
Integer and Combinatorial Optimization

WILEY-INTERSCIENCE
SERIES IN DISCRETE MATHEMATICS AND OPTIMIZATION

ADVISORY EDITORS

RONALD L. GRAHAM
AT & T Laboratories. Florham Park. New Jersey, US.A.

JAN KAREL LENSTRA
Department of Mathematics and Computer Science,
Eindhoven University of Technology, Eindhoven, The Netherlands

ROBERT E. TARJAN
Princeton University, New Jersey, and

NEC Research Institute. Princeton, New Jersey. US.A.

A complete list of titles in this series appears at the end of this volume.

Integer and Combinatorial Optimization

GEORGE NEMHAUSER
School of Industrial

and Systems Engineering
Georgia Institute of Technology
Atlanta, Georgia

LAURENCE WOLSEY
Center for Operations Research and Econometrics
Universite Catholique de Louvain
Louvain-Ia-Neuve, Belgium

A Wiley-Interscience Publication

JOHN WILEY & SONS, INC.

New York • Chichester • Weinheim • Brisbane • Singapore • Toronto

To our parents

Preface

The explosion of new results in integer and combinatorial optimization that began about
fifteen years ago inspired us to write a book that would unify theory and algorithms and
could serve as a graduate text and reference for researchers and practitioners. We have
been very excited about many of the new developments that have made it possible to solve
large-scale integer programming problems and that have opened up new areas of research
which surely will yield more robust and efficient algorithms. Little did we realize the
enormity of the task. Both of us worked steadily on this project for more than four years.
The end result was a manuscript of nearly 1400 typewritten pages which, although it does
not come close to covering all of the literature, covers those topics that we believe
constitute the most significant theoretical and algorithmic developments.

Optimization means to maximize (or minimize) a function of many variables subject to
constraints. The distinguishing feature of discrete, combinatorial, or integer optimization
is that some of the variables are required to belong to a discrete set, typically a subset of
integers. These discrete restrictions allow the mathematical representation of phenomena
or alternatives where indivisibility is required or where there is not a continuum of
alternati ves.

Discrete optimization problems abound in everyday life. An important and widespread
area of applications concerns the management and efficient use of scarce resources to
increase productivity. These applications include operational problems such as the distri
bution of goods, production scheduling, and machine sequencing. They also include
planning problems such as capital budgeting, facility location and portfolio selection, and
design problems such as telecommunication and transportation network design, VLSI
circuit design and the design of automated production systems. Discrete optimization
problems also arise in statistics (data analysis), physics (determination of minimum
energy states), cryptography (designing unbreakable codes), politics (selecting fair election
districts), and mathematics (as a powerful technique for proving combinatorial theorems).
Moreover, applications of discrete optimization are in a period of rapid development
because of the widespread use of microcomputers and the data provided by information
systems. This is particularly relevant in the manufacturing sector of the economy where
increased competition and flexibility provided by new technology make it imperative to
seek better solutions from larger and more complex sets of alternatives.

This book is about the mathematics of discrete optimization, which includes the
representation of problems by mathematical models and, especially, the solution of the
models. The focus is on understanding the mathematical underpinnings of the algorithms
that make it possible to solve (exactly or approximately) the large and complex models
that arise in practical applications.

Chapter I.l discusses problem formulation, which is important not only to demonstrate
the scope of applications, but also because the structure of the formulation is of crucial

vii

viii Preface

importance to solving the model. Chapter 1.1 gives a comprehensive treatment of this
subject.

The remainder of Part I presents mathematics and algorithms that are the foundations
for the discrete optimization theory and techniques of Parts II and III. There are chapters
on well-established subjects including linear programming (Chapter 1.2), graphs and
networks (Chapter 1.3), and computational complexity (Chapter 1.5). The presentation of
polyhedral theory (Chapter 1.4) begins with basic results from linear algebra and then
emphasizes precisely those results that are essential to a fundamental understanding of the
algebra and geometry of the convex hull of a discrete set. Chapter 1.6 gives new algorithms
and results on linear programming and, in particular, establishes the fundamental
connection between separation and optimization. Chapter I. 7 presents a modern treat
ment of the classical problem of solving linear equations in integers and also includes an
introduction to the recent work on reduced bases for integer lattices.

Parts II and III present basic approaches and algorithms for solving discrete optimiza
tion problems. Part II deals with general problems and those that contain some structure.
These are the problems that are hard to solve but, for the most part, they are the ones that
arise in practical applications.

Chapters 11.1 and 11.2 treat the problem of describing the set of feasible solutions to an
integer program by a set of linear inequalities. It begins with elementary ideas, but also
includes a thorough development of advanced topics such as superadditive valid inequali
ties and the use of structure to obtain facet-defining inequalities. Objective functions for
integer programs are introduced in Chapter 11.3 where the fundamental approaches of
relaxation and duality are developed for the purpose of obtaining upper bounds on the
optimal value. Most of the advanced material in these chapters has appeared only in
research articles and monographs, but is essential for the development of future genera
tion algorithms for solving integer programs.

Algorithms are presented in Chapters 11.4, 11.5 and 11.6. Chapter 11.4 presents classical
branch-and-bound and cutting plane algorithms. Specialized algorithms that use varying
degrees of structure to obtain exact or approximate solutions are presented in
Chapters 11.5 and 11.6. Here we study and illustrate a number of techniques that, for the
most part, have been developed over the last decade and are not covered in the currently
available textbooks. These include strong cutting plane algorithms, primal and dual
heuristic analysis, decomposition and reduced bases, and their applications to 0-1 integer
programs, the traveling salesman problem and fixed-charge network flow problems.

Part III treats highly structured combinatorial optimization problems for which elegant
results are known. Chapter 111.1 studies polyhedra with integral extreme points. It includes
classical results on total unimodularity and recent results on totally balanced, balanced,
and perfect matrices and on the blocking and antiblocking theory of polyhedra. Chapters
111.2 and 111.3 are on the classical combinatorial problems of matching and matroids,
respectively. In both of these chapters the emphasis is on optimization algorithms,
polyhedral combinatorics and duality. Chapter 111.3 also introduces the significant role of
submodular and supermodular functions in combinatorial optimization.

Notes appear at the end of each chapter. Their purpose is to reference our source
materials, and to comment briefly on extensions and related topics that are not discussed
in the body of the text. The citations and references are selective. With the exception of
Chapter 1.1, in Part I our objective is to provide foundation material, and thus the notes
are limited to a small number of references that cover the corresponding topics in much
greater detail than is done here. However, in Parts II and III we have attempted to cite the
original papers in which the material appears as well as some other influential works.

The book can be used as a graduate text or for self-guided reading in several ways. Since
we cannot imagine a reader who would want to undertake a straight cover-to-cover

Preface ix

reading and since our experience has shown that it is not possible to cover the whole book
in even a two-semester, graduate level course, it is necessary to be selective in a first
reading.

For graduate students in mathematical programming, especially those planning to
undertake research in discrete optimization, we suggest a full academic year course
(course AY). Three one-semester options are: a course emphasizing practical algorithms
(course PA), a course emphasizing general theory (course GT), and a course in polyhedral
combinatorics (course PC).

Each course should begin with some exposure to Chapter 1.1 on model formulation,
which is important not only to demonstrate the scope of applications, but also because the
structure of the formulation is of crucial importance in solving the model.

Chapters 1.2 and 1.3 are only for review, since it is wise for any reader of the book to have
studied linear programming as a prerequisite. But a typical linear programming course,
unfortunately, does not cover polyhedral theory. Therefore, all courses should cover
Chapter 104. In course PA, just enough of the first four sections should be covered (without
proofs) for the student to understand the concept of facets of polyhedra and the idea of
Theorem 6.1 on the convex hull of a discrete set of points.

The coverage of Chapter 1.5 on computational complexity will depend on the students'
backgrounds and the instructor's taste; but at the very least, students in all courses should
be introduced to the concepts of polynomial computation and NP-completeness. Simi
larly, students in all courses should be introduced to the concept of separation and the
polynomial equivalence of separation and optimization (Section 1.6.3). This should be
done very informally in course PA. Sections 1.6.2, 1.604 and 1.6.5 are independent reading
and should be omitted in a first reading of the book. Chapter 1.7, and then Section 11.6.5,
might be covered only in courses AY and GT if time permits at the end of the course. They
can also be omitted in a first reading.

Courses PA and GT focus on different parts of Part II. Course PC can omit Part II
altogether, but would be more interesting if Sections 11.1.1, 11.1.2 (first-half), 11.2.1, 11.2.3,
and 1I.6.3 also were included.

The following sections from Part II are common to courses AY, PA, and GT: 11.1.1,
11.2.1, 11.2.2, 1I.3.l, 11.3.6, 11.3.7, 1104.1, 11.5.1, 11.5.2 and 11.5.3.

Course PA should also cover Sections 1104.2, 11.504, 11.5.5, 11.6.1 (knapsack problem)
and 11.6.2, and, if time permits, Sections 11.204 and 11.6.4. The instructor may find some
time for the important class of problems and algorithms discussed in the later two sections
by omitting or only sketching some proofs from the earlier sections.

Course GT should also cover Sections 11.1.2 (leaving out the subsection on bounded
integer variables), 11.1.3, 11.1.4, 11.1.5, 11.2.3, 11.3.2, and 11.3.3, and the first two sections of
Chapter 111.1. If time permits, additional theoretical material could be selected from
Sections 11.1.6, 11.1.7, 11.304, 11.3.5, or some algorithms could be studied from Sections
11.4.3,11.5.4 and the first three sections of Chapter 11.6.

With respect to Part II, course AY is the union of the material covered in courses PC
and GT. From Part III, course AY should also cover sections 111.1.1, 111.1.2, 111.1.4 and the
first three sections of Chapter 111.2. Any remaining time could be spent on either
sections 111.1.5, 111.1.6, or the first few sections of Chapter 111.3.

The material to be selected from Part III for course PC can vary according to taste. We
suggest all of Chapter 111.1 except for Section 111.1.3, the first 3 sections of Chapter 111.2
and the first 5 sections of Chapter 111.3.

This book could not have been written without the tremendous support that we
received from the Center for Operations Research and Econometrics (CORE) of the
Universite Catholique de Louvain, and thus we are extremely grateful to Jacques Dreze,
the founder and intellectual leader of CORE.

x Preface

We met at CORE in the winter of 1970. Nelnhauser spent the academic year 1969-1970
at CORE and Wolsey presented a seminar on his early work on the group-theoretic
approach to integer programming. Subsequently, Wolsey became a permanent member of
CORE and Nemhauser returned to CORE for the period 1975-1977 as Research
Director. During this period, the authors collaborated extensively on research in the
analysis of heuristics and other topics in integer and combinatorial optimization stimu
lated by an active research group that included Jack Edmonds, Bob Bland, Guy de
Ghellinck, Rick Giles, Bob Jeroslow, Tom Magnanti, Bill Pulleyblank, Mike Ball and
Gerard Cornuejols. All of these people, as well as our Dutch neighbors, Jan-Karel Lenstra
and Alexander Rinnooy Kan, contributed to our understanding of the subject and
motivation to write a book.

A NATO research grant made it possible for us to continue our research collaboration
through the late seventies and early eighties, and we began to draft the manuscript
earnestly during Nemhauser's fourth year at CORE in 1983-1984. During the writing of
the book we benefitted from numerous discussions with our friends and professional
colleagues including Egon Balas, Vasek Chvatal, Marshall Fisher, Martin Grotschel, Ellis
Johnson, Manfred Padberg. Lex Schrijver, Jorgen Tind and Les Trotter. We are particu
larly grateful to Gerard Cornuejols who read Parts I and II and provided extensive
comments and suggestions and to Bill Pulleyblank who did the same for Part III. We are
also thankful for the comments we received on various drafts of the text from Jorgen Tind,
Bob Jeroslow, Alan Goldman, Anton Kolen, Jan-Karel Lenstra, Lex Schrijver, Donna
Crystal Llewellyn, Martin Dyer, Mike Todd, Jean-Philippe Vial and John Vande Vate.
Our students in courses given at CORE, Cornell and Georgia Tech found typos and other
mistakes that otherwise would have been missed~ special thanks are due to Ronny Aboudi,
Yves Pochet and Gabriele Sigismondi.

The chores of deciphering our untidy handwritten drafts and of retyping endless
revisions were done graciously and with utmost care and patience by the late Elizabeth
Pecquereau, formerly a secretary at CORE. We are very sad that we will not be able to
share the joy of seeing the final product with our dear friend Elizabeth. Fabienne Henry of
CORE and Yvonne Kissi of Georgia Tech also did excellent jobs in typing parts of the
manuscript. Sheila Verkaren of CORE always managed to spare some of Elizabeth's or
Fabienne's time for our book, even though we were using far more than our fair share of
CORE's secretarial resources.

Over a period of four years, Ellen Nemhauser and Marguerite Wolsey were frequently
ignored while their husbands spent evenings and weekends writing, and occasionally were
imposed upon by a boarder who ate and slept at their house, but otherwise was too
involved in mathematics to engage in civil conversation or to wash the dishes. We thank
them for their love and patience and hope to make amends.

Allan/a, Georgia, USA
Louvain-Ia-Neuve, Belgium
February, 1988.

GEORGE L. NEMHAUSER

LAURENCE A. WOLSEY

Contents

PART I. FOUNDATIONS 1

1.1 The Scope of Integer and Combinatorial Optimization 3

1. Introduction 3
2. Modeling with Binary Variables I: Knapsack, Assignment and Matching,

Covering, Packing and Partitioning 5
3. Modeling with Binary Variables II: Facility Location, Fixed-Charge

Network Flow, and Traveling Salesman 7
4. Modeling with Binary Variables III: Nonlinear Functions and

Disjunctive Constraints 10
5. Choices in Model Formulation 14
6. Preprocessing 17
7. Notes 20
8. Exercises 22

1.2 Linear Programming 27

1. Introduction 27
2. Duality 28
3. The Primal and Dual Simplex Algorithms 30
4. Subgradient Optimization 41
5. Notes 49

1.3 Graphs and Networks 50

1. Introduction 50
2. The Minimum-Weight or Shortest-Path Problem 55
3. The Minimum-Weight Spanning Tree Problem 60
4. The Maximum-Flow and Minimum-Cut Problems 62
5. The Transportation Problem: A Primal-Dual Algorithm 68
6. A Primal Simplex Algorithm for Network Flow Problems 76
7. Notes 82

1.4 Polyhedral Theory 83

1. Introduction and Elementary Linear Algebra 83
2. Definitions of Polyhedra and Dimension 85
3. Describing Polyhedra by Facets 88
4. Describing Polyhedra by Extreme Points and Extreme Rays 92
5. Polarity 98

xi

xii Contents

6. Polyhedral Ties Between Linear and Integer Programs 104
7. Notes 109
8. Exercises 109

1.5 Computational Complexity 114

1. Introduction 114
2. Measuring Algorithm Efficiency and Problem Complexity 117
3. Some Problems Solvable in Polynomial Time 121
4. Remarks on 0-1 and Pure-Integer Programming 125
5. Nondeterministic Polynomial-Time Algorithms and.H9fJ Problems 127
6. The Most Difficult j{9fJ Problems: The Class j{9fJcg 131
7. Complexity and Polyhedra 139
8. Notes 142
9. Exercises 143

1.6 Polynomial-Time Algorithms for Linear Programming 146

1. Introduction 146
2. The Ellipsoid Algorithm 147
3. The Polynomial Equivalence of Separation and Optimization 161
4. A Projective Algorithm 164
5. A Strongly Polynomial Algorithm for Combinatorial Linear Programs 172
6. Notes 180

1.7 Integer Lattices 182

1. Introduction 182
2. The Euclidean Algorithm 184
3. Continued Fractions 187
4. Lattices and Hermite Normal Form 189
5. Reduced Bases 195
6. Notes 201
7. Exercises 202

PART II. GENERAL INTEGER PROGRAMMING 203

11.1 The Theory of Valid Inequalities 205

1. Introduction 205
2. Generating All Valid Inequalities 217
3. Gomory's Fractional Cuts and Rounding 227
4. Superadditive Functions and Valid Inequalities 229
5. A Polyhedral Description of Super additive Valid Inequalities for

Independence Systems 237
6. Valid Inequalities for Mixed-Integer Sets 242
7. Superadditivity for Mixed-Integer Sets 246
8. Notes 254
9. Exercises 256

Contents xiii

11.2 Strong Valid Inequalities and Facets for Structured Integer Programs 259

1. Introduction 259
2. Valid Inequalities for the 0-1 Knapsack Polytope 265
3. Valid Inequalities for the Symmetric Traveling Salesman Polytope 270
4. Valid Inequalities for Variable U pper-Bound Flow Models 281
5. Notes 290
6. Exercises 291

11.3 Duality and Relaxation 296

1. Introduction 296
2. Duality and the Value Function 300
3. Superadditive Duality 304
4. The Maximum-Weight Path Formulation and Superadditive Duality 308
5. Modular Arithmetic and the Group Problem 312
6. Lagrangian Relaxation and Duality 323
7. Benders'Reformulation 337
8. Notes 341
9. Exercises 343

11.4 General Algorithms 349

1. Introduction 349
2. Branch-and-Bound Using Linear Programming Relaxations 355
3. General Cutting-Plane Algorithms 367
4. Notes 379
5. Exercises 381

11.5 Special-Purpose Algorithms 383

1. Introduction 383
2. A Cutting-Plane Algorithm Using Strong Valid Inequalities 386
3. Primal and Dual Heuristic Algorithms 393
4. Decomposition Algorithms 409
5. Dynamic Programming 417
6. Notes 424
7. Exercises 427

11.6 Applications of Special-Purpose Algorithms 433

1. Knapsack and Group Problems 433
2. 0-1 Integer Programming Problems 456
3. The Symmetric Traveling Salesman Problem 469
4. Fixed-Charge Network Flow Problems 495
5. Applications of Basis Reduction 513
6. Notes 520
7. Exercises 526

xiv Contents

PART III. COMBINATORIAL OPTIMIZATION 533

111.1 Integral Polyhedra 535

1. Introduction 535
2. Totally Unimodular Matrices 540
3. Network Matrices 546
4. Balanced and Totally Balanced Matrices 562
5 . Node Packing and Perfect Graphs 573
6. Blocking and Integral Polyhedra 586
7. Notes 598
8. Exercises 602

111.2 Matching 608

1. Introduction 608
2. Maximum-Cardinality Matching 611
3. Maximum-Weight Matching 627
4. Additional Results on Matching and Related Problems 636
5. Notes 654
6. Exercises 655

111.3 Matroid and Submodular Function Optimization 659

1. Introduction 659
2. Elementary Properties 662
3. Maximum-Weight Independent Sets 666
4. Matroid Intersection 671
5. Weighted Matroid Intersection 678
6. Polymatroids, Separation, and Submodular Function Minimization 688
7. Algorithms To Minimize a Submodular Function 694
8. Covering with Independent Sets and Matroid Partition 702
9. Submodular Function Maximization 708

10. Notes 712
11. Exercises 714

References 721

Author Index 749

Subject Index 755

Part I
FOUNDATIONS

1.1
The Scope of Integer
and Combinatorial
Optimization

1. INTRODUCTION

Integer and combinatorial optimization deals with problems of maximizing or minimiz-
ing a function of many variables subject to (a) inequality and equality constraints and
(b) integrality restrictions on some or all of the variables. Because of the robustness of the
general model, a remarkably rich variety of problems can be represented by discrete
optimization models.

An important and widespread area of application concerns the management and
efficient use of scarce resources to increase productivity. These applications include
operational problems such as the distribution of goods, production scheduling, and
machine sequencing. They also include (a) planning problems such as capital budgeting,
facility location, and portfolio analysis and (b) design problems such as communication
and transportation network design, VLSI circuit design, and the design of automated
production systems.

In mathematics there are applications to the subjects of combinatorics, graph theory,
and logic. Statistical applications include problems of data analysis and reliability. Recent
scientific applications involve problems in molecular biology, high-energy physics, and
x-ray crystallography. A political application concerns the division ofa region into election
districts.

Some of these discrete optimization models will be developed later in this chapter. But
their number and variety are so great that we only can provide references for some of
them. The main purpose of this book is to present the mathematical foundations of integer
and combinatorial optimization models along with the algorithms that can be used to
solve the problems.

Throughout most of this book, we assume that the function to be maximized and the
inequality restrictions are linear. Note that minimizing a function is equivalent to
maximizing the negative of the same function and that an equality constraint can be
represented by two inequalities. It is also common to require the variables to be nonnega-
tive. Hence we write the linear mixed-integer programming problem as

(MIP) max{cx + hy: Ax + Gy ~ b, x E Z~, Y E R~},

where Z~ is the set of nonnegative integral n-dimensional vectors, R~ is the set of
nonnegative realp-dimensional vectors, and x = (Xl, ... ,xn) andy = (Yb ... ,Yp) are the

3

4 1.1. The Scope of Integer and Combinatorial Optimization

variables or unknowns. An instance of the problem is specified by the data (c, h, A, G, b),
with can n-vector, hap-vector, A an m x n matrix, G an m x p matrix and ban m-vector.
We do not distinguish between row and column vectors unless the clarity of the presenta-
tion makes it necessary to do so. This problem is called mixed because of the presence of
both integer and continuous (real) variables.

We assume throughout the text that all of the data sets are rational, that is, that each of
the individual numbers is rational. Although in making this assumption we sacrifice some
theoretical generality, it is a natural assumption for solving problems on a digital computer.

The set S = {x E Z~, Y E R~, Ax + Gy ::::; b} is called the feasible region, and an
(x, y) E S is called a feasible solution. An instance is said to be feasible if S * 0. The
function

z = cx + hy

is called the objectivefunction. A feasible point (XO, yO) for which the objective function is
as large as possible, that is,

cxO + hyo ~ cx + hy for all (x, y) E S,

is called an optimal solution. If (XO, yO) is an optimal solution, cxo + hyo is called the
optimal value or weight of the solution.

A feasible instance ofMIP may not have an optimal solution. We say that an instance is
unbounded if for any OJ E R 1 there is an (x, y) E S such that cx + hy > OJ • We use the
notation z = 00 for an unbounded instance.

In Section 1.4.6, we will show that every feasible instance ofMIP either has an optimal
solution or is unbounded. This result requires the assumption of rational data. With
irrational data, it is possible that no feasible solution attains the least upper bound on the
objective function.

Thus to solve an instance ofMIP means to produce an optimal solution or to show that
it is either unbounded or infeasible.

The linear (pure) integer programming problem

(IP) max{cx: Ax ::::; b, x E Z~}

is the special case of MIP in which there are no continuous variables. The linear
programming problem

(LP) max{hy: Gy ::::; b, y ERn

is the special case of MIP in which there are no integer variables.
In many models, the integer variables are used to represent logical relationships and

therefore are constrained to equal 0 or 1. Thus we obtain the 0-1 MIP (respectively 0-1 IP)
in which x E Z~ is replaced by x E Bn, where Bn is the set of n-dimensional binary
vectors.

While there is no generally agreed-upon definition of a combinatorial optimization
problem, most problems so named are 0-1 IPs that deal with finite sets and collections of
subsets. The following is a generic combinatorial optimization problem. Let N =

{l, ... , n} be a finite set and let c = (Cb ... , cn) be an n-vector. For F £; N, define c(F) =
LjEF Cj. Suppose we are given a collection of subsets @P of N. The combinatorial optimiza-
tion problem is

2. Modeling with Binary Variables I 5

(CP) max{c(F):F E BF}.

Some examples of combinatorial optimization problems will be given later in this chapter.
This book is divided into three parts. This chapter is concerned with the formulation of

integer optimization problems, which means how to translate a verbal description of a
problem into a mathematical statement of the form MIP, Ip, or CPo The rest of Part I
contains prerequisites, including linear programming, graphs and networks, polyhedral
theory, and computational complexity, which are necessary for Parts II and III.

Part II is concerned with the theory and algorithms for problems IP and MIP. Part III is
devoted to some combinatorial optimization problems whose structure makes them
relatively easy to solve.

2. MODELING WITH BINARY VARIABLES I: KNAPSACK, ASSIGNMENT
AND MATCHING, COVERING, PACKING AND PARTITIONING

An important and very common use of 0-1 variables is to represent binary choice.
Consider an event that mayor may not occur, and suppose that it is part of the problem to
decide between these two possibilities. To model such a dichotomy, we use a binary
variable x and let

{
I if the event occurs

x = 0 if the event does not occur.

The event itself may be almost anything, depending on the specific situation being
considered. Several examples follow.

The 0-1 Knapsack Problem

Suppose there are n projects. Thejth project,} = 1, ... , n, has a cost of aj and a value of Cj.
Each project is either done or not, that is, it is not possible to do a fraction of any of the
projects. Also there is a budget of b available to fund the projects. The problem of choosing
a subset of the projects to maximize the sum of the values while not exceeding the budget
constraint is the 0-1 knapsack problem

Here the jth event is the }th project. This problem is called the knapsack problem because
of the analogy to the hiker's problem of deciding what should be put in a knapsack, given a
weight limitation on how much can be carried. In general, problems of this sort may have
several constraints. We then refer to the problem as the multidimensional knapsack
problem.

The Assignment and Matching Problems

Another classical problem involves the assignment of people to jobs. Suppose there are n
people and m jobs, where n ~ m. Each job must be done by exactly one person; also, each
person can do, at most, one job. The cost of person} doing job i is c ij. The problem is to
assign the people to the jobs so as to minimize the total cost of completing all of the jobs.
To formulate this problem, which is known as the assignment problem, we introduce 0-1

6 1.1. The Scope of Integer and Combinatorial Optimization

variables Xij, i = 1, ... , m,} = 1, ... ,n corresponding to the ijth event of assigning
person} to job i. Since exactly one person must do job i, we have the constraints

(2.1)
n

I Xi) = 1 for i = 1, ... , m.
)=1

Since each person can do no more than one job, we also have the constraints

(2.2)
m

I Xi) ~ 1 for} = 1, ... , n.
i=1

It is now easy to check that if X E Bmn satisfies (2.1) and (2.2), we obtain a feasible solution
to the assignment problem. The objective function is min L~I L}=I cijxij.

In the assignment problem the m + n elements are partitioned into disjoint sets of jobs
and people. But in other models of this type, we cannot assume such a partition. Suppose
2n students are to be assigned to n double rooms. Here each student must be assigned
exactly one roommate. Let the ijth event, i <}, correspond to assigning students i and}
to the same room; also suppose that there is a value of c ij when students i and} are
roommates. The problem

(2.3) {max
2I1 I CijXij: I Xki + I Xij = 1, i = 1, ... , 2n, X E Bn(2n-I)}
i=i)=i+i k<i j>i

is known as the perfect matching problem. We will see later that it is a generalization of the
assignment problem. If the equality constraints in (2.3) are replaced by equal-to-or-Iess-
than inequalities, then the problem is called the matching problem.

Each of the above problems fits into the context of CPO In the knapsack problem, N =

{l, ... , n} and F E:JP if and only if LjEF aj ~ b. In the assignment problem, N = {ij: i =

1, ... , m,} = 1, ... , n} and F E :JP if and only if IF n {i 1, ... , in} I = 1 for all i and
IF n {l}" ... ,m}} I ::::; 1 for all}.

Set-Covering, Set-Packing, and Set-Partitioning Problems

A common way of defining gji leads to important classes of combinatorial optimization
problems known as set-covering, set-packing, and set-partitioning problems. Let M =
{l, ... , m} be a finite set and let {M) for j EN = {l, ... , n} be a given collection of
subsets of M. For example, the collection might consist of all subsets of size
k, for some k ~ m. We say that F ~ N covers M if UjEF M j = M. In the CP known as the
set-covering problem, gji = {F: F covers M}. We say that F ~ N is a packing with respect to
M if M j n Mk = 0 for all}, kEF,} * k. In the CP known as the set-packing problem,
gji = {F: F is a packing with respect to 1\1}. If F ~ N is both a covering and a packing, then
Fis said to be a partition of M. In the set-covering problem, c) is the cost of M) and we seek
a minimum-cost cover; in the set-packing problem, however, Cj is the weight or value of M j

and we seek a maximum-weight packing.
These problems are readily formulated as 0-1 IPs. LetA be the m x n incidence matrix

of the family (M) for} EN; that is, for i EM,

{
I if} E F

Xj = 0 if} $. F.

3. Modeling with Binary Variables II 7

Then F is a cover (respectively packing, partition) if and only if x E En satisfies
Ax ~ 1 (respectively Ax ~ 1, Ax = 1), where 1 is an m-vector all of whose components
equal 1. We see, for example, that the set-packing problem is the special case of the 0-1 IP
withA a 0-1 matrix (i.e., a matrix all of whose elements equal 0 or 1) and b = 1. Note that an
assignment problem with m jobs and m people is a set-partitioning problem in which
M = {l, ... ,m, m + 1, ... ,2m} and M j for} = 1, ... , m2 is a subset of M consisting of
one job and one person.

Many practical problems can be formulated as set-covering problems. A typical
application concerns facility location. Suppose we are given a set of potential sites N = {I,
... , n} for the location offire stations. A station placed at} costs Cj. We are also given a set
of communities M = {I, ... , m} that have to be protected. The subset of communities
that can be protected from a station located at} is M j • For example, M j might be the set of
communities that can be reached from} in 10 minutes. Then the problem of choosing a
minimum-cost set of locations for the fire stations such that each community can be
reached from some fire station in 10 minutes is a set-covering problem. There are many
other applications of this type, including assigning customers to delivery routes, airline
crews to flights, and workers to shifts.

3. MODELING WITH BINARY VARIABLES II: FACILITY LOCATION,
FIXED-CHARGE NETWORK FLOW, AND TRAVELING SALESMAN

The set-packing, set-partitioning, and set-covering models of the previous section illus-
trated how we can use linear constraints on binary variables to represent relationships
among the variables or the events that they represent. A packing constraint, Lj Xj ~ 1,
states that at most one of a set of events is allowed to occur. Similarly, covering and
partitioning constraints state, respectively, that at least one and exactly one of the events
can occur. Here we show how more complex relationships can be modeled with binary
variables, and we also formulate some models that use these relationships.

The relation that neither or both events 1 and 2 must occur is represented by the linear
equality X2 - XI = 0 in the binary variables Xl and X2. Similarly, the relation that event 2
can occur only if event 1 occurs is represented by the linear inequality X2 - Xl ~ O. More
generally, consider an activity that can be operated at any level y, 0 ~ y ~ u. Now suppose
that the activity can be undertaken only if some event represented by the binary variable x
occurs. This relation is represented by the linear inequality y - ux ~ 0 since X = 0 implies
y = 0 and x = 1 yields the original constraint y ~ u. We now consider two models that use
this relationship.

Facility Location Problems

These problems, as does our illustration of the set-covering model, concern the location of
facilities to serve clients economically. We are given a set N = {I, ... , n} of potential
facility locations and a set of clients 1= {l, ... , m}. A facility placed at} costs Cj for} EN.
This problem is more complicated than the set-covering application because each client
has a demand for a certain good, and the total cost of satisfying the demand of client i from
a facility at} is hi). The optimization problem is to choose a subset of the locations at which
to place facilities and then to assign the clients to these facilities so as to minimize total
cost. In the uncapacitated facility location problem, there is no restriction on the number
of clients that a facility can serve.

In addition to the binary variable Xj = 1, if a facility is placed at} and Xj = 0 otherwise,
we introduce the continuous variable Yij, which is the fraction of the demand of client i

8 1.1. The Scope of Integer and Combinatorial Optimization

that is satisfied from a facility at }. The condition that each client's demand must be
satisfied is given by

(3.1) L Yij = 1 for i E I.
JEN

Moreover, since client i cannot be served from} unless a facility is placed at}, we have the
constraints

(3.2) Yij - Xj:::::; 0 for i E I and} EN.

Hence the uncapacitated facility location problem is the MIP

min L CjXj + L L hijYij
JEN iEI JEN

subject to the constraints (3.1), (3.2) and x E Bn, Y E R,:n.
It may be unrealistic to assume that a facility can serve any number of clients. Suppose

a facility located at} has a capacity of Uj and the ith client has a demand of bi. Now we let
Y ij be the quantity of goods sent from facility} to client i and let h ij be the shipping cost per
unit. To formulate the capacitated/acility location problem as an MIP, we replace (3.1) by

(3.3)

and (3.2) by

(3.4)

I Yij = hi for i E I,
JEN

L Yij - UjXj:::::; 0 for} EN.
iEI

The Fixed-Charge Network Flow Problem

We are given a network (see Figure 3.1) with a set of nodes V (facilities) and a set of arcs d.
An arc e = (i,}) that points from node i to node} means that there is a direct shipping
route from node i to node}. Associated with each node i, there is a demand hi. Node i is a
demand, supply, or transit point depending on whether bi is, respectively, positive,
negative, or zero. We assume that the net demand is zero, that is, LiEV b i = O. Each arc (i,})
has a flow capacity U ii and a unit flow cost h ij.

Let Y ij be the flow on arc (i, i). A flow is feasible if and only if it satisfies

(3.5)

(3.6)

(3.7)

Y E R'11

Yo:::::; uij for (i,}) Ed

L Yji - L Yij = bi for i E V.
JEV JEV

The constraints (3.7) are the flow conservation constraints. The problem

(3.8) min{ L hijYij: Y satisfies (3.5), (3.6) and (3.7)}
(i,j)Esd

is known as the networkflow problem. It will be discussed in Chapter 1.3.

3. Modeling with Binary Variables II 9

e = (i,j) j

Figure 3.1

The fixed-charge network flow problem is obtained by imposing a fixed cost of c ij if
there is positive flow on arc (i,}). Now we introduce a binary variable xij to indicate
whether arc (i,}) is used. The constraint Yij = 0 if Xij = 0 is represented by

(3.9) Yij - uijxij ~ 0 for (i,}) E stl.

Hence we obtain the formulation

(3.10) min{ L (cijxij + hijYij): x E Bldl, Y E R':I satisfies (3.7), (3.9)}.
(i,j)Ed

The fixed-charge flow model is useful for a variety of design problems that involve
material flows in networks. These include water supply systems, heating systems, and road
networks.

The formulations of the traveling salesman problem given below provide another
example of the use of binary variables in the modeling of logical relations. They also
exhibit another important property of integer programming formulations, namely, that it
may be appropriate to use an extraordinarily large number of constraints in order to
obtain a good formulation.

The Traveling Salesman Problem

We are again given a set of nodes V = {l, ... ,n} and a set ofarcsstl. The nodes represent
cities, and the arcs represent ordered pairs of cities between which direct travel is possible.
For (i,}) E stl, C ij is the direct travel time from city i to city}. The problem is to find a tour,
starting at city 1, that (a) visits each other city exactly once and then returns to city 1 and
(b) takes the least total travel time.

To formulate this problem, we introduce variables x ij = 1 if} immediately follows i on
the tour, x ij = 0 otherwise. Hence

(3.11)

The requirements that each city is entered and left exactly once are stated as

(3.12) 2: xij = 1 for} E V
u: (i,j)Ed)

10 1.1. The Scope of Integer and Combinatorial Optimization

and

(3.13) I Xu = 1 for i E V.
U:(i,j)Ed)

The constraints (3.11)-(3.13) are not sufficient to define the tours since they are also
satisfied by subtours; for example for n = 6, X12 = X23 = X31 = X4S = XS6 = X64 = 1 satisfies
(3.11)-(3.13) but does not correspond to a tour (see Figure 3.2).

One way to eliminate subtours is to observe that in any tour there must be an arc that
goes from {l, 2, 3} to {4, 5, 6} and an arc that goes from {4, 5, 6} to {l, 2, 3}. In general, for
any V C V with 2 ~ I VI ~ I VI - 2, the constraints

(3.14) I Xu ~ 1
{(i,j)Ed: iEU,jEV\U)

are satisfied by all tours, but every subtour violates at least one of them. Hence the
traveling salesman problem can be formulated as

(3.15) min{ I CijXU: x satisfies (3.1l)-(3.14)}.
(i,j)Ed

An alternative to the set of constraints (3.14) is

(3.16) I x u ~ I V I - 1 for 2 ~ I V I ~ I V I - 2,
{(i,j)Ed: iEU,jEU}

which also excludes all subtours but no tours.
However, regardless of whether we use (3.14) or (3.16), the number of these constraints

is nearly 21Vl. This huge number of constraints might motivate us to seek a more compact
formulation. In fact, we will give such a formulation in Section 1.1.5. But we will argue that
the compact formulation is inferior and we will show, in Parts II and III, that a very large
number of constraints can frequently be handled successfully.

4. MODELING WITH BINARY VARIABLES III: NONLINEAR FUNCTIONS
AND DISJUNCTIVE CONSTRAINTS

In this section, we present two important uses of binary variables in the modeling of
optimization problems. The first concerns the representation of nonlinear objective
functions of the form Lj !j(Yj) using linear functions and binary variables. The second
concerns the modeling of disjunctive constraints. In the usual statement of an optimiza-
tion problem, it is assumed that all of the constraints must be satisfied. But in some
applications, only one ofa pair (or, more generally, k ofm) constraints must hold. In this
case, we say that the constraints are disjunctive.

4

~----------------~ 6

Figure 3.2

4. Modeling with Binary Variables III 11

Piecewise Linear Functions

A function of the formf(Yb ... ,Yp) = ''II}=I jj(yJ is said to be a separable function. Here we
consider separable objective functions and suppose thatjj(Yj) is piecewise linear for each}
(see Figure 4.1). Note that an arbitrary continuous function of one variable can be
approximated by a piecewise linear function, with the quality of the approximation being
controlled by the size of the linear segments.

Suppose we have a piecewise linear function f(y) specified by the points
(ai,f(ai)} for i = 1, ... ,r. Then, any al ~ Y ~ ar can be written as

r r

Y = I Ai ai, I Ai = 1, A = (AI, ••• , Ar) E R:.
i=1 i=1

The Ai are not unique, but if ai ~ Y ~ ai+1 and A is chosen so that Y = Aiai + Ai+lai+1 and
Ai + Ai+1 = 1, then we obtainf(y) = A!(aJ + Ai+1 f(ai+I)' In other words,

r r

(4.1) fey) = I Aif(ai), I Ai = 1, A E R:
i=1 i=1

if at most two of the A/S are positive and if Aj and Ak are positive, then k = } - 1 or} + 1.
This condition can be modeled using binary variables Xi for i = 1, ... , r - 1 (where
Xi = 1 if ai ~ Y ~ ai+1 and Xi = 0 otherwise) and the constraints

Al ~XI

Ai ~ X i-I + Xi for i = 2, . . . , r - 1

(4.2)

X E B r
-

I •

Note that if xi = 1, then ;\ = 0 for i =1= {j,j + I}.
Piecewise linear functions that are convex (concave) can be minimized (maximized) by

linear programming because the slope of the segments are increasing (decreasing) (see
Figure 4.2). But general piecewise linear functions are neither convex nor concave, so
binary variables are needed to select the correct segment for a given value of y.

f(y)

~--------~----~----~------~--~------~y

Figure 4.1

12 1.1. The Scope of Integer and Combinatorial Optimization

fey)

~----------------------------------~y

Figure 4.2. A convex piecewise linear function.

Disjunctive Constraints

Disjunctive constraints arise naturally in many models. A simple illustration is when we
need to define a variable equal to the minimum of two other variables, that is,
y = min(ul' U2). This can be done with the two inequalities

together with one of two inequalities

A typical disjunctive set of constraints states that a point must satisfy at least k of m sets
of linear constraints. The case of k = 1, m = 2 is shown in Figure 4.3, where the feasible
region is shaded.

Suppose pi = {y ER~:Aiy ~ bi, y ~ d} for i = 1, ... , m. Notethatthereisa vectorw
such that, for all i, A iy ~ bi + w is satisfied for any y, 0 ~ y ~ d. Hence there is a y
contained in at least k of the sets pi if and only if the set

(4.3)

y~d

Figure 4.3

4. Modeling with Binary Variables III 13

is nonempty. This follows since Xi = 1 yields the constraint A iy ~ bi while Xi = 0 yields the
redundant constraints A iy ~ bi + ro.

When k = 1, an alternative formulation is

A iyi ~ Xibi for i = 1, ... , m

yi ~ X id for i = 1, ... , m

(4.4)

X E Bm, y E R~, yi E R~ for i = 1, ... ,m.

Now we claim that UZ!,l pi =1= 0 if and only if(4.4) is nonempty. First, given thaty E UZ!,l pi,
suppose without loss of generality that y E pl. Then a solution to (4.4) is Xl = 1, Xi = 0
otherwise, yl = y, and yi = 0 otherwise. On the other hand, suppose (4.4) has a solution
and, without loss of generality, suppose Xl = 1 and Xi = 0 otherwise. Then we obtain
yi = 0 for i = 2, ... , m and y = yl. Thus y E pl and UZ!,l pi.=I= 0.

The models (4.3) and (4.4) are quite different formulations of the same problem. This
choice of formulation is typical. A significant issue to be discussed in the next section is
what constitutes a good formulation?

A Scheduling Problem

Disjunctive constraints arise naturally in scheduling problems where several jobs have to
be processed on a machine and where the order in which they are to be processed is not
specified. Thus we obtain disjunctive constraints of the type either "job k precedesjob} on
machine i" or vice versa.

Suppose there are n jobs and m machines and each job must be processed on each
machine. For each job, the machine order is fixed, that is, job} must first be processed on
machine}(l) and then on machine}(2), and so on. A machine can only process one job at
a time, and once a job is started on any machine it must be processed to completion. The
objective is to minimize the sum of the completion times of all the jobs. The data that
specify an instance of the problem are (a) m, n, andpij for} = 1, ... ,n and i = 1, ... ,m,
which is the processing time of job} on machine i, and (b) the machine order, }(l), ... ,
}(m), for each job}.

Let tij be the start time of job} on machine i. Since the (r + l)stoperation onjob) cannot
start until the rth operation has been completed, we have the constraints

(4.5) t}(r+l),} ~ t}(r),} + P}(r),} for r = 1, ... , m - 1 and all}.

To represent the disjunctive constraints for jobs} and k on machine i, let X ilk = 1 if job}
precedes job k on machine i andxi}k = 0 otherwise where} < k. Thus

14 1.1. The Scope of Integer and Combinatorial Optimization

and

Given an upper-bound OJ on tij - tik + Pij for all i, j, and k, we obtain the disjunctive
constraints

(4.6)
tij - tik ~ -Pij + W(l-Xijk)

tik - tij ~ -Pik + OJXijk for all i,j and k.

Hence the problem is to minimize L}=l tj(m),j subject to (4.5), (4.6), tij ~ 0 for all i andj and
Xijk E {a, 1} for all i,j, and k.

This model requires m G) binary variables. In contrast to the integer programming
models introduced previously, this mixed-integer programming model has not been
successfully solved for values of m and n that are of practical interest. This formulation,
which is based on (4.3), is cumbersome partly because of the large number of binary
variables needed to represent the large number of disjunctions. Note that a formulation
based on (4.4) would also have a large number of binary variables. In fact, a large number
of binary variables may be unavoidable for this scheduling problem.

Good formulations are essential to solving integer programming problems efficiently.
In the next section, we will give some reasons why some formulations may be better than
others; we will also suggest how formulations can be improved.

5. CHOICES IN MODEL FORMULATION

We have formulated several integer optimization problems in this chapter to motivate the
richness and variety of applications. Although a formulation may give insight into the
structure of the problem, our goal is to solve the problem for an optimal or nearly optimal
solution. As we have already indicated, most integer programming problems can be
formulated in several ways. Moreover, in contrast to linear programming:

In integer programming, formulating a "good" model is of crucial importance to
solving the model.

Indirectly, the subject of "good" model formulation is a major topic of this book and is
closely related to the algorithms themselves (see Chapters 11.2 and 11.5).

A model is specified by the variables, objective function, and constraints. Typically,
defining the variables is the first question addressed in formulating a model. Often the
variables are chosen simply from the definition of a solution. That is a solution specifies
the values of certain unknowns, and we define a variable for each unknown. Once the
variables and an objective function have been defined, say in an IP, we can speak of an
implicit representation of the problem

max{cx: xES C Z~},

where S represents the set of feasible points in Z~. Now we say that

5. Choices in Model Formulation 15

max{ex: Ax ~ b, X E Z~}

is a valid IP formulation if S = {x E Z1: Ax ~ b}.
In general, when there is a valid formulation, there are many choices of (A, b), and it is

usually easy to find some (A, b) that yields one. But an obvious choice may not be a good
one when it comes to solving the problem. We believe that the most important aspect of
model formulation is the choice of (A, b).

The following example illustrates different representations of an S ~ Z1 by linear
inequality and integrality restrictions.

Example 5.1

S = {(OOOO), (l000), (0100), (0010), (0001), (0110), (0101), (001l)} ~ B4.

The reader can easily check that

(a)

gives a valid formulation. Two other formulations that are easily established to be valid
are:

(b) S = {x E B4: 2XI + X2 + X3 + X4 ~ 2}

(c) S = {x E B4: 2XI + X2 + X3 + X4 ~ 2

Xl + X2 ~

Xl + X3 ~

Xl + X4 ~ 1}.

We will see that, in a certain sense, formulation (b) is better than (a), and (c) is better than
(b).

How should we compare different formulations? Later we will see that most integer
programming algorithms require an upper bound on the value of the objective function,
and the efficiency of the algorithm is very dependent on the sharpness of the bound. An
upper bound is determined by solving the linear program

ZLP = {max ex: Ax ~ b, X E R1}

since P = {x E R1 :Ax ~ b} 2 S. Now given two valid formulations, defined by (A i, bi)
for i = 1, 2, let pi = {X E R1:A iX ~ bi} and zLp = max{ex: X E Pi}. Note that if pI ~ p2,

then z Lp ~ Z[p. Hence we get the better bound from the formulation based on (A I, b I) and
we say that it is the better formulation. We leave it to the reader to check that in Example
5.1, formulation (c) gives a better bound than (b), which, in turn, gives a better bound than
(a).

A striking example of one formulation being better than another, in the sense just
described, is provided by the uncapacitated facility location problem. We obtain a
formulation with fewer constraints than the one given in Section 3 by replacing (3.2) with

(5.1) 2 Yij - mXj ~ 0 for all} EN.
iEI

16 1.1. The Scope of Integer and Combinatorial Optimization

When Xj = 0, (5.1) says that no clients can be served from facility); and when Xj = 1, there
is no restriction on the number of clients that can be served from facility). In fact, by
summing (3.2) over i E I for each), we obtain (5.1). Although with x E Bn

, (3.2) and (5.1)
give the same set offeasible solutions, with x E R~, (3.2) gives a much smaller feasible set
than (5.1). Our ability to solve the formulation with (3.2) is remarkably better than with
the more compact formulation that uses (5.1).

We belabor this point because it is instinctive to believe that computation time
increases and computational feasibility decreases as the number of constraints increases.
But, trying to find a formulation with a small number of constraints is often a very bad
strategy. In fact, one of the main algorithmic approaches involves the systematic addition
of constraints, known as cutting planes (see Part II).

A nice illustration of the suitability of choosing (A, b) with a very large number of rows
concerns the traveling salesman problem. In Section 3, we gave two different sets of
constraints, (3.14) and (3.16), for eliminating subtours. Both formulations contain a huge
number of constraints, far too many to write down explicitly. Nevertheless, algorithms for
the traveling salesman problem that solve these formulations have been successful on
problems with more than 2000 cities. On the other hand, there is a more subtle way of
eliminating subtours that only requires a small number of constraints.

Let U E Rn
-

l and consider the constraints

(5.2)

Ifx E Bldl satisfies (3.12) and (3.13) and does not represent a tour, then x represents at least
two subtours, one of which does not contain node 1. By summing (5.2) over the arc setd'
of some subtour that does not contain node 1, we obtain

(5.3) I Xij ~ 1.91' I· (1 - lIn).
(i,j)Ed'

Thus (5.2) excludes all subtours that do not contain node 1 and hence excludes all
solutions that contain subtours.

Now we prove that no tours are excluded by (5.2) by showing that for any tour there
exists a corresponding U satisfying (5.2). In particular, we set Uj = k, where k is the position
(2 ~ k ~ n) of node i in the tour. Now if xij = 0, Uj - Uj + nXij ~ n - 2, while if
xij = 1, Uj = k and Uj = k + 1 for some k, and so Uj - Uj + nXij = n - 1. Hence {x E Bldl: x
satisfies (3.12), (3.13), and (5.2)} is the set of incidence vectors of tours.

Now let pI = {x E Rifl: x satisfies (3.12), (3.13), (3.16)} and p2 = {x E Rif': x satisfies
(3.12), (3.13), and (5.2) for some u}. It is easy to see that p2 $: pl. For example, if n ~ 4,
then U2 = U3 = U4 = 0 and X23 = X34 = X42 = (n - l)/n > j satisfies (5.2) but not (3.16). In
fact, it can be shown that pI ~ p2.

We have emphasized the choice of constraints in obtaining a good formulation, given
that the variables have already been defined, because for most problems this is the part of
the formulation where there is the greatest freedom of choice. There are, however,
problems in which the quality of the formulation depends on the choice of variables.

In our formulation of network flow problems, we defined the variables to be the arc
flows. However, in certain situations it is more advantageous to define variables that
represent the flow on each path between two given nodes. Such a formulation involves
many more variables but eliminates the need for some flow conservation constraints and
can be preferable for finding integral solutions.

We now give two radically different formulations of a production lot-sizing problem
that depend on the choice of variables. The object is to minimize the sum of the costs of

6. Preprocessing 17

production, storage, and set-up, given that known demands in each of T periods must be
satisfied. For t = 1, ... , T, let dt be the demand in period t, and let Ct, Pt,and ht be the set-
up, unit production, and unit storage costs, respectively, in period t.

One formulation is obtained by defining Y t, S t as the production and end storage in
period t and by defining a binary variable x t, indicating whether Y t > 0 or not. This leads to
the model

(5.4)

T

minI (PIYt + htSt + CtXt)
t=1

Yl=d 1 +S1

St-I+Yt=dt+st fort=2, ... , T

for t = 1, ... , T

where w = 'LT::1 dt is an upper bound on Y t for all t.
A second possibility is to define q it as the quantity produced in period i to satisfy the

demand in period t ~ i, and X t as above. Now we obtain the model

T t T

minI I (Pi + hi + hi+l + ... + ht- 1)qit + I CtXt
(=1 i=1 (=1

(5.5)
for t = 1, ... , T

qit ~ dtXi for i = 1, ... , T and t = i, ... , T

In (5.5) if we replace x E BT by 0 ~ X t ~ 1 for all t, then the resulting linear program-
ming problem has an optimal solution with x E jjT. But this is not necessarily the case
for (5.4), which is the inferior formulation for soliving the problem by certain integer
programming techniques. It is interesting to observe that (5.5) is a special case of the
uncapacitated facility location problem. This can be seen by substituting Yit = q it/dt for all
i and t ~ i.

There is a similar result for the formulations (4.3) and (4.4) for finding a point that
satisfies one of m sets oflinear constraints. In (4.4), one can replace the condition x E B m

with 0 ~ x ~ 1 and use linear programming to find a point in one of the pi. But this is not
true for (4.3), which is therefore considered to be the inferior formulation.

6. PREPROCESSING

Given a formulation, preprocessing refers to elementary operations that can be performed
to improve or simplify the formulation by tightening bounds on variables, fixing values,
and so on. Preprocessing can be thought of as a phase between formulation and solution. It
can greatly enhance the speed of a sophisticated algorithm that might, for example, be
unable to recognize the fact that some variable can be fixed and then eliminated from the
model. Occasionally a small problem can be solved in the preprocessing phase or by

18 1.1. The Scope of Integer and Combinatorial Optimization

combining preprocessing with some enumeration. Although this approach had been
advocated as a solution technique in the early development of integer programming,
under the name of implicit enumeration, this is not the important role of these simple
techniques. Their main purpose is to prepare a formulation quickly and automatically for
a more sophisticated algorithm. Unfortunately, it has taken a long time for researchers to
recognize the fact that there is generally a need for both phases in the solution of practical
problems.

Tightening Bounds

We have seen that a common constraint in MIPs is Yj ~ Ujxj, where Uj is an upper bound
on Yj and Xj is a binary variable. Provided thatxj E CO, 1}, the tightness of the upper bound
doesn't matter. But if we replace Xj E CO, 1} by 0 ~ Xj ~ 1, it becomes important to have a
tight bound. Suppose, for example, that the largest feasible value of Yj is u; < U j and that
there is a fixed costjj > 0 associated with Xj' If Yj = u; in an optimal solution, and we use
the constraint Yj ~ Ujxj, we will obtain Xj = u;/Uj < 1. On the other hand, if we use the
constraint Yj ~ U ;Xj' we obtain Xj = 1.

In some cases, good bounds can be determined analytically. For example, in the lot-
sizing problem, rather than using a common bound for each Y t, it is more efficient to use
the bounds Yt ~ Cr.!::t dJxt. In general, tight bounds can be determined by solving a linear
program with the objective of maximizing Yj. Doing this for each variable with an upper
bound constraint may be prohibitively time consuming, so a good compromise is to
approximate the upper bounds heuristically.

Example 6.1. We show a fixed-charge model in Figure 6.1 with the accompanying
formulation:

= 1.46

= 0.72

- Y2 - Y3 + Ys =0

Y6 = 0.32

- Ys - Y6 + Y7 = 0

where (j) is a large positive number because the arcs do not have capacity constraints.
It is easy to tighten the bounds, giving

Yl ~ 1.46xI, Y2 ~ 1.46x2

Y3 ~ 0.72x3, Y4 ~ 0.72x4

Ys ~ (1.46 + 0.72)xs

Y6 = 0.32

Y7 ~ (1.46 + 0.72 + 0.32)X7'

In addition, we can set X6 = X7 = 1 because the flow into node 7 must use these arcs.

6. Preprocessing 19

1.46

0.72
Y2

Y3
3~--~

0.32

Figure 6.1

Adding Logical Inequalities, Fixing Variables, and Removing Redundant Constraints

Preprocessing of this sort is most useful for binary IPs. Consider a single inequality in
binary variables, that is, S = {x E Bn: LjEN ajxj ::S; b}. If aj < 0, we can replace Xj by 1 - x;

and obtain the constraint LjEN:aj>o ajxj + LjEN:aj<O I aj I xj ~ b - LjEN:aj<O aj. Thus without
loss of generality, we can assume that aj > ° for j EN. Now if LjEC aj > b for C ~ N, we
obtain the inequality

(6.1) I Xj::S; ICI - 1.
jEe

Obviously, the best inequalities of this type are obtained when LjEC\{k} aj ::S; b for all k E C.
Once some inequalities of this type have been obtained, it may be possible to combine

some of them to fix variables. For example, XI + X2 ::S; 1 andxl + (l - X2) ~ 1 yield XI = 0.
The application of these simple ideas is easy to see by considering an example.

Example 6.2

3x~ + 2x~ ::S; 3)

-4xl - 3xz - 3X3 ~ -6 (4xi + 3xz + 3X3 ~ 4)

2Xl - 2Xl + 6X3::S; 5 (2Xl + 2Xl + 6X3 ~ 7)

xEB3.

The first constraint yields Xl + x~ ~ 1 or Xz + X3 ~ 1. The third constraint yields
Xl + X3 ~ 1 or X3 ~ Xl. Combining these two yields Xl = 1. Now the first constraint is
redundant and the second and third reduce to 4x~ + 3X3 ~ 4 and 2xr + 6X3 < 7. From
these two, we obtain Xl + X3 ::S; 1 and Xl + X 3 ::S; 1, or Xl + X 3 = 1. Thus, by substitution, we
can eliminate either X 1 or X 3.

20 1.1. The Scope of Integer and Combinatorial Optimization

Other simplifications of this type are considered as exercises.
A second stage of preprocessing can be carried out after an upper bound has been

obtained by linear programming. In particular, variables can be fixed by using the reduced
prices that are obtained from a linear programming solution (see Section 11.5.2).

7. NOTES

Section 1.1.1

Here we list bibliographies, other books, proceedings, and some of the main journals that
contain a great deal of material on integer programming and/or combinatorial optimiza-
tion. Four volumes of comprehensive bibliographies on integer programming have been
prepared at Bonn University [see Kastning (1976), Hausmann (1978) and von Randow
(1982, 1985)]. Each volume contains an alphabetical listing by authors, a subject classifica-
tion, and a third part that enables one to find items by an author who is not listed first. The
first volume contains items published through 1975 and includes 4704 entries classified
under 41 subject headings. The last volume covers items published in the period 1981-
1984 and contains 4751 entries classified under 50 subject headings. A much briefer, but
annotated, bibliography is the subject ofO'hEigertaigh et al. (1985).

Several books on integer programming and combinatorial optimization have appeared
in the 1980s. In chronological order, these are Papadimitriou and Steiglitz (1982), Gondran
and Minoux (1984), Lawler, Lenstra et al. (1985), Schrijver (1986a), and Grotschel, Lovasz,
and Schrijver (1988). Papadimitriou and Steiglitz emphasize algorithms and computa-
tional complexity from the point of view of computer scientists. Gondran and Minoux
also stress algorithms and focus on problems associated with graphs. Lawler et al. is
restricted to the traveling salesman problem, but we mention it here because of the
prominent role played by the traveling salesman problem as a generic difficult combina-
torial optimization problem. Schrijver gives an encyclopedic treatment of the theory of
linear and integer programming from the polyhedral point of view. Grotschel et al. is a
monograph whose subject matter is motivated by the consequences of ellipsoid algorithms
in combinatorial optimization. It also contains information on algorithmic approaches to
problems in geometric number theory. The applications of this branch of mathematics in
discrete optimization have just begun to be investigated.

Earlier general textbooks on integer programming are Hu (1969), Greenberg (1971),
Garfinkel and Nemhauser (1972a), Salkin (1975), and Taha (1975). Lawler (1976)
emphasizes the roles of network flows and matroids in combinatorial optimization.
Christofides (1975a) studies a variety of combinatorial optimization problems associated
with graphs. Johnson (1980a) is a monograph on integer programming theory that
emphasizes subadditivity and group theory.

Beale (1968) and Williams (1978a) are general texts on mathematical programming that
are of some interest here because they emphasize modeling and problem formulation.

General survey articles appeared early in the development of the field [see Beale (1965),
Balinski (1965, 1967, 1970a), Balinski and Spielberg (1969), Garfinkel and Nemhauser
(1973), Geoffrion and Marsten (1972) and Geoffrion (1976)]. Some recent surveys on
combinatorial optimization are by Klee (1980), Pulleyblank (1983), Schrijver (1983a), and
Grotschel (1984); Grotschel (1985) gives an annotated bibliography. More specialized
surveys will be cited in the appropriate chapters.

Numerous proceedings and study volumes have been devoted to integer and combina-
torial optimization. These include Balinski (1974), Hammer, Johnson, Korte, and
Nemhauser (1977), Balinski and Hoffman (1978), Hammer, Johnson, and Korte

7. Notes 21

(1979a,b), Christofides, Mingozzi et al. (1979), Padberg (1980a), Hansen (1981), Pulley-
blank (1984), and Monma (1986). The Hammer, Johnson, and Korte volumes and the
book by Christofides et al. are collections of surveys. For the most part, the others are
collections of research articles that complement the journals that contain a substantial
number of papers on integer programming and combinatorial optimization.

Some of the more prominent j ournals published in English are Mathematical Program-
ming, Mathematical Programming Studies, Operations Research, Operations Research
Letters, Annals of Operations Research, Networks, SIAM Journal on Algebraic and
Discrete Methods, Discrete Mathematics, Discrete Applied Mathematics, Annals of
Discrete Mathematics, Combinatorica, Journal of the Associationfor Computing Machin-
ery, Management Science, Operational Research Quarterly, The European Journal of
Operations Research, Naval Research Logistics Quarterly, lIE Transactions, and Trans-
portation Science.

The scope of each of these journals relative to their coverage of integer and combina-
torial optimization is difficult to specify. A rough guideline is the following. The first five
purport to cover the subject broadly, although there is unfortunately a dearth of papers on
applications. The same can be said for Networks within its more narrowly defined scope of
problems. The next five emphasize theory. The remainder contain some methodology
oriented toward specific models and a few applications.

The periodical Interfaces publishes an annual issue on successful case studies in
operations research and management science. Some of these studies involve the use of
integer programming techniques. Applications of integer programming are also discussed
in journals of finance, marketing, production, economics, and the various branches of
engineering.

Sections 1.1.2-1.1.4

Dantzig (1957, 1960) formulated several integer programming models and showed how a
variety of nonlinear and nonconvex optimization problems could be formulated as
mixed-integer programs. References on the models presented in these sections will be
given in the notes for the chapters in which the models are discussed in detail. In
particular, knapsack problems are considered in Sections 11.2.2 and 11.6.1, matching
problems are discussed in Chapter 111.2, set covering is presented in Section 11.6.2 and
Chapter II1.1, fixed-charge network problems are considered in Sections 11.2.4 and 11.6.4,
and the traveling salesman problem is discussed in Sections 11.2.3 and 11.6.3.

Section 1.1.5

Strong formulations is one of the major themes of this book. See Williams (1974, 1978b)
and Jeroslow and Lowe (1984) for a comparison of alternative formulations for some
general integer programs.

Systematic reformulation of knapsack problems was treated by Bradley et al. (1974).
Formulation (5.2) appears in Miller et al. (1960). The strength of reformulation (5.5) was
shown by Krarup and Bilde (1977), and that of the disjunctive formulation (4.4) was
shown by Balas (1979). Many other citations will be made in the notes for Chapters 11.2,
11.5, and 11.6.

Section 1.1.6

Preprocessing techniques are frequently attributed to folklore because the references are
difficult to pin down. Bound tightening, variable fixing, and row elimination schemes
used in mathematical programming systems are discussed in Brearley et al. (1975).

22 1.1. The Scope of Integer and Combinatorial Optimization

Preprocessing techniques that use boolean inequalities have been studied by Guignard
and Spielberg (1977, 1981). Also see Guignard (1982), Johnson and Suhl (1980), Crowder,
Johnson, and Padberg (1983), Johnson and Padberg (1983), and Johnson, Kostreva, and
Suhl (1985).

8. EXERCISES

1. Show that the integer program with irrational data max{x 1 - (2)1/2X2:
Xl ~ (2)1/2x2, Xl ~ 1, X E Z~) has no optimal solution, even though there exist
feasible solutions with value arbitrarily close to zero.

2. The BST Delivery Company must make deliveries to 10 customers whose respective
demands are dj for} = 1, ... , 10. The company has four trucks available with
capacities Lk and daily operating costs Ck for k = 1, ... ,4. A single truck cannot
deliver to more than five customers, and customer pairs {l, 7}, {2, 6}, and {2, 9}
cannot be visited by the same truck. Formulate a model to determine which trucks to
use so as to minimize the cost of delivering to all the customers.

3. An airline has fixed its daily timetable for flights between five cities. It now has the
problem of scheduling the crews. There are certain legal limits on how much time
each crew can work within any 24-hour period. The problem is to propose a crew
schedule using the minimum number of crews in which each flight leg is covered.
Formulate a generic problem of this type as a set covering problem.

4. The DuFour Bottling Company has two machines for its bottle production. The
problem each year is to devise a maintenance schedule. Maintenance of each
machine lasts 2 months. In addition, only half the workforce is available in July and
August, so that only one machine can be used during that period. Monthly demands
for bottles are dt , t = 1, ... , 12. Machine k, k = 1, 2, produces bottles at the rate of
ak bottles per month but can produce less. There is also a labor constraint. Machine
k requires h labor days to produce ak, and the total available days per month are L t

for t = 1, ... , 12. Formulate the problem offinding a feasible maintenance schedule
in which all demands are satisfied. Modify your formulation to handle the following
objectives.

i) Minimize the sum of the monthly fluctuations in labor utilization.

ii) Minimize the largest monthly fluctuation.

5. Integer and mixed-integer programming models are used on Wall Street to select
bond portfolios. The idea is to pick a mix of bonds to maximize average yield subject
to constraints on quality, length of maturity, industrial and government percentages,
and total budget. Integrality arises because certain bonds only come in 100-unit lots.
Formulate a model for this generic problem.

6. A company has two products k = 1, 2, one factory, two distribution centers i = 1, 2,
and five major clients} = 1, ... , 5 whose product demands djk are known. The
company must decide which products should be handled by each center and how
each client should be serviced. The problem is to minimize total costs, where the
costs include:

i) a fixed costhk if product k is handled by distribution center i;

ii) fixed coStShjk if the demand of client} for product k is satisfied by center i; and

8. Exercises 23

iii) unit shipping costs C ijk per unit of product k shipped to client} via center i.

How does your model change if demands can be split between distribution centers?

7. Formulate the traveling salesman problem using the variables Xijb where Xijk = 1 if
(i, }) is the kth arc of the tour and x ijk = 0 otherwise.

8. a) Given a graph G = (V, E) with weights We for e E E, formulate the following
problems (see Chapter 1.3 for some of the definitions) as integer programs.

i) Find a maximum-weight tree.

ii) Find a maximum-weight s-t cut.

iii) Find a minimum-weight covering of nodes by edges.

iv) Find a maximum-weight cycle with an odd number of edges.

v) Find a maximum-weight bipartite subgraph.

vi) Find a maximum-weight eulerian subgraph.

b) Given a graph G = (V, E) with weights Cj for} E V, formulate the following
problems.

i) Find a maximum-weight clique.

ii) Find a minimum-weight dominating set (a set of nodes U ~ V such that
every node of V is adjacent to some node in U).

9. Suppose k trucks can be used to serve n clients from a single depot. Each client must
be visited once. The time for truck k to travel from i to} is C ijk. The tour of each truck
cannot take longer than L k• Formulate the problem of finding a feasible schedule.

10. Consider the quadratic 0-1 knapsack problem

By introducing a variable Yij to represent XiXj, reformulate the problem as a linear
mixed-integer programming problem.

11. Show that the BIP max{cx: Ax ~ b, x E En} may be solved by solving the quadratic
program

max{cx - MxT(l - x): Ax ~ b, 0 ~ Xj ~ 1 for all}},

where M is a large positive number. Given A, b, c, how large should M be?

12. Let H E R'J!xn and C E R~. Let [!F be the collection of all the nonempty subsets of
{l, 2, ... , n}. For FE [!F define

m

z(F) = I IJ?ax h ij - I Cj.
i=l JEE jEF

i) Show that the problem max{z(F): FE [!F} can be formulated as the following
integer program:

24 1.1. The Scope oflnteger and Combinatorial Optimization

m n n

max I I hijYij - I CjXj
i=1 j=1 j=1

m

I Y ij = 1 for i = 1, ... , m
j=1

Y ij ~ Xj for i = 1 , ... , m and j = 1, ... , n

ii) Show that the problem max{z(F): F E ~) can also be formulated as the integer
program:

m n

max I U i-I CjXj
i=1 j=1

n

Ui ~ hik + I (hi} - hiktXj for k = 0, ... , nand i = 1, ... , m
j='

U E R'J},

where a+ denotes max(O, a) and h iO = ° for i = 1, ... , m.

13. Consider the scheduling problem of Section 4 with only one machine. Each job has
processing time Ph a deadline dh and a weight Wj > 0.

i) Formulate the problem of finding a feasible schedule in which the weighted sum
of completion times is minimized. Avoid using ()) as in (4.6) by writing an exact
expression for the finish time of job j.

ii) Give an alternative formulation using the variables Xjl' where Xjl = 1 if job j is
completed at time t. (Assume Ph dj are integers).

14. Suppose the departure times of trucks A and B have to be scheduled. Each truck can
leave at 1, 2, 3, or 4 p.m. Truck B cannot leave until at least 1 hour after truck A. Let
Xi (Yi) = 1 if truck A (B) leaves at time i. Give two formulations of the feasible region
and compare them.

15. Show that

s = {x E B4: 97x, + 32x2 + 25x3 + 20X4 ~ 139)

= {x E B4: 2x I + X 2 + X 3 + X4 ~ 3)

X,+ X2+ X3
XI + X3+
XI+ X2+ +

Which formulation do you think is most effective for solving max{cx: xES}?

8. Exercises 25

16. Consider the 0-1 feasible region

s = { x E En: j~ ajXj ,,; b} with aj, b E Zl for j E N.

Formulate as an integer program the problem of finding weights cj, d E zl such that

and d is minimized. Formulate and solve the example with

17. Consider the two formulations of the traveling salesman problem in Section 5. Show
that PI C P2•

18. To show that (4.4) gives a tight formulation ofU7!l Pi when

let

and

i) Show that ify* E U~l Pi, there exists (yi, x) such that (yi, y*, x) E T**.

ii) Show that if (yi, y*, x) E T**, then y* E U~l Pi.

iii) Show that if(yi, y*, x) E T*, then y* E conv(U~l Pi)'

iv) What difficulties can arise if the polyhedra Pi are unbounded, that is, the
constraints z ~ d are not present?

19. Given a linear inequality in 0-1 variables and the region

s = {x E B/N I/+/N2
/. " ax· - " ax· ~ b} 'L)) L))

JEN1 jEN2

where aj > 0 for j EN} U N 2, write necessary and sufficient conditions for

i) S = 0,

ii) S = En,

iii) Xj = 0

iv) Xj = 1

for all xES,

for all xES,

26 1.1. The Scope of Integer and Combinatorial Optimization

v) Xi + X) ~ 1 for all xES,

vi) Xi ~ Xi for all xES, and

vii) Xi + Xi ~ 1 for all xES.

20. If x E Bn, what is implied by

i) Xi + x) ~ 1 and X i ~ xh

ii) Xi + Xi ~ 1 and Xi + Xi ~ 1, and

iii) Xi ~ x) and Xj + Xk ~ 1 ?

21. Use the results of Exercises 19 and 20 to solve the following problem without having
recourse to enumeration:

max 2x, - 2X2 + 3X3 + lx4 + 2X5

7x, + 3X2 + 9X3 - 2X4 + 2X5 ~ 7

-6x, + 2X2 - 3X3 + 4X4 + 9X5 ~ -2

xEB5.

1.2
Linear Programming

1. INTRODUCTION

The general linear programming problem is

(LP) ZLP = max{cx: Ax ~ b, x E R~},

where the data are rational and are given by the m x n matrix A, the 1 x n matrix c, and the
m x 1 matrix b. This notation is different from that of Section I.1.1 but is preferable here
because of its widespread use in linear programming. Recall that, as we observed in
Section 1.1.1, equality constraints can be represented by two inequality constraints.

Problem LP is well-defined in the sense that if it is feasible and does not have
unbounded optimal value, then it has an optimal solution.

A good understanding of the theory and algorithms of linear programming is essential
for understanding integer programming for several reasons that can be summed up by the
statement that "one has to learn to walk before one can run". Integer programming is a
much harder problem than linear programming, and neither the theory nor the computa
tional aspects of integer programming are as developed as they are for linear program
ming. So, first of all, the theory of linear programming serves as a guide and motivating
force for developing results for integer programming.

Computationally, linear programming algorithms are very often used as a subroutine in
integer programming algorithms to obtain upper bounds on the value of the integer
program. Let

(IP) ZIP = max{cx: Ax ~ b, x E Z~}

and observe that ZLP ~ ZIP since Z~ C R~. The upper bound ZLP sometimes can be used to
prove optimality for IP; that is, if XO is a feasible solution to IP and cxo = Z LP, then XO is an
optimal solution to IP.

A deeper connection between linear and integer programming is that corresponding to
any integer programming problem there is a linear programming problem max{cx: Ax
~ b, A IX ~ b l , X E R~} that has the same answer as IP.

Our presentation oflinear programming is by necessity very terse and is not intended as
a substitute for a full treatment. The reader who has already studied linear programming is
advised to scan this section to become familiar with our notation or, perhaps, to review an
unfamiliar topic.

In the next section, we consider the duality theory of linear programming which,
among other things, provides necessary and sufficient optimality conditions. In the
following two sections, we present algorithms for solving linear programs.

27

28 1.2. Linear Programming

The simplex algorithms are used to prove the main duality theorem and also to show
that every feasible instance of LP that is not unbounded has an optimal solution. But,
more importantly, they are the practical algorithms that are part of linear programming
software systems and many integer programming software systems as well. The perform
ance of simplex algorithms, observed over years of practical experience, shows that they
are very robust and efficient. Typically the number of iterations required is a small
multiple of m. Although there exist simplex algorithms that converge finitely, these are
inefficient; and the ones used in practice can fail to converge. Moreover, there are
examples which show that finitely convergent simplex algorithms may require an expo
nential number of iterations. But this bad behavior does not seem to occur in the solution
of practical problems.

Section 4 deals with subgradient optimization. There are convergent subgradient
algorithms, but, as described, they are not finite. However, on certain classes of linear
programs that arise in solving integer programs, they tend to produce good solutions very
quickly.

In Chapter 1.6, we consider two other linear programming algorithms. These have been
deferred to a later chapter because some of the motivation for considering them concerns
the theoretical complexity of computations, which is studied in Chapter 1.5.

2. DUALITY

Duality deals with pairs of linear programs and the relationships between their solutions.
One problem is called the primal and the other the dual.

We state the primal problem as

(P) ZLP = max{ex: Ax ~ b, x E R~}.

Its dual is defined as the linear program

(D) WLP = min{ub: uA ~ e, u E R':}.

It does not matter which problem is called the primal because:

Proposition 2.1. The dual of the dual is the primal.

Proof To take the dual of the dual, we need to restate it as a maximization problem
with equal-to-or-Iess-than constraints. Once this is done, the result follows easily. We leave
the details to the reader. •

Feasible solutions to the dual provide upper bounds on ZLP and feasible solutions to the
primal yield lower bounds on WLP. In particular:

Proposition 2.2 (Weak Duality). If x* is primal feasible and u· is dual feasible, then
ex* ~ ZLP ~ WLP ~ u*b.

Proof ex* ~ u*Ax* ~ u*b, where the first inequality uses u*A ~ e andx* ~ 0, and the
second uses Ax· ~ band u* ~ 0. Hence WLP ~ ex for all feasible solutions x to P, and
ZLP ~ ub for all feasible solutions u to D, so that WLP ~ ZLP. •

Corollary 2.3. If problem P has unbounded optimal value, then D is infeasible.

2. Duality 29

Proof By weak duality, WLP ;::: A for all A E R I. Hence D has no feasible solution. •

We now come to the fundamental result oflinear programming duality, which says that
if both problems are feasible their optimal values are equal. A constructive proof will be
given in the next section.

Theorem 2.4 (Strong Duality). If ZLP or WLP is finite, then both P and D have finite
optimal value and ZLP = WLP.

Corollary 2.5. There are only four possibilities for a dual pair of problems P and D.

i. ZLP and WLP arefinite and equal.
ii. ZLP = 00 and D is infeasible.

111. WLP = -00 and P is infeasible.

iv. Both P and D are infeasible.

A problem pair with property iv is max{xi + X2: XI - X2 ~ -1, -Xl + X2 ~ -1, X E R~} and
its dual.

Another important property of primal-dual pairs is complementary slackness. Let
s = b - Ax ;::: 0 be the vector of slack variables of the primal and let t = uA - c ;::: 0 be the
vector of surplus variables of the dual.

Proposition 2.6. If x* is an optimal solution ofP and u* is an optimal solution ofD, then
x/,lj*= 0 for all j, and uisi= 0 for all i.

Proof Using the definitions of s* and t*, we have

cx* = (u*A - t*) x* = u*Ax* - t*x*

= u*(b - s*) - t*x* = u*b - u*s* - t*x*.

By Theorem 2.4, cx* = u*b. Hence u*s* + t*x* = 0 with u*, s*, t*, x* ;::: 0 so that the result
follows. •

Example 2.1. The dual of the linear program

(P)

is

(D)

ZLP = max 7xI + 2X2

-XI + 2X2 ~ 4

5Xl + X2 ~ 20

-2Xl - 2X2 ~-7

xER~

WLP = min 4uI + 20U2 - 7U3

-u, + 5U2 - 2U3;::: 7

2u I + U2 - 2U3 ;::: 2

u ERI.

30 1.2. Linear Programming

It is easily checked that x* = (if 1¥) is feasible in P, and hence Z LP ~ cx* = 30ft-.
Similarly, u* = (n -if 0) is feasible in D, and hence, by weak duality, ZLP ~ u*b = 30n-.
The two points together yield a proof of optimality, namely, x* is optimal for P and u* is
optimal for D.

Note also that the complementary slackness condition holds. The slack variables in P
are (sT, s~, sj) = (0 0 6-&), and the surplus variables in Dare (tT, t~) = (0 0). Hence
xjtj= 0 for} = 1,2 and u7s7= 0 for i = 1,2,3. •

It is important to be able to verify whether a system of linear inequalities is feasible or
not. Duality provides a very useful characterization of infeasibility.

Theorem 2.7 (Farkas' Lemma). Either {x E R~: Ax ~ b} =1= 0 or (exclusively) there
exists v ERr: such that vA ~ 0 and vb < O.

Proof Consider the linear program ZLP = max{Ox: Ax ~ b, x E R~} and its dual
WLP = min{vb: vA ~ 0, v E R':}. As v = 0 is a feasible solution to the dual problem, only
possibilities i and iii of Corollary 2.5 can occur.

i. ZLP = WLP = O. Hence {x E R~: Ax ~ b} =1= 0 and vb ~ 0 for all v ERr: with vA ~ 0;

iii. ZLP = WLP = -00. Hence {x E R~: Ax ~ b} = 0 and there exists v ERr: with vA ~ 0
and vb < O. •

There are many other versions of Farkas' Lemma. Some are presented in the following
proposition.

Proposition 2.8. (Variants of Farkas' Lemma)

a. Either {x E R~: Ax = b} =1= 0, or {v E Rm: vA ~ 0, vb < O} =1= 0.

b. Either {x ERn: Ax ~ b} =1= 0, or {v E R':: vA = 0, vb < O} =1= 0.

c. IfP = {r E R~: Ar = a}, either P \ {O} =1= 0, or {u E Rm: uA > O} =1= 0.

3. THE PRIMAL AND DUAL SIMPLEX ALGORITHMS

Here it is convenient to consider the primal linear program with equality constraints:

(LP) ZLP = max{cx: Ax = b, x E R~}.

Its dual is

(DLP) WLP = min{ub: uA ~ c, u E Rm}.

We suppose that rank(A) = m ~ n, so that all redundant equations have been removed
from LP.

Bases and Basic Solutions

LetA = (a b a2, ... , an) where aj is the}th column of A. Since rank(A) = m, there exists an
m x m nonsingular submatrix AB = (aB

I
, ••• ,aBJ. Let B = {B b '" ,Bm} and let N =

3. The Primal and Dual Simplex Algorithms 31

{l, ... , n} \ B. Now permute the columns of A so that A = (AB' AN). We can write Ax = b
asABxB + ANxN = b, where x = (XB' XN). Then a solution to Ax = b is given by XB = Aiib
andxN = O.

Definition 3.1

a. The m x m nonsingular matrix A B is called a basis.

b. The solution XB = Ai1b, XN = 0 is called a basic solution of Ax = b.
c. X B is the vector of basic variables and x N is the vector of nonbasic variables.

d. If Ai1b ~ 0, then (XB' XN) is called a basic primalfeasible solution andAB is called a
primal feasible basis.

Now let C = (CB' CN) be the corresponding partition of c, that is, cx = CBXB + CNXN, and
let u = cBAIl E Rm. This solution is complementary to x = (XB, XN), since

andxN = O. Observe that u is a feasible solution to the dual ifand only if cBAi/AN - CN ~ O.
This motivates the next definition.

Definition 3.2. If C BA 11A N ~ C N, then A B is called a dual feasible basis.

Note that a basis AB defines the point x = (XB' XN) = (Ai/b, 0) ERn and the point
u = C BA i1 E R m • A B may be only primal feasible, only dual feasible, neither, or both. Bases
that are both primal and dual feasible are of particular importance.

Proposition 3.1. If AB is primal and dual feasible, then x = (XB, XN) = (ABI b, 0) is an
optimal solution to LP and u = cBAB! is an optimal solution to DLP.

Proof x = (AB1b, 0) is feasible to LP with value cx = cBAj/b. u = cBA B! is feasible in
DLP and ub = cBAB!b. Hence the result follows from weak duality. •

Changing the Basis

We say that two bases AB and AS' are adjacent if they differ in only one column, that is
IB \ B' I = IB' \ B I = 1. If AB and A B, are adjacent, the basic solutions they define are
also said to be adjacent. The simplex algorithms to be presented in this section work by
moving from one basis to another adjacent one.

Given the basis A B , it is useful to rewrite LP in the form

LP(B)

ZLP = cBAB!b + max(cN - cBAB!AN)XN

XB + A j/ANXN = Aj/b

It is simple to show that problems LP(B) and LP have the same set of feasible solutions and
objective values.

We now define some additional notation that allows us to state things more concisely.
Let AN = ABlAN' b = ABlb, and eN = CN - cBAi/AN so that

32

LP(B)

Also, for j EN, we let aj = ARlaj and Cj = Cj - CBa) so that

LP(B)

ZLP = cBb + max L CjXj
JEN

XB + L ajxj = b
JEN

X B ~ 0, Xj ~ ° for j E N.

Finally, we sometimes write the equations of LP(B) as

XB; + L aijxj = bi for i = 1, ... , m,
JEN

1.2. Linear Programming

that is, aj = (alj, ... , amj) and b = (bb ... , bm).

Let CN = CN - cBAN be the reduced price vector for the nonbasic variables. Then, by
Definition 3.2, dual feasibility of basis AB is equivalent to CN ~ 0.

Now given the representation LP(B), we show how to move from one basic primal
feasible solution to another in a systematic way.

Definition 3.3. A primal basic feasible solution x B = b, X N = ° is degenerate if b i = ° for
some i.

Proposition 3.2. Suppose all primal basic feasible solutions are nondegenerate. If AB is a
primalfeasible basis and ar is any column of AN, then matrix (AB' ar) contains, at most, one
primal feasible basis other than AB.

Proof We consider the system

(3.1)
XB + arxr = b

XB ~ 0, Xr ~ 0,

that is, all components of XN except Xr equal zero.
Case 1. ar ~ 0. Suppose Xr = A > 0. Then for all A> ° we obtain

- -
xB = b - a

r
A ;::: b> O.

Thus for every feasible solution to (3.1) with Xr > 0, we have XB > ° so that AB is the only
primal feasible basis contained in (AB,a r).

Case 2. At least one component ofar is positive. Let

(3.2) 1 • fbi - o} bs
Ilr = mIn =-: air> = =-.

air a sr

3. The Primal and Dual Simplex Algorithms 33

Hence b - arAr ~ 0 and bs - asrAr = O. So we obtain an adjacent primal feasible basis AB(r)
by deleting Bs from B and replacing it with r, that is, B(r) = B U {r} \ {Bs}' Note that the
nondegeneracy assumption implies that bi - airAr > 0 for i =1= S so that the minimum in
(3.2) is unique. Consequently, any basis AB with B = B U {r} \ {k} for k E B \ {B s} is not
primal feasible. •

The new solution is calculated by:
1. Dividing

XBs + asrxr + I aSjXj = bs jEN\{r}

by asr, which yields

(3.3)

2. Eliminating Xr from the remaining equations by adding -air multiplied by (3.3) to

XB j + airXr + I aijXj = bi for i =1= S
jEN\{r}

and eliminating Xr from the objective function.
This transformation is called a pivot. It corresponds precisely to a step in the well

known Gaussian elimination technique for solving linear equations. The coefficient asr is
called the pivot element.

Corollary 3.3. Suppose AB is a primal feasible nondegenerate basis that is not dual
feasible and cr > O.

a. If ar ~ 0, then ZLP = 00.

b. If at least one component of ar is positive, then A B(r), the unique primal feasible basis
adjacent to AB that contains a" is such that CB(r)XB(r) > CBXB.

Proof

a. x B = b - a rA, x r = A, Xj = 0 otherwise is feasible for all A > 0 and

b.

where the inequality holds since Ar defined by (3.2) is positive and c, > 0 by
hypothesis. •

Primal Simplex Algorithm

We are now ready to describe the main routine of the primal simplex method called Phase
2. It begins with a primal feasible basis and then checks for dual feasibility. If the basis is

34 1.2. Linear Programming

not dual feasible, either an adjacent primal feasible basis is found with (in the absence of
degeneracy) a higher objective value or ZLP = 00 is established.

Phase 2

Step 1 (Initialization): Start with a primal feasible basis A B•

Step 2 (Optimality Test): If AB is dual feasible (i.e., CN < 0), stop. XB = b, XN = 0 is an
optimal solution. Otherwise go to Step 3.

Step 3 (Pricing Routine): Choose an r E N with cr > O.

a. Unboundedness test. Ifar ~ 0, ZLP = 00.

b. Basis change. Otherwise, find the unique adjacent primal feasible basis A B(r) that
contains ar • Let B ~ B(r) and return to Step 2.

Note that in Step 3, we can choose any j EN with Cj > O. A pricing rule commonly used
is to choose r = arg(maXjENCj), since it gives the largest increase in the objective function
per unit increase of the variable that becomes basic. But this computation can be time
consuming when n is large, so that various modifications of it are used in practice.

Theorem 3.4. Under the assumption that all basic feasible solutions are nondegenerate,
Phase 2 terminates in a finite number of steps either with an unbounded solution or with a
basis that is primal and dual feasible.

Proof At each step the value of the basic feasible solution increases. Thus no basis can
be repeated. Because there is only a finite number of bases, this procedure must terminate
finitely. •

When basic solutions are degenerate, and this happens often in practice, Proposition
3.2 and Corollary 3.3 are not true. Consequently, the finiteness argument given in the
proof of Theorem 3.4 does not apply.

Note that when the basic feasible solution is degenerate, the arg(min) of (3.2) may not
be unique. In this case, (AB' a r) contains more than one primal feasible basis adjacent to
A B, and in Step 3b of the algorithm an arbitrary choice is made. A complication arises
when Ar = 0 in (3.2) since each primal feasible basis in (AB' ar) defines the same solution,
namely, x B = b and x N = O. A sequence of such degenerate changes of basis can, although it
rarely happens in practice, lead back to the original basis. This phenomenon is called
cycling.

Two methods for eliminating the possibility of cycling are known. One involves a
lexicographic rule for breaking ties in (3.2), and the other involves both the choice of r in
Step 3 and a tie-breaking rule for (3.2). By eliminating cycling, these algorithms establish
the finiteness of Phase 2 for any linear programming problem. Hence there are primal
simplex methods for which Theorem 3.4 holds without a nondegeneracy assumption.

Example 3.1

ZLP = max 7Xl + 2X2

-Xl + 2X2 + X3 4

20

3. The Primal and Dual Simplex Algorithms

x ~O.

Step 1 (Initialization): The basisA B = (a3, a4, al) with

yields the primal feasible solution

and xN = (X2' xs) = (0 0),

Iteration 1

Step 2:

Ali = (00
1

~ 1)
o -1

+ X5 = -7

AN = (a" as) = A.IAN = (-~ J).
eN = Cr cRAN = (2 0) - (0 0 7)AN = (-5 n

Thus LP(B) can be stated as

1
- 4X2 + 22xs

1
X2 - 2X5

X~O.

Step 3: The only choice for a new basic variable is X5. By (3.2),

{
2! }

A.s = min -, 21, - = 1.

Hence X4 is the leaving variable.

= 7!
2

= 2!
2

1
+ Xl = 32

35

36 1.2. Linear Programming

Iteration 2

Step2: All = (~
1
5
2
5
1
5 !} 4),

X 2 is the entering variable.

Step 3: a2 = (¥ -~ !). By (3.2), ,12 = min(,ts, -, '/5) = 1¥. Hence X3 is the leaving variable.
As +- (a2' a5, a,).

Iteration 3

(

..i J.. 0) 11 I'

Step 2: A Ii = 1 1 01 ,
-11 11

- - -) (3 16) 0
CN = (C3, C4 = - IT - IT ~ .

Hence x = (Xl, X2, X3, X4, X5) = (if 1¥ 0 0 if) is an optimal solution to LP, and
U = cBAli = err -W 0) is an optimal solution to DLP.

We have shown that ifLP has a basic primal feasible solution, it either has unbounded
optimal value or it has an optimal basic solution. It remains to show that if it has a feasible
solution, then it has a basic feasible solution. This is accomplished by Phase 1 of the
simplex algorithm.

Phase 1. By changing signs in each row if necessary, write LP as max{cx: Ax = b, x E R1}
with b ;?; O. Now introduce artificial variables xf for i = 1, ... , m, and consider the linear
program

Za = max { - ~ x7: Ax + Ixa = b, (x, x a) E R~+m l
1. Lpa is a feasible linear program for which a basic feasible solution x a = b, x = 0 is

available. Hence Lpa can be solved by the Phase 2 simplex method. Moreover Z a ~ 0
so that Lpa has an optimal solution.

2. i) A feasible solution (x, x a) to Lpa yields a feasible solution x to LP if and only if
x a = O. Thus if Za < 0, Lpa has no feasible solution with x a = 0 and hence LP is
infeasible.

ii) If Za = 0, then any optimal solution to Lpa has x a = 0 and hence yields a feasible
solution to LP. In particular, if all the artificial variables are nonbasic in some
basic optimal solution to Lpa, a basic feasible solution for LP has been found.

On the other hand, if one or more artificial variables are basic, it may be possible to
remove them from the basis by degenerate basis changes. When this is not possible it can
be shown that certain constraints in the original problem are redundant, and the equations

3. The Primal and Dual Simplex Algorithms 37

with basic artificial variables can be dropped. Again this leads to a basic feasible solution to
LP.

By combining Phases 1 and 2, we obtain a finite algorithm for solving any linear
program. This establishes Theorem 2.4 and also Theorem 3.5:

Theorem 3.5

a. If LP is feasible, it has a basic primal feasible solution.
b. If LP has a finite optimal value, it has an optimal basic feasible solution.

Example 3.1 (continued). We will use Phase 1 to construct the initial basis (a3, a4, a I)
that we used previously. The Phase 1 problem is

Za = max

- XI + 2X2 + X3

5xI + X2 + X4

- Xl - x~ - x~

+ x~

4

20

- X5 + x~ = 7

Observe, however, that because X 3, X4 are slack variables and b I and b2 are nonnegative,
the artificial variables xf and x~ are unnecessary. Hence we can start with (x 3, X4, xD as
basic variables. Since - X~ = -7 + 2x I + 2x 2 - X 5, the Phase 1 problem is

Z a = max - 7 + 2x I + 2X2

- XI + 2X2 + X3 = 4

5xI + X2 + X4 20

- X5 + X~ = 7

x ;?; 0, X3 ;?; o.

Using the simplex algorithm (Phase 2) we introduce X I into the basis, and x~ leaves. The
resulting basis (a3, a4, a 1) is a feasible basis for the original problem.

Dual Simplex Algorithm

The primal simplex algorithm works by moving from one primal feasible basis to another.
In contrast, the dual simplex algorithm works by moving from one dual feasible basis to
another. This latter approach is useful when we know a basic dual feasible solution but not
a primal one. This occurs, for example, when we have an optimal solution to a linear
programming problem that becomes infeasible because additional constraints have been
added.

Proposition 3.6. Let An be a dual feasible basis with bs < O.

a. If as} ;?; 0 for all j E N, then LP is infeasible.
b. Otherwise there is an adjacent dualfeasible basis AB(r), where B(r) = B U {r} \ {Bs}

and r E N satisfies asr < 0 and

38 1.2. Linear Programming

. {Cj _ } r = arg ~ln =-: a sj < 0 .
JEN asj

Proof

a. XBs + LjEN asjXj = bs < O. Hence if asj ~ 0 for all} EN, every solution to Ax = b
with Xj ~ 0 for all} EN has XBs < O.

b. If Xr enters the basis and XBs leaves we have

z = cBb + I CjXj - A(XBs + I aSjxJ + Abs
jEN jEN

= cBb + Abs + I (Cj - Aasj)Xj - AxBs,
jEN

where A = ~r ~ O. The basis AB(r) is dual feasible since A ~ 0, Cj - A asj ~ Cj for all}
a sr

with aSj ~ 0, and Cj - A aSj ~ 0 for all} with aSj < 0 by the choice of r. •

Dual Simplex Algorithm (Phase 2)

Step 1 (Initialization): A dual feasible basis A B.

Step 2 (Optimality Test): If AB is primal feasible, that is, b = AI} b ~ 0, then XB = band
x N = 0 is an optimal solution. Otherwise go to Step 3.

Step 3 (Pricing Routine): Choose an s with bs < O.

a. Feasibility Test. Ifasj ~ 0 for all} EN, LP is infeasible.

b. Basis change. Otherwise let

r = arg ~in{~j : aSj < O}
JEN asj

and B(r) = B U (r) \ (Bs)' Return to Step 2 with B <'- B(r).

In contrast to the primal algorithm, in the dual simplex algorithm the objective
function is nonincreasing. The magnitude of the decrease at each step is Icrbs/ars I. In the
absence of dual degeneracy, cr < 0 and the decrease is strict. As with the primal algorithm,
it is possible to give more specific rules that guarantee finiteness. Such an algorithm is
presented in Section IIA.3. A Phase 1 may be required to find a starting dual feasible basic
solution.

Example 3.1 (continued). We apply the dual simplex algorithm.

Step 1 (Initialization): Consider the basis AB = (a3, a2, as), which is dual feasible since
CN = (cJ, (4) = (-3 -2).

Iteration 1

Step 2: The basis is not primal feasible since XB = (X3, X2, xs) = (-36 20 33).

Step 3: The only possible choice is s = 1. We have all = -11, a14 = -2, and min(n, ~) = rr.
Hence XB, = x3leaves the basis, Xl enters the basis, andA B ~ (ar, a2, as).

3. The Primal and Dual Simplex Algorithms 39

Iteration 2. We have seen earlier that A B is primal and dual feasible and hence optimal.

The Simplex Algorithm with Simple Upper Bounds

It is desirable for computational purposes to distinguish between upper-bound constraints
of the form Xj ~ h j and other more general constraints. Hence we consider the problem

(ULP) ZLP = max{cx: Ax = b, ° ~ Xj ~ hj for j E {l, ... , n}).

Whereas the primal simplex algorithm described earlier would treat ULP as a problem
with m + n constraints, the simplex algorithm with upper bounds treats it as a problem
with m constraints.

Now the columns of A are permuted so that A = (AB' ANI' AN)' where AB is a basis
matrix as before, but the index set of the nonbasic variables N is partitioned into two sets
Nl and N 2. Nl is the index set of variables at their lower bound (Xj = 0), and N2 is the index
set of variables at their upper bound (Xj = hj).

Now we need to modify Definition 3.1.

Definition 3.4

a. The m x m nonsingular matrix A B is called a basis.
b. For each partition Nt, N2 of N, we associate the basic solution XB =

AIl(b - AN2hN) = b - AN2hN2' XNI = 0, XN2 = hN2.

c. If ° ~ b - AN2hN2 ~ hB, then (XB, XNI, XN) is a basic primal feasible solution, and
(B, Nt, N 2) indexes a primal feasible basis.

Now consider the dual of ULp,

min ub + vh

uA+v~c

v ~o,

and let v = (VB, VNI, VN2) and c = (CB, CNI, CN). The dual basic solution complementary
to (XB, XNI, XN2) is (u, VB, VNI, VN) = (cBAll, 0, 0, CN2 - cBANJ Observe that (u, v) is a
feasible solution to the dual if and only ifcNI = eNl - cBANl ~ ° and CN2 = CN2 - cBA N2 ~ 0.

Proposition 3.7. If (AB, ANI' AN2) is primal and dual feasible, then x = (XB, XNl, XNJ =

(b -~N h
N2

, 0, hN) is an optimal solution to ULP and (u, vBl ' VNl ' vN2) = (c~Bl, 0,0, cN2
- C BA N) is an optimal solution to its dual.

The modifications to the simplex algorithms are straightforward. BasesAB andAB" are
adjacent if (i) IB \ B' I = -IB' \ B I = 1 or (ii) B = B', and in both cases
IN~ \ NIl + IN2 \ N21 = 1. In the latter case, one nonbasic variable changes from its
lower to its upper bound, or vice versa. It is then easy to write out the rules for the choice of
entering and leaving variable, leading to primal and dual simplex algorithms for ULP.
Note that these algorithms choose the same pivots as the standard simplex algorithms, so
the advantage lies in handling a basis that is m x m rather than (m + n) x (m + n).

Addition of Constraints or Variables

After solving LP to optimality, it is common that one or more new constraints or
columns have to be added. In Part II, we will discuss cutting-place algorithms that add a

40 1.2. Linear Programming

constraint cutting off the optimal solution ofLP; we will also discuss problems having such
a large number of variables that we do not wish to introduce them all a priori.

If LP has been solved by a simplex algorithm, there is a straightforward way to use the
current optimal basisA B to solve the new problem. Suppose an inequality Ll=l djxj ~ do is
added that is violated by the optimal solution (XB, XN) = (A1ib, 0). Now if Xn+l is the slack
variable of the new constraint, then B' = B U {n + 1} indexes a new basis, and we obtain
LP(B'):

XB +ANXN = b

Xn+l + (dN - dBAN)xN = do - dBb

since

We see immediately that this basis is dual feasible and that it is primal feasible in all but the
last row, that is, d Bb > do. It is therefore desirable to reoptimize using the dual simplex
algorithm. Since the current solution is "nearly" primal feasible, it is likely that only a few
iterations will be required.

The procedure to be followed in adding new columns is dual to that described above.
Given a new variable Xn+l with column (~:::), we calculate its reduced price
Cn+l = Cn+l - cBA1ian+1 to check if the basis AB remains optimal. If Cn+l ~ 0, AB is still
optimal and the solution is unchanged. If Cn+l > 0, we can use the primal simplex
algorithm as A B remains primal feasible.

Example 3.1 (continued). We add the upper-bound constraint x I ~ 3, cutting off the
optimal solution x = ("* WOO H). Let Xl + X6 = 3, so that X6 is the new basic
variable. Starting from the optimal basis AB = (a2, as, at), we have dB = (0 0 1),
dN = (0 0), do = 3, andA B , = (a2' as, at, a6).

Iteration 1

Step 2: XB' = (W H "* -n).
Step 3: x6leaves the basis

min{- 16j2} = 8.
'11 11

Iteration 2
Step 2: XB' = G 6 3 ~) ~ O. Hence X = (3 ~ 0 ~ 6 0) is an optimal solution to

the revised problem.

4. Subgradient Optimization 41

Noting that the added constraint is an upper-bound constraint means that we can also
reoptimize without increasing the size of the basis by using the dual simplex algorithm
with upper bounds. In this case we have:

Iteration 1

so the basis is dual feasible.

XB = (40
11

75
11

36).
11

Because XB
I

= Xl> hI, the basis is not primal feasible.
The dual simplex algorithm then removes X 1 from the basis at its upper bound and

calculates (as above) that X4 enters the basis.

Iteration 2

AB = (a2' as, a4), ANI = (a3), AN2 = (al)'

CNI = (-1) ~ 0, CN
2
= (8) ;>- 0,

so the basis remains dual feasible.
X B = (~ 6 ~). Because 0 ~ x ~ h B, the basis is primal feasible and hence optimal.

4. SUBGRADIENT OPTIMIZATION

Here we consider an algorithm for solving linear programs whose roots are in non
linear, nondifferentiable optimization. Consider the linear program

I

C= min I Ajdj
j=l

I

I Aig ij = Cj for j = 1, ... , n
i=l

o ~ Ai ~ hi for i = 1, ... , I.

By duality it can be shown (see Section II.3.6) that this problem can be restated as

Now to solve the inner optimization problem for fixed x, we can set Ai = 0 if
di - Ll=l gijXj > 0, and Ai = hi otherwise. Thus there are a finite number of candidate
solutions Ak E R~, k E K, where A7 E CO, hJ. So we can rewrite the problem as

42 1.2. Linear Programming

or more generally as

(4.1) ,= max/(x),
xERn

where

(4.2) I(x) = min (aix - bi) and 1= {l, ... ,m} is a finite set.
iEl

In other words a general linear program can be transformed to the nonlinear optimiza
tion problem (4.1), where typically m is much larger than n. In this section, we present an
algorithm for problem (4.1).

Figure 4.1 illustrates I given by (4.2) for n = 1. The heavy lines give I(x), and point B is
the optimum solution x* with value' = I(x*).

We now develop an important property of the function!

Definition 4.1. A function g: Rn ..,. R I is concave if

g(ax l + (1 - a)x2) ~ ag(xl) + (1 - a) g(X2) for all Xl, x 2 ERn
and all 0 ~ a ~ 1.

Note that the definition simply states that the function is underestimated by linear
interpolation (see Figure 4.2).

This suggests the following proposition.

Proposition 4.1. Let/(x) = mini=!, ... , m (aix - bJ Then/(x) is concave.

•

~----------------------------~~x

Figure 4.1

4. Subgradient Optimization 43

/(X)

~--~----------------~--------~X

Figure 4.2

An alternative characterization of concave functions is given by the following proposi
tion.

Proposition 4.2. A/unction g: R n ~ R I is concave if and only iffor any x* E Rn there exists
an s E R n such that g(x*) + sex - x*) ~ g(x) for all x ERn.

The characterization is illustrated in Figure 4.3. Note that s is the slope of the
hyperplane that supports the set {(x, z) E R n

+
l
: z ~ g(x)} at (x, z) = (x*, g(x*)).

Comparing Figures 4.1 and 4.3, we see that in Figure 4.1 there is not a unique supporting
hyperplane at the points A, B, and C, while for the smooth function g in Figure 4.3, the
supporting hyperplane is unique at each point.

Figure 4.4 illustrates Proposition 4.2 for x E R2. Contours of {x: g(x) = c} are shown
for different values of c along with the supporting hyperplane given by sex - x*) = O. By
Proposition 4.2, if x satisfies sex - x*) ~ 0, then g(x) ~ g(x*). In other words, if
g(x) > g(x*), then sex - x*) > O. Thus if we are at the point x* and want to increase g(x),
we should move to a point x' with sex' - x*) > O. One possibility is to move in a direction
normal to the hyperplane sex - x*) = O. This direction is given by the vector s, which is,
when g is differentiable at x*, the gradient vector \l g(x*) = (ag(x*)j ax 1, ••• , ag(x*)j ax n) at
x = x*. It is well known that the gradient vector is the local direction of maximum increase
of g(x), and \lg(x*) = 0 implies that x* solves max{g(x): x ERn}.

The classical steepest ascent method for maximizing g(x) is given by the sequence of
iterations

~----------~~----------------~x

x*

Figure 4.3

44

~~--g(x)=c=g(x*)

~-+-+---g(x) =c+ 1

1.2. Linear Programming

Supporting hyperplane at x*: 8(X -x*) = 0

~---Normal direction atx*

~---~~x1

Figure 4.4

With appropriate assumptions on the sequence of step sizes {eJf }, the iterates {Xl} converge
to a maximizing point.

The potential problems that arise in applying this idea to a nondifferentiable concave
function are illustrated in Example 4.1.

Example 4.1

The contours!(x) = c for c = 0, -1, and -2 are shown in Figure 4.5.

f(x) = -2

8 2 = (1,2)
f(x) = -1

f(x) = 0

sl = (1, - 2)

Figure 4.5

4. Subgradient Optimization 45

In addition, at the point x* = (-2 0) we show the supporting hyperplanes Si(X - x*) = 0,
for i = 1, 2 where s 1 = (l - 2) and S2 = (l 2).

Now consider what happens when we move from x* in the direction s 1. We have

f(x* + 8s 1
) =f(-2 + 8, 0 - 28) = min{2 - 8, - 2 + 58, - 2 - 3 8}

= - 2 - 3 8 for all 8 ~ O.

Hencef(x* + 8s l
) <f(x*) for all 8> O. Similar behavior is observed for S2.

The example illustrates the nonuniqueness of the supporting hyperplanes and also
shows that a direction normal to a supporting hyperplane may not be a direction of
increase.

There is, however, an alternative point of view, which provides the intuitive justifica
tion for moving in a direction normal to any supporting hyperplane at x*. As we have
already noted, if s(x - x*) = 0 is any supporting hyperplane at x*, then any point with a
larger objective value than x* is contained in the half-space s(x - x*) > O. Now it is a
simple geometric exercise to show that if x is an optimal solution, a small move in the direc
tion s gives a point that is closer to x. In particular, there exists 8 such that for any 0 < 8 < 8,

IIx - (x* + 8s)1I < IIx - x*11

(see Figure 4.6.). The notation \lull, u ERn, represents the euclidean distance from 0 to u,

that is, .J uT u.
We now formalize the discussion given above.

Definition 4.2. rfg: Rn ~ Rl is concave, s ERn is asubgradientofg atx* ifs(x-x*) ~

g(x) - g(x*) for all x E Rn.

Definition 4.3. The set ag(x) = {s ERn: s is a subgradient of g at x} is called the
subdifferential of g at x.

Note that by Proposition 4.2, ag(x) =1= 0.

Proposition 4.3. Ifg is concave on Rn, x* is an optimal solution ofmax{g(x): x ERn} if
and only if 0 E ag(x*).

x*+ 8s

Figure 4.6

A
X

46 1.2. Linear Programming

Proof 0 E ag(x*) if and only ifO(x - x*) ~ g(x) - g(x*) for all x ERn if and only if
g(x) ~ g(x*) for all x ERn. •

Now we characterize the subdifferential off(x) given by (4.2).

Proposition 4.4. Letf(x) = mini=I. ... ,m (dx - bi) and let I(x*) = U:f(x*) = dx* - bJ

1. a i is a subgradient off at x* for all i E I(x*).

2. af(x*) = {s ERn: S = LiEI(x*) Aiai, LiEI(x*) Ai = 1, Ai ~ Ofor i E I(x*)}.

Proof

1. Ifi E I(x*), then ai(x - x*) = (aix - bi) - (aix* - bi) ~ f(x) - f(x*) for all x ERn, so
that ai E af(x*).

2. A proof is obtained by using statement 1 of Proposition 4.4 along with the Farkas
lemma. •

The following algorithm can use any subgradient at each step, but for computational
purposes one of the extreme directions a i will be chosen.

The Subgradient Algorithm for (4.1)

Step 1 (Initialization): Choose a starting point Xl and let t = 1.
Step 2: Given xt, choose any subgradient Sf E af(xt). If st = 0, then xt is an optimal

solution. Otherwise go to Step 3.
Step 3: Let xt+l = Xl + Otst for some Ot> O. (Procedures for selecting Ot are given below.)

Let t ~ t + 1 and return to Step 2.

Two schemes for selecting {Ot} are the following:

i. A divergent series: L~I Ot -+ 00, Ot -+ 0 as t -+ 00.

ii. A geometric series: at = aopt, or at = [[- J(xt)]pt/llstjj2 where ° < p < 1 andfis a
target, or upper bound on the optimal value' of(4.1).

Series i is satisfactory theoretically, since it converges to an optimal point. But in
practice the convergence is much too slow. Series ii, which is recommended in practice, is
less satisfactory theoretically. The convergence is "geometric", but the limit point is only
an optimal point if the initial choices of (0o, p) or (j, p) are sufficiently large. In practice,
appropriate values can typically be found after a little testing, and step sizes closely related
to a geometric series of type ii will be used in our applications of the subgradient algorithm
in Part II.

Ideally the subgradient algorithm can be stopped when, on some iteration t, we find
st = 0 E af(xt

). However, in practice this rarely happens, since the algorithm just chooses
one subgradient st and has no way of showing 0 E af(xt) as a convex combination of
subgradients. Hence the typical stopping rule is either to stop after a fixed number of
iterations or to stop if the function has not increased by at least a certain amount within a
given number of iterations.

4. Subgradient Optimization

Example 4.2. Consider maxlf(x): x E R2}, where

and

f(x) = min{h(x): i = 1, ... , 5}

fl(X) = Xl - 2X2 + 4

f2(X) = - 5x 1 - X2 + 20

f3(X) = 2XI + 2X2 - 7

f4(X) = Xl

fs(X) = X2·

47

We apply the subgradient algorithm with Ot = (0.9Y and initial point Xl = (0 0). The
results of25 iterations are shown in Table 4.1, in which the last column, i(t), gives the index
of the function that defines the subgradient. The best solution of value 2.30 is found at
iteration 13. The optimal solution is (Xl X2) = (~ ~) of value ~ = 2.353.

Table 4.1.

XII x~ I(x l
) pI i(t)

1 0.000 0.000 -7.000 0.900 3
2 1.800 1.800 0.200 0.810 3
3 3.420 3.420 -0.520 0.729 2
4 -0.225 2.691 -2.068 0.656 3
5 1.087 4.003 -2.919 0.590 1
6 1.678 2.822 0.033 0.531 1
7 2.209 1.759 0.937 0.478 3
8 3.166 2.716 1.455 0.430 2
9 1.013 2.285 -0.402 0.387 3

10 1.788 3.060 -0.332 0.349 1
11 2.137 2.363 1.411 0.314 1
12 2.451 1.735 1.372 0.282 3
13 3.016 2.300 2.300 0.254 5
14 3.016 2.554 1.907 0.229 1
15 3.244 2.097 1.681 0.206 2
16 2.215 1.891 1.212 0.185 3
17 2.585 2.262 2.062 0.167 1
18 2.752 1.928 1.928 0.150 5
19 2.752 2.078 2.078 0.135 5
20 2.752 2.213 2.213 0.122 5
21 2.752 2.335 2.083 0.109 1
22 2.862 2.116 2.116 0.098 5
23 2.862 2.214 2.214 0.089 5
24 2.862 2.303 2.256 0.080 1
25 2.941 2.144 2.144 0.072 5

48 1.2. Linear Programming

~--------------------------------~----~~Xl

Figure 4.7

We can also view the problem as one of finding (x 1, x 2) such that the smallest slack
variable Y i of the constraints

4

+ Y2 20

+ Y3 - 7

+ Y4 0

+ Ys = 0

is as large as possible (see Figure 4.7). With this geometry, each subgradient step is in the
direction of the normal to the constraint whose slack variable is smallest.

Because the magnitudes of the constraint coefficients are different, the five subgra
dients have different magnitudes which can substantially bias the progress of the algo
rithm. This suggests the use of normalized subgradients slllsil in the subgradient algo
rithm. For Example 4.2, this gives the iterations shown in Table 4.2. Note that more rapid
convergence is achieved using normalized subgradients.

Finally suppose that x ERn must satisfy some linear constraints, say x E C. Thus we
have the problem

(4.3) 11 = max{f(x): x E C}, where/ex) = . min (aix - bJ.
/=1, ... ,m

The subgradient algorithm for (4.3) is as before, except that Step 3 is modified to maintain
feasibility.

5. Notes 49

Table 4.2.

xi x~ f(x t
) pt i(t)

1 0.000 0.000 -7.000 0.900 3
2 0.636 0.636 -4.454 0.810 3
3 1.209 1.209 -2.163 0.729 3
4 1.725 1.725 -0.101 0.656 3
5 2.189 2.189 1.754 0.590 3
6 2.606 2.606 1.394 0.531 1
7 2.844 2.131 2.131 0.478 5
8 2.844 2.609 1.626 0.430 1
9 3.036 2.224 2.224 0.387 5

10 3.036 2.611 1.813 0.349 1
11 3.192 2.300 1.739 0.314 2
12 2.885 2.238 2.238 0.282 5
13 2.885 2.520 1.844 0.254 1
14 2.998 2.293 2.293 0.229 5
15 2.998 2.522 1.954 0.206 1
16 3.090 2.338 2.211 0.185 2
17 2.909 2.301 2.301 0.167 5
18 2.909 2.468 1.972 0.150 1
19 2.976 2.334 2.308 0.135 1
20 3.036 2.213 2.213 0.122 5
21 3.036 2.335 2.335 0.109 5
22 3.036 2.444 2.148 0.098 1
23 3.080 2.356 2.243 0.089 2
24 2.993 2.339 2.316 0.080 1
25 3.029 2.267 2.267 0.072 5

Step 3': Let yt+l = Xl + Otst for some Ot > ° and let xt+1 = arg minxEc /Ix _ yt+lll.

In other words, Xt+1 is the projection of yt+1 onto the feasible region C. A typical
application is to have C = R~, in which case Xj+1 = max(x; + OtS;, 0) for j = 1, ... , n

5. NOTES

Sections 1.2.1-1.2.3.

Chvatal (1983) gave a modern and comprehensive treatment oflinear programming, with
the exception of the significant post-1983 developments covered in Sections 1.6.2-1.6.4.
Some earlier books are Charnes and Cooper (1961), Dantzig (1963), Gass (1975), Hadley
(1962), and Murty (1976).

Section 1.2.4

The use of subgradient directions in the solution of large-scale linear programs that arise
from combinatorial optimization problems was instigated by Held and Karp (1970, 1971)
in a study of the traveling salesman problem. Held et al. (1974) investigated the behavior of
a subgradient algorithm in a variety of combinatorial problems. A theoretical analysis of
the convergence of subgradient algorithms is given by Goffin (1977). Subgradients and
subgradient algorithms are also discussed by Grinold (1970, 1972), Camerini et al. (1975),
Shapiro (1979a, b), and Sandi (1979).

1.3
Graphs and Networks

1. INTRODUCTION

In this section we give the terminology and some elementary results of graph theory. For
our purposes the language of graphs is nearly as important as the results, which are
elementary and given without proof.

In the remaining sections, we define some classical optimization problems on graphs
and present algorithms to solve them. All of these problems are linear programming
problems and, excluding the minimum-weight spanning tree problem, are in the class of
linear programming problems known as network flow problems. Their structure makes it
possible to solve them by special-purpose algorithms that are more efficient than the
simplex method.

These problems are of interest to us because they frequently arise as subproblems in the
solution of integer programs. The algorithms presented in the following sections are
examples of classes of algorithms that are used to solve some of the problems considered in
Parts II and III. We will introduce the ideas of recursive, greedy, augmenting, primal-dual,
and specialized simplex algorithms. So this chapter also has the pedagogical objective of
introducing different algorithmic approaches in a simple setting. To explain the basic ideas
succinctly, we have deliberately chosen to present simple, rather than efficient, versions of
the algorithms. Thus, in this chapter, the reader should not necessarily expect the
algorithmic details that yield efficient implementations.

A graph G = (V, E) consists of a finite, nonempty set V = {l, 2, ... , m} and a set
E = reb e2, ... ,en} whose elements are subsets of V of size 2, that is, ek = (i,}), where
i,} E V. The elements of V are called nodes, and the elements of E are called edges. Thus
graphs are a mechanism for specifying certain pairs of a set.

Graphs can be represented pictorially in R2 by points and lines. The points or nodes are
placed arbitrarily in the plane, and a line connects points i and} if e = (i,}) E E. A graph
with five nodes and seven edges is shown in Figure 1.1.

Graphs are useful models for many of the problems considered in combinatorial
optimization. We have used graphs informally in Chapter 1.1 to model network flow
problems, the traveling salesman problem, and so on. Generic examples of graph models
are derived from transportation and communication networks. Here V is a set of cities,
and E consists of those pairs of cities that are connected by a direct transportation or
communication link. Another set of generic examples concerns relationships between
objects. For example, Vis a set of people; and E are those pairs that are married, or of the
same sex, religion, and so on. The list of examples could go on and on. We are just going to
give one more that relates directly to some examples discussed in Chapter 1.1.

A graph G = (V, E) is called bipartite if there is a partition of V into disjoint sets
VI and V2 such that each edge joins a node in VI to a node in V2 (see Figure 1.2). Bipartite

50

1. Introduction

e3 4

e7

e1 e5 5

e6

2 e4 3

Figure l.1. V = (I, 2, 3,4, 5) and E = {el = (I, 2), e2 = (\, 3), e3 = (\, 4), e4 = (2,3), es = (3, 4), e6 = (3,5),
e, = (4, 5)}.

51

graphs arise in many applications. For example, in the assignment problem, VI is the set of
workers, V2 is the set of jobs, and (i, j) E E if and only if worker i can do job j. In facility
location problems, VI is the set of customers, V2 is the set offacilities, and (i, j) E E if and
only if facility j can serve customer i.

Unless otherwise specified, we assume that the edges are distinct and if e = (i,j), then
i * j. Such graphs are called simple.

We say that ei E E meets or is incident to v E V or that v is an endpoint of ei if v E ei'
One way to represent a graph is by its m x n node-edge incidence matrix A = (aij), where

au=g
if ej is incident to node i
otherwise.

The incidence matrix of the graph of Figure 1.1 is

el e2 e3 e4 es e6 e7
1 1 1 0 0 0 0 1
1 0 0 0 0 0 2

A= 0 1 0 1 1 0 3
0 0 1 0 1 0 4
0 0 0 0 0 5

Note that each column of A contains exactly two l's. The number of l's in row i equals the
number of edges incident to node i and is called the degree of node i. The set of edges
incident to node i is denoted by J(i). We have 0 ~ I J(i) I ~ m - 1 for all i E V. A graph is
called complete if it contains all possible edges, that is, I J(i) I = m - 1 for all i E V.

Figure 1.2

52 1.3. Graphs and Networks

Another way to represent a graph is by its m x m adjacency matrix A' = (aij), where

a'. = { 1 if (i,}) E E
I) 0 otherwise.

The adjacency matrix for the graph of Figure 1.1 is

0 1 1 0
0 1 0 0

A'= 1 0 1
1 0 0 1
0 0 0

The complement of G = (V, E) is G = (V, E), where E = {e: e $. E}. The complement
of the graph of Figure 1.1 is shown in Figure 1.3.

For U r;;. V, let E(U) = {(i,}): (i,}) E E, i E U,} E U}. E(U) is the set of edges with
both endpoints in U. If V' r;;. VandE' r;;. E(V'), then G' = (V: E') is said to be a subgraph
of G = (V, E). G' is a spanning subgraph if V' = V. G' is the subgraph induced by V' if
E' = E(V'). Figure 1.4 gives the subgraph induced by V' = {l, 2, 3, 4} of the graph of
Figure 1.1.

Two of the most important definitions that we need are paths and cycles. To define
these terms, we need another definition. A node sequence va, v I> ••• , V k> k ~ 1, is called a
VO-Vk walk if (Vi-I> Vi) E E for i = 1, ... ,k. Node Vo is called the origin, node Vk is called
the destination, and nodes {VI> ••• , Vk-l} are intermediate nodes. We can also represent a
walk by its edge sequence el> e2, ... , ek, where ei = (Vi-I> V;) for i = 1, ... ,k. The length
of the walk Vo, VI> ... , Vk or el> ... ,ek is k, the number of edges in it. A walk is called a
path if there are no node repetitions. In the graph of Figure 1.1, 1, 3,4, 5 is a 1-5 path. Its
edge sequence is e2, es, e7. A VO-Vk walk is said to be closed ifvo = Vk. A closed walk is said to
be a cycle if k ~ 3 and va' VI> ••• , Vk-l is a path. In the graph of Figure 1.1,1,3,5,4,1 is a
cycle oflength 4. A graph is said to be acyclic if it does not contain any cycles.

Let w be a VO-Vk walk with node repetitions. Consider a subsequence of nodes Vi, Vi+),
... , Vj = Vi that contains no node repetitions other than the beginning and end nodes.
(The subsequence is a cycle unless it contains three nodes). By deleting Vi+1> ... , Vj from w
we obtain a Vo- V k walk of smaller length. And by deleting all such subsequences, we obtain
a VO-Vk path. Referring to Figure 1.1, by deleting the indicated subsequences from

1, 3, 4, 1, 2, 3, 4, 3, 5
'-.,---I '---v---/

we obtain the 1-5 path 1, 2, 3, 5.

4

5

Figure 1.3

1. Introduction 53

4

2

Figure 1.4

Proposition 1.1. There is a unique partition of the nodes of a graph G into subsets VI,
... , Vp with the property that nodes i and j are in the same subset if and only if G contains
an i-j path.

Let Vk be a subset of the partition. The subgraph Gk = (Vb E(Vk)) is called a component
of G. G is said to be connected if it has one component. This means that there is a path
between each pair of nodes. The graph of Figure 1.1 is connected. The graph of Figure 1.3
has two components defined by V j = {l, 2, 4, 5} and V2 = {3}. When a component con
tains only one node, that node is said to be isolated.

An acyclic graph is called a forest. A connected forest is called a tree. The subgraph
obtained by deleting edges {e 4, e 5, e 6} from the graph of Figure 1.1 is a spanning tree (see
Figure 1.5).

The following proposition gives four useful characterizations of trees.

Proposition 1.2. Let G = (V, E) be a graph on m nodes. The following statements are
equivalent.

1. G is a tree.
2. There is a unique path between each pair of nodes in G.
3. G contains m - 1 edges and is connected.
4. G contains m - 1 edges and is acyclic.

5. G is connected and acyclic.

Trees are minimal (with respect to the number of edges) connected graphs. A leaf of a
graph is a node of degree 1. It is easy to show that every component of a forest with at least
two nodes contains at least two leaves.

Corollary 1.3

a. IfG =(V,E) isatreeand e' $. E, then G' = (V, E U {e'}) contains exactly one cycle.
b. IfC is the edge set of the cycle ofG' and e* E C \ {e'}, G* = (V, E U {e'} \ {e*}) also

is a tree.

4

2 3

Figure 1.5

54 1.3. Graphs and Networks

A walk is called odd or even according to whether its length is odd or even. The
following proposition characterizes bipartite graphs.

Proposition 1.4. A graph is bipartite if and only ifit has no odd cycles.

An important generalization of graphs is directed graphs. A directed graph or digraph
qz; = (V, d) consists ofa finite, nonempty set V = {I, ... , m} and a setd = {eb e2, ... , en}
whose elements are ordered subsets of V of size 2 called arcs. (Note that we use e for both
an edge of a graph and an arc of a digraph.) In a digraph, (i,}) and (j, i) are different
elements and we may have neither, one, or both of these elements. In the pictorial
representation of a digraph, arrows are used to indicate order. Figure 1.6 gives a digraph.

Digraphs are useful for modeling one-way relationships. For example, it is possible to
go directly from intersection i to intersection} directly (by a one-way street) but not
conversely, i is the father of} but not conversely, and so on.

By removing the directions from the arcs of a digraph qz;, that is, replacing the arcs by
edges and removing any edge duplications, we obtain a graph G that is said to underlie qz;.

The node-arc incidence matrix of a digraph qz; with m nodes and n edges is the m x n
matrix A with

aij~ { - ~
if ej = (k, i) for some k E V \ {i}

if ej = (i, k) for some k E V \ {i}

otherwise.

The node-arc incidence matrix of the graph of Figure 1.6 is

el e2 e3 e4 es e6 e7 eg e9
-1 -1 -1 0 0 0 0 1 0 1

1 0 0 -1 0 0 0 0 2

A= 0 1 0 1 -1 -1 -1 0 0 3
0 0 1 0 0 1 0 -1 -1 4
0 0 0 0 0 0 0 5

The node sequence vo, Vb ... , Vb k "'" 1, is a VO-Vk directed walk in qz; = (V, d) if
(Vi-b Vi) Ed for i = 1, ... ,k. The walk is called a VO-Vk directed path if there are no node
repetitions and is called a directed cycle if k "'" 2, and the only node repetition is Vo = Vk. In
Figure 1.6,1,3,4,1 is a directed cycle, but 1, 4, 3, 5 is not a directed path since (4,3) $. d.

2

Figure 1.6. V = {t, 2, 3, 4, 5} andst = eel = (I, 2), e2 = (1,3), e) = (1, 4)
e4 = (2,3), e, = (3, 2), e6 = (3, 4),
e7 = (3,5), es = (4, 1), e9 = (4, 5)}.

5

2. The Minimum-Weight or Shortest-Path Problem 55

By deleting the cycles from a vo-v k directed walk with v k '*' va, we obtain a vo-v k directed
path (see Figure 1. 7). Note that the figure does not unambiguously specify the walk.

Generally when we deal with digraphs we use the term path to mean a directed path.
However, there are times when we need to distinguish between a directed path in f!iJ and a
path in its underlying graph. Then we use the term dipath to refer to the directed path in f!iJ.
The same terminology applies to cycles.

A directed graph f!iJ is called strongly connected if there is a directed path between each
pair of nodes. When we say that f!iJ is connected, we mean that the underlying graph is
connected.

A digraph is called a tree if the underlying graph is a tree. A subgraph of f!iJ that is a tree
and spans f!iJ is called a spanning tree. A tree is called a branching if there is a node called
the root such that there is a directed path from the root to every other node. If the root r is
specified a priori, we will refer to an r-branching or branching with specified root r.

2. THE MINIMUM-WEIGHT OR SHORTEST-PATH PROBLEM

One of the simplest and most widely applicable combinatorial optimization problems is
the minimum-weight or shortest-path problem. An instance of the shortest-path problem
is given by a digraph f!iJ = (V, A), a function w : d R I (where We is the weight of arc e),
and designated origin and destination nodes 1 and m, respectively. The weight of a 1-m
path is the sum of the arc weights over all arcs in the path. (All paths considered here are
directed.) The problem is to find a 1-m path of minimum weight. Such a path is generally
called a shortest path, but it may not be a minimum-length path unless all arcs have equal
weight. Clearly iff!iJ is strongly connected, there is a shortest path since no path can contain
more than m - 1 arcs where I VI = m.

A generic example of the shortest-path problem is to find a minimum cost route
between two cities where, if e = (i, i), then We is the cost of a direct route between nodes i
and}. We will encounter many other examples throughout the text, including the finding
of shortest paths as a subroutine in the solution of more complex problems.

We first consider the special case in which all arc weights are nonnegative, that is,
w: d Rl. Thus, if p is a 1-m path contained in a 1-m walk p: then the weight of p is not
greater than the weight of p:

The algorithm we present for solving this problem actually solves the slightly more
general problem of finding minimum-weight paths from node 1 to all other nodes. It is
based on the following fundamental property of minimum-weight paths.

Vg

Figure 1.7. Directed walk: Yo, Vb V2, VIO, V), VI, V2, V), V4, V5, V7, Vs, V9, V5, V6. Directed path:
~ ~.

56 1.3. Graphs and Networks

Proposition 2.1. Suppose k is an intermediate node on a minimum-weight l-i path Pi.
Then the l-ksubpathpk a/pi is a minimum-weight l-kpath.

Proof Let w(P) be the weight of path p. The proof is by contradiction. So we suppose
thatlh is a l-k path and w(h) < W(Pk) (see Figure 2.1).

Let Pi = (Ph Pk;). Then Pi = (fib Pki) is a l-i walk and

This is a contradiction because Pi contains a l-i path Pi and W(jJi) ",;; W(fii) < W(Pi)' •

Now let g(i) be the weight of a minimum-weight l-i path and define g(l) = 0.

Dijkstra's Minimum-Weight Path Algorithm

Step 1 (Initialization): g(1) = 0, U = {l}, h(j) = Wlj if(1,j) E.st1, h(j) = 00 otherwise.
Step 2: Let i = arg(minjlw h(j». If the minimum is not unique, select any i that achieves

the minimum. Set U U U {i} and g(i) = h(i). If U = V, stop.

Step 3: For allj $. U with (i,j) E.st1, h(j) min(g(i) + Wij' h(j». Return to Step 2.

As stated, the algorithm determines only the weights of paths. To determine the path,
we simply keep a record of the node beforej on the path that has weight h(j). Thus, in the
initialization, we let p(j) = 1 if (1, j) E.st1 and j otherwise, and in Step 3 we set p(j) to i if
h(j) = g(i) + w ij. Thus when the algorithm terminates, p(j) is the node before j on some
minimum-weight I-j path.

Theorem 2.2. Dijkstra's algorithm is correct.

Proof The proofis inductive. The induction hypothesis is that after t passes through
Step 3, g(j) is correct for allj E U, and h(j) is the weight of a minimum-weight I-j path
restricted to having intermediate nodes in the set U. This is true initially with U = {l} and
g(1) = 0.

From the induction hypothesis, h(j) ~ g(j) for allj $. U. Suppose now that h(i) > g(i),
where i is as defined in Step 2. Then the minimum-weight l-i path must contain some
intermediate node not in U. Let k $. U be the first such node. Then by Proposition 2.1 the
subpath from 1 to k must be a minimum-weight l-k path so that its weight is g(k). But this
l-k path contains only intermediate nodes in U. Thus h(k) = g(k) ",;; g(i) < h(i), contra
dicting the choice ofi. Hence h(i) = g(i).

To see that for j $. U U {i}, h(j) now represents the weight of a minimum weight I-j
path with intermediate nodes in U U {i}, it suffices to observe that any such path either
remains as before or contains i as its last node, in which case h(j) = g(i) + wij. •

Figure 2.1

2. The Minimum-Weight or Shortest-Path Problem 57

In order to consider the number of computations required in Dijkstra's algorithm and
other algorithms to be given later, we need to introduce some new notation. Given
functionsf(n) andg(n) from zl to Zl, we saythatf(n) is O(g(n» if there is a constant c > 0
and n' E Zl such thatf(n).-,s; cg(n)" for all n ~ n'. Thus, for example if

f(n) = 7.2n3 + 4n 2 + 9n + 4,

thenf(n) is O(n3). In other words, the "big 0" notation allows us to approximateffrom
above by a simpler function cg with c unspecified.

Letf(m) be the maximum number of basic operations (additions and comparisons)
required by Dijkstra's algorithm on a graph with m nodes. At each step of the algorithm,
I U I is increased by 1. When I V \ U I = k, 1 .-,s; k .-,s; m - 1, Step 3 requires no more than k
additions and comparisons, and Step 2 requires finding the minimum of k numbers.
Hence fim) is bounded by c Lr~l k for some constant c. Thus Dijkstra's algorithm is
O(m2).

The efficiency ofthe algorithm can be seen by observing that each arc is examined only
once. Note that a slight improvement can be obtained by including in U at Step 2 all nodes
for which the minimum is achieved.

Example 2.1. We determine minimum-distance paths from Chicago to nine other
midwestern cities. The distances shown in Table 2.1 are miles/lO, and W ij = Wji for all i '*' j.

Table 2.2 gives the h(j) andp(j) at each iteration if they have changed from the previous
iteration. An asterisk indicates that h(j) = g(j).

Table 2.1.

2 3 4 5 6 7 8 9 10

l. Chicago 96 105 50 41 86 46 29 56 70
2. Dallas 78 49 94 21 64 63 41 37
3. Denver 60 84 61 54 86 76 51
4. Kansas City (MO) 45 35 20 26 17 18
5. Minneapolis 80 36 55 59 64
6. Oklahoma City 46 50 28 8
7. Omaha 45 37 30
8. St. Louis 21 45
9. Springfield (MO) 25

10. Wichita

Table 2.2.

Iteration 2 3 4 5 6 7 8 9 10

° (00,2) (00,3) (00,4) (00, 5) (00,6) (00, 7) (00, 8) (00,9) (00, 10)
1 96, 1 105,1 50,1 41,1 86,1 46,1 29,1* 56,1 70,1
2 92,8 * 79,8 50,8
3 *
4 100,7 * *
5 91,9 78,9 68,4*
6 76,10*
7 *
8 *

58 1.3. Graphs and Networks

8 5

2

Figure 2.2

Figure 2.2 gives the solution.
It is easy to see that the algorithm can fail when there are negative arc weights. An

example is shown in Figure 2.3. The algorithm would set g(3) = 3 at iteration 1, but
g(3) = W2.3 + g(2) = - 2 + 4 = 2. In particular, it is not valid to set g(i) = h(i) just because
h(i) is the smallest value of h(j) for j $. U.

However, if the graph does not contain any cycles of negative weight, the algorithm can
be modified to treat negative arc weights. The essential modification is that none of the
h(j) are set equal to g(j) until m iterations have taken place.

Bellman-Ford Minimum-Weight Path Algorithm

Step 1 (Initialization): hO (1) = 0, hO (j) = 00 for j E V \ {l}, k = 1.
Step 2: For allj E V,

Step 3: If hk(j) = hk-1(j) for all j E V, then g(j) = hk(j) for all j E V. Otherwise if
k < m, k <-- k + 1 and return to Step 2. If k = m, the graph contains a cycle of negative
weight.

Theorem 2.3. The Bellman-Ford algorithm is correct.

Proof We claim that hk(j) is the weight of a minimum-weight 1-j walk containing no
more than k arcs. This is trivially true for k = o. Suppose it is true for k - 1. At iteration k,
we consider all possible ways of adding an arc (i,j) to the end ofa minimum-weight l-i
walk containing no more than k - 1 arcs, and then we compare the weights of these walks
to the weight of a minimum-weight I-j walk containing k - 1 or fewer arcs. Thus, by

2

3

Figure 2.3

2. The Minimum-Weight or Shortest-Path Problem 59

2 -2 4 3 6

8
10

4
12

-4
4

3 -1 5 2 7

Figure 2.4

enumeration, hk(j) is the weight of a minimum-weight 1-) walk containing no more than
k arcs. Now if hm(j) = hm-1(j) for all) E V, then hk(j) = hm(j) for all k > m. Hence the
minimum-weight 1-) walk is of bounded weight for all) E V. This implies that I}j) contains
no cycles of negative weight so that hm-1(j) is the weight ofa minimum-weight 1-) path
containing m - 1 or fewer arcs. But since any 1-) path contains no more than m - 1 arcs,
hm-1(j) = g(j). On the other hand, if there exists a)* such that hmU*) < hm-1U*), there is a
1-)* walk containing m arcs that has lower weight than any 1-)* walk containing m - 1
arcs. Hence this walk contains a cycle of negative weight. •

To find a minimum-weight path or a negative-weight cycle, we use the bookkeeping
scheme proposed above for Dijkstra's algorithm. In other words if h\) = wi} + hk-1(i),
then we set pk(j) = i. To avoid having cycles of zero weight, set pk(j) = pk-l(j) whenever
hk(j) = hk-1(j).

At each of the m steps of the algorithm, we do an addition for each of the n arcs and then
for each node take the minimum over m numbers. Hence the number of computations is
cm(n + m), where c is a constant. In the case of a complete digraph, the number of
computations is O(m 3).

Thus the price we pay for being able to deal with negative arc weights in the absence of
negative-weight cycles is an increase in computation time by a factor of m. Although the
algorithm is able to detect a negative-weight cycle, it is unable to find a minimum-weight
path in this case. The general minimum-weight path problem is much more difficult.

Example 2.2. The numbers on the edges of the digraph of Figure 2.4 are the weights. The
problem is to find minimum-weight paths from node 1 to all other nodes or to detect a
negative-weight cycle. Table 2.3 gives hk(j) and pk(j) for k = 1, ... , 7.

The solution is shown in Figure 2.5.

Table 2.3.

Iteration 2 3 4 5 6 7

0 (0, 1) (00,2) (00, 3) (00,4) (00, 5) (00,6) (00, 7)
1 (8, 1) (4, 1)
2 (14, 3) (3,3)
3 (7,5) (5,5)
4 (10,6) (6,7)
5 (9,6)
6 (7,4)
7 No change

60

2

4

3

-2

-1

Figure 2.5

4 3

5 2

3. THE MINIMUM-WEIGHT SPANNING TREE PROBLEM

1.3. Graphs and Networks

6

7

Spanning trees are used in the design of communication networks in which each node
must be able to communicate with every other node. If the communication links are
expensive, then it is desirable to have just one path between each pair of nodes so that the
resulting network is a spanning tree.

Given a connected graph G = (V, E), let E be those pairs of nodes that can be joined
directly by a communication link. The weight of an edge e E E is W e ~ O. The problem is
to build a spanning tree of G of minimum weight, where the weight of a tree
T = (V, E (T)), E(T) s E, is LeEE(D We.

lt is easy to build a spanning tree from a connected graph. We scan the edges in any
order, say e!, e2, ... ,en, and include ei in the tree if and only if it does not create a cycle
with those edges already chosen from {e!, ... , ei-l}. More precisely, we have

Algorithm for Constructing a Spanning Tree

Step 1 (Initialization): Edge ordering e!, e2, ... , en, EO = 0, k = 1.
Step 2: If H = (V, E k-1 U {ek}) is acyclic, then Ek = E k-1 U {ek}. Otherwise Ek = E k-1•

Step 3: If IEk I = m - 1, stop, (V, Ek) is a spanning tree. Otherwise k k + 1, and return
to Step 2.

To execute Step 2, we keep track of the components of (V, E k-1). Then ek is included if
and only if it joins two nodes that are in different components of (V, E k- 1). Thus each time
we add an edge, the number of components is decreased by 1.

Now to find a minimum-weight spanning tree we simply order the edges according to
increasing weight. Thus Step 1 is replaced by:

Step l' (Initialization): Edge ordering e!, e2, ... ,en such that wee!) ~ w(e2) ~ ...
~ ween). EO = 0, k = 1.

The algorithm consisting of Steps 1', 2, and 3 is called a greedy algorithm because at
each iteration the edge of least weight is considered and included in the tree if it does not
create a cycle. The greedy algorithm does what is locally best without regard to future
consequences.

We now show that the greedy algorithm produces a minimum-weight spanning tree.
However, for most combinatorial optimization problems, greedy algorithms are merely
heuristics for finding a good feasible solution (see Section 11.5.3).

3. The Minimum-Weight Spanning Tree Problem 61

" T* T

Figure 3.1

Theorem 3.1. The greedy algorithm produces a minimum-weight spanning tree.

Proof Suppose the greedy algorithm produces the tree ro = (V, EO) and ro is not
optimal. Let T* = (V, E*) be an optimal tree with the property that I E* \ EO I is minimum
over all optimal trees. Note that E* \ EO :f= 0 and EO \ E* :f= 0. Let eO be a smallest-weight
edge in EO \ E*. Consider the set of edges E* U {eO}, which, by Corollary 1.3, contains a
unique cycle. Let C be the edge set of the cycle. Now by Corollary 1.3, there is an edge
e* E C \ EO such that the graph (V, E* U {eO} \ {e*}) is a tree, say t (see Figure 3.1).
Moreover, t is an optimal tree, since w eO ~ We', where the inequality holds because the
greedy algorithm selected eO. Finally I it \ EO I = I E* \ EO I - 1, which contradicts the
choice of T*. So ro is optimal. •

Unless G is a sparse graph, that is, contains a very small number of edges, the dominant
step of the greedy algorithm with respect to the number of computations is Step 1'. Since it
takes n log n computations to order the edges by increasing weight, the total number of
computations is O(n log n). There are, in fact, more efficient greedy-like algorithms as
well as others designed specifically for sparse graphs.

The greedy algorithm is still applicable if the graph contains edges with negative weight.
It also applies to the problem of finding a maximum-weight spanning tree. Here we order
the edges by decreasing weight. Note that if there are some edges of negative weight, we
might prefer to solve the problem of finding a maximum-weight acyclic subgraph. To
solve this problem, we simply terminate the greedy algorithm as soon as the last edge of
positive weight has been considered.

Example 3.1. A minimum-weight spanning tree for the graph of Example 2.1 is shown in
Figure 3.2. After including the two edges of weight 21, edges (9, 10) and (4,8) are skipped
because they would create cycles. Several other edges are skipped before the final edge
(3, 10) is included. The example suggests why a full sort is not needed. Note that after a tree
has been found on V' = {2, 4, 6, 7, 8, 9, 1O}, only edges that are incident to n, 3, 5} need to
be considered.

5

29

6

2

Figure 3.2

62 1.3. Graphs and Networks

4. THE MAXIMUM-FLOW AND MINIMUM-CUT PROBLEMS

Network flow problems were introduced in Section 1.1.3. In the general linear minimum
cost network flow problem, we are given a digraph fliJ = (V, d), a function d: d R~ where
di) is called the capacity of arc (i, i), a function w: d Rn where wi) is the unit cost offlow
on arc (i, i), a function b: v R m where b; is called the supply at node i (b; < 0 is called a
demand), and L;Ev b; = O. Afeasibleflow in fliJ is an x: d --> R~ that satisfies

(4.1) I Xi) - I Xj; = bi all i E V
jEo-(i) jEo-(i)

(4.2) Xij~dij all (i,}) Ed,

where c5+ (i) = {j: (i,}) Ed} and c5- (i) = {j: (j, i) Ed}.
The equations (4.1) express the node conservation relations indicating that flow out

flow in = supply, and (4.2) indicates that the flow in each arc has a specified upper bound.
When there is no upper bound on xij, we take dij = 00.

The general minimum-cost network flow problem is to find a feasible flow that
minimizes the objective function

(4.3)

We will consider this problem in Section 6.
An important special case is the transportation problem. Here CZiJ = (VI U V2, d) is

bipartite and bi > 0 for all i E VI and b i < 0 for all i E V2• We will study the transportation
problem in Section 5.

In this section we consider the maximum-flow problem. Two nodes sand t, called the
source and sink, respectively, are specified, bi = 0 for all i E V, wlS = - 1, wi) = 0 other
wise, and dts = 00. In other words, the problem is to find a feasible flow that maximizes the
flow on arc (t, s) with no exogenous supplies or demands. Observe that any feasible flow
that maximizes XIS will have X;s = 0 for i '*' t and Xlj = 0 for} '*' s (see Figure 4.1). Hence
XIS = LjEo-(s) Xsj = LiEo-(t) Xi/.

SO, stated in its customary form, the maximum-flow problem is to maximize the flow
out of the source or, equivalently, the flow into the sink, subject to the constraints of flow
out equal to flow in for all the other nodes. Thus the maximum-flow problem asks the

Figure 4.1

0+-) -----+-()
Figure 4.2

4. The Maximum-Flow and Minimum-Cut Problems 63

Figure 4.3

question of how much flow can be sent from the source to the sink subject to conservation
at the nodes and capacities on the arcs.

We now introduce the minimum-cut problem. Let (U, U) be a partition of V such that
s E Uandt E U. The set of arcs J+(U) = {(i,j) Ed: i E U,j E U}iscalledans-tcut (see
Figure 4.2). The capacity of the cut 15+(U) is ~(i,j)EO+(U) dij. The minimum-cut problem is to
find a cut of minimum capacity.

It is apparent from Figure 4.2 that all flow from s to t must pass through the arcs of
J+(U). Hence for any feasible flow, we have

and, in particular,

(4.4)

Xts ~ L dij for all s-t cuts U,
(i,j)Eo+(U)

max Xts ~ min L dij.
x feasible (U:sEU,trf-U) (i,j)Eo+(U)

The algorithm we present in this section finds a maximum flow and minimum cut for
any maximum-flow problem and also proves the following two theorems.

Theorem 4.1. The value of a maximum flow equals the capacity of a minimum cut.

Theorem 4.2. If all of the arc capacities are integer-valued, then there is a maximum flow
x E z:..

An important concept in finding a maximum flow is that of an augmenting path. Given
a flow x, we say that arc (i,j) is saturated ifxij = dij. Let X be any feasible flow and letp be
the arcs of an s-t path with no saturated arcs. Then min(i,j)EP (dij - xij) = 6. > 0, and x is
not a maximum flow because we can increase Xts by 6. by increasing xij by 6. for all
(i,j) E p. Ifno such path exists, x is said to be a blockingflow. A blocking flow may not be
maximum.

Example 4.1. In Example 4.1 (see Figure 4.3), the numbers on arc (i,j) are the pair
(xij, dij).1t is easy to check that each of the four s-t paths contains a saturated arc. But we
can increase X ts by 1 as shown in Figure 4.4, to obtain the flow given in Figure 4.5. The arc
from 2 to 4 in Figure 4.4 indicates that we have returned to node 2 the unit of flow
previously shipped from 2 to 4.

Figure 4.4

64 1.3. Graphs and Networks

Figure 4.5

Note that the flow in Figure 4.5 is maximum because U = {l, 3, 4} generates the cut
<5+(U) = {(l, 2), (3, 5), (4, 6)} of capacity 5 (see Figure 4.6).

Given a flow x, define the digraph fi.iJ(x) = (V, d(x)) by

d(x) = {(i,)): (i,)) Ed, Xij < dij} U {(i,)): (j, i) Ed, Xji > O}
= dj(x) U dr(x).

We say that dj(x) is the set of forward arcs and dr(x) is the set of reverse arcs.
Corresponding to Figure 4.3, we obtain the graph shown in Figure 4.7.

An s-t path in fi.iJ(x) is called an augmenting path with respect to x.

Proposition 4.3. A feasible flow x is not maximum, if there is an augmenting path with
respect to x.

Proof Let p be the set of arcs in an augmenting path and let PI = p n d j(x) and
Pr = P n dr(x). Let

6 = min{ min (du - xu), min Xji}'
(i,j)EPf (i,j)Ep,

By the definition of dj(x) and dr(x), 6 > O. We claim that by increasing Xu by 6 for all
(i,)) E PI and decreasing xji by 6 for all (i,)) E p" X Is increases by 6. By choice of 6, the
capacity constraints are still satisfied. Also the flow out of s increases by 6, and the flow
into t increases by 6, so XIS increases by 6. Now consider a node) on the path. If the arcs in
and out of) are both forward (reverse) arcs, then the flow in and the flow out of i goes up
(down) by 6. On the other hand, ifone of the arcs is a forward arc and the other is a reverse
arc, there is no change of flow in or out. Hence conservation of flow is maintained. •

2

2

Figure 4.6

4. The Maximum-Flow and Minimum-Cut Problems 65

Figure 4.7

We will prove the converse of Proposition 4.3 by showing that when no augmenting
path exists, there is a cut of capacity XIS' Before doing so, we present a simple algorithm for
finding an augmenting path if one exists.

In the algorithm, nodes) '* s get a label of the form (p(j), ll), where p(j) is the node
from which) receives flow and II is the amount of flow sent fromp(j) to}. The source s is
initialized with the label (s, (0) which means that s can receive any amount of flow
exogenously. Figure 4.8 shows the labeling for forward and reverse arcs on .@(x).

The labeling can also be done directly on the original graph, which is what we do in the
algorithm given below, as shown in Figure 4.9.

Augmenting Path Algorithm

Step 1 (Initialization): x = ° (or any feasible flow). Source is labeled (s,oo). All nodes are
unscanned, and all nodes except s are unlabeled. Let i = s.

Step 2 (Scan node i): For all} such that (i,) E d(x), xij < dij, and) is unlabeled, label)
(i, min(ll, dij - Xi)' For all) such that (j,i) E d(x),) is unlabeled, and Xji > 0, label

} (i, min(ll, xji»' Node i is scanned.
Step 3: Ifthe sink is labeled, go to Step 4. If not, choose a labeled and unscanned node i

and go to Step 2. Ifnone exists, the current flow is maximum.
Step 4: Suppose t has the label (P(t), ll}. An augmenting path has been found. Use the first

element of each label to trace the path back to s. Increase the flow by II on all forward
arcs of the path, and decrease the flow by II on all reverse arcs. Erase all labels and
return to Step 1.

Note that to find one augmenting path, the number of computations is proportional to
n, since each arc is considered no more than once.

Forward arc (xij < d ii)

(P(i), 6) (i, min(6, dij - Xij»

C)----------~.Q)
(Xij, dij)

Reverse arc (Xii> 0)

(P(i),6) f:\/' (i, min(6, Xii»

~------------------~.-CZ)
Figure 4.8

66 I.3. Graphs and Networks

(P(i), ,0,) (i, min(,0" dij - Xij)) if xij < dij

01---------..· 0
(Xij, dij)

(P(i), ,0,) (i, min(,0" Xj;)) if xji > 0

0~·-----~Q)
(Xji, dji)

Figure 4.9

Example 4.1 (continued). The algorithm is applied to the example shown in Figure 4.3.
The labels are shown in Figure 4.10. Nodes are scanned in the order (1,3,4,2,5,6). The
augmenting path has been shown in Figure 4.4. We now label again as shown in Figure
4.11.

Nodes 1,3, and 4 are scanned and no further labeling is possible. Now observe that the
cut generated by the set oflabeled nodes U = {l, 3, 4}, that is, £5+(U) = {(1, 2), (3, 5), (4, 6)},
has capacity equal to 5 so that this flow is maximum.

Theorem 4.4. A feasible flow x is maximum if and only if there is no augmenting path
with respect to x.

Proof We have already shown (Proposition 4.3) that the existence of an augmenting
path implies that the flow is not maximum. Now suppose there is no augmenting path and
let U = {i E V: i is scanned in the augmenting~ath algorithm}. Then s E U,
t $. u, xij = dij for all (i,j) E £5+cU), and xij = 0 if i E U andj E U. Hence the flow into
node t equals LU,j)E&'(U) xij = LU,j)E&'(U) dij. In other words, we have shown that if the
algorithm does not find an augmenting path, it defines a cut of capacity equal to the flow
into node t. •

Note that we have also proved Theorem 4.1, which also can be proved by linear
programming duality. Theorem 4.2 also is a consequence of the augmenting path
algorithm. The flow change in Step 4 either equals x ij for some (i, j) E sti with positive flow
or dij - xij for some (i,j) E sti with xij < dij. Hence if we begin the algorithm with any
integral flow, we terminate with an integral maximum flow when all of the arc capacities
are integral.

Therefore, when the capacities are integral, the number of augmentations is bounded
above by the value of the maximum flow. In fact the bound can be achieved with a poor

(4, 1) (3,4)

(1,6) (2, 1)

Figure 4.10

4. The Maximum-Flow and Minimum-Cut Problems 67

(3,3)

0,5}

Figure 4.11

choice of augmenting paths. In the example of Figure 4.12, each of the arcs except (2,3)
has capacity K, where K is a large positive integer. The maximum flow of2K can be found
with augmentations of K along the paths s, 2, t and s, 3, t. On the other hand, it is possible
to send one unit of flow along the augmenting paths s, 2, 3, t, then one unit along the
augmenting path s, 3, 2, t, and so on. To achieve the maximum flow in this way requires
2K augmentations.

Fortunately, a very natural way of selecting a next node to be scanned in the augment
ing path algorithm yields a bound on the number of augmentations that is independent of
the capacities.

Proposition 4.5. If at each step of the augmenting path algorithm a shortest-length
augmenting path is found, then the number of augmentations is bounded by mn.

Although we omit the details, the essential idea of the proofis to show that after, at most,
n augmentations, the length of an augmenting path increases.

Note that we don't need a general shortest-path algorithm to find an augmenting path
with the fewest number of arcs. We simply use breadth-first search to choose the next node
to be scanned. That is, after s is scanned, all labeled nodes} with (s,}) Ed are scanned.
These are the labeled nodes of distance 1 from s. In general, all labeled nodes of distance k
from s are scanned before any of distance k + 1 from s.

Figure 4.12

68 1.3. Graphs and Networks

There is another class of algorithms for the maximum-flow problem that are not based
on augmenting paths, and some of these have a smaller bound on the number of
computations than the breadth-first algorithm for finding augmenting paths. We will not
give the details here. The basic idea is that a set of, at most, n - 1 blocking flows are found
and then combined into a maximum flow.

5. THE TRANSPORTATION PROBLEM: A PRIMAL-DUAL ALGORITHM

The transportation problem introduced in the previous section can be formulated as a
minimum-cost flow problem on a bipartite digraph gz; = (Vj U V2, si), where Vj = {l, ... ,
m j} is the set of sources, V2 = {m j + 1, ... , m} is the set of sinks, and si =

{(i,}): i E V),} E V2}. Thus we make the assumption, without loss of generality, that there
is an arc from each supply node to each demand node. The unit shipping cost from i E V j

to} E V2 is wij. Thus if there is really no arc from i to}, we take wij to be very large. Node
i E V j has a positive integral supply ai, and node} E V2 has a positive integral demand of
bj • The flow out of a source is required to equal its supply, and the flow into a sink must
equal its demand. Thus a necessary condition for feasibility is LiEV, ai = LjEV, b j •

The transportation problem is to find a flow x E R~, n = lsi I, that satisfies the supply
and-demand conservation equations at minimum cost. It can be formulated as the linear
program

(5.1)

minI I WijXij
iEV, jEV,

I Xij = ai for i E Vj

jEV,

I Xij = bj for} E V2
iEV,

xER~.

Note that the problem remains unchanged by adding a constant to all of the wij, so there is
no loss of generality in assuming W ij ~ 0 for all i and j.

When ai = bj = 1 for all i and j and m = 2m), (5.1) is the assignment problem (see
Section 1.1.2).

It is easy to accommodate some variations of the transportation problem in the
formulation (5.1). For example, if LiEV, ai > LjEV, b j and the source node constraints are
LjEV, xij ~ ai, then we add a "dummy" sink with demand LiEV, ai - LjEV, b j and set the
unit shipping costs to zero for arcs from Vj to the dummy node.

The dual of(5.1) is

max I aiUi + I bjvj

(5.2) iEV, jEV,

The complementary slackness conditions for this pair oflinear programs are

or

(5.3)

5. The Transportation Problem: A Primal-Dual Algorithm 69

Figure 5.1

where wij = wij - Ui - Vj. Thus (u, v) E R m is dual feasible if

(S.4)

(We implement wij "very large" simply by assuming wij > 0; then, by complementarity,
xij = 0.) Thus x E R~ and (u, v) E R m are optimal solutions to the primal and dual if they
satisfy (S.3), (S.4), and

(S.S) I Xij = ai for i E Vb I Xij = hj for} E V2•
JEV, iEVI

The primal-dual algorithm for the transportation problem maintains (S.3), (S.4), and

(S.6) I xij";:; ai for i E Vb I Xij";:; hj for} E V2•
JEV, iEVI

It is easy to find an initial solution that satisfies these conditions. For example, take
u? = minjEv, wij for i E VI and vJ = miniEVI (wij - u?) fori E V2, and XO = O. At each
major iteration the algorithm increases LiEVI LjEV, xij by an integer and stops when (S.S) is
satisfied.

Given W, to see whether (S.S) can be satisfied, we consider the problem of maximizing
LiEVI LjEV, xij subjectto (S.3), (S.6), and X E R~. This is ans-t maximum-flow problem on
the digraph ~(w) = (VI U V2 U {s, t}, dew»~, where

dew) = {(i,}) Ed: wij = O} U {(s, i): i E VI} U {(j, t):} E V2}.

The capacity of arc (s, i) is ai for i E Vb and the capacity of arc (j, t) is hj for} E V2• All
other arcs have "very large" capacities. If the maximum flow equals LiEVI ai, we have
found an optimal solution. Ifnot, we change the dual variables.

Consider the status of the node labels when the maximum-flow algorithm terminates
(see Figure S.1). Note that ifi E T1 and} E V2 \ V;, then wij > 0 otherwise, we could label
} from i. Also if i E VI \ T1 and} E V;, then xij = 0 otherwise, we could label i from}.

70 1.3. Graphs and Networks

We now change the dual solution as follows. Let h = miniEVi,jEV,\V; Wij > 0 and define
new values for the dual variables by

(5.7)

Hence the new reduced costs are

(5.8)

i E V;, } E V2 \ rz
i E V j \ V;, } E rz
otherwise.

By the choice of h, dual feasibility is maintained. Complementary slackness is main
tained, since for i E V; and} E V2 \ rz we have Xij = 0 by definition of @(w), and for
i E V; \ Vj and} E rz we have Xij = 0 by the labeling rules.

The important outcome is that Wi'}' = 0 for some i* E V; and}* E V2 \ rz so that at
least one new arc from i E V; to} E V2 \ rz is added to @(w) to obtain @(W). Some arcs
may also be deleted from i E V j \ V; to} E rz. Now we can transfer the final labels from
@(w) to @(W) and continue with the maximum-flow algorithm, with the assurance that at
least one node in V2 \ rz will be labeled. This proves that after, at most m - m j such dual
changes, the maximum flow will be increased by at least one unit. Thus the whole process
is applied, at most, LiEV, ai times.

Primal-Dual Algorithm for the Transportation Problem

Step 1 (Initialization): t = 0, XO = 0, u7 = minjEv, Wij for i E Vb vJ = miniEv, (Wi) - u7) for
} E V2, and wi} = wZ - u7 - vJ for all i and}.

Iteration t

Step 2: Solve the maximum-flow problem over @(w l). Let xij be the flow from i E Vj to
} E V2 for all i and}.

Step 3: If the maximum flow equals LiEV, ai, then Xl = (x~j) is an optimal solution.
Otherwise, adjust the dual variables and reduced costs using (5.7) and (5.8). Keep the
labels from the solution of the maximum-flow problem and return to Step 2 with
t<-t+1.

We have already proved the following theorem.

Theorem 5.1. The primal-dual algorithm solves the transportation problem with, at
most, LiEV, ai applications of the maximum-flow routine,

Corollary 5.2. There is an integral optimal solution to the transportation problem.

Proof At each iteration, the solution Xl is obtained as the solution to a maximum-
flow problem with integral capacities and hence is integral. •

5. The Transportation Problem: A Primal-Dual Algorithm 71

Example 5.1

w~ (~
3 7 3 8

1;) 6 12 5 7 a = (4 5 3 5)
8 3 4 8 2 ' b = (3 3 6 2 1 2)

11 6 10 5 10 9

UO = (3 5 2 5), VO = (0 0 1 0 2 0), and

w"~G
0 3 0 3

n 1 6 0 0
6 0 2 4

4 0 3

Solving the maximum-flow problem on 0J(WO) yields

-/ -/ -/ -/

/c 3 0 0

D xO= -/ ~ 0 0 1 1
0 3 0 0

-/ 0 0 0 0 0

Rows and columns corresponding to labeled nodes are noted with a check mark. Hence
h = W;6 = 2, u l = (5 7 2 7), VI = (-2 -2 1 -2 0 0),

and

-/

x'~/u
-/ 0

-/ -/

o 103
1 400
804 6

2 0 3

-/ -/
3 0 0 0
0 0 1 1
0 3 0 0
0 0 0 D

72 1.3. Graphs and Networks

N h -I -I 2 ow = W22 = W42 = 1, U = (5 8 2 8), v2 = (-3 -2 1 -3 -1 0),

w'~u
0 1 4

n 0 3 0 0
8 0 5 7
0 0 3

and

./ ./ ./ ./ ./

'C
2 0 0 0

n x 2=./ ~ 0 0 1 1
0 3 0 0

./ 0 0 0

N h -2 -2 3 ow = W 13 = W 43 = 1, U = (6 9 2 9), v3 = (-4 -3 1 -4 -2 -1),

w'~o
0 0 1 4

r} 0 2 0 0
9 0 6 8
0 0 0 3

and we obtain an optimal flow given by

x'~o
2 0 0 0

n 0 0 1 1
0 3 0 0

3 0

When the total supply is large, there is a simple way to reduce the maximum number of
possible augmentations from LiEVI ai to m [log2 (maxi,j (ai,bj))]. The technique is called
scaling. An integer a < 2k can be written as a = L7.:6 6i 2i, where 6i E {O, 1} for i = 1, ... ,
k - 1. The binary representation of a is the string (6k-1 6k-2 ... 6o). The scaling technique
represents each supply and demand in binary. If2k- 1 <s; maXi,j (ai, bj) < 2\ then the length
of each string is k. Hence in Example 5.1, al = 100, a2 = 101, a3 = 011, and so on.

We now consider an approximate problem with supply-and-demand vectors (aD, bD)

in which only the leading digit is considered, that is, aD = 1 if a. ~ 2k- 1, aO = 0 other-
I I I

wise, or a? = [aJ2k-Ij for i E VI and bJ = [b)2k-Ij for j E V2. In example 5.1, k = 3, aU =
(1 1 0 1) and bO = (0 0 1 0 0 0). As the example shows, supply and demand
may now be unequal. Without loss of generality, assume LiEVI a7 ~ LjEV, bJ, so there may
be a need for a dummy sink node. Since LiEVI a? + LjEV, bJ <s; m, the first approximation
can be solved with m or fewer augmentations. Suppose the solution is (XO, WO), where
XO E Z,:, does not include shipments to the dummy sink.

We now begin the next approximation with the optimal reduced costs WO, the flow 2xo,
and the supplies and demands a} = [aJ2k-2j for i E VI and b) = [b)2k-2j for j E V2. Since

5. The Transportation Problem: A Primal-Dual Algorithm 73

~iEVI a? ~ ~jEV, bJ, we have ~iEVI x~ = bj for all} E V2• Thus the unsatisfied supplies and
demands are

ti) = a) - 2 2: x~.;;;; 3 for i E VI
jEV,

and

Hence ~jEV2 bJ .;;;; m, so no more than m augmentations are required, other than the trivial
ones to the dummy source or sink.

The procedure continues in this way. In the pth approximation, af-I =

[a;/2 k -Pj for i E VI and bj-I = [bj /2 k- Pj for} E V2• The primal solution from the previous
approximation is doubled to get the unsatisfied supply and demand, at least one of which
does not exceed m. The dual variables are kept from one iteration to the next. The
procedure is applied k = [log2 (maxi,j (ai, bj »] times to find an optimal solution.

Example 5.1 (continued). We apply the scaling technique to solve this problem. The
initial supplies and demands are aO = (1 1 0 1) and bO = (0 0 1 0 0 0), so to
accommodate the imbalance, we add a dummy sink with a demand of 2 and costs of
Wi7 = 0 for all i. An optimal solution is given by UO = (0 0 -4 0),
VO = (0 0 7 0 0 0 0),

wo~ (;

3 0 3 8 5

n 6 5 5 7 11
12 0 8 12 6

11 6 3 5 10 9

and

~~G
0 1 0 0 0

D·
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

The initial flow for the second approximations is 2xo, and the supplies and demands are
~ven by a l = (2 2 1 2) and b l = (1 1 3 1 0 1). Thus til = (0 2 1 2) and
b l = (1 1 1 1 0 1). Now there are five units of unsatisfied supply. Since
~iEVI a) = ~jEV2 bJ, no extra source or sink is needed.

74 1.3. Graphs and Networks

An optimal solution to the second approximation is u l = (0 7 -4 3),
VI = (0 1 5 0 2 -2),

and

o 0
020
9 0 6
o 0 0

o
1
o
o

1
o

o
o
o
1

4
o
8
3

o
o
o
o

The initial flow for the third approximation is x = 2XI, and a2 = a =

(4 5 3 5), b2 = b = (3 3 6 2 1 2), il2 = (0 1 1 1), and .52 = (1 1 0
o 1 0). Hence there are three units of unsatisfied supply. No dual variable change is
required, and we immediately obtain an optimal solution given by

o
1
o
2

2
o
3

o
o
o
2

o
1
o
o

There is another interpretation and implementation of the primal-dual algorithm that
is also of interest. Note that for any u and v, the instances of the transportation problem
with cost matrix W = (wij) and W = (wij - Ui - Vj) have the same optimal solutions, since
for any feasible x we have

L L wijxi} - L L WijXij = L L (Ui + Vj) xi}
iEV\ JEV, iEV\ JEV2 iEV\ JEV,

= L Uiai + L vjbj.
iEV\ JEV,

The dual part of the primal-dual algorithm eventually finds a matrix W ~ 0 such that
there is a feasible solution x of cost LiEV\ LjEV2 W ijX i} = O. Since zero is a lower bound on the
cost of any solution with W ~ 0, such a solution must be optimal. The primal part of the
algorithm uses maximum flow to find the solution of cost zero when one exists. In other
words, with respect to the matrix w, all flow is sent over paths of zero cost.

We want to point out that this can be achieved by a different implementation that uses
a minimum-cost path algorithm to calculate the dual variables. Consider the digraph
@ = (VI U V2 U {s, t}, .s!1), where there is a directed arc from the source s to each node in
VI, a directed arc from each node in V2 to the sink t, and arcs (i,j), i E VI,j E V2 if it is
possible to ship directly from i to j. Arcs going out of the source or into the sink have zero
cost and a capacity equal to the corresponding supply or demand. Arc (i,j),
i E VI,j E V2, has cost wi} and infinite capacity.

5. The Transportation Problem: A Primal-Dual Algorithm

Minimum-Cost Path Augmentation Algorithm

Step 1 (Initialization): k = 0, XO = 0, f00 = f0.

75

Step 2 (Iteration k): Let the current flow be Xk. Find a minimum-cost path from s to t of
the form (s, iO, ... ,l, t). Let

Let

L2 = min{xt: (j, i) is on the path with i E VI, and) E V2}.

Ifno arcs from) E V2 to i E VI are on the path, let L2 = 00. Let L = min(LI, L 2).

Step 3 (Flow augmentation): Increase the flow in (s, iO) and (l, t) by L. For all arcs (i,))
on the path with i E VI and) E V2, increase the flow by L. For all arcs (j, i) on the path
with i E VI and j E V2, decrease the flow in (i, j) by L. If the new flow Xk+1 satisfies
x~tl = ai for all i E V), stop. Xk+1 is an optimal solution.

Step 4 (Arc and cost change): Add (j, i),) E V2, i E V), to the graph ifxt = ° andxt+1 > 0,
and assign it the cost (-wij). Delete (s, iO) ifx~ibl = aiD, delete (l, t) ifxfoil = bjD, and delete
(j,i))E V2,iE V1 ifxt+1 =0.k k+ 1.

Each time a minimum-cost path is found, we can interpret the costs on the nodes of that
path as the incremental values of dual variables such that when the dual change
wij - Uj - Vj is made, the cost of the path is reduced to zero. By augmenting over
minimum-cost paths, the flow at iteration k is the minimum-cost solution to the
transportation problem with supplies LjEV, xt for i E VI and demands LiEV, xt for j E V2.

In fact it is possible to implement the primal-dual approach given above to produce the
same augmentations as those determined by minimum-cost paths.

Example 5.1 (continued). We find an optimal solution by finding minimum-cost path
augmentations. Table 5.1 shows the paths, quantity of flow, and cost per unit of flow for
each augmentation. Arcs from V2 to VI are noted by overbars.

Table 5.1.

Augmentation Path Flow Cost

1 (s, 3), (3, 1), (1, t) 3 2
2 (s, 1), (1, 2), (2, t) 3 3
3 (s, 1), (1, 4), (4, t) 1 3
4 (s, 4), (4, 4), (4, t) 1 5
5 (s, 2), (2, 1), (1, 3), (3, 6), (6, t) 2 5
6 (s, 2), (2, 1), (1, 3), (3, 3), (3, t) 1 6
7 (s, 2), (2, 5), (~ 1 7
8 (s, 4), (4, 4), (4, 1), (1, 6), (6, 3), (3,3), (3, t) 1 8
9 (s, 2), (2,3), (2,1), (1, 6), (6,3), (3, 3), (3, t) 1 9

10 (s, 3), (3, 3), (3, t) 3 20

76

The optimal solution found is

2
1
o
o

o
o
3
3

o 0
o 1
o 0
2 0

1.3. Graphs and Networks

The primal-dual method is readily extended to handle the general minimum-cost flow
problem. However, in the next section we give a primal simplex algorithm that seems to be
more practical for solving large-scale minimum-cost network flow problems.

6. A PRIMAL SIMPLEX ALGORITHM FOR NETWORK FLOW PROBLEMS

The simplex method works very efficiently on network flow problems because the basis
matrices have a very simple structure that greatly simplifies the calculations required in
the pivot operations. Graphically, the arcs corresponding to basic variables induce
subgraphs that are spanning trees. The trees provide a very simple way of calculating
primal and dual solutions and the other quantities needed to do simplex pivots.

Let f!lJ = (V, d), where V = {l, ... ,m} and .14 = {el> ... ,en} be the connected digraph
of an instance of a network flow problem, and let A be the coefficient matrix of the
conservation equations (4.1). Note that A = (a ij) is the node-arc incidence matrix of f!lJ, that
is, if ej = (k, I) then atq = -1, a/j = 1, and aij = 0 otherwise.

Proposition 6.1. If A is the node-arc incidence matrix of a connected digraph f!lJ with m
nodes, then rank(A) = m - 1 (see Definition 1.3 of Section I.4.1).

Proof 1:7!1 a ij = 0 for all j, hence rank(A) < m.
To show that rank(A) = m - 1, let T = (V, .14 ') be a spanning tree of f!lJ and let AT be the

m x (m - 1) incidence matrix of T. The idea of the proof is to permute the rows and
columns of AT so that the (m - 1) x (m - 1) submatrix consisting of the first m - 1 rows is
lower triangular with the magnitude of each diagonal element equal to 1.

Let i 1 be a leaf of T so that the row of A T corresponding to i 1 is a unit vector or its
negative. Put row i 1 and the column corresponding to the arc ei 1 incident to node i 1 as the
first row and column, respectively. Then delete node i 1 from T. The resulting graph is
again a tree and thus contains a leaf, say i2. Now the row corresponding to i2 contains, at
most, two nonzero elements, one corresponding to an arc ei2 * ei 1, and ifthere is another it
corresponds to ei 1• Hence by putting row i2 and the column corresponding to ei2 second,
the first two rows are in lower triangular form. Now a straightforward induction yields the
hypothesized lower triangular matrix with 1 's (or -1 's) on the diagonal. •

We have seen, in the proof of Proposition 6.1, how a spanning tree on f!lJ yields an
(m - 1) x (m - 1) nonsingular incidence matrix. But if (V, .14'), .14' s; .14, 1.14' 1 = m - 1 is
not a spanning tree, then the underlying graph contains a cycle. Thus the incidence matrix

6. A Primal Simplex Algorithm for Network Flow Problems 77

of (V, .sIi') contains a submatrix, which, after appropriate permutation of columns and
multiplication of some columns by -1, is of the form

o

-1
o

o
o

-1

-~) o .
1

Hence the incidence matrix of (V, .sIi') is singular, and we have shown the following:

Proposition 6.2. There is a one-to-one correspondence between spanning trees on qj) and
(m - 1) x (m - 1) nonsingular submatrices of A.

Thus each spanning tree on qj) yields a basis matrix for the conservation equations (4.l),
and if there are no upper-bound constraints (4.2), the tree corresponds to a primal feasible
basis if the corresponding solution to (4.l) is nonnegative. Moreover, it is simple to
compute the unique solution of (4.1) given that xi} == 0 for all (i, j) E.sIi that are not tree
arcs. We arbitrarily designate some node to be the root of the tree, say node r. Then we
compute the solution of (4.1) recursively along each path from a leaf to the root, beginning
with the arcs adjacent to the leaves.

An example of this computation is shown in Figure 6.1. Suppose we are given
T == (V, .sIi'), a spanning tree of qj). We first compute the flows for the arcs incident to the
leaves, that is, X2r == b2, X61 == -bI, X36 == b3, X47 == b4, and X75 == -b5• Then X67 == -(b7

+ X47 - X75) is determined, and finally X r6 == -(b6 - X61 + X36 - xd. Note that flows bal
ance at node r since b2 + br = xr6 = - (b l + b3 + b4 + bs + b6 + b7), and we have assumed
that '2.;=1 bi + br = O.

Our computational scheme is nothing more than the obvious way of solving the lower
triangular system beginning with the first variable, and so on. It illustrates that ifthe b i are
integral, then the solution will be integral, which is, of course, a consequence of the
diagonal elements of the lower triangular basis matrix having a magnitude of 1.

The primal feasibility of a basis depends only on the vector b. For example, if
b == (bI, b2, ••• , b7) == (-3 2 3 4 -5 -10), the induced spanning tree of Figure 6.l yields
the basic feasible primal solution X2r == 2, X61 == 3, X36 == 3, X47 == 4, X75 == 5, X67 == 1, Xr6 == 2.

Figure 6.1

78

1----.-
-A

Figure 6.2

• ••

1.3. Graphs and Networks

A Phase I procedure that uses artificial arcs may be necessary to determine an initial
primal feasible basic solution.

Now suppose we have a basic feasible primal solution that is not optimal. The criterion
for optimality (i.e., dual feasibility) will be discussed subsequently. A primal simplex pivot
corresponds to adding an arc to the tree and then deleting an arc from the cycle (in the
underlying undirected graph). The arc to be deleted is chosen to maintain primal
feasibility.

The cycle of Figure 6.2 has been created by adding the arc (i!, i k) Ed. Now observe
that if we set Xilik = t:, > 0 the conservation equations will be satisfied by increasing the
flow by t:, on all arcs of the cycle that have the same orientation as (i!, i k) and by decreasing
the flow by t:, on all arcs of the cycle that have the opposite orientation. Thus ifall arcs of
the cycle have the same orientation as (i!, i k), the flow can be increased without bound.
Otherwise, there is a unique largest value of t:, ;;?; 0 (> 0 in the absence of degeneracy) given
by

t:, = min{x ij: (i, j) is an arc of the cycle whose orientation is
opposite from (i!, i k)).

Suppose t:, = x ipip• I ' Then we obtain a new basis by deleting arc (i P' i p+l) from the cycle. The
new solution x is given by

and

{
X ij + t:, if (i, j) has the same orientation as (i!, i k) in the cycle

Xu = xij - t:, if(i,j) ~as the opposite orientation from (i!, h) in the cycle
x ij otherwIse.

In the absence of degeneracy, t:, > 0 and x '* x.
Suppose in the example of Figure 6.1 with b = (-3 2 3 4 -5 -1 0) we add the arc (3,4)

(see Figure 6.3). Then t:, = min(x36, X67) = min(3, 1) = 1 and arc (6, 7) is deleted. The
resulting spanning tree is shown in Figure 6.4.

We now consider the complementary dual solution and the computation of the reduced
costs to establish optimality conditions and to find the arc to enter the tree when the
optimality conditions do not hold.

6. A Primal Simplex Algorithm for Network Flow Problems 79

Figure 6.3

Corresponding to the equations (4.1) and x E R~ we obtain the dual constraints
Y i - Yj ,;;; C ij for all (i,}) E .sti. By complementary slackness, Y i - Yj = C ij for all tree arcs. We
can arbitrarily set Yr = 0 and then use these m - I equations to compute the remainder of
the dual variables. Then ifYi - Yj ,;;; cij is satisfied for all nontree arcs, the present solution
is optimal. Otherwise, following the standard simplex criterion, we introduce an arc (i,})
for which the reduced price cij = cij - Yi + Yj is minimum.

The dual variables are computed by starting at the root of the tree with Yr = 0 and
progressing toward the leaves (see Figure 6.5).

As with the primal variables, after changing the basis it is not necessary to recalculate all
of the dual variables. For example, if we add the arc (3,4) and delete the arc (6,7), then the
dual variables change only at nodes 4, 7, and 5, and we obtain the new solution
Y; = Y; for i = 1,2,3, 6'Y4 = Y4 - C34'Y7 = Y7 -C34, andys = Ys -C34·

As in the general primal simplex algorithm, the dual variables are needed only to
calculate the reduced prices. But since the number of nontree arcs is generally much
greater than the number of nodes, it makes sense to calculate and store the dual variables.

Figure 6.4

80 1.3. Graphs and Networks

Yl = -crG - c61

Yr=O

Figure 6.5

Example 6.1. We continue with the example that has been used to demonstrate the
calculations. The data are

8 5 9 2 4 r 0
7 3 4 1 -3
2 7 5 2 2

c= 0 7 7 3 b= 3
6 4 2 4 4

9 3 3 5 -5
5 2 2 4 8 2 6 -1
6 2 2 3 4 7 0

r 2 3 4 5 6 7

In Figure 6.6, the number adjacent to the nodes are the dual variables for the first
primal basic feasible solution, solid lines are tree arcs, and the numbers adjacent to them

-4 5 -2

o

Figure 6.6

6. A Primal Simplex Algorithm for Network Flow Problems 81

-4 5 4

-1

o

Figure 6.7

are the flows. With dotted lines, we show the arcs with negative reduced price, that is, the
ones that want to enter the basis; the adjacent numbers are the reduced costs.

Arc (3, 4) enters the solution and arc (6, 7) leaves (see Figure 6.7). Now arc (4, 5) enters
the solution. There is a tie for the leaving arc between (4, 7) and (7, 5). We choose (7, 5) and
obtain the degenerate optimal solution shown in Figure 6.8. Now it can be checked that all
reduced prices are nonnegative, so the solution shown in Figure 6.8 is optimal.

It is a simple matter to include arc capacities in the network simplex algorithm by
treating upper-bound constraints implicitly. Thus, in the absence of degeneracy, if a
variable is at its upper bound, the corresponding arc is not in the tree. The optimality
conditions and pivot rules need to be modified accordingly.

Finally, it is important to observe that the effectiveness of the network simplex
algorithm depends very substantially on the use of appropriate data structures for
representing trees so that the calculations can be done efficiently.

-4 5 4

o

o

Figure 6.8

82 1.3. Graphs and Networks

7. NOTES

Section 1.3.1

Berge (1973), and Bondy and Murty (1976) are general books on graph theory.
Data structures are extremely important to the implementation of efficient graph

algorithms (see Tarjan, 1983). Although we have not dealt with this important aspect of
graph and network algorithms, the notes for each of the following sections contains a
reference to an article that gives some of the recent results on efficient algorithms.

Section 1.3.2

The shortest-path algorithm for nonnegative arc weights is due to Dijkstra (1959). The
other algorithm appears in Ford and Fulkerson (1962). An earlier variant was given by
Bellman (1958).

Gallo and Pallotino (1986) presented a survey of shortest-path algorithms.

Section 1.3.3

The minimum-weight spanning tree algorithm is due to Kruskal (1956). Another classical
algorithm is that of Prim (1957).

Gabow et al. (1986) have presented results on efficient spanning tree algorithms.

Section 1.3.4

The classical reference for network flows is Ford and Fulkerson (1962). More recent texts
are Bazarra and Jarvis (1977), Christo fides (1975a), Jensen and Barnes (1980), Kennington
and Helgason (1980), and Lawler (1976).

The maximum-flow algorithm presented is that ofFord and Fulkerson (1956).
Edmonds and Karp (1972) showed the efficiency of augmenting along shortest-length

paths.
Tarjan (1986) gave a survey of efficient maximum-flow algorithms.

Section 1.3.5

The primal-dual algorithm is due to Ford and Fulkerson (1962). Scaling was introduced
by Edmonds and Karp (1972).

Bertsekas (1985) gave a unified framework of primal-dual network flow algorithms.

Section 1.3.6

Kennington and Helgason (1980) gave a detailed presentation of primal simplex network
flow algorithms, including a computer code for solving large-scale problems. Also see
Glover, Karney, and Klingman (1974), Bradley et al. (1977) and Bland and Jensen (1987).

Ikura and Nemhauser (1986) gave a polynomial time dual simplex algorithm for the
transportation problem and also investigated the use of scaling. A strongly polynomial
network flow algorithm was described by Tardos (1985).

1.4
Polyhedral Theory

1. INTRODUCTION AND ELEMENTARY LINEAR ALGEBRA

A considerable portion of this book involves the description of a set of points in R n by a set
oflinear inequalities. In linear programming, we are given a description of the feasible set
of points by a set of linear inequalities P = {x E R~: Ax ~ b}. When we solve a linear
program by the simplex method, issues such as the dimension of P and which inequalities
are necessary for the description of P do not need to be addressed.

Integer programming is different. Typically, we are given a set S s:; Z~ of feasible points
described implicitly, for example, the set of integer solutions to a linear inequality system
S = {x E Z~: Ax ~ b}, the set of binary vectors corresponding to tours in a graph, and so
on. One of our objectives is to find a linear inequality description of the set.

Definition 1.1. Given a set S ~ R n, a point x ERn is a convex combination of points of S
if there exists a finite set of points {xi}i=l in S and a A E R~ with L;'=l Ai = 1 and x = L}=l AiXi.
The convex hull of S, denoted by conv(S), is the set of all points that are convex
combinations of points in S.

Figure 1.1 shows the convex hull ofa set of integral points in R2. We see that conv(S) can
be described by a finite set of linear inequalities and that max{cx: xES} =

max{cx: x E conv(S)}. Moreover, the latter problem is a linear program. The validity of
these observations for general integer programs is shown in Section 6.

Finding an inequality description of conv(S) is not easy, and questions such as the
dimension of conv(S), the necessity of a certain inequality for the description of conv(S),
and so on, are very important. Most of Chapter 11.1 is devoted to finding such a
description. To facilitate the later developments, we collect together in this chapter some
basic results on polyhedra.

In this section we give, without proof, some standard results from linear algebra.

Definition 1.2. A set of points Xl, ... ,Xk E Rn is linearly independent if the unique
solution OfL1=1 AiXi = 0 is Ai = 0, i = 1, ... , k.

Note that the maximum number oflinearIy independent points in Rn is n.

83

84 1.4. Polyhedral Theory

2
conv(S) = {x E R2:

~------------~~~==~---------Xl

2 3

Figure 1.1. The black dots represent points in S; conv(S) is shaded.

Proposition 1.1. If A is an m x n matrix, the maximum number of linearly independent
rows a/A, viewed as vectors d ERn, equals the maximum nwnber of linearly independent
columns of A, viewed as vectors aj ERin.

Definition 1.3. The maximum number of linearly independent rows (columns) of A is
the rank of A and is denoted by rank(A).

Now we give a basic result for systems oflinear equalities.

Proposition 1.2. Thefollowing statements are equivalent:

a. {x ERn: Ax = b} *' 0.
b. rank(A) = rank(A, b).

When dealing with linear equalities and inequalities it is often more appropriate to use
the concept of affine independence.

Definition 1.4. A set of points Xl, ... , Xk E Rn is affinely independent if the unique
solution of L1=1 (XiXi = 0, L1=1 (Xi = 0 is (Xi = 0 for i = 1, ... , k.

Linear independence implies affine independence, but the converse is not true.

Proposition 1.3. Thefollowing statements are equivalent:

a. Xl, ' •. , Xk E R 11 are a/finely independent.

b. x 2 - X I, ... , Xk - X I are linearly independent.

c. (Xl, - 1), ... , (x k
, - 1) E Rn+l are linearly independent.

Note that the maximum number of affinely independent points in Rn is n + 1 (e.g., n
linearly independent points and the zero vector).

The following proposition will be used frequently in proving results concerning
polyhedra.

1. Introduction and Elementary Linear Algebra 85

Proposition 1.4. If{x ERn: Ax = b} "* 0, the maximum number of affinely independent
solutions of Ax = b is n + 1 - rank(A).

Example 1.1. Suppose

(
1 -4 -3)

(A, b) = -2 8 6'

Then rank(A) = rank(A, b) = 1. By Proposition 1.4, the maximum number of affinely
independent solutions of Ax = b is 3 - 1 = 2. Two such solutions are Xl = (5 2) and
x 2 = (1 1).

Definition 1.5. H ~ R n is a subspace if x E H implies Ax E H for all A E RI and if
x,y E Himpliesx + y E H.

Proposition 1.5. The following are equivalent:

a. H ~ Rn is a subspace.
b. There is an m x n matrix A such that H = {x ERn: Ax = O}.
c. There is a k x n matrix B such that H = {x ERn: x = uB, u E Rk}.

Proposition 1.6. If H ~ Rn is a subspace, then {x E Rn: xy = 0 for y E H} is a subspace.

This subspace is called the orthogonal subspace of H and is denoted by H.i.

Proposition 1.7. If H = {x ERn: Ax = a}, with A being an m x n matrix, then
H.i = {x E R n: x = AT U, u E Rm}.

Example 1.2. H = {x E R2: Xl = 2X2} is a subspace. Here A = (1 -2) and B = (2 1).

= {x E R2: 2Xl + X2 = O} (see Figure 1.2).

Definition 1.6. If p ERn and H is a subspace, the projection of p on H is the vector q E H
such that p - q E H.i. The projection of S on H is denoted by projH(S) = {q: q is the
projection of p on H for some pES}.

2. DEFINITIONS OF POLYHEDRA AND DIMENSION

Definition 2.1. A polyhedron P ~ Rn is the set of points that satisfy a finite number of
linear inequalities; that is, P = {x ERn: Ax ::::; b}, where (A, b) is an m x (n + 1) matrix. A
polyhedron is said to be rational if there exists an m' x (n + 1) matrix (A " b ') with rational
coefficients such that P = {x ERn: A IX ::::; b'}.

86 1.4. Polyhedral Theory

H.l.

Figure 1.2

Throughout the text we consider only rational polyhedra and assume that if P is stated
as {x ERn: Ax ~ b}, then (A, b) has rational coefficients.

Definition 2.2. A polyhedron P ~ Rn is bounded if there exists an w E Rl such that
P ~ {x ERn: - w ~ Xj ~ w for j = 1, ... ,n}. A bounded polyhedron is called a polytope.

Definition 2.3. T ~ Rn is a convex set if Xl, x 2 E T implies that Axl + (l - A)X2 E T for
allO~A~ 1.

Proposition 2.1. A polyhedron is a convex set.

Definition 2.4. C ~ Rn is a cone if x E C implies Ax E C for all A E Rl.

Proposition 2.2. The polyhedron {x E Rn: Ax ~ O} is a cone.

Definition 2.5. A polyhedron P is of dimension k, denoted by dim(P) = k, if the
maximum number of affinely independent points in P is k + 1.

Definition 2.6. A polyhedron P ~ R n isfull-dimensional if dim(P) = n.

Below we will show that if P is not full-dimensional, then at least one of the inequalities
aix ~ bi is satisfied at equality by all points of P.

Let M = {l, 2, ... ,m}, M= = {i EM: aix = b i for all x E P} and let M~ =

{i EM: aix < bi for some x E P} = M \ M=. Let (A=, b=), (A~, b~) be the corresponding
rows of (A , b). We refer to the equality and inequality sets of the representation (A, b) of P,
that is, P = {x ERn: A=x = b=, A~x ~ b~}. Note that if i E M~, then (ai, bJ cannot be
written as a linear combination of the rows of (A =, b=).

Definition 2.7. x E P is called an inner point of P if aix < bi for all i E M~.

Definition 2.8. x E P is called an interior point of P if aix < bi for all i EM.

2. Definitions of Polyhedra and Dimension 87

Proposition 2.3. Every nonempty polyhedron P has an inner point.

Proof If M~ = 0, every point of P is inner. Otherwise, for each i E M~ there exists a
point Xi E P with aixi < bi' Now x = (1/ IM~ I) LiEM" Xi E P since P is convex. Since
aix < b i for all i E M~, x is an inner point. •

Now we relate the dimension of P to the rank of its equality matrix (A =, b=). Below we
will always assume that P =1= 0. However, the next result is still valid with the convention
that if P = 0, then dim(P) = - 1.

Proposition 2.4. IfP ~ Rn, then dim(P) + rank(A=, b=) = n.

Proof Suppose rank(A=) = rank(A=, b=) = n - k, where 0 ~ k ~ n. Then by Proposi
tion 1.4 there are k + 1 affinely independent solutions of A =X = O. Let yl, ... , yk+l denote
any such solutions, and let x be an inner point of P. Now for E sufficiently small, x + Eyi

for i = 1, ... ,k + 1 are affinely independent points in P. Thus dim(P) ~ k and we have
that dim(P) + rank(A=, b=) ~ n.

Now suppose that dim(P) = k and that Xl, ... ,Xk+l are affinely independent points of
P. Since A=xj = b= for j = 1, ... ,k + 1, by Proposition 1.4 we have
rank(A=, b=) ~ (n + 1) - (k + 1) = n - k. Hence dim(P) + rank(A=, b=) ~ n. •

Corollary 2.5. A polyhedron P is full-dimensional if and only if it has an interior point.

Note that we have shown that rank(A=, b=) is independent of the particular inequality
description of P.

Example 2.1. Suppose PeR 3 is given by

Xl + X2 + X3 ~

- Xl - X2 - X3 ~ -1

Xl + X3~ 1

-Xl ~ 0

- X2 ~ 0

X3 ~ 2

Xl + X2 + 2X3 ~ 2

(see Figure 2.1).

The three points (1 0 0), (0 1 0), (0 0 1) lie in P and are affinely independent.
Hence dim(P) ~ 2. Because all points of P satisfy the equality Xl + X2 + X3 = 1, we have
rank(A =, b=) ~ 1; hence, by Proposition 2.4, dim(P) ~ 2. Therefore dim(P) = 2.

88 1.4. Polyhedral Theory

(0,0, 1)

Figure 2.1

3. DESCRIBING POLYHEDRA BY FACETS

Given a polyhedron P = {x ERn: Ax :::s; b}, the question we address below is to find out
which of the inequalities aix :::s; bi are necessary in the description of P and which can be
dropped. In fact we will show that those necessary to describe P are the same, whatever the
initial inequality description of P.

Definition 3.1. The inequality nx :::s; no [or (n, no)] is called a valid inequality for P if it is
satisfied by all points in P.

Note that (n, no) is a valid inequality if and only if P lies in the half-space
{x ERn: nx :::s; no}, or equivalently if and only if max{nx: x E P} :::s; no (see Figure 3.1).

Definition 3.2. If(n, no) is a valid inequality for P, and F = {x E P: nx = no}, F is called
aface of P, and we say that (n, no) represents F. A face F is said to be proper if F =1= 0 and
F=t-P.

The face F represented by (n, no) is nonempty if and only if max{nx: x E P} = no.
When F is nonempty, we say that (n, no) supports P.

As a first step in discarding superfluous inequalities, note that we can discard inequali
ties aix :::s; bi that are not supports of P. Hence from now on we suppose that all the
inequalities aix :::s; b i for i EM support P and therefore represent nonempty faces.

Proposition 3.1. If P = {x E Rn: Ax :::s; b} with equality set M= ~ M, and F is a nonempty
face of P, then F is a polyhedron and F = {x E Rn: dx = bifor i E ME, dx :::s; bifor i EM;}
where M;. ~ M= and M; = M \ M;'. The number of distinct faces of P is finite.

3. Describing Polyhedra by Facets 89

p

Xl

Valid i 2
represents thneqUality (7("2 2 x

e face [~EP 7("0) that sup
: x=:: A~l Ports P and

+ (1 -A)x2 0
I .$A.$lj

Figure 3.1

Proof Suppose F is the set of optimal solutions to the linear program
no = max{nx: Ax ~ b). Let u* be an optimal solution to the dual linear program
min{ub: uA = n, u E R':}, and let 1* = {i EM: u7> a}. Now consider the polyhedron
F* = {x ERn: aix = bi for i E 1*, aix ~ bi for i EM \ I*}. We claim that F = F*.

Note first that if x E F*, then

* ~ * i ~ *1-nx = u Ax = L... Uia x = L... UWi = no.
iEI* iEI*

But if x E P \ F*, then akx < bk for some k E 1*, so Uk > 0 and nx = LiEI* u7a ix <
LiEI* u7bi = no. Hence F = F* and F is a polyhedron. Since F s; P, the equality set (A;, b;)
of F must have the required property.

Finally, since M is finite, the possible equality subsets M; [corresponding to the rows of
(A;, b;)] are finite in number, so the number of distinct faces is finite. •

Note that by Proposition 2.4, if F is a proper face of P, then dim (F) < dim(P). In
particular, the dimension ofF is k if the maximum number of affinely independent points
that lie in F is k + 1.

Definition 3.3. A face F of Pis afacet of P if dim(F) = dim(P) - 1.

Proposition 3.2. If F is a facet of P, there exists some inequality akx ~ bk for k E M~
representing E

Proof Since dim (F) = dim(P) - 1, it follows from Proposition 2.4 that rank(A'F, b'F) =
rank(A =, b=) + 1. The result follows. •

Example 2.1 (continued). (n, no) = (-1 -1 1, 1) is a valid inequality for P because
max{-xi - X2 + X3: x E P} = 1 = no. Also FI = {x E P: -Xl - X2 + X3 = 1} = {(O 0 I)} is
a face of P. Note that the face F\ is not generated by any of the inequalities aix ~ bi in the
description of P.

90 1.4. Polyhedral Theory

Now consider the face F2 generated by the valid inequality 2Xl - 7X2 + 2X3 ~ 2, that is,
F2 = {x E P: 2Xl - 7X2 + 2X3 = 2}. The two points (l 0 0) and (0 0 1) lie in F2 and
are affinely independent. In addition, the point (0 1 0) E P does not lie on F 2, so
F2 C P. Since dim(P) = 2 and dim(F2) ~ 1, we have dim(F2) = 1. Thus F2 is a facet of P.

Now from Proposition 3.2, one of the initial inequalities must represent F 2• In fact,
both Xl + X 3 ~ 1 and -X 2 ~ 0 represent the facet F 2.

Finally consider (n, no) = (0 0 1, 2). Now max{x3: x E P} = 1 < no, so X3 ~ 2 is a
valid inequality but not a support of P. Hence x 3 ~ 2 can be discarded from the
description of P.

Proposition 3.3. For each facet F ofP, one of the inequalities representing F is necessary in
the description of P.

Proof Let P F be the polyhedron obtained from P by removing all the inequalities
representing F. We will show that P F \ P *- 0 so that at least one of the inequalities is
necessary. Let x be an inner point of the facet F and let arx ~ br be an inequality
representing F. Since ar is linearly independent of the rows of A =, it follows from the
Farkas lemma that there exists ayE Rn such that A =y = 0 and ary > O. Because x is an
inner point of F, aix < bi for all inequalities i E M~ that do not represent F. But now
x + eyE P F \ P for sufficiently small e > O. •

Besides being necessary, the facets are sufficient for the description of P.

Proposition 3.4. Every inequality arx ~ br for r E M~ that represents a face of P of
dimension less than dim(P) - 1 is irrelevant to the description of P.

Proof Suppose ar x ~ b r represents a face F of P of dimension dim(P) - k with k > 1,
and the inequality is not irrelevant. In other words, there exists x* ERn such that
A=x* = b=, aix* ~ bifor i E M~ \ {r}, andarx* > b,. Let x be an inner point ofP. Then on
the line between x* and x there exists a point z in F satisfying A =z = b=, aiz < bi
for i E M~ \ {r}, and arz = b,. Hence the equality set of F is (A=, b=) and (a r, br), which is
of rank n - dim(P) + 1. Therefore the dimension of F is dim(P) - 1, which is a contradic
tion. •

Example 2.1 (continued). We verify that the face F2 = {x E R3: Xl + X3 = 1, x E P} is a
facet of P. The equality set of F2 is

(

-1

(AJ;" bJ;,) = i
-1 -1

1 1
o 1

-1 0

-:)
1 '
o

which is a matrix of rank 2. Hence, by Proposition 2.4, F2 is of dimension 1. Thus F2 is a
facet represented either by Xl + X3 ~ 1 or -X2 ~ O. In fact, since

F2 is also represented by 2Xl - 7X2 + 2X3 ~ 2, which is the representation we gave earlier.

3. Describing Polyhedra by Facets 91

Similarly it can be shown that -Xl ~ 0 defines a facet. Now consider Xl + X2 + 2X3 ~ 2,
which is a support of P. Let

F 3 = {X E P: Xl + X 2 + 2x 3 = 2}

= {X E P: Xl + X2 + X3 = 1, Xl + X2 + 2X3 = 2, Xl + X3 = 1, -Xl = 0, -X2 = O}.

Hence (A p3, bp) is of rank 3. Thus the face F3 is of dimension O. In fact F3 = Fl =
{(O 0 I)}, and hence X I + X2 + 2X3 ~ 2 is redundant. Therefore a minimal description of
P is given by

~ 0

~ 0

The example raises the question as to when two inequalities (e.g., Xl + X3 ~ 1, -X2 ~ 0)
are "equivalent". The answer is straightforward. The set {x: A =X = b=, nx ~ no} =
{x: A =X = b=, (An + uA =)x ~ Ano + ub=} for all A > 0 and all u E RIM~I. Hence we say that
(nt, n6) and (n2

, n5) are equivalent, or identical inequalities with respect to P when
(n2, 7r5) = A(nl, n6) + u(A =, b=) for some A > 0 and u E RIM~I. Now we can summarize the
main result given so far.

Theorem 3.5

a. A full-dimensional polyhedron P has a unique (to within scalar multiplication)
minimal representation by a finite set of linear inequalities. In particular, for each
facet Fi ofP there is an inequality aix ~ bi (unique to within scalar multiplication)
representing Fi and P = ex ERn: aix ~ bi for i = 1, ... , n.

b. Ifdim(P) = n - k with k > 0, then P = ex ERn: aix = bifor i = 1, ... ,k, aix ~ bi
for i = k + 1, ... , k + t}. For i = 1, ... , k, (ai, bi) are a maximal set of linearly
independent rows of(A=, b=), andfor i = k + 1, ... ,k + t, (ai, bi) is any inequality
from the equivalence class of inequalities representing the facet F i•

We now give a theorem that characterizes facets and that is useful in establishing when
a valid inequality is a facet.

Theorem 3.6. Let (A=, b=) be the equality set of P ~ Rn and let F = {x E P: nx = no} be a
proper face of P The following two statements are equivalent:

i. F is afacet ofP.
ii. If Ax = Aofor all X E F then

(3.1) (A, Ao) = (an + uA=, ano + ub=)for some a E Rl and some u E RIM~I.

92 1.4. Polyhedral Theory

Proof ii => i. Let L = {(A, Ao) E R n
+

l
: (A, Ao) IS of the form (3.1)} and L' =

{(A, Ao) E Rn+l: Ax = Ao for all x E F}. L s; L', since

anx + uA=x = ano + ub= for all x E F.

By the hypothesis, L' s; L. Hence L = L'.
Suppose that dim(P) = n - k so that rank(A=, b=) = k. Since F is a proper face, (n, no) is

not a linear combination of the rows of (A =, b=). Thus L is a (k + I)-dimensional subspace.
N ow let x I, ... ,x' be a maximal set of affinely independent points in F and let

D = (~' -~)
xr -1

be an r x (n + 1) matrix. Clearly r ~ n - k.
By Proposition 1.4, the maximum number of affinely independent solutions of

(A, Ao)D T = 0 is (n + 1) + 1 - rank(D) = n + 2 - r. Thus L' is an (n + 1 - r)-dimensional
subspace. Since L = L', r = n - k. Hence F is a facet of P.

i => ii. As above, L ~ L'. Here we need to show that L = L'. Suppose dim(P) = n - k.
Since F is a facet of P, F contains n - k affinely independent points. Thus, as in the proof
ofii => i, dim(L') = k + 1. Since dim(L) = k + 1 and L ~ L', L = L'. •

4. DESCRIBING POLYHEDRA BY EXTREME POINTS AND EXTREME RAYS

Here we consider a representation of polyhedra in terms of lowest-dimensional faces.

Proposition 4.1. If P = {x E Rn: Ax ~ b} =1= 0 and rank(A) = n - k, P has a face of
dimension k and has no proper face of lower dimension.

Proof For any face F "* 0 of P, rank(A:F, b:F) ~ n - k. Hence, by Proposition 2.4, the
dimension of F is greater than or equal to k. Now let F be a face of P of minimum
dimension. If dim (F) = k = 0, there is nothing to prove. So suppose dim(F) > O.

Let x be an inner point of F. Since dim(F) > 0, there exists some other point y of F.
Consider the line joining x and y, that is, Z(A) = x + A(Y - x) where A E R I. Suppose that
the line intersects aix = bi for some i E Mi:. Let A* = min{ IAi I: i E Mi:, Z(Ai) lies in
aix = bi}' and A* = IAi"l. Then A* =1= 0 because x is an inner point. Thus
Fi' = {x E P: A:Fx = b:F, ai*x = bi'} =1= 0 is a face of P of smaller dimension than F, which is
a contradiction.

Therefore the line does not intersect aix = b i for any i E Mi:. But this means that
Ax + A2(y - x) ~ b for all 2 E R I. Since Ax ~ b, this implies that A(y - x) = ° for all
y E F. Thus F = {y: Ay = Ax}. Since rank(A) = n - k, Proposition 2.4 implies that
dim (F) = k. •

Example 4.1. P = {x E R2: Xl + X2 ~ 1}. See Figure 4.1. We have rank(A) = 1. A face of
minimum dimension is the one-dimensional face F = {x E R2: XI + X2 = n.

4. Describing Polyhedra by Extreme Points and Extreme Rays 93

(1,0)

Figure 4.1

In practice, we frequently deal with polyhedra lying within the nonnegative orthant R~.

For such polyhedra, rank(A) = n; and by Proposition 4.1, these polyhedra have zero
dimensional faces. For this reason and for simplicity, we assume for the next two sections
that rank(A) = n. Note also that if P = {x ERn: Ax ~ b} is a polytope, then rank(A) = n.

Definition 4.1. x E P is an extreme point of P if there do not exist Xl, x 2 E P, Xl :1= X2,

such that x = !Xl + ~X2.

For x E P, let (A;, b;) be the equality set of x, i.e. (A;, b;) = (A F, bF) where F is the face
of minimum dimension containing x, and x is an inner point of F.

Proposition 4.2. x is an extreme point of P if and only if x is a zero-dimensional face of P.

Proof Suppose x is a zero-dimensional face of P. By Proposition 2.4, rank(A;) = n.
Let (A, b) be a submatrix of (A~, b~) with A n x nand nonsingular, so x = A-lb. If
x = ~Xl + ~X2, Xl, x 2 E P, then since Axi ~ b for i = 1, 2, Axl = Ax2 = E. Hence
x I = x 2 = x, so x is an extreme point.

If x E P is not a zero-dimensional face of P, then by Proposition 2.4 we have
rank(A~) < n. But now there exists y :1= ° satisfying A;y = 0, and for sufficiently small €,

Xl = X + sy E P and x 2 = x - sy E P. Now x = 1Xl + 1x2
, so x is not an extreme point. •

Definition 4.2. Let pO = {r ERn: Ar ~ O}. If P = {x ERn: Ax ~ b} =1= 0, then
r E pO \ CO} is called a ray of P.

A point r ERn is a ray of P if and only if for any point x E P, the set
{y ERn: y = X + Ar, A E R!} r;;. P.

94 I.4. Polyhedral Theory

Definition 4.3. A ray r of P is an extreme ray if there do not exist rays rl, r2 E pO, rl =1= Ar2
for any A E Ri, such that r = !rl + !r2.

Proposition 4.3. If P =1= 0, r is an extreme ray of P if and only if {Ar: A E RD is a one
dimensionalface of pO.

Proof Let A; = {a i: i EM, air = a}. If {Ar: A E RD is a one-dimensional face of pO,
rank(A;) = n - 1. Hence all solutions of A;y = 0 are of the form y = Ar, A E R I. If
r = ~rl + ~r2, we obtain a contradiction as in the previous proposition.

Ifr E pO and rank (A;) < n - 1, there exists f =1= Ar, A E RI, such thatA;f = O. The rays
r1 = r + sf, r2 = r - sf show that r is not an extreme ray. •

Corollary 4.4. A polyhedron has a finite number of extreme points and extreme rays.

Example 2.1 (continued). Since the inequalities describing P include

it is clear that rank(A) = 3.
The face FI = {(O 0 I)} has the equality set

XI + X2 + X3 = 1 (also the negative of this row which is omitted)

XI =0

X2 = 0

and since (: b b) is of rank 3, (0 0 1) is a zero-dimensional face, or extreme point. o I 0

Note that rl = (l 0 -1) satisfies

XI+X2+ X 3=0

XI +X3=0

X2 = 0

and a1rl < 0 for all other constraints. Since I ° I is of rank 2, rl is an extreme ray. A . . (I I I)
° 1 0

similar argument shows that r2 = (0 1 -1) is another extreme ray. The polyhedron pO
for Example 2.1 is shown in Figure 4.2.

A polyhedron can be represented in terms of its extreme points and extreme rays. Some
preliminaries are needed to obtain this fundamental result.

Theorem 4.5. If P =1= 0, rank(A) = n, and max{cx: X E P} is finite, then there is an
optimal solution that is an extreme point.

4. Describing Polyhedra by Extreme Points and Extreme Rays 95

(0,0,0)

Figure 4.2

Proof The set of optimal solutions is a nonempty face F = {x E P: cx = co}. By
Proposition 4.1, F contains an (n - rank(A»-dimensional face. Since n - rank(A) = 0, by
Proposition 4.2, F contains an extreme point. •

Theorem 4.6. For every extreme point {xkhEK ofP, there exists acE zn such that Xk is the
unique optimal solution of max{cx: x E P}.

Proof Let M;k be the equality set of Xk. Let c* = LiEM~k a i
• Since the ai are rational

vectors, there exists a A > ° such that c = AC* E zn. Since Xk is a zero-dimensional face of P,
for all x E P \ {Xk} there exists an i E M;k such that aix < bi. Hence for x E P \ {xk},

ex = L Aaix < L Ab i = L Aaixk = exk.
iEM~k iEM~k iEM~k •

Theorem 4.7. If P =1= 0, rank(A) = n, and max{ex: x E P} is unbounded, P has an
extreme ray r* with er* > 0.

Proof Since max{ex: Ax ~ b} is unbounded, by linear programming duality, the set
{u E R:;!: uA = c} = 0. By Farkas' lemma, this implies there exists an r ERn such that
Ar ~ ° and er > O. Now consider the linear program max{cr: Ar ~ 0, er ~ 1} = 1. By
Theorem 4.5, this linear program has an optimal extreme point solution. An optimal
extreme point is a point r* E po such that the equality set A~. is of rank n - 1, and cr* > O.
Now by Proposition 4.3, r* is an extreme ray of P. •

We now prove one of the fundamental results on the representation of polyhedra.

96 1.4. Polyhedral Theory

Theorem 4.8 (Minkowski's Theorem). If P =1= 0 and rank(A) = n, then

where {x khEK is the set of extreme points of P and {rj}jEJ is the set of extreme rays of P.

Proof Let

Since Xk E P for k E K, and P is convex, x' = LkEK AkXk E P for any A satisfying
LkEK Ak = 1, Ak ~ 0 for k E K. Also since r j for j E J are rays, Xl + LjEJ f.1jrj E P for any
f.1j ~ 0 for j E J. Hence Q ~ P.

Now suppose that Q * P, so there exists yEP \ Q. In other words there do not exist A,
f.1 satisfying

2 AkXk + 2 f.1jrj = Y
kEK jEJ

= -1

Ak ~ 0 for k E K,

f.1j ~ 0 for j E J.

Then by Farkas' lemma, there exists (n, no) E Rn+l such that nxk - no ~ 0 for k E K,
nr j

~ 0 for j E J and ny - no > O. Now consider the linear program max{nx: x E P}. Ifit
has a finite optimal value, by Theorem 4.5 the optimum value is attained at an extreme
point. However, yEP and ny > nxk for all extreme points {Xk}kEK, which is a contradic
tion. On the other hand, if the linear program has an unbounded optimum, by Theorem
4.7 there exists an extreme ray r j with nr j > o. Again there is a contradiction. Hence
Q=P. •

Example 2.1 (continued). Since P has one extreme point Xl = (0 0 1) and two
extreme rays rl = (1 0 -1) and r2 = (0 1 -1), we have an alternative description of P
given by

Combining Minkowski's theorem and linear programming duality leads to a character
ization of certain projections of polyhedra; it also leads to an important converse to
Minkowski's theorem, which says that every set obtained as a convex combination of a
finite set of vectors in R n plus a nonnegative combination of some other finite set of
vectors in R n is a polyhedron.

4. Describing Polyhedra by Extreme Points and Extreme Rays 97

First we restate the basic results for the dual pair of linear programs

z = max{cx: x E P} with P = {x E R~: Ax ~ b}

and

w = min{ub: u E Q} with Q = {u E R':: uA ~ c}

in terms of extreme points and extreme rays. Note that this is partially a repeat of
Theorems 4.5 and 4.7. Let {Xk}kEK and {Ui}iEI be the sets of extreme points of P and Q,
respectively, and let {rj}jEJ and {Vt}tET be the sets of extreme rays of pO and QO, respectively.

Theorem 4.9

i. Thefollowing are equivalent:
a) The primal problem is feasible, that is, P =1= 0;
b) vtb ~ Ofor all t E T.

ii. The following are equivalent when the primal problem is feasible:
a) z is unboundedfrom above;
b) there exists an extreme ray rj of P with cri > 0;
c) the dual problem is infeasible, that is, Q = 0.

iii. If the primal problem is feasible and z is bounded, then

z = max cxk = w = min ui b.
kEK iEI

Proof

i. By the Farkas lemma, P =1= 0 if and only if vb ~ 0 for all v E R': with vA ~ O. By
Minkowski's theorem,

QO = {v E R':: vA ~ O} = {v E R':: v = I /1tvt, /1t ~ 0 for t E T}.
lET

Hence vb ~ 0 for all v E QO if and only if vt b ~ 0 for all t E T.
ii. Again by Minkowski's theorem,

Ak ;;. 0 for k E K, /l-j ;;. 0 for j E J } '*' 0.

Thus z is bounded if and only if crj ~ 0 for all} E J. The equivalence of statements
ii.b and ii.c is obtained by applying statement i to the dual problem.

iii. This also follows from strong duality and Minkowski's theorem applied to P and Q .

•
Now we consider the projection of a polyhedron. Note first that the projection of a

point (x, y) ERn x RP onto the subspace H = {(x, y): y = O} is the point (x, 0). Therefore

98 1.4. Polyhedral Theory

it is natural to consider a projection of a polyhedron P ~ Rn x RP onto y = 0 as a
projection from the (x, y)-space to the x-space, denoted by projxCP).

Theorem 4.10. Let P = {(x, y) ERn x RP: Ax + Gy ~ b}, then

projxCP) = {x ERn; v t(b - Ax) ~ 0 for all t E T},

where {Vt}tET are the extreme rays of Q = {v E R';!: vG = O}.

Proof If H = {(x, y) ERn x RP: y = O}, then projH(P) = {(x, 0) ERn x RP: (x, y)
E P}. Applying statement i.b of Theorem 4.9 to {y E RP: Gy ~ b - Ax} gives

•
Corollary 4.11. The projection of a polyhedron is a polyhedron.

Given two polyhedra PC Rn x RP and Q eRn, the question will arise of showing
whether Q = projxCP) or not.

Corollary 4.12. If P = {(x, y) ERn x RP: Ax + Gy ~ b} and Q = {x ERn: Dx ~ d},
where D is q x n, then Q = projxCP) if and only if:

i. For i = 1, ... ,q, dix ~ db is a valid inequality for P.
ii. For each x* E Q, there exists a y* such that (x*, y*) E P.

Proof

i. Equivalent to Q ;2 projxCP).
ii. Equivalent to Q ~ projx(P). •

Another immediate consequence of Theorem 4.10 is the converse of Minkowski's
theorem.

Theorem 4.13 (Weyl's theorem). If A is a rational ml x n matrix, B is a rational m2 x n
matrix, and

then Q is a rational polyhedron.

Proof Q = projxCP), where

P = {(X, y, z) ERn x R';!! x R';!2: x - yA - zB = 0, I Yk =1}.
k=l •

5. POLARITY

Here we consider a polyhedron n ~ Rn+l whose feasible points are the valid inequalities of
P. We will characterize the facets of P in terms of the extreme rays of n and establish a
duality between P and n.

5. Polarity 99

Definition 5.1. IT = {en, no) E R n+l: nx - no::S:; 0 for all x E P} is called the polar of the
polyhedron P = {x ERn: Ax ::s:; b}.

Note that (n, no) E IT if and only if (n, no) is a valid inequality for P. For simplicity,
assume that rank(A) = n.

Proposition 5.1. Given a nonempty polyhedron P ~ Rn with rank(A) = n, IT is a
polyhedral cone described by

nxk - no ::s:; 0 for k E K

nr j ::s:; 0 for j E J

where {xkhEK, {rj}jEJ are the extreme points and extreme rays ofP.

Proof Let IT' = {en, no) E Rn+l: nxk - no ::s:; 0 for k E K, nrj ::s:; 0 for j E J}. Suppose
(n, no) E IT. Since Xk + f.1rj E P for any Xk, any r1, and all f.1 ~ 0, we have n(xk + f.1rj) ::s:; no
for all f.1 ~ O. But this implies nxk ::s:; no and nrj

::s:; O. Hence (n, no) E IT', so IT ~ IT'.
Conversely if(n, no) E IT' and x E P, then, by Theorem 4.8, x = L-kEK AkXk + L-jEJ f.1jrj

for some A, f.1 satisfying L-kEK Ak = 1, Ak ~ 0 for k E K, and f.1j ~ 0 for j E J. Hence

Therefore (n, no) E IT, so IT' ~ IT. •
Example 2.1 (continued). A polyhedral description of IT ~ R4 is as follows:

n3 - no::s:; 0

nl - n3 ::s:; 0

n2 - n3 ::s:; o.

Now we are ready to prove the main result on polarity.

Theorem 5.2. If dim(P) = n, rank(A) = n, and n* * 0, then (n*, n~) is an extreme ray of IT
if and only if (n*, no) defines a facet of P.

Proof By Proposition 4.3, (n*, no) =1= 0 is an extreme ray of IT ifand only ifits equality
set is of rank (n + 1) - 1 = n. Using the description of IT from Proposition 5.1, this means
there exist (Xl, ... ,x t

, rl+l, ... , rn) such that n*xi - no = 0 for i = 1, ... , t and n*rj = 0 for
j = t + 1, ... , nand

100 1.4. Polyhedral Theory

is of rank n. (Note that t ~ 1, since re*rj = 0 for) = 1, ... ,n would imply re* = 0.) But this
implies that the vectors (Xl, -1), ... ,(Xl, -1), (Xl + rl+l, -1), ... ,(Xl + rn, -1) are linearly
independent. Hence by Proposition 1.3, Xl, ... ,Xl, Xl + rl+l, ... ,Xl + rn are affinely
independent. Therefore (re*, re~) defines a facet of P.

Conversely if (n*, reo) defines a facet of P, there exist n affinely independent points
{X i}7=1 of P, with re* Xi = reo for i = 1, ... , n. But now considering the polyhedral cone TI, the
equality set of (re*, reo) includes (Xl, -1), ... , (xn, -1) and hence is of rank at least n. If the
equality set is of rank n + 1, then (re*, reo) = (0, 0). Hence its rank is n, so
{ere, reo) E Rn+l: (re, reo) = A(re*, reo), A E Rl} is a one-dimensional face ofTI. It follows from
Proposition 4.3 that (n*, reo) is an extreme ray ofTI. ..

We have also implicitly proved a dual result to Theorem 5.2.

Theorem 5.3. If dim(P) = nand rank(A) = n, rex* - reo ~ 0 defines afacet ofTI if and only
if x* is an extreme point of P, and rer* ~ 0 defines a facet ofTI if and only if r* is an extreme
rayofP.

Proof. By Proposition 5.1, every facet ofTI is either of the required form rex k
- reo ~ 0

for k E K or rerj ~ 0 for} E J. To show that each of these inequalities defines a facet,
remember that x* is an extreme point only if its equality set (A~., b~.) is of rank n. Hence
there exist (rei, -n6), ... , (nn, -re3) such that rei, ... ,ren are linearly independent, and
retx* - reb = 0 for t = 1, ... , n. Now these n vectors plus (0, 0) are affinely independent,
and hence rex* - reo ~ 0 defines a facet. A similar argument shows that rer* ~ 0 defines a
facet. ..

Now we specialize further and assume that P is a full-dimensional polytope. By
translation we can take the origin 0 to be an interior point, so if aix ~ bi is an equality
describing P, then bi > O. Hence we can rewrite P as P = {x ERn: Ax ~ 1}, where 1 =

(1 ... 1). Now every valid inequality (n, reo) must also have reo > 0, so we can normalize the
polar and consider the so-called l-polar of P: TIl = {re ERn: (re, 1) E TI}. Furthermore,
since P is a polytope, by Theorem 4.7 we have

and by Proposition 5.1 we have TIl = {re ERn: rex k ~ 1 for k E K}.

Proposition 5.4 IfP = {x ERn: Ax ~ 1} is afull-dimensional polytope, then TIl is afull
dimensional polytope and P is the l-polar of TIl.

Proof. Since 0 is an interior point of TIl, by Corollary 2.5, TIl is full-dimensional.
Suppose TIl has a ray y, so that yx k ~ 0 for k E K. This implies that (y, 0) is a valid
inequality for P, which is a contradiction. Hence TIl is bounded.

Now consider P = {y: rey ~ 1 for all re E TIl}. If x E P, then rex ~ 1 for all re E TIl and
hence P ~ P. Suppose yEP \ P. Then there exists no solution to

Ak ~ 0 for k E K.

5. Polarity 101

So there exists a (n, no) such that nxk - no:;;::;; 0 for all k E K and ny - no > O. Since 0 E P,
we can ~gain normalize so that no = 1. Then n E III but ny > 1, which is a contradiction.
HenceP=P. •

Now we observe that there is complete symmetry between P and III.

Theorem 5.5 If P is full-dimensional and bounded, and 0 is an interior point of P, then

a. P = {x: ntx :;;::;; 1 for t E T, where {nt}tET are the extreme points of III}, and
b. III = {n: nxk :;;::;; 1 for k E K, where {xkhEK are the extreme points of P}.

Moreover, each of the inequalities in descriptions a and b defin e facets.

Proof We have already proven b, and a follows from Proposition 5.4.

Corollary 5.6. IfP is as described in Theorem 5.5, then

x* E P if and only if max{nx*: n E III} :;;::;; 1

and

n* E III if and only if max{n*x: x E P} :;;::;; 1.

•

Proof x* E P if and only if n x* :;;::;; 1 for all n E III, which holds if and only if
max{nx*: n E III} :;;::;; 1. The second equivalence is merely a dual statement. •

Corollary 5.6 is important in establishing the equivalence between separation and
optimization (see Section 1.6.3).

Example 5.1 (See Figure 5.1.)

(P) :;;::;; 1

There are two other polars that are of special interest in combinatorial optimization.
For the remainder of this section we assume that A is a nonnegative m x n matrix.

Suppose that P = {x E R1: Ax ~ 1}, where A has no zero rows. The blocker p B of Pis
the polyhedron:

p B = {n E R1: nx ~ 1 for all x E P}.

Let B be a I K I x n matrix whose rows are the extreme points {xkhEK of P.

Proposition 5.7. Let P = {x E R1: Ax ~ 1}, where A is a nonnegative matrix with no zero
rows. Then

i. p B = {n E R1: Bn ~ 1} and
ii. (PB)B = P.

102 1.4. Polyhedral Theory

(-1, 1) (0,1) (3,1)

--(---1-, 0)-----+--+---- Xl ---'(-_-l-,-O)-r---~~-------~l

(-1, -1)

(1, - 2)

p

Figure 5.1

Proof Note that since A has no zero rows, P * 0. Also, since pO = R~, the extreme
rays of P are the unit vectors ej for j = 1, ... , n. This means that nj ~ 0 for all (n, no) E II,
so II = {en, no) E R~ x Rl: nx ~ no for x E P} and so n E pB if and only if (-n, -1) E II.
Now by Proposition 5.1, pB = {n E R~: nxk ~ 1 for k E K}, where {Xk} are the extreme
points of P, and statement i is verified.

Since P is full-dimensional and rank (1) = n, we obtain from Theorem 5.2 that (-n*, -1)
is an extreme ray of n if and only if n*x ~ 1 defines a facet of P. But since
pB = {en, no): (-n, -no) E II, no = -l}, it follows that (-n*, -1) is an extreme ray of II if and
only if n* is an extreme point of pB. Now we consider (PB)B. By statement i,
(PB)B = {x E R~: Qx ~ l}, where the rows of Q are the extreme points of pB, or, as we have
just shown, the facets of P. Hence statement ii holds. •

Example 5.2. Let

The reader can check that the extreme points of P = {x E Rl: Ax ~ l} are (l 1 0),
(1 0 1), (0 1 1), and (1 1 1). Hence

B~ (1
1
o
1
:2

We note that all the extreme points of P are minimal points because pO = R~ and they
are all necessary in the description of pB.

Finally, we consider polytopes of the form P = {x E R~: Ax ~ l}, where A is a nonnega
tive matrix with no zero columns. The antiblocker pC of P is the polytope

pC = {n E R~: nx ~ 1 for all x E P}.

5. Polarity 103

Let C be an r x n matrix whose rows are the extreme points of P.

Proposition 5.8. If P = {x E R~: Ax ~ 1}, where A is a nonnegative matrix with no zero
columns, then

i. pC = {n E R~: Cn ~ 1} and
ii. (pC)C = P.

Proof Since A has only nonzero columns, P is a polytope. Statement i follows by
replicating the proof of Proposition 5.1 with n ~ 0, no = 1, and J = 0. To establish
statement ii, observe that if x E P, it follows that nx ~ 1 for all n E pC and hence
x E (pC)c. Now suppose that x E (pC)c. Since a i E pC, it follows that aix ~ 1. Hence
p = (pC)c. •

Example 5.3. Let

The reader can check that the extreme points of P = {x E Rl: Ax ~ 1} are (l 0 0),
(0 1 0), (0 0 1), and (1 1 D. Hence

The extreme points of pC are the rows of A and the points (1 0 0), (0 1 0), (0 0 1),
and (0 0 0).

This example shows the difference between the blocking and antib10cking cases. We see
that not all the extreme points of P are needed to describe its antiblocker. In fact, it is not
difficult to show:

Proposition 5.9. If P = {x E R~: Ax ~ 1} where A ~ 0 and has no zero columns, then

i. The facet defining inequalities of pC are the inequalities xr n ~ 1, r = 1, ... , R,
where {X'}~=l are the extreme points of P that are maximal in P.

ii. If X O is an extreme point of P that is not maximal in P, there exists a maximal
extreme point x' for which xJ = xj for all j such that xJ > O.

The main results of blocking and antiblocking can also be interpreted as problems
involving the (fractional) packing and (fractional) covering by rows of A.

Definition 5.2. If A and B are nonnegative matrices with the property that
{n E R1: Bn ~ 1} is the blocker of {x E R1: Ax ~ 1}, then A, B is called a blocking pair.
Antiblocking pairs are defined similarly.

Definition 5.3

i. The max-min inequality holds for a pair ofm x nand r x n nonnegative matrices
A, B if for all w E R1

max{ly: yA ~ W, Y E R':} = min bjw.
lsjg

104 1.4. Polyhedral Theory

ii. The min-max inequality holds for a pair ofm x nand r x n nonnegative matrices
A, C if for all w E R~

min{1y: yA ~ w, Y E R~}= m~x cjw.
l:S:j:s:r

Theorem 5.10. The max-min (min-max) inequality holdsfor a pair A, B if and only if A
and B form a blocking (antiblocking) pair of matrices.

Proof We consider only the blocking case. If the max-min inequality holds, then

max{1y: yA ~ w, y E R~} = min{wx: Ax ~ 1, y E R~}

= min{wxk
: Xk is an extreme point of P}.

It follows that the rows of B are precisely the extreme points of P and that any other row of
B is equal to or greater than a convex combination of these extreme points. Hence B is a
blocking matrix associated with A. The converse is an immediate consequence of linear
programming duality. •

6. POLYHEDRAL TIES BETWEEN LINEAR AND INTEGER PROGRAMS

Now, as promised in the introduction to this chapter, we will show that an integer program
can, in theory, be reduced to a linear program.

Given P = {x E R~: Ax ~ b}, where (A, b) is an integer m x (n + 1) matrix, and
S = P n zn, we are going to show that conv(S) is a rational polyhedron. Whenever P is
bounded, S is either empty or a finite set of points, so the result is a consequence of
Theorem 4.13.

To obtain the result when S contains an infinite number of points, we will show that
conv(S) can be generated from a finite number of points in S and a finite number of
integral-valued rays. The idea of the proof is shown in Figure 6.1. Geometrically, we see
that conv(S) is the polyhedron generated by convex combinations of the points {(l, 2),
(2, 1), (4, 0)) plus nonnegative linear combinations of the rays rl and r2, which are the
extreme rays of P.

The important step in the proof is to show that the set of integer points in a polyhedron
can be finitely generated. We will give a finite set Q C S (in Figure 6.1, the integral points
in the shaded region of P) and then show that S can be generated by taking a point in Q
plus a nonnegative integer linear combination of the extreme rays of P.

Theorem 6.1. If P = {x E R~: Ax ~ b} =1= 0 and S = P n zn, where (A, b) is an integer
m x (n + 1) matrix, then thefollowing statements are true:

i. There exist a finite set of points {q I} lEL of S and a finite set of rays {ri} iEJ of P such
that

6. Polyhedral Ties Between Linear and Integer Programs

4

3

2

2 3

Figure 6.1

...... -----~~ rl = (1, 0)
4

ii. IfP is a cone (b = 0), there exists ajinite set of rays {vhhEH ofP such that

Proof

105

i. Let {xk E R~: k E K} be the finite set of extreme points of P and let {rJ E R~: j E J} be
the finite set of extreme rays of P. Since P is a rational polyhedron, all of these extremal
vectors have rational coordinates. We have

Without loss of generality, we can assume that {r j
} for} E J are integer vectors.

Let

Q = {x E Z~: x = L AkXk + L fl.Jri, L Ak = 1, Ak ~ 0 for k E K, 0 ~ fl.J < 1 for} E J}.
kEK jEJ kEK

Q is a finite set, say Q = {ql E Z1: IE L}, and Q s S. Now observe that Xi E S if and only
ifxi E Z~ and

Xi = {L A~Xk + L (fl.) - lfl.)J)rJ} + {L lfl.)JrJ}, L Ak = 1, Ak, fl.J ~ 0
kEK jEJ jEJ kEK

(6.1) for k EK and} E J.

106 1.4. Polyhedral Theory

The first term of(6.1) is a point of Q, so there exists I(i) E L such that

(6.2) Xi = ql(i) + L pJri , pj = [,ujJ for all} E J.
iEJ

The result follows.

ii. Observe that if P is a cone, then ql E S implies yl E S for all Y E Zl. Therefore it
suffices to take

from part i. •
Now we easily obtain the following theorem.

Theorem 6.2. IfP = {x E R~: Ax ~ b}, where (A, b) is an integer m x (n + 1) matrix, and
S = P n zn, then conv(S) is a rational polyhedron.

Proof Since any point Xi E S can be written in the form (6.2), any convex combina
tion of points {Xi E S, i E I} can be written as

= L (L Yi)ql + L (L YiPJ)ri
tEL (iEf: l(i)=l) iEJ iEf

= L alql + L Piri ,
'EL iEJ

where a, = LUEf: t(i)=l) Yi ~ 0 for I E L, LIEL a, = LiEf Yi = 1, and Pi = LiE! YiP} ~ 0 for} E J.
Now it follows that

conv(S) = {x E R~: x = L a,ql + L Piri, L a, = 1, a" Pi ~ 0 for I ELand} E J},
'EL iEJ IEL

with ql, ri E Z~ for I ELand} E J. Hence by Theorem 4.13, conv(S) is a rational
polyhedron. •

The above proof extends straightforwardly to mixed-integer sets with rational data. As a
consequence, all of the following results given in this section apply to mixed-integer sets
and mixed-integer programs. The above proof also shows that if P n zn '* 0, then the
extreme rays of P = {x E R~: Ax ~ b} and conv(P n zn) coincide.

Theorem 6.2 suggests that we can solve the integer program

(IP) max{cx: xES} where S = P n zn

by solving the linear program

(eIP) max{cx: x E conv(S)}.

This important, but elementary, result is formalized in the following theorem.

6. Polyhedral Ties Between Linear and Integer Programs 107

Theorem 6.3. Given S = P n zn =1= 0, P = {x E R~: Ax ~ b}, and any cERn, it follows
that:

a. The objective value of IP is unboundedfrom above if and only if the objective value of
CIP is unbounded from above.

b. If CIP has a bounded optimal value, then it has an optimal solution (namely, an
extreme point of conv(S» that is an optimal solution to IP.

c. If Xo is an optimal solution to Ip, then Xo is an optimal solution to CIP.

Proof Let Zo and z* be the optimal values of IP and Clp, respectively, with the
convention that Zo or z* = 00 if the objective value is unbounded from above. Note that
conv(S) ;2 S implies that

(6.3)

a. Inequality (6.3) implies that if Zo = 00, then z* = 00. On the other hand, if z* = 00,

then there is an integral extreme point Xo E conv(S) and a ray r E Z~ such that
cr > 0 and Xo + (Jr E conv(S) for all 8 ~ O. But then Xo + (Jr E S for all (J E Zl,
which implies that Zo = 00.

b. Since conv(S) is a polyhedron, if CIP has an optimal solution, then it has an
extreme point optimal solution, say xo. Thus Xo E S, so ZO ~ cxo = z*. By (6.3),
Zo = z*.

c. This follows from parts a and b along with X O E conv(S). •
Corollary 6.4. IP is either infeasible or unbounded or has an optimal solution.

Theorem 6.3 states that we can solve the integer program IP by solving the linear
program CIP. In fact, if we knew a polyhedral representation of conv(S) in terms of linear
inequalities, this would be a nice way to describe our integer program. But generally we do
not know a set of linear inequalities that define conv(S). Thus we formulate our integer
program using some polyhedron P = {x E R~: Ax ~ b} such that S = P n zn. Viewed in
this framework, reducing an integer program to a linear program amounts to deducing a
linear inequality representation of conv(S), or at least the relevant inequalities with
respect to an objective function c, from the linear inequality representation of P and the
integrality requirement. This is the principal topic of Chapter ILL

Until now we have only considered valid inequalities for polyhedra. We say that (n, no)
is a valid inequality for a set S if nx ~ no for all xES.

Proposition 6.5 If nx ~ no is valid for S, it is also valid for conv(S).

Proof Consider an x E conv(S). Then x = LiE] Jvxi, where Xi E S for j E J, and
LjE])/ = 1 and Aj ~ 0 for j E J. Hence

nx = I Ainxi) ~ I AinO = no·
jE] jE]

•
To establish the dimensionality of a face of conv(S), it suffices to consider points of S.

108 1.4. Polyhedral Theory

Proposition 6.6. If nx ~ no dejines a face of dimension k - 1 of conv(S), there are k
afjinely independent points xl, ... ,Xk E S such that nxi = nofor i = 1, ... , k.

Proof. By definition, there are k affinely independent points XI, ... ,Xk E conv(S)
such that nxi = no for i = 1, ... , k. If Xi E S for i = 1, ... ,k, there is nothing more to
prove, that is, take Xi = Xi for i = 1, ... , k. So suppose Xl $. S. Then Xl = I.iEJ Aixi, where
xi E S and Ai > 0 for all} E J, and ~EJ Ai = 1. Now nx2 = no and nxi ~ no for} E J imply
that nxi = no for all} E J. Since Xl, ... , Xk are affinely independent, there exists}* E J
such that xi·, X2, ... ,Xk are affinely independent. The proof is completed by repeating
this process until the resulting set contains only elements of S. •

Consider the problem

(LP) max{cx: Ax ~ b, x E R~}.

Previously we have related IP to CIP. Now we relate IP to LP.
Let

zed) = max{cx: Ax ~ d, x E z~}

and

zLP(d) = max{cx: Ax ~ d, x E R~},

so that z(b) = max{cx: x E P n zn} and zLP(b) = max{cx: x E P} with
P = {x E R~: Ax ~ b}.

Proposition 6.7

a. ZLP(O) = z(O).
b. z(O) = 0 ifand only ifQ = {u E R':: uA ~ c} =1= 0.
c. z(O) = 00 if and only if Q = 0.
d. IfQ =1= 0, then S = P n zn = 0 or z(b) isjinite.
e. IfQ = 0, then S = 0 or z(b) = 00.

Proof. Clearly 0 ~ z(O) ~ ZLP(O). If Q "* 0, then ZLP(O) = 0 by duality and hence
z(O) = ZLP(O) = O. If Q = 0, then from Theorem 4.9 there exists an extreme ray rJ of P with
crJ > O. Since rJ can be taken to be integer, z(O) = 00 = ZLP(O). This proves statements a, b,
andc.

If Q =1= 0, then it follows, by duality, that P = 0 or zLP(b) is finite. Hence statement d
follows. Similarly if Q = 0, then it follows, by duality, thatP = 0 or zLP(b) = ZLP(O) = 00. If
S =1= 0, then from statement c it follows that z(O) = z(b) = 00. Hence statement e follows .•

Corollary 6.8

a. If P = 0, then S = 0.
b. IfzLp(b) isjinite, then S = 0 or z(b) isjinite.
c. IfzLp(b) = 00, then S = 0 or z(b) = 00.

8. Exercises 109

Note that by solving the linear program max{cx: x E P}, we establish which of the cases
a, b, or c occurs. Corollary 6.8 says that, except for the fact that S may be empty when Pis
not empty, IP and LP have the same status.

7. NOTES

Sections 1.4.1-1.4.4

Halmos (1959) and Strang (1976) are basic reference books on linear algebra. The
fundamental works on general polyhedral theory and convexity are Grunbaum (1967),
Rockafellar (1970), and Stoer and Witzgall (1970).

Chapter I of Pulley blank's Ph.D. dissertation (1973) focuses on the aspects of polyhedral
theory used in combinatorial optimization. Also see Bachem and Grotschel (1982) and
Pulleyblank (1983).

Section 1.4.5

The basic reference on polarity is Rockafellar (1970). The study of blocking and antiblock
ing polyhedra is due to Fulkerson (1968, 1970a, 1971, 1972). Also see Tind (1974, 1977,
1979).

Section 1.4.6

The proof of Theorem 6.1 is taken from Giles and Pulleyblank (1979). Also see Meyer
(1974, 1975) and Meyer and Wage (1978).

8. EXERCISES

1. Consider the polyhedron P described by

i) Find the dimension of P.

XI-X2 S 0

-xl+x2 s1

2X2;::: 5

8Xl -X2 S 16

ii) Find an interior point (if one exists).

iii) Describe all the faces of P.

iv) Consider each of the faces Fi = P n {x E R2: aix = bJ for i = 1, ... , 5.
What is the dimension of pi?
Which inequalities define facets of P?

v) Give a "minimal" representation of P.

110 1.4. Polyhedral Theory

2. Consider the assignment polytope

P = {x E R~2: ± Xij = 1, i = 1, ... , n, ± xi) = l,j = 1, ... , n}.
)=1 i=1

i) Determine its dimension and its facets.

ii) What happens if we replace the equality constraints by

n

L xi) S 1, i = 1, ... ,n and
)=1

n

LXi) 2 1, j = 1, ... , n.
i=1

3. A wheel Wn=(V,E) is a graph defined by V={vo,vt, ... , vn} and
E = {(va, vJ: i = 1, ... , n} U {(Vi, Vi+I): i = 1, ... , n -l} U {(v m VI)}'

Let P = {x E RIEl: 1:(xe: e contains node v) = 2 for all v E V, 0 S Xe S 1 for all
eEE}.

i) Find the dimension of P.

ii) Show that the inequalities xe 2 0 are redundant.

iii) Show that the inequalities Xe S 1 are redundant for e = (vo, Vi) for i = 1, ... , n.

iv) Give a minimal representation of P by a system of linear inequalities and
equalities.

v) Give a representation of P by means of its extreme points.

4. Let F be the face of optimal solutions of the linear program max{cx: x E P}, where
P = {x ERn: Ax S b}. Let Mp be the equality set of F and let u* be any optimal
solution of the dual linear program. Show that Ui* = 0 if i tE Mp.

5. Show that if Hand G are two faces of a polyhedron P of dimension rand r + s,
respectively, and H is a face of G, there exists a sequence of faces {FJf=o with:

i) Fo = H, Fs = G;

ii) Fi is a facet of Fi+1 for i = 0, ... , s - 1.

6. Find all extreme points and extreme rays of:

i) the polyhedron in Exercise 1;

ii) the polyhedron

XI + 2X3 2 2

-X2 + X3 2-4

XER3.

7. For each face F of P in Exercise 1, find the values of c such that max{cx: x E P} has
F as the set of optimal solutions.

8. Exercises 111

8. (Fourier-Motzkin Elimination). Given a polyhedron P ~ Rn+l described by the
inequalities

a1x + y ~ ab for I = 1, ... , L

bk X - Y ~ b~ for k = 1, ... , K

cix ~ cb for i = 1, ... , I,

where x ERn, y E Rl:

i) Show that

ii) Find projAP), where

P = {(x, y) E R2: x - y ;;;:: -2, x + y ~ 3, x - y ~ -1, y ;;;:: O}.

9. i) Given a polyhedron P, let {Fj}iEI and {Gj}jEJ be polyhedra with F j, G j ~ P. Show
that

ii) Show that the inequality is strict in the following example:

Let Fi = P n {x E R~: Xl = i} for i = 0, 1,2

and Gj = P n {x E R~: X2 = i} for j = 0, 1, 2

with P as in Figure 8.1. Note that l) (Fi n Gj) = P n Z~.
I,)

X2

(1,2) (2,2)
(0,2)

2

Figure 8.1

112 1.4. Polyhedral Theory

iii) Show that equality holds in part i when the {FJ, {Gj } are faces of P.

iv) Suppose P is contained in the unit hypercube in R 2• Take
Fa = P n {x E R2: Xl = l5} and G a = P n {x E R2: Xi E l5} for <:5 E {O, n. Interpret
the equality in this case.

10. Find the polar and its extreme rays for the polyhedron in Exercise 1.

11. Let S = {x E Z~: Xl - X2:::;; 1, 4XI + X2:::;; 28, Xl + 4X2:::;; 27}.

i) Find an inequality description of conv(S).

ii) Find the extreme points of conv(S).

iii) Find the polar of conv(S).

iv) Find the extreme rays of the polar of conv(S).

12. Find the I-polar of

13. Find the blocker of

P = {x E R~: ixl + tx2 ~ 1, 1XI + 1x2 ;;::: 1, ixl + ~X2 ~ n.

14. Prove Proposition 5.9.

15. Prove the min-max version of Theorem 5.10.

16. Let P = {x ERn: Ax :::;; b}, where rank(A) = k < n. Let L = {x ERn: Ax = O},
L.1 = {x ERn: Bx = O} and P* = P n L .i.

i) Show that P = P* + L.

ii) Derive Minkowski's theorem when rank(A) < n.

iii) Demonstrate it for

17. Find a finite set of generators for the set S = P n Z2, where

P = {x E R~: 5XI + 3X2 ~ 10, 5XI - 5X2 ~ -1, -Xl + 2X2 ~ -2}.

18. Give examples of pairs,

(LP)

(IP)

where

max{cx: Ax :::;; b, X E R~}

max{cx: Ax :::;; b, X E Z~},

i) LP and IP are unbounded,

ii) LP and IP have finite optimum value,

iii) LP is unbounded, and IP is infeasible,

iv) LP is bounded, and IP is infeasible.

8. Exercises 113

19. Using the polyhedron of Exercise 1 of Section 1.1.8, show that Theorem 6.2 does not
hold for irrational polyhedra.

20. Consider the graph G = (V, E), where V = {l, 2, ... , 2k + 1}, k ~ 2, and
E = {(l, 2), (2, 3), ... , (2k + 1, I)}. Let S = P n Z2k+l be the set of node packings on
G where P = {x E Rik+l: Xi + Xj S 1 for (i,}) E E}. Show that conv(S) ~ P. Find
another facet of conv(S). Now do you have conv(S)? Why?

1.5
Computational Complexity

1. INTRODUCTION

The purpose of this chapter is to describe a theory of computational complexity that yields
insights into how difficult a problem may be to solve.

At the easy end of our spectrum, there are problems like the minimum-weight spanning
tree problem. Recall that in Section 1.3.3 we gave an algorithm for the minimum-weight
spanning tree problem with running time O(n log n) for a graph with n edges. One
fundamental issue to be discussed here is when a problem can be solved in time O(lk),
where k is a constant and I is an appropriate measure of the length of the input needed to
describe the data.

For most integer programming problems, no such algorithm is known. We will show
that there are integer programming problems much more specific than the general pure
integer programming problem (e.g., maximum cardinality node packing) with the follow
ing property. If maximum cardinality node packing for a graph with m nodes can be
solved in time O(mk) for some fixed k, then there exists a k such that the pure-integer
programming problem can be solved in O(lk), where I measures the input needed to
describe the data A, b, c.

A very important concept introduced in this chapter is a "certificate of optimality."
Given a certificate of optimality, one can prove in O(lk) time, for some fixed k, that a given
solution is indeed optimal.

After introducing some basic concepts in this section and Section 2, we will show in
Section 3 that primal and dual basic optimal solutions provide a certificate of optimality
for linear programming.

Although no certificate of optimality is known for the general pure-integer program
ming problem, in Section 4 we will develop some results for pure-integer programs that
will enable us to establish a weaker result, namely, a "certificate offeasibility." This means
that given an appropriate feasible solution, we will be able to check feasibility quickly. The
result is not trivial, since one can imagine feasible integer programs for which the only
solutions have a large number of digits, so checking feasibility by substitution is a
formidable task.

In Section 5, we formalize the concept of a feasibility problem and the class offeasibility
problems with a certificate of feasibility. In Section 6, we show that there are hardest
feasibility problems in the above class and relate these results to optimization problems. In
Section 7, we consider the complexity of problems associated with polyhedra such as
whether nx ~ no is satisfied by all points in a given polyhedron.

The presentation here represents a compromise between the rigor found in computer
science texts, which would require many new definitions and concepts, and a very
informal presentation that can lead to fundamental misconceptions. Thus it is necessary

114

1. Introduction 115

for us to define rather precisely the meanings of terms such as problem, instance of a
problem, polynomial solvability, and so on. But we will avoid using terms such as Turing
machine, language, and so forth.

Mixed-integer programming is the problem written generically as

max{cx + hy: Ax + Gy ~ b, x E Z~, Y E Rf},

where m is any positive integer, p and n are any nonnegative integers with
p + n ~ 1, and c, h, A, G, b are matrices with integral coefficients; the dimensions of
these matrices are as follows: cis 1 x n, h is 1 x p, A is m x n, Gis m x p, and b is m x 1.
We could just as well have assumed that the matrices have rational coefficients, but the
assumption of integer coefficients is no less general and is more convenient.

A problem consists of an infinite number of instances. An instance is specified by
assigning numerical values called data to the problem parameters. In the case of mixed
integer programming, the data that specify an instance are integers m, n, and p as well as
integral matrices c, h, A, G, and b of appropriate dimension.

It is desirable to delineate special cases of the mixed-integer programming problem.
This is done by restricting the parameters in natural ways. Pure-integer programming is
the special case of mixed-integer programming in which p = 0, and hence the matrices h
and G do not appear. Linear programming is the special case in which n = 0, and hence
the matrices c and A do not appear.

Every instance of a linear or pure-integer program is also an instance of a mixed-integer
program. Thus an algorithm that can solve all instances of mixed-integer programming
can, by definition, solve all instances of the special cases of pure-integer and linear
programming. An obvious conclusion is that mixed-integer programming is at least as
hard as pure-integer and linear programming.

Figure 1.1 is a directed graph that shows relationships among some of the problems that
have been formulated in Chapter 1.1. The problem at the head of an arc is a special case of
the problem at the tail. The relationship extends transitively to directed paths. Thus, if
there is a directed path from problem Xl to problem X 2, then every instance of X 2 is also an
instance of Xl.

Most of the arcs in Figure 1.1 are easily justified. For example, 0-1 integer programming
contains those instances of pure-integer programming in which

A = (~') and b = (~'),

where I is an n x n identity matrix and 1 is an n x 1 matrix of I's. Set packing contains
those instances of 0-1 integer programming in which each coefficient of matrix A is ° or 1
and b is a column of I's. Node packing contains those instances of set packing in which
each row of A has exactly two 1 'so

In attempting to classify these problems, an extreme view is to ignore the special cases.
All of our problems are just mixed-integer programs to be solved by the same algorithm.
While there are good reasons for having a robust algorithm, by carrying it to this extreme
we would fail to take advantage of the structure and simplicity of important special cases.
On the other hand, there are so many interesting special cases of mixed-integer program
ming that it would be foolish, if not hopeless, to consider each separately. The fundamen
tal issue is to find natural divisions. One possible way of achieving this is to attempt to add
arcs to the graph of Figure 1.1 to create directed cycles. Then if problems Xl and X 2 are
contained in a directed cycle, they are equivalent in the sense that each is a special case of
the other.

.....

.....

0
\

f
S

h
o

rt
e

st

pa
th

~

I

~

Li
ne

ar

p
ro

g
ra

m
m

in
g

t
F

ix
e

d
-c

h
a

rg
e

ne

tw
or

k
flo

w
 l

Li
ne

ar

ne
tw

or
k

flo
w

 l
T

ra
ns

po
rt

at
io

n

I
A

ss
ig

n
m

e
n

t
...

M
 ix

e
d

-i
n

te
g

e
r

pr
og

ra
m

m
in

g l
~

M
ix

ed
 0

-1

P
u

re
-i

n
te

g
e

r
pr

og
ra

m
m

in
g

pr
og

ra
m

m
in

g

I
t

l
l

l
U

 n
ca

p
a

ci
ta

te
d

0

-1

In
te

ge
r

fa
ci

lit
y

pr
og

ra
m

m
in

g
kn

ap
sa

ck

lo
ca

tio
n

I
I

t I
I

I
t

~
t

0
-1

S

et
 p

ac
ki

ng

S
et

 c
ov

er
i n

g
I

kn
ap

sa
ck

I

I
~

l'
t

M
a

tc
h

in
g

N

od
e

pa
ck

in
g

T
ra

ve
lin

g
sa

le
sm

an

Fi
gu

re
 1

.1

2. Measuring Algorithm Efficiency and Problem Complexity 117

By the end of this chapter we will have shown that apart from the problems that are
well-solved, all the other problems in Figure 1.1 lie on common cycles and are theoretically
"equally difficult". However, in parts II and III we will see that there remain many reasons
to distinguish between problem classes by using structure in developing algorithms.

Example 1.1 (Set Packing is a special case a/Node Packing). LetA be an m x n matrix,
all of whose coefficients are 0 or 1, and let 1 be a column vector of 1 'so We will construct a
p x n 0-1 matrixA' withp ~ n(n - 1)/2 and 'L}=l aij = 2 for i = 1, ... ,p such that

Since a 0-1 matrix with exactly two l's in each row and no duplicate rows is the edge-node
incidence matrix of a graph, it suffices to specify matrix A' as the edge-node incidence
matrix of some graph. Let G A = (V, E) be the graph with V = {l, 2, ... , n} and
E = {(j, k): a ij = a ik = 1 for some i}. G A is called the intersection graph of matrix A. The
construction is illustrated in Figure 1.2.

Now it is easy to see that XO E B n satisfies Axo ~ 1 if and only if the node set
VO = {j E V: xJ = 1} is such that}, k E VO implies (j, k) $. E. Hence there is one-to-one
correspondence between feasible solutions to the set packing problem with matrix A and
feasible solutions to the node packing problem on graph GA' Finally, we note that VO is a
feasible solution to the node packing problem if and only if A' XO ~ 1, where A' is the edge
node incidence matrix of GA.

Later in this chapter we will be more precise in what we mean by a special case. We want
to have a definition that insofar as possible conveys the idea that if X 2 is a special case of
Xl, then an algorithm that can solve instances of Xl efficiently can also efficiently solve
those instances of Xl that belong to X 2• For example, we could say that integer program
ming is a special case of linear programming by replacing the constraint set of an integer
program by a linear inequality description of its convex hull. While this is true, it is
misleading because the efficiency of the algorithm for linear programming may be a
function of the linear inequality description of the convex hull, and in addition it may be
extremely difficult to find these linear inequalities.

2. MEASURING ALGORITHM EFFICIENCY AND PROBLEM COMPLEXITY

It is common practice to relate computation time to problem size. Traditionally, the size
of an instance of an optimization problem has been described by its number of variables
and number of constraints. These two parameters, however, may not be adequate. There
are algorithms whose number of steps depends explicitly on the magnitude of the
numerical data. For example, there is an algorithm for the integer knapsack problem

~-----2

3--------44

GA

Figure 1.2

118 1.5. Computational Complexity

whose number of computations is proportional to the number of variables times the right
hand side of the constraint. In the ellipsoid method for linear programming, the number of
computations depends on the volume of the initial ellipsoid, which in turn depends on the
magnitude of the numerical data. The size of numbers involved in elementary calcula
tions, such as additions and multiplications, may also be of concern. It is frequently
reasonable to assume that these operations are done in constant or unit time. For example,
if a and b are integers that are part of the data, then a reasonable assumption is that a is
read in unit time, b is read in unit time and a + b is calculated in unit time. However, it
may not be reasonable to assume that huge integers such as factorials can be added in unit
time.

We say that the size of a problem instance is the amount of information required to
represent the instance. The data needed are generally obvious; for example, an instance of
integer programming is specified by integers m and n and matrices A, b, and c. How
should we represent the information? A model that is robust with respect to representing
the essence of real computation is to use a two-symbol or binary (0, 1) alphabet for the
representation of numerical and logical data. In this model, a positive integer x,
2n ~ x < 2n

+
1, is represented by the vector (tSo, tSI, ... , tSn), where

n

X = 2 tSi2i and tSi E {O, 1} for i = 1, ... , n.
i=O

Note that n ~ log2x < n + 1. An additional digit is necessary to represent the sign of x, and
rational numbers are represented by pairs of integers. We always assume that the initial
numerical data are integral or rational. Only rarely do we have to be concerned with
irrational numbers in intermediate calculations. In such situations (e.g., in the ellipsoid
algorithm, which requires square roots), we have to take care to specify the precision of the
arithmetic calculations. However, for the most part, integer arithmetic suffices.

Subsets of a set can be represented by incidence or characteristic vectors. Thus if
Q = {l, 2, ... , n}, the subset Qj is given by the vector (qI, q2, ... , qn), where qi = 1 if
i E Qj and q i = 0 otherwise. This, of course, is a way of representing graphs, since an edge
of a graph is just a subset of nodes of cardinality 2. Thus a graph G = (V, E) with m nodes
and n edges can be represented by an m x n node-edge incidence matrix. Alternatively, it
can be represented by the m x m symmetric adjacency matrix A, where a ij = 1 if nodes i
andj are joined by an edge and aij = 0 otherwise. Another data structure for subsets and
graphs is to represent a subset by a list of its elements.

While choosing a good data structure can be very important in implementing an
algorithm efficiently, it is fortunate that our primary classification scheme of algorithm
efficiency is very insensitive to the choice of data representation. There are, however,
some restrictions.

The alphabet used to represent data must contain at least two symbols. In particular, for
reasons to be explained later, a one-symbol representation of integers is not permitted. The
second restriction deals with the amount of information that we agree to call data. We will
explain this point by considering the symmetric traveling salesman problem on a complete
graph G = (V, E), where c e for e E E is the cost of edge e. The natural representation of the
data is a list of edges, named by their endpoints, and their costs. A representation of the
data that is not permitted is a list of all (n - 1)!/2 tours and their costs. The number of tours
grows exponentially with the size of the graph, and if an algorithm required this informa
tion, we would regard its generation to be part of the algorithm, not part of the data
description. Similarly, the integer programming formulation of the symmetric traveling

2. Measuring Algorithm Efficiency and Problem Complexity 119

salesman problem given in Chapter I.l, which requires an inequality for each U ~ V with
2 ~ I U I ~ I V I - 2, is not permitted as a description of the data. Here the number of rows
in the constraint coefficient matrix A grows exponentially with the size of the graph. If an
algorithm required this formulation, we would regard its generation to be part of the
algorithm.

Having set up a model for describing a problem and the data of its instances, we now
consider computation time. We want our measure of time to be independent of the
characteristics of particular computers, so we basically count the number of elementary
operations such as additions, multiplications, comparisons, and so on; that is, we assume
that each elementary operation is done in unit time. This is a reasonable assumption as
long as the size of the numbers does not grow too rapidly as the calculations progress. We
will see later that one may need to be very careful in checking that this is the case.

Consider an optimization problem X consisting of an infinite number of instances
(db d2, •••), where the data for the instance d j is given by a binary string of length
Ii = I(d j). Let A be an algorithm that can solve every instance of X in finite time. We
assume that the running time of A is specified by a function gA: X -+ Rl. We would like to
express running time as a function of I. Since it is not necessarily the case that if two
instances have the same length, they have the same running time, we must use some
statistic to aggregate the running times for all instances of the same length. Our approach is
to use a worst-case analysis. In other words, the running time that we associate with all
instances of size k is

This highly conservative measure of running time, which only considers the worst
possible outcome for each size, has three advantages:

1. It gives an absolute guarantee on running time.
2. It is independent of a probability distribution of the instances.
3. It appears to be the easiest measure to analyze.

However, it also has disadvantages. Foremost among these is its failure to give a true
picture when a large percentage of instances of a given size can be solved rapidly and only
a very small percentage require considerably more time. In these situations, measures such
as expected running time may be preferable. But measures that require a probability
distribution of the instances appear to be more difficult to analyze and require assump
tions about an underlying probability distribution.

Rather than attempting to get a precise expression for the functionfA(k), it will suffice
here to approximate it from above. Recall that we say f(k) is O(g(k)) whenever there exists
a positive constant c and a positive integer k' such thatf(k) ~ cg(k) for all integers k ~ k'.
With this convention, a polynomial l:f=o cjk i is O(kP). In other words, we ignore all of the
terms of degree less than p and all of the constants. This means that only the asymptotic
behavior of the function as k -+ 00 is being considered, since for "small" values of k,
depending on the constants, the lower-degree terms may dominate.

Algorithm A is said to be a polynomial time algorithm for problem X iffA(k) is O(kP) for
some fixed p. Let PJ> be the class of problems that can be solved in polynomial time.
Problem X is in PP if and only if there is a polynomial time algorithm for solving X. A main
theme of computational complexity is the inherent difference between problems known
to be in PJ> and others for which no polynomial time algorithm is known.

120 1.5. Computational Complexity

The functionJis said to be exponential if for some constants Cb C2 > 0 and db d2 > 1
and a positive integer k' we have

A typical example of exponential time calculation is the enumeration of the 2k 0-1 k
dimensional vectors. The functionJ(k) = 2k is not bounded by any polynomial in k, and it
does not require very large values of k for 2k to exceed polynomial functions of reasonably
small degree. For example, with k = 60, an algorithm that required 2k calculations, each of
which took a microsecond, could not be completed in 300 centuries, whereas one that
required k S calculations would be done in less than 15 minutes.

Although most of the algorithms that we consider can be shown to either run in
polynomial or exponential time, there are other possibilities. There are functions whose
rate of growth is faster than polynomial but slower than exponential-for example,
J(k) = k1ogk

• There are also functions whose rate of growth is faster than exponentially-for
example,J(k) = kkk.

Exponential time can also occur when the number of computations is a function of the
size of the numbers in the input. Let 8 be the largest integer in a given instance. Since the
binary encoding of 8 only requires a string of length O(log 8), an algorithm that requires 8
steps is at least exponential. This is one reason for our having stressed the encoding of
numbers earlier in this section. We ruled out a one-symbol alphabet because it would
permit 8 steps to be carried out in polynomial time.

Also, if an algorithm computed very large numbers, such as 20
, that are not bounded by

a polynomial function in 8, their encoding would require strings of length not polynomi
ally bounded in log 8. However, as long as the numbers remain polynomially bounded in
8, the assumption of unit time calculations has no bearing on whether the algorithm runs
in polynomial time. Besides being convenient, this assumption is made because comput
ers work with "words" in unit time, and quite large integers are represented by a single
word. Thus when we say that an algorithm runs in O(kP) time, we generally have ignored a
factor in log 8 that would be required if we had assumed that the time for an elementary
calculation was proportional to the logarithm of the numbers involved. However, we will
not ignore the possibility of exponential growth in the size of numbers.

In this regard, we must consider the representation of rationals that are not integers. We
assume that a rational a Ibis encoded by the pair of integers a and b. Thus 2-0 represented
as (1, 28) is a very large number. A more subtle point is that 2 represented as 20

+
1/20 is a very

large number. We avoid the latter problem by assuming that a rational alb is represented
by two relatively prime integers p and q (i.e., alb = plq and the greatest common divisor
of p and q equals 1). In fact, in Section 1.7.2 we will give a version of the euclidean
algorithm, which, given a and b, finds p and q in polynomial time. So the assumption of
representing rationals by two relatively prime integers is theoretically justified.

While the distinction between polynomial time algorithms and the rest is important
theoretically, it is not a satisfactory practical division. We will begin to see in the next
section, and then in Part II, that some polynomial time algorithms are inefficient and that
some algorithms known to be exponential in the worst case are very reliable algorithms for
solving practical problems. Of course, polynomial time algorithms that run in, say, linear
time are fast. The problems with the division occur with polynomial time algorithms in
which the degree of the polynomial is not small and with exponential time algorithms that
are fast in most cases.

3. Some Problems Solvable in Polynomial Time 121

We have chosen here to emphasize computation time, but the space or memory needed
to solve a problem is also important. Observe that if X E PP there must be an algorithm for
X whose space requirements are a polynomial function of the length of the input.
However, the converse is false. In other words, there are exponential time algorithms
whose space requirements are polynomially bounded.

So far, we have ignored the question of whether integer programming problems can be
solved finitely. Obviously they can be when the variables are bounded, since the enumera
tion of all points within the hypercube defined by the bounds is a finite process. In Section
4, we will show that upper bounds on the variables can be found as a function of
(A, b, c, m, n) for pure-integer programming problems with the property that if
max{cx: Ax ~ b, x E z~} has an optimal solution, then it has an optimal solution within
the specified bounds. This result, along with schemes for resolving infeasibility and
unboundedness, shows that every pure-integer programming problem can be solved
finitely. It also can be proved that mixed-integer programs can be solved finitely. Thus it is
interesting to observe that some nonlinear problems with integer variables are impossible
to solve. For example, it is impossible to describe an algorithm that decides whether
{x E zm:f(x) = O} is nonempty or not, wherefcan be any polynomial function.

3. SOME PROBLEMS SOLVABLE IN POLYNOMIAL TIME

In this section, we briefly discuss the complexity of some of the problems in Figure 1.1 that
are known to be in PP.

To point out some distinctions between the complexity of problems in PP, we consider
five problems.

1. The minimum-weight path problem with nonnegative data (see Section 1.3.2). An
instance is specified by any m node graph and integral nonnegative edge weights.

Dijkstra's algorithm requires O(m2) elementary calculations. Note that the
number of calculations is independent of the numerical values of the edge weights.
Moreover, each of the numerical operations is an addition or comparison, so the
numbers involved only grow slowly. The performance of this algorithm is very
satisfactory, since a complete graph on m nodes contains m(m - 1)/2 edges, and thus
O(m2) integers are needed to describe some of the m node instances.

2. The minimum-weight path problem (see Section 1.3.2). An instance is specified by
any m node graph and integral edge weights.

The Bellman-Ford algorithm either finds a minimum-weight path or detects a
negative weight cycle with O(m3) elementary calculations. It is not known whether
more theoretically efficient algorithms [e.g., an algorithm with running time O(m2)
or O(m2 log m)] are possible. In general, establishing lower bounds on the complex
ity of a problem is extremely difficult.

3. Solving linear equations. Given an n x n system of equations Ax = b, where A is
nonsingular, x = A-I b can be found by Gaussian elimination. The basic elimination
method requires n pivots, each of which requires O(n2) calculations.

The size of the numbers that occur is bounded from above by the largest
magnitude of the determinant of any square submatrix of (A, b). Now since det A
involves n! < nn terms, the largest number is less than (nfJY, where fJA = maxi,) I aij I,
fJb = maXi I b i I, and () = max«()A,fJb). Hence Gaussian elimination is polynomial in n.
By considering (A, I), where A is m x n, Gaussian elimination also yields polyno
mial time algorithms for calculating rank(A) and det(A) and for solving m x n linear
systems.

122 1.5. Computational Complexity

4. The transportation problem (see Section 1.3.5). An instance is specified by an
ml x m2 (m! + m2 = m) integral matrix C, where cij is the unit shipping cost from
supply point i to demand pointj, an ml-vector of integral supplies (ab ... , am),
and an mrvector of integral demands (b l , ••• ,bmJ, where 1:7,:~ ai = 1:}:j bj = a.

The primal-dual algorithm (without scaling) requires no more than a steps and
O(m2) computations in each step. This is not a polynomial time algorithm, since the
number of steps is exponential in log a. However, when scaling is included, the
number of steps is reduced to m rlog 01, where 8 = max(maxiai, maxjbj). Thus we
obtain a polynomial time algorithm whose running time is O(m 3 10g 8).

Very recently, polynomial time algorithms with running time bounds that are
independent of the numerical data have been found. The practical efficiency of
these algorithms is not yet known. Furthermore, the practical significance of scaling
is unresolved. Presently, it is generally believed that the most practical algorithm is a
primal simplex algorithm, which is known to be exponential. So here we have an
indication that the polynomial/exponential dichotomy is a dubious way to measure
the practical efficiency of algorithms.

5. The linear programming problem (see Chapter 1.2). An instance is given by
max{cx: Ax:::::; b, x E R~}, where (A, b) is an integral m x (n+l) matrix and c is an
integral n-vector.

The simplex method, which is used in all commercial linear programming codes,
is not a polynomial time algorithm. There are classes of linear programs for which
the simplex method takes exponential time. This fact is the outstanding evidence for
the argument against worst-case analysis of algorithms, since the simplex method
has been enormously successful in the solution of real-world instances. Recently, the
efficiency of the simplex method has been supported even further by probabilistic
analysis, which shows that under rather general assumptions on the underlying
distribution of instances, the expected running time of the simplex method is
bounded by a polynomial in m and n.

In Chapter 1.6 we will give two polynomial time algorithms for linear programming.
The older of these two methods is the ellipsoid algorithm. It certainly seems to be inferior
to the simplex algorithm as a computational tool. However, it provides an important proof
technique for showing that some combinatorial optimization problems are in 1P. The
more recent method, Karmarkar's algorithm, appears to be a promising technique for
practical computation. But as of this writing, not enough empirical evidence is available.

Prior to the development and analysis of the ellipsoid algorithm, many researchers
believed that linear programming was in 1P, but no proof was known. The reason for this
conjecture assumes a central role in the development and analysis of algorithms for integer
optimization problems. Here we give an informal explanation of the reason. In Section 5,
we reexamine it in the language of computational complexity.

Suppose we owned a supercomputer that ran as fast as an exponential number of
standard computers running in parallel. We could then solve a bounded instance of linear
programming by using Gaussian elimination to enumerate all basic solutions. Each basic
solution could be checked for nonnegativity, and from the feasible ones we could pick one
that maximizes the objective function.

Having determined an optimal solution in this way, how could we, in polynomial time,
convince someone else, who did not have access to the supercomputer, that we really had
found an optimal solution? One answer, of course, is to apply a polynomial-time ellipsoid
algorithm. But there is a much simpler answer that was known long before the ellipsoid
algorithm.

3. Some Problems Solvable in Polynomial Time 123

Suppose we ask our computer to produce an optimal dual solution UO as well as an
optimal primal solution xO. Then given (XO, un), with O(mn) calculations, we could
convince anyone that XO and UO were optimal. We would show the feasibility of XO and UO
(i.e., {Axo ~ b, XO E R~} and {unA ~ c, UO E R':}) and then show that cxo = uOb. Thus the
duality theorem of linear programming gives the proof. One subtle point remains. We
must show that the coefficients of XO and UO are polynomial in the length of the encoding of
the data. Fortunately this is true for basic solutions and extreme rays. The argument is
essentially a repeat of that used above to observe that the intermediate numbers in
Gaussian elimination are polynomial in the input length.

The following notation will be used throughout the text.

B A = ~~x I a ij I, Bb = m~x I b ii,
I,} I

B = BA,b = max(BA,Bb).

Proposition 3.1. Let xO, rO be an extreme point and extreme ray ofP = {x E R~: Ax ~ b},
where (A, b) is an integral m x (n + 1) matrix. Then for j = 1, ... , n:

i. xJ = pj/q, where Pf,q are integers such that 0 ~ Pj < nBb(nBAt-1 and 1 ~ q < (nBAt.
ii. rJ = pj/q, where Pj and q are integers such that 0 ~ Pj < ((n - I)BA)n-l and

1 ~ q < ((n - I)BA)n-l.

Proof i. By the characterization of extreme points of P, XO is a solution to A IX = b I,
where A I is n x nand nonsingular and each row of A I is either of the form aix = bi or
Xj = O. Then, byCramer'srule,xJ = pj/q, whereq ~ 1 is the magnitude of the determinant
of A I and Pi is the magnitude of the determinant of the matrix obtained by replacing the
jth column of A I by b' . Each of these determinants contains n! < nn terms. Hence
1 ~ q < (nBAt and 0 ~ Pi < nBb(nBAt-l

•

ii. Similarly rO is determined by n - 1 equations, either of the form aix = 0 or
Xj=O. •

The bound of Proposition 3.1 states that the number of binary digits needed to represent
XO is less than 2n 10g(nBt = 2n210g(nB), which is polynomial in n and log B. Intuitively,
Proposition 3.1 states that if a polyhedron has extreme points with both large and small
integral coordinates, then it has very sharp angles (see Figure 3.1). But in order to obtain
very sharp angles, the defining hyperplanes must have some very large coefficients.

(0, 1)I~~~~~~~~~~~~~Xl~+~2~~~2~2~a~~~~~ (a, 1/2)

Xl +2~2 0
(0,0) xl

Figure 3.1

124 1.5. Computational Complexity

A theoretical consequence of this bound is that if P = {x E R1: Ax ~ b} is an
unbounded polyhedron and max{cx: x E P} is finite, it suffices to solve max{cx: x E P'},
where P' = {x E R1: Ax ~ b, x ~ (nO)n) is a polytope whose length of description
I' = I + O(n2(log nO» is not significantly longer than the description length I ofP. This will
be used in the ellipsoid and projection algorithms in the next chapter.

Information that can be used to check optimality in polynomial time is called a
certificate of optimality or a good characterization. A binary string is said to be short if its
length is a polynomial function of the length of the input.

For linear programming, a certificate consists of basic optimal primal and dual
solutions. To use it we simply verify primal and dual feasibility and the equality of the
objective function values. Of course, if a problem is in '!P it has a good characterization.
Although it is not known whether a good characterization implies that a problem is in '!P,
for nearly all optimization problems for which a good characterization is known, a
polynomial-time algorithm is also known. Until 1979, linear programming was one of the
rare exceptions. Some other exceptions in combinatorial optimization were also resolved
through the use of the ellipsoid algorithm.

We now consider a problem that may properly be designated an integer optimization
problem and is a generalization of the assignment problem.

6. The weighted matching problem. An instance is specified by a graph G = (V, E) with
m nodes, n edges, and integral weights Ce for e E E.

We have previously given the integer programming formulation

(3.1)

max L CeXe
eEE

I Xe ~ I for i E V
eEJ(i)

xEZ1,

where J(i) is the set of edges incident to node i. Here the linear program obtained by
replacingx E Z1 by x E RZ does not necessarily have an integral solution. However,
there is an algorithm for weighted matching that only requires O(m3) calculations.

All of the known polynomial-time algorithms for weighted matching implicitly use a
linear inequality description of the convex hull of matchings. We will show later that
x E R1 is a matching ifand only ifit is an extreme point of the polytope given by x E R1,
(3.1), and the odd set constraints

'" IUI-l L Xe ~ --'----
eEE(U) 2

for all U ~ V such that I U I = 2k + 1, k = 1, 2, . . . ,

where E(U) is the set of edges with both ends in U. An odd set constraint states the obvious
fact that when I U I is odd, no matching can have more than (I U I - 1)/2 edges internal to
U.

One should note that this formulation, together with the fact that linear programming
is in pjJ, does not immediately yield a polynomial-time algorithm for weighted matching.
The reason is that the linear programming formulation has a number of constraints that
are exponential in the size of the data needed to describe the weighted matching problem.

Nevertheless, this formulation readily produces a good characterization. Again, duality
provides the certificate of optimality. Although there is a very large number of dual
variables, a basic dual solution contains no more than n positive variables. Moreover, it
can be shown that in a basic dual solution, the values of the dual variables are not "too

4. Remarks on 0-1 and Pure-Integer Programming 125

large". A certificate then consists of an optimal matching, an optimal dual solution, and
those odd sets with positive dual variables. Note that it is not necessary to check the odd set
constraints to verify the feasibility of a matching.

4. REMARKS ON 0-1 AND PURE-INTEGER PROGRAMMING

In the previous section we mentioned that linear programming and matching, and hence
all special cases of them in Figure 1.1, are in PP. The status of all of the other problems
shown in Figure 1.1 is much less settled. It is not known whether any are in PP, but there is a
theory that leads us to believe that none are in PP. This theory is the subject of Sections 5
and 6. In this section we will make a few remarks on worst-case running times for some of
the problems and, in particular, give bounds on the magnitude of the values of variables in
an optimal solution to the pure-integer programming problem.

1. The 0-1 integer programming problem. An instance of the general problem
max{cx: Ax ~ b, x E Bn} is specified by an integral m x (n + 1) matrix (A, b) and
an integral n-vector c.

It can be solved by a brute-force enumerative algorithm in O(2nmn) time. Even
for such special cases as the node packing problem, no significantly better worst-case
result is known. However, there are many special cases (e.g., matching, node packing
on appropriately restricted classes of graphs, and some matroid optimization
problems) that are in @J. These problems are the subject of Part III of this book.

2. The integer knapsack problem. An instance of the general problem
max{cx: ax ~ b, x E z~} is specified by integral n-vectors c and a, and an integer b.

There is an O(nb) algorithm, but it is exponential unless we restrict b to be a
polynomial function of n. Although in some applications the magnitude of b can be
restricted, large values cannot be dismissed. One reason is that rather general integer
programs can be easily transformed into an equality-constrained version of the
knapsack problem with constraints ax = b and upper bounds Xj ~ dj for j = 1, ... ,
n. What makes this transformation uninteresting is that the magnitudes of the
resulting constraint coefficients are generally exponential in the length of the
encoding of the data.

3. The pure-integer programming problem. An instance of the general problem
max{cx: Ax ~ b, x E Z~} is specified by an integral m x (n + 1) matrix (A, b) and
an integral n-vector c.

Let P = {x E R1: Ax ~ b}. If P is bounded, by Proposition 3.1, we know that
Xj ~ (nB)n for j = 1, ... ,n. Hence it is possible to solve the problem
max{cx: x E P n z~} by enumerating the finite number of points in z~ satisfying
xj~(nBtforj= 1, ... ,no

We now show that even if P is unbounded, the integer programming problem can
be solved by enumeration. By Theorem 6.3 of Section 1.4.6 we know that if the
problem has a finite optimum value, there is an optimal solution at an extreme point
of conv(S), where S = P n zn. We will obtain a bound on the magnitude of any such
extreme point.

Theorem 4.1. Let P = {x E R~: Ax ~ b} and S = P n zn. If XO is an extreme point of
conv(S), then

xJ ~ «m + n)nBY for j = 1, ... , n.

126 1.5. Computational Complexity

Proof In the proofs of Theorem 6.1 and 6.2 of Section I.4.6 we have shown that

conv(S) = {x E R~: x = I a,q' + I Jijr j
, I a, = 1, a E RJL I, Ji E RjJ I},

'EL JEJ tEL

where qt, rj E Z~ for I ELand} E J. Any extreme point of conv(S) must be one of the
points {q'}IEL, that is, Xo E Q, where

where {xkhEK are the extreme points of P and {rj}jEJ are the extreme rays.
Since IJ I ~ (~~~), Ix71 ~ (ne)n, and 1 r11 ~ (ne)n, it follows that

Ix? I ~ (net (1 + IJ I) < «m + n)ne)n. •
Note that «m + n)net ~ (2fl2et\ where fl = max(m, n). We will use WA,b = (2ffe)fi as

notation for this value from now on.
Theorem 4.1 combined with Theorem 6.3 of Section I.4.6 implies that we can add the

constraints IXj I ~ WA,b to any integer program, and because no extreme points are
removed we can test for feasibility (unboundedness) and optimality by enumerating the
integer points in S n {x E Z~: x ~ WA,b}' We can now show that any instance of a pure
integer program can be transformed in polynomial time to an instance of a 0-1 integer
program.

For} = 1, ... , n let Xj = Lf=o 2kXjk, where (XjO, ... ,Xjd) E Bd+l and d = ffllog (2fl28)1.
With this substitution, we obtain the 0-1 integer program max{c'x':
A 'x' ~ b, x' E Bn(d+l)}, where c' is 1 x ned + 1) and A' is m x ned + 1). Note that the
largest coefficient of A' has magnitude less than 2de = ()(2fi2()fi and that the largest
coefficient of c' has magnitude less than (2fl 28)fi x (maXj=l, ... , nCj). Thus the length of the
data needed to describe the transformed 0-1 integer program is a polynomially bounded
function of the length of the data needed to describe the original integer program. Hence
we have the following proposition.

Proposition 4.2. An instance of a pure-integer programming problem can be transformed
in polynomial time to an instance of a 0-1 integer programming problem.

We have observed that Theorem 4.1 gives a finite algorithm-namely, enumeration
for integer programming. Now consider the class of integer programs with n fixed. For 0-1
integer programming, enumeration is polynomial. However, for pure-integer program
ming, enumeration is not polynomial, since the upper bound WA,b depends polynomially
on e. Furthermore, the transformation of pure-integer programming to 0-1 integer
programming given above yields d + 1 variables and 2d is polynomial in (J, so enumeration
on the transformed problem is not polynomial for n fixed. In fact, it is a theorem that
integer programming with a fixed number of variables is in P;, but the proof requires much
deeper results than Proposition 4.2 (see Section II.6.S).

Analogous to the results we have given on the size of numbers in feasible and optimal
solutions to integer programs, there is a result on the size of numbers that can arise in a
description of the convex hull of feasible solutions by linear inequalities. The following
theorem can be obtained from Theorem 4.1 and polarity.

5. Nondeterministic Polynomial-Time Algorithms and.N'1} Problems 127

Theorem 4.3. Suppose S = {x E 2':-: Ax ~ b}, where (A, b) is an integral (m + 1) x n
matrix. If (n, no) defines a facet of conv(S), then the length of the description of the
coefficients of(n, no) is bounded by a polynomialfunction ofm, n, and log G.

5. NONDETERMINISTIC POLYNOMIAL-TIME ALGORITHMS AND}(~

PROBLEMS

The theoretical model that we study in both this section and the next one addresses the
question of whether integer programming and many special cases are solvable in polyno
mial time. The model does not provide a definite answer, but one of the main conclusions
is that it is just as unlikely that there are polynomial-time algorithms for most special cases
of integer programming (e.g., integer knapsack, node packing) as there are for the general
integer programming problem. We will prove that if, for example, integer knapsack or
node packing is solvable in polynomial time, then general integer programming is solvable
in polynomial time.

Although we can use the model to draw conclusions about optimization problems, it
has been developed for so-called decision, recognition, or feasibility problems. We will use
the term feasibility problem because of the close connection with feasibility testing in an
optimization problem.

A feasibility problem X is a pair (D, F) with F ~ D, where the elements of D are finite
binary strings. D is called the set of instances of X, and F is called the set of feasible
instances. Given an instance d E D, we want to determine whether dE F. Given d E D,
the answer is either yes or no.

In the remainder of this chapter we will follow the notation commonly used in
complexity theory and we will define ~ to be the class of feasibility problems that are
solvable in polynomial time.

Associated with an optimization problem we define a feasibility problem in which an
instance corresponds to a description of a constraint set. F is the set of instances for which
the constraint set is nonempty.

Example 5.1 (0-1 integer programming feasibility). D is the set of all integral matrices
(A, b), where b contains one column and the same number of rows as A. An instance is
specified by integers m and n, the dimensions of A, and numerical values for the
coefficients of A and b.
This is the feasibility problem for S = {x E B n: Ax ~ b}. Hence F = {(A, b):
{x E En: Ax ~ b} =1= 0}. Here a yes answer is commonly established by exhibiting a feasible
x.

A second feasibility problem concerns a lower bound on the objective function. Here
we augment each instance by an objective function c and an integer z. The lower-bound
feasibility problem is the feasibility problem with the additional constraint ex ~ z.

Example 5.2 (0-1 integer programming lower-bound feasibility). D = {(A, b, c, z)}
is the set of all integral matrices A, b, c and integers z, where b (respectively, c)
contains one column (row) and the same number of rows (columns) as A.
F = {(A, b, c, z): {x E En: Ax ~ b, cx ~ z} =1= 0}.

Note that if b E Z::, the feasibility problem for 0-1 integer programming is trivial, but
the lower-bound feasibility problem is not. This is frequently the situation as, for example,
in node packing.

128 1.5. Computational Complexity

The lower-bound feasibility problem is closely connected to the optimization problem.
If(A, b, c, ZO) E F and (A, b, c, ZO + 1) $:. F, then max{cx: Ax ~ b, x E Bn} = zoo Thus if
it is known that z L ~ ZO ~ Z u, we can find ZO by solving, at most, z u - Z L + 1 lower-bound
feasibility problems. Note that Zu - ZL is not polynomial in the input length.

There is, however, a more efficient method for finding zO, called binary search. Suppose
we are given a function h: ZI ~ Bl of the form

hex) = {O for x ~ Xo
1 for x > Xo,

where Xo is unknown. We are also given integers XL and Xu with h(xL) = 0 and h(xu) = 1.
The problem is to find xo. By putting h(z) = 0 if (A, b, c, z) E F and h(z) = 1 otherwise,
we see that the problem of finding ZO is of this form.

The following binary search algorithm finds Xo with, at most, flog(x u - x L)l evaluations
of the function h.

Step 1: If Xu - XL ~ 1, stop. Xo = XL. Otherwise go to Step 2.
Step 2: Let x = l(XL + xu)/2J. If hex) = 0, set XL = X; otherwise set Xu = x. Go to Step 1.

Each function evaluation halves the length of the interval that contains Xo. Hence the
number of evaluations is bounded by flog(xu - xL)l. An example is shown in Figure 5.1.

Thus with binary search, we can find ZO by solving flog(zu - ZL + 1)1 lower-bound
feasibility problems. Since flog(zu - ZL + 1)1 is polynomial in the length of the input of the
0-1 lower-bound feasibility problem, we obtain the following proposition.

Proposition 5.1. If the 0-1 integer programming lower-bound feasibility problem can be
solved in polynomial time, the 0-1 integer programming problem can be solved in
polynomial time.

This proposition has an obvious generalization to other optimization problems. In
particular, it applies to the integer programming problem, where Theorem 4.1 is used to
give bounds Zu and ZL such that flog(zu - ZL + 1)1 is polynomial in the length of the input.

Certificates of Feasibility, the Class .Hpj), and Nondeterministic Algorithms

Analogous to certificates of optimality, information that can be used to check feasibility in
polynomial time is called a certificate offeasibility. Given X = (D, F), for each instance
d E F we let Qd denote such a certificate. We know that if Qd exists it must be short. Here
we are interested in the class of feasibility problems having a certificate of feasibility.

One might imagine an algorithm that makes a large number of guesses in the hope of
eventually guessing Qd. This leads to the concept of a nondeterministic algorithm for a
feasibility problem X = (D, F). The reader should take note that such algorithms cannot
be realized in practical computation.

5 4 3 xu=34

• • • • •
9 10 12 17

XL=O 2
• •

8

Figure 5.1

5. Nondeterministic Polynomial-Time Algorithms and KPJ Problems 129

A nondeterministic algorithm consists of two stages. The input to the algorithm is a
d ED. The first stage is a guessing stage. Here we guess a binary string Q which is then
passed on to the second stage. The second stage, called the checking stage, is an algorithm
that works with the pair (d, Q) and may provide the output that d E F. For example, the
checking stage may verify that xES and thus output that dE F. Two properties are
required:

1. If d E F, there is a certificate Qd such that when the pair (d, Qd) is given to the
checking stage, the algorithm gives the answer that d E F.

2. If d $. F, there is no output. Hence whenever there is output, d E F.

We measure the work done by a nondeterministic algorithm only in the checking stage
and only when the checking stage is given a d E F and a certificate of feasibility. We say
that the nondeterministic algorithm is polynomial if, for each d E F, its running time in
the checking stage is a polynomial function of the length of the encoding of d for some Qd
for which it replies that d E F. This means that when d E F, there is a short (polynomial
time) proof of feasibility.

We define.Kg> to be the class of feasibility problems such that for each instance with dE
F, the answer d E F is obtained in polynomial time by some nondeterministic algorithm.
Nothing is said when d $. F.

We will also encounter feasibility problems that are not in .Kg>. Many of these are in a
related set called Cfio.Ng>, which will be defined and discussed later in this section.

Example 5.3 (Nondeterministic polynomial-time algorithm for 0-1 integer feasibility).

Guessing stage: Guess an x E Bn.
Checking stage: If Ax ~ b, output (A, b) E F; otherwise return.

The algorithm for 0-1 integer programming lower-bound feasibility is similar. Now
consider general integer programming feasibility. The same algorithm works with the
guesses being x E Z~ because Theorem 4.1 stipulates that if {x E Z~: Ax ~ b} =1= 0, then
there is a feasible x such that the logarithm of its largest coefficient is bounded by a
polynomial in the length of the encoding of (A, b). This is one of the few nontrivial .Kg>
results that we need.

Proposition 5.2. General integer programmingjeasibility is in .Kg>.

The Hamiltonian cycle problem is to determine whether a graph G = (V, E) contains a
Hamiltonian cycle. A Hamiltonian cycle is a cycle that contains all of the nodes of G.

Proposition 5.3. Hamiltonian cycle is in .Kg>.

Proof We give a nondeterministic polynomial-time algorithm for Hamiltonian cycle.

Input:
Guessing stage:
Checking stage:

A graph G = (V, E).

Guess an E' ~ E.
Step a. If the degree of each node ofG' = (V, E') is two, go to Step
b; otherwise return.
Step b. If G' = (V, E') is connected, output G E F; otherwise
return. •

130 1.5. Computational Complexity

We have simply used the facts that (a) a graph G' is a Hamiltonian cycle if each node is
of degree 2 and the graph is connected and (b) each of these properties is easily checked in
polynomial time. The upper-bound feasibility problem associated with the minimum-cost
traveling salesman problem is also in .Kr!J. This is shown by slightly generalizing the
algorithm given in Proposition 5.3.

A nondeterministic algorithm does not completely solve the feasibility problem, since it
ignores d $. F. However, by being just a little bit intelligent about our guesses, we can
simulate a nondeterministic polynomial-time algorithm by a deterministic exponential
time algorithm. For each d E F there is a structure Qd whose length I(Qd) is polynomial in
the length of d, say I(Qd) = c(l(d))p. Therefore, for a given dE D we can limit our guesses
to binary strings of length equal to or less than L = c(l(d))P. Hence we need to consider, at
most, 2L

+! structures. But there is a polynomial functionf(l(d)) that gives an upper bound
on the running time of the checking stage for d E F when Qd is guessed. Hence for each of
the 2L

+! structures, we run the checking stage for f(l(d)) time and then go on to the next
structure if the checking stage has not verified d E F. Thus if a feasibility problem is in
.K[!fJ, it can be completely solved in exponential time.

The Class CfioJ(r!J

§.ach feasibility problem X = (D, F) has a related feasibility problem X = (D, F), where
F = D \ F, called the complement of X. In the complement of 0-1 integer programming
feasibility we have F = {(A, b): {x E Bn: Ax ~ b} = 0}. It is not known whether the
complement of 0-1 integer programming feasibility is in .K[!fJ. In fact, it is not known
whether the complements of any of the feasibility problems mentioned so far in this
section are in .Kr!J.

For the complement of the 0-1 integer programming lower-bound feasibility problem
F = {(A, b, c, z): {x E Bn: Ax ~ b, cx ~ z} = 0}, which is equivalent to showing that
cx < z is a valid inequality for {x E B n

: Ax ~ b}. Thus if the lower-bound feasibility
problem and its complement are in .Kr!J we would have a good characterization for the
optimization problem.

To establish terminology for complements of .Kr!J problems, let CfioJ(r!J = {X: X is a
feasibility problem, X E .K[!fJ}.

Proposition 5.4. ffX is a feasibility problem and X E r!J, then X E J{r!J n CfioJ(r!J.

Proof Every polynomial-time algorithm is also a nondeterministic polynomial-time
algorithm. We simply ignore the guessing stage and apply the polynomial-time algorithm
in the checking stage. Hence X E r!J => X E .K[fJ>. But if X E r!J so isX E [fJ>, since if d $. F, it
follows that our polynomial-time algorithm, which needs no guesses, will also tell us this in
polynomial time. Hence X E [fJ> implies X E.K[fJ> or, equivalently, X E CfioJ(r!J. •

Figure 5.2

6. The Most Difficult JVrP Problems: The Class JVrP<f!, 131

The linear programming feasibility problem for sets of the form {x E R~: Ax ~ b} is in
~ by virtue of the ellipsoid method. Hence we can use Proposition 5.4 to establish its
membership in j(~ n <{6oJfP}. But this fact was known long before the ellipsoid method,
since membership in <{6oJf~ is a consequence of linear programming duality. We leave it to
the reader to show membership in j(~. Here we show membership in <{6oJf~. The reader
should refer back to the good characterization of linear programming given in Section 3
which essentially does the same thing.

Example 5.4 (Nondeterministic algorithmfor linear programming infeasibility).

Input: An integral m x n matrix (A, b).
Guessing stage: Guess a u ERr;.

Checking stage: If uA ~ ° and ub < 0, output (A, b) E F; otherwise return.

We have used the Farkas lemma-that is, if there exists a u ERr; such that uA ~ ° and
ub < 0, then {x E R~: Ax ~ b} = 0-and Proposition 3.1, which guarantees the existence
of suitably small rational u so that the checking can be done in polynomial time.

The sets P}, j(~, and <{6oJf~ for feasibility problems are shown in Figure 5.2.

The answers to the following questions are unknown.

1. Does ~ = <{6oJf~ n j(~?

2. Does <{6oJf(f} = }((f}?

3. Does (f} = j(P}?

An affirmative answer to question 3 implies affirmative answers to question 1 and 2,
since, by Proposition 5.4, we have (f} ~ }(P} n <{6oJfP}. Similarly, affirmative answers to
questions 1 and 2 imply an affirmative answer to question 3.

In the next section, we will study the class}(~ further; at the end of that section, we will
make some remarks about the impact on integer programming of answers to the above
questions.

6. THE MOST DIFFICULT j(P} PROBLEMS: THE CLASS }(P}<{6

The main result of this section is that}(~ contains hardest problems. By this we mean that
there is a subset of j(~, called }(~<{6, such that if there exists X E }(P}<{6 n ~, then every
problem in j(~ is in ~, that is, ~ = }(~. Problems in }(~cg are called }(~-complete.

Moreover, we will show that amongst these hardest problems are feasibility problems
associated with integer optimization and many special cases.

The technique used here is that of polynomially transforming one problem into
another. Suppose Xi = (Di' F i), i = 1, 2, are two' feasibility problems and there exists a
function g: DJ ~ Dz such that for every dE DJ we have g(d) E Fz if and only if dE Fl. If
the function g is computable in time that is polynomial in the length of the encoding of d,
then Xl is said to be polynomially transformable to X 2• The consequence of this definition
is clear.

132 1.5. Computational Complexity

Proposition 6.1. If Xl is polynomially transformable to X 2 and X 2 E P, then Xl E P.

Proof The polynomial-time algorithm for Xl is to compute the function g and then
apply the polynomial-time algorithm for X 2• •

The transformation idea is surely familiar. When confronted with a new problem, a
traditional approach to solving it is to restate it as a problem we already know how to solve.
The only thing we have added is the requirement that the transformation be done in
polynomial time.

We say that Xl is a "special case" of X 2 if DI C D2 and FI = DI n F 2• Here g(d) = dis
the identity transformation. Many of the arcs in the graph of Figure 1.1 were determined by
identity transformations. But we have also done nontrivial transformations. In particular,
we have shown that integer programming feasibility is polynomially transformable to 0-1
integer programming feasibility (see Proposition 4.2). Also, in Example 1.1 we have shown
that set-packing lower-bound feasibility is polynomially transformable to node-packing
lower-bound feasibility. This means that the problem "Given a 0-1 m x n matrix A, an
integral n-vector c, and an integer z, determine whether {x E Bn: Ax ;:;::;; 1, cx ~ z} "* 0" is
polynomially transformable to the problem "Given a 0-1 m' x n matrix A ' with, at most,
two I's per row, an integral n-vector c, and an integer z, determine whether
{x E B n

: A' x ;:;::;; 1, cx ~ z} "* 0".
There is a technique, called polynomial reduction, that appears to be a more general

approach than polynomial transformation for establishing that one problem can be solved
in polynomial time given that another can. We say that X I is polynomially reducible to X 2

if there is an algorithm for X I that uses an algorithm for X 2 as a subroutine and runs in
polynomial time under the assumption that each call of the subroutine takes unit time.
Note that transformation is the special case of reduction in which the subroutine is used
only once; that is, it is applied directly to the transformed data g(d).

A generalization of Proposition 6.1 is the following.

Proposition 6.2. If Xl is polynomially reducible to X 2 and X 2 E gp, then Xl E C!P.

Although polynomial reducibility appears to be more general than polynomial
transformability, it is not known whether it really is. In any case, all of the polynomial
reductions needed in this section can be accomplished through the simpler technique of
polynomial transformation.

We now address the question of the existence of hardest problems in }(gp. X E}(gp is
said to be }(r!/>-complete if all problems in.Hgp can be polynomially reduced to X. The set of
}(gp-complete problems, which we will soon claim to be nonempty, is denoted by }(r!/>C(i.
The implication of the existence of an }(r!/>-complete problem is given by the following
proposition.

Proposition 6.3. If X is }(gp-complete, then gp = }(r!/> if and only if X E gp.

Proof X E }(r!/> and r!/> = }(r!/> implies X E gp. On the other hand, if X is }(gp-complete
and in r!/>, then by Proposition 6.2 there is a polynomial algorithm for any problem in .Hr!/> .

•
Once we have an }(gp-complete problem, we may be able to find others by polynomial

reduction.

Proposition 6.4. If Xl is }(C!P-complete and Xl is polynomially reducible to X 2 E }(C!P, then
X 2 is }(gp-complete.

6. The Most Difficult J{1/J Problems: The Class J{1/J«!' 133

The proofis obvious, but it is important to note the direction of the statement to avoid
making the mistake of concluding that X 2 is K9J-complete by reducing X 2 to Xl.

The satisfiability problem, which is a classical problem in logic, is of historical interest
because it was the first problem in K9J shown to be K9J-complete. It is described by a finite
set N = {l, ... , n} and m pairs of subsets of N, denoted by C i = (Cj, Cn for i = 1, ... , m.

An instance is feasible if the set

(6.1)
{

X E Bn: L. Xj + L. (1 - Xj) ;:?; 1 for i = 1, ... , m}
JECr JECr

is nonempty.
The satisfiability problem is in K9J. We use subsets Jfl of N as guesses, set Xj = 1 if

j E N° and Xj = 0 otherwise, and then simply check for feasibility in (6.1).

Theorem 6.5 (Cook). The satisfiability problem is K9J-complete.

We will not prove this famous theorem. The proof is technical but is not very difficult
mathematically. To comprehend it, one must understand the formal model of a nondeter
ministic Turing machine that can solve any problem in K9J in polynomial time. The proof
then amounts to a polynomial transformation of the nondeterministic Turing machine
into the satisfiability problem.

Since we have described the satisfiability problem as a 0-1 integer feasibility problem,
we obtain the following proposition.

Proposition 6.6. The 0-1 integer programming feasibility problem is K9J-complete.

Soon after the appearance of Cook's theorem, the list of K9J-complete problems was
substantially enriched. This list includes lower-bound feasibility versions of all of the
problems in Figure 1.1 that we have not already stated are in 9J. It is important to
understand that showing that a problem is in K9Jce is a negative result about the likelihood
of finding a polynomial time algorithm for it.

To illustrate the use of polynomial transformations, we now show that some problems
are Kgp-complete. In choosing candidates, it is important to try to get as close to the
boundary (if it exists) between gp and Kgpce. By this we mean the following: Given a
problem in gp, what are the most simple generalizations of it that make it Xgp-complete?
For example, lower-bound feasibility testing for matching can be solved in polynomial
time. In terms of linear inequalities, this problem is to determine if
{x E Bn: Ax ~ 1, cx ;:?; z} =1= 0, where A is an m x n 0-1 matrix with two l's in each column
(the node-edge incidence matrix of a graph), c is an integral n-vector, and z is an integer.
However, if we allow matrix A to contain three 1's in each column, the problem becomes
Kgp-complete, even if we restrict c to be a vector of 1 'so

A similar situation occurs when we limit the number of I's in each row of A. When the
0-1 matrix A contains one 1 in each row, the feasibility problem for the set
{x E Bn: Ax ~ 1, cx ;:?; z} is trivial. However, if we allow matrix A to contain two l's in
each row, the problem becomesK9J-complete, even if we restrict c to be a vector ofl's. We
now prove this result by a polynomial transformation from the satisfiability problem.

An instance of the unweighted node-packing problem is: Given a graph G = (V, E) and
an integer k, is there a U ~ V such that I U I ;:?; k and U is a node packing? Alternatively, is
{x E B I v I: Ax ~ 1, LjEV Xj ;:?; k} =1= 0, where A is the edge-node incidence matrix ofG (i.e.,
where A is a 0-1 matrix with two 1 's in each row)?

Proposition 6.7. The lower-bound feasibility problem for unweighted node packing is
Kgp-complete.

134 1.5. Computational Complexity

(1, 1)

(2, 1)

cr Ci
1 {l,2} {3} (6,3)

2 {2,3} {4}
3 {4} {l,2}

4 {3} 0

(8,2) (2,2)

Figure 6.1.

Proof The problem is a special case of 0-1 integer programming feasibility, so it is in
)(PJ. Membership in)(PJcg is established by polynomial transformation from the satisfia
bility problem.

Given an instance of the satisfiability problem specified by N = {I, ... ,n} and
C i = (Ct,Cn for i = 1, ... ,m, we set k = m and construct G = (V, E) as follows. Let

Vi = {(j, i):j E cn, Vi = {en + j, i):j E cn,
m

Vi = Vi U Vi for i = 1, ... ,m and V = U Vi.
i=l

Each pair of nodes in Vi is joined by an edge; and for j = 1, ... ,n and I =1= i, nodes (j, i)
and (n + j, I) are joined by an edge.

An example of the construction of G is shown in Figure 6.1. A feasible solution to the
satisfiability problem is N° = {l, 3} or Xl = X3 = 1 and X2 = X4 = O. A node packing of size 4
is {(I, 1), (8, 2), (6, 3), (3, 4)}.

In general, any node packing of size m is of the form {Cab 1), (a2, 2), ... , (am, m)} and
such a packing exists if and only if N° = {ai: ai ~ n} is a solution to the satisfiability
~~m. •

An instance of the set partitioning feasibility problem is: Given an m x n 0-1 matrix A,
is {x E Bn: Ax = 1} =1= 0?

Proposition 6.8. The set partitioning feasibility problem is)(PJ-complete.

Proof The problem is a special case of 0-1 integer programming feasibility, so it is in
)(PJ. We prove membership in)(PJcg by transformation from the unweighted node-packing
lower-bound feasibility problem. Given a graph G = (V, E) and an integer k, let IE be an
I E I x I E I identity matrix, let A G be the edge-node incidence matrix of G, and let 1 be a
row vector of I V II's. Construct the (I E I + k) x (I E I + k I V I) matrix

I I I I .iE_t.- A~~ A~r:~J..~£...
I 1 I 0 I I 0
I I I I

o I 0 I I'" I 0
I 6 I 6 I !

A=

6. The Most Difficult }(@'J Problems: The Class ,N'@'J<:g 135

Suppose Ax = 1, where x E B~ft-kIVJ. This can be the case if and only if the columns of A for
which Xj = 1 have the following structure. There is exactly one column from B i for i = 1,
... ,k. If bip is the column chosen from B i, and b1q is the column chosen from B l, then the
nodes corresponding to these columns are not joined by an edge. Hence the k columns
chosen from (Bb ... ,Bk) define a node packing of size k. The partition is completed by
choosing appropriate columns from B 0; these correspond to edges of G that are not met by
any nodes in the packing. An example is shown in Figure 6.2. Nodes 1 and 3 yield a
packing of size 2, and a partition is indicated by the checked columns. •

Proposition 6.9. The set partitioning!easibility problem in which matrix A has, at most,
three 1 s per column is .H1P-complete.

Proof We polynomially transform the general set partitioning feasibility problem
with an arbitrary 0-1 m x n matrix A into a 0-1 m I x n I matrix A I such that matrix A I has
no more than three 1's per column and there is a one-to-one correspondence between
solutions of {x E Bn: Ax = 1} and {y E B n': A 'y = 1}, where n' ~ n(2m - 1) and
m' ~ m + 2n(m - 1). We assume that A has at least one column, say a[, with t ~ 41's;
otherwise there is nothing to prove. Let A = (a r, An-I) and

A' = (~I A n- I

I HI 0

where ~I is an m x t matrix of unit columns such that ei is a column of ~I if and only if
ail = 1, and 0 1 is an m x (t - 1) null matrix. HI and KI are 0-1 matrices that will be
described subsequently. Consider the equations

~Iyl + A n_Iy2 = 1

Hlyl + K ly3 = 1

yl E B t , y2 E Bn-I, y3 E B t- I.

Suppose HI and KI are such that the only two solutions to

are yl = (1, 1, ... , 1), y3 = (0, 0, ... ,0), and yl = (0, 0, ... ,0), y3 = (1, 1, ... , 1). This
condition can be achieved if H 1 and K 1 each have 2t - 2 rows and the following structure:

Note that if yl = 1, then yi = 0 and Y1 = 1. Similarly, if YI = 1, then yi = yi = 0 and y~ = 1.
We then proceed inductively to obtain the result.

136 1.5. Computational Complexity

2

4

./ ./ ./

1 0 0 0 0 1 1 0 0 1 1 0 0
0 1 0 0 0 1 0 0 1 1 0 0 1
0 0 1 0 0 0 1 0 0 1 0

A= 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0

Figure 6.2.

The solution with y3 = (1, 1, ... ,1) yields A n_Iy2 = 1, and we note that
{x E B n

: Ax = 1, Xl = O} = {CO, y2) E B n
: A n_ly2 = 1}. Also the solution with yl = (1, 1, ... ,

1) yields Lllyl = a b so

It is important to observe that HI and KI have been chosen so that each column of

has no more than three 1 'so
Now suppose that A = (Ab A n- k), where each column of Ak has more than three l's and

each column ofA n- k has three or fewer l's. By applying the above procedure recursively, we
eventually obtain the desired m' x n' matrix

(

LlJ Ll2
HI 0

A' 0 H2

6 0

Llk A n- k

o 0
o 0

o 0

Since k ~ nand t ~ m, it follows that m' ~ m + 2n(m - 1) and n' ~ n(2m - 1). •

Next we consider the 0-1 integer programming feasibility problem with only one linear
equation. Let N = {l, ... , n}. An instance of the subset sum problem is: Given an integer
n, an integral n-vector (at, ... ,an), and an integer b, is {x E Bn:LjEN ajxj = b} =1= 0?

6. The Most Difficult .H~ Problems: The Class .H~C(5 137

Proposition 6.10. The subset sum problem is JV[ljJ-complete.

Proof Membership in,K[ljJ is shown by guessing subsets of N. We show membership in
,K[ljJC(i by polynomially transforming the set-partitioning feasibility problem to the subset
sum problem. Given a 0-1 m x n matrix A, define

and

m

aj = I (n + 1)i-1aij for j = 1, ... , n
i=1

b = I (n + 1)i-l = (n + l)m - 1.
i=l n

Since LjEN ajxj = b is a linear combination of Ax = 1 obtained by weighting the ith row by
(n + 1)i-l, we have {x E Bn: Ax = 1} ~ {x E Bn: LjEN ajxj = b}. Now to show that the two
sets are identical, we note that the unique solution to L7!l (n + l)i-

1
Ui = b, Ui E BI is Ui = 1

for i = 1, ... ,m. Thus if LjES aj = b so that LjES L7!1 (n + 1)i-1aij = L7!1 (n + 1)i-l, then
LjES a ij = 1 for i = 1, ... , m. •

An instance of the 0-1 knapsack lower-boundfeasibility problem is: Given an integer n,
integral n-vectors (at, ... ,an) and (ct, ... , cn), and integers band z, is

Corollary 6.11. The 0-1 knapsack lower-boundfeasibility problem is ,K[ljJ-complete.

Proof The problem is in ,K[ljJ, since it is a special case of the 0-1 feasibility problem.
The subset sum problem can be reformulated as the feasibility problem for the set
{x E Bn: LjEN ajxj ~ b, LjEN ajxj ;?; b}. Hence it is a special case of the 0-1 knapsack lower
bound feasibility problem. •

Membership in JV[ljJrl for the 0-1 knapsack lower-bound feasibility problem does not
immediately imply that the integer knapsack lower-bound feasibility problem is in ,K[ljJC(i
because upper-bound constraints are needed in the obvious transformation of a 0-1
knapsack problem to an integer problem. Nevertheless, there is a polynomial transforma
tion of the 0-1 knapsack problem to the integer knapsack problem. This is left as an
exercise.

Figure 6.3 shows the class JV[ljJ and the two subsets [ljJ and ,K[ljJC(i, which are disjoint unless
[ljJ = ,K[ljJ. If [ljJ =1= ,K[ljJ, it can be shown that [ljJ U ,K[ljJrl =1= }([ljJ.

Within the class ,K[ljJrl, it is useful to make some distinctions. The subset sum problem
can be solved in O(nb) time. Although this is not polynomial, it is less formidable than
O(2n). We say that an algorithm runs in pseudopolynomial time, if its running time is a
polynomial function of the length of the data encoded in unary (a one-symbol alphabet).
The principal significance of unary encoding is that an integer k is represented by a string
of k symbols. The O(nb)-time algorithm for the subset sum problem is pseudopolynomial
because the unary encoding of the integer b requires a string oflength b. It should be noted
that a polynomial transformation of Xl E ,K[ljJ to X 2, which is solvable in pseudopolyno
mial time (e.g., set partition feasibility to subset sum), does not imply a pseudopolynomial
algorithm for X I. (Why?)

138 1.5. Computational Complexity

o
Figure 6.3

At the other extreme, there are K9P-complete problems for which the existence of a
pseudopolynomial algorithm would imply rtP = K9P. These problems are called strongly
K9P-complete. Existence is obvious because there are K9P-complete problems for which
the length of a unary encoding of the data is a polynomial function of the length of a binary
encoding. An example is 0-1 integer feasibility in which all of the constraint coefficients
are either 0 or ±1. Figure 6.4 shows the relationships among the subsets of K9P that we have
discussed.

Note thatK9Pcg n cgo.N'9P appears in Figure 6.4. The implication of K9Pcg n cgo.N'9P * 0 is
given in the following proposition.

Proposition 6.12. If K9Pcg n cgo.N'rtP * 0, then K9P = cgo.N'9P.

A polynomial-time algorithm for determining Zo = max{ex: xES} obviously implies a
polynomial-time algorithm for the lower-bound feasibility problem {x E S: ex ~ z} * 0.
Hence if the feasibility problem is K9P-complete, a polynomial-time algorithm for the
optimization problem would imply g; = Kg;. But since the optimization problem is not in
K9P, it is not K9P-complete.

In speaking about these problems, we need to extend the notion of polynomial
reducibility to problems other than feasibility problems. We call a problem Kg;-hard if
there is an K9P-complete problem that can be polynomially reduced to it. Thus if a
problem is KrtP-hard it is at least as difficult as any K9P-complete problem. It also follows
that a polynomial algorithm for an K9P-hard problem implies 9P = KrtP.

There is also a converse for optimization problems such as the integer programming
problem. We have already observed that a polynomial-time algorithm for the lower-bound
feasibility problem and binary search yields a polynomial-time algorithm for the optimi-

Pseudo- __ -...........,
polynomial

Figure 6.4

Strongly
,!V.o/"t6'

See proposition
6.12

7. Complexity and Polyhedra 139

zation problem (see Proposition 5.1). Hence if9J =.N9J the integer programming problem
is solvable in polynomial time. The point is that when an optimization problem has this
property, it serves the same role as an .N9J-complete problem with regard to the question of
whether 9J = .N9J.

The classification scheme presented in this chapter can be very useful when we begin to
study an integer optimization problem. Our knowledge of q'J and .N9J-hard problems
makes it likely that most problems that we encounter will be classifiable. If 9J *- .Nq'J, our
expectations of what can be accomplished algorithmically should be guided by the
classification. If we know that the problem is .Nq'J-hard, we can expect that some large
instances will be difficult for any algorithm. However, this definitely does not mean that
we will be unable to solve many large instances in a reasonable amount of time. And even
when we cannot find an optimal solution or prove that a known solution is optimal, it may
very well be possible to obtain a good feasible solution and to show this feasible solution is
within a specified tolerance of being optimal. If this were not the case, we would not have
written this book.

Part II of this book develops theory and algorithms largely for dealing with .N9J-hard
integer optimization problems. Once one departs from the worst-case point of view, we
will see that much can be accomplished.

Above we observed that 9J =.Nq'J would imply the existence of a polynomial-time
algorithm for integer programming. However, it is difficult for us to imagine the impact of
the existence of polynomial-time algorithms on the computational aspects of integer
programming, since it is not clear what kind of algorithms would result. In the next
chapter we will give two polynomial-time algorithms for linear programming. One of
these certainly appears to be computationally inferior to exponential-time simplex
algorithms. The other is more promising, but its practical implementations ignore some of
the details required to prove polynomiality.

7. COMPLEXITY AND POLYHEDRA

We begin this section by considering the relationships among three feasibility problems
associated with polyhedra.

1. The membership problem for a family of polyhedra. An instance is given by an
integer n, a polyhedron in the family peR n, and an x ERn. The instance is feasible
if x EP.

2. The validity problem for a family of polyhedra. An instance is given by an integer n,
a polyhedron in the family P eRn, and a (n, no) E Rn+l. The instance is feasible if
(n, no) is a valid inequality for P.

3. The lower-boundfeasibility problem for a family of polyhedra. An instance is given
by an integer n, a polyhedron in the family PC Rn, and a (n, no) E Rn+l. The
instance is feasible if P n {x ERn: nx ~ no} *- 0.

Proposition 7.1. The following problems are equivalent:

a. the validity problem;

b. the membership problem for the family of polars; and
c. the complement of the lower-bound feasibility problem.

140 1.5. Computational Complexity

Proof. The equivalence of problems a and b follows immediately from the definition
of polarity, that is, (n, no) is a valid inequality for P ifand only if(n, no) belongs to the polar
of P. Recall that the polar of P is a polyhedron in Rn+l.

By definition of validity, (n, no) is valid for P if and only if {x E P: nx > no} = 0. But
this is just the complement of the lower-bound feasibility problem with input P and
(n, no + e) for some suitably small e > O. •

The complexity of these problems depends on the description of the polyhedra and the
points x or (n, no). We will assume throughout this section that the allowable inputs for the
points x and (n, no) are polynomial in the description of the polyhedra. Such vectors are
called short. By restricting the input in this way, it is sufficient to consider the description
of P alone. The results of Section 4 on the size of numbers that can arise in optimal
solutions and coefficients of facet defining inequalities (Theorems 4.1 and 4.3) justify the
assumption of short vectors in integer programming.

Suppose P is described by a set of linear inequalities, that is, P = {x ERn: Ax ~ b}.
Then the membership problem for P is solved by substitution. The validity and lower
bound feasibility problems for P can be answered by solving the linear program
z = max{nx: Ax ~ b}, since (n, no) is valid for P if and only if no ~ z, and
P n {x ERn: nx ~ no} =1= 0 if and only if no ~ z. Hence, given a linear inequality descrip
tion of P, there are polynomial-time algorithms for all three problems. We also obtain
polynomial algorithms when P is described by a list of its extreme points and rays.

However, in many integer and combinatorial optimization problems, P is the convex
hull of a set of integral points. We may have an implicit description of the extreme points
of P (e.g, the node packings of a graph), or we may have a set oflinear inequalities such that
P is the convex hull of integral points that satisfy these inequalities, or we may even have a
linear inequality description of P, but with the number of inequalities exponential in the
natural description of P. With these descriptions, there is not an obvious polynomial-time
algorithm for any of the three problems.

Example 7.1 (The family of polytopes for 0-1 integer programming). An instance is
specified by integers m and n, an m x (n + 1) matrix (A, b), and a short vector x ERn or
(n, no) E Rn+l. The polytope for an instance is P = conv{x E Bn: Ax ~ b}.

a. Lower-bound feasibility. P n {x ERn: nx ~ no} =1= 0 if and only if
{x E Bn: Ax ~ b, nx ~ no} =1= 0. We have already established that the latter lower-bound
feasibility problem is Kg;-complete. Hence lower-bound feasibility for the family of 0-1
integer programming polytopes is also Kg;-complete.

b. Validity. By Proposition 7.1, the validity problem for 0-1 integer programming
polytopes is in cgo.Hg;. However, if it was in Kg;, the lower-bound feasibility problem for
0-1 integer programming polytopes would be in Kg; n cgo.Hg;.

c. Membership, We claim that the membership is in Kg;. First, an instance is trivial if
either x $. {x E R~: Ax ~ b, Xj ~ 1 for all}} or if x E Bn. So suppose
x E {x E R~ \ Bn: Ax ~ b, Xj ~ 1 for all}}. Observe that ifdim(P) = n, any x E P can be
written as a convex combination of a set of n + 1 binary vectors in P. Now the nondeter
ministic algorithm for membership is to guess vectors Xi E B n for i = 1, ... , n + 1. If each
of these vectors are in P, we continue. Otherwise we guess a new set. Next we consider the
linear system

n+l n+l
I AjX i = x and I Ai = 1.
i=l i=!

7. Complexity and Polyhedra 141

If this system has a solution AO E R~+I, we conclude that x E P; otherwise we return to the
guessing stage.

Proposition 7.2. If lower-bound feasibility (validity) for a family of polyhedra is HPJ
complete and validity (lower boundfeasibility) is in HPJ, then HPJ = cgoJ(PJ.

Proof Suppose validity is in HrJ>. Then by Proposition 7.1, lower-bound feasibility is
in CfioJ(PJ. Hence lower-bound feasibility is in HPJcg n CfioJ(PJ. Now by Proposition 6.12 we
obtain HPJ = cgoJ(PJ. •

In other words, if one of the problems is HPJ-complete, it is very unlikely that the other
is in .HrJ>. We frequently encounter the case (as in Example 7.1) where the lower-bound
feasibility problem is HPJ-complete, so it is unlikely that the validity problem is in HrJ>. The
following example, however, illustrates an .HPJ validity problem.

Example 7.2 (Fractional node-packing polytopes). An instance is specified by a graph
G = (V, E) and a (n,no) E RJ v I + I. Let A be the incidence matrix of maximal cliques by
nodes of G and P = {x E RJ v I: Ax ~ n. Note that the number of rows of A is generally
exponential in the size of G. Here (n, no) is valid if and only if, for some k ~ n,

k k

n ~ L Uiai and no ~ LUi,
i=1 i=1

where {a i
}7=1 are rows of A and Ui ~ 0 for i = 1, ... ,k. Since there is a polynomial-time

algorithm for determining whether a 0-1 vector a i is the incidence vector of a maximal
clique of G, there is an .HPJ algorithm for the validity problem.

In Examples 7.1 and 7.2 we have implicitly considered the extreme point membership
problem for a family of polytopes. The input is the same as in the membership problem,
but it is feasible only if x is an extreme point of P. Note that in Example 7.2, extreme point
membership was with respect to the polar; that is, a 0-1 vector ai is the incidence vector of
a maximal clique of G only if it is an extreme point of the polar of the fractional node
packing polytope. In both examples, we have sketched proofs of the following proposition.

Proposition 7.3. If the extreme point membership problem for a family of polytopes is in
HPJ, then the membership problem for thefamily is also in HPJ.

We now put together Propositions 7.2 and 7.3 by considering the facet validity problem
for a family of polyhedra. The input is the same as in the validity problem, but it is feasible
only if(n, no) defines a facet of P.

Proposition 7.4. If lower-bound feasibility is .HrJ>-complete for a family of polyhedra and
facet validity is in HPJ, then .HPJ = CfioJ(PJ.

Proof Suppose facet validity is in HPJ. Then by Proposition 7.3, applied to the family
of po lars, validity is in .HPJ. Now Proposition 7.2 implies that HPJ = CfioJ(PJ. •

Proposition 7.4 says that for an HPJ-complete lower-bound feasibility problem, a good
characterization of all of the facets of the family of polyhedra is not possible unless
.H(!P = CfioJ(PJ. In other words, there is some class of facets for the family of polyhedra for
which there is no short proof that they are facets unless HPJ = CfioJ((!P.

142 1.5. Computational Complexity

Example 7.3 (Node-packing polytopes). An instance is specified by a graph G = (V, E)
and a (n, no) E Rl v I +1. Here P is the convex hull of node packings. If facet validity is in
,Hf5JJ, then,Hf5JJ = Cf£oJ(g}, since lower-bound feasibility is ,Hf5JJ-complete. The reader should
note the subtle difference between Examples 7.2 and 7.3.

8. NOTES

Sections 1.5.1 and 1.5.2

Basic reference books on computational complexity are Aho et al. (1974), Garey and
Johnson (1979), Knuth (1979, 1981), and Lewis and Papadimitriou (1981). Two surveys and
an annotated bibliography prepared for the combinatorial optimization community are,
respectively, Lenstra and Rinnooy Kan (1979), Johnson and Papadimitriou (1985a), and
Papadimitriou (1985).

Jeroslow (1972) discusses the unsolvability of quadratic integer programs.

Section 1.5.3

Polynomial-time algorithms for the minimum-weight path problem were presented in
Section 1.3.2.

Edmonds (1967a) pointed out that very large numbers could arise in Gaussian elimina
tion if rationals were not necessarily represented by a pair of relatively prime numbers. He
also gave a modified elimination scheme and proved that with this scheme the size of
integer numbers used to represent rationals was polynomially bounded.

Tardos (1985) gave a polynomial-time algorithm for the transportation problem with
the bound being independent of the numerical data. Her approach will be presented in
Section 1.6.5 in the more general setting of linear programming.

Klee and Minty (1972) have shown that the simplex algorithm with a standard pivoting
rule does not have a polynomially bounded number of pivots. The expected behavior of
the simplex algorithm has been analyzed by Borgwardt (1982a, b), Smale (1983a, b), and
others. Shamir (1987) gives a survey of these results.

Edmonds (1965a, c) proposed the concept of a good characterization. This was done in
the context of the maximum-weight matching problem (see Chapter 111.2).

Section 1.5.4

Bell (1977) proved that the formulation ofa feasible n-variable integer program with linear
inequalities and integrality restrictions requires no more than 2n

- 1 inequalities.
The results on the size of numbers that arise in general integer programming problems

have been obtained independently by several people, including Borosh and Treybig (1976),
Von zur Gathen and Sieveking (1978), Kannan and Monma (1978), and Papadimitriou
(1981a). The simple proof given in the text was suggested to us by Gerard Cornuejols.

Sections 1.5.5 and 1.5.6

The basic references for these sections are Garey and Johnson (1979) and the more recent
survey by Johnson and Papadimitriou (1985a).

The class,Hg} was formally introduced by Cook (1971). A slightly different definition of
,Hf5JJ was used by Karp (1972, 1975). Cook used polynomial reducibility in the definition of
,HPJ and proved the fundamental result of the existence of complete problems in ,Hg}. Karp
defined ,Hg} by polynomial transformability and showed that numerous combinatorial
optimization problems are ,Hf5JJ-complete. The proofs of Propositions 6.9 and 6.10 are
taken from Lenstra and Rinnooy Kan (1979).

8. Notes 143

Section 1.5.7

Facet complexity problems have been studied by Karp and Papadimitriou (1982) and
by Papadimitriou and Yannakakis (1984). A survey of these results is contained in
Papadimitriou (1984).

Also see the notes for Section I.6.3.

9. EXERCISES

1. Verify the relations implied in Figure 1.1.

2. Give a tight bound for the magnitude of coefficients in the extreme points of
p = {x E R1: 1:)=1 ajxj ::%; b}, where aj, b E Zl. Compare this bound with the bound
of Proposition 3.1.

3. Can you find an example for which the bounds of Proposition 3.1 are tight?

4. Give a certificate of optimality that x = [W W] is optimal in Example 3.1 of Chapter
I.2.

5. Give a short proof that M = {(1, 2), (3, 5)} is a maximum-weight matching in the
graph of Figure 9.1.

6. Show that if there is a polynomial algorithm to test feasibility of
p = {x ERn: Ax ::%; b}, there is a polynomial algorithm to find a minimal face of P.

7. Give a tight bound for the magnitude of coefficients in extreme points of conv(S),
where S = P n zn and P = {x E R1: 1:)=1 ajxj::%; b}. Compare it to the bound of
Theorem 4.1.

8. Can you find an example for which the bound of Theorem 4.1 is tight?

9. Prove Proposition 5.7 of Section I. 6.5.

10. Given A and b, prove that if x E R1 satisfies

I ± aijxj - b i I ::%; E for i = 1, ... , m
)=1

with E = (2mnlog(}mntl, {x E R1: Ax = b} * 0. (See Proposition 4.6 of Section I.6.4).

Figure 9.1

144 1.5. Computational Complexity

11. Give algorithms to show that the following problems on graphs are in q>.

i) Does G contain a cycle?

ii) Is G bipartite?

In i and ii, how would you give a short proof when the answer is no?

12. A graph G = (V, E) is a hole if it contains a single cycle through all of the nodes and
no other edges. Show that the problem "Does G or its complement contain a node
induced subgraph that is a hole of odd length?" is in C(ioJrq>.

13. Is the problem "Is b E zl \ {a} a prime number?" in .Nq>, C(ioJrq>, neither, or both?

14. Given that the node-packing problem is .Nq>-complete, show that the following
problems are .Nq>-complete:

i) Node cover. Given a graph G = (V, E) and an integer K, is there a subset S ~ V
with I S I ~ K such that every edge of E is incident to a node of S?

ii) Un capacitated facility location. Given sets M and N and integers cij for
i E M,j EN, jj for j EN and K, is there a set S ~ N such that
LiEM minjEs c ij + LjES jj ~ K?

15. Show that the following problems are .Nq>-complete:

i) Set covering: Given an m x n 0-1 matrix A and an integer K, does there exist
x E Bn such that Ax ~ 1 and L7~1 Xi ~ K?

ii) Directed Hamiltonian circuit. Given a directed graph [!J) = (V, stl), is there a
directed cycle passing through each vertex exactly once?

iii) Matching with bonds. Given a graph G = (V, E), pairwise disjoint subsets B i for
i = 1, ... ,p of E, and an integer K, does there exist a matching Min G such that
1M I ~ K and, for i = 1, ... ,p, either Bi n M = Bi or Bi n M = 0 (i.e., either all
the edges in B i are in the matching or none are)? The subsets B i are called bonds.

16. Asetfunctionf(S) = LT<;;S cTforS ~ Nisdescribed by the data {T, CT}, wherecT =1= O.
A set function is sub modular on N if

f(S) + f(T) ~ f(S U T) + r(S n T) for all S, T ~ N.

Show that the problem: "Isf not submodular?" is .Nq>-complete.

17. Show that the traveling salesman problem is .Nq>-hard.

18. Show that the minimum-weight path problem (with positive and negative edge
weights) is .Nq>-hard.

19. Give a polynomial transformation of 0-1 knapsack to integer knapsack.

20. Show that the fixed-charge network flow problem is .Nq>-hard.

21. Show that the maximum-cut problem "Given [!J) = (V, stl) and c E R~, find
max(i,)EO+(U)C ij" is .Nq>-hard, where l5+(U) = {(i, j) E stl: i E U, j E V \ U}.

9. Exercise

22. Show that the problem

is Kg}}-hard.

n n

max L L cijxij
i=l j=l

n

L x ij = 1 for all i
j=l

n

L Xij = 1 for all)
i=l

n n

L 'LtijXij ~ T
i=l j=!

23. Show that the single-machine scheduling problem with due dates is Kgp-hard.

145

24. Let S = {x E Z1: Ax ~ b}. Which of the following problems (if any) are known to be
in gp, Kg}}, cgoJfgp? Which are unlikely to be in Kgp? Justify your answers.

i) Membership for conv(S).

ii) Extreme point membership for conv(S).

iii) Validity for conv(S).

iv) Facet validity for conv(S).

1.6
Polynomial-Time Algorithms
for Linear Programming

1. INTRODUCfION

Simplex methods (see Chapter 1.2) are practical techniques for solving linear programs.
But, according to the model of computational complexity presented in the previous
chapter, they are unsatisfactory because their running time can grow exponentially with
the size of the input. Here we give some polynomial-time algorithms for linear program
ming and discuss their consequences in combinatorial optimization.

The ellipsoid algorithm, which will be presented in Section 2, was acclaimed on the
front pages of newspapers throughout the world when it appeared in 1979. Although the
algorithm turned out to be computationally impractical, it yielded important theoretical
results. It was the first polynomial-time algorithm for linear programming. Also, as will be
discussed in Section 3, it is a tool for proving that certain combinatorial optimization
problems can be solved in polynomial time.

In Section 4, we will present a version of a polynomial-time projective algorithm for
linear programming. Remarkably good computational results have been claimed for
projective algorithms, but only time will tell whether they are superior to, or a serious rival
of, simplex methods.

The running times of these polynomial-time algorithms typically depend on m, n, and
log 8A ,b.c where

8A ,b,c = max{max laij I, max Ib; I, max ICj I}.

In Section 5, it will be shown how the dependence on band c can be eliminated. Thus, for
example, when A is a (0, 1) matrix, there are linear programming algorithms that are
polynomial in m and n.

To present polynomial-time versions of the ellipsoid and projective algorithms, some
basic questions about linear programming must be addressed.

1. Unlike the simplex methods, the ellipsoid and projective algorithms are naturally
described as algorithms to find a feasible point in a polyhedron. Hence, we must convert a
feasibility algorithm into an optimization algorithm. The standard approach is to formu
late a linear program as the feasibility problem: Find x E R~, u E R':' satisfying

Ax ~ b, uA ~ c, cx ~ ub.

146

2. The Ellipsoid Algorithm 147

But this approach is computationally unsatisfactory, so we will need to consider other
methods.

2. Neither the ellipsoid nor the projective algorithm search extreme points. Whereas
extreme points and extreme rays can be described in polynomial time, arbitrary points
cannot. So care has to be taken that the points obtained have polynomial descriptions.

3. The last step of the ellipsoid and projective algorithms requires the conversion of an
"almost feasible/almost optimal" point to a basic feasible/optimal solution. We need to
show that this operation can be executed in polynomial time. An intermediate step in this
process is the perturbation of a constraint or of the objective function so that the resulting
linear program has a unique primal or dual feasible solution.

2. THE ELLIPSOID ALGORITHM

To describe the ellipsoid algorithm, we need a few basic properties of ellipsoids.

Definition 2.1. An n x n symmetric matrix D is positive definite if xTDx > 0 for all
x ERn except x = O.

Definition 2.2. An ellipsoid with center y is a set E = {x ERn: (x - yfD-1(x - y) ~ 1},
written as E(D, y), where D is an n x n positive definite matrix and y ERn.

Definition 2.3. A sphere with center y and radius r is a set of the form
S = {x ERn: (x - y)T(X - y) ~ r2}, written as S(y, r).

Evidently a sphere is a special case of an ellipsoid with D = r2 I n, where In is the n x n
identity matrix (see Figure 2.1). We let sn denote the unit sphere in R n with center 0, that is,
sn = S(O, 1).

x2 Z2

(x-y}TD-l(X-Y) s 1

(0, I)

----------~--~----~~-----xl --------+-----~----~-------Zl
(l,O)

Figure 2.1

148 1.6. Polynomial-Time Algorithms for Linear Programming

----------~r-;-~E++7~~---xl

E

Figure 2.2

The following property is crucial to the ellipsoid algorithm.

The Ellipsoid Property. Given an ellipsoid E = E(D, y), the half-ellipsoid
H = E(D, y) n {x ERn: dx ~ dy}obtained byintersectingEwithanyinequalitydx ~ dy
through its center is contained in an ellipsoid E' with the property that vol(E')/vol(E)
~ e-1I2(n+l), where vol denotes volume (see Figure 2.2). A constructive proof of this property
will be given below.

We begin by describing the ellipsoid algorithm for a membership problem.

Strict Membership Problem. Given integers m and n, an integer m x n matrix A, and
an integer m-vector b, find a point in P< = {x ERn: Ax < b} or show that P< = 0. [The
notation Ax < b means that aix < bi for i = 1, ... ,m where (ai, bi) is the ith row of
(A, b).]

Throughout this section we will assume that given a point y ERn we check whether
y E P< by testing whether aiy < bi for i = 1, ... ,m.

We will also assume that P< is bounded, so that there exists an w such that if
x E P<, then IXj I < w for all j EN. This means that P< s S(O, s), where s = win, and
hence vol(P<) ~ vol(S(O, s» = sn vol(sn).

A second important observation concerns the volume of polyhedra.

The Strict Feasibility Property. If P< =1= 0, then vol(P<) > O. More precisely, given a point
y E P<, there is an r > 0 such that S(y, r) S P<. This implies that vol(P<);a.
vol(S(y, r» = rnvol(Sn).

Now suppose we are given (a) a number v such that vol(P<) > v if P< =1= 0 and (b) a
number V such that vol(Eo) = V, where Eo = E(Do, xo) is an ellipsoid containing P<. Let
t* = [2(n + 1) (loge V -logev)].

2. The Ellipsoid Algorithm

The Ellipsoid Algorithm for P<

Initialization: Eo = E(Do, xo).
Sett = 0.

Iteration t: If Xt E P<, stop. A feasible solution has been found.
If t ~ t*, stop. P< = 0.
If Xt $. P<, suppose ai(t)xt ~ bitt).

149

(Note that we have departed from our usual notation here in that Xt ERn; that is, Xt is
not the tth component of x.)
Find an ellipsoid Et+l containing the half-ellipsoid H t = E t n {x ERn: ai(t) x ~ ai(t)xt}
as specified by the Ellipsoid Property.
Let Et+l = E(Dt+b Xt+l) and t t + 1.

Theorem 2.1. Given v, V, and t* as defined above, the ellipsoid algorithmfor P< terminates
correctly after no more than t* iterations.

Proof Since Xt E P< is readily verifiable, we only have to show that if Xt $. P< for t = 0,
... , t*, then P< = 0.

First we use induction to show that P< s; Etforallt ~ t*. We have constructed Eo so that
P< s; Eo. Now suppose that P< s; E k. Then as ai(k)xk ~ bi(k), we have

Hence

Now consider the volume of E t •. Since vol(Et+1)/vol(Et) ~ e- lf2(n+1), it follows that
vol(Et.)/vol(Eo) ~ e-t'/2(n+l). Hence

vol(Et.) ~ Ve-t'/2(n+l) = Ve- f2(n+l)(logV-logv)1!2(n+l)

~ Ve-1og(v/v) = v.

But now if P< *" 0, it would follow that vol(P<) > v, vol(Et·) ~ v, and P< s; Et" which is
impossible. Hence P< = 0. •

The actual details of how Et+l = E(Dt+b Xt+l) is constructed from E t = E(Dt> Xt) are
given by the following expressions. We assume n > 1.

Let d = ai(t) and D = D t.

(2.1)
1 Dd

Xt+l = Xt - n+1 ,jdTDd

(2.2)

We will now show that these transformations lead to a new ellipsoid satisfying the
ellipsoid property. Without loss of continuity the reader can go directly to Example 2.1.

150 1.6. Polynomial-Time Algorithms for Linear Programming

Proposition 2.2. Every symmetric positive-definite n x n matrix D has a decomposition
D = QfQl, where Ql is an n x n nonsingular matrix.

Definition 2.4. If A is an n x n nonsingular matrix, bERn, and TA : Rn Rn is defined
by TA(x) = Ax + b, then TA is called an affine transformation.

Affine transformations have several important properties. We let TA(L) =

{~E R n: ~ = Ax + b, x E L}. Affine transformations preserve set inclusion.

Proposition 2.3. IfL ~ L' ~ R n, then TA(L) ~ TA(L') ~ Rn.

Volumes are changed by a constant factor, so relative volumes are preserved.

Proposition 2.4. If L ~ Rn is full-dimensional and convex, then vol(TA(L» =

I detA I vol(L).

Given an ellipsoid, there exists an affine transformation mapping it into a sphere
centered at the origin.

Proposition 2.5. Let E = E(D, y) be an ellipsoid with D = QfQl and let T be the affine
transformation given by T(x) = (Qf)-lx - (Qf)-ly. Then T(E) = sn.

Proof

T(E) = {~: ~ = (Qf)-l(X - y): (x - yfD-1(x - y) ~ 1}

= {~: «QD~fD-l(QD~ ~ l)

= {~: ~TQID-IQr~ ~ l}

= {~: ~T~ ~ n. •
In Figure 2.3 we see what happens to E, E', and the half-ellipsoid H when the above

transformation is applied to E = E(D, y).

X2 Z2

dx=dy

dQiz=o

E

Xl zl

E

E'

E'

(a) (b)
Figure 2.3

2. The Ellipsoid Algorithm 151

Affine transformations corresponding to rotations can be represented by transforma
tion matrices Q2 with the property that QfQ2 = I. Such matrices are called orthonormal.

Proposition 2.6. Given an arbitrary nonzero vector d ERn. there exists an n x n orthonor
mal matrix Q2 such that Q2d = - IIdllel, where IIdll is the length of d and where el =
(1,0, ... , Of

Applying this proposition to the vector Q1d, we can rotate the sphere in Figure 2.3(b) so
that the shaded area is just the half-sphere with ~I ~ O. Setting Q = Q 1 Q2, the effect of the
transformation ~ = (QTtl(X - y) is to map E, E', and H as shown in Figure 2.4.

Now we use the above transformations to show that the ellipsoid property holds for (2.1)
and (2.2) with E = Et, E' = Et+b and y = Xt.

We define

1. QI to be any matrix such that Qi QI = D,
2. Q2 to be the rotation matrix such that Q2Q 1d = - IIQ1dlieb and

3. Q = Q2Qb

and we use the transformation x = QT~ + Xt, or T(x) = (QTtl (x - Xt). Simple calcula
tions give the following proposition.

Proposition 2.7

i. IIQdll = ~dTDd.
ii. QD-1QT = I.

111. (QTtID = Q.
iv. T(Et) = {~: ~T~ ~ 1}.

v. T({x: dx ~ dxt}) = {~: ~l ~ O}.

vi. (a) T(xt+l) = n~1 el.
(b) T(Et+l) = {~: (~ - n ~ I)T(l~ 1 (I - n ~ 1 elem-I(~ - n ~ I) ~ 1}.

Zz

-+-I~W--ZI ---+---+--++8@..@4¥1---- ~1

Figure 2.4

152 1.6. Polynomial-Time Algorithms for Linear Programming

Proof

i. IIQ2Ql dll = ../(Q2Q1df(Q2Q 1d) = "/dTQfQ[Q2Qld = ../dTDd because Q[= Q21
since Q2 is orthonormal.

ii. QD-IQT = Q2Ql(QfQlt1(Q2Qlf = Q2QIQ1l(Qf)-IQfQ[= Q2Q[= I.
iii. By ii, QD-IQT = I, and hence (QTt1D = Q.
IV. T(Et) = {~: (QT~fD-l(QT~) ~ 1} = {~: ~T (QD-IQT)~ ~ 1} = {~: ~T~ ~ 1}.

v. T({x: dx ~ dxt }) = {~: dTQT~ ~ O} = {~: (Q2Qldf~ ~ O) = {~: ~1 ~ a}.
VI. T(xt) = (QTt1(xt - Xt) = o.

T(Et+l) = {~: QT~ = X - Xt, (x - xt+lfDiMx - Xt+l) ~ 1}
= {~: (QT(~ - ~l+l)fDil1QT(~ - ~t+l) ~ 1}
= {~: (~- ~t+lfQDil1QT(~ - ~t+l) ~ 1}
= {~: (~ - ~t+lf«QTtlDt+l Q-ltl(~ - ~t+l) ~ 1}.

We note that (2.2) yields

n2 [I 2 (Qd)(Qd)T]
= n2 _ 1 - n+l dTDd usmg 1ll

= n2n~ 1 [I - n:l e1ef] using i and the definition of Q .

Now we have what is needed to show that Et+l satisfies the ellipsoid property.

Proposition 2.8

i. D 1+1 is positive definite.
ii. vol(Et+l)/vol(Et) ~ e- 1I2(n+l).

iii. H t = E t n {x: dx ~ dxt} s; E t+1.

•

Proof i. From statement vi of Proposition 2.7, we see thatDl+l = QT I':,.Q, where I':,. is a
diagonal matrix with positive diagonal entries 0; for i = 1, ... ,n. Let 1':,.112 denote the
diagonal matrix with diagonal entries 0)12 for i = 1, ... , n. It follows that

2. The Ellipsoid Algorithm 153

ii. Using Propositions 2.5 and 2.6, we have

where the inequality is derived by two applications of the standard inequality (l + a) .-;;; ea

for all la I.
iii. Under the transformation, we have

and

It follows that T(Ht) !;; T(E t+l) since 0 .-;;; ~l .-;;; 1 for ~ E T(H t). Applying Proposition 2.3
to the inverse transformation of T, it follows that H t !;; El+l. •

Example 2.1. P< = {x E R2: Xl + X2 < 2, - 2Xl + 2X2 < 1, - X2 < O}.
We suppose it is known that Ix} I .-;;; 3 for j = 1,2 if xE P< and that

vol(P<) > 1(\0 if P< * 0.
We take Eo = {x E R2: rsxf + rsx~ .-;;; 1} with Xo = (0 0) and Do = e~ l~) so that

vol(Eo) .-;;; vol{x E R2: Ix} I .-;;; 3 for j = 1, 2} = 81.
We then calculate t* = [2(n + 1) (log 81 - log 160)] = [6 loge81OO] = 54.
The numerical calculations of the iterations are given below. The shrinking of the el

lipses is shown in Figure 2.5 and the solutions are shown in Figure 2.6.

Iteration O. Xo = (0 0) $. P< because -2Xl + 2X2 < -1 is violated.
Using the updating formulas (2.1) and (2.2) with d = (-2 2) and D = eg 1~) gives

(16
Xl = (1 -1) and Dl = 8

154 1.6. Polynomial-Time Algorithms for Linear Programming

Iteration 1. Xl = (l -1) $. P< because -X2 < 0 is violated.

Iteration 2. X2 = (i 1) $. P< because Xl + X2 < 2 is violated.

(11.06 -1.58)
X3 = (0.41 -0.30) and D3 = -1.58 6.32

Iteration 3. X3 = (0.41 -0.30) $. P< because -X2 < 0 is violated.

Iteration 4. X4 = (0.20 0.54) $. P< because -2XI + 2X2 < -1 is violated.

x5=(1.37 0.27) and D5=(~"~~

Iteration 5. Since X5 E P<, the algorithm terminates.

1.60)
3.16 .

Note that in contrast to the subgradient algorithm of Section I.2.4, the steps XI - XI+I
taken in the ellipsoid algorithm are not normal to the violated inequality ai(t)x < bi(t)

except in special cases such as when the ellipsoid EI is a sphere.
Now we describe how the ellipsoid algorithm can be modified to find nearly optimal

solutions to a linear program. For convenience we will distinguish between the problem of
maximizing ex over an arbitrary polytope

Figure 2.5

2. The Ellipsoid Algorithm 155

(2.3) ZLP = max{cx: X E P}

and the linear program where P is explicitly described by a set oflinear constraints

(2.4) ZLP = max{cx: x E P}, where P = {x ERn: Ax ~ b}.

In both cases we assume that P is nonempty and bounded and that P< * 0. Then by first
running the ellipsoid algorithm for P< we can determine an initial point ao E P<. We then
set Xo = ao and consider the strict inequality system P< n {x ERn: -cx < -cxo}.

The idea behind the modification is simple. Every time a better feasible point XI E P< is
found, we take P< n {x ERn: -cx < -CXt} as our new strict inequality system and reapply
the ellipsoid algorithm. This approach, called the sliding objective function method, has
the nice feature that the algorithm is always being applied to a feasible system unless XI is
an optimal point.

The Sliding Objective Function Approximate Ellipsoid Algorithm for (2.1)

Initial assumptions: A feasible point ao E P< is given. There exists a sphere S(ao, r) C P.
There exists a sphere S(ao, s) :J P. A value for E is chosen.

N = 2n(n + 1) r log 2s;~clIl

Initialization: Xo = ao, Do = s2I, (0 = cao, t = O.
Iteration t: If XI $. P<, set d = ai(t), where ai(t)xI ~ bi(l) and (1+1 = (I' If Xt E Pq set

d = -c, (1+1 = max{(t, cXI), and x XI if CXI > (I' Use formulas (2.1) and (2.2) to obtain
XI+I and D I+I. 1ft> N, stop x E P< and cx ~ ZLP - E. Otherwise set t t + 1.

To analyze this algorithm we need the following results on volumes.

2

Xo
--~--~--------~--------------Xl 2 3

Figure 2.6

156 1.6. Polynomial-Time Algorithms for Linear Programming

y

Figure 2.7

Proposition 2.9

a. vol(sn+I)/vol(sn) < 2n/n.

b. vol(E(D, y» =.J Idet D Ivol(sn).
c. IfC is a cone with vertex y, and H is a hyperplane intersecting C, then the truncated

cone TC = conv({y}, C n H) with base C n H and vertex y has volume given by

1
vol(TC) = - vol(C n H)d(y, H), where d(y, H) = min{lIy - zll: z E H}

n

(see Figure 2.7).

Theorem 2.10. When the approximate ellipsoid algorithm terminates, we have x E P and
eN = eX ~ ZLp - E.

Proof. We use the volume argument given in the proof of Theorem 2.1. Suppose x* is
an optimal solution to LP. Because P<:::> S(ao, r), the initial feasible region
P< n {x ERn: cx > cao} contains the truncated cone TC with base S(ao, r) n {x: cx = cao}
and vertex x*, and after N iterations the final ellipsoid EN contains the truncated cone
TC' = TC n {x ERn: cx > eN}' By Proposition 2.9, we have

1 c(x* - ao)
vol(TC) = n vol(S(ao, r) n {x: cx = cao}) Ilcll '

since the distance from x* to the hyperplane cx = cao is c(x* - ao)/ IIcli. Also

vol(S(ao, r) n {x: cx = cao}) = rn- I vol(sn-I),

since the intersection of a sphere with a hyperplane through its center is again a sphere with
the same radius but of one dimension less. Finally

vol(TC') = (ZLp - eN)n vol(TC),
ZLP - cao

since the height of TC' is (ZLP - eN)/(ZLP - cao) times the height of TC. Hence

2. The Ellipsoid Algorithm 157

vol(TC') =!(ZLp - CN)n rn-I vol(sn-I) cx· - cao.
n ZLP - cao IIcll

Since TC' £; EN, it follows that

vol(TC') :s::; e-NI2(n+l) vol(Eo) = e-NI2(n+l) snvol(sn).

Therefore

(_ r) ,,::::-NI2n(n+l) n vo II Ili/n ZLP - cao (l(sn») lin () (n-I)ln
ZLp 'oN "" e s vol(sn-I) cr'

Also

ZLP - cao = c(x* - ao):S::; Ilcllllx* - aoll :s::; s Ilcll,

and hence

Z _ r :s::; e-NI2n(n+l) S2 Ilcll (n VOI(~n»)l/n < 2e-N/2n(n+l) S2 Ilcll.
LP 'oN r vol(sn I) r

Since N = 2n(n + I) [log (2 S2 Ilcll Ire)], it follows that ZLp - CN < e. •
Several results are needed to show that an ellipsoid algorithm solves the linear

programming problem in polynomial time.
We must deal with the precision of the arithmetic calculations. Square roots occur in

the ellipsoid updating formula (2.2), and the assumption we have made so far is that these
irrational numbers are found exactly. But, of course, this precludes the possibility of digital
calculation, which requires finite representation of numbers. Thus we must specify a
maximum number of digits permitted in the calculations. In particular, we now assume
that the initial data and all intermediate numbers produced during the calculations are
rational numbers represented by the ratio of two integers, each of which is specified with p
binary digits of precision.

With finite precision calculation it is still possible to obtain an approximate solution to
linear programming problems. We need, however, to ensure that the feasible region, if any,
remains inside the half-ellipsoid, given the numerical errors produced by the finite
precision. This is done by using slightly larger ellipsoids. Then we compensate by using a
larger number of iterations.

The algorithm so modified is called the finite precision approximate ellipsoid algo
rithm. The following theorem, which we will not prove, gives the precision and number of
iterations required provided there exists ao such that S(ao, r) C P C S(ao, s).

Theorem 2.11. When N = 4n2[log (2s211cll Ire)], p = 5N,formula (2.2) is replaced by

(2.5) D _ 2n2 + 3(D 2 (Dd) Ddf)
1+1 - 2n2 - n+1 dTDd '

and D1+ I and Xl+ I are calculated to p binary digits of precision, the finite precision ellipsoid
algorithm applied to (2.3) terminates with a solution x E P such that eX ~ ZLp - e.

158 1.6. Polynomial-Time Algorithms for Linear Programming

The precise values of Nand p are not important in this theorem. What is important is
that N andp are polynomial functions ofn, log s, log r, log lIell, and 10g(1/E). In addition,
the amount of calculation needed to update X t and D t at each iteration is polynomial in n
and p. Furthermore, the theorem applies to (2.4) provided a violated inequality
ai(t)x :::;; bi(t) can be expressed with p digits of precision (independently of the question of
how it is found).

Now we consider how to relate the values of rand s to the initial description of the
polytopeP.

Definition 2.5. T is the largest numerator or denominator of any component of an
extreme point of P. T' is the largest numerator or denominator of any component of a
facet-defining inequality. (The components of these vectors are rationals expressed as the
ratio of integers.)

Propositi01l2.12. For any full-dimensional polytope P, the following statements are true:

1. T':::;; (nTt2+n.

11. T:::;; (nT')n,

iii. There exists ao E P sueh that S(ao, r) C P C S(ao, s) with r = (nT)-2n2-2n and
s = 2nT.

Proof i. Suppose ax :::;; b is a facet-defining inequality of P. Without loss of generality,
we assume that b = ±1 or O. Then there are extreme points Xi for i = 1, ... , n such that a
is the unique solution to axi = b for i = 1, ... , n.

Now we can write xj=Pij/qij with Ipijl, Iqijl integers not exceeding T. Taking
Oi = ITJ=I qij, the system (aOi)xi = Oib, i = 1, ... ,n, has integer coefficients bounded in
magnitude by Tn+l. Then by Cramer's rule we have aj = Pj/q, where Pj and q are integers
with Ipjl, Iql :::;; n! (Tn+lt < (nT)n2+n.

ii. The proof is similar to i using polarity.
iii. For all x E P, we have IXi I :::;; T. Hence (x - aoV(x - ao) :::;; n(2T)2 < (2nT)2, and

Pc S(ao, s) with s = 2nT.
Finally we show that there is an inscribed sphere of the given radius. Take n + 1 affine1y

independent extreme points {x i }7,:l, and let ao = [1/(n + 1)] '£7:/ Xi. Clearly, ao E P<. The
distance from ao to any facet ax = b is (b - a Tao)/ lIall. Our goal is to find a lower-bound r
on this distance, since this will provide us with the imbedded sphere S(ao, r). Since
(a, b) E zn+l, it follows that b - aTao;:: 1/1f/, where If/is the common denominator' of the
components aOj of ao. Since xj = p/q with p, q E Zl, it follows that
Ip I, Iq I :::;; T, aOj = pj/q' with pi, q' E zl, and Iq'l :::;; (n + l)rn+1• Thus ao = (Pi: ... ,

p~')/ql/ with Iq"l :::;; (n + l)nrn2+n:::;; (nT)n2+n. Hence b - aTao;:: 1/1f/= 1/q";:: (nT)-n2-n.
Now lIall :::;; n(nT)n2+n, and for each ai we have lai I < (nT)n2+n. Hence (b - aTao)/llall

> (nTt2n2-2n = r. •

We have established that log s and log r are polynomial in n and log T, or equivalently
in n and log T'. Hence Nand p in Theorem 2.11 are polynomial in n, log T, log lIell, and
log (1/E)

To convert the E-approximate solution obtained in Theorem 2.11 to an optimal
solution, we perturb the objective function of(2.3) so that the resulting linear program has
a unique solution.

2. The Ellipsoid Algorithm 159

Proposition 2.13. Given P, let Q = 2T2n and c' = Qnc + (1, Q, ... , Qn-l). Then the linear
program

(2.6) ZLP' = max{c'x: x E P}

has a unique optimal solution x*, and x* is an optimal solution of(2.3),

Proof Let Xl be some other vertex of P. Letting x* = (Pf/q7, ... ,p~/q~) and
Xl = (Pl!ql, ... ,p~/q~), we have

Hence we can write x* - Xl = z/ex, where ex < T 2n , and Z is an integer vector with
I Zj I < 2T2n for all}.

Since x* is optimal,

But because I Zj I < Q for all}, it follows that

Since Qncz ~ - LJ~1 Qj-Iz, and cz is integer, we have cz ~ O. Hence we have shown that
cx* ~ ex l for any extreme point Xl, and x* is optimal to (2.3).

Finally we observe that because Z * ° and I Zj I < Q for all}, LJ~1 Qj-l Zj * 0. This implies
that c'(x* - Xl) * 0, and hence x* is the unique optimum of(2.6). •

The next step is to show that if we choose 8 appropriately in the finite precision
approximate ellipsoid algorithm we can get very close to x*.

Proposition 2.14. Ifthefinite precision approximate ellipsoid algorithm is applied to (2.6)
and E = (1/4n)r- 4n- 2, the algorithm terminates with x E P satisfying c'x ~ hp' - E and
Ilx* - xii ~ 1/2T2, where x* is an extreme point optimal solution of(2.3).

Proof Since x E P, x is a convex combination of extreme points, say{x;};~l' We claim
that one of these extreme points is x*. If not, let cx I = min;cxi. Then

c'x* - c'x ~ e'x* - C'XI =! c'z ~ ! > _l_
ex ex T 2n'

contradicting c'x* - c'x ~ E.

160 1.6. Polynomial-Time Algorithms for Linear Programming

Therefore we can write x = l:7=1 AiXi + A..x* with l:7=1 Ai + A* = 1, Ai ~ 0 for i = 1, ... , n,
and A* > O. Now observe that since c/(x* - Xi) > 1/T2n for all extreme points Xi '* x*, it
follows that

n

c'x = I C'AiXi + C'A..x*
i=1

< Z A{ c'x* - i2n)+ C'A..x*

= c'x* - i2n (1 - A*).

But since c'x ~ c'x* - e, it follows that e > (1/T2n) (1 - A*).
Now

for some yEP, since l:?=1 Ai = 1 - A*, and y is thus a convex combination of Xi for i =

1, ... ,n. However, Ily - x*1I ~ 2nT2n, and therefore

IIx - x*1I ~ eT2n 2nT2n < 2~2'

•
Proposition 2.15. Let x and x* be as described in Proposition 2.14. The vector obtained by
rounding each coefficient Xj of x to the nearest rational multiple of{ 1, liz, ... , liT} is x*.

Proof Since x* is an extreme point of P, it follows that xjis some rational multiple of
{l, liz, ... , 1/T} for all j = 1, ... ,n. Suppose x* is not obtained as described. Then
xj- Xj > 1/2T2 for somej, and hence IIx - x*1I > 1/2T2, contradicting Proposition 2.14 .•

One approach to finding x* from x is by the method of continued fractions. In Section
I. 7 .3, we will describe this method and show that it can be executed in time polynomial in
n and log T.

We have established how the finite precision approximate ellipsoid algorithm produces
an optimal solution to (2.3) or (2.4) when P is a full-dimensional polytope. We have also
shown that each step (except that of finding a violated inequality) requires a number of
calculations that are polynomial in n, log T, and log IIcll (see Theorem 2.11 and
Propositions 2.13-2.15). For the linear program (2.3), this number is polynomial in the
length of the input description, since to find a violated inequality we simply check whether
the p-digit number Xl satisfies each constraint. This requires O(mnp) calculations. Hence
we obtain the following theorem.

Theorem 2.16. There is a polynomial algorithm to solve the linear programming problem
over full-dimensional polytopes with description (m, n, A, b, c).

3. The Polynomial Equivalence of Separation and Optimization

3. THE POLYNOMIAL EQUIVALENCE OF SEPARATION AND
OPTIMIZATION

161

The importance of the ellipsoid algorithm in combinatorial optimization is as a tool to
prove that certain problems can be solved in polynomial time.

To illustrate this idea, consider the minimum-weight s-t cut problem (see Section
1.3.4). Given a graph G = (V, E) with I E I = n, s, t E V, and a nonnegative weight vector
c E R~ on the edges of G, the problem is to find a minimum-weight set of edges that
intersects every s-t path in G. Let J{ be the family of s-t paths in G.

One way to formulate this problem is as the linear program

(3.1)

min I CeYe
eEE

I y e ~ 1 for Kj E J{
eEKj

o :::;; Ye :::;; 1 for e E E.

This is true because y E B n is a feasible solution if and only if it is the incidence vector of an
s-t cut and, as will be shown in Section III.1.6, all of the extreme points of the polytope
defined by the constraint set of (3.1) are in Bn.

There is one difficulty in solving (3.1) by the ellipsoid algorithm given in Section 2. This
is that I J{ I is an exponential function of n, which means that the feasibility of a point y*
determined from an iteration of the ellipsoid algorithm cannot be decided efficiently by
the usual method of substitution. However, in this case there is an alternate way of
checking feasibility.

Suppose 0 :::;; y* :::;; 1, since this can be checked by substitution. Consider the problem of
finding a minimum-weight s-t path with weight vector y*. This can be done efficiently by
the algorithm given in Section 1.3 .2. Let <! be the weight of a minimum-weight path. Then
l:eEKj yj ~ 1 for all K j E J{ if and only if <! ~ 1. Moreover, if <! < 1, any minimum-weight
path yields an inequality that is most violated by y*.

So for this problem we have overcome the apparent difficulty of a large number of
constraints by providing an efficient subroutine that implicitly checks feasibility and
provides a violated inequality when the point in question is not feasible.

This example motivates the separation problem, which combines both the membership
and validity problems.

The Separation Problem/or a Family o/Polyhedra. An instance is given by an integer n,
a description of a polyhedron P s;; R n in the family, and an x* E Rn.

A solution is an answer to the membership problem and, if x* ff: P, a valid inequality
(n, no) for P such that nx* > no. (Note that the separation problem is not a feasibility
problem because it requires that we exhibit a valid inequality.)

Our objective here is to relate the complexity of the separation problem to the
complexity of the linear programming problem over the family of polyhedra.

We now formally describe the linear programming problem.

The Linear Programming Problem/or a Family o/Polyhedra. An instance is given by
an integer n, a description ofa polyhedron PC R n in the family, and acE Rn. Assuming
that P =/= 0 and cx is bounded for all x E P, a solution is an X O E P such that
cxo = max{cx: x E P}.

162 1.6. Polynomial-Time Algorithms for Linear Programming

The principal result is that, under certain technical assumptions, the linear program
ming problem for a family of polyhedra is solvable in polynomial time if and only if the
separation problem is solvable in polynomial time.

As in the previous section, we confine the analysis to full-dimensional polytopes. But
here we do not assume that the number of constraints is part of the description of P.
Instead, we assume that for P eRn the length of the input I needed to encode P is bounded
from below by a polynomial in n and log T, where T is given in Definition 2.5. This
assumption enables us to work with the parameters nand T as well as to establish the
polynomiality of an algorithm by showing that its running time is polynomial in n and log
T. Note that by Proposition 2.l2 this assumption is equivalent to assuming that the length
of the input needed to encode P is bounded from below by a polynomial in n and log T'
(T' is also given in Definition 2.5).

This assumption is reasonable for the families of polytopes of interest to us, because if
log Twas superpolynomial in the true input length, we would have no hope of describing
an optimal solution to the linear programming problem over the family in polynomial
time.

More specifically, consider the case where we are dealing with a family of full
dimensional polytopes where either P = {x ERn: Ax s b} or P = conv(S) with
S = {x E ZZ: Ax s b} and where the standard input is the m x (n + 1) integer matrix
(A, b). The input length needed to describe these problems is 1= O(mn log e), where
e = max(maxij I aij I, max; I b; I).

When P = {x ERn: Ax s b}, by Proposition 3.l of Section I.5.3, the largest value that
can be taken by the numerator or denominator of any extreme point is T = (net. Hence,
since log T = n log e + n log n, it follows that log T is certainly, at most, a polynomial
function of I. A similar result holds when P = conv(S) (see Theorem 4.l of Section I.5.4).

As illustrated by problem (3.1), it may not be efficient to solve the separation problem
by substitution. Moreover, if x f{:. P, we need to establish that we can find a violated
inequality whose encoding length is polynomial in I. But this follows, since if x f{:. P, then
x does not satisfy some facet-defining inequality whose encoding length is O(log(nT')).
Moreover, a facet-defining inequality can be described exactly using the precision speci
fied in Theorem 2.l1.

In the previous section we gave an ellipsoid algorithm in which each step, except that of
finding a violated inequality, requires a number of calculations that are polynomial in n,
log T, and log IIcli. We have just seen that a violated inequality can be described by a
polynomial in n and log T, and it is easily checked that this meets the requirement of the
precision required in the algorithm.

The only step that remains is to solve the separation problem at each iteration.
Immediately we can conclude that Theorem 2.l6 generalizes to:

Theorem 3.1. Given a family of full-dimensional polytopes P(n, T) whose description
length is at least a polynomial in n and log T, if the separation problem over the family is
solvable in polynomial time, then the linear programming problem over the family is
solvable in polynomial time.

We can also make use of polarity to give a polynomial algorithm for the separation
problem based on a polynomial algorithm for the linear programming problem.

Theorem 3.2. The following statements are equivalent for a family of full-dimensional
polytopes having the origin in their interior and whose input length is at least a polynomial
in n and log T.

3. The Polynomial Equivalence of Separation and Optimization 163

a. There is a polynomial-time algorithm for the separation problem.
b. There is a polynomial-time algorithm for the linear programming problem.
c. There is a polynomial-time algorithm for the separation problem over the family of

l-polars.
d. There is a polynomial-time algorithm for the linear programming problem over the

family of l-polars.

Proof a ~ b. This is Theorem 3.1.
b ~ c. We apply the results of Section 1.4.5 to relate the optimization problem for P to

the separation problem for its I-polar III. By Proposition 5.4, III is also full-dimensional
and bounded and contains 0 in its interior.

Given n* ERn, let x* be an optimal solution to max{n*x: x E Pl. By Corollary 5.6,
n* E III if and only if n*x* :s 1. If n*x* > 1, then by Theorem 5.5 it follows that (x*, 1) is a
valid inequality for III that cuts off n*. Finally, by Proposition 2.12, T' is a polynomial
function of n and log T, so the length of the input needed to described III is polynomial in
n and log T.

c ~ d. Because III is a full-dimensional polytope, we can apply Theorem 3.1 to the
family of I-polars.

d ~ a. The proof is the same as b ~ c with the roles of P and III interchanged. •

Now observe that any family offull-dimensional polytopes can be translated so that the
origin becomes an interior point. The above argument then shows the equivalence of
statements a and b for full-dimensional polytopes. This result extends to arbitrary rational
polyhedra, though certain steps of the algorithms need modification, and for unbounded
polyhedra we need to redefine T to include extreme rays.

The following theorem justifies what we call the equivalence of separation and optimi
zation throughout this book.

Theorem 3.3. For a family of rational polyhedra P(n, T) whose input length is at least
polynomial in n and log T, there is a polynomial-time reduction of the linear programming
problem over the family to the separation problem over the family, and conversely there is a
polynomial-time reduction of the separation problem to the linear programming problem.

Theorem 3.3 implies that the linear programming problem is solvable in polynomial
time if and only if the separation problem is solvable in polynomial time. In Part III we
will use this result to develop polynomial-time algorithms for some combinatorial
optimization problems by giving polynomial-time algorithms for the separation problem.
In contrast to the minimum-cut example, we will see an example where this provides the
only known polynomial-time algorithm.

Theorem 3.3 also implies that the linear programming problem is ,N"g}l-hard if and only
if the separation problem is ,N"9P-hard. However, as we shall see in Chapters II.5 and 11.6,
separation is extremely important in the solution of ,N"g}l-hard optimization problems
where we know some classes of strong valid inequalities and are able to solve or
approximate the solution of the separation problem efficiently.

We close this section by using Theorem 3.3 to show that the linear optimization
problem over the fractional node packing polytope is ,N"9P-hard.

Example 3.1 (Example 7.2 of Section 1.5.7 continued). The I-polar of the fractional
node-packing polytope is a polytope whose extreme points are the incidence vectors of the
maximal cliques of G. Hence the linear programming problem over the I-polar is ,N"9P
hard because it is equivalent to the maximum-weight clique problem on G or the

164 1.6. Polynomial-Time Algorithms for Linear Programming

maximum-weight node-packing problem on the complement of G. Now, by polarity, the
separation problem over the fractional node-packing polytope is .Ngp-hard. Finally, by
Theorem 3.3, we can reduce the linear program problem to the separation problem, so the
linear programming problem over the fractional node-packing polytope is also .Ngp-hard.

4. A PROJECfIVE ALGORITHM FOR LINEAR PROGRAMMING

Recently, remarkable claims have been made concerning the computational efficiency of
a new algorithm based on projections. Here we describe a conceptually simple variant of
that algorithm whose geometric rate of convergence is easily established. Our objective is
just to show the significance of projections in solving linear programs. We neither claim
that the version of the algorithm given here is efficient, nor do we prove polynomiality.

We will need the formula for the projection of a vector onto a subspace.

Proposition 4.1. Let A be an m x n matrix, with rank(A) = m and H = {x ERn: Ax = O}.
The projection olp onto H is given by q = [J - AT(AATtIA]p.

Proof q E H so Aq = O. Also, since p - q E Hi, by Proposition 1.6 of Section 1.4.1,
there exists u E R m such that A T u = P - q. Therefore

AA T U = Ap - Aq = Ap and u = (AA TtlAp

because AA T is nonsingular when rank(A) = m.
Hence q = p - ATu = [J - AT(AA TtIA]p. •
We first apply the projective algorithm to the homogeneous feasibility problem.

Homogeneous Feasibility Problem. Given an integer m x n matrix A with
rank(A) = m, find a ray rEP \ {O}, where P = {r E R~: Ar = a}, or show that P = {O}.

The algorithm works with candidate rays rk > 0 for k = 1, 2, ... and attempts to satisfy
Ar = O. Suppose rl = 1 $. P because AI", O. To obtain a point closer to being a solution
than rl, we attempt to preserve nonnegativity by finding the closest point to 1 that satisfies
Aq = O. This is the problem min{III - qll: Aq = O}. Its solution isq, the projection of! onto
Aq =0.

Now if q:2:: 0, then q E P and we are done. Otherwise (unless we can deduce that
P = 0), we modify q to obtain a vector q' > 0 that is "closer" to being a solution in P than
the initial vector 1. We take a positive linear combination of q and 1, giving q' = 1 + aq
with a> O. a must be chosen so that q' > 0, so a cannot be chosen arbitrarily large.
Alternatively, the larger a is, the "closer" q' is to q and hence to satisfyingAq = O. We have
described one iteration of the algorithm from the point rk = 1 to the new point
rk+1 = 1 + aq.

We observe that even if rk '" 1, the same iterative step can be applied when rk > 0 but
rk $. P. Let Dk be a diagonal matrix with dt = r} > 0 forj = 1, ... , n, letA k = ADk, and let
p k = {r E R~: Akr = O} be a cone. Clearly P '" {O} if and only if p k '" {O}. Also, Ark = Ak1.
Now we can describe iteration k in terms of the feasibility problem for pk. A candidate
vector 1 is given. If Akl '" 0, so 1 $. pk, we derive a new vector q' > 0 that is "closer" to
being a solution of pk. Let q' = 1 + akqk, where ak > 0 and qk is the projection of 1 onto

4. A Projective Algorithm for Linear Programming 165

Akq = O. Restated with respect to P, the new point is rk+1 = Dk(l + akqk) because
Ark+1 =Ak(1 + akqk) =Akq'.

We need to make precise what it means for rk+1 > 0 to be "closer" to the cone P than
rk > O. Comparing the values of Ark+1 and Ark is relatively meaningless. To obtain a useful
measure of comparison we need to work with a homogeneous version of r, such as

r r
(l/n) 1:J=1 rj or (Ili=1 rj)l/n'

which is invariant under the transformation r A.r with A. > O. Throughout this section we
use the homogeneous version

~ r
r = (Il'! .)l/n· :/=1 r,

Thus when comparing violations, if IAi'-k+11 < lArk I, it makes sense to say than rk+1 is
closer than rk to being a ray of p,

Without specifying ak, we can already analyze the basic behavior of an iteration of the
algorithm.

Proposition 4.2

n n

I'. "" a,;;r,~+1 = "" a,;;r,k flor z' - 1 m L, L, - ,00', .
j=1 j=1

where

Proof

1. Substituting rj+1 = rj(l + akqj) yields

11. rj /rj+1 = 1/(l + akqj). Therefore

n

= I aijrj since Akqk = O.
j=1

n -:k = n k =fik [n (rk)Jl1n [n (1)Jl1n
j=1 rj j=1 1 + akqj)

166 1.6. Polynomial-Time Algorithms for Linear Programming

and by i it follows that

= C~ aurJ)[J} (,]+1) rn
= C~ au'J)[J} (:f1) rn

•
Hence we see that from one iteration to the next, the values of all the terms of A ,k

change by a constant factor Pk. By specifying a choice of ak for which Pk < P < 1, we will
obtain an algorithm with the property that A ,k 0 geometrically.

The Projective Algorithm to Find an e-Approximate Ray

Iteration k

Step 1: If I LJ~l au,J I ~ e for all i, stop. ,k is an e-approximate ray.
Step 2: Find the projection qk of 1 onto the subspace A kq = O.
Step 3: If qk ~ 0, stop. r = Dkqk E P \ {O}.

Step 4: IfmaxjqJ < 1, stop. P = {O}.

Step 5: Find a point ak in the set

[n (1)]lln
{a E Rl: 1 + aqJ > 0 for j = 1, ... , n, Pk = I1 1 k ~ P < n.

}~1 + aq}

Step 6: rJ+1 = rJ(1 + akqJ) for j = 1, ... ,n,

A k+1 = ADk+1.

Set k <-- k + 1 and return to Step 1.

The validity of Step 4 and the feasibility of Step 5 require verification. First we consider
Step 4.

Proposition 4.3. I/max;qJ < 1, there is no ray in P / {a}.

Proof Since qk is the projection of 1 onto H = {q: Akq = a}, it follows that
1 - qk E H-\ and hence there exists u E R m such that uA k = 1 - qk > 0 or
uA = (1 - qk)(Dkt1 > O.

Therefore by Farkas' lemma applied to the cone P = {r E R~: Ar = a}, we obtain
P = {O}. •

4. A Projective Algorithm for Linear Programming 167

The following result, which is not difficult to prove, shows that for certain values of
P < 1, the set in Step 5 is nonempty and so the algorithm converges geometrically.

Proposition 4.4. Taking Cik = 1/(1 + IIqkll) as the step size in Step 5 of the projective
algorithm, itfollows that rk+1 > 0 and

Theorem 4.5. The Projective Algorithm to find an 8-approximate ray terminates after no
more than

iterations.

Proof After k iterations, we have

\ ± aurj+l\ = IT PI \ ± au\ ::::;, pk\ ± au\ for all i.
J=I 1=1 J=I J=I

With k as claimed, pk I I:J=I a ij I ::::;, 8 for all i.

Now we consider the nonhomogeneous feasibility problem:

(4.1) Find X E P, where P = {x E RZ: Ax = b}, or show that P = 0

Observe that if we take r = (x, rn+l) E R n+1 andA = (A, -b), we can apply the projective
algorithm to the cone P = {r E RZ+I: Ar = O}.

We suppose that P is bounded, so there does not exist (rio' .. ,rn, O) E RZ+I \ {O} such
thatAr = O. Hence if the cone P has a nonzero ray r, then necessarily rn+1 > 0, and then
x = (rdrn+h"" rn/rn+l) is a solution of (4.1). This suggests that at each iteration of the
projective algorithm, we should normalize candidate rays so that r n+1 = 1. In other words,
we will choose a normalization factor Pk so that r~+1 = 1 at each iteration.

The Projective Algorithm for Problem (4.1)

Initialization. rl = 1, DI = In+h Al = A, k = 1.

Iteration k

Step 1: (xk, 1) = rk. If lArk I ::::;, 8, then Xk = (rt, ... , r~) is an 8-approximate solution to
(4.1) with IAxk - b I ::::;, 8 and Xk > O.

Step 2: This is unchanged.
Step 3: If qk > 0, stop. Xk E P where, xj = (l/q~+I)rjqj forj = 1, ... ,n.

168 1.6. Polynomial-Time Algorithms for Linear Programming

Step 4: Ifmaxj~I .. " .n+lqj < 1, stop. P = 0.
Step 5: This is unchanged except that n n + 1.
Step 6: rj+1 = Pkrj(1 + akqj) for j = 1, ... , n + 1, where Pk = 1/(1 + akq~+I)' The rest of the

step is as before.

Now using Proposition 4.2, we can analyze the behavior of the algorithm on the
feasibility problem (4.1). We also use the following result, which can be proved using
estimates of the size of solutions as in Section 1.4.5.

Proposition 4.6 (The Perturbation Lemma). Given A and b, there exists e(A, b) > 0 such
that if x E R~ satisfies

II aijXj - bil:s; e(A, b) for i = 1, ... ,m,
J~I

then there exists x* E R~ satisfying Ax = b.

Proposition 4.7. If the projective algorithm is applied to Problem (4.1) and rk+1 = (xk+ I, 1),
then:

1.1 I aijxj+1 - bil = Pkl I aijxj - bil for all i;
J~l J~l

11. There exists w(A, b) E Rl such that

I I aijxj+l - bil :S; Pkw(A, b)1 I aij - bil for all i.
J~l J~l

Proof We observe first that because

[
n+l 1]l/(n + I)

Pt = JJ 1 + atq5 and

we have

[n (xJ+1)]l/(n + I) =
Pt JJ X] Pt·

Statement i follows immediately from statement i of Proposition 4.2. Now substituting for
PI in statement i, we obtain

4. A Projective Algorithm for Linear Programming 169

since PI :::; p, and because the geometric mean does not exceed the arithmetic mean. Now
dividing both sides by "£'1=1 Xj+1 and setting Yj = Xj+I/"£J~1 xj+I > 0, we obtain

If "£'1=1 Xj+1 is unbounded as k 00 , then as P" 0, there exists a k for which I "£J~laijyj I
:::; E(A, 0), where E(A, 0) is as in Proposition 4.6. HenceAy = 0, y E R~, has a solution with
y =f: 0, contradicting the boundedness assumption. Hence "£'1=1 Xj+1 remains bounded, and
the claim follows. •

Note that this algorithm has the property that the violation in each constraint decreases
at exactly the same rate.

Example 4.1. We apply the projective algorithm to the feasibility problem

with A. = 30.

-XI + 2xz:::; 4

5xI + Xz:::; 20

-2xI - 2X2 :::; -7

ex = 7xI + 2X2 ~ A.

xER;

Converting into equality form; we have A = (A -b) with

(

-1

- 5 A= -2
7

2 1
1 0

-2 0
2 0

o 0 0
1 0 0
o 1 0
o 0 -1

-4) -20
7 .

-30

We use the starting point Xl = (l 1 1 1 1 1) and rl = (Xl, 1).

Initialization. DI = h Al = A.

Iteration 1

Step 1:

Step 2: The projection of 1 on Aq = 0 is the vector

ql = (0.9907 0.6622 0.8254 -0.1806 1.337 0.08659 0.2698)

Step 5: al = 4.433, pz = 0.425, PI = 0.455.

170 1.6. Polynomial-Time Algorithms for Linear Programming

Step 6: r2 = (x2, 1) = (2.455 l. 711 2.l22 0.091 3.l55 0.630 1)

3.423 2.l22 0 0 0

12 = 12.277 1.711 0 0.0909 0 0
-4.911 -3.423 0 0 3.l55 0

(-2.455

17.l88 3.423 0 0 0 -0.6302

Iteration 2

(
-0.911)

2 -2 -5.921 1
Ax - b = A 1 = l.821 = Pl(Ax - b).

-10.02

Step 2: q2 = (0.8328 1.205 0.1850 0.7620 1.232 -0.1514 0.6178)

Step 5: 0:2 = 5.431, P2 = 0.326, P2 = 0.230.

Step 6: r3 = (x 3, 1) = (3.l14 2.964 0.9766 0.1072 5.574 0.02569 1)

Iteration 3

(
-0.209)

3 -1.36
Ax = 0.418.

-2.30

Step 2: q3 = (1.060 1.189 0.2750 0.5488 1.1878 0.9252 1.0044).

Step 3: Because q3 > 0, it follows that

x 3 = (3.286 3.509 0.2674 0.05859 6.592 0.02366).

Stop. x" = (3.286 3.509) is feasible and ex" > 30.

Now we consider the linear programming problem:

(4.2) ZLP = max{ex: Ax = b, x E R~}.

Viewed in terms offeasibility, we solve

-4) -20
7 .

-30

4. A Projective Algorithm for Linear Programming 171

where P(O = {x E R~: Ax - b = 0, cx - (= O}. We letA = (A -b), c, = (c -O, and

-b)
-(.

We only describe an algorithm for Phase 2, that is, we assume a feasible point Xl E R~

satisfying Ax I = b and x I > ° is known.
We apply the feasibility algorithm to P(O. The algorithm is motivated by the following

observations.

i. Let rk = (x\ 1). By the choice of Xl, we have Arl = 0. Because Ark+1 = PkArk for each
k, we have Ark = ° or AXk = b for all k.

ii. Since the only violated constraint is cx - (= 0, the projective algorithm works to
decrease (- cxk geometrically at each iteration. To maintain geometric conver
gence, we need projection vectors with maxjqJ ~ 1. However, if (is a strict upper
bound on ZLP, then P(O = 0 and hence the algorithm will stop with maxjqJ < 1.

We overcome this difficulty by viewing (and calculating) the projection vector qk
as a function of (. qk is of the form a + P(with a, p E Rn+l. Therefore if
maxjqJ(° < 1, it is easy to calculate (' < (such that maxjqJ(n = 1. C is a new upper
bound for ZLP, and the algorithm can now proceed to find a new iterate rhl.

iii. If (k is the value of (at iteration k we can associate a dual feasible solution Uk to (4.2)
with ukb S (k> so the algorithm simultaneously produces primal and dual feasible
solutions.

As before we assume that {x E R~: Ax = b} is a polytope.

The Projective Algorithm for the Linear Program (4.2)

Initialization. Given Xl feasible in (4.2) with Xl > 0, set rl = (Xl, 1). If a specific upper
bound on Z LP is known, set (I to be this bound. If none is known, take

(I = max jCj jnw(A, b),
}

Al = (A _b)(rl ... I),
r n+1

Iteration k

Step 1: Let Vk = (k - cxk. Ifvk S E, stop. Xk is an E-optimal solution of(4.2) withAxk = b,
Xk E R~, and ZLp - cxk S E.

Step 2: Find the projection qk(O ofl onto the subspace Akr = 0, ctr = 0.
Step 3: If qk((k) ~ 0, stop. Let r = Dkqk((k)' Then x = [rI/rn+b ... ,rn/rn+d is optimal in

(4.2).

Step 4: If qk((k) < 1, find I;' < (k such that maxj~l, , .. , n+1 qJ(1;') = 1, and set (k+1 = C. Other
wise set (hi = (k'

172 1.6. Polynomial-Time Algorithms for Linear Programming

Step 5: Take qk = qk(Ck+l), and find ak as before.
Step 6: This is unchanged.

Proposition 4.8. Suppose the projective algorithm is applied to problem (4.2) starting
from afeasiblepointx l. At iteration k + 1, xk+l is afeasibiepoint and Ck+l is an upper bound
on ZLP satisfying

1. Ck+l - CXk+l S Pk(Ck - cxk) and
ii. Ck+l - CXk+l s /fw(A, b)(Cl - cx l).

Proof i. We just need to verify what happens during one iteration of the algorithm.
Initially Vk = Ck - cxk = 1 CCkrk I. After Step 5,

V k+l = Ck+l - CXk+l = 1 C ch,rk+l 1

= Pk 1 CCk.,rk 1 = Pk(Ck+l - cxk) by statement i of Proposition 4.2
s Pk(Ck - cxk) = PkVk since Ck+l S Ck from Step 4.

ii. This follows from statement ii of Proposition 4.7 because Xl is feasible and hence
bounded. •

Example 4.2. The Projection Algorithm is applied to the linear program

with E = 10-5,

ZLp = max 7Xl + 2X2

-Xl + 2xz + X3

5Xl + X2 +

-2Xl - 2xz +

xER~

= 4

= 20

Xs = -7

We initialize with Xl = (1.01 2.5 0.01 12.45 0.02), Cl = 200. The calculations are shown
in Table 4.1.

It can be shown that at each iteration the algorithm yields a dual feasible solution. Also,
by combining the algorithms for problems (4.1) and (4.2), one can describe a single-phase
primal-dual algorithm for linear programming. The remarkable convergence rate of the
projective algorithm means that, in practice, never more than about 30 iterations seem to
be necessary. The key practical question is how to carry out the projection step efficiently.

5. A STRONGLY POLYNOMIAL ALGORITHM FOR COMBINATORIAL
LINEAR PROGRAMS

We generally bound the running time of an optimization or feasibility algorithm by the
number of variables n, the number of constraints m, and the size of the largest coefficient
8 in the data. Polynomial-time algorithms require a bound that is a polynomial function of
m, n, and log 8. An algorithm is strongly polynomial if the bound only depends on m and
n. Thus for the family of instances in which log 8 is a polynomial function of m and n, we
can trivially eliminate the dependence on 8 and say that the algorithm is strongly
polynomial.

T
ab

le
 4

.1
.

k
X

k
(k

(k

 -
C

Xk

(h
i

-
C

Xk

u
kb

CX

k
P

k
Pk

r
A

""

1
1.

01
00

0
2.

50
00

0
0.

01
00

0
12

.4
50

00

0.
02

00
0

20
0.

00
00

0
18

7.
93

00
0

18
7.

93
00

0
15

2.
86

22
8

20
1.

47
56

6
0.

17
2

0.
93

0
2

2.
89

11
2

2.
50

30
2

1.
88

50
9

3.
04

13
7

3.
78

82
8

20
0.

00
00

0
17

4.
75

61
1

8.
55

00
8

32
.4

87
75

1.

29
51

4
0.

70
3

0.
57

7
3

3.
37

02
9

2.
63

61
7

2.
09

79
5

0.
51

23
7

5.
01

29
2

33
.7

93
97

4.

92
95

8
1.

63
48

1
30

.3
41

92

2.
29

41
3

0.
60

1
0.

37
6

4
3.

33
66

7
3.

26
40

0
0.

80
86

7
0.

05
26

3
6.

20
13

5
30

.4
99

20

0.
61

44
7

0.
34

92
1

30
.2

11
56

1.

96
88

8
0.

56
5

0.
37

1
5

3.
27

22
5

3.
59

92
4

0.
07

37
7

0.
03

95
1

6.
74

29
8

30
.2

33
93

0.

12
97

0
0.

07
82

9
30

.1
82

17

3.
71

52
7

0.
38

3
0.

21
3

6
3.

27
69

0
3.

61
37

7
0.

04
93

6
0.

00
17

5
6.

78
13

3
30

.1
82

51

0.
01

67
0

0.
01

62
0

30
.1

81
93

4.

97
27

3
0.

30
7

0.
16

8
7

3.
27

26
1

3.
63

54
9

0.
00

16
2

0.
00

14
4

6.
81

62
2

30
.1

82
01

0.

00
27

3
0.

00
25

3
30

.1
81

82

5.
02

50
2

0.
30

5
0.

16
6

8
3.

27
28

4
3.

63
57

7
0.

00
12

9
0.

00
00

5
6.

81
72

2
30

.1
81

82

0.
00

04
2

0.
00

04
2

30
.1

81
82

5.

37
45

9
0.

29
1

0.
15

7
9

3.
27

27
2

3.
63

63
4

0.
00

00
4

0.
00

00
4

6.
81

81
3

30
.1

81
82

0.

00
00

7
0.

00
00

7
30

.1
81

82

5.
35

71
0

0.
29

2
0.

15
7

10

3.
27

27
3

3.
63

63
5

0.
00

00
3

0.
00

00
0

6.
81

81
6

30
.1

81
82

0.

00
00

1
0.

00
00

1
30

.1
81

82

5.
36

84
3

0.
29

1
0.

15
7

... (;!

174 1.6. Polynomial-Time Algorithms for Linear Programming

Here we show that for the linear programming problem

max{cx: Ax::; b, x ~ O}

it is possible to eliminate the dependence of the running time on ()b and ()e for any
algorithm that finds primal and dual feasible and complementary solutions. This is done
by replacing the original problem by a sequence of problems in which the coefficients b
and c are a polynomial function of m, n, and log ()A. In particular, the bounds in the
projective and ellipsoid algorithm will depend only on m, n, and log ()A.

Also, if A is a (0, I)-matrix, as in a network flow problem or the linear programming
relaxation of a set covering problem, a polynomial-time linear programming algorithm
can be refined to a strongly polynomial algorithm. For example, the primal-dual
algorithm for the transportation problem given in Section 1.3.5 enjoys this property.

First we will show how the dependimce on c is eliminated. The problem is reduced to
solving a sequence of no more than n linear programs in each of which the coefficients of
the cost vector are bounded by n2~, where~isan upper bound on I~(A) I, the maximum
absolute value of any subdeterminant of A. We will assume throughout this section that
either ~(A) is known and we set~ = ~(A) orthat~ = (n()A)n which, given m ::; n, is known
to be an upper bound on ~(A). Now log (n 2M is a polynomial function ofm, n, and log ()A,

and so the dependence on c disappears.
We consider linear programs of the form

(5.1) max{cx: x E P), where P = {x E R~: Ax = b}.

The dual problem is

(5.2) min{ub: u E U}, where U = {u E Rm: uA ~ c}.

The first result we need concerns primal and dual solutions (x, u) that are close to
satisfying the optimality conditions. We let U(e) = {u E Rm: uA ~ c - en.
Definition 5.1. (x, u) are a pair of e-approximate solutions for problem (5.1) if

i. xEP

ii. u E U(e);

iii. if uaj > Ch then Xj = O.

Proposition 5.1. Given an e-approximate pair (x, u) jor problem (5.1), let
J = {j EN: uaj ~ Cj + en~}. Then ijx* is any optimal solution to (5.1), xj= Ojor allj E J.

Proof Suppose the contrary, so there exists a k such that Uak ~ Ck + en~ and an
optimal solution x* to (5.1) with xZ > O.

The vector Z = x* - x satisfies Az = 0 because Ax* = Ax = b, Zk > 0 since uak> Ck
implies Xk = 0; also, Zj ~ 0 whenever Xj = 0 because xj ~ O. Hence z is a feasible solution
to

Az=O

(5.3) Zk >0

Zj ~ 0 for allj with Xj = O.

5. A Strongly Polynomial Algorithm for Combinatorial Linear Programs 175

Moreover, cz ~ 0 because x* is optimal to (5.1).
Now there exists an integer basic feasible solution Z to (5.3) with cZ ~ O. Furthermore,

we know from Cramer's rule that maxj I Zj I :s; Ll(A) s Ll. In addition, ifZj < 0 we know that
Xj > 0 and hence, by condition iii of Definition 5.1, that uaj :s; Cj.

Now

cz = (c - uA)z
:s; (Ck - uak)Zk + EL IZj I

/"k
:s; - EnLl + E(n - l)Ll

= - ELl

sinceAz = 0
since u E U(E) implies Cj - uaj :s; E

However, cz ~ 0, so there is a contradiction. •
A simple way to obtain I-approximate solutions for (5.1) is to let c' = IcJ and to solve the

linear program

(5.4) max{c'x: x E Pl.

Proposition 5.2. Let (x, u) be an optimal solution pair for the linear program (5.4), then
(x, u) is a i-approximate pair for the linear program (5.1).

Proof Since x is optimal in (5.4), x E P. Since u is dual feasible,

uA ~ Ie] = C - (c - leD ~ C - 1.

Finally, uaj> Cj implies uaj> lej]; and hence, by complementary slackness for (5.4),
~=Q •

Combining Propositions 5.2 and 5.1, we obtain

Corollary 5.3. Let u be a dual optimal solution of(5.4) and let J = {j E N: uaj ;;:.. Cj + nLl}.
If x* is any optimal solution to (5.i), then xl= 0 for all} E J.

Proof Let (x, u) be an optimal solution pair for (5.4). Then by Proposition 5.2, (x, u)
is a I-approximate pair for (5.1). Hence by Proposition 5.1, if J = {j EN: uaj ~ Cj + nLl}
and x* is any optimal solution to (5.1), then xj= 0 for all} E J. •

Example 5.1. We consider the transportation problem of Example 5.1 of Section 1.3.5
with weights wij = 4wu + CPu for all i and}, where 0 :s; CPu < 1. Since the constraint matrix A
of a transportation problem is totally unimodular (see Section m.l.2), Ll = 1.

To find a I-approximate pair (x*, u*), we solve problem (5.4), which has weights
cij = Iwij] = 4wij. From Section 1.3.5 we know a dual optimal solution of (5.4):

u* = (24 36 8 36)

v* = (-16 -12 4 -16 -8 -4)

176 1.6. Polynomial-Time Algorithms for Linear Programming

with

(

12
- 0
C = 16

24

o 0 4 16
o 8 0 0

36 0 24 32
o 0 0 12

1~) 4 .

4

Now applying Corollary 5.3, we see that n!J. = 24. Hence J = {(i,}): cij ~ 24}, and
X32 = X34 = X35 = X41 = 0 in any optimal solution.

In Example 5.1, 4 of the 24 variables were eliminated on the basis of Corollary 5.3. The
next proposition shows that if the weight vector c is appropriately normalized and scaled,
it is always possible to set at least one variable to zero. Hence after applying the procedure
no more than n times, the original linear program is solved.

Definition 5.2. For any !J. satisfying !J.(A) s!J. s (ney, we say that c is polynomially
normalized for (5.1) if c = 0 or Ac = 0 and maxj I Cj I = n2!J..

Proposition 5.4. Given the linear program (5.1) with n> 1 and a polynomially normal
ized weight vector C * 0, let u be a dual optimal solution to the linear program (5.4). Then
J = {j: uaj> Cj + n!J.} * 0.

Proof Let Cj = uaj - Cj. We need to show that maxA ~ n!J..
Since u is dual feasible in (5.4), uaj ~ c; = ICjJ ~ Cj - 1, and hence Cj ~ -1 for all}.
The projection of C onto H = {x: Ax = O} is the vector -c since uA E Hl. and -c E H.

Therefore, Ilcll ~ IIcli.
Now observe that

n

IIcW = I c] s n (max I Cj 1)2 < (n max I Cj 1)2.
]~1]]

Therefore

max I C] I ~ .!.. IIcll ~ .!.. Ilcll ~ .!.. (max I C] I) = .!.. n2!J. = n!J.. j n n n j n

Since Cj ~ -1 for all}, we must have maxA ~ n!J. as required. •
The final step is to show that the objective function vector of any linear program (5.1)

can be put in polynomially normalized form without affecting the set of optimal solutions.

An Algorithm to Polynomially Normalize C

Step 1: Find the projection C of C onto H = {x: Ax = O}. Ifc = 0, set d = 0 and stop.

Step 2: Set a = n2!J./maxjlcj I and d = ac, where !J.(A) s !J. s (neA)n. d is the required
objective function vector.

Proposition 5.5. Let F(c) be theface ofP of optimal solutions to (5.1) with weight vector c,
and let d be as derived above:

5. A Strongly Polynomial Algorithm for Combinatorial Linear Programs 177

i. F(c) = F(d)
ii. If d = 0, then F(c) = P.

Proof i. The scaling in Step 2 does not affect the set of optimal solutions, so
F(e) = F(d). Since e is the projection of c onto H, and H = {z: z = yA, Y E R m}, it follows
that e = e - yA for some y E Rm. But for all x E P, we have ex = cx - yAx = ex -yb.
Since yb is a constant, x is optimal for e if and only if it is optimal for c. Hence
F(c) = F(e) = F(d).

ii. F(O) = P, and hence F(c) = P. •

Now we can describe the algorithm.

An ''Objective Rounding" Algorithm for the Linear Program (5.1) with P *' 0

Step 1 (Initialization): N 1 = N, t = 1, n 1 = 1 N 1 I.
Step 2 (Iteration t): Consider the linear program

max{cx: I ajXj = b, Xj E R~ forj E NI}.
jEN'

a. Put c into polynomiaHy normalized form with d(A):::; d:::; (n(JA)n.

b. If e = 0, stop. The feasible solutions of (5.1 I) are the set of optimal solutions to (5.1).
c. Otherwise solve the linear program

d. If (5.41) is unbounded, stop. (5.1) is unbounded (since if uaj ~ lCjJ for j E N I is
infeasible, then uA ~ c is infeasible).

e. Otherwise, let u l be an optimal dual solution and let

Sett<-t+1

Theorem 5.6. If the linear program (5.1) is feasible, the objective rounding algorithm
either shows that (5.1) is unbounded or it terminates with the set of optimal feasible
solutions to (5.1) after no more than n iterations.

Example 5.2. We apply the objective rounding algorithm to the feasible linear program
ming problem (5.1)

max 931xl + 724x2 + 296x3

8Xl + 5X2 + 3X3 = 527

xER!

178 1.6. Polynomial-Time Algorithms for Linear Programming

We initialize with ~ = ~(A) = 8, N 1 = {l, 2, 3}, n1 = 3, t = 1.

Iteration 1. Consider (S.11) = (S.1).

a. Projecting C onto 8X1+SX2+3x3=0, we obtain C=(-4S 114 -70). Also,
maxjlcjl = 114. Therefore a=n2~/maxlcjl =72/114. Now d=ac= (-28.42 72
-44.21).

b. d*O.
c. We solve the linear program (S.41) with objective function [dj,

max - 29x1 + 72X2 - 4SX3

8X1+ SX2+ 3X3=S27

X :2: 0,

giving an optimal dual solution u = 72/S.
d. Now

ua1 - d 1 = S~6 + 28.42 > n~ = 24

ua2 - d2 = °
- d 216
ua3 - 3 = 5 + 44.21 > 24.

Hence J 1 = {l, 3}, N 2 = {2}, n2 = 1, t <- 2.

Iteration 2. Solve (S.12)

a. Projecting C = (724) onto SX2 = 0, we obtain c = (0).
b. The set of optimal solutions to (S.1) is given by

Given a feasible linear program (S.1), we have seen how the dependence of the running
time on C can be eliminated. Now we consider the dependence on b . Note that the running
time of the linear program (S.4t) still depends on b. Furthermore, although the objective
rounding algorithm terminates with the face P* = {x E R~: Ax = b, Xj = O,j EN \ N*} of
optimal solutions, finding an optimal solution still involves finding a feasible solution to a
linear program when the face P* is not just a point.

So now we consider the elimination of the dependence on b. For convenience we
consider inequalities here, that is P = {x ERn: Ax :s; b}. Also, we first consider the
feasibility problem,

Is P = 0? If not, find x* E P.

We will need the following result, which makes precise how to perturb the objective
function so that all dual feasible basic solutions are nondegenerate. (Applied to b, this is

5. A Strongly Polynomial Algorithm for Combinatorial Linear Programs 179

precisely the perturbation approach to avoiding cycling in the simplex algorithm; see
Section 1.2.3).

Proposition 5.7. Consider the linear program max{cx: x E P} with P = {x ERn: Ax s b}
and c = L;:;l(~ + 1Yd. Suppose its dual min{ub: uA = c, u E R':'} has a finite optimal
solution u*. Let 1* = {i EM = {1, ... , m}: ur> O} and let x* be any solution of dx = bJor
i E 1*. Then x* is an optimal solution to the linear program.

Feasibility Algorithm for P = {x ERn: Ax s b}.

1. Take c as in Proposition 5.7. Note that c is polynomial in the size of A .
2. The dual problem

(5.5) min{ub: uA = c, u E R':'}

has a feasible solution u = (~ + 1,(~ + 1)2, ... , (~ + 1)m). Hence we can apply the
objective rounding algorithm to (5.5).

3. If the dual problem is unbounded, then P = 0.
4. Otherwise the algorithm terminates with the face of optimal solutions {u E R':':

uA = C, Ui = 0 for i EM \ I'}.

5. Find a point u in this face using a linear programming algorithm. Let I* = {i: Ui > O}.
6. Use Gaussian elimination to find a solution x* to the system of linear equations

aix = b i for i E I*.
7. By Proposition 5.7, x* E P.

Now observe that in Step 2 when we apply the objective rounding algorithm, the
subproblems (5.4t) have a modified objective b and the right-hand side c that are
polynomial in m, n, and log eA' Finally, in Step 6 the running time of Gaussian elimina
tion does not depend on b. Hence, if a polynomial-time algorithm is used to solve each of
the linear programs, Steps 1-7 can be executed in polynomial time.

Proposition 5.8. The feasibility problem can be solved in time polynomial in m, n, and
log eA.

Putting together the objective rounding and feasibility algorithms it is now possible to
solve any linear program in time polynomial in m, n, and log eA'

The only question that needs to be dealt with is the resolution of the feasible linear
programs (5.4t) in Step c of the objective rounding algorithm, which are of the form

max{ctx: Ax = b, x E R~},

where ct is polynomial in the size of A. The steps are:

1. Check whether {u E Rm: uA ~ ct } is feasible with a polynomial linear programming
algorithm. If not, the primal is unbounded.

2. Use the objective rounding algorithm to solve the dual of (5.4t): min{ub: uA ~ ct}.

Here the subproblems are linear programs with both the modified objective band
the right-hand side ct polynomial in the size of A. The basic algorithm terminates
with the face of optimal solutions.

180 1.6. Polynomial-Time Algorithms for Linear Programming

3. Use a polynomial linear programming algorithm to find an optimal solution 1/ lying
on the face.

4. An optimal dual solution lit for problem (5.4t) is precisely what is required in Step e
of the objective rounding algorithm.

Again it is easy to check that the data for each problem solved are polynomial in the size
of A. Hence we have shown the following:

Theorem 5.9. The linear programming problem can be solved in time polynomial in m, n,
and log eA.

6. NOTES

Section 1.6.1

Until the summer of 1979, it was not known whether linear programming was solvable in
polynomial time. However, there were theoretical and empirical reasons for believing that
there existed a polynomial-time algorithm for linear programming. It had been known for
several years that linear programming belonged to the complexity class.NPJ' n Cf5o.N'PJ', and
although the simplex method does not have a polynomial time bound (see Klee and Minty,
1972), it is empirically very efficient.

Section 1.6.2

An ellipsoid algorithm for linear programming, as well as a proof of its polynomial-time
bound, first appeared in a brief Russian article by Khachian (1979). It was brought to the
attention of Western researchers at a meeting in Oberwolfach, West Germany in June
1979. An English version of Khachian's results, including many missing details, was
produced by Gacs and Lovasz (1981). Their article appeared as a technical report toward
the end of the summer of1979, and the results were announced to the research community
at the Xth Mathematical Programming Symposium in Montreal, Canada in August 1979.
A flood of articles on ellipsoid algorithms subsequently appeared [see Bland, Goldfarb,
and Todd (1981) for a survey]. However, the flood subsided nearly as quickly as it had
appeared when it was realized that ellipsoid algorithms were not empirically efficient.
Lawler (1980) discussed the reaction of the popular press.

Section 1.6.3

"The use of ellipsoid algorithms in combinatorial optimization - in particular, the polyno
mial equivalence of optimization and separation-is due to Grotschel, Lovasz, and
Schrijver (1981) and was also studied by Karp and Papadimitriou (1982). Also see
Grotschel, Lovasz, and Schrijver (1984a,b,c); and their monograph (1987), which gives all
of the technical details.

Section 1.6.4

Projective algorithms for linear programming and their polynomiality were introduced by
Karmarkar (1984). The variant of Karmarkar's approach given here is taken from de
Ghellinck and Vial (1986, 1987).

The choice of homogenization r = r /IIJ~l r/n is one of the key ideas in Karmarkar's
algorithm. It encourages the successive iterates to stay away from the boundaries and
thereby avoid the combinatorial problems associated with extreme points. This idea had

6. Notes 181

been used earlier by Huard (1967) in the method of centers and in Frisch's (1955) barrier
method for nonlinear programming.

Also, de Ghellinck and Vial (1987) show that the projective algorithm to find an E

approximate ray produces the same sequence of points as Karmarker's algorithm applied
to the phase I problem:

min{y: Ax - (A l)y = 0, Ix + y = n + 1, x E R~, y E Rl).

The idea of a primal-dual approach to Karmarkar's algorithm is due to Todd and
Burell (1986).

At this time there is some indication that projective algorithms may compete with, or be
superior to, simplex algorithms for some, or maybe even all, classes of linear programs.
This issue is unresolved and is the subject of some controversy. Todd (1987) gives a survey
of results on this topic.

Section 1.6.5

The strongly polynomial-time algorithm for linear programming is due to Tardos (1986).
This article was a sequel to her article on a strongly polynomial-time algorithm for
network flow problems [Tardos (1985); also see Orlin (1984)]. Fujishige (1986) and Orlin
(1986) discuss dual versions of Tar dos' algorithm. Frank and Tardos (1987) have extended
these results to linear programs in which the number of constraints is not polynomially
bounded in the number of variables.

1.7
Integer Lattices

1. INTRODUCTION

In this chapter the basic problem is:

The Linear Equation Integer Feasibility Problem. Given m, n, and an integral m x (n + 1)
matrix (A, b), find a point x E zn satisfying Ax = b or show that no such point exists.

Definition 1.1 The set L(A) = {y E R m
: y = Ax, x E zn}, where A is an m x n matrix, is

called the lattice generated by the columns of A .

In lattice terms, the linear equation integer feasibility problem becomes

(1.1) Determine if bE L(A) and if so give a representation of b
as an integral linear combination of the columns of A.

A natural generalization of problem (1.1) is:

The Closest Vector Problem. Given m, n, and A as above, along with bERm, find

(1.2) min{llb - yll: y E L(A)}.
y

Taking b = 0 and excluding y = 0 yields:

The Shortest Vector Problem: Given m, n, andA, find

(1.3) min{llyll: y E L(A), y * O}.
y

Example 1.1. In Figure 1.1 we see the lattice generated by a ~). The closest lattice point

to b = (:i) is y @' and the shortest vector is v = (D.

An important difference between problem (1.1) and problems (1.2) and (1.3) is their
respective complexities. There is a polynomial-time algorithm for solving (1.1), whereas
(1.2) is .N'9J>-hard, and (1.3) is suspected to be .N'9J>-hard. Also, the problems obtained by
replacing the euclidean norm by the maximum norm in (1.2) and (1.3) are .N'9J>-hard.
However, there are algorithms for problems (1.2) and (1.3) that run in polynomial time for
a fixed value of n. Since these algorithms and the algorithm for (1.1) depend upon finding
an appropriate representation of the lattice L(A), this is the main theme of the chapter.

182

1. Introduction 183

5

• 4

3

2

-2 -1 0 2 3 4 5 6 7
Y1

-1

• -2 • •

Figure 1.1. al = (~), a2 = (~)

Definition 1.2. The greatest common divisor of the integers a 1 and a2, not both zero,
denoted by gcd(a}, a2), is the largest positive integer r such that r divides a 1 and a2 exactly;
that is, there exist integers Z i such that rz i = a i for i = 1, 2. If gcd(a b a 2) = 1, then a 1 and a2
are relatively prime.

When n = 1, problems (1.1)-(1.3) essentially reduce to the problem of finding
gcd(a}, a2). In the next section, we will describe the euclidean algorithm to find gcd(a h a2).
This will be interpreted as an algorithm that either solves the system

(1.4)

or shows it to be infeasible. It also provides the basic step in finding alternative descriptions
of the lattice L(A).

In Section 3, we will establish the connection between the euclidean algorithm and the
continued fraction expansion of a rational number at/a2' This allows us to solve, in
polynomial time, the following problem.

The Rational Approximation Problem. Given positive integers at, a2, and K, determine
integers p and q that solve

184 1.7. Integer Lattices

A solution to this problem is required in the ellipsoid algorithm (see Section 1.6.2).
An important generalization of this problem is:

The Simultaneous Diophantine Approximation Problem. Given n positive rationals {ai}f:=1
and an integer K, determine positive integers q h ••• , q nand p that solve

(1.5) min{ m,a+~; - ~;I: p E Z~, q E Z~, P '" K}.

This problem is X9J>-hard.
In Section 4, we will introduce some basic properties of the lattice L(A). We will then

develop a canonical representation of L(A), called the Hermite normalform, and sketch a
polynomial-time algorithm for finding the Hermite normal form. This also provides a
polynomial-time algorithm for problem (1.1).

In Section 5, we will introduce an alternative representation of L(A), called a reduced
basis, which can also be obtained in polynomial time. Such bases have various interesting
properties. We use them to give an algorithm for problem (1.3) that is polynomial for fixed
n and a polynomial algorithm for an approximate version of(1.5). Other applications-in
particular, an outline of a polynomial-time algorithm for the linear inequality integer
feasibility problem with a fixed number of variables-will be given in Section 11.6.5.

2. THE EUCLIDEAN ALGORITHM

In this section we present a polynomial algorithm to find gcd(a, b), where a and bare
integers satisfying a ;;?; b > 0. We use the notation u I v to mean that u divides v. The
algorithm will terminate with integers p and q such that p and q are relatively prime and
pa - qb = gcd(a, b).

Note that for any positive integers a and b, with b ~ a, we have a = la/bJb + c, where ° ~ c < b. The basic idea of the euclidean algorithm is embodied in the following
proposition.

Proposition 2.1. Suppose a and b, a ;;?; b, are positive integers and c = a - la/bJb.

i. If c * 0, then gcd(a, b) = gcd(b, c).
ii. If c = 0, then gcd(a, b) = b.

Proof i. Let r = gcd(a, b) and s = gcd(b, c). Since c = a - db and d is an integer, ria
and rib imply that ric. Hence r Is. Similarly sir.

ii. This is obvious. •

Notethatbecausec < b ~ a, we can apply the proposition first to the pair (a, b), then to
the pair (b, c), and so on.

In the description of the euclidean algorithm given below, c t is the remainder at
iteration t. We also carry along integers (Pt, qt), which will be used later.

The Euclidean Algorithm To Find gcd(a, b)

Initialization: Order so that a ;;?; b.
(C-h co) = (a, b), (P-I, Po) = (1, 0), (q-b qo) = (0, 1).
Set t = 1.

2. The Euclidean Algorithm

Iteration t: dt = lCt-2J
C'-l

Ct = Ct-2 - dtCt-l
Pt = Pt-2 + dtpt-I
qt = qt-2 + dtqt-I
If Ct = 0, stop. Set T = t. gcd(a, b) = CT-l.
Otherwise set t +- t + 1.

Proposition 2.2. The euclidean algorithm is correct and

Ct = (-I)t+I[pta - qtb] for t = -1, 0, ... , T.

185

Proof We use Proposition 2.1. By using statement i repeatedly, we have gcd(a, b) =
gCd(C-b co) = gcd(co, CI) = ... = gCd(CT-2, CT-l). Since CT-2 - dTcT-l = 0, we note that
gCd(CT_2, CT-l) = CT-I follows from statement ii.

Note also that

and

Thus by induction,

Co = (_1)1 (poa - qob) = b.

= (-ly-l(Pt_2a - qt-2b) - (-I)tdt(pt_Ia - qt-l b)
= (-I)t+l[(Pt_2 + dtpt-l)a - (qt-2 + dtqt-l)b]
= (-IY+l[pta - qtb].

Example 2.1. Find gcd(51, 36). Using the euclidean algorithm we get

Hence

and

d t Ct Pt qt

-1 51 1 ° ° 36 ° 1
1 1 15 1 1
2 2 6 2 3
3 2 3 5 7
4 2 0 12 17

T = 4, gcd(51, 36) = 3,

(-1)4(5·51 - 7·36) = 3,

(-1)\12·51 - 17·36) = 0, etc.

•

186 1.7. Integer Lattices

To show that the euclidean algorithm runs in polynomial time, we need to show that the
number of iterations and the size of the numbers produced are polynomial in log(a). For
later use, we also consider the values taken by P t, q t as t increases.

Proposition 2.3

i. (Ptqt+1 - Pt+lqt) = (-ly+1 for t = -1, 0, ... , T;
ii. gcd(Pb qt) = 1 for t = 1, ... , T;

iii. alb = qT/PT;
iv. F T ~ q T ~ a, where Ft is the Fibonacci number given by F -I = 0, F 0 = 1, and

Ft = Ft-2 + Ft-1for t = 1, ... , T.

Proof i. For t = -1, we obtain (Ptqt+1 - Pt+lqt) = 1 = (_I)t+I. Using induction,

(Ptqt+1 - Pt+lqt) = Pt(qt-l + dtqt) - (Pt-I + dtpt)qt

= (-I)(pt-lqt - Ptqt-l) = (-I)(-IY

= (_I)t+I.

ii. Since Pt-Iqt - Ptqt-I = (-IY andpt, qt > ° for t ~ 1, it follows that gcd(pt, qt) = 1.
iii. CT = 0 = PTa - qTb. Hence qT/PT = a/b.
iv. Since d t is a positive integer for all t > 0, it follows that

qt = qt-2 + dtqt-I ~ qt-2 + qt-l.

Since F-I = q_1 = 0, Fo = qo = 1, and Ft = Ft-2 + Ft-h we have qt ~ Ft for all t. Finally we
observe from statements ii and iii that qT ~ a. •

Proposition 2.4. The euclidean algorithm runs in polynomial time.

Proof Since the Fibonnaci series grows exponentially fast and F T ~ qT ~ a, it follows
that T is, at most, D(log a). Furthermore, the size of the numbersPt and qt never exceeds
the size of a. •

Now consider the equation

(2.1)

Proposition 2.5. Let r = gcd(ab a2) with r = pal - qa2, where P and q are relatively prime.
Equation (2.1) has a solution if and only if r I ao. If r I ao the set of solutions of (2.1) is
described by

Proof For any x satisfying (2.1), we obtain (adr)xI + (a2/r)x2 = ao/r. Since
(adr)xI + (a2/r)x2 E Zl, (2.1) is infeasible if(ao/r) $:. Zl. On the other hand, if ao/r E Zl,
then x* = (ao/r)(!!q) is a solution, since pal - qa2 = r. But any solution can be written as

3. Continued Fractions 187

x = x* + y, where alYI + a2Y2 = 0, Y E Z2. Hence Y = YI(-a:/a2) E Z2. Since gcd(ab a2) = r,

it follows that YI must be a multiple of a2lr, and x is as claimed. •

Example 2.1. (continued). We determine the set of solutions to

By Proposition 2.5 with p = 5, q = 7, and r = 3, the solution set is non empty because
3127. The complete set of solutions is

3. CONTINUED FRACTIONS

The problem of finding the gcd of two positive integers a and b is equivalent to the
problem

min{p: ~ - ~ = 0, p, q > ° and integer}-

By adding the constraint p ~ K, we obtain the diophantine approximation problem

(3.1) min{l~ - ~I: p, q > ° and integer, p .,; K}-

This problem arose in Section 1.6.2, where we needed to find the rational point i = (qt!Pb
... ,qnIPn) nearest to x* with Pi and qj being integers for i = 1, ... , nand 1 ~ Pi ~ K.

To solve this problem we need to represent rationals as continued fractions.

Definition 3.1. Given a rational /1, its continued fraction expansion, denoted by <db
... , dj >, is an expression of the form

/1=

d l +--------------------

1
dj - l + d·

}

where db' .. , dj are integers, all positive except possibly d I.

188

We also use partial expansions of the form

d 1 + ----------

p=

d2 + --------

+ 1
d i - 1 +

X

with x ~ 1, denoted by <db' .. ,di-l; x>.

Example 3.1. Let p = alb = *'
1

P = 1 + 36/15 = <1; ~>

= 1 + 1 = <1 2·.!S.> 1 " 6

2 + 15/6

... = <1, 2, 2; 1>

= 1 + 1 = <1, 2, 2, 2>.
2+~ +2

1.7. Integer Lattices

The example indicates that the continued fraction expansion is unique, and a compari
son with Example 2.1 suggests that there is a close relationship between the continued
fraction expansion of a rational P = alb and the euclidean algorithm applied to (a, b).

We suppose, without loss of generality, that P = a I b ~ 1.

Proposition 3.1. Let dt, Ct, Pt, qt and T be as in the euclidean algorithm:

i. P = <db d2, ••• , dt; ct-dct> for t = 0, ... , T;
ii. P = <db d2, ••• ,dT> = qTlpT;

iii. <db d2, ... ,dt> = qt!ptfor t = 1, ... , T.

Proof i. We use induction. For r = 0, we have P = alb = c-llco. Now assume
P = <d!, d2, ... , dr-I; cr-2/c r-I>. Expanding l/x with x = cr-2/c r -1 we obtain

=d+- =d+--(
C r)-1 (1)-1

r Cr-l r cr-l/c r •

4. Lattices and Hermite Normal Form 189

Hence p = <dj, ... , d,; C,_I/C,>,
ii. We know from the euclidean algorithm that 0 = CT = PTa - qTb with PT and qT

relatively prime.
iii. This follows from applying the euclidean algorithm to the rational P' = <d 1,

... ,dt>. •

To solve the diophantine approximation problem (3.1), note that the successive values
qt/Pt approach p. Therefore suppose we truncate the continued fraction expansion just
before the value of Pt exceeds K.

Letting} = max{t: Pt ~ K), a candidate for the best approximation is qjPj = <d" d2,

. , . ,dj >. However, this does not always solve the problem.

Proposition 3.2. Let} = max{t: Pt ~ K} and k = t(K - pj-d/pjJ. Then either q/Pj or
(qj_1 + kqj)/(Pj-l + kpj) solves problem (3.1).

The idea of the proof is to show that any rational between these two values necessarily
has a denominator exceeding K.

Example 3.1 (continued). Suppose we wish to find the best approximation q / P to ~ with
P ~ 10.

For t = 1, 2, 3, 4, we have qt/Pt = 1, ~, ~,H, respectively. Since P3 ~ 10 < P4, we take
} = 3, and one estimate is q3/P3 =~. Since k = t(10 - 2)/5J = 1, the other estimate is
(3 + 1· 7)/2 + 1· 5) = f. Since I H - 51 = to, and If - HI = ii, the best approximation is f.

4. LATTICES AND HERMITE NORMAL FORM

Here we consider the lattice

L(A) = {y E zm: y =Ax, x E zn),

where A is an m x n integer matrix. In this and the next sections we will consider different
ways to represent L(A), The basic operations that can be carried out on the matrix A are
column operations that do not change the lattice.

Definition 4.1. An n x n matrix C is unimodular if it is integer and I det C I = 1.

Proposition 4.1. If A is an integer m x n matrix, and C is a unimodular n x n matrix, then
L(AC) = L(A).

Proof By substituting x = Cw, we have that

L(A) = {y E zm: y =Ax, x E zn) = {y E zm: y = ACw, Cw E zn),

The result follows by showing that {w: Cw E zn) = {w: w E zn). Since C is an integer
matrix, wE zn implies Cw E zn. Conversely, since C is unimodular, C-I is an integer
matrix and hence Cw E zn implies C-1Cw = w E zn. •

190 1.7. Integer Lattices

Definition 4.2. An m x m nonsingular integer matrix H is said to be in Hermite normal
form if:

a. H is lower triangular and h ij = 0 for i < j;

b. hu > 0 for i = 1, ... ,m; and
c. h ij ~ 0 and I h ij I < h ii for i > j.

The main result of this section is:

Theorem 4.2. If A is an m x n integer matrix with rank(A) = m, then there exists an n x n
unimodular matrix C such that:

a. AC = (H, 0) and H is in Hermite normalform;
b. H-IA is an integer matrix.

(H,O) is called the Hermite normal form of A. We will outline a polynomial-time
algorithm for finding C and H which will serve as a constructive proof of Theorem 4.2. It
also can be shown that H is unique.

Example 4.1

It is readily verified that the matrices

satisfy the conditions of Theorem 4.2.

3
-1
o

There are several immediate consequences of Theorem 4.2. The first, a canonical
description of L(A), uses Proposition 4.1.

Proposition 4.3. L(H) = L(A).

Definition 4.3. If L(A) = L(B) and B is nonsingular, then B is a basis for the lattice
L(A).

Corollary 4.4. Every lattice L(A) with rank(A) = m has a basis.

Given the above characterization of L(A), we can solve the Linear Equation Integer
Feasibility Problem. Let S = {x E zn: Ax = b} and let Hand C = (C I , C2) be as in
Theorem 4.2, with Clan n x m matrix and C 2 an n x (n - m) matrix. Observe that S *" 0
if and only if b E L(A).

4. Lattices and Hermite Normal Form

Theorem 4.5

i. S =1= 0 if and only if H- I b E zm.

ii. If S =1= 0, every solution ofS is oftheform

Proof

S = {x E zn: Ax = b)
= {x: x = Cw, ACw = b, w E zn) (since C is unimodular)
= {x: x = Cw, (H, 0) w = b, w E zn)
= {x: x = C1WI + C2W2, HWI = b, WI E zm, W2 E zn-m)
= {x: x = C 1H-1b + C2W2, H-1b E zm, W2 E zn-m).

Example 4.2. Find the set of integer solutions, if any, to

2x I + 6x 2 + 1 x 3 = 7

4Xl+7x2+ 7x3=4.

191

•

Hand C were given in Example 4.1. Now, by Theorem 4.5, the solution set is nonempty
since

The general solution is

w,(~) = ~G n(~) = G) E Z2.

(~:) = c,G) + C,W2

= C~ -DG) + CDw,

~ un + (=Dw" w,E Z'.

We also obtain an integer version of Farkas' lemma.

Corollary 4.6. Either S = {x: Ax = h, x E zn) =1= 0 or (exclusively) there exists u E R m

such that uA E zm, ub fl:. Zl.

Proof Both cannot hold, since this would imply uAx = ub with uAx E ZI and
ub $. Zl. If S = 0, then by Theorem 4.5 we have H-1 b $. zm. Suppose the ith coefficient
of H-1b $. ZI, and then take u to be the ith row of H- I

• •

192 I. 7. Integer Lattices

Example 4.2 (continued). If b = (~), then

and hence S = 0.
Taking u = a ~), we we obtain uA = (2 5 2) and ub = -¥; in other words, any xES

must satisfy

which is impossible.

Now let gcd(a b ... , an) denote the greatest common divisor of a b ... , an. An obser
vation that is used later is:

Corollary 4.7. Let S = {x E zn: L~I ajXj = b} with aj' b E ZI. If gcd(al' ... , an) I b, there
exist n affinely independent points in S.

Proof Let A = (ai, ... ,an) and let Hand C = (C I , C2) be as described in Theorem
4.2. C 1 is an n x 1 matrix, and C 2 is n x (n - 1) withACI = hll = gcd(ab a2, ... ,an), and
AC2 = (0, ... ,0). Hence using Theorem 4.5, we obtain

s = {x: x = :1 C1 + C,w, wE zn-I}
Since rank(C) = n, it follows that rank(C 2) = n - 1, and the claim is true. •

We now turn to the proof of Theorem 4.2 and define the elementary column operations
that correspond to right multiplication by a unimodular matrix C.

The elementary column operations of interest are:

a. Interchange columns} and k.
b. Multiply column} by-I.

c. Add A E ZI times column k to column}.

The corresponding unimodular matrices C are easily constructed. Figure 4.1 shows an
example with m = n = 6.

C=

o

o

} = 2, k = 5
(a)

-1

C=

}=2
(b)

Figure 4.1

C=

3
1

} = 2, k = 5, A = 3
(c)

4. Lattices and Hermite Normal Form 193

Now we give an algorithm that constructs the Hermite normal form of an m x n integer
matrix A with rank(A) = m. The basic operation of the algorithm involves a row i, as well
as columns sand t of the matrix A with s < t. A sequence of elementary column
operations are performed so that ais +- gcd(ais, ail), ail +- O.

Proposition 4.8. Let A = (ai, ... , an), gcd(ais, ail) = r, and pais + qait = r, where p and q
are relatively prime. There exists an n x n unimodular integer matrix C such that AC = A',
where

a; = at for I =1= s, t

a· a·
a' = --.!!...a + -.!:!..a.

t r s r 1

In particular, ais = rand ait = o.

Proof Take C to be an identity matrix in all but columns sand t. In column s, we
have Css = p, cts = q, and Cis = 0 otherwise. In column t, we have Cst = -ail/r, Ctl = ais/r, and
Cit = 0 otherwise. It is readily verified that A C = A' , and det C = pa is/ r + qa it/ r = 1. •

The Hermite Normal Form Algorithm
Initialization: i = 1.

Step 1: Work on row i. Set} +- i + 1.
Step 2: Work on row i and columns i and} > i. If au = 0, do nothing. Otherwise use the

euclidean algorithm to find r = gcd(aii' au) and p, q relatively prime such that
paii + qau = r. Set A +- AC, where C is the unimodular matrix described in
Proposition 4.8, with s = i, t =}. If} < n, set} +- } + 1 and return to Step 2. If} = n,
go to Step 3.

Step 3: Work on row i and column i. If au < 0, setA +- AC, where C multiplies column aj
by -1.

Step 4: Work on row i and column} < i. Set} +- 1. Set A +- A C, where C replaces column
aj by aj - rau/aulai' If} = i-I, set i +- i + 1. If i > m, stop. Otherwise return to
Step 1. If} < i-I, set} +- } + 1 and return to Step 4.

Proposition 4.9. The Hermite normalform algorithm terminates with matrices Hand C
as described in Theorem 4.2.

Proof All the operations performed are column operations corresponding to right
multiplication by a unimodular matrix. Hence the product C of these matrices is
unimodular. Let H' = AC be the final matrix. Note that after Step 2, hij = 0 for all} > i;
after Step 3, hij ~ 0; and after Step 4, hij < 0 and I hij I < hii for} < i unless hii = O.
Furthermore, these values are never changed in later steps. Hence we only need to show
that after completing Step 2 for row i, we obtain I hii I > O.

Suppose hJi > 0 for} < i but hij = O. LetA I be the matrix consisting of the first i rows of
A. Then the algorithm has produced a unimodular matrix C* such that A I C* = H*, where
ht = 0 for all k ~ i and} ~ i. Hence rank(H*) = i-I. However, since C* is unimodular,
rank(A I) = rank(A 1 C*) = i-I, which contradicts rank(A) = m. •

194 1.7. Integer Lattices

Example 4.3. We find the Hermite Normal Form of matrix A given below.

A=(
2 6

D
i= l,j=2.

C
1 =(

1 -3 n 4 7 (a 11, a 12) = (2 6). 0 1
0 0 (p, q) = (1 0), r = 2. 0 0

A=(
2 0

D
i = l,j = 3.

C'= (
0 0 -D 4 -5 (a 11, a 13) = (2 1). 0 1

0 0 (p, q) = (1 0), r = 1.
0

A=(
0

ID i = l,j = 1. No change.

C3 = (
1 0

-~) 7 -5 i=2,j=3. 0 -1
0 (a22, a23) = (-5 10). 0 0 -1 (p,q)=(-10),r=5.

A=(
0 j) i = 2,j = 2. No change.

C
4

= (-i 0 n 7 5 i = 2,j = 1. 1
0 0

A = (-~
0

-D
i=3,j=3.

c' = (I -J 5
0

A = (-~
0 n i = 3,j = 1.

C6 = (1 J 5
0 -1

A = (-~
0 n i = 3,j = 2. No change.

H= (-~
0

~} 5 5
-1 0 -1 0

Finally,

6 (1 3 -7)
C = TI C i = 0 -1 22.

i=1 -1 0

Although the number of iterations of the HNF algorithm is polynomially bounded, it is
not known whether the size of the numbers is polynomially bounded. In practice, they get
so large that the algorithm is difficult to execute on a computer. We now modify the
algorithm to guarantee that the numbers remain sufficiently small. We assume first that A
ism x m.

Observe that if b E L(A), then L(A, b) = L(A). Hence the Hermite normal form of
(A, b) is the same as that of (A, 0).

The following proposition gives multiples of the unit vectors in L(A). Note that
D = det H = II;!1 h ii •

5. A Reduced Basis of a Lattice 195

Proposition 4.10. Let di = n~i hkkfor i = 1, ... , m. Then diek E L(A)for k = i, ... , m.

Proof The vector Xk = (DA-1)ek is integer because DA-1 is integer and AXk =

ADA-1ek = Dek. Hence Dek E L(A). Now observe that hi, ... ,hm E L(A) and apply the
above result to the lattice L(h i, ... , hm) with D replaced by d i = n~i hkk . •

The way to use these results is to calculate D first and then add the vectors die k for k = i,
... ,m and i = 1, ... , m to the lattice L(A) as soon as we have calculated hll' ... ,hi-I,i-I'
This allows us to reduce all components in rows i, ... , m modulo (dJ

Based on this observation, a modified Hermite normal form algorithm is easily
described in which no intermediate numbers in the computation ever exceed 2D2 in
absolute value. The resulting algorithm runs in polynomial time.

Simple modifications of the algorithm give the Hermite normal form of a general
m x n integer matrix A when rank(A) = k < mine m, n). Specifically we obtain

where C is an n x n unimodular matrix and H is a k x k Hermite matrix.
The construction of the Hermite normal form of a matrix A depends on column

operations. By also doing similar transformations on the rows, we obtain another
canonical representation.

Theorem 4.11. If A is an m x m nonsingular integer matrix, there exist unimodular
matrices Rand C such that

i. RAC=6,
ii. 6 is a diagonal matrix with diagonal entries J i E Zl \ CO},

iii. JtI J2 ••• I Jm ,

iv. 6. is unique.

The matrix 6 is called the Smith normal form of A. Using an algorithm based on the
Hermite normal form algorithm, 6 can be constructed in polynomial time.

5. A REDUCED BASIS OF A LATTICE

Suppose that L(A) s; R n is a full-dimensional lattice. In the previous section the Hermite
basis for L(A) was used to solve the Linear Equation Integer Feasibility Problem. Here we
construct another basis B for L(A), called a reduced basis, and indicate how it can be used
to solve the shortest vector problem. In addition, two applications of reduced bases in
integer programming will be given in Section 11.6.5.

Before we can define and explain the use of a reduced basis, we need to introduce
several facts about bases and how they relate to determinants. First we introduce the
Gram -Schmidt orthogonalization of a basis.

196 1.7. Integer Lattices

Definition 5.1. A basis B = (bb ... ,bn) is said to be orthogonal if bibj = ° for i,j = 1,
... , n, i *j.

The Gram-Schmidt Orthogonalization of a Basis B

(5.1)

Proposition 5.1

bf = b l

b! = b2 - al2bT

k-l

b'k = bk - I ajkbj for k = 3, ... , n,
j=l

i. The Gram-Schmidt procedure constructs an orthogonal basis B* = (bf, ... ,b~)
for Rn,

ii. b'k is the component of bk orthogonal to the subspace generated by bf, ... ,btl,
iii. Idet B I = Idet B* I = TIJ=1 IIbjll.

To examine how the lengths of the vectors of a basis are related to det B, we need to
work with a more general definition of a determinant.

Definition 5.2. Idet(b l, ... ,bk) I = TIj=1 IIbjll for all k ::::; n.

We see from the definition that det(b}, ... , bk) is the k-dimensional volume of the
parallelepiped with vertices given by Lj=l bjxj, where Xj E {a, 1} for j = 1, ... ,k (see
Figure 5.1). Furthermore, since bj is the component of bj orthogonal to the subspace
generated by bf, ... , bj-l, it follows that IIbjll ::::; Ilbjll.

Given a full-dimensional lattice L, we know by statement iii of Proposition 5.1 that
I det B I has the same value for all bases B of the lattice. Let d(L) be this common value
and let a(B) = TIJ=1 IIb j ll. From the above observations we obtain the following proposi
tion.

Figure 5.1

5. A Reduced Basis of a Lattice 197

Proposition 5.2 (The Hadamard Inequality). For all bases B ofL, we have a(B) ~ d(L).

Example 5.1. We consider a full-dimensional lattice L with basis

(
2 6 1)

B= 4 7 7 .
001

We have d(L) = Idet B I = 10. Note that a(B) = (20·85·51)1/2 = (86,700)'12 is much larger
than I det B I. The Gram -Schmidt Orthogonalization Procedure applied to B gives

Now we show how a(B) relates to the shortest vector problem (1.3).

Proposition 5.3. Given a full-dimensional lattice L ~ Rn and a basis B of L, let XO be a
solution of the problem

. { . ~ a(B) fi 0 } mIn IIBxll· IXj I "" Idet B I or j = 1, ... , n, x E zn \ { } .

Then v = Bxo is a shortest vector in the lattice L.

Proof Let v = Bx be a shortest nonzero vector with x E zn \ {O}. Using Cramer's
rule, we have Ix}1 = IdetB}/lldetBI, where B}=(b" ... ,bj_"v,bj+b ... ,bn). By
Hadamard's inequality (Proposition 5 .2), we have

However, since b} E L, it follows that Ilvll ~ Ilb}ll. Hence Idet Bj I ~ la(B) I, and so
Ix} I ~ a(B)/ Idet B I. •

As a consequence of Proposition 5.3, we are motivated to find a basis such that
a(B)1 I det B I is small; in particular, we would like to find one with rlog (a(B)/ I det B /)1
polynomial in n.

We also have the following lower bound on the shortest vector in the lattice.

Proposition 5.4. If bEL, b =1= 0, and B is a basis of L, with B* being its Gram-Schmidt
orthogonalization, then IIbll ~ minj IIb~l.

198 1.7. Integer Lattices

Proof Since bEL, there exists a k ~ n such that b = :r.j=1 biz} with z E Zk and Zk =1= O.
By substituting for b}, using (5.1), we obtain b = :r.j=1 bjzjwith Zk = Zk E Zl. Since the {bj}
are orthogonal, IIbli ~ IZk I IIbZ" ~ min} IIbjll· •

Unfortunately, B* is typically not a basis for L because {aij}i<J are not all integer. This
does suggest, however, the need to find a basis that is "ne~r1y orthogonal".

Definition 5.3. Let L be a full-dimensional lattice, let B be a basis of L, and let B* be the
basis obtained from the Gram-Schmidt orthogonalization procedure. B is a reduced basis
if:

a. aij ~ ! for all i < j and
b. IIbj+1 + a},}+lbjll2 ~ ~ IIb~12 for j = 1, ... , n - 1.

The interest in a reduced basis lies in the following results, giving an upper bound on
lib III (and hence on the shortest vector) and an upper bound on a(B).

Theorem 5.5. Let B be a reduced basis for the full-dimensional lattice L. Then

i. IIbjll2 ~ 211bj+III2.
11. lib III ~ 2(n-l)/4 (d(L))l/n.

111. lib III ~ 2(n-l)/2 min{llbll: bEL, b =1= a}.
iv. a(B) ~ 2n(n-l)/4 d(L).

Proof i. Since bjand bj+l are orthogonal, by statement b in the definition of a reduced
basis we have

By statement a of Definition 5.3, we have aJ,}+1 ~ ~ and hence IIbj+11I2 ~ ~lIbjIl2.
ii. By i, it follows that IIbjll2 ~ 2-u-1) IIbrll2 and since b l = br, we obtain

n

(d(L)? = 11 IIbjl12 ~ 2-kJ~1(j-I) IIbIll 2n = 2-n(n-I)/2 IIbdfn.
}=1

iii. From the proof of ii, we have

Hence, using Proposition 5.4, we obtain

Ilbll ~ m~nllbjll ~ 2-(n-l)/2 IIbdl.
1

iv. Since bj = L{,=I aijbT and the vectors bT are orthogonal, it follows that

}

IIbj ll 2
= L a~ IIbrll2 (with ajj = 1)

i=l

j-I
~ IIbjll2 + ~ I IIbrll2 by statement a of Definition 5.3.

i=1

5. A Reduced Basis of a Lattice

Now, using i, we obtain Ilb;U2 ~ 2j-i IIbjll2 and hence

Finally,
n n

(a(B»2 = TI IIbj ll 2 ~ 2n(n-I)/2 TI IIbjll2 = 2n(n-l)/2(d(L »2
j=l j=l

Example 5.1 (continued). The following computations show that

is a reduced basis for the lattice L:

M= b, = G) so a'2 = 0 and al3 =1.

b;=b2-a'2M= (-I) so a23=O.

bj = b3 - al3M - a23bi = (~).

199

•

Hence part a in the definition of a reduced basis holds. We will now check b of
Definition 5.3 as follows:

lib; + a12bfll2 = 5 ~ illbfl1 2 = i· 4 = 3

IIbi + a23bill2 = 5 ~ ~lIbill2 = ~. 5 = ~.

Hence B is a reduced basis.
Checking the bounds in Theorem 5.5, we observe

ii. lib III s 21/2 (d(L»1/3 = 21/2 101/3 and

iv. a(B) = TI]=l IIbjll = (120)1/2 ~ 23/2d(L) = 20.2 1/2.

A Reduced Basis Algorithm for a Full-Dimensional Lattice L

Step 0: Let B be a basis of the lattice L.
Step 1: Let (bf, ... , b~) be the Gram-Schmidt orthogonalization of (b l, ... , bn) with

aij = b7b)lIbrIl2.
Step 2: For j = 2, ... , n and for i = j - 1, ... , 1 replace bj by bj - aijb i, where aij is the

integer closest to aij.
Step 3: If IIbj+1 + aj,j+lb~12 < ~lIb~12 for some j, interchange bj and bj+1 and return to Step 1

with the new basis B.

200 1.7. Integer Lattices

Theorem 5.6. The above algorithm finds a reduced basis for L in polynomial time.

We will not prove this result. However, the reader may observe that even though the
basis B changes in Step 2, the corresponding B* does not change. This implies that on
termination of Step 2, I ai} I ~ ~ for all i < j, so condition a for a reduced basis is satisfied.

Now we return to the shortest vector problem. We have seen that a reduced basis can be
found in polynomial time and that for such a basis we obtain a(B)/ Idet B I ~ 2n(n-I)/4. By
Proposition 5.3 it suffices to enumerate over x E zn \ {a} with Ix) I ~ 2n(n-I)/4. Hence we
have shown the following:

Theorem 5.7. For fixed n, the shortest vector problem can be solved in polynomial time.

Example 5.1 (continued). Find a shortest vector in L. We already have a reduced basis

2
-1
o

For n = 3, it suffices to enumerate the 53 - 1 vectors v = Bx with I x) I ~ l23/2J = 2, and
x E Z3 \ {a}, giving

v=G)
as a shortest vector.

The final item in this section is to show how a reduced basis can be used to solve
"approximately" a feasibility version of (1.5), namely:

The Simultaneous Diophantine Approximation Feasibility Problem (SDAF). Given
rationals ab ... ,am e, and an integer K > 0, decide if there exist integers q" ... , qn and
p > 0 such that p ~ K and I paj - q i \ ~ e for i = 1, ... , n.

The approach is to reformulate a "weak" version of SDAF as a problem of finding a
short vector in a lattice.

Theorem 5.8. There is a polynomial-time algorithm which either

i. determines that SDAF is infeasible or
ii. finds integers qI, ... , qn and p > 0 such that \paj - qi I < 2n/2 e (n + 1)1/2 for i =1,

... , nand p < 2n/2 K (n + 1)1/2.

Proof Let a = (a" ... ,an, elK) E Rn+' and let ei be the ith unit vector in Rn+'.
Consider the lattice L generated by (e" ... , en, - a). For any (qI, ... ,qn, p) E zn+l, we
have w = 1:7=1 qiei - pa E L. Furthermore, if (q" ... ,qn, p) is a solution to SDAF, then
IWi 1= Iqi - aiP I ~ efori = 1, ... ,n and IWn+l\ = IPe/KI ~ e. Hence IIwil ~ e(n + 1)1/2•

Now let B be a reduced basis for L with b 1 being its first column. By Theorem 5.6, B can
be found in polynomial time.

6. Notes 201

By iii of Theorem 5.5, if lib 1 II > 2(n-l)/2 E (n + 1)1/2, then lib II ~ 2-(n-l)/2 lib 1 II > E(n + 1)1/2

for all bEL \ {O}. Hence SDAF has no solution. If Ilbtll ~ 2(n-l)/2 E (n + 1)1/2, choose
(q', p') E zn+l such that b1 = L7=1 qiej - p'a. If p' =1= 0, then (q', p') satisfies the conditions
ofii because

Iqj - p'ai I ~ 2(n-l)/2 E(n + 1)1/2 for i = 1, ... , n

and

If p' = 0, then b 1 = (qi, ... ,q~, 0) and IlbIlI ~ 1. Hence 2(n-l)/2 E(n + 1)1/2 ~ 1, and
p = 1, q i = laiJ satisfies ii. •

6. NOTES

Section 1.7.1

The problems considered in this chapter are related to classical topics in number theory
(see, e.g., Cassels, 1971). Our study of these topics arises from the interest in polynomial
time algorithms and applications in integer programming. Also see Section 11.6.5.

Section I.7.2

The euclidean algorithm is surely the oldest algorithm in this book. Its complexity is
analyzed in detail by Knuth (1981).

Section 1.7.3

In the preparation of this section and Section 5, we have made liberal use of both the
article and the monograph by Grotschel, Lovasz, and Schrijver (1984b, 1988). Proposition
3.2 is due to Khintchine (1930).

Section 1.7.4

Kannan and Bachem (1979) give a provably polynomial-time algorithm for computing
Hermite normal form. The algorithm sketched here is due to Domich et al. (1987).

The integral Farkas lemma, Corollary 4.6, appears in Edmonds and Giles (1977).

Section 1.7.5

Lagarias (1985) has shown that the simultaneous diophantine approximation problem is
.H~-complete. It is also the case that the nearest vector problem is .H~-hard (see Van Emde
Boas, 1981).

The polynomial-time algorithm for finding a reduced basis and a short vector in a
lattice is due to Lenstra, Lenstra and Lovasz (1982). These and related problems are also
discussed by Bachem and Kannan (1984) and Kannan (1987b).

202 1.7. Integer Lattices

7. EXERCISES

1. i) Find the gcd of27,692 and 100,000.

ii) Find the continued fraction expansion of 100,000/27,692.

iii) Find the best rational approximation of 100,000/27,692 with denominator of
100 or less.

2. Show that the continued fraction expansion of a rational number is unique.

3. Prove Proposition 3.2.

4. i) Find the Hermite normal form of (l~ ~ J).
ii) Find all solutions (if any) to the system of equations

12x 1 + 6x 2 + 7 x 3 = 8

2x 1 + 9x 2 + 4x 3 = 7

xEZ3
•

5. Show that the Hermite normal form is unique.

6. Describe, in detail, a polynomial Hermite normal form algorithm based on Proposi
tion 4.10. Apply the algorithm to the matrix

A = (-I -6
-1
-2

7. Describe a polynomial algorithm to find the Smith normal form of a matrix.

8. Use the reduced basis algorithm to find a reduced basis of L(B), where

is the basis of Example 5.1.

6
7
o

9. Solve the simultaneous diophantine approximation feasibility problem with
(at, a2, a3) = (~ ~ ~), € = t and K = 18.

Part II
GENERAL INTEGER
PROGRAMMING

11.1
The Theory
of Valid Inequalities

1. INTRODUCTION

We consider the discrete optimization problem max{cx: xES}, where S ~ Z1, and we
formulate it as an integer program by specifying a rational polyhedron
p = {x E R1: Ax ~ b} such that S = zn n P. Hence S = {x E Z1: Ax ~ b}, and the integer
program can be written as

max{cx: Ax ~ b, x E Z1).

Throughout this chapter, unless otherwise specified, A and bare m x nand m x 1
matrices, respectively, with rational coefficients.

The topics to be studied in this chapter and the next one concern the representation of
an integer program by a linear program that has the same optimal solution. We have
already established the existence of such a representation, namely,

max{cx: xES} = max{cx: x E conv(S)}

(see Theorem 6.3 of Section 1.4.6).
Here we are interested in the constructive aspects of the representation. This will be

done by using integrality and valid inequalities for P to construct suitable valid inequal
ities for the set S.

Example 1.1. S = {x E Z1: Ax ~ b}.

(

-1
A = 5

-2
~),

-2

Figure 1.1 shows the polytope defined by the constraints Ax ~ b and x ~ 0 (the outer
polytope), the feasible integral points (black dots), and conv(S) (the inner polytope).

We have

s = {(;), G), G), (;), G), (~)} = {Xl, x 2
, ••• , x 6

}.

205

206 11.1. The Theory of Valid Inequalities

4

3

2

o '---------2----3-....a..-.-·
4
----- Xl

Figure 1.1

conv(S) is a polytope defined by the four extreme points

In this small example, it is a simple matter to obtain a linear inequality representation of
conv(S) from the four lines defined by the adjacent pairs of extreme points. In particular,
conv(S) is defined by the constraints A'x ~ b', where

(

-1

A'= 0
-1

3
-;} b'= (~f}

From the extreme points of conv(S) we can obtain its polar set, which is the set of valid
inequalities for conv(S) (see Proposition 5.1 of Section 1.4.5). This is also the set of valid
inequalities for S, since S ~ conv(S) and any valid inequality for S is also valid for
conv(S) (see Proposition 6.5 of Section 1.4.6).

Thus the set of valid inequalities for S is given by

2nl + 2n2 - no ~o

2nl + 3n2 - no ~o

3nl + 3n2 - no ~o

4nl - no ~o.

1. Introduction 207

The polyhedral cone defined by these four half-spaces is shown in Figure 1.2.

The valid inequalities 1CX :::::; no and yx :::::; Yo are said to be equivalent if (y, Yo) = A(n, no)
for some A> O. If they are not equivalent and there exists Jl > 0 such that y ~ Jln and
Yo:::::; Jl1Co, then {x E R~: yx :::::; Yo} c {x E R~: nx :::::; no}. In this case we say that yx :::::; Yo
dominates or is stronger than 1CX :::::; no or that nx :::::; 1Co is dominated by or is weaker than
yx :::::; Yo. A maximal valid inequality is one that is not dominated by any other valid
inequality. Any maximal valid inequality for S defines a nonempty face of conv(S), and
the set of maximal valid inequalities contains all of the facet-defining inequalities for
conv(S).

Example 1.1 (continued). The valid inequality 3XI + 4X2 :::::; 24 is not maximal since it is
dominated by the maximal valid inequality Xl + X2 :::::; 6. The valid inequality Xl :::::; 4
defines the zero-dimensional face {(4 O)}, but it is not maximal since it is dominated by the
facet-defining inequality 3x I + X2 :::::; 12. (see Figure 1.3).

Given P = {x E R~: Ax:::::; b} and S = P n zn, facets of conv(S) can be constructed
iteratively using integrality and the linear inequality description of P. This means that we
start with the valid inequalities Ax :::::; band, if they are not enough to define conv(S), we
progressively construct stronger valid inequalities.

We obtain valid inequalities for P by taking nonnegative linear combinations of rows of
Ax :::::; b. (These can be weakened by adding in nonnegative linear combinations of
-x:::::; 0). This gives the infinite family of valid inequalities

(1.1) (uA - v)x :::::; ub + a for all u E R':, v E R~, and a ~ O.

Moreover, under some technical assumptions stated below, all valid inequalities for P
can be obtained in this way, and the linear combinations can be restricted to using, at
most, min(m, n) rows of A.

(0,4, 12)

(3, I, 12)

(-6,0, -12) ~_----------::0(o,o,o)

(-3,-3,-12)

Figure 1.2

208 11.1. The Theory of Valid Inequalities

3

3Xl +x2 = 12

Xl +x2 =6

o 2 3

Figure 1.3

Proposition 1.1. Let nx ~ no be any valid inequality for P = {x E R~: Ax ~ b}. Then
nx ~ no is either equivalent to or dominated by an inequality of the form uAx ~ ub,
u E R': if any of the following conditions hold:

a. P =1= 0 (in this case no more than min(m, n) components of u need be positive).
b. {u E R':: uA ~ n} =1= 0.
c. A = (J '), where I is an n x n identity matrix.

Proof a. Since (n, no) is valid and P =1= 0, the linear program max{nx: Ax ~ b,
x E R~} has a feasible solution and its value is bounded by no. Hence the dual linear
program has a basic feasible solution Uo E R': with uOA ~ nand uOb ~ no. The vector UO
has no more than min(m, n) positive components and nx ~ (uOA)x ~ uOb ~ no.

b. If P =1= 0, see part a. So assume P = 0 and u E R': satisfies uA ~ n. If ub ~ no, we are
done. Otherwise, since P = 0 there exists li E R': such that liA ~ 0 and lib < O. Hence for
some P > 0 we obtain (u + pli)A ~ nand (u + pli)b ~ no.

c. It is a simple exercise in linear programming duality to show that for any n there exists
a u E R': with uA ~ n. •

When P = 0, every inequality is valid for P. However, if conditions a and b fail, which
is equivalent to the primal and dual linear programs being infeasible, then we cannot
generate the valid inequality by nonnegative linear combinations.

Example 1.2

Ox! + X2 ~ 1

Ox! - X2 ~ -2

xERi.

1. Introduction 209

Here P = 0. Consider the valid inequality x I ~ 1. The dual feasibility region given by

OUI + OU2 ~ 1

UI - U2 ~ 0

U ER~

is also empty. Thus conditions a and b fail. Moreover, it is obvious that x I ~ 1 is not
equivalent to or dominated by an inequality of the form (Ou 1 + OU2)X 1

+ (UI - U2)X2 ~ UI - 2U2.

To avoid the trouble that can arise when P = 0 we frequently assume that the linear
inequality description of P contains explicit bounding constraints, that is, A = (1 ').

Since S ~ P, the inequalities (1.1) are also valid for S. However, unless conv(S) = P,
there are valid inequalities for S that are not valid for P and hence cannot be obtained just
from nonnegative linear combinations.

Integrality must be used to obtain the inequalities for S that are not valid for P. We now
consider techniques that use integrality to obtain valid inequalities.

Integer Rounding

This approach is based on the simple principle that if a is an integer and a ~ b, then
a ~ lbJ, where lbJ is the largest integer less than or equal to b.

Consider the matching problem on the graph G = (V, E). For V ~ V, let E(V) be the set
of edges with both ends in V and let 6(V) be the set of edges with one end in V. A subset of
edges is a matching if

(1.2)

(1.3)

L x e ~ 1 for all i E V
eE6({i})

xEZJ
E

"

where Xe = 1 if e is in the matching and Xe = 0 otherwise.
For any set V ~ V, the number of edges in a matching with both ends in V is at most

HI VIJ. Thus if I VI = 2k + 1, then

(1.4)

is a valid inequality for all k ~ 1.

L xe~k
eEE(U)

The inequalities 0.4) cannot be obtained just by taking nonnegative linear combina
tions of the constraints (1.2). However, they can be justified algebraically by the following
three-step argument.

i. Take a linear combination of the constraints (1.2) with weights Ui = 1 for all i E V
and Ui = 0 for all i E V \ V. This yields the valid inequality

(1.5)
1 1

I Xe + -2 L Xe ~ -2 I V I·
eEE(U) eEJ(U)

210

11. Since Xe ~ 0 for all e E E, it follows that

(1.6)

(1. 7)

1 -- L Xe ~ 0
2eEt5(u)

is a valid inequality. Adding (1.5) and (1.6) yields

1 L xe~-2IUI.
eEE(U)

11.1. The Theory of Valid Inequalities

iii. From (1.3), the left-hand side of(1. 7) is an integer. Therefore, the right-hand side can
be replaced by the largest integer equal to or less than it; that is, if 1 U 1 = 2k + 1,
then l~ 1 u 11 = k is a valid right-hand side. Thus (1.4) is a valid inequality for all
k ~ 1.

In Section 111.2.3 we will prove that the convex hull of matchings is given by (1.2) and
(1.4) for all odd sets U with 1 U 1 ~ 3, and Xe ~ 0 for all e E E. But, in general, the three-
step procedure must be applied recursively.

For S = {x E Z~: Ax ~ b}, where A = (a I, a2, ... , an) and N = {l, ... ,n}, the three
step procedure yields the following:

i. LjEN (uaj)xj ~ ub for all u ~ 0;

ii. LjEN (luajj)xj ~ ub, since x ~ 0 implies -LjEN (uaj -luajJ)xj ~ 0; and
iii. LjEN (luajj)xj ~ lub1, since x E zn implies LjEN (luajJ)xj is an integer.

The crucial step is iii, where we invoke integrality to round down the right-hand side.
The valid inequality

(1.8) I (luajj)xj ~ lubJ
JEN

can be added to Ax ~ b, and then the procedure can be repeated by combining generated
inequalities and/or original ones. As noted in Proposition 1.1, in one application of the
procedure it is sufficient to combine, at most, n inequalities. The procedure is called the
Chvatal-Gomory (C-G) rounding method, and the inequalities it produces are called
C-G inequalities. In Section 2, we will prove that by repeating the C-G procedure a finite
number of times, all of the valid inequalities for S can be generated.

In Example 1.1, u = (fr fz 0) in step i yields

Then

and

100
X2~-

22
(step ii)

(step iii).

A geometric explanation of the procedure is shown in Figure 1.4.

1. Introduction 211

4 •

3

2

o 2 3 4

Figure 1.4

In Example 1.1, u = Crr -rr 0) yields Xl + X 2 ~ W. But since there are no points of S such that
Xl + X2 = W, it is permissible to push the hyperplane inward until it meets a point in S.
However, step iii does not, in general, allow the hyperplane to be pushed in this far. It can
be pushed in no further than an intersection with some point of Z2, and perhaps not even
this far if the integral coefficients of X I and X2 are not relatively prime. It is fortuitous in the
example that the line Xl + X 2 = 6 happens to contain a point in S. Note, however, that if we
started with the equivalent inequality 2x 1 + 2X2 = W, then step iii would have yielded
2x I + 2X2 ~ 13. The line 2x 1 + 2X2 = 13 contains no points of Z2.

The above discussion is summarized by the following result. Let the greatest common
divisor of the integers a and b be denoted by gcd{a, b}.

Proposition 1.2. Let S = {x E zn: LjEN ajxj ~ b}, where aj E ZI for j EN, and let
k = gcd{al, ... , an}. Then conv(S) = {x ERn: LjEN (a/k)xj ~ lb/kj).

Proof Using steps i and iii of the C-G procedure with u = l/k, it follows that
LjEN (aJlk)aj ~ l~J is a valid inequality for S. Since gcd{at!k, ... , an/k) = 1, it follows
from Corollary 4.7 of Section 1.7.4 that LjEN (aj/k)xj = lb/kJ contains an infinite number
of points of S - in particular, n affinely independent ones. Therefore the inequality
represents a facet of conv(S). But conv(S) contains no other facets, since if nx ~ no is a
different facet, then nx ~ no for all x ERn such that LjEN (aj/k)xj = lb/kJ, which is
impossible. •

Proposition 1.2 shows the limitations of one application of the C-G rounding method.
The step i inequality LjEN (uaj)xj ~ ub must be weakened in step ii if there exists aj such
that ua j is not integral. Then the best we can hope for from step iii is to intersect
{x E R~: Ax ~ b} with conv{x E zn: LjEN luajjxj ~ lubj}.

212 II.l. The Theory of Valid Inequalities

Many other arguments can be used to generate valid inequalities. Some are explained
and illustrated below.

Modular Arithmetic

Here we derive a valid inequality for the set of solutions to one linear equation in
nonnegative integers, that is, S = {x E Z~: LjEN ajXj = ao}, where aj E R' for allj.

Let d be a positive integer and

Sd = {x E Z~: I ajXj = ao + kd for some integer k}.
JEN

We are going to derive a valid inequality for S d. Then, since S s; S d, the inequality is valid
for S.

Let aj = bj + ajd for j = 0, 1, ... , n, where 0 ~ bj < d and aj is an integer, that is, bj is
the remainder when aj is divided by d. Then

Sd = {x E Z~: I bjxj = bo + kd for some integer k}.
JEN

Now LjEN bjxj ~ 0 and bo < dimply k ~ 0; hence we obtain the valid inequality

(1.9) IbjXj ~ boo
JEN

Inequality (1.9) is nontrivial only if d does not divide ao, that is, only if bo > O.
For the set S given by

XEZ!,

inequality (1.9) with d = 12 yields Xl + 4X2 + 6X3 + X4 ~ 9.
An important set of inequalities of this type arises when d = 1 and ao is not an integer.

Then (1.9) yields the valid inequality

(1.10) I (aj - lajJ)xj ~ ao - laoL
JEN

which is called a Gomory cutting plane (see Section 3).
For example, suppose Xo = 3i - !x, + lx2 - *X3 is an equation obtained in the solution

of a linear program and we also require the variables to be nonnegative integers. Then
(1.10) yields !x, + tx2 + ix3 ~ i.

Disjunctive Constraints

Proposition 1.3. If LjEN n}xj ~ nJ is valid for S, C R~ and LjEN nJxj ~ n6 is valid for
S2 C R~, then

(1.11) I min(n), nJ)xj ~ max(n6, n~)
JEN

is validfor S, U S2'

1. Introduction 213

In other words, if we must satisfy one set of constraints or another set, but not
necessarily both, and we know valid inequalities for each set, then (1.11) is a valid
inequality for the disjunction of the two sets.

This yields another systematic way, called the disjunctive procedure, of generating valid
inequalities for the region S = {x E Z~: Ax ~ b}. The two steps of the procedure are:

i. LjEN (uaj)xj ~ ub for all u ~ O.
ii. Given 6 E Zl, if

(a) I njx) - a(Xk - 6) ~ no
JEN

is valid for S for some a ~ 0 and

(b) I n)x) + P(x k - 6 - 1) ~ no
JEN

is valid for S for some P ~ 0, then

(c)

is valid for S.

Note that (a) shows that (c) is valid for Sl = S n {x E Z~: Xk ~ 6} and (b) shows that (c)
is valid for S2 = S n {x E Z~: Xk ~ 6 + n. Since S = Sl U S2, Proposition 1.3 establishes
that (c) is valid for S.

Inequalities generated by repeated application of the disjunctive procedure are called
D-inequalities.

Example 1.3. An example of the D-inequalities is shown in Figure 1.5, where

The first two inequalities can be rewritten as

1 3 1
--Xl + X2 - -Xl ~ -

4 4 2

and

Using the disjunction Xl ~ 0 or Xl ~ 1 leads to the valid inequality -txl + X2 ~! for
S =P n Z2.

214 11.1. The Theory of Valid Inequalities

o 2

Figure 1.5

An interesting property of the disjunctive procedure is that if we just consider a
disjunction on a single variable, then every valid inequality for the disjunction is a
D-inequality.

Proposition 1.4. Let P = {x E R~: Ax ~ b} and suppose A = (1'). Then nx ~ no is a valid
inequality for

P f = (P n {x': x k ~ J}) U (P n {x : x k ~ is + I})

only if there exist a, p ~ ° such that LjEN 1!jX} - a(xk - is) ~ no and L}EN njX} +
P(Xk - is - 1) ~ no are valid/or P.

Proof Suppose that 1!X ~ no is valid for P'. Then 1!X ~ 1!o is valid for P n {x: Xk ~ J}
and P n {x: Xk ~ is + n. Hence by Proposition 1.1, there exists (u l

, a) ~ ° and (u 2
, P) ~ 0

such that

and

where ek is the kth unit vector. Since u 1 ~ 0 and u2 ~ 0, the inequalities uiAx ~ uib for
i = 1, 2, are valid for P and are equal to or dominate

•
In the next section we will show that for 0-1 problems it is possible to use this procedure

variable by variable to produce all valid inequalities for S = P n Bn.

1. Introduction 215

Another application of Proposition 1.3 is to derive a valid inequality for the system

(1.12)

where aj E RI for all}. The feasible set S of(1.12) is contained in SI U S2, where

and

Note that when ao is not integral, S 1 U S2 is the standard disjunction used in enumeration,
that is Xo ~ laoJ or Xo ~ laoJ + 1. Since

and

we obtain from (1.11) the valid inequality LjEN 1CjXj ~ - 1, where

(1.13) . (a j aj) fi . N
1Cj = mIn l J 'l J 1 or } E . ao - ao ao + - ao

If Xo = 3~ - ~Xl + ix2 - ¥X3, where Xo E Zl and x E R~, then (1.13) yields the valid
inequality 1xI + 7X2 + ~X3 ~ 1. Note that this inequality is weaker than the one obtained
previously where we required x E zl.

Boolean Implications

Here we derive some valid inequalities that require the assumption
S C B n = {x E Z~: Xj ~ 1 for} EN}.

Suppose

(1.14)

where the aj's and b are positive integers, that is, S is the feasible set for a 0-1 knapsack
problem. Let C C Nbe such that LjEC aj > b. Then a valid inequality for (1.14) is

(1.15) L Xj ~ ICI -1.
JEC

216 11.1. The Theory of Valid Inequalities

Valid inequalities of this form are used in the solution of general 0-1 integer programs (see
Sections 11.2.2 and 11.6.2).

The system

(1.16) T= {x EBl, Y ER1: L Yj ~ nx, Yj ~ 1 for} EN}
JEN

arises in many models. Here we see that Yj = 0 if x = 0 and Yj ~ 1 if x = 1. Hence

(1.17) Yj ~ x for} EN

are valid inequalities for (1.16).
These are just two examples of a variety of ad hoc tricks for obtaining valid inequalities

from Boolean implications.

Geometric or Combinatorial Implications

The valid inequalities that we illustrate here are related to the logical implications
considered above but are associated with combinatorial systems such as graphs and
matroids. One example is the set of constraints (1.4) for the matching problem.

To give another, consider the node-packing problem on the graph G = (V, E). A subset
of nodes is a packing if

(1.18) Xi + Xj ~ 1 for all (i,}) E E

and

(1.19)

where Xi = 1 ifnode i is in the packing and Xi = 0 otherwise. In the graph of Figure 1.6, no
more than one of the pairwise adjacent nodes {4, 5, 6, 7} can be in a packing and no more
than two of the nodes from the cycle {l, 2, 3, 4, 5} can be in a packing. Thus we obtain the
valid inequalities

(1.20)

and

(1.21)

neither of which can be obtained from nonnegative linear combinations of (1.18) and
non negativity.

Figure 1.6

2. Generating all Valid Inequalities 217

Valid Inequalities and Model Formulation

At this point, we suggest that the reader go back to Chapter 1.1 to observe that valid
inequalities, particularly those derived from Boolean and combinatorial implications,
have been used to formulate models. So where should we draw the line between using valid
inequalities in formulating models and using them in the solution of the model? There is
no right answer to this question. It is sufficient to formulate the model so that
{x E z~: Ax ~ b} is precisely the set of feasible points. But the formulation is not unique
and, in particular, any valid inequalities can be added.

In some cases, such valid inequalities imply the ones from which they are derived, so the
original ones can be deleted from the formulation. For example, by summing the
constraints (1.17) we obtain the linear constraint of(1.16), which can then be deleted from
the formulation. By using the constraint (1.20), we can delete the constraints (1.18) for the
six edges joining nodes 4, 5, 6, and 7. However, (1.21) does not imply any of the edge
constraints (1.18).

With hindsight, the valid inequalities that we would like to have in our formulation are
precisely those that are active in an optimal solution. Thus, given a formulation, a guiding
principle is to include any additional valid inequalities that we know, which we believe
might be active in an optimal solution.

The methods given above for generating valid inequalities do not exhaust all possibil
ities, and others will be introduced later. Usually, a valid inequality can be obtained by a
variety of different arguments, although one method may produce it directly while
another requires repeated applications of the procedure. For example, two applications of
the C-G procedure are needed to derive (1.20) from (1.18) and (1.19).

2. GENERATING ALL VALID INEQUALITIES

Given S = {x E z~: Ax ~ b}, where A = (aI, ... ,an), in Section 1 we used the C-G
procedure to develop the valid inequalities

L luajJxj ~ lubJ
JEN

for any u ~ 0 and showed how integrality can be used to develop D-inequalities for S. We
will show now, by using these procedures a finite number of times, that it is possible to
generate all valid inequalities for S. To simplify exposition, we say that any valid
inequality dominated by a C-G inequality (D-inequality) is also a C-G inequality
(D-inequality).

0-1 Problems

We consider 0-1 problems with P = {x E R~: Ax ~ b, x ~ 1} and S = P n zn. First we will
show that all valid inequalities for S are D-inequalities.

Define pn = P, and for t = n - 1, ... ,0 define

pt = conv[(pt+1 n {x: Xt+1 = O}) U (pt+1 n {x: Xt+1 = l})J.

For n = 2, p2 = P, pI and po are shown in Figure 2.1. Note that in this example,
conv(S) = po.

218 11.1. The Theory of Valid Inequalities

(0,1) p2 (1,1)

(0,0) (1,0)

Figure 2.1. p2 is the outer polytope. pI is the shaded polytope. po is the line joining (0, 1) and (1, 0).

Since pO contains all of the integral points in P, in general we have conv(S) ~ pO. We
prove that all valid inequalities for S are D-inequalities by showing that all valid
inequalities for S are D-inequalities for pO. This also yields pO ~ conv(S), so pO = conv(S).

Suppose nx ~ no is valid for S and OJ > 0, then so are the inequalities

where NJ n N' = 0, NJ U N' = {l, ... ,t}, and t = 0, ... ,n (t = ° means that
~ = N' = 0). We will show that if nx ~ no is valid for S, then It(~, N') is aD-inequality
for pt. In particular, when t = 0, we obtain that nx ~ no is a D-inequality for pO.

The proof uses a backward induction that is convenient to represent by an enumeration
tree in which the nodes at level t represent all partitions of {l, ... , t} (see Figure 2.2). The
intention of the figure is to show that ItCN\ N') is derived from It+'(~ U (t + l), N') and
It+,(NJ, Nt U {t + l).

Proposition 2.1. Iflt+'(~ U {t + I}, N') and Il+'(~' N I U {t + 1}) are D-inequalitiesfor
pl+', then It(~, N') is aD-inequality for pt.

Proof By hypothesis, we have

nx - OJ L Xj - OJ L (1 - Xj) ~ no
jENllU{t+l} JENI

and

nx - OJ L Xj - OJ L (1 - Xj) ~ no
jENll jEN1U{t+1}

are D-inequalities for pt+l. Since Xt+, E {o, l), step ii of the disjunctive procedure estab
lishes that It(~, N') is a D-inequality for pt. •

2. Generating all Valid Inequalities 219

Therefore if we can establish that the inequalities I n(~' Nt) are D-inequalities for
P = pn, then Proposition 2.1 yields that It(~, Nt) is a D-inequality for pt for all partitions
(~, Nt) of {l, ... , t} and all t = 0, 1, ... , n - 1. In fact, it suffices to show that all of the
inequalities In(~' Nt) are valid for P, since any valid inequality for P can, by Proposi
tion 1.1, be obtained by step 1 of the disjunctive procedure.

Proposition 2.2. If I.jEN njXj ~ no is a valid inequality for S, there exists an (JJ ~ 0 such
that all of the inequalities In(~, Nt) are valid for P.

Proof If P = 0, the result follows immediately from Proposition 1.1. If P "* 0, con
sider the extreme points {Xk}kEK of P. If Xk E S, then Xk satisfies the inequality In(~' Nt)
because nxk ~ no by hypothesis and (JJ ~ O.

If Xk $. S, let

and a = min a k > O. Thus for Xk $. S we obtain
(kEK:xk$S}

-(JJ I xj - (JJ I (l - xj) ~ - (JJa.
jEJVO JENI

Now let y = maxxEP(nx - no). Hence nxk ~ y + no for all k E K. Thus for Xk $. S we have

1CXk - (JJ I xj - (JJ I (1 - xj) ~ y + no- ma.
jENO JENI

The result follows by taking m ~ yja and observing that an inequality valid for the
extreme points of P is valid for P. •

NO= 0, Nl= 0

NO = 0, N 1 = {I, 2}

Figure 2.2

220 11.1. The Theory of Valid Inequalities

Theorem 2.3. Every valid inequality for S = P n zn with P = {x E R~: Ax ~ b, x ~ I} is
aD-inequality.

Theorem 2.4. pO = conv(S).

Theorem 2.4 indicates a surprising property of 0-1 integer programs-namely, that it
suffices to integralize one variable at a time to obtain the convex hull.

We have actually shown a somewhat stronger result that will be used in Section 6.
Let Ql = conv{x E P: (xt+[, ••• ,xn) E zn-l}, so Ql s; pt for t = 0, 1, ... ,n and
QO = conv(S). By assuming that nx ~ no is a valid inequality for Qt, the proof we have
given shows:

Theorem 2.5. Every valid inequality for Qt, t = 0, ... , n, is a D-inequality and pt = Qt,

Now we show that all valid inequalities for the 0-1 problem are also C-G inequalities.
The structure of the proof is the same as for D-inequalities, with two differences. The
induction step requires the inequalities

L 7CjXj - L Xj - L (1 - Xj) ~ 7Co.
JEN jENO JENl

Note that I;(NJ, N 1
) is the inequality It(NJ, N 1

) with 0) = 1. Also, we need to assume that
7CX ~ no + 1 is a C-G inequality to prove that TCX ~ 7Co is a C-G inequality.

Proposition 2.6. If (n, no) E zn+ 1
, LjEN njXj ~ no + 1 is a C-G inequality, and

LjEN njXj ~ no is validfor S, then

L njXj - L Xj - L (l - Xj) ~ no
JEN jENO JENI

is a C - G inequality for S for all partitions ~, N 1 of N.

Proof By Proposition 2.2, inequality In(NJ, N 1
) is a C-G inequality. If 0) < 1, we add

(1 - (j) times the inequality Xj ~ 1 for j E N 1
. The resulting inequality is then dominated

by I~(~, N 1
). If OJ > 1, then combining I n(~' N l

) with weight 1/0) and LjEN njxj ~ 7Co + 1
with weight (0) - 1)/0) and rounding gives I~(~, N 1

). •

Theorem 2.7. If (7C, 7Co) E zn+ 1
, LjEN njXj ~ 7Co + 1 is a C-G inequality, and LjEN

7CjXj ~ no is validfor S, then I;(NJ, Nt) is a C-G inequality for all disjoint subsets~, N 1 of
N.

Proof Here again we argue by working up through the nodes of an enumeration tree.
Suppose NJ U N 1 = {l, ... , t}. Then by the induction hypothesis, it follows that

and

are C-G inequalities. Combining these two inequalities with weights of! and rounding
establishes that I;(NJ, N 1

) is a C-G inequality. •

2. Generating all Valid Inequalities 221

We now show that every valid inequality for S with integral coefficients is a C-G
inequality.

Theorem 2.8. Let nx ~ no with (n, no) E zn+ t be a valid inequality for S = P n zn with
P = {x E R~: Ax ~ b, x ~ 1}. Then nx ~ no is a C-G inequality for S.

Proof Let

(2.1) n~P = max{nx: x E P}.

If P = 0, the result is immediate from Case b of Proposition 1.1. Otherwise 1r~P is finite
because P is bounded. Let (VO, WO) be an optimal solution to the dual of(2.1). Consider the
C-G inequality

(2.2)

By dual feasibility, it follows that lvoa} + wJJ ~ 1r} for j EN, so if ln~PJ ~ no we are done.
Otherwise we apply Theorem 2.7 to (2.2) l1r~PJ - no times. •

Example 2.1. Given a set S = P n Z2, where P is given by

xER~,

we show that the valid inequality 9Xl + 7X2 ~ 10 is a C-G inequality. To prove this it
suffices to show that 9xI + 7X2 - XI ~ 10 and 9xI + 7X2 - (l - xd ~ 10 are C-G inequal
ities.

Solving max{9xI + 7X2: X E P}, we obtain an optimal dual solution u = a ~ 0) and the
inequality 9xI + 7X2 ~~. Rounding gives us the C-G inequality

(2.3)

Now we construct a tree as in Figure 2.2. For the leaves of the tree we determine
inequalities that are equivalent to or dominate

By examining all the leaves of the tree we establish a priori that it suffices to take ill = 9. We
then consider the leaves with ~ U N I = {l, 2} and 1 E N I.

For ~ = {2} and Nt = {l}, weights of (0 18 0) on the original inequalities give the valid
inequality 18x I ~ 18, or

(2.4)

which dominates 9xI + 7X2 - 9(1 - XI) - 9X2 ~ 10.

222 11.1. The Theory of Valid Inequalities

Now as explained in the proof of Proposition 2.6, we weight (2.4) by ~ and (2.3) by,
and round to obtain

(2.5)

For ftJ = 0 and Nt = {l, 2}, weights of(2 8 4) on the original inequalities give the valid
inequality 18xI + 16x2 ~ 26 for P, which is the same as

(2.6)

Using the rounding procedure to combine (2.3) and (2.6) with respective weights of~ and ~
yields

(2.7)

Now we move up the tree as explained in Theorem 2.7. For ftJ = 0 and N 1 = {l}, (2.5)
and (2.7) combined with weights (!!) and rounded yield

(2.8)

Similarly, for ftJ = {I} and N 1 = 0, we obtain the C-G inequality

(2.9)

The integer rounding procedure applied to (2.8) and (2.9) with weights (!!) gives the
desired result.

Bounded Integer Variables

We now consider the case where S = P n zn and where P = {x E R~: Ax ~ b, x ~ d} is a
polytope but is not contained in the unit cube. Again we will establish constructively that
every valid inequality is a C-G inequality by showing that if nx ~ no + 1 is a C-G
inequality and nx ~ no is valid for S, then nx ~ no is also a C-G inequality.

The approach, however, is different and more complicated than our approach to the
0-1 case because for bounded integer variables we cannot obtain conv(S) by imposing
integrality one variable at a time.

We are given that nx ~ no is valid for S and that x ~ d = (d, d, ... , d) is valid for P
the bounded variable assumption. Now let Si be any integer between 0 and d and let k be
any integer between 0 and n. Then the following inequality is valid for S:

k k k

f1 (d + 1 - sJ (nx - no) + I TI (d + 1 - Sj) (Xi - d) ~ O.
i=1 i=1 j=i+l

We denote this inequality by L(s h ... , S k). If k = 0, the inequality is simply nx - no ~ 0
and is denoted by L(0). N(s h ... , S k) denotes the same inequality with right-hand side
of 1, and Mk denotes the inequality Xk - d ~ O. Thus we are given that N(0) is a C-G
inequality, and we wish to establish that L(0) is a C-G inequality.

2. Generating all Valid Inequalities 223

Example 2.2. With d = 2 and n = 2, the inequalities L(Sb ... ,Sk) are:

L(2, 2) (nx - no) + (xl-2)+ (X2 - 2) ~ 0

L(2, 1) 2(nx - no) + 2(x! - 2) + (X2 - 2) ~ 0

L(2, 0) 3(nx - no) + 3(x! - 2) + (X2 - 2) ~ 0

L(2) (nx - no) + (Xl - 2) ~O

L(l,2) 2(nx - no) + (x!-2)+ (X2 - 2) ~ 0

L(l, 1) 4(nx - no) + 2(x! - 2) + (X2 - 2) ~ °
L(l,O) 6(nx - no) + 3(Xl - 2) + (X2 - 2) ~ °
L(l) 2(nx - no) + (x! - 2) ~o

L(O, 2) 3(nx - no) + (x!-2)+ (X2 - 2) ~ °
L(O, 1) 6(nx - no) + 2(x! - 2) + (x! - 2) ~ 0

L(O, 0) 9(nx - no) + 3(x! - 2) + (Xl - 2) ~ °
L(O) 3(nx - no) + (Xl - 2) ~O

L(0) (nx - no) ~ 0.

An important component of the proof is the order in which we show that the
inequalities L(s b ••• , S k) are C-G inequalities. We say that t = (t h ••• , t n) is lexicograph
ically larger than S = (Sb ••. ,sn), t 5. s, if, for some i, 1 ~ i ~ n, tj = Sj for} < i and ti > Si.

We then show that the inequalities are C-G in lexicographically decreasing order using the
convention that if k < n, (SI, ..• ,Sk) is regarded as the n-vector (sJ, ... ,Sk, -1, ... ,-1).
Thus (t b ••• , tt) 5. (Sb ... , Sk) either if, for some i ~ min(l, k), tj = Sj for} < i and ti > Si

or if I > k and tj = Sj for} = 1, ... , k. This order is shown in Example 2.2.
The order can also be interpreted as a right-to-Ieft search through an enumeration tree

(see Figure 2.3).
We will be repeatedly adding together valid inequalities.

(0,2) (1,2) (2,2)

Figure 2.3

224 11.1. The Theory of Valid Inequalities

Proposition 2.9

i. L(sJ, ... ,Sk - 1) = L(sJ, ... ,Sk) + L(sJ, ... ,Sk-I) for 1 ~ Sk ~ d.

ii. L(sJ, ... ,Sk-J, d) = L(sJ, ... , Sk-I) + Mk

iii. L(sJ, ... , Sk-J, Sk) = L(sJ, ... , Sk-I) (d + 1 - Sk) + Mk

By repeated application of equalities i and ii, we obtain the following proposition.

Proposition 2.10

i. L(SJ"",Sk)= I L(SJ, ... ,Si-J,Si+ 1)+L(0)+ I M i;
{i:isk,s;<d} {i: isk,s;=d}

ii. N(sJ, ... ,Sk) = I L(sJ, ... , Si-J, Si + 1) + N(0) + I Mi.
{i:isk,s;<d} {i:isk,s;=d}

The proofs of these two propositions are elementary exercises.
Observe from statement ii of Proposition 2.10 that if L(tJ, ... , t{) is a C-G inequality

for all (tJ, ... , t{) $. (sJ, ... , Sk), it follows that N(sJ, ... ,sd is a sum ofC-G inequal
ities and hence is a C-G inequality. Therefore the critical step is to deduce from this that
L(sJ, ... , Sk) is also a C-G inequality.

Proposition 2.11. For any S E Zk with (SI, ... , sd/; 0, if x ERn satisfies at equality the
inequalities L(SI, ... , Si + 1) for i ~ k, Si < d, Mi for i ~ k, Si = d,and N((), then Xi = Si
for i = 1, ... , k.

Proof We argue by induction. If k = 1 and Sk-I < d, we obtain

(d + 1 - (SI + l)(nx - no) + (XI - d) = 0,

or (d - SI) + XI - d = 0, or XI = s], since nx - no = 1. If SI = d, then XI = SI is immediate,
since Ml holds at equality. Now suppose by induction that the claim holds for k - 1, that
is, Xi = S i for i = 1, ... , k - 1. If S k = d, the result is immediate, since M k is satisfied at
equality. If Sk < d, we observe that since N(sJ, ... ,Sk-l) is a sum of inequalities satisfied at
equality, it also is satisfied at equality; it follows that L(sJ, ... , Sk-I) has a slack of 1. But by
statement iii of Proposition 2.9,

Since L(sJ, ... , Sk + 1) is satisfied at equality, it follows that d - Sk + Xk - d = 0. •

We now associate with (s], ... ,Sk) a polytope P(sJ, ... ,Sk) given by

{X E R~: Ax ~ b, X ~ d, nx ~ no + 1, X satisfies L(t], ... , t{)

for (tJ, ... , tl) $. (sJ, ... , Sk)}.

2. Generating all Valid Inequalities 225

Proposition 2.12. L(sl, ... , sd is a C-G inequality for pes!, ... , Sk) n zn.

Proof If k < n, then L(st, ... ,Sk, 0) is an inequality defining pest, ... ,Sk)' By
statement iii of Proposition 2.9,

L(st, ... , Sk, 0) = (d + 1) L(st, ... , Sk) + Mk+l'

Multiplying the inequality L(sb ... , Sk, 0) by 1/(d + 1), followed by rounding, establishes
that L(st, ... ,Sk) is a C-G inequality for pes!, ... ,Sk) n zn.

Now suppose k = nand S '* d. By statement ii of Proposition 2.10, the inequality N(s!,
... , S n) is valid for pes b ... , S n). Suppose it is satisfied at equality. Then each of the
inequalities appearing in the statement of Proposition 2.11 is satisfied at equality, and it
follows that Xi = Si for i = 1, ... , n. Moreover, since N(0) is satisfied at equality, we obtain
nx = no + 1. However, since S = pes b .•• , S n) n zn and nx ~ no is valid, there is no
feasible integer point with nx = no + 1. Hence N(s h ••• , S n) cannot be satisfied at equality
for any point in pes b ••• , S n). This means that N(s b .•• , S n) with its right-hand side
reduced bYe> 0 is a valid inequality for P(Sl, ... ,sn)' Hence by rounding this inequality
we obtain L(s b ••• , S n). Thus L(s h .•. , S n) is a C-G inequality for pes t, ••• , S n) n zn.

Finally, the proof that L(d) is a C-G inequality for P(d) n zn is similar to the proof of
Proposition 2.2 and is not repeated here. •

In particular, Proposition 2.12 states that L(0) is a C-G inequality for P(0) n zn = S.
Thus

Theorem 2.13. Let P= {x E R~: Ax ~ b, x ~ d} and let S = P n zn. lfnx ~ no + 1 is a
C-G inequality for Sand nx ~ no is validfor S, then nx ~ no is a C-G inequality for S.

Corollary 2.14. IfS = 0, then Ox ~ -1 is a C-G inequality for S.

Finally, using the argument given in the proof of Theorem 2.8, we establish the
generality of C-G inequalities.

Theorem 2.15. Let nx ~ no with (n, no) E zn+ 1 be a valid inequality for S = P n zn with
P = {x E R~: Ax ~ b, x ~ d}. Then nx ~ no is a C-G inequality for s.

Theorem 2.15 also holds for unbounded sets in zn, but the only known proof of the
result uses a very different technique.

Theorem 2.16 Let nx ~ no with (n, no) E zn+l be a valid inequality for S = {x E 2':.:
Ax ~ b} '* 0. Then nx ~ no is a C-G inequality for s.

We now consider how many applications of step iii of the C-G procedure are necessary
to define the convex hull of S = P n zn, when P is a nonempty rational polytope. We saw
earlier that ifmax{nx: x E P} = n~P, then the inequality nx ~ ln~PJ can be obtained by one
application of the C-G procedure.

Define the elementary closure of P to be

e(P) = {en, no): nj = luajJ for j EN, no = lubj for some u E R':}.

Then, by definition of the C-G procedure, e(P) contains all of the nondominated C-G
inequalities that can be obtained by one application of the procedure.

226 11.1. The Theory of Valid Inequalities

Proposition 2.17. ll(n, no) E e(P), then no ~ ln~Pj.

Proof Since (n, no) E e(P), there exists u E R:;Z such that luajJ = nj for j EN and
lubJ = no. Consider any such u. Since uaj ~ luajJ for j EN, it follows that u is a feasible
solution to the dual ofmax{nx: x E Pl. Thus ub ~ n&P and no = lubJ ~ In&PJ. •

For Example 2.1, the inequality 9xI + 7X2 ~ 11 is of the form LjEN luajJxj ~ tubJ since it
has been obtained from an optimal dual solution. Hence (n = (9,7), no = 11) E e(P).
Proposition 2.17 implies that if n = (9, 7) and no ~ 10, then (n, no) $. e(P). Thus, it would
be interesting to know, for example, the minimum number of repetitions of the C-G
procedure needed to derive 9xI + 7X2 ~ 9 and, more generally, any valid inequality.

We say that a valid inequality nx ~ no for S = zn n P =1= 0 is of rank k with respect to
P ~ R1 if nx ~ no is not equivalent to or dominated by any nonnegative linear combina
tion of C-G inequalities, each of which can be determined by no more than k-1
applications of the C-G procedure, but is equivalent to or dominated by a nonnegative
linear combination of some C-G inequalities that require no more than k applications of
the procedure. Thus the rank 0 inequalities are those that are equivalent to or dominated
by a nonnegative linear combination of the defining inequalities of P, and the rank 1
inequalities are those that are not of rank 0 but are equivalent to or dominated by a
nonnegative linear combination of the defining inequalities of P and those in e(P).

Theorem 2.16 shows that every valid inequality for S = zn n P =1= 0 is of finite rank for
any rational polyhedron P.

In Example 2.1, 9Xl + 7X2 ~ 11 is of rank 1. The construction of9xl + 7X2 ~ 10 shows
that its rank is, at most, 4. By constructing an inequality by the C-G procedure, we
determine an upper bound on its rank, but determining the actual rank appears to be very
difficult.

We use the notation r(n, no) = k to represent the rank of a valid inequality nx ~ no for
S = zn n P. The rank of P is defined to be

pep) = max{r(n, no): (n, no) is valid for S = P n zn}.

Thus pep) is the number of applications of the C-G procedure needed to determine some
facet of conv(S) if we begin with S = P n zn. Note that p = 0 if and only if conv(S) = P. If
S is the set of matchings of a graph and P = {x E R~: x satisfies (l.2)}, then
conv(S) = P n {x: x satisfies (1.4)}. Since inequalities (1.4) are rank 1, it follows that
pep) = 1. Matching is a rare example of a family of polyhedra of positive and bounded
rank.

For most integer programming problems, the rank of the polyhedron increases without
bound as a function of the dimension of the polyhedron. For example, suppose

pn = {x E R1: Xi + Xj ~ 1 for i, j E iV, i =1= j} and sn = pn n zn.

We note that LjEN Xj ~ 1 is a valid inequality for sn, and it is not hard to show that
conv(Sn) = {x E R1: LjEN Xj ~ 1}. But the rank of LjEN Xj ~ 1 is O(log(n ».

Even when the dimension of P is fixed, there are families of polyhedra such that the
rank increases without bound as a function of the magnitude of the coefficients in the

3. Gomory's Fractional Cuts and Rounding 227

linear inequality description of P. For example, suppose pt is defined by the inequalities

[Xl + X2 .::::; 1 + [

XJ,X2 ~ 0

and St = pt n Z2. Here it can be shown that p(pt) = [- 1 for [= 1, 2,

An infinite family of polyhedra fF is said to have bounded rank if there is an integer k
such that pep) .::::; k for all P E 3f. Thus if P E fF and nx .::::; no is valid for S = P n zn, we
have r(n, no) .::::; k. Hence to verify the validity of nx .::::; no, we need to produce no more
than n inequalities that are obtained by rounding inequalities of rank no higher than k - 1
and weights (uJ, ... , un) to combine them. Each of these lower-rank inequalities can be
produced from n inequalities of still lower rank. Thus, altogether we need the original
inequalities and 1 + n + ... + nk

-
l

.::::; nk weight vectors to prove the validity of nx .::::; no for
any P E fF of dimension n.

This observation leads to an important implication concerning the computational
complexity of integer programs. Let @f be an infinite family of polyhedra and consider the
integer programming problem whose instances are given by max{cx: xES}, where
S = Z1 n p for each P E @f of dimension n. The optimality of X O E S can be established
by showing that ex .::::; ZO is a valid inequality, where cxo = zo. Hence if @f is of bounded
rank, the optimality of a proposed solution can be checked by displaying no more than n
of the original inequalities of P and nk weight vectors for some fixed integer k. Thus,
provided that the weight vectors are polynomial in the description of P, we have an
optimality proof whose length is a polynomial function of n, which suggests that it is highly
unlikely that the problem is .H9P-hard. In other words, it may well be the case that if an
integer programming problem is ,N9P-hard, then the family of polyhedra over which it is
defined does not have bounded rank.

3. GOMORY'S FRACTIONAL CUTS AND ROUNDING

Although the results on rounding in the previous section were developed by V. Chvatal, we
have attributed the procedure to him and R. Gomory. The reason is that, from a rather
different viewpoint, these results appear in Gomory's much earlier work on finite cutting
plane algorithms. In this section, we will show the relationship between the valid
inequalities used by Gomory and the rounding procedure.

Here we write the constraints S = {x E Z1: Ax .::::; b} in equality form as
se = {x E z~+m: (A, I)x = b), where the original variables are (Xl, ••• ,xn) and the slack
variables are (x n+J, ... , X n+m)' We assume that (A, b) is an integral m x (n + 1) matrix.

Let A = (AI, ... , Am) be a weight vector and consider the linear combination of equa
tions given by A(A, I)x = Ab. Suppose N = {l, ... ,n}, ~ = {l, ... ,m}, A = (ab ... ,an),
and 1= (eJ, ... ,em) and define a} = Aa} for j EN and b = Ab. Then A(A, I)x = Ab can be
written as

(3.1)

228 11.1. The Theory of Valid Inequalities

In Section 1 [see (1.10)], we used modular arithmetic and x E z~+m to derive the valid
inequality

(3.2) I fjXj + I giXn+i ~ /0,
jEN iEM

wherefj = aj -lajJ for j EN, gi = Ai -lAd for i EM, andfo = b -lbJ.
Inequality (3.2) is the Gomory fractional cut.

Example 3.1. We return to Example 1.1, where se = {x E Z~: (A, /)x = b} and

(A, /) = (-; ; ~ ~ ~), b = (_2~7).
-2 -2 0 0 1

Let A = (11- rr 0), which yields the equation

(3.3)

Applying (3.2) to (3.3) yields the valid inequality

(3.4)

Now we eliminate the slack variables from (3.4) to obtain

or

(3.5)

10 2 3
-(4 + Xl - 2x 2) + -(20 - 5x 1 - x 2) ~ -
11 11 11

2X2::::'::; 7.

To obtain (3.5) by rounding, use the weight vector u = (W, rr, 0) on the original inequalities
and round.

Observe that in the example Ui = Ai -lAil for i EM. This, in fact, is the general
relationship.

Theorem 3.1. Let S = {x E Zi-: Ax::::.::; b}, where (A, b) is an m x (n + 1) matrix with
integral coefficients. Thefractional cut (3.2) derived from (3.1) is a C-G inequality for S
obtained with weights Ui = Ai - lAilfor i EM.

Proof Let lAJ = (lAd, ... , lAmD and U = A -lAl ~ O. Then

(3.6) uAx = AAx - lAJAx ::::.::; Ab - lAJb = ub

or

(3.7)

4. Superadditive Functions and Valid Inequalities 229

Since the au's and b/s are integers, rounding (3.7) yields

or since x n+i = b i - L'1EN a ijXj we obtain

(3.8)

Subtracting (3.8) from (3.1) yields (3.2). •
There is an obvious converse to Theorem 3.1, which states that every rank 1 C-G

inequality can be obtained as a fractional cut. Thus, analogous to Theorem 2.16, we have
that every valid inequality for S = {x E z~+m: (A, I)x = b} is equivalent to or dominated
by an inequality obtained from the recursive generation offractional cuts of the form (3.2).
Gomory's proof of this result was algorithmic. He showed that the integer program
max{ex: xES} could be solved by solving a finite sequence of linear programs, each of
which was obtained from its predecessor by the addition of an inequality (3.2). Thus if
ZO = exo = max{ex: xES}, the algorithm derived the valid inequality ex ~ zoo We will
study this algorithm in Section 11.4.3.

4. SUPERADDITIVE FUNCfIONS AND VALID INEQUALITIES

Suppose S = zn n P, where P = {x E R~: Ax ~ b}. Our first objective in this section is to
give a functional description of valid inequalities for S. For example, the C-G rank 1
inequality '£.jEN luajJxj ~ lubJ, where aj is the jth column of A and u E R,:!, can be
described functionally by

(4.1) L F(aj)xj ~ F(b),
JEN

where F(d) = ludJ for all d E Rm.
A function F: D f; R m ... R I is called superadditive over D if

(4.2)

Notethatd l = OyieldsF(O) + F(d2) ~ F(d2) or F(O) ~ o. Throughout the book, whenFis
superadditive, we assume F(O) = 0 and 0 ED.

A function F: D ... RI is called nondeereasing over D if d l , d2 E D and d 1 :::::; d2 implies
F(dd ~ F(d2).

Functions with these two properties yield valid inequalities.

Proposition 4.1. If F: R m
... Rl is superadditive and nondeereasing, then (4.1) is a valid

inequality for S = zn n {x E R~: Ax ~ b} for any (A, b).

Proof There are three steps in showing that (4.1) holds for all xES:

i. L.jEN F(aj)xj ~ L.jEN F(ajxj).

ii. L.jEN F(ajxJ ~ F(Ax).
iii. F(Ax) ~ F(b).

230 11.1. The Theory of Valid Inequalities

Since Ax ~ b for all xES and F is nondecreasing, inequality iii holds. The first two steps
use superadditivity, and the first also uses F(O) = 0.

i. It suffices to show that F(aj)xj ~ F(ajxj) for all j. If Xj = 0, then F(aj)xj = ° = F(O) = F(ajxj). If Xj = 1, then F(aj)xj = F(aj) = F(ajxj). Suppose it is true for
Xj = k - 1. Then

ii.

kF(aj) = F(aj) + (k - l)F(aj)
~ F(aj) + F«k - l)aj)
~ F(aj + (k - l)aj) ~ F(kaj).

n n

L F(ajxj) = (F(atxt) + F(a2x 2» + L F(ajxj)
j=l j=3

n

~ F(alxl + a2x2) + I F(ajxj) ~ ... ~ F(Ax).
j=3 •

When the linear constraints are equalities (i.e., Ax = b), then step iii of the proof is
irrelevant. Thus we obtain the following corollary.

Corollary 4.2. Ij F: Rm
-+ R 1 is superadditive and F(O) = 0, then (4.1) is a valid inequality

jor se = zn n {x E R~: Ax = b}.

Corollary 4.2 (and Proposition 4.1) suggest the following terminology. IfF is superaddi
tive (and nondecreasing) with F(O) = 0, we call (4.1) a superadditive valid inequality jor
seeS).

Linear functions are obviously superadditive. Starting with this simple fact and
applying some elementary operations that preserve superadditivity allows us to construct
some useful superadditive functions.

Proposition 4.3. Let H: Rk -+ Rt be superadditive and nondecreasing and let Fi: Rm -+ Rt
be superadditive jor i = 1, ... , k.

a. The compositejunction H(Fl' ... , Fk) is superadditive.

b. If, in addition, Fj,jor i = 1, ... ,k, is nondecreasing, then H(Ft, ... ,Fk) is nonde
creasing.

Proof a. We have

H(Ft(d l + d2), ... , Fk(d1 + d2» ~ H(Fl(d l) + F t(d2), ... , Fk(d t) + F k(d2»
~ H(Fl(dd, ... , Fk(d 1» + H(Fl(d2), ... , F k(d2»,

where the first inequality holds since the F/s are superadditive and H is nondecreasing,
and the second inequality holds since H is superadditive.

b. Suppose d 2 ~ 0 in the proof of a. Since the F/s are nondecreasing, F i (d 2) ~ ° for i = 1,
... , k. Since H is nondecreasing, H(F1(d2), ••• , Fk(d2» ~ 0. Hence

so H(Ft, ... , F k) is nondecreasing. •

4. Superadditive Functions and Valid Inequalities 231

Corollary 4.4. Let F, G: Rm ~ R I be superadditive. Then the following functions are
superadditive.

1. K = AF for all A ~ O.
2. K=lFJ.
3. K=F+G.
4. K = min(F, G).

Proof We apply Proposition 4.3.

1. FJ = F and H: Rl ~ Rl is given by H(d) = Ad.
2. FI = F and H: Rl RI is given by H(d) = ldJ. Clearly, H is nondecreasing. H is

superadditive since

H(b) = {laJ + lbJ + 1
a + laJ + lbJ

~ laJ + tbJ.

if a + b - (la J + lb J) ~ 1
if a + b - Cla J + lb 1) < 1

3. FI = F, F2 = G, and H: R2 ~ RI is given by H(a, b) = a + b, which is linear and
nondecreasing.

4. H: R2 ~ Rl is given by H(a, b) = min(a, b). Clearly, His nondecreasing. Also, H is
superadditive since

H(a [, b 1) + H(a2' b2) = min(a 1, b 1) + min(a2' b2)

~ min{(a I + a2), (b I + b2)}
= H(al + a2, b l + b2).

F(d) = ldJ

4

3

2

•

----------------------~--------------------------------d
-2 -1 o 2 3 4

-1

-2

-3

-4

Figure 4.1

232 11.1. The Theory of Valid Inequalities

We now give several illustrations of superadditive valid inequalities. Some of them have
been developed previously in the text.

1. Integer Rounding: C-G Rank 1 Inequalities. Let F: Rm ~ R I be defined by F(d) =

ludj, u E R';!. Here we apply statement 2 of Corollary 4.4 to a linear function to conclude
that F is superadditive. Moreover, F is also nondecreasing since if d l < d2, then u E R';!
implies ludd ~ lud2J. This function is illustrated in Figure 4.1 with m = 1 and u = 1.

2. Integer Rounding: General Inequalities Constructed by the C-G Rounding Procedure.
This is illustrated by the example presented below.

Example 4.1. To construct the function that yields the inequality 9xI + 7X2 ~ 10 for
Example 2.1, we use the earlier calculations. Note that t = I"NJ U Nil.

t = 0:
t = 2:

1. 9xI+7x2~1l

2. 9XI+7xz-9xl-7xz~0

3. 9xI + 7X2 - 9xI - 9(1 - X2) ~ 7
4. 9xI+7xz-9(I-XI)-7xz~9

5. 9XI + 7X2 - 9(1 - Xl) - 9(1 - Xz) ~ 9

is given by
is given by
is given by
is given by
is given by

FI(d) = lid l + ~d2J
F2(d) = 0
F3(d) = 16d3
F4(d) = 18d2
F5(d) = ~dl + ¥dz + lJd3

t = 1: 11. 9XI + txz - (1 - Xl) ~ 10 is given by Fll (d) = Hl~FI + ~F4J + H~Fl + ~F5JJ
t = 0: 12. 9xI + txz ~ 10 is given by

F12 = l~ Hl~Fl + ~F2j + ~ l~FI + ~F3jJ + ! H l~Fl + ~F4J + ~ l~Fl + ~F5JJJ.

We see that each of these functions is superadditive because it is obtained by taking
nonnegative linear combinations of superadditive functions and then rounding. In
general, we have the following result.

Proposition 4.5. If TCX ~ TCo is a valid inequality for S = zn n {X E R~: Ax ~ b} con
structed by the C-G rounding procedure, then there is a superadditive and nondecreasing
F: Rm ~ Rl such that 71:j = F(aj)for j EN and no = F(b).

Proof Suppose 71:X ~ no is of rank k. Then the C-G construction procedure yields
nj = F(aj) for j EN and no = F(b), where F is obtained by recursive application of
nonnegative linear combinations and rounding and hence is nondecreasing and superad
~~. .
Theorem 4.6. Every valid inequality for a nonempty S = zn n {X E R~: Ax ~ b} is equiv
alent to or dominated by a superadditive valid inequality.

Proof By Theorem 2.16, every valid inequality for S is equivalent to or dominated by
an inequality constructed by the C-G procedure. By Proposition 4.5, every inequality
constructed by the C-G procedure can be obtained from a superadditive nondecreasing
function. •

4. Superadditive Functions and Valid Inequalities 233

We have shown that all maximal valid inequalities for S are superadditive. Moreover,
they can be obtained from the family of superadditive functions generated by the recursive
application of linear combinations and rounding. But as we have seen in Example 4.1, to
determine a particular valid inequality from one of these functions can require a very long
expression. In other words, although the basic formula is simple, it must be applied
recursively to obtain particular inequalities. Perhaps with more complex basic functions,
the number of recursive applications can be decreased.

3. Strengthened Integer Rounding. Consider the set

Applying the function F(d) = ldJ gives the valid inequality

We will show that this inequality is not maximal by producing a superadditive nondecreas
ing function that yields an inequality that dominates it.

Consider the family of functions Fa: R 1 -+ R 1 with 0 ~ a ~ 1 defined by

(4.3)

whereld = d - ldj.

{

ldJ

Fa(d) = 1:
ldj + Id - a

-a
forld> a,

Let (at = max(O, a) for any a E RI. Then

(4.4) Fa(d) = ldJ + ct; = ~t for a < 1.

The function F 1(d) = ldJ, but here we are interested in a < 1. The function Fl/3 is drawn
in Figure 4.2.

Proposition 4.7. Fa is continuous, nondecreasing, and superadditive lor 0 ~ a < 1.

Proof Fa is continuous and nondecreasing because it is piecewise linear with slope of
either 0 or 1/(1 - a) and has no jumps. To prove superadditivity, let
j; = d i - ldd for i = 1, 2.

Case 1./1 + h < 1.

F (d) + F (d) = ld J + (11 - at + ld J + (12 - at
a 1 a 2 I I-a 2 1-a

ld d J
(11 + 12 - at

~ I + 2 + 1 = Fa(d I + d 2)' -a

234 11.1. The Theory of Valid Inequalities

Case 2.11 + 12 ~ l,fi ~ a.

d d ld J
([1 - at

Fa(1) + Fa< 2) = 1 + 1 _ a + l d 2J

< ldd + ld2J + 1 = ld1 + d2j ~ Pa(d1 + d2).

(The same argument applies if/1 ~ a.)

II-a fi-a
Pa(d 1) + Pa(d 2) = l d d + 1 _ a + l d 2J + 1 _ a

II+/2- 1 - a
= ld d + l d 2J + 1 + 1 _ a ~ Pa(d 1 + d 2). •

Consider S = {x E Z~: '1:.jEN ajxj ~ b} with b E RI. If 10 = b -lbj > 0, then when
10 ~ a < 1 it follows that }2jEN F'a(aj)xj ~ Pa(b) dominates '1:.jEN FI (aj)xj ~ Ft(b) since
Pa(b) = Fl (b) and Pa(a j) ~ Fl (a j) for all j. Moreover, the strongest of these cuts is obtained
with a = 10 since forlo ~ a < 1 we have Ffo(aj) ~ Fa(aj) for allj.

In the above example with a = 1 we obtain the valid inequality

3 1
3X1 - 6"4X2 + 22x3 + X4 ~ 4.

------------------------~--~---------------------d
-2 - 5

3
-1 - 2

3

-1

-2

Figure 4.2

4

3

2

4. Superadditive Functions and Valid Inequalities 235

The practical disadvantage of this inequality in comparison with the C-G inequality is
that when x E Z~, the slack variable Fa(b) - LjEN Fa(aj)xj is not necessarily integer.

4. A Two-Dimensional Function. The only nonlinear superadditive functions considered
so far have been one-dimensional. Here we introduce a two-dimensional function, based
on Fa. Let

(4.5)

The contours of this function are exhibited in Figure 4.3.

Proposition 4.8. Thefunction Fa given by (4.5) is nondecreasing and superadditive.

Proof Since Fa is nondecreasing, Fa is nondecreasing in d 2. With respect to d I, the first
term of (4.5) has slope 1/(1 - a) and the second term is piecewise linear with slope of
-1/(1 - a) or O. Hence Fa is nondecreasing in d l •

Since the first term in (4.5) is linear, to prove that Fa is superadditive it suffices to show
that the second term is superadditive. The second term is Fa(G(d)), where G(d) = d2 - d l

is linear. Hence by Propositions 4.3 and 4.7, the second term is superadditive. •

Combining Propositions 4.3 and 4.8 yields the following corollary.

Corollary 4.9. If FI and F2 are superadditive on Rm, the function F(Fb Pz) =

1/(1 - a)FI + Fa(Pz - FI) is superadditive on Rm. If FI and F2 are also nondecreasing, then
F(Fb F2) is also nondecreasing.

236 11.1. The Theory of Valid Inequalities

As an example of the use of the function Fa to construct a valid inequality, consider the
set

CX - P(nx - no) ~ Co

cx + P(nx - no - 1) ~ Co

xEZ~

with (n, no) E zn+l, (c, co) E Rn+l andp > O.
Let F(dI, d2) = PFI/2(d l /2P, d2/2P). Then

'" (co - pno Co + pno + P) [(Co - pno) (1)] [C 0]
PFlf2 2P' 2P = P 2 2P + FI/2 no + 2 = P P - no + no = Co,

and we obtain the valid inequality cx ~ Co.
This shows that Fa permits us to generate the disjunctive inequality in one step, while

with F(d) = l~dl + !d2J and c, Co, and p restricted to be integral, we only obtain
cx ~ Co + IP/2j. Thus, except for p = 1, this example suggests that it can be advantageous
to use functions other than the rounding function F(d) = I udJ.

5. Modular Arithmetic and Gomory Fractional Cuts. Let F: RI -+ RI be defined by
F(d) = -d(mod t5), where J is a positive integer, that is, -F(d) is the remainder when d is
divided by J (see Figure 4.4).

Since d/o = ld/oj - F(d)/o, we have F(d) = o(l~j - ~). We claim that F(d) is superadditive.
Note that F(d) = J(lG(d)j - G(d», where G(d) is the linear function d/o. Since IGJ is
superadditive (by statement 2 of Corollary 4.4) and -G is linear, IGJ - Gis superadditive
by statement 3 of Corollary 4.4. Finally 0> 0 and statement 1 of Corollary 4.4 yield that F
is superadditive.

When 0 = 1, we obtain F(d) = IdJ - d = -Id' The m-dimensional version of this func
tion, F: R m

-+ R 1, given by F(d) = ludj - ud for u E R': generates the Gomory fractional
cut, LjENjjXj ~ 10, wherejj = uaj -luajJ forj EN and/o = ub -lubJ.

F(d) = - d (mod 0)

-30 -20 -0 o 25 35 ----__ ------__ ----__ ~----~------ __ ------~------~--d

-0

Figure 4.4

5. A Polyhedral Description of Superadditive Valid Inequalities for Independence Systems

6. A Stronger Fractional Cut. Let ~a: R I ~ R I be defined by

forO ~fd ~ a

for a <fd < 1,

237

where 0 < a ~ 1. Note that ~I(d) = -Id for all d. The function is shown in Figure 4.5 for
a=i.

Since ~a(d) = Fa(d) - d, the superadditivity of ~a is a corollary to Proposition 4.7. The
fractional cut obtained from ~fo is

(4.6) I jjXj + ~ I (1 - jj)Xj ~fo,
(jEN:!j-vo) 1 - !o UEN:!j>fo)

which dominates I.jEN jjXj ~ 10' Valid inequalities of the form (4.6) are important for
mixed-integer regions (see Section 7).

5. A POLYHEDRAL DESCRIPTION OF SUPERADDITIVE VALID
INEQUALITIES FOR INDEPENDENCE SYSTEMS

An S C Z~ is called an independence system if

i. 0 E Sand
ii. Xl E S, X2 E Z~ and X2 ~ Xl => X2 E S.

It is easy to see that {x E Z~: Ax ~ b} is an independence system if all of the coefficients of
(A, b) are nonnegative integers. Here we consider independence systems generated in this
way. We also assume that bi ~ max{aij: for allj} so that the n vectors ej forj EN are in S.

All valid inequalities have no ~ 0 since nx ~ -1 is not satisfied by x = O. The n
constraints x ~ 0 are valid and define facets of conv(S) since Xj = 0 is satisfied by the n
affinely independent points (0, e), ... , ej_I, ej+l, ... , en) forj = 1, ... , n. Since ej E S for
allj, any other valid inequality of the form nx ~ 0 has n ~ 0 and therefore is not maximal.
Thus, except for x ~ 0, all facets ofconv(S) are of the form nx ~ 1. Moreover, all of these
facets have n ~ 0 because if nx ~ 1 is valid and nj < 0, then nl with n1 = nb k =1= j, and
nJ = 0 is valid.

Let A = (ab ... ,an), where aj E D(b) = {d E Z~: d ~ b} for all j. Here we give a
polyhedral description of the valid inequalities of the form I.jEN F(aj)xj ~ F(b), where F is
superadditive and nondecreasing, that contains all of the maximal valid inequalities other
than X ~ O.

-2 -% o ~ % 2 ~ 3
~--~----~ __ --~----~~~------~--~----~ __ --~----~d

-1 -%

Figure 4.5

238 11.1. The Theory of Valid Inequalities

Since we are dealing with functions on the finite domain D(b), any such function F can
be represented by a vector (F(O), F(el), F(e2), ... , F(b» with n~l (b i + 1) components. In
addition, we assume that F(O) = 0 for all F, and we normalize the functions so that
F(b) = 1 for all F.

Proposition 5.1. F: D(b) ~ [0, 1] is nondecreasing and superadditive if and only if its
corresponding vector is in the polytope given by

F(d l) + F(d2) - F(d l + d2) ~ 0 for dt, d2 E D(b), d 1 + d2 ~ b

(5.1) F(d) ;::: 0 for d E D(b)

F(b) = 1.

Since F is defined for all d E D(b), it is natural to consider the constraint set where the
matrix A has a column for each d E D(b). In other words, S(b) = Z ID(b) I n PCb), where
PCb) = {x E RjD(b) I: LdED(b) dx(d) ~ b}.

We call conv(S(b» the master polytope for the independence system with right-hand
side b. In this section we will first derive results for S(b) and then show how they carryover
to our given constraint set S involving only a subset {aj}jEN of the vectors in D(b).

Example 5.1. Consider S(3) = {x E Z~: x(1) + 2x(2) + 3x(3) ~ 3}. The system (5.1)
yields

2F(l) - F(2) ~ 0

F(1) + F(2) - F(3) ~ 0

F(l), F(2) ;::: 0

F(3) = 1.

The feasible solutions are shown in (F(l), F(2» space in Figure 5.1. The feasible region
contains all of the maximal superadditive inequalities. We will see that the maximal
extreme points (0 1), G j) define the facets of conv(S(3» (other than x ;::: 0). Thus
conv(S(3» is defined by the inequalities

1 2
3x (1) + 3x(2) + x(3) ~ 1

x(2) + x(3) ~ 1

x(1), x(2), x(3) ;::: O.

Since the maximal points of S(3) are {(3 0 0), (l 1 0), (0 0 1)}, the 1-polar
restricted to n ;::: 0 and no = 1 yields

(see Figure 5.2).

5. A Polyhedral Description of Superadditive Valid Inequalities for Independence Systems

F(2)

o

(0, 1)

F(1)

Figure 5.1

Thus we see that the superadditive inequalities are properly contained in the I-polar.

239

Note that in the example, all of the maximal inequalities lie on the line
F(1) + F(2) == F(3) == F(b) == 1. This is a necessary and sufficient condition for maximality,
which is made precise in the following proposition.

From Theorem 4.6, we have that all maximal valid inequalities for S(b) are superaddi
tive. Hence the statement that F is a maximal feasible solution to (5.1) is identical to the
statement that the superadditive inequality LdED(b) F(d)x(d) ~ I is a maximal valid
inequality for S(b).

11"2

(0,1)
1

(0, 0) (1/3, 0)

o

Figure 5.2

240 11.1. The Theory of Valid Inequalities

Proposition 5.2. F is a maximal feasible solution to (5.1) if and only ifF isfeasible and
F(d) + F(b - d) = 1 for all dE D(b).

Proof If F satisfies (5.1) and F(d) + F(b - d) = 1 for all d, then no component of F
can be increased while maintaining feasibility. Hence F is maximal.

We now prove that if there exists a dO such that F(dO) + F(b - dO) < 1, then
LdED(b) F(d)x(d) ~ F(b) is not a maximal inequality for S(b). There are two cases, namely
dO = b/2 and dO *' b/2.

Case 1. dO = b/2 and F(dO) <!. We will show that LdED(b) n(d)x(d) ~ 1 is valid for S(b),
where ned) = F(d) for d *' dO and n(dO) =!. We have x(dO) E {a, 1, 2} for all x E S(b). If
x(dO) = 0, then LdED(b) n(d)x(d) = LdED(b) F(d)x(d) ~ 1 is valid for S(b). If x(dO) = 2, then
xed) = ° for d *' dO and LdED(b) n(d)x(d) = 2n(dO) = 1. If x(dO) = 1, then Ld*dO dx(d) ~ dO.
Hence

where the first inequality follows from superadditivity and the second one follows from
monotonicity. Thus

1 1 I n(d)x(d) = I F(d)x(d) + n(dO) < -2 + -2 = 1.
dED(b) d*do

Case 2. dO =1= b /2 and F(dO) + F(b - dO) < 1. Without loss of generality, we can assume
that for some i we have d? > bd2. Hence x(dO) E {a, 1} for all x E S(b). We will show
that LdED(b) n(d)x(d) ~ 1 is valid for S(b), where ned) = F(d) for d *' dO and
n(do) = 1 - F(b - dO). Ifx(dO) = 0, then LdED(b) n(d)x(d) = LdED(b) F(d)x(d) ~ 1 is valid for
S(b). If x(dO) = 1, then Ld*dO dx(d) ~ b - dO. Hence

Thus

I n(d)x(d) = I F(d)x(d) + n(dO)
dED(b) d*do

•
Proposition 5.2 allows us to tighten the system (5.1) by ruling out functions that fail to

satisfy F(d}) + F(d2) = 1 when d} + d2 = b. Thus we obtain the polytope defined by

F(d}) + F(d2) - F(d} + d2) ~ ° for all db d2 E D(b), d} + d2 < b
F(d) + F(b - d) = 1 for all d E D(b)

(5.2) F(d) ~ ° for all d E D(b)
F(b) = 1.

5. A Polyhedral Description of Superadditive Valid Inequalities for Independence Systems

In Example 5.1, the system (5.2) in (F(1), F(2» space is given by

2F(l) - F(2) ~ 0

F(l) + F(2) = 1

F(I), F(2) ~ O.

241

The feasible region is the line joining the points (i ~) and (0 1) in Figure 5.1, that is,
precisely the set of maximal points.

Besides characterizing the maximal valid inequalities for conv(S(b» (other than
nonnegativity), the system (5.2) gives a useful description of the facets of conv(S(b ». We
thus obtain the main result of this section.

Theorem 5.3. LdED(b) F(d)x(d) ~ 1 is afacet ofconv(S(b» (other than nonnegativity) if
and only ifF is an extreme point solution of(5.2).

Proof All feasible solutions to (5.2) generate valid inequalities for S(b). Suppose that
F generates a facet of conv(S(b» but that F = 1Fl + 1F2, where Fl and F2 satisfy (5.2).
Then Fl and F2 generate valid inequalities, and LdED(b) F(d)x(d) ~ 1 is a convex combina
tion of LdED(b) Fk(d)x(d) ~ 1 for k = 1, 2, which is a contradiction.

On the other hand, suppose F is an extreme point solution of(5.2) but does not generate
a facet of conv(S(b ». By Proposition 5.2, LdED(b) F(d)x(d) ~ 1 is maximal and, by the
hypothesis, is a convex combination of valid inequalities. In other words, it is dominated
by a convex combination of maximal valid inequalities. Thus there exist Fi "* F for i = 1,
... ,p such that for all d E D(b) we have F(d) ~ Lf=l AiFi(d), where Lf=l Ai = 1 and Ai ~ 0
for i = 1, ... ,p. However, maximality of the inequality generated by F implies that
F(d) = Lf=1 AiFi(d) for all d E D(b), which is a contradiction. •

Now we use projection and Theorem 5.3 to go from the master polytope to the general
polytope.

Theorem 5.4. Let S = zn n P, where P = {x E R~: Ax ~ b} and all coefficients of (A, b)
are nonnegative and integral. Then

conv(S) = conv(S(b» n {x: xed) = 0 if d =1= aj for somej EN}.

Proof Since xed) ~ 0 is a facet of conv(S(b» for all d E D(b), it follows that conv(S)
is the face of conv(S(b» obtained by setting xed) = 0 if d =1= aj for somej EN. •

Example 5.2. Consider S(5). The extreme points of (5.2) with F(5) = 1 are

(F(l), F(2), F(3), F(4» = G 2 3
~) 5 5

(F(l), F(2), F(3), F(4» = (0 0 1)

(F(l), F(2), F(3), F(4» = (0 1
1). 2 2

242 11.1. The Theory of Valid Inequalities

Hence conv(S(S» is given by the inequalities

1 2 3 4
S-x(l) + S-x(2) + S-x(3) + S-x(4) + x(S) ~ 1

x(3) + x(4) + x(S) ~ 1

1 1
2"x(2) + 2"x(3) + x(4) + x(S) ~ 1

x(d) ~ 0 for d = 1, ... , S.

Now given S = {x E Z!: x(l) + 2x(2) + 4x(4) ~ S} it follows from Theorem S.4 that
conv(S) is given by the inequalities

1 2 4
S-x(l) + S-x(2) + S-x(4) ~ 1

x(4) ~ 1

1
2"x(2) + x(4) ~ 1

x(l), x(2), x(4) ~ o.

Note here that the first and third inequalities are facets of conv(S) but the second one is
redundant.

6. VALID INEQUALITIES FOR MIXED-INTEGER SETS

Suppose we are given the mixed-integer region

T = {x E Z1, y E R~: Ax + Gy ~ b},

where (A, G, b) is an m x (n + p + 1) rational matrix. Our objective in this section is to
develop a procedure for generating valid inequalities for T. Note that the C-G procedure
does not work when there are continuous variables. In particular, we cannot round down
the right-hand side of an inequality to its integer part when all of the coefficients on the
left-hand side are integers. However, we will be able to obtain a procedure, related to the
disjunctive procedure, that generalizes the C-G procedure.

To motivate the approach, consider the example with T defined by

x E Z~, Y ER~.

In the absence of the y variables, we obtained the valid inequality 3Xl - 7X2 + 2X3 ~ 4.
Can one find a valid inequality for T of the form

(6.1)

6. Valid Inequalities for Mixed-Integer Sets 243

i. A Bound on j1+. Suppose there is a feasible solution with 3xI - 7X2 + 2X3 = 4,
Y2 = 0, and YI > 0. The inequality (6.1) can only be valid if 4 + j1+YI - ° ~ 4 or j1+ ~ 0.

ii. A Bound on j1-. Suppose there is a feasible solution with 3Xl - 7X2 + 2X3 = 5, Yl =
0, and Y2 = ~. Validity of(6.1) implies that 5 - 2j1-/3 ~ 4 or j1- ~ 3/2.

Letting b = lbj + fo, the example indicates that j1+ ~ 0, j1- ~ 1 / (1 - fo) and motivates
the following proposition.

Proposition 6.1. Let T = {x E ZZ, Y E R~: LjEN ajXj + LjEJ gjYj ~ b}, where N = {I, ... ,
n}, J = {I, ... ,p}, and aj' gj, b E Rl for all}. The inequality

(6.2)

where J- = {} E J: gj < O} and fo = b -lbj, is validfor T

Proof Suppose LjEJ gjYj > fo - 1. Then

L lajjxj ~ L ajxj ~ b - L gjYj < b - (fo - 1) = lbJ + 1.
JEN JEN jEJ

Since LjEN lajJxj is an integer, we have LjEN lajJ Xj ~ lbj. Adding this inequality to
1 ~fo LjEJ- gjYj ~ ° yields (6.2).

Now suppose that LjEJ gjYj ~ fo - 1 so that LjEJ- gjYj ~ fo - 1. Hence

= b + 1 fo {' (I gjYj) ~ b - fo = lbJ.
-)0 jEJ- •

Example 6.1. T = {Xl E Zl, Yl E Rl: Xl + Yl ~ 1}. From (6.2), we obtain the valid
inequality Xl ~ 2. The geometry is shown in Figure 6.1. Note that

{(X" y,) E R2: x, + y, ,,; ~, x, ,,; 2, y, ;;. o} = conv{ x, E ZI, y, E R~: x, + y, ,,; ~l

Now let T = {Xl E Zl, Yl E Rl: Xl - YI ~ !}. From (6.2), we obtain the valid inequality
Xl - 2YI ~ 2 (see Figure 6.2). Note that

Example 6.1 illustrates the following proposition.

Proposition 6.2. Let T = {x E zn, Y E R~: LjEN ajXj + LjEJ gjYj ~ b}, where aj E ZI for
} EN, gcd{aJ, ... , an} = 1, and b ~ Z1. Then (6.2) is afacet ofconv(T).

Proof We have already shown that (6.2) is valid for T. To show that it is a facet of
conv(T), we first take n affinely independent points, x\ ... ,xn E zn, that satisfy

244 11.1. The Theory of Valid Inequalities

LjEN ajXj = [bJ. Let PI = IJ \ J-I. We represent points in T as triples (u, v, w), where
u E zn, v E R~', and W E R~-p,. We get n affinely independent points in T that satisfy
(6.2) at equality by taking ui = Xi, Vi = 0, and Wi = ° for i = 1, ... , n, and we get another
PI points by taking ui = xr, Vi = 6ei, and Wi = 0, where ei is the ith unit vector in R~' and
6 > ° is suitably small. Now let x E zn be a solution to LjEN a jXj = [b J + 1. The final set of
P - PI points are obtained by taking ui = x, Vi = ° and Wi = Yiei, where ei is the ith unit
vector in R~-P' and Yi = (fo - 1) / gi. These last points satisfy (6.2) since

"A 1 (fo-1) L ajxj + -- -- gi = [bJ + 1 - 1 = [bJ
JEN 1 - fo gi

and are in T since

•
As we saw in the derivation of (6.2), it was necessary to use the non negativity of the

continuous variables. In particular, we must use the non negativity of slack variables to
generate other valid inequalities. We now give a procedure based on (6.2) for generating
valid inequalities for the set T = {x E Z1, Y E R~: Ax + Gy ~ b}.

Mixed-Integer Rounding (MIR) Procedure

Step 1: The inequalities

L (uaj)xj + L (ugj)Yj ~ ub are valid for all u E R';!.
JEN JEJ

Step 2: Given two valid inequalities

(6.3) L n}xj + L f.1}Yj ~ n6 for i = 1, 2,
JEN JEJ

construct the third valid inequality

(6.4) L [n] - nJJxj + -1 1 {' (L nJxj + L min(u), f.1])Yj - nb) ~ [n6 - nbJ,
JEN -)0 JEN JEJ

where n6 - nb = [n6 - nbJ + fo.

Yl

2

Cutoff region

o 2
~-----------------Xl

Figure 6.1

6. Valid Inequalities for Mixed-Integer Sets 245

Yl

~ __ K---- Cutoff region

------~------O+-----~----~2-=~--------------------Xl

Figure 6.2

Proposition 6.3. Given the two valid inequalities (6.3) for T, it follows that (6.4) is also
validfor T.

Proof Since (6.3) is valid for T and Y ~ 0, it follows that

(6.5) I n}xj + I minCu}, J1])Yj ~ nb for i = 1, 2
JEN iEJ

is valid for T. Rewrite (6.5) for i = 2 as

I (n] - n})xj - (nb - I n}xj - I min(J1), J1]) Yi) ~ n5 - nb.
JEN JEN JEJ

Now (6.5) with i = 1 implies

s = nb - L n}xj - I min(J1J, J1]) Yj ~ 0.
JEN JEJ

Thus we can apply Proposition 6.1 to

I (n] - n})xj - S ~ n5 - n6
JEN

to obtain (6.4). •
We say that any valid inequality equivalent to or dominated by an inequality con

structed by the MIR procedure is an MIR inequality.

Example 6.2. T = {x E B2, Y E R~: YI + Y2 ~ 7, Yi ~ 5xi for i = 1, 2}. Using Step 1, we
obtain the two valid inequalities

1 7
3" (YI + Y2) ~ 3"

5 1
- 3" (Xl + X2) +"3 (YI + Y2) ~ 0.

246 11.1. The Theory of Valid Inequalities

Taking the first of these as the i = 1 inequality, and the second as the i = 2 inequality, we
obtain from (6.4) the valid inequality given by:

or

Proposition 6.4. Let T = {x E Z~, Y E R~: - (Uk + CX + hy ~ Co, PXk + CX + hy ~ Co + P}
with a, P > O. Then cx + hy ~ Co is an MIR inequality for T.

Proof Scale each of the inequalities in the definition of T by 1/(a + P) to obtain

-a 1 Co
a + [?k + a + P (cx + hy) ~ a + P [i = 1 in (6.3)]

P --nXk + _1_ (cx + hy) ~ Co + P [i = 2 in (6.3)].
a+p a+p a+p

We obtain from (6.4) the valid inequality:

1/(a + P) l P J Xk + a/(a + P) (- (Uk + CX + hy - Co) ~ a + P = 0

or

1 Co
Xk - Xk + -(CX + hy) ~ -

a a

or

CX + hy ~ Co. •
Proposition 6.4 shows that the MIR procedure accomplishes what is done in the

disjunctive procedure. Now if x E Bn, we can invoke Theorem 2.5 to conclude that every
valid inequality for conv(T) is a D-inequality. Thus we obtain the following theorem.

Theorem 6.5. Suppose T = {x E Bn
, y E R~: Ax + Gy ~ b, x ~ I} =I: 0 where (A, G, b) is

an m x (n + p + 1) matrix with rational coefficients. Any valid inequality
nx + I1Y ~ nofor T is an MIR inequality.

Theorem 6.5 is false for bounded integer variables. A counterexample is discussed in
Exercise 22.

7. SUPERADDITIVITY FOR MIXED-INTEGER SETS

In this section, we extend the development of superadditive valid inequalities to mixed
integer constraint sets. Suppose T = {x E Z1, y E R~: Ax + Gy ~ b} and F and Hare
functions from R m to R 1. We first consider conditions for which

7. Superadditivity for Mixed-Integer Sets 247

(7.1) I F(aj)xj + I H(gj)Yj ~ F(b)
JEN jEi

is valid for T for all A, G, and b. Since we want to generalize the results for the pure-integer
constraint set, we assume throughout this section that F is nondecreasing and superaddi
tive and that F(O) = O. The problem is to determine the appropriate conditions to be
imposed on H.

We first develop two necessary conditions.

Positive Homogeneity. Since the substitution y; = AYj for A > 0 is permissible and makes
no essential change to T, we must have

(a) H(Ad) = AH(d) for all A ~ 0 and d E Rm.

Dominance. If some valid inequality is satisfied at equality by a solution (x, y) with
Ax = d, and some continuous activity is a multiple of d (i.e., gj = Ad), then we must have
H(Ad)/A ~ F(d). Positive homogeneity then implies

(b) H(d) ~ F(d) for all d E Rm.

Conditions (a) and (b) also are sufficient for the generation of valid inequalities.

Theorem 7.1. If F is superadditive and nondecreasing and F(O) = 0, and H satisfies
conditions (a) and (b), then (7.1) is a valid inequality for T for all A, G, and b.

Proof We have LjEN Fiaj)xj ~ F(Ax) by superadditivity and

where we use, respectively, property (a), property (b), and the superadditivity of F. Finally,
since F is superadditive and nondecreasing and Ax + Gy ~ b, it follows that
F(Ax) + F(Gy) ~ F(Ax + Gy) ~ F(b). •

Note that superadditivity of H is not required here. However, we shall see below why it
is natural also to impose the conditions that H be superadditive and nondecreasing.

From conditions (a) and (b), it follows that

(7.2)
H(Ad) F(Ad)

H(d) = -A- ~ -A- for all d E Rm and A> O.

The condition (7.2) restricts the class of superadditive nondecreasing functions that can be
used in (7.1) for F. For example, suppose F is the C-G function F(d) = ldj. Then (7.2)
implies, with d = -1,

H(-I) ~ F(-A) = -1 for all 0 < A ~ 1
A A

or H(-l) = -00.

We define limA, \0 0+ g(x, A) = g(x) to mean that for each x and any E> 0 there exists a
J(x, E) > 0 such that Ig(x, A) - g(x) I < e whenever 0 < A ~ J(x, e). The C-G function is
not useful for T since limA, \0 0+ F(Ad)/A ~ -00 for d = - 1.

248 11.1. The Theory of Valid Inequalities

However, suppose F is superadditive and nondecreasing and

(7.3)

exists and is finite for all d. Then from (7.2) we see that

(7.4) H(d) ~ F(d)

is necessary in (7.1).
Since for a given F we would like to have the function H that gives the strongest possible

valid inequality, we would like to choose H as large as possible, subject to the conditions
(a), (b), and (7.4). Thusi(F satisfies conditions (a) and (b), the desired function is H = F.
Fortunately, whenever F exists and is finite for all d E Rm, it satisfies conditions (a) and
(b).

Proposition 7.2. Given a nondecreasing superadditive function F, for which F given by
(7.3) is defined andfiniteJor all d, itJollows that (i) F is positively homogeneous and (ii) F
is dominated by F

Proof i. For any given.u > 0 and any dE Rm, we have

ii. For any k > 0, let t = lkJ and r = k - lkJ. Then

Now let A = 11k so that

~ F(t(~)) + F(r(~)) by superadditivity

~ tF(~) + F(r(~)) by superadditivity

Taking the limit as A '\. 0+ gives F(d) ~ F(d).

We get a bonus by taking H = F since F shares the properties of F.

•

Proposition 7.3. IJ the F given by (7.3) is defined and finite Jor all d, then it is
superadditive and nondecreasing.

7. Superadditivity for Mixed-Integer Sets 249

Proof Since F exists, given any e > 0 there exists Ai for i = 1, 2 such that
I F(di) - F(Ad j) / A I ~ e for all 0 < A ~ Ai, and there exists a A3 such that I F(d! + d2) -
F(A(d! + d2» / A I ~ e for all 0 < A ~ A3. Taking A ~ min{AJ, A2, A3}, we have that

Hence F(d!) + F(d2) ~ F(d! + d2), and F is superadditive. Since F is nondecreasing,
F(Ad2) / A - F(Ad!) / A ~ 0 for all A> 0 and d2 ~ d!. Hence, taking the limit as A \. 0+
yields F(d2) - F(d!) ~ O. Thus F is nondecreasing. •

Thus we have justified the use of F in place of H in (7.1).

Theorem 7.4. IfF is superadditive and nondecreasing, F(O) = 0, and F exists, then

(7.5) 2: Fj(aj)xj + L F(gj) Yj ~ F(b)
JEN JEI

is a superadditive valid inequality for T for all A, G, and b.

The Function Fa and the Gomory Mixed-Integer Cuts. Consider the function

given by (4.4). We obtain

{
o for d ~ 0

Fa(d) = _1_ d for d < 0
I-a

(see Figure 7.1). Thus, with H = Fa, we obtain a generalization of Proposition 6.1.

----------------------~-----------------------d
-3 -2 2 3

Figure 7.1

250 11.1. The Theory of Valid Inequalities

Proposition 7.5. Let T = {x E~, Y E R~: LjEN ajXj + LjE] gjYj ~ b}, whereaj, gj, b E Rl
for all j. The inequality

is valid/or T, where J- = {j E J: gj < O}.

N ow consider the system

(7.6)
x E z~, Y ER~

with b = lb J + /0, 0 < fo < 1. Replacing the equality in (7.6) by an inequality and then
applying Proposition 7.5 with ex = fo, we obtain the valid inequality

for the system (7.6).
Combining the equality of (7.6) with the above inequality yields

or

where J+ = U E J: gj > O} andjj = aj -lajJ for j EN. This is the Gomory mixed-integer
cut.

We can derive this cut for the original mixed-integer set T = {x E Z~, Y E R~:

Ax + Gy ~ b} and can also express it in terms of the original variables. The procedure to
do this involves the introduction of slack variables s E R'J!, the use of row multipliers
u E Rm to produce the system

{x E Z~, Y E R~, s E R'J!: uAx + uGy + uIs = ub}

of the form (7.6), generation of the cut, and then elimination of the slack variables by
substitution. We leave as an exercise the task of showing that the resulting inequality is

where

7. Superadditivity for Mixed-Integer Sets 251

and Fa(d}, d2) = [1/(1- a)]d l + Fa.(d2 - d l) is the two-dimensional function given by (4.5).

We now derive a property of Fa.

Proposition 7.6. IfF = [1/(1 - a)]FI + Fa.(F2 - Fd, where FI and F2 are superadditive and
!londecreasing and _ w!lere PI and P2 exist and are finite with a > 0, then
F = [1/(1 - a)] min(Fb F2)'

Proof First we show that F(Ad)/A ~ min(FI(d), F2(d». For A ~ 0, we obtain

F(Ad) = _1_ FI(Ad) +! F(F2(Ad) _ FI(Ad»
A I-a A A a

1 FI(Ad) 1-
~ 1 - a -A - + X Fa(FiAd) - FI(Ad»

1 FI(Ad) 1 1 .
= 1 - a -A - + 1 _ a ;:mIn(F2(Ad) - FI(Ad), 0)

__ 1_ . (FI(Ad) F2(Ad»)
- 1 - a mIn A ' A

Now we must show the inequality in the opposite direction for sufficiently small
positive A._Since FI and F2 exist, given d and e > 0, there exists A* such that
Fi(Ad)/A ~ Fi(d) + e for i = 1, 2 and for all 0< A < A*. Hence

F(Ad) = _1_ FI(Ad) ! F(F(Ad) _ F(Ad»
A I-a A + A a 2 I

since Fa. is nondecreasing, and FI(Ad) ~ FI(Ad) = AFI(d). Now for A sufficiently small, we

see from Figure 4.2 that Fa(Ax) = -1 _1_ mineO, Ax). So
-a

F(Ad) ~ _1_ FI(Ad) + _1_ min(O, F
2
(d) _ FI(d) + e)

A I-a A I-a

_ 1 . (FI(Ad) F-(d) Fl(Ad) F-(d))
- 1 - a mIn -A-' 2 + -A- - I + e

and

F(Ad) 1 --
-A- ~ 1 _ a [min(FI(d), F2(d» + 2e].

Hence F = [1/(1 - a)] min(FJ, F2)' •
Thus Fa(dJ, d2) = [1/(1 - a)] mined!, d2). UsingF = FaandH = lin (7.1) we obtain the

following proposition.

252 11.1. The Theory of Valid Inequalities

Proposition 7.7. If T = {x E 2';., y E R~: (c - pn)x + hy ~ Co - Pno, (c + pn)x + hy
~ Co + P7Co + P), where (c, h, co) E Rn+p+1 and (n, 7Co) E zn+ l

, then cx + hy ~ Co is a
superadditive valid inequality for T.

Proof Taking the function F(d l , d2) = PFl/idd2P, d2/2P), we obtain

F(c} - fin}, c} + fin}) = fi [2(Cj ;/n) + F1/2(Cj ;/n} _ Cj ;/nj
)]

= Cj - P7Cj + pFI/2(nj) = Cj - P(7Cj - 7Cj) = cf,

F(_ P P P) - P [2 (co - P7Co) F (Co + pno + P _ Co - pno)]
Co no, Co + 7Co + - 2P + 1/2 2P 2P

= Co - fino + fiF1/2(no + 4) = co·

This yields the superadditive valid inequality cx + hy ~ Co. •
As a result of Proposition 7.7 and Theorem 6.5 we can establish the generality of

superadditive inequalities.

Theorem 7.8. Given T = {x E zn, Y E R~: Ax + Gy ~ b, x ~ I} =1= 0, every valid inequal
ity nx + IlY ~ 7Co is equal to or dominated by some superadditive valid inequality

L F(aj)xj + L F(gj)yj ~ F(b).
JEN JEJ

Theorem 7.8 holds for mixed-integer regions of the form T = {x E zn, y E RP} n P,
where P is any rational polyhedron. However, the proofs are not constructive.

Note that the function F in Theorem 7.8 can be constructed iteratively using nonnega
tive linear functions and Fl/2 a tinite number of times. Furthermore, since the procedure
starts with linear functions and FI/2 is the minimum of linear functions, the corresponding
function F is the minimum of a finite number of linear functions and is therefore
piecewise linear and concave.

Example 7.1. T = {x E B2, Y E R~: YI + Y2 ~ 7, Yi ~ 5Xi, i = 1, 2). We construct the
functions representing the valid inequality YI + Y2 - 2x I - 2X2 ~ 3. Consider the enumer
ation tree shown in Figure 7.2. Let the linear constraints be given in matrix form by

0 0 1 1 7
-5 0 1 0

XI 0
0 -5 0 1

X2
~ 0

1 0 0 0 YI

0 0 0 Y2

x,y~O.

7. Superadditivity for Mixed-Integer Sets 253

7

Xl =0

5

2 4

Figure 7.2

At each node (NJ, Nt) with NJ U Nt = N, we use a linear function to construct an
inequality dominating the inequality

(7.7) - 3 L Xj - 3 L (1 - Xj) - 2x t - 2x 2 + Y t + Y2 ~ 3.
jE}/O JEN!

1. NJ = {l, 2}, Nt = 0. Ft(d) = (0 1 1 0 O)d gives

which is stronger than (7.7),
2. NJ = {l}, Nt = {2}. F2(d) = (0 1 0 6)d gives

- 3xt - 3(1 - X2) + (- 2xt - 2X2 + Yt + Y2) ~ 3.

3. NJ = {2}, Nt = {l}. F3(d) = (0 1 1 6 O)d gives

4. NJ = 0, Nt = {l, 2}. F4(d) = (1 0 0 1 l)d gives

Now to obtain the inequalities that dominate (7.7) for the sets (NJ, N l
) with

NJ U Nt = {l}, we combine the superadditive functions generating the above inequalities
as in the proof of Proposition 7.7.

Combining the function Ft generating the NJ = {l, 2}, Nt = 0 inequality and the
function F2 generating the NJ = {l}, Nt = {2} inequality yields the following:

5. JIO = {l}, Nt = 0. Fs = 3FI/2(Ft/6, F2/6) gives

Combining F3 and F4 yields the following:
6. JIO = 0, Nt = {l}. F6 = 3Ft/2(F3/6, F4/6) gives

254 11.1. The Theory of Valid Inequalities

To obtain the inequality at the root, we combine Fs and F6:

7. NJ = 0, N 1 = 0. F7 = 3F1/2(Fs/6, F6/6) gives

- 2x I - 2x 2 + Y I + Y2 .::::;; 3.

8. NOTES

Section 11.1.1

Valid inequalities that are implied by integrality constraints were introduced by Dantzig,
Fulkerson, and 10hnson (1954, 1959) in a study of the traveling salesman problem. Their
pioneering work demonstrates the derivation of logical or combinatorial inequalities that
can be obtained from problem structure and 0-1 variables. Another early study of this type
is Markowitz and Manne (1957).

The initial study of valid inequalities for general integer programs was carried out
almost single-handedly by Gomory in the late 1950s and early 1960s. His work emphasized
the generation of a finite number of valid inequalities to solve the general integer
programming problem. The integer rounding procedure appears implicitly in Gomory
(1958, 1960a, 1963a,b) and explicitly in Chvatal (1973a). Its derivation uses a modular
argument which was exploited to a greater extent by Gomory (1965) in his derivation of all
valid inequalities for the group relaxation of an integer program (see Section II.3.5).

The valid inequalities of exercise 11 of Section II.4.5 were introduced by Dantzig (1959)
and refined by Charnes and Cooper (1961) and Bowman and Nemhauser (1970).

Surveys on algebraic methods for obtaining valid inequalities were given by Garfinkel
and Nemhauser (1972a, Chapter 4), and leroslow (1978, 1979a,c).

Gomory (1960b) used a disjunctive argument to develop valid inequalities for mixed
integer regions. A general disjunctive approach for obtaining valid inequalities appears in
Balas (1975b). The D-inequalities were studied by Blair (1976). leroslow (1977, 1979a,c)
and Balas (1979) gave surveys of disjunctive methods.

Valid inequalities that can be deduced from combinatorial structures and 0-1 variables
appear throughout the text and, in particular, in Chapter II.2. References will be given in
the notes for the corresponding sections.

Section 11.1.2

Chvatal (1973a) contains all of the results of this section with the exception of Theorem
2.16, although a few of the results are given only implicitly.

Blair (1976) also showed that the D-inequalities suffice for 0-1 problems (Theorem 2.3).
The close connection between this theorem when P is empty with the inequality Ox .::::;; -1
and the resolution method of propositional logic of Davis and Putnam (1960) is discussed
in Blair, leroslow, and Lowe (1986). General conditions under which the convex hull can
be obtained sequentially by imposing disjunctions one-by-one, as in the proof of Theorem
2.5, were studied by Balas (1979); see Section 6 of that article and Exercise 9 of Section
1.4.8.

Theorem 2.16 is due to Schrivjer (1980). He showed that for any integer k, the linear
inequality system consisting of all of the inequalities of rank equal to or less than k defines
a rational polyhedron, and then he used total dual integrality (see Section 111.1.1) to show
that there existed some k for which the system defines the convex hull of integer solutions.

The example of the two-dimensional family of polyhedra of unbounded rank is from
Chvatal (1973a). Related results are given in leroslow (1971) and leroslow and Kortanek
(1971).

8. Notes 255

Section 11.1.3

The fractional cuts are due to Gomory (1958). The connection between them and integer
rounding in the space of the original variables is implicit in that article and Chvatal
(1973a).

Section 11.1.4

Connections between valid inequalities for integer programs and superadditive functions
originated with the work of Gomory (1965, 1967, 1969, 1970) on the group problem
relaxation of a general integer program (see Section 11.3.5). The explicit use of superaddi
tive functions in the generation of valid inequalities for general (pure) integer programs
was developed in a series of articles by Gomory and Johnson (1972, 1973) and Burdet and
Johnson (1974), again in the context of the group problem.

Araoz (1973) investigated superadditive valid inequalities for packing and covering
problems and showed that the modular arithmetic requirement of the group relaxation
was not essential to the superadditive theory. For general (pure) integer programs, the
superadditive representation of all facet-defining inequalities (Proposition 4.5 and Theo
rem 4.6) appears in the articles by Burdet and Johnson (1977) and Jeroslow (1978). The
function of Figure 4.5 was used by E. L. Johnson (1974), and the two-dimensional function
given by (4.5) and exhibited in Figure 4.3 appears in Nemhauser and Wolsey (1984). Some
other classes of superadditive functions that have been proposed for the purpose of
generating valid inequalities are given by Burdet and Johnson (1974, 1977).

Surveys by Jeroslow (1978, 1979a,c) and Johnson (1979), and a monograph by Johnson
(1980a) provide comprehensive treatments of the use of superadditivity in integer and
mixed-integer programming. These references are also relevant to the following three
sections.

Section 11.1.5

A polyhedral description of superadditive valid inequalities for the group problem was
given by Gomory (1967,1969, 1970). He also introduced the concept of master polytopes
in these articles and showed how facets for lower-dimensional polytopes could be obtained
from the master polytope by projection.

Gomory's approach was extended to independence systems or packing problems and to
dependence systems or covering problems by Araoz (1973) as well as to general pure
integer programs by Burdet and Johnson (1977). See also Johnson (1979, 1980a, 1981a) and
Araoz and Johnson (1981).

Superadditive inequalities for 0-1 problems were studied by Wolsey (1977), and those
for multiple right-hand side problems were studied by Johnson (1981b).

Section 11.1.6

This section is based on Nemhauser and Wolsey (1984). The motivation for the MIR
inequalities came from the mixed-integer cuts of Gomory (1960b).

Schrijver gave us the example in Exercise 22, which shows that Theorem 6.5 is false
unless each integer variable belongs to the set {O, 1}. This is related to the absence of finite
convergence of Gomory's mixed-integer cutting-plane algorithm, as shown by White
(1961). White's counterexample appears in Salkin (1975).

Section 11.1.7

The extension of the superadditive theory to mixed-integer programs began with the work
ofE. L. Johnson (1974) on a mixed-integer group problem.

256 11.1. The Theory of Valid Inequalities

Theorem 7.8, for bounded mixed-integer constraint sets, appears in Jeroslow (1979b).
Its generalization to unbounded sets is given by Bachem and Schrader (1980) and by
Bachem, Johnson, and Schrader (1982). Also see Blair (1978) and Jeroslow (1985).

9. EXERCISES

1. LetS = {x E Z~: 4Xl + X2 S 28, Xl + 4X2 s 27, Xl - X2 S 1}. Determine the facets of
conv(S) graphically (see Exercise 10 of Section I.4.8). Then derive each of the facets
of conv(S) as a C-G inequality.

2. Let S = {x E Z~: I9x, + 28x2 - I84x3 = 8}. Derive the valid inequality x, +
X 2 + 5x 3 ~ 8 using modular arithmetic.

3. For S = {x E B4: 9XI + 7X2 - 2X3 - 3X4 S 12, 2x, + 5X2 + IX3 - 4X4 S IO} show that
4XI + 5X2 - 2X3 - 4X4 S 12 is a valid inequality by disjunctive arguments.

4. Consider the node-packing problem on the graph of Figure 9.1. Show that L[=I Xi S 2
is a valid inequality, both combinatorially and algebraically.

5. Prove the following:

i) Let P = {x ERn: Ax s b} *" 0. nx s no is a valid inequality for P if and only if
there exists u E R'.;! such that uA = nand ub s no.

ii) Let P = {x E R':: Ax s b, X s d}. nx s no is a valid inequality for P if and only
if there exist u E R': and wE R1 such that uA + w ~ nand ub + wd s no.

6. Let Pi = {x E R1: Ai x s b J for i = 1, 2. Show that nx s no is a valid inequality for
PI U P2 if there exists ui E R': such that uiAi ~ nand uib i s no for i = 1,2. Under
what restrictions on PI and P2 does the converse hold?

7. (The Davis-Putnam Procedure). Consider the satisfiability problem for S s Bn
defined by

L Xj + L (1 - x) ~ 1 for k = 1, ... , K, x E Bn
JECk JECk

where Ck n Ck = 0 and Ck , Ck s N for k = 1, ... ,K.

i) Given q EN and a pair of constraints k, I such that q E Ck n C" show that

L Xj + L (1 - Xj) ~ 1
jE(CkUC,)\{q} jE:(CkUC,)\{q)

is a valid inequality for S.

Figure 9.1

9. Exercises 257

ii) Show that the inequality is aD-inequality.

iii) Show that if S = 0, it is possible to generate the valid inequality Ox :s -1 by a
finite number of replications of the procedure i.

iv) Show that the resulting algorithm is polynomial if I Ck U Ck I :s 2 for all k.

8. What is the rank of conv(S) in Exercise I?

9. Prove Propositions 2.9 and 2.10.

10. Show that the rank of conv(St) is t - 1, where st = pt n Z2 and

11. Show that if P = {x E RZ: Xi + Xj :S 1 for 1 :S i <j :S n} and S = P n En, the rank of
"£J=l Xj :S 1 is O(log n).

12. Use Theorem 2.5 to show that every valid inequality is a D-inequality for mixed 0-1
programs.

13. Consider the integer program max{2x 1 + 5x2: xES}, where S is given in Exercise 1.
Using the optimal basis of the corresponding linear program, the problem can be
rewritten as

maxz

z = 38

17
3

1 4 16
X2 -EX3 + E X 4 3

1 1 2
- 3X3 + 3X4 + X5 = 3

xEZ!.

Derive a Gomory fractional cut from each equation. Express each cut in terms of the
original variables (xt, X2). Derive each cut as a rank 1 C-G inequality.

14. For S = P n Z2 as given in Exercise 1 show that

i) Xl :S 5,

ii) Xl + 2X2 :S 15, and

iii) 2x 1 + 5X2 :S 36
are superadditive valid inequalities.

15. What conditions must be imposed on F so that "£7=1 F(a)xj :S F(b), is a valid
inequality for S = {x E zn: Ax :S b}?

16. Show that the following functions are superadditive:

i) G(d) = max{o:, F(d)}, where 0: < 0 and F is superadditive.

ii) G(d) = maXhEZm {Fl(h) + F2(d - h)}, where Fl and F2 are superadditive on zm.

iii) G a(d) = max{o:, mineO, d)} for d E R 1 and 0: < O.

258 11.1. The Theory of Valid Inequalities

17. i) Draw G a, which was defined in iii of Exercise 16.

ii) Use G a to show that - 3x 1 - 2x 2 - 2x 2 ::;;; - 3 is a valid inequality for
S = {x E zl: - 7Xl - 4X2 - 4X3::;;; - 6}.

iii) Can you show by repeated use of G a that - 2x 1 - X2 - X3 ::;;; - 2 is valid for S?

iv) ForS = {x E B3: -7Xl - 4X2 - 4X3:S;; - 6} use Ga to showthat- Xl - X2::;;; - 1 is
valid for S.

18. Suppose that we define the disjunctive rank of an inequality via the function Fa.
What is the maximum disjunctive rank of conv(S), where

i) S = {x ERn: Ax ::;;; b, x :s;; 1, x ~ O} n Zn,

ii) S = {x ERn: Ax::;;; b, x:s;; d, x ~ O} n zn,

iii) S = {x E R~: Ax :s;; b} n zn?

19. Let cf>(d) = max{cx: Ax :s;; d, x E Z~} and suppose the problem is feasible for all
dE Rm. Show that cf> is superadditive on Rm.

20. Find the convex hull of S= (x E Z:; Xl + 2X2 + 3X3 + 4x4 :5 4).

21. Write an implicit polyhedral description of the set of valid inequalities for

i) Xl + X2 + X3 + X4 = 4, x E Z!.
ii) Xl +X2 +X3 +X4 ~ 4, x E Z!.
iii) (b)Xl + (~)X2 + (~)X3 + (:)X4 + (~)X5 + (~)X6 + (~)X7 + (;)Xg ::;;; (;), x E Z!.

22. Show that the set

T = {(x, y) E Z~ x Rl: Xl + X2 + y:s;; 2, - Xl + y:s;; 0, - X2 + y::;;; O}

and the valid inequality y ::;;; 0 give a counterexample to Theorem 6.5 when the
constraints x :s;; 1 are not present.

23. Given T = {(xo, x, y) E Zl X Z~ x R~: Xo + LjEN ajxj + LjE] gjYj = b} with b = lbJ
+ fo and 0 <fo < 1, derive (by a disjunctive and modular argument) the Gomory
mixed-integer cut

where J+ = {j E J: gj > a}, J- = J \ J+, andjj = aj - lajJ for j EN.

24. Verify that the Gomory mixed-integer cut for

T' = {(x, y, s) E Z~ x R~ x Rl: uAx + uGy + us = ub}

is equivalent to the superadditive valid inequality

L F(aj)xj + L F(gj)Yj :s;; F(b)
JEN jE]

forT = {(x, y) E Z~ x R~: Ax + Gy::;;; b}, whereF(d) = F:x(-Lui<o uidi,Lui>o uidJand
a= ub -lubJ.

11.2
Strong Valid Inequalities
and Facets for Structured
Integer Programs

1. INTRODUCTION

In the preceding chapter we presented a general theory of valid inequalities for integer
and mixed-integer programs and techniques for generating all valid inequalities. How
ever, these general techniques can be quite inefficient in deriving facets or even lower
dimensional faces of the convex hull of a set of integral points.

The theme of this chapter is to use structure to determine strong valid inequalities for
the constraint sets of some .N9J>-hard integer programming problems. The determination
of families of strong valid inequalities is more of an art than a formal methodology. Thus
our presentation will largely be a series of examples that convey the basic ideas. The
mathematics enters in proving that classes of inequalities, which are often easily shown to
be valid, are indeed strong in the sense that they define facets or faces of reasonable
dimension. A related mathematical problem, which is considered in Part III, is to prove
that a given family of inequalities represents all of the facets of the convex hull. We defer
this topic because the results are limited almost exclusively to those combinatorial
optimization problems for which polynomial-time algorithms are known.

There are many interesting problems for which strong valid inequalities have been
obtained. Only a small selection of these results can be given here, so we have picked a few
prototype problems. To motivate some basic ideas, in this section we consider the node
packing polytope. In the following sections, we study the 0-1 knapsack polytope, the
symmetric traveling salesman polytope, and a class of generic mixed-integer sets that we
call 0-1 variable upper-bound flow models. The attention given to polyhedra for which the
integer variables are binary reflects the fact that most of the known results are in this
domain.

In the preceding chapter, we derived some valid inequalities for the node-packing
problem. Here we will establish the strength of the inequalities. Recall that a node packing
in a graph G = (V, E) is a set of nodes such that no pair in the set is joined by an edge. Thus
the set of node packings S is given by

S = {x E Bn: Xi + Xj ~ 1 for all (i,j) E E},

where n = 1 V I. The vector xES is the characteristic vector of a packing; that is, Xi = 1 if
node i is in the packing and Xi = 0 otherwise. Since S contains the zero vector and the n
unit vectors, dim(conv(S)) = n.

259

260 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

2

6 3

5 4

Figure 1.1

A set C ~ V is called a clique if each pair of nodes in C is joined by an edge. Thus a node
packing can contain no more than one node from each clique. For the graph of Figure 1.1,
the maximal cliques yield the inequalities

Xl

X2

(1.1) X3
~

X4

Xs

X6

corresponding to the cliques {l, 2, 3}, {l, 3, 4}, {l, 4, 5}, {l, 5, 6}, and {l, 2, 6}.
When C is a maximal clique, the clique constraint

(1.2) L Xj~ 1
jEC

defines a facet of conv(S). This is an easy result to prove directly from the definition of a
facet. A facet of conv(S) is of dimension n - 1 and thus contains n affine1y independent
points ofconv(S). Moreover, as noted in Proposition 6.6 of Section 1.4.6, a facet contains
n affinely independent points of S. Since the hyperplane LjEC Xj = 1 does not contain the
origin, any set of affinely independent points on it are also linearly independent. Thus we
will exhibit n linearly independent points of S that satisfy (1.2) at equality.

Suppose, for simplicity of notation, that C = {l, ... , k}. Since C is maximal, for each
j $. C there is a node /(j) such that /(j) ~ k and {j, /(j)} is a node packing. The
characteristic vectors of the packings {l}, ... , {k}, {k + 1, /(k + I)}, ... , en, /(n)} are easily
shown to be linearly independent.

The rows of the matrix given below are six linearly independent vectors which establish
that Xl + X 2 + X 3 ~ 1 is facet for the graph of Figure 1.1.

1. Introduction 261

Although there is an important class of node-packing problems for which the maximal
clique constraints and nonnegativity give all the facets of conv(S), this is not true in our
example. In particular, Xl = ~(O 1 1 1 1 1) is an extreme point of the polytope given by (1.1)
and x ~ 0. This can be seen by solving the linear program max LY=I Xj subject to (1.1) and
x ~ 0. The unique optimal solution is Xl.

To cut off Xl, we consider another family of valid inequalities. Suppose there is an
H ~ V that induces a chordless cycle, that is, the nodes of H can be ordered as (i I, i 2, ••• ,

ip) such that (i" is) E E if and only if s = r + 1 or s = 1 and r = p. Ifp is odd and at least 5,
then H is called an odd hole. If H is an odd hole, then

(1.3) 2: x. ~ IHI - 1
jEH J 2

is satisfied by all node packings. Moreover, the clique constraints Xi + Xj ~ 1 for i, j E H
do not imply (1.3).

In our example, H = {2, 3, 4, 5, 6} is an odd hole and we obtain the constraint

(1.4)

which cuts off the solution x I .
Since (1.4) is satisfied at equality by the five linearly independent characteristic vectors

corresponding to the packings {2, 4}, {2, 5}, {3, 5}, {3, 6}, and {4, 6}, inequality (1.4) gives a
facet of the convex hull of node packings for the subgraph with node set H. But it does not
give a facet of conv(S) for the graph G, since there are no other packings that satisfy (1.4) at
equality. If we added (1.4) to the clique constraints, we would obtain the new extreme point
t(1 22222).

Since (1.4) is a four-dimensional face of conv(S) but not a facet, it can perhaps be
strengthened by tilting it to produce a facet. In other words, is there a valid inequality of the
form

(1.5)

with a > O? And if so, what is the largest value of a that preserves validity? To answer these
questions, we must consider x I = ° and Xl = 1. When x I = 0, (1.5) is valid for any a > 0.
When XI = 1, we have a ~ 2 - (X2 + X3 + X4 + Xs + X6)' But Xl = 1 implies X2 = X3 = X4 =
X 5 = X 6 = 0, so a ~ 2. Thus

(1.6)

is a valid inequality. Moreover, it gives a facet of conv(S) since it is satisfied at equality by
the characteristic vector of {l} and the characteristic vectors of the five packings given
above that satisfy (1.4) at equality.

We have just illustrated a general principle called lifting whereby a valid inequality for
S n {x E Bn: Xl = o} is extended to a valid inequality for S.

Proposition 1.1. Suppose S s; Bn, So = S n {x E Bn: x I = 6} lor £5 E {o, I}, and

(1. 7)
n

L TCjXj ~ TCo
j=2

is validlor So. 1iSI = 0, then XI ~ ° is validfor S. 1iSI =1= 0, then

262

(1.8)

11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

n

alXl + I njXj ~ no
j=2

is valid for S for any al ~ no -" where ,= max{L1=2 njXj: x E SI}. Moreover, if
al = no - 'and (1.7) gives a face of dimension k of conv(SO), then (1.8) gives a face of
dimension at least k + 1 ofconv(S). [1f(1.7) gives afacet ofconv(~), then (1.8) gives a
facet ofconv(S).]

Proof Ifx E So, then

n n

alxl + L n)x) = L n)x) ~ no
)=2)=2

since (1.7) is valid for So.
Ifx E Sl, then

n n

alxI + I n)x) = al + I n)x) ~ al +, ~ no
)=2 j=2

by definition of the quantities al and ,.
Since (1.7) gives a k-dimensional face of conv(SO), there exist Xi E So for i = 1, ... ,

k + 1 that are affinely independent and satisfy (1. 7) at equality. Since x\ = 0, it follows that
Xi satisfies (1.8) at equality for i = 1, ... , k + 1. Let, = 'L)=2 njxj, where x* E Sl. With
al = no - " x* satisfies (1.8) at equality. Finally, since xT = 1, it follows that x* cannot be
written as an affine combination of {Xl, ... , Xk+l}, so the k + 2 vectors {X*, Xl, ... , Xk+l}
are affinely independent. •

The lifting principle is also applicable to extending a valid inequality from SI to S.
Using the same notation as in Proposition 1.1, we have the analogous result:

Proposition 1.2. Suppose (1.7) is valid for SI. If SO = 0, then Xl ~ 1 is valid for S. If
SO =1= 0, then

(1.9)
n

YIX I + L njx) ~ no + Y I
)=2

is valid for S for any YI ~ ,- no, where ,= max{'L)=2 njXj: X E SO}. Moreover, if
Yl = , - no and (1. 7) gives a face of dimension k of conv(SI), then (1.9) gives a face of
dimension at least k + lofconv(S).

When a1 = no - 'in Proposition 1.1 or when YI = ,- no in Proposition 1.2, we say that
the lifting is maximum.

Propositions 1.1 and 1.2 are meant to be used sequentially. Given an NI eN = {l, ... ,
n} and an inequality LjEN! n)xj ~ no that is valid for S n {x E Bn: Xj = 0 for} EN \ N 1}, we
lift one variable at a time to obtain a valid inequality

(1.10) L ajxj + I njx} ~ no
jEN\N! JEN!

forS.

1. Introduction 263

The coefficients {ai} in (1.10) are dependent on the order in which the variables are
lifted. So by considering different orderings of the elements of N \ Nb we can get a family
of valid inequalities for S.

It is insightful to examine the lifting process in the polar space III = {n ERn: nx ~ 1 for
all xES ~ Bn}. If L1=2 nixi ~ 1 is valid for So, maximum lifting can be described by the
one-dimensional optimization problem in III-space:

The geometry is illustrated in Figure 1.2 for the case n = 2. We suppose that III has the
three extreme points {nO, nl, n2}. Since~ > max(n~, nD, wehavethatn~x2 ~ 1 givesafacet
of conv(SO), where SO = S n {x: Xl = O}. Maximum lifting is equivalent to moving from
(0, n~) in the direction (1 0) to obtain the extreme point nO of III or, equivalently, the facet
of conv(S) defined by n?x I + n~x2 ~ 1. Similarly, by a maximum lifting from nIX 1 ~ 1, we
obtain the facet ofconv(S) defined by JrtXI + n~x2 ~ 1. We also see that there is no way to
generate the facet of conv(S) defined by nix 1 + n~x2 ~ 1 by sequential lifting.

To interpret sequential lifting geometrically, suppose we begin with the trivial inequality
o ~ 1. Maximum lifting in the order (1, 2) yields the facet corresponding to the extreme
point n2

, and maximum lifting in the order (2, 1) yields the facet corresponding to the
extreme point nO. Neither order gives nl.

In principle, lifting is not restricted to choosing one coefficient at a time. If we observe
that maximum sequential lifting is equivalent to finding an extreme point in a one
dimensional polyhedron, it is not surprising that in the simultaneous lifting of k coeffi
cients, the "best" liftings are obtained by finding the extreme points of a k-dimensional
polyhedron. Hence if we start from the inequality 0 ~ 1 and allow the simultaneous lifting
of(nl n2), we can indeed obtain nO, nl, and n2.

As we have already seen, the values of the coefficients in (1.10) depend on the ordering
of the variables in the sequential lifting. The following proposition, which will be useful in
the next section, indicates how the coefficient of one variable depends on the ordering.

(0,0) L--________ -+ ____ 11"1

Figure 1.2

264 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

Proposition 1.3. Let N \ N[= {I, 2, ... , t} and suppose when Proposition 1.1 is applied
sequentially using maximum lifting in the order (iI, i2, ... , h-I' ik, ••. , it), the inequality

I aixi + I nixi::::;; no
iEN\Nl JENl

is obtained. Then for any order (iI, i2, ... , i£_[, i£, ... , i;) with i; = ii for j = 1, ... , k - 1,
the resulting inequality

I a;Xi + I n}x}::::;; no
iEN\Nl iENl

obtained by maximum lifting has aL ::::;; ai
k

•

Proof ik = i; for some s > k. Then

{

k-I

ah = no - max IaijXjj + I nixi: xES n {x E Bn: Xh = 1
i=l iEN,

and Xij = 0 for j > k}}

= no - max IaijXij + I nix}: xES n {x E Bn: Xi's = 1
{

k-I

i=l iEN,

and x i'j = 0 for k ~ j ~ t, j '* s} }

~ no - max IaijXjj + I nixi + Iaj,jXij: xES n {x E Bn:
{

k-l s-I

i=! iENl }=k

Xi's = 1 and Xi'j = 0 for j > s}}

•
Corollary 1.4. In any sequential maximum lifting of the variables in N \ N I , the mini
mum value of aik is obtained by lifting Xh last and the maximum value is obtained by lifting
xhfirst.

Although this discussion has focused on maximum lifting, , can be hard to compute.
Thus, in practice, a and yare generally determined from easily computable upper bounds
on ,. We will illustrate these computations in Section 11.6.2.

We have given two ways of showing that a valid inequality gives a facet of conv(S). The
first approach was to apply the definition, the second approach was by maximum lifting of
a lower-dimensional facet. We now consider a third approach, which is to apply Proposi
tion 3.6 of Section 1.4.3.

We illustrate this approach by showing that (1.6) gives a facet of conv(S) in the node
packing example of Figure 1.1. Consider a valid inequality LY=I nixi ::::;; no and suppose that
it is satisfied at equality by the packings {2, 4}, {2, 5}, {3, 5}, {3, 6}, and {4, 6}. From {2, 4}
and {2, 5} we obtain n2 + n4 = n2 + ns = no or n4 = ns. Similarly from {2, 5} and {3, 5} we
obtain n2 = n3, from {3, 5} and {3, 6} we obtain ns = n6, and from {2, 4} and {4, 6} we obtain
n2 = n6. Hence any equality that is satisfied by these five packings must be of the form

2. Valid Inequalities for the 0-1 Knapsack Polytope 265

Now if the packing {l} also lies on the above hyperplane, we must have reI = 2a and the
equality must be of the form

Finally, the inequality a(2x I + X2 + ... + X6) ~ 2a must hold for x = O. Thus a > 0, and
it suffices to take a = 1.

Here we have applied Proposition 3.6 of Section 1.4.3 with n = 6, k = 0, and Xl, ••• ,x6

being the characteristic vectors of the six packings given above. The argument shows that
all solutions to the linear system hi = ..to for i = 1, ... , 6 are of the form A = are and
..to = areo with a E R I. Finally, we used x = 0 to establish that a > O. Other applications of
this technique will be given in Sections 3 and 4.

We close this section with a pessimistic reminder regarding the possibility of obtaining
all facets of the convex hull of a feasible set of points for an .N9P-hard optimization
problem, but we add a note of optimism with respect to using the strong inequalities that
can be obtained.

In Proposition 7.4 of Section 1.5.7, it was established that for an .N9P-complete lower
bound feasibility problem, a good characterization of all of the facets of the convex hull of
feasible solutions is not possible unless.N9P = C€oJY9P. Thus our use of structure to obtain a
polyhedral representation of the constraint set is limited by the inherent complexity of the
problem. For this reason the results of this chapter are only partial descriptions of the
convex hull of the constraint set of the problem being studied. However, there are some
experimental results which indicate that simple classes of strong valid inequalities that can
be identified efficiently are extremely useful in solving a variety of integer programming
problems by cutting-plane algorithms. In Chapter II.5, we will show how the results of this
chapter can be incorporated in such cutting-plane algorithms.

2. VALID INEQUALITIES FOR THE 0-1 KNAPSACK POLYTOPE

We consider the constraint set of a 0-1 knapsack problem

(2.1)

where N = {l, ... , n}, aj E Z! for j EN, and b E Z!. Note that S is an independence
system (see Section 11.1.5). Since aj > b implies Xj = 0 for all XES, we assume aj ~ b for
allj EN. Thus dim(conv(S)) = n. It is convenient to order the coefficients monotonically
so that a I ~ a2 ~ ... ~ an. We represent elements of Bn by characteristic vectors so that
for R £.; N the vector xR has components xf = 1 if j E Rand xf = 0 otherwise. If XC E S,
we say that C is an independent set; otherwise C is a dependent set.

As we observed in Section 11.1.5, the n constraints x ~ 0 give facets of conv(S). In
addition, Xj ~ 1 gives a facet if {j, k} is an independent set for all kEN \ {j}. We leave
these results as exercises and go on to more interesting inequalities.

Proposition 2.1. If C is a dependent set, then

(2.2) L Xj ~ ICI - 1
jEe

is a valid inequality for S.

266 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

Proof Suppose XR E Sand LjEC Xf;?; I C I. This means that R ;2 C so that R is
dependent, which contradicts XR E S. •

A dependent set is minimal if all of its subsets are independent. Note that if a dependent
set C is not minimal, then LjEC Xj ~ I C I - 1 is the sum ofLjEc' Xj ~ I c' I - 1 and Xj ~ 1 for
j E C \ C', where C' is a minimal dependent set.

Example 2.1. S = {x E B 5: 79xI + 53x2 + 53x3 + 45x4 + 45x5 ~ 178}. The minimal
dependent sets and corresponding valid inequalities are:

C I = {l, 2, 3} Xl + X2 + X3 ~ 2

C2 = {l, 2, 4, 5} XI +X2 +X4 +X5 ~ 3

C 3 = {l, 3,4, 5} XI + X3 + X4 + X5 ~ 3

C4 = {2, 3,4, 5} X2 + X3 + X4 + X5 ~ 3.

While the constraints (2.2) are quite simple, they are nontrivial with respect to the
polytope P ;2 S obtained by replacing X E En by X E R~ and Xj ~ 1 for allj EN, that is,
the linear programming relaxation with P = {x E R~: LjEN a jXj ~ b, Xj ~ 1 for j E N}. If
LjEN aj > b, then every nonintegral extreme point x of Pis of the form

Xj = 1 for j E C \ {k}

Xj = 0 for j E N \ C

Xk = (b - I aj) / ak > 0,
jEC\{k}

where C is a dependent set, k E C, and C \ {k} is independent. However, x does not satisfy
the inequality (2.2).

Proposition 2.1 applies to any independence system. We now begin to use some
particular properties of the knapsack problem.

The extension E(C) of a minimal dependent set C is the set C U {k EN \ C: ak ;?; aj for
allj E C}. In Example 2.1, E(CJ = Cj for i = 1,2,3 and E(C4) = C4 U {t}.

Proposition 2.2. If C is a minimal dependent set, then

(2.3)

is a valid inequality for s.

I Xj ~ ICI - 1
jEE(C)

Proof Suppose XR E Sand LjEE(C) xf ~ IC 1 so that IR n E(C)I ~ IC I. Now
LjER aj ;?; LjERnE(C) aj and by definition of E(C) we obtain LjERnE(C) aj ;?; LjEC aj > b, which
contradicts XR E S. •

In Example 2.1, LJ=I Xj ~ 3 is a valid inequality obtained from Proposition 2.2 with
E(C4). It dominates the inequalities (2.2) generated by C2, C3, and C4•

In some instances the inequalities (2.3) give facets of conv(S).

Proposition 2.3. Let C = UI, ... , jr} be a minimal dependent set withjl <h < ... <jr' If
any of the following conditions holds, then (2.3) gives afacet of conv(S).

2. Valid Inequalities for the 0-1 Knapsack Polytope 267

a. C=N.
b. E(C) = N and (i) (C \ {jI,}2}) U {l} is independent.
c. C = E(C) and (ii) (C \ {jl}) U {p} is independent, where p = min{j:) EN \ E(C)}.
d. C C E(C) C N and (i) and (ii).

Proof The following n independent sets satisfy (2.3) at equality.

1. lj = C \ {}j} for}j E C. There are I C I of these.
2. lk = (C \ {jj,}2}) U {k} for k E E(C) \ C. Ilk n E(C) I = I C I - 1 andlk isindepen

dent by (i) and ak :::::;; al' There are IE(C) \ C I of these.
3. I j = (C \ {it}) U {j} for) EN \ E(C}. IIj n E(C) I = I C I - 1 and I j is independent

by (ii) and aj :::::;; ap •

We leave it to the reader to show that the corresponding characteristic vectors are
linearly independent. •

In Example 2.1, Proposition 2.3 establishes that (2.3) with C = C I gives a facet of
conv(S) since C I = E(C I } and (C I \ {jl}) U {p} = {2, 3, 4} is independent. Also, since
E(C4) = Nand (C4 \ {2, 3}) U {l} = {l, 4, 5} is independent, (2.3) with C = C4 gives a facet
ofconv(S}.

A simple consequence of Proposition 2.3 is:

Corollary 2.4. IfC is a minimal dependent setfor Sand (C I , C2) is any partition ofC with
C I =1= 0, then LjEC1 Xj:::::;; I C I I -1 gives afacet of conv(S(CJ, C2», where

S(Ct, C2) = S n {x E Bn: Xj = 0 for} EN \ C, Xj = 1 for} E C2}.

Proof For any C2, 0 S C2 C C, it follows that C I = C \ C2 is a minimal dependent
set for S(C!, C2) since

LjEC1 aj > b - LjECz ah and LjEC1\{k} aj :::::;; b - LjEC2 aj for all k E Ct. Now Proposition 2.3
applies with S = S(C!, C2) and N = E(C l) = C j • •

We can use Corollary 2.4 and the lifting results of Section 1 to generate facets of conv(S).

Proposition 2.5. IfC is a minimal dependent setfor Sand (Cl> C2) is any partition ofC
with C I =1= 0, then conv(S) has afacet represented by

I CijXj + I YjXj + I Xj:::::;; I C j I - 1 + I Yh
jEN\C jECz JEC1 JEC2

where Cij ~ Of or all} E N\ C and where Yj ~ 0 for all} E C2•

Proof We start with the inequality LjEC1 Xj:::::;; I C j I - 1, which gives a facet of
conv(S(CI, C2», and do lifting by applying Proposition 1.1 for each} EN \ C and
Proposition 1.2 for each} E C 2. The nonnegativity of the coefficients is implied by their
definitions in Propositions 1.1 and 1.2. •

268 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

As we observed previously, the order of the variables in the lifting affects the coeffi
cients. However, we should begin with a j EN \ C, because beginning with k E C2 is
equivalent to starting with LjECtU{k} Xj ~ I C I I.

a. C = {l, 4, 5} is a minimal dependent set and E(C) = {l, 4, 5}. By Proposition 2.3,
XI + X4 + Xs ~ 2 gives a facet ofconv(S).

b. C = {l, 4, 5}, C I = {4, 5}, C2 = {l}. By Corollary 2.4, X4 + Xs ~ 1 gives a facet of

First we lift with respect to the variable X 3 by applying Proposition 1.1. This yields

Hence a3 = 1 andx3 + X4 + Xs ~ 1 gives a facet ofconv{x E B3: X3 + X4 + Xs ~ n. Now we
lift with respect to X I by applying Proposition 1.2. Hence

Thus 2xI + X3 + X4 + Xs ~ 3 gives a facet ofconv{x E B4: 3xI + X3 + X4 + Xs ~ 4}. Finally,
we lift with respect to x 2 by applying Proposition 1.1. Hence

Thus a2 = 0 and 2xI + X3 + X4 + Xs ~ 3 gives a facet of conv(S).
By symmetry, lifting in the order (X2, Xl, X3) yields the facet represented by

2xI + X2 + X4 + Xs ~ 3. The orders (X2' X3, XI) and (X3, X2, XI) show that the original
inequality 3Xl + X2 + X3 + X4 + Xs ~ 4 also gives a facet of conv(S). We have not consid
ered lifting X I first because, as explained before the example, this yields Xl + X4 + X S ~ 2,
which we already know gives a facet.

To apply Proposition 2.5, we must solve IN \ CII 0-1 knapsack problems. However,
unlike the general 0-1 knapsack problem, these knapsack problems can be solved in
polynomial-time by dynamic programming (see Section 11.5.5) because the objective
coefficients are polynomial in n. Nevertheless, for computational purposes, it may suffice
to get lower bounds on the aj and upper bounds on the Yj. We will return to these
computational issues in Section II.6.2, where we will give an algorithm for solving general
0-1 integer programs that uses strong valid inequalities derived from 0-1 knapsack
problems.

When C2 = 0 in Proposition 2.5, there is a formula that nearly determines all of the
lifting coefficients.

Proposition 2.6. Let C = {j 1, ••• , j,} be a minimal dependent set with j 1 < h < . . . < Jr.
Let flh = LZ= I aA for h = 1, ... , r,' also let flo = 0 and A = fl, - b ;?; 1. Every valid inequality
a/the/arm

(2.4) I ajXj + I Xj ~ I C I - 1
jEN\C JEC

2. Valid Inequalities for the 0-1 Knapsack Polytope 269

that represents afacet of conv(S) satisfies the following conditions:

i. IfJ.1h ~ aj ~ J.1h+l - A, then aj = h.
ii. If J.1h+l - A + 1 ~ aj ~ J.1h+l - 1, then (a) aj E {h, h + 1} and (b) there is at least one

facet of the form (2.4) with aj = h + 1.

Proof The proof is based on lifting LjEC Xj ~ I C I - 1. Suppose, for j* E N \ C, that
aj* ~ J.1h. We will prove that aj* ~ h in any lifting in which Xj* is lifted last. Then from
Corollary 1.4, it follows that aj* ~ h in allliftings.

Suppose we have obtained the inequality

(2.5) I ajXj + I Xj ~ I C I - 1
jEN\(CUU*}) JEC

after determining all of the lifting coefficients except aj. Let

(2.6)

G(d) = max I ajXj + I Xj
jEN\(CUU*}) JEC

I ajXj ~ d
jEN\(j*}

Then aj* = I C I - 1 - G(b - aj*). Since (2.5) is valid when xj* = 0, we have G(b) ~ I C I - 1
so that aj* ~ G(b) - G(b - aj*).

Now we show that G(b) - G(b - aj*) ~ h. Consider (2.6) with d = b - aj*. We have

r h

'" a· =b+A- '" a· ~b+A-a·*>b-a·* L 1k L)k))

k=h+l k=l

since aj* ~ LZ=l alk and A> O. Hence there is no feasible solution with Xjk = 1 for k = h + 1,
... , r, and since mink=l, ... , h a jk ~ maXk=h+l, ... , r a jk there exists an optimal solution x with
Xlk = 0 for k = 1, ... , h. Define x by Xjk = 1 for k = 1, ... , hand Xj = Xj otherwise. Since
Lt.l ah ~ aj" it follows that x is a feasible solution to (2.6) with d = b. Hence

h

G(b) ~ G(b - aj*) + I Xjk = G(b - aj*) + h.
k=l

Thus we have shown that aj* ~ h in allliftings when aj* ~ J.1h.
Now suppose that J.1h ~ ak ~ J.1h+l - A and Xk is lifted first. We will show that ak = h, so

by Corollary 1.4 we obtain ak ~ h in allliftings. From Proposition 1.1, ak = (r - 1) - (,
where

(= max{ I Xj: I a jXj ~ b - a k, x E Br}
JEC JEC

= max{r + 1 - i: ± aJt ~ b - ak }
1=1

270 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

since ak ~ J.1h+l - A. Also,

r

I aj, = b - (J.1h+l - A) ~ b - ak
l=h+2

r

I aj, = b + A - J.1h > b - ak
l=h+l

since A > 0 and ak ~ /.1h. Hence (= r + 1- (h + 2) = r - h -1 and Cik = (r -1) - (r - h -1) = h.
Putting these two results together establishes i and ii(a). To obtain ii(b), note that if

ak > /.1h+l - A, it follows that L/=h+2 aj, > b -- ak, which implies Cik = h + 1 if Xk is lifted first.

•
Example 2.3. S = {x E BlO: 35xl + 27x2 + 23x3 + 19x4 + 15x5 + 15x6 + 12x7 + 8xs + 6X9 +
3XlO ~ 39}.

Let C = {6, 7, 8, 9}. Then /.10 = 0, /.11 = 15, J.12 = 27, /.13 = 35, /.14 = 41, and A = 2. Proposi
tion 2.6 yields

0 if 0 ~ aj ~ 13

o or 1 if aj = 14

if 15 ~ aj ~ 25

Cij = 1 or 2 if aj = 26

2 if27 ~ aj ~ 33

2 or 3 if aj = 34

3 if35 ~ aj ~ 39.

Hence the only facet that can be obtained from lifting X6 + X7 + Xg + X9 ~ 3 is represented
by

3. VALID INEQUALITIES FOR THE SYMMETRIC TRAVELING SALESMAN
POLYTOPE

A Hamiltonian cycle or tour ofa graph is a cycle that contains all of the nodes. Thus, given
a graph G = (V, E), the edge set E' ~ E induces a tour if and only if the subgraph
G' = (V, E') is connected and each node is met by exactly two edges. Our reason for
studying tours is that they are the feasible solutions to the symmetric traveling salesman
problem.

The results of this section are of two types. We develop inequalities that are valid for all
graphs and prove that some of these inequalities are facets for complete graphs. Thus it is
convenient to assume throughout the section that G is a complete graph on m nodes, that
is, there is an edge between each pair of nodes so that IE I = n = m(m - 1)/2. The reader
should observe, however, that all of the classes of valid inequalities given subsequently are
derived without assumptions about which edges are in the graph.

3. Valid Inequalities for the Symmetric Traveling Salesman Polytope 271

We represent subsets of edges by their characteristic vectors x E B n so that E' is
represented by the vector XE', where xr = 1 if e EE' and x;' = 0 otherwise. Thus the set of
feasible solutions S is the set of characteristic vectors whose edge sets induce tours. We will
study conv(S) and another closely related polytope.

Let T = {x E Bn: x ~ x' for some x' E S}. Note that T is the independence system
whose maximal members define S. Because T::J S, any valid inequality for T is also valid
for S. Since 0 E T and the n unit vectors are in T, dim(conv(T)) = n. Our reason for
considering T is that conv(T) is full-dimensional and thus easier to analyze than conv(S),
which is not. Later in this section, we will show that dim(conv(S)) = n - m.

T is also of practical interest since we can construct an objective function such that XO is
optimal over S if and only if XO is optimal over T.

Proposition 3.1. For any cERn and ill> max{ I Ce I: e E E}, the following statements are
equivalent.

1. XO is an optimal solution to the symmetric traveling salesman problem
min{cx: xES}.

2. XO is an optimal solution to max{cx: xES}, where ce = ill - cefor all e E E.

3. XO is an optimal solution to max{cx: x E T}.

Proof 1 <=> 2. XO is an optimal solution to min{cx: xES} if and only if XO is an
optimal solution to max{-cx: xES}. But for any xES we have ill LeEE xe = mill, so 1
and 2 are equivalent.

2 <=> 3. Since ce > 0 for all e E E, it follows that if XO is an optimal solution to
max{cx: xED, then XO is a maximal element of T. But XO E S if and only if XO is a
maximal element of T. •

We begin our study of valid inequalities by first considering the lower- and upper
bound constraints

(3.1)

(3.2)

xe ~ 0 for all e E E

Xe :::s;; 1 for all e E E,

which are obviously valid for T and S.

Proposition 3.2. For all e E E, (3.1) and (3.2) givefacets of conv(T).

Proof All of the inequalities (3.1) are facets since T is a full-dimensional indepen
dence system.

For any e, e' E E, we have x(e,e'l E T. The n vectors x(el and x(e,e'l for all e' =1= e are
linearly independent and satisfy Xe = 1. Hence, all of the inequalities (3.2) are facets. •

The relative complexity of conv(S) in comparison with conv(T) is already seen by
observing that for m = 3, conv(S) contains the single point x = (l 1 1), so, for example,
(3.1) is not even a supporting hyperplane for any e E E. It can be shown, however, that
(3.1) yields facets of conv(S) for all e E E when m ~ 5, and all of the inequalities (3.2) yield
facets for m ~ 4.

272 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

We now introduce the two sets of constraints that are usually used in the integer
programming formulation of the symmetric traveling salesman problem. For U ~ V let
J(U) = {e E E: e has exactly one end in U}. If XES, then

(3.3)

and if x E T, then

(3.4)

I Xe = 2 for all v E V;
eEJ({v))

I Xe ~ 2 for all v E V.
eEJ({v))

The constraints (3.3) and (3.4) are the degree constraints for Sand T, respectively.

Proposition 3.3. For all v E V, the inequality (3.4) gives afacet of conv(T).

Proof Suppose that J({v}) = {e[, e2, ... ,em-I} and that {e[, e2, en} forms a cycle.
Consider the n vectors: x{eJ,ej) for} = 2, ... , m - 1; x{e2,e3), x{e 1,e2,ej} for} = m, ... , n - 1;
and x{eJ,e3,en

). Each of these vectors is in T and satisfies (3.4) at equality, and it is easy to
check that they are linearly independent. •

We now consider the dimension of conv(S).

Proposition 3.4. dim(conv(S» = n - m = m(m - 1)/2 - m.

Proof Let Q = {x E Bn: x satisfies (3.3)}. The equation system (3.3) defines a con
straint matrix of rank m. Hence, by Proposition 2.4 of Chapter 1.4, we have
dim(conv(Q» = n - m. Since conv(S) ~ conv(Q), it follows that dim(conv(S» ~ n - m.

To prove that dim(conv(S» = dim(conv(Q» = n - m, it suffices to show that if the
hyperplane nx = no, n =1= 0, contains the incidence vector of every tour, then nx = no is a
linear combination of the constraints (3.3).

The edge set of the graph G is E = {(i,}): i = 1, ... ,m - I,} = i+ 1, ... ,m}. The
variable x e for e = (i,}) is written as x ij.

Let} E {4, ... ,m} and Pj3 be a path from} to 3 through all of the points {4, ... , m}.
Now consider the pairs of tours T} = Pj3 U {(I, i), (1, 2), (2, 3)} and TJ = Pj3 U
{(2, i), (1, 2), (1, 3)}, shown in Figure 3.1. Since T} and TJ lie on the hyperplane nx = no, it
follows that nlj + n23 = n2j + nl3 or n2j - nlj = n23 - nl3 for} = 3, ... , m. Let AI = n2j - 1Clj

for} = 3, ... , m. By an identical argument, we obtain the following for i = 1, ... , m:
Ai = 1Ci+IJ - 1Cij for} > i + 1 and Ai = 1Cj,i+1 - 1Cji for} < i.

j 1 j

~ 1
Pj3

3 2 3 2

Tl T2
j j

Figure 3.1

3. Valid Inequalities for the Symmetric Traveling Salesman Polytope

Thus for any coefficient nil' we have

nil = (ni) - ni-I,j) + ni-I,j

= (nu - ni-I) + ... + (n2j - nlj) + nlj

i-I

= L At + nlj
t=1

i-I

= L At + (nlj - nl,j_l) + nlJ-I
1=1

i-I

= L At + (nlj - nl,j_I) + ... + (n13 - n12) + nl2
t=1

i-I j-I
= L At + L At + nl2

t=1 1=2

where Ui = ~::l At for i > 1 and UI = O. Let a = nl2 - U2. Hence

m-I m m-I m

L neXe = L L ni)xU = L L (Ui + Uj + a) xi)
eEE i=1 j=i+1 i=1 j=i+1

= I [(Ui + ~)(~ Xji + ~ Xi))]
1=1 2 J<l J>l

= L U v + - L Xe , [(a)()]
vEV 2 eEJ«(v})

273

which establishes that the constraint is a linear combination of degree constraints with
no = 2LvE V U v + mao •

A cycle of G that does not contain all of the nodes is called a subtour. In a cycle, each
vertex is of degree 2. Hence if XE' E Bn satisfies (3.3) for all v E V, then the subgraph
G' = (V, E') is either a tour or a set of disjoint subtours (see Figure 3.2). Such subgraphs
are called 2-matchings.

We now introduce a set of constraints that are valid for T and are not satisfied by any
subtours. For W s V, let E(W) = {e E E: both ends of e are in W}. If E' ~ E and
IE' n E(W) I ~ I WI, the subgraph G' = (V, E') contains at least one subtour. This yields
the subtour elimination constraints

(3.5) L x e ~ I WI - 1 for all W C V, 2 ~ I W I ~ m - 1.
eEE(J.V)

Figure 3.2

274 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

We have included the case I WI = 2 in (3.5), although it is not a subtour elimination
constraint, since these are simply the upper-bound constraints Xe ;::::; 1 for e = (u, v) and
W = {u, v}. Thus we no longer need to consider (3.2).

In addition, if the degree constraints (3.3) are satisfied for all v E V, then (3.5) is
superfluous for all W with I W I ~ lm/2j + 1. This is obvious when I W I ~ m - 2. In
general, when each node is of degree 2 and LeEE(W) Xe ~ I W I, then every v E W is in a
subtour and there can be no edges between Wand V \ W. Hence LeEE(W) Xe = I WI and
LeEE(v\W) Xe = I V \ W I. Thus it suffices to use (3.5) for either Wor V \ W.

Proposition 3.5. The subtour elimination inequalities (3.5) give facets of conv(S) for
m ~ 4 for all Wwith 2 ;::::; I WI ;::::; lm/2j.

Proof We show the result for m ~ 6 and 3 ~ I W I, where W = {l, ... ,k} and
k ~ lm/2j. The remaining cases are left as exercises. Note that the inequalities (3.5)
represent proper faces since each of them is satisfied at equality by some tour and is a strict
inequality for some other tour.

We prove the result by showing that the conditions of Theorem 3.6 of Section 1.4.3
hold. Here nx ~ no represents a subtour elimination inequality (3.5), A =X = b= represents
the degree constraints (3.3), and we are concerned with solutions to the linear system
AxT; = Ao, where {Ta7::t is a set of tours that satisfy nxT; = no. Hence it suffices to
demonstrate that all solutions (A, Ao) to AxT, = Ao for i = 1, ... , n - m are of the form
A = om + uA=, Ao = ana + ub= for some a E R I and u E Rm.

First observe that if (A, Ao) is a solution, there is a solution (X, AD) with X = A + u 'A =,
where Ai) = 1 for j = 2, ... ,k, A23 = 1, and Ai) = 0 for j = k + 1, ... ,m. To see this, we
observe that the m x m node-edge incidence matrix

el2 e13 e23 el4 elm

1 1 0 I 1 1

2 0 1 1 0 0 1
3 0 1 1 1 0 0

B= 4
------1------

1

0
1

I 1
1

m I

is nonsingular. Hence the appropriate m components of X can be fixed by solving the
m x m system

We now show in the following series of steps that: Au = 1 if i, JEW; Au = 0 if i E W,
j tf:- W; and AU = pfor i,j tf:- W

Consider the two tours T, = PI U {l, 3} U P2 U {2, i} and T2 = PI U {l, i} U P2 U {2, 3}
shown in Figure 3.3 that are assumed to satisfy (3.5) at equality. We leave it to the reader to
establish the existence of such tours. Since T, and T2 contain k - 1 edges in E(W), we
require A'XTI = XXT2 = AD. Thus Ai3 + A2i = Aii + A23, so A2i = 1 if 4 ;::::; i ~ k and A2i = 0 if
k < i ~ m.

3. Valid Inequalities for the Symmetric Traveling Salesman Polytope 275

1 3 3

2 2

~~igure 3.3

The remaining cases are similar. We stipulate tours TI and T2 with k - 1 edges in E(W)
and n - k - 1 edges in E(V \ W) containing paths PI and P2 with specified endpoints
whose intermediate nodes are the remaining nodes of Wand V \ W, respectively.

Suppose 3 ~ i ~ k and consider two tours TI = PI U {i, j} U P2 U {l, 2} and T2 = PI U
{l, j} U P2 U {2, i} with Ph P2 having endnodes 2, j and 1, i, respectively. This gives .,1;2 +
Au = A;j + Ali, or Au = 1 for all j with 3 ~ i < j ~ k and Au = 0 for all j with k < j ~ m.

The final case involves p, q, r ff:. W, tours TI = PI U {I, p} U P2 U {q, r} and T2 = PI U
{l, r} U P2 U {p, q} and paths Ph Pz with endpoints 1, q and p, r, respectively. Then we have
Alp + A~r = Air + A;q so that A;q is a constant P for all p, q $- W.

Hence we have shown that A' x ~ = AD is of the form

I X ~i + P I x P = I WI - 1 + P(I V \ WI - 1)
eEEUV) eEE(V\ 11')

for any xTi that satisfies (3.5) at equality.
Now defining u2 E Rm by uT = P/2, i E W, UT = -P/2, i E V \ W, we have that

(A' + u 2A=)xTi = (A' + u2b=) is of the form

(1 + P) I X ~i = I WI - 1 + P(I V \ WI - 1) + PI WI - PI V \ WI
eEE(W)

= (1 + jJ)(I WI - 1),

so that (1 + jJ)n = A' + u2A= and (1 + p)no = ~ + u2b=. Hence Theorem 3.6 of Section 1.4.3
applies with

•
Let p LP = {x ERn: x satisfies (3.1), (3.3), and (3.5)}. For m ~ 5, it can be shown that

conv(S) = p LP
• A subgraph on six nodes is shown in Figure 3.4. The reader can check that

X~l = ~ for i = 1, ... , 6, X~i = 1 for i = 7, 8, 9, and X~i = 0 otherwise is an extreme point of
p LP since it is the unique optimal solution to min{cx: x E pLP}, where Cei = 1 for i =

1, ... , 6, cel = 0 for i = 7, 8, 9, and Cel is suitably large otherwise. To define a polytope that
contains conv(S) but not xo, we use a rank 1 C-G inequality. Use weights of 1 on the degree
constraints for nodes 1, 2, and 3, weights of 1 for the constraints xei ~ 1, for i = 7, 8, 9,
weights of ~ on -xe, ~ 0 for all other edges with one end in {l, 2, 3}, and round down the
right-hand side. This yields

276 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

e7 5

e2 e5

3 es 6
el

e3 e6

2 e9 4

Figure 3.4

In general, let H be any subset of nodes with 3 ::::; I HI::::; I V I - 1 and let E C E be an
odd set of disjoint edges, each of which has one end in H. Then using weights of! on the
degree constraints for all v E H, weights of! on -xe::::; 0 for all e E 6(H) \ E, weights of!
on Xe ::::; 1 for all e E E, and rounding yields that

(3.6)

is a valid inequality for T. Note that if I E I = 1, (3.6) is dominated by subtour elimination
constraints, so we only consider (3.6) for I E I ~ 3.

The inequalities (3.6) are called 2-matching inequalities since they are needed to define
the convex hull of 2-matchings. Now we have that conv(S) ~ pLPI = {x ERn: x satisfies
(3.6)} n pLP. In fact it can be shown that pLPI = conv(S) on all graphs with six or fewer
nodes. But, for m ~ 7, more general inequalities are needed.

A subgraph for generating a 2-matching inequality is shown in Figure 3.5. It resembles
a comb with handle H and teeth U'j = {Ui, Vi} for i = 1, ... , k, where k ~ 3 is odd. We can
restate (3.6) as

• H •

Figure 3.5

3. Valid Inequalities for the Symmetric Traveling Salesman Polytope 277

A general comb is shown in Figure 3.6. Here the teeth JIJIj for i = 1, ... , k, can contain
more than two nodes and can have more than one node in common with the handle.
Specifically a comb is a subgraph generated by a node set {H, Wt, ... , Wd with the
following properties:

1. I H n JIJIj I ~ 1 for i = 1, . . . , k.
2. I JIJIj \ H I ~ 1 for i = 1, ... , k.
3. 2 ~ I JIJIj I ~ m - 2 for i = 1, ... , k.
4. JIJIj n Uj. = 0 for i "* j.
5. k is odd and at least 3.

Proposition 3.6. For any subgraph ofG that is a comb, the comb inequality

(3.7)
k k k + 1

I Xe + I I Xe ~ IH I + I (I JIJIj I - 1) - -2-
cEE(H) i=l eEE(W;) i=l

is valid for T.

Proof First weight the degree constraints for v E H by ~ and sum them. This yields

(3.8)
1 I x e +-2 I Xe~ IHI.

eEE(H) eEO(H)

Now add -~Xe ~ 0 for all e E ,J(H) \ U7=1 E(JIJIj) to (3.8) to obtain

(3.9)
1 k

I xe+-I I Xe~ IHI.
eEE(H) 2 i=1 eEO(H)nE(W;)

Consider the subtourelimination constraints for UIj, H n UIj, and UIj \ H, respectively:

(3.10)

(3.11)

(3.12)

I Xe ~ I JIJIj I - 1 for i = 1, ... , k
eEE(W;)

I Xe ~ IH n JIJIj I - 1 for i = 1, ... , k
eEE(Hnw;)

I Xe ~ I UIj \ HI - 1 for i = 1, ... , k.
eEE(W;\H)

Figure 3.6

278 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

The edge e appears in (a) (3.10) and (3.11) if e E E(H n Wi), (b) (3.10) and (3.12) if
e E E(Wi \ H), and (c) (3.10) and the left-hand side of (3.9) with a coefficient of ~ if
e E J(H) n E(Wi). Also note that (3.11) [respectively, (3.12)] is trivial when IH n Wi I = 1
[respectively, I Wi \ H I = 1]. Hence by multiplying each of the inequalities (3.10)-(3.12)
by! and adding them to (3.9), the result is

k

I Xe + I I Xe
eEE(H) i=l eEE(W';)

1 k
~ IH I + 2 ~ [(I Wi I - 1) + (IH n Wi I - 1) + (I Wi \ HI - 1)]

1 k

= IH I + 2 ~ [(I Wi I - 1) + (IH n Wi I - 1) + (I Wi I - 1 - IH n Wi I)]

k 1
= IH I + I (Ilf': I - 1) - -k.

i=l 2

Then, since k is odd, by rounding we obtain

k k k + 1
I xe+I I xe~IHI+I(IWiI-l)--2-'

eEE(H) i=1 eEE(W;) i=1

Consider the comb C shown in Figure 3.7. The comb inequality (3.7) is

12 3 + 1
~ xe; + x e2 ~ I HI + I WI I - 1 + I U121 - 1 + I U'31 - 1 - -2-

=4+2+2+ 1-2=7.

W2

Figure 3.7

•

3. Valid Inequalities for the Symmetric Traveling Salesman Polytope 279

The comb inequalities have coefficients in {a, 1, 2} and the 2's appear on Xe if
e E E(fVi n H) for some i. These inequalities are rank 1 C-G inequalities with respect to
the inequalities (3.1), (3.3), and (3.5).

The comb inequalities can be generalized to obtain higher-rank C-G inequalities by
considering generalized combs that have teeth which themselves are combs. Consider the
graph of Figure 3.8. The handle HI has three teeth, namely, Wt, W2, and C, where Cis
comb. We require that C n HI contain no vertices of H 2 and that each original tooth fVi
has at least one node that is not contained in any handle. To derive a valid inequality for
the graph of Figure 3.8, we proceed as we did in deriving the comb inequalities. Hence the
following inequalities are weighted by ~ and summed, and then the resulting right-hand
side is rounded down:

1. degree constraints for HI;

2. nonnegativity constraints for e E J(H I) \ (E(WI) U E(~) U E(Ws»;
3. subtour elimination constraints for Tfj, Tfj n HI and Tfj \ HI for i = 1, 2 and for

Hin Ws;
4. comb inequalities (3.7) for C and C \ HI.

The result for the graph of Figure 3.8 is

2 S 2 4 k+l
(3.13) I I Xe + I I Xe ~ I IHiI + I (I W;I - 1) + (I Wsl - 2) - -2-'

i=1 eEE(H;) i=1 eEE(W;) i=1 i=I

where k = 5. The left-hand side 0[(3.13) is clear. The contributions to the right-hand side
are, respectively, from

1. IHtI,
3. ![(21 WI I - 3) + (21 ~ I -3) + I HI n Ws I -1] = I WI I - 1 + I ~ I - 1 - i +

~IH,nWsI,and

4. H(21ff31-2)+(21W41-2)+(IWsI-l)+(IWs\H11-1)]-2+ IH21.

Hence rounding yields

IHd + IH21 + ~ (lit; I - I) + l-~J
4 k + 1

= IHII + IH21 + ~ (I Jfj 1- 1) + (I Ws 1 - 2) - -2-'

Figure 3.8

280 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

Figure 3.9

Inductively, we can build still more complicated generalized combs (see Figure 3.9).
Besides properties 1-5 given in the definition of a comb, it is required for a graph with k
teeth and r handles that:

6. Hi n H j = 0 for i =1= j;

7. Uj \ Uf=1 Hi =1= 0 for j = 1, ... , k; and
8. if Hi n Uj =1= 0 and Hi n Uj is deleted from the generalized comb graph, then the

resulting graph is disconnected.

When these conditions are satisfied it can be shown inductively that the generalized
comb inequality

(3.14)

where Wi is the number of handles met by HIi, is valid for T. Moreover, for a complete
graph we have the following theorem.

Theorem 3.7. The generalized comb inequalities (3.14) givefacets ofconv(S).

The proof of this theorem is much too long to give here.
Theorem 3.7 generates a very large class of facets, but there are yet other classes. For

example, the famous Petersen graph G = (V, E') on 10 nodes (see Figure 3.10) does not
contain a tour, which means ~eEE' X e :::::; 9 is valid for the complete graph on 10 nodes. In
fact, it can be proved to represent a facet of conv(S). But it does not belong to any of the
families of valid inequalities introduced in this section.

Figure 3.10

4. Valid Inequalities for Variable Upper-Bound Flow Models 281

The Petersen graph belongs to a certain infinite family of graphs G == (V, E') that do not
contain any tours. From some graphs in this class, we obtain facets of conv(S) represented
by valid inequalities of the form LeEE' Xe ~ I V I - 1. Yet these graphs are not likely to have
a good characterization. So one cannot expect to have a good characterization of the
corresponding facets.

Fortunately, such facets have not been necessary in the solution of many symmetric
traveling salesman problems in the literature by algorithms that use cutting planes and
branch-and-bound.

4. VALID INEQUALITIES FOR VARIABLE UPPER-BOUND FLOW MODELS

We consider a single-node flow model with an exogenous supply of band n outflow arcs
(see Figure 4.1). For each} EN == {l, ... , n} the flow Yj E Rl on the}th arc is bounded by
the capacity aj ifarcj is open (Xj = 1) and ° otherwise. We call this relationship a variable
upper bound on the flow Yj. Since the total outflow cannot exceed b, this model can be
represented by the mixed-integer region

(4.1)

Our initial objective is to find strong valid inequalities for T. Consider the polytope

used in the formulation of T, that is, T = P n {x E zn, Y ERn}. The fractional extreme
points of P are characterized in the following proposition.

Proposition 4.1. All fractional extreme points of P are of the form

Yj = 0, Xj E {O,l} for} $. C.

where C ~ N is a dependent set of S = {x E Bn: LjEN ajXj ~ b}, k E C and C \ {k} is
independent.

~---b

Figure 4.1

282 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

There are simple valid inequalities for T that cut off these fractional extreme points of
P. Let A = 1:jEC aj - b be the excess capacity of the arcs in a dependent set C. For k E C,
the capacity of the set C \ {k} is

and for any C' C C, the capacity of the set C \ C' is

Thus we have proved

Proposition 4.2. lfC 5; N is a dependent set ofS and A = 1:jEC aj - b, then

(4.2) I Yj ~ b - I (aj - At (1 - Xj)
jEC jEC

is a valid inequality for T given by (4.1).

Since the point (x, y) given in Proposition 4.1 is such that 1:jEC Yj = b, ak - A > 0, and
Xk < 1, it follows that (x, y) does not satisfy (4.2).

Example 4.1. Consider the set T given by:

T = {x E B4, Y E R!: I Yj ~ 9, YI ~ 5Xb Y2 ~ 5X2, Y3 ~ X3, Y4 ~ 3X4}.
jEN

C = {l, 2, 3, 4}, A = 5: (4.2) yields YI + Yz + Y3 + Y4 ~ 9
(the original inequality)

C = {l, 2, 4}, A = 4: (4.2) yields YI + Yz + Y4 ~ 9 - (1 - XI) - (1 - Xz)
or Y I + Yz + Y 4 - X I - X 2 ::;:;; 7.

C = {l, 2, 3},

C = {l, 2},

A = 2: (4.2) yields
YI + Y2 + Y3 ~ 9 - 3(1 - XI) - 3(1 - X2)
or YI + Yz + Y3 - 3xI - 3xz ~ 3

A = 1: (4.2) yields YI + Yz ~ 9 - 4(1 - Xl) - 4(1 - X2)
or YI + Y2 - 4xI - 4X2 ~ 1.

b

Figure 4.2

4. Valid Inequalities for Variable Upper-Bound Flow Models 283

Each of the inequalities of Example 4.1 can be shown to give a facet of conv(T).
Moreover ifmaxjEc aj > A, then the inequality (4.2) gives a facet of conv(T). We postpone
the proof of this result to consider a more general model that also includes inflow arcs.

Let

(4.3) T={XEBn,YER~: L Yj- L yj~b,Yj~ajXjfOrjEN},
jEN+ jEN-

where N+ U N- = N (see Figure 4.2). Here aj E Rl for j EN and b E R I, that is, b can be
negative. We say that C f; N+ is a dependent set if LjEC aj > b. Note, for example, that if
b < 0, every subset of N+ is dependent.

We can now generalize Proposition 4.2.

Proposition 4.3. If C f; N+ is a dependent set, A = LjEC aj - b, and L f; N-, then

(4.4) L [Yj + (a j - At (l - Xj)] ~ b + L AXj + L Yj
JEC jEL jEN-\L

is a valid inequality for T given by (4.3).

Proof Let C+ = {j E C: aj > A}. Suppose a feasible point (x, y) E T is given and
N I = {j EN: Xj = 1}. Note that ifj $:. N I

, then Yj = Xj = O.

Case 1. C+ \ N I = 0 and L n N I = 0.

= L Yj
jECnNI

~ L Yj
jEN+nN'

~ b + L Yj
jEN-nN'

~ b + L Yj
jEN-\L

= b + L Yj + L Axj
jEN-\L jEL

Case 2. (C+ \ N I
) U (L n N I

) * 0.

(since C+ \ N l = 0)

(since C ~ N+)

[by (4.3) and Yj = 0 ifj $:. N I
].

(since L n N I = 0)

(since L n N 1 = 0 and Xj = 0 for j $:. N I
).

~ L aj + L aj - A I C+ \ N I I (since Yj ~ aj for allj)
jECnNI jEC+\Nl

~ L aj-A+A IL nNII
JEC

= b + L Axj
jEL

(since Xj = 1 for j E N I and A = L aj - b)
JEC

~ b + L Axj + L Yj (since Yj ~ 0 for j EN).
jEL jEN-\L •

284 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

Example 4.2. The feasible set T is given by

Yl + Y2 + Y3 + Y4 ~ 9 + Ys + Y6

Yl ~ 5xI, Y2 ~ 5X2, Y3 ~ X3, Y4 ~ 3X4, Ys ~ 3xs, Y6 ~ X6,

Y ER~,x EB6.

Taking C = (1, 2, 3) and L = {5), we have A = 2 and (4.4) yields

(4.5)
[Yl + 3(1 - Xl)] + [Y2 + 3(1 - X2)] + Y3 ~ 9 + 2xs + Y6, or

Yl + Y2 + Y3 - Y6 - 3X l - 3X2 - 2xs ~ 3.

We can establish the dimension of the face formed by (4.5) by specifying a set of linearly
independent points that satisfy it at equality:

C N+\C L N-\L

r * ,
Yl Xl Y2 X2 Y3 X3 Y4 X4 Ys XS Y6 X6
3 1 5 1 1 1 0 0 0 0 0 0 Zl

5 1 3 1 1 1 Z2

3+£ 1 5 1 1-£ 1 Z3

0 0 5 1 1 1 Zl

5 1 0 0 1 1 Z2

4 1 5 1 0 0 Z3

0 0 5 1 1 1 0 1 24
0 0 5 1 1 1 £ 1 -4

Z
5 5 0 0 2 1 Ws

5 5 0 0 2+£ 1 Ws

3 5 0 0 0 0 0 w6

3+£ 5 0 0 0 0 £ w6

where e is a small positive number.
An ad hoc argument shows that these 12 points are linearly independent so that (4.5)

gives a facet of conv(T).

More generally, we have the following theorem.

Theorem 4.4. !fmax.EC a. > A, and a. > Afor j E L, then (4.4) gives afacet ofconv(T),
J J J

where T is given by (4.3).

Proof We prove the theorem by giving 2n points of T that define the coefficients in
(4.4) up to a scalar multiple; that is, the unique solution (n, f.1..) to nxi + f.1..y i = no for i =

1, ... ,2n is a scalar multiple of the coefficients in (4.4).
Let Zi = (yi, Xi) E T for i = 1, ... ,2n. For clarity, we write

where Cyi, IXi) are the (y, x) values for the arcs in C, eyi, 2X i) are those for the arcs in
N+ \ C, Cyi, 3X i) are those for the arcs in L, and (4yi, 4X i) are those for the arcs in N- \ L.

Suppose that al = maXjEC aj > A. Let ei be the ith unit vector, l' = (1, 1, ... , 1) and let e
be a small positive number. By ly = a, we mean lYj = aj for all j E C. The points given

4. Valid Inequalities for Variable Upper-Bound Flow Models 285

below are the general versions of the points given in Example 4.2. We leave it to the reader
to check that they are in T and satisfy (4.4) at equality. We first describe a set of 21 N+ 1
points:

i. Zk = (a - Aeb 1, 0, 0, 0, 0, 0, 0)
= (a - (A - e)el -eek, 1,0,0,0,0,0,0)

for k E C with ak ~ A
for k E C with ak < A.

11. Zk = (a - akek, 1 - eb 0, 0, 0, 0, 0, 0) for k E C with ak ~ A
= (a - (A - ak)el - akek, 1 - ek, 0, 0, 0, 0, 00) for k E C with ak < A.

iii. zj = (a - ale!, 1 - eI, 0, ej, 0, 0, 0, 0)

iv. ? = (a - ale!, 1 - e!, eej, ej, 0, 0, 0, 0)

for} E N+ \ C.

for} E N+ \ C.

Suppose these points satisfy LjEN (njxj + /-ljYj) = no. By comparing Zl, zj, and zj, we see
that '!Cj = /-lj = ° for} E N+ \ C. For each of the points Zk, we have LjEC /-ljyj = '!Co - LjEC '!Cj.
It can then be seen that /-lj = /-lo for all} E C. Moreover, since LjEC yj = b, we also have
!-lob + LjEC '!Cj = '!Co.

From the points Zk, we see that when k E C and ak ~ A we obtain

/-lO(I aj) + I '!Cj = '!Co· jEC\{k} jEC\{k}

Thus /-loeb - LjEC\{kl aj) + '!Ck = 0. Since LjEC aj = b + A, we obtain /-lo(A - ak) = '!Ck when
ak ~ A. On the other hand, when ak < A, we have

Hence

or '!Ck = 0.

I yj = I a j + a I + a k - A = b.
JEC jEC\{i,k}

!-lob + I '!Cj = '!Co
jEC\{k}

In summary, our inequality must be of the form

Now we describe another set of21L 1 points:

v. for k E L

wk = (a, 1, 0, 0, (A + e)eb eb 0, 0) for k E L.

From wk and wk, we obtain /-lk = ° for k ELand that

or

'!Ck = !-lo(b - I aj) = -/-loA for k E L.
JEC

286 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

The final 21 N- \ L 1 points are:

VI.

-k -
W = (a - (A - a)e), 1,0,0,0,0, aeb ed

for k E N- \ L

for k E N- \ L.

Comparing Z 1 and wk, we see that Jrk = ° for k E N- \ L. Comparing wk and wk
, we

see that a(J.lo + J.ld = ° or J.lk = -/10 for k E N- \ L.

Using the results ofv and vi, the inequality must be of the form

(4.6)

Now with J.lo = 1, we obtain (4.4).
It remains to show that not all points (x, y) E T satisfy (4.6) at equality. Since b> 0 is

implied, the point given by y. = 0 for) EN, x. = 1 for) E N+, andx. = 0 for) E N- is in T,
and, when substituted in (4.6), one obtains z~o on the left-hand side and b > 0 on the right.

Additional results along these lines are known. For example, if we require
LjEN+ Yj - LjEN- Yj = b in (4.3), then (4.4) is, of course, still a valid inequality for T.
Moreover, under some mild additional assumptions, (4.4) still gives a facet of conv(T).
Also, some other valid inequalities for T given by (4.3) are known (see Section 11.6.4).

The flow model with constraint set T given by (4.3) is much more general than it
appears. With some additional simple constraints, it can be used to represent any linear
inequality involving both continuous and 0-1 variables in which some of the continuous
variables have simple upper bounds while the others have variable upper bounds.

Suppose T' is the set of feasible solutions to

L (ajzj + ajxj) + L a)z) + L ajx) ~ b
jEll)Eh jEh

° ~ z) ~ k)x) for) E 1)

° ~ z) ~ k) for) E 12

x) E {a, 1} for) E J] U J 3 ,

In addition we assume for simplicity that (X; > 0 for) E 13 and alai ~ 0 for) E 1 1•

Now let 1T = (j E 1 1: a) > a}, 11 = 1) \ 1t, 1~ = (j E 12: a) > o} and 12 = 12 \ 1i. Define
Xj E {a, 1} for) E 12,

(4.7) Y) =

and

ajZj + a;x)
-(a)z) + n;x)

a)z)
-a)z)

a;x)

for) E 11
for) E 11
for) E 12
for) E 12
for) E 13,

4. Valid Inequalities for Variable Upper-Bound Flow l\tlodels

ajkj + a;
-(ajkj + a;)

aj = ajkj
-ajkj

a;

Now T' is given by the flow model constraints

for} EJt
for} E J1
for} E J2
for} E J2
for}EJ3•

I Yj ~ b + I Yj
jEN+ jEN-

287

where N+ = Jt u J2 U J 3 and N- = J1 U J2, together with the additional constraints Xj = 1
for} E J 2, Yj = ajxj for} E J 3, and (4.7). Thus (4.4) is a valid inequality for T'.

We now give some examples of the use of(4.4) in different models.

Example 4.3. (The 0-1 Knapsack Problem: S = {x E Bn: LjEN ajXj ~ b} with aj E R~ for
j EN and b E Rl). Here N+ = Nand Yj = ajxj for} EN. Let C be a minimal dependent
set so that A = LjEC aj - b > 0 and aj > A for} E C. Then (4.4) yields

I (ajxj + (aj - A)(l - Xj)) ~ b
JEC

or

A I Xj ~ b - I a j + A I C I = A(I C I - 1),
JEC JEC

which is precisely the constraint (2.2).

Example 4.4 (Facility Location). Suppose

where 0 < aj < ao for all} E N+. Here ao is the capacity of a facility and Xo = 1 if and only if
the facility is open. The flow from the facility to client} is Yh and aj is the maximum
requirement of client}. Here b = 0, N- = {a}, and Yo = aoXo. Take C = {j} so that A = aj and
take L = N-. Then (4.4) yields Yj ~ ajXO for} E N+, that is, Yj = 0 if Xo = 0 and Yj ~ aj if
Xo = 1.

Example 4.5 (Machine Scheduling). Suppose that two jobs must be executed on the
same machine. The ithjob for i = 1,2 has an earliest start time of Ii and a processing time
of Pi> O. The machine can only process one job at a time, and our objective is to model
this restriction.

288 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

Let J = 1 if job 1 is processed before job 2 and let J = 0 otherwise; for i = 1, 2, let t i be the
time at which the machine begins to process job i. Then we have the model

-t I + t 2 ~ PI - w(1 - J)

ti ~ Ii for i = 1,2 and J E BI,

where W is a suitably large number so that the first constraint is valid when J = 1 and the
second is valid when J = O.

Suppose 12 + P2 > 11' By substituting Yi = t i -Ii and X3 = J, the first constraint becomes

whereYb Y2 ~ 0 andx3 E BI. HereN+ = {2}, N- = {l, 3}, Y3 = WX3, and b = II -/2 - P2 < O.
Take C = 0 so that ..1= -b > 0 and take L = {3}. Then (4.4) yields 0 ~ -A + AX3 + YI.

Translating back into the original variables, we obtain

that is, tJ ~ II and if J = 0, then tl ~ 12 + P2.

While the general inequalities (4.4) can be quite useful, still more valid inequalities may
be obtained by using the structure of a problem. We illustrate this by considering the
constraint set of an uncapacitated lot-size problem that involves production planning over
a horizon of T periods [see (5.4) of Section 1.1.5].

In period t, t = 1, ... , T, there is a given demand of dt E Rl that must be satisfied by
production in period t and by inventory carried over from previous periods. The
production in period t iSYt, 0 ~ Yt ~ WXt, where W is a large positive number, andxt E BI
equals 1 if the plant operates during period t and equals 0 otherwise. Let St be the inventory
at the end of period t. Thus we obtain the constraints

YI=dl+S I

(4.8)
St-I + Yt = dt + St for t = 2, ... , T

Yt ~ WXt for t = 1, ... , T

ST = 0, S E RI, Y E RI, x E BT.

The constraints for a single period, namely,

are an equality-constrained version of the flow model (4.3). Thus from (4.4), we obtain the
valid inequalities

(4.9)

which simply state the obvious facts that St ~ 0 when X t = 0 and St ~ Yt - dt when X t = 1.
We now develop a more general set of inequalities for the system given by (4.8).

4. Valid Inequalities for Variable Upper-Bound Flow Models 289

Proposition 4.5. For any 1 ~ I ~ T, L = {I, ... , !}, and C £ L,

(4.10)

is a valid inequality for (4.8).

Proof Take any feasible solution (y, s, x) to (4.8). If Xi = 0 for all i E C, thenYi = 0 for
all i E C and (4.10) reduces to s I ~ O.

Now suppose that Xi = 1 for some i E C and let k = min{i E C: Xi = n. Hence Yi = 0
for all i E C with i < k and thus

I I I

L Yi ~ L Yt = L dt + SI - Sk-I ~ L dt + SI
iEC t=k t=k t=k

(since Xk = 1). •
Note that when C = {l}, (4.10) yields (4.9). There is, in fact, a much stronger result here

whose proofwill not be given.

Theorem 4.6. The convex hull of solutions to (4.8) is given by the constraints S E RI,
Y E RI, x E RI, Xt ~ 1 for all t, Sr= 0, YI = d l + SI> and St-I + Yt = dt + stfor t = 2, ... , T
and by the inequalities (4. 10) for alii and C =1= 0.

Example 4.6. Suppose Cd!, d2, d3, d4) = (4 2 7 3). The convex hull of solutions to (4.8)
is given by the inequalities

1= 1, C = {l} YI ~ 4xI + SI

1= 2, C = {2} Y2 ~ 2X2 + S2

1= 3, C = {2} Y2 ~ 9X2 + S3

1= 3, C = {3} Y3 ~ 7X3 + S3

I = 3, C = {2, 3} Y2 + Y3 ~ 9X2 + 7X3 + S3

1= 4, C = {2} Y2 ~ l2x2 + S4

1= 4, C = {3} Y3 ~ 10x3 + S4

1=4,C={4} Y4 ~ 3X4 + S4

1=4, C = {2, 3} Y2 + Y3 ~ 12x2 + 10x3 + S4

I = 4, C = {2, 4} Y2 + Y4 ~ l2x2 + 3X4 + S4

I = 4, C = {3, 4} Y3 + Y4 ~ 10x3 + 3X4 + S4

1=4, C = (2, 3, 4) Y2 + Y3 + Y4 ~ l2x2 + 10x3 + 3X4 + S4

YI=dl+s l

St-1 + Yt = dt + St for t = 2,3,4

S4 = 0, S ER!, Y ER!, x ER!, Xt ~ 1 for t = 1, ... , 4.

290 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

The reader is asked to check that the I = 1, C = {l} inequality is equivalent to x, = 1,
since y, = 4 + s 1 and x 1 ~ 1. It then follows that all the other inequalities that could be
generated with 1 E C are superfluous. All the inequalities given above with 1 $. C give
facets except the last four. The last four inequalities are superfluous because S4 = O.

Although most production planning problems are much more complicated than our
simple model in that they involve plant capacities, multiple items, and multistage
production, they frequently have the system (4.8) as part of their formulation. Hence the
theoretical results for the system (4.8) can be used in improving the formulation of more
realistic production planning problems (see Section 11.6.4).

5. NOTES

Section 11.2.1

The idea of using structure to obtain strong valid inequalities for ffg}-hard integer
programs has its roots in the work of Dantzig, Fulkerson and Johnson (1954, 1959) on the
traveling salesman problem and in the work of Gomory (1965, 1967, 1969, 1970) on the
group problem.

Facet-defining inequalities for the node-packing problem were given by Padberg (1973),
Nemhauser and Trotter (1974), Chvatal (1975), Trotter (1975), and Giles and Trotter
(1981).

Gomory (1969) introduced the idea of lifting in the context of the group problem. Its
computational possibilities were emphasized by Padberg (1973), and the approach was
generalized by Wolsey (1976), Zemel (1978), and Balas and Zemel (1984).

The significance of having a partial description of the convex hull of integer solutions is
strongly emphasized in the survey by Padberg (1979).

Section 11.2.2

Facet-defining inequalities for the knapsack polytope were studied simultaneously by
Balas (1975a), Hammer, Johnson and Peled (1975), and Wolsey (1975). Proposition 2.6 is
due to Balas (1975a). Also see Balas and Zemel (1978), Padberg (1980b), and Zemel (1986).

The problem of extending these results to two or more general constraints remains an
important open question.

Section 11.2.3

The study of the convex hull of tours for the symmetric traveling salesman problem is
largely due to Grotschel and Padberg (1979a,b, 1985). The proof of Proposition 3.4 is due
to Maurras (1975). A different proof is given by Grotschel and Padberg (1979a).

Subtour elimination constraints were introduced by Dantzig, Fulkerson and Johnson
(1954, 1959) and were shown to define facets of the convex hull of tours by Grotschel and
Padberg (1979b).

Comb inequalities in which each tooth contains only one node of the handle are due to
Chvatal (1973b). Chvatal's combs were generalized and were shown to define facets by
Grotschel and Padberg (1979b). The inequalities (3.14) are due to Grotschel and Pulley
blank (1986). They called them clique-tree inequalities and proved that they define facets
of the convex hull of tours.

The facet-defining inequality obtained from the Petersen graph is due to Chvatal
(l973b). The Petersen graph is the smallest of a large class of graphs known as hypo
hamiltonian graphs that give facets for which no good characterization is known (see

6. Exercises 291

Grotschel, 1980b). Another such class of graphs has been studied by Papadimitriou and
Yannakakis (1984).

Other polyhedral results for the symmetric traveling salesman problem have been
obtained by Cornuejols and Pulleyblank (1982), Cornuejols, Naddef and Pulleyblank
(1983), and Cornuejols, Fonlupt and Naddef (1985).

Facets for the convex hull of tours on a directed graph have been studied by Grotschel
and Padberg (1975) and Grotschel and Wakabayashi (1981a,b). Grotschel and Padberg
(1985) surveyed these results.

Section 11.2.4

The basic results for the variable upper-bound flow model are from Padberg, Van Roy and
Wolsey (1985). Martin and Schrage (1985) obtained similar inequalities using different
arguments. Van Roy and Wolsey (1986) have generalized these results to handle variable
lower bounds.

The facet-defining inequalities for the lot-size model (4.8) were developed in Barany et
al. (1984). Extensions to handle capacities are given in Leung and Magnanti (1986) and
Pochet (1988), and those to treat backlogging are given in Pochet and Wolsey (1988). Valid
inequalities for more general fixed-cost network problems are given in Van Roy and
Wolsey (1985).

6. EXERCISES

1. Use clique inequalities, odd hole inequalities, and lifting to derive facets for the
convex hull of node pac kings for the graph in Figure 6.1.

2. Prove Proposition 1.2.

3. Consider the uncapacitated facility location problem (UFL) introduced in Sec
tion 1.1.3, with

T = {x E Bn, y E R';!n: I Yij = 1 for i EM, Yij ~ Xj for all i E M,j EN}.
JEN

i) Show that dim(conv(1) = mn - m + n.

ii) Show that Y ij ~ Xj define facets of conv(T).

Figure 6.1

292 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

4. Let G = (V, E) be a graph where each node has degree at least 3. Consider the set

S = {x E B I E I : xi - L x e ~ 0 for all j E c5(v) and v E v}
eEc5(v)\{j}

where c5(v) denotes the set of edges incident to node v.

i) Show that the inequalities Xe ~ 1 define facets of conv(S).

ii) Show that the inequalities xi - LeEJ(v)\{j} Xe ~ 0 define facets of conv(S).

5. Consider the linear ordering problem of determining a permutation n: {l, ... ,
n} ... {l, ... , n} formulated as

max L cijc5ij
ij

c5ij + c5ji = 1 for all i < j

c5j,h + ... + c5j,j, ~ I C I - 1 for all cycles C = {jJ, ... ,jr}

c5 E Bn(n-I),

where c5ij = 1 if i precedes j.

i) Show that the inequalities with I C I ;::: 4 are unnecessary in the description of
the problem.

ii) Show that for I C I = 3, the inequalities define facets.

6. For S = {x E Bn: LjEN ajxj ~ b}, showthatxj;::: 0 andxj ~ 1 define facets ofconv(S)
when a E Z~ and aj + ak ~ b for allj, kEN withj '* k.

7. For Example 2.3 use Propositions 2.3 and 2.6 to find as many facets as you can. Use
these results to solve

max 12xI + 5X2 + 8X3 + 7X4 + 5xs + 5X6 + 4X7 + 3xg + 2X9 + XIO

35xl + 27x2 + 23x3 + 19x4 + 15xs + 15x6 + 12x7 + 8xs + 6X9 + 3xIO ~ 39

X EBIO

as a linear programming problem.

8. Let S = {x E B6: 27xJ + 23x2 + 17x3 + 12x4 + 8xs + 2X6 ~ 40}.

i) Describe as many facet-defining inequalities as possible for S based on Proposi
tion 2.3 and Corollary 2.4.

ii) What inequalities are obtained for S from Proposition 2.6?

9. Let S = {x E Bn: LiE! LiEQ; ajXj ~ b, LjEQ; Xi ~ 1 for i E I} with N = UiE1Qi'

i) Show that if C is a minimal dependent set with I C n Qi I ~ 1, C n Qi = (j(i)}
when C n Qi '* 0, and

iCC) = E(C) u. U (j E Qi: aj;::: aj(i)},
{1:cnQr*'I2'J}

then LjEE(C) Xj ~ I C I - 1 is a valid inequality for S.

ii) Specify conditions under which this valid inequality defines a facet of conv(S).

6. Exercises

10. Let

(see Exercise 14 of Section 1.1. 8).

i) Derive facets for conv(S).

~ 1

ii) Can you show that these facet-defining inequalities give conv(S)?

293

11. Consider the symmetric traveling salesman polytope for the complete graphs on 5
and 7 nodes, respectively. Try to write down all of the facet-defining inequalities and
see if you can give a proof that you have them all.

12. Give a nontrivial lower bound on the number of facets of the symmetric traveling
salesman polytope for complete graphs with n = 5, 7,10, 100, and 1000 nodes.

13. Prove the validity of the generalized comb inequalities (3.14),

14. Prove that LeEE' Xe ~ 9 is valid for the complete graph on 10 nodes, where
G = (V, E') is the Petersen graph, by showing it to be a C-G inequality.

15. Prove Proposition 4.1.

16. i) Use Proposition 4.3 to derive valid inequalities for

ii) Which of these inequalities define facets?

17. Under what conditions does (4.4) define a facet of

18. Consider the capacitated facility problem with feasible region

T ~ {X E En, y E R,:,n: t y ij ~ ai for i E M, t Y ij .;; bjxj for j E N l
Let I ~ M and Zj = LiE! Yij so that the Zj satisfy

2: Zj = 2: ai and
jEN iE!

i) Derive valid inequalities for T.

ii) Can you show that the inequalities define facets?

294 11.2. Strong Valid Inequalities and Facets for Structured Integer Programs

19. Consider the mixed 0-1 region with lower and upper bounds

with lj,a j ~ 0 and the region

where Yj is a variable representing production time, and Pj is the associated set-up
time.

i) Show the equivalence between T and T'.

ii) Derive valid inequalities for T (or T').

20. For the fixed-cost networks shown below, show that the proposed inequalities are
valid.

a)

b)

J----~ 2)----~~

6 2 10 2 5

6. Exercises 295

c)

4 2 3 6

Y12 + Y13 ::::; 6X 12 + 4X13 + Y27 + Y36 + Y37·

11.3
Duality
and Relaxation

1. INTRODUCTION

In the preceding two chapters we studied polyhedral descriptions of the set of feasible
solutions to linear inequalities in nonnegative integer variables. Now we introduce an
objective function and consider the integer optimization problem

(IP) ZIP = max{cx: xES}, S = {x E Z~:Ax.;:; b},

where c is an n-vector with integral coefficients and (A, b) is an m x (n + 1) matrix with
integral coefficients.

The theme of this chapter is to develop a theory for determining ZIP, or at least a good
upper bound on ZIP, without explicitly solving IP. This can be considered to be a theory of
optimality, since a tight bound on ZIP provides the fundamental way of proving optimality
of a feasible solution to IP. Suppose we are given an XO E S that is claimed to be an optimal
solution to IP. How can we decide whether this claim is true?

Our previous results provide one answer. Consider the linear program

z* = max{cx: x E conv(S)}.

Then XO is an optimal solution to IP if and only if cxo = z* (see Theorem 6.4 of
Section I.4.6). Although this answer is correct, it depends on knowing conv(S), which is an
assumption we do not make here.

Observe that the answer just given tells us if XO is optimal or not; that is, cxo = z* is a
necessary and sufficient condition for the optimality of xO. Suppose we just ask for a
sufficient condition for the optimality of xO. We prefer to focus on sufficiency rather than
necessity because if a sufficient condition is satisfied, the optimality claim is proved.

Here is a simple, but rather naive, sufficient condition. Consider the linear program

(1.1) ZLP = max{cx: x E P},

where P = {x E R~: Ax .;:; b}. Then XO E S is an optimal solution to IP if cxo = hp. We said
this condition is naive because without further assumptions, it is unlikely to hold.

An equivalent sufficient condition arises from considering the linear programming
dualofIP:

296

1. Introduction 297

(1.2)

where PD = {u E R':': uA ;,- c}. But now we can phrase the sufficient condition in a subtly
different way; that is, XO is optimal to IP ifthere is a UO E PD such that cxo = uOb.

Problem (1.1) is called a relaxation ofIp, and problem (1.2) is called a (weak) dual ofIP.
Relaxation and duality are the two fundamental ways of determining ZIP and upper
bounds on ZIP. These notions will be made precise after we give an example.

Example 1.1. Consider the maximum cardinality node-packing problem on the graph
shown in Figure 1.1. We use the clique constraints, that is no more than one node can be
chosen from each clique, to obtain the integer programming formulation

ZIP = max Xl +X2 +X3 +X4 +Xs +X6

XI+X2 +X6~1

X2+X3 ~ 1

X3+X4 ~ 1

X4+XS ~ 1

XS+X6~ 1

The solution x? = xg = xg = 1, xJ = 0 otherwise, is feasible. We want to prove that it is
optimal. The relaxation (1.1) is obtained by replacing x E B6 by x E R~, and the dual of
this linear program is

Ul + U2 ;,- 1

U2 + U3 ;,- 1

+ us;'- 1

u ;,-0.

2 3

1<] >,
6 5

Figure 1.1

298 11.3. Duality and Relaxation

A feasible solution to the dual is u? = u~ = u~ = 1, u? = 0 otherwise. Since
~J-l xJ = ~r-l u? = 3, it follows that XO is an optimal solution to IP and that ZIP = ZLP = 3.
The reader can check that in this example the clique constraints and nonnegativity are not
sufficient to give the convex hull of node packings. However, for the given objective
function, we have the good fortune that the linear programming relaxation has an integral
optimal solution. This example shows that it is not necessary to have the convex hull of
feasible solutions to obtain or prove the optimality of an integral solution.

Another simple argument that does not use linear programming also establishes the
optimality of xo. Consider any set of cliques such that each node is contained in at least one
of them, for example, C 1 = n, 2, 6}, C 2 = {3, 4}, and C 3 = {4, 5}. Such a set of cliques is
called a clique cover. Any node packing contains no more than one node from each of the
cliques in a clique cover. Hence we obtain the max-min relationship that the maximum
number of nodes in any node packing is equal to or less than the minimum number of
cliques in any clique cover. Thus from the cover {Cl> C2, C3}, we obtain ZIP ~ 3. This is an
example of a combinatorial duality, which is a principle that is fundamental to the solution
of combinatorial optimization problems.

A relaxation ofIP is any maximization problem

(RP)

with the following two properties:

(Rl)

(R2)

S s; SR

ex ~ ZR(X) for xES.

Proposition 1.1. fjRP is irifeasible, so is IP. fjIP isjeasible, then ZIP ~ ZR.

Proof From (Rl), if SR = 0, then S = 0, so the first statement holds.
Now suppose that ZIP is finite and let XO be an optimal solution to IP. Then

ZIP = exo ~ ZR(XO) ~ ZR, where the first inequality follows from (R2) and the second one
follows from (Rl). Finally, if ZIP = 00, (Rl) and (R2) imply that ZR = 00. •

If x· E S satisfies ex* ~ ZIP - E for some fixed E > 0, then we say that x* is an E-optimal
solution to IP. Since it is sometimes too costly to find a provably optimal solution, we may
have to be satisfied with a provably E-optimal solution for a given tolerance E. Although
the upper-bound ZR may fail to prove optimality, RP may allow us to establish
E-optimality. In particular, ifx* E S satisfies ex* ~ ZR - E, thenx* is an E-optimal solution.

The most common way to obtain a relaxation is to satisfy (Rl) by dropping one or more
of the constraints that define S and to satisfy (R2) by setting ZR(X) = ex.

The linear programming relaxation of IP is (1.1). The so-called group relaxation is
obtained by dropping certain nonnegativity conditions. In many problems, the con
straints can be partitioned into a set of simple ones that can be handled easily and
complicated ones. A relaxation is obtained by removing the complicated constraints and
including them in the objective function in such a way that (R2) is satisfied. This
technique is called Lagrangian relaxation. The latter two approaches will be considered in
Sections 5 and 6 of this chapter.

Dropping constraints is not the only way to satisfy (Rl). We can combine equalities by
taking linear combinations an9 inequalities by taking nonnegative linear combinations. A

1. Introduction 299

right-hand side b of a constraint can be replaced by a set of right-hand sides that contains
b. In particular, if S = {x E R~: Ax ~ b} and S = UdEB{X E R~: Ax ~ d}, where B s; Rm,
then S s; S.

Adding and/or changing variables can also be used to obtain relaxations. For example,
we obtain a relaxation if S = {x E ZZ: Ax ~ b} is replaced by S' = {(x, x') E Z~+P:

Ax + A x' ~ b} since S = {x E Z~: (x, 0) E S'}. Such a relaxation can be useful if matrix
(A, A') is easier to work with than A. These ideas for relaxation will be used in the
algorithms to be developed subsequently.

A distinct disadvantage of using relaxation to obtain bounds is that only an optimal
solution to the relaxed problem guarantees an upper bound on ZIP. Duality eliminates this
difficulty since the dual problem is defined so that any dual feasible solution yields an
upper bound on ZIP.

A weak dual ofIP is any minimization problem

(DP)

that satisfies

(D1) ZD(U) ~ cx for all xES and u E SD'

Analogous to Proposition 1.1, we have the following proposition.

Proposition 1.2. ffDP isfeasible, then ZIP ~ ZD. ffDP has an unbounded objective value,
then IP is infeasible.

A strong dual of IP is a weak dual that also satisfies

(D2) If S '* 0 and ZIP is bounded from above, then there exists
UO E SD and XO E S such that ZD(UO) = cxo.

By solving a strong dual we find ZIP, since ZIP = ZD when both problems have finite
optimum values. By solving a weak dual we can approximate ZIP from above. We call
Il.D = ZD - ZIP the absolute value of the duality gap.

Weak duals are easy to construct. For example, by taking the dual of a linear
programming relaxation ofIP we obtain a weak dual to IP.

Combinatorial structures are used to construct dual problems. A typical combinatorial
optimization problem exemplified by the node-packing problem is the following. Let V =
n, 2, ... , n} be a finite set and let ce = {C b C 2, ••• , C m} be a finite collection of subsets of
V. A subset VO s; V is called a packing if I VO n C i I ~ 1 for i = 1, ... , m. A subset ceO s; ce
is called a cover if UC,E'€" C j = V. Suppose VO is any packing and ceO is any cover. Then

IVOI ~ I IvonCI ~ lceol,
(i: C;E'€")

where the first inequality follows from UC,E'€" C i ::2 VO and the second one follows from
I VO n C I ~ 1 for all i. In other words, the cardinality of any packing is equal to or less
than the cardinality of any covering, so the minimum covering problem is a weak dual of
the maximum packing problem. A fundamental problem of combinatorial optimization
is to characterize packing and covering problems for which strong duality holds.

The general relationship between duality and relaxation is given in the following
proposition.

300 11.3. Duality and Relaxation

Proposition 1.3. If a problem is dual to a relaxation of IP, then it is also dual to IP.

Proof Suppose ZOR = min{zoR(u): u E SOR} is dual to RP. Then ZR(X) .;; ZOR(U) for all
x E SR and all u E SOR. By relaxation, cx .;; ZR(X) for all xES S SR. Hence cx .;; ZOR(U)
for all xES and u E SOR. •

As with relaxations, algorithms generally use a weak dual to obtain bounds and
iteratively refine the dual to strengthen the bounds.

2. DUALITY AND THE VALUE FUNCfION

Here we consider a family of integer programs

(2.1) z(d) = max{cx: x E S(d)}, S(d) = {x E z~: Ax.;; d} for d E D,

where A and c are fixed and d is a parameter in D s Rm. Depending on our need we may
take D = R m or D = zm or D = (d E R m: S(d) *' 0}. The function z(d) for dE D is called
the value function of IP. We say that z(d) = -00 if S(d) = 0 and that z(d) = + 00 if the
objective value is unbounded from above.

The following propositions give some elementary properties ofthe value function.

Proposition 2.1. The value function ofIP is non decreasing over Rm.

•
Proposition 2.2. Z(O) E{O,oo}. Ifz(O) = oo,thenz(d)=± ooforalldERm.Ifz(O) = 0,
then z(d) < 00 for all dE Rm.

Proof See Proposition 6.7 of Section 1.4.6. •
Problems with z(d) = ± 00 for all d E R m (e.g., max{xl: 2Xl - X2';; d, x E Zm reduce

to feasibility problems. Thus, for simplicity of exposition, it is convenient to ignore them
here. Hence, unless otherwise specified, we assume z(O) = 0, so z(d) < 00 for all d E Rm.

Proposition 2.3. The valuefunction ofIP is superadditive over D = {d E Rm: S(d) *' 0}.

Proof Suppose Xi E Z~ and AXi.;; di for i = 1, 2. Then (Xl + x 2) E Z~ and
A(xl + x 2) .;; d l + d2. Thus if c.xi = z(di) for i = 1,2, then

•
The problem of finding an upper bound on the optimal value ofIP can be generalized to

the problem offinding a function g(d): Rm ... R I such that g(d) ;;;. z(d) for all d E Rm (see
Figure 2.1). Thus a dual problem to IP can be formulated as

(2.2) min{g(b): g(d);;;. z(d) for d E Rm, g: Rm ... Rl}

or, equivalently, as

(2.3) min{g(b): g(d);;;. cx for x E S(d) and d E Rm}.

2. Duality and the Value Function 301

--------------~~----------------------------d

Figure 2.1

This dual is strong since there are feasible solutions with g(b) = z(b); for example,
g(d) = z(d) when z(d) > - 00 and g(d) :;:: 0 otherwise.

Some restrictions on g are needed to obtain a useful dual problem. Since z(d) is
nondecreasing, it is natural to assume that g(d) is nondecreasing. Then g satisfies
g(d) ~ ex for x E S(d) if and only if g(Ax) ~ ex for x E Z~. Thus when g is nondecreas
ing, (2.3) can be stated as

(2.4)

ming(b)

g(Ax) ~ ex for x E Z~

g nondecreasing.

Now suppose that g is linear; that is, g(d) = ud with u E R':'. Thus we require uAx ~ ex
for all x E Z~. This last condition is equivalent to uA ~ e. Thus we obtain the weak dual

(2.5) min{ub: uA ~ C, u E R':'},

which is the dual of the linear programming relaxation ofIP.
Linear functions are generally too restrictive to obtain strong duality. In the following

example, we first consider the value function and the linear dual and then we give two
illustrations of strong dual functions.

Example 2.1

z(d) = max 3XI + 6X2 + llx3 + 12X4

Xl + 2X2 + 3X3 + 4X4'::; d

xEZ!

302 11.3. Duality and Relaxation

ex

30

20 •
g(d) = 'y'd -----O!~

•
•

10 z(d) = 3[dJ + 2 [V3dJ •

~--Ax
o 2 3 4 5 6 7 8 9

Figure 2.2

Figure 2.2 gives a plot of (Ax, ex) for the feasible points. The upper envelope of these
points gives the value function

~1 d, d = 0, 3, 6, ...

z(d) =
11

3 + 3 (d - 1), d = 1, 4, 7, ...

11
6 + 3 (d - 2), d = 2, 5, 8,

z(d) = z(ldJ) for d positive and not integral, and z(d) = - 00 if d < 0. We can also express
the value function over R~ by z(d) = 3[dj + 2[1dj, which shows that z is superadditive over
R~.

ex

30

20

g(d) = 3d+2, OSds4

10
z(d}

~------------------------------------d
o 2 3 4 5 6 7 8 9

Figure 2.3

2. Duality and the Value Function 303

Figure 2.2 also shows the function g(d) = lfd, which is the optimal dual solution wheng
is restricted to be linear; that is, u = If is the optimal solution to (2.5). We see this
graphically by observing that any line through the origin with slope < If is not dual feasible
and that if the slope is greater than If, ud > lfd for all d E Rl. Note that the optimal linear
function only provides a strong dual when d is an integer multiple of 3.

Figure 2.3 shows zed) and the function

where gl(d) = 3d + 2 and g2(d) = 4d - 2. We can see from the picture that go is dual
feasible.

We now give an algebraic justification of its dual feasibility. We have

and

gl(Ax) = 3xI + 6X2 + 9X3 + 12x4 + 2

= ex + 2(1 - x 3)

~ ex for x E {Z!: X3 ~ 1}

g2(Ax) = 4xI + 8X2 + 12x3 + 16x4 - 2

~ ex + (X3 - 2)

~ ex for x E {Z!: X3 ~ 2}.

Hencego(Ax) ~ ex for all x E Z!. Note thatgo(4) = z(4) so that strong duality is obtained
ford = 4.

Figure 2.4 shows zed) and the superadditive function F(d) = 3d + l~dl. Note that
F(1) = 3 = eJ, F(2) = 7 > e2, F(3) = 11 = e3, and F(4) = 14> e4. Thus F(aj) ~ ej for j =

1, ... , 4 and hence superadditivity implies

4 4

F(Ax) ~ I F(aJxj ~ I ejXj for x E Z!.
j~1 j~1

F(d)

30

20

10

~---d
o 2 3 4 5 6 7 8 9

Figure 2.4

304 11.3. Duality and Relaxation

Thus F is dual feasible. Strong duality is obtained for d = 4 since F(4) = 14.

The three functions used in the example illustrate important classes of dual functions
that are used in integer programming algorithms. Linear functions are the simplest, but
they do not generally yield strong duality. The function go(d) exemplifies the type of dual
function used to prove optimality in branch-and-bound algorithms with linear program
ming relaxations. Superadditive functions are used to prove optimality in cutting-plane
algorithms.

3. SUPERADDITIVE DUALITY

There are two important reasons for restricting the function g to be superadditive in the
dual problem (2.4):

a. The purpose of the dual problem is to estimate the value function from above, and
the value function is superadditive over the domain for which it is finite.

b. If g is superadditive, the condition g(Ax) ;;. cx for x E ZZ is equivalent to g(aj) ;;. Cj
for j EN. This is true since g(Aej) ;;. cej is the same as g(aj) ;;. Cj for j EN; and if g
is superadditive, then g(aj) ;;. Cj for j EN implies

g(Ax);;. I g(aJxj;;' I CjXj = CX
jEN jEN

for x E ZZ.
Condition b enables us to state a superadditive dual problem independent of x.

(SDP)

w = minF(b)

F(aj) ;;. Cj for j EN

F(O) = 0

F: Rm ... Rl, nondecreasing and superadditive.

We now establish results analogous to linear programming duality for the primal
problem IP and the dual problem SDP.

Proposition 3.1. (Weak Duality). IfF isfeasible to SDP and x isfeasible to IP, then cx ~

F(b).

Proof

I CjXj ~ I F(aJxj since Cj ~ F(aj) for j EN and x E R~
jEN jEN

~ F(Ax)

~F(b)

since F is superadditive, F(O) = 0, and x E Z~

since F is nondecreasing. •
Weak duality allows us to take care of the case of an unbounded primal objective

function that we dismissed earlier.

3. Superadditive Duality 305

Corollary 3.2 (Unbounded Primal Objective Function). IfIP isfeasible and z(b) = 00,

then the superadditive dual is infeasible.

Proof If z(b) = 00, then z(O) = 00, so no dual solution can satisfy F(O) = O. •

Weak duality establishes that if F is a feasible solution to the superadditive dual, then F
provides an upper bound on the value function for all dE Rm. It remains to be shown that
the objective min F(b), which we did not use in the proof of weak duality, yields strong
duality.

For the remainder of this section, we assume that P = {x E R~: Ax ~ b} contains
explicit bound constraints so that we can use Corollary 2.14 of Section n.1.2.

Theorem 3.3 (Strong Duality).

1. IfIP isfeasible, then SDP isfeasibleand w = z(b).
2. If IP is infeasible, then the dual objective function is unbounded from below

(w = -00).

Proof 1. LjEN CjXj ~ z(b) is a valid inequality for S. Hence Theorem 4.6 of Sec
tion n.l.4 implies that there exists a superadditive and nondecreasing function F (with
F(O) = 0) such that LjEN F(aJxj ~ F(b) is valid for S and dominates LjEN CjXj ~ z(b). This
means that F(aJ ~ Cj for j EN and F(b) ~ z(b). Hence F is dual feasible. But then
F(b) ~ z(b), so F is an optimal dual solution with w = F(b) = z(b).
2. Since P contains explicit bound constraints, there exists u E R'; such that uA ~ c (see
Proposition Ll of Section n.Ll). Let Fl(a) = ua for all a E Rm. By Corollary 2.14 of
Section n.l.2, we have Ox ~ - 1 is a C-G inequality for S. Hence there is a superadditive
and nondecreasing function F2 with F2(aj) ~ 0 for j EN and F2(b) ~ - l. Thus for any
A E Ri, it follows that Fl + AF2 is a feasible dual solution; also, Fl(b) + AFlb) -00 as
A 00. •

The familiar complementary slackness property oflinear programming duality carries
over to superadditive integer programming duality. In particular, if XO is an optimal
solution to IP and FO is an optimal superadditive dual solution, then

(3.1)

We prove (3.1) as a corollary to a slightly more general result.

Theorem 3.4. If XO is an optimal solution to IP and FO is an optimal solution to the
superadditive dual, then

for all x E Z~ such that x ~ xc.

Proof

cxO = cx + c(XO - x) ~ I FO(aj)xj + I FO(aJ(xJ - Xj)
JEN JEN

~ FO(Ax) + FO(A(xO - x» ~ FO(Ax) + FO(b - Ax)

~ FO(b) = cxo.

306 11.3. Duality and Relaxation

Hence the second equality holds. The first equality holds since we also have FO(Ax) ~ cx
and FO(A(xO - x» ~ c(XO - x). •

Note that (3.1) is trivial when xJ = O. When xJ ~ 1, we obtain (3.l) from FO(Aej) = cej'
The next two results describe optimal solutions to the superadditive dual. The first

result comes from a superadditive description of conv(S) and linear programming duality.

Theorem 3.5. If S * 0 and max{cx: xES} < 00, then there exist au E R~ and finite
rank C-G functions Fk for k = 1, ... , t with t < n such that pc = Lk~l UkFk is an optimal
solution to the superadditive dual.

Proof By Proposition 4.5 of Section 11.1.4 there exist C-G functions Fk for
k = 1, ... , t such that

conv(S) = {x E R~: 2: Fk(aj)xj < Fk (b) for k = 1, ... , t}.
JEN

Now apply linear programming duality. •
The value function zed) ofIP would be a feasible (and hence optimal) solution to SDP

except for the fact that it is superadditive only on the domain D where IP is feasible. The
following theorem tells us that z can always be extended to a (finite-valued) superadditive
function over Rm.

Theorem 3.6. There are C-G functions pi for i = 1, ... ,q such that zed) =

mini~l", ,q Fi(d)for all d with zed) > - 00.

We will not prove this theorem. We observe, however, that F(d) = minH"" q Fi(d) is
superadditive over Rm since it is the minimum of a finite number of superadditive
functions. The functions pi are optimal solutions to the superadditive dual for certain
values of d. Hence, implicit in the result is that it is possible to calculate zed) for all d E D
by solving IP for only a finite number of d ED.

Example 3.1 (Example 2.1 continued). We showed in the previous section that
F(d) = 3d + l~dj is an optimal dual solution for d = 4. This solution can be obtained by
applying Theorem 3.5 as explained below. It can be shown that conv(S) is given by the
inequalities

Xl + 2X2 + 3X3 + 4X4 < 4

X2 + 2X3 + 2X4 < 2

xER!

and thus is generated from P by the functions FI(d) = d and Fl(d) = l~dj. For
c = (3 6 11 12), an optimal solution to the dual of the linear program
max{cx: x E conv(S)} is u = (3 1). Hence F = 3FI + Fl is an optimal solution to the
superadditive dual. Note that the optimal solution to IP is x = (1 0 1 0). Since
F(l) = CI and F(3) = C3, the complementary slackness conditions are satisfied.

Theorem 3.6 is trivial for this example. We take F(d) = 3ldj + 2ltdj for d E R I and note
that F(d) = zed) whenever zed) is finite.

3. Superadditive Duality 307

Example 3.2. This integer program has the constraint set of the example presented in
Section 11.1.1.

The superadditive dual is

max 7Xl + 2X2

-Xl + 2X2 ~ 4

SXl + X2 ~ 20

-2Xl - 2X2 ~-7

xEZ;.

minP (=n
PCD>7,
F(O) = 0, F superadditive and nondecreasing.

1. A dual feasible solution is F(d) = ndl + *d2 + Od3• This is the linear solution
obtained from an optimal dual solution to the linear programming relaxation. It
yields the bound Z IP ~ 30n.

2. Rounding yields the better dual solution F(d) = [ndl + *d21.
3. An optimal dual solution (see Section 4 of Chapter 11.1) is given by the complicated

function F 12.

Example 3.3. We reconsider the node-packing example of Section 1 (see Figure 1.1) with
the objective function c = (l 3 3 3 3 3). Solutions to the dual of the linear pro
gramming relaxation correspond to assigning nonnegative weights Ui to the cliques C i so
that for all} E V the sum of the weights over all cliques containing node j is at least Cj.

Given the cliques C l = {l, 2, 6}, C2 = {2, 3}, C3 = {3, 4}, C4 = {4, S}, and Cs = {S, 6}, we see
that a feasible solution is U = (1 2 1 2 2), which yields the superadditive dual
feasible solution Fl(d) = d l + 2d2 + d 3 + 2d4 + 2ds. Thus we obtain ZIP ~ Fl(b) =

1 + 2 + 1 + 2 + 2 = 8. Now the odd hole induced by the nodes {2, 3, ... , 6} yields the valid
inequality X2 + X3 + ... + X6 ~ 2, which is generated by the superadditive function
F 2(d) = Hdl + ... + 1dsl. Note that F 2(al) = 0 and F 2(a) = 1 for j > 1. Hence a feasible
dual solution is given by F(d) = 3F2(d) + d l. Since F(b) = 3 x 2 + 1 = 7, we have ZIP ~ 7.
To show that F is an optimal dual solution, we observe that XO = (l 0 1 0 1 0) is a
feasible node packing and cxo = 7.

Neither the extended value function of Theorem 3.6 nor the C-G function of Theo
rem 3.S are useful for computing bounds. The value function is not available, even after
the problem is solved, and the C-G function depends on having a linear inequality
description of conv(S). Both functions, in a sense, provide more information than we
need. The extended value function is optimal for all d E R m for which IP is feasible, and
the C-G function is a nonnegative linear combination of the same C-G functions for all c.
Unfortunately, we do not know how to characterize a locally optimal function (e.g., one
that is optimal only in a neighborhood of a particular band C of interest). Thus for

308 11.3. Duality and Relaxation

algorithmic purposes, we must restrict the class of dual feasible functions to computable
ones that do not necessarily yield strong duality. In the following sections we will consider
some classes of dual feasible functions that are useful algorithmically.

To complete this section, we state without proof the analogous result on superadditive
duality for mixed-integer programs.

Theorem 3.7. Let T = {x E Z;, Y E R~: Ax + Gy ~ b} and z(b) = max{cx + hy: (x, y) E
n. A strong dual to the mixed-integer programming problem is

w = minF(b)

F(aj) ~ Cj

F(gj) ~ hj

forj EN

forj EJ

F nondecreasing and superadditive,

F(d) = lim F(Ad).
'\>0, A

F(O) = 0

Ifz(O) = 0 and T* 0, then z(b) = w. Ifz(O) = 0 and T= 0, the dual is irifeasible or its
objective value is unbounded. Ifz(O) = 00, the dual is infeasible.

4. THE MAXIMUM-WEIGHT PATH FORMULATION AND SUPERADDITIVE
DUALITY

Consider the integer programming problem ZIP = max{cx: xES}, where S = P n Z~,

p = {x E R~: Ax ~ b}, and (A, b) ~ 0 with integral coefficients. By using the polyhedral
characterization of superadditive functions developed in Section 11.1.5, the superadditive
dual problem can be written explicitly as a linear program:

(SDLP)

w = minF(b)

F(aj) ~ Cj forj EN

F(d l) + F(d2) - F(d l + d2) ~ 0 for dJ, d2, d l + d2 E D(b)

F(O) = 0, F(d) ~ 0 for d E D(b),

where D(b) = {d E Z~: d ~ b} and F is a vector with ID(b) I coordinates.

Example 4.1 (Example 2.1 continued). For the knapsack problem

SDLPis

max 3XI + 6X2 + llx3 + 12X4

Xl +2X2 + 3X3 + 4X4 ~ 4

xEZ!,

4. The Maximum-Weight Path Formulation and Superadditive Duality 309

min F(4)
F(1) ;;;. 3

F(2) ;;;. 6

F(3) ;;;. 11

F(4) ;;;. 12

2F(1) - F(2) ... 0

F(1) + F(2) - F(3) ... 0

F(1) + F(3) - F(4)... 0

2F(2) - F(4)... 0

F(O) = 0, F(d);;;. 0 for d E D(4).

Since SDLP is a linear program that is strongly dual to IP, we can use linear program
ming duality to express IP as a linear program. The purpose of this section is to study the
structure of this dual pair oflinear programs. We will discover that IP can be formulated as
the linear program of finding a maximum-weight path joining two specified nodes in a
directed graph and that SDLP can be interpreted as the dual of this maximum-weight path
problem. We will establish the duality after formulating IP as a maximum-weight path
problem.

To formulate IP as a maximum-weight path problem when S is an independence
system, consider the digraph ~ = (V, .stl), where V = D(b) = {d E Z';: d ... b}, and
.stl =.stl 1 U .stl2, where

.stl 1 = {(d, d + aj): d, d + aj E D(b), j EN} and .stl2 = {(d; b): dE D(b)}.

Since aj > 0 for allj EN and b ;;;. d for all dE V, ~ has no cycles.
The arc e = (d, d + aj) forj EN is called a variablej arc and is assigned weight We = Cj.

For d * b, node d represents the subset of feasible solutions S*(d) = {x E Z~: Ax = d}
since every path from node 0 to node d has the property that l:.jEN ajxj = d, where Xj is the
number of variable j arcs in the path. The weight of any such path is l:.jEN CjXj. Arcs
(d, b) E Sli2 are called slack arcs and are assigned a weight ofO. If there is aj such that
d + aj = b, then a variable j arc and a slack arc join the same pair of nodes. Node b
represents the set of all feasible solutions since every path from node 0 to node b has the
property that l:.jEN ajxj'" b, where Xj is the number of variable j arcs in the path. Hence
any maximum-weight path from node 0 to node b corresponds to an optimal solution to
IP.

11

O-'------~~----~~~----~._----~~4

12

Figure 4.1

310 11.3. Duality and Relaxation

Table 4.1.

Path

[(0, 1), (1, 2), (2, 3), (3, 4)] (4 ° [(0, 1), (1, 2), (2, 4)] (2 1
[(0, 1), (1, 3), (3, 4)] (2 1
[(0, 2), (2, 3), (3, 4)] (2 1
[(0, 1), (1, 4)] (1 ° [(0, 3), (3, 4)] (1 ° [(0,4)] (0 °

x

° ° ° ° 1
1

°

0)
0)
0)
0)
0)
0)
1)

Weight

12
12
12
12
14
14
12

The digraph for Example 4.1 is shown in Figure 4.1. The slack arcs have been omitted.
Actually they are unnecessary in the example since each slack arc is "parallel" to a non
slack arc of positive weight. The paths from node ° to node 4, along with the correspond
ing feasible solutions, are given in Table 4.1. We see that there is at least one path
corresponding to each feasible solution and that the weight of the path equals the value of
the corresponding solution. In general, many paths correspond to the same feasible
solution because each path is an ordering of the set of arcs that represent the solution.

We now give the standard flow formulation of the maximum-weight path representa
tion ofIP. Each arc is represented by a binary variable with the interpretation that an arc is
in the solution if and only if the corresponding variable equals 1. The variable for the arc
(d,d + aj) is Yj(d), and the variable for a slack arc (d, b) is Yo(d).

The constraints that are satisfied only by paths from node ° to node bare:

i. Exactly one arc leaves node 0, that is,

(4.1) - L Yj(O) - Yo(O) = -1.
JEN

11. Exactly one arc enters node b, that is,

(4.2)

iii. For d * 0, b, the number of arcs that enter node d equals the number that leave, that
is,

(4.3) L y/d - aj) - L y/d) - Yo(d) = ° for d * 0, b.
(jEN: d-ap,O) (jEN: d+ar"b)

Note that (4.1) implies that the number of arcs entering each node d * ° is already
constrained to be ° or 1. Finally note that (4.1) also implies that it suffices to allow the
variables to be nonnegative integers. Thus we obtain an integer program representation of
the maximum-weight path formulation ofIP given by

(MP) ZMP= max L
(jEN,dED(b): d+aF"b)

subject to (4.1)-(4.3) and

(4.4) yAd) E Zl for allj and d.

4. The Maximum-Weight Path Formulation and Superadditive Duality 311

We have ZMP = ZIP as explained above; also, ZIP = w by strong duality (Theorem 3.3).
We now consider the dual of the linear programming relaxation of MP, which is given

by

ZLP = min (u(b) - u(O))

(4.5) u(d + aj) - u(d) ~ Cj for} EN, dE D(b), d + aj ~ b

u(b) - u(d) ~ 0 for d E D(b), d,* b,

where u(d) is the dual variable for the node d constraint. Note that if u is a feasible
solution to (4.5) with u(O) '* 0, then so is u* where u*(d) = u(d) - U(O) for all d E D(b).
Since u*(b) = u*(b) - u*(O) = u(b) - u(O), we can set u(O) = O.

In Example 4.1, (4.5) is

min u(4)

u(l) ~ 3

u(2) ~ 6

u(3) ~11

u(4) ~ 12

-u(1) + u(2) ~ 3

-u(l) + u(3) ~ 6

-u(l) + u(4) ~ 11

- u(2) + u(3) ~ 3

-u(2) +u(4)~ 6

- u(3) + u(4) ~ 3.

We have omitted u(O) = 0 and the constraints u(b) - u(d)?3 0, which are superfluous here.
Now we return to SDLp, introduced at the beginning of this section. Consider the

constraints

(4.6)

We are going to relax (4.6) in three different ways, depending on d 1 and d2•

i. If d 1 = aj for some} EN, then we replace (4.6) by F(aj + d 2) - F(d2) ~ Cj. This is a
relaxation since F(aj) ~ Cj.

ii. If d 1 + d 2 = b, then we replace (4.6) by F(d2) - F(b) ~ O. This is a relaxation since
F(d1) ~ O.

iii. Otherwise we drop (4.6).

Finally, we omit the non negativity constraints.
This yields the relaxation ofSDLP:

312

(4.7)

WR = min F(b)

F(aj) ~ Cj

F(d + aJ - F(d) ~ Cj

F(b) - F(d) ~ °
F(O) = 0.

By relaxation, WR ~ w.

11.3. Duality and Relaxation

for} EN

for} EN, dE D(b), d + aj ~ b

for d E D(b), d,* b

Now observe that (4.5) and (4.7) are identical. Hence WR = ZLP. Thus

and all of these objective values are equal.
In conclusion, we have interpreted the superadditive dual of an integer program whose

constraints generate an independence system as the linear programming dual of a
maximum-weight path formulation of the integer program.

The maximum-weight path formulation is oflimited use in computation because of the
size of the digraph. The number of nodes ID(b) I grows exponentially with the number of
constraints m and, even for fixed m, grows linearly with the size of the coefficients of b E
Z,:,. Generally, its use is restricted to knapsack problems that have constraint coefficients
of modest size.

Despite these practical limitations, the fundamental idea is applicable to any integer
program. In particular, any integer programming constraint set S = {x E Z~: Ax ~ b} can
be represented by a digraph with the property that directed walks from node ° to node d E
zm correspond to solutions with Ax = d. As before, an arc e = (d, d + aj) is a variable} arc
and is assigned weight We = Cj. However, when matrix A has negative coefficients, we must
determine a finite subset D(b) c zm to which we can restrict d. Note that D(b) = D(b)
does not suffice since d + aj ~ d is no longer true.

To determine D(b), we use the result that if S,* 0 there is an OJ which depends onA, b,
and C, such that Xj ~ OJ for all} EN in some optimal solution (see Theorem 4.1 of
Section 1.5.4). Thenxj ~ OJ for} E Nimpliesd- ~ Ax ~ d+, wheredi = OJ LjEN min(O, au)
and di = OJ LjEN max(O, au) for i = 1, ... , m. ThusD(b) = {d E zm: d- ~ d ~ d+}.

5. MODULAR ARITHMETIC AND THE GROUP PROBLEM

In this section, we consider relaxations of the maximum-weight path formulation that
reduce the size of the digraph. In fact, we will be able to choose the number of nodes,
although the quality of the bounds produced by the relaxation will generally deteriorate as
the digraph gets smaller.

Consider the set S = {x E Z~: LjEN ajxj = b}, where aj E ZI for} EN and b E ZI.
Suppose k E zl and we relax S to

This means that multiples of k can be subtracted from each coefficient and the right-hand
side of the original constraint. Thus xES k if and only if x E Z~ and for each (Ilo, AI, ... ,
An) E zn+l there exists a w' E ZI such that

5. Modular Arithmetic and the Group Problem

L (aj - kAj)Xj = (b - kAo) + kw'.
jEN

313

By choosingA;- = [alkj forj EN andAo = [b/kj, we have that X E Sk ifand only if X E Z~
satisfies

(modulo k),

where ¢k(d) = d - k [d/kj; that is, ¢id) = d(mod k) is the remainder when d is divided
byk.

We can now represent S k by directed walks in a digraph that contain only k nodes. The
graph is qj;k = (Vb slh), where

The arc e/d) = (d, ¢k(d + aj» is called a variablej arc. A directed walk in qj;k from node 0
to node ¢k(b) with Xj variablej arcs generates a feasible solution x E Sk; conversely, any
xES k generates directed walks from node 0 to node ¢k(b).

Any directed walk from node 0 to node ¢k(b) can be decomposed into a dipath from
node 0 to node ¢k(b) and (possibly) directed cycles. Correspondingly, any x E Sk can be
decomposed into x* + l:l=l Xi, where ¢k(l:jEN a jxj) = ¢k(b) and x* generates dipaths from
node 0 to node ¢k(b) and where ¢k(l:jEN ajxJ) = 0 and Xi generates directed cycles, for
i = 1, ... ,t.

Later in this section, we will consider the problem of finding a maximum-weight dipath
from node 0 to node ¢k(b) in qj;b where the arcs have nonpositive weights. Hence the
solution will be a dipath corresponding to an x* E S k. However, there is no guarantee that
dipaths correspond to elements of S; that is, it could be the case that some, or even all,
elements of S correspond to directed walks from node 0 to node ¢k(b) that contain
directed cycles.

e4(5)

Figure 5.1. eM) = (d, ¢M + aj».

314 11.3. Duality and Relaxation

Example 5.1. S = {x E Z!: 78xl - 68x2 + 37x3 + X4 = 141} and k = 6. We have
CP6(al) = 0, CP6(a2) = 4, CP6(a3) = CP6(a4) = 1, and CP6(b) = 3. Hence S6 = {x E Z!: OXl +
4X2 + X3 + X4 = 3 (mod 6)}.

The digraph ~6 is shown in Figure 5.1. Table 5.1 gives all of the solutions corresponding
to dipaths, and Table 5.2 gives some directed cycles. More cycles can be generated by
replacing any of the variable 3 arcs by variable 4 arcs.

Any x in Table 5.1 plus a nonnegative integer multiple of an x in Table 5.2 is in S6; for
example,

(4 3 1 2) = (0 0 1 2) + 4 (1 0 0 0) + (0 3 0 0).

Any such x is in S if and only if:EjEN ajxj = b; for example,

(9 11 5 2) = (0 0 1 2) + 9 (1 0 0 0) + 3 (0 3 0 0) + 2 (0 1 2 0).

Now we introduce weights on the arcs of ~k. For any positive integer k and PER l, the
problem

(5.1)

zk(b) = max L CjXj - pw
jEN

L ajxj - kw = b
jEN

xEZ~, WEZ l

is a relaxation of our original problem

(IP)

This is true because any feasible solution to IP can be extended to a feasible solution to
(5.1) of the same value by putting w = O. We now show how (5.1) can be formulated as a
maximum-weight path problem from node 0 to node CPk(b) in the digraph ~k.

We can eliminate w from the objective function by substituting

w = (L ajxj - b)/k
jEN

and we have already shown how to describe the relaxed solution set S k. Hence (5.1) can be
reformulated as the group prob{em

Table 5.1.

Acyclic Paths
[romOto 3 x

e3(0), e3(1), e3(2) (0 0 3 0)
e3(0), e3(1), e4(2) (0 0 2 1)

e3(0), e4(1), e4(2) (0 0 1 2)
e4(0), e4(1), e4(2) (0 0 0 3)
e2(0), e2(4), e3(2) (0 2 1 0)
e2(0), e2(4), e4(2) (0 2 0 1)

5. Modular Arithmetic and the Group Problem 315

Table 5.2.

Simple Cycles x

el(O) (1 0 0 0)
e2(0), e2(4), ei2) (0 3 0 0)
e2(0), e3(4), e3(5) (0 1 2 0)
e3(0), e3(1), e3(2), e3(3), e3(4), e3(5) (0 0 6 0)

(GP) (mod k)

xEZ~.

We use the term group because of the modulo addition in the constraint, which is
equivalent to addition in the cyclic abelian group of order k.

If c. - {3a'/k > 0, we can choose x. so that ¢k(a.)x. = 0 and (c. - {3a./k)x. is arbitrarily
} } }}}} J (

large. Thus if Sk * 0, we can choose x so that GP has an unbounded optima value. Hence
we impose the condition Cj - pa) k ~ 0 for} E N or

which implies that zk(b) ~ Pb/k. Thus we can restate GP as

zk(b) = ub + max I (Cj - uaj)xj
jEN

xEZ~,

(mod k)

where u = P/k and PI ~ u ~ P2. Note that PI ~ u ~ P2 if and only if u is a dual feasible
solution to the linear programming relaxation of (5.1). Moreover, the term ub, which is
independent of x, is minimized by an optimal dual solution to the linear programming
relaxation of(5.1); that is, u = PI if b > O. With u = PI, we obtain

zk(b) = zLP(b) - min I - CjXj
jEN

xEZ~,

(mod k)

where Cj = Cj - Plaj ~ 0 for} EN. Thuszk(b) ~ zLP(b), and we also observe that GPyields
a minimum-weight correction to the linear programming relaxation subject to the
constraint x E Sk.

316 II.3. Duality and Relaxation

The correction term

is the same for all dE ¢,/(b). Hence zk(b) is the sum ofalinearterm in b and a correction
term that is cyclic with period k.

An interesting observation is that '11k(d) is superadditive; that is, for any d l , d2 E ZI we
obtain

The inequality holds because the left-hand side can be interpreted as the weight of a
maximum-weight path from node 0 to node d l + d2 that is constrained to contain node dl •

Example 5.1 (continued). Suppose c = (4 -4 1 0). Then !9 = PI = cdal .s:;;
P/6 .s:;; C2/a2 = P2 = f.;. Since b > 0, we choose u = P/6 = PI and obtain the group problem

OXI + 4X2 + X3 + X4 = 3

xEZ!.

(mod 6)

To find a maximum-weight path from node 0 to node 3 in ~6, we can eliminate the loop
arcs eI(d) since CI = 0, and we can also eliminate the e3(d) arcs since they are parallel to the
e4(d) arcs and C3 < C4. This yields the digraph shown in Figure 5.2, where the number on
each arc is its weight times 39.

A path of maximum weight is (e4(0), e4(1), e4(2», corresponding to the solution
x = (0 0 0 3). Since r.jEN ajxj = 3, it follows that x $. S. The weight of this path is
'l'6(b) = -f9, so we obtain the upper bound of z6(b) = zu.(b) + 'l'6(b) = [2(141) - 61/39 = 7rr.

-2

-20

Figure 5.2

5. Modular Arithmetic and the Group Problem 317

8

7

6

5 Linear function ZLP (d)

4 Step function Z6 (d)

3

2

~---d
o 60 120 180

Figure 5.3

It is clear from the digraph of Figure 5.2 that, for any d E ZI, only the variable 4 arcs
are used in a maximum-weight path from node 0 to node ¢6(d). Thus If/6(d) = -f9¢6(d) for
all d E ZI. The functions ZLp(d) and z6(d) are shown in Figure 5.3 for dE Zl.

So far, the development of the group problem has been done for an arbitrary positive
integer k. Now we consider a meaningful choice of k that is motivated by trying to
enhance the possibility of an optimal solution to GP being feasible to IP.

Suppose bE Zl and cl/al = max{cjlaj: aj > O,j EN}. With k = all OP can be
restated as

(5.2)

j = 2, .,. , n.

Note that any feasible solution to (5.2) yields an integer value for Xl. This is true since
LjEN\(!) ajxj = ta 1 + ¢alb) for some t E ZI. Thus

Xl = J.- (b - L ajXj) = b - ¢a,(b) - t,
a 1 jEN\(!) a 1

which is integer for all bE ZI since ¢a,(b - ¢a,(b) = O. However, Xl maybe negative. This
should not be surprising since, in this case, (5.1) is

318

za,(b) = max L CjXj-CIW
jEN

L ajxj - a I W = b
JEN

11.3. Duality and Relaxation

which is the same as

za,(b) = max L CjXj
JEN

L ajxj = b
jEN

X I EZ I,Xj EZlforj=2, ... ,no

When can we be sure that LjEN\{l} ajxj will be small enough to guarantee x I ;. O? To
answer this question, we use the fact that Xj for j = 2, ... , n is determined by solving a
maximum-weight path problem on a graph with a I nodes and nonpositive weights on the
arcs. Hence there is a maximum-weight path with no more than a I - 1 arcs; that is, the
corresponding solution {xJ} satisfies LjEN\(l} xJ ~ a I - 1. Thus

where 7i = max{aj:j E N\{l}}, so that x?;' (l/al)(b - (al - l)a). Consequently if
b ;. (a I - l)a and k = a [, then GP yields an optimal solution to IP. Thus the relaxation GP
is asymptotically exact in the sense that for suitably large b we obtain za,(b) = z(b).

Example 5.1 (continued). Suppose u = PI = ct/al and k = al = 78. Here the digraph is
too large to draw, but an optimal solution is easy to deduce. We have ¢78(a2) = 10,
¢78(aJ) = 37, ¢78(a4) = 1, and ¢78(b) = 63. With (e2 (:3 (4) = -i9(20 35 2), an optimal
solution is xg = 0, x~ = 1, x~ = 26, which yields

x? = ~ (b - L ajX~) = ~ (141 - 37 - 26) = 1.
a I jEN\(l)· 78

Hence we obtain a feasible, and thus optimal, solution to IP given by XO = (1 0 26).
Note that 141 < 77·37 = (al - 1)a; that is, the condition b ;. (al - l)a is by no means
necessary for an optimal solution of the group problem to solve IP.

The approach we have taken here generalizes straightforwardly to integer programs
with more than one constraint. Consider an equality-constrained version ofIP:

(IP) max{cx: Ax = b, x E Z~},

where (A, b) is an integral m x (n + 1) matrix and C is an integral n-vector. We relax IP to
the so-called group problem

zK(b) = max cx - pw
(GP) Ax - Kw = b

5. Modular Arithmetic and the Group Problem 319

whereK = (kJ, ... ,kp)isan m X p integer matrix withp ..; m andpisap-vector. Our goal
is to determine the canonical form or simplest possible path representation ofGP.

Suppose that IP has bounded optimum value. To ensure that GP also has bounded
optimum value, recall that a feasible integer program is bounded only if its linear
programming relaxation is dual feasible. Thus we require that the dual of the linear
programming relaxation ofGP has a feasible solution, that is, there exists a u E R m such
that uA ~ c and uK = p. Given such a u, we can rewrite GP as

zK(b) = ub + max(c - uA)x

x E SK(b),

where SK(b) = {x E z~: Ax - Kw = b for some w E ZP} and c - uA ..; O.
To obtain a unique canonical representation of the maximum-weight path representa

tion ofGp, we use the Smith normal form of matrix K (see Theorem 4.11 of Section 1.7.4),
which is stated here in greater generality. We say that a square integral matrix R is
unimodular if I det R I = 1.

Theorem 5.1. (Smith Normal Form). Given an m x p integer matrix K of rank p ..; m,
there exist unimodular integer matrices Rand C, where R is m x m and C is p x p such that
RKC = ~. Matrix ~ is of the form Oij = 0 for all i * j and i > p; and the elements Ou = oJor
i = 1, ... ,p, are positive integers such that 0; is a divisor of 0;+1 for i = 1, ... ,p - 1.
Moreover, matrix ~ is unique.

For dE zm, let ¢fi(d) = d, where d; = d;(mod 0;) for i = 1, ... ,p, and d; = d; for i > p.
We can now give a canonical form of S~b) and, hence, ofGP.

Theorem 5.2. A canonical representation ofSK(b) is given by:

that is,for i = 1, ... , p, the ith equation must be satisfied mod Ob andfor i > p the equation
is an ordinary equality.

Proof We have

SK(b) = {x E Z~: Ax - Kw = b for some wE ZP}

= {x E Z~: RAx - RKw = Rb for some w E ZP}

since R is a nonsingular matrix.
Now if Cw' = w, where C is a unimodular integer matrix, then w E ZP if and only if

w' E ZP. Hence

SK(b) = {x E Z~: RAx - RKCw' = Rb for some w' E ZP}

= {x E Z~: RAx = Rb + ~w' for some w' E ZP}

= {x E Z~: ¢fi(RA)x = ¢fi(Rb) (mod M}. •

320 11.3. Duality and Relaxation

Therefore GP can be stated as

(GP)

zK(b) = ub + max L (Cj - uaj)xj
jEN

xEZ~.

(mod .1)

To make each of the m equations modular, we choose K to be m x m and nonsingular.
Then .1 is an m x m diagonal matrix with 6i E Z~ for i = 1, ... , m and n7!l 6i = 1 det K I.

Corollary 5.3. I! K is an m x m nonsingular integer matrix, GP is a maximum-weight
path problem on a digraph with n;:; 1 6i = 1 det K 1 nodes.

Here qjJK = (VK, sl/x), where

VK = {cp",,(d): dE Rm} = {d E Z'{': d i < 6i for i = 1, ... ,m} and

.sdK = {(d, cp",,(d + Raj»: dE VK,j EN}.

Note that if 6i = 1, the ith modular equation holds trivially for all x E Z~ and can be
omitted from the formulation. Correspondingly, in the digraph qjJK, if 6i = 1, then di = 0 for
all d E VK • In particular, if 6m = 1 det K I, we obtain a cyclic group as in the case of a single
constraint problem.

By choosing u = uo, an optimal solution to the dual of the linear programming
relaxation of IP, we obtain the minimum value of ub = uOb = hp(b). In this case,
zK(b) = hp(b) + If/K(b), where

If/K(b) = -min{ L - (Cj - uOa)xj: x E SK(b)}.
jEN

So as before, zK(b) ~ zLP(b) and GP yields a minimum-weight correction to the linear
programming relaxation subject to x E SK. We also see that If/K(d) is a cyclic function; that
is, If/K(d) = If/K(d + Kw) for all d, wE zm.

By using the same argument as in the single constraint case, we obtain the following
corollary.

Corollary 5.4. If/K(d) is superadditive!or dE zm.

If, in addition, we choose K as an optimal basis matrix for the linear programming
relaxation of IP, we may enhance the possibility of obtaining a feasible solution to IP.
Suppose A = (AB, AN) (where AB is m x m and nonsingular), x = (XB, XN), and
C = (cB, CN)' LetK = AB and suppose that A lilb ~ 0 andcN - cBAlilAN ~ O. If.1 is the Smith
Normal Form ofAB , then GP is

(5.3)

ZAB(b) = zLP(b) + max(cN - cBAlilAN)XN

cp",,(RAN)XN = cp",,(Rb) (mod .1)

Problem (5.3) is the group problem originally considered by Gomory. Note that if x~ is an
optimal solution to (5.3), it yields an optimal solution to IP if x~ = Alil(b - ANX~) ~ O.

5. Modular Arithmetic and the Group Problem 321

We have seen that choosing K = AB is equivalent to dropping non negativity on XB,
which leads to the following corollary.

Corollary 5.5. The group problem (5.3) is equivalent to the integer program

(5.4)

ZAB(b) = max CBXB + CNXN

ABxB + ANxN = b

where AB is an optimal basis matrixfor the linear programming relaxation ofIP.

Note that a Gomory group problem can be generated from any dual feasible basis
matrix AB and that Corollary 5.5 holds for any such basis. Dual feasibility (i.e.,
CN - cBAliA N ~ 0) is necessary to boundzA.(b) from above.

Gomory began with problem (5.4) and derived the canonical form (5.3). The motiva
tion for considering problem (5.4) is that at an optimal solution to the linear programming
relaxation ofIP, the constraints XB ~ 0 are inactive-if there is degeneracy they may be
tight. Thus, there is some hope that they will be inactive in an optimal solution to IP. In fact
when b is "suitably large", this is true. This asymptotic behaviour of GP is given by the
following proposition.

Theorem 5.6. Let AB be any dualfeasible basis to the linear programming relaxation ofIP
and let (f) = max;,j I (A"BIAN)lj I. The group problem (5.3) defined by AB solves IP for all
b E zm such that A"B' b ~ (f) I det AB 11, where 1 is the vector of aliI s. An optimal solution to
IP is given by x~ = A"Bl (b - ANX~)for some x~ that is an optimal solution to (5.3).

Proof It suffices to show that there exists an optimal solution xRr to (5.3) such that
x~ = A"Bl(b - ANxRr) ~ O. Since GP is a maximum-weight path problem on a digraph with
I det AB I nodes, it follows that there is an optimal solution xRr such that Lj xRrj < I det AB I.
Hence A "BIA NXRr < (f) IdetAB 11. Since, by assumption, A "BIb ~ (f) Idet AB 11, itfollows that
x~~O. •

ExampleS.2

max 7Xl + 2X2

-Xl + 2X2+ X3 2

5xl+ X2 +X4 19

-2x,- 2X2 +Xs =-5

xEZ~.

An optimal LP basis is given by AB = (al. a2, as), and u = cBA"B' = (n- -If 0).
It is readily checked that the Smith Normal Form of AB is

o
1
o

322 11.3. Duality and Relaxation

with

c 0 D and c~O
0

D R = -~ 0 0

We have

RA~ (~
-2 -1 0 D and Rb~(;n -6 -2 0
11 5

Since t51 = t52 = 1, only the bottom row of R (A, b) is needed to define the group problem.
Because c - uA = (0 0 --rl- -if 0), the group problem is

5x3 + X4 = 7

(X3' X4) E Z~.

(mod 11)

This problem can be solved on a digraph with 11 nodes, and the optimal solution is x~ = 8,
x~ = O. Thus

(X?) 1 (36) 8 (-1) (4) x~= ;~ =Ajib-8Ajia3=TI ;~ -TI ~ = -~ .

Since x~ < 0, it follows that XO is not feasible to IP. Had we taken b = (.:~), we would have

obtained the same group problem. But in this case we have

1 (36) 8 (-1) (4) x~ = Aji(b - 8a3) = TI ~~ - TI ~ = ~ ~ 0,

so XO is an optimal solution to the original problem.
Dropping nonnegativity on the basic variables yields the problem offinding an optimal

integral solution in the cone generated by the active constraints. This is shown graphically
in Figure 5.4, where Xl = 4, X2 = -1 is the optimal integral point in the "cone" defined by
the constraints -Xl + 2X2 ~ 2 and 5xl + X2 ~ 19.

An interesting application of the asymptotic behavior of GP is that it can be used to
show that by solving a finite number of group problems, zIP(b) can be obtained for all but
a finite number of points in zm. Hence, as we remarked in Section 3, the complete value
function of IP can be found by solving a finite number of integer programs.

6. Lagrangian Relaxation and Duality

• • • \-0
2

•
5xl+X2:s19

• • • •

01----....... ---_------11....----+ -----Xl

2 3

-1 • • •

• • • •

Figure 5.4. The optimal solution is Xl = 4, X2 =-1.

6. LAGRANGIAN RELAXATION AND DUALITY

Consider an integer program

ZIP = max{cx: xES}, where S = {x E Z~: Ax ~ b},

which can be rewritten as

(IP)

ZIP = max ex

AIX~bl

xEZ~,

(complicating constraints)

(nice constraints)

323

where A = (~:) and b = (g:). We suppose thatA 2x ~ b2 are m - ml "nice constraints", say

those of a network problem. By dropping the m 1 complicating constraints Al X ~ b 1 we
obtain a relaxation that is easier to solve than the original problem. There are many
problems for which the constraints can be partitioned in this way. We will give some
examples later.

324 11.3. Duality and Relaxation

The idea of dropping constraints can be embedded into a more general framework
called Lagrangian relaxation. It is convenient to consider a generalization oflP:

IP(Q)

ZIP = max ex

A1X~bl

xEQ.

However, when we are discussing results that are specific to IP, it is assumed that
Q = {x E Z~: A 2X ~ b2} oF 0. Again it has to be understood that the problem obtained
from IP(Q) by dropping the complicating constraints is much easier to solve than IP(Q).

Now for any A E R':", consider the problem

LR(A) ZLR(A) = max{z(A, x): x E Q}, where Z(A, x) = ex + A(b l - A IX).

The problem LR(A) is called the Lagrangian relaxation of IP(Q) with respect to
A IX ~ b 1. This terminology is used because the vector A plays a role in LR(A) similar to the
role of Lagrange multipliers in constrained continuous optimization problems.

LR(A) does not contain the complicating constraints. Instead we have included these
constraints in the objective function with the "penalty" term A(b l - A IX). Since A ~ 0,
violations of A IX ~ b l make the penalty term negative, and thus intuitively A IX ~ b l will
be satisfied if A is suitably large.

Proposition 6.1. LR(A) is a relaxation ofIP(Q)for all A ~ o.

Proof If x is feasible in IP(Q), then x E Q and hence x is feasible for LR(A). Also,
,.Z(A, x) = ex + A (b l - A IX) ~ ex for all x feasible in IP(Q) since A IX ~ b l and A ~ o. •

As a consequence of Proposition 6.1, ZLR(A) ~ ZIP for all A ~ O. The least upper bound
available from the infinite family of relaxations {LR(A)h?o is ZLR(A*), where A* is an optimal
solution to

(LD)

Problem LD is called the Lagrangian dual of IP(Q) with respect to the constraints
A1X~bl.

The following example from Section 11.1.1, but with the constraints Xl ~ 2, X2 ~ 4
added, will be used throughout this section to illustrate the concepts and results presented.

Example 6.1

max 7Xl + 2X2

-Xl + 2X2 ~ 4

5Xl+ X2 ~ 20

-2X l- 2X2 ~ -7

~ -2

X2 ~ 4

xEZ;.

6. Lagrangian Relaxation and Duality 325

The Lagrangian relaxation with respect to -Xl + 2x 2 ~ 4 is

max(7 + A)Xl + (2 - 2A)X2 + 4A

5Xl + X2 ~ 20

-2Xl - 2X2 ~ -7

XEZ~,

where Q is the finite set of points

(see Figure 6.1).
The example suggests at least two different viewpoints. The first is to view

Z(A, x) = (c - M l)X + Ab 1 as an affine function ofx for A fixed. It then follows that hR(A)
can be determined by solving the linear program

ZLR(A) = max{z(A, x): x E conv(Q)},

4

3
11=0

2

11=2

o~------------------------~--~------o 2

Figure 6.1

326 11.3. Duality and Relaxation

where as usual we assume that conv(Q) is a rational polyhedron.
In the example (see Figure 6.1),

Thus

conv(Q) = {x E R~: -Xl';;; -2, X2 .;;; 4, -Xl - X2 .;;; -4, 4Xl + X2 .;;; 16}.

hR(O) = max{7xl + 2X2: X E conv(Q)} = z(O, x 7) = 29

ZLR(1) = max{8xl + OX2 + 4: X E conv(Q)} = z(1, X8) = 36;

and as one increases A from 0, ZLR(A) first decreases until A = <!- and then it increases. In
general we obtain

1
ZLR(A) = Z(A, x 7) = 29 - A for 0.;;; A .;;; 9

1
ZLR(A) = Z(A, X8) = 28 + 8A for A? 9.

Hence Zw = ZLR(<!-) = z(<!-, x 7) = z(<!-, X8) = 28~ and A* = <!-.

All of these calculations can be seen in Figure 6.1, where we have shown the objective
function max(c - AA I)X + Ab l for different values of A.

z(>., xi)

36

30

24

~r-----------~~ .. -e~--------------------------2

~=--->.
2

Figure 6.2. The numbers assigned to each line denote the following; (I) 18 + 2.1; (2) 20; (3) 22 - 2.1; (4) 23 + 5.1;
(5) 25 + 3.1; (6) 27 + A; (7) 29 - A; (8) 28 + 8.1.

6. Lagrangian Relaxation and Duality 327

The second viewpoint is to consider ZLR(A) to be determined by maximization over a set
of discrete points, that is,

ZLR(A) = max Z(A, xt
x'EQ

and to observe that for fixed Xi, Z(A, Xi) = exi + A(b l - A IX i) is an affine function of A. See
Figure 6.2, where we have drawn the affine functions Z(A, Xi) for Xi E Q.

In Figure 6.2 one can read off the value of ZLR(A) for any value of A. We see that hR(A) is
piecewise linear and convex (the heavy lines in Figure 6.2) and that Zw = 28~.

Formally, one solves the linear program

ZLR(A) = min{w: w ~ Z(A, Xi) for i = 1, ... , 8},

which shows that ZLR(A) is the maximum of a finite number of affine functions and is
therefore piecewise linear and convex.

We now study how the solution of the Lagrangian dual relates to the solution of the
original problem IP(Q). Returning to Figure 6.1, note that when A = t we obtain

28~ = z(t, X 7) = z(t, x 8)

= z(§, ~X7 + §x8) since Z(A, x) is affine in x

= z(§J (34) + § (4 0))

= z(§, (ZJ! Jj)) = z(§, x*) with x* = (ZJ! Jj)

= ex* + §(4 + x~ - 2x;)

= ex* since x* satisfies -x I + 2X2 = 4.

In other words, by taking a convex combination of points in Q, in the example x 7 and
x 8, we obtain a point x* in conv(Q) satisfying the complicating constraint, for which
ex* = Zw. This shows that for the example we obtain

Zw = max{ex: A IX ~ b I, x E conv(Q)}.

We now formalize the results suggested by the example. The major result is that the
primal linear programming problem offinding a convex combination of points in Q that
also satisfy the complicating constraint A I X ~ b I is dual to the Lagrangian dual.

Theorem 6.2. Zw = max{ex: A IX ~ b l , x E conv(Q)}.

Proof

= max (c - AA I)X + Ab I
xEconv(Q)

(since the objective function is linear)

= max [ex + A(b l - A IX)].
xEconv(Q)

328 11.3. Duality and Relaxation

Hence

= min max [cx + A(b l - A IX)].
",,0 xEconv(Q)

If Q = 0 the inner max equals -00 for all A. Hence ZLD = -00 as desired. Otherwise, let
{xk E R~: k E K} and {ri E R~: j E J}, respectively, be the sets of extreme points and
extreme rays of conv(Q). Thus

I I {ooif(C-MI)ri>O forsomejEJ
x~~v1Q) [cx + A(b - A x)] = cxk + A(b l _ A IXk) for some k E K otherwise.

Hence

A~O,

which can be restated as

ZLD = min 17
~,A

(6.1)
~ cri forj E J

A~ O.

Thus by linear programming duality, we obtain

(6.2)

ZLD = max c(I o/xk + I piri)
kEK iE!

= 1

uk, pi ~ 0 for k E K and j E J

= max{cx: A IX ~ b l , X E conv(Q)}.

Corollary 6.3. ZLD can be calculated/rom the linear programs (6,1) or (6.2).

•

The reader familiar with linear programming decomposition will recognize the linear
program (6.2) as the reformulation obtained when Dantzig-Wolfe price decomposition is
applied to

6. Lagrangian Relaxation and Duality 329

where conv(Q) = {x E R~: A 2X ~ b2} and A are the "dual prices" associated with the
constraints A IX ~ b l . It follows that (6.1) is the dual of the Dantzig-Wolfe reformulation.
Alternatively, (6.1) is the reformulation obtained by applying resource or Benders'
decomposition to the dual linear program

(see the next section).

Corollary 6.4. ZLR(A) is piecewise linear and convex on the domain over which it isjinite.

Proof ZLR(A) is finite if and only if A lies in the polyhedron {A E R';": AA I rj ~ cr j for
j E J}. On this polyhedron, ZLR(A) = Ab l + maXkEK (c - AA I)Xk and is the maximum ofa
finite number of affine functions. Convexity follows from Proposition 4.1 of Section I.2.4 .

Since

we have that

ZIP = max cx ~ ZLD = max{cx: A IX ~ b l , X E conv(Q)}.
xES

•

The duality gap ZLD - ZIP depends on the relative sizes of conv(S), conv(Q) n
{x: A IX ~ bl}, and the objective coefficients c.

Corollary 6.5. ZIP = zLDfor all c if and only if

When Q = {x E Z~: A 2x ~ b2}, it is also of considerable interest to compare ZLD with
ZLP = max{cx: Ax ~ b, x E R~}. In Example 6.1, ZIP = 28 < ZLD = 28~ < ZLP = 30n-.

Corollary 6.6. ZLD = ZLP for all c if all the extreme points of {x E R~: A2x ~ b2} are
integral.

Proof Under the hypothesis of the corollary we obtain
{x E R~: A 2x ~ b2}, and the result follows from Theorem 6.2.

In Example 6.1, a natural choice of the "complicating constraints" is

Thus

conv(Q) =

•

Obviously {x E R;: -XI ~ -2, X2 ~ 4} only has integral extreme points, so that, by Corol
lary 6.6, this Lagrangian relaxation would terminate with ZLD = ZLP = 30-fi-.

330 11.3. Duality and Relaxation

In summary,

conv(S) s conv(Q) n {X E R~: A IX ~ b l } S {X E R~: Ax ~ b}

and thus ZIP ~ Zw ~ ZLP. But because some faces of the respective polyhedra can coincide,
we may obtain ZIP = Zw or Zw = ZLP for particular c even if the conditions of the two
previous corollaries do not hold. Figure 6.3 illustrates this. The inner polytope is conv(S).
The outer polytope is {x E R~: Ax ~ b}. The inner polytope, together with the shaded
region, is conv(Q) n {x E R~: A IX ~ bl}. Four different objective functions are indicated,
and the results are summarized as follows:

Objective Functions
c l

c2

c3

c4

Objective Values
ZIP = ZLD = ZLP

ZIP < ZLD = ZLP

ZIP < ZLD < ZLP

ZIP = ZLD < ZLP

It is possible to characterize problems where ZIP = Zw in terms of a complementarity
condition. We will obtain this result as a corollary to the following theorem.

Theorem 6.7. ZIP ~ Zw - e if and only if there exists A* ~ 0 and x* E S such that
A*(b l - A IX*) ~ oj, Z(A*,X*) ~ ZLR(A*) - 02, and 01 + 02 ~ e.

Proof To show sufficiency, we have

~ ZIP + e (since x* E S).

/11
/ I

/ I
/ I

//) ,
I
I

Figure 6.3

6. Lagrangian Relaxation and Duality 331

To show necessity, let x* be an optimal solution of IP(Q) and let},,* be an optimal
solution ofLD. We have

ZLD = ZLR(}"*) = z(}"*, x*) + ZLR(}"*) - z(},,*, x*)

= cx* + }"*(b l - A lX*) + hR(},,*) - z(},,*, x*)

= ZIP + }"*(b l - A lX*) + ZLR(}"*) - z(}"*, x*).

Hence ZIP ~ ZLD - e implies

}"*(b l - A lX*) + (ZLR(},,*) - z(},,*, x*)) .:;; e.

•
By putting 61 = 62 = e = ° in Theorem 6.7, we obtain necessary and sufficient condi

tions for the duality gap to be 0.

Corollary 6.8. ZIP = ZLD if and only if there exists }" * ~ ° and x* E S such that
}"*(b l - A lX*) = ° and ZLR(}"*) = z(},,*, x*).

Theorem 6.7 can also be helpful in identifying (nearly) optimal solutions to IP(Q). For
example, in the process of solving LR(}") we may find an xES that is nearly optimal in
LR(}") and nearly satisfies complementary slackness.

Corollary 6.9. Ifx* E S satisfies }"(bl - A lX*) .:;; 61 and z(}", x*) ~ ZLR(},,) - 62 for some
}" ~ 0, then cx* ~ ZIP - 15 1 - 152•

InExample6.1,x6 = (33) E S. ForA = Ts, weobtainzLR(},,) = 28t!, }"(b l - A lX6) = Ts = 610
and ZLR(},,) - z(}", x 6) = l~ = 62. Hence cx6 ~ ZIP - It!.

The complementary slackness conditions are also useful in right-hand-side parametrics
as shown in the following corollary to Theorem 6.7.

Corollary 6.10. Let x* be an optimal solution to LR(}"*), where },,* ~ 0, and define
d* = A lX*. Then x* is an optimal solution to

max{cx: A IX':;; d l , X E Q}

In Example 6.1, x 7 = (3 4) is an optimal solution to LR(i\i). Hence x 7 is an optimal
solution when the first constraint is -Xl + 2X2 .:;; 5.

Lagrangian relaxation and duality also apply to equality constraints. Suppose that
A IX = b l in Problem IP(Q). Then defining LR(}") as before, we have the following
proposition.

Proposition 6.11. If A IX = bl in IP, then LR(}") is a relaxation ofIP for all }" E Rml.

The only difference between the equality and inequality cases is that in the equality case
the multipliers are unrestricted in sign.

We now give one problem to illustrate the formulation of Lagrangian relaxations.
Others will be given later when we discuss computation.

332 11.3. Duality and Relaxation

Example 6.2 (A Flow Problem with Budget Constraint). Suppose there is a set of n jobs
to be assigned to a set of n workers, with N = {l, ... ,n}. Suppose that cij is the value of
assigning worker i to job j, that t ij is the cost of training worker i to do job j, and that we
have a training budget of b units. We wish to maximize the total value of the assignment
subject to the budget constraint, that is,

max 2: 2: cijxij
iEN jEN

2: x ij = 1 fori E N
jEN

2: xij = 1 for j EN
iEN

(1)

(2)

(3)

First we observe that the problem is .N'9P-hard. Ifwe then wish to choose a Lagrangian
relaxation, there are four options to consider. Note that in each option the relaxed
problem LR(A) is considerably easier to solve than the original problem.

1. Lagrangian relaxation with respect to (3). Then LR1(A), A E Rl, is an assignment
problem with objective function

2. Lagrangian relaxation with respect to (1) and (2). Then LR2(u, v), U ERn, vERn, is
a knapsack problem with objective function

2: Ui + 2: Vj + 2: 2: (Cij - Ui - Vj)Xij.
iEN jEN iEN jEN

3. Lagrangian relaxation with respect to (1) or (2), say (1). Then LR3(U), U ERn, is a
knapsack problem with generalized upper-bound constraints and objective function

2: Ui + 2: 2: (Cij - Ui)Xij.
iEN iEN jEN

4. Lagrangian relaxation with respect to (1) or (2) and (3), say (1) and (3). Only
generalized upper-bound constraints remain. Thus the Lagrangian L~(u, A),
U ERn, A E Rl, with objective function

Ab + 2: Ui + 2: 2: (Cij - Ui - Atij)Xij
iEN iEN jEN

is trivial to solve. For each j, an i is chosen to maximize cij - Ui - Atij, and the
corresponding x ij is set to 1.

In choosing a relaxation there are two major questions to consider: How strong is the
bound zw, and how difficult to solve is the Lagrangian dual (LD)? We defer discussion of
the latter question until we discuss computation, and now we just consider the bounds.

6. Lagrangian Relaxation and Duality 333

When Q is a set of assignment constraints or a set of generalized upper-bound
constraints, Corollary 6.6 applies and zLo = zto = ZLp. Since

and

we have

C Q2 = {x E En': I I ti}Xi}';; b}
iEN JEN

conv(Q2) C {x E R:': I I ti}Xi}';; b, Xi}';; 1 for i,j EN},
iEN JEN

and each of the inequalities is strict for some objective function.

We now consider two ways of strengthening the Lagrangian dual of problem IP. The
first approach yields a dual whose optimal value equals

This dual is obtained by applying Lagrangian duality to the reformulation ofIP given by

ZIP = maxcxl

AIXI .;; b I

(RIP)
A 2X2 .;; b 2

Xl _X2 = 0

Xl E Z:, X2 E Z:.

Taking Xl - x 2 ::= 0 as the complicating constraints, we obtain the Lagrangian dual of
RIP:

where u = c2•

zcso = min {max{(c - u)x l + ux2}}
u

Xl E Z:, X2 E Z:

= min {max CIXI + max C2X2}
C I+C2=C

AIXI';;b l , A2X2.;;b2

xIEZ~, x2EZ:,

334 11.3. Duality and Relaxation

From Theorem 6.2, we obtain a polyhedral interpretation of the dual.

Corollary 6.12

and Zcso ~ Zw.

We have used the terminology CS since the technique has been called cost splitting. The
technique is useful when:

1. conv{x E z~: A IX ~ bl} C (x E R~: A IX ~ bl}, so for some objective functions e we
obtain Zcso < Zw.

2. The sets of constraints A iX ~ bi are simple to deal with separately; that is, the
difficulty is caused by their interaction.

In Example 6.2, we could take A IX ~ b l to be constraint set (1) and (3) and take
A 2x ~ b2 to be constraint sets (2) and (3). This yields Zcso ~ ZLo with the inequality strict
for some objective functions.

Another approach that dominates the Lagrangian dual is the "surrogate" dual. Starting
from IP(Q), with weights A E R';" for the complicating constraints, consider the problem

SD(A)

The problem SD(A) is called the surrogate relaxation ofIP(Q) with respect to A IX ~ bl.
SD(A) contains a single "complicating" constraint. For instance, when Q = Z~ the surro
gate relaxation is a knapsack problem. The surrogate dual ofIP(Q) is the problem

(SD)

Proposition 6.13. LR(A) is a relaxation ofSD(A)for A ~ 0 and Zw ~ Zso.

Proof The feasible region ofSD(A) is contained in that ofLR(A). In addition, when x
is feasible in SD(A) we obtain A(b l - A IX) ~ 0 and hence

Z(A, x) = ex + A(b l - A IX) ~ ex. •
Although the surrogate dual can be used computationally, it does not have such nice

theoretical properties as the Lagrangian dual.
We close this section by relating Lagrangian duality to the general duality theory of

Section 2. Given the initial problem IP(Q), we define its value function zQ by

for all d l E Rm,. Note that when Q = (x E Z~: A 2X ~ b2}, it follows that ZQ is a projection
of the IP value function Z onto d2 = b2• Thus zQ(dl) = z(dl, b2) for all d l E Rm,. Now using
a similar approach to that of Section 2, with SQ(dl) = (x E Q: A IX ~ d l} in place of Sed),
we obtain as the equivalent of(2.4) the dual problem

6. Lagrangian Relaxation and Duality

min g(b l)

(6.3) g(Alx)?cx forxEQ

g non decreasing, g: Rm, --> R I.

Example 6.1 (continued). The dual problem is

or

w = min g(4)

g(-xI + 2X2)? 7xI + 2X2 for x E Q

g nondecreasing, g: R I R I

min g(4)

g(2) ? 18, Xl = (2 2)

g(4) ? 20, x 2 = (2 3)

g(6) ? 22, x 3 = (2 4)

g(-I) ? 23, X4 = (3 1)

g(l) ? 25, x 5 = (3 2)

g(3) ? 27, x 6 = (3 3)

g(5) ? 29, x 7 = (3 4)

g(-4) ? 28, x 8 = (4 0)

g nondecreasing.

It is readily seen from Figure 6.4 that

if d l <-4
if -4.:;; d l < 5
if d l ? 5.

335

Since zQ(O) = z(O, b2), we cannot expect zQ(O) = 0. Hence the simplest class of functions
that are candidates for the dual (6.3) are affine functions g(d l) = An + Adl , A E R';". In
particular, if we take g to be the affine function supporting ZQ and passing through the
points (-4 28) and (5 29) (see Figure 6.4), then g is clearly dual feasible and
g(4) = 28~ = Zw.

This leads us to examine the restricted dual

WOR = min g(b l)

(6.4) g(A IX)? cx for x E Q

g affine and nondecreasing, g: Rm, R I,

which can be rewritten as

336 11.3. Duality and Relaxation

32

g(d l)

28
xl

XB
.X*=X6

• x 5

24
.x4

·x3

20 • x 2

• xl

16 d l
-4 -2 0 2 4 6

Figure 6.4

When Q = {x E Z~: AZx ~ bZ}, it is also interesting to examine the dual (2.4) in Rm,
where we restrict the dual functions g: R m RI to be of the form g(dl , dZ) =)"d l + gz(dZ)
with dZ E Rm-m" and)" E R';". This gives the alternative dual

Wo = min)"b l + gz(bZ)

(6.5) AA IX + gz(AZx) ~ cx for x E Z~

),. ~ 0, gz nondecreasing, gz: Rm, R I,

which can be rewritten as

Wo = min wo(),.),
;.,,0

where

We now compare these two restrictions [i.e., (6.4) and (6.5)] of the general dual with the
Lagrangian dual.

Theorem 6.14. The relationships among the Lagrangian dual and the restricted duals are
given by:

a. ZLR(),.) = WOR(),.) for all),. ~ 0. Hence the Lagrangian dual and the restricted dual
(6.4) are equivalent.

b. IJQ = {x E Z1: AZx ~ bZ}, then ZLR(),.) = WOR(),.) = wo(),.). Hence the Lagrangian dual
and the two restricted duals (6.4) and (6.5) are equivalent.

7. Benders' Reformulation

Proof

a. WDR(A) = min).o{Ao + Ab 1: Ao + MIX;;;' ex for x E Q}

= Ab l + max (ex - MIX) = hR(A).
xEQ

b. Wo(A) = Ab l + min gz(bZ)

Using (2.4), we obtain

g2(A 2x);;;. (e - M I)X for x E Z~

g z nondecreasing.

WD(A) = Ab l + max{(e - M l)X: A 2x ~ bZ, x E Z~}

= ZLR(A).

337

•
The reader should now verify, for Example 6.1, that g(d1) = 28~ + ~dl is an optimal

solution to the restricted dual (6.4) and that

is an optimal solution to the restricted dual (6.5). Both evidently give the same objective
value Zw = 28~.

7. BENDERS'REFORMULATION

In the preceding section we gave a method for handling complicating constraints. We now
consider the dual notion of complicating variables. In particular, in the mixed-integer
program

(MIP)

z = max ex + hy

Ax+Gy ~ b

x EX f; Z~,y ER~,

we can view the integer variables x as complicating variables to what would otherwise be a
linear program, and we can view the continuous variables y as complicating variables to
what would otherwise be a pure-integer program. For example, in a fixed-charge network
flow problem where the integer variables represent decisions about which arcs to use in a
network, the problem in the y-space is an ordinary network flow problem once x is
specified.

The procedure described below shows how MIP can be reformulated as a problem in
X x R I; that is, there is only one continuous variable. However, this formulation generally
contains a huge number of linear constraints. Since one expects only a small subset of
these constraints to be active in an optimal solution, a natural relaxation is obtained by
dropping most of them.

338 11.3. Duality and Relaxation

As a first step, we suppose that the integer variables x have been fixed. The resulting
linear program is

LP(x) ZLP(X) = max {hy: Gy ~ b - Ax, y E R~}

and its dual is

min (u(b - Ax): uG ~ h, u E Rr;'}.

We can characterize whether LP(x) is infeasible or has a bounded optimal value or has
an unbounded optimal value by using the representation of the dual polyhedron in terms
of its extreme points and extreme rays. Let {Uk ERr;': k E K} be the set of extreme points
of Q = {u ERr;': uG ~ h} and let {v j E Rr;':} E J} be the set of extreme rays of
{u ERr;': uG ~ O}.NotethatifQ =1= 0, then{v j ERr;':} EJ}isalsothesetofextremerays
of Q. From Theorem 4.10 of Section 1.4.4 we can characterize ZLP(X).

Proposition 7.1. Thefunction ZLP(x) is characterized asfollows:

i. IfQ = 0, then ZLP(X) = 00 ifvj(b - Ax) ~ Of or all j E J, and ZLp(X) = -00 otherwise.

ii. IfQ =1= 0, then ZLP(X) = minkEK uk(b - Ax) < 00 if ~(b - Ax) ~ 0 for all j E J, and
ZLP(X) = -00 otherwise.

An immediate consequence of Proposition 7.1 is that when Q =1= 0, MIP can be stated as

(7.1)

Z = max (cx + min uk(b - AX»)
x kEK

vj(b-Ax)~O for}EJ

xEX.

This yields the Benders' representation ofMIP given by the following theorem.

Theorem 7.2. MIP can be reformulated as

(MIP')

z=max1]

1] ~ cx + uk(b - Ax) for k E K

vj(b - Ax) ~ 0 for} E J

X EX,1]ER 1•

Proof If there is no x E X such that vj(b - Ax) ~ 0 for all} E J, then ZLP(X) = -00 for
all x E X and Z = -00. If there is an x E X such that vj(b - Ax) ~ 0 for all} E J and
Q = 0, then K = 0 so that Z = 00; otherwise MIP' is equivalent to (7.1). •

MIP' is Benders' reformulation. Since it typically has an enormous number of
constraints, a natural approach is to consider relaxations obtained by generating only
those constraints corresponding to a small number of extreme points and extreme rays.
An algorithm based on such a relaxation will be discussed in the next chapter.

7. Benders' Reformulation

2

L-----~----------------------------Ul 234

Example 7.1

Figure 7.1

max 5xI - 2X2 + 9X3 + 2YI - 3Y2 + 4Y3

5xI- 3X2 + 7X3 + 2YI + 3Y2 + 6Y3 ~-2

4xI + 2X2 + 4X3 + 3YI - Yz + 3Y3 ~ 10

Xj ~ 5 for j = 1, 2, 3

x E Z!, Y ER!.

Here we suppose that X = {x E Z!: Xj ~ 5 for j = 1, 2, 3}.
In Figure 7.1 we show the polyhedron {u E R~: uG ;;;, h}

2uI + 3U2;;;' 2

3uI - u2;;;,-3

6Ul + 3U2;;;' 4

u ER;.

339

The extreme points of this polyhedron are u 1 = (1 0), u2 = (~ 1), u3 = (0 ~), and
u4 = (0 3), and its extreme rays are VI = (1 0) and v2 = (1 3).

The resulting reformulation of the mixed-integer program is

340 11.3. Duality and Relaxation

z = max 'I

'I ~ 5Xl - 2X2 + 9X3 + (-2 - 5Xl + 3X2 - 7X3)

'I ~ 5Xl - 2X2 + 9 X 3 + 1(-2 - 5Xl + 3X2 - 7X3) + t (10 - 4Xl - 2X2 - 4X3)

'I ~ 5Xl - 2X2 + 9X3 + 1 (10 - 4Xl - 2X2 - 4X3)

'I ~ 5Xl - 2X2 + 9 X 3 + 3(10 - 4Xl - 2X2 - 4X3)

~o

(-2 - 5Xl + 3X2 - 7X3) + 3(10 - 4Xl - 2X2 - 4X3) ~ 0

Xj ~ 5 for) = 1, 2, 3

x E zI, 'I E R 1.

The reader should check that an optimal solution is x = (0 3 1) and 'I = 3.

Example 7.2 (Uncapacitated Facility Location). Here we use the alternative formula
tion ofMIP given by

z = max cx + 'I'

'I' ~ uk(b - Ax) for k E K

vj(b -Ax) ~ 0 for) E J

x EX, 'I' ERI.

We consider the formulation given in Section 1.1.3:

z = max - I jjXj + I I CuYu
JEN iEI JEN

I Y u = 1 for i E I
JEN

-Xj + Yu ~ 0 for i E I,) EN

x E Bn, Y E R~rn,

where N = {l, ... , n} and 1= {l, ... , m}.
In this case, LP(x) is

ZLP(X) = max I I CuYu
iEI JEN

I Y u = 1 for i E I
JEN

Yu~Xj foriEI,)EN

Y E Rr;zn.

Now rather than applying the Benders' reformulation directly, we will take advantage of
the fact that LP(x) can be decomposed into m subproblems. For i E I, let

8. Notes

zLP(X) = max I CijYij

and note that hp(X) = I.iEI zLp(x).

jEN

I Yij= 1
jEN

Y ij .;;; Xj for j E N

yER~

341

Clearly, LPi(X) is feasible and bounded for x E Bn/{o}. Hence to describe zLP(x), it
suffices to find the extreme points of

where Wi = (Wi!, ••• , Win)' It is easily seen that these extreme points are

Hence

As a result we can write the Benders' reformulation:

(7.2)

z = max - I jjXj + I t7i
jEN iEI

t7i .;;; Cik + I (Cij - CiktXj for i E I and kEN
jEN

which has no more than mn + 1 constraints. The standard Benders' reformulation,
obtained directly from LP(x) without decomposition, has an exponential number of
constraints.

8. NOTES

Section 11.3.1

The concepts of relaxation and weak duality might best be attributed to the folklore of the
field. Geoffrion and Marsten (1972) were among the first to use the term relaxation
explicitly in the context of discrete optimization. Nemhauser (1985) gave an annotated
bibliography of the uses of duality in integer programming and combinatorial optimiza
tion.

Section 11.3.2

The value function ofa discrete optimization problem appeared in Everett's (1963) rather
informal treatment of Lagrangian relaxation and duality. Its importance was brought out

342 11.3. Duality and Relaxation

in much greater depth in Geoffrion's (1974) treatment of Lagrangian duality for integer
programs.

The value function of a knapsack problem was studied and shown to be superadditive
by Gilmore and Gomory (1966). Gomory (1965, 1967) extended these results to group
problems.

The value functions of pure- and mixed-integer programs have been studied extensively
by Blair and Jeroslow (1977, 1982, 1984, 1985).

The general dual problem (2.4) comes from Wolsey (1981a) and Tind and Wolsey (1981).

Section 11.3.3

An explicit statement of a superadditive dual appears in Johnson (1973) in the context of a
cyclic group problem. Obviously, superadditive duality is closely related to the superaddi
tive characterization of all valid inequalities (see the notes for Sections 11.2.4-11.2.7).

Blair and Jeroslow (1977) use the superadditivity of the value function to study the
sensitivity of the optimal value as b varies. Jeroslow (1978), Wolsey (1981b), and Blair and
Jeroslow (1982) studied the representation of the value function by a finite number of
C-G functions. Cook, Gerards et al. (1986) generalized these results and also derived
upper bounds on the Chvatal rank as a function of n, independent of the data.

Section 11.3.4

This longest-path view of integer programs is based on Gilmore and Gomory's (1966)
dynamic programming recursion for the knapsack problem. Also see Shapiro (1968a).

Section 11.3.5

The group problem was introduced by Gomory (1965), and the results of this section are
from that article. Also see Shapiro (1970) and Wolsey (1971a,b).

The literature on methods for solving the group problem and using it as relaxation for
solving the general integer programming problem will be given in the notes for Sec
tion 11.6.1.

Section 11.3.6

Lorie and Savage (1955) proposed a simple heuristic for 0-1 integer programming that is
equivalent to a Lagrangian relaxation with respect to all of the linear constraints.
Nemhauser and Ullman (1968) showed that with respect to this relaxation, the problem of
finding an optimal set of multipliers is equivalent to solving the dual of the linear
programming relaxation; they also showed that this set of multipliers yields the same
bound as that obtained from the linear programming relaxation.

Everett (1963) introduced the concept of Lagrangian relaxation for structured discrete
optimization problems, and he proved Corollaries 6.5 and 6.6, Theorem 6.7, and Corol
laries 6.8-6.10 without explicitly using Theorem 6.2.

Brooks and Geoffrion (1966) established the connection between Lagrangian relaxation
and column generation methods for solving large-scale linear programs [see Dantzig and
Wolfe 1960]. Geoffrion (1974) formalized the ideas of Lagrangian duality for general
integer programs and, among other things, proved the main theorem (Theorem 6.2).
Related articles are Shapiro (1971) and Fisher and Shapiro (1974).

Several approaches to closing the duality gap that arises in Lagrangian duality have
been proposed [see, e.g., Bell and Shapiro (1977)].

The use of Lagrangian duality in solving structured combinatorial optimization
problems was stimulated by Held and Karp's (1970, 1971) very successful application of it

9. Exercises 343

to the traveling salesman problem. Some of these applications will be elaborated on in
Sections 11.5.4 and II.6.1-1I.6.3, and several others will be cited in the notes for Sec
tion II.5.4.

The idea of using cost splitting (Corollary 6.12) to obtain a Lagrangian dual problem
equivalent to a linear program over the convex hull of the integer points in the intersection
of two polyhedra appears in Ribeiro and Minoux (1985), Jornsten and Nasberg (1986), and
Trick (1987).

In a somewhat different manner, this approach was used by Nemhauser and Weber
(1979) to solve set partitioning problems using a matching relaxation and by Edmonds
(1970) and Frank (1981) in matroid intersection problems (~ee Section 111.3.5).

Surveys of the theory, computational aspects, and applications of Lagrangian duality
are given by Shapiro (1979b) and Fisher (1981).

Surrogate duality is due to Glover (1968b, 1975) and Greenberg and Pierskalla (1970).
Karwan and Rardin (1979) discussed the relationship between surrogate and Lagrangian
duality. Fisher, Lageweg et al. (1983) applied surrogate duality to job shop scheduling
problems.

Section 11.3.7

Resource or Benders' decomposition for mixed-integer programming is described in
Benders (1962). Lemke and Spielberg (1967) described a variation of Benders' algorithm
that is designed for 0-1 MILPs. Geoffrion (1970, 1972) extended Benders' decomposition
to handle a more general class of none on vex optimization problems. Magnanti and Wong
(1981) described techniques for obtaining stronger Benders-type reformulations. Wolsey
(198lc) and Holm and Tind (1985) provided theoretical extensions to the decomposition of
integer programs. Van Roy (1983, 1986) proposed a procedure called cross-decomposition,
which simultaneously uses Lagrangian and Benders' decomposition.

9. EXERCISES

1. Formulate the packing and covering problems discussed in this chapter as integer
programs and thereby show that they are dual problems. Do you know any cases
where strong duality holds?

2. Find a maximum-weight node packing on the graph shown in Figure 9.1. The
numbers on the nodes are the weights. Give a short proof that this packing is optimal.

Figure 9.1

344 11.3. Duality and Relaxation

3. A restriction ofIP is any maximization problem

where (a) ST c;; S, and (b) ZT(X) ~ cx for x EST.

i) What use is a restriction ofIP?

ii) What can be said about its dual?

4. i) Calculate the value function of the knapsack problem

z(d) = max 7Xl + 4X2 + X3

5Xl+3x2+2x3~d

xEZ~.

ii) Show that z is superadditive and nondecreasing for d E Zl.
iii) Express z in such a way that there is a short proof that it is superadditive and

nondecreasing.

5. Let

(P) z = max{cx: Ax ~ b, x EX}

and

(P;) Zi = max{cx: Ax ~ b, x E Xi} for i = 1, ... , n.

Show that if Fi is dual feasible for (Pi) for i = 1, ... ,n, and X = U7~1 Xi, then
F = maxi {F;} is dual feasible for (P).

6. Show that the problem minxEB' fix) has a dual problem given by

max Yo + I Yj
JEN

Yo + I Yj ~f(xS) for all S c;; N
jES

Hint: Take :Ji = {F: F(d) = Yo + yd}, the class of affine functions.

7. i) Show that the superadditive dual of

(IP) max{cx: Ax ~ b, x E Z"}

is

min F(b)

(SD) F(aj) = Cj for j EN

F superadditive and nondecreasing with F(O) = O.

9. Exercises

ii) Show that if F is feasible in (SD), then F(Ax) = - F(-Ax) for all x E zn.

iii) Show that LjENF(aj)xj ~ F(b) is a valid inequality for IP.

iv) Show that ifIP is feasible for all d, the value function

zed) = max{cx: Ax ~ d, x E zn}

is dual optimal for all d.

8. i) Give the superadditive dual of

(see exercise 4).

z = max 7Xl + 4X2 + 1x3

5Xl+3x2+2x3~b

xEZ~

ii) Find at least two dual feasible solutions when b = 13.

iii) Use these solutions to obtain bounds when b = 15.

9. i) Give the superadditive dual of

max 5Xl + llx2 + 16x3 + 20X4

Xl+ 2X2+ 3X3+ 4x4~14

xEZ!.

345

ii) Use the superadditive description of conv(S) (see Example 3.1) to find an
optimal dual solution.

10. i) Formulate the problem

XEZ~

as a shortest-path problem.

ii) Solve the problem by Dijkstra's shortest-path algorithm.

iii) Give a dual feasible solution.

11. Use the group problem to solve

for b = 217, 495, and 621.

max 7Xl + 4X2 + X3

5Xl+3x2+2x3~b

xEZ~

346 11.3. Duality and Relaxation

12. Use the group problem to solve

max 2Xl + 5X2

4Xl + X2 ~ 28

xl+4x2~27

(See exercises 1 and l3 of Section 11.1.9).

13. Use Lagrangian duality to solve the problem of exercise 10 with b = (~).

i) What bound is obtained by dualizing the first constraint?

ii) What bound is obtained by dualizing the second constraint?

iii) For what values of b is the optimal solution easily obtained? (See Corollary 6.10.)

14. Apply Lagrangian relaxation to the integer program in exercise 12.

i) Show that if any two constraints are dualized, the value of the Lagrangian dual
equals the value of the linear programming relaxation.

ii) Find a different objective function for which i is false.

iii) Show that if any single constraint is dualized, the value of the Lagrangian dual is
an improvement on the value of the linear programming relaxation.

iv) Apply cost splitting to get a better Lagrangian dual.

v) Demonstrate i-iv graphically.

15. Consider two different Lagrangian duals for the generalized assignment problem:

max I I CijXij
i j

for i EM

I lixij ~ bj for j EN
i

x EBmn.

Discuss their relative merits according to the following three criteria:

i) ease of solution of the subproblem,

ii) ease of solution of the Lagrangian dual,

iii) strength of the upper bound obtained by solving the dual.

9. Exercises 347

16. Discuss the merits of different Lagrangian duals for the capacitated facility location
problem

mIll I I hijYij + I CjXj
iEM jEN jEN

I Y ij ~ ai for i EM
jEN

I Yij ~ bjxj for) EN
iEM

Yij ~ min(ai, bJxj for i EM,) E N

17. Consider the problem of processing n jobs on one machine. Let Pj denote the
processing time of job), let rj denote the earliest start time, and let Wj denote the
weight associated with job). The problem is to minimize LjEN Wjtj, where tj is the
start time of job). Without release dates (rj = 0 for all)), the optimal job ordering is
given by Smith's rule: Processthejobsin order 1, ... , n, where WI/PI ~ ... ~ wn/Pn.
How can Lagrangian relaxation be used to obtain a lower bound for the problem
with release dates?

18. Consider the capacitated lot-sizing problem, that is, the uncapacitated problem
formulated in Section 1.1.4 (see also Section 11.2.4) with additional capacity con
straints on the production levels Yt ~ UtXt for t = 1, ... , T. After dualizing these
constraints, the Lagrangian subproblem is an uncapacitated problem that can be
solved rapidly by dynamic programming (see Section 11.5.5).
The Lagrangian dual is equivalent to a linear programming problem. Describe this
linear programming problem in polyhedral terms.

19. Solving the Lagrangian duals in exercise 15 is equivalent to solving the dual problem

F(ei) ~ cij for all i and)
liej

FEYft

for certain classes of functions Yft, where ei is the ith unit vector. For each of your
proposed Lagrangians, what is Yft?

20. Describe the class of dual functions that correspond to the cost splitting and
surrogate duals, respectively. Show that neither dual dominates the other.

21. Suggest how to find optimal multipliers in the surrogate dual.

22. Apply Benders' reformulation to the fixed-charge network problem described in
Section 1.1.4. Discuss possible advantages of such a reformulation.

348 11.3. Duality and Relaxation

23. Apply Benders' reformulation to UFL (without separating the subproblems by
client) and compare this formulation with (7.2).

24. Write out explicitly the Benders' reformulation of the mixed-integer program

max 2XI + X2 + 3X3 + 7YI + 5Y2

9XI + 4X2 + 14x3 + 35YI + 24Y2 ~ 80

-Xl - 2X2 + 3X3 - 2YI + 4Y2 ~ 10

X E Z~, Y ER~.

11.4
General Algorithms

1. INTRODUCTION

Here we discuss approaches for finding an optimal, or E-approximate, solution of the
linear integer programming problem

(IP) ZIP = max{ex: xES}.

For simplicity, in this introductory discussion, we assume S =1= 0 and ZIP < 00. Therefore,
to solve an instance of IP, an algorithm must produce a feasible solution XO E S and an
upper bound WO on the value of all feasible solutions such that exo = woo A general iterative
scheme for finding XO and WO is shown in Figure 1.1.

Many integer programming algorithms focus on the dual step by systematically
reducing the upper bound w* but generally not producing an xES until w* = ZIP.

Relaxation algorithms are of this type. At each iteration a relaxation of IP is solved and if
an optimal solution of the relaxation does not yield an optimal solution of IP, the
relaxation is refined. A general relaxation algorithm is the following.

General Relaxation Algorithm

Initialization: Set t = 1, w* = 00, and z* = -00. Choose S1 ;2 Sand z1 (x) ~ ex for xES.
Iteration t:

Step 1: Solve the relaxation ofIP:

zk = max{zk(x): x E Sk}.

Step 2: Optimality test. Let the solution be Xl. If Xl E Sand zk = ext, then
w* = ext = z* and xt is an optimal solution to IP.

Step 3: Refinement. Set w* = zk, z* = ext if xt E S, and t ~ t + 1. Choose Sit! to satisfy
S S st;! s Sk and zt;!(x) to satisfy ex ~ zt;!(x) ~ zk(x) for xES with either Sit! =1= Sk
or zit!(x) =1= zk(x).

Note that in this algorithm, the sequence of upper bounds satisfies zt;! ~ zk for all t. In
many specific instances of the general relaxation algorithm, zk(x) = ex for all t so that
optimality is achieved as soon as an xt E S is produced. In this case, the refinement step
satisfies Sit! C Sk for all t. It is then desirable to choose st;! s Sk \ ext}; otherwise
zt;! = zk.

349

350

Input

t= 1

Upper bound w* (possibly + (0)

Feasible solution x* E S (may be omitted)

z* = { ex* if x* is specified
- 00 otherwise

Dual iteration

w*- min (w*, wt)

Figure 1.1

y

Output

Optimal solution x*

ZIP =z*

y

Optimality test

z*=w*

Dual step

N

Primal interation

Primal step

xt ES
and

ext> z*
?

y

z* - ext
x* - xt

N

N

1. Introduction 351

An important example of this type of relaxation algorithm is a/ractional cutting-plane
algorithm. Here we assume that S = {x E Z~: Ax ~ b}. Note that to specify the algorithm,
it suffices to give the initial relaxation and the rule for constructing Rpt+l from RPt.

Fractional Cutting-Plane Algorithm (FCPA)

Initialization: z1(x) = cx for all x E R~; S1 = {x E R~: Ax ~ b}.
Refinement: zitl(X) = zk(x) for all x E R~; Sitl = Sk n {x E R~: ntx ~ nb}, where (nt, nb)

is a valid inequality for S such that ntxt > nb.

Observe that max{cx: x E Sk} is a linear program whose optimal dual solution ut is
readily extended to the feasible solution (u t

, 0) to the dual ofmax{cx: x E Sit!}. The dual
variable for the new constraint nt x ~ nb equals zero. Thus it is desirable to solve the
sequence of linear programs

max{cx: x E Sk}

by a dual algorithm. Hence we can interpret the fractional cutting-plane algorithm as a
dual linear programming algorithm for solving IP. The dual ofLpt is weakly dual to IP. The
generation of a valid inequality corresponds to the generation of a column in the dual
space and, consequently, to a relaxation of the dual ofLPl.

Figure 1.2 illustrates the application of FCPA to the two-variable integer programming
problem introduced in Chapter 11.1.

We will not discuss here the very important question of how to choose the valid
inequality (nt, nb) that separates xt from Sitl. In Section 3, we will give an FCPA for general
integer programs that uses C-G inequalities. In Chapters 11.5 and 11.6 we will show how
strong valid inequalities can be used in FCPAs for some structured integer programs and
the general 0-1 integer program.

4

3

2

O~--------------2-------3--~---'4--------Xl

Figure 1.2

352 11.4. General Algorithms

Another very important type of relaxation algorithm uses an enumerative approach.
We say that {Si: i = 1, ... , k} is a division of S if U7=l Si = S. A division is called a partition
if Si n Sj = 0 for i, j = 1, ... , k, i *' j.
Proposition 1.1 Let

where {Si}7=l is a division of S. Then ZIP = maXi=l, ... , k z{P.

Proposition 1.1 expresses the familiar concept of divide and conquer. In other words, if it
is too difficult to optimize over S, perhaps the problem can be solved by optimizing over
smaller sets and then putting the results together.

The division is frequently done recursively as shown in the tree of Figure 1.3. Here the
sons of a given node [e.g., (Sl1, S12, S13) are the sons of Sl] represent a division of the
feasible region of their father.

When S ~ Bn, a simple way of doing the recursive division is shown in Figure 1.4. Here
Sb1 •• • bk = S n {x E Bn: Xj = Jj E CO, 1} for j = 1, ... , k}, and the division is a partition of
S.

Carried to the extreme, division can be viewed as total enumeration of the elements of
S. Total enumeration is not viable for problems with more than a very small number of
variables. To have any hope of working, the enumerative approach needs to avoid dividing
the initial set into too many subsets.

Suppose S has been divided into subsets {Sl, ... , Sk}. Ifwe can establish that no further
division of Si is necessary, we say that the enumeration tree can be pruned at the node
corresponding to Si or, for short, that Si can be pruned.

Proposition 1.2. The enumeration tree can be pruned at the node corresponding to Si if
anyone of the following three conditions holds.

1. Infeasibility: Si = 0.
2. Optimality: An optimal solution ifIpi is known.

3. Value dominance: z'p ~ ZIP.

8 22

Figure 1.3

1. Introduction 353

s

sa

SOOO SOOl SOlO SOIl S100 S101 S110 SIll

Figure 1.4

We would like to be able to apply Proposition 1.2 without necessarily having to solve IPi.
To accomplish this, we use relaxation or duality. Let Rpi be a relaxation oflpi with Si s; Sk
and zk(x) ~ cx for x E Si.

Proposition 1.3. The enumeration tree can be pruned at the node corresponding to Si if
anyone of the following three conditions holds.

1. Rpi is infeasible.

2. An optimal solution xk to Rpi satisfies xk E Si and zk = cxk.

3. zk ~ ~IP' where ~IP is the value of some feasible solution ofIP.

Proof Condition 1 implies Si = 0. Condition 2 implies thatxk is an optimal solution
to IPi. Condition 3 implies z~p ~ ZIP. •

Let Dpi be (weakly) dual to IPi.

Proposition 1.4. The enumeration tree can be pruned at the node corresponding to Si if
one of the following two conditions holds.

1. The objective value ofDpi is unboundedfrom below.

2. Dpi has afeasible solution of value equal to or less than ~IP.

Proof Condition 1 implies Si = 0. Condition 2 implies zip ~ ZIP. •
Comparing Propositions 1. 3 and 1.4, we see that Rpi must be solved to optimality before

value dominance can be applied, but value dominance may be applicable with respect to
dual feasible solutions that are not optimal. On the other hand, Rpi may yield a feasible
solution to Ipi that establishes or improves the lower bound ~IP.

354

Example 1.1

ZIP = max - 100Xl + 72x2 + 36x3

- 2Xl + X2 ~ 0

-4Xl + X3~0

Xl + X2 + X3 ~ 1

xEB3.

A division is shown in the tree of Figure 1. 5.

11.4. General Algorithms

We use linear programming relaxation and Proposition 1.3 for pruning. The infeasibil
ity condition holds for SO since

The optimality condition holds for S110 and S111 since these sets contain the unique
solutions (l 1 0) and (l 1 1), respectively. Since zf~o < zl~l = 8, we have ZIP = zl~l = 8.
Now we can apply the value dominance criterion to SIO since zj? = - 64"< ZIP. Hence
X O = (1 1 1) is an optimal solution to IP, and ZIP = 8. -

When relaxations are used for pruning, the enumerative approach fits into the context
of the general relaxation algorithm. Suppose we have just solved a relaxation ofIPi. In the
refinement step, we first divide Si, say Si = Uj=l Sij. Then we form relaxations for the sets
Sij in such a way that Uj=l S~ C Sk.

An enumerative relaxation algorithm is frequently called branch-and-bound or implicit
enumeration. We now give a general branch-and-bound algorithm for solving IP. In the
description of the algorithm, :£ is a collection of integer programs {lpi}, each of which is of
the form zip = max{cx: X E Si} where Si ~ S. Associated with each problem in :£ is an
upper bound Zi ~ zip.

8

8 0

Figure 1.5

2. Branch-and-Bound Using Linear Programming Relaxations 355

General Branch-and-Bound Algorithm

Step 1 (Initialization): 2 = {IP}, SO = S, ZO = 00, and ~IP = - 00.

Step 2 (Termination test): If 2 = 0, then the solution XO that yielded ~IP = cxo is optimal.
Step 3 (Problem selection and relaxation): Select and delete a problem Ipi from 2. Solve

its relaxation RPi. Let zk be the optimal value of the relaxation and let xk be an optimal
solution if one exists.

Step 4 (Pruning): a. If zk ~ ZIP, go to Step 2. (Note if the relaxation is solved by a dual
algorithm, then the step is applicable as soon as the dual value reaches or falls below ~IP')

b. If xk $ Si, go to Step S.
c. If xk E Si and cxk > ZIP, let ZIP = cxk. Delete from 2 all problems with Zi ~ ZIP. If

cx~ = zk, go to Step.f; otherwise go to Step S. -

Step 5 (Division): Let {Sij}j=! be a division of Si. Add problems {lPij}j=! to 5£, where zU = zk
for} = 1, ... ,k. Go to Step 2.

Commercial codes for general mixed-integer programming problems use linear pro
gramming relaxations and division. We will study this class of algorithms in the next
section. In Chapters II.S and 11.6 we will consider some special purpose branch-and-bound
algorithms that use different relaxations or duals and other division tactics. We will also
present cutting-plane algorithms that sometimes fail to find strong valid inequalities and
then resort to branch-and-bound to complete the solution.

2. BRANCH-AND-BOUND USING LINEAR PROGRAMMING RELAXATIONS

Here we consider the general integer programming problem

(IP) ZIP = max{cx: xES}, where S = {x E Z~: Ax ~ b}.

We study its solution by a branch-and-bound algorithm that uses linear programming
relaxations. This is the basic algorithm used by all commercial codes for solving mixed
integer programming problems. Merely for simplicity of notation, we confine the presen
tation to IP. Essentially, however, all of the ideas carryover unchanged to the mixed
integer program

(MIP) ZMIP = max{cx + hy: (x, y) E T}, where T = {x E Z1, y E R~: Ax + Gy ~ b}.

This setting is simple but general enough to enable us to discuss various properties of
branch-and-bound algorithms such as types of divisions, tree development strategies,
finiteness of the resulting tree, the smallest possible tree, and so on.

In the initial relaxation, S is replaced by S~p = {x E R1: Ax ~ b}. We also take
z R(X) = cx in each relaxation.

Pruning Criteria

When solving linear programming relaxations, the pruning criteria of infeasibility,
optimality, and value dominance given in Propositions 1.3 and 1.4 are directly applicable.
Suppose the linear programming relaxation at node i of the enumeration tree is

356 11.4. General Algorithms

If Lpi has an optimal solution, we denote the one found by Xi.

The pruning conditions are:

1. SLp = 0 (infeasibility);
2. Xi E Z1 (optimality); and

3. zh ~ ~IP where ~IP is the value ofa known feasible solution to IP (value dominance).
Note that if Lpi is solved by a dual algorithm, we may be able to prune before an
optimal solution to Lpi is found. Also, we may wish to use the weaker condition
zh ~ ~IP + E for some given tolerance E > O.

Division

Since we use a linear programming relaxation at each node, the division is done by adding
linear constraints. An obvious way to do this is to take S = S1 U S2 with
S1 = S n {x E R1: dx ~ do} and S2 = S n {x E R1: dx ~ do + 1}, where (d, do) E zn+1. If
Xo is the solution to the relaxation

z~p = max{cx: x E R1, Ax ~ b},

we can choose (d, do) so that do < dxo < do + 1. This is highly desirable since it yields
Xo $. Sh U S[p and therefore gives the possibility that for i = 1, 2 we will obtain
zh = max {cx: x E SLP} < z~P.

In practice, only very special choices of(d, do) are used.

i. Variable dichotomy. Here d = ej for some j EN. Then Xo will be infeasible in the
resulting relaxations ifxJ $. Z1 and do = lxJJ (see Figure 2.1). Note that ifxj E B1, then the
left branch yields Xj = 0 and the right branch yields Xj = 1.

An important practical advantage of this division is that only simple lower- and upper
bound constraints are added to the linear programming relaxation. Thus it is only
necessary to keep track of the bounds, and the size of the basis does not increase.

ii. GUB dichotomy. Suppose the problem contains the generalized upper-bound con
straint I:jEQ Xj = 1 for some Q ~ N. The division is shown in Figure 2.2. Note that XO will
be infeasible in the resulting relaxations if 0 < I:jEQ\ xJ < 1, where Q 1 is a nonempty subset
ofQ.

iii. Assuming that Xj is bounded (0 ~ Xj ~ k j), we can consider each integral value of Xj
separately (see Figure 2.3). This approach, however, is not used in commercial integer
programming codes.

Note that each of the divisions i-iii is a partition.
We now consider the size of the enumeration tree. For most of the remainder of this

section, we will assume that the division is done by variable dichotomy.

Figure 2.1

2. Branch-and-Bound Using Linear Programming Relaxations 357

Figure 2.2

Proposition 2.1. If P = {x E R~: Ax ::::;; b} is bounded, an enumeration tree developed on
variable dichotomies will be finite provided that at each node i that requires division, a
dichotomy of the form (xi::::;; lxJJ, Xi ~ lxJJ + 1) is chosen where xJ is not integral. In
particular, if wi = r max {Xi: X E P}], no path of the tree can contain more than LiEN Wi
edges. .

Proof Once we have added the constraint xi::::;; d for some dE {O, ... , wi - 1}, the
only other constraints that can subsequently appear on a path from the root to a leaf of the
tree are xi ~ d' for d' E {O, ... , d - 1} and xi ~ d for dE {l, ... , d}. It follows that the
largest number of constraints involving Xj will occur by adding Xi ::::;; d for all d E {O, ... ,
Wi - 1}, or Xi ~ d for all dE {l, ... ,wi}, or Xi ~ d for and E {l, .. ; ,a} andxj::::;; d for all
d E {a, ... , Wi - I}. In each of these cases, we require Wi constraints on x) and hence
LiEN Wi in total on any path. •

We can use Proposition 2.1 and the upper bounds given in Theorem 4.1 of Section 1.5.4
to enforce the finiteness of the enumeration tree even when P is not bounded.

The size of the enumeration tree is very dependent on the quality of the bounds
produced by the (linear programming) relaxation. In particular, we have the following
proposition.

Proposition 2.2. If node t of the enumeration tree with constraint set Sf is such that
max{cx: X E S~} > ZIP, then node t cannot be pruned.

Proposition 2.2 indicates that, regardless of how we develop the tree, the bounds
(quality of relaxations) are the primary factor in the efficiency of a branch-and-bound
algorithm. Nevertheless, tree development strategies, such as which subproblem
corresponding to an unpruned node should be considered next and which fractional
variable should be selected for the dichotomous division, are also important. We now
consider these problems.

Figure 2.3

358 11.4. General Algorithms

N ode Selection

Given a list:£ of active subproblems or, equivalently, a partial tree of un pruned or active
nodes, the question is to decide which node should be examined in detail next. Here there
are two basic options: (1) a priori rules that determine, in advance, the order in which the
tree will be developed; and (2) adaptive rules that choose a node using information
(bounds, etc.) about the status of the active nodes.

A widely used (essentially) a priori rule is depth-jirst search plus backtracking, which is
also known as last in, first out (LIFO). In depth-first search, if the current node is not
pruned, the next node considered is one of its two sons. Backtracking means that when a
node is pruned, we go back on the path from this node toward the root until we find the
first node (if any) that has a son that has not yet been considered. Depth-first search plus
backtracking is a completely a priori rule if we fix a rule for choosing branching variables
and specify that the left son is considered before the right son. An example of depth-first
search plus backtracking with left sons first is given in Figure 2.4. The nodes are numbered
in the order in which they are considered. An underlined node is assumed to have been
pruned.

Depth-first search has two principle advantages:

1. The linear programming relaxation for a son is obtained from the linear program
ming relaxation of its father by the addition of a simple lower- or upper-bound
constraint. Hence given the optimal solution for the father node, we can directly
reoptimize by the dual simplex algorithm without a basis rein version or a transfer of
data.

2. Experience seems to indicate that feasible solutions are more likely to be found deep
in the tree than at nods near the root. The- success of a branch-and-bound algorithm
is very dependent on having a good lower-bound g:IP for value dominance pruning.

The default option in most commercial codes is depth first when the current node is not
pruned. At least one son is considered immediately. Rules for choosing a son will be
discussed later. However, when a node is pruned, the next node is not generally deter
mined by the backtracking strategy. Before explaining how this selection is done, we
mention one other essentially a priori rule, which is the opposite of depth-first search. The

Figure 2.4

2. Branch-and-Bound Using Linear Programming Relaxations 359

level of a node in an enumeration tree is the number of edges in the unique path between it
and the root. In breadth-first search, all of the nodes at a given level are considered before
any nodes at the next lower level. While this means of node selection is not practical for
solving general integer programs using linear programming relaxations, it has some
interesting properties, one of which is its use in heuristics.

Several reasonable criteria can be given for choosing an active node:

a. Choose a node that has to be considered in any case. By Proposition 2.2, if there is a
unique node with the largest upper bound it must be considered. This argument mitigates
for the rule best upper bound; that is, when a node has been pruned, next select from all
active nodes one that has the largest upper bound. Thus if it is the set of active nodes,
select an i E it that maximizes Zi.

b. Choose a node that is more likely to contain an optimal solution. The reason for this
is that once we have found an optimal solution, even if we are unable to prove immedi
ately that it is optimal, we will have obtained the largest possible value of ZIP' This is very
important for subsequent pruning. Later we will give a simple procedure for estimating
zip. Suppose Zi ~ Zi is an estimate of zip. The rule best estimate is to choose an i E it that
maximizes Zi.

c. Although trying to find an optimal solution is highly desirable, it may be more
practical to try to find quickly a feasible solution x such that cx > ~IP' The criterion

(2.1)
-i
Z - ZIP

max -i ","
iE.2 Z - Zl

which we call quick improvement, attempts to achieve this objective. Note that node i with
Zi > ~IP will be preferred to node} with zj ~ ~IP' Moreover, preference will be given to
nodes for which Zi - Zi is small. One expects that such nodes will yield a feasible solution
quickly. Quick improvement is used in some commercial codes as the default option once
a feasible solution is known.

Branching Variable Selection

Suppose we have chosen an active node i. Associated with it is the linear programming
solution Xi. Next we must choose a variable to define the division. We restrict it to the
index set N i = {j EN: xj $. Zl}. Empirical evidence shows that the choice of a} E Ni can
be very important to the running time of the algorithm. Frequently, there are a few
variables that need to be fixed at integer values and then the rest turn out to be integer
valued in linear programming solutions. Because robust methods for identifying such
variables have not been established, a common way of choosing a branching variable is by
user-specified priorities. This means that an ordering of the variables is specified as part of
the input and that branching variables are selected from N i according to this order. For
example, a 0-1 variable corresponding to whether a project should be done would be given
higher priority than 0-1 variables corresponding to detailed decisions within the project.

Other possibilities involve degradations or penalties. Degradation attempts to esti
mate the decrease in Zi that is caused by requiring Xj to be integral. Suppose
Xj = xj = lxjj + Ij and/j > O. Then by branching on xj, we estimate a decrease of
Dt = pji Ij for the left son and Dt = pt(1 - Ij) for the right son. The coefficients {Pji, pt}
can be specified as part of the input or estimated in several different ways (e.g., by using
dual information at the node or by using information on previous branchings involving
Xj).

360 11.4. General Algorithms

Penalties involve more elaborate calculations to determine the coefficients {pji, pt}
and yield a lower bound on the decrease in Zi. They were used in early commercial codes
but are not in favor now because they are too costly to compute relative to the value of the
information they give. An illustration of penalty calculations will be given in Example 2.1.

Given {Dji, Dt} for j E N i
, a common way to choose the branching variable is by the

criterion

(2.2) max min{Dj--:i , Dj"!-i}.
JEN'

The idea is that a variable whose smallest degradation is largest is most important for
achieving integrality. When Dji = fj and Dji = 1 - fj, criterion (2.2) is called maximum
integer infeasibility.

Other rules are also used, for example, maXjENi max{Dji, Dt}. Here the idea is that one
branch may easily be pruned by value dominance.

When the branching variable is chosen by (2.2), it is recommended that we next
consider the subproblem corresponding to the son that yields the smaller degradation.
Thus we select the subproblem corresponding to the left son if and only if Df :::::; Dt.

Now we can compute Zi by assulning that the degradations for each variable are
independent. Thus if Dji ~ Dt, we estimate

Zi = zh - Df - I min{Dki
, Dti

}.
kENi\{j}

Note that if we are required to branch to the right son of node i, the estimate becomes

Example 2.1

Zi = zLp - Dt - I min{Dki
, Dti}.

kENi\{j}

ZIP = max 7xJ + 2X2

- XI + 2X2 ~ 4

5xI + X2 ~ 20

- 2x I - 2x 2 :::::; -7

xEZ~.

We introduce slack variables (X3, X4, X5) E R~. Although the slack variables will be integral
when X I, X 2 are integral, there is no need to require them to be integral.

Solving the linear programming relaxation gives the optimal basic solution

3 16 332
ZLP + TIX 3 + TIX 4 11

1 2 36
Xl - -X3

11 + TIX 4 11

5 1 40
X2 + TIX 3 + TIX 4 11

8 6 75
TIX

3 + TIX 4 + X5=
11

(Xl, X2) E Z~, (X3, X4, X5) E R~.

2. Branch-and-Bound Using Linear Programming Relaxations 361

Thus z~P = 30n and Xo = (1f WOO ff).
Since (x?, x~) $. Z2, one must branch on either Xl or X2. We use (2.2) to choose between

them.
Suppose we consider the criterion of maximum infeasibility; then Djo = fJ and

DjO = 1 - fJ for j = 1, 2. Hence DJo = It, DtO = ft, D"2° = n, and D 20 = n. By (2.2), we obtain

. (D-O D+O) (3 4) 4 D+O
m~£ mIn j, j = max TI' TI = TI = 2·

Hence we would branch on X2 (X2 ~ 3, X2 ~ 4) and examine the right son.
Now we illustrate the use of penalties to determine the branching variable. From the

representation of the optimal solution, we see that if x 3 or x 4 increases, x 2 decreases. Hence
we can set P 2° = 00 • Following this approach, Z LP decreases by ~ (~) per unit decrease in x 2

if X3 (X4) is made basic; hence we can set P20 = mina, ~) ==~. Similarly, pta = 3 and
p~ = ~ = 8. Hence

Now

. (D-o D+O) (24 21) 24 D- D+ mr£ mIn j, j = max TI' 55 = TI = 1 = 1·

Thus we would branch on x 1. Empirical evidence indicates that these calculations are not
worthwhile for large problems.

We choose to branch on X2 (see Figure 2.5). Adding the constraint X2 ~ 4 (X2 - t =

4, t ~ 0) to the current optimal solution gives the node 1 relaxation. The full set of
equations is given by

3 16 332
ZLP + TIX 3 + TIX 4 11

1 2 36
Xl - -X3

11 + TIX 4 11

5 1 40
X2 + TIX3 + rrX4

11

8 6 75
TIX 3 + rrX4 + Xs TI
5 1 4
TIX

3 + rrX4 +t=--
11

x, t ~ O.

Note that in a computer system the bound constraints would not be added explicitly. The
dual simplex algorithm shows immediately that this problem is primal infeasible (see the
last constraint). Hence node 1 is pruned by infeasibility.

362 11.4. General Algorithms

The only remaining node on the candidate list (node 2) corresponds to the original IP
with X2 ~ 3 (X2 + s = 3, s ~ 0) added. The resulting linear programming relaxation is

3 16 332
ZLP + TIX3 + rrX4 11

1 2 36
Xl - -X3

11 + TIX4
11

5 1 40
X2 + TIX3 + TIX4

11

8 6 75
TIX3 + TIX4 + X5 11

5 1 7
- -X3

11
- -X4

11
+ s =

11

After one iteration of the dual simplex algorithm we obtain the optimal solution

7 3
ZLP + -X4

5
+ -s

5

1 1
Xl + -X4

5
- -s

5

X2 + s

2 8
-X4
5

+ X5+ -s
5

1 11
X3 + -X4

5
- -s

5

Thus zip = 29~ and X2 = (~ 3 7 0 2f). "5

Feasible solution Feasible solution

z 3 = 27 = Z Z 4 = 28 = Z = Z
LP - IP LP - IP IP

x4 = (4 080 1)

. Figure 2.5

149
5

17
5

3

29
5

7
5

Fathomed by
infeasibility

2. Branch-and-Bound Using Linear Programming Relaxations 363

Since XI is not integral, we branch on X I and examine the left son first since IT < 1. The
tree is shown in Figure 2.5. Adding XI ~ 3 and reoptimizing by the dual simplex method
gives an integral solution X3 = (3 3 1 2 5) with zip = 27. Hence node 3 is pruned and
we set ZIP = 27.

The-only remaining node is node 4. By solving the linear programming relaxation of
the node 4 problem, we obtain X4 = (4 0 8 0 1) and ztp = 28. Hence node 4 is
pruned and ZIP = 28. The list of active nodes is now empty, so the algorithm terminates
with the optimal solution X = X4 and ZIP = 28.

Example 2.2

ZIP = max 77xI + 6X2 + 3X3 + 6X4 + 33xs + 13x6 + 1l0x7 + 21xs + 47x9

774xI + 76x2 + 22x3 + 42x4 + 21xs + 760X6 + 818x7 + 62xs + 785x9 ~ 1500

67xI + 27x2 + 794x3 + 53x4 + 234xs + 32x6 + 797x7+ 97xs + 435x9 ~ 1500

xEB9

We solved this problem by a branch-and-bound algorithm contained in a mathematical
programming system. The tree is shown in Figure 2.6. Additional information about the
nodes of the tree is given in Table 2.1. The linear programming relaxations are solved in the
order given by the node numbers.

The algorithm begins by solving the initial linear programming relaxation. As indicated
in Table 2.1, its value is z~p = 225.7 and there are two fractional variables. Associated with
each fractional variable are two reduced costs. One is the reduced cost of the nonbasic
variable that becomes basic if the fractional basic variable goes to its upper bound of 1; the
other is the reduced cost of the nonbasic variable that becomes basic if the fractional
variable goes to its lower bound ofO. By multiplying each of these costs by the distance that

Figure 2.6

364 11.4. General Algorithms

the fractional variable must move to achieve the corresponding bound, we estimate
upward and downward costs. (lfthe reduced cost is less that 0.1, the algorithm uses 0.1 in
place of the reduced cost.) The smaller of the upward and downward costs is used for the
estimated cost of a fractional variable, and then the fractional variable with the largest
estimated cost is chosen for branching. In the example, it is Xl.

Now we choose a direction for branching by comparing the upward and downward
estimated costs for Xl, and we branch in the direction of the smaller of the two estimated
costs. In the example, we set x I = 1 and solve the resulting linear program to obtain the
solution at node 1. The algorithm next decides whether to consider the opposite branch
X I = 0 or to branch from node 1. This is done by comparing the estimated solution value i 1

with the estimated solution value at node 0 had the degradation been computed using the
downward cost for x 1. The larger of these two values determines the next node. In the
example, we solve the problem with X I = O.

In general, after considering the first branch from a node, the algorithm either considers
the opposite branch or branches down from the node just created. If the first branch is
pruned, the algorithm next considers the opposite branch. If the first branch is not pruned,
the algorithm chooses between the two possibilities as indicated above.

When both branches of a node have been considered in turn, there are three possibili
ties. If neither has been pruned, the algorithm selects the node corresponding to one of
them. This selection is made by the criterion of higher estimated solution value until an
integral solution has been found; thereafter it is made by the quick improvement rule
given by (2.1). In the example, node 2 is chosen for division before node 1 because
i 2 = 175.9> 162.6 = i 1

• If one of the two branch nodes has been pruned, the algorithm
selects the node corresponding to the other. If both have been pruned, all active nodes are
considered according to the criterion of highest estimated value until an integral solution
has been found; thereafter they are considered according to the quick improvement rule.

Table 2.1.

LP Solution Number of Variable Chosen First Estimated
Nodei Value (zLp) Fractional Variables for Branching Direction Solution Zi

0 225.7 2 XI 200.2
1 217.8 2 X7 1 162.6

2 204.8 2 X9 0 175.9
3 185.1 2 X6 0 175.9
4 177.1 1 X3 0 175.9

5 176 0
6 122.2a
7 42.4a

8 176.0 2 X9 0 142.8

9 155.3a

10 170.6a

11 186.4 2 X7 132.3
12 148a

13 154.3a

14 167.6a

a The node was terminated without necessarily achieving primal feasibility because the LP value fell below the
value of a feasible integer solution.

b The first feasible integer solution is found at node 5. It is x 5 = (0 1 0 1 1 0 1 1 0).

2. Branch-and-Bound Using Linear Programming Relaxations 365

In the example, we branch down from node 2 to node 5, where we find the integral
solution x = (0 1 0 1 1 0 1 1 0) of value 176. The opposite branch node 6 is
pruned because of its linear programming bound. Now nodes 1, 2, and 3 are candidates
and node 1 is selected by the quick improvement rule. The rest of the calculation is self
explanatory.

Generalized U pper-Bound Constraints

Many integer programs with binary variables have generalized upper-bound constraints of
the form

(2.3) L Xj = 1 for i = 1, ... ,p,
jEQ,

where the Q/s are disjoint subsets of N. Here we explore the branching scheme given in
Figure 2.2, which has proved to be a very efficient way of handling these constraints and is
widely used in mathematical programming systems.

Suppose in a solution ofa linear programming relaxation we have 0 < Xk < 1 for some
k E Qi' Conventional branching on Xk is equivalent to Xk = 0 or LjEQ,\{k} Xj = 0 since the
latter equality is equivalent to Xk = 1. Nowunless there is a good reason for singling out Xk

as the variable that is likely to equal 1, the Xk = 1 branch probably contains relatively few
solutions as compared to the Xk = 0 branch. If this is the case, almost no progress will have
been made since the node with x k = 0 corresponds to nearly the same feasible region as
that of its father.

It appears to be more desirable to try to divide the feasible region of the father roughly
equally between the sons. To accomplish this, we consider the branching rule

(2.4) L Xj = 0 or
jEQ)

The conventional rule is the special case of(2.4) with QJ = {k}. We can use (2.4) for any Ql
such that k E Q} and LjEQ! Xj < 1. It seems reasonable to take Q} and Q \ Ql of nearly
equal cardinality.

A simple implementation of the branching rule (2.4) is obtained by indexing the
variables in (2.3) as XiI' Xi z' ••• ,Xi,. The choice of Q] is then specified by an index j,
1 ~j ~ t - 1, and QJ = {iJ, ... , i).

Example 2.3

ZIP = max 50Xl + 47x2 + 44x3 + 41x4 + 38xs + 36x6 + 31x7 + 29x8 + 27x9
+ 25xlO + 23x ll + 21xl2 + 20x!3
13

L (21 - j)Xj ~ 22
j=l

The solution is shown in the tree of Figure 2.7, where beside each node the solution of
the linear programming relaxation is given.

366 11.4. General Algorithms

0000.
ZLP = 55, Xl = 1, X13 = %, Xj = 0, otherwise

I I I
zLP = 50, Xl = 1, Xj = 0,

otherwise

2 2 2
zLP = 54o/t1, xl = ~1' xl2 = ';1,

X} = 0, otherwise

3 3 3
zLP = 51, x7 = 1, Xj = 0, Infeasible

otherwise

(optimal solution)

Figure 2.7

We leave it to the reader to show that if conventional branching had been used at node
2, a much larger enumeration tree would have resulted.

Piecewise Linear Functions

In Section I.1.4 we showed how a piecewise linear functionf(y) (see Figure 2.8) could be
represented by a linear function with constraints on the variables.

For any y = I:J=o a)I,j, where

(2.5)

we have

t

I Aj = 1 and Aj E R~ for j = 0, ... , t,
j=O

t

fey) = If(a)Aj,
j=O

provided that no more than two A/s are positive; and if Aj > ° and Ak > 0, then k = j - 1 or
j + 1.

f(y)

~----~----~--------------~----------~---------y

Figure 2.8

3. General Cutting-Plane Algorithms

k

E
j=O

Figure 2.9

t
E }..)=o

j=k+2

367

As noted in Section 1.1.4, these conditions on the A/S can be represented using linear
constraints and binary variables. But, within the scope of a branch-and-bound algorithm,
it is more efficient to enforce the nonlinear constraints through branching. The approach
is similar to the treatment of generalized upper-bound constraints.

If Ak > 0, then either An = ... = Ak-l = ° or Ak+l = ... = At = 0. Hence

(2.6)
k-l

I A; = ° or
j=O

t

I Aj = ° for k = 1, ... , t - 1.
j=k+l

Moreover,if1 = (10, ... , 1t)satisfies(2.5)with1k > ° and 1, > ° for some I ~ k + 2, we can
use (2.6) with index k + 1 for branching (see Figure 2.9). It is important to note that the
solution 1 is infeasible along both branches.

Branching strategies for using the constraints (2.4) and (2.6) are left for the reader to
develop.

3. GENERAL CUTTING-PLANE ALGORITHMS

We begin this section with a fractional cutting-plane algorithm (FCPA) for pure-integer
programs that uses Gomory cuts. The main result is that the Gomory FCPA is finitely
convergent. We then extend the algorithm to mixed-integer programs. The last topic of
this section is a primal cutting-plane algorithm for pure-integer programs. It progresses by
generating adjacent extreme points of the convex hull of feasible integral solutions.

Consider an equality-constrained integer program

max {ex: x Ese}, where se = {x E Z~: Ax = b},

which for the rest of this section will be written as

(IP) max{xo: (xo, x) E SO}, where SO = {xo E ZI, X E Z~: Xo - ex = 0, Ax = b}.

We suppose that an optimal basis for the linear programming relaxation has been
obtained, so IP can be written as

(3.1)

maxxO

XB i + I aijxj = aiO for i = 0, 1, ... , m
jEH

XBo E Z, XBi E Zl for i = 1, ... , m, Xj E Zl for j E H,

where Xo = x Bo' X Bi for i = 1, ... ,m are the basic variables and where Xj for

368 11.4. General Algorithms

j E HeN = {l, ... , n} are the nonbasic variables. Since the basis is primal and dual
feasible, we have aiD ~ 0 for i = 1, ... ,m and aO) ~ 0 for j E H.

Suppose in (3.1) there exists an i such that aiD $:. Zl. The results of Section II. 1.3 yield the
following proposition.

Proposition 3.1. (Gomory fractional cut) !faiO f£. Zl, then

L fijx) = fiD + Xn+h Xn+1 E Zl,
)EH

where fij = aij - laijJ for j E Hand fiD = aiD - laiDJ, is a valid equality for so.

Example 3.1. Our standard example written in equality form is

maxxo

Xo - 7xI - 2X2 o
- XI + 2X2 + X3 4

5xI + X2 + X4 20

- 2x I - 2x 2 + X 5 - 7

Xo E ZI, x) E Zl for j = 1, ... , 5.

An optimal solution to the linear programming relaxation is

3 16 332
Xo + TIX3 + TIX4 11

1 2 36
XI - TIX3 + TIX4 11

5 1 40
X2 + TIX3 + TIX4 11

8 6 75
TIX 3 + TIX 4 + X5 = U'

where X3 = X4 = o.
Generating the fractional cut from row 0, we obtain

In terms of the original variables, the cut is 2x I + X2 ~ 10.
The Gomory FCPA is just the general FCPA given in Section 1, with all of the generated

valid inequalities being Gomory cuts.

Initialization: Set t= 1, z1(x) = Xo, S1 = {xo E R 1, X E R~: Xo - ex = 0, Ax = b}.
Iteration t:

3. General Cutting-Plane Algorithms 369

Step 1: Solution of the linear programming relaxation. Solve

max{xo: (xo, x) E Sk}.

IfRpl is feasible and has an optimal solution, suppose the solution is (xb, Xl). (See the
remark below ifRp1 has unbounded optimal value.)

Step 2: Optimality test. If Xl E Z~, then Xl is an optimal solution.

Step 3: Infeasibility test. IfRpl is infeasible, then IP is infeasible.

Step 4: Addition of a cut. Choose a row X Bi + LjcHt a~jxj = a~o with a~o ff Z 1. Let

L fUXj - Xn+t = fiO, Xn+t E Zl
jcHt

be the fractional Gomory cut for the row. Set

Step 5: t +- t + 1.

When the cut is added, the new basis, which includes x n+t as a basic variable, is dual
feasible. Primal feasibility is violated only by X n+l < O. Hence it is natural to solve Rpt+l by
the dual simplex method.

If Rpl is unbounded, then by Corollary 6.8 of Section 1.4.6 we have that IP is either
unbounded or infeasible. Moreover, by Theorem 4.1 of Section 1.5.4, ifIP is feasible, then
there is a feasible solution with LicN Xi ~ d, where d is a suitably large integer. Hence we
can add the constraint LicN Xj ~ d to RPI. Then IP is unbounded if and only if the
modified problem has a feasible solution.

Example 3.1 (continued). As noted above, the solution of the linear programming
relaxation Rp1 is

(xA,x') = (X6, xl, ... ,xl) = C~2 ~~ ~~ 0 0 ~n.

Also, X2 + nX3 + TIX4 = 1? Generating the fractional cut from this row yields

An optimal solution to Rp2 is

(2 2 2) (149 17 Xo, X b ••• ,X6 = -5- 5 3 ~ 0 2: 0).
Also, Xo + ~X4 + ~X6 = 29~. Generating the next fractional cut from this row yields

370 11.4. General Algorithms

An optimal solution to Rp3 is (29 1f i ¥ ° 1f 1 0). Also, X2 - !X4 + iX 7 = i.
From this row, the fractional cut is

Xg E Zl.

The optimal solution to Rp4 is (28 4 0 8 0 1 3
to IP.

0), which is also optimal

In terms of the variables Xj, and X2, the three added cuts are X2 ~ 3,
2x, + X2 ~ 9, and 3x, + X2 ~ 12 (see Figure 3.1).

Finite Convergence

We now give some additional specifications on the Gomory FCPA which guarantee that it
converges finitely. We suppose that

{x E R1: Ax = b} ~ {x E R1: L xi ~ d}
iEN

for some suitably large d E Zl. As noted above, this is without loss of generality.
The convergence argument depends on a lexicographic decreasing sequence of solution

vectors {Xh, Xl}, t = 1, 2, ... , which can be obtained, as will be explained soon, by solving
a sequence oflinear programs by a lexicographic dual simplex algorithm. Recall that x ~ Y
if there exists a k such that Xk < Yk and Xi = Yi for i < k. Also, x 1;. Y if x ~ Y or x = y.

The algorithm finds the lexicographically largest element in Sa or shows that So is
empty. Since the objective value is the first component of (xo, x), a lexicographically
largest element is optimal. Let cj = max(O, cJ and Cj = mineO, ci)' Since ° ~ xi ~ d for
j E N, it follows that if (xo, x) E SO we obtain

(d L Cj, 0, ... , 0) 1;. (xo, x) 1;. (d L ci, d, ... , d).
iEN iEN

3

2

o 2 3 4

Figure 3.1

3. General Cutting-Plane Algorithms 371

Let ci = (d LjEN cj, d, ... ,d). We will show that the cuts in the Gomory FCPA can be
chosen so that after t cuts have been added it will follow that (xo, x) E SO implies
(xo, x) l;;. at, where at E zn+1 and at !::. at-I. It then follows that the total number of cuts is
bounded.

The Lexicographic Dual Simplex Algorithm

Consider a basic solution to the linear programming relaxation of(3.1) written in the form

(3.2)

maxxo

Xi + I aUxj = aiQ for i = 0, 1, ... , n
jEH

Xi ?:: 0 for i = 1, ... , n,

where H is the index set of non basic variables. The representation (3.2) contains a row for
each variable. Thus for i E H we have the trivial identity Xi - Xi = 0, that is,
aii = -1, ajQ = 0, and au = 0 for} E H \ {i}. The basic solution obtained from (3.2) is
Xi = aiQ for i = 0, ... , n.

Since the constraint set is bounded, there is a dual feasible basis, that is, a basis with
aOj ?:: 0 for all } E H. Thus if aOj > 0 or (alj, ... , anJ ~ 0, we have aj = (aoh alj, ... ,
anj) ~ O. However, ifaOi = 0 and (alh ... , anj) f 0 we add the redundant equation

(3.3) y + I Xj = d, y ?:: 0
jEH

as the second row of(3.2). Now (1, alh ... , anJ ~ 0 so that (aOh 1, a lh ... , anj) ~ O. Hence
we assume that we have a basic solution to the linear program that satisfies aj ~ 0 for
}EH.

Proposition 3.2. If aiQ?:: 0 for i = I, ... ,n and aj ~ 0 for } E H, then
(xo, x) = ao = (aoo, alO, ... , ano) is the lexicographically largest feasible solution to (3.2)
and is optimal.

Proof By hypothesis, (xo, x) = ao is feasible. Moreover, ao is the lexicographically
largest feasible solution since any other feasible solution is of the form ao - LjEH ajxj
and aj ~ 0 with Xj?:: 0 for all } E H. Finally, the lexicographically largest solution
maximizes Xo. •

We now give a finite simplex algorithm for finding the lexicographically largest feasible
solution to (3.2).

Proposition 3.3. Suppose (xo, x) = aoP - LjEHP a)Xj is a basic solution with dj ~ 0 for
} E HP andafo < O. A dual simplex pivot that makes Xi nonbasic yields ag+ 1 !::. al.

Proof Suppose k E HP and x k is the variable to become basic. Then afk < 0 and
a~+l = a~ - (afo I afk)a~ !::. ab since a~ ~ 0 and (afo I afk) > O. •

Thus we need to give a rule for choosing the variable to enter the basis so that af+l ~ 0
for all} E HP+l.

372 11.4. General Algorithms

Proposition 3.4. Suppose amP < 0, O!j !> 0 for} E HP, and Xi is chosen as the variable to
leave the basis. Let Hf = {j E HP: (fij < a}. If Hf = 0, then there is no feasible solution.
Otherwise choose k E Hf to satisfy

1 -P L 1 -P It II· HP \ {k} _P ak > -P aj or a) E i
aik aij

(3.4)

and also choose Xk as the variable to become basic. Then ar I !> 0 for all} E HP+ 1 •

Proof If Hf = 0, then Xi = afo - LjEHP a~xj < 0 for all feasible solutions since afo < 0
and a~ ~ 0 for all} E HP.

Now suppose k E Hf is chosen to satisfy (3.4). Note that because the system of
equations contains the identitiesxj - Xj = 0 for all} E HP, a~ cannot be a scalar multiple of
af for any} E Hf\{k}. Hence (3,4) uniquely determines k. We have

a. af'tl = - (l / afk)a~ !> 0 since afk < 0 and a~ !> o.
b. For) E HP \ {k}, we have ar1

= CPj - (a~ / afk)a~. There are two cases. If
. h -p+l L o· -P L 0 -P L 0 d (-P / -P) 0 If· HP \ {k}) E HP \ Hf, t en a j > SInce a k > ,a j > an a ij a ik ::::; .) E i ,

then at1 !> 0 by (3.4). •

Theorem 3.5. If we begin with a basic solution satisfying aJ !> 0 for all} E SO and apply
the dual simplex pivoting rule given in Proposition 3.4, then in afinite number of pivots we
either show that (3.2) has no feasible solution or find the lexicographically largest solution.

Proof Since the sequence {aiD is lexicographically decreasing, no basis can be
repeated. •

Now we return to the Gomory FCPA and suppose that we have found (Xb, xt), the
lexicographically largest solution to RPt. If (Xb, xt) E zn+l, we have solved IP. So suppose
this is not the case.

Proposition 3.6. Let (Xb, xt) be the lexicographically largest solution to Rpt and suppose
.xi E Zlfor i = 0, ... , s - 1 and Xs fJ. ZI. Let at = (xb, ... ,Xs-I> [XsJ, d, ... , d). If(xo, x)
is afeasible solution to IP, then (xo, x) 1; at.

Proof If (xo, x) is feasible to IP, then (xo, x) E zn+l, Xj ::::; d for} EN, and
(xo, x) J, (xb, xt). The vector at is the lexicographically largest vector that satisfies these
properties. •

Now all we need to do is produce a Gomory cut so that (xb+1
, xt+l), the lexicographically

largest solution to Rpt+1, satisfies (xb+1, xt+l) !(at. Then, either (xb+1, xt+l) E zn+l and we are
done or at+1 !(at.

Proposition 3.7. Let (Xb, xt) and at be defined as in Proposition 3.6. By adding the cut
~ I' I' ZI d .. . b· (t+l 1+1) L t ~jEHljsjXj - Xn+t = jsO, Xn+t E +, an reoptlmlzlng, we 0 tam Xo ,X ::::; a.

Proof It suffices to consider the first pivot. In this pivot, the variable that becomes
nonbasic isxn+t sincexn+t = - Iso < 0 andxt ~ O. Letxk be the variable to become basic and
let (Xb, .:e) be the solution after one pivot. Then

3. General Cutting-Plane Algorithms 373

where a~ !;.. ° and Iso / Isk > 0. There are two cases.

i. There exists an i ~ s - 1 such that a~k =#= 0. Since a~ !;.. 0, its first nonzero component
a~k is positive and q ~ s - 1. Hence, we obtain x~ = x~ for i = 0, ... , q - 1 and
x~ < x~. Thus (Xb, xt) ~ cl.

ii. Here a~k = ° for i = 1, ... , s - 1. Since Isk =#= ° and a~ !;.. 0, we have a~k ~ Isk > 0.
Hence x~ = x~ for i = 0, ... ,s - 1 and x~ ~ lx~J. Hence (Xb, xt) k; at. •

We preserve the order of the original equations by putting the equations for the cuts at
the end. Moreover, since the slack variable x n+t for the tth cut becomes nonbasic after the
cut is added, we have the trivial equation Xn+t - Xn+t = 0. If Xn+t becomes basic in a
subsequent pivot, its value is positive and the cut is no longer active. At this point, we drop
the cut, and hence X n+(, from the problem. This implies that, for computational purposes,
we only need to keep the n + 1 equations Xi + LjEHI a~jxj = a~o for i = 0, ... ,n. Note that
these equations will, in general, contain slack variables from cuts. The remaining equa
tions are trivial identities. By Proposition 3.4, the vectors {aJ}jEH are lexicographically
positive, so the addition and deletion of cut equations does not affect the properties of the
lexicographic dual simplex method.

Theorem 3.8. If the Gomory FCPA is executed by choosing thefractional cut from the row
of lowest index whose corresponding variable is not an integer, and the resulting linear
program is solved to obtain a lexicographically largest solution (i.e., by the lexicographic
dual simplex method), then after at most (d + 1)n+l (dLjEMCl - Cj + 1)) cuts, the algorithm
finds an optimal solution or shows that IP is infeasible.

Proof By Propositions 3.6 and 3.7, the number of cuts is bounded by the number of
vectors y E zn+l that satisfy

(d ,2 Cj, 0, ... , 0) k; y k; (d ,2 cl, d, ... , d).
JEN JEN

In addition, we have added another factor of (d + 1) to the bound to accommodate the
upper-bound constraint LjEN Xj ~ d. •

Example 3.1 (continued). Here we apply the finite Gomory FCPA. After pivoting, each
cut row is discarded.

The solution to Rp l is (xb, Xl) = (3on- if WOO tT). Since Xo + rrX3 + 1fX4 = 30n,
we add the cut ftX3 + nX4 = n + X6, X6 E Zl.

The solution to Rp2 is (30 ~ .if j ° .If). Since x I + 1X4 - tX6 = .if, we add the cut
tx 4 + 1X 6 = 1 + X 7, X 7 E Z l.

The solution to Rp3 is (29t 1 1 1 ° 5). Since Xo + 1X4 + ~X7 = 291, we add the cut
tX4 + !X7 = ! + Xg, Xg E Zl.

The solution to Rp4 is (28~ ~ f ° ~ ~). Since Xo + §X3 + ~X8 = 28~, we add the
cut -§X3 + ~X8 = ~ + X9, X9 E Z~.

Reoptimizing yields the optimal solution (28 4 ° 8 ° 1).
Note that the bounds Xl ~ 4andx2 ~ 4 are easy to obtain from theoriginalinequalities.

374 11.4. General Algorithms

Hence Xo ~ 36, X3 ~ 8, X4 ~ 20, and Xs ~ 9. Thus any solution is lexicographically
equal to or less than aO = (36 4 4 8 20 9). Now the solution to RP'
yields a' = (30 4 4 8 20 9) ~ an. The successive linear programming solutions
yield a 2 = (30 3 4 8 20 9) ~ a', a 3 = (29 4 4 8 20 9) ~ a2

, a 4 =
(28 4 4 8 20 9) ~ a 3

, and as = (28 4 0 8 0 1) ~ a 4
• Thus we see how the

lexicographic upper bound is reduced at each iteration.
There is a nice interpretation of the sequence {ak}k=o on an enumeration tree (see Figure

3.2). Here we have enumerated all possible integral values for the variables where
x = (x" X2, X3) E B3 and 0 ~ Xo ~ 3. Note that the leaves of the tree, read from left to right,
give the possible values of (xo, x) in increasing lexicographic order. Now suppose the
solution ofRP' gives X6 = 3 and 0 < xl < 1. Figure 3.2 shows the integral vectors that are
eliminated by this solution and also shows those eliminated by Rp2 if X6 = 3, XI = 0, and
o < x~ < 1. Each cut eliminates at least the rightmost leaf that is still a candidate. Hence we
can think of the cutting-plane procedure as a lexicographic search through the integral
vectors until the lexicographically largest one that is feasible to IP is found. This suggests
that it is important to choose a cut so that the subsequent pivot yields a large lexicographic
decrease in 710. Insofar as we know, strategies of this type have not been systematically
investigated. Perhaps some such strategy would improve the reputably poor performance
of fractional cutting-plane algorithms.

Extension to Mixed-Integer Programming

The Gomory FCPA extends straightforwardly to mixed-integer programs. Suppose, in the
solution of the linear programming relaxation of an Mlp, Xi E Zl is a basic variable given
by

Xi + I aijXj + I aijYj = aiD,
hEHI jEH\HI

where HI is the index set of nonbasic integer variables and where aiD $. Z'. Here we use the
Gomory mixed-integer cut

(see Proposition 7.4 of Section 11.1.7). Everything else remains as above except for the
finite convergence argument.

In mixed-integer programming, it is not reasonable to assume that the objective
variable Xo is integer-valued. Hence we cannot use the objective row for obtaining cuts.
But our finite convergence argument depended on deriving a cut from the lowest-index
fractional variable. In fact, by excluding Xo as a candidate the convergence argument fails
to hold (see the example given in exercise 12).

The only way we know to salvage finite convergence is to scale the problem so that Xo is
integral. But this is definitely unsatisfactory for computational purposes.

Primal Cutting-Plane Algorithm

A disadvantage of fractional cutting-plane algorithms is that no feasible solution is found
until the algorithm terminates. Here we sketch a cutting-plane algorithm that circumvents

3. General Cutting-Plane Algorithms 375

Figure 3.2

this problem. Unfortunately, it is not a practical algorithm because it tends to require an
exorbitant number of cuts.

Suppose we have a nonoptimal extreme point of the convex hull of feasible integral
solutions. The idea of a primal cutting-plane algorithm is to use cuts to enable pivoting to
an adjacent extreme point of the convex hull whose objective value is greater.

The geometry is shown in Figure 3.3, where S = {x E Z2: Ax ~ b} and the outer
polytope is P = {x E R 2: Ax ~ b}. If x I happens to be an integral extreme point of P, then
it must also be an extreme point of conv(S). Given a basic representation of x , in which the
active constraints are Xk = ° and Xk' = 0, our objective is to pivot from Xl to x 2 or to x 3

•

However, a standard simplex pivot will yield a fractional extreme point of P, either X4 or
x 5

• To pivot from Xl to x 2
, the polytope that contains conv(S) must contain the facet

defining inequality a*x ~ b* and any other valid inequality defining a face that supports
conv(S) at x 2

, say aOx ~ bOo By first adding the constraint Xp = b* - a*x, a degenerate
pivot that makesxp nonbasic andxk basic can be performed, and we still have the extreme
point Xl. We then add the constraint x p' = bO - aOx and make xp' nonbasic and Xk' basic.
This yields the extreme point x 2

• Thus, in two dimensions, we need the facet of conv(S)
that defines the edge joining Xl and Xl to be able to pivot from Xl to x 2

•

Y Objective function

a*x = b*

Figure 3.3

376 11.4. General Algorithms

Analogously, in n dimensions we need n - 1 valid inequalities that contain the one
dimensional face joining Xl to X2 and another valid inequality that defines a face which
supports conv(S) at X2 to be able to pivot from x I to X2. These very stringent requirements
explain why a primal cutting-plane algorithm for general integer programming is likely to
be very slow. Besides the problem of finding an initial integral point, it will be necessary to
produce valid inequalities that contain the one-dimensional faces (edges) on a path from
the initial point to an optimal point. In contrast, a fractional cutting-plane algorithm can
succeed with a much weaker family of cuts, and a nondegenerate pivot occurs immedi
ately after the addition of each cut.

We now study how these primal cuts can be derived algebraically. Consider a basis for
the linear programming relaxation of IP given by (3.1) in which the coefficients au are
integral for i = 0, 1, ... , m and all} E H. A basis that satisfies these conditions is available
if A = (A " J) and b ~ 0. Otherwise, a Phase I procedure may be required.

If the basis is dual feasible, the integral solution (xo, x) = ao is optimal. So suppose
aOk < ° for k E H. Consider a primal pivot in which Xk becomes basic. Suppose

aiO min _.
i=l, ... ,m:aik>O aik

If ark = 1, we can pivot on the row XB,+ LjEHarjXj =aro and maintain integrality. If
ark * 1, we add a C-G cut derived from the inequality LjEH arjXj ~ aro. In particular,
multiply this inequality by 1 / ark> 0 and then round to obtain

Adding a slack variable yields the equation

(3.5) arj aro
Xn+l + Xk + I =- Xj = =- , l-J l- J

jEH\{k} ark ark
Xn+1 E Zl.

Figure 3.4

3. General Cutting-Plane Algorithms 377

Since ark> 0, larO/arkJ ~ arO/ark and the coefficient Ofxk in (3.5) is one, we can pivot
on the row (3.5) and maintain integrality.

The geometry of the cut is shown in Figures 3.4 and 3.5. In Figure 3.4, assume we are at
the point Xl and we want to pivot along the line Xz = O. An ordinary simplex pivot would
yield the fractional point X3. Instead we introduce the cut Xl + laz / adxz ~ lb/ad, which
enables us to pivot to the integral point xZ. The cut is obtained by adding
(taz / ad - az / al)xZ ~ 0 to Xl + Caz / al)xZ ~ b/al and then rounding. Thus the cut gives
the convex hull of the region {x E R Z: Xl + ta2 / adx2 ~ b/al}'

In Figure 3.5, there are no feasible integral points along the line a21Xl + a22X2 = b2,
so it is not possible to move from X 1 along this line. However from an appropriate
nonnegative linear combination of ailXl + ai2X2 ~ bi for i = 1, 2, we obtain the inequality
alxl + a2x2 ~ b, with 0 < b < a h Az < O. Now we proceed as above to obtain the
inequality Xl + la2 / adX2 ~ b/al and then the cut Xl + [az / adx2 ~ [b/ad.

Example 3.2

max Xo = XI + 2xz

-4xl+ X2+X3 = 0

7Xl + 4X2 + X4 = 14

xEZ!.

An integral solution to the linear programming relaxation is

Xo = 0 + X I + 2x 2

X3 = a + 4x 1 - Xz

x4=14-7xl-4xz

Xl = X2 = O .

•
.I'iE--- Xl + 1l~21al JX2 s {jlal

~--~~----~~-----------------Xl

Figure 3.5

378 11.4. General Algorithms

2

4th cut

~------------~------------~~----------Xl
o 2

Figure 3.6

Suppose we choose to increase X2. The variable that becomes nonbasic is X3, and no cut is
required since the coefficient of X2 is one. This degenerate pivot yields the equations

Now we make x I basic and derive the cut x I - X 3 ~ 0 from 23x I - 4x 3 ~ 14. We then do
a degenerate pivot on the row Xs = 0 - XI + X3. Three more cuts and pivots are required
(see Figure 3.6). The last pivot is the only nondegenerate one and it yields the optimal
solution (x" X2) = (1 1).

It is a fact that with an appropriate choice of pivot columns and rows from which to
generate the cuts, a finite algorithm can be obtained. But for the reasons stated above,
primal cutting-plane algorithms are likely to be slower than fractional cutting-plane
algorithms.

4. Notes 379

4. NOTES

Section 11.4.1

Geoffrion and Marsten (1972) proposed a somewhat different framework for discrete
optimization algorithms.

Enumerative methods go under the general names of branch-and-bound, implicit
enumeration, and divide-and conquer. The latter term is frequently used in the computer
science literature, and the first two terms are commonly used in the mathematical
programming/operations research literature. Algorithms that focus on pruning by bounds
that are obtained from relaxations or dual solutions are generally referred to as branch
and-bound algorithms, a term coined by Little et al. (1963). Those that focus on pruning
based on logical tests and inequalities derived from Boolean implications (see Section
I.1.6) are called implicit enumeration algorithms, a term apparently coined by Geoffrion
(1967). Many algorithms use both of these ideas, so a classification of enumeration
algorithms along these lines is not particularly relevant. Furthermore, although logical
testing is important, pruning by bounds has emerged as the fundamental tool of enumera
tive algorithms.

Land and Doig (1960) gave the first branch-and-bound algorithm for general integer
programs. However, the popularity of this approach increased substantially after the
publication of the branch-and-bound algorithm for the traveling salesman problem by
Little et al. (1963) because it demonstrated that large (at that time) problems could be
solved by controlled enumeration. Balas (1965) gave the first implicit enumeration
algorithm for general 0-1 IP's

General expositions and survey articles on enumerative methods are by Lawler and
Wood (1966), Agin (1966), Mitten (1970), Tomlin (1970), Geoffrion and Marsten (1972),
Beale (1979), Garfinkel (1979), and Spielberg (1979).

Sensitivity and parametric analysis for integer programs has been discussed by Geof
frion and Nauss (1977), Shapiro (1977), Nauss (1979), Holm and Klein (1984), Schrage and
Wolsey (1985), and Cook et al. (1986).

Parallel processing presents new opportunities for computational advances in discrete
optimization. Kindervater and Lenstra (1985, 1986) give an annotated bibliography and
an introduction to parallelism in combinatorial optimization. In an empirical study, Pruul
(1975) simulated parallel computation and showed that by exploring several nodes of an
enumeration tree simultaneously it is possible to reduce substantially the total number of
nodes that need to be considered. His results have been summarized in Pruul et al. (1988).

Another developing area is interactive optimization. Fisher (1985) surveyed results and
opportunities for using interactive methods in discrete optimization.

Section 11.4.2

Almost all general MILP codes use a branch-and-bound framework with linear program
ming relaxations. As noted above, the first algorithm of this type was described by Land
and Doig (1960). They proposed the division scheme shown in Figure 2.3. The now
commonly used variable dichotomy scheme (Figure 2.1) was proposed by Dakin (1965).
Penalties were introduced by Driebeek (1966) and were sharpened by Tomlin (1971).

The treatment of generalized upper-bound constraints by the division scheme shown in
Figure 2.2, together with the indexing scheme described below (2.4), was introduced by
Beale and Tomlin (1970). They called such sets specially ordered sets. This terminology is
now widely used, and the concept is very important in the global maximization of

380 11.4. General Algorithms

piecewise linear nonconcave functions. Beale and Forrest (1976) developed this approach,
which enables the implementation of the division scheme (2.6) without the explicit use of
auxiliary integer variables.

Various strategies for exploring the enumeration tree, together with experimental
comparison, are given by Benichou et al. (1971, 1977), Breu and Burdet (1974), Forrest et
al. (1974), Gauthier and Ribiere (1977), and Mitra (1973). The strategy described in the text
is used in the commercial code SCICONIC as described by Beale (1979).

Eleven commercial mixed-integer programming systems, including all of the available
options for branching, node, and variable selection as well as other characteristics of the
codes, have been described by Land and Powell (1979). This article also includes a
comparison of two of these codes on a small number of test problems, as well as brief
descriptions of several "academic" codes. Powell (1985) is an annotated bibliography that
updates the Land and Powell article.

The XMP system of Mars ten (1981) has been updated to include branch-and-bound for
general MIPs. It is a highly modular system, which makes it very useful for research, and is
available in both microcomputer and main-frame versions. Several other linear program
ming systems for microcomputers also have branch-and-bound capabilities. One of the
most widely used is the LINDO system of Schrage (1986).

The art involved in using commercial codes to solve large scale MIPs is discussed in the
context of solving practical problems by Beale (1983) and Suhl (1985).

leroslow (1974), Ibaraki (1976, 1977), Rinnooy Kan (1976), and Fox et al. (1978) have
presented some theoretical results on node selection and branching strategies. 1 eroslow
gives a family of problems for which the number of nodes that must be searched is
exponential with respect to the size of the problem, regardless of which strategies are used.

Section 11.4.3

Gomory (1958, 1960a, 1963a) shows that the FCPA is finitely convergent with appropriate
use of the lexicographic dual simplex algorithm. The proof given here is based on that
given by Nourie and Venta (1982), which is really just a reinterpretation ofGomory's proof
that provides additional insight into the nature of the convergence.

Given a fractional LP solution, Gomory and Hoffman (1963) showed that the cuts
Lj Xj ~ 1, where the sum is taken over all nonbasic variables cannot yield a finite FCPA.
Bowman and Nemhauser (1970) proved that the stronger cuts given in exercise 11 yield a
finite algorithm.

The mixed-integer cutting-plane algorithm and its finite convergence under the
assumption that the objective function variable must be an integer is given in Gomory
(1960b). Without this assumption, no finite cutting-plane algorithm for MILPs is known.

A primal cutting-plane algorithm for general integer programs was proposed by Ben
Israel and Charnes (1962). A finitely convergent primal cutting-plane algorithm was given
by Young (1965), and simplified versions were obtained by Glover (1968a) and Young
(1968). Because of poor computational experience, this line of research has been very
inactive. An exception is a primal cutting-plane algorithm for the traveling salesman
problem developed by Padberg and Hong (1980). Although this algorithm has been
moderately successful, it seems to be inferior to an FCPA for the traveling salesman
problem (see Section 11.6.3).

Another strategy for cutting-plane algorithms is to maintain integrality and dual
feasibility and then to use cuts to obtain primal feasibility. A finite algorithm of this type
has been given by Gomory (1963b). Other such algorithms have been obtained by Glover
(1965, 1967).

5. Exercises 381

5. EXERCISES

1. Solve the integer program

by branch-and-bound.
Examine the procedure graphically.
Investigate how the branch-and-bound tree changes with different branching
strategies.

2. Solve the integer knapsack problem

by branch-and-bound.

3. Solve the problem of exercise 2 with the additional constraint x E B4.

4. Propose various ways to estimate degradations. Test them on the above problems.

5. Solve Example 2.3 using a branch-and-bound algorithm, with the conventional
branching rule. Draw the branch-and-bound tree.

6. Modify the general branch-and-bound algorithm if, instead of an optimum solution,
we only want to find a feasible solution within a given percentage, say p% of the
optimum value.

7. Consider the integer program

max - Xn+!

2x I + 2x 2 + . . . + 2x n + X n+1 = n

x E Bn+!.

Show that any branch-and-bound algorithm using the linear programming relaxa
tion to compute upper bounds will require the enumeration of an exponential
number of nodes when n is odd.

8. Consider a mixed-integer program with one integer variable. Show that the branch
and-bound tree for this problem will have no more than three nodes. Why?

382 11.4. General Algorithms

9. Consider the integer program of exercise 1. The optimal linear programming basis
gives the information

maxz

1 6
= 38 Z +-X3+-X 4

5 5

4 1 17
Xl + T5X3 - T5X 4 3

(lP)
1 4 16

X2 - T5X3 + T5X4 3

1 1 2
--X3+-X 4+XS

3 3 3

xEZ~

i) Solve using Gomory's FCPA.

ii) Solve using Gomory's finitely convergent FCPA.

iii) Use the solutions ofi and ii to give optimal dual solutions ofIP.

iv) . Use iii to find an upper bound on the optimal value ofIP when

10. What is the maximum number of Gomory cuts needed to verify that a 0, 1 IP is
feasible or infeasible. (Hint: Consider the enumeration tree.)

11. i) Let S = {x E ZZ: LjEN ajxj = b} with aj, bE Rl, and b $. Z!. Show that
LjEN* Xj ~ 1 is a valid inequality for S, where N* = {j EN: aj $. Zl}.

ii) Show that a finitely convergent FCPA is obtained by using these cuts in place of
Gomory cuts.

iii) Carry out several iterations on the IP of exercise 7, and compare the correspond
ing enumeration trees.

12. i) Use Gomory mixed-integer cuts to solve the integer program

max y

Xl+X2+y~2

-Xl +y~O

- X2 + Y ~ 0

X E Zi, Y E Z!.

ii) Replace the constraint y E Z! in i by y E Rl to give a mixed-integer program
(see exercise 22 of Section 11.1.9). What happens now using the Gomory mixed
integer cuts?

13. Describe a Phase 1 procedure for a primal cutting-plane algorithm.

11.5
Special-Purpose
Algorithms

1. INTRODUCTION

The algorithms presented in the previous chapter have the great advantage of robustness.
They can, in principle, be applied to all linear integer programs. However, there is often a
heavy price to pay for this generality.

Three major reasons why a problem class may not be solved satisfactorily by a general
algorithm are:

l. size of the formulation,
2. weakness of the bounds, and
3. speed of the algorithm.

On the other hand, when instances of a class of highly structured integer programs are
to be solved, the structure can often be used to improve the performance substantially in
one or all of the three areas cited above. In this chapter we will show how structure can be
used either to devise special-purpose algorithms or to improve the performance of general
algorithms for several classes of problems.

Integer programming formulations frequently have a very large number of variables or
constraints. For example, in the strong formulation of the uncapacitated facility location
problem described in Section I. 1.3, an instance with n = 50 locations and m = 200 clients
has more than mn = 10,000 variables and more than mn = 10,000 constraints. Similarly
for the traveling salesman problem on m nodes, the formulation given in Chapter 1.1 has
O(m2) variables and O(2m) subtour elimination constraints.

The computation of bounds requires the choice of a relaxation. Typically this choice
involves a tradeoff between the strength of the bound obtained from the relaxation and the
speed with which it can be calculated. For the symmetric traveling salesman problem there
is a large hierarchy of relaxations. For the uncapacitated facility location problem the
tradeoff is between the linear programming relaxation of the weak form ulation, which can
be solved by a formula but gives weak bounds, and the linear programming relaxation of
the strong formulation, which gives very good bounds but is much harder to solve.

Very often the relaxation is embedded in a branch-and-bound algorithm. Here struc
ture may make it possible to find nearly optimal solutions to the dual of the relaxation
very quickly, providing the upper bounds needed for the branch-and-bound algorithm.
Structure may also help us to find good feasible solutions quickly, which are also

383

384 11.5. Special-Purpose Algorithms

important in pruning the branch-and-bound tree. Furthermore, it is often the case that
nearly optimal primal and dual solutions are a satisfactory solution to the problem.

Structure frequently suggests decomposition. Both Lagrangian (row) decomposition
and Benders (column) decomposition have been introduced in Chapter 11.3. For a given
problem, several Lagrangian relaxations may be available. In addition, algorithms for the
Lagrangian dual provide alternative ways to solve large linear programs. However, both
row and column decompositions typically lead to a large number of variables or con
straints, so again the question of finding effective algorithms for large-sized problems is an
issue. Finally for some structures, dynamic programming provides a decomposition
which makes it possible to solve problems by a recursive algorithm that uses dominance to
eliminate nonoptimal solutions.

Thus if we want to make efficient use of structure, we must deal effectively with the
following three issues.

1. A choice of formulation and "strong" linear programming (or combinatorial)
relaxation must be made.

2. The chosen relaxation typically has a very large number of constraints (and possibly
columns). An algorithm that finds an optimal (or a good dual feasible) solution to
the relaxation as quickly as possible has to be selected. It also may be desirable to
have a heuristic for finding good primal feasible solutions rapidly.

3. Since the solution to the relaxation rarely solves the original problem, a procedure is
needed, typically embedding the relaxation into branch-and-bound, to arrive at an
optimal solution to the original problem.

In the following four sections we will present some methods that take advantage of
structure. First we discuss strong cutting-plane (or constraint generation) algorithms.
Then we present some ways of quickly finding nearly optimal dual and primal feasible
solutions. Next we discuss the algorithms that can be used in combination with Lagran
gian and Benders' decomposition, as well as some of the problems that arise in their
implementation. Finally we describe dynamic programming and illustrate its application
to certain discrete optimization problems.

The first four sections of the next chapter are each devoted to a particular structured
problem, knapsack problems, 0-1 problems, the symmetric traveling salesman problem,
and fixed-charge flow problems, respectively. For each problem we exhibit how some of
the practical choices are made that lead to a relatively efficient special-purpose algorithm.

We will use the uncapacitated facility location problem as an example of a structured
problem throughout this and the next three sections. As a starting point we know the two
formulations presented in Chapter I.1, the so-called "strong formulation"

(UFL)

z = max I I C ijY ij - I jjXj
iEi JEN JEN

I Yij = 1 for i E J
JEN

Yij - Xj ~ 0 for i E J,j EN

yERr;n, xEBn,

where J = {l, ... , m} and N = {l, ... , n}, and the "weak formulation"

1. Introduction

(WUFL)

z = max L L cijYij - L jjXj
iEi jEN jEN

L Yij = 1 for i E I
jEN

L Y ij - mXj ~ 0 for j E N
iEi

385

We have already remarked on the size of these formulations. Another important
observation is that once we have decided which facilities Q <;; N are to be opened, then the
optimal allocation of the clients to the facilities is obvious. In particular, client i is served
by a facility k E Q such that Cik = maXjEQ cij' Hence there exists an optimal solution to
UFL and WUFL with Y E Bmn.

Proposition 1.1. The value %pening/acilities at Q <;; N is

v(Q) = L max cij - L jj.
iEi JEQ jEQ

Now suppose we wish to make a choice between the linear programming relaxations of
UFL and WUFL. Note that there is a closed-form solution to the linear programming
relaxation ofWUFL.

Proposition 1.2. When fJ ;;" 0 for all j E N, there exists an optimal solution (x*, y*) to the
linear programming relaxation of WUFL with YUi = 1, where ji = arg maXjEN (cij - fJlm)
for all i E I, Yu = 0 otherwise, and where x;*= (l/m) "LiEi Yu for all j E N.

From Proposition 1.2 it follows that "LjEN xj = 1, independent of the number offacilities
opened in an optimal solution. Hence the fixed costs jj for j E N are largely ignored, and
the relaxation cannot provide a good upper bound on the optimal value z.

In contrast, the upper bound provided by the linear programming relaxation ofUFL is
usually very strong and no larger than the bound obtained from the linear programming
relaxation of WUFL. The strength of this bound will be discussed further in Section 3.

Example 1.1. Consider the uncapacitated location problem with the following data:

m =6, n = 5,

12 13 6 0 1
8 4 9 1 2

C = (cij) =
2 6 6 0 1
3 5 2 10 8
8 0 5 10 8
2 0 3 4

/ = (jj) = (4 3 4 4 7).

Using Proposition 1.2, we obtain the optimal solution to the LP relaxation of WUFL
given by yi2 = Y23 = Y32 = Y44 = YS4 = Y64 = 1, X2 = t xj = t X4 == ! with value 481.

386 11.5. Special-Purpose Algorithms

The LP relaxation of UFL has an optimal solution (derived later) given by
y71 = y72 = Y21 = Y23 = Y!2 = Y!3 =~, Y44 = Y54 = Y64 = 1, xT = xi = x! = ~, X4 = 1 with value
ZLP = 41~. The optimal value ofUFL is Z = 41.

From now on, we only consider the strong LP relaxation of UFL and concentrate on
developing fast algorithms that solve it exactly or approximately.

2. A CUITING-PLANE ALGORITHM USING STRONG VALID
INEQUALITIES

Here we consider linear programs of the form

(LP (.'J'»

ZLP(.'J') = max ex

Ax<b

nx < no for (n, no) E.'J'

xER~,

where .'J' generally contains a large number of constraints. Linear programs of this form
anse as:

i. relaxations of an integer program max{ex: xES}, where S = {x E ZZ: Ax < b}
and .'J' is a set of "strong" valid inequalities for S; and

11. linear programs with a large number of constraints.

As an example of i, S is the set of solutions to a 0-1 knapsack problem, .'J' represents the
set of cover inequalities, and LP(.'J') represents the linear program consisting of the
knapsack constraint and the cover inequalities.

As an example of ii, LP(.'J') is the LP relaxation of UFL, where Ax < b are the
constraints of the weak formulation WUFL without integrality and .'J' represents the mn
variable upper-bound constraints Yu - Xj < 0 for all i E I, j EN.

The question we need to answer is how to solve the linear program LP(.'J'). The "brute
force" approach of adding all the constraints in .'J' a priori is impractical when the number
of inequalities in .'J' is very large. Furthermore, most of the inequalities in .'J' are
unnecessary for the solution of LP(.'J'). However, a priori addition of a subset of the
inequalities from .'J' may be very desirable.

A more general approach uses the inequalities of .'J' as cutting planes. Only those
inequalities in .'J' that are likely to be active in the neighborhood of an optimal solution to
LP(.'J') are generated.

Fractional Cutting-Plane Algorithm (FCPA) for LP(.'J')

Initialization: Sk = {x E R~: Ax < b}. Set t = 1.
Iteration t:

Step 1: Solve the relaxation of LP(.'J')

z~ = max {ex: x E S~}

2. A Cutting-Plane Algorithm using Strong Valid Inequalities 387

and let Xl be an optimal solution. (Note that the dual solution complementary to
X l - I is a dual feasible solution to LPI. Hence Lpi can be solved by a dual algorithm
starting from the point Xl-I.)

Step 2: Optimality Test. If nxl .:(; no for all (n, no) E f!f, then Xl is an optimal solution to
LP(f!f). Stop.

Step 3: Refinement. Let f!fl C f!f be a set of one or more inequalities (n, no) with nxl > no
and

S~I = Sk n {x E R~: nx .:(; no for (n, no) E f!fl}.

Step 4: t <- t + 1.

Given the solution Xl to the relaxation LpI, we must show that Xl is a feasible solution to
LP(f!f) or find a valid inequality (n, no) E f!f for which nxl > no. This is the separation
problem that we introduced in Section 1.6.3.

The Separation Problem for f!f

Given a point x* E R~, show that x* satisfies all the valid inequalities in f!f, or find one or
more valid inequalities (7(, no) E f!f with nx* > no.

Based on the polynomial equivalence of "separation" and "optimization" (see Theo
rem 3.3 of Section 1.6.3), we make the following observations.

1. Under the assumption that we can check whether x* satisfies the constraints Ax .:(; b
in polynomial time, LP(f!f) can be solved in polynomial time if and only if the
separation problem for LP(f!f) can be solved in polynomial time.

ii. If we are dealing with an integer program max{cx: Ax .:(; b, x E Z~} that is .Nr!P
hard, and f!f represents one or more families offacets, there may be some families of
facets for which the separation problem is in r!P, but there will be others for which
the separation problem is .Nr!P-hard. More precisely, based on Proposition 7.4 of
Section 1.5.7, we cannot expect to have a good characterization of all the facet
classes for the problem, and hence there will certainly be problem instances for
which FCPA will terminate with a solution Xl that is not integral.

To demonstrate the FCPA with separation, we return to the uncapacitated facility
location problem. Suppose that the number of constraints in formulation UFL is too large
to solve its linear programming relaxation directly. So we start with the LP relaxation of
the formulation WUFL and let f!f consist of the mn constraints Yij.:(; Xj for all
i E I and) EN.

Now given a point (x*, y*) E R~ x R';", the separation problem for f!f is to find whether
one or more of the mn variable upper-bound constraints is violated. This is easily done by
enumeration, and a violation occurs if and only if maXiE! yij > xj for some) E N. Several
implementations are possible, depending on the number of violated constraints added. In
the implementation given below, for each) for which a violation occurs, we add one most
violated constraint.

Example 1.1 (continued). We implement the FCPA with separation.
Iteration 1. It has been seen earlier that the optimal solution ofLp l is yb = y13 = yj2 =

y~4 = y~4 = Y64 = 1, xi = t, xj =~, x~ = ~ with zLp = 48t. Since Xl is not integral we apply the

388 11.5. Special-Purpose Algorithms

separation algorithm to (Xl, y l) and find that three constraints from fJi, namely
Y12";; X2, Y23";; X3, and Y44";; X4, are violated. These constraints are now added to S1.

Iteration 2. The linear program Lp2 is solved, giving the solution Ytl = 0.8, Y12 = 0.2,
Y~l = 1, yj2 = 1, ya4 = 0.4, yas = 0.6, Y~4 = 1, Y~4 = 1, x1 = 0.3, x~ = 0.2, xa = 0.4, x~ = 0.1
with Zf.p = 44.9. The separation algorithm now generates the four violated inequalities
hI";; Xl> Y32";; X2, Y54";; X4, andY45";; Xs·

Iteration 3. The linear program Lp3 has an optimal solutionY?I= 1, Y~l = 0.2, Y~3 = 0.8,
Y~3 = 1, Yl4 = 1, Y~4 = 1, Y~4 = 1, x? = 0.2, x~ = 0.8, xl = 1, and Z[p = 42.8. The separation
algorithm now generates the violated inequalities Yu ,,;; Xl and Y33 ,,;; X3.

Iteration 4. The linear program Lp4 has an optimal solution ytl = yt2 = Y!l = Y!3 = yj2 =
yj3 =~, Y~4 = Y~4 = Y~4 = 1, xt = x! = x1 =~, x~ = 1, and z~p = 41.5. No violated inequalities
are generated by the separation algorithm, so (x\ y 4) is an optimal solution of the LP
relaxation of UFL.

Note that only 9 out of the 30 possible variable upper-bound constraints Yij";; Xj have
been added in the course of the algorithm. Since the optimal solution (x\ y 4) of LP(fJi) is
not integral, we need to proceed further. One approach described below is to embed the
FCPA into a branch-and-bound algorithm. Another is to enlarge the family fJi of strong
valid inequalities (see exercise 5).

A Strong Cutting-Plane/Branch-and-Bound Algorithm for IP.
Given the problem

(IP) max{cx: Ax ,,;; b, x E Z~}

and a class fJi of "strong" valid inequalities, we use the following 2-phase algorithm.

Phase 1. Solve LP(fJi) by the FCPA. On termination, let Xl be an optimal solution of
LP(fJi). If Xl E Z~, stop. Xl solves IP. Otherwise, go to Phase 2.

Phase 2. Let fJi' C fJi be the cuts generated in Phase 1, that is fJi' = U~=l fJiS. Solve the
reformulation ofIp,

(IP') max{cx: Ax,,;; b, 1CX";; 1CO for (1C, 1Co) E fJi', x E Z~},

by branch-and-bound.

Example 1.1 (continued). The branch-and-bound tree for the problem IP' with the nine
inequalities added is shown in Figure 2.1.

On the first branch, node 2, x 1 is set to the value 1; the linear program has an optimal
solution with x integer of value 40. The only remaining node is 3, where x I is set to zero.
Here again the linear program has an optimal solution with x integer of value 41. The
corresponding solution is X2 = X3 = X4 = 1, Y12 = Y23 = Y32 = Y44 = YS4 = Y64 = 1. Since the
tree has no active nodes, the solution found at node 3 is optimal.

41

41

Figure 2.1

40

40

2. A Cutting-Plane Algorithm using Strong Valid Inequalities 389

It may be possible to eliminate some variables from IP'. Given an optimal solution to
LP(@'), the reduced prices Cj are nonpositive for all nonbasic variables Xj at their lower
bound, and nonnegative for all nonbasic variables at their upper bound. We suppose that z
is the value of the best feasible solution known. -

Proposition 2.1. If Xj is nonbasic at its lower (upper) bound in the solution of LP(@,),
Xj E Zi, and ZLP(S1') + Cj ..;; ~ (hp(S1') - Cj ..;; ~), there exists an optimal solution to the integer
program with Xj at its lower (upper) bound.

This means that the set of variables needed in the branch-and-bound phase is
N* = N \ U EN: Xj is nonbasic, hp(S1') - ICj I ..;; ~}.

Example 1.1 (continued). We exhibit the use of Proposition 2.1.
Suppose we have observed that the solution in which location 1, 2, and 4 are open has

value v({1, 2, 4}) = 40. Since Yij equals 0 or 1 in an optimal solution, the reduced prices for
the LP relaxation of UFL can be used to fix any variable with reduced price
I Cij I ~ 41.5 - 40 = 1.5. In this case we can set Y13 = Y14 = Y15 = Y22 = Y24 = Y25 = Y31 = Y34 = Y35

= Y41 = Y42 = Y43 = Y52 = YS3 = YS5 = Y62 = Y6S = 0 before entering the branch-and-bound phase.

Example 2.1. This is an instance of UFL with 33 facilities and clients. Each of the 33
cities is a client and a potential location for a facility. Here cij is the negative of the distance
between cities i and}. The distances are given in Table 2.1, and the geographic locations
are shown in Figure 2.2. The fixed costs are 2000 for each facility.

Figure 2.2. Thirty-three city problem: I, Chicago, Ill.; 2, Indianapolis, Ind.; 3, Marion, Ohio; 4, Erie, Pa.; 5,
Carlisle, Pa.; 6, Wana, w.v.; 7, Wilkesboro, N.C.; 8, Chattanooga, Tenn.; 9, Barnwell, S.c.; 10, Bainbridge, Ga.;
11, Baton Rouge, La.; 12, Little Rock, Ark.; 13, Kansas City, Mo.; 14, La Crosse, Wis.; 15, Blunt, S.D.; 16, Lincoln,
Neb.; 17, Wichita, Kan.; 18, Amarillo, Tex.; 19, Truth or Consequences, N .M.; 20, Manuelito, N .M.; 21, Colorado
Springs, Colo.; 22, Butte, Mont.; 23, Lewiston, Idaho; 24, Boise, Idaho; 25, Twin Falls, Idaho; 26, Salt Lake City,
Utah; 27, Mexican Hat, Utah; 28, Marble Canyon, Ariz.; 29, Reno, Nev.; 30, Lone Pine, Calif.; 31, Gustine,
Calif.; 32, Redding, Calif.; 33, Portland, Ore.

~
 '" co

Ta
bl

e
2.

1.
 D

at
a

fo
r

th
e

33
-C

it
y

Pr
ob

le
m

0

2
18

4
0

3
29

2
19

5
0

4
44

9
31

0
21

5
0

5
67

0
54

0
38

0
28

8
0

6
51

6
35

7
23

2
20

0
21

1
0

7
59

8
51

4
43

4
56

6
43

6
38

1
0

8
61

8
43

4
49

3
78

7
81

4
64

2
29

5
0

9
88

1
69

7
71

9
79

0
63

2
69

7
22

4
32

0
0

10

90
9

96
4

95
5

10
20

97

4
95

2
54

1
34

1
31

8
0

II

97
8

89
2

10
31

12

46
 1

35
2

11
80

84

3
53

8
74

7
44

1
0

12

65
4

59
7

80
3

10
18

11

54

11
04

76

6
46

1
74

9
63

4
38

0
0

13

50
4

50
3

72
2

93
7

10
43

80

6
98

6
72

2
10

42

95
4

78
4

40
4

0

14

27
6

46
0

56
8

72
5

94
6

81
7

87
4

89
4

12
14

11

85

12
18

66

0
45

2
0

15

78
0

96
4

10
72

 1
22

9
14

50
 1

32
1

13
78

 1
32

6
16

46
 1

67
2

14
10

 1
03

0
62

6
47

6
0

16

52
9

64
4

78
9

10
04

11

84

10
01

12

14

95
0

12
70

12

13
 1

04
3

63
2

21
9

43
6

41
9

0

17

80
5

69
8

91
7

11
32

 1
23

8
10

55

1
m

84

2
11

62
 1

02
7

77
9

47
3

19
5

63
7

63
4

25
6

0

18

11
81

10

07
 1

22
6

14
41

15

47
 1

36
4

13
75

10

80

11
34

11

38

78
3

61
1

56
3

10
46

75

9
62

4
36

8
0

19

15
48

 1
44

4
16

30
 1

84
5

19
84

 1
80

1
17

26

14
31

16

85
 1

47
7

11
34

 1
03

3
90

6
13

89
 1

09
4

96
7

71
1

40
4

0

20

15
47

 1
45

4
16

68
 1

88
3

19
94

18

11

18
79

 1
58

4
17

76
 1

63
2

12
67

 1
05

3
94

4
14

27

11
96

 1
00

5
74

9
44

2
25

1
0

21

12
39

11

67
 1

35
3

15
68

17

07
 1

52
4

15
84

13

13
 1

63
3

14
98

11

51

97
9

61
4

98
8

60
0

52
5

47
1

36
8

51
2

50
7

0

22

15
38

 1
73

3
18

30
20

45
22

08
20

90
 2

13
62

07
82

39
82

33
2

21
10

 1
78

2
13

78
 1

30
0

76
0

12
29

 1
38

2
13

19

11
63

93

0
91

0
0

23

19
99

 2
15

8
22

91
 2

44
8

26
69

 2
5

1
5

2
5

9
7

2
5

0
0

2
8

2
0

2
6

7
5

2
3

3
6

 2
16

4
17

07
 1

86
0

13
75

 1
58

2
16

58
 1

54
5

13
89

11

56
 1

23
7

43
6

0

24

17
16

 1
87

52
00

8
21

65
 2

38
6

22
32

 2
48

8
22

17
 2

53
7

23
92

 2
05

3
18

81

14
22

 1
57

7
11

06
 1

24
4

13
75

 1
26

2
11

06

87
3

95
4

48
3

28
3

25

15
80

 1
73

8
18

72
 2

02
9

22
50

 2
09

5
23

52
20

81
 2

40
1

22
56

19

17
 1

74
5

12
86

 1
47

3
98

8
11

47
 1

23
9

11
26

97

0
73

7
81

8
37

9
41

9

26

14
25

15

69

17
17

 1
87

4
21

09
 1

92
6

21
15

18

44
 2

16
4

20
19

 1
68

0
15

08

11
18

 1
33

5
86

2
91

3
10

02

88
9

73
3

50
0

58
1

43
0

65
6

27

15
60

 1
54

9
18

52
20

09
20

89
 1

90
62

06
3

17
92

21

12

19
67

 1
45

6
12

74
 1

03
2

15
40

 1
06

8
10

07

94
4

66
5

52
1

28
2

49
1

76
8

99
4

28

19
18

 1
74

4
19

63
 2

17
8

22
84

 2
10

1
21

74
 1

87
9

20
71

18

92
 1

56
2

13
48

 1
23

9
17

22
 1

25
8

13
00

 1
04

4
73

7
52

6
29

5
80

2
81

6
10

22

29

20
65

 2
10

22
35

7
2

5
1

4
2

6
4

2
2

4
5

9
2

6
2

6
2

3
5

5
2

6
7

5
2

5
3

0
 2

19
1

20
19

16

73
 1

90
5

14
32

 1
57

0
15

07
 1

32
0

11
09

87

8
11

24

84
2

71
5

30
 2

28
4

21
31

 2
32

6
24

41
 2

67
1

24
88

 2
41

8
21

23
24

37
22

59
 1

92
9

17
15

 1
60

6
19

24

14
51

15

89

14
11

11

04

89
3

66
2

11
43

 1
00

4
98

1

31

23
40

23
48

25
43

26
58

 2
88

8
27

05
 2

86
9

25
98

 2
91

8
27

73
 2

43
4

22
62

19

16
 2

14
8

16
75

18

13
 1

75
0

14
68

11

02

87
1

13
67

 1
08

5
95

8

32
 2

2
4

7
2

3
2

7
2

5
3

9
2

6
9

6
2

8
6

7
2

6
8

4
2

8
5

1
 2

58
02

90
02

75
5

24
16

22
44

 1
89

8
21

30
 1

65
7

17
95

 1
73

2
15

45
 1

33
4

11
03

 1
34

9
10

14

81
4

33

21
63

 2
32

22
45

5
26

12
28

33
 2

67
9

27
61

 2
66

4
29

84
 2

83
9

25
00

 2
32

8
18

71
 2

02
4

15
39

 1
74

6
18

22
 1

70
9

15
53

 1
32

0
13

91

69
3

34
6

0

13
6

0

37
3

23
7

0

71
1

57
5

35
8

0

73
9

60
3

38
6

54
5

0

43
2

46
5

53
3

84
9

73
9

0

69
8

59
9

58
9

76
8

52
3

26
6

0

67
5

10
33

77

8
10

92

98
2

24
3

34
9

0

53
1

10
15

76

0
10

47

96
4

2
2

5
4

9
7

2
6

6

0

44
7

58
3

82
0

11
58

 1
35

5
58

1
84

7
71

0
44

4
0

2
3

4
5

6
7

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

So
ur

ce
: R

an
d-

M
cN

al
ly

 R
o

a
d

 A
tl

as
,

38
th

 e
di

ti
on

, R
an

d-
M

cN
al

ly
 C

om
pa

ny
 (1

96
2)

.

.... \C
 ...

Ta
bl

e
2.

2.
 T

he
 (

i ,
j)

 P
ai

rs
 fo

r
w

hi
ch

 V
ar

ia
bl

e
U

pp
er

-B
ou

nd
 C

on
st

ra
in

ts
 H

av
e

B
ee

n
A

dd
ed

j=
1

2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

t

i=

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

1

14

3
6

5
8

10

12

11

17

15

13

21

20

27

18

33

23

22

30

29

2
2

3
6

4
9

10

7
11

12

15

14

18

19

22

25

26

27

20

32

30

33

23

3

2
5

3
7

8
9

10

16

1
13

21

19

18

28

15

33

23

22

26

20

31

29

30

4

3
1

2
7

10

11

8
13

14

17

16

20

18

19

23

22

24

28

21

30

33

29

32

31

5

14

4
1

3
2

9
11

10

15

13

16

17

28

21

27

24

29

33

30

19

31

32

6

10

8
5

9
3

12

17

18

16

14

11

21

33

31

30

20

19

32

22

7
16

9

6
4

5
2

8
1

22

21

19

27

30

20

32

29

24

28

33

31

8
13

4

14

1
18

10

15

11

16

26

23

22

27

9

4
5

7
9

11

14

15

17

27

25

28

26

10

15

6
7

4
3

5
2

12

16

11

5
13

6

16

17

15

12

16

17

13

28

15

13

392 11.5. Special-Purpose Algorithms

Table 2.3.

{j: Xj = 1}: 20,24.
{j: Xj = 1}: 3,7,8,13, 16.
{(i,i): Yij = 1}: (18,20), (19, 20), (20, 20), (21, 20), (22, 24), (23, 24), (24, 24), (25, 24), (26, 24), (27,

20), (28, 20), (29, 24), (30, 20), (31, 24), (32, 24), (33, 24).
{(i,i): Yij = !}: (1,3), (1,13), (2, 3), (2, 8), (3,3), (3, 7), (4, 3), (4, 7), (5, 3), (5, 7), (6,3), (6, 7),

(7,7), (7, 8), (8, 7), (8,8), (9, 7), (9, 8), (10,7), (10, 8), (11, 8), (11,13), (12, 8),
(12, 13), (13, 13), (13, 16), (14, 13), (14, 16), (15, 13), (15, 16), (16, 13), (16, 16), (17, 13),
(17, 16).

When the FCPA/branch-and-bound algorithm is applied, the initial LP relaxation
(with no variable upper-bound constraints) has value -2000. After adding 230 variable
upper-bound constraints (see Table 2.2), the linear programming relaxation of UFL is
solved with value -20,346. The solution is given in Table 2.3.

When branch-and-bound is applied, an integral solution of value -20,393 is found at
node 2, and an integral solution of value -20,363 is found and proved optimal at node 3
(see Figure 2.3). The optimal solution is shown in Table 2.4

We have tacitly assumed that the number of variables in LP(~) does not cause
computational difficulties. But this may not be the case. For example, if m = 500 and
n = 100 in UFL, then FCPA could not be used directly to solve LP(@').

To handle a very large number of variables in addition to, perhaps, a very large number
of constraints, we used a standard linear programming technique. We first solve LP(~)

with a suitably chosen subset of variables eliminated; that is, we choose N' C N and set
Xj = 0 for j E N'. After solving the restricted version of LP(~), we check for optimality
with respect to LP(~) by calculating the reduced prices of the variables Xj withj E N' . If all
of these reduced prices are nonpositive, LP(~) is solved. Otherwise, we delete from N' all
j such that the reduced price ofxj is positive. We then continue with the solution ofLP(~).

Note that after adding variables it is preferable to reoptimize with a primal algorithm since
the current solution is primal feasible. Hence if this technique is used within an FCPA, it is
desirable to have primal and dual linear programming algorithms available.

-20363 -20393

-20363 -20393

Table 2.4.

{j: Xj = 1}:

{i: Yi,7 = 1}:

{i: Yi.13 = 1}:

{i: Yi,20 = l}:

{i: Yi,24 = 1}:

Figure 2.3

7,13,20,24
3,4,5,6,7,8,9,10
1,2, 11, 12, 13, 14, 15, 16, 17
18,19,20,21,27,28,30
22,23,24,25,26,29,31,32,33

3. Primal and Dual Heuristic Algorithms 393

3. PRIMAL AND DUAL HEURISTIC ALGORITHMS

Heuristic or approximate algorithms are designed to find good, but not necessarily
optimal, solutions quickly. For a varit:ty of problems with structure, it is easy to devise
heuristic algorithms to find primal and dual feasible solutions. It is particularly desirable
to find both primal and dual feasible solutions since the dual solution provides an upper
bound on the deviation from optimality of the primal solution. Depending on the quality
of the solution required, an approximate solution can be the final answer to a problem or
can be an input to an exact algorithm. The lower and upper bounds provided by
approximate solutions can be of great help in decreasing the running time of branch-and
bound algorithms.

Though it is difficult to describe completely general heuristic algorithms, three ideas are
applicable in a wide variety of cases. The first is that of a "greedy", alternatively called a
"steepest ascent/descent" or "myopic", algorithm.

Greedy algorithms are frequently applied to the maximization of set functions. Let
v(Q) be a real-valued function defined on all subsets of N = {l, ... , n} and consider the
problem max{v(Q): Q £; N}.

A Greedy (Heuristic) Algorithm for Maximizing a Set Function

Initialization: QO = 0, t = 1.
Iteration t:

Step 1: Letj, = arg maxjEN\Q,-1 V(Q'-l U U}) with ties broken arbitrarily.
Step 2: Ifv(Qt-1 U U,}) ~ V(Q'-l), stop. Q'-l is a greedy solution.
Step 3: Ifv(Qt-l U U/}) > V(Q'-l), set Q' = Q'-l u U,}.

Step 4: If Q' = N, stop. N is a greedy solution. Otherwise let t +- t + 1.

The idea of this greedy algorithm is simple. Given a set Q', the next element chosen is
one that gives the greatest immediate increase in value, provided that such an element
exists. Moreover, once an element is chosen, it is kept throughout the algorithm. Recall
that we used the greedy algorithm to find an optimal solution to the minimum-weight
spanning tree problem (see Section 1.3.3). In general, however, we cannot expect the
greedy algorithm to yield an optimal solution.

In the uncapacitated facility location problem, we obtain

{ 2: max cij - 2: jj for 0 C Q £; N
v(Q) = iEI JEQ jEQ

- 00 for Q = 0 (since Q = 0 is infeasible).

Example 1.1 (continued). We apply the greedy heuristic described above.

Iteration 1. QO = 0.

j: 2 3 4 5

v(Qo U U}): 31 25 27 21 14

394 n.s. Special-Purpose Algorithms

Iteration 2. Ql = {l}, V(Ql) = 31.

}: - 2 3 4 5

V(QI U {j)): 35 33 38 29

Iteration 3. Q2 = {l, 4), V(Q2) = 38.

}: - 2 3 5

V(Q2 U {j}): 40 39 31

Iteration 4. Q3 = {I, 2, 4), V(Q3) = 40.

}: - 3 5

V(Q3 U {j)): 37 33

Since V(Q3 U {j)) ~ V(Q3) for all} $. Q3, it follows that Q3 = {l, 2, 4) is a greedy solution
with value 40.

There are generally several greedy heuristics for a given problem, and common sense
must be used to convert the "greedy" idea into a reasonable greedy heuristic. An equally
valid greedy approach for the uncapacitated facility location problem is to start with all
facilities open and then, one-by-one, close a facility whose closing leads to the greatest
increase in profit.

For the 0-1 packing problem max{cx: Ax ~ 1, x E B n), where A is a 0-1 matrix, one
greedy approach is to recursively set that variable to one for which the resulting solution is
still feasible and for which Cj is as large as possible. However, examination of a few
examples quickly leads to the idea that Cj should be divided by the number of l's in the
column aj; that is, the "improved" greedy criterion is to choose a column for which the
average increase in profit per row covered, Cj / LiEM ail> is maximum.

The second important idea is that of "local search" or "interchange" heuristics. As the
name implies, a heuristic of this type takes a given feasible solution and, by making only
limited changes in it, tries to find a better feasible solution.

A k-Interchange Heuristic for max{c(x): xES S Bn).

Given a positive integer k, k ~ n, let

Initialization: Find a point Xl E S.
Iteration t: Given a point Xl E S, if there is a point x' E Nk(XI) n S with c(x') > c(xl),

then let Xt+l = x' and t <-- t + 1. Otherwise stop; x' is a k-interchange solution.

Clearly the amount of work per iteration in this algorithm depends crucially on k, and
for the heuristic to be fast we typically limit k to values of 1, 2, or 3. Observe that when
k = n, the algorithm asks for an examination of all the points in Bn. Again, depending on
the problem structure, it is usual to make variations in the definition of Nk(X). For the

3. Primal and Dual Heuristic Algorithms 395

uncapacitated facility location problem, one reasonable choice (given a set Q of open
facilities) is to look at the neighborhood in which either (a) one of the existing facilities is
closed or (b) one new facility is opened, or where both a and b occur simultaneously, that
is,

N2(Q)={F~N: IF\QI ~ 1 and IQ\FI ~ 1}.

The third general principle is that often primal and dual heuristic solutions can be
found in pairs. The complementary slackness conditions (see Section 1.2.2) are one way of
pairing heuristic solutions.

We use the 0-1 packing problem max{cx: Ax ~ 1, x E Bn} to illustrate this idea. The
dual of its linear programming relaxation is min{L7!1 Ui: uA ~ c, u E R';'}. Given a
heuristic solution u* to this dual, let N* = {j EN: L7!1 u7ai} = c). Then the choice of an
associated primal heuristic solution is restricted to the vectors x with Xj = 1 only if} E N*.
Moreover, if such a primal feasible vector x* can be found that also satisfies LjEN a i}xj = 1
for all i with u7 > 0, then by complementary slackness it follows that x* and u* are optimal
solutions.

The pairing of primal and dual heuristics is now demonstrated for the uncapacitated
facility location problem. First we consider the dual of the linear programming relaxation
ofUFL:

hp = min 2:: Ui + 2:: tj
iEf JEN

Ui+ wi} ~ci} foriEI,}EN

- 2:: wi} + tj ~ -fJ for} EN
iEf

Wi},tj~O foriEI,jEN.

We can eliminate constraints and variables from this formation by observing that:

a. For given wi}, the only constraints on tj are nonnegativity and tj ~ LiEf Wi} - fJ, and
hence in any optimal solution we have tj = (LiE1 wi) - jj)+, where x+ denotes
max(x, 0).

b. Forgiven Ui, we have that LjEN (LiEf Wi) - fJt is minimized by setting wi} as small as
possible, that is wi} = (ci) - Uit.

Hence the dual can be rewritten as

(3.1) ZLP = min w(u), where w(u) = 2:: Ui + 2:: (2:: (ci) - Uit - fJ)+.
uER'" iE1 JEN iEf

Alternatively, if we assume that fJ ~ 0 for all j E N, it is easy to see that the constraints
Xj ~ 1 can be dropped from the linear programming relaxation ofUFL. Thus tj disappears
from the dual and it becomes

(3.2)
ZLP = min 2:: Ui

iEf

2:: (ci) - Uit ~fJ for j EN.
iEf

396 11.5. Special-Purpose Algorithms

The two condensed duals (3.1) and (3.2) are of interest because they only depend on
u E Rm. The dual (3.1) is particularly useful since it gives an upper bound for any u E Rm.

Now we consider the association of primal and dual solutions. Given a primal solution
with Q s N being the set of open facilities, one way to associate a dual solution is to take Ui

equal to the second largest C ij over} E Q. The motivation for this lies in the complemen
tary slackness condition (Yij - x)wij = O. For) E Q, we have Xj = 1 in the primal solution;
and for each i, there is one Y ij = 1 with} E Q. Hence if the complementary slackness
condition is to hold, we must have no more than one wij > 0 for each i E I and} E Q.
Since wij = (cij - Ui)+' this leads to the heuristic choice of Ui suggested above. Taking the
greedy solution Q = {l, 2, 4} obtained for Example 1.1, the associated dual solution is
U = (12 4 2 5 8 2). Using the formula in (3.1), we obtain w(u) = 33 +
(0 + 2 + 6 + 5 + 0) = 46.

Now conversely, suppose we are given a dual solution U that is feasible to (3.2) and we
wish to associate a primal feasible solution with it. The linear programming complemen
tarity conditions suggest associating a primal solution in whichxj = 0 ifLiEI (cij - Uit <jj.
Let leu) = {j EN: LiEI (cij - uJ+ = jj}. The best solution that satisfies complementarity is
obtained by solving

max {I max cij - I jj}.
Qf;J(U) iEI jEQ jEQ

However, this problem may not be much easier to solve than the original problem UFL.
Therefore we take as a primal heuristic solution Q(u) any minimal set Q(u) S leu)
satisfying

(3.3) max Ci = max Ci for all i E I.
jEQ(u) 1 jEJ(u) 1

The following proposition tells us when (Q(u), u) are optimal to UFL and the dual of its
linear programming relaxation, respectively.

Proposition 3.1. Given a u that isfeasible to (3.2) with Ui ~ maXjEJ(U) cijfor i E I, and a
primal solution Q(u) defined by (3.3), let k i = 1 (j E Q(u): Cij > uJ I. Ifki ~ 1 for all i E I,
then Q(u) is an optimal set of open facilities.

Proof

v(Q(u» = I max cij - I jj.
iEI jEQ(u) jEQ(u)

If k i = 0, then

max cij = Ui = Ui + I (Cij - Uit;
jEQ(u) jEQ(u)

and if k; = 1, then

max cij = Ui + I (Cij - Uit.
jEQ(u) jEQ(u)

3. Primal and Dual Heuristic Algorithms 397

Hence, if k i ~ 1 for all i E I, then

v(Q(U» = I I (Cij - uJ+ - I jj + I Ui
iE! jEQ(u) jEQ(u) iE!

= I (I (Cij - Uit - jj) + I Ui
jEQ(u) iE! iE!

= I Ui (by definition of J(u»
iE!

= hp (since U is feasible in (3.2».

Since v(Q(u» achieves the upper bound of ZLP, it follows that Q(u) is an optimal set of
open facilities. •

Now we present a heuristic algorithm for the dual problem (3.2) that uses the ideas of
greedy and interchange. After finding a dual solution, the algorithm constructs a primal
solution from (3.3) and then uses Proposition 3.1 to check optimality.

Dual Descent [A Greedy Algorithm for (3.2)]

Begin with u7 = maXjEN cij for i E I. Cycle through the indices i E I one-by-one attempt
ing to decrease Ui to the next smaller value of cij' If one of the constraints

(3.4) I (Cij-Uit~jj forjEN
iE!

blocks the decrease of Ui to the next smaller cij, then decrease Ui to the minimum value
allowed by the constraint. When all of the u/s are blocked from further decreases, the
procedure terminates.

A possible improvement of this greedy heuristic is obtained by modifying the order in
which the u/s are considered as candidates to decrease. The reasoning is the same as in the
case of the 0-1 packing problem. Let Hi(u) = {j EN: cij - Ui? O}. Rather than just cycling
through the u/s, we choose Us next if IHs(u) I ~ IHj(u) I for all i E I, since this implies the
smallest increase in LjEN LiE! (Cij - Uit per unit decrease in LiE! Ui. This discussion also
justifies decreasing Uj only to the next smaller cij rather than to the smallest permissible
value.

Now suppose that dual descent terminates with a solution u* and that the associated
primal solution Q(u*) given by (3.3) fails to verify the optimality conditions of Proposition
3.1. Then there exists an i such that k i > 1. In an attempt to find an improved dual
solution, we adopt the neighborhood search idea.

Interchange Step. Increase some uifor which k i > 1 to its previous value. Use the resulting
U as the starting solution and reapply the dual greedy algorithm terminating with u'
satisfying LiE! u; ~ LiE! ui.

If u* = u', stop. u* is the heuristic solution.
If u* satisfies the optimality conditions, stop.
Otherwise, repeat the interchange step.

Example 1.1 (continued). Applying dual descent yields the results shown in Table 3.1.
For the first five steps, Uj, i = 1, ... , 5, is decreased to the second maximum in the row.

398 n.s. Special-Purpose Algori~hms

Table 3.1.

U jj - LiEf (Cu - Uir

Step 1: 2 3 4 5 6 j: 2 3 4 5

0 13 9 6 10 10 4 4 3 4 4 7
1 12 9 6 10 10 4 4 2 4 4 7
2 12 8 6 10 10 4 4 2 3 4 7
3 12 8 6 10 10 4 4 2 3 4 7
4 12 8 6 8 10 4 4 2 3 2 7
5 12 8 6 8 8 4 4 2 3 0 7
6 10 8 6 8 8 4 2 0 3 0 7
7 10 6 6 8 8 4 0 0 0 7

Now U6 cannot be decreased because the constraint (3.4) for) = 4 would be violated. Next,
U I is decreased toward the third maximum in the row but is only decreased by two units
because constraint (3.4) becomes tight for) = 2. Finally, U2 is decreased until (3.4) becomes
tight for) = 1. This completes the dual descent with u = (10 6 6 8 8 4), w(u) = 42,
and J(u) = {l, 2, 4}. Now we associate a primal solution as described in (3.3) and obtain
Q(u) = J(u), with a primal solution value of 40.

The proposed modification given above to the order of decreasing the u/s produces the
same result. The solution (u, Q(u)) fails to satisfy the optimality conditions since
k 1 = IJ E Q(u): eli> u I} I = 2. To apply the interchange step, we increase u I back to its
previous value of 12 and then restart the dual descent. In Table 3.2, we see that U3 can now
be decreased by one unit and then no further move is possible except to decrease U I again.
Hence u = (11 6 5 8 8 4) and w(u) = 42 as before, but now J(u) = {2, 3, 4}. From
(3.3) we obtain the associated primal solution Q(u) = J(u) with the improved primal value
of41.

There is a branch-and-bound algorithm for the un capacitated facility location problem,
called DUALOC, that obtains primal and dual feasible solutions at each node of the
branch-and-bound tree using dual descent, the primal heuristic given by (3.3), and
interchange. If a node is not pruned by these heuristics, then branching is accomplished by
taking a) EN and considering the two problems with Xj = ° and Xi = 1.

Example 2.1 (continued). When DUALOC is applied, the algorithm iterates six times
through the interchange step. The values of the corresponding dual lower bounds and
primal upper bounds are shown in Table 3.3. Hence before entering the branch-and
bound phase we have -20,503 ~ z ~ -20,340. Branching on X3 = 0, an optimal integer
solution of value -20,363 is found. Branching on X3 = 1, an optimal integer solution of
value -20,393 is found. Hence an optimal solution has value -20,363 (see Figure 2.2 and
Table 2.4).

Table 3.2.

U jj - LiEf (Cu - Uit

Step 1: 2 3 4 5 6 j: 2 3 4 5

8 12 6 6 8 8 4 2 2 1 0 7
9 12 6 5 8 8 4 2 1 0 0 7
10 11 6 5 8 8 4 1 0 0 0 7

3. Primal and Dual Heuristic Algorithms 399

Table 3.3.

Iteration Dual Bound Primal Bound

1 -20,294 -20,503
2 -20,326 -21,553
3 -20,337 -20,503
4 -20,338 -21,021
5 -20,340 -20,503
6 -20,340 -20,853

Analysis of Heuristics

We have emphasized the importance of finding both primal and dual feasible solutions,
particularly when a primal feasible solution is taken as an approximation to an optimal
solution. The dual solution provides an upper bound on the deviation from optimality of
the primal solution and thus gives an a posteriori evaluation of the quality of the primal
solution.

In addition to this evaluation of an instance, it is frequently possible to give an a priori
evaluation of a heuristic algorithm over all instances. One way to obtain results of this type
is by worst-case analysis.

The essential idea of worst-case analysis is simple. Consider a maximization problem
consisting of instances:

P(I) z(I) = max{cf(x): x E Sf '*' 0} for J E§;.

Suppose we have a heuristic algorithm (H) that finds a feasible solution of value ZH(I).
Worst-case analysis is based on calculating some maximum deviation between z(I) and
ZH(J). The analysis depends crucially on the function that is used to measure deviation.

Perhaps the simplest function is just the absolute difference z(I) - ZH(I). But for most
problems the maximum value ofthe absolute difference is not a meaningful measure since
it can be made arbitrarily large by scaling the objective function. (However, in Part III, we
will consider a class of integer programs in which the objective function coefficients are all
1 and the difference between the optimal value of the linear programming relaxation and
the optimal value of the integer program always is less than or equal to 1).

Relative values, which are independent of objective function scaling, are usually a more
meaningful measure of deviation. To consider relative values, it is convenient to assume
that Cf(X) "" 0 for all x E Sf and all J E .10. We say that heuristic algorithm H has a worst
case relative performance or performance guarantee of rH if

rH = inf{r(I): ZH(I) = r(I)z(I)}
fE.J

= sup{r: zH(H) "" rz(I) for all J E .1o}.

If a heuristic algorithm is not completely specified (e.g., as a result of the absence of a tie
breaking rule), we assume the worst possible outcome. By definition, 0.::;; rH'::;; 1 and H
guarantees to find a feasible solution of value at least rH x 100% of the maximum value for
all instances. Note that rH = 1 - f>H, where

CH = inf{ c: C "" z(I) Z(~H(I) for all J E .10 with z(I) > 0 },

is the largest possible relative error.

400 11.5. Special-Purpose Algorithms

To keep the same scale for mmlmlzation problems of the form
z(I) = min{clx): x E SI '*' 0} with Cl(X) ~ o for all x E SlandI E~, we use the reciprocal
ratio and define

rH = sup{r: z(l) ~ rZH(J) for all I E ~}.

Thus 0 ~ rH ~ 1 and H guarantees to find a solution of value at most rIJ x 100% of the
minimum value for all instances. It is not at all unusual to obtain dramatically different
results for maximization and minimization versions of what otherwise would be the same
problem.

Worst-case analysis is a very conservative approach since it takes only one bad instance
to give a poor result. The alternative approaches of a probabilistic or statistical analysis will
be considered briefly at the end of this section.

There is one general principle that is used to obtain nearly all results on worst-case
analysis. Consider a dual heuristic (DH) that produces an upper bound for P(J); that is,
ZDH(l) ~ z(l) for all I E~. Let

rDH = sup{r: ZH(J) ~ rZDH(l) for all I E~}

so that rH ~ rDH. Now if there is a simple relationship between Hand DH it is often
possible to calculate rDH directly and hence a lower bound on rHo Moreover, in some cases,
we can find an instance 10 with ZH(J°) = rDHzDH(l°) and ZDH(l°) = z(IO) so that rH = rDH.

Example 3.1. We give a simple illustration of this approach by analyzing a greedy
heuristic for the maximum-weight matching problem. This is the special case of maxi
mum-weight packing in which matrix A is the node-edge incidence matrix of a graph
G = (V, E). Thus L7!! aij = 2 for allj, and the greedy heuristic, introduced earlier in this
section, chooses edges of maximum weight such that each chosen edge does not meet any
of the edges chosen previously. The algorithm stops when no such edge exists. (We assume
that all edge weights are positive.) Let EH be the set of edges chosen by the greedy heuristic.
Then EH is a maximal matching; that is, e E E \ EH meets an e' E EH.

The dual of the linear programming relaxation of the matching problem is

min L Ui
iEV

Ui+Uj~Cij for(i,j)EE

Ui ~ 0 for i E V,

where C ij is the weight of edge (i, j). Consider the dual solution u H given by

if(i,j) E EH
otherwise.

Figure 3.1

3. Primal and Dual Heuristic Algorithms 401

We claim that uH is dual feasible. Suppose u{l + u1 < cij for some (i,) E E. Then
(i,) $. EH. Hence either i or) or both are met by an e E E H, and one ofthese edges, say
(i,},), has been chosen before (i,) was considered. Hence u{l = cij' ;;. cu, which contra
dicts u{l + u1 < cij'

Now

ZOH = L u{l = 2 L cij and ZH = L cij ~ Z ~ ZOH,
iEV (i,j)EEH (i,j)EEH

so rH ;;. rOH ;;. !. In the graph of Figure 3.1, in which each edge has weight equal to 1, by
choosing e = (2, 3) first, we obtain EH = {(2, 3)}, uH = (0 1 1 0), ZOH = Z = 2, and
ZH = !ZOH' Hence rH = rOH =~.

Although a solution whose value is only half of the optimal value is unlikely to be
satisfactory, one must remember that a performance guarantee of 50% means that 50% is
the worst possible outcome, and it is likely that for most instances the relative error will be
much smaller. Moreover, it is not unusual for a heuristic to have performance guarantee of
zero. Indeed, this is the case when the greedy heuristic is applied to the set-packing
problem.

Consider the family of set-packing problems

for k = 1, 2, ... ,

where

and h is the k x k identity matrix; lk and Ok are k x 1 matrices of alII's and all O's
respectively. Since :E7!, ail = k < :E7!, aij = k + 1 for all) > 1, the greedy heuristic first sets
x, = 1 and then stops. The optimal solution is x, = 0 and Xj = 1 for j = 2, ... , k + 1.
Hence zH(k) / z(k) = 1 / k and rH = O. So, in the worst case, the greedy heuristic is
arbitrarily bad for the set-packing problem.

This raises a question in computational complexity. Suppose PP * ,NPP. Given an ,NPP
hard optimization problem and 0 < r < 1, does there exist a polynomial-time heuristic
algorithm (H) with rH ;;. r? The answer to this question depends on the problem. In fact,
both extremes are possible.

There are some problems for which the approximation problem is ,NPP-hard for rH ;;. r
for any r > O. We will show below that this is the case for a minimization version of a p
facility location problem. For the problem of finding the minimum number of colors
needed to color the nodes of a graph such that no pair of nodes joined by an edge have the
same color, the approximation problem is ,NPP-hard for r ;;. ~. But no polynomial-time
heuristic algorithm H is known that yields rH ;;. r for any r > O.

At the other extreme, there are ,NPP-hard optimization problems such that for any
0< r < 1, there is an algorithm with performance rH;;' r, whose running time is polyno
mial in the length of the input and in 1 / (1 - r). We call such an algorithm a fully
polynomial approximation scheme. In Section 11.6.1, we will give a fully polynomial

402 11.5. Special-Purpose Algorithms

approximation scheme for the knapsack problem. A more modest result is a polynomial
approximation scheme, which is an algorithm with performance rH ~ r, whose running
time is polynomial in the length of the input for any fixed r, 0 < r < 1.

To illustrate some of these results, we now consider the analysis of some heuristics for a
p-facility variation of the uncapacitated facility location problem. Here there are no fixed
costs, but we can open no more than p facilities. Suppose c ij ~ 0 is the cost of assigning
client i to facility j so that the objective function is

We call the problem

v(Q) = I min cij for 0 C Q ~ N.
iE! jEQ

z=min{v(Q): 1 ~ IQI ~p}

the p-facility minimization problem.

Proposition 3.2. The p-facility minimization problem with performance guarantee
rH ~ r is }(r;j/J-hardfor any r > O.

Proof Given a graph G = (V, E), we say that G has a node cover of its edges of size
I U I if there is a U ~ V such that every edge of G is incident to a node of U. Given an
integer k < I V I, the problem of determining whether a graph has a node cover of size k is
}(r;j/J-complete (see exercise 14 of Section 1.5.9). We now show that a polynomial-time
algorithm for the p-facility minimization problem with performance guarantee rH ~ r for
any r > 0 implies a polynomial-time algorithm for the node-cover problem.

Consider the family of p-facility minimization problems with 1= E, N = V, p = k, and

if ei is incident to node j

otherwise.

Now G contains a node cover of size k if and only if z = I E I. Hence an algorithm with a
performance guarantee of r > 0 yields a solution with v(Q) ~ IE I/r. This implies that G
contains a node cover of size k since any feasible solution that does not cover all of the
edges has cost of at least

IE 1- 1 + IE 1+ 1 > ill.
r r •

A dramatically different result is obtained for the p-facility maximization problem.
Here cij ~ 0 is the profit obtained from assigning client i to facility j so that

and the problem is

v(Q) = I max cij for 0 C Q ~ N,
iE! jEQ

z=max{v(Q): 1 ~ IQI ~p}.

3. Primal and Dual Heuristic Algorithms 403

We analyze the greedy heuristic for this problem. To accommodate the constraint
I Q I ~ p in the greedy heuristic for maximizing a set function, we just modify the stopping
rule: If t = p, stop; QP is a greedy solution. Otherwise, t <- t + 1. Moreover, since C ij ;:;. 0 for
all i and j, we can assume that the greedy heuristic produces a solution Ql with t = p.

Let PI = V(QI) and PI = V(QI) - v(Qt-1) for t = 2, ... ,p. Thus the value of the greedy
solution is ZG = Lf~l Pl'

Theorem 3.3

ZG ((P - 1)P) e - 1 z;:;' 1 - P ;:;. -e- ~ 0.63 for p = 1, 2, ...

(e is the base of the natural logarithm). Moreover, for each p there is an instance for which
the bound is tight; that is, rG = 1 - «p - 1) / p)P for a p-facility maximization problem.

We prove Theorem 3.3 using a series of propositions.

Proposition 3.4. If SeT C Nand k fl. T, then v(T U {k}) - v(T) ~ v(S U {k}) - v(S).

Proof We have maxp:=s cij ~ maxjET cij' Hence

max(Cik - mas x cij' 0) ;:;. max(Cik - maT X Cij, 0)
JE JE

and

v(S U {k}) - v(S) = I max(cik - max Cij, 0) ;:;. I max(cik - max Cij, 0)
iEi JES iEi JET

= v(T U {k}) - v(T). •
This property of set functions is known as submodularity and is the essential property

used to prove Theorem 3.3. In fact, Theorem 3.3 can be generalized to the maximization
of submodular set functions (see Section III.3.9).

Proposition 3.5. Z ~ PPI and Z ~ Ll~l Pi + PPt+Iior t = 1, ... ,p - 1.

Proof Let Q* be an optimal solution, that is, Z = v(Q*). Since QI is the set obtained
after t steps of the greedy algorithm, we have V(QI) = L:~l Pi. Suppose Q* \ Ql = {j}, ... ,
jk}' We have k ~ p since I Q* I ~ p. Now

v(Q*) ~ v(Q* U QI)

k

= V(QI) + I (V(QI U {j), ... ,N) - V(QI U {j), ... ,ji-l}))
i~l

k

~ V(QI) + I (V(QI U {jJ) - V(QI»
i~l

~ V(QI) + PPI+),

where the first inequality follows because v is nondecreasing, the second inequality follows
by Proposition 3.4, and the last inequality follows since p;:;. k and
PI+I ;:;. V(QI U {jJ) - V(QI) by the definition of the greedy algorithm. •

404 11.5. Special-Purpose Algorithms

Proposition 3.6. If ZG = 1 - «p - l)/p Y', then Z ~ 1.

Proof By Proposition 3.5 we have

z~max11

I

11 ~ L Pi + PPt+1 for t = 0, ... ,p - 1
i~1

LPi=l- -p (P-1)P
i~1 P

Pi ~ ° for i = 1, ... ,p.

To show that Z ~ 1, we consider the dual

p-I
L Ui= 1
i=O

I-I

- L Ui - PUt + up ~ ° for
i=O

Ui~ ° for

t = 0, ... ,p - 1

i = 0, ... ,p - 1.

Now observe that a feasible solution to the dual is given by

and Ui = (p - l/PY up for i = 0, ... ,p - l.
p

This is true since

p-I U ((P - 1)P) L Ui =..J!. 1 - -- P
1=0 P P

and

I-I U ((1)1) (1)1 ~ Ui + PUI =; 1 - P; P + P; up = up.

•
This proves the first part of Theorem 3.3. Now we show that the bound is tight for

P = 2, 3, ... (p = 1 is trivial).

Proposition 3.7. For the family ofp-facility location problems defined by cP = (cfj) with
III =p(p- l)and INI = 2p- 1; and with (a)forj= 1, ... ,p- 1

{ (p _ 1) pP-2(P - 1)j-I
cfj = P

°
for i = (j - l)p + 1, ... ,jp

otherwise

3. Primal and Dual Heuristic Algorithms 405

(b) for j = p, ... , 2p - 1

P _ {pP-l for i = 1 + j + (l - 2)p and I = 1, ... , p - 1
c ij - 0 otherwise,

we have

Proof An optimal solution is given by the last p columns, so
z = p(p - 1)pP-l = (p - 1)pp.

We now show that the greedy algorithm can select the first p columns. We have

2: Cfl = p(p - 1)pP-2 ~ 2: cIij for j = 2, ... , p - 1
iEI iEI

and

2: cIij = (p - l)pp-l for j = p, ... , 2p - 1.
iEI

Hence the greedy algorithm can choose the first column first. Now suppose that the greedy
algorithm has chosen the first t - 1 columns and let QH = {l, ... , t - 1}. Then

Table 3.4.

6 0 9 0 0

C ~),
6 0 0 9 0

C2 =
2 C3 =

6 0 0 0 9
0 0 4 9 0 0

0 4 0 9 0
0 4 0 0 9

48 0 0 64 0 0 0
48 0 0 0 64 0 0
48 0 0 0 0 64 0
48 0 0 0 0 0 64
0 36 0 64 0 0 0

C4 =
0 36 0 0 64 0 0
0 36 0 0 0 64 0
0 36 0 0 0 0 64
0 0 27 64 0 0 0
0 0 27 0 64 0 0
0 0 27 0 0 64 0
0 0 27 0 0 0 64

406 11.5. Special-Purpose Algorithms

(1)/-1 V(QI-I U (t}) - V(QI-I) = p(p - l)pP-2 p~

> V(QI-I U (j» - v(Qt-l), for j = t + 1, ... , p - 1.

But forj > p - 1, we obtain

V(QI-I U (j» - V(QI-I) = (p - l)pP-' - (p - l)pP-2 I ~ 1-2 (1)1
I~O P

= (p _ l)pP-' (P ~ 1 r'.
Hence the greedy heuristic can choose column t next. Thus

ZG = (p - l)pP-' I p-- + (p - l)pP-' p-- = (p - 1)(PP - (p - 1)P) p-2 (_ 1)1 (_ 1)P-I

I~O P P

and

ZG = pP - (p - 1)P = 1 _ (P - 1)P.
Z pP P •

Empirical evaluation of the greedy heuristic for the p-facility location problem shows
that it performs reasonably well (above 80% of the optimal value) on most real and
randomly generated instances. Moreover, the solution obtained by the greedy heuristic
frequently can be improved by applying the interchange heuristic, which begins with a set
of size p and recursively replaces an element in the set with one not in the set as long as the
objective improves. However, there is a family of instances, like those given in Proposition
3.7, where the greedy heuristic obtains a solution that achieves its worst-case performance
and the solution cannot be improved by applying the interchange heuristic. In addition,
when the interchange heuristic begins with an arbitrary set of size p, its worst-case
performance is inferior to that of the greedy heuristic.

Let Z I be the value of a solution produced by the interchange heuristic.

Proposition 3.8 ZI ~ [P/(2p - 1)]z andfor each p there is an instancefor which the bound
is tight, that is, rI = p/(2p - 1).

Proof Let QI C N be the set chosen by the interchange heuristic. Now apply the
greedy heuristic to QI so that ZI = V(QI) = Lf~1 Pi, where Pi = V(Qi) - V(Qi-l) for i = 2, ... ,
P,PI = V(QI), and QP = QI. Let Q* be an optimal solution and Q* \ QP-I = {jl, ... ,h}. By
the termination rule of the interchange heuristic, V(QP-I U (ji» - V(QP-I) ~ PP' By Propo
sition 3.4 we have

k

v(Q*) ~ V(QP-l) + I (V(QP-I U (j;}) - V(QP-I»
i~1

Now since Pp ~ p;for i < p, we have pp ~ (1!P)ZI and Z ~ [(2p - 1)/P]ZI.
See exercise 13 for a family of instances which establishes that the bound is tight. •

3. Primal and Dual Heuristic Algorithms 407

Simulated Annealing

The interchange heuristic stops when it finds a "locally optimal" solution relative to the
chosen neighborhood structure. As combinatorial optimization problems may have many
local optima, it is typical to run the interchange heuristic many times with randomly
chosen starting points.

A different approach for trying to obtain a global optimum using an interchange
heuristic is called simulated annealing. Despite the fancy name, the idea is very simple.
While the interchange heuristic produces a sequence of solutions with increasing objective
value, here we allow the objective value to decrease occasionally to avoid getting stuck at a
local optimum.

Consider the problem

(3.5) max {c(Q): Q E ~}.
Q~M

Suppose QO is the current solution and we find a point QI in the neighborhood N(QO) of
QO. If C(QI) > c(QO), we proceed as before by replacing QO with QI. On the other hand if
c(Q I) ~ c(QO), we replace QO with Q I with probability p, where p is a decreasing function
of c(QO) - C(QI). The motivation for moving to a point with a smaller objective value is
that if we are stuck in a shallow local optimum, there is a chance of escaping by moving to
a neighbor having a lower objective value. The probability p can also be decreased as a
function of the number of iterations. One reason for doing this is to obtain convergence;
another reason is that as the global optimum is approached, making steps away from the
optimum becomes less attractive.

Simulated Annealing Algorithm for (3.5)

Initialization: Let ao > 0, 0 < P < 1, QO E ~ and i = O.

Step 1: Given Qi, generate Q' ~ N(Qi).
Step 2: a) If c(Q') > C(Qi), then Qi+1 = Q'.

b) If c(Q') ~ C(Qi), then Qi+1 = Q' with probability p = {exp[c(Q') - c(Qi)]la.}
and Qi+1 = Qi with probability 1- p. I

Step 3: ai+1 = ai(1 - p) and i ... i + 1.

Now provided that

i. it is possible to move from any set Q E ~ to any other Q' E ~ in a finite number of
iterations,

ii. each set in a neighborhood is chosen with equal probability, and
iii. the neighborhoods are symmetric in the sense that Q E N(Q') if and only if

Q' EN(Q),

it can be shown that the algorithm converges to the global optimum. However, the
provable rate of convergence is exponential.

The empirical efficiency of simulated annealing depends on the neighborhood struc
ture and the rate at which a is decreased. For some combinatorial optimization such as the
traveling salesman problem and a variety of problems related to circuit design, simulated
annealing has found much better solutions than those obtained by a random-start
interchange algorithm.

Probabilistic Analysis

Experiments and statistical analysis can be done to draw conclusions about typical

408 11.5. Special-Purpose Algorithms

behavior of heuristics. In some cases, it is even possible to do a probabilistic analysis to
obtain a priori results about average behavior. With this approach, one must be careful to
use a probability distribution of the instances that is both realistic and mathematically
tractable.

We mention three general types of stochastic models that are amenable to analysis. One
such model deals with problems on graphs and uses random graphs as the underlying
stochastic model. A random graph on n nodes is one in which the edges in the graph are
selected at random. In the simplest of these models, the events of the graph containing any
edge are identically and independently distributed random variables; that is, the probabil
ity that (i, j) E E is q for all i, j E V. When q = 1, all possible graphs on n nodes are equally
likely. Then the probability of some property Q occuring on such a random graph with n
nodes is simply the fraction of n-nodes graphs that possess property Q. We say that almost
all graphs possess property Q if the probability approaches 1 as n 00. For our purposes,
property Q could be that a certain heuristic finds an optimal solution to a given problem
whose instance is specified by an n-node graph.

To illustrate this idea, consider the p-facility maximization problem in which C is the
edge-node incidence matrix of a graph. The problem is then to choose p nodes so that the
number of edges incident to the chosen set is maximum. The greedy heuristic begins by
choosing a node of maximum degree; then this node and all edges incident to it are
deleted, and the process is repeated until p nodes have been chosen. It is a fact that for the
random graph model given above, if p does not grow too fast as a function of n, then the
greedy heuristic finds an optimal solution for almost all graphs. In addition, the greedy
solution is optimal to the linear programming relaxation. We will not prove these results.
But they are an easy consequence of an interesting theorem which says that in almost all
graphs, if p does not grow too rapidly with n, then no two nodes in the set of p nodes of
largest degree have the same degree.

Another stochastic model deals with problems in which the data are points in the plane.
For example, the p-median problem in the plane is the special case of the p-facility
minimization problem in which C is an n x n matrix and C ij is the euclidean distance
between points i and j. Here we assume that the points are placed randomly in a unit
square using a two-dimensional uniform distribution.

For this problem, a very sharp estimate has been obtained on the asymptotic value of
ZIP. By this we mean that as p and n approach infinity in a well-defined way, ZIP (p, n)
approaches c/(P, n) with a probability that goes to 1 (almost surely), where c is a constant.
Here c = 0.377 and/(p, n) = nip}. Results of this type are generally proved by comparing
the asymptotic value of ZIP to the objective value of a continuous problem. These results
can be used to analyze the asymptotic performance of heuristics since, as we have already
shown, it is frequently not hard to analyze the behavior of the objective values produced
by simple heuristics. For the p-median problem it has indeed been proved that there is a
fast heuristic (H) that almost always finds a solution with rH ~ 1 - t for any t > o. Similar
analyses have been done for the linear programming relaxation of the p-median problem.
Here it has been shown that ZLp(P, n) converges to 0.376 nip} almost surely. Consequently,
for this stochastic model of the p-median problem, the asymptotic value of the absolute
value of the duality gap is very small.

A third type of stochastic model deals with random objective or constraint coefficients.
For example, in the p-median problem, we could assume that the c;/s are drawn randomly
from a uniform distribution. Here it has been shown that (ZIP - ZLP) I ZLP converges to
(p - 1) I 2p almost surely when p grows slowly with n, so a positive duality gap is to be
expected. This has been confirmed by computational experiments as well.

A final comment on these models and results concerns what is deducible from
(ZIP - ZLP) I ZLP regarding the number of nodes L in a branch-and-bound algorithm that

4. Decomposition Algorithms 409

uses linear programming relaxation. For the euclidean problems it has been shown that
(ZIP - ZLP) / ZIP converges to 0.00284 almost surely. Nevertheless, it has also been shown
that a branch-and-bound algorithm will almost surely explore nP/200 nodes.

4. DECOMPOSITION ALGORITHMS

In this section, we will consider algorithms based on Lagrangian duality (Section 11.3.6)
and Benders' decomposition (Section 11.3.7).

Solving the Lagrangian Dual by Subgradient Optimization

Recall that to obtain the Lagrangian dual of an integer programming problem, we
partitioned the constraints into a set oflinear constraints (A I x ~ b I) and a second set Q so
that

IP(Q) ZIP = max{cx: A IX ~ b l , X E Q}.

Then we obtained the Lagrangian dual with respect to the constraints A IX ~ b I given by

(LD)

where the Lagrangian relaxation for a given A is

(LR(A»

It is essential to choose Q so that for fixed A, LR(A) is easy to solve. As we have already
shown in Example 6.2 of Section 11.3.6, there may be several ways of choosing Q and
there generally is a tradeoff between the simplicity of solving LR(A) and the quality of the
bound Zw. In this section, we will present a subgradient algorithm and a cut generation
algorithm for solving the Lagrangian dual and use these algorithms to solve UFL.
Applications to the traveling salesman problem will be presented in Section 11.6.3.

It has been shown in Section 11.3.6 (Corollary 6.4) that ZLR(A) is a piecewise linear
convex function of A. Furthermore, in Section I.2.4 we presented a subgradient algorithm
for maximizing a piecewise linear concave function or, equivalently, minimizing a
piecewise linear convex function. Here we use the subgradient algorithm to solve LD.

Proposition 4.1. If XO is an optimal solution to LR(AO), then SO = b l - A IXO is a subgra
dient ofzLR(A) at ..1=..1°.

Proof The result is a direct consequence of Proposition 4.2 of Section 1.2.4. •

We now consider a Lagrangian dual for UFL. One option is to take the dual with respect
to the constraints LjEN Yu = 1 for i E I. Then

Q = {x E Bn, Y E R':'": Yu - Xj ~ 0 for i E I,j EN},

ZLR(U) = max (L L (cij - u;)YiJ - L jjXj + LUi)
(x,y)EQ iEi JEN JEN iEi

410 11.5. Special-Purpose Algorithms

and

Recall (Proposition 6.11 of Section 11.3.6) that u is unconstrained since we have taken the
dual with respect to equality constraints. Here we have used u rather than .Ie for the
multipliers because of their connection with the dual variables introduced in the linear
programming relaxation of UFL.

With this formulation it is very easy to solve the Lagrangian relaxation for fixed u.

Proposition 4.2. For the Lagrangian relaxation of UFL, the following statements are
true.

a. ZLR(U) = LjEN (LiE! (Cij - u;)+ - jjt + LiE! Ui.

b. Zw = ZLP.

c. A subgradient of hR(U) at U = UO is given by Si = 1 - LjEN Yij(UO) for i E I, where

{
1 if Cij - u? > 0 and L (cij - u?t - jj > 0

Yij(UO) = 0 iE!
otherwise.

Proof Optimizing first over the Y variables, we set Yij = 0 if Cii - Ui <S 0 and Yij = Xj
otherwise. Hence

Now, maximizing over Xj, we set Xj = 0 if LiE! (Cij - Uit - jj <S 0 and Xj = 1 otherwise.
Hence statement a is true.

Statement b follows from the observation that ZLR(U) = w(u) as defined in (3.1).
Statement c follows from the optimal values of the variables given in the proof of a and

Proposition 4.1. •

Although the Lagrangian dual of UFL is not a stronger relaxation than the linear
programming relaxation ofUFL, the Lagrangian dual is still of interest since subgradient
optimization is reportedly a very efficient algorithm for minimizing ZLR(U).

Example 1.1 (continued). We apply the subgradient algorithm to LD.
We start with u' = (12 8 6 8 8 3), where u} is the second max in row i. We use

the subgradient direction s given in Proposition 4.2 and a "geometric" sequence for
determining step size. In particular, ul+' = U' - e,s', where e, = 2 and e, is halved every
three iterations thereafter.

The results of the first 11 iterations are shown in Table 4.1.
We observe that even though w(u) has attained its minimum value of 411, the algorithm

does not terminate since s * O. To establish that s = 0 is a subgradient at U 10, we would
need to generate multiple optimal solutions to LR(UIO) and then take a convex combina
tion of the corresponding subgradients.

4. Decomposition Algorithms 411

Table 4.1.

Iteration t

1 12 8 6 8 8 3 46 1 1 1 0 0 0 2

2 10 6 4 8 8 3 43 0 0 -1 0 0 0 2

3 10 6 6 8 8 3 42 1 1 1 0 0 0 2

4 8 4 4 8 8 3 47 -1 -1 -1 0 0 0 1

5 9 5 5 8 8 3 44 -1 -1 -1 0 0 0 1

6 10 6 6 8 8 3 42 1 1 1 0 0 0 1

7 9 5 5 8 8 3 44 -1 -1 -1 0 0 0 1
2

8 9~ 5~ 5~ 8 8 3 421 -1 0 0 0 0 0 1
2

9 10 51 51 8 8 3 42 -1 0 0 0 0 0 1
2

10 101 51 51 8 8 3 411 1 1 1 0 0 0 1
4

11 1O± 5! 5! 8 8 3 42! 1 1 1 0 0 0 1
4

The example illustrates the difficulty of stopping the subgradient algorithm.
However, since the Lagrangian relaxation is to be embedded within a branch-and

bound algorithm, subgradient optimization can be used to obtain good bounds easily and
quickly without having to wait for the algorithm to "converge". In particular, we use three
criteria for stopping the subgradient algorithm at iteration (, namely:

a. Sl = 0;

b. if the data are integral, then hR(UI) - ~ < 1, where ~ is the value of the best available
feasible solution; and

c. after a specific number of sub gradient iterations has occurred, that is { ~ (max.

It is also important to use the multipliers to construct primal feasible solutions. For
example, when solving UFL with a Lagrangian dual relaxation, for each u we can
construct the solution Q(u) given by (3.3).

Finally, the reduced prices and z can be used to fix variables at each node of the branch
and-bound tree (see Proposition il).

Example 4.1. We consider a p-facility variant of Example 2.1 having the same matrix
(cij) as before, with fixed-costsJi = 0 for all} EN and where exactly four facilities must be
opened. We solve this instance using a Lagrangian dual/subgradient optimization/branch
and-bound algorithm.

Using the greedy-interchange heuristic described in Section 3, a feasible solution of
value -12,509 is found. The subgradient algorithm is then initialized with u} = second
max cij for all i. The step size is halved every n = 33 iterations. After 102 iterations, an
upper bound of -12,336 and a feasible solution of value -12,363 are found. By this stage,
using reduced prices as in Proposition 2.1, two of the variables Xj can be fixed to 1, and 28
of the Xj variables can be set to O. The remaining problem is to open facilities at two of the
three remaining sites (a problem that is easily solved), and -12,363 is indeed shown to be
the optimal value. The optimal solution is shown in Table 2.4.

Solving the Lagrangian Dual by Constraint Generation

It has been shown in Corollary 6.3 of Section 11.3.6 that if {xk E R~: k E K} and {r j E R~:
} E J} are the extreme points and extreme rays of conv(Q), then

412 11.5. Special-Purpose Algorithms

Zw = min r,
~.A

r, + A(A I Xk - b I) ~ exk for k E K

(MLD) ~ er j forj E J

Since MLD has a very large number of rows, it is a suitable candidate for the FCPA of
Section 2. Assuming that all but the nonnegativity constraints are in g;;, we now describe
the separation algorithm for g;;.

Separation Algorithm for MLD. Given (r,*, A*), with A* ~ 0, calculate

hR(A*) = max ex + A*(b l _AIX).
xEconv(Q)

If Yf* ~ ZLR(A *), stop. Yf = ZLR(A *), A = A * is an optimal solution ofMLD.
If r,* < ZLR(A*), an inequality in g;; is violated.

a. If ZLR(A*) 00, then there exists a ray r j for j E J such that (e - A*A I)rj > O. Hence
the inequality M I r j ~ er j is violated.

b. If ZLR(A*) < 00, then there exists an extreme point Xk for k E K such that ZLR(A*) =
exk + A*(b l - A IXk). Since r,* < ZLR(A*), the inequality r, + A(A IXk - b l) ~ exk is
violated.

For UFL, with Q = {x E Bn, Y E R';zn: Yij - Xj';;;; 0 for i E I,j EN},

the extreme points {x\ ykhEK of conv(Q) are

{xEBn,yEBmn:yij-Xj';;;;O for iEI,jEN}.

HenceMLDis

Zw = min r,
~.u

r, + I Ui(-l + I yt) ~ I I eijyt - I jjxJ for k E K,
iEI JEN iEI JEN JEN

where yt = 0 if xJ = 0 and yt E {o, l} if xJ = l.
In the separation algorithm, the constraints are generated by solving for ZLR(U) as

indicated in Proposition 4.2.

Benders'Decomposition

We have seen in Section 11.3.7 that the problem

Z = max ex + hy

(MIP) Ax + Gy.;;;; b

x EX s; Z~,

yER~

4. Decomposition Algorithms 413

can be reformulated as

z= max l1

(MIP')
11 ~ ex + uk(b - Ax) for k E K

vj(b -Ax) ~ 0 for) E J

xEX, I1ERI,

where {Uk E R'J': k E K} are the extreme points of Q = {u E R'J': uG ~ h}, and
{v j E R'J':) E J} is the set of extreme rays of{u E R'J': uG ~ O}.

Though MIP' is not a linear program, the large number of constraints suggests the use
of a cut generation algorithm. It suffices to adapt the FCPA for LP(Bl') by replacing the
linear programming relaxation Lpl with a mixed-integer programming relaxation MIpt
and to describe the separation algorithm.

Constraint Generation Algorithm for MIP'

Initialization: Find (possible empty) sets KI s: K, JI s: J. Let

Iteration t:

S1 = {11 E R 1, x EX: 11 ~ ex + uk(b - Ax) for k E KI,
vj(b - Ax) ~ 0 for) E P}.

Sett = 1.

Step 1: Solve the relaxation ofMIP':

Zl = max{l1: (11, x) E Sk, x EX}

a. IfMIpl is infeasible, stop. MIP' is infeasible.
b. IfMIpl is unbounded, find a feasible solution pair (I1 t , Xl) with 111 > w for some large

value w.
c. Otherwise let the optimal solution be (111, Xl).

Step 2: Separation. Solve the linear program (see Section 11.3.7)

ZLP(Xl) = max hy

or its dual.

a. If ZLP(Xl) 00, stop. MIP' is unbounded.

Gy ~b -Axt

yERf

b. If ZLP(Xl) is finite, let the primal solution be yt, and the dual solution ut•

c. If LP(xt) is infeasible, let VI be a dual ray with vt(b - Axt) < O. (Note that at the
indication ofinfeasibility, we also get a dual extreme point ut .)

d. Optimality test. If ext + hi ~ I1 t , stop. (xt, i) is an optimal solution ofMIP'.

e. Violation. If ext + hi < 111 or LP(xt) is infeasible, at least one constraint ofMIP' is
violated.

414 11.5. Special-Purpose Algorithms

i. If ZLP(Xt) is finite, 11 ~ ex + ut(b - Ax) is violated. Set K t+1 = Kt U {f}, that is,

S)71 = S~ n ((11, x): 11 ~ ex + ut(b - Ax)}.

ii. If LP(xt) is infeasible, vt(b - Ax) ~ 0 is violated. Set p+l = Jt U {f}, that is,

(Although it is not necessary, we can also update Kt by setting Kt+l = Kt U {t} so that

f.t<-t+1.

There are several difficulties in implementing Benders' decomposition that concern
solving the relaxation

zt = max 11

11 ~ ex + uk(b - Ax) for k E Kt

vi(b - Ax) ~ 0 for) E P

11 E R I, x EX S Z~,

where Kt and P are the index sets of inequalities available after the first t iterations.
One difficulty is that MIpt is a mixed-integer program with one continuous variable. A

way of alleviating this difficulty is to replace 11 by a threshold value 11* in MIP'. We then
replace MIP' by the pure-integer feasibility problem for the constraint set

{x EX: 11* ~ ex + uk(b -Ax) for k E K, vi(b -Ax) ~ 0 for) E J}.

Then if the resulting problem is feasible (infeasible), 11* is increased (decreased) and the
feasibility problem is solved again. If lower and upper bounds on zt are known, then
binary search can be used to specify the sequence of values for the parameter 11*.

A second difficulty is that very often there is primal degeneracy in the problem LP(xt),
so there is not a unique dual solution ut • The choice of the dual extreme point ut leading to
a "good" violated constraint can be very important. One approach is to generate cuts that
are not dominated by any other constraint.

A third problem lies in the choice of the initial subset of constraints Kl, P. If care is not
taken with this choice, very unstable behavior of the algorithm may be observed. One
proposal is to solve the linear programming relaxation ofMIP' and to take Kl and P to be
the index sets of the extreme points and extreme rays required to generate the optimal
linear programming solution. A second alternative is to use a heuristic to generate a
"good" solution (x*, y*) to MIP' and then to derive initial cuts from the solution of LP(x*).

Example 7.1 of Section 11.3.7 (continued)

max 5Xl - 2X2 + 9X3 + 2Yl - 3Y2 + 4Y3

5Xl - 3X2 + 7X3 + 2Yl + 3Y2 + 6Y3 ~ -2

4Xl + 2X2 + 4X3 + 3Yl - Y2 + 3Y3 ~ 10

Xi ~ 5 for) = 1,2,3

x E zl, y ERl.

4. Decomposition Algorithms

Initialization. KI = JI = 0. t = 1.

Iteration 1

ZI = max{11: 11 E R I , X E ZI, Xj';;; 5 forj = 1,2, 3}.

Step 2: Separation. Solve the linear program

hp(XI) = max 2YI - 3Y2 + 4Y3

2YI + 3Y2 + 6Y3 ,;;; -2

3YI - Y2 + 3Y3 ,;;; 10

YERI.

415

LP(x I) is infeasible since its dual is unbounded, which is verified by the dual extreme
point u l = (1 0) and the extreme ray VI = (1 0) (see Figure 7.1 of Section 11.3.7).
~ = KI U {l}, P = JI U {l}.

Iteration 2

Step 1:

-2 - 5XI + 3X2 - 7X3 ~ 0

Xj ,;;; 5 for j = 1, 2, 3

11 E R I, X £; Z;.

An optimal solution is Z2 = 5, X2 = (0 5 1).

Step 2: min 6UI - 4U2

2UI + 3U2 ~ 2

3UI- u2~-3

6UI+3u2~ 4

u ER~.

The dual is unbounded, which is verified by the extreme point u2 = (0 3) and the
extreme ray v2 = (1 3). K3 = K2 U {2}, J3 = P U {2}.

416

Iteration 3

Step 1:

11.5. Special-Purpose Algorithms

Z3 = max Yf

Yf ~ -2 + 1X2 + 2X3

Yf ~ 30 - 7Xl - 8X2 - 3X3

-2 - 5Xl + 3X2 - 7X3 ~ 0

28 - 17xl - 3X2 - 19x3 ~ 0

Xj ~ 5 for j = 1, 2, 3

Yf E R 1, x E Z!.

An optimal solution is Z3 = 3, X3 = (0 3 1).

Step 2: hp(X3) = max 2Yl - 3Y2 + 4Y3

2Yl + 3Y2 + 6Y3 ~ 0

3Yl - Y2 + 3Y3 ~ 0

yER!.

An optimal solution is ZLP(X3) = 0, y3 = (0 0 0) and an optimal dual solution
is u3 = (0 }). CX3 + hp(X3) = 3 = Yf3. Hence (x 3, y3) = (0 3 1 0 0 0) is an optimal
solution.

As we observed in Section II.3.7, Benders' decomposition is useful algorithmically
when LP(x) has structure. There we used the structure ofUFL to obtain the reformulation
(7.2) given by

Z = max - I jjXj + I Yfi
jEN iE!

Yfi ~ Cik + I (cij - Cikt Xj for kEN and i E I
jEN

I Xj ~ 1
jEN

We now illustrate the solution of this reformulation using the constraint generation
algorithm.

Example 1.1 (continued)

Initialization

5. Dynamic Programming

Iteration 1

Step 1: '11 = 13, '1i = 9, '1j = 6, '1i = 10, '1~ = 10, '1A = 4, Xl = (0
LiE! '1i - LjEN iJXj = 49.

Step 2: Separation for each client i. exl + ZLP(XI) = 25:

i = 2: '12 ~ 1 + 7XI + 3X2 + 8X3 + X5

i = 4: '14 ~ 2 + Xl + 3X 2 + 8X4 + 6X5

i = 5: '15 ~ 0 + 8XI + 5X3 + lOx4+ 8X5

i = 6: '16 ~ 0 + 2XI + 3X3 + 4X4 + X5

Iteration 2

Step 1: '1T = 13, '1i = 9, '13 = 6, '1l = 10, '1~ = 10, '1l = 4, X2 = (0 0
Step 2: Separation. ex2 + ZLP(X2) = 37.

'11 ~ 0 + 12xI + 13x2 + 6X3 + X5 is violated.

Iteration 3

o 0 0). Zl

is violated

is violated

is violated

is violated

0). Z2 = 44.

Step 1: '1f = 13, '11 = 9, '1} = 6, '1J = 10, '1~ = 10, '1g = 4, X3 = (0 0). Z3 = 41.

417

Step 2: ex3 + ZLP(X3) = 41. Since the upper and lower bounds are equal, the solution X3 is
optimal.

5. DYNAMIC PROGRAMMING

Dynamic programming provides a framework for decomposing certain optimization
problems into a nested family of subproblems. This nested structure suggests a recursive
approach for solving the original problem from the solutions of the subproblems.

Dynamic programming was originally developed for the optimization of sequential
decision processes. In a discrete-time sequential decision process, there are T periods,
t = 1, ... , T. At the beginning of period t, the process is in state St-b which depends on (a)
the initial given state so, and (b) the decision variablesxb ... ,Xt-l for periods 1, ... , t - 1.
The significance of the state is that the contribution to the objective function in period t
depends only on St-l and Xt, and the state in period t + 1 depends only on Sl-I and Xl.

Formally we describe a sequential decision process by the model

(5.1)

T

Z = max I gt(St-b Xl)
x], ... , XT t::::l

St = CPt (St-" Xt) for t = 1, ... , T - 1

So is given.

The domains of the state and decision variables depend on the particular application
being considered.

418 11.5. Special-Purpose Algorithms

We can consider the 0-1 knapsack problem

(5.2)

as a sequential decision process. An instance is specified by integers nand b and positive
integral n-vectors c = (cl, ... ,cn) and a = (ai, ••. ,an).

In period k, k = 1, ... , n, the decision is whether to putthe kth item into the knapsack.
The state of the process in period k is the number of units of the knapsack that are
available after we have made the decisions regarding items 1, ... , k-l, that is,

Thus

k-l

Sk-l = b - I ajXj = Sk-2 - ak-lXk-t
j~l

and So = b. For k = 1, ... ,n, the feasible domain is given by ° ~ Sk ~ b, and Xk E {O, n.
Another problem that can be viewed as a sequential decision process is the uncapaci

tated lot-size problem (ULS), which has been formulated in Section 1.1.5 as

(5.3)

T

min I (PtYt + CtXt + htst)
t~l

St-l + Yt = dt + St for t = 1, ... , T

for t = 1, ... , T

So = 0, ST = °
S E RI+l, Y E RI, x E BT.

The data are the unit production costs {pJ~l, unit storage costs {htr{~l, set-up costs
{clr~l, and demands {dlr{~l. All of the data are assumed to be nonnegative and integral. The
variable YI is the production in period t. If YI > 0, we must pay the set-up cost Ct. This is
achieved by the constraint YI ~ {J)X t , where (J) is a suitably large positive number. The
variable St is the inventory available at the end of period t. Since demand cannot be
backlogged, we have St ~ 0.

The formulation (5.3) is of the form (5.1) with

and

Here the decision variables are both X t and Yt.
We now develop a recursive optimization scheme for the sequential decision process

(5.1). For k = T, T - 1, ... , 1, let

5. Dynamic Programming 419

T

Zk(Sk-l) = max I gt(St-b Xt)
(5.4) x" ... ,XTt~k

St = ¢Mt-b Xt) for t = k, ... , T - 1.

Thus Z = ZI(SO) for the given value of So.

Proposition 5.1 Zk(Sk-d = max{gk(sk-l, Xk) + Zk+l (Sk)}
Xk

Proof By the definition of Zk+l given in (5.4), the term on the right equals

~~x {gk(Sk-b Xk) + Xk'~~\T t~t gMt-b X t)}

St = ¢Mt-b Xt) for t = k, ... , T - I

= ~~x Xk,~a.~XT {gk(Sk-b Xk) + t~t gt(St-b Xt)}

St = ¢t(St-b Xt) for t = k, ... , T - I

The first equality holds since gk is not a function of Xk+b ... , XT, and the second equality
follows from (5.4). •

The recursion given in Proposition 5.1 transforms the original optimization problem
(5.1) with T decision variables, T - I state variables, and T - I state constraints into a
sequence of T subproblems. The kth subproblem

(5.5)

has only one decision variable and one state constraint but must be solved for all possible
values of Sk+ Thus the efficiency of solving (5.5) depends on the number of values of Sk-b

unless it is possible to determine Xk analytically as a function of Sk+

The recursion expresses an intuitive principle of optimality for sequential decision
processes; that is, once we have reached a particular state, a necessary condition for
optimality is that the remaining decisions must be chosen optimally with respect to that
state.

The shortest-path problem between specified nodes provides a nice illustration of the
principle of optimality. Suppose that PO,T is a path from node 0 to node T and that node k,
k * 0, T, is on PO,T' Hence PO,T decomposes into the two paths PO,k and P k,T. The principle of
optimality says that a necessary condition for PO,T to be a shortest-path between nodes 0
and T is that Pk,T be a shortest path between nodes k and T. We have used this fact in

420 n.s. Special-Purpose Algorithms

developing the shortest-path algorithms of Section 1.3.2, which therefore may be consid
ered as dynamic programming algorithms.

The principle of optimality is a means of excluding non optimal decisions by domina
tion. In the general sequential decision process given by (5.1), if x?, ... ,x~ is a feasible set
of decisions that yields Sk = sZ, then a necessary condition for its optimality is that
XZ+b ... ,x~ be an optimal set of decisions with respect to the problem that begins in
period k + 1 with Sk = s2.

A Dynamic Programming Algorithm for the 0-1 Knapsack Problem

We now demonstrate the solution of a recursive formulation by developing a classical
dynamic programming algorithm for the 0-1 knapsack problem (5.2). Although the
recursion (5.5) can be applied to the 0-1 knapsack problem, it is easier to develop the
standard dynamic programming algorithm using a slightly different approach that
reverses the order of the recursion.

For k = 1, ... , n, define Nk = {I, ... , k} and

Thus znCb) = zCb).
We will proceed recursively to calculate zn(b) from Zn-l, which in turn is calculated from

Z n-2, and so on. The recursion is initialized with

Now observe that if Xk = 1 in an optimal solution to (5.6) then d - ak ~ 0 and

On the other hand, if Xk = 0 in an optimal solution to (5.6), then

Hence for k = 2, ... , nand d = 0, ... ,b, we obtain

(5.7)

Relation (5.7) is the basic recursion for determining zn(b). It also applies for k = 1 by
defining zo(d) = 0 for d ~ O. To put it in a slightly more compact form, we define
zkCd) = - 00 for d < O. Thus for k = 1, ... ,n and d = 0, 1, ... ,b, we obtain

(5.8)

where for all k, we have zkCd) = -00 if d < O.

5. Dynamic Programming 421

For fixed k and d, a constant number of calculations is needed to solve (5.8); hence
O(nb) calculations are required to determine Z A b).

Given Zk for k = 0, 1, ... , n, a recursion in the opposite direction is used to determine
an optimal solution XO = (x?, ... ,x~). We have

XO = {O if zn(b) = zn_l(b)
n 1 otherwise.

Now let d2 = b - LJ~k+1 ajxJ. Then, for k = n - 1, ... , 1, we obtain

The amount of work required in the backward recursion to determine an optimal
solution is dominated by the work in the forward recursion (5.8). Hence the overall
running time of the algorithm is O(nb). Thus we have obtained a pseudopolynomial-time
algorithm (but not polynomial) for the 0-1 knapsack problem.

Example 5.1

max 16xI + 19x2 + 23x3 + 28x4

2xI + 3X2 + 4X3 + 5X4 ~ 7

xEB4.

zl(d) = { ° for ° ~ d ~ 1
16 for 2 ~ d ~ 7

{ ° forO ~ d ~ 1

z2(d) = 16 for d=2
19 for 3 ~ d ~ 4 [max(16, 19 + 0)]
35 for 5 ~ d ~ 7 [max(16, 19 + 16)]

z,cd) = (

zz(d) forO ~ d~3

23 for d = 4 [max(19, 23 + 0)]
35 for d = 5 [max(35, 23 + 0)]
39 for d = 6 [max(35, 23 + 16)]
42 for d = 7 [max(35, 23 + 19)].

Finally,

Z4(7) = max(42, 28 + z3(2» = 44.

Hence xS = 1, x~ = xg = ° since z3(2) = z2(2) = zl(2), and x? = 1 since Z 1(2) > 0.

The recursion (5.7) can be interpreted as a method for solving a maximum-weight path
formulation of the 0-1 knapsack problem. The directed graph has a node s and has nodes
(k, d)for k = 0, 1, ... , nand d = 0, 1, ... ,b. For 1 ~ k ~ n - 1 and all d, there is an arc
of the form «k - 1, d), (k, d» of weight ° that corresponds to setting Xk = 0, given
LjENk_1 ajxj = d. For 1 ~ k ~ n - 1 and all d ~ ab there is an arc of the form «k - 1,
d - ak), (k, d» of weight Ck that corresponds to setting Xk = 1, given LjENk-I ajxj = d - ak.

422 11.5. Special-Purpose Algorithms

In addition, there are arcs (s, (0, d»)for all d of weight ° (see Figure 5.1). The objective is to
find a maximum-weight path that starts at node s and terminates at node (n, b). The
recursion (5.7) chooses a maximum-weight path to node (k, d), given the weights of
maximum-weight paths to nodes (k - 1, d) and (k - 1, d - ak).

The algorithm given above generalizes straightforwardly to the bounded variable
knapsack problem

(5.9) z(b)=max{ I CjXj: I ajXj':;;b,Xj,:;;pjfOr)EN,xEZ~},
JEN JEN

where the a/s, c/s, P/s, and b are positive integers. Note that (5.2) is the special case of
(5.9) with pj = 1 for all) EN.

We simply replace (5.8) by the recursion

for k = 1, ... ,n and d = 0, 1, ... ,b, where zo(d) = ° for all 0.:;; d .:;; b.
The number of calculations needed to solve (5.10) for fixed k is O(b(fJk + 1), which

gives an overall running time of O(nb2). Finally, note that explicit bounds on the variables
are not required since we can always take Xj':;; lb/aj] for all) EN. However, in Section
II.6.1 we will give an O(nb) algorithm for the knapsack problem without explicit upper
bounds on the variables.

A Dynamic Programming Algorithm for the Uncapacitated Lot-Size Problem (ULS)

For k = T - 1, ... , 1, the recursion (5.4) for ULS is

(5.11)

and

(5.12)

Zk(Sk-l) = min {PkYk + CkXk + hk(Sk-l + Yk - dk) + Zk+l(Sk-l + Yk - dk)}
xkE{O.l}

O~Yk~WXk

mm
X1E {O,1}

O~Yr:OS;WXT

Figure 5.1

5. Dynamic Programming 423

Figure 5.2

Since the demands are integral-valued, it can be shown that the production and storage
variables will also be integers. The difficulty is that since demand in period k can be met by
production in any period t ~ k, it follows that Sk-l can be as large as "'L~k dt, and it appears
that a very large number of combinations of (Sk-b Yk) must be considered to solve (5.11).

Fortunately, as the following theorem demonstrates, this is not the case.

Theorem 5.2. There is an optimal solution to (5.3) is which

a. St-1Yt = 0for t = 1, ... , T.
b. IfYt > 0, then Yt = "'Lk~t dkforsome r, t ~ r ~ T.
c. If St-l > 0, then St-l = "'L~~t dkfor some q, t ~ q ~ T.

Proof We represent (5.3) as a fixed-charge flow problem on the network shown in
Figure 5.2.

Let (x*, y*, s*) be an optimal solution to (5.3). x* specifies those arcs pointing out of
node ° that are available for flow. Thus, given x*, we can delete arc (0, j) if xi = ° and then
determine (y*, s*) by solving a minimum-cost flow problem on the resulting network.

By Proposition 6.2 of Section 1.3.6, the arcs with positive flow define a spanning forest
rooted at node 0. Suppose (j - 1, j) is in the forest. Then there is a path from ° to j - 1 in
the forest. If (0, j) is also in the forest, we obtain a cycle. Hence it cannot be the case that
both arcs (j - 1, j) and (0, j) are in the forest.

Parts band c are simple consequences of a. •

From Theorem 5.2, it follows that 2(T - t) combinations of (St-l, Yt) must be consid
ered in solving (5.11) and (5.12). Thus the overall running time is O(T2), and recursive
optimization yields a polynomial-time algorithm for ULS.

Example 5.2

t 1 2 3 4 5

p, 3 3 4 5 5

h, 1 1 1 2 2

c, 30 30 30 30 30

dt 32 41 48 36 20

424 11.5. Special-Purpose Algorithms

t = 5: S4 E {O, 20} and S4 + Y5 = 20

Z5(0) = 20P5 + C5 = 130, Y5 = 20

Z5(20) = 0, Y5 = O.

t = 4: S3 E {O, 36, 56},

zi56) = his3 - d4) + z5(20) = 2(20) = 40, Y4 = 0

z4(36) = Z5(0) = 130, Y4 = 0

Z4(0) = min{36p4 + C4 + Z5(0), 56p4 + 20h4 + C4 + z5(20)}

= min{340, 350} = 340, Y4 = 36.

t = 3: S2 E {O, 48, 84, 104},

z3(104) = h3(S2 - d3) + z4(56) = 56 + 40 = 96, Y3 = 0

z3(84) = 36 + z4(36) = 36 + 130 = 166, Y3 = 0

z3(48) = 0 + Z4(0) = 340, Y3 = 0

Z3(0) = min{48p3 + C3 + Z4(0), 84p3 + C3 + 36h3 + z4(36),
104p3 + C3 + 56h3 + z4(56)}

= min{562, 532, 542} = 532, Y3 = 84.

t = 2: Sl E {O, 41, 89, 125, 145}

z2(125) = 84 + z3(84) = 250 _ 0
zl145) = 104 + z3(104) = 200}

z2(89) = 48 + z3(48) = 388 Y2 -
z2(41) = 0 + Z3(0) = 532

Z2(0) = min{41p2 + C2 + Z3(0), 89p2 + C2 + 48h2 + z3(48),
125p2 + C2 + 84h2 + z3(84), 145p2 + C2 + 104h2 + z3(104)}

= min{685, 685, 655, 665} = 655, Y2 = 125.

t = 1: ZI(O) = min{32pl + Cl + Z2(0), 73Pl + Cl + 41hl + z2(41),
121Pl + Cl + 89h l + z2(89), 157Pl + Cl + 125h l + z2(125),
177Pl + Cl + 145h l + z2(145)}

= min{781, 822, 870, 876, 906} = 781, Yl = 32.

Hence. the optimal solution is Yl = 32, Xl = 1, Y2 = 125, X2 = 1, Y3 = Y4 = X3 = X4 = 0,
Y5 = 20, X5 = 1, and the optimal cost is z = 781.

6. NOTES

Section 11.5.1

Efroymson and Ray (1966) have given a classical branch-and-bound algorithm for the
uncapacitated facility location problem that uses bounds obtained from the weak formu
lation. Spielberg (1969a,b), among others, recognized the importance of the strong

6. Notes 425

formulation. Bilde and Krarup (1977) gave a family of UFLs for which the linear
programming relaxation of the strong formulation always has an integral optimal solu
tion.

Survey articles on the uncapacitated facility location problem are by Krarup and
Pruzan (1983) and Cornuejols, Nemhauser and Wolsey (1984). An annotated bibliography
of articles on location problems that were published from 1980-1985 appears in Wong
(1985). Francis and Mirchandani (1988) is a collection of survey articles on various aspects
of discrete location models.

Section 11.5.2

The strong cutting-plane algorithm described in this section was implemented by
Morris (1978).

Schrage (1975) showed how variable upper-bound constraints could be treated implic
itly within the simplex algorithm. Todd (1982) presented an alternative approach that
circumvents degeneracy problems.

The test problem data (Table 2.1) is from Kuehn and Hamburger (1963).
Facets of the un polytope have been studied by Cornuejols, Fisher and Nemhauser

(1977b), Guignard (1980), Cornuejols and Thizy (1982b), Cho et al. (1983), and Cho,
Johnson et al. (1983).

Strong cutting planes and FCPAs have been developed for a variety of other hard
combinatorial problems. These include the capacitated plant location problem, Leung
and Magnanti. (1986), the matching problem, Grotschel and Holland (1985); the assign
ment problem with side constraints, Aboudi and Nemhauser (1987); the three-index
assignment problem Balas and Saltzman (1986); the max cut problem, Barahona,
Grotschel, and Mahjoub (1985) and Barahona and Mahjoub (1986); the linear ordering
problem, Grotschel, Junger, and Reinelt (1984, 1985b), and the acyclic subgraph problem,
Grotschel, Junger, and Reinelt (1985a). Several others will be cited in the notes for
Chapter II.6.

Section 11.5.3

Ball and Magazine (1981) and Rinnooy Kan (1986) gave general introductions on the
design and analysis of heuristics for discrete optimization problems.

A greedy algorithm for maximizing a (constrained) set function was used by Kruskal
(1956) to solve the maximum-weight spanning tree problem exactly. This is one of the first
formal uses of the greedy algorithm in combinatorial optimization. However, it must have
been used for centuries as a common sense tool for problem solving. Kuehn and
Hamburger (1963), Spielberg (1969b), and others have used greedy heuristics to obtain
solutions to UFL.

Much the same can be said for local search\interchange heuristics. Kuehn and
Hamburger (1963), Manne (1964), and many other researchers have used interchange
heuristics to obtain solutions to UFL. Reiter and Sherman (1965) described an interchange
scheme for a rather general class of combinatorial optimization problems and carried out
a statistical analysis of the results based on random starting solutions; also see Reiter and
Rice (1966). Many other uses of the greedy and interchange heuristics will be cited later in
these notes and in the notes for Chapter II.6.

Using primal and dual heuristics simultaneously is a more recent idea. The primal
dual heuristic described for UFL is essentially the DUALOC algorithm of Erlenkotter
(1978). The projection algorithm of Conn and Cornuejols (1987) for UFL also can be given
a primal-dual interpretation. A primal-dual vehicle routing algorithm has been given by
Fisher and Jaikumar (1981).

426 11.5. Special-Purpose Algorithms

The worst-case analysis of heuristics can be traced to a result of Graham (1966) on a
scheduling problem. Another classical paper on worst-case analysis is the work of D.S.
Johnson et al. (1974) on the bin-packing problem. Johnson (1974) also analyzed a variety
of heuristics for several combinatorial optimization problems. Jenkins (1976), Korte and
Hausmann (1976), and Hausmann et al. (1980) gave worst-case analyses of greedy-type
algorithms for finding a maximum-weight subset in an independence system. Hausmann
and Korte (1978) showed that in a certain well-defined way, no polynomial-time algorithm
could improve on the performance of the greedy algorithm for this problem. Zemel (1981)
discussed and evaluated various ways of measuring the quality of approximate solutions.

Surveys on the worst-case analysis of heuristics for combinatorial optimization prob
lems are Sahni (1977), Chapter 6 of Garey and Johnson (1979), Korte (1979), and Fisher
(1980). Wolsey (1980) explained how worst-case bounds are obtained from primal and
dual feasible solutions and illustrated this idea with several examples.

Golden and Stewart (1985) presented general techniques for the statistical analysis of
the performance of heuristics. Proposition 3.2 appeared in Fisher (1980). The results on
the greedy and interchange heuristics for the p-facility maximization problem appeared in
Cornuejols, Fisher, and Nemhauser (1977a). Babayev (1974) and Frieze (1974) showed the
submodularity of the set function objective of UFL. Extensions of the Cornuejols et al.
results to submodular set functions will be presented in Section III.3.9.

The term simulated annealing arises from an analogy with the physical process of
cooling physical substances and how the state of the system depends on the rate at which
the temperature is dropped. The method is described in Metropolis et al. (1953), Kirkpa
trick et al. (1983), and Kirkpatrick (1984). Hajek (1985) gave a survey on theory and
applications of simulated annealing. Lundy and Mees (1986) studied the convergence of
the algorithm. Applications of simulated annealing were given by Bonomi and Lutton
(1984) and Vecchi and Kirkpatrick (1983).

The probabilistic models for UFL come from Cornuejols, Nemhauser, and Wolsey
(1980b), Fisher and Hochbaum (1980), Papadimitriou (1981b), and Ahn et al. (1988).
Surveys of techniques and results in this field appeared in Karp (1976) and Karp and
Steele (1985). An annotated bibliography was given by Karp, Lenstra et al. (1985).

Algorithms iri which random or probabilistic choices are made are at an early stage of
development in combinatorial optimization. Maffioli et al. (1985) gave an annotated
bibliography on this subject, and Welsh (1983) and Maffioli (1986) gave surveys. Rabin
(1976) published one of the first articles in this area.

Section 11.5.4

Subgradient optimization and the Lagrangian dual for UFL have been used by Cor
nuejols, Fisher, and Nemhauser (1977a) to solve a float maximization problem, by Mulvey
and Crowder (1979) to solve a problem in cluster analysis, and by Neebe and Rao (1983) to
solve a problem of assigning users to sources. Geoffrion and McBride (1978) have used a
similar approach to solve capacitated location problems.

The results of Example 4.1 were obtained by D. Peeters (private communication).
Applications of Lagrangian duality to the group problem, to set covering and partition

ing, and to the traveling salesman problem will be presented or cited in Chapter II.6. Some
other applications from the literature are: combinatorial scheduling [Fisher (1973, 1976),
Fisher, Northup, and Shapiro (1975), and Potts (1985)]; multiperiod scheduling of power
generators [Muckstadt and Koenig, 1977); generalized assignment problem [Ross and
Soland (1975), Chalmet and Gelders (1977), and Fisher, Jaikumar, and Van Wassenhove
(1986)]; and hierarchical production planning [Graves (1982)].

7. Exercises 427

Grinold (1972) gave an alternative approach to solving the Lagrangian dual.
Other decomposition methods for solving UFL and the closely related p-median

problem include: Dantzig-Wolfe decomposition [see Garfinkel, Neebe, and Rao (1974)];
Benders' reformulation [see Magnanti and Wong (1981) and Nemhauser and Wolsey
(1981)]; primal subgradient optimization [see Cornuejols and Thizy (1982a)]; and a
disaggregation scheme [see Cornuejols, Nemhauser, and Wolsey (1980a)].

Benders' decomposition has been applied by Geoffrion and Graves (1974) to the design
of a multicommodity distribution system. A combined Lagrangian/Benders' scheme has
been used by Van Roy (1986) to solve a capacitated location problem.

Section 11.5.5

Richard Bellman coined the terms dynamic programming and principle oj optimality,
pioneered the development of the theory and applications, and wrote the first book on this
subject [Bellman (1957)].

The recursion for the 0-1 knapsack problem appeared in Dantzig (1957) and Bellman
(1957). Some computational improvements and generalizations to multiple constraints
have been given by Weingartner and Ness (1967) and Nemhauser and Ullman (1969).

Dynamic programming algorithms for the lot-size problem have been given by Wagner
and Whitin (1958) and Zangwill (1966).

Some general texts on dynamic programming are Bellman and Dreyfus (1962),
Nemhauser (1966), White (1969), Dreyfus and Law (1977), and Denardo (1982).

7. EXERCISES

1. Solve the linear programming relaxation of WUFL for the problem instance with:

C~(;
3 5 0 6

i) 9 7 7 7
2 4 6 4
6 6 6 0

and

J= (3 2 3 3 2 2).

2. Prove Proposition 1.2.

3. Show that: every noninteger extreme point (x, y) of the linear programming relaxa
tion ofUFL is of the form

i) Xj = maXi Yij for all) E Nb

ii) there is, at most, one) with 0 < Y ij < Xj for each i E I, and

iii) the rank of A equals IN I I ,

whereNI = {j EN: 0 < Xj < l},ll = {i E I:Yij = Oor xJorall), andYij $. Zl for some
)}, and A is an 1111 x INI 10,1 matrix with aij = 1 ifYij > O.

4. Consider the problem instance of UFL in exercise 1. Which variable upper-bound
constraints are violated by the solution found in exercise I? Use a linear program
ming system to solve the linear programming relaxation of UFL by adding such
constraints.

428 11.5. Special-Purpose Algorithms

5. i) Show that if i * j * k and r * s* t, then

Yri + Yrj + Ysj + Ysk + Ytk + Yli ~ 1 + Xi + Xj + Xk

is a valid inequality for UFL.

ii) Find an inequality of this form that cuts off the fractional solution (y4, x4) of
Example 1.1 (continued) in Section 2.

iii) Generalize to show that if, for 1 ~ t < I, All is a 0, 1 matrix with <D rows and 1
columns whose rows are all the different 0, 1 vectors with t 1's and 1 - to's with
1 ~ n, CD ~ m, then for any l' ~ I, N' ~ N with If'I = CD, IN' I = 1 it follows that

L L a0Y ij - L Xj ~ CD + t - I -1
iEJ' JEN' JEN'

is a valid inequality for UFL.

iv) Find an inequality cutting off the point (x*, y*) given in Table 2.3.

6. Consider the problem that arises when we solve IP over N' C N using valid
inequalities LjEN' njxj ~ no. To solve the problem over N we need to lift the
inequalities so that LjEN' njxj + LjEN\N' njxj ~ no is valid for the IP over N. Suppose
we have solved UFL with a subset Xj for j EN' and a subset of the Yu for i E 1',
j EN'. Is it easy to lift the inequalities of exercise 5?

7. Apply the following heuristics to the instance ofUFL in exercise 1:

i) greedy;

ii) reverse-greedy (close one facility at a time);

iii) I-interchange;

iv) I-interchange plus greedy;

v) design your own heuristic.

8. The k-enumeration plus greedy heuristic for maximizing a set function can be
described as follows:

1. Enumerate all subsets S ~ N with I S I = k.

2. For each such S, apply the greedy heuristic to the problem max{vS(Q):
Q ~ N \ S}, where VS(Q) = v(S U Q). Let QS be the greedy solution.

3. Let S* U Q* = arg max{v(S U QS): IS I = k, S ~ N}.

i) Apply the I-enumeration plus greedy heuristic to the example of exercise 1.

ii) Show that the k-enumeration plus greedy heuristic for the p-facility maximiza
tion problem has worst-case behavior given by

z - ZH ~ (~) (p - k - 1)P-k.
Z P p-k

7. Exercises 429

9. i. Given cij ~ 0 for i E I and} EN, show that the set function v(Q) = LiE[
maXjEQ C ij for Q s:::; N can always be written in the canonical form

v(Q) = L rT with rT ~ 0 for T s:::; N.
TnQ*0

ii) Write the set function arising from exercise 1 in canonical form.

iii) Write the resulting linear programming formulation and its dual.

iv) Which LP formulation would you choose and why?

v) Propose a branch-and-bound algorithm based on your choice.

10. i) Apply DUALOC to the instance ofUFL in exercise 1.

ii) Apply DUALOC to the instance written in canonical form (see exercise 9).

11. Describe greedy and interchange heuristics for the capacitated facility location
problem.

12. i) Formulate the problem of choosing k nodes to cover the maximum number of
nodes in a graph G = (V, E). (Note that i E V covers) E Vif(i,}) E E.)

ii) State and interpret a greedy heuristic.

iii) Study the performance of this heuristic when I V I is large.

13. Show that for the family of instances of the p-facility maximization problem with
2p - 1 clients and 2p facilities, and with weights CP given by Cj = ej for} = 1, ... ,
2p - 1, C i,2p = 1 for i = 1, ... , p, and C i,2p = 0 otherwise, for example,

1
o
o
o

the interchange heuristic satisfies Z1 = [p/(2p - 1)]z when it starts with
S = {I, 2, 3, 4}.

14. Described a simulated annealing algorithm for UFL.

15. For the instance in exercise 1, solve the Lagrangian dual ofUFL by using each of the
following:

i) the subgradient algorithm;

ii) a constraint generation algorithm.

16. Solve the instance of exercise 1 by Benders' decomposition. Investigate the choice of
violated constraints at each iteration.

430 11.5. Special-Purpose Algorithms

17. Let

z = mm I I CijYij + I jjXj
iEI jEN jEN

D: I Yij= 1 for all i E I
jEN

c: I diYij ~ SjXj foralljEN
iEI

B: o ~Yij ~Xj for all iE I,j EN

s: I SjXj ~ I d i
jEN iEI

I: Xj E {O, 1} forallj EN,

where C ~ O,f~ 0, d ~ 0, and S ~ 0 are given. Denote by ZA the bound obtained
from this formulation by deleting constraint A, and denote by z A the bound given by
the Lagrangian dual. For example,

where

zi = max zi(u),
u

z~(u) = min I I CijYij + I jjXj + I Ui (1 - I Yij)
iEI jEN jEN iEI jEN

I diYij ~ SjXj for allj EN
iEI

Xj E {O, 1}

for all i E I,j EN

for allj EN.

i) Prove that ZI = zi.

ii) Prove that z~ ~ z~.

iii) Prove that z~ = Zsc.

iv) Show that z'i; < z~ for the following data:

(1 0 0)
C= 0 1 0 ,

001

S = (3 3 3), f = (1 1).

18. Let

w(X) = max{ I jjXj + I I CijYij: I Yij = 1 for i E I,
jEN iEI jEN jEN

Yij ~ Xj for i E I, j E N, Y E R~n}.

i) Show that w(x) is concave.

7. Exercises 431

ii) Show that maXO<;x<;1 w(x) = ZLP.

iii) Use the subgradient algorithm to solve maXO<;x<;1 w(x) for the instance of
exercise 1.

19. Consider the Dantzig-Wolfe formulation ofUFL where Lj Yij = 1 for i E I are taken
as the global constraints and where the feasible region of subproblem} is

Interpret the columns and costs of the resulting master problem.

20. Derive a dynamic programming algorithm to solve

max{cx + hy: 2: Yj ~ b, Yj ~ ajxj for} EN, x E Bn, Y E R~}.
JEN

21. Derive an O(J'l) dynamic programming algorithm for the uncapacitated lot-sizing
problem with backlogging:

T

min 2: (PtYt + CtXt + htst + gtft)
t~l

St-l - ft-l + Yt = dt + St - f t for t = 1, ... , T

Yt ~ WXt for t = 1, ... , T

So = fo = ST = fT = 0

S,f E RI+I, Y E RI, x E BT.

See (5.3), where f t denotes the amount backlogged at the end of period t.

22. Derive an O(n 2cmax) dynamic programming algorithm for the 0,1 knapsack problem
(5.2) where Cmax = maxjcj.

23. i) Derive a dynamic programming recursion for the traveling salesman problem

24.

usingf(S,}) = the length of the minimum-weight partial tour starting at node 1,
traversing the nodes S ~ N \ {I,}), and terminating at} EN \ S.

ii) Use the recursion to solve the five-city problem with costs

2 6 4 7
1 3 8 5

c= 9 2 4 12
8 I 9 2
3 2 9 4

(State Space Relaxation). Let

g(k,})= min (f(S,}):ISI=k),
S~N\(I,j)

wheref(S,}) is defined in exercise 23. What is g(k,})? Write a recursion for g(k, i),
and show that g(n, 1) is a lower bound on the weight of an optimal tour.

432 11.5. Special-Purpose Algorithms

25. Apply the approach of exercise 24 to the multidimensional knapsack problem with

fk(d) = maxL~ CjXj: j~ ajXj ~ d, x E Bk}

= max{jk_l(d), fk-l(d - ak) + Ck}.

26. Derive a dynamic programming algorithm for

max{ I hjy/ Yi + Yi+l ~ Ui for i = 1, ... , n - 1, Y E R~}.
JEN

27. The amount of work to multiply together a p x q and a q x r matrix is pqr. Given k
matricesMi of dimension d i x d i+1 whose product M 1M 2 • • • Mk must be formed, use
dynamic programming to derive the optimal way in which to form the product.

11.6
Applications of
Special-Purpose Algorithms

1. KNAPSACK AND GROUP PROBLEMS

The structure invoked in this section is that the problems have only one constraint other
than bounds and integrality on the variables. We consider the integer knapsack problem,
the group problem, and the 0-1 knapsack problem.

Many of the algorithms developed in Chapter II.5 can be specialized when there is only
one constraint, and some other more specific approaches are also applicable.

The Integer Knapsack Problem

The integer knapsack problem is

(1.1)

where ch aj E Z~ for j EN, bE Z~, aj ~ b for j EN, and there are no explicit upper
bounds on the variables. In vector notation, (1.1) is stated as

z(b) = max{cx: ax~ b, x E Z~}.

We suppose throughout this section that c1/ai ~ c2/a2 ~ · · · ~ Cn/an, so the optimal
solution of the linear programming relaxation is x 1 = b I a J. Xj = 0 otherwise.

Dynamic Programming

Since Xj ~ [b/aj] ~ b in any feasible solution to (1.1), we can use the recursion (5.8) of
Section II.5.5 to obtain an algorithm with worst-case running time O(nb2). However, it is
possible to do better. The recursion we now describe directly calculates the value function

z(d) =max{ I cjxj: I ajxj ~ d, x E z~} ford E D(b) = {0, 1, ... , b}.
jEN jEN

We begin with z(d) = 0 for d = 0, ... , minjEN aj- 1, with corresponding optimal
solution x 0 = 0. Given z(d') for all d' < d, we claim that

(1.2) z(d) = max{cj + z(d- aj):j EN, d ~ aj} ford E D(b), d ~ !]!~ aj.

433

434 11.6. Applications of Special-Purpose Algorithms

To prove the validity of (1.2), we first observe that if x0 is an optimal solution to (1.1)
with b = d- ah then x 0 + ej is a feasible solution to (1.1) with b = d. Hence

On the other hand, if xis an optimal solution to (1.1) with b = d ~ minjEN ah then xk > 0
for some k with d ~ ak> and x- ek is a feasible solution to (1.1) with b = d- ak. Hence
z(d- ak) ~ z(d)- ck> and (1.2) holds.

The recursion (1.2)requires O(n) calculations for each d, minjEN aj ~ d ~b. Hence the
overall running time is O(nb), which is better than the recursion (5.8) of Section II.5.5 by
a factor of b.

Examplel.l

max 11xt + 7x2 + 5x3 + X4

6x1 + 4x2 + 3x3 + X4 ~ 25

xEZ!.

z(O) = 0

z(l) = C4 = 1

z(2) = C4 + z(1) = 2

z(3) = max(5 + z(O), 1 + z(2)) = 5

z(4) = max(7 + z(O), 5 + z(l), 1 + z(3)) = 7

z(5) = max(7 + z(1), 5 + z(2), 1 + z(4)) = 8

z(6) = max(11 + z(O), 7 + z(2), 5 + z(3), 1 + z(5)) = 11

z(7) = max(11 + 1, 7 + 5, 5 + 7, 1 + 11) = 12

z(8) = max(11 + 2, 7 + 7, 5 + 8, 1 + 12) = 14

z(9) = 11 + z(3) = 16

z(lO) = 11 + z(4) = 18

z(d) = 11 + z(d- 6) ford~ 11.

Hence z(25) = 11 + z(19) = 22 + z(13) = 33 + z(7) = 44 + z(1) = 45, and an optimal solu
tionisx0=(4 0 0 1).

As d increases, the recursion (1.2) has many redundant terms, since z(d) =
ck + z(d- ak) for any k for which xk > 0 in some optimal solution to (1.1) with b =d. Let
p(d) = minU EN: Xj is positive in some optimal solution to (1.1) with b = d}. Then, since
p(d - aj) ~ p(d), it follows that

(1.3) z(d) = max{cj + z(d- aj):j E N,j ~ p(d- aj)}.

Ford sufficiently large, no comparisons at all are needed. Let 7i = maxjEN\{1) aj.

Proposition 1.1. If p(d- a)= p(d- a+ 1) = · · · = p(d- 1) = 1, then z(b) = c1 +
z(b- a1)for all b ~d.

1. Knapsack and Group Problems 435

Proof For j > 1, we have p(d- aj) = 1 <). Hence by (1.3), we obtain z(d) = Ct +
z(d- at). By induction we obtain the result. •

In Example 1.1 it is readily checked that p(d) = 1 for 9 ~ d ~ 12. It then follows from
Proposition 1.1 thatp(d) = 1 for all d;;. 9. It is important to observe that for any knapsack
problem there exists a value of d for which the condition of Proposition 1.1 holds. The
proof of the following proposition is a consequence of Proposition 5.6 of Section 11.3.5.

Proposition 1.2. In problem (1.1), we have p(d) = 1/or all d;;. (at - 1)a.

Note that in Example 1.1, we have (at- 1)a = 5 x 4 = 20 so that a priori we can
conclude that p(d) = 1 for all d ;;. 20. However, the computation establishes that p(d) = 1
for all d;;. 9.

It is interesting to observe that the recursions (1.2) and (1.3) are algorithms for the
maximum-weight path formulation developed in Section Il.3.4. For eachj EN there is an
arc ofweight cj from node d- aj to node d, and z(d) is the weight of a maximum-weight
path from node 0 to node d. Thus (1.2) states that the weight of a maximum-weight path
from node 0 to node dis the maximum over j E N of the weight of a variable j arc plus the
weight of a maximum-weight path from node 0 to node d- aj.

A Superadditive Dual Algorithm
Here we give an algorithm that solves (1.1) and its superadditive dual

(1.4) min{n(b): n(aj);;. cj for j EN, n(O) = 0, n;;. 0, n superadditive}.

The idea of the algorithm is as follows. At each iteration, we have a dual feasible solution
that also satisfies the complementarity slackness conditions

n(d) + n(b- d)= n(b) for all dE [0, b]

ofProposition 5.2 of Section 11.1.5.
Let S = {x E Z~: I:-jeN ajXj ~ b}, and for any dual feasible n define H" =

{xES: n(ax) =ex}. Then if there exists xt, x 2 E H, such that x = xt + x 2 E S and
n(axt) + n(ax2) = n(b), it follows that x is an optimal solution to (1.1) and that n is an
optimal solution to the superadditive dual. This result is a consequence of

At the ith iteration of the algorithm we have a feasible ni that also satisfies complemen
tary slackness and an H; !;;; H"'· The initial solution is given by

which is easily shown to be dual feasible, and H 0 = {0, e~o ... , [b/adet}.

Suppose that (n;, H;) does not satisfy the optimality condition given above. Let
D; ={ax: x E Hi}. The dual solution ni+t is of the form

436 11.6. Applications of Special-Purpose Algorithms

ni(d)- 8 if b -dEDi
{

ni(d) if dEDi

ni+1(d) = a(d) otherwise, where a(d) is determined
by linear interpolation between the points
{d, b - d: d E Di)

An example is shown in Figure 1.1, where b = 10 and Di = {0, 4, 8}.
To specify the numerical value of 8, the algorithm works with a candidate set

C ={xES: xis a minimal vector not in Hi and ax* d for any dE Dt

Since the optimality condition is not satisfied, C * 0. The algorithm sets 8 = Oi, where

ni+1(ax)- ex- ;;;;. 0 for all x E C

and

ni+1(ax)- ex- = 0 for some x E Ci.

Let yi+I be any point in Ci such that ni+1(ayi+I)- e/+1 = 0. The algorithm sets
Hi+ I = Hi U {yi+I} and then checks the points x + yi+I, x E Hi, for optimality with respect
to the function ni+I. If optimality is not proved, then ci+l = ci u ({X + yi+I:
x E Hi+1} \ {yi+1)). Note that we can augment Hi by all points y E C such that
ni+1(ay)- ey = 0.

Although there is the possibility of a degenerate dual change (i.e., Oi = 0), by definition
of ci we have ayi+I $. Di. Hence Di+I =Diu {ayi+l) ::J Di.

Now we claim that the algorithm stops after no more than i* = [(b + 1)/2J + 1 iterations.
Otherwise, on iteration i* we obtain IDi'l > (b + 1)/2, and hence there must exist values
d 1, d2 E Di* with d 1 = b- d2• Now ifx 1, x 2 are the associated points of Hi*, the optimality
criterion is satisfied for x = x 1 + x 2•

0 2 4 6 8 10

Figure 1.1

1. Knapsack and Group Problems 437

Theorem 1.3. The algorithm terminates with an optimal solution.

Proof We only need to show that ni+I is dual feasible and satisfies complementary
slackness given that ni has these properties. We have already said that n° has these
properties. Also, for all i we have that ni(aJ) ~ eJ for j EN is satisfied since, (1) for all
j EN, either aJ E Di or eJ E Ci, and (2) n(aJ) = eJ if aJ E Di, and n(a1) ~ e1 if e1 E C.

Now consider superadditivity. We will show that

However, it suffices to consider the subset of [0, b] given by {d, b - d: dEDi} since the
result for all other points in [0, b] can be shown to follow from linear interpolation. There
are two cases.

Case 1 (b - dr orb - d2 E Di). Then

ni+l(dr) + ni+l(d2),:;; ni(dr) + ni(d2)- ei
,:;; ni(dr + d2)- ei
,:;; ni+1(dr + d2).

The first and third inequalities follow from the construction of the dual solution, and the
second inequality follows from the superadditivity of ni.

Case 2 (dr, d2 E Di). Then ni+1(dJ) = ni(d) for j = 1, 2, and there exists x 1, x 2 E Hi such
that ax1 = dh ex1 = ni(d1) forj = 1, 2. Letx = x 1 + x 2 and d = d 1 + d2.

If dEDi, then

Also if x E Ci, then

(by the choice of ei)

and

The final possibility is d $. Di and x $.C. We have

(by the dual change)

and, as above, ex= ni+1(d1) + ni+1(d2). So it remains to show that ex,:;; ni(d)- ei.
Since x E S \ (Hi U Ci), there exists x' < x such that x' E Ci and (x - x') E S. By the

superadditivity ofni, we have

Also ex = ex' + e(x - x'). Hence

ni(d)- ex~ [n;(ax')- ex']+ [ni(a(x- x'))- e(x- x')].

438 11.6. Applications of Special-Purpose Algorithms

By the choice ei, we have n;(a.x')- ex'~ e;; and by the feasibility of n;, we obtain
n;(a(x - x'))- e(x - x') ~ 0. Hence n;(d)- ex ~ e;. •

Example1.2

max 20xl + 9xz + 6x3

10x 1 + 5xz + 4x3 ~ 13

xEZ~.

Initialization. n°(d) = 2d for 0 ~ d ~ 13, H 0 = {(0 0 0), (1 0 0)},
C 0 = {(0 1 0), (0 0 1)}, and k = 0. The dual functions nk(d) are shown in Figure 1.2.

Iteration 1. n 1(13) = 26- e, n1(3) = 6- e, n1(10) = 20, n1(5) ~ 9, and n 1(4) ~ 6. Hence
by linear interpolation we obtain ~(6- e)+ ~(20) ~ 9, so e ~ ~' and ¥(6- e)+ 7(20) ~ 6,
so e ~ Jf-. Hence e = ~' y 1 = (0 I 0), and

H 1 = H 0 U {(0 1 0)},

forO~ d ~ 3
for3~d~ 10
for 10 ~ d ~ 13

C 1 = {(0 0 1), (0 2 0)}.

Iteration 2. n2(13) = 24i- e, n2(3) = 4i- e, n2(8) = lSi- e, n2(4) ~ 6, n2(10) ~ 18,
n2(10) = 20, and n2(5) = 9. Hence }(4~- e)+ }(9) = 6, so e =~and y2 = (0 0 1).
Now

·~d)= (

d forO~ d ~ 3
3d - 6 for 3 ~ d ~ 5
id + ~ for 5 ~ d ~ 8
3d -10 for8 ~ d ~ 10
10 +d for 10 ~ d ~ 13

H 2 =H1 U {0 0 1}, C2 = {(0 2 0), (0 1 1), (0 0 2)}.

Iteration 3. n3(13) = 23 - e, n\3) = 3 - e, n3(8) = 14- e, n3(9) = 17- e, n3(10) = 20,
n3(5) = 9, n3(4) = 6, n\10) ~ 18, n3(9) ~ 15, and n3(8) ~ 12. Hence e = 14- 12 = 17-
15 = 2, y 3 = (0 1 1) or (0 0 2), and n(b) = 21. Since (0 1 0) and (0 0 1) are in
H, and (0 1 0) + (0 0 2) = (0 0 1) + (0 1 1) = (0 1 2) is feasible with value
21, the algorithm stops with x = (0 1 2). The optimal dual function is

td
-14 + 5d
- 6 +3d

4 + d
-12 +3d
-30 + 5d

~ + td

forO~ d ~ 3
for 3 ~ d ~ 4
for4 ~ d ~ 5
for 5 ~ d ~ 8
for 8 ~ d ~ 9
for 9 ~ d ~ 10
for 10 ~ d ~ 13.

7T'

26 26

81

24%

82

23

83

21

3 4 5

Figure 1.2

439

440 11.6. Applications of Special-Purpose Algorithms

Heuristic Algorithms

A very simple greedy heuristic for the knapsack problem (1.1) is obtained by considering
the variables in order of decreasing Cjlaj and then making each variable as large as
possible. Since we have assumed cdat;;;:. · · · ;;;:. cnlan, a greedy solution is Xj = [bjlaj] for
j E N, where bt = b and bj+t = bj- aj lbj/a.J for j = 1, ... , n - 1. Its value is
zn = r.jeN cj [bjlaA. The running time is O(n log n), smce the time required to sort the
cj/aj's in decreasing order is the most time-consuming step.

Since an optimal solution to the linear programming relaxation of (1.1) is x t = b I at and
Xj = 0 otherwise, we have that hP = hP(b) = Ctblat. Now let zR = ct[blad be the value of
the rounding heuristic with Xt = [blad and Xj = 0 otherwise. We have Zn;;;:. zR and
ZLP;;;:. z(b) = ZIP•

We can use the optimal linear programming value to bound the worst-case relative
errors of the greedy and rounding heuristics.

Proposition 1.4

a. ZR > izLp,
b. ZR > ZLP- max C1·•

jEN

Proof

a. Letf =blat -[blad < 1. Now

ZR = [b/ ad = 1 _ _j_ ;;;:. 1 _ _j_ > !
ZLP blat blat 1 + f 2'

Note that the first inequality holds since 1 + f ,;;; blat and that the second inequal
ity is true since f < 1.

b. zLP- zR = ctf.;;; max c1f < max C1·.
jEN jEN •

To prepare for the presentation of a heuristic that always yields a relative error of no
more than e and that runs in time that is a polynomial function of n and e-t, we introduce
a scaling heuristic that uses dynamic programming to solve a formulation of the knapsack
problem with the roles of the objective function and constraint reversed. Let

(1.5)

where tis a positive integer. Note that w(t) is a nondecreasing function oft.
Analogous to (1.2), we have the recursion

(1.6) w(t) = min{a1· + w(t - c1)}
jEN

fort > 0, and w(t) = 0 fort ,;;; 0. The work required to solve (1.6) is O(nt).
Now we show that with a suitable choice oft, an optimal solution to (1.5) yields an

optimal solution to (1.1).

1. Knapsack and Group Problems 441

Proposition 1.6. Suppose x0 is an optimal solution to (1.5) with t = t0. Then x0 is an
optimal solution to the knapsack problem

for all d satisfying w(t0) ~ d < w(t0 + 1).

Proof Suppose w(t0) ~ d < w(t0 + 1). Then x 0 is feasible since T.jeN ajxJ = w(t0) ~d.
Now suppose that x 0 is not optimal; that is, there is a feasible x* =1= x 0 and
T.jeN cjxj ~ T.jeN cjxJ + 1. Hence T.jeN cjxj ~ t0 + 1 and T.jEN ajxj ~ d, which contradicts
the assumption that w(t0 + 1) >d. •

As a consequence of Proposition 1.6, we can take tin (1.5) equal to any known upper
bound on z1p; for example, t = [zLpj. Then for some 1° ~ t, we will obtain
w(t0) ~ b < w(t0 + 1). Hence to solve (1.1) using (1.6), the running time is O(nZLp). This
does not appear to be an improvement on the dynamic programming recursion (1.2)
unless the c/s are small relative to the a/s.

The scaling heuristic works by replacing the objective function coefficients cj by
pj = [cj Kj for some K > 0. The resulting knapsack problem

(1.7)

is solved using the recursion (1.6). We denote an optimal solution to (1. 7) by x(K) and say
that x(K) is a scaling heuristic solution. Its value is zs = T.jeN cjxj{K).

Proposition 1.7. IfK ~ 8 minjeN Cj, then ~/z 1 p > 1 - 8.

Proof Since pj = [cj/ Kj, it follows that pj ~ cj(K < pj + 1. Hence

zs = I cjxj(K) ~ K I pjxj(K) ~ K I pjxJ,
jEN jEN jEN

where the last inequality holds because x(K) is an optimal solution to (1.7). Also,

Therefore

The running time of the scaling heuristic is O(nZLP! K). Therefore it is of interest only if
K is large-that is, if minjeN cj is much larger than 8-1• This, unfortunately, for any
reasonable choice of 8 requires large profit coefficients.

Observe that the greedy (or rounding) heuristic needs small profit coefficients to
perform effectively and that the scaling heuristic requires large ones to run efficiently. By
combining the two heuristics we are able to take advantage of the best features of each of
them. The result is a heuristic that guarantees a relative error of no more than 8 for any
8 > 0 and whose running time is O(n/82).

442 11.6. Applications of Special-Purpose Algorithms

We partition the set N into (N8, N \ N 8), where N 8 = {j EN: c1 > 8} and 8 = (E/4) [ZLpj.
The rounding heuristic is applied to a knapsack problem that contains only the items in
N \ N 8, and the scaling heuristic with K = (E/2)8 is applied to a knapsack problem that
contains only the items in N 8• The two solutions are then combined as explained below.

The Scaling/Rounding (SR) Heuristic

p1 = liJ for all} EN.

Step 1: Solve the family of knapsack problems

by the recursion (1.6) for all nonnegative integers t with w(t) ~ b. Let x 8(t) be the
solution that yields w{t).

Step 2: Let c,ja, = maxJEN\No (c1ja1). Define x(t) E Z~ by xj(t) = xJ(t) for j E N 8,

x,(t) = [(b - w(t))ja,j, and xj(t) = 0 otherwise.
Step 3: Suppose max1 {LJENo c1x1(t) + c,x,(t)} is attained with t = t~ Then x(t*) is the SR

heuristic solution of value zsR = LJEN c1x1(t*).

The SR heuristic produces a feasible solution to the knapsack problem since all of the
variables are nonnegative integers and, by definition of x,(t), LJENo a1xj(t) + a,x,(t) ~ b
for all t.

Proposition 1.8. The running time of the SR heuristic is O(nE-2).

Proof To solve the family of knapsack problems in Step 1 by the recursion (1.6), we
need to consider no more than [zLP/KJ = 1 values oft. But

Thus the running time of (1.6) is O(nE-2). Steps 2 and 3 take O(E-2) time, so the proof is
complete. •

Theorem 1.9. zsR;;;. (1 - E)ziP·

Proof Suppose x 0 is an optimal solution to (1.1) and Lp,:oNo c1xJ = t 0. Since

Proposition 1. 7, restricted to the variables in N 8, yields

1. Knapsack and Group Problems 443

Hence

(1.8)

since N 8 s; N.
Now by b of Proposition 1.4 and bye~ maxjeN\Ne cj, the rounding heuristic yields

(1.9)

(since j~ cjxJ ~ ~ [hP(b)j by a of Proposition 1.4).

Adding the inequalities (1.8) and (1.9) yields

I CjXj(t0) ~ I CjxJ- E I CjXJ,
jEN jEN jEN

The proof is completed by observing that zsR ~ LjEN cjxj(t0). •
There are some refinements of the SR heuristic that yield improvements on the relative

error bound.

Example 1.3. We apply the SR heuristic to

ziP= max 592xi + 381x2 + 273x3 + 55x4 + 48x5 + 37x6 + 23x7

3534xl + 2356x2 + 1767x3 + 589x4 + 528x5 + 451x6 + 304x7 ~ 119,567

xEz:.

Suppose we are given E = 0.2. Hence e = 0.05 [zLP] = 1001.45 and K = 100.15. Now
observe that cj ~ e for allj E N. Hence N 8 = 0, and the SR heuristic is trivial to execute. It
yields x 1 = [119,567 /3534] = 33, Xj = 0 otherwise, and zsR = 19,536. It is not hard to show
that an optimal solution isx? = 33, xg = x~ = 1, andxj = 0 otherwise and that z1p = 19,972.
Hence the actual relative error is 436/19,972 = 0.0218.

Note that if we replace the rounding heuristic by the greedy heuristic we obtain the
optimal solution.

If E = 0.02, then e = 100.15 and K = 1.00. Hence N 8 = {1 2 3}. Now in Step 1, with
t = 19,917 we obtain x 8(t) = (33 1 0) and w(t) = 118,978. Since b - w(t) = 589 = a4,

this solution is completed to x = (33 1 0 1 0 0 0), which we have already indi
cated is optimal.

444 11.6. Applications of Special-Purpose Algorithms

The Group Problem

In Section 11.3.5 we have shown how the problem

(IP) z1p = max{cx: Ax= b, x E Z~}

can be relaxed by choosing u E R m, an appropriate m x m unimodular matrix R, and a
nonsingular diagonal matrix L\ with positive integer entries 6; for i = 1, ... , m to give the
problem

z(u, L\) = ub + max{(c- uA)x: x E S11(b)},

where S11(b) = {x E Z~: RAx = Rb + L\w for some wE zm}.
In this section we consider what to do when the group problem for the given choices of

u, R, and L\ does not yield a feasible solution to IP. We assume here that z1p < oo, and we
have chosen a u such that p = uA - c ~ 0. In this case the group problem is a minimum
weight path problem on a digraph 9iJ11 = (~, .s!l11) having 1 det L\ 1 = I17!1 J; nodes. We state
the minimum-weight path problem as

lf/(d) =min I p1x1
jEN

SP(d) I (Ra1)x1 = d (modL\)
jEN

xEZ~,

where z(u, L\ = ub -lji(Rb). Here ~={dE Z';': d; < J; fori= 1, ... , m}, .s!l11 = {(d, d +
Ra1 (mod L\)): dE~ for j = 1, ... , n}, the weight of the arc (d, d + Ra1 (mod Ll)) is Pi>
and we seek a minimum-weight path from node 0 to node Rb (mod L\).

The reader should recall that the relaxation simply replaces the ith equation a; x = b; by
the modular equation aix = b; (mod J;) and that u has been chosen so that the objective
function of the relaxation is bounded from above. In particular, any feasible solution to IP
corresponds to some path from node 0 to node Rb (mod L\).

The connection between knapsack and group problems is motivated by taking
u = cBAi} and L\ to be the Smith normal form of AB, where AB is an optimal basis for the
linear programming relaxation of IP [see (5.3) of Section 11.3.5]. In this case, p1 = 0 and
Ra1 = 0 (mod Ll) if x1 is a basic variable. Thus SP(d) only involves the nonbasic variables.
Moreover, L\ = I det AB I, and it is frequently the case that 61 = · · · = Jm-t = 1 and
Jm = I det AB 1. (This must be the case if I det AB I is a prime number.) Since the ith
equation ofSP(d) is trivially satisfied when J; = 1, this choice of u and L\ frequently leads
to a single-constraint problem in nonnegative integer variables, which is an integer
knapsack problem with ordinary arithmetic replaced by modular arithmetic.

When 1 det L\ 1 is not too large, the minimum-weight path problem SP(d) is easily solved
by Dijkstra's algorithm (see Section 1.3.2). Here we consider how algorithms can be
constructed for IP that make use of this shortest-path viewpoint.

The following proposition motivates the construction of an implicit path enumeration
algorithm.

Proposition 1.10. If IP is feasible and p1 > 0 for all j E N, then there exists a positive
integer k such that an optimal solution to IP corresponds to a kth best minimum-weight
path in 9iJ t.·

1. Knapsack and Group Problems 445

To enumerate we need to specify how to branch. One way is to subdivide the set of all
solutions (paths) into sets in which each variable x1 (arc type) occurs at least y1 times. The
following proposition tells us how to calculate an optimal solution at a node of the tree. Let
x(d) be an optimal solution to SP(d) such that the corresponding path in 0h is acyclic.

Proposition 1.11. Given y E zr:_, an optimal solution to SP(Rb) satisfying x ~ y is
x* = y + x (R(b- Ay)), with weight py + 1/f(R(b- Ay)).

Proof Setting x = y + x', x' E Z~, and substituting in SP(Rb) gives

I P;Y; + min I P;X}
}EN }EN

I (Ra;)xJ = Rb -RAy (modLl)
jEN

x'EZ~.

Hence to find an optimal solution x* to SP(Rb) that satisfies x ~ y, we find a
minimum-weight path from node 0 to node R(b- Ay) mod Ll. •

The next proposition tells us how to define the new nodes when we branch; and it uses
the fact that if x* is defined as in Proposition 1.11, then there is no vector x satisfying
y ~ x ~ x* that is feasible in SP(Rb).

Proposition 1.12. Ifx* = y+x(R(b- Ay)), then anyx =t= x* that corresponds to apathfrom
0 to Rb (mod Ll) subject to the restriction x ~ y must satisfy

fork =t= j

for some}.

Now we describe a straightforward path enumeration algorithm. We start from the
group problem (5.3) of Section 11.3.5 mentioned above. Hence we let As denote the basis
of an optimal solution to the linear programming relaxation and let AN denote the
columns of the nonbasic variables. Now SP(Rb) only involves the non basic variables,
which we suppose are numbered 1, 2, ... , n - m, and the enumeration is carried out only
over these variables. Also at this point, x, y, and p are dimensioned appropriately.

A Shortest-Path Enumeration Algorithm for IP

We begin by solving the shortest-path problem from node 0 to node d for all d E Vt- and let
x(d) be an acyclic optimal solution to SP(d) of cost I/!(d). If there is no path from 0 to d, let
1/f(d) = oo. We then construct a branch-and-bound tree where the node labeled y
corresponds to the feasible set x ~ y.

Initialization: x(d) and 1/1(d) are given for all d E vt-. If 1/!(Rb) = oo, stop; IP is infeasible.
Otherwise put 0 E z~-m with lower bound ~(0) = 1/f(Rb) on the node list. z = +oo.

Iteration t

Step 1: If the node list is empty, stop. Then (a) ifz = +oo, IP is infeasible and (b) ifz is
finite, xis an optimal solution. Otherwise choose a vector yon the node list and remove
it from the list. Go to Step 2.

446 II.6. Applications of Special-Purpose Algorithms

Step 2 (Feasibility check): If lfi(R(b - Ay)) = oo, return to Step 1. Otherwise let
x* = y + x(R(b - Ay)). If Ai/(b - ANx*);;. 0, go to Step 3. Otherwise go to Step 4.

Step 3 (Pruning by optimality): Set .X<-- x*, z <-- py + lf/(R(b- Ay)). Delete from the node
list any node y with ~(y) ;;. z. Return to Step 1.

Step 4 (Branching): Fori= 1, ... , n- m, define yi by

. {Yi
yj = x; + 1

forj * i
for}= i

and let ~(y;) = py; + lfi(R(b - Ay;)). If ~(y;) < z, add (y;, ~(i)) to the node list. Return to
Step 1.

When the algorithm terminates, it solves IP. One way to guarantee finiteness is to
impose upper bounds on the variables and to modify Step 4 accordingly.

Example 1.4 (Example 5.2 of Section I/.3.5 continued)

max 7xt + 2x2

-Xt+ 2x2 + X3

5Xt+ X2

-2Xt- 2x2

xEZ~

+X4

+Xs

= 2

= 19

= -5

leads to the relaxation SP(7):

lf/(7) =min -frx3 + -l¥x4

Sx3 + X4 = 7 (mod 11)

(x3, X4) E Z~

with u = cBAi/ = (rr -1¥ 0), and z(u, .1) = ¥f- lf/(7).
The shortest paths and corresponding solution values found by Dijkstra's shortest-path

algorithm are given in Table 1.1.
To test the feasibility of proposed paths involving the values of the non basic variables

(x3, x4), we use XB = Ai/b- A!/ANXN given by

Initialization: y = 0, ~(0) = W, z =+co.

Table 1.1.

d:
x(d) = (XJ X4):

II If/(d):

0 I 2 3 4 5 6 7 8 9 10
(0 0) (0 I) (7 0) (5 0) (3 0) (I 0) (I I) (8 0) (6 0) (4 0) (2 0)

0 16 21 15 9 3 19 24 18 12 6

I. Knapsack and Group Problems 447

Iteration 1:

1. Picky = (0 0) from the node list.
2. x*= (x3 x4) = (8 0).

XB=(XI X 2 X 5)=(4 -1 1);t0.
4. Add the nodes (9 0) and (0 1) to the list, with lower bounds ~(y) = 'tf-, ti-, respec

tively.

Iteration 2:

1. Picky= (9 0) from the node list. [Note that (0 1) would be chosen if we followed
the rule of smallest lower bound.]

2. x* = (9 0) + X(6) = (10 1). XB =(XI X 2 X5) = (4 -2 -1) ;t 0.
4. Add the nodes (11 0), (9 2) to the list with bounds ~(y) = fl-, ¥t-, respectively.

Iteration 3:

1. Picky = (0 1) from the list.
2. x*= (0 1) + (1 I)= (1 2). xB = (3 2 5).
3. z ti-, x = (1 2). Delete the nodes (11 0) and (9 2) from the list since their lower

bounds exceed z.

Iteration 4:

I. The node list is empty. Stop. (xi Xz Xs) = XB = (3 2 5), XN = (x3 X4) = (1 2)
is an optimal solution.

The enumeration tree is shown in Figure 1.3.

The relaxation SP(d) can also be used as a basis for several other algorithms. One
obvious approach is to consider the dual problem minu,A z(u, A). For fixed Rand Ll, we
can consider the standard Lagrangian dual minuERm z(u, Ll). Based on Theorem 6.2 of
Section 11.3.6, we have the following result on the Lagrangian dual.

y=(ll,O)
~=5~1

Figure 1.3

y=(O, 1)

~ = '7b feasible

448 11.6. Applications of Special-Purpose Algorithms

Proposition 1.13. minu<=Rm z(u, Ll) = max{cx: Ax= b, x E conv(Sd(b))}.

A different dual is obtained by fixing u and allowing Ll to vary over the set of m x m
integer nonsingular diagonal matrices, giving the dual problem mind z(u, Ll).

The algorithm described below for IP involves the solution of minimum-weight path
problems over a series of digraph 7iJ d that increase in size from one iteration to the next but
remain finite. The algorithm solves minimum-weight path problems of the form

ID(Ll)

lf/d =min I pjXj
jEN

.L (Raj)xj = (Rb)
jEN

xEZ~,

(mod Ll)

where R and p = uA - c > 0 are fixed, Ll varies, and z(u, Ll) = ub - 1f1 d· Also we no longer
require J; I Ji+I for i = 1, ... , m - 1.

The Increasing Group Algorithm

Initialization: Choose

with J) E Zl \ {0} for all i. Set t = 1. (A reasonable choice is Ll 1 equal to the Smith
normal form of A8 , but this is not necessary.)

Iterption t:

Step 1: Solve the minimum-weight path problem ID(Ll1). Let x 1 be the resulting solution.
Step 2: If RAx1 = Rb, stop. x 1 is an optimal solution ofiP.

Step 3: If RAx1 * Rb, calculate

Step 4: Set k; = 1 if wl = 0, and otherwise let k; be the smallest integer greater than 1 such
that gcd{ I wll, k;} = 1. Set

and t t + 1.

Theorem 1.14. IfiP has a finite optimal value and p > 0, the increasing group algorithm
terminates after a finite number of iterations with an optimal solution to IP.

Proof Let Sd,(b) = {x E R~: RAx = Rb (mod Ll1)}. As in the generic relaxation algo
rithm of Section 11.4.1, we show that if x 1 is not feasible for IP, then SN+'(b) s Sd,(b) \ {x1}.

1. Knapsack and Group Problems 449

Since

with k; E Zl \ {0} for all i, RAx = Rb (mod Ll1+1) implies RAx = Rb (mod Ll1), and hence
S11,,(b) s S11,(b). Now X 1 E S11,+,(b) only if(L11+1t 1(Rb- RAx1) E zm. But

Since wl * 0 for some i, and k; is chosen such that wl/k; $. Z 1, x 1 $. S11,,(b).
Finally asp > 0, we know from Proposition 1.10 that the optimal solution to IP is a qth

best solution to S11{b). Hence the algorithm must terminate after no more than q
iterations. •

Corollary 1.15. Given p > 0, there exists a diagonal integer matrix Ll such that an optimal
solution to ID(il) is an optimal solution to IP.

Example 1.4 (continued)

max ?x1 + 2xz

-x~ + 2xz+X3

Sx1 + Xz

-2xl- 2xz

xEZ~.

= 2

+ X4 = 19

+ Xs = -5

Taking u = (1 2 ~),As, and R = (=~ ~ n as previously, we obtain ID(Ll), namely

lf/11=min X1 + Xz + X3 + 2x4 + ~Xs
X1 - 2xz - X3 = -2

- 6xz - 2x3 + Xs = -9
11xz + 5x3 + X4 = 29

xEZ~,

and z(u, Ll) = 37~- lf/11.
Now we apply the increasing group algorithm.

Initializatian: C.'~ (
1

Iteration 1:
Step 1: x 1 = (0 0 1 2 0), If/""' = px 1 = 5.

(mod J1)
(mod Jz)
(mod 63)

450 11.6. Applications of Special-Purpose Algorithms

Step 3: Rb- RAx 1 = (;;) = ~ 1 w 1 with w1 = (=;)·
Step 4: k1 = k2 = 2, k3 = 3, ~ 2 = (2 33)·

Iteration 2:

Step 1: x2 = (1 2 2 1), !f/c,.' = px2 = 8:!:.

Step 3: Rb- RAx2 = 0) = ~ 2 w 2 with w2 = 0)-
Step 4: k 1 = 2, kz = 3, k3 = 1, ~ 3 = (6 33)·

Iteration 3:

Step 1: x 3 = (3 2 2 5), !f/c,.' = px3 = 12~.

Step 2: RAx3 = Rb. x 3 solves IP with cx3 = 37~- 12~ = 25.

The 0-1 Knapsack Problem

In many cases, 0-1 knapsack problems have to be solved repeatedly and quickly. For
instance, in Example 6.2 of Section 11.3.6, one of the Lagrangian relaxations resulted in a
knapsack problem. In the next section, we will use the 0-1 knapsack problem as a
subroutine in a fractional cutting-plane algorithm for 0-1 integer programs.

When the constraint coefficients are small integers, the dynamic programming recur
sion of Section 11.5.5 is an efficient algorithm; and when the objective function coeffi
cients are small integers, an efficient recursion is obtained by reversing the roles of
the objective and constraint as in (1.5). In addition, there is a scaling/rounding heur
istic similar to the one we have given for the integer knapsack problem with running time
O(nje3) that guarantees a solution with a relative error of no more than e for any e > 0.

Nevertheless, a linear-programming-based branch-and-bound algorithm is still used to
solve 0-1 knapsack problems. Here we examine the simple techniques that make such an
algorithm effective.

Given the 0-1 knapsack problem

(1.10)

without loss of generality we suppose that ah cj > 0 for all) and LjEN aj > b. We note that if
the variables are ordered so that c1/a 1 ~ • • • ~ Cn/an, an optimal solution of the linear
programming relaxation is

for j = 1, ... , r - 1,
b .._,r-1 _ - .:..j=I aj _ 0 Xr- , Xj-

ar
for j = r + 1, ... , n,

where r is such that Lj;;! aj ~band L}=1 aj > b. Hence the solution is essentially character
ized by r or, more definitely, by A,*= Cr/ar.

The optimal value function zLP(b) of the linear programming relaxation is shown in
Figure 1.4. Note that ..1* is the slope of the function zLP at the point b.

Since sorting the {cja)jEN into nondecreasing order can be done in O(n log n) time,
there is an obvious O(n log n) algorithm for solving the linear programming relaxation.

1. Knapsack and Group Problems 451

c, ----
a3 l

I c2 I
ai1 I

I I
I I
I I
I I
I I

al b

Figure 1.4

However, if It* is known, the linear programming relaxation can be solved in linear time
since X;= 1 if c;/a; >It* and X;= 0 if c;/a; <It*. We now give an algorithm that solves the
linear programming relaxation in O(n) time.

An Algorithm for the Linear Programming Relaxation

Let N 1 and N° denote the variables fixed to 1 and 0, respectively, and let Nf be the free
variables. Given a candidate value It, let

Initialization: N 1 = N° = 0, Nf = N.
Step 1: Let It be the median of {c1ja1: j E Nf).
Step 2: Construct the sets N>, N~, N< and calculate S1(/t) and Sz(lt).

i. S 1(/t) > b implies that It is too small. Let N° N° UN~ UN<, Nf = N>. Return to
Step 1.

ii. S 2(/t) < b implies that It is too big. Let N 1 ... N 1 UN> UN~, b ... b - I:JEWuN- a;,
Nf = N<. Return to Step 1.

iii. Otherwise, S1(/t) < b < Sz(lt). If S1(1t) or S2(/t) = b, we immediately obtain an
optimal integer solution. Otherwise, take the elements ofN~ in arbitrary order. If
N~ = {}), ... ,jp}, find q such that S1(/t) = I:t:l a1, < b and S1(lt) = 1:1~ 1 a;,> b. Set
N 1 <- N 1 U {j b ••• ,jq_1}, r =)q, and N° <- N° U {}q+~> ... ,)p}. Stop.

The algorithm terminates with an optimal solution to the linear program with X; = 1
for j E Ni, X;= 0 for j E N°, and x, = (b - LJEN' a;)/ a,. To verify that the algorithm has

452 11.6. Applications of Special-Purpose Algorithms

O(n) running time, we use the result that the median of k numbers can be found in O(k)
time. Because A. is chosen as the median, we have that INfl is at least halved at each
iteration since IN< I -'S; ~ IN I and IN> I -'S; ~ IN 1. Hence the total running time is
O(n) + O(n/2) + · · · + O(n/21) • • • = O(n).

Once N 1, N°, and A.* are determined, a natural greedy heuristic yields a solution to
(1.10).

Primal Heuristic Algorithm

Step 1: Set xj= 1 for all) E N 1, and x:= 0. Let N° = {r + 1, ... , n}.
Step 2: Set b ..._ b -LiEN' a1•

Step 3: For) E N°, if a1 > b, set xj= 0; otherwise, set xj= 1 and b..._ b- a1. Return.

An obvious improvement of the heuristic is to order the elements of N° so that
Cr+l/ar+l? Cr+2/ar+2? · · · ? Cn/an.

Given a lower bound z equal to the value of the best feasible solution found so far to
(1.10) and zLP, we now present two tests that may allow us to fix some variables. The first is
just a restatement of Proposition 2.1 of Section 11.5.2.

Variable Elimination Test 1. If k E N 1 and zLP- (ck- A.*ak) -'S; z, then Xk = 1. Similarly if
k E N° and zLP + (ck- A.*ak) -'S; z, then xk = 0. -

Note that ck- A.*ak is just the reduced price of non basic variable xk at either its upper or
lower bound.

If k E N 1 and we impose the condition xk = 0, the new linear programming relaxation
IS

ztp = I c1 + max I c1x1
jEN 1\(k))EN°U{r)

I aixi -'S; bk
)EN°U(r)

0-'S;XJ-'S; 1 forjEN°U{r},

where bk = b - LJEN'\(kJ a1. Thus we have the following test.

Variable Elimination Test 2. If k E N 1 and ztp -'S; z, xk can be fixed at 1. A similar test
exists for fixing xk = 0 fork E N°. -

A weakened version of Test 2 uses an upper bound on ztp. Since

ztp -'S; I c1 + A.*bk = zLP- ck + A.*ak>
)EN1\(k)

and equality holds only if L1 {a1: j E N° U {r}, cjai =A.*}? bk. This validates Test 1 and
shows that Test 2 dominates Test 1.

To obtain a better upper bound on ztp, it suffices to find a set of variables in N° with
the largest values of c1jai-that is, a set {r + 1, ... , q} ~ N° such that A.*= c,/a,?
Cr+t/a,+t? · · · ? Cq/aq and Cq/aq? cja1 for j E N°\{r + 1, ... , q}. Then

I. Knapsack and Group Problems 453

if aq"" bk- a,- · · · - aq-! > 0

and

These values can be used in Test 2.

The problem remaining after all the elimination tests have been carried out is called the
reduced problem. Note that A.* for the reduced problem is the same as for the original
problem.

Example1.5

max 16xl + 12x2 + 14x3 + 17x4 + 20x5 + 27x6 + 4x7 + 6x8 + 8x9 + 20x 10 + llx 11 +
10x12 + 7x!3

7xl + 6xz + 5x3 + 6x4 + 7xs + 10x6 + 2x7 + 3xs + 3x9 + 9x 10 + 3xu +
5x12 + 5x13 ~ 48

X E B 13•

First we solve the linear programming relaxation.

Initialization: N1 = {1, ... , 13}, N1 = N° = 0, b = 48.
Step 1: A. = .\f
Step 2: N> = {3, 4, 5, 6, 9, 11}, N= = {1}, N< = {2, 7, 8, 10, 12, 13}.

i. S1(A.)=34.
ii. S 2(A.) = 41 <b. A. is too big.

N 1 = {1, 3, 4, 5, 6, 9, 11}, b = 7.

Step 1: Nf = {2, 7, 8, 10, 12, 13}, A.= 2.
Step 2: N> = {10}, N= = {2, 7, 8, 12}, N< = {13}.

i. S 1(A.) = 9 >b. A. is too small.
N° = {2, 7, 8, 12, 13}.

454 11.6. Applications of Special-Purpose Algorithms

Step 1: N1 = {10}, A-= f.
Step 2: N> = 0, N~ = {10}, N< = 0.

i. S 1(A-)=0<b.
ii. S 2(A-) = 9 >b.

111. r = 10.

Hence the linear programming solution is x1 = 1 for j = 1, 3, 4, 5, 6, 9, 11, x 10 = ~ and
x1 = 0 otherwise, with zLP = 128~ and A,*= f.

Applying the primal heuristic algorithm, we first set x1 = 1 for j = 1, 3, 4, 5, 6, 9, 11,
x w = 0, and then fill the remaining 7 units in greedy fashion. This gives x 2 = 1, with x1 = 0
otherwise. The solution has value 125. Hence 125 ~ z1p ~ 128~.

We calculate the reduced prices c1 - A-*a1 for j EN:

1
9

2 3
22
9

4
11
9

5
40
9

6
,u
9

7 8 9
12
9

10

0

11
.12_
9

12
10

-9

13

Applying Variable Elimination Test 1, we can fix x 4 = x 5 = x 6 = x 11 = 1, and x 13 = 0 as
lc1 - A-*a1 I ~ zLP- z = ¥.

To apply Variable Elimination Test 2, we observe that cja1 ~ 2 for allj E N°. Thus we
can take q = r + 1 with c,+Ja,+1 = 2. For k = 3, we have bk = 12; and we obtain
z[p ~ 99 + 20 + 2(12- 9) = 125 ~ ~' and hence we can fix x 3 = 1. None of the other
variables can be fixed. Hence we are left with the reduced problem

z = 89 +max 16x1 + 12x2 + 4x7 + 6xs + 8x9 + 20xw + 10x12

7x1 + 6x2 + 2x7 + 3xs + 3x9 + 9xw + 5x12 ~ 17

Branch-and-Bound

We suppose that (1.10) is a reduced problem in which as many variables as possible have
been fixed. The variables are now ordered so that c 1/a 1 ~ • • • ~en/an. The order of
branching is fixed to be x ~> x2, ... , Xn. Each variable is first set to 1 and then to 0.

A node t is completely specified by its level k, and a set N 1 ~ {1, ... , k}. Node t
represents the set of x E Bn for which x1 = 1 for j EN and x1 = 0 for j E {1, ... , k} \ N.
We let z 1 = L.JEN' c1 and let b1 = b- LJEN' a1• Note that node t corresponds to a nonempty
set of feasible solutions if and only if b1 ~ 0, and when this holds Zt is a lower bound on the
optimal value of the solutions in this set.

An upper bound is given by

1. Knapsack and Group Problems 455

z=36

Figure 1.5

Since the variables are appropriately ordered, zLP can be determined by a greedy algo
rithm. The node is pruned by bound ifz1 ~~and is pruned by optimality ifz1 = z1• If the
node is not pruned by bound, there are three cases:

1. ak+l < bt. If k + 1 < n, we branch on Xk+l = 1. If k + 1 = n, an optimal solution for
node tis Xn = 1. We set~<- Z1 and prune node t by optimality.

ii. ak+I = b1• An optimal solution for node tis obtained by setting xk+l = 1 and xj = 0
for j > k + 1. We set~ z1, and we prune node t by optimality.

111. ak+l > b1• We prune the node with Xk+l = 1 by infeasibility, and we branch on
Xk+1 = 0.

Backtracking from t. N ={}I. ... ,)r} c:; {1, ... , k} with) 1 <h < · · · <),.

456 11.6. Applications of Special-Purpose Algorithms

Case 1. k $. N; that is, the last branch is xk = 0. We move back up to level}, and set
Xj, = 0. Hence node t + 1 is at level}, with N+1 = {}1, ... ,J,_a.

Case 2. k EN'; that is, the last branch is xk = 1. Here we move back up to level} ,_1 and
set Xj,_, = 0. Hence node t + 1 is at levelJr-1 with N 1+1 = {jb ... ,),_2}.

Note that in Case 2 we do not branch on xk = 0. To show that it is unnecessary to do so,
first observe that because of the ordering of the variables the upper bound on the branch
with xk = 1 is at least as great as the upper bound on the branch with xk = 0. Hence if node
tis pruned by bound, the branch with xk = 0 would have been as well. Alternatively, if
node t is pruned by finding a feasible solution in i or ii, no better solution can be found on
the branch with xk = 0 because of the ordering of the variables.

The algorithm terminates when a node t with N' = 0 is pruned. We also repeat the
variable elimination tests each time the value z of the best feasible solution found
increases.

Example 1.5 (continued). After reordering and renaming the variables, the reduced
problem is

max 8x1 + 16xz + 20x3 + 12x4 + 6xs + 10x6 + 4x7

3x 1 + 7x2 + 9x3 + 6x4 + 3x5 + 5x6 + 2x7 ~ 17

X EB7•

The optimal solution to the linear programming relaxation is x 1 = x 2 = 1, x 3 = ~' Xj = 0
otherwise, zLP = 39~, N1 = {1, 2}, r = 3, N° = {4 5 6 7}, ..1.*= ~as observed earlier.

The enumeration algorithm for the reduced problem leads to the tree shown in Figure
1.5. At each node t we give the values of b,, z, and z,.

The first feasible solution found at node 7 is precisely the primal heuristic solution.
Node 10 is fathomed by bound. A feasible solution of value 38 is found at node 12 (with
x 7 = 1). Nodes 13 and 14 are fathomed by bound. Hence Xj = 1 for j = 1, 2, 6, 7 and Xj = 0
otherwise is an optimal solution to the reduced problem of value 38.

2. 0-1 INTEGER PROGRAMMING PROBLEMS

The general 0-1 integer programming problem

(BIP) max{cx: Ax~ b, x E Bn},

where A is an m x n integral matrix and b E zm, typically is solved by a general branch
and-bound algorithm with linear programming relaxations (see Section 11.4.2). However,
·BIP possesses a few properties that can be used to refine a general algorithm and make it
more efficient.

As we have already noted in Section 1.1.6, preprocessing can be quite useful for BIPs to
reduce the number of variables and constraints. We assume here that preprocessing
operations have already been done. But it is important to remember that they can be
applied recursively and, perhaps, should be considered at each node of a branch-and
bound tree.

Linear programming relaxations can yield more information for BIPs than for general
integer programs because of the following proposition.

2. 0-1 Integer Programming Problems 457

Proposition 2.1. Every feasible solution to BIP is an extreme point of P = {x E R~:
Ax~ b, X~ 1}.

Proof If xis not extreme, then x = !x1 + !x2, x 1, x 2 E P with x 1 =1= x 2, which implies
0 < Xj < 1 for somej EN; that is, x $. Bn. •

This result motivates a heuristic that systematically searches the integral extreme points
of P in the neighborhood of an optimal solution to the linear programming relaxation for
good feasible solutions to BIP.

Another useful fact is that by complementing variables, the individual constraints of
BIP can be written as the constraint sets of 0-1 knapsack problems. Specifically, the ith
constraint can be restated as

(2.1)

where xj = Xj if aij > 0 and Xj = 1 - xj if aij < 0. This transformation enables us to use
strong valid inequalities for the 0-1 knapsack constraint set (see Section II.2.2) as valid
inequalities for BIP in an FCP \ branch-and-bound algorithm.

After developing these ideas, we will invoke a bit more structure and consider
set-covering and -packing problems in which A is a 0-1 matrix and b; = 1 for i E M =
{1, ... 'm}.

A Simplex-Based Heuristic for BIP

Suppose we solve the linear programming relaxation of BIP by a simplex algorithm that
treats the upper bounds Xj ~ 1 for j E N as implicit constraints. If, in an optimal solution,
Xj is nonbasic for allj EN or, equivalently, the slack variables Xn+i are basic for all i EM,
then the solution is integral.

This suggests the idea of finding good integral solutions by pivoting out of the basis the
regular (non-slack) variables and replacing them by slack variables. These pivots, other
related ones, and the rounding of the values of the fractional basic variables are attempted,
with the objective of finding a feasible integral solution. If a feasible integral solution is
found, then we try to improve it by local search. This is done by complementing non basic
regular variables (switching their values from 0 to 1 and vice versa).

Algorithm

Phase 0. Solve the linear programming relaxation. If the solution is integral or there is no
feasible solution, stop. Otherwise go to Phase I. Let X;= aw be the value of the ith basic
regular Variable; then let Q = r_iEN' min(a;o, 1 - a;o) be the ValUe Of integer infeasibility,
where N' = {i: X; is basic and a regular variable}.

Phase I (Feasibility Search)

Step 1: If there is at least one pivot that maintains primal feasibility and reduces the
number of basic regular variables, then do that pivot which yields the largest value of
the objective function. If the resulting solution is integral, go to Phase II; otherwise
return. If no such pivot exists, go to Step 2.

Step 2: If there is at least one pivot that maintains primal feasibility, leaves unchanged the
number of basic regular variables, and reduces q, then do the first one found. If the
resulting solution is integral, then go to Phase II and otherwise return to Step 1. If no
such pivot exists, go to Step 3.

458 11.6. Applications of Special-Purpose Algorithms

Step 3: Round each basic regular variable to the nearest integer. If the solution is feasible,
go to Phase II; otherwise reduce each fractional regular variable to zero. If the solution
is integral, go to Phase II; otherwise go to Step 4.

Step 4: Among those pivots that make a slack variable basic and positive and that make a
regular variable nonbasic, do the one that minimizes the resulting primal infeasibility
given by h =LiEN' max(O, -a;o, aiO- 1). Go to Step 5.

Step 5: If there is a nonbasic regular variable that can be complemented to reduce h,
complement the one that yields the largest reduction in infeasibility. Then if h = 0, go to
Step 3; otherwise return. If no such variable exists, go to Step 6.

Step 6: If there is a pair of nonbasic regular variables that can be simultaneously
complemented to reduce h, then do the first such complementation that is found. Then
if h = 0, go to Step 3; otherwise go to Step 5. If no pair exists, the feasibility search has
failed.

Phase I either produces a feasible solution and we go to Phase II, or it ends in failure and
the heuristic terminates.

Phase II (Local Search for Improvement)

Step 1: Fix variables using the reduced-profit criterion ofProposition 2.1 ofSection II.5.2.
Go to Step 2.

Step 2: If a better feasible solution can be found by complementing one non basic regular
variable, do the complementation that yields the largest improvement and go to Step I.
Otherwise go to Step 3.

Step 3: For i = 2, 3, if a better feasible solution can be found by complementing i
non basic regular variables, do the first such complementation found and go to Step I.
Otherwise terminate.

This heuristic has performed well in practice on a variety of types and sizes of binary
integer programs. It is typical for such heuristics to work reasonably well for the larger,
more complicated instances where other alternatives are not available; however, for small
instances and restricted problem classes, such heuristics usually fail or do what much
simpler heuristics are capable of doing.

For example, in a 0-1 knapsack problem, Step 1 of Phase I immediately pivots out the
fractional variable and pivots in the slack variable, yielding the solution that would have
been obtained by the greedy algorithm if it were stopped upon first encountering an item
that did not fit into the knapsack. Such a solution would be completed to a greedy solution
in Step 1 of Phase II.

Example2.1

max z = 9x1 + 10x2

3x1+3X2+X3

4xl + 5x2

where x 3 and x 4 are slack variables.

=4

+ X4 = 6

2. 0-1 Integer Programming Problems

The optimal solution to the linear programming relaxation is

X1=!-!x3+X4

X2=!+h3-X4

459

In Step 1 if x3 becomes basic, the pivot yields x2 = 1, x1 =~'and z = ~· If x4 becomes
basic, the pivot yields x1 = 1, x2 =~,and z = Jf. Hence we choose to make x4 basic. The
resulting basic solution is

X4 = 1 + hJ- (l - Xt)

x2 = 1 -hJ + (1 - Xt)

Xt=l,xJ=O.

Step I is repeated, and the next pivot yields the integral solution x 1 = 1, x 2 = 0. Hence
Phase I terminates.

An FCP/Branch-and-Bound Algorithm

We have observed that the individual constraints ofBIP can be stated in the form (2.1) and
in Section 11.2.2 we studied strong valid inequalities for S = {x E Bn: LJEN a1xi < b },
where a1 E Z~ for j E Nand b E Z~. In particular, we gave the class :JP of cover inequalities

I Xj < ICI- 1,
jEC

where C s; N is a cover if LJEC a J > b.
Now to be able to apply the FCPA of Section 11.5.2, we formalize the separation

problem for the class:¥. Here Cis an unknown subset ofN, and given apointx*E R~ \ Bn
we want to find a C (assuming that one exists) with LJEC ai > b and LJEC xj > I C I - 1.
Introducing a vector z E Bn to represent the unknown set C, we attempt to choose z such
that Ljr=N a1zi > b and LJEN xjz1 > LJEN z1 - I. The second inequality is equivalent to
LJr=N (1 - xj)z1 < 1.

Thus we obtain the Separation Problem for Cover Inequalities:

(2.2)

Note that, since the constraint coefficients are integral, Ljr=N aizJ > b is equivalent to
LJr=N aizJ ~ b + 1. Let zc be the characteristic vector of C s; N.

Proposition 2.2. Let ((, zc) be an optimal solution to (2.2). Then:

a. if (~ 1, then x* satisfies all the cover inequalities for S; and

460 11.6. Applications of Special-Purpose Algorithms

b. if C < 1, then L1Ec x1 ~ 1 C 1 - 1 is a most violated cover inequality for S, and it is
violated by the amount 1 - C.

Proof If C ~ 1, then all z E Bn satisfying LJEN a1z1 > b also satisfy LJEN xjz1 ~

LJEN z1 - 1; that is, for all covers C, the corresponding cover inequality is satisfied by x~

If C < 1, then LJEN (1 - xj)zf = C < 1; hence

I xj = I Ci - C > I c I - 1.
jEC

Since zc is optimal in (2.2), the maximum violation is by the amount 1 - C. •

Example 2.2 S = {x E B 5: 47xi + 45x2 + 79x3 + 53x4 + 53x5 ~ 178} and x*= (0 0 1
1 ~). To check whether there is a cover inequality for S violated by x~ we solve:

C =min 1z 1 + 1z2 + Oz3 + Oz4 + nzs

47z 1 + 45z2 + 79z3 + 53z4 + 53z5 ~ 179

z EB 5,

having optimal solution C = -0, zc = (0 0
x 3 + X4 + Xs ~ 2 is violated by x~

1). As C < 1, the cover inequality

It is now straightforward to implement the FCPA with separation for BIP. As the initial
relaxation we take S1 = {x E R~: Ax~ b, x ~ 1}. The separation algorithm for BIP
involves the solution of the knapsack separation problem (2.2) for each constraint
LJEN aux1 ~ b;, restated as the knapsack set (2.1). Note that if we find a violated cover
inequality specified by C, we can easily strengthen it to LJEE(C) x1 ~ ICI- 1, where
E(C) = {j $. C: a1 ~ ak for all R E C}, (see Section 11.2.2). Thus when A and b are
nonnegative, the algorithm will terminate with a solution satisfying L1Ec x1 ~ I C I - 1 for
all C with L1Ec a1 'f b, x E R~, where a1 is the jth column of A, and the original con
straints.

Example 2.3. We apply the FCPA of Section 11.5.2 to the BIP

max 77xi + 6x2 + 3x3 + 6x4 + 33xs + 13x6 + llOx1 + 21xs + 47x9

774x 1 + 76x2 + 22x3 + 42x4 + 21x5 + 760x6 + 818x7 + 62xs + 785x9 ~ 1500

67x 1 + 27x2 + 794x3 + 53x4 + 234x5 + 32x6 + 797x7 + 97xs + 435x9 ~ 1500

xEB 9•

Iteration I. Solution of the linear programming relaxation LP1 of BIP yields
xi= x3 = x~ = x~ = 1, xl = 0.71, xj = 0.35, x) = 0 otherwise, and zLP = 225.7.

2. 0-1 Integer Programming Problems 461

Solution of the separation problem (2.2)forrow 1 yields'= 0.29, z 1 = z 7 = 1, and z1 = 0
otherwise, giving the violated cover inequality x 1 + x1 ~ 1. Here E(C)= C.

Solution of the separation problem (2.2) for row 2 yields'= 0.65, z 3 = z 7 = 1, and z1 = 0
otherwise, giving the violated cover inequality x 3 + x1 ~ 1. Again E(C) =C.

Iteration 2. Solution of the linear programming relaxation LP2 of BIP with the two
additional constraints x 1 + x7 ~ 1 and x 3 + x7 ~ 1 yields xi= x~ = x~ = x~ = x~ = 1,
x§ = 0.61, xJ = 0 otherwise, and z[p = 204.8.

Solution of the separation problem (2.2) gives the violated cover inequalities x7 + x9

~ 1 for row 1 and x4 + x5 + x7 + x9 ~ 3 for row 2.
Iteration 3. x3 = (0.63, 1, 0.60, 1, 1, 0, 0.37, 1, 0.63). The separation routines give C =

{ 1, 9} and the extended cover inequality x 1 + x7 + x9 ~ 1 for row 1, and C = {3, 5, 8, 9}
and the extended cover inequality x3 + x5 + x7 + x8 + x9 ~ 3 for row 2.

Iteration 4. x4 = (0, 1, 0, 1, 1, 0.63, 1, 1, 0). The cover inequality x6 + x7 ~ 1 is added.
Iteration 5. x5 = (0, 1, 0, 1, 1, 0, 1, 1, 0) is integer and thus solves BIP.

Example 2.3 raises two issues. Given that the separation problem (2.2) is a knapsack
problem, which is an JV'g}l-hard problem, should we solve (2.2) exactly or use a fast heuristic
algorithm? In practice, heuristics have been used very effectively. But this, of course,
means that some cover inequalities may be missed by the separation procedure.

The second issue stems from the observation that the first two cuts generated from
row 1 in the course of the algorithm, namely x 1 + x 7 ~ 1, x 7 + x 9 ~ 1, are dominated by
the third cut x 1 + X7 + x 9 ~ 1. Hence, we could speed up the algorithm if we could obtain
this stronger cut from row 1 on the first iteration.

To obtain the stronger cuts, remember from Proposition 2.5 of Section 11.2.2 that every
cover inequality generated from a minimal cover C gives rise to a lifted cover inequality of
the form

(2.3)

where C 1 n C 2 = 0 and C 1 U C2 = C. Moreover, {a) and {y) can be chosen so that (2.3)
defines a facet of the knapsack convex hull.

The coefficients in (2.3) are obtained by sequential lifting. Unfortunately we know of
no efficient way to consider all possible ordering of the elements of N \ C that can be used
in sequential lifting. From a practical point of view, we avoid this difficulty by choosing an
ordering of the elements of N \ C in a greedy fashion.

A Lifting Heuristic to obtain a lifted cover inequality of the form (2.3) with C 2 = 0

Initialization: Given x~ solve the knapsack problem (2.2) to obtain a cover C. (Note that
the cover inequality may not be violated.) Let L 1 = N \ C and let k = 1. Set a1 = 1 for all
jEC.

462 11.6. Applications of Special-Purpose Algorithms

Iteration k: For all j E L k find ph which is the maximum value of n1 such that
n1x1 + 'L;EN\Lk a;x; ~ I C I - 1 is valid. Let j* = arg max1Eu P1xj. Set L k+l = L k \ {j*}
and a1• =Pi'· If L k+l = 0, test whether r.JEN a1xj > 1 C 1 - 1. If so, add the cut
r.JEN a1x1 ~ I C I - 1. If L k+l * 0, k .._ k + 1. Return.

As shown in Section 11.2.2, we have P1 = I C I - 1 - 'h where

(2.4)

Note that because of the small size of the coefficients a1 ~ I C I - 1, the knapsack problem
(2.4) can be solved efficiently by dynamic programming (see Proposition 1.6).

A simple extension of the lifting heuristic suggests how we can also search for extended
cover inequalities of the form (2.3) with C2 * 0.

Separation Algorithm to obtain lifted cover inequalities (2.3)

Step 1: Apply the lifting heuristic described above. If a violated inequality is found, stop.

Step 2: If not, choose k = arg(max1Ec a1xj). Set C2 = {k}, and use the lifting heuristic to
generate a facet-defining inequality for conv(Sk) from the cover C \ {k}, where
sk = {x E Bn-l: LjEN\{k) ajXj ~ b - ak}.

Step 3: Convert this inequality into a facet-defining inequality of the form (2.3) for S by
lifting back in the variable Xk· (See Example 2.2 of Section II.2.2).

Step 4: Check the resulting inequality for violation. Stop.

Example 2.2 (continued)

and x* = (~ ~ 1 ~ 1). The knapsack problem (2.1) gives the cover inequality
x 3 + x 4 + x 5 ~ 2, which is not violated by x~ The separation algorithm starts with
c = {3, 4, 5}.

Step 1: The lifting heuristic leads to the same inequality.
Step 2: C2 = {3} is chosen, and the lifting heuristic is called, starting with the cover

inequality X4 + Xs ~ 1 for S 3 = {x E B 4: 47xt + 45x2 + 53x4 + 53xs ~ 99}.
Iteration 1: L 1 = {1, 2} and P1 = 1, P2 = 0. Hence xi'= x 1 is lifted with coefficient a1 = 1.
Iteration 2: L 2 = {2}, Pz = 0. The resulting inequality for S 3 is X l + x4 + X 5 ~ 1.
Step 3: Variable x 3 is lifted in giving the inequality x 1 + 2x3 + X4 + x 5 ~ 3, which defines a

facet of conv(S) that is violated by x~

Given the heuristic nature of the above separation algorithm, we can no longer
determine a priori what problem will be solved at the termination of the FCPA with
separation. We can only assert that the cuts generated at least include all the cover
inequalities. Remember that even this assertion may be false if we use a heuristic

2. 0-1 Integer Programming Problems 463

algorithm for the knapsack problem (2.2). However, as the example below suggests, and as
computational experience shows, the use of the lifted cover inequalities (2.3) in place of
the cover inequalities leads to significant improvements in performance.

Example 2.3 (continued). We apply the FCP/branch-and-bound algorithm, where the
separation algorithm for extended cover inequalities is applied to each row ofBIP.

Phase 1 (FCPA)

Iteration 1: Solution of the relaxation LP1 ofBIP yields xl = x~ = x~ = x~ = 1, xl = 0.71,
x~ = 0.35, x} = 0 otherwise, and zf..p = 225.7.
Row 1. Cut x 1 + x6 + x7 + x9 ::s:; 1 is generated.

Row 2. Cut x3 + x1 .,;;;; 1 is generated.

Iteration 2: Solution of the relaxation LP2 yields x~ = x~ = x~ = x~ = x~ = 1, xJ = 0 other
wise, and z[p = 176. Because x 2 is integer, it is an optimal solution ofBIP.

An alternative or complement to the use of the heuristic lifting algorithms is to use
Proposition 2.6 of Section II.2.2, which provides upper and lower bounds on the values
taken by aj for j E N \ C in the lifting heuristic. In particular, we obtain conditions for the
existence of a violated inequality (2.3) when Cis a minimal cover and C2 = 0.

Proposition 2.3. Let C = U ~> ... , j,} be a minimal cover with aj, ~ ah ~ · · · ~ aj,• and
for h = 0, ... , r let

where J.lh = I:ti aj •• J.lo = 0, and A.= J.lr- b > 0.

l. If I:jec xj + I:h I:jeQ, hxj + I:h I:jeR, (h + 1)xj.,;;;; I C I - 1, there is no violated lifted
inequalityforCwith C2 = 0.

2. Ifl:jec xj + I:h I:jeQ, hxj + I:h I:jeR, hxj + maxjeu,R, xj > I C I - 1, then

L, Xj + L, L, hxj + L. L. hxj + Xr .,;;;; I C I - 1,
jEC h jEQ, h jER,

where t = arg(maxjeu,R, xj), is a valid inequality violated by x*.

The proof is an immediate application of Proposition 2.6 of Section II.2.2. This
proposition can be used to speed up the lifting heuristic by stopping the algorithm if
condition 1 is satisfied, or otherwise fixing the values of a.j for j E UhQh. Alternatively, we
can simply use the valid inequality given in condition 2.

Example 2.3 (continued). At iteration 1 we have xi= x! = x~ = x~ = 1, xl = 0.71,
x~ = 0.35, Xj = 0 otherwise. For row 1 the knapsack problem (1.1) gives the cover C = {1, 7}.
From Proposition 2.3 we have Q0 = {2, 3, 4, 5, 8} and r0 = {6, 9}. It follows without

464 11.6. Applications of Special-Purpose Algorithms

further calculations that both x 1 + x6 + x7 ~ 1 and x 1 + x7 + x9 ~ 1 are valid inequalities.
To establish the validity ofx1 + x6 + x7 + x9 ~ 1, we must lift one of the above inequalities.

Example 2.4. This is a 0-1 minimization problem with 15 constraints and 33 variables.
The data, as well as the 20 cuts added in seven iterations (six sets of cuts) of the FCPA, are
given in Table 2.1. Note that the value of the initial LP relaxation is zLP = 2520.7, and after
adding the cuts the lower bound given by the LP relaxation of the reformulation
max{cx: x E S[p} is zLP = 2962.2.

The corresponding solution x 7 for which no cuts are found is

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(0 0 0 0 .83 .17 .83 .83 0 .83 0 .17 .66 0 1 0

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

1 0 0 0 0 1 0 1 .67 1 .50 1 1 0 0 .83).

Applying branch-and-bound to the reformulated problem, a solution of value 3095 is
found at node 17, and an optimal solution of value 3089 is found at node 65. Optimality is
proved (i.e., the search is completed) at node 77. The optimal solution isx 1 = x 7 = x 8 = x 10

= X14 = X1s = X21 = X23 = Xz5 = Xz6 = Xn = Xzs = Xz9 = X3o = 1, and x 1 = 0 otherwise.
If branch-and-bound is applied without adding cuts, the best solution found after 1000

nodes has value 3095, and the tree still contains 163 active nodes.

Set Covering and Packing

When (A, b) is a 0-1 matrix, each individual constraint is already in the form of a covering
or packing inequality, and no mileage can be gained from the cutting-plane approach
developed above. Some simple combinatorial ideas can yield cuts. For example, in a
packing problem the constraints

imply the inequality x 1 + x 2 + x 3 ~ 1. And in a covering problem, the constraints

imply the inequality x 1 + x 2 + x 3 "" 2. More generally, if we have constraints for all sets of
size k from k + 1 variables, then we can derive a nontrivial valid inequality involving all
k + 1 variables.

The disjunctive approach can also be used to derive valid inequalities for covering and
packing problems. Here we leave the cutting-plane approach and consider some other
features of covering and packing problems.

~

Ta
bl

e
2.

1.

I
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

j

17
1

17
1

17
1

17
1

16
3

16
2

16
3

69

69

18
3

.1
83

18

3
18

3
49

18

3
25

8
51

7
25

0
50

0
25

0
50

0
15

9
31

8
15

9
31

8
15

9
31

8
15

9
31

8
11

4
22

8
15

9
31

8
C

j

I
I

2 3 4 5 6 7 8 9
30

0
10

 3
00

11

12

13

14

15

30
0

30
0

30
0

30
0

28
5

28
5

30
0

30
0

28
5

28
5

30
0

28
5

30
0

28
5

28
5

28
5

28
5

I
23

0
26

5
26

5
26

5
26

5

26
5

26
5

26
5

26
5

23
0

23
0

23
0

19
0

23
0

23
0

19
0

19
0

23
0

19
0

23
0

23
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

20
0

40
0

2

2
I

2

1 2

~I

~
I

~I

~
I

;;.
,5

~

27
00

;;.,

 2
60

0
;;.,

 1
00

;;.,

 9
00

;;.,

 1
65

6
;;.,

 3
35

;;.,

 1
02

6
;;.

,5

;;.,
 5

00

20
0

40
0;

;..
 2

70

~
1

~
8 ;;.,
 I

;;;

.4

;;;
.3

;;;

.2

;;;
.1

~9

;;;
.3

;;;

.3

~9

;;;
.4

;;;

.3

;;;
.3

;;;

.2

;;.,
 I

;;;
.5

~8

;;.
,7

;;;
.5

R
ow

5 6 8 10

12

14

15

R
ow

6 10

12

R
ow

6 7 9 10

12

14

R
ow

12

R
ow

6 7

R
ow

iO

466 11.6. Applications of Special-Purpose Algorithms

The greedy heuristic has a natural realization for the set-covering problem

(SC) Zsc =min{ I cixi: I auxi ~ 1 fori EM, x E Bn},
jEN jEN

where au E {0, 1} for all i andj. We assume that I:.jeN au~ 1 fori EM, which is necessary
and sufficient for a feasible solution. Let Mi = {i: au= 1}.

Greedy Heuristic for Set Covering

Initialization: M 1 = M, N 1 = N, t = 1.
Iteration t: Select/ E N 1 to min{cj IMi n M 1 1}. LetN+1 = N 1\UZ} andM1+1 = M 1\Mp. If

M 1+1 = 0, the greedy solution is given by xi = 1 for j ~ Nl+1 and by xi = 0 otherwise. Its
cost is ZG = r.iff-NI+' ci. If M 1+1 * 0, then lett t + 1 and return.

We see that at each step the greedy heuristic selects the column that meets the largest
number of uncovered rows per unit cost and then stops when a feasible solution has been
found.

Although we cannot give a positive, data-independent performance guarantee for the
greedy heuristic, we will show that it has a performance guarantee that is independent of n
and the objective coefficients, and that decreases only logarithmically with 1M 1.

For any positive integer k, let H(k) = 1 +! + · · · + t and let d = maxjeN r.iEM au. We
will use the following elementary result.

Proposition 2.4. Let u = (ub ... , Un) E R~ and v = (vb ... , Vn) E Z~. If 0 < Ut ~ U2
~ · · · ~ Un and V1 ~ V2 ~ · · · ~ Vn then

n-1

I ui(vi- vi+I) + UnVn ~ max(uivi)H(vt).
i~l I

Theorem 2.5. zsdzG ~ 1/H(d).

Proof We use the approach presented in Section II.5.3 for worst-case analysis of
heuristics. In particular, we construct a feasible solution u* to the dual of the linear
programming relaxation ofSC. Then, by duality, we obtain zsc ~ I:.7,!1 uj. The result then
follows by showing that I:.7,!1 ui= zG!H(d).

Suppose that the greedy heuristic terminates on iteration T, and let ()I =
mini {ci/ IMi n M 1 1}. The dual vector u*is defined by ui= ()ljH(d) fori E M 1\Mt+1•

We will show dual feasibility for eachj E N by using Proposition 2.4. Since M 1 ::J M 1+1,

it follows that IMj n M 1 I ~ IMj n Ml+l I for all t. Hence if VI= IMj n M 1 I, then
v1 ~ v2 ~ • • • ~ Vr ~ 0. We also have from its definition that 0 < 81 ~ • • • ~ (JT.

Now

I u~a-·=I- I a· T (}I ()

iEM I I) 1~1 H(d) iEM1\MI+i I}

= - 1- f 81 (IM1 nMjl- IMI+l nMjl)
H(d) 1~1

1 T

= H(d) ~ 81 (vi- vi+I),

2. 0-1 Integer Programming Problems 467

and applying Proposition 2.4 to the last term gives

Since IM1 n Mj I = Li:t aij.:;; d, and 81(IM1 n Mj I).:;; Cj for all t by definition of 81, we
obtain L;EM u7aij.:;; Cj, and u*is dual feasible.

Finally, the dual objective value is

•
We leave it as an exercise to show that the bound of Theorem 2.5 can be asymptotically

achieved.
We now turn to set-packing problems and, in particular, to the node-packing problem.

An instance of the node-packing problem is given by a graph G = (V, E) and a weight
function c: V R 1• A feasible solution is any subset of nodes such that no pair in the subset
is joined by an edge. The weight of a solution U £ Vis c(U) = L;Eu c ;, and the objective is
to find a solution of maximum weight. Node packing is K9P-hard (see Section 1.5.6).
Moreover, any set-packing problem is easily transformed to a node-packing problem on
the intersection graph ofthe family of sets.

Here we are going to present a rather unusual property of node packing that does not
appear to be shared by any other K9ll-hard problem and that may yield a substantial
reduction in the size of an instance once the linear programming relaxation has been
solved. If the linear programming relaxation of an integer program has an optimal integral
solution, that solution is, of course, also optimal to the integer program. But if just one
variable is fractional in the optimal linear programming solution, we can no longer deduce
anything about the variables in the integer program. On the other hand, in node packing,
all of the variables that are integral in the solution of the linear programming relaxation (if
any) keep these same integer values in some optimal solution to the integer program.
Hence, having solved the linear programming relaxation, we can fix the values of the
integral variables and then eliminate them from the problem.

A binary integer programming formulation of the node-packing problem on
G = (V, E) is

(NP)
X;+Xj.:;; 1 for(i,j)EE

xEBn,

where n = I vI. Its linear programming relaxation (LNP) is obtained by replacing X E sn
byx ER~.

We need the following proposition that relates local and global optimality. For U C V,
the neighbors of U_are the set N(U) = {i E V: i $ U, (i,j) E E for some j E U}. Let
S(U) = U U N(U), S(U) = V\(U U N(U)), and let G(S(U)) be the subgraph induced by
S(U). A property that we use several times is the following:

(P.l) There are no edges joining a node of U and S(U).

468 11.6. Applications of Special-Purpose Algorithms

Proposition 2.6. If U is an optimum packing on G(S(U)), then there is an optimum
packing VO on G with VO ;2 U.

Proof Let V* = VT U V! be an optimum packing on G, where vr = V* n S(U). By
(P.1), U U Ji1isapacking on G. By hypothesis, c(U);;;;. c(VT); hence c(U) + c(Vi);;;;. c(V*).

Theorem 2. 7. If x0 is an optimal solution to LNP, then there is an optimal solution x* to
NP with xj*= xJ for all j such that xJ is integral.

Proof The result is trivial if x 0 is integral, so we suppose that it is not. We first show
thatifU = U: xJ = 1}, there exists an optimal solutionx* toNPwithxj= 1 forallj E U. By
Proposition 2.6, we need to show that U is an optimal packing on G(S(U)). Note that
xJ = 0 for j E N(U). Also, for some k E S(U), x2 > 0; otherwise x 0 is integral.

Suppose that 0 * U is an optimal packing on G(S(U)) and that c(0) > c(U). We will
show that this contradicts the optimality of x 0• Let

forj E 0
forj E S(U)\0

forj E S(U)

andx = A.x0 + (1- .A.).X, where .A.= max{xJ:j E S(U)}. SinceO ~ xJ < 1 forallj E S(U), we
obtain 0 < A. < 1. We claim that x is a feasible solution to LNP; that is, X; + X".i_ ~ l for
(i,j) E E. This is clear ifi,j E S (U) (since U and 0 are packings) and ifi,j E S(U). By
(P.l), the remaining case is i E N(U) andj E S(U). Thenx; = A.x? + (1- A.).X; ~ 1- A. since
x? = 0, and Xj = xJ since xJ = Xj. Hence X; + Xj ~ (1 - A.) + xJ ~ 1 by the definition of A..
Now

I CjXj = A.c(U) + (1 - A.)c(0) + I cjxJ
jEV jES(U)

> c(U) + I cjxJ = I CjxJ,
jES(U) jEV

which contradicts the hypothesis that x0 is an optimal solution to LNP.
Finally, xj = 1 for j E U implies xj = xJ = 0 for j E N(U), and if xJ = 0 for j E S(U),

then cj ~ 0 so that xj = 0 as well. •

The use of Theorem 2.7 is enhanced by the fact that LNP can be solved in polynomial
time, essentially as an assignment problem on a graph with 2n nodes. On the other hand,
the theorem will be useful only if an optimal solution to LNP contains a significant
number of integer-valued variables. It is also important to observe that the bound obtained
from the linear programming relaxation of a set-packing problem is stronger than the
bound obtained from LNP when the set-packing problem is transformed to a node
packing problem.

These advantages and disadvantages must be balanced, but if we decide to use LNP as a
relaxation to NP in a branch-and-bound algorithm, then Theorem 2. 7 should be applied
at every node of the branch-and-bound tree.

Example 2.5. Consider the node-packing problem on the graph of Figure 2.1 with
c = (3 1 1 2 2 3). An optimal solution to LNP is x = (l 0 0 i ! i). Hence
there is an optimal solution to NP with x 1 = 1 andx2 = x 3 = 0. Now it is trivial to solve NP

3. The Symmetric Traveling Salesman Problem 469

6

Figure 2.1

on the subgraph induced by nodes {4, 5, 6}; that is, the solution isx4 = x 5 = 0 and x 6 = 1.
Hence an optimal solution to NP on the whole graph is x = (1 0 0 0 0 1).

3. THE SYMMETRIC TRAVELING SALESMAN PROBLEM

An instance of the symmetric traveling salesman problem is given by a graph G = (V, E)
and a weight vector c E RIEl. A tour T of G is a subgraph of G that is a cycle on V; that is, if
T = (V, Er), then each node of T is of degree 2, T is connected and I ET 1 = I V 1. The
feasible solutions are all of the tours of G (if any), and assuming that G contains at least
one tour, the objective is to find a tour of minimum weight. The weight of a tour T with
edge set Er C E is LeEET Ce. Let

ZTs =min{ I Ce: T = (V, Er) is a tour of G}.
eEET

Several special-purpose algorithms originally were developed to solve the traveling
salesman problem, which has become a prototype problem for illustrating, testing, and
comparing algorithms. We begin this section by describing and comparing various
relaxations. We then present and analyze some heuristics for obtaining good feasible
solutions. Finally, we give some algorithms that use a heuristic for finding feasible
solutions and upper bounds, a relaxation or dual problem for finding lower bounds, and, if
necessary, a branch-and-bound phase for finding an optimal solution and proving
optimality.

Relaxations

We first consider two relaxations that can be obtained by considering families of subgraphs
that contain all of the tours of G. First we drop connectedness and consider the family of
subgraphs of G that contain I VI edges and in which each node is of degree 2. These
subgraphs are called 2-matchings (see Figure 3.2 of Section 11.2.3).

Let

zM =min{ I Ce: M = (V, EM) is a 2-matching ofG}.
eEEM

Since every tour is a 2-matching, we have

(3.1)

470 11.6. Applications of Special-Purpose Algorithms

Next we drop the degree-2 requirement on all nodes except node 1, but we keep
connectedness and the requirement that the subgraph contains I VI edges. This means
that the subgraph on nodes V \ {1} is connected and contains I VI - 2 edges. By Proposi
tion 1.2 of Section 1.3.1, it is a tree. Hence the subgraph on G is a spanning tree on V \ {1},
together with 2 edges incident to node 1. These subgraphs are called 1-trees (see Fig
ure 3.1). Let

Zn =min{ 2: Ce: T = (V, ET) is a 1-tree of G}.
eEET

Note that a 1-tree is a tour if and only if each node of the 1-tree is of degree 2. Since every
tour is a 1-tree, we have

(3.2) ZTS ~ ZtT

The above discussion implies the following proposition.

Proposition 3.1. T = (V, ET) is a tour of G if and only if Tis both a 2-matching and a
1-tree.

We now consider integer programming formulations of these relaxations. For F C E,
let xF E B1EI be the characteristic vector ofF; that is, x: = 1 if e E F, and x: = 0 if e $.F.

The characteristic vectors of2-matchings are simply described by

(3.3)

(3.4)

xEBIEI

2: X e = 2 for v E V
eEO{(v})

(degree constraints),

where for any U C V, 6(U) is the set of edges with one end in U.
Let£(U) be the set of edges with both ends in U. The characteristic vectors of1-trees are

described by (3.3), (3.4) for v = 1,

(3.5) 2: Xe ~ I U I - 1 for all U ~ V \ {1} with 3 ~ I U I
eEE(U)

(subtour elimination constraints)

and

(3.6) L Xe = I VI.
eEE

2 6

4 5 8

3 7

Figure 3.1

3. The Symmetric Traveling Salesman Problem 471

Thus by applying Proposition 3.1, we get that tours are described by (3.3)-(3.6).
However, there are redundancies that can be eliminated. First observe that (3.4) implies
(3.6). Then, as we observed in Section 11.2.3, the subtour elimination constraint for V \ U
is implied by the subtour elimination constraint for U. Hence the characteristic vectors of
tours are given by (3.3), (3.4), and (3.5) for U C Vwith 3 ~ I VI~ [!I VI].

Two relaxations that are themselves relaxations of 2-matchings are fractional 2-
matchings and integer 2-matchings. In fractional 2-matchings, the variables are not
required to be integral, so (3.3) is replaced by

(3.7) X E Rif1

and

(3.8) Xe ~ 1 fore E E.

In integer 2-matchings, the variables are not required to be binary, so (3.3) is replaced by

(3.9) xEZ~.

We have

zFM =min{ I CeXe: X satisfies (3.4), (3.7) and (3.8)} ~ zM
eEE

and

z1M =min{ I CeXe: x satisfies (3.4) and (3.9)} ~ zM.
eEE

Furthermore, we will prove in Chapter III.l that all of the extreme points of the polytope
{x E R~: x satisfies (3.4)} are integral. Hence

z,M =min{ I CeXe: X satisfies (3.4) and (3.7)} ~ zFM·
eEE

Example 3.1 Consider the graph shown in Figure 3.2. The numbers on the edges are
their weights. Figure 3.3 shows an optimal tour, an optimal 2-matching, an optimal
fractional2-matching, an optimal integer 2-matching, and an optimall-tree.

2

4

3

5

4

Figure 3.2

6

5
8

472 11.6. Applications of Special-Purpose Algorithms

2 6

2 2

4 1 5 Optimal tour 8
ZTs = 13

3 4 7

2 6

5 8
Optimal2-matching

4 zu = 12

3 7

2

2 2

4 5 Optimall-tree 8
ZIT= J0

3

2 6

Optimal fractional

4 5
8

2-matching; wavy
lines indicate edges
withXe=~
ZFM = J0

3 7

2 6

Optimal integer

4 5
2-matching;

8 the thick line
indicates an edge with
Xe = 2
ZIM = 8

3 7

Figure 3.3

We now consider two more powerful relaxations that combine 2-matchings and 1-trees.
In the first of these, we seek a minimum-weight convex combination of 1-trees that

satisfies the degree constraints. To formulate this problem, let xi E B IE 1 be the character
istic vector of the ith 1-tree fori= 1, ... , p, where pis the number ofl-trees of G, and let
ci = LeEE CeX~ be the weight of the ith 1-tree. The problem is

1

1

3. The Symmetric Traveling Salesman Problem

(3.10)

p

zMn = min 2.: A;C;
i=l

I A;(2.: x~) = 2 for v E V
i=I eEo({v))

p

2.: A;= 1
i=l

AER~.

473

The linear program (3.10) is a relaxation of the traveling salesman problem because if xi
is the characteristic vector of a tour, then A; = 1 and Ak = 0 for k * i is a feasible solution.
The problem contains an enormous number of variables, since p is generally exponential
in the size of the graph.

Figure 3.4 shows a feasible solution to (3.10) that is not a tour. Note, however, that it is a
fractional2-matching.

To see the relationship between (3.10) and the previous relaxations, we substitute
x = I:f=1 A;X; and use the fact that for all i, x; satisfies (3.5). Thus x satisfies (3.4), (3.5),
(3.7), and (3.8), so

zMn ~min{ 2.: CeXe: x satisfies (3.4), (3.5), (3.7), and (3.8)}.
eEE

2 6

One-tree with three edges incident
4 5 to node 4, one edge incident to node 7,

8 and all other degree constraints
satisfied

3 7

2 6

One-tree with three edges incident to
4 5 8 node 7, one edge incident to node 4,

and all other degree constraints
satisfied

3 7

2 6

Feasible solution to (3.10) obtained

5 by weighting each of the above
8 !-trees by! (i.e., At = A.2 = !);

wavy lines indicate edges with
x, =!

3 7

Figure 3.4

474 11.6. Applications of Special-Purpose Algorithms

Moreover, we will prove in Section III.3.3 that the convex hull of 1-trees is given by the
polytope {x E RJE I: x satisfies (3.4) for v = 1, (3.5) and (3.8)}. Hence if x satisfies (3.4),
(3.5), (3. 7), and (3.8), there is a A, that satisfies the constraints of (3.10) such that
x = !:f~1 A-ixi. Hence

(3.11) ZMn =min{ I CeXe: x satisfies (3.4), (3.5), (3.7), and (3.8)},
eEE

and we obtain the result that the linear program (3.10) is equivalent to the linear
programming relaxation of the integer programming formulation with the degree con
straints and subtour elimination inequalities.

Also note that

ZM!T ~ min Ci = ZIT and ZM!T ~ ZFM
i~l, ... ,p

since fractional 2-matching is a relaxation of (3.11) with the constraints (3.5) omitted.

Example 3.2. In Example 3.1, it can be shown that zMIT = zTs· The graph of Figure 3.5
provides an example with zMIT < zTs·

Analogous to the previous relaxation, we can consider the problem of finding a
minimum-weight convex combination of 2-matchings that satisfies the constraints (3.5).
This relaxation, as we will see, yields a bound that dominates all of the ones given above.
Let yi E B 1 E I be the characteristic vector of the ith 2-matching fori = 1, ... , s, where sis
the number of2-matchings ofG, and let di = LeEE CeY~ be the weight of the ith 2-matching.

2

2

Optima11-tree
zn =9

2

5

2

6 2

Another optimal
1-tree

Figure 3.5

2

3 4

Optimal tour,
ZTS = 10

2

5

2

2

6

Optimal solution to (3.10);
wavy edges have Xe = V2 ,

ZMn=9

3. The Symmetric Traveling Salesman Problem

The problem is

s

zTM =min :2: cx.;d;
i~l

(3.12)

± ex.; (:2: y~) ~ I u I - 1 for 3 ~ I u I ~ l1 v2 I J
i~l eEE(U)

and U s V\{1},

475

The linear program (3.12) is a relaxation of the traveling salesman problem because ifyi
is the characteristic vector of a tour, then CX.; = 1 and cx.k = 0 for k * i is a feasible solution.

To see the relationship between (3.12) and the previous relaxations, we first substitute
y = I:f~ 1 cx.;y; and use the fact that for all i, yi satisfies the degree constraints. This yields
ZTM ~ ZMJT [See (3.11)].

Moreover, additional valid inequalities for the convex hull of 2-matchings are the
2-matching inequalities (3.6) of Section 11.2.3. It can be shown that the 2-matching
inequalities, together with (3.4), (3.7), and (3.8), define the convex hull of 2-matchings.
Hence

zTM =min{ :2: CeXe: X satisfies (3.4), (3.5), (3.7), (3.8),
eEE

and the 2-matching inequalities}.

(3.13)

Example 3.3. In Example 3.2, we have zTM = zTs > zMm which shows that (3.13) may
give a strictly better bound than (3.11). The graph of Figure 3.6 shows that it is possible to
have zTs > zTM· An optimal solution to (3.13) is obtained by taking ~ of each of the
2-matchings in Figure 3.6. Wavy edges have value of~, and z™ = 21.

Figure 3.7 summarizes the bound information from the various relaxations.
The two relaxations that are most interesting are (3.11) and (3.13) since they alone use

both the degree constraints and the subtour elimination constraints. In fact, we will see
later in this section that both of these relaxations can be solved in polynomial time.
Unfortunately, the only polynomial-time algorithms known for solving them require
combining a cutting-plane or separation algorithm with an ellipsoid linear programming
algorithm. Although this is not practical, a good (but not polynomial) approach is to use an
FCPA for the subtour elimination constraints and to solve the resulting linear programs by
a simplex algorithm. The other four relaxations can be solved efficiently by combinatorial
polynomial-time algorithms.

Primal Heuristics

The general heuristic approaches proposed in Section 11.5.3 are applicable to the sym
metric traveling salesman problem. Several greedy-type algorithms can be constructed.

1. Nearest Neighbor. Start at an arbitrary node i 1 and construct a path i ~> i 2, .•• , ih

ij+h ... , in, where ij+I = arg(min{c;jk: k E V \ {i~> i 2, •.. , ij}), with ties broken arbitrarily.

476

4 3

5 2

6 6

4 1 3 v
9

5 2 7 8 2 2 v v
6

Optimal 2-matching,
ZM = 15

Optimal solution to (3.12),
ZTM = 21

1

4 3

6 6

Figure 3.6

11.6. Applications of Special-Purpose Algorithms

4 3

5 2

6
Optimal tour,

zrs=23

4 3

9

~ 2 5
7 2 8

6 6

Feasible 2-matching
of weight 27

Complete the path to a tour by adding the edge (i~> in). Note that unless the graph is
complete, the procedure may fail to find a tour even if one exists. Moreover, even on
complete graphs it can perform very badly by being forced to choose edges of very large
weight in the last steps. In Example 3.1, nearest neighbor, starting at node 4, can choose the
optimaltour(4 5 6 8 7 3 1 2 4),butitcanalsogetstuckat(4 5 6 7 8).

2. Greedy Feasible. Start with E 0 = 0. Given a set E 1 at step t < n - 1 such that
(i) (V, E 1) is acyclic and (ii) each node is of degree equal to or less than 2, add a minimum
weight edge e E E \ E 1 (if one exists) sothat(V, E 1 U {e})has propertiesiandii. Complete
(V, En-I) to a tour (if possible) by joining the two nodes of degree 1. The remarks we made
about nearest neighbor also apply to greedy feasible. In particular, in Example 1.1, greedy
feasible can find the optimal tour by taking edges in the order (1 2), (1 3), (6 8),
(7 8), (4 5), (2 4), (5 6), (3 7), but it can also fail to find a tour by beginning with
the edges (6 7), (6 8).

3. The Symmetric Traveling Salesman Problem

zrs
(Traveling
salesman)

(3.10) or (3.11)

ZMlT

ZM

(2-matching)

Figure 3.7

ZfM

(Fractional
2-matching)

(1-tree)

zn

ZJM

(Integer
2-matching)

477

3. Nearest Insertion. (Here we suppose that G is a complete graph.) Given a subtour T
and a node i E V \ T, let d(i, T) = milljET ciJ, and let i*= arg(min{d(i, T): i E V \ T}).
Suppose)*= arg(min{c;•J:) E T}). Thus i* is the "closest" node toT, and)* is the node in
T that is closest to i~ Now construct a subtour on T U {i*} by inserting i* between)* and
one of its neighbors in T; that is, if(j1,)*)and () 2,)*) are edges ofT and c;,, ~ c;,,, insert i*
between j 1 and j*. This process terminates with a tour, but again we cannot guarantee that
it will be a good tour.

4. k-Interchange. Local search heuristics are also useful for the traveling salesman
problem. Given a tour, the k-interchange heuristic replaces k edges in the tour by k edges
that are not in the tour if such a change yields a tour oflower weight. When k = 2, the two
edges to be replaced cannot be adjacent, and there is a unique pair of replacement edges (if
they exist) (see Figure 3.8) where the edges (i,j) and (i + I,j +I) replace (i, i +I) and
(j, j + I). Unfortunately, it is possible for a locally optimal tour to be poor for any k that is
small relative to I V 1.

The negative remarks we have made about each of the heuristics is to be expected. In
fact, for complete graphs and arbitrary edge weights, we cannot expect any fast heuristic to
provide a good performance guarantee. The proof of the following proposition, which is
similar to the proof of Proposition 3.2 of Section 11.5.3, is left as an exercise.

Proposition 3.2. The traveling salesman problem with performance guarantee rH ~ r for
any r > 0 is .NrP-hard.

Example 3.4. We apply the four heuristics given above to the traveling salesman
problem on the 10-city distance matrix given in Table 2.1 of Section 1.3.2.

I. Nearest neighbor starting at city 1. This yields the tour (1 8 9 4 7 10
6 2 3 5 1) of weight or distance 349.

i+ 1

j+ 1 j

Figure 3.8

478 11.6. Applications of Special-Purpose Algorithms

2. Greedy feasible. This yields the edge set (6 10), (4 9), (4 10), (2 6), (8 9),
(1 8), (5 7), (1 5), (3 7), (2 3) and the tour (1 8 9 4 10
6 2 3 7 5 1) of distance 323.

3. Nearest insertion beginning with the triangle. (4 9 10 4). The successive sub
tours are (4 9 6 10 4), (4 9 6 10 7 4), (4 9 6 2 10 7 4),
(4 8 9 6 2 10 7 4), (4 1 8 9 6 2 10 7 4). The resulting tour
(1 8 9 6 2 10 3 7 5 4 1) has weight 372.

4. 2-Interchange beginning with the tour produced by nearest insertion. We find the
following sequence of improving tours (l 8 9 2 6 10 3 7 5 4 1) of
weight 353, (1 8 9 2 6 10 3 7 4 5 1) of weight 328, and
(1 8 9 2 6 10 3 4 7 5 1) of weight 325.

To obtain performance guarantees on the performance of the heuristics, the weight
matrix must have structure. A natural structure to impose is nonnegativity and the
triangle inequality, that is,

Cu + Cjk ~ C;k for all i,j, k E V.

The triangle inequality is, for example, satisfied by euclidean and rectilinear distances. We
use the following property implied by the triangle inequality which is easily proved by
induction.

Proposition 3.3. If the triangle inequality is satisfied, then L.~:J C;,;,+l ~ C;0;k.

When the triangle inequality is satisfied, performance guarantees can be established for
several heuristics. Some of these results are given as exercises. Here we present the
polynomial-time heuristic, called spanning tree-matching, that has a performance guaran
tee of two-thirds. No other polynomial-time heuristic is known that has a performance
guarantee that is as good. Moreover, it is not known if a polynomial-time heuristic with a
better performance guarantee exists.

Before describing and analyzing this heuristic and a related one, we need to present a
few additional definitions and results from graph theory. A graph G = (V, E) in which
there may be more than one edge joining a pair of nodes is called a multigraph. A eulerian
cycle of a multigraph is a walk with the same beginning and end points that contains each
edge of the graph exactly once. The graph of Figure 3.9 contains the eulerian cycle with
node sequence (l 2 3 4 2 3 1) and edge sequence (e1 e3 e6 es e4 e2).

The following classic result from graph theory will be used to establish the performance
bounds.

3

2

Figure 3.9

4

3. The Symmetric Traveling Salesman Problem 479

Proposition 3.4. A multigraph contains a eulerian cycle if and only if each node is of even
degree.

Moreover, there is a simple and fast procedure (linear in the number of edges) for
finding a eulerian cycle when one exists.

Now suppose we are given a complete graph G = (V, E) and a spanning tree G' = (V,
E') of G. Here is a procedure for constructing a tour on G. Construct the multigraph G
from G' by duplicating each e E E'. Since each node of G is of even degree, G contains a
eulerian cycle Q. Delete all node repetitions from Q except for the final return to the first
node. The resulting node sequence T is a tour on G.

The procedure is illustrated in Figure 3.10. The node sequence of a eulerian cycle on G
is Q = (1 2 3 4 5 4 6 7 6 8 6 4 3 2 9 2 1). Hence T = (1 2
3 4 5 6 7 8 9 1).

Double Spanning-Tree Heuristic. Find a minimum-weight spanning tree G' = (V, E') of
G. Duplicate each e E E and find a eulerian cycle Q on the resulting graph. Extract a tour
T on G from Q by deleting node repetitions.

Theorem 3.5. If the edge weights are nonnegative and satisfy the triangle inequality, then
any tour produced by the double spanning-tree heuristic is of weight not greater than twice
the weight of an optimal tour.

5 5

4 3 2

9 9

7
7

8

G' T

5

7

A

G

Figure 3.10

480 11.6. Applications of Special-Purpose Algorithms

Proof Let T 0 be an optimal tour with edge set Ero. Let Er be the edge set formed by
the heuristic, let E Q be the edge set of the eulerian cycle, and let E' be the edge set of a
minimum-weight spanning tree. Then

I Ce ~ I Ce = 2 I Ce ~ 2 I c_,
eEET eEEQ eEE' eEETo

where the first inequality follows from the triangle inequality, and the second one follows
from nonnegativity because if an edge is deleted from a tour, the resulting subgraph is a
spanning tree. •

To produce a heuristic of this type that has a better performance guarantee, we need to
find a smaller-weight set of edges to add to the minimum-weight spanning tree while
maintaining the property that the resulting subgraph is eulerian.

Consider the nodes U ~ V of G' = (V, E ') that are of odd degree. Since the sum of the
nodedegreesforanygraphiseven, I U I is even. Hence if we add I U 112 edges toG', each of
which is incident to two nodes of U, the resulting graph is eulerian. To find a minimum
weight set of such edges, we find a minimum-weight perfect matching M on the induced
subgraph G(U) = (U, E(U)) of G. (In a perfect matching, each node is of degree 1.) This
can be done in polynomial time (see Section III.2.3).

Now observe that a tour Tis a sequence ofpathsP1 U P2 U · · · UP 1 u 1, whereP;joins
the ith and (i + l)st nodes}; andj;+1 of U on the tour T (see Figure 3.11). By the triangle
inequality, the length of path Pk is greater than or equal to c1Jk+l' Moreover, edge sets
M1 = {(}~>}2), (}3,}4), ... , (j IUI-~>i 1u1} and M2 = {(}2,}3), ... , (j IUI,}I)} are both per
fect matchings on G(U). Hence

2 I Ce ~ I Ce + I Ce ~ I Ce•
eEM eEM1 eEM, eEET

Spanning-Tree/Perfect-Matching Heuristic. Find a minimum-weight spanning tree G' =
(V, E') of G. Find a minimum-weight perfect matching on the induced subgraph G(U) of
G, where U ~ Vis the set of nodes of V that are of odd degree in G '. Let M be the edge set
of the perfect matching. Find a eulerian cycle Q on the multigraph G = (V, E' U M).
Extract a tour T on G from Q by deleting node repetitions.

The heuristic is illustrated in Figure 3.12.

jfUI-1 · ·. ' .. '
l4 p3

Figure 3.11

3. The Symmetric Traveling Salesman Problem

5

3

9

7
•

G': 0 indicate nodes of odd degree

5

-
Eulerian graph G

Figure 3.12

6

5

\
8

•

4

1

/
2

9

Perfect matching on G(U)

5

Tour T

We have sketched a proof of the following theorem:

481

Theorem 3.6. If the edge weights are nonnegative and satisfy the triangle inequality, then
any tour produced by the spanning-treejperfect-matching heuristic is of weight not greater
than three-halves the weight of an optimal tour.

In fact there are families of graphs for which the bound is asymptotically achieved.

Example 3.4. (continued). A minimum-weight spanning tree and a minimum-weight
perfect matching on the nodes of odd degree in the tree are shown in Figure 3.13.

A eulerian cycle obtained from the double spanning-tree heuristic is
(1 8 9 4 10 6 2 6 10 3 10 4 7 5 7 4 9 8 1), yielding the tour
(1 8 9 4 10 6 2 3 7 5 1) of distance 323.

3

5

4

6

2 8

Minimum-weight spanning tree

3

Figure 3.13

4

•

Minimum-weight perfect matching

5

\

482

2

3

2

3

4

5

6

7

8

11.6. Applications of Special-Purpose Algorithms

0

4 2 5
8

0

7

G and an integer 2-matching

9

11

Gs and the corresponding perfect
matching; wavy edges denote matching

13 edges

Figure 3.14

A eulerian cycle obtained from the spanning-tree/perfect-matching heuristic is
(1 8 9 4 10 6 2 3 10 4 7 5 1), which yields the same tour. Note that
each of these heuristics could have produced several other tours, depending on the
eulerian cycle chosen.

Relaxation/Branch-and-Bound Algorithms
Here we use the relaxations developed earlier in the section, together with primal
heuristics and branch-and-bound, to develop algorithms for the traveling salesman
problem that are capable of finding an optimal solution and proving optimality.

An Assignment Problem/Branch-and-Bound Algorithm. One of the earliest approaches
for solving the traveling salesman problem used the integer 2-matching relaxation. In fact,
the integer 2-matching relaxation can be solved as a I V 1 x 1 V 1 assignment problem or,
equivalently, as a perfect-matching problem on a bipartite graph.

Figure 3.15

3. The Symmetric Traveling Salesman Problem 483

X = 1

x =1De1

X =1 e4 e2

X = 1
e3

Figure 3.16

The bipartite graph Gs = (VL U VR, E*) is constructed from G as follows. Given
V = {1, 2, ... , m}, then VL = V and VR = {m + 1, m + 2, ... , 2m}. Corresponding to
each edge e = (i,j) E E, Gs contains two edges, eL = (i, m +))and eR = (), m + i). Also
CeL = Ce• = Ce for all e E E. The construction is illustrated in Figure 3.14. It is easy to see
that if y 0 E B 2 IE I is the characteristic vector of an optimal perfect matching in Gs, then x0

with x~ = y~~. + y~. is an optimal integer 2-matching on G. Figure 3.14 also shows an
integer 2-matching on G and a corresponding matching on Gs.

If we want to consider an integer 2-matching on G with Xe = 0, where e = (i,j), then in
Gs we delete eLand eR. Similarly, to obtain an integer 2-matching on G with Xe = 1, we
delete nodes i and)+ m and all of the edges adjacent to them.

Now suppose we have solved the integer 2-matching problem and it is not a tour. To
eliminate a solution with Xe = 2, we branch as shown in Figure 3.15.

To eliminate a subtour, we branch as shown in Figure 3.16. Multibranching is necessary
in the case of a subtour in order to produce a tree in which the current infeasible solution is
violated along every branch. Note that in the kth branch with Xek = 0, k ~ 2, we set
Xe, = Xe, = · · · = Xe,_, = 1 since any tour that does not contain all of the edges e,, ... , ek-I

is contained in one of the branches 1, ... , k - 1. To avoid creating many branches, it is
desirable to choose a subtour containing the fewest number of edges.

Example 3.1 (continued). We solve this problem using the integer 2-matching relaxa
tion. The initial solution of weight 8 is shown in Figure 3.3. We choose to branch on the
edge (4, 5) since X4s = 2 (see Figure 3.17).

The node 1 and 2 solutions are shown in Figure 3.18. Branching from node 1, as shown
in Figure 3.19, we find that none of the remaining nodes are feasible. Hence the solution at
node 2 is optimal.

Weight 12 Weight 13

Figure 3.17

484 II.6. Applications of Special-Purpose Algorithms

2 2 6

5 8 8

3 3 4 7

Node 1 solution Node 2 solution

Figure 3.18

A 1-Tree, Subgradient Optimization, Branch-and-Bound Algorithm. Now we consider
a branch-and-bound algorithm that uses a Lagrangian dual relaxation. For A = (A 1 = 0, A2,

..• , }yVI) E R 1Vi, let

(3.14)

where x satisfies (3.5) and, for node I, also satisfies (3.4); that is, x is the characteristic
vector of a 1-tree. Let

zw =max z 1T(A).
j:ERIVl

At~O

As noted above, the vertices of the polytope {x E R'.;1: x satisfies (3.5), (3.4) for node 1,
and (3.8)} are precisely the 1-trees. Hence from Corollary 6.6 of Section II.3.6, we have

(3.15)

For a given A, problem (3.14) is to find a minimum-weight 1-tree with respect to the
weights ciJ- Ai- A1. In Section 1.3.3, we gave an efficient "greedy" algorithm for finding a
minimum-weight spanning tree of a graph. To find a minimum-weight 1-tree, we first find
a minimum-weight spanning tree for the subgraph induced by nodes V \ {1} and then we
add the two smallest-weight edges incident to node 1.

If the resulting 1-tree is a tour, then by Corollary 6.8 of Section II.3.6, zIT(A) = zw = zTs·
If the resulting 1-tree is not a tour, we can iterate on the A's. An intuitive scheme, suggested
by the objective function in (3.14), is to increase Ai when the degree of node i in the 1-tree is
equal to 1 and to decrease Ai when the degree of node i in the 1-tree is greater than 2. In fact,

Figure 3.19

3. The Symmetric Traveling Salesman Problem 485

2 6

2

4 5
7

3 8

Figure 3.20

for a given A.*, the vector J(A.*) with O;(A.*) = (2- degree of node i in an optimal1-tree) is a
subgradient to the objective function z n(A.) at A.= A.*. Hence we only need to specify a step
size to solve the Lagrangian dual by subgradient optimization (see Section 1.2.4). An
intuitive explanation of the Lagrangian relaxation is that by transforming the edge weights
to cij = cij- A.;- A.h the weight of all tours decreases by 2 LA.;. Thus we get an equivalent
problem with weight vector c'. However, minimum-weight 1-trees are a function of A, so
the objective is to find a A such that the minimum-weight 1-tree is a tour.

It may be difficult to solve the Lagrangian dual to optimality, particularly when
zw < zTs· Corollary 6.9 of Section 11.3.6 can be used to find a nearly optimal A; alterna
tively, we can stop with z n(A*) if I z n(A*) - :ZTs I < e, where e > 0 is a prescribed tolerance
and :ZTs is the weight of some feasible tour.

When we terminate without having found an optimal tour, the calculations can be
continued using branch-and-bound. Suppose Zn(A*) is the largest known value of zn(A),
and letx* be the characteristic vector of the 1-tree obtained from solving (3.14) with A= A.*.
This 1-tree contains a subtour. Thus we can proceed as we did with the integer matching
relaxation algorithm to develop a branch-and-bound tree.

Example 3.1 (continued). With A0 = 0, an optimal1-tree is shown in Figure 3.3 and we
obtain z n(A.0) = 10. Since node 2 is of degree 3 and node 8 is of degree 1, we decrease A2

and increase A8• Let A1 = (0 -1 0 0 0 0 0 1). An optimal 1-tree is shown in
Figure 3.20 and we obtain zn(A1) = 10.

Continuing in this manner, after several iterations, we find A*= (0 -2 -2 -1
0 2 1 2). The weights cij- A7- Ajand an optimal1-tree are shown in Figure 3.21. Thus
we have found an optimal tour.

An FCP/Branch-and-Bound Algorithm. Here we consider an FCP/branch-and-bound
algorithm of the type described in Section 11.5.2. As shown above, the characteristic
vectors of tours are given by (3.3), (3.4), and (3.5) for U C V with 3 .;;; I U I .;;; [11 V 1].
Hence the formulation we work with is

I Xe=2 for v E V (3.4)

(STSP)
eEJ(v)

I Xe .;;; I U I - 1 for U C V, 131 .;;; I U I .;;; l12V I J
eEE(U)

(3.5)

(3.3)

486 11.6. Applications of Special-Purpose Algorithms

5 5

Figure 3.21

In Section 11.2.3 we derived some classes of facets for the convex hull of solutions to
STSP, so we now investigate the separation problems for these classes. First we examine
the separation problem for the subtour elimination inequalities (3.5). Though these
appear in our formulation ofSTSP, the exponential number of these inequalities makes it
impossible to consider all of them as part of the initial LP relaxation. Therefore we
typically start with the relaxation LP1 involving just the degree constraints (3.4),' nonnega
tivity, and the upper bounds (3.8), namely,

Sk = {x E R';1: x satisfies (3.4) and (3.8)}.

Proposition 3.7. If x* E Sk, then LeEE(WJ x; = I WI - 1 + E if and only if LeEJ(WJ x; =
2- 2E.

Proof From (3.4), we obtain

21 w I = 2(I x;) + I x;;
eEE(W) eEJ(W)

or in other words,

2- I x;=2 (I x;-(IWI-1)).
eEJ(W) eEE(W) •

It follows that a subtour inequality (3.5) is violated by x* if and only if some cut-set
inequality

L Xe ~ 2
eEJ(W)

is violated by x~ Hence to determine whether there exists W C V with I WI ~ 3 for which
LeEJ(WJ x; < 2, it suffices to solve

(3.16)

and check whether (< 2 or not.
Now if we imposes E U, and t E U, then

min{ L x;: u c v, s E U, t E u}
eEJ(U)

3. The Symmetric Traveling Salesman Problem 487

is a minimum s - t cut problem and can be solved by the maximum s - t flow algorithm
(see Section 1.3.4). It follows that (3.16) can be solved efficiently by solving a set of
maximum s - t flow problems.

Based on the symmetry LeEb(U) x; = LeEJ(UJ x;, an alternative to (3.16) is

(3.17) '=min{ I x;: 3 < I u I < I VI - 3, 1 E u}.
eEb(U)

Note that the choice of the node fixed in U is arbitrary. To solve (3.17), let

(3.18) (j=min{ I x;:{1,2, ... ,j-l}CU,jEU,3< lUI< IVI-3}
eEb(U)

for j = 2, ... , I VI - 2.

Then (= minj=2, ... ,1vr-2 (h since the minimum cut is a I - j cut for some j. Imposing the
condition {2, ... , j - 1} C U in the 1 - j cut problem is easily carried out by replacing the
capacities xfk by oo for k = 2, ... ,} - 1. Thus the separation algorithm is to solve the
maximum 1 - j flow problem for j = 2, ... , I V 1 - 2.

Proposition 3.8. Let ((, U) be an optimal solution resulting from the separation algo
rithm:

a. If (;;;. 2, no subtour elimination constraint is violated.
b. If (< 2, the subtour elimination inequality (3.5) with W = U is a most violated

inequality.

It is very often possible to reduce the size of the separation problem for subtour
elimination constraints. Let x* be a feasible solution of S1 and let G(x*) = (V, E(x*)),
where e E E(x*) only if x; > 0. The simplest case is when G(x*) is not connected (see, e.g.,
Figure 3.22). For each component with node set U, we obtain LeEE(U) Xe = I U I because of
the degree constraints, and hence the violated inequalities are found by testing G(x*) for
connectedness.

The second case is where G(x*) is connected, but x: = 1 for some e E E. All the edges
with x; = 1 can be shrunk by the following procedure.

Shrinking an Edge e = (i,j) of G(x*) with x:= 1

Step 1: Replace nodes i and} by a single node!.
Step 2: Every pair of edges e 1 = {i, k}, e2 = {}, k} is replaced by a single edge e* = (!, k)

with edge weight x;. = x;, + x;,.
Step 3: All other edges (i,p) and(}, q) are replaced by the edges (l,p) and (1, q),

respectively, with the same weight as before.

Figure 3.22. Wavy lines indicate Xe = !.

488 11.6. Applications of Special-Purpose Algorithms

Let G(x') = (V', E(x')) be the new graph obtained after shrinking.

Proposition 3.9. There exists a W C V, W * {i, j}, such that LeEE(WJ x; > I WI - 1 if and
only if there exists a W' C V' such that LeEE(W) x; > I W' I - 1 in the reduced graph.

Proof If {i, j} C W, then it suffices to take W' = (W \ {i, j}) U /.
If i E W, j $. Wand the subtour inequality constraint for W is violated, then the one for

W = W U {j} is violated by at least as much. Now{i,j} C W, and the argument is as above.
If i $. W, j $. W, then take W' = W. •

(a)

(b)

(c)

Figure 3.23. (a) Shrinking edge (1, 2) leads to the graph in (b). (b) Shrinking edge (5, 6) leads to the graph in (c).

3. The Symmetric Traveling Salesman Problem 489

Obviously this procedure can be applied iteratively, so the separation algorithm need
only be applied to the reduced graph in which all the initial edges with x; = 1 (and possibly
others created during the procedure) have been shrunk (see Figure 3.23).

There is also no doubt that the human eye is very good at detecting anomalies in tours,
routes, and so on, and several researchers have very successfully found violated inequali
ties in this way. The reader should therefore have no difficulty in finding a violated subtour
inequality in the last graph of Figure 3.23, which can then be converted into a violated
inequality for the initial graph.

Now we describe a modification of the FCP/branch-and-bound algorithm of Sec
tion 11.5.2 with fJf equal to the set of subtour elimination inequalities. A modification is
required because all the subtour elimination constraints are needed to correctly describe
the integer programming formulation of STSP, and the branch-and-bound algorithm is
applied to a formulation involving only a subset of these constraints. Thus the linear
programming relaxation at any node other than the initial node may yield an integer
solution that is a 2-matching but not a tour. (At the initial node 2-matchings are always cut
offby subtour elimination inequalities.)

We describe three options that differ only in their treatment of the problem at nodes of
the tree other than the initial node. In option 1, the remaining nodes are pruned when an
integer solution is found. Hence the branch-and-bound phase terminates with an integer
solution that may be a tour or a 2-matching. If it is a tour, it is an optimal solution of
STSP. Otherwise we add the subtour elimination inequalities that are violated by the
2-matchings that have been found and not pruned by bounding, and we restart the
branch-and-bound algorithm from the beginning.

Option 2 is to apply the separation algorithm at each node of the tree. Then the linear
programming relaxation of STSP is solved exactly, and the lower bound obtained at each
node is identical with that obtained by Lagrangian duality.

A third option, which is a compromise between the first two, is to apply the separation
algorithm only at those nodes of the tree that yield an integer solution that is not a tour. A
justification for this option is that the separation routine for integral solutions only
involves a test for connectedness and allows us to exclude infeasible integral solutions.

Example 3.3 (continued). We apply the modified FCP/branch-and-bound algorithm.

Phase 1

Iteration 1: The solution is the optimal 2-matching given in Figure 3.6 and we obtain
zLr = 15. Because G(x 1) is not connected, the connected components immediately give
the cuts

X12 +XIs+ Xzg ~ 2,

Xs6 +X 57+ X67 ~ 2,

X34 + X39 + X49 ~ 2.

Iteration 2: z[r = 21. Applying the separation algorithm, no violated subtour elimination
inequalities are found. The solution x 2 is the fractional solution shown in Figure 3.6.

Phase 2. The branch-and-bound tree has three nodes (see Figure 3.24). With x 16 = 0, the
relaxation has an integer optimal solution that is a tour of weight 23, given in Figure 3.6.
With x 16 = 1, the branch is pruned by bounding.

490 11.6. Applications of Special-Purpose Algorithms

Figure 3.24

The second class of facets of interest for STSP are the 2-matching inequalities [see (3.6)
of Section 11.2.3]. There is a polynomial algorithm, again involving the solution of
maximum-flow problems, to detect whether a point x* feasible in S1 violates a 2-matching
inequality. This separation algorithm is based on the fact that the 2-matching inequalities
are valid inequalities for the set

s2M = {x E BIEI: I Xe = 2 for all v E v}.
eE<i(v)

Note that ifFCPA is applied with both subtour elimination and 2-matching constraints, it
terminates with an optimal solution to (3.13) with value zTM· The same modifications as
before must be made in the branch-and-bound phase.

For more general comb inequalities and clique tree inequalities (see Section 11.2.3), no
polynomial-time separation algorithm is known. However, using heuristics to reduce the
size of the problem and inspection is sometimes a viable way of finding violated comb
inequalities.

Example 3.3 (continued). We apply the FCPA with separation where subtour elimina
tion, 2-matching, and comb inequalities are added.

Iteration 1: As before, zh = z2M = 15.
Iteration 2: After adding subtour elimination inequalities, we obtain ziP = ZMtT = 21.

Applying a separation algorithm for 2-matching inequalities to the solution x 2 in
Figure 3.6, no violated inequalities are found. Hence ziP = zTM· However, the comb
inequality (3. 7) of Section 11.2.3 with H = {7 8 9}, WI = {1 2 8}, w2 = {3 4 9},
w3 = {5 6 7},

is violated by x 2•

Iteration 3: After adding this constraint, we obtain ztp = 23; the resulting solution is the
optimal tour shown in Figure 3.6.

Solution of a Large Problem

Example 3.5. The problem is to find the shortest tour through 67 cities in Belgium. The
intercity distances, in kilometers, are shown in Table 3.1.

The nearest-neighbor heuristic, starting at city 1, leads to a tour oflength 2045 km. The
greedy heuristic gives a tour oflength 1805; and when the 2-interchange heuristic is applied
to the greedy tour, a solution oflength 1691 is found (see Figure 3.25).

~ ...

T
ab

le
 3

.1
.

A
A

.lS
T

;~
~S~

N~~
ERP

EN
22

2~
~A

RL
ON

52

92

97

21

9
A

T
H

18
2

16
3

19
9

40

17
9

B
A

S
T

O
G

N
f

99

11
6

12
1

15
6

57

13
0

B
E

A
U

M
O

N
T

8

3

14
3

11
5

28
5

12
3

26
5

16
8

B
L

A
N

K
E

N
B

E
R

G
E

I
ll

18

1
20

3
63

15

9
65

91

M

9

B
O

U
il

L
O

N

72

14
1

10
1

29
9

TO
O

25
1

!5
4

14

25

5
B

R
U

G
G

E

:1
:1

 :1:
~

5
0

1
5

2
,.

1
1

3
1

5
6

61

13
5

2
7

1
1

5
1

0
4

1
1

8
1

4
0

1
4

5
1

5
0

81

13

9
24

20

&

87

~
S

S
E

L

~
~

' I

C
H

A
R

L
E

R
O

I

!1
8 T

5
il

 C
H

IM
A

Y

46

11
8

71

28
3

60

2<
13

11

4
5

4

23
2

40

16

10
8

13
8

O
E

IN
Z

E

13

61

3
8

22

1
85

18

1
10

7
92

18

5
78

29

78

13

1
4

D
E

N
D

E
R

M
O

N
O

E

8
5

18

50

18

7
10

5
1

4
1

1
1

7

16
8

18
2

15
4

';
5

8

0

13
1

13
1

77

O
IE

S
T

96

U
l6

12

1
!!1

6
10

0
25

6
14

5
47

2<

47

41

11
4

14
3

18
8

50

98

17
9

O
IK

S
M

U
IO

E

12
0

95

13
7

11
0

11
7

92

53

20
3

68

18
9

to

5
5

62

18

6
11

9
96

19

8
O

IN
A

N
T

~

tt
n

17

2
9!

1
16

1
5

9

10
3

24
3

81

22
9

11
0

10
7

10
2

19
8

16
8

97

23
1

50

O
U

R
B

U
Y

47

11
2

74

28
11

98

22

S

1•
1

3
9

23

3
25

n

1
2

4

1
6

5

37

51

13
2

6
6

16

7
20

2
tt

:I
\L

U

3
2

72

77

22

8
20

17

1
6

2

12
0

18
2

10
6

SO

44

8
8

60

45

8

5

11
0

11
8

!5
3

19

E
N

G
H

JE
N

17
3

12
2

16
5

1
..

-
20

0
11

>4

16
6

21
51

16

9
24

7
I

13
9

17
6

21
9

17
2

10
6

26
9

11
4

74

22
0

17
3

E
U

P
E

N

27

8
3

78

23

5
25

11

15

8
2

97

18

4
8

3

4i

61

10
6

43

40

99

93

11
6

16
8

73

17

18
4

G
E

R
A

A
R

O
S

B
E

R
G

E
N

21

9
2

5

4

24
9

i
10

20

2
12

1
S

l
21

3
52

IS

10

4
14

S

17

31

li
D

67

14

7
18

2
20

S

9
20

0
41

G

E
N

T

3
8

78

1

6
5

:
13

0
I

19
5

12
0

19
3

11
59

17

!i
r7

gJ

!<

M
>

1
sJ

99

22

20

6
95

92

15

2
10

7
8

4

11
8

13
2

H
A

S
S

E
L

T

12
4

7
7

10

1
12

8
12

1
8

8

10
3

20
7

11
4

19
3

7
76

1

0
8

16

3
12

3
67

19

8
46

3

3

17
1

12
0

68

13
7

14
4

57

H
U

Y

18
4

14
8

20
1

5
7

'
18

1
17

13

2
26

7
81

1
25

3
1

"'

13
6

14
1

24
5

18
3

13
0

25
8

79

51

23
1

18
0

8
7

19

7
21

1
10

8
8

4

H
O

U
F

F
A

U
Z

E

10
1

16
4

12
6

30
9

9
2

:2
7

0

13
2

70

23
9

56

,fa
 !

3
5

15

6
55

10

3
18

0
23

19

0
24

2
71

10

2
26

9
8

5

68

20
2

21
1

28
0

lE
P

E
R

68

1<
10

93

27

2
63

 ·
 2

42

10
3

57

22
8

43

t7

10
7

12
7

22

70

15
6

42

16
2

21
4

5
9

73

24

6
58

3

9

17
3

18
3

24
3

29

K
O

R
T

R
IJ

K

59

13
6

17
6

69

15
8

2
9

!1
0

7

24
2

72

21
8

11
9

11
1

11
6

22
0

15
8

12
6

23
3

54

26

20
6

15
5

11
2

17
2

18
4

11
3

5
9

25

24

6
21

8
L

A
R

O
C

H
E

56

16

•1

20
1

78

14
!!

1.
.!0

0
13

9
14

5
12

5
16

79

12

4
10

2
55

29

16

2
79

94

10

3
5

6

11
7

67

81

5
4

61

14

5
15

2
12

2
12

0
L

E
U

V
E

N

64
 '

1
0

4

10
9

23
1

12

19
1

66

10
2

16
8

88

12
1

70

90

48

77

11
7

8
6

12

9
17

5
8

7

3
2

21

2
37

58

14

2
13

3
19

3
80

51

16

8
8

8

L
E

U
Z

E

12
8

n
\2

9

12
6

15
5

8
6

1
1

3
6

21

1
12

9
!9

7
te

!0

9

1
4

4

17
4

12
7

61

22
2

79

48

17
5

12
8

45

13
9

15
3

3
9

3

3

69

22
4

19
5

74

72

16
1

LI
EI

>E

51

2
6

'
17

2

2
9

'
8

9
•1

8
9

1
1

1
3

'!
3

2

19
5

11
8

l9

8
6

1
3

7

94

46

42

13
8

12
1

13
2

94

6
9

14

8
8

4

71

64

10
9

17
2

14
9

11
6

16
2

42

10
1

!O
J'

L
IE

R

22
7

26
9

26
 i

24
61

70

!9

1
33

5
89

32

1
22

2
20

4
17

6
31

3
25

1
21

7
32

2
13

6
12

5
29

9
2<

t8

14
1

26
5

27
7

19
5

!5
6

8

7

33
9

29
8

99

18
6

27
1

15
6

1
25

9
lU

X
E

M
B

U
R

G

8
8

11

8
18

4
T

n
:

1
4

4
,1

8
2

23

5
18

7
22

0
ll

7

!5
2

18

8
20

3
14

9
72

25

6
13

6
12

0
19

3
!5

7

10
3

16
8

17
2

41

8
7

12

7
25

3
22

3
13

2
10

1
18

9
5

!
11

6
21

4
M

A
A

S
E

IK

13
0

17
3

11
5

19
2

75

15
2

25
8

1
2

8

24
4

14
5

1
5

6

lS
I

22
1

17
4

11
4

29
9

97

60

22
2

18
6

29

2<
13

20

0
8

6

91

5
8

29

1
27

4
61

11

9
22

4
47

15

6
11

2
10

5
M

A
lM

E
D

'I

11
4

•
15

6
63

!3

6

43

8
7

22

2
8

5

20
8

10
9

91

9
8

20

0
13

8
1

\5

21
3

3
4

!8

16

6
13

5
92

15

2
15

9
10

3
49

45

22

4
19

8
20

9

8

14
8

64

14
8

11
3

12
2

6
J

M
A

R
C

H
E

42

3
0

'
24

22

4
74

19

3
98

11

3
18

0
10

9
24

71

12

2
8

8

31

4
6

12

9
10

2
11

7
82

5

4

14
0

65

6
6

6

8

8
4

17

$
13

4
10

1
14

3
23

8

6

10
7

IS

24
6

11
8

14
9

12
1

M
E

C
H

E
L

E
N

62

9
6

,
10

1
21

0
25

16

3
3

2

13
6

13
4

12
2

54

3
6

5

6

82

75

10
9

11
3

91

14
3

10
9

3
0

17

5
so

95

12

9
11

2
17

2
11

4
71

14

5
8

0

3
7

14

5
93

22

7
18

1
20

3
12

5
78

M

O
N

S

92

6
7

,
1

0
9

'
1

3
0

89

90

71

17

5
94

16

1
•2

44

7

9

13
8

91

6
8

16

6
28

63

13

9
8

8

10
0

ID
S

11
9

67

3
2

92

17

0
15

1
67

S

l
10

1
~·

8

9

1
6

0

10
8

12
3

47

74

8
0

N

A
M

U
R

94

16
9

21
7

3
6

19

2
28

12

0
24

9
3

7

26
3

11
15

12

9
12

4
25

8
19

3
17

5
26

2
74

72

24

2
19

0
13

2
18

4
22

0
!5

9

10
5

45

25
8

23
8

5
0

15

3
20

4
12

0·
 2

17

6
2

17

8
10

0
58

17

6
16

5
10

2
N

E
U

F
C

H
A

T
E

A
U

$
4

74

7

9

18
0

47

13
3

42

14
5

11
9

13
6

12

\5

66

93

61

8
7

1<

13

7
fl

10
6

10
9

3
3

\5

3

50

8
9

10

9
7

5

13
5

12
7

9f
l

11
0

5
4

59

10

8
71

20

3
15

9
15

8
9

0

56

3
8

43

\4

4

N
IV

E
L

L
E

S

98

1
5

3
1

1
2

6

29
S

11

3
27

5
16

0
21

27

9
24

12

3
!5

8

18
4

~

92

16
9

26

21
3

24
3

49

12
5

26
8

10
8

69

20
3

21
7

27
7

49

40

11
2

8
2

26

0
42

22

1
96

72

19

0
58

86

8

6

12
0

18

53

12
8

6
9

1-

iO

19
0

48

42

20
4

28

28

IS
O

12

5
22

2
61

0
3

'
11

5
12

0
13

9
61

12

1
24

18

3
78

17

2
73

26

3

3

13
8

10
2

11
6

16
9

29

79

15
6

70

14
3

10
6

12
8

11
5

75

10
8

75

99

11
4

20
8

38

19
4

27

14
9

1
.7

13

5
17

49

69

95

8

8

12
2

12
6

98

15
4

11
2

43

18
2

57

11
7

14
7

12
5

1
7

7
1

1
1

3

7
8

1
4

1

10
3

29
S

76

2

5
6

1
2

3

47

22
5

33

T
tl

1

2
1

1
4

7

32

8
0

1
5

7

2
2

1
7

$
2

2
8

48

8

9

25
6

72

4
9

1
8

5
1

9
7

24

9
23

44

10
6

94

23
8

30

22
0

8
4

90

18

8
7f

l
64

73

10

8
30

63

11

9
7

0

12
8

17
8

60

40

20
9

23

40

14
1

,.
,

20
7

62

46

8
0

8

5

19
5

25

17
7

48

12
7

15
1

12
7

3
8

3

0

72

74

59

93

11
3

8
5

13

0
93

14

18

9
31

73

11

5
9

7

17
15

10

5

•
•
•
w

M
m

•
•
•
~

r
n
~

r
n
•
m

-
•
•
m

m
~

m
•
~

~
·
-

57

2
5

2
1

4
9

1
0

1

2
2

1
'1

4
3

34

5
2

5
6

2
6

8

24
9

32

17
8

92

3
0

16

4·

97

29
0

19
7

21
1

15
8

13
3

8
3

9

9

90

Il
l

11
2

16
5

15
6

12
6

63

4
7

1
1

5
8

10

81
 2

3
6

1
1

9
4

1
2

0
0

1
1

3
2

2D

2
3

2
1

3
9

64

2

1
1

,1
1

3

32
5

2
«

1
2

5
8

21

2

3
3

1
8

2

90

1
8

1
6

4
,1

0
3

2

6
4

1
9

1
2

2
5

1
6

2

76

13
9

6
4

3

7

13
0

n
23

4
16

5
16

6
11

9

9
5

,1
7

5

12
8

18
5

25
9

15
9

I O
O

S
T

E
N

O
E

75

8
3

O

U
O

E
N

A
A

R
O

E

" "
91

16

5
25

0
12

2
37

47

14

7
10

4
R

O
E

S
E

L
A

R
E

92

5
2

11

7
20

2
65

8

5

12

10
8

8
5

48

R

O
N

S
E

62

16

6
5

15

9
22

13

9
5

6

5
6

29

91

43

S

O
IG

N
IE

S

14
9

8
6

25

13

8
21

13

20
8

8
7

15

6
23

4
18

fl

14
3

S
T

. H
U

B
E

R
T

19
8

\5
1

21
2

94

23
2

54

14
9

29
6

11
9

28
2

11
15

17

1
17

8
24

2
22

0
12

8
31

4
9

8

75

24
1

20
3

SO

2
2

0

22
1

10
7

1
0

8

3
7

30

6
27

8
62

16

5
23

1
68

17

7
91

13

3
21

82

17

0
20

7
12

9
8

2

17
2

28
9

24
7

Ti
l!:

t
22

U

29
4

24
2

19
4

1
9

::

;1
. v

n
n

JO

63

21

24

1
8

2

2D
I

12
4

9
5

20

!i
81

49

93

14

7
5

0

.1
7

79

10
0

13
9

15
0

56

62

17
3

5
7

33

99

11

7
20

3
ID

S
72

17

8
5

6

94

1
5

7
'

38

26
7

15
1

17
5

15
8

33

92

11
1

21
3

78

10
5

61

11
9

10
5

8
2

90

8

6

18
9

20
3

S
T

 N
IK

L
A

A
S

93

41

83

25

18
7

8
8

75

14

0
93

8

0

10
4

12
D

17

42

10

8
18

9
H

iO

10
1

3
7

12

5
35

67

1

9
5

5

8

8
2

91

60

11

2
SO

14

7
8

3

18
8

13
3

9
6

1

2
5

1'1

1
12

9
10

1
12

2
12

8
93

ST

.TR
U!

D~
fl.

95

28
1

91

41

21
2

18
9

3
3

20

6
19

2
67

61

62

29

1
26

2
62

10

7
21

8
3

S
,

13
7

13
1

8
6

19

57

13

0
18

2
9

3

12
2

14
3

27
1

23
1

12
0

19
5

21
18

22

9
17

8
8

7

40

18
3

8
3

S

P
A

19
3

12
8

17
9

1
2

t
21

3
66

13

5
28

1
15

1
26

7
IS

O

15
2

14
4

23
9

19
2

11
2

28
9

8
2

43

24

0
18

4
44

20

1
22

0
91

76

49

27

8
24

9
51

13

7
22

2
52

16

2
1

2
i

1-1
-D

15

48

16

o
18

8
10

8
94

13

8
29

9
22

6
11

1
:2

01

27
3

21
0

17
3

7
i

32

19
3

8
7

2

4

S
lA

.V
E

L
O

T

96

10
8

10
3

18
4

59

16
3

18

17
5

12
0

16
1

68

19

•2

12
1

95

99

14
7

74

12
4

15
8

64

15
8

81

12
6

11
2

95

15
3

14
1

10
5

12
8

9
2

68

12

8
10

5
22

3
!5

3

17
1

10
8

90

3
4

8

3

l.
tl

3

4

16
2

!O
J

•2

n
T

l9

8
6

4

0

13
2

17
0

10
2

9
5

16

5
17

1
T

H
U

IN

61

12
4

8
6

28

3
75

2~

3
12

9
4

4

24
7

30

)1

13
3

15
3

15

63

14
0

3
5

\8

1
21

6
31

75

23

4
5

8

32

16
2

16
5

2
4

5

40

21

22
0

11
7

6
3

18

9
96

31

3
21

2
23

6
2

0
0

M

97

15

3
2

5
0

11

0
50

3

3

15
9

11
0

17

45

8
8

23

1
25

7
IS

S
15

4
21

7
2

4
'

13
1

T
IE

lT

75

3
5

6

6

17
D

95

13

0
95

14

8
14

0
14

4
45

5

8

10
9

12
1

74

22

18
0

74

75

13
1

75

98

8
6

10

5
35

42

12

6
17

1
14

2
10

1
19

10

7
53

•
61

20

6
9

4

10
7

93

42

94

46

14
7

65

16
8

11
1

9
4

10

7
15

8
10

9
8

3

12
2

14
4

75

18

81

li
d

77

13

6
T

IE
N

E
N

11
3

58

10
4

14
5

13
3

10
5

14
0

11
16

1.

ta

18
2

83

9
6

14

5
15

9
11

2
42

20

9
8

3

67

16
0

11
3

64

12
4

14
0

20

3
7

8

8

20
9

18
0

93

5
7

14

5
19

84

17

5
5

0

8f
l

83

88

14
9

69

13
9

11
2

20
8

!5
3

11

2
14

6
19

6
14

7
12

1
11

4
94

I
ll

20

•1

11

13
2

17
4

3
8

T

O
N

G
E

R
E

N

80

14
5

10
7

31
5

98

28
1

15
0

3
4

25

2
20

11

0
15

4
1

7
.

3
6

84

16

1
21

20

9
24

1
45

10

6
25

3
8

9

53

18
3

19
7

26
4

31

33

28
3

13
6

8
4

20

8
12

4
34

1
23

3
2i

56

24
5

11
5

11
8

17
8

28
3

13
5

24

8
0

1

7
.

13
1

13

68

10
8

27
6

27
6

8f
l

17
5

24
7

27
5

15
2

21

15
7

1
9

5

T
O

R
H

O
U

T

81

12
1

12
6

24
5

29

22
7

78

8
4

20

1
10

79

8

0

10
0

81

94

13
4

6
9

!o

35

19
2

98

49

21
9

5
4

71

15

6
15

6
21

4
56

27

18

9
10

5
17

18

9
11

6
27

1
20

6
23

6
11

59

10
3

44

12
4

21
1

76

84

43

10
6

57

~7

31

5
4

20

2
25

3
10

4
15

8
22

6
23

2
78

48

12

<4

17
8

6
0

T

O
U

R
N

A
I

93

44

4
2

22

7
12

11

18
7

15
9

15
7

20
4

14
3

79

12
2

17
4

11
3

80

42

16
3

13
8

\4
2

11

9
10

9
14

8
12

~
96

65

10

9
19

0
18

8
13

5
16

8
8

0

14
1

1D
3

40

25
9

76

15
8

15
7

55

14
0

11
0

21
4

Il
l

16
8

13
7

15
8

15
3

14
5

14
7

11
7

18
9

17
2

63

8
7

13

7
16

3
14

1
12

8
64

8

4

14
8

15
8

T
U

R
N

H
O

lJ
T

•
•
•
•
•
~

-
-
-
m

~
~

-
m

•
•
~

~
-
m

g
-
•
•
•
n

•
•
•
•
m

~
w

~
•
•
•
~

~
-
~

~
~

•
m

m
w

•
•
•
•
•
•
•
•
•
-
~

·
-
-
-
~

~

11
2

18
8

l<
t&

31

2
11

8
27

2
18

3
.
,

28
3

50

14
2

16
7

18
7

66

11
4

19
7

16

21
4

2
"7

71

12

6
28

5
10

9
8

3

21
9

21
4

27
4

31

60

24
9

18
8

10
4

24
0

15
4

33
8

26
9

30
5

22
9

15
4

13
1

18
2

28
8

15
8

26

38

23
3

20
8

24
5

28

21
1

88

15
4

31
7

5
2

30

3
20

3
15

6
13

9
28

4
23

2
21

1
29

9
11

3
11

1
28

0
22

9
17

2
23

6
25

8
19

8
14

4
8

4

29
1

27
5

8
9

19

2
22

0
15

9
24

2
51

21

7
1

•5

95

23
1

H
I&

1•

1
3

9

18
3

26
2

12
7

14
4

15
6

10
4

15
4

21
9

13
7

20
5

10
6

12
7

18
2

16
2

13
5

84

23
0

97

66

18
3

13
6

47

1
•7

16

3
42

51

8

7

23
2

20
3

92

8
0

16

8
18

10

6
17

0
•7

55

62

11

0
16

3
8

3

13
2

13
7

J2
29

17

2
12

8
17

$
21

2
14

0
14

4
11

2
8

8

13
8

43

4
8

7:1

14

6
19

5
15

1
23

21

6
20

7
10

8
29

17

2
15

1
V

IS
E

492

Figure 3.25. Greedy/2-interchange tour oflength 1691 km.

Table 3.2.

Subtour 1. W = {1 2 3 11 15 16 25 31 33 34 36 37 39 52 53 54 56
59 60 63 67}

2. {4 22 35 55 64 66}
3. {4 35 66}
4. {22 55 64}
5. {1 2 3 11 15 16 25 31 33 34 36 39 53 54 59 60 63 67}
6. {4 47 50}
7. {2 16 25 31 33 36 54 59 60 67}
8. {2 16 63}
9. {5 14 21 23 29 32 40 45 47 48 49 50 58 61 62}

10. {5 14 21 23 29 32 40 45 47 49 50 58 62}
11. {2 16 25 31 33 36 54 59 60 63 67}
12. {12 43 57}
13. {17 28 65}
14. {25 33 36 54 59 60 67}
15. {5 8 10 14 17 20 21 23 24 28 29 32 44 45 48 49 58

61 62 65}
16. {5 8 10 14 17 20 21 23 24 28 29 32 40 44 45 47 48

49 50 58 61 62 65}
17. {25 33 36 54 60 67}
18. {22 37 55 56 64}
19. {22 37 52 55 56 64}

3. The Symmetric Traveling Salesman Problem 493

To find the optimal tour, we apply the FCP /branch-and-bound algorithm using subtour
elimination inequalities and the first option described above so that subtour elimination
constraints are only added at the initial node.

Phase 0. The initial LP problem with the degree constraints (3.4) and the upper-bound
constraints (3.8) has value zFM = 1571.5.

Phase 1. LP(81') is solved after adding 19 subtour elimination inequalities (3.5), with the
sets W given in Table 3.2. zLP = zMn = 1606.75.

Phase 2. t = 1. Branch-and-bound applied to LP(81') finds a tour of length 1615 at
node 22, a 2-matching oflength 1614 at node 37, and a 2-matching oflength 1613 at node
55, and then it terminates at node 78.

t = 2. Two subtour elimination constraints are added, with W = {1 15 53} and
w = {8 10 14 17 20 24 28 29 32 44 45 48 49 58 61 62 65}
eliminating the 2-matching solutions of length 1613 and 1614, respectively. Branch-and
bound is now applied with a cutoff of 1615; and the search terminates after 73 nodes, with
no solution of value less than 1615. Hence an optimal tour is of length 1615 (see
Figure 3.26).

Figure 3.26. Optimal tour oflength 1615 km.

494

Table 3.3.

11.6. Applications of Special-Purpose Algorithms

1-Tree relaxation
Fractional matching
Linear programming (Lagrangian 1-tree)
Optimal tour
Greedy + 2-interchange heuristic
Greedy heuristic
Nearest neighbor

1401
1571.5
1606.75
1615
1691
1805
2045

A smaller branch-and-bound tree would be obtained if the 1-tree Lagrangian relaxation
was used to obtain the bounds at each node. The subgradient algorithm was used to solve
the Lagrangian dual having value zMIT = 1606.75 at node 1. The length of the initial1-tree
with the multipliers at zero is zIT= 1401. Using an initial step-size of 5 and decreasing by a
factor of2 every N = 67 iterations, a bound exceeding 1600 was first obtained on iteration
197, a bound exceeding 1605 was obtained on iteration 276, and a bound of 1606.23 was
obtained on iteration 399. A summary of the bounds obtained is given in Table 3.3.

--20 h--/
2~ ~15I ,4

:39

1 31

45 23 •'. 11
21 •• •• : .. · :

---- Xe=l

-·- Xe='lil

--- Xe='l2

............ Xe=V•

Figure 3.27. zLr = zMIT = 1606.75.

4. Fixed-Charge Network Flow Problems

--- Xe=l

-·-Xe=:Y..

--- Xe=V2

•••••••••••• Xe= '14

63

3 ~--~
:··y' \

15 !'. 31 ~16
11 _(/

Figure 3.28. Length= 1609.75.

495

Finally we consider briefly the addition of2-matching and comb inequalities which are
found by inspection. The fractional solution to LP($), obtained by the addition of the
subtour elimination constraints, is shown in Figure 3.27. Inspection of the figure readily
reveals that at least four 2-matching inequalities are violated. Adding the inequalities with

1. H = {3 34 63}
2. H = {28 29 48}
3. H = {25 54 60}
4. H = {22 33 55 64 67}

£ = {(3 53), (34 39) , (16 63)}
£ = {(17 28), (29 62), (48 61)}
£ = {(25 36), (54 59), (33 60)}
£ = {(33 60), (55 56), (36 67)}

leads to the solution of value 1609.75 shown in Figure 3.28. It is left to the reader to find
further violated inequalities.

4. FIXED-CHARGE NETWORK FLOW PROBLEMS

So far in this chapter, we have considered classes of pure-integer programming problems.
Here we consider an important class of mixed-integer problems. The fixed-charge network
flow problem (FN) was formulated in Section 1.1.3 as

496 11.6. Applications of Special-Purpose Algorithms

(4.1)

min I cuxiJ + I hiJYiJ
(i,j)E.s4 (i,j)E.s4

(4.1a) L YiJ- L YJi = b; fori E V
JEo•(i) JE&-(i)

(4.1b) Yv~UiJXiJ for(i,j)E.stl

y ER~ 1 , x EB',st/1,

where g; = (V, .stl) is a digraph, J+(i) = U E V: (i,j) E .stl}, J-(i) = (j E V: U, i) E .stl}, b; is
the supply at node i, cu is the fixed cost of having flow on arc (i,j), hiJ is the variable cost
per unit of flow on arc (i, j), and u iJ is the capacity of arc (i, j). Recall that the difference
between FN and the linear minimum-cost flow problem is that in FN ifyiJ > 0, then the
cost of the flow is c iJ + hiJy iJ· This is achieved by the capacity constraints (4.1b), which force
Xu= 1 whenyiJ > 0.

A necessary condition for feasibility, assumed throughout this section, is :E;Ev b; = 0.
We also assume that ciJ;?; 0 for all (i,j) E .stl since if ciJ < 0, we can set xu= 1 and·eliminate
xu from the problem. Similarly, we assume that with respect to the hiJ there are no
negative-cost directed cycles. This assures that the objective function is bounded from
below.

Besides being an important model in its own right for a variety of network design
problems, several special cases of FN are of substantial interest. A simple way to obtain
special cases is to restrict the network structure (e.g., as in the transportation problem).

Another simplification concerns the capacity constraints. When uiJ is sufficiently
large-for instance, UiJ;?;-! :E;Ev 1 b; 1-there is no feasible flow with Yu > uiJ, and the
capacity constraint only serves to force the fixed cost to be included in the objective
function when the flow is positive. We call such problems uncapacitated and denote them
by(UFN).

Yet another important subclass of FN s are those in which 1 i E V: b; > 0 I = 1. We call
these problems single source (SFN) and use the notation (SUFN) for single-source
uncapacitated problems.

Several interesting problems can be modeled as SUFNs-for instance, the uncapaci
tated facility location problem (UFL) considered in Chapter II.5. Figure 4.1a gives the
digraph for a UFL with m = 2 and n = 3. The arcs joining the dummy node to the facility
nodes are uncapacitated and have only the fixed cost of opening the jth facility. The arcs
that join facility ito customerj are also uncapacitated and have the variable cost hu. Note
that since UFL is .N9Jl-hard, SUFN is .N9Jl-hard.

Another interesting SUFN is the Steiner r-branching problem. Given a subset D £ V, a
root r E D, and weights on the arcs, a Steiner r-branching is a minimum-weight branching
that spans D. Here fortherootnode rED weletb, = ID 1 - 1, b; = -1 fori ED\ {r}, and
b; = 0 fori E V \D. The objective function is accommodated by letting ciJ be the weight
of arc (i,j) and letting h;J = 0 for all (i,j). It then follows that feasible solutions without
directed cycles are branchings that span D (see Figure 4.1b). Note that when D = V we
obtain the minimum-weight directed r-branching problem (see Section III.3.5), and when
ID 1 = 2 we obtain the shortest-path problem (see Section 1.3.2). Although both of these
problems can be solved in polynomial time, the general Steiner branching problem is
.N9P-hard.

In several practical models, FN or special cases arise as subproblems. For example,
production planning problems frequently contain the uncapacitated lot-size problem,
which is an SUFN (see Figure 5.2 of Section 11.5.5). Thus algorithms based on Lagrangian
relaxations and techniques for solving FNs can be used to solve practical problems that are
FNs with additional constraints. This hierarchy ofFNs is displayed in Figure 4.2.

4. Fixed-Charge Network Flow Problems 497

Dummy D={l,3,4}

r= 1

Facilities

Customers

(a) (b)

Figure 4.1

In this section, we begin by mentioning briefly a standard branch-and-bound algorithm
for FN primarily to point out its advantages and limitations. We then propose an FCPA for
FN and apply it to the fixed-cost uncapacitated transportation problem.

Next we given another IP formulation for SFN and show that its linear programming
relaxation is stronger than the linear programming relaxation of (4.1). This formulation
simplifies for SUFNs, and we illustrate it with the Steiner branching problem and the
uncapacitated lot-size problem. In the case of the uncapacitated lot-size problem, this
serves as the basis for other reformulations, one of which is a shortest-path problem. The
shortest-path reformulation has been used in a linear programming relaxation of multi
item lot-size problems and appears to have the capability of solving quite large instances.

A Branch-and-Bound Algorithm for FN

An obvious way to solve (4.1) is by a branch-and-bound algorithm that uses linear
programming relaxations. An advantage of this approach is that the linear programming

Figure 4.2

498 11.6. Applications of Special-Purpose Algorithms

relaxation of(4.1) is a network flow problem. Network flow problems can be solved very
efficiently by, for instance, the network simplex algorithm (see Section 1.3.6). In addition,
several other parameters used in a branch-and-bound algorithm (e.g., penalties) are easy
to obtain from optimal basic solutions to network flow problems.

Proposition 4.1. The linear programming relaxation of FN is the network flow problem

(4.2) min{ 2: (hu + cu)Yu= (4.la), Yu ~ uu for (i,j) Ed, y E R~ 1 }.
(i,j)Ed Uij

Proof Replacing x E Blsfi1 by xu~ 1, the only constraints on xu are Yuluu ~xu~ 1.
Because cu;?; 0, there exists an optimal solution with xu= Yuluu. This substitution gives
the network flow problem (4.2). •

Unfortunately, the bounds obtained from these relaxations are frequently .very poor
primarily because they do not accurately represent the fixed costs. This is true, as we have
noted earlier, because if the optimal solution y has 0 < Yu < uu, then only the fraction
Yuluu of the fixed cost is included in the objective function. Another disadvantage of this
approach is its inflexibility in accommodating additional constraints. If the problem to be
solved has additional constraints, the network structure of the linear programming
relaxation will be destroyed unless another technique such as Lagrangian relaxation is
used.

An FCPA for FN

To improve the bounds obtained from the network flow relaxation and to accommodate
additional constraints within the scope of a linear programming relaxation, we now
consider an FCPA for FN that uses strong cutting planes.

We will use three classes of valid inequalities for FN. Observe first that for fixed i E V,
any solution of(4.1) satisfies

(i)

and

(ii)

Using the separation procedure described in Section 11.6.2, violated extended cover
inequalities can be generated from knapsack set (i) if bi > 0 and from (ii) if bi < 0.

Also observe that any solution of(4.1) satisfies

Replacing this equality by two inequalities gives sets having the form of the single-node
flow model introduced in Section 11.2.4. Thus to obtain the second and third types of
inequalities we consider the region

4. Fixed-Charge Network Flow Problems 499

wheren = iN+uN-1.
For the set ofT, we have derived the class of valid inequalities [see (4.4) of Section 11.2.4]

(4.4)

where C s;;: N+ is a dependent set (i.e., A.= I a.i- b > 0 and L s;;: N-).
jEC

These can be generalized to the following larger class of valid inequalities, called
generalized flow cover inequalities (GFC)

where C+ s;;: N+, c- s;;: N-, L s;;: N- \ c- and A.= 1:jec• a.i -1:jec- a.i - b > 0. We leave it as an
exercise to show that these are valid for T.

The separation problem for the family (4.5) is: Given a point (x*, y*), check whether for
any sets C+, c-, and L, inequality (4.5) is violated.

We let a E BIN~ be the characteristic vector of c+ s;;: N+ and let p E BW1 be the character
istic vector of c- s;;: N-. The definition of A. yields the equality knapsack constraint

(4.6) I a.ia.i - I a.iP.i = b +A., subject to A.> 0.
jEN' jeN-

The violation to be maximized is

where the last term is derived from the observation that for j E N- \ c-, any violation is
maximized by taking} E L if A.xj < yj and j E N- \ (c- U L) if A.xj > yj.

The resulting separation problem is the nonlinear integer program
max{(4. 7): (4.6), a E B1N1, p E B1N1). This problem is equivalent to solving the family of
equality knapsack problems

(4.8) ';. = max{(4.7): (4.6), a E BIN1, p E B'N1)

for all positive integral values of A.. Hence we have shown the following:

Proposition 4.2. An inequality of the form (4.5) with A.= A.*> 0 is violated by the point
(x*, y*) if and only if';.· > 0.

Unfortunately, there are two difficulties with this separation problem. Equality knap
sack problems are hard to solve, and the function ';.is not well behaved as a function of A..
Therefore we look for a heuristic solution to the problem of choosing the sets c+ and c- for
which inequality (4.5) is niost violated by (x*,y*). As a first step we consider a subclass of
the inequalities in which L = N- \ c-, and then we relax these inequalities by reducing the
term (a.i- A.t (1 - Xj) to (a.i -A.) (1 -xi). The resulting valid inequalities are

500 11.6. Applications of Special-Purpose Algorithms

(4.9) I [y1 + (a1 - ,1,) (1 - x1)] ~ b + I a1 + I ..tx1.
~~ ~~ ~~~

Finding the sets c+ and c- for which (4.9) is most violated is still not computationally
easy, so we take a second heuristic step which is to work with an upper bound on the
violation for any set c+, c- in (4.9).

Because y1 ~ a1x1 for all), an upper bound on the violation of (4.9) is obtained by
replacing yjby the possibly larger value a1xj. This gives the upper bound

I [a1xj + (a1 - ,1,) (1 - xj)] - b - I a1 - I ..txj.
jEC' jE~ jEN-\C-

Substituting b = LJEC' a1 - LJE~ a1 - ,1, and canceling terms, the upper bound on the
violation of(4.9) is equal to

..t[-I (1-xj)+Ixj-(I xj-1)]·
;EC' ;EC- ;EN-

To find the maximum value of this upper bound, we solve the knapsack problem

~ = max{ I (xj- 1)a1 + I xjP1}
jEN' jEN-

(4.10) L a1a1 - I a1P1 > b
jEN')EN-

We now know that if some inequality (4.9) is violated, then ..t[~- (LJEN- xj- 1)], which is
an upper bound on the value of the violation, must be positive.

Proposition 4.3. A necessary condition for the violation of an inequality of the form (4.9)
is ~ > LJEN- xl- 1. This condition is also sufficient if Yl= aJXlfor all j E c+, where C is
determined by an optimal solution to (4.10).

The above discussion leads to the following heuristic separation algorithm for general
ized flow cover inequalities.

Separation Algorithm for Generalized Flow Cover Inequalities

Step 1: Solve the knapsack problem (4.10) exactly or approximately to obtain an optimal
or "near-optimal" pair c+, c-.

Step 2: Given c+ and c-, test whether (x*, y*) violates the inequality (4.5), where for
j EN-\ c- we put) E L if ..txj < yjandj EN-\ (L U c-) otherwise.

Note that even if ~ < LJEN- xj- 1, the inequality (4.5) may be violated because our
arguments have been based on approximations to the violation of (4.5).

Example 4.1. Consider the mixed 0-1 constraint

4. Fixed-Charge Network Flow Problems 501

with Y1 ~ 6500, Y1 E Rl, x E B3, and the point (y7, xi, x!, x:) = (6500 0 1 0.296). We can
rewrite the above constraints in the form of a single-node variable upper-bound set T:

with the additional constraints x1 = 1, Yz = 2250xz, y3 = 4500x3, Y4 = 6750x4.
Applying the heuristic separation algorithm for generalized flow cover inequalities

(4.5), we obtain the knapsack problem (4.10):

~=max Oa1 + OPz + 1P3 + 0.296P4

6500al- 2250Pz- 4500P3- 6750P4 > o
aEB1, PEB3

with optimal solution a 1 = 1, P3 = 1, and ~ = 1.
With c+ = {1} and c- = {3}, we have A= 2000 and L = {2, 4}, and the resulting inequal

ity (4.5) is

y 1 + (6500- 2000) (1 - x1) ~ 0 + 4500 + 2000xz + 2000x4;

or, using the additional constraint x 1 = 1, we obtain

Y1 ~ 4500 + 2000xz + 2000x4,

which is violated by (x*, y*).
Note that because~> I.J~z xj- 1 = 0.296, the necessary condition of Proposition 4.3 is,

in fact, satisfied. Since YT is at its upper bound, the sufficient condition also happens to
hold.

Valid inequalities of the third class are called extended GFCs and are of the form

(4.11) ~ b + I aj- I min{A, [aj- (a- A)J+} (1 - xj)
jec- jec-

+ I max{A, aj - (a- A)}xj + I Yh
jEL- jEN-\(C-uL -)

where a= maxjec+ ah aj = max(a, aj), L + <;; N+ \ C+, and L- <;; N- \ c-, and we require
a~ A> o.

We do not develop a separation routine for the extended GFCs. Instead we use the sets
c+ and c- derived in the separation routine for GFCs, together with sets L + and L
constructed by

and

L- = {j EN-\ c-: max{A, aj- (a- A)}xj < yj},

to find a violated inequality of the form (4.11).

502 11.6. Applications of Special-Purpose Algorithms

In summary, for each constraint (4.1a) of (4.1), we try to find violated extended cover
inequalities, GFCs, and extended GFCs as indicated above. Note that since sets of the
form T given by (4.3) arise in relaxations of general mixed 0-1 programs (see Section
II.2.4), the FCPA can be used to generate violated inequalities for general mixed 0-1
models.

We now illustrate the FCPA by applying it to the fixed-charge uncapacitated transporta
tion problem.

Solving a Fixed-Charge Uncapacitated Transportation Problem by an FCPA and
Branch-and-Bound

For a transportation problem we obtain V = (V 1 U V2), and all arcs are directed from V 1 to
V2• Hence (4.1) simplifies to

min I I hiJYiJ + I I ciJxiJ
iEV1 jEV, iEV1 jEV,

I Yii = b; fori E V1
jEV,

I YiJ = d1 for j E V2
iEV1

where uiJ = min(b;, dj) for i E V1 and} E Vz; V1 = {1, ... , m}; Vz = {1, ... , n}; and
L;EV, b; = LjEV, dj.

The initial linear programming relaxation LP1 is obtained by replacing the integrality
constraints by 0 ~ xiJ ~ 1 fori E Vt.i E V2• Note that LP1 is a transportation problem
with hij = hiJ + ciJ/uiJ because we can set xiJ = YiJ/uiJ fori E V1 andj E V2• However, once
cutting planes are added we no longer have a transportation problem.

In the cutting-plane part of the algorithm we add three types of cuts:

Step a: Extended cover inequalities are obtained from the knapsack sets

I UijXij ~ I Uij- b;, (x;l' ... 'x;n) E sn fori E VI
jEV2 jEV2

and

where xij = 1 - XiJ. These constraints are obtained from

I uiJxu;;:. b; and I uuxu;;:. d1•
jEV2 iEV1

Steps b and c: GFC and extended GFC flow inequalities are obtained from the following
sets of inequalities:

(i) I Yu ~ b;, Yu ~ uuxu forj E Vz,
jEV,

fori E V1

4. Fixed-Charge Network Flow Problems 503

(ii) - L Yu ~ -b;, Yu ~ UuXu for} E v2, fori E V1
jEV2

(iii) L Yu ~ dh Yu ~ uuxu fori E V1, for} E V2
iEV1

(iv) - L Yu ~ -dh Yu ~ uuxu fori E V1, for} E V2.
iEV1

Example 4.2. We solve the instance of the fixed-charge uncapacitated transportation
problem given by the following data:

m =4, n=6

c69 0.64 0.71 0.79 1.70 283)
(hu) = ~:~~ 0.75 0.88 0.59 1.50 2.63

1.06 1.08 0.64 1.22 2.37
1.94 1.50 1.56 1.22 1.98 1.98

c
16 18 17 10 20

) 14 17 17 13 15 13
(cu) = 12 13 20 17 13 15

16 19 16 11 15 12

b = (45 35 20 15), d = (35 30 25 15 5 5).

Phase I

Iteration 1: zLP = 185.6. The corresponding solution is shown in Figure 4.3, where
(yU, xb) is indicated for each edge.

Figure 4.3

504 11.6. Applications of Special-Purpose Algorithms

Applying the separation routine at source row 1, we combine the constraint

Yu + Y12 + Yl3 + Yl4 + Y1s + Y16 = 45

with the variable upper-bound constraints Yn.:;;;; 35xn, Y12.:;;;; 30xl2• y13.:;;;; 25x13, Yl4.:;;;;
15xl4• Y1s.:;;;; 5xls, and Y16.:;;;; 5xl6 to obtain

35xn + 30xl2 + 25xl3 + 15xl4 + 5xls + 5xl6 ~ 45,

which is the knapsack inequality

The separation routine for extended cover inequalities with x'= (0 0.67 1 1 1 1) then
gives a violated constraint

or

Similarly, from source rows 2, 3, and 4, we obtain the violated inequalities

X31 + X32 + X33 + X34 ~ 1

X41 + X42 + X43 + X44 ~ 1

and from demand row 2, we obtain the violated inequality

~1.

6 5

Figure 4.4

4. Fixed-Charge Network Flow Problems 505

Iteration 2: After addition of the above constraints and reoptimizing the linear program,
we obtain ZLP = 198.67 and the solution shown in Figure 4.4.

Now the knapsack inequality

35x2l + 30x22 + 25x23 + 15x24 + 5x2s + 5x26 ~ 35

(x21, ... , x26) E B6

yields the violated cover inequality

Also, in Step b the set

Y21 + Y22 + · · · + Y26 ~ 35,

Y21 ~ 35x2~> Y22 ~ 30x22, Y23 ~ 25x23,

Y24 ~ 15x24' Y2s ~ 5x2s, Y26 ~ 5x26

yields the violated GFC inequality (4.5)

Y21 + Y22 ~ 30 + 5x2~>

which is obtained with C = {1,2} and c- = 0.

Iterations 3 and 4: We obtain ZLP = 200.4. The cuts (4.11)

Y22 + Y23 + Y24 ~ 20 + l0x22 + 5x23 + l0x24

and

Y21 + Y22 + Y23 + Y24 ~ 20 + 15x2l + l0x22 + 5x23 + 10x24

are both derived from source row 2, the first with C = {2, 3}, c- = 0, L + = {4}, and
L- = 0 and the second with c+ = {2, 3}, c- = 0, L + = {1, 4}, and L- = 0.

Iteration 5: The lower bound increases to ztp = 200.61. On Iteration 5 no more cuts are
generated, so the cut generation phase terminates.

Phase 2. Branch-and-bound is now applied. The solution shown in Figure 4.5 is found at
node 3, and it is proved to be optimal at node 5. Its cost is 202.35.

If the problem is solved directly by branch-and-bound, a tree containing 129 nodes is
needed to prove optimality.

For larger fixed-charge transportation problems, this FCPA is often successful in
substantially increasing the lower bounds obtained from the linear programming relaxa
tion. However, it remains an open question to find and develop separation algorithms for
other classes of valid inequalities that will make it possible to obtain lower bounds that are
reliably close to the optimal cost.

506 11.6. Applications of Special-Purpose Algorithms

35

30

25

15

5

5

Figure 4.5

A Reformulation of the Single Source Problem (SFN)

The idea of the reformulation is to decompose the flows by destination. We suppose that
node 1 is the source and let U = {k E V: bk < 0}. Thus b1 = LkEu lbk 1. Now let zuk be the
flow in arc (i,j) destined for node k E U. The reformulation of(4.1) is

min I hiJYiJ + I cuxu
(i,j)Ed (i,j)Ed

(4.12a) I zuk - I ziik = 0 for i E V \ {1, k} and k E U
)Ec5'(i) jEJ-(i)

(4.12b) - I Zjkk = bk for k E U
jEJ-(k)

(4.12) (4.12c) zuk-min(I bk I, uu)xu ~0 for (i, j) E .sli and k E U

(4.12d) I Zijk- YiJ =0 for (i, j) E .sli
kEU

YiJ- UijXij ~0 for (i, j) E .sli

z ER~IIUI, yERI'/1, xEBidl.

The important difference between (4.12) and (4.1) is the upper-bound constraints
zuk ~ lbk lxiJ, which, for fractional X;Jo can restrict the flows more than Yu ~ uuxu can.

Proposition 4.4. For SFN, the optimal cost of the linear programming relaxation of
formulation (4.12) is not less than the optimal cost of the linear programming relaxation of
formulation (4.1). and it may be strictly greater.

Proof By summing the constraints (4.12a), (4.12b) over k for fixed i, we see that if z iJk
is feasible in (4.12), then Yu = LkEU Z;Jk is feasible in (4.1). It follows that every solution
(zijk> yij, xij) to the linear programming relaxation of (4.12) gives rise to a feasible solution
ofthe linear programming relaxation of(4.1).

Example 4.3 shows that the linear programming relaxation of(4.12) can yield a larger
lower bound, and thus it completes the proof. •

4. Fixed-Charge Network Flow Problems 507

Example 4.3. The graph and data are shown in Figure 4.6.
An optimal solution to the linear programming relaxation of (4.1) is x 12 = x 13 =

!, Xz3 = 0, Y12 = YD = 1, Yz3 = 0 with cost~- An optimal solution to the linear programming
relaxation of (4.12) is X12 = Xz3 = 1, x 13 = 0, Y12 = 2, Yz3 = 1, y 13 = 0 with cost 4. Note that
the constraint z 133 ~ x 13 makes it infeasible to have x 12 = x 13 = 1: and y 13 = 1.

Thus from the point of view ofbounds, (4.12) is preferable to (4.1). However, (4.12) has
one major disadvantage-its size-which makes it impractical for all but very small
problems. Benders' decomposition sometimes provides a way around this problem. We
will illustrate this approach with the Steiner branching problem.

For uncapacitated single-source problems, the reformulation (4.12) can be simplified
because the variables Yu can be eliminated. Thus for SUFNs we obtain the reformulation

(4.13)

min{ I I huz;jk + I cuxu: (4.12a), (4.12b),
kEU (i,j)Esfi (i,j)Ed

ZiJk- bkxiJ ~ 0 for (i,j) Ed and k E U, z E Rlf'IIUI, x E Bldl}·

Proposition 4.5. Formulation (4.13) is stronger than the formulation (4.1) for SUFNs.

Steiner Branchings

We now consider the formulation (4.13) for the Steiner r-branching problem that we
defined at the beginning of the section. Recall that we want to find a minimum-weight
r-branchingon a subset ofnodesD 5; V. Let r = 1 and U = D \ {1}. The formulation (4.13)
yields the constraints for each k E U:

(4.14)

for i E U \ {k} and k E U

fork E U

zuk ~xu for (i,j) Ed and k E U

z E Rlf'IIUI, x E Bldl.

Figure 4.6. The c;1 appear on each arc; uu = 2 and hu = 0 for (i, j) E s/1.

508 11.6. Applications of Special-Purpose Algorithms

Observe that if we fix x, say x = x, (4.14) decomposes into 1 U 1 separate feasibility
problems. The kth problem is to determine whether there exists a feasible flow of one unit
from node 1 to node k with arc capacities:Xij. By the max-flow-min-cut theorem of Section
1.3.4, such a flow exists if and only if :Eies :EjeV\s Xij;;;;. 1 for all S with 1 E S, and
k E V \ S. Hence if Benders' decomposition is applied to the linear programming
relaxation of(4.14), the resulting master problem is

min I CijXij
(i,j)Ed

I Xij;;;;. 1 for all s £ v with 1 E S, (V \ S) n u =I= 0
(i,j)eo•(S)

which states that every cutset having 1 E S and (V \ S) n U =1= 0 has weight at least 1. For
x E B1J41 this is precisely the requirement that the subgraph induced by the arcs with x ij = 1
contains a !-branching that spans the nodes of D.

Reformulations ofthe Uncapacitated Lot-Size Problem (ULS)

We first introduced the uncapacitated lot-size problem (ULS) in Section 1.1.5 using the
formulation

(4.15)

T

min I (PtYt + htst + CtXt)
1=1

Y1 =dl +S1

St-1 + Yt = dt + s, fort = 2, ... , T

fort= 1, ... , T

Sr= 0

s,yERr, xEBr,

and then we reformulated it as an uncapacitated facility location problem.
We let S s R!T denote the set of feasible solutions to (4.15). In Section 11.2.4 we

described the convex hull of S, and in Section 11.5.5 we gave an O(T'l) dynamic
programming algorithm for solving ULS. Here we take a different point of view. We
assume that ULS is part of a more complicated problem. For example, we can add
capacity constraints on the productions or inventories or assume that the actual problem
to be solved involves several items. In this case, the model contains a copy ofULS for each
product, and they are linked together by capacity constraints.

Our objective is to solve the complicated model by a linear-programming/branch-and
bound algorithm. Thus it is important that a tight formulation ofULS, with respect to the
bounds obtained from linear programming relaxation, be used in the overall model. One
possibility is to use the description of conv(S) given in Section 11.2.4. However, since this
description contains an exponential number of constraints, an FCPA will be required.

Here we consider some other options that are derived from the SUFN formulation
(4.13) on the network of Figure 5.2 of Section 11.5.5 (see Figure 4.7).

4. Fixed-Charge Network Flow Problems 509

Figure 4.7

To obtain the formulation (4.13), we introduce variables YJk equal to the amount
produced in period) to satisfy demand in period k and s1k equal to the stock at the end of
period j destined for period k. This yields

(4.16a)

(4.16) (4.16b)

T T T-1 T-1 T

min I I PJYJk + I I s1k + I c1x 1
)=1 k=j)=1 k=j+1)=1

Sj-1,k + YJk = Sjk for all j and k > j

for all k

To simplify the presentation we will not bother to explicitly state the constraints y 11 = d1

and Y1k = s1k fork> 1, and we assume dk > 0 fork= 1, ... , T.
Now we use s1k = L)=1 Y;k to eliminate the inventory variables from the objective

function <;1nd constraints. This yields

(4.17)

T T T

min I I (PJ + hi + · · · + hk-1)YJk + I CJXJ
)=1 k=))=1

fork= 1, ... , T

YJk ~ dkxJ for all) and k ~ j

y E RI<T+1)12 , X E BT.

Since s1k ~ 0 are implied by Yii ~ 0, no other conditions are needed. Note that (4.17) is
precisely the formulation (5.5) given in Section 1.1.5. As noted there, we obtain a
formulation ofULS as an uncapacitated facility location problem by letting w1k = YJk!dk

for all) and k for which YJk is defined. This yields

510

(4.18) (4.18a)

(4.18b)

11.6. Applications of Special-Purpose Algorithms

T T T

min I I (p1 + h 1 + · · · + hk-l)dkwJk +I c1x1
J~l k~J)~I

k

I w1k = 1 for k = 1, ... , T
J~l

w1k ~xi for all} and k ~ j

wE RI(T+I)/2, X E BT.

Now if we were to solve the formulation (4.18), the original variables Yt.S 1 fort = 1, ... ,
T would be obtained from

T T

Yt =I Ytk =I dkwJk
k~t k~t

(4.19)
T T t T t

St = I Stk = I IY;k = I I dkwik·
k~t+l k~t+l i~l k~l+l i~l

The observation we need to make is that corresponding to any feasible solution in the
original variables (s, y, x) there can be an infinity of feasible solutions in the variables
(w, x) with the same cost. For example, corresponding to the solution shown in Figure 4.8,
we note that x 1 = x 2 = 1, x3 = 0, w" = 1, W12 = W23 = ~. W13 = W22 = 1- ~ is a feasible
solution to (4.17) of cost c1 + c2 + 2p 1 + p 2 + h 1 + h 2 for any~~ 0.

We claim that we will still have a valid formulation of ULS by adding the constraints

(4.20) w1r ~ w1,r-1 ~ · · · ~ w11 for j = 1, ... , T- 1

to (4.18). In other words, we claim that the formulation

(4.21) (4.21a)

(4.21b)

is valid for ULS.

T T T

min I I (p1 + h 1 + · · · + hk-l)dkwJk +I CJXJ
j~l k~J J~l

k

I w1k = 1 for k = 1, ... , T
J~l

wJr ~ wJ,T-1 ~ · · · ~ w 11 ~ x1 for j = 1, ... , T

w E RI(T+I)/2, X E BT.

To establish this claim, note that we have already shown in Section 11.5.5 that every
extreme point of conv(S) is of the following form: For some subset {i 1, ••• , i,} c:; {1, ... ,
n} with 1 = i 1 < i 2 < · · · < i, we obtain

X;,= 1 for l = 1, ... , r, x1 E {0, 1} otherwise

i/+!-1

Y;, = I dt, y1 = 0 otherwise.
t=ij

Using (4.19), this corresponds to a feasible solution (x, w) of(4.21) with the same values of
x1 for j = 1, ... , T, and with w;,1 = 1 fort= i 1, ••• , i 1+1 -1 and l = 1, ... , r and Wu = 0
otherwise.

4. Fixed-Charge Network Flow Problems 511

Figure 4.8

Now let Q(QLP) be the image in (y, s, x)-space under transformation (4.19) of the points
(w, x) feasible in (4.21) [the linear programming relaxation of (4.21)]. The above discus
sion shows that:

Proposition 4.6. S = Q (and conv(S) s QLP)o

Our interest in (4.21) arises from a final formulation ofULS as a minimum-weight path
problem. Fork = 2, ... , T, we subtract the (k - I)st constraint from the kth constraint in
(4.21a). This leads to the T- 1 constraints

(4.22)
k-1

wkk- I (wj 0k-l - wjk) = 0 fork= 2, ... , T.
j~l

Now define Zjk = Wjk - wjok+l ~ 0 for 1 ,;;;;; j ,;;;;; k < T, and define zjT = wjT ~ 0 for j = 1,
0 •• , T. Then wkk = r.T::,k zk1, and we obtain the reformulation

(4.23a) = 1

k-1 T

(4.23) (4.23b) -I zj
0
k-l +I Zkt = 0 fork= 2,. 0. , T

j~l l~k

(4.23c) ,;;;;; 0 fork = 1, ... , T

where (4.23c) comes from wkk,;;;;; Xk for all k.
If ck ~ 0, then in the linear programming relaxation of(4.23) we can take (4o23c) as an

equality. Substituting this equality into (4.23a) and (4.23b) yields

512

(4.24)

(4.24a)

(4.24b)

(4.24c)

11.6. Applications of Special-Purpose Algorithms

= 1
k-1

-I zj,k-1 + xk = 0 fork = 2, ... , T
j~1

T

I zkt - xk = 0 fork= 1, ... , T.
t~k

Now observe that by constructing a digraph with node set { 1, ... , T + 1, 1', ... , T'}
and by letting Xk be the flow from k to k' and letting Zjk be the flow from}' to k + 1, then
(4.24b) and (4.24c) are the flow conservation equations at nodes k = 2, ... , T and at
nodes k = 1', ... , T', respectively. See Figure 4.9 for T = 3.

Moreover, if ck < 0 we can set Xk = 1, and (4.23c) is superfluous. In terms of the graph,
the arc corresponding to xk is deleted, and the nodes k and k' are coalesced.

Proposition 4.7. The linear programming relaxations o/(4.21) and (4.23) have optimal
solutions with x E BT for any objective function (p, h, c).

An important consequence of Propositions 4.6 and 4. 7 concerns the polyhedron QLP
representing the set of feasible solutions to the linear programming relaxation of(4.21) in
terms of the original variables. ·

Theorem 4.8. QLP = conv(S).

Proof We show that QLP ~ conv(S). If not, let (y*, s*, x*) obtained from
(y*, s*, x*, w*) be an extreme point of QLP that is not in conv(S). There exists an objective
function (p, h, c) for which (y*, s*, x*) is the unique optimal solution to
min{py + hs +ex: (y, s, x) E QLp}. But this implies that (x*, w*) is a feasible solution to
(4.21) whose objective value is less than that of any point (x, w) corresponding to an
extreme point of conv(S). Thus x* $. B T, which contradicts Proposition 4. 7. Hence QLP ~

conv(S). QLP 2 conv(S) was shown in Proposition 4.6. •

It can be shown that Proposition 4.7 also holds for formulation (4.18). Thus we can
conclude that the corresponding version of Theorem 4.8 holds for formulation (4.18).

We now consider the problem stated at the beginning of this section of choosing a
formulation to embed in a more complicated model. To formalize the problem, we wish to
solve

(4.25) z' = min{py + hs +ex: (y, s, x) E S n P'},

where P' ~ R!T represents the set of complicating constraints. For each of the three
models (4.18), (4.21), (4.23), it is easy to represent the constraints of P' in terms of the new

Figure 4.9

5. Applications of Basis Reduction

Table 4.1.

Formulation

(4.18) and (4.21)
(4.23)
(4.15) & conv(S)

513

Number of variables Number of constraints

variables, so we then obtain three reformulations of problem (4.25). The values of their
respective linear programming relaxations are denoted by zLp for i = 1, 2, 3.

For each of these formulations we are interested in two things, namely, the tightness of
the linear programming relaxation and the size of the formulation. Considering the
bounds first, we have, by Theorem 4.8 and the identical result for formulation (4.18), the
following proposition:

Proposition 4.9. zl_p = min{py + hs +ex: (y, s, x) E conv(S) n P'}for i = 1, 2, 3.

Hence each of the formulations is as tight as it can be made without studying the
structure of the complicating constraints P'. Therefore to choose among the formulations
we turn to the question of size, and we consider the number of variables and constraints in
each formulation (see Table 4.1). The last formulation shown in Table 4.1 is to add the
facet-defining inequalities described in Section 11.2.4 to the formulation (4.15) of ULS.

The figures in the table suggest that a model based on (4.23) significantly dominates
formulations (4.18) and (4.21) with respect to the number of constraints. Recently,
problems with 200 items and T = 10 periods have been solved by a standard linear
programming/branch-and-bound algorithm using reformulation (4.23).

The last formulation, which involves only O(T) variables but an exponential number
of constraints, might be competitive with (4.23) using an FCP algorithm because the
number of facet-defining inequalities needed at an optimal extreme point is bounded by
the number of variables.

5. APPLICATIONS OF BASIS REDUCTION

The use of basis reduction in lattices is new to integer programming. To indicate its
potential, we outline two applications. The first is a simple heuristic algorithm to find a
feasible solution to a 0-1 equality knapsack constraint. The second is an algorithm for
integer programming that is polynomial for fixed n. Although this is an important
theoretical result, the algorithm is not practical. The result has, however, motivated the
application ofbasis reduction techniques to a variety of problems.

The Subset Sum Problem

Here we consider the .N':?P-hard problem of finding a feasible solution to a 0-1 knapsack
equality constraint:

(5.1)
n

I ajxj =M,
j~I

This problem is of particular interest in cryptography where problems of the form (5.1) are
constructed to have a unique solution that corresponds to a message to be transmitted.
In such a system the coefficients aj for j EN are public information, the message

514 11.6. Applications of Special-Purpose Algorithms

transmitted is M, and the problem (5.1) must have "very large" coefficients and be
"impossible" to solve, except by the receiver who knows a trick for any M.

Here we describe a fast heuristic algorithm for (5.1), which uses the reduced basis
algorithm of Section 1.7.5. Let

c 1 = (I 0)
-a M'

where a = (a I. ... , an) and I is then x n identity matrix. Consider the lattice L(C 1) s Rn+l

given by {v E zn+l: v = C 1y, y E zn+l}. Now observe that if X E Bn is a feasible solution to
(5.1), then

is an element of the lattice. Moreover, v 1 is a short vector in L(C 1) because il v 1 11 :S; n vz,
which is much smaller than the bound given in Theorem 5.5 of Section 1.7 .5.

In addition, by setting x1 = 1 - x1 for j = 1, ... , n and by treating

n n

2: a1x1 = M' = 2: a1 - M,
J~l J~l

similarly, we see that v2 = @ is a short vector in the associated lattice L(C2), where

Now min(llv 1ll, llv2 11) :S; (n/2)lf2•

The idea of the algorithm is that if v; is a very short, and possibly the shortest, vector in
L(C) for i = 1 or 2, there is a good chance that it will appear in a reduced basis for L(C;).
Thus it suffices to check whether the reduced basis contains a vector of the form(±;) with
xEBn.

The Reduced Basis Algorithm to Find a Solution of (5.1)
Step 1: Consider the lattice L(C 1) s Rn+l, where C1 is the matrix given above.
Step 2: Find a reduced basis ir of L(C).
Step 3: Check if 13* contains a column of the form(±~') with x 1 E Bn. If so, stop. x 1 solves

(5.1).
Step 4: Repeat Steps 1 to 3 with C replaced by C2• If a vector x 2 E Bn is found, 1 - x 2

solves (5.1). Otherwise, stop. No solution has been found.

The reduced basis algorithm has a very high probability of finding a feasible solution
for certain classes of knapsack problems. We define the density d(a) of a set of weights
(ab ... 'an) by

d(a)= .,-------,-----n------,-
log(max1 aJf

5. Applications of Basis Reduction 515

It can be shown, under appropriate distribution assumptions, that there exist constants
a and p such that:

a. For "nearly all" feasible instances (5.1) with d(a) <a, (5.1) has a unique solution
x E Bn; this solution is the shortest nonzero vector in L(C).

b. For "nearly all" feasible instances with d(a) < P/n, the reduced basis algorithm
finds a solution.

The proof of statement b is demonstrated by showing that all other vectors in the lattice
L(C) are much longer than v1 = (~). In particular, if llwll ~ 2"-1llv 1ll for all
wE L(C) \ {0, v1}, then we know by Theorem 5.5(iii) of Section 1.7.5 that ±v 1 is in the
reduced basis.

The Linear Inequality Integer Feasibility Problem

Here we outline an algorithm for the linear inequality integer feasibility problem

(5.2) Find x E P n zn or show P n zn = 0,

where P = {x E R": Ax~ b} and n is fixed. From Section 1.5.4, it can be assumed that if
p * 0 there exists WA,b such that IXJ I ~ WA,b for some X E p n zn.

The algorithm is essentially enumerative. If we could show, for all x E P, that lx1 1 ~ y
where y is any function polynomial in log BA,b, where BA,b is the largest coefficient in (A, b),
then we would immediately obtain a polynomial algorithm by enumerating the (2y + lY
points with IXj I ~ y and X E zn. Since the bound WA,b is not polynomial in log eA,b, this
simple approach does not work. However, by using a reduced basis it is possible to obtain
a polynomial-time enumeration algorithm.

The first important concept in the algorithm is the idea of a family of polytopes being
"round". Let S(p, r) be ann-dimensional sphere with center p and radius r.

Definition 5.1. A family of full-dimensional polytopes in Rn is round if there exist a
function c I such that for each p in the family, there exist rationals p E R n' r' q E R l such
that

i. S(p, r) s; P s; S(p, q) and
ii. qjr ~ c1•

To motivate the algorithm, let us first consider the solution of problem (5.2) for a full
dimensional and round family of polytopes. Here we will see that straightforward
enumeration is polynomial. There are two cases to be considered, as demonstrated in
Figure 5.1.

Case 1. r ~ ~n 112• In this case, the unit hypercube with center pis contained in S(p, r) and
hence in P. Now let p* be a closest integer point top; that is, p1 = [p1j + jj for j EN,
pj= [PJJ ifjj ~ ~' andpj= [p1j + 1 otherwise. Thenp* E P n zn, and hence (5.2) is solved.

516 11.6. Applications of Special-Purpose Algorithms

• • • •
•

• • • • • •
p

• • ~s;,,, •
• • • • •

• • • • • •
• • • • •

(a) (b)

Figure 5 .1. (a) Case I: The closest integer point p* top is feasible. (b) Case 2. Enumerate the integer points in
S(p, q).

Case 2. r < ~ nlf2• In this case, q < ~n 1 1 2 c 1 • But now because P ~ S(p, q), we have that if
X E P, then

for all). Thus total enumeration gives a polynomial algorithm for fixed n.

Now we indicate how for any polytope P, we can find a linear transformation
K: Rn ... Rn depending on P such that the transformed family of polytopes {K(P)} is round.
For simplicity, we consider only the case of full-dimensional polytopes.

Using linear programming and Gaussian elimination, we start by finding n + 1 affinely
independent extreme points {vi}7~o of P. The convex hull of n + 1 affinely independent
points in R" is called ann-simplex. Thus, {v0, v1, ••• , v"} is ann-simplex Q ~ P.

Next we find a "large" n-simplex Q' ~ P. In particular, for each i = 0, 1, ... , n, we
attempt tO find a new extreme point Vi of p SO that the Simplex {v0, V1, ••• , Vi-I, Vi, Vi+l,

... , v"} has a volume more than 50% larger than that of Q. To do this, for each i we find
the facet nix= ai of the simplex opposite the vertex vi. We find ni ERn by using Gaussian
elimination to solve the linear system nivi = ai for all j * i. We then solve the linear
program max{nix: x E P} whose optimal solution is vi.

If I nivi- ai I > ~ 1 nivi- ai 1, we replace vi by vi and start again with a larger simplex. If
not, we replace ni by -ni and resolve the linear program. Every time the simplex changes,
its volume increases by at least 50% (see Figure 5.2a). Thus the number oflinear programs
that need to be solved cannot be too large. We stop when no change occurs for any i = 0,
1, ... , n. The final simplex Q' = {v0, v 1, ••• , vn} is a "large" simplex within P. Further
more, we know that Plies inside a polytope with no more than 2n + 2 facets, namely, the
polytope

(see Figure 5.2.b).

5. Applications of Basis Reduction 517

(a)

e d

(b)

Now a linear transformation K can be found so that K(Q') becomes a regular
n-simplex. Clearly K(Q') ~ K(P) ~ K(P*).

What has been achieved? Taking p = [1/(n + 1)] ~?=0 K(vi), we can construct a hyper
sphere S(p, r) inside K(Q'). K(P*) has no more than 2n + 2 facets, so its vertices can be
computed, and we can construct a hypersphere S(p, q) containing K(P*). Hence
S(p, r) ~ K(P) ~ S(p, q). Simple calculations give that qfr < kn 312 for some constant k.
Figure 5.3 shows Figure 5.2 after the transformation K; it also shows the spheres S(p, r)
andS(p, q).

Although many technical details have been omitted, we have motivated the result that
the family of all n-dimensional polytopes can be made round by a suitable linear
transformation.

Proposition 5.1. There exists a constant c1 such that for any n-dimensional polytope
P = {x ERn: Ax =:;; b}, there exists a rational nonsingular matrix K and rationals
p ERn, r E R.!. and q E R.!. such that K(P) = {y ERn: AK- 1y =:;; b} satisfies

i. S(p, r) ~ K(P) ~ S(p, q) and

ii. qfr =:;; c 1•

K(fl

K(e)

Figure 5.3

518 11.6. Applications of Special-Purpose Algorithms

The initial problem (5.2) has now been transformed to the problem

(5.3) Find a vector y E K(P) n L(K),

where L(K} is the lattice with basis K. In addition, we have rationals p, q, and r such that i
and ii of Proposition 5.1 hold. This resembles the earlier situation in that we have a family
of polytopes that is round, but now L(K) has replaced zn.

The second transformation we introduce involves finding a reduced basis B for the
lattice L(K). Problem (5.2) is now equivalent to the problem

(5.4) Find a vector y E K(P) n L(B).

The geometry for n = 2 is shown in Figure 5.4, where S(p, r) s;;; K(P) s;;; S(p, q) and the
points of the lattice L(B) are given.

We will now show how (5.4) can be solved by enumeration in polynomial time. As
before, the algorithm breaks up into the case where r is large and the case where ·r is small.
Previously when r was large, we used rounding to find a lattice point "close" top. Now we
will use a simple construction underlying the proof of the following proposition.

Proposition 5.2. Given a lattice L(B) and p ERn, there exists z E L(B) such that
liz- Pii 2 ~ ~L.f..t llbjll 2.

We now consider the two cases of r large and small. Without loss of generality we
assume that the columns of Bare ordered so that maxj=t ,n llbjll = llbnll·

•

•
0 bl

Figure 5.4. Note that 0 denotes points of L(B).

5. Applications of Basis Reduction 519

Case 1. Ifr;::: 1nl!2llbnll, apply Proposition 5.2 to find a pointy E L(B) such that

n

IIY- Pll 2 .5 ± L llbjll 2 .5 ±nllbnll 2•
j~l

Since

it follows that y E S(p, r) ~ K(P). Therefore y E K(P) n L(K), and x = K-1 y is feasible in
(5.2).

Case 2. If r < 1n1!2llbnll, we will show that it is possible to enumerate in the direc
tion of bn and only test feasibility for a polynomial number of points. Let L n-I = L(b h ... ,
b n-I), and let H"-1 be the associated subspace. We let h denote the distance from b n to H"-1.
By Definition 5.2 of Section 1.7.5, we have det B = h det(b1, ... , bn-I). Since B is a
reduced basis, we know from Theorem 5.5iii of that section that

n
llllbjll .5 2n(n-!)14d(L) = 2n(n-!)l4h det(bl, ... , bn-I),

j~l

and we know from Hadamard's inequality that det(bh ... , bn-I) .5 ITJ:i llbjll. Therefore,
by canceling terms we obtain

Nowobservethatify E L(B)withy = Bz,z E Z", theny = yn-I + bnzn,Zn E 2 1, where
yn-! E L n-!, and hence y E Hn-! + bnZn for some Zn E 2 1. Hn-! + bnZn, Zn E 2 1, is a family
of hyperplanes separated by a distance h. The number y of such hyperplanes that can
intersect S(p, q) is no more than 2qjh + 1 (see Figure 5.5).

~ --........._ S(p, q)

/ ~
I \
I \

• p

\ J Hn-1 +2bn

~}h

""'
/ Hn-1+bn

~ / Hn-1

Hn-l-bn

Figure 5.5

520 11.6. Applications of Special-Purpose Algorithms

We now have that y s 2q/h + 1 and q/r s c1 because K(P) is round, h ;;::: llbnll2-n(n-I)/4

because the basis is reduced, and r < ~n 112 llbnll by assumption. Thus we have

2q 2r nlf2llb II
Y - 1 <- <- cl < n cl < nlf2c12n(n-1)/4 -h-h - h - .

Therefore it is possible to enumerate over these y possible values of z E Z 1, and each of the
resulting problems reduces to finding an integer point in a polytope whose dimension is no
greater than n - 1.

In integer programming terms we have shown that

So we have outlined a basic inductive step. Either P is not full-dimensional, or we find a
point in P n zn, or we reduce to a polynomial number of similar problems in n - 1
variables. It can be verified that for fixed n, all the steps indicated above can be carried out
in time that is polynomial in the input length. Hence, we obtain Lenstra's theorem:

Theorem 5.3. For fixed n, there is a polynomial algorithm for the linear inequality integer
feasibility problem (5.2).

Using bisection on the objective function value and the bounds given in Theorem 4.1 of
Section 1.5.4, Theorem 5.3 leads immediately to a result for integer programs.

Theorem 5.4. For fixed n, there is a polynomial algorithm for the integer programming
problem.

Another immediate consequence of Theorem 5.3 is:

Theorem 5.5. For fixed m, there is a polynomial algorithm for the linear inequality
integer feasibility problem (5.2) and for the integer programming problem.

Proof If m ;;::: n, the claim is immediate. If m < n, we find the Hermite normal form
of A given by (H, 0) = AC. This can be done in polynomial time (see Section 1.7.4). Now
if y = c-1x, then {x: Ax s b, x E zn} * 0 if and only if {y: ACy s b, y E zn} * 0.
Hence the problem is reduced to the feasibility problem for {u E zm: Hu s b }, where
u = (y~, ... , Ym). Thus by Theorems 5.3 and 5.4 the claim follows. •

6. NOTES

Section 11.6.1

The dynamic programming recursion (1.2) and the asymptotic properties given in
Propositions 1.1 and 1.2 appeared in Gilmore and Gomory (1966); also see Shapiro and
Wagner (1967).

The superadditive dual algorithm is due to Johnson (1973, 1980b).

6. Notes 521

The heuristic analysis presented here also applies with some small variations to the 0-1
knapsack problem, and the references cited analyze either the integer or 0-1 knapsack
problem or both. Sahni (1975) combined the greedy heuristic with enumeration to obtain
a polynomial approximation scheme for the knapsack problem. Ibarra and Kim (1975)
used scaling to obtain a fully polynomial approximation scheme. The scaling/rounding
heuristic is due to Lawler (1979). By adding the rounding feature, Lawler improved the
running time of Ibarra and Kim's heuristic by a multiplicative factor of epsilon. A
different fully polynomial approximation scheme for the 0-1 knapsack problem was given
by Magazine and Oguz (1981).

Gomory (1965) gave a dynamic programming algorithm for solving the group problem.
Shortest-path algorithms for the group problem were given by Shapiro (1968a), Glover
(1969), and Hu (1970). A comparison of algorithms for solving the group problem was
presented by Chen and Zionts (1976).

Shapiro (1968b) used the group problem and branch-and-bound to obtain an algorithm
for general pure-integer programs [also see Garry and Shapiro (1971), Garry, Shapiro, and
Wolsey (1972), and Crowder and Johnson (1973)]. An extensive computational study with
this type of algorithm was carried out by Garry, Northup, and Shapiro (1973). A shortest
path enumeration scheme was described in general terms by Lawler (1972) and was
developed in the context of the group/branch-and-bound algorithm by Wolsey (1973).

The increasing group algorithm is a variant of an algorithm of Bell and Shapiro (1977).
Shapiro (1971), Fisher and Shapiro (1974), Bell and Fisher (1975), and Fisher, Northup,

and Shapiro (1975) investigated how the group theoretic and Lagrangian dual approaches
can be combined to solve general integer programs.

Kolesar (1967) gave one of the first branch-and-bound algorithms for the 0-1 knapsack
problem. The computational efficiency of the basic algorithm has been improved by
many researchers who have refined the node selection, branching and pruning rules, the
variable fixing tests, and the method of solving the linear programming relaxation [see,
among others, lngargiola and Karsh (1973), Fayard and Plateau (1975, 1982), Lauriere
(1978), Suhl (1978), and Balas and Zemel (1980)]. The presentation given here is largely
based on the article by Lauriere (1978). Martello and Toth (1979) have given a comprehen
sive survey of methodology and an empirical comparison of algorithms. Another survey
was given by Salkin and de Kluyver (1975).

Despite the excellent empirical results that have been obtained in solving knapsack
problems by branch-and-bound, there are difficult families of knapsack problems for
which any branch-and-bound algorithm with linear programming relaxations will enu
merate an exponential number of nodes of the search tree [see Chvatal (1980)].

Some of the approaches and results for knapsack problems have been generalized to
deal with problems having more than one knapsack-type constraint (i.e., the multidimen
sional knapsack problem). Polynomial approximation schemes have been obtained by
Chandra et al. (1976) and Frieze and Clarke (1984). However, the problem of finding a
fully polynomial approximation scheme for the multidimensional knapsack problem is
.N2P-hard. Korte and Schrader (1980) showed this for the 0-1 problem, and Magazine and
Chern (1984) obtained the result for bounded and unbounded integer variables. Various
practical heuristics have been proposed and evaluated [see, e.g., Loulou and Michaelides
(1979), and Martello and Toth (1981b)]. Martello and Toth (1981a) also have given a
branch-and-bound algorithm.

There have also been many studies of the knapsack problem with general upper-bound
constraints including heuristics, branch-and-bound algorithms, and efficient methods for
solving the linear programming relaxation [see Frieze (1976), Sinha and Zoltners (1979),
Zemel (1980, 1984), Johnson and Padberg (1981), and Dyer (1984)].

522 11.6. Applications of Special-Purpose Algorithms

Section 11.6.2

The heuristic for BIP, called pivot and complement, is due to Balas and Martin (1980).
The FCP/branch-and-bound algorithm is from Crowder, Johnson and Padberg (1983)

[also see Johnson and Padberg (1983), Johnson, Kostreva, and Suhl (1985), and Hoffman
and Padberg (1985)]. The algorithm has been implemented in the mathematical program
ming systems PIPEX ofiBM, MPSARX ofScicon, and XMP ofMarsten (1981). Example
2.4 is a test problem from Crowder et al. (1983), and the results were obtained using the
MPSARX system [see Van Roy and Wolsey (1987)].

Earlier approaches for solving BIPs emphasized implicit enumeration [see Balas (1965),
Geoffrion (1967), and Petersen (1967)]. This type of algorithm was improved by the
addition of surrogate constraints [see Balas (1967), Glover (1968c), and Geoffrion (1969)].
Spielberg (1979) gave a survey of these algorithms.

Specialized versions of the implicit enumeration approach have been used to solve set
partitioning and -covering problems [see Pierce (1968), Garfinkel and Nemhauser (1969),
Pierce and Lasky (1973), and Marsten (1974)].

Several implicit enumeration and branch-and-bound algorithms for set-covering and
-partitioning problems have incorporated special techniques fqr solving the linear pro
gramming relaxation and tightening it. Etcheberry (1977) gave an implicit enumeration
algorithm that uses Lagrangian relaxation and subgradient optimization. Nemhauser,
Trotter, and Nauss (1974) used a combinatorial relaxation based on finding a minimum
weight chain decomposition in a partially ordered set. This relaxation can be solved as a
network flow problem. Combined with Lagrangian duality to accommodate side con
straints, it yields the same bound as the linear programming relaxation. Nemhauser and
Weber (1979) used a weighted matching problem relaxation that, when combined with
Lagrangian duality to accommodate side constraints, yields a tighter bound than the linear
programming relaxation. Ali and Thiagarajan (1986) reformulated the set-covering prob
lem as a network flow problem with side constraints. Again, Lagrangian duality is used to
accommodate the side constraints. This relaxation yields a bound equal to the bound
obtained from the linear programming relaxation. Marsten and Shepardson (1981) gave a
linear programming based branch-and-bound algorithm.

Fulkerson, Nemhauser, and Trotter (1974) gave a family of set-covering problems
arising in the statistical design of experiments that are difficult to solve. Avis (1980) showed
that these problems cannot be solved in polynomial time by branch-and-bound algo
rithms that use linear programming relaxations.

Some work has been done on using Gomory cuts to solve covering and partitioning
problems [see, e.g., Balinski and Quandt (1964) and Salkin and Koncal (1973)]. Other
cutting-plane approaches have been investigated by Bellmore and Ratliff(1971) and Balas
(1980). Balas' cutting-plane approach, which is based on conditional bounds, has been
implemented into an algorithm that also uses heuristics and subgradient optimization [see
Balas and Ho (1980)].

Another approach to solving the set-partitioning problem uses Proposition 2.1. Balas
and Padberg (1972, 1975) have given an algorithm that starts with an integer feasible
solution and then uses pivoting to obtain a sequence of integer solutions of increasing
weight which terminates with an optimal solution. The sequence is short, and its length is
bounded by m, but exponential time may be required to find the appropriate pivots. Ikura
and Nemhauser (1985) extended these ideas on pivoting from an integer solution to an
adjacent one. For the set-packing problem, they showed that starting with any integer
feasible solution and an associated unimodular basis matrix (see Section III.1.2), there
exists a short sequence of primal simplex pivots, where each pivot element equals 1, to an

6. Notes 523

optimal solution. This result also applies to set partitioning since, as shown by Lemke et al.
(1971), by a linear transformation ofthe weight vector, a set-partitioning problem can be
reformulated as either a set-packing or a set-covering problem.

Heuristics have been used to obtain good solutions to very large set-covering problems
[see Baker (1981) and Baker and Fisher (1981)]. Worst-case analyses of the bounds between
heuristic, optimal, and dual solutions have been given by Lovasz (1975), Chvatal (1979),
Dobson (1982), Fisher and Wolsey (1982), Hochbaum (1982), and Wolsey (1982a). The
analysis of the greedy heuristic given here comes from Fisher and Wolsey.

Crew-scheduling problems have been a fertile application area for set-covering and
-partitioning models [see Arabeyre et al. (1969) and Marsten and Shepardson (1981)].

Theorem 2. 7 is due to Nemhauser and Trotter (1975). They used this result to develop a
branch-and-bound algorithm for the node-packing problem. This property has been
studied further by Picard and Queyranne (1977). Grimmett and Pulleyblank (1985)
showed that in large random graphs, LNP with a cardinality objective function is very
unlikely to have an optimal solution with any of the variables equal to an integer.

Nemhauser and Sigismondi (1988) gave an FCP /branch-and-bound algorithm for node
and set packing. The algorithm uses classes of facets for the convex hull of node packings
[see Padberg (1973, 1975a, 1977), Nemhauser and Trotter (1974), and Trotter (1975)].

Facets of the convex hull of set covers have been studied by Sassano (1985), Balas and
Ng (1985), and Cornuejols and Sassano (1986).

The literature on packing and covering problems for which the polyhedron of the linear
programming relaxation has only integer extreme points will be presented in the notes for
Chapter Ill. I.

Surveys on covering and partitioning problems have been given by Garfinkel and
Nemhauser (1972b), Christofides and Korman (1975), Balas and Padberg (1976), and
Padberg (1979). An annotated bibliography on combinatorial aspects of packing and
covering was given by Trotter (1985).

Section 11.6.3
All of the material presented in this section and much more can be found in the collection
of survey articles on the traveling salesman problem, edited by Lawler, Lenstra, Rinnooy
Kan, and Shmoys [LLRS (1985)].

Although the section treats the symmetric traveling salesman problem (STSP), many of
the articles cited here deal with the slightly more general asymmetric problem (ATSP)
that is, the problem on a directed graph. We generally do not distinguish between these two
versions in the citations and just use the acronym TSP.

As we have observed previously, the linear programming relaxation of (3.3)-(3.5) was
introduced by Dantzig, Fulkerson, and Johnson (1954). The integer 2-matching or
assignment problem relaxation was used by Eastman (1958) and Little et al. (1963).
Although this is the weakest of our bounds, Balas and Toth (1985) reported a statistical
experiment with 400 randomly generated problems in which the ratio of the cost of an
optimal assignment solution to the cost of an optimal TSP solution is 99.2%. A modified
assignment problem relaxation that tends to avoid the difficulty of creating numerous
small subtours was given by Jonker, Deleve et al. (1980). Bellmore and Malone (1971)
introduced the 2-matching relaxation. A tighter relaxation is the 2-matching problem
where triangles are excluded. Cornuejols and Pulleyblank (1982, 1983) gave a polynomial
time algorithm for the integer 2-matching problem where triangles are excluded. They also

524 11.6. Applications of Special-Purpose Algorithms

showed that the problem of finding 2-matchings with no circuits of size 5 or smaller is
.Ng}l-hard [also see Cornuejols, Naddef, and Pulleyblank (1983)].

Held and Karp (1970, 1971) introduced the 1-tree relaxation and, by combining it with a
Lagrangian relaxation with respect to the degree constraints, arrived at the relaxation
(3.11). Related work on this approach was done by Christofides (1970) and Helbig-Hansen
and Krarup (1974). Balas and Christofides (1981) used the 2-matching relaxation in
conjunction with a Lagrangian relaxation with respect to the subtour elimination con
straints to obtain the relaxation (3.13).

The tightest relaxations have been used by Padberg and Grotschel (1985) and Padberg
and Rinaldi (1987a,b). Their cutting-plane algorithms use the degree constraints, all of the
active subtour elimination constraints, and some 2-matching and comb inequalities.

The LLRS collection of articles contains three surveys on the analysis of heuristics for
the TSP: empirical analysis by Golden and Stewart (1985), worst-case analysis by Johnson
and Papadimitriou (1985b), and probabilistic analysis by Karp and Steele (1985) [also see
Golden et al. (1980)].

Interchange heuristics for the TSP were developed by Croes (1958), Lin (1965), and Lin
and Kernighan (1973). The k-interchange heuristic of Lin and Kernighan, where k varies
by iteration, has proved to be very powerful. It is, however, much more complicated than
using k = 2 or 3 and repeating the procedure from several initial tours. An alternative way
of using an interchange heuristic is to combine it with simulated annealing [see Bonomi
and Lutton (1984)].

Insertion procedures were introduced by Clarke and Wright (1964). Some rules for
choosing the next node to insert and where to insert it are described by Rosenkrantz et al.
(1977) and Norback and Love (1979).

Several composite heuristics that begin with a tour construction procedure followed by
an interchange procedure were investigated by Golden and Stewart (1985). They also
discussed the statistical comparison of heuristics.

Karp (1972) proved that determining whether an arbitrary graph contains a Hamil
tonian circuit is .N'g}l-complete. Subsequently, many special cases have been shown to be
.Ng}l-complete [see Johnson and Papadimitriou (1985a) for a survey of these results]. Sahni
and Gonzales (1976) proved Proposition 3.2.

Papadimitriou and Steiglitz (1977, 1978) have analyzed the worst-case behavior of
interchange algorithms. They have shown that, ifg> * .Ng>, interchange algorithms whose
neighborhood search time is polynomially bounded cannot be guaranteed to find an
optimal solution, even with an exponential number of iterations.

Rosenkrantz et al. (1977) have analyzed the worst-case behavior of several tour
construction heuristics for TSPs that satisfy the triangle inequality. The spanning-tree/
perfect-matching heuristic and Theorem 3.6 are due to Christofides (1975b). Cornuejols
and Nemhauser (1978) showed that this bound is tight.

Fisher, Nemhauser, and Wolsey (1979) gave worst-case bounds for several heuristics for
the maximum-weight Hamiltonian circuit problem; and Jonker, Kaas, and Volgenant
(1980) gave data-dependent bounds for the general TSP. Frieze, Galbiati, and Maffioli
(1982) analyzed the worst-case performance of some algorithms for the ATSP. Much more
information on the worst-case analysis of heuristics for the TSP is contained in Johnson
and Papadimitriou (1985b).

The probabilistic analysis of TSP algorithms was surveyed by Karp and Steele. Karp
gave two polynomial-time algorithms that asymptotically have a very high probability of
finding an optimal solution. The first algorithm, by Karp (1977) [also see Halton and
Terada (1982)], is for random euclidean problems on ad-dimensional cube. (Originally,
Karp considered random points on a unit square.) The idea of the algorithm is to divide

6. Notes 525

the square into a large number of very small subsquares. On each subsquare the problem
can solved for an optimal solution in polynomial time. Finally, the small cycles are
assembled into a tour. The second algorithm, by Karp (1979) and Karp and Steele (1985),
deals with the ATSP with costs taken from the uniform distribution. Here the idea is to
solve the assignment problem relaxation and then to patch the subtours together.

Surveys ofbranch-and-bound algorithms for the traveling salesman problem have been
presented by Carpento and Toth (1980) and Balas and Toth (1985). The branching rule
shown in Figure 3.16 is due to Garfinkel (1973). Cutting-plane/branch-and-bound algo
rithms for the TSP were initiated by Dantzig, Fulkerson, and Johnson (1954, 1959).
Systematic algorithms of this type were developed by Miliotis (1976, 1978), Padberg and
Hong (1980), Crowder and Padberg (1980), Grotschel (1980a), Padberg and Grotschel
(1985), and Pad berg and Rinaldi (1987a,b). The Padberg-Grotschel article surveyed these
results and reported computational experience. The Padberg-Hong algorithm uses primal
cutting planes; the other algorithms are FCPAs of the type described in this section. The
Padberg-Rinaldi FCPA has solved a 2,392-city problem to optimality.

The separation algorithm for subtour elimination constraints is due to Gomory and Hu
(1961). The shrinking procedure illustrated in Figure 3.23 is taken from Padberg and
Grotschel (1985). Padberg and Rao (1982) have given a polynomial-time separation
algorithm for 2-matching inequalities. In particular, they have shown that the separation
problem is a minimum odd-cut problem (see Section III.3.7).

An interactive computer package with various TSP heuristics and exact algorithms has
been developed by Boyd et al. (1987).

Some very restricted families ofTSPs can be solved in polynomial time. An application
of this type of result appeared in Ratliff and Rosenthal (1983), and a survey of these results
was given by Gilmore et al. (1985).

A generalization of the traveling salesman problem is the vehicle routing problem in
which there are k salesmen located at a given city, and each must choose a subtour so that
all cities are covered. Bodin et al. (1983), Christofides (1985a,b), and Golden and Assad
(1986) surveyed results on this problem. Cullen et al. (1981) presented an approach that
formulates routing problems as set-partitioning problems. Also see Laporte et al. (1985),
Fisher, Greenfield et al. (1982), and Kolen et al. (1987).

Another generalization is the quadratic assignment problem [see Burkhard (1984) for a
survey of this topic].

Section 11.6.4

The fixed-charge network flow problem belongs to a family of problems known as
network design problems. Magnanti and Wong (1984) gave a survey of models and
algorithms in this area, and Wong (1985) gave an annotated bibliography. A Benders'
decomposition approach to network design has been given by Magnanti et al. (1986), and
a heuristic approach has been given by Lin (1975).

A branch-and-bound algorithm of the type described can be found in Barret al. (1981)
[also see Cabot and Erenguc (1984), Guignard (1982), MacKeown (1981), Neebe and Rao
(1983), and Suhl (1985)].

The generalized flow cover inequalities (see the notes for Section II.2.4) and their
separation heuristics come from Padberg, Van Roy, and Wolsey (1985), Van Roy and
Wolsey (1986, 1987), and Wolsey (1987).

Example 4.2 is problem 2 from Gray (1971). The results were obtained using MPSARX.
The multicommodity reformulation is part of the folklore. It can be found explicitly in

Rardin and Choe (1979).

526 11.6. Applications of Special-Purpose Algorithms

Algorithms for finding optimal Steiner trees and branchings appeared in Shore et al.
(1982), Beasley (1984), Wong (1984), and Prodon et al. (1985).

Reformulations of the lot-size problem were discussed in Sections 1.1.5 and 11.5.5. The
shortest-path reformulation given here is due to Eppen and Martin (1988), and our
development is based on Pochet and Wolsey (1988) [also see Martin (1987)]. Versions of
Theorem 4.8 appeared in Rosling (1983) and Barany et al. (1984).

The idea of introducing auxiliary variables to tighten a formulation has recently
attracted considerable attention. Balas and Pulleyblank (1983) gave an example, like the
lot-size problem, where the convex hull of solutions has an exponential number offacets,
but the enlarged system contains a polynomial number of constraints and variables.
Martin (1984) discussed how a dynamic programming algorithm can be used to derive a
tight formulation with auxiliary variables, and in Martin (1987) it is observed how a linear
programming separation algorithm also leads to a reformulation with auxiliary variables.

Section 11.6.5

The feasibility algorithm for the subset sum problem is due to Lagarios and Odlyzko
(1985). Frieze (1986) gave simpler proofs of these results. Related results have been
obtained by Furst and Kannan (1987).

See Lenstra (1984) for a general discussion of integer programming and cryptography.
The polynomial-time algorithm for the integer feasibility problem for fixed n is due to

Lenstra (1983) [also see Kannan (1983)]. Earlier results for n = 2 were obtained by Kannan
(1980) and Scarf (1981a,b). Rubin (1985) gave a polynomial-time algorithm for
m x (m + 1) integer programs.

7. EXERCISES

1. Solve the knapsack problem

max 18xt + 7x2 + 5x3 + X4

9xt + 4x2 + 3x3 + 2x4 ~ b

xEZ!

by dynamic programming for all values of b from 1 to 100.

2. Prove Proposition 1.2.

3. Apply the superadditive dual algorithm to the instance in exercise 1 with b = 16.

4. i) Suggest other superadditive functions to be used in the superadditive dual
algorithm.

ii) Interpret the dynamic programming algorithm as a superadditive dual algo
rithm.

5. Use the SR heuristic to find a solution to the knapsack problem:

max 537xt + 636x2 + 849x3 + 712x4 + 834xs + 219x6 + 832x?

924x1 + 1123x2 + 1501x3 + 1402x4 + 1579x5 + 498x6 + 1649x7 ~ 23,762

xEz:,
which is within 1% of optimal.

7. Exercises

6. Solve the integer program (see exercise 13 of section 11.1.9)

max 2xt + Sx2

4xt + x2:::; 28

Xt + 4x2:::; 27

i) by the shortest-path enumeration algorithm and

ii) by the increasing group algorithm.

527

7. Describe a fully polynomial approximation scheme based on a scaling/rounding
heuristic for the 0-1 knapsack problem.

8. Solve the 0-1 knapsack problem

max 43xt + 41x2 + 27x3 + 32x4 + 15x5 + 50x6 + 19x7 + 2lxs

20xt + I9xz + 14x3 + 16x4 + 7xs + 28x6 + 12x7 + 14xs :::; 61

xEB8

by the branch-and-bound algorithm of Section l.

9. For the 0-1 knapsack problem,

i) propose a neighborhood search algorithm,

ii) propose a simulated annealing algorithm, and

iii) suggest alternative neighborhoods for use in i and ii.

10. Consider the 0-l knapsack problems with cja1 =constant for all} EN. Why might
these be difficult? Suggest a way to solve such problems.

11. Propose heuristic algorithms for the 0-l multidimensional knapsack problem

max{ I c1x1: I aux1 :::; b; for i EM, x E Bn},
jEN jEN

where au E Z~ for all i E M,j EN.

12. Describe an efficient algorithm for the linear programming relaxation of the
multiple-choice knapsack problem

L Xj :::; 1 for i E J+ U 1-
jEQ;

where r n /- = 0, Q; n Qk = 0 fori * k, and N = uiE/'U/- Q;.

528 11.6. Applications of Special-Purpose Algorithms

13. Apply the simplex-based heuristic BIP to the following problems.

i) max 9xl + 2x2- 3x3

4x 1 + x2 - 5x3 :::::: 1

4x 1 - 2x2 + 6x3 :::::: 7

x EB3;

ii) the covering problem min{lx: Ax~ 1, x E B9}, where

I
z
0
I

1
0

14. Let S = {x E B6: 40x 1 + 40x2 + 35x3 + 35x4 + 15x5 + 15x6 :::;; 100}. Find violated
inequalities for S that cut off

i) Xa = (1 ~ 0 ~ ~ 1),

1 1 1 1
3 3 3 1).

15. Apply the FCP/branch-and-bound algorithm to the problem

max 43xl + l0x2 + 18x3 + 12x4 + 36xs + 22x6

12xl + 2x2 + 3x3 + 2x4 + 4xs + 3x6 :::;; 20

3xl + 8x2 + 12x3 + 13x4 + 20xs + 14x6 :::;; 36

xEB 6•

16. In Section 11.2.2 the extended cover inequalities

2.: X;:::;; I c I - 1
}EE(C)

were defined for 0-1 knapsack problems. Formulate the separation problem for
extended cover inequalities and propose a heuristic algorithm to solve it.

17. Let

i) Show that x 1 + X2 + X4 + x 5 + x 6 :::;; 2 is a valid inequality.

ii) Find a valid inequality that cuts off x* = (0 0 ~ 0).

iii) Formulate the separation problem for the families of valid inequalities in
exercise 9 of Section 11.2.6.

7. Exercises 529

18. Consider the set S = S n {x E Bn: ex s c0} with S = {x E Bn: Ax ~ b }. Given t
inequalities LjeQ. Xj ~ 1 fork = 1, ... , t, suppose there exists v E R~ such that

I

I vkscj forjEN and I vk>Co.
(k:Q.3j) k~J

Show the following:

i) If x E S, then for some k E {1, ... , t}, we have xj = 0 fQr allj E Qk (i.e., at least
one of the t inequalities is violated by every point xES).

ii) If S = {x E Bn: LjeN, Xj ~ 1 fori EM}, then for any subset {i(1), ... , i(t)} of M,

is a valid inequality for S.

' I Xj ~ 1
jE .'-;!, (Ni!k)\Qk)

iii) Apply these observations to the covering problem with an additional constraint

Derive the valid inequalities x 1 s 0 and X4 ~ 1.

19. Apply the greedy heuristic to the set-covering problem

+ Xs ~

+ Xs ~

What lower bounds on the optimal value are given by the heuristic? Can you derive
stronger lower bounds?

20. Prove Proposition 2.4.

21. Show that the bound of Theorem 2.5 can be achieved asymptotically.

22. Solve the weighted node-packing problem on the graph shown in Figure 7.1

530 11.6. Applications of Special-Purpose Algorithms

4 4

1 3

Figure 7.1

i) by solving LNP and fixing variables,

ii) by adding cuts of the type discussed Section 11.2.1.

23. Show that LNP can be solved as an assignment problem.

24. Find a minimum road distance tour of the midwest visiting each city exactly once
and returning to the city from which you started. Distances are in tens of miles
(revised since Chapter 1.3):

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

2 3 4 5 6 7 8 9 10

Chicago 92 99 50 41 79 46 29 50 70
Dallas 78 49 94 21 64 63 42 37
Denver 60 84 61 54 86 76 51
Kansas City 45 35 20 26 17 20
Minneapolis 80 36 55 59 64
Oklahoma City 46 50 29 16
Omaha 45 37 30
St. Louis 21 45
Springfield (Mo.) 25
Wichita

i) Use any method that you like, but you must prove optimality of your solution.
Your grade will be decreasing function of the length of your proof.

ii) Calculate as many of the bounds given in Figure 3.7 as possible.

iii) Test the primal heuristics given in Section 3.

iv) Solve by an FCP algorithm.

25. Some other heuristic algorithms for the symmetric traveling salesman problem
include:

i) Furthest insertion.

ii) Sweep. Locate an "origin" in the center of the map, and then denote each city by
its rectangular coordinates (r, B). Order the cities by increasing e.

Apply them to the examples in Section 3.

26. Prove Proposition 3.2.

7. Exercises 531

27. Devise a simulated annealing algorithm for the asymmetric traveling salesman
problem.

28. Find a family of graphs for which the worst-case bound of the spanning-tree/perfect
matching heuristic is asymptotically achieved.

29. Find one or more violated inequalities for the fractional solution shown in Figure
3.28.

30. i) Solve the uncapacitated fixed-charge network problem exhibited in Figure 7.2
by branch-and-bound.

ii) Find generalized flow cover inequalities that cut off the initial linear program
ming solution.

iii) Solve the multicommodity reformulation of the problem.

31. Consider the following fixed-charge transportation problem with 3 suppliers and 7
customers. The supplies are 15, 25, and 33; the demands are 5, 7, 8, 10, 12, 15, and 16;
and the variable and fixed costs are

hij = (~ 1
4 2

2
3
3

2 1
2 1 3
3 2 2

31
12
32

10 6
32 46
17 16

Solve this problem by an FCP /branch-and-bound algorithm.

32. Show that the inequalities (4.5) are valid.

19
29
15

12
11
24

14)
14 .
12

33. Another way to reformulate a fixed-charge network flow problem is to define
variables y{j, where y{j is the flow along the path p passing through arc (i, j). Write out
and solve the arc-path reformulation for Example 4.3.

Figure 7.2. Costs (hu, cu) appear on each arc. Bounds are U;J = 3 for (i,j) E Jil.

532 11.6. Applications of Special-Purpose Algorithms

34. Show that it is always possible to convert a capacitated fixed-charge network
problem into an uncapacitated problem by increasing the number of nodes and arcs.

35. Consider the problem of finding a minimum-weight !-branching. It can be shown
that the linear program

min I wuxu
{i,j)Ed

I xu 2': I for S C V with 1 E S
(i,j)Eo'(S)

X ERJsil

always has an optimal solution with x E Bn when w E Rjsi I, and it is unbounded
otherwise.

i) Show that this linear program solves the minimum-weight branching_problem.

ii) Give a linear program having a polynomial in I VI number of constraints and
variables that solves the minimum-weight branching problem.

iii) Give a linear program with similar characteristics that solves the minimum
weight spanning-tree problem.

36. Consider the problem of finding a minimum-weight Steiner !-branching when there
are two demand nodes (I D I = 2):

i) What structure do the branchings have?

ii) Give a polynomial algorithm to solve this problem.

37. Prove that the linear programming relaxation of (4.18) always has an optimal
solution with x E BT.

Part III
COMBINATORIAL
OPTIMIZATION

111.1
Integral Polyhedra

1. INTRODUCfION

In Part III we will continue to study feasible regions of the form S = {x E Z~: Ax..;; b},
where (A, b) is an m x (n + 1) integral matrix, and integer programs of the form
max{cx: xES}. However, for most of the problems considered here a nice description of
conv(S) is known. This is the essential distinction between the Part II and Part III
problems.

We will encounter some problems with the property that conv(S) = {x E R~: Ax..;; b},
and we will encounter others for which we can specify an explicit set of constraints
A x..;; b' such that

conv(S) = {x E R~: Ax..;; b, A x..;; b/}

Frequently, in these cases, we also obtain an efficient combinatorial algorithm for solving
the linear optimization problem. Conversely, such an algorithm for solving the optimiza
tion problem may provide a proof that the inequalities define the convex hull.

The minimum-weight s-t path problem on a digraph q; = Cv,.s4) (see Section 1.3.2) is
an example of a Part III problem. It is a network flow problem where we require one unit
of flow out of node s, one unit of flow into node t, and conservation of flow at all other
nodes. For this formulation, we gave an algorithm in Section 1.3.6 which, for an arbitrary
weight function, either (a) yields an integral optimal solution and thus provides a mini
mum-weight s-t path or (b) shows that the objective value is unbounded. Thus, the
algoritlim provides a proof that the polyhedron of feasible solutions only has integral
extreme points. In Section 2, we will establish an important property of node-arc inci
dence matrices, which gives a different proof of this result.

A second formulation arises from considering the relationship between s -t dipaths and
s-t dicuts. Let (U, U) be any partitiol!...9f V with s E U and t E U. Then the set of arcs
whose tail is in U and whose head is in U is an s-t dicut. Let Id I = n, M = {l, ... , m} be
the index set of all s-t dicuts, and let a i E Bn for i EM be the incidence vectors of the
s-t dicuts. Now a dipath must intersect each dicut. Thus, if x E Bn is the incidence vector
of an s-t dipath, then aix ~ 1 for all i EM. It is not difficult to show that all of the
incidence vectors of s-t dipaths are extreme points ofthe polyhedron

{x E R~: aix ~ 1 for all i EM}.

Much more significantly, they are the only extreme points.

535

536 111.1. Integral Polyhedra

Now let K be the index set of all s-t dipaths, and let Xi E Bn for i E K be the
corresponding incidence vectors of the s-t dipaths. Then, by polarity, we obtain another
integral polyhedron

{a E R~: Xi a ~ 1 for all i E K}

whose extreme points are the s-t dicuts. This approach will be pursued further in
Section 6.

In both formulations of the minimum-weight path problem, we obtain a polyhedron
having only integral extreme points. We now state this property precisely.

Definition 1.1. A nonempty polyhedron P £ Rn is said to be integral if each of its
nonempty faces contains an integral point.

It is sufficient to consider the minimal faces. Now, since each minimal nonempty face is
an extreme point if and only ifrank(A) = n (see Proposition 4.2 of Section 1.4.4), we have

Proposition 1.1. A nonempty polyhedron P = {x E Rn: Ax ~ b} with rank(A) = n is
integral if and only if all of its extreme points are integral.

Also, if P = {x ERn: Ax ~ b} £ R~ and is not empty, then rank(A) = n. Thus, we have
the following corollary:

Corollary 1.2. A nonempty polyhedron P £ R~ is integral if and only if all of its extreme
points are integral.

We assume hereafter, unless otherwise stated, that nonempty polyhedra have extreme
points.

Consider the linear programming problem over the polyhedron P given by

(LP) ZLP = max{cx: x E P}.

Integral polyhedra can be characterized by optimal solutions to LP.

Proposition 1.3. Thefollowing statements are equivalent.

1. P is integral.
2. LP has an integral optimal solution for all cERn for which it has an optimal

solution.
3. LP has an integral optimal solution for all c E zn for which it has an optimal

solution.
4. ZLP is integralfor all c E zn for which LP has an optimal solution.

Proof 1 2. If LP has an optimal solution, it has an optimal solution at an extreme
point of P (see Theorem 4.5 of Section 1.4.4).

2 3 and 3 4 are obvious.
4 1. We prove the contrapositive using the fact that if x E P is an extreme point, there

is acE zn such that x is the unique optimal solution to LP (see Theorem 4.6 of
Section 1.4.4).

1. Introduction 537

Thus if statement 1 is false, there exists c E zn such that x' is the unique optimal
solution to LP, and some component of x', say xi, is fractional. Now it follows that there
exists a (suitably large) integer q such that x' is also optimal for the objective vector
c' = c + (l/q)ej and for the objective vector qc ' = qc + ej. But qc'x' - qcx ' = xi, which
means that ZLP is fractional for at least one of the objectives qc ' or qc. Hence statement 4 is
~. .

Statement 4 of Proposition 1.3 provides a technique for establishing the integrality of P
by studying the dual polyhedron.

Definition 1.2. A system of linear inequalities Ax ~ b is called totally dual integral
(TDI) if, for all integral c such that ZLP = max{cx: Ax ~ b} is finite, the dual
min{yb: yA = c, y E R':'} has an integral optimal solution.

Note that the definition is not given in terms of a polyhedron P but, instead, is given
more specifically in terms of a linear inequality description of it.

Corollary 1.4. If Ax ~ b is TDI and b is integral, then P = {x ERn: Ax ~ b} is integral.

Proof Since the dual has an integral optimal solution and b is integral, the optimal
objective value of the dual is integral. Hence for all c for which ZLP is finite, ZLP is integral.
Now the result follows from Proposition 1.3. •

Example 1.1. We are given a complete bipartite graph with node partItion Vi =
{l, ... ,m}, Vi = {m + 1, ... n}, node weights Cj for} E V; U Vi = V, and edge weights bij
for i E V; and} E V2• The problem is to assign node numbers Xj for} E V to solve the
linear program

Its dual is

max I CjXj
JEV

Xi + Xj ~ b ij for i E Vi and} E V2•

I Yij = Ci for i E Vi
JEV,

I Yij = Cj for} E Vi
iEV,

Yij ;;;. 0 for i E Vi and} E Vi,

The dual problem is the transportation problem (see Section 1.3.5), which has an
integral optimal solution if it is feasible and if Cj is integral for allj E V. Hence, the linear
system Xi + Xj ~ bijfor i E Vb} E V2 is TDI. Hence, if the b;/sareintegers, the polyhedron
{x ERn: Xi + Xj ~ bi} for i E Vb} E V2} is integral.

The fact that Ax ~ b with bERm is a TDI system says nothing about integrality unless
b E zm. In fact, the TDI property is sensitive to scaling the rows of A.

538 III.I. Integral Polyhedra

Proposition 1.5. If Ax ~ b is any linear system with rational coefficients, there exists a
positive integer q such that (ljq)Ax ~ (ljq)b is TO!.

Proof Consider the dual constraints yA = c, Y E R';' with c E zn. By Proposition 3.1
of Section 1.5.3, there is a positive integer q such that every extreme point can be written as
y = (1!q)(PI>'" ,Pm), where Pi is an integer for i = 1, ... , m. Now let y' = qy. Hence
every extreme point of (l/q)y:4 = c, Y'E R';' is integral, and the dual system
(1!q)Ax ~ (l/q)b is TOL •

Corollary 1.6. Any polyhedron P = {x ERn: Ax ~ b} can be represented by a TOI linear
inequality system.

Integral polyhedra are distinguished by the existence of a TOI representation with an
integral right-hand side.

Proposition 1.7. If P = {x ERn: Ax ~ b} is an integral polyhedron, then P can be repre
sented as P = {x ERn: Ax ~ b'}, where Ax ~ b' is TOI and b' is integral.

Proof Consider acE zn for which max{cx: x E P} is bounded. Let F be the face of P
of optimal solutions with equality set MI<. Now consider the polyhedral cone

C(F) = {d ERn: d = I Uia i, U E RJ M , I}.
iEM,

By Theorem 6.1(ii) of Section 1.4.6, C(F) n zn is finitely generated with generators
nk E zn for k E K(F); that is,

C(F) n zn = {d ERn: d = I Ykn\ y E ZJK(F) I}.
kEK(F)

Also, since P is integral and nk E zn, we obtain max{nkx: x E P} = nZ E zt. In addition
since nk E C(F), we have ~x = nZ for all x E F.

We now add the finite set of inequalities nkx ~ n~ for k E K(F) to the description of P
for each of the finite number off aces F of P. This gives the dual problem

min I Uibi + I I Ykn~
F kEK(F)

UER';', Y E Rl IK(F)1

Now since c E C(F) n zn, there exists y~ E Zl, k E K(F) such that e = LkEK(F) y~~.
Finally, y* is an optimal dual solution because for any optimal primal solution x· E F, we
have ex' = LkEK(F) y~~x' = LkEK(F) y~nZ since ~x· = nZ. •

A linear inequality description of an integral polyhedron may not be TOI. This is
illustrated in the following example.

1. Introduction 539

Example 1.2. The problem is to find a minimum cardinality covering of the nodes of a
graph by its edges. In particular, given a complete graph on four nodes we consider the
linear program:

min Xl2 + Xl3 + Xl4 + X23 + X24 + X34

Xl2 + X13 + Xl4 ~ 1

(1.1) ~ 1

Xl3

Xl4 + X24 + X34~ 1

xER~.

There are three optimal solutions: Xu = X34 = 1, xij = 0 otherwise; X13 = X24 = 1, xij = 0
otherwise; X 14 = X 23 = 1, X ij = 0 otherwise.

It can be shown that these solutions, together with the four solutions obtained by setting
the edge variables for the edges incident to node i equal to 1 and the others equal to zero,
are the only extreme points of the linear system (1.1). We leave the details to the reader.

Now consider the dual, which is the fractional node-packing problem

max{~ Yi: Yi + Yj ~ 1 for all i andj withj > i, Y E R!}.

Its unique optimal solution is Yi =! for i = 1, ... ,4. Hence the linear system Ax ~ 1,
x ~ 0 is not TDI, but the polyhedron P = {x ERn: Ax ~ 1, x ~ 0} is integral.

All of the results of this section hold regardless of whether P has extreme points or not.
However, for full-dimensional integral polyhedra, Proposition 1.7 can be strengthened.

Proposition 1.8. For a/ull-dimensional integral polyhedron, there exists a unique mini
mal (with respect to removing constraints) TDI representation with an integral right-hand
side.

We now outline the rest of this chapter and briefly describe the topics of the following
two chapters. In Section 2, we describe a class of matrices for which the integrality of
P(b) = {x E R~: Ax ~ b} holds for all integral b. A subset of these matrices, including
node-arc incidence matrices of digraphs, are studied in Section 3. We provide a recogni
tion algorithm for these matrices and observe that the associated linear programming
problem can be solved by network flow algorithms.

Thereafter, we consider packing polytopes of the form P = {x E R~: Ax ~ l} and
covering polyhedra of the form Q = {x E R~: Ax ~ n, where A is a (0, 1) matrix. In
Section 4, we describe matrices, in terms of forbidden submatrices, such that both the
packing and covering polyhedra are integral. Here the linear systems are TDI, and for a
subclass of the matrices we give a recognition algorithm and an efficient combinatorial
algorithm for solving the associated linear programming problems.

540 111.1. Integral Polyhedra

In Section 5 we give a complete description of integral packing polytopes
p = {x E R~: Ax ~ 1}. Here the matrices A are defined by incidence vectors of cliques of a
class of graphs, and the extreme points of the polytopes are incidence vectors of node
packings. Then by invoking antiblocking polarity we obtain a proof of the famous perfect
graph theorem. In Section 6, we study blocking polarity and obtain results of the type
exemplified by the polarity between incidence vectors of paths and cuts in a graph.

Chapters III.2 and III.3 deal with combinatorial objects known as matchings and
matroids, respectively. Matchings generalize network flows and matroids generalize
forests of a graph. Both of these combinatorial settings yield interesting polyhedral results
and efficient optimization algorithms.

2. TOTALLY UNIMODULAR MATRICES

Definition 2.1. An m x n integral matrix A is totally unimodular (TU) if the determinant
of each square submatrix of A is equal to 0, 1, or -1.

It is evident that aij = 0,1, or -1 if A is TU; that is, A is a (0, 1, -1) matrix.

Example 2.1. The matrix

is not TU since I det A ' I = 2, where A' is the submatrix of A consisting of the first three
rows and columns.

Note that the example illustrates that recognizing TU matrices is in CfioJV2P. That is, to
give a short proof that a matrix is not TU, we only need to give an appropriate submatrix
because determinants can be calculated in polynomial time (see Section 1.5.3). On the
other hand, the definition does not give a clue about how to give a short proof that a matrix
is TU, since the number of square submatrices is exponential in the description of the
matrix. We will discuss the recognition question in the next section.

The following proposition, which follows directly from the definition of total unimodu
larity, provides ways of constructing other TV matrices from a given TV matrix.

Proposition 2.1. Thefollowing statements are equivalent.

1. A is TV.
2. The transpose of A is TV.
3. (A, l) is TV.
4. A matrix obtained by deleting a unit row (column) of A is TV.

5. A matrix obtained by multiplying a row (column) of A by -1 is TU.
6. A matrix obtained by interchanging two rows (columns) of A is TV.
7. A matrix obtained by duplicating columns (rows) of A is TU.
8. A matrix obtained by a pivot operation on A is TV.

2. Totally Unimodular Matrices 541

Proof We will only prove statement 8. Suppose I aij I = 1. Recall from Section 1.2.3
that a simplex pivot on a (0, ±l) matrix A with pivot element aij involves the following
steps.

1. If aij = -1, multiply the ith row of A by -1. Call the new row ai •

2. For k *' i, we obtain

Now consider a square submatrix B of.4. Let B be the matrix obtained after the pivot
has been executed. We will prove that det B E {-1, 0, l}.

Case 1. The ith row of A appears in B. Then Idet B 1= Idet B I.
Case 2. The jth column, but not the ith row, appears in B. Then I det B I = 0.
Case 3. Neither the ith row nor thejth column appear in B.

Let

(~ij ... a iP)

C= : B .
alj

Then after pivoting we have

Hence I det B I = I det C I = I det CI. •

Proposition 2.2. If A is TV, then P(b) = {x E RZ: Ax.::;; b) is integral for all bE zm for
which it is not empty.

Proof Consider the linear program with constraint set Ax + Iy = b, x E R~, Y E R:,
where A is TV and b is integral. Let (A, I) = (A B, AN)' where A B is a basis matrix for the
linear program. By statement 8 of Proposition 2.1, it follows that All is an integral matrix.
Thus A Ii b is integral, so the correspondence between basic feasible solutions and extreme
points yields the result. •

A similar argument yields the following generalization of Proposition 2.2.

Proposition 2.3. If A is TV, if b, b', d, and d' are integral, and if P(b, b', d, d') =

{x ERn: b' .::;; Ax .::;; b, d' .::;; x .::;; d} is not empty, then P(b, b', d, d') is an integral
polyhedron.

Because the transpose of a TV matrix is TV, the dual polyhedron is also integral.

542 II1.l. Integral Polyhedra

Corollary 2.4. If A is TU, c is integral, and Q(c) = {u E R':': uA ? c} is not empty, then
Q(c) is an integral polyhedron.

The sufficiency of total unimodularity for P(b) to be integral is not the least bit
surprising. But the converse is not so obvious.

Theorem 2.5. If P(b) = {x E R~: Ax ~ b} is integral for all b E zm for .vhich it is not
empty, then A is TO.

Proof Let A I be an arbitrary k x k nonsingular submatrix of A, and let

be the m x m nonsingular submatrix of (A, I) generated from A I by taking the appropriate
m-k unit vectors from I. Let b = AZ + e;, where z E zm and e; is the ith unit vector. Then
A -I b = z + a:;I, where ail is the ith column of A -I. Choose z so that z -+- ail? 0. Thus
z + ail is the vector of basic variables of an extreme point of P(b). By hypothesis,
z + ail E zm and z E zm; hence ail E zm and A -I is an integral matrix. Thus A II is an
integral matrix.

Finally, det A I and det A II are integers and

Thus, Idet A II = 1. •
Theorem 2.5 is false if P(b) = {x E R~; Ax = b}. A counterexample is given in exer

cise 5.
Now we consider sufficient conditions for a matrix to be totally unimodular.

Proposition 2.6. If the (0, 1, -1) matrix A has no more than two nonzero entries in each
column, and if'f.; au = ° if column j contains two nonzero coefficients, then A is TO.

This result is very easy to prove; but rather than giving a direct proof, we will establish it
as a corollary to a much more general result. Its significance is that it implies that a node
arc incidence matrix of any digraph is TU, thus establishing that the sets of feasible
solutions to a network flow problem and its dual are integral polyhedra. Consequently,
linear programming duality yields integral min-max results such as the max-flow-min
cut theorem (see Theorem 4.1 of Section 1.3.4).

We now present a characterization of total unimodularity that yields Proposition 2.6
and some other sufficient conditions as corollaries.

Theorem 2.7. Thefollowing statements are equivalent.

i. A is TO.
ii. For every I s; N = {l, ... , n}, there exists a partition II. 12 of I such that

I I au - I a;jl ~ I for i = 1, ... , m.
jEll jEl,

2. Totally Unimodular Matrices 543

Proof i ii. Let J be an arbitrary subset of N. Define Z by Zj = 1 if j E J, Zj = 0
otherwise. Also let d' = 0, d = z, g = Az, hi = bi = -!gi if gi is even, and bi = -!(gi - 1),
b; = hi + 1 if g; is odd. Now consider

P(b, b', d, d') = {x ER~: b' ~ Ax ~ b, d' ~ x ~ d}.

Note that x = z/2 E P(b, b', d, d'). Since A is TV, we have b', b E zm, d', dE zn and
P =#= 0. Proposition 2.3 states that P is integral. Thus there exists XO E P n Bn with xJ = 0
for j EN \ J and xJ E {D, l} for j E J. Note that Zj - 2xJ = ± 1 for j E J.

LetJI = {j E J: Zj - 2xJ = 1} andJ2 = {j E J: Zj - 2xJ = -l}. We have

'" '" _ '" (2 0) _ {g; -g; = 0 if gi is even
L..., aij - L..., aij - L..., aij Zj - Xj - . •

JEJI jEJ, jEJ g; - (g; ± 1) = ±1 If g; IS odd.

Thus

I I aij - I aijl ~ 1 for i = 1, ... , m.
JEJI jEJ,

ii i. IJ I = 1 in statement ii yields aij E {D, ±1} for all i andj. The proof is by induction
on the size of the nonsingular submatrices of A using the hypothesis that the determinant
of every (k - 1) x (k - 1) submatrix of A equals 0, ±1.

Let B be a k x k nonsingular submatrix of A, and let r = I det B I. Our objective is to
prove that r = 1.

By the induction hypothesis and Cramer's rule, we have B-1 = B*/r, where bij = {D, ±1}.
By the definition of B~ we have Bbi = reh where bt is the first column of B~

Let J = {i: MI =#= O} and J; = {i E J: MI = 1}. Hence for i = 2, ... , k, we have

(Bbi); = I bij - I bij = O.
JEJi jEJ\Ji

Thus I {i E J: b ij =#= O} I is even; so for any partition (JI> J2) of J, it follows that
I:.jEJI bij - ~EJ, bij is even for i = 2, ... ,k. Now by hypothesis, there is a partition (JI> J2)

of J such that I I:.jEJI bij - I:.jEJ, bij I ~ 1. Hence

I bij - I bij = 0 for i = 2, ... , k.
JEJI jEJ,

Now consider the value of al = I I:.jEJI blj - I:.jEJ, blj I. If al = 0, define y E Rk by y; = 1
for i E J 10 y; = -1 for i E J 2, and y; = 0 otherwise. Since By = 0 and B is nonsingular, we
have y = 0, which contradicts J =#= 0. Hence by hypothesis we have al = 1 and By = ±el'

However, Bbi = rei. Since y and bi are (0, ±1) vectors, it follows that bi = ±yand Ir I = 1..

Note that because A is TV if and only if its transpose is TV, statement ii can
equivalently be phrased in terms of partitions of subsets of rows of A; that is, for every
Q s.;; M = n, ... , m}, there exists a partition QI> Q2 of Q such that

I I aij - I aijl ~ 1 forj = 1, ... , n.
;EQI ;EQ,

544 III.1. Integral Polyhedra

Corollary 2.8. Let A be a (0, 1, -1) matrix with no more than two nonzero elements in
each column. Then A is TU if and only if the rows of A can be partitioned into two subsets
Q 1 and Q2 such that if a column contains two nonzero elements, the following statements
are true:

a. Ifboth nonzero elements have the same sign, then one is in a row contained in QI
and the other is in a row contained in Q2'

b. If the two nonzero elements have opposite sign, then both are in rows contained in
the same subset.

Proof The partitioning of statement ii of Theorem 2.7 is applied to the rows of A.
Conditions a and b provide the partition for any Q ~ M. •

Corollary 2.8 immediately yields Proposition 2.6 as well as the following corollary:

Corollary 2.9. The node-edge incidence matrix of a bipartite graph is TV.

Another consequence of Corollary 2.8 is a linear-time algorithm for recognizing
whether a (0, 1, -1) matrix A with, at most, two nonzero entries per column is TU.
Without loss of generality, assume that every column of A contains two nonzero elements
and every row of A contains at least one nonzero element. Let B(j) = {i: au * O}.
Arbitrarily put row 1 in Q I. Then Corollary 2.8 fixes the assignment of all rows i such that
there existsj with B(j) = (l, n. Once i is assigned, Corollary 2.8 fixes the assignment of all
rows k such that there existsj with BU) = {i, k}. The process is repeated in this way until
either the partition is completed or an incompatibility with the conditions of the corollary
is discovered. The latter occurs when a row already assigned is required to be placed in the
complementary set. Note that for a (0, 1) matrix, the procedure simply tests whether the
graph of the given node-edge matrix is bipartite.

Definition 2.2. An m x n (0, 1) matrix A is called an interval matrix if in each column
the I's appear consecutively; that is, if au = akj = 1 and k > i + 1, then au = 1 for alII with
i < I < k.

Corollary 2.10. Interval matrices are TV.

Proof This follows from statement ii of Theorem 2.7 by observing that the interval
property of a matrix is closed under row deletions and, for Q = {l, ... ,m}, taking
QI = {i: i is odd} and Q2 = Q \ QI' •

An integer programming problem that involves assigning workers to shifts can be
modeled using an interval matrix. Suppose the work day consists of m hours. A shift is a
set of consecutive hours. Suppose that n different shifts are possible. The jth shift is
represented by a 0-1 m-vector aj, where aij = 1 if hour i is in the jth shift. Thus A is an
m x n interval matrix of specified shifts. Let b E Z,:" where b i is the minimum number of
workers required in the ith hour. The set of feasible solutions is given by
S = {x E Z~: Ax ~ b}, where Xj is the number of workers assigned to thejth shift.

In the next section we will show that if A is an interval matrix and b E Z,:" then integer
programs of the form

(2.1) min{cx: Ax ~ b, x E Z~}

2. Totally Unimodular Matrices 545

are network flow problems. Moreover, for any (0, 1) matrix, a problem of the form (2.1)
can be relaxed to another nontrivial problem of the form (2.1) in which the constraint
matrix is an interval matrix.

To see this, suppose that the (0, 1) matrix A I is not an interval matrix. Then some
column of A I is not an m x 1 interval matrix (column). However, any noninterval column
can be uniquely written as the sum of p interval columns, where p < ml2 (see Figure 2.1).
Now replace each noninterval column a; by the p interval columns defined in its
decomposition, and give the new columns an objective function coefficient Cjk for k = 1,
... ,p with Cj = L£~l Cjk. We then obtain a problem of the form (2.1) in which the matrix A
is an m x s interval matrix with s ~ mn 12. This is a relaxation of the original problem
since we have omitted the constraints that each of the variables associated with the p
interval columns that have replaced aj must be equal.

We leave as an exercise the comparison of the bounds obtained from this relaxation
with those obtained from the linear programming relaxation. The advantage of this
relaxation lies in the efficiency of solving flow problems with side constraints.

We close this section by presenting a composition procedure for TU matrices that is
used in Section 3 to describe a characterization ofTU matrices.

Proposition 2.11. Let

(~
a

°
a) (1 dO Bb) 1 and d

be m x nand n x m TU matrices respectively, where A is (m - 1) x (n - 2), a is (m - 1)
x 1,cis1x(n-2),Bis(n-1)x(m-2),bis1x(m-2),dis(n-1)x 1, and ° and 1
are scalars. Then the (m + n - 2) x (m + n - 4) matrix

isTU.

This proposition can be proved by applying Theorem 2.7.

0 0
I I 0 0
0 0 0 0

0 0
I 0 + + 0
I 0 I 0
0 0 0 0

0 0

Figure 2.1

546 IIU. Integral Polyhedra

Example 2.2. Given that

A·=(-i J J -g -n and A,=
o 0

1 1 0
111
001
001

are TV, Proposition 2.11 yields the TV matrix

1 0 1 0
-1 1 0 0

A3=
0 -1 -1 0
0 -1 -1 1
0 0 0 1
0 0 0 1

3. NETWORK MATRICES

This section relies on, and is motivated by, the graphical representation of a system of
equations A 'x = b, where A' is the node-arc incidence matrix of a digraph (see Sec
tion I.3.6). We begin with a brief review of the results of Section 1.3.6 that are needed here.

Let g; = (V, SIt) be a digraph with m + 1 nodes and n arcs, and let A' be the node-arc
incidence matrix ofg;. Suppose the graph underlying g; is connected.

1. rank(A ') = m. Since it convenient to work with a matrix offull row rank, we letA be
the m x n matrix obtained by deleting any row of A'.

2. Let A = (A 1, A 2) where A 1 is an m x m nonsingular submatrix of A. The arcs
(el, ... ,em) that correspond to the columns of Al induce a spanning tree in g;,
denoted by fF = (V, SIt 1)'

3. The representation ofa column of A 2, corresponding to the arc ej = (u, v) as a linear
combination of the columns of A h is given by the incidence vector aj of the unique
dipath P j in fF from u to v, where

if Pj passes ei in a forward direction
if Pj passes ei in a backward direction
otherwise.

V sing the terminology oflinear programming, A 1 is a basis matrix and A 2 = AliA 2 is the
incidence matrix of the dipaths corresponding to the columns aj. Since we are not
concerned with primal or dual feasibility here, b and an objective vector are both
irrelevant.

Definition 3.1. Given a directed tree fF = (V, SIt 1) and a digraph g; = (V, Slt 2), where
IVI = m + 1, I SIt 1 I = m, and I SIt 2 I = n, the m x n arc-dipath incidence matrix M(fF, g;)
corresponding to the dipaths in fF whose endpoints are defined by the arcs of SIt 2 is called a
network matrix. (For convenience, it is desirable to allow Slt2 to contain edge repetitions.)

3. Network Matrices 547

Note that in this definition the arcs offJ mayor may not be arcs of'2lJ. This gives us the
freedom to avoid, if we wish, having an identity matrix as a submatrix of every network
matrix.

4. Let er E.sIl I and es E.sIl 2, and suppose that fJ'= (V, (.sill \ {er}) U {es}) is acyclic. A
. pivot in M(fJ, '2lJ) corresponds to forming the tree fJ' and the digraph '2lJ' = (V,

(.sIl2 \ {e s }) U {er}) and then computing the updated incidence matrix M(fT', '2lJ').

Hence a network matrix is precisely a matrix whose columns represent arcs of a node
arc incidence matrix of a digraph after one row has been deleted and any number of
simplex pivots have been executed.

Example 3.1. Consider the digraph '2lJ and tree fJ shown in Figure 3.1.
The incidence matrix of qy is

c
0 0 -1 1

} , 1 0 0 0 1 2
A = ~ -1 -1 0 -1 o 3

0 0 -1 4
el e2 e3 e4 es e6

Let A be the submatrix consisting of the first three rows of A " and let

C
0

-D Al= ~ 1
-1

be the submatrix consisting of the first three rows and columns of A. Then we obtain the
network matrix M(fT, '2lJ) given by

o
1
o

o
o -1

PI P2 P3 P4 Ps P6
Network matrix M(fJ, '2lJ)

Forming a new tree fJ' by adding e5 to fJ and excluding e2 as shown in Figure 3.1, we
obtain the network matrix M(fJ', '2lJ') given by

1
o

o
o

o 0
-1 1

o

Note that M(fJ', '2lJ') is obtained by pivoting on the second row and fifth column of
M(fJ, '2lJ).

548

"~~
~
1 e4 4

Figure 3.1

Proposition 3.1. Network matrices have thefollowing properties:

I1I.1. Integral Polyhedra

1. They are closed under row and column deletions and duplications.
2. They are closed under multiplication of a column by -1.
3. If A is a network matrix, then (A, I) is a network matrix.
4. They are closed under pivoting.
5. They are TV.

Proof

1. Deleting a column means just to ignore the corresponding dipath. Duplicating a
column means simply to repeat the representation of the corresponding dipath.
Removing a row is equivalent to removing the corresponding arc [say, e = (u, v)]
from fJ and then constructing the tree fJ' by "identifying" nodes u and v as shown in
Figure 3.2a. This operation is called a contraction of e. Duplicating a row is
c4uivalent to splitting the corresponding arc as shown in Figure 3.2b.

2. Multiplying a column by -1 means to reverse the direction of the corresponding
path.

e v x
(al

e u' e'

(bl

Figure 3.2. (a) Contracting e. (b) Splitting e.

3. Network Matrices

s

Figure 3.3

3. Here we add a path for each tree arc.
4 and 5. These have been shown above.

549

•
Two classes of TV matrices presented in Section 2 are network matrices. In each case,

we obtain the result simply by giving the appropriate class of trees.

Proposition 3.2. If A is TV and contains no more than two nonzero elements in each
column, then A is a network matrix.

Proof. Let Q\, Q2 be the partition of the rows of A defined in Corollary 2.8, and let
fF = ({s) U QI U Q2, .5111), where

.511 1 = {(u, s): for all u E QJl U {(s, v): for all v E Q2}

(see Figure 3.3). Let 9.0 = ({s) U QI U Q2, .5112 U .511 3 U .5114), All of the arcsind2 are from one
node in Q 1 to another in Q 1 and correspond to the columns of A with two elements of
opposite sign. The arcs in .511 3 are from a node in QI to a node in Q2 (or vice versa) and
correspond to those columns of A with two elements of the same sign. The arcs in .5114 are
arcs of fF and correspond to columns with only one nonzero entry. •

Proposition 3.3. Interval matrices are network matrices.

Proof. .Let V = {l, ... ,m + n. fF is a path from node 1 to node m + 1; that is,
.511 1 = {(t, i + 1): i = 1, ... , m}. A column of A whose first 1 is in row p and whose last 1 is in
row q is represented by the arc (p, q + 1) E .511 2• •

Example 3.2. Consider a linear program with constraint set {(x, y) E R,:+n:
Ax + Iy = b}, where

A=

o 0
1 0
1 1
o
o

This is a network flow problem over the network shown in Figure 3.4. For the basic
solution with y = b, x = 0, the tree arcs corresponding to basic variables are {e\, .•. , es};
the digraph arcs corresponding to nonbasic variables are {e6, e7, eg}. Note that with the
supplies shown in Figure 3.4, it follows that Yi = bi for i = 1, ... ,5 is a feasible flow.

550 III.1. Integral Polyhedra

Figure 3.4

Example 3.2 illustrates that if A is a network matrix associated with a known tree
g = (V, d 1) and digraph !jlJ = (V, d 2), we can model and solve the linear program
max{cx: Ax ~ b, x E R~} as a network flow problem. Furthermore, there is no need to
transform A into a node-arc incidence matrix. We immediately obtain a basic solution
Y = b, x = ° by setting Yi = bi, where Yi is the flow on the tree arc ei for i = 1, ... , m. The
digraph arcsd 2 represent the nonbasic variables x. Then if b ;:;. 0, we have an initial primal
feasible basic solution for the network simplex algorithm of Section 1.3.6.

We now turn to the question of recognizing network matrices. This problem is in .H?J
since, given the appropriate digraph and spanning tree, it is easy to verify that the matrix is
the desired arc-dipath matrix. On the other hand, it is not so obvious how to give a short
proof that a matrix is not a network matrix. There are, however, polynomial-time
algorithms for recognizing network matrices. Before describing one, we note that it is
extremely unlikely for a random {O, 1, -l} matrix to be a network matrix. Thus it would
not be wise to use a network recognition algorithm unless there was some reason to believe
that the matrix being checked had appropriate structure.

By Proposition 3.2 and the algorithm based on Corollary 2.8 for recognizing TV
matrices with no more than two nonzero elements in each column, we have a polynomial
time algorithm for recognizing whether a matrix with no more than two nonzero elements
per column is a network matrix. The following recursive algorithm uses this result, by
reducing the general question to a suitably small set of recognition problems in which each
matrix has no more than two nonzero elements in each column. In the following
presentation, we assume for simplicity that A has no zero rows or columns and no row or
column duplications.

The algorithm has two parts. In the first part, we ignore the signs of the coefficients and
determine whether the matrix is an edge-path incidence matrix ofa tree (i.e., a connected
forest). In the second part, we consider the orientations of the edges.

LetM = {l, ... , m} andN = {l, ... ,n}.

Definition 3.2. The m x n (0, 1) matrix A is the edge-path incidence matrix of a tree (an
EPT matrix) if there is a tree T on m + 1 nodes such that each column of A is the
characteristic vector of the edges ofa path in T.

Definition 3.3. The row intersection graph G(A) of an m x n (0, 1) matrix A is the graph
with node set M that has an edge between nodes i and k if there is a column j of A with
aij '" ° and akj '" 0.

3. Network Matrices 551

If G(A) contains k > 1 components, then A has the structure

(
Ai ° ° A2

° °
Thus the A i for i = 1, ... , k can be considered separately. So we assume k = 1.

By ignoring edge orientations, we see that any (0, 1) network matrix is an EPT matrix.
However, as shown below, the converse is false.

Note that any (0, 1) matrix with no more than two l's in each column is an EPT matrix
ofa star (see Figure 3.5). The reader can easily check that the EPT matrix

is not a network matrix because the required orientations cannot be achieved.
We need to establish some properties of EPT matrices. The following proposition is

analogous to statement 1 of Proposition 3.1. Its proof is left as an exercise.

Proposition 3.4. If A is an EPT matrix, then every submatrix of A is an EPT matrix.

Every edge of a tree T is a cut edge in the sense that if e = (u, v) is deleted (not
contracted) from T, then the resulting subgraph is a forest with two components Tu and Tv.
An edge is called a proper cut edge if each component of the resulting forest contains at
least one edge. Otherwise, the edge is called an end edge.

Let Bi be the submatrix of A with row i deleted and all columns} with au = 1 deleted,
and let G(Bi) be the row intersection graph of Bi. If au = 1 for all}, take Bi to be an identity
matrix of size m - 1.

Propositiori 3.5. If A is an EPT matrix and Li au "" 3 for some}, then:

1. There exists a row k such that G(Bk) contains at least two components.
2. For any k such that G(Bk) contains at least two components, A is an EPT matrix of

some tree T for which ek is a proper cut edge.

Figure 3.5. Star graph.

552 111.1. Integral Polyhedra

Proof

1. By hypothesis, any tree T for which A is an EPT matrix contains at least one path of
length at least 3. Hence T contains a proper cut edge, say ek. Now, since Bk is an EPT
matrix of the tree obtained from T by contracting ek and ignoring all of the paths
that contain ek, it follows immediately that G(Bk) contains at least two components.

2. Suppose A is an EPT matrix of T. If ek = (u, v) is a proper cut edge of T', there is
nothing to prove. So suppose that e" is an end edge of T. Since G(Bk) contains at
least two components, there exists a partition (Mb M 2) of the rows of M \ {k} such
that no path contains edges from both Ml and M 2• Furthermore, without loss of
generality, it can be assumed that the subforests obtained from the edges of Ml and
M2 meet at u and that v is of degree 1 (see Figure 3.6a). Hence A is also an EPT
matrix for the tree T shown in Figure 3.6b, and ek is a proper cut edge of T. •

Exampie3.3

o

1
o

Bi = C) for i = 1,2,3. Hence G(Bi) is connected for all i, and A is not an EPT matrix.

In the following presentation the index k is fixed since we are assuming that ek is a
proper cut edge. For simplicity of notation, the dependence on k is suppressed.

Let U = {l, ... ,t} index the components of G(Bk) where t ~ 2. The components
induce a partition of M \ {k}. Let Qq = {i EM: i is in the qth component}. Let
Ri = {j: aij = 1}, let R; = Ri n Rk for i EM \ {k}, and let Rq = {U R;: i E Qq} for all
q E U. If A is an EPT matrix of a tree T, then for each q the set of edges indexed by Qq is
the edge set of a subtree P of T, Ri is the set of paths containing ei, R; is the set of paths
containing ei and ek, and Rq is the set of paths that contain ek and some edge from P.
Note that Rq "" 0 for any q since G(A) is connected.

Now if A is an EPT matrix of T and ek = (u, v) is a proper cut edge of T, there exists at
least one bipartition of U -say, (Uu, Uv) with Uw "" 0 for w E {u, v}-such that if q E Uw,
then Tq is on the w side of ek.

v

(a) (b)

Figure 3.6

3. Network Matrices 553

Now we try to decide whether two subtrees Tq and P' can lie on the same side of ek.
Suppose

(3.1) for some i E Qq and q * q'.

Then there is a path containing ek, e;, and an edge of Tq,; and there is another path
containing ek and an edge of Tq" but not ej. Note that (3.1) does not preclude P and Tq'
from being on the same side of ek (see Figure 3.7). But if(3.1) is true and Tq and Tq' are on
the same side of ek, every path that contains ek and an edge of P must contain precisely
the same set of edges from Tq'. This establishes an ordering between P and Tq" since ek
must be closer to Tq, than to P. We say that q' precedes q when (3.1) holds.

Similarly, when

(3.2) R; n Rq * 0 and Rq \ R; * 0 for some I E Qq' and q * q'

holds, we say that q precedes q'. Now it follows that if(3.1) and (3.2) hold, then P and p'
must be on opposite sides of ek.

This discussion motivates the use of the graph Hk = (U, Ek) to determine which pairs of
subtrees must lie on opposite sides of ek, where (q, q') E Ek ifand onlyif(3.1) and (3.2) are
true for the pair (q, q').

We now give necessary and sufficient conditions for A to be an EPT matrix. Moreover,
the conditions yield an efficient and constructive algorithm for determining whether A is
an EPT matrix.

Theorem 3.6. A is an EPT matrix if and only if,for any k such that G(Bk) contains at least
two components, the following statements are true:

a. Hk is bipartite.
b. The submatrices Aq with column index set N and row index set Qq U {k} are EPT

matrices/or all q E U.

Proof Suppose A is an EPT matrix. By Proposition 3.4, condition b must hold.
We have already shown that ek = (u, v) is a proper cut edge and thatif(q, q') E E\ then

P and pi must be on opposite sides of ek. But this cannot hold for all such pairs of
subtrees if Hk contains an odd cycle. Hence if A is an EPT matrix, condition a must be
true.

Figure 3.7

554 III.I. Integral Polyhedra

Now we show that if conditions a and b are true, then A is an EPT matrix. From
condition a, there exists a bipartition of U with the property that if(q, q') E Ek, thenq and
q' are in different subsets; let (Uu, Uv) be any such partition. For wE {u, v}, let Aw be
the submatrix of A consisting of the column index set N and row index set
Qw = UqEUw Qq U {k}.

The substance of the proofis to show thatAw is an EPT matrix ofa tree Tw with ek as an
end edge. If this is true, it then follows immediately that A is an EPT matrix of the tree T
obtained by joining Tu and Tv together on ek as sh9wn in Figure 3.8.

We now show how to construct Tw from Aw. We begin by constructing a partial order on
the set Uw. Consider q, q' E Uw. Since (q, q') $. Ef, either q and q' are unrelated, or q
precedes q' or q' precedes q, but not both.

We claim that if q precedes q' and q' precedes q", then q precedes q". Since q precedes
q' and q' does not precede q, (3.2) and the complement of(3.1) yield:

i. R; n Rq '* 0 for some I E Qq,
ii. Either Rj n Rq, = 0 or Rq' \ Rj = 0 for all i E Qq.

By statement i, we obtain Rj n Rq, '* 0. Hence by statement ii, we have Rj 2 Rq'. Since
Rq 2 Rj, we have Rq 2 Rq' if q precedes q'. Now, since q' precedes q" and Rq 2 Rq" it
follows that R; n Rq '* 0 and Rq \ R; '* 0 for some r E Qq". Hence q precedes q".

So we have a partial order of the elements of Uw. We represent the partial order by any
sequence ql, q2, ... ,qtw with the property that for 2.;;; r';;; tw and r' < r, q, does not
precede q,' (see Figure 3.9).

By hypothesis b of Theorem 3.6, we have that for all r, the matrix Aq, with column
index set N and row index set Qq, U {k} is an EPT matrix of some tree. Furthermore, by
the choice of k and Qq" there exists some such tree, say T', with the property that ek is an
end edge of T'. This is true because the row intersection graph ofthe matrix A q, with row k
deleted is connected; that is, it defines a component of G(Bk).

Let ex = UI~1 Qq,. Now we proceed by induction with the hypothesis that the matrix
with row index set Qtw-I U {k} and column index set N is an EPT matrix of some tree 1'tw-1

in which ek is an end edge.
We must show how to construct 1'twfrom 1'tw-1 and Plw. Sinceqt doesnotprecedeq,for

any r < tw. we have either Rj n Rtw = 0 or Rtw \ Rj = 0 for all i E Qtw-I. For those i
satisfying Rj n Rtw = 0, we have aij = 0 for allj E Rtw; for those i satisfying Rtw \ Rj ~ 0,
we have aij = 1 for allj E Rtw. In other words, ifj,j' E Rtw, then aij = aij' for all i E Qtw-I.

T

Figure 3.8

3. Network Matrices 555

qg

Figure 3.9

Let S = {i E Qlw-l: Rlw \ Rj = 0}. (S may be empty.) By the induction hypothesis, there
is a pathp* in 1'lw-1 containing precisely the edges ei for i E S. One end node ofp* is u, call
the other end node u*. (If S is empty, then U* = u.)

The construction of 1'lw is shown in Figure 3.10.
Finally, since Tu = 1'1. and Tv = 1'\ the proof is complete. •

Proposition 3.5 and Theorem 3.6 yield a recursive polynomial-time algorithm for
recognizing EPT matrices. The algorithm has two fundamental subroutines. The first one
finds the components of a row intersection graph. The second one checks whether a graph
is bipartite.

Algorithm for Recognizing an EPT Matrix

Step 1: Given a (0, 1) matrixA: (a) Ifl:i aij";:; 2 for allj, then A is an EPT matrix ofa star;
(b) otherwise, partition A according to the components of its row intersection graph,
and treat each component separately.

Step 2 (Component Finding): Let k = 1, and let Bk be the matrix obtained from A by
deleting row k and all columnsj with akj = 1 unless akj = 1 for allj. In the latter case, let
Bk be an (m - 1) x (m - 1) identity matrix. Let G(Bk) be the row intersection graph of

v

v

v

u*

Figure 3.10

556 III.I. Integral Polyhedra

Bk. Determine t, the number of components of G(Bk). If t > 1, go to Step 3. Otherwise,
if k < m, then k k + 1, and go to Step 2; and if k = m, then A is not an EPT matrix.

Step 3 (Bipartite Test): Construct the graph Hk = (U, Ek), where U = {l, ... , t} and Ek is
determined by (3.1) and (3.2). If Hk is not bipartite, A is not an EPT matrix. Otherwise,
let (Uu , U.) be any bipartition of U with the property that if (q, q') E E, then either
q E Uu or q' E Uu, but not both.

Step 4 (Recursion): Construct the matrices Aw for w E {u, v}, where Aw consists of row k
and the rows i of A, with i in the qth component of G(Bk) and q E Uw. Mark row k of
Aw, and call the algorithm for the matrices Au and Avo with the exception that marked
rows may not be selected in Step 2.

Step 5 (Constructing the Tree): If the recursion ends in Step 1, each pair of terminal
submatrices is joined on the edge specified by the marked row. This procedure is
applied recursively to determine some tree represented by A.

To show that the algorithm runs in polynomial time, we first calculate f(m), the
maximum number of passes through Steps 1-3 for a matrix with m rows. In Step 4, a
matrix with m rows is split into two matrices, one with i rows and the other with m - i + 1
rows where 2 ..;; i ..;; m - 1. Hence for m ;;;. 3, we obtain

(3.3) f(m) = max [f(i) + f(m - i + 1)] + 1
2.;,.;m-1

and f(2) = 1. It is a simple exercise to show that the unique solution to (3.3) is f(m) =

2m -3.
Both Steps 2 and 3 can be executed in polynomial time by well-known algorithms.

Step 2 dominates. It may require up to m executions offorming a row intersection graph
and finding its components. The dominant step in each execution is the pairwise
comparison of the rows ofA. Hence Step 2 is O(m 3n) for an m x n matrix, and the overall
time complexity is O(m 4n).

As suggested by Theorem 3.6, the algorithm can be modified to yield a finer decompo
sition of A at each step. In particular, instead of decomposing A into Au and Avo we
decompose A into Aq for q E U. Then if Aq for all q E U are EPT matrices, we use the
partial orders of the nodes in Uu and Uv to construct T. This will be illustrated in
Example 3.5.

Exampie3.4

(
0 0 0 1 1 1 1)
100 1 100

A = 010 1 0 10·
001 100 1

The components of G(B') are QI = {2}, Q2 = {3}, Q3 = {4}. R; = R i - ' = {4, 3 + i} for
i = 2, 3, 4; for each pair ofindices, (3.1) and (3.2) are true. Hence HI is a triangle, and A is
not an EPT matrix.

3. Network Matrices 557

.~ •
e5 el el e4 el e6 • • • • • • • • • u v U v U v U v

T3 T2 T4

Figure 3.11

Exampie3.5

1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 1 1 1 1 1=k
1 0 0 0 1 1 0 0 0 2

A= 1 0 0 0 0 0 0 0 0 3
0 0 1 0 0 0 1 1 0 4
0 0 0 1 0 0 0 0 1 1 5
0 0 0 0 0 0 0 6

QI = {2, 3}, Q2 = {4}, Q3 = {5}, Q4 = {6}. R; = {6, 7, 8}, R2 = {7, 8, 1O}, R3 = {9, 1O},
R;' = {7, 8}.

HI = (U, EI), where U = n, 2, 3, 4} and EI = {(1, 2), (1, 4), (2, 3)}. HI is bipartite with
bipartition Uu = {l, 3} and Uv = {2, 4}. In the set Uu, nodes 1 and 3 are unrelated; and in the
set U" node 2 precedes node 4. The matrices A q for q = 1, ... , 4 yield the stars shown in
Figure 3.11.

Since nodes 1 and 3 are unrelated and node 2 precedes node 4, the trees are put together
as shown in Figure 3.12.

Only a small modification of the EPT matrix recognition algorithm is required to
obtain a recognition algorithm for network matrices.

• • • • v u v

•

T

Figure 3.12

558 III.I. Integral Polyhedra

Theorem 3.7. The (0, 1, - 1) matrix C is a network matrix if and only if:

a. the matrix A obtainedfrom C by replacing each element ofC by its absolute value is
an EPT matrix; and

b. the submatrices of C with no more than two nonzero elements in each column,
corresponding to the submatrices of A with no more than two 1 S in each column that
are produced in the EPT recognition algorithm, are network matrices.

Proof The necessity of condition b follows, since all submatrices of network matrices
are network matrices. The necessity of condition a follows, since a dipath in a directed tree
must be a path in the underlying tree.

To prove sufficiency we only need to show that two directed subtrees gu and fJ., can be
merged as in Figure 3.8. This is clear if both directed trees contain the arc (u, v) or both
contain (v, u). So suppose that gu, the arc-dipath matrix of Au, contains (u, v) and that fJ."
the arc-dipath matrix of Av, contains (v, u). Now observe that by reversing the direction of
every arc in fJ." we obtain another directed tree g~ that also is an arc-dipath matrix of Av,

since a dipath in g~ represented by the arc (r, s) corresponds to a dipath in g~ represented
by the arc (s, r). •

Example 3.6

2 3 4 5 6 7 8 9

0 0 0 0 1 -1 1 -1 1
-1 1 0 0 0 1 0 0 0 2

1 0 0 0 1 0 0 0 0 3
0 1 0 0 0 0 1 0 0 4

C= 0 0 0 1 0 0 1 0 5

0 0 -1 0 0 1 0 0 0 6
0 0 0 0 0 0 1 7
0 0 0 1 0 0 1 0 0 8
0 0 0 0 0 0 0 -1 9

Let A be the matrix obtained from C by ignoring the signs of the coefficients.

2 3 4 5 6 7 8 9

0 0 0 0 1 1 1 1 1
1 0 0 0 1 0 0 0 !}Q' 1 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0
A= 0 0 0 1 0 0 1 0 ~ } Q2 0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 0 1 ~} Q3 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 9} Q4

3. Network Matrices 559

Now we determine if A is an EPT matrix. Since G(B I) has four components, the edge el
corresponding to row 1 must be a proper cut edge. To see which subtrees lie on opposite
sides of eJ, we let HI = (U, EI), where U = {t, 2,3, 4} andE I = {(I, 2), (1,3), (2,4), (3, 4)}.
HI is bipartite, and UUI = {l, 4}, UV1 = {2, 3} is a bipartition of U. The components QI and
Q4 are unrelated, as are the components Q2 and Q3. Hence we carryon, under the
assumption that subtrees TI and r lie on one side of el and that subtrees T2 and T3 lie on
the other side of e I.

We now need to show that the matrices A i corresponding to potential subtrees Ti U {e I}
are tree matrices with el an end edge.

1 2 5 6 7 8 9

A'~ (I 0 1 1 1 1

0
1 *

1 0 1 0 0 2
0 1 0 0 0 3
1 0 0 1 0 4

c,~u
0 1 1 1

-D
1 *

1 0 1 0 0 2
0 1 0 0 0 3

0 0 0 4

5 6 7 8 9

A 4 = (~ 1 1
~) 1 *

0 0 9

C4 = (~ 1 -1 -D 1 *
0 0 -1 9

3 5 6 7 8 9

A'~ (
0 1 1

~)
1 *

1 0 0 1 5
0 0 0 6

C1 1 -1 1 -I) 1 *
C2 = 1 1 0 0 1 0 5

-1 0 1 0 o 0 6

Since A 1, A 2, and A 4 contain no more than two 1 's in each column, we can immediately
check that the corresponding submatrices of C are all dipath incidence matrices. The
corresponding trees are shown in Figure 3.13.

560 111.1. Integral Polyhedra

Vj

Figure 3.13

4 5 6 7 8 9

A;~O
1 1 1

1) *
0 0 0 7
0 0 0 8

needs to be decomposed further. G(B7) has two components; QS = {1} and Q6 = {8}.
H7 = (U, E 7), where U = (5, 6) and E7 = {(5, 6)}. H7 is bipartite; UU7 = {5} and UV7 = {6}.

4 5 6 7 8 9

AS = (~ 1 1 1
~) *

0 0 0 7 *

CS = (~ 1 1 -1 1 -~) *
0 0 1 0 7 *

4 7 9

A 6=C ~)
7 *
8

C6 =C ~)
7 *
8

The corresponding trees and their merger are shown in Figure 3.14.

ej e7 e7 es . .. •)' . •)I •)I •
Uj Vj =U7 V7 U7 V7

lYu7 IYv7

ej e7 es ... •)I •)I •
Uj Vj v7

1'7 3

Figure 3.14

3. Network Matrices 561

e6

eJ e7 ea

vJ uJ vJ

eS

ffuJ ffvJ

Figure 3.15

The merging of gl and g4 and of g2 and g3 are shown in Figure 3.15.
The final merging of gUt and:!!v, is shown in Figure 3.16, and C is a network matrix of

this tree.

The final topic of this section is a brief discussion of the recognition problem for totally
unimodular matrices. The following two matrices are not network matrices but are TU:

1 -1 0 0 -1 1 1 1
-1 1 -1 0 0 1 0 0

0 -1 1 -1 0 0 1 0
0 0 -1 -1 0 0 1

-1 0 0 -1 0 0

These two matrices and network matrices are the fundamental building blocks for
constructing all TU matrices. This result is a deep theorem whose proof is beyond the
scope of this presentation.

Theorem 3.8. Every TU matrix that is not a network matrix or one of the two matrices
given above can be constructed/rom these matrices using the rules of Proposition 2.1 and
Proposition 2.11.

A consequence of this theorem is that the TU recognition problem is in }(,{JjJ, since a
short proof of total unimodularity for matrix A is to give easily recognizable TU matrices
and the rules to construct A from them. Theorem 3.8 also yields a polynomial-time
algorithm for the recognition problem and a polynomial-time algorithm for solving linear
programs with TU constraint matrices. But the conclusion of practical importance to be
drawn from Theorem 3.8 is that "nearly all" TU matrices are network matrices.

Figure 3.16

562 111.1. Integral Polyhedra

4. BALANCED AND TOTALLY BALANCED MATRICES

In the remainder of this chapter, we will study packing and covering problems. LetA be an
m x n (0, 1) matrix.

The fractional packing problem we consider is the linear program

(FP) max{cx: x E P},

where P = {x E R~: Ax ",;; n. Its dual is

(DFP) min{y1: yA ~ c, y E R';'}.

Here it makes sense to eliminate primal unboundedness and dual infeasibility by assum
ing that A contains no zero columns; that is, a j "* ° for) E N = {l, ... , n}. We also assume
that Cj > ° for) E N since if Cj ",;; 0, there is an optimal solution to FP with Xj = 0.

The fractional covering problem we consider is the linear program .

(FC) min{cx: x E Q},

where Q = {x E R~: Ax ~ 1}. Its dual is

(DFC) max{yl: yA ",;; c, y E R';'}.

Here it is sensible to eliminate primal infeasibility and dual unboundedness by assuming
that A contains no zero rows; that is, a i "* ° for i EM = {l, ... ,m}. We also assume that
Cj > ° for) E N because if Cj < 0, Fe is unbounded, and if Cj = 0, we can set Xj = 1.

We can view the rows of A as incidence vectors ofa family of subsets Ni ~ N for i EM.
To describe P, the maximal rows are necessary and sufficient; and to describe Q, the
minimal rows are necessary and sufficient. Hence, in both cases, we can assume that the
rows of A are incomparable (0, 1) vectors; that is, they are the incidence vectors of a set of
subsets called a clutter.

Our goal is to determine classes of matrices and classes of combinatorial optimization
problems for which these linear programs have integral optimal solutions. Thus the
fundamental questions are:

1. When is P an integral polytope?

2. When is the system Ax ",;; 1, x ~ ° TDI?
3. When is Q an integral polyhedron?

4. When is the system Ax ~ 1, x ~ ° TDI?

As we have already seen, total unimodularity of A is a correct answer to all four
questions. But, as we shall see, there are larger classes of(O, 1) matrices for which P and Q
are integral, and the packing and covering systems are TDI. Let P(b) = {x E R~: Ax",;; b)
and Q(b) = {x E R~: Ax ~ b). Note that if P is integral, then P(b) is integral for all
bE Bm. This is true since if bE B m and M(b) = {i EM: bi = O}, then P(b) is the face of P
determined by setting Xj = ° for all) with aij = 1 for some i E M(b).

The integrality of P and Q are, in general, unrelated. To relate them it is necessary to
consider families of polyhedra that are obtained by eliminating constraints. For the
constraint aix ~ bi, setting bi = ° is just a way of saying that the ith constraint is

4. Balanced and Totally Balanced Matrices 563

superfluous or has been eliminated. Similarly, for the constraint aix ~ bi, setting
bi ~ LJ~l au has the same effect. Here we use the notation bi = 00.

Proposition 4.1. Let A be a (0, 1) matrix with no zero rows or columns. The following two
statements are equivalent.

1. PCb) is integralforall b with bi E (l, oo}for i EM.
2. Q(b) is integra/for all b E Bm.

Proof Each member of each of the families is nonempty since ° E P(b) and 1 E Q(b).
Consider Q(b) with bi = 1 for i E K ~ M and with bi = ° otherwise. Suppose x is a
fractional extreme point of Q(b). Then there exist N~ ~ N and K~ ~ K such that
IN~ I + IK~ I = n and x is a solution to

. {I a'x =
ai ~ 1

for i E K~

otherwise,
{o forjEN~

Xj = pj ~ ° otherwise.

But then x is an extreme point of PCb), where bi = bi for i E K~ and bi = 00 otherwise.
Thus 1 => 2. The proof of2 => 1 is similar. •

The matrices we study in this section are precisely those for which statements 1 and 2 of
Proposition 4.1 hold. Let..4tk, k ~ 3, be the family of k x k (0, 1) matrices, all of whose row
and column sums equal 2, that do not contain the submatrix

Definition 4.1. A (0, 1) matrix is totally balanced (TB) ifit does not contain a submatrix
in..4tk for any k ~ 3.

Definition 4.2. A (0, 1) matrix is balanced ifit does not contain a submatrix in..4tk for any
k ~ 3 and odd.

Note that a matrix A in..4tk, k ~ 3, that does not contain a submatrix in ..4t1, I < k, is a
node-edge incidence matrix of a cycle (see Figure 4.1). By permuting rows and columns,
we can write such a matrix in a canonical form with ajj = aj+l,j = 1 for j = 1, ... , k - 1,
akk = alk = 1, and au = ° otherwise. Then IdetA 1= 2 when k is odd, and IdetA 1= °
when k is even.

(!
0 0 0

r)
0 1 1
1 0 0
o 0 1 2

110

4

Figure 4.1

564 111.1. Integral Polyhedra

We now give simple consequences of the above definitions.

Proposition 4.2. If A is a (totally) balanced matrix, then the following matrices are
(totally) balanced.

1. (A, I).

2. The transpose of A.
3. Any matrix obtained by permuting rows or columns of A.
4. Any submatrix of A.

Proposition 4.3. If A is a (0, 1) TV matrix, then A is balanced.

Proof If A is not balanced, then it contains a submatrix A' E .;{,(k where k ~ 3 and odd.
Hence I det A 'I = 2. •

On the other hand, a (0, 1) TV matrix may not be a TB matrix. For example, any matrix
in .;{,(4 is a TV matrix. The following example illustrates some of the properties of TB
matrices.

Example 4.1. Let

The reader should check the following statements.

1. A is not a TV matrix.
2. A is a TB matrix.
3. P is integral. (Its extreme points are the null vector and the four unit vectors.)
4. P(b) with b = (2 1 1 1) contains the extreme point (i iii).
5. The matrix

where A 'E .;{,(4 is balanced, but not a TV or TB matrix.

The relationship among these classes is given in Figure 4.2.
Although there are nice polyhedral results for balanced matrices, no polynomial-time

combinatorial methods are known for solving the corresponding linear programming
problems. Moreover, the recognition problem also is unsolved except for the obvious
result that it is in Cf6o.N'(fjJ.

In contrast, the results for TB matrices are much richer because both optimization and
recognition problems can be solved by efficient combinatorial methods. Hence, for most
of the remainder of this section, we consider TB matrices. Also, since the theory and
algorithms for FP (the fractional packing problem) and Fe (the fractional covering

4. Balanced and Totally Balanced Matrices 565

Balanced

Figure 4.2

problem) are essentially the same for TB matrices, we only need to consider one of them in
detail. Since more general results for FP will be given in the next section, we consider FC
and its dual DFC here. We will give a polynomial-time algorithm that obtains integral
optimal solutions to FC and DFC. We first need some preliminary results.

Definition 4.3. A (0, 1) matrix A is called a row inclusion matrix ifit does not contain the
submatrix

F=C ~).

In other words, all of the rows i with aij = 1 are ordered by inclusion with respect to the
columns}, ... , n. The reader should keep in mind that the row inclusion property of a
matrix is sensitive to the ordering of its rows and columns. Later in this section we will
address the issue of whether the rows and columns ofa given (0, 1) matrix can be permuted
to obtain a row inclusion matrix.

Two obvious properties of row inclusion matrices are given in the following proposi
tions.

Proposition 4.4. The recognition problem for row inclusion matrices is solvable in
polynomial time.

Proposition 4.5. Row inclusion matrices are totally balanced.

Proof SupposeA contains a submatrixB in.4lb k ~ 3. Then there exists i,}, k, I with
i < k and} < I such that bij = bi! = bkj = 1. Then bkl = 0, since otherwise B contains the
submatrix (: :). Hence A contains the submatrix F. •

The converse of Proposition 4.5 obviously is false, but later we will show that by row
and-column permutations of a TB matrix we can obtain a row inclusion matrix.

Our next objective is to show that when A is a row inclusion matrix, the fractional
covering problem (FC) and its dual (DFC) are easily solved. DFC is solved by greedily
packing the rows of A into the vector c. That is, we first take as much as possible of row ai,
then row a2, and so on. When a positive multiple of a row is taken, we note the largest
column index} for which the remaining amount of Cj is reduced to zero. These columns
are then used to find a primal optimal solution. The primal solution also is constructed
greedily by processing these columns in the reverse order from which they were selected.

566

Algorithm for DFC and FC for Row Inclusion Matrices

DFC:

111.1. Integral Polyhedra

Initialization: Let Ni = {j EN: aij = 1} for i = 1, ... , m, i = 1, c 1 = C > 0, Jo = 0.
Iteration i: Let Yi = min{c): j EN;}. If Yi > 0, then let Ci+1 = c i - Yiai and J i = J i- 1 U {k},

where k = max{j E N i: Yi = cj}. Let a(k) = i. Otherwise J; = J i- 1 and Ci+1 = ci. If i = m,
stop; (y), ... ,Yrn) is an optimal solution. Otherwise i ... i + 1.

FC:
Initialization: Let b = 1, Jrn = {k), ... ,kp } (from DFC), where a(ki) < a(ki+l) for i = 1,

... ,p - 1. Setxj = ° forj $. Jrn , and set 1= p.

Iteration I: Set Xk, = max(O, bCl.(k,) and b ... b - ak,xk,. If 1= 1, stop; x = (x), ... ,xn) is an
optimal solution. Otherwise I ... I - 1.

Theorem 4.6. The algorithm gives integral optimal solutions to DFC and FC when A is a
row inclusion matrix.

Proof It is clear that the solutions are integral and that the dual solution is feasible.
Throughout the proof, we use the following facts: (a) If J rn = (k), ... ,kp}, then
a(k;) < a(ki+1) for i = 1, ... ,p - 1, and (b) if Yi > 0, then there is a k E Jrn with a(k) = i,
and either cj > ° or au = ° for allj.

We now consider primal feasibility. By construction, we have x ~ 0. The proof of
aix ~ 1 for i = 1, ... , m is divided into two cases.

Case 1 (Yi > 0). Then for some k, E Jm , we have a(k,) = i and aik, = 1. At Step I, we set
Xk, = max(O, bi), where bi is the current value of bi. If bi ~ 0, then aix ~ 1. If bi = 1, then
Xk, = 1 and aix ~ 1.

Case 2 (Yi = 0). Let M = Ni n {j EN: c5 = O}. Since Yi = 0, we obtain M *' 0. Let
jl=max{j:jEM}. Suppose jl $.Ji-l- Now, since c5,=0, there is an il<i such that
Yi, = cj: > 0, and ai,j, = 1. Sincejl $. J i-), there is ah E J i-1 withj2 > jl such that il = a(h),
Yi, = cj;, and ai,h = 1. Also, by the definition ofj), we have au, = 1 and au, = 0. Hence we
have the following submatrix of A:

~)

Since A is a row inclusion matrix, this is not possible, so j 1 E J i - 1•

Now we can define i 1 by a(jl) = il < i. Hence if Xj, = 1, then aix ~ 1.
On the other hand, if Xj, = 0, leth E J be such that xh = 1 and row i 1 was first covered

by columnh. This means that ai,h = ai,j3 = 1, where i3 = a(h) > i 1• In addition, ai3j, = °
since a(jl) = il and Yi3 > 0. Now ifj3 <j), we have

4. Balanced and Totally Balanced Matrices 567

Henceh > jl' Then, if aij, = 0, we have

jl h

G ~) ;1

Hence aij, = 1 and aix ~ aij,x3 = 1.
Next we establish the complementarity conditions

(4.1) Xj(Cj - I aijYi) = 0 forj = 1, ... , n,
1=1

Yi(± aijXj - 1) = 0 for i = 1, ... , m.
}=I

(4.2)

The conditions (4.1) are satisfied by the construction of Jm and Xj = 0 if j $. Jm• Now
consider (4.2) and suppose Yi > 0 and a(k) = i. We need to show that

L aijxj = I aijXj + aikXk + L aijXj = 1.
jEJm jEJm: a(j)<i jEJm: a(j»i

1. l:jEJm: a(j)<i aijXj = 0 since a(j) = i 1 < i implies cj = 0, and thus Yi > 0 implies aij = O.
2. Since a(k) = i, it follows that aik = 1. By the construction of the primal solution,

Xk = 1 ifand only ifl:jEJm:!>U»; aijxj = O.
3. Now it suffices to show that l:jEJm: aU»; aijXj .;;; 1. If not, there exists j I, h E J m such

that aij1xjl + aij,xh = 2 and a(h) > a(jl) > i. Then a a(j,),j I = 0 since C,!;(h) = 0, and
aa(jl),h = 0 since Xjl = Xh = 1. Hence we have

h jl

or (11 01) i a(j2).

Since neit):1er of these is possible, we have l:jEJm: aU»i aijxj .;;; 1.

Example 4.2. min{cx: Ax ~ 1, x E R~} with c = (2 3 3 1) and

(1 1 0 0) o 1 1 0
A= 0 0 1 1 .

1 1 1 1

It is easy to check that A is a row inclusion matrix.

DFC:

1. YI = 2, c2 = (2 3 3 1) - (2 2 0 0) = (0 1 3 1), k = 1, J 1 = {l}, a(l) = 1.
2. Y2 = 1, c3 = (0 0 2 1), k = 2,J70. = {l, 2}, a(2) = 2.
3. Y3 = 1, c4 = (0 0 1 0), k = 4,J3 = {l, 2, 4}, a(4) = 3.
4. Y4 = 0, J4 = {l, 2, 4}; Y = (2 1 1 0) is an optimal solution.

•

568 1II.1. Integral Polyhedra

Fe:

1. J4 = {l, 2, 4}, X3 = 0, b = (1 1).

2. 1= 3, k3 = 4, X4 = b3 = 1, b = (1 0 0).
3. 1= 2, k2 = 2, X2 = b2 = 1, b = (0 0 0 -1).
4. 1= 1, kl = 1, XI = b l = O. Stop; X = (0 1 0 1) is an optimal solution of value 4.

Next we show that the rows and columns of a TB matrix can be permuted so that the
resulting TB matrix is a row inclusion matrix.

Given a (0, 1) matrixA, let iii = (ain, ... ,ail) for i = 1, ... ,m be the elements of row i
in reverse order, and let iij = (amj, ... , a Ij) for j = 1, ... , n be the elements of columnj in
reverse order.

Definition 4.4. The (0, 1) matrix A is called totally reverse lexicographic (TRL) if
-i+1 L -i c . 1 1 d ·f - L - c . 1 1 a ~ a lor l = , ... , m - an 1 aj+1 ~ aj lOr} = , ... , n - .

We now give an algorithm which shows that:

Proposition 4.7. By permuting rows and columns, any (0, 1) matrix can be transformed
to a TRL matrix in polynomial time.

Proof For any partition M[, ... ,Mt of the rows of A, let dj E Z~ be given by

dj = (L aij, ... , L aij) for j EN.
iEM, iEM,

Initially, let t ='1 and MJ = M = {l, ... ,m}. Hence dj = 1:iEM aij' Suppose dj, =

maxjEN dj •

We now begin to construct the TRL permutation of A by making the following row and
column permutations:

1. j n is the last column.
2. MI = {i EM: aij, = O} and M2 = M \ MI. Hereafter, all rows in MI precede those in

M 2•

Hence we have the m x 1 TRL matrix

o

and regardless of how we permute the rows withinMI andM2, we have iij J; iij , forj"* jn.
Now for j"* jn, let dj = (1:iEM2 aij, 1:iEM, aij) and suppose dj'_l';; dj for j EN \ Un}.

PartitionMk for k = 1,2 intoMk = {i E M k : aij'_l = O} andMk \ M k. Now put the rows in

4. Balanced and Totally Balanced Matrices 569

Mk before those in Mk \ Mk and call the new partition Mh ... ,MI , where t ~ 4. Also
move column I n- l to the (n - l)st position. Now we have an m x 2 TRL matrix

with iij J; iijn_1 for) EN \ Un-l,}n}'

}n-l }n
o

o

1
o

o
1

o

o
o

o

1
1

The process can be continued by choosing a} E N \ U n-h} n} such that dj is lexico
graphically largest and then partitioning each of the M; to maintain the lexicographic
ordering of the rows. •

Example 4.3.

1 2 3 4 5 6 7

0 1 0 0 0 0 1 1
0 0 1 0 0 2

A=
1 0 0 1 1 1 3
1 0 0 0 1 1 4
0 1 0 1 0 0 5

0 0 0 0 6

Step 1: dj = maxj=l 7 dj = 4. Hence}7 = 3, MI = {l, 6}, andM2 = {2, 3,4, 5}.
Step 2: d 5 = (3 0) {; db }"* 3. Hence}6 = 5, MJ = {l, 6}, Mz = {4}, andM3 = {2, 3, 5}.
Step 3: d l = (1 1 1) {; dz, d 4, d 6, d 7• Hence }5 = 1, MI = {l}, Mz = {6}, M3 = {4},

M4 = {2, 5}, and M5 = {3}.

Continuing in this manner, we obtain the TRL matrix

4 2 6 7 1 5 3

0 1 0 1 0 0 0 1
1 1 0 0 1 0 0 6
0 0 1 1 1 0 4
1 0 0 0 0 2
0 1 0 0 0 1 1 5
0 0 1 1 3

Now we can establish the equivalence of totally balanced TRL matrices and row
inclusion matrices.

570 111.1. Integral Polyhedra

Proposition 4.8. Let A be a (0, 1) TRL matrix. A is totally balanced if and only if it does
not contain the sub matrix F

Proof If A is not TB, then it contains F (see Proposition 4.5). Now suppose A
contains

F=C
Consider rows i l and iz, and leth be the last column of A with ai,j, * ai2j,' Since A is

TRL,we obtaini3 > iz, ai,h = 0, andai2h = 1. Similarly, consideringcolumnsil andiz, with
i3 being the last row with ai3j, * ai3h, we obtain i3 > i z, ai3j, = 0, and ai3h = 1. Let

1

°

i3

LJ
i I
iz
i3

If ai 3j3 = 1, thenA3 E.!U3 and A is not TB. If ai3h = 0, we repeat the argument using rows i2
and i 3. So we obtaini4 > i3 with ai2j, = 0, ai3j, = 1, and ai,j = ai3j for alIi> i4' Now we also
observe that by the definition ofi3, it follows that ai,j, = ai,j, = 0. Similarly, from columns
iz andh, we obtain i4 > i3 with ai,j, = ai,h = ° and ai,j3 = 1. Let

1

° 1

°

° 1

° °
°) ° 1 .

ai,j,

Again, if ai,j, = 1, then A is not TB; and if ai,j, = 0, then i4 andi4 cannot be the last row and
columnofA.

After k steps, we get

But this process is finite, so for some k we have Ak E .!Uk. •
Now we have a polynomial-time algorithm for recognizing TB matrices.

Algorithm for Recognizing TB Matrices

Step 1: Given an arbitrary (0, 1) matrix A, permute its rows and columns to obtain a TRL
matrix A '. (By Proposition 4.1, A is TB if and only if A' is TB. It can be shown that the
algorithm in the proof of Proposition 4.7 runs in O(nZm) time).

Step 2: Check all 2 x 2 submatrices of A' for the matrix F and then apply Proposition 4.8.
(This takes O(mZnZ) time.)

4. Balanced and Totally Balanced Matrices 571

2 11

Figure 4.3

Suppose A is TB and TRL. Then, by Proposition 4.8, A is a row inclusion matrix, and
FC and DFC for A can be solved for integral optimal solutions by the algorithm given
on p. 566. Furthermore, since submatrices of TB matrices are also TB, it follows that
FC and DFC have integral optimal solutions for all bE Bm.

Theorem 4.9. If A is a TB matrix, then Q(b) = (x E R:: Ax ~ b) is integral, and DFC
has an integral optimal solution for all bE Bm.

By proceeding in exactly the same way, we obtain analogous results for FP and DFP.

Theorem 4.10. If A is a TB matrix, then PCb) = (x E R:: Ax ~ b) is integral, and DFP
has an integral optimal solution for all b, with bi E { 1, 00) for all i.

Totally balanced matrices arise in the formulation of some location problems as set
covering problems. Let T = (V, E) be a tree with nonnegative weights on its edges. The
weight of the unique path joining nodes i and}, denoted by dij, is the sum of the edge
weights over all edges in the path. In addition, for each} E V, there is an rj ~ 0 called the
radius of node}.

A neighborhood subtree of T rooted at node} is an induced subgraph Tj = (Jij, E j),

where Jij = {i E V: dij ~ r). Jij is the set of nodes that can be served by a facility placed at
node}. Let Cj be the cost of Tj.

The problem of finding a minimum-cost set of neighborhood subtrees that covers V is
the set-covering problem min{cx: Ax ~ 1, x E B n), where aij = 1 if i E Jij and aij = 0
otherwise ..

Example 4.4. We are given the tree in Figure 4.3. Let rj = 1 for all} E V, and let dij be the
number of edges on the unique path joining nodes i and}. Then each neighborhood
subtree contains a node and all of the nodes adjacent to it, and A is the node-star incidence
matrix ofT.

0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0

A= 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0

572 111.1. Integral Polyhedra

v 2

Figure 4.4

Proposition 4.11. If A is a node by neighborhood subtree incidence matrix, then A is total
ly balanced.

Proof Suppose A is not TB. Then we can assume that for some k ~ 3, A contains the
k x k matrix ofacycle; that is, ajj = aj+I,J = 1 for} = 1, ... ,k - 1, akk = alk = 1, ~nd aij = 0
otherwise. So for} = 1, ... , k - 1, 1j contains nodes} and} + 1 but no other nodes from {t,
.. : ,k}, and Tk contains nodes 1 and k but no nodes in (2, ... ,k - 1). LetpJ be the unique
path in T joining nodes} and} + 1, and let Pk be the unique path joining nodes 1 and k.

Suppose k = 3. Then since T I, T2, and T3 are neighborhood subtrees, nodes 1,2, and 3
cannot lie on a common path. Hence the paths Ph P2, and P3 intersect at some node v other
than nodes 1, 2, or 3 (see Figure 4.4).

Now let d/v = mini=I,2.3 div . Suppose I = 1. Let u be the node closest to V2 on P2. Hence
diu';;; max(d2u , d3u), and T2 contains node 1. By symmetry the same argument applies if
1= 2 or 3.

Now suppose k > 3. Define v to be the node closest to node 3 on the path PI' (Now we
can have v = 1 or 2 since T3 contains nodes 3 and 4.) Define

. ;, {minU: v is on the path joining nodes 3 and i + 1,3,;;; i ,;;; k - 1}

) k otherwise.

If} < k, the path from 3 to} does not contain v, and the path from 3 to} + 1 does. Thus
v is on the path Pj (see Figure 4.5a). If} = k, the path from 3 to k does not contain v. But
since v is on the path joining nodes 1 and 3, v is on Pk (see Figure 4.5b).

In Figure 4.5a let dqv = mini=I,2.J.J+1 div' Then TI and Tj contain q, which is a contra
diction. Similarly, in Figure 4.5b, let dqv = mini=I,2.3.k div' Then T2 and Tk contain q,
which again is a contradiction. So the k x k cycle matrix cannot occur and A is totally
balanced. •

j+l

v 2 1 v 2

C<.
•

(a) (b)

Figure 4.5

5. Node Packing and Perfect Graphs 573

The nodes Df a graph are trivial neighborhood subtrees Ti = «vJ, 0) for i = 1, ... ,
m. Hence a node by neighborhood-subtree incidence matrix is a special case of a
neighborhood-subtree by neighborhood-subtree incidence matrix. Given two families of
neighborhood subtrees ofa tree T, namely, Ti = (Vi' EJ for i = 1, ... ,m and Tj = (Vj,
E}) forj = 1, ... ,n, let

{ I ifv;nV;*0
aij = ° otherwise.

By using an argument similar to the one given in the proof of Proposition 4.11, we obtain
the following generalization:

Proposition 4.12 If A is a neighborhood subtree by neighborhood subtree incidence
matrix, then A is totally balanced.

We conclude this section by mentioning some results about balanced matrices. Note
that if A is not balanced, and therefore contains a submatrix A' E AlZk+l for some k ~ 1,
then Theorem 4.9 is false. This is an immediate consequence of the fact that the unique
solution to A'x = 1 is x = 10 ... 1). Hence with b i = 1 for the rows of A' and b i = °
otherwise, Q(b) is not integral. The main result, which we will not prove here, is that
Theorems 4.9 and 4.10 are still true when A is balanced.

Theorem 4.13. Let A be a (0, 1) matrix with no zero rows or columns. The following
statements are equivalent.

1. A is balanced.
2. PCb) = {x E R~: Ax ~ b} is integralfor all b with b i E {l, oo}.

3. Q(b) = {x E R~: Ax ~ b} is integralfor all bE Brn.

In Section 5 we will study matrices A for which P = {x E R~: Ax ~ 1} is integral but
where A is not balanced. In Section 6 we will consider some matrices A for which
Q = {x E R~: Ax ~ 1} is integral but where A is not balanced.

5. NODE PACKING AND PERFECT GRAPHS

Integrality results for the fractional packing polytope P = {x E R~: Ax ~ 1} can be general
ized to a larger class of(O, 1) matrices than that considered in Section 4. These matrices are
clique matrices of a family of graphs known as perfect graphs. Recall that in Section 11.2.1
we used clique matrices in the formulation of the node-packing problem.

For completeness, some definitions are repeated here.

Definition 5.1. A node packing on a graph G = (V, E) is a U <;; V with the property that
no pair of nodes in U is joined by an edge.

Definition 5.2. A clique in a graph G = (V, E) is a C <;; V with the property that every
pair of nodes in C is joined by an edge.

Unless otherwise specified, when we use the term clique we mean a maximal clique.

574 111.1. Integral Polyhedra

4

K= (j
1 1 0 0

!)
1 0 1 0
0 1 0 1
1 1 0 0

5 6
3

Figure 5.1

Definition 5.3. The clique matrix K of a graph G is the (0, 1) incidence matrix whose
rows correspond to all of the cliques of G and whose columns correspond to the nodes of
G.

Definition 5.4. The fractional node-packing polytope of a graph G is P = {x E R~:

Kx.:;; 1}, wheren = I VI.

Definition 5.5. A graph G is perfect if its fractional node-packing polytope is integral.

This polyhedral definition of a perfect graph is not the standard definition. Later in this
section, we will show that it is equivalent to the standard definition, which is given purely
in graphical terms. Originally, graphs that satisfied Definition 5.5 were called pluperfect.

Example 5.1. A graph and its clique matrix are shown in Figure 5.1.
Matrix K is not balanced. Nevertheless, G is perfect since P is integral. The reader can

check that its only extreme points are x = 0, x = ej for) = 1, ... , 6, x = ej + ek with
) + k = 7, and x = (0 0 0 1 1 1). This is not inconsistent with Theorems 4.10 or
4.13 since with b 1 = 00 and b i = 1 otherwise, P(b) contains the extreme point
1(1 1 0 0 0), which is also an extreme point of Q = {x E R~: Kx ~ 1}.

Before studying some classes of perfect graphs, we explain why it suffices to consider
clique matrices. In particular, we will show that if A is the incidence matrix of clutter that
is not a clique matrix, then P = {x E R~: Ax .:;; 1} is not integral.

Proposition 5.1. Let A be the m x n incidence matrix of a clutter. The following statements
are equivalent.

1. A is a clique matrix.
2. [fA containsap xpsubmatrixA' wherep ~ 3 and all of the row and column sums of

A' equal p - 1, then A' is contained in a (p + 1) x p submatrix that contains a row of
alii's.

Proof 1 2. Let G(A) be the intersection graph of A and, without loss of generality, let
A' be the submatrix of A consisting of the first p rows and columns of A. If statement 2 is
false, then the sets {l, ... ,p} \ {i} are contained in cliques for i = 1, ... ,p, but no clique
contains {l, ... ,p}. This is impossible for a clique matrix.

2 1. Let Ni = {j: a ij = 1} for i = 1, ... , m. If statement 1 is false, there exists a minimal
C ~ V with I C I ~ 3 such that the subgraph of G(A) induced by C is complete, and there
is no i such that Ni ::2 C. Since C is minimal, for each) E C, there is a distinct i(j) such
that Ni(j) n C = C \ {j}. Hence A contains a k x k submatrix A', all of whose row and

5. Node Packing and Perfect Graphs 575

column sums equal k - 1, but there is no (k + 1) x k submatrix that contains A I and has a
k-vector of ones. Thus statement 2 is false. •

Proposition 5.2. Let A be an m x n incidence matrix of a clutter. If A is not a clique matrix,
then P = {x E R~: Ax ~ 1} is not integral.

Proof A contains the submatrixA I of Proposition 5.1. Suppose the columns of A I are
indexed 1, ... ,p. Then it is easy to see that Xj = l!(p - 1) for j = 1, ... ,p, and Xj = 0
otherwise is an extreme point of P. •

We now consider two well-known classes of perfect graphs and a necessary condition
for a graph to be perfect.

Proposition 5.3. Bipartite graphs are perfect.

Proof The cliques of a bipartite graph are its edges. Hence K is the edge-node
incidence matrix of the graph. Thus, by Corollary 2.9, K is totally unimodular and, by
Proposition 2.2, P is integral. •

Definition 5.6 A chord of a cycle is an edge joining two nodes of the cycle that are not
adjacent on the cycle. A graph with k nodes, k ~ 4, corresponding to a cycle without
chords is called a k-hole. A graph that is the complement of a k-hole is called a k-antihole.
A hole or antihole is odd (even) if k is odd (even).

A 5-hole and a 7-antihole are shown in Figure 5.2.

Proposition 5.4. If a graph G contains a node-induced subgraph that is an odd hole or an
odd antihole, then G is not perfect.

Proof Suppose G contains an odd hole on nodes {l, ... ,2k + n. Then we can write
Kas

where Kl is the edge-node incidence matrix of the odd hole, and K3 contains at most two
positi ve elements in each row. Hence Xj = i for j = 1, ... , 2k + 1, and Xj = 0 otherwise is an
extreme point of P.

6 5
2

3

4 4

5-hole 7 -anti hole

Figure 5.2

576 III.1. Integral Polyhedra

On the other hand, if G contains an odd antihole on nodes {t, ... , 2k + 1}, then each
maximum clique of the subgraph is of size k. Hence Xj = 11k for j = 1, ... , 2k + 1, and
Xj = 0 otherwise is an extreme point of P. •

Many classes of graphs without induced odd holes or antiholes are known to be perfect.
However, the converse of Proposition 5.4 is unresolved. It is known as the perfect graph
conjecture and is considered to be one of the most challenging and difficult problems in
graph theory and polyhedral combinatorics.

We now consider a fundamental class of perfect graphs.

Definition 5.7. A graph is called chordal if it does not contain any k-holes for k ~ 4.

Proposition 5.5. If matrix A is a totally balanced incidence matrix of a clutter, then it is
the clique matrix of a chordal graph.

Proof If A is not a clique matrix, then by Proposition 5.2 it follows that
P = {x E R~: Ax ~ 1} is not integral. Hence by Theorem 4.10, A is not TB. If A is a clique
matrix of a graph that is not chordal, then by Definition 5.7 it follows that A contains a
member of .;Uk for some k ~ 4. Hence A is not TB. •

The chordal graph of Figure 5.1 shows that the converse is false.
There is a nice characterization of chordal graphs that yields an efficient recognition

algorithm as well as an algorithm that gives an integer solution (node packing) to the linear
programming problem over the fractional node-packing polytope. Let N(v) = {u E
V: (u, v) E E} be the nodes adjacent to v-that is, the set of neighbors ofv.

Definition 5.8. A node v of G = (V, E) is called simplicial if it and its neighbors form a
clique.

In the graph of Figure 5.1, nodes 4, 5, and 6 are simplicial, but nodes 1, 2, and 3 are not.

Definition 5.9. An ordering of V, (J' = [Vb V2, ••. , vn] is a perfect elimination scheme
(PES) if, for i = 1, ... , n - 1, viis a simplicial node of the subgraph induced by {v i, ... ,
vn}.

In the graph of Figure 5.1, [6 5 4 3 2 1] is a PES.
It is easy to see that the existence of a PES implies that a graph is chordal. For graph G let

v be the first node of a PES that is contained in a k-hole with k ~ 4. If v does not exist, G is
chordal. Otherwise, v and the two nodes u and w adjacent to v on the cycle are contained
in a clique. Hence (u, w) E E so that the cycle contains a chord, and G is chordal.

Moreover, it can be shown that every chordal graph has a PES.

Theorem 5.6. A graph is chordal if and only if it contains a PES.

By considering the nodes sequentially, a PES can be constructed in polynomial time or
can be shown not to exist.

S. Node Packing and Perfect Graphs S77

Now suppose that [1 2 n] is a PES for G. Let ki be the characteristic vector of
the clique containing node i in the subgraph induced by the nodes (i, ... ,n). Then the
n x n matrix K whose rows are k1, (0, kZ), ... , en contains the incidence vectors of all of
the (maximal) cliques of G. K can, of course, also contain dominated rows corresponding
to non maximal cliques. However, it is convenient to work with K since kii = 1 for i = 1,
... , nand ki) = 0 for} < ;. Let S), ... , Sm be any partition of{1, ... , n) with the property
that if IE Si, then kl ~ k i.

For any c E Z~, we can write the fractional node-packing problem as

(FNP) max{cx: Kx ~ 1, x E R:) = max{cx: Kx ~ 1, x E R~)

and its dual as

(DFNP) min{1u: uK;;. c, u E R~) = min{1y: yK;;. c, y E R':').

We obtain a feasible y from a feasible u with lu = ly by Yi = LIES, UI for i = 1, ... , m.
We now give a greedy algorithm that finds integral optimal solutions to DFNP and FNP

for chordal graphs. The algorithm is very similar to the greedy algorithm given in the
previous section for the fractional covering problem with totally balanced matrices.

Algorithm for DFNP and FNP for Chordal Graphs

DFNP:
Initialization: ; = 1, c 1 = C, Jo = 0 [12 ... n] is a PES.

Iteration i: Ui = max{O, cD. If Ui > 0, let J i = J i- 1 U {i) and Ci+1 = c i - uk. If Ui = 0, then
J i = J i- 1 and Ci+1 = ci• If i = n, stop; (u), ... , un) is an optimal solution. Otherwise,
;<-i+1.

FNP:
Initialization: J = J n (from DFNP), Xj = 0 for} tf- J.
Iteration: Let I be the last element of J. Set x, = 1 and J <- J \ (i: kit = 1). If J = 0, stop;

x = (x), . : • , xn} is an optimal solution. Otherwise repeat.

Proposition 5.7. The algorithm gives integral optimal solutions to DFNP and FNP.

Proof By construction, the solutions are integral and the dual solution is feasible.
Suppose that the ith constraint of FNP (with respect to the matrix K) is violated. Then
there exists}l =I=}2 with kulxjl = kij,xj, = 1. Suppose}2 follows}1 in the PES. Then i =}1 or i
precedes} 1 in the PES. Since} 1 was not deleted from J when we set xj, = 1, it follows that
kjlj, = O. But this contradicts the assumption that i is a simplicial node of the subgraph
induced by {i, ... ,}), ... ,}2, ... n}.

To complete the proof, we show that complementary slackness is satisfied. By construc-
. 1 N •

tion, we have 2:{:1 kijUi > c) only if cj < O. But then J) = J)-I. Hence} tf- J and Xj = O. Now
suppose Ui > 0, i E J. By the construction of the primal solution, either Xi = I or there
exists an I that comes after i in the PES with ki/x, = 1. Hence, L~1 kijxj = 1. •

578 111.1. Integral Polyhedra

Corollary 5.8. Chordal graphs are perfect.

Example 5.1. (continued). We use the PES [4 5 6 1 2 3]. Then

4 5 6 1 2 3

1 0 0 1 1 0
0 1 0 1 0

K= 0 0 1 0
0 0 0 1
0 0 0 0 1
0 0 0 0 0

Letc=(3 1 2 4 6 3)= c l .

DFNP:

1. UI = 3, c2 = (0 1 2

2. U2= 1,c3 =(0 0 2

3. U3 = 2, c4 = (0 0 0

4. U4 = 0, CS = c4, J4 = J3•

5. Us= 1,c6 =(0 0 0

6. U6 = 0, J6 = Js•

FNP:

1. J = {4, 5, 6, 2}, X2 = 1.

2. J = {5}, Xs = 1.

1
0

0

0

3 3), J I = {4}.

3 2),12 = {4, 5}.

0), J 3 = {4, 5, 6}.

o -1),1s = {4, 5, 6, 2}.

An optimal solution to FNP is x = (0 1 0 0 1 0). Let Yi = Ui for i = 1,2, 3 and let
Y 4 = U4 + Us + U6. An optimal solution to DFNP is y = (3 1 2 1).

We now give some general properties of perfect graphs and the corresponding
polytopes.

Let E = {e: e $. E}; then G = (V, E) is the complement of G. Let K be the clique matrix
of G. Perfect graphs always come in pairs because:

Proposition 5.9. Gis perfect if and only ifG is perfect.

Proof If G is perfect, then by definition it follows that P = {x E R~: Kx ~ 1} is an
integral polyhedron whose extreme points are the incidence vectors of node packings of G.
Since there is a one-to-one correspondence between cliques of G and maximal node
packings of G, the maximal extreme points of P are the rows of K.

Now by antiblocking polarity-in particular, Proposition 5.8 of Section 1.4.5-
P = {x E R~: Kx ~ 1} is an integral polyhedron. Hence G is perfect.

The converse follows trivially since G is the complement of G. •

5. Node Packing and Perfect Graphs 579

Figure 5.3

Example 5.2. In the graph of Figure 5.3, VI = (1, 2, 3) and V2 = {4, 5, 6} are cliques.
Hence this graph is the complement ofa bipartite graph. By Proposition 5.3 and Proposi
tion 5.9, it is perfect.

The fractional node-packing polytope on the subgraph induced by V \ U is
P n {x E R~: Xj = 0 forj E U}, which is a face of P and therefore is integral if P is integral.
Hence we have the following proposition:

Proposition 5.10. Node-induced subgraphs of perfect graphs are perfect.

Now consider P(b) = {x E R~: Kx ~ b} with b E Em. P(b) is the face of P with Xj = 0 if
there is an i with b i = 0 and k ij = 1. Hence if P = P(l) is integral, then P(b) is integral for all
bEEm.

Let a(G) be the size of a maximum cardinality node packing in G, and let B(G) be the
minimum number of cliques required to cover all the nodes of G. For any graph G with n
nodes and m cliques, by relaxation and duality we have

a(G) ~ max{lx: Kx ~ 1, x E R1}

= min(1y: yK ~ 1, Y E R':'} ~ B(G).

For perfect graphs, the first inequality is an equality; for an odd hole on 2k + 1 nodes,
however, a(G) = k, B(G) = k + 1, and the linear programming relaxations have value
k + t.

To generalize a and B for graphs with node weights, let

a(G, c) = max{cx: Kx ~ 1, x E En}

z(G, c) = max{cx: Kx ~ 1, x E R~}

= min{1y: yK ~ c, Y E R':'}

B(G, c) = min(1y: yK ~ c, Y E Z':'}.

Hence a(G, 1) = a(G), B(G, 1) = B(G), and for any c E En with U = {j E V: Cj = l} we
have a(G, c) = a(H) and B(G, c) = B(H), where H is the subgraph of G induced by U. By
duality and relaxation, we obtain

a(G, c) ~ z(G, c) ~ B(G, c).

For perfect graphs, we know that the first inequality is an equality for all c and, in
particular, for c E En. The following result, which is the fundamental theorem of this
section, establishes the second equality for c E En and also yields some interesting
corollaries.

580 III.1. Integral Polyhedra

Theorem 5.11. Thefollowing statements are equivalent.

1. P = {x E R~: Kx .",; 1} is integral. (G is perfect.)

2. a(H) = ()(H) for all node-induced subgraphs H of G.

Proof 1 = 2. Given that G is perfect, by Proposition 5.10 every subgraph H of G is
perfect. Hence if H is the subgraph induced by U and if Cj = 1 for} E U and Cj = 0
otherwise, we obtain

(FNP) a(H) = max{cx: Kx .",; 1, x E R~}.

Thus, by linear programming duality, we need to prove that

(DFNP) min{1y: yK ? c, Y E R';'}

has an integral optimal solution for all c E Bn.
The proof is by induction on the number of positive components of c, which equals

1 U I. Note that if c = 0, then y = 0 is an optimal solution to DFNP. Now it suffices to
assume the hypothesis for all proper subgraphs of G and to prove that
min{1y: yK? 1, Y E R';'} has an integral optimal solution.

Let the rows of K be k i for i = 1, ... , m. Since y = 0 is not feasible to DFNp, there is an
i, say i = r, such that y, > 0 in an optimal dual solution. Hence by complementary
slackness, k'x = 1 for every optimal solution to FNP.

If k' = 1, then r = 1 and an optimal solution to DFNP is Yl = 1. If k r < 1, by the
induction hypothesis, min{1y: yK? 1 - k', y E R';'} has an integral optimal solution,
say yO.
Claim 1: yO + e, is an optimal solution to DFNP. Note it is feasible since
(yO + e,)K? 1 - k' + k r = 1. Because G is perfect, any maximum cardinality node pack
ing on G is an optimal solution to FNp, and hence, by the definition of r, every maximum
cardinality node packing on G contains a node in the clique C = {j E V: k rj = 1}. So for the
subgraph H induced by V \ C, a maximum cardinality packing is obtained by deleting a
node from C from a maximum cardinality packing on G. Hence a(H) = a(G) - 1, and

1yO + 1 = ()(H) + 1 = a(H) + 1 = a(G).",; ()(G).",; 1(yO + e,) = 1yo + 1.

So yO + e r is an integral optimal solution to DFNP.

2 = 1. We will prove that a(G, c) = z(G, c) for all c E z~. Statement 2 says that
a(G, c) = z(G, c)for all c E Bn. Now for any c E zn \ z~ let Cj = Cj if Cj ? 1 and let Cj = 0
otherwise. Since Cj < 0 implies Xj = 0 in both the fractional and integer node-packing
problems, a(G, c) = a(G, c) and z(G, c) = z(G, c). Hence from statement 2 we have
a(G, c) = z(G, c) for all C E zn with C .",; 1.

The proof for C E z~ is by induction with the hypothesis a(G, c') = z(G, c') for all
c' < c. Consider c E z~ with Cj ? 2 for some}. Let c' = c - ej. Since C;? 1, it follows from
complementary slackness that there is an r such that k rj = 1 and k'x = 1 in every optimal
solution to max{c'x: x E P}. Let c = c - kr. Hence by the induction hypothesis, we have
a(G, c) = z(G, c).
Claim 2: a(G, c) = a(G, c) + 1. Since c > C, we have a(G, c)? a(G, c).
Let y be an optimal solution to

z(G, c) = min{1y: yK? C, Y E R';'}.

5. Node Packing and Perfect Graphs 581

duplicate 1

1 '

duplicate 2

1 '

Figure 5.4

Since (y + er)K;;. e + k' = c, we have z(G, c) ~ z(G, e) + l. Since a(G, c) ~ z(G, c) and
a(G, e) = z(G, e), we have

a(G, e) ~ a(G, c) ~ a(G, e) + 1.

Finally, since the a's are integers, a(G, c) = a(G, e) or a(G, c) = a(G, e) + 1.
Suppose a(G, c) = a(G, e) and let x be the characteristic vector of any node packing

with ex = a(G, e). Then k'x = 0 and c'x = a(G, c') since a(G, e) ~ a(G, c') ~ a(G, c).
This is a contradiction because we have already shown that k' x = 1 for any node packing x
with c'x = a(G, c'). Hence a(G, c) = a(G, e) + 1.

Now we have

a(G, c) ~ z(G, c) ~ z(G, e) + I = a(G, e) + 1 = a(G, c).

Hence z(G, c) = a(G, c), and the theorem is proved. •
The standard definition of a perfect graph is statement 2 of Theorem 5.11. In the proof

of 2 = 1 we first used the trivial implication 2 = 3, where

3. max{cx: x E P} has an integral optimal solution for all c E Bn,

and thus we proved 3 = 1. Hence the real content of 2 = 1 is the following result.

Corollary 5.12. P = {x E R~: Kx ~ 1} is integral if max{cx: x E P} has an integral
optimal solutionfor all c E Bn.

Corollary 5.12 is rather surprising since, in general, we need integral optimal solutions
for all c E zn to conclude that a polytope is integral.

There is another interesting interpretation of this result, which involves duplicating the
nodes of a graph. By duplicating a node v of a graph G, we mean that a new node v' is
added to G and that v' is joined to all of the neighbors ofv but not to v (see Figure 5.4).

It is easy to see that if G' is the graph obtained by duplicating node j Cj - 1 times in the
graph G, then a(G') is the weight ofa maximum-weight node packing in G with weight Cj

on node j. Hence if statement 2 holds for G and all of the graphs obtained from G by

582 111.1. Integral Polyhedra

duplicating nodes, then statement 1 is true. Thus Corollary 5.12 can also be interpreted in
graphical terms.

Corollary 5.13. If G is a perfect graph and G' is obtained from G by duplicating nodes,
then G' is perfect.

In polyhedral terms, since G' is perfect ifand only ifa(H') = B(H')for all subgraphsH'
of G', we have that if G is perfect, then a(G, c) = B(G, c) for all c E zn. In other words:

Corollary 5.14. IfG is a perfect graph, the linear system Kx ~ 1, x ~ 0 is TO!.

Yet another corollary to Theorem 5.11 is obtained from Proposition 5.9. Let w(G) be
the size of a maximum cardinality clique of G. Since cliques in G correspond to maximal
node packings in G and conversely, we have

w(G) = a(G) and w(G) = a(G).

Also define the chromatic number of G, denoted by y(G), to be the minimum number
of colors required to color the nodes of G so that no adjacent nodes have the same color.
The celebrated four-color theorem says that every planar graph (a graph that can be drawn
in the plane without crossing edges) has y(G) ~ 4. The complete graph on 4 nodes is a
planar graph with y(G) = 4. A minimum cardinality node coloring for the graph of
Figure 5.1 is shown in Figure 5.5.

Note that in any feasible coloring, all of the nodes of the same color form a node
packing. Thus y(G) is the minimum number of node packings needed to cover all ofthe
nodes. Hence we have

y(G) = B(G) and y(G) = B(G).

Now from Proposition 5.9 and Theorem 5.11, we immediately obtain the following
theorem:

Theorem 5.15. Thefollowing statements are equivalent.

1. a(H) = (J(H) for all node-induced subgraphs H of G.
2. w(H) = y(H)for all node-induced subgraphs H ofG.

Theorem 5.15 is known as the perfect graph theorem.

B

Yellow Blue Red

Figure 5.5. w(G) = y(G) = 3.

5. Node Packing and Perfect Graphs 583

8
3

5 4

Figure 5.6 G is perfect by Theorem 5.17.

It would take us too far from the subject matter of this book to study additional classes
of perfect graphs. The following two theorems, given without proofs, illustrate some of the
progress that has been made in identifying classes of perfect graphs. They do not, however,
give the most general results.

Theorem 5.16. G is perfect if each odd cycle of length at least 5 contains at least two
chords.

Theorem 5.17. G is perfect if for each odd cycle there is an edge (i, j) of the cycle with the
property that every clique that contains i and j also contains another node of the cycle.

Theorem 5.17 is illustrated in Figure 5.6. Edge (1, 7) satisfies the hypothesis of the
theorem, since the only clique that contains (1, 7) is C = {l, 6, 7}. However, the edge (6, 7)
does not satisfy the hypothesis since it is contained in the clique {6, 7, 8}.

Theorem 5.17 is an immediate corollary to Theorem 4.13, since the class of graphs
defined in Theorems 5.17 is balanced. This follows since the hypothesis of the theorem
forbids a submatrix in ';uk for k ~ 3 and odd by requiring that any (2k + 1) x (2k + 1)
submatrix with all row and column sums at least 2 has at least one row with row sum at
least 3.

Although no characterization of perfect graphs is known in graphical terms, there is an
important result which characterizes (0, 1) matrices that are clique matrices of perfect
graphs in terms offorbidden submatrices. We will not prove this theorem.

Theorem 5.18. Let A be the m x n incidence matrix of a clutter. The following statements
are equivalent.

1. A is the clique matrix of a perfect graph.
2. If A contains a p x p nonsingular submatrix A' whose row and column sums are all

equal to p, 2 ~ P ~ [n/2J, then there is a (p + 1) x p submatrix that contains A' and
also contains a row with row sum greater than p or a row with row sum p that is not
equal to any row of A'.

The implication 1 = 2 is easy to prove since if statement 2 is false we obtain a fractional
extreme point with Xj = p-' for each column of A " and Xj = 0 otherwise.

584 111.1. Integral Polyhedra

If statement 2 is false, then p = p - 1 implies that A is not a clique matrix (see
Proposition 5.1), and P = 2 or [p /2] for p odd implies that the graph contains an odd hole
or an odd anti hole (see Proposition 5.4).

Thus, one approach to the perfect graph conjecture is to consider minimal imperfect
graphs-that is, graphs that are imperfect but all of whose node-induced subgraphs are
perfect. If the perfect graph conjecture were true, Theorem 5.18 says that for a minimally
imperfect graph, statement 2 must have p odd and P = 2 or [p /2].

For some classes of graphs, the perfect graph conjecture is known to be true. For
example, the planar graphs without odd holes and odd antiholes are perfect.

Theorem 5.18 also establishes that the recognition problem for imperfect graphs is in
JIPf'. This follows since (a) the clique matrix of an imperfect graph must have a (p + 1) x p
submatrix for which statement 2 is false and (b) such a matrix can be validated in
polynomial time. However, it is not known whether the recognition problem for perfect
graphs is in .N'PJ'.

In addition, it is not known whether recognizing graphs that contain no odd hole or
antihole is in .N'PJ'. Obviously these two recognition problems are equivalent if the perfect
graph conjecture holds.

We close this section with a brief discussion of algorithms for solving node-packing
problems. For general graphs, the maximum cardinality node-packing is .N'PJ'-hard (see
Section I.5.6), and even the maximum-weight fractional node-packing problem is .N'PJ'
hard (see Section I.6.3). However, strong fractional cutting-plane algorithms (which use
heuristics to find violated clique and other inequalities, and good feasible solutions) are
quite successful in solving a variety of instances.

For general perfect graphs, there is an ellipsoid algorithm that solves the maximum
weight node-packing problem in polynomial time. However, the fractional node-packing
polytope is not the basis of the algorithm since the separation problem for clique
inequalities is another weighted node-packing problem on a perfect graph. Instead, the
algorithm uses a convex constraint set which, for a general graph, is contained in the
fractional node-packing polytope and contains the convex hull of node packings. Hence
for perfect graphs it coincides with the convex hull of node packings. The separation
problem for this convex constraint set is solvable in polynomial time. But it is necessary to
use a generalization of the ellipsoid algorithm to accommodate the nonlinear constraints.

For some classes of perfect graphs, efficient combinatorial algorithms are known for the
recognition problem and for solving the maximum-weight node-packing problem. We
have already solved these problems for bipartite and chordal graphs. More generally, for
the perfect graphs given in Theorem 5.16, the recognition problem and the maximum
weight node-packing problem can be solved in polynomial time.

Efficient node-packing algorithms are not restricted to perfect graphs.

Definition 5.10. A line graph L(G) ofa graph G is obtained by replacing each edge ofG
by a node and joining two nodes by an edge if the two edges in G are incident to a common
node (see Figure 5.7).

4 5

:k8~3 1
7 6

G L(G), L(G) is not perfect

Figure 5.7

5. Node Packing and Perfect Graphs 585

Figure 5.8

It is easy to see that a subset of nodes in L(G) is a packing if and only if the
corresponding set of edges in G is a matching. Hence for line graphs, the maximum-weight
node-packing problem in L(G) is equivalent to a maximum-weight matching problem in
G (see Chapter 1II.2).

The graph in Figure 5.8 is called a claw. A graph is called claw-free if it does not contain
a claw as a node-induced subgraph. By drawing a few pictures, the reader can establish that
line graphs are claw-free, but the converse is false.

It is easy to see that claw-free graphs need not be perfect since a 5-hole is claw-free. An
interesting property of claw-free graphs is illustrated in Figure 5.9. The black nodes of the
graph are a node packing. Nodes {l, 2, 3, 4, 5} induce a path whose nodes alternate
between white and black and whose end nodes are white. By interchanging the colors of
the nodes on this path, we increase the cardinality of the packing.

This means of increasing the size of a packing works for claw-free graphs because if
there were any edges between the nodes {l, 3, 5} or between one of these nodes and a black
node not on the path, the graph would contain a claw. This approach leads to an efficient
algorithm for solving the maximum-weight node-packing problem on claw-free graphs.
The algorithm is closely related to the matching algorithm discussed in Section 1II.2.3.

Claw-free graphs without odd holes and odd antiholes are perfect; that is, the perfect
graph conjecture is true for these graphs. However, no description of the convex hull of
node packings is known for claw-free graphs.

2 3 4 5

:"'Q-------!)'7

8

Figure 5.9

586 111.1. Integral Polyhedra

6. BLOCKING AND INTEGRAL POLYHEDRA

In the previous sections of this chapter, we have considered the following types of
questions: (1) Given a family of polyhedra of the form P = {x E R~: Ax ~ b}, under what
conditions on (A, b) will P be integral? (2) When does the dual linear program
min{yb: yA ;?; c, y E R':'} have an integral optimal solution? In particular, in the last
section we completely characterized when P = {x E R~: Ax ~ 1} is integral when A is a
0-1 matrix. Here we consider the question of when Q = {x E R~: Ax ;?; 1} is integral, and
when the corresponding inequality system is TDI. However, there is no nice characteriza
tion known, so we start from a different point of view. Given a finite set N = {l, ... ,n}
and a set :JP of subsets of N, we consider the problem

(6.1) min{w(F): FE :JP},

where w E R~ is a weight function on the elements of Nand w(F) = LjEF Wj.
We consider two questions:

a. How can we formulate (6.1) as an integer program?
b. How can we formulate (6.1) as a linear program?

We will formulate (6.1) as an integer program of the form

min(wx: Ax ;?; 1, x E Bn}

where A is a 0-1 matrix, and then we will ask when the polyhedron Q = {x E R~: Ax ;?; 1} is
integral.

If Q is not integral, then to formulate (6.1) as a linear program

(6.2) min{ wx: x E Q*}

we will describe the polyhedron Q* whose extreme points are the characteristic vectors xF

for FE:JP, and such that min{wx: x E Q*} is unbounded if and only ifw ERn \ R~.

Many familiar examples of (6.1) are associated with graphs. Let G = (V, E) be a
complete graph, let N = E and Wj be the weight of ej E E. Some problems are given below.

1. The minimum-weight s-t path problem. FE:JP if F is the edge set of an s-t path.
2. The minimum-weight s-t cut problem. FE :JP if F is the set of edges of a minimal

s-t cut.
3. The minimum-weight covering of nodes by edges. FE:JP if F is a minimal set of

edges with the property that every node is met by some edge in F.
4. The minimum-weight star problem. F E :JP if F is the set of edges incident to a node.

F is called a star.
5. The traveling salesman problem. FE :JP if F is the edge set of a Hamiltonian cycle.

A significant difference between problem 4 and the others is that in problem 4, I:JP 1 =

I V I, while in the others I:JP 1 grows exponentially with 1 V I. Hence problem 4 is easily
solved by enumeration. Problems 1 and 2 are network flow problems (see Sections 1.3.2
and 1.3.4). Problem 3 is closely related to the matching problems considered in Chap-

6. Blocking and Integral Polyhedra 587

ter III.2 and will be considered in Section III.2.4. It can be solved in polynomial time.
Problem 5 is ,NflP-hard.

To develop integer and linear programming formulations of(6.1), we consider another
clutter.

Definition 6.1. The blocking clutter of ~ is the clutter B(~) whose members H satisfy the
following two conditions.

1. Intersection: H n F '*' 0 for all F E~.

2. Minimality: If H'C H, then H'n F = 0 for some F E~.

Example 6.1. Suppose ~ is represented by the rows of the matrix

(1 1 1 0)
o 1 0 1 .
o 0 1 1

The reader can check that its blocking clutter is specified by the rows of the matrix.

Proposition 6.1. B(B(g;» = ~.

Proof For any clutter~, let ~+ = {R: R :2 F for some F E ~}. Suppose FE $P. By
the definition ofB($P) we havethatifH E B(~), thenF n H '*' 0. HenceF E (B(B(~»t.

Now we need to prove that the members of $P are the minimal elements of (B(B($P»t.
Suppose T ~ ~+. Then for any G E~, we obtain G r;t T. Hence G n (N \ T) '*' 0 for

all G E $P. So N \ T E (B($P)t and thus T ~ (B(B($P»t. Hence the minimal elements of
(B(B(~»t are precisely the members of~; that is, ~ = B(B(~». •

Thus we can interchange the roles of ~ and B($P) and simply refer to a pair of clutters $P
and ~ as blocking clutters when ~ = B(~) or ~ = B(~).

The proof of Proposition 6.1 establishes the following theorem of the alternative, which
characterizes blocking pairs of clutters.

Corollary 6.2. The clutters $P and ~ are a pair of blocking clutters if and only if for all
T s; N, there is either an F E ~ with F s; T or an H E 'J{ with H s; N \ T but not both.

Proof We have already shown that if T ~ $P+, then N \ T E (B($P»+. Both statements
cannot be true because of the intersection condition. The converse is proved similarly .•

Example 6.2. Suppose ~ is the clutter of s -t paths in a connected graph. We have proved
in Section 1.3.4 that G containsans-t path ifand onlyifevery s-t cutis nonempty. Hence
every s-t path contains an edge belonging to every s-t cut and conversely. Thus B(~) is
the clutter of minimal s-t cuts. Figure 6.1 shows a graph and the matrices of incidence
vectors of s-t paths and minimal s-t cuts.

588 III.1. Integral Polyhedra

u

8

[)

ej ez e3 e4 es ej ez e3 e4 es
1 0 0 1 0 1 1 0 0 0
1 0 0 1 1 0 0 1
0 1 1 0 0 1 1 0
0 0 0 0 0 0 0

Path matrix Cut matrix

Figure 6.1

Example 6.3. Let:J' be the clutter of edge covers (covers of nodes by edges) in a graph
G = (V, E) without isolated nodes. E' s; E is an edge cover if and only if every node in the
subgraph G = (V, E') has degree at least l. Hence B(:J') are the stars ofG. Note that the star
matrix is the node-edge incidence matrix of G. For the graph of Figure 6.1, the incidence
matrices of minimal edge covers and stars are given below.

ej e2 e3 e4 es ej ez e3 e4 es
1 0 1 1 0 1 1 0 0 0
1 0 0 0 1 0 1 0
0 1 1 0 1 0 1 1 0
0 1 0 0 0 0 0

Minimal edge cover Star matrix
matrix

Example 6.4. There are some obvious members of the blocking clutter of tours. For
example, every tour contains at least two edges incident to every node. Thus stars with an
edge deleted are members of the blocking clutter. But a complete description of the
minimal edge sets whose deletion would make the graph non-Hamiltonian is not known.

From the perspective of integer programming, the importance of knowing B(:J') is that
it gives a formulation of (6.1) as a set-covering problem. We use binary vectors x F for
FE :J' to represent the elements of:J' and use binary vectors aH for HE B(:J') to represent
elements of B(:J'). Let

Q = (x E R~: ally; ;?; 1 for all H E B(:J')}.

Q*= conv{x E z~: X;?; x F for some F E :J'}.

QB = {a E R~: x F a;?; 1 for all F E :J'}.

QiJ = conv{a E Z~: a ;?; aH for some H E B(:J')}.

6. Blocking and Integral Polyhedra 589

Example 6.1 (continued). Q is the polyhedron given by

xER!.

The reader can check that (a) its extreme points are the incidence vectors of the members
of!lF and the point (1 1 1 1) and (b) its extreme rays are the 4 unit vectors. Hence
Q n Z4 is the set of integer vectors equal to or greater than some incidence vector of a
member of!lF. Thus QI3 is the polyhedron given by

a ER!.

Its extreme points are the incidence vectors of the members of 'Je and the point
(0 1 1 1). Again QB n Z4 is the set of integer vectors equal to or greater than some
incidence vector ofa member of'Je, and Q1 = conv(QB n Z4).

Proposition 6.3. The following statements are true.

1. Q n zn = {x E zn: x ~ x F for some F E .9'}.

2. Q* = conv(Q n zn).

3. QB n zn = {x E zn: a ~ aH for some H E B(.9')}.

4. Q1 = conv(QB n zn).

Proof We will establish statement 1. Statement 2 follows immediately from state
ment 1. Statements 3 and 4 are proved similarly.

If x E zn and x ~ x F for some FE.9', then ally; ~ 1 for all HE B(.9'). Hence
x E Q n zn. Conversely, if x E Q n zn but x ~ x F fails to hold for all FE.9', let
T = {j: Xj > O}. Then it follows from Corollary 6.2 that there exists HE B(.9') with
H!;; N \ T. Hence aHx = 0 and x$. Q n Z". •

Since w E R~ and any x E Q n zn satisfies x ~ x F for some FE.9', (6.1) can be
reformulated as the set-covering problem min{wx: x E Q n Bn}. Moreover, since the
extreme points of Q* are precisely x F for F E .9', we obtain

min{wx: x E Q*} = min{wx: x E Q n Bn}.

590 111.1. Integral Polyhedra

We also obtain analogous results for the problem min{ w(H): HE B(:¥)}. In particular,

min{w(H): H E B(:¥)} = min{wa: a E QB n Bn}

= min{wa: a E Q~}.

Example 6.1 (continued). Note that min{w(F): FE:¥} can be formulated as the set
covering problem

min WIXI + W2X2 + WyX3 + W<!X4

Xl + X4 ~

X2 + X3 ~

X2 + X4 ~

X3 + X4 ~

xEB4.

Also min{w(H): H E i1t'} can be formulated as the set-covering problem

min Wlal + W2a2 + W3a3 + W4a4

al + az + a3 ~

az + a4 ~

a3 + a4 ~

a EB4.

We now investigate the relationships among Q, Q~ QB, and Q~.

Proposition 6.4. The following statements are true.

a. Q* and QB are a blocking pair of polyhedra.
b. Q and Q~ are a blocking pair of polyhedra.

Proof The extreme points of Q* are XF for FE:¥. Hence by Proposition 5.7 of
Section 1.4.5, its blocker is

An identical argument yields statement b. •

The relationships are summarized in Figure 6.2.

Blockers
Q-<<-------------~>~Q;

Convex hUll! 1 Convex hull

Blockers
Q* E > QB

Figure 6.2

6. Blocking and Integral Polyhedra 591

Example 6.1. (continued). We have shown that the extreme points of QB are the
incidence vectors of the members of'J{ and the point (0 ! ! ~). Hence min{ w(F): F
E ~} can be reformulated as the linear program

min WIXI + W2X 2 + W3X 3 + W04

Xl + X4 ~

X2 + X3 ~

X2 + X4 ~

X3 + X4 ~

X2 + X3 + X4 ~

xER!.

since these constraints define the polyhedron Q~

Similarly, min{w(H): HE 'J{} can be reformulated as

al + a2 + a3 ~

a2 + a4 ~

a3 + a4 ~

al + a2 + a3 + a4 ~

a ER!.

since these constraints define the polyhedron Q~.

2

2

Now when Q is integral, Q = Q*. Hence their respective blockers Q~ and QB are equal
(see Figure 6.2). Thus we obtain (see Theorem 5.10 of Section 1.4.5) a pair of max-min
relationships.

Theorem 6.5. Thefollowing statements are equivalent.

1. Q is integral.
2. QB is integral.

3. For all w E R~, we have

4. For all w E R~, we have

The max-min equality of statement 4 says that for all wE RZ, the weight of a
minimum-weight element of ~ equals the maximum number of elements of the blocking

592 111.1. Integral Polyhedra

clutter that can be packed fractionally into the weight vector w. Can more be said for
w E z~? In general, the answer is no; we will consider some examples later. However,
when the packing problem has an integral optimal solution for all w E z~, we say that the
max-min equality holds strongly. This is equivalent to the system aHx ~ 1 for HE B(:¥)
and x ~ 0 being TDI, since if w E zn \ z~, the packing problem is infeasible. By
Proposition 6.1, all of the remarks made in this paragraph about statement 4 also apply to
statement 3.

The results of Proposition 6.4 and Theorem 6.5, together with the polynomial equiva
lence of optimization and separation (see Theorem 3.3 of Section I.6.3), relate the
computational complexity of the linear programs over Q, Q~ QB, and Q~.

Theorem 6.6. Each member of the following pairs of problems is solvable in polynomial
time if and only if the other member of the pair is solvable in polynomial time.

1. The linear programs over Q* and QB for all w E R~.

2. The linear programs over Q~ and Qfor all w E R~.

3. The linear programs over Q and QB when Q is integral.

Example 6.2 (continued). The problem

can be interpreted as the maximum number of s-t paths that can be packed fractionally
into the weight or capacity vector w. Since we can think of each path as a flow of one unit
from s to t, (6.3) is a formulation of the max-flow problem. Hence by the max-flow-min
cut theorem (see Theorem 4.1 of Section 1.3.4), statement 3 of Theorem 6.5 holds for all
w E R~. Thus Q and QB are integral polyhedra. The extreme points of QB are the
incidence vectors of all minimal s -t cuts, and the extreme points of Q are the incidence
vectors of all s -t paths. Note from Figure 6.1 that neither the incidence matrix of s -t paths
nor the matrix of minimal s-t cuts is balanced, which means that if certain rows were
dropped from those matrices the corresponding polyhedra would no longer be integral.

The weighted min-cut problem formulation given by the dual of(6.3),

(6.4) min{wa: axF ~ 1 for FE:¥, a E R~},

can be solved by a constraint generation algorithm since for any a* E R~, it follows that
a*xF ~ 1 for all FE :¥ifand only if the weight of a mini mum-weight s-t path with weight
vector a* is at least 1. Although this algorithm is not practical, it illustrates the connection
between optimization and separation and how the ellipsoid algorithm is used to prove that
a combinatorial linear program with a large number of constraints can be solved in
polynomial time.

The max-min equality in statement 4 of Theorem 6.5 also holds strongly; that is, the
maximum number of s-t cuts that can be packed into w E R~ equals the weight of a
minimum-weight s-t path, and the packing problem has an integral optimal solution.
Moreover, Dijkstra's algorithm can be used to construct an integral optimal solution to the
cut packing problem.

To show this, we refer to the algorithm in Section I.3.2, and we replace each edge by a
pair of directed arcs.

6. Blocking and Integral Polyhedra 593

Let g(j) be the weight of a minimum-weight path from node s to node}, and let
g(s) = O. Let VO = {s}. At iteration i, we have a set Vi with

max g(j) :s:; min g(j) with Vi = V \ Vi.
JEU' JEU'

Let s = }o, and define}i to be any} E Vi that satisfiesg(ji) = maXjEU' g(j). Hence

g(ji+l) = max g(j) :s:; min g(j).
JEVal jEU'

The cut (Vi, Vi) is assigned the weight YU' = g(j i+l) - g(j i) for i = 0, 1, Thus

i i

(6.5) L YUI-l = L (g(jt) - gUt-I» = gUJ
t~1 t~1

Now if t = } k, we claim that an optimal integral solution to the cut packing problem is
given by YU' = g(ji+l) - g(ji) for i = 0, ... , k - 1 and by Yu = 0 otherwise.

Given W E Z~, we have YU' E Z!, and by (6.5), we obtain L7~1 YUi-l = get). Thus it
remains to be shown that

L YU'-I:S:; We for all e E E.
(i:U'3e,i<;k)

Let e = (j p,) q), where q > p. By definition of g(j), it follows that g(j q) ;;;. g(j p) and
we;;;' g(jq) - g(jp). By (6.5), we have g(jq) - g(jp) = L7~p+I YU'-l and

min(k,q)

L YU'-I:S:; L YU'-l
U: U!3e,i~k} i:::=p+l

ifq > k

Let W = (3 1 2 4) be a weight vector for the graph of Figure 6.1. Oijkstra's
algorithm yields Vo={s}, g(s) = 0; VI ={s, v}, g(v) = 1; VZ={s,v,u}, g(u)=2;
V 3 = {s, v, u, t}, get) = 4. Hence an optimal integral solution to the cut packing problem
is obtained by assigning weigh~f(v) - g(s) = 1 to the cut (VO, If) = {ell ez}, weight
g(u) =-l(v) = 1 to the cut (VI, V) = {e), e3, es}, and weight get) - g(u) = 2 to the cut
(VZ, V) = {e4, es}.

Example 6.2 shows the nicest possible behavior. Q and QB are integral, and both
polyhedra are represented by TOI systems. Example 6.3 reveals other possibilities.

Example 6.3 (continued)

A. Bipartite Graphs. Since the matrix whose rows are the incidence vectors of stars in G
is the node-edge incidence matrix, it is totally unimodular (Corollary 2.9). Hence, the
polyhedron Q is integral and the linear system of inequalities is TO!. Since the packing of
stars is the same as node packing, we obtain from statement 4 of Theorem 6.5 that the
weight of a minimum-weight edge cover equals the maximum number of stars or nodes

594 111.1. Integral Polyhedra

that can be packed into w E Z~. In particular, for w = 1, this is the classical result that the
minimum number of edges needed to cover all of the nodes equals the size of a maximum
cardinality node packing.

Since Q is an integral polyhedron, so is QB' It can be shown that the packing problem in
statement 4 of Theorem 6.5 has an integral optimal solution for w = 1. This says that the
maximum number of edge disjoint edge covers equals the degree of the minimum degree
node.

B. General Graphs. Q is not integral for all graphs. For example, if G is a triangle, Q
contains the extreme point (1 1 1).

The edge-covering problem on the complete graph on 4 nodes, which we considered in
Example 1.2, is interesting in that it reveals that the packing problems in statements 3 and
4 of Theorem 6.5 can have different behavior. Q is integral, but with w = 1 the star packing
problem has a unique optimal fractional solution. On the other hand, it can be shown that
the problem of fractionally packing the edge covers has an integral optimal solution for all
w E Z~. Thus, we have an example of a blocking pair of integral polyhedra for which the
max-min equality holds strongly for one but not for the other.

There is an analogous theory, which we consider only briefly, for finding a maximum
weight element of a clutter gjP.

Definition 6.2. The antiblocking clutter of gjP is the clutter A(gjP) whose members H
satisfy the following two conditions.

1. Minimum intersection: I H n F I ~ 1 for F E gjP.
2. Maximality: If H'::J H, then I H' n F I > 1 for some F E gjP.

A familiar example of the antiblocking relation arises in the maximum-weight node
packing problem. Here gjP is the set of maximal node packings in a graph G, and A (gjP) = cg
is the set of maximal cliques. Given the weight vector w E R~ on the nodes, the maximum
weight node packing problem is

max{w(F): FE gjP} = max{wx: x E P n Bn},

where P = {x E R~: Fx ~ 1 for all C E cg}, and k C is the incidence vector of the clique C.
P is the fractional node-packing polytope for G.

In Section 5, we showed that if P is integral (G is perfect), then the system kCx ~ 1 for
C E cg, x ~ 0 is TD I. We used the antiblocking theorem for packing polytopes correspond
ing to Theorem 6.5 (see Proposition 5.8 and Theorem 5.10 of Section 1.4.5) to show that G
is perfect if and only if the complement of G is perfect. We also established that these
results for perfect graphs characterize antiblocking pairs of integral polyhedra. In contrast,
no simple characterization of blocking pairs of integral polyhedra is known.

Integer Rounding

We close this section by considering a related integrality issue regarding the packing
problems

6. Blocking and Integral Polyhedra

(6.6)

(6.7)

z(w) = max{1y: yA ~ w, Y ERr;')

ZIP(W) = max{1y: yA ~ w, y E Zr;'),

595

where the rows of A, namely, a i E Z~ \ ° for i = 1, ... , m, are incomparable vectors and
w E Z~. The problem is to determine when ZIP(W) = lz(w)J for all w E Z~.

Definition 6.3. The system {y ERr;': yA ~ w) is IRD (integer round down) if
ZIP(W) = lz(w)j for all W E Z~.

Let Q = {w E Z~: w ~ 1:7!1 Aiai, 1:7!1 Ai = 1 for some A E R';'), and let kQ = {kw:
w E Q), where k is a positive integer. Note that kQ ~ (k + l)Q for k = 1, 2,

Proposition 6.7. For any positive integer r, z(w) ~ r if and only ifw E rQ.

Proof z(w) ~ r ~ for some y ERr;',

m m

L Yi = rand L Yiai ~ w [by (6.6)]
i=1 i=1

~ for some A ERr;',

~wErQ. •
Corollary 6.8. r ~ z(w) < r + 1 if and only ifw E rQ \ (r + 1)Q.

Hence IRD holds if and only if for all w E Z~, w E (rQ \ (r + 1)Q) n Z~, implies
ZIP(W) = r.

Let Sk = kQ n zn for k = 1,2,

Definition 6.4. Q is integrally decomposable if for each integer k ~ 1 and each w E S k,

there exist ai, ... , ak E SI (not necessarily distinct) such that w = 1:7=1 ai.

To show that Q is integrally decomposable, it suffices to show that the minimal integral
points of kQ can be expressed as a sum of k integral points of Q. This follows since if Wi,

w2 E Sk, w2 > Wi, and Wi = 1:7=1 ai, where ai E SI for i = 1, ... ,k, then

k-l

w2 = L ai + (a k + w2 - Wi),
i=1

Theorem 6.9. The system {y ERr;': yA ~ w) is IRD if and only if Q is integrally
decomposable.

Proof We show that if r ~ z(w) < r + 1 and Q is integrally decomposable, then
ZIP(w) = r. For r = 0, we have 0= ZIP(W) ~ z(w) < 1. Now suppose that r is a positive
integer. By Proposition 6.7, wE rQ. Hence there are ai E Q n Z~ for i = 1, ... ,r such
that 1:i=1 ai = w, and there are minimal points a lU) E Q n Z~, not necessarily distinct, such

596 111.1. Integral Polyhedra

that al(i) .;;; iii for i = 1, ... , r and I:~=I al(i) .;;; w. Now let yi be the number of times that al(i)
appears in I:)=I al(i). Hence y* is a feasible solution to (6.7), and I:7!1 yj = r = Iz(w)J.

To prove the converse, we observe that a feasible solution of value r to (6.7), together
with the remark that preceded the statement of Theorem 6.9, yields a suitable decomposi
~. .
Example 6.5. Suppose

(1 1 0)
A= 1 0 1 .

o 1 1

Note that with w = (1 1), the unique solution to (6.6) is y = (1 1 1) and z(w) = i.
Now we show that Q is integrally decomposable. It is easy to check that all minimal

points of kQ are of the form

(AI + A2, Al + A3, A2 + A3), Al + A2 + A3 = k, A ~ 0

= (al> a2, 2k - al - (2), 0.;;; al> a2 .;;; k, al + a2 ~ k.

So we need to show that foral> a2 E Zl, al> a2';;; k,al + a2 ~ k, thereisay E Z~such that
I:t=1 Yi = k and

YI + Y2 = al

YI + Y3 = a2

Y2 + Y3 = 2k - al - a2·

A solution is YI = al + a2 - k, Y2 = k - a2, and Y3 = k - al.
Different behavior is observed for the matrix

(

1 1

A = 1 0
o 1
o 0

1 0 0 0) o 1 1 0
0011·

o 1

Note that

1) E 2Q.

But there are not two integral vectors in Q whose sum is w. Hence Q is not integrally
decomposable. In particular, ZIP(W) = 1 and z(w) = 2.

We now consider a network flow model whose integral solutions define a matrix A
such that {Y E R';.': yA .;;; w} is IRD. Let gy = (V, SIl) be a directed graph with ISilI = n. A
vector bE ZiVl with I:vEV bv = 0 is called a supply-demand vector. The nodes
L = {v E V: bv > O} are called supply nodes, and the nodes T = {v E V: bv < O} are called
demand nodes. Afeasible flow is a vector a E R~ that satisfies the conservation equations

(6.8) bv + L auv - L avu = 0 for v E V.
uEo-(v) UEo+(v)

6. Blocking and Integral Polyhedra 597

Let A be the matrix whose rows are the vectors of minimal, integral feasible flows in qj).

The problem we consider is packing the rows of A into w E Z~.

Example 6.6. Consider the data given in Figure 6.3. It can be shown that the matrix of
minimal integral feasible flows is

2 0 1 2 0
2 0 2 1 1
2 0 3 0 2

A=
0 2 0 1 1
0 2 1 0 2

0 2 0
1 1 1
2 0 2

It is easy to see that the packing problem does not have an integral optimal solution for
all w E Z~ for which it is feasible; for example, take w = (1 0 1 1 0).

To show that the system {y E R';': yA .;;; w} is IRD, we need to introduce a capacity
vector d E Z~ on the arcs of qj).

Proposition 6.10. Given any d E Z~, the following two statements are equivalent.

i. There exists an a E Z~ that satisfies (6.8) and a .;;; d.
ii. For all U 5; V,

(6.9) I bv ';;; I de.
vEU eE6'(U)

Proof i => ii is obvious since for any U 5; V, the flow out of U must be at least 1:vEU b v•

The proof of ii => i uses the max-flow-min-cut theorem on the graph qj)' =
(V u {s, t}, .sil'), where

.sil' =.sII U {(s, v): vEL} U {(v, t): v E n,

The capacity of e E.sII is de. the capacity of esv for vEL is b v, and the capacity of evt for
vET is -bv• We only sketch the proof.

If (6.9) holds for all U 5; V, then it can be shown that a minimum-weight cut in qj)' is
given by the set of arcs {(s, v): v E L}-that is, the cut generated by the node partition
({s} U (V \ L), {t} U L). Then by the max-flow-min-cut theorem of Section I.3.4, there is

b3 = -1

Figure 6.3

598 111.1. Integral Polyhedra

an integral s-t flow in qj)' of size LVEL by. Thus in every maximum flow, the flow on eSV is bv
for all vEL. It then follows that statement i is true. •

Theorem 6.11. If A is an m x n matrix whose rows are the minimal integral flows in a
digraph qj) with supply-demand vector b E z111, then {y E R':': yA ~ w} is IRD.

Proof Let Sk = kQ n zn for k = 1,2, By Theorem 6.9, it suffices to prove that
for any k and wE Sk, w can be written as the sum of k integral points in Sl. This is a
triviality for k = 1. Now suppose it is true for Sk-l where k ~ 2.

We must show that for any w E Sk, there exist an a E Sl such that w - a E Sk-lo Note
that wE Sk means that for the supply-demand vector kb, there is a flow ak ~ w. But since
the supply-demand system is totally unimodular, we can choose ak E z~. Hence

kbv + I a~v - I a~u = ° for v E V,
uEO-(v) uEO'(v)

and for any U ~ V with LVEU bv ~ 0, we have

I a~ = k I bv + I a~ ~ k I bv ~ I by.
eEO'(U) vEU eEO-(U) vEU vEU

Now taking ak to be the capacity vector in Proposition 6.10, there exists an a E z~ that
satisfies (6.8) and a ~ ak. Thus a E S), ak - a E z~, and

(k - l)bv + I (a~v - auv) - I (a~u - avu) = ° for v E V.
eEO-(v) uEO'(v)

Hence (ak - a) E Sk-l and, since w ~ ak, we have (w - a) E Sk-lo •
Theorem 6.11 generalizes to capacitated supply-demand systems where, in addition to

(6.8), the flow must satisfy a ~ c where c E z~. This can be shown by transforming a
capacitated supply-demand system to an uncapacitated one. It also generalizes to
circulations; that is, bv = ° for all v E V, and I ~ a ~ c where I, C E z~. Thus a circulation
is a solution to Ga = 0, I ~ a ~ c, where G is a node-arc incidence matrix. Finally, packing
the minimal solutions of Ga = 0, I ~ a ~ c is IRD for any totally unimodular matrix G.

7. NOTES

Section 111.1.1

The study of integral polyhedra has its roots in the theory of network flows [see Ford and
Fulkerson (1962)] and, in particular, in the max-flow-min-cut theorem. Two early proofs
of this theorem illustrate fundamental techniques in the theory of integral polyhedra.
Dantzig and Fulkerson (1956) proved it using linear programming duality, and Ford and
Fulkerson (1956) proved it by giving an algorithm that produces a feasible flow and an s-t
cut of weight equal to the value of the flow (see Section I.3.4).

Proposition 1.3 is due to Hoffman (1974). Edmonds and Giles (1977) independently
proved Proposition 1.3 and Corollary 1.4, and they coined the term total dual integrality
and expounded upon its significance. They also developed the notion of box TDI systems:
A system Ax ~ b, c ~ x ~ d is box TDI ifit is TDI for all vectors c, d.

7. Notes 599

Giles and Pulleyblank (1979) proved Proposition 1.7. Schrijver (1981) proved Proposi
tion 1.8.

Cook (1983a) studied operations that preserve total dual integrality [also see Cook
(1986) for box TDI systems]. Computational issues regarding TDI systems have been
studied by Chandrasekaran (1981) and Cook, Lovasz, and Schrijver (1984).

Edmonds and Giles (1984) gave a survey of theoretical results on total dual integrality
and classes ofTDI systems.

Schrijver (1986b) gave a survey of proof techniques for establishing integrality and
related properties of polyhedra.

Section 111.1.2

Hoffman and Kruskal (1956) proved Theorem 2.5 and thus established the fundamental
part of the connection between total unimodularity and integer programming [also see
Hoffman (1979)]. A substantially simpler proof, the one presented in the text, was
discovered by Veinott and Dantzig (1968).

Theorem 2.7 was proved by Ghouila-Houri (1962). The results on characterizations of
totally unimodular matrices with no more than two nonzero elements in each column are
due to Heller and Tompkins (1956), Hoffman and Kruskal (1956), and Dantzig and
Fulkerson (1956).

Interval matrices were studied by Fulkerson and Gross (1965). The relaxation of a set
covering problem to a problem with an interval constraint matrix was given by
Nemhauser, Trotter, and Nauss (1974).

Other conditions for total unimodularity were given by Camion (1965), Chan
drasekaran (1969), Heller (1957, 1963), Heller and Hoffman (1962), Padberg
(1976a, 1988), Tamir (1976), and Truemper (1977, 1978). See Padberg (1975b) for a survey.

In a study of the integrality of the matching polytope, Hoffman and Oppenheim (1978)
proposed the idea oflocal unimodularity and thus gave another technique for establishing
the integrality of a polyhedron.

Section 111.1.3

The significance of recognizing network structure has been stimulated, in part, by a
number of practical linear programming models that can be reformulated as network flow
problems [see Zangwill (1966), Cunningham (1983), and Bland (1988)] and was also
motivated by the efficiency of network codes (see the notes for Chapter 1.3).

The definition of network matrices was proposed by Tutte in his study of graphic
matroids [see Tutte (1965)]. Further references to matroids will be given in the notes for
Chapter III.3.

Iri (1966) gave a polynomial-time algorithm for recognizing network matrices. A much
more efficient algorithm was obtained by Bixby and Cunningham (1980). Their presenta
tion is in terms of matroids. The algorithm given here is adapted from Schrijver (1986a).

Recently, attention has been given to finding large network submatrices [see Bixby and
Cunningham (1980) and Bixby (1984)]. Several researchers have developed heuristics for
this problem [see Brown and Wright (1984) and Gunawardane et al. (1981)]. The problem
of finding a largest network submatrix is ,N'9P-complete [see Bartholdi (1981)].

Theorem 3.8 and the algorithm for recognizing totally unimodular matrices are due to
Seymour (1980). For a restricted class of totally unimodular matrices, Yannakakis (1985)
gave efficient recognition and optimization algorithms.

600 III.I. Integral Polyhedra

Section 111.1.4

Balanced matrices were introduced by Berge (1972). He proved the fundamental result
given by Theorem 4.13. Several other results on the integrality of polyhedra associated
with balanced matrices were obtained by Fulkerson, Hoffman, and Oppenheim (1974). In
particular, they showed that if A is balanced and the system Ax = 1, x ~ 0 is feasible, then
the polytope defined by this system is integral. This result on set-partitioning polytopes
can be used to prove Theorem 4.13.

The restriction to totally balanced matrices was apparently proposed by Lovasz
(1979b). The main results on totally balanced matrices given here (Proposition 4.4 through
Theorem 4.10) come from Hoffman, Kolen, and Sakarovitch (1985). Proposition 4.11 is
due to Giles (1978) and was used by Kolen (1983) to obtain integrality results for a class of
uncapacitated facility location problems. Tamir (1983) gave the generalization stated in
Proposition 4.12. Further generalizations were given by Tamir (1987).

Farber (1983) and Anstee and Farber (1984) independently obtained nearly the same
results as Hoffman et al. (1985). Their characterization of totally balanced matrices is in
terms of node-node incidence matrices of graphs. Extensions have been obtained by
Lubiw (1982) and Chang and Nemhauser (1984, 1985). Also see Sakarovitch (1975, 1976)
and Farber (1984).

Section 111.1.5

The concept of perfect graphs is due to Berge (1960). It has led to a vast literature, mainly
on graph theory, which we barely cite here. Instead, we refer the reader to the book by
Golumbic (1980), the collection of articles edited by Berge and Chvatal (1984), and the
chapter entitled "Stable Sets in Graphs" in the book by Grotschel, Lovasz, and Schrivjer
(1987).

Duchet (1984) presented a survey of classic results on perfect graphs. Fulkerson (1970b,
1971, 1972, 1973) made the connection between perfect graphs and polyhedral combina
tories, and he introduced the concept of pluperfect graphs.

Dirac (1961) established the connection between simplicial nodes and chordal graphs.
Gavril (1972) solved the cardinality node-packing problem and the corresponding clique
covering problem for chordal graphs. Frank (1975) solved the weighted versions of these
problems essentially by the linear-time algorithm given in the text.

Theorem 5.11 and the perfect graph theorem, Theorem 5.15, were proved by Lovasz
(1972). However, he acknowledges that much credit should be given to Fulkerson who had
already shown that these theorems were true if and only if Corollary 5.12 was true. The
proof of Theorem 5.11 given here comes from Chvatal (1975).

Theorem 5.15 was proved by Meyniel (1976, 1984). A polynomial-time agorithm for
recognizing these graphs has been obtained by Burlet and Fonlupt (1984). Theorem 5.16
was proved by Berge (1972).

Theorem 5.17 was proved by Padberg (1974). Some other articles related to Padberg's
work on minimally imperfect graphs are by Padberg (1975b, 1976b, 1984), Bland, Huang,
and Trotter (1984), and Whitesides (1984).

A polynomial-time ellipsoid algorithm for maximum-weight node packing in perfect
graphs was given by Grotschel, Lovasz, and Schrijver (1984a). Recently, they have
obtained a polynomial-time ellipsoid algorithm for maximum-weight node packing in
graphs for which the node-packing polytope is described by the clique and odd hole
constraints [Grotschel, Lovasz, and Schrijver (1988)]. These graphs are called t-perfect.

7. Notes 601

Hsu (1984) gave a survey of graphs for which the strong perfect graph conjecture is true.
It was proved for claw-free graphs by Parthasarathy and Ravindra (1976). Polynomial
time algorithms for solving the weighted node-packing problem on claw-free graphs have
been given independently by Minty (1980) and Sbihi (1980). The convex hull of node
packings for these graphs has been studied by Giles and Trotter (1981). Polynomial-time
algorithms for maximum-weight cliques, minimum-weight clique covers, and minimum
colorings for claw-free perfect graphs have been obtained by Hsu (1981) and Hsu and
Nemhauser (1981, 1982, 1984). These problems are .N'~-hard for general claw-free graphs.

Section III.1.6

The theory of blocking and antiblocking polyhedra was developed in a series of articles by
Fulkerson (1968, 1970a, 1971, 1972). Fulkerson's work was motivated by a 1965 paper of
Lehman which was not published until 1979. A survey of results obtained in the 1970s has
been presented by Tind (1979). [Also see Tind (1974, 1977), Johnson (1978), and Huang
and Trotter (1980).]

Proposition 6.1 was proved by Edmonds and Fulkerson (1970). Propositions 6.3 and 6.4
and Theorem 6.5 were proved by Fulkerson (1970a).

Fulkerson (1968) showed that the max-min inequality holds strongly for the s-t path
and s-t cut clutters. There are several interesting pairs of clutters for which the max-min
inequality holds, but not strongly, and for which one or both of the dual problems has an
optimal solution that is half-integer for all nonnegative integers w. (A vector is said to be
half-integer if each of its components is either an integer or an integer divided by 2.) An
example where both of the clutters have this property is 2-commodity cuts and flows in
graphs [see Hu (1969) and Seymour (1978)]. The max-min inequality holds for the T-join,
T-cut clutters to be studied in Section III.2.4. However, here one of the packing problems
has the half-integer property and the other does not [see Edmonds and Johnson (1973) and
Seymour (1979)].

In general, the problem of characterizing pairs of clutters for which the max-min
inequality holds (or holds strongly) or for which the half-integer property is obtained for
one or both of the packing problems is unresolved. However, Seymour (1977) character
ized the strong max-min inequality for an interesting class of clutters known as binary
clutters. Some other blocking relations will be studied in Section 111.2.4 and Chapter
111.3.

The connection between the integer round-down property and integral decomposabil
ity was established by Baum and Trotter (1977, 1981). Further results along these lines were
obtained by McDiarmid (1983).

The IRD property for network flows given in Theorem 6.11 is due to Fulkerson and
Weinberger (1975). Additional integer-rounding results for network flow problems have
been obtained by Weinberger (1976) and Trotter and Weinberger (1978).

Marcotte (1985, 1986a) has established some families of knapsack problems for which
the cutting stock problem has the integer-rounding property and has also given an instance
of the cutting stock problem where the gap is equal to 1.

Some literature on integer-rounding results for matroid problems will be cited in the
notes for Section III.3.8.

Computational complexity issues associated with problems with the IRD property have
been studied by Baum and Trotter (1982) and Orlin (1982).

602 III.I. Integral Polyhedra

8. EXERCISES

1. Consider the polytope P described by the linear inequality system

x ",,0.

i) Show that P is an integral polytope.

ii) Show that the linear inequality system is not TO!.

iii) Find the unique minimal TOI representation with an integral right-hand side.

2. Find a TOI representation for the polytope

P = {x E R~: 4Xl + X2 <S; 28, Xl + 4X2 <S; 27, Xl - X2 <s; n.

3. A linear inequality system Ax <s; b is box TOI if Ax <s; b, I <s; X <s; u is a TDI system
for alII and u ERn.

4.

5.

i) Show that the system of exercise l(iii) is not box TO!.

ii) Show that the system Xl + X2 + X3 <s; 4, X"" 0 is box TO!.

iii) Show that the system of Example 1.1 is box TO!.

Verify that the top two matrices are TU but the bottom two are not.

-1 0 0 -1 1 1
-1 1 -1 0 0 1 0 0

0 -1 1 -1 0 0 1 0
0 0 -1 -1 0 0 1

-1 0 0 -1 0 0

1 1 0 1 0

U
0 -1

-D
0 0 0 1

1 1
0 1 1 0

0 0
1 0 0 0 -1
0 0 0

Show that

A ~ (-; 1 1)
1 0
o 0

is not TV. Then show that P(b) = {x E R~: Ax = b} is integral for all bE zn for
which it is nonempty.

6. Show that if A is a 0, 1, -1 matrix in which the sum of the entries of every square
submatrix with even row and column sums is divisible by 4, then A is TV.

8. Exercises 603

7. Suppose that the 0, 1 matrix A is not an interval matrix and that the integer program
(2.1) is relaxed by splitting columns as described. If each column is split into, at most,
p columns, compare the bound from this relaxation with that from the standard
linear programming relaxation.

8. Prove Proposition 2.11.

9. Verify whether the following are network matrices or not.

i)

0 -1 0 1 -1 1 0 -1 0
0 1 0 0 -1 0 -1 1 0
1 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 1 0
1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 -1 1 -1 0 0
0 -1 0 0 0 0 0 -1 -1
0 0 -1 0 0 0 0

ii)

1 0 0 1 -1 0
0 1 -1 0 0 0
0 0 0 1 -1 -1

0 0 0 0 -1
1 0 0 1 0
0 -1 0 -1 0 0
0 0 0 0

iii)

-1 0 0 -1
-1 -1 0 0

0 -1 -1 0
0 0 -1 1 -1

-1 0 0 -1

10. Modify the network recognition algorithm so as to find a maximal network sub-
matrix.

11. Let A be a 0, 1 matrix with no zero rows or columns. Show that {x E R~: Ax = 1} is
integral if and only if statement lor statement 2 of Proposition 4.1 holds.

12. Are interval matrices (i) balanced, (ii) TB?

604 IIU. Integral Polyhedra

13. i) Show that

1 1 0 0 0
0 0 0 0

A=
0 0
1
0 1 1
0 0 0

is a row inclusion matrix.

ii) Solve min{cx: Ax ~ 1, x E Z~} with c = (4 2 7 1 3 5).

14. Convert the following matrix to a TRL matrix.

o 0
o 0

001
1 1 0 0
001 o 0

100
001
1 1 0
000
000
000
001
010
000

1 1
010
000
100
o 0
101
000
000
000

1 1 0 0 0 0
o 0 0 0 0 0
o 0 0 0 0 0
o 0 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
000 1
o 0 1 0
00001
o 010
o 100
o 000

Then give a short proof that the matrix is not totally balanced.

15. Solve the problem of finding a minimum-weight set of nodes that can serve every
node on the graph shown in Figure 4.3, where rj = 1 when} is even, rj = 2 when} is
odd, and dij is the number of edges on the path joining i and}. The weights are given
by c = (4 2 7 3 12 8 10 5 7 3 12).

16. Prove Proposition 4.12.

17. Prove Theorem 4.13.

18. Let

where E is the matrix of alII's.

i) Prove that A * is a neighborhood matrix.

ii) Prove that A is TB if and only if A * is TB.

19. A strong elimination ordering of a graph G = (V, E) is a perfect elimination
ordering Vb ••• , Vn of V satisfying the following additional conditions for each i,}, k,

8. Exercises 605

I: If i <j < k < I and (Vi, Vk), (Vi, VI), (Vi> Vk) E E, then (vi> VI) E E. A graph is
strongly chordal if it has a strong elimination ordering.

i) Show that the graph of Figure 5.1 is not strongly chordal

ii) Show that the graph of Figure 8.1 is strongly chordal.

iii) Show that a graph is strongly chordal if and only if its neighborhood matrix is
balanced.

20. Is P = {x E R~: Ax ~ l} integral for the following matrices? Why?

i)

1 0 0 0 1
0 1 1 0 0 1

A= 1 0 0 1 0 0
0 1 0 0 1
0 0 0 0

ii)

0 1 0 0 1
0 0 0 1
0 0 0 1 0 1

A= 0 0 0 0 1 0 0
0 0 0 0 0

1 0 0 0
0 0 0

21. A graph G = (V, E) is called an interval graph if there is an assignment of an interval
of the real line to each V E V such that (u, v) E E if and only if the intervals
corresponding to u and V intersect. Show that interval graphs are chordal and that
there is a greedy algorithm for solving max{cx: Ax ~ 1, x E Bn} when A is an
interval matrix.

22. Describe a polynomial algorithm to check whether A is the clique matrix of some
graph.

23. i) Give a polynomial algorithm to find an odd cycle in a graph.

ii) Use this to devise a heuristic algorithm to detect odd holes in a graph.

24. Give an O(I E I) algorithm to construct a PES or to show that a graph is not chordal.

25. Let N be a set of subtrees of a tree. Let A be the resulting node-tree incidence matrix.
Show that A is the clique matrix of a chordal graph and conversely.

<lZ1>
Figure 8.1

606 111.1. Integral Polyhedra

26. Let A be the clique matrix of a chordal graph with PES = {l, ... ,n}. Give an
algorithm to solve max{cx: Ax ~ b, x E z~}, where b l ~ b2 ~ ••• ~ bn •

27. Give a polynomial algorithm for node coloring of chordal graphs.

28. G = (V, E) is a comparability graph if there is an orientation of each edge e E E
giving a digraph qz; = (V, d) having the properties that if (i, i), (j, k) Ed, then
(i, k) E d. Show that comparability graphs are perfect.

29. i) What is the rank 1 hull of the node-packing problem, where S = P n zn and
P = {x E R~: Xi + Xj ~ 1 for e = (i,}) E E}?

ii) Show that the rank 1 hull is not integral if G contains a node-induced subgraph of
the form shown in Figure 8.2.

30. Describe the convex hull of incidence vectors of node packings for line graphs.

31. A clutter fliP is represented by the rows of the matrix

1 0 0 0
1 0 1 0 0

A= 0 1 0 1 0
0 0 1
0 0 0

i) Find its blocking clutter B(:Ji).

ii) Find the polyhedron Q~ of the form {x E R~: Bx ~ 1} with B ~ 0 having the
incidence vectors of the members of B(fliP) as extreme points.

iii) Find a polyhedron Q* of the above form having the incidence vectors of the
members of fliP as extreme points.

32. Given a connected graph G = (V, E), let A be the incidence matrix of spanning trees
by edges; that is, each row of A is the incidence vector of a spanning tree.

i) Give a polynomial-time ellipsoid algorithm for solving the linear program
min{cx: Ax ~ 1, 0 ~ x ~ n.

ii) Specify r, q, and any other information needed by the ellipsoid algorithm.

iii) Give a combinatorial interpretation of the problem. Do you know an efficient
combinatorial algorithm for solving it?

33. Let :Ji be the clutter of spanning trees of a graph G.

i) Find its blocking clutter B(fliP).

ii) Give an example to show that Q = {x E RI;I: aHx ~ 1 for HE B(:Ji)} is not
integral.

Figure 8.2. "Odd K 4,,; each wavy line denotes a path with an odd number of edges.

8. Exercises

Figure 8.3

34. Let:Ji be the clutter ofbranchings rooted at node 1 in ~.

i) Find its blocking clutter B(:Ji).

ii) Show that Q = {x E R~I: aHx ~ 1 for HE B(:Ji)} is integral.

iii) Let A be the branching by arc incidence matrix.

607

a) Does the max-min inequality hold strongly for rooted branchings? That is,
does

max{ly: yA ~ W, Y E Z,:,} = min {aHw: w E Z~~?
HEBW)

b) Does the IRD property hold for {y E R':': yA ~ w}?

35. Let :Ji be the clutter of cycles in a graph G.

i) Find its blocking clutter B(:Ji).

ii) Use the graph in Figure 8.3 with w = (4 3 2 1 8) to show that Q is not
integral.

iii) Give a polynomial combinatorial algorithm to find a minimum-weight cycle
when w E Rif'.

iv) Give a polynomial combinatorial algorithm to find a minimum-weight element
of B(:Ji).

36. For the graph of Figure 8.4, find the maximum number of s-t cuts that can be
packed into w, where w is indicated in the figure.

37. Let ~ be the set of minimal feasible solutions to S = {x E Bn: LjEN ajxj ~ b}.

i) Find the blocking clutter B(:Ji).

ii) Use this to give a reformulation ofmin{cx: xES} with c E R~.

iii) Compare the inequalities of this form with the valid inequalities generated in
Section 11.2.2.

Figure 8.4

111.2
Matching

1. INTRODUCTION

In a graph G = (V, E), the number of edges that meet node i is called the degree 9f node i.
Matching problems involve choosing a subset of the edges subject to degree constraints on
the nodes. The simplest case is i-matching (or just matching). A matching M 5; E is a
subset of edges with the property that each node in the subgraph G(M) = (V, M) is met by
no more than one edge. Every graph G contains a matching, namely M = 0. An obvious
generalization of I-matching is b-matching in which node i is met by no more than bi

edges, where bi is a positive integer. In a b-matching problem, we may impose the
restriction that each edge is chosen no more than once (O-i b-matching) or allow an edge to
be chosen a nonnegative integer number of times (integer b-matching). A b-matching is
called perfect if each of the degree constraints holds with equality. In particular, in a perfect
i-matching each node is met by exactly one edge. Another variation on matchings is to
require that each node i be met by at least b i edges. These problems are called node
covering by edges.

Let Ce be the weight of e E E and let c(E') = .l:eEE' Ce be the weight of E' 5; E. The
weighted b-matching problem is to find a b-matching of maximum weight. In the case of
perfect matchings, it also makes sense to consider minimum-weight matchings. When
Ce = 1 for all e E E, the optimization problem is called an unweighted or cardinality
problem.

An integer programming formulation of the weighted 0-1 b-matching problem is

maxcx

Ax"",b

where A is the node-edge incidence matrix of the graph, I E I = n, and x e = 1 means that e
is in the matching.

The important property of A for matching problems is that each of its columns contains
exactly two is; in other words, .l:i aij = 2 for allj E E. Note that if the graph is bipartite,
then A is totally unimodular so that the extreme points of {x E R~: Ax "'" b} are precisely
the b-matchings. However, when G contains an odd cycle, the constraint set ofthe linear
programming relaxation can contain fractional extreme points. For example, in the graph
of Figure 1.1, x = (! ! n is the unique optimal solution to the linear programming
relaxation with c = (1 1 1) and b = (1 1 1).

The classic application of matching deals with the pairing of objects from two disjoint
sets (e.g., workers with jobs, men with women, etc.). The perfect matching problem

608

1. Introduction 609

Figure 1.1

associated with such pairings is on a bipartite graph, and the optimization problem is the
assignment problem (see Section 1.3.5). Pairings, however, do not necessarily involve
disjoint sets (e.g., the selection of roommates in a college dormitory). So we see that the
weighted perfect I-matching problem is a meaningful generalization of the assignment
problem.

We have already mentioned some other applications of matching in connection with
relaxations and heuristics for the traveling salesman problem (see Section II.6.3). For
example, a perfect 0-1 2-matching is a relaxation of the traveling salesman problem. We
have also used weighted I-matching in the spanning-tree matching heuristic for the
euclidean traveling salesman problem.

Another application of weighted I-matching is to the postman problem. Given a graph
G with weights on the edges, the postman problem is to find a minimum-weight set of
edges to add to G so that the resulting multigraph MG contains a eulerian cycle (i.e., a
closed walk containing each edge of MG exactly once; see Section II.6.3). The eulerian
cycle on MG translates to a minimum-weight closed walk on G in which each edge is
visited at least once and therefore generates a minimum-weight delivery route for the
postman.

Recall that a multigraph is eulerian if and only if each node is of even degree. Let V' be
the nodes of odd degree in G, and let C ij be the weight of a minimum-weight path between
nodes i and} in V' (see Figure 1.2). Now consider the complete graph G' = (V', E'), and

b 3 d

'<]-' {?,f
c 4 e

G

2~4
c 4 e

G'

b d

c e

MG
Figure 1.2

Nodes of odd degree (b, c, d, e)
Cbe = 2, Path (b, a, c)
Cbd = 3, Path (b, d)
Cbe = 6, Path (b, a, c, e)
Ced = 5, Path (c, a, b, d)
Gee = 4, Path (c, e)
Cde = 4, Path (d,/, e)

Minimum-weight perfect matching
{(b, c), (d, e)l

Postman solution
(a, b, a, C, b, d, e,/, d,/, e, c, a)

610 111.2. Matching

let cij be the weight of e = (i,)) in E'. Let M' be a minimum-weight perfect matching on
G'. For each edge (i,)) EM', add to G a minimum-weight path joining i and). We leave it
as an exercise to show that the resulting multigraph generates an optimal solution to the
postman problem.

Matching problems are celebrated in the history of combinatorial optimization as the
first true integer programs (i.e., integer programs that cannot be solved merely from the
linear programming relaxation) for which polynomial-time algorithms were obtained.
Moreover, these algorithms use a class of valid inequalities for the convex hull of
matchings and, in fact, prove that these inequalities, together with the degree and
nonnegativity constraints, give a linear inequality description of the convex hull of
matchings.

We will mainly study the weighted I-matching problem stated as the integer program

(WM)

max I CeXe
eEE

I Xe ~ 1 for v E V
eEJ(v)

xEB".

The more general problem of weighted b-matching, as well as other generalizations that
allow any constraint matrix A with L; I aij I ~ 2 for all), are examined in Section 4.

We say that U ~ V is an odd set if I U I ~ 3 and is odd. We have already given the valid
inequalities, called odd-set constraints:

(1.1) I x ~ llQlJ for all odd sets U ~ V
eEE(U) e 2

for the convex hull of matchings. Recall that they are valid since each matching edge "uses
up" two nodes. They can be obtained by one iteration ofthe integer-rounding procedure
(see Sections II.1.1 and n.1.2). They are, of course, also valid when I U I is even, but they
are not interesting because they can be obtained as a nonnegative linear combination of
the degree and nonnegativity constraints.

The main results of this chapter are a polynomial-time algorithm for WM and a linear
inequality description of the convex hull of matchings. The algorithm solves the linear
program

(1.2)

I Xe ~ 1 for v E V
eEJ(v)

I x ~ llQlJ for all odd sets U ~ V
eEE(U) e 2

xER~

and obtains an integral optimal solution, and therefore a matching, for any objective
function vector c. Hence it provides a proof that the convex hull of matchings is given by
the degree, non negativity, and odd-set constraints.

An algorithm for maximum-weight matching can also be used to find a maximum-
weight perfect matching, when one exists, by a simple transformation of the objective

2. Maximum-Cardinality Matching 611

function. Let k = I VI/2, a = maxeEE max(ce, 0), b = mineEE Ce, (J = k(a - b) + 1, and
c; = Ce + (J for e E E. The ranking of perfect matchings by weight is the same for C and c'.
Moreover, with respect to the objective function c', a lower bound on the weight of a
perfect matching is k(b + (J), and an upper bound on the weight of an imperfect matching
is (k - 1) (a + 0). Now

k(b + (J) - (k - l)(a + 0) = 0 + kb - (k - l)a = a + 1 > 0

so that any perfect matching has greater weight than any imperfect matching.
Our approach to solving (1.2) is by a primal-dual algorithm similar to the algorithm we

gave for the transportation problem in Section 1.3.5. The main difficulty to overcome is
the exponential number of odd-set constraints.

The dual of (1.2) is

w = min I llv + I II U2 I J Yu
vEV odd sets U

I llv + I Yu ~ C e for e E E
(1.3) v:eEo(v) U:eEE(U)

llv ~ 0 for v E V

Yu ~ 0 for all odd sets U.

The algorithm to be presented maintains primal and dual feasibility and achieves
optimality when the complementary slackness conditions are satisfied. At each major
iteration the cardinality ofthe matching is increased. This is done by solving a cardinality
matching problem. So we begin the presentation of the general algorithm by studying
maximum cardinality matching.

2. MAXIMUM-CARDINALITY MATCHING

In our study of the maximum-flow problem (see Section 1.3.4), we gave necessary and
sufficient conditions for a flow to be maximum in terms of augmenting paths. That is, the
flow could be increased if and only if an augmenting path existed with respect to the
current flow. We then gave an efficient procedure for finding an augmenting path or
showing that none existed. We use the same idea to find a maximum-cardinality
matching. Thus we begin by defining an augmenting path with respect to a matching.

Given a graph G and a matching M, a path in G is said to be alternating relative to M if
its edges alternate between M and E \ M. (See Figure 2.1, where edges in M are repre-
sented by wavy lines.) A node v is said to be exposed relative to M if no edge of M meets v.
A path in G is augmenting relative to M if it is alternating and both of its end nodes are
exposed. This definition is natural since, if there is an augmenting path relative to M, a
new matching M' with one more edge is obtained by deleting from M the matching edges
in the path and adding to M the nonmatching edges in the path (see Figure 2.2).

e EM e E M
• • • • ..

Alternating path

Figure 2.1

612 111.2. Matching

Augmenting path

Figure 2.2

The interesting result is that ifthere is no augmenting path, the matching is maximum.

Theorem 2.1. A matchingM is not maximum if and only if there exists an augmenting
path relative to M.

Proof Let E' be the edge set of the augmenting path, and let M' = (M U E') \
(M n E'). Then M' is a matching, and 1M' I = 1M I + 1. This formally establishes our
claim that the existence of an augmenting path implies that the matching is not maximum.

We now show that if M is not maximum, then there exists an augmenting path relative
toM. If M is not maximum, there exists a matchingM' with 1M' I = 1M I + 1. LetD be
the symmetric difference of M and M'; that is, D = (M U M') \ (M n M'). Thus

IDI = IMI + IM'I-2IMnM'1 =21MI + 1-2IMnM'I.

Hence I D I is odd.
Consider the subgraph G(D) = (V, D). Since M and M' are matchings, the degree of

each node is no more than 2; and if the degree is 2, then one edge is from M and the other
is from M'. Hence each component of G(D) is either an isolated node, a cycle containing
an even number of edges, or an alternating path relative to both M and M'. Since I D I is
odd, there must be at least one alternating path of odd length. Moreover, since I M' I =
I M I + 1, one of these alternating paths of odd length must be augmenting with respect
~M •

The basic idea of the augmenting-path algorithm is to grow a tree of alternating paths
rooted at an exposed node. Then if a leaf of the tree is also exposed, an augmenting path
has been found. We begin by describing an augmenting-path algorithm for bipartite
graphs. Finding an augmenting path in a bipartite graph is much simpler than finding one
in a general graph. In fact, in the primal-dual algorithm for the transportation problem,
we have shown that an augmenting path in a bipartite graph can be found by finding a flow
augmentation in a maximum-flow problem. The algorithm given below is essentially a
flow-augmentation algorithm described with augmenting-path terminology. This termi-
nology will be useful in the description of the general algorithm.

Cardinality Matching Algorithm for Bipartite Graphs

Initialization: M is an arbitrary matching. All nodes are unlabeled and unscanned.

Step 1 (Optimality Test): Ifno nodes are exposed and unlabeled, the current matching is
maximum. Otherwise choose an exposed and unlabeled node r. Label it (E, -). (Here
E stands for even and should not be confused with the usual use of E for an edge set.
The first component of a node label is either E or O. A labeled node is said to be even if
the first component of its label is E; otherwise it is odd.)

2. Maximum-Cardinality Matching 613

Step 2 (Grow an Alternating Tree): Choose a labeled and unscanned node i. If it is even, let
J = (j E V: j is an unlabeled neighbor of i). Label all j E J with (0, i). Node i is
scanned; go to Step 3. If i is odd and exposed, go to Step 4. If i is odd and not exposed,
label the node joined to i by a matching edge (E, i). Node i is scanned; go to Step 3.

Step 3: If there is a labeled and unscanned node, go to Step 2; otherwise go to Step 1.
Step 4 (Augmenting-Path Identification): Use the second components of the labels to

identify the augmenting path from node r to node i. Remove all labels, update the
matching, and return to Step 1.

Theorem 2.2. The algorithm produces a maximum-cardinality matching on a bipartite
graph.

Proof In Steps 2 and 3, we grow a forest of alternating paths. An odd node i yields an
alternating path between rand i with an odd number of edges. Hence if i is exposed, the
path is augmenting.

Now we show that if there are no exposed and unlabeled nodes, the final matching MO
is maximum. We do this by giving a feasible solution to the dual problem (1.3) with
w = I ~ I. One way to obtain a feasible solution to (1.3) is to find a subset of nodes W s V
such that each e E E is incident to a node in W. Then we set '/rv = 1 for all v E W, '/rv = 0
otherwise, and Yu = 0 for all odd sets. Here our objective is to produce a dual feasible
solution of this form with I WI = IMo I.

When the algorithm terminates, we have a set oflabeled trees Ti = (Vi, E i) for i = 1,
... , s - 1, and we also have a set of unlabeled nodes V, (see Figure 2.3).

Since no nodes in V, are exposed, the subgraph induced by V" (V" Es) contains a
perfect matching. Let (Vl, ~) be a bipartition of v" and let V? C V; be the odd nodes of Ti
for i = 1, ... , s - 1. Set W = Uf:: V? U Vl.

0 E
x

E
Tl

Xx T2 0
Xx

<==
Xx

E
x~ • E

0 x E 0
x

0 E) 0 E

x

Figure 2.3. Crosses mean that the edge cannot be in E.

614

(E, -) (0,5) (E,7)

2

4

(0,3)

Maximum matching: MO = {(2, 7), (3, 6), (4, 10), (5, 8)}

O . al d 1 1 . { 1 for v = 3, 7, 8, 10 pnm ua so utlOn: n, = 0 th . a efWlse.

Figure 2.4

m.2. Matching

Augmenti ng path
(5,8,3,6)

New matching edges

2. Maximum-Cardinality Matching 615

W generates a dual feasible solution since:

a. Each e E Ui~l Ei is incident to a node in W.
b. In the subgraph induced by Vi, i = 1, ... , s - 1, there cannot be an edge joining two

even nodes; otherwise there would be an odd cycle.
c. There cannot be aI). edge joining even nodes in different trees; otherwise one of

these nodes would have been labeled from the other.
d. There cannot be an edge joining an even node and an unlabeled node; otherwise the

unlabeled node would have been labeled from the even node.

To show strong duality, note that

•
Example 2.1. An example of the algorithm is given in Figure 2.4.

The algorithm may fail to find an augmenting path if the graph is not bipartite. An
example is shown in Figure 2.5. Here there are two paths between nodes 1 and 4. The odd-
length path is augmenting, but we find it only by labeling in a particular way.

We now develop a procedure that circumvents this problem. Let M be a matching.
Suppose in the process of growing an alternating tree using the algorithm given above, we
find that there are two alternating paths to node i, one of even length and the other of odd
length. This can happen in two ways (see Figure 2.6):

a. Node i is even and is adjacent to another even node in the tree;
b. Node i is odd, adjacent to another odd node in the tree, and the edge that joins them

isinM.

By tracing the two paths back toward the root of the tree until the node where they
intersect is reached, we identify a set of labeled nodes U £; V with I U I odd and
1M n E(U)I = II U /211. Note that in both cases the intersection node, denoted by b(U), is
even.

(0, 1)

2

3
(0,1)

Node 4 cannot be labeled

(E, -)

4

Figure 2.5

(0, 1)

2

3
(E,2)

Augmenting path found

4
(0,3)

616

E

o

E E

o o

E

An even node is adjacent to
another even node in the tree

Figure 2.6

o

E

o

Two odd nodes are joined by
a match i ng edge

III.2. Matching

Thus relative to M, the odd-set constraint for U is satisfied at equality. The subgraph
(U, E(U)) is called a blossom relative to M. Each u E U \ b(U) is met by an edge in M n
E(U). Node b(U), which is called the base of the blossom, is either the root of the tree or is
adjacent to a matching edge in the tree.

Now we shrink the blossom as described below and illustrated in Figure 2.7.

Procedure for Shrinking a Blossom

Construct a reduced graph G by replacing (U, E(U)) by a node B(U) called a pseudonode.
In G, each node that is adjacent to a node in U in the original graph is joined to the
pseudonode. All of these edges are nonmatching edges unless there is a matching edge
adjacent to b(U), in which case that edge remains a matching edge in the shrunken graph.
The remainder of the graph remains the same. The resulting reduced matching on G is
denoted M. B(U) receives the label previously assigned to b(U), and any node not in U
that has been labeled from a node in U has the second component of its label changed to
B(U). Also record the triple (B(U), b(U), U). After a blossom is shrunk, the labeling
process continues on the reduced graph G. A reduced graph may be shrunk again, and it
may happen that a blossom to be shrunk contains a pseudonode. In this case the
pseudonode is treated like an ordinary node. Both the terminology reduced graph and the
notation G are used for any graph that contains a pseudonode; and correspondingly, M is
used to indicate a matching on the reduced graph.

When an augmenting path is found in a reduced graph G with matching M, we also find
an augmenting path in G with respect to M. A procedure for finding an augmenting path
in G is given below and illustrated in Figure 2.8.

Procedure for Obtaining an Augmenting Path in G

Let B(U) be a pseudonode on the augmenting path in G. Let a(U) be the node adjacent to
B(U) on the augmenting path that is joined toB(U) by a nonmatching edge, let G' be the
graph obtained by replacing B(U) by the blossom (U, E(U)), and let b'(U) be a node in U
that is adjacent to a(U) in G'. By construction, (U, E(U)) contains an even-length
alternating path p joining b(u) and b' (u). Replace B(U) in the augmenting path on G by
the path p. This yields an augmenting path in G'. The procedure is repeated for each
pseudonode on the augmenting path. Note that old pseudonodes may reappear when a
pseudonode is replaced by an alternating path.

2. Maximum-Cardinality Matching

GandM

- -
GandM

, • • B(lJ)
(E, -) 0

E

(U, E(lJ)

Figure 2.7

a(u)

• •
0 E -

Augmenting path in G

E

<0, b(u»

(E, -)

An associated forest, with the odd set U

(E,k) p(lJ) i

(E, -)

(0, i)
k

The associated reduced forest

•
0

b'(u)

• D- -- .. Pathp
b(u) b'(u)

;('" To be expanded

• .. • B(U') ~ • • • • b(u)
(E, -) b(u) b'(u) a(u) E 0 (U, E(lJ)

Augmenting path in G'

Figure 2.8

617

a(u

618 m.2. Matching

General Cardinality Matching Algorithm I

Initialization: M is an arbitrary matching. a = G. Sf = M. All nodes are unlabeled and
unscanned.

Step 1 (Optimality Test): Ifno nodes in a are exposed and unlabeled, Sf is maximum in a
and M is maximum in G. Otherwise choose an exposed and unlabeled node r in V.
Label it (E, -).

Step 2 (Grow an Alternating Forest): Choose a labeled and unscanned node or pseu-
donode i E V. If there is none, go to Step 1.

a. If i is even and has an even neighbor, go to Step 4.
b. If i is even and does not have an even neighbor, label all unlabeled neighbors of i

with (0, i). Node i is scanned; go to Step 3.
c. If i is odd and is exposed, go to Step 5.
d. If i is odd and is not exposed, label the endpoint of the matching edge adjacent to

node i with (E, i). Node i is scanned; go to Step 3.

Step 3: If there is a labeled and unscanned node or pseudonode in a, go to Step 2.
Otherwise go to Step 1.

Step 4 (Shrink a Blossom): Use the second components of the labels on node i and its
neighbors to identify a blossom (U, E(U» and its base b(U). Use the shrinking
procedure described above to replace (U, E(U» by a pseudonode B(U). Complete the
scanning of B(U) as in Step 2 [B(U) has an even label] and then go to Step 3.

Step 5 (Augmentation in G): Use the second components of the labels to identify an
augmenting path in a, and use the procedure given above for identifying an augment-
ing path in G. Find a new matching M' in G, and M M', a G, and Sf +- M. Return
to Step 1.

Theorem 2.3. The algorithm produces a maximum-cardinality matching.

Proof When the algorithm terminates in Step 1, we have a reduced graph a, the
associated matching Sf, and the matching MO in the original graph. We also have a set of
labeled trees T; = (Vi, Ei) for i = 1, ... ,s - 1 and a set of unlabeled nodes f"s. The
subgraph as induced by Vs contains a perfect matching since no nodes in f"s are exposed.
Moreover, all of the matching edges e E Sf are either tree edges, edges internal to a
shrunken blossom, or edges internal to as.

We show that MO is maximum by giving a feasible solution to the dual linear program
(1.3) with w = IMo I. The dual solution and the proof of its feasibility and optimality are
similar to those given in the proof of Theorem 2.2. So only the details that are different are
given here.

When the algorithm terminates, all labeled pseudo nodes in the shrunken graph a are
even. Let B(U) be a labeled pseudonode in a, and let

R(U) = {v E V: v E U or v is in a blossom nested in B(U)}.

Since U is an odd set and R (U) is obtained from U by replacing pseudo nodes by odd sets,
R(U) is an odd set. The dual constraints for the edges in the graph induced by R(U) are
satisfied by setting YR(U} = 1.

2. Maximum-Cardinality Matching 619

Now consider Gs. and let

Q(V;) = {v E V: v E V; or v is in a blossom nested in a pseudonode in Gs}.

Note that since 1 V;I is even and Q(V;) is obtained from V; by replacing pseudonodes by
blossoms, 1 Q(V;) 1 is even and there is a perfect matching on the subgraph induced by
Q(V;). If 1 Q(V;) 1 = 2, the dual constraints for edges in the subgraph are satisfied by setting
'lt q = 1 for anyone q E Q(V;). Otherwise let q be an arbitrary node in Q(V;). Then
Q(V;) \ {q} is an odd set containing (I Q(V;) 1 - 2)/2 matching edges. Hence the dual
constraints for the edges in the subgraph induced by Q(V;) \ {q} are satisfied by setting
YQ(V,)\(q} = 1.

Let V? £; V; be the odd nodes of 1j for i = 1, ... , s - 1. A feasible solution to (1.3) is
given by

'ltv = 1 if v E V? for i = 1, ... , s - 1

'lt q = 1 for anyone q E Q(V;)

'ltv = 0 otherwise

YR(U) = 1 if B(U) is a labeled pseudonode in the final graph

YQ(V,)\(q} = 1 if 1 Q(V;) 1 > 2

Yu = 0 otherwise.

Now following the argument in the proof of Theorem 2.2, we obtain

L 'ltv + L II U2 I J Yu':::; IMo I·
vEV odd sets U

So by weak duality, w = IMo I. •
Let II U /21 J be the weight of the odd set U.

Corollary 2.4. The maximum number of edges in a matching equals the minimum
number of nodes plus weighted odd sets needed to cover all the edges.

Now we consider the complexity of the algorithm, where m = I V I and n = I E I. The
number of augmentations is no more than m /2. Between augmentations we need to create
an alternating forest, contract pseudonodes, and then reexpand to find the new matching.
Using the labels and storing blossoms appropriately, these steps can be carried out in such
a way that each edge is considered only a constant number of times.

Proposition 2.5. The complexity of the cardinality matching algorithm is O(mn).

620 III.2. Matching

Example].]

G and a matching

1. We grow an alternating tree rooted at node 1. Node 2 is chosen next, and (2,3) E M
indicates the blossom with U, = {l, 2, 3} and b(U,) = 1.

(0,1)

Blossom indication

(0,1)

2. The pseudo node B(U,) = B, is created and becomes the root of the tree. B, is
scanned. Node 4 is scanned. In scanning node 5, a blossom is identified with node set
U2 = {B" 5, 6} and b(U2) = B,.

(E,4)

Blossom indication

2. Maximum-Cardinality Matching 621

3. The pseudonode B2 = B(U2) is created and becomes the root of the tree. In scanning
B2, we find the blossom with U3 = {Bz, 4, 7} and b(U3) = B2•

(0, B2)

Blossom indication

4. The pseudo node B3 = B(U3) is created and scanned.

Node 8 is odd and exposed. Hence we find the augmenting path (B3, 8).

5. The graph G and the new matching M are shown below.

To find the corresponding matching M, we start with M = {(8, B3)' (9, IO)} and then
expand B 3• Node 8 is joined to node 4 of B 3• So next we find an even-length path from

622 III.2. Matching

node 4 to B2, which is the base of B3• From the path (4, 7, B2) we identify the matching
edges (8,4) and (7, B2)' Hence M = {(8, 4), (7 ~B2)' (9, to)}.

Next we expand B 2. Node 7 is joined to node 6 of B 2, and the base of B 2 is B 1. From the
even-length path (6, 5, B 1), we identify the matching edges (6, 7) and (5, B 1), and we find
the matching M = {(8, 4), (6, 7), (5, B 1), (9, to)}.

FinallybyexpandingBb weobtainM = M = {(8, 4), (7,6), (5,2), (3,1), (9, to)}. The new
matching, along with the blossoms B 1, B 2, B 3, is shown below.

2. Maximum-Cardinality Matching 623

6. We grow an alternating tree rooted at node 11. Nodes 11, 10, 9, 1, 3, 2, and 5 are
scanned. In the process of scanning node 6, a blossom with U4 = {2, 3, 5,6, 7} and
b(U 4) = 3 is identified.

(E, -) (0,11) (E,lO) (0,9)

7. The pseudo node B4 = B(U4) is created, and labeling continues.

(E, -) (0,11) (E,lO) (0,9)

8. All n9des are labeled so that the current matching M is maximum.

An optimal solution to the dual is given by

lri = 0 otherwise

Yu, = 1, Yu = 0 otherwise.

624 m.2. Matching

E

E ... ----_~_---__t1 B(U)
o !---_ EE-- Indication of augmentation

a(U)

e- •

... •

b'(U)

Graph with
(u, E(U)
expanded

b(u)=B(U')

A----.... --... 'a(U)

V3 ,.,...;.. __ V5

aCU')

(U~ E(U'»

B(U) ~I------" a(U)

Graph with
CU', E(U'»
expanded
btU') =Vl

.-e-----e-. --q t
Figure 2.9

2. Maximum-Cardinality Matching 625

We have two reasons for modifying Algorithm I. First of all, restarting from scratch
with a new matching after an augmentation is found can be inefficient, since many of the
pseudonodes we had before may be recreated. Secondly, in the weighted algorithm given in
the next section, we will need to keep some pseudo nodes after an augmentation is found.

In Algorithm II given below, when an augmentation is found in G we update the
matching in G, but we grow a new alternating forest in G with respect to the new matching
M in G. Algorithm II has the same complexity as Algorithm I; however, for the reason
mentioned above, it is likely to be more efficient. Some additional steps are needed as
explained below.

After an augmentation and a new matching M' are found in G, the bases of the
pseudonodes in G on the augmenting path, as well as all of the pseudonodes nested within
these pseudonodes, must be updated. This is done during the recursive process of finding
the new matching M' in G and is illustrated in Figure 2.9.

In addition, when we grow a new alternating forest for G, a previously created
pseudonode may receive an odd label. In this case there may be no augmenting path in the
reduced graph, whereas there is an augmenting path in the graph in which this odd
pseudonode is expanded. Hence when a pseudonode B(U) receives an odd label, we
expand it as shown in Figure 2.10; and in the alternating forest, we replace B(U) by a node
a(U) E U that is joined by a nonmatching edge to the node from which B(U) was labeled.
Note that in this case, the new matching contains fewer than II U 1/2] edges from the
blossom B(U). This observation is important for the weighted matching algorithm that
will be described in the next section.

General Cardinality Matching Algorithm II

Steps 1, 3, and 4: These are the same as in Algorithm I.
Step 2': Modify Step 2c,d by: Ifi is an odd pseudonode go to Step 6.

Step 5' (Augmentation in G and G): Modify Step 5 with the following additions:

a. Use the augmenting path in G to find a new matching M' in G. Update the bases of
all the pseudo nodes on the augmenting path and all of the pseudonodes nested
within these pseudonodes.

b. M <- M', M <- M', and return to Step 1.

Step 6' (Expand a Pseudonode): Pseudonode i = B(U) has the label (O,}). Change G by
expanding the blossom B(U) = (U, E(U». Find a(U) E U with (j, a(U» E E \ M.
Replace B(U) by a(U) in the alternating forest and give a(U) the label (0 ,i). If a(U) is
a pseudonode, the process is repeated. Go to Step 2' .

Example 2.2 (continued). Here we apply Algorithm II. The first five steps are the same
as before. Referring to the graph at the end of Step 5, we see that b(U3) = 4, b(Uz) = 6, and
b(Ul) = 2.

6'. We grow an alternating tree rooted at node 11.

~----~~----~{V~--~~
(E, -) (0, 11) (E, 10) (0,9)

626

E

E o

E o

(E, -)

III.2. Matching

The labeled tree does not
indicate an augmenting path

Expansion of blossom

(E, -)

Labeling continues and augmenting path is found

E o E o
,...-..... --___ -_r-Indication of augmenting path

E --....

E o (E, -)

Figure 2.10

7'. B 3 is odd, so it is expanded. a(B 3) = B 2; hence B 2 replaces B 3 in the tree. B 2 is odd, so
it is expanded. a(B2) = B 1; hence BI replaces B2 in the tree. BI is odd, so it is expanded.
a(B I) = 1; hence 1 replaces B 1 in the tree. Now the tree is

~~--~~~--~~~--~G)
(E, -) (0,11) (E,10) (0,9)

8'. Nodes 1,3,2, and 5 are scanned. In the process of scanning node 6,--(carry on
with point 6 of Example 2.2).

3. Maximum-Weight Matching 627

3. MAXIMUM-WEIGHT MATCHING

Here we give a primal-dual algorithm for the linear program (1.2) and prove that the
solution is integral for any objective function vector c. Such a solution is therefore a
solution to the weighted matching problem. We can assume Ce > 0 for all e E E since
Ce ~ 0 implies that there is an optimal solution with Xe = O.

Given a matching M, let Xe = 1 for e EM, let Xe = 0 otherwise, and let

C; = I nv + I Yu - Ceo
v:eEa{v) odd sets U:eEE(U)

The complementary slackness conditions for the linear programs (1.2) and (1.3) are

(3.1) C;Xe = 0 for e E E (either c; = 0 or e tf. M)

(3.2) (ll U 1/2] - I Xe) Yu = 0 for odd sets U
eEE(U)

(either Yu = 0 or M n E(U) = II U I /2])

(3.3) (1 - I Xe) nv = 0 for v E V (either nv = 0 or v is met by an e EM).
eE,j(v)

The primal-dual algorithm maintains primal and dual feasibility and also maintains
the conditions (3.1) and (3.2). Therefore, optimality is achieved when (3.3) is satisfied.

An initial integral primal feasible solution and a dual feasible solution that satisfy (3.1)
and (3.2) are given by

(3.4)

Xe = 0

YU=O

1
nv = 2 ~~x Ce

for e EE

for odd sets U

for v E V.

Note that c;, = 0 for all e' E E such that Ce' = maXeEE Ceo

Let E"= {e E E: c; = O}. The graph G' = (V, E') is called the equality-constrained
subgraph. Throughout the course of the algorithm, (3.1) is maintained by settingxe = 0 for
e E E \ E'. We maintain (3.2) by requiring Yu = 0 unless (U, E(U» is a blossom in the
equality-constrained subgraph that has been shrunk into a pseudonode.

To see if (3.3) can be satisfied, we find a maximum-cardinality matching in the
equality-constrained subgraph G'. Again, we will be dealing with reduced subgraphs (;' of
G' that contain pseudonodes. There are two possibilities:

i. A matching £1 is found in (;' with nv = 0 for all exposed nodes. The corresponding
matching M in G' is an optimal solution to the weighted matching problem.

ii. For the reduced graph (;' and matching £1, no augmenting path is found.

In the latter case a dual change is made that maintains dual feasibility and also
maintains (3.1) and (3.2). Then the equality-constrained subgraph G' and its reduced
subgraph (;' are updated. In addition the edges of the alternating forest F' in (;' still have
c; = 0, so that F' is kept. After a small number of dual changes, either an augmentation is
obtained or nv = 0 for all exposed nodes.

628 III.2. Matching

After either a dual change or augmentation, all pseudonodes B(U) with dual variables
Yu = 0 are expanded. However, pseudo nodes with Yu > 0 are not expanded. The implica-
tion of this is that an augmenting path ofthe type shown in Figure 2.10 may not be found
immediately. It will be necessary to reduce Yu to zero before such an augmenting path can
be found. The reason for this change is to maintain the complementary slackness
condition (3.2).

When new edges are added to a' after a dual change, we continue with the development
of the alternating forest F' by adding edges, labeling nodes, and creating pseudonodes as
described previously unless an edge (u, v) is added where u and v are both even and
contained in different trees of F'. In this case, F' contains an augmenting path joining the
roots of the two trees as shown in Figure 3.1.

E

(E'-':-~)---O~----E?-------~ E
o

E 0

(E, -) o v

o

E

Figure 3.1

Weighted Matching Algorithm

Initialization: Start with the primal and dual solutions given by (3.4). Let
E' = {e E E: c; = O}, G' = (V, E'), a' = G', if = M = 0, andF' = 0.

Step 1: Continue with the construction of the alternating forest F'. If an augmenting path
is found, go to Step 2. Otherwise, go to Step 3.

Step 2 (Augmentation): Update the primal solution M and expand all pseudonodes B(U)
with Yu = O. Update the bases of the remaining blossoms. Let a' be the reduced
equality-constrained subgraph with matching if'. If lrv = 0 for all exposed nodes, the
current primal and dual solutions are optimal. Otherwise set F' = 0 and go to Step 1.

Step 3 (Dual Change): Apply the dual change given by (3.5) and (3.6) below. If lrv = 0 for
all exposed nodes, the current primal and dual solutions are optimal. Otherwise update
a' and expand all pseudonodes B(U) with Yu = O. If an e = (u, v) has been added to a'
where u and v are both even and contained in different trees of F', then identify an
augmenting path and go to Step 2. Otherwise keep F' intact and go to Step 1.

We need to ensure that (3.1) and (3.2) remain satisfied if an augmentation or a dual
change occurs. In addition, we must ensure that dual feasibility and that part of the

3. Maximum-Weight Matching 629

equality subgraph corresponding to the alternating forest are preserved when a dual
change occurs.

Proposition 3.1. If conditions (3.1) and (3.2) are satisfied prior to an augmentation, then
they are satisfied by the matching obtained/rom the augmentation.

Proof Since c; = 0 for all edges in the equality-constrained subgraph, it is clear that
(3.1) remains satisfied. The only way that (3.2) can be violated is by an augmentation that
reduces the number of matching edges in E(U), where U is an odd set with Yu > O.
However, ifyu > 0, (U, E(U» is represented by apseudonodein CT'. Any augmentation in
G' translates into a new matching M with 1M n E(U) I = I U 1/2. •

We now describe the dual change used in Step 3. Define the following sets:

Let

OU+ = {odd set U: U is the node set ofa shrunken blossom represented
by an even pseudonode}

ou- = {odd set U: U is the node set of a shrunken blossom represented
by an odd pseudonode}

ou- = {odd set U: U is the node set of a shrunken blossom represented
by an unlabeled pseudonode}

P = {v E V: v is even or v E U for some U E OU+}

V- = {v E V: v is odd or v E U for some U E OU-}

V- = {v E V: v is unlabeled or v E U for some U E OU-}

E+ = {e = (i,j) EE: i E P,j E V-}

E++ = {e = (i,j) E E: i E P,j E V+, no U E ou+ contains both i andj}.

ifOU- =#= 0

ifOU- = 0

ifE++=#=0

ifE++=0

ifE+ =#= 0

ifE+ = 0

and 0 = min(o" 02, 03, 04)'
The dual change is given by

r-~
for v E V+

(3.5) ftv = ttv + 0 for v E V-
7tv otherwise

and

rU+2~ for U EOU+
(3.6) Yu= yu-2J for U EOU-

Yu otherwise.

630 111.2. Matching

The effect of the dual change on node weights trv and edge weights c; is shown in
Figure 3.2.

Proposition 3.2. The dual change is bounded and not degenerate; that is, 0 < 6 .;;
~ maXeEE Ceo

Proof 1. (61 > 0). Before the dual change, there is an exposed node u E V+ with tru > 0;
otherwise the algorithm would have terminated prior to the dual change. Moreover, u has
been exposed before all previous dual changes since once a node is met by a matching edge,
it remains covered thereafter. Thus tru = minvEv' trv since tru has been decreased at every
dual change and we started with tr v equal to a constant for all v E V. Hence
{vEV+:7rv =0}=0.

2. (62 > 0). All pseudo nodes with Yu = 0 are expanded after dual changes and augmen-
tations. Thus the only possibility for a labeled pseudonode with Yu = 0 is that U has been
shrunk since the last augmentation or dual change. But then U E qj+. Hence
{U EUfr: Yu= O} = 0.

3. (63) 0). If c; = 0, then e is in the equality-constrained subgraph. Ifboth ends of E are
even and c; = 0, then either an augmenting path is identified or both endnodes of e are
contained in a shrunken blossom. Thus {e E E++: c; = O} = 0.

4. (64) 0). If e E E+ and c; = 0, then the other end of e receives an odd label. Hence
{e E E+: c; = O} = 0. Finally 6 = min(6I, 62, 63, 64) > 0 and 6 .;; 61 .;; ~ maXeEE Ceo •

Proposition 3.3. If the primal and dual solutions satisfy (3.1) and (3.2), and c; = 0 for all
edges of the alternatingforest, then these conditions are satisfied after a dual change.

Proof a. (nv ~ 0 for v E V). We have

nv ~ trv - 6 (by (3.5))

~ trv - 61 (by the definition of 6)

~ 0 (by the definition of 61),

b. CVu ~ 0 for odd sets U). We have

Yu ~ Yu - 26 (by (3.6))

~ Yu - 262 (by the definition of 6)

~ 0 (by the definition of 62).

c. (c; ~ 0 for e E E). By (3.5) and (3.6) we only need to consider e E E+ U E++ or e is in
a blossom whose pseudonode is labeled; otherwise c; ~ c; ~ O.

i. (e E E+). We have

c; = c; - 6 (by (3.5) and the definition of c;)

~ c; - 64 (by the definition of 6)

~ 0 (by the definition of 64),

3. Maximum-Weight Matching

o E

+20 I /
/ 1-20 a¥. / E

_r?E D
-0 +0

HI Lo

& jJ
In matching "-X/

In forest

--- / "-
Unlabeled

Not in forest G ~ or matching

Figure 3.2

11. (e E E++). We have

c; = c; - 2<5 (by (3.5) and the definition of c;)

~ c; - 2<53 (by the definition of <5)

~ 0 (by the definition of <53),

631

Alternating
forests

111. (e is in a blossom whose pseudonode is even). Then both endnodes of e are in P.
Thus

c; = c; - 6 - 6 + 26 = c; (by (3.5), (3.6), and the definition of c;).

iv. (e is in a blossom whose pseudo node is odd). Then both endnodes of e are in V-.
Thus

c; = c; + <5 + <5 - 2<5 = c; (for the reason given in iii).

Thus the new solution is dual feasible.

632 m.2. Matching

Next, we establish that (3.1) is satisfied; that is, e EM implies c; = O. Since c; = 0 for
e EM, it suffices to show that c; = c; for e EM. Consider an e EM and first suppose that
e has not been shrunk; then either one endnode of e is odd and the other is even, or both
endnodes are unlabeled. Then by (3.5), we have c; = c;. On the other hand, if e has been
shrunk, then c; = c; by iii and iv above if the pseudonode is labeled, whereas c; = c; by
(3.5) and (3.6) if the pseudonode is unlabeled.

Next we show that (3.2) is satisfied; that is, if U is an odd set and 1 E(U) n M 1 <
[I U 1/2], then Yu = Yu = O. This follows directly from (3.6) since if 1 E(U) n M 1 <
[I U 1 /2], then (U, E(U» cannot be shrunk into a pseudonode.

Finally, consider the edges of the alternating forest. If e is in a labeled blossom, we have
shown above that c; = c; = O. Otherwise, one end of e is in v+ and the other end is in V-.
Thus

c; = c; - 0 + 0 = c; = O. •
Proposition 3.4. There are no more than Sm/3 dual changes between augmentations.

Proof We will use the fact that the alternating forest F' is kept between augmenta-
tions. The effect of the dual change depends on arg(min{oI, 02, 03, 04}).

a. (0 = 01)' Since all exposed nodes are even in C', and 7Cv = 01 for all exposed nodes, we
have ft~ = 0 for all expoded nodes. In this case the current primal and dual solutions
are optimal.

b. (0 = 02). Then Yu = 0 < Yu for some odd pseudonode. After an augmentation there
can be no more than m/3 odd pseudonodes, and all new pseudonodes created
between augmentations are even. Hence 0 = 02 can happen no more than m/3
times between augmentations.

c. (0 = 03). Then c; = 0 < c; for some e whose two endnodes are even. This edge is
added to the equality-constrained subgraph. The result is an augmentation or the
creation of a pseudonode. The latter can happen no more than m/3 times between
augmentations because a newly created pseudo node B(U) is even so that its dual
variable Yu can only increase between augmentations.

d. (0 = 04). Then c; = 0 < c; for some e with one endnode even and the other un-
labeled. Then the unlabeled node becomes odd. This can happen no more than
m - I times because there are no more than m - I unlabeled nodes. •

Theorem 3.5. The weighted matching algorithm finds an integral optimal solution to
(1.2) and also finds an optimal solution to its dual (1.3). Its complexity is O(m2n).

Proof Integrality of the primal solution is maintained throughout the algorithm
because each solution is a matching. When the algorithm terminates, both the primal and
dual solutions are feasible and satisfy complementary slackness.

The work between successive dual changes is O(n). By Proposition 3.4 the maximum
number of dual changes between an augmentation is O(m), and the number of augmenta-
tions is Oem).

Finally, observe that after p dual changes, it follows that 7C, y and c' are rationals with
denominator 2k for some integer k, 0.;;; k .;;; p. Hence the numbers involved in the
calculations remain polynomially bounded. •

3. Maximum-Weight Matching 633

Theorem 3.6. The polytope defined by the constraint set of (1.2) is the convex hull of
matchings.

Proof By Theorem 3.5, (l.2) has an integral optimal solution that is a matching for
any objective function vector c. Thus, by Proposition 1.1 of Section III.1.1, each extreme
point of the polytope defined by the constraints of(l.2) is integral. •

Example 3.1

1. Initialization

C = (cel' ... , Ce,) = (8 9 8 7 9 4 5 2 1)

77:v = 4.5 for all v E V

yu=O for all U

c' = (1 0 I 2 0 5 4 7 8)

Equality
constrained subgraph

2. Equality-constrained subgraph and labels with M = {ez, es}

o (E,-)

(E, -)
0(E,-)

634

3. Dual change

n = (3.5 4.5 4.5 4.5 4.5 3.5 3.5)

yu = 0 for all U

c' =(0 0 1 2 0 4 3 6 6)

el is added to the equality constrained subgraph.

4. Equality-constrained subgraph and labels

o (E,-)

(E, -) (0,1) (E,2) o (E,-)

5. Dual change

111.2. Matching

61 = 3.5, 62 = 00, 63 = 3, 64 = min{l 2 4 3 6} = c;, = 1, 6 = 64 = 1

n = (2.5 5.5 3.5 4.5 4.5 2.5 2.5)

yu = 0 for all U

c' =(0 0 0 1 0 3 2 5 4)

e3 is added to the equality constrained subgraph.

6. Equality-constrained subgraph and labels

(0,3) (E,-)

o

o
(E,4) (E,-)

3. Maximum-Weight Matching

7. Dual change

n = (2 6 3 5 4 2 2)

yu = 0 for all U

c' = (0 0 0 0 0 3 2 4 3)

e4 is added to the equality-constrained subgraph.

8. Reduced equality-constrained subgraph and labels

(E, -)

o
G)------(01-------IG

(E, -) (0,1) (E,2)

(E, -)

9. Dual change

03 = 1 min (c;) = 1,
1=6,7,8,9

n = (1 7 2 4 3 1)

Yu = 2 for U = (3, 4, 5), Yu = 0 otherwise

c' = (0 0 0 0 0 1 0 2 1)

e7 is added to the equality-constrained subgraph.

U = {3, 4, 5}

BI = B(U)

b(U) = 3

10. Augmentation in the reduced graph and new labeling. M = (eb e4, e7)

(E, -)

o

635

636

11. Dual change

7C = (1 7 2 4 3 0 1)

Yu = 2 for UI = {3, 4, 5), Yu = 0 otherwise.

12. Optimal solution

Primal: xei = 1 for i = 1,4, 7, X ei = 0 otherwise

Dual: 7C = (1 7 2 4 3 0 1)

YU1 = 2 for UI = {3, 4, 5), Yu = 0 otherwise.

III.2. Matching

4. ADDITIONAL RESULTS ON MATCHING AND RELATED PROBLEMS

This section contains a potpourri of topics related to matchings. We begin by presenting
further results on the convex hull of matchings. Then we describe the polytope of the
convex hull of perfect matchings and relate matchings to the problem of covering nodes by
edges.

The next topic is the reduction of integer and (0, 1) b-matching problems to matching
problems. These reductions may also be viewed as a technique for obtaining linear
inequality descriptions of b-matching polytopes.

We then introduce a pair of combinatorial objects known as T-joins and T-cuts. T-joins
include perfect matchings, s-t paths, and eulerian subgraphs.

The final topic of this section is the problem of coloring the edges of a graph so that no
pair of edges that are incident to the same node have the same color. This edge coloring
problem is equivalent to partitioning the edges of a graph into matchings.

The Matching Polytope

Here we demonstrate an interesting nonalgorithmic proof technique for showing that a set
of inequalities describes the convex hull of a set S by proving Theorem 3.6; that is, the
convex hull of matchings in a graph G = (V, E) is given by

(4.1)

I xe:;;; 1 for v E V
eEO(v)

I xe:;;; II U2 I J for all odd sets U with I U I ;;. 3
eEE(U)

xER~.

Let .;U be the set of matchings on G, let w be a weight vector on the edges of G, let
w(M) = LeEM We, let

z(w) = max{w(M): M E.;U}.

and let.;U(w) be the set of maximum-weight matchings. We use the following property of
.;U(w).

4. Additional Results on Matching and Related Problems 637

Proposition 4.1. If w > 0 and G is connected, then either

1. there exists a v E V such that J(v) n M '* 0 for all M E .tU(w), or
2. IMI = II VI/2]forall M E.tU(w), and I VI is odd.

Proof Suppose that statement 1 is false and there exists an M E .tU(w) with
1M I < II V I /2]. Since I M I < II V I /2], there are at least two exposed nodes relative to M.
Now choose an M E.tU(w) so that there are exposed nodes u and v as close together as
possible. Then (u, v) $. E; otherwise M U {(u, v)} E.tU and w(M U {(u, v)}) > z(w).

Let t be any internal node on a minimum-length path joining u and v. By the choice of
u and v, t is not exposed relative to M. Also, since statement 1 is false, there is another
matching M' E .tU(w) such that t is exposed relative to M'.

Now the graph a = (V; MUM') consists of a node disjoint union of paths and cycles in
which the degrees of nodes t, u, and v are equal to 1. (If u or v was exposed relative to M',
we would have a contradiction to the choice of M, u, and v.) The component at = (~, Et)

of a containing t is therefore a path with t as one endpoint. Hence this component cannot
contain both u and v. Since the edges of E t alternate between M and M', it follows that

are matchings, and

w(M) + w(M') = w(M) + w(M') = 2z(w).

Since w(M), w(M') .:;;; z(w), we have w(M) = z(w) and M E .tU(w). This is a contradiction
because (a) u and t are exposed relative to M and (b) the path between u and t is shorter
than the path between u and v. So either statement 1 is true or I M I = II V I /2] for all
M E.tU(w).

Finally, if I M I = II V I /2] and I V I is even, M is a perfect matching, so statement 1 is
true. Thus if statement 1 is false, statement 2 is true. •

Proof of Theorem 3.6. Let S be the set of incidence vectors of matchings in
G = (V; E). Suppose

(4.2) L WeXe':;;; Wo
eEE

defines a facet of conv(S). We consider two cases:

1. wo':;;; 0 or We < 0 for some e E E. Since the set ofmatchings form an independence
system, the only inequalities that define facets with Wo .:;;; 0 or We < 0 are -Xe .:;;; 0 for
e E E (see Section 11.1.5).

2. wo > 0 and we ~ 0 for e E E. (i) Since (4.2) defines a facet, Wo = z(w) and xM E S
satisfies WXM = Wo if and only if M E .tU(w); and (ii) since conv(S) is full-dimen-
sional, by Theorem 3.6 of Section 1.4.3, the set of equations

(4.3) L weX~ = Wo for M E .tU(w)
eEE

has a unique solution up to scalar multiplication.

638 111.2. Matching

Suppose there is a v E V such that I J(v) n M I = 1 for all M E .;/;l(w). Then a solution to
(4.3) is We = 1 for e E J(v), We = 0 otherwise, and Wo = 1. Hence (4.2) is of the form
L eE6(v) Xe ~ 1.

If no such v exists, let E' = {e E E: We> O} and G' = (V', E') be the subgraph of G
induced by E'. G' is connected; otherwise (4.2) is the sum of valid inequalities for G and
thus cannot define a facet. Define w' on G' by w; = We fore E E', and let.;/;l'(w') be the set
of maximum-weight matchings on G'. Hence M' E.;/;l' (w') if and only if M' = M n E'
for some M E .;/;l(w). Hence, by hypothesis, statement 1 of Proposition 4.1 is false for the
pair (G', w'). Thus 1M' I = II V'I/2j for all M' E.;/;l'(w'), and I V' I is odd. Now a solution
to (4.3) is We = 1 for e E E(V'), We = 0 otherwise, and Wo = II V' 1/2j. Thus (4.2) is of the
form LeEE(V') Xe ~ II V' 1/2j, where I V' I ~ 3 and is odd. •

For any pair (G, w), we have z(w - 1) ~ z (w) -II V1/2j. However, when statement 10f
Proposition 4.1 is false and w is integral, it can be shown that z(w - 1) = z(w) -II V1/2j,
which implies 1M I = II VI/2j for all M E .;/;l(w). Thus we can state a stronger version of
Proposition 4.1 forintegral w.

Proposition 4.2. If w ~ 1 and is integral, and G is connected, either

a. there exists a v E V such that J(v) n M '" o for all ME .;/;l(w), or
b. WI is odd and z(w - 1) = z(w) -II V1/2j.

By using Proposition 4.2, we obtain a simple proof that the dual ofmax{LeEE WeXe: x
satisfies (4.1)} has an integral optimal solution for all w E zn.

Theorem 4.3. The system of inequalities (4,1) is TDL

Proof The proof is by induction on I V I + I E I + LeEE We. Clearly the result is true for
a graph with two nodes and one edge. We can assume that G is connected; otherwise the
induction hypothesis can be applied separately to each component. We can also assume
w ~ 1; otherwise an edge can be deleted. Hence the hypotheses of Proposition 4.2 hold.
Let n E R':' and y E R~ be the dual variables for the degree constraints and odd-set
constraints, respectively. There are two cases according to Proposition 4.2.

1. Statement a of Proposition 4.2 is true for v. Let w' be defined by w; = We - 1 for
e E J(v) and by w; = We otherwise. Clearly, z(w') ~ z(w) - 1; but if z(w') = z(w),
then statement a of Proposition 4.2 is false. Hence z(w') = z(w) - 1. Now by the
induction hypothesis, there is an optimal dual solution (n', y') E Z':'+P of cost
z(w) - 1. Now define (n, y) E Z':'+P by nv = n~ + 1, nu = n~ otherwise, and y = y'.
Then it is a simple calculation to show that (n, y) is an optimal dual solution for the
weight vector w.

2. Statement b of Proposition 4.2 is true. Let w' = w - 1. Hence z(w') = z(w)-
II V1/2j, and I VI is odd. By the induction hypothesis, there is an optimal dual
solution (n', y') E Z,:,+p. Now define (n, y) E Z':'+P by n = n', Yv = y~ + 1, and
Yu = Yu otherwise. Again, it is easy to check that (n, y) E Z':'+P is an optimal dual
solution for the weight vector w. •

Perfect Matchings

We now consider perfect matchings. Clearly, if I V I is odd, there are no perfect matchings.

4. Additional Results on Matching and Related Problems 639

Theorem 4.4. The convex hull of perfect matchings on a graph G = (V, E) with I VI even is
given by

(a) x E R~

(b) I Xe = 1 for v E V
(4.4) eEo(v)

(c) I x e ",;; II u2 I J for all odd sets U s V with I U I ~ 3
eEE(U)

or by (a), (b), and

(d) I Xe ~ 1 for all odd sets Us V with I U I ~ 3.
eEo(U)

Proof Since the convex hull of perfect matchings is the face of the matching polytope
with1:eEo(v) Xe = 1 for all v E V, the claim for (a), (b), and (c)followsfrom Theorem 3.6. We
now show that an x satisfies (a), (b), and (c) if and only if it satisfies (a), (b), and (d).

By summing the constraints of (b), we obtain

I xe=1IVI.
eEE

Now since I VI is even and U is an odd set, V \ U is an odd set. Hence (c) yields the
inequalities

- I Xe ~ _lillj
eEE(U) 2

and

- I Xe ~ - = -21 V I + -+ 1. l lV\Ulj 1 llUlj
eEE(v\U) 2 2

Summing the last three constraints yields (d). •
The system (4.4 (a), (b), (c» is TDI since it is obtained from the TDI system (4.1) by

changing some inequalities to equalities. The system (4.4 (a), (b), (d» is not TDI for all
graphs (see exercise 9). However, it can be shown that the dual problem always has an
optimal solution in which each variable is an integer or an integer divided by 2.

Edge Coverings

The theory and algorithmic aspects of edge coverings completely parallel those for
matching. We illustrate this with two results.

Proposition 4.5. Let M be a maximum-cardinality matching, and let C be a minimum-
cardinality covering of the nodes by edges in a graph G = (V, E). Then IMI + I CI = I VI.

640 III.2. Matching

Proof Given M, let V be the set of nodes of degree zero relative to M. Thus IV I =

I V I - 21 M I. Since we obtain a cover by adding I V I edges to M, we have

ICI ~ IMI + IVI = IMI + IVI-2IMI = IVI-IMI.

Given C, let M be a maximum-cardinality matching in (V, C), and let -0 be the set of
nodes of degree zero relative to M in (V, C). Then

and

Hence ICI + IMI = I VI. •
To cover an odd set of nodes V, we need at least II V 1/2J + I edges. Thus we obtain the

valid inequalities

L Xe + L Xe ~ II V2 I J + 1 for all odd sets V.
eEE(U) eEa(U)

These inequalities, together with the degree and nonnegativity constraints, yield the
convex hull of edge covers.

Theorem 4.6. The convex hull of edge covers in a graph G = (V, E) is given by

b-Matching

L Xe ~ I for v E V
eEa(v)

L x ~ llQlJ + I for all odd sets V
eEE(U)UO(U) e 2

xER~.

The next topic deals with the reduction of b-matching problems to I-matching problems.
These reductions may be viewed as modeling devices for transforming harder problems to
easier ones, and they can be used in contexts other than matching. Although they are not
necessarily polynomial reductions, they serve three useful purposes.

1. The transformed problem may yield theoretical results-for example, polyhedral
descriptions of the convex hull of solutions in the original space.

2. The transformed problem can be solved by a standard matching algorithm. This
may be preferred, even when the transformation is not polynomial, to constructing
a new algorithm.

3. An efficient algorithm can often be developed for the original problem by studying
the (possibly nonpolynomial) algorithm on the transformed problem.

4. Additional Results on Matching and Related Problems 641

We first consider the integer b-matching problem on G = (V, E). Its constraints are
LeEo(v) Xe < bv for v E V and x E Z~.

Suppose that bv = 2 for all v E V. In this case the edges M = {e E E: Xe > 0} of a feasible
solution produce a graph (V, M) whose components are paths in which Xe = 1 for all edges
of the path, cycles in which Xe = 1 for all edges of the cycle, isolated nodes, and single edges
with Xe = 2. In perfect integer 2-matchings, only the cycles and single edges with Xe = 2 can
occur.

In Section II.6.3, we used perfect 2-matchings as a relaxation for the traveling salesman
problem, and we reduced the perfect integer 2-matching problem on G = (V, E) to a
perfect matching problem on a bipartite graph H = (Vl U P, E'), where V l and Pare
copies of V, and el = (u l , v2), e2 = (v l , u2) are in E' if and only if e = (u, v) E E. The
reduction does not depend on the matching being perfect.

Let Y E B2n be the incidence vector of a matching on H, and let Xe = Yel + Ye" Then
x E Z~ and

2.: Ye+ 2.: Ye= 2.: Xe·
eEo(v') eEo(v') eEO(v)

Thus to find a maximum-weight integer 2-matching on G with weight vector wE Rn,
we can find a matching on H with weight vector w' E R2n , where W~I = W~2 = We for all
eEE.

The reduction also yields a linear inequality description of the convex hull of integer
2-matchings.

Proposition 4.7.

(4.5)

The convex hull of integer 2-matchings on G = (V, E) is given by

2.: Xe < 2 for v E V
eEO(v)

xER~.

Proof The convex hull of matchings on the bipartite graph H is given by

2.: Ye < 1 for Vi E Vi and i = 1, 2
(4.6) eEO(v')

We need to show that the projection onto Rn of the points that satisfy (4.6) and
Xe = Yel + Ye' for e E E is precisely those points in Rn that satisfy (4.5).

Every point x of the projection lies in R~ because Yel, Ye2 E R~ and Xe = Yel + Ye" Also,
every such point satisfies (4.5) because

2.: Xe= 2.: Ye+ 2.: Ye<2
eEo(v) eEo(v') eEO(v')

by (4.6). It remains to show that every point x E R~ satisfying (4.5) is a point of the
projection. For this it suffices to take Yet = Ye' = ~xe for e E E. •

This approach readily extends to integer b-matchings with bv even for all v E V and
yields the result that when bv is even for all v E V, integer b-matching is a network flow
problem on a graph with 21 V 1 nodes and 21E 1 edges.

642 m.2. Matching

Figure 4.1

For general b E Z~, the transformation of integer b-matching on G to 1-matching is
more complicated. Here each node is replaced by bv copies of itself, and for each pair of
adjacent nodes in the original graph all the resulting copies are joined to form a complete
bipartite graph. Formally, we construct a new graph H = (UVEV VV, U(u,V)EE EU,V), where
VV = (VI, ... , Vb,) for v E V, EU'v = (e l, ... , eb•b,) for (u, v) E E, and (VU U VV, EU,V) is a
complete bipartite graph with b u + b v nodes and bubv edges. Hence H contains 1:vEV b v

nodes and n* = 1:(u,V)EE bubv edges. An example is given in Figure 4.1. This is not a
polynomial reduction, since the new description of the problem is not a polynomial
function of 1:vEV log by.

Let y E Bn' be the incidence vector of a matching on H, and let x e = 1:7:1 Ye; for e E E.
Then x E Z~ and 1:eE6(v) Xe = 1:eE6(V') Ye ~ b v for v E V. Hence x is an integer b-matching
onG.

Conversely, if x E Z~ is the vector of an integer b-matching on G, then we get a
matching on H by setting Ye; = 1 for Xe node disjoint edges for all e E E.

For the graph of Figure 4.1, Table 4.1 gives the maximal b-matchings on G and the
corresponding matchings on H.

Table 4.1.

Y!J Y~J y!, y~2 y!, y~, y~, y:,

o 1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0
0 1 0 0 0 1 0 0

o 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0
0 0 0 1 0 0 1 0

o o 2 0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0

4. Additional Results on Matching and Related Problems 643

We also obtain a linear inequality description of the convex hull of integer b-matchings.

Theorem 4.8. The convex hull of integer b-matchings is given by

(4.7)

L xe";;;; bv for v E V
eE.5(v)

L Xe";;;; - L bv II J
eEE(U) 2 vEU

for U S V with L bv odd
vEU

xER~.

Proof. Let y E R~' be a point in the convex hull of matchings on H; and for
e = (u, v) E E, let Xe = ~f~f' Ye" Then x E R~ and, as above,

Now suppose ~VEU bv is odd. Let S = UvEU VV so that I S I = ~VEU by. Hence from the
odd-set constraints we obtain

L Xe = L Ye";;;; -lSI = - L bv . l1 J l1 J eEE(U) eEE(S) 2 2 vEU

So x satisfies (4.7).
Conversely, suppose x satisfies (4.7). We need to show that for each such x there is a

Y ERn' lying in the convex hull of I-matchings on H. For e = (u, v) E E, let
Yu',vj = xu,v/bubv for i = 1, ... , bu andj = 1, ... , by. Then Y E R~' and

L L Yu',vj = L Xbu,v,,;;;; 1 for vj E VV and v E V.
uEV\{v} u'EV" uEV\{v} v

Now consider an odd set S of nodes in H.

Case 1. S = UVEU VV and ~VEU bv is odd. Hence I S I = ~VEV bv and

L Ye = L Xe";;;; - L bv = -IS I II J II J eEE(S) eEE(U) 2 vEV 2

Case 2. S contains kv > 0 nodes from VV for v E U and for some wE U, kw < bw.
Hence I S I = ~VEU kv and

~ ~ kukv
L. Ye = L. b b Xu,V' eEE(S) u,vEU u v

We will show that

L kbukbv Xu,v ,,;;;; -21 (L kv + (kw - 1») = l~ IS I J.
u,vEU U v vEU\{w}

644 111.2. Matching

For v E U \ {w}, multiply the constraint LuEJ(v) Xu,v ~ bv by kv/2bv and multiply the
degree constraint for w by (kw - 1)/2bw. By summing these inequalities and using x E R1
to eliminate the coefficients of edges not in E(U), we obtain

L. - + - XUV + L. - + -- Xuw ~ L. v + (w - 1) '" (ku kv) '" (ku kw - 1) ('" k k)
u,vEU\{w} 2bu 2bv ' uEU\{w} 2bu 2bw ' vEU\{w}

Now for u, v E U \ {w}, we obtain

For u E U \ {w}, we obtain

and

since 1 ~ kw ~ bw - 1 and 1 ~ ku ~ bu. Hence,

'" kukv '" (ku kv) '" (ku kw - 1) L. --x ~ L. -+- X + L. -+-- X u,vEU bubv u,v u,vEU\{w} 2bu 2bv U,v uEU\{w} 2bu 2bw U,w

•
A triangle with bv = 2 for v = 1,2, 3 and c = (1 1) shows that the system (4.7) is not

TDI. An interesting result that we will not prove is that by adding the superfluous
constraints LeEE(U) Xe ~ t LVEU bv for U ~ V with LVEU bv even, we obtain a TDI system.

Analogous to Theorem 4.4 and by an identical proof, which uses Theorem 4.8, we
obtain the convex hull of perfect b-matchings.

Corollary 4.9. The convex hull of perfect b-matchings is given by

L Xe = bv for v E V
eEJ(v)

(4.8) L Xe ~ 1 for U ~ V with L bvodd
eEJ(U) vEU

xER1.

This result will be used later to establish the convex hull of perfect binary 2-matchings.

Binary b-matching problems can be reduced to integer b-matching problems. We will
only study binary perfect 2-matching, denoted by BP2M. Here the feasible solutions are
cycles that cover all of the nodes. We showed in Section II.6.3 that BP2M gives a tighter
relaxation for the traveling salesman problem than does integer perfect 2-matching.

4. Additional Results on Matching and Related Problems

u e
•

u e1 u' e2 v'

• • •
bu = 2 bu' = 1 bu' = 1

Figure 4.2

v
•

e3

645

v
•

bu= 2

Given a BP2M problem on G = (V, E), we construct a new graph G' = (V u V',
E U E'), where each e E E is replaced by a path with three edges as shown in Figure 4.2.
Hence I V' I = I E' I = 21E I. We let bv = 2 for v E V and bv = 1 for v E V'.

Now every perfect b-matching on G' has either (i) Xel = X e' = 1 andxe2 = 0 or (ii) Xe2 = 1
and Xel = X e' = O. So there is a one-to-one correspondence between BP2M's on G and
perfect b-matchings on G' given by Xe = Xel = X e' = 1 - X e' for e E E.

This reduction, together with the reduction of perfect integer b-matching with
bv E (1, 2) to perfect matching, gives a polynomial-time algorithm for BP2M (i.e., the
algorithm of Section 3). Figure 4.3 shows the transformation of BP2M for a triangle to
perfect I-matching, and it also shows a perfect I-matching on the resulting graph. This
reduction also yields a linear inequality description of the convex hull of BP2M.

In Section II.2.3, we derived the rank 1 inequalities

(4.9) I Xe+ I.xe~ IHI +lIE2
A

IJ forHC V,
eEE(H) eEE

where E ~ J(H) is an odd set of node disjoint edges. Here we will show that these
inequalities, together with the degree constraints and 0 ~ x ~ 1, define the convex hull of
0-1 perfect 2-matchings.

First we restate (4.9) by subtracting:l: LeEo(V) Xe = 1 for v E H. This yields

1 1 llEIJ - I Xe -- I Xe ~ --
2 eEE 2 eEo(H)\E 2

or

I Xe - I Xe ~ IE I - 1
eEE eEo(H)\E

or

I (1 - xe) + I Xe ~ 1 for He V, E ~ J(H), IE I odd.
eEE eEo(H)\E

646 111.2. Matching

2

2~2
BP2M

2

2 2

Perfect integer b-matching with bu E { 1, 2}

Perfect 1-matching

Figure 4.3

4. Additional Results on Matching and Related Problems 647

Theorem 4.10. The convex hull of binary perfect 2-matchings is given by

I Xe = 2 for v E V
eEo(v)

(4.10) I (l - Xe) + I Xe ~ 1 for H e V, where E <;; J(H) is an odd
eEE eEo(H)\E

set of node disjoint edges

x ~ 1, XER~.

Proof We transform BP2M to an integer perfect b-matching problem with b i E {t, 2}
as shown in Figure 4.3, and then we apply Corollary 4.9 to the graph G ' = (V U V',
EUE').

Suppose y E R!n satisfies (4.8) for the graph G'. For e E E, let Xe = 1 - Ye2 = Yel = Ye3
(see Figure 4.3). Since 0 ~ Ye2 ~ 1, we have 0 ~ Xe ~ 1 for all e E E. Also ~eEO(v) Xe =
~eEo(vl Yel = 2.

Now for He V and EeE with lEI odd, define we V U V' by W=HU{u ' :
(u, v) E E}. Then ~VEW bv is odd. Also

J(W) = {(u ' , v'): (u, v) E E} U {(u, u'): (u, v) E J(H) \ E}.

Thus ~eEO(W) Ye ~ 1 yields

I Ye2 + I Y e' ~ 1.
e2~(u',v'): (u,v)EE e'~(u,v)Eo(H)\E

Transforming to the variables x E R~ yields

I (1 - xe) + I Xe ~ 1.
eEE eEo(H)\E

Hence x sa~isfies (4.10).
Conversely, if x satisfies the constraints (4.10), then with Yel = Ye3 = 1 - Ye2 = x" we

have Y E R!n; also, Y satisfies the degree constraints for G'. Now if ~VEW bv is odd,
I W n V'I is odd and, in particular, I {u' E W: v I $. W} is odd. Define H = W n V and
E = {(u, v) E E: u, u' E W, v, v' $. W}. Hence IE I is odd and J(H) = {(u, v)
EE: u E W, v$. W}. Now from

I (1 - xe) + I Xe ~ 1,
eEE eEJ(H)\E

we obtain

I Yed I Yel = I Ye ~ 1.
e2 ~ (u',v'):(u,V)EE e' ~ (u,v) EJ(H)\E eEo(W)

Hence Y satisfies (4.8). •

648 111.2. Matching

Theorem 4.10 generalizes to perfect 0-1 matchings. The convex hull of these matchings
is given by

x.;;; 1, xER~

L Xe = bv for v E V
eEa(v)

where H £; V and E £; J(H) are such that I:VEH bv + I E I is odd.
Moreover, these results can be generalized further to include the constraints x .;;; d for

anydEZ~.

T-Joins and T-Cuts

Our next topic introduces parity conditions into matching problems and includes the
postman problem and the minimum-weight s-t path problem.

Definition 4.1. Given G = (V, E) and T £; V with I T I even, a subset of edges E' £; E is a
T-join if, in the subgraph G' = (V, E'), the degree of v is odd if and only if vET.

Proposition 4.11. Minimal T-joins areforests.

Proof By deleting all of the edges from all cycles of the T-join, we obtain a smaller
~~. .
Example 4.1. In the graph of Figure 4.4, if T = V, the T-joins are {et, e4} and {e2, e3, e4}'
If T = {l, 4}, the T-joins are {et. e2, e4} and {e3, e4}. If T = {3, 4} the T-joins are {e4} and
{et. e2, e3, e4}.

By choosing different types of sets T, the minimal T-joins yield forests with interesting
properties.

1. If T = {s, t} and E' £; E is a minimal T-join, then the forest is an s-t path.
2. If T = V, E' £; E is a minimal T-join, and the edges of E' form a matching, then the

forest is a perfect matching.
3. If T = {u: u is of odd degree} and E' £; E is a minimal T-join, then E' is a minimal

set of edges with the property that the multigraph obtained by duplicating E' is
eulerian.

2-------... 3

4

Figure 4.4

4. Additional Results on Matching and Related Problems 649

2~---~3

4

G

Figure 4.5

The minimum-weight T-join problem is solvable in polynomial time. We show this by
reducing it to a perfect matching problem. Given G = (V, E) and T, replace each v E V by
a clique Cv containing IJ(v) I + £Xv nodes, where

_ {O if vET and I J(v) I is odd, or v $. T and I J(v) I is even
£Xv - 1 otherwise.

Then for each (u, v) E E, join a node in Cu to a node in Cv in such a way that no two of
these edges are incident to the same node. Call the new graph G' = (V', E U E'), whereE'
are the clique edges.

For the graph of Example 4.1 and T = {l, 4}, we have £Xl = £X3 = 1 and £X2 = £X4 = o. A
perfect matching on G' and the corresponding T-join are sho)J'n in Figure 4.5.

Proposition 4.12. If E ~ E U E' is a perfect matching in G', then EnE is a T-join in G.
Conversely, ijE* is a T-join in G, there exists an E ~ E' so that E U E* is a perfect matching
in G'.

Proof Suppose vET. By the definition of £Xv, I C v I is odd. Hence a perfect matching
in G' contains an odd number of edges in J(Cv). Similarly, if v $. T, then I Cv I is even and
a perfect matching in G' contains an even number of edges in J(C v).

The argument for the converse is similar. •

Next we consider a class of valid inequalities for the convex hull of T-joins. The
following definition generalizes the definition of s-t cuts in a graph.

Definition 4.2. Given G = (V, E) and T ~ V with I T I even, J(U) for U ~ V is a T-cut if
I U n T I is odd.

650 111.2. Matching

o(U) n E'

U V\U

Figure 4.6

Example 4.1 (continued). The minimal T-cuts with T = V are {e{, e2}, {e{, e3}, and {e4}.

Suppose 6(U) is a T-cut and E' s; E is a T-join. Consider the graph G = (V, E') shown
in Figure 4.6. Since 6(U) is a T-cut, I U n TI is odd. Since E' is a T-join, the degree of
each node in U nTis odd, and the degree of each node in U \ T is even. Now if
6(U) n E' = 0, the graph (U, E(U) n E') would have an odd number of nodes of odd
degree, which is impossible for any graph. Hence 6(U) n E' *' 0, and

I Xe ~ 1 for 6(U) aT-cut, Us; V
eEtl(U)

is a valid inequality for the convex hull of T-joins. Moreover, these inequalities yield a
polyhedron where extreme points are the minimal T-joins.

Theorem 4.13. A linear inequality description of the polyhedron whose extreme points are
the incidence vectors of minimal T-joins in G = (V, E) and whose extreme rays are the n unit
vectors is given by

I Xe ~ 1 for Us; V with I U n TI odd
(4.11) eEtl(U)

xER~.

The proofinvolves showing that y satisfies y ~ 0 and the odd-set constraints of(4.2) for
G' ifand only if x satisfies (4.11) for G. The details are left as an exercise.

We now show that blocking polarity can be used to determine a polyhedron whose
extreme points are the minimal T-cuts.

Proposition 4.14. For any graph G, the set of minimal T-joins and T-cuts are a pair of
blocking clutters.

Proof The proof is by Corollary 6.2 of Section III.1.6. In particular, we show that if
E' C E does not contain a T-join, then E \ E' contains a T-cut. Note that it suffices to
take a maximal set E' that does not ~ntain a T-join; that is, for any e = (u, v) E E \ E',
E' U {e} contains a minimal T-join E.

Each component of (V, E), and hence each component of (V, E' U {e}), contains an
even number of nodes of T. Now let G = (U, E(U) n (E' U {e})) be the component of
(V, E' U {e}) containing e.

We claim that (U, JIJU) n E') is disconnected. If not, there exists a cycle C in G
containing e. But then E \ C s; E is a T-join, contradicting the definition of E'.

4. Additional Results on Matching and Related Problems 651

Now let Vb V2 be a bipartition of V according to the components of(U, E(U) n E').
Since I U n T I is even and e E If, it follows that I VI n T I and I V2 n T I must be odd.
Finally, since J(VI) n E' = 0, J(VI) is a T-cut with J(VI) ~ E \ E'. •

From Theorem 4.13, Proposition 4.14, and Theorem 6.5 of Section III.1.6, we obtain a
description of a T-cut polyhedron.

Theorem 4.15. A linear inequality description of the polyhedron whose extreme points are
the incidence vectors of minimal T-cuts in G = (V, E) and whose extreme rays are the n unit
vectors is given by

I Xe ~ 1 for all minimal T-joins E' ~ E
(4.12) eEE'

xER~.

Since we have already given a polynomial-time algorithm for finding minimum-weight
T-joins, it follows from the polynomial-time equivalence between optimization and
separation that:

Corollary 4.16. The minimum-weight T-cut problem is solvable in polynomial time,

In fact, there is an efficient combinatorial algorithm for solving the minimum-weight
T-cut problem. It uses a max-flow algorithm as a subroutine and is closely related to the
algorithm given in Section 11.6.3 for finding violated subtour inequalities.

Edge Coloring

The last topic of this section is the edge-coloring problem: Given G = (V, E), color the
edges of G, with a minimum number of colors subject to the restriction that no pair of
edges incident to a common node has the same color.

Edge coloring is related to matching since an edge coloring is feasible if and only if all of
the edges with the same color are a matching. Hence we can formulate the edge-coloring
problem as one of covering the edges of a graph with a minimum number of maximal
matchings. This yields a minimum-cardinality set-covering problem with a huge number
of variables of the form

x(G) = min ly

(4.13) yA ~ 1

where the rows of A correspond to the maximal matchings in G, and x(G) is the minimum
number of colors needed to obtain a feasible edge coloring. X(G) is called the chromatic
index ofG.

Let Ll(G) = maxvEv I J(v) I; that is Ll(G) is the degree of a node v* of maximum degree.
Since all of the edges incident to v* require a different color, we have X(G) ~ Ll(G) for all
graphs G.

Proposition 4.17. X(G) = Ll(G)for bipartite graphs,

Proof If Ll(G) ~ 2, the result is trivial. That is, if Ll(G) = 2, then G contains disjoint
paths and even cycles, so two colors suffice.

652 111.2. Matching

Now suppose that d(G);;:. 3. Attempt to construct a feasible coloring with d(G) colors
by coloring the edges in any order and not using a new color unless it is necessary to do so.
Suppose that we have already used d(G) colors and that e = (u, v) requires a new color.
This means that all of the d(G) colors except i have been used to color edges incident to u,
i has been used to color an edge adjacent to v, and some color j has not been used to color
edges adjacent to v (see Figure 4.7). Now consider the subgraph generated by e and all of
the edges already colored either i or j. In this subgraph, each node is of degree no larger
than 2 and there are no odd cycles; hence it is possible to color these edges with i and j
alone. So now we have a coloring with no more than d(G) colors that includes e. •

Note that the proof gives a polynomial-time algorithm for the edge-coloring problem
on bipartite graphs.

Next we consider the edge-coloring problem in general graphs. The graph of Figure 4.8
has d(G) = 3 < X(G) = 4. A 4-coloring is shown in Figure 4.8; X(G) ;;:. 4 since I E I = 7, and
each maximal matching has two edges.

Surprisingly, this example gives the largest possible value of x(G) - d(G). The following
theorem, which we will not prove, is known as Vizing's theorem.

Theorem 4.18. For any graph G, X(G) equals d(G) or d(G) + 1.

We now comment on its implications on solving the edge-coloring problem. Since d(G)
can be found for any graph in O(I E I) time and Vizing's proof provides a fast algorithm to
color the edges with d(G) + 1 colors, we might hope that Theorem 4.18 could be used to
find X(G) efficiently. Unfortunately, this is not the case since the decision problem "Does
X(G) = d(G)?" is .N'9Jl-complete. Moreover, determining the chromatic index is difficult
even if X(G) is small.

u -----~ ...

-'"----4u
3

Figure 4.7. i = 3,) = I.

4. Additional Results on Matching and Related Problems 653

Theorem 4.19. The problem of deciding whether X(G) .;;; 3 is }(P}J-complete.

In other words, there is an infinite family of graphs with Ll(G) = 3, for which the
problem of deciding whether X(G) = 3 or 4 is }(P}J-complete. An immediate consequence of
this result is:

Corollary 4.20. Unless P}J = }(P}J, no polynomial-time algorithm can yield afeasible edge
coloring that requiresfewer than 11 x(G)J colorsfor all graphs.

Despite these negative results regarding the polynomial solvability of the edge-coloring
problem, we now show how Theorem 4.18 and the ellipsoid algorithm can, in certain
cases, yield a polynomial-time algorithm for finding X(G). The linear programming
relaxation of(4.13) is

(4.14)

and its dual is

(4.15)

XLP(G) = min ly

yA ~ 1

yER':'

LlLP(G) = max Ix

Ax.;;; 1

xER~.

Although problem (4.15) has a constraint for each maximal matching, it can be solved
in polynomial time since the separation problem is a maximum-weight matching prob-
lem. That is, x·, 0 .;;; x*.;;; 1, is a feasible solution to (4.15) if and only if a maximum-weight
matching in G with edge weights x* has value no greater than 1.

Proposition 4.21. If LlLP(G) > Ll(G), then X(G) = Ll(G) + 1.

Proof Note that Ll(G).;;; LlLP(G) since a feasible solution to (4.15) is Xe = 1 for all
e E t:5(v*), where v* is a node of maximum degree. Now by linear programming duality,
LlLP(G) = XLP(G).;;; X(G). Hence if LlLP(G) > Ll(G), then X(G) > Ll(G). Then by Theo-
rem 4.18, we have X(G) = Ll(G) + 1. •

In the graph of Figure 4.8 we have LlLP(G) > 3, which implies X(G) = 4.
Heuristics provide a practical approach for finding good colorings of large graphs. In

fact, there are heuristics that achieve the performance bound of I~ X(G)J, and it is also
possible to realize asymptotic bounds of the form ax(G) + p with a <~. We will not give

Figure 4.8

654 III.2. Matching

any details, but the basic idea of many heuristic coloring schemes has been used in the
proof of Proposition 4.17. Namely, in a sequential coloring scheme, whenever we encoun-
ter an edge e = (u, v) that requires a "new" color, we try to adjust the present coloring so
that a new color is not required for e. A simple rule of this type is to consider two colors,
say red and blue. Now we try to recolor all of the red and blue edges by red and blue so that
feasibility is maintained and every edge adjacent to u and v is colored red. Then e can be
colored blue.

5. NOTES

Section 111.2.1

Matching theory predates mathematical programming. Remarks on the early literature,
which was primarily concerned with bipartite graphs, appear in Pulleyblank (1983) and
Schrijver (l983a). Lovasz and Plummer (1986) is a recent book on matching theory that
emphasizes the graph-theoretic aspects of matching.

The application to the postman problem was given by Edmonds and Johnson (1973).
Fujii et al. (1969) and Coffman and Graham (1972) gave an application to a scheduling
problem. Network flow problems in which an arc can have two heads or two tails can be
modeled as matching problems [see Edmonds and Johnson (1970)]. Nemhauser and
Weber (1979) used weighted matching in the solution of set-partitioning problems. Ball,
Bodin and Dial (1983) gave a matching-based algorithm for the scheduling of mass transit
crews and vehicles.

Section 111.2.2

The augmenting-path proposition is due to Berge (1957) and Norman and Rabin (1959).
A fast cardinality matching algorithm for bipartite graphs was given by Hopcroft and

Karp (1973).
The algorithmic aspects of the I-matching problem on general graphs were initiated by

Edmonds (1965a). In this article, he gave a polynomial-time algorithm for the cardinality
problem. The Hopcroft-Karp algorithm for bipartite graphs was extended to general
graphs by Even and Kariv (1975).

Section 111.2.3

The maximum-weight matching algorithm was developed by Edmonds (1965c). The
algorithm given here is a slight variation of the one by Edmonds. Another variation is
given in Lawler (1976).

Other weighted matching algorithms have been given by Cunningham and Marsh
(1978), Derigs (1986), and Grotschel and Holland (1985). The latter is a fractional cutting-
plane approach that uses the simplex method and an efficient separation routine for
finding violated blossom inequalities. The separation routine is based on a polynomial-
time algorithm by Padberg and Rao (1982) for finding minimum-weighted T-cuts (see
Section 111.2.4).

Ball and Derigs (1983) presented alternative strategies for implementing matching
algorithms. Burkhard and Derigs (1980) gave FORTRAN listings of matching and
assignment algorithms.

Pulleyblank and Edmonds (1975) characterized the blossom inequalities that are facets
of the matching polytope.

Sensitivity analysis in weighted matching has been considered by Weber (1981), Derigs
(1985), and Ball and Taverna (1985).

6. Exercises 655

Avis (1983) presented a survey of heuristics for solving weighted matching problems.
Edmonds and Johnson (1970) described an algorithm for weighted b-matching prob-

lems. The first polynomial-time algorithm for this class of problems is attributed to
Cunningham and Marsh (1978).

Section 111.2.4

The nonalgorithmic proof technique given here for the convex hull of I-matchings is due
to Lovasz (1979a). Other nonalgorithmic proofs have been given by Balinski (1972),
Hoffman and Oppenheim (1978), and Schrijver (1983b). The proof of total dual integrality
comes from Schrijver (1983a). A different proof is given by Cunningham and Marsh
(1978).

Relationships between matching and edge covering have been studied by Norman and
Rabin (1959) and Balinski (1970b).

The transformations used to obtain the b-matching results come from Schrijver
(1983a), who attributed them to Tutte (1954).

Theorem 4.8 on the b-matching polytope is due to Edmonds and Pulleyblank and
appears in Pulleyblank (1973). Pulleyblank (1980,1981) established that this system is TD!.
Further results regarding a minimal TDI system have been obtained by Cook (1983b).
Cook and Pulleyblank (1987) provided a minimal linear inequality representation of the
convex hull of capacitated b-matchings.

The reduction of the minimum T-join problem to a perfect matching problem comes
from Edmonds and Johnson (1973). They also used the connection with matchings to
prove Theorem 4.15. Also see Gastou and Johnson (1986) and Johnson and Mosterts
(1987).

Generalizations of matching problems have been studied by Gerards and Schrijver
(1986), Cornuejols and Hartvigsen (1986), and Cornuejols (1986).

The edge-coloring result for bipartite graphs is a classic theorem of Konig. The proof
given here can be found in many graph theory texts [e.g., Bondy and Murty (1976)].

Theorem 4.18 is due to Vizing (1964). Marcotte (1986b) showed that Vizing's theorem is
true in the weighted case for a restricted class of graphs.

Proposition 4.19 and Theorem 4.20 are due to Holyer (1981).
The result cited on the worst-case bounds of edge-coloring heuristics is due to Hoch-

baum et al. (1986).

6. EXERCISES

1. Find a maximum-cardinality matching in the bipartite graph of Figure 6.1, and give
a short proof of optimality.

2. Find a maximum-cardinality matching in the graph of Figure 6.2, and give a short
proof of optimality.

3. A graph G = (V, E) is said to have a perfect matching if there exists M ~ E such that
no node is exposed relative to M. Let P(U), U ~ V, denote the number of com-
ponents with an odd number of nodes in the graph G u induced by V \ U. Prove that
G has a perfect matching if and only if P(U) ~ I U I for all U ~ V.

4. Find a maximum-weight matching in

i) the graph of Figure 6.2 with weights as shown,

ii) the graph of Figure 6.3 with weights as shown.

656 III.2. Matching

Figure 6.1

5. i) Devise a fast heuristic algorithm to find violated blossom inequalitie~.

ii) Use this in an FCPA to find a maximum-weight matching in the graph of Figure
6.2.

6. Prove that the dual solution is always half-integer in the maximum-weight matching
algorithm.

7. For the maximum-weight matching problem, define an augmenting path p, relative
to M, to be an alternating path or alternating cycle having no edge of M \ P incident
to P and having the property

I Cj - I Cj> 0,
ejEP\M ejEM\P

where P is the set of edges contained in the path p. Prove that M is optimal if and
only if M admits no augmenting path.

8. Find an optimal postman route for the graph of Figure 6.2 with the distances as
shown.

9. Show that the system (4.4) (a), (b), (d) is not TDI for the complete graph on four
nodes.

10. Show that the weighted b-matching problem reduces to a network flow problem
when bv is even for all v E V.

Figure 6.2

6. Exercises 657

18 13 11
2 3 5

e3 e5 e6

10 13
e7

e8 10

e2

11 e4 10
6

7 e9 11

9
7

elO

ell 8

e12
8

5

Figure 6.3

11. Solve the weighted b-matching problem on the graph of Figure 6.4 by reducing it to
a I-matching problem.

12. For the graph of Figure 6.2, solve the minimum-weight T-join problem by reducing
it to a perfect matching problem for:

i) T = {2, 7};

ii) T = V.

13. Prove Theorem 4.13.

14. Describe an efficient combinatorial algorithm for the minimum-weight T-cut
problem.

6

b2 =4 F-------------~ b3 = 2
3

Figure 6.4

658 III.2. Matching

15. Given a graph G, suppose that an efficient combinatorial algorithm is known for the
separation problem for the I-matching polytope P(I) (see Section III.3.7). Let
XLP(w) = min{1y: yA ~ w, y E R':'}, where A is the matching-edge incidence matrix
ofG.

i) Verify that XLP(w) ~ 1 if and only if w lies in the I-matching polytope P(I) and
that

{ w(S) }
XLP(W) = mffx (IS I _ 1)/2: IS I odd, where w(S) = eEtS) We'

ii) Verify that C(w) = max{A,: A,W E P(I)} = l/XLP(W).

iii) Consider the following algorithm to calculate C(w), using as a subroutine an
efficient separation algorithm for the polytope P(1); that is,

max{w(S) - (IS I - 1)/2: IS I odd}

Algorithm: Choose A,0 with A,°W ~ P(1). Set t = O.
Iteration t:

a) Solve the separation problem for A,tw.

b) Stop if A,tw E P(1).

c) Set A,t+l such that A,t+l w(st) = (I S I - 1)/2.

d) Augment t.

Verify that
a) A,t+l < A,t,

b) [l/A,t+l-l/A,t](IS t l-l)/2-(ISt+11-l)/2»O.

c) 1St I is strictly decreasing.

d) The algorithm terminates after, at most, I V I /2 iterations.

iv) Use this algorithm to calculate XLP(G) andx(G) for the graph of Figure 4.8.

16. Show that the maximum-weight assignment problem with the following conditions
can be formulated as a matching problem: Cii = -00 for all i, ci} = Cji for all i andj,
and xi} = xji for all i andj.

111.3.
Matroid and Submodular Function
Optimization

1. INTRODUCTION

Matroids and submodular functions are the foundations for some combinatorial optimi
zation problems that generalize both network flow problems and the spanning tree
problem treated in Chapter 1.3. Matroids can be viewed as prototypes of independence
systems and 0-1 integer programs with "nice" properties that can be used to obtain
efficient algorithms for the corresponding optimization problems.

Definition 1.1. Let N = {l, ... , n} be a finite set, and let fF be a set of subsets of N . .f> =
(N, fF) is an independence system if FI E fF, and F2 ~ FI implies F2 E fF. Elements of fF
are called independent sets, and the remaining subsets of N are called dependent sets.

Let fFT = {F E fF: F ~ n. Then if.f> = (N, fF) is an independence system,.f>T = (T, fFT)
is an independence system for all T ~ N.

Definition 1.2. Given an independence system .f> = (N, fF), we say that FE fF is a
maximal independent set if F U {j} $. fF for all} EN \ F. A maximal independent set T
is maximum if IS I ~ I TI for all S E fF.

In describing independence systems, we use the notation

meT) = max{ I S I: S E fF} for T ~ N
S~T

to denote the size ofa maximum-cardinality independent set in T. Note that meT) ~ I TI
and fF = {T ~ N: meT) = I T I}. Hence.f> can also be specified as.f> = (N, m).

Matroids are those independence systems for which all maximal independent sets in T
are maximum for any subset T ~ N.

Definition 1.3. M = (N, fF) is a matroid if M is an independence system in which for any
subset T ~ N, every independent set in T that is maximal in T has cardinality meT).

The following proposition is an immediate consequence of the fact that maximal sets
must be maximum not just in N but also for all subsets T ~ N.

Proposition 1.1. If M = (N, fF) is a matroid, then the independence system .f> T = (T, fF T)
is a matroid for T ~ N.

659

660 111.3. Matroid and Submodular Function Optimization

Matroids were originally developed from matrices to generalize the properties oflinear
independence and bases in a vector space. This generalization has yielded several classes of
matroids.

(a) Matric Matroids. Let A be an m x n matrix, and let N be the index set of the
columns of A. Define the independence system (N, gjP) by F E gjP if the set of columns
defined by F is linearly independent. For any submatrixA T with columns aj forj E T, it is
well known that every maximal set of linearly independent columns contains
m(T) = rank(AT) columns. Hence (N, gjP) is a matroid. If M is a matroid and there exists a
matrix A such that the independent sets of M correspond to the linearly independent
columns of A, then M is called a matric matroid.

(b) Graphic M atroids. Let G = (V, E) be a graph, and let F c;; E be a subset ofthe edges.
Let F E gjP if Gp = (V, F) contains no cycles. For any subset T c;; E, the cardinality of a
maximal set of edges that is acyclic in GT is m(T) = I VI - number of connected
components of GT . Hence (E, gjP) is a matroid. If M is a matroid and there exists a graph G
such that the independent sets of M correspond to the acyclic edge sets of G, then M is a
graphic matroid. We leave it as an exercise to show that graphic matroids are matric.

(c) Partition Matroids. Given m disjoint finite sets Ei for i E I = {l, ... ,m}, let
E = U;::! E i. F c;; E is independent if iF n Ei I ~ 1 for all i E I. For any T c;; E, the
cardinality of a maximal independent set contained in T is LiEf ai, where ai = 1 if
Tn E i "* 0 and ai = ° otherwise. Hence (E, gjP) is a matroid.

The set of matchings in a graph do not form a matroid. For a path e j, e2, e3, both the sets
{e2} and {ej, e3} are maximal matchings in {ej, e2, e3}, but they differ in cardinality.

In the context of combinatorial optimization, the most striking property of matroids
and indeed, another way to define them-is that, given a weight vector c E RIEl, a greedy
algorithm (see Section 1.3.3 for trees and Section II.5.3 for general independence systems)
always gives an optimal-weight independent set. This will be demonstrated in Section 3.

Submodular functions are closely related to matroids. We will see that for a matroid,
the cardinality function m is submodular. Such functions have already appeared in
Section 11.5.3, where the uncapacitated location problem was shown to be a problem of
maximizing a submodular function.

Definition 1.4. Let N be a finite set, and letf be a real-valued function on the subsets
ofN.

a. fis non decreasing ifj(S) ~f(T) for S c;; T c;; N.
b. fis submodular iff(S) + f(T) ~ f(S U T) + f(S n T) for S, T c;; N.
c. fis supermodular if -fis submodular.
d. r is a submodular rank function if r(0) = 0, r is integer-valued, nondecreasing, and

submodular, and r(U}) ~ 1 for aUj EN.

Example 1.1. Given a digraph 7iJ = (V, sti) and weights c E R':I, for S c;; V let

c(S) = I Cij = I Cij'
«i,j)Eb'(S)) iES

jEV\S

The cut function c(S) is submodular because

c(S) + c(T) - c(S U T) - c(S n T) = I Cij + I Cij ~ 0.
iES\T iET\S
jET\S jES\T

1. Introduction 661

Having introduced both matroids and submodular functions, we now briefly indicate
some of the other problems to be studied in this chapter. In the next section we will
establish the equivalence between a matroid M = (N, 81') and a submodular rank function
r on N, and we will introduce and develop some elementary matroid properties for later
use.

In Section 3 we will consider the matroid optimization problem: An instance is given by
a matroid M = (N, 81') and a weight vector cERn. The problem is

max{ I Cj: S E 8F}.
S jES

Formulating this problem as an integer program leads us to study polytopes of the form

P(f) = {x E R~: I Xj ~f(S) for S S N},
jES

where/is a submodular function.
An important generalization of the matroid optimization problem is the k-matroid

intersection problem: Given k matroids Mi = (N, 8Fi) for i = 1, ... , k and a weight vector
cERn, the problem is

Thus, feasible solutions correspond to sets that are independent in each of the matroids.
Remember that a branching in a digraph rziJ = (V, .s4) is a set of arcs .s4' S .s4 such that

rziJ' = (V, .s4') is a spanning tree and no more than one arc enters each node. Hence a set of
arcs forms part of a branching if and only if it is independent in both a partition and a
graphic matroid. In Sections 4 and 5 we will study efficient algorithms for the 2-matroid
intersection problem.

Now consider the arc sets that form part of a branching in a digraph and intersect these
sets with a second partition matroid specifying that no more than one arc leaves each
node. The resulting objects of maximum cardinality are Hamiltonian paths. Because it is
known that the question of whether a graph contains a Hamiltonian path isXg}l-complete,
it follows that the k-matroid intersection problem is Xg}l-hard for all k ~ 3.

In Sections 6 and 7 we will consider, in more detail, polytopes P(f) where / is
submodular and nondecreasing. It will be shown that the separation problem for P(f) is
equivalent to the problem of minimizing another submodular function; that is,

min{j'(S): S s N},
S

f' submodular.

Thus we study algorithms for this minimization problem and some special cases where f'
has more structure.

In Section 8 we will study a covering problem of the form: Given a matroid M = (N, 81'),
what is the minimum number of independent sets whose union is N? This problem has the
integer-rounding property and can be solved efficiently.

Finally, we consider the problem of maximizing a submodular function:

max{j(S): S s N},
S

/ sub modular.

662 111.3. Matroid and Submodular Function Optimization

In contrast to the earlier problems of the chapter, this model includes X9Jl-hard problems,
such as the uncapacitated location problem. Hence we examine different integer program
ming formulations and heuristics.

2. ELEMENTARY PROPERTIES

There are many ways of defining and viewing both matroids and submodular functions.
Here we introduce the definitions and the fundamental results that we will use later. First
we study submodular functions (see Definition 1.4).

Proposition 2.1

i. f is submodular if and only if

(a) f(S U (j}) - f(S) ~ f(S U (j, k}) - f(S U (k}) for j, k E N,j * k,
and S s; N \ {j, k}.

ii. f is submodular and nondecreasing if and only if

(b) fiT) ~f(S) + L [f(S U (j}) - f(S)] for S, T s; N.
JET\S

Proof i. Iff is submodular we obtain (a) by setting S S U {j} and T S U {k} in
Definition 1.4.

If(a) holds, let S = A n B, A \ B = {jl, ... ,j,}, and B \ A = {k b ... , k s}. Then

fiB) - f(A n B)

s

= L [f(S U (k 1, ••• , kl}) - f(S U (k b ••• , k l - 1})]
1=1

s

~ L [f(S U {k b ... , k l} U (jl}) - f(s U {k b ... ,kl-1} U (jd)]
1=1

s

~ L [f(S U {k b •.. , k l} U (jb ... ,j,}) - f(s U {k b ••• ,k l _l } U (jb ... ,j,})]
1=1

s

= L [f(A U (k b ••• , k l }) - f(A U (k b ••• , k l-1})]
1=1

= f(A U B) - f(A).

ii. Let T \ S = {jI. ... ,j,}. Then

f(T) ~f(S U T) = f(S) + (f(S U T) - f(S)}
,

= f(S) + L {j(S U (jI. ... , jl}) - f(S U (jJ, ... , jt-1})}
1=1

,
~f(S) + L (j(S U (jl}) - f(S)},

1=1

where the first inequality holds if f is nondecreasing, and the second one holds if f is
submodular. Taking T = S U {j,k} and T = S\{ k} in (b) gives the converse. •

2. Elementary Properties 663

Complex submodular functions are often constructed from simple submodular
functions.

Proposition 2.2. The following conditions yield sub modular functions.

a. If aj E R' for j EN and ao E R', then f(S) = ao + LjES aJor S ~ N is submodular
onN.

b. Iffis submodularon N, then](S) = feN \ S)for S ~ N is submodularon N.
c. Iff is submodular on Nand k E R', then f' (S) = min(f(S), k) is submodular on N.
d. If f, and hare submodular on N, then f(S) = f,(S) + fZ<S) is submodular on N.

Proposition 2.3. Iffis integer valued, submodular, and nondecreasing withf(0) = 0, and
reS) = minQss (j(Q) + IS \ Q I}, then r is a submodular rankfunction.

Proof Suppose reS) = f(A) + IS \ A I and reT) = feB) + IT \ B I. Then

reS) + reT) = f(A) + feB) + IS \ A I + IT \ B I

~ f(A U B) + f(A n B) + IS \ A I + I T \ B I

~ f(A U B) + f(A n B) + I (S U T) \ (A U B) I + I (S n T) \ (A n B) I

= f(A U B) + I (S U T) \ (A U B) I + f(A n B) + I (S n T) \ (A n B) I

~ reS U T) + reS n T).

Hence r is submodular.
Now suppose

reS U {j}) = f(Q*) + I (S U (j}) \ Q* I, where Q* ~ S U {j}.

Ifj E Q*, we obtain

reS U (j}) ~ f(Q* \ (j}) + IS \ (Q* \ (j}) I (sincef(Q*) ~ f(Q* \ (j}))

~ reS) (since Q* \ {j} ~ S).

If j $. Q*, we obtain

reS U (j}) = f(Q*) + IS \ Q* I + 1 ~ reS) + 1.

Hence r is nondecreasing.
Finally, r(0) = f(0) = ° and r({j}) .:;;f(0) + l{j} I = 1 for allj. •

Theorem 2.4. If M = (N, Bf) is a matroid, its cardinality function meT) =
maXSsT {I S I: S E Bf} is submodular. If(N, Bf) is an independence system whose cardinal
ity function meT) is submodular, then M = (N, Bf) is a matroid.

Proof Clearly m(0) = 0, m is nondecreasing, and m(S U (j}) - m(S).:;; 1, since
(N, Bf) is an independence system. To prove that m is submodular we will show that

m(S U (j}) - m(S) ~ m(S U (j, k}) - m(S U {k}).

664 III.3. Matroid and Submodular Function Optimization

The inequality is obvious when m(S U {j}) - m(S) = 1, so suppose that m(S U {j}) =
m(S) = t and m(S U {j, k}) - m(S U {k}) = 1. There are now two cases to consider.

Case 1. m(S U {j, k}) = t + 2. Then m(S U {j, k}) - m(S U {j}) = 2, which is impossi
ble.

Case 2. m(S U {j, k}) = t + 1. Let Q be a maximalindependent set in S. It follows that
Q U {/} $. ~ for all IE S \ Q. Also, since m(S U {j}) = m(S U {k}) = t, we have Q U
{j} $. ~ and Q U {k} $. ~. Hence Q is maximal in S U {j, k} so that m(S U {j, k}) = t,
which is a contradiction.

Let T!:; N, and suppose that SI and S2 are maximal independent sets in T with
lSI I < IS21. Thus m(SI) = 1St! < m(S2) = IS21. Using (b) of Proposition 2.1, we have

m(S2) .::; m(SI) + I [m(SI U {j}) - m(SI)],
jES,\S,

which implies that m(SI U {j}) > m(SI) for some j E S2 \ SI' Hence m(SI U {j}) =
I S I U {j} I , contradicting the maximality of S I. Therefore (N, ~) is a matroid. •

From now on we will represent a matroid M as either (N,~) or (N, r), where r is its
submodular rank function, depending on which is more convenient.

The last part ofthe proof of Theorem 2.4 establishes an important exchange property of
matroids that is well known for matrices.

Proposition 2.5. If M = (N, ~) is a matroid and Sb S2 E ~ satisfy lSI I < IS21, then
there existsj E S2 \ SI such that SI U {j} E ~.

There are various other important properties of matroids, most of which are familiar
from matrices.

Definition 2.1. Let M = (N, ~) be a matroid with rank function r.

a. A is a basis of the matroid if A E ~ and r(A) = r(N).

b. A is a circuit of the matroid if A is a minimal dependent set (i.e., A $.~, but
A \ {j} E ~ for allj E A).

c. For A !:; N, the span or closure of A is the set sp(A) = {j EN: r(A U {j}) = r(A)}.

Bases are evidently the maximal independent sets in the matroid, all of which are of
cardinality r(N). Circuits are minimal dependent sets. Hence if A is a circuit, then
r(A) = IA I - 1. From the submodularity of the rank function, we observe that sp(A) is the
maximal set B 2 A for which r(A) = r(B).

For a graphic matroid, bases are the edge sets of spanning trees, circuits are the edge sets
of cycles, and the span of an edge set E' contains E' plus any edge that, when added to E',
yields a new cycle.

One of the most useful properties of a matroid, which we have already seen to be true
for cycles in a graph, is:

Proposition 2.6. IfF E ~ and F U {j} E;l ~, there exists a unique circuit C !:; F U {j}.
This implies F U {j} \ {k} E ~ foral! k E C\ {j}.

2. Elementary Properties 665

Proof Suppose there exist distinct circuits C h C2 in F U U}. Now C! n C2 E fJi by
the minimality of circuits. Also, (C! U C2) \ U} E fJi because (C! U C2) \ U} s F. But
r(Ci) = ICil - 1 for i = 1,2, r(C! U C2) = IC! U C2 1 - 1, and r(C! n C2) = IC! n C2 1,
contradicting the submodu1arity of r.

If (F U U}) \ {k} $. fJi, then (F U U}) \ {k} contains a circuit C' different from C,
contradicting the uniqueness of C. •

Example 2.1. Consider the matric matroid M = (N, fJi) defined by the matrix

(
2 1 4 -1 0 -2)
113234,
3 2 7 4 6 8

where N = {l, ... , 6} is the index set for the columns, and S E fJi if and only if the set of
columns indexed by S is linearly independent. The rank function r takes the following
values:

1. r(0) = 0, r(U}) = 1 for allj.
2. r(U, k}) = 2 for allj * k except that r({4, 6}) = 1.

3. r(S) = 3 for all S with I S I ;;. 3, except that r({1, 2, 3}) = r({2, 4, 5}) = r({2, 4, 5, 6}) =
r({4, 6, k}) = 2 for all kEn, 2, 3, 5}.

Since r(N) = 3, the bases are the independent sets S with I S I = 3. The circuits are
{4, 6}, {l, 2, 3}, {2, 4, 5}, and all 4-tuples that do not contain any of these circuits. Also,
sp(2, 4) = {2, 4, 5, 6}, and so on.

The last important concept that we introduce is matroid duality.

Proposition 2.7. If r is the rank function of a matroid M = (N, r) and rD(S) = lSI +
r(N \ S) - r(N), then yD is the rank function of a matroid.

Proof It follows immediately from Proposition 2.2 that rD is submodular. Also
rD(0) = 0, ;rod since

rD(S U U}) - rD(S) = 1 - (r(N \ S) - r(N \ (S U U}))),

we have 0 ::;; rD(S U U}) - rD(S) ::;; 1. Thus the result follows from Theorem 2.4. •

Definition 2.2. MD = (N, rD) is the dual matroid associated with M = (N, r).

It is readily seen that A isa basisofMD ifandonlyifN \ A isa basisofM. Moreover, the
dual of MD is again M.

The dual of a graphic matroid is called a cographic matroid. Its bases are the comple
ments of spanning trees-that is, the maximal sets that do not disconnect the graph. It
follows that the circuits of this dual matroid are the minimal disconnecting sets, or
minimal cuts.

Example 2.2. Consider the graphic matroid M associated with the graph in Figure 2.1
and its dual MD.

666 111.3. Matroid and Submodular Function Optimization

Figure 2.1

The circuits of M are the cycles such as {ej: i = 1, 5, 8), {e4, ell), {ej: i = 1, 2, 3, 4). The
bases of M are the spanning trees containing I V I - 1 = 4 edges.

The circuits of MD are the minimal cut-sets such as {ej: i = 3, 4, 7, 11),
{ej: i = 3, 4, 5, 6, 8, 11). The bases of MD are the complements of the spanning trees (i.e.,
{ej: i = 4,6, 7, 8, 9, 10, 11), etc.) containing IE I - I VI + 1 = 7 edges.

3. MAXIMUM-WEIGHT INDEPENDENT SETS

Matroid Representation

We have already seen two ways to represent matroids: One is by listing the set ;!Ii of
independent sets, and the other is by the rank function r. However, using either ;!Ii or r,
O(2n) sets or values typically must be specified, where n is the number of elements of the
matroid. This contrasts strongly with the representation of matroids that interest us. For
example, a graphic matroid on G = (V, E) is completely described by its graph, so the
length of the input description is O(n).

The reader will see that the algorithms we describe contain independence tests of the
form: "Is S s; N an independent set in M, or not?"

We avoid the representation issue by simply reporting the number of independence
tests in an algorithm as a function of n. Note that answering standard questions such as "Is
S s; N a basis of M?" or "Given that S E ;!Ii, S U {j) $. ;!Ii, find the circuit C s; S U {j)."
can be answered with O(n) independence tests.

The Greedy Algorithm

Given a matroid M = (N, ;!Ii) and cERn, the problem of finding a maximum-weight
independent set is

(3.1) max{ I Cj: S E ;!Ii}.
S jES

3. Maximum-Weight Independent Sets 667

The algorithm to find a maximum-weight forest in Section I.3.3 is an instance of the
greedy algorithm we now describe for solving (3.1).

The Greedy Algorithm for M = (N, [ji)

Initialization: Order the elements of N so that CI ;;;. C2;;;' ... ;;;. Cn. So = 0, t = 1.
Iteration t: If Ct .s;;; 0, stop. St-I is optimal. If Ct > 0 and S-I U {t} E [ji, set st = St-I U {t}. If

Ct > 0 and St-I U {t} $ [ji, set st = St-I. 1ft = n, stop. sn is optimal. 1ft < n, sett t + 1.

Although for general independence systems the greedy algorithm does not necessarily
yield an optimal solution, for matroids it does.

Theorem 3.1. The greedy algorithm for matroids terminates with a maximum-weight
independent set.

Proof Let the greedy solution be SG = VI, ... ,jp} withjl <h < ... <jp' Suppose
the greedy solution is not optimal, and let SL = {k h ••• ,kq}, kl < k2 < ... < kq be the
lexicographically smallest optimal solution. Suppose j I = k h h = k2' ... ,j s-I = ks-I, but
js *' ks. From the greedy algorithm, we have js < ks and hence Cj,;;;' Ck, > O. Now
SL. U V s} $ [ji since otherwise SL is not optimal. Hence SL U V s} contains a unique circuit
C with js E C. Also, since {jh ... ,js-I} = {k h ••• ,ks-d E [ji, we have k t E C for some
t ;;;. s. But by Proposition 2.6, we have that (SL u V s}) \ {k t } E [ji, its value is at least that of
SL, and it is lexicographically smaller than SL, which is a contradiction. •

Note that there no more than n independence calls by the algorithm and that the sorting
of the initialization step requires O(n log n) comparisons. For a specific class ofmatroids,
we can use this to calculate the running time of the algorithm. For graphic matroids the
independence test involves testing for a cycle in a graph, which requires O(n) calculations.
Hence the running time of the simplistic algorithm given above is O(n2).

Example 3.1. Given the graph G = (V, E) shown in Figure 3.1, the problem is to find a
maximum-weight independent set in the cographic matroid (i.e., a set of edges whose
removal does not disconnect the graph). We have ordered the edges so that CI ;;;.

C2;;;' ... ;;;. Cg. Applying the greedy algorithm, we obtain SG = (eh e3, es), provided that
Cs > O. .

The converse of Theorem 3.1 also holds:

Theorem 3.2. If (N, ~) is an independence system but not a matroid, there exists a
weightfunction cERn for which the greedy algorithm does not yield an optimal solution to
(3.1).

Figure 3.1

668 111.3. Matroid and Submodular Function Optimization

Proof Since (N, ~) is not a matroid, there exists an S s: N such that all maximal
independent sets in S are not of the same cardinality. Let A s: S be a maximal indepen
dent set in S of minimum cardinality, and suppose IA I = k. Let

{
k + 2 forj EA

Cj = k + 1 for j E S \ A
o otherwise.

The greedy algorithm yields the setA of value k(k + 2). But an optimal solution has value
at least (k + 1)2> k(k + 2) for k ~ 1. •

Several variants of problem (3.1) can be solved by simple modifications of the greedy
algorithm. These include the problems of finding a maximum-weight basis and a maxi
mum-weight independent set of cardinality not greater than k. Another useful observation
is that a maximum-weight basis is the complement of a minimum-weight basis in the dual
matroid.

The Matroid Polytope

Here we consider an integer programming formulation of (3.1) and its linear programming
relaxation. Let x T be the characteristic vector of T s: N. By the definition of an indepen
dence system!fi = (N, ~) with cardinality function m, it follows that T E ~ if and only if
I TI ~ m(T) if and only if LjES xJ = IS n TI ~ m(S)for all S s: N.

Let

P(m) = {x E R~: I Xj ~ m(S) for S s: N}.
jES

Then an integer programming formulation of the problem of finding a maximum-weight
independent set in !fi is

max{cx: x E P(m), x E En}.

We now show that if the independence system is a matroid M = (N, r), then P(r) is the
convex hull of the characteristic vectors of its independent sets.

Consider the linear program

(3.2)

and its dual

(3.3)

I Xj ~ r(S) for S s: N
jES

xER~

I Ys ~ Cj for j EN
S:S3j

Ys ~ 0 for S s: N.

3. Maximum-Weight Independent Sets 669

Proposition 3.3. Let SG = {j[, ... ,jp} be the greedy solution to (3.1) with the ordering
Cl ~ C2 ~ •.. ~ Cn· Let ,ft = {jl> ... ,jl} for t ~ p, and let I<t = sp(,ft). Then an optimal
solution to (3.3) is

YK, = Cj, - Cjl+l for t = 1, ... ,p - 1,

YK = 0 otherwise.

Proof Clearly the dual solution is nonnegative. If Cj > 0, thenj E KI \ K 1- 1 for some
t ~ p. Also, ifj E KI \ K I-h then Cj ~ Cj,. Hence ifj E KI \ K 1- 1, we obtain

2: Ys = 2: YK, = Cj, ~ Cj.
S:S3j 1;'1

Now note that since r(Kt) = t, we have

p-l P

2: r(S)ys = 2: t(Cj, - Cj,.) + pCjp = 2: Cj, = 2: Cj,
SsN t~l t~l jESG

so the primal and dual objective functions are equal.

We have shown that the linear system

is totally dual integral.

2: Xj ~ r(S) for S ~ N, x E R~
jES

Theorem 3.4. P(r) is an integral polytope.

•

Example 3.2. For a graphic matroid, the associated tree polytope P(r) is of the form

2: Xe ~ r(E') for E' ~ E
eEE'

XER~,

where, as was shown in Section 1, r(E') = I VI - number of components ofGE, = (V, E').
When U is the set of nodes attained by E', and G' = (U, E') is connected, the

corresponding inequality is dominated by the inequality with E' = E(U). When G' itself
has several components, the corresponding inequality is dominated by the inequalities
from the components. Hence we obtain a polyhedral description of a graphic matroid
given by

2: Xe ~ I U I - 1 for U ~ V with I U I ~ 2
eEE(U)

XER~.

This example raises the question of which inequalities describing the tree polytope are
facets and the more general question of describing the facets of any matroid polytope P(r).

670 111.3. Matroid and Submodular Function Optimization

Note that if an inequality does not define a facet, we can delete the corresponding dual
variable from (3.3).

Definition 3.1. A set S ~ N with S = sp(S) is separable (or disconnected) ifthere exists a
partition (A, B) of S, that is, A*, 0, B *' 0, AU B = S, and A n B = 0, with
r(A) + r(B) = r(S).

Now it is easy to see that the inequality LjES Xj :0;;; r(S) is dominated by LjESp(s) Xj :0;;; r(S)
when S *' sp(S) and that it is the sum of two inequalities when S is separable. These turn
out to be the only redundant inequalities.

Proposition 3.5. Suppose {j} E g; for alii EN. A minimal description of P(r) is given by
P(r) = {x E R:: LjES Xj :0;;; r(S)for S ~ N with S = sp(S) and S nonseparable}.

Example 3.3. Consider the maximum-weight spanning tree problem on the weighted
graph shown in Figure 3.2.

The greedy algorithm with (3, 6) preceding (5, 6) in the ordering gives the solution
SG = {(3, 4), (1,5), (1,3), (3, 6), (6, 7), (2, 6)} of weight 57.

The optimal dual solution specified by Proposition 3.3 is

Ys, = 13 - 11 = 2 with Sj = {3, 4}

YS2 = 11 - 10 = 1 with S2 = {(3, 4), (1, 5)}

Ys, = 10 - 9 = 1 with S3 = E({1, 3, 4, 5})

Ys, = 9 - 8 = 1 with S4 = E({1, 3, 4, 5, 6})

Ys, = 8 - 6 = 2 with Sj = E({1, 3,4, 5, 6, 7})

Ys. = 6 with S6=E

of value (2 xl) + (1 x 2) + (1 x 3) + (1 x 4) + (2 x 5) + (6 x 6) = 57.

5

11

lO

Figure 3.2

4. Matroid Intersection 671

Using Proposition 3.5, we see that the edge sets {(3, 4), (1, 5)}, E({1, 3, 4, 5}), and E({l, 3,
4,5, 6}) do not define facets. Decomposing each of these edge sets, we have

{(3, 4), (1, 5)} yields {3, 4} and {l, 5}

E({l, 3,4, 5}) yields {(3, 4)} and E({1, 3, 5})

E({1, 3,4, 5, 6}) yields {(3, 4)} and E({1, 3, 5, 6}),

and we obtain the alternative dual solution

ys = 3 + 1 + 1 + 1 for S = E({3, 4})

ys = 1 for S = E({1, 5})

ys = 1 for S = E({l, 3, 5})

ys = 1

ys= 2

ys = 6

for S = E({l, 3, 5, 6})

for S = E({1, 3, 4, 5, 6, 7})

forS = E

in which only the dual variables associated with facets are positive.

4. MATROID INTERSECfION

We have already seen that the branchings on a digraph can be viewed as the edge sets that
are independent in two matroids simultaneously. Feasible solutions to matching problems
on a bipartite graph G = (VI, V2, E) can also be viewed in this way. Let Mi = (E,87') for
i = 1, 2, be partition matroids where F !: E is independent in Mi if there is no more than
one edge of F adjacent to each node ofJl;. F isa matching in G if and only ifF E 87'1 n 87'2.
In polyhedral terms, we have

and

P(r2) = {x E R~: L Xij ~ 1 forj E Vi},
JEV,

and P(rl) n P(r2) describes the convex hull ofmatchings in a bipartite graph.
Here we consider the general maximum-cardinality matroid intersection problem for

the matroids Mi = (N, 87'i) for i = 1, 2, formulated as

(4.1) z = max{ISI: S E 87'1 n 87'2}.
s

Throughout the text, we have stressed the importance of duality. Consider the problem

(4.2) w = min{rl(T) + r2(N \ T)}.
T

672 111.3. Matroid and Submodular Function Optimization

Proposition 4.1. Problem (4.2) is a weak dual of problem (4.1).

Proof Suppose S E flFI n flF1• Then for any set T s:::: N, we obtain

ISI= ISnTI+ IS\TI=rl(SnT)+rl(S\T)

~ rl(T) + r2(N \ T). •
Example 4.1. Consider the two graphic matroids defined on the graphs shown in Figure
4.1. Taking S = {a, e} E flFI n flF2' we see that z ~ 2. Taking T = {e, d}, we see that

w ~ rl({e, d}) + rz({a, b, e}) = 1 + 1 = 2.

Hence, using weak duality, we obtain z = w = 2, and {a, e} is a maximum-cardinality set
independent in both matroids.

The major aim of this section is to develop an algorithm which shows constructively
that (4.2) is, in fact, a strong dual of problem (4.l). As is the case for the maximum-flow
problem and the matching problem, the algorithm is based on finding augmenting paths.

To motivate and explain this idea, consider the following example involving the two
graphic matroids of Figure 4.2.

Example 4.2. We are given an independent set S = {a, b, kb k 2}. The additional infor
mation we have is that

and

A question that we need to answer in searching for common independent sets of greater
cardinality is: "Is (S U {j b h}) \ {k b k 2} E flF?" Note that the answer is "yes" in matroid 1
but "no" in matroid 2, and observe that (S U {j I}) \ {k1} $. flF in matroid 1.

The following proposition explains why the answer is "yes" in matroid 1, and it is
fundamental to what follows. If S E flF and S U {j} $. flF, let C(S,j) denote the unique
circuit contained in S U {j}.

a

Figure 4.1

4. Matroid Intersection 673

Proposition 4.2. Let M = (N, ,cg;) be a matroid, let S E ,cg;, and let jj, k j, ... ,jp, kp be a
sequence of distinct elements of N with j 10 ••• ,jp E N \ Sand k j, ••• , kp E S satisfying

(a)

(b)

then

S U {j;} $.,cg;, (S U {j;}) \ {kJ E ,cg; for i = 1, ... , p

(S U {j;}) \ {k{} $. ,cg; for 1 ~ i < I ~ p;

(S U {j;, ... ,j,}) \ {k;, ... , k,} E ,cg; for 1 ~ i < I ~ p.

Proof Note first that (a) is equivalent to k; E C(S,j;), and (b) is equivalent to
k, $. C(S,j;). First we will establish that

The proof is by induction on the number of pairs in the sequencejj, kj, ... ,jp, kpo
When p = 1, condition (b) is void and (4.3) reduces to C(S,jj) = C(S,jj). Now suppose
that the result holds for all sequences involving p ~ t - 1 pairs (j;, k;). It now suffices to
show that (4.3) holds with i = 1 and 1= t.

Therefore we must show that

C(S,jj) = C((S U {j2, ... ,jp}) \ {k2, ••• , kp},jj)

= C(I U {h}) \ {k2},jj),

where 1= S U {j3, ... ,jp} \ {k 3, ••• , kp}.
By the induction hypothesis applied to the sequencejj, kj,h, k 3, ••• ,jp, kp, we have

C(S,jj) = C(I,jj). Since k2 $. C(S,jj) by (b), we obtain k2 $. C(I,jj) and hence
C(I,jj) £; (I U {jj}) \ {k2}.

a

b

/
/

/)2

Matroid 1

a

Matroid 2

Figure 4.2

674 111.3. Matroid and Submodular Function Optimization

Now applying the induction hypothesis to the sequenceh, k2' ... ,jp, kp, we get that
C(S, h) = C(l,h) and hence (l U (j2}) \ {k2} E gjP since k2 E C(S,h). But (l U (jI,jJ) \
{k 2} contains no more than one circuit. Since it contains the circuits C«(l U (j2}) \ {k 2}, j I)
and C(l, j I), they must be identical, so

C(S,jl) = C(l,jl) = C«I U (j2}) \ (k2},jl)
= C«S U (h, ... ,jp}) \ (k 2, ••• , kp},jl)

and (4.3) is established.
Finally we observe that (4.3) and k; E C(S,j;) imply S U {j;, ... ,j,} \ {k;, ... ,

~E~ •

We will be particularly interested in sequences of odd length.

Corollary 4.3. Let M = (N, gjP) be a matroid, let S E gjP, and letjl, kl' ... ,jp~1o kP-1o jp be
a sequence of distinct elements of N satisfying

(a)

(b)

(c)

S U {j;} $. gjP, (S U (j;}) \ {k;} E gjP for i = 1, ... ,p - 1

(S U (j;}) \ {k,} $. gjP

S U {jp} E,gjP,

for 1 .;; i < I .;; p - 1

then S' = (S U (j], ... ,jp}) \ {k], ... , kp_l } E gjP.

Proof Consider 8 = S U {jp} E gjP. Now S U {ji} $. gjP implies 8 U {j;} $. gjP. On the
other hand, since 8 E gjP, it follows that 8 U {j;} contains a unique circuit that must be the
circuit C(S,j;) containing k;. Hence (8 U (j;}) \ {k;} E gjP, and (a) holds for 8. Clearly
(b) also holds for 8. Therefore, we can apply Proposition 4.2 to 8 and the sequence
jt, kI, ... ,jp-t, kp_I to conclude that S' = (8 U (jI, ... ,jp_I}) \ {kt, ... ,kp_l} E gjP. •

Since I S' I = I S I + 1, Corollary 4.3 provides a scheme for finding a larger cardinality
independent set in a matroid, but it is obviously unnecessary because 8 = S U {j p}
suffices. However, for the problem of increasing the cardinality of a set S that is a common
independent set in two matroids, Corollary 4.3 gives us a sufficient condition.

Proposition 4.4. Given two matroids M; = (N, gjPi) for i = 1, 2, a set S s; N with
S E gjP I n gjP 2, and a sequence j 10 k I, .•. ,jp-1o kp- 1o jp of distinct elements with j 10 ••• ,

jp E N\ S, kl' ... , kp_1 E S satisfying

(al)

(bl)

(cl)

(a2)

(b2)

(c2)

S U {j;} $. gjPI, S U {j;} \ {k;-a E gjPI for i = 2, ... ,p

S U {j;} \ {k,} $. gjPI for 1 .;; I < i-I.;; P - 1

S U {jl} E gjPt

S U {j;} $. gjP2, S U {j;} \ {k;} E gjP2 for i = 1, ... ,p - 1

S U {j;} \ {k,} $. gjP2 for 1 .;; i < I <p

S U {jp} E gjP2,

4. Matroid Intersection 675

N\S S

Figure 4.3

Proof First we apply Corollary 4.3 to the sequence} t, k t, ... ,} p_l, kp_t,} p, observing
that conditions (a2), (b2), and (c2) are precisely the conditions of the corollary. Therefore
S' E :§i2.

To show that S' E:§it, we consider the reverse sequence}p, kp_t, ... ,il, kt,}I' Condi
tions (al), (bl), and (cl) are precisely conditions (a), (b), and (c) of Corollary 4.3 with
respect to this sequence. Hence (S U (jp, ... ,}I}) \ {kp_I , ••• , k l} = S' E :§il. •

Now we construct a digraph '2lJs = (N U {s, t}, d) (see Figure 4.3) that will allow us to
find a sequence of the type described in Proposition 4.4. The arcs are defined as follows:

(s,}) Ed if S U {j} E:§il

(j, t) Ed if S U {j} E:§i2

(j, k) Ed if S U {j} $. :§i2, (S U (j)) \ {k} E :§i2

(k,)) Ed if S U {j} $. :Ji l , (S U (j}) \ {k} E:§i l

Note that an arc (j, k),} EN \ S, k E S, refers to a replacement of} by k to achieve
(S U {k}) \ {j} E :§i2 and that an arc (k,}), k E S,} EN \ S refers to a replacement of} by
k to achieve (S U (j}) \ {k} E :§il. This can be interpreted graphically.

Proposition 4.5. If (S'}h kh ... , }p, t) is an s-t dipath in qj)s and qj)s contains no arcs of
the form (i, k/) and (k;'}/+d for I> i, then (jb kb ... , }p) is a sequence satisfying the
conditions of Proposition 4.4.

In this and the next section we will be interested in the existence of certain dipaths in qj) s.
Such dipaths may not exist even though an s-t path may exist in the underlying undirected
graph. We therefore keep the term dipath (see Section 1.3.1). An s-t dipath (s, II, ... , Ip, t)
is node minimal if there is no subsequence {ljl' ; .. ,Ij) ~ {II, ... ,Ip} with I ~}I <
}2 < ... <}q ~ P such that (s, Ijp ••• , Ij " t) is an s-t dipath.

An s-t dipath satisfying the condition of Proposition 4.5 is node minimal (see Figure
4.4). Now we observe that a minimum-length dipath from s to t (i.e, a dipath with a
minimum number of arcs) is necessarily node minimal. Hence such a node minimal
dipath can be found by breadth-first search or a standard shortest-path algorithm.

676 111.3. Matroid and Submodular Function Optimization

Figure 4.4

Example 4.3. Two graphic matroids are exhibited in Figure 4.Sa, and the digraph r!iJs for
S = {b, d} is shown in Figure 4.Sb. Note that (s, a, d, e, t) is a node minimal s-t dipath in
r!iJs giving the set S' = {a, b, e} E fJi l n fJi2• Note also that the s-t dipath (s, a, b, c, d, e, t)
is not node minimal because (a, d) E s!l and does not lead to a larger common indepen
dent set since S" = {a, c, e} $. fJi2•

The final step in developing an algorithm for problem (4.1) is to show thatifr!iJs contains
no s-t dipath, then S is a maximum-cardinality set independent in both matroids. Let
NL = {i EN: there exists a dipath from s to i in r!iJs}, SL = NL n S, NR = N \ NL, and
SR =NR ns.

Proposition 4.6. JJr!iJs contains no s-t dipath, then S is a maximum-cardinality common
independent set.

Proof Suppose that r!iJ s contains no s -t dipath. We show first that NL S spz(S L). Since
SL S SPz(SL), we consider) E NL \ SL. Now S U {j} $. fJi2, because otherwise there would
be an arc (j, t) E s!l and an (s, t) dipath would exist. If k E C2(S,) \ {j}, then r!iJs contains
the arc (j, k) and so C2(S,) \ {j} s SL. In other words,) E spZ(Sd, and hence
NL S SP2(SL).

Next we show that NR S SPl(SR). We consider) E NR \ SR. First we observe that
S U {j} $. fJi2, because otherwise there would be an arc (s,), which is impossible as

a

e

b

M2

(a)

Figure 4.5

(b)

s
I-

I \
\
\
I
I
I
I

\ /
\. ... /

4. Matroid Intersection 677

} $. NL. Ifk E C1(S,}) \ {j}, then.@scontainsthearc(k,}).Since} $. N L, we have k $. SL,
and hence C1(S,}) \ {j} £: SR. ThusNR £: SP1(SR).

Finally, we use weak duality in problems (4.1) and (4.2):

z ~ I S I, and w ~ rl(NR) + rz(NL) (by Proposition 4.1)

~ rl(sPl(SR» + r2(spz(SL»

= ISRI + ISLI = lSI·

Theorem 4.7. Problem (4.2) is a strong dual o/problem (4.1).

Now we can describe the algorithm for problem (4.1).

Maximum-Cardinality Matroid Intersection Algorithm

Initialization: Start with Sl E ;}fl n ;}f2. q = 1.

•

Iteration q: Construct the digraph .@sq. If there is no s-t dipath in .@sq, stop; sq is an
optimal solution. Otherwise, find a shortest s-t dipath (s,}t, kt, ... ,}p, t). Set
Sq+l = (sq u {it, ... ,}p}) \ {kt, ... ,kp-1} and q ... q + 1.

Example 4.4. Consider the two graphic matroids shown in Figure 4.6. S = {el, e2, es}.
The digraph'@s is shown in Figure 4.7.

Since.@s contains no s-t dipath, we obtain

SL = {e2, es}, SR = {el}

NL £: SPz(SL) = {e2, e4, es, e7, eg}

NR s; SPt(SR) = {et, e3, e4, e6}

rt(NR) + r2(NL) = 3 = lSI.

eB

Figure 4.6

678 111.3. Matroid and Submodular Function Optimization

Figure 4.7

Finally, we consider the complexity of the cardinality matroid intersection algorithm

Proposition 4.8. The cardinality matroid intersection algorithm terminates after no more
than O(n3) independence tests.

Proof There are no more than z < n iterations. At each iteration the digraph ffis has
to be constructed. Deciding if (i, j) is an arc of the digraph requires no more than two
independence tests, so there are O(n2) tests at each iteration. •

5. WEIGHTED MATROID INTERSECTION

Given two matroids Mi = (N, [lJPJ for i = 1,2 and a weight vector cERn, we consider the
weighted matroid intersection problem

(5.1)

It is convenient to introduce the following notation:

[lJPq={Sr;;.N:SE[lJP, lSI ~q), [lJP7={Sr;;.N:SE[lJPi' lSI ~q}

[lJP'2 = [lJP, n [lJP2, [lJPY2 = {S E [lJP'2: IS I ~ q}

r'2(S) = max{ I T I: T E [lJP'2}'
T-;;S

The algorithm we describe actually solves the family of problems

(5.2) zq = max{ I Cj: S E [lJPY2} for q = 0, 1, ... , rl2(N).
S jES

5. Weighted Matroid Intersection 679

We will solve (5.2) for increasing values of q and base our proof of optimality on the
following dual pair oflinear programs:

(5.3)

and

(5.4)

A,=N

I xj~rl(A) forA s::::N
JEA

I Xj ~ riA) for A s:::: N
JEA

Xj~ 0 forj EN

A,=N

IYI(A)+IYiA)+t~cj forjEN
A3j A3j

YI(A), yiA) ~ 0 for A s:::: N, t ~ O.

For all values of q we will show that (5.3) has an integral optimal solution by giving an
integral primal feasible solution and a dual feasible solution of the same value. The primal
solution is constructed using cost splitting (see Section II.3.6).

Proposition 5.1. Given c, c l , c2 ERn with c l + c2 = C, ifSq s:::: N is an optimal solution to
the problems

(5.5) max{ I c}: S E :¥7 } for i = 1, 2,
S jES

then sq is an optimal solution to (5.2).

Proof For any S E :¥f2, we obtain

I Cj = I c) + I cJ
jES jES jES

~ I c} + I cJ = I Cj.
jES' jESq jESq •

The greedy algorithm for matroids gives a characterization of an optimal-weight
solution in :¥q.

Proposition 5.2. Given a matroid M = (N, :¥) with weight vector c, a set S with I S I = q is
optimal in :¥q if and only if:

i. Cj ~ 0 for j E S;
ii. ifj $. Sand S U {j} E:¥, then Ck ~ cJor k E S; and

111. ifj $. Sand S U {j} $.:¥, then Ck ~ cJor k E C (S,j) \ {j}.

680 111.3. Matroid and Submodular Function Optimization

Given c t , c2, and sq as in Proposition 5.1, it is simple to give an optimal solution to
(5.4). Consider the problem

(5.6) max{ I (C) - mi): S E f!ft?} for i = 1,2,
S jES

where mi = max{cj: j $. sq, sq U {j} E f!ftJ and mi = - 00 if sq is a basis of Mi. Its dual is

min I ri(A) Yi(A)
AsN

(5.7) I Yi(A) ~ C) - mi for j EN
A3j

forA ~N.

Proposition 5.3. If(a) c t , c2, sq satisfy the conditions of Proposition 5.1 with ISql = q, (b)
mt + m2 ~ 0, and (c) yjisan optimal solution to (5.7)for i = 1, 2, then an optimal solution
to (5.4) is Yi = yifor i = 1, 2 and t = mt + m2.

Proof The proposed solution is feasible to (5.4). By hypothesis, sq is an optimal
solution to (5.5). Hence, by Proposition 5.2, we have cj ~ mi forj E sq. It follows that sq is
also an optimal solution to (5.6). Hence, equating the optimal values of(5.6) and (5.7), we
obtain ~jES' (cJ - mi) = ~AsN ri(A)y7(A). Now the value of the proposed solution to (5.4) is

I rt(A)YT(A) + I r2(A)Yi(A) + q(mt + m2)
AsN AsN

= I (c)-mt)+ I (c;-m2)+q(mt+ m 2)
jES' jES'

The characteristic vector of sq is feasible to (5.3), so the claim follows. •
Example 5.1. A digraph is shown in Figure 5.1, along with associated arc weights. We
wish to find a branching of maximum weight. Thus the underlying edge set must be
independent in the graphic matroid M t and the partition matroid M 2, where the number
of arcs entering each node is restricted to be no greater than 1.

Suppose we have the following split of the arc weights c), cJ:

234567891011
Cj 4 3 4 1 7 2 6 -5 -1 1
c) 4 3 1 4 1 5 2 4 -5 -1 1
cl00000202 0 00

Observing that S2 = {et, e6} is optimal in f!ftI with weight c t and that S2 is optimal in f!ft~
with weight c2, we have by Proposition 5.1 that S2 is optimal in f!ftI2 with weight c.

Now we consider the question of how to pass from sq to sq+t, a maximum-weight
independent set in f!ftHt. We know that if we construct the digraph qj)s. used in the

5. Weighted Matroid Intersection 681

~ _____ -=e4

Figure 5.1

cardinality algorithm, then s-t dipaths with a minimum number of edges give us sets
Sf E :Jirrl. However, because we want to obtain a maximum-weight independent set in
:Jiyrl , we can only use a subset of the arcs of£iJsq. The following proposition suggests, on the
basis of the weight vector c, those arcs that should be kept.

Proposition 5.4. Let Mq = (N, :Jiq), let S be an optimal-weight solution in Mq, and let
}I, kb ... ,}p, kp be distinct elements ofN with}b ... ,}p EN \ S, kl' ... , kp E S, and

a. S U {jJ tf= :Ji, (S U (jJ) \ {kJ E :Ji for i = 1, ... ,p
b. Cji = ckifor i = 1, ... ,p
c. Cj, = Ch and i < I implies (S U (j;}) \ {k[} tf= :Ji.

Then Sf = (S U (j I, ... ,}p}) \ {k I, ... , kp} is also an optimal-weight solution in Mq.

Proof We can reorder the elements}!> ... ,}p so that Cjl ~ ..• ~ Cjp and conditions
a-c still hold. This is possible because conditions a and b are unaffected by the ordering,
and condition c only affects pairs such as (ji'}[) with i < I if cj, = ck But if the ordering of
such pairs is preserved in the new ordering, condition c holds.

We now claim that (S U {ji}) \ {k[} tf=:Jiq for all i < I. Ifnot, S* = (S U (j;}) \ {k[} E:Jiq

for some i < I with cj, > Ck,. But then LjES' Cj > LjES Cj, contradicting the optimality of S.
Now the conditions of Proposition 4.2 are satisfied and Sf E :Jiq. By condition b the
weights of S and Sf are identical, and hence Sf is optimal. •

Now given S optimal in :JiY2, c l , c2 as in Proposition 5.1 and m h m2 defined below (5.6),
we construct a digraph £iJS(c l , c2) = (N U (s, t), d) with arcs off our types (note that these
are a subset of the arcs of£iJs given in the previous section):

(s,}) Ed if} tf= S, S U {j} E:Jib and m l = c)

(j, t) Ed if} tf= S, S U {j} E :Ji2, and m2 = c]

(j, k) Ed if} $. S, S U {j} tf= :Ji2, (S U {j}) \ {k} E :Ji2, and c] = d
(k,)) Ed if} tf= S, S U {j} tf=:Ji b (S U {j}) \ {k} E:Jib and c) = d.

682 111.3. Matroid and Submodular Function Optimization

First we consider what happens when ~S(CI, c2) contains an s-t dipath.

Proposition 5.5. Let S be optimalin ~h and let s, jl> klo ... , kp- Io jp, t be an s-t dipath
in ~S(CI, c2) with a minimum number of arcs. Then (S U VI> ... , jp}) \ {kJ, ... , kp-a is
optimal in ~fz I.

Proof We will apply Proposition 5.4 twice, first to M2 and then to MI. Note first that
by definition ofm2' we have that S* = S U Vp} is optimal in ~~+I with weight c2.

First we apply Proposition 5.4 to S* E ~~+I with the sequencejlo klo ... , jp-Io kp_I and
weights c2. From the construction of ~S(CI, cb), condition b holds for any sequence
derived from an s-t dipath. Also, S* U V;} $. ~2 and (S* U Vi}) \ {k i } E ~2' so condition a
holds for any such sequence.

Now we use the fact that the dipath has a minimum number of edges and hence is node
minimal. This means that if c~ = d, for some i < I, there is no arc Ui' k,) and hence
(S U VI}) \ {k,} $. ~2. It follows that (S* U Vi}) \ {k,} $. ~2' and hence condition c holds.
Therefore Sf = (S U Vio ... ,jp}) \ {k lo ... ,kp} is optimal in ~~+I with weight c2.

Taking the path in the reverse order, a similar argument shows that Sf is optimal in ~rl
with weight c l. Now by Proposition 5.1, Sf is optimal in ~ytl. •

The other possibility is that there is no s-t dipath in ~ s(c l , c2). In this case we make a
dual change by changing (c l, c2). We let NL = V EN: there exists an s-j dipath in
~S(CI ,c2)} and NR = N \ NL. .

The dual change is given by

where &10 &2 are calculated from <5i , i = 1, ... ,4, which are the minimum-cost changes
needed to add an arc of each of the four possible types to ~S(CI, c2). Their values are

<51 = min{ml - cJ:j $. S, S U V} E ~Ioj E NR }

<52 = min{m2 - c}:j $. S, S U V} E ~2,j E NL }

<53 = min{c~ - C}:j $. S, S U V} $. ~2' (S U V}) \ {k} E ~2,j E NL , k E NR }

<54 = min{d - cJ:j $. S, S U V} $. ~Io (S U V}) \ {k} E ~2,j E NR , k E NL }

with <5i = 00 if the corresponding set is empty. Then

& = min{ml + m2, min(<51o <52, <53, <54)}

&1 = min{&, mil and &2 = & - &1

First we check that a real change occurs.

5. Weighted Matroid Intersection 683

Proposition 5.6. If m I + m2 > 0, then 8 > 0 in the dual change.

Proof By the definition ofm!> we have that ml > c} if S U U} E :!fl. Hence 151 ~ O. If
151 = 0, then 0Js(c l , c2) contains an arc (s, j), contradictingj E NR • Hence 151 > O. A similar
argument holds for 152,

If S U U} $. :!f2, (S U un \ {k} E :!f2, and de < cj, then S is not optimal in g;~ with
weights c2• Hence 153 ~ O. If 153 = 0, then ~S(CI, c2) contains an arc (j, k)joiningj E NL to
k E NR , which is impossible. Hence 153 > O. A similar argument holds for 154 , •

Now we show that the conditions of Proposition 5.1 still apply with the new weights
(el , CZ).

Proposition 5.7. After a dual change based on ~S(CI, c2), S is still optimal in :!fr with
weights eifor i = 1,2.

Proof We verify that S satisfies the optimality conditions of Proposition 5.2 with the
new weights (el , (2). We consider matroid M~ = (N, :!fn.

i. The condition ej ~ 0 for j E S holds because m2 ~ m2 - 82 ~ 0, and S is optimal
before the dual change.

ii. Suppose j $. s, S U U) E:!f, k E S, and eTc < ej. Because de ~ cj, this can only
happen if ej = cj + 81 and c't = de - 82, so that j E NL and k E NR • But because
k E S, we obtain de ~ m2. Moreover, since j E NL , we have 8 ~ 152 ~ m2 - cJ.
Hence

which is a contradiction.
iii. Suppose j $. S, S U U} $. :!f2, k E C2(S,j) \ U}, and de < cj. This implies that

ej = cj + 81 and eTc = de - 82 withj 8 NL and k E NR • But 8 ~ 153, and since j E NL,
k E NR , and (S U U}) \ {k} E :!f2, we obtain 153 < de - c}. Hence

which is a contradiction.

A similar argument shows that S is optimal in :!fY with weights el . •
It remains to establish that after a finite number of dual changes, either a larger

common independent set is found or the algorithm terminates.

Proposition 5.S. After no more than n dual changes, either an s-t dipath isfound, or S is
optimal for all q' ~ q.

Proof We consider the different possibilities for a dual change, together with the
successive digraphs ~S(CI, c2) and ~s(el, (2). We will establish two claims. First we claim
that every arc in ~ s(C I, c2) with both its head and tail in NL is also an arc in ~ s(el , (2). Then
we also show that a new arc appears in ~s(el, (2) whose tail is in NL and whose head is in
NR • Together these imply that NL :J NL, and hence no more than n dual changes can occur.

684 111.3. Matroid and Submodular Function Optimization

To establish the first claim, we examine each type of arc in turn. Let
T = {j:j (/:. S, S U {j} E 3'1}. Consider (s, j) arcs for which c) = mi. Notethatifj E Tand
c) < mb thenj E NR because the only arcsofd enteringanodej E Tare those of the form
(s, j). Now we know from the definition of JI that c) .;;; m I - Ji .;;; m I - 1>1' After the dual
change, we obtain

ml = max{C):j E T}

= max{max{c) - I>I:j E NL nT}, max {c):j E NR n T}}

= max{ml - I>b max{c):j E NR n T}}

It follows that if (s, j) is an arc of 9iJs(cj, d), then (s, j) is an arc of 9iJs(cl, c~).
Now consider an arc of the form (j, k) in 9iJs(cl, d), where j (/:. s, S U {j} (/:.3'2,

(S U un \ {k} E 3'2, and c] = d with both j, k E NL • After the dual change, we obtain
c] = c] - I> and Ck = d - 1>, so c] = Ck and the arc is in 9iJs(cl, cD. An identical argument
holds for the (k, j) arcs based on matroid M\, and hence the first claim is established.

To establish the second claim, observe that the algorithm terminates if I> = m I + m2
based on 9iJS(c l , c2), and an s-t dipath is created if I> = J2• Hence a dual change can only
occur if I> = J\, J3, or J4• In each of these cases a new arc appears in 9iJS(c l , c2) whose tail is
in NL and whose head is in NR. •

The Weighted Matroid Intersection Algorithm

Initialization: Start with cl , c2, sq as described in Propositon 5.1, if such a solution is
known for any q ~ 1. Alternatively let q = 0, let sq = 0, and choose any c l , c2 satisfying
cl + c2 = c. (The simple choice in this case is cl = c, c2 = 0.)

Step 1: Calculate mb m2. If ml + m2';;; 0, stop. sq is optimal for all q' ~ q. Otherwise if
mi < ° for some i (say i = 1), then c) <- c) - m\, c] <- c] + ml for all} EN.

Step 2: Construct 9iJ sq(c I, c2).

Step 3: If there is no s-t dipath in 9iJsq(c l, c2), go to Step 5. Otherwise find a shortest s-t
dipath in 9iJsq(c l, c2) and go to Step 4.

Step 4 (Augmentation): Use the s-t dipath in 9iJsq(c l, c2) to find Sq+1 optimal in 3'~+I. Set
q <- q + 1. Go to Step 1.

Step 5 (Dual Change): Change (c l , c2) as described in (5.6). If I> = ml + m2, stop. sq is
optimal for q' ~ q. Otherwise, calculate W, c2), ml and m2, and construct 9iJsq(c l , c2).

Go to Step 3.

Example 5.1. (continued). We apply the weighted matroid intersection algorithm
starting with S2 = {e\, e6} and c l , c2 given below.

2 3 4 5 6 7 8 9 10 11
Cj 4 3 4 1 7 2 6 -5 -1 1

c i
} 4 3 1 4 1 5 2 4 -5 -1 1

c2
} 0 0 0 0 0 2 0 2 0 0 0

5. Weighted Matroid Intersection

Figure 5.2.

q =2:

Step 1: ml = d = 4, mz = d = d = d = d = c§ = eTo = eTl = o. NL = {e6, es}
Step 2: £iJs2(c 1, CZ) is shown in Figure 5.2.

685

Step 5: <>1 = ml - d = 4 - 3 = 1, <>2 = 00, 03 = 00, 04 = d - d = 1. I> = 01 = 04 = 1. With
1>1 = 1, 1>2 = 0, and cj <- c5, we obtain

1 2 3 4 5 6 7 8 9 10 11
Cj 4 3 1 4 1 7 2 6 -5 -1 1
c1

} 4 3 1 4 1 4 2 3 -5 -1 1
c2

} 0 0 0 0 0 3 0 3 0 0 0

ml <- 3, m2 <- O. The new £iJs2(Cl, CZ) is shown in Figure 5.3.

686 111.3. Matroid and Submodular Function Optimization

Figure 5.3

Two s-t dipaths with a minimum number of edges are found. We use the dipath
(s, eg, e6, e4, t).

q=3:

Step 1: S3 = {eh e4, eg}. ml = d = 3, m2 = d = d = d = d = do = dl = O. figs3(c l, c2) is
shown in Figure 5.4. NL = {eh e2, e6, eg}

Figure 5.4

5. Weighted Matroid Intersection

12345678910 11
Cj 4 3 4 7 2 6 -5 -1
c) 3 2 1 4 1 3 2 2 -5 -1 1
cJ 0 0 0 4 0 4 0 0 0

Adding the arc (e8, e7), an s-t dipath is found.

687

Step 5: 6, = m, - elo = 2,62 = 00,63 = 00, 64 = d - d = d - d = 1,6 = 64 = m, + m2 = 1.
6,=1,62=0.

1 2 3 4 5 6 7 8 9 10 11
Cj 4 3 4 7 2 6 -5 -1 1
c' } 2 1 1 4 1 2 1 -5 -1 0
c2

} 2 2 0 0 0 5 5 0 0

m, = ell = 0, m2 = d = d = do = o.

S = {e2, e4, e6, e7} is a maximum-weight branching in!!l1.

Now we consider the number of independence tests required in the algorithm. Because
the set sq does not change through a sequence of dual changes, only O(n2) independence
tests are required between augmentations to construct the digraphs !!l1s' from which a
subset of the arcs are selected to give !!l1s'(c', c2). Since there are, at most, n augmentations,
no more than O(n3) independence tests are required.

Figure 5.5

688 111.3. Matroid and Submodular Function Optimization

We conclude this section with a polyhedral result. As a consequence of the weighted
matroid intersection algorithm and Proposition 5.3, we have shown:

Theorem 5.9. Given matroids MI = (N, rl) and M2 = (N, r2), the polytope

I Xj.s; rl(A) for A s N
JEA

I Xj.s; riA) for A s N
JEA

I Xj.s; q
JEN

xER~

is the convex hull of the common independent sets of cardinality not greater than q. The
inequality set is totally dual integral.

6. POLYMATROIDS, SEPARATION, AND SUBMODULAR FUNCTION
MINIMIZATION

Two of the problems we study in this section are (1) the problem of minimizing a
submodular function and (2) the separation problem for a matroid polytope P(r). To
understand better the relationship between these problems, we introduce a generalization
of a matroid.

Definition 6.1. Given a finite set N and a nondecreasing submodular functionf on N
withf(0) = 0, the polytope

P(f) = {x E R~: I Xj .s;f(S) for S s N}
jES

is the polymatroid associated with (N,j).

The property of independence systems generalizes to:

If x, y E Z~, x E P(f), and y .s; x, then y E P(f).

Definition 6.2. Let rp(f): R~ R~ be defined by

rp(f) (a) = max{ I Xj: x E P(f), x .s; a},
JEN

rp(f) is called the polymatroid rankfunction associated with P(f).

The next proposition shows how the "maximal = maximum" property of matroids
generalizes.

Proposition 6.1. Given a polymatroid P(f) and a E R~, any point x that is maximal in
P(f) n {x E R~: x .s; a} satisfies LjEN Xj = rp(j)(a).

6. Polymatroids, Separation, and Submodular Function Minimization 689

Proof Suppose the claim is false, so there exists a E R~ and u, v maximal in P(f)
n {x E R~: x ~ a} with LjEN Uj < LjEN Vj' Let V = U EN: Vj > Uj}. Since U is maximal, for
each k E V there exists Uk with k E Uk such that LjEUk Uj = f(Uk).

Let U be a maximal subset of N such that LjEU Uj = f(U). By submodularity, we have for
each k E V:

~ f(U) + f(Uk) - f(U n Uk)

~ f(U U Uk).

But since U E P(f), we obtain LjEUUUk Uj ~f(U U Uk). Hence LjEUUUk Uj = f(U U Uk).
Since U is maximal, we have Uk £ U for all k E V. Hence V £ U.

But now

since LjEN Uj < LjEN Vj and Uj ~ Vj for j EN \ V, and N \ V:::2 N \ U. This contradicts the
assumption v E P(f). •

Example 6.1. Suppose a set N of jobs is to be processed on one machine and all
processing of job j must be terminated by the deadline dj • If Xj is the machine time
allocated to job j, then x E R~ is a feasible set of allocation times if and only if
LjES Xj ~ maXjES {d) for all S £ N. It is easily checked that f(S) = maXjES {d) defines a
polymatroid function if d E R~ andf(0) = O.

There is a converse to Proposition 6.1 giving an alternative definition of a polymatroid.

Proposition 6.2. Suppose P £ R~ satisfies

i. ifx E P, y E R~ and y ~ x, then yEP, and
ii. for,all a ERn if Xl and x2 are maxima! points in P n {x E R:: x ,,;; a), then ~ 'EN Xl

_'" 2 } }
- jENXj.

Then P is a po!ymatroid.

As is the case for matroid polytopes, the greedy algorithm solves the linear optimization
problem over a polymatroid. Consider the dual pair oflinear programs

(6.1) max{ I CjXj: I Xj ~ f(S) for S £ N, x E R~}
JEN jES

and

(6.2) min{ I f(S)ys: I Ys ~ Cj for j EN, Y E R;"}.
S",N S3j

SupposeCl~C2~'" ~Ck>O~Ck+l~'" ~cn,andSj={1, ... ,j}forjENwith
SO=0.

690 111.3. Matroid and Submodular Function Optimization

Proposition 6.3. An optimal solution to (6.1) is

X. = {!(Sj) - !(Sj-I) for 1 ~j ~ k
} 0 for j > k.

An optimal solution to (6.2) is

for 1 ~j < k
for} = k
otherwise.

Proof The proposed x is primal feasible, becausef nondecreasing implies Xj ~ 0, and
because we have for all T ~ N

L Xj = L [f(Sj) - f(Sj-,)]
JET {j:jET. j"k}

~ L [f(Sj n T) - f(Sj-, n T)] (by the submodularity off)
{j:jET,j"k}

= f(Sk n T) - f(0) ~f(T) - f(0) = f(T).

The proposed y is dual feasible because Ys ~ 0 and because LS3j Ys =
YSi + ... + YS' = Cj if} ~ k, and LS3j Ys ~ 0 ~ Cj if} > k.

The primal objective value is Lj~1 Cj (f(Sj) - f(Sj-,», and the dual objective value is

k-I k

L (Cj - cj+,)f(Si) + ckf(Sk) = L Cj (f(Sj) - f(Sj-,». • j~1 j~1

Note that in the special case wheref = r is the rank function ofa matroid, Proposition
6.3 gives a different solution than the one given in Proposition 3.3. Also, as for matroids,
we obtain:

Corollary 6.4. The inequality system

is totally dual integral.

{ X E R:: L Xj ~f(s) for S ~ N}
jES

Example 6.1 (continued). Suppose four jobs are to be completed with respective
deadlines given by d = (10 7 8 4), and the profit from each job is proportional to the
time devoted to processing it, with weights C = (2 3 5 6). Since C4 > C3 > C2 > CI > 0,
the greedy algorithm yields

X4 = max{d4) = 4

X3 = max{d3, d4) - max{d4) = 4

X2 = max{dz, d3, d4) - max{d3, d4) = 0

XI = max{d" d2, d3, d4) - max{d2, d3, d4) = 2

with objective value cx = 48.

6. Polymatroids, Separation, and Submodular Function Minimization 691

The integrality of the matroid intersection polyhedron also carries over to poly
matroids.

Theorem 6.5. If II and h are two polymatroid functions on N, the linear system
{LjEA Xj ~ j;(A) for A s Nand i = 1, 2, x E R~} is totally dual integral.

Proof We consider the dual problem

min I fl(A)Yl(A) + I f2(A)Y2(A)
A~N A~N

(6.3) I Yl(A) + I ylCA) ;;. Cj for} EN,
A3j A3j

Let yr, yi be an optimal solution, and let c) = LA3j y7(A) for i = 1, 2 and} EN. Thus there
is an optimal solution to (6.3) with LA3j Yi(A);;. cj for i = 1,2 and} EN. Hence we can
decompose (6.3) into the problems

min I };(A)Yi(A)
A~N

I Yi(A);;. c) for} EN
A3j

Yi(A);;. 0 for A s N

for i = 1, 2. These are duals of polymatroid optimization problems. Hence, by Proposition
6.2, there exist optimal solutions Yi of the form

{S: ylS) > O} = {Sf, ... , Sl;},

with Sf s ... s sl; s N, and (Yb Y2) is an alternate optimal solution to (6.3).

Now setting Yi(A) = 0 for A * S\ for some t, 1 ~ t ~ Ii, i = 1,2, (6.3) reduces to a
problem of the form

(6.4) min{jy: By ;;. c, Y ;;. O},

where the columns of B are the characteristic vectors of {Sf, ... ,SD for i = 1,2. By
arranging these columns in the order Sl, Sf, ... , S~l, S~2, S~2-1, ... , S~, st we see that if
} E S7; \ S7;-1 for i = 1,2, then} E stl, Stl+1, ... , Sjl, S~" ... , S~2 but} is in no other sets.
So row} of B has the consecutive l's property. Hence B is an interval matrix and is totally
unimodular (see Definition 2.2 and Corollary 2.10 of Section m.1.2). So whenever c is
integer, (6.3) has an optimal solution in integers, and hence the given inequality descrip
tion of P(fl) n P(f2) is totally dual integral. •

692 111.3. Matroid and Submodular Function Optimization

Theorem 6.5 allows us to establish some important properties of polymatroids very
easily. Generalizing the duality result for maximum-cardinality matroid intersection
yields:

Corollary 6.6 II P(h) and P(h) are polymatroids, then

Proof Take Cj = 1 for all} EN in (6.3), and let (YI> Y2) be an optimal solution. By
Theorem 6.5, we can assume the solutions are of the form Yl(SD = 1 for 1= 1, ... ,
II> Yl(A) = 0 otherwise, Y2(T~) = 1 for I = 1, ... ,/2, Y2(A) = 0 otherwise. Let S = Ui~l S~
and T = U)~l T~. Since 11 and 12 are nondecreasing and submodular, we obtain
Il(S) ~ Li~Jl(SD and 12(T) ~ Li~J2(TD. Hence an alternate optimal solution is
Yl(S) = Y2(T) = 1, Yl(A), YzCA) = 0 otherwise. Feasibility implies S U T = N. Finally,
since,/; and/2 are nondecreasing, we can take N \ S = T. •

Corollary 6.7. II P(f) is a polymatriod with ranklunction rp, then

rp(a) = min{/(T) + I aj}.
T,;;,N jEMT

Proof By definition, we have

rp(a) = max{ I Xj: x E P(f) n {x E R~: x ~ a}}.
JEN

But {x E R~: x ~ a} is a polymatroid with underlying submodular function/zCS) = LjES aj
for all S ~ N. Hence the result follows from Corollary 6.6. •

Example 6.1 (continued). Suppose that a = (1 4 6 2) gives upper bounds on the
processing times of the four jobs. Writing out a polyhedral description of
P(f) n {x: x ~ a} and removing the inequalities that are redundant, we obtain

X2 + X3 + X4 ~ 8

Xl + X2 + X3 + X4 ~ 10

Xl ~

X2 ~ 4

X3 ~ 6

X4 ~ 2

xER!.

6. Polymatroids, Separation, and Submodular Function Minimization 693

Since x = (1 3 3 2) satisfies all the equalities, we obtain 9 = 1:.t,1 Xj .:;; rp(a). But by
Corollary 6.7, we have

rp(a) = min{J(T) + L aj } = min{max dj + L aj },
T,;,N jEN\T T,;,N JET jEN\T

and taking T = {2, 3, 4}, we obtain rp(a) .:;; 9. Hence rp(a) = 9.

Now we are ready to tackle the problems mentioned at the beginning of this section-in
particular, submodular Junction minimization:

(6.5) min{j(S)}, withJ submodular,
S,;,N

polymatroid separation:

(6.6)
Given x" E R~, is x" E P(J)? If not, find S s;;; N so

that the violation of L Xj .:;;J(S) is maximized,
jES

and polymatroid rank Junction calculation:

(6.7) Given P(J) and a E R~, calculate rp(f)(a).

First we consider problem (6.5), whereJis an arbitrary submodular function. By adding
a constant, we can assume without loss of generality thatJ(0) = 0. Furthermore, since
J(S U (j}) - J(S) is nonincreasing in S, it follows that ifJ(N) - J(N \ (j}) > 0, thenj is not
contained in any optimal solution of (6.5), so the problem reduces to
min{j(S): S s;;; N \ {j}}. Now define kERn by k j = J(N \ (j}) - J(N) for j EN, and
define a modified functionf" by

f"(S) = J(S) + L kj for S s;;; N.
jES

Based on the above remark, we assume without loss of generality that k E R~.
It is easily verified that:

Proposition 6.8. IJJis submodular, thenJ" is nondecreasing and submodular.

Theorem 6.9. TheJollowing statements are equivalent:

1. S" is an optimal solution oJ(6.5).
2. For the separation problem (6.6) with respect to P(f") and the point k E R~,

1:.jES" Xj .:;;f"(S") is a most violated inequality.

694 111.3. Matroid and Submodular Function Optimization

Proof f(S*) ~f(T) for T ~ N if and only if

I*(S*) - L kj ~I*(T) - L kj
jES" JET

if and only if

I*(S*) + L kj ~I*(T) + L kj •
jEN\S" jEN\T

But the first inequality is equivalent to statement 1, the second inequality is equivalent to
statement 2, and the third inequality is equivalent to statement 3. •

Corollary 6.10. Thefollowing statements are equivalent:

1. mins~N f(S) = o.
2. k EP(f*).

3. rp(f.)(k) = 'LjEN kj •

Hence we have shown that problems (6.5), (6.6), and (6.7) are equivalent. In the next
section we will consider algorithms for these problems.

Example 6.1 (continued). We consider the separation problem withf(S) = maxjES {dj }

and d = (10 7 8 4). Isx· = (1 31 3 2) E P(f)?Ifnot, find a most violated inequal
ity.

Using Theorem 6.9, we have a choice of solving the maximum violation problem
maxS~N ('LjES xj - f(S)}, or, equivalently, of solving the problem of minimizing a sub
modular function, namely, mins~N (j(S) - 'LjES xj}, or of calculating

rp(f)(x*) = min {f(S) + L x j}.
S~N jEN\S

Now it is easy to check that

4

rp(f)(x*) = 8! = ~ax {dj } + xT < I xj= 9.
1-2,3,4 j-l

Hence x* $. P(f), and X2 + X3 + X4 ~ 8 is a most violated inequality.

7. ALGORITHMS TO MINIMIZE A SUBMODULAR FUNCTION

Here we discuss polynomial-time algorithms for the problem (6.5) of minimizing a
submodular function, and we also discuss the related problem (6.6) of separation for
polymatroids.

First we consider an important class of sub modular functions that includes many of the
submodular functions encountered in practical models.

7. Algorithms to Minimize a Submodular Function 695

Proposition 7.1. If CT, rT ~ 0 for T ~ N, then

(7.1)

is a submodular function.

Proof We have

f(S U {j}) -f(S) = - I CTU(j} + I rT·
TsS (T: TnS=0,jE n

If S' ~ Sand) $ S', then {T: T ~ S} ~ {T: T ~ S'} and {T: Tn S' = 0,) E T} ~

{T: Tn S = 0,) E T}. Hencef(S U {j}) - f(S) is nonincreasing in S. •

Functions of the form (7.1) can be used to represent Boolean functions. In particular,
consider a quadratic Boolean function

g(x) = dx - XTQX, x E Bn with d ~ 0, Q ~ 0, and symmetric,

and qii = 0 for alIi.

Let X S be the characteristic vector of S. Then

where

CT= {
qij + qji for T = {i,)}
o otherwise,

r = {dj for T = {j}
T 0 otherwise.

On a graph G = (V, E) with weights w E RI!I on the edges, the function
f(S) = I S I - I:eEE(S) We for S ~ V can be modeled this way with dj = 1 for all) E V,
qij = qji = !we for e = (i,), and qij = 0 otherwise. Note that f(S) - 1 for S * 0 is the
function needed to solve the separation problem for the tree polytope.

We now show that whenf(S) is of the form (7.1), problem (6.5) can be solved as a
maximum-flow problem. Consider the digraph ~ = (VI U V2 U (s, t), d), where
VI = {S ~ N: Cs > O}, V2 = {T ~ N: rT> O}, and

.91 = {(S, T): S E VI. T E V2, S n T * 0} U {(s, S): S E VI} U {(T, t): T E Vi}

with capacities de for e Ed, where

(see Figure 7.1).

e = (S, T) has capacity de = 00

e = (s, S) has capacity de = Cs

e = (T, t) has capacity de = rT

696 111.3. Matroid and Submodular Function Optimization

Figure 7.1

Now we consider s-t cuts. Let Wj £:: Vb W2 £:: V2, and (fV;, W2) be the cut

The capacity of (WI> Wz) is

d(W;, Wz) = I Cs + I rT
SEVj\Wj TEW2

if all pairs of sets (S, T) with SEW;, T E Vi \ Wz are disjoint; otherwise it is
d(W;, Wz) = 00 (see Figure 7.2).

Now for any cut (W;, Wz) we have:

i. Let R = USE W j S. d(W;, Wz) is finite if and only iff or all T E V2 with T n R oF 0 we
have TE Wz.

ii. If S E Vj \Wj and S £:: R, we can reduce d(WI> Wz) by Cs by including S in W;.

iii. If T E W2 and T £:: N \ R, we can reduce d(Wb W2) by rT by removing T from Wz.

Figure 7.2

7. Algorithms to Minimize a Submodular Function 697

Thus we have established:

Proposition 7.2. Every minimal capacity s-t cut (VVj, Jf2) in f!lJ can be characterized by a
set R s.; N where VVj = {S E Yt: S s.; R} and Jf2 = {T E ~: Tn R '" 0}. The cut has
capacity

d(W), Wi) = d(R) = L Cs + L rT·
Sn(N\R)*0 TnR*0

Hence the problem minRsN d(R) can be solved by finding a maximum flow in f!lJ.
Since

d(R) = L Cs - L Cs + L rT
SsN SsR TnR",0

=f(R)+ L Cs,
Sc:,N

Proposition 7.2 is applicable to the minimization of submodular fractions of the form
(7.1).

Theorem 7.3. Iffis a submodular function oftheform (7.1), minsc:,Nf(S) can be solved by
finding a maximum s-tflow in a digraph f!lJ with n' + 2 nodes, where

n'= I{Ss.;N:cs>O}1 + I{Ts.;N:rT>O}I.

Corollary 7.4. minxEB" (cx - xTQx) with Q> 0 can be solved as a maximum-flow prob
lem in a digraph with O(n2) nodes.

Example 7.1. We solve the quadratic Boolean problem

Alternatively, we can solve minsc:,N f(S), where f(S) is of the form (7.1) with r{l) = 9,
r(2) = 4, r(3) = 2, r(4) = 6, rT = 0 otherwise, and CO,2) = CO,3) = C{2,4} = 4, C{2,3} = 7, C{I,4} = 2,
Cs = 0 otherwise.

We construct the digraph f!lJ shown in Figure 7.3 and solve the maximum-flow problem
giving the s -t cut indicated with R = {2, 3} and d(R) = 20. By Corollary 7.4, it follows that

Figure 7.3

698 111.3. Matroid and Submodular Function Optimization

x R = (0 1 1 0) solves the problem with value g(XR) = d(R) - Lss;N Cs = 20 - 21 =-1.

When f is a general submodular function, the ellipsoid algorithm provides a very
different approach to the minimization of a submodular function.

Theorem 7.5. There exists an ellipsoid algorithm for the problem (6.5) of minimizing a
submodular function, requiring a polynomial number of evaluations of the function f

Proof

i. By Theorem 6.9, it suffices to give a polynomial-time algorithm for the separation
problem for polymatroid polytopes.

ii. By the polynomial equivalence oflinear programming optimization and separation
(Theorem 3.3 of Section 1.6.3), it suffices to give a polynomial-time algorithm for
the linear programming problem over polymatroid polytopes.

iii. Proposition 6.2 gives a polynomial-time (greedy) algorithm to solve the linear
programming problem over the family of poly matroid polytopes. •

Theorem 7.5 motivated the search for a purely combinatorial algorithm for problem
(6.5). An augmenting-path algorithm has been developed for the polymatroid separation
problem, but the bound on the number of function evaluations is polynomial in nand
f(N). This gives a purely combinatorial separation algorithm with a polynomial number
offunction evaluations for any matroid polytope P(r) because r(N) ~ n.

The final topic of this section is the minimization of a submodular function subject to
some simple constraints. First suppose that S = 0 is not feasible. This yields the problem

(7.2) min U(S)}, wherefis submodular.
0CSs;N

Proposition 7.6. Problem (7.2) can be solved by solving problem (6.5) no more than INI
times.

Proof Since S '* 0, it follows that) E S for some) EN. Therefore it suffices to solve
the problem

min (fJ(T)} for) EN,
Tr;;.Nj

where N j = N \{j}, andfj(T) = f(T U (j}). Becal)sefj is submodular, the claim follows .•

Proposition 7.6 is applicable to the tree polytope on the graph G = (V, E), namely,

{ X E R~: I Xe ~ I S I - 1 for S s V, I S I ;?; 2}.
eEE(S)

Corollary 7.7. The separation problem for the tree polytope can be solved by solving no
more than I VI maximum-flow problems on a digraph with I VI + I E I + 2 nodes.

7. Algorithms to Minimize a Submodular Function 699

Proof Let /(S) = I S I - l:eEE(S) x;. Then x* E Rl!llies in the tree polytope if and only
ifmin0cs£v /(S);;:. 1. Since/(S) is ofthe form (7.1), the claim follows from Theorem 7.3
and Proposition 7.6. •

Note that the algorithm given in Section II.6.3 for finding violated subtree elimination
constraints is a special case of the separation problem for the tree polytope.

Now consider the problem

(7.3) min (f(S): IS n TI odd},
0CSCN

where/is submodular, and T £ N with I T I even. Problem (7.3) is important because odd
sets arise in the constraints and therefore occur in the separation problems for some
combinatorial optimization problems. These include the minimum-weight T-join prob
lem and the matching problem. In matching we take T = N, and we can always assume
that N is even by adding a dummy node to the graph.

Let n = INI. We will show how (7.3) can be reduced to solving (6.5) n3 times. First
consider the relaxation of (7 .3):

(7.4) min (f(S): 1 ~ IS n TI ~ I TI - 1}.
0CSCN

Note that when I T I = 2, the problems (7.3) and (7.4) are equivalent.

Proposition 7.8. Problem (7.4) can be reduced to solving (6.5) n2 times.

Proof For JET, let jj(S) = /(S U j). An optimal solution to (7.4) is obtained by
solving

min fi·(S)
0£S£N\(j, k)]

for eachj k E T with} * k and then taking the best of these solutions. •
Next we show how to reduce (7.3) to solving (7.4) n times. Let se be any optimal

solution to (7.4). If I se n T I is odd, then se is an optimal solution to (7.3). The next result
imposes restrictions on an optimal solution to (7.3) when I se n T I is even.

Proposition 7.9. 1/ se is an optimal solution to (7.4) and I se n TI is even, then there
exists an optimal solution SO to (7.3) satisfying one o/the/our following conditions:

1. So n T C T \ se,
2. So n T -:J T \ se,
3. SO n T -:J se n T,
4. SO n T C se n T.

Proof If (SO n se) n T = 0, then condition 1 holds. Also, if (SO use) n T = T, then
condition 2 holds.

700 111.3. Matroid and Submodular Function Optimization

Now suppose that (SO n se) n T * 0 and (SO Use) n T * T. Since

either I (SO use) n T I or I (SO n se) n T I is odd, but not both. Suppose I (SO use) n T I
is odd.

By submodularity, we have

But since se is optimal in (7.4) and So n se is feasible in (7.4), we have f(se) :5;J(SO n se).
Hence f(SO);;;. f(SO use). But because So is optimal in (7.3) and So U se is feasible in
(7.3), we obtainf(SO) ~f(SO use). Hencef(SO) = f(SO use), and SO U se is an alterna
tive optimal solution to (7.3). Thus there is an optimal solution to (7.3) that strictly
contains se, and condition 3 holds.

Finally, when I (SO n se) n T I is odd, a similar argument yields condition 4. •

As a consequence of Proposition 7.9, we have reduced (7.3) to four subproblems. In
each of these problems, T has been replaced by a smaller even set, either T' = T \ se or
T" = Tn se.

Next we show how to recombine the four subproblems into two problems of the form
(7.3), one with T +- T' and the other with T +- T".

If condition 4 holds, the subproblem is

min (f(S): IS n T" I odd};
0CSCN\T'

and if condition 2 holds, the subproblem is

min U(S u T'): IS n T" I odd}.
0CSCN\T'

Now let n I represent T', let N' = (N \ T') u {n '}, and for 0 s; S s; N' let

I {f(S) if n ' fE S
f (S) = f(S u T') ifn' E S.

It is easily verified that!' is submodular, and

min {min(f(S),f(S U T')): IS n T" I odd}
0CSCN\T'

is equal to

(7.5) min (f/(S): IS n T" I odd}.
0CSCN'

Similarly, if either conditions 1 or 3 of Proposition 7.9 holds, we obtain the subproblem

(7.6) min (f"(S): IS n T'I odd},
0CSCN"

7. Algorithms to Minimize a Submodular Function 701

where n" represents T"; N" = (N \ T") U {n "}; and for 0 ~ S ~ N", we have thatf" (S)
is the submodular function given by

f "(S) {f(S) ifn"$S
= f(S U T") ifn" E S.

Hence we have reduced (7.3) to the smaller problems (7.5) and (7.6) of the same form
where: I N' I, I N" I ~ n - 2; I T' I + I T" I = I T I; and I T' I, I T" I ~ 2 and even. Now
we proceed recursively by relaxing (7.5) and (7.6). In each case, either an optimal solution
is found or the subproblem is decomposed again. Since (7.3) and (7.4) are equivalent when
I T I = 2, in the worst case the original problem will finally decompose into! I T I problems
of the form (7.4); and in each of these problems, a feasible solution must contain exactly
one element from a subset of size 2.

Theorem 7.10. Problem (7.3) can be reduced to solving problem (7.4) n3 times.

Proof Let g(2k) be the maximum number of calls of problem (7.4) when I T I = 2k.
Then g(2) = 1 and

g(2k) = max {g(21) + g(2(k -l)}.
kkk-I

It can be shown that the unique solution isg(2k) = 2k - 1. Since 2k ~ n, the result follows
from Proposition 7.8. •

Whenf(S) represents a quadratic Boolean function, the functionsf' andf" in (7.5) and
(7.6) also are of this form. In particular, if

n)-1 n

g(x) = 2: r)x) - 2: 2: cijx,xj, x E B n
)~I '~I j~2

and T' = {k + 1, ... , n}, then setting X n ' = Xk+1 = ... = X n , we obtain

Example 7.1 (continued)

subject to the constraint LJ~I Xj odd.
Let T = N = {l, 2, 3, 4}. The first step is to solve the relaxation (7.4). As shown

previously, the optimal solution is given by se = {2, 3}. Hence T' = {l, 4} and T" = {2, 3}.

702 111.3. Matroid and Submodular Function Optimization

Now the problem is reduced to solving (7.5) and (7.6) where (7.5) is

and (7.6) is

The former has optimal solution X3 = 1, X2 = Xs = 0 with f(3) = 2, and the latter has
optimal solution Xl = X6 = 1, X4 = 0 with f(123) = O. Hence S = {l, 2, 3} is an optimal
solution to the original problem.

Both the separation problems for minimum-weight 0-1 b-matchings and minimum
weight T-joins correspond to the minimization of a quadratic Boolean function subject to
an odd set constraint where the corresponding set function is submodular.

Proposition 7.11. The separation problems for minimum-weight 0-1 b-matchings and
minimum-weight T-joins on a graph G(V, E) can be reduced to solving no more than 1 V 13

max-flow problems.

8. COVERING WITH INDEPENDENT SETS AND MATROID PARTITION

Here we consider the problem of finding the minimum number of independent sets
needed to cover each element of a matroid a given number of times. Let A be the m x n
matrix whose rows are the characteristic vectors of the independent sets of the matroid,
and let w E R: specify the number of times each element must be covered. Then the
fractional version ofthis problem can be formulated as

(8.1) Cw = {min ly: yA ;;;. w, y E R';'},

and the integer version can be formulated as

(8.2) Zw = {min ly: yA ;;;. w, y E Z';'}.

First we consider the fractional covering problem (8.1).

Proposition 8.1. Given a matroid polytope P(r), the following statements are true for the
fractional covering problem (8.1):

1. Cw ~ 1 if and only if wE P(r),
2. Cw = maXS<;N {LjES wj/r(S)},
3. w/Cw E P(r), and ify* is an optimal solution to (8.1), then y*/Cw expresses w/Cw as a

convex combination of points in P(r).

Proof

1. Since the rows of A correspond to the independent sets in the matroid (N, r), we
know that the convex hull of these rows is P(r). So by Proposition 5.8 of Sec
tion 1.4.5, the antiblocker of P(r) is nA = {n E R';': An ~ n. Therefore, for w E R:,

8. Covering with Independent Sets and Matroid Partition 703

we have that wE Per) if and only if wn.s; 1 for all n E ITA or max{wn: n E ITA} .s; l.
However, by linear programming duality, Cw = max{wn: An.s; 1, n ~ O}, and there
fore the claim follows.

2. Since Per) = {x E R~: (1/r(S» LjES Xj .s; 1 for S c::::; N}, the maximal extreme points
of ITA are of the form nj = 1/r(S) for j E S, nj = 0 for j EN \ S. Hence Cw =
maXS<;;N {LjES wjr(S)}.

3. min{ly: yA ~ wlCw, y E R';'} = 1, and hence by statement 1 we have w/Cw E Per).
Letting Ai = y71 Cw, we have that L7!1 Ai = 1, A ~ 0, and AA ~ wi Cw. Since the rows of A
form an independence system, we can obtain AA = wi Cw by modifying the solution
by replacing ai E zm by ai < ai if Ai > O. Thus the claim follows. •

Statements 1 and 2 suggest that there is a link between (a) the separation problem (6.6)
for Per) and (b) problem (8.1). In fact, by solving problem (6.6) a polynomial number of
times, we can obtain algorithms to compute the value of Cw, to find the set S maximizing
LjES wjr(S), and to find an optimal solution y* in (8.1).

For the special case of w = 1, we obtain the following result:

Corollary 8.2. For a matroid M = (N, r), the minimum number of independent sets
needed to cover N fractionally is maXS<;;N { I S Ilr(S)}.

Example 8.1. Consider the graph of Figure 8.1 with the values of w as shown. The
problem is to find a fractional covering of the weighted edges of G with subgraphs that are
forests.

Suppose the feasible solution y* to (8.1) shown in Figure 8.2 has been found. Since
L yj = 1, it follows that Cw .s; 1. Now taking S = {e4, e5, e6}, we see that Cw ~ LjES wjr(S) = 1,
and hence y* is an optimal solution to the fractional covering problem (8.1).

Now we consider the integer covering problem (8.2). To solve this problem, we
introduce the concepts of matroid union and matroid partition.

~----~----~ 2

Figure 8.1

704 111.3. Matroid and Submodular Function Optimization

Figure 8.2

y*= 1
3

Definition 8.1. Given matroids Mi = (N, gjii) for i = 1, ... , k, the independence system
M(k) = (N, gji(k)) is the matroid union where S E gji(k) ifand only if there exist Si E gjiJor
i = 1, ... , k such that U7~1 Si = S.

This definition motivates the matroid partition problem for a matroid union M(k):

(8.3) Given S s N, determine whether S E gji(k).

Problem (8.3) is related to (8.2) with w = 1 because when the matroids Mi are identical,
we obtain Ns gji(k) if and only if Zl ~ k. Below we will show how the matroid partition
problem can be solved as a matroid intersection problem, and we will also show how to
reduce problem (8.2) with w E Z~ to a problem of the same type with w = 1. This will
enable us to establish the integer-rounding property for the clutter consisting of the bases
of a matroid.

Example 8.2. We are given a set N of jobs, each requiring unit processing time. Job j has
a deadline dj • S E gji if there is some ordering of the jobs of S such that each job is finished
by its deadline.

Takingf(S) = maXjES dj as in Example 6.1, we see that T E gji if and only if x T E Pc!).
But by Corollary 6.6 this holds if and only if

Now it follows from Proposition 2.3 that (N, gji) is a matroid with rank function
reT) = minsc;T U(S) + IT \ S I}·

Thus, two people working together can accomplish the set S of jobs if S = S IUS 2 with
Si E gji for i = 1, 2, or, in other words, if and only if S is independent in the matroid union
M(2) = (N, gji(2)).

Suppose there are 10 jobs, and the deadlines are as follows:

Jobj: 1 2 3 4 5 6 7 8 9 10
dj : 1 2 2 3 3 3 3 4

We have {l, 4, 6, 1O}, {2, 5, 7} E gji, so that {l, 2, 4, 5,6, 7, 1O} E gji(2). On the other
hand, {l, 2, 3, 4, 5} $. gji(2), since {i, j, k} $. gji for any choice of 1 ~ i < j < k ~ 5.

Finally, note that {l, 4, 6, 1O}, {2, 5, 7}, {3, 8, 9} E gji. Hence N E gji(3). Since N $. gji(2),
it follows that the optimal value of problem (8.2) with w = 1 is Zl = 3.

8. Covering with Independent Sets and Matroid Partition 705

Given k matroids Mi = (Ni' fJ'i) on distinct sets N i, their sum is M" = (Uf=1 N i, U!':1 fJ'j).
It is easily checked that the sum of matroids is a matroid. The partition matroid (see
Section 1) is a simple example of such a sum.

We now show how the k-matroid partition problem for M = (N, fJ') can be viewed as a
matroid intersection problem. Consider the set N" = {(i, j): i E K, j E N} where K =

{l, ... ,k}. Any subset F" £; N" can be written as F" = UiEK UjEFi (i,j), denoted (Flo ... ,
Fk), where Fi = {j: (i,j) E F"} £; N. We now consider two matroids over the set N". The
first one, MT = (N", fJ'r), is just the sum of k copies of the original matroid M = (N, fJ'), so
F" E fJ'! if and only if Fi E fJ' for i = 1, ... ,k. The second one, Mi = (N", fJ'2), is the
partition matroid where F* E fJ'i if and only if Fi n }j = 0 for all 1 ~ i < j ~ k.

Example 8.1 (continued). We are given the graphic matroid M = (N, fJ') for the graph
G = (V, E) of Figure 8.1. Taking the sum of three copies of G = (V, E) gives the graphic
matroid MT shown in Figure 8.3.

A set E* £; N" of edges is independent in the partition matroid Mi if no edge of the same
type appears more than once; that is, no more than one copy of edge (1, 2)-el,1 or e2,1 or
e3,1-is allowed.

Now we consider the independence system (N", ~ n fJ'i) of common independent sets
in the matroids MT and Mi, and we investigate how it relates to the matroid union
(N, fJ'(k») and the matroid partition problem. Let rrbe the rank function of Mrfor i = 1, 2,
let m" be the rank function of (N", fJ'T n fJ'i), and let mk be the rank function of the
matroid union (N, fJ'(k)). By definition of Mrand M(k), we have:

Proposition 8.3. The following statements are true.

1. r!(F") = 1:f=1 ri(Fi).

2. ri(F") = 1 Uf=1 Fi I·
3. IfF" = (Flo' .. , Fk) E fJ'! n fJ'i, then S = Uf=1 Fi E fJ'(k).

4. If S E fJ'(k), then there exists F* = (Flo ... ,Fk) E fJ'T n fJ'i such that Uf=1 Fi = S.
5. mk(S) = m*(S, ... , S).

Now we can show that M(k) is, in fact, a matroid.

el.1 e2.1
....... ----{ 2 l' r----~

i= 1 i=2 ;=3

Figure 8.3

706 111.3. Matroid and Submodular Function Optimization

Proposition 8.4. The matroid union M(k) = (N, fF(k» is a matroid with rank function
mk(S) = minn;;sCLtl ri(T) + IS\ TI}.

Proof We just consider the case S = N. By Proposition 4.9, we have

m*(N*) = m*(N, ... , N) = minCrr(F*) + r;(N* \ F*)}
PsN·

= T,lJJ{~ ri(Fi) + li~ (N \ Fi)l}

= mcin{± riCF';) + IN \ 0 F';I}
~_N l~ l~

= min{± ri(A Fj) + IN \ A F';I}
Fi<:N i~l J~l ,~l

because the ri are nondecreasing.
It follows that the minimum is attained by a set F* of the form F* = (T, ... , T),

where T = nj~l Fj. Hence

m*(N, ... ,N) = tpjJJ {~ r;(T) + IN \ Til

Now by statement 5 of Proposition 8.3, we have mk(N) = m*(N, ... , N), and hence mk is
of the required form. But by Proposition 2.3, m k is a submodular rank function; and
hence by statement (ii) of Theorem 2.4, the matroid union is a matroid. •

By Proposition 8.4, we can solve the matroid partition problem by applying the
cardinality matroid intersection algorithm to (N*, fFr n fF;), demonstrating either that
S E fF(k) or that there exists a set T s Swith L7~1 r;(T) < I TI. A more efficient and direct
algorithm is the matroid partition algorithm.

Conversely, we can use the matroid partition algorithm to solve the cardinality
intersection problem formatroidsM1 = (N, rl)andM2 = (N, rz). It suffices to consider the
matroid union (M(2), m 2) of Ml and Mf. Then because the partition algorithm can be
used to find m 2(N) and we have

the claim follows.

as:
Now we return to the covering problem (8.2). When w = 1, the problem can be restated

Given a matroid M= (N, fF), determine a minimum number z 1 of
independent sets whose union is the whole set.

As we have already observed, matroid unions give a method to solve this problem.
Taking k identical copies of M = (N, r), the matroid union M(k) has rank function

mk(N) = minCkr(T) + IN\ TI}.
T

8. Covering with Independent Sets and Matroid Partition 707

Proposition 8.5. Zl = maxs IISl/r(S)l.

Proof Zt ~ k if and only if N is independent in the matroid union M(k) or
mk(N) = INI, or

kr(T) + IN \ TI ~ INI for all T s N.

Hence Zl ~ k ifand onlyifk ~ I TI/r(T) for all T s N. •
In addition, we have seen that either the matroid intersection algorithm applied to M(k)

or the matroid partition algorithm gives the Z 1 bases required.
One approach to problem (8.2) for general W E Z~ is to construct a matroid MW from M

by duplicating each elementj Wj times for j E N. Let N W = {(j, i):j EN, i = 1, ... , w).
Given TW s ~, we let Tt = {i E {l, ... , Wj}: (j, i) E TWlso that Tt is the set of different
copies ofj in T W, and we write TW = (Tf, ... , T:n. Now TW = {j EN: I Tt I ~ 1} is the set
of elementsj EN of which at least one copy appears in TW.

We now define an independence system MW = (NW, 9fW) such that TW E fFW if I Tt I ~ 1
for j EN and TW E fF. MW = (N, rW) is easily seen to be a matroid with rW(TW)::o r(Tw).

By construction of ~, we have:

Proposition 8.6. Zw is the optimal value of problem (8.2) for the matroid M = (N, ~) if
and only if Zw is the optimal value of problem (8.2) for the matroid UW = (N"', fFW) with a
right-hand-side vector of 1 s.

Corollary 8.7. Zw = maxT 1(l:jET wj)/r(T)l·

Proof By Proposition 8.5, Zw = maxTw£;Nw II TW l/rW(TW)l. Since rW(T"?);:; r(tw), we
obtain

zw=max 1 W J = max _1 __ J • rl:'ETW W'l fl:'ET W'l
TW£;N r(T) T r(T) •

Figure 8.4

708 111.3. Matroid and Submodular Function Optimization

• •

Figure 8.5

From Proposition 8.1, it follows that problem (8.1), the linear programming relaxation
of problem (8.2), has value (w = maXT (LjET wj)/r(T). Hence, since Zw = few]' the matroid
covering problem provides an example of the integer-rounding property discussed in
Section III. 1.6.

Similar results can be obtained for packing bases. However, for general W E Z~ the
above construction does not lead to a polynomial algorithm.

Example 8.1 (continued). The problem is to find an integer covering of the weighted
edges of G by forests (see Figure 8.1).

Since (w =~, we know from the integer-rounding property that Zw = f(w] = 3. Now we
construct an optimal solution. In Figure 8.4, we show the graph GW = (V, EW) underlying
the graphic matroid MW = (EW, g;W) for which we need to solve problem (8.2) with weights
we),! = 1.

Now we construct an independence system M* = (N*, g;*) consisting of three copies of
MW, such that E* = (E 10 E 2, E 3) £ (EW, EW, EW) and E* E g;* if the edge sets E 10 E 2, E 3 are
disjoint and each edge set E j is a forest in GW.

Applying the cardinality matroid intersection algorithm to M* = (N*, g;*), we obtain
the solution shown in Figure 8.5, which provides an optimal solution {elo e2, es, e6},
{e2, e3, e4,e6}, {e4} for the covering problem.

9. SUBMODULAR FUNCfION MAXIMIZATION

Whereas there is a polynomial algorithm for the minimization of a sub modular function,
the problem of maximizing a submodular function is .N"~-hard. Here we investigate three
problems that are natural generalizations of problems treated either earlier in this chapter
or earlier in the book.

The three problems are:
(1) maximizing an arbitrary submodular function:

(9.1) Z I = max{j(S)} withf submodular,
s

(2) maximizing a non decreasing submodular function subject to a cardinality constraint:

(9.2) Z2 = max{j(S): IS I ~ p} withfsubmodular and nondecreasing,
s

9. Submodular Function Maximization 709

(3) minimizing a linear function subject to a submodular constraint:

(9.3) Z3 = min{ L cj:f(S) =f(N)} withfsubmodular and nondecreasing.
S jES

A typical example of problem (9.l) is the uncapacitated location problem discussed in
Chapter II.S with

f(S) = L max cij - L jj.
iEi jES jES

If capacity constraints limiting the amount of demand that can be met by an open facility
are added, the problem can still be formulated as the maximization of a submodular
function.

The p-facility location problem studied in Section II.S.3, namely,

max{L max cij: IS I ~ p},
S iEi jES

is an example of problem (9.2).
An example of problem (9.3) is the integer covering problem

where (A, b) is an m x (n + 1) nonnegative integer matrix. Here we set

Observe thatf(N) = L;::l bi andf(S) = f(N) if and only if LjES aj ~ b. Note that we can
assume that the {x E B n: Ax ~ b} is nonempty by adding, if necessary, an artificial
variable Xn+l with an+l = band Cn+l > Lf=l Cj.

Another important application is the k-matroid intersection problem

z = max{ L c/ IS I ~ ri(S) for i = 1, ... , k}.
S jES

To see that it fits this model, remember from Section 2 that S E g; if and only if N \ S
contains a basis in the dual matroid. Hence

z = L Cj - min{ L Cj: rp(N \ S) = rp(N) for i = 1, ... , k}
JEN S jEN\S

= L Cj - min{ L cj:f(T) = f(N)} ,
JEN T JET

wheref = L~l rp.

710 111.3. Matroid and Submodular Function Optimization

Since Problems (9.1)-(9.3) are ,Ng>-hard, we consider two approaches. The first is to
formulate and solve them as integer programs, and the second is to apply heuristic
algorithms.

We first consider an integer programming formulation of (9.1). We assume f(0) = 0;
then we set f(S) = J*(S) - LjES kj, where kj = f(N \ {j}) - f(N) for all j E N. Hence f is
written as the difference of a nondecreasing submodular functionJ* and a linear function.
Now consider the polyhedron

Q(f) = {(y!, x) E Rl x R~: Y! ~J*(S) + I [f*(S U {j} - J*(S)]Xj
jEN\S

- I kjxj for all S £ N}.
jEN

Proposition 9.1. Given (y!, XT) E Rl X Bn, we obtain (y!, XT) E Q(j) if and only if
Y! ~f(T).

Proof If (y!, XT) E Q(f), then

Y! ~J*(T) + I [f*(T U {j}) - J*(T)]xJ - I kjxJ
~MT ~N

= J*(T) - I kj = f(T).
JET

Now suppose Y! ~f(T). By Proposition 2.1(b), we have

f(T) = J*(T) - I k j
JET

~f*(S) + I [f*(S U {j}) - f*(S)] - I kj
jET\S JET

for all S £ N, and hence

Y! ~f*(S) + I [f*(S U {j}) - f*(S)]xJ - I kjxJ
jEMS jEN

for all S £ N, so (y!, x T) E Q(f). •
As a consequence of Proposition 9.1, an alternative formulation for (9.1) is

(9.4)

Since Q(j) has an exponential number of constraints, we suggest a cutting-plane algo
rithm, similar to that of Benders, for solving (9.4) (see Section 11.5.4).

9. Submodular Function Maximization 711

Example 9.1. The problem is to maximize the quadratic function from Example 7.1,
namely,

or maxs (j*(S) - ~jES k j }, wheref* is defined above and k = (1 11 9 0).
Generating the constraints of Q(f) for S = 0 and S = {l}, we obtain the relaxation

max 17

17';;; 0 + 9xI + 4X2 + 2X3 + 6X 4,

17 .;;; 10 - XI

S=0

S = {l}

with optimal solution 17 = 13, x* = (1 0 0 1). Hence Z I .;;; 13. However, f({1,4}) = 13,
and hence x* is optimal.

A formulation for problem (9.3) is derived similarly with

R(f) = {X E R~: I [f(S U {j}) - f(S)]xj ~ f(N) - f(S) for S S N}.
jEN\S

Proposition 9.2

(9.5)

Proof If x T E B n is the characteristic vector of T and if x T E R(f), then

0= I [f(T U {j}) - f(T)]xJ ~ f(N) - f(T).
jEN\T

Hencef(T) = f(N), and T is feasible in (9.3).
Conversely, if T is feasible in (9.3), then by submodularity (Proposition 2.1, statement

ii) we have

f(N) = f(T) .;;;f(S) + I [f(S U {j}) - f(S)] for S s N
JET\S

or, in other words,

I [f(S U {j}) - f(S)]xJ ~ f(N) - f(S) for all S s N,
jEN\S

soxT ER(f). •
Now we turn to heuristic algorithms. The greedy heuristic algorithm for problem (9.2)

has already been analyzed in Theorem 3.3 of Section 11.5.3. Repeating the theorem, we
have:

712 111.3. Matroid and Submodular Function Optimization

Theorem 9.3. Iff(0) = 0, and ZG is the value of a greedy heuristic solution to problem
(9.2), and Z is the value of an optimal solution, then zalz ~ 1 - [(p - l)/p]P.

The greedy heuristic for the 0-1 covering problem was analyzed in Theorem 2.5 of
Section 11.6.2. As indicated above, this is a special case of problem (9.3). The same result
holds for the general problem. First we describe the heuristic.

The Greedy Algorithm for Problem (9.3)

Initialization: SO = 0, N 1 = N, t = 1.

Iteration t: Let

with the minimum attained at jt EN. Let Nt+l = N \ Ut), and let S = St-l 'u Ut}. If
f(S) = f(N), then st is the greedy solution with z G = LjES' Cj. Iff(st) < f(N), let t <- t + 1
and return.

Using a relaxation of the formulation (9.5), and using a dual heuristic as in the proof of
Theorem 2.5 of Section 11.6.2, we obtain the following theorem:

Theorem 9.4. Let f be integer-valued, let f(0) = 0, d = maXjEN (f{J}), and let ZG be the
value of a greedy heuristic solution to (9.3). Then zGlz ~ H(d), where H(d) = L~l (1li).

10. NOTES

Sections 111.3.1 and 111.3.2

Matroids were introduced by Whitney (1935). Further early developments are due to Tutte
(1965). Detailed developments of matroid, polymatroid, and submodular function theory
are contained in the books by Tutte (1971), Welsh (1976), and Recski (1988). Recski's book
also gives many applications ofmatroids in the physical sciences and engineering, as does
the survey article by Iri (1983).

The importance of matroids in combinatorial optimization was established by
Edmonds (1965b, 1970, 1971). Chapters 8 and 9 of the book by Lawler (1976) present the
work done in matroid optimization through the mid-1970s. A survey of matroid results
tailored to the operations research community was presented by Bixby (1982).

Lovasz (1983) surveyed the relationships between submodularity and convexity. Topkis
(1978) studies properties of submodular functions that are of interest in optimization.

Section 111.3.3

The optimality of the greedy algorithm was first discovered by Rado (1957) and indepen
dently by Gale (1968), Welsh (1968), and Edmonds (1971). A more general combinatorial
structure for which the greedy algorithm works, known as a greedoid, has been studied by
Korte and Lovasz (1984).

The matroid polytope was studied by Edmonds (1970, 1971).

10. Notes 713

Sections 111.3.4 and 111.3.5

The matroid and polymatroid intersection theorems are due to Edmonds (1970). Algo
rithms for maximum-cardinality matroid intersections have been developed by Lawler
(1975) and Edmonds (1979). The algorithm for maximum-weighted matroid intersections
is based on an algorithm of Frank (1981). [Also see Lawler (1975), Cunningham (1986), and
Brezovec et al. (1986).]

Edmonds (1967b) gave an algorithm for minimum-weight branchings. [Also see Chu
and Liu (1965), Bock (1971), Karp (1971), Murchland (1973), and Tarjan (1977).]

Fulkerson (1974) gave an algorithm for the problem of packing rooted directed cuts in a
weighted digraph and established a blocking relationship between these cuts and branch
ings. His results yielded a TDI system for the convex hull of edge sets that contain a
branching:

Edmonds and Giles (1977) studied a model, now known as the submodular flow
problem, that generalizes both network flows and polymatroid intersection. Min-max
results and algorithms for this class of problems have been obtained by Frank (1982,1984),
Hassin (1982), Lawler and Martel (1982a,b), Schrijver (1984a,b), and Cunningham and
Frank (1985). An application to a scheduling problem has been given by Martel (1982).

An even more robust model, known as the matroid matching problem or matroid parity
problem, that generalizes polymatroid intersections and matchings has been studied by
Lovasz (1980\ 1981). He gave a polynomial-time algorithm for the case of matric matroids
and showed that the general problem is K2P-hard. Related results were given by Tong et al.
(1984).

An annotated bibliography on these problems was given by Lawler (1985).

Section 111.3.6

Polymatroid and submodular rank functions have been studied by Edmonds (1970), and
the role of these functions in combinatorial optimization has been examined by Lovasz
(1983). [Also see McDiarmid (1975).]

Section 111.3.7

The max-flow reduction algorithm for submodular function minimization given in
Section 7 is due to Rhys (1970) [also see Picard and Ratliff (1975)]. Its applications to
graphic matroids was given by Picard and Queyranne (1982) and Padberg and Wolsey
(1983, 1984).

Crama (1986) gave an efficient recognition algorithm for certain classes of sub modular
functions representable in the form (7.1). A general treatment of Boolean functions,
primarily of historical interest now, is the book by Hammer and Rudeanu (1966).

The polynomiality of submodular function minimization has been established by
Grotschel, Lovasz, and Schrijver (1981, 1984b). They have also developed the procedure
for minimizing over odd sets [Grotschel, Lovasz, and Schrijver (l984c)]. These develop
ments and many related results are presented in Grotschel, Lovasz, and Schrijver (1988).

Purely combinatorial algorithms for the separation problem for the matroid polytope
have been given in Cunningham (1984), and for submodular function minimization in
Cunningham (1985).

Section 111.3.8

The problem of covering and packing with independent sets was studied by Edmonds and
Fulkerson (1965) and Edmonds (1965b). The matroid partition algorithm is due to
Edmonds (1965b) [also see Cunningham (1986)].

714 III.J. Matroid and Submodular Function Optimization

Edmonds (1973) considered the packing of branchings, and Cunningham (1977)
described the blocking polyhedron of the convex hull of the common independent sets in
two matroids. These results were generalized by Baum and Trotter (1981).

A polynomial-time algorithm for problem (8.1) with general w is obtained using the
separation algorithm of Section 7 [see Cunningham (1984, 1985)].

Section 111.3.9

Submodular function maximization has been studied by Nemhauser, Wolsey, and Fisher
(1978), Fisher, Nemhauser and Wolsey (1978), Nemhauser and Wolsey (1979, 1981),
Wolsey (1982a,b), and Conforti and Cornuejols (1984). In Nemhauser and Wolsey (1979),
it was shown that within a large class of algorithms the greedy algorithm is the best possible
one for problem (9.2).

11. EXEROSES

1. Show that graphic matroids are matric.

2. Given a family of subsets {S;}7!l of a finite set N, we define a transversal of the family
to be a set T = {i 10 ••• , i m } with the following properties:

a) ITI =m;
b) ijESjforj= I, ... ,m.

If R ~ T is a transversal, R is a partial transversal.
i) Show that a family has a transversal ifand only ifthe maximum s-t flow in the

digraph of Figure 11.1, with (j, S;) Ed ifj E S;, has value m, where: (s,j) Ed
has capacity 1 forj EN, (S;, t) Ed has capacity 1 for i E {I, ... , m}, and (j, S;)
has infinite capacity.

ii) Show that the set of partial transversals forms a matroid on N.

3. Given an m x nO, 1 matrix A, a set J ~ N of columns is called dependent if there
exists a J' ~ J such that I jEJ , aij = O(mod 2) for all i.

i) Show that the sets of independent columns form a matroid. Such matroids are
called binary matroids.

ii) Show that a graphic matroid is a binary matroid.

N

Figure 11.1

11. Exercises

4. Show that the following set functions are submodular:

i) v(S) = max{LjET Cj: I T I ..; k, T ~ S} for S ~ N;

715

ii) v(S) = I{) E V:} E S or (i,}) E E for some i E S} I for S ~ V, where G = (V, E)
is a graph (this is the cardinality of the neighborhood of S);

iii) v(S) = LjES Cj - LiES,jES qij for S ~ N, where qij ~ 0 for 1 ..; i <} ..; n.

5. What is the complexity of the greedy algorithm for problem (3.1) when M is a
partition matroid?

6. Prove Proposition 3.5 directly by showing that if U} E fjP for allj E N, every facet of
the convex hull of independent sets ofa matroid is either of the form

(a)

or

(b)

Xj ~ 0 for} EN

I Xj ..; r(A) for A ~ N.
JEA

Hint: (i) Show that if nx ..; no is facet-inducing, either it is the inequality - Xj ..; 0, or
nj ~ 0 for all} EN. (ii) Show that ifnj > 0 for} E A, and the characteristic vector of
S E F lies on the facet, then IS n A I = r(A).

7. Characterize the facets ofthe tree polytope-that is, when is LeEE(U) Xe"; I U I - 1 a
facet-defining inequality?

8. Show that the following set functions are submodular:

i) Given a matroid M = (N, fjP) with cERn, let

v(S) = max{ ICe: T ~ S, T E fjP} for S ~ N.
eET

ii) Given M as in part i, let {Qi}iEI be subsets of N and let

iii)

v(J) = max{ ICe: T ~ U Qi' T E fjP} for J ~ f.
eET" IE!

(Qi is the set of elements with color i.)

v(S) = max{ I I CijYij: I Yij"; ai for i E f,
iEI jES jES

I Yij ..; bj for} E S, Yij ~ 0 for i E f,} E s}.
iEI

(This function arises in the capacitated facility location problem where S ~ N is
the set of open facilities.)

716 111.3. Matroid and Submodular Function Optimization

9. L: Rm -+ Rl is submodular if

L(u) + L(v) ~ L(u V v) + L(u /\ v) for u, v E Rm,

where (u V V)i = max(ui, Vi) and (u /\ V)i = min(ui, Vi). Show that if L(u, y) is
submodular on Rm x RP, then W(y) = minu L(u, y) is submodular on RP.

10. Consider the clutter of bases of a matroid M = (N, 8F).

i) Prove that

Q*= conv{x E R~: x ~ xF for F a basis of M}

= {x E R~: I Xj ~ r(N) - r(s)}.
jES

ii) Show that for the clutter of spanning trees, this gives

Q*= {x E R~: I I Xe ~ f - 1 for all
{(i,j):i<j) eEo(v,)nO(V;)

Vj, ... , Jijthat are disjoint subsets of V and allf> I}.
11. Apply the maximum-cardinality matroid intersection algorithm to the pair of

graphic matroids in Figure 11.2, starting with S = {eb e2, e4}

12. Show that the lengths of the shortest s-t dipaths at successive iterations of the
cardinality matroid intersection algorithm are nondecreasing.

13. Apply the weighted matroid intersection algorithm to find a maximum-weight set
of arcs forming part of a branching (with no specified root) in the digraph of
Figure 11. 3.

14. i) Show that the polytope of the arc sets in exercise 13 is given by

{ XER~: I Xij:S;; 1 forjE V, I Xij:S;; ISI-l for0CSs:; v}
iEo-U) iES,jES

ii) Devise a more efficient algorithm for the maximum-weight branching problem.
What is the complexity of your algorithm?

Figure 11.2

11. Exercises

Figure 11.3

15. For the clutter of rooted branchings, prove that

Q* = {x E R~: I Xu ~ 1 for all S ~ V with {1} E S}
(i,j)EJ"(S)

717

is integral and that the max-min inequality holds strongly where t5+(S) are the rooted
dicuts (see exercise 34 of Section 111.1.8).

16. Show that the matroid intersection polyhedron is box TDI (see exercise 3 of Sec
tion m.1.8).

17. Show that if P = {x ERn: Ax ~ b} is box TDI, there exists a 0, 1, -1 matrix A' and a
vector b ' such that P = {x ERn: A IX ~ b'}. Hint: Observe that w E P ifand only if

max{1x ' - Ix": x' ~ 0, x" ~ 0, x = w, Ax + Ax' + Ax" = b} ~ 0.

18. Prove Proposition 6.2.

19. Transform the problem

into a polymatroid separation problem. Write out the polymatroid explicitly.

20. i) Show that a polymatroid Pfis integral (has integral extreme points) iffis integer-
valued.

ii) Show that if P ~ R~ is an integral polymatroid, rp(a) E Zl for all a E Z~.

21. Let PU) = {x ERn: LjES Xj ~f(S) for S ~ N} withf(0) = 0. Prove the following:

i) For any T ~ N, there exists x E P(f) such that LjET Xj = f(T).

ii) All maximal points y such that y ~ x, Y E PU) have the same value of LjEN Yh
denoted by i'f(x).

iii) Iffl andf2 are submodular withfl(0) = f2(0) = 0, then

718 111.3. Matroid and Submodular Function Optimization

22. Solve the problem of exercise 19 by a maximum-flow algorithm.

23. Consider the general problem of minimizing a quadratic boolean function z =
minxEB,J(x), where

J(X) = 2: CjXj + 2: %XiXj,
jEN (i,j)EPUQ

P = {(i,j): 1 ~ i <j ~ nand qij > O},

and

Q = {(i,j): 1 ~ i <j ~ nand qij < O}.

i) Show that the problem can be reformulated as the mixed-integer program

z = min 2: CjXj + 2: qijYij 2: qijYij
jEN (i,j)EP (i,j)EQ

Yij ~ Xi, Yij ~ Xj for (i,j) E Q

Xi + Xj - 1 ~ Yij for (i,j) E P

ii) Show that J is submodular if and only if P = 0.

iii) Show that the problem matrix is TU when P = 0.

24. LetJ(S) = LTc;S CT. Show thatJis submodular if and only if

2: CTU{i,j) ~ 0 for all S ~ N \ {i,j} and all i,j EN.
Tc;S

25. Show that ifJis cubic [i.e.,J(S) = LTc;s CT, and CT = 0 for I T I > 3]:

i) There is a polynomial algorithm to test ifj is submodular.

ii) Jis submodular if and only ifit can be put in the form (7.1).

26. Show that the recognition problem: "Is the quartic function (f(S) = LTc;s CT with
C T = 0 for I T I > 4) not submodular?" is .KiYl-complete.

27. Let P be the convex hull of 1-matchings for the complete graph on 5 nodes. Is the
point shown in Figure 11.4 in P? Ifnot, find a most violated facet-defining inequality
(not by inspection).

28. Consider the min-cut problem min0cscv L eE6(S) Ce on a graph G = (V, E) with
cER~.

i) Show that if S), S2 are minimum cuts with SI n S2 '* 0, SI U S2 '* V, then
SI n S2 and SI U S2 are minimum cuts.

ii) Suppose I V I is even, and there exists a minimum cut S* with I S* I even. Show
that there exists a solution So to the problem

min { 2: Ce: IS I Odd}
0CSCV eE6(S)

such that either SO C S* or So C N \ S*.

11. Exercises 719

Figure 11.4

29. Describe a polynomial algorithm to (a) compute Cw in problem (8.1) and (b) find an
optimal solution Sand y* as given in Proposition 8.1.

30. Consider the fractional packing problem given by

1'/w = {max ly: yA ~ W, Y E R':'},

where A is the basis-element incidence matrix of a matroid M, and also consider the
integer packing problem given by

Cw = {max ly: yA ~ W, Y E Z,:,}.

i) Express 1'/w as the minimum of a set of objects.

ii) Give polynomial algorithms to calculate 1'/1 and ~1'

iii) Does the integer round-up property hold, that is f1'/w] = ~w?

iv) Apply these results to the graphic matroid of Figure 8.1 with W = 1.

31. Solve the max-cut problem maxocscv LeEO(S) Ce in the graph of Figure 11.5 using
formulation Q(f) and a cutting-plane algorithm.

32. i) Prove Theorem 9.4.

ii) Deduce that when f is a matroid rank function, R (f) is integral. What are its
extreme points (see exercise 1O)?

3

9

Figure 11.5

References

R. Aboudi and G. L. Nemhauser (1987). A Strong Cutting Plane Algorithm for an Assignment Problem with Side
Constraints, Report J-87-3, Industrial and Systems Engineering, Georgia Institute of Technology.

N. Agin (1966). Optimum Seeking with Branch-and-Bound, Management Science 13, BI76-BI85.

S. Ahn, C. Cooper, G. Cornuejols, and A. M. Frieze (1988). Probabilistic Analysis ofa Relaxation for the
k-Median Problem, Mathematics of Operations Research 13,1-31.

A. V. Aho, J. E. Hopcroft, andJ. D. Ullman (1974). The Design andAnalysisofComputer Algorithms, Addison
Wesley.

A. I. Ali and H. Thiagarajan (1986). A Network Based Enumeration Algorithm for Set Partitioning, Department
of General Business, University of Texas at Austin.

R. P. Anstee and M. Farber (1984). Characterization of Totally Balanced Matrices, Journal of Algorithms 5,
215-230.

J. P. Arabeyre, J. Fearnley, E C. Steiger, and W. Teather (1969). The Airline Crew Scheduling Problem: A Survey,
Transportation Science 3, 140-163.

J. Araoz (1973). Polyhedral Neopolarities, Doctoral Thesis, University of Waterloo, Waterloo, Ontario.

J. Araoz and E. L. Johnson (1981). Some Results on Polyhedra of Semigroup Problems, SIAM Journal on
Algebraic and Discrete Methods 3, 244-258.

D. Avis (1980). A Note on Some Computationally Difficult Set Covering Problems, Mathematical Programming
8,138-145.

D. Avis (1983). A Survey of Heuristics for the Weighted Matching Problem, Networks 13,475-494.

D. A. Babayev (1974). Comments on a Note of Frieze, Mathematical Programming 7,249-252.

A. Bachem and M. Grotschel (1982). New Aspects of Polyhedral Theory, in B. Korte, ed., Modern Applied
Mathematics, Optimization and Operations Research , North-Holland, pp. 51-106.

A. Bachem, M. Grotschel, and B. Korte, eds. (1983). Mathematical Programming: The State of the Art, Springer.

A. Bachem, E. L. Johnson, and R. Schrader (1982). A Characterization of Minimal Valid-Inequalities for Mixed
Integer Programs, Operations Research Letters 1, 63-66.

A. Bachem and R. Kannan (1984). Lattices and the Basis Reduction Algorithm. Report CMU-CS-84-112,
Department of Computer Science, Carnegie-Mellon University.

A. Bachem and R. Schrader (1980). Minimal Inequalities and Subadditive Duality, SIAM Journal on Control and
Optimization 18,437 -443.

E. K. Baker (1981). Efficient Heuristic Algorithms for the Weighted Set Covering Problem, Computers and
Operations Research 8, 303-310.

E. K. Baker and M. L. Fisher (1981). Computational Results for Very Large Air Crew Scheduling Problems,
Omega 9, 613-618.

E. Balas (1965). An Additive Algorithm for Solving Linear Programs with Zero-One Variables, Operations
Research 13,517-546.

E. Balas (1967). Discrete Programming by the Filter Method, Operations Research 15,915-957.

E. Balas (1975a). Facets of the Knapsack Polytope, Mathematical Programming 8, 146-164.

E. Balas (1975b). Disjunctive Programming: Cutting Planes from Logical Conditions, in Nonlinear Program
ming 2, O. L. Mangasarian et al., eds., Academic Press, pp. 279-312.

E. Balas (1979). Disjunctive Programming, Annals of Discrete Mathematics 5,3-51.

721

722 References

E. Balas (1980). Cutting Planes from Conditional Bounds: A New Approach to Set Covering, Mathematical
Programming Study, 12, 19-36.

E. Balas and N. Christofides (1981). A Restricted Lagrangean Approach to the Traveling Salesman Problem,
Mathematical Programming 21,19-46.

E. Balas and A. Ho (1980). Set Covering Algorithms Using Cutting Planes, Heuristics, and Subgradient
Optimization: A Computational Study, Mathematical Programming Study 12, 37 -60.

E. Balas and R. Martin (1980). Pivot and Complement: A Heuristic for 0-1 Programming, Management Science
26,86-96.

E. Balas and S. M. Ng (1985). On the Set Covering Polytope I: All Facets with Coefficients in {O, 1, 2},
MSSR-522, Graduate School ofIndustrial Administration, Carnegie-Mellon University.

E. Balas and M. Padberg (1972). On the Set Covering Problem, Operations Research 20, 1152-1161.

E. Balas and M. Padberg (1975). On the Set Covering Problem: II. An Algorithm for Set Partitioning, Operations
Research 23, 74-90.

E. Balas and M. Padberg (1976). Set Partitioning: A Survey, SIAM Review 18, 710-760.

E. Balas and W. R. Pulleyblank (1983). The Perfectly Matchable Subgraph Polytope of a Bipartite Graph,
Networks 13,486-516.

E. Balas and M. J. Saltzman (1986). Facets of the Three-Index Assignment Polytope, MSRR-529., Graduate
School ofIndustrial Administration, Carnegie-Mellon University.

E. Balas and P. Toth (1985). Branch and Bound Methods, in Lawler, Lenstra et al., pp. 361-403.

E. Balas and E. Zemel (1978). Facets of the Knapsack Polytope from Minimal Covers, SIAM Journal on Applied
Mathematics 34,119-148.

E. Balas and E. Zemel (1980). An Algorithm for Large Zero-One Knapsack Problems, Operations Research 28,
1130-1145.

E. Balas and E. Zemel (1984). Lifting and Complementing Yields all the Facets of Positive Zero-One
Programming Polytopes, in Mathematical Programming, Proceedings 0/ the International Conference on
Mathematical Programming, R. W. Cottle et al., eds., pp. 13-24.

M. L. Balinski (1965). Integer Programming: Methods, Uses, Computation, Management Science 14,253-313.

M. L. Balinski (1967). Some General Methods in Integer Programming, in Nonlinear Programming, J. Abadie,
ed., Wiley, pp. 221-247.

M. L. Balinski (1970a). On Recent Developments in Integer Programming, in Proceedings 0/ the Princeton
Symposium on Mathematical Programming, H. Kuhn, ed., pp. 267 -302.

M. L. Balinski (1970b). On Maximum Matching, Minimum Covering and Their Connections, in Proceedings 0/
the Princeton Symposium on Mathematical Programming, H. Kuhn, ed., pp. 303-312.

M. L. Balinski (1972). Establishing the Matching Polytope, Journal 0/ Combinatorial Theory D13, 1-13.

M. L. Balinski, ed., (1974). Approaches to Integer Programming, Mathematical Programming Study 2.

M. L. Balinski and A. J. Hoffman, eds. (1978). Polyhedral Combinatorics, Mathematical Programming Study 8.

M. L. Balinski and R. E. Quandt (1964). On an Integer Program for a Delivery Problem, Operations Research 12,
300-304.

M. L. Balinski and K. Spielberg (1969). Methods for Integer Programming: Algebraic, Combinatorial, and
Enumerative, in Progress in Operations Research, Relationship Between Operations and the Computer,
Volume III, J. S. Aranofsky, ed., Wiley, pp. 195-292.

M. O. Ball, L. D. Bodin and R. Dial (1983). A Matching Based Heuristic for Scheduling Mass Transit Crews and
Vehicles, Transportation Science 17, 4-31.

M. O. Ball and U. Derigs (1983). An Analysis of Alternative Strategies for Implementing Matching Algorithms,
Networks 13, 517-550.

M. Ball and M. Magazine (1981). The Design and Analysis of Heuristics, Networks 11,215-219.

M. O. Ball and R. Taverna (1985). Sensitivity Analysis for the Matching Problem and Its Use in Solving
Matching Problems with a Single-Side Constraint, Annals o/Operations Research 4, 25-56.

F. Barahona, M. Grotschel, and A. R. Mahjoub (1985), Facets of the Bipartite Subgraph Polytope, Mathematics
o/Operations Research 10,340-358.

F. Barahona and A. R. Mahjoub (1986). On the Cut Polytope, Mathematical Programming 36, 157 -173.

I. Barany, J. Edmonds, and L. A. Wolsey (1986). Packing and Covering a Tree by Subtrees, Combinatorica 6,
245-257.

References 723

I. Barany, T. J. Van Roy, and L. A. Wolsey (1984). Un capacitated Lot-Sizing: The Convex Hull of Solutions,
Mathematical Programming Study 22, 32-43.

R. S. Barr, F. Glover, and D. Klingman (1981). A New Optimization Method for Large Scale Fixed Charge
Transportation Problems, Operations Research 29,448-463.

J. J. Bartholdi III (1981). A Good Submatrix is Hard to Find, Operations Research Letters 1,190-193.

S. Baum and L. E. Trotter, Jr. (1977). Integer Rounding and Polyhedral Decomposition of Totally Unimodular
Systems, in Optimization and Operations Research, R. Henn, B. Korte, and W. Oettli, eds., Lecture Notes in
Economics and Mathematical Systems 157, Springer, pp. 15-23.

S. Baum and L. E. Trotter, Jr. (1981). Integer Rounding for Polymatroid and Branching Optimization Problems,
SIAM Journal on Algebraic and Discrete Methods 2,416-425.

S. Baum and L. E. Trotter, Jr. (1982). Finite Checkability for Integer Rounding Properties in Combinatorial
Programming Problems, Mathematical Programming 22,141-147.

M. S. Bazarra and J. J. Jarvis (1977). Linear Programming and Network Flows, Wiley.

E. M. L. Beale (1965). Survey ofInteger Programming, Operational Research Quarterly 16, 219-228.

E. M. L. Beale (1968). Mathematical Programming in Practice, Wiley.

E. M. L. Beale (1979). Branch and Bound Methods for Mathematical Programming Systems, Annals o/Discrete
Mathematics 5, 201-219.

E. M. L. Beale (1983). A Mathematical Programming Model for the Long-Term Development of an Off-Shore
Gas Field. Discrete Applied Mathematics 5, 1-10.

E. M. L. Beale and J. J. H. Forrest (1976). Global Optimization Using Special Ordered Sets, Mathematical
Programming 10,52-69.

E. M. L. Beale and J. A. Tomlin (1970). Special Facilities in a General Mathematical Programming System for
Nonconvex Problems using Ordered Sets of Variables, in Proceedings o/the Fifth International Conference on
Operational Research, J. Lawrence, ed., Tavistock Publications, pp. 447-454.

J. E. Beasley (1984). An Algorithm for the Steiner Problem in Graphs, Networks 14, 147-160.

D. E. Bell (1977). A Theorem Concerning the Integer Lattice. Studies in Applied Mathematics 56, 187-188.

D. E. Bell and M. L. Fisher (1975). Improved Integer Programming Bounds Using Intersections of Corner
Polyhedra, Mathematical Programming 8,345-368.

D. E. Bell and J. F. Shapiro (1977). A Convergent Duality Theory for Integer Programming, Operations Research
25,419-434.

R. Bellman (1957). Dynamic Programming, Princeton University Press.

R. E. Bellman (1958). On a Routing Problem, Quarterly of Applied Mathematics 16, 87 -90.

R. E. Bellman and S. E. Dreyfus (1962). Applied Dynamic Programming, Princeton University Press.

M. Bellmore and J. F. Malone (1971). Pathology of Traveling Salesman Subtour Elimination Algorithms.
Operations Research 19,278-307.

M. Bellmore and H. D. Ratliff (1971). Set Covering and Involutory Bases, Management Science 18, 194-206.

J. F. BenderS (1962). Partitioning Procedures for Solving Mixed Variables Programming Problems, Numerische
Mathematik 4,238-252.

M. Benichou, J. M. Gauthier, P. Girodet, G. Hentges, G. Ribiere and O. Vincent (1971). Experiments in Mixed
Integer Linear Programming, Mathematical Programming 1, 76-94.

M. Benichou, J. M. Gauthie~, G. Hentges, and G. Ribiere (1977). The Efficient Solution of Large Scale Linear
Programming Problems-Some Algorithmic Techniques and Computation Results, Mathematical Program
ming 13, 280-322.

A. Ben-Israel and A. Charnes (1962). On Some Problems of Diophantine Programming, Cahiers du Centre
dEtudes de Recherche Operationelle 4,215-280.

C. Berge (1957). Two Theorems in Graph Theory, Proceedings o/the National Academy o/Science 43,842-844.

C. Berge (1960). Les Problemes de Colorations en Theorie des Graphes, Publication 0/ the Institute 0/ Statistics,
University 0/ Paris 9, 123-160.

C. Berge (1972). Balanced Matrices, Mathematical Programming 2, 19-31.

C. Berge (1973). Graphs and Hypergraphs, North-Holland.

C. Berge and V. Chvatal, eds. (1984). Topics on Perfect Graphs (Annals 0/ Discrete Mathematics 21).

D. P. Bertsekas (1985). A United Framework for Primal-Dual Methods in Minimum Cost Network Flow
Problems, Mathematical Programming 32, 125-145.

724 References

O. Bilde and J. Krarup (1977). Sharp Lower Bounds and Efficient Algorithms for the Simple Plant Location
Problem, Annals of Discrete Mathematics 1, 79-97.

R. E. Bixby (1982). Matroids and Operations Research, in Advanced Techniques in the Practice of Operations
Research, H. J. Greenberg, F. H. Murphy, and S. H. Shaw, eds., North-Holland, pp. 333-458.

R. E. Bixby (1984). Recent Algorithms for Two Versions of Graph Realization and Remarks on Applications to
Linear Programming, in Pulleyblank, pp. 39-67.

R. E. Bixby and W. H. Cunningham (1980). Converting Linear Programs to Network Problems, Mathematics of
Operations Research 5, 321-357.

C. E. Blair (1976). Two Rules for Deducing Valid Inequalities for 0-1 Problems, SIAM Journal of Applied
Mathematics 31, 614-617.

C. E. Blair (1978). Minimal Inequalities for Mixed Integer Programs, Discrete Mathematics 24, 147 -151.

C. E. Blair and R. G. Jeroslow (1977). The Value Function ofa Mixed Integer Program 1, Discrete Mathematics
19, 121-138.

C. E. Blair and R. G. Jeroslow, (1982). The Value Function of a Mixed Integer Program, Mathematical
Programming 23, 237 -273.

C. E. Blair and R. G. Jeroslow (1984). Constructive Characterizations of the Value Function ofa Mixed-Integer
Program I, Discrete Applied Mathematics 9, 217-233.

C. E. Blair and R. G. Jeroslow (1985). Constructive Characterizations of the Value Function ofa Mixed-Integer
Program II, Discrete Applied Mathematics 10, 227-240.

C. E. Blair, R. G. Jeroslow, and J. K. Lowe (1986). Some Results and Experiments in Programming Techniques
for Propositional Logic, School of Management, Georgia Institute of Technology.

R. G. Bland (1988). A Class of Production Planning Problems Solvable by Network Flows, to appear in
Operations Research.

R. G. Bland, D. Goldfarb, and M. J. Todd (1981). The Ellipsoid Method: A Survey, Operations Research 29,
1039-1091.

R. G. Bland, H. C. Huang, and L. E. Trotter (1984). Graphical Properties Related to Minimal Imperfection,
Annals of Discrete Mathematics 21,181-192.

R. G. Bland and D. L. Jensen (1987). On the Computational Behavior of a Polynomial-Time Network Flow
Algorithm, School of Operations Research and Industrial Engineering, Cornell University.

F. Bock (1971). An Algorithm to Construct a Minimum Directed Spanning Tree in a Directed Network, in
Developments in Operations Research, Vol. 1, B. Avi-Itzhak, ed., Gordon and Breach, pp. 29-44.

L. Bodin, B. Golden, A. Assad, and M. Ball (1983). Routing and Scheduling of Vehicles and Crews: The State of
the Art, Computers and Operations Research 10,69-211.

J. A. Bondy and U. S. R. Murty (1976). Graph Theory with Applications, Macmillan.

E. Bonomi and J. L. Lutton (1984). The N-City Travelling Salesman Problem: Statistical Mechanics and the
Metropolis Algorithm, SIAM Review 26, 551-568.

K. H. Borgwardt (1982a). Some Distribution-Independent Results about the Asymptotic Order of the Average
Number of Pivot Steps of the Simplex Method, Mathematics of Operations Research 7,441-462.

K. H. Borgwardt (1982b). The Average Number of Pivot Steps Required by the Simplex-Method Is Polynomial,
Zeitschrift fur Operations Research 26, 157 -177.

I. Borosh and L. L. Treybig (1976). Bounds on Positive Integral Solutions of Linear Diophantine Equations,
Proceedings of the American Mathematical Society 55,299-304.

V. J. Bowman, Jr., and G. L. Nemhauser (1970). A Finiteness Proof for Modified Dantzig Cuts in Integer
Programming, Naval Research Logistics Quarterly 17,309-313.

S. Boyd, W. R. Pulleyblank, and G. Cornuejols (1987). TRAVEL-An Interactive Traveling Salesman Package
for the IBM Personal Computer. Operations Research Letters 6, 141-144.

G. H. Bradley, G. G. Brown, and G. W. Graves (1977). Design and Implementation of Large Scale Primal
Transshipment Algorithms, Management Science 24, 1-34.

G. H. Bradley, P. L. Hammer, and L. A. Wolsey (1974). Coefficient Reduction for Inequalities in 0-1 Variables,
Mathematical Programming 7, 263-282.

A. L. Brearley, G. Mitra, and H. P. Williams (1975). An Analysis of Mathematical Programming Problems Prior
to Applying the Simplex Method, Mathematical Programming 8, 54-83.

R. Breu and C. A. Burdet (1974). Branch and Bound Experiments in Zero-One Programming, Mathematical
Programming Study 2,1-50.

References 725

C. Brezovec, G. Cornuejols, and F. Glover (1986). Two Algorithms for Weighted Matroid Intersection, Mathe
matical Progrmaming 36, 39-53.

R. Brooks and A. Geoffrion (1966). Finding Everett's Lagrange Multipliers by Linear Programming, Operations
Research 14, 1149-1153.

G. G. Brown and W. Wright (1984). Automatic Identification of Embedded Network Rows in Large Scale
Optimization Models, Mathematical Programming 29, 41-46.

C. A. Burdet and E. L. Johnson (1974). A Subadditive Approach to the Group Problem ofInteger Programming,
Mathematical Programming 2,51-71.

C. A. Burdet and E. L. Johnson (1977). A Subadditive Approach to Solve Linear Integer Programs, Annals of
Discrete Mathematics 1, 117-144.

R. E. Burkhard (1984). Quadratic Assignment Problems, European Journal of Operations Research 15,
283-289.

R. E. Burkhard and V. Derigs (1980). Assignment and Matching Problems: Solutions Methods with Fortran
Programs, Springer.

M. Burlet and J. Fonlupt (1984). Polynomial Algorithm to Recognize a Meyniel Graph, Annals of Discrete
Mathematics 21,225-252.

A. V. Cabot and S. S. Erenguc (1984). Some Branch-and-Bound Procedures for Fixed-cost Transportation
Problems, Naval Research Logistics Quarterly 31, 145-154.

P. M. Camerini, L. Fratta, and F. Maffioli (1975). On Improving Relaxation Methods by Modified Gradient
Techniques, Mathematical Programming 3, 26-34.

P. Camion (1965). Characterization of Totally Unimodular Matrices, Proceedings of the American Mathematical
Society 16, 1068-1073.

G. Carpaneto and P. Toth (1980). Some New Branching and Bounding Criteria for the Asymmetric Travelling
Salesman Problem. Management Science 26,736-743.

J. W. S. Cassels (1971). An Introduction to the Theory o/Numbers, Springer.

L. Chalmet and L. F. Gelders (1977). Lagrangean Relaxations for a Generalized Assignment-Type Problem, in
Advances in Operations Research, M. Roubens, ed., North-Holland, pp. 103-110.

A. K. Chandra, D. S. Hirshberg, and C. K. Wong (1976). Approximate Algorithms for some Generalized
Knapsack Problems, Theoretical Computer Science 3, 293-304.

R. Chandrasekaran (1969). Total Unimodularity of Matrices, SIAM Journal 11, 1032-1034.

R. Chandrasekaran (1981). Polynomial Algorithms for Totally Dual Integral Systems and Extensions, Annals 0/
Discrete Mathematics 11, 39-51.

G. J. Chang and G. L. Nemhauser (1984). The k-Domination and k-Stability Problems on Sun-Free Chordal
Graphs, SIAM Journal on Algebraic and Discrete Methods 5, 332-345.

G. J. Chang and G. L. Nemhauser (1985). Covering, Packing and Generalized Perfection, SIAM Journal on
Algebraic and Discrete Methods 6, 109-132.

A. Charnes and W. W. Cooper (1961). Management Models and Industrial Application of Linear Programming,
Vols. I and II, Wiley.

D. S. Chen and S. Zionts (1976). Comparison of Some Algorithms for Solving the Group Theoretic Program
ming Problem, Operations Research 24, 1120-1128.

D. C. Cho, E. L. Johnson, M. W. Padberg, and M. R. Rao (1983), On the Uncapacitated Plant Location
Problem I: Valid Inequalities and Facets, Mathematics o/Operations Research 8, 579-589.

D. C. Cho, M. W. Padberg, and M. R. Rao (1983), On the Uncapacitated Plant Location Problem II: Facets and
Lifting Theorems, Mathematics of Operations Research 8, 590-612.

N. Christo fides (1970). The Shortest Hamiltonian Chain ofa Graph, SIAM Journal of Applied Mathematics 19,
689-696.

N. Christofides (1975a). Graph Theory: An Algorithmic Approach, Academic Press.

N. Christofides (1975b). Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem,
Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University.

N. Christofides (1985a). Vehicle Routing, in Lawler, Lenstra et al., pp. 431-448.

N. Christofides (1985b). Vehicle Routing, in O'hEigeartaigh et al., pp. 148-163.

N. Christo fides and S. Korman (1975). A Computational Survey of Methods for the Set Covering Problem,
Management Science 21,591-599.

N. Christofides, A. Mingozzi, P. Toth, and M. Sandi, eds. (1979). Combinatorial Optimization, Wiley.

726 References

Y. J. Chu and T. H. Liu (1965). On the Shortest Arborescence of Directed Graphs, Scientia Sinica 14, 1390-140.

V. Chvatal (1973a). Edmonds Polytopes and a Hierarchy of Combinatorial Problems, Discrete Mathematics 4,
305-337.

V. Chvatal (1973b). Edmonds Polytopes and Weakly Hamiltonian Graphs, Mathematical Programming 5,
29-40.

V. Chvatal (1975). On Certain Polytopes Associated with Graphs, Journals of Combinatorial Theory B13,
138-154.

V. Chvatal (1979). A Greedy Heuristic for the Set Covering Problem, Mathematics of Operations Research 4,
233-235.

V. Chvatal (1980). Hard Knapsack Problems, Operations Research 28, 1402-1411.

V. Chvatal (1983). Linear Programming, Freeman.

G. Clarke and J. W. Wright (1964). Scheduling of Vehicles from a Central Depot to a Number of Delivery Points,
Operations Research 12,568-581.

E. G. Coffman and R. L. Graham (1972). Optimal Scheduling for Two-Processor Systems, Acta Informatica 1,
200-213.

M. Conforti and G. Cornuejols (1984). Submodular Set Functions, Matroids and the Greedy Algorithm: Tight
Worst-Case Bounds and Some Generalizations of the Rado-Edmonds Theorem, Discrete Applied Mathe
matics 7, 251-274.

A. R. Conn and G. Cornuejols (1987). A Projection Method for the Un capacitated Facility Location Problem,
WP No. 26-86-87, Graduate School ofIndustrial Administration, Carnegie-Mellon University.

S. A. Cook (1971). The Complexity of Theorem-Proving Procedures, Proceedings of the 3rd Annual ACM
Symposium on Theory of Computing Machinery, pp. 151-158, ACM.

W. Cook (1983a). Operations that Preserve Total Dual Integrality, Operations Research Letters 2, 31-35.

W. Cook (1983b). A Minimal Totally Dual Integral Defining System for the b-Matching Polyhedron, SIAM
Journal on Algebraic and Discrete Methods 4, 212-220.

W. Cook (1986). On Box Totally Dual Integral Polyhedra. Mathematical Programming 34, 48-61.

W. Cook, A. M. H. Gerards, A. Schrijver, and E. Tardos (1986). Sensitivity Results in Integer Programming,
Mathematical Programming 34,251-264.

W. Cook, L. Lovasz, and A. Schrijver (1984). A Polynomial-Test for Total Dual Integrality in Fixed Dimension,
Mathematical Programming Study 22, 64-69.

W. Cook and W. R. Pulleyblank (1987). Linear Systems for Constrained Matching Problems, Mathematics of
Operations Research 12, 97 -120.

G. Cornuejols (1986). General Factors of a Graph, Graduate School of Industrial Administration, Carnegie
Mellon University.

G. Cornuejols, M. L. Fisher, and G. L. Nemhauser (l977a). Location of Bank Accounts to Optimize Float: An
Analytic Study of Exact and Approximate Algorithms, Management Science 23, 789-810.

G. Cornuejols, M. L. Fisher, and G. L. Nemhauser (1977b). On the Uncapacitated Location Problem, Annals of
Discrete Mathematics 1, 163-177.

G. Cornuejols, J. Fonlupt, and D. Naddef (1985). The Traveling Salesman Problem on A Graph and Some
Related Integer Polyhedra, Mathematical Programming 33,1-27.

G. Cornuejols and D. Hartvigsen (1986). An Extension of Matching Theory, Journal of Combinatorial Theory
B40, 285-296.

G. Cornuejols, D. Naddef, and W. R. Pulleyblank (1983). Halin Graphs and the Traveling Salesman Problem,
Mathematical Programming 26, 287-294.

G. Cornuejols and G. L. Nemhauser (1978). Tight Bounds for Christo fides' Traveling Salesman Heuristic,
Mathematical Programming 14, 116-121.

G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey (I980a). A Canonical Representation of Simple Plant
Location Problems and its Applications, SIAM Journal on Algebraic and Discrete Methods 1, 261-272.

G. Cornuejols, G. L. Nemhauser and L. A. Wolsey (1980b). Worst Case and Probabilistic Analysis of Algorithms
for a Location Problem, Operations Research 28,847 -858.

G. Cornuejols, G. L. Nemhauser, and L. A. Wolsey (1984). The Uncapacitated Facility Location Problem,
Report No. 605, Operations Research and Industrial Engineering, Cornell University (to appear in Francis
and Mirchandini).

G. Cornuejols and W. R. Pulleyblank (1982). The Travelling Salesman Polytope and {O, 2}-Matchings, Annals of
Discrete Mathematics 16, 27 -55.

References 727

G. Cornuejols and W. R. Pulleyblank (1983). Critical Graphs, Matchings and Tours, or a Hierarchy of
Relaxations for the Traveling Salesman Problem, Combinatorica 3, 35-52.

G. Cornuejols and A. Sassano (1986). On the 0,1 Facets of the Set Covering Polytope, Report 153, Instituto di
Analisi dei Sistemi ed Informatica del C.N.R., Rome.

G. Cornuejols and J. M. Thizy (1982a). A Primal Approach to the Simple Plant Location Problem, SIAM
Journal on Algebraic and Discrete Methods 3,504-510.

G. Cornuejols and J. M. Thizy (1982b). Some Facets of the Simple Plant Location Polytope, Mathematical
Programming 23, 50-74.

Y. Crama (1986). Recognition Problems for Special Classes of Pseudo-Boolean Functions, RUTCOR, Rutgers
University.

G. A. Croes (1958). A Method for Solving Traveling Salesman Problems, Operations Research 6, 791-812.

H. P. Crowder and E. L. Johnson (1973). Use of Cyclic Group Methods in Branch and Bound, in Mathematical
Programming, T. C. Hu and S. M. Robinson, eds., Academic Press, pp. 213-216.

H. P. Crowder, E. L. Johnson, and M. W. Padberg (1983). Solving Large-Scale Zero-One Linear Programming
Problems, Operations Research 31, 803":834.

H. P. Crowder and M. W. Padberg (1980). Solving Large-Scale Symmetric Traveling Salesman Problems to
Optimality, Management Science, 26, 495-509.

F. H. Cullen, J. J. Jarvis, and H. D. Ratliff(1981). Set Partitioning Heuristics for Interactive Routing, Networks
11,125-143.

W. H. Cunningham (1977). An Unbounded Matroid Intersection Polyhedron, Linear Algebra and Its Applica
tions 16, 209-215.

W. H. Cunningham (1983). A Class of Linear Programs Convertible to Network Problems, Operations Research
32,387-391.

W. H. Cunningham (1984). Testing Membership in Matroid Polyhedra, Journal of Combinatorial Theory 36B,
161-188.

W. H. Cunningham (1985). On Submodular Function Minimization, Combinatorica 5, 185-192.

W. H. Cunningham (1986). Improved Bounds for Matroid Partition and Intersection Algorithms, SIAM Journal
on Computing 15, 948-957.

W. Cunningham and A. Frank (1985). A Primal-Dual Algorithm for Submodular Flows, Mathematics of
Operations Research 10,251-262.

W. H. Cunningham and A. B. Marsh III (1978). A Primal Algorithm for Optimum Matching, Mathematical
Programming Study 8, 50-72.

R. J. Dakin (1965). A Tree Search Algorithm for Mixed Integer Programming Problems, Computer Journal 8,
250-255.

G. B. Dantzig (1957). Discrete-Variable Extremum Problems, Operations Research 5,266-277.

G. B. Dantzig (1959). Note on Solving Linear Programs in Integers, Naval Research Logistics Quarterly 6,
75-76.

G. B. Dantzig (1960). On the Significance of Solving Linear Programming Problems with Some Integer
Variables, Econometrica 28, 30-44.

G. B. Dantzig (1963). Linear Programming and Extensions, Princeton University Press.

G. B. Dantzig and D. R. Fulkerson (1956). On the Max-Flow Min-Cut Theorem of Networks, in Linear
Inequalities and Related Systems, H. W. Kuhn and A. W. Tucker, eds., Princeton University Press,
pp. 215-221.

G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson (1954). Solution of a Large-Scale Traveling Salesman
Problem, Operations Research 2, 393-410.

G. B. Dantzig, D. R. Fulkerson, and S. M. Johnson (1959). On a Linear-Programming, Combinatorial Approach
to the Traveling Salesman Problem, Operations Research 7, 58-66.

G. B. Dantzig, and P. Wolfe (1960). Decomposition Principle for Linear Programs, Operations Research 8,
101-111.

M. Davis and H. Putnam (1960). A Computing Procedure for Quantification Theory, Journal of the Association
for Computing Machinery 7,201-215.

G. de Ghellinck and J. P. Vial (1986). A Polynomial Newton Method for Linear Programming, Alg~rithmica 1,
425-453.

G. de Ghellinck and J. P. Vial (1987). An Extension of Karmarkar's Algorithm for Solving a System of Linear
Homogeneous Equations on the Simplex, Mathematical Programming 39,79-92.

728 References

E. V. Denardo (1982). Dynamic Programming Models and Applications, Prentice-Hall.

U. Derigs (1985). Postoptimal Analysis for Matching Problems, Methods of Operations Research 49, 215-221.

U. Derigs (1986). Solving Matching Problems Efficiently: A New Primal Approach, Networks 16, 1-16.

E. W. Dijkstra (1959). A Note on Two Problems in Connection with Graphs, Numerische Mathematik 1,
269-271.

G. A. Dirac (1961). On Rigid Circuit Graphs, Ahh. Math. Sem., Univ. Hamburg 25, pp. 71-76.

G. Dobson (1982). Worst-Case Analysis of Greedy Heuristics for Integer Programming with Nonnegative Data,
Mathematics of Operations Research 7, 515-531.

P. D. Domich, R. Kannan, and L. E. Trotter (1987). Hermite Normal Form Computation Using Modulo
Determinant Arithmetic, Mathematics of Operations Research 12,50-59.

S. E. Dreyfus and A. M. Law (1977). The Art and Theory of Dynamic Programming, Academic Press.

N. J. Driebeek (1966). An Algorithm for the Solution of Mixed Integer Programming Problems, Management
Science 12,576-587.

P. Duchet (1984). Classical Perfect Graph Conjecture on Special Graphs-A Survey, Annals of Discrete
Mathematics 21, 67-96.

M. E. Dyer (1984), An O(n) Algorithm for the Multiple Choice Knapsack LinearProgram, Mathematical
Programming 29,57-63.

W. L. Eastman (1958). Linear Programming with Pattern Constraints, Ph.D. Thesis, Harvard University.

J. Edmonds (1965a). Paths, Trees and Flowers, Canadian Journal of Mathematics 17,449-467.

J. Edmonds (1965b). Minimum Partition of a Matroid into Independent Subsets, Journal of Research of the
National Bureau of Standards 69B, 67 - 72.

J. Edmonds (1965c), Maximum Matching and a Polyhedron with 0-1 Vertices, Journal of Research of the
National Bureau of Standards 69B, 125-130.

J. Edmonds (1967a). Systems of Distinct Representatives and Linear Algebra, Journal of Research of the National
Bureau of Standards 71B, 241-245.

J. Edmonds (1967b). Optimum Branchings, Journal of Research of the National Bureau of Standards 71B,
233-240.

J. Edmonds (1970). Submodular Functions, Matroids and Certain Polyhedra, in Combinatorial Structures and
Their Applications, R. Guy et al., eds., Gordon and Breach, pp. 69-87.

J. Edmonds (1971). Matroids and the Greedy Algorithm, Mathematical Programming 1, 127 -136.

J. Edmonds (1973). Edge-Disjoint Branchings, in Combinatorial Algorithms, R. Rustin, ed., Academic Press,
pp.91-96.

J. Edmonds (1979). Matroid Intersection, Annals of Discrete Mathematics 4,39-49.
J. Edmonds and D. R. Fulkerson (1965). Transversals and Matroid Partition, Journal of Research of the National

Bureau of Standards 69B, 147-153.

J. Edmonds and D. R. Fulkerson (1970). Bottleneck Extrema, Journal of Combinatorial Theory 8, 299-306.

J. Edmonds and R. Giles (1977). A Min-Max Relation for Submodular Functions on Graphs, Annals of Discrete
Mathematics 1, 185-204.

J. Edmonds and R. Giles (1984). Total Dual Integrality of Linear Inequality Systems, in Pulleyblank,
pp.117-129.

J. Edmonds and E. L. Johnson (1970). Matching: A Well-Solved Class of Integer Linear Programs, in Proceed
ings of the Calgary International Conference on Combinatorial Structures and Their Applications, R. K. Guy
et al. eds., Gordon and Breach, pp. 89-92.

J. Edmonds and E. L. Johnson (1973). Matching, Euler Tours and the Chinese Postman, Mathematical
Programming 5, 88-124.

J. Edmonds and R. M. Karp (1972). Theoretical Improvements in Algorithmic Efficiency for Network Flow
Problems, Journal of the Associationfor Computing Machinery 19, 248-264.

M. A. Efroymson and T. L. Ray (1966). A Branch-and-Bound Algorithm for Plant Location, Operations
Research 14,361-368.

G. D. Eppen and R. K. Martin (1988). Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable
Redefinition, to appear in Operations Research.

D. Erlenkotter (1978). A Dual-Based Procedure for Uncapacitated Facility Location, Operations Research 26,
992-1009.

References 729

J. Etcheberry (1977). The Set Covering Problem: A New Implicit Enumeration Algorithm, Operations Research
25, 760-772.

S. Even and O. Kariv (1975). An O(n2
.
5

) Algorithm for Maximum Matching in General Graphs, Proceedings of
the 16th Annual Symposium on Foundations of Computer Science, 100-112.

H. Everett III (1963). Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of
Resources, Operations Research 11, 399-417.

M. Farber (1983). Characterization of Strongly Chordal Graphs, Discrete Mathematics 43, 173-189.

M. Farber (1984). Domination, Independent Domination and Duality in Strongly Chordal Graphs, Discrete
Applied Mathematics 7, 115-130.

D. Fayard and G. Plateau (1975). Resolution of the 0-1 Knapsack Problem: Comparison of Methods, Mathemat
ical Programming 3,272-307.

D. Fayard and G. Plateau (1982). An Algorithm for the Solution of the 0-1 Knapsack Problem, Computing 28,
269-287.

M. L. Fisher (1973). Optimal Solution of Scheduling Problems Using Lagrange Multipliers: Part I, Operations
Research 21, 1114-1127.

M. L. Fisher (1976). A Dual Algorithm for the One-Machine Scheduling Problem, Mathematical Programming
11,229-251.

M. L. Fisher (1980). Worst-Case Analysis of Heuristic Algorithms, Management Science 26, 1-18.

M. L. Fisher (1981). The Lagrangian Relaxation Method for Solving Integer Programming Problems, Manage
ment Science 27,1-18.

M.L. Fisher (1985). Interactive Optimization, Annals ojOperations Research 4, 541-556.

M. L. Fisher, A. Greenfield, R. Jaikumar, and J. T. Lester (1982). A Computerized Vehicle Routing Application,
Interfaces 12,42-52.

M. L. Fisher and D. S. Hochbaum (1980). Probabilistic Analysis of the Planar K-Median Problem, Mathematics
of Operations Research 5, 27-34.

M. L. Fisher and R. Jaikumar (1981). A Generalized Assignment Heuristic for Vehicle Routing, Networks 11,
109-124.

M. L. Fisher, R. Jaikumar, and L. N. Van Wassenhove (1986). A Multiplier Adjustment Method for the
Generalized Assignment Problem, Management Science 32, 1095-1103.

M. L. Fisher, B. J. Lageweg, J. K. Lenstra, and A. H. G. Rinnooy Kan (1983). Surrogate Duality Relaxation for
Job Shop Scheduling, Discrete Applied Mathematics 5, 65-76.

M. L. Fisher, G. L. Nemhauser and L. A. Wolsey (1978). Analysis of Approximation Algorithms for Maximizing
a Submodular Set Function II, Mathematical Programming Study 8,73-87.

M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey (1979). An Analysis of Approximations for Finding a
Maximum Weight Hamiltonian Circuit, Operations Research 27, 799-809.

M. L. Fisher, W. D. Northup, and J. F. Shapiro (1975). Using Duality to Solve Discrete Optimization Problems:
Theory and Computational Experience, Mathematical Programming Study 3, 56-94.

M. L. Fisher and J. F. Shapiro (1974). Constructive Duality in Integer Programming, SIAM Journal on Applied
Mathematics 27, 31-52.

M. L. Fisher and L. A. Wolsey (1982). On the Greedy Heuristic for Covering and Packing Problems, SIAM
Journal on Algebraic and Discrete Methods 3, 584-591.

L. R. Ford and D. R. Fulkerson (1956). Maximal flow Through a Network, Canadian Journal of Mathematics
8,399-404.

L. R. Ford, Jr. and D. R. Fulkerson (1962). Flows in Networks, Princeton University Press.

J. J. H. Forrest, J. P. H. Hirst, and J. A. Tomlin (1974). Practical Solution of Large Mixed Integer Programming
Problems with UMPIRE, Management Science 20,736-773.

B. L. Fox, J. K. Lenstra, A. H. G. Rinnooy Kan, and L. E. Schrage (1978). Branching from the Largest Upper
Bound: Folklore and Facts, European Journal of Operations Research 2, 191-194.

R. L. Francis and P. Mirchandani, eds. (1988). Discrete Location Theory, Wiley.

A. Frank (1975). Some Polynomial Algorithms for Certain Graphs and Hypergraphs, Proceedings of the 5th
British Combinatorial Conference, pp. 211-226.

A. Frank (1981). A Weighted Matroid Intersection Theorem, Journal of Algorithms 2, 328-336.

A. Frank (1982). An Algorithm for Submodular Functions on Graphs, Annals of Discrete Mathematics 16,
97-120.

730 References

A. Frank (1984). Submodular Flows, in Pulleyblank, pp. 147-166.

A. Frank and E. Tardos (1987). An Application of Simultaneous Approximation in Combinatorial Optimiza
tion, Combinatorica 7,49-66.

A. M. Frieze (1974). A Cost Function Property for Plant Location Problems, Mathematical Programming 7,
245-248.

A. M. Frieze (1976). Shortest Path Algorithms for Knapsack Type Problems, Mathematical Programming 11,
150-157.

A. M. Frieze (1986). On the Lagarias-Odlyzko Algorithm for the Subset Sum Problem, SIAM Journal on
Computing 15, 536-540.

A. M. Frieze and M. R. B. Clarke (1984). Approximation Algorithm for the m-Dimensional 0-1 Knapsack
Problem: Worst Case and Probabilistic Analyses, European Journal 0/ Operations Research 15, 100-109.

A. M. Frieze, G. Galbiati, and E Maffioli (1982). On the Worst-Case Performance of Some Algorithms for the
Asymmetric Traveling Salesman Problem, Networks 12,23-39.

K. R. Frisch (1955). The Logarithmic Potential Method of Convex Programming, Institute of Economics,
University of Oslo.

M. Fujii, T. Kasami, and K. Ninomiya (1969). Optimal Sequencing of Two Equivalent Processors, SIAM Journal
0/ Applied Mathematics 17, 784-789.

S. Fujishige (1986). A Capacity-Rounding Algorithm for the Minimum Cost Circulation Problem: A Dual
Framework of the Tardos Algorithm, Mathematical Programming 35,298-308.

D. R. Fulkerson (1968). Networks, Frames, Blocking Systems, in Mathematics a/the Decision Sciences: Part 1,
G. E Dantzig and A. E Veinott, Jr., eds., American Mathematical Society, pp. 303-334.

D. R. Fulkerson (1970a). Blocking Polyhedra, in Graph Theory and Its Applications, B. Harris, ed., Academic
Press, pp. 93-112.

D. R. Fulkerson (l970b). The Perfect Graph Conjecture and Pluperfect Graph Theorem, in Proceedings o/the
Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, R. C. Bose et al., eds.,
University of North Carolina Press, pp. 171-175.

D. R. Fulkerson (1971). Blocking and Antiblocking Pairs of Polyhedra, Mathematical Programming 1, 168-194.

D. R. Fulkerson (1972). Antiblocking Polyhedra, Journal o/Combinatorial Theory B12, 56-71.

D. R. Fulkerson (1973). On the Perfect Graph Theorem, Mathematical Programming, T. C. Hu and S. M.
Robinson, eds., Academic Press, pp. 69-76.

D. R. Fulkerson (1974). Packing Rooted Directed Cuts in a Weighted Directed Graph, Mathematical Program
ming 6, 1-13.

D. R. Fulkerson and D. A. Gross (1965). Incidence Matrices and Interval Graphs, Pacific Journal o/Mathemat
ics 15, 833-835.

D. R. Fulkerson, A. J. Hoffman, and R. Oppenheim (1974). On Balanced Matrices, Mathematical Programming
Study 1,120-132.

D. R. Fulkerson, G. L. Nemhauser, and L. E. Trotter, Jr. (1974). Two Computationally Difficult Set Covering
Problems that Arise in Computing the I-Width ofIncidence Matrices of Steiner Triple Systems, Mathemati
cal Programming Study 2, 72-81.

D. R. Fulkerson and D. B. Weinberger (1975). Blocking Pairs of Polyhedra Arising from Network Flows, Journal
o/Combinatorial Theory B18, 265-283.

M. L. Furst and R. Kannan (1987). Succinct Certificates for Almost All Subset Sum Problems, Computer
Science Department, Carnegie-Mellon University.

H. P. Gabow, Z. Galil, T. Spencer, and R. E. Tarjan (1986). Efficient Algorithms For Finding Minimum
Spanning Trees in Undirected and Directed Graphs, Combinatorica 6, 109-122.

H. P. Gacs and L. Lovasz (1981). Khachiyan's Algorithm for Linear Programming, Mathematical Programming
Study 14, 61-68

D. Gale (1968). Optimal Assignments in an Ordered Set: An Application of Matroid Theory, Journal 0/
Combinatorial Theory 4, 176-180.

G. Gallo and S. Pallottino (1986). Shortest Path Methods: A Unifying Approach, Mathematical Programming
Study 26, 38-64.

M. R. Garey and D. S. Johnson (1979). Computers and Intractibility: A Guide to the Theory 0/ J{{fP-Complete
ness, Freeman.

References 731

R. S. Garfinkel (1973). On Partitioning the Feasible Set in a Branch-and-Bound Algorithm for the Asymmetric
Traveling-Salesman Problem, Operations Research 21,340-343.

R. S. Garfinkel (1979). Branch and Bound Methods for Integer Programming, in Christofides, Mingozzi et aI.,
pp. 1-20.

R. S. Garfinkel, A. W. Neebe, and M. R. Rao (1974). An Algorithm for the M-median Plant Location Problem,
Transportation Science 8, 217 -236.

R. S. Garfinkel and G. L. Nemhauser (1969). The Set Partitioning Problem: Set Covering with Equality
Constraints, Operations Research 17,848-856.

R. S. Garfinkel and G. L. Nemhauser (1972a). Integer Programming, Wiley.

R. S. Garfinkel and G. L. Nemhauser (1972b). Optimal Set Covering: A Survey, in Perspectives On Optimiza
tion: A Collection of Expository Articles, A. M. Geoffrion, ed., pp. 164-183.

R. S. Garfinkel and G. L. Nemhauser (1973). A Survey ofInteger Programming Emphasizing Computation and
Relations Among Models, in Mathematical Programming, T. C. Hu and S. M. Robinson, eds., Academic
Press, pp. 77-155.

S. Gass (1975). Linear Programming, 4th ed. McGraw-Hill.

G. Gastou and E. L. Johnson (1986). Binary Group and Chinese Postman Polyhedra, Mathematical Program
ming 34, 1-33.

J. M. Gauthier and G. Ribiere (1977). Experiments in Mixed-Integer Programming Using Pseudo-Costs,
Mathematical Programming 12, 26-47.

F. Gavril (1972). Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and
Maximum Independent Set of a Chordal Graph, SIAM Journal on Computing 1, 183-191.

A. M. Geoffrion (1967). Integer Programming by Implicit Enumeration and Balas Method, SIAM Review 9,
178-190.

A. M. Geoffrion (1969). An Improved Implicit Enumeration Approach for Integer Programming, Operations
Research 17,437 -454.

A. M. Geoffrion (1970). Primal Resource-Directive Approaches for Optimizing Nonlinear Decomposable
Systems, Operations Research 18,375-403.

A. M. Geoffrion (1972). Generalized Benders Decomposition, Journal of Optimization Theory and Applications
10, 237-260.

A. M. Geoffrion (1974). Lagrangean Relaxation for Integer Programming, Mathematical Programming Study 2,
82-114.

A. M. Geoffrion (1976). A Guided Tour of Recent Practical Advances in Integer Linear Programming, Omega 4,
49-57.

A. M. Geoffrion and G. Graves (1974). Multicommodity Distribution System Design by Benders Decomposi
tion, Management Science 20, 822-844.

A. M. Geoffrion and R. E. Marsten (1972). Integer Programming Algorithms: A Framework and State-of-the
Art Survey, Management Science 18, 465-491.

A. M. Geoffrion and R. McBride (1978). Lagrangian Relaxation Applied to Capacitated Facility Location
Problems, AIlE Transactions 10,40-47.

A. M. Geoffrion and R. Nauss (1977). Parametric and Postoptimality Analysis in Integer Linear Programming,
Management Science 18, 453-466.

A. M. Gerards and A. Schrijver (1986). Matrices with the Edmonds-Johnson Property, Combinatorica 6,
365-379.

A. Ghouila-Houri (1962). Caracterisation des Matrices Totalement Unimodulaires, C.R. Academy of Sciences of
Paris 254, 1192-1194.

R. Giles (1978). A Balanced Hypergraph Defined by Certain Subtrees ofa Tree, ARS Combinatoria 6, 179-183.

R. Giles and W R. Pulleyblank (1979). Total Dual Integrality and Integral Polyhedra, Linear Algebra and Its
Applications 25, 191-196.

R. Giles and L. E. Trotter, Jr. (1981). On Stable Set Polyhedra for K1.3-Free Graphs, Journal of Combinatorial
Theory B31, 313-316.

P. C. Gilmore and R. E. Gomory (1966). The Theory and Computation of Knapsack Functions, Operations
Research 14, 1045-1074.

P. C. Gilmore, E. L. Lawler, and D. B. Shmoys (1985). Well-Solved Special Cases, in Lawler, Lenstra et aI.,
pp.87-144.

732 References

E Glover (1965). A Multiphase-Dual Algorithm for the Zero-One Integer Programming Problem, Operations
Research 13,879-919.

E Glover (1967). A Pseudo Primal-Dual Integer Programming Algorithm, Journal of Research of the National
Bureau of Standards 71B, 187-195.

E Glover (1968a). A New Foundation for a Simplified Primal Integer Programming Algorithm, Operations
Research 16,727-740.

E Glover (1968b). Surrogate Constraints, Operations Research 16, 741-749.

E Glover (1968c). A Note on Integer Programming and Integer Feasibility, Operations Research 16,1212-1216.

E Glover (1969). Integer Programming over a Finite Additive Group, SIAM Journal of Control 7, 213-231.

E Glover (1975). Surrogate Constraint Duality in Mathematical Programming, Operations Research 23,
434-451.

E Glover (1985). Future Paths for Integer Programming and Links to Artificial Intelligence, Report 85-8. Center
for Applied Artificial Intelligence, University of Colorado.

E Glover, D. Karney, and D. Klingman (1974). Implementation and Computational Comparisons of Primal,
Dual and Primal-Dual Computer Codes for Minimum Cost Network Flow Problems, Networks 4,191-212.

J. L. Goffin (1977). On the Convergence Rates of Sub gradient Optimization Methods, Mathematical Program
ming 13, 329-347.

B. L. Golden and A. A. Assad (1986). Perspectives on Vehicle Routing, Exciting New Developments, Operations
Research 34, 803-810.

B. L. Golden, L. D. Boden, T. Doyle, and W R. Stewart (1980). Approximate Traveling Salesman Algorithms,
Operations Research 28, 694- 711.

B. L. Golden and W R. Stewart (1985). Empirical Analysis of Heuristics, in Lawler, Lenstra et aI., pp. 207 -250.

M. C. Golumbic (1980). Algorithmic Graph Theory and Perfect Graphs, Academic Press.

R. E. Gomory (1958). Outline of an Algorithm for Integer Solutions to Linear Programs, Bulletin of the
American Mathematical Society 64,275-278.

R. E. Gomory (1960a). Solving Linear Programming Problems in Integers, in Combinatorial Analysis, R. E.
Bellman and M. Hall, Jr., eds., American Mathematical Society, pp. 211-216.

R. E. Gomory (1960b). An Algorithm for the Mixed Integer Problem, RM-2597, The Rand Corporation.

R. E. Gomory (1963a). An Algorithm for Integer Solutions to Linear Programs, in Recent Advances in
Mathematical Programming, R. Graves and P. Wolfe, eds., McGraw-Hill, pp. 269-302.

R. E. Gomory (1963b). An All-Integer Programming Algorithm, in Industrial Scheduling, J. E Muth and G. I.
Thompson, eds., Prentice-Hall, pp. 193-206.

R. E. Gomory (1965). On the Relation between Integer and Non-Integer Solutions to Linear Programs,
Proceedings of the National Academy of Science 53.260-265.

R. E. Gomory (1967). Faces of an Integer Polyhedron, Proceedings of the NationalAcademyofScience 57,16-18.

R. E. Gomory (1969). Some Polyhedra Related to Combinatorial Problems, Linear Algebra and Its Applications
2,451-558.

R. E. Gomory (1970). Properties of a Class of Integer Polyhedra, in Integer and Nonlinear Programming, J.
Abadie, ed., North-Holland, pp. 353-365.

R. E. Gomory and A. J. Hoffman (1963). On the Convergence of an Integer-Programming Process, Naval
Research Logistics Quarterly 10, 121-123.

R. E. Gomory and T. C. Hu (1961). Multi-Terminal Network Flows, SIAM Journal 9, 551-570.

R. E. Gomory and E. L. Johnson (1972). Some Continuous Functions Related to Corner Polyhedra, Mathemati
cal Programming 3,23-85.

R. E. Gomory and E. L. Johnson (1973). The Group Problem and Subadditive Functions, in Mathematical
Programming, T. C. Hu and S. M. Robinson, eds., Academic Press, pp. 157-184.

M. Gondran and M. Minoux (1984). Graphs and Algorithms, Wiley-Interscience.

G. A. Gorry, W D. Northup, and J. E Shapiro (1973). Computational Experience with a Group Theoretic
Integer Programming Algorithm, Mathematical Programming 4, 171-192.

G. A. Gorry and J. E Shapiro (1971). An Adaptive Group Theoretic Algorithm for Integer Programming
Problems, Management Science 7,285-306.

G. A. Gorry, J. E Shapiro, and L. A. Wolsey (1972). Relaxation Methods for Pure and Mixed Integer Program
ming Problems, Management Science 18, 229-239.

References 733

R. L. Graham (1966). Bounds for Certain Multiprocessing Anomalies, Bell System Technical Journal 45,
1563-1581.

S. C. Graves (1982). Using Lagrangean Techniques to Solve Hierarchial Production Planning Problems,
Management Science 28, 260-274.

P. Gray (1971). Exact Solution of the Fixed-Charge Transportation Problem, Operations Research 19,1529-1538.

H. Greenberg (1971). Integer Programming, Academic Press.

H. J. Greenberg and W. P. Pierskalla (1970). Surrogate Mathematical Programming, Operations Research 18,
924-939.

G. R. Grimmett and W. R. Pulleyblank (1985). Random Near-Regular Graphs and the Node Packing Problem,
Operations Research Letters 4, 169-174.

R. C. Grinold (1970). Lagrangean Subgradients, Management Science 17, 185-188.

R. C. Grinold (1972). Steepest Ascent for Large Scale Linear Programs, SIAM Review 14,447 -464.

M. Grotschel (1980a). On the Symmetric Travelling Salesman Problem: Solution of a 120-City Problem,
Mathematical Programming Study 12, 61-77.

M. Grotschel (1980b). On the Monotone Symmetric Travelling Salesman Problem: Hypohamiltonian/Hypo
traceable Graphs and Facets, Mathematics o/Operations Research 5,285-292.

M. Grotschel (1984). Developments in Combinatorial Optimization, in Perspectives in Mathematics: Anniver
sary o/Oberwolfach 1984, W. Jager, J. Moser, and R. Remmert, eds., Birkhauser, pp. 249-294.

M. Grotschel (1985). Polyhedral Combinatorics, in O'hEigeartaigh et aI., pp. 1-10.

M. Grotschel and O. Holland (1985). Solving Matching Problems with Linear Programming, Mathematical
Programming 33,243-259.

M. Grotschel, M. Junger, and G. Reinelt (1984). A Cutting Plane Algorithm for the Linear Ordering Problem,
Operations Research 32, 1195-1220.

M. Grotschel, M. Junger and G. Reinelt (1985a). On the Acyclic Subgraph Polytope, Mathematical Program
ming 33,1-27.

M. Grotschel, M. Junger, and G. Reinelt (1985b). Facets of the Linear Ordering Polytope, Mathematical
Programming 33, 43-60.

M. Grotschel, L. Lovasz, and A. Schrijver (1981). The Ellipsoid Method and Its Consequences in Combinatorial
Optimization, Combinatorica 1, 169-197.

M. Grotschel, L. Lovasz, and A. Schrijver (1984a). Polynomial Algorithms for Perfect Graphs, Annals o/Discrete
Mathematics 21, 325-356.

M. Grotschel, L. Lovasz, and A. Schrijver (l984b). Geometric Methods in Combinatorial Optimization, in
Pulleyblank (1984), pp. 167-184.

M. Grotschel, L. Lovasz, and A. Schrijver (1984c). Corregendum to Our Paper "The Ellipsoid Method and Its
Consequences in Combinatorial Optimization", Combinatorica 4, 291-295.

M. Grotschel, L. Lovasz and A. Schrijver (1988). Geometric Algorithms and Combinatorial Optimization,
Springer.

M. Grotschel and M. W. Padberg (1975). Partial Linear Characterizations of the Asymmetric Traveling Salesman
Polytope, Mathematical Programming 8,378-381.

M. Grotschel and M. W. Padberg (1979a). On the Symmetric Travelling Salesman Problem I: Inequalities,
Mathematical Programming 16,265-280.

M. Grotschel and M. W. Padberg (1979b). On the Symmetric Travelling Salesman Problem II: Lifting Theorems
and Facets, Mathematical Programming 16, 281-302.

M. Grotschel and M. W. Padberg (1985). Polyhedral Theory, in Lawler, Lenstra et al., pp. 251-302.

M. Grotschel and W. R. Pulleyblank (1986). Clique Tree Inequalities and the Symmetric Travelling Salesman
Problem, Mathematics o/Operations Research 11,537-569.

M. Grotschel and Y. Wakabayashi (1981a). On the Structure of the Monotone Asymmetric Travelling Salesman
Polytope I: Hypohamiltonian Facets, Discrete Mathematics 34, 43-59.

M. Grotschel and Y. Wakabayashi (1981b). On the Structure of the Asymmetric Travelling Salesman Polytope II:
Hypotraceable Facets, Mathematical Programming Study 14, 77-97.

B. Grunbaum (1967). Convex Polytopes, Wiley.

M. Guignard (1980). Fractional Vertices, Cuts and Facets ofthe Simple Plant Location Problem, Mathematical
Programming 12, 150-162.

734 References

M. Guignard (1982). Preprocessing and Optimization in Network Flow Problems with Fixed Charges, Methods
of Operations Research 45,235-256.

M. Guignard and K. Spielberg (1977). Reduction Methods for State Enumeration Integer Programming, Annals
of Discrete Mathematics 1, 273-286.

M. Guignard and K. Spielberg (1981), Logical Reduction Methods in Zero-One Programming (Minimal
Preferred Variables), Operations Research 29,49-74.

G. Gunawardane, S. Hoff, and L. Schrage (1981). Identification of Special Structure Constraints in Linear
Programs, Mathematical Programming 21,90-97.

G. Hadley (1962), Linear Programming, Addison-Wesley.

B. Hajek (1985), A Tutorial Survey of Theory and Applications of Simulated Annealing, Proceedings of the 24th
IEEE Conference on Decision and Control, 755-760.

P. R. Halmos (1959). Finite Dimensional Vector Spaces, Van Nostrand.

J. H. Halton and R. Terada (1982). A Fast Algorithm for the Euclidean Traveling Salesman Problem, Optimal
with Probability One, SIAM Journal on Computing 11, 28-46.

P. L. Hammer, E. L. Johnson, and B. Korte, eds. (1979a). Discrete Optimization I (Annals of Discrete Mathe
matics 4).

P. L. Hammer, E. L. Johnson, and B. Korte, eds. (1979b). Discrete Optimization II (Annals -of Discrete
Mathematics 5).

P. L. Hammer, E. L. Johnson, B. Korte, and G. L. Nemhauser, eds. (1977). Studies in Integer Programming
(Annals of Discrete Mathematics 1).

P. L. Hammer, E. L. Johnson, and U. N. Peled (1975). Facets of Regular 0-1 Polytopes, Mathematical Program-
ming 8, 179-206.

P. L. Hammer and S. Rudeanu (1966). Boolean Methods in Operations Research and Related Areas, Springer.

P. Hansen, ed. (1981), Studies on Graphs and Discrete Programming (Annals of Discrete Mathematics 11).

R. Hassin (1982). Minimum Cost Flow with Set Constraints, Networks 12, 1-21.

D. Hausmann, ed., (1978). Integer Programming and Related Areas: A Classified Bibliography 1976-1978,
Springer.

D. Hausmann, T. A. Jenkins, and B. Korte (1980). Worst Case Analysis of Greedy Algorithms for Independence
Systems, Mathematical Programming Study 12, 120-131.

D. Hausmann and B. Korte (1978). Lower Bounds on the Worst Case Complexity of Some Oracle Algorithms,
Discrete Mathematics 24, 261-276.

K. Helbig-Hansen and J. Krarup (1974). Improvements of the Held-Karp Algorithm for the Symmetric
Traveling Salesman Problem, Mathematical Programming 7,87-96.

M. Held and R. M. Karp (1970). The Traveling Salesman Problem and Minimum Spanning Trees, Operations
Research 18, 1138-1162.

M. Held and R. M. Karp (1971). The Traveling Salesman Problem and Minimal Spanning Trees: Part II,
Mathematical Programming 1, 6-25.

M. Held, P. Wolfe, and H. P. Crowder (1974). Validation of Sub gradient Optimization, Mathematical Program
ming 6, 62-88.

I. Heller (1957). On Linear Systems with Integral Valued Solutions, Pacific Journal of Mathematics 7,
1351-1364.

I. Heller (1963). On Unimodular Sets of Vectors, in Recent Advances in Mathematical Programming,
R. L. Graves and P. Wolfe, eds., McGraw-Hill, pp. 39-53.

I. Heller and A. J. Hoffman. (1962). On Unimodular Matrices, Pacific Journal of Mathematics 12, 1321-1327.

I. Heller and C. B. Tompkins (1956). An Extension of a Theorem ofDantzig, in Linear Inequalities and Related
Systems, H. W. Kuhn and A. W. Tucker, eds., Princeton University Press, pp. 247-254.

D. S. Hochbaum (1982). Approximation Algorithms for the Set Covering and Vertex Cover Problems, SIAM
Journal on Computing 11, 555-556.

D. S. Hochbaum, T. Nishizeki, and D. B. Shmoys (1986). A Better than "Best Possible" Algorithm to Edge Color
Multigraphs, Journal of Algorithms 7, 79-104.

A. J. Hoffman (1974). A Generalization of Max-Flow Min-Cut Theorem, Mathematical Programming 6,
352-359.

A. J. Hoffman (1979). The Role ofUnimodularity in Applying Linear Inequalities to Combinatorial Theorems,
Annals of Discrete Mathematics 4,73-84.

References 735

A. J. Hoffman, A. Kolen, and M. Sakarovitch (1985). Totally Balanced and Greedy Matrices, SIAM Journal on
Algebraic and Discrete Methods 6, 721-730.

A. J. Hoffman and J. B. Kruskal (1956). Integral Boundary Points of Convex Polyhedra, in Linear Inequalities
and Related Systems, H. W. Kuhn and A. W Tucker, eds., Princeton University Press, pp. 223-246.

A. J. Hoffman and R. Oppenheim (1978). Local Unimodularity in the Matching Polytope, Annals oj Discrete
Mathematics 2,201-209.

K. Hoffman and M. Padberg (1985). LP-based Combinatorial Problem Solving, Annals oJOperations Research
4,145-194.

S. Holm and D. Klein (1984). Three Methods for Postoptimal Analysis in Integer Linear Programming,
Mathematical Programming Study 21, 97 -109.

S. Holm and J. Tind (1985). Decomposition in Integer Programming by Superadditive Functions, WP 32-85-86,
Graduate School ofIndustrial Administration, Carnegie-Mellon University.

I. Holyer (1981). The .N'~-Completeness of Edge Coloring, SIAM Journal on Computing 10, 718-720.

1. Hopcroft and R. M. Karp (1973). An n 2
.
5 Algorithm for Maximum Matching in Bipartite Graphs, SIAM

Journal on Computing 2,223-231.

W L. Hsu (1981). How To Color Claw-Free Perfect Graphs, Annals oj Discrete Mathematics 11, 189-197.

W L. Hsu (1984). The Perfect Graph Conjecture on Special Graphs-A Survey, Annals oJDiscrete Mathematics
21, 103-114.

W L. Hsu and G. L. Nemhauser (1981). Algorithms for Minimum Coverings by Cliques and Maximum Cliques
in Claw-Free Perfect Graphs, Discrete Mathematics 37, 181-191.

W L. Hsu and G. L. Nemhauser (1982). A Polynomial Algorithm for the Minimum Weighted Clique Cover
Problem on Claw-Free Perfect Graphs, Discrete Mathematics 38, 65-71.

W. L. Hsu and G. L. Nemhauser (1984). Algorithms for Maximum Weight Cliques, Minimum Weighted Clique
Covers and Minimum Colorings of Claw-Free Perfect Graphs, Annals oJDiscrete Mathematics 21, 357 -369.

T. C. Hu (1969). Integer Programming and Network Flows, Addison-Wesley.

T. C. Hu (1970). On the Asymptotic Integer Algorithm, Linear Algebra and Its Applications 3, 279-294.

H. C. Huang and L. E. Trotter, Jr. (1980). A Technique for Determining Blocking and Antiblocking Polyhedral
Descriptions, Mathematical Programming Study 12,197-205.

p. Huard (1967). Resolution of Mathematical Programming with Nonlinear Constraints by the Method of
Centers, in Nonlinear Programming, J. Abadie, ed., North-Holland, pp. 209-219.

T. Ibaraki (1976). Theoretical Comparisons of Search Strategies in Branch-and-Bound Algorithms, Journal oj
Computer and Information Science 5,315-344.

T. Ibaraki (1977). Power of Dominance Relations in Branch-and-Bound Algorithms, Journal oJthe Association
Jor Computing Machinery 24, 264-279.

O. H. Ibarra and C. E. Kim (1975). Fast Approximation Algorithms for the Knapsack and Sum of Subset
Problems, Journal oJthe AssociationJor Computing Machinery 22, 463-468.

Y. Ikura and G. L. Nemhauser (1985). Simplex Pivots on the Set Packing Polytope, Mathematical Programming
33, 123-138.

Y. Ikura and G. L. Nemhauser (1986). Computational Experience with a Polynomial-Time Dual Simplex
Algorithm for the Transportation Problem, Discrete Applied Mathematics 13,232-248.

1. P. Ingargiola and J. F. Korsch (1973). A Reduction Algorithm for Zero-One Single Knapsack Problems,
Management Science 20, 460-463.

M. Iri (1966). A Criterion for the Reducibility of a Linear Programming Problem to a Network Flow Problem,
RAAG Research Notes, Third Series, No. 98.

M. Iri (1983). Applications of Matroid Theory, in Bachem, Grotschel and Korte, pp. 158-201.

T. A. Jenkins (1976). The Efficacy of the Greedy Algorithm, Proceedings oJthe 7th Southeastern Conference on
-Combinatories, Graph Theory and Computing, F. Hoffman et al., eds., Utilitas Mathematica, pp. 341-350.

p. A. Jensen and J. W Barnes (1980). Network Flow Programming, Wiley.

R. G. leroslow (1971). Comments on Integer Hulls of Two Linear Constraints, Operations Research 19,
1061-1069.

R. G. leroslow (1972). There Cannot be Any Algorithm for Integer Programming with Quadratic Constraints,
Operations Research 21, 221-224.

R. G. leroslow (1974). Trivial Integer Programs Unsolvable by Branch-and-Bound, Mathematical Programming
6, 105-109.

736 References

R. G. Jeroslow (1977). Cutting Plane Theory: Disjunctive Methods, Annals of Discrete Mathematics 1,
293-330.

R. G. Jeroslow (1978). Cutting Plane Theory: Algebraic Methods, Discrete Mathematics 23, 121-150.

R. G. Jeroslow (1979a). An Introduction to the Theory of Cutting Planes, Annals of Discrete Mathematics 5,
71-95.

R. G. Jeroslow (1979b). Minimal Inequalities, Mathematical Programming 17, 1-15.

R. G. Jeroslow (1979c). The Theory of Cutting-Planes, in Christofides, Mingozzi et aI., pp. 21-72.

R. G. Jeroslow (1985). Representability in Mixed Integer Programming II: A Lattice of Relaxations, College of
Management, Georgia Institute of Technology.

R. G. Jeroslow and K. O. Kortanek (1971). On an Algorithm ofGomory, SIAM Journal 21, 55-60.

R. G. Jeroslow and J. K. Lowe (1984). Modelling with Integer Variables, Mathematical Programming Study 22,
167-184.

D. S. Johnson (1974). Approximation Algorithms for Combinatorial Problems, Journal of Computer and System
Science 9,256-278.

D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham (1974). Worst-Case Performance
Bounds for Simple One-Dimensional Packing Problems, SIAM Journal on Computing, 3, 299-325.

D. S. Johnson and C. H. Papadimitriou (1985a). Computational Complexity, in Lawler, Lenstra et aI.,
pp.37-86.

D. S. Johnson and C. H. Papadimitriou (1985b). Performance Guarantees for Heuristics, in Lawler, Lenstra
et aI., pp. 87-144.

E. L. Johnson (1973). Cyclic Groups, Cutting Planes and Shortest Paths, in Mathematical Programming,
T. C. Hu and S. Robinson, eds., Academic Press, pp. 185-211.

E. L. Johnson (1974). On the Group Problem for Mixed Integer Programming, Mathematical Programming
Study 2,137-179.

E. L. Johnson (1978). Support Functions, Blocking Pairs, and Anti-Blocking Pairs, Mathematical Programming
8,167-196.

E. L. Johnson (1979), On the Group Problem and a Subadditive Approach to Integer Programming, Annals of
Discrete Mathematics 5, 97 -112.

E. L. Johnson, (1980a). Integer Programming-Facets, Subadditivity, and Duality for Group and Semi-Group
Problems, SIAM Publications.

E. L. Johnson (1980b). Subadditive Lifting Methods for Partitioning and Knapsack Problems, Journal of
Algorithms 1, 75-96.

E. L. Johnson (1981a). On the Generality of the Subadditive Characterization of Facets, Mathematics of
Operations Research 6,101-112.

E. L. Johnson (1981b). Characterization of Facets for Multiple Right-Hand Choice Linear Programs, Mathemat
ical Programming Study 14, 112-142.

E. L. Johnson, M. M. Kostreva, and U. H. Suhl (1985), Solving 0-1 Integer Programming Problems Arising from
Large Scale Planning Models, Operations Research 33, 803-819.

E. L. Johnson and S. Mosterts (1987). On Four Problems in Graph Theory, SIAM Journal on Algebraic and
Discrete Methods 8,163-185.

E. L. Johnson and M. W. Padberg (1981). A Note on the Knapsack Problem with Special Ordered Sets,
Operations Research Letters 1, 18-22.

E. L. Johnson and M. W. Padberg (1983). Degree-two Inequalities, Clique Facets, and Bipartite Graphs, Annals
of Discrete Mathematics 16, 169-188.

E. L. Johnson and U. H. Suhl (1980). Experiments in Integer Programming, Discrete Applied Mathematics 2,
39-55.

R. Jonker, G. Deleve, J. Vandervelde, and T. Volgenant (1980). Rounding Symmetric Traveling Salesman
Problems with an Asymmetric Assignment Problem, Operations Research 28,623-627.

R. Jonker, R. Kaas, and T. Volgenant (1980). Data-dependent Bounds for Heuristics to find a Minimum Weight
Hamiltonian Circuit, Operations Research 28, 1219-1221.

K. O. Jornsten and M. Nasberg (1986). A New Lagrangian Relaxation Approach to the Generalized Assignment
Problem, European Journal of Operations Research 27, 313-323.

R. Kannan (1980). A Polynomial Algorithm for the Two Variable Integer Programming Problem, Journal of the
Associationfor Computing Machinery 27,118-122.

References 737

R. Kannan (1983). Improved Algorithms for Integer Programming and Related Lattice Problems, Proceedings 0/
the 1983 Symposium on the Theory o/Computing, 193-206.

R. Kannan (1987a). Minkowski's Convex Body Theorem and Integer Programming, Mathematics 0/ Operations
Research 12,415-440.

R. Kannan (1987b). Algebraic Geometry of Numbers, Report 87453-0R, Institute for Econometrics and
Operations Research, University of Bonn.

R. Kannan and A. Bachem (1979). Polynomial Algorithms for Computing the Smith and Hermite Normal
Forms of an Integer Matrix, SIAM Journal on Computing 8,499-507.

R. Kannan and C. L. Monma (1978). On the Computational Complexity of Integer Programming Problems, in
Optimization and Operations Research, Lecture Notes in Economics and Mathematical Systems 157,
Springer, pp. 161-172.

N. Karmarkar (1984). A New Polynomial Time Algorithm for Linear Programming, Combinatorica 4,
375-395.

R. M. Karp (1971). A Simple Derivation of Edmonds Algorithm for Optimum Branchings, Networks 1,
265-272.

R. M. Karp (1972). Reducibility among Combinatorial Problems, in Complexity 0/ Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum Press, pp. 85-103.

R. M. Karp (1975). On the Complexity of Combinatorial Problems, Networks 5, 45-68.

R. M. Karp (1976). The Probabilistic Analysis of Some Combinatorial Search Algorithms, in Algorithms and
Complexity: New Directions and Recent Results, J. F. Traub, ed., Academic Press, pp. 1-19.

R. M. Karp (1977). Probabilistic Analysis of Partitioning Algorithms for the Traveling Salesman Problem in the
Plane, Mathematics 0/ Operations Research 2,209-224.

R. M. Karp (1979). A Patching Algorithm for the Nonsymmetric Traveling Salesman Problem, SIAM Journal on
Computing 8,561-573.

R. M. Karp, J. K. Lenstra, C. J. H. McDiarmid, and A. H. G. Rinnooy Kan (1985). Probabilistic Analysis, in
O'hEigeartaigh et aI., pp. 52-88.

R. M. Karp and C. H. Papadimitriou (1982). On Linear Characterizations of Combinatorial Optimization
Problems, SIAM Journal on Computing 11, 620-632.

R. M. Karp and J. M. Steele (1985). Probabilistic Analysis of Heuristics, in Lawler, Lenstra et aI., pp. 207-250.

M. H. Karwan and R. L. Rardin (1979). Some Relationships Between Lagrangian and Surrogate Duality in
Integer Programming, Mathematical Programming 17, 320-324.

C. Kastning, ed. (1976). Integer Programming and Related Areas, A Classified Bibliography, Lecture Notes in
Economics and Mathematical Systems 128, Springer.

J. Kennington and R. V. Helgason (1980). Algorithms/or Network Programming, Wiley.

L. G. Khachian (1979). A Polynomial Algorithm in Linear Programming, Soviet Mathematics Doklady 20,
191-194.

A. Khintchine (1930). Continued Fractions, Noordhoff (1963), English translation.

G. A. P. Kindervater and J. K. Lenstra (1985). Parallel Algorithms, in O'hEigeartaigh et aI., pp. 106-128.

G. A. P. Kindervater and J. K. Lenstra (1986). An Introduction to Parallelism in Combinatorial Optimization,
Discrete Applied Mathematics 14, 135-156.

S. Kirkpatrick (1984). Optimization by Simulated Annealing: Quantitative Studies, Journal of Statistical Physics
34,975-986.

S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi (1983). Optimization by Simulated Annealing, Science 220,
671-680.

V. Klee (1980). Combinatorial Optimization: What Is the State of the Art? Mathematics o/Operations Research
5,1-26.

V. Klee and G. J. Minty (1972). How Good is the Simplex Algorithm?, in Inequalities 111, O. Shisha, ed.,
Academic Press, pp. 159-175.

D. E. Knuth (1979). The Art o/Computer Programming, Voll: Fundamental Algorithms, 2nd ed., Addison
Wesley.

D. E. Knuth (1981). The Art o/Computer Programming, Vol. 2: Seminumerical Algorithms, 2nd ed., Addison
Wesley.

A. Kolen (1983). Solving Covering Problems and the Un capacitated Plant Location Problem on Trees, European
Journal a/Operations Research 12,266-278.

738 References

A. Kolen, A. H. G. Rinnooy Kan, and H. Trienekeus (1987). Vehicle Routing with Time Windows, Operations
Research 35,266-273.

P. J. Kolesar (1967). A Branch and Bound Algorithm for the Knapsack Problem, Management Science 13,
723-735.

B. Korte (1979). Approximative Algorithms for Discrete Optimization Problems, Annals of Discrete Mathemat
ics 4, 85-120.

B. Korte and D. Hausmann (1976). An Analysis of the Greedy Heuristic for Independence Systems, Annals of
Discrete Mathematics 2,65-74.

B. Korte and L. Lovasz (1984). Greedoids-A Structural Framework for the Greedy Algorithm, in Pulleyblank,
pp.221-244.

B. Korte and R. Schrader (1980). On the Existence of Fast Approximation Schemes, in Nonlinear Programming
4, O. L. Mangasarian, R. R. Meyer, and S. M. Robinson, eds., Academic Press, pp. 415-437.

J. Krarup and O. Bilde (1977). Plant Location, Set Covering, and Economic Lot-Size: An O(mn) Algorithm for
Structured Problems, in Numerische Methoden bei Optimierungsaufgaben, Band 3: Optimierung bei Gra
phentheoretischen und Ganzzahlligen Problem en , Birkhauser, pp. 155-186.

J. Krarup and P. M. Pruzan (1983). The Simple Plant Location Problem: Survey and Synthesis, European
Journal of Operations Research 12, 36-81.

J. B. Kruskal (1956). On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem,
Proceedings of the American Mathematical Society 7, 48-50.

A. A. Kuehn and M. J. Hamburger (1963). A Heuristic Program for Locating Warehouses, Management Science
9,643-666.

1. C. Lagarias (1985). The Computational Complexity of Simultaneous Diophantine Approximation Problems,
SIAM Journal on Computing 14, 196-209.

J. C. Lagarias and A. M. Odlyzko (1985). Solving Low-density Subset Sum Problems, Journal of the Association
for Computing Machinery 32,229-246.

A. H. Land and A. G. Doig (1960). An Automatic Method for Solving Discrete Programming Problems,
Econometrica 28, 497 -520.

A. H. Land and S. Powell (1979). Computer Codes for Problems of Integer Programming, Annals of Discrete
Mathematics 5, 221-269.

G. Laporte, Y. Norbet, and M. Desrochers (1985). Optimal Routing under Capacity and Distance Restrictions,
Operations Research 33, 1050-1073.

M. Lauriere (1978). An Algorithm for the 011 Knapsack Problem, Mathematical Programming 14, 1-10.

E. L. Lawler (1972). A Procedure for Computing the K Best Solutions to Discrete Optimization Problems and Its
Application to the Shortest Path Problem, Management Science 18,401-405.

E. L. Lawler (1975). Matroid Intersection Algorithms, Mathematical Programming 9,31-56.

E. L. Lawler (1976). Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston.

E. L. Lawler (1979). Fast Approximation Algorithms for Knapsack Problems, Mathematics of Operations
Research 4,339-356.

E. L. Lawler (1980). The Great Mathematical Sputnik of 1979, The Sciences, September Issue.

E. L. Lawler (1985). Submodular Functions and Polymatroid Optimization, in O'hEigeartaigh et al., pp. 32-38.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys (1985) eds., The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization, Wiley.

E. L. Lawler and C. U. Martel (1982a). Computing Maximal Polymatroidal Network Flows, Mathematics of
Operations Research 7,334-347.

E. L. Lawler and C. U. Martel (1982b). Flow Network Formulations of Poly matroid Optimization Problems,
Annals of Disc rete Mathematics 16, 189-200.

E. L. Lawler and D. E. Wood (1966). Branch-and-Bound Methods: A Survey, Operations Research 14,699-719.

A. Lehman (1979). On the Width-Length Inequality, Mathematical Programming 16, 245-259; 17, 403-417
(with proof corrections).

C. E. Lemke, H. M. Salkin, and K. Spielberg (1971). Set Covering by Single-Branch Enumeration with Linear
Programming Subproblems, Operations Research 19,998-1022.

C. E. Lemke and K. Spielberg (1967). Directed Search Algorithms for Zero-One and Mixed-Integer Program
ming, Operations Research 15,892-914.

References 739

A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz (1982). Factoring Polynomials with Rational Coefficients,
Mathematics Annals 261, 515-534.

H. W Lenstra, Jr. (1983). Integer Programming with a Fixed Number of Variables, Mathematics o/Operations
Research 8, 538-547.

H. W Lenstra Jr. (1984). Integer Programming and Cryptography, Mathematical Intelligencer 6, 14-21.

J. K. Lenstra and A. H. G. Rinnooy Kan (1979). Computational Complexity of Discrete Optimization Prob
lems, Annals of Discrete Mathematics 4, 121-140.

J. Leung and T. L. Magnanti (1986). Valid Inequalities and Facets of the Capacitated Plant Location Problem,
Working Paper ORI49-86, Operations Research Center, Massachusetts Institute of Technology.

H. R. Lewis and C. H. Papadimitriou (1981). Elements o/the Theory o/Computation, Prentice-Hall.

S. Lin (1965). Computer Solutions of the Traveling Salesman Problem, Bell System Technical Journal 44,
2245-2269.

S. Lin (1975). Heuristic Programming as an Aid to Network Design, Networks 5, 33-43.

S. Lin and B. W Kernighan (1973). An Effective Heuristic Algorithm for the Traveling Salesman Problem,
Operations Research 21,498-516.

J. D. C. Little, K. G. Murty, D. W. Sweeney, and C. Karel (1963). An Algorithm for the Traveling Salesman
Problem, Operations Research 11,972-989.

J. Lorie and L. J. Savage (1955). Three Problems in Capital Rationing, Journal 0/ Business 28, 229-239.

R. Loulou and E. Michaelides (1979). New Greedy-like Heuristics for the Multidimensional 0-1 Knapsack
Problem, Operations Research 27, 1101-1114.

L. Lovasz (1972). Normal Hypergraphs and the Perfect Graph Conjecture, Discrete Mathematics 2, 253-267.

L. Lovasz (1975). On the Ratio of Optimal Integral and Fractional Covers, Discrete Mathematics 13,383-390.

L. Lovasz (1979a). Graph Theory and Integer Programming, Annals 0/ Discrete Mathematics 4, 141-158.

L. Lovasz (1979b). Combinatorial Problems and Exercises, Akademiai Kiado, p 528.

L. Lovasz (1980). Matroid Matching and Some Applications, Journal o/Combinatorial Theory B28, 208-236.

L. Lovasz (1981). The Matroid Matching Problem, in Algebraic Methods in Graph Theory, L. Lovasz and
V. T. Sos, eds., North-Holland, pp. 495-517.

L. Lovasz (1983). Submodular Functions and Convexity, in Bachem, Grotschel and Korte, pp. 235-257.

L. Lovasz and M. D. Plummer (1986). Matching Theory, Akademiai Kiado.

A. Lubiw (1982). Gamma-Free Matrices, M. S. Thesis, University of Waterloo.

M. Lundy and A. Mees (1986). Convergence of an Annealing Algorithm, Mathematical Programming 34,
111-124.

P. G. MacKeown (1981). A Branch-and-Bound Algorithm for Solving Fixed Charge Problems, Naval Research
Logistics Quarterly 28, 607 -618.

E Maffioli (1986). Randomized Algorithms in Combinatorial Optimization: A Survey, Discrete Applied
Mathemat~cs 14, 157-170.

E Maffioli, M. G. Speranza, and C. Vercellis (1985). Randomized Algorithms, in O'hEigeartaigh et al.,
pp.89-105.

M. J. Magazine and M. S. Chern (1984). A Note on Approximation Schemes for Multidimensional Knapsack
Problems, Mathematics o/Operations Research 9,244-247.

M. J. Magazine and O. Oguz (1981). A Fully Polynomial Approximation Algorithm for the 0-1 Knapsack
Algorithm, European Journal o/Operations Research 8, 270-273.

T. L. Magnanti, P. Mireault, and R. T. Wong (1986). Tailoring Benders' Decomposition for Uncapacitated
Network Design, Mathematical Programming Study 26,112-154.

T. L. Magnanti and R. T. Wong (1981). Accelerated Benders Decomposition: Algorithmic Enhancement and
Model Section Criteria, Operations Research 29,464-484.

T. L. Magnanti and R. T. Wong (1984). Network Design and Transportation Planning: Models and Algorithms,
Transportation Science 18, 1-55.

A. S. Manne (1964). Plant Location under Economies of Scale-Decentralization and Computation, Manage
ment Science 11, 213-235.

O. Marcotte (1985). The Cutting Stock Problem and Integer Rounding, Mathematical Programming 33,89-92.

O. Marcotte (1986a). An Instance of the Cutting Stock Problem for Which the Rounding Property Does Not
Hold, Operations Research Letters 4, 239-243.

740 References

O. Marcotte (1986b). On the Chromatic Index of Multigraphs and a Conjecture of Seymour, Journal 0/
Combinatorial Theory 418,306-331.

H. M. Markowtiz and A. S. Manne (1957). On the Solution of Discrete Programming Problems, Econometrica
25,84-110.

R. E. Marsten (1974). An Algorithm for Large Set Partitioning Problems, Management Science 20, 774-787.

R. E. Marsten (1981). XMP: A Structured Library of Subroutines for Experimental Mathematical Programming,
ACM Transactions on Mathematical Software 7, 481-497.

R. E. Marsten and E Shepardson (1981). Exact Solution of Crew Scheduling Problems Using the Set Partitioning
Model: Recent Successful Applications, Networks 11, 165-178.

C. U. Martel (1982). Preemptive Scheduling with Release Times, Deadlines and Due Times, Journal 0/ the
Association/or Computing Machinery 29, 812-829.

S. Martello and P. Toth (1979). The 0-1 Knapsack Problem, in Christofides, Mingozzi et aI., pp. 237 -279.

S. Martello and P. Toth (1981a). A Branch and Bound Algorithm for the Zero-One Multiple Knapsack Problem,
Discrete Applied Mathematics 3, 275-288.

S. Martello and P. Toth (1981b). Heuristic Algorithms for the Multiple Knapsack Problem, Computing 27,
93-112.

R. K. Martin (1984). Generating Alternative Mixed-Integer Linear Programming Models, Graduate School of
Business, University of Chicago.

R. K. Martin (1987). Using Separation Algorithms to Generate Mixed Integer Model Reformulations, Graduate
School of Business, University of Chicago.

R. K. Martin and L. Schrage (1985). Subset Coefficient Reduction Cuts for 0-1 Mixed Integer Programming,
Operations Research 33, 505-526.

1. E Maurras (1975). Some Results on the Convex Hull of Hamiltonian Cycles of Symmetric Complete Graphs,
in Combinatorial Programming: Methods and Applications, B. Roy, ed., Reidel, pp. 179-190.

C. 1. H. McDiarmid (1975). Rado's Theorem for Polymatroids, Proceedings 0/ the Cambridge Philosophical
Society 78, 263-28l.

C. 1. H. McDiarmid (1983). Integral Decomposition in Polyhedra, Mathematical Progrumming 25, 183-198.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller (1953). Equations of State Calculations by
Fast Computing Machines, Journal o/Chemical Physics 21, 1087-1091.

R. R. Meyer (1974). On the Existence of Optimal Solutions to Integer and Mixed-Integer Programming
Problems, Mathematical Programming 7,223-235.

R. R. Meyer (1975). Integer and Mixed Integer Programming Models: General Properties, Journal o/Optimiza
tion Theory and Applications 16, 191-206.

R. R. Meyer and M. L. Wage (1978). On the Polyhedrality of the Convex Hull of the Feasible Set of an Integer
Program, SIAM Journal on Control and Optimization 16,682-687.

H. Meyniel (1976). On the Perfect Graph Conjecture, Discrete Mathematics 16,339-342.

H. Meyniel (1984). The Graphs Whose Odd Cycles Have at Least Two Chords, Annals 0/ Discrete Mathematics
21, 103-114.

P. Miliotis (1976). Integer Programming Approaches to the Traveling Salesman Problem, Mathematical
Programming 10, 367 -378.

P. Miliotis (1978). Using Cutting Planes to Solve the Symmetric Travelling Salesman Problem, Mathematical
Programming 15,177-188.

C. E. Miller, A. W Tucker, and R. A. Zemlin (1960). Integer Programming Formulations and Traveling
Salesman Problems, Journal o/the Association/or Computing Machinery 7,326-329.

G. 1. Minty (1980). On Maximal Independent Sets of Vertices in a Claw-Free Graph, Journal o/Combinatorial
Theory 828,284-304.

G. Mitra (1973). Investigations of some Branch and Bound Strategies for the Solution of Mixed Integer Linear
Programs, Mathematical Programming 4, 155-170.

L. G. Mitten (1970). Branch-and-Bound Methods: General Formulation and Properties, Operations Research
18,24-34.

C. L. Monma, ed. (1986). Algorithms and Software/or Optimization-Part I (Annals o/Operations Research 4).

1. G. Morris (1978). On the Extent to which Certain Fixed Depot Location Problems Can Be Solved by LP,
Journal o/the Operational Research Society 29, 71-76.

References 741

J. A. Muckstadt and S. A. Koenig (1977). An Application of Lagrangian Relaxation to Scheduling in Power
Generation Systems) Operations Research 25) 387 -403.

J. M. Mulvey and H. M. Crowder (1979). Cluster Analysis: An Application of Lagrangian Relaxation) Manage-
ment Science 25,329-340.

J. D. Murchland (1973). Historical Note on Optimal Spanning Arborescences, Networks 3,287-288.

K. G. Murty (1976). Linear and Combinatorial Programming, Wiley.

R. M. Nauss (1979). Parametric Integer Programming, University of Missouri Press, Columbia.

A. W. Neebe and M. R. Rao (1983). An Algorithm for the' Fixed Charge Assignment of Users to Sources
Problem, Journal o/the Operational Research Society 34, 1107-1115.

G. L. Nemhauser (1966). Introduction to Dynamic Programming, Wiley.

G. L. Nemhauser (1985). Duality for Integer Optimization, in O)hEigeartaigh et aI., pp. 11-20.

G. L. Nemhauser and G. Sigismondi (1988). A Constraint Generation Algorithm for Node Packing, School of
Industrial and Systems Engineering, Georgia Institute of Technology.

G. L. Nemhauser and L. E. Trotter (1974). Properties of Vertex Packing and Independence System Polyhedra,
Mathematical Programming 6,48-61.

G. L. Nemhauser and L. E. Trotter (1975). Vertex Packings: Structural Properties and Algorithms, Mathematical
Programming 8, 232-248.

G. L. Nemhauser, L. E. Trotter, and R. M. Nauss (1974). Set Partitioning and Chain Decomposition, Manage
ment Science 20, 1413-1423.

G. L. Nemhauser and Z. Ullman (1968). A Note on the Generalized Multiplier Solution to an Integer
Programming Problem, Operations Research 16, 450-452.

G. L. Nemhauser and Z. Ullman (1969). Discrete Dynamic Programming and Capital Allocation, Management
Science 15, 494-505.

G. L. Nemhauser and G. M. Weber (1979). Optimal Set Partitioning, Matchings and Lagrangian Duality, Naval
Research Logistics Quarterly 26, 553-563.

G. L. Nemhauser and L. A. Wolsey (1979). Best Algorithms for Approximating the Maximum of a Submodular
Set Function, Mathematics 0/ Operations Research 3, 177 -188.

G. L. Nemhauser and L. A. Wolsey (1981). Maximizing Submodular Set Functions: Formulations and Analysis
of Algorithms, Annals o/Discrete Mathematics 11,279-301.

G. L. Nemhauser and L. A. Wolsey (1984). A Recursive Procedure for Generating all Cuts for 0-1 Mixed Integer
Programs, Core DP 8439, Universite Catholique du Louvain.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher (1978). An Analysis of Approximations for Maximizing
Submodular Set Functions-I, Mathematical Programming 14, 265-294.

J. P. Norback and R. F. Love (1979). Heuristic for the Hamiltonian Path Problem in Euclidean Two Space,
Operations Research 30, 363-368.

R. Z. Norman and M. D. Rabin (1959). An Algorithm for the Minimum Cover of a Graph, Proceedings o/the
American Mathematical Society 10, 315-319.

F. J. Nourie and E. R. Venta (1982). An Upper Bound on the Number of Cuts Needed in Gomory's Method of
Integer Forms, Operations Research Letters 1, 129-133.

M. O'hEigertaigh, J. K. Lenstra and A. H. G. Rinnooy Kan, eds. (1985). Combinatorial Optimization: Anno
tated Bibliographies, Wiley.

J. Orlin (1982). A Polynomial Algorithm for Integer Programming Covering Problems Satisfying the Integer
Round-Up Property, Mathematical Programming 22,231-235.

J. B. Orlin (1984). Genuinely Polynomial Simplex and Non-Simplex Algorithms for the Minimum Cost Flow
Problem, WP 1615-84, Sloan School of Management, Massachusetts Institute of Technology.

J. B. Orlin (1986). A Dual Version of Tardos's Algorithm for Linear Programming, Operations Research Letters
5,221-226.

M. W. Padberg (1973). On the Facial Structure of Set Packing Polyhedra, Mathematical Programming 5,
199-215.

M. W. Padberg (1974), Perfect Zero-One Matrices, Mathematical Programming 6,180-196.

M. W. Padberg (1975a). A Note on Zero-One Programming, Operations Research 23, 833-837.

M. W. Padberg (1975b). Characterizations of Totally Unimodular, Balanced and Perfect Matrices, in Combina
torial Programming: Methods and Applications, B. Roy, ed., Reidel, pp. 275-284.

742 References

M. W. Padberg (1976a). A Note on the Total Unimodularity of Matrices, Discrete Mathematics 14, 273-278.

M. W. Padberg (1976b). Almost Integral Polyhedra Related to Certain Combinatorial Optimization Problems,
Linear Algebra and Its Applications 15, 69-88.

M. W. Padberg (1977). On the Complexity of Set Packing Polyhedra, Annals of Discrete Mathematics 1,
421-434.

M. W. Padberg (1979). Covering, Packing and Knapsack Problems, Annals of Discrete Mathematics 4, 265-287.

M. W. Padberg, ed. (1980a). Combinatorial Optimization, Mathematical Programming Study 12.

M. W. Padberg (1980b). (1, k)-Configurations and Facets for Packing Problems, Mathematical Programming 18,
94-99.

M. W. Padberg (1984). A Characterization of Perfect Matrices, Annals of Discrete Mathematics 21, 169-178.

M. W. Padberg (1988). Total Unimodularity and the Euler-Subgraph Problem. To appear in Operations Research
Letters.

M. W. Padberg and M. Grotschel (1985). Polyhedral Computations, in Lawler, Lenstra et aI., pp. 307-360.

M. W. Padberg and S. Hong (1980). On the Symmetric Traveling Salesman Problem: A Computational Study,
Mathematical Programming Study 12, 78-107.

M. W. Padberg and M. R. Rao (1982). Odd Minimum Cut-Sets and b-Matchings, Mathematics of Operations
Research 7,67 -80.

M. W. Padberg and G. Rinaldi (1987a). Optimization of a 532-City Traveling Salesman Problem by Branch and
Cut, Operations Research Letters 6, 1-8.

M. W. Padberg and G. Rinaldi (1987b). Facet Indentification for the Symmetric Traveling Salesman Polytope,
New York University.

M. W. Padberg, T. J. Van Roy and L. A. Wolsey (1985). Valid Linear Inequalities for Fixed Charge Problems,
Operations Research 33, 842-861.

M. W. Padberg and L. A. Wolsey (1983). Trees and Cuts, Annals of Discrete Mathematics 17, 511-517.

M. W. Padberg and L. A. Wolsey (1984). Fractional Covers for Forests and Matchings, Mathematical Program
ming 29, 1-14.

e. H. Papadimitriou (1981a). On the Complexity of Integer Programming, Journal of the Association for
Computing Machinery 28,765-768.

e. H. Papadimitriou (1981b). Worst-Case and Probabilistic Analysis of a Geometric Location Problem, SIAM
Journal on Computing 10, 542-557.

e. H. Papadimitriou (1984). Polytopes and Complexity, in Pulleyblank, pp. 295-306.

e. H. Papadimitriou (1985). Computational Complexity, in O'hEigeartaigh et aI., pp. 39-51.

e. H. Papadimitriou and K. Stieglitz (1977). On the Complexity of Local Search for the Traveling Salesman
Problem, SIAM Journal on Computing 6,76-83.

e. H. Papadimitriou and K. Stieglitz (1978). Some Examples of Difficult Traveling Salesman Problems,
Operations Research 26, 434-443.

C. H. Papadimitriou and K. Stieglitz (1982). Combinatorial Optimization: Algorithms and Complexity, Pren
tice-Hall.

e. H. Papadimitriou and M. Yannakakis (1984). The Complexity of Facets (and Some Facets of Complexity),
Journal of Computing and System Science 28, 244-259.

K. R. Parthasarathy and G. Ravindra (1976). The Strong Perfect Graph Conjecture Is True for K,,3-Free Graphs,
Journal of Combinatorial Theory B21, 212-223.

e. e. Petersen (1967). Computational Experience with Variants of the Balas Algorithm Applied to the Selection
of Rand D Projects, Management Science 13, 736-750.

J. e. Picard and M. Queyranne (1977). On the Integer-Valued Variables in the Linear Vertex Packing Problem,
Mathematical Programming 12, 97 -10 1.

J. C. Picard and M. Queyranne (1982). Selected Applications of Minimum Cuts in Networks, INFOR 20,
394-422.

J. e. Picard and H. D. Ratliff(1975). Minimum Cuts and Related Problems, Networks 5, 357-370.

J. F. Pierce (1968). Application of Combinatorial Programming to a Class of All Zero-One Integer Programming
Problems, Management Science 13, 736-750.

J. F. Pierce and J. Lasky (1973). Improved Combinatorial Programming Algorithms for a Class of All Zero-One
Integer Programming Problems, Management Science 19, 528-543.

References 743

y. Pochet (1988). Valid Inequalities and Separation for Capacitated Economic Lot Sizing, to appear in
Operations Research Letters.

Y. Pochet and L. A. Wolsey (1988). Lot-Size Models with Backlogging: Strong Formulations and Cutting Planes,
to appear in Mathematical Programming.

C. N. Potts (1985). A Lagrangian Based Branch and Bound Algorithm for Single Machine Scheduling with
Precedence Constraints to Minimize Total Weighted Completion Time, Management Science 31,1300-1311.

S. Powell (1985). Software, in O'hEigeartaigh et al., pp. 190-194.

R. C. Prim (1957). Shortest Connection Networks and Some Generalizations, Bell System Technological Journal
36, 1389-1401.

A. Prodon, T. M. Liebling, and H. Groflin (1985). Steiner's Problem on Two-Trees, RO 850315, Departement de
Mathematiques, Ecole Polytechnique Federale de Lausanne.

E. Pruul (1975). Parallel Processing and a Branch-and-Bound Algorithm, M. S. Thesis, Cornell University.

E. Pruul, G. L. Nemhauser, and R. Rushmeier (1988). Parallel Processing and Branch-and-Bound: A Historical
Note, to appear in Operations Research Letters.

W. R. Pulleyblank (1973). Faces of Matching Polyhedra, Ph.D. Thesis, University of Waterloo.

W. R. Pulleyblank (1980). Dual Integrality in b-Matching Problems, Mathematical Programming Study 12,
176-196.

W. R. Pulleyblank (1981). Total Dual Integrality and b-Matchings, Operations Research Letters 1,28-30.

W. R. Pulleyblank (1983). Polyhedral Combinatorics, in Bachem, Grotschel and Korte, pp. 312-345.

W. R. Pulleyblank, ed. (1984). Progress in Combinatorial Optimization, Academic Press.

W. R. Pulleyblank and J. Edmonds (1975). Facets of I-Matching Polyhedra, in Hypergraph Seminar, C. Berge
and D. Ray-Chaudhuri, eds., Springer, pp. 214-242.

M. O. Rabin (1976). Probabilistic Algorithms, in Algorithms and Complexity: New Directions and Recent
Results, J. E Traub, ed., Academic Press, pp. 21-40.

R. Rado (1957). Note on Independence Functions, Proceedings o/the London Mathematical Society 7, 300-320.

R. L. Rardin and U. Choe (1979). Tighter Relaxations of Fixed Charge Network Flow Problems, Industrial and
Systems Engineering Report J-79-18, Georgia Institute of Technology.

H. D. Ratliff and A. S. Rosenthal (1983). Order Picking in a Rectangular Warehouse: A Solvable Case of the
T. S. P., Operations Research 31, 507 -521.

A. Recski (1988). Matroid Theory and Its Applications, Springer.

S. Reiter, and D. B. Rice (1966). Discrete Optimizing Solution Procedures for Linear and Nonlinear Integer
Programming Problems, Management Science 12, 829-850.

S. Reiter and G. Sherman (1965). Discrete Optimizing, SIAM Journal 13, 864-899.

J. M. W. Rhys (1970). A Selection Problem of Shared Fixed Costs and Network Flows, Management Science 17,
200-207.

C. Ribeiro and M. Minoux (1985). Solving Hard Constrained Shortest Path Problems by Lagrangian Relaxation
and Branth and Bound Algorithms, in Proceedings 0/ X Symposium on Operations Research, M. Beckmann
et al., eds., Methods of Operations Research 53, Anton Hain, pp. 303-316.

A. H. G. Rinnooy Kan (1976). On Mitten's Axioms for Branch and Bound, Operations Research 24, 1176-1178.

A. H. G. Rinnooy Kan (1986). An Introduction to the Analysis of Approximation Algorithms, Discrete Applied
Mathematics 14, 111-134.

T. Rockafellar (1970). Convex Analysis, Princeton University Press.

D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis (1977). An Analysis of Several Heuristics for the Traveling
Salesman Problem, SIAM Journal on Computing 6,563-581.

K. Rosling (1983). The Dynamic Inventory Model and the Uncapacitated Facility Location Problem, S-581 83,
Department of Production Economics, Linkoping Institute of Technology.

G. T. Ross and R. M. Soland (1975). A Branch and Bound Algorithm for the Generalized Assignment Problem,
Mathematical Programming 8, 91-103.

D. S. Rubin (1985). Polynomial Algorithms for m x (m + 1) Integer Programs and m x (m + k) Diophantine
Systems, Operations Research Letters 3, 289-291.

S. Sahni (1975). Approximate Algorithms for the 0-1 Knapsack Problem, Journal of the Association for
Computing Machinery 22, 115-124.

S. Sahni (1977). General Techniques for Combinatorial Approximation, Operations Research 25, 920-936.

744 References

S. Sahni and T. Gonzalez (1976). P-Complete Approximation Problems, Journal of the Association for
Computing Machinery 23, 555-565.

M. Sakarovitch (1975). Quasi-Balanced Matrices, Mathematical Programming 8,382-386.

M. Sakarovitch (1976). Quasi-Balanced Matrices-an Addendum, Mathematical Programming 10, 405-407.

H. M. Salkin (1975). Integer Programming, Addison-Wesley.

H. M. Salkin and C. A. de Kluyver (1975). The Knapsack Problem: A Survey, Naval Research Logistics
Quarterly 22, 127-144.

H. M. Salkin and R. D. Koncal (1973). Set Covering by an All-Integer Algorithm: Computational Experience,
Journal of the Association for Computing Machinery 31,336-345.

C. Sandi (1979). Subgradient Optimization, in Christofides, Mingozzi et al., pp. 73-91.

A. Sassano (1985). On the Facial Structure of the Set Covering Polytope, R139, Instituto di Analisi dei Sistemi ed
Informatica del CNR. Rome.

N. Sbihi (1980). Algorithme de Recherche d'un Stable de Cardinalite Maximum dans un Graphe sans Etoile,
Discrete Mathematics 29, 53-76.

H. E. Scarf (1981a). Production Sets with Indivisibilities Part I, Econometrica 49, 1-32.

H. E. Scarf(1981b). Production Sets with Indivisibilities Part II, Econometrica 49,395-423.

L. Schrage (1975). Implicit Representation of Variable Upper Bounds in Linear Programming, Mathematical
Programming Study, 4, 118-132.

L. Schrage (1986). Linear, Integer and Quadratic Programming with LINDO, Scientific Press.

L. Schrage and L. A. Wolsey (1985). Sensitivity Analysis for Branch and Bound Integer Programming,
Operations Research 33, 1008-1023.

A. Schrijver (1980). On Cutting Planes, Annals of Discrete Mathematics 9, 291-296.

A. Schrijver (1981). On Total Dual Integrality, Linear Algebra and Its Applications 38, 27 -32.

A. Schrijver (1983a). Min-Max Results in Combinatorial Optimization, in Bachem, Grotschel and Korte,
pp.439-500.

A. Schrijver (1983b). Short Proofs on the Matching Polytope, Journal of Combinatorial Theory B34, 104-108.

A. Schrijver (1984a). Proving Total Dual Integrality with Cross-Free Families-A General Framework, Mathe
matical Programming 29,15-27.

A. Schrijver (1984b). Total Dual Integrality from Directed Graphs, Crossing Families and Sub- and Supermodu
lar Functions, in Pulleyblank, pp. 315-362.

A. Schrijver (1986a). Linear and Integer Programming, Wiley.

A. Schrijver (1986b). Polyhedral Proof Methods in Combinatorial Optimization. Discrete Applied Mathematics
14, 111-134.

P. D. Seymour (1977). The Matroids with the Max-Flow Min-Cut Property, Journal of Combinatorial Theory
B26, 189-222.

P. D. Seymour (1978). A Two-Commodity Cut Theorem, Discrete Mathematics 23, 177-181.

P. D. Seymour (1979). On Multi-Colourings of Cubic Graphs, and Conjectures of Fulkerson and Tutte,
Proceedings of the London Mathematical Society 38, 423-460.

P. D. Seymour (1980). Decomposition of Regular Matroids, Journal of Combinatorial Theory B28, 305-359.

R. Shamir (1987). The Efficiency ofthe Simplex Method: A Survey, Management Science 33, 301-334.

J. F. Shapiro (1968a). Dynamic Programming Algorithms for the Integer Programming Problem 1: The Integer
Programming Problem Viewed as a Knapsack Type Problem, Operations Research 16, 103-121.

J. F. Shapiro (1968b). Group Theoretic Algorithms for the Integer Programming Problem-II: Extensions to a
General Algorithm, Operations Research 18, 103-121.

J. F. Shapiro (1970). Turnpike Theorems for Integer Programs, Operations Research 18, 432-440.

J. F. Shapiro (1971). Generalized Lagrange Multipliers in Integer Programming, Operations Research 19,68-76.

J. F. Shapiro (1977). Sensitivity Analysis in Integer Programming, Annals of Discrete Mathematics 1,467-477.

J. F. Shapiro (l979a). Mathematical Programming, Structures and Algorithms, Wiley.

J. F. Shapiro (l979b). A Survey of Lagrangian Techniques for Discrete Optimization, Annals of Discrete
Mathematics 5, 113-138.

J. F. Shapiro and H. M. Wagner (1967). A Finite Renewal Algorithm for the Knapsack and Turnpike Models,
Operations Research 15,319-341.

M. L. Shore, L. R. Foulds and P. B. Gibbons (1982). An Algorithm for the Steiner Problem in Graphs, Networks
12, 323-333.

References 745

P. Sinha and A. A. Zoltners (1979). The Multiple-Choice Knapsack Problem, Operations Research 27,503-515.

S. Smale (1983a). The Problem of the Average Speed of the Simplex Method, in Bachem, Grotschel and Korte,
pp.530-539.

S. Smale (1983b). On the Average Number of Steps of the Simplex Method of Linear Programming, Mathemati
cal Programming 27,241-262.

K. Spielberg (1969a). Plant Location with Generalized Search Origin, Management Science 16, 165-178.

K. Spielberg (1969b). Algorithms for the Simple Plant Location Problem with Some Side Conditions, Operations
Research 17, 85-11l.

K. Spielberg (1979). Enumerative Methods in Integer Programming, Annals 0/ Discrete Mathematics 5,
139-183.

J. Stoer and C. Witzgall (1970). Convexity and Optimization in Finite Dimensions, Springer.

G. Strang (1976). Linear Algebra and Its Applications, Academic Press.

U. Suhl (1978). Algorithm and Efficient Data Structures for the Binary Knapsack Problem, European Journal 0/
Operations Research 2, 420-428.

U. Suhl (1985), Solving Large Scale Mixed Integer Programs with Fixed Charge Variables, Mathematical
Programming 32, 165-182.

H. A. Taha (1975). Integer Programming, Theory, Applications, and Computations, Academic Press.

A. Tamir (1976). On Totally Unimodular Matrices, Networks 6,373-382.

A. Tamir (1983). A Class of Balanced Matrices Arising From Location Problems, SIAM Journal 0/ Algebraic and
Discrete Methods 4,363-370.

A. Tamir (1987). Totally Balanced and Totally Unimodular Matrices Defined by Center Location Problems,
Discrete Applied Mathematics 16, 245-264.

E. Tardos (1985). A Strongly Polynomial Minimum Cost Circulation Algorithm, Combinatorica 5, 247-255.

E. Tardos (1986). A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs, Operations
Research 34, 250-256.

E. Tardos, C. A. Tovey, and M. A. Trick (1986), Layered Augmenting Path Algorithms, Mathematics 0/
Operations Research 11,362-370.

R. E. Tarjan (1977). Finding Optimum Branchings, Networks 7, 25-35.

R. E. Tarjan (1983). Data Structures and Network Algorithms, SIAM Publications.

R. E. Tarjan (1986). Algorithms for Maximizing Network Flow, Mathematical Programming 26, 1-11.

J. Tind (1974). Blocking and Antiblocking Sets, Mathematical Programming 6,157-166.

J. Tind (1977). On Antiblocking Sets and Polyhedra, Annals o/Discrete Mathematics 1, 507-515.

J. Tind (1979). Blocking and Antiblocking Polyhedra, Annals 0/ Discrete Mathematics 4, 159-174.

J. Tind and L. A. Wolsey (1981). An Elementary Survey of General Duality Theory in Mathematical Program
ming, Mathematical Programming 21, 241-26l.

M. J. Todd (1982). An Implementation of the Simplex Method for Linear Programming with Variable Upper
Bounds, Mathematical Programming 23,34-49.

M. J. Todd (1987). Polynomial Algorithms for Linear Programming, in Proceedings o/the Optimization Days
1986, H. A. Eiselt, ed.

M. J. Todd and B. P. Burrell (1986). An Extension of Karmarkar's Algorithm for Linear Programming Using
Dual Variables, Algorithmica 1,409-424.

J. A. Tomlin (1970). Branch and Bound Methods for Integer and Non-Convex Programming, in Integer and
Nonlinear Programming, J. Abadie, ed., American Elsevier, 437-450.

J. A. Tomlin (1971). An Improved Branch and Bound Method for Integer Programming, Operations Research
19, 1070-1075.

P. Tong, E. L. Lawler, and V. V. Vazirani (1984). Solving the Weighted Parity Problem for Gammoids by
Reduction to Graphic Matching, in Pulleyblank, pp. 363-374.

D. Topkis (1978). Minimizing a Subadditive Function on a Lattice, Operations Research 26, 305-32l.

M. Trick (1987). Networks with Additional Structured Constraints, Ph.D. Thesis, School of Industrial and
Systems Engineering, Georgia Institute of Technology.

L. E. Trotter, Jr. (1975). A Class of Facet Producing Graphs for Vertex Packing Polyhedra, Discrete Mathematics
12,373-388.

L. E. Trotter, Jr. (1985). Discrete Packing and Covering, in O'hEigeartaigh et aI., pp. 21-31.

L. E. Trotter and D. B. Weinberger (1978). Symmetric Blocking and Antiblocking Relations for Generalized
Circulations, Mathematical Programming 8, 141-158.

746 References

K. Truemper (1977). Unimodular Matrices of Flow Problems with Additional Constraints, Networks 7,
343-358.

K. Truemper (1978). Algebraic Characterizations of Unimodular Matrices, SIAM Journal on Applied Mathe
matics 35, 328-332.

W. T. Tutte (1954). A Short Proof ofthe Factor Theorem for Finite Graphs, Canadian Journal of Mathematics 6,
347-352.

W T. Tutte (1965). Lectures on Matroids, Journal of Research of the National Bureau of Standards 69B, 1-48.

W T. Tutte (1971). Introduction to the Theory of Matroids, American Elsevier.

p. Van Emde Boas (1981). Another Kg>-Complete Partition Problem and the Complexity of Computing Short
Vectors in a Lattice, Report 81-04, Mathematical Institute, University of Amsterdam.

T. J. Van Roy (1983). Cross Decomposition for Mixed Integer Programming, Mathematical Programming 25,
46-63.

T. J. Van Roy (1986). A Cross Decomposition Algorithm for Capacitated Facility Location, Operations Research
34, 145-163.

T. J. Van Roy and L. A. Wolsey (1985). Valid Inequalities and Separation for Uncapacitated Fixed Charge
Networks, Operations Research Letters 4, 105 -112.

T. J. Van Roy and L. A. Wolsey (1986). Valid Inequalities for Mixed 0-1 Programs, Discrete Applied Mathematics
14, 199-213.

T. J. Van Roy and L. A. Wolsey (1987). Solving Mixed 0-1 Programs by Automatic Reformulation, Operations
Research 35, 45-57.

M. P. Vecchi and S. Kirkpatrick (1983). Global Wiring by Simulated Annealing, IEEE Transactions on
Computer-Aided Design 2, 215-222.

A. F. Veinott, Jr. and G. B. Dantzig (1968). Integral Extreme Points, SIAM Review 10, 371-372.

V. G. Vizing (1964), On an Estimate of the Chromatic Class of a P-graph Diskretnyi Analiz 3, 25-30 (in
Russian).

R. von Randow, ed. (1982). Integer Programming and Related Areas, A Classified Bibliography 1978-1981,
Lecture Notes in Economics and Mathematical Systems 197, Springer.

R. von Randow, ed. (1985). Integer Programming and Related Areas, A Classified Bibliography 1981-1984,
Lecture Notes in Economics and Mathematical Systems 243, Springer.

J. Von zur Gathen and M. Sieveking (1978). A Bound on Solutions of Linear Integer Equalities and Inequalities,
Proceedings of the American Mathematical Society 72, 155-158.

H. M. Wagner (1959). On a Class of Capacitated Transportation Problems, Management Science, 5, 304-318.

H. M. Wagner and T. M. Whitin (1958). Dynamic Version of the Economic Lot Size Model, Management
Science 5, 89-96.

G. M. Weber (1981). Sensitivity Analysis of Optimal Matchings, Networks 11,41-56.

D. B. Weinberger (1976). Network Flows, Minimum Coverings, and the Four-Color Conjecture, Operations
Research 24,272-290.

H. M. Weingartner and D. N. Ness (1967). Methods for the Solution of Multidimensional 0/1 Knapsack
Problems, Operations Research 15, 83-103.

D. J. A. Welsh (1968). Kruskal's Theorem for Matroids, Proceedings of the Cambridge Philosophical Society 64,
3-4.

D. J. A. Welsh (1976). Matroid Theory, Academic Press.

D. J. A. Welsh (1983). Randomised Algorithms, Discrete Applied Mathematics 5, 133-146.

D. J. White (1969). Dynamic Programming, Holden-Day.

W W White (1961). On Gomory's Mixed Integer Algorithm, Senior Thesis, Department of Mathematics,
Princeton University.

S. H. Whitesides (1984). A Classification of Certain Graphs with Minimum Imperfection Properties. Annals of
DiscreteMathematics 21, 207-218.

H. Whitney (1935). On the Abstract Properties of Linear Dependence, American Journal of Mathematics 57,
509-533.

H. P. Williams (1974). Experiments in the Formulation of Integer Programming Problems, Mathematical
Programming Study 2, 180-197.

H. P. Williams (1978a). Model Building in Mathematical Programming, Wiley.

References 747

H. P. Williams (1978b). The Reformulation of Two Mixed Integer Programming Problems, Mathematical
Programming 14,325-331.

L. A. Wolsey (1971a), Group-Theoretic Results in Mixed Integer Programming, Operations Research 19,
1691-1697.

L. A. Wolsey (1971b). Extensions of the Group Theoretic Approach in Integer Programming, Management
Science 18, 74-83.

L. A. Wolsey (1973). Generalized Dynamic Programming Methods in Integer Programming, Mathematical
Programming 4, 222-232.

L. A. Wolsey (1975). Faces for a Linear Inequality in 0-1 Variables, Mathematical Programming 8,165-178.

L. A. Wolsey (1976). Facets and Strong Valid Inequalities for Integer Programs, Operations Research 24,
367-372.

L. A. Wolsey (1977). Valid Inequalities and Superadditivity for 0-1 Integer Programs, Mathematics of Operations
Research 2, 66-77.

L. A. Wolsey (1980). Heuristic Analysis, Linear Programming and Branch and Bound, Mathematical Program
ming Study 13, 121-134.

L. A. Wolsey (1981a). Integer Programming Duality: Price Functions and Sensitivity Analysis, Mathematical
Programming 20,173-195.

L. A. Wolsey (1981b). The b-Hull of an Integer Program, Discrete Applied Mathematics 3,193-201.

L. A. Wolsey (198lc). A Resource Decomposition Algorithm for General Mathematical Programs, Mathematical
Programming Study 14,244-257.

L. A. Wolsey (1982a). An Analysis of the Greedy Algorithm for the Submodular Set Covering Problem,
Combinatorica 2, 417-425.

L. A. Wolsey (1982b). Maximizing Real Valued Submodular Functions: Primal and Dual Heuristics for Location
Problems, Mathematics of Operations Research 7,410-425.

L. A. Wolsey (1987). Strong Formulations for Mixed Integer Programming: A Survey, Ecole Polytechnique
Federale de Lausanne.

R. T. Wong (1984). A Dual Ascent Approach for Steiner Tree Problems on Directed Graphs, Mathematical
Programming 28,271-287.

R. T. Wong (1985). Location and Network Design, in O'hEigeartaigh et al., pp. 129-147.

M. Yannakakis (1985). On a Class of Totally Unimodular Matrices, Mathematics of Operations Research 10,
280-304.

R. D. Young (1965). A Primal (All Integer), Integer Programming Algorithm, Journal of Research of the National
Bureau of Standards 69B, 213-250.

R. D. Young (1968). A Simplified Primal (All-Integer) Integer Programming Algorithm, Operations Research 16,
750-782.

W. I. Zangwill (1966). A Deterministic Multi-Period Production Scheduling Model with Backlogging, Manage-
ment Science 13, 105-119.

E. Zemel (1978). Lifting the Facets of 0-1 Polytopes, Mathematical Programming 15, 268-277.

E. Zemel (1980). The Linear Multiple Choice Knapsack Problem, Operations Research 28, 1412-1423.

E. Zemel (1981). Measuring the Quality of Approximate Solutions to Zero-One Programming Problems,
Mathematics of Operations Research 6, 319-332.

E. Zemel (1984). An O(n) Algorithm for the Linear Multiple Choice Knapsack Problem and Related Problems,
Information Processing Letters 18, 123-128.

E. Zemel (1986). On the Computational Complexity of Facets of the Knapsack Problem, Working Paper
No. 713, Graduate School of Management, Northwestern University.

AUTHOR INDEX

Aboudi, R., 425
Agin, N., 379
Ahn, S., 426
Aho, A. v., 142
Ali, A. 1.,522
Anstee, R. P., 600
Arabeyre, J. P., 523
Araoz, J., 255
Assad, A. A., 525
Avis, D., 522, 655

Babayev, D. A., 426
Bachem, A., 109,201,206,256
Baker, E. K., 523
Balas, E., 21, 254, 290, 379, 425, 521-526
Balinski, M. L., 20, 322, 655
Ball, M. 0.,425,654
Barahona, F, 425
Barany, 1., 291, 526
Barnes, J. S., 82
Barr, R. S., 525
Bartholdi, J. J., III, 599
Baum, S., 601, 714
Bazarra, M. S., 82
Beale, E. M. L., 20, 379-380
Beasley, J. E., 526
Bell, D. E., 142, 342, 521
Bellman, R. E., 82, 427
Bellmore, M., 522-523
Benders, J. F, 343
Benichou, M., 380
Ben-Israel, A., 380
Berge, C., 82, 600, 654
Bertsekas, D. P., 82
Bilde, 0.,21,425
Bixby, R. E., 599, 712
Blair, C. E., 254, 256, 342
Bland, R. G., 82, 180, 599-600
Bock, F, 713
Bodin, L., 525, 654
Bondy, J. A., 82, 655
Bonomi, E., 426, 524
Borgwardt, K. H., 142
Borosh, 1., 142

Bowman, V. J., Jr., 254,380
Boyd, S., 525
Bradley, G. H., 21, 82
Brearley, A. L., 21
Breu, R., 380
Brezovec, c., 713
Brooks, R., 342
Brown, G. G., 82, 599
Burdet, C. A., 255, 380
Burkhard, R. E., 525, 654
Burlet, M., 600
Burrell, B. P., 181

Cabot, A. v., 525
Camerini, P. M., 49
Camion, P., 599
Carpaneto, G., 525
Cassels, J. W. S., 201
Chalmet, L., 426
Chandra, A. K., 521
Chandrasekaran, R., 599
Chang, G. J., 600
Charnes, A., 49, 254, 380
Chen, D. S., 521
Chern, M. S., 521
Cho, D. c., 425
Choe, U., 525
Christofides, N., 20-21, 82, 523-525
Chu, Y. J., 713
Chvatal, v., 49, 254-255, 290, 521, 523, 600
Clarke, G., 524
Clarke, M. R. B., 521
Coffman, E. G., 654
Conforti, M., 714
Conn, A. R., 425
Cook, S. A., 142
Cook, W., 342, 379, 599, 655
Cooper, W. W., 49, 254
Cornuejols, G., 291, 425-427, 523-525, 655, 714
Crama, Y., 713
Croes, G. A., 524
Crowder, H. P., 22, 426, 521-522, 525
Cullen, F. H., 525
Cunningham, W. H., 599, 654-655, 713-714

749

750

Dakin, R. J., 379
Dantzig, G. B., 21, 49, 254, 284, 290, 342, 427,

523-525, 527, 598-599
Davis, M., 254
De Ghellinck, G., 180-181
de Kluyver, D. A., 521
Deleve, G., 523
Denardo, E. V., 427
Derigs, U., 654
Dial, R., 654
Dijkstra, E. W., 82
Dirac, G. A., 600
Dobson, G., 523
Doig, A. G., 379
Domich, P. D., 201
Dreyfus, S. E., 427
Driebeek, N. J., 379
Duchet, P., 600
Dyer, M. E., 521

Eastman, W. L., 523
Edmonds, J., 82,142,201,598-599,601,654-

655, 712-714
Efroymson, M. A., 424
Eppen, G. D., 526
Erenguc, S. S., 525
Erlenkotter, D., 425
Etcheberry, J., 522
Even, S., 654
Everett, H., 341-342

Farber, M., 600
Fayard, D., 521
Fisher, M. L., 342-343, 379, 425-426, 521, 523-

525, 714
Fonlupt, J., 291, 600
Ford, L. R., 82, 598
Forrest, J. J. H., 380
Fox, B. L., 380
Francis, R. L., 425
Frank, A., 181, 343, 600, 713
Frieze, A. M., 426, 521, 524, 526
Frisch, K. R., 181
Fujii, M., 654
Fujishige, S., 181
Fulkerson, D. R., 82, 109,254,290,522-525,

598-601, 713
Furst, M. L., 526

Gabow, H. P., 82
Gacs, H. P., 180
Galbiati, G., 524
Gale, D., 712
Galil, Z., 82
Gallo, G., 82
Garey, M. R., 142, 426
Garfinkel, R. S., 20, 254, 379, 427, 522-523, 525
Gass, S., 49
Gastou, G., 655
Gauthier, J. M., 380

Gavril, F., 600
Gelders, L. F., 426

Author Index

Geoffrion, A. M., 20, 341-343,379,426-427,522
Gerards, A. M., 655
Gerards, A. M. H., 342, 379
Ghouila-Houri, A., 599
Giles, R., 109,201,290,598-601,713
Gilmore, P. c., 342, 520, 525
Glover, F., 82, 343, 380, 521-522
Goffin, J. L., 49
Golden, B. L., 426, 524-525
Goldfarb, D., 180
Golumbic, M. c., 600
Gomory, R. E., 254-255, 290, 342, 380, 520-521,

525
Gondran, M., 20
Gonzales, T., 524
Gorry, G. A., 521
Graham, R. L., 426, 521, 654
Graves, G. W., 82, 427
Graves, S. c., 426
Gray, P., 525
Greenberg, H. J., 20, 343
Greenfield, A., 525
Grimmett, G. R., 523
Grinold, R. c., 49,427
Gross, D. A., 599
Grotschel, M., 20, 109, 180, 201, 290-291, 380,

425, 524-525, 600, 654, 713
Grunbaum, B., 109
Guignard, M., 22, 425, 525
Gunawardane, G., 599

Hadley, G., 49
Hajek, B., 426
Halmos, P. R., 109
Halton, J. H., 524
Hamburger, M. M., 425
Hammer, P. L., 20-21, 290, 713
Hansen, P., 21
Hartvigsen, D., 655
Hassin, R., 713
Hausmann, D., 20, 426
Helbig-Hansen, D., 524
Held, M., 49, 342, 524
Helgason, R. V., 82
Heller, 1., 599
Ho, A., 522
Hochbaum, D. S., 426, 523, 655
Hoffman, A. J., 20, 380, 598-600, 655
Hoffman, K., 522
Holland, 0., 425, 654
Holm, S., 343, 379
Holyer, 1., 655
Hong, S., 380, 525
Hopcroft, J. E., 654
Hsu, W. L., 601
Hu, T. c., 20, 521, 525, 601
Huang, H. c., 600-601
Huard, P., 181

Author Index

Ibaraki, T., 380
Ibarra, O. H., 521
Ikura, y., 82, 522
Ingargiola, J. P., 521
Iri, M., 599, 712

Jaikumar, R., 425-426, 525
Jarvis, J. J., 82, 525
Jenkins, T. A., 426
Jensen, D. L., 82
Jensen, P. A., 82
Jeroslow, R. G., 21, 142,251,254-256,342,380
Johnson, D. S., 142,426
Johnson, E. L., 20-22, 255-256, 290, 342, 520-

525, 601, 654-655
Johnson, S. M., 254, 290
Jonker, R., 523-524
Jornsten, K. 0.,343
Junger, M., 425

Kaas, R., 524
Kannan, R., 142,201,526
Kariv, 0., 654
Karmarkar, N., 180
Karney, D., 82
Karp, R. M., 49, 82, 142-143, 180,342,426,524-

526, 654, 713
Karwan, M. H., 343
Kastning, c., 20
Kennington, J., 82
Kernighan, B. S., 524
Khachian, L. G., 180
Khintchine, A., 201
Kim, C. E., 521
Kindervater, G. A. P., 379
Kirkpatrick, S., 426
Klee, V., 20, 142, 181
Klein, D., 379
Klingman, D., 82, 525
Knuth, D. E., 142, 201
Koenig, S. A., 426
Kolen, A., 525,600
Kolesar, P. J., 521
Koncal, R. D., 522
Korman, S., 523
Korsch, J. F., 521
Kortanek, K. 0.,254
Korte, B., 20-21, 426, 712
Kostreva, M. M., 22, 522
Kramp, J., 21,425,524
Kmskal, J. B., 82, 425, 599
Kuehn, A. A., 425

Lagarias, J. C., 201, 526
Lageweg, B. J., 343
Land, A. H., 379-380
Laporte, G., 525
Lasky, J., 522
Lauriere, M., 521

Law, A. M., 427
Lawler, E. L., 20, 82, 180,379,521,523,654,

712-713
Lehman, A., 601
Lemke, C. E., 343, 523
Lenstra, A. K., 201
Lenstra, H. W., 526
Lenstra, J. K., 20,142,343,379,523
Lester, J. T., 525
Leung,J., 241, 291, 425
Lewis, H. R., 142
Lin, S., 524-525
Little, J. C. D., 379, 523
Liu, T. H., 713
Lorie, J., 342
Loulou, R., 521

751

Lovasz, L., 20,180,201,523,599-600,654-655,
712-713

Love, R. F., 524
Lowe, J. K., 21, 254
Lubiw, A., 600
Lundy, M., 426
Lutton, J. L., 426, 524

McBride, R., 426
McDiarmid, C. J. H., 601, 713
MacKe own , P. G., 525
Mattioli, F., 426, 524
Magazine, M. J., 425, 521
Magnanti, T. L., 291, 343, 425, 427, 525
Mahjoub, A. R., 425
Malone, J. F., 523
Manne, A. S., 254, 425
Marcotte, 0., 601, 655
Markowitz, H. M., 254
Marsh, A. B., III, 654-655
Marsten, R. E., 20, 341, 379-380, 522-523
Martel, C. U., 713
Martello, S., 521
Martin, R. K., 291, 521-522, 526
Maurras, J. F., 290
Mees, A., 426
Metropolis, N., 426
Meyer, R. R., 109
Meyniel, H., 600
Michaelides, E., 521
Miliotis, P., 525
Miller, C. E., 21
Mingozzi, A., 21
Minoux, M., 20, 343
Minty, G. J., 142, 180,601
Mirchandani, P., 425
Mitra, G., 380
Mitten, L. G., 379
Monma, C. L., 21, 142
Morris, J. G., 425
Mosterts, S., 655
Muckstadt, J. A., 426
Mulvey, J. M., 426
Murchland, J. D., 713

752

Murty, K. G., 49
Murty, U. S. R., 82,655

Naddef, D., 291, 524
Nasberg, M., 343
Nauss, R. M., 379, 522, 599
Neebe, A. W., 426-427, 525
Nemhauser, G. L., 20, 82, 254-255, 290, 341-

342, 380, 425-427, 522-525, 599-601, 654,
714

Ness, D. N., 427
Ng, S. M., 523
Norback, J. P., 524
Norman, R. Z., 654-655
Northup, W. D., 426, 521
Nourie, E J., 380

Odlyzko, A. M., 526
Oguz, 0.,521
O'hEigertaigh, M., 20
Oppenheim, R., 599-600, 655
Orlin, J., 181,601

Padberg, M. W., 21-22, 290, 380, 521-525, 599-
601, 654, 713

Pallotino, S., 82
Papadimitriou, C. H., 20,142-143,180,291,426,

524
Parthasarathy, K. R., 601
Peled, U. N., 290
Petersen, C. C, 523, 713
Picard, J. C, 523, 713
Pierce, J. E, 522
Pierskalla, W. P., 343
Plateau, G., 521
Plummer, M. D., 654
Pochet, Y., 291, 526
Potts, C. N., 426
Powell, S., 380
Prim, R. C, 82
Prodon, A., 526
Pruul, E., 379
Pruzan, P. M., 425
Pulleyblank, W. R., 20-21, 109,290-291,523-

526, 599, 654-655
Putnam, H., 254

Quandt, R. E., 522
Queyranne, M., 523, 713

Rabin, M. D., 426, 654-655
Rado, R., 712
Rao, M. R., 426-427, 525, 654
Rardin, R. L., 343, 525
Ratliff, H. D., 522, 525, 713
Ravindra, G., 601
Ray, T. L., 424
Recski, A., 712
Reinelt, G., 425
Reiter, S., 425

Rhys, J. M. W., 713
Ribeiro, c., 343
Ribiere, G., 380
Rice, D. B., 425
Rinaldi, G., 524-525

Author Index

Rinnooy Kan, A. H. G., 142, 343, 380, 425, 523
Rockafellar, T., 109
Rosenkrantz, D. J., 524
Rosenthal, A. S., 525
Rosling, K., 526
Ross, G. T., 426
Rubin, D. S., 526
Rudeanu, S., 713

Sahni, S., 426, 521, 524
Sakarovitch, M., 600
Salkin, H. M., 20, 255, 521-522
Saltzman, M. J., 425
Sandi, C, 49
Sassano, A., 523
Savage, L. J., 342
Sbihi, N., 601
Scarf, H. E., 526
Schrader, R., 256, 521
Schrage, L., 291, 425, 380
Schrijver, A., 20, 180, 201, 254-255, 291, 342,

379, 599-600, 654-655, 713
Seymour, P. D., 599, 601
Shamir, R., 142
Shapiro, J. E, 49, 342, 345, 379, 426, 520-521
Shepardson, E, 522-523
Sherman, G., 425
Shmoys, D. B., 523
Shore, M. L., 526
Sieveking, M., 142
Sigismondi, G., 523
Sinha, P., 521
Smale, S., 142
Soland, R. M., 426
Spielberg, K., 20, 22, 343, 379, 424-425, 522
Steele, J. M., 426, 524-525
Steiglitz, K., 20, 524
Stewart, W. R., 426, 524
Stoer, J., 109
Strang, G., 109
Suhl, U., 22, 380, 521-522, 525

Taha, H. A., 20
Tamir, A., 599-600
Tardos, E., 82, 142, 181, 342, 379
Tarjan, R. E., 82, 713
Taverna, R., 654
Terada, R., 524
Thiagarajan, H., 522
Thizy, J. M., 425, 427
Tind, J., 109, 342-343, 601
Todd, M. J., 180-181,425
Tomlin, J. A., 379
Tompkins, C. B., 599
Tong, P., 713

Author Index

Topkis, D., 712
Toth, P., 21, 521, 523, 525
Treybig, L. L., 142
Trick, M., 343, 345
Trotter, L. E., 201, 290, 522-523, 599-601, 714
Truemper, K., 599
Tutte, W. T., 599, 655, 712

Ullman, Z., 342, 427

Van Emde Boas, P., 201
Van Roy, T. J., 291, 343, 427, 521-522, 525
Van Wassenhove, L. N., 426
Vecchi, M. P., 426
Veinott, A. F., Jr., 599
Venta, E. R., 380
Vizing, V. G., 655
Volgenant, T., 524
von Randow, R., 20
Von Zur Gathen, J., 142

Wage, M. L., 109
Wagner, H. M., 427, 520
Wakabayashi, Y., 291

Weber, G. M., 343, 522, 654
Weinberger, D. B., 601
Weingartner, H. M., 427
Welsh, D. J. A., 426, 712
White, D. J., 255, 426-427
Whitesides, S. H., 600
Whitin, T. M., 427
Whitney, H., 712
Williams, H. P., 20-21
Witzgall, c., 109
Wolfe, P., 49, 342

753

Wolsey, L. A., 255, 290-291, 342-343, 379, 426-
427, 521-526, 713-714

Wong, R. T., 343, 425, 427, 525-526
Wood, D. E., 379
Wright, J. W., 524, 599

Yannakakis, M., 20, 143,291,599
Young, R. D., 380

Zangwill, W. I., 427, 599
Zemel, E., 290, 426, 521
Zionts, S., 521
Zoltners, A. A., 521

SUBJECT INDEX

Adjacency matrix, 52, 118
Affine:

function, 325
independence, 192
transformation, 150

Algorithm, see also specific entries
balanced matrix, totally, recognition, 570
basis, reduced, 514

of lattice, 199
Bellman-Ford, 58
branch-and-bound, 355, 363, 482, 484, 497
constraint generation, 411, 413
cutting-plane, 498, 710

/branch-and-bound, 388, 459, 463, 485, 489,
502

fractional, 351, 367, 373, 386
general, 367
Gomory,368
mixed-integer, 374
primal, 374
strong, 386

decomposition, 409-417
for DFC and FC for row inclusion matrices, 566
for DFNP and FNP for chordal graphs, 577-585
dual desc.ent, greedy, 397-388
dual simplex, 37

lexicographic, 371
efficiency, 117
ellipsoid, 124, 147-162,698
euclidean, 184-187
feasibility, 179
fixed-charge, branch-and-bound, 497
greedy, 60, 666-667, 679, 689, 712
group, increasing, 448
Hermite normal form, 193
heuristic, 393-409

analysis, 399
probabilistic, 408
worst-case, 399

dual, 400
dual descent, 397
greedy, see Greedy, heuristic
interchange, 394, 397, 406-407, 477-478
nearest insertion, 477-478
nearest neighbor, 475, 477, 494
primal, 452

primal-dual, 395
randomized, 407-409
scaling/rounding, 442-443
simplex-based, for BIP, 457-459

knapsack problem, 0-1 separation, 462
linear programming, polynomial-time, 146-181

ellipsoid, 147-160
projective, 164-172
strongly polynomial for combinatorial

problems, 172-180
linear programming relaxation, 451-452
matching:

cardinality, 618, 625
bipartite, 612

weighted, 628
matrix, totally balanced, recognition, 570
matroid, greedy, for maximum-weight

independent sets, 666-671
intersection:

maximum cardinality, 677, 706
weighted, 684

mixed-integer, cutting-plane, 374
minimum-weight path, Dijkstra's, 56-58
network flow problem, primal simplex, 76-81
nondeterministic, 128, 131
objective rounding, 177
path:

augmenting, 65
minimum-cost, 75-76

minimum-weight, Dijkstra's, 56-58
polynomial-time, 119

strong, combinatorial for linear programs,
172-180

primal, simplex, 33, 76
primal-dual, 69-70
projective, 164-172
for recognizing an EPT matrix, 555-561
for recognizing TB matrices, 570-573
reduced basis of lattice, 199
relaxation, 349, 482

assignment problem/branch-and-bound, 482-
483

1-tree, sub gradient optimization, branch-and
bound,484-485

FCP Ibranch-and-bound, 485
separation, 412, 462, 487

755

756

Algorithm (Continued)
simplex:

dual, 37
primal,33
simple upper bounds, 39

sliding objective function approximate ellipsoid,
155. See also Ellipsoid

spanning-tree, construction, 60-61
special purpose, 383, 433
subgradient, 46, 410, 484
sub modular , function maximization, greedy,

712
superadditive, dual, 435
transportation problem, primal-dual, 68-76

Alphabet, 118
Annealing, see Simulated annealing
Antiblocker, 102
Antiblocking:

clutter, 594
matrix, 102

Antihole, 575
Approximation scheme:

fully polynomial, 401
polynomial, 402

Are, 54
forward, 64
reverse, 64
saturated, 63
slack, 309
variable j, 309, 313

Artificial variable, 36
Ascent, steepest, 43
Assignment problem, 5, 68, 332, 482

generalized, 346
Augmenting path, see Path

Backtracking, 358
Balanced matrix, 563, 564, 573

totally, 563-565, 570-573, 576
recognition algorithm, 570

Basic solution, 30
feasible, 31

Basis, 30
adjacent, 31
degenerate, 32
dual feasible, 31, 37, 321
matroid, see Matroid
nondegenerate, 34
orthogonal, 196
reduced, see Reduced basis of lattice

Bellman-Ford algorithm, 58
Benders' decomposition, 412, 508
Benders' reformulation, 337-341, 710
Binary:

alphabet, 118
digits, 157
representation, 72
search, 128
string, 119
variable, 5-13

Bipartite, 50, 54, 544, 575, 593, 612, 651

Blocker, 101
Blocking, 586

clutter, 587, 650
matrix, 103
pair, 103, 590
polyhedron, 101, 586-598

Blossom, 616
base of, 616
shrinking, 616

Boolean:
function, 695
implications, 215

Bounded, 107
Bounds, tightening, 18
Branch-and-bound, 354-367, 454

algorithm, 355, 363, 482, 484, 497
node selection, 358

adaptive rules, 358
best estimate, 359
best upper bound, 359
quick improvement, 359

a priori rules, 358
variable selection, 359

degradation, 359
integer infeasibility, 360
penalties, 359

Branching, 55, 661
problem, 532, 680
scheme, 365

Breadth-first search, see Search

Capital budgeting, 3
Certificate of feasibility, 114, 128
Certificate of optimality, 114, 124
C-G:

function, 306
inequality, 210, 220-225, 228, 232

Characteristic vector, 118, 259
Checking stage, 129
Chord, 575
Chordal graph, 576-578

strong, 605
Chromatic:

index, 651
number, 582

Claw, 585
Claw-free, 585
Clique, 260, 573

cover, 298
matrix, 574, 576

perfect graph, 583
problem, maximum weight, 163

Closest vector problem, 182
Closure, 664

elementary, 225
Clutter, 562, 574, 576, 583, 587
Coloring, 582, 651
Column operation, elementary, 192
Comb,277

inequality, 277-280
generalized, 280

Subject Index

Subject Index

Combinatorial optimization problem, 4
Complementarity condition, 330
Complementary slackness, 29, 305
Complexity, 114, 117, 139
Component, 53, 555
Concave function, 11,42-43
Cone, 86, 156, 164

polyhedral,99
Connected, 53, 552

strongly, 55
CoNP, 130, 141
Constraint generation algorithm, 411, 413
Constraints:

adding, 39, 358
disjunctive, 12
complicating, 323, 329, 337, 512
generalized upper-bound, 365
nice, 323
redundant, 19

Continued fractions, 187-189
Convergence, finite, 370, 378
Convex, 150

combination, 83
function, 11, 329
hull, 83, 106, 125, 127, 206, 241
set, 86

Cost-splitting, 334
Cover, 299

inequality, 459
extended, 461, 498

minimal,463
Covering, 6

by edges, 538, 586, 588, 639
fractional, 103
by independent sets, 702, 707
problem, 6, 144, 464, 571, 589, 702, 709

fractional, 562, 566
greedy heuristic, 466

Cramer's rule, 123
Cryptography, 513
Cut,62 .

capacity, 63
clutter, 587
edge, 551

proper, 551
function, 660
Gomory fractional, 368
minimum weight, 62, 63, 586-587, 592
primal, 376
-set equality, 486
T-, see T-cut

Cutting-plane algorithm, 498, 710
Ibranch-and-bound, 388, 459, 463, 485, 489, 502
fractional, 351, 367, 373, 386
general, 367
Gomory, 368
mixed-integer, 374
primal, 374
strong, 386

Cycle, 52, 78
chordless, 261

directed, 54
negative weight, 59
odd, 583

Cycling, 34

Data, 4, 115
Data structures, 82
Davis-Putnam procedure, 256
Decision problem, 127
Decomposition, 556

algorithms, 409-417
integral, 595

Degree, 51, 608

757

constraints, 272, 470
Demand nodes, 596
Dependent set, 265, 283, 659

extension, 266
minimal, 266

Depth-first search, see Search
Determinant, 123, 196, 540
Dicut, 535
Digraph, 54, 320, 496, 546
Dijkstra's algorithm, 56, 446, 592
Dimension, 86, 92, 108

full, 86-87
D-inequality, 213, 218, 220
Diophantine approximation, 184, 187, 189,200
Dipath, 55, 535, 675, 682
Disjunctive:

constraints, 12, 212
procedure, 213

Distribution, 3
Division, 352, 355, 356
Dominance, 207, 247
Dual, 28, 296-341

cost-splitting, 334
feasible basis, 371
gap, 299, 329
heuristic, 400
integral, totally, 537-539, 562, 638, 690-691
Lagrangian, 323-337, 409-411, 484, 494
linear programming, 28-30
matroid, 665
optimal solution, 175, 176
problem, 28, 97
restricted, 336
simplex algorithm, 37

lexicographic, 371
strong, 29, 299, 301, 305, 672, 677
superadditive, 304-312

general integer programming, 304
mixed-integer programming, 308

surrogate, 334
weak, 28, 299, 304, 672

Dynamic programming, 417-424, 433, 440

Edge, 50
coloring, 651-654
coverings, 639
end, 551
shrinking, 487

758

Ellipsoid, 147
algorithm, 124, 147-162, 698
property, 148
volume, 148

Enumeration tree, 352
Epsilon-approximate solution, 174, 331
EPT matrix, see Tree
Equality-constrained subgraph, 627
Equality set, 86, 91
Euclidean:

algorithm, 184-187
distance, 45

Euler cycle, 478, 609
Exchange property, see Matroid
Exponential, 120
Extreme point, 93, 95, 123, 125, 158
Extreme ray, 94-95, 123

Face, 88, 108
proper, 88

Facet, 89-91, 127
validity, 141

Facet -defining inequality, 158
Facility location, 3, 7, 15, 17, 287

capacitated, 8, 347
median problem, 408
uncapacilated, 8, 340, 384, 416, 496, 509, 709

dual descent, 397
FCPA with separation, 387
greedy heuristic, 393
Lagrangian dual, 409
p-, 402-406, 411
primal-dual heuristic, 398
strong formulation, 384
weak formulation, 385

Farkas' lemma, 30, 97
integer version, 191

FCPA, see Cutting-plane algorithm, fractional
Feasibility:

algorithm, 179
problem, 127

homogeneous, 164
integer programming, 127-129, 133
linear equations integer variables, 182
lower bound, 127, 139, 141

property, strict, 148
Feasible:

region, 4
solution, 4

Fibonacci number, 186
Finitely generated, 104
Fixed-charge:

network flow problem, 8, 18, 423, 495-513
branch-and-bound algorithm, 497
fractional cutting-plane algorithm, 498
multi-source, 506, 508
single-source, 496, 506

uncapacitated, 496
transportation problem, 502

Fixed cost, 18, 496

Flow, 62
blocking, 63
cover inequalities generalized, 499

extended, 501
feasible integral, 596
maximum, 62-68, 487, 695

minimum-cut theorem, 63

Subject Index

problem with budget constraints, 332
Forest, 53, 648
Formulation, 15,217, 338, 384
Fourier-Motzkin elimination, 111
Function, separable, 11

Gaussian elimination, 121, 179
gcd, see Greatest common divisor
Generalized upper-bound, see GUB
Gomory cut, 212

fractional, 227-229, 236
mixed integer, 249-250

Good characterization, 124
Gradient, 43
Gram-Schmidt orthogonalization, 196
Graph, 50-82

acyclic, 52
bipartite, see Bipartite
chordal, see Chordal graph
comparability, 606
complement, 52, 578
complete, 51, 270
component, 53
connected, 53
directed, see Digraph
intersection, 117
interval, 605
line, 584
perfect, see Perfect
planar, 582
random, 408
reduced, 488, 616
simple, 51
underlying, 54

Greatest common divisor, 183
Greedy:

algorithm, 60, 666-667, 679, 689
heuristic, 393, 397, 400, 403, 428, 440, 452, 466,

476, 712
Group, 315

algorithm, increasing, 448
problem, 312-322, 444

GUB (generalized upper-bound):
constraints, 365
dichotomy, 356

Hadamard inequality, 197
Hamiltonian cycle, 129, 270

problem, 129
directed, 144

Hermite normal form, 184, 189-195
algorithm, 193

Subject Index

Heuristic algorithms, 393-409
analysis, 399

probabilistic, 408
worst-case, 399

dual,400
dual-descent, 397
greedy, see Greedy, heuristic
interchange, 394, 397, 406-407, 477-478
nearest insertion, 477-478
nearest neighbor, 475, 477, 494
primal-dual, 395
randomized, 407-409

Hole, 575
odd, 261, 575

Hypersphere, 147, 158, 517

Identity transformation, 132
Imperfect, 584
Implicit enumeration, 354
Impossible to solve, 121
Incidence matrix, 76

neighborhood subtree-neighborhood subtree,
573

node-edge, 51
node-arc, 54

Incidence vector, see Characteristic vector
Independence:

affine, 84, 108
linear, 83, 84
system, 237, 659, 663
test, 666

Independent set, 265, 281, 659
Inequality:

dominating, 207
equivalent, 91
max-min, 103
min-max, 104
set, 86
stronger, 207
valid, see Valid inequality

Inner point, 86-87
Instance, 4, 115

feasible, 127
size, 118

Integer programming feasibility problem, 129,
515-520

Integer programming problem, 4, 104, 115, 125-
128

0-1, 456-469
FCP Ibranch-and-bound, 459
simplex heuristic, 457

fixed number of variables, 520
Integer round down, 595-598, 708
Integer rounding, see Rounding
Interior point, 86-87, 101
Interval matrix, 544, 549

Job processing, 689-694, 704
Join, see T-join

Knapsack problem:
0-1, 5, 265-270, 418, 420-422, 450-464

branch-and-bound, 454
linear programming relaxation, 451
primal heuristic, 452
separation algorithm, 462

integer, 125,312
dynamic programming, 433
heuristics, 440, 442
multiple choice, 527
superadditive dual, 435

lower bound feasibility, 136
multidimensional, 5

Lagrangian:
dual, 323-337, 409
relaxation, 323-337

Lattice, 182, 518
basis of, 190, 197

Leaf, 53
Lexicographic, 34, 371-373

totally reverse, 568
LIFO (last in, first out), 358
Lifting, 261-267

heuristic for, 461
Linear algebra, 83
Linear equations problem, 121

integer feasibility, 182

759

Linear programming, 4, 27-49, 115, 122-124, 131
polynomial-time algorithms, 146-181

ellipsoid algorithm, 147-160
projective algorithm, 164-172
strongly polynomial for combinatorial

problems, 172-180
Line Graph, 584
Logical inequalities, 19
Lot-sizing, 16

capacitated, 347
uncapacitated, 218, 288-290, 418, 422-424,

508-513
backlogging, 431

Matching, 226, 608-657
1-, 608
2-,273,469, 641, 647

fractional, 471, 494
inequality, 276, 490, 495
integer, 471, 483

algorithm:
cardinali ty, 618, 625

bipartite, 612
weighted,628

b-, 608, 640-648
0-1, 608, 647, 702
integer, 608, 643
perfect, 644

bonds, 144
perfect, 480, 638, 649
polytope, 633, 636-640

760

Matching (Continued)
problem, 5, 400, 608

cardinality, 608, 611-626
weighted, 124, 608, 627-636

separation, 658
Matroid, 659-703

basis, 664
binary, 714
circui t, 664
cographic, 665, 667
covering with independent sets, 702
dual, 665
exchange property, 664
graphic, 660, 665
greedy algorithm for maximum-weight

independent sets, 666-671
intersection, 671-678, 692

algorithm:
maximum cardinality, 677, 706
weighted, 684

k-, 661, 709
polytope, 688
problem, 671

weighted, 678-688
matric, 660, 665
optimization problem, 661
partition, 660, 704
polytope, 668
rank function, 665
representation, 666
span, 664
sum, 704
union, 705-706

Max-min equality, 591
strong, 592

Membership problem, 139, 141
extreme point, 141
strict, 148

Minkowski's theorem, 96
MIR inequality, see Mixed-integer, rounding
Mixed-integer:

cutting-plane algorithm, 374
programming problem, 3, 115, 338, 374,

413
dual, 308

rounding, 244-246
set, 242-254

Model formulation, 5-17
choices in, 14
valid inequalities, 217

Modular arithmetic, 212, 236, 312
Multigraph, 478

Neighborhood, 407
subtree, 571

Neighbors, 576
Network:

design, 3

flow problem, 8, 62, 76, 549
fixed-charge, see Fixed-charge
primal simplex algorithm, 76-81

matrix, 546-561
Node, 50

conservation, 62
cover, 144
covering by edges, 608
demand,62
duplication, 582
even, 612
exposed, 611
induced subgraph, 52, 579-580
intermediate, 52
isolated, 53
minimal, 675
odd,612
partition, 537
selection, see Branch-and-bound
simplicial, 576
supply, 62

Node-arc incidence matrix, 54
Node-edge incidence matrix, 51

Subject Index

Node-induced subgraph, 575, 582
Node-neighborhood subtree incidence matrix, 572
Node packing, 115-117, 216, 297, 307, 467-468,

573-585, 594
polytope, 141, 163, 259-261, 574
unweighted, lower bound feasibility, 133

Node-star incidence matrix, 571
Nondecreasing, 229, 660
Nondeterministic:

algorithm, 128, 131
polynomial, 127, 129, 141

Nondifferentiable optimization, 41
Nonlinear function, 10
Nonsingular, 150
NP, see Nondeterministic
NP-complete, 131

strongly, 138
NP-hard, 138

Objective function, 4
nonlinear, 11

Objective rounding algorithm, 177
Objective value, 107
Odd-set constraints, 124, 610
O() notation, 57
Optimal:

solution, 4, 94-95, 536
value, 4, 107

Optimality conditions, 296
Optimization, 161
Orthonormal matrix, 150

Packing, 6, 115, 117, 299, 394, 401, 464
fractional, 103, 562, 571

Partition, 6, 352, 704
feasibility, 134-135

Subject Index

Path, 52
alternating, 611
augmenting, 64, 66, 75, 611-612

algorithm, 65
shortest, 67

clutter, 587
directed, 54
maximum weight, 308, 320
minimum weight, 56, 58, 121, 444, 511, 535,

586-587, 592
shortest, 55-59

Perfect, 573-585
elimination scheme, 576
graph,574

conjecture, 576
theorem, 582

matching, see Matching
Performance guarantee, 399, 477
Perturbation lemma, 168
Phase I, 36, 78
Piecewise linear function, 11, 329, 366
Pivot element, 33
Polar, 99, 139, 206

1-, 100, 163, 239
Polarity, 98-104
Polyhedron, 85-98, 139, 161

bounded, 86
dual, 108
full-dimensional, 86
integral, 535-607, 638, 669
minimal representation, 91, 539
projection of, 97-98
rational, 85
volume, 148

Polymatroid, 688-694
polytope, 690
rank function, 688

calculation of, 693
separation, 693

Polynomial:
equivalence, 161, 163, 387, 592
function, 127
normalization, 176
reduction, 132
space, 121
-time, 146, 162-163

algorithm, 119
strong, 172

combinatorial algorithm for linear
programs, 172-180

transformation, 131
Polytope, 86

full-dimensional, 100
integral, 562
master, 238, 241
round, 515

Portfolio analysis, 3
Positive definite, 147, 150
Positive homogeneity, 247

Postman problem, 609, 648
Precision, finite, 157, 159
Preprocessing, 17-20
Primal:

-dual algorithm, 69-70
heuristic, 452, 475
problem, 28, 97
simplex algorithm, 33, 76

Principle of optimality, 419
Priorities, 359
Probabilistic analysis, 408
Problem, 115
Production planning, 290
Production scheduling, 3, 16
Projection, 49, 85, 98, 164
Projective algorithm, 164-172
Pruning, 352-357
Pseudonode, 616
Pseudopolynomial, 137, 421

761

Pure integer programming problem, see Integer
programming problem

Quadratic Boolean function, 695, 697, 701, 711

Radius, 571
Rank, 76, 84, 226

bounded, 227
Rational:

approximation problem, 183
number, 120, 183
polyhedron, 85

Ray, 93, 164
epsilon-approximate, 166
extreme, see Extreme ray
integer, 104

Recognition problem, 127, 550, 555, 565, 570
Reduced basis of a lattice, 184, 195-201, 518

algorithm, 199
applications, 513
heuristic, 514

Reduced price, 20, 32, 392
Reduced problem, 453
Reduction, 132
Reformulation, see Formulation
Relative error, 399
Relatively prime, 183
Relaxation, 296-300, 353

adding variables, 299
algorithm, 349, 482
dual, 300
choice of, 383
group, 298
Lagrangian, 298, 323-337, 410
linear programming, 298, 355, 451
state space, 431
surrogate, 334

Representation, 88
Restriction, 344
Rotation, 151

762

Round,515
Rounding, 160, 227

heuristic, 440
integer, 209, 232-233, 594-598
method, 210

Row inclusion matrix, 565-566
Row intersection graph, 550
Running time, 119

Satisfiability problem, 133
Scaling, 72

heuristic, 441
Scheduling, 3, 13, 287, 347
Search:

breadth-first, 67, 359
depth-first, 358
feasibility, 457
local improvement, 458

Separable, see Function, separable; Set, separable
Separation, 161-164

algorithm, 412, 462, 487
problem, 161, 387, 459, 499, 693

Sequential decision process, 417
Set:

dependent, 265, 283, 659
extension, 266
minimal, 266

independent, 265, 281, 659
separable, 670

Set-covering problem, see Covering
Set-function maximization, 393
Set-packing problem, see Packing
Set-partitioning problem, see Partition
Short, 124
Shortest path problem, see Path, shortest
Shortest vector problem, 182, 197, 200
Shrinking, 487, 616
Simplex, 516

algorithm:
dual,37
primal, 33
simple upper bounds, 39

Simplex-based heuristic, 457
Simplicial, 576
Simulated annealing, 407
Single source problem, 496, 506
Size of problem instance, 118
Sliding objective function, 155
Smith normal form, 195, 319
Space requirements, 121
Sphere, 147
Star, 551

minimum weight, 586
State, 417
Steepest ascent, 43
Steiner branching problem, 496, 507
Subdifferential, 45
Subgradient, 45, 409

algorithm, 46, 410, 484
optimization, 41-49, 409

Subgraph, 52
induced,52
spanning, 52

Submodular, 144, 403, 660, 662-663
function maximization, 708-712

greedy algorithm, 712
function minimization, 693-702

Subset sum problem, 136, 513
Subspace, 85

orthogonal, 85
Subtour, 10, 273

Subject Index

elimination constraints, 273-275, 470, 487
Superadditive, 229-237, 300, 316, 320

dual algorithm, 435
duality, 304-312
dual problem, 304
valid inequality, 230, 237-242

mixed-integer, 246-254
Supermodular, 660
Supply-demand vector, 596
Supply nodes, 596
Support, 88

TB, see Balanced matrix
T-cut, 649-651
TDI, see Dual, integral
T-join, 648-651, 702
Tour, 10, 270, 469, 588
Transformation, 131
Transportation problem, 62, 68, 122

primal-dual algorithm, 68-76
Transpose, 540, 564
Transversal, 714
Traveling salesman:

polytope, 270-281
dimension, 272

Traveling salesman problem, 9, 16, 586
symmetric, 469-495

branch-and-bound, 482
I-tree, subgradient, 484
assignment problem, 482
FCP, 485

heuristics, 475
double spanning tree, 479
greedy feasible, 476
interchange, 477
nearest insertion, 477
nearest neighbor, 475
spanning tree, perfect matching, 480

relaxations, 469
2-matching, 469, 475

I-tree, 470, 473
fractional, 471
integer, 471

Tree, 53
1-, 470, 484, 494
directed, 55, 546
edge-path incidence matrix, 550-559

recognition algorithm, 555
polytope, 669, 698

Subject Index

spanning, 55, 77, 546
minimum weight, 60-61

Triangle inequality, 478
TU, see Unimodular matrix

UFL, see Facility location, uncapacitated
ULS, see Lot-sizing, uncapacitated
Unary, 137
Unbounded, 4, 95, 107
Unimodular matrix, 189,319

totally, 540-546, 549, 561, 574

Valid inequality, 88, 205-295
generating all, 217-227
knapsack, 0-1, 265-270
mixed integer sets, 242-246
node packing, 259-261
rank,226-227
representing a face, 88
strong, 259-290, 386
superadditive, 230, 237-242, 249, 252
supporting, 88
traveling salesman, 270-281
variable upper bound flow model, 281-

290
Validity problem, 139, 141
Value dominance, 352

Value function, 300
Variable, 4

adding of, 39
artificial, 36
bounded, 222
branching, see Branch-and-bound
complicating, 323
decision, 417
dichotomy, 356
fixing, 19, 452, 468
regular, 457
slack, 37
selection in branching, 359

Variable upper bound, 281
Vizing's theorem, 652

Walk, 52, 313
closed, 52
directed, 54
even, 54
length of, 52
odd, 54

Weyt's theorem, 98
Wheel, 110
Worst-case:

analysis, 119, 399
performance, 399

763

WILEY-INTERSCIENCE
SERIES IN DISCRETE MATHEMATICS AND OPTIMIZATION

ADVISORY EDITORS

RONALD L. GRAHAM
AT & T Laboratories, Florham Park, New Jersey, US.A.

JAN KAREL LENSTRA
Department of Mathematics and Computer Science,

Eindhoven University of Technology, Eindhoven, The Netherlands

ROBERT E. TARJAN
Princeton University, New Jersey, and

NEC Research Institute. Princeton, New Jersey, US.A.

AARTS AND KORST • Simulated Annealing and Boltzmann Machines: A Stochastic Approach to
Combinatorial Optimization and Neural Computing

AARTS AND LENSTRA • Local Search in Combinatorial Optimization
ALON, SPENCER, AND ERDOS • The Probabilistic Method
ANDERSON AND NASH • Linear Programming in Infinite-Dimensional Spaces: Theory and

Application
AZENCOTT • Simulated Annealing: Parallelization Techniques
BARTHELEMY AND GUENOCHE • Trees and Proximity Representations
BAZARRA, JARVIS, AND SHERALI • Linear Programming and Network Flows
CHANDRU AND HOOKER. Optimization Methods for Logical Inference
CHONG AND ZAK • An Introduction to Optimization
COFFMAN AND LUEKER • Probabilistic Analysis of Packing and Partitioning Algorithms
COOK, CUNNINGHAM, PULLEYBLANK, AND SCHRIJVER • Combinatorial Optimization
DASKIN • Network and Discrete Location: Modes, Algorithms and Applications
DINITZ AND STINSON • Contemporary Design Theory: A Collection of Surveys
ERICKSON • Introduction to Combinatorics
GLOVER, KLINGHAM, AND PHILLIPS • Network Models in Optimization and Their Practical

Problems
GOLSHTEIN AND TRETY AKOV • Modified Lagrangians and Monotone Maps in Optimization
GONDRAN AND MINOUX • Graphs and Algorithms (Translated by S. Vajda)
GRAHAM, ROTHSCHILD, AND SPENCER • Ramsey Theory, Second Edition
GROSS AND TUCKER· Topological Graph Theory
HALL • Combinatorial Theory, Second Edition
JENSEN AND TOFT • Graph Coloring Problems
KAPLAN. Maxima and Minima with Applications: Practical Optimization and Duality
LA WLER, LENSTRA, RINNOOY KAN, AND SHMOYS, Editors • The Traveling Salesman

Problem: A Guided Tour of Combinatorial Optimization
LAYWINE AND MULLEN • Discrete Mathematics Using Latin Squares
LEVITIN. Perturbation Theory in Mathematical Programming Applications
MAHMOUD • Evolution of Random Search Trees
MARTELLO AND TOTH • Knapsack Problems: Algorithms and Computer Implementations
McALOON AND TRETKOFF • Optimization and Computational Logic
MINC • Nonnegative Matrices
MINOUX • Mathematical Programming: Theory and Algorithms (Translated by S. Vajda)
MIRCHANDANI AND FRANCIS, Editors • Discrete Location Theory
NEMHAUSER AND WOLSEY • Integer and Combinatorial Optimization
NEMIROVSKY AND YUDIN • Problem Complexity and Method Efficiency in Optimization

(Translated bv E. R. Dawson)
PACH AND AGARWAL. Combinatorial Geometry
PLESS • Introduction to the Theory of Error-Correcting Codes, Third Edition

ROOS AND VIAL • Ph. Theory and Algorithms for Linear Optimization: An Interior Point Approach
SCHEINERMAN AND ULLMAN • Fractional Graph Theory: A Rational Approach to the Theory of

Graphs
SCHRIJVER • Theory of Linear and Integer Programming
TOMESCU • Problems in Combinatorics and Graph Theory (Translated by R. A. Melter)
TUCKER· Applied Combinatorics, Second Edition
WOLSEY • Integer Programming
YE • Interior Point Algorithms: Theory and Analysis

