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Preface

Integer programming is a rich and fertile field of applications and theory.
This book contains a varied selection of both. I have purposely included
applications and theory that are usually not found in contributed books in
the hope that the book will appeal to a wide variety of readers. Each of the
chapters was invited and refereed. I want to thank the contributors as well as
the referees, who took great care in reviewing each submitted chapter.

The Boolean optimization problem (BOOP) is based on logical expressions
in prepositional first-order logic, with a profit associated with variables hav-
ing a true (or false) value subject to these variables making a logical expression
true (or false). BOOP represents a large class of binary optimization models
that include weighted versions of set covering, graph stability, set partition-
ing, and maximum-satisfiability problems. In Chapter 1, Lars Hvattum, Arne
Lokketangen, and Fred Glover describe new constructive and iterative search
methods for solving the BOOP.

Duan Li, Xiaoling Sun, and Jun Wang report recent developments in
Chapter 2 on convergent Lagrangian techniques that use objective level-cut
and domain-cut methods to solve separable nonlinear integer-programming
problems. The optimal solution to the Lagrangian-relaxation problem does
not necessarily solve the original problem, even for linear or convex integer-
programming problems. This circumstance is the duality gap. The idea of the
new cutting methods is based on the observation that the duality gap can be
eliminated by reshaping the perturbation function. Thus, the optimal solution
can be exposed to the convex hull of the revised perturbation function, which
guarantees the convergence of the Lagrangian method on the revised domain.

Robert Nauss discusses the generalized assignment problem (GAP) in
Chapter 3. The GAP is concerned with assigning m agents to M tasks so
that the assignment costs are minimized, each task is assigned to exactly one
agent, and resource limitations for each agent are enforced. The GAP may be
formulated as a binary-integer linear-programming problem. The problem
can be very difficult to solve with as few as 35 agents and tasks. A special-
purpose branch-and-bound algorithm that utilizes a number of tools such
as Lagrangian relaxation, subgradient optimization, lifted cover cuts, logical
feasibility testing, and specialized feasible-solution generators is presented.

In Chapter 4, Ted Ralphs and Matthew Galati discuss the use of decom-
position methods to obtain bounds on the optimal value of solutions to
integer linear-programming problems. Let P be the convex hull of feasible
solutions. Most bounding procedures are based on the generation of a polyhe-
dral approximation to P. The most common approximation is the continuous



approximation. Traditional dynamic procedures for augmenting the continu-
ous approximation fall generally into cutting-plane methods and methods
that dynamically generate extreme points to improve the approximation.
Ralphs and Galati describe the principle of decomposition and its applica-
tion in the traditional setting. They extend the traditional framework to show
how the cutting-plane method canbe integrated with either the Dantzig-Wolfe
method or the Lagrangian method to generate improved bounds. They intro-
duce a new concept called structured separation and show how it can be used
in a decomposition framework. Software implementation is also discussed.

Chapter 5 contains models and solution algorithms for the rescheduling
of airlines that result from the temporary closure of airports. Shangyao
Yan and Chung-Gee Lin consider the operations of a multiple fleet with
one-stop and nonstop flights when a single airport is temporally closed,
most often because of weather. A basic model is first constructed as a mul-
tiple time-space network, from which several strategic network models are
developed for scheduling. These network models are formulated as pure
network-flow problems, network-flow problems with side constraints, or
multiple-commodity network-flow problems. The first are solved by use of
the network-simplex method, and the others are solved by application of a
Lagrangian relaxation-based algorithm. The models are shown to be useful
in actual operations by tests on the operations of a major airline.

Chapter 6 and Chapter 7 deal with the determination of an optimal mix
of self-owned and chartered vessels of different types that are needed to
transport a product. Chapter 6 considers transportation between a single
source and a single destination, and Chapter 7 considers multiple sources
to various destinations. Hanif Sherali and Salem Al-Yakoob develop integer-
programming models to determine an optimal fleet mix and schedule. The
new models are solved by application of an optimization package and are
compared to an ad hoc scheduling procedure that simulates how schedules
are generated by a major petroleum corporation.

Chapter 8 presents an application of integer programming that involves the
capture, storage, and transmission of large quantities of data collected during
a variety of possible testing scenarios that might involve military ground ve-
hicles, cars, medical applications, large equipment, missiles, or aircraft. The
particular application that this chapter focuses on is testing military aircraft. A
large amount of data relating to parameters such as speed, altitude, mechan-
ical stress, and pressure is collected. Typically, several hundred or possibly
thousands of parameters are continuously sampled during the flight, with a
subset of these transmitted to a ground station. The parameters to be trans-
mitted are multiplexed into a data structure called a data cycle map, a sequence
of digital words. Data cycle maps are constructed subject to certain regula-
tions. One of the most constraining features of the data cycle map construction
process is that each parameter must appear periodically within the map. In
Chapter 8, David Panton, Maria John, and Andrew Mason show how a set-
packing integer-programming model may be used to find data cycle map
constructions that are feasible and efficient.



Govind Daruka and Udatta Palekar consider in Chapter 9 the problem of
determining the assortment of products that must be carried by the storesin a
retail chain to maximize profit. They develop an integer linear-programming
model to solve this problem. The model considers sales forecasts and con-
strains the assortments on the basis of available space, desired inventory
turns, advertising restrictions, and other product-specific restrictions. The re-
sulting model is solved by use of a column-generation approach. The model
and algorithm were implemented for a large retail chain and have been suc-
cessfully used for several years.

Chapter 10 contains an overview of noncommercial software tools for the
solution of mixed-integer linear programs (MILP). Jeff Linderoth and Ted
Ralphs first review solution methodologies for MILP, and then present an
overview of the available software, including detailed descriptions of eight
publicly available software packages. Each package is categorized as a black-
box solver, a callable library, a solver framework, or some combination of
these. The distinguishing features of all eight packages are fully described.
The chapter concludes with case studies that illustrate the use of two of the
solver frameworks to develop custom solvers for specific problem classes and
with benchmarking of the six black-box solvers.
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1.1 Introduction

The Boolean Optimization Problem (BOOP) represents a large class of binary
optimization models, including weighted versions of Set Covering, Graph
Stability, Set Partitioning, and Maximum Satisfiability problems. These prob-
lems are all NP-hard, and exact (provably convergent) optimization methods
encounter severe performance difficulties in these particular applications,
being dominated by heuristic search methods even for moderately sized
problem instances.

Previous heuristic work on this problem is mainly by Davoine, Hammer,
and Vizvari [2], employing a greedy heuristic based on pseudo-boolean func-
tions. Hvattum, Lekketangen, and Glover [11] describe simple iterative
heuristic methods for solving BOOP, starting from random initial solutions.
Although equipped with no long-term mechanism apart from a random
restart procedure, they obtain very good results compared to the work by
Davoine, Hammer, and Vizvdéri, and also by an even greater margin when
compared to CPLEX and XPRESS/MP on the larger problems.

The remainder of this chapter is organized as follows. Section 1.2 provides
BOOP problem formulations and details of previous work. Section 1.3 de-
scribes new local search mechanisms, designed to diversify the search, while
Section 1.4 describes our new constructive methods. In Section 1.5 we address
the Weighted Maximum Satisfiability problem (W-MAX_SAT), and show how
to transform it into a BOOP formulation framework. Computational results
are given in Section 1.6, followed by the conclusions in Section 1.7.

1.2 Problem Formulation and Search Basics
1.2.1 Problem Formulation

The Boolean Optimization Problem (BOOP), first formulated in Davoine,
Hammer, and Vizvari [2], is based on logical expressions in prepositional,
first-order logic, with an extra cost (or profit) associated with the variables
having a true (or false) value. One formulation can be (assuming maximization)

N
Maxz = Z (cilx; = true/false)

i=1

such that

@(x) = (D(xll RS xN) = {;;ZZ

where ®(x) is the logical expression, and N the number of variables. The
solution to this problem is the set of truth value assignments to the x; variables
that yields the highest objective function value z, while satisfying the logical
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expression. The logical expression can in general be arbitrary, but we restrict
ourselves to formulations in conjunctive normal form, CNF. (The disjunctive
normal form can be obtained by a simple transformation.) Informally, a BOOP
can be regarded as a satisfiability problem (SAT) with an objective function
added on. For more information on SAT, see, for example, Cook [1], and Du,
Gu, and Pardalos [4].

Applying simple transformations described in Hvattum, Lokketangen, and
Glover [11], we get the following model by splitting each x; into its true and
false component y; and y;x:

N
Maxz = Z CiYi
i=1

s.t.

Dy=>1
Vitys=1

where D is the 0-1 matrix obtained by substituting the y’s for the x;’s. The last
constraint is handled implicitly in the search heuristics we introduce.

1.2.2 Local Search Basics

To better understand the mechanisms described in this chapter, some back-
ground from previous work is helpful. Further details can be found in
Hvattum, Lekketangen, and Glover [11], whereas an introduction to tabu
search can be found in, e.g., Glover and Laguna [10]. The basic strategy of the
earlier work includes the following features:

o The starting solution (or starting point) is based on a random assign-
ment to the variables. This solution may be primally infeasible, and
hence the search must be able to move in infeasible space.

» A move is the flip of a variable by assigning the opposite value (i.e.,
change1 — 0or 0 — 1).

o The search neighborhood is the full set of possible flips, with a neigh-
borhood size of N, the number of variables.

» Move evaluation is based on both the change in objective function
value, and the change in amount of infeasibility.

 The move selection is greedy (i.e., take the best move according to the
move evaluation).

» Simple randomized tabu tenure and a new best aspiration criterion
are used.

+ A random restart is applied after a certain number of moves, to
diversify the search.

+ The stopping criterion is a simple time limit.
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The manner in which we incorporate these features, and add new ones to
our current method, is sketched in the following sections.

1.2.3 Move Evaluation Function

The move evaluation function, Fy;, has two components. The first is the
change in objective function value. The cost coefficients, c;, are initially nor-
malized to lie in the range (0,1). This means that the change in objective
function value per move, Az;, is in the range (—1, +1).

The second component is the change in the number of violated clauses
(or constraint rows), for the flipping of each variable. This number, AV; will
usually be a small positive or negative integer. For a different way to handle
infeasible solutions, see Lokketangen and Glover [12].

These two components are combined to balance the considerations of ob-
taining solutions that are feasible and that have a good objective function
value. The relative emphasis between the two components is changed dy-
namically to focus the search in the vicinity of the feasibility boundary, using
the following move evaluation function:

FM,‘ZAVI‘-FU)*AZI'

The value of w, the adaptive component, is initially set to 1. It is adjusted after
each move so that:

o If the current solution is feasible: w=w+ AWy
o If the current solution is not feasible, and w > 1: W=w— AWie

The effect of this adaptation is to induce a strategic oscillation around the fea-
sibility boundary. A different approach appears in Glover and Kochenberger
[9], where the oscillation is coupled with the use of a critical event memory,
forcing the search into new areas.

1.3 Local Search Improvements

The simple local search described in Hvattum, Lekketangen, and Glover [11]
relies on a sophisticated adaptive move evaluation scheme for achieving the
type of balance between feasibility and objective function quality previously
described. From their computational results, however, it is evident that for
the larger test cases a better form of diversification than random restart is
needed to be able to explore larger parts of the search space.

The extra mechanisms come at a cost. There is a tradeoff between the gains
provided by improved search guidance or diversification, and the associated
computational effort to perform the extra calculations and to maintain the
auxiliary data structures. In the current setting, the additional mechanisms
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reduce the number of search iterations done in a given amount of computa-
tional time.

We have implemented two processes for diversification: Adaptive Clause
Weighting, and Probabilistic Move Acceptance.

1.3.1 Adaptive Clause Weights

In the basic local search scheme, all violated clauses (i.e., constraint rows) con-
tribute the same amount to the move evaluation function, F)y;, as described
in Section 1.2.3. However, some of the clauses will be more difficult to satisfy
than others, and should be given more emphasis. We achieve this by attach-
ing a separate weight, CW, to each clause. Previous work on adaptive clause
weights can be found in Lekketangen and Glover [13].

All clauses start with CW = 1. The weight is updated only after iterations
where a clause becomes violated, at which point the weight of the newly
violated clause is incremented by a small amount, ACW. To prevent clause
weights from growing prohibitively large, they are renormalized by dividing
all the clause weights by a constant CWpy, whenever one weight becomes
greater than some CWyy.

Such a procedure constitutes a long-time learning approach. The move
evaluation function drives the search out of the feasible region to seek solu-
tions with high objective function quality in nearby infeasible space. Having
adaptive clause weights helps the search to better adapt to the infeasibility
border of the search space, thus enabling the search to cross back over the bor-
der to find different, and better, feasible solutions. As shown in Section 1.6.1,
the tradeoff between the extra time taken to update the weights, and the
resulting improved search guidance pays the greatest dividends for the larger
problems.

1.3.2 Probabilistic Move Acceptance

In every iteration the search method generates a list that identifies a subset of
possible moves to execute, and the best move from this list is selected. Usually
this best equates with best move evaluation value. But the move evaluation func-
tion is rather myopic, only looking at the local neighborhood, and we modify
it by using recency and frequency measures as proposed in tabu search. (See,
e.g., Glover and Laguna [10] and Gendreau [6]).

In a sorted list of possible moves, the presumably best moves will be at
the front of the list, but not necessarily in strict order. A simplified variant of
this principle from Glover [7] is also employed in GRASP, where the chosen
move is randomly selected among the top half of the moves (see Feo and
Resende [5]).

We use this approach by selecting randomly from the top of the list, but in
a way biased toward the moves having the highest evaluations. This is called
Probabilistic Move Acceptance, PMA, as described in Lekketangen and Glover
[12]. The selection method is as follows:
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PMA:

1. Select a move acceptance probability, p.

2. In each iteration sort the admissible moves according to the move
evaluation function.

3. Reject moves with probability (1 — p) until a move is accepted.
4. Execute the selected move in the normal way.
5. If not finished, go to 2 and start the next iteration.

This can also be viewed as using randomness to diversify the search (as a
substitute for deterministic use of memory structures), but in a guided way.

In our local search setting, using PMA generally yields worse results than
the deterministic approach of always taking the best nontabu move. This
implies that the move evaluation function is good, and that rejecting the top
moves deteriorates the search.

The inclusion of PMA yields better results for the largest problems (with up
to 1000 variables and 10,000 clauses). This indicates that the PMA introduces
some necessary diversification that the basic mechanisms lack.

1.4 Constructive Methods

Constructive methods in the literature are mainly used for creating good, or
feasible, starting solutions for subsequent local search heuristics. We show
how proper use of adaptive memory structures derived from tabu search
can be used to create iterated constructive learning heuristics. These gener-
ate a series of solutions, where the constructive guidance is modified by the
outcome of the previous searches. Our ideas are based on principles for ex-
ploiting adaptive memory to enhance multi-start methods givenin Glover [8].
A general discussion of multi-start methods can be found in Martf [14].

In each iteration of our constructive method we start with all the variables
unassigned, and then greedily assign one variable to each step, based on an
evaluation of the available assignments, until all variables have received a
value.

We focus in particular on implementing the principles embodied in the
PAM (Persistent Attractiveness Measure) and MCV (Marginal Conditional
Validity) concepts. As is customary, our methods also incorporate a short
local search after each constructive phase.

1.4.1 PAM-Persistent Attractiveness Measure

The Persistent Attractiveness Measure, PAM, is a measure of how often a spe-
cific value assignment to a variable is considered attractive, without actually
being selected for inclusion in the solution. It is reasonable to assume that
early assignments in the construction phase have more impact than later
assignments, and that good variable assignments are usually given good
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evaluations. The attractiveness should also increase for a variable assignment
that is repeatedly ranked high without being chosen.

If we index the assignment steps with s, and the individual rankings in a
step with r, we would like the PAM to have the following properties:

PAM(r, s) is decreasing for increasing s (earlier steps are more important)
PAM(r, s) is decreasing for increasing r (higher rank is better)

We only calculate PAM for the top ranked moves.

The PAM evaluator can be formulated as E(s, r) = E’(s) + E”(r), where, for
BOOP, we set

E'(s) =as* —as
and

E'(r) =br* —br
where s* = N (number of variables) and r is a parameter. The constants aand
b are determined experimentally as subsequently described.

The PAM-values corresponding to a given assignment are summed over all
the constructive steps to yield an overall measure of attractiveness for each
possible assignment.

PAM values for several consecutive constructive runs can be accumulated
in a measure of attractiveness, e.g., by exponential smoothing:

New PAM = (Last PAM + Last Accumulated Total PAM)/2
We thus expand the move evaluation indicated earlier to become:
F(yi#) = AVig + W*(Zi) + PAMi@)

The values for the PAM-measure are limited to an interval [0, k], with k chosen
to match w in some way, again as specified later. The parameter w is updated
as in the local search (see Section 1.2.3), but only after the completion of each
constructive run.

1.4.2 MCV-Marginal Conditional Validity

The choices made at the beginning of a constructive search are based on
less information than later choices, and are thus more likely to be bad. When
later choices are made, the problem has been reduced by the earlier choices,
and better choices can be made (but in the context of the earlier ones). Later
decisions are thus likely to make earlier decisions look better. We call this the
Marginal Conditional Validity principle.

After the constructive phase we analyze the completed solution to find
assignments that should have been different. There are two cases that can be
used as a foundation:

1. A variable is true, but there are unsatisfied rows where the negated
variable is present.

2. A variable is false, but the negated variable is present only in rows
that would be satisfied even if the variable had been flipped.
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In the first case the opposite value assignment to the variable would possi-
bly satisfy more rows, while in the second case we would get an increase in
the objective function value, without violating any new constraints. Each of
the assignments recognized in this manner is enforced in the start of the next
constructive run with a given probability p.

1.4.3 A Comparison with GRASP

The Greedy Randomized Adaptive Search Procedure, or GRASP, is a well known,
memoryless, constructive heuristic relying heavily on randomization (see
Resende, Pitsoulis, and Pardalos, 1997). A constructive run can be followed
by a short greedy local search.

We have adapted and implemented GRASP to work for BOOP, for com-
parison purposes. We use the same basic objective function value as before,
but without any adaptive memory or learning. The only parameter required
for GRASP is the proportion of moves to be considered for execution in each
constructive assignment, called «.

GRASP:

1. Start with all variables unassigned, rate all possible assignments.

2. Select an assignment randomly among those who are within a% of
best evaluation.

3. When all variables are assigned, possibly do a local search.
4. Go to 1, if not finished.

We use time as a stopping criterion, and try three versions of local search (LS):
No LS, complete LS, or “steepest ascent” LS.

We also tried to augment GRASP with learning capabilities by introducing
the adaptive component w in the evaluation function, as for our other constr-
uctive approach (see Section 1.4.1). Computational results are in Section 1.6.4.

1.5 Weighted Maximum Satisfiability

To support the claim that BOOP can represent many different problem classes,
this section outlines how Weighted Maximum Satisfiability problems
(W-MAX_SAT) can be easily transformed to BOOP. Section 1.6.5 gives com-
putational results for this case, without any effort to specialize our procedure
to handle the special structure of this problem.

A W-MAX_SAT instance can informally be regarded as an unsatisfiable
instance of a SAT problem that in addition has weights on the clauses (rows).
The objective is then to find a truth assignment that maximizes the sum of the
weights on the satisfied clauses. This is similar to BOOP, except that weights
are attached to the clauses rather than the variables. A W-MAX_SAT instance
can be transformed to BOOP by adding a new variable to each clause to



New Heuristics and Adaptive Memory 9

carry information about weights. The clause weights are transformed to ob-
jective function value coefficients for the new variables in the corresponding
clauses, while the original n variables will have objective function value co-
efficients of 0.

Thus, if the W-MAX_SAT has n variables and m clauses, the BOOP will
have (n 4+ m) variables and m clauses. The number of clauses (rows), m, is
often large compared to the number of variables, 7, giving a BOOP encoding
for W-MAX_SAT having many more variables. (In the test instances used in
Section 1.6.5 n is 100 and m is 800 to 900, giving 900 to 1000 variables for the
BOOP encoding, compared to 100 for W-MAX_SAT.)

As we can see in the computational results Section 1.6.5, our BOOP code
compares favorably to the GRASP heuristic on the same problem instances
(Resende, Pitsoulis, and Pardalos [15]), and is only slightly worse than the
special purpose method of Shang [17] in spite of the fact that no specialization
is used in our procedure.

1.6 Computational Results

This section reports the final parameter settings applied to each of the differ-
ent methods or mechanisms during testing, as well as overall computational
results. Section 1.6.6 attempts to compare all the different methods and mech-
anisms in a meaningful way:.

The same BOOP test cases as used in the previous work (Hvattum, Lekke-
tangen, and Glover [11] and Davoine, Hammer, and Vizvari [2]) are used
for testing. The test-set consists of 5485 instances, ranging in size from 50 to
1000 variables, and 200 to 10000 clauses (rows). Results are reported as the
average of solution values relative to results obtained by Davoine, Hammer,
and Vizvari using CPLEX 6.0.

The testing of W-MAX_SAT is based on modifying the unsatisfiable jnh*, as
used in Resende, Pitsoulis, and Pardalos [15]. These all have 100 variables and
800 to 900 clauses. For preliminary testing to fix parameter values, we selected
the same three test cases as in Hvattum, Lekketangen, and Glover [11].

1.6.1 Effect of Adaptive Clause Weights

The first addition to the mechanisms for BOOP described in Hvattum, Leokke-
tangen, and Glover [11], is the inclusion of adaptive clause weights (see Section
1.3.1). Preliminary testing showed that the results were not very sensitive to
the values of CWpjy (the maximum weight value) or CWpyy (the renormal-
ization factor). For our final testing we used CWyp = 4.0 and CWpy = 2.0.
The best value for ACW was chosen to be 0.003, based on preliminary testing.
The actual value is not sensitive, but it should be much smaller than 1.
Computational results are shown in Table 1.1 The results using Adaptive
Clause Weights (ACW) are compared to the results from Hvattum, Lokketan-
gen, and Glover [11] (TS), with computational time of 5 and 60 seconds.
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TABLE 1.1
Adaptive Clause Weights
TS5 TS60 ACW5 ACW60

Classes 1-22  100.001 100.001  100.002  100.002
Classes 23-49 101.214 101.215 101.212 101.214
Classes 50-54 106.305 106.982 107.628 107.866
Classes 55-63  102.463 102.465 102.462 102.464
Classes 1-63 ~ 101.373 101.427 101.477 101.497

As can be seen, the overall results show an improvement for both the 5
second and 60 second cutoff. For classes 55 to 63 the results are slightly inferior
to those of our earlier approach.

1.6.2 Effect of Probabilistic Move Acceptance

The important parameter for PMA is the probability of move acceptance, p
(see Section 1.3.2). In Table 1.2 and Table 1.3 are shown the results for a selected
test case for various values of p without and with adaptive clause weights
(ACW). Asisindicated in the tables, a fairly large value should be chosen for p.
In our subsequent test we use the value 0.9. Overall computational results are
shown in Table 1.4. The use of PMA gives in general slightly inferior results,
except for the largest problems. This is as expected, as the search guidance
(through the move evaluation value) should be better for smaller problems.
The PMA also introduces a certain amount of diversification that is helpful
for the larger problems.

1.6.3 PAM and MCV

Preliminary testing gave the following values for the PAM (Persistent Attrac-
tiveness Measure) and MCV (Marginal Conditional Validity) parameters, whose

TABLE 1.2

PMA without ACW

P Obj. value Time
0.1 142796 3.86
0.2 143138 3.47
0.3 143255 7.05
04 143315 5.27
0.5 143356 417
0.6 143367 4.02
0.7 143372 1.98
0.8 143372 1.20
0.9 143372 1.59

1.0 143372 1.33
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TABLE 1.3

PMA with ACW

p Obj. value Time
0.1 142845 5.29
0.2 143148 6.35
0.3 143246 6.18
04 143323 5.51
0.5 143357 6.11
0.6 143365 4.62
0.7 143369 227
0.8 143372 1.96
0.9 143372 1.27
1.0 143372 0.82

role is sketched in Section 1.4.1 and Section 1.4.2:

a=2
b=3
r'=4

The PAM-value of each variable assignment is scaled to lie between 0 and 0.3
before it is used in the move evaluation function as specified in Section 1.4.1.

Figure 1.1 shows results for the given test case for various values of p, the
probability that determines when to apply the MCV principle. For this test
case the best results are when the MCV principle (p = 0) is not applied. The
results with p = 0.4 give best results when applying MCV, and this value is
used in the computational testing.

Table 1.5 shows the computational results for our constructive learning
heuristic applying both PAM and MCV. The column PAM/MCV-NO LS gives
the results when no local search was applied after each constructive run.
PAM/MCV-STEEP indicates that a steepest ascent local search was applied
after each construction, and PAM/MCV-TS 500 indicates that a tabu search
limited to 500 iterations, as described in Section 1.3.1, was used for improve-
ment. All the runs were for 60 seconds. This new constructive method, even
without the local search, performs much better than the basic GRASP ap-
proach (see Section 1.6.4). The constructive approach without local search (LS)

TABLE 1.4
Results for PMA
Tabu Search PMA w.o. ACW PMA w. ACW

TS5 TS60 PMAS5 PMA60 PMAS5 PMAG60

Classes 1-22  100.001  100.001 ~ 99.998  100.000 99.996 99.998
Classes 23-49 101.214 101.215 101.205 101.213 101.205 101.211
Classes 50-54 106.305 106.982 105.787 106.168 107.438  107.778
Classes 55-63  102.463 102.465 102.446 102.463 102450 102.461
Classes 1-63 ~ 101.373 101.427 101.324 101.361 101.455 101.487
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FIGURE 1.1
Values for p for MCV.

also beats the results in Davoine, Hammer, and Vizvari [2] on small instances,
and beats, with the addition of a short LS to the constructive approach, these
results on all the instances.

It seems that when combining the constructive learning heuristic with the
TS from Section 1.3.1, most of the benefit comes from the TS. However, the
method PAM/MCV-TS 500 was the only method that finds the optimum of all
the small instances (classes 1 to 22, 5280 instances). In fact, all the optima were
found within 2 seconds. This seems to reflect the trend we have observed for
our constructive heuristics, that they are more effective for the smaller prob-
lem instances and do not often contribute improved results for the largest
problem instances.

1.6.4 Comparison with GRASP

Results for the GRASP heuristic outlined in Section 1.4.3 are shown in Table 1.6,
allowing for 5 or 60 seconds search time. A value of &« = 0.5 was used. The col-
umn GRASP-NO LS shows the results when no local search is applied after
the constructive phase, and GRASP-CLS shows the results when a complete,
recursive, local search is applied. GRASP-STEEP shows the results when
steepest, ascent is used.

These results indicate that GRASP is better than Davoine, Hammer, and
Vizvéri [2] on small instances, but does not scale well for the larger problems.

TABLE 1.5
Results for PAM and MCV

PAM/MCV-NO LS PAM/MCV-STEEP PAM/MCV-TS 500
Classes 1-22 99.359 99.780 100.002
Classes 23-49 99.571 100.074 101.205
Classes 50-54 97.202 98.545 106.778
Classes 55-63 99.581 99.942 102.448

Classes 1-63 99.310 99.831 101.405
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TABLE 1.6
Results for GRASP
GRASP-NO LS GRASP-CLS GRASP-STEEP

5sec 60sec 5sec 60sec 5sec 60sec

Classes 1-22  97.483 98.413 99.387 99.680 99.389 99.662
Classes 2349 95400 96.149 97216 97983 98.326 98.826
Classes 50-54 86.554 89.748 90.164 91.857 93.844 95.969
Classes 55-63  95.647 96.550 97.114 97.950 97.302 97.988
Classes 1-63 ~ 95.461 96.489 97.400 98.085 98.195 98.772

When we apply our adaptive component w, in order to balance the im-
portance of feasibility vs. the objective function value, GRASP functions
much better. Table 1.7 shows the results using the adaptive component, w,
and complete local search. The same values are used for Aw;,.(= 0.20) and
Awgee(= 0.15) as for the TS. The results are now better than Davoine, Hammer,
and Vizvari [2], except on classes 50 to 54. This shows that a modified GRASP
can compete with other heuristics on small and medium sized instances,
while other mechanisms may be needed for the larger ones. The recent work
on marrying GRASP with path relinking offers promise in this regard. (See
Resende and Ribeiro [16].)

1.6.5 Results for Weighted Maximum Satisfiability

We use the encoding of W-MAX_SAT in the BOOP framework outlined in
Section 1.5. Our problem instances are from Resende, Pitsoulis, and Pardalos
[15], based on the unsatisfiable “jnh” instances from second DIMACS Im-
plementation Challenge. These test cases have 100 variables, and 800 to 900
clauses (rows). Our BOOP encoding of these problems thus has 900 to 1000
variables and 800 to 900 rows, being somewhat inflated compared to the orig-
inal encoding.

Computational results are shown in Table 1.8. The settings for ACW 60
(see Section 1.6.1), without any changes, are used. GRASP* shows the results
reported in Resende, Pitsoulis, and Pardalos [15]. The column DML shows the
results for DML, a Lagrange-based method specially tailored to the problem
(Shang [17]).

TABLE 1.7
Results for GRASP with learning
GRASP w. Learning

Classes 1-22 99.972
Classes 23-49 100.717
Classes 50-54 96.587
Classes 55-63 101.901

Classes 1-63 100.298
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TABLE 1.8

Results for W-MAX_SAT

Problem Optimal GRASP* DML ACW 60
jnh1 420925 —188 0 0
jnh4 420830 -215 —41 -85
jnh5 420742 —254 0 —116
jnh6 420826 -11 0 —-15
jnh7 420925 0 0 0
jnh8 420463 —578 0 0
jnh9 420592 —514 -7 -327
jnh10 420840 —275 0 0
jnh11 420753 —111 0 —250
jnh12 420925 —188 0 0
jnh13 420816 —283 0 0
jnh14 420824 —314 0 -172
jnh15 420719 —359 0 -52
jnh16 420919 —68 0 -5
jnh17 420925 —118 0 0
jnh18 420795 —423 0 —207
jnh19 420759 —436 0 0
jnh201 394238 0 0 0
jnh202 394170 —187 0 —126
jnh203 394199 —-310 0 —137
jnh205 394238 —14 0 0
jnh207 394238 —137 0 -9
jnh208 394159 —172 0 —162
jnh209 394238 —207 0 0
jnh210 394238 0 0 0
jnh211 393979 —240 0 0
jnh212 394238 -195 0 0
jnh214 394163 —462 0 0
jnh215 394150 —292 0 —199
jnh216 394226 —197 0 0
jnh217 394238 —6 0 0
jnh218 394238 —139 0 0
jnh219 394156 —436 0 —103
jnh220 394238 —185 0 -33
jnh301 444854 —184 0 0
jnh302 444459 —211 —338 0
jnh303 444503 —259 —143 —414
jnh304 444533 -319 0 —570
jnh305 444112 —609 —194 —299
jnh306 444838 —180 0 0
jnh307 444314 —155 0 —685
jnh308 444724 —502 0 —699
jnh309 444578 —229 0 0
jnh310 444391 —109 0 0
Average 415914 —233 —-16 —-106
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Our computational results compare favorably to those of the GRASP
heuristic on the same problem instances. Our outcomes are only slightly worse
than those of the special purpose DML method of Shang [17], although we
are undertaking to solve the much larger transformed problem and make no
use of any specialization.

1.6.6 Performance Profiles

It is always very difficult to compare different methods based on tables of
computational results, unless one method is best on all the tests. We therefore
also compare our methods using the ideas given in Dolan and Moré [3]. Based
on the time used to find the best solution, we can construct a performance
profile as follows.

Let P be the set of problem instances, S be the set of solvers, and 7, be
the number of problems. Define ¢, s to be the time used by solver s to solve
problem p. Let

bos

Tps = —(——+"——
ps min{t, s.|s* € S}

be the ratio between the performances of solver s to the best solver on the
problem p. If a solver fails to solve a problem, then set r, s =y, where ry >
rp,s forall p and s.

A measure of the performance of a solver can be given by

ps (1) = isize{p € Plrys <1}
My
where p; (1) is the probability that for solver s, the ratio of performance r,, s is
within a factor t of the best ratio. A plot of p, (7) for the different solvers will
give interesting characteristics of the solvers. Please note that p; (1) gives the
proportion of problems where s is winning over the other solvers.

For many of our problem instances the reported solution time is very small,
and the solvers report 0. All these instances are removed from this compari-
son. This is not necessarily a drawback, as the remaining problems’ instances
presumably are the most interesting ones.

Figure 1.2 shows performance profiles for the following six methods:

+ ACW 60 — Tabu Search with adaptive clause weights
» TS 60 — Tabu Search without adaptive clause weights

+ PMA 60 TS — Tabu Search without adaptive clause weights, but
with PMA

+ CON ACW - Constructive Search, followed by TS
» CON LS - Constructive Search, followed by Steepest Ascent
* CON - Constructive Search — No LS

The allotted solution times are 60 seconds per problem instance.
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Performance profiles.

Of the original 5485 problem instances, 352 were left after removing those
where at least one of the solvers reported a solution time of 0 seconds. Of
these remaining problems there are 299 where not all the solvers find the
same solution value.

As can be seen, the method ACW 60 is the best. It is of interest to note that
when solution time is small (less than a factor 40 from the best solver on each
particular instance), is that CON ACW is better than PMA 60 TS, while for
longer solution times PMA 60 TS is better.

1.7 Conclusions

We have shown the value of certain types of adaptive memory to improve
the performance of heuristics, both iterative and constructive. Our results
compare very favorably to previous published results, and are significantly
better than those obtained by exact solvers (XPRESS and CPLEX).

For BOOP, we have achieved the best results by using a tabu search based
heuristic, augmented by an adaptive move evaluation function, and adaptive
clause weights. Very good results are also obtained for constructive heuristics
augmented by the learning schemes of PAM (Persistent Attractiveness Measure)
and MCV (Marginal Conditional Validity).
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We also show that our approach can be applied to Weighted Maximum
Satisfiability problems by transforming them into (larger) BOOP problems,
and that without specialization to the W-MAX_SAT setting we obtain results
comparable to those of the better specialized methods from the literature.
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2.1 Introduction

We consider the following general class of separable integer programming
problems:

(P)  min f(x) =) fi(x)
j=1

n
s.t. gi(x) = Zgij(xj) <b;,i=1...,m, 2.1
j=1
xeX=Xi1xXpx ... xX,,

where all f;s are integer-valued functions, all g;;s are real-valued functions
and all X;s are finite integer sets in R.

Problem (P) has a wide variety of applications, including resource alloca-
tion problems and nonlinear knapsack problems. In particular, manufacturing

19
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capacity planning, stratified sampling, production planning, and network
reliability are special cases of (P) (see [2][10][22] and the references therein).

The solution methods for problem (P) and its special cases can be classi-
fied into three major categories, dynamic programming ([4][11]), branch-and-
bound methods ([2][3][8]), and Lagrangian relaxation methods ([5-7][19])
(plus some combinations of branch-and-bound and dynamic programming
methods [18]). Although dynamic programming is conceptually an ideal so-
lution scheme for separable integer programming, the “curse of dimension-
ality” prevents its direct application to the multiply constrained cases of (P)
when m is large. The success of branch-and-bound methods based on contin-
uous relaxation relies on their ability to identify a global optimal solution to
continuous relaxation subproblems. Thus, branch-and-bound methods may
not be applicable to (P) when a nonconvexity is presented which is often
the case in many applications, e.g., concave integer programming and poly-
nomial integer programming. Due to the often existence of a duality gap,
Lagrangian relaxation methods in many situations are not used as an exact
method to find an optimal solution for (P). Developing an efficient solution
scheme for general separable nonlinear integer programming problems in
(P) is a challenging task.

Two convergent Lagrangian methods using the objective level cut and
domain cut methods have been recently developed in [14-16] for solving
separable nonlinear integer programming problems. The purpose of this
chapter is to discuss the solution concepts behind these two new methods
in order to give new insights and to stimulate further research results.

2.2 Lagrangian Relaxation, Perturbation Function, and Duality

By associating with each constraint in () a nonnegative 1;, the Lagrangian
relaxation of (P) is formulated as

(L) d(x>=1g)rgux,x)=f(x>+;m<gi(x>—bi>, 22)

where A = (A1, ..., AT € R and L(x, ) is called the Lagrangian function
of (P). One of the prominent features of the Lagrangian relaxation problem
(L) is that it can be decomposed into 1 one-dimensional problems:

min f;(x;) ~|—Z)»igij(xj) (23)
i=1
s.t. x]‘ S X]

Notice that (2.3) is a problem of minimizing a univariate function over a finite
integer set and its optimal solution can be easily identified. Denote the optimal
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value of problem (Q) as v(Q). Let the feasible region and the optimal value
of (P) be defined as,

S={xeX|gx <b;, i=1,...,m}
v(P):f*:r?ei?f(x).

Sinced (1) < f(x)forallx € Sand A > 0, the dual value d () always provides
a lower bound for the optimal value of (P) (weak duality):

v(P)= f*>d), VA>0.

We assume in the sequel that min,cx f(x) < f*, otherwise min,cx = f* must
hold and (P) reduces to an unconstrained integer programming problem. The
Lagrangian dual problem of (P) is to search for an optimal multiplier vector
A* € R} which maximizes d (%) for all » > 0:

(D) d(*) = r/r\lgoxd()»). (2.4)

By weak duality, f* > d(1*) holds. The difference f* —d(1*) is called the du-
ality gap between (P) and (D). Let u be an upper bound of f*. We denote
u — d(A*) as a duality bound between (P) and (D). It is clear that a duality
bound is always larger than or equal to the duality gap.

If x* solves (L,-) with A* > 0, and, in addition, the following conditions are
satisfied:

gi(x")<b;, i=12..,m, (2.5)
M) —b) =0, i=12...,m, (2.6)

then x* solves (P) and v(P) = v(D), i.e., the duality gap is zero. In this
situation, the strong Lagrangian duality condition is said to be satisfied.
Unfortunately, the strong Lagrangian duality is rarely present in integer pro-
gramming, and a nonzero duality gap often exists when the Lagrangian
relaxation method is adopted.

For any vectors x and y € R", denote x < yiffx; < y;,i =1, ..., m A
function  defined on R" is said to be nonincreasing if for any x and y € R",
x < yimplies h(x) > h(y).

Let ¢(x) = (g1(x), ..., gu(x)T and b = (by, ..., by)T. The perturbation
function of (P) is defined as follows for y € R",

w(y) =min{f(x) | g(x) <y, x € X}, (2.7)
where the domain of w is
Y = {y € R" | there exists x € X such that g(x) < y}. (2.8)

It is easy to see that w(g(x)) < f(x) for any x € X and w(b) = f*. By the def-
inition of the perturbation function in (2.7), w(y) is a nonincreasing function.
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Moreover, since X is a finite set, w is a piecewise constant function over Y.
The domain Y can be decomposed as Y = UK, ¥;, where K is a finite number
and Y; is a subset over which w takes constant value fi:

w(y):fk, VyEYk, k:l, ,K. (29)

For singly constrained cases of (P), i.e., m = 1, Yi has the following form:

, ,k=1,...,K—-1,
Y, {[Ck Ch+1) (2.10)

[ck, +00), k =K,

where & = minyex g1 (x).
For multiply constrained cases of (P), define

i =minfy; |y=Q, - ) €%} k=1,...,K, i=1...,m,
CZ{CkZ(Ckl, "'/Ckm)le:1/ '-~/K}I

O ={(ck, f)lk=1,...,K},
O ={(y wy)lyeY}

It follows from the definition of w thatc¢, € Yy fork =1, ..., K and thus
®. C ®. Apointin &, is said to be a corner point of the perturbation function w.
It is clear that (y, w(y)) € ®. iff (y, w(y)) € ® and for any z € Y satisfying
z <yand z # y, w(z) > w(y) holds. For all x € X, the points (g(x), f(x)) are
on or above the image of the perturbation function.

A vector A € R™ is said to be a subgradient of w(-) at y = ¥ if

wy) =w@ +r" Y-, YyeY.

LEMMA 2.1 [17]

Let x* solve primal problem (P). Then x* is a solution to Lagrangian relaxation

problem (L3) for some & in R iff — 2 is a subgradient of w(-) at y = g(x*).
Define the convex envelope function of w to be the greatest convex function

majorized by w:

Y (y) = max{h(y) | h(y) is convexon Y, h(y) <w(y), Yy € Y}. (2.11)

It can be easily seen that  is piecewise linear and nonincreasing on Y and
w(y) > ¥ (y) for all y € Y. Moreover, by the convexity of ¢ we have

Y(y) = max{ATy—i—r [AeR™ reR, and AT z+7r < w(z), Vze Y},
or equivalently,

V(y) = maxATy+r (2.12)
S.t.)LTCk—I-T’ <fi k=1 ...,K,
AreR”, reR.
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For any fixed y € Y, we introduce a dual variable u; > 0 for each constraint
Al +r < fr, k=1, ..., K. Dualizing the linear program (2.12) then yields

K
Y(y) =min Y wfi 2.13)

k=1

K
s.t. ZMka <y,

k=1

K
Yomk=1 =0 k=1 .. K
i=1

THEOREM 2.1 [15][17]
Let (—A*, r*) and u* be optimal solutions to (2.12) and (2.13) with y = b, respec-
tively. Then

i. A* is an optimal solution to the dual problem (D) and

Y () = ng(d()‘) =d\). (2.14)

ii. For each k with pj > 0, any X € X satisfying (g(%), f (X)) = (ck, fr)
is an optimal solution to the Lagrangian problem (L;+).

THEOREM 2.2 [17]
Let x* solve (P). Then, {x*, A*} is an optimal primal-dual pair iff the hyperplane given
by w = f(x*) — (W) [y — g(x*)] is a supporting hyperplane at [ f (x*), g(x*)] and
contains [y (b), b].

Now let us investigate the reasons behind the often failures of the tradi-
tional Lagrangian method in finding an exact solution of the primal problem.
Consider the following example.

Example 2.1

min f(x) = —2x — x, + 3x3
s.t. bx; + 3x22 — «/§x3 <7,
xe X={0<x <2 x integer, i =1, 2, 3}.

The optimal solution of thisexampleis x* = (1, 0, 0)T with f* = f(x*) = —2.
The perturbation function of this problem is illustrated in Figure 2.1. We can
see from Figure 2.1 that point C that corresponds to the optimal solution x*
“hides” above the convex envelope of the perturbation function and therefore
there does not exist a subgradient of perturbation function w at g(x*). In other
words, it is impossible for x* to be found by the conventional Lagrangian
dual method. The optimal solution to (D) in this example is A* = 0.8 with
d(1*) = —5.6. Note the solutions to (L;-—yg) are (0,0, 0)" and (2,0, 0)7, nei-
ther of which is optimal to the primal problem.
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FIGURE 2.1
The perturbation function of Example 2.1.

A vector A* > 0 is said to be an optimal generating multiplier vector of (P) if
an optimal solution x* to (P) can be generated by solving (L;) with A = A*
(see [17]). A pair (x*, A*) is said to be an optimal primal-dual pair of (P) if the
optimal dual solution 1* to (D) is an optimal generating multiplier vector for
an optimal solution x* to (P) (see [17]).

The conventional Lagrangian dual method would fail in two critical situ-
ations, both of which have been witnessed in the above example. The first
situation occurs where no solution of (P) can be generated by problem (L;)
forany A > 0. The second situation occurs where no solution to problem (L;-),
with A* being an optimal solution to (D), is a solution to (P).

It is clear that the nonexistence of a linear support at the optimal point leads
to a failure of the traditional Lagrangian method. Recognizing the existence of
anonlinear support, nonlinear Lagrangian formulations have been proposed
in [12][13][17][20][21] to offer a success guarantee for the dual search in gen-
erating an optimal solution of the primal integer programming problem. In
contrast to the traditional Lagrangian formulation which is linear with respect
to the objective function and constraints, a nonlinear Lagrangian formulation
takes nonlinear forms such as pth power or a logarithmic-exponential formu-
lation with respect to the objective function and constraints.

While the nonlinear Lagrangian theory provides a theoretical mechanism
to guarantee the success of the dual search, the nonlinear Lagrangian formula-
tion does not lead to a decomposability which is the most prominent feature of
the traditional linear Lagrangian. When the original problem is separable, the
nonlinear Lagrangian formulation destroys the original separable structure
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and makes the decomposition impossible. Thus, the computational and im-
plementation issue of nonlinear Lagrangian theory in integer programming
remains unsolved since there is no efficient algorithm to solve a general non-
separable integer programming problem.

Stimulated by the relationship between the duality gap and the geome-
try of the perturbation function, two novel convergent Lagrangian methods
adopting the objective level cut method and the domain cut method have
recently been developed for (P) in [14-16]. They are efficient and convergent
Lagrangian solution schemes in a sense that they provide an exact solution to
(P) while retaining the decomposability of (P) in the solution process. Both
methods are devised to reshape the perturbation function by adding some
cuts such that the duality gap can be reduced. A successive reshaping pro-
cess will eventually expose the optimal solution on the convex envelop of a
revised perturbation function and thus the success of convergent dual search
can be guaranteed.

2.3 Objective Level Cut Method

We continue to investigate Example 2.1 to motivate the development of the
objective level cut method [14] [15].

Aswe observed from Figure 2.1, the optimal point C hides above the convex
envelope of the perturbation and there is no optimal generating vector at C.
The duality gap is f (x*) —d(A*) = —2 — (=5.6) = 3.6 and the current duality
bound is 0 — (—5.6) = 5.6 achieved by the traditional Lagrangian method.
A key finding is that point C can be exposed to the convex envelope or the
convex hull of the perturbation function by adding an objective cut. As a
matter of fact, since A; corresponds to a feasible solution x% = (0,0,0)7, the
function value f(x%) = 0 is an upper bound of f*. Moreover, by the weak
duality, the dual value d (1*) = —5.6is alower bound of f*. Therefore, adding
an objective cut of —5.6 < f(x) < 0 to the original problem does not exclude
the optimal solution, while the perturbation function will be reshaped due
to the modified feasible region. Since the objective function is integer-valued,
we can set a stronger objective cut of =5 < f(x) < —1 after storing the current
best feasible solution x° as the incumbent. The modified problem then has the
following form:

min f(x) = —2x% — x, 4 312 (2.15)
s.t. bx; + 33(22 — «/§x3 <7,
xeX;=XNn{x|-5<f(x) <-1}.
The perturbation function of (2.15) is shown in Figure 2.2. The optimal dual
multiplier to (2.15) is 0.7593 with dual value —4.0372. Since x! = (0,1, 0)T

corresponding to A, is feasible, the duality bound is now reduced to f(x') —
(—4.0372) = -1 + 4.0372 = 3.0372. Again we can add an objective
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The perturbation function of (2.15).

cut —4 < f(x) < f(x!) =1 = -2 to (2.15) and obtain the following problem:
min f(x) = —2x% — xp + 312 (2.16)

s.t. 5bxy +3x§ — «/§x3 <7,
xeXp=XN{x|—-4=< f(x) <-2}.

The perturbation function of (2.16) is shown in Figure 2.3. The optimal dual
multiplier is 0.3333 with dual value —2.6667. Now point C corresponding to
x* is exposed to the convex hull of the perturbation function and the duality
bound is reduced to f(x*) — (—2.6667) = —2 + 2.6667 = 0.6667 < 1. Since
the objective function is integer-valued, we claim that x* = (1,0, 0)T is the
optimal solution to the original problem.

To reduce the duality gap between the Lagrangian dual problem and the
primal problem, we reshape the perturbation function by adding objective
cut to the problem. We start with a lower bound derived from the dual value
by the conventional dual search and an upper bound by a feasible solution
generated in the dual search (if any). The updated lower level cut and upper
level cut are imposed to the program successively such that the duality bound
(duality gap) is forced to shrink. Note that there is only one lower bound and
upper bound constraint during the whole solution process.

How to solve the relaxation problems of the revised problems such as the
Lagrangian relaxations of (2.15) and (2.16) is crucial to an efficient implemen-
tation of this novel idea. The Lagrangian relaxation of each revised problem
is a separable integer programming with a lower bound and upper bound
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FIGURE 2.3
The perturbation function of (2.16).

constraint for the objective function. Since the objective function is integer-
valued, dynamic programming can be used to search for optimal solutions to
this kind of problems efficiently. Consider the following modified version of
(P) by imposing a lower cut ! and an upper cut u:

(Pd,uw)) min f(x) (2.17)
st.gi(x)<b;,i=1,...,m,
xeXl,w={xeX|l<f(x)<u}.

It is obvious that (P (I, u)) is equivalent to (P) if | < f* < u. The Lagrangian
relaxation of (P (I, u)) is:

(Lyd,u) d,l,u)y= min L(x, \). (2.18)
xeX(,u)
The Lagrangian dual problem of (P(/, 1)) is then given as
(D(, u)) r?a(;(d()\, I, u). (2.19)
Notice that (L, (I, u)) can be explicitly written as:

i=1 j=1

d(h, 1wy =min|f () +_ Xi(gi(x) — b,-)] = minlz 0;(xj, ») — a(k)] (2.20)

n
st.1<Y fix)<u
j=1
x e X
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where 0 (x;, 1) = fi(x;) + Z/%;A;gij(xj) and a(X) = X! A;b;. It is clear that
(L;.(, u)) is a separable integer programming problem with a lower bound
and upper bound constraint on f (x). By the assumptions in (P), each f;(x;)
is integer-valued for all x; € X;. Therefore, (L, (I, u)) can be efficiently solved
by dynamic programming. Let

k-1
sc=Y_ fitxp), k=2, ...,n+1, (2.21)
j=1

with an initial condition of s; = 0. Then (L, (/, u)) can be solved by the fol-
lowing dynamic programming formulation:

n m
(DP)  min s,p1+ > | D Aigij (x,-)} (2.22)
j=1 Li=1
st.sjpi=s;+ fi(x)), j=12,...,n

s1=0,
I <suy1=<u,

x]‘EX]‘, j=1,2, R (N

The state in the above dynamic programming formulation takes finite values
at each stage.

THEOREM 2.3

Let A* be the optimal solution to (D). Denote by T (A*) the set of the optimal solu-
tions to the Lagrangian problem (L ;). Assume that the duality gap is nonzero, i.e.,
d(A*) < f* Then

i. There is at least one infeasible solution to (L»);
ii. min{f(x) | x € T(A*)\ S} <d(r*).

Based on Theorem 3, the objective cut is always valid when the duality gap
is nonzero. More specifically, in each new cut, some infeasible solution that is
the solution to the previous Lagrangian relaxation problem will be removed,
thus raising the dual value in the current iteration.

THEOREM 2.4

i. Let A*(I, u) denote the optimal solution to (D(l, u)). The dual optimal
value d(A*(I, u), 1, u) is a nondecreasing function of I.

ii. Ifl < f* < u, thend(\*) <d@*(,u),l,u) < f*. Moreover, let o =
max{f(x) | f(x) < f* x e X\ S} Ifo <] < f* then A»*(,u) =0
and d(A*(, u), 1, u) = f*.

iii. Forl < f*, we haved(A*(I, u), 1, u) > 1.

The implication of Theorem 4 is clear: The higher the lower cut, the higher
the dual value. The solution process will stop when the duality gap is less than
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one. From Theorem 2.3 and Theorem 2.4, the following result of finite con-
vergence is evident.

THEOREM 2.5

The objective level cut algorithm either finds an optimal solution of (P) or reports an
infeasibility of (P) in at most uy — lo + 1 iterations, where uy and ly are the upper
and lower bounds generated in the first iteration using the conventional Lagrangian
method.

Although the objective function is assumed to be integer-valued in the
objective level cut algorithm, a rational objective function can be also handled
by multiplying the objective function by the least common multiplier of the
denominators of all coefficients.

2.4 Domain Cut Method

When the objective function in (P) is a nonincreasing function with respect
to all x;s and all the constraints are nondecreasing functions with respect to
all x;s, problem (P) becomes a nonlinear knapsack problem. The domain cut
method [14][16] is developed for solving nonlinear knapsack problems. Note
that the assumption of integer-valued objective function is not needed in the
domain cut method.

We illustrate the solution concept of the domain cut method by the follow-
ing example.

Example 2.2

min f(x) = —x — 1.5x,
s.t. g(x) = 631 + x5 <23,
xeX={x|1<x <4 x integer, i =1,2}.

Note that f is nonincreasing and g is nondecreasing. The optimal solution of
this example is x* = (3, 2)T with f(x*) = —12.

The domain X and the perturbation function z = w(y) of this example are
illustrated in Figure 2.4 and Figure 2.5, respectively. It is easy to check that
the optimal Lagrangian multiplier is A* = 0.8333 with dual value —15.8333.
The duality gap is 3.8333. The Lagrangian problem

min [ £ (x) +0.8333(3 (x) - 23)]

has a feasible solution x* = (1, 1)T with f (x°) = —2.5 and an infeasible solution
¥’ = (4, 1)T. In Figure 2.5, points A, B, C correspond to x°, y°, and x* in
(g(x), f(x)) plane, respectively. We observe thatif points Aand B are removed
from the plot of the perturbation function, then the duality gap of the revised
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Perturbation function with domain X of Example 2.2.
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Domain X! in Example 2.2.

problem will be smaller than the original duality gap and thus the “hidden”
point C can be hopefully exposed on the convex envelope of the revised
perturbation function after repeating such a procedure. The monotonicity of
f and ¢ motivates us to cut integer points satisfying x < x° and integer
points satisfying x > 1° from box X. Denote by X' the revised domain of
integer points after such a cut. Figure 2.6 and Figure 2.7 show the integer points
in X! and the perturbation function corresponding to the revised problem
by replacing X by X'. The optimal Lagrangian multiplier for this revised
problem is A* = 0.3 with d(1*) = —12.3. The Lagrangian problem

min [f (x) +0.3(g(x) — 23)]

has a feasible solution x! = (3,2)T with f(x!) = —12 and an infeasible so-
lution y' = (3, 3)T. We continue to do the domain cutting. Denote by X? the
integer points in X! after removing the integer points satisfying x < x! and
integer points satisfying x > y! from X'. It is easy to see from Figure 2.6 that
X2 ={(1, 37,147, 2 37T, 2, 4T7). Since

mi}g [f(x)+0.3(g(x) —23)] = =9.1 > —12 = f(x),

we conclude by the weak duality that there is no feasible solution in X? better
than x! and x! = (3, 2)7 is therefore the optimal solution of this example.

As we see from the example, to reduce the duality gap between the La-
grangian dual problem and the primal problem, we reshape the perturbation
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FIGURE 2.7
Perturbation function with domain X! of Example 2.2.

function by removing certain points from the domain X. The monotonicity of
the problem guarantees that an optimal solution either has been found during
the search or is still in the remaining feasible region after the domain cut.

Let o, B € Z", where Z" denotes the set of integer points in R". Let («, 8)
denote the set of integer points in [«, 8],

n

(o, B) = [ [{eui, B) = (@1, B1) x (a2, Ba) - X {otn, Bu).

i=1

We call (@, B) an integer box. Let I = (I3, ..., )T and u = (uy, ..., u,)".
Assume that the integer set X in (P) is given by X = (I, u). If the objective
function is nonincreasing and constraints are nondecreasing, we have the
following conclusions:

i. Ifx € (I, u)is afeasible solution to (P), then forany ¥ € (I, x),itholds
that f(%) > f(x).

ii. If y € (I, u) is an infeasible solution to (P), then any point in (y, u)
is infeasible.

Therefore, (I, x) and (y, u) can be cut from the (/, u), without missing any
optimal solution of (P) after recording the feasible solution x.

A critical issue for an efficient implementation of the domain cut method
is how to characterize the nonbox revised domain after performing a cutting
process. In [14][16], the following analytical formulas are derived to describe
the revised domain as a union of subboxes.
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LEMMA 2.2
i. Let A= (o, B)and B = (I, y), wherea, B, 1,y € Z"and ] < o < y
< B. Then
n i—1 n
A8 = (H (o, vi) x (v + 1, ) x [ (e, ﬁk>> . (229)
im1 \k=1 k=i+1
ii. Let A= (o, B)and B = (y, u), wherea, B, y,u € Z'anda <y < B
< u. Then
n i—1
AB = (Hm, B x (e, vi — 1) x H ax, m) (2.24)
i=1 \k=1 k=i+1

Thus, the Lagrangian relaxation problem on a nonbox domain can be per-
formed as follows,

(L)) d) = mm L(x, ) = min min L(x, 1), (2.25)

‘ceu Xi 1<j<k xeXi

where X/ is the jthsubbox generated in the cutting process. Most importantly,
the above problem on a revised domain can be still decomposed into 7 one-
dimensional nonlinear integer programs which can be easily solved.

The domain cut method for nonlinear knapsack problems can be summa-
rized as follows. We start with the conventional Lagrangian method, which
generates a solution set with an infeasible solution and a possible feasible
solution to the primal problem, a dual value and an incumbent (if there is a
feasible solution). We then do the domain cut accordingly. Those subboxes
will be discarded if their lower-left corner is infeasible or their upper-right cor-
ner is feasible (after comparing the upper-right corner with the incumbent).
The dual search will then applied to the revised domain again. In the dual
search process, those subboxes whose dual value is larger than the incumbent
will be discarded. The next cut will be performed at the subbox where the
dual value is achieved. This iterative process repeats until either the duality
gap reaches zero or the revised domain is empty. The incumbent is then the
optimal solution to the primal problem. The finite convergence is obvious,
similar to the objective level cut, as the domain cut is valid each time when
the duality gap is not zero.

2.5 Numerical Results

The objective level cut method and the domain cut method discussed in the
previous sections have been programmed by Fortran 90 and were run on a
Sun workstation (Blade 1000). In this section, we report the numerical results
of the proposed algorithms for the following two classes of test problems.
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PROBLEM 2.1
Polynomial integer programming (PIP):

n 3
min f(x) = Z chkx’]?

j=1 k=1

n 3
s.t. gi(x) = Zzaika§ <b;,i=1,...,m,

=1 k=1
I; < Xxj S Uj, Xj integer, j= 1, ...,n.

The coefficients are generated from uniform distributions: all c jx are integers
from[-10,10],a;x € [-10,10],i =1, ... ,m,j =1, ..., nk =1,2,3.Wealso
takel = (1, ..., DTandu =5, ..., 57T, and b; = ¢;(1) +0.5 x (g: (1) — gi (1)),
i =1, ...,m. Note that f(x) and g;(x) in problem (PIP) are not necessarily
convex and the objective function f (x) is integer-valued.

PROBLEM 2.2
Polynomial knapsack problems (PKP):

min f(x) = Z[—ijj +djej —x))°]
j=1
st g(x) = Ax <b,
li <xj <uj, xjinteger, j=1,...,n,

wherec; > 0,d; > 0,¢; € (l],u]) forj =1, ,n,and A = (@;j)mxn With
a;jj > Ofori = 1 ,m,j=1,...,n The coeff1c1ents are generated from
uniform dlStI‘lbuthl’lS cj € [1 50] d €[1,10],e; € [1,5] for j =1,

aij € [1,50] fori =1, L] = 1 ,n. We also take I = (1, . 1)T
andu = (5, ...,57, and b = 0.7 x Au We notice that function f; (x]) =
—cjxj +dj(e; — x;)® is nonincreasing but not necessarily convex or concave
on[lj, uj]for j =1, ..., n. Therefore, problem (PKP) is a nonlinear knapsack
problem.

Numerical results of the objective level cut method for problem (PIP) are
reported in Table 2.1. We can see from Table 2.1 that the proposed algorithm
can solve large-scale multiply constrained separable integer programming
problems in reasonable computation time.

Table 2.2 summarizes numerical results of the domain cut algorithm for
problem (PKP). It can be seen from Table 2.2 that the domain cut algorithm is
efficient for solving large-scale singly-constrained nonlinear knapsack prob-
lems in terms of CPU time. Combined with the surrogate constraint technique,
the domain cut method can also solve multiply constrained knapsack prob-
lems efficiently as shown in Table 2.2.

More computational results of the objective level cut method and the do-
main cut method for different types of test problems and their comparison
with other existing methods in the literature can be found in [14-16]. One
evident conclusion from numerical experiments is that while most of the
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TABLE 2.1
Numerical Results of Objective Level
Cut Method for (PIP)
Average Number Average CPU
n m of Iterations Time (s)
50 5 4 0.5
50 10 12 5.8
50 15 5 19
50 20 17 242
50 30 15 223.4
TABLE 2.2
Numerical Results of Domain Cut
Method for (PKP)
Average Number Average CPU
n m  of Integer Boxes Time (s)
500 1 30017 30.7
1000 1 97212 214.5
2000 1 269877 1382.1
20 5 901 2.8
40 5 7042 43.8
60 5 40342 417.0
30 10 5064 34.6
30 20 9251 82.8
30 30 25320 228.6

existing methods suffer from their limitations in nonconvex and multiply-
constrained situations, both the objective level cut method and the domain
cutmethod canbe applied to general multiply-constrained nonconvex separa-
ble nonlinear integer programming problems with promising computational
results.

2.6 Summary

Two recently developed convergent Lagrangian methods: objective level cut
and domain cut methods for separable nonlinear integer programming have
been discussed in this chapter. Due to the discrete nature of the integer
programming, the optimal solutions to the Lagrangian relaxation problem
corresponding to the optimal multiplier do not necessarily solve the original
problem — a duality gap may exist even for linear or convex integer program-
ming. The idea of the new cutting methods is based on a key observation that
the duality gap of an integer program can be eliminated by reshaping the
perturbation function. Consequently, the optimal solution can be exposed to
the convex hull of the revised perturbation function, and thus guaranteeing
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the convergence of dual search. These two methods have been tested against
a variety of large-scale separable nonlinear integer programming problems
with up to several thousand variables. Extensive numerical results of these
two methods are very promising [14-16].
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3.1 Introduction

The generalized assignment problem (GAP) has been investigated in numerous
research papers over the past 30 years. The problem may be stated as finding a
minimum-cost assignment of tasks to agents such that each task is assigned to
exactly one agent and such that each agent’s resource capacity is not violated.
Applications of the GAP range from jobs assigned to computers in computer
networks (Balachandran [1]) to loading for flexible manufacturing systems
(Mazolla et al. [17]) to facility location (Ross and Soland [24]). A review of
applications and algorithms (both exact and heuristic) appears in Cattrysse
and Van Wassenhove [5]. Osman [20] describes various heuristic approaches
to the GAP.

The chapter is organized as follows. Section 3.2 describes the mathematical
formulation of the GAP. Section 3.3 surveys earlier work on the GAP. Solution
methodologies employed in our algorithm are described in Section 3.4.
Section 3.5 explains the branch-and-bound algorithm and Section 3.6
describes computational results. A concluding section gives ideas for future
work and extensions.

39
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3.2 Model Formulation

The GAP may be formulated as an integer linear programming (ILP) model
with binary variables. Let # be the number of tasks to be assigned to m agents
and define N={1,2, ... ,njand M= {1,2, ..., m}. Let:

cjj = cost of task j being assigned to agenti
rij = amount of resource required for task j by agenti
b; = resource units available to agent i.

The decision variables are defined as:

1, if task j is assigned to agent i
X =
v 0, if not.

The 0-1 ILP model is:

m n
(P) minimize Z Z Cij Xij (3.1
i=1 j=1
subject to:
n
Zrijxij <b;, VieM (3.2)
j=1
m
Y xj=1, VjeN (3.3)
i=1
xj=0 or 1, VieM, jeN. (3.4)

The objective function (3.1) totals the costs of the assignments. Constraint (3.2)
enforces resource limitations for each agent, and constraint (3.3) assures that
each task is assigned to exactly one agent. All data elements are allowed to
be real. We note, however, that certain efficiencies follow if the data elements
are assumed to be integral.

3.3 Previous Work

Research on the GAP over the past 30 years provides the integer program-
ming student with a smorgasbord of solution approaches devised by numer-
ous researchers. This is indeed propitious for the student since he need only
concern himself with mastering the various approaches within the context of
a rather simple 0-1 ILP formulation of the GAP.
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The first formal computational work addressing the GAP was by Ross and
Soland [23]. Its importance revolves around the fact that the authors used an
ad hoc approach for solving a tighter (than LP) relaxation which, in effect,
was the first published instance of Lagrangian relaxation (LGR) applied to an
ILP problem. Although the authors did not refer to Lagrangian relaxation per
se, its usage is quite clear. Fisher et al. [8] formalized the use of Lagrangian
relaxation and devised a clever dual multiplier adjustment procedure that
tightens the initial LGR. This tightening procedure when incorporated in a
branch-and-bound algorithm allowed larger, more difficult GAP problems on
the order of 100 0-1 variables to be solved to optimality. Jérnsten and Néasberg
[13] reformulated the GAP by introducing a set of auxiliary variables and
coupling constraints. Using their approach good, feasible solutions were able
to be generated in a more straightforward fashion. Guignard and Rosenwein
[11] extended the work of tightening the LGR by devising a dual-based ap-
proach that also incorporated the use of a surrogate constraint. This relaxation
tightening allowed problems of up to 500 variables to be solved to optimality.

Thus through the late 1980s the maximum size GAP problems to be solved
to optimality remained at about 500 binary variables. In the early 1990s some
researchers started to look at heuristic approaches due to the perceived diffi-
culty in solving large GAP problems to optimality. Cattryese et al. [4] used a
column generation/set partitioning approach to generate good feasible solu-
tions, and coupled this with dual ascent and Lagrangian techniques in order
to reduce the gap between lower (LB) and upper (UB) bounds. Thus they
were able to state that the best feasible solution (UB) was within (¥85:2)% of
optimality.

Researchers have continued to devise other heuristic approaches for the
GAP. Wilson [26] developed a dual-type algorithm and coupled it with a
clever search strategy to find good feasible solutions. Chu and Beasley [6]
used a genetic algorithm-based heuristic that generates very good feasible
solutions albeit at increased computation time due to the probabilistic search
features of genetic algorithms in general. Guignard and Zhu [12] utilized
subgradient optimization to tighten the LGR and simultaneously invoked a
simple “variables switch” heuristic to obtain good feasible solutions. Yagiura
etal. [28] devised a tabu search algorithm utilizing an ejection chain approach
to govern the neighborhood search for feasible solutions. They also incorpo-
rated a subgradient optimization scheme to generate lower bounds so that
solution quality could be measured. Yagiura et al. [27] extended Yagiura et al.
[28] by devising a mechanism to combine two or more reference solutions.

Concurrent with the work on heuristics in the 1990s, various researchers
continued to deviseefficientalgorithmsto generate provably optimal solutions
to the GAP. Savelsburgh [25] employed a set partitioning formulation of the
GAP similar to that used by Cattrysee etal. [4] (see above). However, he extend-
ed their work by employing both column generation and branch-and-bound
in order to generate provably optimal solutions to the GAP. He hasbeen able to
extend the size of problems solved to 1000 variables. Cattrysee et al. [3] gener-
ated lifted cover cuts to improve the standard LP relaxation, devised two new
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heuristics for generating good feasible solutions, and incorporated this in a
branch-and-bound algorithm. Park et al. [21] utilized subgradient optimiza-
tion in conjunction with a specialized dual ascent algorithm to tighten the La-
grangian relaxation and incorporated this approach in a branch-and-bound
algorithm. Finally Nauss [19] has devised a special-purpose branch-and-bound
algorithm that utilizes lifted cover cuts, feasible solution generators, Lagrang-
ian relaxation, and subgradient optimization to solve hard GAP problems
with up to 3000 binary variables. A by-product is that good feasible solutions
tend to be generated early in the solution process. Thus the algorithm mimics
a heuristic approach when the search process is truncated.

3.4 Solution Approach

Over the past 10 years or so, general purpose ILP solvers have become more
effective in solving general ILP problems. However certain problem classes,
with the GAP being one of them, remain difficult to solve to optimality. Specif-
ically “hard” GAP problems with more than 500 binary variables are very
difficult to solve with “off-the-shelf” software such as ILOG’s CPLEX solver
(Nauss [19]).

Given this reality, the development of a special-purpose branch-and-bound
algorithm tailored for the GAP’s structure is warranted. In this section we out-
line a number of techniques and tools used in a special-purpose algorithm.
The algorithm itself will be described in Section 3.5. Consider the GAP de-
fined as a minimization problem. A branch-and-bound algorithm may be
thought of as a “divide-and-conquer” strategy. In general, strictly decreasing
feasible solution values (upper bounds) are found as the algorithm proceeds.
We define the best solution known to date as the incumbent. Concurrently
the lower bound values of branch-and-bound candidate problems (obtained
from valid relaxations) tend to increase as one proceeds deeper in the branch-
and-bound tree. Optimality of the incumbent is assured when it can be shown
that the lower bounds of all remaining candidate problems are greater than
or equal to the upper bound. In the next subsection we proceed to describe
a number of methods for improving valid lower bounds (LB) for (P) as well
as for candidate problems derived from (P) as part of the branch-and-bound
process. In subsection 3.4.2 we describe methods for generating improved
feasible solutions (UB).

3.4.1 Methods for Increasing the Lower Bound for (P)

We denote the linear programming relaxation of (P) as (P) where the binary
constraints (3.4) are replaced by 0 < x;; < 1Vi € M, j € N. A straightfor-
ward way to tighten (P) is to add additional constraints which “cut” away
portions of the feasible region of (P) while leaving the feasible region of
(P) intact. Numerous types of cuts may be utilized. However the special
structure of the GAP in terms of the separable knapsack constraints (3.2)
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suggests minimal cover cuts (Balas and Jeroslow [2]) be applied to the indi-
vidual knapsack constraints. Let X be an optimal solution to (P) with value
v(P). Suppose a knapsack constraint i in (3.2), namely %7 i=lijXij < b;, has at
least one ¥;; fractional. Define S;to be the index set of X;; > 0. From the index
set S, choose variables in decreasing order of r;; and place the indices in set
F; until Zjcp,rij > b;. Let C; = |F;| — 1. Then the cut, Xjcr,x;j < C;, is a valid
cut that the solution x violates as long as ¥ jcr, X > C;. If XX < Cj, the
cut is not added. If the cut is added, then it is strengthened in the follow-
ing way. Let R = maxjer,{r;j}. For all j € N — F; and for which r; > R,
add j to the set F; (note that the value of C; remains unchanged). Next, a
coefficient-lifting procedure due to Cattrysse et al. [3] is invoked. The lifted cut
is written as follows: ¥ jcra;x;; < C; where the a;/’s are positive and integer-
valued. In lieu of reproducing the procedure due to Cattrysee et al. [3] we
present a small example where coefficient-lifting occurs. Consider a resource
constraint, 11x3; + 12x12 + 20x13 4+ 22x14 < 30 with the corresponding LP
solution, X1 = X1 = 1, X153 = 7/20, X134 = 0. Then 5, = {1, 2,3}, F; = &,
and C; = |F1] — 1 = 2. Then xy1 + x1o + x13 < 2 is a valid cut that vio-
lates the original LP solution. Since R = 20, we may strengthen the cut to
xX11 +X12 +x13 +x14 < 2 and define F; = {1, 2, 3, 4}. We now lift the coefficients
for x13 and x4 to 2 since it is clear thatif x;3 =1 orx;y =1, thenx;; = x12 =0
in order to satisfy the original resource constraint.

After these cuts are added to (P), we resolve the linear program (P| cuts
appended). A new optimal solution ¥, is obtained where v(P) > v(P| cuts
appended) > v(P). The procedure for adding cuts is invoked once again with
aresolving of the associated LP. It continues until no further cuts can be added
that are violated by the “new” LP solution or until some user-specified limit
on the maximum number of cuts to be appended is reached. We also note that
more than one cut may be added for each knapsack resource constraint due
to the continuous resolving of the LP and subsequent addition of cuts.

Lagrangian relaxation is another potentially powerful technique for im-
proving the lower bound for (P). In the description to follow we assume that
lifted minimal cover cut constraints have been added to (P). We denote this
problem as (P;). Note of course that v (P) = v (P:) > v(P;) > v (P). We de-
note NC(i) as the total number of lifted minimal cover cuts added for knapsack
resource constraint i and define NC = X2 NC(i). Then = jeFin itk Xitd)j =
Ciw represents the kth cut for knapsack resource constraint i and y;, is the
corresponding dual variable for the cut.

By Lagrangianizing the multiple choice constraints (3.3) and the NC cuts
we have the Lagrangian relaxation (LGR):

LGR (A, y) = minimize Z Z cijxij + Z Aj (1 — Zm: x,-]-) (3.5)
i=1 j=1 i=1

m NC (i)

+ Z Z Yido | Cido — Z Aik)jXick)j
i=1 k=1

j€Fiw
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subject to:
n
Zr,-jx,-j <b;, VieM (3.6)
j=1
xj=0 or 1, VieM, jeN. (3.7)

Note that LGR(%, y) separates into m independent 0-1 knapsack problems.
The individual knapsack problems are solved using an algorithm due to
Nauss [18].

If we utilize the optimal dual multipliers A and y from the solution of (P,)
we are assured that v(P) > v(LGR(%, ¥)) > v(P.) > v(P). The LGR may be
tightened further by utilizing subgradient optimization to “adjust” A and y
in the following way:

maximize m n m
A unrestricted < minimize Z Z Cij Xij + Z Al 1— Z Xij
i=1

y <0 i=1 j=1 j=1
m NC(i)
+ Z vido | Cion = D @it (3.8)
i=1 | k=1 j€Fi)
subject to:

n
21’1‘]‘ Xij < bi, Vie M (39)
j=1
xj=0 or 1, VieM,jeN. (3.10)

Note that in each subgradient iteration we must solve m 0-1 knapsack prob-
lems. Thus we limit the number of iterations to 100 while utilizing a stepsize
calculation described in Guignard and Rosenwein [11].

Once the LGR has been solved we introduce the concept of penalties. Penal-
ties are useful in two ways. First in a branch-and-bound algorithm penalties
may be used to select a branching variable to separate a candidate problem
(CP) under the “divide and conquer” strategy. Variables x;; that can be shown
to have relatively large values of [v(LGR(CP|x;; = 1)) — v(LGR(C P|x;; = 0))|
are attractive to separate (or branch) on since it is reasonable to assume that
the objective value for (P) is quite different if x;; = 1 as opposed to if x;; = 0.
Alternatively if the value is very small, then whether x;; equals 0 or 1 would
not seem to have much impact on the optimal objective value of (P). A sec-
ond use of penalties is to try to fix x; variables to 0 or 1. This is closely
related to branch selection since if it can be shown that X;j cannot be 0, for
example, the x;; may be fixed at 1 and a potential branching is eliminated for
CP.
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For penalty calculation we use the Lagrangian relaxation LGR(%, y) where
(A, y) are the dual multiplier vectors found via subgradient optimization.
Clearly v(LGR(2, y)) may be divided into m + 1 components as follows:

m NC(i) NC(i)
(Z’\ +y > V1<k>Cr<k>> +Z (ch i Y Vit (Z ”i(kw‘)) Xij
k=1

i=1 k=1 jEFi(k)
Letting
NC(i)
v(KNAP;) = Z — k — Z Vi) Z aj(kj Xjj,
j=1 j€Fig
we have
m NC(I)
v (LGR (%, ) = Zx +>_ > YiwCinm +Zv<1<NAP>
j=1 i=1 k=1 i=1

Denoting the optimal LP relaxation solution value for (KNAP;) as v(KNAP;),
we have for some i*,

m NC(I)
v(LGR (%, y)) > Zx +) Y viwCin + ZU(KNAP ) + v(KNAP;.)
j=1 i=1 k=1 i=1

isti*

The right-hand side of the above inequality is a valid relaxation value for
v (LGR (%, y)). LP penalties for variables in a knapsack problem are easily
calculated using the optimal LP dual multiplier for the resource constraint
(Nauss [18]). Note also that the LP penalty for a variable x;; is based on the LP
relaxation of a single knapsack constraint while the remainder of the knapsack
constraints are not relaxed. Thus if Z* is the incumbent for (P), we may fix
xi+j to 1if

n m NC(i) m

)»] + Z Z Vz(k)cz(k) + Z v(KNAP;))
j=1 i=1 k=1 i=1
it
v (KNAP;:) + PEN (i*, jlxiej = 0) > 7" (3.11)
Note that PEN(i*, j|xi-j =0) = —c;+j + ¢ri»j where ¢ is the optimal dual

multiplier of (KNAP;-). We note also that a stronger penalty may be cal-
culated by finding v(KNAP;«|x;; = 0) and substituting it for v(KNAP;-) +
PEN(i*, jlxi«j = 0) in (3.11). This of course requires solving a 0-1 knapsack,
which may be prohibitive if every variable were so tested. However, the se-
lective use of such enhanced penalties can be effective when a corresponding
LP penalty “almost” results in fixing a variable.
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Finally we address two logical feasibility-based tests for fixing x;; variables
to 0 or 1. The first test looks at the maximum slack allowed in a knapsack
resource constraint i for an optimal solution to (P). As such it utilizes an
upper bound on v(P) and thus as the upper bound is reduced the maximum
slack also tends to be reduced. This, in effect, reduces the feasible region for (P)
and potentially allows x;; variables to be fixed to 0 or 1 in candidate problems.

Rewrite the knapsack resource constraints as E?zlri]-xij +u=bieM
where 1; is defined to be the corresponding nonnegative slack variable. Then
for each knapsack resource constraint solve the following LP where Z* is an
upper bound on (P) and v(LGR(A, y)) is a lower bound on (P):

gi = maximize u; (3.12)
subject to:
n
Zrij xj+ui =b;, VieM (3.13)
j=1
m
Y xj=1 VjeN (3.14)
i=1
m n
v(LGR(, ¥) < D> cyxy < Z° (3.15)
i=1 j=1
O0<x;=<1 VieM, jeN (3.16)
u; >0, VieM. (3.17)

We may then add the constraints 0 < u; < g;Vi € M to (P) where (3.2) is
replaced by (3.13).

Next we calculate the maximum total slack over all knapsack resource
constraints by solving:

m
Z} = maximize E u;
i=1

subject to:
(3.13) — (3.16)
O0<u; <gi, YieM.

Suppose that for a particular candidate problem a number of x;; variables have
been set to 1, and that for some resource constraint £ we have: Xy, —17¢j X >
by—g¢ and E]-‘x(jzlr@jx@]- < by.Foralli define gcp (i) = min{b; — =173 X, §i }
It is easy to see that gcp(i) is a valid bound on u; for a particular candidate
problem. We deduce that Zj — X/, ,;gcp(€) is also an upper bound on the
maximum slack for knapsack i, and if Z — £jL,,,;8cp(f) < gi, then g; may
be reduced to that value for all descendant candidate problems.
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Another method for tightening g; for a candidate problem is to use LP
penalties for each knapsack in the LGR. Define #; to be the value of the
slack variable in the ith knapsack LP. If #; =0 in an optimal LP solution, it is
straightforward to calculate the maximum value that u; could assume such
that the objective value of the LGR still exceeds Z*. These calculations are
carried out after all knapsacks in the LGR have been solved, since the test
depends on v(LGR(2, y)), v(KNAP;), and v(KNAP;). The maximum value
that u; could take on may then replace g; in the current candidate prob-
lem and all its descendants. We note that tightening of the bound on u; is
often more useful in feasibility-based fixing tests than in improving the LB,
v(LGR(2, y)). This is because the variable to be fixed to 0 is often equal to 0
in the LGR. Rather, the benefit of fixing the variable to 0 is important because
this may eventually lead to other variables being fixed to 1.

The above procedures for reducing the maximum slack in knapsack re-
source constraints strengthen the three straightforward logical feasibility test
that we now enumerate.

Consider a conditional feasibility test to fix some x; to 1. Assume x;j is tem-
porarily set to 0. Then if we can show that for some i, © jl=1Tij < b; — giand
Yitkand Tie <bi—8g — 2 jlxi=1"ijs then x;x may be fixed to 1. This follows since

L] |x=1
we must have b; — gi < 2]'1’,']' Xij < b;.

Next is a conditional feasibility test where x;; is temporarily set to 1. If it can
be shown that no feasible solution exists under this assumption, then x;; may
be fixed to 0. For example, if for some i, ¥ and 7ij + ik > bi, then xjymay be

Jle=1
fixed to 0.
Finally, if for some i, Ejp=1tij + rik < bi — gi, and Tj=arij + ik
+min€¢k g Tie > b;, then x;x may be fixed to 0.
L jlxy=1

3.4.2 Methods for Decreasing the Upper Bound for (P)

In order to decrease the UB, one must find an improved feasible solution to
(P) with objective value less than that of the current incumbent solution, Z*.
At each node of the branch-and-bound tree a Lagrangian relaxation solution
% is obtained from (3.8) to (3.10). In this Lagrangian relaxation the multiple
choice constraints (3.3) have been relaxed and placed in the objective function.
Thus they are the only type of constraints that might be violated. For example,
a task £ may have X" ; %, > 2 while another task k may have ;" ; %;x = 0. Ac-
cordingly, we attempt to modify the LGR solution, %, by attempting to reduce
assignments as economically as possible for constraints where X" | &;; > 2. We
find the constraint j* where j* = argmax(X_,%;). Then all but one %;; that
are currently equal to 1 are reset to the value 0 in nonincreasing order of the
cost coefficients, c;-. This creates additional slack in the resource constraints
allowing possible assignments to be made for tasks, j, where %L % =0.
For each such constraint j we attempt to set an %;: to 1 where the following
two conditions must be met. First the knapsack inequality (3.9) must have
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sufficient slack to allow r;: to fit and the cost coefficient c;; should be as small
as possible. If all multiple choice constraints are now satisfied and the objec-
tive function has value less than Z*, an improved feasible solution has been
found and the UB is reduced.

Whenever an improved feasible solution has been found, we invoke a
neighborhood slide/switch heuristic suggested by Ronen [22] to attempt to
find an even better solution. Ronen attempts to move each task from its cur-
rent agent to every other agent. The move is made only if a cost saving is
achieved. Next, all pairs of tasks (i, j») currently assigned to distinct agents
(i1, iz) wherei; # i) are tentatively switched so that task j; is assigned to agent
i and task j, is assigned to agent i1. Once again the switch is made only if a
feasible cost saving is achieved. Similar tentative switches of one task for two
tasks with a different agent as well as two for three task switches are also
attempted. If an improved solution is generated, the entire neighborhood
slide/switch and multiple switches are attempted again until a complete
cycle is completed without an improved feasible solution being found.

Finally, complete enumeration is used when relatively few tasks (say, five
or fewer) remain to be assigned in some candidate problem. Every possible
combination of assignments of tasks to agents is evaluated. If an improved
feasible solution is found, the incumbent and the upper bound is updated. In
any case the candidate problem is discarded from further consideration.

3.5 Branch-and-Bound Algorithm

A special purpose branch-and-bound algorithm for the GAP is described us-
ing Geoffrion and Marsten’s [9] general framework. We comment on various
features of the algorithm at the end of this section.

Step-1. Set FATHOM = 0, C = .014, and NODE = 0.

Step 0. (Solve root node relaxations) Solve the LP relaxation (P). Add vio-
lated lifted minimal cover cuts to (P), namely (P.). Resolve (P.) and
add more violated lifted minimal cover cuts. Continue this proce-
dure until no more violated cuts are added. Solve the associated
Lagrangian relaxation, (LGR) and apply subgradient optimization.
Place (P) in the candidate list. Set Z* = Zr = (1 + C)*v(LGR).

Step 1. (Tighten resource slack variable bounds) Solve m + 1 linear pro-
grams to find the maximum slack for each resource constraint and
the maximum total slack.

Step 2. (Penalty tests) Attempt to fix variables to 0 or 1 using LP knapsack
penalties. Periodically attempt to fix variables with strong IP knap-
sack penalties. Attempt to fix variables to 0 or 1 using feasibility tests.
If any variables have been fixed to 0 or 1, resolve the Lagrangian relax-
ation and apply subgradient optimization and return to the beginning
of step 2. If FATHOM = 1, go to step 3. If FATHOM = 0, go to step 8.
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Step 3. (Candidate problem selection) If the candidate list is empty, stop; an
optimal solution has been found if Z* < Zp, or if Z* > Zr increase C
to 2*C and go to step 0. If the candidate list is not empty, select a
problem (CP) from the candidate list using a LIFO rule, set NODE =
NODE +1, and set FATHOM = 0.

Step 4. (Complete enumeration) If (CP) has more than five tasks not as-
signed, go to step 5. Otherwise completely enumerate (CP). If an im-
proved feasible solution has been found, update Z*, set FATHOM = 1
and go to step 1. Else go to step 3.

Step 5. (Feasibility-based tests) Perform feasibility-based tests to fix vari-
ables O to 1.

Step 6. (Solve LGR relaxation) Solve the LGR of (CP). If v(LGR) > Z*, set
FATHOM = 1 and go to step 3. If NODE < 10 or NODE is a multiple
of 5, use subgradient optimization to tighten the LGR of (CP). If
v(LGR) > Z* set FATHOM = 1 and go to step 3. If the LGR solu-
tion is feasible for (P) update Z*, set FATHOM = 1 and go to step 1.

Step 7. (Feasible solution generator) Attempt to modify the Lagrangian re-
laxation to find an improved feasible solution to (P). If one is found,
update Z*. If Z* = v(LGR) set FATHOM = 1 and go to step 1.

Step 8. (Separation) Choose a free variable x;; in (CP) and add the candidate
problems (CP|x; = 0) and (CP|x; = 1) to the bottom of the candi-
date list. Go to step 3.

The indicator FATHOM is set to 1 whenever a node is fathomed. When a
new node is chosen in step 3, FATHOM is reset to 0 and the node counter,
NODE is incremented. The value of C is initially set to .014. We use this
parameter in order to artificially set an upper bound Zr at 1.4% larger than
v(LGR). If it is proven that no feasible solution to (P) exists with value less
than Zr, we double the value of C and restart the algorithm with Zr at a
value 2.8% larger than v(LGR). This technique is used since generally the gaps
between v(LGR) and optimal value Z* are less than 1.4% The initialization
of Zr allows us to benefit in two ways. First, Guignard and Rosenwein [11]
suggest that a good upper bound target be used for subgradient optimization
in order to reduce “overshooting.” Second, variables may be fixed at 0 or 1
using the penalty tests described in earlier sections thus reducing unnecessary
branching or separation. In the next section we comment further on the use
of ZF.

In Step 8 the variable to be separated on is determined in the following
way. Recall that a LIFO rule is used to select candidate problems and thus the
“1” branch is chosen before “0” branch. Let Jrx1 be the index set of all tasksj
that have an x;; fixed to 1 in the current candidate problem. Over all j ¢ JFx1,
placej in the index set JB if X" %; = 1 (where % is the current LGR solution).

i=

The branch variable x;; is selected by finding

max PEN (i, j|xixj = 0)
jeJB

andf(i/‘zl
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where PEN (*) is the knapsack LP penalty. In effect we select a variable x;; with
the largest penalty for setting x;; to 0 such that the corresponding multiple
choice constraint (X2, x;; = 1) is not violated in the Lagrangian relaxation.

3.6 Computational Results

The algorithm was coded in FORTRAN and compiled using Compaq Visual
FORTRAN 6.6 (Compagq [7]). XMP (Marsten [16]) was used to solve the linear
programs. A Dell 340 Precision Workstation (2.53 GHz Pentium 4 with 512 MB
of PC800 ECC RDRAM) was used for the computational work.

A dataset consisting of 540 random problems was generated according to
guidelines outlined in Chu and Beasley [6] and in Laguna et al. [15]. The
dataset consists entirely of “hard” GAP problems of types D and E ranging
from 750 to 4000 binary variables. Both problem types D and E have ob-
jective function coefficients, c;;, that are inversely correlated with resource
coefficients, r;;.

We present the computational results in two tables. Table 3.1 gives results
for 270 type D problems and Table 3.2 gives results for 270 Type E problems.
Each line in the tables gives the average results for ten problems of a particular
size. Six averages for each problem set are reported.

They are:

Ipgap(%) —  the percentage gap between the LP and best solution found

lgrgap(%) — the percentage gap between the original LGR and the best
solution found

bstlgr(%) —  the percentage gap between the LGR that reflects variables
that were fixed to 0 or 1 based on penalty tests calculated
after every feasible solution found and the best solution found

node

node — the number of branch-and-bound nodes evaluated

tmbst (sec) — the CPU time in seconds until the best feasible solution was
found

tottime(sec) — the CPU time in seconds to either prove optimality or until
the time limit was reached

A time limit of 1200 CPU seconds was enforced and a suboptimality tol-
erance of 0% was used. In both tables the problems are given in order of
increasing size. Within each set of problems with the same number of vari-
ables (but differing number of agents and tasks), the ratio of tasks/agents is
decreasing.

Results for types D and E are dissimilar for problems of size 1250 or greater.
In fact only 8 of 240 D type problems with variable sizes of 1250 to 4000 are
solved to optimality. On the other hand 220 of 240 E type problems with
variable sizes of 1250 to 4000 are solved to optimality. A key variable that
seems to explain problem difficulty is bstlgr(%). As can be seen in Table 3.1 and
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Table 3.2 the bstlgr(%) in Table 3.1 is generally larger than the corresponding
(same number of agents and tasks) value of bstlgr(%) in Table 3.2. In fact over
all 270 type E problems the average bstlgr(%) is .08 while the corresponding
valueis .23 over all 270 type D problems. Also note that in numerous instances
in Table 3.1 and Table 3.2 there are average lpgap(%) values in excess of 1.
Somewhat perplexing is the fact that the overall average Ipgap(%) for type D
is .61 while itis .80 for type E. However the overall average Igrgap(%) for type
Dis .47 while only .10 for type E. Thus we have the interesting behavior of type
D problems having tighter LP relaxations, but looser LGR relaxations when
compared to type E problems. We also note that 26 of 270 Type E problems
required that the value of C be increased from .014 to .028. Put another way the
value of Zr was set too low in these cases. The CPU time and node averages
include the time and nodes evaluated when C was .014 for those problems.

We also note that as the tasks/agents ratiobecomes smaller (for a fixed num-
ber of variables), it is almost uniformly true that the lpgap(%), lgrgap(%), and
bstlgr(%) grow larger. The only exception is in Table 3.1 when comparing the
bstlgr(%) for 2000 variable problems. This behavior appears to make sense
since as the expected number of tasks per agent decreases it is more likely
that slack occurs in the resource constraints. This implies that available re-
sources are not being efficiently utilized and hence the Ipgap(%), lgrgap(%),
and bstlgr(%) will tend to grow larger.

Finally we note that Yagiura et al. [27] analyzed the “distance” between
good feasible solutions for individual problems. Interestingly they found that
average distances are larger for Type D problems. This suggests two things.
First, Type D problems appear to have good feasible solutions more highly dis-
persed over the feasible region. Second, this dispersal suggests that a “depth
first” search (which we use) may not be as effective as a “breadth first” search
for Type D problems. This appears to be confirmed by the excellent results
that were generated for Type E problems where good feasible solutions tend
to be “closer together.”

3.7 Conclusions

While our results are favorable for Type E problems up to 4000 variables,
Type D problems of 1250 or more variables still remain difficult for our algo-
rithm. However, it should be pointed out that the largest average bestlgr(%)
gap for any Type D problem set is .42% with an overall average for all 270
problems of .23%. Thus excellent feasible solutions are generated with the
shortcomings being the difficulty in further tightening of the lower bounds
and in the use of a LIFO approach for selection of candidate problems
(cf. Section 3.6). Further work on Type D problems might include a “breadth
first” approach for the search process as well as additional work on tightening
the relaxed feasible region of candidate problems. For example the incorpora-
tion of additional cuts as developed by Gottlieb and Rao [10] might result in
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a Lagrangian relaxation that is easier (and faster) to solve in the subgradient
optimization phase. In line with this it should be noted that since 30 to 60%
of CPU time is devoted to solving the 0-1 knapsack problems, an alternate
knapsack code (Kellerer et al. [14]) might be incorporated. Such an imple-
mentation might require that all data (c;; and r;j) be integer valued. Secondly,
the use of a state-of-the-art LP solver such as CPLEX would result in reduced
computational times. Finally with the advent of parallel processing it would
be instructive to “marry” the branch-and-bound code with a heuristic such as
Yagiura et al. [27]. In such a marriage multiple processors might be allocated
for separate copies of the heuristic (where different feasible region neighbor-
hoods are examined). Then when an improved feasible solution is found it
is stored in shared memory to be used by multiple processors that are run-
ning the branch-and-bound algorithm. (Of course improved feasible solutions
generated by the branch-and-bound algorithm would also be stored in this
shared memory.) Alternatively the neighborhood search heuristics might be
“called” to explore various feasible region neighborhoods on different pro-
cessors as the branch-and-bound algorithm generates sufficiently different
candidate problems.
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4.1 Introduction

In this chapter, we discuss the principle of decomposition as it applies to the
computation of bounds on the value of an optimal solution to an integer linear
program (ILP). Most bounding procedures for ILP are based on the generation
of a polyhedron that approximates P, the convex hull of feasible solutions.

57
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Solving an optimization problem over such a polyhedral approximation, pro-
vided it fully contains P, produces a bound that can be used to drive a branch-
and-bound algorithm. The effectiveness of the bounding procedure depends
largely on how well P can be approximated. The most straightforward ap-
proximation is the continuous approximation, consisting simply of the linear
constraints present in the original ILP formulation. The bound resulting from
this approximation is frequently too weak to be effective, however. In such
cases, it can be improved by dynamically generating additional polyhedral
information that can be used to augment the approximation.

Traditional dynamic procedures for augmenting the continuous approx-
imation can be grouped roughly into two categories. Cutting plane methods
improve the approximation by dynamically generating half-spaces contain-
ing P, i.e., valid inequalities, to form a second polyhedron, and then intersect
this second polyhedron with the continuous approximation to yield a final
approximating polyhedron. With this approach, the valid inequalities are gen-
erated by solution of an associated separation problem. Generally, the addition
of each valid inequality reduces the hypervolume of the approximating poly-
hedron, resulting in a potentially improved bound. Because they dynamically
generate part of the description of the final approximating polyhedron as the
intersection of half-spaces (an outer representation), we refer to cutting plane
methods as outer approximation methods.

Traditional decomposition methods, on the other hand, improve the ap-
proximation by dynamically generating the extreme points of a polyhedron
containing P, which is again intersected with the continuous approximation,
as in the cutting plane method, to yield a final approximating polyhedron.
In this case, each successive extreme point is generated by solution of an
associated optimization problem and at each step, the hypervolume of the ap-
proximating polyhedron is increased. Because decomposition methods dy-
namically generate part of the description of the approximating polyhedron
as the convex hull of a finite set (an inner representation), we refer to these
methods as inner approximation methods.

Both inner and outer methods work roughly by alternating between a pro-
cedure for computing solution and bound information (the master problem)
and a procedure for augmenting the current approximation (the subproblem).
The two approaches, however, differ in important ways. Outer methods re-
quire that the master problem produce “primal” solution information, which
then becomes the input to the subproblem, a separation problem. Inner methods
require “dual” solution information, which is then used as the input to the
subproblem, an optimization problem. In this sense, the two approaches can be
seen as “dual” to one another. A more important difference, however, is that
the valid inequalities generated by an inner method can be valid with respect
to any polyhedron containing P (see Section 4.5), whereas the extreme points
generated by an inner method must ostensibly be from a single polyhedron.
Procedures for generating new valid inequalities can also take advantage
of knowledge of previously generated valid inequalities to further improve
the approximation, whereas with inner methods, such “backward-looking”
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procedures do not appear to be possible. Finally, the separation procedures
used in the cutting plane method can be heuristic in nature as long as it can be
proven that the resulting half-spaces do actually contain P. Although heuris-
tic methods can be employed in solving the optimization problem required
of an inner method, valid bounds are only obtained when using exact opti-
mization. On the whole, outer methods have proven to be more flexible and
powerful and this is reflected in their position as the approach of choice for
solving most ILPs.

As we will show, however, inner methods do still have an important role to
play. Although inner and outer methods have traditionally been considered
separate and distinct, it is possible, in principle, to integrate them in a straight-
forward way. By doing so, we obtain bounds at least as good as those yielded
by either approach alone. In such an integrated method, one alternates be-
tween a master problem that produces both primal and dual information, and
either one of two subproblems, one an optimization problem and the other a
separation problem. This may result in significant synergy between the sub-
problems, as information generated by solving the optimization subproblem
can be used to generate cutting planes and vice versa.

The remainder of the chapter is organized as follows. In Section 4.2, we in-
troduce definitions and notation. In Section 4.3, we describe the principle of
decomposition and its application to integer linear programming in a tra-
ditional setting. In Section 4.4, we extend the traditional framework to show
how the cutting plane method can be integrated with either the Dantzig-Wolfe
method or the Lagrangian method to yield improved bounds. In Section 4.5,
we discuss solution of the separation subproblem and introduce an extension
of the well-known template paradigm, called structured separation, inspired by
the fact that separation of structured solutions is frequently easier than sep-
aration of arbitrary real vectors. We also introduce a decomposition-based
separation algorithm called decompose and cut that exploits structured sepa-
ration. In Section 4.6, we discuss some of the algorithms that can be used
to solve the master problem. In Section 4.7, we describe a software frame-
work for implementing the algorithms presented in the paper. Finally, in
Section 4.8, we present applications that illustrate the principles discussed
herein.

4.2 Definitions and Notation

For ease of exposition, we consider only pure integer linear programs with
bounded, nonempty feasible regions, although the methods presented herein
can be extended to more general settings. For the remainder of the chapter,
we consider an ILP whose feasible set is the integer vectors contained in the
polyhedron Q = {x € R" | Ax > b}, where A € Q""" is the constraint matrix
and b € Q" is the vector of requirements. Let 7 = Q N Z" be the feasible set
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and let P be the convex hull of F. The canonical optimization problem for P is
that of determining

zip = minf{c ' x | Ax > b} = min{c"x} = min{c " x} (4.1)
xeZ" xeF xeP

for a given cost vector ¢ € Q", where zp = oo if F is empty. We refer to
such an ILP by the notation ILP(P, c). In what follows, we also consider the
equivalent decision version of this problem, which is to determine, for a given
upper bound U, whether there is a member of P with objective function value
strictly better than U. We denote by OPT(P, ¢, U) a subroutine for solving this
decision problem. The subroutine is assumed to return either the empty set, or
a set of one or more (depending on the situation) members of P with objective
value better than U.

A related problem is the separation problem for P, which is typically already
stated as a decision problem. Given x € R", the problem of separating x from
P is that of deciding whether x € P and if not, determining 2 € R" and
B e Rsuchthata™y > g Vy € Pbuta’x < B. A pair (a, ) € R"™! such that
a'y > B Vy € P is a valid inequality for P and is said to be violated by x € R"
ifaTx < B. We denote by SEP(P, x) a subroutine that separates an arbitrary
vector x € R" from polyhedron P, returning either the empty set or a set of
one or more violated valid inequalities. Note that the optimization form of
the separation problem is that of finding the most violated inequality and is
equivalent to the decision form stated here.

A closely related problem is the facet identification problem, which restricts
the generated inequalities to only those that are facet-defining for P. In [32],
it was shown that the facet identification problem for P is polynomially
equivalent to the optimization problem for P (in the worst case sense).
However, a theme that arises in what follows is that the complexity of opti-
mization and separation can vary significantly if either the input or the output
must have known structure. If the solution to an optimization problem is re-
quired to be integer, the problem generally becomes much harder to solve.
On the other hand, if the input vector to a separation problem is an integral
vector, then the separation problem frequently becomes much easier to solve
in the worst case. From the dual point of view, if the input cost vector of an
optimization problem has known structure, such as being integral, this may
make the problem easier. Requiring the output of the separation problem to
have known structure is known as the template paradigm and may also make
the separation problem easier, but such a requirement is essentially equivalent
to enlarging P. These concepts are discussed in more detail in Section 4.5.

4.3 The Principle of Decomposition

We now formalize some of the notions described in the introduction. Imple-
menting a branch-and-bound algorithm for solving an ILP requires a pro-
cedure that will generate a lower bound as close as possible to the optimal
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value zjp. The most commonly used method of bounding is to solve the linear
programming (LP) relaxation obtained by removing the integrality require-
ment from the ILP formulation. The LP Bound is given by

zip = min{c' x | Ax > b} = min{c " x}, 4.2)
xeR" xeQ

and is obtained by solving a linear program with the original objective func-
tion ¢ over the polyhedron Q. It is clear that z;p < zjp since P € Q. This LP
relaxation is usually much easier to solve than the original ILP, but z; p may be
arbitrarily far away from z;p in general, so we need to consider more effective
procedures.

In most cases, the description of Q is small enough that it can be represented
explicitly and the bound computed using a standard linear programming al-
gorithm. To improve the LP bound, decomposition methods construct a sec-
ond approximating polyhedron that can be intersected with Q to form a better
approximation. Unlike Q, this second polyhedron usually has a description
of exponential size, and we must generate portions of its description dynam-
ically. Such a dynamic procedure is the basis for both cutting plane methods,
which generate an outer approximation, and for traditional decomposition
methods, such as the Dantzig-Wolfe method [19] and the Lagrangian method
[22, 14], which generate inner approximations.

For the remainder of this section, we consider the relaxation of (4.1)
defined by

min{c'x | Ax > b’} = min{c' x} = min{c "x}, (4.3)

xeZ" xeF' xeP’
where F ¢ F/ = {x € Z" | Ax > b’} for some A € Q"*" b’ € Q" and P’
is the convex hull of F'. Along with P’ is associated a set of side constraints
[A7,b"] € Q"D such that Q@ = {x € R" | Ax > b, A’x > b"}. We
denote by Q' the polyhedron described by the inequalities [A, b'] and by Q"
the polyhedron described by the inequalities [A”, b”]. Thus, @ = Q' N Q"
and F = {x € Z" | x € P’ N Q"}. For the decomposition to be effective,
we must have that P’ N Q" C Q, so that the bound obtained by optimizing
over P’ N Q" is at least as good as the LP bound and strictly better for some
objective functions. The description of Q” must also be “small” so that we
can construct it explicitly. Finally, we assume that there exists an effective
algorithm for optimizing over P’ and thereby, for separating arbitrary real
vectors from P’. We are deliberately using the term effective here to denote
an algorithm that has an acceptable average-case running time, since this is
more relevant than worst-case behavior in our computational framework.

Traditional decomposition methods can all be viewed as techniques for
iteratively computing the bound

: T " ” : T : T
Zp = I;;g}{c x| Alx>0b"} = xempkng”{c x} = Xemplmng/{c x}. (4.4)
In Section 4.3.1 to Section 4.3.3 below, we review the cutting plane method, the
Dantzig-Wolfe method, and the Lagrangian method, all classical approaches
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that can be used to compute this bound. The common perspective motivates
Section 4.4, where we consider a new class of decomposition methods called
integrated decomposition methods, in which both inner and outer approximation
techniques are used in tandem. In both this section and the next, we describe
the methods at a high level and leave until later sections the discussion of
how the master problem and subproblems are solved. To illustrate the effect
of applying the decomposition principle, we now introduce two examples
that we build on throughout the chapter. The first is a simple generic ILP.

Example 4.1
Let the following be the formulation of a given ILP:
min xp,
7x1 — xp > 13, (4.5)
n=>1, (4.6)
—x1 +x > =3, 4.7)
—4x1 — xp > =27, (4.8)
—x > =5, (4.9)
0.2x) —xp > —4, (4.10)
—x1 — X2 = =8, (4-11)
—0.4x1 +x > 0.3, (4.12)
X1+ x> 4.5, (4.13)
3x1 +x > 9.5, (4.14)
0.25x —xp > =3, (4.15)
x e 7% (4.16)

In this example, we let

P = conv{x € R? | x satisfies (4.5) — (4.16)},
Q' = {x € R? | x satisfies (4.5) — (4.10)},

Q" = {x € R? | x satisfies (4.11) — (4.15)}, and
P’ = conv(Q' NZ?).

In Figure 4.1(a), we show the associated polyhedra, where the set of feasible
solutions F = Q' NQ'NZ*=P NQ'NZ*and P = conv(F). Figure 4.1(b)
depicts the continuous approximation Q' N Q”, while Figure 4.1(c) shows the
improved approximation P’ N Q". For the objective function in this exam-
ple, optimization over P’ N Q" leads to an improvement over the LP bound
obtained by optimization over Q.

In our second example, we consider the classical Traveling Salesman Prob-
lem (TSP), a well-known combinatorial optimization problem. The TSP is in
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FIGURE 4.1
Polyhedra (Example 4.1).

the complexity class N'P-hard, but lends itself well to the application of the
principle of decomposition, as the standard formulation contains an expo-
nential number of constraints and has a number of well-solved combinatorial
relaxations.

Example 4.2

The Traveling Salesman Problem is that of finding a minimum cost tour in an
undirected graph G with vertexset V. ={0,1, ..., |V|—1} and edge set E. We
assume without loss of generality that G is complete. A tour is a connected
subgraph for which each node has degree 2. The TSP is then to find such a
subgraph of minimum cost, where the cost is the sum of the costs of the edges
comprising the subgraph. With each edge ¢ € E, we therefore associate a
binary variable x,, indicating whether edge e is part of the subgraph, and a cost
cceR. Lets(S)={{i,jleE|ieS j¢gSLES:T)={,j}llieS jeT}
E(S) = E(S:S)and x(F) = >_,.r X.. Then an ILP formulation of the TSP is

eeF
as follows:
mianexe,
ecE

x(@${i}) =2 VieV, (4.17)
X(E(S)=<ISI-1 V¥ScCV,3=<|5=<IV|-1, (4.18)
0<x,<1 VecE, (4.19)
x.€Z VecekE. (4.20)

The continuous approximation, referred to as the TSP polyhedron, is then
P = conv{x € RE | x satisfies (4.17) — (4.20)}.

The equations (4.17) are the degree constraints, which ensure that each vertex
has degree two in the subgraph, while the inequalities (4.18) are known as the
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subtour elimination constraints (SECs) and enforce connectivity. Since there are
an exponential number of SECs, it is impossible to explicitly construct the LP
relaxation of TSP for large graphs. Following the pioneering work of Held and
Karp [35], however, we can apply the principle of decomposition by employ-
ing the well-known Minimum 1-Tree Problem, a combinatorial relaxation of TSP.

A 1-tree is a tree spanning V \ {0} plus two edges incident to vertex 0. A
1-tree is hence a subgraph containing exactly one cycle through vertex 0. The
Minimum 1-Tree Problem is to find a 1-tree of minimum cost and can thus be
formulated as follows:

min E CeXe,

ecE

x(6({0})) =2, (4.21)
x(E(V\{0D)) =|V] -2, (4.22)

x(E(S) =IS|-1 vVScV\{0},3=<ISI=IVI-1, (4.23)

x, €{0,1}] VeeE. (4.24)

A minimum cost 1-tree can be obtained easily as the union of a minimum
cost spanning tree of V' \ {0} plus two cheapest edges incident to vertex 0.
For this example, we thus let P’ = conv({x € RE | x satisfies (4.21) — (4.24)})
be the 1-Tree Polyhedron, while the degree and bound constraints comprise
the polyhedron Q" = {x € RE | x satisfies (4.17) and (4.19)} and Q' = {x €
RF | x satisfies (4.18)}. Note that the bound constraints appear in the descrip-
tions of both polyhedra for computational convenience. The set of feasible
solutions to TSPisthen F =P ' N Q"' NZE. m

4.3.1 Cutting Plane Method

Using the cutting plane method, the bound zp can be obtained by dynamically
generating portions of an outer description of P’. Let [ D, d] denote the set of
facet-defining inequalities of P’, so that

P ={xeR"| Dx>d}. (4.25)

Then the cutting plane formulation for the problem of calculating zp can be
written as

zcp = min{c"x | Dx > d}. (4.26)
xeQ’

This is a linear program, but since the set of valid inequalities [ D, 4] is poten-
tially of exponential size, we dynamically generate them by solving a sepa-
ration problem. An outline of the method is presented in Figure 4.2.

In Step 2, the master problem is a linear program whose feasible region is the
current outer approximation P, defined by a set of initial valid inequalities
plus those generated dynamically in Step 3. Solving the master problem in iter-
ation t, we generate the relaxed (primal) solution x{, and a valid lower bound.
In the figure, the initial set of inequalities is taken to be those of Q”, since it is



Decomposition in Integer Linear Programming 65

Cutting Plane Method

Input: An instance ILP(P, c).
Output: A lower bound zcp on the optimal solution value for the
instance, and &cp € R" such that zcp = ¢ " Zcp.

1. Initialize: Construct an initial outer approximation

PL={xeR" | D'x>d% 2P, (4.27)

where D = A” and d° = b”, and set t < 0.
2. Master Problem: Solve the linear program

Zhp = ECI;]iRI}{ch | Dix > d'} (4.28)

to obtain the optimal value z¢p = min,cp: {c"x} < zp and optimal
primal solution x{p.

3. Subproblem: Call the subroutine SEP(P, x{p) to generate a set of
potentially improving valid inequalities [ D, d] for P, violated by x&p.

4. Update: If violated inequalities were found in Step 3, set
[D*1, d'+1] « [2 4] to form a new outer approximation

Pl =(xeR"| D'*lx <d'*} D P, (4.29)

and sett <t + 1. Go to Step 2.

5. If no violated inequalities were found, output zcp = z5, < zjp and
£ t
Xcp = Xcp-

FIGURE 4.2
Outline of the cutting plane method.

assumed that the facet-defining inequalities for 7', which dominate those of
Q', can be generated dynamically. In practice, however, this initial set may be
chosen to include those of Q' or some other polyhedron, on an empirical basis.

In Step 3, we solve the subproblem, which is to generate a set of improving
valid inequalities, i.e., valid inequalities that improve the bound when added
to the current approximation. This step is usually accomplished by applying
one of the many known techniques for separating x¢. p from P. The algorithmic
details of the generation of valid inequalities are covered more thoroughly
in Section 4.5, so the unfamiliar reader may wish to refer to this section for
background or to [1] for a complete survey of techniques. It is well known that
violation of x{p is a necessary condition for an inequality to be improving, and
hence, we generally use this condition to judge the potential effectiveness of
generated valid inequalities. However, this condition is not sufficient and un-
less the inequality separates the entire optimal face of P%), it will not actually
be improving. Because we want to refer to these results later in the chapter, we
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state them formally as theorem and corollary without proof. See [59] for a thor-
ough treatment of the theory of linear programming that leads to this result.

THEOREM 4.1

Let F be the face of optimal solutions to an LP over a nonempty, bounded polyhedron
X with objective function vector f. Then (a, B) is an improving inequality for X
with respect to f, i.e.,

min{fo xeXa'x>p}> min{fo | x € X}, (4.30)
ifand only ifa’y < B forall y € F.

COROLLARY 4.1
If (a, ) is an improving inequality for X with respect to f, thena "% < B, where % is
any optimal solution to the linear program over X with objective function vector f.

Even in the case when the optimal face cannot be separated in its entirety, the
augmented cutting plane LP must have a different optimal solution, which
in turn may be used to generate more potential improving inequalities. Since
the condition of Theorem 4.1 is difficult to verify, one typically terminates the
bounding procedure when increases resulting from additional inequalities
become “too small.”

If we start with the continuous approximation P = Q" and generate only
facet-defining inequalities of P’ in Step 3, then the procedure described here
terminates in a finite number of steps with the bound zcp = zp (see [52]).
Since P 2 P'N Q" O P, each step yields an approximation for P, along with
a valid bound. In Step 3, we are permitted to generate any valid inequality for
P, however, not just those that are facet-defining for 7P’. In theory, this means
that the cutting plane method can be used to compute the bound zjp exactly.
However, this is rarely practical.

To illustrate the cutting plane method, we show how it could be applied
to generate the bound zp for the ILPs of Example 4.1 and Example 4.2. Since
we are discussing the computation of the bound zp, we only generate facet-
defining inequalities for P’ in these examples. We discuss more general sce-
narios later in the chapter.

Example 4.1 (Continued)
We define the initial outer approximation to be P4 =0 N Q" ={x € R?|x
satisfies (4.5) — (4.15)}, the continuous approximation.

Iteration 0: Solving the master problem over P2, we find an optimal primal so-
lution x2, = (2.25, 2.75) with bound z, = 2.25, as shown in Figure 4.3(a). We
then call the subroutine SEP(P, x2p), generating facet-defining inequalities of
P’ that are violated by xgp. One such facet-defining inequality, 3x; —xp > 5, is
pictured in Figure 4.3(a). We add this inequality to form a new outer approx-
imation P},

Iteration 1: We again solve the master problem, this time over P}, to find an
optimal primal solution x}, = (2.42, 2.25) and bound z{, = 2.42, as shown in
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FIGURE 4.3
Cutting plane method (Example 4.1).

Figure 4.3(b). We then call the subroutine SEP(P, x}p). However, as illustrated
in Figure 4.3(b), there are no more facet-defining inequalities violated by x.p.
In fact, further improvement in the bound would necessitate the addition of
valid inequalities violated by points in P’. Since we are only generating facets
of P’ in this example, the method terminates with bound zcp =242 = zp. m

We now consider the use of the cutting plane method for generating the bound
zp for the TSP of Example 4.2. Once again, we only generate facet-defining
inequalities for 7', the 1-tree polyhedron.

Example 4.2 (Continued)
We define the initial outer approximation to be comprised of the degree con-
straints and the bound constraints, so that

PY = Q" = {x € RE | x satisfies (4.17) and (4.19)}.

Thebound zp is then obtained by optimizing over the intersection of the 1-tree
polyhedron with the polyhedron Q" defined by constraints (4.17) and (4.19).
Note that because the 1-tree polyhedron has integer extreme points, we have
that zp = zp in this case. To calculate zp, however, we must dynamically
generate violated facet-defining inequalities (the SECs (4.23)) of the 1-tree
polyhedron P’ defined earlier. Given a vector # € RF satisfying (4.17) and
(4.19), the problem of finding an inequality of the form (4.23) violated by % is
equivalent to the well-known minimum cut problem, which can be nominally
solved in O(|V|*) [53]. We can use this approach to implement Step 3 of the
cutting plane method and hence compute the bound zp effectively. As an
example, consider the vector % pictured graphically in Figure 4.4, obtained
in Step 2 of the cutting plane method. In the figure, only edges e for which
%, > 0 are shown. Each edge ¢ is labeled with the value %., except for edges e
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FIGURE 4.4
Finding violated inequalities in the cutting plane method (Example 4.2).

with £, = 1. The circled set of vertices S = {0, 1, 2, 3, 7} define a SEC violated
by %, since 2(E(S)) =46 >40=1(5|-1. m

4.3.2 Dantzig-Wolfe Method

In the Dantzig-Wolfe method, the bound zp can be obtained by dynamically
generating portions of an inner description of P’ and intersecting it with Q".
Consider Minkowski’s Theorem, which states that every bounded polyhe-
dron is finitely generated by its extreme points [52]. Let £ C F’ be the set of
extreme points of P’, so that

XZZSAS,stzl,kSEOVseg}. (4.31)

se& se&

P = {xeR”

Then the Dantzig-Wolfe formulation for computing the bound zp is

Zpw = min {ch A'x>b",x = ZSAS, ZAS =112 >0Vs €& } (4.32)
xeR"
sef sef
By substituting out the original variables, this formulation can be rewritten
in the more familiar form

ZpWw = mm{c <Zsk>
se€

This is a linear program, but since the set of extreme points £ is potentially of
exponential size, we dynamically generate those that are relevant by solving
an optimization problem over P’. An outline of the method is presented in
Figure 4.5.

A’ <Z sks> >0, a=1 } (4.33)

se& se€
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Dantzig-Wolfe Method

Input: An instance ILP(P, c).

Output: A lower bound zpw on the optimal solution value for the
instance, a primal solution J.pow € R, and a dual solution (fipw, &pw)
e Rm”-ﬁ-l .

1. Initialize: Construct an initial inner approximation

73? = {ZSAS

se&0

stzl,ksEOVSESO,)»S=0VS€5\5O} P
se&0

(4.34)

from an initial set £Y of extreme points of P’ and set t < 0.

2. Master Problem: Solve the Dantzig-Wolfe reformulation

Zpw = Eﬂl@{ﬂ(Z sxs> A (Z s)\s> >b"> A=1,2=0Vse g\gf}

se€ se€ sef
(4.35)

to obtain the optimal value zf,,y = minping: ¢ ' x > zpw, an optimal
pri{nal solution At € RS, and an optimal dual solution (5, ahyy) €
Rm +1‘

3. Subproblem: Call the subroutine OPT(c'— (uly,) " A", P, o),
generating a set of £ of improving members of £ with negative re-
duced cost, where the reduced cost of s € £ is

re(s) = (c7 — () T A")s — abyy. (4.36)

If 5 € £ is the member of £ with smallest reduced cost, then z},,, =
re(8) + ahy + (Why) Tb” < zpw provides a valid lower bound.

4. Update: If £ # @, set &1 < &' U € to form the new inner approxi-
mation

Pt = { Zsks

S€£H~1

S€£H~1

sz=1, he>0Vs e &, As=ov565\5f+1} cP

(4.37)

and sett <t + 1. Go to Step 2.

5. If & = @, output the bound zpw = zbhy = zh, Apw = Ahyy, and
(pw, &pw) = (Upy, aby).

FIGURE 4.5
Outline of the Dantzig-Wolfe method.
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In Step 2, we solve the master problem, which is a restricted linear program
obtained by substituting £ for £ in (4.33). In Section 4.6, we discuss several
alternatives for solving this LP. In any case, solving it results in a primal
solution A%y, and a dual solution consisting of the dual multipliers uf,,, on the
constraints corresponding to [A”, b”] and the multiplier &}, on the convexity
constraint. The dual solution is needed to generate the improving columns in
Step 3. In each iteration, we are generating an inner approximation, PlcP,
the convex hull of £'. Thus P} N Q” may or may not contain P and the bound
returned from the master problem in Step 2, zj,,y, provides an upper bound
on zpw. Nonetheless, it is easy to show (see Section 4.3.3) that an optimal
solution to the subproblem solved in Step 3 yields a valid lower bound. In
particular, if § is a member of £ with the smallest reduced cost in Step 3, then

2y = T8 + (i) @ — A'5) (4.38)

is a valid lower bound. This means that, in contrast to the cutting plane
method, where a valid lower bound is always available, the Dantzig-Wolfe
method only yields a valid lower bound when the subproblem is solved to
optimality, i.e., the optimization version is solved, as opposed to the decision
version. This need not be done in every iteration, as described below.

In Step 3, we search for improving members of £, where, as in the previous
section, this means members that when added to £* yield an improved bound.
It is less clear here, however, which bound we would like to improve, zj,,, or
zhw- A necessary condition for improving z4,, is the generation of a column
with negative reduced cost. In fact, if one considers (4.38), it is clear that this
condition is also necessary for improvement of z},,,. However, we point out
again that the subproblem must be solved to optimality in order to update
the bound z4,,y. In either case, however, we are looking for members of £ with
negative reduced cost. If one or more such members exist, we add them to &
and iterate.

An area that deserves some deeper investigation is the relationship between
the solution obtained by solving the reformulation (4.35) and the solution that
would be obtained by solving an LP directly over P} N Q" with the objective
function c. Consider the primal optimal solution A}, which we refer to as an
optimal decomposition. If we combine the members of &' using AL, to obtain
an optimal fractional solution

Xpw =5 (Abw)s (4.39)

se&t

then we see that z},;, = ¢ " x,y. In fact, x5, € PI N Q" is an optimal solution
to the linear program solved directly over P} N Q" with objective function c.

The optimal fractional solution plays an important role in the integrated
methods to be introduced later. To illustrate the Dantzig-Wolfe method and
the role of the optimal fractional solution in the method, we show how to
apply it to generate the bound zp for the ILP of Example 4.1.
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FIGURE 4.6

Dantzig-Wolfe method (Example 4.1).

Example 4.1 (Continued)

For the purposes of illustration, we begin with a randomly generated initial
set of points & = {(4, 1), (5, 5)}. Taking their convex hull, we form the initial
inner approximation P{ = conv(£?), as illustrated in Figure 4.6(a).

Iteration 0. Solving the master problem with inner polyhedron PY, we ob-
tain an optimal primal solution (A%,) a1y = 0.75, W) E5 = 0.25, x%,, =
(4.25,2), and bound 2%, = 4.25. Since constraint (4.12) is binding at x},,, the
only nonzero component of 19, is (%) 12 = 0.28, while the dual variable
associated with the convexity constraint has value %, = 4.17. All other dual
variables have value zero. Next, we search for an extreme point of P’ with
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negative reduced cost, by solving the subproblem OPT(c" — P/, (uh,) " A",
aODW). From Figure 4.6(a), we see that§ = (2, 1). This gives a valid lower bound
2%,y = 2.03. We add the corresponding column to the restricted master and

set &1 =00 {(2, D).

Iteration 1. The next iteration is depicted in Figure 4.6(b). First, we solve the
master problem with inner polyhedron P} = conv(£?!) to obtain (Ahy) 5,5 =
0.21, b1 = 0.79, xh,y = (2.64, 1.86), and bound and z},, = 2.64. This
also provides the dual solution (uky) 413y = 0.43 and oy, = 0.71 (all other
dual values are zero). Solving OPT(c " —P’, ub,y A", abyy), we obtain = (3, 4),
and zh,; = 1.93. We add the corresponding column to the restricted master
and set £2 = £1 U {(3, 4)}.

Iteration 2. The final iteration is depicted in Figure 4.6(c). Solving the master
problem once more with inner polyhedron P?=conv(£?), we obtain
AW e =0.58 and (Ahy) @34 =042, x%,, = (2.42,2.25), and bound z%,, =
2.42. This also provides the dual solution (u%y) @14 =0.17 and %, = 0.83.
Solving OPT(c" — P, u%y A", a}y), we conclude that £ = . We therefore ter-
minate with the bound zpw =242 =2zp. =

Asa further brief illustration, we return to the TSP example introduced earlier.

Example 4.2 (Continued)

As we noted earlier, the Minimum 1-Tree Problem can be solved by comput-
ing a minimum cost spanning tree on vertices V \ {0}, and then adding two
cheapest edges incident to vertex 0. This can be done in O(|E|log |V|) using
standard algorithms. In applying the Dantzig-Wolfe method to compute zp
using the decomposition described earlier, the subproblem to be solved in
Step 3 is a Minimum 1-Tree Problem. Because we can solve this problem ef-
fectively, we can apply the Dantzig-Wolfe method in this case. As an example
of the result of solving the Dantzig-Wolfe master problem (4.35), Figure 4.7
depicts an optimal fractional solution (a) to a Dantzig-Wolfe master LP and
the six extreme points in Figure 4.7(b to g) of the 1-tree polyhedron 7', with
nonzero weight comprising an optimal decomposition. We return to this fig-
ure later in Section 4.4.

Now consider the set S(u, @), defined as
Swa)y={se&| " —u'A)s =a}, (4.40)

where u € R™ and « € R. The set S(ubyy, albyy) is the set of members of €
with reduced cost zero at optimality for (4.35) in iteration ¢. It follows that
conv(S(uhyy, ahy)) is in fact the face of optimal solutions to the linear pro-
gram solved over P} with objective functionc” —u" A”. This line of reasoning
culminates in the following theorem tying together the set S(u}yy, ahyy) de-
fined above, the vector x},,;, and the optimal face of solutions to the LP over
the polyhedron P} N Q".
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FIGURE 4.7
Dantzig-Wolfe method (Example 4.2).

THEOREM 4.2
conv(S 'y, ahw)) is a face of Pi and contains x5,

PROOF We first show that conv(S(uby, aby)) is a face of P}. Observe that

T to\T t
(c" = (upw) A" epy)
defines a valid inequality for P since o}y, is the optimal value for the problem
of minimizing over P! with objective function ¢ " — (1) " A”. Thus, the set

G ={xePi(cT — () A)x = aby}, (4.41)

is a face of P} that contains S(ufy, aby). We will show that conv(S(uby,
ahw)) = G. Since G is convex and contains S(uby, aby), it also contains
conv(S(uhy, ahy)), so we just need to show that conv(S(uby,y, abyy)) con-
tains G. We do so by observing that the extreme points of G are elements of
S(ulyy, aby). By construction, all extreme points of P} are members of £ and
the extreme points of G are also extreme points of Pj. Therefore, the extreme
points of G must be members of £ and contained in S(uy,y, ahyy). The claim
follows and conv(S(ub,y, ahy)) is a face of Pi.

The fact that x},,, € conv(S(ubyy, aby)) follows from the fact that xk,, is a
convex combination of members of S(ubyy, aby). MW

An important consequence of Theorem 4.2 is that the face of optimal
solutions to the LP over the polyhedron P} N Q" is actually contained in
conv(S(ubhy, ahy)) N Q”, as stated in the following corollary.
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COROLLARY 4.2
If F is the face of optimal solutions to the linear program solved directly over P} N Q"
with objective function vector ¢, then F C conv(S(uby, apy)) N Q.

PROOF Let £ € F be given. Then we have that £ € P; N Q" by definition,
and

"% =apy+ (”s)w)Tb” = apw + (”BW)TA”’AC' (4.42)

where the first equality in this chain is a consequence of strong duality and
the last is a consequence of complementary slackness. Hence, it follows that
(c" — (why) TANZ = by and the result is proven. W

Hence, each iteration of the method not only produces the primal solu-
tion x5, € P N Q”, but also a dual solution (u, ah,y) that defines a face
conv(S(uhyy, ahy)) of Pi that contains the entire optimal face of solutions to
the LP solved directly over P;NQ” with the original objective function vector c.

When no column with negative reduced cost exists, the two bounds must be
equal to zp and we stop, outputting both the primal solution A py, and the dual
solution (fipw, @pw). It follows from the results proven above that in the final
iteration, any column of (4.35) with reduced cost zero must in fact have a cost
of &pw = zp — fi,yb” when evaluated with respect to the modified objective
function ¢" — i1}y A”. In the final iteration, we can therefore strengthen the
statement of Theorem 4.2, as follows.

THEOREM 4.3
conv(S (ipw, &pw)) is a face of P" and contains £ pw.

The proof follows along the same lines as Theorem 4.2. As before, we can also
state the following important corollary.

COROLLARY 4.3
If F is the face of optimal solutions to the linear program solved directly over P’ N Q"
with objective function vector ¢, then F C conv(S(fipw, &pw)) N Q.

Thus, conv(S(ilpw, @pw)) is actually a face of P’ that contains £pw and the
entire face of optimal solutions to the LP solved over P’ N Q" with objective
function c. This fact provides strong intuition regarding the connection be-
tween the Dantzig-Wolfe method and the cutting plane method and allows
us to regard Dantzig-Wolfe decomposition as either a procedure for produc-
ing the bound zp = ¢"%pw from primal solution information or the bound
zp = ¢ 8+l (b” — A”8), where § is any member of S(@lpw, @pw), from dual
solution information. This fact is important in the next section, as well as later
when we discuss integrated methods.

The exact relationship between S(itpw, @pw), the polyhedron P’ N Q”, and
the face F of optimal solutions to an LP solved over P’ N Q" can vary for
different polyhedra and even for different objective functions. Figure 4.8
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P'n Q@ = conv(S(apyw. dpw)) N Q° conv(S(lipw, épw)) N Q"= F

conv(S(ipw. 4pw)) conv(S{ipw. &pw))

O & pw O ¥pw

{s €€ |G pw)s > 0} {s €€ |(Apw)s > 0}

F ={&pw} (RARRRARAAAY F

(a) (b)

P 'ng" s conv(S(apw, &pw)) N Q">F
conv(S(hpw. épw))
O  épw

{s € El(Apw)s > 0}
F ={&pw}
(c)

FIGURE 4.8
The relationship of P’ N Q”, conv(S(iipw, @pw)) N Q”, and the face F.

shows the polyhedra of Example 4.1 with three different objective functions
indicated. The convex hull of S(iipw, &pw) is typically a proper face of P’, but
it is possible for £pw to be an inner point of P’, in which case we have the

following result.
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THEOREM 4.4
If 2 pw is an inner point of P’, then conv(S (fipw, &pw)) = P'.

PROOF We prove the contrapositive. Suppose conv(S(ilpw, &pw)) is a
proper face of P’. Then there exists a facet-defining valid inequality (a, B) €
R"™™ such that conv(S(@ipw, &pw)) € {x € R" | ax = }. By Theorem 4.3,
%pw € conv(S(fipw, &pw)) and & pw therefore cannot satisfy the definition of
an inner point. M

In this case, illustrated graphically in Figure 4.8(a) with the polyhedra from
Example 4.1, zpw = zrp and Dantzig-Wolfe decomposition does not improve
the bound. All columns of the Dantzig-Wolfe LP have reduced cost zero and
any member of £ can be given positive weight in an optimal decomposition.
A necessary condition for an optimal fractional solution to be an inner point
of P’ is that the dual value of the convexity constraint in an optimal solution
to the Dantzig-Wolfe LP be zero. This condition indicates that the chosen
relaxation may be too weak.

A second case of potential interest is when F = conv(S(ilpw, &pw)) N Q”,
illustrated graphically in Figure 4.8(b). In this case, all constraints of the
Dantzig-Wolfe LP other than the convexity constraint must have dual value
zero, since removing them does not change the optimal solution value. This
condition can be detected by examining the objective function values of the
members of £ with positive weight in the optimal decomposition. If they are
all identical, any such member that is contained in Q" (if one exists) must
be optimal for the original ILP, since it is feasible and has objective function
value equal to zjp. The more typical case, in which F is a proper subset of
conv(S(fipw, &pw)) N Q”, is shown in Figure 4.8(c).

4.3.3 Lagrangian Method

The Lagrangian method [14, 22] is a general approach for computing zp
that is closely related to the Dantzig-Wolfe method, but is focused primar-
ily on producing dual solution information. The Lagrangian method can be
viewed as a method for producing a particular face of 7', as in the Dantzig-
Wolfe method, but no explicit approximation of P’ is maintained. Although
there are implementations of the Lagrangian method that do produce ap-
proximate primal solution information similar to the solution information
that the Dantzig-Wolfe method produces (see Section 4.3.2), our viewpoint
is that the main difference between the Dantzig-Wolfe method and the La-
grangian method is the type of solution information they produce. This dis-
tinction is important when we discuss integrated methods in Section 4.4.
When exact primal solution information is not required, faster algorithms
for determining the dual solution are possible. By employing a Lagrangian
framework instead of a Dantzig-Wolfe framework, we can take advantage of
this fact.
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For a given vector u € Rf/, the Lagrangian relaxation of (4.1) is given by
Zir(u) = mifn{cTs +u' (b — A’s)). (4.43)
seF’

Itis easily shown that z;r (1) isalowerbound on zjp forany u# > 0. The elements
of the vector u are called Lagrange multipliers or dual multipliers with respect
to the rows of [A”, b”]. Note that (4.43) is the same subproblem solved in the
Dantzig-Wolfe method to generate the most negative reduced cost column.
The problem

zpp = max{zir(u)} (4.44)

ueR?

of maximizing this bound over all choices of dual multipliers is a dual to (4.1)
called the Lagrangian dual and also provides a lower bound z;p, which we call
the LD bound. A vector of multipliers # that yield the largest bound are called
optimal (dual) multipliers.

It is easy to see that z;r (1) is a piecewise linear concave function and can be
maximized by any number of methods for nondifferentiable optimization.
In Section 4.6, we discuss some alternative solution methods (for a complete
treatment, see [34]). In Figure 4.9 we give an outline of the steps involved in the

Lagrangian Method

Input: An instance ILP(P, c).
Output: A lower bound z;p on the optimal solution value for the in-
stance and a dual solution f1;p € R™".

1. Lets), € € define some initial extreme point of P’, u), some initial
setting for the dual multipliers and set t < 0.

2. Master Problem: Using the solution information gained from solv-
ing the pricing subproblem, and the previous dual setting u! ,, up-

date the dual multipliers u!}'.

3. Subproblem: Call the subroutine OPT(c" — P/, (uip)" A", (c —
(utp) T ANsip), to solve

zip = min{(c” — (up)"A)s +b"Tujp}. (4.45)

Let s'5' € & be the optimal solution to this subproblem, if one is
found.

4. 1f a prespecified stopping criterion is met, then output z;p = zi,
and fi;p = u} ,, otherwise, go to Step 2.

FIGURE 4.9
Outline of the Lagrangian method.
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Lagrangian method. As in Dantzig-Wolfe, the main loop involves updating
the dual solution and then generating an improving member of £ by solving
a subproblem. Unlike the Dantzig-Wolfe method, there is no approximation
and hence no update step, but the method can nonetheless be viewed in the
same frame of reference.

To more clearly see the connection to the Dantzig-Wolfe method, consider
the dual of the Dantzig-Wolfe LP (4.33),

zpw= max {a+b"Tula<(c" —u"A)s Vs e&). (4.46)
ae]R,ue]R'ﬁ”

Letting n = o + b”"u and rewriting, we see that

zpw = max {n|n< c"—u"ANs+b"Tuvs € &} (4.47)
neR,uek’
= max {min{(c" —u"A)s +b"Tu}} = zip. (4.48)

m’  se&
neR, ueR’y

Thus, we have that z;p = zpw and that (4.44) is another formulation for
the problem of calculating zp. It is also interesting to observe that the set
Sl p, zt, —b"Tut ) is the set of alternative optimal solutions to the subprob-
lem solved at iteration ¢ in Step 3. The following theorem is a counterpart to
Theorem 4.3 that follows from this observation.

THEOREM 4.5

conv(S(Qp, zip — b Tiirp)) isa face of P'. Also, if F is the face of optimal solutions
to the linear program solved directly over P' N Q" with objective function vector c,
then F C conv(S(fiup, zip — b" Tiip)) N Q7.

Again, the proof is similar to that of Theorem 4.3. This shows that while
the Lagrangian method does not maintain an explicit approximation, it does
produce a face of P’ containing the optimal face of solutions to the linear
program solved over the approximation 7' N Q".

4.4 Integrated Decomposition Methods

In Section 4.3, we demonstrated that traditional decomposition approaches
can be viewed as utilizing dynamically generated polyhedral information to
improve the LP bound by either building an inner or an outer approximation
of an implicitly defined polyhedron that approximates . The choice between
inner and outer methods is largely an empirical one, but recent computational
research has favored outer methods. In what follows, we discuss three meth-
ods for integrating inner and outer methods. In principle, this is not difficult
to do and can result in bounds that are improved over those achieved by
either approach alone.

While traditional decomposition approaches build either an inner or an
outer approximation, integrated decomposition methods build both an inner and
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an outer approximation. These methods follow the same basic loop as tra-
ditional decomposition methods, except that the master problem is required
to generate both primal and dual solution information and the subproblem
can be either a separation problem or an optimization problem. The first two
techniques we describe integrate the cutting plane method with either the
Dantzig-Wolfe method or the Lagrangian method. The third technique, de-
scribed in Section 4.5, is a cutting plane method that uses an inner approxi-
mation to perform separation.

4.4.1 Price and Cut

The integration of the cutting plane method with the Dantzig-Wolfe method
results in a procedure that alternates between a subproblem that generates
improving columns (the pricing subproblem) and a subproblem that gener-
ates improving valid inequalities (the cutting subproblem). Hence, we call
the resulting method price and cut. When employed in a branch-and-bound
framework, the overall technique is called branch, price, and cut. This method
has already been studied previously by a number of authors [11, 12, 39, 60, 61]
and more recently by Ardgao and Uchoa [21].

As in the Dantzig-Wolfe method, the bound produced by price and cut can
be thought of as resulting from the intersection of two approximating polyhe-
dra. However, the Dantzig-Wolfe method required one of these, Q”, to have
a short description. With integrated methods, both polyhedra can have de-
scriptions of exponential size. Hence, price and cut allows partial descriptions
of both an inner polyhedron P; and an outer polyhedron Po to be generated
dynamically. To optimize over the intersection of P; and Pp, we use a Dantzig-
Wolfe reformulation as in (4.33), except that the [ A”, b"] is replaced by a matrix
that changes dynamically. The outline of this method is shown in Figure 4.10.

In examining the steps of this generalized method, the most interesting
question that arises is how methods for generating improving columns and
valid inequalities translate to this new dynamic setting. Potentially trouble-
some is the fact that column generation results in a reduction of the bound
zhc produced by (4.51), while generation of valid inequalities is aimed at
increasing it. Recall again, however, that while it is the bound z4 that is di-
rectly produced by solving (4.51), it is the bound z/, obtained by solving the
pricing subproblem that one might claim is more relevant to our goal and this
bound can be potentially improved by generation of either valid inequalities
or columns.

Improving columns can be generated in much the same way as they were
in the Dantzig-Wolfe method. To search for new columns, we simply look
for those that have negative reduced cost, where reduced cost is defined to
be the usual LP reduced cost with respect to the current reformulation. Hav-
ing a negative reduced cost is still a necessary condition for a column to be
improving. However, it is less clear how to generate improving valid inequal-
ities. Consider an optimal fractional solution x4 obtained by combining the
members of € according to weights yielded by the optimal decomposition A}
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Price and Cut Method

Input: An instance ILP(P, c).

Output: A lower bound zpc on the optimal solution value for the instance, a
primal solution £pc € R", an optimal decomposition ipc € R?, a dual solution
(fipc, Gpc) € R™ ! and the inequalities [Dpc, dpc] € R <D

1. Initialize: Construct an initial inner approximation

Pl=0> sk | > A=1L2120Ve&a=0Vse\E P
5€&0 5e&0

(4.49)

from an initial set £° of extreme points of P’ and an initial outer approxi-
mation

P ={xeR"|D'x>d’} 2P, (4.50)

where D? = A” and d° = b”, and set t < 0, m° = m".

2. Master Problem: Solve the Dantzig-Wolfe reformulation

zh .= mi T Xs| | D )l =d) =1, 2,=0VseE\E!
s (5P (5= 3 reere

se€ se€ se&

(4.51)

of the LP over the polyhedron P} NP, to obtain the optimal value z},
an optimal primal solution A} € R?, an optimal fractional solution x}- =

S ee S(ALe)s, and an optimal dual solution (b, abe) € R 1,
3. Do either (a) or (b).

(a) Pricing Subproblem and Update: Call the subroutine OPT
(¢ — P, (uho) D, abe), generating a set & of improving mem-
bers of £ with negative reduced cost (defined in Figure 4.5). If
E # 0, set &1« &' U £ to form a new inner approximation P}t
If 5 € £ is the member of £ with smallest reduced cost, then
zhe =rc(®) + abe + (d)Tube provides a valid lower bound. Set
[D'1, d'H1] « [D', d'], Py < PL, m*! «<—m!, t <t + 1, and go to
Step 2.

(b) Cutting Subproblem and Update: Call the subroutine SEP
(P, xh) to generate a set of improving valid inequalities [D, d] €
R™m* for P, violated by x4 If violated inequalities were found,
set [D'*1, d"+1] « [ 2 4] to form a new outer approximation P
Set m!*™! <« m! +1m, EF1 « &, Pt « Pl t <t +1,and go to Step 2.

4. If £=0 and no valid inequalities were found, output the bound

Zpc=2Zhc = Zhe =C'xbe, Zpc=xbc, Apc=Abe, (lipc, Gpc) = (e, abe),

and [Dpc, dpc] = [Dt, dt]

FIGURE 4.10
Outline of the price and cut method.
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in iteration ¢. Following a line of reasoning similar to that followed in ana-
lyzing the results of the Dantzig-Wolfe method, we can conclude that x}, is
in fact an optimal solution to an LP solved directly over P} N P§ with ob-
jective function vector ¢ and that therefore, it follows from Theorem 4.1 that
any improving inequality must be violated by x4 . It thus seems sensible to
consider separating x5~ from P. This is the approach taken in the method of
Figure 4.10.

To demonstrate how the price and cut method works, we return to
Example 4.1.

Example 4.1 (Continued)

We pick up the example at the last iteration of the Dantzig-Wolfe method and
show how the bound can be further improved by dynamically generating
valid inequalities.

Iteration 0. Solving the master problem with E'={4,1),5,5), 2 1), (3 4)
and the initial inner approximation P = conv(£°) yields (A%¢),1) = 0.58 and
M%) =042, x% - = (2.42, 2.25), bound 2% - = 2~ = 2.42. Next, we solve the
cutting subproblem SEP(P, x9), generating facet-defining inequalities of P
that are violated by x%. One such facet-defining inequality, x; > 3, is illus-
trated in Figure 4.11(a). We add this inequality to the current set D° =[A", b"]
to form a new outer approximation P}, defined by the set D'.

Iteration 1. Solving the new master problem, we obtain an optimal primal so-
lution (A L)@ 1) =042, (Abe) 1) =0.42, (ML) 3.4y =0.17, xp = (3, 1.5), bound
zho =3, as well as an optimal dual solution (ub, ab-). Next, we consider the
pricing subproblem. Since x5 is in the interior of P’, every extreme point of P’
has reduced cost 0 by Theorem 4.4. Therefore, there are no negative reduced
cost columns and we switch again to the cutting subproblem SEP(x}, P).
As illustrated in Figure 4.11(b), we find another facet-defining inequality of
P violated by x}, x, > 2. We then add this inequality to form D? and further
tighten the outer approximation, now P3.

Iteration 2. In the final iteration, we solve the master problem again to obtain
()‘%’C)(‘l/l) =0.33, ()‘%?C)(Zrl) =0.33, ()"%’C)(C’)A) =0.33, xl%C =(3,2),bound Z%’C =3.
Now;, since the primal solution is integral, and is contained in P’ N Q”, we
know that Z%C = z;p and we terminate.

Let us now return to the TSP example to further explore the use of the price
and cut method.

Example 4.2 (Continued)

As described earlier, application of the Dantzig-Wolfe method along with the
1-tree relaxation for the TSP allows us to compute the bound zp obtained by
optimizing over the intersection of the 1-tree polyhedron (the inner polyhe-
dron) with the polyhedron Q" (the outer polyhedron) defined by constraints
(4.17) and (4.19). With price and cut, we can further improve the bound by al-
lowing both the inner and outer polyhedra to have large descriptions. For this
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FIGURE 4.11

Price-and-cut method (Example 4.1).

purpose, let us now introduce the well-known comb inequalities [30, 31], which
we will generate to improve our outer approximation. A comb is defined by
a set H C V, called the handle and sets T;, T, ..., Ty C V, called the teeth,
which satisfy

HNT, #@fori=1, ...,k
T,\H#W@fori=1, ...,k
TiNTj=0forl <i<j<k,
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for some odd k > 3. Then, for |V| > 6 the comb inequality,

k k
X(E(H) + > x(E(T)) < [H[+ > (IT:| = 1) - [k/2] (4.52)

i=1 i=1

is valid and facet-defining for the TSP. Let the comb polyhedron be defined
by constraints (4.17), (4.19), and (4.52).

There are no known efficient algorithms for solving the general facet iden-
tification problem for the comb polyhedron. To overcome this difficulty, one
approachis to focus on comb inequalities with special forms. One subset of the
comb inequalities, known as the blossom inequalities, is obtained by restrict-
ing the teeth to have exactly two members. The facet identification for the
polyhedron comprised of the blossom inequalities and constraints (4.17) and
(4.19) can be solved in polynomial time, a fact we return to shortly. Another
approach is to use heuristic algorithms not guaranteed to find a violated comb
inequality when one exists (see [4] for a survey). These heuristic algorithms
could be applied in price and cut as part of the cutting subproblem in Step 3b
to improve the outer approximation.

In Figure 4.7 of Section 4.3.2, we showed an optimal fractional solution %
that resulted from the solution of a Dantzig-Wolfe master problem and the
corresponding optimal decomposition, consisting of six 1-trees. In Figure 4.12,
weshow thesets H=1{0,1,2,3,6,7,9,11,12,15}, Ty = {5, 6}, T» = {8, 9}, and
T3 = {12, 13} forming a comb that is violated by this fractional solution, since

k k
S(E(H) + Y #(E(T) =113 > 11 = |H| + > (T = 1) — [k/2].

i=1 i=1

Such a violated comb inequality, if found, could be added to the description of
the outer polyhedron to improve on the bound zp. This shows the additional

FIGURE 4.12
Price-and-cut method (Example 4.2).
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power of price and cut over the Dantzig-Wolfe method. Of course, it should
be noted that it is also possible to generate such inequalities in the standard
cutting plane method and to achieve the same bound improvement.

The choice of relaxation has a great deal of effect on the empirical be-
havior of decomposition algorithms. In Example 4.2, we employed an inner
polyhedron with integer extreme points. With such a polyhedron, the inte-
grality constraints of the inner polyhedron have no effect and zp = z;p. In
Example 4.3, we consider a relaxation for which the bound zp may be strictly
improved over z;p by employing an inner polyhedron that is not integral.

Example 4.3

Let G be a graph as defined in Example 4.2 for the TSP. A 2-matching is a
subgraph in which every vertex has degree two. Every TSP tour is hence a
2-matching. The Minimum 2-Matching Problem is a relaxation of TSP whose
feasible region is described by the degree (4.17), bound (4.19), and integral-
ity constraints (4.20) of the TSP. Interestingly, the 2-matching polyhedron,
which is implicitly defined to be the convex hull of the feasible region just
described, can also be described by replacing the integrality constraints (4.20)
with the blossom inequalities. Just as the SEC constraints provide a complete
description of the 1-tree polyhedron, the blossom inequalities (plus degree
and bound) constraints provide a complete description of the 2-matching
polyhedron. Therefore, we could use this polyhedron as an outer approxima-
tion to the TSP polyhedron. In [50], Miiller-Hannemann and Schwartz present
several polynomial algorithms for optimizing over the 2-matching polyhe-
dron. We can therefore also use the 2-matching relaxation in the context of
price and cut to generate an inner approximation of the TSP polyhedron. Us-
ing integrated methods, it would then be possible to simultaneously build up
an outer approximation of the TSP polyhedron consisting of the SECs (4.18).
Note that this simply reverses the roles of the two polyhedra from Example
4.2 and thus would yield the same bound.

Figure 4.13 shows an optimal fractional solution arising from the solution
of the master problem and the 2-matchings with positive weight in a corre-
sponding optimal decomposition. Given this fractional subgraph, we could
employ the separation algorithm discussed in Example 4.2 of Section 4.3.1 to
generate the violated subtour S=1{0,1,2,3,7}. m

Another approach to generating improving inequalities in price and cut is
to try to take advantage of the information contained in the optimal decompo-
sition to aid in the separation procedure. This information, though computed
by solving (4.51) is typically ignored. Consider the fractional solution xkh-
generated in iteration f of the method in Figure 4.10. The optimal decompo-
sition for the master problem in iteration t, A5, provides a decomposition of
xhc into a convex combination of members of €. We refer to elements of € that
have a positive weight in this combination as members of the decomposition. The
following theorem shows how such a decomposition can be used to derive
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(b) Xg =02 (€) A\ =02 d) Ay =0.6

FIGURE 4.13
Finding violated inequalities in price-and-cut (Example 4.3).

an alternate necessary condition for an inequality to be improving. Because
we apply this theorem in a more general context later in the paper, we state
it in a general form.

THEOREM 4.6

If& € R" violates the inequality (a, B) € R™™ and i. € RE is such that Toeehs = 1
and & = Tyceshs, then there must existans € € with &g > 0 such that s also violates
the inequality (a, B) .

PROOF Lett c R"and (a, ) € R"™ be given such thata "% < . Also, let
% € RE be given such that Zseehs =1 and & = Sseeshs. Suppose thata 's > B
forall s € £ with &, > 0. Since Z;c¢hs = 1, we have a T (Z,c¢54;) > . Hence,
a'% =a' (Zseeshs) > B, which is a contradiction. M

In other words, an inequality can be improving only if it is violated by at
least one member of the decomposition. If 7 is the set of all improving in-
equalities in iteration ¢, then the following corollary is a direct consequence
of Theorem 4.6.

COROLLARY 4.4
ICV={@, p)eR"™V:aTs < B forsomes € & such that (\1-)s > 0}.
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The importance of these results is that, in many cases, separation of mem-
bers of 7’ from P is easier than separation of arbitrary real vectors. There
are a number of well-known polyhedra for which the problem of separating
an arbitrary real vector is difficult, but the problem of separating a solution
to a given relaxation is easy. This concept is formalized in Section 4.5 and
some examples are discussed in Section 4.8. In Figure 4.14, we propose a new
separation procedure that can be embedded in price and cut that takes advan-
tage of this fact. The procedure takes as input an arbitrary real vector & that
has been previously decomposed into a convex combination of vectors with
known structure. In price and cut, the arbitrary real vector is xh and it is de-
composed into a convex combination of members of £ by solving the master
problem (4.51). Rather than separating x}, directly, the procedure consists
of separating each one of the members of the decomposition in turn, then
checking each inequality found for violation against xb.

The running time of this procedure depends in part on the cardinality
of the decomposition. Carathéodory’s Theorem assures us that there exists a
decomposition with less than or equal to dim(P})+1 members. Unfortunately,
even if we limit our search to a particular known class of valid inequalities,
the number of such inequalities violated by each member of D in Step 2 may
be extremely large and these inequalities may not be violated by x4~ (such an
inequality cannot be improving). Unless we enumerate every inequality in the
set V) from Corollary 4.4, either implicitly or explicitly, the procedure does not
guarantee that an improving inequality will be found, even if one exists. In
cases where examination of the set )V in polynomial time is possible, the worst-
case complexity of the entire procedure is polynomially equivalent to that of
optimizing over P’. Obviously, it is unlikely that the set V can be examined in
polynomial time in situations when separating xbh is itself an N"P-complete
problem. In such cases, the procedure to select inequalities that are likely to

Separation Using a Decomposition

Input: A decomposition A € R of £ € R".
Output: A set [D, d] of potentially improving inequalities.

1. FormthesetD = {s € £ | A; > 0}.

2. For each s € D, call the subroutine SEP(P, s) to obtain a set [D, d]
of violated inequalities.

3. Let [D, d] be composed of the inequalities found in Step 2 that are
also violated by %, so that D% < d.

4. Return [D, d] as the set of potentially improving inequalities.

FIGURE 4.14
Solving the cutting subproblem with the aid of a decomposition.
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be violated by xb in Step 2 is necessarily a problem-dependent heuristic. The
effectiveness of such heuristics can be improved in a number of ways, some
of which are discussed in [57].

Note that members of the decomposition in iteration t must belong to the
set S(uhyc, abe), as defined by (4.40). It follows that the convex hull of the
decomposition is a subset of conv(S(ubc, ab)) that contains x5, and can
be thought of as a surrogate for the face of optimal solutions to an LP solved
directly over PiNPL with objective function vector c. Combining this corollary
with Theorem 4.1, we conclude that separation of S(u,¢, abc) from P is a
sufficient condition for an inequality to be improving. Although this sufficient
condition is difficult to verify in practice, it does provide additional motivation
for the method described in Figure 4.14.

Example 4.1 (Continued)
Returning to the cutting subproblem in iteration 0 of the price and cut method,
we have a decomposition x%c =(242,2.25)=0.58(2, 1) + 0.42(3, 4), as de-
picted in Figure 4.11(a). Now, instead of trying to solve the subproblem
SEP(P, x%c), we instead solve SEP(P, s), for each se D={(2,1), 3,4)}. In
this case, when solving the separation problem for s = (2, 1), we find the same
facet-defining inequality of P as we did by separating x9 directly.
Similarly, initeration 1, we have a decomposition of xz%c = (3, 1.5) intoa con-
vex combination of D={(4, 1), (2, 1), (3, 4)}. Clearly, solving the separation
problem for either (2, 1) or (4, 1) produces the same facet-defining inequality
as with the original method. =

Example 4.2 (Continued)

Returning again to Example 4.2, recall the optimal fractional solution and the
corresponding optimal decomposition arising during solution of the TSP by
the Dantzig-Wolfe method in Figure 4.7. Figure 4.12 shows a comb inequality
violated by this fractional solution. By Theorem 4.6, at least one of the mem-
bers of the optimal decomposition shown in Figure 4.7 must also violate this
inequality. In fact, the member with index 0, also shown in Figure 4.15, is the
only such member. Note that the violation is easy to discern from the struc-
ture of this integral solution. Let £ € {0, 1} be the incidence vector of a 1-tree.
Consider a subset H of V whose induced subgraph in the 1-tree is a path with
edge set P. Consider also an odd set O of edges of the 1-tree of cardinality at
least 3 and disjoint from P, such that each edge has one endpoint in H and
one endpointin V'\ H. Taking the set H to be the handle and the endpoints of
each member of O to be the teeth, it is easy to verify that the corresponding
comb inequality will be violated by the 1-tree, since

k k k
R(E(H)+ Y #(E(T)) =|H| =1+ > (TI-1)>[H[+ Y (T|-1) - [k/2].

i=1 i=1 i=1
Hence, searching for such configurations in the members of the decomposi-
tion, as suggested in the procedure of Figure 4.14, may lead to the discovery
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() Ao

FIGURE 4.15
Using the optimal decomposition to find violated inequalities in price and cut (Example 4.2).

of comb inequalities violated by the optimal fractional solution. In this case,
such a configuration does in fact lead to discovery of the previously indi-
cated comb inequality. Note that we have restricted ourselves in the above
discussion to the generation of blossom inequalities. The teeth, as well as the
handles can have more general forms that may lead to the discovery of more
general forms of violated combs. m

Example 4.3 (Continued)

Returning now to Example 4.3, recall the optimal fractional solution and the
corresponding optimal decomposition, consisting of the 2-matchings shown
in Figure 4.13. Previously, we produced a set of vertices defining a SEC vio-
lated by the fractional point by using a minimum cut algorithm with the opti-
mal fractional solution as input. Now, let us consider applying the procedure
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of Figure 4.14 by examining the members of the decomposition in order to dis-
cover inequalities violated by the optimal fractional solution. Let £ € {0, 1}f
be the incidence vector of a 2-matching. If the corresponding subgraph does
not form a tour, then it must be disconnected. The vertices corresponding
to any connected component thus define a violated SEC. By determining
the connected components of each member of the decomposition, it is easy
to find violated SECs. In fact, for any 2-matching, every component of the
2-matching forms a SEC that is violated by exactly 1. For the 2-matching cor-
responding to §, we have £(E(S)) = |S| > |S| — 1. Figure 4.16(b) shows the
third member of the decomposition along with a violated SEC defined by one

08 &

(a)

() X,

FIGURE 4.16
Using the optimal decomposition to find violated inequalities in price and cut (Example 4.3).
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of its components. This same SEC is also violated by the optimal fractional
solution.

There are many variants of the price-and-cut method shown in Figure 4.10.
Most significant is the choice of which subproblem to execute during Step 3. It
is easy to envision a number of heuristic rules for deciding this. For example,
one obvious rule is to continue generating columns until no more are available
and then switch to valid inequalities for one iteration, then generate columns
again until none are available. This can be seen as performing a “complete”
dual solution update before generating valid inequalities. Further variants
can be obtained by not insisting on a “complete” dual update before solving
the pricing problem [17, 29]. This rule could easily be inverted to generate
valid inequalities until no more are available and then generate columns. A
hybrid rule in which some sort of alternation occurs is a third option. The
choice between these options is primarily empirical.

4.4.2 Relax and Cut

Just as with the Dantzig-Wolfe method, the Lagrangian method of Figure 4.9
can be integrated with the cutting plane method to yield a procedure several
authors have termed relax and cut. This is done in much the same fashion
as in price and cut, with a choice in each iteration between solving a pric-
ing subproblem and a cutting subproblem. In each iteration that the cutting
subproblem is solved, the generated valid inequalities are added to the de-
scription of the outer polyhedron, which is explicitly maintained as the algo-
rithm proceeds. As with the traditional Lagrangian method, no explicit inner
polyhedron is maintained, but the algorithm can again be seen as one that
computes a face of the implicitly defined inner polyhedron that contains the
optimal face of solutions to a linear program solved over the intersection of
the two polyhedra. When employed within a branch and bound framework,
we call the overall method branch, relax, and cut.

An outline of the relax-and-cut method is shown in Figure 4.17. The ques-
tion again arises as to how to ensure that the inequalities being generated in
the cutting subproblem are improving. In the case of the Lagrangian method,
this is a much more difficult issue because we cannot assume the availability
of the same primal solution information available within price and cut. Fur-
thermore, we cannot verify the condition of Corollary 4.1, which is the best
available necessary condition for an inequality to be improving. Neverthe-
less, some primal solution information is always available in the form of the
solution sk to the last pricing subproblem that was solved. Intuitively, sep-
arating sk- makes sense since the infeasibilities present in sk- may possibly
be removed through the addition of valid inequalities violated by sk.

As with both the cutting plane and price-and-cut methods, the difficulty
is that the valid inequalities generated by separating sk~ from P may not
be improving, as Guignard first observed in [33]. To deepen understanding
of the potential effectiveness of the valid inequalities generated, we further
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Relax and Cut Method

Input: An instance ILP(P, c).
Output: A lower bound zrc on the optimal solution value for the in-
stance and a dual solution figc € R™.

1. Lets}c € € define some initial extreme point of P’ and construct an
initial outer approximation

PO ={xeR"|Dx>d"} 2P, (4.53)

where D° = A” and d° = b". Let u%- € R™ be some initial set of
dual multipliers associated with the constraints [D, d°]. Set t < 0
and m' = m”.

2. Master Problem: Using the solution information gained from solv-
ing the pricing subproblem, and the previous dual solution uf,
update the dual solution (if the pricing problem was just solved) or
initialize the new dual multipliers (if the cutting subproblem was
just solved) to obtain u € R™.

3. Do either (a) or (b).
(a) Pricing Subproblem: Call the subroutine OPT(c — P’ (k)"
D!, (c — (ue) " D"she) to obtain

Zhe = rsrélfr} {(c" = (ue)D')s +d" (uyc) }- (4.54)
Let sk € & be the optimal solution to this subproblem. Set

[DH_lr dt+1] <~ [Dt/ dt]/ Pto+1 < 7DtO/ mt+1 < mtr t <t + 1/
and go to Step 2.

(b) Cutting Subproblem: Call the subroutine SEP(P, sic) to
generate a set of improving valid inequalities [ D, d] € R™*"*!
for P, violated by sk.. If violated inequalities were found,

set [D'*!, d"*1] < [P @] to form a new outer approxima-

tion P5™. Set m'*! « m! 41, sk < sk, t <t +1,and go
to Step 2.

4. 1f a prespecified stopping criterion is met, then output zgc = zke
and 11 RC = u%c .
5. Otherwise, go to Step 2.

FIGURE 4.17
Outline of the relax and cut method.
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examine the relationship between sk~ and xh by recalling again the results
from Section 4.3.2. Consider the set S(ukc, zhc), where zi is obtained by
solving the pricing subproblem (4.54) from Figure 4.17 and the set S(;, -) is
as defined in (4.40). In each iteration where the pricing subproblem is solved,
skl is a member of S(ukc, Zke). In fact, S(ukc, Zikc) is exactly the set of al-
ternative solutions to this pricing subproblem. In price and cut, a number
of members of this set are available, one of which must be violated in or-
der for a given inequality to be improving. This yields a verifiable necessary
condition for a generated inequality to be improving. Relax and cut, in its
most straightforward incarnation, produces one member of this set. Even if
improving inequalities exist, it is possible that none of them are violated by
the member of S(ukc, zkc) so produced, especially if it would have had a
small weight in the optimal decomposition produced by the corresponding
iteration of price and cut.

It is important to note that by keeping track of the solutions to the La-
grangian subproblem that are produced while solving the Lagrangian dual,
one can approximate the optimal decomposition and the optimal fractional
solution produced by solving (4.51). This is the approach taken by the volume
algorithm [9] and a number of other subgradient-based methods. As in price
and cut, when this fractional solution is an inner point of P’, all members of
F' are alternative optimal solutions to the pricing subproblem and the bound
is not improved over what the cutting plane method alone would produce.
In this case, solving the cutting subproblem to obtain additional inequalities
is unlikely to yield further improvement.

As with price and cut, there are again many variants of the algorithm
shown in Figure 4.17, depending on the choice of subproblem to execute
at each step. One such variant is to alternate between each of the subprob-
lems, first solving one and then the other [46]. In this case, the Lagrangian
dual is not solved to optimality before solving the cutting subproblem. Al-
ternatively, another approach is to solve the Lagrangian dual all the way to
optimality before generating valid inequalities. Again, the choice is primarily
empirical.

4.5 Solving the Cutting Subproblem

In this section, we formalize some notions that have been introduced in our
examples and provide more details regarding how the cutting subproblem
is solved in practice in the context of the various methods we have outlined.
We review the well-known femplate paradigm for separation and introduce
a new concept called structured separation. Finally, we describe a separation
algorithm called decompose and cut that is closely related to the integrated
decomposition methods we have already described and utilizes several of
the concepts introduced earlier.
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4.5.1 The Template Paradigm

The ability to generate valid inequalities for PP violated by a given real vector
is a crucial step in many of the methods discussed in this paper. Ideally, we
would be able to solve the general facet identification problem for P, allowing
us to generate a violated valid inequality whenever one exists. This is clearly
not practical in most cases, since the complexity of this problem is the same
as that of solving the original ILP. In practice, the subproblem SEP(x{,, P) in
Step 3 of the cutting plane method pictured in Figure 4.2 is usually solved by
dividing the valid inequalities for P into template classes with known structure.
Procedures are then designed and executed for identifying violated members
of each class individually.

A template class (or simply class) of valid inequalities for P is a set of related
valid inequalities that describes a polyhedron containing P, so we can identify
each class with its associated polyhedron. In Example 4.2, we described two
well-known classes of valid inequalities for the TSP, the subtour elimination
constraints and the comb inequalities. Both classes have an identifiable coeffi-
cient structure and describe polyhedra containing P. Consider a polyhedron C
described by a class of valid inequalities for P. The separation problem for the
class C of valid inequalities for P is defined to be the facet identification prob-
lem over the polyhedron C. In other words, the separation problem for a class
of valid inequalities depends on the form of the inequality and is independent
of the polyhedron P. It follows that the worst case running time for solving
the separation problem is also independent of P. In particular, the separation
problem for a particular class of inequalities may be much easier to solve
than the general facet identification problem for P. Therefore, in practice,
the separation problem is usually attempted over “easy” classes first, and
more difficult classes are only attempted when needed. In the case of the TSP,
the separation problem for the SECs is solvable in polynomial time, whereas
there is no known efficient algorithm for solving the separation problem for
comb inequalities. In general, the intersection of the polyhedra associated with
the classes of inequalities for which the separation problem can be reasonably
solved is not equal to P.

4.5.2 Separating Solutions with Known Structure

In many cases, the complexity of the separation problem is also affected by the
structure of the real vector being separated. In Section 4.4, we informally in-
troduced the notion that a solution vector with known structure may be easier
to separate from a given polyhedron than an arbitrary one and illustrated this
phenomenon in Example 4.2 and Example 4.3. This is a concept called struc-
tured separation that arises quite frequently in the solution of combinatorial
optimization problems where the original formulation is of exponential size.
When using the cutting plane method to solve the LP relaxation of the TSP,
for example, as described in Example 4.2, we must generate the SECs dynam-
ically. It is thus possible that the intermediate solutions are integer-valued,
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but nonetheless not feasible because they violate some SEC that is not present
in the current approximation. When the current solution is optimal, however,
it is easy to determine whether it violates a SEC —we simply examine the
connected components of the underlying support graph, as described earlier.
This process can be done in O(|V|+ |E|) time. For an arbitrary real vector, the
separation problem for SECs is more difficult, taking O(|V[*) time.

It is also frequently the case that when applying a sequence of separation
routines for progressively more difficult classes of inequalities, routines for
the more difficult classes assume implicitly that the solution to be separated
satisfies all inequalities of the the easier classes. In the case of the TSP, for
instance, any solution passed to the subroutine for separating the comb in-
equalities is generally assumed to satisfy the degree and subtour elimination
constraints. This assumption can allow the separation algorithms for subse-
quent classes to be implemented more efficiently.

For the purposes of the present work, our main concern is with separat-
ing solutions that are known to be integral, in particular, members of . In
our framework, the concept of structured separation is combined with the
template paradigm in specifying template classes of inequalities for which
separation of integral solutions is much easier, in a complexity sense, than
separation of arbitrary real vectors over that same class. A number of ex-
amples of problems and classes of valid inequalities for which this situation
occurs are examined in Section 4.8. We now examine a separation paradigm
called decompose and cut that can take advantage of our ability to easily sepa-
rate solutions with structure.

4.5.3 Decompose and Cut

The use of a decomposition to aid in separation, as is described in the proce-
dure of Figure 4.14, is easy to extend to a traditional branch-and-cut frame-
work using a technique we call decompose and cut, originally proposed in [56]
and further developed in [40] and [57]. Suppose now that we are given an op-
timal fractional solution x5, obtained during iteration ¢ of the cutting plane
method and suppose that for a given s € F’, we can determine effectively
whether s € F and if not, generate a valid inequality (a, B) violated by s. By
first decomposing xtp (i.e., expressing x{p as a convex combination of members
of £ C F’) and then separating each member of this decomposition from P in
the fashion described in Figure 4.14, we may be able to find valid inequalities
for P that are violated by x&p.

The difficult step is finding the decomposition of x5p. This can be accom-
plished by solving a linear program whose columns are the members of &,
as described in Figure 4.18. This linear program is reminiscent of (4.33) and
in fact can be solved using an analogous column-generation scheme, as de-
scribed in Figure 4.19. This scheme can be seen as the “inverse” of the method
described in Section 4.4.1, since it begins with the fractional solution x¢, and
tries to compute a decomposition, instead of the other way around. By the
equivalence of optimization and facet identification, we can conclude that the
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Separation in Decompose and Cut

Input: ¥ € R"
Output: A valid inequality for P violated by %, if one is found.

1. Apply standard separation techniques to separate %. If one of these
returns a violated inequality, then STOP and output the violated
inequality.

2. Otherwise, solve the linear program

dshe=1 ) r =1 } (4.55)

max {OTA
se& se€

&
AeRS

as in Figure 4.19.

3. The result of Step 2 is either (1) a subset D of members of £ partici-
pating in a convex combination of £, or (2) a valid inequality (a, 8)
for P that is violated by %. In the first case, go to Step 4. In the second
case, STOP and output the violated inequality.

4. Attempt to separate each member of D from P. For each inequality
violated by a member of D, check whether it is also violated by £.
If an inequality violated by % is encountered, STOP and output it.

FIGURE 4.18
Separation in the decompose-and-cut method.

Column Generation in Decompose and Cut

Input: ¥ e R”
Output: Either (1) a valid inequality for P violated by %; or (2) a subset
D of £ and a vector A € R‘i such that Z;cpAss = & and Zgepis = 1.

2.0 Generate an initial subset £° of £ and set t <« 0.

2.1 Solve (4.55), replacing € by £'. If this linear program is feasible, then
the elements of £ corresponding to the nonzero components of , the
current solution, comprise the set D, so STOP.

2.2 Otherwise, let (a, B) be a valid inequality for conv(£') violated by
% (i.e., the proof of infeasibility). Solve OPT(P’, a, B) and let £ be the
resulting set of solutions. If £ # ¢, then set &1 < £'UE, t — t+1,
and go to 2.1. Otherwise, (4, B) is an inequality valid for P’ © P and
violated by %, so STOP.

FIGURE 4.19
Column generation for the decompose-and-cut method.
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problem of finding a decomposition of x{, is polynomially equivalent to that
of optimizing over P'.

Once the decomposition is found, it can be used as before to locate a violated
valid inequality. In contrast to price and cut, however, it is possible that x5, &
P’. This could occur, for instance, if exact separation methods for P’ are too
expensive to apply consistently. In this case, it is obviously not possible to
find a decomposition in Step 2 of Figure 4.18. The proof of infeasibility for the
linear program (4.55), however, provides an inequality separating x5, from
P’ at no additional expense. Hence, even if we fail to find a decomposition,
we still find an inequality valid for P and violated by x{p. This idea was
originally suggested in [56] and was further developed in [40]. A similar
concept was also discovered and developed independently by Applegate,
etal. [3].

Applying decompose and cut in every iteration as the sole means of sep-
aration is theoretically equivalent to price and cut. In practice, however,
the decomposition is only computed when needed, i.e., when less expen-
sive separation heuristics fail to separate the optimal fractional solution.
This could give decompose and cut an advantage in terms of computational
efficiency. In other respects, the computations performed in each method are
similar.

4.6 Solving the Master Problem

The choice of a proper algorithm for solving the master problem is important
for these methods, both because a significant portion of the computational
effort is spent solving the master problem and because the solver must be
capable of returning the solution information required by the method. In this
section, we would like to briefly give the reader a taste for the issues involved
and summarize the existing methodology. The master problems we have dis-
cussed are linear programs, or can be reformulated as linear programs. Hence,
one option for solving them is to use either simplex or interior point methods.
In the case of solving a Lagrangian dual, subgradient methods may also be
employed.

Simplex methods have the advantage of providing accurate primal solution
information. They are therefore well-suited for algorithms that utilize primal
solution information, such as price and cut. The drawback of these methods
is that updates to the dual solution at each iteration are relatively expensive.
In their most straightforward implementations, they also tend to converge
slowly when used with column generation. This is primarily due to the fact
that they produce basic (extremal) dual solutions, which tend to change sub-
stantially from one iteration to the next, causing wide oscillations in the input
to the column-generation subproblem. This problem can be addressed by im-
plementing one of a number of stabilization methods that prevent the dual
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solution from changing “too much” from one iteration to the next (for a sur-
vey, see [43]).

Subgradient methods, on the other hand, do not produce primal solution
information in their most straightforward form, so they are generally most
appropriate for Lagrangian methods such as relax and cut. It is possible,
however, to obtain approximate primal solutions from variants of subgradient
suchas the volume algorithm [9]. Subgradient methods also have convergence
issues without some form of stabilization. A recent class of algorithms that
has proven effective in this regard is bundle methods [18].

Interior point methods may provide a middle ground by providing accu-
rate primal solution information and more stable dual solutions [28, 58]. In
addition, hybrid methods that alternate between simplex and subgradient
methods for updating the dual solution have also shown promise [10, 36].

4.7 Software

The theoretical and algorithmic framework proposed in Section 4.3 to Section
4.5 lends itself nicely to a wide-ranging and flexible generic software frame-
work. All of the techniques discussed can be implemented by combining a
set of basic algorithmic building blocks. DECOMP is a C** framework de-
signed with the goal of providing a user with the ability to easily utilize
various traditional and integrated decomposition methods while requiring
only the provision of minimal problem-specific algorithmic components [25].
With DECOMP, the majority of the algorithmic structure is provided as part
of the framework, making it easy to compare various algorithms directly and
determine which option is the best for a given problem setting. In addition,
DECOMP is extensible —each algorithmic component can be overridden by
the user, if they so wish, in order to develop sophisticated variants of the
aforementioned methods.

The framework is divided into two separate user interfaces, an applica-
tions interface DecompApp, in which the user must provide implementations
of problem-specific methods (e.g., solvers for the subproblems), and an al-
gorithms interface DecompAlgo, in which the user can modify DECOMP’s
internal algorithmes, if desired. A DecompAlgo object provides implementa-
tions of all of the methods described in Section 4.3 and Section 4.4, as well as
options for solving the master problem, as discussed in Section 4.6. One im-
portant feature of DECOMP is that the problem is always represented in the
original space, rather than in the space of a particular reformulation. The user
has only to provide subroutines for separation and column generation in the
original space without considering the underlying method. The framework
performs all of the necessary bookkeeping tasks, including automatic refor-
mulation in the Dantzig-Wolfe master, constraint dualization for relax and cut,
cut and variable pool management, as well as, row and column expansion.
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In order to develop an application, the user must provide implementations
of the following two methods:

e DecompApp: :createCore (). The user must define the initial set
of constraints [A”, b"].

» DecompApp: : solveRelaxedProblem (). The user must provide
a solver for the relaxed problem OPT(P’, ¢, U) that takes a cost vec-
tor ¢ € R" as its input and returns a set of solutions as DecompVar
objects. Alternatively, the user has the option to provide the inequal-
ity set [A, b’] and solve the relaxed problem using the built-in ILP
solver.

Ifthe user wishes toinvoke the traditional cutting plane method using problem-
specific methods, then the following method must also be implemented:

» DecompApp: :generateCuts (x). A method for solving the sep-
aration problem SEP(P, x), given an arbitrary real vector, x € R",
which returns a set of DecompCut objects.

Alternatively, various generic separation algorithms are also provided. The
user might also wish to implement separation routines specifically for mem-
bers of 7' that can take advantage of the structure of such solutions, as was
described in Section 4.5:

» DecompApp: :generateCuts (s). A method for solving the sep-
aration problem SEP(P, s), given members of F’, which returns a
set of DecompCut objects.

Ata high level, the main loop of the base algorithm provided in DecompaAlgo
follows the paradigm described earlier, alternating between solving a master
problem to obtain solution information, followed by a subproblem to generate
new polyhedral information. Each of the methods described in this paper have
its own separate interface derived from DecompAlgo. For example, the base
class for the price-and-cut method is DecompAlgo: : DecompAlgoPC. In this
manner, the user can override a specific subroutine common to all methods
(in DecompAlgo) or restrict it to a particular method.

4.8 Applications

In this section, we further illustrate the concepts presented with three more
examples. We focus here on the application of integrated methods, a key
component of which is the paradigm of structured separation introduced in
Section 4.5. For each example, we discuss three key polyhedra: (1) an origi-
nal ILP defined by a polyhedron P and associated feasible set 7 = P N Z";
(2) an effective relaxation of the original ILP with feasible set 7' © F such
that optimization over the polyhedron P; = conv(F’) is possible; and (3) a
polyhedron P, such that F = P; N Pp NZ". In each case, the polyhedron Po
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is comprised of a known class or classes of valid inequalities that could be
generated during execution of the cutting subproblem of one of the integrated
methods discussed in Section 4.4. As before, P; is a polyhedron with an inner
description generated dynamically through the solution of an optimization
problem, while P is a polyhedron with an outer description generated dy-
namically through the solution of a separation problem. We do not discuss
standard methods of solving the separation problem for Pp, i.e., unstruc-
tured separation, as these are well-covered in the literature. Instead, we focus
here on problems and classes of valid inequalities for which structured sep-
aration, i.e., separation of a member of F’, is much easier than unstructured
separation. A number of ILPs that have appeared in the literature have relax-
ations and associated classes of valid inequalities that fit into this framework,
such as the Generalized Assignment Problem [54], the Edge-Weighted Clique
Problem [37], the Knapsack Constrained Circuit Problem [42], the Rectangular
Partition Problem [16], the Linear Ordering Problem [15], and the Capacitated
Minimum Spanning Tree Problem [24].

4.8.1 Vehicle Routing Problem

We first consider the Vehicle Routing Problem (VRP) introduced by Dantzig
and Ramser [20]. In this A"P-hard optimization problem, a fleet of k vehicles
with uniform capacity C must service known customer demands for a single
commodity from a common depot at minimum cost. Let V = {1, ..., |V|}
index the set of customers and let the depot have index 0. Associated with
each customer i € V is a demand d;. The cost of travel from customeri to j is
denoted ¢;; and we assume that ¢;j = c;; > 0ifi # j and ¢;; = 0.

By constructing an associated complete undirected graph G with vertex set
N = VU{0} and edge set E, we can formulate the VRP as an integer program.
A route is a set of vertices R = {iy, ip, ..., iy} such that the members of R
are distinct. The edge set of Ris Er = {{ij,ij;1} | j €0, ..., m}, where iy =
im+1 = 0. Afeasible solution is then any subset of E thatis the union of the edge
sets of k disjoint routes R;, i € [1, ..., k], each of which satisfies the capacity
restriction, i.e., Zjerd; < C, Vi €[1, ..., k]. Each route corresponds to a set
of customers serviced by one of the k vehicles. To simplify the presentation,
let us define some additional notation.

By associating a variable with each edge in the graph, we obtain the fol-
lowing formulation of this ILP [41]:

min E CeXe,

ecE

x(8({0})) = 2k, (4.56)

x@S{v})) =2 YoeV, (4.57)
x(8(S)) =2b(S) VSCV, IS >1, (4.58)

x, € {0,1} VeeE(V), (4.59)
x. € {0,1,2} Ve €68(0). (4.60)
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Here, b(S) represents a lower bound on the number of vehicles required to
service the set of customers S. Inequalities (4.56) ensure that exactly k vehicles
depart from and returning to the depot, while inequalities (4.57) require that
each customer must be serviced by exactly one vehicle. Inequalities (4.58),
known as the generalized subtour elimination constraints (GSECs) can be viewed
as a generalization of the subtour elimination constraints from TSP, and
enforce connectivity of the solution, as well as ensuring that no route has
total demand exceeding capacity C. For ease of computation, we can define
b(S) = [(Ziesd;)/C1, atrivial lower bound on the number of vehicles required
to service the set of customers S.
The set of feasible solutions to the VRP is

F = {x € RF | x satisfies (4.56) — (4.60)}

and we call P = conv(F) the VRP polyhedron. Many classes of valid inequali-
ties for the VRP polyhedron have been reported in the literature (see [51] for a
survey). Significant effort has been devoted to developing efficient algorithms
for separating an arbitrary fractional point using these classes of inequalities
(see [38] for recent results).

We concentrate here on the separation of GSECs. The separation prob-
lem for GSECs was shown to be N'P-complete by Harche and Rinaldi (see
[5]), even when b(S) is taken to be [(Z;esd;)/C1. In [38], Lysgaard, et al. re-
view heuristic procedures for generating violated GSECs. Although GSECs
are part of the formulation presented above, there are exponentially many
of them, so we generate them dynamically. We discuss three relaxations of
the VRP: the Multiple Traveling Salesman Problem, the Perfect b-Matching Prob-
lem, and the Minimum Degree-Constrained k-Tree Problem. For each of these
alternatives, violation of GSECs by solutions to the relaxation can be easily
discerned.

Perfect b-Matching Problem. With respect to the graph G, the Perfect b-
Matching Problem is to find a minimum weight subgraph of G such that
x(8(v)) = b, Yv € V. This problem can be formulated by dropping the GSECs
from the VRP formulation, resulting in the feasible set

F' = {x e RE | x satisfies (4.56), (4.57), (4.59), (4.60)}.

In [50], Miiller-Hannemann and Schwartz, present several fast polynomial
algorithms for solving b-Matching. The polyhedron Po consists of the GSECs
(4.58) in this case.

In [49], Miller uses the b-Matching relaxation to solve the VRP by branch,
relax, and cut. He suggests generating GSECS violated by b-matchings as fol-
lows. Consider a member s of 7’ and its support graph G, (a b-Matching).
If G, is disconnected, then each component immediately induces a violated
GSEC. On the other hand, if G, is connected, we first remove the edges in-
cident to the depot vertex and find the connected components, which com-
prise the routes described earlier. To identify a violated GSEC, we compute
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the total demand of each route, checking whether it exceeds capacity. If not,
the solution is feasible for the original ILP and does not violate any GSECs.
If so, the set S of customers on any route whose total demand exceeds ca-
pacity induces a violated GSEC. This separation routine runs in O(|V| +
|E|) time and can be used in any of the integrated decomposition meth-
ods previously described. Figure 4.20a shows an example vector that could
arise during execution of either price and cut or decompose and cut, along
with a decomposition into a convex combination of two b-Matchings, shown

(f) woor X3 =1 (g) k-pCT Ay = &

FIGURE 4.20
Example of a decomposition into b-Matchings and k-DCTs.
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in Figure 4.20b and c. In this example, the capacity C = 35 and by inspection
we find a violated GSEC in the second b-Matching (c) with S equal to the
marked component. This inequality is also violated by the optimal fractional
solution, since £(§(S)) = 3.0 < 4.0 = 2b(S).

Minimum Degree-Constrained k-Tree Problem. A k-treeis defined asaspan-
ning subgraph of G that has |V| + k edges (recall that G has |V| 4 1 vertices).
A degree-constrained k-tree (k-DCT), as defined by Fisher in [23], is a k-tree
with degree 2k at vertex 0. The Minimum k-DCT Problem is that of finding a
minimum cost k-DCT, where the cost of a k-DCT is the sum of the costs on
the edges present in the k-DCT. Fisher [23] introduced this relaxation as part
of a Lagrangian relaxation-based algorithm for solving the VRP.

The k-DCT polyhedron is obtained by first adding the redundant constraint

x(E) = |V| +k, (4.61)

then deleting the degree constraints (4.57), and finally, relaxing the capacity
to C = Xjesd;. Relaxing the capacity constraints gives b(S) = 1forall S C V,
and replaces the set of constraints (4.58) with

> x%=2,V¥SCV, |5 >1. (4.62)
ee€d(S)

The feasible region of the Minimum k-DCT Problem is then
F' = {x e RF | x satisfies (4.56), (4.58), (4.59), (4.61)}.

This time, the polyhedron Po is comprised of the constraints (4.57) and the
GSECs (4.58). Since the constraints (4.57) can be represented explicitly, we
focus again on generation of violated GSECs. In [62], Wei and Yu give a
polynomial algorithm for solving the Minimum k-DCT Problem that runs
in O(|V|? log |V|) time. In [48], Martinhon et al. study the use of the k-DCT
relaxation for the VRP in the context branch, relax, and cut. Again, consider
separating a member s of ' from the polyhedron defined by all GSECS. It
is easy to see that for GSECs, an algorithm identical to that described above
can be applied. Figure 4.20a also shows a vector that could arise during the
execution of either the price and cut or decompose-and-cut algorithms, along
with a decomposition into a convex combination of four k-DCTs (Figure 4.20d
to g). Removing the depot edges, and checking each components demand,
we easily identify the violated GSEC in k-DCT (g).

Multiple Traveling Salesman Problem. The Multiple Traveling Salesman Prob-
lem (k-TSP) is an uncapacitated version of the VRP obtained by adding the
degree constraints to the k-DCT polyhedron. The feasible region of the k-TSP
is

F = {x € RE | x satisfies (4.56), (4.57), (4.59), (4.60), (4.62)}.

Although the k-TSP is an N P-hard optimization problem, small instances
can be solved effectively by transformation into an equivalent TSP obtained
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by adjoining to the graph k — 1 additional copies of vertex 0 and its incident
edges. In this case, the polyhedron Po is again comprised solely of the GSECs
(4.58). In[57], Ralphs et al. report on an implementation of branch, decompose
and cut using the k-TSP as a relaxation.

4.8.2 Three-Index Assignment Problem

The Three-Index Assignment Problem (3AP)is that of finding a minimum-weight
clique cover of the complete tri-partite graph K, . Let I, ], and K be three
disjoint sets with |I| = |J| = |[K| = nandset H = [ x | x K. 3AP can be
formulated as the following binary integer program:

min Z CijkXijks
(i, jkeH

> owp=1 Viel, (4.63)

(jke] xK
> xp=1 Vie], (4.64)

(i,k)el xK
Y owp=1 VkeKk, (4.65)

@i, j)elx]
Xijk € {0,1} Vv, j, k) € H. (4.66)

A number of applications of 3AP can be found in the literature (see Piersjalla
[18,19]). 3BAP is known to be N P-hard [26]. As before, the set of feasible
solutions to 3AP is noted as

F = {x e R¥ | x satisfies (4.63) — (4.66)}

and we set P = conv(F).

In[7], Balas and Saltzman study the polyhedral structure of P and introduce
several classes of facet-inducing inequalities. Let , v € H and define |u N v|
to be the numbers of coordinates for which the vectors u and v have the same
value. Let C(w) ={w e H| juNw|=2}and C(u,v) ={w e H| [uNnw| =
1, lw Nv| = 2}. We consider two classes of facet-inducing inequalities Q1 ()
and P;(u, v) for P,

X+ Y x <1 VueH, (4.67)
weC(u)

Xy + Z Xy <1 Yu,veH|unv|=0. (4.68)
weC (u,v)

Note that these include all the clique facets of the intersection graph of K, ;. »
[7]. In [6], Balas and Qi describe algorithms that solve the separation problem
for the polyhedra defined by the inequalities Q;(x) and P;(u, v) in O(1%)
time.
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FIGURE 4.21

Example of a decomposition into assignments.

Balas and Saltzman consider the use of the classical Assignment Problem
(AP) as a relaxation of 3AP in an early implementation of branch, relax, and
cut [8]. The feasible region of the AP is

F = {x e R" | x satisfies (4.64) — (4.66)}.

The AP can be solved in O log(nC)) time where C = maxy.cy ¢y, by the
cost-scaling algorithm [2]. The polyhedron Pg is here described by constraints
(4.63), the constraints Qq(u) for all u € H, and the constrains P;(u, v) for all
u, v € H. Consider generating a constraint of the form Q;(u) for some u € H
violated by a given s € F'. Let L(s) be the set of n triplets corresponding
to the nonzero components of s (the assignment from | to K). It is easy to
see that if there exist u, v € L(s) such that u = (ip, jo, ko) and v = (io, j1, k1),
i.e., the assignment overcovers the set I, then both Q(iy, jo, k1) and Q(o, j1, ko)
are violated by s. Figure 4.21 shows the decomposition of a vector % (a) that
could arise during the execution of either the price-and-cut or decompose-
and-cut algorithms, along with a decomposition of & into a convex combina-
tion of assignments (b to d). The pair of triplets (0, 3, 1) and (0, 0, 3) satisfies
the condition just discussed and identifies two valid inequalities, Q1(0, 3, 3)
and Q1(0, 0, 1), that are violated by the second assignment, shown in (c). The
latter also violates £ and is illustrated in (e). This separation routine runs in
O(n) time.

Now consider generation of a constraint of the form P; (1, v) for some u, v €
H violated by s € F'. As above, for any pair of assignments that correspond
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to nonzero components of s and have the form (io, jo, ko), (i, j1, k1), we know
s violates P1((io, jo, ko), (i, j1, k1)), Vi # io and P1((io, j1, k1), (i, jo, ko)), Vi #
ig. The inequality P;((0, 0, 3), (1, 3, 1)) is violated by the second assignment,
shown in Figure 4.21(c). This inequality is also violated by % and is illustrated
in (f). Once again, this separation routine runs in O(n) time.

4.8.3 Steiner Tree Problem

Let G = (V, E) be a complete undirected graph with vertexset V ={1, ...,
|V]}, edge set E and a positive weight ¢, associated with each edge e € E.
Let T C V define the set of terminals. The Steiner Tree Problem (STP), which
is N'P-hard, is that of finding a subgraph that spans T (called a Steiner tree)
and has minimum edge cost. In [13], Beasley formulated the STP as a side
constrained Minimum Spanning Tree Problem (MSTP) as follows. Letr € T be
some terminal and define an artificial vertex 0. Now, construct the augmented
graph G = (V, E) where V=V U{0}and E = EU{{i,0} | i € (V\ T) U {r}}.
Letcio = 0foralli € (V\ T) U {r}. Then, the STP is equivalent to finding a
minimum spanning tree (MST) in G subject to the additional restriction that
any vertex i € (V' \ T) connected by edge {i, 0} € E must have degree one.

By associating a binary variable x, with eachedgee € E, indicating whether
or not the edge is selected, we can then formulate the STP as the following
integer program:

min E CoXe,

ecE

x(E)=1|V| -1, (4.69)
x(E(S) <|S|—-1 VvScV, (4.70)
Xio+x <1 Ve € §(i),i € (V\T), (4.71)

x, €{0,1}] VeecE. 4.72)

Inequalities (4.69) and (4.70) ensure that the solution forms a spanning tree

on G. Inequalities (4.70) are subtour elimination constraints (similar to those

used in the TSP). Inequalities (4.71) are the side constraints that ensure the

solution can be converted to a Steiner tree by dropping the edgesin E \ E.
The set of feasible solutions to the STP is

F = {x e RF | x satisfies (4.69) — (4.72)}.

We set P = conv(F) as before. We consider two classes of valid inequalities
for P that are lifted versions of the subtour elimination constraints (SEC).

X(E(S)) + x(E(S\T [ {0)) < |S|—1VSCV,SNT #4¢, 4.73)
X(E(S) + x(E(S\ {v} | {0}) <|S|—1Y¥SCV,SNT =0, veSs. (474)

The class of valid inequalities (4.73) were independently introduced by
Goemans [27], Lucena [44] and Margot, Prodon, and Liebling [47], for another
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extended formulation of STP. The inequalities (4.74) were introduced in
[27,47]. The separation problem for inequalities (4.73) and (4.74) can be solved
in O(|V]* time through a series of max-flow computations.

In [45], Lucena considers the use of MSTP as a relaxation of STP in the
context of a branch, relax, and cut algorithm. The feasible region of the MSTP
is

F={xe RE | x satisfies (4.69), (4.70), (4.72)}.

The MSTP can be solved in O(|]E|log |V|) time using Prim’s algorithm [55].
The polyhedron Po is described by the constraints (4.71), (4.73), and (4.74).
Constraints (4.71) can be represented explicitly, but we must dynamically
generate constraints (4.73) and (4.74). In order to identify an inequality of
the form (4.73) or (4.74) violated by a given s € F’, we remove the ar-
tificial vertex 0 and find the connected components on the resulting sub-
graph. Any component of size greater than 1 that does not contain » and
does contain a terminal, defines a violated SEC (4.73). In addition, if the
component does not contain any terminals, then each vertex in the com-
ponent that was not connected to the artificial vertex defines a violated
SEC (4.74).

Figure 4.22 gives an example of a vector (a) that might have arisen dur-
ing execution of either the price and cut or decompose-and-cut algorithms,
along with a decomposition into a convex combination of two MSTs (b,c).
In this figure, the artificial vertex is black, the terminals are gray and » = 3.
By removing the artificial vertex, we easily find a violated SEC in the
second spanning tree (c) with S equal to the marked component. This in-
equality is also violated by the optimal fractional solution, since £(E(S)) +
XESN\T | {0})) = 35 > 3 = |S] — 1. It should also be noted that the
first spanning tree (b), in this case, is in fact feasible for the original
problem.

() # ®) 3=1 © A=3

FIGURE 4.22
Example of a decomposition into minimum spanning trees.
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4.9 Conclusions and Future Work

In this chapter, we presented a framework for integrating dynamic cut genera-
tion (outer methods) and traditional decomposition methods (inner methods)
to yield new integrated methods that may produce bounds that are improved
over those yielded by either technique alone. We showed the relationships
between the various methods and how they can be viewed in terms of polyhe-
dral intersection. We have also introduced the concept of structured separa-
tionand arelated paradigm for the generation of improving inequalities based
on decomposition and the separation of solutions to a relaxation. The next
step in this research is to complete a computational study using the software
framework introduced in Section 4.7 that will allow practitioners to make
intelligent choices between the many possible variants we have discussed.
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5.1 Introduction

The temporary closure of airports usually results in significant perturbations
of flight schedules. For example, typhoons or periods of heavy rain hap-
pen from time to time in Taiwan each year. The airports usually have to be
temporarily closed, and many flights are then canceled or delayed. The poor
scheduling of flights, or an entire fleet, may result in a substantial loss of profit
and decreased levels of service for airline carriers. Thus, effective and efficient
flight/fleet incident management is important for carriers in order to regain
their normal services as soon as possible following a schedule perturbation.
The current process for handling the schedule perturbations from a tempo-
rary closure of airports for the carriers in Taiwan is inefficient and ineffective
from a system perspective, especially for large flight networks. The typical
process is as follows. When an airport is closed temporarily, a scheduling
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group in the System Operations Control department (SOC) starts by choos-
ing a suitable strategy, the expected time for the airport to open, the regular
planned schedule, projected (with booked) demand on all flights and the allo-
cation of the currently available airplanes. The detailed flight/fleet schedule
is then adjusted by a trial-and-error process until a feasible solution is found.
For example, if a flight cannot be served because the airport is closed, then
it may be delayed until the airport is reopened, or it may be canceled if it
is delayed too long. For another example, if a flight cannot be served by its
scheduled aircraft (probably due to the closure of an upstream airport), then
the flight may be suitably delayed so that a holding aircraft (or an incom-
ing aircraft) can be rescheduled to serve this flight; however, if there is no
holding aircraft (or no incoming aircraft), then the flight may be canceled, or
served by an aircraft obtained from another station using a ferry flight. Such
a process generally involves a series of local adjustments (usually by hand)
of the aircraft routes and related flights. When the network size grows, this
process becomes inefficient for finding the optimal solution. Typically, only
a feasible solution is obtained under the real time constraint. The drafted
schedule is then shuttled to other groups in the SOC for the application of
other constraints (for example crew constraints or maintenance constraints).
The schedule will be executed if proves feasible; otherwise, it will be returned
to the scheduling group for schedule revisions. The process is repeated until
all groups are satisfied with the revised schedule.

Due to deregulation, the flight networks for carriers in Taiwan have recently
grown. In particular, to enhance operations, carriers have been purchasing dif-
ferent types of aircraft suitable for different flight mileages to form multi-fleet
operations, in order to improve their profit. If the schedule is perturbed fol-
lowing accidents, in a multi-fleet operation airplanes of different types can
support each other through new routing with a temporary flight schedule.
For example; a) some idle larger-sized aircraft can serve flights scheduled
for smaller-sized aircraft, b) some idle smaller-sized aircraft can serve flights
scheduled for larger-sized aircraft, if passengers not able to board the smaller-
sized aircraft are allowed to cancel, or can be reaccommodated on suitable
flights or alternate modes to the same destinations. For another example,
some flights could be delayed so that other-sized aircraft can be resched-
uled to serve these flights if this is profitable from the system aspect. Since a
single-fleet scheduling model may not be adequate to evaluate such sched-
ule perturbations, it would be helpful for carriers to have multi-fleet models
to handle schedule perturbations both efficiently and effectively and thus to
reduce losses resulting from airport closures.

As a result of growing size of fleet, it is increasingly difficult for the tradi-
tional approach to adequately handle schedule incidents. It would be helpful
for carriers to have systematic computerized models to handle schedule per-
turbations efficiently and effectively, so as to reduce losses resulting from
airport closures. The past studies on airline schedule perturbations can typi-
cally be classified into two topics: one, the shortage of aircraft and the other,
the closure of airports (Yan and Lin [22]).
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For schedule perturbations on aircraft shortages, relatively more research
has been done. In particular, Deckwitz [5] introduced “positioning flights”
and “sliding flights”. The former denotes a relocation of some reserved air-
planes to serve certain flights. The latter indicates the delay of a flight’s depar-
ture time within a slot time to better adjust that flight’s connections. Jedlin-
sky [11] applied a minimum cost network flow problem to solve schedule
perturbation using the out-of-kilter algorithm. Etschmaier and Rothstein [6]
built a simulation model for evaluating flight punctuality. Teodorovic and
Guberinic [17] developed a nonlinear integer model by setting the objective
to be a minimization of the total passenger delay. Gershkoff [9] used a time-
space framework to formulate fleet routing and applied a successive shortest
path method to find arc chains for the cancellation of a series of flights because
of a shortage of aircraft. Teodorovic and Stojkovic [18] developed a greedy
heuristic for solving a goal programming problem. Given some perturbations
in the flight schedule, the heuristic finds the new set of aircraft routings that
first minimizes the number of cancellations, and then minimizes the overall
passenger delays. Jarrah et al. [10] proposed two minimum cost network flow
models to systematically adjust aircraft routing and flight scheduling in real
time, to minimize the total cost incurred from a shortage of aircraft. The “delay
model” applied flight delays and aircraft swaps at a station, and the “cancel-
lation model” applied flight cancellations and aircraft swaps among stations
to handle aircraft routing and flight scheduling. Yan and Yang [24] have in-
corporated flight cancellations, delays and ferry flights into four time-space
network models in order to resolve schedule recovery problems arising from a
temporary shortage of aircraft, for single-fleet and nonstop flight operations.
Yan and Tu [23] have extended Yan and Yang’'s models to multiple-fleet and
multiple-stop flight operations. Thengvall et al. [19] have extended the work
of Yan et al. [22-24] to the building of recovery schedules by the inclusion
of an incentive in the formulation that will minimize any deviation from the
original aircraft routings.

For schedule perturbations on airport closures, Jedlinsky [11] has intro-
duced a network using the local modification of links to handle schedule per-
turbations resulting from the closure of an airport. The modified network was
formulated as a minimum cost network flow problem which was solved using
the out-of-kilter algorithm. Teodorovic [15] has developed a model for design-
ing the most meteorologically reliable airline schedule, which however, was
not focused on schedule perturbations to execute a planned airline schedule.
Yan and Lin [22] have used time-space networks to develop eight scheduling
models for single-fleet and multiple-stop operations dealing with the tempo-
rary closure of airports. Thengvall et al. [20] have incorporated flight cancel-
lations, delays, ferry flights and substitutions between fleets and sub-fleets, to
formulate three multi-commodity network models for the large carriers that
have to deal with a hub closure. Compared to the aircraft shortage literature,
not much research has been done on schedule perturbations resulting from
the temporary closure of airports. Moreover, most of the former research on
airline schedule perturbations was focused on the operations of a single fleet.
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To improve the traditional scheduling process, this research modifies the pro-
cess by solving the scheduling problem using several strategic models which
combine the traditional scheduling rules in a systematic scheme.

This research aims to develop a set of models to help carriers handle sched-
ule perturbations resulting from the temporary closure of airports. A basic
model is first constructed as a multiple time-space network, from which sev-
eral perturbed network models are developed for rescheduling following
incidents. The scope of this research is confined to the operations of a mul-
tiple fleet as well as one-stop and nonstop flights. The operations involved
in other types of multi-stop flights and the schedule perturbation caused by
other types of incidents are left to be addressed in the future. In addition, this
research focuses on a case where an airport is temporarily closed. Although
the model developed in this research needs to be modified to handle cases
where more than one airport is closed at the same time, we believe modifica-
tion to be easy, a subject also left for future research.

Although there is a significant interdependence between the airline sched-
ule design process and aircraft maintenance, as well as the crew scheduling
processes, these processes are usually separated in order to facilitate prob-
lem solving (Teodorovic, [16]). This research thus excludes the constraints of
aircraft maintenance and crew scheduling in the modeling. In practice, the
fleet routes and flight schedules obtained from these models can serve as a
good initial solution for the minor modification of these constraints. How-
ever, actually incorporating these constraints into a complicated framework
would be a topic for future research.

The rest of this chapter is organized as follows: first, we formulate our mod-
els, including a basic model and several strategic models. These models are
formulated as integer programs and their solutions are developed hereafter.
A case study is then performed to test the models in the real world. Finally,
we offer conclusions.

5.2 The Basic Model

In practice, most carriers’ primary objective for adjusting schedule perturba-
tion following incidents is to resume their normal services as soon as possible
in order to maintain their levels of service. Given the time length of a schedule
perturbation, carriers typically aim to adjust a schedule to minimize the loss
of system profit. Thus, the basic model is designed to minimize the schedule-
perturbed period after an incident and to obtain the most profitable schedule
given the schedule-perturbed period.

The basic model contains several fleet networks, each formulating a single
fleet operation in the schedule-perturbed period. This research suggests using
a time-space network, as shown in Figure 5.1, to formulate a single fleet
operation in the basic mode, because it is natural to represent conveyance
routings in the dimensions of time and space (see, for example, Yan et al. [21]).
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FIGURE 5.1

The single-fleet basic model.

To develop strategic models based on the basic model, only a few nodes,
links, or additional side constraints need to be modified, without changing
the original network structure. In Figure 5.1, the horizontal axis represents
airport locations, while the vertical axis represents the time duration. Each
node represents a specific airport at a specific time. Each arc represents an
activity for an airplane. There are four types of arcs described below:

Flight arc: representing a nonstop flight or a one-stop flight. The time win-
dow for a nonstop flight is calculated as a block of time, from the time when
an airplane begins to prepare for this flight to the time when the airplane fin-
ishes the flight and is ready for the next flight service or holding. If the flight
is a multiple-stop flight, then the time block is from the beginning of the first
leg to the end of the last leg. The time block includes the time for investi-
gating aircraft before departure, fueling, passenger/baggage boarding and
deplaning, and flight time in the air. The arc cost equals the flight cost minus
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passenger revenues. The arc flow upper bound is one, meaning that at most
one airplane can serve this flight. The arc flow lower bound is zero, indicating
that this flight can be canceled. Additional charges for canceling flights can be
incurred; for example, to reaccommodate the passengers of canceled flights
on suitable flights or alternate modes to the same destinations. To reflect such
charges, we set the cost function fora flight fromi to j as Ccy; + Cdj; * Xjj, where
X is the flow on arc (i, j) in the n'" fleet network, which is equal to zero or one,
ch is the cancellation cost and Cdjj equals the flight arc cost minus the can-
cellation cost, C 7 Ccl i Therefore, if the flight (i, j) is served (that is, X} = 1),
then the cost is Cjj; otherwise (that is, Xj; = 0), the cost is Ccj;. Note tflat for
flight arcs connected to the closed airport within the unavailable period, their
upper bounds are set as zero, meaning that these flights are canceled unless
other strategies are applied to modify the flights to be served.

Ground arc: representing the holding of airplanes at an airport in a time
window. The time window lies between two adjacent flight event times
(landing/taking-off) at an airport. The arc cost represents the expenses in-
curred by holding an airplane at the airport in the time window, including
the airport tax, airport holding charges and gate use charges. The arc flow
upper bound is equal to the apron capacity, representing the greatest number
of airplanes that can be held at this airport during this time window. The arc
flow lower bound is zero, meaning that a minimum of zero airplanes are held
at this airport in this time window.

Overnight arc: representing the holding of airplanes overnight at an airport.
The time window is set for the overnight duration between two consecutive
days. The arc cost is the cost for an airplane held overnight, which is similar to
that of a ground arc with an additional overnight charge. The arc flow upper
bound and lower bound are set to be the same as those of the ground arcs.

Position arc: representing a ferry flight between two airports. This is similar
to a flight arc; except that the arc cost excludes passenger revenue, and the
block time excludes passenger boarding/deplaning time and package han-
dling time, and the arc flow upper bound is equal to the airport departure
capacity.

The network contains a perturbed period from a starting time to an ending
time. The recovery time indicates the time that the closed airport is opened.
The starting time is when an airport is closed. At the starting time all airplanes
located at airports or in the air, are set as initial or intermediate node supplies.
The ending time is when the fleet resumes its normal operations. The ending
time is determined as follows. In order to ensure a feasible solution in the
designed network and to minimize the perturbed period, position arcs are
added from the nodes when the closed airport is opened. Through these
position arcs, the airplanes can be at least relocated to suitable airports by
ferry flights. Thus the fleet can resume its regular service. In order to ensure
that all airplanes are relocated in time to the destination of such ferry flights,
we set the ending time to be the latter of the following two times: the last
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arrival time of all the position arcs and the last arrival time of flights which
depart earlier than the times their corresponding ferry flights arrive. Final or
intermediate node demands are set according to the normal fleet allocation
at airports, or in the air, at the ending time. Note that if more than one airport
is closed at the same time, the ending time can be set using the same method,
except it is the last one calculated among them all. This research however,
assumes only one closed airport at a time for simplification. It should also
be noted that the airport authority might possibly update estimates of an
airport’s opening time. For this reason, the models should be dynamically
applied. In particular, a new network should be updated in such a case, a
new starting time and a new ending time. After solving the new network, the
schedule should be revised again.

To formulate the basic model involving multi-fleet operations, we use a
multiple time-space network (as shown in Figure 5.2) assuming there are
three fleets in the operation. Each fleet network in Figure 5.2 is designed the
same as that in Figure 5.1. Note that the ending time of the system is the last
ending time calculated in each fleet network.

The integer program formulating the basic model is shown below:

MinZ= Y| Y Cixp+ > Cix'+ ) C! (5.1)

neM \i,je A"\F" i, jeFn i,jeF"
st. Y X' — X!=b', VieNVneM (5.2)
jeOn(i) kel™(i)
0< X7 < u;z Vi, j)e A, VYneM (5.3)
XZ. el, V(i,j)eA VneM (5.4)
where:
n: the n' fleet
M: the set of all fleets
N": the set of all nodes in the n' fleet network
A the set of all arcs in the n" fleet network
F": the set of all flight arcs in the n fleet network
oO"@) : the set of head nodes for arcs emanating from node i in the
n'" fleet network
I"G): the set of tail nodes for arcs pointing into node i in the
n'" fleet network
bl the node supply/demand of node i in the n fleet network

Cl, X7, U« arc (i, j) cost, flow and flow upper bound, respectively in the
n' fleet network
Clh - the cancellation cost for flight (i, j) in the n' fleet network
e equal to C}' — Cl}

The objective of this model is to “flow” all node supplies to all node de-
mands in each network at a minimum cost. Since passenger revenues are
formulated as negative costs, the objective is equivalent to a maximization of
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FIGURE 5.2

The multi-fleet basic model.

the total system profit. Constraint (5.1) is the flow conservation constraint, at
every node, in each fleet network. Constraint (5.2) ensures that all arc flows
are within their upper and lower bounds in each fleet network, and constraint
(5.3) ensures that all arc flows are integers in each fleet network. Note that the
basic model can be used to evaluate the cancellation of flights. Whenn =1,
the integer program formulates a single-fleet scheduling model. As n > 2,
the integer program describes a multi-fleet scheduling model. Since any fleet
network is independent of the other fleet networks, the basic model can be
characterized as a single-fleet scheduling model.
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5.3 The Strategic Models

To make the basic model more useful, four practical scheduling rules are in-
corporated to develop strategic models, in particular, (a) the swap of aircraft
types (b) flight delays, (c) the modification of one-stop flights, and (d) the
ferrying of idle aircraft. Note that the first rule can only be applied to multi-
fleet scheduling. Although the last three rules are designed for single-fleet
scheduling, with the combination of the first rule, the last three rules can also
be applied to multi-fleet scheduling. Carriers may create different models
based on the basic model and the selected scheduling rules, and then choose
the best one for application. Modifications for these on the network are de-
scribed below.

5.3.1 Rule (a) The Swap of Aircraft Types

An example of the modifications for this rule is shown in Figure 5.3; assume
that there are three types of aircraft in operation where the capacity of type
A is the smallest and that of type C is the largest. Since larger aircraft can
serve smaller-type flights, smaller-type flight arcs can be added into larger-
type fleet networks. For example, as shown in Figure 5.3, type A flight arcs
(e.g.,“al”,”“a2”, and “a3”) can be added into the type B and type C networks.
Type B flight arcs (e.g., “b1”, “b2”, and “b3”) can be added into the type C
network. Some of the type B flight arcs (e.g., “b1”) may be added into the
type A network. If passengers not able to get on the type A aircraft (because
of fewer seats), they can be reaccommodated on other suitable flights or
alternate modes to the same destinations. Similarly, some type C flight arcs
(e.g., “cl” and “c2”) may be added into the type A or type B network. Note
that, similar to flight cancellations of Yan and Lin [22], additional charges
may be incurred for reaccommodating passengers who are unable to get on
the smaller-sized aircraft, on suitable flights or alternate modes to the same
destinations. Also note that, when using another type of aircraft to serve a
flight, this type of aircraft should be feasible in terms of the flight mileage and
the associated airport facilities.

It should be mentioned that, if flight swaps happen when using another
type of aircraft to serve flights, then swap costs (for example, the additional
costs of switching gates or switching crew members) should be included
when modeling. After all, the smaller-type flight arc cost in the larger-type
fleet network (e.g., “al” in the type C fleet network) equals the larger-type
of aircraft’s flight expenses, plus the swap cost, minus the on-board passen-
ger revenue. Similarly, the larger-type flight arc cost in the smaller-type fleet
network (e.g., “b1” in the type A fleet network) equals the smaller-type of
aircraft’s flight expenses, plus the swap cost, minus the on-board passenger
revenue, plus the additional charges acquired for passengers not getting on
the smaller-type aircraft.
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FIGURE 5.3

Network modifications for the swap of aircraft types.

5.3.2  Rule (b) Flight Delays

For the evaluation of flight delays, several alternate flight arcs (also called
sliding arcs in Deckwitz [5]) are added, as shown in Figure 5.4, with respect
to a flight arc, to formulate a choice of delays. Parameters for these sliding
arcs are set similar to those of flight arcs with additional delay costs and lost
passenger revenues. For example, as shown in Figure 5.4, “r” denotes the set
of the r*" flight arc and its alternate flight arcs (two dashed arcs). If one dashed
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FIGURE 5.4
Network modifications for flight delays.

arc contains a flow at the optimal solution, it means that the departure time
of the flight should be slid to a later time. As at most one departure time is
assigned for a flight, a side constraint should be introduced for a flight arc
and its sliding arcs. Assuming that X is the flow in the flight arc (i, j) in
the n'"" fleet network and that D is the r'" set of bundle arcs including the
pth flight arc and its sliding arcs in the nt" fleet network, then all of the side
constraints for the fleet are X, %; jcp, X}} <1, Vr. Note that basically users can
set full sliding arcs within the slot time for every flight. However, based on
both needs and experience, for example, considering the level of service and
the constraints on slot times or solution efficiency, a number (representing the
maximum allowable delay) may be chosen for setting sliding arcs for each
flight or partial flights. Certainly, the more sliding arcs that are added, the
better the results that are expected, while the larger the problem size grows.
A tradeoff between system profit and model computation time may be made
in practice.
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5.3.3 Rule (c) Modification of Multi-Stop Flights

Some uneconomic segments in a multi-stop flight may be suitably canceled
to improve system profits when the aircraft are not enough for service, due to
a schedule perturbation. To evaluate the cancellation of one-stop flight seg-
ments, this research suggests an extension of the modeling technique by Simp-
son [14]. As shown in Figure 5.5, X}, X, and Xj stand for a nonstop flight
fromi to j, from j tok, or fromi tok respectlvely in the n' fleet network. X
stands for a one-stop flight from i to j to k in the n fleet network. In the tech-
nique proposed by Simpson [14], X}, is an addition. As introduced by Simpson
[14], two nonstop segments (X} and X] ) are bridged by a one-stop arc (X
A dummy node (a or b) is placed on flight (i, j) and flight (j, k). This con—
struction allows either (i, j) or (j, k) segments to be operated independently
as nonstop flights. Any previous arrivals at j cannot use the attractive “one-
stop” arc joining the two flights. There are two cost arcs created for use if the
flights operate independently. If the flights are connected, the X' flow directly
transfers to the Xj; flow and receives an additional benefit of R}, for doing so.
This model, however, does not consider the passenger demand from i to k.

To evaluate the decomposition of a one-stop flight into complete nonstop
flights, this research introduces another nonstop segment, X}, and a side
constraint. Firstly, since the flight segment from i to k can be chosen at most
once, thatis, the sum of X} and X, canbe at most one, an additional constraint,
(X + k) < 1, should be added.

If X has flows (should be 1), then X}, should be zero, meaning that the
one- stop flight from i to j to k is not served. Similarly, if X}, has flows (should
be 1), then X} should be zero, meaning that the passenger demand fromi to k

O

C'qj= -R"ij+DC"ij
C"bk= -R"jk+DC"jk
C"ik= -R"ik+DC"ik
C"ijk= -R"ik+C"aj

R'": revenue
DC": operation cost
U": arc flow upper bound

ONE STOP
ARC

FIGURE 5.5
Network modifications for a one-stop flight arc.
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has been served by the one-stop flight i to j to k, and there is no need for
providing the nonstop flight from i to k. Note that the arc cost of X} is the
flight cost minus the passenger revenue obtained on the nonstop flight from
i to k; all other arc costs are the same as those mentioned in Simpson [14].
Similar to rule (b), users can evaluate all or part of the one-stop flights for their
needs in practice. To reduce the model’s complexity, this research focuses on
the scheduling of nonstop and one-stop flights. Modifications for two-stop
or more-stop flights can be considered in future research.

5.3.4 Rule (d) Ferrying of Idle Aircraft

This rule uses ferry flights to relocate idle airplanes of the same type to where
and when the system needs them for the best routing. As shown in Figure 5.6,
position arcs with ferry flight costs are systematically added. For example, if
there is a flow in the arc (b, s), it means that an aircraft should be relocated,
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FIGURE 5.6
Network modifications for the ferrying of idle aircraft.
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via a ferry flight from city 1 to city 2, when the perturbation begins. Note that
ferry arcs should not be connected to the airport when it is closed. As in rules
(b) and (c), users can add full position arcs into the network, or, they may
add position arcs whenever and wherever they feel it to be suitable for the
possible relocation of airplanes. The model will then determine the optimal
solution. Obviously, the more position arcs that are added, the better the
effects of the ferry flights expected, while the larger the network size grows.
A tradeoff between system profit and model computation time may be made
in practice. No additional side constraints, but additional arcs are generated
in this modification.

Although modifications of the basic model for rules (b), (c), and (d) in each
fleet network are referred to in Yan and Lin [22], if rule (a) is applied together
withrule (b), then, because at most one departure timeis assigned for a flight, a
side constraint should be introduced for a flight arc and its alternate flight arcs
among all associated fleet networks to ensure that at most one flight is served.
Similarly, if rule (a) is applied together with rule (c), then the additional side
constraint mentioned in Yan and Lin [22] should be extended across all the
associated fleet networks. Besides, to ensure that each nonstop flight (which
is modified from a one-stop flight) is served at most once, a side constraint
should be introduced for each nonstop flight across all the associated fleet
networks.

5.4 Solution Methods

The aforementioned models are formulated as pure network flow problems,
network flow problems with side constraints, or multiple commodity network
flow problems. As in the basic model, a strategic model, not including rule
(a), can be characterized as a single-fleet scheduling model, because any fleet
network is independent of the other fleet networks. Thus, the basic model, in-
corporating rules (b), (c), or (d), can be formulated as pure network flow
problems or network flow problems with side constraints. Moreover, the basic
model incorporated rule (a) and any of rules (b), (c), and (d) can be formulated
as multi-commodity network flow problems. These models are designed to
have optimal solutions, so that in actual applications they do not generate
infeasible or unbounded solutions (Yan and Lin [22]). Numerous methods are
capable of solving the pure network flow problem, including the out-of-kilter
algorithm, the network simplex method, the cost scaling algorithm and the
right-hand-side scaling algorithm (Ahuja et al. [1]). This research suggests
using the network simplex method to solve pure network flow problems
due to its demonstrated efficiency, see Ahuja et al. [1] or Kennington and
Helgason [12].

Since the network flow problems with side constraints and the multiple
commodity network flow problems are characterized as NP-hard, (see Garey
and Johnson [8]), traditional exact integer solution techniques are applicable,
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for example, the branch-and-bound or the cutting planes. This research, how-
ever, suggests using a Lagrangian relaxation with subgradient methods (LRS)
for an approximation of the near-optimal solutions in order to avoid a long
computation time for solving realistically large problems.

LRS is known for its fast convergence and efficient allocation of memory
space (Fisher [7]). The LRS process is addressed as follows: By dualizing
the side constraints or the bundle constraints with a Lagrangian multiplier,
we produce a Lagrangian problem that is easy to solve and whose optimal
objective is a lower bound (for minimization problems) on the optimal value
of the original problem. We then use a Lagrangian heuristic to find a feasible
solution whose objective is an upper bound (for minimization problems) on
the optimal value of the original problem. To reduce the gap between the
upper bound and the lower bound, we modify the Lagrangian multiplier
using a subgradient method, then solve for another lower and upper bound.
Better bounds are updated. The process is repeated until the gap is converged
to within 0.1% of error.

Since the proposed network flow problem with side constraints is a special
case of the proposed multiple commodity network flow problem, we intro-
duce the LRS on the basis of the latter problem. The detailed application of
the LRS in this research is summarized below in three parts.

(5.1) A lower bound for each iteration

The side constraints are relaxed by a nonnegative Lagrangian multiplier and
are added to the objective function, resulting in a Lagrangian program which
contains several independent pure network flow problems. Each pure net-
work flow problem can be solved using the network simplex method and the
sum of the optimal objective values can be proven to be the lower bound of
the original problem (Fisher [7]).

(5.2) An upper bound for each iteration

A Lagrangian heuristic is developed to find a feasible solution (an upper
bound of the optimal solution), from the lower bound solution (typically an
infeasible solution), for each iteration. If a certain side constraint is violated,
there should be at least two flight arcs in this set of side arcs with positive flow,
which is equal to one. We choose the arc from among them with the largest arc
cost (after being modified by LR), to reduce its flow from one to zero. In order
to maintain the flow conservation on the arc’s tail and head, we find the least
cost flow augmenting path from this arc’s tail to the arc’s head in the associated
fleet network by a modified label correcting algorithm (Powell [13]), and
augment a unit of flow through the path; thus, we reduce it by one unit of
bundle flow, surely increasing the objective value. Any arc flow involved
with side constraints cannot be increased during the flow augmentation to
prevent the violation of other side constraints. If the side constraint is not yet
satisfied, we choose another arc with the next highest cost from this set to
reduce by another unit of bundle flow until this side constraint is satisfied.
If all the side constraints are scanned and modified to become feasible, then
we have found a feasible flow. Otherwise, we discard the upper bound from
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this iteration. Such a situation, however, was not found in the case study
presented in Section 5.5. Note that since the networks are designed to have
feasible solutions, we can find an initial upper bound (corresponding to the
initial feasible solution) at the beginning of the algorithm.

(5.3) Solution process:

The solution steps are listed below:

Step 0: Set the initial Lagrangian multipliers.

Step 1: Solve the Lagrangian problem optimally using the network simplex
method to get a lower bound. Update the lower bound.

Step 2: Apply the Lagrangian heuristic to find an upper bound and update
the upper bound.

Step 3: If the gap between the lower bound and the upper bound is within a
0.1% error, stop the algorithm.

Step 4: Adjust the Lagrangian multipliers using the subgradient method
(Camerini et al. [2]).

Step 5: Setk =k + 1. Go to Step 1.

Because the solutions mentioned above are fleet flows and are incapable of
expressing the route of each airplane, we suggest using a flow decomposition
method (Yan and Lin [22]) to decompose the link flows in each fleet network
into arc chains, with each arc chain representing an airplane’s route with the
associated aircraft type in the perturbed period. If some airplanes’ routes are
different from their original ones, flight swaps of the same aircraft type should
be done for these aircraft. Note that according to a major Taiwan airline car-
rier, the swap cost for aircraft of the same type in its operations is small and
can be omitted. Thus a suitable aircraft swap does not cause deterioration in
the system performance. Also note that the arc chains may not be unique.
When applying the models, the SOC scheduling group may solve several arc
chain patterns, then send them to other groups for the application of aircraft
maintenance and crew scheduling constraints. Hence, there will be more op-
tions for the SOC to choose the best routing and a satisfactory solution for
all groups could be relatively easy to find. Even if all the patterns are infeasi-
ble, then instead of revising only one schedule, as is done currently, several
alternate patterns with the same best profit would provide more flexibility
for schedule revisions. Thus, both the scheduling process and the quality of
a schedule could be improved. However, more practical arc chains can be
studied in the future in order to meet the regulations for aircraft maintenance
or crew scheduling.

5.5 Case Study

To test how well the models may be applied in real world, we demonstrate
a case study based on data from a major Taiwan airline’s international op-
erations (China Airlines [3]). There are 24 cities involved in its operations.
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The flight timetable, used for testing, is rotated once a week and includes
273 flights. About 20 percent of them are one-stop flights; the others are non-
stop flights. There are several types of aircraft involved in its operations,
including B737’s, AB3’s, AB6’s, MD11’s, B74L’s, B744’s and B747’s. For sim-
plicity, we had three types of aircraft in this case study; type A indicates B737’s
(3 airplanes) with 120 seats, type B includes AB3’s, AB6’s, MD11’s, and B74L’s
(17 airplanes) with an average of 269 seats, and type C includes B744’s and
B747’s (6 airplanes) with an average of 403 seats.

For ease of testing, as calculated in Yan and Lin [22], all the cost parameters
were set according to the airline’s reports and the Taiwan government regu-
lations, with reasonable simplifications, refer to China Airlines [3] and Civil
Aeronautics Administration [4]. Note that according to the airline the swap
cost for different aircraft types in its operations is very small compared to the
flight cost. For simplicity, the swap cost between different fleets is assumed
to be zero. Besides, since the airline has contracts with other airlines for trans-
porting passengers under irregular operations, without additional charges,
for simplicity, we assume that the additional charges, for reaccommodating
passengers not getting on the smaller-sized aircraft for suitable flights to the
same destinations, are zero. Note that the cost typically affects the test results.
Because the case study is only for demonstration purposes at the current
stage, the evaluation of the application of the models to actual operations is
left to future work.

For the simplification of strategy (b), we only add two alternate flight arcs
after each flight arc, each alternate flight denoting a delay of 30 minutes (in
other words, we do not allow a delay of more than one hour in this test). For
strategy (d), we add position arcs between every OD pair every 6 hours from
the starting time to the recovery time. We assume that an airport (Taipei)
is closed at 3:00 AM on Wednesday and will be reopened 8 hours later.
Consequently, the starting time is 3:00 AM on Wednesday; the recovery time
is 11:00 AM on Wednesday and the ending time by definition is 6:20 AM on
Friday.

Eighteen scenarios were done in this test. Scenario 1 (indicated as “Normal”)
denotes a normal operation. Referred to Gershkoff [9], Scenario 2 (“SSP”)
applies the successive shortest paths to randomly finding a series of aircraft
routes from the starting time to the ending time. The number of canceled
flights can thus be calculated after fleet assignment. To assure that the fleet
can resume its normal operations after the ending time, ferry flights could be
used in the assignment. Scenario 3 through Scenario 18 are associated with our
strategic models. For example, Scenario “B” indicates the basic model (flight
cancellations); “Ba” denotes the combined model for flight cancellations and
the swap of aircraft types; “Bb” denotes the combined model for flight cancel-
lations and flight delays; “Bc” denotes the combined model for flight cancel-
lations and the modification of multi-stop flights; “Bd” denotes the combined
model for flight cancellations and the ferrying of idle aircraft; and “Babcd” de-
notes the combined model for flight cancellations, the swap of aircraft types,
flight delays, the modification of multi-stop flights, and the ferrying of idle
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aircraft. Models “B” and “Bd” are pure network flow problems and the other
models are network flow problems with side constraints or multi-commodity
network flow problems. We used the network simplex method to solve the
pure network flow problems and applied the Lagrangian relaxation-based
algorithm to solve the network flow problems with side constraints or multi-
commodity network flow problems. The convergence gap was set as 0.1% of
the error. The same flow decomposition method (Yan and Lin [22]) was used
to decompose the link flows into arc chains in each fleet network, with each
arc chain representing an airplane’s route in the perturbed period.

We note that the SSP method is easy to implement using our networks. In
particular, the label correcting algorithm (Ahuja et al. [1]) is applicable for
solving the fleet assignment. The SSP method used here is for the preliminary
evaluation of our models. Several C programs were developed for; (1) the
analysis of raw data, (2) the building of the basic model, (3) the development
and solution of the strategic models, and (4) the output of data. The case
study was implemented on an HP735 workstation. Sixteen strategic models
were tested with problem sizes of up to 7,515 nodes and 29,355 arcs. All of
the results show that the models could be useful for actual operations. The
results are summarized in Table 5.1 and specifically analyzed as follows.

(1) The algorithms performed very well, indicating they could be useful
in practice. In particular, models “B” and “Bd” were optimally solved in two
seconds of CPU time. The other models converged within 0.1% of the error in
at most 250 seconds of CPU time. Note that the CPU times for network gen-
eration and data output in each scenario are relatively short compared with
model solutions and can be neglected. This shows that the network simplex al-
gorithm should be efficient for solving pure network problems, like “B” and
“Bd”, and this research indicates that the proposed Lagrangian relaxation-
based algorithm could also be efficient for solving the multi-commodity
network flow problems. Compared with the efficiency of the traditional ap-
proach, the algorithms are superior.

(2) From column (10) in Table 5.1, we find that the multi-fleet scheduling
models yield a higher profit than the single-fleet scheduling models. In par-
ticular, all eight strategic models containing strategy “a” suggest that a fleet
can temporarily serve other types of flights in scheduling, so as to improve
the system profit. For example, three type C flights in Model “Ba” are served
by the type B fleet. The result for Model “Ba” (—72,896,930) is better than
that for the basic model “B” (—72,691,067) which is a single-fleet scheduling
model, an improvement of NT$ 205,863 (about 0.28%). For another example,
six type B flights and three type C flights in Model “Babcd” are served by the
type A fleet, and the type B fleet respectively. The result for Model “Babcd”
(—81,028,533) is better than that for Model “Bbcd” (—79,730,287), an improve-
ment of NT$ 1,298,246 (about 1.63%). Similarly, Models “Bab”, “Bac”, “Bad”,
“Babc”, “Babd”, and “Bacd” yield higher profits than “Bb”, “Bc”, “Bd”, “Bbc”,
“Bbd”, and “Bcd” respectively. The improvements in profit are NT$ 223,466
(0.28%), 407,149 (0.56%), 205,663 (0.28%), 1,602,025 (2.04%), 221,264 (0.28%),
and 1,111,457 (1.53%) respectively.
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(3) All of our models yield a higher profit than the SSP approach does. The
best result (—81,028,533), for Model “Babcd”, is closest to the profit achieved
in normal operations (—87,674,685). Model “Babcd” causes much less profit
loss (NT$ 6,646,152) than using the SSP approach (NT$ 39,768,241). Though
the basic model, “B”, is the worst among the strategic models, its objective
(—72,691,067) is significantly better than that of the SSP method (—47,906,444).
We note that if more rules are incorporated to develop a strategic model, then
the model will be more flexible for optimizing a temporary schedule, so that
system profits can be improved more. For example, the result for “Babed” is
better than that for “Babc”, which is better than “Bab”. The reader can see
other examples in Table 5.1. The reason that our models outperform the SSP
method could be that although the SSP method cancels a series of uneco-
nomic flights (3 type A, 25 type B, and 3 type C flights), it does not consider
the swapping of aircraft, the delaying of flights, the modification of multi-
stop flights, the ferrying of idle aircraft, or a combination of these in adjusting
the schedule. Besides, its randomness for finding shortest paths neglects the
combinatorial complexity of systematic routings, possibly resulting in an infe-
rior combination of aircraft routes. Through the effective adjustment of flight
schedules or fleet routes, fewer flights are canceled (for example, only 7 (5 type
A, 1type B, and 1 type C) flights are canceled in “Babcd”. Thus, higher profits
are achieved. We also find that the strategic models containing strategy “b”,
for example, “Bb”, “Bab”, “Bbc”, “Bbd”, “Babc”, “Babd”, “Bbcd”, or “Babcd”
yield significantly higher profits (more than 78,000,000) than other models
(less than 74,000,000). This implies that a flight delay is an important and
effective strategy in schedule adjustment.

(4) Other than the profit considerations, the degree of schedule perturba-
tion may be a criterion for carriers to evaluate levels of service for all strategic
models. Typically the more flights perturbed, the higher the chance that the
level of service is affected. Furthermore, the number of canceled flights (in-
cluding one-stop flight segments) and delayed flights in the case study may
serve as an index of schedule perturbation. Although the influence on the
level of service for flight cancellations and flight delays could be different,
carriers may evaluate them separately, or use the technique of multiple cri-
teria decision making. In this study, since a flight has at most a delay of one
hour, its influence on the level of service could be omitted when compared
to a canceled flight. Thus, in terms of the level of service, “Babcd” could be
the best (7 canceled flights and 1 canceled one-stop flight segment, includ-
ing 3 departure flights at Taipei during the closed period) and SSP the worst
(31 canceled flights), as shown in Figure 5.2. Note that strategic models con-
taining “b” canceled less flights (less than or equal to 12 flights and one-stop
flight segments) than other models (more than 15). Consequently, consider-
ing both profit and level of service, strategic models containing “b” perform
better than others. In particular, Model “Babcd” is the best of them all.

It should be noted thatif a solution obtained from a strategic model, whichis
associated with alarge degree of schedule perturbation, might notbe accepted
by carriers under real operating constraints (for example, crew availability or
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FIGURE 5.7
An example of a type A aircraft route of multi-fleet case (Scenario “Babed”).

aircraft maintenance rule), then carriers may choose another model to find a
solution with less perturbation of a flight schedule, or they may make minor
modifications of the perturbed schedule to satisfy the operating constraints.
From this, a DSS might be helpful for the application of these strategic models
in real time operations.

(5) The flow decomposition method was applied to trace the path of each
airplane. In particular, fleet flows are decomposed into several arc chains,
each representing an airplane’s route. An example of an airplane path, Taipei-
Ryukyus-Taipei-Hong Kong-Taipei-Ryukyus, in the perturbed period, (from
Wednesday 3:00 a.m. to Friday 6:20 a.m.), is shown in Figure 5.7. Note that the
two flights between Taipei and Hong Kong, which were originally served by
the type B fleet, are served by the type A aircraft. Other aircraft routes can be
similarly traced and are not reported on here.

5.6 Conclusions

Efficient and effective management to assist carriers to quickly resume their
normal services after a schedule perturbation is important in today’s competi-
tive airline markets. This research applied network flow techniques to develop
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several systematic strategic models, combining various practical scheduling
rules, to help carriers handle schedule perturbations resulting from the tem-
porary closure of airports. These models were based on a basic model for-
mulated as a time-space network from which various strategic models were
developed. These models minimize the schedule-perturbed time after inci-
dents so that carriers can resume their normal services as soon as possible in
order to maintain their levels of service. In addition, these models combine
the swapping of aircraft, flight cancellations, flight delays, the modification of
multi-stop flights, and the ferrying of idle aircraft in a combined and system-
atic framework to effectively adjust a schedule following incidents, so that a
carrier can maintain its profitability.

Mathematically, these strategic models were formulated as, pure network
flow problems, network flow problems with side constraints, or multiple com-
modity network flow problems. We used the network simplex method to solve
the pure network flow problems and developed a Lagrangian relaxation-
based solution algorithm to solve the network flow problems with side con-
straints and multiple commodity network flow problems.

A case study of a major Taiwan airline’s operations was presented to test the
models. Sixteen strategic models and the SSP approach were tested, with sub-
stantial problem sizes of up to 7515 nodes and 29355 arcs. Several C programs
were developed to apply these models on an HP735 workstation. The algo-
rithms performed very well. In particular, models “B” and “Bd” were solved
optimally in two seconds of CPU time; other models converged within 0.1%
of the error in at most 250 seconds of CPU time. We found that the multi-
fleet scheduling models yield a higher profit than the single-fleet scheduling
models. The improvements in profit for all multi-fleet strategic models were
significant, between NT$ 205,663 and 1,602,025. The improved ratios fell be-
tween 0.28 and 2.04%. This shows that a fleet can temporarily serve other
types of flights in scheduling, so as to improve the system profit. We also
found that all of our models yielded a higher profit than the SSP approach
does. All of these results show that the models could be useful for actual op-
erations. Since the case study is only for demonstration at the current stage,
the evaluation of impact on the application of the models to actual operations
is left to future work.

Although this research is motivated by Taiwan airline operations, the mod-
els developed here are not specific and could be applicable for operations in
other areas. It might be possible that more than one airport is temporarily
closed at the same time. To resolve this problem, the networks developed in
this research should be modified. In particular, the flow upper bounds of the
flight arcs connected to these closed airports during the closed period are set
to zero and the ending time of the network can be set as the last one calculated
among all the closed airports. In addition, how to combine several smaller-
type flights to form a larger-type flight is not considered in this research.
Though it may make the modeling more complicated, it could be an effective
strategy in multi-fleet operations and could be a direction for future research.
Besides, the incorporation of other routing factors (for example, different or
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multiple objectives involved in actual operations) and systematic models for
handling schedule perturbation caused by other types of incidents can be per-
formed as well in future research. A computerized decision support system
useful for users, to apply these strategic models in real time operations, could
also be another direction of future research.

Finally, we note that the techniques and ideas used in this research could
be similarly applied to more general daily airline operations control prob-
lems, for example, a temporary limitation on airport operations from the FAA
because of congestion, or other types of incidents (for example, temporary
aircraft shortage). Particularly, the time-space network could be used with
modifications on the starting time/the initial supply, the ending time/the fi-
nal demand, and the nodes/arcs according to the planned schedule and the
incident. The practical scheduling rules could also be added into the basic
network to develop various strategic models which should be formulated as
pure network flow problems, network flow problems with side constraints, or
multiple commodity network flow problems. Then, the solution techniques
used in this research, with suitable modifications, may be applicable for solv-
ing the problems. All of these could be topics for future research.
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6.1 Introduction: Problem Description

Efficient scheduling of oceanic transportation vessels presents serious chal-
lenges to concerned decision-makers due to the complexity of the operation
and the potential savings that can be attained. A vessel usually costs tens of
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millions of U.S. dollars with daily operational costs amounting to tens of thou-
sands of U.S. dollars. Chartering and spot-chartering of vessels is also very
expensive and should be avoided to the extent possible. In general, large-
scale vessel scheduling is very intricate and requires repeated revamping
to accommodate changes in demand, market conditions, and weather effects.
Manual approaches are often inefficient and expensive, and hence, it is imper-
ative to utilize quantitative methods to generate and update vessel schedules
efficiently and in a timely fashion.

The problem that is studied in this chapter is concerned with the trans-
portation of a product from a single source to a single destination. The next
chapter examines the case of multiple sources and destinations, along with
the option of leasing transshipment depots. For example, we might be in-
terested in shipping crude oil from a refinery to a storage facility that has a
known demand structure defined by different daily consumption rates. The
daily export from the source depends on the availability of the product at the
source, the availability of vessels, and the current storage level at the desti-
nation’s storage facility. Consumption rates at the destination might not be
fixed during the entire time horizon and might vary based on, for example,
seasonal considerations. The level of the product at the destination’s storage
facility is desired to lie within certain lower and upper bounds, and hence,
daily penalties are imposed based on limited shortage or excess quantities
with respect to these bounds.

Typically the organization that handles the transportation of the product
from the source to the destination owns vessels of different types, where each
type is characterized by the vessel size, speed, loading and unloading times,
etc. Moreover, there are vessels that are available for chartering during all or
part of the time horizon. Spot-chartering is also available if desired, whereby
a vessel is chartered for a particular voyage or voyages, not for a period of
time. In this case, all operating costs are undertaken by the vessel owner. (See
for example, Rana and Vickson [24].)

The organization aims to satisfy demand requirements at a minimum over-
all cost that is comprised of operational expenses, penalties resulting from
exceeding lower and upper storage levels, and chartering expenses. This re-
quires an efficient utilization of the organization’s self-owned vessels, and a
minimal reliance on chartered and spot-chartered vessels that tend to have
high associated costs. The combinatorial nature of this problem makes the
manual scheduling of vessels inefficient and costly because of unduly high
resulting chartering and penalty expenses.

In this chapter, we develop mathematical models that generatecost-effective
vessel schedules in a timely fashion. The problem described above is faced by
many oil companies such as the Kuwait Petroleum Corporation (KPC), which
is required by agreed upon contracts to meet specified demands of crude oil
that vary based on daily consumption rates at a given destination. The sin-
gle source-destination vessel scheduling operation arises in many situations,
for example, when large quantities of crude oil need to be transported from
Kuwait to a destination located in Europe, North America, or Asia. In this case,
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the destination might be a single customer or a collection of customers that
are located within close proximities of each other. Hence, the single source
and destination problem considered herein, although a special case of the
multiple source and destination problem addressed elsewhere [31], is impor-
tant in its own right and is frequently faced in practice.

6.2 Related Literature

Transportation routing and scheduling problems have been widely researched
in the literature, with a bulk of the published work dealing with vehicle
routing and scheduling problems. Vessel scheduling, in particular, has at-
tracted the least attention among all transportation modes. Ronen [26, 27]
highlighted a noticeable scarcity of published research dealing with design-
ing, planning, and managing sea-borne transportation systems, and gave a
number of impediments associated with vessel-scheduling problems such as
the complexity and the high uncertainties associated with such problems.
However, recently, there has been increasing interest in research related to
maritime transportation as evidenced, for example, by a special issue de-
voted to this area in Transportation Science (Psaraftis [23]). Also, the book by
Perakis [20] gives an overview of models for a number of problems related to
fleet operations and deployment. For a comprehensive review on ship rout-
ing and scheduling research conducted over the last decade, the reader may
refer to Christiansen et al. [8].

In order to accurately model vessel routing and scheduling problems, novel
mathematical formulations are often needed. Moreover, models for large-
scale vessel scheduling problems are rather hard to solve due to complex
constraint structures that result from the operational intricacies of such prob-
lems, and their inherent combinatorial characteristics arising from an explicit
consideration of the different components of the operation. Vessel scheduling
can therefore be an arduous and time-consuming task, and is often compli-
cated by the dynamic nature of such problems. Yet, many organizations still
largely handle their vessel scheduling problems only manually.

Typically there are three modes of operation in seaborne shipping: liner,
tramp, and industrial (see, for example, Christiansen et al. [8] and Lawrence
[17]). Liners operate based on a fixed published itinerary and schedule similar
to bus or passenger train lines. Tramp ships operate like a taxi by following
the available cargos. In industrial shipping, the cargo owner controls the
fleet of ships. Accordingly, vessel routing and scheduling problems can be
partitioned into four categories: a) liner, b) tramp, c) industrial, and d) other
related models. The first three are not sharply defined or mutually exclusive,
nor collectively exhaustive (Lawrence [17]); hence, the fourth category of
problems captures applications that cannotbe clearly classified as liner, tramp,
or industrial. It is worth mentioning that water transportation routing and
scheduling models mainly deal with the transport and delivery of cargo.
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Considerably fewer models have been developed to tackle vessel routing
and scheduling problems in the context of transporting passengers. This is
a result of the fact that most vessels move cargo around the world, while
passengers mainly travel by air or land.

The literature on modeling techniques and approaches for the liner ship-
ping is fairly limited; however, in recent years an increased activity in this area
has become evident (see, for example, Christiansen et al. [8] and Lane et al.
[16]). Powell and Perakis [22] formulated an integer programming model for a
fleet deployment problem. The objective of the model was to minimize the op-
erating costs for a fleet of liner ships involved in various routes. It was shown,
based on real liner shipping data, that substantial savings could be achieved
via using the proposed modeling approach. Note that the work of Powell and
Perakis [22] was an extension to the work of Perakis and Jaramillo [19] and
Jaramillo and Perakis [13]. In the latter two papers, a linear programming
approach was used to solve a fleet deployment problem. Cho and Perakis [6]
investigated a fleet size and design of a liner routing problem for a container
shipping company. The problem was formulated by generating a subset of
candidate routes for the different ships a priori, and was then solved as a lin-
ear program, where the columns represent the candidate routes. This model
was also extended to a mixed-integer program that additionally incorporates
investment alternatives for expanding fleet capacity. Xinlian et al. [31] formu-
lated a fleet planning model for a problem similar to that investigated by Cho
and Perakis [6]. The model aims to determine the ship types to add to the
existing fleet of ships as well as an optimal fleet deployment plan.

Datz et al. [9] developed a simple calculative method for scheduling a liner
and suggested some techniques for evaluating the financial results of such a
schedule. Nemhauser and Yu [18] studied a model for rail service that can be
used for a liner problem. Dynamic programming was used to find the optimal
frequency of services that maximizes profit over the planning horizon. De-
mand for service was a function of two variables, namely service frequency
and timing. Rana and Vickson [24] developed a deterministic mathematical
programming model for optimally routing a chartered container vessel. The
formulation involves nonlinearities, which were handled by converting the
nonlinear problem into a number of mixed-integer programs. Benders’ de-
composition was applied to the resulting mixed-integer programs, wherein
the integer network subprograms were solved by a specialized algorithm.
Later, Rana and Vickson [25] extended their work in [24] by allowing multiple
ships. They formulated a mathematical programming model for a container-
ship routing problem that determines the following: 1) an optimal sequence
of ports of call for each vessel, 2) the number of trips each vessel makes in the
planning horizon, and 3) the amount of cargo delivered between any two ports
by each ship. The problem was solved by Lagrangian relaxation by decom-
posing it into several sub-problems, one for each vessel. Each sub-problem
was further decomposed into a number of mixed-integer programs. For other
related literature on liner models, the reader may refer to Christiansen et al.
[8] and Al-Yakoob [1].
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Very little research has been conducted on the allocation, routing, and
scheduling of tramp shipping (see Appelgren [2, 3]). Appelgren [2] discussed
a ship scheduling problem obtained from a Swedish ship-owning company.
In this problem, a ship-owning company was engaged in world-wide oper-
ations involving a large number of vessels. A set of cargos were provided
for the planning period, which covered 2 to 4 months. The author designed
an algorithm that used the Dantzig-Wolf decomposition method for linear
programming, where the subprograms were modeled as network flow prob-
lems and were solved by dynamic programming. The master program in the
decomposition algorithm was modeled as a linear program having only zero-
one elements in the matrix and on the right-hand-side. This algorithm was
tested on instances involving about 40 ships and 50 cargos.

Later, Appelgren [3] utilized integer programming methods to solve a ves-
sel scheduling problem. The problem was to determine an optimal sequence
of cargos for each vessel in a given fleet during a specified time period. This
paper was an attempt to deal with some of the shortcomings associated with
the technique used by the author in [2], where a decomposition algorithm
was used, which, however, produced nonintegral solutions that could not be
interpreted as valid schedules. To avoid fractional solutions, a branch-and-
bound algorithm was developed, where the branching was performed on one
of the “essential” noninteger variables and the bounds were computed by
the decomposition algorithm. A decision support system for both tramp and
industrial shipping was described in Fagerholt [10], where a heuristic hybrid
search algorithm was employed for solving such ship scheduling problems.

Since the problem under consideration can be classified as an industrial
shipping problem, we present next some industrial scheduling literature that
is most closely related to our problem.

A vessel scheduling problem concerned with transporting crude oil from
the Middle East to Europe and North America was considered by Brown
et al. [5], who formulated a mixed-integer partitioning model and utilized
column generation techniques to solve this problem. The demand structure
was specified by a sequence of cargos that needed to be delivered during the
planning horizon. The approach adopted by Brown et al. [5] attempted to
generate a partial set of complete feasible schedules (in a column generation
framework), along with the generated schedules’ costs, and then utilized an
elastic set partitioning programming model to derive a prescribed solution.
This same problem was investigated by Perakis and Bremer [21] who also
applied a set partitioning approach to solve the problem. The work of Brown
et al. [5] was extended in Bausch et al. [4] by allowing a shipload to have up
to five products. A similar set partitioning approach to that of Brown et al. [5]
was used by Bausch et al. [4] to solve the problem.

Sherali et al. [30] presented mixed-integer programming models and spe-
cialized rolling horizon algorithms for an oil tanker routing and scheduling
problem to ship various products from one source to different destinations.
The demand structure that was investigated by Sherali et al. [30] was deter-
mined by the total demand for each product at each destination, along with
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the respective sub-demand that was required to be satisfied within agreed-
upon time intervals. It was assumed that some vessels could carry more than
one product. The modeling approach adopted in Sherali et al. [30] as well as
in this chapter differs from the modeling approach of Brown et al. [5] in that it
combines the process of constructing and selecting feasible schedules at once.

Ronen [28] proposed a mixed-integer programming model and a cost-based
heuristic procedure for a vessel transportation problem that is similar to the
one considered in this chapter. The approach adopted by Ronen [28] separates
the solution of the problem into two stages. The first stage determines the slate
of shipments to be made, and the second stage generates vessel schedules. In
contrast, the models developed here decide upon the fleet size mix as well as
the detailed vessel schedules all together. Another application within the oil
industry, which involves the transport of refined oil products from a refinery
to several depots, was investigated by Scott [29]. A Lagrangian relaxation
approach was adopted to generate a set of potentially good schedules, and
an enhanced version of Benders” decomposition was used to decide upon an
optimal schedule from within the generated set of schedules. Fagerholt and
Christiansen [11] studied a multi-product scheduling problem similar to the
one presented by Bausch et al. [4]. However, in this paper, the authors as-
sumed that each ship in the fleet is equipped with a flexible cargo hold that
can be partitioned into many holds in a specified number of ways. A set
partitioning approach was utilized by the authors for this problem and a de-
tailed algorithm for finding optimal schedules for the individual ships was
described in Fagerholt and Christiansen [12]. An inventory-routing problem
was studied by Christiansen [7], which attempts to attain a degree of balance
in the ammonia supply at all producing and/or consuming company-owned
plants around the world.

A ship scheduling problem that does not clearly fall into liner, tramp, or in-
dustrial shipping was investigated by Koenigsberg and Lam [14] who studied
queuing aspects for a small system of liquid gas tankers operating in closed
routes between a small number of terminals. For any particular system, their
model provides the expected number of ships at each stage, the expected
number waiting in each stage, and most importantly, the expected waiting
time at ports. Exponential service time distributions were used; however, a
series of parallel simulation computations were also employed to analyze the
impact of other distributions. Later, Koenigsberg and Meyers [15] extended
the work of Koenigsberg and Lam [14] by developing an analytical model of
a system having two independent fleets that share a common loading port.
Exponential distributions of service times were used in all queuing stages. The
authors used a simulation program to investigate the behavior of the system
when the service time distributions were not exponential and demonstrated a
good level of conformity between the simulation and the analytical results for
exponential distributions.

For further details on vessel routing and scheduling problems and models,
the reader may refer to Al-Yakoob [1], Christiansen [8], Perakis [20], and
Ronen [26, 27].



Determining an Optimal Fleet Mix and Schedules 143

Although many vessel scheduling problems and models have been discuss-
ed in the aforementioned literature, none of these fully address the peculiar
aspects of the problem considered in this chapter. The specific nature of the
demand structure and the consideration of different vessel types and cost
components require novel mathematical formulations and solution methods
to accurately model the problem and to derive solutions in a manner that
can be practically implemented. The remainder of this chapter is organized
as follows. The next section provides a detailed description of the problem. A
mixed-integer programming model is then developed in Section 6.4, and sub-
sequently, an aggregate reformulation of this model is derived in Section 6.5.
Solution algorithms and computational results are presented in Section 6.6,
along with a comparison with the ad-hoc scheduling procedure that is cur-
rently in use at KPC. Finally, Section 6.7 provides a summary and some con-
cluding remarks.

6.3 Modeling Preliminaries

This section introduces aspects of the problem that will be used to formulate
integer programming models in Section 6.4 and Section 6.5. In particular,
Section 6.3.1 presents notation and assumptions, and Section 6.3.2 describes
a function for computing penalties associated with exceeding certain lower
and upper allowable storage levels. For the reader’s convenience, a glossary
of notation (sequenced in order of appearance) is provided in Appendix A.

6.3.1 Problem Notation and Assumptions

Leth =1, ..., H index the days of the time horizon under consideration.
Typically, a time horizon is associated with a contract to deliver the product
from the source to the destination based on some given consumption rates
as discussed in Section 6.1. Therefore, the terms “time horizon” and “con-
tract horizon” will henceforth be used interchangeably. Note that a contract
may be signed, and then another contract may be signed prior to the end of
the first contract horizon. Suppose that there are T vessel types, indexed by
t =1, ..., T.Itis assumed that vessels of the same type have similar features
such as capacity, speed, loading and unloading times, etc. The capacity of a
vessel of type t is denoted by Q; and the total number of vessels of this type
that are available for use during all or part of the time-horizon is given by M;
(note that M; is composed of self-owned vessels in addition to vessels that are
available for chartering). For a vessel typet € {1, ..., T}, letn=1, ..., M;
index all vessels of this type, and let O; and CH; = M; — O; respectively
denote the number of self-owned vessels and the number of available vessels
of this type that can be possibly chartered. Accordingly,letn =1, ..., O;and
n=0+1,...,0+CH; = M; respectively index self-owned vessels and
vessels that are available for chartering of type t. Let us also denote O =
»L,0,and CH = XL ,CH;. Let$;, be the cost (in U.S. dollars) of chartering
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a vessel n of type t, forn = O;y+1, ..., Oy +CH; = M;, and for each t €
{1, ..., T}. Let UT} , be the maximum number of days vessel n of type t can
be used during the time horizon. This time restriction is typically needed for
maintenance purposes.

Let T; represent the time required to load a vessel of type t at the source,
plus the time this vessel takes to travel from the source to the destination,
unload time at the destination, and then travel back from the destination
to the source. We assume that there is a unique prescribed route from the
source to the destination, and likewise, from the destination to the source. Let
T; = Th,+ + Tr,+, where Tj ; is the time required to load a vessel of type t at the
source plus and then travel to the destination, and T, is the time required to
unload at the destination and then travel back to the source. Vessels of the same
type are assumed to have equal values of T; (and their splits), and this duration
isalso assumed to be independent of 1; i.e., T; is independent of the day the leg
starts (weather effects are neglected). The values of T; and its splits are derived
from the design speed of the vessels of type t. Let DC;, denote the daily
operational cost of vessel n of type t so that the total operational cost of vessel
n of type t is given by C; , = T;(DCy,,,), which covers the round-trip expenses
from the source to the destination, and is independent of the day the trip starts.

Let Q denote a production capacity or certain imposed quota of the product
at the source. At the beginning of the time horizon, the storage level at the
destination is given by w. This level may represent a single storage facility
or a collection of storage facilities at the destination; however, for the sake
of modeling, we only deal with a combined aggregate storage level. Let SL,
and SL, denote the minimum and maximum desired levels, respectively, at
the destination’s storage facility, which should be maintained to the extent
possiblein order to avoid penalties. Accordingly, let = denote the daily penalty
for each shortage or excess unit at the destination. The permitted shortage
and excess quantities at the destination with respect to the desired levels
SL; and SL, to the extent given by A; and A, respectively. Let by = SL; —
Ay and b, = SLy + Ay. Let UB > b, be a sufficiently large upper bound on the
maximum allowable storage level on any given day of the time horizon. Short-
ages levels falling below b; or in excess of b, (up to UB), while permitted, are
highly undesirable, and incur a significantly greater penalty A > 7 per unit.

Let R;denote the expected consumption rate at the destination on day j,
for j =1, ..., H. The different daily consumption rates arise from possible
seasonal changes during the time-horizon, as well as from client-specific con-
siderations. Thus, the total cumulative consumption at the destination over
thedays j =1, ..., his givenby TCj, = £/_ R;.

6.3.2 Penalty Functions

The daily storage levels determine the overall penalty over the time horizon,
being given by the summation of all daily penalties as described below. Let
Sn be the storage level on day /. Define Type I and Type II penalty functions
as follows:

Type I penalty: P; (S;) = # maximum {0, (SL1 — Sp), (Sn — SL2)}if S, € [b1, b2]
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and

A +Ab1 =S, ifS, € (0, by),

Type Il penalty:Pu(Sy) = {nAz FA(Sy—by) ifSy € (b, UB),

where 7 and A > 7 are as defined above. Note that if S, € [SL,, SL], then
the storage level lies within the desired bounds and no penalty is induced. If
S € [b1, SL1) U (SLy, by], then a penalty is incurred based on the respective
shortage or excess quantity. On the other hand, if S, € [0, b1) U (b, UB), then
a sufficiently large additional penalty rate is imposed continuously beyond
that of P;(.) to indicate the undesirabity of such a storage level on any given
day of the time horizon.

PROPOSITION 6.1
Let Sy = Si,n — Son — S3,1 + San + S5, (6.1)

where

SLi <S5, <SLy,0< 5, < A,0< S35 <by,
6.2)
0< 54,;, < Ay, and0 < 55,;, < UB — b,.

DefineP (Sy) : [0, UB] — [0, co)as the linear penalty function:

P(Sy) = 7w (So,n + San) + A(S3 1 + Ss,i).Then any minimization objective formu-
lation that incorporates the term P (Sy,) defined above along with (1.1) and (1.2) will
automatically enforce the sum of the type I and type Il penalties Pr(Sy) + Pr1(Sp).

PROOF Noting that 0 <7 <X we have that for any S, € [0, UB), the corre-
sponding representation of Syin terms of Sy, Sy, S3,n, San, and Ss pis deter-
mined as follows, where in each case, the remaining (unspecified) variables
from this list have zero values. If S, € [SLy, SLy], then S, = S1,. If S, €
[b1, SL), then S, = Sy, — Sy, where S, = SL1 and S5, = SLq — Sy, while if
Sn € (SLy, by],then S, = S1,+San, where Sy, = SLrand Sy = S, —SL,. Like-
wise, if Sy € [0, by), then Sy, = Sy — Son — S, where S1, = SLq, Sy = Ay,
and S35, = by — S, while if S € (b, UB), then S, = Sy, + Sy + Ss,, where
Sin = SLy, Sun = A, and S5, = Sp — by. In each case, the function P(Sy)
is readily verified to impose the required Type I plus Type II penalties as
described above, and this completes the proof. H

6.4 Model Development

In this section, we formulate a mixed-integer programming model for the
prescribed vessel scheduling problem. The variables and constraints of the
model are respectively presented in Section 6.4.1 and Section 6.4.2, and the ob-
jective function and the proposed mathematical model are respectively given
in Section 6.4.3 and Section 6.4.4.
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6.4.1 Model Variables

Define the following sets of binary decision variables. Let

1 if vessel n of type t departs the source toward the
Xty = destination on day h,

0 otherwise,

Since a vessel cannot be dispatched from the source on day /& unless it is
available on this day, another set of binary variables is defined as follows.
Let

V.. — 1 if vessel n of type t is available at the source on day #,
ot 0 otherwise.

Finally, in order to represent the chartering decisions, let

1 if vessel n of type t is selected for chartering during
Zin= (all or only part of) the time horizon,

0 otherwise.

A vessel may be chartered for the entire duration of the time horizon or
for only a specified subset of it, depending on its availability. The chartering
expense, denoted by $; , for a vessel n of type ¢ is incurred as a fixed-cost based
on the availability duration of this vessel, whenever it is chartered during a
specified interval of the time horizon, regardless of its usage during this time
interval. The reason for this is that selected chartered vessels will be under the
control of the (leased-to) company (in our case, KPC) for the specified time
interval, and the (leased-to) company is free to make any related dispatching
decisions during this interval.

REMARK 6.1

Note that subsets of these binary decisions variables are a priori known to be
effectively zero, i.e., inadmissible. The following are examples of such zero
variables. A vessel n of type t might not be available for use from the first
day of the time horizon. This occurs if this vessel is a self-owned vessel that is
involved in a trip from a previously signed demand contract that will termi-
nate sometime during the current time horizon. In other words, previous con-
tracts might have committed certain vessels over durations concurrent with
the present contract horizon. Accordingly, suitable sets of variables should
be defined to be zero for the present contract horizon problem to signify the
unavailability of such vessels. This might also happen if this vessel is a char-
tered vessel that will become available sometime after the first day of the
time-horizon. In either case, the vessel availability variable Y}, ; , is set to zero
until this vessel becomes available at the source. Also, for a chartered vessel
n of type t, the leasing conditions may specify some last operational day for
this vessel so that sufficient time is allowed for the leasing company to trans-
fer this vessel to another organization or perform a scheduled maintenance.
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In this case, the availability variable Y}, ;,is set to zero whenever h + T; is
greater than that specified day. Note that naturally whenever Y, ; , = 0, then
Xp,tn = 0 because a vessel is dispatched on a given day only if it is avail-
able on that day. Let ¢x and ¢y denote the index sets of X and Y variables,
respectively, that are restricted to be fixed at specified binary values by virtue
of such considerations.

6.4.2 Model Constraints

The various constraints of the model are formulated as described in turn
below.

(A) Representation of the destination’s storage level

The daily storage level of the product at the destination must remain within
[b1, by] to the extent possible as discussed in the previous section, and appro-
priate daily penalties are imposed based on the specific levels of the storage.
Representation of the storage level is given by the following constraints.

C) Si=w+> > > UXyuu—TC,Vhe{l, ..., H),
t

n o hyh+Tieefl, ... b}
C) Si=Sn—Sn—Sn+San+SuYhell ..., H},

where SL1 < Si; < SLy, 0 < Sy < A1,0 < S35 <b1,0 < Sy < Ay, and
0< 55,]1 < UB - bz.

Constraint (Cy) gives the storage level on day / based on the daily consump-
tion rates and the shipments of the product that are delivered on or before
day h. Constraint (Cy) represents Sy, in terms of S1 ,, Sy, S3,1, San, and S, as
described in (1.1) and (1.2) so that appropriate penalties would be incurred in
the objective function based on this representation as stated in Proposition 6.1.

(B) Availabilities of vessels
The vessel availability constraints are given as follows:

(C3) Yh,t,n = Yhfl,t,n - thl,t,n + Z Xh],t,n/ Vh > 2/ t/ n,
hy:hi1+Ti=h
(C4) Xh,t,n =< Yh,t,nr Vh/ t/ n.

A vessel n of type t can be dispatched from the source to the destination on
day / only if it is available at the source on that day. This vessel is available
at the source on day # if either the vessel was available at the source on the
previous day and it was not dispatched, or this vessel was not available there
during the previous day but it arrived on the current day. On the other hand,
this vessel is unavailable on day  at the source if it was available there on the
previous day and it was dispatched on that day (assuming that T; > 2 for all
vessel-types t), or it was unavailable on the previous day and it did not arrive
on the current day. Constraint (C3) examines the availability of vessel n of
typet at the source on day & by incorporating these cases, and then Constraint
(Cy) permits dispatching of vessels conditioned upon this availability.
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(O) Chartering of vessel

The following constraint examines if a vessel n € {O; + 1, ..., M;} of type t
is selected for chartering or not.

(C5) Yh,t,ﬂ S Zt,n/ Vh/ tr ne {Ot + 1/ ceey Mt}
Hence, a vessel n € {Oy + 1, ..., M} that is available for chartering is used
only if Z; , = 1.

(D) Capacity restrictions and maintenance requirements

A production capacity or certain imposed daily quota might restrict the maxi-
mum amount of the product that can be shipped to the destination on any day
of the time horizon. This restriction is represented by the following constraint.

Co) D> UXntu = Q Vh.
t n

Furthermore, the following constraint enforces that any vessel n of type ¢
can be used for at most UT; , days during the time horizon since different
age vessels might have different usage allowances. This restriction might be
needed for maintenance purposes and is enforced by the following constraint.

(€)Y TiXuw < UT,y, ¥t n.
h

Other forms of scheduled maintenance restrictions can be also accommodated
in the model by setting certain X-variables to zero.

6.4.3 Objective Function
The objective function is composed of the following terms.

(a) Operational costs (both for self-owned and chartered vessels) given

by
E E E Ct,n Xh,t,n~
h t n

(b) Penalty costs resulting from shortage or excess levels at the desti-
nation’s storage are given by the following term based on the rep-
resentation stated in Proposition 1 above.

D 7 lSon+ Suul + Y A [Ssn + Ssul-
"

h

M;
() The chartering expenses are givenby >~ >~ $;,Z; .
t n=0s+1
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6.4.4 Overall Model Formulation

The objective function terms (a), (b), and (c) together with the constraints yield
the following model for the Vessel Scheduling Problem (VSP). (All indices are
assumed to take on only their respective relevant values.)

VSP:

Minimize Z Z Z CinXnin + Z [Son + Sanl
h t n h
M;
+ Z)‘ [S3.n + Ss,n] + Z Z $tnZtn,s
[

t n=0;+1

subject to

C) Si=w+> > > Xy a—TCy Vh,
t n

hy:
Iy 4Ty pell, .. h]

(C2) Su=Sin—Sn—Sn + San + S5, Vh,
(C3) Yh,t,n = Yh—l,t,n - Xh—l,t,n + Z Xhl,t,nr vV h = 2/ t,n,

hy:
hy+Tr=h

(C4) Xh,t,n S Yh,t,ﬂ/ Vh/ t/ n,
(Cs) Ynin < Zin Vh t,ne{O+1, ..., M},

(Ce) Z Z Qi Xyt < Q Vh,
t n

(C) D> XigaTi <UT,,, Vi, n,
h t

Xntn €{0,1},Vh, t, n, ifXy:, ¢ ¢x, and fixed at zero or one otherwise, Y ; ,, €
0,1}, Vt, , 0 < Y1y <1, Vh > 2, t,n, if Y}, 1, ¢ ¢y, and fixed at zero or one
otherwise,0 < Z;, <1, Vt,n=0:+1, ...,0:+CH; 5 >0, SL1 < 55 <
SLy, 0< S5, <A, 0=<83, <b;, 0< 5y, < Ay,and0 < S5, < UB—b,, Vh.

REMARK 6.2

Note that by Constraint (C3), the integrality of the Y-variables is guaranteed
once the integrality of the X-variables and the Y-variables corresponding
to the first day of the time horizon is enforced. The integrality of the Z-
variables is then automatically enforced by Constraint (Cs) along with the
fourth term of the objective function. This holds true since if a vessel n €
{Or+1, ..., 0 + CH,} of type t is selected for chartering, then this vessel
is used in at least one trip from the source to the destination, in which case
Yi,+» = 1 for some day /1, and hence, the corresponding Constraint (Cs) then
enforces Z; , to also take on a value of one. On the other hand, if this vessel is
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not selected for chartering, then Y, ; , = O for all days of the time-horizon, in
which case the most attractive value for Z; ,, is zero based on the fourth term
of the objective function.

In the next section, we derive an aggregated formulation of Model VSP,
and in Section 6.6, we present a problem size analysis for both formulations.

6.5 An Aggregate Formulation AVSP for Model VSP

The vessel scheduling problem at hand can be alternatively formulated by
deciding upon the number of vessels of each type that are needed to be dis-
patched every day instead of having to make dispatching decisions about
individual vessels. In this section, we derive an aggregated version of Model
VSP that retains the essential characteristics of the operation while being far
more computationally tractable than Model VSP. This formulation can be
ideally used for problem instances having relatively longer time horizons in
order to deal with the ensuing large number of binary variables.

6.5.1 Formulation of Model AVSP

Assume that the daily operational costs of vessels of a given type are the
same, and that the chartering expenses of all such vessels are identical. In
case the operational costs of vessels of the same type are not identical, then
we take the average of all such costs, and likewise for the chartering expenses.
However, if there are significant differences between these daily operational
costs or between the chartering expenses, then we may accordingly partition
a vessel-type into various sub-types so that the assumed cost representation
is adequate. Hence, let DC; denote the average daily operational cost of a
vessel of type t and let C; = T; (DCy).

Define x;,; as an integer variable that represents the number of vessels of
type t that are dispatched from the source on day /. Define 1, to be an
integer decision variable that represents the maximum number of vessels
of type t that are available for dispatching from the source on day h. As
mentioned in Remark 6.1, vessels might become available for use at different
days of the time horizon due to, for example, their involvement in trips from
previous demand contracts that will terminate sometime during the current
time horizon. Hence, we let Oy, ; be the number of self-owned vessels of type
t that will become available for use for the first time at the source on day &
of the time horizon, and we let C Hy, ; be the number of vessels of type ¢ that
will become available for chartering on day / of the time horizon. Let o, s =
O+ + CHp, ¢ and note that O; = %, O+ and CH; = X,CH}, ;. Accordingly, we
let zj, ¢ be the integer variable that denotes the number of vessels of type ¢
that are actually selected for chartering on day / of the time horizon and let
$n,+ denote the average chartering cost of a vessel of type t that will become
available for use on day / of the time horizon.
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Let Ay, ¢ be the subset of indices for vessels of type t (both self-owned and
vessels available for chartering) that will become available for use at the source
for the first time on day & of the time horizon. Hence, for a given day / and

ZHE UT n . . .
vessel type t, we let UTj,; = ~“%""" which basically gives the average

Ot
usage allowance for a vessel of type ¢ that will become available for use for
the first time on day & of the time horizon. Accordingly, UT; = £, UT, ; gives
the average usage allowance for a vessel of type t.

Note that in this aggregated model, the variable y; ; represents the maxi-
mum number of vessels of type t that could be consigned on day & as neces-
sary; the actual number used, and in particular the chartering decisions, are
governed in this model via the dispatching variables xj, ;. Similar to the index
sets ¢x and ¢y, we let ¢, and ¢, denote the index sets of x-and y-variables,
respectively, that are a priori restricted to be zero, or fixed at some known
positive integer values.

The aggregated model is formulated as stated below, where the S-variables
are defined as for Model VSP.

AVSP:

Minimize Z Z Crxy t +Z 7w [So,n+5a 1] +Z ASsn + S5l +Z Z S,z
h t h h h t
subject to

(ACy)) Sy =w+ Z Z Qixp,r — TCh, Vh,
t

hy:
hi+Ty (1, ... h})

(ACy) Sy =S1u,n— S0 —S3n + San + S5, YV,
(AC3)  Ynt = Yn—1,6 — Xn—1,t + Z Xnyt + One + zne, Yh > 2,8,

Iy
hy+Tr=h

(AC4) xh,t =< ]/h,t/ Vh/ t/
(AGCs) y1,r =01 +2z14, Vi,

(ACe) > Quxir <QVh,

t

(AC7.1) Zy = Z Zh,tr Vh/
h

(ACr2) Y Tixe < UT, (O +2), Vi,
h

e €1{0,1, ..., My}, Y h,t, if x,+ ¢ ¢, and fixed at zero or one otherwise,
0<uynt <My, Yh,t, ify,: ¢ ¢, and fixed at zero or one otherwise,

Znp,t € {1/ sy CHh,t}/ A h/ t/
5,20, SL1 <5, <SLy, 0< S < A, 0< S35, < by,
0<Sn<4A, and 0<S5, <UB-—by Vh.
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6.5.1.1 Objective Function and Constraints

The objective function of Model AVSP is similar to that of Model VSP, which
represents the total operational costs for both the self-owned vessels and
the chartered vessels, the penalties resulting from shortage or excess levels
at the destination, and the chartering expenses. Constraints (AC;), (ACy),
(ACy), (ACs), and (AC7,) used are basically representations of Constraints
(C1), (C2), (Cy), (Cg), and (Cy), respectively, in an aggregate sense. Note that
Constraint (ACy ) is a definitional constraint that computes the total number
of vessels of type t that are actually selected for chartering. Constraint (ACj3)
is arepresentation of (C3) in an aggregate sense, however, the right-hand-side
of (AC3) also accounts for the first-time availabilities of the self-owned and
chartered vessels. Note that Constraints (ACs) in concert with Constraints
(AC3) and (ACy) are sufficient to account for the chartered vessels.

Note that the parameters Oy ; and C Hy,; used in this model are necessary
because, unlike as in Model VSP, we no longer maintain a track of individual
vessels. The above reformulation adopts an aggregated approach as indicated
by the integer decision variables that represent the number of dispatched ves-
sels (without any individual vessel identity) over the time horizon, in lieu of
using the previous binary variables. This formulation of the problem is more
compact, however, at the expense of having to relax the individual vessel’s
total usage and downtime restrictions (Cy) to (ACy71), which now represents
an aggregate usage constraint for vessels of type ¢, because we no longer
specifically account for each individual vessel’s activity. Likewise, for the
commissioned chartered vessels, we assume that these vessels are available
for the duration of use as prescribed by the model solution. This relaxed con-
straint needs to be dealt with separately while implementing the model-based
decision. Note that the integrality of the y-variables is automatically enforced
based on a similar reasoning as discussed in Remark 6.2 above.

REMARK 6.3
Consider the following constraint.

(ACs1) z¢ > | xpt + Z Xt — One |, Vh L
hy<h:
(h+T)>h

Note that the right-hand-side of the Constraint (ACs ;) yields the number of
vessels of type t that are being used on day / beyond the self-owned number
of vessels Oy,;. Thus, this constraint can be used to tighten the continuous
relaxation of Model AVSP.

6.5.1.2 Extracting Schedules for Individual Vessels

A feasible schedule for individual vessels can be extracted from the solution
of Model AVSP as follows. Having solved Model AVSP the variable zj ; at
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optimality specifies the number of vessels of type ¢ that are needed for char-
tering on day /1, and hence, we can determine the fleet size mix. Then, we can
begin dispatching different vessels of type t on each day / based on the values
of the x-variables. In this process, the downtime unavailabilities of various
vessels and the balancing of days for which the different vessels are put into
service could be incorporated. It is worth mentioning that, in practice, there
is some flexibility in scheduling maintenance and in vessel usage constraints.
Hence, this facilitates the conversion of the model solution to one that can be
implemented on an individual ship basis without perturbing the overall so-
lution and its associated cost and while satisfying (Cy ) to the extent possible.

6.6 Computational Results and Rolling Horizon Heuristics

In this section, we present computational results related to solving Models
VSP and AVSP based on ten test problems that represent various operational
scenarios. The test problems are given in Appendix B. Section 6.6.1 provides
computational experience for solving Models VSP and AVSP directly by the
CPLEX package (version 7.5). In Section 6.6.2, we develop two rolling horizon
heuristics to solve problem instances that cannot be solved directly via Model
AVSP. Finally, in Section 6.6.3, we present an ad-hoc procedure that is intended
to simulate a manual scheduling procedure used by KPC and the schedules
obtained via this procedure are compared against those derived via the pro-
posed modeling approach.

Notationally, we will let P denote the linear relaxation of any model P. The
optimal objective function value of model P will be denoted by v(P). The best
upper bound and lower bound found for model P will be respectively denoted
by vyg(P)and vy g (P). Allruns below are made on a Pentium 4, CPU 1.70 GHz
computer having 512 MB of RAM using CPLEX-7.5, with coding in Java. The
test problem instances are labeled as defined in Appendix B: I; fori =1, ...,
10. The symbol “e” will be used to indicate that no meaningful solution of a
given model was obtained using CPLEX due to out-of-memory difficulties.

6.6.1 Computational Experience in Solving Models VSP and AVSP

Table 6.1 and Table 6.2 report computational results related to solving Models
VSP and AVSP using CPLEX-MIP-7.5 based on the ten test problems.

REMARK 6.4

The number of constraints and variables in Model AVSP are substantially less
than the respective number of constraints and variables in Model VSP, as ob-
served from Table 6.1 and Table 6.2. For example, the number of constraints
and variables for Model VSP based on test instance Iy are respectively given
by 10,451 and 11,126, while those for Model AVSP for this test instance are
2,366 and 4,242, respectively. Note that these numbers are obtained from
CPLEX after performing necessary preprocessing and elimination steps.
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TABLE 6.1
Linear Relaxation of Model VSP
Nonzero CPU Time
I; Rows Columns Entries ©(VSP)($) (seconds)
I 493 598 4,460 390,000 0.01
I 503 727 7,787 615,000 0.01
I3 1,636 1,811 24,601 615,000 0.08
Iy 1,614 1,958 35,859 1,290,000 0.11
Is 5,176 5,519 146,415 3,930,000 0.61
Ig 4,399 4,728 114,657 4,290,000 0.50
I7 5,082 5,487 173,115 7,400,000 0.69
Ig 10,590 11,106 441,532 6,630,000 1.61
Iy 8,812 9,407 421,789 7,980,000 1.53

Iy 10451 11,126 556,298 14,999,166 13.89

This will motivate the utilization of Model AVSP in concert with rolling hori-
zon algorithms that are designed below to solve problem instances having
relatively long time horizons.

REMARK 6.5

Solutions for the linear relaxations of both Models VSP and AVSP were read-
ily obtained for all the test problems. We were unable to obtain meaningful
solutions for Model VSP for any of the test problems due to out-of-memory
difficulties. For Model AVSP, we were able to solve it directly only for test
problems I, ..., I, while for test problems Is, ..., I;p, we encountered
out-of-memory difficulties before reaching meaningful solutions.

6.6.2 Rolling Horizon Algorithms

In this section, we present rolling horizon algorithms similar to those
proposed in [30] to facilitate the derivation of good quality solutions with
reasonable effort for the test problem instances that cannot be solved directly

TABLE 6.2
Statistics Related to Solving Model AVSP

Nonzero CPU Time CPU Time
I; Rows Columns Entries ©(AVSP)($) (seconds) ©(AVSP)($) (seconds)
I 105 235 688 390,000 0.00 420,000 0.01
I 205 477 2,273 615,000 0.02 660,000 6,363.16
I 342 682 3,990 615,000 0.01 660,000 0.02
Iy 519 1,039 8,696 1,459,166 0.03 1,500,000 0.06
I5 698 1,394 15,198 4,520,000 0.03 ? 14,002.11
Ig 1,172 2,108 27,405 10,125,000 0.06 ? 310,593.03
I7 1,173 2,199 33,700 7,765,000 0.08 ? 318,887.36
I 1,406 2,622 45,954 7,190,000 0.13 ? 105,854.48
Iy 2,061 3,689 81,638 9,260,000 0.25 ? 771,486.74
Ly 2,366 4,242 107,672 16,157,333 0.45 ? 39,559.61
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via Model AVSP. These algorithms are based on a sequential fixing of integer
variables and are presented below along with related computational results.
Note that since optimal solutions of Model AVSP based on test problems
I1, ..., Iy were obtained using CPLEX, we only apply the proposed rolling
horizon algorithms for test problem instances I5, ..., Ijo.

Let AVSP(H, opt - gap) denote the relaxation of Model AVSP for which
integrality is enforced only on the pertinent x-variables that correspond to
day 1 through day H of the time horizon, and an optimal solution is re-
quired to be found within a tolerance “opt-gap” of optimality. Note that
v(AVSP(H, opt-gap)) provides a lower bound for problem AVSP, where
v(AVSP) < v(AVSP(H, opt-gap)). Furthermore, increasing H and decreasing
opt-gap will tighten this lower bound. Using the default CPLEX optimality
gap, we solved AVSP(H, opt-gap) for the largest possible integer 1, where
H = 10n < H, such that a meaningful solution is obtained within a maxi-
mum of 7 hours of run time. Let v = v(AVSP(H, opt-gap)) for the largest
computationally feasible H as discussed above. Table 6.3 displays the results
obtained.

(A) Rolling Horizon Algorithm RHA1

In Model AVSP, let the vector x be partitioned as (x1, x2, ..., xg), where x;,
denotes the vector of x-variables associated with the 1" day of the time hori-
zon. Let Hj be the length of the horizon interval for which the corresponding
x-variables are restricted to be integer valued, and the remaining variables
are declared to be continuous. Accordingly, in a rolling-horizon framework,
let H, be the duration of the initial subset of this interval for which the deter-
mined decisions are permanently fixed. Let KK = [((H — H;)/H,) + 1]and
let AVSP(H;, H,, opt-gap, k), fork =1, ..., KK, denote Model AVSP having
the following characteristics:

(a) x; is enforced to be integer valued for i < H; + (k — 1)H,, and is
relaxed to be continuous otherwise, Vh =1, ..., H.

(b) x;, for h < (k — 1)Hj, is fixed at the values found from the solution
to Model AVSP(H,, H,, opt-gap, (k — 1)).

(c) The optimality gap tolerance for fathoming is set at opt-gap.

The rolling-horizon algorithm (RHA1) then proceeds as follows.

TABLE 6.3

Statistics Related to Solving v(AVSP(H, opt-gap))
I; vrB ($) H (days) CPU Time (seconds)
I5 4,580,000 80 0.28

Ig 11,069,999 80 2,501.30

I; 7,840,000 80 0.61

Ig 7,265,000 90 0.73

Iy 9,335,000 90 1.61

Lo 16,265,333 90 2.44
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Initialization: = Let H; be some integer number less than or equal toH, H, <
(H;1/2),and k = 1. Let opt-gap be some selected optimality gap criterion. Solve
Model AVSP(H;, H,, opt-gap, 1).

Main Step:  If k = KK; then terminate the algorithm; the proposed solution
is that obtained from solving Model AVSP(H,;, H,, opt-gap, KK). Otherwise,
increment k by one and solve the Model AVSP(H;, H,, opt-gap, k). Repeat
the Main Step.

Table 6.4 reports the results obtained by using RHA1 for some fixed ju-
dicious values of H; and H, as determined via some computational experi-
mentation, where opt-gap is set to the CPLEX default optimality tolerance.
Here, vrpa1 gives the solution value obtained by the rolling-horizon algo-
rithm RHA1, and perct_opt(vrra1) = 100 (1 — %) gives the percentage
of optimality of vria1 with respect to the lower bound vy 5.

(B) Rolling Horizon Algorithm RHA

Motivated by the fact that more stringent values of H; and opt-gap can en-
hance the quality of the solution obtained, we devised another rolling horizon
algorithm as follows.

Divide the time horizon into w > 1 disjoint partitions, HP;, HP,, ..., HP,
that together span the time horizon { 1, ... , H}, where each partition covers at
least two time periods. We will denote each such HP; as {HI', ..., HF'} fori =
1, ..., w, where HF' > HI'+1, HI' = 1,HF® = H,and HI' = HF' "' + 1, Vi.

Accordingly, let AVSP; = AVSP(HP;, opt-gap), and fori = 2, ..., o,
let AVSP; = AVSP(HP;, opt-gap) where the values of the x-variables that
correspond to the days in Ul]-;llH P; are fixed as obtained from AVSPy, ...,
AVSP;_;.

The rolling horizon algorithm RHAZ2 then proceeds as follows.

Initialization: Let w be some positive integer. Let i = 1 and let opt-gap be
some selected optimality gap criterion. Solve AVSP;.

Main Step: If i = o, then terminate the algorithm; the proposed solution is
that obtained from solving Model AVSP,,. Otherwise, increment i by one and
solve Model AVSP;. Repeat the Main Step.

TABLE 6.4
Statistics Related to Solving AVSP Using RHA1
H;y =30, H, =10 (days) perct_opt (vrHA1)
(Percentage

I; Urpa1g ~ CPU Time (seconds) Optimality for RHA1)
Is 5,008,541 30.22 91.44

I 13,309,002 256.56 83.17

I7 9,620,070 15.78 81.49

Is 9,253,200 128.90 75.51

Iy 11,213,700 33.98 83.24

Lo 20,395,863 20.19 79.74
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TABLE 6.5
Statistics Related to Solving AVSP Using RHA2
CPU CPU CPU

v(AVSPy) HF'  Time ov(AVSP,) HF?  Time ©(AVSP;) HF®*  Time
I; % (days) (seconds) (6] (days) (seconds) $) (days) (seconds)
Is 4,580,000 80 0.28 4,680,000 120 47.41 N/A
Is 11,069,999 80 2,501.30 11,400,000 120 0.52 N/A
I; 7,840,000 80 0.61 7,900,000 120 0.83 8,000,000 150 22.14
Is 7,265,000 90 0.73 7,310,000 150 860.27 7,400,000 180 1.64
Is 9,335,000 90 1.61 9,339,999 170 49.89 9,360,000 210 0.95
Lo 16,265,333 90 244 16,293,333 170 34.52 16,450,000 240 5.77

Let vra2 denote the solution value obtained by the rolling horizon algo-
rithm RHAZ2, and let perct_opt(vrua2) = 100(1 — M) which gives the
percentage of optimality of vrpa2 with respect to the lower bound v; 5. More-
over, let perct_imp(vrua2, VRHA1) = 100(%) which gives the percent-
age of improvement in total cost of algorithm RHA2 over algorithm RHAI.
Table 6.5 and Table 6.6 report statistics related to algorithm RHA2, where
opt-gap is set to the default CPLEX optimality gap.

Note that the sets of test problems {I5, I}, and {I7, ..., I;o} were solved
using two and three partitions, respectively. Furthermore, algorithm RHA2
produced better results than RHA1 for all the test problems under consider-
ation. Note that the performance of these algorithms (particularly the latter)
may be enhanced by using higher-grade computers that would permit fixing
or relaxing fewer variables at each step.

6.6.3 Comparison with an ad-hoc Scheduling Procedure

In this section, we compare the performance of the proposed modeling ap-
proach vs. an ad-hoc scheduling procedure that represents the process
adopted by Kuwait Petroleum Corporation. Since chartering expenses are
large relative to operational costs and penalties imposed for undesirable

TABLE 6.6
Statistics Related to Solving AVSP Using RHA2

perct_opt (vrua2)  perct_imp (vrRHA2, VRHA1)

Total (Percentage (Percentage
CPU Time Optimality Improvement of
I; vrRHA2($)  (seconds) for RHA2) RHAZ2 over RHA1)
Is 4,680,000 47.69 97.86 6.56
I 11,400,000 2,501.82 97.10 14.34
I7 8,000,000 23.58 98.00 16.84
Is 7,400,000 862.64 98.17 20.02
Io 9,360,000 52.45 99.73 16.53

Iip 16,450,000 42.73 98.87 19.34
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storage levels, this ad-hoc procedure attempts to fully utilize company-owned
vessels before resorting to chartered vessels, and operates as follows:

(A) Examine the first day of the time horizon, say , on which deliv-
ery of shipments is possible without exceeding SL,, and dispatch
company-owned vessels for delivery on day / so that the total stor-
age level on that day will not exceed SL,. This involves exploring
various feasible departure days, and the usage of different combi-
nations of vessels. This process is repeated for the company-owned
vessels, taking into account the availability of vessels during the
days of the time horizon, until it becomes impossible to do so.

(B) Repeat Step A, however, without exceeding b», i.e., allowing for the
Type I penalty when the storage level lies within (SLy, bs].

(O) Repeat Step A, however, without exceeding UB, i.e., allowing for
the Type I and Type II penalties when the storage level lies within
(SL,, UB].

(D) Now, if the storage level on any given day of the horizon is not be-
low zero, then we are done, and hence, there is no need for chartered
vessels. Otherwise, let il be a day when the storage level becomes
negative, and select the smallest sized vessel that is available for
chartering to be dispatched for delivery on a day in (hh — §), where
8 is to be determined by the scheduler. Repeat this step as neces-
sary, however, using the already selected chartered vessel(s). Ateach
pass through this process, if the storage level on any given day of the
time horizon is nonnegative, then we are done. On the other hand,
if there exist no more chartered vessels while for some day we still
have a storage level below zero, then no feasible solution is found.

Let AH denote the foregoing ad-hoc procedure. Table 6.7 presents some com-
putational statistics for comparing schedules obtained via Procedure AH with
those generated by the proposed modeling approach. Here, vay represents
the total cost of the solution obtained via AH and vmin gives the objective value
of the best solution obtained via the proposed modeling approach. Also, let
perct_imp(Vmin, VaH) = 100[(%&)], which gives the percentage improve-
ment in the total cost of the schedules generated by the proposed modeling
approach over those obtained via the ad-hoc procedure.

Observe that for each of the test problems Iy, ..., I o, the overall cost ob-
tained via the proposed modeling approach is often substantially better than
the overall cost obtained via the ad-hoc procedure AH. For example, in test
problem Ijp, the improvement in total cost obtained via the modeling
approach over that obtained via the existing AH procedure is $47,090,000.
Notice also that there is a large variance in the performance of the ad-hoc proce-
dure AH vs. the proposed approach. The reason for this is two-fold. First,
the AH procedure makes myopic decisions and is unable to recognize complex
compromises that sometimes need to be made for attaining an overall efficient
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TABLE 6.7

Comparison of the ad-hoc Procedure AH vs. the Proposed

Modeling Approach
(Percentage Improvement
of the Proposed Approach
over the Ad-hoc Approach)

I; VUmin($) vAH($) perct_imp (Upmin, vAH)

I 420,000 720,000 41.66

I 660,000 720,000 8.33

I3 660,000 2,480,000 73.38

Iy 1,500,000 3,940,000 61.93

Is 4,680,000 6,720,000 30.35

Ie 11,400,000 42,178,000 72.97

I7 8,000,000 10,880,000 26.47

Ig 7,400,000 8,282,000 10.65

Iy 9,360,000 56,450,000 83.42

Lo 16,450,000 24,140,000 31.85

solution. Second, because of such myopic decisions that unwisely use the self-
owned vessel resources, the ad-hoc procedure often needs to resort to unneces-
sary chartering of vessels, which is an expensive venture. On the other hand,
the proposed modeling approach makes more effective and robust decisions.

6.7 Summary, Conclusions, and Future Research

In this chapter, we presented mixed-integer programming models for deter-
mining an optimal mix of vessels of different types that are needed to transport
a product from a source to a destination based on a stream of consumption
rates at the destination’s facility. Various cost components such as daily op-
erational costs of vessels, chartering expenses, and penalties associated with
undesirable storage levels are incorporated in the models. Such single source-
destination vessel scheduling problems are faced by oil companies, for exam-
ple, in which the product is crude oil, the source is a refinery facility, and the
destination is a storage location that belongs to a client. Problems of this type
also arise in practice where large quantities of crude oil need to be shipped
from a country such as Kuwait to specific aggregated clusters of locations in
Europe, North America, or Asia.

Due to the combinatorial nature of the problem, a manual scheduling of
vessels is often expensive and requires an inordinate amount of effort for
constructing and revamping vessel schedules. Therefore, it is imperative to
utilize modeling approaches to advantageously compromise between the
various cost components in order to avoid unduly high vessel chartering
and penalty expenses. The proposed modeling approach enables the trans-
porting organization to generate and revamp vessels’ schedules as frequently



160 Integer Programming: Theory and Practice

as necessary and in a timely fashion. This approach also allows the organiza-
tion to contemplate long-term plans regarding the size of the self-owned fleet
and the need for chartered vessels.

The efficiency of the proposed modeling approach is assessed by com-
paring it against an ad-hoc scheduling procedure that represents the actual
scheduling of vessels in a related case study concerning Kuwait Petroleum
Corporation (KPC). Using a set of ten realistic test problems, the results in-
dicate that the proposed approach substantially improves upon the manual
procedure, resulting in savings ranging from $60,000 to $47,090,000.

The current manual practice at KPC suffers from a lack of robustness be-
cause of the myopic nature of decisions made. Often, such decisions encumber
the self-owned vessels ineffectively, resulting in relatively large expenses for
chartering additional vessels. On the other hand, the developed procedure
determines near-optimal solutions more robustly within 97 to 99 percent of
optimality.

This work can be extended to examine the cost effectiveness of simultane-
ously investigating multiple sources and destinations instead of associating
specific vessels with designated source-destination combinations. We can also
explore the impact of leasing temporary transshipment storage depots on the
overall chartering and penalty costs, whereby fewer chartered vessels might
need to be acquired. These two extensions are the subject of a companion
follow-on paper [31].
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Appendix A: Glossary of Notation

h =1, ..., H:Indices of the days of the time horizon.
t=1, ..., T :Indices for the types of vessels.

Q; : Capacity (in barrels) of a vessel of type ¢.

M; : Number of vessels of type t.

n=1, ..., M; : Indices of all vessels of type t.

Oy and CH; = M; — Oy: Respectively, the number of self-owned
vessels and the number of available vessels of this type that can be
possibly chartered.

n=1, ..., O : Indices for the self-owned vessels.

n=0:+1, ..., O;+CH; = M, : Indices for the self-owned vessels
of type t that are available for chartering.

T
0=> 0.
t=1

T
CH=) CH,.
t=1
$:,n : Cost (in U.S. dollars) of chartering a vessel 1 of type ¢.

UT;, : Maximum number of days vessel n of type t can be used
during the time horizon.

T; : Time (in days) required to load a vessel of type t at the source,
plus the time this vessel takes to travel from the source to the des-
tination, unload time at the destination, and then travel back from
the destination to the source.
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e Ti =T+ Topy.

+ Ti, : Time (in days) required to load a vessel of type t at the source
and then travel to the destination.

e T,; : Time (in days) required to unload a vessel of type ¢ at the
destination and then travel back to the source.

» DC; , : Daily operational cost (in U.S. dollars) of vessel n of type t.
o Cin =T, (DCty).

» Q: A production capacity (in barrels) or certain imposed quota of
the product at the source.

» w : Storage level (in barrels) at the destination at the beginning of
the time horizon.

e SI; and SL; : The minimum and maximum desired levels (in bar-
rels), respectively, at the destination’s storage facility, which should
be maintained to the extent possible in order to avoid penalties.

+ m : Daily penalty (in U.S. dollars) for each shortage or excess unit at
the destination.

+ Ajand A, : Permitted shortage and excess quantities (in barrels) at
the destination with respect to the desired levels SL;and SL,, re-
spectively.

e by =SL — A.

e by =SL,+ A.

» UB : Upper bound on the maximum storage level (in barrels) at the
destination.

» X : Type Il penalty (in U.S. dollars).

* R; : Expected consumption rate (in barrels) at the destination on
day j,forj=1, ..., H.

h
« TCy =) _R;.
j=1

* S : A continuous variable representing the storage level on day h.
. P[(Sh) = 7 maximum {O, (SL1 — Sh), (Sh — SLQ)} if Sh (S] [bl, bz]
T A +Ab1—85) ifS, €(0,b)
s Pri(S) = .
T A+ A(S, —by) if S, € (b, UB).
* Sp=S5un— Son— S3n+ San + S5,
where SLq <51, <SLy,0< S, <A,0<S5, <by,
0< 54//1 <A, and 0< 55,}, <UB - bz.
o P(Sy) =m(S2,n + Sun) + A(S3n + Ss.0)-
{1 if vessel n of type t departs the source toward
Xh,t,n -

the destination on day #,
0 otherwise.
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v, — 1 if vessel n of type t is available at the source on day #,
b 0 otherwise.

(all or only part of) the time horizon,

1 if vessel n of type t is selected for chartering during
Zt,n -
0 otherwise.

» ¢xand ¢y : Sets of Xand Y variables, respectively, that are restricted
to be fixed at specified binary values by virtue of such considera-
tions.

» DC; : Average daily operational cost (in U.S. dollars) of a vessel of
type t.

» G =T (DCy).

* X+ : An integer variable that represents the number of vessels of
type t that are dispatched from the source on day #.

* U+ : An integer decision variable that represents the maximum
number of vessels of type t that are available for dispatching from
the source on day .

* Oyt : Number of vessels of type ¢ that will become available for use
at the source for the first time on day / of the time horizons.

* CHj,; : Number of vessels of type t that will become available for
chartering on day & of the time horizon.

e apt = Oy + CHpr : Number of vessels of type ¢ that will become
available for use on day / of the time horizon.

« Or=) O
h
« CH; =) CHy,:.
h

* z3; : An integer variable that denotes the number of vessels of
type t that are actually selected for chartering on day & of the time
horizon.

* $5,+ : Average chartering cost (in U.S. dollars) of a vessel of type ¢
that will become available for use on day & of the time horizon.

» A : A subset of indices for the vessels of type ¢ (both self-owned
and vessels available for chartering) that will become available for
use at the source for the first time on day / of the time horizon.

ZneA,,'[ uﬂ’

e UT},; = o ", which basically gives the average usage allow-
ance (in days) for a vessel of type t that will become available for
use for the first time on day & of the time horizon.

* ¢r and ¢, : Sets of x- and y-variables, respectively, that are a pri-
ori restricted to be zero, or fixed at some known positive integer
value.
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« P :Linear relaxation of any model P.

» v(P) : Optimal objective function value of model P.

» vyp(P) : Best upper bound (solution) found for model P.
e vr(P) : Best lower bound found for model P.

e I; : Test problemi, fori =1, ..., 10.

» “.”: Indicate that no meaningful solution of a given model is ob-
tained by a direct application of CPLEX due to out-of-memory
difficulties.

+ AVSP(H, opt-gap) : Relaxation of Model AVSP for which integrality
is enforced only on the pertinent x-variables that correspond to day
1 through day H of the time horizon, and an optimal solution is
required to be found within a tolerance “opt-gap” of optimality.

+ RHA1 and RHAZ2 : Rolling horizon algorithms.
* VURHA1 : Solution value (in U.S. dollars) obtained by RHAL.

 perct_opt(vruai) = 100 (1 _ URHm—vLB)

URHA1

* URHA? : Solution value (in U.S. dollars) obtained by RHA2.
. perct_opt(vRHAz) =100 (1 _ URHAZ*ULB) )

URHA2

 perct_imp(vrHa2, VrRHA1) = 100 (%) .

» AH: The ad-hoc procedure.

e vay : Total cost (in U.S. dollars) obtained via AH.

* Umin : Objective value (in U.S. dollars) of the best solution obtained
via the proposed modeling approach.

o perct_imp(vmin, vag) = 100 [(%)} .

Appendix B: Test Problems

This appendix presents statistics related to ten test problems. Assume that
there are four vessel types. Note that the models described in this chapter

TABLE B.1

Vessel Types

t  Q; (barrels) $:($) DC(9)
1 400,000 3,000,000 6,000
2 600,000 4,000,000 8,000
3 800,000 5,500,000 10,000
4 1,200,000 7,000,000 13,500
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TABLE B.2
Test Problems
T (vessel (01, 02, 03, 04) (CHl, CHz, CH3, CH4) (Tl, Tz, T3, T4)

I; H(days) types) (vessels) (vessels) (days) w (barrels)
I 30 1 (4,0,0,0) (5,0,0,0) (10,0,0,0) 4,000,000
L 60 1 (2,0,0,0) (2,0,0,0) (10,0,00) 7,000,000
I3 60 2 (2,3,0,0) (2,7,0,0) (10,20,0,0) 7,000,000
Iy 90 2 (2,2,0,0) (2,3,0,0) (10,20,0,0) 7,000,000
I5 120 2 (3,4,0,0) (8,7,0,0) (20,30,0,0) 7,000,000
Is 120 4 (1,1,1,1) (34,2,6) (20,30,40,50) 7,000,000
I; 150 3 (2,5,2,0) (1,5,2,0) (20,30,40,0) 4,000,000
Is 180 3 (5,1,6,0) (2,7,9,0) (20,30,40,0) 7,000,000
Ib 210 4 4,2,14) (3.2,14) (20,30,40,50) 7,000,000
Lo 240 4 (5,2,2,2) (1,2,2,6) (30,40,50,60) 7,000,000

consider a single source-destination operation. We assume that the daily
consumption rate for a given destination is the same for the duration of a
given time-horizon (denoted by R;), and that the daily operational costs of
vessels of a given type are also the same. The Type I penalty is fixed at $3
and the Type II penalty is fixed at $500. Specific details for the test problems
are presented in Table B.1 and Table B.2, where Table B.2 describes our set
of ten test problems. Note that R; = 150,000, SL; = 2,250,000, SL, =
10, 000,000, and A; = A, = 1,000,000 for all the test problems. Also, note
that T; = 0 indicates that no vessels of type i are involved in the operation.
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7.1 Introduction

Scheduling the shipment of products to destinations is a challenging problem
faced by many organizations that are interested in improving the efficiency
of their transportation systems due to the high cost associated with opera-
tional and penalty costs. Efficient transportation systems have the potential
for enormous savings. For example, in the oil industry, a typical vessel in
a fleet of oil tankers usually costs millions of U.S. dollars, and the daily op-
erational costs of an oil tanker amounts to tens of thousands of U.S. dollars.
Furthermore, considerable penalties are levied for either shortages in fulfilling
customer demands, or requiring customers to carry higher than desired levels
of inventory during certain periods. Hence, a formal modeling approach that
compromises among these different cost components in an effective manner
becomes imperative.

7.1.1 Problem Statement

Without loss of generality, we assume that the product to be transported is
crude oil and that the transporting vessels are oil tankers. Accordingly, the
terms “crude oil” and “product” will be used interchangeably. Hence, sup-
pose that an organization is concerned with transporting a product from dif-
ferent source points to customers located at various destinations. The source
points might represent refineries or storage facilities either owned or leased
by the organization. There also exist certain specified delivery time-windows
for the product from the sources to the destinations that are governed by a
number of factors. These factors include the availability of the product at the
sources, storage capacities at the destination facilities, rates of consumption
of the product at the destinations, penalties imposed by customers due to
unacceptable storage levels, routes available for transportation, vessels avail-
able for transportation, transshipment depots available for leasing, and con-
tracted constraints agreed upon between the organization and the respective
customers. The fleet of vessels utilized by the organization may be composed
of self-owned vessels, chartered vessels, or a mix of both.

The leasing of transshipment depots is a strategic decision that is open to
the organization in seeking an overall efficient and cost effective solution.
The organization aims to satisfy customer demands for the product based
on agreed-upon contracts at a minimum total cost that is comprised of the
operational costs of the vessels, chartering expenses, penalties associated with
violating certain storage levels, and the cost of leasing storage facilities.

7.1.2 Related Research

This work is an extension to the work of the authors in [6] and [7]. In [6] the au-
thors investigated a problem concerned with the scheduling of oil tankers to
ship various products from one source to different destinations. The demand



Determining an Optimal Fleet Mix and Schedules 169

structures that were investigated were determined by the total demand for
each product at each destination, along with the respective subdemands that
have to be satisfied within specified time intervals. It was assumed that some
vessels can carry more than one product. In the previous chapter, the au-
thors considered a vessel scheduling problem to transport a product from a
single source to a single destination in which the demand for the product
is governed by the consumption rates at the destination, with an allowance
for over- or under-shipments, subject to appropriate penalties. Two mixed-
integer programming models were developed for this problem: a full-scale
representation that incorporates all the detailed features of the problem, and
an aggregate model that suppresses the individual identities of the vessels of
each type, while incorporating this aspect later when prescribing the actual
consignment decisions.

The problem addressed here is similar to that investigated in [7], with the
exception that we now accommodate multiple sources and destinations and
moreover, we incorporate the consideration that the organization can lease
temporary transshipment storage facilities having known locations. Note that
by leasing suitable transshipment depots, a cost savings could be realized by
stocking the shipments closer to the destinations during slack periods for use
during periods of higher demand, while using fewer vessels, and in particu-
lar, avoiding the high costs associated with chartering vessels. Incorporating
multiple sources and destinations, along with the option of leasing trans-
shipment storage facilities in the problem, necessitates novel modeling and
algorithmic considerations in order to derive good quality strategic decisions
with a reasonable computational effort.

In general, vessel routing and scheduling problems can be partitioned into
four categories (see, for example, Al-Yakoob [1] and Christiansen [2]): a) liner,
b) tramp, ¢) industrial, and d) other related models. The bulk of the water
transportation routing and scheduling models deal with the transport and
delivery of cargo. Significantly fewer models have been developed to tackle
vessel routing and scheduling problems in the context of passengers. This
is a consequence of the fact that most vessels transport cargo around the
world, whereas passengers mainly travel by air or land. Similar to the vessel
scheduling problems that are investigated in [6] and [7], the problem that
is considered here falls into the fourth category mentioned above. For fur-
ther details on vessel scheduling and related models, the reader may refer to
Al-Yakoob [1], Christiansen [2], Perakis [3], and Ronen [4, 5], as well as to the
more detailed literature review given in Part I of this study [7].

The remainder of this chapter is organized as follows. The next section pro-
vides a description of the problem, and Section 7.3 presents a mixed-integer
programming model for the problem. Due to the immense size of this model
for most practical problem instances, Section 7.4 proposes an aggregate re-
formulation of the problem. Rolling horizon heuristics along with related
computational results based on a set of test instances representing various
operational scenarios are presented in Section 7.5. Section 7.6 provides results
pertaining to potential enhancements that can be attained via the leasing of
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transshipment depots, and Section 7.7 concludes this chapter with a summary,
future research, and recommendations pertaining to implementation.

7.2 Problem Description

As mentioned earlier, the problem considered here is an extension to the
work of the authors in [7]. Accordingly, the demand structure, consump-
tion rates, and penalty representation considered in this part are similar to
those used in [7]. These are briefly described below for the sake of complete-
ness and ease in presentation. Pertinent notation related to the present work
is also introduced in this section. For the sake of reader’s convenience, a
glossary of notation (sequenced in the order of appearance) is provided in
appendix A.

7.2.1 Demand Structure

The demand structure for the problem is influenced by the following factors:
a) the storage capacities at client destinations; b) initial levels of storage at
destinations; c) the rates of consumption at client storage facilities; and d)
other customer-specific requirements. The rate of consumption of the product
might not be fixed throughout the entire time horizon. The storage level at
any client facility is desired to lie between some minimum and maximum
allowable limits on any given day of the time horizon. Some customers impose
penalties when the storage level on a given day falls below the minimum
desired level or exceeds the maximum specified level. The latter maximum
level might be the storage capacity of the facility, and exceeding this capacity
would require resorting to extra temporary storage facilities, thereby resulting
in additional cost penalties. More specific details on the characterization of
the demand structure are prescribed below.

7.2.2 Problem Notation

Contracts between the transporting company and clients are signed sequen-
tially over time and accordingly, scheduling decisions are updated every time
a new contract is signed. Note that each contract specifies a time horizon
along with required storage levels to fulfill demand. A time horizon associ-
ated with a contract is also referred to as a “contract horizon”. Let CTy, 1,
denote a contract that is signed on day aa having a time horizon given by
{hh, ..., HH}. Suppose that scheduling decisions need to be made at time
aa to fulfill demand requirements for this contract as well as a set of previ-
ously signed contracts, say y of them, that have not been fulfilled by time aa.
Let CTun, 1Hy, - - - » CTin, HH, denote these previously signed contracts having
time horizons given by {hh, ..., HH.}, ..., {hhy,, ..., HH,}, respectively.
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Note that fori =1, ..., y, HH; > aa. Let AA = max{HH;, HH,, ... ,HH,,
HH}. Then the collective time horizon for the contracts CTy,, up, s - - - ,CTin,, 1,
and CTyy yy is given by {aa, ..., AA}. For the sake of simplicity, we let
h =1, ..., Hindex the days of the collective time horizon, which will hence-
forth be referred to as the “time horizon.”

Lett =1, ..., T denote the types of vessels in the company’s fleet, where
; represents the capacity of a vessel of Type t. Foreacht =1, ..., T, let
n =1, ..., M index the vessels of Type t, and let O; and CH; = M; — O;
respectively denote the number of company-owned vessels and the number
of available vessels of this type that can be possibly chartered. The company-
owned vessels are indexed by n = 1, ..., O; while the chartered vessels are
indexedbyn = Oy +1, ..., O + CH; = M. The actual numbers of vessels
of each type that are chartered are effectively determined by the schedules
prescribed by the model. Note that two vessels of the same type might be
chartered at different prices. Accordingly, let $; ,, be the cost (in U.S. dollars)
of chartering a vessel n of type t, forn = O; + 1, ..., Oy + CHy, and for each
t =1, ..., T. A vessel may be chartered for the entire duration of the time
horizon or for only a specified subset of it, depending on its availability. The
chartering cost given by $; , is incurred as a fixed-cost whenever the vessel
is chartered during the time horizon, regardless of its usage during this time
interval. This stems from the fact that the chartered vessels will be made
available to the (leased-to) company (in our case, KPC) essentially over the
horizon, and the (leased-to) company is free to make any related dispatching
decisions during this period. Let UT;, be the maximum number of days
vessel 1 of type t can be used during the time horizon. This time restriction
is typically needed for maintenance purposes.

Let f =1, ..., F denote the storage facilities that are available for leasing
over the duration of the contract horizon. Each storage facility is character-
ized by its location, capacity, and leasing expenses. For f =1, ..., F,letCy
denote the capacity of storage facility f and let $$ ¢ be the cost (in U.S. dollars)
of leasing a storage facility f for the duration of the contract horizon. A stor-
age facility can effectively be either a source or a destination for a given vessel
trip, based on whether the vessel happens to be respectively loading or un-
loading at the storage facility. Lets =1, ..., S+ F denote the entire collection
of sources comprised of the company’s sources and the storage facilities that
are available for leasing. The company’s sources are indexed bys =1, ..., S,
whiles = S+1, ..., S+ F respectively correspond to the storage facilities
f=1,...,F.Let Qs be the maximum daily permitted amount that can be
shipped from source s to any destination. This might represent a production or
a storage capacity restriction. Likewise,letd =1, ..., D+F denote the desti-
nations (client storage facilities or storage facilities available for leasing). The
client destinations are indexed byd =1, ..., D,whiled = D+1, ..., D+ F
respectively correspond to the storage facilities f =1, ..., F.

Let LEGy t,,5,,4,5, Tepresent a leg for vessel n of type t leaving source s;
toward destination d on day #, and then returning to source s,. Let Ty s, 4,5,
represent the time required to complete LEGy, 15, , 4,5,, Which includes the time
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required to load the vessel of type t at source si, the time this vessel takes to
travel to destination d, the unloading time at destination 4, and then the time
needed to travel from destination d to source s,. We assume that there is a
unique prescribed route from source s; to destination d, and likewise, from
destination d to source sy. Let Ty 5, 4.5, = T1 t,51,d,5 + 12,4,5,,d,5,, Where T1 ¢ ¢, 4 5,18
the time required to load a vessel of type t at source s; plus the travel time to
destinationd, and T> ; 4, 4,5,15 the time required to unload at destination d plus
the travel time from destination d to source s,. Vessels of the same type are
assumed to have equal values of T; ;, 4 5,(and their splits), and this duration
is also assumed to be independent of #; ie., T; 4,15 independent of the
day the leg starts (weather effects are neglected). Let DC; , denote the daily
operational cost of vessel n of type t. Let C¢ 5,45, = Ti51,d,5, (DCt), which
is the cost associated with LEGy, ¢, s, 4,5,- Note that this cost is independent of
the day the trip starts.

Next, let us define the following sets to identify permissible shipment rout-
ing itineraries:

I ={(s1,d,s0): where s;e€{l,...,S},de{l, ..., D}, and
s2ef{l, ..., S+ F}},

I ={(s1,d,s): where s;€f{l,...,S},de{D+1,..., D+ F}, and
ssefl,...,S}}, and

I3 =1{(s1,d,s;): where s;e€{S+1,...,S+F},def{l,...,D}, and
ssefl,...,S+F}

Note that I; represents trips initiated from any of the company sources
s;1 € {1, ..., S}, headed to a client storage facility d € {1, ..., D}, and then re-
turning to a company source or to a leased storage facility s, € {1, ..., S+ F}.
I, represents trips initiated from any of the company sourcess; € {1, ..., S},
headed to one of the leased storage facilitiesd € {D+1, ..., D+ F}, and then
returning to a company source s; € {1, ..., S}. I3 represents trips initiated
from any of the leased storage facilities s; € {S+1, ..., S+ F}, headed to a
client storage facility d € {1, ..., D}, and then returning to a company source
or to one of the leased storage facilities s, € {1, ..., S+ F}. Observe that suc-
cessive trips between one leased facility and another is disallowed. Hence,
I = I U I U I represents all types of permitted trips in the operation.

Ford € {1, ..., D+ F}, let wy denote the storage level at either destination
difd € {1, ..., D}, or transshipmentdepot (d — D) ifd e {D+1, ..., D+ F},
at the beginning of the time horizon, i.e., on the first day of the time horizon.
Let SL1 4 and SL, 4 denote the minimum and maximum desired levels, re-
spectively, at the storage facility of destination d. Some customers may allow
the storage level to go below or to exceed SL; 4 and SL; 4, respectively; how-
ever, with a penalty based on the corresponding shortage or excess quantities.
Let m; denote the daily penalty for each shortage or excess unit at destination
d. This penalizes shortages and excess quantities at destination d with respect
to the desired levels SL; 4 and SL, 4, to the extent given by A; 4 and A, 4, re-
spectively. Letb1 g = SL1,g — A1,g and by g = SLp 4+ Ay 4. Storage levels falling
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below by 4 or in excess of b, 4 (up to a sufficiently large upper bound SUBy),
while permitted, are highly undesirable, and incur a significantly greater
penalty Ay > 7y per unit, at each destination d.

Let R;4 denote the expected consumption at destination d on day j, for
j €{1, ..., H}. Usually, at most two distinct daily consumption rates exist at
a given destination. The different daily consumptions arise from the possible
seasonal changes during the horizon, as well as some client-specific consider-
ations. Let TC}, 4 be the total consumption at destination d during the interval
{1, ..., h}, which is given by TCj,q = Z/_, R; 4.

7.2.3 Penalty Representations

Penalties are computed on a daily basis and depend on the storage levels at
the customers’ facilities. These penalties are similar to those introduced in part
I, and are extended to address multiple destinations. Let S, 4 be the storage
level at destination d on day /. Define Type I and Type II penalty functions
as follows.

Type I penalty:
Py (Sp,a) = mq maximum {0, (SL1,4 — Sp,a), (Sna — SL2,a)}  if  Spa €[b1,4, baal,
and

Type II penalty:

g Ava + g (br,g — Sha) if Swa € (0, b1,a),

Py(Sp,4) = :
o {T[d Aoa +Aa (Swa —baa) if Spa € (b2a, SUBy),

where 7r; and A4 > 7, are as defined above. Note that if Sy 4 € [SL1,4, SL2,4],
then the storage level at destination d lies within the desired bounds and no
penalty is induced. If S, 4 € [b1,4, SL1,4) U (SLy4, bs,4], then a penalty is in-
curred based on the respective shortage or excess quantity at destination d.
On the other hand, if S, 4 € [0, b1,4) U (by,4, SUB;], then a sufficiently large ad-
ditional penalty rate is imposed continuously beyond that of P;(.) to indicate
the undesirabity of such a storage level at destination d on any given day of
the time horizon.

PROPOSITION 7.1
Let

Snd = Stn,d — Sond — S3,nd + Sand + Ssnd, (7.1)
where

SLig < Sina <SLoda, 0<Sypa <Aia, 0=<S3nq<biaq,
0<Sina <Ay, and 0=<5S5; < (SUBs—byyg). (7.2)

Define P (Sp,q) : [0, SUB4] — [0, 00) as the linear penalty function.
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P(Spa) = mi(Son,a + San,a) +2a(San,a + Ss,n,a). Then any minimization objective

formulation that incorporates the term P (S, q4) defined above along with (7.1) and
(7.2) will automatically enforce the sum of the Type I and Type 11 penalties Pr(Sy,q4) +
Pr1(Sp,q).

PROOF The proof is similar to that of Proposition 7.1 in part I for the case
of a single source-destination operation. M

7.3 Model Formulation
7.3.1 A Mixed-Integer Programming Model

In order to formulate the problem described in the foregoing section, we
define the following sets of binary decision variables. Let

X 1 if LEGy,t 4,5, is selected,
h,t,n,sy,d,s, — .
0 otherwise.

Since a vessel cannot be dispatched from source s on day & unless it is
available on this day, another set of binary variables is defined as follows:

v 1 if vessel n of typet is available at source s on day £,
h,tn, .
vl 0 otherwise.

Finally, in order to represent the chartering decisions and the storage leasing
decisions, let

1 ifvesseln € {O;+1, ..., O+ CH,} of type t is selected for
Zin = chartering during the time horizon,

0 otherwise,

and

1 if storage facility f is leased for the duration of the time horizon,
70 otherwise.

Note that several of the above defined binary decision variables are a priori
known to be inadmissible, or effectively, zero. Naturally, whenever Y}, ; 5, =
0, this implies that the corresponding variables Xj ;54,5 =0V (d, s2).
Examples of such zero variables are specified below.

(A) If (s1,d, 52) ¢ I then this implies that LEG, ;1 5,,4,5, iS NOt permitted
inthe operationV #, t, n. Accordingly, Xy tns,,d,5, =0V b, t, 1,51, 4d,
sp such that (s1, d, sp) ¢ I.
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B) X tns,ds =0 Vh, nif source s1, or destination d, or source s, does
not admit vessels of type t. This occurs if a source or a destination
cannot admit a vessel due to its size or specifications, as in the
case of super-tankers that cannot be admitted into certain source or
destination ports.

(C) Avessel n of type t may not be available for any new consignments
during some subset [h1, hi;] of the time horizon. Such a situation
occurs if the company needs to perform a scheduled maintenance
on a vessel during some specified days of the time horizon provided
the vessel is in port any time during that duration. This information
can be incorporated into the model by letting Y, ¢ns = 0V h €
{h1, ..., hy} and Vs. Note that if a vessel n of type ¢ is required to
be inactive during [h1, h;], we can set Xj, ¢ 6,05, =0V (51, d, 52) €
I and Vh such that [k, b + T 5,,4,5,] N [11, h2] # 9.

(D) The presentdemand contract mighthave been signed during a previ-
ous contract horizon. In this case, certain decisions for the previous
contract might have committed some self-owned vessels over peri-
ods concurrent with the present contract horizon. Therefore, proper
sets of the X and Y variables should be defined to be zero to indicate
the unavailability of vessels during the present contract horizon.
Moreover, whenever a vessel 1 of type t becomes available for the
first time on day / in the horizon at source s, we fix Y}, ¢, s = 1, and
let Yy tns, =0Vs1#s, and Yy, tns, =0Vhy €{1, ..., (h — 1)} and
for all s;.

We will let ¢x and ¢y denote the sets of X and Y variables, respectively, that
are restricted to be fixed at specified binary values by virtue of such considera-
tions. The prescribed vessel scheduling problem can now be stated as follows.
(All indices are assumed to take on only their respective relevant values.)

VSP:

Minimize Z Z Z Z Z th,n,sl,d,Sz X, t,n,s1,d,52
h t d s

n S1

+ Z Z mwilSonda + Sanal + Z Z AS3,n,d4 + Ss,n,4]
wod W
M;
DD $uaZint+ Y85 Wy,

t n=0;+1 f

subject to

© Sz Y YYY Y X, -0
t

n o s S h:

h+Tl,t,sl/§/52€{1, o h)

Vhandd {1, ..., D},
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LE? = Wpy¥ + Z Z Z Z Z §2 Xh,t,n,sl,D+T,Sz
t n sp=1s=1 h:
(4T, py7.)ElL o B
D
_Z Z Z Z Z Q Xh,t,n,S+T,d,sz’ v E’ 7’
t n d=1 s h: B
he(l, ... h}
Yitas = Yi1ias — ZZ X 1imsds T ZZ Z X1 71,51,d,57
t v h+T7,sh a5=h

2 : E : E : § :Xh,?ﬁfshd,Sz’E,Sl,d,Sz = UTE,W Vi,
h d

Xh,t,n,sl,d,sz € {O/ 1}/ v h/ t/ n, sy, d/ S2, if Xh,t,n,51,d/52 ¢ ¢X/

and fixed at zero or one otherwise,

Yh,t,n,s € [0/ 1]/ Vh/ t/ ns, if Yh,t,n,s ¢ ¢Y/

and fixed at zero or one otherwise,

Zt,ne[()/l]/ Vtrn=Ot+1r'~~/Ot+CHt/
Wrel0,1], V£,
Spa >0, SLig <Sina <SLya, 0=<Spna=< A,

0<Sna<bra, 0=<Synis=<rA,
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and

0<Ssuag<(SUBj—brg), Y h and defl, ..., D}
0<Lysf=<Cy, Vhf

7.3.2 Objective Function

The objective function of the problem seeks to minimize the total cost com-
prised of the operational costs of selected legs (both for company-owned and
chartered vessels), the penalty costs resulting from shortage or excess levels
at the customer storage facilities (both of Type I and Type II), the chartering
expenses, and the costs for leasing storage facilities.

7.3.3 Constraints

Revisits to destination d = 1, ..., D are determined by the initial storage
level (given by wy), the storage capacity (including minimum and maxi-
mum desired levels, given respectively by SL; 4 and SL,4), and the daily
rates of consumption R;;. Constraint (C;) computes the storage level at
destination d on day /i, whereas Constraint (C,) represents Sy, 4 in terms of
Sind, Sond, S3nd, Ssnd, and Ss 4 as in Proposition 7.1. The Type I and 11
penalties are incurred in the objective function based on this representation as
stated in Proposition 7.1. In Constraint (Cs), the variable Lj  represents the
storage level at facility f on day /, being equal to the difference between the
total quantity delivered to storage facility f by day & and the total quantity
shipped from this storage facility f by day /. Note that S, s and Lj, r are non-
negative continuous variables, and moreover, Ly,  is bounded above by the
storage capacity given by C, as noted in Constraint (Cy).

A vessel n of type t can be dispatched from source s on day / only if it
is available at s on that day. This vessel is available at source s on day &
if either the vessel was available there on the previous day and it was not
dispatched, or this vessel was not available there during the previous day but
it arrived on the current day. On the other hand, this vessel is unavailable
on day h at source s if it was available there on the previous day and it was
dispatched on that day, or it was unavailable there on the previous day and it
did not arrive on the current day. Constraint (C4) examines the availability of
vessel n of type t at source s on day / by incorporating these cases (assuming
that any trip is at least two days long), and then Constraint (Cs) permits the
dispatchment of vessels conditioned on this availability. For the chartered
vesselsn € {O;+1, ..., O+ CH,;} of type t, Constraint (C¢) enforces that this
vessel is selected for chartering (Z; , = 1) if it is required to be made available
for consignment. Note that once a chartered vessel is made available at some
source, then (C4) accounts for its proper feasible use. Constraint (C7) ensures
that the total amount of the product that can be shipped from a given source
s on a given day % to any destination d does not exceed the daily permitted
amount being specified by Q,. Constraint (Cg 1) examines if storage facility f
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isleased for the duration of the time horizon in order to permit the availability
of vessels thereat and Constraint (Cs») rules out legs that terminate in non-
leased storage facilities. Constraint (Cg) enforces that any vessel n of type ¢
can be used for at most UT;, days during the time horizon. Finally, (Cyp)
enforces the various bounding and logical constraints.

REMARK 7.1

Assume that the Y-variables corresponding to & = 1 are fixed at some binary
values. Then Constraint (C4) ensures the integrality of all the other Y-variables
once the integrality of the X-variables is enforced. This follows from the re-
cursive relation in (C4) that defines Yj, ; , s for h > 2 in terms of ¥j,_1 ¢, s and a
subset of the X-variables. Moreover, the integrality conditions on the Z- and
W-variables can also be relaxed. This follows because constraints (Cg), (Cg1),
and (Cg) along with the fourth and fifth terms of the objective function will
automatically enforce the integrality of these variables.

7.4 An Aggregated Reformulation for Model VSP
and Related Issues

In this section, we derive an aggregated version of Model VSP, denoted by
AVSP, which retains the essential operational features of the original prob-
lem, while being far more computationally tractable. The aggregate refor-
mulation basically disregards the individual vessel identities, and instead,
attempts to decide on the number of vessels of each type to be dispatched on
agiven day to traverse a prescribed trip. This aggregated reformulation is mo-
tivated by the overwhelming number of binary variables resulting from the
initial formulation for a typical operational scenario as illustrated in Table 7.1
and Table 7.2 of Section 7.5.1.

7.4.1 Formulation of Model AVSP

Let LEGy ts,,4,5, represent a leg for a vessel of type ¢ leaving source s; to
destination d on day h, and then returning to source s;. The average cost
associated with this leg is denoted by cj +s,,4,5,, and the time required to
complete this leg is given by T; s, 4 5, -

Define xj+s,,4,5, as an integer variable that represents the number of ves-
sels of type t that traverse LEGy, + , 4,5, Define y, ;s to be an integer decision
variable that represents the maximum number of vessels of type t that are
available for consignment from source s on day k. As mentioned in the fore-
going section, vessels might become available for use at different days of
the time horizon due to, for example, their involvement in trips from previ-
ously signed contracts that will terminate sometime during the current time
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horizon. Hence, we let Oy, ; s be the number of self-owned vessels of type ¢
that will become available for use for the first time at source s on day / of the
time horizon, and we let CH}, ;s be the number of vessels of type ¢ that will
become available for chartering for the first time at source s on day % of the
time horizon. Hence, let ay,¢s = Opts + CHpts. Accordingly, we let zj, ¢ s be
the integer variable that represents the number of vessels of type t that are
actually selected for chartering on day / of the time horizon at source s. Let
$1,+ denote the average chartering cost of a vessel of type t that will become
available for use for the first time on day % of the time horizon, regardless of
the source at which it first became available.

Hence, 11,15 = O1,1s +21,¢,s- Note that as before, the y-variables will be used
to indicate the supply distribution of vessels during the time horizon, and the
actual use of the vessels will be examined via the x-variables.

Let Ay s be a subset of vessels of type t (both self-owned and vessels avail-
able for chartering) that will become available for use at source s for the first
time on day & of the time horizon. Hence, we let Uy, ; = M which
gives the average usage allowance for a vessel of type t that Wil become
available for use for the first time on day / of the time horizon. Accordingly,
U; = %y Uy, gives the average usage allowance for a vessel of type t. Also,
let Oy = X3, % Onts-

Similar to the index sets ¢x and ¢y, we let ¢, and ¢, denote the sets of
x- and y-variables, respectively, that are a priori restricted to be zero, or fixed
at some known positive integer values.

The formulation AVSP adopts an aggregated viewpoint as exemplified by
the integer decision variables that represent the number of vessels assigned
to traverse from the source points to the various destinations over the time
horizon (without any vessel identities), in lieu of using the previous binary
variables. Accordingly, as we shall see, we can represent the Model VSP more
compactly using this aggregated representation, at the expense of having to
relax the individual vessel’s total usage and downtime restrictions (Cy) to
the revised representation (ACy), as we no longer specifically account for
each individual vessel’s activity. These relaxed constraints need to be dealt
with separately while implementing the model-based decision. Because of the
relatively soft nature of these constraints, this is an acceptable compromise
between model size and representability.

The aggregated model is now stated as follows, where the W, S, and L
variables are defined as in Model VSP.

AVSP:

Minimize Z Z Z Z Z Ct,s1,d,s, Xii,t,s1,d,5
h t st d s
A3 walSana + Sunal + Y Y MalSsna + Ssndl
Wod nod
+ Z Z Z $n,t2nts + Z 855 Wy,
h t s f
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subject to

(AC) Sjz=wz+y > > > Q%575 TChz Vh
t

51 S h:
h+Th,t5,4,5 €1, ... 11}

(AC) S7=S57-Spa—SpatSpatSnae Yh

S S
(AG;) Lﬁj =Wp,7+ Z Z Z Z 2 X t,51, D+F 5
t

s1=1s2=1 h:

(h +T1,51 , D+7,52

Ye(l, ..., i}

t Xn,t,84F,d,sp

Xy
M
]

N
Q
a

d=1 Sy
he R}
(ACY)  Virs=VYi1s — Z Z Xi_1i5d,s, T Z Z
d S S1 d
Z xhtslds"i_oﬁj/g‘i‘zﬁfg/ thzlflg
h:
h+Tf,s d?zﬁ
(ACs) > > Miisas <¥igs YHES,
d s

(ACy) yits = Ors +211s, Vi, 8,
(AC) > > > ux;,04,<Q, Yh and s5€e{l, ..., S},
t d s

(ACg1) Wipsi7 < (01557 +CH s, W, VE f,
(ACgy) Yrpsi7 < MiWr, VR 22,F, f,

D
(ACs3) DD Xipeapiy <MW, VYRET,

51 d=1
(ACy) Z Z Z Z Tis,,d,5 Xn7s1,d,5 < Ur (OF + Z Z Zuis), VI
h st d s h s

(Aclo) xh,t,sl,d,SZ € {0/ 1/ cee g M}/ v h/ t/ S1, d/ S2, lf xh,t,sl,d,SZ ¢ ¢XI

and fixed at some positive integer values otherwise,

0 S ]/h,t,s S M/ Vh Z 2/ t/ S, if ]/h,t,s ¢ ¢y/
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and fixed at some positive integer values otherwise,
0 <zy+s < CHpys, and integer valued V 1, ¢, 5,

Wr €01}, Vf

Sna >0, SLig < Sina <SLya, 0= Syna=<Aia,
0<S3na<bia, 0=<Syna=<ru,

and

0< 55,},,91 < (SUB; — b2,d)/ Vh and d € {1, ..., D},
Oth,ffcjr, Vh, f.

7.4.2 Objective Function and Constraints

As before, the objective function of Model AVSP represents the total opera-
tional costs for both the company owned vessels and the chartered vessels, the
penalties resulting from shortage or excess levels at the customer storage facil-
ities, and the cost of leasing storage facilities. Similar to constraints (Cy), (Cp),
and (C3) of Model VSP, the constraints (AC1), (AC,), and (AC3) respectively
represent storage levels at customers’ facilities, decomposed storage levels for
penalty representations, and storage levels at the leased facilities. Constraints
(ACy), (ACs), (ACy), and (ACy) are used as representations of constraints (Cy),
(Cs), (ACy), and (Cy) respectively, in an aggregated sense. Note that (ACy) is
a relaxed version of (Cg) where the right-hand-side of (ACy) gives the total
allowable utilization of all the self-owned and chartered vessels. Constraint
(ACp) in concert with constraints (AC,) and (ACs) account for the number
of chartered vessels. Restrictions related to the leasing facilities are enforced
via the W-variables in constraints (ACg 1) to (ACg3). The right-hand-sides of
(ACg1) to (ACs3) yield the maximum number of vessels of type t that can be
possibly available at a given leasing storage facility during the pertinent days
of the time horizon. This number equals (O, ; 5.7 + CH, ; 5, 7) whenh =1,
and equals M; when h > 2, if the particular leasing facility is actually leased
during the time horizon (W+ = 1), and equals zero otherwise. Note that Con-
straint (ACg 3) assures that if a storage facility is not selected, then this facility
is not the termination point of any vessel, because otherwise, such a vessel
would end up idle at this storage facility until the end of the time horizon.
Observe that the integrality conditions on the y-variables are relaxed in Model
AVSP for similar reasoning as discussed in Remark 7.1 above.

Having solved Model AVSP, the variable z; = X, %,z ¢ s at optimality yields
the number of vessels of type t to charter, thereby determining the fleet of ves-
sels being composed of company-owned and chartered vessels. The leasing
of storage facility is determined at optimality by the binary variables Wy for
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all f. Now, based on the x-variables, we can begin dispatching different ves-
sels of Type t from different sources on each day /4, scheduled for a specified
trip as determined by the corresponding values of (s1, d, 5;) € I. In this pro-
cess, the downtime unavailabilities of various vessels, and the balancing of
days for which the different vessels are put into service could be incorporated
while consigning specific vessels of each type. It is worth mentioning that, in
practice, there is some flexibility in scheduling maintenance and in the vessel
usage constraints. Hence, this facilitates the conversion of the model solution
to one that is implemented, without significantly perturbing the solution and
its associated cost.

7.5 Solution Algorithms and Computational Results

In this section, we present computational results related to solving Model
AVSP directly using the CPLEX package (version 7.5) and via a special-
ized rolling horizon algorithm based on eighteen test problems that repre-
sent various operational scenarios. These test problems are referred to as
I, ..., Ipand NIj, ..., Nlg. Relevant statistics about the test problems are
provided in Appendix B. The reason for considering only Model AVSP in the
computational results stems from the fact that we were unable to obtain mean-
ingful solutions for Model VSP in [7] even for the single source-destination
test cases, without the consideration of transshipment depots.

Note that test problems Iy, ..., Ijp are constructed by adding three trans-
shipment storage depots to the test cases in [7]. The introduction of the
transshipment depots has magnified the number of the integer variables,
which basically makes this model computationally intractable. Table 7.1 com-
pares the number of the x-variables in Model AVSP with and without trans-
shipment depots.

Notationally, we will let P denote the linear relaxation of any model P. The
optimal objective function value of model P will be denoted by v(P). The
best upper bound and lower bound found for model P will be respectively
denoted by vip(P) and v g(P). Note that all runs below are made on a Pen-
tium 4, CPU 1.70 GHz computer having 512 MB of RAM using CPLEX-7.5,
with coding in Java.

7.5.1 A Rolling Horizon Algorithm for Model AVSP

Because of the overwhelming number of integer variables in Model AVSP as
exhibited in Table 7.1, we were unable to solve this model for any of the test
problems directly using CPLEX due to out-of-memory difficulties. Hence, in
order to facilitate the derivation of good quality solutions with reasonable
effort for Model AVSP, we developed a specialized rolling horizon heuristic,
similar to those proposed in [6, 7]. This heuristic is based on a sequential fixing
of integer variables and is presented below along with related computational
results.
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In Model AVSP, let the vector x be partitioned as (x1, x2, ..., xg), where
x, denotes the vector of x—variables associated with the h'" day of the time
horizon. Let H; be the length of the horizon interval for which the correspond-
ing x variables are restricted to be integer valued, and the remaining variables
are declared to be continuous. Accordingly, in a rolling-horizon framework,
let H, be the duration of the initial subset of this interval for which the deter-
mined decisions are permanently fixed. Let KK = [((H — Hi)/H) + 1] and
let AVSP (H,, Hy, opt-gap, k), fork =1, ..., KK, denote Model AVSP hav-
ing the following characteristics:

(a) x; is enforced to be integer valued for i < H; + (k — 1)H,, and is
relaxed to be continuous otherwise, Vh =1, ..., H.

(b) x;, for h < (k — 1)H, is fixed at the values found from the solution
to Model AVSP(H,, H,, opt-gap, (k — 1)).

(c) The optimality gap tolerance for fathoming is set at opt-gap.

The rolling-horizon heuristic RHA then proceeds as follows.

Initialization: Select integers H; < H, H, < (H;/2), and initialize k = 1.
Let opt-gap be some selected optimality gap criterion. Solve Model AVSP
(Hi, Hp, opt-gap, 1).

Main Step: If k = KK; then terminate the algorithm; the proposed solution
is that obtained from solving Model AVSP (H;, H,, opt-gap, KK). Otherwise,
increment k by one and solve the Model AVSP (H;, H,, opt-gap, k). Repeat
the Main Step.

Note that the solution value obtained from the firstiteration of the algorithm
RHA provides a lower bound for problem AVSP that is at least as high as
v(AVSP). Accordingly, we let vrp equal the objective value obtained from
the first iteration of the algorithm RHA. Table 7.2 reports results obtained

TABLE 7.1

Number of the x-Variables for Model AVSP with
and without Transshipment Depots

No Transshipment 3 Transshipment

Test Depots Depots
Problem Total Number of x-Variables

I 30 570
I 60 1,140
I3 120 2,280
Iy 180 3,420
Is 240 4,560
Ig 480 9,120
I7 450 8,550
Ig 540 10,260
Iy 840 15,960

o 960 18,240
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TABLE 7.2
Statistics Related to Solving AVSP Using RHA
H, = 6,H; =3, (days)

perct_opt (vrHA)

CPU Time CPU Time (Percentage
I; v(AVSP) ($) (seconds) URHA ($) (seconds) Optimality for RHA)
I 350,106 10.23 438,000 15.02 82.93
I 600,500 12.78 670,560 123.08 92.09
I 598,000 11.89 676,100 62.10 91.00
Iy 1,189,000 20.12 1,582,000 155.76 79.75
Is 3,930,023 22.61 4,560,000 161.01 89.01
Ig 8,580,232 30.73 11,087,000 256.56 80.11
I; 5,900,000 31.90 7,780,000 367.08 79.16
Ig 5,130,000 34.83 7,200,000 530.00 72.31
Iy 7,166,000 45.09 8,690,000 741.09 85.50
T 11,002,166 55.16 14,541,000 1,050.98 78.29
NI 614,007 143.98 854,001 1,419.09 74.71
NI 1,008,005 201.09 1,218,100 1,684.31 84.50
NIz 2,145,908 299.54 2,745,908 1,860.90 78.95
Nly 10,143,000 342.90 12,543,012 2,056.00 81.23
Ni5 10,047,411 486.54 14,547 411 2,952.11 72.01
Nlg 10,054,747 698.98 13,901,000 3,324.00 74.49
NIy 12,598,000 898.82 16,987,090 3,685.49 75.16
NIg 19,990,000 1,001.82 27,890,787 5,842.23 72.67

by using RHA for some fixed judicious values of H; and H, as determined
via some computational experimentation, where opt-gap is set to the CPLEX
default optimality tolerance. Here, vrra gives the solution value obtained by
the rolling-horizon RHA, and perct_opt(vgpa) = 100 (1 — $2=U8) giyes the

URHA

percentage of optimality of vraa with respect to the lower bound vig.

TABLE 7.3

Cost Improvement via the Use of Transshipment Depots

perct_imp(vRHA, Umin)
(Improvement of Cost Using the

Test Problem URHA ($) Umin $) Modeling Approach over RHA)
I 420,000 438,000 —4.28
I 660,000 670,560 —0.01
I3 660,000 676,100 —2.43
Iy 1,500,000 1,582,000 —5.46
I5 4,680,000 4,560,000 2.56
Ig 11,400,000 11,087,000 2.74
I; 8,000,000 7,780,000 2.75
Ig 7,400,000 7,200,000 2.70
Iy 9,360,000 8,690,000 7.15

Lo 16,450,000 14,541,000 11.60
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7.5.2 Usefulness of the Proposed Modeling Approach

In [7], we compared the costs of schedules generated via the proposed ap-
proach with the cost of schedules generated via an ad-hoc procedure in a case
study concerning Kuwait Petroleum Corporation (KPC). It was emphasized
that significant savings can be achieved via the proposed approach in [7].
In this section, we examine the potential cost improvement via accommo-
dating the consideration of leasing transshipment depots, whereby fewer
chartered vessels might need to be acquired. We also emphasize the cost ef-
fectiveness of simultaneously examining multiple sources and destinations
instead of associating specific vessels with designated source-destination
combinations.

The following table compares costs of schedules obtained from [7], where
no transshipment depots are utilized, with those obtained here, where three
transshipment depots are available for usage. Note that vmin gives the solution
value obtained from [7], and hence, perct_imp(vrya,Umin) = 100 (%)
yields the percentage of improvement in total cost when allowing the usage
of the transshipment depots.

The use of the transshipment depots improved the total cost for test prob-
lems Is — Ijp, with a percentage reduction in total cost ranging from 2.56 to
11.60. It is worth mentioning that for test problems I; — I4, we were able to
solve Model AVSP without transshipment depots directly using the CPLEX
Package with the default setting in [7], while we utilized the heuristic RHA
to solve this model when incorporating the three transshipment depots. Con-
sequently, the advantage of incorporating the three transshipment depots was
not discernable in test problems I} — I4.

As depicted in Appendix B, each test problem NI fork =1, ..., 8, com-
bines two single source-destination cases to form a new instance that is
composed of two sources and two destinations. In particular, a test problem
NI that correspond to I; j as defined in Appendix B indicates that NI com-
bines test problems [; and I;. Let vrua (TP) denote the objective value obtained
for Model AVSP via algorithm RHA based on test problem TP and define
Uglia = vrHA (L) + vrua(I)). Also, let perct_imp(vrra, vglia) = 100(@)

"RHA

Observe that vgya is lower than v}{ﬁ A for all the test problems NI for k =

1, ..., 8, with a percentage reduction in total cost ranging from 2.20 to 19.83.

7.6 Summary, Conclusions, and Future Research

This research is a continuation of the work of the authors in [6] and [7] con-
cerning the scheduling of oil tankers. In particular, this work is an extension
of the work in the previous chapter in that we consider multiple sources and
destinations, and the leasing of transshipment depots, which can enhance
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TABLE 7.4

Cost Improvement via the Use of Multiple Sources and Destinations

. ij
perct_imp (URHA, Vpy;4)

Test Problem NI I URHA ($) v;’{JH N (Percentage Improvement)
NI g 854,001 876,000 2.50
NI I3 1,218,100 1,346,660 9.54
NI3 Is g 2,745,908 2,924,000 6.09
NIy I 12,543,012 15,647,000 19.83
NIs Iz77 14,547 A11 15,560,000 6.50
Nlg Ig 8 13,901,000 14,400,000 3.46
NIy Iog 16,987,090 17,380,000 2.20
NIg L1010 27,890,787 29,082,000 4.09

the overall efficiency and cost effectiveness of the transportation system. In-
corporating these issues requires special modeling considerations and novel
solution methods. In this chapter, we have developed mixed-integer program-
ming models for the described scheduling transportation problem that take
into account different vessel sizes, multiple sources and destinations, varying
consumption rates, while also considering the leasing of transshipment de-
pots. In particular, two models were developed — a full-scale representation
VSP that incorporates all the detailed features of the problem, and an aggre-
gated version AVSP that suppresses the individual identities of the vessels of
each type, while incorporating this aspect subsequently when prescribing the
actual consignment decisions. A specialized rolling-horizon heuristic was de-
veloped in concert with Model AVSP to derive good approximate solutions.
The results indicate that the use of transshipment depots can improve the total
cost. For the set of more challenging test problems, this resulted in a percent-
age reduction in total cost ranging from 2.56% to 11.60%. Also, combining two
single source-destination test problems into a single joint decision instance
was demonstrated to yield a percentage reduction in total cost ranging from
2.20% to 19.83%. One extension of the present work is to determine optimal
transshipment depot locations, instead of assuming fixed locations, a scenario
that might need to be examined, for example, in the context of oil-export ves-
sel scheduling operations. This will further complicate the problem; however,
better storage locations might lead to more cost effective schedules. Another
extension is to deal with random demand structures instead of deterministic
demand structures. Continued research and applications will address these
issues.
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Appendix A: Glossary of Notation

CTyy pp ¢ A contract that is singed on day aa having a time horizon
given by {hh, ..., HH}.

CTuny,uH,/ -+ » CTyn, 1w, : Contracts that are signed prior to Con-
tract CT}, 1y having time horizons given by {hhy, ..., HHy}, ...,
{hh,, ...,HH,}, respectively, where HH; > aa fori =1, ..., y.

AA = max{HH;, HH,, ... ,HH,, HH}.

{aa, ..., AA} :Collective time horizon for the contracts CTi, gH,, - - - »
CThthHy, and CTZZ,HH'

H : Number of days in the time horizon.

h =1, ..., H:Days of the time horizon.

t=1, ..., T :Types of vessels.

Q; : Capacity (in barrels) of a vessel of type t.

M, : Total number of vessels of type f.

T
M=>M,

=1
O; : Total number of self-owned vessels of type t.
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T
O = Z Ot-

t=1
CH; : Total number of vessels of type ¢ that are available for
chartering.

CH, = M, — O.
T

CH = Y CH,.
t=1

n=1, ..., M : Vessels of type t.
n=1, ..., O :Self-owned vessels.

n=0:+1, ..., O;+CH; = M, : Vessels of type t that are available
for chartering.

$:n : Cost (in U.S. dollars) of chartering a vessel n of type ¢, for
n=0+1,...,0,+CH; = M; and foreacht =1, ..., T.

UT} , : Maximum number of days that vessel # of type t can be used
during the time horizon.

f =1, ..., F : Storage facilities that are available for leasing over
the duration of the contract horizon.

C : Capacity (in barrels) of storage facility f.

$$s : Cost (in U.S. dollars) of leasing a storage facility f for the
duration of the contract horizon.

s =1, ..., 5+F : Entire collection of sources comprised of the com-
pany’s sources and the storage facilities that are available for leasing.

s =1, ..., S:Indices for the company sources.

s = S+1,...,5+ F : Source indices for the storage facilities
f=1 ..., F.

d =1, ..., D+ F : Entire collection of destinations (client storage
facilities or storage facilities available for leasing).

d =1, ..., D:Indices for the client destinations.

d =D+1, ..., D+ F : Destination indices corresponding to the
storage facilities f =1, ..., F.

LEGy t,ns,,4,5, : A leg for vessel n of type t leaving source s; to desti-
nation d on day /, and then returning to source s.

Tt s,d4,5, : Time (in days) required to complete LEGy, ¢ 1,,d,5,-

Tisds, = T1,t,51,d,50 + Tot,s1,d, 52, where T ;5 4,5, is the time
required to load a vessel of type t at source s; plus the travel time
to destination d, and T 15, 4,5,1s the time required to unload at des-
tination d plus the travel time from destination d to source s,.

DC;,,, : Daily operational cost (in U.S. dollars) of vessel n of type ¢.

Cimmsyds=Trsud,ss (DCh) : Cost (in US. dollars) associated with
LEGh,t,n,sl,d,Sz .
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o I1={(s1,d,s2) : wheres; {1, ...,S},d € {1,...,D}, ands, €
{1,...,S+F}}.

e I, = {(s1,d,s2) : wheres; € {1,...,S},d e {D+1,...,D+
F},ands, € {1, ..., S}}.

o I3 = {(s1,d,s) : wheres; € {S+1,...,S+F}, def{l,...,D}
ands, €{l,...,S+F}}.

i 1211U12UI3.

» wjy : Storage level (in barrels) at destination d at the beginning of the
time horizon.

e SLj4and SL; 4 : Minimum and maximum desired levels (in barrels),
respectively, at the storage facility of destination d.

» 1, : TypeIdaily penalty (in U.S. dollars) for each shortage or excess
unit at destination d.

» Aiy4and Ay, : Permitted shortage and excess quantities (in barrels)
at destination d with respect to the desired levels SL; 4 and SL; g4,
respectively.

* b1,g =SLi,a — Aia.
* bya =Sl + Ay
* A : Type Il penalty (in U.S. dollars) associated with destination d.
» SUB, : A sufficiently large upper bound (in barrels) on the storage
level at destination d.
. TCh,d = ilR]',d.
j=

* Q, : Production capacity (in barrels) at source s € {1, ..., S}.

* Sp,4 : A continuous variable that represents the storage level at des-
tination d on day h.

* Pi(Sy,a) = my maximum {0, (SL1,4 — Sya), (Sp,a — SL2,a)} if Spa €

[b1,4, baal.
w3 Arg +ra (b1,a — Sia)  if Spa € (0, by,a),
o Pu(Sna) = .
g Aog + Aa (Sna — bo,a)  if Spa € (bo,a, SUBy),

* Spa = Sina — Sund — S3nd + Sand + Ssn,4, Where
SLig < Sina <SLoa, 0= Sp4 =< Avg,

0<S3na <brg, 0=<Sipqa <Aa, 0=Ss5, <(SUBs—bya).
o P(Sy,4) = ma(Soyn,a + San,a) + Aa(S3,n,d + Ss,1,d)-

1 ifLEGy 14,45, is selected,
" Kutnsdse = 0 otherwise

v 1 if vessel n of type t is available at source s on day &,
s 0 otherwise.
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1 ifvesseln € {O;+1, ..., O + CH;} of type t is selected
o Ziy= for chartering during the time horizon,
0 otherwise.

1 if storage facility f is leased for the duration of the
o Wy = time horizon,
0 otherwise.
* ¢xand ¢y : Sets of X and Y variables, respectively, that are restricted
to be fixed at specified binary values.

o LEGy 15,.4,5 : A leg for a vessel of type t leaving source s; to desti-
nation d on day h, and then returning to source s.

* Cis,d,s, : Average cost (in U.S. dollars) associated with LEGy, ¢ ,,4.s,-

* Xits,ds, - Aninteger variable that represents the number of vessels
of type t that traverse LEGy, ¢ s,,4 5, -

* Ynts 1 An integer decision variable that represents the maximum
number of vessels of type t that are available for consignment from
source s on day h.

* Oy, 15 :Number of self-owned vessels of type t that will become avail-
able for use for the first time at source s on day & of the time horizon.

* ays : Number of vessels of type t that are available (self-owned or
those that would be possibly chartered) for use at source s on day
h of the time horizon.

* CHj, ;s : Number of vessels of type t that will become available for
chartering for the first time at source s on day / of the time horizon.

® Qpts = Oh,t,s + CHh,t,s-

* z,: : An integer variable that represents the number of vessels of
type t that are actually selected for chartering on day / of the time
horizon at source s.

* %5+ : Average chartering cost (in U.S. dollars) of a vessel of type t that
will become available for use for the first time on day / of the time
horizon, regardless of the source at which it first became available.

* Nts = Ol,t,s + Z1,t,s

o Apss A subset of vessels of type t (both self-owned and vessels
available for chartering) that will become available for use at source
s for the first time on day / of the time horizon.

UTt,n
. Uh,t — Zs Z”EAh,t,sr
ZS Oh,t,s
hd uTt = Z uTh,t.
h

° Ot = Z Z Oh,t,s~

h
* ¢x and ¢, : Sets of x- and y-variables, respectively, that are a priori
restricted to be zero, or fixed at some known positive integer values.
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« P :Linear relaxation of any model P.

» v(P) : Optimal objective function value of model P.

» vyp(P) : Best upper bound (solution) found for model P.

e v g(P) : Best lower bound found for model P.

e I : Test problemi, fori =1, ..., 10.

o NI : Test problem k, fori =1, ..., 8.

» RHA : The rolling horizon algorithm.

* URHA : Solution value obtained by RHA.

* perct_opt(vrua) = 100(1 — %) : Percentage of optimality of
URHA -

* perct_imp(vrHA, Umin) = 100(*m="814) : Percentage of improvement
in total cost when allowing the usage of the transshipment depots.

* vrHA (TP) : Objective value obtained for Model AVSP via algorithm
RHA based on test problem TP.
o vglia = vraA (L) + vRHA ().

. i
+ perct_imp(vrHA, Vfj) = 100(REaT2),
"RHA

Appendix B: Test Problems

This appendix presents statistics related to eighteen test problems.

Assume that there are four vessel types (T = 4) and three transshipment
depots (F = 3). The daily consumption rate for all destinations is assumed
to be the same for the duration of the given time horizon, and given by
R = 150,000. We also assume that SL; 4 = 2, 250,000, SL, 4 = 10,000,000, and
Mg = Aryg = 1,000,000 for all d. The type I and type II penalties are fixed at
g = 3and A4 = 500 for all d. Moreover, we assume that the daily operational
costs of vessels of a given type are the same, and hence, DC; ,, = DC; for n =
1, ..., M;. Specific details pertaining to the vessel types and transshipment
depots are presented in the remainder of this appendix.

TABLE B.1
Vessel-Types
t  Q; (barrels) $: $ DC: (9

1 400,000 $3,000,000  $6,000
2 600,000 $4,000,000  $8,000
3 800,000 $5,500,000 $10,000
4 1,200,000 $7,000,000 $13,500
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TABLE B.2

Transshipment Depots

f Cs (barrels) $$ (9

1 3,000,000 $1,000,000
2 4,000,000 $1,500,000
3 5,000,000 $2,000,000

Table B.3 presents ten single source-destination test problems, denoted by
I, ..., Iip. The number of self-owned vessels and the number of vessels
avaﬂable for chartering of type ¢ that are considered in test problem I; are re-
spectively denoted by O] and CH'. Hence, we let Ol = (Ol, i, O, O}) and
CH' = (CH), CH), CH;, CHﬁl) Let T{ . as Tasas, and TV ;o respectlvely
denote the parameters corresponding to Ti s, d,s,, T2,5,,d,5, and Ty, a5, in test
problem [;. Assume that T{,;,, = Ti,1,, = (05T}, Tl,t,1,1+f,1 =
TZ,t,l,H—f,l =[O5T 1111+ Toarsa, 1+f = =Ty, 1+ f114f =0T 11 1+2f,
where (1 + f) is the index for the fjth transshlpment depot. Hence, all the
travel times for a particular test problem I; are defined in terms of T/, ; ;.
LetT! = (T{111, T3111 Ta111, Ti11,1) and let w' represent the initial storage
level associated with test problem I;. Note that the time required to travel
directly from a source to a destination is always less than the time required
to travel from that source to a transshipment depot plus the time required
to travel from the transshipment depot to the destination. Also, T/, ,, = 0
indicates that no vessels of type t are considered in test problem I;.

Note that the above test problems are those considered in partI, in addition
to incorporating three transshipment storage depots. Next, we define a set of
eight test problems, each involving two sources and two destinations. Let
(s, d¥) denote the source-destination pair associated with test problemI, for
k =1,...,10. Let I;; fori, j € {1, ..., 10} denote the test problem that
has the sources s’ and s/, and the destlnatlons d' and d/. For the sake of
consistency in notation, we let s = 1, 2 respectively index the sources s’
and s/, and we let d = 1, 2 respectively index the destinations d’ and d/.

TABLE B.3

Description of the Test Problems Having a Single Source and Destination

Test ProblemI;  H(days) T O CH! T: (days) w' (barrels)
I 30 1 4000 (5000 (10,0,0,0) 4,000,000
L 60 1 (2000  (2,0,00) (10,0,0,0) 7,000,000
I 60 2 (23000 (27,00 (10,20,0,0) 7,000,000
L 90 2 22000 (2300 (10,20,0,0) 7,000,000
Is 120 2 (400 (87,00 (20,30,0,0) 7,000,000
Is 120 4 (1111 (GA426)  (20,30,40,50) 7,000,000
I7 150 3 (2,52,0) (1,5,2,0) (20,30,40,0) 4,000,000
Is 180 3 (5,1,6,0) (2,7,9,0) (20,30,40,0) 7,000,000
Iy 210 4 (4214  (3214)  (20,30,40,50) 7,000,000
o 240 4 (5222 (1226  (30,40,50,60) 7,000,000
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TABLE B.4

Description of the Test Problems Having Multiple Sources and Destinations
Test Problem H (days) T o* CH*
NI I 30 1 (8,0,0,0) (10,0,0,0)
NI Ls 60 2 (4,3,0,0) (4,7,0,0)
NI3 Iys 90 2 (4,4,0,0) (4,6,0,0)
NI4 Is6 120 4 45,1,1) (11,11,2,6)
NIs Iz 150 3 (4,10,4,0) (2,10,4,0)
NIg Iss 180 3 (15,3,18,0) (6,21,27,0)
NI Ioo 210 4 (12,6,3,12) 9,6,3,12)
Nlg I10,10 240 4 (15,6,6,6) (3,6,6,18)

The direct source-destination and destination-source trips that test problem
I;,j incorporates are those described by test problems I; and I}, in addition to
four more trips, two that traverse from s’ to d/, and two others that traverse
from s/ tod'. Let Tt .5, denote the travel time associated with LEGy, 1 s,,4,5,
in test probleml; ;.

Note that for the sake of simplicity and ease in comparison between costs
associated with test problem I; j, and the summation of costs associated with
its component test problems I; and I;, we make the following assumptions:

a) We only combine test problems that have the same time horizon.

=T

,51,d,52 /51,4527
= T2 b, 10 @ 51m1lar fashlon,

b) If (s1, d, s;) is a feasible leg in test problem [;, then Tt
Tll ] = T1 t,s1,d,827 and TZ

t,51,d,52 t,s1,d,52

if (s1, d, s) is a feasible leg in test problem I}, then T, v e =T a6
Tl t,s1,d,50 Tl,t,sl,d,sz/ and TZ t,s1,d,50 — TZ,t,sl,d,sz‘

c) The travel times for trips that do not belong to either test problem I;
or I; (i.e., the trips that involve 1 and d,, or s, and d), are given as
fOHOWS T1t121 = T2t121 = Tltlll + 2 and T1t212 =Tylr10 =
Ti202+3.

d) The total number of self owned and chartered vessels of type ¢ that
are considered in test problem I; ; are respectively given by oy’

O} +0/ and CH!/ = CH! +CH{,fort ef{l, ..., 4} Accordmgly, we
denote O/ = (O] + O1/ 0i+ 0;, O3 + O3, O4 + O’) and CH"/ =
(CH} + CH], CHS + CHJ, CH} + CHJ, CH, + CH)).
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8.1 Introduction

In this chapter we discuss an application of integer programming which in-
volves the capturing, storage, and transmission of large quantities of data
collected during a variety of possible testing scenarios which might involve
military ground vehicles, cars, medical applications, large equipment, mis-
siles, or aircraft. The particular application on which the work in this chapter
is based involved the flight testing of military aircraft, however the process
and procedures discussed might well be applied to any of the other scenarios
mentioned above.

The flight testing of military aircraft is a time consuming and expensive
process. In some cases, for example with fighter aircraft such as an F16, the
aircraft’s weapon systems must be removed and replaced by test instruments.
In any event, data acquisition equipment must be installed in addition to the
standard operational equipment. These instruments are used to collect a large

195
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amount of information relating to things such as speed, altitude, mechanical
stress, pressure, radar, video, or perhaps internal communications data in
planned test missions. Typically, several hundred or possibly thousands of
parameters will be continuously sampled during the flight, with a subset of
these being telemetered (i.e., transmitted) to a ground receiving station as
they are measured. In planning for a test flight, the parameters to be trans-
mitted need to be multiplexed into a data structure called a data cycle map
(DCM), a sequence of digital words, each represented by a number of bits.
The individual parameters may vary by the number of words required to
store them and the length of each word. In addition, sampling rates may
also vary from one parameter to another. Data Cycle Maps are sometimes
referred to as Telemetry Frames or PCM Formats. A major reason for using
DCMs is that their synchronous nature provides an efficiency not attainable
in asynchronous packetized telemetry.

The way in which the data cycle map can be constructed is subject to certain
standards prescribed by the Inter Range Instrument Group (IRIG) [1]. The
essential requirements of the IRIG Class I regulations which are relevant to
this discussion can be summarized as follows. The basic building block of a
data cycle map is an array called a major frame whose rows are called minor
frames. Each row is a sequence of words, where all words in a map are of the
same size (typically 16 bits). Minor frames can be no longer than 512 16-bit
words in length, while major frames can consist of no more than 256 minor
frames. Each minor and major frame must start with frame synchronization
words and contain a frame ID. A data cycle map is a repetition of major frames
transmitted through the duration of the test. In building a data cycle map,
parameters must be placed on the map in accordance with their sample rates
and the number of data words they require. Perhaps the most constraining
feature of the DCM construction process is that each parameter must appear
periodically within the map. That s, there must be a constant interval between
successive occurrences of the same parameter in a data cycle map, even when
crossing minor and major frame boundaries.

This chapter discusses the process of data cycle map construction from the
data input phase to the generation of optimal telemetry frames. In Section 8.2
we discuss the calculation of key DCM design factors based on the nature of
the input data and the constraints imposed by the IRIG regulations. This step
typically gives rise to a number of different candidate solutions from which
we seek the most efficient. These candidate solutions are constructed to satisfy
many of the periodicity requirements, but their associated design factors do
not fully specify a solution and so feasibility cannot be guaranteed at this
stage. In Section 8.3 we use the DCM design factors calculated in Section 8.2
to formulate a set packing model that will either construct a feasible data
cycle map, or show that no feasible data cycle map can be generated for
the given design factors. Section 8.4 describes how the set packing model
is strengthened in order to speed up the solution process, while results and
conclusions are discussed in Section 8.5.
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8.2 The Data Cycle Map Structure

The construction of a data cycle map is a complex process. The complexity lies
not only in the number of parameters that need to be placed on the map, but
more particularly in the fact that, individually, they must be equally spaced.
Manual methods for constructing maps are faced with avoiding coincident
placements. This avoidance becomes more and more difficult as the map con-
struction process proceeds. As we will see, a coincident placement can always
be resolved by changing to some ‘next most efficient’ DCM design. Manually
constructed maps typically make this change many times, and consequently
contain a very high percentage of ‘empty” space.

Table 8.1 shows an example of a major frame in a data cycle map used to
transmit P = 5 parameters, A through E. This major frame consists of 1minor =
4 minor frames (rows), numbered 1 through 4, each of which contains S = 20
positions, labeled as ‘slot 1,” “slot 2,” ..., ‘slot 20". Each slot can contain one
16-bit digital word of data. (For IRIG Class I the largest legal word size is 16
bits, and this is the size we will adopt in all our data cycle maps.) During the
transmission of a minor frame, the contents of the slots are transmitted in the
sequence slot 1, slot 2, ..., slot S. The transmission of the 4 minor frames
in sequence constitutes a complete major frame transmission. The data cycle
map consists of repeated transmissions of these major frames. We note that
the major frame is the smallest repeating block in the data cycle map, and so
the major frame uniquely determines the full data cycle map.

If we examine this example, we see that the first 2 slots in each minor frame
are occupied by header data, while the third slot contains a minor frame ID.
(This ID can, in fact, be placed anywhere in the minor frame.) The rest of each
frame consists of either empty unused slots, or slots containing one of the

TABLE 8.1

A Possible Major Frame Consisting of #minor = 4 Minor Frames, Each with

S = 20 16-Bit Words, That Is Used for Transmitting P = 5 Parameters. Each
Minor Frame Takes 0.125 Seconds to Transmit, Giving a Transmission Rate of
Tminor = 1/0.125 = 8 Minor Frames per Second

S =20 slots

< >

1 23 456 7 8 910111213 14 15 16 17 18 19 20
o[ o[E]p][c[c[E] [ATAlE D[E E
il 2:[o, [, [ E[D[C]C[E] [B] [E D|E E
£ 3:[n, [ E] D] Cl ClE E D|E E
L4n[n|olE[D[C[ClE] [B] [E D|E E
< >

Transmission time = 0.125 seconds per minor frame
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TABLE 8.2

Summary Statistics for Each Parameter in the Data Cycle Map
Defined by Table 8.1 Assuming a Transmission Rate of 7minor = 8
Minor Frames per Second

Parameter A B C D E
Period (slots) 80 40 20 10 4
Occurrences per minor frame 0.25 0.5 1 2 5
Occurrences per major frame 1 2 4 8 20
Resultant sampling rate (samples/second) 2 4 8 16 40

5 parameters being transmitted. We note that each sampling of parameters
B, D, and E generates data that occupies just a single slot; we say their word
requirement is 1 slot. In this example, however, parameters A and C have a
word requirement of 2 slots, and so we see that each occurrence of these
parameters occupies 2 adjacent slots in the map. Perhaps the most important
observation is that each parameter appears with a regular period within the
major frame. For example, parameter D appears in every 10th slot in the
major frame, while parameter A appears just once in the major frame, and so
appears in the data cycle map with a period of 80 slots.

Let us assume that for this example, we have a transmission rate of 7minor =
1/0.125 = 8 minor frames per second, and so 2 complete major frames are
transmitted every second. By counting the occurrences of each parameter
in the major frame, we can compute the resultant sampling rates for each
parameter; this data is given in Table 8.2. In practice, the desired sampling
rates will be given as part of the input data, and we then have to design a
data cycle map that efficiently realizes (or exceeds) these desired rates for each
parameter.

We note that parameters A and B do not appear on every minor frame.
Parameters such as these are said to be sub-commutated. On the other hand,
parameters C, D, and E, which occur at least once on each minor frame, are
said to be super-commutated. The use of these terms relates to the fact that the
original flight test instruments were electro-mechanical devices which used
commutators to log the data.

In considering the application of optimization methods to data cycle map
construction we need to take into account our ability to manage the task in
terms of memory and computational requirements. For example, the construc-
tion of an entire major frame, with its many repetitions of minor frames, will
almost certainly require a model which is too unwieldy and unmanageable.
For this reason it will be necessary to decompose the problem into smaller
tasks whose solutions can be used as building blocks for solving the larger
problem. Our approach therefore will be to construct minor frames whose
replication can be used to define the entire major frame. In doing this it will
be essential that parameter sample rates are preserved and that parameter
periodicity is also achieved, along with other IRIG standards to be discussed
next.
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8.3 Designing a Minor Frame

The design of a suitable minor frame is dependent on several factors. Apart
from periodicity and minimum required sample rates, IRIG Class I conditions
also require that transmission bit rates fall within a minimum and maximum
level, each minor frame has two header synchronization words and a minor
frame ID word, there is a common word length for each parameter, minor
frames contain no more than 512 16-bit words, and that there are no more
than 256 minor frames in a major frame. Although we will not be concerned
with many of these operational issues it is important that they are taken into
account when designing a suitable minor frame. We will assume that the two
header words are placed at the beginning of each minor frame, but the frame
ID may be placed anywhere in the frame. Within these constraints the task
is to place the measured parameters onto a frame according to their required
sample rates and periodicity. As we will see the periodicity will depend on
the size of the frame. There are normally several options available on the size
of the frame, however it is our task to select the most efficient frame size.
The efficiency E of a major frame is the ideal number of parameter words
(excluding header words) transmitted per second divided by the actual total
transmission rate:

E— ideal parameter words transmitted per second

total words transmitted per second

For any data cycle map, the number of words (including unused words cor-
responding to empty slots) that are transmitted per second is given by the
product of the minor frame length S and the minor frame rate #minor. The
number of words that actually need to be transmitted per second for some
parameter p is given by r, x w,, where r, is the required sample rate (sam-
ples/second) for parameter p, and w), is the word requirement (number of
words that need to be transmitted per sample) for parameter p. Thus, the
efficiency E of a solution with minor frame length S and minor frame rate
Tminor Can be written

25:1 (rp x wp)

S x Yminor

E(S, "minor) = ’ (8.1)
where P is the number of parameters. We note that the required number of
words (in the numerator) does not include the header or frame ID words, even
though these are needed in the data cycle map, and so, under this definition,
100% efficiency can never be achieved. Alternative definitions are possible,
but they do not significantly change the nature of the optimization problem.

For any given set of parameters, the efficiency E depends on the minor
frame length S and the minor frame transmission rate 7minor. Thus we can
split our problem into a sequence of steps, being (1) to find a range of values
for S and #minor that define a number of candidate solutions, (2) choosing the
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most efficient solution from among these candidates, and (3) then attempt-
ing to find a placement of data parameters within the slots that satisfies the
periodicity requirements. Step (2) and Step (3) of this process may need to be
repeated if a proposed best candidate is shown to be infeasible. Note that to
keep the solution times manageable, we will restrict ourselves to candidate
solutions that possess a specific intuitive structure. Although we believe this
structure is likely to be possessed by an optimal solution, we cannot guarantee
that this is so, and so we cannot offer any formal guarantee of optimality.

We will show that once we have determined the minor frame rate 7minor,
it is reasonably straightforward to calculate a set of values for the minor
frame length S that give rise to a family of candidate solutions. These candi-
date solutions can be ordered from most efficient (but least likely to give a
feasible placement) to least efficient (but guaranteed to be feasible). We also
show how to calculate the number of minor frames #minor required per major
frame for these solutions.

To illustrate our process, we will demonstrate the construction of a data
cycle map for the following example.

Example 8.1
Consider P = 5 parameters with sample rates r, and word requirements w,
as shown in Table 8.3.

Our focus is on building minor frames, and hence we require that successive
minor frames be essentially the same in content. To achieve this, the trans-
mission rate of each parameter needs to be an integer multiple (or fraction) of
the minor frame transmission rate. This suggests that the minor frame trans-
mission rate should be some integer multiple of at least one of the required
parameter transmission rates. Transmitting a minor frame incurs the overhead
of transmitting header and ID words, and so lower minor rates are likely to be
better. Therefore, we choose to explore a set of candidate solutions in which
the minor frame transmission rate matches the transmission rate of at least
one of the parameters.

In the process we will describe, we assume that the r, values are in increas-
ing order, as is the case in Table 8.3. We now choose the minor frame rate 7 minor
to be equal to the transmission rate r, of some parameterq,1 < q < P, giving
minor = 4. (For ease of notation, we assume that parameter g is the first such
parameter with sampling rate r,, i.e., we break ties in transmission rates by
choosing the smallest g.) Note that some choices of g4 will be infeasible if they

TABLE 8.3
A 5-Parameter Data Set for Example 8.1

Parameter

A
Required sample rate (samples/second) r, 2 5 12 25 33
Number of words required per sample wy 1
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give a minor frame rate outside the minimum and maximum allowable bit
transmission rates; these values should not be considered.

Given this choice of the minor frame rate rminor, all parameters p with
p < q and hence 7, < 7minor Will be sub-commutated, appearing no more
than once per minor frame, while all parameters p > g implying r, > Fminor
will be super-commutated. If we were allowed to place each parameter some
fractional number of times on a minor frame, then parameter p would occur
7 p/Tminor times per minor frame, giving (possibly fractional) per-minor-frame
counts for the parameters of

r1 2 rp
7 AR 7
Tminor "minor Yminor

where the g th element rq/1y =1, all elements to the left of the qth are less than
1 and all elements to the right of the g are greater than (or equal to) 1. To illus-
trate this, suppose we choose g = 3 (i.e., q is our third parameter, parameter
C), giving rminor = 14 = 12, and hence defining the vector

2 12 2 1
{—i——SQ} { 12083275}

127127 12 12" 12 6’ 2.4’

To resolve the fractional per-minor-frame counts, we now need to perform
an integerization step that determines new integer counts for both the sub-
commutated and super-commutated parameters. These counts will be chosen
to ensure each parameter p is sampled at a rate no lower than its desired
rate 7. To ensure each super-commutated parameter p > g occurs at least
7p/Tminor times per minor frame, we specify a count of 1, = [r/"minor| per
minor frame for these parameters. Each sub-commutated parameter p < g
would, if fractional counts were possible, occur once every 7minor/7p minor
frames. To ensure we achieve a sampling rate no less than this, we require
that parameter p < g occurs once every ¢, = [Fminor/7p| minor frames. We
can combine these to characterize our parameter counts using the shorthand
vector

n= 7’1_171_1 n ! 17’1 n n
= 1—g1/ 2—82,..., q_l—g 1 ‘1"’1/ q+2,..., P .

Inour example, the integerizing of the per-minor-frame counts {1, 54, 1, 2. 083,
2.75} gives
n= n—ln—ln—ln—Sn—?)
- 1_6/2_2/3_14_15_ 7
with g1 = 6 and g, = 2. Thus parameter C will occur once in each minor
frame and parameter D three times, for example. Since the minor frame is
repeated at a rate of rminor = 12 times per second, parameter D will appear

14 X Tminor = 36 times per second, which is acceptable as it is no less than the
required sample rate of 25 per second. The value of n; = 1/6 for parameter A
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means that this parameter will occur only once in every g1 = 6 minor frames,
giving a realized sampling rate of 711 X rminor = 2 samples per second, exactly
matching the required rate.

The next step is to calculate the number of minor frames Mminor that will de-
fine a complete major frame. Recall that #2minor is simply the number of minor
frames we have to observe before we see a repetition in the data being sent.
If sub-commutated parameter p, p < g occurs once every ¢, minor frames,
then the number of minor frames required is in general given by

Nminor = LCM(glf 82, oy gq)/

where the LCM() function computes the least common multiple of its argu-
ments. This value will guarantee that the sub-commutated parameters can be
periodically placed on the minor frames. In our example g1 = 6, g» = 2, and
hence fminor = LCM(6, 2) = 6. Thus, parameter A must be placed in any one
of the 6 duplications of the minor frame which will make up the major frame.
Parameter B must be placed in the same slot in every second minor frame,
and so will appear 3 times in the major frame.

We next need to calculate the number of slots S required in the minor frame
to ensure we can feasibly place all the parameters onto the data cycle map.
We said earlier that there is a family of possible values of S, where smaller
values of S from this family are more efficient (i.e., more of the minor frame
contains parameter data), but are less likely to permit a feasible parameter
placement (i.e., fewer slots are available to avoid coincident placements be-
tween parameters). Our approach is to initially try a small value for S, and
then, if this does not allow a feasible parameter placement, keep increasing
S until feasibility is achieved. This process will terminate by either finding a
minor frame length that is feasible, or by generating a bit transmission rate
that exceeds the IRIG standards.

In our search for the best S, we need some sensible lower bound from
which we can start. A simple lower bound on S can be calculated by ignoring
the periodicity requirements, and simply counting up the number of data
words that need to be transmitted per minor frame. Each super-commutated
parameter p > g has to occur 1, times per minor frame, thereby occupying
a total of n,w), slots. Thus, the space required in each minor frame by the
super-commutated data is given by

P
super __
S = Z npwp.
p=q

For our example, we have S5'P¢" = (1 x 1) + (3 x 1) + (3 x 2) = 10. In addition
to this, we need to reserve space for the sub-commutated parameters to ensure
there are no clashes between them and the other parameters. We note that
different sub-commutated parameters can share the same slot position in the
minor frames as long as we never need to transmit both parameters in the
same minor frame. Thus, in general, we need to solve some form of set packing
problem to determine how best to allocate the sub-commutated parameters to
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slots and minor frames. However, a simple lower bound based on slot usage
used can be easily calculated as

q-1

AGsub __

5% = anw,,.
p=1

Summing these values, and adding another 3 words for the header and ID
words, gives a lower bound on the minor frame length S:

gl — SAiUb 4 3 4 gsuper,

For our example (Table 8.3), we have 5" = [1 x 1+ 1 x 1] =1, S5 = 10,
andso $; =10+3+1=14.

We can strengthen this bound by considering the periodicity requirements.
Each super-commutated parameter p > g must appear periodically in the
data cycle map, and so the minor frame length must be some multiple of each

super-commutated parameter’s per-minor-frame count 7,. Thus, we have
S=kLCM(np, p=q,9+1, ..., P), (8.2)

for some positive integer k. Thus, the lower bound $; can be improved by
increasing it until it is a multiple of LCM(n,, p =q,9 +1, ..., P), giving a
new bound of

gzZiC\zLCM(I/lp,p:q,Q‘f‘l/ ..., P),

ie., wehave putk = 122 in (8.2), where k » is the smallest integer value giving
S, > §;. For our example, LCM(n3, n4, n5) = LCM(1, 3, 3) = 3, and so we in-
crease ourbound from $; = 14to $; = 15. We note, as an aside, that increasing
n, for some parameter p > g could actually allow us to decrease the minor
frame length S if it decreased this LCM value. This is not something we have
considered, but is left as a subject for future research.

We start our search by putting k = k 5, S =5, and then try to place all the
parameters into a major frame consisting of #minor minor frames of length S.
We use integer programming to solve this problem; further details are pro-
vided in the next section. If the integer program determines that no feasible
solution exists, then we increase k by 1 in Equation (8.2), thereby increasing
the minor frame length S to the next multiple of the LCM. This process is
repeated until a feasible solution is obtained.

In Table 8.4 we show that it is possible to place all five parameters into
an (S X #minor) = (15 x 6) major frame constructed from minor frames de-
fined by Table 8.5, and thus we have a feasible solution to our problem. The
key parameter statistics for this solution, including the parameter periods
my, = S/n,, are shown in Table 8.6. To summarize, we have 6 minor frames,
each containing 15 words. Each word contains 16 bits. Parameter A will be
placed in only one of these minor frames (any one will do), parameter B will
be placed three times, once in every second minor frame, while parameters
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TABLE 8.4

The Full Major Frame for the Example 1 Problem Defined in Table 8.3.

In this Data Cycle Map, We Have #iminor = 6 Minor Frames per Major Frame,
a Transmission Rate of #minor = 12 Minor Frames per Second, and S = 15
Slots per Minor Frame

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1. Iy hp, D E E ID C D E E B D E E
20 Iy hp, D E E ID C D E E A D E E
33 I hh,, D E E ID C D E E B D E E
4 hp, D E E ID C D E E D E E
5 I h, D E E ID C D E E B D E E
6: I h, D E E ID C D E E D E E

C, D, and E will be placed 1, 3, and 3 times respectively in each minor frame at
appropriate positions that ensure periodicity. In this solution, minor frames
are transmitted at the rate of rminor = 12 times per second. Using Equation
(8.1), the efficiency E (S, rminor) Of this solution is given by E (15, 12) = 110/
180 = 61.1%.

The above process assumed we started by calculating a lower bound of
S1 = S5 43 4 SsUPer, In practice, we do not attempt to optimally allocate the
sub-commutated parameters, and so we do not use §§“b. Instead, we replace
the lower bound $5%° by the number of slots that must be reserved in each
minor frame for a heuristically generated parameter placement, which we
construct as follows. Let D** be the number of distinct sub-commutated pa-
rameters, where we say two such parameters are distinct if they have different
gporw, values. Let {(¢;, wy), d =1,2, ..., D"} be the set of distinct (&pwp)
pairs found in the sub-commutated parameters, and letn), d = 1,2, ..., D**
be the number of sub-commutated parameters having (g,, w,) = (g7, wy)-
A feasible allocation of the sub-commutated parameters is to pack the distinct
parameters into their own slots within the minor frame. Therefore, the num-
ber of minor-frame slots that we reserve for sub-commutated parameters is

given by
Dsub ,
n
>[5 i
i—1 | 8d

In practice, we replace $§*° by this value.

TABLE 8.5

One Possible Minor Frame Configuration for the Example 8.1 Problem
Defined in Table 8.3. Note That Slot 11 Is Reserved for Sub-Commutated
Parameters A and B Who Share this Slot Position in the Major Frame

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
hy hy D E E 1D C D E E AB D E E
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TABLE 8.6

Sampling Rates for Each Parameter in The Data Cycle Map Defined
by Table 8.5 Assuming a Transmission Rate of rminor = 12 Minor
Frames Per Second

Parameter A B C D E
Period mp 90 30 15 5 5
Desired sampling rate p 2 5 12 25 33
Occurrences per minor frame 1y 1/6 1/2 1 3 3
Resultant sampling rate 1pTminor 2 6 12 36 36

The process described above for Example 8.1 can be carried out for all pos-
sible values of r; and an efficiency value E calculated for each. A number of
factors may influence the value of E. These include the degree of rounding
up required to determine the 1, values leading to over-sampling, the gap be-
tween the minimal slot usage requirement S, and the minor frame length S,
required to satisfy periodicity, and any increases in k in Equation (8.2) required
to permit a feasible parameter placement.

For very large data sets all or many of the values for S may violate the
maximum minor frame length of 8192 bits. In this situation a simple de-
vice for restoring legality is to introduce header splits into the minor frame.
In this situation the header can be thought of as another parameter with a
sample rate determined by the required number of splits. For example, sup-
pose that the most efficient frame design gives a frame length of 842 16-bit
words, including the original header of two words and a frame ID of one
word. We introduce another two word header and treat it as a parameter
with a sample rate of 2. The additional 2 words can be added to the origi-
nal nominal minor frame length which will in most cases still give a frame
length less than or equal to 842. If necessary the revised minor frame length
S may need to be adjusted up by adding another LCM factor of the super-
commutated parameters. When the new S value is computed (assume for
the sake of this argument this is still 842), our original minor frame of length
842 can now be replaced by two minor frames each of length 421. Periodic
placement of the header will guarantee that it is placed at the start of each of
these two new frames. The header splitting strategy will work as long as the
total number of minor frames does not exceed the limit of 256. If this limit
is exceeded, the data set is too large to conform to IRIG class I conditions for
this minor-

Preprocessing of the data will examine all options for 7minor and their rela-
tive efficiencies. Under normal circumstances the option which has the high-
est efficiency will be chosen, and we will then be able to create a feasible
minor frame for this configuration using the integer programming model
discussed next. Sometimes, however, the integer program will fail for the de-
sired option, and so k in (8.2) will need to be increased by 1, changing that
option to its next most efficient configuration. The new most efficient option
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TABLE 8.7

A Data Set for Example 8.2 with 4 Parameters
Parameter A B C D
Required sample rate r; 1 3 3 5
Number of words per sample wy, 1 1 1 1

will then be solved using integer programming, with this process being re-
peated until a feasible solution is found. Example 8.2 shows the results of this
process.

Example 8.2
Consider the data given in Table 8.7.

Table 8.8 shows all possible rates, minor frame lengths, and efficiencies.
Of the three possible frame rates the most efficient is a single frame with
efficiency 80%.

The natural choice in this case is a frame rate of 1 with no sub-commutation.
The periods my, = S/ nyp for each parameter p are given by {15, 5, 5, 3} with a
space of 2 words reserved at the beginning for the header and an additional
space for the frame ID. It is easy to show by construction that placement of
the parameters on this frame is impossible without avoiding coincidence.
In this case we are forced to try a less efficient frame construction with
S =2xLCM(, 3, 3, 5) = 30. This S = 15 example fails because of the relative
prime relationship between the periods for parameters B and D (i.e., because
these periods have no factors in common other than 1). In fact it can be shown
[2] that a sufficient condition for the coincidence of parameters i and j in
the frame is that periods m; and m; are relatively prime. Panton et al. [2]
explore the fact that other more complex relationships between the peri-
ods also lead to coincidence. An interesting parallel with juggling is also
discussed.

In the discussion of the optimization models used to generate feasible place-
ments which follows, we will assume that k in equation (8.2) has been in-
creased to give an S for which no pair of parameters have periods that are
relatively prime.

TABLE 8.8

Alternative Frame Rates and Efficiencies
for Data from Table 8.7

Option q Fminor S E
1: 1 1 15 80%
2: 2 3 8 50%
3: 4 5 7 34%
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8.4 Optimization Models

We now turn to the problem of finding a feasible placement of the parame-
ters within a minor frame of length S with desired parameter periods n,. We
assume that the data set has been modified by removing all sub-commutated
parameters, and inserting in their place a set of new ‘aggregated’ parame-
ters, each with per-minor-frame count n, = 1, that represent the packed sub-
commutated parameter solution generated by our heuristic.

Three models were considered for the generation of feasible placements.
The first considered was an Integer Programming formulation in which pa-
rameters were directly assigned to a minor frame with all desired properties.
In this model welet x,; be a binary decision variable whose valueis 1 if param-
eter p starts at position s on the minor frame and is 0 otherwise. This method
proved to be too slow to be operationally useful. It is well known [4], that
although this modeling approach is economic in terms of its proliferation of
variables, the structure of the polytope is not conducive to finding solutions
efficiently. The second approach considered to generate feasible parameter
placements involved the use of Genetic Algorithms. A complete description
of this model can be found in [3].

8.4.1 Generalized Set Packing Model

The third approach was to employ a set packing model in which the columns
in the model represent all feasible placements for each individual parameter.
Having determined the length of the minor frame S we can now enumerate
all possible placements for a given parameter on this frame. Each placement
pattern will be referred to as a four. For example, consider the 4th parameter,
parameter D in Table 8.6, which we require to appear n4 = 3 times in a minor
frame of length S = 15 with a period of m4 = 5. This parameter will have the
following tours as shown in Table 8.9.

Our problem is to select one tour for each parameter so that each slot con-
tains no more than one parameter. Generation of the parameter tours auto-
matically ensures that they are periodic. Consider the following model.

Define the binary variable x, ; to be 1 if column j is selected for parameter
p, and 0 otherwise. Our objective is then to:

[DCM] Maximize Z Xp,
P
subject to Z“s,(p,j)xp,j <1 Vs,

pj
pr,]‘=1 vYp,
j

Xy, j binary V p, j.
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TABLE 8.9

Enumeration of All Tours for a Parameter
with Period m), = 5 in a Frame of Length
S=15

Tour

1 2 3 4 5

slot 1 1 .

slot 2 . 1 .

slot 3 . . 1 .

slot 4 . . . 1 .
slot 5 . . . . 1
slot 6 1 .

slot 7 . 1 .

slot 8 . . 1 .

slot 9 . . . 1 .
slot 10 . . . . 1
slot 11 1 .

slot 12 . 1 .

slot 13 . . 1 .

slot 14 . . . 1 .
slot 15 . . . . 1

where as,(p, j) = 1 if the jth column for parameter p covers slot s and 0 other-
wise. Each row in the first block of constraints represents a slot in the minor
frame. The second block of constraints ensure that only one column is selected
from each parameter set. This is a feasibility problem, and so the objective
function is essentially irrelevant.

Savings in the number of variables can be made by noting that in the genera-
tion of the parameter tours there is considerable duplication since parameters
with the same minor frame sample rate and word requirements will have iden-
tical tour sets. Parameters can be grouped into parameter classes and tours
generated for each class. In this case the constraints which ensure that only
one parameter is selected from each set are modified so that the appropri-
ate number are selected from each class. Once the optimal solution is found,
members of each class are assigned arbitrarily to each tour and the minor
frame map reconstructed.

An interesting feature of this model is that we know a priori what the
optimal solution objective value is, since we know that all P parameters must
be allocated. This enables us to set the tightest possible bound on the opti-
mal solution, thereby greatly reducing the size of the branch and bound tree.
Two other observations are important. First, when these models are solved
using CPLEX™ 7.0, [5], we have the option of seeking feasible rather than
optimal solutions since in this case any feasible solution is automatically op-
timal. Second, Dual Simplex is used as the default linear program (LP) solver,
however when the number of columns in the model becomes significantly
greater than the number of rows we switch to the Primal LP solver. Both of
these strategies contribute significantly to reductions in execution times.
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8.5 Strengthening the Set Packing Integer Programming Model

In addition to the issues discussed at the end of the last section, the nature of
this problem lends itself to the addition of sets of clique inequalities which
will considerably tighten the LP bounds and hence accelerate the solution
process. To summarize the requirements, we require that the pth parameter,
p=12, ..., P,beregularly spaced in the minor frame, and appear 1, times.
We assume thatn,, p =1,2, ..., P, are all positive integers, and the n, val-
ues are relatively prime, meaning that their greatest common divisor is 1.
(This assumption is consistent with the 1, values defining relative, not abso-
lute, transmission rates.) We note that to ensure periodicity, we have a minor
frame length S = kLCM(n,, p = 1,2, ..., P) where k € {1,2,3, ...}. This
means that parameter p will occur every m, = S/n, slots in the minor frame,
where m, is the period of parameter p. We show in Appendix A , Theorem 8.1
that

LCM@m,, p=1,2, ..., P)=S.

The set packing integer programming model [DCM] for this problem has
S ‘slot’ constraints ensuring no more than 1 parameter occupies any slot, fol-
lowed by P generalized upper bound (GUB) constraints that ensure that, for
each parameter, just one possible placement option from those that are legal
is chosen. We will assume, until Section 8.5.2, that all w, = 1. Model [DCM]
can be written in the form

[DCM] Maximize cTx
subject to Ax <1
Gx=1
x € {0,1}.

For ease of notation in this section, we number the slots, and the corresponding
slot constraints, from 0, giving slot constraints 0, 1, 2, ... , S—1. A parameter
p with period m, has m, columns, and so we can consider the x vector to be
partitioned by parameters in the form x = (Xp,0, Xp,1, -+ -, xp,mp,l), (r =1,
2, ..., P). Variable x, ; = 1 if and only if parameter p occupies slots j, j +
My, j +2my, ..., j+ (np — Dm,. In Ax < 1, we have A = (4, () with
rowss = 0,1,2, ..., S — 1 (one per slot) and columns indexed by (p, j),
p=12...,P,j=0,1,2, ..., m, —1where

1 sefjj+my j+2my ..., j+ 0y, —Tmp}

Gs,(p.j) = .
0 otherwise.

Thatis, column (p, j) has1’sineverym,’throw starting withrow j, indicating

that if column (p, j) is selected, parameter p will occupy every m,'th row
starting with row j.
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The slot constraints are of the form Z§=1 Z'}Zgl as,(p, pXp,j < 1,8 =0,1,
2, ..., 5 — 1. From the definition of a5, j), we see that for any parame-
ter p and any slot s, there is one and only one possible value of j which
results in s (p, jy = 1, i.e., in slot s containing parameter p. This occurs when
s mod m, = j. Hence, we see that the slot constraints Ax < 1 can be written
in the form

P
S Xpsmodm, <1, s=0,1,...,5-1 (8.3)
p=1

The GUB constraints Gx = 1 specify that exactly one placement is chosen
for each parameter, where g; (,,j) = 1fori =p, j =1,2,...,m, 1 and
i (p,j) = 0 otherwise. The Gx = 1 constraints can also be expressed as

mp—1

> xpj=1 p=1..,P
j=0

8.5.1 Pairwise Slot Constraints

In this section, we show how we can derive new pairwise slot constraints
from (8.3). These are examples of clique inequalities, and as such could be
discovered using normal conflict graphs, for example. However, we present
an explicit representation of the constraints, thereby allowing the discov-
ery process to be bypassed. We also present a physical interpretation of the
inequalities.

Letus consider two parameters, parameter p € {1,2, ..., P}and parameter
q€{1,2, ..., P}, p # q. Dropping the other parameters from (8.3) gives the
relaxed constraint:

Xp,s mod m, + Xq,s mod 1, <1, (84)

foranyrows € {0,1,2, ..., 5—1}.

It is useful, at this stage, to define GCF,; = GCF(m,, m;) to be the greatest
common factor (i.e., greatest integer divisor) for m, and m,;. We can then
define m), = m,/GCFp, and m;, = m, /GCF,;, and we note that m), and m; are
relatively prime (i.e., their greatest common divisor is 1). The ratio m’p :m[7
defines the interaction between parameters p and g in their slot usage. We also
note that the least common multiple of m, and m, is given by LCM(m,,, m;) =
GCF pqm,my.

Recall that S = LCM(m;, j = 1,2, ..., P) = LCM(mm,, my). For all values
ofs =0,1,...,5—1wheres > LCM(m,, m;), we have both s mod m, = s’
mod m, and s mod m,; = s’ mod m,; where s’ = s mod LCM(m,, m;). There-
fore, there are only LCM(m,, m,;) unique equations defined by (8.4), being
those given by s = 0,1, ..., LCM(m,, m;) — 1. Consider every m,’th of
these constraints, starting with some constraint row (slot) 7, 0 <r < m, — 1.
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There are LCM(m,, my)/m, = (GCFp, m/pm;)/(m/pGCqu) = m; of these con-

straints. We can sum these 1, constraints to give:

r+(m,’1—1)mp
’
§ (xp,smodmp +xq,smoqu) qu/ r=0,1,... /mp_ll
S=1, 141y, r+2my, ...
r+(m;7—1)m,,
} : /
= (xp,r'i‘xq,smoqu) qu/ r =O/ 1/ /mp_ll
S=r,r+my, r+2my,, ...
r+(m’q—1)m,,
’ /
= MyXp,+ E Xg,smodm, < Mg, r=01...,m—1,
S=1, 14y, r+2m,, ...
m‘;fl
/ /
= qup,r + § Xq, (r+jmy) mod my =< mq/ r=0,1,..., my — 1,
j=0
m,’]—l
’ ’
= My Xp,r + Z Xg,r mod GCF+jGCE,, = My, r=01...,m—1
j=0

(8.5)

where the last step follows from Theorem 8.3 in Appendix B.

This equation has an intuitive physical interpretation that follows from
adopting parameter p’s view of the minor frame. This parameter’s slot usage
repeats every m, slots, and so from this parameter’s viewpoint there are only
m,, different ‘positions of interest’. Each of these m, positions is realized as
np equally spaced slots in the minor frame. (Because of repetition, only
of these have a unique interaction with parameter 4. However, the equation
is perhaps more intuitive if thought of as summing over repeated sets of 11,
slots, giving 1, slots in total.) By summing our equations, we are counting
how many of the slots used to realize this position are occupied by parameters
pand g, for each of these m, positions of interest. The equation above specifies
that the number of slots occupied in total by the parameters p and g cannot
exceed the number of slots available.

Equation (8.5) can be strengthened by noting that if parameter 4 occupies
one of p’s positions of interest even just once in the minor frame, then pa-
rameter p cannot occupy that position of interest without a clash occurring
somewhere in the minor frame. This motivates the following lifting of the
above equations.

Recalling that all the variables are binary, and only one x,, ; variable for pa-
rameter g can be at value 1, we see that the constraints in (8.5) can be strength-
ened by increasing the coefficients on the x; r mod GcF,, + jGcF,, Variables from
1 to m;, and then dividing through by m; to give

,
my -1

Xpr + Z Xg,r mod GCF,,+jGCF,, <1, ¥=0,1, ... m, —1. (86)
=0
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This expression gives m, equations. We can form a set of new constraints
from (8.6) through appropriate summation of every GCF, "th of these equa-
tions. For each valueofe,e =0, 1, ..., GCF,; — 1, we can sum the equations
in (8.6) defined for r = e + jGCF,;, j = 0,1,2, ..., m, — 1, where each

4
summation includes m, /GCF,; = m), equations. This gives:

e+(m’p —1)GCF, m,’7 -1
/
Z Xpr + Z Xg,r mod GCFyy+jGCFy, | = 1M,
r=e,e+GCF;,e+2GCF )y, ... j=0
e=0,1,...,GCFp, — 1
my,—1 my—1
/
= Z Xp,e+kGCF,, T+ Z Xg,(e+kGCF ;) mod GCF,y +jGCEy, | = 1M,
k=0 j=0
e=0,1,...,GCFy —1
m,—1 my—1
/
= Z Xp,e4+kGCF,, + Z Xg,e mod GCF,,+jGCE,, | = M,
k=0 j=0
e=0,1,...,GCFp, — 1
m’p—l m,’J—l
/ /
= Z Xp,e+kGCE,, + 1M, Z Xg,e+jGCE,, <M,
k=0 j=0

e=0,1,...,GCFy — 1.

As before, the GUB constraints allow us to lift these constraints by increasing
the coefficients on x . yxccr pq from 1 to m’p, and then dividing through by m;]
to give

m),—1 my—1
Z Xp,e+jGCF,, + Z Xg.e+jGCF,, <1,6=0,1, ..., GCFy; — 1,
j=0 j=0
o B
= Z Xp,e+jGCF(m,,my) + Z Xq,e+jGCF(mp, my) <1
=0 j=0
e=0,1, ..., GCF(m,,, mg) — 1. (8.7)

where o = m,/GCF(m,, m;)—1,and g = m,; /GCF(m,, m;)—1. Equation (8.7)
gives a set of valid inequalities for each pair of parameters. These can be used
to strengthen the relaxed linear programming form of [DCM], thus making
it easier to solve to integrality.

8.5.2 Multi-Word Parameters

We now consider a model where the number of bits required to transmit a
parameter exceeds those of a slot, and so the parameter occupies more than
one consecutive slot in the data cycle map.
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Let us assume that parameter p requires w, consecutive slots (words)
each time it is transmitted. Clearly, we require the number of words to be
less than the parameter’s period 1, i.e., w, < my. The jthcolumnx, ;, j =0,
1, ..., m, — 1, for parameter p now defines the case where parameter p oc-
cupiesslots h, h +1, ... ,h+w, —1forallh = j, j+mp, j+2m,, ..., ] +
(ny, — Dymy,.

To keep the model form consistent with the w, =1 case, we include columns
in the model in which a parameter occupies ‘consecutive’ slots that wrap
around from the end of the frame back to the beginning. For example, some
parameter p with w, = 3 might occupy the slots S —1, 0, and 1. Any solution
like this can be interpreted as a valid solution by renumbering the slots so
that slot 0 occurs at the start, not the middle, of the parameter’s slot usage.
Alternatively, if reducing symmetry in the formulation is important, then
variables such as these can be forced to zero using additional constraints that
leave the underlying model form intact.

In the w, = 1 model, slot s was used by parameter p if parameter p was
placed in position j = s mod m,, i.e., if slot j was the first slot occupied by
parameter p. In the new model, the same slot s will be used if parameter p
is placed in position j, or any of the w, — 1 preceding positions. Thus, the
constraint for slot s, Equation (8.3), now becomes

P wp—1

Z pr,(smodmp)—h 51/ 5 =0/ 1/ ~-~/S_1/
p=1 h=0

where we assume modulo m, wrap around for x, ; in the sense that x, _; =
xp,mpfl/ Xp,—2 = xp,mp72/ etc.

Proceeding as before, we relax this constraint to consider only the two
parameters p and g, giving

wpy—1 wy—1
Z Xp, (s modm,)—h + Z Xg,(s mod my)—h = 1, s=01...,5-1
h=0 h=0

We can then add the equaticlms as before, noting that each occurrence of
Xp, jmodm, 18 replaced by E,'f:”g Xp, (jmod my)—hs and similarly for x;, j mod g This
gives the following general form of Equation (8.5):

wp—1 m,;—l wy—1

/ /
E My Xp,r—n + § E Xg,(- mod GCF, +jGCF,—h < Mg, T =0,1, ... my—1.
h=0 j=0 h=0

(8.8)

Before we lift this equation, we note thatif w, < GCF,,, then each x, ; variable
that appears in the summation appears exactly once. If w, = GCF,;, then,
by considering the r = 0 case, we see that the second summation includes
variables x; ; forall k € {jGCF,; —h :j =0,1, ... ,m; -1;h=0,1, ...,
GCFp; — 1}. Given m; GCF,; = m,, we see that this includes all of the m,
possible variables defined for parameter 4. In this case, the GUB constraint
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on the x, x variables implies 2725 12;:151%7,@ mod GCF,, +GCF,,)—h = 1 for all r,
and so x,x = 0V k is the only solution to this equation. Thus, there is no
feasible solution to the problem if w, = GCF,,;, or indeed if w; is larger than
this, implying that physically parameter q requires more consecutive slots,
and so the problem is more tightly constrained. The same argument applies,
by symmetry, to w,, and so we see that a feasible solution can only exist if
w, < GCFp; and w; < GCF,;. From now on, we will restrict ourselves to
this case.
As before, we proceed to lift Equation (8.8), which gives:

wy—1 Wl’ -1 wy—1
Z Xp,r—n+ Z Z Xg,r mod GCF,y+ jGCFpy —h = 1, r=01,..., mp_l- (8.9)
j=0 h=l

This expression gives m, equations. As before, we can form a set of new
constraints from (8.9) through appropriate summing of every GCF,,'th of
these equations. For each valueofe,e =0, 1, ... , GCF,; — 1, we can sum the
equations in (8.9) defined forr = e + jGCF,;, j =0,1,2, ..., m;] — 1. Each
summation includes m, /GCF,; = m), equations. This gives:

B+(m’p—1)GCqu wp—1 m —Tw;-1
/
E g Xp,r—n + g E Xg,(r mod GCFpg +jGCFpg)—h | = 1M,
r:B,B+GCqu,B+ZGCFW,m h=0 j=0 h=0
e=0,1,...,GCF, -1
m/,,*l wp—l m -1 wq—l
/
= E E Xp,e+kGCFpq -1 T+ E E Xg,(e+kGCF pg) mod GCF pg + jGCEyg —h | = MM;,
k=0 j=0 h=
e=0,1,...,GCF, -1
my=1 fw,-1 —Twg-1
/
= E Xp,e+kGCFpg—h E g Xg,e mod GCFpq+jGCFpg—h | = 1)y,
k=0 j=0 h=l
e=0,1,...,GCFy —
m’p—l wp—1 m,’q -1 wg—1
’ ’
= Xp,e+kGCFyq—h + 1M1, E E Xy,e4jGCFpg—h = M,
k=0 h=0 j=0 h=0

e=0,1,...,GCF,, —

Using the same arguments as before, we can lift the coefficients to give:

m’p—l wy—1 m; -1 wy—1
Z Z Xp,e+kGCFpy—h Z Z Xg,e+jGCF,—h <1, e=0,1, ..., GCFp, —1.
k=0 h=0 =0 h=0

Thus, if we have w, < GCF,; and w; < GCF,,; then we can strengthen our
model using the above valid inequalities. If the restrictions on w, and w, are
not satisfied, then no feasible solution exists to the problem.
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8.6 Results and Conclusions

A total of 1870 data sets representing bit requirements ranging from 640 to
1119968 bits per second were selected for analysis from data sets provided by
the United States Air Force.

All results were generated on a PC with clock speed 733 MHz. and run
under Red Hat Linux v6.2.

In order to benchmark the results obtained using the set packing approach
we have provided two sets of results which compare both the relative effi-
ciency (E) of the major frames enerated and the speed of execution, with
commercial software AutoTelem ™™, [6]. AutoTelem uses a local search proce-
dure to produce near optimal data Cycle maps. The relative efficiencies of our
set packing approach and AutoTelem™ are displayed in Figure 8.1. These
graphs represent the average efficiency as a function of the size of the in-
put file required bits. All results were sorted in order of increasing required
bits and the efficiency values averaged over batches of size 100 (except for
the last batch which is of size 70). The median batch size is shown on the
figure for each batch. It can be observed that for batches in the mid to high
range of required bits the set packing approach generally produces solutions
with a higher efficiency than for AutoTelem™, whereas for data sets in the
low to mid range of required bits the reverse is true.

A comparison of execution times is shown in Figure 8.2. The results in
this case are also sorted in order of increasing required bits and times are
averaged over batches of size 100 It is clear that the set packing approach
executes faster than AutoTelem™ across the range of data set batches. Both
algorithms have low execution times in absolute terms compared with current
frame generation practice.
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Average efficiency for each algorithm, over batches of 100 data sets which have been ordered in
size of increasing bit requirements.
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Average execution time in seconds for AutoTelem™ and the set packing approach, over batches
of 100 data sets which have been ordered in size of increasing bit requirements.

Wehave described a fast and flexible method for the generation of Telemetry
Frames or Data Cycle maps which has provided high efficiencies for large op-
erationally realistic data sets. The method is flexible in the sense that changes
in frame construction rules can easily be implemented using this modeling
approach. Execution times are sufficiently small to suggest that even larger
data sets can be accommodated in the future, and are several orders of mag-
nitude lower than times taken at present to create Telemetry Frames using
computer assisted methods. The set packing approach has also been shown
to compare very favorably with the commercial software AutoTelem™ both
in terms of speed and efficiency.
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Appendix A: LCM Proof

In thisappendix, weshow that LCM(m,, p=1,2, ..., P) = Swhere S =k LCM
(np,p=12,...,P),kef{l,2,3, ...},and my, = S/n,.

LEMMA 8.1

Consider the calculation of LCM(ny,, p=1,2,...,P). Let n,= Hzegzrzp,
p=12, ..., P, where Q = {2,3,5, ...} is the set of prime numbers, and r} <
{1,2,3, ...} is the integer power associated with z € Q in the prime factorization of
ny. (For example, if we have ny = 60 = 223'5, thenr} = 2,1} = 1,17 =1,r] =
0,...) By definition, we have LCM(n,, p = 1,2, ..., P) = [,eqz™ =12 oprd

LEMMA 8.2
LCM(kxnp,pzl,Z, ...,P):kaCM(np,pzl,Z, .., P)forkefl,2,
3, ...}

PROOF This follows easily from Lemma 8.1 by considering the prime fac-
torization of k and then rearranging. W

THEOREM 8.1
LCM(mp, r=12...,P)=S

PROOF From the definition m, = S/n,, we need to show that LCM(S/n,,
p=12..,P) =5 where S = k LCM(n,,p = 1,2, ..., P) for any
k e{1,2,3,4, ...} Firstly, we note thatall S/n,, p=1,2, ..., P are strictly
positive integer values, and so the LCM is well defined. As in Lemma 8.1, we
construct prime factorizations giving n, = HZEQZVZV ,p=12, ..., P, where
Q is the set of prime numbers, and r/ € {0,1,2, ...} is the power associ-
ated with z € Q in the factorization of 1,. Similarly, let S = T1.cqz"%, where
{r. = maxy_1, .., prf, z € Q} defines the prime factorization of S. We note
that because the n, values, p = 1,2, ..., P are relatively prime (i.e., their
only common divisor is 1) we have the key observation that

min rf=0VzeQ. (8.10)
re{l,2, ..., P}
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Using Lemma 8.1, we have

S 'z
LCM(—,p=1,2, P) =LCM<HZ¢ZV,;9=1,2, p)

r
np Hzer z=
_P
=LCM<HZG "op=12 ... ,P),
zeQ
P
max,— T,
— H z p: 1,2,..A,P( z z ),
zeQ
. »
r,—min,_ p 1}
— sz P12 P12
zeQ
r
11+
zeQ

where the last simplification follows from (8.10). As S = I,cqz", the result is
proven. M

Appendix B: Equivalency Proofs

In this section, we prove several equivalencies between sets of values.

THEOREM 8.2
The set {(jm/p)modm;,, j=01,..., m;, -1}=1{0,1,2, ..., m; — 1} when m’p
and my are relatively prime.

PROOF We note that this set has m’ values, each between 0 and m’q -1
inclusive. We will show, by contradiction, that these values are all unique,
and hence the result will follow.

Assume that two of these values are equal, i.e., (jm,)mod m; = ((j +
k)m’p)mod m; = ([(]'m/p)mod m;] + [(km/p)mod m;])mod m;, where inte-
gers j and k satisfy 0 < j < j + k < m/. For this to be true, we require
(km’,) mod m[’]= Q, implying knm), is an integer multiple of 11 ,.i.e., km/E = k'm;
for some positive integer k’. But, because m/, and nz, are relatively prime, the
smallest value of k for which thisis true is k = m, (from LCM(m’p,m{;) = m’pm,;
when ', and m/, are relatively prime). This value of k is outside the range per-
mitted, and thus we have a contradiction. Therefore, all the values, between
0 and m[’] — 1 must be distinct, and so the result follows. R

THEOREM 8.3

The set of indices R={(r + jmp)modm,, j =0,1, ..., m/q —1}={r,r, ..., rmg}
with riy1 = 1; + GCFyy, and r1 =rmodGCF,, where GCF,; = GCF(m,, my),
the greatest integer divisor common to m, and mg, and we define m', = m,/GCFp,

and m; = my /GCF,.
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PROOF We observe that (r + jm,) mod m, = (r +[(jm,) mod m,]) mod m,.
We also note that (jm,) modm,; =(jGCFp, m’p) mod (GCF, m;) = GCF,
[(j m’p) mod m;]. This allows us to write

R={(r+ GCqu[(jm’p)mod m;]) mod m,, j=0,1,..., m,; -1}
Using Theorem 8.2, we can rewrite this as
R={(+j*GCFp)mod my, j=0,1,..., m/q -1} (8.11)

Noting that m; = GCF, m[i,we see that jGCF,; <m, Vj=0,1, ..., m,; -1,
and so the successive values in set R must differ by GCqu, allowing us
to write R = {ry, 72, ..., 1y} whereriy1 =1 + GCFpy, 1 < i < m; —1. We
note that the set ‘wraps’ in the sense that (rmrq + GCFp,) mod m,; = r1. We also
observe that r; = r mod GCF,. This r; value follows from the observation
that the smallest value in R must lie between 0 and GCF,; — 1 inclusive.
The wrap property of R means that we can remove the bounds on j in (8.11)
without changing the contents of R. By putting j = —|r/GCF,,; | we have
r+jGCFp; =r—[r/GCF,; |GCF,; =r mod GCF,;, showing thatr; as defined
above is indeed a member of R. This completes the proof. =
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9.1 Introduction

The retail industry is one of the largest sectors of commerce worldwide and
is the second largest in the U.S. both in the number of establishments and the
number of employees. In the U.S. the retail trade presently generates about
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3.8 trillion dollars in retail sales annually and accounts for about 12.9% of all
business establishments (U.S. Census [42]).

Retailers must estimate the likelihood of sales for each item and also eval-
uate the trade-off between different items due to limited availability of retail
space in the store and other constraints. This task is very complex due to
the almost infinite product variety, inherent variability in product demand,
and significant errors in forecasting demand. Since space constraints do not
allow all products to be carried, the retailer must select a limited number of
products. The set of products carried in a store is termed as the assortment of
products. The products in a store typically form a hierarchy. A line of product
can have multiple items in it and each item can have multiple stock keeping
units (SKUs). SKUs are at the lowest level of the product hierarchy. For exam-
ple, if shoes of a particular pattern are an item then the different shoe sizes
form the SKUs for the item.

The product assortment decision is one of the key issues faced by retailers.
Retailers need to decide the number of different merchandizing categories
they would like to keep within a store or department, referred to as product
variety or the breadth of the assortment, as well as the number of (SKUs) they
should carry within a category, referred to as the depth of the assortment or
inventory depth. Retailers also need to decide the brands they would carry for
the chosen categories namely store brands, local brands, and national brands,
which affects the pricing across categories.

Retailers are driven by consumers who have high expectations for ser-
vice and product excellence and yet demand lower prices. Intense com-
petition and rapidly changing consumer tastes have resulted in increased
turnover rate in most product categories (Chong et al. [9]). In response, re-
tailers are addressing these new demands in different ways. Some retailers
are focusing on aggregating their overall needs from a supplier or group
of suppliers to establish greater buying leverage but the process, time, and
technology constraints introduce significant difficulty in accomplishing and
sustaining this task. Some retailers change their assortment frequently
according to perceived changes in demographic, economic, or seasonal de-
mand patterns, but the consequent investment in retail space and inventory
can be prohibitively expensive. Some retailers carry larger inventories with
a higher risk of these inventories becoming obsolete and simultaneously
incur higher inventory costs. Meeting marketing and financial planning obli-
gations, forces most retailers to take the easy approach to merchandizing
repeating the assortment breadth and depth from previous seasons, creating
store assortments based on store volume and ranking items by sales volume
alone. This leads to the creation of a few standard product assortments typ-
ically based on store size, which are then deployed throughout the chain of
stores. However, mismatches of chain wide strategies and local consumer
needs can lead to significant lost sales due to out-of-stock conditions or dis-
tress sales due to overstock conditions. Pashigan [31] shows that the costs
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incurred by retailers due to markdowns have been increasing in the U.S. ap-
parel industry.

Retailers must address the customer’s needs by aligning the merchandiz-
ing processes such as strategic and financial planning, assortment and space
planning, inventory deployment, and in-season management. The merchan-
dizing process is a systems approach, aimed at maximizing return on invest-
ment, through planning sales and inventory in order to increase profitability,
by maximizing sales potential and minimizing losses from markdowns and
stock-outs. A comprehensive approach would be to balance the demands of
consumers and the constraints of operating a retail business profitably by
transforming the merchandizing process by having an intelligent assortment
and category-planning process that accommodates the entire merchandizing
processes.

Assortment planning involves asking questions such as: Which product?
How much of it? What colors? What sizes? Where to place it? Who is the tar-
get customer? and so on. Assortment planning is the decision making process
that a retailer undertakes to determine the correct mix of items to be carried by
each store so as to maximize the opportunity for sale. Decisions are made re-
garding what to keep (assortment width) and how much to keep (assortment
depth) in a store. Assortment planning directly affects the product selection,
pricing, timing, and micro-merchandizing. By employing a proper assortment
planning solution the retailer can gain immensely since the product assort-
ment matched with market potential and inventory aligned with sales lead to
increased sales, fewer markdowns, and improved margins. This detailed plan
of action also helps in improving employee morale and the overall efficiency.
Thus the retailer can provide better service to customers and simultaneously
avoid carrying large inventory and the consequent higher inventory costs,
and reduce the risk of inventory obsolescence.

In the previous decade, large retailers have invested heavily in information
technology. Point-of-sale scanners coupled with massive databases allow
retailers to gather information in real time. However, there are very few
tools that make effective use of this data for the purpose of planning assort-
ments to maximize sales. Most commercial software facilitate the assortment
planning process by providing database connectivity and user-friendly in-
terfaces. However, very little optimization and decision making capability is
provided.

In this paper we present a mathematical model of assortment planning
which provides a decision support system that addresses the problem of
assortment width as well as the assortment depth. We address the problem of
a single period assortment planning problem with stochastic demand under
shelf space, inventory turns, and various returns-on constraints. We formulate
the problem as a Linear Integer Programming problem and use a column
generation technique to solve the model. The model was implemented by a
large chain of department stores for assortment planning.
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9.2 Literature Review

Research on issues related to assortment planning dates back to the early
years of Operations Research. Whitin [43] noted that for the retail stores, the
inventory control problem for style goods is further complicated by the fact
that inventory and sales are not independent of one another. An increase in
inventories may bring about increased sales of some items but a decrease in
sales of other items. Cairns [7] proposes that the business of a retailer can be
regarded as selling the retail space at their disposal to their suppliers. The
retail space should, therefore, be allocated to those products that give the
maximum profit.

A significant amount of research has been done since then on the impor-
tance of inventory and shelf space in assortment decisions. Fox [14] describes
the importance of assortment planning process in retail industry. Cox [11]
measured the relationship between sales of an individual product brand and
its shelf space. The model was tested in six supermarkets where the shelf
space inventory of the two test products — powdered coffee cream and salt —
over two leading brands in each category were varied each day, while keep-
ing the total shelf space for these two categories constant. Shelf space was
shown to affect sales volume while location on shelves was not significant.
Frank and Massy [15] take sixty three weeks of store audit data and use mul-
tiple regression analysis to estimate the parameters of their two basic models.
They conclude that by varying the number of facings of a brand in a shelf
display increases sales for high but not low volume SKU’s. They also con-
clude that there is minimal or no effect of the shelf level or height and there
is absolutely no effect whether the product is kept at floor or any other shelf
row. Curhan [12] proposes a model to explain the space elasticity as a func-
tion of several product-specific variables and tests this model under actual
operating conditions for nearly five hundred grocery products over five to
twelve weeks before and after changing the space allocation. He finds there
is a positive relationship between shelf space and unit sales. Similar results
were obtained by Wolfe [45] who concludes based on his empirical experi-
ment that the sales of style merchandize, such as women'’s dresses or sports
clothes, are proportional to the amount of inventory displayed. Other stud-
ies by Levin et al. [26], Schary and Becker [33], Silver and Peterson [36],
Larson and DeMarais [24] show that the retail display inventory has an stim-
ulating effect on the customers which can lead to increased sales. Urban [41]
presents a generalization of the inventory-level-dependent demand inventory
models that explicitly models the demand rate as a function of the displayed
inventory level and makes an explicit distinction between the back room and
displayed inventories. The special case of full-shelf merchandizing, in which
the product is replenished as soon as the back room inventory is depleted, is
also presented. Then they consider the product assortment and shelf-space
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allocation problems by extending this model into a multi-item, constrained
environment.

Marketing models treat a product as a vector of attributes with customers’
utility function defined over those attributes. Lancaster [23] provides a sum-
mary of this research. These models focus on choosing a product line to max-
imize the expected utility of the customer by either designing products with
desirable attributes or choosing preexisting products which possess such
attributes (Green and Krieger [16], Urban [40], Shocker and Srinivasan [35]).
Urban [39] develops a mathematical model for product line decisions to iden-
tify which products should be included in a firm’s product line. Product line
decisions are difficult to make because the products in the line are not usu-
ally independent. Interdependency is the key consideration in such decision
making. A comprehensive discussion of marketing models for product line
selection can be found in Lilien et al. [27].

A large body of literature addresses the issue of assortment selection and
allocation of limited retail shelf space for established commodity products
typically sold in a supermarket. Anderson and Amato [1] formulate a model
to determine the most profitable, short run brand mix concomitant with a
determination of the optimum allocation of a fixed product display area
among available brands. This model when solved gives the composition
of the specific brands that should be displayed, and the amount of dis-
play area that should be assigned to these brands, in order to maximize
profit. Bultez and Naert [6] consider this problem by using marginal analysis
of the profit function. They assume individual product demand is known
and develop a generalized framework to allocate shelf space for an assort-
ment with interacting demand. Based on this framework, they develop a
practical allocation rule called Shelf Allocation for Retailers” Profit
(SHARP). They discuss the special conditions under which SHARP reduces
to the various rules of thumb commonly employed by retailers. However,
in this framework, they do not explicitly consider which products to in-
clude in their assortment and assume that substitution between products is
symmetric.

Borin et al. [3] consider the joint assortment selection and space allocation
problem. It is assumed that demand is generated from the inherent charac-
teristics of a product, the allocated shelf space, the selection of the assort-
ment, and the stock levels of other products. The estimates of the parameters
capturing these effects were estimated using regression analysis. Demand is
assumed to be known and deterministic through functions involving these
parameters. The objective was to maximize return on inventory subject to
space constraints. The model was solved based on a heuristic using the
simulated annealing technique, to select an assortment of ketchup in the
supermarket.

Mahajan and Ryzin [29] developed a theoretical model to determine the
number and type of colors for seasonal and replenishable products. They
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suggest that with each additional item, the total demand for the product line
increases, but demand uncertainty across each item also increases, thus in-
creasing overstocking and understocking costs. To determine the number
and type of items before this increase in revenue is offset by such costs, the
model considers groups of items corresponding to a product defined as a
category and assumes that the demand across these items is generated by
combining a multinomial logit choice process with a Poisson arrival pro-
cess for the customer. The resulting Poisson distribution of demand was
approximated to a normal distribution and was linked to the retailers’ in-
ventory costs by a newsboy model. Based on the assumptions of the demand
process, structural results were developed to answer the question regarding
how these items should be included in the assortment corresponding to this
product. Kahn and Lehmann [20] found preference for an assortment to be
positively related to individual item preference, an additional item’s unique-
ness relative to the existing assortment, and the total number of items in the
assortment.

For fashion products, assortment planning issues were addressed more
directly by Smith and Agrawal [38] who considered the joint problem of as-
sortment selection and optimal stocking for a group of products at a given
level. Demand was modelled as negative binomial random variable. The non-
linear model developed has as its objective function, the cost function of the
newsboy problem which represents the total inventory costs of overstocking
and understocking products. The model is solved using numerical meth-
ods. Mahajan and Ryzin [30] analyze a single-period, stochastic inventory
model (newsboy-like model) in which a sequence of heterogeneous customers
dynamically substitute among product variants within a retail assortment
when inventory is depleted. The customer choice decisions are based on a
utility maximization criterion. The retailer must choose initial inventory
levels for the assortment to maximize expected profits. The authors propose
and analyze a stochastic gradient algorithm for the problem, and prove that it
converges to a stationary point of the expected profit function under mild con-
ditions. The authors give numerical examples to show that the substitution
effects can have a significant impact on an assortment’s profits.

There are several assortment models dealing with issues similar to the
one presented in this chapter. Rajaram [32] models the problem of fashion re-
tail assortment planning as a nonlinear integer programming problem with
assumption that the retailer places a single order for all the products. The
demand is modelled as a random variable and the constraint set includes a
budget constraint which is later expanded to include shelf space constraint.
To solve the model an upper bound for the problem is developed by relax-
ing the budget constraint. The solution obtained corresponding to the upper
bound may not be feasible due to violation of budgetary constraint and so
to achieve feasibility they develop a Lagrangian heuristic and a two-phase
heuristic as an alternative approach. Corstjens and Doyle [10] developed a
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shelf-space allocation model in which they considered the demand rate as a
function of shelf space allocated to the product and also applying a polyno-
mial functional form of demand with main- and cross-elasticities of shelf
space, they utilized signomial geometric programming to solve the model.
Zufryden [48] suggested the use of dynamic programming to solve the
shelf-space allocation problem, as it will allow general objective-function
specifications and will provide integer solutions.

In the above two articles an assumption is made that all of the inventory
is on display which is generally not appropriate for retail stores such as gro-
cery stores. Also these models do not account for the location factors. In view
of these limitations Yang and Chen [47] proposed a simplified integer pro-
gramming model based on the model developed by Corstjens and Doyle [10].
The objective function is linearized by assuming that the profit of any prod-
uct is linear with respect to a range of facings for which it is displayed by
controlling the lower and upper bounds for that product. They also do not
consider the product availability constraint assuming that the product avail-
ability is no longer an issue in the present market scenario. The model then
resembles a multi-knapsack problem which is solved in multiple stages. Yang
[46] presents a heuristic algorithm that extends the greedy algorithm used for
knapsack problems to solve the above model. The profit of each item per
display length on a particular shelf is treated as a weight, and the ranking
order of weight is used as a priority index in the process of space allocation.
The heuristic procedure can allocate a product with lower profit to a shelf
in order to satisfy the lower bounds for the product. To improve the heuris-
tic procedure solution, an adjustment phase consisting of three adjustment
methods is proposed. These adjustment methods improve the heuristic so-
lution but are not useful if there is variation in the length of facings of the
products. To overcome this shortcoming, Lim et al. [28] propose new neigh-
borhood moves namely multi-shift, multi-exchange, and multi-add-exchange
and solve the Yang and Chen [47] model employing a strategy of combining
a strong local search with metaheuristics. They also develop a network flow
solution approach to solve the model as a minimum cost maximum flow
problem. They further incorporate the cross product affinity effect among
products such that there will be additional profit by having two particular
products on the same shelf and considering a nonlinear base profit function.
They obtained near-optimal solutions for small number product-shelf ranges
and consistently good results for all other ranges tested.

Hoch et al. [18] present a general mathematical model of variety based on
the complete information structure of an assortment, defined by the multi-
attribute structure of the objects and their spatial locations. The model is
used to develop assortments that vary widely in terms of their information
structure. The influence of variety perception and organization on stated
satisfaction and store choice was investigated. Information structure has a
big impact on variety perceptions, though diminishing returns accompany
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increases in the number of attributes on which object pairs differ. Customers
are more influenced by local information structure (adjacent objects) than
nonlocal information structure and the organization of the display can either
increase or decrease variety perceptions. Jayaraman et al. [19] address the
problem of jointly determining the product variety decision with the order-
ing decision for the variations of a brand of a certain product that comprise
a particular product line by modelling it as a nonlinear optimization model.
Assumptions are made that the consumer preferences for products are known
and are ordinally scaled for the subset of products in the product line and can
be added or deleted according to profitability criterion.

The impact of product assortment on an individual’s decisions is examined
by Chernev [8] by conducting four experiments using fifty to one hundred
undergraduates from Northwestern University as respondents for different
experiments. They conclude that the impact of assortment on individual de-
cision processes and choice is moderated by the degree to which individ-
uals have articulated attribute preferences. Individuals with an articulated
ideal point are more likely to prefer larger assortments than individuals
without articulated preferences. Shelby and Miller [34] consider the shop-
per’s joint decision of item selection and pricing to determine the best as-
sortment to carry in terms of profit maximization. They specifically consider
item complementarity and substitution with respect to profit implications for
the retailer. Koelemeijer and Oppewal [22] tackle the question of what is the
optimal assortment in a very different purchasing situation — those involved
with a frequently purchased category like cut flowers. They choose this cate-
gory because there is no branding, no stockpiling, and no packaging. In this
type of category, variety seeking and bundling issues become relevant. Their
model provides a tool to allow for optimization of retail assortments by con-
sidering substitution, complementarity, and asymmetric dominance effects.
Simonson [37] reviews and synthesizes recent empirical evidence indicating
that product assortments can play a key role, not only in satisfying customers’
wants, but also in influencing what they want. He shows that retailers can
use the considered assortment to change the likelihood that a consumer will
make a purchase, and to affect the probability that a specific option will be
chosen.

Stassen et al. [25] consider assortment decisions across multiple stores.
When consumers are shopping among several stores, a retailer needs to
consider whether his or her assortment should compete with the compe-
tition (thinking of the stores as substitutes) or complement the competition
(thinking of stores as complements). In this sense, the assortment de-
cision can be thought of as an element of the marketing mix in attracting
consumers into the store. Their empirical results based on market data
for a specific market show that the assortment decision reflects a compet-
itive relationship rather than a complementary one. Furthermore, the as-
sortment decision was shown to be as important, if not more important, as
the price.
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Evaluation of competing assortments has also received attention in litera-
ture. Chong et al. [9] present an empirically based modelling framework
for managers to assess the revenue and lost sales implication of alterna-
tive category assortments. The framework consists of a category-purchase-
incidence model and an extended version of the classical brand-share model
of Guadagni and Little [17]. The brand-share model predicts which brand
the customer chooses if a purchase incidence occurs in the category. Dhruv
et al. [13] use Data Envelopment Analysis to account for sales differences
in stores for a multi-chain retailer given differences in category assortments
and regional preferences. Because regional preferences vary and the assort-
ments carried by each store are different it is not appropriate to compare
them directly to assess performance. This method establishes a best prac-
tice benchmark so stores within the chain can be fairly evaluated. A number
of studies have shown that brands and brand sizes can be reduced without
affecting sales or consumers’ perceptions of variety (Williard Ltd. and Inc.
[44], Broniarcyzk et al. [5]). What constitutes efficient assortments is likely to
vary in different categories and in different shopping environments (Kahn
and McAlister [21]). Brijs et al. [4] tackle the problem of product assortment
analysis by introducing a concrete microeconomic integer programming
model for product selection (PROFSET) based on the use of frequent item
sets. They demonstrate its effectiveness on real-world sales transaction data
obtained from a fully-automated convenience store.

From marketing literature it is known that the optimal product assortment
should meet two important criteria. First, the assortment should be qualita-
tively consistent with the store’s image. The retailer’s background knowledge
with regard to basic products should be easily incorporated in the model by
means of additional constraints. A store’s image distinguishes the retailer
from its competition and is projected through its design, layout, services, and
of course its products. Second, because retailing organizations are profit
seeking companies, the product assortment should be quantitatively appeal-
ing in terms of the profitability it generates for the retailer. Most of the models
that address the problem of assortment planning are mathematical models
that are either nonlinear or involve integrality constraints which makes these
models computationally hard to solve. Accordingly, most of them use heuris-
tics or relaxations of the problem to reach a solution. Most of the models do not
consider the inter-dependence between decisions for two or more items except
for satisfying them on a more or less ad-hoc basis during postprocessing of
solution. Finally, the problem is solved for one store at a time. This leads to in-
dividually customized assortments. This proliferation of assortments makes
it difficult for chain stores to devise a consistent presentation across all stores.
Most of the models also do not adequately treat the availability of back-room
space or the retailers desire to maintain high inventory turnover rates. Finally,
many of the models are unwieldy in terms of the number of parameters that
must be estimated making it difficult to scale up to large practical problem
solving.
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9.3 Problem Description

In this chapter we focus on the retail assortment planning problem. Given a
set of stores and a set of SKUs along with their demand distribution over
a planning period, the problem is to find the best assortment of SKUs to
keep in the stores so as to maximize the profit of all stores while satisfying
financial, spacial, logistical, and marketing related constraints. Generally,
such assortment planning decisions are made at an item or a SKU level.
For our purposes, we assume that all decisions are made at a SKU level.
If the decisions are to be made at an item level, the problem can be solved by
aggregating sales for SKUs within the item.

While demand elasticity due to substitution among products is an impor-
tant consideration, it is generally a very difficult effect to measure. Retailers
are more comfortable giving estimates of base demand for a line, i.e., the
amount of demand that will substitute to staple items in the product line.
This allows us to consider a fraction of an item’s demand as substitutable and
therefore unaffected by assortment decisions. Items then have to justify inclu-
sion in the assortment based on their fraction of nonsubstitutable demand.
This also allows us to assume that demand for items is independent.

Items are assumed to be sold at multiple discrete price levels. For example,
there may be a regular retail price, a sales price, and a clearance price. We
assume that the retailer has historical information and can provide forecasts
for each price level. Further, we make the assumption that the item is sold at
the highest price level first, items not sold at that level are then sold at the
next level and so on.

We assume the demand distribution at each price level to have a unimodal
probability distribution. We use either Normal or Poisson distribution for
most of our analysis. The Normal distribution is a good representation for
high volume SKUs while the Poisson represents slow moving SKUs well.
The mean and variance (if required) are obtained from the forecasted demand
information. Demand for items which do not have history is based on history
of items with similar characteristics.

9.3.1 Expected Revenue/Profit Functions (ER/PF)

Given the demand distribution at each price level, we define an expected
revenue or profit function. Mathematically, the ER/PF can be computed as
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where g is the quantity kept in the store and q/p € Z%, p is the package
quantity of the SKU, gé is the probability of selling y; units at level j, p; is
the selling price at level j, and c is the purchase price. The g/’s are computed
from the demand distribution thatis used. (.) are calculated recursively by
varying the parameters in each recursion. The depth of recursion is equal to
the price levels in the problem.

In the equation for EPF(q), H(g) is the cost of holding a quantity g over the
specified period of time. It is calculated as

H(q) = 2"—” *h (9.4)

where & is the holding cost and # is the number of replenishments. The hold-
ing cost for g units as calculated above is an approximation to the expected
holding cost since it assumes uniform demand over the planning horizon.

Given the demand distribution, these functions estimate the variation of
revenue and profit with increasing SKU quantity in the store. EPF is the single
period news-vendor objective function which has been modified to accommo-
date demand at different price levels. Itis assumed that any residual inventory
is discarded at the end of the period, incurring a loss equal to the cost of the
SKU. ER/PF functions are nonlinear and therefore difficult to use. However,
we simplify the problem by using a piecewise linear approximation. For low
volume SKUs we linearize the problem by considering break points at each
discrete value. For a high volume SKU we divide the ER/PF function curve
into several discrete segments on both sides of the maximum point and con-
sider break points at those segments. The accuracy of this method depends
on the number of segments used to approximate the EPF.

The revenue function ERF(g) is a nondecreasing function that asymptot-
ically approaches the value ERF(oo) whereas profit function EPF(g) is uni-
modal. This implies that as the quantity of a particular SKU increases in a
store, the profit initially increases but after reaching a maximum, starts to
fall. This is because beyond the point of maximum profit, the probability of
selling an extra unit of the SKU is sufficiently small so that the expected re-
alized profit becomes smaller than the expected loss due to not selling that
additional unit. This results in an overall decline in the Profit function.

We denote the point of maximum profit on the profit function by EPF(q*)
and the corresponding point on the revenue function by ERF(g*). The average
sale price of a SKU is then obtained by calculating ERF(¢*)/q*.

9.3.2 Constraints on Assortment

Since it is important to ensure that stores present a consistent appearance
to customers to create brand recognition, it is important that the number of
different assortments that are created is limited. Accordingly, a retailer may
limit the number of different assortments that can be used. Such a restriction
will obviously reduce the expected profit but it also reduces the cost asso-
ciated with maintaining a large number of assortments. It is also easier to
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create a store image that is consistent. One way to permit more customiza-
tion for stores is to use a modular planogram. In such a planogram, one
constructs smaller sub-assortments and the store then selects from the sub-
assortments to create its planogram. Since several sub-assortments may carry
the same item, it is important that an item is in only one of the sub-assortments
selected.

The choice of assortment can also be restricted based on financial criteria.
There may be alimit on the total dollar value of inventory that a store can carry.
This may limit the use of certain planograms which have multiple facings of
the same item and therefore require a larger amount of inventory to appear
filled. Inventory may also be constrained in the form of constraints on the
number of inventory turns that the store must provide. Thus an assortment
must be picked such that the ratio of the sales to the average inventory is above
a given threshold. Thus a planogram with multiple facings may require a
large amount of inventory and not perform as well as one with fewer facings.
An overall budget constraint may be used across the entire line of items
and across the entire chain of stores. Such constraints can be used to model
what retailers call “open to buy”. The budget is the maximum dollar value
that the chain will invest in system-wide inventory for a specific product
line.

Space considerations limit the number of planograms or sub-assortments
that can be stored in a store. Space can either be a display space or back room
space. Backroom or storage space is used when the amount of display space
is inadequate to accommodate the inventory amount that must be stored in
the store. Depending on the maximum number of replenishments that are
permissible for a store and the package quantities for the item, the display
space may not be adequate to hold the peak amount of inventory. In such
cases, it is important to ensure that sufficient back room space is provided.
Clearly, back room space is to be used only if the item is part of the assortment
and therefore assumed to be on display.

9.4 Mathematical Model

Given a set of SKUs and stores, there are an exponential number of ways to
generate strategies which makes it impossible to generate all possible strate-
gies and pick the best among them. Therefore, we formulate the assortment
planning problem as a Mixed Integer Programming problem and decompose
itinto two parts, the master problem and the subproblem, which can be solved
using a Column Generation technique (Bazaraa et al. [2]). The subproblem
returns improved strategies based on the set of space related dual variables
passed to it by the master problem. The method is discussed in greater detail
in subsequent sections.

The assortment for a store is constrained by several different requirements.
These constraints result from the availability of display and storage space,
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from advertising related legal requirements, and from performance require-
ments. There are also further restrictions caused by the presentation of items
in the store. This last aspect of the problem is called planogramming. A
planogram is a preset collection of related items that are arranged on display
fixtures to gain maximum visibility and impact. While commercial software
to draw the planograms exists, such software does not take a global view of
the problem in terms of system performance. The assortment planning model
must therefore also consider the problem of generating planograms.

Our model uses a two-level approach. This allows us to divide the problem
into what we call the Buyer’s problem (technically, the master problem) and
the Plannogrammer’s problem (technically, the pricing sub-problem). The
lower level Planogrammer’s problem generates planogram proposals or sub-
assortments based on information supplied with placing items in a store. The
Buyer’s problem then evaluates the sub-assortments so generated and assigns
them to appropriate stores such that all restrictions are met and the objective
function is maximized. This is an iterative process in which the two problems
are alternately solved until the optimal solution is obtained.

The objective of the model is to select an assignment of sub-assortments
to stores so as to maximize the expected profit while ensuring that the as-
signment uses only a prespecified number of assortments, satisfies space
availability at the store, and achieves on the aggregate level a prespecified
number of inventory turns.

Details of the mathematical model and explanation of the various con-
straints in the two problems are given below.

9.4.1 Problem Decomposition

The Buyer’s Problem is to assign existing sub-assortments to stores so as
to maximize the overall revenue or profit of the system. Any assignment
can use at most a prespecified number of sub-assortments. The assignment
of sub-assortments to stores must meet various restrictions including those
on inventory values and turns and various space constraints. These various
restrictions and constraints in the model are discussed in the following sub-
section.

The Planogrammer’s Problem (PP) is to use the solution of the Buyer’s
Problem and generate a suitable new sub-assortment or plan which will in-
crease the revenue/profit in the Buyer’s Problem.

When the model for the Buyer’s Problem is solved, along with the assign-
ment of sub-assortments to store, we obtain information that can be used to
find the value of having a new sub-assortment for each store. The Planogram-
mer’s Problem is to come-up with a new sub-assortment that fits in the display
space available for the store and has the maximum possible value. Solving
this model yields a new sub-assortment which can be added to the Buyer’s
Problem. This process can be repeated until it is not possible to find a new sub-
assortment for any store. At this point, the final assignment of sub-problem
to stores can be made.
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We use the following notation in the mathematical description of the model.

Parameters:
I : number of SKUs.
J : number of stores.
K : number of planograms.
T : number of linear segments used to approximate the EPF.
:index of SKUs.
: index of stores.
: index of planograms.
: index of linear segments.
: system or retailer wide stock to sales ratio.
: maximum system stock in dollars.
M : maximum number of planograms allowed.
Z : A large integer value.
pi : average sale price of SKU i.
l; : length of SKU i.
i: set of planograms containing SKU i.
: stock to sales ratio for the store j.
: back-room linear space in store j.

W T N

: fixture length in store ;.
: maximum inventory in dollars of aggregate of SKUs in store ;.
: maximum depth of SKU i allowed in store ;.
j : maximum number of replenishments for SKU i in store j per year.
: length of planogram k.
Wit : piecewise linear approximation of g;;.
rij¢ : profit (revenue) for W;;; amount in store.

SRS R

2
=

— =~
fan En

Decision variables:
X;j : amount of SKU 7 in back-room in store ;.
gij : total quantity of SKU i in store ;.
Y;; : number of facings of SKU i in store j.
a;x : number of facings of SKU i in planogram k.

7 1 : if planogram k is selected by some store
=0 : otherwise

7. 1 : if store j selects planogram k
=10 : otherwise

9.4.2 Mathematical Formulation of Buyer’s Problem
mox S5
toj i
220 W=y =0 Vi 9.5)
b

qij =AYy — X <0V i, j (9-6)
X,‘j + Yi]' — i = 0 Vi ] 9.7)
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Z pi 0.5 — §jﬁij)‘1ij <0 Vv ] (99)

ZZ Piqij < S (9.10)
j i

Z Z pi(0.5 — §771ij)‘7ij <0 (9.11)
i i

Z li Xij < bj \4 ] (9.12)

X,‘j — ZY,] <0 VY i, ] (9.13)

Yi— > awZy =0 Vi j (9.14)

keK,‘

Sz <tl v j (9.15)
k

Y Zy<1 Vij (9.16)

kEK,'

N zi=M (9.17)
k

Zj—Zxr <0 ¥V k,j (9.18)

In the above model, the objective function is to maximize the expected
revenue or profit where we are using the piece-wise linear approximation of
the ER/PF. Constraint (9.5) ensures that the linearization of ER/PF function
is consistent.

Constraint (9.6) to Constraint (9.9) are inventory related constraints. Con-
straint (9.6) ensures that the total store inventory for an SKU cannot exceed the
amount of space on display shelves plus the amount kept in the back-room.
Thus, with Y;; facings the maximum amount of SKU i on display shelves of
store j can be at most inij and then the maximum amount of SKU i in the
store j becomes the sum of d;Yj; and the back-room quantity X;;. Constraint
(9.7) ensures that the total quantity is at least equal to the back-room quantity
and as many items as there are facings in the front room. Constraint (9.8) is
made active if the maximum inventory value for the store has been specified.
The value of the inventory in the store is calculated as the sum of selling
price of each SKU times the total quantity of the SKU in the store. The selling
price of the SKU can vary from store to store. This constraint ensures that the
aggregate dollar value of inventory of all the SKU’s in store j is less than the
maximum dollar value of inventory specified for that store. Constraint (9.9)
is store level stock-to-sales ratio constraint. This constraint ensures that the
average inventory (half the total inventory) must be less than the stock-to-
sales ratio specified times the total demand that can be satisfied. If the target



236 Integer Programming: Theory and Practice

number of turns cannot be met then no item will be carried in the store. Note
that, there is an inherent assumption in this constraint that the average sales
rate is constant over the period of interest. While this may not be entirely
accurate, stock-to-sales ratio constraints are applied over the average inven-
tory over longer intervals of times such as months or quarters and hence the
constant sales rate assumption is practically reasonable. Further note that the
inventory is valued at selling price. It is relatively easy to convert inventory
valuation to cost price.

Constraint (9.10) and Constraint (9.11) are budget related constraints.
Constraint (9.10) is the retailer or system level investment constraint and it
ensures that the total investment by the retailer for all the SKUs in all the stores
is less than the specified maximum retailer investment stock in dollar value.
Constraint (9.11) is retailer or system level stock-to-sales ratio constraint.

Constraint (9.12) to Constraint (9.16) are space related constraints. Con-
straint (9.12) is the back-room space constraint and it ensures that the amount
of space used by inventory of all the SKUs in the store does not exceed the
back-room space available for the store. Constraint (9.13) is the front-back
space constraint and it ensures that inventory of a SKU is kept in the back-
room only if at least one facing of the SKU is displayed in the front-room or the
display space of the store. Constraint (9.14) is the facing space constraint and it
calculates the number of facings of each SKU based on the assignment of sub-
assortments to the store and the facings in each sub-assortment. Notice, that
each planogram has a given number of facings, a;i, for each SKU i. Thus the to-
tal number of facings for an SKU i is given by gk, aix Zxj. This number affects
the total displayed inventory in Constraint (9.7). Since the planograms are de-
signed by the subproblem, the number of facings in a planogram are designed
to best utilize the available display space. Constraint (9.15) is the front-room
or display space constraint and it ensures that the total display space used by
the sub-assortments assigned to the store is no more than the space available.
Constraint (9.16) is the only-one SKU constraint and it ensures that two sub-
assortments assigned to a store cannot have a SKU in common. This restriction
has been included from marketing point of view for aesthetic reasons and it
avoids the problem of having the same SKU at two ends of the assortments.

Constraint (9.17) and Constraint (9.18) are planogram related constraints.
Constraint (9.17) ensures that the total number of sub-assortments or plans se-
lected for all the stores combined do not exceed the maximum number of plans
allowed. Constraint (9.18) ensures that the total number of sub-assortments
or plans selected for a store do not exceed the maximum number of plans
allowed for a store.

9.4.3 Mathematical Formulation of the Subproblems
For subproblems, we use the following additional notations.

Parameters:
s : index of shelf.
M, : maximum amount of SKU i on a shelf s.



Application of Column Generation Techniques to Retail Assortment Planning 237

L, : maximum length of planogram allowed for a store .
Fjj : dual variable for the Constraint (9.14).
Dj : dual variable for the Constraint (9.15).
Ojj : dual variable for the Constraint (9.16).

Decision variables:
x; : multiplicity of SKU i in a planogram.
Yis : multiplicity of SKU i on shelf s.

, {1 : if SKU i is in planogram

0 : otherwise
The model is:
v; = min— Z Fyx; + D;L, + Z Ojzi (9.19)
Z Lyis<L, Vs (9.20)
Z V=X Vi (9.21)
yiz <Mz Vis (9.22)

Constraint (9.20) is planogram length constraint and it ensures that the cal-
culated sum of length of each SKU times the number of SKUs on the shelf
does not exceed the maximum allowable length of the planogram for all the
shelves. Constraint (9.21) ensures that the aggregate number of SKU i on all
shelves is equal to the total number of SKU i in the planogram. Constraint
(9.22) ensures that the total number of SKUs i on shelf s does not exceed the
maximum allowable amount of SKU i on shelf s.

The length L, depends on the physical shelves that are available in a store.
If more than one type of shelving system is available, then the length L, can
be varied to create planograms of different lengths. This allows for creation
of standardized modules that can be used across multiple stores. Thus, even
if a planogram module is created for a single store, it is possible to use it
across all stores. Alternatively, it is possible to restrict the stores in which a
particular planogram is used. This can be achieved by not creating columns
corresponding to the restricted stores in the master problem.

9.4.3.1 Carry/No Carry Rules

Carry/No Carry rules allow the user to force the decision for a specific SKU.
The user may require that certain SKUs are carried in specific stores due to
marketing or advertising requirements. Alternatively, certain SKUs may not
be allowed in certain stores due to local restrictions. The sub-problem can be
modified in this case to set the specific z; to be either 1 or 0 depending on
whether the SKU must be carried or not. In the event that we set z; = 1 we
also require x; > 1. Moreover, the resulting planogram is assigned to only
those stores which match the carry/no carry rule.
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9.4.4 Algorithmic Considerations

The column generation scheme outlined above would be adequate if the prob-
lem was a linear programming problem. Unfortunately, the master problem
has integer variables and thus column generation is not guaranteed to give the
optimal solution and may not even give a feasible integer solution. Ideally one
would use a branch-and-price methodology, which uses a column generation
at each node of the branch and bound tree. However, given the size of the
problem we are solving, it is unlikely to be computationally feasible to solve
the problem in a reasonable amount of time using branch-and-price. Our ex-
perience thus far shows that solving an integer program using the columns
generated for the LP relaxation almost always gives a feasible solution and
the solution so obtained is generally quite good. However, even in this case,
the column generation schema generates a large number of sub-assortments
which results in an enormous master problem. Accordingly, we have to re-
strict the number of sub-assortments that are generated. Since the problem
is solved across a large number of stores, it is possible that such a restriction
may or may not be able to generate assortments that are suitable for every
store. To ensure that many stores are able to contribute to the sub-assortment
generation problem, we use one of several strategies:

 Restriction : Each store is allowed to generate no more than a fixed
number of sub-assortments. This allows more stores to generate
sub-assortments. Moreover, stores with differing amounts of sales
can be given priority in generating the sub-assortments to get wider
representation in the sub-assortments that are generated.

» Grouping by Sales : The stores can be grouped into a number of
groups using the average demand vector for the different items.
This will allow stores with similar sales patterns to cluster together.
A composite store can be constructed using the average of demands
across each store within a cluster and this composite store can be
used to generate the sub-assortments.

» Grouping by Size : Stores can alternatively be grouped by the total
sales for the product line in the store. This usually works well if
there are significant differences in available space at different stores.
A composite store can again be created. Notice that this approach
looses most of the individual differences between stores of a similar
size.

» Grouping by Sales and Size : This approach combines both of the
above criteria for clustering stores. This is done by adding the total
sales as one more of the attributes of the store.

The use of the grouping strategies requires the problem to be solved first
with the composite stores to generate candidate planograms. The planograms
so generated can be used to solve the master problem with a fixed number
of columns but using the original larger number of stores. In this schema, no
new columns are generated when the model is run a second time.



Application of Column Generation Techniques to Retail Assortment Planning 239

9.5 Computational Results

The algorithm described was implemented in Microsoft Visual C/C++ and
executed on a Pentium Xeon 550 Mhz processor using a Windows 2000 Server
operating system and 512 MB of RAM. CPLEX version 7.0 is used as the linear
programming and integer programming solver.

To test the model we used data provided by a large national retail chain. The
model was tested on five different data sets, which are shown in Table 9.1. We
refer to these different product line data sets as 1, 2, 3, 4 and 5. Set 3 has data
corresponding to 780 stores and 271 items with one SKU per item. All other
data sets correspond to 880 stores though the number of items vary. Except
for set 5 all product lines have one SKU per item. Set 5 contains 21 items each
having a varying number of SKU’s such that the aggregate number of SKU’s
is 669. The data sets are thus arranged in order of increasing number of SKU’s.
Except for set 4 all lines have moderate to high sales volume for most items
in most stores. Set 4 is a low sales volume line.

9.5.1 Algorithm Performance on Base Data

To test how the algorithm performs both in terms of computational times and
results with respect to algorithmic options, we tested the following variations
in the algorithms:

1. We solved each data set as is without making any changes in the
given data. We limited each store to generate no more than two
assortments and restricted the maximum number of assortments to
500 across all stores. In this case it is possible that certain stores are
never polled for generating assortments.

2. Next, for each data set, we grouped the stores into 5, 10, 20, 40 and
80 groups. We used a composite store for each group as explained
earlier and used the composite store to generate planograms. The
generated assortments were then used to solve the master problem
with each individual store allowed to select from among the gener-
ated assortments. To group the stores we used three separate criteria
as explained before:

« For each data set we used the vector of sales as an attribute vector
to group the stores. We refer to this strategy as Grouping by Sales.

TABLE 9.1
Base Problem Sets
1 2 3 4 5

Stores 880 880 780 880 880
Items 29 33 271 368 21
SKUs 29 33 271 368 669
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¢ We summed up the forecasted demand for the entire product to
represent the store size. The generated data file was then used to
group the stores on the basis of sales volume. We refer to this as
Grouping by Size.

 Next, for each data set, we embedded the aggregated forecasted
demand as a dummy SKU along with the original demand file
for each store to create an attribute vector that represents the size
of the store while simultaneously maintaining the effect of indi-
vidual SKUs in each store. We refer to this as Grouping by Sales
and Size.

It is to be noted that we are aggregating the demand information for a
large number of stores distributed all over a wide geographical area. Stores
in similar geographic and demographic settings usually have similar sales
profiles and tend to group together. Because the number of groups is limited,
it is possible that a store may get grouped improperly when sales data alone
are used. However, the model allows each store to select any assortment
generated by any of the groups. Computational results show that by not
restricting the stores to choose the same planogram as the group, results in
significantly improved profits.

In Table 9.2, we show the relative performance of the algorithms under
the different algorithmic options described above. All values are shown as
the % difference from the No Grouping profit value for each product line.
Table 9.3 shows the amount of computational time taken by each method.
Except for product line 4, we see that there is very little difference in the
relative performance of the algorithms. However, product line 4 shows a

TABLE 9.2
Comparison of Group Profits
Grouping Number of Groups Product Line
1 2 3 4 5
None - 0.00 0.00 0.00 0.00 0.00
5 -154 039 -146 -5.04 -125
10 -0.10 052 -030 5651 —-1.09
By sales 20 0.02 038 0.00 5560 —-0.99
40 0.02 065 -—006 1815 -1.75
80 -0.01 057 003 1535 -0.98
5 —-098 028 -1.89 12.02 -141
10 —-0.66 053 —0.60 3577 —1.49
By size 20 —-0.14 052 —-061 6838 —041
40 -0.07 061 —-045 4511 0.67
80 -0.02 0.71 010 1535 0.64
5 -1.03 029 -124 -016 -1.22
10 —-059 029 —0.04 1766 —1.58
By sales and size 20 -005 054 -023 7671 -0.79
40 0.00 062 —0.01 8.29 0.78

80 —-0.02 0.76 0.06 1535 —-0.21
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TABLE 9.3
Total Computational Time (Seconds)
Grouping Number of Groups Product Line
1 2 3 4 5
None - 1396 1529 1541 1324 2483
5 227 478 312 337 899
10 397 731 461 427 1128
By sales 20 641 775 674 680 1794
40 633 1087 825 742 1836
80 749 1529 1098 873 2361
5 226 310 267 272 667
10 319 422 323 292 827
By size 20 477 795 457 361 1285
40 499 869 428 360 1300
80 754 1346 516 402 1592
5 366 449 487 483 1321
10 559 528 667 598 1572
By sales and size 20 866 986 965 892 2236
40 1074 1431 1142 974 2411
80 1168 1590 1402 1135 2905

huge improvement in expected profits. This results from the fact that product
line 4 is a low sales volume line and as such stores may have very different
sales for different items. When there is no grouping, stores which do not get
a chance to generate sub-assortments are forced to select from assortments
generated for other stores and as such perform rather poorly and drag down
overall profits. Grouping similar stores and using a composite store helps
generate assortments that are more acceptable to all stores and this leads to a
significant improvement in performance. It appears that in such cases creating
20 or 40 store groups gives much better performance. For the other product
lines, even when stores do not get to participate in sub-assortment generation
when there is no grouping, the stores can use the generated sub-assortments
by suitably adjusting the assortment depth or inventory and still manage
to perform well. In this case the grouping of stores may occasionally lead to
slightly reduced performance because the composite stores do not generate
as many sub-assortments and therefore reduce the options available when
stores select their assortments.

The benefit of grouping is seen in the reduced run times for the algorithms in
Table 9.3. As canbe seen the run times increase with the number of groups gen-
erated. Thisis due to the fact that the number of sub-assortments generated in-
creases with the number of groups. Thus with 80 groups we sometimes end up
with more time to solve the overall problem since we spend time grouping the
stores and still have roughly the same number of sub-assortments to consider.

Grouping by size seems to offer the best results in general because both the
solve times and the results are in general very good. The smaller solve times
are the result of much smaller times to do the grouping since, grouping is
done based on a single attribute.
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TABLE 9.4
Effect of Grouping and Fixing Assortments
Fixed Not Fixed

Number of Assortments Profit Value Time (sec) Profit Value Time (sec)

2 1654327.23 2179 4818450.68 2459
4 1983453.53 2180 4865612.69 2675
6 2563685.88 2181 4881610.37 2665
8 2885437.46 2181 4889297.39 2850
10 3451765.26 2180 4894723.55 2749
12 3762453.51 2181 4898851.89 2894
14 3956443.34 2181 4901553.37 2817
16 4123536.74 2182 4903748.86 2865
18 4125466.34 2182 4905577.19 2843
20 4125466.34 2183 4906899.97 2905

Grouping, usually by size, is routinely used by retailers for assorting pur-
poses. However, in many of these cases retailers force all stores in the group
to use the same assortment. We consider the performance of such a policy
for product line 5 and for the case where 80 groups are formed. The results
when the stores in each group are forced to carry a single assortment are con-
trasted with the results when each store has free choice. We designate this as
Fixed and Not Fixed in Table 9.4. The table gives actual values of the profits
and run times for both cases.

The table shows how performance changes when the number of assort-
ments that can be selected is varied from 2 to 20 assortments. The profits
for both cases increase with the number of assortments that are permitted.
However the difference between having 2 and 20 assortments for the fixed
case is significantly larger than that for the not fixed case. Accordingly, when
2 assortments are allowed the profits for the fixed case are only 35% of the
profits for the not fixed case. The fixed case is able to improve to about 84%
of the profits of the not fixed case when 20 assortments are allowed. The
amount of time is a bit smaller for the fixed case. Clearly, using a grouping
strategy to force stores into the same assortment within a group may lead to
lower profitability. It is also interesting to see how having a larger number
of assortments impacts profitability. In the fixed case, there is significant im-
provement as more assortments are allowed until about 16 assortments. On
the other hand, the not fixed case outperforms the best fixed case result with
only two assortments. There is an improvement in profitability for the not
fixed case as well but the increases are nominal.

9.5.2 Effect of Problem Parameters

We next consider the effect of different problem parameters to study their
effect on the solution quality. Clearly, profitability will be affected by the
choice of these parameters. We consider the effect of package quantities for
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each item. Package quantities affect the amount of inventory that must be
carried by each store and they also affect the amount of inventory that may
have tobe sold at lower prices or scrapped at the end of the horizon. Similarly,
inventory holding costs will affect the overall profitability. The maximum
number of replenishments allowed per store also affects the average inventory
carried by the store. In all these cases, the actual effect on profitability depends
on the profit margins enjoyed by the retailer. If profit margins are very large
the effect of changes in these parameters is relatively small and assortments
are not expected to change radically.

9.5.2.1 Effect of Package Quantity

To test the effect of package quantity we consider product line 4 and adjust
the costs so that the average profit margin for individual items is 35%. The
package quantity is varied to take on values of 1, 2, 4 and 6. The lowest profit
was obtained for the case when package quantity was 6 and two assortments
were permitted. Table 9.5 shows the fraction deviation of the profits obtained
for each package quantity and the number of assortments used from the
lowest profit case. From the table it is clear that the profits are lower when the
package quantities are larger. Adding extra assortments marginally reduces
the negative effects of the package quantity. Thus having a package quantity
of 1 gives a 20 fold increase in profit margin in comparison to that obtained for
a package quantity of 6 when the number of assortments are 2. The fraction
deviation for a package quantity of 1 increases to 26.39 when the number
of assortments is increased to 20. There is a similar increase for a package
quantity of 6 but the increase is much smaller. There is a more insidious
effect of package quantities. Since the inventory costs are higher, many stores
simply do not find it profitable to carry many of the products. This reduces
the revenue that is generated as well. Thus both the revenue and profit are
negatively impacted.

TABLE 9.5

Variation in Profit with Package Quantity

Number of Assortments Package Quantity

1 2 4 6

2 20.05 12.04 1.98 0.00
4 2390 15.02 273 0.39
6 2497 1581 3.00 0.70
8 25.66 16.48 3.07 0.84
10 26.03 16.71 312 0.95
12 26.13 16.80 3.13 1.00
14 2622 16.86 3.13 1.01
16 2629 1690 313 1.01
18 2635 1693 313 1.01

20 2639 1696 3.13 1.01
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FIGURE 9.1
Effect of package quantity.

Figure 9.1 shows the effect of package quantities as the profit margin is
changed. A more significant effect of package quantities occurs when the
profit margin is higher because more items get included in the assortment.
Many more items are therefore affected by the increased package quantity.
Since fewer items are carried by the stores for lower margins the effect is
somewhat less pronounced even though the extra inventory holding cost has
a more sizeable effect on the profits.

9.5.2.2 Effect of Number of Replenishments

The number of replenishments also affects the inventory holding cost. The
more frequently replenishments are done the less the inventory that is car-
ried. Table 9.6 shows fraction deviation from the lowest value obtained for
product line 4. In this case we use a package quantity of 1. The number of
replenishments allowed is varied from 3 to 52. Notice that the profit increases
with the number of replenishments. However, there are diminishing returns
as the number of replenishments increases beyond a point. This is important
to note since in our model we do not solve for the optimal number of replen-
ishments and so do not consider the fixed replenishment cost. Clearly, beyond
a certain point having extra replenishments may not be able to overcome the
cost of replenishments.

When package quantities are varied with the number of replenishments,
the profits in all cases continue to increase with the number of replenish-
ments. However package quantities seem to have more of an effect when
there are fewer replenishments. Figure 9.2 shows a plot of the profits against
the number of replenishments for a number of different package quantities.
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TABLE 9.6

Variation in Profit with Number of Replenishments

Number of Assortments Number of Replenishments

3 4 7 13 26 52

2 0.00 1.09 286 439 531 5381
4 023 150 355 537 647 7.07
6 026 158 370 5.65 6.80 7.44
8 026 162 383 582 699 7.64
10 026 164 390 592 713 7.79
12 026 165 392 594 716 7.83
14 026 165 393 597 719 7.87
16 026 166 395 599 722 790
18 026 166 395 6.00 724 792
20 026 166 396 601 726 7.94

9.5.2.3 Kffect of Inventory Holding Cost

To study the effect of holding cost on overall profitability we consider product
line 4 again. However, we simultaneously vary the item costs to get different
profit margins for the SKUs. We consider a profit margin of 35%, 60% and
135%. Table 9.7 shows the results of our test runs in the form of percent
deviations. However, to highlight a number of interesting observations the
table shows in columns 2 through 4 the percent deviation when the holding
cost is decreased from a base of 30 to 20%. In columns 5 through 7 we show
the percent deviation when the holding cost is decreased to 30% from a base
of 40%. Clearly, holding costs affect the solution much more when the profit

40
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FIGURE 9.2
Effect of replenishments and package quantity.
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TABLE 9.7

Percentage Variation in Profit as Holding Cost

Number of Assortments 20% vs. 30% 30% vs. 40%

Percentage Profit Margin
135 60 35 135 60 35

2 152 562 17.04 154 5.65 17.23
4 1.72 589 1739 174 592 17.29
6 1.85 6.06 1749 188 6.05 17.71
8 248 634 1743 152 632 17.50
10 197 648 1745 198 640 1751
12 1.89 6.60 1749 195 654 1742
14 198 673 1754 199 6.64 1737
16 200 680 1758 201 6.62 17.35
18 204 616 1759 205 6.53 17.39
20 210 691 1765 211 6.69 17.39

margins are smaller. Thus a 10% increase in holding cost affects the solution
much more when the profit margin is 35% (approximately 17% deviation) than
when the profit marginis 135% (between 1.52% to 2.11%). This is due to the fact
that holding cost has a more significant effect on assortment decisions when
margins are lower. It is also interesting to observe that number of assortments
plays a more significant part when the margin is higher. When the margins
are higher and holding costs are lower, more products qualify to be part of
an assortment. Thus allowing more assortments makes it possible to tailor
the assortments to individual store requirements giving higher increases in
profit. When margins are low, very few products qualify at higher holding
costs and permitting more assortments does not increase profitability since
stores do not care to carry most of the products.

9.5.2.4 Effect of Number of Assortments

The number of assortments permitted across all stores is a major determinant
of the profit. Figure 9.3 shows the percent deviation of the profit with the
number of assortments for all five product lines. In each case the profit with 2
assortments is taken as the base line to calculate percent deviations. In all cases
increasing the number of assortments leads to increase in the profit but with
diminishing returns. Indeed in all cases having more than 10 assortments
does not materially affect the profit. A striking feature of Figure 9.3 is the
significantly higher increase that product line 4 exhibits in comparison with
the other product lines. The reason for this is that product line 4 is a low
volume line with a large number of SKUs and there are significant differences
between the stores. When very few assortments are permitted many stores
experience large losses. As more assortments are permitted stores are able
to find assortments that are more suitable to their sales patterns. This allows
such stores to pick profitable items and avoid loss making items.
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Effect of number of assortments on profits.

9.5.2.5 Effect of Profit Margin

In much of the discussion thus far, we have mentioned the importance of the
average profit margin on assortment decisions. We conclude our computa-
tional results by looking at a plot of the profit to the profit margin. Figure 9.4
shows the variation in profit with profit margin. First notice that the y-axis
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has a logarithmic scale. This was done to scale the data so that we could show
the relative importance of number of replenishments with changing profit
margins. As is to be expected decreasing the profit margin leads to decreased
profits. However, it is interesting to note that there is a much smaller effect
of the number of replenishments when the profit margin is larger. This stems
from the fact that the extra holding cost is a smaller fraction of the overall
cost and, thus, does not make products so unprofitable that they are dropped
from the assortment.

9.6 Conclusions

In this chapter we present the assortment planning problem. We develop a
model and solution algorithm for the problem when a large retail chain must
limit the number of different assortments that are used. This requires the prob-
lem to be solved simultaneously across all stores in the chain. We show how to
model constraints on inventory productivity, display space, back room space,
and inventory budgets. We present an algorithm based on column genera-
tion and provide extensive computational results to show how the algorithm
performs.
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10.1 Introduction

A mixed-integer linear program (MILP) is a mathematical program with lin-
ear constraints in which a specified subset of the variables are required to take
oninteger values. Although MILPs are difficult to solve in general, the past ten
years have seen a dramatic increase in the quantity and quality of software —
both commercial and noncommercial — designed to solve MILPs. Generally
speaking, noncommercial MILP software tools cannot match the speed or ro-
bustness of their commercial counterparts, but they can provide a viable alter-
native for users who cannot afford the sometimes costly commercial offerings.
For certain applications, open-source software tools can also be more exten-
sible and easier to customize than their commercial counterparts, whose flex-
ibility may be limited by the interface that is exposed to the user. Because of
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the large number of open-source and noncommercial packages available, it
might be difficult for the casual user to determine which of these tools is the
best fit for a given task. In this chapter, we provide an overview of the fea-
tures of the available noncommercial and open source codes, compare selected
alternatives, and illustrate the use of various tools. For an excellent overview
of the major algorithmic components of commercial solvers, especially
CPLEX, LINDO, and XPRESS, we refer to reader to the paper of Atamtiirk
and Savelsbergh [6].
To formally specify a MILP, let a polyhedron

P={xeR"| Ax=b,x >0} (10.1)

be represented in standard form by a constraint matrix A € Q™*" and a right-
hand side vector b € Q™. Without loss of generality, we assume that the
variables indexed 1 through p <n are the integer-constrained variables (the
integer variables), so that the feasible region of the MILP is P! = PNZF x R"~P,
In contrast, the variables indexed p + 1 through n are called the continuous
variables. A subset of the integer variables, called binary variables, may addi-
tionally be constrained to take on only values in the set {0, 1}. We will denote
the set of indices of binary variablesby B C {1, 2, ..., p}. The mixed-integer
linear programming problem is then to compute the optimal value

zip = minc ' x, (10.2)

xeP!

where ¢ € Q" is a vector that defines the objective function. The case in which
all variables are continuous (p = 0) is called a linear program (LP). Associated
with each MILP is an LP called the LP relaxation, obtained by relaxing the
integer restrictions on the variables. For the remainder of the chapter, we use
this standard notation to refer to the data associated with a given MILP and
its LP relaxation.

Inwhat follows, we review the relevant notions from the theory and practice
of integer programming and refer to other sources when necessary for the
full details of the techniques described. This chapter is largely self-contained,
though we do assume that the reader is familiar with concepts from the theory
of linear programming (see [18]). We also assume that the reader has at least
a high-level knowledge of both object-oriented and functional programming
interfaces. For anin-depth treatment of the theory of integer programming, we
direct the reader to the works of Schrijver [76], Nemhauser and Wolsey [62],
and Wolsey [85].

The chapter is organized as follows. In Section 10.2, we sketch the branch-
and-cut algorithm, which is the basic method implemented by the solvers
we highlight herein, and we describe in some detail the advanced bound im-
provement techniques employed by these solvers. In Section 10.3, we discuss
the various categories of MILP software systems and describe how they are
typically used. In Section 10.4, we describe the use and algorithmic features
of eight different noncommercial MILP software systems: ABACUS, BCP,
BonsaiG, CBC, GLPK, lp_solve, MINTO, and SYMPHONY. Section 10.5
illustrates the use of two solver frameworks to develop specialized algorithms
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for solving specific MILP problems. In Section 10.6, the six noncommercial
solvers that can be used as “black-box” solvers are benchmarked on a suite
of over 100 MILP instances. We conclude by assessing the current state of the
art and trends for the future.

10.2 Branch and Bound

Branch and bound is a broad class of algorithms that is the basis for virtually all
modern software for solving MILPs. Here, we focus specifically on LP-based
branch and bound, in which LP relaxations of the original problem are solved to
obtain bounds on the objective function value of an optimal solution. Roughly
speaking, branch and bound is a divide and conquer approach that reduces
the original problem to a series of smaller subproblems and then recursively
solves each subproblem. More formally, recall that P! is the set of feasible
solutions to a given MILP. Our goal is to determine a least cost member of P!
(or prove P! = ¢). To do so, we first attempt to find a “good” solution ¥ € P!
(called the incumbent) by a heuristic procedure or otherwise. If we succeed,
then B = ¢ x serves as an initial upper bound on zjp. If no such solution is
found, then we set 8 = oo. We initially consider the entire feasible region P!.
In the processing or bounding phase, we solve the LP relaxation minycpc'x
of the original problem in order to obtain a fractional solution ¥ € R" and a
lower bound ¢ ' % on the optimal value z;p. We assume this LP relaxation is
bounded, or else the original MILP is itself unbounded.

After solving the LP relaxation, we consider %.If € P!, then % is an optimal
solution to the MILP. Otherwise, we identify k disjoint polyhedral subsets of
P, P1, ..., Py, such that Ui?:lPk N ZP x R" P = PL Each of these subsets
defines a new MILP with the same objective function as the original, called a
subproblem. Based on this partitioning of P!, we have

minc'x = min ( min ch>, (10.3)

xep! iel.k \xeP,NZP xR

so we have reduced the original MILP to a family of smaller MILPs. The
subproblems associated with Py, ..., Py are called the children of the original
MILP, which is itself called the root subproblem. Similarly, a MILP is called the
parent of each of its children. The set of subproblems is commonly associated
with a tree, called the search tree, in which each node corresponds to a sub-
problem and is connected to both its children and its parent. We therefore
use the term search tree node or simply node interchangeably with the term
subproblem and refer to the original MILP as the root node or root of this tree.

After partitioning, we add the children of the root subproblem to the list
of candidate subproblems (those that await processing) and associate with each
candidate alower bound either inherited from the parent or computed during
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the partitioning procedure. This process is called branching. To continue the
algorithm, we select one of the candidate subproblems and process it i.e.,
solve the associated LP relaxation to obtain a fractional solution & € R”, if one
exists. Let the feasible region of the subproblem be S € P NZ? x R"~7. There
are four possible results:

1. If the subproblem has no solutions, then we discard, or fathom it.

2. If cT# > B, then S cannot contain a solution strictly better than x
and we may again fathom the subproblem.

3. If £ e Sand c'% < B, then & € P! and is the best solution found so
far. We set ¥ <— % and B < ¢ "%, and again fathom the subproblem.

4. If none of the above three conditions hold, we are forced to branch
and add the children of this subproblem to the list of candidate
subproblems.

We continue selecting subproblems in a prescribed order (called the search
order) and processing them until the list of candidate subproblems is empty,
at which point the current incumbent must be the optimal solution. If no
incumbent exists, then P! = @.

This procedure can be seen as an iterative scheme for improvement of the
difference between the current upper bound, which is the objective function
value of the current incumbent, and the current lower bound, which is the
minimum of the lower bounds of the candidate subproblems. The difference
between these two bounds is called the optimality gap. We will see later that
there is a tradeoff between improving the upper bound and improving the
lower bound during the course of the algorithm.

The above description highlights the four essential elements of a branch-
and-bound algorithm:

 Lower bounding method: A method for determining a lower bound
on the objective function value of an optimal solution to a given
subproblem.

« Upper bounding method: A method for determining an upper bound
on the optimal solution value zjp.

o Branching method: A procedure for partitioning a subproblem to ob-
tain two or more children.

o Search strategy: A procedure for determining the search order.

With specific implementations of these elements, many different versions of
the basic algorithm can be obtained. So far, we have described only the most
straightforward implementation. In the sections that follow, we discuss a
number of the most common improvements to these basic techniques. Further
improvements may be possible through exploitation of the structure of a
particular problem class.
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10.2.1 Lower Bounding Methods

The effectiveness of the branch and bound algorithm depends critically on
the ability to compute bounds that are close to the optimal solution value.
In an LP-based branch-and-bound algorithm, the lower bound is obtained
by solving an LP relaxation, as we have indicated. There are a number of
ways in which this lower bound can be potentially improved using advanced
techniques. In the remainder of this section, we describe those that are imple-
mented in the software packages reviewed in Section 10.4.

10.2.1.1 Logical Preprocessing

One method for improving the lower bound that can be applied even before
the solution algorithm is invoked is logical preprocessing. By application of
simple logical rules, preprocessing methods attempt to tighten the initial for-
mulation and thereby improve the bound that will be produced when the LP
relaxation is solved. Formally, preprocessing techniques attempt to determine
a polyhedron R such that P! € R C P. The bound obtained by minimizing
over R isstill valid but may be better than that obtained by minimizing over P.

Preprocessing techniques are generally limited to incremental improve-
ments of the existing constraint system. Although they are frequently
designed to be applied to the original formulation before the solution algo-
rithm is invoked, they can also be applied to individual subproblems during
the search process if desired. Preprocessing methods include procedures for
identification of obviously infeasible instances, removal of redundant con-
straints, tightening of bounds on variables by analysis of the constraints,
improvement of matrix coefficients, and improvement of the right-hand side
value of constraints. For example, a constraint

n
Zaijx j <bi
j=1
can be replaced by the improved constraint

Z a;ixj + (ax — 8)xg < b; — 3§

fork € Bsuchthat}_; (; .\ iXj < bi—8Vx € PL. This technique is called
coefficient reduction. Another technique, called probing, can be used to deter-
mine the logical implications of constraints involving binary variables. These
implications are used in a variety of ways, including the generation of valid
inequalities, as described next in Section 10.2.1.2. An extended discussion of
advanced preprocessing and probing techniques, can be found in the paper
of Savelsbergh [74].

10.2.1.2 Valid Inequalities

The preprocessing concept can be extended by dynamically generating en-
tirely new constraints that can be added to the original formulation without
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excluding members of P!. To introduce this concept formally, we define an
inequality as a pair (a, ao) consisting of a coefficient vector a € R" and a right-
hand side a9 € R. Any member of the half-space {x € R" | aTx < ao} is said
to satisfy the inequality and all other points are said to violate it. An inequality
is valid for P! if all members of P! satisfy it.

A valid inequality (a, a¢) is called improving for a given MILP if

min{c'x | x € P,a'x <ag} > min{c x| x € P}.

A necessary and sufficient condition for an inequality to be improving is that
it be violated by all optimal solutions to the LP relaxation, so violation of
the fractional solution ¥ € R" generated by solution of the LP relaxation of
a MILP is necessary for a valid inequality to be improving. If a given valid
inequality violated by % isnotimproving, adding it to the current LP relaxation
will still result in the generation of a new fractional solution, however, and
might, in turn, result in the generation of additional candidate inequalities.
By repeatedly searching for violated valid inequalities and using them to
augment the LP relaxation, the bound may be improved significantly. If such
an iterative scheme for improving the bound is utilized during the processing
of each search tree node, the overall method is called branch and cut. Generation
of valid inequalities in the root node only is called cut and branch. Branch and
cut is the method implemented by the vast majority of solvers today.

Valid inequalities that are necessary to the description of conv(P) are called
facet-defining inequalities. Because they provide the closest possible approxi-
mation of conv(P), facet-defining inequalities are typically very effective at
improving the lower bound. They are, however, difficult to generate in gen-
eral. For an arbitrary vector & € R" and polyhedron R € R", the problem of
either finding a facet-defining inequality (a, a¢) violated by % or proving that
% € R is called the facet identification problem. The facet identification problem
for a given polyhedron is polynomially equivalent to optimizing over the
same polyhedron [37], so finding a facet-defining inequality violated by an
arbitrary vector is in general as hard as solving the MILP itself. The problem of
generating a valid inequality violated by a given fractional solution, whether
facet-defining or not, is called the separation problem.

To deal with the difficulty of the facet identification problem, a common ap-
proach s to generate valid inequalities (possibly facet-defining) for the convex
hull of solutions to a relaxation of the instance. In the following paragraphs,
we describe commonly arising relaxations of general MILPs and classes of
valid inequalities that can be derived from them. In most cases, the relaxations
come from substructures that are not present in all MILPs, which means that
the associated classes of valid inequalities cannot always be generated. Two
exceptions are the Gomory and MIR inequalities, which can be generated for
all MILP instances. Most solvers will try to determine automatically which
substructures exist and activate the appropriate subroutines for cut genera-
tion. However, this is difficult at best. Therefore, if certain substructures are
known not to exist a priori, then it is worthwhile for the user to disable sub-
routines that generate the corresponding classes of inequalities. On the other
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hand, if a particular substructure is known to exist, it is worthwhile to seek
out a solver that can take advantage of this fact. The classes of valid inequal-
ities covered here are those employed by at least one of the noncommercial
solvers that we describe in Section 10.4.

Although subroutines for generating valid inequalities are generally in-
tegrated into the solver itself, free-standing subroutines for generating in-
equalities valid for generic MILPs can be obtained from the open-source Cut
Generation Library (CGL), available for download as part of the Computa-
tional Infrastructure for Operations Research (COIN-OR) software suite [19].
The library is provided by the COIN-OR Foundation and includes separation
routines for most of the classes of valid inequalities reviewed here. Three of
the MILP solvers discussed in Section 10.4 make use of generic separation
routines that are part of the CGL.

Knapsack Cover Inequalities. Often, a MILP has a row i of the form

Zai]’x]' <b;. (10.4)

j€B

We assume without loss of generality that a;; > 0 for all j € B (if not, we can
complement the variables for whicha;; < 0). Considering only (10.4), we have
a relaxation of the MILP, called the 0 — 1 knapsack problem, with the feasible
region

Proap = {x e gy < b}.

jeB

Note that in all of the relaxations we consider, the feasible region is implicitly
assumed to be contained in the space Z? x R"~7, and the variables not explic-
itly presentin the relaxation are treated as free. Many researchers have studied
the structure of the knapsack problem and have derived classes of facet-
defining inequalities for it [7, 42, 83].

AsetC C Bis called a cover if X jcca; > b. A cover C is minimal if there does
not exist a k € C such that C \ {k} is also a cover. For any cover C, we must

have

> xj<ICl-1

jeC
for all x € P, This class of valid inequalities are called cover inequalities.
In general, these inequalities are not facet-defining for P*"%, but they can

be strengthened through a procedure called /ifting. The interested reader is
referred to the paper by Gu, Nemhauser, and Savelsbergh [40].

GUB Cover Inequalities. A generalized upper bound (GUB) inequality is an
inequality of the form

ij <1

jeQ
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where Q € B. When MILP contains a knapsack row i of the form (10.4) and a
set of GUB inequalities defined by disjoint sets Qx C B for k € K, we obtain
a relaxation of MILP with the feasible region

’PGUBz xE{O,l}B | Zui]-xjfbi,ijfl Vk € K
jeB jeQk

This class of inequalities models a situation in which a subset of items not
violating the knapsack inequality (10.4) must be selected, and within that
subset of items, at most one element from each of the subsets Q; can be
selected. A GUB cover Cg is a cover that obeys the GUB constraints, (i.e., no
two elements of the cover belong to the same Q;). For any GUB cover Cg, the
inequality

> x5 <ICol -1

jECG

is valid for PCUB. Again, a lifting procedure, in this case one that takes into
account the GUB constraints, can lead to significant strengthening of these
inequalities. For more details of the inequalities and lifting procedure, see the
paper of Wolsey [84] and the paper of Gu, Nemhauser, and Savelsbergh [38].

Flow Cover Inequalities. Another important type of inequality commonly
found in MILP problems is a variable upper bound. A variable upper bound is
an inequality of the form

Xj < ijk,

where x; is a continuous variable (j > p), x; is a binary variable (k € B), and
U; is an upper bound on variable x;. Such inequalities model the implication
x¢ = 0 = x; = 0. Variable upper bound inequalities are often used to model
a fixed charge associated with assignment of a positive value to variable x;,
and they are particularly prevalent in network flow models. In such models,
we can often identify a relaxation with the following feasible region:

> %)

pllow — {(x1, x?) e R" x {0, 1}"
jeN*

—ijl-fd, x}gu]-x]?, jeN},

where N* and N~ are appropriate sets of indices, N = N* U N~,and n’ = |N].
AsetC =C*UC™ iscalledaflow coverif C* € N*,C~ € N~ and Zjec+m; —
Yjec-m;j > d. For any flow cover C, the inequality

Sxi+ Y mp—nA-y)<d+ Y mi+ > Ayi+ Y x

jeCt jeC++ jeC- jeL- jeL—
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where A = Ejec+m]' - E]'Ec—m]' —d,Ctt = {] eCt| mj > AL, LT C(N\C)
and m; > A for j € L7, and L~ = N"\(L™ UC"), is called a simple gen-
eralized flow cover inequality and is valid for Pf°W. Just as with knapsack
cover inequalities, these inequalities can be strengthened through lifting to
obtain an inequality called the lifted simple generalized flow cover inequality. The
full details of obtaining such inequalities are given by Gu, Nemhauser, and
Savelsbergh [39].

Clique Inequalities. Many MILPs contain logical restrictions on pairs of bi-
nary variables such as x; = 1 = x; = 0. In such cases, an auxiliary data struc-
ture, called a conflict graph, can be used to capture these logical conditions and
further exploit them [4]. The conflict graph is a graph with vertex set B, and
an edge between each pair of nodes that correspond to a pair of variables that
cannot simultaneously have the value one in any optimal solution. The logical
restrictions from which the conflict graph is derived may be present explicitly
in the original model (for example, GUB inequalities lead directly to edges in
the conflict graph), or may be discovered during preprocessing (see [5, 74]).

Because any feasible solution x € P! must induce a vertex packing in the
conflict graph, inequalities valid for the vertex packing polytope of the conflict
graph are also valid for the MILP instance from which the conflict graph was
derived. Classes of inequalities valid for the vertex packing polytope have
been studied by a number of authors [17, 43, 63, 65]. As an example, if C is
the set of indices of nodes that form a clique in a conflict graph for a MILP
instance, then the clique inequality

Z Xj <1

jeC
is satisfied by all x € P!. Alternatively, if O is a cycle in a conflict graph for a
MILP instance, and |O| is odd, then the odd-hole inequality

Ol—-1
S <10

jeO

is also satisfied by all x € P!. Again, these inequalities can be strengthened
by lifting [63, 64].

Implication Inequalities. In some cases, the logical implications discovered
during preprocessing are not between pairs of binary variables (in which
case clique and odd-hole inequalities can be derived), but between a binary
variable and a continuous variable. These logical implications can be enforced
using inequalities known as implication inequalities. If x; is a binary variable
and x; is a continuous variable with upper bound U, the implication

x=0=x =«
yields the implication inequality
Xj<a+ u —a)x;.

Other implication inequalities can also be derived. For more details, see the
paper of Savelsbergh [74].
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Gomory Inequalities. In contrast to the classes of inequalities we have re-
viewed so far, Gomory inequalities are generic, in the sense that they do not
require the presence of any particular substructure other than integrality and
nonnegativity. This means they can be derived for any MILP. Gomory in-
equalities are easy to generate in LP-based branch and bound. After solving
the current LP relaxation, we obtain an optimal basis matrix Az € R™*™. The
vector Ay'b yields the values of the basic variables in the current fractional
solution . Assuming % ¢ P!, we must have (Aglb)i ¢ 7 for some i between
1 and m. Taking u above to be the i " row of Az",

X+ Z uAjx; + Z uAxe = ub, (10.5)

jeNB! keNBC

for all x € P!, where NB! is the set of nonbasic integer variables, NBC is the
set of nonbasic continuous variables, and 4; is the I™ column of A. Let
fi=uAj—|uA;lforj e NB! UNB€,and let f; = ub—|ub]; thentheinequality

l — .

jenBl: jenBl: jeNBC: jeNBC:
fi=fo fi=fo uaj>0 uaj <0

is called the Gomory mixed-integer inequality and is satisfied by all x € P!,
but not satisfied by the current fractional solution #. It was first derived by
Gomory [36], but also can be derived by a simple disjunctive argument, as in
Balas et al. [8].

Mixed-Integer Rounding Inequalities. Gomory mixed-integer inequalities
can be viewed as a special case of a more general class of inequalities known
as mixed-integer rounding inequalities. Mixed-integer rounding inequalities are
obtained as valid inequalities for the relaxed feasible region

y
PMR = & (!, 0%, x%) e RL x RL x Z | Y Jajx)+x' <b+x* 3. (107)
j=1

The mixed-integer rounding inequality

n

max{f; — f,0} x?
Z(La;JJrl’_—f)x?S b)+ 7=

j=1

where f = b — |b], fj = a; — |aj] for j = 1,2, ..., 1, is valid for P MR
[55, 61]. Marchand [54] established that many classes of valid inequalities
for structured problem instances are special cases of mixed-integer rounding
inequalities, including certain subclasses of the lifted flow cover inequalities
described above.

The process of generating a mixed-integer rounding inequality is a three-
step procedure. First, rows of the constraint matrix are aggregated. Second,
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bound substitution of the simple or variable upper and lower bounds is per-
formed, and variables are complemented to produce a relaxation of the form
(10.7). Third, a heuristic separation procedure is used to find mixed-integer
rounding inequalities valid for some such relaxation and violated by the cur-
rent fractional solution. Marchand and Wolsey [55] discuss the application of
mixed-integer rounding inequalities in detail.

10.2.1.3 Reduced Cost Tightening

After the LP relaxation of MILP is solved, the reduced costs of nonbasic integer
variables can be used to tighten bounds on integer variables for the subtree
rooted at that node. Although we have assumed a problem given in standard
form, upper and lower bounds on variable values are typically present and are
handled implicitly. Such bound constraints take the form! < x <uforl, u € R"
forall x € P!. Evenifno such bound constraints are initially present, they may
be introduced during branching. Let ¢; be the reduced cost of nonbasic integer
variable j, obtained after solution of the LP relaxation of a given subproblem
and let & € R" be an optimal fractional solution. If #; =1; € Zand y € R, is
such that c "2 +y¢ j=B, where B is the objective function value of the current
incumbent, then x; <I; + | y] in any optimal solution. Hence, we can replace
the previous upper bound u; with min(u;, [; + | ¥ ]). The same procedure can
be used to potentially improve the lower bounds. This is an elementary form
of preprocessing, but can be very effective when combined with other forms
of logical preprocessing, especially when the optimality gap is small. Note
that if this tightening takes place in the root node, it is valid everywhere and
can be considered an improvement of the original model. Some MILP solvers
store the reduced costs from the root LP relaxation, and use them to perform
this preprocessing whenever a new incumbent is found.

10.2.1.4 Column Generation

A technique for improving the lower bound that can be seen as “dual” to the
dynamic generation of valid inequalities is that of column generation. Most col-
umn generation algorithms can be viewed as a form of Dantzig-Wolfe decom-
position, so we concentrate here on that technique. Consider a relaxation of the
original MILP with feasible set 7 O P’. We assume that F is finite and that it
is possible to effectively optimize over F, but that a minimal description of the
convex hull of 7 is of exponential size. Let Q@ = {x e R" | Dx =d, x > 0} D Pl
be a polyhedron that represents the feasible region of a second relaxation
whose description is “small” and such that FN QNZP NR"P = P We can
then reformulate the original integer program as

min {Z cTshe | > (Ds)hs=d, A 1=1,1>0,1€ Zf}, (10.8)
seF seF

where 1 is a vector of all ones of conformable dimension. Relaxing the inte-
grality restriction on A, we obtain a linear program whose optimal solution
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yields the (possibly) improved bound

min ¢'x > minc ' x. (10.9)
xeFNQ xeP

Of course, this linear program generally has an exponential number of
columns. Therefore, we must generate them dynamically in much the same
fashion as valid inequalities are generated in branch and cut. If we solve the
above linear program with a subset of the full set of columns to obtain a dual
solution u, then the problem of finding the column with the smallest reduced
cost among those not already present is equivalent to solving

min(c" — uD)s, (10.10)
seF

which is referred to as the column generation subproblem. Because this is an
optimization problem over the set F, it can be solved effectively, and hence
so can the linear program itself. When employed at each search tree node
during branch and bound, the overall technique is called branch and price.

Because of the often problem-specific nature of the column generation sub-
problem, branch and price is frequently implemented using a solver frame-
work. Recently two different groups have undertaken efforts to develop
generic frameworks for performing column generation. Vanderbeck [82] is
developing a framework for branch and price that will take care of many of
the generic algorithmic details and allow the solver to behave essentially as a
black box. Ralphs and Galati (see Chapter 4) have undertaken a similar effort
in developing DECOMP, a general framework for computing bounds using
decomposition within a branch-and-bound procedure. Currently, however,
implementing a branch-and-price algorithm is a rather involved procedure
that requires a certain degree of technical expertise. Section 10.5.2 also de-
scribes the implementation of a branch-and-price algorithm using the BCP
framework.

10.2.2 Upper Bounding Methods

Inbranch and bound, upper bounds are obtained by discovering feasible solu-
tions to the original MILP. Feasible solutions arise naturally if the branch-and-
bound algorithm is allowed to run its full course. However, acceleration of the
process of finding feasible solutions has three potential benefits. First, the so-
lution process may be terminated prematurely and in such a case, we would
like to come away with a solution as close to optimal as possible. Second,
an improved upper bound g may lead to generation of fewer subproblems
because of earlier fathoming (depending on the search strategy being em-
ployed). Third, a good upper bound allows the bounds on integer variables to
be tightened on the basis of their reduced cost in the current relaxation (see Sec-
tion 10.2.1.3). Such tightening can in turn enable additional logical preprocess-
ing and may result in significant improvement to the lower bound as a result.

The process of finding feasible solutions during the search procedure can
be accelerated in two ways. The first is to influence the search order, choosing
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to evaluate and partition nodes that are close to being integer feasible. This
techniqueis further discussed in Section 10.2.4. The second is to use a heuristic
procedure, called a primal heuristic, to construct a solution. Primal heuristics
are applied during the search process and generally take an infeasible frac-
tional solution as input. A very simple heuristic procedure is to round the
fractional components of the infeasible solution in an attempt to produce a
feasible solution. The current solution may be rounded in many ways and
determination of a rounding that maintains feasibility with respect to the
constraints Ax = b may be difficult for certain problem classes. A more so-
phisticated class of primal heuristics, called pivot and complement, involves
pivoting fractional variables out of the current linear programming basis in
order to achieve integrality [9, 59, 11]. Still other classes of primal heuristics
use the solution of auxiliary linear programs to construct a solution. One sim-
ple, yet effective example of such a heuristic is known as the diving heuristic.
In the diving heuristic, some integer variables are fixed and the linear pro-
gram resolved. The fixing and resolving is iterated until either an integral
solution is found or the linear program becomes infeasible. Recent successful
primal heuristics, such as local branching [29] and RINS [22], combine solu-
tion of auxiliary linear programs with methods that control the neighborhood
of feasible solutions to be searched.

10.2.3 Branching

Branching is the method by which a MILP is divided into subproblems. In
LP-based branch and bound, there are three requirements for the branching
method. First, the feasible region must be partitioned in such a way that the
resulting subproblems are also MILPs. This means that the subproblems are
usually created by imposing additional linear inequalities. Second, the union
of the feasible regions of the subproblems must contain at least one optimal
solution. Third, because the primary goal of branching is to improve the
overall lower bound, it is desirable that the current fractional solution not
be contained in any of the members of the partition. Otherwise, the overall
lower bound will not be improved.

Given a fractional solution to the LP relaxation & € R", an obvious way
to fulfill the above requirements is to choose an index j < p such that %; ¢ Z
and to create two subproblems, one by imposing an upper bound of |%;] on
variable j and a second by imposing a lower bound of [%;]. This partitioning
is valid because any feasible solution must satisfy one of these two linear con-
straints. Furthermore, & is not feasible for either of the resulting subproblems.
This partitioning procedure is known as branching on a variable.

Typically, there are many integer variables with fractional values, so we
must have a method for deciding which one to choose. A primary goal of
branching is to improve the lower bound of the resulting relaxations. The
most straightforward branching methods are those that choose the branch-
ing variable based solely on the current fractional solution and do not use
any auxiliary information. Branching on the variable with the largest frac-
tional part, the first variable (by index) that is fractional, or the last variable
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(by index) that is fractional are examples of such procedures. These rules tend
to be too myopic to be effective, so many solvers use more sophisticated ap-
proaches. Such approaches fall into two general categories: forward-looking
methods and backward-looking methods. Both types of methods try to choose the
best partitioning by predicting, for a given candidate partitioning, how much
the lower bound will actually be improved. Forward-looking methods gener-
ate this prediction based solely on locally generated information obtained by
“presolving” candidate subproblems. Backward-looking methods take into
account the results of previous partitionings to predict the effect of future
ones. Of course, as one might expect, hybrids that combine these two basic
approaches also exist [2].

A simple forward-looking method is the penalty method of Driebeek [26],
which implicitly performs one dual simplex pivot to generate a lower bound
on the bound improvement that could be obtained by branching on a given
variable. Tomlin [79] improved on this idea by considering the integrality of
the variables. Strong branching is an extension of this basic concept in which
the solver explicitly performs a fixed and limited number of dual simplex
pivots on the LP relaxations of each of the children that result from branch-
ing on a given variable. This is called presolving and again provides a bound
on the improvement one might see as a result of a given choice. The effec-
tiveness of strong branching was first demonstrated by Applegate et al. in
their work on the traveling salesman problem [3] and has since become a
mainstay for solving difficult combinatorial problems. An important aspect
of strong branching is that presolving a given candidate variable is a relatively
expensive operation, so it is typically not possible to presolve all candidates.
The procedure is therefore usually accomplished in two phases. In the first
phase, a small set of candidates is chosen (usually based on one of the simple
methods described earlier). In the second phase, each of these candidates is
presolved, and the final choice is made using one of the selection rules to be
described below.

Backward-looking methods generally depend on the computation of pseu-
docosts [14] to maintain a history of the effect of branching on a given variable.
Such procedures are based on the notion that each variable may be branched
on multiple times during the search and the effect will be similar each time.
Pseudocosts are defined as follows. With each integer variable j, we asso-
ciate two quantities, P;” and P]-*, that estimate the per unit increase in objec-
tive function value if we fix variable j to its floor and ceiling, respectively.
Suppose that f; = &; — |%;] > 0. Then by branching on variable j, we will
estimate an increase of D; = P; f; on the “down branch” and an increase of
Dj = P;(1 - f;) on the “up branch”.

The most important aspect of using pseudocosts is the method of obtaining
the values P;” and P;" for variable j. A popular way to obtain these values
is to simply observe and record the true increase in objective function value
whenever variable j is chosen as the branching variable. For example, if a
given subproblem had lower bound z;p and its children had lower bounds
z;p and zj, after branching on variable j, then the pseudocosts would be
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computed as
_ _ Zp—ap . Zlp—zp
by = f; b= 1—f
j j

where f; is the fractional part of the value of variable j in the solution to the
LP relaxation of the parent. The pseudocosts may be updated using the first
observation, the last observation, or by averaging all observations. In contrast
to the estimates generated in strong branching, generation of pseudocost
estimates is inexpensive, so they are typically calculated for all variables.

Whether using a forward-looking or a backward-looking method, the final
step is to select the branching variable. The goal is to maximize the improve-
ment in the lower bound from the parent to each of its children. Because each
parent has two (or more) children, however, no unique metric exists for this
change. Suggestions in the literature have included maximization of the sum
of the changes on both branches [35], maximization of the smaller of the two
changes [12], or a combination of the two [27].

More general methods of branching can be obtained by branching on other
disjunctions. For any vector a € Z" whose last n — p entries are zero, we
must have a "x € Z for all x € P!. Thus, if a% & Z, a can be used to produce
a disjunction by imposing the constraint a'x < |a'&] in one subproblem
and the constraint a "x > [a "] in the other subproblem. This is known as
branching on a hyperplane. Typically, branching on hyperplanes is a problem-
specific method that exploits special structure, but it can be made generic by
maintenance of a pool of inequalities that are slack in the current relaxation
as branching candidates.

An example of branching on hyperplanes using special structure is GUB
branching. If the MILP contains rows of the form

le‘ =1,

jeG

(10.11)

where G C B, then a valid partitioning is obtained by selection of a nonempty
subset G° of G, and enforcement of the linear constraint }_ ;o x; = 0 in one
subproblem and the constraint } ;¢\ o Xj = 0in the other subproblem. These
are linear constraints that partition the set of feasible solutions, and the current
LP solution % is excluded from both resulting subproblems if G° is chosen so
that0 < 3.0 &; < 1. GUB branching is a special case of branching on special
ordered sets (SOS)! [13]. Special ordered sets of variables can also be used in
the minimization of separable piecewise-linear nonconvex functions.
Because of their open nature, noncommercial software packages are often
more flexible and extensible than their commercial counterparts. This flexibil-
ity is perhaps most evident in the array of advanced branching mechanisms
that can be implemented using the open source and noncommercial frame-
works we describe in Section 10.4. Using a solver framework with advanced
customized branching options, itis possible, for instance, to branch directly on

1 Some authors refer to GUBs as special ordered sets of type 1.
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a disjunction, rather than introducing auxiliary integer variables. An impor-
tant example of this is in the handling of semicontinuous variables, in which
a variable is constrained to take either the value 0 or a value larger than a pa-
rameter K. Additionally, frameworks can make it easy for the user to specify
prioritization schemes for branching on integer variables or to implement
complex partitioning schemes based on multiple disjunctions.

10.2.4 Search Strategy

As mentioned in Section 10.2.3, branching decisions are made with the goal
of improving the lower bound. In selecting the order in which the candidate
subproblems should be processed, however, our focus may be on improving
either the upper bound, the lower bound, or both. Search strategies, or node
selection methods, can be categorized as either static methods, estimate-based
methods, two-phase methods, or hybrid methods.

Static node selection methods employ a fixed rule for selecting the next
subproblem to process. A popular static method is best-first search, which
chooses the candidate node with the smallest lower bound. Because of the
fathoming rule employed in branch and bound, a best-first search strategy
ensures that no subproblem with a lower bound above the optimal solution
value can ever be processed. Therefore, the best-first strategy minimizes the
number of subproblems processed and improves the lower bound quickly.
However, this comes at the price of sacrificing improvements to the upper
bound. In fact, the upper bound will only change when an optimal solution is
located. At the other extreme, depth-first search chooses the next candidate to be
a node at maximum depth in the tree. In contrast to best-first search, which
will produce no suboptimal solutions, depth-first search tends to produce
many suboptimal solutions, typically early in the search process, because such
solutions tend to occur deep in the tree. This allows the upper bound to be
improved quickly. Depth-first search also has the advantage that the change
in the relaxation being solved from subproblem to subproblem is very slight,
so the relaxations tend to solve more quickly when compared to best-first
search. Some solvers also allow the search tree to be explored in a breadth-
first fashion, but this method offers little advantage over best-first search.

Neither best-first search nor depth-first search make any intelligent at-
tempt to select nodes that may lead to improved feasible solutions. Estimate-
based methods such as the best-projection method [31, 58] and the best-estimate
method [14] are improvements in this regard. The best-projection method mea-
sures the overall “quality” of a node by combining its lower bound with the
degree of integer infeasibility of the current solution. Alternatively, the best-
estimate method combines a node’s lower bound, integer infeasibility, and
pseudocost information to rank the desirability of exploring a node.

Because we have two goals in node selection — finding “good” feasible
solutions (i.e., improving the upper bound) and proving that the current in-
cumbent is in fact a “good” solution (i.e., improving the lower bound) — it is
natural to develop node selection strategies that switch from one goal to the
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other during the course of the algorithm. This results in a two-phase search
strategy. In the first phase, we try to determine “good” feasible solutions,
while in the second phase, we are interested in proving this goodness. Perhaps
the simplest “two-phase” algorithm is to perform depth-first search until a
feasible solution is found, and then switch to best-first search. A variant of
this two-phase algorithm is used by many of the noncommercial solvers that
we describe in Section 10.4.

Hybrid methods also combine two or more node selection methods, but
in a different manner. In a typical hybrid method, the search tree is explored
in a depth-first manner until the lower bound of the child subproblem being
explored rises above a prescribed level in comparison to the overall lower or
upper bounds. After this, a new subproblem is selected by a different criterion
(e.g., best-first or best-estimate), and the depth-first process is repeated. For
an in-depth discussion of search strategies for mixed-integer programming,
see the paper of Linderoth and Savelsbergh [49].

10.3 User Interfaces

An important aspect of the design of software for solving MILPs is the user
interface, which determines both the way in which the user interacts with the
solver and the form in which the MILP instance must be specified. The range
of purposes for noncommercial MILP software is quite large, so it stands to
reason that the number of user interface types is also large. In this section,
we broadly categorize the software packages available. The categorization
provided here is certainly not perfect — some tools fall between categories or
into multiple categories. However, it does represent the most typical ways in
which software packages for MILP are employed in practice.

10.3.1 Black-Box Solvers

Many users simply want a “black box” that takes a given MILP as input
and returns a solution as output. For such black-box applications, the user
typically interacts with the solver through a command-line interface or an
interactive shell, invoking the solver by passing the name of a file containing
a description of the instance to be solved. One of the main differences be-
tween various black-box solvers from the user’s perspective is the format in
which the model can be specified to the solver. In the two sections below, we
describe two of the most common input mechanisms — raw (uninterpreted)
file formats and modeling language (interpreted) file formats. Table 10.1 in
Section 10.4 lists the packages covered in this chapter that function as black-
box solvers, along with the file formats they accept and modeling languages
they support. In Section 10.6, we provide computational results that compare
all of these solvers over a wide range of instances.
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10.3.1.1 Raw File Formats

One of the first interfaces used for black-box solvers was a standard file format
for specifying a single instance of a mathematical program. Such a file format
provides a structured way of constructing a file containing a description of
the constraint matrix and rim vectors (objective function vector, right hand
side vector, and variable lower and upper bound vectors) in a form that can
be easily read by the solver. The oldest and most pervasive file format is the
longstanding Mathematical Programming System (MPS) format, developed
by IBM in the 1970s. In MPS format, the file is divided into sections, each of
which specifies one of the elements of the input, such as the constraint matrix,
the right-hand side, the objective function, and upper and lower bounds on
the variables. MPS is a column-oriented format, which means that the con-
straint matrix is specified column-by-column in the MPS file. Another popular
format, LP format, is similar to MPS in that the format consists of a text file
divided into different sections, each of which specifies one of the elements
of the input. However, LP format is a row-oriented format, so the constraint
matrix is specified one row at a time in the file. This format tends to be slightly
more readable by humans.

Because MPSwas adopted as the de facto standard several decades ago, there
has not been much deviation from this basic approach. MPS, however, is not
an easily extensible standard, and is only well-suited for specifying integer
and linear models. Several replacements based on the extensible markup
language (XML), a wide-ranging standard for portable data interchange, have
been proposed. One of the most well-developed of these is an open standard
called LPFML [32]. The biggest advantage of formats based on XML is that
they are far more extensible and are based on an established standard with
broad support and well-developed tools.

10.3.1.2 Modeling Languages

Despite their wide and persistent use, raw file formats for specifying instances
have many disadvantages. The files can be tedious to generate, cumbersome
to work with, extremely difficult to debug, and are not easily readable by
humans. For these reasons, most users prefer to work with a modeling language.
Modeling languages allow the user to specify a model in a more intuitive
(e.g., algebraic) format. An interface layer then interprets the model file and
translates it into a raw format that the underlying solver can interpret directly.
Another powerful feature of modeling languages is that they allow for the
separation of the model specification from the instance data.

Full-featured modeling languages are similar to generic programming lan-
guages, suchas C and C++, in that they have constructs such asloops and con-
ditional expressions. They also contain features designed specifically to allow
the user to specify mathematical models in a more natural, human-readable
form. Two modeling language systems that are freely available are ZIMPL [87]
and GNU Mathprog (GMPL) [53]. ZIMPL is a stand-alone parser that reads in
a file format similar to the popular commercial modeling language AMPL [33]
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and outputs the specified math program in either MPS or LP format. GMPL
is the GNU Math Programming Language, which is again similar to AMPL.
The parser for GMPL is included as part of the GLPK package described in
Section 10.4.5, but it can also be used as a free-standing parser.

10.3.2 Callable Libraries

A more flexible mechanism for invoking a MILP solver is through a callable
library interface. Most often, callable libraries are still treated essentially as a
“black box,” but they can be invoked directly from user code, allowing the
development of custom applications capable of generating a model, invoking
the solver directly without user intervention, parsing the output and inter-
preting the results. Callable libraries also make possible the solution of more
than one instance within a single invocation of an application or the use of
the solver as a subroutine within a larger implementation. The interfaces to
the callable libraries discussed in Section 10.4 are implemented in either C or
C++, with each solver generally having its own Application Programming
Interface (API). The column labeled Callable API in Table 10.1 of Section 10.4
indicates which of the software packages discussed in this chapter have
callable library interfaces and the type of interface available.

The fact that each solver has its own API makes development of portable
code difficult, as this fosters an inherent dependence on one particular APL
Recently, however, two open standards for calling solvers have been devel-
oped that remove the dependence on a particular solver’s API. These are
discussed below.

10.3.2.1 Open Solver Interface

The Open Solver Interface (OSI), part of the COIN-OR software suite men-
tioned earlier, is a standard C++ interface for invoking solvers for LPs and
MILPs [51]. The OSI consists of a C++ base class with containers for storing
instance data, as well as a standard set of problem import, export, modifica-
tion, solution, and query routines. Each supported solver has a corresponding
derived class that implements the methods of the base class and translates
the standard calls into native calls to the API of the solver in question. Thus,
a code that uses only calls from the OSI base class could be easily interfaced
with any supported solver without change. At the time of this writing, eleven
commercial and noncommercial solvers with OSI implementations are avail-
able, including several of the solvers reviewed in Section 10.4.

10.3.2.2 Object-Oriented Interfaces

In an object-oriented interface, there is a mapping between the mathematical
modeling objects that comprise a MILP instance (variables, constraints, etc.)
and programming language objects. Using this mapping, MILP models can
be easily built in a natural way directly within C++ code. The commercial
package called Concert Technology [45] by ILOG was perhaps the first ex-
ample of such an object-oriented interface. FLOPC++- [44] is an open source
C++ object-oriented interface for algebraic modeling of LPs and MILPs that



Noncommercial Software for Mixed-Integer Linear Programming 273

provides functionality similar to Concert. FLOPC++ allows linear models
to be specified in a declarative style, similar to algebraic modeling languages
such as GAMS and AMPL, within a C+4 program. As a result, the traditional
strengths of algebraic modeling languages, such as the ability to declare a
model in a human-readable format, are preserved, while still allowing the
user to embed model generation and solution procedures within a larger ap-
plications. To achieve solver independence, FLOPC ++ uses the OSI to access
the underlying solver, and may therefore be linked to any solver with an OSI
implementation. Another interesting interface that allows users to model LP
instances in the python language is PuLP [73].

10.3.3 Solver Frameworks

A solver framework is an implementation of a branch-and-bound, branch-
and-cut, or branch-and-price algorithm with hooks that allow the user to
provide custom implementations of certain aspects of the algorithm. For in-
stance, the user may wish to provide a custom branching rule or problem-
specific valid inequalities. The customization is generally accomplished either
through the use of C language callback functions, or through a C++4- inter-
face in which the user must derive certain base classes and override default
implementations for the desired functions. Some frameworks have the abil-
ity to function as black-box solvers, but others, such as BCP and ABACUS,
do not include default implementations of certain algorithmic components.
Table 10.1 in Section 10.4 indicates the frameworks available and their style
of customization interface.

10.4 MILP Software

In this section, we summarize the features of the noncommercial software
packages available for solving MILPs. Table 10.1 to Table 10.3 summarize
the packages reviewed here. In Table 10.1, the columns have the following
meanings:

o Version Number: The version of the software reviewed for this chap-
ter. Note that BCP does not assign version numbers, so we have
listed the date obtained instead.

o LP Solver: The LP software used to solve the relaxations arising
during the algorithm. The MILP solvers listed as OSI-compliant
can use any LP solver with an OSI interface. ABACUS can use either
CPLEX, SOPLEX, or XPRESS-MP.

« File Format: The file formats accepted by packages that include a
black-box solver. File formats are discussed in Section 10.3.1.1.

* Callable API: The language in which the callable library interface is
implemented (if the package in question has one). Some packages
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support more than one interface. Two of the solvers, SYMPHONY
and GLPK, canalsobe called through their own OSIimplementation.

» Framework API: For those packages that are considered frameworks,
this indicates how the callback functions must be implemented —
through a C or a C** interface.

* User’s Manual: Indicates whether the package has a user’s manual.

TABLE 10.1
List of Solvers and Main Features
Version LP Callable Framework User’s
Number Solver File Format API API Manual
ABACUS 2.3 C/s/X no none C++ yes
BCP 11/1/04 OSI no none C++ yes
bonsaiG 2.8 DYLP MPS none none yes
CBC 0.70 OSI MPS C++/C C++ no
GLPK 42 GLPK MPS/GMPL os1/C none yes
Ip_solve 5.1 Ip_solve MPS/LP/GMPL C/VB/Java none yes
MINTO 3.1 OSI MPS/AMPL none C yes
SYMPHONY 5.0 OsI MPS/GMPL OsI/C C yes

Table 10.2 indicates the algorithmic features of each solver, including
whether the solver has a preprocessor, whether it can dynamically gener-
ate valid inequalities, whether it can perform column generation, whether
it includes primal heuristics, and what branching and search strategies are
available. For the column that indicates available branching methods, the
letters stand for the following methods:

+ e: pseudocost branching

f: branching on the variables with the largest fractional part

h: branching on hyperplanes
+ g: GUB branching

TABLE 10.2
Algorithmic Features of Solvers

Built-in Cut Column Primal  Branching Search

Preproc  Generation Generation Heuristic Rules Strategy

ABACUS no no yes no fh,s b,r,d,2(d,b)
BCP no no yes no fh,s h(d,b)
bonsaiG no no no no P h(d,b)
CBC yes yes no yes e f,gh,sx 2(d,p)
GLPK no no no no ip b,d,p
Ip_solve no no no no e fix d,re,2(d,r)
MINTO yes yes yes yes ef,gp,s b,d,eh(d,e)

SYMPHONY no yes yes no efh,p,s b,r,d,h(d,b)
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+ i: branching on first or last fractional variable (by index)
+ p: penalty method
« s: strong branching

x: SO5(2) branching and branching on semicontinuous variables

For the column that indicates available search strategies, the codes stand for
the following:

* b: best-first

+ d: depth-first

* e: best-estimate

* p: best-projection

r: breadth-first

h(x,z): a hybrid method switching from strategy ‘x’ to strategy ‘z’

2(x,z): atwo-phase method switching from strategy ‘x’ to strategy ‘z’

Finally, Table 10.3 indicates the classes of valid inequalities generated by those
solvers that generate valid inequalities.

In the following sections, we provide an overview of each solver, then
describe the user interface, and finally describe the features of the underly-
ing algorithm in terms of the four categories listed in Section 10.2. In what
follows, the reader should keep in mind that solver performance can vary
significantly with different parameter settings, and it is unlikely that one set
of parameters will work best for all classes of MILP instances. When deciding
on a MILP package to use, users are well-advised to consider the ability of
a packages to meet their performance requirements through customization
and parameter tuning. An additional caveat about performance is that MILP
solver performance can be affected significantly by the speed with which the
LP relaxations are solved, so users may need to pay special attention to the
parameter tuning of the underlying LP solver as well.

TABLE 10.3
Classes of Valid Inequalities Generated by Black-Box Solvers

Name Knapsack GUB Flow Clique Implication Gomory MIR
CBC yes no yes yes yes yes yes
MINTO yes yes yes yes yes no no

SYMPHONY yes no yes yes yes yes yes

10.4.1 ABACUS

10.4.1.1 Overview

ABACUS [46] is a pure solver framework written in C++. It has a flexible,
object-oriented design that supports the implementation of a wide variety of
sophisticated and powerful variants of branch and bound. The object-oriented
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design of the library is similar in concept to BCP, described below. From the
user’s perspective, the framework is centered around C++ objects that rep-
resent the basic building blocks of a mathematical model — constraints and
variables. The user can dynamically generate variables and valid inequalities
by defining classes derived from the library’s base classes. ABACUS supports
the simultaneous generation of variables and valid inequalities for users re-
quiring this level of sophistication. Another notable feature of ABACUS is its
very general implementation of object pools for storing previously generated
constraints and variables for later use.

ABACUS was a commercial code for some time, but has recently been
released under the open source [78] GNU Library General Public License
(LGPL). Because of the generality of its treatment of dynamically generated
classes of constraints and variables, it is one of the most full-featured solver
frameworks available. ABACUS does not, however, have a callable library
interface and it cannot be used as a black-box solver, though it can be called
recursively. It comes with complete documentation and a tutorial that shows
how to use the code. Compared to the similar MILP framework BCP, ABACUS
has a somewhat cleaner interface, with fewer classes and a more straightfor-
ward object-oriented structure. The target audience for ABACUS consists of
sophisticated users who need a powerful framework for implementing ad-
vanced versions of branch and bound, but who do not need a callable library
interface.

10.4.1.2 User Interface

There are four main C++ base classes from which the user may derive
problem-specific implementations in order to develop a custom solver. The
base classes are the following:

» ABA_VARIABLE: Thebase class for defining problem-specific classes
of variables.

* ABA_CONSTRAINT: Thebase class for defining problem-specific classes
of constraints.

+ ABA_MASTER: Thebase class for storing problem data and initializing
the root node.

» ABA_SUB: The base class for methods related to the processing of a
search tree node.

In addition to defining new template classes of constraints and variables, the
latter two C++- classes are used to implement various user callback routines
to further customize the algorithm. The methods that can be implemented in
these classes are similar to those in other solver frameworks and can be used
to customize most aspects of the underlying algorithm.

10.4.1.3 Algorithm Control

ABACUS does not contain built-in routines for generating valid inequalities,
but the user can implement any desirable separation or column generation
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procedures to improve the lower bound in each search tree node. ABACUS
doesnothave a default primal heuristic forimproving the upper bound either,
but again, the user can implement one easily. ABACUS has a general notion of
branching in which one may branch on either a variable or a constraint (hy-
perplane). Several strategies for selecting a branching variable are provided.
In addition, a strong branching facility is provided, in which a number of vari-
ables or constraints are selected and presolved before the final branching is
performed. To select the candidates, a sophisticated mechanism for selection
and ranking of candidates using multiple user-defined branching rules is em-
ployed. The search strategies include depth-first, breadth-first, and best-first
search, as well as a strategy that switches from depth-first to best-first after
the first feasible solution is found.

10.4.2 BCP

10.4.2.1 Overview

BCPis a puresolver framework developed by Ladédnyi [48]. Itis a close relative
of SYMPHONY, described below. Both frameworks are descended from the
earlier COMPSys framework of Ralphs and Ladanyi [47, 68] like ABACUS.
BCP is implemented in C++ and is design centered around problem-specific
template classes of cuts and variables, but it takes a more “function-oriented”
approach that is similar to SYMPHONY. The design is very flexible and sup-
ports theimplementation of the same range of sophisticated variants of branch
and bound that ABACUS supports, including simultaneous generation of
columns and valid inequalities. BCP is a pure solver framework and does
not have a callable library interface. The BCP library provides its own main
function, which means that it cannot easily be called recursively or as a sub-
routine from another code. Nonetheless, it is still one of the most full-featured
solver frameworks available, because of the generality with which it handles
constraint and variable generation, as well as branching.

Although BCP is not itself a black-box solver, two different black-box codes
[56] have been built using BCP and are available along with BCP itself as part
of the COIN-OR software suite [48]. BCP is open source software licensed
under the Common Public License (CPL). It has a user’s manual, though it is
slightly out of date. The code itself contains documentation that can be parsed
and formatted using the Doxygen automatic documentation system [81]. A
number of applications built using BCP are available for download, including
some simple examples that illustrate its use. Tutorials developed by Galati
that describe the implementation of two problem-specific solvers — one im-
plementing branch and cut and one implementing branch and price —are also
available [34]. The target audience for BCP is similar to that of ABACUS —
sophisticated users who need a powerful framework for implementing ad-
vanced versions of branch and bound without a callable library interface.
BCP is also capable of solving MILPs in parallel and is targeted at users who
need such a capability.
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10.4.2.2 User Interface

To use BCP, the user must implement application-specific C++ classes de-
rived from the virtual base classes provided as part of the BCP library. The
classes that must be implemented fall broadly into two categories: modeling
object classes, which describe the variables and constraints associated with the
user’s application, and user callback classes, which control the execution of
various specific parts of the algorithm.

From the user’s point of view, a subproblem in BCP consists primarily of a
core relaxation present in every subproblem and a set of modeling objects — the
extra constraints and variables thataugment the core relaxation. To define new
template classes of valid inequalities and variables, the user must derive from
the classes BCP_cut and BCP_var. The derivation involves defining an ab-
stract data structure for describing a member of the class and providing meth-
ods for expanding each object (i.e., adding the object to a given LP relaxation).

To enable parallel execution, the internal library and the set of user callback
functions are divided along functional lines into five separate computational
modules. The modular implementation facilitates code maintenance and al-
lows easy, configurable parallelization. The five modules are master, tree man-
ager, node processor, cut generator, and variable generator. The master module
includes functions that perform problem initialization, input/output, and
overall execution control. The tree manager is responsible for maintaining
the search tree and managing the search process. The node processor is re-
sponsible for processing a single search tree node (i.e., producing a bound
on the solution value of the corresponding subproblem by solving a dynam-
ically generated LP relaxation). Finally, the cut and variable generators are
responsible for generating new modeling objects for inclusion in the current
LP relaxation.

Associated with each module “xx” is a class named BCP_xx_user that
contains the user callbacks for the module. For each module, the user must
implement a derived class that overrides those methods for which the user
wishes to provide a customized implementation. Most, but not all, methods
have default implementations. The user callback classes can also be used to
store the data needed to execute the methods in the class. Such data could
include the original input data, problem parameters, and instance-specific
auxiliary information such as graph data structures.

10.4.2.3 Algorithm Control

Like ABACUS, BCP does not contain built-in routines for generating valid
inequalities, but the user can implement any separation or column generation
procedure that is desired in order to improve the lower bound. BCP tightens
variable bounds on the basis of reduced cost and allows the user to tighten
bounds on the basis of logical implications that arise from the model. BCP
does not yet have a built-in integer preprocessor and also has no built-in
primal heuristic to improve the upper bound. The user can, however, pass
an initial upper bound if desired. The default search strategy is a hybrid
depth-first/best-first approach in which one of the children of the current
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node is retained for processing as long as the lower bound is not more than a
specified percentage higher than the best available. The user can also specify
a customized search strategy by implementing a new comparison function
for sorting the list of candidate nodes in the BCP_tm_user class.

BCP has a generalized branching mechanism in which the user can specify
branching sets that consist of any number of hyperplanes and variables. The
hyperplanes and variables in these branching sets do not have to be present
in the current subproblem. In other words, one can branch on any arbitrary
hyperplane (see Section 10.2.3), whether or not it corresponds to a known
valid inequality. After the desired candidate branching sets have been cho-
sen, each one is presolved as usual by performance of a specified number of
simplex pivots to estimate the bound improvement that would result from
the branching. The final branching candidate can then be chosen by a number
of standard built-in rules. The default rule is to select a candidate for which
the smallest lower bound among its children is maximized.

10.4.3 BonsaiG
10.4.3.1 Overview

BonsaiG is a pure black-box solver developed by Lou Hafer that comes with
complete documentation and descriptions of its algorithms and is available as
open source software under the GNU General Public License (GPL) [41]. Bon-
saiG does not have a documented callable library interface or the customiza-
tion options associated with a solver framework. It does, however, have two
unique features worthy of mention. The first is the use of a partial arc consis-
tency algorithm proposed in [77] to help enforce integrality constraints and
dynamically tighten bounds on variables. Although the approach is similar
to that taken by today’s integer programming preprocessors, the arc consis-
tency algorithm can be seen as a constraint programming technique and is
applied aggressively during the processing of each subproblem. From this
perspective, bonsaiG is perhaps one of the earliest examples of integrating
constraint programming techniques into an LP-based branch-and-bound al-
gorithm. The integration of constraint programming and traditional math-
ematical programming techniques has recently become a topic of increased
interest among researchers. Achterberg is currently developing a solver called
SCIP that will also integrate these two approaches [1].

The second feature worthy of mention is the use of DYLP, an implementa-
tion of the dynamic LP algorithm of Padberg [66], as the underlying LP solver.
DYLP was designed specifically to be used for solving the LP relaxations aris-
ing in LP-based branch and bound. As such, DYLP automatically selects the
subsets of the constraints and variables that should be active in a relaxation
and manages the process of dynamically updating the active constraints and
variables as the problem is solved. This management must be performed in
some fashion by all MILP solvers, but it can be handled more efficiently if kept
internal to the LP solver. The target audience for bonsaiG consists of users
who need a lightweight black-box solver capable of solving relatively small
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MILPs without incurring the overhead associated with advanced bounding
techniques and those who do not need a callable library interface.

10.4.3.2 User Interface and Algorithm Control

BonsaiG can only be called from the command-line, with instances specified
in MPS format. Algorithm control in bonsaiG is accomplished through the set-
ting of parameters that are specified in a separate file. To improve the lower
bound for generic MILPs, bonsaiG aggressively applies the arc consistency
algorithm discussed earlier in combination with reduced-cost tightening of
bounds in an iterative loop called the integrated variable forcing loop. No gen-
eration of valid inequalities or columns is supported. BonsaiG does not have
any facility for improving the upper bound. The default search strategy is a
hybrid of depth-first and best-first, but with a slight modification. When a sub-
problem is partitioned, all children are fully processed and among those that
are not fathomed, the best one, according to an evaluation function that takes
into account both the lower bound and the integer infeasibility, is retained
for further partitioning. The others are added to the list of candidates, so that
the list is actually one of candidates for branching, rather than for processing.
When all children of the current node can be fathomed, then the candidate
with the best bound is retrieved from the list and another depth-first search
is initiated.

For branching, BonsaiG uses a penalty method strengthened by integral-
ity considerations. Only branching on variables or groups of variables is
supported. The user can influence branching decisions for a particular in-
stance or develop custom branching strategies through two different mecha-
nisms. First, bonsaiG makes the specification of relative branching priorities
for groups of variables easy. This tells the solver which variables the user
thinks will have the most effect if branched upon. The solver then attempts
to branch on the highest-priority fractional variables first. The second mech-
anism is for specifying tours of variables. Tours are groups of variables that
should be branched on as a whole. The group of child subproblems (called a
tour group) is generated by adjustment of the bounds of each variable in the
tour so that the feasible region of the parent is contained in the union of the
feasible regions of the children, as usual.

10.4.4 CBC

10.4.4.1 Overview

CBC is a black-box solver distributed as part of the COIN-OR software
suite [30]. CBC was originally developed by John Forrest as a lightweight
branch-and-cut code to test CLP, the COIN-OR LP solver. However, CBC has
since evolved significantly and is now quite sophisticated, even sporting cus-
tomization features that allow it to be considered a solver framework. CBC
has a native C++ callable library API similar to the Open Solver Interface,
as well as a C interface built on top of that native interface. The CBC solver
framework consists of a collection of C++ classes whose methods can be
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overridden to customize the algorithm. CBC does not have a user’s manual,
but it does come with some well-commented examples and the source code is
also well-commented. It is distributed as part of the COIN-OR software suite
and is licensed as open source software under the Common Public License
(CPL). The target audience for CBC consists of users who need a full-featured
black-box solver with a callable library API and very flexible, yet relatively
lightweight, customization options.

10.4.4.2 User Interface

The user interacts with CBC as a black-box solver either by invoking the solver
on the command line or through a command-based interactive shell. In either
case, instances must be specified in MPS format. The callable library API is
a hybrid of the API of the underlying LP solver, which is accessed through
the Open Solver Interface, and the methods in the CbcModel class. To load a
model into CBC, the user creates an OSI object, loads the model into the OSI
object and then passes a pointer to that object to the constructor for the Cbc-
Model object. CBC uses the OSI object as its LP solver during the algorithm.

To use CBC as a solver framework, a number of classes can be reimple-
mented in order to arrive at a problem-specific version of the basic algorithm.
The main classes in the CBC library are:

e CbcObject,CbcBranchingObject, and CbcBranchDecision:
The classes used to specify new branching rules. CBC has a very
general notion of branching that is similar to that of BCP. CBC’s
branching mechanism is described in more detail in Section 10.4.4.3.

¢ CbcCompare and CbcCompareBase: The classes used to specify
new search strategies by specifying the method for sorting the list
of candidate search tree nodes.

* CbcHeuristic: The class used to specify new primal heuristics.

e CbcCutGenerator: The class that interfaces to the Cut Generation
Library.

As seen from the above list, custom branching rules, custom search strategies,
custom primal heuristics, and custom generators for valid inequalities can all
be introduced. Cut generator objects must be derived from the Cut Generation
Library base class and are created by the user before they are passed to CBC.
Primal heuristic objects are derived from the CbcHeuristic class and are
also created before being passed to CBC.

10.4.4.3 Algorithm Control

CBC is one of the most full-featured black-box solver of those reviewed here
in terms of available techniques for improving bounds. The lower bound can
be improved through the generation of valid inequalities using all of the sep-
aration algorithms implemented in the CGL. Problem-specific methods for
generation of valid inequalities can be implemented, but column generation
is not supported. CBC has a logical preprocessor to improve the initial model
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and tightens variable bounds using reduced cost information. Several pri-
mal heuristics to improve the upper bound are implemented and provided
as part of the distribution, including a rounding heuristic and two differ-
ent local search heuristics. The default search strategy in CBC is to perform
depth-first search until the first feasible solution is found and then to select
nodes for evaluation on the basis of a combination of bound and number of
unsatisfied integer variables. Specification of new search strategies can also
be accomplished easily.

CBC has a strong branching mechanism similar to that of other solvers,
but the type of branching that can be done is more general. An abstract CBC
branching object can be anything that (1) has a feasible region whose degree
of infeasibility with respect to the current solution can be quantified, (2) has
an associated action that can be taken to improve the degree of infeasibility
in the child nodes, and (3) supports some comparison of the effect of branch-
ing. Specification of a CBC branching object involves implementation of three
methods: infeasibility (), feasibleRegion (),and createBranch ().
These methods allow CBC to perform strong branching on any sort of branch-
ing objects. Default implementations are provided for branching on integer
variables, branching on cliques, and branching on special ordered sets.

10.4.5 GLPK

10.4.5.1 Overview

GLPK is the GNU Linear Programming Kit, a set of subroutines that com-
prise a callable library and black-box solver for solving linear programming
and MILP instances [53]. GLPK also comes equipped with GNU MathProg
(GMPL), an algebraic modeling language similar to AMPL. GLPK was de-
veloped by Andrew Makhorin and is distributed as part of the GNU Project,
under the GNU General Public License (GPL). Because GLPK is distributed
through the Free Software Foundation (FSF), it closely follows the guidelines
of the FSF with respect to documentation and automatic build tools. The build
system relies on autoconf, which ensures that users can easily build and ex-
ecute the library on a wide variety of platforms. The documentation consists
of a reference manual and a description of the GNU MathProg language. The
distribution includes examples of the use of the callable library, and models
demonstrate the MathProg language.

GLPK is a completely self-contained package that does not rely on exter-
nal components to perform any part of the branch-and-bound algorithm. In
particular, GLPK includes the following main components:

+ revised primal and dual simplex methods for linear programming
+ a primal-dual interior point method for linear programming
 abranch-and-bound method

« a parser for GNU MathProg

+ an application program interface (API)

« ablack-box LP/MILP solver
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The target audience for GLPK consists of users who want a lightweight, self-
contained MILP solver with both a callable library and modeling language
interface.

10.4.5.2 User Interface

The default build of GLPK yields the callable library and a black-box solver.
The callable library consists of nearly 100 routines for loading and modifying
a problem instance, solving the loaded instance, querying the solver, and get-
ting and setting algorithm parameters. There are also utility routines to read
and write files in MPS format, LP format, and GMPL format. The subroutines
operate on a data structure for storing the problem instance that is passed
explicitly, so the code is thread safe and it is possible to work on multiple
models simultaneously.

10.4.5.3 Algorithm Control

Because GLPK was first and foremost developed as a solver of linear pro-
grams, it does not yet contain advanced techniques for improving the lower
bound, such as those for preprocessing and generating valid inequalities. It
also does not include a primal heuristic for improving the upper bound. The
user can set a parameter (either through the callable library or in the black-box
solver) to choose from one of three methods for selecting a branching variable
— the index of the first fractional variable, the index of the last fractional vari-
able, or the penalty method discussed in Section 10.2.3. The user can change
the search strategy to either depth-first-search, breadth-first-search, or the
best-projection method described in Section 10.2.4.

10.4.6 Ip_solve

10.4.6.1 Overview

Lp_solveisablack-box solver and callable library for linear and mixed-integer
programming. The original solver was developed by Michel Berkelaar at
Eindhoven University of Technology, and the work continued with Jeroen
Dirks, who contributed a procedural interface, a built-in MPS reader, and
fixes and enhancements to the code. Kjell Eikland and Peter Notebaert took
over development starting with version 4. There is currently an active group of
users. The most recent version bears little resemblance to earlier versions and
includes a number of unique features, such as a modular LP basis factoriza-
tion engine and a large number of language interfaces. Lp_solve is distributed
as open source under the GNU Library General Public License (LGPL). The
main repository for Ip_solve information, including a FAQ, examples, the full
source, precompiled executables, and a message board, is available at the
YAHOO lp_solve group [15]. The target audience for lp_solve is similar to
that of GLPK — users who want a lightweight, self-contained solver with
a callable library API implemented in a number of popular programming
languages, including C, VB, and Java, as well as an AMPL interface.
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10.4.6.2 User Interface

Lp_solve can be used as a black-box solver or as a callable library through
its native C APL The Ip_solve API consists of over 200 functions for reading
and writing problem instances, building or querying problem instances, set-
ting algorithm parameters, invoking solution algorithms, and querying the
results. The Ip_solve API has methods that can read and write MPS files, LP
format files, and an XLI (External Language Interface) that allows users to
implement their own readers and writers. At present, XLI interfaces are in
place for GNU MathProg, LPFML, and for the commercial LP formats of
CPLEX and LINDO. An interface to ZIMPL will be available in Ip_solve v5.2.

Of the noncommercial MILP software reviewed here, lp_solve has inter-
faces to the largest number of different programming languages. With
Ip_solve, there are examples that illustrate how to call its API from within
a VB.NET or C# program. Also, a Delphi library and a Java Native Interface
(JNI) to lp_solve, are available, so Ip_solve can be called directly from Java
programs. AMPL, MATLAB, R, 5-Plus, and Excel driver programs are also
available. Lp_solve supports several types of user callbacks and an object-like
facility for revealing functionality to external programs.

10.4.6.3 Algorithm Control

Lp_solve does not have any special procedures for improving the upper or
lower bounds. Users can set parameters either from the command line or
through the APIto control the branch-and-bound procedure. The search strat-
egy is one of depth-first search, breadth-first search, or a two-phase method
that initially proceeds depth-first, followed by breadth-first. Lp_solve con-
tains a large number of built-in branching procedures and can select the
branching variable on the basis of the lowest indexed noninteger column (de-
fault), the distance from the current bounds, the largest current bound, the
most fractional value, the simple, unweighted pseudocost of a variable, or
pseudocosts combined with the number of integer infeasibilities.

The algorithm also allows for GUB branching and for branching on semi-
continuous variables (variables that have to take a value of zero or a positive
value above some givenlower bound). The branching rule and search strategy
used by Ip_solve are set through a call to set _bb_rule (), and the branching
rule can even be modified using parameter values beyond those listed here. As
with many solvers, MILP performance can be expected to vary significantly
based on parameter settings and model class. The default settings in Ip_solve
are inherited from v3.2, and tuning is therefore necessary to achieve desirable
results. The developers have indicated that MILP performance improvement
and more robust default settings will be a focus in lp_solve v5.3.

10.4.7 MINTO

10.4.7.1 Overview

MINTO (Mixed INTeger Optimizer) is a black-box solver and solver frame-
work whose chief architects were George Nemhauser and Martin Savelsbergh,
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with a majority of the software development done by Savelsbergh. MINTO
was developed at the Georgia Institute of Technology and is available in
binary form under terms of an agreement created by the Georgia Tech Re-
search Institute. The current maintainer of MINTO is Jeff Linderoth of Lehigh
University. It is available as a precompiled library for a number of common
platforms [60]. MINTO relies on external software to solve the linear program-
ming relaxations that arise during the algorithm. Since version 3.1, MINTO
has been equipped to use the OSI, so any of the linear programming solvers
for which there is an OSI interface can be used with MINTO. MINTO can
also be built to directly use the commercial LP solvers CPLEX, XPRESS-MP,
and OSL. MINTO comes with a user’s manual that contains instructions for
building an executable, and a description of the API for user callbacks that
allow it to be used as a solver framework, and examples of the use of each
routine. The target audience for MINTO are users who require the power
of a sophisticated solver framework for implementing advanced versions of
branch and bound, but with a relatively simple C-style interface, or who need
a full-featured black-box solver without a callable APL

10.4.7.2 User Interface

MINTO can be accessed as a black-box solver from the command line with
parameters set through a number of command-line switches. The most com-
mon way of using MINTO is to pass problem instances in MPS file format.
However, beginning with version 3.1, MINTO can also be used directly with
the AMPL modeling language. MINTO can be customized through the use
of “user application” functions (callback functions) that allow MINTO to op-
erate as a solver framework. At well-defined points of the branch-and-cut
algorithm, MINTO will call the user application functions, and the user must
return a value that signals to MINTO whether or not the algorithm is to be
modified from the default. For example, consider the MINTO user application
function appl_constraints (), which is used for generating user-defined
classes of valid inequalities. The input to appl_constraints () is the solu-
tion to the current LP relaxation. The outputs are arrays describing any valid
inequalities that the user wishes to have added to the formulation. The return
value from appl_constraint () should be SUCCESS or FAILURE, depend-
ing on whether or not the user-supplied routine was able to find inequalities
violated by the input solution. If so, MINTO will add these inequalities and
pass the new formulation to the linear programming solver.

10.4.7.3 Algorithm Control

To strengthen the lower bound during the course of the algorithm, MINTO
relies on advanced preprocessing and probing techniques, as detailed in the
paper of Atamtiirk, Nemhauser, and Savelsbergh [5], and also tightening of
bounds on the basis of reduced cost. MINTO has separation routines for a
number of classes of valid inequalities, including clique inequalities, impli-
cation inequalities, knapsack cover inequalities, GUB cover inequalities, and
flow cover inequalities. The user can perform dynamic column generation
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by implementing the callback function appl_variables (). For improving
the upper bound, MINTO has a primal diving heuristic. A number of built-in
branching methods are included, such as branching on the most fractional
variable, penalty method strengthened with integrality considerations, strong
branching, a pseudocost-based method, a dynamic method that combines
both the penalty method and pseudocost-based branching, and a method
that favors branching on GUB constraints. For search strategies, the user can
choose best-bound, depth-first, best-projection, best-estimate, or an adaptive
mode that combines depth-first with the best-estimate mode. Of course, by
using the solver framework, the user can override any of the branching or
node selection methods.

10.4.8 SYMPHONY

10.4.8.1 Overview

SYMPHONY is a black-box solver, callable library, and solver framework for
MILPs that evolved from the COMPSys framework of Ralphs and Ladanyi
[47, 68]. The source code for packaged releases, with full documentation and
examples, is available for download and is licensed under the Common Public
License (CPL) [69]. The latest source is also available from the CVS repository
of the COIN-OR Foundation [19]. SYMPHONY is fully documented and seven
different specialized solvers built with SYMPHONY are available as examples
of how to use the code. A step-by-step example that illustrates the building of
a simple branch-and-cut solver for the matching problem [80] is available and
summarized in Section 10.5. The core solution methodology of SYMPHONY
isahighly customizable branch-and-bound algorithm that can be executed se-
quentially or in parallel [67]. SYMPHONY calls on several other open source
libraries for specific functionality, including COIN-OR’s Cut Generation Li-
brary, Open Solver Interface, and MPS file parser components, GLPK’s GMPL
file parser, and a third-party solver for linear-programming problems (LPs),
such as COIN-OR'’s LP Solver (CLP).

Several unique features of SYMPHONY are worthy of mention. First, SYM-
PHONY contains a generic implementation of the WCN algorithm described
in [72] for solving bicriteria MILPs, and methods for approximating the set
of Pareto outcomes. The bicriteria solver can be used to examine tradeoffs
between competing objectives, and for solving parametric MILPS, a form of
global sensitivity analysis. SYMPHONY also contains functions for local sen-
sitivity analysis based onideas suggested by Schrage and Wolsey [75]. Second,
SYMPHONY has the capability to warm start the branch-and-bound process
from a previously calculated branch-and-bound tree, even after modifying
the problem data. These capabilities are described in more detail in the paper
of Ralphs and Guzelsoy [71]. The target audience for SYMPHONY is similar
to that of MINTO — users who require the power of a sophisticated solver
framework, primarily for implementing custom branch and cut algorithms,
with arelatively simple C-style interface, or users who require other advanced
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features such as parallelism, the ability to solve multi-criteria instances, or the
ability to warm start solution procedures.

10.4.8.2 User Interface

As a black-box solver, SYMPHONY can read GMPL files using an interface
to GLPK's file parser or MPS files using COIN-OR’s MPS file reader class.
It can also be used as a callable library through the API described below.
SYMPHONY’s callable library consists of a complete set of subroutines for
loading and modifying problem data, setting parameters, and invoking so-
lution algorithms. The user invokes these subroutines through the native C
API, which is exactly the same whether SYMPHONY is invoked sequentially
or in parallel. The choice between sequential and parallel execution modes is
made at compile-time. SYMPHONY has an OSI implementation that allows
solvers built with SYMPHONY to be accessed through the OSI.

The user’s main avenues for customization are the tuning of parameters and
the implementation of SYMPHONY's callback functions. SYMPHONY con-
tains over 50 callback functions that allow the user to override SYMPHONY’s
default behavior for branching, generation of valid inequalities, management
of the cut pool, management of the LP relaxation, search and diving strate-
gies, program output, and others. Each callback function is called from a
SYMPHONY wrapper function that interprets the user’s return value and de-
termines what action should be taken. If the user performs the required func-
tion, the wrapper function exits without further action. If the user requests
that SYMPHONY perform a certain default action, then this is done. Files that
contain default function stubs for the callbacks are provided along with the
SYMPHONY source code. These can then be modified by the user as desired.
Makefiles and Microsoft Visual C++ project files are provided for automatic
compilation. A full list of callback functions is contained in the user’s man-
ual [70]. For an example of the use of callbacks, see the SYMPHONY case
study in Section 10.5.1.

10.4.8.3 Algorithm Control

To improve the lower bound for generic MILPs, SYMPHONY generates valid
inequalities using COIN-OR’s Cut Generation Library (CGL) described in
Section 10.2.1.2. The user can easily insert custom separation routines and
can perform column generation, though the implementation is not yet fully
general and requires that the set of variables be indexed a priori. This lim-
itation makes the column generation in SYMPHONY most appropriate for
situations in which the set of columns has a known combinatorial structure
and is of relatively small cardinality. In each iteration, SYMPHONY tightens
bounds by reduced cost and also allows the user to tighten bounds on the ba-
sis of logical implications arising from the model. SYMPHONY does not yet
have its own logical preprocessor or primal heuristics to improve the upper
bound, although it is capable of using CBC’s primal heuristic if desired. The
user can also pass an initial upper bound.
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SYMPHONY uses a strong branching approach by default. Branching can-
didates can be either constraints or variables and are chosen by any one of
a number of built-in rules, such as most fractional, or by a customized rule.
After the candidates are chosen, each one is presolved to determine an esti-
mate of the bound improvement that would result from the branching. The
final branching candidate can then be chosen by a number of standard built-in
rules. A naive version of pseudocost branching is also available.

The default search strategy is a hybrid depth-first/best-first approach in
which one of the children of the current node is retained for processing as
long as the lower bound is not more than a specified percentage higher than
the best available. Another option is to stop diving when the current node is
more than a specified percentage of the gap higher than the best available.
By tuning various parameters, one can obtain a number of different search
strategies that run the gamut between depth-first and best-first.

10.5 Case Studies

In this section, we describe two examples that illustrate the power of solver
frameworks for developing custom optimization codes. In Section 10.5.1, we
describe a custom branch-and-cut algorithm for solving the matching prob-
lem developed using SYMPHONY. In Section 10.5.2, we describe a custom
branch-and-price algorithm for the axial assignment problem developed us-
ing BCP. Full source code and more detailed descriptions of both solvers are
available [34, 80].

10.5.1 Branch and Cut

The Matching Problem. Givena complete, undirected graph G = (V, E), the
Matching Problem is that of selecting a set of pairwise disjoint edges of mini-
mum weight. The problem can be formulated as follows:

min E CeXep

eeE
> =1 VieV, (10.12)
ee{(i,j)IjeV,G, j)eE}
x>0 VeekE, (10.13)

X, €L Ve € E,

where x, is a binary variable that takes value 1 if edge ¢ is selected and 0
otherwise.

Implementing the Solver. The first thing needed is a data structure in which
to store the description of the problem instance and any other auxiliary in-
formation required to execute the algorithm. Such a data structure is shown
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typedef struct MATCH_DATA({

int numnodes ;

int cost [MAXNODES] [MAXNODES] ;

int endpointl [MAXNODES* (MAXNODES-1) /2] ;
int endpoint2 [MAXNODES* (MAXNODES-1) /21 ;
int index [MAXNODES] [MAXNODES] ;

}match_data;

FIGURE 10.1
Data structure for matching solver.

in Figure 10.1. We assume a complete graph, so a problem instance can be
described simply by the objective function coefficients, stored in the two-
dimensional array cost. Each primal variable is identifiable by an index,
so we must have a way of mapping an edge {i, j} to the index that iden-
tifies the corresponding variable and vice versa. Such mappings between
problem instance objects and variable indices are a common construct when
using solver frameworks. Thusly, recent commercial modeling frameworks
such as Concert [45] and Mosel [20] and the noncommercial modeling system
FLOPC** [44] have an interface that allows for a more explicit coupling of
problem objects and instance variables. In the data structure shown, end-
pointl [k] returns the first endpoint of the edge with index k and end-
point2 [k] returns the second endpoint. On the other hand index [i] []]
returns the index of edge {i, j}.

Next, functions for reading in the problem data and creating the instance
are needed. The function match_read_data () (not shown) reads the prob-
lem instance data (a list of objective function coefficients) in from a file. The
function match_load_problem (), shown in Figure 10.2, constructs the in-
stance in column-ordered format. In the first part of this routine, a description
of the MILP is built, while in the second part, this representation is loaded
into the solver through the subroutine sym_explicit_load _problem().

The main () routine for the solver is shown in Figure 10.3. In this rou-
tine, a SYMPHONY environment and a user data structure are created, the
data are read in, the MILP is created and loaded into SYMPHONY and then
one instance is solved. Results are automatically printed, but one could also
implement a custom subroutine for displaying these if desired.

We next show how to add the ability to generate some simple problem-
specific valid inequalities. The odd-set inequalities

Ol—-1
> ox< | '2 O CV, |0]odd, (10.14)
ecE(O)
with E(O) = {e = {i,j} € E|i € O, j € O} are satisfied by all match-
ings. Indeed, Edmonds [28] showed that the inequalities (10.12) to (10.14)
describe the convex hull of matchings, so the matching problem can, in
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int match_load_problem(sym_environment *env, match_data
*prob){int i, j, index, n, m, nz, *column_starts,
*matrix_indices;

double *matrix_values, *1lb, *ub, *obj, *rhs, *rngval;
char *sense, *is_int;

n = prob->numnodes* (prob->numnodes-1)/2;

/* Number of columns */
m 2 * prob-s>numnodes; /* Number of rows */
nz = 2 * n; /* Number of nonzeros */
/* Normally, allocate memory for the arrays here
(left out to save space) */

for (index = 0, i = 0; 1 < prob-snumnodes; i++) {
for (j = i+l; j < prob->numnodes; Jj++) {
prob->matchl [index] = i; /*The 1lst component of
assignment ‘index’*/

prob->match2 [index] = j; /*The 2nd component of
assignment ’index’*/

prob->index[i] [j] = prob-s>index[j] [i] = index; /*To
recover later*/

obj[index] = prob->cost[i] [j]; /* Cost of assignment
(1, 3) */

is_int[index] = TRUE; /* Indicates the variable is
integer */

column_starts[index] = 2*index;
matrix_indices[2*index] = 1i;
matrix_indices[2*index+1] = j;
matrix_values[2*index] = 1;

matrix_values[2*index+1l] = 1;

ub[index] = 1.0;

index++;

}

}

column_starts[n] = 2 * n; /* We have to set the ending

position */
for (1 = 0; 1 < m; i++) { /* Set the right-hand side */
rhs[i] = 1;
sense[i] = 'E’;
}
sym_explicit_load_problem(env, n, m, column_starts,
matrix_indices, matrix_values, 1lb, ub, is_int,
obj, 0, sense, rhs, rngval, true);
return (FUNCTION_TERMINATED_NORMALLY) ;

FIGURE 10.2
Function to load the problem for matching solver.
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int main(int argc, char **argv)
int termcode;
char * infile;

/* Create a SYMPHONY environment */
sym_environment *env = sym_open_environment () ;

/* Create the data structure for storing the
instance.*/

user_problem *prob =

(user_problem *)calloc(l, sizeof (user_problem)) ;

sym_set_user_data (env, (void *)prob) ;
sym_parse_command_line (env, argc, argv) ;
sym_get_str_param(env, "infile_name", &infile);
match_read_data (prob, infile);
match_load_problem(env, prob) ;

sym_solve (env) ;

sym_close_environment (env) ;

return(0) ;

FIGURE 10.3
Main function for the matching solver.

theory, be solved as a linear program, albeit with an exponential number
of constraints.

The textbook of Grotschel, Lovdsz, and Schrijver [37] describes how to ef-
ficiently separate the odd-set inequalities in full generality, but for simplicity,
we implement separation only for odd-set inequalities for sets of cardinal-
ity three. This is done by brute force enumeration of triples, as shown in
Figure 10.4. The function user_find_cuts () is the SYMPHONY callback
for generating valid inequalities. The user is provided with the current frac-
tional solution in a sparse vector format and asked to generate violated valid
inequalities. The function cg_add_explicit_cut () is used to report any
inequalities found. Even this simple separation routine can significantly re-
duce the number of nodes in the branch-and-cut tree.

10.5.2 Branch and Price

The Three-Index Assignment Problem. The Three-Index Assignment Prob-
lem (3AP) is that of finding a minimum-weight clique cover of the complete
tri-partite graph K, , », where 1 is redefined here to indicate the size of the un-
derlying graph. Let I, ], and K be three disjoint sets with |I| = |] | = |[K| =n
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int user_find_cuts(void *user, int varnum, int iter_num,
int level, int index, double objval,
int *indices, double *values, double
ub, double etol, int *num_cuts, int
*alloc_cuts, cut_data ***cuts)

user_problem *prob = (user_problem *) user;
double cut_val[3], edge_val[200] [200];

/* Matrix of edge values */

int 1, j, k, cutind[3], cutnum = 0;

/* Allocate the edge_val matrix to zero (we could
also just calloc it) */ memset((char *)edge_val,
0, 200*200*ISIZE) ;

for (1 = 0; i < varnum; i++)
edge_val [prob->nodel [indices [i]]] [prob->node2
[indices[i]]] = wvalues|[i];

}
for (i = 0; i < prob-s>nnodes; i++){
for (j = i+l; j < prob-s>nnodes; j++){
for (k = j+1; k < prob-s>nnodes; k++) {
if (edge_vall[il]l [j]+edge_vall[j] [k]+edge_vall[il
[kl > 1.0 + etol) {
/* Found violated triangle cut */
/* Form the cut as a sparse vector */
cutind[0] prob->index[i] [j];
cutind[1] prob->index[j] [k];
cutind[2] = prob-s>index[i] [k];
cutval[0] = cutval[l] = cutval[2] = 1.0;
cg_add_explicit_cut (3, cutind,
cutval, 1.0, 0, 'L’,
TRUE, num_cuts, alloc_cuts, cuts);
cutnum++ ;

}
}
}

return (USER_SUCCESS) ;

FIGURE 10.4
Cut generator for matching solver.
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andset H =1 x | x K. Then, 3AP can be formulated as follows:

min E CijkXijks

@i, jkeH
Y oxp=1 Viel, (10.15)
(j.ke] xK
Z x,‘jk=1 VjEI,
(i,k)eI xK
> xp=1 Vkek, (10.16)

@i, j)elx]
xijk € {O/ 1} V(l/ j/ k)/ € H.

In [10], Balas and Saltzman consider the use of the classical Assignment
Problem (AP) as a relaxation of 3AP in the context of Lagrangian relaxation.
We use the same relaxation to reformulate the 3AP using a Dantzig-Wolfe
decomposition (see Section 10.2.1.4 for a discussion of this technique). The
AP is a relaxation of the 3AP obtained by relaxing constraint (10.15). Let F
be the set of feasible solutions to the AP. The Dantzig Wolfe (DW) reformula-
tion of 3AP is then:

min E CsAs,

seF

Z Z Sijkhs | = 1 Viel,

seF \(jke]xK
> k=1,
seF

As € Z,Vs € F,

where c; = X, j k) HCijkSijk for each s € F. Relaxing the integrality constraints
of this reformulation, we obtain a relaxation of 3AP suitable for use in an
LP-based branch-and-bound algorithm. Because of the exponential number
of columns in this linear program, we use a standard column generation
approach to solve it.

Implementing the Solver. The main classes to be implemented are the
BCP_xx_user classes mentioned earlier and a few problem-specific classes.
We describe the problem-specific classes first:

« AAP: This class is a container for holding an instance of 3AP. Data
members include the dimension of the problem n and the objective
function vector.

» AAP_user_data: This class is derived from BCP_user_data and
is used to store problem-specific information in the individual nodes
of the search tree. Because we branch on the original variables x;j
and not the master problem variables A;, we must keep track of
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which variables have been fixed to 0 or 1 at a particular node,
so that we can enforce these conditions in our column generation
subproblem.

+ AAP_var: Each variable in the Dantzig-Wolfe reformulation rep-
resents an assignment between members of sets | and K. In each
instance of the class, the corresponding assignment is stored using
a vector that contains the indices of the assignment along with its
cost.

Because BCP is a parallel code, every data structure must be accompa-
nied by a subroutine that can both pack it into and unpack it from a char-
acter buffer for the purposes of communicating the contents to other par-
allel processes. For most built-in types, default pack and unpack routines
are predefined. For user-defined data structures, however, they must be pro-
vided. Typically, such routines consist simply of a collection of calls to either
BCP_buffer: :pack() or BCP_buffer: :unpack (), asappropriate, pack-
ing or unpacking each data member of the class in turn. The user callback
classes that must be modified are as follows:

e AAP_tm: This class is derived from BCP_tm_user and contains
the callbacks associated with initialization and tree management.
The main callbacks implemented are initialize_core() and
create_ root (). These methods define the core relaxation and
the initial LP relaxation in the root node.

o AAP_1p: This class is derived from BCP_lp_user and contains the
callbacks associated with the solution of the LP relaxations in each
search tree node. The main methods implemented are:

generate_vars_in_lp(): the subroutine that generates new
variables,

compute_lower_bound (): returns a true lower bound in each
iteration (the LP relaxation does not yield a true lower bound
unless no variables with negative reduced cost exist),

restore_feasibility (): a subroutine that tries to generate
columns that can be used to restore the feasibility of a relaxation
that is currently infeasible,

vars_to_cols (): a subroutine that generates the columns cor-
responding to a set of variables, so that they can be added to the
current relaxation,

select_branching_candidates (): a subroutine that selects
candidates for strong branching. We branch on the original vari-
ables x;j. Candidates are selected by the usual “most fractional”
rule using the helper function branch_close_to_half (). A
second function, append_branching_vars (), is called to cre-
ate the branching objects, and
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set_user_data_for_children (): Stores the appropriate data
regarding what original variables were branched on in each child
node.

In addition to defining these classes, a few important parameters must be
set. We have glossed over some details here, but the source code and a more
thorough description of this example are available for download [34].

10.6 Benchmarking

In this section, we present computational results that show the relative per-
formance of the black-box solvers reviewed in Section 10.4. Each solver was
built with gcc 3.3 using the default build parameters. The experiments were
run under Linux RedHat v7.3 on an Intel Pentium III with an 1133MHz clock
speed and 512 MB of memory. The maximum CPU time allowed for each
solver and each instance was two hours. For each of the codes, the default
parameter settings were used on the instances, except for Ip_solve, in which
the default branching and node selection rules were changed to ones based
on pseudocosts.?

There were 122 problem instances included in the test: the instances of
miplib3®[16], miplib2003 [57], and 45 instances collected by the authors from
various sources. The instances collected by the authors are available from
the Computational Optimization Research at Lehigh (COR@L) Web site [50].
Table 10.4 shows the number of rows m, number of variables n, number of
continuous variables n — p, number of binary variables | B|, and number of
general integer variables p — | B| for each instance in the test suite that is not
already available through MIPLIB.

In order to succinctly present the results of this extensive computational
study, we use performance profiles, as introduced by Dolan and Moré [25].
A performance profile is a relative measure of the effectiveness of a solver s
when compared to a group of solvers S on a set of problem instances P. To
completely specify a performance profile, we need the following definitions:

* yps is a quality measure of solver s when solving problem p
* Tps = VYps/(MiNses Vps)
e ps(r) =|{p € P|rps < 1}|/IP]

2The Ip_solve command line was: 1p_solve -mps name.mps -bfp ./bfp_LUSOL -
timeout 7200 -time -presolve -presolvel -piva -pivla -piv2 -ca -B5 -Bd
-Bg -si -s5 -se -degen -S1 -v4.

3 With the exception of the instances air03, blend2, egout, enigma, flugpl, gen, khb05250 Iseu
misc03 misc06, mod008, mod010, p0033, p0201, p0282, rgn, stein27, vpm1, which at least five of
the six solvers were able to solve in less than 2 minutes.
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TABLE 10.4

Characteristics of (non MIPLIB) Problem Instances

Name m n n—p |B] p—|B|] Name m n n—p |B] p—|B|
22433 198 429 198 231 0 23588 137 368 137 231 0

aligninq 340 1831 1 1830 0 bcl 1913 1751 1499 252 0

bienst1 576 505 477 28 0 bienst2 576 505 470 35 0

dano3_3 3202 13873 13804 69 0 dano3_4 3202 13873 13781 92 0

dano3_5 3202 13873 13758 115 0 fiball 3707 34219 1 33960 258
mcsched 2107 1747 2 1731 14 mkel 3411 5325 2238 3087 0

neos10 46793 23489 0 23484 5 neosll 2706 1220 320 900 0

neos12 8317 3983 847 3136 0 neosl3 20852 1827 12 1815 0

neos14 552 792 656 136 0 neosl5 552 792 632 160 0

neosl6 1018 377 0 336 41 neosl7 486 535 235 300 0

neos18 11402 3312 0 3312 0 neosl 5020 2112 0 2112 0

neos20 2446 1165 198 937 30 neos2 1103 2101 1061 1040 0

neos3 1442 2747 1387 1360 0 neos4 38577 22884 5712 17172 0

neos5 63 63 10 53 0 neos6 1036 8786 446 8340 0

neos?7 1994 1556 1102 434 20 neos8 46324 23228 0 23224 4

neos9 31600 81408 79309 2099 0 npmv07 76342 220686 218806 1880 0

nsa 1297 388 352 36 0 nug08 912 1632 0 1632 0

pgb_34 225 2600 2500 100 0 o4 125 2700 2600 100 0

qap10 1820 4150 0 4150 0 ramos3 2187 2187 0 2187 0

ranl4x18_1 284 504 252 252 0 roy 162 149 99 50 0

sp97ic 2086 1662 0 718 944  sp98ar 4680 5478 0 2796 2682
sp98ic 2311 2508 0 1139 1369  sp98ir 1531 1680 0 871 809
Test3 50680 72215 39072 7174 25969

Hence, p;(7) is the fraction of instances for which the performance of solver
s was within a factor of 7 of the best. A performance profile for solver s is the
graph of ps(7). In general, the “higher” the graph of a solver, the better the
relative performance.

Comparison of MILP solvers directly on the basis of performance is prob-
lematic in a number of ways. By compiling these codes with the same compiler
on the same platform and running them under identical conditions, we have
eliminated some of the usual confounding variables, but some remain. Anim-
portant consideration is the feasibility, optimality, and integrality tolerances
used by the solver. Dolan, Moré, and Munson [24] performed a careful study
of the tolerances used in nonlinear programming software and concluded that
trends of the performance profile tend to remain the same when tolerances
are varied. The differences in solver tolerances for these tests were relatively
minor, but these minor differences could lead to large differences in runtime
performance. Another potential difficulty is the verification of solvers’ claims
with respect to optimality and feasibility of solutions. The authors made little
attempt to verify a posteriori that the solutions claimed as optimal or feasible
were indeed optimal or feasible. The conclusions drawn here about the rela-
tive effectiveness of the MILP solvers must be considered with these caveats
in mind.
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FIGURE 10.5

Performance profile of MILP solvers on solved instances.

For instances that were solved to provable optimality by one of the six
solvers, the solution time was used as the quality measure y,s. Under this
measure, ps(1) is the fraction of instances for which solver s was the fastest
solver, and ps(00) is the fraction of instances for which solver s found a prov-
ably optimal solution. Figure 10.5 shows a performance profile of the instances
that were solved in two CPU hours by at least one of the solvers. The graph
shows that bonsaiG and MINTO were able to solve the largest fraction of the
instances the fastest. The solvers MINTO and CBC were able to find a prov-
ably optimal solution within the time limit for the largest largest fraction of
instances, most likely because these two solvers contain the largest array of
specialized MILP solution techniques.

For instances that were not solved to optimality by any of the six solvers in
the study, we used the value of the best solution found as the quality measure.
Under this measure, p;(1) is the fraction of instances for which solver s found
the best solution among all the solvers, and p;(c0) is the fraction of instances
for which solver s found at least one feasible solution. In Figure 10.6, we give
the performance profile of the six MILP solvers on the instances for which
no solver was able to prove the optimality of the solution. SYMPHONY was
able to obtain the largest percentage of good feasible solutions, and the perfor-
mance of GLPK was also laudable in this regard. This conclusion is somewhat
surprising since neither SYMPHONY nor GLPK contain a specialized primal
heuristic designed for finding feasible solutions. This seems to indicate that
the primal heuristics existing in these noncommercial codes are relatively
ineffective. Implementation of a state-of-the-art primal heuristic in a non-
commercial code would be a significant contribution.
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10.7 Future Trends and Conclusions

In closing, we want to mention the work of two groups that have been strong
supporters and developers of open code and are well-positioned to support
such development for many years into the future. The first is the COIN-OR
Foundation, a nonprofit foundation mentioned several times in this chapter,
part of whose mission is to promote the development of open source software
for operations research [52]. This foundation, originally a loose consortium of
researchers from industry and academia founded by IBM, has become a major
provider of open source optimization software and is poised to have a large
impact on the field over the coming decade. The second is the NEOS (Net-
work Enabled Optimization System) project [21, 23]. NEOS provides users
with the ability to solve optimization problems on a remote server using any
of a wide range of available solvers. At current count, 55 different solvers
for a variety of different optimization problem types are available for use.
Interfaces to the noncommercial MILP solvers CBC, GLPK, and MINTO are
available on NEOS. To use NEOS, the user submits a problem represented
in a specified input format (e.g., MPS, AMPL, GMPL, or LP) through either
an e-mail interface, a web interface, or a specialized client program running
on the user’s local machine. The instance is sent to the NEOS server, which
locates resources to run the instance and sends the results back to the user.
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Because the job runs remotely, this provides the user with the ability to test
multiple solvers without downloading and installing each of them individu-
ally. The NEOS project has been solving optimization problems on-line since
1991, and currently handles over 10,000 optimization instances each month.

As for the future, we see no slowing of the current trend toward the devel-
opment of competitive noncommercial software for solving MILPs. A num-
ber of exciting new open source projects are currently under development
and poised to further expand the offerings to users of optimization soft-
ware. Among these is the Abstract Library for Parallel Search (ALPS), a C++
class library for implementing parallel search algorithms planned that is the
planned successor to BCP [86]. ALPS will further generalize many of the con-
cepts present in BCP, providing the ability to implement branch-and-bound
algorithms for which the bounding procedure is not necessarily LP-based.
A second framework, called DECOMP, will provide the ability to automate
the solution of decomposition-based bounding problems, i.e., those based on
Lagrangian relaxation or Dantzig-Wolfe decomposition. Both of these frame-
works will be available as part of the COIN-OR software suite. A new gen-
eration of the Open Solver Interface supporting a much wider range of prob-
lem types and with better model-building features is under development by
COIN-OR, along with a new open standard based on LPFML for describing
mathematical programming instances [32]. Finally, a MILP solver that inte-
grates techniques from constraint programming with those described here is
also under development and due out soon [1].

On the whole, we were impressed by the vast array of packages and auxil-
iary tools available, as well as the wide variety of features exhibited by these
codes. The most significant features still missing in open codes are effective
logical preprocessors and primal heuristics. More effort is needed in develop-
ing tools to fill this gap. Although noncommercial codes will most likely con-
tinue to lag behind commercial codes in terms of raw speed in solving generic
MILPs out of the box, they generally exhibit a much greater degree of flexibil-
ity and extensibility. This is especially true of the solver frameworks, which
are designed specifically to allow the development of customized solvers. A
number of features that appear in noncommercial codes, such as parallelism,
the ability to support column generation, and the ability to solve multi-criteria
MILPs, simply do not exist in most commercial codes. Although the noncom-
mercial codes are in general slower than the best commercial codes, we believe
that many users will be genuinely satisfied with the features and performance
of the codes reviewed here and we look forward to future developments in
this fast-growing area of software development.
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separating solutions with known
structure, 93-94
template paradigm, 93
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D

Dantzig-Wolfe method, 61, 77, 78, 87
automated solutions, 299
decomposition principles, 68-76
price and cut, 80, 81
software, 97

Data cycle map optimization, 195-216
equivalency proof, 218-219
generalized set packaging model,

207-209
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minor frame design, 199-207
optimization models, 207209
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programming model, 209-215
multi-word parameters, 212-215
pairwise slot constraints, 210-212
structure of data cycle maps, 196,
197-198
DECOMP, 97, 298-299
Decompose and cut decomposition
subproblem, 92, 94-96

Decomposition, 57-107
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applications, 98-107

Steiner tree problem, 105-107
three-index assignment problem,
103-105
vehicle routing problem, 99-103
automated solutions, 299
conclusions and future work, 107
cutting subproblem solution, 92-96
decompose and cut, 94-96
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structure, 93-94
template paradigm, 93
definitions and notation, 59-60
integrated methods, 78-92
price and cut, 79-90
relax and cut, 90-92
master problem solution, 9697
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principle of, 60-78
cutting plane method, 64-68
Dantzig-Wolfe method, 68-76
effect of applying, 61-64
Lagrangian method, 76-78
retail assortment planning, 233-234
ship scheduling, 140
software, 97-98
terminology, 57-59
Definitions and notation,
decomposition, 59-60
Degree-constrained k-tree (k-DCT),
100, 101, 102
Degree constraints, Traveling
Salesman Problem, 63-64
Demand structure, vessel scheduling
model, 170
Depth-first search, 269-270, 275
Designing
Disjunctive normal form (DNF), 3
Diversification of search, 3
Domain cut methods
numerical results, 34, 35
separable nonlinear integer
programming, 29-33
Duality, separable nonlinear integer
programming, 20-25
Duality bound, 21, 25, 26
Duality gap, 20, 21, 25
domain cut method, 29, 31
objective level cut, 26, 28
Dual multipliers, Lagrangian
method, 77
Dual search
objective level cut, 26
separable nonlinear integer
programming, 36
Dual solution
master problem solution, 96
price and cut, 90
DYLP, 279
Dynamic programming, 20, 27, 28

E

Effective algorithm, decomposition
principles, 61

Efficient frame size, data cycle map
frames, 199

Enumeration, branch-and-bound
algorithm, 49
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Expected revenue/profit functions
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planning, 230-231, 235

Exponential service time
distributions, ship scheduling,
142

Extensible markup language (XML),
271

F
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branch-and-bound algorithm, 259
cutting plane method, 64-68, 87

Facet identification problem, 259

FATHOM, 48, 49

Feasibility tests
branch-and-bound algorithm, 49
generalized assignment problem,

47,48

Feasible solution generator,
branch-and-bound algorithm,
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assignment problem, 54

File formats, 270-271, 274

Fleet deployment
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scheduling models and airport
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Flight arc, 115-117
Flight scheduling, see Airlines,
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Flight swaps, 119, 120

FLOPC++, 273, 288

Flow cover inequalities, 261-262,

274
Flow decomposition method, airline
flights, 132
Formats, raw file, 270-271
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Fractional solution,
branch-and-bound algorithm,
256

Frames, data cycle maps, 196,
197-198; see also Data cycle
map optimization

Framework API, 274

Frameworks, solver, user interfaces,
273

Free Software Foundation (FSF), 282

G

GAMS, 273
Generalized assignment problem,
39-54
branch-and-bound algorithm, 48-50
computational results, 50-53
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bound for (P), 4748
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bound for (P), 42-47
model formulation, 40
previous work, 4042
Generalized upper bound (GUB)
branching, 268
Generalized upper bound (GUB)
cover inequalities, 260-261, 274
GLPK, 272,274
benchmarking, 297, 298
features of, 282-283
interfaces, 298
GMPL, 272, 282, 298
GNU, 279
GNU MathProg (GMPL), 271-272,
282,298
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computational results, 12-13
constructive methods, 8
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Greedy Randomized Adaptive Search
Procedure, see GRASP
Ground arg, 116
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GUB (generalized upper bound)
branching, 268
GUB (generalized upper bound)
cover inequalities, 260-261, 274
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Hull, convex, 25

Hybrid search methods, 269, 270, 275
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I

ILOG Concert Technology, 272
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Incumbent, branch-and-bound
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comb
price and cut, 81-83
template paradigm, 93
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improving, 259
relax and cut, 90
separation procedures, 60
software packages, 274-275
template paradigm, 93
valid, branch and bound algorithm,
258-264
black-box solvers, 274
clique inequalities, 262
flow cover inequalities, 261-262
generalized upper bound (GUB)
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implication inequalities, 262
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260
mixed-integer rounding
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violated, price and cut, 85, 89
Inner approximation methods,
polyhedron approximation,
58-59
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approximation, 58
Integer variables, MILP, 255
Integer vectors, polyhedron, 59
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Integrated methods, decomposition,
78-92
price and cut, 79-90
relax and cut, 90-92
Interior point methods, 97
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199, 201, 202

K

k-DCT (degree-constrained k-tree),
100, 101, 102
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assignment problem, 42-43
Knapsack inequalities, 274
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nonlinear integer
programming
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44,45, 46, 47-48
knapsack cover inequalities, 260
retail assortment planning, 227
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Lagrangian duality, 21
Lagrangian method, 97
decomposition principles, 61, 76-78
retail assortment planning, 226
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airline flights, 125, 128
automated solutions, 299
branch-and-bound algorithm, 48,
49
generalized assignment problem,
41, 43-46, 53
objective level cut, 26-27
separable nonlinear integer
programming, 20-25
ship scheduling, 140
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LCM proof, data cycle map
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Cut Generation Library (CGL), 260
user interfaces, 272-273
LIFO rule, 49, 53
Lifted simple generalized flow cover
inequality, 262
LINDO, 255, 284
Linear optimization model, retail
assortment planning, 228
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data cycle map optimization, 208
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scheduling, 154
Local search
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3-6
adaptive clause weights, 5
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5-6
retail assortment planning, 227
Logical preprocessing,
branch-and-bound algorithm
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airline flights, 125
branch-and-bound algorithm
methods, 257, 258-265
column generation, 264-265
logical preprocessing, 258
reduced cost tightening, 264
valid inequalities, 258-264
generalized assignment problem,
methods for increasing, 4247
software, see specific programs
Ip_solve, 255, 274
benchmarking, 297
features of, 283-284
LPFML, 271, 299
LP relaxation, see Linear
programming (LP) relaxation

M

Major frame, data cycle map, 196
example problem, 203-204
structure of maps, 197, 198
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Boolean optimization

problems, 16
computational results, 10-12
constructive methods, 7-8
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defined, 58
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solution of, 96-97
Matching problem, branch and cut, 288
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(MPS) format, 271, 298
Maximum satisfiability, weighted, 2,
8-9,13-15, 16
Maxtrix coefficients,
branch-and-bound algorithm,
258
Memory allocation, Lagrangian
relaxation methods, 125
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MILP (mixed-integer linear
programs), see Software
Minimum 1-Tree Problem, 64, 72
Minimum 2-Matching Problem, 84
Minimum Degree-Constrained k-Tree
Problem, 100
Minimum Spanning Tree Problem,
105-106
Minor frame, data cycle map, 196
designing, 199-207
example problem, 203204
structure of maps, 197-198
MINTO, 255, 274
benchmarking, 296, 297
features of, 284-286
interfaces, 298
Mixed-integer programs
software, see Software
vessel scheduling models, see also
Vessel scheduling
multiple sources and
destinations, 174-177
single source and destination,
140, 141, 142
Mixed-integer rounding inequalities,
263-264, 274
Model formulation, generalized
assignment problem, 40
Modeling languages, 271-272
Modeling objects, BCP, 277-278
Move, search basics, 3
Move acceptance, probabilistic, 5-6,
10, 15-16
Move evaluation
adaptive, 4
search basics, 3
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Move selection, search basics, 3
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System) format, 271, 298
Multi-add-exchange neighborhood
model, 227
Multi-exchange neighborhood move,
227
Multi-knapsack problem, retail
assortment planning, 227
Multiple commodity network flow
problem, airline flights, 125
Multiple Traveling Salesman
Problem, 100, 102-103
Multipliers, Lagrange, 77
Multi-shift neighborhood moves, 227
Multi-word parameters, set packing
integer programming model,
data cycle map optimization,
212-215
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generalized assignment problem,
54
retail assortment planning, 227
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System (NEOS) project, 298
Network flow problems
airline flights, see Airlines,
scheduling modles and airport
closures
retail assortment planning, 227
Node, branch-and-bound algorithm,
256
Node selection methods, 269
Nonbox domain, Lagrangian
relaxation method, 33
Normal form, conjunctive and
disjunctive, 3
Numerical results, see Computational
results
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Objective function
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vessel scheduling model, 177,
181-182
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numerical results, 34, 35
separable nonlinear integer
programming, 25-29
Object-oriented interface, callable
libraries, 272
Object pools, 275
Odd-hole inequalities, 262
One-tree polyhedron, 64, 84
Open format standards, 271
Open solver interface (OSI), 272, 281
Optimal decomposition, relax and
cut, 92
Optimal generating multiplier vector,
24
Optimality gap, branch-and-bound
algorithm, 257
Optimal Lagrangian multiplier,
domain cut method, 29
Optimal (dual) multipliers, 77
Optimal primal-dual pair, 24
Optimal solution, separable nonlinear
integer programming, 28, 29,
36
Optimization of data cycle maps, see
Data cycle map optimization
Optimization problem
boolean, see Boolean optimization
problems (BOOP)
defined, 58, 60
separation procedures, 60
OSI (Open Solver Interface), 272, 281
OSL, 285
Outer approximation methods,
cutting plane methods, 58
Outer representation, polyhedron
approximation, 58
Out-of-kilter algorithm, airline
management, 113
Overnight arc, 116

P

Package quantity effect, retail
assortment planning, 243-244

Pairwise slot constraints, set packing
integer programming model,
data cycle map optimization,
210-212

Partitioning programming model,
ship scheduling, 141
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PCM formats, see Data cycle map
optimization
Penalty functions, ship scheduling,
144-145
Penalty tests, branch-and-bound
algorithm, 48
Perfect b-Matching Problem,
100-101
Performance on base data, retail
assortment planning,
239-242
Performance profiles, Boolean
optimization problems,
computational results, 15-16
Persistent attractiveness measure
(PAM), Boolean optimization
problems, 16
computational results, 10-12
constructive methods, 6-7
Perturbation function, separable
nonlinear integer
programming, 20-25, 36
domain cut method, 29-33
Lagrangian relaxation methods,
21-22,25
objective level cut, 25-29
Planogrammers Problem, problem
decomposition, 233
Polyhedra
decomposition principle
application effects, 62-63
Traveling Salesman Problem,
63-64
Polyhedral approximation,
decomposition principles,
57-58
Polynomial integer programming,
34,35
Polynomial knapsack problem, 34,
35
Position arc, 116-118
Positioning flights, airline, 113
Preprocessing, lower bounds,
branch-and-bound algorithm
methods, 258
Price and cut
comb inequalities, 81-83
decomposition integrated
solutions, 79-90
violated inequalities, 85, 89
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Pricing subproblem, relax and cut, 91
Primal-dual pair, 23, 24
Primal heuristic, 266-267
Primal information, decomposition,
58, 59
Primal LP solver, 208
Primal solution, relax and cut, 90
Probabilistic move acceptance (PMA),
Boolean optimization
problems
computational results, 10
performance profiles, 15-16
search improvements, local, 5-6
Probing, branch-and-bound
algorithm, 258
Problem formulation, Boolean
optimization problems, 2-3
Processing phase, branch-and-bound
algorithm, 256
Profit function, retail assortment
planning, 230-231
Profit margin effect, retail assortment
planning, 247-248
PROFSET, 229
Pseudo-boolean function, greedy
heuristic, see GRASP
Pseudo-costs, 267-268, 284
Python language, 273

R

Random restart, search basics, 3
Raw file formats, 271
Reduced cost tightening, 264
Relax and cut
decomposition integrated
solutions, 90-92
software, 97
Relaxation, Lagrangian, separable
nonlinear integer
programming, 20-25
Replenishment number effect, retail
assortment planning, 244,
245
Resource allocation, see Separable
nonlinear integer
programming
Resource slack variable bounds,
branch-and-bound algorithm,
48
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Retail assortment planning, 221-248
computational results, 239-248
assortment number effect, 246,
247
inventory holding cost effect,
245-246
package quantity effect, 243-244
performance on base data,
239-242
profit margin effect, 247-248
replenishment number effect,
244,245
literature review, 224229
mathematical model, 232-238
algorithmic considerations, 238
buyer’s problem formulation,
234-236
carry/no carry rules, 237
problem decomposition,
233-234
subproblem formulation,
236-237
problem description, 230-232
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231-232
expected revenue/profit
functions (ER/PF), 230-231
Rolling horizon heuristics, vessel
scheduling models
multiple sources and destinations,
182-184
single source and destination, 141,
154-157
Root node relaxations,
branch-and-bound algorithm,
48
Root subproblem, branch-and-bound
algorithm, 256
Rounding inequalities, mixed-integer,
263-264, 274
Routing, vehicle, decomposition
applications, 99-103

S

Sales, grouping by, 235, 240, 241

Sampling rate, data cycle map
frames, 198

Satisfiability problem, 2, 3, 8-9, 13-15,
16
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Airlines, scheduling models
and airport closures
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Boolean optimization problems,
3-6
adaptive clause weights, 5
probabilistic move acceptance,
5-6
branch-and-bound algorithm, 256,
257, 269-270
generalized assignment problem,
54
greedy randomized, see GRASP
local, see Local search
software packages, see specific
programs

Search order, 257

Search strategy, 257, 269-270, 275

Search tree, 256

Search tree node, 256

Selection, move, 3

Separable nonlinear integer
programming, 19-36

domain cut method, 29-33

Lagrangian relaxation,
perturbation function, and
duality, 20-25

numerical results, 33-35

objective level cut, 25-29

Separation, branch-and-bound
algorithm, 49

Separation problem

bound algorithm, 58

branch and bound algorithm, 259
defined, 58, 60

software, 98

structured separation, 92, 93-94

Separation procedures, cutting plane
method, 59

Set packing integer programming
model, data cycle map
optimization, 202-203, 209-215

generalized, 207-209
multi-word parameters, 212-215
pairwise slot constraints, 210-212

Shelf Allocation for Retailers’ Profit
(SHARP) rule, 225

Shelf space, retail assortment
planning, 226-227
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242
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assortment planning
Sliding flights, airline, 113
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programming model, data
cycle map optimization,
210-212
Software, 254-299
benchmarking, 294-298
branch-and-bound algorithm,
256-270
branching, 266-269
lower bounding methods,
258-265
search strategy, 269-270
upper bounding methods,
265-266
case studies, 288-294
branch and cut, 288-291
branch and price, 291-294
decomposition, 97-98
future trends, 298-299
generalized assignment problem,
52
MILP programs
ABACUS, 275-277
BCP, 277-279
BonsaiG, 279-280
CBC, 280-282
GLPK, 282-283
Ip_solve, 283-284
MINTO, 284-286
SYMPHONY, 286-288
user interfaces, 270-273
black-box solvers, 270-272
callable libraries, 272-273
solver frameworks, 273
Solver frameworks, user interfaces,
273
Solvers
black-box, 270-272
user interfaces, 272
SOPLEX, 274
SOS (special ordered sets), 268
Special ordered sets (SOS), 268
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problem solution, 96-97
Starting solution, search basics, 3
Static search strategies, 269
Steiner tree problem, decomposition
applications, 105-107
Stock keeping units (SKU), see Retail
assortment planning
Stopping criterion, search basics, 3
Structured separation, 92, 93-94
Subcommutation, data cycle map
frames, 198, 201, 202-203, 204
Subgradient methods, 97
Subproblem
branch-and-bound algorithm, 256
decomposition
cutting, 92-96
defined, 58
synergy between, 59
formulation for retail assortment
planning, 236-237
Subtour elimination constraints
(SECs)
separating solutions with known
structure, 93-94
Traveling Salesman Problem, 64
Successive shortest path (SSP)
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128,131
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frames, 198, 201, 202, 203
SYMPHONY, 274, 277
benchmarking, 296, 297, 298
branch and cut case study, 288-291
features of, 255, 286-288
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Tabu search, 15-16
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Telemetry frames, see Data cycle map
optimization
Template paradigm, 92, 93
Three-index assignment problem
branch and price case study,
291-293
decomposition applications,
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Time-space networks, airline
management, 113, 114-115
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ocean vessels, see Vessel scheduling
Traveling Salesman Problem, 62-64
multiple, 100, 102-103
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Two-matching solution, 88, 89
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Two-phase search methods, 270
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Upper bounds
airline flights, 125-126
branch-and-bound algorithm, 257
branch-and-bound algorithm
software, 265-266
generalized assignment problem,
methods for decreasing, 4748
generalized upper bound (GUB)
cover inequalities, 260-261
software, see specific programs
User interfaces
black-box solvers, 270-272
callable libraries, 272-273
MILP software programs, see
specific programs
solver frameworks, 273
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Validity, marginal conditional, 7-8,
10-12, 16
Vehicle routing problem,
decomposition applications,
99-103
Vessel scheduling
multiple sources and destinations,
168-193
aggregated reformulation of
VSM, 178-182
future research, 185-186
model formulation, 174-178
notation, glossary of, 187-191
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problem statement, 168
related research, 168-170
rolling horizon algorithm,
182-184
test problems, 191-193
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approach, 185
single source and destination,
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aggregate formulation AVSM for
model VSM, 150-153
comparison with ad hoc
scheduling, 157-159
computational results, 153-154
future research, 159-160
literature, 139-143
model constraints, 147-148
model formulation, overall,
149-150
model variables, 146-147
objective function, 148
penalty functions, 144-145
problem description, 137-139
problem notation and
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rolling horizon heuristics,
154-157
Violated GSEC, 100-102
Violated inequalities, price and cut,
85, 89
Visual C++, 287
Volume algorithm, 92

W

Weighted maximum satisfiability,
Boolean optimization
problems, 2, 8-9, 13-15, 16

Wrapper function, SYMPHONY, 287

X
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271
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XPRESS-MP, 274, 285
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