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Preface to the Second Edition

Optimization may be regarded as the cornerstone of many areas of applied mathematics, computer science, engi-
neering, and a number of other scientific disciplines. Among other things, optimization plays a key role in finding
feasible solutions to real-life problems, from mathematical programming to operations research, economics, man-
agement science, business, medicine, life science, and artificial intelligence, to mention only several.

Optimization entails engaging in an action to find the best solution. As a flourishing research activity, it has
led to theoretical and computational advances, new technologies and new methods in developing more optimal
designs of different systems, efficiency, and robustness, in minimizing the costs of operations in a process, and
maximizing the profits of a company.

The first edition of the encyclopedia of optimization was well received by the scientific community and has
been an invaluable source of scientific information for researchers, practitioners, and students.

Given the enormous yearly increases in this field since the appearance of the first edition, additional opti-
mization knowledge has been added to this second edition. As before, entries are arranged in alphabetical order;
the style of the entries has been retained to emphasize the expository and survey-type nature of the articles. Also
many older entries have been updated and revised in light of new developments. Finally, several improvements
have been made in the format to allow for more links to appropriate internet cites and electronic availability.
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The Scaled ABS Class: General Properties

ABS methods were introduced by [1], in a paper deal-
ing originally only with solving linear equations via

what is now called the basic or unscaled ABS class. The
basic ABS class was later generalized to the so-called
scaled ABS class and subsequently applied to linear least
squares, nonlinear equations and optimization prob-
lems, see [2]. Preliminary work has also been initiated
concerning Diophantine equations, with possible exten-
sions to combinatorial optimization, and the eigenvalue
problem. There are presently (1998) over 350 papers
in the ABS field, see [11]. In this contribution we will
review the basic properties and results of ABS meth-
ods for solving linear determined or underdetermined
systems and overdetermined linear systems in the least
squares sense.

Let us consider the linear determined or underde-
termined system, where rank(A) is arbitrary

Ax=b, xeR",beR™, m<n, (1)
or
a;rx—b,-zo, i=1,...,m, 2)
where
al
A= |. (3)
a,

The steps of the scaled ABS class algorithms are as fol-

lows:

A) Let x; € R" be arbitrary, H; € R™" be nonsingular
arbitrary, v; be an arbitrary nonzero vector in R";
seti=1.

B) Compute the residual r; = Ax; — b. If ; = 0, stop (x;
solves the problem); else compute s; = H;ATv;. If 5;
# 0,thengoto C). Ifs;=0and 7 = v;rr,- = 0, then
set xi+1 = x;, Hi+1 = H; and go to F), else stop (the
system has no solution).
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C) Compute the search vector p; by
pi=H ,TZi, (4)
where z; € R" is arbitrary save for the condition
vIAH] z; # 0. (5)
D) Update the estimate of the solution by
—a;pi, (6)

Xit+1 = Xi

where the stepsize «; is given by

T
V. ri
o = _l_t ' . (7)
ri Api
E) Update the matrix H; by
H,‘ATVI‘WTH,'
Hipr = Hy - = 0 (®)
i+1 i WITH,‘ATV,‘

where w; € R” is arbitrary save for the condition
W;rHiATV,‘ 75 0. (9)

F) If i = m, then stop (x,+1 solves the system), else
define v; , ; as an arbitrary vector in R™ but linearly
independent from vy, ..., v;, increment i by one and
go to B).

The matrices H; appearing in step E) are generalizations

of (oblique) projection matrices. They probably first ap-

peared in [16]. They have been named Abaffians since
the first international conference on ABS methods (Lu-
oyang, China, 1991) and this name will be used here.
The above recursion defines a class of algorithms,
each particular method being determined by the choice
of the parameters Hy, v;, z;, w;. The basic ABS class is
obtained by taking v; = e;, e; being the ith unitary vector
in R™. The parameters w;, z;, H; have been introduced
respectively by J. Abafty, C.G. Broyden and E. Spedi-
cato, whose initials are referred to in the name of the
class. It is possible to show that the scaled ABS class is

a complete realization of the so-called Petrov-Galerkin

iteration for solving a linear system (but the principle

can be applied to more general problems), where the
iteration has the form x;,; = x; — «;p; with «;, p; cho-
sen so that the orthogonality relation r/, ,v; =0, =1,

..., i, holds, the vectors v; being arbitrary linearly inde-
pendent. It appears that all deterministic algorithms in
the literature having finite termination on a linear sys-
tem are members of the scaled ABS class (this statement
has been recently shown to be true also for the quasi-
Newton methods, which are known to have under some
conditions termination in at most 2n steps: the iterate
of index 2i — 1 generated by Broyden’s iteration cor-
responds to the ith iterate of a certain algorithm in the

ABS class).

Referring [2] for proofs, we give some of the general
properties of methods of the scaled ABS class, assum-
ing, for simplicity, that A has full rank.

e Define V; = (vq, ..., vi), W; = (w1, ..., w;). Then
H;.1ATV; =0, H_,W; = 0, meaning that vectors
ATv;, wj, j = 1, ..., i, span the null spaces of H;
and its transpose, respectively.

o The vectors H;ATv;, H ;rw,- are nonzero if and only
if a;, w; are linearly independent from a;, ..., a;i— 1,
Wi, ..., Wi—1, respectively.

e Define P; = (py, ..., pi). Then the implicit factor-
ization V;'—A;'—P,- = L; holds, where L; is nonsingular
lower triangular. From this relation, if m = n, one
obtains the following semi-explicit factorization of
the inverse, with P=P,,V=V,,L=1L,

Al =PV (10)

For several choices of the matrix V the matrix L is

diagonal, hence formula (10) gives a fully explicit

factorization of the inverse as a byproduct of the

ABS solution of a linear system, a property that

does not hold for the classical solvers. It can also

be shown that all possible factorizations of the form

(10) can be obtained by proper parameter choices in

the scaled ABS class, another completeness result.

e Define Si and R,‘ by Si = (51, cesy Si), R,‘ = (7’1, cees 7’,‘),
where s; = H;ATv;, ; = H] w;. Then the Abaffian can
be written in the form H;,; = H; — SiRiT and the vec-
tors s;, r; can be built via a Gram-Schmidt type itera-
tions involving the previous vectors (the search vec-
tor p; can be built in a similar way). This representa-
tion of the Abaffian in terms of 2i vectors is compu-
tationally convenient when the number of equations
is much less than the number of variables. Notice
that there is also a representation in terms of n — i
vectors.
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e A compact formula of the Abaffian in terms of the
parameter matrices is the following

Hiyy = H — HLATV,(W,"HiATV))"' W, H,.
(11)

Letting V = V,,,, W = W,,,, one can show that the
parameter matrices H;, V, W are admissible (i.e.
are such that condition (9) is satisfied) if and only
if the matrix Q = VTAH| W is strongly nonsingular
(i.e. is LU factorizable). Notice that this condition
can always be satisfied by suitable exchanges of the
columns of V or W, equivalent to a row or a column
pivoting on the matrix Q. If Q is strongly nonsingu-
lar and we take, as is done in all algorithms insofar
considered, z; = w;, then condition (5) is also satis-
fied.
It can be shown that the scaled ABS class corresponds to
applying (implicitly) the unscaled ABS algorithm to the
scaled (or preconditioned) system VTAx = VTb, where
V is an arbitrary nonsingular matrix of order m. There-
fore we see that the scaled ABS class is also complete
with respect to all possible left preconditioning matri-
ces, which in the ABS context are defined implicitly and
dynamically (only the ith column of V is needed at the
ith iteration, and it can also be a function of the previ-
ous column choices).

Subclasses of the ABS Class

In [1], nine subclasses are considered of the scaled ABS

class. Here we quote three important subclasses.

o The conjugate direction subclass. This class is well
defined under the condition (sufficient but not
necessary) that A is symmetric and positive defi-
nite. It contains the implicit Choleski algorithm, the
Hestenes-Stiefel and the Lanczos algorithms. This
class generates all possible algorithms whose search
directions are A-conjugate. The vector x;,; mini-
mizes the energy or A-weighted Euclidean norm of
the error over x; + Span(py, ..., p;). If x; = 0, then
the solution is approached monotonically from be-
low in the energy norm.

o The orthogonally scaled subclass. This class is well
defined if A has full column rank and remains well
defined even if m is greater than n. It contains
the ABS formulation of the QR algorithm (the so-
called implicit QR algorithm), of the GMRES and of

the conjugate residual algorithms. The scaling vec-
tors are orthogonal and the search vectors are AAT-
conjugate. The vector x;, ; minimizes the Euclidean
norm of the residual over x; + Span(py, ..., p;). In
general, the methods in this class can be applied to
overdetermined systems to obtain the solution in
the least squares sense.

o The optimally scaled subclass. This class is obtained
by the choice v; = A~ Tp;. The inverse of AT disap-
pears in the actual formulas, if we make the change
of variables z; = ATu;, u; being now the parame-
ter that defines the search vector. For u; = ¢; the
Huang method is obtained and for u; = r; a method
equivalent to Craig’s conjugate gradient type algo-
rithm. From the general implicit factorization rela-
tion one obtains PTP = D or VTAATV = D, a re-
lation which was shown in [5] to characterize the
optimal choice of the parameters in the general
Petrov-Galerkin process in terms of minimizing
the effect of a single error in x; on the final com-
puted solution. Such a property is therefore satis-
fied by the Huang (and the Craig) algorithm, but
not, for instance, by the implicit LU or the implicit
QR algorithms. A. Galantai [8] has shown that the
condition characterizing the optimal choice of the
scaling parameters in terms of minimizing the fi-
nal residual Euclidean norm is VTV = D, a con-
dition satisfied by the implicit QR algorithm, the
GMRES method, the implicit LU algorithm and
again by the Huang algorithm, which therefore sat-
isfies both conditions). The methods in the opti-
mally stable subclass have the property that x;.,,
minimizes the Euclidean norm of the error over x; +

Span(py, ..., pi).

The Implicit LU Algorithm
and the Huang Algorithm

Specific algorithms of the scaled ABS class are obtained

by choosing the available parameters. The implicit LU

algorithm is given by the choices Hy =1, z; = w; = v; =

e;. We quote the following properties of the implicit LU

algorithm.

a) The algorithm is well defined if and only if A is reg-
ular (i. e. all principal submatrices are nonsingular).
Otherwise column pivoting has to be performed (or,
if m = n, equations pivoting).
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b) The Abafhian H; ., has the following structure, with
KieR" %%

0 0

Hipn=1 - : (12)
0 0
K; I,

¢) Only the first i components of p; can be nonzero and
the ith component is one. Hence the matrix P; is unit
upper triangular, so that the implicit factorization A
= LP~! is of the LU type, with units on the diagonal,
justifying the name.

d) Only K; has to be updated. The algorithm re-
quires nm?* — 2m3/3 multiplications plus lower or-
der terms, hence, for m = n, n*/3 multiplications
plus lower order terms. This is the same overhead
required by the classical LU factorization or Gaus-
sian elimination (which are two essentially equiva-
lent processes).

e) The main storage requirement is the storage of Kj,
whose maximum value is #?/4. This is two times
less than the storage needed by Gaussian elimina-
tion and four times less than the storage needed by
the LU factorization algorithm (assuming that A is
not overwritten). Hence the implicit LU algorithm
is computationally better than the classical Gaussian
elimination or LU algorithm, having the same over-
head but less memory cost.

The implicit LU algorithm, implemented in the case m
= n with row pivoting, has been shown in experiments
of M. Bertocchi and Spedicato [3] to be numerically sta-
ble and in experiments of E. Bodon [4] on the vector
processor Alliant FX 80 with 8 processors to be about
twice faster than the LAPACK implementation of the
classical LU algorithm.

The Huang algorithm is obtained by the parame-
ter choices H; = I, z; = w; = a;, v; = ¢;. A mathemati-
cally equivalent, but numerically more stable, formula-
tion of this algorithm is the so-called modified Huang
algorithm where the search vectors and the Abaffians
are given by formulas p; = H;(H;a;) and Hiyy = H; —
pip; Ip] pi. Some properties of this algorithm follow.

o The search vectors are orthogonal and are the same
vectors obtained by applying the classical Gram-
Schmidt orthogonalization procedure to the rows
of A. The modified Huang algorithm is related,

but is not numerically identical, with the Daniel-
Gragg-Kaufmann-Stewart reorthogonalized Gram-
Schmidt algorithm [6].

e If x; is the zero vector, then the vector x;,; is the so-
lution with least Euclidean norm of the first i equa-
tions and the solution x* of least Euclidean norm of
the whole system is approached monotonically and
from below by the sequence x;. L. Zhang [17] has
shown that the Huang algorithm can be applied, via
the Goldfarb-Idnani active set strategy [9], to sys-
tems of linear inequalities. The process in a finite
number of steps either finds the solution with least
Euclidean norm or determines that the system has
no solution.

e While the error growth in the Huang algorithm is
governed by the square of the number 7; = || a; ||
/ || Hia; ||, which is certainly large for some i if A
is ill conditioned, the error growth depends only on
n; if p; or H; are defined as in the modified Huang
algorithm and, at first order, there is no error growth
for the modified Huang algorithm.

e Numerical experiments, see [15], have shown that
the modified Huang algorithm is very stable, giv-
ing usually better accuracy in the computed solution
than both the implicit LU algorithm and the classical
LU factorization method.

The implicit LX algorithm is defined by the choices H;

=1,v; = e, zi = W; = ex,, where k; is an integer, 1 <k; <

n, such that

e;—[H,‘ai 750. (13)

Notice that by a general property of the ABS class for
A with full rank there is at least one index k; such that
(13) is satisfied. For stability reasons it may be recom-
mended to select k; such that n; = |e;€'—iH ja;| is maxi-
mized.

The following properties are valid for the implicit
LX algorithm. Let N be the set of integers from 1 to n,
N = (1, ..., n). Let B; be the set of indexes ki, ..., k;
chosen for the parameters of the implicit LX algorithm
up to the step i. Let N; be the set N \ B;. Then:

e The index k; is selected in the set N;_;.

e The rows of H;,; of index k € B; are null rows.

e The vector p; has n — i zero components; its k;th
component is equal to one.

o If x; =0, then x;, is a basic type solution of the
first i equations, whose nonzero components may lie
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only in the positions corresponding to the indices
k € B;.

e The columns of H;, of index k € N; are the unit
vectors ex, while the columns of H;, ; of index k €
B; have zero components in the jth position, with j
€ B;, implying that only i(n — i) elements of such
columns have to be computed.

e At the ith step i(n — i) multiplications are needed
to compute H;a; and i(n — i) to update the nontriv-
ial part of H;. Hence the total number of multiplica-
tions is the same as for the implicit LU algorithm
(i.e. n*/3), but no pivoting is necessary, reflecting
the fact that no condition is required on the matrix
A.

o The storage requirement is the same as for the im-
plicit LU algorithm, i. e. at most #*/4. Hence the im-
plicit LX algorithm shares the same storage advan-
tage of the implicit LU algorithm over the classical
LU algorithm, with the additional advantage of not
requiring pivoting.

e Numerical experiments by K. Mirnia [10] have
shown that the implicit LX method gives usually bet-
ter accuracy, in terms of error in the computed solu-
tion, than the implicit LU algorithm and often even
than the modified Huang algorithm. In terms of size
of the final residual, its accuracy is comparable to
that of the LU algorithm as implemented (with row
pivoting) in the MATLAB or LAPACK libraries, but
it is better again in terms of error in the solution.

Other ABS Linear Solvers

ABS reformulations have been obtained for most al-
gorithms proposed in the literature. The availability of
several formulations of the linear algebra of the ABS
process allows alternative formulations of each method,
with possibly different values of overhead, storage and
different properties of numerical stability, vectoriza-
tion and parallelization. The reprojection technique, al-
ready seen in the case of the modified Huang algorithm
and based upon the identities Hiq = H;(H;q), H] =
H ;'—(H ;rq), valid for any vector q if H; = I, remarkably
improves the stability of the algorithm. The ABS ver-
sions of the Hestenes-Stiefel and the Craig algorithms
for instance are very stable under the above reprojec-
tion. The implicit QR algorithm, defined by the choices
H, =1, v; = Ap;, zi = w; = ¢; can be implemented in

a very stable way using the reprojection in both the def-
inition of the search vector and the scaling vector. It
should also be noticed that the classical iterative refine-
ment procedure, which amounts to a Newton iteration
on the system Ax — b = 0 using the approximate fac-
tors of A, can be reformulated in the ABS context using
the previously defined search vectors p;. Experiments of
Mirnia [11] have shown that ABS refinement works ex-
cellently.

For problems with special structure ABS methods
can often be implemented taking into account the ef-
fect of the structure on the Abaffian matrix, which of-
ten tends to reflect the structure of the matrix A. For
instance, if A has a banded structure, the same is true
for the Abaffian matrix generated by the implicit LU,
the implicit QR and the Huang algorithm, albeit the
band size is increased. If A is SPD and has a ND struc-
ture, the same is true for the Abaffian matrix. In this
case the implementation of the implicit LU algorithm
has much less storage cost, for large n, than the cost
required by an implementation of the Choleski algo-
rithm. For matrices having the Kuhn-Tucker structure
(KT structure) large classes of ABS methods have been
devised, see » ABS algorithms for optimization. For
matrices with general sparsity patterns little is presently
known about minimizing the fill-in in the Abaffian ma-
trix. Careful use of BLAS4 routines can however sub-
stantially reduce the number of operations and make
the ABS implementation competitive with a sparse im-
plementation of say the LU factorization (e. g. by the
code MA28) for values of n not too big.

It is possible to implement the ABS process also in
block form, where several equations, instead of just one,
are dealt with at each step. The block formulation does
not deteriorate the numerical accuracy and can lead to
reduction of overhead on special problems or to faster
implementations on vector or parallel computers.

Finally infinite iterative methods can be obtained by
the finite ABS methods via two approaches. The first
one consists in restarting the iteration after k < m steps,
so that the storage will be of order 2kn if the represen-
tation of the Abafhian in terms of 2i vectors is used. The
second approach consists in using only a limited num-
ber of terms in the Gram-Schmidt type processes that
are alternative formulations of the ABS procedure. For
both cases convergence at a linear rate has been estab-
lished using the technique developed in [7]. The infinite
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iteration methods obtained by these approaches define
a very large class of methods, that contains not only
all Krylov space type methods of the literature, but also
non-Krylov type methods as the Gauss-Seidel, the De
La Garza and the Kackmartz methods, with their gener-
alizations.

ABS Methods for Linear Least Squares

There are several ways of using ABS methods for solv-
ing in the least squares sense an overdetermined lin-
ear system without forming the normal equations of
Gauss, which are usually avoided on the account of
their higher conditioning. One possibility is to compute
explicitly the factors associated with the implicit factor-
ization and then use them in the standard way. From
results of [14] the obtained methods work well, giving
usually better results than the methods using the QR
factorization computed in the standard way. A second
possibility is to use the representation of the Moore-
Penrose pseudo-inverse that is provided explicitly by the
ABS technique described in [13]. Again this approach
has given very good numerical results. A third possibil-
ity is based upon the equivalence of the normal system
AT Ax = ATb with the extended system in the variables x
€ R", y € R™, given by the two subsystems Ax = y, ATy
= ATb. The first of the subsystems is overdetermined
but must be solvable. Hence y must lie in the range of
AT, which means that y must be the solution of least
Euclidean norm of the second underdetermined sub-
system. Such a solution is computed by the Huang al-
gorithm. Then the ABS algorithm, applied to the first
subsystem, in step B) recognizes and eliminates the m
— k dependent equations, where k is the rank of A. If
k < n there are infinite solutions and the one of least
Euclidean norm is obtained by using again the Huang
algorithm on the first subsystem.

Finally a large class of ABS methods can be applied
directly to an overdetermined system stopping after n
iterations in a least squares solution. The class is ob-
tained by defining V' = AU, where U is an arbitrary non-
singular matrix in R". Indeed at the point x,,,; the satis-
fied Petrov-Galerkin condition is just equivalent to the
normal equations of Gauss. If U = P then the orthogo-
nally scaled class is obtained, implying, as already stated
in section 2, that the methods of this class can be applied
to solve linear least squares (but a suitable modification

has to be made for the GMRES method). A version of
the implicit QR algorithm, with reprojection on both
the search vector and the scaling vector, tested in [12],
has outperformed other ABS algorithms for linear least
squares methods as well as methods in the LINPACK
and NAG library based upon the classical QR factoriza-
tion via the Householder matrices.
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The scaled ABS (Abafty-Broyden-Spedicato) class of

algorithms, see [1] and » ABS algorithms for linear

equations and linear least squares, is a very general pro-
cess for solving linear equations, realizing the so-called

Petrov-Galerkin approach. In addition to solving gen-

eral determined or underdetermined linear systems Ax

=b,xeR" beR" m<n, rank(A) < m, A = [ay,

...am,]T, ABS methods can also solve linear least squares

problems and nonlinear algebraic equations. In this ar-

ticle we will consider applications of ABS methods to
optimization problems. We will consider only the so-
called basic ABS class, defined by the following proce-

dure for solving Ax = b:

A) Letx; € R" be arbitrary, H; € R™" be nonsingular
arbitrary, set i = 1.

B) Computes; = H; a;. IF s; # 0, go to C).
IFs;=0and 7 = a;'—xi —b; =0, THEN set x; , | = x;,
H;. = H; and go to F), ELSE stop, the system has
no solution.

C) Compute the search vector p; by p; = H; z;, where
z; € R" is arbitrary save for the condition aiT H ;'— Zi
# 0.

D) Update the estimate of the solution by x;41 = x; —
a;pi, where the stepsize «; is given by «; = (aiTpi —
bi)/aiTpi.

E) Update the matrix H; by H;,, = H; — HiaiwiTHi/
wiTH ia;, where w; € R" is arbitrary save for the con-
dition wiTHiai #0.

F) IFi=m, THEN stop; X, + 1 solves the system, ELSE
increment i by one and go to B).

Among the properties of the ABS class the following

is fundamental in the applications to optimization. Let
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m < n and, for simplicity, assume that rank(A) = m.
Then the linear variety containing all solutions of the
underdetermined system Ax = b is represented by the
vectors x of the form

X = Xm+1 + H;J’_lq’ (1)

where g € R" is arbitrary. In the following the matrices

generated by the ABS process will be called Abaffians.

It is recalled that the matrix H;,; can be represented in

terms of either 2i vectors or of n — i vectors, which is

also true for the representation of the search vector p;.

The first representation is computationally convenient

for systems where the number of equations is small (less

than #/2), while the second one is suitable for problems
where m is close to n. In the applications to optimiza-
tion, the first case corresponds to problems with few
constraints (many degrees of freedom), the second case
to problems with many constraints (few degrees of free-
dom).

Among the algorithms of the basic ABS class, the
following are particularly important.

a) The implicit LU algorithm is given by the choices H;
=1, z; = w; = e;, where ¢; is the ith unit vector in
R". This algorithm is well defined if and only if A
is regular (otherwise pivoting of the columns has to
be performed, or of the equations, if m = n). Due
to the special structure of the Abaffian induced by
the parameter choices (the first i rows of H;,, are
identically zero, while the last n — i columns are unit
vectors) the maximum storage is n%/4, hence 4 times
less than for the classical LU factorization or twice
less than for Gaussian elimination; the number of
multiplications is nm? — 2m>/3, hence, for m = n,
n°/3, i. e. the same as for Gaussian elimination or the
LU factorization algorithm.

b) The Huang algorithm is obtained by the parameter
choices H; =1, z; = w; = a;. A mathematically equiv-
alent, but numerically more stable, formulation of
this algorithm is the so-called modified Huang al-
gorithm where the search vectors and the Abafh-
ans are given by formulas p; = H;(H;a;) and Hj,q =
H; — p;p] Ip; pi. The search vectors are orthogonal
and are equal to the vectors obtained by applying
the classical Gram-Schmidt orthogonalization pro-
cedure to the rows of A. If x; is the zero vector,
then the vector x;,; is the solution of least Euclidean

norm of the first i equations and the solution x*
of least Euclidean norm of the whole system is ap-
proached monotonically and from below by the se-
quence x;.

c) The implicit LX algorithm, where L’ refers to the
lower triangular left factor while X’ refers to the
right factor, which is a matrix obtainable after row
permutation of an upper triangular matrix, consid-
ered by Z. Xia, is defined by the choices H, = I, z; =
w; = ek, where k; is an integer, 1 < k; < n, such that

eZH,»a,» ;é 0. (2)

If A has full rank, from a property of the basic ABS

class the vector H;a; is nonzero, hence there is at

least one index k; such that (2) is satisfied. The im-

plicit LX algorithm has the same overhead as the

implicit LU algorithm, hence the same as Gaussian

elimination, and the same storage requirement, i. e.

less than Gaussian elimination or the LU factoriza-

tion algorithm. It has the additional advantage of not
requiring any condition on the matrix A, hence piv-
oting is not necessary. The structure of the Abaffian
matrix is somewhat more complicated than for the
implicit LU algorithm, the zero rows of H;,; being
now in the positions ki, ...,k; and the columns that
are unit vectors being in the positions that do not

correspond to the already chosen indices k;.

The vector p; has n — i zero components and its k;th
component is equal to one. It follows that if x; = 0,
then x;,; is a basic type solution of the first i equations,
whose nonzero components correspond to the chosen
indices k;.

In this paper we will present the following appli-
cations of ABS methods to optimization problems. In
Section 2 we describe a class of ABS related methods
for the unconstrained optimization problem. In Sec-
tion 3 we show how ABS methods provide the general
solution of the quasi-Newton equation, also with spar-
sity and symmetry and we discuss how SPD solutions
can be obtained. In Section 4 we present several special
ABS methods for solving the Kuhn-Tucker equations.
In Section 5 we consider the application of the implicit
LX algorithm to the linear programming (LP) problem.
In Section 6 we present ABS approaches to the general
linearly constrained optimization problem, which unify
linear and nonlinear problems.
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A Class of ABS Projection Methods
for Unconstrained Optimization

ABS methods can be applied directly to solve uncon-
strained optimization problems via the iteration x;,; =
Xi — Q; H;rz,-, where H; is reset after n or less steps
and z; is chosen so that the descent condition holds,
i.e. g/ Hz; > 0, with g; the gradient of the function
at x;. If the function to be minimized is quadratic,
one can identify the matrix A in the Abaffian update
formula with the Hessian of the quadratic function.
Defining a perturbed point x" by ¥’ = x; —  v; one
has on quadratic functions ¢’ = ¢ — B Av;, hence the
update of the Abaffian takes the form H;., = H; —
H,-y,-w;rH,-/w;rHiyi, where y; = ¢’ — g;. The above de-
fined class has termination on quadratic functions and
local superlinear (n-step Q-quadratic) rate of conver-
gence on general functions. It is a special case of a class
of projection methods developed in [7]. Almost no nu-
merical results are available about the performance of
the methods in this class.

Applications to Quasi-Newton Methods

ABS methods have been used to provide the general
solution of the quasi-Newton equation, also with the
additional conditions of symmetry, sparsity and posi-
tive definiteness. While the general solution of only the
quasi-Newton equation was already known from [2],
the explicit formulas obtained for the sparse symmetric
case are new, and so is the way of constructing sparse
SPD updates.

Let us consider the quasi-Newton equation defining
the new approximation to a Jacobian or a Hessian, in
the transpose form

dT B = yT7 (3)
where d = X' — x, y = ¢’ — g. We observe that (3) can
be seen as a set of # linear underdetermined systems,
each one having just one equation and differing only
in the right-hand side. Hence the general solution can
be obtained by one step of the ABS method. It can be
written in the following way

B =B - 4
FIP (4)

s(BTd —y)T
S

sdT)
Q.

where Q € R™ " is arbitrary and s € R” is arbitrary sub-
jectto sTd # 0. Formula (4), derived in [9], is equivalent
to the formula in [2].

Now the conditions that some elements of B’ should
be zero, or have constant value or that B’ should be
symmetric can be written as the additional linear con-
straints, where b/; is the ith column of B’

) Tex = nij (5)
where n;; = 0 implies sparsity, 7; = const implies that
some elements do not change their value and 7;; = 7;;
implies symmetry. The ABS algorithm can deal with
these extra conditions, see [11], giving the solution in
explicit form, columnwise in presence of symmetry. By
adding the additional condition that the diagonal ele-
ments be sufficiently large, it is possible to obtain for-
mulas where B’ is quasi positive definite or quasi di-
agonally dominant, in the sense that the principal sub-
matrix of order n — 1 is positive definite or diagonally
dominant. It is not possible in general to force B’ to
be SPD, since SPD solutions may not exist, which is
reflected in the fact that no additional conditions can
be put on the last diagonal element, since the last col-
umn is fully determined by the n — 1 symmetry con-
ditions and the quasi-Newton equation. This result can
however be exploited to provide SPD approximations
by imbedding the original minimization problem of n
variables in a problem of n + 1 variables, whose solu-
tion with respect to the first n variables is the original
solution (just set, for instance, f(x') = f(x) + x2 +1)- This
imbedding modifies the quasi-Newton equation so that
SPD solutions exist.

ABS Methods for Kuhn-Tucker Equations
The Kuhn-Tucker equations (KT equations), which

should more appropriately be named Kantorovich-
Karush-Kuhn-Tucker equations (KKKT equations),
are a special linear system, obtained by writing the
optimality conditions of the problem of minimizing
a quadratic function with Hessian G subject to the lin-
ear equality constraint Cx = b. They are the system Ax
= b, where A is a symmetric indefinite matrix of the fol-
lowing form, with G e R*", Ce R™"

G CT
A= .

(6)
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If G is nonsingular, then A is nonsingular if and
only if CG™'CT is nonsingular. Usually G is nonsingu-
lar, symmetric and positive definite, but this assump-
tion, required by several classical solvers, is not neces-
sary for the ABS solvers.

ABS classes for solving the KT problem can be de-
rived in several ways. Observe that system (6) is equiv-
alent to the two subsystems

Gp+Clz=g, (7)
Cp=c, (8)

where x = (pT, zT)T and b = (g7, CT)T. The general so-
lution of subsystem (8) has the form, see (1)

P =pmi1+Hy 4, 9)

with g arbitrary. The parameter choices made to con-
struct p41 and H,,, are arbitrary and define therefore
a class of algorithms.

Since the KT equations have a unique solution,
there must be a choice of g in (9) which makes p be the
unique n-dimensional subvector defined by the first n
components of the solution x. Notice that since H 1,
is singular, g is not uniquely defined (but would be
uniquely defined if one takes the representation of the
Abaflian in terms of n — m vectors).

By multiplying equation (7) on the left by Hy,.; and
using the ABS property Hy.1 CT = 0, we obtain the
equation

Hin+1Gp = Hppa g, (10)

which does not contain z. Now there are two possibili-

ties to determine p:

A1) Consider the system formed by equations (8) and
(10). Such a system is solvable but overdeter-
mined. Since rank(H,u41) = n — m, m equations
are recognized as dependent and are eliminated in
step B) of any ABS algorithm applied to this sys-
tem.

A2) In equation (10) substitute p with the expression
of the general solution (9) obtaining

Hm+1GHI+1q = Hput18— Hut1Gpm+1. (11)

The above system can be solved by any ABS
method for a particular solution g, m equations be-
ing again removed at step B) of the ABS algorithm
as linearly dependent.

Once p is determined, there are two approaches to de-

termine z, namely:

B1) Solve by any ABS method the overdetermined
compatible system

Clz=g—Gp (12)

by removing at step B) of the ABS algorithm the n
— m dependent equations.

B2) Let P = (p1, ...pm) be the matrix whose columns
are the search vectors generated on the system Cp
= ¢. Now CP = L, with L nonsingular lower diago-
nal. Multiplying equation (12) on the left by PT we
obtain a triangular system, defining z uniquely

LTz=PTg—PTGp. (13)

Extensive numerical testing has evaluated the accuracy
of the above considered ABS algorithms for KT equa-
tions for certain choices of the ABS parameters (cor-
responding to the implicit LU algorithm with row piv-
oting and the modified Huang algorithm). The meth-
ods have been tested against classical methods, in par-
ticular the method of Aasen and methods using the QR
factorization. The experiments have shown that some
ABS methods are the most accurate, in both residual
and solution error; moreover some ABS algorithms are
cheaper in storage and in overhead, up to one order,
especially for the case when m is close to n.

In many interior point methods the main computa-
tional cost is to compute the solution for a sequence of
KT problems where only G, which is diagonal, changes.
In such a case the ABS methods, which initially work
on the matrix C, which is unchanged, are advantaged,
particularly when m is large, where the dominant cu-
bic term decreases with m and disappears for m = n,
so that the overhead is dominated by second order
terms. Again numerical experiments show that some
ABS methods are more accurate than the classical ones.
For details see [8].

Reformulation of the Simplex Method
via the Implicit LX Algorithm

The implicit LX algorithm has a natural application to
a reformulation of the simplex method for the LP prob-
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lem in standard form, i. e. the problem

min c¢'x
s.t Ax=b
x>0

The applicability of the implicit LX method is a con-
sequence of the fact that the iterate x;,; generated by
the method, started from the zero vector, is a basic type
vector, with a unit component in the position k;, non
identically zero components corresponding to indices j
€ B;, where B; is the set of indices of the unit vectors
chosen as the z;, w; parameters, i.e. the set B; = (ki,
..., ki), while the components of x;,; of indices in the
set N; = N/B; are identically zero, where N = (1, ...n).
Therefore, if the nonzero components are nonnegative,
the point defines a vertex of the polytope containing
the feasible points defined by the constraints of the LP
problem.

In the simplex method one moves from a vertex to
another one, according to some rules and usually re-
ducing at each step the value of the function cTx. The
direction along which one moves from a vertex to an-
other one is an edge direction of the polytope and is de-
termined by solving a linear system, whose coefficient
matrix Ag, the basic matrix, is defined by m linearly
independent columns of the matrix A, called the basic
columns. Usually such a system is solved by the LU fac-
torization method or occasionally by the QR method,
see [5]. The new vertex is associated to a new basic ma-
trix Ap’, which is obtained by substituting one of the
columns in Ag by a column of the matrix Ay, which
comprises the columns of A that do not belong to Ap.
The most efficient algorithm for solving the modified
system, after the column interchange, is the Forrest-
Goldfarb method (6], requiring m* multiplications. No-
tice that the classical simplex method requires m? stor-
age for the matrix A plus mn storage for the matrix A,
which must be kept in general to provide the columns
for the exchange.

The application of the implicit LX method to the
simplex method, developed in [4,10,13,17] exploits the
fact that in the implicit LX algorithm the interchange
of a jth column in Ag with a kth column in Ay cor-
responds to the interchange of a previously chosen pa-
rameter vector z; = wj = ¢; with a new parameter z; = wy

= ex. This operation is a special case of the perturbation
of the Abaffian after a change in the parameters and can
be done using a general formula of [15], without explicit
use of the kth column in Ay. Moreover since all quanti-
ties which are needed for the construction of the search
direction (the edge direction) and for the interchange
criteria can as well be implemented without explicit use
of the columns of A, it follows that the ABS approach
needs only the storage of the matrix H .1, which, in the
case of the implicit LX algorithm, has a cost of at most
n?/4. Therefore for values of m close to n the storage
required by the ABS formulation is about 8 times less
than for the classical simplex method.

Here we give the basic formulas of the simplex
method in the classical and in the ABS formulation.
The column in Ay substituting an old column in Ag
is often taken as the column with minimal relative cost.
In terms of the ABS formulation this is equivalent to
minimize with respect to i € Ny, the scalar n; = cTHTe;.
Let N* be the index chosen in this way. The column
in Ap to be exchanged is usually chosen with the cri-
terion of the maximum displacement along an edge
which keeps the basic variables nonnegative. Define w;
= xTei/e;'—HTeN*, where x is the current basic feasible
solution. Then the above criterion is equivalent to min-
imize w; with respect the set of indices i € B,, such that

e] H ex+ > 0. (14)

Notice that HTey* # 0 and that an index i such that
(14) is satisfied always exists, unless x is a solution of
the LP problem.

The update of the Abaffian after the interchange of
the unit vectors, which corresponds to the update of the
LU factors after the interchange of the basic with the
nonbasic column, is given by the following formula

, eE*H
H = H— (Hep* — eB*)_l_—.
ey« Hep*

(15)
The search direction d, which in the classical formula-
tion is obtained by solving the system Agd = — Aeyx, is
givenbyd=H, . ey, hence at no cost. Finally, the rel-
ative cost vector r, classically given by r = c — ATA; ' c3,
where cp consists of the components of ¢ with indices
corresponding to those of the basic columns, is simply
given by r=H,, +1c.
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Let us now consider the computational cost of up-
date (15). Since H eg+ has at most n — m nonzero com-
ponents, while HTey= has at most 7, no more than m(n
— m) multiplications are required. The update is most
expensive for m = n/2 and gets cheaper the smaller m is
or the closer it is to #. In the dual steepest edge Forrest—
Goldfarb method [6] the overhead for replacing a col-
umn is m?, hence formula (15) is faster for m > n/2
and is recommended on overhead considerations for
m sufliciently large. However we notice that ABS up-
dates having a O(m?) cost can also be obtained by using
the representation of the Abaffian in terms of 2m vec-
tors. No computational experience has been obtained
till now on the new ABS formulation of the simplex
method.

Finally, a generalization of the simplex method,
based upon the use of the Huang algorithm started with
a suitable singular matrix, has been developed in [16].
In this formulation the solution is approached by points
lying on a face of the polytope. Whenever the point hits
a vertex the remaining iterates move among vertices
and the method is reduced to the simplex method.

ABS Unification of Feasible Direction Methods
for Minimization with Linear Constraints

ABS algorithms can be used to provide a unification
of feasible point methods for nonlinear minimization
with linear constraints, including as a special case the
LP problem. Let us first consider the problem with only
linear equality constraints:

min  f(x)

s.t. Ax =D
AeR™" m<n,
rank(A) = m.

Let x; be a feasible starting point; then for an itera-
tion procedure of the form x;,; = x; — «;d;, the search
direction will generate feasible points if and only if

Ad; = 0. (16)

Solving the underdetermined system (16) for d; by the
ABS algorithm, the solution can be written in the fol-

lowing form, taking, without loss of generality, the zero
vector as a special solution

di = H;ln—+1‘% (17)

where the matrix H,,,; depends on the arbitrary choice
of the parameters H;, w; and v; used in solving (16) and
q € R" is arbitrary. Hence the general feasible direction
iteration has the form

Xi+1 = X — ()liH—|m—+1q. (18)

The search direction is a descent direction if and only

it dTVf(x) = qTH i1 V f(x) > 0. Such a condition can

always be satisfied by choice of g unless Hy1 V f(x) =

0, which implies, from the null space structure of H,,.1,

that V f(x) = AT A for some A, hence that x;,, is a KT

point and A is the vector of the Lagrange multipliers.

When x;,; is not a KT point, it is immediate to see that

the search direction is a descent directions if we select

qas q=WHy. V f(x), where W is a symmetric and
positive definite matrix.

Particular well-known algorithms from the litera-
ture are obtained by the following choices of g, with
W=1I
o The Wolfe reduced gradient method. Here, H,,; is

constructed by the implicit LU (or the implicit LX)

algorithm.

o The Rosen gradient projection method. Here, H 1 is
built using the Huang algorithm.

o The Goldfarb-Idnani method. Here, H,,., is built via
the modification of the Huang algorithm where H;
is a symmetric positive definite matrix approximat-
ing the inverse Hessian of f(x).

If there are inequalities two approaches are possible:

A) The active set approach. In this approach the set of
linear equality constraints is modified at every iter-

ation by adding and/or dropping some of the linear

inequality constraints. Adding or deleting a single
constraint can be done, for every ABS algorithm, in
order two operations, see [15]. In the ABS reformu-
lation of the Goldfarb-Idnani method, the initial
matrix is related to a quasi-Newton approximation
of the Hessian and an efficient update of the Abaf-
fian after a change in the initial matrix is discussed
in [14].
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B) The standard form approach. In this approach, by
introducing slack variables, the problem with both
types of linear constraints is written in the equiva-

lent form
min  f(x)
st. Ax=1b

x > 0.

The following general iteration, started with x; a feasi-
ble point, generates a sequence of feasible points for the
problem in standard form

Xit1 = X; — ifiHpu 1 VI(x), (19)

where the parameter «; can be chosen by a line search
along the vector H,,; V f(x), while the relaxation pa-
rameter 3; > 0 is selected to avoid that the new point
has some negative components.

If f(x) is nonlinear, then H,,;; can be determined
once and for all at the first step, since V f(x) generally
changes from iteration to iteration, therefore modifying
the search direction. If, however, f(x) = cTx is linear (we
have then the LP problem) to modify the search direc-
tion we need to change H,,.1. As observed before, the
simplex method is obtained by constructing H,,,; with
the implicit LX algorithm, every step of the method cor-
responding to a change of the parameters ex,. It can be
shown, see [13], that the method of Karmarkar (equiv-
alent to an earlier method of Evtushenko [3]), corre-
sponds to using the generalized Huang algorithm, with
initial matrix H; = Diag(x;) changing from iteration to
iteration. Another method, faster than Karmarkar’s and
having superlinear against linear rate of convergence
and O(4/n) against O(n) complexity, again first pro-
posed by Y. Evtushenko, is obtained by the generalized
Huang algorithm with initial matrix H, = Diag(xf).

See also

» ABS Algorithms for Linear Equations and Linear
Least Squares

» Gauss-Newton Method: Least Squares, Relation to
Newton’s Method

» Generalized Total Least Squares

» Least Squares Orthogonal Polynomials

» Least Squares Problems

» Nonlinear Least Squares: Newton-type Methods
» Nonlinear Least Squares Problems

» Nonlinear Least Squares: Trust Region Methods
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Introduction

The adaptive convexification algorithm is a method
to solve semi-infinite optimization problems via a se-
quence of feasible iterates. Its main idea [6] is to
adaptively construct convex relaxations of the lower
level problem, replace the relaxed lower level problems
equivalently by their Karush-Kuhn-Tucker conditions,
and solve the resulting mathematical programs with
complementarity constraints. The convex relaxations
are constructed with ideas from the «BB method of
global optimization.

Feasibility in Semi-Infinite Optimization

In a (standard) semi-infinite optimization problem
a finite-dimensional decision variable is subject to in-

finitely many inequality constraints. For adaptive con-
vexification one assumes the form

SIP: mi}l{l f(x) subjectto g(x,y) <0,
X€
forall y € [0,1]

with objective function f € C*(R",R), constraint
function g€ C*(R" x R,R), a box constraint set
X = [x%, x*] ¢ R™ with x¢ < x* € R", and the set of
infinitely many indices Y = [0, 1]. Adaptive convexi-
fication easily generalizes to problems with additional
inequality and equality constraints, a finite number of
semi-infinite constraints as well as higher-dimensional
box index sets [6]. Reviews on semi-infinite program-
],and [9,14,
isting numerical methods.

Classical numerical methods for SIP suffer from the
drawback that their approximations of the feasible set
X N M with

ming are given in [8, ] overview the ex-

M = {xeR"|g(x,y) <0forall y € [0,1]}

may contain infeasible points. In fact, discretization
and exchange methods approximate M by finitely many
inequalities corresponding to finitely many indices in
Y = [0, 1], yielding an outer approximation of M,
and reduction based methods solve the Karush-Kuhn-
Tucker system of SIP by a Newton-SQP approach. As
a consequence, the iterates of these methods are not
necessarily feasible for SIP, but only their limit might
be. On the other hand, a first method producing feasible
iterates for SIP was presented in the articles [3,4], where
a branch-and-bound framework for the global solution
of SIP generates convergent sequences of lower and up-
per bounds for the globally optimal value.

In fact, checking feasibility of a given point X € R"
is the crucial problem in semi-infinite optimization.
Clearly we have ¥ € M if and only if ¢(x) < 0 holds
with the function

¢: R" > R, x —» max g(x,y).

y€[0,1]
The latter function is the optimal value function of the
so-called lower level problem of SIP,

Q(x): max g(x,y) subjectto 0<y<1.
yGR
The difficulty lies in the fact that ¢(%) is the globally

optimal value of Q(x) which might be hard to deter-
mine numerically. In fact, standard NLP solvers can
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only be expected to produce a local maximizer yjo. of
Q(x) which is not necessarily a global maximizer ygob.
Even if g(%, y1oc) < 0 is satisfied, ¥ might be infeasible
since g(X, yioc) < 0 < @(X) = g(X, yglob) may hold.

Convex Lower Level Problems

Assume for a moment that Q(x) is a convex optimiza-
tion problem for all x € X, that is, g(x, -) is concave on
Y = [0, 1] for these x. An approach developed for so-
called generalized semi-infinite programs from [18,19]
then takes advantage of the fact that the solution set
of a differentiable convex lower level problem satisty-
ing a constraint qualification is characterized by its first
order optimality condition. In fact, SIP and the Stackel-
berg game

SG: min f(x) subjectto g(x,y) <0,
X,y

and y solves Q(x)

are equivalent problems, and the restriction
‘y solves Q(x)” in SG can be equivalently replaced
by its Karush-Kuhn-Tucker condition. For this refor-

mulation we use that the Lagrange function of Q(x),

Ly, ve V) = g, y) + vy + vu(l—y),

satisfies

VoL, y,ve,70) = V,8(x.9) + ve — vu

and obtain that the Stackelberg game is equivalent to
the following mathematical program with complemen-
tarity constraints:

MPCC: min f(x)subjectto g(x,y) <0
X,Y5¥esVu

Vyg(x.y) +ve—yu =0

yey =0

yu(l - )/) =0

Ye, Yu > 0

y, 1—y2>0.

Overviews of solution methods for MPCC are given
in [10,11,17]. One approach to solve MPCC is the refor-
mulation of the complementarity constraints by a so-

called NCP function, that is, a function ¢: R? — R
with

¢(a,b) =0

ifandonlyif a>0, b>0, ab=0.

For numerical purposes one can regularize these non-
differentiable NCP functions. Although MPCC does
not necessarily have to be solved via the NCP function
formulation, in the following we will use NCP func-
tions to keep the notation concise. In fact, MPCC can
be equivalently rewritten as the nonsmooth problem

P: min
X,),V05Vu
f(x) subjectto g(x,y) <0
Vy8(x, ) +ve —yu =0
¢(ve.y) =0
¢(yu, 1 —y) =0.

The BB Method

In BB, a convex underestimator of a nonconvex func-
tion is constructed by decomposing it into a sum of
nonconvex terms of special type (e. g., linear, bilinear,
trilinear, fractional, fractional trilinear, convex, uni-
variate concave) and nonconvex terms of arbitrary type.
The first type is then replaced by its convex envelope
or very tight convex underestimators which are already
known. A complete list of the tight convex underesti-
mators of the above special type nonconvex terms is
provided in [5].

For the ease of presentation, here we will treat
all terms as arbitrarily nonconvex. For these terms,
aBB constructs convex underestimators by adding
a quadratic relaxation function . With the obvi-
ous modification we use this approach to construct
a concave overestimator for a nonconcave function
g: [¥*. "] = R being C? on an open neighborhood of
[¥¢. y*]. With

V(ya by = %(y—yz)(y“—y) (1)
we put
oy y) = ¢+ v(sa by,

In the sequel we will suppress the dependence of § on
y¢, y*. For a > 0 the function § clearly is an overesti-
mator of g on [y*, y*], and it coincides with g at the
endpoints y*, y* of the domain. Moreover, § is twice
continuously differentiable with second derivative

Vig(ysa) = Vig(y) —a
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on [y‘z, y*]. Consequently § is concave on [yz, y*] for

a > max Vig(y) (2)
y€lyt.ym)

(cf. also [1,2]). The computation of « thus involves
a global optimization problem itself. Note, however,
that one may use any upper bound for the right-hand
side in (2). Such upper bounds can be provided by in-
terval methods (see, e.g., [5,7,12]). An « satisfying (2)
is called convexification parameter.

Combining these facts shows that for

yelyt,y]

o > max (0, max Vzg(y))

the function g(y; ) is a concave overestimator of g on
PSSt

Formulation

For Ne N leto=n"<np'<...<pV1<pVN =1
define a subdivision of Y = [0,1], that is, with
K=1{1,...,N}and

YR = [p*'nf), kek,
we have
Y = %.

keK

A trivial but very useful observation is that the single
semi-infinite constraint

gx,y) <0 forall yeVY

is equivalent to the finitely many semi-infinite con-
straints

g(x,y) <0 forall yeYF keKk.

Given a subdivision, one can construct concave over-
estimators for each of these finitely many semi-
infinite constraints, solve the corresponding optimiza-
tion problem, and adaptively refine the subdivision.

The following lemma formulates the obvious fact
that replacing g by overestimators on each subdivision
node Y* results in an approximation of M by feasible
points.

Lemmal Foreachk € Kletgk: X x Y¥ — R, and let
% € X be given such that for allk € K andall y € Y* we
have g(%, y) < g*(%, y). Then the constraints

gk(fc,y) <0 forall ye Yk, ke K,
entail x € M.

aBB for the Lower Level

For the construction of these overestimators one uses
ideas of the BB method. In fact, for each k € K we put

g5 XxYF 5 R, (x, ) = glx, )+ ¥ (e, n* 1 0h)

(3)
with the quadratic relaxation function v from (1) and
ox > max (0, max Vﬁg(x,y)) . (4)
(x,y)€EXx Yk

Note that the latter condition on « is uniform in x. We
emphasize that with the single bound

max

o > max | 0,
(x,y)EXXY

Vig(x, y)) (5)

the choices ot := & satisty (4) for all k € K. Moreover,

the o can always be chosen such that oy < &, k € K.
The following properties of g* are easily verified.

Lemma 2 ([6]) For each k € K let gk be given by (3).
Then the following holds:

(i) Forall (x,y) € X x Y* we have glx,y) < gk(x,y).
(ii) Forallx € X, the function gk(x, -) is concave on YX.

Now consider the following approximation of the fea-
sible set M, where E = {n*| k € K} denotes the set of
subdivision points, and « the vector of convexification
parameters:

Mypp(E,a) = {x € R"| gk(x,y) <0,
forally € Y¥, ke K}.

By Lemma 1 and Lemma 2(i) we have

Mypp(E,a) C M. This means that any solution con-
cept for

SIP,gp(E, ): mi}lgf(x) subject to
X€

X € Mypp(E, @),
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be it global solutions, local solutions or stationary
points, will at least lead to feasible points of SIP (pro-
vided that SIP,3g(E, ) is consistent).

The problem SIPypp(E, o) has finitely many lower
level problems Q¥(x), k € K, with

Q*(x): max g"(x,y) subjectto n*' <y <pF.

Since the inequality (4) is strict, the convex problem
Q*(x) has a unique solution yk(x) for each k € K and
x € X. Recall that y € Y* is called active for the con-
straint max,cy« g*(x, ) < 0atxif g*(x, y) = 0 holds.
By the uniqueness of the global solution of Q¥ (%) there
exists at most one active index for each k € K, namely
yk (x). Thus, one can consider the finite active index sets
Ko(%) ={k € K| g"(%.y"(2)) = 0},
PP () = {4 @) k € Ko(®) } .

The MPCC Reformulation
Following the ideas to treat convex lower level prob-
lems, yk solves Q¥(x) if and only if (x, yk, yé‘, y,f ) solves
the system
V856, y) + ye = yu =0
Py =1 =0
¢ —y) =0
with some yé‘, vk, and ¢ denoting some NCP function.
With
wi= (x,yk, yek, y[f, k € K)
F(w) := f(x)
(04 _
G ws E.a) = gley") + S0 =0 )" =)
H*(w;E, ) :=

k—1 k
V,8(x. y) + ax (" - y") +yi -
Pyl yk —n*1)
P(yE.n* —yb)
one can thus replace SIP,pp(E, ) equivalently by the
nonsmooth problem

P(E,a): min F(w) subject to

G*(w; E,a) <0,

H*(w;E,a) =0, keK.

The latter problem can be solved to local optimality by
MPCC algorithms [10,11,17]. For a local minimizer w
of P(E, ) the sub