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Preface

Nonlinear optimization problems containing both continuous and discrete variables
are called mixed integer nonlinear programs (MINLP). Such problems arise in
many fields, such as process industry, engineering design, communications, and
finance.

There is currently a huge gap between MINLP and mixed integer linear
programming (MIP) solver technology. With a modern state-of-the-art MIP solver
it is possible to solve models with millions of variables and constraints, whereas the
dimension of solvable MINLPs is often limited by a number that is smaller by three
or four orders of magnitude. It is theoretically possible to approximate a general
MINLP by a MIP with arbitrary precision. However, good MIP approximations
are usually much larger than the original problem. Moreover, the approximation
of nonlinear functions by piecewise linear functions can be difficult and time-
consuming.

In this book relaxation and decomposition methods for solving nonconvex
structured MINLPs are proposed. In particular, a generic branch-cut-and-price
(BCP) framework for MINLP is presented. BCP is the underlying concept in
almost all modern MIP solvers. Providing a powerful decomposition framework
for both sequential and parallel solvers, it made the success of the current MIP
technology possible. So far generic BCP frameworks have been developed only
for MIP, for example, COIN/BCP (IBM, 2003) and ABACUS (OREAS GmbH,
1999). In order to generalize MIP-BCP to MINLP-BCP, the following points have
to be taken into account:

• A given (sparse) MINLP is reformulated as a block-separable program with
linear coupling constraints. The block structure makes it possible to generate
Lagrangian cuts and to apply Lagrangian heuristics.

• In order to facilitate the generation of polyhedral relaxations, nonlinear con-
vex relaxations are constructed.

• The MINLP separation and pricing subproblems for generating cuts and
columns are solved with specialized MINLP solvers.

• Solution candidates are computed via MINLP heuristics by using an NLP
solver.
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I started to work on these tasks in 1996 when I implemented a branch-and-bound
algorithm for solving polynomial programs based on multivariate Bézier polynomi-
als (Nowak, 1996). Since polynomial programs can be reformulated as all-quadratic
programs, I got interested in semidefinite programming relaxations. At this time I
learned from Werner Römisch and Krzysztof Kiwiel about Lagrangian decompo-
sition in the context of stochastic programming. Motivated by both approaches, I
started in 2000 to implement an object oriented library, called LaGO (Lagrangian
Global Optimizer), for solving nonconvex mixed-integer all-quadratic programs
(MIQQPs) based on Lagrangian decomposition and semidefinite relaxation. From
2001 until 2003, LaGO was extended in a project funded by the German Science
Foundation to solve nonconvex MINLPs.

This book documents many of the theoretical and algorithmic advances that
made the development of LaGO possible and that give suggestions for further
improvements. The most important contributions are:

• Several estimates on the duality gap (Sections 3.4, 3.5 and 5.4).

• A new column generation method for generating polyhedral inner and outer
approximations of general MINLPs (Section 4.3).

• A new decomposition-based method for solving the dual of general MIQQPs
through eigenvalue computation (Section 5.3).

• A new lower bounding method for multivariate polynomials over simplices
based on Bernstein–Bézier representations (Section 6.2).

• A new polynomial underestimator for general nonconvex multivariate black-
box functions (Section 6.5).

• New locally exact cuts based on interval arithmetic (Section 7.1.3).

• Decomposition-based lower bounds and box-reduction techniques for
MINLPs (Sections 7.3 and 7.4).

• Optimality cuts and global optimality criteria for quadratically constrained
quadratic programs (QQPs) based on a new strong duality result (Chapter
8).

• A new adaptive method for simultaneously generating discretizations and
computing relaxations of infinite dimensional MINLPs (Chapter 9).

• New deformation heuristics for MaxCut and MINLP (Chapter 11) based on
convex relaxations.

• Rounding and partitioning heuristics for MINLP (Sections 12.1 and 12.2).

• A Lagrangian heuristic for MINLP (Section 12.4).

• The first BCP algorithm for general MINLPs (Chapter 13).

• The first finiteness proof for QQP branch-and-bound methods that use opti-
mality cuts (Section 13.2).
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• A tool for automatically generating a block-separable reformulation of a
black-box MINLP (Sections 2.3.2 and 14.4.1).

The use of relaxation-based methods for solving practically relevant large-scale
MINLPs is quite new, and the integration of the two well established areas, nonlin-
ear and mixed integer optimization, does not belong to the “traditional" operation
research areas yet. However, according to a recent paper on future perspectives of
optimization (Grossmann and Biegler, 2002) this can change in the future.

This monograph can be used both as a research text and as an introduction
into MINLP. It is subdivided into two parts. The first part provides some basic
concepts and the second part is devoted to solution algorithms.

Chapters 1 and 2 give an introduction into structured MINLPs and discuss
various ways of reformulating a MINLP to be block-separable. Chapters 3, 4, 5,
6, 7 are devoted to theory and computational methods for generating Lagrangian
and convex relaxations. Chapters 8 and 9 present global optimality cuts and a new
method for refining discretizations of infinite dimensional MINLPs.

Chapter 10 gives an overview on existing global optimization methods. Chap-
ters 11 and 12 describe deformation, rounding-and-partitioning and Lagrangian
heuristics. Chapter 13 presents branch-cut-and-price algorithms for general
MINLPs.

Chapter 14 contains a short description of the MINLP solver LaGO. Ap-
pendices A and B discuss future perspectives on MINLP and describe the MINLP
instances used in the numerical experiments.

Berlin, January 2005 Ivo Nowak
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Notation

∇ gradient column vector.
∇2 Hessian.
∇x gradient with respect to x.
∂f(x) subdifferential of f at x.
xT the transpose of the vector x.
xI sub-vector defined by (xi)i∈I .
fI(x) sub-function defined by (fi(x))i∈I .
AI,J sub-matrix defined by (aij)i∈I,j∈J .
‖x‖ Euclidian norm of the vector x.
〈x, y〉 scalar product of vectors x and y.
〈A, B〉 inner product of matrices A and B defined by traceAB.
f(x; t) function depending on a variable x and a parameter t.
f̄(x; z) linear approximation to f at z evaluated at x.
|I| cardinality of the index set I.
µ dual point (Lagrangian multiplier).
L(x; µ) Lagrangian function.
D(µ) dual function.
M Lagrangian multiplier set.
IBn(ρ, x) n-dimensional ball with center x and radius ρ.
IBn(ρ) IBn(ρ, 0).
IB(n) IBn(

√
n, 0).

�
n n-sphere.

∆n standard simplex in �n.
λ1(A) smallest eigenvalue of a matrix A.
A � B Loewner order of symmetric matrices defined by

A � B ⇔ A − B is positive semi-definite.
conv(S) convex hull of the set S.
vert(S) extreme points of the set S.
intS interior of the set S.
S̆ convex relaxation of the set S.
Ŝ polyhedral outer approximation of the set S.
Š polyhedral inner approximation of the set S.



xvi Notation

ıΩ(x) characteristic function.
val(P ) optimal value of the optimization problem (P).
sol(P ) solution set of the optimization problem (P).
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Basic Concepts



Chapter 1

Introduction

In this chapter a general mixed integer nonlinear program (MINLP) is defined,
and some structural properties are described that are used in solution algorithms.
Furthermore, several applications of MINLPs are given. Finally, an outline of the
proposed solution approach is given, and an illustrative example is presented to
demonstrate some basic ideas.

1.1 The structured nonconvex mixed integer nonlinear
program

A general nonconvex mixed-integer nonlinear program (MINLP) is defined by

(MINLP)

min f(x, y)
s.t. g(x, y) ≤ 0

h(x, y) = 0
x ∈ [x, x]
y ∈ [y, y] integer

where the vector of continuous variables x and the vector of discrete variables y
are finite and f, g and h are general nonlinear functions. The value of the objective
function at a global minimizer is called optimal value of the MINLP and is denoted
by val(MINLP ). The set of all global minimizers is called the solution set and is
denoted by sol(MINLP ). If f and g are convex and h is affine, a MINLP is called
convex . Otherwise, it is called nonconvex. The acronym MINLP usually stands for
convex MINLPs. Here, it is also used for nonconvex problems.

If the functions f , g and h are block-separable, i.e. if they can be represented
as a sum of sub-functions depending on a common subset of variables, a MINLP
is called block-separable. In Chapter 2 we show that sparse MINLPs, for which
most of the entries of the Hessians of f, g and h are zero, can be reformulated as
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block-separable programs. Block-separability is the key structural property that
is exploited by decomposition-based solution methods.

Two important subclasses of MINLP are the mixed-integer quadratically con-
strained quadratic program (MIQQP), where f, g and h are quadratic forms, and
the mixed-integer linear program (MIP), where f, g and h are affine functions.
Analyzing 150 MINLP problems of the MINLPLib, a library of MINLP instances
collected by GAMS (Bussieck et al., 2003a), showed that 85% of these problems are
nonconvex, 50% are quadratic and 85% are block-separable1. This demonstrates
that nonconvexity is an important issue, and it is worthwhile to use specialized
algorithms for solving quadratic problems. The analysis shows also that a large
number of problems have a natural block-separable structure, which is often re-
lated to components of the underlying model.

How difficult is it to solve a MINLP? From the theoretical point of view,
MINLPs are NP-hard (Garey and Johnson, 1979; Murty, 1987; Vavasis, 1995).
This means if NP 	= P then, in the worst case, it is not possible to solve a MINLP
in polynomial time. However, these theoretical considerations do not reflect the
difficulty of solving the problem in terms of computing time. There is often a
large computational gap between finding a solution by a heuristic and verifying
its global optimality. It is very hard to say what makes a problem difficult. Is it
the number of local solutions, the number and the type of nonlinearities or the
size of the problem? Unlike from convex programming, the prediction of computing
time in nonconvex programming is usually impossible. Numerical experiments with
different kinds of solvers seem to be the only reliable measure of difficulty.

1.2 Applications
There are a vast number of MINLP applications in many areas, such as engineer-
ing design, computational chemistry, computational biology, communications and
finance. Floudas (Floudas, 2000) gives an overview of many applications, including
process synthesis, process design, process synthesis and design under uncertainty,
molecular design, interaction of design, synthesis and control, process operations,
facility location and allocation, facility planning and scheduling and topology of
transportation networks. Other areas of interest are VLSI manufacturing, auto-
mobile and aircraft. More applications can be found in (Pintér, 1996; Grossmann
and Sahinidis, 2002a; Grossmann and Sahinidis, 2002b).

MIQQP applications include all bilinear problems, for example pooling prob-
lems in petrochemistry (Visweswaran and Floudas, 1990), modularization of prod-
uct sub-assemblies (Rutenberg and Shaftel, 1971) and special cases of structured
stochastic games (Filar and Schultz, 1999). Other applications are packing prob-
lems studied in the book of Conway and Sloane (Conway and Sloane, 1993),
minmax location problems (Phan-huy-Hao, 1982), chance-constrained problems

1The numbers are from July 2003 and subject to change, since the MINLPLib is growing
quite fast.
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in portfolio optimization (Demands and Tang, 1992; Phan-huy-Hao, 1982; Wein-
traub and Vera, 1991), fuel-mixture problems encountered in the oil industry
(Phing et al., 1994), placement and layout problems in integrated circuit design
(Al-Khayyal et al., 1995; Al-Khayyal and van Voorhis, 1996). Many hard com-
binatorial optimization problems are special cases of MIQQP, such as MaxCut,
MaxClique or quadratic assignment.

Several MINLPs can be reformulated as MIQQPs, for example (fractional)
polynomial programs. MIQQPs can also serve as approximations of MINLPs for
computing solution estimates, as with the approximation of the molecular pre-
dicting problem by a quadratic assignment problem (Phillips and Rosen, 1994).
Under mild assumptions it can be shown that every MINLP can be approximated
by a MIQQP or by a MIP with arbitrary precision (Neumaier, 2001). Since MIP
is currently the only class that can be solved reliably in high dimensions, many
real-world problems are modeled as MIPs.

1.3 Outline of the solution approach

The core of the proposed approach for solving nonconvex MINLPs is a polyhedral
outer approximation (R) of a given problem (P) that is computed by the following
five steps:

1. A block-separable reformulation (Psplit) of (P) is generated by partitioning
the sparsity graph of (P).

2. A nonlinear convex underestimating relaxation (Cunder) of (Psplit) is con-
structed by replacing nonconvex functions with convex underestimators.

3. The bounding box of (P) is reduced and some binary variables are fixed by
using convex constraints of (Cunder).

4. Two reformulations (Cext) and (Pext) of (Cunder) and of (Psplit) are con-
structed that have linear coupling constraints.

5. A polyhedral outer and inner approximation (R) and (RMP) are computed
from (Cext) and (Pext) by using a decomposition algorithm that generates
cuts and so-called inner approximation points. For this, (convex) nonlinear
constraints are linearized and MINLP separation and pricing subproblems
are solved.

Four algorithms for generating solution candidates of the original problem that
use a nonlinear convex relaxation (Cunder) or a polyhedral relaxation (R) are pro-
posed (see Chapters 11, 12 and 13). The first algorithm is a deformation heuristic
that is based on iteratively deforming a convex relaxation into a box-constrained
formulation of the original problem. During this transformation sample points are
modified by applying a neighborhood search. The second algorithm is a rounding-
and-partitioning heuristic based on rounding solutions of convex relaxations and
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solving the nonconvex continuous subproblems by subsequently splitting off so-
lution candidates. The third algorithm is a Lagrangian heuristic that generates
solution candidates by combining inner approximation points. The fourth algo-
rithm is a branch-cut-and-price algorithm that uses the aforementioned heuristics
for computing upper bounds, and convex relaxations for computing lower bounds.

For the efficiency of the algorithms, it is important that a relaxation can
be constructed quickly, and also that it is a good approximation of the given
nonconvex problem. Both goals depend on the size of the blocks. Small blocks
make it possible to compute convex underestimators, cuts and columns quickly,
but they lead to larger duality gaps. Increasing the size of the blocks diminishes
the duality gap, but makes it more difficult to compute the relaxation. A block-
separable splitting-scheme described in Section 2.3 makes it possible to balance
both goals.

1.4 An illustrative example

In order to explain some basic ideas of the proposed solution approach, a simple
rounding heuristic for computing a solution candidate of the following MINLP is
described:

(P) min{x2 | g1(x) ≤ 0, g2(x) ≤ 0, x1 ∈ {0, 1}, x2 ∈ [0, 1]},

where g1 is a complicated nonconvex function and g2 is a convex function. The
rounding heuristic consists of the following four steps, which are illustrated in
Figure 1.1.

In the first step, a convex relaxation is constructed by replacing g1 with a
convex underestimator q1 and relaxing the binary constraint by x1 ∈ [0, 1]. The
resulting nonlinear convex relaxation, defined by

(Cunder) min{x2 | q1(x) ≤ 0, g2(x) ≤ 0, x1 ∈ [0, 1], x2 ∈ [0, 1]},

is solved yielding the point x1. In the second step, a polyhedral relaxation is
generated by a linearization ḡ2 of g2 at x1 and by the affine function ḡ1 that is
parallel to a linearization q̄1 of q1 at x1. The polyhedral relaxation

(R) min{x2 | ḡ1(x) ≤ 0, ḡ2(x) ≤ 0, x1 ∈ [0, 1], x2 ∈ [0, 1]},

is solved resulting in a point x2. In the third step, the binary component of x2 is
rounded to x3, and the polyhedral subproblem of (R) with fixed binary variables
is solved giving a point x4. Finally, a local minimizer x5 of the NLP subproblem of
(P) with fixed binary variables is computed using x4 as a starting point. Note that
without adding the cut ḡ1, rounding of x2 would lead to the wrong subproblem.
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Instead of rounding x2, we could also split the problem into two subproblems using
a branch-and-bound algorithm.

g2

g2

q1

g1

g1

1

q1

4

5

3

2
1

1

2

x

x

0

1

Figure 1.1: Basic steps of a rounding heuristic



Chapter 2

Problem Formulations

The formulation of a problem plays a central role in the solution strategy. Nemhau-
ser and Wolsey (Nemhauser and Wolsey, 1988) wrote: “In integer programming,
formulating a ‘good’ model is of crucial importance to solving the model." Auto-
matic generation of favorable reformulations is now standard in many MIP codes
(Bixby et al., 2000). It is used only recently in MINLP (Tawarmalani and Sahini-
dis, 2002; see also Section 14.4.1).

This chapter discusses various formulations of MINLPs that facilitate (i) the
computation of local minimizers, (ii) the construction of convex underestimators
(see Chapter 6) and (iii) the generation of valid cuts and columns (see Chapter
7). Particularly, it is shown how block-separable splitting-schemes with almost
arbitrary block-sizes can be derived from sparse problems via partitions of the
sparsity graph. As already mentioned in Section 1.3, these reformulations make it
possible to balance two goals: (i) fast computation of underestimators, cuts and
columns and (ii) small duality gaps.

2.1 The condensed formulation

A representation of a MINLP that uses as few (decision) variables as possible is
called a condensed formulation. It is defined by

(P)

min f(x, y)
s.t. g(x, y) ≤ 0

h(x, y) = 0
x ∈ [x, x]
y ∈ [y, y] integer

where x, x, x ∈ �nx , y, y, y ∈ �ny and f :�nx ×�ny 
→ �, g :�nx ×�ny 
→ �
mg

and h :�nx ×�ny 
→ �
mh are piecewise twice-differentiable functions, that might

be defined using if-then-else expressions. A continuous subproblem of (P) with a
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fixed vector of integer variables ŷ is defined by:

(P[ŷ])

min f(x, ŷ)
s.t. g(x, ŷ) ≤ 0

h(x, ŷ) = 0
x ∈ [x, x].

Since the objective and the constraint functions of (P[ŷ]) are piecewise twice-
differentiable, a standard NLP solver can be used to compute local minimizers.

2.2 Smooth and disjunctive reformulations

In order to construct convex relaxations of (P), it is useful to reformulate (P) as a
binary program with smooth objective and constraint functions. For this, several
transformations are described in the following.

2.2.1 Integrality constraints

An integrality constraint y ∈ � ∩ [y, y] with y, y ∈ � can be expressed through a
vector x ∈ {0, 1}N of binary variables by the following formula:

y = y + x1 + 2x2 + · · · + 2N−1xN

where N is the minimum number of binary variables needed. This minimum num-
ber is given by

N = 1 + trunc
(

log(ȳ − y)
log 2

)

where the trunc function truncates its real argument to an integer value. Note
that this transformation is only efficient if N is not too large.

2.2.2 Disjunctive constraints

A disjunctive constraint is defined as x ∈ ⋃p
j=1 Gj , where Gj ⊂ �n, j = 1, . . . , p,

are arbitrary disjunctive sets. Such a constraint can also be formulated as

p∨
j=1

(x ∈ Gj)

where ∨ denotes the ‘or’-operation. Disjunctive constraints can be used to re-
formulate if-then-else expressions and piecewise defined functions. Consider an
if-then-else expression of the form

if (x ∈ G1) then (x ∈ G2) else (x ∈ G3).
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The above if-then-else expression can be reformulated equivalently as a disjunctive
constraint by

(x ∈ G1, x ∈ G2) ∨ (x 	∈ G1, x ∈ G3).

An inequality constraint f(x) ≤ 0, where f is a piecewise defined function of the
form

f(x) = fk(x) for x ∈ Gk, k = 1, . . . , p,

can be reformulated as a disjunctive constraint by

(x ∈ G1, f1(x) ≤ 0) ∨ · · · ∨ (x ∈ Gp, fp(x) ≤ 0).

2.2.3 Big-M constraints
Consider a disjunctive constraint

p∨
j=1

(x ∈ Gj)

where Gj = {x ∈ X | fj(x) ≤ 0}, X ⊂ �
n is a bounded set and fj : �n 
→

�
mj , j = 1, . . . , p, are smooth functions. The above disjunctive constraint can be

described equivalently by the so-called big-M constraint

fj(x) ≤ f j(1 − yj), y is in SOS, x ∈ X,

where f j is an upper bound of fj over X and the binary vector y ∈ {0, 1}p is in
the special order set (SOS) defined by

p∑
j=1

yj = 1.

The name big-M comes from using M as a notation for the upper bound f j .

2.2.4 The smooth binary formulation

By applying the above rules, we can reformulate the condensed problem (P) as
the following smooth binary problem:

min h0(x)
s.t. hi(x) ≤ 0, i = 1, . . . , m

x ∈ [x, x], xB binary
(2.1)

where x, x ∈ �n, B ⊆ {1, . . . , n}, and hi, i = 0, . . . , m, are twice-differentiable
functions. For the sake of simplicity, we assume here that equality constraints in
(P) are replaced by two inequality constraints, i.e. hi(x) = 0 is replaced by hi(x) ≤
0 and −hi(x) ≤ 0. It is also possible to add disjunctive constraints

∨p
j=1(x ∈ Gj)

to (2.1). This results in a hybrid formulation (Vecchietti et al., 2003).
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2.2.5 Block-separability

Problem (2.1) is called block-separable, if there exists a partition {J1, . . . , Jp} of
{1, . . . , n}, i.e.

⋃p
k=1 Jk = {1, . . . , n} and Ji ∩ Jk = ∅ for i 	= k, and functions

hi,k :�nk 
→ � with nk = |Jk| such that

hi(x) =
p∑

k=1

hi,k(xJk
), i = 0, . . . , m.

In other words, all Hessians of the functions hi, i = 0, . . . , m, have a common block-
diagonal structure. If the size of all blocks Jk is 1, i.e. Jk = {k} for k = 1, . . . , p,
(2.1) is called separable. In this case, the functions hi have the form

hi(x) =
n∑

k=1

hi,k(xk).

2.3 Block-separable splitting-schemes

We will now discuss splitting-schemes for transforming general sparse MINLPs into
block-separable MINLPs. This technique goes back to 1956 (Douglas and Rach-
ford, 1956) where it was used for partial differential equations. It is widely used
in stochastic programming (Ruszczyński, 1997) and in combinatorial optimization
(Guignard and Kim, 1987).

2.3.1 The sparsity graph

We define the sparsity graph of (2.1) as the graph Gsparse = (V, Esparse) with the
vertices V = {1, . . . , n} and the edges

Esparse =
{
(i, j) ∈ V 2

∣∣∣ ∂2hl(x)
∂xi∂xj

	= 0 for some l ∈ {0, . . . , m} and x ∈ [x, x]
}
.

The sparsity graph can be used to detect a block structure of (2.1).

Observation 2.1. Let Jk, k = 1, . . . , p, be the connected components of Gsparse.
Then (2.1) is block-separable with respect to Jk, k = 1, . . . , p.

2.3.2 MINLP splitting-schemes

If problem (2.1) is not block-separable or if it has some large blocks that should be
subdivided into smaller blocks, (2.1) can be reformulated to be block-separable by
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introducing extra variables and constraints. Let J1, . . . , Jp be an arbitrary partition
of the vertex set V . The set of nodes of

⋃p
l=k+1 Jl connected to Jk is defined by

Rk = {i ∈
p⋃

l=k+1

Jl | (i, j) ∈ Esparse, j ∈ Jk},

for k = 1, . . . , p. The set Rk can be interpreted as the set of flows of a network
problem connecting a component Jk with components Jl, where k < l ≤ p. If
(2.1) is block-separable with respect to the blocks Jk, k = 1, . . . , p, then Rk = ∅.
Otherwise, some Rk’s will be non-empty. From the definition of Rk it follows that
there exist functions h̃i,k : �|Jk| ×�|Rk| → � such that

hi(x) =
p∑

k=1

h̃i,k(xJk
, xRk

), i = 0, . . . , m.

Replacing xRk
by a new variable yk ∈ �|Rk| defines the functions

h̃i(x, y1, . . . , yp) =
p∑

k=1

h̃i,k(xJk
, yk), i = 0, . . . , m.

Remark 2.2. Assuming that a black-box function hi is block-separable w.r.t. a
partition J1, . . . , Jp, the functions h̃i,k can be defined by

h̃i,k(xJk
) = hi(x̃k) − p − 1

p
hi(x̂),

where x̃k
Jk

= xJk
, x̃k

Jl
= x̂Jl

for l 	= k and x̂ ∈ [x, x] is an arbitrary fixed point1.
Clearly,

∑p
k=1 h̃i,k(xJk

) = hi(x) + hi(x̂) − pp−1
p hi(x̂) = hi(x).

Since h̃i(x, xR1 , . . . , xRp) = hi(x), the following splitting-problem with n +∑p
k=1 |Rk| variables is equivalent to (2.1):

min h̃0(x, y1, . . . , yp)
s.t. h̃i(x, y1, . . . , yp) ≤ 0, i = 1, . . . , m

yk = xRk
, k = 1, . . . , p

yk ∈ [xRk
, xRk

], k = 1, . . . , p
x ∈ [x, x], xB binary .

(2.2)

Problem (2.2) is block-separable with respect to the blocks (Jk, Rk), k = 1, . . . , p.
The constraints yk = xRk

are called copy constraints .

Example 2.3. Consider the sparsity graph shown in Figure 2.1, and let J1 =
{3, 4, 7, 8} and J2 = {1, 2, 5, 6, } be a partition of this graph. Then R1 = {2, 6} and
R2 = ∅. The splitting-problem (2.2) contains the new variables x9 and x10 and the
copy constraints: x2 = x9 and x6 = x10. The new blocks are J̃1 = {3, 4, 7, 8, 9, 10}
and J̃2 = {1, 2, 5, 6}.
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1 2 3 4

5 6 7 8

9

10

Figure 2.1: Partition of a sparsity graph into two components

The splitting-scheme (2.2) will be only efficient, if the cardinalities |Rk|,
k = 1, . . . , p, are not too large. To this end, the sparsity graph can be subse-
quently partitioned into two blocks at a time by solving, for example, a MinCut
problem. The blocks can also be defined according to physically meaningful com-
ponents of the given optimization model. In (Dentcheva and Römisch, 2002) such
a decomposition is called geographical.

2.3.3 MIQQP splitting-schemes
Consider now the case where all functions in (2.1) are quadratic forms hi(x) =
xT Aix + 2bT

i x + ci. Since

xT Aix =
p∑

k=1

xT
Jk

Ai,Jk,Jk
xJk

+ 2
p∑

l=k+1

xT
Jk

Ai,Jk,Jl
xJl

,

where AJk,Jl
∈ �(|Jk|,|Jl|) denotes the submatrix (ar,s)r∈Jk,s∈Jl

, it follows that

xT Aix =
p∑

k=1

xT
Jk

Ai,Jk,Jk
xJk

+ 2
p∑

k=1

xT
Jk

Ai,Jk,Rk
xRk

(2.3)

for i = 0, . . . , m. Setting

h̃i(x, y1, . . . , yp) =
p∑

k=1

xT
Jk

Ai,Jk,Jk
xJk

+ 2
p∑

k=1

xT
Jk

Ai,Jk,Rk
yk + 2bT

i x + ci,

i = 0, . . . , m, it follows that h̃i(x, xR1 , . . . , xRp) = hi(x).

Block-angular structure

Problem (2.1) has a block-angular structure if the matrices are of the form

Ai =

⎛
⎜⎜⎜⎝

Ai,1 Bi,1

. . .
...

Ai,p−1 Bi,p−1

BT
i,1 . . . BT

i,p−1 Ai,p

⎞
⎟⎟⎟⎠ .

1This definition is used in the current implementation of LaGO (see Chapter 14).
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Problems with such a structure arise, for example, in process system engineering,
telecommunications problems, network problems and stochastic programming. In
(Ferris and Horn, 1998) it is demonstrated that many sparse optimization prob-
lems can be efficiently transformed into problems with block-angular structure.
Automatic detection of block structure of sparse MIPs is discussed in (Martin,
1999).

Let P = {J1, . . . , Jp} be a partition of V according to the above block struc-
ture. Then Rk = Jp for k < p and Rp = ∅. The related splitting-scheme is
block-separable with respect to p blocks with block sizes n1 + np, . . . , np−1 + np,
np. It follows that the number of additional variables in the splitting-scheme (2.2)
is (p − 1)np.

Band structure

Problem (2.1) has a band structure if the matrices have the form

Ai =

⎛
⎜⎜⎜⎜⎝

Ai,1 Bi,1

BT
i,1

. . . . . .

. . . Ai,p−1 Bi,p−1

BT
i,p−1 Ai,p

⎞
⎟⎟⎟⎟⎠ .

There are many methods for transforming sparse matrices into matrices with band
structure. A main application of these algorithms is to reduce the fill-in of a
Cholesky factorization.

Let P = {J1, . . . , Jp} be a partition of V according to the above block struc-
ture. Then Rk = Jk+1 for k < p and Rp = ∅. The related splitting-scheme is
block-separable with respect to p blocks with block sizes n1+n2, . . . , np−1+np, np.
It follows that the number of additional variables in the splitting-scheme (2.2) is
not greater than

∑p
k=2 nk = n − n1.

2.4 Separable reformulation of factorable programs
In general, it is not possible to produce separable reformulations using splitting-
schemes. A partition of the vertex set V into blocks Jk = {k} of cardinality 1
leads to empty sets Rk = ∅ if and only if (2.1) is fully separable. In order to
reformulate (2.1) to be separable or to diminish the size of some blocks, a disag-
gregation technique presented in (Tawarmalani and Sahinidis, 1999) can be used,
provided that all functions are factorable. A function is called factorable, if it is de-
fined by taking recursive sums and products of univariate functions. Algorithm 2.1
decomposes a factorable function f into equations involving separable functions
(Tawarmalani and Sahinidis, 1999). For example, the function f(x) = log(x1)x2 is
decomposed by this algorithm into f(x) = 1

4y2
1 − 1

4y2
2 , y1 = y3 + x2, y2 = y3 − x2

and y3 = log(x1).
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Algorithm Reform f(x):
if f(x) = g(x)/h(x) return Fractional_Reform(g,h)
if f(x) = Πl

i=1fi(x)
for i := 1 to l do

add variable yfi , and constraint yfi =Reform (fi(x))
return Multilinear_Reform(Πl

i=1yfi)
if f(x) =

∑l
i=1 fi(x)

add variable yfi , and constraints yfi =Reform (fi(x))
return

∑l
i=1 yfi

if f(x) = g(h(x))
add variable yh and constraint yh=Reform(h(x))
return Reform(g(yh))

Algorithm Multilinear_Reform(Πl
i=1yri):

for i := 2 to l do
add variable yr1,...,ri and the constraint
yr1,...,ri =Bilinear_Reform(yr1,...,ri−1yri)

return yr1,...,rl

Algorithm Fractional_Reform(g,h):
add variables yf , yg, yh and constraints
yg=Reform(h(x)), yh=Reform(h(x)) and yg=Bilinear_Reform(yfyh)
return yf

Algorithm Bilinear_Reform(yiyj):
return Reform (1

4 (yi + yj)2 − 1
4 (yi − yj)2)

Algorithm 2.1: Procedure for decomposing a factorable function into sepa-
rable expressions
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2.5 Extended block-separable reformulation
In order to facilitate the generation of polyhedral relaxations, it is useful to gener-
ate an extended reformulation of (2.1) with linear coupling constraints (see Chap-
ter 7). In other words, all constraint functions depending on variables of different
blocks are affine, and all nonlinear constraint functions of the extended reformu-
lation depend on variables of only one block. To this end, an inequality constraint

p∑
k=1

hi,k(xIk
) ≤ 0

of (2.1) is rewritten equivalently by

p∑
k=1

ti,k ≤ 0, gi,k(xIk
, ti,k) := hi,k(xIk

) − ti,k ≤ 0, k = 1, . . . , p.

The new variable ti,k is in the interval [ti,k, ti,k] with

ti,k = min{h̆i,k(x) | x ∈ [xIk
, xIk

]} and ti,k =
∑
j �=k

−ti,j ,

where h̆i,k is a convex underestimator of hi,k over [xIk
, xIk

], i.e. h̆i,k(xIk
) ≤

hi,k(xIk
) for x ∈ [xIk

, xIk
] and h̆i,k is convex over [xIk

, xIk
]. Examples for con-

vex underestimators are given in Chapter 6. It is also possible to compute ti,k via
a box reduction method and interval arithmetic (see Section 7.4).

Transforming all nonlinear constraints and the objective function of (2.1)
according to the above representation yields the following extended reformulation
with linear coupling constraints:

min cT x + c0

s.t. Ax + b ≤ 0
gi,k(xJk

) ≤ 0, i ∈ Mk, k = 1, . . . , p
x ∈ [x, x], xB binary

(2.4)

where c ∈ �n, c0 ∈ �, A ∈ �(m,n), b ∈ �m, gi,k are nonlinear functions and
Mk ⊂ � are finite sets. For the sake of simplicity, we denote, as in (2.1), by
{J1, . . . , Jp} the blocks of (2.4).

Example 2.4. Consider the following separable program:

min sin(x1) + x2

s.t. 2x1 + 3x2 ≤ 0
x1 + x2

2 ≤ 0.
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An extended reformulation with linear coupling constraints of the above problem
is:

min t0,1 + x2

s.t. 2x1 + 3x2 ≤ 0
x1 + t2,2 ≤ 0
sin(x1) ≤ t0,1

x2
2 ≤ t2,2

2.6 Other formulations

Apart from the reformulations described in this chapter, there are also other in-
teresting reformulations.

1. A MIQQP containing only binary variables can be transformed into a MIP
by the following procedure. Let xi, xj ∈ {0, 1}. Then xij = xixj if and only if
xij ≥ 0, xij ≥ xi +xj −1, xij ≤ xi and xij ≤ xj . Replacing the bilinear terms
by these expressions, and using x2

i = xi, yields an MIP reformulation of a
MIQQP with n2/2 additional variables and 3n2/2 additional constraints:

min 〈A0, X〉 + 2bT
0 x + c0

s.t. 〈Ai, X〉 + 2bT
i x + ci ≤ 0, i = 1, . . . , m

xij ≥ xi + xj − 1, 1 ≤ i < j ≤ n
xij ≤ xi, 1 ≤ i < j ≤ n
xij ≤ xj , 1 ≤ i < j ≤ n

x ∈ {0, 1}n, X ∈ �(n,n)
+

where 〈A, X〉 =
∑

i,j aijxij .

2. A recent cutting-plane algorithm for box-constrained nonconvex quadratic
programs of the form min{ 1

2xT Qx+cT x | x ∈ [0, e]} is based on the following
reformulation (Vandenbussche, 2003):

max{ 1
2cT x + 1

2µT e | (x, µ, µ) ∈ LPS},

where µ ∈ �n and µ ∈ �n are the dual variables for the constraints x ≤ e
and x ≥ 0 respectively, and LPS ⊂ �

n × �n × �n is the set of Karush–
Kuhn–Tucker points of the given problem.

3. Let min{f(x) | gj(x) ≤ 0, j = 1, . . . , m} be a twice-differentiable nonconvex
optimization problem. In (Kojima et al., 1999) the following reformulation
of the above problem that contains a single nonconvex quadratic constraint
is proposed:
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min f(x)
s.t. gj(x) + σj(‖x‖2 − t) ≤ 0, j = 1, . . . , m

−‖x‖2 + t ≤ 0

where σj ≥ −min{0, minx∈S λ1(∇2gj(x))} for j = 1, . . . , m, S denotes the
feasible set and λ1 denotes the minimum eigenvalue.

4. A MINLP can be formulated as a continuous optimization problem by re-
placing a binary constraint xj ∈ {xj , xj} by the quadratic equality constraint

(xj − xj)(xj − xj) = 0.

This formulation is used in Chapter 5 for deriving semidefinite relaxations.

5. Other reformulations are proposed in (Sherali and Adams, 1999) that are
used in the so-called reformulation linearization technique (RLT). Moreover,
in (Smith and Pantelides, 1999) it is shown that algebraic models are al-
ways reducible to bilinear, linear fractional and concave separable functions,
provided they do not involve trigonometric functions.



Chapter 3

Convex and Lagrangian
Relaxations

After a short introduction on the convexification of sets and functions, this chapter
presents convex and Lagrangian relaxations of general MINLPs. The presented
relaxations are compared and it is shown that Lagrangian relaxations are stronger
than so-called convex underestimating-relaxations. Several dual-equivalent results
are proven and estimates on the duality gap are given. Furthermore, the concept
of augmented Lagrangians is introduced, which leads to a zero duality gap.

The roots of Lagrangian relaxation go back to Joseph Louis Lagrange (1736-
1813) (Lagrange, 1797). It was presented in (Everett, 1963) for resource allocation
problems. The reader is referred to (Geoffrion, 1974) and (Lemaréchal, 2001) for
an introduction into this field. A comprehensive overview on duality theory is
given in (Rockafellar and Wets, 1997).

The presented theory forms the background for the computation of a relax-
ation, which is the main tool in relaxation-based MINLP solution methods (see
Chapters 11, 12 and 13).

3.1 Convexification of sets and functions
The following definitions and results on the convexification of sets and functions
will be used in the subsequent sections. The intersection of all convex sets contain-
ing an arbitrary compact set G is called the convex hull of G and is denoted by
conv(G). There are two representations of the convex hull that are used in solution
algorithms. The first one is based on supporting hyperplanes and the second one
on extreme points. For a general compact set G ⊆ �n and a vector a ∈ �n we
define the support function by

σG(a) = sup
x∈G

aT x
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and the related supporting half-space by

{x ∈ �n | aT x ≤ σG(a)}.

Observe that a support function does not distinguish a set from its closed convex
hull.

Observation 3.1. The convex hull of an arbitrary compact set G ⊂ �
n can be

represented as

conv(G) = {x ∈ �n | aT x ≤ σG(a) for all a ∈ �n} (3.1)

where �n denotes the n-sphere in �n.

The second characterization of conv(G) is based on the extreme points of
G. A point x ∈ G is called an extreme point of G if it cannot be represented by
x = (1 − λ)y + λz, where y, z ∈ G, y 	= z, and λ ∈ (0, 1).

Observation 3.2. Let vert(G) be the set of extreme points of a compact set G. Then

conv(G) =
⋃

{conv(V ) | V ⊆ vert(G) and V is finite }.

If vert(G) consists of finitely many points w1, . . . , wl, then

conv(G) = {
l∑

j=1

zjwj | z ∈ ∆l} (3.2)

where ∆l denotes the standard simplex in �l.

Note that if G is an unbounded polyhedral set, its convex hull can be re-
presented as a convex combination of extreme points and so-called extreme rays
(Schrijver, 1986).

Next, the convexification of functions will be studied. A twice-differentiable
function f :X 
→ � is convex over a convex set X ⊆ �n if the Hessian ∇2f(x) is
positive semidefinite for all x ∈ X . It is called strictly convex over X if the Hessian
∇2f(x) is positive definite for all x ∈ X . A convex underestimator f̆ of a function
f over a set X is a convex function below f over X , i.e. f̆(x) ≤ f(x) for all x ∈ X .
The best convex underestimator of f over a convex set X is its convex envelope
that is the supremum of all lower semi-continuous convex functions below f over
X . The convex envelope over X is equivalent to the biconjugate f∗∗

X = (f + ıX)∗∗,
where

f∗(y) = sup
x

[yT x − f(x)]

is the conjugate of a function, f∗∗ = (f∗)∗ and

ıX(x) =
{

0 if x ∈ X
+∞ otherwise
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is the indicator function (Hiriart-Urruty and Lemaréchal, 1993). The support func-
tion σS is also the conjugate function (ıS)∗ of ıS . In fact, convexity of f is not
necessary for the conjugacy operation to make sense: f just needs to be finite at
some point, and to have some affine minorant (Hiriart-Urruty and Lemaréchal,
1993).

Let epiX(f) = {(t, x) | t ≥ f(x), x ∈ X} be the epi-graph of a function f
over a set X . For the epi-graph of a convex envelope f∗∗

X we have:

epiX(f∗∗
X ) = conv(epiX(f)).

For many functions, there exist analytic expressions of the convex envelope. For
example, the convex envelope of the bilinear function f(x) = x1 · x2 over the
box X = [−e, e] is the function f∗∗

X (x) = max{−1 + x1 + x2,−1 − x1 − x2}. In
(Tawarmalani and Sahinidis, 2002) so-called convex extensions are presented that
provide representations of convex envelopes in terms of generating points.

3.2 Convex underestimating-relaxations
In this section convex relaxations obtained by replacing nonconvex functions by
convex underestimators are studied. Typically, such relaxations can be computed
quickly, but they are often not tight. Consider a MINLP of the form

min h0(x)
s.t. hi(x) ≤ 0, i = 1, . . . , m

x ∈ [x, x], xB binary
(3.3)

where hi, i = 0, . . . , m, are arbitrary functions and B ⊆ {1, . . . , n}. A convex
underestimating-relaxation of (3.3) is defined by

min h̆0(x)
s.t. h̆i(x) ≤ 0, i = 1, . . . , m

x ∈ [x, x]
(3.4)

where h̆i is a convex underestimator of hi over [x, x] of (3.3), i.e. h̆i(x) ≤ hi(x)
for all x ∈ [x, x] and h̆i is convex over [x, x]. Examples for convex underestimators
are given in Chapter 6. An optimal convex underestimating-relaxation of (3.3) is
defined by replacing all functions by their convex envelopes:

min h∗∗
0 (x)

s.t. h∗∗
i (x) ≤ 0, i = 1, . . . , m

x ∈ [x, x]
(3.5)

where h∗∗
i is the convex envelope of hi over [x, x]. Since h̆i(x) ≤ h∗∗

i (x) for x ∈
[x, x], we have

val(3.4) ≤ val(3.5).
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An exact convex relaxation of (3.3) can be obtained by formulating (3.3) as a
box-constrained optimization problem by using the exact penalty function

P (x) = h0(x) +
m∑

i=1

δi max{0, hi(x)} +
∑
i∈B

γi max{0, (xi − xi)(xi − xi)}.

Assuming that the weights δi and γi are large enough, we have val(3.3)= min
x∈[x,x]

P (x).

In this case, the convex relaxation

min P ∗∗
X (x)

s.t. x ∈ [x, x] (3.6)

with X = [x, x] is exact (see Horst et al., 1995), i.e. val(3.3) = val(3.6) and
conv(sol(3.3)) = sol(3.6). From the above considerations there follows:

Lemma 3.3. It holds that

val(3.3) = val(3.6) ≥ val(3.5) ≥ val(3.4).

3.3 Lagrangian relaxation

This section examines Lagrangian relaxation and dual bounds of general optimiza-
tion problems of the form:

min f(x)
s.t. g(x) ≤ 0

x ∈ G
(3.7)

where f :�n 
→ � and g :�n 
→ �
m are continuous functions and G ⊆ �n is an

arbitrary set. It is clear that a general MINLP can be formulated as in (3.7) by
replacing equality constraints by two inequality constraints and shifting integrality
constraints to the set G. A Lagrangian to (3.7) is defined by

L(x; µ) = f(x) + µT g(x)

where the dual point µ is in �m
+ . A Lagrangian relaxation of (3.7) is defined by

inf L(x; µ)
s.t. x ∈ G.

(3.8)

A dual function related to (3.8) is given by its optimal value, i.e. D(µ) = val(3.8).
Since L(x; µ) ≤ f(x) if x is feasible for (3.7) and µ ∈ �m

+ , we have

D(µ) ≤ val(3.7) for all µ ∈ �m
+ .
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Thus, the values of the dual function at dual feasible points are lower bounds of
the optimal value of (3.7). This provides a very valuable quality measure for any
feasible solution x to (3.7) since f(x) − val(3.7) ≤ f(x) − D(µ), for all µ ∈ �m

+ .
The sharpest lower bound is given by the optimal value of the dual problem

sup
µ∈�m

+

D(µ). (3.9)

From the definition of the Lagrangian follows:

Observation 3.4 (weak duality). It holds that val(3.7) − val(3.9) ≥ 0.

The expression val(3.7) − val(3.9) is called duality gap. If problem (3.7) is
nonconvex, the duality gap is usually greater than zero. However, for convex prob-
lems fulfilling a constraint qualification, the duality gap disappears (Bertsekas,
1995).

Proposition 3.5 (strong duality). If (3.7) is convex and a constraint qualification
(see Condition 8.2 in Section 8.1) is fulfilled, then val(3.7) = val(3.9).

In Section 4.1 several methods for solving dual problems based on evaluating
the dual function D are studied. These methods are efficient if the dual function
can be evaluated very fast, i.e. the Lagrangian relaxation (3.8) can be solved fast.
This might be the case if (3.7) is block-separable. In this situation the Lagrangian
problem (3.8) decomposes into several subproblems, which typically can be solved
relatively fast.

3.4 Dual-equivalent convex relaxations
In the following, several convex relaxations are studied that are equivalent to a
related dual problem. Furthermore, it is shown that dual relaxations are stronger
than convex underestimating-relaxations. Consider a MINLP of the form

min h0(x)
s.t. hi(x) ≤ 0, i = 1, . . . , m

x ∈ [x, x], xB binary
(3.10)

where hi(x) =
∑p

k=1 hi,k(xJk
). An extended reformulation of (3.10) as defined in

Section 2.5 is given by:

min eT t0
s.t. eT ti ≤ 0, i = 1, . . . , m

hi,k(xJk
) ≤ ti,k, i = 0, . . . , m, k = 1, . . . , p

x ∈ [x, x], xB binary

(3.11)

where ti = (ti,k)k=1,...,p ∈ �p.
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Lemma 3.6. Let (D) and (Dext) be the dual problems to (3.10) and (3.11) respec-
tively. Then val(D) = val(Dext).

Proof. Let Xk = {xJk
∈ [xJk

, xJk
] | xB∩Jk

binary}. For the partial dual functions
Dk and Dext,k to (D) and (Dext) we have

Dk(µ) = min{h0,k(x) + µT h1:m,k(x) | x ∈ Xk}
= min{t0,k + µT t1:m,k | hi,k(x) ≤ ti,k, i = 0, . . . , m, x ∈ Xk}
= Dext,k(µ).

Hence, the dual functions to (D) and (Dext) are equivalent, thus proving the state-
ment. �

In the same way as in the proof of Lemma 3.6 it can be shown that the dual
problems to problem (3.10) and to the extended reformulation (2.4), as defined in
Section 2.5, are equivalent. Consider now the extended reformulation (2.4) given
in the form:

min{cT x + c0 | x ∈ G, Ax + b ≤ 0} (3.12)

where

G = {x ∈ [x, x] | xB binary and gi,k(xJk
) ≤ 0, i ∈ Mk, k = 1, . . . , p}.

A convex relaxation of (3.12) is defined by

min{cT x + c0 | x ∈ conv(G), Ax + b ≤ 0}. (3.13)

The next lemma compares convex and Lagrangian relaxations.

Lemma 3.7. Let (Dext) be the dual of (3.12) and assume that for (3.12) a con-
straint qualification holds. Then val(Dext) = val(3.13). Let x̂ be a solution point
of the optimal Lagrangian relaxation to (Dext). If the duality gap of (Dext) is not
zero, then x̂ 	∈ sol(3.13).

Proof. We have

val(Dext) = max
µ∈�m

+

min{cT x + c0 + µT (Ax + b) | x ∈ G}

= max
µ∈�m

+

min{cT x + c0 + µT (Ax + b) | x ∈ conv(G)}

= min{cT x + c0 | Ax + b ≤ 0, x ∈ conv(G)}
= val(3.13),

where for the third equation strong duality was used. Let x̂ ∈ G be a solution
point of the optimal Lagrangian relaxation to (Dext). If the duality gap of (Dext)
is not zero, then Ax̂+ b 	≤ 0, because otherwise x̂ would be feasible for (3.12), and
the duality gap would be zero. Since x̂ is not feasible for (3.13), it cannot be a
solution of (3.13). �
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From Lemma 3.6 it follows that the dual to (3.10) and the convex relax-
ation (3.13) are equivalent. The next proposition shows that dual relaxations are
stronger than convex underestimating-relaxations.

Lemma 3.8. It holds that val(3.5) ≤ val(3.13).

Proof. Let D∗∗ and D be the dual functions to (3.5) and (3.10) respectively. Since
D∗∗(µ) = minx∈[x,x] h

∗∗
0 (x) +

∑m
i=1 µih

∗∗
i (x) and h∗∗

i (x) ≤ hi(x) for x ∈ [x, x],
it follows that D∗∗(µ) ≤ D(µ) for all µ ∈ �m

+ . Hence, val(3.5) ≤ val(D). From
Lemma 3.6 and Lemma 3.7 we have val(Dual(3.10))= val(3.13). This proves the
statement. �

The following dual-equivalent convex relaxation to (3.7) is presented in (Fel-
tenmark and Kiwiel, 2000):

min
n+1∑
j=1

zj · f(wj)

s.t.
n+1∑
j=1

zj · g(wj) ≤ 0

wj ∈ G, j = 1, . . . , n + 1
z ∈ ∆n+1

(3.14)

where ∆n+1 = {z ∈ �n+1 | eT z = 1, z ≥ 0} is the standard simplex. The La-
grangian problem to (3.14) is:

min
n+1∑
j=1

zj · L(wj ; µ)

wj ∈ G, j = 1, . . . , n + 1
z ∈ ∆n+1,

(3.15)

where L(·; µ) is the Lagrangian to (3.7).

Lemma 3.9. Let (D) be the dual problem to (3.7) and D be the related dual function.
Then val(3.15) = D(µ) and val(D) = val(3.14).

Proof. The statement follows from

val(3.15) = min
z∈∆n+1

n+1∑
j=1

zj · min
wj∈G

L(wj ; µ)

= min
z∈∆n+1

n+1∑
j=1

zj · D(µ)

= D(µ).
�
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Remark 3.10. A similar dual-equivalent problem can be formulated for the ex-
tended block-separable reformulation (2.4). Consider the problem:

min
p∑

k=1

|Jk|+1∑
j=1

zk,j · (cT
Jk

wk,j + c0)

s.t.
p∑

k=1

|Jk|+1∑
j=1

zk,j · (AJk
wk,j + b) ≤ 0

wk,j ∈ Gk, j = 1, . . . , |Jk| + 1, k = 1, . . . , p
zk ∈ ∆|Jk|+1, k = 1, . . . , p

which can be written as:

min cT x(w, z) + c0

s.t. Ax(w, z) + b ≤ 0
wk,j ∈ Gk, j = 1, . . . , |Jk| + 1, k = 1, . . . , p
zk ∈ ∆|Jk|+1, k = 1, . . . , p

(3.16)

where x(w, z) =
∑p

k=1

∑|Jk|+1
j=1 zk,j · wk,j . In the same way as in the proof of

Lemma 3.9, it can be shown that (3.16) is equivalent to the dual of (2.4). Based
on formulation (3.16), a column generation method for solving dual problems of
general MINLPs is presented in Section 4.3.

3.5 Reducing the duality gap
Reducing the duality gap is an important issue for improving Lagrangian and
convex relaxations. This section discusses methods for reducing the duality gap
by either reformulating the primal problem, or by changing the dualization, i.e.
the definition of the dual problem. Consider an optimization problem of the form:

min f(x)
s.t. gi(x) ≤ 0, i = 1, . . . , m

x ∈ G.
(3.17)

A well-known method for reducing a duality gap is the addition of valid cuts.

Lemma 3.11. Denote by (P ′) a program that is obtained from (3.17) by adding the
valid cut gm+1(x) ≤ 0 that does not change the feasible set of (3.17). Then for the
dual (D′) of (P ′) we have val(D′) ≥ val(Dual(3.17)).

Proof. Let L(x; µ) be the Lagrangian to (3.17) and let L′(x; µ) = L(x; µ) +
µm+1gm+1(x) be the Lagrangian to (P ′). Then

val(D′) = max
µ∈�m+1

+

min
x∈G

L′(x; µ) ≥ max
µ∈�m

+ ×{0}
min
x∈G

L′(x; µ) = val(Dual(3.17)). �



3.5. Reducing the duality gap 29

Remark 3.12. Let (D′) be defined as in Lemma 3.11. The dual-equivalent for-
mulation (3.13) provides a tool to prove strict reduction of the duality gap, i.e.
val(D′) > val(Dual(3.17)). Denote by (C) and (C′) the dual-equivalent relaxations
to (Dual(3.17)) and (D′) as defined in (3.13). Since val(Dual(3.17)) = val(C) and
val(D′) = val(C′), we have the strict inequality val(D′) > val(Dual(3.17)), if
and only if val(C′) > val(C). The last inequality is fulfilled, if the inequality
gm+1(x) ≤ 0 is violated for all x ∈ sol(C). In the same way, strict reduction of the
duality gap may be shown using the dual-equivalent formulation (3.14).

Examples for valid cuts of MINLPs are given in Section 7.1. The following obser-
vation shows that it is possible to close the duality gap by adding valid cuts.

Observation 3.13. Assume that the inequality constraint val(3.17) − f(x) ≤ 0 is
added to (3.17). Then val(3.17) = val(Dual(3.17)).

Proof. Choosing the Lagrangian multiplier corresponding to the inequality con-
straint val(3.17) − f(x) ≤ 0 equal to 1 and setting the remaining Lagrangian
multipliers 0 gives L(x; µ) = val(3.17) implying val(Dual(3.17)) ≥ val(3.17). Since
val(Dual(3.17)) ≤ val(3.17), the statement is proven. �

Of course, this result is not very useful in practice since the optimal value val(3.17)
is not known in advance. Consider now reformulations of (3.17) by shifting con-
straints to the set G.

Lemma 3.14. Define a reformulation (P ′) of (3.17) by shifting the inequality con-
straint gm(x) ≤ 0 to G′ = {x ∈ G | gk(x) ≤ 0}. Let (D′) be the dual to (P ′).
Then, (i) val(D′) ≥ val(Dual(3.17)), and (ii) val(D′) = val(Dual(3.17)) if gk is
convex and a constraint qualification holds.

Proof. (i) Let L′(·; µ) be the Lagrangian to (P ′). We have

val(D′) = max
µ∈�m−1

+

min
x∈G′

L′(x; µ) ≥ max
µm∈�+

max
µ∈�m−1

+

min
x∈G

L′(x; µ) + µmgm(x)

= val(Dual(3.17)).

(ii) If gm is convex, it follows from strong duality that the above inequality is an
equality. �

In the same way, it can be proven that shifting equality constraints to G′ may
reduce the duality gap. The following result shows that the duality gap can be
diminished by squaring linear equality constraints.

Lemma 3.15. Define problem (P ′) by replacing a linear equality constraint bT x = 0
of (3.17) by a quadratic equality constraint (bT x)2 = 0. Then val(Dual(P ′)) ≥
val(Dual(3.17)).
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Proof. We use the dual-equivalent formulation (3.14). The constraints in (3.14)
corresponding to bT x = 0 and (bT x)2 = 0 read

n+1∑
j=1

zjb
T wj = 0 and

n+1∑
j=1

zj(bT wj)2 = 0

respectively. The first constraint is equivalent to
⎛
⎝bT

⎛
⎝n+1∑

j=1

zjwj

⎞
⎠
⎞
⎠

2

= 0.

From

0 =
n+1∑
j=1

zj(bT wj)2 ≥

⎛
⎝n+1∑

j=1

zjb
T wj

⎞
⎠

2

the assertion follows. �

The next lemma shows that reformulating convex inequalities by semi-infinite
linear constraints may increase the duality gap.

Lemma 3.16. Define a reformulation (P ′) of (3.17) by replacing a convex con-
straint gi(x) ≤ 0, i ∈ {1, . . . , m}, of (3.17) by the equivalent semi-infinite linear
constraint

ḡi(x; y) ≤ 0, ∀y ∈ �n, (3.18)

where ḡi(x; y) = gi(y) + ∇gi(y)T (x − y). Then for the dual (D′) to (P ′) we have
val(Dual(3.17)) ≥ val(D′).

Proof. We use again the dual-equivalent formulation (3.14). Formulating the con-
straint (3.18) as in (3.14) gives

n+1∑
j=1

zj ḡi(wj ; y) = ḡi

⎛
⎝n+1∑

j=1

wjzj ; y

⎞
⎠ ≤ 0 ∀y ∈ �n,

which is equivalent to

gi

⎛
⎝n+1∑

j=1

wjzj

⎞
⎠ ≤ 0.

Since

gi

⎛
⎝n+1∑

j=1

wjzj

⎞
⎠ ≤

n+1∑
j=1

gi(wj)zj ≤ 0,

the statement follows. �
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3.6 Augmented Lagrangians
The Lagrangian dual problem introduces a duality gap that might be nonzero if
the problem is nonconvex. In Section 3.5 it was shown that the gap can be closed
only in particular cases. A general tool for closing duality gaps are augmented
Lagrangians. Consider an optimization problem with equality constraints

min f(x)
s.t. h(x) = 0

x ∈ G,
(3.19)

where f :�n 
→ �, h :�n 
→ �
m and G ⊆ �

n. The augmented Lagrangian to
(3.19) is the function

Laug(x; µ) = L(x; µ) + ρ‖h(x)‖2,

where L(x; µ) = f(x) + µT h(x) is the ordinary Lagrangian and ρ > 0 is a penalty
parameter. Defining the dual function

Daug(µ) = min
x∈G

Laug(x; µ)

the augmented dual to (3.19) reads

(Daug) max
µ∈�m

Daug(µ).

In (Rockafellar, 1974) the following result is proven.

Proposition 3.17. Assume that all functions in (3.19) are twice continuously dif-
ferentiable. Further assume that val(Daug) > −∞, G is compact and that the
second-order sufficient conditions (see Proposition 8.2 of Section 8.1) hold at the
global solution x∗ of (3.19) with multipliers µ∗. Then there exists a ρ̄ > 0 such
that for all ρ ≥ ρ̄, µ∗ is the global solution to (Daug), x∗ is the global solution to
(3.19) for µ = µ∗, and val(Daug) = val(3.19).

Problem minx∈G Laug(x; µ) is not separable. Nevertheless, it is possible to
take advantage of the separability of the original problem. Grothey presents a
decomposition-based approach for computing local solutions of MINLPs based on
the augmented Lagrangian dual problem (Daug) (Grothey, 2001).



Chapter 4

Decomposition Methods

Decomposition methods solve large scale problems by splitting them into several
smaller subproblems that are coupled through a master problem. Usually, the mas-
ter problem is a simple problem that can be solved in high dimensions, while the
subproblems contain the complicated constraints. Decomposition of optimization
problems started with the so-called Dantzig–Wolfe decomposition of linear pro-
grams with block-angular structure (Dantzig and Wolfe, 1960; Dantzig and Wolfe,
1961). The method is linked to the dual simplex method, which is still one of the
most efficient methods for solving linear programs (Bixby, 2001).

In the following, four decomposition principles are described: dual methods,
primal cutting-plane methods, column generation and Benders decomposition. The
approaches differ mainly in the definition of the master problem. We do not discuss
cross decomposition that is an integration of Lagrangian and Benders decomposi-
tion.

A main issue of this chapter is the description of a new column generation
method for computing inner and outer polyhedral relaxations of general MINLPs,
which makes it possible to compute and update high quality dual bounds in
branch-cut-and-price methods (see Chapter 13).

4.1 Lagrangian decomposition — dual methods

Consider a block-separable optimization problem of the form

min f(x)
s.t. g(x) ≤ 0

x ∈ G
(4.1)

where the functions f : �n 
→ � and g : �n 
→ �
m and the set G ⊂ �

n are
block-separable, i.e. there exists a partition {J1, . . . , Jp} of {1, . . . , n} such that
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f(x) =
∑p

k=1 fk(xJk
), g(x) =

∑p
k=1 gk(xJk

) and G = {x ∈ �n | xJk
∈ Gk, k =

1, . . . , p}. Let
L(x; µ) = f(x) + µT g(x)

be the Lagrangian function to (4.1) and

D(µ) = inf
x∈G

L(x; µ)

be the related dual function. Then the Lagrangian dual problem to (4.1) reads

sup
µ∈�m

+

D(µ). (4.2)

Since (4.1) is block-separable, a Lagrangian relaxation decomposes into p partial
Lagrangian problems

inf Lk(xJk
; µ)

s.t. xJk
∈ Gk

(4.3)

where

Lk(xJk
; µ) = fk(xJk

) +
m∑

i=1

µigi,k(xJk
)

is a partial Lagrangian function related to the k-th variable block. Let Dk(µ) =
val(4.3) be a partial dual function. Then

D(µ) =
p∑

k=1

Dk(µ).

This simplification is called Lagrangian decomposition. It was a main motive for
applying Lagrangian relaxation (Dantzig and Wolfe, 1960; Flippo and Kan, 1993;
Thoai, 1997). It is mainly used in mixed-integer linear programming. The following
lemma describes two properties of the dual function that are exploited in dual
solution methods.

Lemma 4.1. (i) The domain dom D of the dual function D is convex and D is
concave over dom D.

(ii) Let λ ∈ domD be a given dual point. Then for all xλ ∈ Argminx∈G L(x; λ)
the vector g(xλ) is a supergradient of D at λ, i.e.

D(µ) ≤ D(λ) + g(xλ)T (µ − λ), ∀µ ∈ �m.

Proof. (i) For any x, µ, λ, and t ∈ [0, 1], we have

L(x; tµ + (1 − t)λ) = tL(x; µ) + (1 − t)L(x; λ).
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Taking the infimum over all x ∈ G, we obtain

inf
x∈G

L(x; tµ + (1 − t)λ) ≥ t inf
x∈G

L(x; µ) + (1 − t) inf
x∈G

L(x; λ)

or
D(tµ + (1 − t)λ) ≥ tD(µ) + (1 − t)D(λ) > −∞.

(ii) Let λ ∈ domD. It holds that

D(µ) = L(xµ; µ)
≤ L(xλ; µ)
= f(xλ) + µT g(xλ)
= f(xλ) + λT g(xλ) + µT g(xλ) − λT g(xλ)
= D(λ) + g(xλ)T (µ − λ).

Thus
D(µ) − D(λ) ≤ g(xλ)T (µ − λ).

This proves that g(xλ) is a supergradient of D(·) at λ. �

In the following, three dual solution methods based on function and subgradient
evaluations of the dual function are discussed.

4.1.1 Subgradient methods

The simplest method for solving the dual problem (4.2) of (4.1) is the subgradient
method . Let {αj}j∈� be a sequence with αj ≥ 0. Denote the projection of a point
µ ∈ �m onto �m

+ by Π(µ). A subgradient algorithm computes a sequence of dual
points {µj} according to Algorithm 4.1.

Choose a start vector µ1 ∈ �m
+ .

for j = 1, . . . , l

Set gj = g(µj).

Set µj+1 = Π
(
µj − αjgj/‖gj‖

)
.

end for

Algorithm 4.1: Subgradient method
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Note that Algorithm 4.1 is not necessarily convergent, since the supergradient
is not necessarily a direction of ascent with respect to D. It is, however, a descent
direction with respect to the Euclidean distance to the set of optimal solutions.
The following result concerning the convergence of {µj} is proven in (Polyak,
1993).

Proposition 4.2. Assume that the solution set sol(4.2) is non-empty and bounded.
Then for any sequence of step-length {αj} fulfilling

αj → 0,

∞∑
j=1

αj = ∞,

the sequence {µj} has all limit points in sol(4.2).

In practice, this rule gives slow convergence, and there are also theoretical
results that bound the rate of convergence. Nevertheless, choosing the step-length
rule according to the divergent series rule is a common practice (Takriti et al.,
1996). Choosing the step-length according to the geometric series rule, αj = q0q

j
1,

may yield the so-called geometric rate of convergence of the distance from µj

to a solution µ∗ of (4.2), but this requires careful selection of the parameters
q0, q1 (Goffin, 1977). A very popular step-length rule is the Polyak II rule:

αj = θj(D(µj) − Dj
lev)/‖gj‖

where Dj
lev is a level to aim at, usually an underestimate of the optimal value,

val(4.1), and 0 < δ ≤ θj . Convergence of the iterates {µj} to µ∗ is ensured if
Dj

lev → val(4.2) Polyak, 1987.

4.1.2 Dual cutting-plane methods
A further development of the subgradient method is the dual cutting-plane method
shown in Algorithm 4.2 that uses the function and subgradient information of all
previous steps. In each iteration, it maximizes a polyhedral approximation of the
dual function

D̂j(µ) = min{D(µi) + g(µi)T (µ − µi) | 1 ≤ i ≤ j}. (4.4)

Algorithm 4.2 has similar convergence properties as the subgradient method
(Bertsekas, 1995).

Proposition 4.3. Assume that argmaxµ∈�m
+

D̂j0(µ) 	= ∅ for some j0 ∈ �, and
that {g(xµj )} is a bounded sequence. Then every limit point of a sequence {µj}
generated by Algorithm 4.2 is a dual-optimal point. Moreover, if the dual function
D is polyhedral, then the dual cutting-plane method terminates finitely; that is, for
some j, µj is a dual optimal solution.
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Choose a start vector µ1 ∈ �m
+ .

for j = 1, . . . , l

Compute g(µj) and D(µj) and set µj+1 = argmax
µ∈�m

+

D̂j(µ).

end for

Algorithm 4.2: Dual cutting-plane algorithm

Proof. Since gj = g(xµj ) is a supergradient of D at µj , we have D(µj) +
(µ − µj)T gj ≥ D(µ) for all µ ∈ �m

+ . Hence

D̂j(µj) ≥ D̂j(µ) ≥ D(µ), ∀µ ∈ �m
+ . (4.5)

Suppose that a subsequence {µk}k∈K converges to µ∗. Then, since �m
+ is closed,

we have µ∗ ∈ �m
+ , and by using the above inequality, we obtain for all k and i < k,

D(µi) + (µk − µi)T gi ≥ D̂k(µk) ≥ Dk(µ∗) ≥ D(µ∗).

From the upper-semicontinuity of D it follows that

lim
i→∞

sup
i∈K

D(µi) ≤ D(µ∗).

Since the subgradient sequence {gi} is bounded, we have

lim
i,k→∞,i,k∈K

(µk − µi)T gi = 0.

Hence,
D(µ∗) ≥ lim sup

k→∞,k∈K
D̂k(µk) ≥ lim inf

k→∞,k∈K
D̂k(µk) ≥ D(µ∗)

and therefore lim
k→∞,k∈K

D̂k(µk) = D(µ∗). From (4.5) it follows that D(µ∗) ≥ D(µ),

∀µ ∈ �m
+ . �

Remark 4.4. If (4.1) is block-separable, the polyhedral model D̂j can be replaced
in Algorithm 4.2 by the following modified polyhedral model :

D̃j(µ) =
p∑

k=1

min{Di

k(µ) | 1 ≤ i ≤ j}

where

D
i

k(µ) = Lk(wi
k; µi) +

m∑
l=1

gl,k(wi
k) · (µl − µi

l)
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and wi
k = argminx∈Gk

Lk(x; µi). Since D(µ) ≤ D̃j(µ) ≤ D̂j(µ), it can be shown in
the same way as in the proof of Proposition 4.3 that the resulting algorithm has
the same convergence properties as Algorithm 4.2.

4.1.3 Proximal bundle methods

In this section we discuss the proximal bundle method of (Kiwiel, 1990) that uses
a polyhedral model of the dual function which is penalized using a quadratic term
(see Algorithm 4.3). The method generates a sequence {µj}∞j=1 and trial points
λj ∈ �m

+ for evaluating supergradients gj = g(xλj ) of D and its linearizations

D̄j(µ) = D(λj) + (gj)T (µ − λj) ≥ D(µ),

starting from an arbitrary point µ1 = λ1 ∈ �m
+ . Iteration j uses the polyhedral

model
D̂j(µ) = min{D̄i(µ) | i ∈ Jj}

with Jj ⊂ {1, . . . , j} for finding

λj+1 = argmax{D̂j(µ) − uj

2
‖µ − µj‖2 | µ ∈ �m

+} (4.6)

where uj > 0 is a proximity weight. An ascent step µj+1 = λj+1 occurs if λj+1 is
significantly better than µj measured by

D(λj+1) ≥ D(µj) + κ · (D̄j(λj+1) − D(µj))

where κ ∈ (0, 1) is a fixed Armijo-like parameter. Otherwise, a null step µj+1 = µj

improves the next model D̂j+1 with the new linearization D̄j+1.

The following convergence result of Algorithm 4.3 is proven in (Kiwiel, 1990):

Proposition 4.5. Either µj → µ̄ ∈ sol(4.2) or sol(4.2) = ∅ and ‖µj‖ → +∞. In
both cases D(µj) ↑ sup�m

+
D.

Remark 4.6. Dual iteration points of the proximal bundle algorithm are related to
solutions of the convexified problem (3.14) defined in Section 3.4. Let xµj be the
solution of the Lagrangian problem for computing a subgradient gj = g(xµj ) and
zj be the dual solution of the quadratic program (4.6). In (Feltenmark and Kiwiel,
2000) it is proven that each accumulation point of the sequence (zj, xµj ) generated
by Algorithm 4.3 solves the dual-equivalent convex program (3.14). The result is
particularly interesting in the context of Lagrangian heuristics. If the original
problem is a linear program, then x̄j =

∑
i∈Jj zixµi is an estimate for a primal

solution point.



4.2. Primal cutting-plane methods 39

Parameters: u1 > 0 and κ ∈ (0, 1)

Choose a start vector µ1 ∈ �m
+ , set λ1 = µ1.

Compute D(µ1) and a supergradient g1 of D at µ1.

for j = 1, . . . , l
Solve (4.6) obtaining λj+1.

if D̂j(λj+1) − D(µj) < ε: stop.

if D(λj+1) ≥ D(µj) + κ · (D̄j(λj+1) − D(µj)):
Set µj+1 = λj+1 (serious step).

else: Set µj+1 = µj (null-step).

Compute D(µj) and a supergradient gj of D at µj .

Choose Jj+1 ⊂ Jj ∪ {j + 1} and update uj+1.

end for

Algorithm 4.3: Proximal bundle algorithm

If the number of coupling constraints is high it is important that the box-
constrained quadratic program (4.6) is solved efficiently. For this, a direct method,
as in (Kiwiel, 1994b; Kiwiel, 1994a), or an iterative method, such as the conjugate
gradient method, can be used. A simplified bundle method that makes use of near
optimal solutions of a Lagrangian relaxation is described in (Zhao and Luh, 2002).
A good overview of bundle methods is given in (Hiriart-Urruty and Lemaréchal,
1993).

4.2 Primal cutting-plane methods

Primal cutting-plane methods solve a dual-equivalent convex relaxation by gen-
erating a polyhedral outer approximation of the feasible set, which is improved
successively by adding valid cuts. Consider the following dual-equivalent semiinfi-
nite formulation:

min cT x + c0

s.t. Ax + b ≤ 0
aT xJk

≤ σGk
(a), a ∈ �|Jk|, k = 1, . . . , p,

(4.7)

where �n is the n-dimensional sphere and σGk
(a) = maxx∈Gk

aT xJk
is the support
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function. Related to (4.7) a linear master program is defined:

min cT x + c0

s.t. Ax + b ≤ 0
aT xJk

≤ a, (a, a) ∈ N j
k , k = 1, . . . , p

x ∈ [x, x]

(4.8)

where N j
k ⊂ �|Jk| × � is a finite set. The cutting-plane method described in

Algorithm 4.4 generates in the j-th iteration valid cuts of the form

aT xJk
≤ a, (4.9)

where k ∈ {1, . . . , p}, (a, a) ∈ �|Jk| ×� and a ≥ σGk
(a).

Set N1
k = ∅, k = 1, . . . , p.

for j = 1, . . . , l

Compute a solution xj of (4.8).

Update N j+1
k by adding cutting-planes of the form (4.9) to N j

k

for k = 1, . . . , p.

end for

Algorithm 4.4: Cutting-plane algorithm

For the next convergence result the distance of point x ∈ �|Jk| to the set Gk

is defined by:
distk(x) = max{aT x − σGk

(a) | a ∈ �|Jk|}.
Proposition 4.7. Let {xj} be a sequence generated by Algorithm 4.4. Define the
maximum violation related to the constraints of the k-th block at iteration j + 1 at
xj by

dj
k = {0, max

(a,a)∈Nj+1
k

aT xj
Jk

− σGk
(a)}.

If there exists δ > 0 such that, for each i ∈ � and k ∈ {1, . . . , p}, there exists j ≥ i
with dj

k ≥ δ · distk(xj
Jk

), then {xj} converges towards a solution of (4.7).

Proof. Since {xj} is bounded, there exists a subsequence of {xj} converging to a
point x̄. From the above assumption it follows that distk(xj

Jk
) → 0 for j → ∞

and k ∈ {1, . . . , p}. Hence, x̄ is feasible for (4.7) showing cT x̄ + c0 ≥ val(4.7).
From val(4.8) ≤ val(4.7) it follows that cT x̄ + c0 ≤ val(4.7). This proves the
statement. �
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Remarks.

1. Problem (4.7) is a linear semi-infinite program (SIP) and can be solved by any
SIP method. For example, in (Reemtsen, 1994) a Kelley–Cherney–Goldstein
(KCG) cutting-plane algorithm is proposed that adds, in the j-th iteration,
the most violated constraint to the master program. However, the determina-
tion of the most violated constraint for problem (4.7) is a nonconvex MINLP
with respect to the variables (xJk

, a) ∈ �|Jk| × �|Jk|, which can be very
difficult to solve.

2. The following example shows that Algorithm 4.4 does not converge necessar-
ily towards a solution of the dual problem (4.2), if the following Lagrangian
cuts are used:

Lk(x; µj) ≥ Dk(µj),

where Dk(µ) = minx∈Gk
Lk(x; µ) is the k-th partial dual function,

Lk(xJk
; µ) = (cJk

+ AT
Jk

µ)T xJk

is the k-th partial Lagrangian to (4.7), and µj is a dual solution point of the
master problem (4.8).

Example 4.8. Consider the optimization problem:

min cT x
s.t. aT x = 0

x ∈ G ⊂ [x, x] ⊂ �2,
(4.10)

where c, a ∈ �2 are linearly independent. A polyhedral relaxation of this
problem with one Lagrangian cut is defined by

min cT x
s.t. aT x = 0

L(x; µ1) ≥ D(µ1)
(4.11)

where L(x; µ) = cT x+µaT x is a Lagrangian, D(µ) is the related dual function
to (4.10), and µ1 is an arbitrary dual point with D(µ1) < val(Dual(4.10)).
Let (µ2, τ) be a dual solution to (4.11), where µ2 corresponds to the first and
τ to the second constraint of (4.11). From the first-order optimality condition
for (4.11) it follows that:

c + µ2a + τ(c + µ1a) = 0.

Hence, τ = −1 and µ2 = µ1, which shows that the Lagrangian cut L(x; µ2) ≥
D(µ2) is equivalent to the given Lagrangian cut and does not improve (4.11).

3. Instead of using solution points of the master problem (4.8) as trial points,
it is possible to use centers. This leads to so-called central cutting-plane
methods (Elzinga and Moore, 1975; Goffin and Vial, 1999).
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4. It is possible to use a MIP master program, instead of a LP master pro-
gram (Duran and Grossmann, 1986). In (Quesada and Grossmann, 1992) it
is shown that the MIP master program can be solved efficiently by updating
a branch-and-bound tree.

5. Consider a nonlinear convex relaxation of the form

min f(x)
s.t. Ax + b ≤ 0

xJk
∈ conv(Gk), k = 1, . . . , p,

(4.12)

where f :�n 
→ � is a nonlinear convex function that is not block-separable.
Problem (4.12) can be solved by a decomposition-based cutting-plane algo-
rithm via the NLP master problem:

min f(x)
s.t. Ax + b ≤ 0

aT xJk
≤ a, (a, a) ∈ N j

k , k = 1, . . . , p
x ∈ [x, x]

(4.13)

where (a, a) is defined as in (4.9). The convergence of such an algorithm can
be shown under the same assumptions as in Proposition 4.7.

4.3 Column generation

This section describes a column generation method , also called Dantzig–Wolfe de-
composition method , for solving the dual-equivalent convex relaxation:

min cT x + c0

s.t. Ax + b ≤ 0
xJk

∈ conv(Gk), k = 1, . . . , p
(4.14)

by producing inner and outer approximations of conv(Gk). This technique has
three main advantages: (i) It is possible to fix Lagrangian subproblems that are
‘explored’; (ii) It is possible to work with near-optimal solutions of Lagrangian
subproblems; (iii) It is easy to update relaxations after branching operations in
branch-cut-and-price algorithms. As a result, the method makes it possible to
compute and update dual bounds in branch-and-bound algorithms efficiently.

4.3.1 A simple column generation method

In the following, a simple column generation method for solving (4.14) is described
that subsequently produces inner approximations of conv(Gk). Let W k = vert(Gk)
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be the extreme points of the set Gk, and W = (W 1, . . . ,W p). From Observation
3.2 (Section 3.1) we know that

conv(Gk) = {
∑

w∈Wk

zw · w |
∑

w∈Wk

zw = 1, zw ≥ 0, w ∈ W k}.

For a finite set W = (W1, . . . , Wp) with Wk ⊂ �|Jk| and a point z ∈ ×p
k=1�

|Wk|,
the product x = W • z is defined by xJk

=
∑

w∈Wk
zw ·w. Replacing x with W • z

in (4.14) yields the following extensive formulation, which is equivalant to (4.14):

min cT W • z + c0

s.t. AW • z + b ≤ 0∑
w∈W k

zw = 1, k = 1, . . . , p

z ≥ 0.

(4.15)

Since it is usually too difficult to solve the extensive formulation (4.15), if the num-
ber of extreme points |W k| is very large, the following restricted master problem
(RMP) is considered:

min cT W j • z + c0

s.t. AW j • z + b ≤ 0∑
w∈W j

k
zw = 1, k = 1, . . . , p

z ≥ 0

(4.16)

where W j
k ⊆ conv(Gk) and W j = (W j

1 , . . . , W j
p ) is a finite set. The elements of

W j
k are called inner approximation points (see Figure 4.1). The set W j is called

admissible if the related RMP (4.16) is feasible.

Observation 4.9. From Remark 3.10 (Section 3.4) it follows that there exist finite
sets W ∗

k ⊆ W k with |W ∗
k | ≤ |Jk| + 1 such that W can be replaced with W ∗ =

(W ∗
1 , . . . , W ∗

p ) without changing the optimal value of (4.15). Hence, if W ∗
k ⊆ W j

k

for k = 1, . . . , p, then (4.14) and (4.16) are equivalent.

Algorithm 4.5 describes a column generating method that alternatively solves
the RMP (4.16) and the Lagrangian subproblems:

min{Lk(x; µj) | x ∈ Gk} (4.17)

for k = 1, . . . , p.

The next lemma shows that dual cutting-plane and column generation meth-
ods are equivalent.

Lemma 4.10. Let µj be the optimal dual point of the RMP (4.16) and D̃j be
the polyhedral model defined in Remark 4.4 used in the j-th iteration of the dual
cutting-plane method described in Algorithm 4.2. Then µj = argmax

µ∈�m
+

D̃j(µ).
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G

conv(W)

Figure 4.1: Inner approximation of conv(G)

Initialize W 1
k ⊂ conv(Gk) , k ∈ {1, . . . , p}, such that (4.16) is feasible.

for j = 1, . . . , l

Compute dual and primal solutions µj and zj of (4.16).

for k = 1, . . . , p
Compute a solution wk of (4.17).

Set W j+1
k = W j

k ∪ {wk}.
end for

end for

Algorithm 4.5: Column generation method

Proof. The polyhedral model D̃j can be written in the form

D̃j(µ) = c0 + µT b +
p∑

k=1

min{Di

k(µ) | 1 ≤ i ≤ j}

where D
i

k(µ) = cT
Jk

wi
k + µT AJk

wi
k, wi

k is a solution point of the k-th Lagrangian
subproblem at the i-th iteration of Algorithm 4.2, and AJk

= (aij)i∈{1,...,n},j∈Jk
.

Then

max
µ∈�m

+

D̃j(µ) = max
µ∈�m

+

c0 + µT b +
p∑

k=1

min
zk∈∆j

j∑
i=1

zk,i(cT
Jk

wi
k + µT AJk

wi
k)

= max
µ∈�m

+

min
z1,...,zp∈∆j

cT W j • z + c0 + µT (AW j • z + b)

= min
z1,...,zp∈∆j

{cT W j • z + c0 | AW j • z + b ≤ 0}

= val(4.16) �
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From the convergence of the dual cutting-plane method (Proposition 4.3) follows:

Proposition 4.11. Algorithm 4.5 generates a sequence {xj} = {W j • zj} that con-
verges finitely towards an ε-solution of (4.14).

Proof. Since W 1 is admissible, W j is admissible for j ≥ 1. Hence, the RMP
(4.16) is always feasible, and from Lemma 4.10 and Proposition 4.3 the statement
follows. �

4.3.2 Initializing the RMP

Algorithm 4.5 has to be initialized by admissible inner approximation points W 1
k ⊂

conv(Gk) such that the RMP (4.16) is feasible, i.e.

conv(W 1
k ) ∩ {xJk

| Ax + b ≤ 0} 	= ∅ (4.18)

for k ∈ {1, . . . , p}. In general, finding points that fulfill (4.18) is a non-trivial task.
Algorithm 4.6 and Algorithm 4.7 describe a two-phase procedure for initializing
inner approximation points.

Input: a point x ∈ [x, x]

for k = 1, . . . , p
Set W 1

k = ∅ and K = Jk \ {i : xi ∈ {xi, xi}}.
while K 	= ∅

Set w = (round(x, K))Jk
and W 1

k = W 1
k ∪ {w}.

Set x = w + t(x − w) such that x is on a j-face of
[xJk

, xJk
] with j ∈ K.

Set K = K \ {i : xi ∈ {xi, xi}}.
end while

Set W 1
k = W 1

k ∪ {x}.
end for

Algorithm 4.6: Computing admissible vertices

Finding admissible vertices

In the first phase, described in Algorithm 4.6, vertices of the interval [xJk
, xJk

] are
computed whose convex hull contains a given trial point x̂Jk

, where x̂ fulfills the
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coupling constraints Ax̂ + b ≤ 0. The algorithm uses the rounding operation with
respect to an index set K ⊆ {1, . . . , n} defined by

round(x, K)i =

⎧⎨
⎩

xi for i ∈ K and xi > 0.5(xi + xi)
xi for i ∈ K and xi ≤ 0.5(xi + xi)
xi else.

In each iteration of the algorithm a point x is computed that is a convex combi-
nation of the previous point x and the current inner approximation point w. From
this follows:

Lemma 4.12. For a given point x ∈ [x, x] Algorithm 4.6 computes vertices W 1
k ⊆

vert([xJk
, xJk

]) with |W 1
k | ≤ |Jk| + 1 and xJk

∈ conv(W 1
k ).

If vert(Gk) = vert([xJk
, xJk

]), such as in unconstrained binary programming,
Algorithm 4.6 generates admissible inner approximation points.

The general case

In the general case, the following constraint satisfaction problem has to be solved:

find (z, W )
s.t. AW • z + b ≤ 0

Wk ⊂ conv(Gk), k = 1, . . . , p

where z ∈ ×p
k=1�

|Jk|+1, W = (W1, . . . , Wp) and |Wk| = |Jk| + 1. Since sol-
ving this problem directly by using a constraint satisfaction method may be too
difficult, Algorithm 4.7 is used. This method uses an auxiliary LP to find new inner
approximation points. In addition, the following polyhedral outer approximation
is generated:

min cT x + c0

s.t. Ax + b ≤ 0
xJk

∈ Ĝk, k = 1, . . . , p
(4.19)

where Ĝk ⊇ Gk is a polyhedron. There are three reasons for using (4.19). First,
it is used as an LP-relaxation in branch-and-bound methods (see Chapter 13).
Second, it helps to solve Lagrangian subproblems. And finally, it is used to check
the feasibility of problem (4.14) by checking the feasibility of (4.19).

Let W 1
k ⊂ [xJk

, xJk
] be an arbitrary initial set of inner approximation points.

The points of W 1
k can be generated by Algorithm 4.6, they can be solutions of

Lagrangian subproblems, or they can be computed in a branching operation of a
BCP-Algorithm, as described in Section 13.4.2. At the beginning of the procedure,
the points w of W 1

k that are infeasible are projected onto Gk in the direction of
w−wk, where wk = 1

|W 1
k |
∑

w∈W 1
k

w is the midpoint of conv(W 1
k ). This is done by

solving the subproblem:

max
x

{(w − wk)T x | w ∈ Gk}. (4.20)
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The resulting inner approximation points might not be admissible, since it is pos-
sible that some inner approximation points are identical after the projection onto
Gk. In this case, the method tries to find a point that fulfills the coupling con-
straints Ax + b ≤ 0 and which has a minimum distance from the convex hull of
the current inner approximation points W 1. For this, the following auxiliary LP
is solved:

min sT y
s.t. A(W 1 • z + y) + b ≤ 0

W 1 • z + y ∈ Ĝk, k = 1, . . . , p∑
w∈W 1

k
zw = 1, k = 1, . . . , p

siyi ≥ 0, i = 1, . . . , n
z ≥ 0

(4.21)

where y ∈ �n and the sign vector s ∈ {−1, 1}n is defined by

si = sign(x̂i − wi), (4.22)

wJk
= 1

|W 1
k |
∑

w∈W 1
k

w and x̂ is a solution of (4.19). Since w = W 1 • z with
zw = 1

|W 1
k | for w ∈ W 1

k , it follows that the point (y, z) with y = x̂ − w is feasible
for (4.21), if (4.19) is feasible.

Let (y, z) be a solution of (4.21). Then x = W 1•z+y is feasible for (4.19) and
has a minimum distance from the convex hull of W 1. If y = 0, W 1 is admissible.

If yJk
	= 0, we have conv(W 1

k )∩{xJk
| Ax+b ≤ 0} = ∅. In this case, a cut that

separates x̂Jk
and conv(W 1

k ) is constructed for finding a new inner approximation
point or for checking whether (4.14) is feasible. Let w̃k be the solution of

min{‖w − x̂Jk
‖2 | w ∈ conv(W 1

k )}

where x̂ is a solution of (4.19). Note that w̃k can be computed by w̃k = W 1
k • z̃Ik

,
where z̃Ik

is a solution of the quadratic program:

min ‖Wk • zIk
− x̂Jk

‖2

zIk
∈ ∆|Ik|.

(4.23)

Define ak = x̂Jk
− w̃k and dk = 1

2 (x̂Jk
+ w̃k). Then the hyperplane

aT
k (x − dk) = 0 (4.24)

separates x̂Jk
and conv(W 1

k ), i.e. aT
k (x̂Jk

− dk) > 0 and aT
k (x − dk) < 0 for all

x ∈ conv(W 1
k ).

In order to find a new inner approximation point, the following subproblem
is solved (see Figure 4.2):

max{aT
k x | aT

k (x − dk) ≥ 0, x ∈ Gk}. (4.25)
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Ax+b=0

w1

w2

w3

y

w4

Figure 4.2: Finding a new admissible inner approximation point

If (4.25) is feasible, a solution wk of (4.25) is added to W 1
k , and the cut

aT
k x ≤ val(4.25) (4.26)

is added to Ĝk. Otherwise, the cut

aT
k (x − dk) ≤ 0 (4.27)

is added to Ĝk. The procedure is repeated as long as either W 1 is admissible, i.e.
y = 0, or (4.19) is infeasible.

Remark 4.13. For finding initial admissible inner approximation points, it is not
necessary to solve the subproblems (4.25) exactly. It is sufficient to find a feasible
point w ∈ Gk and an upper bound of the optimal value of (4.25).

Remark 4.14. Algorithm 4.7 works well in practice, but it does not guarantee
to find always admissible inner approximation points. The initialization problem
can be simplified by considering the following block-separable reformulation of the
given MINLP (2.1) with additional slack variables y ∈ �p:

min cT x + c0 + δeT y
Ax + b ≤ 0
gi,k(xJk

) ≤ yk, i ∈ Mk, k = 1, . . . , p
x ∈ [x, x], xB binary
y ≥ 0

(4.28)

where the penalty parameter δ > 0 is sufficiently large. Let x̂ be a trial point
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fulfilling the coupling constraints. Furthermore, choose Wk ⊂ [xJk
, xJk

] such that
xJk

∈ conv(Wk), for example, by using Algorithm 4.6. Then the sets

W̃k = {(w, yk
w) | w ∈ Wk},

where yk
w = max{0, maxi∈Mk

gi,k(w)} are admissible inner approximation points
for (4.28).

Input: Initial inner approximation points W 1
k ⊂ [xJk

, xJk
], k ∈

{1, . . . , p}
Initialize Ĝk ⊇ Gk in (4.19), for example, by using Algorithm
7.1.

for k = 1, . . . , p and w ∈ W 1
k \Gk: Project w onto Gk by solving

(4.20).

Compute a solution x̂ of (4.19).

repeat
Initialize the vector s of (4.21) as in (4.22) w.r.t. x̂.

Compute dual and primal solutions µ, y and z of (4.16),
and delete inner approximation points w ∈ W 1

k if zw = 0.

if y = 0: stop (W 1 is admissible).

Compute a solution x̂ of (4.19).

if (4.19) is not feasible: stop ((4.14) is not feasible).

for k = 1, . . . , p: if yJk
	= 0:

if (4.25) is feasible: Add a solution wk of (4.25) to W 1
k ,

and add the cut (4.26) to Ĝk.

else: Add the cut (4.27) to Ĝk.

end for

end repeat

Algorithm 4.7: Initialization of admissible inner approximation points

4.3.3 An improved column generation method
In decomposition methods, there should be a possibility to check the quality of
an inner or outer approximation of a subproblem by computing an approximation
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error. If the approximation error is relatively small, the related subproblem will
not be solved for a while. Such a mechanism prevents the decomposition method
from generating identical Lagrangian solutions repeatedly. This is particularly im-
portant if the Lagrangian subproblems are difficult to solve, which is often the case
in MINLP. Moreover, the approximation error can be used as a stopping criterion.

In primal cutting-plane methods, it is possible to check if a subproblem is ‘ex-
plored’ by computing the partial dual function related to the master problem (4.8):

D̂k(µj) = min{Lk(x; µj) | aT x ≤ a, (a, a) ∈ N j
k , x ∈ [xJk

, xJk
]}.

It holds that
D̂k(µj) ≤ Dk(µj) = min

x∈Gk

Lk(x; µj).

If D̂k(µj) = Dk(µj), a subproblem is said to be explored, and a cutting-plane
method could stop (for a while) to generate cuts for this subproblem. However,
this test requires some extra computational effort, since the evaluation of the dual
function comes at a price.

In column generation, a similar test can be performed without any extra
computational effort. Consider the partial dual function related to the RMP (4.16)
given by:

Ďk(µ) = min{Lk((W j • z)Jk
; µ) |

∑
w∈W j

k

zw = 1, zW j
k
≥ 0}

= min{Lk(x; µ) | x ∈ conv(W j
k )}.

We define the k-th reduced cost by

Rk(µ) = Dk(µ) − Ďk(µ). (4.29)

The related Lagrangian problem is called the pricing problem. Since Rk(µ) ≤ 0,
the optimal value of a Lagrangian subproblem of the restricted master-problem
(4.16) is an upper bound of the optimal value of the Lagrangian subproblem of
the original problem (4.14). By using reduced costs, it is possible to check if a
subproblem is explored, and to stop generating columns for this subproblem for a
while. Moreover, it holds that

e(µ̂j) = −
p∑

k=1

Rk(µ̂j) ≤ val(4.16)− val(4.14) ≥ 0,

where µj is a dual solution point to (4.16). Hence, the column generation method
can be stopped if e(µj) is small enough.

Algorithm 4.5 describes an improved column generation method that fixes
‘explored’ subproblems according to the above considerations. In order to acceler-
ate the computation of Lagrangian solutions, the method updates the polyhedral
outer approximation (4.19).
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Proposition 4.15. Algorithm 4.8 generates a sequence {xj} = {W j • zj} that con-
verges finitely towards an ε-solution of (4.14).

Proof. Denote by {µj} the subsequence of dual solution points of (4.16) where
the complete dual function D is evaluated, i.e. Kfree = {1, . . . , p}. Note that D is
evaluated after at least rmax iterations. Similar as in Lemma 4.10, we define the
corresponding polyhedral cutting-plane model by

Ďj(µ) = c0 + µT b +
p∑

k=1

min{Di

k(µ) | i ∈ Kj
k}

where D
i

k(µ) = cT
Jk

wi
k + µT AJk

wi
k, the point wi

k is a minimizer of the k-th La-
grangian subproblem of the i-th iteration of Algorithm 4.8, and Kj

k are the itera-
tion numbers ≤ j where the k-th Lagrangian subproblem was solved. Since

D(µ) ≤ Ďj(µ) ≤ D̃j(µ) ≤ D̂j(µ),

where D̃j is defined as in Lemma 4.10 and D̂j is defined as in Proposition 4.11,
the convergence of Algorithm 4.8 can be proved in the same way as in Proposition
4.11. �

Input: inner approximation points W 1
k ⊂ conv(Gk) and polyhedra

Ĝk ⊃ Gk, k ∈ {1, . . . , p}
Set Kfree = {1, . . . , p} and r = 0.

for j = 1, . . . , l
Compute dual and primal solutions µj and zj of (4.16).

Delete w ∈ W j if zj
w = 0 and set W j+1 = W j .

for k ∈ Kfree:
Compute a solution wk of (4.17) using Ĝk and add a
related Lagrangian cut to Ĝk.

Set W j+1
k = W j+1

k ∪ {wk} and r = r + 1.

if Rk(µj) is small or wk ∈ W j
k : Set Kfree = Kfree \{k}.

if Kfree = ∅ or r = rmax: Set Kfree = {1, . . . , p} and r = 0.

end for

Algorithm 4.8: Improved column generation method
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Remark 4.16. Note that Lagrangian solutions that are computed by a subgradient
type algorithm can be added to the initial sets W 1

k , k = 1, . . . , p. The resulting
method is a hybrid subgradient column generation method.

Remark 4.17. The optimal value of the polyhedral outer approximation (4.19)
that is generated by Algorithm 4.8 can be used as a lower bounding method.
Moreover, an LP-estimate for the reduced cost Rk(µ) is given by R̃k(µ) = Ďk(µ)−
D̂k(µ), where D̂k and Ďk are the k-th partial dual functions to the polyhedral
outer and inner approximations (4.19) and (4.16) respectively. If R̃k(µ) = 0 then
Rk(µ) = 0. Hence, R̃k(µ) can be used to detect explored subproblems. The use of
R̃k(µ) makes it possible to generate and update a polyhedral outer approximation
without solving all subproblems. This may be more efficient than evaluating the
(complete) dual function (see Sections 7.3.4 and 13.4.2).

4.4 Benders decomposition
In Benders decomposition, it is assumed that after fixing some (coupling) variables
of an optimization problem, the resulting problem is decomposed into subprob-
lems. Consider an optimization problem of the form:

(P)
min

p∑
k=1

fk(xJk
, y)

s.t. gk(xJk
, y) ≤ 0, k = 1, . . . , p

y ∈ Y

where Y is an arbitrary set. Related to (P), we define the subproblem with a fixed
y-variable, ŷ ∈ Y :

(P[ŷ])
min

p∑
k=1

fk(xJk
, ŷ)

s.t. gk(xJk
, ŷ) ≤ 0, k = 1, . . . , p.

Let v(y) = val(P [y]) be the optimal value function to (P [ŷ]) and define the k-th
subproblem

(Pk[ŷ]) min fk(xJk
, y)

s.t. gk(xJk
, y) ≤ 0.

Then the optimal value function can be formulated as

v(y) =
p∑

k=1

val(Pk[y]),

and the master problem reads

val(P ) = min
y∈Ŷ

v(y) (4.30)
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where
Ŷ = {y ∈ Y | (P [y]) is feasible}.

If (P) is a general nonconvex MINLP, then v(y) is a non-differentiable nonconvex
function and can be optimized by any non-differentiable optimization method. In
(Grothey, 2001) a decomposition-based method for computing local solutions of
(4.30) is proposed.



Chapter 5

Semidefinite Relaxations

The success of interior point methods in linear programming has led to the de-
velopment of interior point methods for semidefinite programming (SDP). Such
methods usually require few iterations to produce high quality solutions. Often
however, one iteration is quite expensive, since it is not easy to exploit spar-
sity (Benson et al., 2000). Other approaches for solving SDP include the nonlin-
ear programming approach (Burer and Monteiro, 2001), and the spectral bundle
method (Helmberg and Kiwiel, 2002; Helmberg and Rendl, 2000) that is based on
an eigenvalue representation of the dual function. Shor may have been the first to
study the dual of all-quadratic programs and to propose an eigenvalue approach
for solving the dual (Shor, 1987; Shor, 1992; Shor, 1998). Lagrangian relaxation of
all-quadratic optimization problems is studied in (Lemaréchal and Oustry, 1999).
For an overview of the state-of-the-art SDP methods and applications, the reader
is referred to (Wolkowicz et al., 2000; Helmberg, 2000).

After a short introduction into semidefinite and convex relaxations of all-
quadratic programs (QQPs), this chapter presents a novel approach for solving the
dual of general block-separable mixed-integer all-quadratic programs (MIQQPs)
via eigenvalue optimization (Nowak, 2004). The approach is based on a dual-
equivalent reformulation of a general QQP, which makes it possible to formulate
the dual function as a block-separable eigenvalue function. Numerical results for
random MIQQPs show that the proposed eigenvalue approach allows a fast com-
putation of near optimal dual solutions.

5.1 Semidefinite and Lagrangian relaxations

Consider a general nonconvex MIQQP of the form:

(MIQQP)
min q0(x)
s.t. qi(x) ≤ 0, i = 1, . . . , m

x ∈ [x, x], xB binary
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where qi(x) = xT Aix + 2aT
i x + di, Ai ∈ �(n,n) is symmetric, ai ∈ �n, di ∈ �,

i = 0, . . . , m. Furthermore, x, x ∈ �n and B ⊂ {1, . . . , n}. Problem (MIQQP)
can be reformulated as an all-quadratic program by replacing the box constraints
xj ∈ [xj , xj ], j ∈ C = {1, . . . , n} \ B, by

(xj − xj)(xj − xj) ≤ 0,

and the binary constraints xj ∈ {xj , xj}, j ∈ B, by

(xj − xj)(xj − xj) = 0.

This defines the following QQP

(Q)

min q0(x)
s.t. qi(x) ≤ 0, i = 1, . . . , m

rB(x) = 0
rC(x) ≤ 0

where
r(x) = Diag(x − x)(x − x). (5.1)

Let q(x) = (q1(x), . . . , qm(x))T . By introducing the Lagrangian function

L(x; µ) = q0(x) + (µq)T q(x) + (µr)T r(x)

and the Lagrangian multiplier set

M = {µ = (µq, µr) ∈ �m
+ ×�n | µr

C ≥ 0},

a Lagrangian dual of (Q) is formulated by

(D) max D(µ)
s.t. µ ∈ M

where D(µ) = inf
x∈�n

L(x; µ) is the dual function. Since (Q) contains the quadratic

box constraints r(x) ≤ 0, it can be shown that val(D) > −∞.

Remark 5.1 (zero duality gap). The duality gap of (D) is studied in (Anstreicher
and Wolkowicz, 1998) for special cases. If problem (Q) is convex and satisfies a
Slater condition there is no duality gap. For the trust region problem with one
ellipsoid constraint, the duality gap is also known to be zero (see Section 5.4.1).
However, in the presence of two ellipsoid constraints, a nonzero duality gap can
occur. Shor proved in (Shor, 1992; Shor, 1998) that problem (Q) has a nonzero
duality gap, if and only if the objective function of an equivalent unconstrained
polynomial programming problem can be represented as a sum of squares of other
polynomials. In general however, it is not known how to compute the polynomials.
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Interestingly, the dual of the all-quadratic program (Q) is equivalent to the
following semidefinite program:

(SDP)

min 〈A0, X〉 + 2aT
0 x + d0

s.t. 〈Ai, X〉 + 2aT
i x + di ≤ 0, i = 1, . . . , m

Xii − xi(xi + xi) + xixi = 0, i ∈ B
Xii − xi(xi + xi) + xixi ≤ 0, i ∈ C
X � x · xT

where 〈A, X〉 = tr AB. The dual of (SDP) is the program:

(DSDP)

max t

s.t.
(

A(µ) a(µ)
a(µ)T d(µ) − t

)
� 0

µ ∈ M, t ∈ �

where A(µ) = A0 +
m∑

i=1

µq
i Ai +2 Diag(µr), a(µ) = a0 +

m∑
i=1

µq
i ai +2 Diag(µr)(x+x)

and d(µ) = d0 +
∑m

i=1 µq
i di + xT Diag(µr)x. The following result is proven in

(Lemaréchal and Oustry, 1999).

Lemma 5.2 (strong duality). Assume that a primal or dual Slater condition is
fulfilled, i.e. there exists µ ∈ M such that A(µ) is positive definite, or there exists
a primal feasible pair (X, x) such that X − x · xT is positive definite. Then

val(D) = val(DSDP ) = val(SDP ).

The next corollary gives a further equivalent formulation of the dual problem
(D).

Corollary 5.3. Let Ilin ⊂ {1, .., m} and Iq ⊂ {1, .., m} be the index sets of linear
constraints and quadratic constraints of problem (MIQQP), respectively. We define
the Lagrangian with respect to quadratic constraints

Lq(x, µ) = q0(x) +
∑
i∈Iq

µq
i qi(x) + (µr)T r(x)

and the feasible set with respect to linear constraints by

Slin = {x ∈ �n : qi(x) ≤ 0, i ∈ Ilin}.

Since val(D) > −∞, we get from strong duality:

val(D) = max{ min
x∈Slin

Lq(x, µ) | µq
Iq

≥ 0, µr
C ≥ 0, ∇2

xLq(x, µ) � 0}. (5.2)

Remark 5.4. Since D(µ) > −∞ if and only if ∇2L(·; µ) is positive semidefinite,
the dual (D) contains a hidden semidefinite constraint. This implies that for all
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µ̂ ∈ dom D the function L(·; µ̂) is a convex underestimator of q0 over the feasible
set of (MIQQP), and

min{L(x; µ̂) | x ∈ [x, x]}
is a convex relaxation of (Q) in this case. Note that if µ̂ is an optimal dual point,
this convex relaxation is stronger than the convex underestimating-relaxation (3.4)
obtained by replacing the functions qi in (Q) by α-underestimators defined in
Section 6.3.

5.2 Block-separable reformulation
Assuming that problem (Q) is block-separable, it is shown that (Q) can be refor-
mulated in such a way that all variables are bounded by −1 and 1, and all linear
terms bT

i x of the functions qi in (Q) disappear. This formulation allows us to for-
mulate the Lagrangian dual problem as a block-separable eigenvalue optimization
problem, which can be solved efficiently. The transformation is carried out in two
steps.

Note that problem (Q) is block-separable if there exists a partition P =
{J1, . . . , Jp} of {1, . . . , n} with

⋃p
k=1 Jk = {1, . . . , n} and Ji ∩Jk = ∅ if i 	= k, such

that

qi(x) = ci +
p∑

k=1

qi,k(xJk
), (5.3)

where qi,k(xJk
) = 〈xJk

, Ai,Jk,Jk
xJk

〉 + 2bT
i,Jk

xJk
for i = 0, . . . , m. We denote by

nk = |Jk| the size of a block Jk.
Let u = 1

2 (x+x) be the center and w = 1
2 (x−x) be the half-diameter vector

of the interval [x, x] respectively. The affine transformation θ(x) = Diag(w)x + u
maps the interval [−e, e] onto [x, x]. In the first step of the transformation, called
standardization, the variables x of (Q) are replaced with θ(x). The transformed
quadratic forms take the form

q̂i(x) = qi(θ(x)) = 〈x, Âix〉 + 2b̂T
i x + ĉi, i = 0, . . . , m, (5.4)

where Âi = WAiW , b̂i = Wbi+WAiu, ĉi = uT Au+2uT bi +ci and W = Diag(w).
In the second step of the transformation, the problem is homogenized by replacing
linear terms b̂T

i,Jk
xJk

by quadratic terms xn+k · b̂T
i,Jk

xJk
and adding constraints

x2
n+k − 1 = 0. This gives the problem

(Q̃)

min q̃0(x)
s.t. q̃i(x) ≤ 0, i = 1, . . . , m

x2
j − 1 ≤ 0, j ∈ C

x2
j − 1 = 0, j ∈ B ∪ {n + 1, . . . , n + p}

where q̃i(x) = ĉi +
p∑

k=1

q̃i,k(xJ̃k
), q̃i,k(xJ̃k

) = 〈xJk
, Âi,Jk,Jk

xJk
〉 + 2xn+k b̂i,Jk

xJk
,
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and J̃k = Jk ∪ {n + k}. Obviously, q̃i,k(x) = qi,k(x̂), if x1:nk
= x̂ and xnk+1 = 1

or x1:nk
= −x̂ and xnk+1 = −1. Therefore, the optimal values of (Q̃) and (Q)

coincide. Since each additional variable can be 1 or −1, the number of solutions
of (Q̃) is 2p times larger than of (Q).

5.3 Eigenvalue representation of the dual function

It is shown that the dual function to (Q̃) can be represented in terms of eigenvalues.
Define a partial Lagrangian related to (Q̃) by

L̃k(xJ̃k
; µ) = q̃0,k(xJ̃k

) + (µq)T q̃k(xJ̃k
) + (µr

J̃k
)T (Diag(xJ̃k

)xJ̃k
− e)

= xT
J̃k

Ãk(µ)xJ̃k
− eT µr

J̃k

where q̃k(x) = (q̃1,k(x), . . . , q̃m,k(x))T ,

Ãk(µ) =
(

Âk(µ) b̂k(µ)
b̂k(µ)T µr

n+k

)
, (5.5)

Âk(µ) = Â0,Jk,Jk
+
∑m

i=1 µq
i Âi,Jk,Jk

+ Diag(µr
Jk

), b̂k(µ) = b̂0,Jk
+
∑m

i=1 µq
i b̂i,Jk

,
and Âi, b̂i are defined as in (5.4). Hence, the related partial dual function is the
eigenvalue function

D̃k(µ) = min
x∈IB(nk+1)

L̃k(x; µ) = (nk + 1) · min{0, λ1(Ãk(µ))} − eT µr
J̃k

where IB(n) denotes a zero-centered ball in �n with radius
√

n. Defining the
Lagrangian dual function to (Q̃) by

D̃(µ) = ĉ(µ) +
p∑

k=1

D̃k(µ),

where ĉ(µ) = ĉ0 +
∑m

i=1 µq
i ĉi, a dual problem to (Q̃) can be formulated as the

eigenvalue optimization problem

(D̃) max D̃(µ)
s.t. µ ∈ M̃

with
M̃ = {(µq, µr) ∈ �m ×�n+p | µq ≥ 0, µr

C ≥ 0}.

A similar eigenvalue optimization problem was used in Rendl and Wolkowicz, 1997
for solving the trust region problem and in Helmberg, 2000 for unconstrained
quadratic 0-1 programming.
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5.4 Duality results and convex relaxation

In this section Lagrangian dual problems related to the all-quadratic problems (Q)
and (Q̃) are formulated and analyzed. In particular, it is proven that the dual prob-
lems to (Q) and (Q̃) are equivalent. The proof is a straightforward generalization
of a dual-equivalent result in (Poljak et al., 1995) on quadratic binary programs.
In (Poljak et al., 1995) the problem is dualized with respect to a full-dimensional
sphere, whereas here the problem is dualized with respect to a Cartesian product
of low-dimensional balls.

5.4.1 The trust region problem

In order to prove the equivalence of (D) and (D̃), we need some results on the
trust region problem defined by

(T) min q(x)
s.t. x ∈ IB(n)

where q(x) = xT Bx + 2bT x, B ∈ �(n,n) and b ∈ �n. The dual of (T) is

(DT) max
σ∈�+

inf
x∈�n

q(x) + σ(‖x‖2 − n).

Problem (T) is one of the few nonconvex all-quadratic optimization problems
having a zero duality gap (Stern and Wolkowicz, 1995), i.e.

val(T ) = val(DT ). (5.6)

If b = 0, then (T) is an eigenvalue problem and it holds that val(T ) = n ·
min{0, λ1(B)}. Consider now the case b 	= 0. By replacing bT x with xn+1 · bT x,
where x2

n+1 = 1, we get the following homogenized formulation of (T) with n + 1
variables and an additional equality constraint

(T̃ )
min xT

1:nBx1:n + 2xn+1b
T x1:n

s.t. ‖x‖2 ≤ n + 1
x2

n+1 = 1.

Clearly, we have val(T ) = val(T̃ ). Dualization of (T̃ ) with respect to the ball
IB(n + 1) gives the dual problem

(DT̃ ) maxµ∈�+(n + 1) · min{0, λ1(C(µ))} − µ,

where C(µ) =
(

B b
bT µ

)
.

Lemma 5.5. It holds that val(T̃ ) = val(T ) = val(DT̃ ).
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Proof. This was proven in (Rendl and Wolkowicz, 1997):

min
‖x‖2≤n

q(x) = max
µ∈�

min
‖x‖2≤n

y2=1

xT Bx + 2ybT x + µ(y2 − 1)

≥ max
µ∈�

min
‖x‖2+y2≤n+1

xT Bx + 2ybT x + µ(y2 − 1)

≥ max
µ∈�

σ∈�+

inf
x∈�n

y∈�

xT Bx + 2ybT x + µ(y2 − 1) + σ(‖x‖2 + y2 − n − 1)

= max
σ∈�+

inf
x∈�n

y2=1

xT Bx + 2ybT x + σ(‖x‖2 − n)

= min
‖x‖2≤n

xT Bx + 2bT x. �
Lemma 5.6. Let µ̄ be a solution of (DT̃ ). Then σ∗ = −min{0, λ1(C(µ̄))} solves
(DT).

Proof. Let
L̃(x; σ, µ) = xT (C(µ) + σI)x − µ − (n + 1)σ

be the Lagrangian of (T̃ ) and

D̃(σ, µ) = inf
x∈�n+1

L̃(x; σ, µ)

be the corresponding dual function, which can be formulated in closed form as

D̃(σ, µ) =
{

−µ − (n + 1)σ if C(µ) + σI � 0
−∞ else .

For a dual solution point (σ̄, µ̄) ∈ Argmax
σ∈�+,µ∈�

D̃(σ, µ), it follows from the closed

form that σ̄ = −min{0, λ1(C(µ̄))}. From Lemma 5.5 we have D̃(σ̄, µ̄) = val(T̃ ).
Hence, the solution set of (T̃ ) is in Argmin

x∈�n+1
L̃(x; σ̄, µ̄). This proves

val(T ) = min
x∈�n+1,xn+1=1

L̃(x; σ̄, µ̄) = min
x∈�n

L(x; σ̄). �

5.4.2 Dual-equivalence
Based on strong duality of the trust region problem, the following dual-equivalence
result can be proven.

Proposition 5.7. The dual problems (D) and (D̃) have the same optimal value.

Proof. Since (Q) is block-separable, i.e. (5.3) holds, the dual function D decom-
poses into

D(µ) = c(µ) +
p∑

k=1

Dk(µ),
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with c(µ) = c0 +
∑m

i=1 µq
i ci and Dk(µ) = min

x∈�nk
Lk(x; µ) where

Lk(xJk
; µ) = q0,k(xJk

) + (µq)T qk(xJk
) + (µr

Jk
)T rJk

(x)

with qk(x) = (q1,k(x), . . . , qm,k(x))T . We define the standardized partial Lagrang-
ian

L̂k(x; µ) = xT Âk(µ)x + 2b̂k(µ)T x − (µr
Jk

)T e

according to (5.5), and the related partial dual function by

D̂k(µ) = inf
x∈IB(nk)

L̂k(x; µ). (5.7)

We denote by eJk
∈ �n the characteristic vector of a partition element Jk defined

by eJk,j =
{

1 for j ∈ Jk

0 else . From strong duality of the trust-region problem

(5.6) it follows that

D̂k(µ) = min
x∈IB(nk)

L̂k(x; µ)

= max
t∈�+

inf
x∈�nk

L̂k(x; µ) + t · (‖x‖2 − nk)

= max
t∈�+

inf
x∈�nk

L̂k(x; µq, µr + t · eJk
).

From Lemma 5.5 we have

D̂k(µ) = min
x∈IB(nk)

xT Âk(µ)x + 2b̂k(µ)T x − (µr
Jk

)T e

= max
t∈�

inf
x∈�nk+1

xT Ãk(µq, µr + ten+k)x − (µr
J̃k

)T e

= max
t∈�

D̃k(µq, µr + ten+k).

Hence,

val(D) = max
µ∈M

c(µ) +
p∑

k=1

inf
x∈�nk

Lk(x; µ)

= max
µ∈M

ĉ(µ) +
p∑

k=1

max
t∈�+

inf
x∈�nk

L̂k(x; µq , µr + teJk
)

= max
µ∈M

ĉ(µ) +
p∑

k=1

D̂k(µ)

= max
µ∈M

ĉ(µ) +
p∑

k=1

max
t∈�

D̃k(µq, µr + ten+k)

= val(D̃). �
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The next lemma shows how convex relaxations for (Q) can be obtained from
feasible dual points of (D̃).

Lemma 5.8. Let µ̃ ∈ M̃ be a feasible dual point of (D̃) and define µ ∈ M by
µq = µ̃q and µr

j = µ̃r
j + tk with tk = min{0, λ1(Ãk(µ̃))} for j ∈ Jk, k = 1, . . . , p.

Then:

(i) D̃(µ̃) ≤ D(µ) and L(·; µ) is convex.

(ii) If µ̃ is a solution of (D̃), then µ is a solution of (D).

Proof. (i) From Lemma 5.5 and 5.6 it follows that

D̃k(µ̃) = min
x∈�nk+1

L̃k(x; µ̃q, µr + tkeJ̃k
) ≤ min

x∈�nk
L̂k(x; µ) = Dk(µ).

Hence, D̃(µ̃) ≤ D(µ).
Statement (ii) follows from (i) and Proposition 5.7. �

5.4.3 Modifications

Several simplifications of the dual problem (D̃) are possible.

Remark 5.9. If all variables of a block Jk are binary, i.e. Jk ⊆ B, we can dualize
the related partial Lagrangian function with respect to the sphere ∂IB(nk). This
simplifies the dual problem (D̃), since the number of dual constraints is reduced.
We show that this modification does not change val(D̃). To see this, we consider
the modified partial dual function of D̃ defined by

D̄k(µ) = (nk + 1) · λ1(Ãk(µ)) − (µr
J̃k

)T e.

Since λ1(Ãk(µq, µr + t · eJ̃k
)) = λ1(Ãk(µ)) + t(nk + 1) and (µr

J̃k
+ t · eJ̃k

)T e =
(µr

J̃k
)T e + t(nk + 1) for all t ∈ �, it holds that

D̄k(µ) = D̃k(µq, µr + t · eJ̃k
).

For t = min{0,−λ1(Ãk(µ))} we have λ1(Ãk(µq, µr + t · eJ̃k
)) ≥ 0 and therefore

D̄k(µq, µr + t ·eJ̃k
) = D̃k(µq, µr + t ·eJ̃k

), which implies that val(D̃) is not changed.

Remark 5.10. A further simplification can be made in the case bi,Jk
= (bi)j∈Jk

= 0
for i = 0, . . . , m. In this case, the trust region problem (5.7) is an eigenvalue
problem and it holds that

D̂k(µ) = nk · min{0, λ1(Âk(µ))} − (µr
Jk

)T e.

From Lemma 5.5 it follows that D̃k can be replaced with D̂k without changing
val(D̃).
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Remark 5.11. If Ai
Jk,Jk

is zero for i = 0, . . . , m, the related Lagrangian problem
is linear and therefore separable with respect to all variables of this block. Hence,
we can assume Jk = {jk}, i.e. IB(nk) = [−1, 1]. Then

min
x∈[−1,1]

L̂k(x; µ) = min
x∈[−1,1]

2b̂k(µ)T x − (µr
Jk

)T e

= 2 min{b̂jk
(µ)xjk

, b̂jk
(µ)xjk

} − (µr
Jk

)T e.

If (Q) is a MIP, this yields the traditional linear relaxation.

5.4.4 Influence of decomposition on the dual function

Denote by D̃0 the dual function D̃ of (Q̃) defined with respect to the trivial parti-
tion P0 = {V } with V = {1, . . . , n}. From Lemma 5.7 it follows that the optimal
values related to D̃0 and D̃ are the same. However, the dual values D̃0(µ) and D̃(µ)
at a dual point µ ∈ M̃ can be different. Let L̃(x; µ) = ĉ(µ) +

∑p
k=1 L̃k(xJ̃k

; µ)
be the Lagrangian related to (Q̃) and X = {x ∈ �n+p | xJ̃k

∈ IB(1 + nk), k =
1, . . . , p}. Since X ⊆ IB(n + p), we have

D̃0(µ) = min
x∈IB(n+p)

L̃(x; µ) ≤ min
x∈X

L̃(x; µ) = D̃(µ).

The following example shows that the above inequality can be strict.

Example 5.12. Consider the MaxCut problem

min{xT Ax | x ∈ {−1, 1}n},

where A is a block-diagonal matrix consisting of sub-matrices Ak ∈ �
(nk,nk),

k = 1, . . . , p. Assuming λ1(A1) < λ1(Aj) for j > 1, it follows that

D̃0(0) = n · λ1(A) <

p∑
k=1

nkλ1(Ak) = D̃(0).

This demonstrates that decomposition not only facilitates the evaluation of
the dual function, but also improves the initial dual bound D̃(0) (see Section 5.6).
On the other hand, if a splitting-scheme is used, decomposition can worsen the
dual bound D̃(0). In (Lemaréchal and Renaud, 2001) it is shown:

Lemma 5.13. Let (D) and Dual(2.2) be the Lagrangian dual of the original problem
(Q) and the splitting-scheme (2.2), as defined in Section 2.3, respectively. Then
val(Dual(2.2)) ≤ val(D).

The results of Section 5.6 demonstrate that this inequality can be strict.
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5.5 Solving the Lagrangian dual problem (D̃)

The dual problem (D̃) is a convex non-differentiable optimization problem. It can
be solved by many methods (Hiriart-Urruty and Lemaréchal, 1993). Here, the
proximal bundle code NOA 3.0 (Kiwiel, 1994b) of Kiwiel described in (Kiwiel,
1990) is used for maximizing the dual function D̃. Supergradients of the dual
function (D̃) are computed according to the following lemma:

Lemma 5.14. For a given dual point µ ∈ M̃ let vk be a (normalized) minimum
eigenvector of Ãk(µ). Define x ∈ �n+p by xJ̃k

=
√

nk + 1 · vk for k = 1, . . . , p.
Then the point g = (g1, g2) ∈ �m ×�n+p defined by g1,i = q̃i(x) for i = 1, . . . , m

and g2,j = x2
j − 1 for j = 1, . . . , n + p is a supergradient of D̃(µ) at µ.

Proof. We apply the subgradient formula of Lemma 4.1. Let L̃k(·; µ) be a partial
Lagrangian to (Q̃). From the definition of x it follows that xJ̃k

∈ Argmin
y∈IB(nk+1)

L̃k(y; µ).

Hence, x ∈ Argmin
y∈X

L̃(y; µ), where L̃ and X are defined as in Section 5.4.4. This

proves the statement according to Lemma 4.1. �

The evaluation of the dual function D̃ is implemented with the modifications
of Remarks 5.9, 5.10 and 5.11, and the supergradient formula of Lemma 5.14 as
part of the software package LaGO (see Chapter 14). For the computation of
a minimum eigenvalue and minimum eigenvector, two algorithms are used. The
first algorithm is an implicit symmetric QL-method from the EISPACK-library
NETLIB, 1973, used if the dimension of the matrix is less than or equal to 50. If
the dimension is greater than 50, the Lanczos method ARPACK++ (Gomes and
Sorensen, 1997) is used.

The following parameters of the proximal bundle method NOA are used:
bundle size = 50, line-search decrease = 0.1, QP weight = 10.0 and feasibility
tolerance = 0.1. As a stopping criterion for the bundle method either the opti-
mality tolerance is set equal to 10−3, or the method stops if a measure of relative
improvement is smaller than a given tolerance. In particular,

δj
s =

D̃(µs(j+1)) − D̃(µsj)
|D̃(µ0)| + 1

,

is defined, and the iteration stops, if

δj
s < ρ · δjmax

s (5.8)

where {µj} is the sequence of dual points generated by the bundle method at
serious steps, δjmax

s = max{δ0
s , . . . , δj

s}, with ρ = 0.4 and s = 10.
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5.6 Numerical results
In order to study the influence of decomposition, numerical experiments with
random MIQQP instances were made. All results were obtained on a machine
that has a 1.8 GHz-Pentium IV processor with a LINUX system.

5.6.1 Block structure
In the first experiment, decomposition-based bounds computed by the QL-method
and non-decomposition-based bounds computed by the full-dimensional Lanczos
method are compared. Block-separable random MIQQPs are produced using Algo-
rithm B.1 described in Appendix B.2 with parameters n, the number of variables,
m, the number of constraints, and l, the block size. For a given set of input para-
meters (n, m, l), five random MIQQPs are produced.

For each instance two dual problems of the form (D̃) related to the partitions
P1 = {J1, . . . , Jp} and P2 = {V } with V = {1, . . . , n} are generated. The first dual
problem is called (D1) and the second (D2). The corresponding dual functions are
denoted by D1 and D2 respectively. From Lemma 5.7 it is known that val(D1) =
val(D2).

First, a dual value D1(µ̂) is computed by using the previously described
bundle method with the stopping criterion (5.8). Then D2 is maximized and the
iteration stops if D2 reaches the value D1(µ̂). Furthermore, the initial relative
error

κ0
i =

val(D2) − Di(0)
| val(D2)| + 1

, i ∈ {1, 2}, (5.9)

is calculated, where the optimal value of (D2) is computed by using the previously
described bundle method with an optimality tolerance 10−3. For different input
parameters of Algorithm B.1, Tables 5.1 and 5.2 show :

– the fraction t2/t1 where t1 and t2 is the average time in seconds for solving
(D1) and (D2) respectively,

– the time t1,

– the fraction κ0
2/κ0

1 where κ0
i is the average initial relative error (5.9).

It can be seen from the tables that the decomposition scheme accelerates the
running time by magnitudes. The acceleration is particularly large if the number
of constraints is high. This is due to the increased cost for the matrix-vector
multiplication used in the Lanczos algorithm. Moreover, the results show that
κ0

1 < κ0
2 (see also Figure 5.1).

Decomposition also makes the dual solution method more stable. Conver-
gence problems of the Lanczos method were observed when the optimality toler-
ance of the dual solver was small. It is well-known that the performance of the
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block-size l = 10 block-size l = 20
n t2/t1 t1 κ0

2/κ0
1 t2/t1 t1 κ0

2/κ0
1

200 312.526 0.392 7.22114 85.7879 0.594 5.81284
400 1544.22 0.768 10.5006 271.037 1.234 8.79377
600 3551.09 1.204 12.8053 563.391 1.818 11.3668
800 4243.39 1.656 15.5317 861.217 2.428 12.9469
1000 6546.61 2.068 17.3226 1279.55 3.226 14.7185

Table 5.1: number of constraints m = 0

block-size l = 10 block-size l = 20
m t2/t1 t1 κ0

2/κ0
1 t2/t1 t1 κ0

2/κ0
1

0 53.7087 0.206 4.63817 21.9728 0.294 3.72246
4 159.35 0.24 4.84415 38.9673 0.428 3.6699
8 135.229 0.376 4.52294 37.0607 0.626 3.41876
12 132.924 0.472 4.40023 29.1492 0.764 3.51218
16 157.272 0.766 4.33168 47.5457 1.378 3.4816
20 166.995 0.85 4.19541 56.2844 1.568 3.44

Table 5.2: dimension n = 200

Lanczos method depends on how well the eigenvalues are separated. In (Helmberg
and Rendl, 2000) it is demonstrated that eigenvalues cluster in eigenvalue opti-
mization, causing numerical instabilities of the Lanczos method. In contrast, the
QL-method is very stable.

5.6.2 Network structure
In order to study splitting-schemes, random MaxCut problems of the form

min{xT Ax | x ∈ {−1, 1}n},

are generated, where A ∈ �(n,n) is the sparse matrix

A =

⎛
⎜⎜⎜⎜⎝

A1 B1 0 Bp

BT
1

. . . . . . 0

0
. . . Ap−1 Bp−1

BT
p 0 BT

p−1 Ap

⎞
⎟⎟⎟⎟⎠ .

The sub-matrices Ak ∈ �(l,l), k = 1, . . . , p, are dense with a block-size l = n/p.
The sub-matrices Bk ∈ �(l,l) are sparse with nonzero entries at (l − i, i), i =
1, . . . , s, where s ∈ {0, . . . , l} is a given flow size. The resulting sparsity graph
has a ring topology with p components that are each connected by s arcs. All
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Figure 5.1: Dual values of D1 and D2 at serious steps, where (n, m, l) = (200, 0, 10),
showing that D2(µ) < D1(µ)

nonzero components of A are uniformly distributed random numbers in [−10, 10].
For a given MaxCut problem, a splitting-scheme (13.6) is generated, as described
in Section 13.5.1, by using the partition P = {J1, . . . , Jp} with Jk = {(k − 1)l +
1, . . . , k · l}, k = 1, . . . p.

For the splitting-scheme as well as for the original MaxCut problem, dual
problems of the form (D̃) are constructed, which are called (D1) and (D2) respec-
tively. As in the previous experiment, five random MaxCut problems for a given
set of input parameters (n, p, s) are produced, and first a dual value of D1(µ̂) and
then a dual value D2(µ̃) � D1(µ̂) is computed by using the bundle method NOA
with the parameters previously described. Tables 5.3 and 5.4 show

– the fraction t2/t1 where t1 and t2 is the average time in seconds for solving
(D1) and (D2) respectively,

– the time t1,

– the fraction κ0
2/κ0

1 where κ0
i is the average initial relative error (5.9),

– the average percentage relative difference of the optimal dual values of (D1)
and (D2)

κd =
val(D2) − val(D1)

| val(D2)| + 1
.
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The results demonstrate in most cases that the splitting-scheme accelerates the
evaluation of the dual considerably. However, in the last experiment the computa-
tion without decomposition was faster. It can also be seen that for these instances
the relative difference of the optimal dual values κd is not zero (see Section 5.4.4).
Moreover, in most cases the fraction κ0

2/κ0
1 was greater than 1 for s = 2 and

smaller than 1 for s = 4 (see also Figure 5.2).

block-size l = 10 block-size l = 20

n t2/t1 t1 κ0
2/κ0

1 100 · κd t2/t1 t1 κ0
2/κ0

1 100 · κd

200 8.212 2.702 0.969 0.468 2.754 2.026 1.304 6.362
400 7.182 6.264 1.008 0.953 4.391 5.288 1.483 6.719
600 6.986 12.506 1.228 0.827 3.536 8.426 1.648 7.528
800 6.963 20.246 1.238 0.627 4.740 12.826 1.699 7.209
1000 9.214 29.322 1.197 0.601 5.227 16.876 1.694 7.337

Table 5.3: flow-size s = 2

block-size l = 10 block-size l = 20

n t2/t1 t1 κ0
2/κ0

1 100 · κd t2/t1 t1 κ0
2/κ0

1 100 · κd

200 1.928 3.756 0.634 2.185 0.256 7.38 0.485 0.801
400 1.977 11.532 0.711 3.398 0.463 18.394 0.434 2.242
600 1.986 22.364 0.755 3.723 0.441 34.216 0.578 1.941
800 2.261 36.732 0.892 3.608 0.513 52.098 0.614 3.390
1000 2.107 56.102 0.724 3.699 0.376 73.864 0.539 2.224

Table 5.4: flow-size s = 4

5.7 Computing relaxations of mixed linear quadratic
programs

If a QQP contains many linear constraints, the solution of the dual problem (D̃)
might be quite expensive. We describe a two-stage procedure for generating a con-
vex relaxation that solves a QP in the first stage and computes an SDP-relaxation
in the second stage. Consider the following QQP with mixed quadratic and linear
constraints:

min q0(x)
s.t. qi(x) ≤ 0, i = 1, . . . , m

Ax + b ≤ 0.
(5.10)

Define a Lagrangian for (5.10) with respect to quadratic constraints by

Lq(x; µ) = q0(x) + µT q(x).
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Figure 5.2: Dual values of D1 and D2 at serious steps, where (n, s, l) = (100, 2, 10),
showing that D2(µ) > D1(µ)

Algorithm 5.1 solves the dual of (5.10) by alternatively computing solutions of the
following two subproblems:

min Lq(x; µj−1)
s.t. Ax + b ≤ 0 (5.11)

and
max

µ∈�m
+

min
x∈�n

Lq(x; µ) + (τ j)T (Ax + b) (5.12)

where τ j ∈ �p
+ is a dual point related to the constraint Ax + b ≤ 0 of (5.11).

Proposition 5.15. The sequence {(µj , τ j)} generated by Algorithm 5.1 converges
towards a dual solution of (5.10).

Proof. Let D(µ, τ) = minx∈�n Lq(x; µ) + τT (Ax + b) be the dual function to
(5.10). Since the sequence {D(µj, τ j)} is bounded and monotone, there exists a
subsequence (µj , τ j) converging towards a dual point (µ∗, τ∗). From the upper-
semicontinuity of the dual function D, it follows that D(µ∗, τ∗) ≥ D(µ∗, τ) for all
τ ∈ �p

+ and D(µ∗, τ∗) ≥ D(µ, τ∗) for all µ ∈ �m
+ . Since D is concave, it follows

that D(µ∗, τ∗) ≥ D(µ, τ) for all (µ, τ) ∈ �m
+ ×�p

+. This proves the statement. �
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Set µ0 = 0.

for j = 1, . . . , l

Compute a dual solution τ j of the QP (5.11) corresponding to
Ax + b ≤ 0.

Solve the dual problem (5.12) obtaining a dual point µj corre-
sponding to qi(x) ≤ 0, i = 1, . . . , m.

end for

Algorithm 5.1: Two-phase dual method for mixed linear quadratic programs



Chapter 6

Convex Underestimators

In Section 3.2 we looked at nonlinear convex underestimating-relaxations of
MINLPs that are based on replacing nonconvex functions of the original prob-
lem with convex underestimators. In order to be efficient for branch-and-bound
methods, the underestimators should be tight and cheap. This chapter presents
several methods for generating convex underestimators. In particular, a recent
underestimating-technique based on Bézier polynomials (Nowak, 1996), and a new
sampling method for constructing polynomial underestimators of general nonlinear
multivariate black-box functions (Nowak et al., 2003) are presented.

6.1 Interval arithmetic

Constant functions are the simplest type of convex underestimators. Such under-
estimators can be computed efficiently by using interval arithmetic (Moore, 1979;
Neumaier, 1990), which is a natural generalization of the standard arithmetic for
intervals. If X = [x, x] and Y = [y, y] are two intervals in �n, we define, for any
binary operator ◦, that

X ◦ Y = �{x ◦ y | x ∈ X, y ∈ Y },

whenever the right-hand side is defined, where

�S = [inf S, sup S]

denotes the interval hull of a set in �n, i.e. the tightest interval containing S. A
monotonicity argument yields

X + Y = [x + y, x + y],

X − Y = [x − y, x − y]
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for addition and subtraction and

X ∗ Y = �{xy, xy, xy, xy},

X/Y = �{x/y, x/y, x/y, x/y}, if 0 	∈ Y

for multiplication and division. We also define elementary functions ϕ ∈ {sqr, sqrt,
exp, log, sin, cos, . . . } of an interval X by

ϕ(X) = �{ϕ(x) | x ∈ X}

whenever the right-hand side is defined. Depending on the monotonicity properties
of ϕ, the interval ϕ(X) can be computed from the value of ϕ at the endpoints of X
and the interior extremal values. The interval evaluation f(X) of some expression
f often overestimates range(f, X) = {f(x) | x ∈ X}. Under very mild conditions
(Neumaier, 1990) the evaluation satisfies

f(X) ⊂ range(f, X) + O(ε), if x − x = O(ε).

This is called the linear approximation property of simple interval evaluation. Bet-
ter enclosures of order O(ε2) can be obtained by so-called centered forms (Neu-
maier, 1990)

f(x) ∈ f(ξ) + ∇f(X)(x − ξ) if x, ξ ∈ X. (6.1)

In addition to bounds on expressions, interval arithmetic provides criteria for ver-
ifying solutions of nonlinear systems of equations. It can also be used for convex-
ifying functions (see Section 6.3). In (Krawczyk, 1969) a criterion for checking if
a nonlinear system of equations F (x) = 0 contains any solutions in an interval X
is proposed. Multiplying the vector version of (6.1) by a matrix C and adding x
defines the Krawczyk operator :

K(x) = ξ + CF (ξ) + (C∇F (x) − I)(x − ξ).

For ξ ∈ X the operator has the following properties:
(i) Any zero x ∈ X of F lies in X ∩ K(X, ξ).
(ii) If K(x) = ∅ then X contains no zero of F .
(iii) If K(x) ∈ intX then X contains a unique zero of F .

Property (iii) can be used to eliminate regions around a local minimizer.
Properties (i) and (ii) are useful for box reduction or box elimination. They are
used in the global optimization software packages GlobSol (Kearfott, 1996) and
Numerica (Van Hentenryck, 1997).

Interval arithmetic can also be used to check convexity. Let f : X 
→ �

be continuously twice-differentiable on the compact interval X , and let H be a
symmetric interval matrix with ∇2f(x) ∈ H (component-wise) for all x ∈ X . If
some symmetric matrix H0 ∈ H is positive definite, and all symmetric matrices
in H are nonsingular, then they are all positive definite and f is uniformly convex
in X .
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6.2 Bézier polynomials

Convex underestimators of multivariate polynomials can be obtained in a natural
way from Bernstein–Bézier-representations using the so-called convex hull prop-
erty. Based on this idea, in (Nowak, 1996) the first branch-and-bound algorithm
for global optimization of polynomial programs that uses Bernstein–Bézier lower
bounds was developed.

Let i = (i1, . . . , in)T ∈ �n be a multi-index, xi =
∏n

k=1 xik

k , |i| =
∑n

k=1 ik
and i! =

∏n
k=1 ik!. Denote by S = conv({v1, . . . , vn+1}) ⊂ �

n a simplex with
vertices vi ∈ �n. Any point x ∈ S can be expressed uniquely in terms of barycentric
coordinates y ∈ ∆n+1 by:

x = xS(y) =
n+1∑
i=1

yivi,

where ∆n+1 ⊂ �n+1 is the standard simplex. Consider a multivariate polynomial
of degree r defined by

p(x) =
∑
|i|≤r

aix
i.

The Bézier-representation of p over a simplex S is given by

p(xS(y)) =
∑
|i|=r

bi · Br
i (y)

where Br
i (y) = r!

i! ·yi are Bernstein polynomials and bi are B-points. The B-points
bi can be computed easily from intermediate points generated by de Casteljau’s
algorithm (Farin, 1986). Since Br

i (y) ≥ 0 and
∑

|i|=r Br
i (y) = 1 for all y ∈ ∆n+1,

we have the convex-hull property{(
x

p(x)

)
| x ∈ S

}
⊆ P̃bez = conv

{(
i/r
bi

)
| |i| = r

}
.

Hence, v = min|i|=r bi is a lower bound on p(x) over a simplex S. This lower bound
is used in (Nowak, 1996).

Figure 6.1: Polynomial and Bézier polygon
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The following result on the quadratic convergence of B-points is shown in
(Dahmen, 1986; Cohen and Schumaker, 1985):

Lemma 6.1. Let P = {S1, ..., Sl} be a simplicial partition of a polyhedron P̂ ⊂ �n

and p :�n 
→ � be a polynomial of degree r. There exists a constant c that depends
only on the restriction of p on P̂ such that

|bSj,i − p(xSj (i/r))| ≤ c · (diamSj)2

where |i| = r, 1 ≤ j ≤ l and diamS denotes the diameter of S.

From Lemma 6.1 it follows that Bézier-bounds are consistent (see Section
13.3.1).

Similarly, a convex underestimator of a multivariate polynomial over an in-
terval [0, e] can be obtained from its Bézier-representation. To this end, consider
a multivariate polynomial with degree l = (l1, . . . , ln) of the form

p(x) =
l∑

i=0

aix
i.

The Bernstein–Bézier representation of p over the standard interval [0, e] is defined
by

p(x) =
l∑

i=0

bi · Bi(x)

where Bi are Bernstein polynomials defined by Bi(x) =
(

l
i

)
xi(1 − x)l−i and(

l
i

)
=

∏n
k=1

(
lk
ik

)
. Since Bernstein polynomials are nonnegative over [0, e]

and form a partition of 1, we have the convex hull property

{(
x

p(x)

)
| x ∈ [0, e]

}
⊆ Pbez = conv

{(
i/l
bi

)
| 0 ≤ i ≤ l

}
.

From this property we get the following piecewise linear convex underestimator,
which is illustrated in Figure 6.1,

p(x) = min{y | (x, y) ∈ Pbez}.

Based on this underestimator, in (Garloff et al., 2002; Garloff and Smith, 2003) an
efficient method for computing affine underestimators of multivariate polynomials
over an interval is proposed.
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6.3 α-underestimators

Adjiman and Floudas (Adjiman and Floudas, 1997) proposed a method to con-
vexify a continuously twice-differentiable function f by adding the quadratic form
αT r(x) to f , where α ∈ �n and

r(x) = Diag(x − x)(x − x). (6.2)

The resulting function f̆(x) = f(x) + αT r(x) is called a convex α-underestimator
of f over [x, x], if the Hessian ∇2f̆(x) = ∇2f(x)+2 Diag(α) is positive semidefinite
over [x, x], and α ≥ 0. Since αT r(x) is zero at the vertices of [x, x], f̆ coincides
with f at those points. An optimal convex α-underestimator can be computed by
solving the program

max
α∈A

min
x∈[x,x]

f(x) + αT r(x)

where
A = {α ∈ �n | α ≥ 0, ∇2f(x) + 2 Diag(α) � 0 ∀x ∈ [x, x]}.

Since finding α that solves such a program is usually too difficult, the following
method is used in Adjiman et al., 1998.

Lemma 6.2 (scaled Gerschgorin theorem). For any vector d > 0 and a symmetric
interval matrix A = [A, A], the vector α is defined as

αi = max{0,−1
2
(aij −

∑
j �=i

|a|ij
dj

di
)}

where |a|ij = max{|aij |, |aij |}. Then for all A ∈ [A, A], the matrix A + 2 Diag(α)
is positive semi-definite.

From this it follows immediately:

Corollary 6.3. Let f : �n → � be a twice-differentiable function and A = [A, A]
be the interval Hessian of f at [x, x], i.e. A ≤ ∇2f(x) ≤ A for all x ∈ [x, x]. Then
for α ∈ �n computed as in Lemma 6.2 the function

f(x) = f(x) + αT r(x)

is a convex underestimator of f over [x, x], i.e. f is convex on [x, x] and f(x) ≤
f(x) for all x ∈ [x, x], where r is defined in (6.2).

Note that the vector α computed in Corollary 6.3 is not necessarily zero if f
is convex over [x, x]. On the other hand, if α = 0 then f is convex over [x, x].

In (Nowak et al., 2003) a heuristic α-underestimator is proposed by comput-
ing the vector α by using a sampling technique. This method can be applied to
black-box functions, which are provided, for example, by the modeling systems
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GAMS (GAMS, 2003) and AMPL (Fourer et al., 1993). Let w = x − x be the
diameter vector of the interval, and

ρ = min
x∈S

λ1(Diag(w)∇2f(x)Diag(w))

be a guess for the minimum eigenvalue of the Hessian of f over the box [x, x],
where S ⊂ [x, x] is a finite sample set. The scaling by Diag(w) comes from the
affine transformation θ(x) = Diag(w)x + x that maps the standard interval [0, e]
onto [x, x]. Then α is computed according to

α =
1
2

max{0,−ρ}Diag(w)−2e.

6.4 CGU-underestimators
Phillips, Rosen and Walke (Phillips et al., 1995) proposed the following heuristic
method for approximating the convex envelope of a nonlinear function f by a
quadratic function. Here, their method is modified slightly to reduce the absolute
value of the smallest eigenvalue of the obtained quadratic underestimator. Let
S ⊂ [x, x] be a finite sample set, and define the quadratic function

q(x; a, b, c) = c + 2bT x + xT Diag(a)x,

where a, b ∈ �n and c ∈ �. Then q(·; a, b, c) is convex, if and only if a ≥ 0. The
tightest quadratic convex underestimator q(·; a, b, c) over the set S is called CGU-
underestimator , which stands for convex global underestimator. It is provided by
the program

(CGU)

mina,b,c

∑
x∈S

f(x) − q(x; a, b, c) + δeT a

s.t. f(x) ≥ q(x; a, b, c), ∀x ∈ S
a ≥ 0,

where δ > 0 is a small penalty parameter. Since q depends linearly on a, b, c,
problem (CGU) is a linear program. The term δeT a reduces the absolute value of
the smallest eigenvalue of Diag(a) in the case where (CGU) is degenerated. The
quality of a CGU-underestimator depends strongly on the sample set S. In general,
it cannot be guaranteed that the CGU-underestimator is a true underestimator
over [x, x].

6.5 Convexified polynomial underestimators
A further development of the CGU-underestimator is the sampling method pre-
sented in (Nowak et al., 2003). Similarly as the CGU-underestimator, this method
requires only function evaluations, and can be therefore applied to black-box func-
tions for which no analytic expressions are known.



6.5. Convexified polynomial underestimators 79

Instead of constructing the convex underestimator directly, a two-step ap-
proach is proposed. In the first step, a given function f is underestimated by a
(possibly nonconvex) multivariate polynomial p. In the second step, p is convexified
by either an α-underestimator (Section 6.3) or a Bézier-underestimator (Section
6.2).

The direct application of the α-underestimator technique to the original func-
tion would also give a convex underestimator. However, the proposed polynomial
underestimator is often tighter because the α-convexification depends only on the
curvature of the function and not on the function behavior. For more clarifica-
tion see the example in Figure 6.2, where f is the original function, f̆ the α-
convexification of f , q the polynomial underestimator, and q̆ the α-convexification
of q.

f

q

q

f

Figure 6.2: α-underestimator versus the convexification of the polynomial under-
estimator.

Given a nonconvex function f :�n 
→ �, a polynomial underestimator p is
constructed over [x, x] defined by

p(x; a) =
∑
i∈I

aix
i (6.3)

where I ⊂ �n is a finite set and the multivariate monomial xi is defined as in
Section 6.2. The degree of the polynomial p is the number d = maxi∈I |i|. In the
numerical experiments shown in this book d = 2 is used. Polynomials of a degree
of higher than 2 can be reformulated to be quadratic using additional variables
and quadratic functions, for example, xixjxk can be replaced by xkxl with the
addition of the variable xl ∈ [xl, xl] and the constraint xl = xixj . The bounds for
the new variables can be computed by using the bounds on the original variables.

The index set I in (6.3) is chosen according to the sparsity pattern of f ,
i.e. the Hessians ∇2p and ∇2f have the same zero entries. In order to determine
the coefficients ai, i ∈ I, of the polynomial underestimator (6.3), the following
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program is solved:

mina

r∑
j=1

|f(xj) − p(xj ; a)|

s.t. p(xj ; a) ≤ f(xj), j = 1, . . . , r

where xj ∈ [x, x], j = 1, . . . , r, are sample points. This problem can be formulated
equivalently as the linear program:

mina,t

r∑
j=1

f(xj) − tj

s.t. f(xj) ≥ tj ≥ p(xj ; a), j = 1, . . . , r.

(6.4)

The quality of the polynomial underestimator p of f obtained by solving
(6.4) depends strongly on the sample set S = {x1, . . . , xr}. If f is concave and
S includes the set of vertices vert([x, x]), the underestimator p is rigorous, i.e.
p(x) ≤ f(x) for all x ∈ [x, x]. A possible definition of the sample set is S =
vert([x, x])∪Smin∪{(x+x)/2}, where Smin is the set of minimizers Smin of f over
[x, x]. This definition of S guarantees that the global minima of p and f over [x, x]
are identical. However, it does not guarantee that p is a true underestimator. Since
the nonlinear convex underestimating-relaxation (3.4) is only used as a means for
constructing a polyhedral relaxation (see Section 7.2), we do not need to produce
true underestimators. If it is not sure that an underestimator is rigorous, it can
be replaced by Knapsack cuts (see Section 7.1.2).

6.5.1 Rigorous underestimators
Rigorous polynomial underestimators can be computed using interval arithmetic.
Given a polynomial underestimator p of f constructed by the above sampling
technique, interval arithmetic is used to determine an interval [δ, δ] containing the
function values δ(x) = f(x) − p(x) for x ∈ [x, x]. In order to avoid clustering
effects, the interval should be computed by a central form (Neumaier, 2004). Then

p(x) = p(x) + δ

is a rigorous polynomial underestimator of f over [x, x]. If the approximation
error δ(x) is small over [x, x] and the lower bound δ is tight, then p is a tight
underestimator.

6.5.2 Restricted sampling
If the function f is highly nonlinear, the approximation error δ(x) caused by
the aforementioned polynomial underestimator can be quite large. Moreover, it is
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possible that f is not defined for all x ∈ [x, x]. In this case, the underestimation
can be improved by sampling over a smaller region Z ⊂ [x, x] containing the
feasible set of the given MINLP. Let Z = {x ∈ �n | h(x) ≤ 0}, where h(x) =
bT xL + f(xN ) ≤ 0 is an inequality constraint of the given MINLP, and L and N
are the index sets of linear and nonlinear variables, respectively.

If a sample point x̂ is not in Z, i.e. bT x̂L + f(x̂N ) > 0, x̂L is replaced
by x̃L = argminx∈[x,x] b

T xL. If still bT x̃L + f(x̂N ) > 0, f(xN ) is minimized by
a projected-gradient algorithm starting from x̂N , to find a point x̃N such that
bT x̃L + f(x̃N ) ≤ 0. The same technique can be used to generate sample points in
the set Z = {x ∈ �n | h(x) = 0}, where h(x) = 0 is an equality constraint of the
MINLP.



Chapter 7

Cuts, Lower Bounds and Box
Reduction

In this chapter several cuts for improving polyhedral and nonlinear relaxations are
presented. The generation of these cuts is based on an extended reformulation of
a given MINLP with linear coupling constraints. Most of the cuts are computed
by solving MINLP separation problems. Other cuts are generated by linearizing
convex constraints.

On the basis of polyhedral and nonlinear relaxations, NLP, MINLP, LP and
dual lower bounding methods are proposed and analyzed. Furthermore, several box
reduction procedures are proposed that use the aforementioned lower-bounding
methods. Numerical results for MINLPs are presented that show that the proposed
box reduction procedures are able to reduce the initial bounding box as well as to
fix binary variables.

7.1 Valid cuts
Consider the extended reformulation of a general MINLP with linear coupling
constraints defined in Section 2.5:

min cT x + c0

s.t. Ax + b ≤ 0
xJk

∈ Gk, k = 1, . . . , p
(7.1)

where

Gk = {xJk
∈ [xJk

, xJk
] | gi,k(xJk

) ≤ 0, i ∈ Mk, xJk∩B binary}. (7.2)

In the following, we study several valid cuts for (7.1), i.e. redundant constraints
that do not cut off any parts of the feasible set S of (7.1) containing solution
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points. Valid cuts are used to improve a polyhedral or nonlinear relaxation of
(7.1). If they cut off all solution points of a relaxation, the improvement is strict.

A valid cut can be computed by solving a separation problem that yields an
upper bound a on the support function σS̃(a) = max{aT x | x ∈ S̃} for a given
vector a ∈ �n, where S̃ ⊃ S is a relaxation of the feasible set S of (7.1). Then
aT x ≤ a is a valid cut.

7.1.1 Linearization cuts
A linearization cut is based on linearizing an active constraint of an extended
convex underestimating relaxation defined by

min cT x + c0

s.t. Ax + b ≤ 0
xJk

∈ Ğk, k = 1, . . . , p
(7.3)

where
Ğk = {xJk

∈ [xJk
, xJk

] | ği,k(xJk
) ≤ 0, i ∈ Mk} (7.4)

and ği,k are convex underestimators of gi,k over [xJk
, xJk

]. Let x̂ ∈ [x, x] be a trial
point and denote by Ak the active set of the nonlinear constraints of (7.3) at x̂,
i.e. Ak = {i ∈ Mk | ği,k(x̂Jk

) = 0}. By linearizing the active constraints of (7.3)
at x̂, we obtain the following linearization cuts

∇ği,k(x̂Jk
)T (xJk

− x̂Jk
) ≤ 0, i ∈ Ak. (7.5)

If the trial point x̂ is a minimizer of the convex relaxation (7.3), then the optimal
value of a polyhedral relaxation obtained from adding the cuts (7.5) is greater
than or equal to the optimal value of (7.3). Note that linearization cuts are only
valid if ği,k is a true convex underestimator of gi,k over the feasible set of (7.1).
This cannot be guaranteed for a heuristic convex underestimating-method, such
as the method described in Section 6.5.

7.1.2 Knapsack cuts
If a convex underestimator ği,k is a bad approximation of a nonconvex function
gi,k, the constraint gi,k(x) ≤ 0 might be strongly violated at a trial point x̂. In
this case, the following nonlinear Knapsack cut could be stronger:

aT xJk
≥ c(a) (7.6)

where
c(a) = min{aT xJk

| gi,k(xJk
) ≤ 0, xJk

∈ Ĝk, xJk∩B binary}, (7.7)

Ĝk ⊇ Gk is a polyhedral outer approximation and a ∈ �|Jk| is a given direction.
In the simplest case, the polyhedral relaxation Ĝk is defined by Ĝk = [xJk

, xJk
].
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However, if gi,k is not defined for all x ∈ [xJk
, xJk

], Ĝk has to be defined by a
smaller set. Note that the global optimization problem (7.7) can be simplified if
gi,k is a separable function of the form

gi,k(x) = bjxj +
∑
i∈K

si(xi),

where K ∪ {j} ⊆ Jk. Assuming that the constraint gi,k(x) ≤ 0 is active at a
solution point of problem (7.7), we have

c(a) = min{aT
KxK − aj

bj

∑
i∈K

si(xi) | x ∈ Ĝk, xJk∩B binary}.

If Ĝk = [xJk
, xJk

], this problem is equivalent to

c(a) =
∑
i∈K

min{aixi −
aj

bj
si(xi) | xi ∈ [xi, xi], x{i}∩B binary}. (7.8)

For minimizing the |K| univariate functions of (7.8) over a box, a specialized
algorithm or a general global optimization method, as described in Chapter 10,
can be used. If the constraint gi,k(x) ≤ 0 is not active at a solution point of (7.6),
the minimum of (7.7) is attained at a vertex of [xJk

, xJk
] and can be computed by

c(a) = min{aT xJk
| xJk

∈ [xJk
, xJk

]}.

Three methods are used for defining the direction a in (7.6):

(i) The direction is defined by a = ∇gi,k(x̂). This definition leads to consis-
tent LP-bounds, which are required for the convergence of branch-and-bound
methods (Section 13.3.2).

(ii) The direction is defined by a = ∇ği,k(x̂).

(iii) Let v be a minimizer of gi,k over the vertex set, i.e. v = argmin{gi,k(x) | x ∈
vert([xJk

, xJk
])}. The direction is defined by

aj = (gi,k(v) − gi,k(v + σjej(xj − xj)))/(xj − xj),

where σj = 1 if vj = (xJk
)j and σj = −1 if vj = (xJk

)j , j = 1, . . . , |Jk|. This
definition gives an estimate for the affine convex envelope if gi,k is concave.

7.1.3 Interval-gradient cuts
Let g(x) ≤ 0 be a nonlinear inequality constraint, where g is a continuously differ-
entiable function over [x, x]. Denote the interval-gradient of g over [x, x] by [d, d],
i.e. ∇g(x) ∈ [d, d] for all x ∈ [x, x]. An interval-gradient cut to g with respect to a
point x̂ ∈ [x, x] is defined by

g(x) = g(x̂) + min
d∈[d,d]

dT (x − x̂) ≤ 0.
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From the intermediate value theorem it follows that the interval-gradient cut is
valid. Furthermore, we have g(x̂) = g(x̂). From this it is shown in Section 8.5
that interval-gradient cuts can be used to verify global optimality of strict local
minimizers. An interval-gradient cut can be formulated as the following mixed-
integer linear constraint:

g(x̂) +
n∑

i=1

diy
+
i − diy

−
i ≤ 0

x − x̂ = y+ − y−

y+
i ≤ zi(xi − xi), i = 1, . . . , n

y−
i ≤ (1 − zi)(xi − xi), i = 1, . . . , n

y+ ≥ 0, y− ≥ 0
zi ∈ {0, 1}n.

Note that a slack variable (y+
i , y−

i , zi) has only to be introduced if xi is a nonlinear
variable of g. Assuming that g has the form g(x) = bT xL + s(xN ), where s is
a nonlinear function and N is the index set of nonlinear variables, an interval-
gradient cut consists of 1 + 3|N | linear constraints, 2|N | simple box-constraints,
and |N | binary constraints. Interval-gradient cuts for all-quadratic programs are
proposed in Boddy and Johnson, 2003. By relaxing the binary constraints of an
interval-gradient cut the following linear cut is defined1:

g(x̂) +
n∑

i=1

diy
+
i − diy

−
i ≤ 0

x − x̂ = y+ − y−

y+ ≤ x − x

y− ≤ x − x

y+ ≥ 0, y− ≥ 0.

Figure 7.1 shows linearization, Knapsack and interval-gradient cuts.

7.1.4 Lagrangian cuts
Deeper cuts can be generated by solving Lagrangian subproblems. Let Lk(xJk

; µ)=
ak(µ)T xJk

with ak(µ) = cJk
+ AT

Jk
µ be the k-th partial Lagrangian to (7.1) and µ̂

be a dual point related to the linear coupling constraint Ax+ b ≤ 0. A Lagrangian
cut is defined by

ak(µ̂)T xJk
≥ Dk(µ̂) (7.9)

where Dk(µ̂) = minx∈Gk
Lk(x; µ̂) and Gk is defined as in (7.2). Lagrangian cuts

are used in the column generation method Algorithm 4.8 to generate a polyhedral
outer approximation of (7.1).

1This linear cut is implemented in LaGO
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G
(1) (1)

(2)

(3)

Figure 7.1: Linearization (1), Knapsack(2) and interval-gradient (3) cuts

7.1.5 Level cuts

Let v be an upper bound of the optimal value of (7.1). Such a bound can be
computed by v = cT x̂ + c0 if a feasible point x̂ of (7.1) is available. Otherwise, it
can be computed by maximizing cT x + c0 over a convex relaxation of the feasible
set of (7.1). Then the following linear level cut is valid:

cT x + c0 ≤ v. (7.10)

A nonlinear level cut can be formulated by:

L(x; µ̂) ≤ v,

where L(·, µ̂) is a convex Lagrangian L(·, µ̂), which can be related to a semidefinite
or convex underestimating-relaxation.

7.1.6 Other valid cuts
1. In the presence of a large duality gap, val(7.1)−val(3.13), deeper cuts can be

computed by solving separation problems involving several variable blocks,
defined by:

min
∑
k∈K

Lk(xJk
; µ̂)

s.t. gi,k(xJk
) ≤ 0, i ∈ Mk, k ∈ K

xJk
∈ [xJk

, xJk
], k ∈ K

xJk∩B binary

(7.11)

where K ⊆ {1, . . . , p} is a super-block and µ̂ is a given dual point. Let δ be
a lower bound on the optimal value of (7.11). Then∑

k∈K

Lk(xJk
; µ̂) ≥ δ

is a valid cut. In order to determine a super-block automatically, a partition
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of the graph (Vb, Eb) can be computed that is defined by the vertices Vb =
{1, . . . , p} and the edges

Eb = {{k, l} | Jk ∩ Vi 	= ∅ and Jl ∩ Vi 	= ∅ for some i ∈ {0, . . . , m}},

where the index set Vi corresponds to the variables entering the objective
or constraint function hi, i = 0, . . . , m, of the given MINLP. It is possible
to strengthen the separation problem (7.11) by adding disjunctive cuts, as
proposed in (Vecchietti et al., 2003).

2. The following class of valid MINLP cuts is proposed in (Tawarmalani and
Sahinidis, 1999). Let L(·; µ) = f(x)+µT g(x) be the Lagrangian of min{f(x) |
g(x) ≤ 0}, f = minx∈X L(x; µ) be a lower bound, and f = f(x̂) be an upper
bound, where x̂ is a feasible point. From f ≤ f(x) + µT g(x) ≤ f + µT g(x)
we get the valid cut

gi(x) ≥ − 1
µi

(f − f).

3. Other cuts can be constructed by multiplication of two constraints. Let
gi(x) ≤ 0 and gj(x) ≤ 0 be two given inequality constraints of a MINLP.
Then −gi(x) · gj(x) ≤ 0 is a valid cut.

7.2 Initialization of polyhedral relaxations
The presented cuts are used to initialize and update a polyhedral relaxation of
(7.1) of the form:

min cT x + c0

s.t. Ax + b ≤ 0
cT x + c0 ≤ v

bT xJk
≤ b, (b, b) ∈ Nk, k = 1, . . . , p

x ∈ [x, x]

(7.12)

where Nk ⊂ �
n × � is a finite set. Algorithm 7.1 builds (7.12) by, first, con-

structing an extended reformulation (7.3) of the nonlinear convex underestimating-
relaxation (3.4), and, second, by adding cuts. Since the linearized active constraints
at a solution point of (3.4) are included in the resulting polyhedral relaxation,
(7.12) is as least as strong as (3.4), i.e. val(7.12) ≥ val(3.4).

7.3 Lower bounds
Based on convex and Lagrangian relaxations, several lower bounding methods for
the MINLP (7.1) are proposed. These bounds are used for reducing the box [x, x]
(see Section 7.4) as well as in branch-and-bound methods (see Chapter 13).
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Construct an extended convex relaxation (7.3) by reformulating the
convex relaxation (3.4).

Initialize the polyhedral relaxation (7.12) by setting Nk = ∅, k =
1, . . . , p.

Compute a solution x̂ of (7.3).

If a nonconvex constraint gi,k is strongly violated at x̂, or an active
underestimator ği,k is not rigorous, replace ği,k by a Knapsack cut
(7.6).

Add linearization cuts (7.5) at x̂.

Add Lagrangian cuts generated by Algorithm 4.8.

Compute an upper bound v of the optimal value of the MINLP (7.1)
and add the level cut (7.10) to (7.12).

Algorithm 7.1: Initialization of a polyhedral relaxation

7.3.1 NLP-bounds

A NLP-bound of a MINLP is defined by solving the convex nonlinear underestimat-
ing-relaxation (3.4), i.e.

vNLP1 = val(3.4). (7.13)

A further NLP-bound is based on Lagrangian decomposition of (7.3). Let
Lk(xJk

; µ) = cT
Jk

xJk
+ µT AJk

xJk
be a partial Lagrangian of both (7.3) and (7.1).

Let µ̂ be a dual solution point of the polyhedral outer approximation (7.12) or
inner approximation (4.16) related to the linear coupling constraints Ax + b ≤ 0.
Then a lower bound to (7.1) is defined by

vNLP2 = D̆(µ̂) = c0 + µ̂T b +
p∑

k=1

min
y∈Ğk

Lk(y; µ̂), (7.14)

where Ğk is the feasible set of the k-th Lagrangian subproblem to the extended
convex relaxation (7.3) defined in (7.4).

Observation 7.1. Since val(3.4) = val(7.3) and D̆(µ̂) ≤ val(7.3), we have vNLP1 ≥
vNLP2.
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7.3.2 MINLP-bounds

Similarly, a MINLP-bound for (7.1) is defined by

vMINLP = D(µ̂) = c0 + µ̂T b +
p∑

k=1

min
y∈Gk

Lk(y; µ̂) (7.15)

where Gk defined in (7.2) is the feasible set of the k-th Lagrangian subproblem to
(7.1). Again, µ̂ is computed by solving a linear relaxation (7.12) or (4.16), since
maximizing the dual function D is in general too difficult.

Observation 7.2. From D(µ) ≥ D̆(µ) we get vMINLP ≥ vNLP2.

The nonconvex Lagrangian subproblems in (7.15) can be solved by any global
optimization algorithm (see Chapter 10).

7.3.3 Dual bounds

Stronger bounds are dual bounds defined by

vdual = val(Dual(7.1)).

Since vdual ≥ D(µ) for all µ ∈ �m
+ , we have vdual ≥ vMINLP. Dual bounds can be

computed by using the column generation method Algorithm 4.8, or by any other
dual method described in Chapter 4.

7.3.4 LP-bounds

A linear programming bound to (7.1) is defined by solving the polyhedral relax-
ation (7.12), i.e.

vLP = val(7.12). (7.16)

In Section 13.3.2 it is shown that LP-bounds are consistent if Knapsack cuts of
type (i) are used, which are defined in Section 7.1.2.

Observation 7.3. Since val(7.12) = maxµ∈�miny∈Ĝk
Lk(y; µ), it follows that

vLP ≥ D(µ̂) = vMINLP,

if the Lagrangian cuts Lk(xJk
; µ̂) ≥ Dk(µ̂) = miny∈Gk

Lk(y; µ̂), k = 1, . . . , p, are
added to (7.12).

Remark 7.4. LP-bounds are in particular attractive, since they can be computed
very fast. From Observation 7.3 it follows, that the addition of Lagrangian cuts
related to a near optimal dual point gives an LP-bound that is almost as strong
as a dual bound vdual.
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Remark 7.5. If the evaluation of all partial dual functions is expensive, it may
be more efficient to solve only some Lagrangian subproblems. Assume that the
following Lagrangian cuts are added to the polyhedral outer approximation (7.12):

Lk(xJk
; µ̂) ≥ Dk(µ̂), k ∈ K,

where K ⊂ {1, . . . , p} and Dk is a partial dual function to (7.1). Similarly to
Observation 7.3, it can be shown that

vLP ≥
∑
k∈K

Dk(µ̂) +
∑

k∈{1,...,p}\K

min
y∈Ĝk

Lk(y; µ̂).

The set K can be defined, for example, by those subproblems for which the gap
between an inner and outer approximation is large, i.e.

K = {k ∈ {1, . . . , p} | R̃k(µ̂) ≥ δ

p
(| val(7.12)| + 1)},

where R̃k(µ̂) = miny∈conv(Wk) Lk(y; µ̂) − miny∈Ĝk
Lk(y; µ̂) is an estimate for the

reduced cost, as proposed in Remark 4.17, δ ∈ (0, 1), and Wk ⊂ �|Jk| is a set of
admissible inner approximation points defined in Section 4.3.

7.4 Box reduction
In practice, the bounding box [x, x] of a given MINLP may be quite large. In
this case, the quality of the convex underestimators and cuts may be bad. This
drawback might be prevented if a box reduction procedure is applied. Reducing
the box may also diminish the duality gap, since

min
x∈G∩X′

L(x; µ) ≥ min
x∈G∩X

L(x; µ)

for two intervals X ′, X with X ′ ⊂ X . Box reduction techniques for MINLP were
first presented in (Ryoo and Sahinidis, 1996). In the following, box reduction
procedures are described based on the lower bounds presented in Section 7.3.

Let S be the feasible set of the given MINLP and S̆ ⊃ S be a convex outer
approximation of S. A box reduction procedure is defined by replacing the box
[x, x] by the interval X = [x, x] ∩ �S̆, where �S̆ is the interval hull of S̆, i.e. the
smallest box containing S̆.

Denote by S1, S2, S3 and S4 the feasible set of the convex relaxation (3.4), the
extended convex relaxation (7.3), the extended MINLP (7.1) and the polyhedral
relaxation (7.12), respectively. Consider the optimization problem:

(Bk[a]) min {aT x | x ∈ Sk}.
Then for the interval hull �Sk = [x∗

k, x∗
k] we have

x∗
k,i = val(Bk[ei]) and x∗

k,i = − val(Bk[−ei]), i = 1, . . . , n.
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Define a lower bound vk(a) of val(Bk[a]) for k ∈ {1, 2, 3, 4} as in (7.13), (7.14),
(7.15) and (7.16) respectively. Then for k ∈ {1, 2, 3, 4} a box reduction procedure
is defined by replacing the box [x, x] by the interval Xk = [x, x] ∩ [vk, vk], where
vk,i = vk(ei) and vk,i = −vk(−ei), i = 1, . . . , n (see Figure 7.2).

G

Figure 7.2: Interval hull and reduced box

Note that �S1 = [v1, v1]. For k ∈ {2, 3, 4}, the above box reduction proce-
dures can be repeated with respect to the modified box [vk, vk], as long as there is
no significant reduction. Since the sequence {[vj

k, vj
k]} of reduced boxes is nested,

i.e. [vj+1
k , vj+1

k ] ⊆ [vj
k, vj

k], the sequence converges to a fixpoint [v∗
k, v∗k] ⊇ �Sk.

Assuming that an upper bound v on the optimal value of (7.1) is available,
the level inequality cT x + c0 ≤ v can be included into Sk, in order to further
reduce the box [vk, vk], k ∈ {2, 3, 4}. Assume that (7.1) has a unique solution x∗

and v = val(7.1). In this case, �Sk is a convex relaxation of the singleton {x∗},
k ∈ {2, 3, 4}.

7.5 Numerical results
In order to compare the lower bounds and the related box reduction operations,
numerical experiments were carried out by using instances from the MINLPLib
(Bussieck et al., 2003a) described in Appendix B.1. The lower bound and box
reduction procedures were implemented as part of the C++ library LaGO (see
Chapter 14). The sequential quadratic programming code SNOPT (Gill et al.,
1997) is used for finding local solutions of nonlinear optimization problems.
CPLEX (ILOG, Inc., 2005) is used for solving linear optimization problems.
For computing convex underestimating-relaxations, α-underestimators (see Sec-
tion 6.3) were used if a function is quadratic, and polynomial underestimators
(see Section 6.5) otherwise. The sample set for generating polynomial underesti-
mators was defined by max{2|B|, 100} vertices and 20 random points.

Four different box reduction methods and their corresponding lower bounds
were compared. In the first and second experiment, the box reduction methods
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that use the lower bounds vNLP1 and vNLP2 described in Section 7.3.1 were tested.
Since for the generation of a convex underestimating-relaxation the lower and
upper variable bounds have to be finite, the interval [x, x] was replaced by the
interval hull [x0, x0] = �S0 of the following nonlinear convex relaxation:

S0 = {x ∈ �n | hi(x) ≤ 0, i ∈ Iconv},

where Iconv is the index set of convex constraints of the MINLP (2.1). The box
reduction methods that use NLP1 and NLP2 bounds applied to the interval [x0, x0]
are called NLP0/NLP1 and NLP0/NLP2 respectively.

In the third and fourth experiment, the box reduction methods that use the
lower bounds vNLP2 and vMINLP described in Section 7.3.1 and 7.3.2 were tested.
Here, the initial interval [x, x] was replaced by [y0, y0], where y0

i
= x0

i if xi = −∞
and y0

i
= xi else, and y0

i = x0
i if xi = ∞ and y0

i = xi else. The box reduction
methods that use NLP2 and MINLP bounds applied to the interval [y0, y0] are
called NLP0′/NLP2 and NLP0′/MINLP respectively.

The code was run on a machine with a 1GHz Pentium III processor and 256
MB RAM. Tables 7.2, 7.3, 7.4 and 7.5 show the results. The columns of these
tables are described in Table 7.1. N/A means that no feasible solution was found.

avr red The average of the relative box reduction over all variables
in percentage measured by wnew

i

wi
, where wi = xi − xi.

red var The percentage number of variables where the box is reduced
by more than 20%.

bin fix The percentage number of binary variables that are fixed.
box time Time in seconds for performing the box reduction.
bnd err The quality of the lower bound, if available, computed as

v∗−v
1+|v∗| , where v∗ is the best known optimal value and v is
the value of the lower bound.

bnd time Time in seconds for computing a lower bound.

Table 7.1: Descriptions of the columns of Tables 7.2, 7.3, 7.4 and 7.5.

The results show:

• For about 30% of the problems some variables were fixed.

• For more than 60% of the problems the box was reduced significantly.

• The decomposition-based bound vNLP2 is not faster than vNLP1.

• Comparing Table 7.3 and Table 7.4 shows that the initial box reduction
[y0, y0] is much faster than [x0, x0] and gives almost the same results.

• Comparing Table 7.2 and Table 7.5 shows that only in few cases the results
with vMINLP-bounds are better than with vNLP1-bounds.
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avg red bin box bnd bnd
example n |B| m c red var fix time err time
alan 9 4 8 y 44.4 55 25 0.01 0 0.00
elf 55 24 39 n 45.5 54 0 2.54 .16 0.03
ex1265 131 100 75 n 91.8 9 8 0.6 .01 0.02
ex1266 181 138 96 n 81.5 23 17 1.37 0 0.02
fac3 67 12 34 y 24.2 80 0 0.13 .30 0.03
fuel 16 3 16 n 45 68 33 0.04 0 0.01
gbd 5 3 5 y 71.7 40 33 0.01 0 0.00
meanvarx 36 14 45 y 36.1 63 14 0.06 0 0.00
nous1 51 2 44 n 92.2 7 0 0.06 2.63 0.29
nous2 51 2 44 n 92.2 7 0 0.06 3.57 0.45
sep1 30 2 32 n 40.8 73 0 0.02 .22 0.02
space25 894 750 236 n 87.2 12 0 52.76 .86 0.55
space25a 384 240 202 n 70.3 29 0 10.03 .86 0.23
spectra2 70 30 73 n 42.9 57 0 15.78 .37 0.16
util 146 28 168 n 19.9 80 14 2 .05 0.08
eniplac 142 24 190 n 25.1 75 4 1.57 N/A 0.23
enpro48 154 92 215 n 96.7 3 0 4.33 N/A 0.14
enpro56 128 73 192 n 91.9 7 4 4.04 N/A 0.02
ex3 33 8 32 n 53.4 48 0 0.26 .76 0.01
fac1 23 6 19 y 59.7 69 0 0.02 0 0.00
gastrans 107 21 150 n 30.1 75 66 1.89 N/A 0.07
gear2 29 24 5 n 100 0 0 0 22.13 0.00
gkocis 12 3 9 n 43.5 58 0 0.01 1.49 0.00
parallel 206 25 116 n 8.73 91 36 1.69 N/A 0.80
procsel 11 3 8 n 45.5 54 0 0.01 1.17 0.00
synthes2 12 5 15 y 82.5 16 0 0.02 .99 0.00
synthes3 18 8 24 y 98.1 5 0 0.05 .76 0.01
waterx 71 14 55 n 42.8 57 0 0.77 .94 0.05

Table 7.2: Box reduction results with NLP0/NLP1-bounds.
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avg red bin box bnd bnd
example n |B| m c red var fix time err time
alan 9 4 8 y 44.4 55 25 0.1 .13 0.00
elf 55 24 39 n 45.5 54 0 6.26 .16 0.01
ex1265 131 100 75 n 91.8 9 8 1.64 .01 0.00
ex1266 181 138 96 n 81.5 23 17 2.67 0 0.01
fac3 67 12 34 y 24.2 80 0 0.52 .99 0.02
fuel 16 3 16 n 45 68 33 0.12 .03 0.01
gbd 5 3 5 y 71.7 40 33 0.05 0 0.00
meanvarx 36 14 45 y 36.1 63 14 0.26 .05 0.01
nous1 51 2 44 n 84.4 21 100 1.67 1.84 0.02
nous2 51 2 44 n 83.5 25 100 1.66 2.33 0.03
sep1 30 2 32 n 41.5 73 0 0.37 .40 0.01
space25 894 750 236 n 87.2 12 0 145.02 .86 0.01
space25a 384 240 202 n 70.3 29 0 48.37 .86 0.01
spectra2 70 30 73 n 42.9 57 0 11.44 .37 0.00
util 146 28 168 n 19.9 80 14 5.46 .12 0.03
eniplac 142 24 190 n 22.5 78 16 5.13 N/A 0.04
enpro48 154 92 215 n 96.7 3 0 11.11 .99 0.00
enpro56 128 73 192 n 90.6 9 4 7.74 N/A 0.00
ex3 33 8 32 n 53.4 48 0 0.43 .85 0.01
fac1 23 6 19 y 59.7 69 0 0.19 .99 0.01
gastrans 107 21 150 n 30.1 75 66 1.94 N/A 0.00
gear2 29 24 5 n 100 0 0 0.1 22.13 0.01
gkocis 12 3 9 n 43.5 58 0 0.05 2.38 0.00
parallel 206 25 116 n 8.73 91 36 6.58 40.14 0.04
procsel 11 3 8 n 45.5 54 0 0.05 1.18 0.01
synthes2 12 5 15 y 82.5 16 0 0.11 1.12 0.01
synthes3 18 8 24 y 98.1 5 0 0.18 .80 0.01
waterx 71 14 55 n 42.8 57 0 2.35 .94 0.02

Table 7.3: Box reduction results with NLP0/NLP2-bounds.
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avg red bin box bnd bnd
example n |B| m c red var fix time err time
alan 9 4 8 y 44.4 55 25 0.06 .31 0.00
elf 55 24 39 n 45.5 54 0 3.99 .16 0.02
ex1265 131 100 75 n 92.3 9 8 0.97 .02 0.01
ex1266 181 138 96 n 82.2 23 17 1.6 .01 0.01
fac3 67 12 34 y 24.2 80 0 0.46 .99 0.01
fuel 16 3 16 n 45 68 33 0.12 .05 0.00
gbd 5 3 5 y 71.7 40 33 0.07 0 0.00
meanvarx 36 14 45 y 36.1 63 14 0.27 .03 0.01
nous1 51 2 44 n 83.7 23 100 1.63 1.84 0.03
nous2 51 2 44 n 83.5 25 100 1.63 2.33 0.03
sep1 30 2 32 n 42.3 73 0 0.24 .41 0.01
space25 894 750 236 n 87.2 12 0 57.88 .86 0.01
space25a 384 240 202 n 70.3 29 0 29.96 .86 0.01
spectra2 70 30 73 n 42.9 57 0 7.76 .93 0.02
util 146 28 168 n 19.9 80 14 2.42 .45 0.01
eniplac 142 24 190 n 23.2 78 12 2.74 .43 0.05
enpro48 154 92 215 n 96.8 3 0 2.98 .99 0.00
enpro56 128 73 192 n 95.3 4 0 1.59 N/A 0.01
ex3 33 8 32 n 53.4 48 0 0.27 .85 0.01
fac1 23 6 19 y 59.7 69 0 0.09 .99 0.00
gastrans 107 21 150 n 27.9 79 76 2.05 0 0.01
gear2 29 24 5 n 100 0 0 0.1 22.13 0.00
gkocis 12 3 9 n 43.5 58 0 0.07 2.38 0.00
parallel 206 25 116 n 8.73 91 36 3.46 50.62 0.06
procsel 11 3 8 n 45.5 54 0 0.04 1.18 0.00
synthes2 12 5 15 y 82.6 16 0 0.1 1.01 0.01
synthes3 18 8 24 y 98.1 5 0 0.14 .80 0.01
waterx 71 14 55 n 42.8 57 0 1.05 .94 0.02

Table 7.4: Box reduction results with NLP0′/NLP2-bounds.
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avg red bin box bnd bnd
example n |B| m c red var fix time err time
alan 9 4 8 y 44.4 55 25 0.06 .31 0.00
elf 55 24 39 n 45.5 54 0 4.24 .16 0.01
ex1265 131 100 75 n 90.3 11 8 1.13 .02 0.00
ex1266 181 138 96 n 80 24 17 2.28 .01 0.01
fac3 67 12 34 y 24.2 80 0 0.38 .99 0.01
fuel 16 3 16 n 45 68 33 0.16 N/A 0.00
gbd 5 3 5 y 71.7 40 33 0.05 0 0.00
meanvarx 36 14 45 y 36.1 63 14 0.2 .03 0.01
nous1 51 2 44 n 89.4 13 0 0.93 .73 0.08
nous2 51 2 44 n 92 7 0 1.15 .67 0.04
sep1 30 2 32 n 42.3 73 0 0.29 .41 0.00
space25 894 750 236 n 87.2 12 0 46.24 .86 0.02
space25a 384 240 202 n 70.2 29 0 22.2 .86 0.01
spectra2 70 30 73 n 42.9 57 0 7.76 .93 0.00
util 146 28 168 n 19.9 80 14 2.51 .30 0.05
eniplac 142 24 190 n 20.4 80 29 2.77 .48 0.05
enpro48 154 92 215 n 82.1 22 8 4.71 .99 0.01
enpro56 128 73 192 n 95.3 4 0 1.63 N/A 0.01
ex3 33 8 32 n 53.5 48 0 0.2 .86 0.01
fac1 23 6 19 y 59.7 69 0 0.12 .99 0.00
gastrans 107 21 150 n 33.4 68 61 2.09 0 0.01
gear2 29 24 5 n 100 0 0 0.07 -.01 0.00
gkocis 12 3 9 n 43.5 58 0 0.07 2.38 0.00
parallel 206 25 116 n 8.73 91 36 3.37 .81 0.41
procsel 11 3 8 n 45.5 54 0 0.04 1.18 0.01
synthes2 12 5 15 y 82.6 16 0 0.11 1.01 0.01
synthes3 18 8 24 y 98.1 5 0 0.13 .80 0.01
waterx 71 14 55 n 42.8 57 0 1.05 N/A 0.03

Table 7.5: Box reduction results with NLP0′/MINLP-bounds.



Chapter 8

Local and Global Optimality
Criteria

This chapter presents local and global optimality criteria. After a short overview on
first- and second-order necessary and sufficient local optimality criteria, a strong
duality result for nonconvex all-quadratic problems with convex constraints is
proven (Nowak, 2000). Based on this result, optimality cuts are proposed that
split off a local minimizer, and some global optimality criteria are derived. Finally,
it is shown that global optimality of general MINLP solutions can be verified via
interval-gradient cuts.

8.1 Local optimality conditions

Consider a general nonlinear program of the form

min f(x)
s.t. g(x) ≤ 0

h(x) = 0
(8.1)

where f : �n 
→ �, g : �n 
→ �
m and h : �n 
→ �

p are continuously twice-
differentiable nonlinear functions. The feasible set of (8.1) is denoted by S.

A point x∗ ∈ S is a called local minimizer of (8.1) if there exists an ε ∈ �+

such that f(x∗) ≤ f(x) for all x ∈ S ∩ IBn(x∗, ε). A local minimizer x∗ is called
strict if there exists a ball IBn(x∗, ε) containing no other local minimizer x̂ 	= x∗.
It is called a global minimizer if f(x∗) ≤ f(x) for all x ∈ S. An ε-minimizer of
(8.1) is a point satisfying f(x∗) ≤ f(x) + ε for all x ∈ S. The set of ε-minimizers
of (8.1) is denoted by solε(8.1). The Lagrangian related to (8.1) is the function

L(x; µ) = f(x) + (µg)T g(x) + (µh)T h(x),
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where µ = (µg, µh) is a dual point or Lagrangian multiplier , which is in the La-
grangian multiplier set ,

M = {(µg, µh) ∈ �m ×�p | µg ≥ 0}.

In the following, some basic local optimality conditions for minimizers of (8.1)
are reviewed. These conditions are based on linearizations of the objective and
constraint functions and require regularity assumptions called constraint qualifica-
tions . They ensure that the set of feasible directions of the original problem and of
the linearized problem are identical. In order to state them, we need the definition
of an active set related to a point x∗ ∈ �n,

A(x∗) = {i ∈ {1, . . . , m} | gi(x∗) = 0}.

Condition 8.1 (Mangasarin–Fromowitz). The Mangasarin–Fromowitz constraint
qualification (Mangasarin and Fromowitz, 1967) holds at a point x∗ ∈ �n if:

(i) There exists a vector z ∈ �n such that: ∇gi(x∗)T z > 0 for all i ∈ A(x∗),
∇hi(x∗)T z = 0 for i = 1, . . . , p.

(ii) The gradients ∇hi(x∗), i = 1, . . . , p, are linearly independent.

In the case of convex problems, where g is convex and h is affine, the following
condition is equivalent to Condition 8.1.

Condition 8.2 (Slater). The Slater constraint qualification is satisfied if g is convex,
h is affine, and there exists a point x̂ ∈ �n with g(x̂) < 0 and h(x̂) = 0.

The next condition is the strongest of them and implies Conditions 8.1 and
8.2.

Condition 8.3 (linear independence). The linear independence constraint qualifi-
cation holds at x∗ if the gradients (∇gA(x∗)(x∗),∇h(x∗)) are linearly independent.

A deeper discussion of constraint qualifications can be found in (Mangasarin,
1969). If a constraint qualification holds, a local solution of (8.1) can be character-
ized by the Karush–Kuhn–Tucker (KKT) (Karush, 1939; Kuhn and Tucker, 1951)
necessary first-order optimality conditions.

Proposition 8.1 (first-order optimality condition). Let x∗ be a local minimizer of
(8.1) and assume that f, g, h are continuously differentiable and that Condition 8.1
holds. Then there exists a vector µ̂ = (µ̂g, µ̂h) ∈ �m ×�p such that the following
first-order necessary conditions hold:

(i) ∇xL(x∗; µ̂) = 0 (stationarity of the Lagrangian)

(ii) x∗ ∈ S (primal feasibility)

(iii) µ̂ ∈ M (dual feasibility)

(iv) µ̂g
i · gi(x∗) = 0 for i = 1, . . . , m (complementary slackness).
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A pair (x∗, µ∗) satisfying (i)–(iv) of Proposition 8.1 is called a Karush–Kuhn–
Tucker (KKT) pair. Under stronger conditions, the reverse statement of Proposi-
tion 8.1 holds (Fletcher, 1987).

Proposition 8.2 (second-order optimality condition). Assume that the functions
f, g and h are continuously twice-differentiable. Let (x∗, µ∗) be a KKT-pair satis-
fying

zT∇2L(x∗; µ∗)z > 0 for all z ∈ T

where

T =

⎧⎨
⎩

z ∈ �n \ {0} | ∇gi(x∗)T z ≥ 0 for i ∈ A(x∗),
∇gi(x∗)T z = 0 for i ∈ A(x∗) such that µ∗

i > 0
∇hi(x∗)T z = 0 for i ∈ {1, . . . , p}

⎫⎬
⎭ .

Then x∗ is a strict local minimizer.

An important case, in which the second-order optimality condition is fulfilled,
is if (8.1) is strictly convex. If (8.1) is convex, then every local minimizer is a global
minimizer.

8.2 Local strong duality of nonconvex QQPs

The duality gap of a nonconvex all-quadratic program is usually nonzero. It is
shown now that in the case of nonconvex all-quadratic programs with convex
constraints it is always possible to close the duality gap by shrinking the feasible set
in a neighborhood of a local minimizer fulfilling a certain constraint qualification.
Consider an all-quadratic program of the form

min q0(x)
s.t. qi(x) ≤ 0, i = 1, . . . , m

(8.2)

where qi(x) = xT Aix + 2aT
i x + di, Ai ∈ �(n,n), ai ∈ �n, di ∈ �, i = 0, . . . , m.

For the sake of simplicity, here only inequality constrained problems are consid-
ered. However, all results in this section can be generalized without difficulties to
problems with equality constraints.

The Lagrangian of (8.2) is the function L(x; µ) = q0(x) + µT q(x), where
q = (q1, . . . , qm)T . Defining the dual function D(µ) = inf

x∈�n
L(x; µ), the dual of

(8.2) is formulated by
max

µ∈�m
+

D(µ). (8.3)

A simple global optimality criterion for (8.2) is given by:
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Lemma 8.3 (strong duality). Let S be the feasible set of (8.2). The dual problem
(8.3) has a zero duality gap, i.e. val(8.2) = val(8.3), if and only if there exist
µ̂ ∈ �m

+ and x̂ ∈ S such that

L(x̂; µ̂) = q0(x̂)
∇L(x̂; µ̂) = 0
∇2L(x̂; µ̂) � 0.

⎫⎬
⎭ (8.4)

A point x̂ fulfilling the conditions (8.4) is a global minimizer of problem (8.2).

Proof. Let µ∗ be a solution of (8.3) and let x∗ be a global minimizer of problem
(8.2). If val(8.2) = val(8.3), it follows that x∗ ∈ argmin

x∈�n

L(x; µ∗). Hence, (µ∗, x∗)

fulfills condition (8.4).
Now let (µ̂, x̂) be a point satisfying (8.4). Then val(8.3) ≤ val(8.2) ≤ q0(x̂) =

min
x∈�n

L(x̂; µ) ≤ val(8.3). Hence, val(8.2) = val(8.3). �

The duality gap is usually not zero in nonconvex programming. It is shown
now that nevertheless condition (8.4) can be satisfied in a neighborhood of x̂,
provided that x̂ satisfies the following second-order optimality condition.

Condition 8.4 (modified second-order optimality condition). Let

A(x∗) = {i ∈ {1, . . . , m} | qi(x∗) = 0}

be the active set,
A+(x∗) = {i ∈ A(x∗) | µ∗

i > 0},
be a restricted active set, and

T+ = {x ∈ �n | ∇qi(x∗)T x = 0 for i ∈ A+(x∗)}

be the extended tangent space. A KKT-pair (x∗, µ∗) fulfills the modified second-
order optimality condition if the Hessian ∇2q0(·) is copositive with respect to T+,
i.e.

yT∇2q0(x) · y ≥ 0 for all y ∈ T+.

We give now several conditions implying Condition 8.4.

Lemma 8.4. Let x∗ be a local minimizer of problem (8.2) and µ ∈ �m
+ be a Lagrange

multiplier fulfilling the strict complementarity condition:

µ∗
i > 0 for i ∈ A(x∗). (8.5)

The following conditions imply Condition 8.4:

(i) The Hessian ∇2q0(x) is copositive with respect to the tangent space T (see
Section 8.1), i.e. yT∇2q0(x)y ≥ 0 for all y ∈ T .
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(ii) The constraints of problem (8.2) are linear and x∗ fulfills the second-order
optimality condition of Proposition 8.2.

(iii) The constraints of problem (8.2) are linear and x∗ is a regular point, i.e. the
vectors ∇qi(x∗), i ∈ A(x∗), are linearly independent.

Proof. (i) From the strict complementarity condition (8.5) it follows that A(x∗) =
A+(x∗). This implies T+ = T , which proves the assertion.
(ii) Since the constraints of problem (8.2) are linear, it holds that ∇2L(x; µ) =
∇2q0(x). Therefore, (ii) is equivalent to (i) in this case.
(iii) Since a local minimizer that is a regular point fulfills the second-order opti-
mality condition, (iii) implies (ii). �

Example 8.5. Consider the following example: min{−‖x‖2 | 0 ≤ x ≤ e}, where
x ∈ �n and e ∈ �n is the vector of 1s. This problem has a unique global minimizer
x∗ = e fulfilling the strict complementarity condition (8.5). From Lemma 8.4 (iii)
it follows that x∗ fulfills Condition 8.4.

In order to prove the main result of this section, the following generalization
of Debreu’s Lemma (Lemaréchal and Oustry, 1999) is required:

Lemma 8.6. Let A ∈ �(n,n) be a symmetric matrix that is copositive with respect
to the linear subspace span{w1, .., wp}⊥, where wi ∈ �n for 1 ≤ i ≤ p. Then there
exists τ̄ ∈ �p such that

A +
p∑

i=1

τiwiw
T
i � 0 for all τ ≥ τ̄ .

Proof. Let B =
p∑

i=1

ρiwiw
T
i , where ρi > 0 for 1 ≤ i ≤ p. Let V = span{w1, .., wp},

R = kern(A), S = V ∩ R⊥ and T = V ⊥ ∩ R⊥. Define

c1 = min
x∈T\{0}

xT Ax

‖x‖2
, c2 = min

x∈V \{0}
xT Bx

‖x‖2
, c3 = ‖A‖2.

Since A is copositive with respect to V ⊥, it holds that c1 > 0. By using xT Bx =
p∑

k=1

ρk(wT
k x)2 ≥ 0, we infer that the matrix B is positive semidefinite and, hence,

copositive with respect to V , thus, implying c2 > 0. Given x ∈ �n, there exist
r ∈ R, s ∈ S and t ∈ T such that x = r+s+ t, since �n = R

⊕
S
⊕

T . Therefore,

xT (A + µB)x = (s + t)T A(s + t) + µ(r + s)T B(r + s)
≥ c1|t|2 − 2c3 · |s| · |t| − c3|s|2 + µ · c2 · (|r|2 + |s|2)
= (

√
c1|t| − c2/

√
c1|s|)2 + (µc2 − c3 − c2

2/c1)|s|2.
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This implies A + µ0B � 0, where µ0 = (c3 + c2
2/c1)/c2. Setting τ̄ = µ0 · ρ, we

obtain A +
p∑

i=1

τiwiw
T
i = A + µB +

p∑
i=1

(τi − τ̄i)wiw
T
i � 0. �

Note that c1 and c2 can be determined by computing minimum eigenvalues of
reduced matrices. The main result of this section is the following global optimality
criterion.

Proposition 8.7 (local strong duality). Let (x∗, µ∗) be an optimal primal-dual pair
of problem (8.2) fulfilling Condition 8.4. Assume that the constraint functions qi

are convex for i ∈ A+(x∗). Choose τ̂i ≥ 0, i ∈ A+(x∗), according to Lemma 8.6
such that A(τ̂ ) � 0, where

A(τ) = ∇2q0(·) +
∑

i∈A+(x∗)

τi∇qi(x∗)∇qi(x∗)T .

Define

Sτ̂ = {x ∈ �n | 0 ≥ ∇qi(x∗)T (x − x∗) ≥ −µ∗
i

τ̂i
, i ∈ A+(x∗) and τ̂i > 0}.

Then
min

x∈S∩U
q0(x) = q0(x∗) for all U ⊂ �n with S ∩ U ⊆ Sτ̂ ,

where S is the feasible set of (8.2). In particular, if S ⊆ Sτ̂ , then x∗ is a global
minimizer of (8.2).

Proof. Let
δi(U) = −min

x∈U
∇qi(x∗)T (x − x∗), i ∈ A+(x∗) (8.6)

and define the optimization problem (Q[U]):

min q0(x)
s.t. ∇qi(x∗)T (x − x∗) · (∇qi(x∗)T (x − x∗) + δi(U)) ≤ 0, i ∈ A+(x∗) (I)

∇qi(x∗)T (x − x∗) ≤ 0, i ∈ A+(x∗) (II).

Let µ = (µ(1), µ(2)) be a dual point, where µ(1) and µ(2) pertain to the constraints
(I) and (II) respectively. Let L(x; µ) be the Lagrangian to (Q[U]). Then it holds
that L(x∗; µ) = q0(x∗). From the Karush–Kuhn–Tucker condition

∇q0(x∗) +
∑

i∈A+(x∗)

µ∗
i∇qi(x∗) = 0

and from

∇L(x∗; µ) = ∇q0(x∗) +
∑

i∈A+(x∗)

(µ(1)
i δi(U) + µ

(2)
k )∇qi(x∗)
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we obtain
∇L(x∗; µ) =

∑
i∈A+(x∗)

(µ(1)
i δi(U) + µ

(2)
i − µ∗

i )∇qi(x∗).

Choosing µ(1) = τ̂ and µ
(2)
i = µ∗

i −τ̂iδi(U) for i ∈ A+(x∗), it holds that ∇L(x∗; µ) =
0. If S ∩ U ⊆ Sτ̂ , it holds that δk(U) ≤ µ∗

k

τ̂k
for k ∈ A+(x∗) and τ̂k > 0 implying

µ
(2)
k = µ∗

k − τ̂kδk(U) ≥ 0. Hence, (µ, x∗) fulfills (8.4), and by Lemma 8.3 we
conclude that the dual of (Q[U]) has a zero duality gap. �

Remark 8.8. From Proposition 8.7 it follows that the dual bound of (Q[U ]) is equal
to q0(x∗) if the diameter of the set U is small enough. This property ensures finite
convergence of branch-and-bound algorithms (see Section 13.2). Lower bounds
for integer programs have always this property, whereas most lower bounds for
continuous global optimization problems do not have this property. An exception
is the linear programming bound of Epperly and Swaney (Epperly and Swaney,
1996).

8.3 Global optimality cuts

Based on Proposition 8.7 a cutting-plane can be constructed that splits off a given
local minimizer from the feasible set. Such a cut is called a global optimality cut .
From Proposition 8.7 follows:

Corollary 8.9 (optimality cut). Let x∗ be a local minimizer of problem (8.2) ful-
filling Condition 8.4, and let H ⊂ �

n be a half-space such that x∗ ∈ intH and
S ∩ H ⊆ Sτ̂ . Then

min{q0(x) | x ∈ S ∩ H} = q0(x∗), (8.7)

where Sτ̂ is defined as in Proposition 8.7 and S is the feasible set of (8.2).

A half-space that meets the conditions of Corollary 8.9 defines an optimality
cut with respect to x∗. The following proposition gives a method for constructing
such a half-space.

Proposition 8.10 (construction of optimality cuts). Let x∗ be a local minimizer of
problem (8.2) fulfilling Condition 8.4, and let τ̂i ≥ 0, i ∈ A+(x∗), be parameters
fulfilling A(τ̂ ) � 0, where A(τ̂ ) is defined as in Proposition 8.7. Then

H = {x ∈ �n | ηT (x − x∗) ≤ 1}

defines an optimality cut with respect to x∗, where η =
∑

i∈A+(x∗)

− τ̂i

µ∗
i

∇qi(x∗), and

µ∗
i is an optimal Lagrangian multiplier corresponding to x∗.
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Proof. Obviously, it holds x∗ ∈ intH . Let Kx∗ be the cone defined by

Kx∗ = {x ∈ �n | ∇qi(x∗)T (x − x∗) ≤ 0 for i ∈ A+(x∗)}.

Let

Vj = {x ∈ �n | ∇qj(x∗)T (x − x∗) = −δ∗j , ∇qi(x∗)T (x − x∗) = 0,

i ∈ A+(x∗) \ {j}}

for j ∈ A+(x∗) and

V0 = {x ∈ �n | ∇qi(x∗)T (x − x∗) = 0, i ∈ A+(x∗)}

where δ∗i = µ∗
i

τ̂i
if τ̂i > 0 and δ∗i = ∞ else. Then ηT (x − x∗) = 1 for x ∈ Vi and

i ∈ A+(x∗), and ηT (x − x∗) = 0 for x ∈ V0. Hence, H ∩ Kx∗ = conv{Vi | i ∈
A+(x∗) ∪ {0}}. Due to Vi ⊂ Sτ̂ for i ∈ A+(x∗) ∪ {0} we have

H ∩ S ⊂ H ∩ Kx∗ ⊂ Sτ̂ .

From Proposition 8.7 follows (8.7). This proves the assertion using Corollary 8.9.
�

The parameter τ̂ should be computed in a way such that diam(Sτ̂ ) is as large
as possible. Since δ∗i /‖∇qi(x∗)‖ is an upper bound on the diameter of Sτ̂ along the
direction wi, maximizing diam(Sτ̂ ) is similar to maximizing δ∗i /‖∇qi(x∗)‖ for all

i ∈ A+(x∗) or to minimizing
∑

i∈A+(x∗)

1
δ∗i

‖∇qi(x∗)‖ =
∑

i∈A+(x∗)

τ̂i

µ∗
i

‖∇qi(x∗)‖. This

motivates us to compute τ̂ by solving the following semidefinite program:

minτ

∑
i∈A+(x∗)

τi

µ∗
i
‖∇qi(x∗)‖

s.t. A(τ) � 0
τ ≥ 0.

(8.8)

From Proposition 8.7 it follows that τ̂ ∈ sol(8.8) is well-defined if x∗ fulfills As-
sumption 8.4. Note that for the construction of an optimality cut, it is sufficient to
find a feasible point of (8.8), which is a much simpler problem than solving (8.8).

8.4 Some global optimality criteria for QQPs
For special cases of problem (8.2) it is possible to define an extended quadratic
program that includes the constraints (I) and (II) of problem (Q[U]) in Proposi-
tion 8.7 with respect to all global minimizers. We define such programs for the
box-constrained and the standard quadratic program. Using Proposition 8.7 we
derive conditions that lead to a zero duality gap of the corresponding dual bound.
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Consider a box-constrained quadratic program defined by

(B1)
min q(x)
s.t. x ∈ [x, x]

where q(x) = xT Ax + 2aT x + c and x, x ∈ �n. An all-quadratic reformulation to
(B1) is given by:

(B2)
min q(x)
s.t. x ∈ [x, x]

Diag(x − x)(x − x) ≤ 0.

Obviously, problem (B2) contains the constraints (I) and (II) of problem (Q[U])
with respect to all global minimizers of problem (B1). From this it follows that
under certain assumptions the dual bound of (B2), denoted by val(Dual(B2)),
coincides with the optimal value of (B1). More precisely, the following holds.

Lemma 8.11. Let x∗ be a local minimizer of problem (B1) fulfilling Condition 8.4.
Define A+(x∗) = {i ∈ {1, .., n} | x∗

i = xi or x∗
i = xi and the related optimal dual

point is greater than zero }. Let di =
∣∣∣ ∂
∂xi

q(x∗)
∣∣∣ for i ∈ A+(x∗) and let τ̂ ∈ �n be

a parameter (which exists according to Lemma 8.6) such that ∇2q + Diag(τ̂ ) � 0,
τ̂i ≥ 0 for i ∈ A+(x∗) and τ̂i = 0 for i ∈ {1, .., n} \ A+(x∗). If

di ≥ (xi − xi)τ̂i for i ∈ A+(x∗) (8.9)

then x∗ is a global minimizer and val(Dual(B2)) = q(x∗).

Proof. We can assume that x∗
i = xi for all i ∈ A+(x∗). The set Sτ̂ reads Sτ̂ = {x ∈

�
n | 0 ≥ eT

i (x−x∗) ≥ −µ∗
i

τ̂i
, i ∈ A+(x∗) and τ̂i > 0}, where µ∗ is the dual point

related to the constraint x−x ≤ 0. Since di = µ∗
i and 0 ≥ eT

i (x−x∗) ≥ xi −xi for
all i ∈ A+(x∗), from (8.9) it follows that [x, x̄] ⊂ Sτ̂ , which proves the statement
due to Proposition 8.7. �

From Lemma 8.3 follows:

Corollary 8.12. Let X∗ = Argmin
x∈�n

L2(x; µ∗), where L2 is the Lagrangian corre-

sponding to (B2) and µ∗ is a dual solution of (B2). Assume there exists a local
minimizer of (B1) fulfilling the assumption of Lemma 8.11. Then there exists a
global minimizer of (B1) in X∗. If (B1) has a unique solution x∗, then X∗ = {x∗}.

This shows that all instances of problem (B1) fulfilling the assumption of
Corollary 8.12 can be solved by simply computing val(Dual(B2)). This can be
done in polynomial time and it is not necessary to compute a local minimizer.
Note that, assuming that Condition 8.4 is fulfilled at a point x∗, condition (8.9)
can always be satisfied if diam([x, x]) is sufficiently small.

Example 8.13. Consider again Example 8.5: min{−‖x‖2 | 0 ≤ x ≤ e}, where
x ∈ �n and e ∈ �n is the vector of 1s. The unique global minimizer x∗ = e fulfills
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Condition 8.4. Since µ∗ = d = 2e, A+(x∗) = {1, .., n} and τ̂ = 2e, it follows that
x∗ fulfills (8.9).

Another important quadratic program is the standard quadratic program
(Bomze, 1998) defined by

(S1)
min q(x)
s.t. 0 ≤ x ≤ e

eT x − 1 = 0

where q(x) = xT Ax + 2aT x + c and e ∈ �n is the vector of 1s. Consider the
extended quadratic program

(S2)

min q(x)
s.t. 0 ≤ x ≤ e

xi(xi − 1) ≤ 0, 1 ≤ i ≤ n
eT x − 1 = 0
(eT x − 1)2 = 0.

Let E = {(i, j) | 1 ≤ i < j ≤ n, ∂iiq(x) − 2∂ijq(x) + ∂jjq(x) > 0}, where ∂ijq(x)
denotes the second derivative of q(x) with respect to the variables xi and xj . A
further reformulation of (S1) is

(S3)

min q(x)
s.t. x ≥ 0

xixj ≥ 0, (i, j) ∈ E
eT x − 1 = 0
(eT x − 1)2 = 0.

Denote by Dual(S2) and by Dual(S3) the dual problems of (S2) and (S3) respec-
tively. Problem (S2) contains the redundant constraints (I) and (II) in problem
(Q[U]) in Proposition 8.7 with respect to all global minimizers. Therefore, we can
expect that a similar result as in Lemma 8.11 holds for problem (S2) and (S3).

Lemma 8.14. (i) It holds that val(Dual(S2)) ≤ val(S3).

(ii) Let x∗ be a local minimizer of problem (S1) fulfilling Condition 8.4 and l ∈
{1, .., n} be an index with x∗

l > 0. Define di = ∂
∂xi

q(x∗) − ∂
∂xl

q(x∗) for i ∈
A+(x∗) (where A+(x∗) is defined as in Condition 8.4). Let τ̂ ∈ �

n and
µ ∈ � be parameters (which exist according to Lemma 8.6) such that ∇2q +
Diag(τ̂ )+µJ � 0, τ̂i ≥ 0 for i ∈ A+(x∗) and τ̂i = 0 for i ∈ {1, .., n}\A+(x∗),
where J ∈ �(n,n) is the matrix of 1s. If

di ≥ τ̂i for i ∈ A+(x∗), (8.10)

then x∗ is a global minimizer of problem (S1) and

val(Dual(S2)) = val(Dual(S3)) = q(x∗).
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Proof. (i) Denote by L2(x; µ) and L3(x; µ) the Lagrange functions to (S2) and
(S3) respectively and let µ∗ be an optimal dual point to (S2). From Nowak, 1999
it follows that the constraints xixj ≥ 0 for (i, j) ∈ E can be replaced by the
constraints

xixj ≥ 0, 1 ≤ i, j ≤ n.

Let x ∈ �n be a point fulfilling eT x − 1 = 0. Then

xi(xi − 1) = −
∑

1≤k≤n,k �=i

xixk, 1 ≤ i ≤ n + 1.

This implies that there exists µ̂ such that L1(x; µ∗) = L2(x; µ̂) for all x ∈ �n with
eT x = 1. From Lemma 5.3 it follows that

val(Dual(S2)) = min
eT x=1

L1(x; µ∗) = min
eT x=1

L2(x; µ̂) ≤ val(S3).

This proves the assertion.
(ii) The set Sτ̂ defined in Proposition 8.7 reads Sτ̂ = {x ∈ �n | 0 ≥ eT

i (x − x∗) ≥
−µ∗

i

τ̂i
, i ∈ A+(x∗) and τ̂i > 0}. From ∇q(x∗) +

∑
i∈A+(x∗)

−µ∗
i ei + µ∗

0e = 0, where

µ∗
i and µ∗

0 correspond to the constraints xi ≥ 0 and eT x = 1 respectively, we
have µ∗

0 = − ∂
∂xl

q(x∗) and µ∗
i = ∂

∂xi
q(x∗) + µ∗

0 for i ∈ A+(x∗). Since di = µ∗
i and

0 ≥ eT
i (x − x∗) ≥ −1 for all i ∈ Â+(x∗), from (8.10) it follows that [0, e] ⊂ Sτ̂ .

This proves the statement. �

Similarly as in Corollary 8.12, from Lemma 8.3 follows:

Corollary 8.15. Let X∗
2 = Argmin

x∈�n

L2(x; µ∗
2) and X∗

3 = Argmin
x∈�n

L3(x; µ∗
3), where

L2 and L3 are the Lagrangian corresponding to (S2) and (S3), respectively, and µ∗
2

and µ∗
3 are solutions of Dual(S2) and Dual(S3), respectively. Assume there exists a

local minimizer of (S1) fulfilling the assumption of Lemma 8.14. Then there exists
a global minimizer of (S1) in X∗

1 and in X∗
2 , respectively. If (S1) has a unique

solution x∗, then X∗
2 = X∗

3 = {x∗}.
Remarks.

1. In (Nowak, 1998) the lower bound val(Dual(S3)) was computed for random
examples up to 30 variables. The numerical results showed that very often
val(Dual(S3)) is equal to the optimal value.

2. The redundant constraints of (B2) and (S2) are also used in (Sherali and
Tuncbilek, 1995) for defining so-called RLT-relaxations of nonconvex qua-
dratic programs.

3. Other strong duality results for MIQQPs are given in (Neumaier, 1992; Beck
and Teboulle, 2000). A global optimality result for nonlinear programming
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based on strong duality is given in (Neumaier, 1996). Apart from strong dual-
ity results, global optimality criteria can be derived by checking monotonicity,
convexity or uniqueness of a KKT-solution. For this, interval arithmetic can
be used (see Section 6.1 and the following Section).

8.5 Global optimality via interval-gradient cuts

This section describes a method for verifying global optimality of local solutions of
general nonlinear programs based on interval-gradient cuts, which were introduced
in Section 7.1.3. Consider a nonlinear program of the form

min cT x
s.t. gj(x) ≤ 0, j = 1, . . . , m

x ∈ [x, x]
(8.11)

where the functions gj, j = 1, . . . , m, are continuously differentiable. Let [dj , d
j
]

be an interval-gradient of gj over [x, x], i.e. ∇gj(x) ∈ [dj , d
j
] for all x ∈ [x, x]. An

interval-gradient cut to gi is defined, as in Section 7.1.3, by

g
j
(x) = gj(x̂) + min

d∈[dj ,d
j
]

dT (x − x̂) ≤ 0.

Using interval-gradient cuts, we define the following nonconvex polyhedral outer
approximation of (8.11):

min cT x
s.t. g

j
(x) ≤ 0, j = 1, . . . , m

x ∈ [x, x].
(8.12)

Proposition 8.16. Let x̂ be a local minimizer of (8.11) that fulfils the following
strict KKT-condition:

c +
m∑

j=1

µj∇gj(x̂) = 0 (8.13)

where µj > 0 for j = 1, . . . , m, all constraints are active, i.e. gj(x̂) = 0 for
j = 1, . . . , m, and the gradients ∇gj(x̂), j = 1, . . . , m, are linearly independent.
Then there exists δ > 0 such that the optimal value of (8.11) is equal to the optimal
value of (8.12) whenever ‖x− x‖∞ ≤ δ, which shows that x̂ is a global minimizer
of (8.11).

Proof. Define for all z ∈ {0, 1}n the following sub-intervals of X :

Xz = {x ∈ [x, x] | xi ≥ x̂i if zi = 1 and xi ≤ x̂i if zi = 0}.
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Defining dj,z
i = dj

i if zi = 1 and dj,z
i = d

j

i if zi = 0, the piecewise linear underesti-
mator g

j
of gj can be formulated as

g
j
(x) = gj(x̂) + (dj,z)T (x − x̂) (8.14)

for all x ∈ Xz and z ∈ {0, 1}n. From the strict KKT-condition (8.13) and the
continuity of ∇gj it follows that there exist ε > 0 such that for all vectors dj ,
j = 1, . . . , m, with ‖dj −∇gj(x̂)‖∞ ≤ ε there exist µj ≥ 0 such that

c +
m∑

j=1

µjd
j = 0.

From the continuity of the interval-gradient of gj with respect to x and x it follows
that there exists δ > 0 such that ‖dj,z −∇gj(x̂)‖∞ ≤ ε for all z ∈ {0, 1}n whenever
‖x − x‖ ≤ δ. We assume now that ‖x − x‖ ≤ δ. The previous considerations and
g

j
(x̂) = gj(x̂) = 0 for j = 1, . . . , m show that for all z ∈ {0, 1}n, x̂ is a KKT-point

of the linear program (8.12) with the additional constraint x ∈ Xz. Hence, x̂ is a
global minimizer of (8.12), proving the statement. �

Note that if gj is a convex function, a linearization cut can be used instead
of an interval-gradient cut for defining the polyhedral outer-approximation (8.12).



Chapter 9

Adaptive Discretization of Infinite
Dimensional MINLPs

This chapter presents a framework for simultaneously improving relaxations and
discretizations of infinite dimensional (or very large) optimization problems in
multistage stochastic programming and optimal control. In other words, the mesh
or scenario generation is included in the optimization method. The approach is
based on a new idea for checking the importance of new discretization points via
dual solutions of convex relaxations. The concepts presented here are of prelim-
inary character. Only the basic ideas are described, without numerical results.
The use of MINLP in optimal control and stochastic programming is quite new.
The following approach may give some new directions for further research in these
interesting fields.

Several scenario reduction/generation approaches have been proposed in the
literature. For example, in (Casey and Sen, 2003) a scenario generation algorithm
for linear stochastic programs is proposed and in (Dupacová et al., 2003) a scenario
reduction approach based on Fortet–Morier distances is discussed. An adaptive
scenario reduction method based on some ideas of this chapter is proposed in
(Vigerske, 2005).

9.1 Aggregated discretizations

9.1.1 Multistage stochastic programs

This section describes discretized multistage stochastic programs. The notation is
based mainly on Dentcheva and Römisch, 2002. Let {ξt | t = 1, 2, . . . } be some
discrete-time stochastic process defined on a probability space (Ω,F ,�) with val-
ues in �st . It is assumed that the modeling time horizon includes T time periods,
and that sequential decisions xt ∈ �qt are made at every stage t = 1, . . . , T based
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on the information ζt = (ξ1, . . . , ξt) available at that time. The condition that xt

may depend only on ζt is called the nonanticipativity condition. This property
is equivalent to the measurability of xt with respect to the σ-algebra Ft that is
generated by ζt. We consider a multistage stochastic program (MSP) of the form

minx IE

T∑
t=1

ft(ζt, xt)

s.t.
t∑

τ=1

At,τ (ζt)xt ≥ ct(ζt), t = 1, . . . , T, �-a.s.

xt ∈ Xt(ζt), t = 1, . . . , T,�-a.s.
xt = IE[xt | Ft], t = 1, . . . , T,�-a.s.

(9.1)

A discretization of (9.1) is defined by considering a finite subset of scenarios ΩN =
{ωn}n∈N ⊂ Ω, where N ⊂ �. Related to ΩN , we define decision variables xn,t,
probabilities pn and process values ζn,t, n ∈ N . It can be shown (Dentcheva and
Römisch, 2002) that for the discretized MSP there exists a finite partition Et of
ΩN such that

IE[xt | Ft] =
∑

C∈Et

1
�(C)

·
( ∑

ωs∈C

psxs,t

)
ξC .

Defining the relative probability p̄m = (
∑

j∈Cn,t

pj)−1pm, a discretized MSP takes

the form:

(Ps[N ])

min IE

T∑
t=1

∑
n∈N

fn,t(ζn,t, xn,t)

s.t.
t∑

τ=1

At,τ (ζn,t)xn,t ≥ ct(ζn,t), t = 1, . . . , T, n ∈ N

xn,t ∈ Xt(ζn,t), t = 1, . . . , T, n ∈ N

xn,t =
∑

m∈Cn,t

p̄mxm,t, t = 1, . . . , T, n ∈ N.

Consider now an aggregated problem to (Ps[N ]) with respect to an aggregated
node set Nagg ⊂ N . Let {Nj}j∈Nagg be a partition of N , i.e.

⋃
j∈Nagg

Nj = N and
Ni ∩ Nj = ∅ for i 	= j. For the aggregated problem, we claim

xj,t = xm,t, t = 1, . . . , T, m ∈ Nj , j ∈ Nagg. (9.2)

Then the aggregated problem to (Ps[N ]) reads:
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(P̃s[N ])

min IE
T∑

t=1

∑
n∈N

fn,t(ζn,t, xn,t)

s.t.
t∑

τ=1

At,τ (ζn,t)xn,t ≥ ct(ζn,t), t = 1, . . . , T, n ∈ N

xn,t ∈ Xt(ζn,t), t = 1, . . . , T, n ∈ N

xn,t =
∑

m∈Cn,t

p̄mxm,t, t = 1, . . . , T, n ∈ N

xj,t = xm,t, t = 1, . . . , T, m ∈ Nj, j ∈ Nagg.

9.1.2 Optimal control problems
Consider the following mixed integer optimal control problem (MIOCP) of the
form:

min
∫ t

t

f(x(t), u, y, t)dt

s.t. ẋ(t) = h(x(t), u(t), y, t), t ∈ [t, t] (a.e.)
(x(t), u(t)) ∈ G(y, t), t ∈ [t, t] (a.e.)
y ∈ [y, y], yB binary
u ∈ Fu, x ∈ Fx

(9.3)

where x :� 
→ �
nx , u :� 
→ �

nu and y ∈ �ny . Such problems arise in hybrid
optimal control, such as the motorized traveling salesman problem (von Stryk
and Glocker, 2000). A discretization of (9.3) is defined by replacing the infinite
dimensional function spaces Fu and Fx with the finite dimensional spaces,

FN
u = {u(t) =

∑
n∈N

un · ϕn(t) | un ∈ �nu}

FN
x = {x(t) =

∑
n∈N

xn · ψn(t) | xn ∈ �nx}

respectively, where ϕn and ψn are in appropriate function spaces. Let t = t(n1) <
· · · < t(nl) = t be discretization points of the interval [t, t]. For the sake of sim-
plicity, it is assumed that the functions ϕn and ψn are affine over the interval
[t(nk), t(nk+1)]. Note that in this way, higher-degree polynomials can also be rep-
resented by adding additional linear equations. Then the discretized MIOCP takes
the form:

(Pc[N ])

min
∫ t

t

f(x(t), u, y, t)dt

s.t. ẋ(tn) = h(x(tn), u(tn), y, tn), n ∈ N
(x(tn), u(tn)) ∈ G(y, tn), n ∈ N
y ∈ [y, y], yB binary
u ∈ FN

u , x ∈ FN
x .
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For an aggregated node set Nagg ⊂ N , consider a cover {Nj}j∈Nagg of N , i.e.⋃
j∈Nagg

Nj ⊇ N and Ni ∩ Nj = ∅ for i 	= j, such that

tj =
∑

m∈Nj

δmtm, j ∈ Nagg.

Then (Pc[Nagg]) is equivalent to the aggregated problem

(P̃c[N ])

min
∫ t

t

f(x(t), u, y, t)dt

s.t. ẋ(tn) = h(x(tn), u(tn), y, tn), n ∈ N
(x(tn), u(tn)) ∈ G(y, tn), n ∈ N
y ∈ [y, y], yB binary
u ∈ FN

u , x ∈ FN
x

uj =
∑

m∈Nj

δmum, j ∈ Nagg

xj =
∑

m∈Nj

δmxm, j ∈ Nagg.

9.1.3 Abstract formulation
Both discretizations (Ps[N ]) and (Pc[N ]) can be written as a MINLP of the form:

(P[N])
min FN (x, y)
s.t. GN (x, y) ≤ 0

x ∈ XN , y ∈ Y.

Let {Nj}j∈Nagg be a cover of N . An aggregated problem to (P[N]) is given by:

(P̃ [N])

min FN (x, y)
s.t. GN (x, y) ≤ 0

x ∈ XN , y ∈ Y
WjxNj = 0, j ∈ Nagg,

where the matrices Wj are defined in such a way that val(P [Nagg]) = val(P̃ [N ]).

9.2 Optimal mesh and scenario refinement
Given a large node set N and a coarse discretization (P[N0]), a method for adap-
tively generating a discretization (P[N ]) of (P[N0]) is now presented that tries to
keep the approximation error | val(P [N ]) − val(P [N ])| for all node sets N ⊂ N
with |N | ≤ n as small as possible (see Algorithm 9.1).

Let N j be the node set of the j-th iteration. In each iteration of the method,
a set N

j
of disaggregated nodes is computed, where val(P [N j ]) = val(P̃ [N

j
]) and
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N
j

=
⋃

i∈Nj N j
i . The disaggregated node set N

j
is defined by locally refining

scenarios or mesh points. The new node set is defined by N j+1 = N
j
(M j), where

N
j
(M) = (N j \ M) ∪ (

⋃
i∈M

N j
i )

is a partially disaggregated node set , and M j ⊂ N j is a set of disaggregated nodes
with |M j| ≤ m. The set M j of disaggregated nodes is computed such that

| val(P [N
j
]) − val(P [N

j
(M j)])| is small,

which is equivalent to

| val(P̃ [N
j
]) − val(P [N

j
(M j)])| is large, (9.4)

since val(P [N j ]) = val(P̃ [N
j
]). A convex relaxation to (P̃ [N

j
]) is defined by

(C̃[N
j
])

min F̆
N

j (x, y)
s.t. Ğ

N
j (x, y) ≤ 0

WixNj
i

= 0, i ∈ N j

where F̆N and ĞN are appropriate convex functions. If the gap val(P̃ [N
j
]) −

val(C̃[N
j
]) is not too large, then (9.4) is similar to

| val(C̃[N
j
]) − val(C[N

j
(M j)])| is large. (9.5)

Let τi be a dual solution point of problem (C̃[N
j
]) related to the equality constraint

WixNi = 0, i ∈ N j . Since ‖τi‖∞ measures the sensitivity of val(C̃[N
j
]) with

respect to the constraint WixNi = 0, (9.5) is similar to

M j = argmax
|M|≤m, M⊂Nj

∑
i∈M

‖τi‖∞. (9.6)

Algorithm 9.1 shows an adaptive procedure for generating a discretization (P[N]),
based on the refinement criterion (9.6).

9.3 Updating and solving relaxations

Assume that the convex relaxation (C̃[N ]) of the MINLP (P̃ [N ]) has the form
of the dual-equivalent relaxation (3.13) defined in Section 3.4, i.e. val(C̃[N ]) =
val(Dual(P̃ [N ])). Since in Algorithm 9.1 a sequence of similar relaxations (C̃[N j])
has to be solved, it is highly desirable that the solution-information obtained in
the j-th iteration can be used in the (j + 1)-th iteration.
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Initialize N0, where |N0| is small.

for j = 0, . . . , l

Update and solve the convex relaxation (C̃[N
j
])

obtaining dual points τi, i ∈ N j .

Compute M j according to (9.6) and set N j+1 = N
j
(M j).

if |N j+1| > n: stop.

end for

Algorithm 9.1: Node generation algorithm

Problem (C̃[N ]) can be generated by dual (bundle) methods, cutting-plane
methods or column generation methods (see Chapter 4). Bundle methods are
based on a bundle of subgradients. Updating such a bundle seems difficult, since
it is not clear how subgradients of the j-th iteration can be updated to be valid
subgradients for the (j + 1)-th iteration.

Cutting-plane methods could be efficient if it is possible to update cuts ef-
ficiently. For the case when nodes of the same type are aggregated, this seems
possible. However, in general it is not clear how a cut obtained in the j-th itera-
tion can be updated to be valid for the (j + 1)-th iteration.

Column generation seems to be better suited for updating relaxations, since
the inner approximation points need not necessarily be extreme points, i.e. solu-
tions of Lagrangian subproblems (see end of Section 4.3). In the case of stochastic
programs, an inner approximation point wN,t can be updated by

wj,t = wm,t, t = 1, . . . , T, m ∈ Nj , j ∈ Nagg.

In the case of optimal control problems, an inner approximation point wN,t can
be updated by

wj =
∑

m∈Nj

δmwm, j ∈ Nagg

where wn = (xn, un).
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Algorithms



Chapter 10

Overview of Global Optimization
Methods

Over the last decades many approaches for globally solving nonconvex programs
have been developed. These methods can be classified into exact methods and
heuristics. A method is called exact (or deterministic) if it guarantees to find and
verify global solutions. Otherwise, it is called a heuristic.

Heuristics try to find global solutions without verifying global optimality.
Since reliable deterministic solvers for large-scale MINLPs are often not available,
heuristics play a fundamental role in large-scale nonconvex optimization. They can
be used as stand-alone solvers or as an acceleration tool in deterministic methods.
Apart from providing upper bounds on the global optimum, they can also be used
to compute relaxations, to generate cuts, and to find good partitions of the feasible
set.

Heuristics with a performance guarantee, in the sense that the expected value
of the relative error can be estimated, are called approximation algorithms. Of spe-
cial interest are polynomial time approximation algorithms for NP-hard problems.
The derivation of a performance guarantee for such an algorithm often requires
a deep analysis of the method. For an overview of this field we refer to (Fisher,
1980; Ausiello et al., 1999; Hochbaum, 1999; Vazirani, 2001). Polynomial time
approximation algorithms have mainly been developed for special subclasses of
MIP.

The MaxCut heuristic of Goemann and Williamson (Goemans and William-
son, 1995) may be the first approximation algorithm for a quadratic binary pro-
gram. Approximation algorithms for MINLP can be derived from MIP approxi-
mations that are based on approximating univariate functions by piecewise linear
functions (see Section 2.4). Since the error of approximating a univariate func-
tion by a piecewise linear function is predictable, a performance guarantee for the
MINLP-method can be derived, provided that a performance guarantee for the
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related MIP-method is available.
Exact global optimization methods find and verify global ε-solutions in a

finite number of steps. If an algorithm finds and verifies a global solution in fi-
nitely many steps, it is called finite. Enumeration algorithms for solving integer or
concave problems with a bounded feasible set are finite. Other finite algorithms
are the simplex method for solving linear programs and active set methods for
solving convex quadratic programs. Methods for solving general nonlinear convex
problems, such as SQP or interior point methods, are usually not finite.

Although the existing global optimization methods are very different, they
all generate a crude model of the original problem for finding solutions. If an
optimization method uses a sample set as a crude model, i.e. a finite set of points,
it is called a sampling heuristic. If it uses a relaxation as a crude model, i.e.
a mathematical program that is easier to solve than the original problem, it is
called a relaxation-based method.

In sampling heuristics the points of the sample set are distributed over a
bounded set. The distribution of points is usually more dense in ‘regions of inter-
est’. These methods use random behavior to try to include all possible solutions.
Since in continuous spaces the random selection has an infinite number of possi-
bilities, it cannot be guaranteed that the optimization is global. In general, it is
only possible to prove convergence with probability arbitrarily close to 1 for such
type of methods.

The type of the crude model influences also the problem description. Whereas
for sampling heuristics it is advantageous to formulate the problem in an aggregated
form with few variables and a simple feasible set, for relaxation-based methods
it is often better to work with a disaggregated model containing objective and
constraint functions that can be relaxed easily.

In the sequel, sampling and relaxation-based methods for solving nonconvex
MINLPs are reviewed. Relaxation-based methods are divided into three classes.
The first class contains branch-and-bound methods that subdivide the original
problem into subproblems by partitioning the feasible set. The second class con-
tains successive relaxation methods that successively improve an initial relaxation
without subdividing it into subproblems. The third class contains heuristics that
retrieve solution candidates from a given relaxation without modifying the relax-
ation. These methods are called relaxation-based heuristics.

Currently, there is no method that is able to solve reliably large scale noncon-
vex MINLPs. In a recent comparison between the two sampling codes LGO (Pin-
tér, 2005) and OQNLP (Lasdon, 2003) and the branch-and-bound code BARON
(Sahinidis, 2002), none of the solvers was superior to all others (Bussieck et al.,
2003b). There is still a huge gap between MIP and MINLP solver technology.
Modern MIP solvers are branch-cut-and-price algorithms with clever preprocess-
ing and constraint propagation techniques (Bixby et al., 2000). Current general
purpose MINLP solvers are not much developed, and the methods are often im-
plemented in a rudimentary form. As a result, MIP is often used for modeling
practically-relevant large-scale problems.
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For more detailed information on global optimization and MINLP methods,
the reader is referred to (Horst et al., 1995; Horst and Pardalos, 1995; Horst and
Tuy, 1990; Forgó, 1988; Pardalos and Rosen, 1987; Pintér, 1996; Neumaier, 2004;
Schichl, 2004) and to (Floudas, 2000; Grossmann, 2001; Grossmann and Kravanja,
1997; Floudas, 1995; Floudas, 2000; Tawarmalani and Sahinidis, 2002) respectively.
An overview on sampling heuristics can be found in (Törn and Zilinskas, 1989;
Boender and Romeijn, 1995; Strongin and Sergeyev, 2000).

10.1 Sampling heuristics
Multistart. An obvious probabilistic global search procedure is to use a local
algorithm starting from several points uniformly distributed over the whole opti-
mization region. This global search procedure is named Multistart and is certainly
one of the earliest global procedures used. It has even been used in local optimiza-
tion for increasing the confidence in the obtained solution. The starting points
can be generated randomly or by a deterministic method, for example, by using
space filling curves (Strongin and Sergeyev, 2000). One drawback of Multistart is
that when many starting points are used the same minimum will eventually be
determined several times.

Clustering methods. Clustering methods try to avoid the repeated determination
of the same local minima. This is realized in three steps which may be iteratively
used. The three steps are: (i) Sample points in the region of interest. (ii) Transform
the sample to obtain points grouped around the local minima. (iii) Use a cluster-
ing technique to recognize these groups (i.e. neighborhoods of the local minima).
If the procedure employing these steps is successful then starting a single local
optimization from each cluster would determine the local minima and thus also
the global minimum. The advantage in using this approach is that the work saved
by computing each minimum just once can be spent on computations in (i)–(iii),
which will increase the probability that the global minimum will be found (Becker
and Lago, 1970; Dixon and Szegö, 1975; Törn and Zilinskas, 1989).

Evolutionary algorithms. Evolutionary algorithms (Forrest, 1993) are search
methods that take their inspiration from natural selection and survival of the
fittest in the biological world. They differ from more traditional optimization tech-
niques in that they involve a search from a "population" of solutions, not from a
single point. In each iteration, the algorithm uses three operations to modify the
population: reproduction, crossover and mutation. Reproduction copies a solution
from the old population to the new population with a probability depending on
the fitness of the solution, which is determined by the value of the objective or
penalty function. Crossover combines two solutions to two new solutions by swap-
ping binary sections. For example, the crossover of 10|001 and 11|101 may produce
the new solutions 10|101 and 11|001. The operation tries to create a new solution
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that has the best properties of the old solutions. Mutation produces new solutions
by randomly changing a small part of an old solution. This operation allows the
algorithm to jump into unexplored regions, which might contain better solutions.
Such kind of algorithms may be well-suited if the problem is highly nonlinear and
discrete. In the presence of continuous variables the random net could be not tight
enough to reach the global minimum. The larger the initial sample set is, the
higher is the probability to find the right solution. However, working with a large
sample set can be very time-consuming.

Simulated annealing. In simulated annealing (Kirkpatrick et al., 1983; Locatelli,
2002) points of a sample set are modified by applying a descent step with a random
search direction and an initially large step-size that is gradually decreased dur-
ing the optimization process. The method generalizes a Monte Carlo method for
examining the equations of state and frozen states of n-body systems (Metropo-
lis et al., 1953). It takes the inspiration from the slow cooling of a metal that
brings it to a crystalline state where the free energy of bulk matter could take its
global minimum. Simulated annealing has similar disadvantages and advantages
as evolutionary algorithms.

Tabu search. The Tabu search (Glover and Laguna, 1997) begins by marching
to a local minimum. To avoid retracing the steps used, the method records recent
moves in one or more Tabu lists. The Tabu lists form the Tabu search memory. The
role of the memory can change as the algorithm proceeds. At initialization the goal
is to make a coarse examination of the solution space, known as ‘diversification’,
but as candidate locations are identified the search is more focused to produce local
optimal solutions in a process of ’intensification’. In many cases the differences
between the various implementations of the Tabu method have to do with the
size, variability, and adaptability of the Tabu memory to a particular problem
domain.

Statistical global optimization. Statistical global optimization algorithms
(Mockus, 1989) employ a statistical model of the objective function to bias the
selection of new sample points. These methods are justified with Bayesian argu-
ments which suppose that the particular objective function being optimized comes
from a class of functions that is modeled by a particular stochastic function. In-
formation from previous samples of the objective function can be used to estimate
parameters of the stochastic function, and this refined model can subsequently be
used to bias the selection of points in the search domain.

Greedy randomized adaptive search procedure. A greedy randomized adaptive
search procedure (GRASP) (Resende and Ribeiro, 2002) is a multistart metaheuris-
tic that applies local search to starting points generated by a greedy randomized
construction procedure.
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10.2 Branch-and-bound methods

Branch-and-bound. Originally invented for solving combinatorial optimization
problems, branch-and-bound was generalized to solve continuous problems. A de-
tailed introduction of branch-and-bound for global optimization is given in (Horst
and Tuy, 1990).

To apply branch-and-bound, one must have a means of computing a lower
bound on an instance of the optimization problem and a means of dividing the
feasible region of a problem to create smaller subproblems. There must also be a
way to compute an upper bound (feasible solution) for at least some instances.

The method starts by considering the original problem with the complete
feasible region, which is called the root problem. The lower-bounding and upper-
bounding procedures are applied to the root problem. If the bounds match, then
an optimal solution has been found and the procedure terminates. Otherwise, the
feasible region is divided into two or more regions. These subproblems become
children of the root search node. The algorithm is applied recursively to the sub-
problems, generating a tree of subproblems. If an optimal solution is found to
a subproblem, it can be used to prune the rest of the tree: if the lower bound
for a node exceeds the best known feasible solution, no globally optimal solution
can exist in the partition subspace of the feasible region represented by the node.
Therefore, the node can be removed from consideration. The search proceeds until
all nodes have been solved or pruned, or until some specified threshold is met be-
tween the best solution found and the lower bounds on all unsolved subproblems.

Some branch-and-bound methods for MINLPs are the reformulation / spatial
branch-and-bound approach (Smith and Pantelides, 1996; Smith and Pantelides,
1999) and the interval analysis based approach (Vaidyanathan and EL-Halwagi,
1996; Ratschek and Rokne, 1995).

Branch-and-cut. The integration of a cut generating procedure into branch-and-
bound is called branch-and-cut . The roots of this approach go back to (Padberg
and Rinaldi, 1991). In branch-and-cut, cutting-planes are added iteratively until
either a feasible solution is found or it becomes impossible or too expensive to
find another cutting-plane. In the latter case, a traditional branching operation is
performed and the search for cutting-planes continues on the subproblems.

Branch-and-reduce. Branch-and-reduce is branch-and-bound combined with box
reduction for tightening lower bounds (Sahinidis, 1996).

Branch-and-price. Branch-and-price is essentially branch-and-bound combined
with column generation. This method is used mainly to solve integer programs
where there are too many variables to represent the problem explicitly. Thus, only
the active set of variables are maintained and columns are generated as needed
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during the solution of the linear master program. Column generation techniques
are problem specific and can interact with branching decisions.

Branch-cut-and-price. The integration of both cutting-planes and column gener-
ation into branch-and-bound is called branch-cut-and-price (BCP). BCP is used
mainly in MIP. In Chapter 13 a BCP algorithm for general MINLPs is presented.

Branch-and-infer. Branch-and-infer is the combination of branch-and-bound
with constraint propagation (CP). This method uses tests of infeasibility and global
optimality to prune the search tree (Van Hentenryck et al., 1997). In the last years
the integration of concepts from operations research and CP has been studied. A
recent overview on this integration is provided in (Bliek et al., 2001; Hooker,
2000). A CP-based algorithm for finding solutions of large systems of quadratic
constraints is proposed in (Boddy and Johnson, 2003). A combination of CP and
Lagrangian relaxation is presented in (Sehlmann and Fahle, 2003).

10.3 Successive approximation methods

Successive approximation algorithms start with an initial relaxation that is suc-
cessively improved without subdividing the given optimization problem into sub-
problems, such as in branch-and-bound methods. During the iteration, lower and
upper bounds of the optimal value are generated that converge towards the optimal
value.

Extended cutting-plane method. The extended cutting-plane method (ECP)
solves a (quasi) convex MINLP using a LP master program (Westerlund et al.,
1994; Westerlund and Petterson, 1995; Westerlund et al., 1998). In each iteration,
the method generates cuts by solving MIP-subproblems obtained from lineariza-
tions of nonlinear objective and constraint functions at trial points.

Generalized Benders decomposition. In general Benders decomposition (GBD)
(Geoffrion, 1972; G. E. Paules and Floudas, 1989; Floudas et al., 1989) the MIP
master program is defined by fixing variables and adding cuts obtained from the
solution of the NLP subproblems via duality. The minimization of the MIP mas-
ter problem gives a lower bound, and the solution of the NLP subproblems give
an upper bound on the optimal value. The method solves alternatively the MIP
master problem and the NLP subproblems until the difference between the upper
and lower bound is smaller than a given error tolerance.

Outer approximation. The outer approximation (OA) method is a cutting-plane
method that uses a MIP master program (Duran and Grossmann, 1986). The cuts
are generated by minimizing the NLP subproblems obtained from fixing the integer
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variables and by linearizing the nonlinear objective and constraint functions. In
(Fletcher and Leyffer, 1994) an OA method that uses a MIQP master problem is
proposed.

In general, the OA method requires fewer iterations and thus the solution of
fewer NLP subproblems than GBD, but the MIP problems require more compu-
tation. Similar to the ECP and GBD method, the OA method requires that the
MINLP is convex. Attempts to generalize OA to solve nonconvex problems are
proposed in (Kocis and Grossmann, 1987; Viswanathan and Grossmann, 1990; Ke-
savan et al., 2001). A hybrid branch-and-bound and outer approximation approach
that updates a branch-and-bound method for solving the MIP master problem is
described in (Zamora and Grossmann, 1998b; Zamora and Grossmann, 1998a).

Logic-based approach. The logic-based approach is a cutting-plane method for
solving convex MINLPs that uses an MIP master problem. In each iteration, cuts
are generated by solving a separation problem that is defined by disjunctive con-
straints (Turkay and Grossmann, 1996; Vecchietti and Grossmann, 1999).

Generalized cross decomposition. Generalized cross decomposition is the integra-
tion of Benders decomposition and Lagrangian decomposition (Holmberg, 1990).

Successive semidefinite relaxation. The successive semidefinite relaxation method
solves general polynomial programs by iteratively improving semidefinite relax-
ations (Henrion and Lasserre, 2002). The method is based on the results of
(Lasserre, 2001) that show that general nonconvex polynomial programs can be ap-
proximated by semidefinite relaxations with arbitrary precision. A general frame-
work for successive convex relaxation of polynomial programs is proposed in (Ko-
jima et al., 2003).

Lagrangian and domain cut method. In this recent approach, a MINLP is solved
by successively refining a Lagrangian relaxation via nonconvex rectangular subdi-
visions of the domain (Li et al., 2002).

10.4 Relaxation-based heuristics
Relaxation-based heuristics generate solution candidates by using a given relax-
ation without improving the relaxation. In contrast to exact methods, the relax-
ation can be any problem that is easier to solve than the original problem and
that need not be rigorous.

Rounding heuristics. Rounding heuristics in MIP are based on rounding frac-
tional solutions of LP relaxations. Several MIP rounding heuristics are proposed
and compared in (Burkard et al., 1997). A rounding heuristic for obtaining solu-
tions of convex MINLPs is proposed in (Mawengkang and Murtagh, 1986). Here, a
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relaxed NLP solution is rounded to an integral solution with the best local degra-
dation by successively forcing the superbasic variables to become nonbasic based
on the reduced cost information. Rounding heuristics for nonconvex quadratic (in-
teger) programs based on semidefinite relaxations are described in Goemans and
Williamson, 1995 and Zwick, 1999. Chapter 12 presents rounding heuristics for
general nonconvex MINLPs.

Lagrangian heuristics. Lagrangian heuristics generate solution candidates by
making solutions of Lagrangian relaxations feasible with respect to coupling con-
straints. In order to facilitate this task, ‘user knowledge’ or problem specific rules
can be used (see for example Holmberg and Ling, 1997; Nowak and Römisch,
2000). A Lagrangian heuristic for MINLP is proposed in Section 12.4.

Deformation heuristics. Deformation heuristics are based on gradually deform-
ing an initial relaxation that has few local solutions into the original problem.
During the deformation, trial points are used to generate new solution candidates
via neighborhood techniques (Moré and Wu, 1997; Alperin and Nowak, 2002).
Scheltstraete et al. (Schelstraete et al., 1998) provide an overview on this kind of
heuristics. Chapter 11 presents deformation heuristics for MaxCut and MINLP.

MIP approximation. Since there exist powerful codes for solving MIPs, MINLPs
are often solved in practice by MIP approximation (Neumaier, 2004). To this end,
the problem is reformulated as a separable program (see Section 2.4) and univariate
nonlinear functions are approximated by piecewise linear functions. The approach
is only efficient if the number of additional constraints and logical variables is not
too large.

Successive linear programming. In successive linear programming, solution can-
didates are computed by alternatively solving MIP approximations generated by
linearizing nonlinear functions at trial points and NLP subproblems with fixed
integer variables. If the objective function or some constraints of the MINLP are
nonconvex, it cannot be guaranteed that a MIP linearization is feasible. The ap-
proach is local in the sense that the solution depends on the starting point of the
iteration.
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Deformation Heuristics

Deformation heuristics are based on a smoothing transformation that changes a
difficult optimization problem into a relaxed problem that is easier to solve. They
solve a sequence of relaxed problems converging towards the original problem.
Since the approach is generic, it can theoretically be applied to any optimization
problem. The best-known deformation methods may be interior point methods
for solving convex optimization problems, where the smoothing transformation is
defined by a barrier or potential function.

A deformation heuristic for distance geometry problems that is based on
smoothing the objective function by using the so-called Gaussian transformation
is proposed in (Moré and Wu, 1997). A deformation heuristic for a combinato-
rial optimization problem is presented in Chapter 6 of (Warners, 1999), where
the smoothing operator is defined via a potential function. Scheltstraete et al.
(Schelstraete et al., 1998) provide an overview of deformation heuristics for solv-
ing nonconvex energy minimization problems.

The deformation heuristics for MaxCut (Alperin and Nowak, 2002) and gen-
eral MINLPs presented in this chapter are based on smoothing the objective func-
tion by combining it with a convex underestimator. Numerical results for both
MaxCut and MINLP instances are reported.

11.1 The algorithm of Moré and Wu

Moré and Wu presented in (Moré and Wu, 1997) a deformation heuristic for solving
distance geometry problems of the form:

(P) min f(x) =
∑
i,j∈I

pi,j(xi − xj)

where pi,j :�n 
→ � is a pair-wise potential function and I ⊂ � is an index set.
This problem is known to have a large number of local minimizers. In order to
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relax the problem, the Gaussian smoothing transformation:

G(x; t) =
1

πn/2tn

∫
�n

f(y) exp
(
−‖y − x‖2

t2

)
dy

is used. The parameter t controls the degree of smoothing. The original function
is obtained if t → 0, while smoother functions are obtained as t increases. This
transformation reduces the number of local minimizers, while the overall structure
is maintained. The solution approach of Moré and Wu is based on solving the
parametric optimization problem:

(Pt) minx G(x; t)

by using the method described in Algorithm 11.1.

Input: a sequence of continuation points t0 > · · · > tl = 0

Choose a random vector x0 ∈ �n.

for j = 0, . . . , l
Determine a local minimizer xj+1 of (Ptj ) starting from xj .

end for

Algorithm 11.1: Deformation heuristic of Moré and Wu

The computational experiments in (Moré and Wu, 1997) show that Algorithm
11.1 with an iteration number l > 0 requires less than twice the effort (measured
in terms of function and gradient evaluations) than l = 0, although Algorithm 11.1
has to solve l + 1 optimization problems. Motivated by these results, deformation
heuristics for MaxCut and MINLP are proposed in the following that use a convex
relaxation instead of Gaussian smoothing. The smoothing of a nonconvex function
by using a convex underestimator is shown in Figure 11.1.

11.2 A MaxCut deformation heuristic

This section describes a deformation heuristic for MaxCut (Alperin and Nowak,
2002) that uses a smoothing transformation defined by a convex relaxation.

11.2.1 Problem formulation

Let G = (V, E) be an undirected weighted graph consisting of the set of nodes
V = {1, . . . , n} and the set of edges E. Let aij be the cost of edge (i, j), and
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Figure 11.1: Deformation of a convex underestimator into the original function

assume that G is complete, otherwise set aij = 0 for every edge (i, j) not in E.
The Maximum Cut problem (MaxCut) consists of finding a subset of nodes S ⊂ N
that maximizes the cut function:

cut(S) =
∑

(i,j)∈δ(S)

aij ,

where the incidence function δ(S) = {(i, j) ∈ E | i ∈ S and j /∈ S} is defined to
be the set of arcs that cross the boundary of S.

It is well known that MaxCut can be formulated as the following nonconvex
quadratic problem:

(MC) min xT Ax
s.t. x ∈ {−1, 1}n.

Since

xT Ax =
n∑

i,j=1
xixj>0

aij −
n∑

i,j=1
xixj<0

aij =
n∑

i,j=1

aij − 2
n∑

i,j=1
xixj<0

aij = eT Ae − 4
∑

ij∈δ(S)

aij

if x ∈ {−1, 1}n, the maximum cut(S) can be produced by minimizing xT Ax, then
adding the constant eT Ae, and finally dividing by 4. From Section 5.2 it follows
that (MC) is equivalent to the unconstrained quadratic binary problem:

(QBP) min xT Ax + 2bT x + c
s.t. x ∈ {0, 1}n,

where A ∈ �(n,n) is symmetric, b ∈ �n and c ∈ �. The equivalence between (MC)
and (QBP) is also shown in Helmberg, 2000.
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Although problem (MC) was proven to be NP-hard (Garey and Johnson,
1979), some interesting heuristics to obtain good solutions have been proposed. Fol-
lowing, the most well-known and recent ones are presented. An excellent overview
of solution approaches including applications of MaxCut is given in (Helmberg,
2000).

Goemans and Williamson (Goemans and Williamson, 1995) used the solution
of the semidefinite program:

(SDP)
min 〈A, X〉
s.t. diag(X) = e

X � 0

to generate solution candidates. Assuming that X∗ is an (SDP) optimal solution,
which is not necessarily rank-1, their strategy consists of finding a factorization
X∗ = V T V , where V can be the Cholesky factorization. A feasible solution x̂ =
sign(V T u) can be produced using the random vector u ∼ U [B(0, 1)], uniformly
distributed over the zero-centered n-dimensional ball of radius 1. For the case of
non-negative edge weights, aij ≥ 0, they proved a bound on the expected value of
the randomly generated solutions that is

E(x̂T Ax̂) ≥ .878 val(MC),

where val(MC) is the optimal value of problem (MC), and E(x̂T Ax̂) is the expected
value of the objective function of (MC) using the randomly generated feasible point
x̂. A similar procedure for rounding solutions of SDP relaxations was proposed by
Zwick (Zwick, 1999).

Burer et. al. (Burer et al., 2001) have devised a rank-2 relaxation of problem
(MC). In their heuristic, they relax the binary vector into a vector of angles and
work with an angular representation of the cut. They maximize an unconstrained
sigmoidal function to obtain heuristic points that later are perturbed to improve
the results of the algorithm. Their approach is similar to the Lorena (Berloni et al.,
1998) algorithm. Metaheuristics for solving (QBP) are proposed and studied for
cases containing up to 2500 variables in (Beasley, 1998).

11.2.2 A MaxCut algorithm

Consider a box-constrained quadratic parametric reformulation of MaxCut defined
by

(Pt)
min H(x; t)
s.t. x ∈ [−e, e],

where the function
H(x; t) = tP (x; t) + (1 − t)L(x; µ)

is a convex combination of the Lagrangian

L(x; µ) = xT Ax +
n∑

i=1

µi(x2
i − 1)
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and the penalty function

P (x; t) = xT Ax +
1

1 − t
(n − ‖x‖2).

Lemma 11.1. There exists a value tmin ∈ (0, 1) such that val(MC) = val(Pt) for
all t ∈ [tmin, 1).

Proof. Since

∇2H(x; t) = 2
(

tA − t

1 − t
I + (1 − t)Diag(µ)

)
,

there exists tmin such that H(·; t) is concave for all t ∈ [tmin, 1). Furthermore,
H(x; t) = xT Ax for all x ∈ {−1, 1}n, µ ∈ �n, and t ∈ [0, 1). This proves the
statement. �

Remark 11.2. Note that it may occur that the path x(t) of the parametric opti-
mization problem (Pt) related to a solution x∗ of (MC) is discontinuous (Guddat
et al., 1990).

Remark 11.3. Dentcheva et al. (Dentcheva et al., 1995) and Guddat et al. (Guddat
et al., 1998) pointed out general disadvantages of the formulation (Pt), namely
the one-parameter optimization is not defined for t = 1 and the objective function
can be only once continuously differentiable. However, for MaxCut the penalty
objective function used is quadratic, thus infinitely many times differentiable. On
the other side, from Lemma 11.1, the path need not be traced until t = 1.

Assuming that the dual point µ ∈ �n
+ is large enough, the function H(·; 0) =

L(·; µ) is a convex underestimator of xT Ax over [−e, e] and (P0) is a convex
relaxation of (MC). From Lemma 11.1 it follows that the solution set of (Pt)
approaches the solution set of (MC) when t tends to 1. Similar to the previously
described deformation heuristic of Moré and Wu, Algorithm 11.2 solves MaxCut
by successively computing near-optimal solutions of (Pt) with a projected gradient
algorithm. Here, Π[−e,e](x) denotes the projection of x onto the interval [−e, e],
i.e.

Π[−e,e](x)i =

⎧⎨
⎩

−1 if xi < −1
xi if −1 ≤ xi ≤ 1
1 if xi > 1.

The parameters βi in Algorithm 11.2 determine the step-length of the pro-
jected gradient algorithm. It is possible to auto-tune βi to guarantee descent steps
using the bisection rule, or to use a fixed value βi = β.

The continuation points, t1 < · · · < tj < · · · < tl, determine the values
at which the function H(x; tj) is optimized. It is possible to generate tj , using a
geometric sequence, i.e. tj = 1 − ρj with ρ ∈ (0, 1), or using a uniform sequence,
i.e. tj = j/(l + 1).



134 Chapter 11. Deformation Heuristics

Input: a sequence of continuation points 0 < t0 < · · · < tl < 1

Choose a random vector x0 ∈ [x, x] and a dual point µ defining
a convex Lagrangian L(·; µ).

for j = 0, . . . , l
y0 = xj .

for i = 0, . . . , m − 1

yi+1 = Π[−e,e]

(
yi − βi ∇H(yi; tj)

‖∇H(yi; tj)‖

)
.

end for

xj = ym.
end for

Algorithm 11.2: MaxCut deformation heuristic

Remark 11.4. From Lemma 11.1 it follows that H(·; tj) is concave if tj ≥ tmin.
Assuming that m is large enough and tj ≥ tmin, the projected gradient algorithm
converges to a vertex in finitely many steps, and Algorithm 11.2 can be stopped
without changing the final result.

11.2.3 Sampling
Algorithm 11.2 depends highly on the initial primal points and on the dual point
that defines the convex relaxation. Several techniques for generating sample points
in the primal and dual space are used.

Random primal. The vector µ = −λ1(A)e is used as a dual point and an initial
primal point is chosen with uniform distribution over the ball IB(n) = IBn(0, n1/2),
i.e. the sampling set is defined by

SRP = {(xi, µ) | i = 1, . . . , p, xi ∼ U [IB(n)], µ = −λ1(A)e},
where xi ∼ U [S], means that the sample points xi are independently drawn from
a uniform distribution over the set S.

Eigenspace sampling. If the duality gap is zero, an optimal primal solution lies in
the eigenspace of the minimum eigenvalue. Motivated by this fact, random points
in the space spanned by the eigenvectors that correspond to a certain number of
smallest eigenvalues are generated. In particular, we define

SE = {(xi, µ) | i = 1, . . . , p, xi = n1/2yi/‖yi‖, µ = −λ1(A)e},
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where

yi =
r∑

k=1

αkvk(A + µI),

αk ∼ N(0, 1) are independent normally distributed, and vi(·) is the eigenvector
corresponding to the i-th lowest eigenvalue. The resulting random linear combina-
tion of eigenvectors, yi is projected onto IB(n), the ball that contains the [−e, e]
box.

Eigenspace after dual termination. In this last sampling, primal starting points
are produced in the eigenspace of a near optimal dual point. The dual point is
generated by optimizing the dual problem until a convergence criterion is fulfilled,
‖µk −µ∗‖ < ε, using the bundle method (Kiwiel, 1994b). The sample is defined as

SED = {(xi, µ) | i = 1, . . . , p, xi = ρiyi, µ = µ∗ − λ1(A + µ∗I)e},

where ρi = n1/2/‖yi‖, yi =
∑r

k=1 αkvk(A+µ∗I), and µ∗ a near optimal dual solu-
tion. The primal points are sampled from the space generated by the eigenvectors
corresponding to the smallest eigenvectors of A + µ∗I.

11.2.4 Numerical results

Algorithm 11.2 was coded in C++. Supergradients for the dual function were com-
puted according to Lemma 5.14. The Lanczos method ARPACK++ (Gomes and
Sorensen, 1997) was used for the computation of the minimum eigenvalue and a
corresponding eigenvector.

Kiwiel’s proximal bundle algorithm NOA 3.0 (Kiwiel, 1990; Kiwiel, 1994b)
was used for solving the dual problem.

The algorithm was tested using a set of examples from the 7th DIMACS Im-
plementation Challenge (Pataki and Schmieta, 2000), and using several instances
created with rudy, a machine independent graph generator written by G. Rinaldi,
which is standard for MaxCut (Helmberg and Rendl, 2000).

The tests were run on a machine that has two 700MHz Pentium III processors
and 1Gb RAM. The sample size for all the sample sets was set to 10, and the best
result over each sample type was reported.

Table 11.1 shows the results for the different sampling techniques. The com-
puting time and the value in percentage referred to the most elaborated sample
SED, eigenspace after dual termination, is reported. For the reported runs, a fixed
number of major iterations l, a fixed step-length β, and a uniform sequence tj is
used.

Previous evidence with other Lagrangian heuristics for the unit commitment
problem suggests that higher dual objective accuracy need not necessarily imply
better quality of the heuristic primal solution Feltenmark and Kiwiel, 2000. To
evaluate the importance of the information provided by the dual for the heuristic,
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example size time sol. quality dual
name n m SRP SE SED SRP SE SED bound
g3 800 19176 15 17 32 99 99 11608 12084
g6 800 19176 14 16 1:13 99 100 2135 2656
g13 800 1600 4 6 12:46 100 100 568 647
g14 800 4694 5 6 2:30 99 99 3024 3192
g19 800 4661 5 6 1:11 98 98 868 1082
g23 2000 19990 24 29 2:50 99 99 13234 14146
g31 2000 19990 22 28 11:40 100 100 3170 4117
g33 2000 4000 15 20 3:27:25 99 100 1342 1544
g38 2000 11779 17 21 9:02 99 99 7512 8015
g39 2000 11778 18 20 5:13 98 98 2258 2877
g44 1000 9990 10 13 1:04 99 99 6601 7028
g50 3000 6000 25 36 55 98 99 5830 5988
g52 1000 5916 7 8 3:14 100 100 3779 4009

Table 11.1: Comparison of computing time and solution quality. Samples: SRP

random primal, SE eigenspace, SED eigenspace after dual stop. The columns report
the computing time in hh:mm:ss, hh hours, mm minutes, and ss seconds. mm
reported when total seconds were more than 60, and similarly with hh. The first
two columns show the best case in percentage of the best value from the last
sampling technique SED, in the last column whose result is reported in absolute
value. The last column provides information about the dual bound. The run was
performed with fixed step-length β = 5, minor iterations m = 10, major iteration
horizon l = 20 and uniform update of t, i.e. t values: 1/(l + 1), . . . , l/(l + 1).

we plot comparatively the dual sequence and its corresponding heuristic primal
solution sequence for some graph examples in Figure 11.2.

It was observed that meanwhile the dual improves its value, reducing the
duality gap, the heuristic primal sequence is not monotonically decreasing. This
means that dual points closer to the optimum do not necessarily provide better
heuristic primal points.

Table 11.2 shows a comparison with rank-2 and GRASP algorithm (Festa
et al., 2002). The numbers of rank-2 were generated using a sample of size 1, and
without the use of the random perturbation, since the information regarding the
random perturbation parameters was not available. In the paper (Burer et al.,
2001) better results are reported.
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Figure 11.2: Plots of sequences of dual points and their correspondent primal
heuristic solution produced by Algorithm 11.2 from rudy graphs g3, g14, and g22.
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example size SRP GRASP-VNS rank2
name n m ss result ss.dd result ss.dd result
g11 800 1600 4 550 10.00 552 3.88 554
g12 800 1600 3 542 9.36 532 3.76 552
g13 800 1600 4 570 12.41 564 3.45 572
g14 800 4694 4 3006 12.89 3040 5.53 3053
g15 800 4661 5 3002 18.09 3017 5.91 3039
g20 800 4672 4 920 − N/A 5.56 939
g22 2000 19990 21 13193 56.98 13087 22.31 13331
g24 2000 19990 25 13165 192.81 13209 27.30 13287
g31 2000 19990 20 3193 − N/A 19.61 3255
g32 2000 4000 14 1346 99.91 1368 13.09 1380
g34 2000 4000 14 1334 55.22 1340 9.82 1358

Table 11.2: Comparison with other methods. Comparison of time and result
among (i) random primal sampling SRP with sample size = 10 and Algorithm
pathfollowingwith steplength β = 5, fixed minor iterations m = 10, uniform up-
date on t with major iteration horizon l = 20, t values: 1, (l−1)/l, (l−2)/l, ..., 1/l, 0;
(ii) GRASP-VNS method with 1 iteration and (iii) results of the rank-2 heuristic
with parameters N=10 and M=8 obtained on a SGI Origin2000 machine with a
300MHZ R12000 processor (Burer et al., 2001). The time is presented in ss.dd sec-
onds.fraction expressed in decimal format. The results were rounded to the closest
integer for ease of reading.

11.3 Generalization to MINLP

11.3.1 Parametric problem formulation

Consider a general MINLP of the form:

min h0(x)
s.t. hi(x) ≤ 0, i = 1, . . . , m

x ∈ [x, x], xB binary .
(11.1)

In order to solve (11.1) by a deformation heuristic, it is reformulated as the fol-
lowing parametric box-constrained optimization problem

(Pt)
min H(x; t)
s.t. x ∈ [x, x]

where the smoothing function

H(x; t) = tP (x; t) + (1 − t)L̆(x; µ̂)
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is a convex combination of an exact penalty function and a convex Lagrangian.
The penalty function is defined by

P (x; t) = h0(x) +
1

1 − t

(
m∑

i=1

δi max{0, hi(x)}2 − γeT rB(x)

)

where r(x) = Diag(x − x)(x − x), δ ∈ �m
+ and γ ∈ �+. The convex Lagrangian,

defined by L̆(x; µ̂) = h̆0(x)+
∑m

i=1 µ̂ih̆(x), is related to a convex underestimating-
relaxation to (11.1) of the form:

min h̆0(x)
s.t. h̆i(x) ≤ 0, i = 1, . . . , m

x ∈ [x, x]
(11.2)

where h̆i is a convex underestimator of hi over [x, x]. Moreover, the dual point
µ̂ ∈ �m

+ is a near optimal dual point, i.e.

val(11.2) � min
x∈[x,x]

L̆(x; µ̂).

Lemma 11.5. The optimal value of (Pt) converges to the optimal value of (11.1)
for t → 1, provided that the penalty parameters δ ∈ �m

+ and γ ∈ �+ are large
enough.

Proof. Since P (x; t) is an exact penalty function, the optimal value of the box-
constrained parametric program

min{P (x; t) | x ∈ [x, x]}

converges to the optimal value of (11.1) for t → 1 if δ and γ are large enough.
Since |H(x; t) − P (x; t)| → 0 for t → 1, the assertion follows. �

11.3.2 A MINLP deformation algorithm

Algorithm 11.3 shows a deformation heuristic for computing a set S∗ of solution
candidates for problem (11.1). Instead of calling the deformation heuristic in serial
for each starting point, the method starts in the beginning with a set of starting
points. At certain branching values of t it modifies this set by adding new points
through a neighborhood search and by deleting points which tend to cluster. The
sample set is also pruned from points that are not very likely to converge to the
global optimum.

The local optimization of (11.1) is performed by first rounding the binary
variables of the starting point and then optimizing the NLP-subproblem with
fixed binary variables.
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Input: a sequence of continuation points t0 > · · · > tl = 0 and branch-
ing points B ⊂ {1, . . . , l}

Choose an initial sampling set S0 ⊂ [x, x].

for j = 0, . . . , l
Determine the set Sj+1 of local minimizers of (Ptj ) starting
from points x ∈ Sj.

if k ∈ B:
Prune Sj+1 by removing nonpromising and clustering
points.

Enlarge Sj+1 by adding new points by using neighbor-
hood search.

end if
end for

Determine a set S∗ of local minimizers of (11.1) starting from
points x ∈ Sl+1.

Algorithm 11.3: MINLP deformation heuristic

11.3.3 Numerical results

The performance of Algorithm 11.3 was tested for a set of instances from the
MINLPLib (Bussieck et al., 2003a) described in Appendix B.1. Convex relax-
ations were computed as in Section 7.5. Three experiments were made. In the first
experiment pure multistart was used for optimization with the following parame-
ters of Algorithm 11.3: l = 0 and B = ∅. In the second experiment, Algorithm
11.3 was used with the parameters l = 5 and B = ∅. In the third experiment, the
parameters of Algorithm 11.3 were set to l = 5 and B = {3}. In all experiments
the initial sample set S0 was defined by 40 uniformly distributed sample points.

The code was run on a machine with a 1GHz Pentium III processor and 256
MB RAM. Table 11.4 shows the result. The columns of this table are described in
Table 11.3. The last line of the table shows the number of solved problems. N/A
means that no feasible solution was computed. The results show:

• The solution quality of the deformation heuristic is better than of the multi-
start method.

• The computation time of the deformation heuristics compared to the multi-
start heuristic is not much larger.

• The inclusion of a branching point, B = {3}, further improves the results.
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It would be interesting to analyze the performance of the proposed deformation
method with respect to the Lagrangian smoothing operator H(x; t) = tP (x; t) +
(1 − t)L̆(x; µ̂). If the positive curvature of L̆(x; µ̂) is strong enough to cancel the
negative curvature of P (x; t), the function H(x; t) is almost convex if t is small. In
this case, the parametric optimization problem (Pt) has few minimizers and there
is a high probability to find a good minimizer with a deformation heuristic that
uses neighborhood search.

example The name of the problem
n The number of variables
|B| The number of binary variables
m The number of constraints
err. The relative error of the solution value computed as v̄−v∗

1+|v̄| ,
where v∗ is the best known optimal value.

time Time in seconds spent by Algorithm 11.3

Table 11.3: Descriptions of the columns of Table 11.4.
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multistart no branch point one branch point
example n |B| m err. time err. time err. time
alan 9 4 8 0 0.44 0 0.63 0 0.122
elf 55 24 39 1.31 0.39 1.31 6.76 1.31 12.09
ex1223a 8 4 10 .12 0.41 .12 0.90 0 0.156
ex4 37 25 31 .16 0.93 .16 5.91 .16 9.55
feedtray2 88 36 284 N/A 0.56 0 23.44 0 42.40
fuel 16 3 16 0 0.51 0 1.79 0 3.11
gbd 5 3 5 0 0.59 0 0.45 0 0.70
meanvarx 36 14 45 .19 0.48 .19 3.103 .04 6.143
nous1 51 2 44 .03 0.79 .03 4.89 0 8.48
nous2 51 2 44 0 0.75 0 5.13 0 8.64
sep1 30 2 32 0 0.47 0 3.33 0 6.14
spectra2 70 30 73 1.28 1.37 1.28 25.51 1.01 34.125
batch 47 24 74 .24 0.43 .24 7.94 .14 14.45
batchdes 20 9 20 0 0.38 0 1.69 0 3.03
ex1221 6 3 6 0 0.34 0 0.75 0 0.134
ex1222 4 1 4 0 0.39 0 0.50 0 0.65
ex1223b 8 4 10 .12 0.47 .12 0.87 0 0.161
ex1224 12 8 8 .01 0.41 .01 0.85 .01 1.49
ex1225 9 6 11 .18 0.31 .18 0.68 .18 0.141
ex1226 6 3 6 0 0.38 0 0.82 0 0.125
ex1252 40 15 44 .19 0.73 .19 0.75 .13 7.69
ex3 33 8 32 0 0.54 0 4.40 0 7.82
gkocis 12 3 9 0 0.42 0 0.112 0 1.110
oaer 10 3 8 0 0.39 0 1.44 0 1.111
procsel 11 3 8 0 0.48 0 0.84 0 1.70
synheat 57 12 65 .18 0.63 .18 7.99 .11 14.54
synthes1 7 3 7 0 0.32 0 0.76 0 0.130
synthes2 12 5 15 .01 0.38 .01 0.106 0 1.116
synthes3 18 8 24 .07 0.42 .07 1.89 .07 2.116
29 14 16 20

Table 11.4: Performance of the MINLP deformation heuristic



Chapter 12

Rounding, Partitioning and
Lagrangian Heuristics

This chapter presents two heuristic methods for solving MINLPs. The first method
is a rounding heuristic based on rounding fractional solutions of convex relax-
ations and computing solution candidates of continuous subproblems with fixed
binary variables via a partitioning heuristic by using so-called central splitting-cuts
(Nowak et al., 2003).

The second method is a Lagrangian heuristic that combines inner approxi-
mation points generated by a column generation algorithm in such a way that the
violation of the linear coupling constraints is as small as possible. The resulting
points are used as starting points for a local optimization. Numerical results for
MINLPs are presented.

12.1 A rounding heuristic
Consider a general MINLP given in the form:

min{f(x) | x ∈ S, xB binary} (12.1)

where f : �n 
→ � and S ⊂ �
n is bounded. Formulation (12.1) includes both

the block-separable binary program (2.1) and the reformulation (2.4) with linear
coupling constraints. A relaxation to (12.1) is defined by:

min{f(x) | x ∈ S̆} (12.2)

where S̆ ⊇ S is a convex outer approximation of S. A subproblem to (12.1) with
partially fixed binary variables is defined by
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(P[y,Kfix]) min{f(x) | x ∈ S[y, Kfix], xB binary},
where S[y, Kfix] = {x ∈ S | xi = yi, i ∈ Kfix}, y ∈ [x, x] and Kfix ⊆ B. Similarly,
a subproblem to (12.2) is defined by

(R[y,Kfix]) min{f(x) | x ∈ S̆[y, Kfix]}.

where S[y, Kfix] = {x ∈ S̆ | xi = yi, i ∈ Kfix}. Furthermore, we define a measure
of binary infeasibility by:

dbin(Kfix, x) = max
i∈B\Kfix

max{xi − xi, xi − xi}

and
γ(Kfix, x) = argmax

i∈B\Kfix

max{xi − xi, xi − xi}.

Algorithm 12.1 shows a rounding heuristic for computing solution candidates
for the MINLP (12.1). The heuristic works by subsequently computing trial points
x̂ ∈ S̆[Kfix, x] and rounding some binary components of x̂. A trial point can be
computed by solving the convex relaxation (R[y,Kfix]) or by computing a center of
S̆[Kfix, x], as described in the next section. If all binary components are fixed, i.e.
Kfix = B, a heuristic is started to solve the continuous subproblem (P[y,B]). Here,
we use a partitioning heuristic that is presented in the next section. The values
of the binary variables are recursively switched. The whole process is repeated as
long as either all combinations of binary variables are searched, or the number of
solution candidates exceeds a given number.



12.2. A partitioning heuristic that uses central cuts 145

Compute a trial point x̂ ∈ S̆ and set y = round(x̂, B).

Compute solution candidates for (P[y,B]) and update (R[y,B]).

Set Kfix = ∅ and L={(Kfix, x̂)}.
repeat

Take (Kfix, x) from L with dbin(Kfix, x) maximum.

Set K ′
fix = Kfix ∪ {j} with j = γ(Kfix, x) and round xj .

if S̆[K ′
fix, x] 	= ∅: Compute a trial point x̂ ∈ S̆[K ′

fix, x] and put
(K ′

fix, x̂) into L.

Set xj = xj + xj − xj .

if S̆[K ′
fix, x] 	= ∅:

Compute a trial point x̂ ∈ S̆[K ′
fix, x], y = round(x̂, K ′

fix).

Compute solution candidates for (P[y,B]), update (R[y,B])
and put (K ′

fix, x̂) into L.

end if

until iteration limit is exceeded or L = ∅.

Algorithm 12.1: Rounding heuristic for solving a MINLP by subsequently
rounding binary variables of solutions of convex relaxations

12.2 A partitioning heuristic that uses central cuts
In this section a partitioning heuristic for solving continuous NLPs including the
subproblem (P[y,B]) is proposed. Consider a nonconvex NLP problem:

min{f(x) | x ∈ S} (12.3)

and a related polyhedral relaxation defined by:

min{f(x) | x ∈ Ŝ} (12.4)

where Ŝ is a polyhedral outer approximation of S given in the form:

Ŝ = {x ∈ �n | h(x) = 0, gi(x) ≥ 0, i = 1, . . . , m}
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and h and gi are affine functions. The analytic center of Ŝ, called convexification
center , is defined by

xc = min{−
m∑

i=1

ln gi(x) | h(x) = 0}.

Assuming that the polyhedron Ŝ is a (good) approximation of the convex hull
conv(X∗

ε ) of an ε-solution set of (12.3), a central point xc in Ŝ is also a central
point in conv(X∗

ε ). If the number of ε-minimizers is greater than 1, there exists a
hyperplane through xc separating one or several ε-minimizers. This motivates the
definition of the central splitting-cut :

gsplit(x) = (xc − x̂)T ((1 − t)xc + tx̂ − x) ≤ 0, (12.5)

where t ∈ (0, 1), which splits off a solution candidate x̂. Algorithm 12.2 describes
a heuristic for globally solving (12.3) based on subsequently generating solution
candidates x̂ and splitting off x̂ by adding a central splitting-cut (12.5) to (12.4).
If the optimal value was improved, the polyhedral relaxation Ŝ is improved by
adding the level-cut

f(x) ≤ f(x̂). (12.6)

The procedure is repeated as long as no new local optimizer was found.

for j = 0, . . . , l

Set xc=center(Ŝ) and compute a local minimizer x̂ of (12.3)
starting from xc.

if x̂ is not new: stop.

if x̂ is not feasible: Compute a local minimizer x̂ of (12.3) starting
from a local minimizer x̃ of the relaxation (12.4).

if x̂ is not feasible: Set x̂ = x̃.

if the optimal value was improved: Add the level cut (12.6).

Add the cut (12.5) to (12.4).

end for

Algorithm 12.2: Partitioning heuristic for solving a NLP by subsequently
splitting off solution candidates
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Remark 12.1. The convexification center xc can also be used to construct two
further central cuts that define branching rules for branch-and-bound algorithms.

The first cut, called central binary cut , is defined by splitting a domain ac-
cording to the most violated binary constraint defined by

j = argmin
i∈B

|xc
i − 0.5(xi + xi)|.

The new subproblems are defined by the constraints xj = xj and xj = xj respec-
tively.

The second cut, called central diameter cut , subdivides the region at the
hyperplane which goes through xc and is parallel to the face of Ŝ that has the
largest distance to xc, i.e.

gdiam(x) = aT
j x + bj,

where |aT
j xc + bj | = max

i=1,...,m
|aT

i xc + bi|, ‖ai‖ = 1 and gi(x) = aT
i x + bi. Figure

12.1 illustrates the three central cuts. The central binary cut splits the polyhedral
set into s1 and s2, the central splitting-cut subdivides it at g2, and the central
diameter cut subdivides it at g1.
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Figure 12.1: Central binary, central splitting and central diameter cut

12.3 Numerical results

Algorithm 12.1 together with Algorithm 12.2 for solving the continuous subprob-
lem were coded as part of the C++ library LaGO. In order to test the perfor-
mance of the algorithm, numerical experiments with linear relaxations and four
different cuts described in Section 7.1 were made by using a set of instances from
the MINLPLib Bussieck et al., 2003a described in Appendix B.1. The maximum
iteration numbers of Algorithms 12.1 and 12.2 was set to 1000 and 5 respectively.
Convex relaxations were computed as in Section 7.5.
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In the first experiment, linearization and level cuts were used (see Table 12.2).
In the second experiment, the bounding box was reduced and level cuts were used
(see Table 12.3). In the third experiment, the bounding box was reduced and level
and linearization cuts were used (see Table 12.4). Finally, in the fourth experiment,
the bounding box was reduced and level, linearization and Knapsack cuts were used
(see Table 12.5).

The columns of these tables are described in Table 12.1. The last line of the
tables shows the number of solved problems. N/A means that no feasible solution
was computed. The code was run on a machine with a 1GHz Pentium III processor
and 256 MB RAM. The results show:

• The results are quite similar.

• The best results in the sense of solved problems were obtained in the last
experiment shown in Table 12.5.

• The influence of central splitting cuts is marginal, but they helped to solve
nous2 in Table 12.5.

example The name of the problem
n The number of variables
|B| The number of binary variables
m The number of constraints
rel err The relative error of the solution value computed as v̄−v∗

1+|v̄| ,
where v∗ is the best known optimal value.

iter/2|B| The percentage number of iterations, computed by 100 times
the number of iterations and divided by 2|B|.

last impr The percentage number of iterations, till the upper bound
was improved the last time.

cuts The number of linearization cuts which were added.

Table 12.1: Descriptions of the columns of Tables 12.2, 12.3, 12.4 and 12.5.
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rel heu iter/ last
example n |B| m err time 2|B| impr cuts
alan 9 4 8 0 0.09 62% 60% 5
elf 55 24 39 0 58.13 0.006% 39% 555
ex1223a 8 4 10 0 0.04 25% 75% 32
ex4 37 25 31 0 15.67 0.0005% 59% 774
fac3 67 12 34 0 0.47 1% 32% 15
fuel 16 3 16 0 0.04 62% 60% 33
gbd 5 3 5 0 0.02 25% 100% 3
meanvarx 36 14 45 0 0.11 0.04% 57% 5
nous2 51 2 44 N/A 17.06 100% 0
sep1 30 2 32 0 0.09 100% 100% 37
spectra2 70 30 73 0 22.80 3e-05% 1% 264
batch 47 24 74 0 18.52 0.0003% 95% 55
batchdes 20 9 20 0 0.07 1% 80% 21
ex1221 6 3 6 0 0.07 100% 37% 30
ex1222 4 1 4 0 0.00 100% 50% 4
ex1223b 8 4 10 0 0.17 56% 88% 95
ex1224 12 8 8 0 1.54 45% 4% 130
ex1225 9 6 11 0 0.14 17% 54% 0
ex1226 6 3 6 0 0.11 62% 100% 3
ex1252 40 15 44 .80 10:39.57 3% 0% 18
ex3 33 8 32 0 0.35 6% 87% 69
gkocis 12 3 9 0 0.06 75% 66% 14
procsel 11 3 8 0 0.10 62% 80% 20
synheat 57 12 65 0 1:14.19 18% 59% 720
synthes1 7 3 7 0 0.05 50% 25% 11
synthes2 12 5 15 0 0.13 28% 77% 28
synthes3 18 8 24 0 0.18 5% 84% 56
27 25

Table 12.2: Rounding heuristic: linearization cuts and no box reduction
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rel heu iter/ last
example n |B| m err time 2|B| impr cuts
alan 9 4 8 0 0.08 75% 66% 4
elf 55 24 39 0 1:24.88 0.005% 43% 680
ex1223a 8 4 10 0 0.04 25% 75% 34
ex4 37 25 31 0 9.09 0.3% 40% 903
fac3 67 12 34 0 0.42 1% 32% 15
fuel 16 3 16 0 0.03 75% 33% 15
gbd 5 3 5 0 0.03 50% 100% 3
meanvarx 36 14 45 0 0.17 0.2% 71% 5
nous2 51 2 44 N/A 57.05 100% 19
sep1 30 2 32 0 0.13 100% 75% 42
spectra2 70 30 73 0 22.59 2e-05% 14% 456
batch 47 24 74 0 0.23 0.001% 20% 33
batchdes 20 9 20 0 0.03 1% 50% 12
ex1221 6 3 6 0 0.04 75% 16% 10
ex1222 4 1 4 0 0.02 100% 100% 4
ex1223b 8 4 10 0 0.03 37% 16% 27
ex1224 12 8 8 0 1.59 45% 4% 130
ex1225 9 6 11 0 0.19 17% 54% 0
ex1226 6 3 6 0 0.11 62% 100% 3
ex1252 40 15 44 .80 5:43.60 3% 0% 18
ex3 33 8 32 0 0.28 5% 92% 60
gkocis 12 3 9 0 0.03 75% 66% 14
procsel 11 3 8 0 0.08 62% 80% 20
synheat 57 12 65 0 1:07.73 17% 60% 720
synthes1 7 3 7 0 0.06 50% 25% 11
synthes2 12 5 15 0 0.08 28% 77% 28
synthes3 18 8 24 0 0.22 5% 80% 56
27 25

Table 12.3: Rounding heuristic: linearization cuts and box reduction
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rel heu iter/ last
example n |B| m err time 2|B| impr cuts
alan 9 4 8 0 0.15 100% 50% 1
elf 55 24 39 1.96 35.81 0.006% 67% 15
ex1223a 8 4 10 0 0.07 31% 60% 7
ex4 37 25 31 .15 1:04.21 6% 30% 0
fac3 67 12 34 0 1.74 4% 14% 0
fuel 16 3 16 0 0.03 75% 33% 6
gbd 5 3 5 0 0.02 75% 66% 1
meanvarx 36 14 45 0 0.40 0.9% 60% 1
nous2 51 2 44 N/A 58.32 100% 19
sep1 30 2 32 0 0.09 100% 75% 6
spectra2 70 30 73 0 28.127 9e-05% 1% 24
batch 47 24 74 0 1.10 0.005% 3% 11
batchdes 20 9 20 0 0.08 6% 12% 5
ex1221 6 3 6 0 0.03 75% 16% 2
ex1222 4 1 4 0 0.02 100% 100% 2
ex1223b 8 4 10 0 0.03 43% 14% 10
ex1224 12 8 8 0 1.67 66% 2% 4
ex1225 9 6 11 0 0.23 17% 54% 0
ex1226 6 3 6 0 0.10 62% 100% 0
ex1252 40 15 44 0 11:15.49 3% 94% 0
ex3 33 8 32 0 1.15 30% 18% 7
gkocis 12 3 9 0 0.10 75% 66% 2
procsel 11 3 8 0 0.06 62% 80% 0
synheat 57 12 65 0 19.85 14% 58% 0
synthes1 7 3 7 0 0.08 87% 14% 2
synthes2 12 5 15 0 0.23 65% 38% 5
synthes3 18 8 24 0 0.70 23% 98% 7
27 24

Table 12.4: Rounding heuristic: level cuts and box reduction
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rel heu iter/ last
example n |B| m err time 2|B| impr cuts
alan 9 4 8 0 0.07 75% 66% 4
elf 55 24 39 0 1:24.26 0.005% 43% 680
ex1223a 8 4 10 0 0.05 25% 75% 34
ex4 37 25 31 0 8.91 0.3% 40% 903
fac3 67 12 34 0 0.45 1% 32% 15
fuel 16 3 16 0 0.04 75% 33% 15
gbd 5 3 5 0 0.02 50% 100% 3
meanvarx 36 14 45 0 0.16 0.2% 71% 5
nous2 51 2 44 0 42.32 100% 50% 181
sep1 30 2 32 0 0.10 100% 75% 48
spectra2 70 30 73 0 22.51 2e-05% 14% 456
batch 47 24 74 0 0.27 0.001% 20% 33
batchdes 20 9 20 0 0.02 1% 50% 12
ex1221 6 3 6 0 0.05 75% 16% 12
ex1222 4 1 4 0 0.00 100% 100% 5
ex1223b 8 4 10 0 0.04 37% 16% 27
ex1224 12 8 8 0 1.63 45% 4% 130
ex1225 9 6 11 0 0.21 21% 35% 1
ex1226 6 3 6 0 0.11 62% 100% 4
ex1252 40 15 44 .80 5:46.66 3% 0% 18
ex3 33 8 32 0 0.26 5% 92% 60
gkocis 12 3 9 0 0.07 75% 66% 14
procsel 11 3 8 0 0.07 62% 80% 20
synheat 57 12 65 0 1:09.32 17% 60% 720
synthes1 7 3 7 0 0.06 50% 25% 11
synthes2 12 5 15 0 0.08 28% 77% 28
synthes3 18 8 24 0 0.20 5% 80% 56
27 26

Table 12.5: Rounding heuristic: all cuts
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12.4 A Lagrangian heuristic
This section describes a simple Lagrangian heuristic, shown in Algorithm 12.3, for
solving a MINLP of the form:

min cT x + c0

Ax + b ≤ 0
xJk

∈ Gk, k = 1, . . . , p.
(12.7)

Algorithm 12.3 is a three-step method that generates solution candidates by com-
bining inner approximation points computed by a column generation algorithm
(see Section 4.3). In the first step, a random near-optimal solution x̂ of the follow-
ing problem is computed:

min cT x + c0 + δ‖Ax + b‖1,+

s.t. xJk
∈ conv(Wk), k = 1, . . . , p,

(12.8)

where δ > 0 is a penalty parameter and Wk ⊂ conv(Gk) are inner approximation
points. In the second step, the point x̂ is projected onto the polyhedron {x ∈
�

n | Ax + b ≤ 0} by solving the problem:

min cT x + c0 + δ‖x − x̂‖1

s.t. Ax + b ≤ 0 (12.9)

which is equivalent to the LP:

min cT x + c0 + δeT t
s.t. Ax + b ≤ 0

−t ≤ x − x̂ ≤ t
(12.10)

where δ > 0 is a penalty parameter. Finally, a solution x of (12.9) is rounded and
a local search for (12.7) is started from x. These steps are repeated as long as the
maximum iteration number is exceeded.

We explain now the first step of the proposed Lagrangian heuristic in more
detail. Note that problem (12.8) is equivalent to

min cT AW • z + c0 + δ‖AW • z + b‖1,+

s.t. eT zIk
= 1, zIk

≥ 0, k = 1, . . . , p,
(12.11)

which can be also written as the following LP:

min cT AW • z + c0 + δeT t
s.t. AW • z + b ≤ t

eT zIk
= 1, zIk

≥ 0, k = 1, . . . , p
t ≥ 0

(12.12)



154 Chapter 12. Rounding, Partitioning and Lagrangian Heuristics

where W = (W1, . . . , Wp). Let x∗ be a solution of (12.8) and define the points xk,w

by xk,w
Jl

= x∗
Jl

for l 	= k and xk,w
Jk

= w else, w ∈ Wk, k = 1, . . . , p. The value of the
objective of (12.8) at xk,w is denoted by vk,w = cT xk,w + c0 + δ‖Axk,w + b‖1,+.
A random near optimal point x̂ of (12.8) is computed by setting x̂Jk

= w, where
w ∈ Wk is randomly chosen according to a probability that is related to

pk,w = ((vk,w − vk)/(vk − vk) + 0.1)−1 (12.13)

with vk = minw∈Wk
vk,w and vk = maxw∈Wk

vk,w.
Numerical results for solving MaxCut and MINLP problems with a branch-

cut-and-price algorithm that uses Agorithm 12.3 for computing upper bounds are
presented in Section 13.5.

Compute a solution x∗ of (12.8).

for j = 1, . . . , smax:

for k = 1, . . . , p:
Choose a random point w ∈ Wk according to a probability
that is related to pk,w, defined in (12.13), and set x̂Jk

= w.

Compute a solution x of (12.9).

Round xB and start a local search from x for solving the
continuous subproblem of (12.7) with fixed binary variables.

Algorithm 12.3: Lagrangian heuristic that solves a MINLP by combining
inner approximation points
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Branch-Cut-and-Price Algorithms

This chapter proposes branch-and-bound algorithms for MINLP. In contrast to the
previously presented heuristics, these methods are able to search systematically
for a global solution and to prove global optimality. In particular, a branch-cut-
and-price (BCP) algorithm for nonconvex MINLPs is presented. To the best of our
knowledge, this is the first time that BCP is used for solving general MINLPs. The
convergence of the algorithms is analyzed and some algorithmic details are dis-
cussed. Moreover, preliminary numerical results for network MaxCut and MINLP
instances are reported. Finally, the use of nonconvex polyhedral approximations
is discussed.

13.1 Branch-and-bound algorithms

13.1.1 Preliminaries

Consider a MINLP of the form:

min{f(x) | x ∈ S} (13.1)

where f : �n 
→ � and S ⊂ �
n is bounded. This formulation includes the

block-separable binary program (2.1) or the extended reformulation (2.4). Let
L = {U1, . . . , Ul} be a list of partition elements covering the feasible S of (13.1),
i.e.

⋃
U∈L

U ⊇ S. Related to a partition element U ∈ L, a node-subproblem

(P[U]) min{f(x) | x ∈ S ∩ U}

and a node-relaxation

(R[U]) min{f̆U (x) | x ∈ S̆U ∩ U}
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is defined, where f̆U (x) ≤ fU (x) for all x ∈ S∩U and S̆U ⊇ SU . A lower bound on
the optimal value of the node-subproblem (P[U]) is defined by v(U) = val(R[U ]),
i.e. v(U) ≤ val(P [U ]). A root-problem and root-relaxation is defined by (P[[x, x]])
and (R[[x, x]]) respectively. Furthermore, we denote by v an upper bound of the
optimal value of (13.1), and by Xcand a set of solution candidates for the root-
problem (13.1), respectively.

13.1.2 A generic branch-and-bound algorithm

Algorithm 13.1 shows a generic branch-and-bound method for solving (13.1). The
method starts with computing a root relaxation (R[[x, x]]) and initializing v and
Xcand by using a heuristic. In the main loop, the original problem is split recur-
sively into subproblems. The loop starts with the selection of a subproblem. Here,
the subproblem U with the smallest lower bound v(U) is selected. For the selected
subproblem U , the lower bound v(U) is improved, for example by adding cuts or
by applying a box reduction procedure. If U ∩ Xcand = ∅, solution candidates are
searched in U ∩S by using a heuristic. If the lower bound v(U) was not improved
significantly, a branching operation subdivides the subproblem U into subprob-
lems Ui, i = 1, . . . , l (see Figure 13.1). For each new subproblem Ui, a lower bound
v(Ui) is computed. If the lower bound of a subproblem is greater than or equal
to an upper bound v of the optimal value, the subproblem is eliminated. The dif-
ference between an upper and a global lower bound of the optimal value serves
as a quality criterion for the current best solution. If it is smaller than a given
tolerance ε > 0, the algorithm stops.

G

Ax+b=0

Figure 13.1: Partition and refinement of a polyhedral outer approximation

13.2 Convergence and finiteness

13.2.1 Convergence

The following assumption is required for the convergence of Algorithm 13.1.
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Compute a root relaxation (R[[x, x]]) and set L = {[x, x]}.
Apply a heuristic to initialize v and Xcand.

repeat

Take a partition element U from L.

Improve the lower bound v(U).

if U ∩ Xcand = ∅:
Search solution candidates in U and update Xcand and v.

if v(U) was not improved significantly:
Subdivide U into Ui, i = 1, . . . , l.

Compute v(Ui) and put Ui into L for i ∈ {1, . . . , l}.
Prune L by deleting U ∈ L with v(U) ≥ v.

until L = ∅ or v − min
U∈L

v(U) < ε.

Algorithm 13.1: Branch-and-bound algorithm

Assumption 13.1. (i) An exhaustive partitioning method: for every nested se-
quence of partitions, the feasible region reduces to a point, i.e. U j ⊃ U j+1

for all j ∈ � and U∞ =
∞⋂

j=1

U j = {x}.

(ii) Consistent bounding operation: every infinite nested sequence {U j}j∈� of
successively refined partition sets, i.e. U j+1 ⊂ U j, satisfies

lim
j→∞

v(U j) = min
x∈U∞

f(x), (13.2)

if U∞ ⊂ S and v(U j) → ∞ if U∞ ∩ S = ∅.
(iii) Bound improving node selection: after every finite number of steps a node

with the least lower bound is selected.

The following result is proven in (Horst and Tuy, 1990).

Proposition 13.1. If Assumption 13.1 is fulfilled, Algorithm 13.1 terminates after
finitely many steps for all ε > 0.

13.2.2 Finiteness
Algorithm 13.1 is called finite if it converges after finitely many steps for ε = 0. If
the MINLP (13.1) is convex and the feasible set S is compact, Algorithm 13.1 with
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NLP-bounds is finite and defines an implicit enumeration of all possible solutions.
In order to prove finiteness of Algorithm 13.1 for general nonconvex MINLPs, the
region of attraction is defined,

attr(x∗) = {x ∈ �n | locmin(x) = x∗},

where x∗ is a local minimizer, and locmin(x) is the solution point obtained by a
local search method starting from x.

Assumption 13.2. The solution set of (13.1) is finite. The heuristic used in Algo-
rithm 13.1 is based on a local search procedure with starting points x ∈ [x, x] ⊃ S.
For all x∗ ∈ sol(13.1) the set attr(x∗) has a nonempty interior.

Assumption 13.2 is satisfied, for example, if the global minimizers of (13.1)
fulfill a certain constraint qualification (see (Spellucci, 1993, Satz 3.6.5.)). The
following result is proven in (Nowak, 2000).

Proposition 13.2. If Assumptions 13.1 and 13.2 are fulfilled, Algorithm 13.1 finds
the solution set of (13.1) in a finite number of iterations.

Proof. Assume that Algorithm 13.1 does not compute a global solution in finite
time. Then there exists a nested subsequence of partition elements {U j} generated
by the algorithm such that v(U j) is the global lower bound of the related partition,
i.e. v(U j) = min

U∈L
v(U), implying v(U j) ≤ val(13.1). Since the partition method

is exhaustive, it holds that
∞⋂

j=1

U j = {x̂}. We show that the sequence {U j} is

finite, which proves the assertion. If x̂ is a global minimizer of (13.1), there exists
j ∈ � such that U j ⊂ attr(x̂) due to Assumption 13.2, implying that the heuristic
computes x̂ after a finite number of iterations. If x̂ is not a global minimizer,
then either x̂ 	∈ S, implying v(U j) → ∞, or x̂ ∈ S and f(x̂) > val(13.1). Hence,
v(U j) → f(x̂) since v(U j) is consistent. In both cases, it follows v(U j) > val(13.1)
if j is sufficiently large. This contradicts v(U j) ≤ val(13.1). �

Proposition 13.2 does not show that Algorithm 13.1 is finite. Finiteness can
be ensured by using optimality cuts as introduced in Section 8.3 and Section 8.5.
In (Nowak, 2000) it is shown:

Corollary 13.3. If Assumptions 13.1 and 13.2 are fulfilled, and an optimality cut
is added whenever the heuristic finds a local solution, Algorithm 13.1 terminates
in finitely many iterations.

Proof. Define the sequence {U j} as in the proof of Proposition 13.2. Then any
{U j} converges to a global minimizer x̂. In this case, the algorithm makes an
optimality cut with respect to x̂. Hence, {U j} is finite due to the consistency of
the bounding method. If {U j} does not converge to a global minimizer, it is shown
in Proposition 13.2 that v(U j) > val(13.1) if j is sufficiently large. This proves the
finiteness of Algorithm 13.1. �
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Corollary 13.3 can only be applied to optimization problems for which op-
timality cuts can be constructed with respect to all global minimizers. Finiteness
of branch-and-bound algorithms is also discussed in (Tawarmalani and Sahinidis,
2002).

13.3 Consistent bounding operations

In the following, three lower bounding methods are discussed. In particular, NLP-
bounds (see Section 7.3.1), LP-bounds (see Section 7.3.4) and dual bounds (see
Section 3.3 and Chapter 4) are analyzed. It is shown that all bounding methods
are consistent and ensure convergence of Algorithm 13.1 according to Proposition
13.1.

13.3.1 NLP-bounds

Consider a subproblem of the form:

(P[U])
min h0(x)
s.t. hi(x) ≤ 0, i = 1, . . . , m

x ∈ [x, x] ∩ U, xB binary .

A convex nonlinear relaxation to (P[U]) is given by:

(R[U])
min h̆0,U (x)
s.t. h̆i,U (x) ≤ 0, i = 1, . . . , m

x ∈ [x, x] ∩ U

where h̆i,U is a convex underestimator of hi over [x, x]∩U . A NLP-bound to (P[U])
is defined by

vNLP(U) =
{

val(R[U ]) if (R[U]) is feasible
∞ else. (13.3)

A convex underestimator h̆i,U is called consistent if for any nested sequence {U j}
of partition elements converging to a point x̂ it holds that

lim
j→∞

max
x∈Uj

|hi(x) − h̆i,Uj (x)| = 0. (13.4)

Remark 13.4. It is well known that interval underestimators (Section 6.1), α-
underestimators (Section 6.3) and Bézier-underestimators (Section 6.2) are con-
sistent.

Lemma 13.5. If the convex underestimators h̆i,U , i = 0, . . . , m, are consistent, then
vNLP(U) is a consistent lower bounding method.
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Proof. Let {U j} be a nested sequence of partition elements converging to a point
x̂ ∈ [x, x]. Assume x̂ ∈ S, where S is the feasible set of (P[[x, x]]). Let S̆U be the
feasible set of (R[U]). Since U ⊇ S̆U ⊇ S ∩ U , it follows that {S̆Uj} converges to
x̂. Hence, vNLP(U j) converges to h0(x̂).

Assume now x̂ 	∈ S. Then there exists an index i ∈ {1, . . . , m} and a number
j1 ∈ � such that hi(xj) ≥ ε > 0 for all j ≥ j1. Since h̆i,U is consistent, there exists
a number j2 ≥ j1 such that |hi(xj) − h̆i,U (xj)| ≤ 1

2ε for all j ≥ j2. This proves
vNLP(U j) = ∞ for all j ≥ j2. �

13.3.2 LP-bounds
Consider a subproblem of the form:

(P[U])
min cT x + c0

s.t. gi(x) ≤ 0, i = 1, . . . , m
x ∈ Y ∩ U

where Y = {x ∈ [x, x] | xB binary} and gi :�n 
→ �. Let S be the feasible set of
(P[U]). Related to (P[U]) the following linear relaxation is defined:

(R[U])
min cT x + c0

s.t. gi,U (x) ≤ 0, i = 1, . . . , m

x ∈ ĜU

where ĜU ⊇ S ∩U is a polyhedron and gi,U is an affine underestimator of gi over
Y ∩ U , i.e. gi,U is affine and gi,U (x) ≤ gi(x) for all x ∈ Y ∩ U . An LP-bound to
(P[U]) is defined by

vLP (U) =
{

val([R[U ]) if (R[U]) is feasible
∞ else.

From Lemma 13.5 it follows:

Corollary 13.6. If gi,U is consistent for i = 1, . . . , m, i.e. (13.4) holds, then vLP(U)
is consistent.

The following lemma shows how consistent affine underestimators can be
constructed.

Lemma 13.7. Consider a Knapsack cut gU (x) ≤ 0 defined by gU (x) = aT
Ux − aU

and
ai,U = max{aT

i,Ux | x ∈ Y ∩ U, gi(x) ≤ 0}. (13.5)

If g is twice-differentiable over U and aU = ∇gU (x̂U ) for some x̂U ∈ U , then gU

is a consistent affine underestimator of g.

Proof. There exists a point x̃U ∈ U such that g(x̃U ) = gU (x̃U ). From the Taylor
expansions of g(x) at x̂U and x̃U we get g(x) = g(x̂U )+aT

U (x− x̂U )+O(diam(U))
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and g(x) = g(x̃U ) + O(diam(U)) for all x ∈ U . Hence, g(x) = g(x̃U ) + aT
U (x −

x̃U ) + O(diam(U)) for all x ∈ U . Since gU (x) = g(x̃U ) + aT
U (x − x̃U ), it follows

that g(x) − gU (x) = O(diam(U)) for all x ∈ U . This proves the statement. �

13.3.3 Dual bounds

Consider a subproblem of the form:

(P[U])
min f(x)
s.t. g(x) ≤ 0,

x ∈ G ∩ U

where f :�n 
→ �, g :�n 
→ �
m and G, U ⊂ �n. Define a Lagrangian L(x; µ) =

f(x) + µT g(x) and a dual function DU (µ) = infx∈G∩U L(x; µ). A dual bound for
(P[U]) is given by

vdual(U) = sup
µ∈�m

+

DU (µ).

Clearly, vdual(U) ≤ val(P [U ]) because of weak duality. In Chapter 4 several meth-
ods for computing vdual(U) are discussed. In (Dür, 2001) it is proven:

Lemma 13.8. Let S be the feasible set of (13.1). Assume that S is nonempty and
compact. Let f :S 
→ � be l.s.c. and let {U j}j∈� be a nested sequence of nonempty,
compact sets converging to ∅ 	= U∞ ⊂ S. Then

lim
j→∞

(val(P [U j ]) − vdual(U
j)) = 0.

Hence, the dual bound vdual is consistent. It is also shown in (Dür, 2001),
that dual bounds can be used to detect infeasible subproblems, which should be
deleted in a branch-and-bound process.

Lemma 13.9. Let YU = {y ∈ �m | yi = gi(x) for some i ∈ {1, . . . , m}, x ∈ U∩S}.
Then infeasibility of (P[U]) is equivalent to YU ∩ (�m

− ) = ∅. Assume that f and g
are continuous and S ∩ U is compact. Then

vdual(U) = +∞ ⇔ conv(YU ) ∩ (�m
− ) = ∅.

Remark 13.10. The consistency result of Lemma 13.8 can only be applied if the
Lagrangian does not depend on the partition set U . The Lagrangian that is used
in the semidefinite relaxation defined in Section 5.1 depends on the box [x, x].
Thus, if the subdivision method changes [x, x], Lemma 13.8 cannot be applied.
In (Nowak, 2000) it is shown that nevertheless consistency can be proven in this
case.
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13.4 Branching

13.4.1 Rectangular subdivision rules
A rectangular subdivision procedure subdivides a rectangle U = [x, x] into two
intervals U1 and U2. In particular, let i∗ be the index of the branching variable
and t, t be lower and upper cut values, where xi∗ ≤ t ≤ t ≤ xi∗ . Then

U1 = {x ∈ U | xi∗ ∈ [xi∗ , t]} and U2 = {x ∈ U | xi∗ ∈ [t, xi∗ ]}.

Let ρ(U) = min{xi∗ − t, t − xi∗}/(xi∗ − xi∗). Note that a rectangular subdivision
method is exhaustive if ρ(U) ≥ ρ > 0 for all partition elements U , and after every
finite number of steps each variable is selected as a branching variable. In the
following, some rectangular branching rules for MINLP are described, which can
be used in Algorithm 13.1. Other branching strategies are proposed in (Horst and
Tuy, 1990; Tawarmalani and Sahinidis, 2002).

Bisection. The bisection rule subdivides a rectangle at the midpoint of the largest
edge, i.e. the index of the branching variable is defined by i∗ = argmax1≤i≤n

{xi − xi} and the lower und upper cut value is t = t = 1
2 (xi∗ + xi∗). It is well

known that this branching strategy is exhaustive.

Binary subdivision. This branching procedure is based on measuring the maxi-
mum binary constraint violation defined by

δi(x̂) = min{xi − x̂i, x̂i − xi},

where x̂ is the solution point of a convex nonlinear or polyhedral relaxation. The
index of the branching variable is defined by i∗ = argmax{δi(x̂) | i ∈ B} and the
lower und upper cut values are t = xi∗ and t = xi∗ .

Subdivision based on constraint violation. Here, the branching variable is se-
lected according to the most violated constraint. Let x̂ be the solution point of
a convex nonlinear relaxation (7.3) or of a polyhedral outer relaxation (7.12) or
of a polyhedral inner relaxation (4.16). Related to the constraints gj(x) ≤ 0, j =
1, . . . , m, of the given MINLP, we define the sets Nj = {i ∈ {1, . . . , n} | ∂igj(x̂) 	=
0} and Mj = {i ∈ Nj | δi(x̂) > 0.2}, where δi(x̂) is defined as above. Let
j∗ = argmaxj=1,...,m gj(x̂)/‖∇gj(x̂)‖. If Mj∗ 	= ∅ then i∗ = argmini∈Mj∗ |∂igj(x̂)|.
Otherwise, i∗ = argmaxi∈Nj∗ δi(x̂). The lower and upper cut values are defined by
t = max{x̂i∗ , xi∗ + ρ(xi∗ − xi∗)} and t = min{x̂i∗ , xi∗ − ρ(xi∗ − xi∗)} respectively.

Subdivision based on pseudo costs. In this strategy, the effect of branching is
measured by using pseudo costs. Let x̂ be the solution point of a relaxation (7.3),
(7.12) or (4.16), and let x̃ be an estimate for the projection of x̂ onto the feasible
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set S of the given MINLP (2.4). Let L(x; µ) = a(µ)T x + b(µ) be the Lagrangian
to (2.4). Then

p(x̂, x̃, µ) = L(x̃; µ) − L(x̂; µ) = a(µ)T (x̃ − x̂)

is called pseudo cost. A branching variable is selected according to i∗ = argmax
{ai(µ)(x̃i − x̂i) | i ∈ {1, . . . , m}}. The lower and upper cut values are defined as
in the previous subdivision strategy.

Two procedures are used for computing an estimate x̃ for the projection of
x̂ onto S. In the first procedure, a local minimizer of the k-th Lagrange problem
is computed by first rounding x̂Jk

and then starting a local search from x̂Jk
for

solving the continuous subproblem with fixed binary variables.
The second procedure is based on a simple Newton estimate. Let gi(x) ≤ 0,

i = 1, . . . , m, be the constraints of the given MINLP, and Iviol ⊆ {1, . . . , m} be
the constraints that are violated at x̂. The point xi = x̂ + ti∇gi(x̂) with ti =
−gi(x̂)/‖∇gi(x̂)‖2 is a Newton estimate for a solution of the equation gi(x) = 0.
Then x̃ = 1

|Iviol|
∑

i∈Iviol
xi.

13.4.2 Updating lower bounds

After subdividing a partition element, the related lower bounds have to be up-
dated. We denote by U a new partition element and by x(U) and x(U) its lower
and upper variable bound, respectively.

NLP-bounds. NLP-bounds (see Section 7.3.1) that use α-underestimators are
updated by computing an underestimator according to f̆(x) = f(x)+αT r(x) with
r(x) = Diag(x(U) − x(U))(x(U) − x(U)).

LP-bounds. LP-bounds (see Section 7.3.4) are updated by adding cuts to a poly-
hedral relaxation. Lagrangian cuts are updated by generating new inner approx-
imation points Wk ⊂ �|Jk|, k = 1, . . . , p, related to a new partition element U .
To this end, the inner approximation points of the mother node are projected
onto [xJk

(U), xJk
(U)], and then the column generation method, Algorithm 4.7, is

called.

13.5 Numerical results
The BCP Algorithm 13.1 with several bounding and branching strategies was
implemented as part of the C++ library LaGO (see Chapter 14). In order to test
the performance of the algorithm, numerical experiments with MIQQPs resulting
from MaxCut splitting-schemes and with general MINLPs were carried out.

In all experiments the relative gap tolerance was set to 0.01. The same para-
meters were chosen for solving the Lagrangian subproblems. The maximum num-
ber of linearization cuts was set to 5000, since it is currently not possible to prune
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cuts. Lagrangian cuts were produced by using the column generation method,
Algorithm 4.8, with a maximum number of five iterations. Furthermore, the LP-
estimate R̃k(µ) for the reduced cost described in Remark 4.17 was used.

13.5.1 Network MaxCut experiments

The BCP method was tested, first, by using a block-separable splitting-scheme of
a random network MaxCut example as described in Section 5.6.2:

min
∑p

k=1 tk
s.t. xi − xj = 0, (i, j) ∈ Icopy

qk(xJk
) ≤ tk, k = 1, . . . , p

x ∈ {0, 1}n+p·f

t ∈ [t, t]

(13.6)

where qk is a quadratic form. Problem (13.6) is generated with respect to the
parameters (n, b, p, f), where n is the dimension of the original MaxCut problem,
b is the block-size, p is the number of blocks and f is the flow size of the network,
i.e. f = |Icopy|/p.

The results were obtained on a machine with a 3GHz Pentium III processor
and 1G RAM. The maximum iteration limit of the BCP method was set to 1000. In
order to find solution candidates of (13.6), Algorithm 13.1 with LP-bounds and the
binary subdivision method described in Section 13.4.1 was used. A linearization
cut was added whenever a new feasible point was found. Lagrangian subproblems
were solved by using the branch-and-bound Algorithm 13.1 with NLP-bounds
based on α-underestimators. Three experiments were made:

1. In the first experiment (see Table 13.2) only linearization cuts were used, and
upper bounds were computed by rounding the solution of the RMP (4.16).

2. In the second experiment (see Table 13.3) linearization cuts and Lagrangian
cuts were used, and upper bounds were computed with the Lagrangian heuris-
tic described in Section 12.4.

3. In the third experiment (see Table 13.4) the same method as in the second
experiment was used, but the addition of Lagrangian cuts was stopped if the
lower bound was not improved significantly in the last five BCP iterations,
or 80 % of the time limit passed.

Table 13.1 describes the columns of these tables.
The experiments show that most of the time is spent for computing lower

bounds by solving Lagrangian subproblems. The use of the Lagrangian heuristic
greatly improves the upper bounds (compare Table 13.2 with Table 13.3). The
performance of the algorithm depends strongly on the computation of the La-
grangian cuts. Generating Lagrangian cuts only in the beginning results in more
BCP iterations and reduces sometimes the BCP gap (compare Table 13.3 with
Table 13.4).
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Figures 13.2, 13.3, 13.4 and 13.5 show the process of the upper and lower
bounds for solving two MaxCut examples with the three previously described
BCP methods. The first method, used in Table 13.2, is denoted by ‘no lagheu’, the
second method, used in Table 13.3, is denoted by ‘lagheu’, and the third method,
using Table 13.4, is denoted by ‘few lagcuts’. It can be seen that the use of the
Lagrangian heuristic strongly improves the upper bound, and that for computing
lower bounds no method is superior.

n + nc The dimension of the original problem plus the number of copy
variables.

b The block size.
p The number of blocks.
f The flow size
v − D gap The relative error of the upper bound v with respect to the semidef-

inite programming bound val(D) defined in Section 5.1, computed
as 100 · v−val(D)

1+|v|
BCP gap The final gap, computed as 100 · v−v

1+|v|
BCP iter The number of iterations of the BCP method
BCP time Time in ‘minutes : seconds’ spent by the BCP method
v time The relative time for computing lower bounds
v time The relative time for computing upper bounds
lag sol The number of solved Lagrangian subproblems

Table 13.1: Descriptions of the columns of Tables 13.2, 13.3 and 13.4

v − D BCP BCP BCP v v̄ lag
n b p f gap gap iter time time time sol

50+10 5 10 1 6% < 1% 1 0.93 100% 0% 53
50+10 10 5 2 10% < 1% 9 10.24 99.4% 0% 118

100+20 5 20 1 8% < 1% 1 1.41 98.5% 0% 71
100+20 10 10 2 12% < 1% 9 30.78 99.7% 0% 317
150+30 15 10 3 77% 73.8% 13 15:03.14 99.9% 0% 525
300+60 10 30 2 76% 72.8% 122 15:01.19 99.2% 0.4% 5918
300+60 15 20 3 92% 91.9% 9 15:04.07 99.9% 0% 604

500+100 10 50 2 85% 83.4% 74 15:02.80 98.9% 0.6% 4810
900+180 15 60 3 67% 64.5% 3 15:09.80 99.8% 0% 572

1000+200 10 100 2 50% 44.6% 25 15:02.94 96.2% 2.3% 3227

Table 13.2: Solving (13.6) with a BCP method using a rounding heuristic
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v − D BCP BCP BCP v v̄ lag
n b p f gap gap iter time time time sol

50+10 5 10 1 6% < 1% 1 0.94 96.8% 2.1% 53
50+10 10 5 2 10% < 1% 9 10.00 98.5% 1.3% 118

100+20 5 20 1 8% < 1% 1 1.42 96.5% 3.4% 71
100+20 10 10 2 12% < 1% 10 32.34 98.5% 1.3% 326
150+30 15 10 3 18% 5.8% 13 15:02.14 99.8% 0.1% 496
300+60 10 30 2 17% 6.2% 119 15:00.21 96.3% 3% 5725
300+60 15 20 3 29% 20.5% 9 15:02.38 99.6% 0.2% 604

500+100 10 50 2 21% 10.9% 73 15:00.42 94.1% 5% 4613
900+180 15 60 3 27% 20.6% 3 15:09.66 97.4% 2.4% 573

1000+200 10 100 2 23% 13.8% 24 15:09.85 90.8% 5.6% 3165

Table 13.3: Solving (13.6) with a BCP method using a Lagrangian heuristic

v − D BCP BCP BCP v v̄ lag
n b p f gap gap iter time time time sol

50+10 5 10 1 6% < 1% 1 0.94 97.8% 2.1% 53
50+10 10 5 2 10% < 1% 9 10.16 98.4% 1.3% 118

100+20 5 20 1 8% < 1% 1 1.45 95.2% 4.1% 71
100+20 10 10 2 12% < 1% 10 31.92 98.4% 1.3% 326
150+30 15 10 3 18% 5.6% 505 15:00.00 97.1% 1.6% 617
300+60 10 30 2 16% 5% 775 15:00.42 69.8% 26.7% 2801
300+60 15 20 3 19% 9.5% 116 15:00.15 98% 1.5% 669

500+100 10 50 2 18% 8.1% 384 15:00.79 80.9% 14.6% 2393
900+180 15 60 3 26% 21.9% 36 15:00.13 94.7% 4.5% 409

1000+200 10 100 2 23% 13.9% 56 15:03.13 77.1% 15.9% 1965

Table 13.4: Solving (13.6) with a BCP method using a Lagrangian heuristic, where
Lagrangian cuts are generated only in the beginning
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Figure 13.2: Process of upper bounds per seconds for solving a network MaxCut
problem, defined by b = 10, p = 50 and f = 2, with three BCP methods
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Figure 13.3: Process of lower bounds per seconds corresponding to Figure 13.2
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13.5.2 MINLP experiments
The BCP method was also tested using a set of instances from the MINLPLib
(Bussieck et al., 2003a) described in Appendix B.1. Here, the initial nonlinear con-
vex relaxation that is computed by using convexified polynomial underestimators,
as described in Section 7.5, was not updated. Hence, the resulting NLP-bounds
are not consistent. Updating of nonlinear convex relaxations after branching op-
erations is currently not implemented in LaGO, and will be added in the future.
Since the used bounding method is not consistent, only results with the binary
subdivision method are reported. The results were obtained on a machine with
a 1.8 GHz AMD Athlon 64 2800+ processor and 1 GB RAM. A time limit of
20 minutes was set. The maximum iteration limit of the BCP method was set
to 10000. CPLEX (ILOG, Inc., 2005) was used for solving LPs, and CONOPT
(Drud, 1996) was used for solving NLPs. Four experiments were made:

1. In the first experiment (see Table 13.6) NLP-bounds based on α-underesti-
mators and binary subdivision were used. Upper bounds were computed by
rounding the solution of the convex relaxation and starting a local search.

2. In the second experiment (see Table 13.7) LP-bounds were used, and upper
bounds were computed by rounding the solution of the outer approximation
and starting a local search.

3. In the third experiment (see Table 13.8) the column generation Algorithm
4.8 was used for computing lower bounds. Upper bounds were computed by
rounding the solution of the RMP (4.16) and starting a local search. La-
grangian subproblems were solved with a branch-and-bound algorithm that
uses NLP-bounds based on α-underestimators and a binary subdivision.

4. In the last experiment (see Table 13.9) the same method as in the third
experiment was used, but upper bounds were computed by the Lagrangian
heuristic described in Section 12.4.

The columns of the tables are described in Table 13.5. The last line of the tables
shows the number of solved problems. N/A means that no feasible solution was
computed.

The results show that the BCP algorithm with LP-bounds and without La-
grangian cuts performs best in terms of solution quality and time (see Table 13.7).
Comparing Table 13.7 and Table 13.6 shows that the BCP algorithm with NLP-
bounds gives sometimes better bounds and solves different problems to global
optimality (problem ex1263 and ex1266), but performs in general worse than the
BCP algorithm with LP-bounds.

The experiments show also that Lagrangian cuts computed by the column
generation Algorithm 4.8 do not improve the performance in most cases (see Table
13.8 and Table 13.9). An exception is problem feedtray, which is solved to global
optimality using Lagrangian cuts. Comparing Table 13.8 with Table 13.9 shows
that the Lagrangian heuristic improves the final gap in most cases. It can be seen
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from these tables that most of the time is spent for computing Lagrangian cuts.
In order to make these cuts more efficient, the Lagrangian sub-solvers have to be
improved (see Appendix A).

By taking the best method for each problem, 35 of 40 problems can be solved
to global optimality, and for the remaining instances, ex1264, nous2, enpro48,
enpro56 and stockcycle, a local solution can be computed with a relative error
ranging from 0.02 to 0.6. Note that most solutions are computed in only a few
seconds.

example The name of the problem
n The number of variables
|B| The number of binary variables
m The number of constraints
rel. err. The relative error of the solution value, computed as v̄−v∗

1+|v̄| ,
where v∗ is the best known optimal value.

BCP gap The final gap, computed as 100 · v−v
1+|v|

BCP iter The number of iterations of the BCP method
BCP time Time in ‘minutes : seconds’ spent by the BCP method
v time The relative time for computing lower bounds
lag sol The number of solved Lagrangian subproblems

Table 13.5: Descriptions of the columns of Tables 13.6, 13.7, 13.8, and 13.9
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rel. BCP BCP v lag
example n |B| m c err. gap iter time time sol
alan 9 4 8 y 0 < 1% 3 0.02 23.8% 0
elf 55 24 39 n 0 < 1% 4170 2:07.17 84.8% 0
ex1223a 8 4 10 y 0 < 1% 2 0.01 30% 0
ex1263 93 72 56 n 0 1.5% 7644 1:44.91 34.1% 0
ex1264 89 68 56 n N/A 10000 2:11.32 30.2% 0
ex1266 181 138 96 n 0 < 1% 1553 35.30 47% 0
ex4 37 25 31 n 0 37.9% 4433 3:47.83 85.3% 0
fac3 67 12 34 y 0 589.8% 17 0.88 82.4% 0
fuel 16 3 16 n 0 61.4% 5 0.03 49.9% 0
meanvarx 36 14 45 y 0 < 1% 4 0.03 31% 0
nous2 51 2 44 n .46 106.2% 7 1.17 96.8% 0
sep1 30 2 32 n 0 26.6% 6 0.04 35.8% 0
spectra2 70 30 73 n 1.03 223.9% 10000 2:35.88 57.5% 0
util 146 28 168 n 0 2.3% 5486 3:29.16 17.9% 0
batch 47 24 74 y 0 < 1% 5 0.61 93.5% 0
batchdes 20 9 20 n 0 2.9% 8 0.22 79.7% 0
eniplac 142 24 190 n 0 34% 10000 6:38.98 64.5% 0
enpro48 154 92 215 n .20 120.5% 6163 20:00.06 92.4% 0
enpro56 128 73 192 n .19 87.4% 10000 9:35.90 74.5% 0
ex1233 53 12 65 n 0 39.7% 173 4.31 78.5% 0
ex1243 69 16 97 n 0 45.6% 84 4.56 88.2% 0
ex1244 96 23 130 n 0 20.3% 1742 1:34.66 86% 0
ex1252 40 15 44 n N/A 9437 1:21.26 19.2% 0
ex3 33 8 32 n 0 8.1% 8 0.11 47.1% 0
fac1 23 6 19 y N/A 0.00
feedtray 98 7 92 n N/A 13 0.84 68.3% 0
gastrans 107 21 150 n 0 < 1% 22 0.67 29.2% 0
gear2 29 24 5 n 0 < 1% 227 1.14 11.9% 0
gkocis 12 3 9 n 0 15.3% 6 0.08 73.7% 0
johnall 195 190 193 n 0 < 1% 2 2.11 92.4% 0
minlphix 85 20 93 n 0 103.8% 44 0.95 63.8% 0
ortez 88 18 75 n 0 2.5% 50 6.42 96.8% 0
procsel 11 3 8 n 0 < 1% 4 0.03 56.6% 0
ravem 113 54 187 n .20 192% 3561 20:00.04 97.1% 0
stockcycle 481 432 98 y 1.27 2672% 2411 20:00.03 86.1% 0
synheat 57 12 65 n 0 41.6% 221 3.83 66.1% 0
synthes1 7 3 7 y 0 < 1% 3 0.02 36.3% 0
synthes2 12 5 15 y 0 < 1% 6 0.05 25.5% 0
synthes3 18 8 24 y 0 < 1% 5 0.06 41.3% 0
waterx 71 14 55 n .02 1924% 10000 6:01.67 15.2% 0
40 29

Table 13.6: Solving MINLPs with a branch-and-bound algorithm using NLP-
bounds and binary subdivision
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rel. BCP BCP v lag
example n |B| m c err. gap iter time time sol
alan 9 4 8 y 0 < 1% 9 0.05 2.2% 0
elf 55 24 39 n 0 < 1% 870 1:40.37 56.3% 0
ex1223a 8 4 10 y 0 < 1% 3 0.01 0% 0
ex1263 93 72 56 n .13 13.1% 10000 1:38.17 9.6% 0
ex1264 89 68 56 n .17 21.5% 10000 1:36.90 9.3% 0
ex1266 181 138 96 n N/A 10000 2:15.87 12.6% 0
ex4 37 25 31 n 0 31.8% 4859 2:01.14 38.4% 0
fac3 67 12 34 y 0 3.198e+09% 16 0.25 9.8% 0
fuel 16 3 16 n 0 61.4% 5 0.03 21.7% 0
meanvarx 36 14 45 y 0 < 1% 3 0.02 22.2% 0
nous2 51 2 44 n .46 106.2% 7 0.06 27.7% 0
sep1 30 2 32 n 0 26.6% 6 0.05 27.2% 0
spectra2 70 30 73 n .07 71.5% 10000 12:53.89 24.8% 0
util 146 28 168 n 0 2.3% 4834 6:15.02 7.1% 0
batch 47 24 74 y 0 < 1% 7 0.10 21.6% 0
batchdes 20 9 20 n 0 4.1% 6 0.05 22.4% 0
eniplac 142 24 190 n 0 36.7% 6967 20:00.25 16.7% 0
enpro48 154 92 215 n .23 125.8% 9858 20:00.23 20.7% 0
enpro56 128 73 192 n .02 59.4% 9402 20:00.16 19.5% 0
ex1233 53 12 65 n 0 42.5% 228 5.27 46.6% 0
ex1243 69 16 97 n 0 47.7% 92 1.55 32.9% 0
ex1244 96 23 130 n 0 12% 1987 1:10.32 36% 0
ex1252 40 15 44 n 0 1.289e+07% 5460 1:08.49 13.1% 0
ex3 33 8 32 n 0 < 1% 6 0.05 27.4% 0
fac1 23 6 19 y 0 8.042e+06% 7 0.06 1.6% 0
feedtray 98 7 92 n N/A 13 0.94 8.3% 0
gastrans 107 21 150 n 0 < 1% 13 0.33 13.9% 0
gear2 29 24 5 n 0 < 1% 52 0.38 7.3% 0
gkocis 12 3 9 n 0 15.7% 5 0.03 15.3% 0
johnall 195 190 193 n 0 < 1% 22 4.29 35.2% 0
minlphix 85 20 93 n 0 3.167e+04% 44 0.73 23.4% 0
ortez 88 18 75 n 0 2.3% 47 0.74 46.7% 0
procsel 11 3 8 n 0 8% 5 0.03 12% 0
ravem 113 54 187 n 0 27.5% 3782 20:11.68 52.6% 0
stockcycle 481 432 98 y .60 115.7% 7376 20:00.12 4.8% 0
synheat 57 12 65 n 0 39.3% 185 4.32 45.6% 0
synthes1 7 3 7 y 0 < 1% 4 0.02 7.1% 0
synthes2 12 5 15 y 0 22.9% 9 0.04 17.5% 0
synthes3 18 8 24 y 0 < 1% 10 0.06 16.9% 0
waterx 71 14 55 n .15 2163% 1034 20:02.52 85.8% 0
40 30

Table 13.7: Solving MINLPs with a BCP algorithm using LP-bounds and binary
subdivision
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rel. BCP BCP v lag
example n |B| m c err. gap iter time time sol
alan 9 4 8 y 0 < 1% 1 0.04 7.3% 6
elf 55 24 39 n .05 25.8% 138 20:02.07 99.5% 38844
ex1223a 8 4 10 y 0 < 1% 2 0.04 63.4% 3
ex1263 93 72 56 n .17 19.7% 452 20:09.37 99.1% 41193
ex1264 89 68 56 n .57 62.4% 175 20:04.23 99.7% 53806
ex1266 181 138 96 n N/A 62 20:11.70 99.8% 31573
ex4 37 25 31 n .24 48.6% 138 20:28.07 99.8% 4429
fac3 67 12 34 y .08 656.4% 10 5:40.94 99.8% 2018
fuel 16 3 16 n 0 61.4% 5 0.33 17.1% 16
meanvarx 36 14 45 y 0 < 1% 6 0.93 93% 181
nous2 51 2 44 n .46 107.3% 7 8.69 54.8% 79
sep1 30 2 32 n 0 26.6% 6 1.85 94.1% 185
spectra2 70 30 73 n 0 58.9% 10000 13:24.85 30.7% 5084
util 146 28 168 n 0 2.3% 2032 20:00.22 49.7% 27745
batch 47 24 74 y 0 < 1% 11 44.86 99.4% 2538
batchdes 20 9 20 n 0 2.6% 6 1.45 33.8% 40
eniplac 142 24 190 n 0 34.7% 1235 20:01.25 71.9% 52263
enpro48 154 92 215 n .82 233.8% 1618 20:00.73 89.9% 22649
enpro56 128 73 192 n N/A
ex1233 53 12 65 n 0 36.6% 170 20:18.84 99.8% 64014
ex1243 69 16 97 n 0 50.5% 98 11:13.30 99.7% 43168
ex1244 96 23 130 n 0 41.5% 233 20:04.21 99.1% 49176
ex1252 40 15 44 n .02 1.316e+07% 5376 20:00.03 92.1% 31432
ex3 33 8 32 n 0 < 1% 6 6.76 99.1% 993
fac1 23 6 19 y N/A 0.25
feedtray 98 7 92 n 0 81% 13 9:28.46 93.7% 1799
gastrans 107 21 150 n 0 < 1% 9 13.81 88.7% 1103
gear2 29 24 5 n 0 < 1% 24 1.51 85.9% 245
gkocis 12 3 9 n 0 26.9% 7 2.45 97.8% 467
johnall 195 190 193 n .10 10.4% 1 21:00.95 89.4% 497
minlphix 85 20 93 n N/A 7 20:02.11 99.8% 362
ortez 88 18 75 n 0 2% 58 2:41.90 99.1% 6369
procsel 11 3 8 n 0 < 1% 4 0.17 87.1% 42
ravem 113 54 187 n 0 33.3% 122 20:12.33 99.6% 68115
stockcycle 481 432 98 y .91 522.4% 835 20:02.66 71.3% 67894
synheat 57 12 65 n 0 38.7% 247 20:10.22 99.5% 57109
synthes1 7 3 7 y 0 < 1% 3 0.10 22.6% 6
synthes2 12 5 15 y 0 29.3% 11 0.48 87.1% 54
synthes3 18 8 24 y 0 24.3% 14 7.16 98% 753
waterx 71 14 55 n N/A 2 1:57.30 81.2% 66
40 25

Table 13.8: Solving MINLPs with a BCP algorithm using LP-bounds, binary sub-
division, and Lagrangian cuts that are computed with a branch-and-bound algo-
rithm
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rel. BCP BCP v lag
example n |B| m c err. gap iter time time sol
alan 9 4 8 y 0 < 1% 1 0.05 5.8% 6
elf 55 24 39 n .01 7.9% 538 20:02.62 94.3% 44226
ex1223a 8 4 10 y 0 < 1% 2 0.05 67.4% 3
ex1263 93 72 56 n .22 24.6% 170 20:05.67 69.6% 15517
ex1264 89 68 56 n .17 21.5% 198 20:02.11 85.7% 30163
ex1266 181 138 96 n N/A 6 20:17.93 0.1% 119
ex4 37 25 31 n .17 43.9% 208 20:05.06 99.2% 4439
fac3 67 12 34 y .08 < 1% 3 22.10 97.8% 192
fuel 16 3 16 n 0 61.4% 5 0.36 16.6% 16
meanvarx 36 14 45 y 0 < 1% 3 0.18 47.4% 38
nous2 51 2 44 n .46 107.3% 7 8.80 53.6% 79
sep1 30 2 32 n 0 26.6% 6 1.03 42.9% 87
spectra2 70 30 73 n .21 92.7% 4371 20:00.33 74.8% 4099
util 146 28 168 n 0 2.3% 662 20:01.57 10% 8360
batch 47 24 74 y 0 < 1% 7 12.48 97.2% 1234
batchdes 20 9 20 n 0 4.1% 6 1.68 34.8% 56
eniplac 142 24 190 n 0 36% 503 20:04.45 19.5% 18241
enpro48 154 92 215 n .69 209.2% 205 20:06.19 12.9% 3449
enpro56 128 73 192 n .34 110% 291 20:10.76 16.2% 11283
ex1233 53 12 65 n 0 38.4% 191 1:59.76 87.7% 1543
ex1243 69 16 97 n 0 48.5% 94 23.26 80.1% 1386
ex1244 96 23 130 n 0 22.2% 1412 20:00.11 72.9% 35001
ex1252 40 15 44 n .02 1.316e+07% 4407 20:00.08 88.1% 28688
ex3 33 8 32 n 0 7% 12 6.67 87.2% 823
fac1 23 6 19 y N/A 0.26
feedtray 98 7 92 n 0 81% 8 20:15.64 95% 2263
gastrans 107 21 150 n 0 < 1% 1 1.74 10.3% 58
gear2 29 24 5 n 0 < 1% 27 1.29 64.6% 247
gkocis 12 3 9 n 0 26.9% 7 2.48 97.2% 467
johnall 195 190 193 n 0 < 1% 1 2:53.03 2.9% 104
minlphix 85 20 93 n 0 3.167e+04% 1 20:08.59 99.8% 155
ortez 88 18 75 n 0 2.5% 50 30.93 94.7% 828
procsel 11 3 8 n 0 < 1% 4 0.18 79.1% 42
ravem 113 54 187 n 0 20.9% 104 20:04.70 94.1% 58606
stockcycle 481 432 98 y .86 355.6% 584 20:02.30 19.8% 30617
synheat 57 12 65 n 0 37.3% 209 3:05.59 51.4% 4849
synthes1 7 3 7 y 0 < 1% 3 0.11 21.9% 6
synthes2 12 5 15 y 0 6.3% 10 0.31 51.7% 32
synthes3 18 8 24 y 0 < 1% 9 3.59 93.4% 397
waterx 71 14 55 n N/A 2 29.80 18.8% 114
40 26

Table 13.9: Solving MINLPs with a BCP algorithm using LP-bounds, binary sub-
division, a Lagrangian heuristic, and Lagrangian cuts that are computed with a
branch-and-bound algorithm
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13.5.3 Cost-efficient design of energy conversion systems

In a joint research project of mathematicians and engineers funded by the Ger-
man Science Foundation (Ahadi-Oskui et al., 2001), a new approach has been
developed to optimize nonconvex MINLPs resulting from a superstructure of a
complex energy conversion system. The goal of the optimization is to design an
energy conversion system for a paper factory with minimum total levelized costs
per time unit.

Parameter and structural changes are considered for the optimization si-
multaneously. A complex superstructure of a combined cycle power plant was
developed as the basis for the optimization.

Figure 13.6: Part of the superstructure of the cogeneration plant

Figure 13.6 shows a part of the superstructure consisting of a gas turbine
as topping cycle and a subsequent heat recovery steam generator (HRSG) that
supplies a steam turbine as bottoming cycle. The process steam is extracted before
it enters the low-pressure steam turbine. The required demand of 90 MW electric
power and 99.5 t/h process steam at 4.5 bar refers to a real paper factory (Ahadi-
Oskui, 2001). The cogeneration plant has to fulfil primarily the needs for thermal
energy of the paper machines. If more electricity is produced than required, the
excess is sold on the market; in the opposite case, the deficit is bought from the
network.

There is a total of 28 binary and 48 continuous structural variables in the
superstructure. The optimization problem can be described verbally by:
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min Total levelized costs per time unit
s.t. Constraints referring to:

plant components, material properties, investment,
operating and maintenance cost and economic analysis

All in all the model contains 1308 variables and 1640 constraints. The program is
block-separable with a maximum block size of 47. Figure 13.7 shows a part of the
related sparsity structure.

The program was coded in GAMS, and solved with the BCP Algorithm 13.1. A
nonlinear relaxation was generated by using polynomial underestimators (Section
6.5). Since some functions have singularities in [x, x], the constrained sampling
technique described in Section 6.5.2 was used. In order to make the local opti-
mization more robust, the continuous optimization problem was first solved with
respect to the thermo-dynamic variables, and afterwards with respect to all vari-
ables including the remaining thermo-economic variables. CPLEX was used for
solving LPs, and CONOPT was used for solving NLPs. Several bounding and
branching strategies of the BCP algorithm were tried.

Similar to the MINLP-results of Section 13.5.2, the BCP Algorithm with
LP-bounds and without Lagrangian cuts performed best. It solved the problem in
10 hours and 50 minutes on a Linux PC with a Pentium 4 processor with 3 GHz
and 1 GB RAM. For comparison, the problem was also solved with a customized
genetic algorithm, which produced a slightly worse solution after 23 hours. More
details about these results can be found in (Ahadi-Oskui et al., 2003) and in the
Ph.D. thesis of T. Ahadi-Oskui, which is currently under preparation.

13.6 Nonconvex polyhedral inner and outer
approximations

BCP methods that use convex polyhedral approximations have three main dis-
advantages. First, it is not easy to perform warm starts for solving similar (La-
grangian) subproblems. Second, many rectangular subdivisions may be necessary
to close a large duality gap. Finally, it can be time-consuming to generate a par-
tition such that a local minimizer that originally was located in the interior of the
bounding box is a vertex with respect to all partition elements. In the worst case,
2n rectangular subdivisions are required.

These disadvantages can be diminished if nonconvex polyhedral inner and
outer approximations are used. Consider a MINLP given in the form

min cT x + c0

s.t. Ax + b ≤ 0
xJk

∈ Gk, k = 1, . . . , p.
(13.7)

A nonconvex polyhedral inner approximation of (13.7) is defined by replacing the
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Figure 13.7: Part of the sparsity structure of the analyzed energy conversion sys-
tem.

sets Gk by

Ǧk =
lk⋃

i=1

conv(Wk,i), k = 1, . . . , p,

where Wk,i ⊂ conv(Gk) is a finite set of inner approximation points. The resulting
problem is an MIP restricted master problem of the form:

min cT x + c0

s.t. Ax + b ≤ 0
xJk

∈ Ǧk, k = 1, . . . , p.
(13.8)

Problem (13.8) is a disjunctive linear program, which can be formulated as the
following MIP:

min cT (W • z) + c0

s.t. A(W • z) + b ≤ 0∑
w∈Wk,i

zw = yk,i, i = 1, . . . , lk, k = 1, . . . , p∑lk
i=1 yk,i = 1, k = 1, . . . , p

yk,i ∈ {0, 1}, i = 1, . . . , lk, k = 1, . . . , p
z ≥ 0

(13.9)

where W = (W1, . . . , Wp) with Wk = (Wk,1, . . . , Wk,lk).
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Similarly, a nonconvex polyhedral outer approximation of (13.7) is defined by
replacing the sets Gk by

Ĝk =
mk⋃
i=1

Ĝk,i, k = 1, . . . , p

where Ĝk,i is a convex polyhedron and Ĝk ⊃ Gk. This results in the following
program

min cT x + c0

s.t. Ax + b ≤ 0
xJk

∈ Ĝk, k = 1, . . . , p

(13.10)

which can be written as an MIP (see Section 2.2.2).
A nonconvex polyhedral outer approximation of the set Gk can be generated

by solving a subproblem of the form

min{aT x | x ∈ Gk} (13.11)

by an LP-based branch-and-bound method that prunes only infeasible subprob-
lems.

Denote by Ĝk,i, i ∈ Inodes, the polyhedral outer approximations correspond-
ing to the nodes generated by a branch-and-bound algorithm. Then Ĝk =

⋃
i∈Inodes

Ĝk,i

is a nonconvex polyhedral outer approximation of Gk and

val(13.11) = min
i∈Inodes

min{aT x | x ∈ Ĝk,i}.

If a solution candidate x∗ of (13.7) is available, a polyhedral outer approximation
Ĝk can be refined by adding interval-gradient cuts , as defined in Section 7.1.3.
Moreover, a polyhedral outer-approximation can be refined by setting Ĝnew

k =
Ĝk \ int T̂k, where T̂k is a polyhedral cone pointed at x∗

Jk
. Here, it is assumed that

either
int T̂k ∩ Gk = ∅, (13.12)

or that the subproblem related to T̂k can be easily fathomed. Condition 13.12 is
fulfilled, for example, if Gk is defined by concave inequalities.

Similarly, polyhedral inner approximations can be refined if a solution can-
didate x∗ of (13.7) is available. Define by wk = x∗

Jk
a new inner approximation

point. Then a refinement of a polyhedral inner approximation conv(Wk) is given
by ⋃

w∈Wk

conv({wk} ∪ Wk \ {w}).

Instead of the convex polyhedral inner and outer approximations (4.16)
and (7.12), the nonconvex polyhedral inner and outer approximations (13.9) and
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Figure 13.8: Nonconvex polyhedral inner approximation: Refinement of
conv({w1, w2}) by conv({w1, v}) ∪ conv({v, w2}), where x is the solution of a
convex relaxation.

(13.10) can be used in the BCP Algorithm 13.1 and in the column generation
Algorithm 4.8. The latter method is similar to the Lagrangian and domain cut
method proposed in (Li et al., 2002).



Chapter 14

LaGO — An Object-Oriented
Library for Solving MINLPs

LaGO (Lagrangian Global Optimizer) is an object-oriented library for solving
nonconvex MINLPs that contains most of the algorithms described in this work
(Nowak et al., 2003). The source code of this software package contains currently
more than 33000 lines written in C++. It was developed over the last four years.
In the following, a short overview of the software is given. Detailed information
about the available classes and methods of LaGO can be found in the online
documentation:
http://www.mathematik.hu-berlin.de/∼eopt/LaGO/documentation/ .

14.1 Design philosophy

LaGO was designed with four goals in mind — general purpose, efficiency, generic
framework and ease of use. With respect to general purpose, it was aimed at solv-
ing general structured (sparse and block-separable) nonconvex MINLPs. With
respect to efficiency, it was aimed at exploiting problem structure, such as block-
separable functions and sparse and low-rank Hessians. With respect to generic
framework, it was aimed at using generic objects, such as linear-algebra subrou-
tines, convex underestimators, cuts and (local and global) solvers, which can be
replaced by user supplied problem-specific implementations for the use of special
structure. With respect to ease of use, it was aimed at using the software as a
black-box, whereby the user defines the problem in a modeling language. LaGO
is currently linked to the algebraic modeling systems AMPL (Fourer et al., 1993)
and GAMS (GAMS, 2003).
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14.2 Related work

Here, some of the currently available software packages for solving MINLPs are
listed. We do not mention software packages for continuous global optimization,
which are described for example in (Neumaier, 2004). Software packages for solving
nonconvex MINLPs include:

(i) BARON. A general purpose branch-and-bound solver based on polyhedral
relaxation and box reduction (Sahinidis, 1996; Sahinidis, 2002).

(ii) αBB. A general purpose branch-and-bound solver based on nonlinear convex
relaxation (Adjiman et al., 2002).

(iii) OQNLP. A combination of tabu, scatter search, simulated annealing and
evolutionary algorithms (Lasdon, 2003).

(iv) XPRESS-SLP. A successive linear programming MINLP heuristic (Dash Op-
timization, 2003).

(v) SCICONIC. 1 A MINLP heuristic based on MIP approximation (SCICON
Ltd., 1989).

Software packages for solving convex MINLPs include:

(i) DICOPT. An outer approximation method (Grossmann, 2002).

(ii) AIMMS-OA. An open outer approximation method (Bisschop and Roelofs,
2002).

(iii) MINOPT. Benders and cross decomposition and outer approximation meth-
ods (Schweiger and Floudas, 2002).

(iv) MINLPBB. A branch-and-bound method (Fletcher and Leyffer, 2002).

(v) SBB. A branch-and-bound method (Bussiek and Drud, 2002).

(vi) LogMIP. Disjunctive programming solver (Vecchietti and Grossmann, 1999).

(vii) Alpha-ECP. Extended cutting-plane method (Westerlund and Lundquist,
2003).

So far generic BCP frameworks have been developed only for MIP. Among them
are:

(i) SYMPHONY. (Ralphs, 2000)

(ii) COIN/BCP. (IBM, 2003)

(iii) ABACUS. (OREAS GmbH, 1999).

1This was probably the first commercial MINLP code developed in the mid 1970’s (Bussieck
and Pruessner, 2003)



14.3. Structure 183

14.3 Structure

The three basic modules of LaGO are: reformulation, relaxation and solvers.
The reformulation module provides methods for building block-separable refor-
mulations of a given MINLP. The relaxation module contains several methods for
generating and improving relaxations. In the solver module several algorithms for
computing solution candidates of a general MINLP are implemented.

(P) (Psplit) (Pext)

(Cext)

{(R)}

SOL
HEU

BOX

NLP

(Cunder)

REF

BCP

CUT/COL

CUT

Figure 14.1: Basic components of LaGO

Figure 14.1 illustrates the basic structure of LaGO. Starting from a given
MINLP, called (P), LaGO constructs a block-separable problem (Psplit), a convex
underestimating-relaxation (Cunder), an extended block-separable reformulation
(Pext), and an extended convex relaxation (Cext). A polyhedral relaxation (R)
is initialized from (Pext) and (Cext) by using the cut generator CUT and a box-
reduction procedure BOX . A branch-cut-and-price algorithm BCP splits the root-
relaxation (R) into several node-relaxations {(R)}. A relaxation is improved by
adding cuts and columns via the cut generator CUT and the column generator
COL. From a node-relaxation (R), solution candidates are retrieved by using a
heuristic HEU and a nonlinear solver NLP. If a good solution is found, it is added
to the solution set SOL, and a level or optimality cut is added to (R) through the
cut generator CUT. In the future, it is planned to update a discretized stochastic
optimization or optimal control problem (P) from solutions of relaxations (R) by
using a mesh and/or scenario refinement procedure REF (see Chapter 9). Figure
14.2 shows the basic objects of LaGO .

14.4 The modules

14.4.1 Reformulation

The reformulation module of LaGO is currently linked to the modeling systems
GAMS (GAMS, 2003) and AMPL (Fourer et al., 1993). In both systems a MINLP
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Figure 14.2: Object diagram of LaGO

is represented as a black-box model of the form:

min h0(x)
s.t. hi(x) ≤ 0 i ∈ I

hi(x) = 0, i ∈ E
x ∈ [x, x]
xB ⊂ �

|B|

(14.1)

where I and E form a partition of {1, . . . , m}, and hi are black-box functions for
which there are procedures for evaluating function values, gradients and Hessians.
Algorithm 14.1 describes a preprocessing procedure for reformulating a black-box
model (14.1) as a block-separable binary program of the form (2.4), where all
functions have the form

h(x) = c +
p∑

k=1

bT
k xLk

+ xT
Qk

AkxQk
+ hk(xNk

) (14.2)

and the index sets Lk, Qk and Nk of the linear, quadratic and non-quadratic
variables are subsets of a block Jk ⊆ {1, . . . , n}. The matrix Ak can be dense,
sparse or user-defined. The functions hk(xNk

) are evaluated as in Remark 2.2.
Since not all MINLP instances have finite variable bounds, as for example in

some instances from the MINLPLib (Bussieck et al., 2003a), the following method
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for generating missing bounds is used. First, the type (linear, convex, concave) of
all functions is determined by evaluating the minimum and maximum eigenvalue
of each Hessian at sample points. Then, all nonconvex constraints are removed
from the original problem. Finally, the function xi is minimized or maximized
with respect to the remaining convex constraints, thus defining a lower and an
upper bound for xi.

Transform integer constraints into binary constraints.

Compute non-existing variable bounds and set Esparse = ∅.
Replace equality constraints by two inequality constraints.

for i = 0, . . . , m:

Generate a sample set Si, set Vi = ∅ and set Ni = ∅.
for j = 1, . . . , n:

if ∂
∂xj

hi(x) 	= 0 for some x ∈ Si: Put j into Vi.

Compute the Hessian H(x) = ∇2hi(x) for x ∈ SH .

if Hkl(x) 	= 0 for some x ∈ SH : Put (k, l) into Esparse, and
k, l into Ni.

if H(x) = H(y) for all x, y ∈ SH : The function hi is consid-
ered to be quadratic.

end for

end for

Algorithm 14.1: Procedure for representing all functions in form (14.2) and
computing the sparsity graph

14.4.2 Relaxation

Nonlinear convex relaxations are constructed by using α-underestimators, CGU-
underestimators or convexified polynomial underestimators. Convex relaxations of
MIQQPs can be alternatively computed by using the semidefinite relaxation mod-
ule. A box-reduction procedure is implemented for tightening a root-relaxation.
It is planned to use this procedure also for tightening a node-relaxation. For the
construction of a polyhedral relaxation the following cuts are implemented: lin-
earization cuts, Knapsack cuts, level cuts and Lagrangian cuts.
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14.4.3 Solvers
There are four basic MINLP-solvers: a deformation heuristic, a rounding-and-
partitioning heuristic, a Lagrangian heuristic and a branch-cut-and-price algo-
rithm using NLP, LP or dual bounds. The default NLP-solver is SNOPT (Gill
et al., 1997). In addition, CONOPT (Drud, 1996) can be used to compute local
minimizers of the continuous subproblem with fixed binary variables. The default
solver for linear programs is CPLEX (ILOG, Inc., 2005). Moreover, SNOPT can
be used to solve LPs. For maximizing a non-differentiable dual function, a simple
subgradient algorithm (default) or the proximal bundle code NOA (Kiwiel, 1994b)
is used. The parameters of the solvers can be modified via a resource file without
recompiling the code.
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Future Perspectives

We think that deterministic algorithms for global optimization of nonconvex mix-
ed-integer nonlinear programs will become an increasingly important research area
in the future. This view is also supported by other authors interested in the future
perspectives of optimization (Grossmann and Biegler, 2002).

The concept of the BCP framework presented here for general MINLPs is
quite similar to modern BCP methods for MIPs. However, our current BCP-solver
for MINLP is still in its infancy, and there is still much room for improvement in
order to make it more efficient. The following list includes a number of things that
would facilitate the development of a reliable large-scale general purpose MINLP
solver:

1. Nonconvex polyhedral outer and inner approximations and an MIP master
problem can be used, as described in Section 13.6.

2. Faster solution of (Lagrangian) subproblems: Specialized sub-solvers can be
used for solving particular subproblems, such as separable MINLP, convex
MINLP, concave NLP or MIP. In particular, LP-based branch-and-bound
methods seem to be quite efficient. Since similar subproblems have to be
solved, a sub-solver should be able to perform a warm-start.

3. The column generation based fixing heuristic of (Borndörfer et al., 2001) can
be used to simultaneously generate columns and to fix binary variables.

4. Generation of block-separable reformulations: Instead of black-box represen-
tations of MINLPs, expression trees or directed acyclic graph (DAG) rep-
resentations Schichl and Neumaier, 2004 can be used to generate splitting
schemes and subproblems in a flexible way.

5. Rigorous bounds: Rigorous underestimators can be computed using interval
methods, as discussed in Section 6.5.1. Moreover, predefined convex under-
estimators for special functions, such as Bézier-underestimators defined in
Section 6.2, can be used.
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6. Box reduction: The described box-reduction methods can be applied to each
node produced by the BCP method. Furthermore, constraint propagation
tools, such as used in the Constrained Envelope Scheduling approach (Boddy
and Johnson, 2003), can be included in the MINLP-BCP framework.

7. Parallelization: A parallel MINLP-BCP framework, based on the structure
of COIN-BCP (IBM, 2003), can be developed.

8. Support of user-knowledge: Similar to the open outer approximation MINLP
solver AIMMS-OA (Bisschop and Roelofs, 2002), an open BCP algorithm
can be developed, which allows users to tune solution strategies for specific
problems.

9. Support of discretized optimization problems: Based on the ideas of Chap-
ter 9, a tool for simultaneously solving and updating discretized stochastic
programs and optimal control problems can be implemented.
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MINLP Problems

B.1 Instances from the MINLPLib
The MINLPLib is a recently created library of MINLP instances (Bussieck et al.,
2003a). These problems come from a very wide variety of applications. Table B.2
shows 49 instances of the MINLPLib that were used in our numerical experiments.
The corresponding columns are described in Table B.1. Almost all problems are
block-separable and have a small maximum block-size. Moreover, 14 problems are
convex, and 19 problems are quadratic.

name The name of the problem
n The number of variables
|B| The number of binary variables
m The number of constraints
box diam The diameter of [x, x]
avg. block size The average block size
max. block size The maximum block size
p The number of blocks
max nr.var The maximum number of nonlinear variables of the objective

or a constraint function
conv Indicates if the problem is a convex MINLP or not
probl type The type of the problem: ’Q’ means MIQQP and ’N’ means

MINLP

Table B.1: Descriptions of the columns of Table B.2.
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box block size max probl
name n |B| m diam. avg max p nl.var conv type
alan 9 4 7 ∞ 1.3 3 7 3 yes Q
batch 47 24 73 1567.64 1.3 2 36 2 yes N
batchdes 20 9 20 ∞ 1.3 2 15 2 no N
elf 55 24 38 ∞ 1.1 2 52 2 no Q
eniplac 142 24 189 ∞ 1.2 2 118 2 no N
enpro48 154 92 215 ∞ 1.1 3 138 3 no N
enpro56 128 73 192 ∞ 1.1 3 116 3 no N
ex1221 6 3 5 14.2478 1 1 6 1 no N
ex1222 4 1 3 1.77255 1 1 4 1 no N
ex1223 12 4 13 17.5499 1 1 12 1 yes N
ex1223a 8 4 9 17.4356 1 1 8 1 yes Q
ex1223b 8 4 9 17.4356 1 1 8 1 yes N
ex1224 12 8 7 3.31491 1.2 3 10 3 no N
ex1225 9 6 10 6.16441 1.1 2 8 2 no N
ex1226 6 3 5 10.4403 1.2 2 5 2 no N
ex1252 40 15 43 5192.7 1.8 7 22 4 no N
ex1263 93 72 55 63.8122 1.2 5 77 2 no Q
ex1264 89 68 55 30.8869 1.2 5 73 2 no Q
ex1265 131 100 74 35.3129 1.2 6 106 2 no Q
ex1266 181 138 95 39.2428 1.2 7 145 2 no Q
ex3 33 8 31 ∞ 1 1 33 1 no N
ex4 37 25 31 ∞ 1 1 37 1 no Q
fac1 23 6 18 1200 2.6 8 9 8 yes N
fac3 67 12 33 7348.47 4.2 18 16 18 yes Q
feedtray2 88 36 284 ∞ 3.4 63 26 17 no Q
fuel 16 3 15 ∞ 1 1 16 1 no Q
gastrans 107 21 149 ∞ 1.2 2 86 2 no N
gbd 5 3 4 1.90788 1 1 5 1 yes Q
gear2 29 24 4 96.1249 1.1 4 26 4 no N
gkocis 12 3 8 ∞ 1 1 12 1 no N
johnall 195 190 192 13.9284 1 3 193 3 no N
meanvarx 36 14 44 ∞ 1.2 7 30 7 yes Q
nous2 51 2 43 ∞ 3.4 8 15 5 no Q
oaer 10 3 7 ∞ 1 1 10 1 no N
ortez 88 18 74 ∞ 1.4 9 61 2 no N
parallel 206 25 115 ∞ 3.7 151 56 131 no N
procsel 11 3 7 ∞ 1 1 11 1 no N
ravem 113 54 186 ∞ 1.1 3 101 3 yes N
sep1 30 2 31 237.181 1.2 5 26 2 no Q
space25 894 750 235 ∞ 1 43 852 7 no Q
space25a 384 240 201 ∞ 1.1 43 342 7 no Q
spectra2 70 30 73 ∞ 1.6 10 43 10 no Q
stockcycle 481 432 97 1060.22 1 1 481 1 yes N
synheat 57 12 64 ∞ 1.5 5 37 5 no N
synthes1 7 3 6 3.4641 1.2 2 6 2 yes N
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synthes2 12 5 14 ∞ 1.1 2 11 2 yes N
synthes3 18 8 23 6.55744 1.1 2 17 2 yes N
util 146 28 168 ∞ 1 5 141 2 no Q
waterx 71 14 54 ∞ 1.7 3 41 3 no N

Table B.2: Instances from the MINLPLib

B.2 Random MIQQP problems
Algorithm B.1 shows a procedure for generating a random MIQQP of the form

min q0(x)
s.t. qi(x) ≤ 0, i = 1, . . . , m/2

qi(x) = 0, i = m/2 + 1, . . . , m
x ∈ [x, x], xB binary

(B.1)

where qi(x) = xT Aix + 2aT
i x + di, Ai ∈ �(n,n) is symmetric, ai ∈ �n, di ∈ �,

i = 0, . . . , m. The functions qi are block-separable with respect to the blocks
Jk = {(k − 1)l + 1, . . . , kl}, k = 1, . . . , p. Since ci = 0 for i = 0, . . . , m, the point
x = 0 is feasible for (B.1).

Input: (n,m,l)

Set p = n/l (number of blocks).

Set B = {1, . . . , n/2}, x = −e and x = e.

for i = 0, . . . , m
Compute symmetric dense matrices Ai,k ∈ �(l,l)

with uniformly distributed random components in
[−10, 10] for k = 1, . . . , p.

Compute vectors bi ∈ �
n with uniformly dis-

tributed random components in [−10, 10], and set
ci = 0.

end for

Algorithm B.1: Procedure for generating random MIQQPs
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restricted master problem, 43
root-problem, 156
root-relaxation, 156
rounding heuristics, 127
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sampling heuristic, 122
separable, 12
separation problem, 84
simulated annealing, 124
smooth binary problem, 11
solution set, 3
space filling curves, 123
sparse, 3
sparsity graph, 12
special order set, 11
standard simplex, 22
statistical global optimization, 124
strictly convex, 22
subgradient method, 35
successive linear programming, 128
successive relaxation methods, 122
successive semidefinite relaxation, 127
super-block, 87
support function, 21
supporting half-space, 22

Tabu search, 124
trust region problem, 60

unconstrained quadratic binary prob-
lem, 131

valid cut, 28
valid cuts, 40, 83
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