Contents

PART I. FOUNDATIONS 1
I. 1 The Scope of Integer and Combinatorial Optimization 3

1. Introduction 3
2. Modeling with Binary Variablcs I: Knapsack, Assignment and Matching, Covering, Packing and Partitioning 5
3. Modeling with Binary Variables II: Facility Location, Fixed-Charge Network Flow, and Traveling Salesman 7
4. Modeling with Binary Variables III: Nonlinear Functions and Disjunctive Constraints 10
5. Choices in Model Formulation 14
6. Preprocessing 17
7. Notes 20
8. Exercises 22
I. 2 Linear Programming 27
9. Introduction 27
10. Duality 28
11. The Primal and Dual Simplex Algorithms 30
12. Subgradient Optimization 41
13. Notes 49
1.3 Graphs and Networks 50
14. Introduction 50
15. The Minimum-Weight or Shortest-Path Problem 55
16. The Minimum-Weight Spanning Tree Problem 60
17. The Maximum-Flow and Minimum-Cut Problems 62
18. The Transportation Problem: A Primal-Dual Algorithm 68
19. A Primal Simplex Algorithm for Network Flow Problems 76
20. Notes 82
I. 4 Polyhedral Theory 83
21. Introduction and Elementary Linear Algebra 83
22. Definitions of Polyhedra and Dimension 85
23. Describing Polyhedra by Facets 88
24. Describing Polyhedra by Extreme Points and Extreme Rays 92
25. Polarity 98
26. Polyhedral Ties Between Linear and Integer Programs 104
27. Notes 109
28. Exercises 109
I. 5 Computational Complexity 114
29. Introduction 114
30. Measuring Algorithm Efficiency and Problem Complexity 117
31. Some Problems Solvable in Polynomial Time 121
32. Remarks on 0-1 and Pure-Integer Programming 125
33. Nondeterministic Polynomial-Time Algorithms and $\mathcal{N P P}$ Problems 127
34. The Most Difficult $\mathcal{N} \not{ }^{\mathscr{A}}$ Problems: The Class $\mathcal{N} \mathscr{P} \mathscr{C}$ 131
35. Complexity and Polyhedra 139
36. Notes 142
37. Exercises 143
I. 6 Polynomial-Time Algorithms for Linear Programming 146
38. Introduction 146
39. The Ellipsoid Algorithm 147
40. The Polynomial Equivalence of Separation and Optimization 161
41. A Projective Algorithm 164
42. A Strongly Polynomial Algorithm for Combinatorial Linear Programs 172
43. Notes 180
I. 7 Integer Lattices 182
44. Introduction 182
45. The Euclidean Algorithm 184
46. Continued Fractions 187
47. Lattices and Hermite Normal Form 189
48. Reduced Bases 195
49. Notes 201
50. Exercises 202
PART II. GENERAL INTEGER PROGRAMMING 203
II. 1 The Theory of Valid Inequalities 205
51. Introduction 205
52. Generating All Valid Inequalities 217
53. Gomory's Fractional Cuts and Rounding 227
54. Superadditive Functions and Valid Inequalities 229
55. A Polyhedral Description of Superadditive Valid Inequalities for Independence Systems 237
56. Valid Inequalities for Mixed-Integer Sets 242
57. Superadditivity for Mixed-Integer Sets 246
58. Notes 254
59. Exercises 256
II. 2 Strong Valid Inequalities and Facets for Structured Integer Programs 259
60. Introduction 259
61. Valid Inequalities for the 0-1 Knapsack Polytope 265
62. Valid Inequalities for the Symmetric Traveling Salesman Polytope 270
63. Valid Inequalitics for Variable Upper-Bound Flow Models 281
64. Notes 290
65. Exercises 291
II. 3 Duality and Relaxation 296
66. Introduction 296
67. Duality and the Value Function 300
68. Superadditive Duality 304
69. The Maximum-Weight Path Formulation and Superadditive Duality 308
70. Modular Arithmetic and the Group Problem 312
71. Lagrangian Relaxation and Duality 323
72. Benders' Reformulation 337
73. Notes 341
74. Exercises 343
II. 4 General Algorithms 349
75. Introduction 349
76. Branch-and-Bound Using Linear Programming Relaxations 355
77. General Cutting-Plane Algorithms 367
78. Notes 379
79. Exercises 381
II. 5 Special-Purpose Algorithms 383
80. Introduction 383
81. A Cutting-Plane Algorithm Using Strong Valid Inequalities 386
82. Primal and Dual Heuristic Algorithms 393
83. Decomposition Algorithms 409
84. Dynamic Programming 417
85. Notes 424
86. Exercises 427
II. 6 Applications of Special-Purpose Algorithms 433
87. Knapsack and Group Problems 433
88. 0-1 Integer Programming Problems 456
89. The Symmetric Traveling Salesman Problem 469
90. Fixed-Charge Network Flow Problems 495
91. Applications of Basis Reduction 513
92. Notes 520
93. Exercises 526
PART III. COMBINATORIAL OPTIMIZATION 533
III. 1 Integral Polyhedra 535
94. Introduction 535
95. Totally Unimodular Matrices 540
96. Network Matrices 546
97. Balanced and Totally Balanced Matrices 562
98. Node Packing and Perfect Graphs 573
99. Blocking and Integral Polyhedra 586
100. Notes 598
101. Exercises 602
III. 2 Matching 608
102. Introduction 608
103. Maximum-Cardinality Matching 611
104. Maximum-Weight Matching 627
105. Additional Results on Matching and Related Problems 636
106. Notes 654
107. Excreises 655
III. 3 Matroid and Submodular Function Optimization 659
108. Introduction 659
109. Elementary Properties 662
110. Maximum-Weight Independent Sets 666
111. Matroid Intersection 671
112. Weighted Matroid Intersection 678
113. Polymatroids, Separation, and Submodular Function Minimization 688
114. Algorithms To Minimize a Submodular Function 694
115. Covering with Independent Sets and Matroid Partition 702
116. Submodular Function Maximization 708
117. Notes 712
118. Exercises 714
References 721
Author Index 749
Subject Index 755
