is a T-join. Consider the graph G = (V, E') shown 
in Figure 4.6. Since 6(U) is a T-cut, I U n TI is odd. Since E' is a T-join, the degree of 
each node in U nTis odd, and the degree of each node in U \ T is even. Now if 
6( U) n E' = 0, the graph (U, E( U) n E') would have an odd number of nodes of odd 
degree, which is impossible for any graph. Hence 6( U) n E' *' 0, and 

I Xe ~ 1 for 6(U) aT-cut, Us; V 
eEtl(U) 

is a valid inequality for the convex hull of T-joins. Moreover, these inequalities yield a 
polyhedron where extreme points are the minimal T-joins. 

Theorem 4.13. A linear inequality description of the polyhedron whose extreme points are 
the incidence vectors of minimal T-joins in G = (V, E) and whose extreme rays are the n unit 
vectors is given by 

I Xe ~ 1 for Us; V with I U n TI odd 
(4.11) eEtl(U) 

xER~. 

The proofinvolves showing that y satisfies y ~ 0 and the odd-set constraints of( 4.2) for 
G' ifand only if x satisfies (4.11) for G. The details are left as an exercise. 

We now show that blocking polarity can be used to determine a polyhedron whose 
extreme points are the minimal T-cuts. 

Proposition 4.14. For any graph G, the set of minimal T-joins and T-cuts are a pair of 
blocking clutters. 

Proof The proof is by Corollary 6.2 of Section III.1.6. In particular, we show that if 
E' C E does not contain a T-join, then E \ E' contains a T-cut. Note that it suffices to 
take a maximal set E' that does not ~ntain a T-join; that is, for any e = (u, v) E E \ E', 
E' U {e} contains a minimal T-join E. 

Each component of (V, E), and hence each component of (V, E' U {e}), contains an 
even number of nodes of T. Now let G = (U, E(U) n (E' U {e})) be the component of 
(V, E' U {e}) containing e. 

We claim that (U, JIJU) n E') is disconnected. If not, there exists a cycle C in G 
containing e. But then E \ C s; E is a T-join, contradicting the definition of E'. 
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Now let Vb V2 be a bipartition of V according to the components of(U, E(U) n E'). 
Since I U n T I is even and e E If, it follows that I VI n T I and I V2 n T I must be odd. 
Finally, since J(VI) n E' = 0, J(VI) is a T-cut with J(VI) ~ E \ E'. • 

From Theorem 4.13, Proposition 4.14, and Theorem 6.5 of Section III.1.6, we obtain a 
description of a T-cut polyhedron. 

Theorem 4.15. A linear inequality description of the polyhedron whose extreme points are 
the incidence vectors of minimal T-cuts in G = (V, E) and whose extreme rays are the n unit 
vectors is given by 

I Xe ~ 1 for all minimal T-joins E' ~ E 
(4.12) eEE' 

xER~. 

Since we have already given a polynomial-time algorithm for finding minimum-weight 
T-joins, it follows from the polynomial-time equivalence between optimization and 
separation that: 

Corollary 4.16. The minimum-weight T-cut problem is solvable in polynomial time, 

In fact, there is an efficient combinatorial algorithm for solving the minimum-weight 
T-cut problem. It uses a max-flow algorithm as a subroutine and is closely related to the 
algorithm given in Section 11.6.3 for finding violated subtour inequalities. 

Edge Coloring 

The last topic of this section is the edge-coloring problem: Given G = (V, E), color the 
edges of G, with a minimum number of colors subject to the restriction that no pair of 
edges incident to a common node has the same color. 

Edge coloring is related to matching since an edge coloring is feasible if and only if all of 
the edges with the same color are a matching. Hence we can formulate the edge-coloring 
problem as one of covering the edges of a graph with a minimum number of maximal 
matchings. This yields a minimum-cardinality set-covering problem with a huge number 
of variables of the form 

x(G) = min ly 

(4.13) yA ~ 1 

where the rows of A correspond to the maximal matchings in G, and x( G) is the minimum 
number of colors needed to obtain a feasible edge coloring. X(G) is called the chromatic 
index ofG. 

Let Ll(G) = maxvEv I J(v) I; that is Ll(G) is the degree of a node v* of maximum degree. 
Since all of the edges incident to v* require a different color, we have X( G) ~ Ll( G) for all 
graphs G. 

Proposition 4.17. X(G) = Ll(G)for bipartite graphs, 

Proof If Ll( G) ~ 2, the result is trivial. That is, if Ll( G) = 2, then G contains disjoint 
paths and even cycles, so two colors suffice. 
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Now suppose that d(G);;:. 3. Attempt to construct a feasible coloring with d(G) colors 
by coloring the edges in any order and not using a new color unless it is necessary to do so. 
Suppose that we have already used d(G) colors and that e = (u, v) requires a new color. 
This means that all of the d( G) colors except i have been used to color edges incident to u, 
i has been used to color an edge adjacent to v, and some color j has not been used to color 
edges adjacent to v (see Figure 4.7). Now consider the subgraph generated by e and all of 
the edges already colored either i or j. In this subgraph, each node is of degree no larger 
than 2 and there are no odd cycles; hence it is possible to color these edges with i and j 
alone. So now we have a coloring with no more than d( G) colors that includes e. • 

Note that the proof gives a polynomial-time algorithm for the edge-coloring problem 
on bipartite graphs. 

Next we consider the edge-coloring problem in general graphs. The graph of Figure 4.8 
has d( G) = 3 < X( G) = 4. A 4-coloring is shown in Figure 4.8; X( G) ;;:. 4 since I E I = 7, and 
each maximal matching has two edges. 

Surprisingly, this example gives the largest possible value of x( G) - d( G). The following 
theorem, which we will not prove, is known as Vizing's theorem. 

Theorem 4.18. For any graph G, X(G) equals d(G) or d(G) + 1. 

We now comment on its implications on solving the edge-coloring problem. Since d( G) 
can be found for any graph in O( I E I) time and Vizing's proof provides a fast algorithm to 
color the edges with d(G) + 1 colors, we might hope that Theorem 4.18 could be used to 
find X( G) efficiently. Unfortunately, this is not the case since the decision problem "Does 
X(G) = d(G)?" is .N'9Jl-complete. Moreover, determining the chromatic index is difficult 
even if X( G) is small. 

u .... -----~ ... 

-'"----4u 
3 

Figure 4.7. i = 3,) = I. 
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Theorem 4.19. The problem of deciding whether X(G) .;;; 3 is }(P}J-complete. 

In other words, there is an infinite family of graphs with Ll( G) = 3, for which the 
problem of deciding whether X( G) = 3 or 4 is }(P}J-complete. An immediate consequence of 
this result is: 

Corollary 4.20. Unless P}J = }(P}J, no polynomial-time algorithm can yield afeasible edge 
coloring that requiresfewer than 11 x(G)J colorsfor all graphs. 

Despite these negative results regarding the polynomial solvability of the edge-coloring 
problem, we now show how Theorem 4.18 and the ellipsoid algorithm can, in certain 
cases, yield a polynomial-time algorithm for finding X( G). The linear programming 
relaxation of(4.13) is 

(4.14) 

and its dual is 

(4.15) 

XLP(G) = min ly 

yA ~ 1 

yER':' 

LlLP(G) = max Ix 

Ax.;;; 1 

xER~. 

Although problem (4.15) has a constraint for each maximal matching, it can be solved 
in polynomial time since the separation problem is a maximum-weight matching prob-
lem. That is, x·, 0 .;;; x*.;;; 1, is a feasible solution to (4.15) if and only if a maximum-weight 
matching in G with edge weights x* has value no greater than 1. 

Proposition 4.21. If LlLP(G) > Ll(G), then X(G) = Ll(G) + 1. 

Proof Note that Ll(G).;;; LlLP(G) since a feasible solution to (4.15) is Xe = 1 for all 
e E t:5(v*), where v* is a node of maximum degree. Now by linear programming duality, 
LlLP(G) = XLP(G).;;; X(G). Hence if LlLP(G) > Ll(G), then X(G) > Ll(G). Then by Theo-
rem 4.18, we have X(G) = Ll(G) + 1. • 

In the graph of Figure 4.8 we have LlLP( G) > 3, which implies X( G) = 4. 
Heuristics provide a practical approach for finding good colorings of large graphs. In 

fact, there are heuristics that achieve the performance bound of I~ X(G)J, and it is also 
possible to realize asymptotic bounds of the form ax(G) + p with a <~. We will not give 

Figure 4.8 
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any details, but the basic idea of many heuristic coloring schemes has been used in the 
proof of Proposition 4.17. Namely, in a sequential coloring scheme, whenever we encoun-
ter an edge e = (u, v) that requires a "new" color, we try to adjust the present coloring so 
that a new color is not required for e. A simple rule of this type is to consider two colors, 
say red and blue. Now we try to recolor all of the red and blue edges by red and blue so that 
feasibility is maintained and every edge adjacent to u and v is colored red. Then e can be 
colored blue. 

5. NOTES 

Section 111.2.1 

Matching theory predates mathematical programming. Remarks on the early literature, 
which was primarily concerned with bipartite graphs, appear in Pulleyblank (1983) and 
Schrijver (l983a). Lovasz and Plummer (1986) is a recent book on matching theory that 
emphasizes the graph-theoretic aspects of matching. 

The application to the postman problem was given by Edmonds and Johnson (1973). 
Fujii et al. (1969) and Coffman and Graham (1972) gave an application to a scheduling 
problem. Network flow problems in which an arc can have two heads or two tails can be 
modeled as matching problems [see Edmonds and Johnson (1970)]. Nemhauser and 
Weber (1979) used weighted matching in the solution of set-partitioning problems. Ball, 
Bodin and Dial (1983) gave a matching-based algorithm for the scheduling of mass transit 
crews and vehicles. 

Section 111.2.2 

The augmenting-path proposition is due to Berge (1957) and Norman and Rabin (1959). 
A fast cardinality matching algorithm for bipartite graphs was given by Hopcroft and 

Karp (1973). 
The algorithmic aspects of the I-matching problem on general graphs were initiated by 

Edmonds (1965a). In this article, he gave a polynomial-time algorithm for the cardinality 
problem. The Hopcroft-Karp algorithm for bipartite graphs was extended to general 
graphs by Even and Kariv (1975). 

Section 111.2.3 

The maximum-weight matching algorithm was developed by Edmonds (1965c). The 
algorithm given here is a slight variation of the one by Edmonds. Another variation is 
given in Lawler (1976). 

Other weighted matching algorithms have been given by Cunningham and Marsh 
(1978), Derigs (1986), and Grotschel and Holland (1985). The latter is a fractional cutting-
plane approach that uses the simplex method and an efficient separation routine for 
finding violated blossom inequalities. The separation routine is based on a polynomial-
time algorithm by Padberg and Rao (1982) for finding minimum-weighted T-cuts (see 
Section 111.2.4). 

Ball and Derigs (1983) presented alternative strategies for implementing matching 
algorithms. Burkhard and Derigs (1980) gave FORTRAN listings of matching and 
assignment algorithms. 

Pulleyblank and Edmonds (1975) characterized the blossom inequalities that are facets 
of the matching polytope. 

Sensitivity analysis in weighted matching has been considered by Weber (1981), Derigs 
(1985), and Ball and Taverna (1985). 
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Avis (1983) presented a survey of heuristics for solving weighted matching problems. 
Edmonds and Johnson (1970) described an algorithm for weighted b-matching prob-

lems. The first polynomial-time algorithm for this class of problems is attributed to 
Cunningham and Marsh (1978). 

Section 111.2.4 

The nonalgorithmic proof technique given here for the convex hull of I-matchings is due 
to Lovasz (1979a). Other nonalgorithmic proofs have been given by Balinski (1972), 
Hoffman and Oppenheim (1978), and Schrijver (1983b). The proof of total dual integrality 
comes from Schrijver (1983a). A different proof is given by Cunningham and Marsh 
(1978). 

Relationships between matching and edge covering have been studied by Norman and 
Rabin (1959) and Balinski (1970b). 

The transformations used to obtain the b-matching results come from Schrijver 
(1983a), who attributed them to Tutte (1954). 

Theorem 4.8 on the b-matching polytope is due to Edmonds and Pulleyblank and 
appears in Pulleyblank (1973). Pulleyblank (1980,1981) established that this system is TD!. 
Further results regarding a minimal TDI system have been obtained by Cook (1983b). 
Cook and Pulleyblank (1987) provided a minimal linear inequality representation of the 
convex hull of capacitated b-matchings. 

The reduction of the minimum T-join problem to a perfect matching problem comes 
from Edmonds and Johnson (1973). They also used the connection with matchings to 
prove Theorem 4.15. Also see Gastou and Johnson (1986) and Johnson and Mosterts 
(1987). 

Generalizations of matching problems have been studied by Gerards and Schrijver 
(1986), Cornuejols and Hartvigsen (1986), and Cornuejols (1986). 

The edge-coloring result for bipartite graphs is a classic theorem of Konig. The proof 
given here can be found in many graph theory texts [e.g., Bondy and Murty (1976)]. 

Theorem 4.18 is due to Vizing (1964). Marcotte (1986b) showed that Vizing's theorem is 
true in the weighted case for a restricted class of graphs. 

Proposition 4.19 and Theorem 4.20 are due to Holyer (1981). 
The result cited on the worst-case bounds of edge-coloring heuristics is due to Hoch-

baum et al. (1986). 

6. EXERCISES 

1. Find a maximum-cardinality matching in the bipartite graph of Figure 6.1, and give 
a short proof of optimality. 

2. Find a maximum-cardinality matching in the graph of Figure 6.2, and give a short 
proof of optimality. 

3. A graph G = (V, E) is said to have a perfect matching if there exists M ~ E such that 
no node is exposed relative to M. Let P( U), U ~ V, denote the number of com-
ponents with an odd number of nodes in the graph G u induced by V \ U. Prove that 
G has a perfect matching if and only if P( U) ~ I U I for all U ~ V. 

4. Find a maximum-weight matching in 

i) the graph of Figure 6.2 with weights as shown, 

ii) the graph of Figure 6.3 with weights as shown. 
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Figure 6.1 

5. i) Devise a fast heuristic algorithm to find violated blossom inequalitie~. 

ii) Use this in an FCPA to find a maximum-weight matching in the graph of Figure 
6.2. 

6. Prove that the dual solution is always half-integer in the maximum-weight matching 
algorithm. 

7. For the maximum-weight matching problem, define an augmenting path p, relative 
to M, to be an alternating path or alternating cycle having no edge of M \ P incident 
to P and having the property 

I Cj - I Cj> 0, 
ejEP\M ejEM\P 

where P is the set of edges contained in the path p. Prove that M is optimal if and 
only if M admits no augmenting path. 

8. Find an optimal postman route for the graph of Figure 6.2 with the distances as 
shown. 

9. Show that the system (4.4) (a), (b), (d) is not TDI for the complete graph on four 
nodes. 

10. Show that the weighted b-matching problem reduces to a network flow problem 
when bv is even for all v E V. 

Figure 6.2 
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11. Solve the weighted b-matching problem on the graph of Figure 6.4 by reducing it to 
a I-matching problem. 

12. For the graph of Figure 6.2, solve the minimum-weight T-join problem by reducing 
it to a perfect matching problem for: 

i) T = {2, 7}; 

ii) T = V. 

13. Prove Theorem 4.13. 

14. Describe an efficient combinatorial algorithm for the minimum-weight T-cut 
problem. 

6 

b2 =4 F-------------~ b3 = 2 
3 

Figure 6.4 
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15. Given a graph G, suppose that an efficient combinatorial algorithm is known for the 
separation problem for the I-matching polytope P(I) (see Section III.3.7). Let 
XLP(w) = min{1y: yA ~ w, y E R':'}, where A is the matching-edge incidence matrix 
ofG. 

i) Verify that XLP( w) ~ 1 if and only if w lies in the I-matching polytope P(I) and 
that 

{ w(S) } 
XLP(W) = mffx (IS I _ 1)/2: IS I odd, where w(S) = eEtS) We' 

ii) Verify that C(w) = max{A,: A,W E P(I)} = l/XLP(W). 

iii) Consider the following algorithm to calculate C( w), using as a subroutine an 
efficient separation algorithm for the polytope P(1); that is, 

max{w(S) - (IS I - 1)/2: IS I odd} 

Algorithm: Choose A,0 with A,°W ~ P(1). Set t = O. 
Iteration t: 

a) Solve the separation problem for A,tw. 

b) Stop if A,tw E P(1). 

c) Set A,t+l such that A,t+l w(st) = ( I S I - 1)/2. 

d) Augment t. 

Verify that 
a) A,t+l < A,t, 

b) [l/A,t+l-l/A,t](IS t l-l)/2-(ISt+11-l)/2»O. 

c) 1St I is strictly decreasing. 

d) The algorithm terminates after, at most, I V I /2 iterations. 

iv) Use this algorithm to calculate XLP(G) andx(G) for the graph of Figure 4.8. 

16. Show that the maximum-weight assignment problem with the following conditions 
can be formulated as a matching problem: Cii = -00 for all i, ci} = Cji for all i andj, 
and xi} = xji for all i andj. 



111.3. 
Matroid and Submodular Function 
Optimization 

1. INTRODUCTION 

Matroids and submodular functions are the foundations for some combinatorial optimi
zation problems that generalize both network flow problems and the spanning tree 
problem treated in Chapter 1.3. Matroids can be viewed as prototypes of independence 
systems and 0-1 integer programs with "nice" properties that can be used to obtain 
efficient algorithms for the corresponding optimization problems. 

Definition 1.1. Let N = {l, ... , n} be a finite set, and let fF be a set of subsets of N . .f> = 
(N, fF) is an independence system if FI E fF, and F2 ~ FI implies F2 E fF. Elements of fF 
are called independent sets, and the remaining subsets of N are called dependent sets. 

Let fFT = {F E fF: F ~ n. Then if.f> = (N, fF) is an independence system,.f>T = (T, fFT) 
is an independence system for all T ~ N. 

Definition 1.2. Given an independence system .f> = (N, fF), we say that FE fF is a 
maximal independent set if F U {j} $. fF for all} EN \ F. A maximal independent set T 
is maximum if IS I ~ I TI for all S E fF. 

In describing independence systems, we use the notation 

meT) = max{ I S I: S E fF} for T ~ N 
S~T 

to denote the size ofa maximum-cardinality independent set in T. Note that meT) ~ I TI 
and fF = {T ~ N: meT) = I T I}. Hence.f> can also be specified as.f> = (N, m). 

Matroids are those independence systems for which all maximal independent sets in T 
are maximum for any subset T ~ N. 

Definition 1.3. M = (N, fF) is a matroid if M is an independence system in which for any 
subset T ~ N, every independent set in T that is maximal in T has cardinality meT). 

The following proposition is an immediate consequence of the fact that maximal sets 
must be maximum not just in N but also for all subsets T ~ N. 

Proposition 1.1. If M = (N, fF) is a matroid, then the independence system .f> T = (T, fF T) 
is a matroid for T ~ N. 

659 
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Matroids were originally developed from matrices to generalize the properties oflinear 
independence and bases in a vector space. This generalization has yielded several classes of 
matroids. 

(a) Matric Matroids. Let A be an m x n matrix, and let N be the index set of the 
columns of A. Define the independence system (N, gjP) by F E gjP if the set of columns 
defined by F is linearly independent. For any submatrixA T with columns aj forj E T, it is 
well known that every maximal set of linearly independent columns contains 
m(T) = rank(AT) columns. Hence (N, gjP) is a matroid. If M is a matroid and there exists a 
matrix A such that the independent sets of M correspond to the linearly independent 
columns of A, then M is called a matric matroid. 

(b) Graphic M atroids. Let G = (V, E) be a graph, and let F c;; E be a subset ofthe edges. 
Let F E gjP if Gp = (V, F) contains no cycles. For any subset T c;; E, the cardinality of a 
maximal set of edges that is acyclic in GT is m(T) = I VI - number of connected 
components of GT . Hence (E, gjP) is a matroid. If M is a matroid and there exists a graph G 
such that the independent sets of M correspond to the acyclic edge sets of G, then M is a 
graphic matroid. We leave it as an exercise to show that graphic matroids are matric. 

(c) Partition Matroids. Given m disjoint finite sets Ei for i E I = {l, ... ,m}, let 
E = U;::! E i. F c;; E is independent if iF n Ei I ~ 1 for all i E I. For any T c;; E, the 
cardinality of a maximal independent set contained in T is LiEf ai, where ai = 1 if 
Tn E i "* 0 and ai = ° otherwise. Hence (E, gjP) is a matroid. 

The set of matchings in a graph do not form a matroid. For a path e j, e2, e3, both the sets 
{e2} and {ej, e3} are maximal matchings in {ej, e2, e3}, but they differ in cardinality. 

In the context of combinatorial optimization, the most striking property of matroids
and indeed, another way to define them-is that, given a weight vector c E RIEl, a greedy 
algorithm (see Section 1.3.3 for trees and Section II.5.3 for general independence systems) 
always gives an optimal-weight independent set. This will be demonstrated in Section 3. 

Submodular functions are closely related to matroids. We will see that for a matroid, 
the cardinality function m is submodular. Such functions have already appeared in 
Section 11.5.3, where the uncapacitated location problem was shown to be a problem of 
maximizing a submodular function. 

Definition 1.4. Let N be a finite set, and letf be a real-valued function on the subsets 
ofN. 

a. fis non decreasing ifj(S) ~f(T) for S c;; T c;; N. 
b. fis submodular iff(S) + f(T) ~ f(S U T) + f(S n T) for S, T c;; N. 
c. fis supermodular if -fis submodular. 
d. r is a submodular rank function if r(0) = 0, r is integer-valued, nondecreasing, and 

submodular, and r(U}) ~ 1 for aUj EN. 

Example 1.1. Given a digraph 7iJ = (V, sti) and weights c E R':I, for S c;; V let 

c(S) = I Cij = I Cij' 
«i,j)Eb'(S)) iES 

jEV\S 

The cut function c(S) is submodular because 

c(S) + c(T) - c(S U T) - c(S n T) = I Cij + I Cij ~ 0. 
iES\T iET\S 
jET\S jES\T 
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Having introduced both matroids and submodular functions, we now briefly indicate 
some of the other problems to be studied in this chapter. In the next section we will 
establish the equivalence between a matroid M = (N, 81') and a submodular rank function 
r on N, and we will introduce and develop some elementary matroid properties for later 
use. 

In Section 3 we will consider the matroid optimization problem: An instance is given by 
a matroid M = (N, 81') and a weight vector cERn. The problem is 

max{ I Cj: S E 8F}. 
S jES 

Formulating this problem as an integer program leads us to study polytopes of the form 

P(f) = {x E R~: I Xj ~f(S) for S S N}, 
jES 

where/is a submodular function. 
An important generalization of the matroid optimization problem is the k-matroid 

intersection problem: Given k matroids Mi = (N, 8Fi) for i = 1, ... , k and a weight vector 
cERn, the problem is 

Thus, feasible solutions correspond to sets that are independent in each of the matroids. 
Remember that a branching in a digraph rziJ = (V, .s4) is a set of arcs .s4' S .s4 such that 

rziJ' = (V, .s4') is a spanning tree and no more than one arc enters each node. Hence a set of 
arcs forms part of a branching if and only if it is independent in both a partition and a 
graphic matroid. In Sections 4 and 5 we will study efficient algorithms for the 2-matroid 
intersection problem. 

Now consider the arc sets that form part of a branching in a digraph and intersect these 
sets with a second partition matroid specifying that no more than one arc leaves each 
node. The resulting objects of maximum cardinality are Hamiltonian paths. Because it is 
known that the question of whether a graph contains a Hamiltonian path isXg}l-complete, 
it follows that the k-matroid intersection problem is Xg}l-hard for all k ~ 3. 

In Sections 6 and 7 we will consider, in more detail, polytopes P(f) where / is 
submodular and nondecreasing. It will be shown that the separation problem for P(f) is 
equivalent to the problem of minimizing another submodular function; that is, 

min{j'(S): S s N}, 
S 

f' submodular. 

Thus we study algorithms for this minimization problem and some special cases where f' 
has more structure. 

In Section 8 we will study a covering problem of the form: Given a matroid M = (N, 81'), 
what is the minimum number of independent sets whose union is N? This problem has the 
integer-rounding property and can be solved efficiently. 

Finally, we consider the problem of maximizing a submodular function: 

max{j(S): S s N}, 
S 

/ sub modular. 
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In contrast to the earlier problems of the chapter, this model includes X9Jl-hard problems, 
such as the uncapacitated location problem. Hence we examine different integer program
ming formulations and heuristics. 

2. ELEMENTARY PROPERTIES 

There are many ways of defining and viewing both matroids and submodular functions. 
Here we introduce the definitions and the fundamental results that we will use later. First 
we study submodular functions (see Definition 1.4). 

Proposition 2.1 

i. f is submodular if and only if 

(a) f(S U (j}) - f(S) ~ f(S U (j, k}) - f(S U (k}) for j, k E N,j * k, 
and S s; N \ {j, k}. 

ii. f is submodular and nondecreasing if and only if 

(b) fiT) ~f(S) + L [f(S U (j}) - f(S)] for S, T s; N. 
JET\S 

Proof i. Iff is submodular we obtain (a) by setting S .... S U {j} and T .... S U {k} in 
Definition 1.4. 

If(a) holds, let S = A n B, A \ B = {jl, ... ,j,}, and B \ A = {k b ... , k s}. Then 

fiB) - f(A n B) 

s 

= L [f(S U (k 1, ••• , kl}) - f(S U (k b ••• , k l - 1})] 
1=1 

s 

~ L [f(S U {k b ... , k l} U (jl}) - f(s U {k b ... ,kl-1} U (jd)] 
1=1 

s 

~ L [f(S U {k b •.. , k l} U (jb ... ,j,}) - f(s U {k b ••• ,k l _l } U (jb ... ,j,})] 
1=1 

s 

= L [f(A U (k b ••• , k l }) - f(A U (k b ••• , k l-1})] 
1=1 

= f(A U B) - f(A). 

ii. Let T \ S = {jI. ... ,j,}. Then 

f(T) ~f(S U T) = f(S) + (f(S U T) - f(S)} 
, 

= f(S) + L {j(S U (jI. ... , jl}) - f(S U (jJ, ... , jt-1})} 
1=1 

, 
~f(S) + L (j(S U (jl}) - f(S)}, 

1=1 

where the first inequality holds if f is nondecreasing, and the second one holds if f is 
submodular. Taking T = S U {j,k} and T = S\{ k} in (b) gives the converse. • 
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Complex submodular functions are often constructed from simple submodular 
functions. 

Proposition 2.2. The following conditions yield sub modular functions. 

a. If aj E R' for j EN and ao E R', then f(S) = ao + LjES aJor S ~ N is submodular 
onN. 

b. Iffis submodularon N, then](S) = feN \ S)for S ~ N is submodularon N. 
c. Iff is submodular on Nand k E R', then f' (S) = min(f(S), k) is submodular on N. 
d. If f, and hare submodular on N, then f(S) = f,(S) + fZ<S) is submodular on N. 

Proposition 2.3. Iffis integer valued, submodular, and nondecreasing withf(0) = 0, and 
reS) = minQss (j(Q) + IS \ Q I}, then r is a submodular rankfunction. 

Proof Suppose reS) = f(A) + IS \ A I and reT) = feB) + IT \ B I. Then 

reS) + reT) = f(A) + feB) + IS \ A I + IT \ B I 

~ f(A U B) + f(A n B) + IS \ A I + I T \ B I 

~ f(A U B) + f(A n B) + I (S U T) \ (A U B) I + I (S n T) \ (A n B) I 

= f(A U B) + I (S U T) \ (A U B) I + f(A n B) + I (S n T) \ (A n B) I 

~ reS U T) + reS n T). 

Hence r is submodular. 
Now suppose 

reS U {j}) = f(Q*) + I (S U (j}) \ Q* I, where Q* ~ S U {j}. 

Ifj E Q*, we obtain 

reS U (j}) ~ f(Q* \ (j}) + IS \ (Q* \ (j}) I (sincef(Q*) ~ f(Q* \ (j})) 

~ reS) (since Q* \ {j} ~ S). 

If j $. Q*, we obtain 

reS U (j}) = f(Q*) + IS \ Q* I + 1 ~ reS) + 1. 

Hence r is nondecreasing. 
Finally, r(0) = f(0) = ° and r({j}) .:;;f(0) + l{j} I = 1 for allj. • 

Theorem 2.4. If M = (N, Bf) is a matroid, its cardinality function meT) = 
maXSsT {I S I: S E Bf} is submodular. If(N, Bf) is an independence system whose cardinal
ity function meT) is submodular, then M = (N, Bf) is a matroid. 

Proof Clearly m(0) = 0, m is nondecreasing, and m(S U (j}) - m(S).:;; 1, since 
(N, Bf) is an independence system. To prove that m is submodular we will show that 

m(S U (j}) - m(S) ~ m(S U (j, k}) - m(S U {k}). 
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The inequality is obvious when m(S U {j}) - m(S) = 1, so suppose that m(S U {j}) = 
m(S) = t and m(S U {j, k}) - m(S U {k}) = 1. There are now two cases to consider. 

Case 1. m(S U {j, k}) = t + 2. Then m(S U {j, k}) - m(S U {j}) = 2, which is impossi
ble. 

Case 2. m(S U {j, k}) = t + 1. Let Q be a maximalindependent set in S. It follows that 
Q U {/} $. ~ for all IE S \ Q. Also, since m(S U {j}) = m(S U {k}) = t, we have Q U 
{j} $. ~ and Q U {k} $. ~. Hence Q is maximal in S U {j, k} so that m(S U {j, k}) = t, 
which is a contradiction. 

Let T!:; N, and suppose that SI and S2 are maximal independent sets in T with 
lSI I < IS21. Thus m(SI) = 1St! < m(S2) = IS21. Using (b) of Proposition 2.1, we have 

m(S2) .::; m(SI) + I [m(SI U {j}) - m(SI)], 
jES,\S, 

which implies that m(SI U {j}) > m(SI) for some j E S2 \ SI' Hence m(SI U {j}) = 
I S I U {j} I , contradicting the maximality of S I. Therefore (N, ~) is a matroid. • 

From now on we will represent a matroid M as either (N,~) or (N, r), where r is its 
submodular rank function, depending on which is more convenient. 

The last part ofthe proof of Theorem 2.4 establishes an important exchange property of 
matroids that is well known for matrices. 

Proposition 2.5. If M = (N, ~) is a matroid and Sb S2 E ~ satisfy lSI I < IS21, then 
there existsj E S2 \ SI such that SI U {j} E ~. 

There are various other important properties of matroids, most of which are familiar 
from matrices. 

Definition 2.1. Let M = (N, ~) be a matroid with rank function r. 

a. A is a basis of the matroid if A E ~ and r(A) = r(N). 

b. A is a circuit of the matroid if A is a minimal dependent set (i.e., A $.~, but 
A \ {j} E ~ for allj E A). 

c. For A !:; N, the span or closure of A is the set sp(A) = {j EN: r(A U {j}) = r(A)}. 

Bases are evidently the maximal independent sets in the matroid, all of which are of 
cardinality r(N). Circuits are minimal dependent sets. Hence if A is a circuit, then 
r(A) = IA I - 1. From the submodularity of the rank function, we observe that sp(A) is the 
maximal set B 2 A for which r(A) = r(B). 

For a graphic matroid, bases are the edge sets of spanning trees, circuits are the edge sets 
of cycles, and the span of an edge set E' contains E' plus any edge that, when added to E', 
yields a new cycle. 

One of the most useful properties of a matroid, which we have already seen to be true 
for cycles in a graph, is: 

Proposition 2.6. IfF E ~ and F U {j} E;l ~, there exists a unique circuit C !:; F U {j}. 
This implies F U {j} \ {k} E ~ foral! k E C\ {j}. 
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Proof Suppose there exist distinct circuits C h C2 in F U U}. Now C! n C2 E fJi by 
the minimality of circuits. Also, (C! U C2) \ U} E fJi because (C! U C2) \ U} s F. But 
r(Ci ) = ICil - 1 for i = 1,2, r(C! U C2) = IC! U C2 1 - 1, and r(C! n C2) = IC! n C2 1, 
contradicting the submodu1arity of r. 

If (F U U}) \ {k} $. fJi, then (F U U}) \ {k} contains a circuit C' different from C, 
contradicting the uniqueness of C. • 

Example 2.1. Consider the matric matroid M = (N, fJi) defined by the matrix 

(
2 1 4 -1 0 -2) 
113234, 
3 2 7 4 6 8 

where N = {l, ... , 6} is the index set for the columns, and S E fJi if and only if the set of 
columns indexed by S is linearly independent. The rank function r takes the following 
values: 

1. r(0) = 0, r(U}) = 1 for allj. 
2. r(U, k}) = 2 for allj * k except that r({4, 6}) = 1. 

3. r(S) = 3 for all S with I S I ;;. 3, except that r({1, 2, 3}) = r({2, 4, 5}) = r({2, 4, 5, 6}) = 
r({4, 6, k}) = 2 for all kEn, 2, 3, 5}. 

Since r(N) = 3, the bases are the independent sets S with I S I = 3. The circuits are 
{4, 6}, {l, 2, 3}, {2, 4, 5}, and all 4-tuples that do not contain any of these circuits. Also, 
sp(2, 4) = {2, 4, 5, 6}, and so on. 

The last important concept that we introduce is matroid duality. 

Proposition 2.7. If r is the rank function of a matroid M = (N, r) and rD(S) = lSI + 
r(N \ S) - r(N), then yD is the rank function of a matroid. 

Proof It follows immediately from Proposition 2.2 that rD is submodular. Also 
rD(0) = 0, ;rod since 

rD(S U U}) - rD(S) = 1 - (r(N \ S) - r(N \ (S U U}))), 

we have 0 ::;; rD(S U U}) - rD(S) ::;; 1. Thus the result follows from Theorem 2.4. • 

Definition 2.2. MD = (N, rD) is the dual matroid associated with M = (N, r). 

It is readily seen that A isa basisofMD ifandonlyifN \ A isa basisofM. Moreover, the 
dual of MD is again M. 

The dual of a graphic matroid is called a cographic matroid. Its bases are the comple
ments of spanning trees-that is, the maximal sets that do not disconnect the graph. It 
follows that the circuits of this dual matroid are the minimal disconnecting sets, or 
minimal cuts. 

Example 2.2. Consider the graphic matroid M associated with the graph in Figure 2.1 
and its dual MD. 
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Figure 2.1 

The circuits of M are the cycles such as {ej: i = 1, 5, 8), {e4, ell), {ej: i = 1, 2, 3, 4). The 
bases of M are the spanning trees containing I V I - 1 = 4 edges. 

The circuits of MD are the minimal cut-sets such as {ej: i = 3, 4, 7, 11), 
{ej: i = 3, 4, 5, 6, 8, 11). The bases of MD are the complements of the spanning trees (i.e., 
{ej: i = 4,6, 7, 8, 9, 10, 11), etc.) containing IE I - I VI + 1 = 7 edges. 

3. MAXIMUM-WEIGHT INDEPENDENT SETS 

Matroid Representation 

We have already seen two ways to represent matroids: One is by listing the set ;!Ii of 
independent sets, and the other is by the rank function r. However, using either ;!Ii or r, 
O(2n) sets or values typically must be specified, where n is the number of elements of the 
matroid. This contrasts strongly with the representation of matroids that interest us. For 
example, a graphic matroid on G = (V, E) is completely described by its graph, so the 
length of the input description is O(n). 

The reader will see that the algorithms we describe contain independence tests of the 
form: "Is S s; N an independent set in M, or not?" 

We avoid the representation issue by simply reporting the number of independence 
tests in an algorithm as a function of n. Note that answering standard questions such as "Is 
S s; N a basis of M?" or "Given that S E ;!Ii, S U {j) $. ;!Ii, find the circuit C s; S U {j)." 
can be answered with O(n) independence tests. 

The Greedy Algorithm 

Given a matroid M = (N, ;!Ii) and cERn, the problem of finding a maximum-weight 
independent set is 

(3.1) max{ I Cj: S E ;!Ii}. 
S jES 
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The algorithm to find a maximum-weight forest in Section I.3.3 is an instance of the 
greedy algorithm we now describe for solving (3.1). 

The Greedy Algorithm for M = (N, [ji) 

Initialization: Order the elements of N so that CI ;;;. C2;;;' ... ;;;. Cn. So = 0, t = 1. 
Iteration t: If Ct .s;;; 0, stop. St-I is optimal. If Ct > 0 and S-I U {t} E [ji, set st = St-I U {t}. If 

Ct > 0 and St-I U {t} $ [ji, set st = St-I. 1ft = n, stop. sn is optimal. 1ft < n, sett .... t + 1. 

Although for general independence systems the greedy algorithm does not necessarily 
yield an optimal solution, for matroids it does. 

Theorem 3.1. The greedy algorithm for matroids terminates with a maximum-weight 
independent set. 

Proof Let the greedy solution be SG = VI, ... ,jp} withjl <h < ... <jp' Suppose 
the greedy solution is not optimal, and let SL = {k h ••• ,kq}, kl < k2 < ... < kq be the 
lexicographically smallest optimal solution. Suppose j I = k h h = k2' ... ,j s-I = ks-I, but 
js *' ks. From the greedy algorithm, we have js < ks and hence Cj,;;;' Ck, > O. Now 
SL. U V s} $ [ji since otherwise SL is not optimal. Hence SL U V s} contains a unique circuit 
C with js E C. Also, since {jh ... ,js-I} = {k h ••• ,ks-d E [ji, we have k t E C for some 
t ;;;. s. But by Proposition 2.6, we have that (SL u V s}) \ {k t } E [ji, its value is at least that of 
SL, and it is lexicographically smaller than SL, which is a contradiction. • 

Note that there no more than n independence calls by the algorithm and that the sorting 
of the initialization step requires O(n log n) comparisons. For a specific class ofmatroids, 
we can use this to calculate the running time of the algorithm. For graphic matroids the 
independence test involves testing for a cycle in a graph, which requires O(n) calculations. 
Hence the running time of the simplistic algorithm given above is O(n2). 

Example 3.1. Given the graph G = (V, E) shown in Figure 3.1, the problem is to find a 
maximum-weight independent set in the cographic matroid (i.e., a set of edges whose 
removal does not disconnect the graph). We have ordered the edges so that CI ;;;. 

C2;;;' ... ;;;. Cg. Applying the greedy algorithm, we obtain SG = (eh e3, es), provided that 
Cs > O. . 

The converse of Theorem 3.1 also holds: 

Theorem 3.2. If (N, ~) is an independence system but not a matroid, there exists a 
weightfunction cERn for which the greedy algorithm does not yield an optimal solution to 
(3.1). 

Figure 3.1 
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Proof Since (N, ~) is not a matroid, there exists an S s: N such that all maximal 
independent sets in S are not of the same cardinality. Let A s: S be a maximal indepen
dent set in S of minimum cardinality, and suppose IA I = k. Let 

{
k + 2 forj EA 

Cj = k + 1 for j E S \ A 
o otherwise. 

The greedy algorithm yields the setA of value k(k + 2). But an optimal solution has value 
at least (k + 1)2> k(k + 2) for k ~ 1. • 

Several variants of problem (3.1) can be solved by simple modifications of the greedy 
algorithm. These include the problems of finding a maximum-weight basis and a maxi
mum-weight independent set of cardinality not greater than k. Another useful observation 
is that a maximum-weight basis is the complement of a minimum-weight basis in the dual 
matroid. 

The Matroid Polytope 

Here we consider an integer programming formulation of (3.1) and its linear programming 
relaxation. Let x T be the characteristic vector of T s: N. By the definition of an indepen
dence system!fi = (N, ~) with cardinality function m, it follows that T E ~ if and only if 
I TI ~ m(T) if and only if LjES xJ = IS n TI ~ m(S)for all S s: N. 

Let 

P(m) = {x E R~: I Xj ~ m(S) for S s: N}. 
jES 

Then an integer programming formulation of the problem of finding a maximum-weight 
independent set in !fi is 

max{cx: x E P(m), x E En}. 

We now show that if the independence system is a matroid M = (N, r), then P(r) is the 
convex hull of the characteristic vectors of its independent sets. 

Consider the linear program 

(3.2) 

and its dual 

(3.3) 

I Xj ~ r(S) for S s: N 
jES 

xER~ 

I Ys ~ Cj for j EN 
S:S3j 

Ys ~ 0 for S s: N. 
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Proposition 3.3. Let SG = {j[, ... ,jp} be the greedy solution to (3.1) with the ordering 
Cl ~ C2 ~ •.. ~ Cn· Let ,ft = {jl> ... ,jl} for t ~ p, and let I<t = sp(,ft). Then an optimal 
solution to (3.3) is 

YK, = Cj, - Cjl+l for t = 1, ... ,p - 1, 

YK = 0 otherwise. 

Proof Clearly the dual solution is nonnegative. If Cj > 0, thenj E KI \ K 1- 1 for some 
t ~ p. Also, ifj E KI \ K I-h then Cj ~ Cj,. Hence ifj E KI \ K 1- 1, we obtain 

2: Ys = 2: YK, = Cj, ~ Cj. 
S:S3j 1;'1 

Now note that since r(Kt ) = t, we have 

p-l P 

2: r(S)ys = 2: t(Cj, - Cj,.) + pCjp = 2: Cj, = 2: Cj, 
SsN t~l t~l jESG 

so the primal and dual objective functions are equal. 

We have shown that the linear system 

is totally dual integral. 

2: Xj ~ r(S) for S ~ N, x E R~ 
jES 

Theorem 3.4. P(r) is an integral polytope. 

• 

Example 3.2. For a graphic matroid, the associated tree polytope P(r) is of the form 

2: Xe ~ r(E') for E' ~ E 
eEE' 

XER~, 

where, as was shown in Section 1, r(E') = I VI - number of components ofGE, = (V, E'). 
When U is the set of nodes attained by E', and G' = (U, E') is connected, the 

corresponding inequality is dominated by the inequality with E' = E(U). When G' itself 
has several components, the corresponding inequality is dominated by the inequalities 
from the components. Hence we obtain a polyhedral description of a graphic matroid 
given by 

2: Xe ~ I U I - 1 for U ~ V with I U I ~ 2 
eEE(U) 

XER~. 

This example raises the question of which inequalities describing the tree polytope are 
facets and the more general question of describing the facets of any matroid polytope P(r). 
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Note that if an inequality does not define a facet, we can delete the corresponding dual 
variable from (3.3). 

Definition 3.1. A set S ~ N with S = sp(S) is separable (or disconnected) ifthere exists a 
partition (A, B) of S, that is, A*, 0, B *' 0, AU B = S, and A n B = 0, with 
r(A) + r(B) = r(S). 

Now it is easy to see that the inequality LjES Xj :0;;; r(S) is dominated by LjESp(s) Xj :0;;; r(S) 
when S *' sp(S) and that it is the sum of two inequalities when S is separable. These turn 
out to be the only redundant inequalities. 

Proposition 3.5. Suppose {j} E g; for alii EN. A minimal description of P(r) is given by 
P(r) = {x E R:: LjES Xj :0;;; r(S)for S ~ N with S = sp(S) and S nonseparable}. 

Example 3.3. Consider the maximum-weight spanning tree problem on the weighted 
graph shown in Figure 3.2. 

The greedy algorithm with (3, 6) preceding (5, 6) in the ordering gives the solution 
SG = {(3, 4), (1,5), (1,3), (3, 6), (6, 7), (2, 6)} of weight 57. 

The optimal dual solution specified by Proposition 3.3 is 

Ys, = 13 - 11 = 2 with Sj = {3, 4} 

YS2 = 11 - 10 = 1 with S2 = {(3, 4), (1, 5)} 

Ys, = 10 - 9 = 1 with S3 = E({1, 3, 4, 5}) 

Ys, = 9 - 8 = 1 with S4 = E({1, 3, 4, 5, 6}) 

Ys, = 8 - 6 = 2 with Sj = E({1, 3,4, 5, 6, 7}) 

Ys. = 6 with S6=E 

of value (2 xl) + (1 x 2) + (1 x 3) + (1 x 4) + (2 x 5) + (6 x 6) = 57. 

5 

11 

lO 

Figure 3.2 



4. Matroid Intersection 671 

Using Proposition 3.5, we see that the edge sets {(3, 4), (1, 5)}, E({1, 3, 4, 5}), and E({l, 3, 
4,5, 6}) do not define facets. Decomposing each of these edge sets, we have 

{(3, 4), (1, 5)} yields {3, 4} and {l, 5} 

E({l, 3,4, 5}) yields {(3, 4)} and E({1, 3, 5}) 

E({1, 3,4, 5, 6}) yields {(3, 4)} and E({1, 3, 5, 6}), 

and we obtain the alternative dual solution 

ys = 3 + 1 + 1 + 1 for S = E({3, 4}) 

ys = 1 for S = E({1, 5}) 

ys = 1 for S = E({l, 3, 5}) 

ys = 1 

ys= 2 

ys = 6 

for S = E({l, 3, 5, 6}) 

for S = E({1, 3, 4, 5, 6, 7}) 

forS = E 

in which only the dual variables associated with facets are positive. 

4. MATROID INTERSECfION 

We have already seen that the branchings on a digraph can be viewed as the edge sets that 
are independent in two matroids simultaneously. Feasible solutions to matching problems 
on a bipartite graph G = (VI, V2, E) can also be viewed in this way. Let Mi = (E,87') for 
i = 1, 2, be partition matroids where F !: E is independent in Mi if there is no more than 
one edge of F adjacent to each node ofJl;. F isa matching in G if and only ifF E 87'1 n 87'2. 
In polyhedral terms, we have 

and 

P(r2) = {x E R~: L Xij ~ 1 forj E Vi}, 
JEV, 

and P(rl) n P(r2) describes the convex hull ofmatchings in a bipartite graph. 
Here we consider the general maximum-cardinality matroid intersection problem for 

the matroids Mi = (N, 87'i) for i = 1, 2, formulated as 

(4.1) z = max{ISI: S E 87'1 n 87'2}. 
s 

Throughout the text, we have stressed the importance of duality. Consider the problem 

(4.2) w = min{rl(T) + r2(N \ T)}. 
T 
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Proposition 4.1. Problem (4.2) is a weak dual of problem (4.1). 

Proof Suppose S E flFI n flF1• Then for any set T s:::: N, we obtain 

ISI= ISnTI+ IS\TI=rl(SnT)+rl(S\T) 

~ rl(T) + r2(N \ T). • 
Example 4.1. Consider the two graphic matroids defined on the graphs shown in Figure 
4.1. Taking S = {a, e} E flFI n flF2' we see that z ~ 2. Taking T = {e, d}, we see that 

w ~ rl({e, d}) + rz({a, b, e}) = 1 + 1 = 2. 

Hence, using weak duality, we obtain z = w = 2, and {a, e} is a maximum-cardinality set 
independent in both matroids. 

The major aim of this section is to develop an algorithm which shows constructively 
that (4.2) is, in fact, a strong dual of problem (4.l). As is the case for the maximum-flow 
problem and the matching problem, the algorithm is based on finding augmenting paths. 

To motivate and explain this idea, consider the following example involving the two 
graphic matroids of Figure 4.2. 

Example 4.2. We are given an independent set S = {a, b, kb k 2}. The additional infor
mation we have is that 

and 

A question that we need to answer in searching for common independent sets of greater 
cardinality is: "Is (S U {j b h}) \ {k b k 2} E flF?" Note that the answer is "yes" in matroid 1 
but "no" in matroid 2, and observe that (S U {j I}) \ {k1} $. flF in matroid 1. 

The following proposition explains why the answer is "yes" in matroid 1, and it is 
fundamental to what follows. If S E flF and S U {j} $. flF, let C(S,j) denote the unique 
circuit contained in S U {j}. 

a 

Figure 4.1 
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Proposition 4.2. Let M = (N, ,cg;) be a matroid, let S E ,cg;, and let jj, k j, ... ,jp, kp be a 
sequence of distinct elements of N with j 10 ••• ,jp E N \ Sand k j, ••• , kp E S satisfying 

(a) 

(b) 

then 

S U {j;} $.,cg;, (S U {j;}) \ {kJ E ,cg; for i = 1, ... , p 

(S U {j;}) \ {k{} $. ,cg; for 1 ~ i < I ~ p; 

(S U {j;, ... ,j,}) \ {k;, ... , k,} E ,cg; for 1 ~ i < I ~ p. 

Proof Note first that (a) is equivalent to k; E C(S,j;), and (b) is equivalent to 
k, $. C(S,j;). First we will establish that 

The proof is by induction on the number of pairs in the sequencejj, kj, ... ,jp, kpo 
When p = 1, condition (b) is void and (4.3) reduces to C(S,jj) = C(S,jj). Now suppose 
that the result holds for all sequences involving p ~ t - 1 pairs (j;, k;). It now suffices to 
show that (4.3) holds with i = 1 and 1= t. 

Therefore we must show that 

C(S,jj) = C((S U {j2, ... ,jp}) \ {k2, ••• , kp},jj) 

= C(I U {h}) \ {k2},jj), 

where 1= S U {j3, ... ,jp} \ {k 3, ••• , kp}. 
By the induction hypothesis applied to the sequencejj, kj,h, k 3, ••• ,jp, kp, we have 

C(S,jj) = C(I,jj). Since k2 $. C(S,jj) by (b), we obtain k2 $. C(I,jj) and hence 
C(I,jj) £; (I U {jj}) \ {k2}. 

a 

b 

/ 
/ 

/ )2 

Matroid 1 

a 

Matroid 2 

Figure 4.2 
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Now applying the induction hypothesis to the sequenceh, k2' ... ,jp, kp, we get that 
C(S, h) = C(l,h) and hence (l U (j2}) \ {k2} E gjP since k2 E C(S,h). But (l U (jI,jJ) \ 
{k 2} contains no more than one circuit. Since it contains the circuits C«(l U (j2}) \ {k 2}, j I) 
and C(l, j I), they must be identical, so 

C(S,jl) = C(l,jl) = C«I U (j2}) \ (k2},jl) 
= C«S U (h, ... ,jp}) \ (k 2, ••• , kp},jl) 

and (4.3) is established. 
Finally we observe that (4.3) and k; E C(S,j;) imply S U {j;, ... ,j,} \ {k;, ... , 

~E~ • 

We will be particularly interested in sequences of odd length. 

Corollary 4.3. Let M = (N, gjP) be a matroid, let S E gjP, and letjl, kl' ... ,jp~1o kP-1o jp be 
a sequence of distinct elements of N satisfying 

(a) 

(b) 

(c) 

S U {j;} $. gjP, (S U (j;}) \ {k;} E gjP for i = 1, ... ,p - 1 

(S U (j;}) \ {k,} $. gjP 

S U {jp} E,gjP, 

for 1 .;; i < I .;; p - 1 

then S' = (S U (j], ... ,jp}) \ {k], ... , kp_l } E gjP. 

Proof Consider 8 = S U {jp} E gjP. Now S U {ji} $. gjP implies 8 U {j;} $. gjP. On the 
other hand, since 8 E gjP, it follows that 8 U {j;} contains a unique circuit that must be the 
circuit C(S,j;) containing k;. Hence (8 U (j;}) \ {k;} E gjP, and (a) holds for 8. Clearly 
(b) also holds for 8. Therefore, we can apply Proposition 4.2 to 8 and the sequence 
jt, kI, ... ,jp-t, kp_I to conclude that S' = (8 U (jI, ... ,jp_I}) \ {kt, ... ,kp_l} E gjP. • 

Since I S' I = I S I + 1, Corollary 4.3 provides a scheme for finding a larger cardinality 
independent set in a matroid, but it is obviously unnecessary because 8 = S U {j p} 
suffices. However, for the problem of increasing the cardinality of a set S that is a common 
independent set in two matroids, Corollary 4.3 gives us a sufficient condition. 

Proposition 4.4. Given two matroids M; = (N, gjPi) for i = 1, 2, a set S s; N with 
S E gjP I n gjP 2, and a sequence j 10 k I, .•. ,jp-1o kp- 1o jp of distinct elements with j 10 ••• , 

jp E N\ S, kl' ... , kp_1 E S satisfying 

(al) 

(bl) 

(cl) 

(a2) 

(b2) 

(c2) 

S U {j;} $. gjPI, S U {j;} \ {k;-a E gjPI for i = 2, ... ,p 

S U {j;} \ {k,} $. gjPI for 1 .;; I < i-I.;; P - 1 

S U {jl} E gjPt 

S U {j;} $. gjP2, S U {j;} \ {k;} E gjP2 for i = 1, ... ,p - 1 

S U {j;} \ {k,} $. gjP2 for 1 .;; i < I <p 

S U {jp} E gjP2, 
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N\S S 

Figure 4.3 

Proof First we apply Corollary 4.3 to the sequence} t, k t, ... ,} p_l, kp_t,} p, observing 
that conditions (a2), (b2), and (c2) are precisely the conditions of the corollary. Therefore 
S' E :§i2. 

To show that S' E:§it, we consider the reverse sequence}p, kp_t, ... ,il, kt,}I' Condi
tions (al), (bl), and (cl) are precisely conditions (a), (b), and (c) of Corollary 4.3 with 
respect to this sequence. Hence (S U (jp, ... ,}I}) \ {kp_I , ••• , k l} = S' E :§il. • 

Now we construct a digraph '2lJs = (N U {s, t}, d) (see Figure 4.3) that will allow us to 
find a sequence of the type described in Proposition 4.4. The arcs are defined as follows: 

(s,}) Ed if S U {j} E:§il 

(j, t) Ed if S U {j} E:§i2 

(j, k) Ed if S U {j} $. :§i2, (S U (j)) \ {k} E :§i2 

(k,)) Ed if S U {j} $. :Ji l , (S U (j}) \ {k} E:§i l 

Note that an arc (j, k),} EN \ S, k E S, refers to a replacement of} by k to achieve 
(S U {k}) \ {j} E :§i2 and that an arc (k,}), k E S,} EN \ S refers to a replacement of} by 
k to achieve (S U (j}) \ {k} E :§il. This can be interpreted graphically. 

Proposition 4.5. If (S'}h kh ... , }p, t) is an s-t dipath in qj)s and qj)s contains no arcs of 
the form (i, k/) and (k;'}/+d for I> i, then (jb kb ... , }p) is a sequence satisfying the 
conditions of Proposition 4.4. 

In this and the next section we will be interested in the existence of certain dipaths in qj) s. 
Such dipaths may not exist even though an s-t path may exist in the underlying undirected 
graph. We therefore keep the term dipath (see Section 1.3.1). An s-t dipath (s, II, ... , Ip, t) 
is node minimal if there is no subsequence {ljl' ; .. ,Ij) ~ {II, ... ,Ip} with I ~}I < 
}2 < ... <}q ~ P such that (s, Ijp ••• , Ij " t) is an s-t dipath. 

An s-t dipath satisfying the condition of Proposition 4.5 is node minimal (see Figure 
4.4). Now we observe that a minimum-length dipath from s to t (i.e, a dipath with a 
minimum number of arcs) is necessarily node minimal. Hence such a node minimal 
dipath can be found by breadth-first search or a standard shortest-path algorithm. 
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Figure 4.4 

Example 4.3. Two graphic matroids are exhibited in Figure 4.Sa, and the digraph r!iJs for 
S = {b, d} is shown in Figure 4.Sb. Note that (s, a, d, e, t) is a node minimal s-t dipath in 
r!iJs giving the set S' = {a, b, e} E fJi l n fJi2• Note also that the s-t dipath (s, a, b, c, d, e, t) 
is not node minimal because (a, d) E s!l and does not lead to a larger common indepen
dent set since S" = {a, c, e} $. fJi2• 

The final step in developing an algorithm for problem (4.1) is to show thatifr!iJs contains 
no s-t dipath, then S is a maximum-cardinality set independent in both matroids. Let 
NL = {i EN: there exists a dipath from s to i in r!iJs}, SL = NL n S, NR = N \ NL, and 
SR =NR ns. 

Proposition 4.6. JJr!iJs contains no s-t dipath, then S is a maximum-cardinality common 
independent set. 

Proof Suppose that r!iJ s contains no s -t dipath. We show first that NL S spz(S L). Since 
SL S SPz(SL), we consider) E NL \ SL. Now S U {j} $. fJi2, because otherwise there would 
be an arc (j, t) E s!l and an (s, t) dipath would exist. If k E C2(S,) \ {j}, then r!iJs contains 
the arc (j, k) and so C2(S,) \ {j} s SL. In other words, ) E spZ(Sd, and hence 
NL S SP2(SL). 

Next we show that NR S SPl(SR). We consider) E NR \ SR. First we observe that 
S U {j} $. fJi2, because otherwise there would be an arc (s,), which is impossible as 

a 

e 

b 

M2 

(a) 

Figure 4.5 

(b) 
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} $. NL. Ifk E C1(S,}) \ {j}, then.@scontainsthearc(k,}).Since} $. N L, we have k $. SL, 
and hence C1(S,}) \ {j} £: SR. ThusNR £: SP1(SR). 

Finally, we use weak duality in problems (4.1) and (4.2): 

z ~ I S I, and w ~ rl(NR) + rz(NL) (by Proposition 4.1) 

~ rl(sPl(SR» + r2(spz(SL» 

= ISRI + ISLI = lSI· 

Theorem 4.7. Problem (4.2) is a strong dual o/problem (4.1). 

Now we can describe the algorithm for problem (4.1). 

Maximum-Cardinality Matroid Intersection Algorithm 

Initialization: Start with Sl E ;}fl n ;}f2. q = 1. 

• 

Iteration q: Construct the digraph .@sq. If there is no s-t dipath in .@sq, stop; sq is an 
optimal solution. Otherwise, find a shortest s-t dipath (s,}t, kt, ... ,}p, t). Set 
Sq+l = (sq u {it, ... ,}p}) \ {kt, ... ,kp-1} and q ... q + 1. 

Example 4.4. Consider the two graphic matroids shown in Figure 4.6. S = {el, e2, es}. 
The digraph'@s is shown in Figure 4.7. 

Since.@s contains no s-t dipath, we obtain 

SL = {e2, es}, SR = {el} 

NL £: SPz(SL) = {e2, e4, es, e7, eg} 

NR s; SPt(SR) = {et, e3, e4, e6} 

rt(NR) + r2(NL) = 3 = lSI. 

eB 

Figure 4.6 
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Figure 4.7 

Finally, we consider the complexity of the cardinality matroid intersection algorithm 

Proposition 4.8. The cardinality matroid intersection algorithm terminates after no more 
than O(n3) independence tests. 

Proof There are no more than z < n iterations. At each iteration the digraph ffis has 
to be constructed. Deciding if (i, j) is an arc of the digraph requires no more than two 
independence tests, so there are O(n2) tests at each iteration. • 

5. WEIGHTED MATROID INTERSECTION 

Given two matroids Mi = (N, [lJPJ for i = 1,2 and a weight vector cERn, we consider the 
weighted matroid intersection problem 

(5.1) 

It is convenient to introduce the following notation: 

[lJPq={Sr;;.N:SE[lJP, lSI ~q), [lJP7={Sr;;.N:SE[lJPi' lSI ~q} 

[lJP'2 = [lJP, n [lJP2, [lJPY2 = {S E [lJP'2: IS I ~ q} 

r'2(S) = max{ I T I: T E [lJP'2}' 
T-;;S 

The algorithm we describe actually solves the family of problems 

(5.2) zq = max{ I Cj: S E [lJPY2} for q = 0, 1, ... , rl2(N). 
S jES 



5. Weighted Matroid Intersection 679 

We will solve (5.2) for increasing values of q and base our proof of optimality on the 
following dual pair oflinear programs: 

(5.3) 

and 

(5.4) 

A,=N 

I xj~rl(A) forA s::::N 
JEA 

I Xj ~ riA) for A s:::: N 
JEA 

Xj~ 0 forj EN 

A,=N 

IYI(A)+IYiA)+t~cj forjEN 
A3j A3j 

YI(A), yiA) ~ 0 for A s:::: N, t ~ O. 

For all values of q we will show that (5.3) has an integral optimal solution by giving an 
integral primal feasible solution and a dual feasible solution of the same value. The primal 
solution is constructed using cost splitting (see Section II.3.6). 

Proposition 5.1. Given c, c l , c2 ERn with c l + c2 = C, ifSq s:::: N is an optimal solution to 
the problems 

(5.5) max{ I c}: S E :¥7 } for i = 1, 2, 
S jES 

then sq is an optimal solution to (5.2). 

Proof For any S E :¥f2, we obtain 

I Cj = I c) + I cJ 
jES jES jES 

~ I c} + I cJ = I Cj. 
jES' jESq jESq • 

The greedy algorithm for matroids gives a characterization of an optimal-weight 
solution in :¥q. 

Proposition 5.2. Given a matroid M = (N, :¥) with weight vector c, a set S with I S I = q is 
optimal in :¥q if and only if: 

i. Cj ~ 0 for j E S; 
ii. ifj $. Sand S U {j} E:¥, then Ck ~ cJor k E S; and 

111. ifj $. Sand S U {j} $.:¥, then Ck ~ cJor k E C (S,j) \ {j}. 
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Given c t , c2, and sq as in Proposition 5.1, it is simple to give an optimal solution to 
(5.4). Consider the problem 

(5.6) max{ I (C) - mi): S E f!ft?} for i = 1,2, 
S jES 

where mi = max{cj: j $. sq, sq U {j} E f!ftJ and mi = - 00 if sq is a basis of Mi. Its dual is 

min I ri(A) Yi(A) 
AsN 

(5.7) I Yi(A) ~ C) - mi for j EN 
A3j 

forA ~N. 

Proposition 5.3. If(a) c t , c2, sq satisfy the conditions of Proposition 5.1 with ISql = q, (b) 
mt + m2 ~ 0, and (c) yjisan optimal solution to (5.7)for i = 1, 2, then an optimal solution 
to (5.4) is Yi = yifor i = 1, 2 and t = mt + m2. 

Proof The proposed solution is feasible to (5.4). By hypothesis, sq is an optimal 
solution to (5.5). Hence, by Proposition 5.2, we have cj ~ mi forj E sq. It follows that sq is 
also an optimal solution to (5.6). Hence, equating the optimal values of(5.6) and (5.7), we 
obtain ~jES' (cJ - mi) = ~AsN ri(A)y7(A). Now the value of the proposed solution to (5.4) is 

I rt(A)YT(A) + I r2(A)Yi(A) + q(mt + m2) 
AsN AsN 

= I (c)-mt)+ I (c;-m2)+q(mt+ m 2) 
jES' jES' 

The characteristic vector of sq is feasible to (5.3), so the claim follows. • 
Example 5.1. A digraph is shown in Figure 5.1, along with associated arc weights. We 
wish to find a branching of maximum weight. Thus the underlying edge set must be 
independent in the graphic matroid M t and the partition matroid M 2, where the number 
of arcs entering each node is restricted to be no greater than 1. 

Suppose we have the following split of the arc weights c), cJ: 

234567891011 
Cj 4 3 4 1 7 2 6 -5 -1 1 
c) 4 3 1 4 1 5 2 4 -5 -1 1 
cl00000202 0 00 

Observing that S2 = {et, e6} is optimal in f!ftI with weight c t and that S2 is optimal in f!ft~ 
with weight c2, we have by Proposition 5.1 that S2 is optimal in f!ftI2 with weight c. 

Now we consider the question of how to pass from sq to sq+t, a maximum-weight 
independent set in f!ftHt. We know that if we construct the digraph qj)s. used in the 
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~ _____ -=e4 

Figure 5.1 

cardinality algorithm, then s-t dipaths with a minimum number of edges give us sets 
Sf E :Jirrl. However, because we want to obtain a maximum-weight independent set in 
:Jiyrl , we can only use a subset of the arcs of£iJsq. The following proposition suggests, on the 
basis of the weight vector c, those arcs that should be kept. 

Proposition 5.4. Let Mq = (N, :Jiq), let S be an optimal-weight solution in Mq, and let 
}I, kb ... ,}p, kp be distinct elements ofN with}b ... ,}p EN \ S, kl' ... , kp E S, and 

a. S U {jJ tf= :Ji, (S U (jJ) \ {kJ E :Ji for i = 1, ... ,p 
b. Cji = ckifor i = 1, ... ,p 
c. Cj, = Ch and i < I implies (S U (j;}) \ {k[} tf= :Ji. 

Then Sf = (S U (j I, ... ,}p}) \ {k I, ... , kp} is also an optimal-weight solution in Mq. 

Proof We can reorder the elements}!> ... ,}p so that Cjl ~ ..• ~ Cjp and conditions 
a-c still hold. This is possible because conditions a and b are unaffected by the ordering, 
and condition c only affects pairs such as (ji'}[) with i < I if cj, = ck But if the ordering of 
such pairs is preserved in the new ordering, condition c holds. 

We now claim that (S U {ji}) \ {k[} tf=:Jiq for all i < I. Ifnot, S* = (S U (j;}) \ {k[} E:Jiq 

for some i < I with cj, > Ck,. But then LjES' Cj > LjES Cj, contradicting the optimality of S. 
Now the conditions of Proposition 4.2 are satisfied and Sf E :Jiq. By condition b the 
weights of S and Sf are identical, and hence Sf is optimal. • 

Now given S optimal in :JiY2, c l , c2 as in Proposition 5.1 and m h m2 defined below (5.6), 
we construct a digraph £iJS(c l , c2) = (N U (s, t), d) with arcs off our types (note that these 
are a subset of the arcs of£iJs given in the previous section): 

(s,}) Ed if} tf= S, S U {j} E:Jib and m l = c) 

(j, t) Ed if} tf= S, S U {j} E :Ji2, and m2 = c] 

(j, k) Ed if} $. S, S U {j} tf= :Ji2, (S U {j}) \ {k} E :Ji2, and c] = d 
(k,)) Ed if} tf= S, S U {j} tf=:Ji b (S U {j}) \ {k} E:Jib and c) = d. 
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First we consider what happens when ~S(CI, c2) contains an s-t dipath. 

Proposition 5.5. Let S be optimalin ~h and let s, jl> klo ... , kp- Io jp, t be an s-t dipath 
in ~S(CI, c2) with a minimum number of arcs. Then (S U VI> ... , jp}) \ {kJ, ... , kp-a is 
optimal in ~fz I. 

Proof We will apply Proposition 5.4 twice, first to M2 and then to MI. Note first that 
by definition ofm2' we have that S* = S U Vp} is optimal in ~~+I with weight c2. 

First we apply Proposition 5.4 to S* E ~~+I with the sequencejlo klo ... , jp-Io kp_I and 
weights c2. From the construction of ~S(CI, cb), condition b holds for any sequence 
derived from an s-t dipath. Also, S* U V;} $. ~2 and (S* U Vi}) \ {k i } E ~2' so condition a 
holds for any such sequence. 

Now we use the fact that the dipath has a minimum number of edges and hence is node 
minimal. This means that if c~ = d, for some i < I, there is no arc Ui' k,) and hence 
(S U VI}) \ {k,} $. ~2. It follows that (S* U Vi}) \ {k,} $. ~2' and hence condition c holds. 
Therefore Sf = (S U Vio ... ,jp}) \ {k lo ... ,kp} is optimal in ~~+I with weight c2. 

Taking the path in the reverse order, a similar argument shows that Sf is optimal in ~rl 
with weight c l. Now by Proposition 5.1, Sf is optimal in ~ytl. • 

The other possibility is that there is no s-t dipath in ~ s(c l , c2). In this case we make a 
dual change by changing (c l, c2). We let NL = V EN: there exists an s-j dipath in 
~S(CI ,c2)} and NR = N \ NL. . 

The dual change is given by 

where &10 &2 are calculated from <5i , i = 1, ... ,4, which are the minimum-cost changes 
needed to add an arc of each of the four possible types to ~S(CI, c2). Their values are 

<51 = min{ml - cJ:j $. S, S U V} E ~Ioj E NR } 

<52 = min{m2 - c}:j $. S, S U V} E ~2,j E NL } 

<53 = min{c~ - C}:j $. S, S U V} $. ~2' (S U V}) \ {k} E ~2,j E NL , k E NR } 

<54 = min{d - cJ:j $. S, S U V} $. ~Io (S U V}) \ {k} E ~2,j E NR , k E NL } 

with <5i = 00 if the corresponding set is empty. Then 

& = min{ml + m2, min(<51o <52, <53, <54)} 

&1 = min{&, mil and &2 = & - &1 

First we check that a real change occurs. 
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Proposition 5.6. If m I + m2 > 0, then 8 > 0 in the dual change. 

Proof By the definition ofm!> we have that ml > c} if S U U} E :!fl. Hence 151 ~ O. If 
151 = 0, then 0Js(c l , c2) contains an arc (s, j), contradictingj E NR • Hence 151 > O. A similar 
argument holds for 152, 

If S U U} $. :!f2, (S U un \ {k} E :!f2, and de < cj, then S is not optimal in g;~ with 
weights c2• Hence 153 ~ O. If 153 = 0, then ~S(CI, c2) contains an arc (j, k)joiningj E NL to 
k E NR , which is impossible. Hence 153 > O. A similar argument holds for 154 , • 

Now we show that the conditions of Proposition 5.1 still apply with the new weights 
(el , CZ). 

Proposition 5.7. After a dual change based on ~S(CI, c2 ), S is still optimal in :!fr with 
weights eifor i = 1,2. 

Proof We verify that S satisfies the optimality conditions of Proposition 5.2 with the 
new weights (el , ( 2). We consider matroid M~ = (N, :!fn. 

i. The condition ej ~ 0 for j E S holds because m2 ~ m2 - 82 ~ 0, and S is optimal 
before the dual change. 

ii. Suppose j $. s, S U U) E:!f, k E S, and eTc < ej. Because de ~ cj, this can only 
happen if ej = cj + 81 and c't = de - 82, so that j E NL and k E NR • But because 
k E S, we obtain de ~ m2. Moreover, since j E NL , we have 8 ~ 152 ~ m2 - cJ. 
Hence 

which is a contradiction. 
iii. Suppose j $. S, S U U} $. :!f2, k E C2(S,j) \ U}, and de < cj. This implies that 

ej = cj + 81 and eTc = de - 82 withj 8 NL and k E NR • But 8 ~ 153, and since j E NL, 
k E NR , and (S U U}) \ {k} E :!f2, we obtain 153 < de - c}. Hence 

which is a contradiction. 

A similar argument shows that S is optimal in :!fY with weights el . • 
It remains to establish that after a finite number of dual changes, either a larger 

common independent set is found or the algorithm terminates. 

Proposition 5.S. After no more than n dual changes, either an s-t dipath isfound, or S is 
optimal for all q' ~ q. 

Proof We consider the different possibilities for a dual change, together with the 
successive digraphs ~S(CI, c2) and ~s(el, ( 2). We will establish two claims. First we claim 
that every arc in ~ s( C I, c2) with both its head and tail in NL is also an arc in ~ s( el , ( 2). Then 
we also show that a new arc appears in ~s(el, ( 2) whose tail is in NL and whose head is in 
NR • Together these imply that NL :J NL, and hence no more than n dual changes can occur. 
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To establish the first claim, we examine each type of arc in turn. Let 
T = {j:j (/:. S, S U {j} E 3'1}. Consider (s, j) arcs for which c) = mi. Notethatifj E Tand 
c) < mb thenj E NR because the only arcsofd enteringanodej E Tare those of the form 
(s, j). Now we know from the definition of JI that c) .;;; m I - Ji .;;; m I - 1>1' After the dual 
change, we obtain 

ml = max{C):j E T} 

= max{max{c) - I>I:j E NL nT}, max {c):j E NR n T}} 

= max{ml - I>b max{c):j E NR n T}} 

It follows that if (s, j) is an arc of 9iJs(cj, d), then (s, j) is an arc of 9iJs(cl, c~). 
Now consider an arc of the form (j, k) in 9iJs(cl, d), where j (/:. s, S U {j} (/:.3'2, 

(S U un \ {k} E 3'2, and c] = d with both j, k E NL • After the dual change, we obtain 
c] = c] - I> and Ck = d - 1>, so c] = Ck and the arc is in 9iJs(cl, cD. An identical argument 
holds for the (k, j) arcs based on matroid M\, and hence the first claim is established. 

To establish the second claim, observe that the algorithm terminates if I> = m I + m2 
based on 9iJS(c l , c2), and an s-t dipath is created if I> = J2• Hence a dual change can only 
occur if I> = J\, J3, or J4• In each of these cases a new arc appears in 9iJS(c l , c2) whose tail is 
in NL and whose head is in NR. • 

The Weighted Matroid Intersection Algorithm 

Initialization: Start with cl , c2, sq as described in Propositon 5.1, if such a solution is 
known for any q ~ 1. Alternatively let q = 0, let sq = 0, and choose any c l , c2 satisfying 
cl + c2 = c. (The simple choice in this case is cl = c, c2 = 0.) 

Step 1: Calculate mb m2. If ml + m2';;; 0, stop. sq is optimal for all q' ~ q. Otherwise if 
mi < ° for some i (say i = 1), then c) <- c) - m\, c] <- c] + ml for all} EN. 

Step 2: Construct 9iJ sq( c I, c2). 

Step 3: If there is no s-t dipath in 9iJsq(c l, c2), go to Step 5. Otherwise find a shortest s-t 
dipath in 9iJsq(c l, c2) and go to Step 4. 

Step 4 (Augmentation): Use the s-t dipath in 9iJsq(c l, c2) to find Sq+1 optimal in 3'~+I. Set 
q <- q + 1. Go to Step 1. 

Step 5 (Dual Change): Change (c l , c2) as described in (5.6). If I> = ml + m2, stop. sq is 
optimal for q' ~ q. Otherwise, calculate W, c2), ml and m2, and construct 9iJsq(c l , c2). 

Go to Step 3. 

Example 5.1. (continued). We apply the weighted matroid intersection algorithm 
starting with S2 = {e\, e6} and c l , c2 given below. 

2 3 4 5 6 7 8 9 10 11 
Cj 4 3 4 1 7 2 6 -5 -1 1 

c i 
} 4 3 1 4 1 5 2 4 -5 -1 1 

c2 
} 0 0 0 0 0 2 0 2 0 0 0 
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Figure 5.2. 

q =2: 

Step 1: ml = d = 4, mz = d = d = d = d = c§ = eTo = eTl = o. NL = {e6, es} 
Step 2: £iJs2(c 1, CZ) is shown in Figure 5.2. 
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Step 5: <>1 = ml - d = 4 - 3 = 1, <>2 = 00, 03 = 00, 04 = d - d = 1. I> = 01 = 04 = 1. With 
1>1 = 1, 1>2 = 0, and cj <- c5, we obtain 

1 2 3 4 5 6 7 8 9 10 11 
Cj 4 3 1 4 1 7 2 6 -5 -1 1 
c1 

} 4 3 1 4 1 4 2 3 -5 -1 1 
c2 

} 0 0 0 0 0 3 0 3 0 0 0 

ml <- 3, m2 <- O. The new £iJs2(Cl, CZ) is shown in Figure 5.3. 
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Figure 5.3 

Two s-t dipaths with a minimum number of edges are found. We use the dipath 
(s, eg, e6, e4, t). 

q=3: 

Step 1: S3 = {eh e4, eg}. ml = d = 3, m2 = d = d = d = d = do = dl = O. figs3(c l, c2) is 
shown in Figure 5.4. NL = {eh e2, e6, eg} 

Figure 5.4 
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12345678910 11 
Cj 4 3 4 7 2 6 -5 -1 
c) 3 2 1 4 1 3 2 2 -5 -1 1 
cJ 0 0 0 4 0 4 0 0 0 

Adding the arc (e8, e7), an s-t dipath is found. 
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Step 5: 6, = m, - elo = 2,62 = 00,63 = 00, 64 = d - d = d - d = 1,6 = 64 = m, + m2 = 1. 
6,=1,62=0. 

1 2 3 4 5 6 7 8 9 10 11 
Cj 4 3 4 7 2 6 -5 -1 1 
c' } 2 1 1 4 1 2 1 -5 -1 0 
c2 

} 2 2 0 0 0 5 5 0 0 

m, = ell = 0, m2 = d = d = do = o. 

S = {e2, e4, e6, e7} is a maximum-weight branching in!!l1. 

Now we consider the number of independence tests required in the algorithm. Because 
the set sq does not change through a sequence of dual changes, only O(n2) independence 
tests are required between augmentations to construct the digraphs !!l1s' from which a 
subset of the arcs are selected to give !!l1s'(c', c2). Since there are, at most, n augmentations, 
no more than O(n3) independence tests are required. 

Figure 5.5 



688 111.3. Matroid and Submodular Function Optimization 

We conclude this section with a polyhedral result. As a consequence of the weighted 
matroid intersection algorithm and Proposition 5.3, we have shown: 

Theorem 5.9. Given matroids MI = (N, rl) and M2 = (N, r2), the polytope 

I Xj.s; rl(A) for A s N 
JEA 

I Xj.s; riA) for A s N 
JEA 

I Xj.s; q 
JEN 

xER~ 

is the convex hull of the common independent sets of cardinality not greater than q. The 
inequality set is totally dual integral. 

6. POLYMATROIDS, SEPARATION, AND SUBMODULAR FUNCTION 
MINIMIZATION 

Two of the problems we study in this section are (1) the problem of minimizing a 
submodular function and (2) the separation problem for a matroid polytope P(r). To 
understand better the relationship between these problems, we introduce a generalization 
of a matroid. 

Definition 6.1. Given a finite set N and a nondecreasing submodular functionf on N 
withf(0) = 0, the polytope 

P(f) = {x E R~: I Xj .s;f(S) for S s N} 
jES 

is the polymatroid associated with (N,j). 

The property of independence systems generalizes to: 

If x, y E Z~, x E P(f), and y .s; x, then y E P(f). 

Definition 6.2. Let rp(f): R~ .... R~ be defined by 

rp(f) (a) = max{ I Xj: x E P(f), x .s; a}, 
JEN 

rp(f) is called the polymatroid rankfunction associated with P(f). 

The next proposition shows how the "maximal = maximum" property of matroids 
generalizes. 

Proposition 6.1. Given a polymatroid P(f) and a E R~, any point x that is maximal in 
P(f) n {x E R~: x .s; a} satisfies LjEN Xj = rp(j)(a). 
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Proof Suppose the claim is false, so there exists a E R~ and u, v maximal in P(f) 
n {x E R~: x ~ a} with LjEN Uj < LjEN Vj' Let V = U EN: Vj > Uj}. Since U is maximal, for 
each k E V there exists Uk with k E Uk such that LjEUk Uj = f( Uk). 

Let U be a maximal subset of N such that LjEU Uj = f( U). By submodularity, we have for 
each k E V: 

~ f(U) + f(Uk) - f(U n Uk) 

~ f(U U Uk). 

But since U E P(f), we obtain LjEUUUk Uj ~f( U U Uk). Hence LjEUUUk Uj = f( U U Uk). 
Since U is maximal, we have Uk £ U for all k E V. Hence V £ U. 

But now 

since LjEN Uj < LjEN Vj and Uj ~ Vj for j EN \ V, and N \ V:::2 N \ U. This contradicts the 
assumption v E P(f). • 

Example 6.1. Suppose a set N of jobs is to be processed on one machine and all 
processing of job j must be terminated by the deadline dj • If Xj is the machine time 
allocated to job j, then x E R~ is a feasible set of allocation times if and only if 
LjES Xj ~ maXjES {d) for all S £ N. It is easily checked that f(S) = maXjES {d) defines a 
polymatroid function if d E R~ andf(0) = O. 

There is a converse to Proposition 6.1 giving an alternative definition of a polymatroid. 

Proposition 6.2. Suppose P £ R~ satisfies 

i. ifx E P, y E R~ and y ~ x, then yEP, and 
ii. for,all a ERn if Xl and x2 are maxima! points in P n {x E R:: x ,,;; a), then ~ 'EN Xl 

_'" 2 } } 
- .... jENXj. 

Then P is a po!ymatroid. 

As is the case for matroid polytopes, the greedy algorithm solves the linear optimization 
problem over a polymatroid. Consider the dual pair oflinear programs 

(6.1) max{ I CjXj: I Xj ~ f(S) for S £ N, x E R~} 
JEN jES 

and 

(6.2) min{ I f(S)ys: I Ys ~ Cj for j EN, Y E R;"}. 
S",N S3j 

SupposeCl~C2~'" ~Ck>O~Ck+l~'" ~cn,andSj={1, ... ,j}forjENwith 
SO=0. 
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Proposition 6.3. An optimal solution to (6.1) is 

X. = {!(Sj) - !(Sj-I) for 1 ~j ~ k 
} 0 for j > k. 

An optimal solution to (6.2) is 

for 1 ~j < k 
for} = k 
otherwise. 

Proof The proposed x is primal feasible, becausef nondecreasing implies Xj ~ 0, and 
because we have for all T ~ N 

L Xj = L [f(Sj) - f(Sj-,)] 
JET {j:jET. j"k} 

~ L [f(Sj n T) - f(Sj-, n T)] (by the submodularity off) 
{j:jET,j"k} 

= f(Sk n T) - f(0) ~f(T) - f(0) = f(T). 

The proposed y is dual feasible because Ys ~ 0 and because LS3j Ys = 
YSi + ... + YS' = Cj if} ~ k, and LS3j Ys ~ 0 ~ Cj if} > k. 

The primal objective value is Lj~1 Cj (f(Sj) - f(Sj-,», and the dual objective value is 

k-I k 

L (Cj - cj+,)f(Si) + ckf(Sk) = L Cj (f(Sj) - f(Sj-,». • j~1 j~1 

Note that in the special case wheref = r is the rank function ofa matroid, Proposition 
6.3 gives a different solution than the one given in Proposition 3.3. Also, as for matroids, 
we obtain: 

Corollary 6.4. The inequality system 

is totally dual integral. 

{ X E R:: L Xj ~f(s) for S ~ N} 
jES 

Example 6.1 (continued). Suppose four jobs are to be completed with respective 
deadlines given by d = (10 7 8 4), and the profit from each job is proportional to the 
time devoted to processing it, with weights C = (2 3 5 6). Since C4 > C3 > C2 > CI > 0, 
the greedy algorithm yields 

X4 = max{d4) = 4 

X3 = max{d3, d4) - max{d4) = 4 

X2 = max{dz, d3, d4) - max{d3, d4) = 0 

XI = max{d" d2, d3, d4) - max{d2, d3, d4) = 2 

with objective value cx = 48. 
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The integrality of the matroid intersection polyhedron also carries over to poly
matroids. 

Theorem 6.5. If II and h are two polymatroid functions on N, the linear system 
{LjEA Xj ~ j;(A) for A s Nand i = 1, 2, x E R~} is totally dual integral. 

Proof We consider the dual problem 

min I fl(A)Yl(A) + I f2(A)Y2(A) 
A~N A~N 

(6.3) I Yl(A) + I ylCA) ;;. Cj for} EN, 
A3j A3j 

Let yr, yi be an optimal solution, and let c) = LA3j y7(A) for i = 1, 2 and} EN. Thus there 
is an optimal solution to (6.3) with LA3j Yi(A);;. cj for i = 1,2 and} EN. Hence we can 
decompose (6.3) into the problems 

min I };(A)Yi(A) 
A~N 

I Yi(A);;. c) for} EN 
A3j 

Yi(A);;. 0 for A s N 

for i = 1, 2. These are duals of polymatroid optimization problems. Hence, by Proposition 
6.2, there exist optimal solutions Yi of the form 

{S: ylS) > O} = {Sf, ... , Sl;}, 

with Sf s ... s sl; s N, and (Yb Y2) is an alternate optimal solution to (6.3). 

Now setting Yi(A) = 0 for A * S\ for some t, 1 ~ t ~ Ii, i = 1,2, (6.3) reduces to a 
problem of the form 

(6.4) min{jy: By ;;. c, Y ;;. O}, 

where the columns of B are the characteristic vectors of {Sf, ... ,SD for i = 1,2. By 
arranging these columns in the order Sl, Sf, ... , S~l, S~2, S~2-1, ... , S~, st we see that if 
} E S7; \ S7;-1 for i = 1,2, then} E stl, Stl+1, ... , Sjl, S~" ... , S~2 but} is in no other sets. 
So row} of B has the consecutive l's property. Hence B is an interval matrix and is totally 
unimodular (see Definition 2.2 and Corollary 2.10 of Section m.1.2). So whenever c is 
integer, (6.3) has an optimal solution in integers, and hence the given inequality descrip
tion of P(fl) n P(f2) is totally dual integral. • 
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Theorem 6.5 allows us to establish some important properties of polymatroids very 
easily. Generalizing the duality result for maximum-cardinality matroid intersection 
yields: 

Corollary 6.6 II P(h) and P(h) are polymatroids, then 

Proof Take Cj = 1 for all} EN in (6.3), and let (YI> Y2) be an optimal solution. By 
Theorem 6.5, we can assume the solutions are of the form Yl(SD = 1 for 1= 1, ... , 
II> Yl(A) = 0 otherwise, Y2(T~) = 1 for I = 1, ... ,/2, Y2(A) = 0 otherwise. Let S = Ui~l S~ 
and T = U)~l T~. Since 11 and 12 are nondecreasing and submodular, we obtain 
Il(S) ~ Li~Jl(SD and 12(T) ~ Li~J2(TD. Hence an alternate optimal solution is 
Yl(S) = Y2(T) = 1, Yl(A), YzCA) = 0 otherwise. Feasibility implies S U T = N. Finally, 
since,/; and/2 are nondecreasing, we can take N \ S = T. • 

Corollary 6.7. II P(f) is a polymatriod with ranklunction rp, then 

rp(a) = min{/(T) + I aj}. 
T,;;,N jEMT 

Proof By definition, we have 

rp(a) = max{ I Xj: x E P(f) n {x E R~: x ~ a}}. 
JEN 

But {x E R~: x ~ a} is a polymatroid with underlying submodular function/zCS) = LjES aj 
for all S ~ N. Hence the result follows from Corollary 6.6. • 

Example 6.1 (continued). Suppose that a = (1 4 6 2) gives upper bounds on the 
processing times of the four jobs. Writing out a polyhedral description of 
P(f) n {x: x ~ a} and removing the inequalities that are redundant, we obtain 

X2 + X3 + X4 ~ 8 

Xl + X2 + X3 + X4 ~ 10 

Xl ~ 

X2 ~ 4 

X3 ~ 6 

X4 ~ 2 

xER!. 
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Since x = (1 3 3 2) satisfies all the equalities, we obtain 9 = 1:.t,1 Xj .:;; rp(a). But by 
Corollary 6.7, we have 

rp(a) = min{J(T) + L aj } = min{max dj + L aj }, 
T,;,N jEN\T T,;,N JET jEN\T 

and taking T = {2, 3, 4}, we obtain rp(a) .:;; 9. Hence rp(a) = 9. 

Now we are ready to tackle the problems mentioned at the beginning of this section-in 
particular, submodular Junction minimization: 

(6.5) min{j(S)}, withJ submodular, 
S,;,N 

polymatroid separation: 

(6.6) 
Given x" E R~, is x" E P(J)? If not, find S s;;; N so 

that the violation of L Xj .:;;J(S) is maximized, 
jES 

and polymatroid rank Junction calculation: 

(6.7) Given P(J) and a E R~, calculate rp(f)(a). 

First we consider problem (6.5), whereJis an arbitrary submodular function. By adding 
a constant, we can assume without loss of generality thatJ(0) = 0. Furthermore, since 
J(S U (j}) - J(S) is nonincreasing in S, it follows that ifJ(N) - J(N \ (j}) > 0, thenj is not 
contained in any optimal solution of (6.5), so the problem reduces to 
min{j(S): S s;;; N \ {j}}. Now define kERn by k j = J(N \ (j}) - J(N) for j EN, and 
define a modified functionf" by 

f"(S) = J(S) + L kj for S s;;; N. 
jES 

Based on the above remark, we assume without loss of generality that k E R~. 
It is easily verified that: 

Proposition 6.8. IJJis submodular, thenJ" is nondecreasing and submodular. 

Theorem 6.9. TheJollowing statements are equivalent: 

1. S" is an optimal solution oJ(6.5). 
2. For the separation problem (6.6) with respect to P(f") and the point k E R~, 

1:.jES" Xj .:;;f"(S") is a most violated inequality. 
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Proof f(S*) ~f(T) for T ~ N if and only if 

I*(S*) - L kj ~I*(T) - L kj 
jES" JET 

if and only if 

I*(S*) + L kj ~I*(T) + L kj • 
jEN\S" jEN\T 

But the first inequality is equivalent to statement 1, the second inequality is equivalent to 
statement 2, and the third inequality is equivalent to statement 3. • 

Corollary 6.10. Thefollowing statements are equivalent: 

1. mins~N f(S) = o. 
2. k EP(f*). 

3. rp(f.)(k) = 'LjEN kj • 

Hence we have shown that problems (6.5), (6.6), and (6.7) are equivalent. In the next 
section we will consider algorithms for these problems. 

Example 6.1 (continued). We consider the separation problem withf(S) = maxjES {dj } 

and d = (10 7 8 4). Isx· = (1 31 3 2) E P(f)?Ifnot, find a most violated inequal
ity. 

Using Theorem 6.9, we have a choice of solving the maximum violation problem 
maxS~N ('LjES xj - f(S)}, or, equivalently, of solving the problem of minimizing a sub
modular function, namely, mins~N (j(S) - 'LjES xj}, or of calculating 

rp(f)(x*) = min {f(S) + L x j}. 
S~N jEN\S 

Now it is easy to check that 

4 

rp(f)(x*) = 8! = ~ax {dj } + xT < I xj= 9. 
1-2,3,4 j-l 

Hence x* $. P(f), and X2 + X3 + X4 ~ 8 is a most violated inequality. 

7. ALGORITHMS TO MINIMIZE A SUBMODULAR FUNCTION 

Here we discuss polynomial-time algorithms for the problem (6.5) of minimizing a 
submodular function, and we also discuss the related problem (6.6) of separation for 
polymatroids. 

First we consider an important class of sub modular functions that includes many of the 
submodular functions encountered in practical models. 
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Proposition 7.1. If CT, rT ~ 0 for T ~ N, then 

(7.1) 

is a submodular function. 

Proof We have 

f(S U {j}) -f(S) = - I CTU(j} + I rT· 
TsS (T: TnS=0,jE n 

If S' ~ Sand) $ S', then {T: T ~ S} ~ {T: T ~ S'} and {T: Tn S' = 0,) E T} ~ 

{T: Tn S = 0,) E T}. Hencef(S U {j}) - f(S) is nonincreasing in S. • 

Functions of the form (7.1) can be used to represent Boolean functions. In particular, 
consider a quadratic Boolean function 

g(x) = dx - XTQX, x E Bn with d ~ 0, Q ~ 0, and symmetric, 

and qii = 0 for alIi. 

Let X S be the characteristic vector of S. Then 

where 

CT= {
qij + qji for T = {i,)} 
o otherwise, 

r = {dj for T = {j} 
T 0 otherwise. 

On a graph G = (V, E) with weights w E RI!I on the edges, the function 
f(S) = I S I - I:eEE(S) We for S ~ V can be modeled this way with dj = 1 for all) E V, 
qij = qji = !we for e = (i,), and qij = 0 otherwise. Note that f(S) - 1 for S * 0 is the 
function needed to solve the separation problem for the tree polytope. 

We now show that whenf(S) is of the form (7.1), problem (6.5) can be solved as a 
maximum-flow problem. Consider the digraph ~ = (VI U V2 U (s, t), d), where 
VI = {S ~ N: Cs > O}, V2 = {T ~ N: rT> O}, and 

.91 = {(S, T): S E VI. T E V2, S n T * 0} U {(s, S): S E VI} U {(T, t): T E Vi} 

with capacities de for e Ed, where 

(see Figure 7.1). 

e = (S, T) has capacity de = 00 

e = (s, S) has capacity de = Cs 

e = (T, t) has capacity de = rT 
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Figure 7.1 

Now we consider s-t cuts. Let Wj £:: Vb W2 £:: V2, and (fV;, W2) be the cut 

The capacity of (WI> Wz) is 

d( W;, Wz) = I Cs + I rT 
SEVj\Wj TEW2 

if all pairs of sets (S, T) with SEW;, T E Vi \ Wz are disjoint; otherwise it is 
d(W;, Wz) = 00 (see Figure 7.2). 

Now for any cut (W;, Wz) we have: 

i. Let R = USE W j S. d( W;, Wz) is finite if and only iff or all T E V2 with T n R oF 0 we 
have TE Wz. 

ii. If S E Vj \Wj and S £:: R, we can reduce d(WI> Wz) by Cs by including S in W;. 

iii. If T E W2 and T £:: N \ R, we can reduce d( Wb W2) by rT by removing T from Wz. 

Figure 7.2 
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Thus we have established: 

Proposition 7.2. Every minimal capacity s-t cut (VVj, Jf2) in f!lJ can be characterized by a 
set R s.; N where VVj = {S E Yt: S s.; R} and Jf2 = {T E ~: Tn R '" 0}. The cut has 
capacity 

d(W), Wi) = d(R) = L Cs + L rT· 
Sn(N\R)*0 TnR*0 

Hence the problem minRsN d(R) can be solved by finding a maximum flow in f!lJ. 
Since 

d(R) = L Cs - L Cs + L rT 
SsN SsR TnR",0 

=f(R)+ L Cs, 
Sc:,N 

Proposition 7.2 is applicable to the minimization of submodular fractions of the form 
(7.1). 

Theorem 7.3. Iffis a submodular function oftheform (7.1), minsc:,Nf(S) can be solved by 
finding a maximum s-tflow in a digraph f!lJ with n' + 2 nodes, where 

n'= I{Ss.;N:cs>O}1 + I{Ts.;N:rT>O}I. 

Corollary 7.4. minxEB" (cx - xTQx) with Q> 0 can be solved as a maximum-flow prob
lem in a digraph with O(n2) nodes. 

Example 7.1. We solve the quadratic Boolean problem 

Alternatively, we can solve minsc:,N f(S), where f(S) is of the form (7.1) with r{l) = 9, 
r(2) = 4, r(3) = 2, r(4) = 6, rT = 0 otherwise, and CO,2) = CO,3) = C{2,4} = 4, C{2,3} = 7, C{I,4} = 2, 
Cs = 0 otherwise. 

We construct the digraph f!lJ shown in Figure 7.3 and solve the maximum-flow problem 
giving the s -t cut indicated with R = {2, 3} and d(R) = 20. By Corollary 7.4, it follows that 

Figure 7.3 
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x R = (0 1 1 0) solves the problem with value g(XR) = d(R) - Lss;N Cs = 20 - 21 =-1. 

When f is a general submodular function, the ellipsoid algorithm provides a very 
different approach to the minimization of a submodular function. 

Theorem 7.5. There exists an ellipsoid algorithm for the problem (6.5) of minimizing a 
submodular function, requiring a polynomial number of evaluations of the function f 

Proof 

i. By Theorem 6.9, it suffices to give a polynomial-time algorithm for the separation 
problem for polymatroid polytopes. 

ii. By the polynomial equivalence oflinear programming optimization and separation 
(Theorem 3.3 of Section 1.6.3), it suffices to give a polynomial-time algorithm for 
the linear programming problem over polymatroid polytopes. 

iii. Proposition 6.2 gives a polynomial-time (greedy) algorithm to solve the linear 
programming problem over the family of poly matroid polytopes. • 

Theorem 7.5 motivated the search for a purely combinatorial algorithm for problem 
(6.5). An augmenting-path algorithm has been developed for the polymatroid separation 
problem, but the bound on the number of function evaluations is polynomial in nand 
f(N). This gives a purely combinatorial separation algorithm with a polynomial number 
offunction evaluations for any matroid polytope P(r) because r(N) ~ n. 

The final topic of this section is the minimization of a submodular function subject to 
some simple constraints. First suppose that S = 0 is not feasible. This yields the problem 

(7.2) min U(S)}, wherefis submodular. 
0CSs;N 

Proposition 7.6. Problem (7.2) can be solved by solving problem (6.5) no more than INI 
times. 

Proof Since S '* 0, it follows that) E S for some) EN. Therefore it suffices to solve 
the problem 

min (fJ(T)} for) EN, 
Tr;;.Nj 

where N j = N \{j}, andfj(T) = f(T U (j}). Becal)sefj is submodular, the claim follows .• 

Proposition 7.6 is applicable to the tree polytope on the graph G = (V, E), namely, 

{ X E R~: I Xe ~ I S I - 1 for S s V, I S I ;?; 2}. 
eEE(S) 

Corollary 7.7. The separation problem for the tree polytope can be solved by solving no 
more than I VI maximum-flow problems on a digraph with I VI + I E I + 2 nodes. 



7. Algorithms to Minimize a Submodular Function 699 

Proof Let /(S) = I S I - l:eEE(S) x;. Then x* E Rl!llies in the tree polytope if and only 
ifmin0cs£v /(S);;:. 1. Since/(S) is ofthe form (7.1), the claim follows from Theorem 7.3 
and Proposition 7.6. • 

Note that the algorithm given in Section II.6.3 for finding violated subtree elimination 
constraints is a special case of the separation problem for the tree polytope. 

Now consider the problem 

(7.3) min (f(S): IS n TI odd}, 
0CSCN 

where/is submodular, and T £ N with I T I even. Problem (7.3) is important because odd 
sets arise in the constraints and therefore occur in the separation problems for some 
combinatorial optimization problems. These include the minimum-weight T-join prob
lem and the matching problem. In matching we take T = N, and we can always assume 
that N is even by adding a dummy node to the graph. 

Let n = INI. We will show how (7.3) can be reduced to solving (6.5) n3 times. First 
consider the relaxation of (7 .3): 

(7.4) min (f(S): 1 ~ IS n TI ~ I TI - 1}. 
0CSCN 

Note that when I T I = 2, the problems (7.3) and (7.4) are equivalent. 

Proposition 7.8. Problem (7.4) can be reduced to solving (6.5) n2 times. 

Proof For JET, let jj(S) = /(S U j). An optimal solution to (7.4) is obtained by 
solving 

min fi·(S) 
0£S£N\(j, k) ] 

for eachj k E T with} * k and then taking the best of these solutions. • 
Next we show how to reduce (7.3) to solving (7.4) n times. Let se be any optimal 

solution to (7.4). If I se n T I is odd, then se is an optimal solution to (7.3). The next result 
imposes restrictions on an optimal solution to (7.3) when I se n T I is even. 

Proposition 7.9. 1/ se is an optimal solution to (7.4) and I se n TI is even, then there 
exists an optimal solution SO to (7.3) satisfying one o/the/our following conditions: 

1. So n T C T \ se, 
2. So n T -:J T \ se, 
3. SO n T -:J se n T, 
4. SO n T C se n T. 

Proof If (SO n se) n T = 0, then condition 1 holds. Also, if (SO use) n T = T, then 
condition 2 holds. 
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Now suppose that (SO n se) n T * 0 and (SO Use) n T * T. Since 

either I (SO use) n T I or I (SO n se) n T I is odd, but not both. Suppose I (SO use) n T I 
is odd. 

By submodularity, we have 

But since se is optimal in (7.4) and So n se is feasible in (7.4), we have f(se) :5;J(SO n se). 
Hence f(SO);;;. f(SO use). But because So is optimal in (7.3) and So U se is feasible in 
(7.3), we obtainf(SO) ~f(SO use). Hencef(SO) = f(SO use), and SO U se is an alterna
tive optimal solution to (7.3). Thus there is an optimal solution to (7.3) that strictly 
contains se, and condition 3 holds. 

Finally, when I (SO n se) n T I is odd, a similar argument yields condition 4. • 

As a consequence of Proposition 7.9, we have reduced (7.3) to four subproblems. In 
each of these problems, T has been replaced by a smaller even set, either T' = T \ se or 
T" = Tn se. 

Next we show how to recombine the four subproblems into two problems of the form 
(7.3), one with T +- T' and the other with T +- T". 

If condition 4 holds, the subproblem is 

min (f(S): IS n T" I odd}; 
0CSCN\T' 

and if condition 2 holds, the subproblem is 

min U(S u T'): IS n T" I odd}. 
0CSCN\T' 

Now let n I represent T', let N' = (N \ T') u {n '}, and for 0 s; S s; N' let 

I {f(S) if n ' fE S 
f (S) = f(S u T') ifn' E S. 

It is easily verified that!' is submodular, and 

min {min(f(S),f(S U T')): IS n T" I odd} 
0CSCN\T' 

is equal to 

(7.5) min (f/(S): IS n T" I odd}. 
0CSCN' 

Similarly, if either conditions 1 or 3 of Proposition 7.9 holds, we obtain the subproblem 

(7.6) min (f"(S): IS n T'I odd}, 
0CSCN" 
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where n" represents T"; N" = (N \ T") U {n "}; and for 0 ~ S ~ N", we have thatf" (S) 
is the submodular function given by 

f "(S) {f(S) ifn"$S 
= f(S U T") ifn" E S. 

Hence we have reduced (7.3) to the smaller problems (7.5) and (7.6) of the same form 
where: I N' I, I N" I ~ n - 2; I T' I + I T" I = I T I; and I T' I, I T" I ~ 2 and even. Now 
we proceed recursively by relaxing (7.5) and (7.6). In each case, either an optimal solution 
is found or the subproblem is decomposed again. Since (7.3) and (7.4) are equivalent when 
I T I = 2, in the worst case the original problem will finally decompose into! I T I problems 
of the form (7.4); and in each of these problems, a feasible solution must contain exactly 
one element from a subset of size 2. 

Theorem 7.10. Problem (7.3) can be reduced to solving problem (7.4) n3 times. 

Proof Let g(2k) be the maximum number of calls of problem (7.4) when I T I = 2k. 
Then g(2) = 1 and 

g(2k) = max {g(21) + g(2(k -l)}. 
kkk-I 

It can be shown that the unique solution isg(2k) = 2k - 1. Since 2k ~ n, the result follows 
from Proposition 7.8. • 

Whenf(S) represents a quadratic Boolean function, the functionsf' andf" in (7.5) and 
(7.6) also are of this form. In particular, if 

n )-1 n 

g(x) = 2: r)x) - 2: 2: cijx,xj, x E B n 
)~I '~I j~2 

and T' = {k + 1, ... , n}, then setting X n ' = Xk+1 = ... = X n , we obtain 

Example 7.1 (continued) 

subject to the constraint LJ~I Xj odd. 
Let T = N = {l, 2, 3, 4}. The first step is to solve the relaxation (7.4). As shown 

previously, the optimal solution is given by se = {2, 3}. Hence T' = {l, 4} and T" = {2, 3}. 
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Now the problem is reduced to solving (7.5) and (7.6) where (7.5) is 

and (7.6) is 

The former has optimal solution X3 = 1, X2 = Xs = 0 with f(3) = 2, and the latter has 
optimal solution Xl = X6 = 1, X4 = 0 with f(123) = O. Hence S = {l, 2, 3} is an optimal 
solution to the original problem. 

Both the separation problems for minimum-weight 0-1 b-matchings and minimum
weight T-joins correspond to the minimization of a quadratic Boolean function subject to 
an odd set constraint where the corresponding set function is submodular. 

Proposition 7.11. The separation problems for minimum-weight 0-1 b-matchings and 
minimum-weight T-joins on a graph G(V, E) can be reduced to solving no more than 1 V 13 

max-flow problems. 

8. COVERING WITH INDEPENDENT SETS AND MATROID PARTITION 

Here we consider the problem of finding the minimum number of independent sets 
needed to cover each element of a matroid a given number of times. Let A be the m x n 
matrix whose rows are the characteristic vectors of the independent sets of the matroid, 
and let w E R: specify the number of times each element must be covered. Then the 
fractional version ofthis problem can be formulated as 

(8.1) Cw = {min ly: yA ;;;. w, y E R';'}, 

and the integer version can be formulated as 

(8.2) Zw = {min ly: yA ;;;. w, y E Z';'}. 

First we consider the fractional covering problem (8.1). 

Proposition 8.1. Given a matroid polytope P(r), the following statements are true for the 
fractional covering problem (8.1): 

1. Cw ~ 1 if and only if wE P(r), 
2. Cw = maXS<;N {LjES wj/r(S)}, 
3. w/Cw E P(r), and ify* is an optimal solution to (8.1), then y*/Cw expresses w/Cw as a 

convex combination of points in P(r). 

Proof 

1. Since the rows of A correspond to the independent sets in the matroid (N, r), we 
know that the convex hull of these rows is P(r). So by Proposition 5.8 of Sec
tion 1.4.5, the antiblocker of P(r) is nA = {n E R';': An ~ n. Therefore, for w E R:, 
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we have that wE Per) if and only if wn.s; 1 for all n E ITA or max{wn: n E ITA} .s; l. 
However, by linear programming duality, Cw = max{wn: An.s; 1, n ~ O}, and there
fore the claim follows. 

2. Since Per) = {x E R~: (1/r(S» LjES Xj .s; 1 for S c::::; N}, the maximal extreme points 
of ITA are of the form nj = 1/r(S) for j E S, nj = 0 for j EN \ S. Hence Cw = 
maXS<;;N {LjES wjr(S)}. 

3. min{ly: yA ~ wlCw, y E R';'} = 1, and hence by statement 1 we have w/Cw E Per). 
Letting Ai = y71 Cw, we have that L7!1 Ai = 1, A ~ 0, and AA ~ wi Cw. Since the rows of A 
form an independence system, we can obtain AA = wi Cw by modifying the solution 
by replacing ai E zm by ai < ai if Ai > O. Thus the claim follows. • 

Statements 1 and 2 suggest that there is a link between (a) the separation problem (6.6) 
for Per) and (b) problem (8.1). In fact, by solving problem (6.6) a polynomial number of 
times, we can obtain algorithms to compute the value of Cw, to find the set S maximizing 
LjES wjr(S), and to find an optimal solution y* in (8.1). 

For the special case of w = 1, we obtain the following result: 

Corollary 8.2. For a matroid M = (N, r), the minimum number of independent sets 
needed to cover N fractionally is maXS<;;N { I S Ilr(S)}. 

Example 8.1. Consider the graph of Figure 8.1 with the values of w as shown. The 
problem is to find a fractional covering of the weighted edges of G with subgraphs that are 
forests. 

Suppose the feasible solution y* to (8.1) shown in Figure 8.2 has been found. Since 
L yj = 1, it follows that Cw .s; 1. Now taking S = {e4, e5, e6}, we see that Cw ~ LjES wjr(S) = 1, 
and hence y* is an optimal solution to the fractional covering problem (8.1). 

Now we consider the integer covering problem (8.2). To solve this problem, we 
introduce the concepts of matroid union and matroid partition. 

~----~----~ 2 

Figure 8.1 
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Figure 8.2 

y*= 1 
3 

Definition 8.1. Given matroids Mi = (N, gjii) for i = 1, ... , k, the independence system 
M(k) = (N, gji(k)) is the matroid union where S E gji(k) ifand only if there exist Si E gjiJor 
i = 1, ... , k such that U7~1 Si = S. 

This definition motivates the matroid partition problem for a matroid union M(k): 

(8.3) Given S s N, determine whether S E gji(k). 

Problem (8.3) is related to (8.2) with w = 1 because when the matroids Mi are identical, 
we obtain Ns gji(k) if and only if Zl ~ k. Below we will show how the matroid partition 
problem can be solved as a matroid intersection problem, and we will also show how to 
reduce problem (8.2) with w E Z~ to a problem of the same type with w = 1. This will 
enable us to establish the integer-rounding property for the clutter consisting of the bases 
of a matroid. 

Example 8.2. We are given a set N of jobs, each requiring unit processing time. Job j has 
a deadline dj • S E gji if there is some ordering of the jobs of S such that each job is finished 
by its deadline. 

Takingf(S) = maXjES dj as in Example 6.1, we see that T E gji if and only if x T E Pc!). 
But by Corollary 6.6 this holds if and only if 

Now it follows from Proposition 2.3 that (N, gji) is a matroid with rank function 
reT) = minsc;T U(S) + IT \ S I}· 

Thus, two people working together can accomplish the set S of jobs if S = S IUS 2 with 
Si E gji for i = 1, 2, or, in other words, if and only if S is independent in the matroid union 
M(2) = (N, gji(2)). 

Suppose there are 10 jobs, and the deadlines are as follows: 

Jobj: 1 2 3 4 5 6 7 8 9 10 
dj : 1 2 2 3 3 3 3 4 

We have {l, 4, 6, 1O}, {2, 5, 7} E gji, so that {l, 2, 4, 5,6, 7, 1O} E gji(2). On the other 
hand, {l, 2, 3, 4, 5} $. gji(2), since {i, j, k} $. gji for any choice of 1 ~ i < j < k ~ 5. 

Finally, note that {l, 4, 6, 1O}, {2, 5, 7}, {3, 8, 9} E gji. Hence N E gji(3). Since N $. gji(2), 
it follows that the optimal value of problem (8.2) with w = 1 is Zl = 3. 
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Given k matroids Mi = (Ni' fJ'i) on distinct sets N i, their sum is M" = (Uf=1 N i, U!':1 fJ'j). 
It is easily checked that the sum of matroids is a matroid. The partition matroid (see 
Section 1) is a simple example of such a sum. 

We now show how the k-matroid partition problem for M = (N, fJ') can be viewed as a 
matroid intersection problem. Consider the set N" = {(i, j): i E K, j E N} where K = 

{l, ... ,k}. Any subset F" £; N" can be written as F" = UiEK UjEFi (i,j), denoted (Flo ... , 
Fk), where Fi = {j: (i,j) E F"} £; N. We now consider two matroids over the set N". The 
first one, MT = (N", fJ'r), is just the sum of k copies of the original matroid M = (N, fJ'), so 
F" E fJ'! if and only if Fi E fJ' for i = 1, ... ,k. The second one, Mi = (N", fJ'2), is the 
partition matroid where F* E fJ'i if and only if Fi n }j = 0 for all 1 ~ i < j ~ k. 

Example 8.1 (continued). We are given the graphic matroid M = (N, fJ') for the graph 
G = (V, E) of Figure 8.1. Taking the sum of three copies of G = (V, E) gives the graphic 
matroid MT shown in Figure 8.3. 

A set E* £; N" of edges is independent in the partition matroid Mi if no edge of the same 
type appears more than once; that is, no more than one copy of edge (1, 2)-el,1 or e2,1 or 
e3,1-is allowed. 

Now we consider the independence system (N", ~ n fJ'i) of common independent sets 
in the matroids MT and Mi, and we investigate how it relates to the matroid union 
(N, fJ'(k») and the matroid partition problem. Let rrbe the rank function of Mrfor i = 1, 2, 
let m" be the rank function of (N", fJ'T n fJ'i), and let mk be the rank function of the 
matroid union (N, fJ'(k)). By definition of Mrand M(k), we have: 

Proposition 8.3. The following statements are true. 

1. r!(F") = 1:f=1 ri(Fi). 

2. ri(F") = 1 Uf=1 Fi I· 
3. IfF" = (Flo' .. , Fk) E fJ'! n fJ'i, then S = Uf=1 Fi E fJ'(k). 

4. If S E fJ'(k), then there exists F* = (Flo ... ,Fk) E fJ'T n fJ'i such that Uf=1 Fi = S. 
5. mk(S) = m*(S, ... , S). 

Now we can show that M(k) is, in fact, a matroid. 

el.1 e2.1 
....... ----{ 2 l' r----~ 

i= 1 i=2 ;=3 

Figure 8.3 
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Proposition 8.4. The matroid union M(k) = (N, fF(k» is a matroid with rank function 
mk(S) = minn;;sCLtl ri(T) + IS\ TI}. 

Proof We just consider the case S = N. By Proposition 4.9, we have 

m*(N*) = m*(N, ... , N) = minCrr(F*) + r;(N* \ F*)} 
PsN· 

= T,lJJ{~ ri(Fi) + li~ (N \ Fi)l} 

= mcin{± riCF';) + IN \ 0 F';I} 
~_N l~ l~ 

= min{± ri(A Fj) + IN \ A F';I} 
Fi<:N i~l J~l ,~l 

because the ri are nondecreasing. 
It follows that the minimum is attained by a set F* of the form F* = (T, ... , T), 

where T = nj~l Fj. Hence 

m*(N, ... ,N) = tpjJJ {~ r;(T) + IN \ Til 

Now by statement 5 of Proposition 8.3, we have mk(N) = m*(N, ... , N), and hence mk is 
of the required form. But by Proposition 2.3, m k is a submodular rank function; and 
hence by statement (ii) of Theorem 2.4, the matroid union is a matroid. • 

By Proposition 8.4, we can solve the matroid partition problem by applying the 
cardinality matroid intersection algorithm to (N*, fFr n fF;), demonstrating either that 
S E fF(k) or that there exists a set T s Swith L7~1 r;(T) < I TI. A more efficient and direct 
algorithm is the matroid partition algorithm. 

Conversely, we can use the matroid partition algorithm to solve the cardinality 
intersection problem formatroidsM1 = (N, rl)andM2 = (N, rz). It suffices to consider the 
matroid union (M(2), m 2) of Ml and Mf. Then because the partition algorithm can be 
used to find m 2(N) and we have 

the claim follows. 

as: 
Now we return to the covering problem (8.2). When w = 1, the problem can be restated 

Given a matroid M= (N, fF), determine a minimum number z 1 of 
independent sets whose union is the whole set. 

As we have already observed, matroid unions give a method to solve this problem. 
Taking k identical copies of M = (N, r), the matroid union M(k) has rank function 

mk(N) = minCkr(T) + IN\ TI}. 
T 
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Proposition 8.5. Zl = maxs IISl/r(S)l. 

Proof Zt ~ k if and only if N is independent in the matroid union M(k) or 
mk(N) = INI, or 

kr(T) + IN \ TI ~ INI for all T s N. 

Hence Zl ~ k ifand onlyifk ~ I TI/r(T) for all T s N. • 
In addition, we have seen that either the matroid intersection algorithm applied to M(k) 

or the matroid partition algorithm gives the Z 1 bases required. 
One approach to problem (8.2) for general W E Z~ is to construct a matroid MW from M 

by duplicating each elementj Wj times for j E N. Let N W = {(j, i):j EN, i = 1, ... , w). 
Given TW s ~, we let Tt = {i E {l, ... , Wj}: (j, i) E TWlso that Tt is the set of different 
copies ofj in T W, and we write TW = (Tf, ... , T:n. Now TW = {j EN: I Tt I ~ 1} is the set 
of elementsj EN of which at least one copy appears in TW. 

We now define an independence system MW = (NW, 9fW) such that TW E fFW if I Tt I ~ 1 
for j EN and TW E fF. MW = (N, rW) is easily seen to be a matroid with rW(TW)::o r(Tw). 

By construction of ~, we have: 

Proposition 8.6. Zw is the optimal value of problem (8.2) for the matroid M = (N, ~) if 
and only if Zw is the optimal value of problem (8.2) for the matroid UW = (N"', fFW) with a 
right-hand-side vector of 1 s. 

Corollary 8.7. Zw = maxT 1(l:jET wj)/r(T)l· 

Proof By Proposition 8.5, Zw = maxTw£;Nw II TW l/rW(TW)l. Since rW(T"?);:; r(tw), we 
obtain 

zw=max 1 W J = max _1 __ J • rl:'ETW W'l fl:'ET W'l 
TW£;N r(T) T r(T) • 

Figure 8.4 
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• • 

Figure 8.5 

From Proposition 8.1, it follows that problem (8.1), the linear programming relaxation 
of problem (8.2), has value (w = maXT (LjET wj)/r(T). Hence, since Zw = few]' the matroid 
covering problem provides an example of the integer-rounding property discussed in 
Section III. 1.6. 

Similar results can be obtained for packing bases. However, for general W E Z~ the 
above construction does not lead to a polynomial algorithm. 

Example 8.1 (continued). The problem is to find an integer covering of the weighted 
edges of G by forests (see Figure 8.1). 

Since (w =~, we know from the integer-rounding property that Zw = f(w] = 3. Now we 
construct an optimal solution. In Figure 8.4, we show the graph GW = (V, EW) underlying 
the graphic matroid MW = (EW, g;W) for which we need to solve problem (8.2) with weights 
we),! = 1. 

Now we construct an independence system M* = (N*, g;*) consisting of three copies of 
MW, such that E* = (E 10 E 2, E 3) £ (EW, EW, EW) and E* E g;* if the edge sets E 10 E 2, E 3 are 
disjoint and each edge set E j is a forest in GW. 

Applying the cardinality matroid intersection algorithm to M* = (N*, g;*), we obtain 
the solution shown in Figure 8.5, which provides an optimal solution {elo e2, es, e6}, 
{e2, e3, e4,e6}, {e4} for the covering problem. 

9. SUBMODULAR FUNCfION MAXIMIZATION 

Whereas there is a polynomial algorithm for the minimization of a sub modular function, 
the problem of maximizing a submodular function is .N"~-hard. Here we investigate three 
problems that are natural generalizations of problems treated either earlier in this chapter 
or earlier in the book. 

The three problems are: 
(1) maximizing an arbitrary submodular function: 

(9.1) Z I = max{j(S)} withf submodular, 
s 

(2) maximizing a non decreasing submodular function subject to a cardinality constraint: 

(9.2) Z2 = max{j(S): IS I ~ p} withfsubmodular and nondecreasing, 
s 
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(3) minimizing a linear function subject to a submodular constraint: 

(9.3) Z3 = min{ L cj:f(S) =f(N)} withfsubmodular and nondecreasing. 
S jES 

A typical example of problem (9.l) is the uncapacitated location problem discussed in 
Chapter II.S with 

f(S) = L max cij - L jj. 
iEi jES jES 

If capacity constraints limiting the amount of demand that can be met by an open facility 
are added, the problem can still be formulated as the maximization of a submodular 
function. 

The p-facility location problem studied in Section II.S.3, namely, 

max{L max cij: IS I ~ p}, 
S iEi jES 

is an example of problem (9.2). 
An example of problem (9.3) is the integer covering problem 

where (A, b) is an m x (n + 1) nonnegative integer matrix. Here we set 

Observe thatf(N) = L;::l bi andf(S) = f(N) if and only if LjES aj ~ b. Note that we can 
assume that the {x E B n: Ax ~ b} is nonempty by adding, if necessary, an artificial 
variable Xn+l with an+l = band Cn+l > Lf=l Cj. 

Another important application is the k-matroid intersection problem 

z = max{ L c/ IS I ~ ri(S) for i = 1, ... , k}. 
S jES 

To see that it fits this model, remember from Section 2 that S E g; if and only if N \ S 
contains a basis in the dual matroid. Hence 

z = L Cj - min{ L Cj: rp(N \ S) = rp(N) for i = 1, ... , k} 
JEN S jEN\S 

= L Cj - min{ L cj:f(T) = f(N)} , 
JEN T JET 

wheref = L~l rp. 
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Since Problems (9.1)-(9.3) are ,Ng>-hard, we consider two approaches. The first is to 
formulate and solve them as integer programs, and the second is to apply heuristic 
algorithms. 

We first consider an integer programming formulation of (9.1). We assume f(0) = 0; 
then we set f(S) = J*(S) - LjES kj, where kj = f(N \ {j}) - f(N) for all j E N. Hence f is 
written as the difference of a nondecreasing submodular functionJ* and a linear function. 
Now consider the polyhedron 

Q(f) = {(y!, x) E Rl x R~: Y! ~J*(S) + I [f*(S U {j} - J*(S)]Xj 
jEN\S 

- I kjxj for all S £ N}. 
jEN 

Proposition 9.1. Given (y!, XT) E Rl X Bn, we obtain (y!, XT) E Q(j) if and only if 
Y! ~f(T). 

Proof If (y!, XT) E Q(f), then 

Y! ~J*(T) + I [f*(T U {j}) - J*(T)]xJ - I kjxJ 
~MT ~N 

= J*(T) - I kj = f(T). 
JET 

Now suppose Y! ~f(T). By Proposition 2.1(b), we have 

f(T) = J*(T) - I k j 
JET 

~f*(S) + I [f*(S U {j}) - f*(S)] - I kj 
jET\S JET 

for all S £ N, and hence 

Y! ~f*(S) + I [f*(S U {j}) - f*(S)]xJ - I kjxJ 
jEMS jEN 

for all S £ N, so (y!, x T) E Q(f). • 
As a consequence of Proposition 9.1, an alternative formulation for (9.1) is 

(9.4) 

Since Q(j) has an exponential number of constraints, we suggest a cutting-plane algo
rithm, similar to that of Benders, for solving (9.4) (see Section 11.5.4). 
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Example 9.1. The problem is to maximize the quadratic function from Example 7.1, 
namely, 

or maxs (j*(S) - ~jES k j }, wheref* is defined above and k = (1 11 9 0). 
Generating the constraints of Q(f) for S = 0 and S = {l}, we obtain the relaxation 

max 17 

17';;; 0 + 9xI + 4X2 + 2X3 + 6X 4, 

17 .;;; 10 - XI 

S=0 

S = {l} 

with optimal solution 17 = 13, x* = (1 0 0 1). Hence Z I .;;; 13. However, f({1,4}) = 13, 
and hence x* is optimal. 

A formulation for problem (9.3) is derived similarly with 

R(f) = {X E R~: I [f(S U {j}) - f(S)]xj ~ f(N) - f(S) for S S N}. 
jEN\S 

Proposition 9.2 

(9.5) 

Proof If x T E B n is the characteristic vector of T and if x T E R(f), then 

0= I [f(T U {j}) - f(T)]xJ ~ f(N) - f(T). 
jEN\T 

Hencef(T) = f(N), and T is feasible in (9.3). 
Conversely, if T is feasible in (9.3), then by submodularity (Proposition 2.1, statement 

ii) we have 

f(N) = f(T) .;;;f(S) + I [f(S U {j}) - f(S)] for S s N 
JET\S 

or, in other words, 

I [f(S U {j}) - f(S)]xJ ~ f(N) - f(S) for all S s N, 
jEN\S 

soxT ER(f). • 
Now we turn to heuristic algorithms. The greedy heuristic algorithm for problem (9.2) 

has already been analyzed in Theorem 3.3 of Section 11.5.3. Repeating the theorem, we 
have: 
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Theorem 9.3. Iff(0) = 0, and ZG is the value of a greedy heuristic solution to problem 
(9.2), and Z is the value of an optimal solution, then zalz ~ 1 - [(p - l)/p ]P. 

The greedy heuristic for the 0-1 covering problem was analyzed in Theorem 2.5 of 
Section 11.6.2. As indicated above, this is a special case of problem (9.3). The same result 
holds for the general problem. First we describe the heuristic. 

The Greedy Algorithm for Problem (9.3) 

Initialization: SO = 0, N 1 = N, t = 1. 

Iteration t: Let 

with the minimum attained at jt EN. Let Nt+l = N \ Ut), and let S = St-l 'u Ut}. If 
f(S) = f(N), then st is the greedy solution with z G = LjES' Cj. Iff(st) < f(N), let t <- t + 1 
and return. 

Using a relaxation of the formulation (9.5), and using a dual heuristic as in the proof of 
Theorem 2.5 of Section 11.6.2, we obtain the following theorem: 

Theorem 9.4. Let f be integer-valued, let f(0) = 0, d = maXjEN (f{J}), and let ZG be the 
value of a greedy heuristic solution to (9.3). Then zGlz ~ H(d), where H(d) = L~l (1li). 

10. NOTES 

Sections 111.3.1 and 111.3.2 

Matroids were introduced by Whitney (1935). Further early developments are due to Tutte 
(1965). Detailed developments of matroid, polymatroid, and submodular function theory 
are contained in the books by Tutte (1971), Welsh (1976), and Recski (1988). Recski's book 
also gives many applications ofmatroids in the physical sciences and engineering, as does 
the survey article by Iri (1983). 

The importance of matroids in combinatorial optimization was established by 
Edmonds (1965b, 1970, 1971). Chapters 8 and 9 of the book by Lawler (1976) present the 
work done in matroid optimization through the mid-1970s. A survey of matroid results 
tailored to the operations research community was presented by Bixby (1982). 

Lovasz (1983) surveyed the relationships between submodularity and convexity. Topkis 
(1978) studies properties of submodular functions that are of interest in optimization. 

Section 111.3.3 

The optimality of the greedy algorithm was first discovered by Rado (1957) and indepen
dently by Gale (1968), Welsh (1968), and Edmonds (1971). A more general combinatorial 
structure for which the greedy algorithm works, known as a greedoid, has been studied by 
Korte and Lovasz (1984). 

The matroid polytope was studied by Edmonds (1970, 1971). 
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Sections 111.3.4 and 111.3.5 

The matroid and polymatroid intersection theorems are due to Edmonds (1970). Algo
rithms for maximum-cardinality matroid intersections have been developed by Lawler 
(1975) and Edmonds (1979). The algorithm for maximum-weighted matroid intersections 
is based on an algorithm of Frank (1981). [Also see Lawler (1975), Cunningham (1986), and 
Brezovec et al. (1986).] 

Edmonds (1967b) gave an algorithm for minimum-weight branchings. [Also see Chu 
and Liu (1965), Bock (1971), Karp (1971), Murchland (1973), and Tarjan (1977).] 

Fulkerson (1974) gave an algorithm for the problem of packing rooted directed cuts in a 
weighted digraph and established a blocking relationship between these cuts and branch
ings. His results yielded a TDI system for the convex hull of edge sets that contain a 
branching: 

Edmonds and Giles (1977) studied a model, now known as the submodular flow 
problem, that generalizes both network flows and polymatroid intersection. Min-max 
results and algorithms for this class of problems have been obtained by Frank (1982,1984), 
Hassin (1982), Lawler and Martel (1982a,b), Schrijver (1984a,b), and Cunningham and 
Frank (1985). An application to a scheduling problem has been given by Martel (1982). 

An even more robust model, known as the matroid matching problem or matroid parity 
problem, that generalizes polymatroid intersections and matchings has been studied by 
Lovasz (1980\ 1981). He gave a polynomial-time algorithm for the case of matric matroids 
and showed that the general problem is K2P-hard. Related results were given by Tong et al. 
(1984). 

An annotated bibliography on these problems was given by Lawler (1985). 

Section 111.3.6 

Polymatroid and submodular rank functions have been studied by Edmonds (1970), and 
the role of these functions in combinatorial optimization has been examined by Lovasz 
(1983). [Also see McDiarmid (1975).] 

Section 111.3.7 

The max-flow reduction algorithm for submodular function minimization given in 
Section 7 is due to Rhys (1970) [also see Picard and Ratliff (1975)]. Its applications to 
graphic matroids was given by Picard and Queyranne (1982) and Padberg and Wolsey 
(1983, 1984). 

Crama (1986) gave an efficient recognition algorithm for certain classes of sub modular 
functions representable in the form (7.1). A general treatment of Boolean functions, 
primarily of historical interest now, is the book by Hammer and Rudeanu (1966). 

The polynomiality of submodular function minimization has been established by 
Grotschel, Lovasz, and Schrijver (1981, 1984b). They have also developed the procedure 
for minimizing over odd sets [Grotschel, Lovasz, and Schrijver (l984c)]. These develop
ments and many related results are presented in Grotschel, Lovasz, and Schrijver (1988). 

Purely combinatorial algorithms for the separation problem for the matroid polytope 
have been given in Cunningham (1984), and for submodular function minimization in 
Cunningham (1985). 

Section 111.3.8 

The problem of covering and packing with independent sets was studied by Edmonds and 
Fulkerson (1965) and Edmonds (1965b). The matroid partition algorithm is due to 
Edmonds (1965b) [also see Cunningham (1986)]. 



714 III.J. Matroid and Submodular Function Optimization 

Edmonds (1973) considered the packing of branchings, and Cunningham (1977) 
described the blocking polyhedron of the convex hull of the common independent sets in 
two matroids. These results were generalized by Baum and Trotter (1981). 

A polynomial-time algorithm for problem (8.1) with general w is obtained using the 
separation algorithm of Section 7 [see Cunningham (1984, 1985)]. 

Section 111.3.9 

Submodular function maximization has been studied by Nemhauser, Wolsey, and Fisher 
(1978), Fisher, Nemhauser and Wolsey (1978), Nemhauser and Wolsey (1979, 1981), 
Wolsey (1982a,b), and Conforti and Cornuejols (1984). In Nemhauser and Wolsey (1979), 
it was shown that within a large class of algorithms the greedy algorithm is the best possible 
one for problem (9.2). 

11. EXEROSES 

1. Show that graphic matroids are matric. 

2. Given a family of subsets {S;}7!l of a finite set N, we define a transversal of the family 
to be a set T = {i 10 ••• , i m } with the following properties: 

a) ITI =m; 
b) ijESjforj= I, ... ,m. 

If R ~ T is a transversal, R is a partial transversal. 
i) Show that a family has a transversal ifand only ifthe maximum s-t flow in the 

digraph of Figure 11.1, with (j, S;) Ed ifj E S;, has value m, where: (s,j) Ed 
has capacity 1 forj EN, (S;, t) Ed has capacity 1 for i E {I, ... , m}, and (j, S;) 
has infinite capacity. 

ii) Show that the set of partial transversals forms a matroid on N. 

3. Given an m x nO, 1 matrix A, a set J ~ N of columns is called dependent if there 
exists a J' ~ J such that I jEJ , aij = O(mod 2) for all i. 

i) Show that the sets of independent columns form a matroid. Such matroids are 
called binary matroids. 

ii) Show that a graphic matroid is a binary matroid. 

N 

Figure 11.1 
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4. Show that the following set functions are submodular: 

i) v(S) = max{LjET Cj: I T I ..; k, T ~ S} for S ~ N; 

715 

ii) v(S) = I{) E V:} E S or (i,}) E E for some i E S} I for S ~ V, where G = (V, E) 
is a graph (this is the cardinality of the neighborhood of S); 

iii) v(S) = LjES Cj - LiES,jES qij for S ~ N, where qij ~ 0 for 1 ..; i <} ..; n. 

5. What is the complexity of the greedy algorithm for problem (3.1) when M is a 
partition matroid? 

6. Prove Proposition 3.5 directly by showing that if U} E fjP for allj E N, every facet of 
the convex hull of independent sets ofa matroid is either of the form 

(a) 

or 

(b) 

Xj ~ 0 for} EN 

I Xj ..; r(A) for A ~ N. 
JEA 

Hint: (i) Show that if nx ..; no is facet-inducing, either it is the inequality - Xj ..; 0, or 
nj ~ 0 for all} EN. (ii) Show that ifnj > 0 for} E A, and the characteristic vector of 
S E F lies on the facet, then IS n A I = r(A). 

7. Characterize the facets ofthe tree polytope-that is, when is LeEE(U) Xe"; I U I - 1 a 
facet-defining inequality? 

8. Show that the following set functions are submodular: 

i) Given a matroid M = (N, fjP) with cERn, let 

v(S) = max{ ICe: T ~ S, T E fjP} for S ~ N. 
eET 

ii) Given M as in part i, let {Qi}iEI be subsets of N and let 

iii) 

v(J) = max{ ICe: T ~ U Qi' T E fjP} for J ~ f. 
eET" IE! 

(Qi is the set of elements with color i.) 

v(S) = max{ I I CijYij: I Yij"; ai for i E f, 
iEI jES jES 

I Yij ..; bj for} E S, Yij ~ 0 for i E f,} E s}. 
iEI 

(This function arises in the capacitated facility location problem where S ~ N is 
the set of open facilities.) 
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9. L: Rm -+ Rl is submodular if 

L(u) + L(v) ~ L(u V v) + L(u /\ v) for u, v E Rm, 

where (u V V)i = max(ui, Vi) and (u /\ V)i = min(ui, Vi). Show that if L(u, y) is 
submodular on Rm x RP, then W(y) = minu L(u, y) is submodular on RP. 

10. Consider the clutter of bases of a matroid M = (N, 8F). 

i) Prove that 

Q*= conv{x E R~: x ~ xF for F a basis of M} 

= {x E R~: I Xj ~ r(N) - r(s)}. 
jES 

ii) Show that for the clutter of spanning trees, this gives 

Q*= {x E R~: I I Xe ~ f - 1 for all 
{(i,j):i<j) eEo(v,)nO(V;) 

Vj, ... , Jijthat are disjoint subsets of V and allf> I}. 
11. Apply the maximum-cardinality matroid intersection algorithm to the pair of 

graphic matroids in Figure 11.2, starting with S = {eb e2, e4} 

12. Show that the lengths of the shortest s-t dipaths at successive iterations of the 
cardinality matroid intersection algorithm are nondecreasing. 

13. Apply the weighted matroid intersection algorithm to find a maximum-weight set 
of arcs forming part of a branching (with no specified root) in the digraph of 
Figure 11. 3. 

14. i) Show that the polytope of the arc sets in exercise 13 is given by 

{ XER~: I Xij:S;; 1 forjE V, I Xij:S;; ISI-l for0CSs:; v} 
iEo-U) iES,jES 

ii) Devise a more efficient algorithm for the maximum-weight branching problem. 
What is the complexity of your algorithm? 

Figure 11.2 
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Figure 11.3 

15. For the clutter of rooted branchings, prove that 

Q* = {x E R~: I Xu ~ 1 for all S ~ V with {1} E S} 
(i,j)EJ"(S) 
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is integral and that the max-min inequality holds strongly where t5+(S) are the rooted 
dicuts (see exercise 34 of Section 111.1.8). 

16. Show that the matroid intersection polyhedron is box TDI (see exercise 3 of Sec
tion m.1.8). 

17. Show that if P = {x ERn: Ax ~ b} is box TDI, there exists a 0, 1, -1 matrix A' and a 
vector b ' such that P = {x ERn: A IX ~ b'}. Hint: Observe that w E P ifand only if 

max{1x ' - Ix": x' ~ 0, x" ~ 0, x = w, Ax + Ax' + Ax" = b} ~ 0. 

18. Prove Proposition 6.2. 

19. Transform the problem 

into a polymatroid separation problem. Write out the polymatroid explicitly. 

20. i) Show that a polymatroid Pfis integral (has integral extreme points) iffis integer-
valued. 

ii) Show that if P ~ R~ is an integral polymatroid, rp(a) E Zl for all a E Z~. 

21. Let PU) = {x ERn: LjES Xj ~f(S) for S ~ N} withf(0) = 0. Prove the following: 

i) For any T ~ N, there exists x E P(f) such that LjET Xj = f(T). 

ii) All maximal points y such that y ~ x, Y E PU) have the same value of LjEN Yh 
denoted by i'f(x). 

iii) Iffl andf2 are submodular withfl(0) = f2(0) = 0, then 
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22. Solve the problem of exercise 19 by a maximum-flow algorithm. 

23. Consider the general problem of minimizing a quadratic boolean function z = 
minxEB,J(x), where 

J(X) = 2: CjXj + 2: %XiXj, 
jEN (i,j)EPUQ 

P = {(i,j): 1 ~ i <j ~ nand qij > O}, 

and 

Q = {(i,j): 1 ~ i <j ~ nand qij < O}. 

i) Show that the problem can be reformulated as the mixed-integer program 

z = min 2: CjXj + 2: qijYij 2: qijYij 
jEN (i,j)EP (i,j)EQ 

Yij ~ Xi, Yij ~ Xj for (i,j) E Q 

Xi + Xj - 1 ~ Yij for (i,j) E P 

ii) Show that J is submodular if and only if P = 0. 

iii) Show that the problem matrix is TU when P = 0. 

24. LetJ(S) = LTc;S CT. Show thatJis submodular if and only if 

2: CTU{i,j) ~ 0 for all S ~ N \ {i,j} and all i,j EN. 
Tc;S 

25. Show that ifJis cubic [i.e.,J(S) = LTc;s CT, and CT = 0 for I T I > 3]: 

i) There is a polynomial algorithm to test ifj is submodular. 

ii) Jis submodular if and only ifit can be put in the form (7.1). 

26. Show that the recognition problem: "Is the quartic function (f(S) = LTc;s CT with 
C T = 0 for I T I > 4) not submodular?" is .KiYl-complete. 

27. Let P be the convex hull of 1-matchings for the complete graph on 5 nodes. Is the 
point shown in Figure 11.4 in P? Ifnot, find a most violated facet-defining inequality 
(not by inspection). 

28. Consider the min-cut problem min0cscv L eE6(S) Ce on a graph G = (V, E) with 
cER~. 

i) Show that if S), S2 are minimum cuts with SI n S2 '* 0, SI U S2 '* V, then 
SI n S2 and SI U S2 are minimum cuts. 

ii) Suppose I V I is even, and there exists a minimum cut S* with I S* I even. Show 
that there exists a solution So to the problem 

min { 2: Ce: IS I Odd} 
0CSCV eE6(S) 

such that either SO C S* or So C N \ S*. 
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Figure 11.4 

29. Describe a polynomial algorithm to (a) compute Cw in problem (8.1) and (b) find an 
optimal solution Sand y* as given in Proposition 8.1. 

30. Consider the fractional packing problem given by 

1'/w = {max ly: yA ~ W, Y E R':'}, 

where A is the basis-element incidence matrix of a matroid M, and also consider the 
integer packing problem given by 

Cw = {max ly: yA ~ W, Y E Z,:,}. 

i) Express 1'/w as the minimum of a set of objects. 

ii) Give polynomial algorithms to calculate 1'/1 and ~1' 

iii) Does the integer round-up property hold, that is f1'/w] = ~w? 

iv) Apply these results to the graphic matroid of Figure 8.1 with W = 1. 

31. Solve the max-cut problem maxocscv LeEO(S) Ce in the graph of Figure 11.5 using 
formulation Q(f) and a cutting-plane algorithm. 

32. i) Prove Theorem 9.4. 

ii) Deduce that when f is a matroid rank function, R (f) is integral. What are its 
extreme points (see exercise 1O)? 

3 

9 

Figure 11.5 
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SUBJECT INDEX 

Adjacency matrix, 52, 118 
Affine: 

function, 325 
independence, 192 
transformation, 150 

Algorithm, see also specific entries 
balanced matrix, totally, recognition, 570 
basis, reduced, 514 

of lattice, 199 
Bellman-Ford, 58 
branch-and-bound, 355, 363, 482, 484, 497 
constraint generation, 411, 413 
cutting-plane, 498, 710 

/branch-and-bound, 388, 459, 463, 485, 489, 
502 

fractional, 351, 367, 373, 386 
general, 367 
Gomory,368 
mixed-integer, 374 
primal, 374 
strong, 386 

decomposition, 409-417 
for DFC and FC for row inclusion matrices, 566 
for DFNP and FNP for chordal graphs, 577-585 
dual desc.ent, greedy, 397-388 
dual simplex, 37 

lexicographic, 371 
efficiency, 117 
ellipsoid, 124, 147-162,698 
euclidean, 184-187 
feasibility, 179 
fixed-charge, branch-and-bound, 497 
greedy, 60, 666-667, 679, 689, 712 
group, increasing, 448 
Hermite normal form, 193 
heuristic, 393-409 

analysis, 399 
probabilistic, 408 
worst-case, 399 

dual, 400 
dual descent, 397 
greedy, see Greedy, heuristic 
interchange, 394, 397, 406-407, 477-478 
nearest insertion, 477-478 
nearest neighbor, 475, 477, 494 
primal, 452 

primal-dual, 395 
randomized, 407-409 
scaling/rounding, 442-443 
simplex-based, for BIP, 457-459 

knapsack problem, 0-1 separation, 462 
linear programming, polynomial-time, 146-181 

ellipsoid, 147-160 
projective, 164-172 
strongly polynomial for combinatorial 

problems, 172-180 
linear programming relaxation, 451-452 
matching: 

cardinality, 618, 625 
bipartite, 612 

weighted, 628 
matrix, totally balanced, recognition, 570 
matroid, greedy, for maximum-weight 

independent sets, 666-671 
intersection: 

maximum cardinality, 677, 706 
weighted, 684 

mixed-integer, cutting-plane, 374 
minimum-weight path, Dijkstra's, 56-58 
network flow problem, primal simplex, 76-81 
nondeterministic, 128, 131 
objective rounding, 177 
path: 

augmenting, 65 
minimum-cost, 75-76 

minimum-weight, Dijkstra's, 56-58 
polynomial-time, 119 

strong, combinatorial for linear programs, 
172-180 

primal, simplex, 33, 76 
primal-dual, 69-70 
projective, 164-172 
for recognizing an EPT matrix, 555-561 
for recognizing TB matrices, 570-573 
reduced basis of lattice, 199 
relaxation, 349, 482 

assignment problem/branch-and-bound, 482-
483 

1-tree, sub gradient optimization, branch-and
bound,484-485 

FCP Ibranch-and-bound, 485 
separation, 412, 462, 487 
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Algorithm (Continued) 
simplex: 

dual, 37 
primal,33 
simple upper bounds, 39 

sliding objective function approximate ellipsoid, 
155. See also Ellipsoid 

spanning-tree, construction, 60-61 
special purpose, 383, 433 
subgradient, 46, 410, 484 
sub modular , function maximization, greedy, 

712 
superadditive, dual, 435 
transportation problem, primal-dual, 68-76 

Alphabet, 118 
Annealing, see Simulated annealing 
Antiblocker, 102 
Antiblocking: 

clutter, 594 
matrix, 102 

Antihole, 575 
Approximation scheme: 

fully polynomial, 401 
polynomial, 402 

Are, 54 
forward, 64 
reverse, 64 
saturated, 63 
slack, 309 
variable j, 309, 313 

Artificial variable, 36 
Ascent, steepest, 43 
Assignment problem, 5, 68, 332, 482 

generalized, 346 
Augmenting path, see Path 

Backtracking, 358 
Balanced matrix, 563, 564, 573 

totally, 563-565, 570-573, 576 
recognition algorithm, 570 

Basic solution, 30 
feasible, 31 

Basis, 30 
adjacent, 31 
degenerate, 32 
dual feasible, 31, 37, 321 
matroid, see Matroid 
nondegenerate, 34 
orthogonal, 196 
reduced, see Reduced basis of lattice 

Bellman-Ford algorithm, 58 
Benders' decomposition, 412, 508 
Benders' reformulation, 337-341, 710 
Binary: 

alphabet, 118 
digits, 157 
representation, 72 
search, 128 
string, 119 
variable, 5-13 

Bipartite, 50, 54, 544, 575, 593, 612, 651 

Blocker, 101 
Blocking, 586 

clutter, 587, 650 
matrix, 103 
pair, 103, 590 
polyhedron, 101, 586-598 

Blossom, 616 
base of, 616 
shrinking, 616 

Boolean: 
function, 695 
implications, 215 

Bounded, 107 
Bounds, tightening, 18 
Branch-and-bound, 354-367, 454 

algorithm, 355, 363, 482, 484, 497 
node selection, 358 

adaptive rules, 358 
best estimate, 359 
best upper bound, 359 
quick improvement, 359 

a priori rules, 358 
variable selection, 359 

degradation, 359 
integer infeasibility, 360 
penalties, 359 

Branching, 55, 661 
problem, 532, 680 
scheme, 365 

Breadth-first search, see Search 

Capital budgeting, 3 
Certificate of feasibility, 114, 128 
Certificate of optimality, 114, 124 
C-G: 

function, 306 
inequality, 210, 220-225, 228, 232 

Characteristic vector, 118, 259 
Checking stage, 129 
Chord, 575 
Chordal graph, 576-578 

strong, 605 
Chromatic: 

index, 651 
number, 582 

Claw, 585 
Claw-free, 585 
Clique, 260, 573 

cover, 298 
matrix, 574, 576 

perfect graph, 583 
problem, maximum weight, 163 

Closest vector problem, 182 
Closure, 664 

elementary, 225 
Clutter, 562, 574, 576, 583, 587 
Coloring, 582, 651 
Column operation, elementary, 192 
Comb,277 

inequality, 277-280 
generalized, 280 
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Combinatorial optimization problem, 4 
Complementarity condition, 330 
Complementary slackness, 29, 305 
Complexity, 114, 117, 139 
Component, 53, 555 
Concave function, 11,42-43 
Cone, 86, 156, 164 

polyhedral,99 
Connected, 53, 552 

strongly, 55 
CoNP, 130, 141 
Constraint generation algorithm, 411, 413 
Constraints: 

adding, 39, 358 
disjunctive, 12 
complicating, 323, 329, 337, 512 
generalized upper-bound, 365 
nice, 323 
redundant, 19 

Continued fractions, 187-189 
Convergence, finite, 370, 378 
Convex, 150 

combination, 83 
function, 11, 329 
hull, 83, 106, 125, 127, 206, 241 
set, 86 

Cost-splitting, 334 
Cover, 299 

inequality, 459 
extended, 461, 498 

minimal,463 
Covering, 6 

by edges, 538, 586, 588, 639 
fractional, 103 
by independent sets, 702, 707 
problem, 6, 144, 464, 571, 589, 702, 709 

fractional, 562, 566 
greedy heuristic, 466 

Cramer's rule, 123 
Cryptography, 513 
Cut,62 . 

capacity, 63 
clutter, 587 
edge, 551 

proper, 551 
function, 660 
Gomory fractional, 368 
minimum weight, 62, 63, 586-587, 592 
primal, 376 
-set equality, 486 
T-, see T-cut 

Cutting-plane algorithm, 498, 710 
Ibranch-and-bound, 388, 459, 463, 485, 489, 502 
fractional, 351, 367, 373, 386 
general, 367 
Gomory, 368 
mixed-integer, 374 
primal, 374 
strong, 386 

Cycle, 52, 78 
chordless, 261 

directed, 54 
negative weight, 59 
odd, 583 

Cycling, 34 

Data, 4, 115 
Data structures, 82 
Davis-Putnam procedure, 256 
Decision problem, 127 
Decomposition, 556 

algorithms, 409-417 
integral, 595 

Degree, 51, 608 
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constraints, 272, 470 
Demand nodes, 596 
Dependent set, 265, 283, 659 

extension, 266 
minimal, 266 

Depth-first search, see Search 
Determinant, 123, 196, 540 
Dicut, 535 
Digraph, 54, 320, 496, 546 
Dijkstra's algorithm, 56, 446, 592 
Dimension, 86, 92, 108 

full, 86-87 
D-inequality, 213, 218, 220 
Diophantine approximation, 184, 187, 189,200 
Dipath, 55, 535, 675, 682 
Disjunctive: 

constraints, 12, 212 
procedure, 213 

Distribution, 3 
Division, 352, 355, 356 
Dominance, 207, 247 
Dual, 28, 296-341 

cost-splitting, 334 
feasible basis, 371 
gap, 299, 329 
heuristic, 400 
integral, totally, 537-539, 562, 638, 690-691 
Lagrangian, 323-337, 409-411, 484, 494 
linear programming, 28-30 
matroid, 665 
optimal solution, 175, 176 
problem, 28, 97 
restricted, 336 
simplex algorithm, 37 

lexicographic, 371 
strong, 29, 299, 301, 305, 672, 677 
superadditive, 304-312 

general integer programming, 304 
mixed-integer programming, 308 

surrogate, 334 
weak, 28, 299, 304, 672 

Dynamic programming, 417-424, 433, 440 

Edge, 50 
coloring, 651-654 
coverings, 639 
end, 551 
shrinking, 487 
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Ellipsoid, 147 
algorithm, 124, 147-162, 698 
property, 148 
volume, 148 

Enumeration tree, 352 
Epsilon-approximate solution, 174, 331 
EPT matrix, see Tree 
Equality-constrained subgraph, 627 
Equality set, 86, 91 
Euclidean: 

algorithm, 184-187 
distance, 45 

Euler cycle, 478, 609 
Exchange property, see Matroid 
Exponential, 120 
Extreme point, 93, 95, 123, 125, 158 
Extreme ray, 94-95, 123 

Face, 88, 108 
proper, 88 

Facet, 89-91, 127 
validity, 141 

Facet -defining inequality, 158 
Facility location, 3, 7, 15, 17, 287 

capacitated, 8, 347 
median problem, 408 
uncapacilated, 8, 340, 384, 416, 496, 509, 709 

dual descent, 397 
FCPA with separation, 387 
greedy heuristic, 393 
Lagrangian dual, 409 
p-, 402-406, 411 
primal-dual heuristic, 398 
strong formulation, 384 
weak formulation, 385 

Farkas' lemma, 30, 97 
integer version, 191 

FCPA, see Cutting-plane algorithm, fractional 
Feasibility: 

algorithm, 179 
problem, 127 

homogeneous, 164 
integer programming, 127-129, 133 
linear equations integer variables, 182 
lower bound, 127, 139, 141 

property, strict, 148 
Feasible: 

region, 4 
solution, 4 

Fibonacci number, 186 
Finitely generated, 104 
Fixed-charge: 

network flow problem, 8, 18, 423, 495-513 
branch-and-bound algorithm, 497 
fractional cutting-plane algorithm, 498 
multi-source, 506, 508 
single-source, 496, 506 

uncapacitated, 496 
transportation problem, 502 

Fixed cost, 18, 496 

Flow, 62 
blocking, 63 
cover inequalities generalized, 499 

extended, 501 
feasible integral, 596 
maximum, 62-68, 487, 695 

minimum-cut theorem, 63 

Subject Index 

problem with budget constraints, 332 
Forest, 53, 648 
Formulation, 15,217, 338, 384 
Fourier-Motzkin elimination, 111 
Function, separable, 11 

Gaussian elimination, 121, 179 
gcd, see Greatest common divisor 
Generalized upper-bound, see GUB 
Gomory cut, 212 

fractional, 227-229, 236 
mixed integer, 249-250 

Good characterization, 124 
Gradient, 43 
Gram-Schmidt orthogonalization, 196 
Graph, 50-82 

acyclic, 52 
bipartite, see Bipartite 
chordal, see Chordal graph 
comparability, 606 
complement, 52, 578 
complete, 51, 270 
component, 53 
connected, 53 
directed, see Digraph 
intersection, 117 
interval, 605 
line, 584 
perfect, see Perfect 
planar, 582 
random, 408 
reduced, 488, 616 
simple, 51 
underlying, 54 

Greatest common divisor, 183 
Greedy: 

algorithm, 60, 666-667, 679, 689 
heuristic, 393, 397, 400, 403, 428, 440, 452, 466, 

476, 712 
Group, 315 

algorithm, increasing, 448 
problem, 312-322, 444 

GUB (generalized upper-bound): 
constraints, 365 
dichotomy, 356 

Hadamard inequality, 197 
Hamiltonian cycle, 129, 270 

problem, 129 
directed, 144 

Hermite normal form, 184, 189-195 
algorithm, 193 
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Heuristic algorithms, 393-409 
analysis, 399 

probabilistic, 408 
worst-case, 399 

dual,400 
dual-descent, 397 
greedy, see Greedy, heuristic 
interchange, 394, 397, 406-407, 477-478 
nearest insertion, 477-478 
nearest neighbor, 475, 477, 494 
primal-dual, 395 
randomized, 407-409 

Hole, 575 
odd, 261, 575 

Hypersphere, 147, 158, 517 

Identity transformation, 132 
Imperfect, 584 
Implicit enumeration, 354 
Impossible to solve, 121 
Incidence matrix, 76 

neighborhood subtree-neighborhood subtree, 
573 

node-edge, 51 
node-arc, 54 

Incidence vector, see Characteristic vector 
Independence: 

affine, 84, 108 
linear, 83, 84 
system, 237, 659, 663 
test, 666 

Independent set, 265, 281, 659 
Inequality: 

dominating, 207 
equivalent, 91 
max-min, 103 
min-max, 104 
set, 86 
stronger, 207 
valid, see Valid inequality 

Inner point, 86-87 
Instance, 4, 115 

feasible, 127 
size, 118 

Integer programming feasibility problem, 129, 
515-520 

Integer programming problem, 4, 104, 115, 125-
128 

0-1, 456-469 
FCP Ibranch-and-bound, 459 
simplex heuristic, 457 

fixed number of variables, 520 
Integer round down, 595-598, 708 
Integer rounding, see Rounding 
Interior point, 86-87, 101 
Interval matrix, 544, 549 

Job processing, 689-694, 704 
Join, see T-join 

Knapsack problem: 
0-1, 5, 265-270, 418, 420-422, 450-464 

branch-and-bound, 454 
linear programming relaxation, 451 
primal heuristic, 452 
separation algorithm, 462 

integer, 125,312 
dynamic programming, 433 
heuristics, 440, 442 
multiple choice, 527 
superadditive dual, 435 

lower bound feasibility, 136 
multidimensional, 5 

Lagrangian: 
dual, 323-337, 409 
relaxation, 323-337 

Lattice, 182, 518 
basis of, 190, 197 

Leaf, 53 
Lexicographic, 34, 371-373 

totally reverse, 568 
LIFO (last in, first out), 358 
Lifting, 261-267 

heuristic for, 461 
Linear algebra, 83 
Linear equations problem, 121 

integer feasibility, 182 
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Linear programming, 4, 27-49, 115, 122-124, 131 
polynomial-time algorithms, 146-181 

ellipsoid algorithm, 147-160 
projective algorithm, 164-172 
strongly polynomial for combinatorial 

problems, 172-180 
Line Graph, 584 
Logical inequalities, 19 
Lot-sizing, 16 

capacitated, 347 
uncapacitated, 218, 288-290, 418, 422-424, 

508-513 
backlogging, 431 

Matching, 226, 608-657 
1-, 608 
2-,273,469, 641, 647 

fractional, 471, 494 
inequality, 276, 490, 495 
integer, 471, 483 

algorithm: 
cardinali ty, 618, 625 

bipartite, 612 
weighted,628 

b-, 608, 640-648 
0-1, 608, 647, 702 
integer, 608, 643 
perfect, 644 

bonds, 144 
perfect, 480, 638, 649 
polytope, 633, 636-640 
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Matching (Continued) 
problem, 5, 400, 608 

cardinality, 608, 611-626 
weighted, 124, 608, 627-636 

separation, 658 
Matroid, 659-703 

basis, 664 
binary, 714 
circui t, 664 
cographic, 665, 667 
covering with independent sets, 702 
dual, 665 
exchange property, 664 
graphic, 660, 665 
greedy algorithm for maximum-weight 

independent sets, 666-671 
intersection, 671-678, 692 

algorithm: 
maximum cardinality, 677, 706 
weighted, 684 

k-, 661, 709 
polytope, 688 
problem, 671 

weighted, 678-688 
matric, 660, 665 
optimization problem, 661 
partition, 660, 704 
polytope, 668 
rank function, 665 
representation, 666 
span, 664 
sum, 704 
union, 705-706 

Max-min equality, 591 
strong, 592 

Membership problem, 139, 141 
extreme point, 141 
strict, 148 

Minkowski's theorem, 96 
MIR inequality, see Mixed-integer, rounding 
Mixed-integer: 

cutting-plane algorithm, 374 
programming problem, 3, 115, 338, 374, 

413 
dual, 308 

rounding, 244-246 
set, 242-254 

Model formulation, 5-17 
choices in, 14 
valid inequalities, 217 

Modular arithmetic, 212, 236, 312 
Multigraph, 478 

Neighborhood, 407 
subtree, 571 

Neighbors, 576 
Network: 

design, 3 

flow problem, 8, 62, 76, 549 
fixed-charge, see Fixed-charge 
primal simplex algorithm, 76-81 

matrix, 546-561 
Node, 50 

conservation, 62 
cover, 144 
covering by edges, 608 
demand,62 
duplication, 582 
even, 612 
exposed, 611 
induced subgraph, 52, 579-580 
intermediate, 52 
isolated, 53 
minimal, 675 
odd,612 
partition, 537 
selection, see Branch-and-bound 
simplicial, 576 
supply, 62 

Node-arc incidence matrix, 54 
Node-edge incidence matrix, 51 

Subject Index 

Node-induced subgraph, 575, 582 
Node-neighborhood subtree incidence matrix, 572 
Node packing, 115-117, 216, 297, 307, 467-468, 

573-585, 594 
polytope, 141, 163, 259-261, 574 
unweighted, lower bound feasibility, 133 

Node-star incidence matrix, 571 
Nondecreasing, 229, 660 
Nondeterministic: 

algorithm, 128, 131 
polynomial, 127, 129, 141 

Nondifferentiable optimization, 41 
Nonlinear function, 10 
Nonsingular, 150 
NP, see Nondeterministic 
NP-complete, 131 

strongly, 138 
NP-hard, 138 

Objective function, 4 
nonlinear, 11 

Objective rounding algorithm, 177 
Objective value, 107 
Odd-set constraints, 124, 610 
O( ) notation, 57 
Optimal: 

solution, 4, 94-95, 536 
value, 4, 107 

Optimality conditions, 296 
Optimization, 161 
Orthonormal matrix, 150 

Packing, 6, 115, 117, 299, 394, 401, 464 
fractional, 103, 562, 571 

Partition, 6, 352, 704 
feasibility, 134-135 
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Path, 52 
alternating, 611 
augmenting, 64, 66, 75, 611-612 

algorithm, 65 
shortest, 67 

clutter, 587 
directed, 54 
maximum weight, 308, 320 
minimum weight, 56, 58, 121, 444, 511, 535, 

586-587, 592 
shortest, 55-59 

Perfect, 573-585 
elimination scheme, 576 
graph,574 

conjecture, 576 
theorem, 582 

matching, see Matching 
Performance guarantee, 399, 477 
Perturbation lemma, 168 
Phase I, 36, 78 
Piecewise linear function, 11, 329, 366 
Pivot element, 33 
Polar, 99, 139, 206 

1-, 100, 163, 239 
Polarity, 98-104 
Polyhedron, 85-98, 139, 161 

bounded, 86 
dual, 108 
full-dimensional, 86 
integral, 535-607, 638, 669 
minimal representation, 91, 539 
projection of, 97-98 
rational, 85 
volume, 148 

Polymatroid, 688-694 
polytope, 690 
rank function, 688 

calculation of, 693 
separation, 693 

Polynomial: 
equivalence, 161, 163, 387, 592 
function, 127 
normalization, 176 
reduction, 132 
space, 121 
-time, 146, 162-163 

algorithm, 119 
strong, 172 

combinatorial algorithm for linear 
programs, 172-180 

transformation, 131 
Polytope, 86 

full-dimensional, 100 
integral, 562 
master, 238, 241 
round, 515 

Portfolio analysis, 3 
Positive definite, 147, 150 
Positive homogeneity, 247 

Postman problem, 609, 648 
Precision, finite, 157, 159 
Preprocessing, 17-20 
Primal: 

-dual algorithm, 69-70 
heuristic, 452, 475 
problem, 28, 97 
simplex algorithm, 33, 76 

Principle of optimality, 419 
Priorities, 359 
Probabilistic analysis, 408 
Problem, 115 
Production planning, 290 
Production scheduling, 3, 16 
Projection, 49, 85, 98, 164 
Projective algorithm, 164-172 
Pruning, 352-357 
Pseudonode, 616 
Pseudopolynomial, 137, 421 
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Pure integer programming problem, see Integer 
programming problem 

Quadratic Boolean function, 695, 697, 701, 711 

Radius, 571 
Rank, 76, 84, 226 

bounded, 227 
Rational: 

approximation problem, 183 
number, 120, 183 
polyhedron, 85 

Ray, 93, 164 
epsilon-approximate, 166 
extreme, see Extreme ray 
integer, 104 

Recognition problem, 127, 550, 555, 565, 570 
Reduced basis of a lattice, 184, 195-201, 518 

algorithm, 199 
applications, 513 
heuristic, 514 

Reduced price, 20, 32, 392 
Reduced problem, 453 
Reduction, 132 
Reformulation, see Formulation 
Relative error, 399 
Relatively prime, 183 
Relaxation, 296-300, 353 

adding variables, 299 
algorithm, 349, 482 
dual, 300 
choice of, 383 
group, 298 
Lagrangian, 298, 323-337, 410 
linear programming, 298, 355, 451 
state space, 431 
surrogate, 334 

Representation, 88 
Restriction, 344 
Rotation, 151 



762 

Round,515 
Rounding, 160, 227 

heuristic, 440 
integer, 209, 232-233, 594-598 
method, 210 

Row inclusion matrix, 565-566 
Row intersection graph, 550 
Running time, 119 

Satisfiability problem, 133 
Scaling, 72 

heuristic, 441 
Scheduling, 3, 13, 287, 347 
Search: 

breadth-first, 67, 359 
depth-first, 358 
feasibility, 457 
local improvement, 458 

Separable, see Function, separable; Set, separable 
Separation, 161-164 

algorithm, 412, 462, 487 
problem, 161, 387, 459, 499, 693 

Sequential decision process, 417 
Set: 

dependent, 265, 283, 659 
extension, 266 
minimal, 266 

independent, 265, 281, 659 
separable, 670 

Set-covering problem, see Covering 
Set-function maximization, 393 
Set-packing problem, see Packing 
Set-partitioning problem, see Partition 
Short, 124 
Shortest path problem, see Path, shortest 
Shortest vector problem, 182, 197, 200 
Shrinking, 487, 616 
Simplex, 516 

algorithm: 
dual,37 
primal, 33 
simple upper bounds, 39 

Simplex-based heuristic, 457 
Simplicial, 576 
Simulated annealing, 407 
Single source problem, 496, 506 
Size of problem instance, 118 
Sliding objective function, 155 
Smith normal form, 195, 319 
Space requirements, 121 
Sphere, 147 
Star, 551 

minimum weight, 586 
State, 417 
Steepest ascent, 43 
Steiner branching problem, 496, 507 
Subdifferential, 45 
Subgradient, 45, 409 

algorithm, 46, 410, 484 
optimization, 41-49, 409 

Subgraph, 52 
induced,52 
spanning, 52 

Submodular, 144, 403, 660, 662-663 
function maximization, 708-712 

greedy algorithm, 712 
function minimization, 693-702 

Subset sum problem, 136, 513 
Subspace, 85 

orthogonal, 85 
Subtour, 10, 273 

Subject Index 

elimination constraints, 273-275, 470, 487 
Superadditive, 229-237, 300, 316, 320 

dual algorithm, 435 
duality, 304-312 
dual problem, 304 
valid inequality, 230, 237-242 

mixed-integer, 246-254 
Supermodular, 660 
Supply-demand vector, 596 
Supply nodes, 596 
Support, 88 

TB, see Balanced matrix 
T-cut, 649-651 
TDI, see Dual, integral 
T-join, 648-651, 702 
Tour, 10, 270, 469, 588 
Transformation, 131 
Transportation problem, 62, 68, 122 

primal-dual algorithm, 68-76 
Transpose, 540, 564 
Transversal, 714 
Traveling salesman: 

polytope, 270-281 
dimension, 272 

Traveling salesman problem, 9, 16, 586 
symmetric, 469-495 

branch-and-bound, 482 
I-tree, subgradient, 484 
assignment problem, 482 
FCP, 485 

heuristics, 475 
double spanning tree, 479 
greedy feasible, 476 
interchange, 477 
nearest insertion, 477 
nearest neighbor, 475 
spanning tree, perfect matching, 480 

relaxations, 469 
2-matching, 469, 475 

I-tree, 470, 473 
fractional, 471 
integer, 471 

Tree, 53 
1-, 470, 484, 494 
directed, 55, 546 
edge-path incidence matrix, 550-559 

recognition algorithm, 555 
polytope, 669, 698 



Subject Index 

spanning, 55, 77, 546 
minimum weight, 60-61 

Triangle inequality, 478 
TU, see Unimodular matrix 

UFL, see Facility location, uncapacitated 
ULS, see Lot-sizing, uncapacitated 
Unary, 137 
Unbounded, 4, 95, 107 
Unimodular matrix, 189,319 

totally, 540-546, 549, 561, 574 

Valid inequality, 88, 205-295 
generating all, 217-227 
knapsack, 0-1, 265-270 
mixed integer sets, 242-246 
node packing, 259-261 
rank,226-227 
representing a face, 88 
strong, 259-290, 386 
superadditive, 230, 237-242, 249, 252 
supporting, 88 
traveling salesman, 270-281 
variable upper bound flow model, 281-

290 
Validity problem, 139, 141 
Value dominance, 352 

Value function, 300 
Variable, 4 

adding of, 39 
artificial, 36 
bounded, 222 
branching, see Branch-and-bound 
complicating, 323 
decision, 417 
dichotomy, 356 
fixing, 19, 452, 468 
regular, 457 
slack, 37 
selection in branching, 359 

Variable upper bound, 281 
Vizing's theorem, 652 

Walk, 52, 313 
closed, 52 
directed, 54 
even, 54 
length of, 52 
odd, 54 

Weyt's theorem, 98 
Wheel, 110 
Worst-case: 

analysis, 119, 399 
performance, 399 
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