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FOREWORD

By George B. Dantzig

LINEAR PROGRAMMING

The Story About How It Began: Some legends, a little about its historical signifi-
cance, and comments about where its many mathematical programming extensions
may be headed.

Industrial production, the flow of resources in the economy, the exertion of
military effort in a war, the management of finances—all require the coordination
of interrelated activities. What these complex undertakings share in common is
the task of constructing a statement of actions to be performed, their timing and
quantity (called a program or schedule), that, if implemented, would move the system
from a given initial status as much as possible towards some defined goal.

While differences may exist in the goals to be achieved, the particular processes,
and the magnitudes of effort involved, when modeled in mathematical terms these
seemingly disparate systems often have a remarkably similar mathematical struc-
ture. The computational task is then to devise for these systems an algorithm for
choosing the best schedule of actions from among the possible alternatives.

The observation, in particular, that a number of economic, industrial, financial,
and military systems can be modeled (or reasonably approximated) by mathemat-
ical systems of linear inequalities and equations has given rise to the development
of the linear programming field.

The first and most fruitful industrial applications of linear programming were
to the petroleum industry, including oil extraction, refining, blending, and distribu-
tion. The food processing industry is perhaps the second most active user of linear
programming, where it was first used to determine shipping of ketchup from a few
plants to many warehouses. Meat packers use linear programming to determine the
most economical mixture of ingredients for sausages and animal feeds.

In the iron and steel industry, linear programming has been used for evaluating
various iron ores. Pelletization of low-grade ores, additions to coke ovens, and shop

xxi
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loading of rolling mills are additional applications. Linear programming is also
used to decide what products rolling mills should make in order to maximize profit.
Blending of iron ore and scrap to produce steel is another area where it has been
used. Metalworking industries use linear programming for shop loading and for
determining the choice between producing and buying a part.

Paper mills use it to decrease the amount of trim losses. The optimal design
and routing of messages in a communication network, contract award problems,
and the routing of aircraft and ships are other examples where linear programming
methods are applied. The best program of investment in electric power plants and
transmission lines has been developed using linear programming methods.

More recently, linear programming (and its extensions) has found its way into
financial management, and Wall Street firms have been hiring mathematical pro-
grammers that they call “rocket scientists” for a variety of applications, especially
for lease analysis and portfolio analysis.

Linear programming can be viewed as part of a great revolutionary development
that has given mankind the ability to state general goals and to lay out a path of
detailed decisions to be taken in order to “best” achieve these goals when faced
with practical situations of great complexity. Our tools for doing this are ways to
formulate real-world problems in detailed mathematical terms (models), techniques
for solving the models (algorithms), and engines for executing the steps of algorithms
(computers and software).

This ability began in 1947, shortly after World War II, and has been keeping pace
ever since with the extraordinary growth of computing power. So rapid have been
the advances in decision science that few remember the contributions of the great
pioneers that started it all. Some of their names are von Neumann, Kantorovich,
Leontief, and Koopmans. The first two were famous mathematicians. The last
three received the Nobel Prize in economics for their work.

In the years from the time when it was first proposed in 1947 by the author
(in connection with the planning activities of the military), linear programming
and its many extensions have come into wide use. In academic circles decision
scientists (operations researchers and management scientists), as well as numerical
analysts, mathematicians, and economists have written hundreds of books and an
uncountable number of articles on the subject.

Curiously, in spite of its wide applicability today to everyday problems, lin-
ear programming was unknown prior to 1947. This statement is not quite correct;
there were some isolated exceptions. Fourier (of Fourier series fame) in 1823 and the
well-known Belgian mathematician de la Vallée Poussin in 1911 each wrote a paper
about it, but that was about it. Their work had as much influence on post-1947
developments as would the finding in an Egyptian tomb of an electronic computer
built in 3,000 B.C. Leonid Kantorovich’s remarkable 1939 monograph on the sub-
ject was shelved by the communists for ideological reasons in the U.S.S.R. It was
resurrected two decades later after the major developments had already taken place
in the West. An excellent paper by Hitchcock in 1941 on the transportation problem
went unnoticed until after others in the late 1940s and early 50s had independently
rediscovered its properties.
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What seems to characterize the pre-1947 era was a lack of any interest in trying
to optimize. T. Motzkin in his scholarly thesis written in 1936 cites only 42 papers
on linear inequality systems, none of which mentioned an objective function.

The major influences of the pre-1947 era were Leontief’s work on the input-
output model of the economy (1932), an important paper by von Neumann on
game theory (1928), and another by him on steady economic growth (1937).

My own contributions grew out of my World War II experience in the Pentagon.
During the war period (1941–45), I had become an expert on programs and planning
methods using desk calculators. In 1946 I was mathematical advisor to the U.S. Air
Force comptroller in the Pentagon. I had just received my Ph.D. (for research I had
done mostly before the war) and was looking for an academic position that would
pay better than a low offer I had received from Berkeley. In order to entice me to not
take another job, my Pentagon colleagues D. Hitchcock and M. Wood challenged
me to see what I could do to mechanize the Air Force planning process. I was
asked to find a way to compute more rapidly a time-staged deployment, training,
and logistical supply program. In those days “mechanizing” planning meant using
analog devices or punch-card equipment. There were no electronic computers.

Consistent with my training as a mathematician, I set out to formulate a model.
I was fascinated by the work of Wassily Leontief, who proposed in 1932 a large
but simple matrix structure that he called the Interindustry Input-Output Model
of the American Economy. It was simple in concept and could be implemented in
sufficient detail to be useful for practical planning. I greatly admired Leontief for
having taken the three steps necessary to achieve a successful application:

1. Formulating the inter-industry model.

2. Collecting the input data during the Great Depression.

3. Convincing policy makers to use the output.

Leontief received the Nobel Prize in 1976 for developing the input-output model.
For the purpose I had in mind, however, I saw that Leontief’s model had to

be generalized. His was a steady-state model, and what the Air Force wanted was
a highly dynamic model, one that could change over time. In Leontief’s model
there was a one-to-one correspondence between the production processes and the
items being produced by these processes. What was needed was a model with
many alternative activities. Finally, it had to be computable. Once the model was
formulated, there had to be a practical way to compute what quantities of these
activities to engage in consistent with their respective input-output characteristics
and with given resources. This would be no mean task since the military application
had to be large scale, with hundreds and hundreds of items and activities.

The activity analysis model I formulated would be described today as a time-
staged, dynamic linear program with a staircase matrix structure. Initially there was
no objective function; broad goals were never stated explicitly in those days because
practical planners simply had no way to implement such a concept. Noncomputabil-
ity was the chief reason, I believe, for the total lack of interest in optimization prior
to 1947.
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A simple example may serve to illustrate the fundamental difficulty of finding an
optimal solution to a planning problem once it is formulated. Consider the problem
of assigning 70 men to 70 jobs. Suppose a known value or benefit vij would result if
the ith man is assigned to the jth job. An activity consists in assigning the ith man
to the jth job. The restrictions are (i) each man must be assigned a job (there are
70 such), and (ii) each job must be filled (also 70). The level of an activity is either
1, meaning it will be used, or 0, meaning it will not. Thus there are 2× 70 or 140
restrictions, 70 × 70 or 4,900 activities with 4,900 corresponding zero-one decision
variables xij . Unfortunately there are 70! = 70×69×68 · · ·×2×1 different possible
solutions or ways to make the assignments xij . The problem is to compare the 70!
solutions with one another and to select the one that results in the largest sum of
benefits from the assignments.

Now 70! is a big number, greater than 10100. Suppose we had a computer capable
of doing a million calculations per second available at the time of the big bang 15
billion years ago. Would it have been able to look at all the 70! combinations by
now? The answer is no! Suppose instead it could perform at nanosecond speed and
make 1 billion complete assignments per second? The answer is still no. Even if
the earth were filled solid with such computers all working in parallel, the answer
would still be no. If, however, there were 1040 Earths circling the sun each filled
solid with nanosecond-speed computers all programmed in parallel from the time
of the big bang until the sun grows cold, then perhaps the answer might be yes.

This easy-to-state example illustrates why up to 1947, and for the most part
even to this day, a great gulf exists between man’s aspirations and his actions. Man
may wish to state his wants in complex situations in terms of some general objective
to be optimized, but there are so many different ways to go about it, each with its
advantages and disadvantages, that it would be impossible to compare all the cases
and choose which among them would be the best. Invariably, man in the past has
left the decision of which way is best to a leader whose so called “experience” and
“mature judgment” would guide the way. Those in charge like to do this by issuing
a series of ground rules (edicts) to be executed by those developing the plan.

This was the situation in 1946 before I formulated a model. In place of an
explicit goal or objective function, there were a large number of ad hoc ground
rules issued by those in authority in the Air Force to guide the selection. Without
such rules, there would have been in most cases an astronomical number of feasible
solutions to choose from. Incidentally, “Expert System” software, a software tool
used today (2002) in artificial intelligence, which is very much in vogue, makes use
of this adhoc ground-rule approach.

Impact of linear programming on computers: All that I have related up to now
about the early development took place in late 1946 before the advent of the com-
puter, more precisely, before we were aware that it was going to exist. But once
we were aware, the computer became a vital tool for our mechanization of the
planning process. So vital was the computer going to be for our future progress,
that our group successfully persuaded the Pentagon (in the late 1940’s) to fund the
development of computers.

To digress for a moment, I would like to say a few words about the electronic
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computer itself. To me, and I suppose to all of us, one of the most startling de-
velopments of all time has been the penetration of the computer into almost every
phase of human activity. Before a computer can be intelligently used, a model must
be formulated and good algorithms developed. To build a model, however, requires
the axiomatization of a subject-matter field. In time this axiomatization gives rise
to a whole new mathematical discipline that is then studied for its own sake. Thus,
with each new penetration of the computer, a new science is born. Von Neumann
notes this tendency to axiomatize in his paper on The General and Logical The-
ory of Automata. In it he states that automata have been playing a continuously
increasing role in science. He goes on to say

Automata have begun to invade certain parts of mathematics too, partic-
ularly but not exclusively mathematical physics or applied mathematics.
The natural systems (e.g., central nervous system) are of enormous com-
plexity and it is clearly necessary first to subdivide what they represent
into several parts that to a certain extent are independent, elementary
units. The problem then consists of understanding how these elements
are organized as a whole. It is the latter problem which is likely to at-
tract those who have the background and tastes of the mathematician or
a logician. With this attitude, he will be inclined to forget the origins
and then, after the process of axiomatization is complete, concentrate on
the mathematical aspects.

By mid-1947, I had formulated a model which satisfactorily represented the
technological relations usually encountered in practice. I decided that the myriad
of adhoc ground rules had to be discarded and replaced by an explicit objective
function. I formulated the planning problem in mathematical terms in the form of
axioms that stated

1. the total amount of each type of item produced or consumed by the system
as a whole is the algebraic sum of the amounts inputted or outputted by the
individual activities of the system,

2. the amounts of these items consumed or produced by an activity are propor-
tional to the level of an activity, and

3. these levels are nonnegative.

The resulting mathematical system to be solved was the minimization of a lin-
ear form subject to linear equations and inequalities. The use (at the time it was
proposed) of a linear form as the objective function to be maximized was a novel
feature of the model.

Now came the nontrivial question: Can one solve such systems? At first I as-
sumed that the economists had worked on this problem since it was an important
special case of the central problem of economics, the optimal allocation of scarce
resources. I visited T.C. Koopmans in June 1947 at the Cowles Foundation (which
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at that time was at the University of Chicago) to learn what I could from the math-
ematical economists. Koopmans became quite excited. During World War II, he
had worked for the Allied Shipping Board on a transportation model and so had
the theoretical as well as the practical planning background necessary to appreciate
what I was presenting. He saw immediately the implications for general economic
planning. From that time on, Koopmans took the lead in bringing the potentialities
of linear programming models to the attention of other young economists who were
just starting their careers. Some of their names were Kenneth Arrow, Paul Samuel-
son, Herbert Simon, Robert Dorfman, Leonid Hurwicz, and Herbert Scarf, to name
but a few. Some thirty to forty years later the first three and T.C. Koopmans
received the Nobel Prize for their research.

Seeing that economists did not have a method of solution, I next decided to
try my own luck at finding an algorithm. I owe a great debt to Jerzy Neyman,
the leading mathematical statistician of his day, who guided my graduate work at
Berkeley. My thesis was on two famous unsolved problems in mathematical statistics
that I mistakenly thought were a homework assignment and solved. One of the
results, published jointly with AbrahamWald, was on the Neyman-Pearson Lemma.
In today’s terminology, this part of my thesis was on the existence of Lagrange
multipliers (or dual variables) for a semi-infinite linear program whose variables
were bounded between zero and one and satisfied linear constraints expressed in
the form of Lebesgue integrals. There was also a linear objective to be maximized.

Luckily, the particular geometry used in my thesis was the one associated with
the columns of the matrix instead of its rows. This column geometry gave me the
insight that led me to believe that the Simplex Method would be a very efficient
solution technique. I earlier had rejected the method when I viewed it in the row
geometry because running around the outside edges seemed so unpromising.

I proposed the Simplex Method in the summer of 1947. But it took nearly a
year before my colleagues and I in the Pentagon realized just how powerful the
method really was. In the meantime, I decided to consult with the “great” Johnny
von Neumann to see what he could suggest in the way of solution techniques. He
was considered by many as the leading mathematician in the world. On October 3,
1947, I met him for the first time at the Institute for Advanced Study at Princeton.

John von Neumann made a strong impression on everyone. People came to him
for help with their problems because of his great insight. In the initial stages of the
development of a new field like linear programming, atomic physics, computers, or
whatever, his advice proved to be invaluable. Later, after these fields were developed
in greater depth, however, it became much more difficult for him to make the same
spectacular contributions. I guess everyone has a finite capacity, and Johnny was
no exception.

I remember trying to describe to von Neumann (as I would to an ordinary mor-
tal) the Air Force problem. I began with the formulation of the linear programming
model in terms of activities and items, etc. He did something which I believe was
not characteristic of him. “Get to the point,” he snapped at me impatiently. Hav-
ing at times a somewhat low kindling point, I said to myself, “O.K., if he wants a
quickie, then that’s what he’ll get.” In under one minute I slapped on the black-



xxvii

board a geometric and algebraic version of the problem. Von Neumann stood up
and said, “Oh, that!” Then, for the next hour and a half, he proceeded to give me
a lecture on the mathematical theory of linear programs.

At one point, seeing me sitting there with my eyes popping and my mouth open
(after all, I had searched the literature and found nothing), von Neumann said

I don’t want you to think I am pulling all this out of my sleeve on the
spur of the moment like a magician. I have recently completed a book
with Oscar Morgenstern on the theory of games. What I am doing is
conjecturing that the two problems are equivalent. The theory that I
am outlining is an analogue to the one we have developed for games.

Thus I learned about Farkas’s Lemma and about duality for the first time. Von
Neumann promised to give my computational problem some thought and to contact
me in a few weeks, which he did. He proposed an iterative nonlinear interior scheme.
Later, Alan Hoffman and his group at the Bureau of Standards (around 1952) tried
it out on a number of test problems. They also compared it to the Simplex Method
and with some interior proposals of T. Motzkin. The Simplex Method came out a
clear winner.

As a result of another visit in June 1948, I met Albert Tucker, who later became
the head of mathematics department at Princeton. Soon Tucker and his students
Harold Kuhn and David Gale and others like Lloyd Shapley began their historic
work on game theory, nonlinear programming, and duality theory. The Princeton
group became the focal point among mathematicians doing research in these fields.

The early days were full of intense excitement. Scientists, free at last from war-
time pressures, entered the post-war period hungry for new areas of research. The
computer came on the scene at just the right time. Economists and mathemati-
cians were intrigued with the possibility that the fundamental problem of optimal
allocation of scarce resources could be numerically solved. Not too long after my
first meeting with Tucker there was a meeting of the Econometric Society in Wis-
consin attended by well-known statisticians and mathematicians like Hotelling and
von Neumann, and economists like Koopmans. I was a young unknown and I re-
member how frightened I was at the idea of presenting for the first time to such a
distinguished audience, the concept of linear programming.

After my talk, the chairman called for discussion. For a moment there was the
usual dead silence; then a hand was raised. It was Hotelling’s. I must hasten to
explain that Hotelling was fat. He used to love to swim in the ocean and when
he did, it is said that the level of the ocean rose perceptibly. This huge whale of
a man stood up in the back of the room, his expressive fat face taking on one of
those all-knowing smiles we all know so well. He said: “But we all know the world is
nonlinear.” Having uttered this devastating criticism of my model, he majestically
sat down. And there I was, a virtual unknown, frantically trying to compose a
proper reply.

Suddenly another hand in the audience was raised. It was von Neumann.
“Mr. Chairman, Mr. Chairman,” he said, “if the speaker doesn’t mind, I would
like to reply for him.” Naturally I agreed. Von Neumann said: “The speaker titled
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his talk ‘linear programming’ and carefully stated his axioms. If you have an appli-
cation that satisfies the axioms, well use it. If it does not, then don’t,” and he sat
down. In the final analysis, of course, Hotelling was right. The world is highly non-
linear. Fortunately, systems of linear inequalities (as opposed to equalities) permit
us to approximate most of the kinds of nonlinear relations encountered in practical
planning.

In 1949, exactly two years from the time linear programming was first conceived,
the first conference (sometimes referred to as the Zero Symposium) on mathemat-
ical programming was held at the University of Chicago. Tjalling Koopmans, the
organizer, later titled the proceedings of the conference Activity Analysis of Produc-
tion and Allocation. Economists like Koopmans, Kenneth Arrow, Paul Samuelson,
Leonid Hurwitz, Robert Dorfman, Georgescu-Roegen, and Herbert Simon, academic
mathematicians like Albert Tucker, Harold Kuhn, and David Gale, and Air Force
types like Marshall Wood, Murray Geisler, and myself all made contributions.

The advent or rather, the promise, that the electronic computer would soon
exist, the exposure of theoretical mathematicians and economists to real problems
during the war, the interest in mechanizing the planning process, and last but not
least the availability of money for such applied research all converged during the
period 1947–1949. The time was ripe. The research accomplished in exactly two
years is, in my opinion, one of the remarkable events of history. The proceedings of
the conference remain to this very day an important basic reference, a classic!

The Simplex Method turned out to be a powerful theoretical tool for proving
theorems as well as a powerful computational tool. To prove theorems it is essential
that the algorithm include a way of avoiding degeneracy. Therefore, much of the
early research around 1950 by Alex Orden, Philip Wolfe, and myself at the Pentagon,
by J.H. Edmondson as a class exercise in 1951, and by A. Charnes in 1952 was
concerned with what to do if a degenerate solution is encountered.

In the early 1950, many areas that we collectively callmathematical programming
began to emerge. These subfields grew rapidly with linear programming, playing a
fundamental role in their development. A few words will now be said about each of
these.

Nonlinear Programming began around 1951 with the famous Karush, Kuhn-
Tucker Conditions, which are related to the Fritz John Conditions (1948). In
1954, Ragnar Frisch (who later received the first Nobel Prize in economics)
proposed a nonlinear interior-point method for solving linear programs. Ear-
lier proposals such as those of von Neumann and Motzkin can also be viewed
as interior methods. Later, in the 1960s, G. Zoutendijk, R.T. Rockafellar,
P. Wolfe, R. Cottle, A. Fiacco, G. McCormick, and others developed the the-
ory of nonlinear programming and extended the notions of duality.

Commercial Applications were begun in 1952 by Charnes, Cooper, and Mellon
with their (now classical) optimal blending of petroleum products to make
gasoline. Applications quickly spread to other commercial areas and soon
eclipsed the military applications that had started the field.
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Software—The Role of Orchard-Hays In 1954, William Orchard-Hays of the
RAND Corporation wrote the first commercial-grade software for solving lin-
ear programs. Many theoretical ideas such as ways to compact the inverse,
take advantage of sparsity, and guarantee numerical stability were first imple-
mented in his codes. As a result, his software ideas dominated the field for
many decades and made commercial applications possible. The importance
of Orchard-Hays’s contributions cannot be overstated, for they stimulated the
entire development of the field and transformed linear programming and its
extensions from an interesting mathematical theory into a powerful tool that
changed the way practical planning was done.

Network Flow Theory began to evolve in the early 1950 by Merrill Flood and
a little later by Ford and Fulkerson in 1954. Hoffman and Kuhn in 1956
developed its connections to graph theory. Recent research on combinatorial
optimization benefited from this early research.

Large-Scale Methods began in 1955 with my paper “Upper Bounds, Block Tri-
angular Systems, and Secondary Constraints.” In 1959–60 Wolfe and I pub-
lished our papers on the Decomposition Principle. Its dual form was discovered
by Benders in 1962 and first applied to the solution of mixed integer programs.
It is now extensively used to solve stochastic programs.

Stochastic Programming began in 1955 with my paper “Linear Programming
under Uncertainty” (an approach which has been greatly extended by R. Wets
in the 1960s and J. Birge in the 1980s). Independently, at almost the same
time in 1955, E.M.L. Beale proposed ways to solve stochastic programs. Im-
portant contributions to this field have been made by A. Charnes and W.
Cooper in the late 1950s using chance constraints, i.e., constraints that hold
with a stated probability. Stochastic programming is one of the most promis-
ing fields for future research, one closely tied to large-scale methods. One
approach that the author, Peter Glynn, and Gerd Infanger began in 1989
combines Bender’s decomposition principle with ideas based on importance
sampling, control variables, and the use of parallel processors.

Integer Programming began in 1958 with the work of R. Gomory. Unlike the
earlier work on the traveling salesman problem by D.R. Fulkerson, S. Johnson,
and Dantzig, Gomory showed how to systematically generate the “cutting”
planes. Cuts are extra necessary conditions that when added to an existing
system of inequalities guarantee that the optimization solution will solve in
integers. Ellis Johnson of I.B.M. extended the ideas of Gomory. Egon Balas
and many others have developed clever elimination schemes for solving 0-
1 covering problems. Branch and bound has turned out to be one of the
most successful ways to solve practical integer programs. The most efficient
techniques appear to be those that combine cutting planes with branch and
bound.
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Complementary Pivot Theory was started around 1962–63 by Richard Cottle
and Dantzig and greatly extended by Cottle. It was an outgrowth of Wolfe’s
method for solving quadratic programs. In 1964 Lemke and Howson applied
the approach to bimatrix games. In 1965 Lemke extended it to other non-
convex programs. Lemke’s results represent a historic breakthrough into the
nonconvex domain. In the 1970’s, Scarf, Kuhn, and Eaves extended this ap-
proach once again to the solving of fixed-point problems.

Computational Complexity. Many classes of computational problems, although
they arise from different sources and appear to have quite different mathemati-
cal statements can be “reduced” to one another by a sequence of not-too-costly
computational steps. Those that can be so reduced are said to belong to the
same equivalence class. This means that an algorithm that can solve one
member of a class can be modified to solve any other in same equivalence
class. The computational complexity of an equivalence class is a quantity that
measures the amount of computational effort required to solve the most dif-
ficult problem belonging to the class, i.e., its worst case. A nonpolynomial
algorithm would be one that requires in the worst-case a number of steps not
less than some exponential expression like Lnm, n!, or 100n, where n and m
refer to the row and column dimensions of the problem and L the number of
bits needed to store the input data.

Polynomial Time Algorithms. For a long time it was not known whether or not
linear programs belonged to a nonpolynomial class called “hard” (such as the
one the traveling salesman problem belongs to) or to an “easy” polynomial
class (like the one that the shortest path problem belongs to). In 1970, Victor
Klee and George Minty created a worst-case example that showed that the
classical Simplex Algorithm would require an “exponential” number of steps
to solve a worst-case linear program. In 1978, the Russian mathematician,
L.G. Khachian developed a polynomial-time algorithm for solving linear pro-
grams. It is a method that uses ellipsoids that contain points in the feasible
region. He proved that the computational time is guaranteed to be less than
a polynomial expression in the dimensions of the problem and the number of
digits of input data. Although polynomial, the bound he established turned
out to be too high for his algorithm to be used to solve practical problems.

Karmarkar’s algorithm (1984) was an important improvement on the theo-
retical result of Khachian that a linear program can be solved in polynomial
time. Moreover, his algorithm turned out to be one that could be used to
solve practical linear programs. As of this writing, interior algorithms are
in open competition with variants of the Simplex Method. It appears likely
that commercial software for solving linear programs will eventually combine
pivot-type moves used in the Simplex Methods with interior type moves, espe-
cially for those problems with very few polyhedral facets in the neighborhood
of the optimum.
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Origins of Certain Terms

Here are some stories about how various linear-programming terms arose. The
military refer to their various plans or proposed schedules of training, logistical
supply, and deployment of combat units as a program. When I had first analyzed
the Air Force planning problem and saw that it could be formulated as a system
of linear inequalities, I called my first paper Programming in a Linear Structure.
Note that the term “program” was used for linear programs long before it was used
for the set of instructions used by a computer to solve problems. In the early days,
these instructions were called codes.

In the summer of 1948, Koopmans and I visited the RAND Corporation. One
day we took a stroll along the Santa Monica beach. Koopmans said “Why not
shorten ‘Programming in a Linear Structure’ to ‘Linear Programming’ ” I agreed:
“That’s it! From now on that will be its name.” Later that same day I gave a talk
at RAND entitled “Linear Programming”; years later Tucker shortened it to Linear
Program.

The term mathematical programming is due to Robert Dorfman of Harvard, who
felt as early as 1949 that the term linear programming was too restrictive.

The term Simplex Method arose out of a discussion with T. Motzkin, who felt
that the approach I was using, when viewed in the geometry of the columns, was
best described as a movement from one simplex to a neighboring one. A simplex is
the generalization of a pyramid-like geometric figure to higher dimension. Mathe-
matical programming is also responsible for many terms that are now standard in
mathematical literature—terms like Arg-Min, Arg-Max, Lexico-Max, Lexico-Min.
The term dual is an old mathematical term. But surprisingly, the term primal
is new and was first proposed by my father, Tobias Dantzig, around 1954, after
William Orchard-Hays stated the need for a shorter phrase to call the “original
problem whose dual is. . . ”

Summary of My Own Early Contributions

If I were asked to summarize my early and perhaps my most important contributions
to linear programming, I would say they are three:

1. Recognizing (as a result of my wartime years as a practical program planner)
that most practical planning relations could be reformulated as a system of
linear inequalities.

2. Replacing ground rules for selecting good plans by general objective functions.
(Ground rules typically are statements by those in authority of the means for
carrying out the objective, not the objective itself.)

3. Inventing the Simplex Method which transformed the rather unsophisticated
linear-programming model for expressing economic theory into a powerful tool
for practical planning of large complex systems.
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The tremendous power of the Simplex Method is a constant surprise to me. To
solve by brute force the assignment problem that I mentioned earlier would require
a solar system full of nanosecond electronic computers running from the time of
the big bang until the time the universe grows cold to scan all the permutations in
order to select the one that is best. Yet it takes only a moment to find the optimum
solution using a personal computer and standard Simplex Method software.

In retrospect, it is interesting to note that the original class of problems that
started my research is beginning to yield—namely the problem of planning or
scheduling dynamically over time, particularly when there is uncertainty about the
values of coefficients in the equations. If such problems could be successfully solved,
it could eventually produce better and better plans and thereby contribute to the
well-being and stability of the world.

The area of planning under uncertainty or stochastic programming has become
a very exciting field of research and application, with research taking place in many
countries. Some important long term planning problems have already been solved.
Progress in this field depends on ideas drawn from many fields. For example,
our group at Stanford is working on a solution method that combines the nested
decomposition principle, importance sampling, and the use of parallel processors.

Prior to linear programming, it was not of any use to explicitly state general
goals for planning systems (since such systems could not be solved) and so objectives
were often confused with the ground rules in order to have a way of solving such
systems. Ask a military commander what the goal is and he probably will say,
“The goal is to win the war.” Upon being pressed to be more explicit, a Navy man
might say, “The way to win the war is to build battleships,” or, if he is an Air
Force general, he might say, “The way to win is to build a great fleet of bombers.”
Thus the means to attain the objective becomes an objective in itself which in turn
spawns new ground rules as to how to go about attaining the means such as how
best to go about building bombers or space shuttles. These means in turn become
confused with goals, etc., down the line.

From 1947 on, the notion of what is meant by a goal has been adjusting to our
increasing ability to solve complex problems. As we near the end of the twentieth
century, planners are becoming more and more aware that it is possible to optimize
a specific objective while at the same time hedging against a great variety of un-
favorable contingencies that might happen and taking advantage of any favorable
opportunity that might arise.

The ability to state general objectives and then be able to find optimal policy
solutions to practical decision problems of great complexity is the revolutionary de-
velopment I spoke of earlier. We have come a long way down the road to achieving
this goal, but much work remains to be done, particularly in the area of uncertainty.
The final test will come when we can solve the practical problems under uncertainty
that originated the field back in 1947.



PREFACE

Linear programming and its generalization, mathematical programming, can be
viewed as part of a great revolutionary development that has given mankind the
ability to state general goals and lay out a path of detailed decisions to be taken in
order to “best” achieve these goals when faced with practical situations of great com-
plexity. The tools for accomplishing this are the models that formulate real-world
problems in detailed mathematical terms, the algorithms that solve the models, and
the software that execute the algorithms on computers based on the mathematical
theory.

Our goal then is to provide a simple introduction to these various tools in the
context of linear programming. Because this is an introduction to the field at the
Undergraduate level, no proofs of key ideas are provided except for a few that are
easy to follow. We prefer to state the key ideas as theorems and lemmas, rather
than as facts or properties, as is done in some introductory texts because we wish
to highlight the importance of the mathematical results. Examples are provided to
illustrate the main ideas. Proofs of all the theorems and lemmas can be found in
Linear Programming 2. Selected bibliographical references can be found at the end
of each chapter.

We assume that the reader has some knowledge of elementary linear algebra. For
those whose knowledge is weak or non-existent, necessary details on linear algebra
used in this text are provided in the appendices.

OUTLINE OF CHAPTERS

Chapter 1 (The Linear Programming Problem): This chapter begins with a
formal definition of the mathematical programming field and, in particular,
formulation of the linear programming problem in mathematical terms so
that it can be solved on a computer. A number of examples are formu-
lated. We point out that most text book examples are simple in concept
and small, making it is easy to represent them as system of linear inequali-
ties (the row-oriented approach) and to solve on a computer. However, most
real-life applications tend to be large and complex and are much easier to
formulate and update in an activity (column-oriented) approach. We point
out the advantages of viewing the problem from both the row and column

xxxiii
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perspectives. This chapter concludes with the assumptions (axioms) that the
linear programming problem must approximately satisfy in practice.

Chapter 2 (Solving Simple Linear Programs): In the second chapter, we in-
troduce methods for solving very simple linear programs. We start with the
graphical solution of a two-variable linear program; here we also introduce the
concept of a dual linear program, properties of which are developed in Chap-
ter 5. Next we discuss how to solve a two-equation linear program graphically.
This is followed by a simple exposition of the Fourier-Motzkin Elimination
(FME) process for solving linear inequalites. It is a powerful theoretical tool
that provides an easy proof of the important Infeasibility Theorem of Linear
Programming. While the FME process is not practical for solving a large
system of inequalities, it can be used to solve systems having a very small
number of inequalities and variables.

Chapter 3 (The Simplex Method): Having introduced the basics, we are now
ready to describe the Simplex Algorithm, which solves a linear program given
a starting basic feasible solution for the standard form. The approach is first
illustrated through examples. The Simplex Method is a two-phase process,
with each phase using the Simplex Algorithm. In the first phase, an initial
feasible solution, if one exists, is obtained. In the second phase, an optimal
solution, if one exists, is obtained, or a class of solutions is obtained whose
objective value goes to +∞. Next, the solution method is extended to handle
conveniently linear inequality systems with simple upper and lower bounds
on the variables. Finally, the Revised Simplex Method, which is the Simplex
Method in a form more suitable to large problems, is described.

Chapter 4 (Interior Point Methods): From the 1980s on there has been ex-
ponential growth of interest in solving linear programs using interior-point
methods. We describe the primal-affine algorithm for historical reasons and
because it is easy to understand. Details on this and other interior-point meth-
ods, including a summary of the state of the art as of 1996 in interior-point
methods, can be found in Linear Programming 2.

Chapter 5 (Duality): The important details about the concept of duality is in-
troduced through several examples. The Tucker diagram and von Neumann
primal-dual systems are illustrated. Weak Duality, Strong Duality, the key
theorems of duality, and the central results in duality, are presented and il-
lustrated through examples. Formal proofs can be found in Linear Program-
ming 2.

Chapter 6 (Equivalent Formulations): We take a slight detour and spend some
time describing how a variety of problems encountered in practice can be re-
duced to linear programs. For example, if your software cannot handle prob-
lems whose variables are unrestricted in sign, such problems can be handled
by splitting the variables into the difference of two nonnegative variables.
Next we show how an absolute value in the objective can be modeled. Goal
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programming is discussed next followed by a discussion of how to obtain the
minimum of the maximum of several linear functions. The next topic covered
is curve-fitting. Finally we discuss how to use piecewise linear approximations
to model convex functions.

Chapter 7 (Price Mechanism and Sensitivity Analysis: The chapter starts
by dicussing the price mechanism of the Simplex Method. Sensitivity analysis
is concerned with measuring the effect of changes in cost coefficients, the
right-hand side, the matrix coefficients, or whether or not it is worthwhile to
introduce additional rows and columns. Such analysis is an important aspect
of the solution of any real-world problem.

Chapter 8 (Transportation and Assignment Problem): Network theory is in-
troduced through a detailed discussion of the classical transportation and as-
signment problems. A specialized version of the Simplex Method for solving
such problems is described and illustrated. The important property of triangu-
larity of the basis, which simplifies solutions with integer values, is illustrated
through simple examples.

Chapter 9 (Network Flow Theory): The ideas of the previous chapter are then
extended to cover more general network flow problems. Standard network
flow concepts such as trees (and their properties) are introduced. This is
followed by a discussion on solvingmaximal flow, shortest route, andminimum
spanning tree problems. Finally, the Network Simplex Method is described for
solving the minimum-cost network-flow problem. It takes advantage of the
tree stucture of the basis to greatly reduce the computations of each iteration.

Appendix A (Linear Algebra): This appendix summarizes all the key linear
algebra concepts relevant to solving linear programs.

Appendix B (Linear Equations): This appendix discusses the theory for solv-
ing systems of linear equations. The theory for solving linear inequalities
makes use of this theory.

SOFTWARE ACCOMPANYING THE BOOK

In modern times, the use of computers has become essential. We have designed the
software that accompanies this book to work with the popular operating system
Windows 95 as well as with Windows 3.1. The basic software algorithms and their
many variations are designed to be powerful and numerically robust.

The software is fully integrated with the exercises. The use of it in conjunction
with the text will help students understand key ideas behind the algorithms rather
than simply number crunching. A feeling for the path followed by an algorithm to
an optimal solution can probably best be gained by scanning the iterates .

To install the software:

• For Windows 3.1. Run setup.exe from the WIN31 directory on the enclosed
CD-ROM.
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• For Windows 95. Run setup.exe from the WIN95 directory on the enclosed
CD-ROM.

Note: Before running setup please make sure that all programs are closed (and not
just minimized); otherwise the installation may not execute correctly. If you still
have problems with your installation please refer to the file README in the root
directory of the CD-ROM.

Data for examples in the book can be found on the disk containing the software.
To solve a problem using the software, each exercise in the book specifies which
software option to use. For example: the DTZG Primal Simplex Method, Fourier-
Motzkin Elimination, and so forth.

Linear Programming 2 and 3.

In a graduate course that we have taught together at Stanford, portions of “Linear
Programming 1: Introduction” and “Linear Programming 2: Theory & Implemen-
tation” have been used. In addition some of the material in “Linear Programming 3:
Structured LPs & Planning Under Uncertainty” has been used in seminars and in
large-scale linear optimization.

Professor George B. Dantzig Dr. Mukund N. Thapa
Department of Operations Research President
Stanford University Stanford Business Software, Inc.
Stanford, CA 94305 2680 Bayshore Parkway, Suite 304

Mountain View, CA 94043



DEFINITION OF
SYMBOLS

The notation described below will be followed in general. There may be some
deviations where appropriate.

• Uppercase letters will be used to represent matrices.

• Lowercase letters will be used to represent vectors.

• All vectors will be column vectors unless otherwise noted.

• Greek letters will typically be used to represent scalars.

�n – Real space of dimension n.
c – Coefficients of the objective function.
A – Coefficient matrix of the linear program.
B – Basis matrix (nonsingular). Contains basic columns

of A.
N – Nonbasic columns of A.
x – Solution of the linear program (typically the current

one).
xB – Basic solution (typically the current one).
xN – Nonbasic solution (typically the current one).
(x, y) – The column vector consisting of components of the

vector x followed by the components of y. This helps
in avoiding notation such as (xT, yT)T.

L – Lower triangular matrix with 1’s on the the diagonal.
U – Upper triangular matrix (sometimes R will be used).
R – Alternative notation for an upper triangular matrix.
D – Diagonal matrix.
Diag (d) – Diagonal matrix. Sometimes Diag ( d1, d2, . . . , dn ).
Dx – Diag (x).
I – Identity matrix.

xxxvii
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ej – jth column of an identity matrix.
e – Vector of 1’s (dimension will be clear from the context).
Ej – Elementary matrix (jth column is different from the identity).
||v|| – The 2-norm of a vector v.
det (A) – Determinant of the matrix A.
A•j – jth column of A.
Ai• – ith row of A.
Bt – The matrix B at the start of iteration t.
B[t] – Alternative form for the matrix Bt.
B̄ – Update from iteration t to iteration t+ 1.
B−1
ij – Element (i, j) of B−1.

X ⊂ Y – X is a proper subset of Y .
X ⊆ Y – X is a subset of Y .
X ∪ Y – Set union. That is, the set {ω | ω ∈ X or ω ∈ Y }.
X ∩ Y – The set {ω | ω ∈ X and ω ∈ Y }.
X \ Y – Set difference. That is, the set {ω | ω ∈ X,ω �∈ Y }
∅ – Empty set.
| – Such that. For example {x | Ax ≤ b } means the set of all x

such that Ax ≤ b holds.
αn – A scalar raised to power n.
(A)n – A square matrix raised to power n.
AT – Transpose of the matrix A.
≈ – Approximately equal to.
� () – Much greater (less) than.
� (≺) – Lexicographically greater (less) than.
← – Store in the computer the value of the quantity on the right

into the location where the quantity on the left is stored. For
example, x← x+ αp.

O(v) – Implies a number ≤ kv where k, a fixed constant independent
of the value of v, is meant to convey the the notion that k is
some small integer value less than 10 (or possibly less than
100) and not something ridiculous like k = 10100.

argminx f(x) – is the value of x where f(x) takes on its global minimum value.
argmini βi – is the value of the least index i where βi takes on its minimum

value.
LP – Linear program.



C H A P T E R 1

THE LINEAR

PROGRAMMING PROBLEM

Since the time it was first proposed by one of the authors (George B. Dantzig)
in 1947 as a way for planners to set general objectives and arrive at a detailed
schedule to meet these goals, linear programming has come into wide use. It has
many nonlinear and integer extensions collectively known as the mathematical pro-
gramming field, such as integer programming, nonlinear programming, stochastic
programming, combinatorial optimization, and network flow maximization; these
are presented in subsequent volumes.

Here then is a formal definition of the field that has become an important branch
of study in mathematics, economics, computer science, and decision science (i.e.,
operations research and management science):

Mathematical programming (or optimization theory) is that branch of
mathematics dealing with techniques for maximizing or minimizing an
objective function subject to linear, nonlinear, and integer constraints
on the variables.

The special case, linear programming, has a special relationship to this more
general mathematical programming field. It plays a role analogous to that of partial
derivatives to a function in calculus—it is the first-order approximation.

Linear programming is concerned with the maximization or minimiza-
tion of a linear objective function in many variables subject to linear
equality and inequality constraints.

For many applications, the solution of the mathematical system can be interpreted
as a program, namely, a statement of the time and quantity of actions to be per-
formed by the system so that it may move from its given status towards some
defined objective.

1
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Linear programming problems vary from small to large: The number of con-
straints less than 1,000 is considered “small,” between 1,000 and 2,000 is consid-
ered “medium,” and greater than 2,000 is considered “large.” Linear programming
models can be very large in practice; some have many thousands of constraints and
variables. To solve large systems requires special software that has taken years to
develop. Other special tools, called matrix generators, are often used to help orga-
nize the formulation of the model and direct the generation of the coefficients from
basic data files. As the size of models that can be solved has grown, so has evolved
the art of model management. These include, on the input side, model formulation
and model updating, and, on the output side, summarizing of the detailed solution
output in the form of graphs and other displays (so that the results may be more
easily understood and implemented by decision makers).

1.1 SOME SIMPLE EXAMPLES

What follows are four very simple examples of typical linear programming problems;
they happen to be similar to the very first applications of the field. The objective of
the system in each happens to be the minimization of total costs or maximization
of profits measured in monetary units. In other applications, however, the objective
could be to minimize direct labor costs or to maximize the number of assembled
parts or to maximize the number of trained students having a specified percentage
distribution of skills, etc.

With the exception of the “on-the-job training” problem (Example 1.2), each
of these examples is so small that the reader should have little difficulty expressing
the problem in mathematical terms.

Example 1.1 (A Product Mix Problem) A furniture company manufactures four
models of desks. Each desk is first constructed in the carpentry shop and is next sent to
the finishing shop, where it is varnished, waxed, and polished. The number of man-hours
of labor required in each shop and the number of hours available in each shop are known.
Assuming that raw materials and supplies are available in adequate supply and all desks
produced can be sold, the desk company wants to determine the optimal product mix,
that is, the quantities to make of each type of desk that will maximize profit. This can be
represented as a linear programming problem.

Example 1.2 (On-the-Job Training) A manufacturing plant is contracting to make
some commodity. Its present work force is too small to produce the amount of the com-
modity required to meet the specified schedule of orders to be delivered each week for
several weeks hence. Additional workers must therefore be hired, trained, and put to
work.

The present force can either work and produce at some specified rate of output, or it
can train some fixed number of new workers, or it can do both at the same time according
to some fixed rate of exchange between output and the number of new workers trained.
Even were the crew to spend one entire week training new workers, it would be unable to
train the required number. The next week, the old crew and the newly trained workers
may either work or train new workers, or may both work and train, and so on.
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The commodity being produced is semiperishable so that any amount manufactured
before needed will have to be stored at a cost. The problem is to determine the hiring, pro-
duction, and storage program that will minimize total costs. This is a linear programming
problem whose output is a schedule of activities over time.

Example 1.3 (The Homemaker’s Problem) A family of five lives on the modest
salary of the head of the household. A constant problem faced by the homemaker is to
plan a weekly menu that reflects the needs and tastes of the family, the limited budget
and the prices of foods. The husband must have 3,000 calories per day, the wife is on a
1,500 calorie reducing diet, and the children require 3,000, 2,700, and 2,500 calories per
day, respectively.

According to the advice provided by a book on nutrition, these calories must be ob-
tained for each member by foods having no more than a certain amount of fats and
carbohydrates and not less than a certain amount of proteins. The diet, in fact, places
emphasis on proteins. In addition, each member of the household must satisfy his or her
daily vitamin needs. The problem is to assemble a menu each week that will minimize
costs based on the current prices for food and subject to these criteria.

This type of linear programming problem, with some additional conditions specified
to make the recommended diet more palatable, has been used to plan menus for patients
in hospitals. An analogous formulation is used by the agricultural industry to determine
the most economical feed mixes for cattle, poultry, and pet foods.

Example 1.4 (A Blending Problem) A type of linear programming problem fre-
quently encountered is one involving blending. Typically a manufacturer wishes to form a
mixture of several commodities that he can purchase so that the blend has known charac-
teristics and costs the least. The percent characteristics of the blend are precisely specified.

A manufacturer wishes to produce an alloy (blend) that is 30 percent lead, 30 percent
zinc, and 40 percent tin. Suppose there are on the market alloys j = 1, . . . , 9 with the
percent composition (of lead, zinc, and tin) and prices as shown in the display below. How
much of each type of alloy should be purchased in order to minimize costs per pound of
blend?

Alloy 1 2 3 4 5 6 7 8 9 Blend

Lead (%) 20 50 30 30 30 60 40 10 10 30
Zinc (%) 30 40 20 40 30 30 50 30 10 30
Tin (%) 50 10 50 30 40 10 10 60 80 40
Cost ($/lb) 7.3 6.9 7.3 7.5 7.6 6.0 5.8 4.3 4.1 Min

Obviously the manufacturer can purchase alloy 5 alone, but it will cost him $7.60 per
pound. On the other hand with 1

2 pound of alloy 2 and 1
4 pound each of alloys 8 and 9 he

will be able to blend a 30-30-40 mixture at a cost of $5.55 per pound. However, if he buys
1
4 pound each of alloys, 6, 7, 8, and 9, he will also be able to blend a 30-30-40 mixture
at a cost of $5.05. After a few trials of this sort, the manufacturer may well seek a more
scientific approach to his problem.

The quantities of lead, zinc, and tin in the final blend have not been specified; only
their proportions have been given, and it is required to minimize the cost per pound of
the output. Often a beginner attempts to formulate the problem without restricting the
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total amount produced, in which case the material balance equations become difficult to
interpret when expressed in terms of percentages instead of amounts.

We shall require that a definite amount of blended metal be produced. It is clear that
the most economical purchasing plan for producing one pound of a specified blend can be
immediately converted into the most economical purchasing plan for producing n pounds
of output simply by multiplying the fractional amounts of each type of alloy by n; and
thus we will restrict the quantity of alloys to those combinations that produce one pound of
specified blend of metal. This stipulation has the further happy result that the percentage
requirements of the original statement of the problem now become concrete: the mixture
must contain 0.3 pounds of lead, 0.3 pounds of zinc, and 0.4 pounds of tin.

We shall formulate this model by writing down the material balance constraints. The
decision variables are

xj ≥ 0, j = 1, . . . , 9,

where xj is the fractional pounds of alloy j to be used in the blend.
There are five items (not four as may have been expected): one for each of the three

components (lead, zinc, and tin) of the alloy, the cost of purchasing the alloy, and its
weight. As per our discussion above, we shall solve the blending problem for producing
exactly one pound of the blend. It is now clear that the problem to be solved is

Minimize the Objective
7.3x1 + 6.9x2 + 7.3x3 + 7.5x4 + 7.6x5 + 6.0x6 + 5.8x7 + 4.3x8 + 4.1x9 = z

subject to
x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 = 1

.2x1 + .5x2 + .3x3 + .3x4 + .3x5 + .6x6 + .4x7 + .1x8 + .1x9 = .3

.3x1 + .4x2 + .2x3 + .4x4 + .3x5 + .3x6 + .5x7 + .3x8 + .1x9 = .3

.5x1 + .1x2 + .5x3 + .3x4 + .4x5 + .1x6 + .1x7 + .6x8 + .8x9 = .4
and xj ≥ 0, j = 1, . . . , 9.

Only minor changes in the model are required in the event the blend specifications are not
given precisely but they must lie between certain lower and upper bounds.

� Exercise 1.1 Solve Example 1.4 numerically using the DTZG Simplex Primal software
option. Find the amount of each type of alloy to purchase and find the minimum cost to
produce one pound of the blend.

� Exercise 1.2 Prove that any one of the above equations (excluding the objective) in
Example 1.4 can be dropped as redundant.

Example 1.5 (A Transportation Problem) Suppose that a distributor has two
canneries labeled 1 and 2, and three warehouses labeled a, b, and c in different geographical
locations. The canneries can fill 250 and 450 cases of tins per day, respectively. Each of the
warehouses can sell 200 cases per day. The distributor wishes to determine the number of
cases to be shipped from the two canneries to the three warehouses so that each warehouse
obtains as many cases as it can sell daily at the minimum total transportation cost. The
availability of cases at the canneries and the demands which must be met exactly at each
warehouse are summarized in the table below:
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Cases Available Cases Demanded

Cannery Cases Warehouse Cases
1 250 a 200
2 450 b 200

c 200
Total 700 Total 600

The excess production of 100 cases will be stored without cost. The shipping cost per case
from each cannery to each warehouse is given in the Shipping Cost schedule in the display
below. The problem is to determine the number of cases that each cannery should ship to
each warehouse in order to minimize the total transportation cost.

Shipping Cost ($/case)
Warehouses

Canneries a b c

1 3.4 2.2 2.9
2 3.4 2.4 2.5

We shall formulate this model by writing down the material balance constraints. The
decision variables are

xij ≥ 0, i = 1, 2, j = a, b, c, (1.1)
where xij is the number of cases to ship from cannery i = 1, 2 to warehouse j = a, b, c.
There are six items: dollars (associated with the cost of shipping), cases available at each
of the two canneries, and cases demanded at each of the three warehouses.

The material balance constraints on availability are that the number of cases shipped
out of each cannery cannot be greater than the number of cases available. Thus,

x1a + x1b + x1c ≤ 250,
x2a + x2b + x2c ≤ 450. (1.2)

The material balance constraints on demand are: The amount demanded at each ware-
house must be equal to the amount shipped from each cannery to the warehouse. The
problem specifies that the demand must be met exactly. Thus,

x1a + x2a = 200,
x1b + x2b = 200,
x1c + x2c = 200.

(1.3)

Finally, the cost to be minimized is set to an unspecified dollar amount z:

3.4x1a + 2.2x1b + 2.9x1c + 3.4x2a + 2.4x2b + 2.5x2c = z.

We consolidate below the mathematical constraints of the transportation example.

Minimize the objective
3.4x1a + 2.2x1b + 2.9x1c + 3.4x2a + 2.4x2b + 2.5x2c = z

subject to
x1a + x1b + x1c ≤ 250

x2a + x2b + x2c ≤ 450
x1a + x2a = 200

x1b + x2b = 200
x1c + x2c = 200

and x1a ≥ 0, x1b ≥ 0, x1c ≥ 0, x2a ≥ 0, x2b ≥ 0, x2c ≥ 0.

(1.4)
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Properties of the Transportation Problem:

1. Feasibility Theorem. If the total availability is not less than the total demand,
a solution always exists to (1.1), (1.2), and (1.3).

2. Infeasibility Theorem. If the total availability is less than the total demand
no solution exists to (1.1), (1.2), and (1.3).

3. Structure. The transportation problem has a very special structure. Observe
that all the input-output coefficients (excluding those of the objective) are
either 1 or 0 with exactly two 1’s per column. As a result, the transportation
problem can be stored very compactly in a computer since we need to record
only the cost coefficients, right-hand sides, and the locations of the coefficients
that are 1. This compact storage property will be exploited in the algorithm
presented in Chapter 8.

4. Integer Property. In a transportation problem, if all the availabilities and
demands are positive integers and if the problem has a solution satisfying
(1.1), (1.2), and (1.3), then we will show in Chapter 8 that it has at least one
optimal solution in which all the variables xij have integer values.

Note that the objective function can have only one optimal value; however,
there could be many combinations of the variables xij that generate the same
optimal value. If there is exactly one combination of the xij that generates
the optimal value of the objective, the value of each xij must necessarily turn
out to be an integer. If there is more than one combination of xij values
that generate the optimal value of the objective, it can be shown that there
are other integer solutions as well as other solutions in which xij can have
noninteger values. All of these properties will also be shown in Chapter 8.

� Exercise 1.3 Solve Example 1.5 numerically using the DTZG Simplex Primal software
option. Find the optimal amount of shipment from each cannery to warehouse and the
minimum cost of the shipments.

� Exercise 1.4 As a way of illustration of the above Infeasibility Theorem, change the
number of cases available at Cannery 1 to 100.

� Exercise 1.5 Prove the above Feasibility and Infeasibility Theorems for (1.1), (1.2),
and (1.3).

� Exercise 1.6 Generalize the transportation problem to any number of origins (canner-
ies) and any number of destinations (warehouses) and prove the Feasibility and Infeasibility
Theorems for this system.
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� Exercise 1.7 Prove that if for the transportation problem (1.4) there is more than
one optimal integer solution, then noninteger solutions can be found by forming certain
weighted linear combinations of two integer solutions.

1.2 MATHEMATICAL STATEMENT

The mathematical definition of a linear program in standard form is to find values
of x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0 and min z satisfying

c1x1 + c2x2 + · · · + cnxn = z (Min)
a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm.

(1.5)

In vector-matrix notation we may restate the above as

Minimize cTx = z
subject to Ax = b, A : m× n,

x ≥ 0.
(1.6)

The definition of a dual of a linear program in standard form is to find values of
π1, π2, . . . , πm, and max v satisfying

b1π1 + b2π2 + · · · + bmπm = v (Max)
a11π1 + a21π2 + · · · + am1πm ≤ c1
a12π1 + a22π2 + · · · + am2πm ≤ c2
...

...
...

...
...

a1nπ1 + a2nπ2 + · · · + amnπm ≤ cm.

(1.7)

In vector-matrix notation we may restate the above as

Maximize bTπ = v
subject to ATπ ≤ c, A : m× n.

(1.8)

Other definitions of a linear program, all equivalent to each other, are those of
linear programs in inequality form, von Neumann symmetric form, and others that
will be described later. For many applications it is easy to formulate the model
as a system of equations and inequalities with possibly upper and lower bounds on
the variables. In many large-scale applications one needs a formal procedure for
organizing the basic data of the model and inputting it into the computer.

See Table 1-1 for a standard layout for linear programming data. It is called a
tableau.
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Activity (1) · · · (j) · · · (n)
Level x1 ≥ 0 · · · xj ≥ 0 · · · xn ≥ 0 RHS
(1) a11 · · · a1j · · · a1n = b1

I (2) a21 · · · a2j · · · a2n = b2
t · · · · · · · · · · · · · · · · · · · · · · · ·
e (i) ai1 · · · aij · · · ain = bi
m · · · · · · · · · · · · · · · · · · · · · · · ·

(m) am1 · · · amj · · · amn = bm
Cost c1 · · · cj · · · cn = z

Table 1-1: Tableau of Detached Coefficients for a Typical LP

1.3 FORMULATING LINEAR PROGRAMS

Computers are now being applied to almost every aspect of human activity. Every
field of science, medicine, engineering, business—you name it—is being computer-
ized in some way. However, before you can put a problem into a computer and
efficiently find a solution, you must first abstract it, which means you have to build
a mathematical model.

It is the process of abstracting applications from every aspect of life that has
given rise to a vast new world of mathematics that has developed for the most
part outside mathematics departments. This mathematics, you will see, is just as
interesting and exciting as any mathematics that is taught in the standard courses,
perhaps more so because it is still new and challenging.

The mathematical model of a system is the collection of mathematical
relationships which, for the purpose of developing a design or plan, char-
acterize the set of feasible solutions of the system.

The process of building a mathematical model is often considered to be as im-
portant as solving it because this process provides insight about how the system
works and helps organize essential information about it. Models of the real world
are not always easy to formulate because of the richness, variety, and ambiguity that
exists in the real world or because of our ambiguous understanding of it. Neverthe-
less, it is possible to state certain principles that distinguish the separate steps in
the model-building process when the system can be modeled as a linear program.

The linear programming problem is to determine the values of the variables of
the system that (a) are nonnegative or satisfy certain bounds, (b) satisfy a system
of linear constraints, and (c) minimize or maximize a linear form in the variables
called an objective.

There are two general ways in which we can formulate a problem as a linear
program: the column (recipe/activity) approach and the row (material balance)
approach. Both ways result in the same final model; the approach you take will
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depend primarily on how you like to think about and organize the data for the
problem.

In certain situations, it is convenient for the modeler to view the system as
(i) a collection of activities or processes that may be engaged in rather than (ii) a
collection of statements about limitations on the use of scarce resources. As we will
see, there are points in common between these two seemingly quite different ways of
viewing the system. Indeed, there are benefits to be gained by viewing the system
both ways and this is recommended. We shall describe both the approaches and
illustrate them through various examples.

1.3.1 THE COLUMN (RECIPE/ACTIVITY) APPROACH

The column approach is to consider a system as decomposable into a number of
elementary functions, the activities. An activity is thought of as a kind of “black
box” into which flow tangible inputs, such as men, material, and equipment, and out
of which flow final or intermediate products of manufacture, or trained personnel.
An activity is analogous to a recipe in a cookbook. What happens to the inputs
inside the “box” is the concern of the engineer in the same way as what chemistry
takes place in the cookpot is the concern of a chemist; to the decision maker, only
the rates of flow into and out of the activity are of interest. The various kinds of
flow are called items.

The quantity of each activity is called its activity level. To change the activity
level it is necessary to change the quantity of each kind of flow into and out of the
activity. In linear programming the activity levels are not given but are the decision
variables to be determined to meet certain specified requirements.

The steps for formulating a linear program by the column approach are as fol-
lows.

Step 1 Define the Activity Set. Decompose the entire system under study into
all of its elementary functions, the activities or processes and choose a
unit for each type of activity or process in terms of which its quantity or
level can be measured. For example, manufacturing a desk is an activity.
It is defined for the purpose of developing a plan for the recipe of items
needed to produce one desk. The number of desks manufactured is the
level of the activity, which is the decision variable to be determined.

Activity levels are usually denoted by x1, x2, x3, . . . , where xj is the level
of activity j.

Step 2 Define the Item Set. Determine the classes of objects, the items, that
are required as inputs or are produced as outputs by the activities, and
choose a unit for measuring each type of item. Obviously the only items
that need be considered are those that are potential bottlenecks. Select
one item such that the net quantity of it produced by the system as
a whole measures the “cost” (or such that its negative measures the
“profit” of the entire system). For example, time in the carpentry shop,
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measured in hours, is an item. Time in the finishing shop, measured
in hours, is a different item, and, money is another item, measured in
dollars. The negative of the price in dollars at which a desk is sold affects
the profit of selling a desk.

In many situations, “costs” are measured in terms of money; however,
in other economic situations, they could be measured in terms of labor
or any scarce resource whose input is to be conserved or any item whose
total output from the system is to be maximized.

The label i is usually used to refer to the type of item consumed or
produced by the activities. The role that items play will become clearer
in the next step.

Step 3 Define the Input-Output Coefficients. Determine the quantity of each
item consumed or produced by the operation of each activity at its unit
level. These numbers are analogous to the quantities of various ingre-
dients in a cookbook recipe and are called the input-output coefficients
of the activity. They are the factors of proportionality between activity
levels and item flows.

The input-output coefficients are usually denoted by aij , where i refers to
the item and j refers to the activity. For example, when manufacturing
desks, aij could be the amount of time in shop i required to manufacture
one desk j. If aij of item i is required by activity j enter it in column j
with a plus sign; if it is produced by activity j enter it in column j
with a negative sign. Often in economic applications the opposite sign
convention for entering is used. The sign convention is arbitrary as long
as it is kept consistent. Every item that is either required or produced
by an activity j is entered in column j of the tableau.

Step 4 Specify the Exogenous Flows. Everything outside the system is called
exogenous. Specify the exogenous amounts of each item being supplied
from the outside to the system as a whole and specify the exogenous
amounts required by the outside from the system as a whole. They are
usually denoted by bi for item i and are entered in the rightmost tableau
column. Each of these, by our additivity assumption, is equal to the net
of the total amounts of each item used by the activities less the total
amounts of each item produced by the activities.

These net quantities item by item balance out to the exogenously given
right-hand sides of the material balance equations described next.

Step 5 Set Up the Material Balance Equations. Assign unknown activity levels
x1, x2, x3, . . . , usually nonnegative, to all the activities. Then, for each
item, one can easily write the material balance equation by referring to
the tableau which asserts that the algebraic sum of the flows of that
item into each activity (given as the product of the activity levels on the
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top row by the appropriate input-output coefficients aij) is equal to the
exogenous flow of the item.

There could be a surplus and shortage of items. These should be kept in
mind and appropriate surplus and shortage activities should be included.
If no costs are associated with the surplus or shortage amount then we
could write the constraint as an inequality instead of an equality. How-
ever, if the modeler wishes to force the solution not to have any deficit or
surplus (or wishes to be sure that all costs, or penalties, associated with a
shortage or revenues gained from selling off a surplus are accounted for),
then the relation would be written as shown in Table 1-1 as an equation.

The activity approach as defined requires setting up all the activities to be
nonnegative and all the constraints (material balances) to be specified as equalities.
Hence we will probably not always be successful in completing the model in the
first sequence of steps. It frequently happens that certain activities (referred to as
slack activities), commonly those related to the disposal of unused resources or the
overfulfillment of requirements, are overlooked until the formulation of the material
balance equations forces their inclusion. Thus a return from Step 5 to Step 1 will
sometimes be necessary before the model is complete.

1.3.2 THE ROW (MATERIAL BALANCE) APPROACH

For many modelers the natural way to set up a linear programming model is to
state directly the material balance relations in terms of the decision variables. The
steps are as follows.

Step 1 Define the Decision Variables. This step is similar to that for the ac-
tivity approach. Define all the decision variables, that is variables that
represent the quantity to produce, buy, etc. For example, the number of
desks of type 1 to manufacture is a decision variable. Recall that man-
ufacturing a desk is an activity, and the number of desks manufactured
is the level of this activity.

Decision variables are usually denoted by x1, x2, x3, . . . , where xj is the
number of desks of type j to manufacture.

Step 2 Define the Item Set. As in the column approach determine the classes
of objects, the items, that are considered to be potential bottlenecks
and choose a unit for measuring each type of item. See Step 2 of the
activity approach for details.

The label i is usually used to refer to a type of item.

Step 3 Set Up Constraints and the Objective Function. For each item, write
down the constraints associated with the bottleneck by noting how
much of each item is used or produced by a unit of each decision variable
xj . This amounts to filling a row of the tableau shown in Table 1-1.
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This results in a system of material balance inequalities (or material
balance equations) depending on whether or not a shortage or surplus
of an item is allowed. Next write down the objective function which
is formed by multiplying each decision variable by its unit cost (or
negative unit profit) and summing.

1.4 EXAMPLES OF MODEL FORMULATION

1.4.1 PRODUCT MIX (COLUMN APPROACH)

We next describe how to formulate the Product Mix Problem described earlier by
the Column Approach.

A furniture company manufactures four models of desks. Each desk is first
constructed in the carpentry shop and is next sent to the finishing shop, where it
is varnished, waxed, and polished. The number of man hours of labor required in
each shop is as shown in the display below.

Desk 1 Desk 2 Desk 3 Desk 4 Available
(hrs) (hrs) (hrs) (hrs) (hrs)

Carpentry Shop 4 9 7 10 6,000
Finishing Shop 1 1 3 40 4,000

Because of limitations in capacity of the plant, no more than 6,000 man hours can
be expected in the carpentry shop and 4,000 in the finishing shop in the next six
months. The profit (revenue minus labor costs) from the sale of each item is as
follows:

Desk 1 Desk 2 Desk 3 Desk 4
Profit $12 $20 $18 $40

Assuming that raw materials and supplies are available in adequate supply and all
desks produced can be sold, the desk company wants to determine the optimal prod-
uct mix, that is, the quantities to make of each type product which will maximize
profit.

Step 1 The Activity Set. The four manufacturing activities, each of which are
measured in desks produced, are

1. Manufacturing Desk 1.

2. Manufacturing Desk 2.

3. Manufacturing Desk 3.

4. Manufacturing Desk 4.

There are other activities, but these will be discussed later.
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Manufacturing
1 unit of
Desk 1

�4 hours of carpentry capacity

�1 hour of finishing capacity
�$12

Figure 1-1: Manufacturing Activity 1

Activities Manufacturing Desks
Items 1 2 3 4
1. Carpentry capacity (hours) 4 9 7 10
2. Finishing capacity (hours) 1 1 3 40
3. Cost (−Profit) ($) −12 −20 −18 −40

Table 1-2: Input-Output Coefficients

Step 2 The Item Set. The items are

1. Capacity in Carpentry Shop (measured in man hours).

2. Capacity in Finishing Shop (measured in man hours).

3. Costs (measured in dollars).

Step 3 The Input-Output Coefficients. Manufacturing activity 1, for example,
can be diagramed as shown in Figure 1-1. The table of input-output
coefficients for the four manufacturing activities is shown in Table 1-2.

Step 4 Exogenous flows. Since capacities in carpentry and finishing are inputs
to each of these activities, they must be inputs to the system as a whole.
At this point, however, we must face the fact that a feasible program
need not use up all of this capacity. The total inputs must not be more
than 6,000 carpentry hours and 4,000 finishing hours, but they can be
less, and so cannot be specified precisely in material balance equations.

Step 5 Material balances. If we went ahead with the formulation anyway, using
this data for the exogenous flows, then in order to have a correct math-
ematical formulation, we would have to write the material balances as
inequalities instead of equations. For example, the carpentry capacity
limitation is

4x1 + 9x2 + 7x3 + 10x4 ≤ 6000,
which is not in accordance with our rules for the activity approach.
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Not using 1 unit
of carpentry-shop

capacity
�1 hour of carpentry capacity

Figure 1-2: Slack Activity 5

Activities Manufacturing Desks Slack Exogenous
Items x1 x2 x3 x4 x5 x6

1. Carpentry capacity (hrs) 4 9 7 10 1 6,000
2. Finishing capacity (hrs) 1 1 3 40 1 4,000
3. Cost ($) −12 −20 −18 −40 z (Min)

Table 1-3: Full Tableau: Product Mix Problem

We see that the model cannot be completed with the lists of activities
and items given above, and we have here the situation mentioned in the
first section in which a second pass at the initial building of the model
is necessary. In this instance all we need to do is add activities to the
model that account for the carpentry and finishing capacity not used by
the remainder of the program. If we specify “not using capacity” as an
activity, we have the two additional activities, called slack activities, to
add to those listed in Step 1:

5. Not Using Carpentry Shop Capacity (measured in man hours).

6. Not Using Finishing Shop Capacity (measured in man hours).

Activity 5 can be abstracted as diagramed in Figure 1-2. The full tableau
of inputs and outputs of the activities and the exogenous availabilities
to the system as a whole are shown in Table 1-3.

Thus the linear programming problem is to determine the numbers

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, x6 ≥ 0,

and minimum z satisfying

−12x1 − 20x2 − 18x3 − 40x4 = z
4x1 + 9x2 + 7x3 + 10x4 + x5 = 6000
x1 + x2 + 3x3 + 40x4 + x6 = 4000.
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Note that the same values of the xj ’s that minimize the cost function will also
maximize the profit function p given by

12x1 + 20x2 + 18x3 + 40x4 = p.

Thus, a profit maximization problem can be stated as an equivalent to a cost min-
imization problem. It is obtained by reversing the sign of the coefficients of the
objective function of the cost minimization problem.

� Exercise 1.8 Solve the product mix problem numerically using the DTZG Simplex
Primal software option. Find the optimal amount of each type of desk to manufacture
and the maximum profit obtained by manufacturing these amounts.

1.4.2 PRODUCT MIX (ROW APPROACH)

We next describe how to formulate the product mix problem described earlier by
the row approach.

Step 1 Define the Decision Variables. The decision variables are how many
desks to manufacture of each type. Let xj = the number of desks j to
manufacture per month, for j = 1, 2, 3, 4. Associated with each of these
variables xj is the activity of manufacturing a desk. With the column
approach described in the previous section, only these activities were
defined in the first step.

Step 2 Define the Item Set. As with the column approach, the items are

1. Capacity in Carpentry Shop (measured in man hours).
2. Capacity in Finishing Shop (measured in man hours).
3. Costs (measured in dollars).

Step 3 Set Up Constraints and the Objective Function. The cost item leads to
the objective function to be minimized:

z = −12x1 − 20x2 − 18x3 − 40x4.

The two capacity items each lead to inequality constraints. Manufac-
turing one unit of desk 1, one unit of desk 2, one unit of desk 3, and
one unit of desk 4 requires 4 hours, 9 hours, 7 hours, and 10 hours re-
spectively of carpentry capacity. The total carpentry capacity cannot
exceed 6, 000 hours per month. Thus, the material balance inequality
for the carpentry item is

4x1 + 9x2 + 7x3 + 10x4 ≤ 6000.

In a similar manner, we can write down the constraint for the finishing
shop as

1x1 + 1x2 + 3x3 + 40x4 ≤ 4000.



16 THE LINEAR PROGRAMMING PROBLEM

Thus, the linear programming problem is to determine the numbers

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,
and minimum z satisfying

−12x1 − 20x2 − 18x3 − 40x4 = z
4x1 + 9x2 + 7x3 + 10x4 ≤ 6000
x1 + x2 + 3x3 + 40x4 ≤ 4000 .

1.4.3 A SIMPLE WAREHOUSE PROBLEM

Consider the problem of stocking a warehouse with a commodity for sale at a later
date. The warehouse can stock only 100 units of the commodity. The storage costs
are $1.00 per quarter year for each unit. In each quarter the purchase price equals
the selling price. This price varies, however, from quarter to quarter as shown in
the display below.

Quarter (t) Price ($/Unit)
1 10
2 12
3 8
4 9

Assuming that the warehouse has an initial stock of 50 units, this suggests that a
profit may be realized by selling when the price is high and buying when the price
is low. The problem is to determine the optimal selling, storing, and buying plan
for a one-year period by quarters.

In each period (quarter) t, we distinguish four types of activities:

Activity Quantity
1. Selling Stock xt1
2. Storing Stock xt2
3. Buying Stock xt3
4. Not Using Capacity (slack) xt4

and three types of items:

Items
1. Stock
2. Storage Capacity
3. Costs

These activities have the input-output characteristics shown in Figure 1-3 for a
typical time period t.

With four quarters, each item and activity appears four times in Table 1-4,
the tableau for the warehouse problem, once each quarter with a different time
subscript. The problem here is to find the values of xti ≥ 0 which satisfy the
equations implied by the tableau and which minimize the total cost.
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1 unit of capacity
during quarter t

�

Not using
1-unit
capacity
(slack)

Cost of 1 unit
�

Buying
1-unit
stock

Stock on hand
at time t

�

1 unit of stock on hand
at time t

�

1 unit of capacity
during quarter t

�

Storage cost/unit
�

Storing
1-unit
stock

1 unit of stock on hand
at time t+ 1

�

1 unit of stock on hand
at time t

�
Selling
1-unit
stock

Revenue/unit
�

INPUTS
� ACTIVITY

OUTPUTS
�

Figure 1-3: Input-Output Characteristics for the Warehouse Problem
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Activities
1st Quarter 2nd Quarter 3rd Quarter 4th Quarter
S S B S S S B S S S B S S S B S
e t u l e t u l e t u l e t u l
l o y a l o y a l o y a l o y a
l r c l r c l r c l r c Exog-

e k e k e k e k enous
Items x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 x41 x42 x43 x44 Flows

t = 0 Stock 1 1 −1 50
Capac. 1 1 100

t = 1 Stock −1 1 1 −1 0
Capac. 1 1 100

t = 2 Stock −1 1 1 −1 0
Capac. 1 1 100

t = 3 Stock −1 1 1 −1 0
Capac. 1 1 100
Cost −10 1 10 0−12 1 12 0 −8 1 8 0 −9 1 9 0 z (Min)

Table 1-4: Tableau Form for the Warehouse Problem

� Exercise 1.9 Solve the simple warehouse problem using the DTZG Simplex Primal soft-
ware option. Find the optimal selling, storing, and buying policy and associated total cost.

� Exercise 1.10 Consider the cyclic warehouse problem, where the 4 quarters of each
year are followed by four quarters of next year for year after year indefinitely into the
future. Assume the levels of corresponding activities in different years in the same season
repeat. Further assume that all the data with respect to costs, selling price, and capacity
are the same. Instead of having an initial stock of 50 units on hand suppose the problem
is to determine the ideal stock level to have on hand at the start of each year so that the
net profit per unit is maximized. Formulate the linear programming model to be solved.

1.4.4 ON-THE-JOB TRAINING

The purpose of this example is to illustrate the ability of the linear programming
model to cover the many and varied conditions that are so characteristic of practical
applications.

A manufacturing plant has a contract to produce 1,500 units of some commodity,
C, with the required delivery schedule rt as shown in the display below.

End of Week 1 2 3 4 5
No. of units r1 = 100 r2 = 200 r3 = 300 r4 = 400 r5 = 500
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Training
Tt

1 · Wt−1 �

$n �

� l · Wt

Production
Pt

1 · Wt−1 �

$m �

� 1 · Wt

� k · Ct

Idling
It

1 · Wt−1 �

$m �

� 1 · Wt

Firing
Ft

1 · Wt−1 �

$f �

Storing
St

1 · Ct−1 �

$s �

� 1 · Ct

Borrowing
Bt

1 · Ct+1 �

$p �

� 1 · Ct

Figure 1-4: Activities for the On-the-Job Training Problem

What hiring, firing, producing, and storing schedule should the manufacturer adopt
to minimize the cost of his contract under the following conditions?

1. Each unit of production not delivered on schedule involves a penalty of p = $90
per week until delivery is effective.

2. Any production ahead of schedule requires storage at s = $30/unit/week.

3. All required deliveries must be met by the end of the fifth week.

4. Initially there are g = 20 workers and h = 10 units of C on hand.

5. Each worker used in production during a week can turn out k = 8 units of C.

6. Each worker used for training recruits during a week can train l − 1 = 5 new
workers (that is, produce l = 6 trained workers including himself).

7. Wages of a worker are m = $300/week when used in production or when idle.

8. Wages of a worker plus l − 1 recruits used in training for one week are n =
$1, 800.

9. The cost to fire one worker is f = $300.

We shall choose for our unit of time a period of one week. At the beginning of
each week we shall assign the necessary number of workers and units of C to carry
out an activity that takes place during the week. Accordingly, at each of the six
times t = 0, 1, . . . , 5, material balance equations for the two items named in the
display below will need to be set up:

Type of Item Symbol for Item
Workers Wt

Commodity Ct
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1st Week 2nd Week 3rd Week
Item T1 P1 I1 F1 S1 B1 T2 P2 I2 F2 S2 B2 T3 P3 I3 F3 S3 B3

x11 x12 x13 x14 x15 x16 x21 x22 x23 x24 x25 x26 x31 x32 x33 x34 x35 x36
W0 1 1 1 1
C0 1
W1 −l −1 −1 1 1 1 1
C1 −k −1 −1 1
W2 −l −1 −1 1 1 1 1
C2 1 −k −1 −1 1
W3 −l −1 −1
C3 1 −k −1 −1
W4
C4 1
W5
C5
Cost n m m f s p n m m f s p n m m f s p

Table 1-5: The Job Training Model (First Three Weeks)

In addition to equations of these types, there will be a cost equation for the cost
item. In each of five weekly periods, six types of activities named in the display
below will need to be set up.

Type of Activity Symbol for Activity
1. Training Tt
2. Producing Pt

3. Idling It
4. Firing Ft

5. Storing St

6. Borrowing Bt

The input-output characteristics of each of these activities are displayed in Figure 1-
4. Except perhaps the borrowing activity, they are straightforward. Each failure
to produce enough of commodity C makes it necessary to borrow one unit of com-
modity C in period t from a competitor and to return one unit to the competitor
in the next time period at a penalty cost of p dollars.

These activities are shown in conventional tableau form in Table 1-5. In the
fifth week the borrowing activity is omitted because condition (3) on page 19 states
that all deliveries must be met by the end of the fifth week. In the sixth week a
firing activity F6 has been introduced to get rid of all workers and to terminate the
program.

� Exercise 1.11 Why is it necessary to terminate the program in this manner?
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4th Week 5th Week Exog-
Item T4 P4 I4 F4 S4 B4 T5 P5 I5 F5 S5 F6 enous

x41 x42 x43 x44 x45 x46 x51 x52 x53 x54 x55 x64 Flows
W0 g
C0 h
W1 0
C1 −r1
W2 0
C2 −r2
W3 1 1 1 1 0
C3 1 −r3
W4 −l −1 −1 1 1 1 1 0
C4 −k −1 −1 1 −r4
W5 −l −1 −1 1 0
C5 1 −k −1 −r5
Cost n m m f s p n m m f s f z (Min)

Table 1-6: The Job Training Model (Continued)

� Exercise 1.12 Assuming that firing is the opposite of hiring, give reasons why it is
better to treat these as two nonnegative activities rather than as a single activity with
positive and negative activity levels.

� Exercise 1.13 Solve the simple job training model numerically using the DTZG Simplex
Primal software option. Find the optimal hiring, firing, and storing schedule that the
manufacturer should adopt.

1.5 BOUNDS

In a linear program in standard form the levels of the activities are nonnegative. In
many real-world problems the levels of the activities are between bounds.

NONNEGATIVITY

Typically, in linear programming models, the levels of activities are nonnegative.
For example, it is not possible to train a negative number of workers or to combine
negative quantities of food items to determine the optimal diet. A subtle example
of nonnegativity occurs in a well-known classic: the Mad Hatter, you may recall,
in Alice’s Adventures in Wonderland, was urging Alice to have some more tea, and
Alice was objecting that she couldn’t see how she could take more when she hadn’t
had any. The hatter replied: “You mean, you don’t see how you can take less tea.
It is very easy to take more than nothing.”

Lewis Carroll, the author, was a mathematician, and his point was probably lost
on his pre-linear-programming audience, for why should one emphasize the obvious
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fact that the activity of “taking tea” cannot be done in negative quantity? Perhaps
it was Carroll’s way of saying that mathematicians had been so busy for centuries
extending the number system, from integers to fractions to negative to imaginary
numbers, that they had forgotten the art of keeping the variables of their problems
in their original nonnegative range. This characteristic of the variables of the linear
programming model in most situations is known as the nonnegativity assumption.
In linear programs, nonnegativity restrictions on variables are denoted by xj ≥ 0.

UPPER AND LOWER BOUNDS

Sometimes an activity level is required to be not less than some quantity called
a lower bound. This bound may be positive or negative. There may be other
restrictions on the variables as well, such that they cannot exceed a certain quantity
called an upper bound. For activity j, this can be represented by lj ≤ xj ≤ uj .

In some of applications of linear programs, variables may be allowed to have
negative values. For example, in financial applications, there may be no restriction
on the sign of the level of an activity measuring cash flow. In certain situations it
may even be advantageous for computational reasons to restrict certain variables
to always be nonpositive or to allow certain variables to be temporarily negative.

1.6 AXIOMS

A linear programming model satisfies certain assumptions (or axioms), namely pro-
portionality, additivity, and continuity. Other types of mathematical programs do
not satisfy these, for example, integer program models do not satisfy the axiom of
continuity.

PROPORTIONALITY

For example, suppose 1 slice of bread provides 77.5 calories; if the number of slices
is doubled it provides 155 calories. That is, in the linear programming model the
quantities of flow of various items into and out of the activity are always proportional
to the activity level. The ingredients to make two loaves of bread are double those
for one loaf. If we wish to double the activity level, we simply double all the
corresponding flows for the unit activity level.

In general, the proportionality assumption implies that if aij units of the ith
item are required by 1 unit level of the jth activity, then xj units of the jth activity
require aijxj units of item i. The proportionality assumptions also implies that if
it costs cj to buy 1 unit level of the jth activity then it costs cjxj to buy xj units
of the jth activity.

ADDITIVITY

For example, if 2 slices of bread provide 155 calories and a boiled egg provides
80 calories, then 235 calories are provided by eating 2 slices of bread and 1 boiled
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egg.
In general, the additivity assumption implies that if aij units of the ith item are

provided by 1 unit of the jth activity and aik units of the ith item are provided by
1 unit of the kth activity then aijxj+aikxk units of the ith item are provided by xj
units of the jth activity and xk units of the kth activity. The additivity assumption
also implies that if it costs cj to buy 1 unit of the jth activity and costs ck to buy
1 unit of the kth activity, then it costs cjxj+ckxk to buy xj units of the jth activity
and xk units of the kth activity. That is, the additivity assumption implies that
the objective function is additively separable in the variables; there are no mixed
variable terms like ckjxkxj .

CONTINUITY

The activity levels, or variables, can take on any real values within their allowable
range. Thus, if a problem requires that some activity level must take on one of a
finite set of values (such as a discrete number of real or integer values), the problem
cannot be represented as a linear program. Such problems can be reformulated as
integer programs, which, in general, belong to a class of problems that have been
shown to be much harder to solve than linear programming problems.

1.7 NOTES & SELECTED BIBLIOGRAPHY

From the time that the Simplex Method was first proposed by George Dantzig in 1947,
applications and new theories have grown at an astounding rate. They have grown so
rapidly that it is not possible to treat every aspect of linear programming and extensions
here. In fact, the early funding of the development of computers was done to make it
possible to solve linear programs (see the Foreword)! For another brief history of linear
programming see Orden [1993]. A classic book on linear programming is due to Dantzig
[1963]. For a history of mathematical programming, see Lenstra, Rinnooy Kan, & Schrijver
[1991].

Since the early 1950s many areas that we collectively call mathematical programming
began to emerge. These subfields have all grown rapidly, with linear programming playing
a fundamental role in their development. They are briefly described in the foreword
and are: nonlinear programming, commercial applications, software, network flow theory,
large scale methods, stochastic programming, integer programming, complementary pivot
theory, computational complexity, and polynomial time algorithms.

One of the first known applications of the Simplex Algorithm was the determination of
an adequate diet that was of least cost. J. Cornfield, of the U.S. government, formulated
such a mathematical model in 1940. Later, in the fall of 1947, J. Laderman, of the Math-
ematical Tables Project of the National Bureau of Standards, undertook as a test of the
newly proposed Simplex Method, what was the first large scale computation in this field.
It was a system with 9 equations and 77 variables. This problem took approximately
120 man-days to solve using hand-operated desk calculators. Today such a problem is
considered tiny and can be solved in a matter of seconds on a personal computer! This
particular problem was one that had been studied by G.J. Stigler [1945], who had deter-
mined a nonoptimal solution by selecting a handful of food combinations to be examined
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in an attempt to reduce the annual cost.
Among other early applications of linear programming were these: scheduling job

shop production (Dantzig [1957a], Jackson [1957], and Salveson [1953]); applications to
the oil industry (for example, Manne [1956], Charnes, Cooper, & Mellon [1952], Garvin,
Crandall, John, & Spellman [1957]); food processing industry (Henderson & Schlaifer
[1954] and Fisher & Schruben [1953]); the iron & steel industry (Fabian [1954, 1955,
1958]); metalworking industries (Lewis [1955], Maynard [1955], and Morin [1955]); paper
mills (Doig & Belz [1956], Land & Doig [1960], Eisemann [1957], and Paull & Walter
[1955]); optimal routing of messages in a communications network (Kalaba & Juncosa
[1956]); contract award problems (Gainen [1956], Goldstein [1952]); routing of aircraft
and ships (Dantzig & Fulkerson [1954]; Ferguson & Dantzig [1955, 1956]); investment in
electric power (Massé & Gibrat [1957]); among others.

Since the early days, the number of applications has exploded, and it is impossible to
even attempt to list them. An example of a commercially successful application of network
analysis is the award-winning study by Klingman, Philips, Steiger, & Young [1987] and
Klingman, Philips, Steiger, Wirth & Young [1986] at Citgo Petroleum Corporation. It was
developed with full top management and support, and is estimated to have saved Citgo
approximately $2.4 million as a result of better pricing, transportation, and coordination.
Many successful applications have been those for the oil industry (Rigby, Lasdon, & Waren
[1995], and Thapa [1991,1992]).

Applications that result in savings to management are published in Interfaces,Manage-
ment Science, etc. For example, valuation and planning of New Zealand Plantation forests
(Manley & Threadgill [1991]); forest management (Vertinsky, Brown, Schreier, Thompson,
van Kooten [1994] mortgage valuation models (Ben-Dov, Hayre, & Pica [1992]); telephone
network planning (Jack, Kai & Shulman [1992]); managing consumer credit delinquency
(Makuch, Dodge, Ecker, Granfors, & Hahn [1992]); freight routing using network optimiza-
tion (Roy & Crainic [1992]); plant closure (Clements & Reid [1994]); optimal leveraged
lease analysis through linear programming (Litty [1994], and Thapa [1984a]); portfolio
optimization (Feinstein & Thapa [1993]); strategic and Operational Management in the
Steel Industry (Sinha, Chandrasekaran, Mitter, Dutta, Singh, Choudhry, & Roy [1995]);
supply chain management (Arntzen, Brown, Harrison, & Trafton [1995]); a new linear
programming benchmarking technique (see Sherman & Ladino [1995]). Recent advances
in stochastic linear programming have made it possible to build stochastic linear programs
for a variety of problems, for example, portfolio optimization (Dantzig & Infanger [1993]),
asset/liability management (see Cariño, Kent, Myers, Stacy, Sylvanus, Turner, Watanabe,
& Ziemba [1994]); and animal feed formulation (Roush, Stock, Cravener, & D’Alfonso
[1994]).

Extensions of linear programming have been applied to numerous areas. To give you an
idea, a very small set includes mixed integer linear programming formulations in bulk sugar
deliveries (Katz, Sadrian, & Patrick T. [1994] and Vliet, Boender, Rinnooy Kan [1992]);
balancing workloads (Grandzol & Traaen [1995]); telecommunications (Cox, Kuehner, Par-
rish, & Qiu [1993]).

Various other linear programming applications can be found in, for example, Bradley,
Hax, & Magnanti [1977], Hillier & Lieberman [1990]. For additional reading on modeling,
see, for example, Ackoff & Rivett [1963], Gass [1991], Morris [1967], Starfield, Smith, &
Bleloch [1990], and Williams [1985].

The product mix problem, cannery example, on-the-job training, homemaker’s prob-
lem, and the warehouse example are based on examples in Dantzig [1963].
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1.8 PROBLEMS

1.1 Dantzig [1963]. If an activity such as steel production needs capital such as
bricks and cement to build blast furnaces, what would the negative of these
activities imply if they were used as admissible activities?

1.2 A Machine Problem (Kantorovich [1939]). Formulate the following problem.
An assembled item consists of two different metal parts. The milling work can
be done on different machines: milling machines, turret lathes, or on automatic
turret lathes. The basic data are available in the following table:

Productivity of the Machines for Two Parts
Maximum Output

Type of Machine Number of per Machine per Hour
Machines First Part Second Part

Milling Machines 3 10 20
Turret Lathes 3 20 30
Automatic Turret Lathes 1 30 80

(a) Divide the work time of each machine to obtain the maximum number of
completed items per hour.

(b) Prove that an optimal solution has the property that there will be no slack
time on any of the machines and that equal numbers of each part will be
made.

(c) State the dual of the primal problem.

1.3 Generalize Problem 1.2 to n machines and m parts, where the objective is to
produce the largest number of completed assemblies.

(a) Show, in general, that if each machine is capable of making each part,
and there is no value to the excess capacity of the machines or unmatched
parts, any optimal solution will have only matched parts and will use all
the machine capacity. What can happen if some machines are incapable of
producing certain parts?

(b) State the dual of the primal problem.
(c) Suppose there are two types of assemblies instead of one and a “value” can

be attached to each. Maximize the weighted output.

1.4 The Chicken and Egg Problem (Kemeny in Dantzig [1963]). Suppose it takes
a hen two weeks to lay 12 eggs for sale or to hatch 4. What is the best laying
and hatching program if at the end of the fourth period all hens and chicks
accumulated during the period are sold at 60 cents apiece and eggs at 10 cents
a piece. Formulate the problem assuming, in turn

(a) An initial inventory of 100 hens and 100 eggs,
(b) 100 hens and zero eggs,
(c) 100 hens and zero eggs and also a final inventory of 100 hens and zero eggs.

1.5 A small refinery blends five raw gasoline types to produce two grades of motor
fuel: regular and premium. The number of barrels per day of each raw gasoline
type available, the performance rating, and cost per barrel are given in the
following table:
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Raw Gasoline Performance Cost/barrel
Type Rating Barrels/day ($)

1 70 2000 0.80
2 80 4000 0.90
3 85 4000 0.95
4 90 5000 1.15
5 99 5000 2.00

Regular motor fuel must have a performance rating of at least 85 and premium
at least 95. The refinery’s contract requires that at least 8,000 barrels/day of
premium be produced; at the same time, the refinery can sell its entire output
of both premium and regular for $3.75/barrel and $2.85/barrel, respectively.
Assume the performance rating of a blend is proportional, i.e., a 50–50 mixture
of raw gasoline types 1 and 2 has a performance of 75.
Formulate a linear program to maximize the refinery’s profit. Be sure to define
all of your variables.

1.6 Optimum Blending Of Residual Fuel Oil In a Refinery (Soares, Private Com-
munication in 1986). Residual fuel oil is the major by-product of fuel refineries.
The main uses for residual fuel are in the industrial and electric utility sectors, as
well as for space heating and as marine Bunker C fuel. Rigid product specifica-
tions, combined with continually changing crudes, refinery operating conditions,
and market economics, creates a need for a quick and easy-to-use technique for
developing an optimum blend recipe for residual fuel. The reason for this is
that by the time crude oil has been refined, the optimal blend of residual fuel oil
that is obtained from a possibly large refinery linear programming model may
no longer be valid. Thus, it is important to be able to quickly determine a new
optimal blend recipe.
Critical properties of residual fuel oil include gravity, sulfur content, viscosity,
and flash point. These properties are described next.

• Gravity. API gravity is used widely in the petroleum industry and is
defined by the American Petroleum Institute as follows:

API = (141.5/specific gravity)− 131.5,

where specific gravity is the ratio of the density of the material to the
density of water, and density is defined to be the ratio of mass (weight) to
volume.
Water, with a specific gravity of 1.0, has an API gravity of 10.0, and
fuels heavier than water will have an API gravity below 10.0. Low API
gravity fuels, being heavier, have slightly higher heating values; however,
at gravities below 10 API, water and entrained sediment will not settle
out of the fuel.
API gravity does not blend linearly; however, specific gravity does blend
linearly. Thus, you will need to convert the API gravity specifications to
specific gravity.

• Sulfur. High sulfur fuels require higher cold-end temperatures in the air-
preheaters and economizers of boilers so as to protect against corrosion and
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resulting fouling of the boiler tubes. In addition, atmospheric pollution
regulations limit the maximum sulfur content of residual fuels.
Typically sulfur concentrations are specified as a percentage by weight,
thus, you will need to be careful that you do not apply this percentage to
a variable that has volume units. Specific gravity can be used to convert
between weight and volume. For example, weight = density × volume.

• Viscosity. This is a measure of the ability of the fuel to flow. Viscosity is
the single most important property because of the difficulties involved in
the handling and atomizing of such fuels at the burner tips. Viscosity is
measured in units of centistokes (cs) at 122 degrees Fahrenheit tempera-
ture.
Although viscosity is highly nonlinear, when converted to a Viscosity Blend
Index (VBI) linear blending is possible. The conversion to VBI is a table
look up and has already been done for you in this case. VBI can be applied
to variables that have volume units.

• Flash Point. This is the temperature at which the vapor above the fuel
will momentarily flash or explode when in the presence of a flame. Flash
point is an indicator of the temperature at which the fuel can be handled
without danger of a fire. A low flash point is extremely difficult to blend
off; consequently, it is most desirable to start off with components that all
meet flash point specification. Assume that all the components meet flash
point specification.

Frequent changes in the quality of crude oil run (high or low sulfur), type of
asphalt produced (heavy or light), and economics of the finished products mar-
ket create a need to develop a quick and easy-to-use method for determining an
optimum blend recipe for finished residual fuel. Assume that a larger refinery
model has been run and it has been determined that the best strategy is to
blend to produce an optimum finished residual fuel oil.
Use the information in Table 1-7 to develop a linear programming model to
provide an optimal blend recipe. For simplicity, consider only three refinery
produced streams for use in blending residual fuel oil: asphalt flux, clarified
oil, and kerosene distillate. Market conditions are such that residual fuel can
be sold at 60.0 cents/gallon and the best possible alternate disposition of the
constituent streams are as shown in Table 1-8. Finally, assume that the cost of
blending the constituent streams to form residual fuel oil is negligible.

Model Formulation and Analysis.
Formulate and solve the resulting linear program by using the DTZG Simplex
Primal software option on it to determine the optimum residual fuel mix (by
fractional volume). Perform any suitable sensitivity analysis that you can think
of. Make sure you justify whatever you choose to do and choose not to do. Write
a report that is organized so that it is easy for management to read and take
prompt action. The following is how you should organize your report.

• First report a complete summary of your LP run(s) indicating clearly what
must be done and why.

• Next report details of your LP run(s) and any sensitivity runs/analysis
that you may have performed. Justify whatever you do.
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Properties
Viscosity

Type of API Sulfur Viscosity Blend
Stream Gravity Weight % cs at Index

(%) 122◦F
Asphalt Flux 7.5 2.39 1.5 0.966
Clarified Oil -3.0 2.20 96.5 0.740
Kerosene 38.5 0.20 1.3 0.347

Product Specifications
Residual fuel (Max) 18.0 2.00 640.0 0.808
Residual fuel (Min) 10.0 None 92.0 0.738

Table 1-7: Stream Properties and Product Specifications

Constituent Stream Price
Asphalt flux 61.7 cents/gallon
Clarified Oil 40.0 cents/gallon
Kerosene 76.0 cents/gallon

Table 1-8: Selling Prices for the Constituent Streams

• Describe your model formulation in an appendix.

• In a second appendix indicate if you ran into any numerical problems.
Justify your observations.

1.7 Adapted from a model developed by Thapa [1991] at Stanford Business Software,
Inc., and by G. Soares. A small refinery would like to optimally distribute
gasoline through the use of various exchanges. The following describes the
problem they face.

• A fixed amount of gasoline is manufactured every month. G grades (for
example, unleaded, premium, super-unleaded, etc.) of gasoline are manu-
factured at the refinery. Exact manufacturing costs are difficult to get a
handle on. Thus, the company assumes that a base amount of one grade,
unleaded, is manufactured at 0 cost and the other volumes are generated
from it at given manufacturing differentials (different for each grade) of a
few cents per gallon.

• The refinery has exchange contracts with exchange partners. There is
a total of P exchange partners, and the partners lift gasoline from the
refinery up to a maximum prespecified amount by grade.
Then gasoline is taken back by the refinery at various terminals owned by
the partners. A location differential (of the order of a few cents or fraction
of cents) independent of the grades is incurred by the refinery.
The gasoline can also be taken back from the partners at a supply source
where exchanges take place. Here too a location differential (of the order
of a few cents or fraction of cents) independent of the grades is incurred
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by the refinery. There are a total of E supply sources; currently there is
only 1 supply source but there may be more in the future. Usually, the
refinery gets a credit for gasoline lifted back at the supply source.

• From the supply source the gasoline can be shipped via pipeline (at a cost
of a few cents per gallon) to various terminals owned by the partners.

• It is possible to also obtain a different mix of grades from the partners than
was given to the partners. A regrade differential is incurred in the event
that a different mix of grades is lifted. For example, suppose that a partner
takes 500, 000 gallons of unleaded and 500, 000 gallons of premium at the
refinery. Then the refinery takes back (at the supply source or terminal)
600, 000 gallons of unleaded and 400, 000 gallons of premium. Then the
partner owes the refinery money for having taken more of premium, a
higher valued grade. Note that these costs are computed by assuming
that, one of the grades is the base grade, for example unleaded in the
above example.

• The refinery supplies a total of S stations with these grades of gasoline.
Some stations are supplied directly and others are supplied through ex-
changes and other terminals. Each station has a prespecified demand for
each grade. The demand must always be met.

• Due to physical constraints some grades must be supplied together, that is,
split-loading is not allowed for certain groups of grades. Typically, super-
unleaded is supplied only from the refinery, and the other grades must
all come either from the refinery or from a terminal. That is, unleaded
cannot come from one terminal and premium from another terminal. If
the economics dictate, it is possible, however, for a station to be supplied
a portion of a group of grades from one terminal and the balance from
another terminal.

• There is a freight cost of the order of a few cents per gallon (independent
of the grade) for shipping gasoline from a terminal or from the refinery to
the stations.

• It is known in advance which terminals are clearly uneconomical; this
reduces the model size since only a few terminals can supply each station.
Typically, between 5 and 15 terminals supply each station.

Do the following:

(a) Formulate the retail distribution model described above.
(b) Suppose that the refinery would like to analyze buy-and-sell options at

the refinery, terminals, and supply sources. Incorporate this into your
model. How would you model incremental sales (assuming one customer
only); that is, for example, the first 100,000 gallons of unleaded are sold
at 57 cents/gallon and the next 200,000 gallons of unleaded are sold at 55
cents/gallon.

(c) It may be advantageous to blend different grades of gasoline in the truck
once it is picked up at a terminal. For example, 86 octane gasoline can
be obtained by blending 25% of 80 octane and 75% of 88 octane. In your
formulation, incorporate blending of gasoline at terminals only. Assume a
small cost for the blending.
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(d) In some instances it is possible to enhance a grade of gasoline by adding an
octane enhancer in the truck. For example, 1 gallon of 86 octane gasoline
can be obtained by enhancing 1 gallon of 84 octane gasoline. In your for-
mulation, incorporate grade conversion at terminals only. Assume a small
cost for the grade conversion.

(e) How would you modify your formulation to allow the user to specify for
each station any combination of products to be supplied as a group; i.e.,
different split-loading restrictions for each station.

Comment: The making and distribution of asphalt can be formulated as a
very similar model. In this case, however, because asphalt is a seasonal prod-
uct and inventories need to be maintained, a multi-time period is needed (see
Thapa [1992]).

1.8 Adapted from a model developed by Hogan and enhanced by Thapa at Stanford
Business Software, Inc., in 1990. A gas and electric company has been ordered
by the Public Utilities Commission (PUC) to allow customers to bid for the
extra gas transportation capacity on their pipelines. The pipeline has many
links but for simplicity assume that we are concerned only with one link.

• The gas company cannot make a profit on the selling of this capacity but
must be fair in assigning capacity.

• The actual capacity available in the pipeline depends on usage by core
customers. Once core usage is satisfied, the other capacity is available to
the noncore customers. Assume that there are N noncore customers.

• Assume that the available capacity is prioritized into blocks 1, . . . ,K,
where block K has the lowest probability of being available. That is,
the capacity in each block is known with a given probability.

• Noncore customers bid for the maximum capacity they would like in each
priority block. They also assign a price to their bid in each priority block
without knowledge of the prices assigned by other noncore customers. Fur-
thermore, they also indicate the maximum capacity they would like to
receive over all blocks.

• Assume that if a customer bids for block k, then this bid is also available
for all higher priority blocks, i.e., for blocks 1, . . . , k.

The process is best illustrated by an example. Suppose that there are 2 cus-
tomers and that there are two priority blocks. The bids and prices are illustrated
in the table below:

Bid Price Max
for Block Bid
2 1

Customer 1 15 17 250
Customer 2 30 35 250
Max Capacity 200 200

The optimal award is as follows:

• Customer 1 gets 150 in block 2.
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• Customer 2 gets the entire bid amount, that is, 200 in block 1 and 50 in
block 2.

The willingness to pay is then 10,750= 150 × 15 + 50 × 30 + 200 × 35. The
revenue to the company is somewhat lower because the market clearing prices
are lower. To understand this, observe that Customer 1 is the marginal bidder
since he/she gets the last available unit in block 2. Thus, the resulting marginal
price is 15 for that block which is what both customers actually pay. It appears
that Customer 2 is indifferent between block 1 and block 2, which is cheaper
by 5. Thus, the market clearing price for block 1 is 20 = 15 + 5, which is what
Customer 2 actually pays. This results in a total revenue to the company of
7,000= 150× 15 + 50× 15 + 200× 20. With this in mind do the following:

(a) Formulate the linear program to maximize the benefits as measured by the
willingness to pay.

(b) Once the bids are assigned, the customer pays the market clearing price
for the block. Write down the dual of the problem and show that the dual
prices are the market clearing prices. This implies that the revenue earned
is actually not necessarily the value of the objective function! Why?

(c) It turns out that linear programs often have multiple solutions in practice.
This problem is not an exception; the implication here is that it is possible
for only one of two identical bids to be awarded. How would you modify
the model to distribute the bids fairly. Hint: One approach is to use a
quadratic function; in this case, it is no longer a linear program.

(d) Some customers have a minimum acceptable quantity that they would ac-
cept. Modify your formulation to reflect this. Is the resulting formulation
a linear program? Why?

1.9 Adapted from a model developed by Thapa [1984] at Stanford Business Software,
Inc. This is a simplified version of a leveraged lease model. A leasing company
(lessor) obtains a loan on a piece of equipment and leases it out to a customer
(lessee) who pays rent every month for 30 years. Formulate the leveraged leasing
model as a linear programming model assuming

• The goal is to minimize the present value of the rents received while ob-
taining the desired yield. The present value of cash in time period t is the
cash divided by (1 + r)t, where r is the monthly discount rate (interest
rate) for the lessee.

• The IRS requires that the sum of the rents received in each year must be
within the range [0.9 ∗AVG, 1.1 ∗AVG], where AVG is the average yearly
rent computed over the rents received for the entire lease period of 360
months.

• The lessor’s loan principal is equal to the asset price plus the fee minus
the equity paid by the lessor.

• The rent received in each time period must be greater than or equal to the
debt service. The debt service in a time period is defined to be the sum
of the interest payment and loan principal repayment in that time period.
The interest in any period is defined to be the product of the bank interest
rate charged to the lessor times the principal balance in that time period.
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• The present value of the cash flow over all time periods for a prespecified
yield (interest rate) must be equal to the investment amount (total loan
principal) for the lessor. The cash flow for the lessor is the difference
between the rents and debt service in each time period.

1.10 Problem Under Uncertainty. Suppose that there are three canneries that ship
cases of cans to five warehouses. The number of cases available during each
season at each of the canneries is known in advance and is shown in the table
below together with the cost to ship per case to each of the warehouses.

Availability Shipping Cost ($/case)
Warehouses

Canneries Cases a b c d e

1 50,000 0.9 2.0 1.8 1.7 2.5
2 75,000 0.6 1.6 1.4 1.8 2.5
3 25,000 2.7 1.8 1.5 1.0 0.9

The seasonal demand at each of the warehouses is uncertain and is shown in
the table below:

Demand at Probability
Warehouse 15% 55% 30%

a 15,000 20,000 30,000
b 16,000 20,000 28,000
c 17,000 20,000 26,000
d 18,000 20,000 24,000
e 19,000 20,000 22,000

Assume all cases left over at the end of the season must be disposed of at a loss
of $1 per case (they cannot be stored any longer because the food in the cans
will spoil). Failure to supply demand during a season is penalized at $0.25 per
case as the discounted estimated loss of all future sales (turning a customer away
runs the risk that the customer will not return by becoming the customer of
another supplier). Use the DTZG Simplex Primal software option to determine
what shipping schedule will optimize the total shipping cost and expected net
revenues?

1.11 Ph.D. Comprehensive Exam, September 25, 1976, at Stanford. You have been
called to appear as an expert witness before the congressional committee that
is reviewing the new budget of the Department of Energy. In the past, this
department and its predecessor agencies have provided a substantial amount of
financial support for the development of mathematical programming, comple-
mentarity, and fixed-point algorithms. Congressman Blank, a member of this
committee, is hostile to this type of research. He has just made newspaper
headlines by reading out the titles of some of the more esoteric publications in
this area.

You are asked to prepare a non-technical statement (not to exceed 500 words
in length) explaining the relevance of such research to the area of energy policy.
Recall that most congressmen have been trained as lawyers, that they have
not had college-level courses in mathematics, and that they are skeptical about
mathematical reasoning.
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1.12 Ph.D. Comprehensive Exam, September, 1982, at Stanford. It is often said that
there is a similarity between market mechanisms and mathematical program-
ming models. For what types of applications does this seem valid? Give an
example in which the analogy breaks down, and explain why.
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C H A P T E R 2

SOLVING SIMPLE LINEAR

PROGRAMS

Linear programs, except possibly very tiny ones or very special cases, require a
computer for solution. When linear problems have exactly two variables subject to
many inequality constraints or exactly two equations in many nonnegative variables,
it is possible to solve them graphically. In Section 2.1 we illustrate how to solve
the first class graphically. In Section 2.2 we illustrate the second class and also
introduce the concept of duality and the role that it plays in the solution. Finally
in Section 2.3 we show how to solve simple linear programs algebraically using the
Fourier-Motzkin Elimination Method.

2.1 TWO-VARIABLE PROBLEM

Consider the following two-variable case:

Minimize −2x1 − x2 = z
subject to x1 + x2 ≤ 5

2x1 + 3x2 ≤ 12
x1 ≤ 4

and x1 ≥ 0, x2 ≥ 0.

To solve this problem graphically we first shade the region in the graph in which all
the feasible solutions must lie and then shift the position of the objective function
line −2x1−x2 = z by changing the value of its right hand side z until the objective
function cuts the feasible region with the lowest possible value for the objective.

The feasible region is the set of points with coordinates (x1, x2) that satisfy all
the constraints. It is shown in Figure 2-1 as the shaded region. It is determined

35
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Figure 2-1: Graphical Solution of a Two-Variable LP

as follows: The nonnegativity constraints x1 ≥ 0 and x2 ≥ 0 clearly restrict all the
feasible solutions to lie in the first (or northeast) quadrant. The first constraint,
x1 + x2 ≤ 5, implies that all the feasible x1 and x2 must lie to one side of its
boundary, the line x1 + x2 = 5. The side on which the feasible x1 and x2 must lie
is easily determined by first checking whether the origin lies on the feasible side of
the line; in this case it is easy to see that the feasible side is on the same side as the
origin since (0, 0) obviously satisfies x1 + x2 ≤ 5. In a similar manner we can check
which side of the boundary of the other two constraints is the feasible side.

The objective is to minimize the linear function z = −2x1 − x2. If we fix for
the moment the value of z to be zero we see that the objective function can be
represented as a line of slope −2 that passes through the origin. Translating this
objective line (i.e., moving it without changing its slope) to a different position
is equivalent to choosing a different value for z. Clearly, translating the line in
a Southwest direction away from the feasible region is pointless. The origin is
an extreme point (corner) of the feasible region but is not an optimal solution
point since translating the objective line into the feasible region results in a smaller
value for the objective (for example, draw the objective line with z = −3). Thus
translating the objective function in a northeast direction is desirable since it results
in a smaller and smaller objective function value. However, moving the objective
function line past the extreme point marked C = (4, 1) in Figure 2-1 causes the
line to no longer intersect the feasible region. Thus, the extreme point C, which is
the intersection of the boundary of constraints 1 and 3, must be the optimal point
for this two-dimensional LP. At the optimal solution point (x1, x2) = (4, 1), the
minimum (optimal) value of the objective function is −9. We will prove later that
bounded linear programs that have feasible solutions always have optimal solutions
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that are extreme points. If they have more than one optimal extreme point, then
any weighted average of these extreme points is also an optimal solution.

� Exercise 2.1 Use the DTZG Simplex Primal software option to verify that the above
solution is correct.

� Exercise 2.2 Prove that the two-variable problem can have at most two optimal ex-
treme points.

� Exercise 2.3 Construct a graphical example in three dimensions to show that a three-
variable problem can have more than three optimal extreme points.

The following cases can arise for a minimization problem (analogous results hold
if one is maximizing):

1. If the constraints are such that there is no feasible region, then no solution
exists.

2. If the objective function line can be moved indefinitely away from a feasi-
ble point in a direction that decreases z and still intersects the feasible re-
gion, then the feasible region is unbounded and there is a sequence of feasible
points (x1, x2) for which the corresponding values of z approach −∞.

3. If the objective function line can be moved only a finite amount by decreasing
the value of z while still intersecting the feasible region, then the last feasible
point touched by the objective function line, if unique, yields the unique op-
timal solution, and the corresponding value of z is the minimum value for the
objective. If not unique, then any point on the segment of the boundary last
touched yields an optimal solution and the minimum value for the objective.

� Exercise 2.4 Draw a graph of a two-variable linear program to illustrate each of the
above three cases.

� Exercise 2.5 Construct an example where the set of points (x1, x2) where z is mini-
mized is (a) a line segment; (b) an infinite line segment that is bounded at one end;(c) an
infinite line segment not bounded on either end.

2.2 TWO-EQUATION PROBLEM

In order to illustrate how to solve a two-equation problem graphically, we shall make
use of the product mix problem described in Section 1.4.1. The problem, repeated
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here for convenience, is to minimize z subject to xj ≥ 0 and

4x1 + 9x2 + 7x3 + 10x4 + x5 = 6000
x1 + x2 + 3x3 + 40x4 + x6 = 4000

−12x1 − 20x2 − 18x3 − 40x4 = z.
(2.1)

2.2.1 GRAPHICAL SOLUTION

Clearly the techniques of the last section cannot be applied directly since it is not
easy to visualize the equations as objects in the six-dimensional space of points
whose coordinates are (x1, x2, x3, x4, x5, x6). Fortunately, this problem can be con-
verted to one that involves finding a way to average a set of points in a two-
dimensional space to attain a specified average value while simultaneously mini-
mizing the average cost associated with these points.

To convert the product mix problem (2.1) to one that can be solved graphically,
it is first necessary to modify the units used to measure the quantity of items and
activity levels and also to redefine the activity levels so that the activity levels sum
to unity. Algebraically, this is done by first adding the two equations to form a new
equation. This allows us to drop one of the original equations as now redundant.
We next change the units for measuring the xj ’s so that they sum to unity. Oper-
ationally we can do this by introducing as a new item total capacity, which is the
sum of the carpentry capacity and the finishing capacity.

5x1 + 10x2 + 10x3 + 50x4 + x5 + x6 = 10000
4x1 + 9x2 + 7x3 + 10x4 + x5 = 6000
x1 + x2 + 3x3 + 40x4 + x6 = 4000

−12x1 − 20x2 − 18x3 − 40x4 = z.

(2.2)

We then drop, for example, the finishing capacity equation, which is now redundant.
Next we change the column units that are used for measuring activity levels so that
1 new unit of each activity requires the full 6,000 + 4,000 = 10,000 hours of total
capacity.

To change units in (2.1) note that one unit of the first activity requires 4+1 = 5
hours of total capacity; thus, 2,000 units of the first activity would require 10,000
hours of capacity and is equivalent to one new unit of the first activity. In general,
if y1 is the number of new units, then 2000y1 = x1 old units of the first activity.
The relationship for each activity between the old and new activity levels after such
a change in units is

2000y1 = x1, 1000y2 = x2, 1000y3 = x3,

200y4 = x4, 10000y5 = x5, 10000y6 = x6.
(2.3)

It is also convenient to change the row units that are used to measure capacity
and costs. Let 10,000 hours = 1 new capacity unit; $10,000 = 1 new cost unit,
i.e., 10000z̄ = z. Then it is easy to see that the product mix model in Table 1-3
will become, after the changes in the units for activities and items given above,
Table 2-1.
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� Exercise 2.6 Show that the product mix model as described in Table 1-3 becomes,
after the changes in the units for activities and items given by (2.3), Table 2-1.

Activities: Manufacturing Desks Slacks
Type: (1) (2) (3) (4) Carp. Fin. Exogenous

Items Levels: y1 y2 y3 y4 y5 y6

(0): Total Capacity (10,000 hrs) 1.0 1.0 1.0 1.0 1.0 1.0 1.0
(1): Carpentry Capacity (10,000 hrs) .8 .9 .7 .2 1.0 0.6
(3): Cost ($10,000) −2.4 −2.0 −1.8 −.8 z̄ (Min)

Table 2-1: The Converted Product Mix Model

Note that the coefficients in the top row of Table 2-1 (Item 0) are now all 1s. If
we set this fact aside for the moment, then for the purpose of graphing the data in
a column we plot the two remaining coefficients in each column j as the coordinates
of a point Aj in two-dimensional space. That is,

A1 =
(

.8
−2.4

)
; A2 =

(
.9

−2.0

)
; A3 =

(
.7

−1.8

)
;

A4 =
(

.2
−0.8

)
; A5 =

(
1.0
0.0

)
; A6 =

(
0.0
0.0

)
.

The right hand side is a point whose coordinates are

R =
(
.6
z̄

)
.

Thus, the coordinates of each point Aj are plotted as a point labeled Aj in Figure 2-
2. Its first coordinate is the coefficient for the carpentry capacity and the second
coordinate is the cost coefficient of activity j. The right hand side R is plotted
as a “requirements” line rather than a point since its v coordinate z̄ is a variable
quantity to be determined.

In physics, if one is given a set of points A1, A2, . . . , An with given relative
weights (y1 ≥ 0, y2 ≥ 0, . . . , yn ≥ 0), where

∑n
i=1 yi = 1, then the center of gravity

G of the set of points A1, A2, . . . , An is found by the formula

G = A1y1 +A2y2 + · · ·+Anyn, (2.4)

where the weights sum to unity:

y1 + y2 + · · ·+ yn = 1. (2.5)

Relation (2.4) is in vector notation; it means that the relation holds if the first
coordinate of G and Aj for j = 1, . . . , n are substituted for G and Aj , and the
relation is also true if the second coordinate is substituted.
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Figure 2-2: Graphical Solution of the Product Mix Problem

In our application, the center of gravity G is specified as the lowest point on
the requirement line that can be generated by assigning nonnegative weights to the
points. The problem becomes one of determining the weights as unknowns so as to
achieve this lowest point. Because the unknowns yj ≥ 0 sum to unity, the problem
is therefore one of assigning nonnegative weights to points A1, A2, . . . , A6 such that
their center of gravity lies on the requirement line given by R at a point where the
cost coordinate z̄ is minimized.

The optimum solution to the product mix problem is easily found by inspection
of the graph in Figure 2-2. Clearly, the point R∗ has the minimum cost coordinate,
which is found by assigning zero weights yj to all points, except A1 and A4, and
appropriately weighting the latter so that the center of gravity of A1 and A4 has
abscissa 0.6. To determine the two remaining weights y1, y4, set y2 = 0, y3 = 0,
y5 = 0, and y6 = 0 in Table 2-1. Recalling from (2.5) that the sum of the weights
must equal unity, this results in

.8y1 + .2y4 = 0.6
y1 + y4 = 1.0,

whence solving the two equations in two unknowns for y1 and y4,

y1 =
2
3
, y4 =

1
3
.

The corresponding cost z̄ is given by

z̄ = −2.4y1 − 0.8y4 = − 5.6
3 .

Thus the optimal solution is to manufacture x1 = 2000y1 = 2
3 × 2000 desks of

Type 1, x4 = 200y4 = 1
3 × 200 desks of Type 4, and none of the other types of
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desks. This will use the full capacity of the plant since the slack variables y5 and y6
are zero. The minimum cost z = 10000z̄ = 10000× (−5.6/3), a profit of $18,666.67.

Despite the fact that the material balance equation for finishing capacity was
omitted in the above calculation, the limitation of 4,000 hours on the use of this
capacity is completely accounted for by this solution. As noted earlier, this is
because the adding of the total capacity equation to the system and dropping one
of the remaining redundant equations yields an equivalent model that properly takes
into account the limitation on the amount of each type of capacity available.

� Exercise 2.7 Use the DTZG Simplex Primal software option to verify the correctness
of the above solution. Change the profit on desk 1 to be $8 instead of $12 and rerun the
software. How does the solution change?

ALGEBRAIC CHECK OF OPTIMALITY

We can check algebraically whether our choice of A1, A4 in Figure 2-2 is correct by
first determining that the calculated values for y1 and y4 satisfy nonnegativity and
then testing to see whether the estimate of every point in the shaded region has
value v greater than or equal to that of the point on the line joining A1 to A4 with
the same abscissa u. If the latter is true we say the shaded region lies on or above
the extended line joining A1 to A4. The extended line joining A1 to A4 is called
the solution line. Clearly points A2, A3, A5, and A6 lie above the solution line in
Figure 2-3, and therefore it is intuitively clear (and can be shown rigorously) that
the feasible solution y1 = 2/3, y4 = 1/3 is optimal.

2.2.2 THE DUAL LINEAR PROGRAM

Another way to view the linear program, called the dual view, is to consider the set
L of lines L in the (u, v) plane such that all points A1, A2, . . . , An lie on or above
each line of L (See Figure 2-3). The line L in L that we are most interested in is
the solution line, which is the line L in L that intersects the requirements line R at
the highest point R∗.

We can state this dual problem algebraically. The equation of a general line L
in the (u, v) plane is

v = π1 + π2u

where π1 is the intercept and π2 the slope. In order that the shaded region lies on
or above this line, each of the points A1, A2, . . . , A6 in the shaded region must lie
on or above the line. In order to test whether or not the point A2 = (.9,−2.0),
for example, lies on or above L substitute the coordinate u = .9 of A2 into its
equation; if the v coordinate of A2 is greater than or equal to the value of the
ordinate v = π1 + π2(.9) of L, then A2 lies on or above L. Thus, our test for A2 is
π1+ π2(.9) ≤ −2.0, and the test for the entire set of points A1, A2, . . . , A6 lying on
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Figure 2-3: Optimality Check—The Product Mix Problem

or above the line L is:
π1 + π2(0.8) ≤ −2.4,
π1 + π2(0.9) ≤ −2.0,
π1 + π2(0.7) ≤ −1.8,
π1 + π2(0.2) ≤ −0.8,
π1 + π2(1.0) ≤ 0.0,
π1 + π2(0.0) ≤ 0.0.

(2.6)

Let S = (.6, v̄) for some v̄ be the intersection of the vertical line u = .6 with
v = π1 + π2u. In order for S to lie on the line L, we must have v̄ = π1 + π2(.6).
The line L below the shaded region whose v = v̄ coordinate of S is maximum, is
the line L with slope π2 and intercept π1 that satisfies (2.6) and maximizes v̄ given
by (2.7):

π1 + π2(.6) = v̄ (Max). (2.7)

It is clear from the figure that the line in the figure on or below the convex feasible
region (shaded area) with maximum intercept with the requirement line is the same
as the optimal solution line for the original (primal) problem, namely the line passing
through the optimal pair of points A1 and A4.

The problem of finding π1, π2, and max v̄ satisfying (2.6) and (2.7) is called
the dual of our original (primal) problem (2.1). The obvious observation that the
ordinate of R∗ for these two problems satisfies

max v̄ = min z (2.8)

is a particular instance of the famous von Neumann Duality Theorem 5.3 for linear
programs.
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In summary, if we conjecture that some pair like A1, A4 (obtained by visual
inspection of the graph or otherwise) is an optimal choice, it is an easy matter to
verify our choice by checking whether (i) the intersection with the requirement line
lies between the selected two points and (ii) all points A1, A2,. . . , A6 lie on or above
the extended line joining the selected two points. To check the first, we solve (as
we did earlier)

.8y1 + .2y4 = 0.6
y1 + y4 = 1.0

(2.9)

to see whether y1 and y4 are nonnegative. We obtain y1 = 1/3, y4 = 2/3, which
are positive, so S lies between A1 and A4. These values, with remaining yj = 0,
satisfy the primal system (2.1). To check the second set of conditions, we must
first determine the coefficients π1 and π2 of the equation of the line v = π1 + π2u
which passes through A1 and A4. Thus π1 and π2 are found by substituting the
coordinates of A1 and A4 into the equation of the line:

π1 + π2(.8) = −2.4
π1 + π2(.2) = −0.8. (2.10)

Solving the two equations in two unknowns yields π1 = 5.6/3, π2 = −8/3. We then
substitute these values of π1 and π2 into (2.6) to see whether they satisfy the dual
system of relations. Since (2.6) is satisfied, the test is complete, and the solution
y1 = 1/3, y4 = 2/3, and all other yj = 0 is optimal.

2.3 FOURIER-MOTZKIN ELIMINATION

In this section we will show how to solve simple linear programs algebraically.
For small linear programming problems, the Fourier-Motzkin Elimination (FME)
Method can be used. This method reduces the number of variables in a system of
linear inequalities by one in each iteration of the algorithm. Its drawback is that it
can greatly increase the number of inequalities in the remaining variables.

Before proceeding we state the following definitions:

Definition (Consistent, Solvable, or Feasible): A mixed system of equations
or inequalities having one or more solutions is called consistent or solvable or
feasible.

Definition (Inconsistent, Unsolvable, or Infeasible): If the solution set is
empty, the system is called inconsistent or unsolvable or infeasible.

Definition (Equivalent Systems): Mixed systems of linear equations or in-
equalities are said to be equivalent if their solution sets are the same.
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2.3.1 ILLUSTRATION OF THE FME PROCESS

Note that is legitimate to generate a new inequality by positive linear combina-
tions of existing inequalities pointing in the same direction. Moreover, if existing
inequalities have coefficients, of say xj , with opposite signs then we can find a pos-
itive linear combination that generates an inequality with coefficients of xj equal
to 0. We will apply these two ideas to solve a system of linear inequalities by the
Fourier-Motzkin Elimination process.

Example 2.1 (Fourier-Motzkin Elimination) Find a feasible solution to the system
of inequalities in the variables x1, x2, z by eliminating x1, x2, and z in turn.

x1 ≥ 0
x1 + 2x2 ≤ 6
x1 + x2 ≥ 2
x1 − x2 ≥ 3

x2 ≥ 0
−2x1 − x2 ≤ z.

Note that the inequalities do not all point in the same direction. Rewrite the above
inequalities by reversing signs as necessary so that they point in the same direction. Also,
positively rescale if necessary so that all the nonzero coefficients of x1 are +1 or −1.

x1 ≥ 0
−x1 − 2x2 ≥ −6
x1 + x2 ≥ 2
x1 − x2 ≥ 3
2x1 + x2 + z ≥ 0

x2 ≥ 0

=⇒

x1 ≥ 0
−x1 − 2x2 ≥ −6
x1 + x2 ≥ 2
x1 − x2 ≥ 3
x1 + 1

2x2 + 1
2z ≥ 0

x2 ≥ 0.

(2.11)

From the representation (2.11) it is clear that there are three classes of inequalities with
respect to x1. The first class consists of inequalities in which the coefficient of x1 is +1;
the second class consists of inequalities in which the coefficient of x1 is −1; and the third
class of inequalities are those in which the coefficient of x1 is 0. We eliminate the variable
x1 by adding each inequality in the first class to each inequality in the second class. This
results in the following system that appears on the left in (2.12) which, in turn, can be
rewritten as the system that appears on the right of (2.12).

−2x2 ≥ −6
−x2 ≥ −4
−3x2 ≥ −3
− 3

2x2 + 1
2z ≥ −6

x2 ≥ 0

=⇒

−x2 ≥ −3
−x2 ≥ −4
−x2 ≥ −1
−x2 + 1

3z ≥ −4
x2 ≥ 0.

(2.12)

The next step is to repeat the process with (2.12) by eliminating x2:

0 ≥ −3
0 ≥ −4
0 ≥ −1

1
3z ≥ −4

=⇒
0 ≥ −3
0 ≥ −4
0 ≥ −1
z ≥ −12.
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Obviously 0 is greater than or equal to −3, −4, or −1, so that the only inequality of
interest left is

z ≥ −12. (2.13)

It is not possible to eliminate z and therefore the process stops with (2.13) and we are
ready for the back-substitution steps. Choose any value for z that satisfies (2.13), for
example, z = −12, which is the smallest value that z can take which keeps the original
system feasible. Setting z = −12 in (2.12), it turns out that any value of x2 in the range
0 ≤ x2 ≤ 0 may be chosen, implying x2 = 0. Substituting z = −12 and x2 = 0 in (2.11)
yields 6 ≤ x1 ≤ 6 implying x1 = 6.

Thus, the solution that minimizes z, for this relatively small problem, was found easily,
is unique. It is x1 = 6, x2 = 0, and z = −12.

� Exercise 2.8 Show that other feasible solutions can be obtained that satisfy z ≥ −12.

� Exercise 2.9 Prove that the variable z can never be eliminated during the FME process.

It is straightforward to see that by choosing the smallest z we actually solved
the following linear program.

Minimize −2x1 − x2 = z
subject to x1 + 2x2 ≤ 6

x1 + x2 ≥ 2
x1 − x2 ≥ 3
x1 ≥ 0

x2 ≥ 0.

� Exercise 2.10 Apply the FME process to the linear program

Minimize −2x1 − x2 = z
subject to x1 + 2x2 ≥ 6

x1 + x2 ≥ 2
x1 − x2 ≥ 3
x1 ≥ 0

x2 ≥ 0

to show that it has a class of feasible solutions in which z tends to −∞. Use the
Fourier-Motzkin Elimination software option to verify this.

� Exercise 2.11 Apply the FME process to the linear program

Minimize −2x1 − x2 = z
subject to x1 + 2x2 ≤ 6

x1 + x2 ≥ 2
x1 + x2 ≤ 1
x1 − x2 ≥ 3
x1 ≥ 0

x2 ≥ 0
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to show that it is infeasible because the process generates an infeasible inequality of the
form

0x1 + 0x2 ≥ d, where d > 0.

Use the Fourier-Motzkin Elimination software option to verify this.

LEMMA 2.1 (FME Applied to a General Linear Program) The FME
process can be applied to the following general linear program:

Minimize
n∑

j=1

cjxj = z

subject to
n∑

j=1

aijxj ≥ bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n,

(2.14)

to obtain a feasible optimal solution if it exists or to determine that it is infeasible
because it generates an infeasible inequality

n∑
j=1

0xj ≥ d, where d > 0,

or to obtain a class of feasible solutions in which z tends to −∞.

Generating an infeasible inequality to show that a system of linear inequalities
is infeasible is formalized through the Infeasibility Theorem, which we state and
prove in Section 2.4.

2.3.2 THE FOURIER-MOTZKIN ELIMINATION
ALGORITHM

Algorithm 2.1 (FME) This algorithm is only practical for a very small system of
m inequalities in n variables. Given a system of inequalities labeled as A, initiate the
process by setting R1 = A and k = 0.

1. Set k ← k + 1. If k = n+ 1 go to Step 7.

2. Rewrite the inequalitiesRk so that the variable xk appears by itself with a coefficient
of −1, 1, or 0 on one side of each inequality written as a ≥ inequality. Consider all
those constraints with zero coefficients for xk as a part of the reduced system.

3. All the coefficients of xk are zero. Mark the value of xk as “arbitrary,” set

Rk+1 ← Rk

and go to Step 1.

4. The coefficients of xk are all +1 (or all −1). If k < n, assign arbitrary values
xk+1, . . . , xn. Go to Step 9.

5. All coefficients of xk are a mix of 0 and +1 (or all coefficients are a mix of 0 and
−1). Call the constraints with zero coefficients for xk the reduced system Rk+1 and
go to Step 1.
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6. This is the case where there is at least one pair of inequalities with a +1 and a −1
coefficient for xk. For each such pair augment the reduced system by their sum. Set
Rk+1 to be the reduced system and go to Step 1.

7. Feasibility Check. Check the right-hand sides of Rn+1. If any of them is positive
report the original system as being infeasible and stop; else, set k ← n.

8. Determine xn. If k = n, determine a feasible value for xn from Rn. Set k ← k − 1.

9. Back Substitution. Start with j = k. While j ≥ 1 do the following.

(a) If xj has been marked as arbitrary, assign it an arbitrary value (for example
0). If xj is not marked as arbitrary and j < n, substitute the values for
xj+1, . . . , xn in Rj and determine a feasible value for xj .

(b) Set k ← k − 1.

Except for very small problems, a more efficient algorithm is needed because
in general, if half of the m coefficients of x1 appear with opposite sign, then the
elimination would cause the number of inequalities to grow on the next step from
m to (m/2)2. Thus, it is possible after a few eliminations that the number of
remaining inequalities could become too numerous. However, from a theoretical
point of view, the method is a powerful one since it can be used to prove such
fundamental theorems as the infeasibility theorem and the duality theorem.

� Exercise 2.12 Show that if the worst case described above could occur at each iteration,
then at the end of n iterations the number of inequalities could grow to

1
22n−2

(
m

2

)2n

,

where m is the number of inequalities at the start of the FME algorithm and n is the
number of variables.

2.3.3 FOURIER-MOTZKIN ELIMINATION THEORY

In this section we provide the theoretical background for the Fourier-Motzkin Elim-
ination process.

WHY IT WORKS

Suppose that we wish to find solutions to the following system:

n∑
j=1

aijxj ≥ bi, for i = 1, . . . ,m, (2.15)

where all inequalities are written as in (2.15) with variables on the left and constants
on the right of the ≥ symbol. Since this problem is trivial if m = 1 or n = 1, we
assume, to simplify the discussion, that m > 1 and n > 1.
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In outline, the Fourier-Motzkin elimination process begins by eliminating x1 by
adding every pair of inequalities in which x1 appears with a +1 in one and −1 in
the other. This generates a new system of inequalities, called the reduced system, in
which x1 appears with zero coefficient in all its inequalities. The process is repeated
with the new system except now x2 is eliminated followed by x3, x4, . . . , xn in turn.
The iterative process stops either when

1. it is not possible to carry out the elimination procedure on the next variable
to be eliminated because all the next variable coefficients are +1 (or all −1),
or

2. all variables have already been eliminated.

For the first of these possibilities, it is easy to find a feasible solution; for the second
of these possibilities it is easy to find a feasible solution of the form

∑
j 0xj ≥ γ, or

show that none exists because γ > 0. If the final solution is feasible, then a feasible
solution for the original system can be found by a sequence of back-substitution
steps.

We can reformulate (2.15) by partitioning its constraints into 3 groups, h, k,
and l, depending on whether a particular constraint has its x1 coefficient “> 0,”
“< 0,” or “= 0.” After dividing by the absolute value of the coefficient of x1 when
nonzero and rearranging the terms and the order of the inequalities, we can write
these as

x1 +
n∑

j=2

Dhjxj ≥ dh, h = 1, . . . , H, (2.16)

−x1 +
n∑

j=2

Ekjxj ≥ ek, k = 1, . . . ,K, (2.17)

and the remainder
n∑

j=2

Fljxj ≥ fl, l = 1, . . . , L. (2.18)

Note that H + K + L = m, where we assume for the moment that H ≥ 1 and
K ≥ 1.

Clearly this is equivalent to system (2.15). That is, any solution (if one exists)
to (2.16), (2.17), and (2.18) is a solution to (2.15) and vice versa. We refer to
(2.16), (2.17), and (2.18) as the original system. Assume that (x1, x2, . . . xn) =
(xo1, x

o
2, . . . x

o
n) is a feasible solution. Setting aside (2.18) for the moment, the “elim-

ination” of x1 is done by adding the hth constraint of (2.16) to the kth constraint
of (2.17), thus obtaining

n∑
j=2

Ekjxj +
n∑

j=2

Dhjxj ≥ ek + dh. (2.19)

When we say x1 has been “eliminated” from (2.19), we mean that the coefficient of
x1 is zero. We do this for every combination of h = 1, . . . , H, and k = 1, . . . ,K. The
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new system of inequalities obtained by eliminating x1 consists of the L inequalities
(2.18) and the H × K inequalities (2.19). Since the L + H × K inequalities are
implied by (2.16), (2.17), and (2.18), it follows that (x1, x2, . . . xn) = (xo1, x

o
2, . . . x

o
n)

is a feasible solution to the “reduced” system (2.18) and (2.19). When we say that
the system (2.18) and (2.19) is “reduced,” we mean it has at least one less variable
than the original system.

� Exercise 2.13 When is it legal to take a linear combination of linear inequalities.
Illustrate by way of examples, cases when it is legal and when it is illegal to do so.

LEMMA 2.2 (Equivalence After Elimination) If a feasible solution exists
for the original system (2.16), (2.17), and (2.18), then one exists for the reduced
system (2.18) and (2.19) and vice versa.

Proof. We have just shown that if (2.16), (2.17), and (2.18) hold for some choice
of (x1, x2, . . . , xn ) = (xo1, x

o
2, . . . , x

o
n ), then (2.18) and (2.19) hold for the same

values of (x1, x2, . . . , xn ) = (xo1, x
o
2, . . . , x

o
n ). Conversely, given a feasible solu-

tion (x2, x3, . . . , xn) = (x1
2, x

1
3, . . . , x

1
n) to the eliminated system (2.18) and (2.19),

we wish to show that we can find an x1 = x1
1 together with (x2, x3, . . . xn) =

(x1
2, x

1
3, . . . x

1
n) such that (2.16), (2.17), and (2.18) hold. This is easily done by

choosing any x1 = x1
1 satisfying (2.20):

min
1≤k≤K

( n∑
j=2

Ekjx
1
j − ek

)
≥ x1

1 ≥ max
1≤h≤H

(
−

n∑
j=2

Dhjx
1
j + dh

)
. (2.20)

That such an x1 = x1
1 exists follows because we can rewrite (2.19) as

n∑
j=2

Ekjx
1
j − ek ≥ −

n∑
j=2

Dhjx
1
j + dh (2.21)

for every pair (h, k) and hence for the h that maximizes the left hand side and
the k that minimizes the right-hand side of (2.21); this implies that (2.20) holds.
Therefore, for every h and k combination

n∑
j=2

Ekjx
1
j − ek ≥ x1

1 ≥ −
n∑

j=2

Dhjx
1
j + dh

and
n∑

j=2

Fljx
1
j ≥ fl, l = 1, . . . , L.

� Exercise 2.14 Prove that Lemma 2.2 implies that if the original system is infeasible
then so is the reduced system and vice versa.
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Thus, the final reduced system of inequalities consists of (2.21), and the set of
inequalities (2.18), which we set aside, i.e.,

n∑
j=2

Ekjxj − ek ≥ −
n∑

j=2

Dhjxj + dh, h = 1, . . . , H, k = 1, . . . ,K (2.22)

and
n∑

j=2

Fljxj ≥ fl, l = 1, . . . , L. (2.23)

If in fact H = 0 or K = 0, then (2.22) is vacuous and the reduced system consists
of (2.23) only. If H = 0 and L = 0 (or K = 0 and L = 0), the reduced system is
vacuous and we terminate the elimination procedure.

The process of moving from (2.15) to (2.22) and (2.23) is called eliminating x1 by
the Fourier-Motzkin Elimination (FME) process. Of course, there is nothing forcing
us to stop here. If we wish, we could proceed to eliminate x2 from the reduced
system provided the reduced system is not vacuous. We keep on eliminating, in
turn, x1, x2, . . . until at some step k ≤ n, the reduced system is vacuous or all the
variables are eliminated.

However, we pause to observe that there are two cases that could cause our
elimination of x1 (or, at a future step, xk) to be impossible to execute.

Case 1. All coefficients of x1 in (2.15) are equal to 0. If x1 is the last variable
to be eliminated (no more xj remain to be eliminated) then terminate. In
the latter situation terminate infeasible if bi > 0 for some i, otherwise x1
may be chosen arbitrarily. If x1 is not the last variable to be eliminated,
then the “elimination” results in just system (2.18) which we had set
aside. In the latter situation, we declare x1 “eliminated” and proceed to
solve (2.18). If feasible then any solution x2, x3, . . . , xn to (2.18) with x1
arbitrary is a solution to (2.15).

Case 2. The original system (2.15) consists of just (2.16) or (2.17) (but
not both) and (2.18). If there are no relations (2.18), then terminate.
In the latter situation choose x2, x3, . . . , xn (if any remain) arbitrarily; x1
can then be chosen sufficiently positive to satisfy just (2.16) or sufficiently
negative to satisfy (2.17). If relations (2.18) are not vacuous then we
declare x1 “eliminated” and (2.18) as the reduced system. Any solution
to (2.18) if it exists can be substituted into (2.16) or (2.17), and a value
of x1 can be found sufficiently positive or negative as above.

INFEASIBILITY MULTIPLIERS

Definition: An inequality is said to be a nonnegative linear combination of in-
equalities (2.15) if it is formed by multiplying each inequality i by some yi ≥ 0
for i = 1, . . . ,m and summing.
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� Exercise 2.15 Prove that each inequality of (2.22) and (2.23) is formed as either a
positive linear combination of inequalities of the original system or is one of the original
inequalities.

It is evident from Exercise 2.15 that each inequality generated by the elimination
of x1 can also be formed by nonnegative linear combinations (not all zero) of the
first system of inequalities. The third system of inequalities that are each formed
by the elimination of x2 can also be formed in the same way by nonnegative linear
combinations (not all zero) of the second system of inequalities, which in turn were
formed by nonnegative linear combinations of the first system. Hence the third
system of inequalities can be formed by nonnegative linear combinations of the
first system of inequalities. Eventually the FME process terminates with either a
vacuous set of inequalities and a feasible solution or a final system of inequalities
consisting of some set of P inequalities of the form

0x1 + 0x2 + · · · + 0xn ≥ Γi, i = 1, . . . , P,

where Γi is some constant. The original system is feasible depending on whether or
not all Γi ≤ 0. Each such inequality could have been generated directly by a non-
negative linear combination of the relations of the original system using multipliers
y1 ≥ 0, y2 ≥ 0, . . . ym ≥ 0 not all zero. Applying such a set of nonnegative weights
( y1, y2, . . . , ym ) to the system (2.15) and adding we have

m∑
k=1

yk

( n∑
j=1

akjxj

)
≥

m∑
k=1

ykbk

which we can rewrite as
n∑

j=1

( m∑
k=1

ykakj

)
xj ≥

m∑
k=1

ykbk. (2.24)

Since all variables have been eliminated, it must be that for each such set of
weights ( y1, y2, . . . , ym ),

m∑
k=1

ykakj = 0, for j = 1, . . . , n.

Thus, we note the following two cases:

Case Feasible: If
∑m

k=1 ykbk ≤ 0 for each such set of m nonnegative weights
( y1, y2, . . . , ym ), then (2.24), and hence (2.15), is feasible.

Case Infeasible: If
∑m

k=1 ykbk > 0 for one or more such set of m nonnegative
weights ( y1, y2, . . . , ym ), then (2.24), and hence (2.15), is in-
feasible.
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2.4 INFEASIBILITY THEOREM

A system of inequalities can be written with the inequalities all pointing in the same
direction by multiplying those that do not through by −1. Assuming this is done,
a system of inequalities is clearly infeasible if we can exhibit a nonnegative linear
combination of the inequalities that is an infeasible inequality, that is, an inequality
of the form

0x1 + 0x2 + · · ·+ 0xn ≥ d with d > 0. (2.25)

The Infeasibility Theorem (Theorem 2.3 below) states that if a system of linear
inequalities is infeasible, then we can always find a nonnegative linear combination
that results in (2.25).

� Exercise 2.16 Prove that (2.25) is the only type of single linear inequality that is
infeasible.

� Exercise 2.17 Typically, linear programs are stated in the form of equations in nonneg-
ative variables. Prove that the only single infeasible equation in nonnegative variables xj
is of the form

α1x1 + α2x2 + · · ·+ αnxn = d, (2.26)

with αj ≥ 0 for all j and d < 0 (or αj ≤ 0 for all j and d > 0).

� Exercise 2.18 (Converting Equalities to Inequalities) Show how to convert the
following system in m linear equations in n nonnegative variables

n∑
j=1

aijxj = bi, for i = 1 to m,

xj ≥ 0, for j = 1 to n,

to a system of linear inequalities in nonnegative variables by two different methods, one
that replaces the equations by 2m inequalities and one that replaces them by only m+ 1
inequalities.

� Exercise 2.19 Most software to solve linear programs internally converts a system of
inequalities to a system of equalities in bounded variables, where some bounds may be
+∞ or −∞. Show how this can be done.

THEOREM 2.3 (Infeasibility Theorem) The system of linear inequalities

n∑
j=1

aijxj ≥ bi, for i = 1, . . . ,m (2.27)

is infeasible if and only if there exists a nonnegative linear combination of the in-
equalities that is an infeasible inequality.
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Comment: In matrix notation, the system Ax ≥ b is infeasible if and only if there
exists a vector y ≥ 0 such that yTAx ≥ yTb is an infeasible inequality, namely one
where yTA = 0 and yTb > 0.

Proof. The theorem states that the system (2.27) is infeasible if and if only there
exist yk ≥ 0, for k = 1, . . . ,m, such that

m∑
k=1

ykakj = 0, j = 1, . . . , n, and
m∑
k=1

ykbk > 0. (2.28)

If (2.27) is infeasible then the yk obtained using the Fourier-Motzkin Elimination
(FME) for Case Infeasible in Section 2.3.3 can be used to obtain an infeasible
inequality and hence ( y1, y2, . . . , ym ) satisfying (2.28). Thus (2.27) is infeasible
implies that there exists yk ≥ 0, k = 1, . . . ,m such that (2.28) holds. On the other
hand, if (2.28) holds, then it is obvious that system (2.27) is infeasible because mul-
tiplying (2.27) by y1 ≥ 0, y2 ≥ 0, . . . , ym ≥ 0 and summing results in an infeasible
inequality of the form (2.25).

� Exercise 2.20 Consider the system of linear equations

x1 + x2 = 1
− x2 + x3 = 1

x1 + x3 = 1.

Note that the sum of the first two equations results in x1 + x3 = 2, which contradicts the
third equation. Show that eliminating x1 and x2 in turn results in an equation, called an
infeasible equation,

0x1 + 0x2 + 0x3 = d

where d �= 0. What multipliers applied to the original system of equations results in the
infeasible equation above? Show how the process of elimination can be used to find these
multipliers.

COROLLARY 2.4 (Infeasible Equation) If a system of linear equations in
nonnegative variables is infeasible, there exists a linear combination of the equations
that is an infeasible equation in nonnegative variables.

� Exercise 2.21 Prove Corollary 2.4 by converting the system of equations into a system
of inequalities and applying Theorem 2.3.

2.5 NOTES & SELECTED BIBLIOGRAPHY
Fourier [1826] first proposed the Fourier-Motzkin Elimination (FME) Method. The paper
in its original form is accessible in Fourier [1890]; an English translation was done by Kohler
[1973]. Fourier’s method was later reintroduced by T. Motzkin [1936] and is sometimes
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referred to as the Motzkin Elimination Method. A good discussion of the method can be
found in Kuhn [1956].

As originally mentioned by Fourier, the efficiency of the FME process can be greatly
improved by detecting and removing redundant inequalities, where an inequality is said
to be redundant if its removal does not affect the feasible set of solutions. In general the
detection of redundant inequalities is very difficult. (For a discussion on how to identify
redundant constraints so as to be able to obtain the set of feasible solutions with the least
number of constraints see, for example, Adler [1976], Luenberger [1973], and Shefi [1969].)
However, it is possible to detect redundancies in a computationally efficient manner when
they occur as a result of combining inequalities during the iterations of the FME process,
see Duffin [1974]. Unfortunately, even this is not enough to make the method competitive
with the Simplex Method for solving linear programs.

2.6 PROBLEMS

2.1 The Soft Suds Brewing and Bottling Company, because of faulty planning, was
not prepared for the Operations Research Department. There was to be a
big party at Stanford University, and Gus Guzzler, the manager, knew that
Soft Suds would be called upon to supply the refreshments. However, the raw
materials required had not been ordered and could not be obtained before the
party. Gus took an inventory of the available supplies and found the following:

Malt 75 units,
Hops 60 units,
Yeast 50 units.

Soft Suds produces two types of pick-me-ups: light beer and dark beer, with
the following specifications:

Requirement per gallon
Malt Hops Yeast

Light beer 2 3 2
Dark beer 3 1 5/3

The light beer brings $2.00/gallon profit, the dark beer $1.00/gallon profit.
Knowing the O.R. Department will buy whatever is made available, formulate
the linear program Gus must solve to maximize his profits, and solve it graphi-
cally. Be sure to define all of your variables.

2.2 For the linear program

Maximize x1 + x2 = z
subject to −x1 + x2 ≤ 2

x1 + 2x2 ≥ 2

plot the feasible region graphically and show that the linear program is un-
bounded.
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2.3 Consider the following linear program:

Maximize 3x1 + x2

subject to −x1 + x2 ≤ −1
−3x1 − x2 ≤ −1
4x1 + 2x2 ≤ 1

2x2 ≤ −1
x1 ≥ 0, x2 ≥ 0.

(a) Plot it graphically and identify all the corner point solutions.
(b) Solve it graphically.
(c) Solve it with the DTZG Simplex Primal software option.
(d) Solve it by hand by the FME algorithm.
(e) Solve it by the Fourier-Motzkin Elimination software option.

2.4 Consider the following two-equation linear program:

Minimize 2x1 + 3x2 + x3 + 5x4 + x5 = z
subject to 4x1 + 2x2 + 3x3 + x4 + 4x5 ≤ 50

3x1 + 7x2 + x3 + 3x4 + 2x5 ≤ 100
xj ≥ 0, j = 1, . . . , 5.

(a) Solve it using the DTZG Simplex Primal software option.
(b) Solve it graphically.
(c) Use the graphical representation to write down its dual linear program. Use

it to verify optimality.

2.5 Consider the following two-equation linear program:

Minimize −5x1 + 3x2 − 2x2 + x4 − 2x5 = z
subject to x1 + x2 + 3x3 + 2x4 + x5 ≤ 1000

5x1 + 3x2 + x3 + 5x4 + 2x5 ≤ 2000
xj ≥ 0, j = 1, . . . , 5.

(a) Solve it using the DTZG Simplex Primal software option.
(b) Solve it graphically.
(c) Use the graphical representation to write down its dual linear program. Use

it to verify optimality.

2.6 Consider the data for Example 1.4 on page 3. Suppose now that the manufac-
turer wishes to produce an alloy (blend) that is 35 percent lead, 30 percent zinc,
and 35 percent tin.

(a) Formulate this problem and solve it graphically.
(b) Solve it using the DTZG Simplex Primal software option.

2.7 Consider the following two-variable linear program:

Minimize x1 + x2 = z
subject to x1 + 2x2 ≥ 2

3x1 + 2x2 ≤ 1
x1 + x2 ≥ 1

x1 ≥ 0, x2 ≥ 0.
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(a) Plot the region graphically and show that it is empty.
(b) Solve it with the DTZG Simplex Primal software option.
(c) Solve it by hand using the FME process.
(d) Solve it using the Fourier-Motzkin Elimination software option.

2.8 Consider the following two-variable linear program:

Minimize 9x1 + 8x2 = z
subject to x1 − 2x2 ≤ 3

3x1 − 4x2 ≥ 5
6x1 − 7x2 = 8
x1 ≥ 0, x2 ≥ 0.

(a) Plot it graphically and identify all the corner point solutions.
(b) Solve it graphically.
(c) Solve it with the DTZG Simplex Primal software option.
(d) Solve it by hand by the FME algorithm.
(e) Solve it by the Fourier-Motzkin Elimination software option.

2.9 Consider the following two-variable linear program:

Minimize −x1 + 4x2 = z
subject to −3x1 + x2 ≤ 6

x1 + 2x2 ≤ 4
x1 ≥ −1

x2 ≥ −3.

(a) Plot the region graphically and solve the problem.
(b) Reformulate the problem so that the lower bounds on all the variables are 0.
(c) Plot the reformulated problem graphically and re-solve the problem. Derive

the solution to the original problem from this solution.

2.10 Consider the following two-variable system of inequalities.

x1 + 2x2 ≥ 2
3x1 + 2x2 ≤ 1
x1 ≥ 0

x2 ≥ 0

(a) Solve the problem by the FME process.
(b) Plot graphically and show that it is infeasible by showing that the set of

feasible points is empty.

2.11 Graphically show that the two-variable linear program

Minimize −x1 − 2x2 = z
subject to −x1 + x2 ≤ −2

4x1 + x2 ≤ 4
x1 ≥ 0, x2 ≥ 0

has no feasible solution.
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2.12 Use the DTZG Simplex Primal software option to solve

Maximize 3x1 + 2x2 + x3 = z
subject to 5x1 − 2x2 + x3 ≤ 6

2x1 − x2 − x3 ≤ 4
9x1 − 4x2 − x3 ≥ 15
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

2.13 Consider the following linear program

Minimize 2x1 − x2 + 3x3 + 7x4 − 5x5 = z
subject to x1 + 2x2 + x3 + x4 + 6x5 ≤ 10

2x1 + 3x2 + 4x3 + x4 + 2x5 ≥ 4
3x1 + 2x2 + 3x4 + x5 ≤ 8
x1 ≥ 0, x2 ≥ 0.

(a) Solve it with the DTZG Simplex Primal software option.
(b) Solve it by hand by the FME algorithm.
(c) Solve it by the Fourier-Motzkin Elimination software option.

2.14 Consider the linear program

Maximize x1 + 3x2 + 2x3 = z
subject to x1 + x2 + x3 = 1

7x1 + 2x2 + 3x3 ≤ 20
x1 + 5x2 + 4x3 ≤ 30
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(a) Solve it by the DTZG Simplex Primal software option.
(b) Solve it by hand by the FME algorithm.
(c) Solve it by the Fourier-Motzkin Elimination software option.

2.15 Degeneracy. Look at the feasible region defined by

x1 + 2x2 ≤ 8
x1 + x2 ≤ 6
x1, x2 ≥ 0.

(2.29)

(a) Draw the feasible region in (x1, x2)-space and label the constraints.
(b) Notice that including nonnegativity, we have four constraints. What is the

solution corresponding to each extreme point of the feasible region?
(c) Suppose we add the constraint

x2 ≤ 4. (2.30)

In your diagram, the extreme point (4, 0) of the feasible region is now the
intersection of three constraints, and any two of them will uniquely specify
that extreme point. Show that there are three ways to do this.

(d) When there is more than one way to specify an extreme point, the ex-
treme point is said to be degenerate. In part (c) we created an example of
degeneracy by using a redundant system of inequalities. The redundancy
can be seen in the diagram in that we could remove one of the constraints
without changing the feasible region. Give an example of degeneracy with
a nonredundant system of inequalities. Draw a picture to demonstrate this.
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2.16 Sensitivity to Changes in One Objective Coefficient. Consider

Minimize 2x1 + c2x2 = z
subject to 3x1 + 2x2 ≤ 4

2x1 − 3x2 ≥ 6
x1 ≥ 0, x2 ≥ 0.

(a) Solve the linear program graphically for c2 = 0.
(b) By adjusting c2, determine graphically the range of c2 for which the solution

stays optimal.

2.17 Sensitivity to Changes in One Right-Hand Side Value. Consider

Minimize x1 + 3x2 = z
subject to 3x1 − 2x2 ≤ b1

x1 + 3x2 = 2
x1 ≥ 0, x2 ≥ 0.

(a) Solve the linear program graphically for b1 = 2.
(b) By adjusting b1, determine graphically the range of b1 for which the solution

stays optimal.
(c) What is the range of the objective value for the range of b1 in Part(b)?
(d) Deduce the relationship between the change in b1 to the change in objective

value?
(e) By adjusting b1, determine graphically the range of b1 for which the solution

stays feasible.

2.18 Sensitivity to Changes in a Matrix Coefficient. Consider

Minimize 3x1 + 2x2 = z
subject to x1 + x2 ≥ 1

3x1 − a22x2 ≤ 6
x1 − 2x2 ≤ 4
x1 ≥ 0, x2 ≥ 0.

(a) Solve the linear program graphically for a22 = 2.
(b) By adjusting a22, determine graphically the range of a22 for which the

solution stays optimal.
(c) What is the range of the objective value for the range of a22 in Part 2?
(d) By adjusting a22, determine graphically the range of a22 for which the

solution stays feasible.

2.19 Shadow Price.
Maximize 2x1 + x2 = z
subject to x1 + 2x2 ≤ 14

3x1 − x2 ≥ 2
x1 + 4x2 ≤ 18
x1 ≥ 0, x2 ≥ 0.
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(a) Solve the problem graphically.
(b) The shadow price of an item i is the change in objective value as a result of

unit change in bi. Find the shadow prices on each constraint graphically.
(c) How much would resource 1 have to increase to get an objective value

increase of 8?
(d) How much would resource 1 have to increase to get an objective value

increase of 12? Is this increase possible?

2.20 Consider the linear program:

Maximize 2x1 + x2 = z
subject to 2x1 + x2 ≤ 10

3x1 − x2 ≥ 2
−x1 + x2 ≤ 4
x1 ≤ 5

x1 ≥ 0, x2 ≥ 0.

(a) Plot the feasible region graphically.
(b) Show graphically that multiple optimal solutions exist.
(c) Write down the set of feasible optimal solutions (not necessarily corner

points).

2.21 Consider the linear program:

Minimize 2x1 + 5x2 = z
subject to x1 + x2 ≤ 1

2x1 + 2x2 ≤ 5
x1 ≤ 3

x2 ≤ 5
x1 ≥ 0, x2 ≥ 0.

(a) Plot the feasible region graphically.
(b) Identify the redundant inequalities.
(c) Solve the problem graphically.

2.22 Consider the linear program:

x1 + x2 ≥ 1
x1 − x2 ≤ 2
x1 + x2 + x3 ≤ 5.

(a) Plot graphically.
(b) Solve by hand, using the FME process.
(c) Show how to generate the class of all solutions for the problem.

2.23 Show by a graphical representation whether there is no solution, one solution,
or multiple solutions to the following systems of inequalities:
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(a)

x1 + x2 ≥ 1
x1 ≥ 0

x2 ≥ 0.

(b)

x1 + x2 ≥ 1
x1 + 2x2 ≤ 4

−x1 + 4x2 ≥ 0
x1 ≥ 0

x2 ≥ 0.

(c)

x1 + x2 ≥ 1
x1 + 2x2 ≤ 4

−x1 + 4x2 ≥ 0
−x1 + x2 ≥ 1
x1 ≥ 0

x2 ≥ 0.

2.24 Consider the following set of inequalities:

−x1 + 2x2 + x3 ≤ 1
x1 − x2 − x3 ≤ 0
x1 − x2 − x3 ≤ −1
− x2 ≤ 0.

(a) Apply the FME process by hand. Stop the algorithm as soon as you en-
counter the inequality 0 ≤ 0. Note that this is possible even if more variables
remain to be eliminated.

(b) Find the nonnegative multipliers π1 ≥ 0, π2 ≥ 0, π3 ≥ 0, and π4 ≥ 0 of the
original system that gives the trivial inequality 0 ≤ 0.

(c) Show that for all i = 1, . . . , 4 for which πi > 0, we can replace the ith
inequality by an equality without changing the set of feasible solutions.

(d) Prove a generalization of the above, i.e., if a nonnegative linear combina-
tion of a given system of linear inequalities is the trivial inequality 0 ≤ 0,
then that system is equivalent to the system in which all the inequalities
corresponding to the positive multipliers are replaced by equalities.

2.25 Consider the following linear program:

Maximize x + y
subject to 8x + 3y ≤ 24

5x + 7y ≤ 35
−x + y ≤ 4

y ≥ −2.

(2.31)
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(a) Solve (2.31) using the Fourier-Motzkin Elimination process. Find the op-
timal values of x and y as well as the optimal objective value. Hint: it is
convenient to introduce another variable z to keep track of the objective
value. That is, one possibility is z − x− y ≤ 0.

(b) If we change the right-hand side of the third inequality in (2.31) from 4
to −7 then the system becomes infeasible. Use the Fourier-Motzkin Elim-
ination process to find the infeasibility multipliers; that is, the multipliers
y1, y2, . . . , ym that resulted in the final inequality being infeasible. Note:
It is not necessary to start from scratch. The elimination you have already
done should help.

2.26 The infeasibility theorem for inequality systems is called a theorem of the alter-
native when stated as

Theorem of the Alternative. Either there exists an x such that Ax ≥ b
or there exists a y ≥ 0 such that ATy = 0 and yTb > 0 but not both.
Prove the following theorems of the alternative by using the above theorem

(a) Either there exists an x ≥ 0 such that Ax ≤ b or there exists a y ≥ 0 such
that ATy ≥ 0 and yTb < 0 but not both.

(b) Either there exists an x > 0 (i.e., xi > 0 for all i) such that Ax = 0 or
there exists a π such that 0 �= ATπ ≥ 0 but not both.

2.27 Use calculus to solve

Minimize x1 + 2x2 + 3x3 = z
subject to x1 + x2 + x3 = 1
and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

as follows. The nonnegativity of x1, x2, x3 may be circumvented by setting
x1 = u2

1, x2 = u2
2, x3 = u2

3:

Minimize u2
1 + 2u2

2 + 3u2
3 = z

subject to u2
1 + u2

2 + u2
3 = 1.

Form the Lagrangian

L(u1, u2, u3) = u2
1 + 2u2

2 + 3u2
3 − λ(u2

1 + u2
2 + u2

3 − 1).

Setting ∂L/∂u1 = 0, ∂L/∂u2 = 0, ∂L/∂u3 = 0 results in

u1(1− λ) = 0, u2(2− λ) = 0, u3(3− λ) = 0.

(a) Try to complete the solution by analyzing which member of each pair is
zero.

(b) Consider the general linear program

Minimize cTx
subject to Ax = b, A : m× n,

x ≥ 0.

Substitute for each xj , u2
j = xj ; form the Lagrangian; and set ∂L/∂uj = 0

for all j. Try to discover why the classical approach is not a practical one.
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C H A P T E R 3

THE SIMPLEX METHOD

In this chapter we develop the Dantzig Simplex Method for solving linear program-
ming problems. For the origins of this method see the Foreword. The Simplex
Method solves linear programs by moving along the boundaries from one vertex
(extreme point) to the next. Later on, in Chapter 4, we will discuss techniques for
solving linear programs that have become very popular since the 1980s that move
instead through the interior of the feasible set of solutions.

The Simplex Method is a very efficient procedure for solving large practical
linear programs on the computer. Classes of examples, however, have been con-
structed where the number of pivot steps required by the method can grow by an
exponential function of the dimensions of the problem. Never to our knowledge has
anything like this worst-case performance been observed in real world problems.
Nevertheless, such unrealistic examples have stimulated the development of a the-
ory of alternative methods for each of which the number of steps are guaranteed
not to grow exponentially with problem size whatever the structure of the matrix
of coefficients.

Given a fixed problem, say one with m = 1000 rows with a highly specialized
structure the goal is find the best algorithm for solving it. This theory so far has
provided us with little or no guide as to which algorithm is likely to be best.

Most of the discussion in this chapter and other chapters will refer to a linear
program in standard form, that is,

c1x1 + c2x2 + · · · + cnxn = z (Min)
a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm,
and x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0.

(3.1)

63
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It is assumed that the reader is familiar with simple matrix notation and operations.
See Appendix A for definitions of these basic concepts. In matrix notation (3.1)
can be rewritten as

Minimize cTx
subject to Ax = b, A : m× n,

x ≥ 0,
(3.2)

where A is a rectangular matrix of dimension m× n, b is a column vector of dimen-
sion m, c is a column vector of dimension n, x is a column vector of dimension n,
and the superscript T stands for transpose.

We start by illustrating the method graphically in Section 3.1. In Section 3.2 the
Simplex Algorithm will be described; its use, as part of the Simplex Method, will
be developed in Section 3.3. Next we will examine linear programs in standard form
with bounds; these are systems whose nonnegativity constraints have been replaced
by upper and lower bounds on each variable xj as shown below:

Minimize cTx
subject to Ax = b, A : m× n,

l ≤ x ≤ u.
(3.3)

3.1 GRAPHICAL ILLUSTRATION

To visualize graphically how the Simplex Algorithm solves a linear program in
standard form, consider the example in Figure 3-1, which is the two-variable problem
discussed earlier in Section 2.1. The points labeled O, A, B, C, D are the vertices
(or extreme points), where C is the optimal vertex. The segments OA, AB, BC,
CD, DO are the edges (or the boundaries) of the feasible region. Starting at O,
say, the Simplex Algorithm either moves from O to A to B to C, or moves from O
to D to C, depending on the criteria used to decide whether to move from O to A
or O to D.

3.2 THE SIMPLEX ALGORITHM

The Simplex Algorithm described in this section assumes that an initial feasible
solution (in fact that an initial basic feasible solution) is given to us. If an initial
feasible solution is not given, finding a feasible solution to a linear program can be
done by solving a different linear program, one with the property that an obvious
starting feasible solution is available.

3.2.1 CANONICAL FORM AND BASIC VARIABLES

The Simplex Method finds an optimal solution (or determines it does not exist) by
a sequence of pivot steps on the original system of equations (3.1). For example,
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Figure 3-1: Graphical Solution of a Two-Variable LP

consider the problem of minimizing z for xj ≥ 0 where

2x1 + 2x2 + 2x3 + x4 + 4x5 = z
4x1 + 2x2 + 13x3 + 3x4 + x5 = 17
x1 + x2 + 5x3 + x4 + x5 = 7.

(3.4)

A pivot consists in choosing some nonzero element (called the pivot) in the array
such as 3x4 and using it to eliminate x4 from the remaining equations by first
dividing its equation by 3, obtaining

2x1/3 + 4x2/3 − 7x3/3 + 11x5/3 = z − 17/3
4x1/3 + 2x2/3 + 13x3/3 + x4 + x5/3 = 17/3
−1x1/3 + 1x2/3 + 2x3/3 + 2x5/3 = 4/3.

(3.5)

If we pivot again by choosing say x2/3 as the pivot we obtain

2x1 − 5x3 + 1x5 = z − 11
2x1 3x3 + 1x4 − x5 = 3
−x1 + 1x2 + 2x3 + 2x5 = 4.

(3.6)

We say that the original system (3.4) is equivalent to (3.6) because it has the same
solution set. Rewriting (3.6) we obtain

(−z) + 2x1 − 5x3 + 1x5 = 11
2x1 3x3 + 1x4 − x5 = 3

− x1 + 1x2 + 2x3 + 2x5 = 4.
(3.7)
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We say that (3.7) is in canonical form with respect to variables (−z), x4, x2, which
are called the dependent variables, or basic variables, because these values have
been expressed in terms of the independent, or nonbasic variables. In practice, z is
referred to as the objective variable and the other dependents as basic.

The basic feasible solution is found by setting the values of the nonbasics to zero.
In (3.7) it can be read off by inspection:

z = 11, xB = (x4, x2) = (3, 4), xN = (x1, x3, x5) = (0, 0, 0). (3.8)

Note that in this example the basic solution turned out to be nonnegative. This is
a necessary requirement for applying the Simplex Algorithm.

Note that choosing (−z) and any arbitrary set of variables as basic variables to
create the canonical form will not necessarily yield a basic feasible solution to (3.4).
For example, had the variables x1 and x4 been chosen for pivoting, the basic solution
would have been

z = 3, x1 = −4, x4 = 11, x2 = x3 = x5 = 0,

which is not feasible because x1 is negative. We now formalize the concepts discussed
so far.

Pivoting forms the basis for the operations to reduce a system of equations to a
canonical form, and as we shall see later, to maintain it in such form. The detailed
steps for pivoting on a term arsxs, called the pivot term, where ars �= 0, are as
follows:

1. Replace the rth equation by the rth equation multiplied by (1/ars).

2. For each i = 1, . . . ,m except i = r, replace the ith equation by the sum of the
ith equation and the replaced rth equation multiplied by (−ais).

Since pivoting is a process that inserts and deletes redundant equations, it does not
alter the solution set, and the resulting system is equivalent to the original system.

Definition (Canonical Form): A system of m equations in n variables xj
is said to be in canonical form with respect to an ordered set of variables
(xj1 , xj2 , . . . , xjm

) if and only if xji
has a unit coefficient in equation i and a

zero coefficient in all other equations.

System (3.9) below, with xB = (x1, x2, . . . , xm )
T and xN = (xm+1, . . . , xn)T is

canonical because for each i, the variable xi has a unit coefficient in the ith equation
and zero elsewhere:

IxB + ĀxN = b̄. (3.9)

Definition (Basic Solution): The special solution obtained by setting the
independent variables equal to zero and solving for the dependent variables is
called a basic solution.
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Thus, if (3.9) is the canonical system of (3.1) with basic variables x1, x2, . . . , xm,
the corresponding basic solution is xB = b̄ and xN = 0, i.e.,

x1 = b̄1, x2 = b̄2, . . . , xm = b̄m; xm+1 = xm+2 = · · · = xn = 0. (3.10)

Definition (Degeneracy): A basic solution is degenerate if the value of one
or more of the dependent (basic) variables is zero. In particular, the basic
solution (3.10) is degenerate if b̄i = 0 for at least one i.

A set of columns (of a system of equations in detached coefficient form) is said to
be a basis if they are linearly independent and all other columns can be generated
from them by linear combinations. To simplify the discussion we shall assume that
the original system of equations (3.1) is of full rank.

Definition (Basis): In accordance with the special usage in linear program-
ming, the term basis refers to the columns of the original system (in detached
coefficient form), assumed to be full rank, corresponding to the ordered set of
basic variables where the order of a basic variable is i if its coefficient is +1 in
row i of the canonical equivalent.

Definition (Basic Columns/Activities): The columns of the basis are called
basic columns (or basic activities).

The Simplex Algorithm is always initiated with a system of equations in canon-
ical form with respect to some ordered set of basic variables. For example, let
us suppose we have the canonical system (3.11) below with basic variables (−z),
x1, x2, . . . , xm. The (m + 1)-equation (n + 1)-variable canonical system (3.11) is
equivalent to the standard form (3.1).

Our problem is to find values of x1 ≥ 0, x2 ≥ 0, . . ., xn ≥ 0, and min z satisfying

−z + c̄m+1xm+1+ · · ·+ c̄jxj+ · · ·+ c̄nxn=−z̄0
x1 + ā1,m+1xm+1+ · · ·+ ā1jxj+ · · ·+ ā1nxn= b̄1

x2 + ā2,m+1xm+1+ · · ·+ ā2jxj+ · · ·+ ā2nxn= b̄2
. . .

...
...

...
...

xm+ ām,m+1xm+1+ · · ·+ āmjxj+ · · ·+ āmnxn= b̄m,

(3.11)

where āij , c̄j , b̄i, and z̄0 are constants. In matrix notation, the same system can be
written compactly as:

(
1 0 c̄
0 I Ā

)
−zxB

xN


 =

(
−z̄0
b̄

)
, (3.12)

where xB = (x1, x2, . . . , xm )
T and xN = (xm+1, xm+2, . . . , xn)T. In this canonical

form, the basic solution is

z = z̄0, xB = b̄, xN = 0. (3.13)
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In the Simplex Algorithm it is required that this initial basic solution be feasible,
by which we mean that

x̄ = b̄ ≥ 0. (3.14)

If such a solution is not readily available, we describe a Phase I procedure in Sec-
tion 3.3 for finding such a feasible solution if it exists.

Definition (Feasible Canonical Form): If (3.14) holds, the linear program is
said to be in feasible canonical form.

� Exercise 3.1 Why is (3.14) sufficient for the basic solution (3.13) to be feasible for
(3.11).

3.2.2 IMPROVING A NONOPTIMAL BASIC FEASIBLE
SOLUTION

Given the canonical form, it is easy to read off the associated basic solution. It is
also easy to determine, by inspecting b̄, whether or not the basic solution (3.13) is
feasible; and if it is feasible, it is easy (provided the basic solution is nondegenerate)
to determine by inspecting the “modified” objective equation in (3.11) whether or
not (3.13) is optimal.

Definition (Reduced Costs or Relative Cost Factors): The coefficients c̄j in
the cost or objective form of the canonical system (3.11) are called relative
cost factors—“relative” because their values depend on the choice of the basic
set of variables. These relative cost factors are also called the reduced costs
associated with a basic set of variables.

Continuing with our example from Section 3.2, we redisplay (3.7) with 3x3
boldfaced.

(−z) + 2x1 − 5x3 + x5 = −11
+ 2x1 + 3x3 + x4 − x5 = 3
− x1 + x2 + 2x3 + 2x5 = 4.

(3.15)

The boldfaced term will be used later to improve the solution. The basic feasible
solution to (3.15) can be read off by inspection:

z = 11, xB = (x4, x2) = (3, 4), xN = (x1, x3, x5) = (0, 0, 0). (3.16)

One relative cost factor in the canonical form (3.15) is negative, namely c̄3 = −5,
which is the coefficient of x3. If x3 is increased to any positive value while holding
the values of the other nonbasic at zero and adjusting the basic variables so that
the equations remain satisfied, it is evident that the value of z would be reduced,
because the corresponding value of z is given by

z = 11− 5x3. (3.17)
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It seems reasonable, therefore, to try to make x3 as large as possible, since the larger
the value of x3, the smaller will be the value of z. However, in this case, the value of
x3 cannot be increased indefinitely while the other nonbasic variables remain zero
because the corresponding values of the basic variables satisfying (3.15) are

x4 = 3 − 3x3
x2 = 4 − 2x3.

(3.18)

We see that if x3 increases beyond 3 ÷ 3, then x4 becomes negative, and that if
x3 increases beyond 4 ÷ 2 then x2 also becomes negative. Obviously, the largest
permissible value of x3 is the smaller of these, namely x3 = 1, which yields upon
substitution in (3.17) and (3.18) a new feasible solution (in fact a basic feasible
solution) with lower cost:

z = 6, x3 = 1, x2 = 2, x1 = x4 = x5 = 0. (3.19)

This solution reduces z from 11 to 6.
Our immediate objective is to discover whether or not this new solution is min-

imal. This time a short cut is possible since the new canonical form changes with
respect to only one basic variable, i.e., by making x4 nonbasic since its value has
dropped to zero and making x3 basic because its value is now positive. A new
canonical form with new basic variables, x3 and x2, can be obtained directly by
one pivot from the old canonical form, which has x4 and x2 basic. Choose as pivot
term that x3 term in the equation that limited the maximum amount by which the
basic variables, x2 and x4, could be adjusted without becoming negative, namely
the term 3x3, which we boldfaced 3x3. Pivoting on 3x3, the new canonical form
relative to (−z), x3, and x2 becomes

(−z) + 16
3 x1 + 5

3x4 − 2
3x5 = −6

+ 2
3x1 + x3 + 1

3x4 − 1
3x5 = 1

− 7
3x1 + x2 − 2

3x4 + 8
3x5 = 2.

(3.20)

Note that the basic solution,

z = 6, xB = (x3, x2) = (1, 2), xN = (x1, x4, x5) = (0, 0, 0),

is the same as that obtained by setting x1 = 0, x5 = 0, and increasing x3 to
the point where x4 = 0. Since the solution set of the canonical forms before and
after pivoting are the same, the values of x2 and x3 are uniquely determined when
(x1, x4, x5) = 0 whether obtained via (3.18) or by inspecting the right-hand side
of (3.20).

This gives a new basic feasible solution with z = 6. Although the value of z has
been reduced, it can clearly still be improved upon since c̄5 = −2/3. Furthermore,
as before, the coefficient c̄5 = −2/3 together with the fact that the basic solution
is nondegenerate indicates that the solution still is not minimal and that a better
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solution can be obtained by keeping the other nonbasic variables, x1 = x4 = 0, and
solving for new values for x2, x3, and z in terms of x5:

−z = −6 + 2
3x5

x3 = 1 + 1
3x5

x2 = 2 − 8
3x5.

(3.21)

Therefore we increase x5 to the maximum possible while keeping x3 and x2 non-
negative. Note that the second relation in (3.21) places no bound on the increase
of x5, but that the third relation restricts x5 to a maximum of (83 ÷ 2) at which
value x2 is reduced to zero. Therefore, the pivot term, 83x5 in the third equation
of (3.20) is used for the next elimination. Since the value of x2 has dropped to zero
and x5 has become positive, the new set of basic variables is x3 and x5. Reducing
system (3.20) to canonical form relative to x3, x5, (−z) gives

(−z) + 19
4 x1 + 1

4x2 + 3
2x4 = − 11

2

+ 3
8x1 + 1

8x2 + x3 + 1
4x4 = 5

4

− 7
8x1 + 3

8x2 − 1
4x4 + x5 = 3

4

(3.22)

and the basic feasible solution

z =
11
2
, x3 =

5
4
, x5 =

3
4
, x1 = x2 = x4 = 0. (3.23)

Since all the relative cost factors for the nonbasic variables are now positive, this
solution is minimal. In fact it is the unique minimal solution because all the relative
cost factors are strictly positive; if any of the relative cost factors for the nonbasic
variables, say xj , were zero, we could exchange this xj with one of the basic variables
without changing the value of the objective function. Note that it took two pivot
iterations on our initial canonical system (3.15) to find this optimal solution.
Key Components of the Simplex Algorithm. The example illustrates the
following two key components of the Simplex Algorithm:

1. Optimality Test. If all the relative cost factors are nonnegative, the basic
feasible solution is optimal.

2. Introducing a Nonbasic Variable into the Basis. When bringing a nonbasic
variable into the basis, the amount by which we can increase it is constrained
by requiring that the adjusted values of the basic variables remain nonnega-
tive.

� Exercise 3.2 (Infeasible Problem) It is obvious that the linear program shown below
is infeasible. Show algebraically by generating an infeasible inequality that this is indeed
the case.

Minimize x1 + x2

subject to x1 + x2 = −2
x1 ≥ 0

x2 ≥ 0.
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� Exercise 3.3 (Unique Minimum) Determine by inspection the basic solution to

Minimize 7
2x1 = z + 15

subject to x1 + x2 = 3
3
2x1 + x3 = 4

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Why is it feasible, optimal, and unique?

� Exercise 3.4 (Multiple Minima) Prove that the basic solution z = −15, x1 = 8/3,
x2 = 1/3 is a feasible optimal solution to

Minimize 0x3 = z + 15
subject to x2 − 2

3x3 = 1
3

x1 + 2
3x3 = 8

3

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0,

but that it is not unique. Can you find another optimal basic feasible solution? Are there
any nonbasic feasible solutions that are also optimal?

� Exercise 3.5 (Unbounded Class of Solutions) Reduce

Minimize −x1 − x2 = z
subject to x1 − x2 = 1

x1 ≥ 0
x2 ≥ 0

to feasible canonical form and generate a class of solutions that in the limit cause the
objective function to go to −∞.

3.2.3 THE SIMPLEX ALGORITHM
Algorithm 3.1 (Simplex Algorithm) Assume that a linear program in standard
form has been converted to a feasible canonical form

(−z) + 0xB + c̄TxN = −z̄0
IxB + ĀxN = b̄,

(3.24)

which was shown earlier in Equations (3.11). Then the initial basic feasible solution is

xB = b̄ ≥ 0, xN = 0, z = z̄0.

The algorithmic steps are as follows:

1. Smallest Reduced Cost. Find
s = argmin

j

c̄j , (3.25)

where s is the index j (argument) where c̄j attains a minimum, that is,

c̄s = min
j
c̄j . (3.26)
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2. Test for Optimality. If c̄s ≥ 0, report the basic feasible solution as optimal and
stop.

3. Incoming Variable. If c̄s < 0, then s is the index of the incoming basic variable.

4. Test for unbounded z. If Ā•s ≤ 0 report the class of feasible solutions xB = b̄−A•sxs,
xj = 0, j nonbasic and j �= s, and z = z̄0 + c̄sxs such that z → −∞ as xs → ∞,
and stop. This requires reporting the basic feasible solution, the incoming column
index s, and the column Ā•s.

5. Outgoing Variable. Choose the outgoing basic variable xjr and the value of x̄s, the
incoming basic variable, as

x̄s =
b̄r
ārs

= min
{ i|āis>0 }

b̄i
āis

≥ 0, (ārs > 0). (3.27)

In the case of ties, let R be the set of rows k tied:

R =

{
k

∣∣∣∣ b̄k
āks

≤ b̄i
āis

, b̄i ≥ 0, āis > 0, āks > 0, i = 1, . . . ,m

}
. (3.28)

NONDEGENERATE CASE: If b̄k > 0 for all k ∈ R, choice of k among the ties is
arbitrary.
DEGENERATE CASE: If b̄k = 0 for more than one k ∈ R, the Random Choice
Rule can be used; that is, choose r at random (with equal probability).

6. Pivot on ārs to determine a new basic feasible solution, set jr = s and return to
Step 1. Note that the pivot step is made regardless of whether or not the value of
z decreases.

The DEGENERATE CASE where b̄k = 0 for more than one k ∈ R is often
ignored in practice, that is, r ∈ R is chosen arbitrarily or from among those i with
max āis. See Problems 3.14 and 3.15 for examples where the rule used results in
a sequence of pivots that repeats, called cycling in the Simplex Algorithm. Several
techniques besides the Random Choice Rule exist for avoiding cycling in the Simplex
Algorithm. A very simple and elegant (but not necessarily efficient) rule due to
R. Bland is as follows.

BLAND’S RULE

Whenever the regular choice for selecting the pivot in the Simplex Method would
result in a 0 change of the objective value of the basic feasible solution, then instead
of the regular choice, do the following:

1. Incoming Column. Choose the pivot column j = s with relative cost c̄j < 0
having the smallest index j.

2. Outgoing Column. Choose the outgoing basic column jr among those eligible
for dropping with smallest index ji.
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3.2.4 THEORY BEHIND THE SIMPLEX ALGORITHM

In this section we discuss the technical details behind the Simplex Algorithm as
described so far.

THEOREM 3.1 (Optimality Test) A basic feasible solution is a minimal
feasible solution with total cost z̄0 if all relative cost factors are nonnegative:

c̄j ≥ 0 for j = 1, . . . , n. (3.29)

Proof. Referring to the canonical form (3.11), it is obvious that if the coefficients
of the modified cost form are all positive or zero, the smallest value of

∑
c̄jxj is

greater or equal to zero whatever be the choice of nonnegative xj . Thus, z ≥ z̄0 for
all feasible choices of x. In the particular case of the basic feasible solution (3.13)
however, we have z = z̄0; hence min z = z̄0 and the solution is optimal.

This proof shows that for all solutions xj ≥ 0 that satisfy the canonical form
(3.11), the basic solution has the smallest value of z. This proof also shows that
for all solutions that satisfy the original system (3.1), the basic solution is optimal
because the original system (3.1) and (3.11) are equivalent, i.e., have the same
feasible solution set. It turns out, see Exercise 3.6, that the converse of Theorem 3.1
is true only if the linear program is nondegenerate.

� Exercise 3.6 Consider the two systems (3.30a) and (3.30b):

(a)
(−z) − x3 = 0

x1 + x3 = 0
x2 + x3 = 1

(b)
(−z) + x1 = 0

x1 + x3 = 0
− x1 + x2 = 1

(3.30)

Prove that the two systems (a) and (b) shown in (3.30) are equivalent. Show that the
basic solutions relative to the two different sets of basic variables are the same and both
are optimal but that we cannot tell that the basic feasible solution associated with Equa-
tion (3.30a) is optimal just by inspecting its relative cost factors, i.e., the coefficients in
the z equation of the canonical form.

THEOREM 3.2 (Multiple Minima) Given a minimal basic feasible solution
(x∗, z∗) with relative cost factors c̄j ≥ 0, then any other feasible solution (x, z), not
necessarily basic, with the property that xj = 0 for all c̄j > 0 is also a minimal
solution; moreover, any other feasible solution (x, z) with the property that xj > 0
and c̄j > 0 for some j cannot be a minimal solution.

COROLLARY 3.3 (Unique Optimum) A basic feasible solution is the unique
minimal feasible solution if c̄j > 0 for all nonbasic variables.

� Exercise 3.7 Prove Theorem 3.2 and Corollary 3.3.
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As we have seen in the numerical example, the canonical form provides an easy
criterion for testing the optimality of a basic feasible solution. Furthermore, if the
criterion is not satisfied, another solution is generated by pivoting that reduces the
value of the objective function (except for certain degenerate cases).

We now formalize this procedure of improving a nonoptimal basic feasible solu-
tion. In general, if at least one relative cost factor c̄j in the canonical form (3.11)
is negative, it is possible, assuming nondegeneracy (i.e., all b̄i > 0), to construct a
new basic feasible solution with an objective value lower than z = z̄0. The lower
objective value solution is obtained by increasing the value of one of the nonbasic
variables xs that has c̄s < 0 and adjusting the values of the basic variables ac-
cordingly. Which xs to choose when there are several c̄j < 0 has been the subject
of much study. One commonly used rule is to choose the j = s that gives the
maximum decrease of the objective z per unit increase of a nonbasic variable xj :

s = argmin
j

c̄j < 0. (3.31)

� Exercise 3.8 Show that there exists a positive constant λk such that rescaling the
units for measuring xk by λk causes the adjusted c̄k = minj c̄j for any arbitrary xk, where
c̄k < 0, to be chosen as the new incoming basic variable.

Criterion (3.31) is commonly used in practice because it typically leads to sig-
nificantly fewer iterations than just using any arbitrary j = s such that c̄j < 0. One
reason why this choice may be better than an arbitrary one is that the columns
of practical models are not likely to be arbitrarily scaled relative to one another.
There are other more complex rules, including those that are scale invariant, that
are more computationally efficient for large problems.

Using the canonical form (3.11), we construct a solution in which xs takes on
some positive value; the values of all other nonbasic variables, xj , j �= s, are frozen
temporarily at zero; and the values of z and the basic variables xB, whose indices
(denoted by the subscript B) are j1, . . . , jm, are adjusted to take care of the increase
in xs:

z = z̄0 + c̄sxs
xB = b̄ − Ā•sxs,

(3.32)

where c̄s < 0. Since c̄s is negative, it is clear that we can make z as small as possible
by making xs as large as possible. However, we have to retain feasibility, and thus
the only thing that prevents us from setting xs infinitely large is the possibility
that the value of one of the basic variables in (3.32) will become negative. It is
straightforward to see that if all the components of Ā•s are nonpositive then xs can
be made arbitrarily large without violating feasibility. This establishes

THEOREM 3.4 (Unbounded Linear Program) If in the canonical system,
for some s, all coefficients āis are nonpositive and c̄s is negative, then a class of
feasible solutions can be constructed where the set of z values has no lower bound:
namely, z = z̄0 + c̄sxs and xB = b̄ − Ā•sxs ≥ 0 where xs → ∞, xj = 0 for all
nonbasic j �= s.
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COROLLARY 3.5 (Representation of an Unbounded Solution) The in-
finite class of feasible solutions generated in Theorem 3.4 is the sum of a basic
feasible solution and a nonnegative scalar multiple of a nonnegative (nontrivial)
homogeneous solution.

� Exercise 3.9 Prove Corollary 3.5 by showing that if the linear program is unbounded,
the homogeneous solution is (xB, xs, 0) = (−Ā•s, 1, 0) ≥ 0.

On the other hand, if at least one āis is positive, it will not be possible to increase
the value of xs indefinitely, because from (3.32) whenever for this i, xs > b̄i/āis,
the value of xji

will be negative. To maintain feasibility, we can only increase xs to
the smallest ratio of b̄i/āis over all positive āis. That is,

x̄s =
b̄r
ārs

= min
{ i|āis>0 }

b̄i
āis
≥ 0, (ārs > 0), (3.33)

where it should be particularly noted that only those i and r are considered for
which āis > 0 and ārs > 0.

If more than one b̄i/āis = x̄s tie for a minimum in (3.33) and x̄s > 0, then
arbitrarily choose any such i for r. Typically, in this case, the i chosen is the one
for which āis is the smallest.

� Exercise 3.10 Show that if more than one b̄i/āis = x̄s tie for a minimum in (3.33) then
the next iteration results in a degenerate solution.

In general, if x̄s = 0 in (3.33), one or more b̄i are zero (i.e., the basic feasible
solution is degenerate); moreover, from (3.32), the value z will not decrease during
such an iteration. If there is no decrease, there is the possibility of cycling. To
avoid this possibility of cycling, one could choose r at random from those i such
that āis > 0 and b̄i = 0. For example, if ā1s > 0 and ā2s > 0 but b̄1 = b̄2 = 0, flip
a coin to decide whether r = 1 or r = 2. Under this random choice rule it can be
proved that the algorithm will almost surely (with probability one) terminate in a
finite number of iterations.

If the basic solution is nondegenerate, we have:

THEOREM 3.6 (Decrease Under Nondegeneracy) If in the canonical sys-
tem, the basic solution is nondegenerate and a relative cost factor c̄s is negative for
some s and for this s at least one coefficient āis is positive, then the nondegenerate
basic feasible solution can be modified into a new basic feasible solution with a lower
total cost z.

� Exercise 3.11 Prove Theorem 3.6.
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Specifically, we shall now show that the replacing of xjr by xs in the set of basic
variables xj1 , xj2 , . . . , xjm

results in a new set that is basic and a corresponding
basic solution that is feasible. Assuming nondegeneracy, b̄r > 0. Since ārs > 0,
we have x̄s > 0 by (3.33) and z < z̄0 by (3.32). By construction of x̄s through
Equation (3.33), xjr = 0 and the remaining variables xB ≥ 0, which implies that
the new solution is feasible. In order to show that the new solution is basic observe
that since ārs > 0, we may use the rth equation of the canonical form (3.11) and
ārs as pivot element to eliminate the variable xs from the other equations and
minimizing form. Only this one pivot operation is needed to reduce the system
to canonical form relative to the new set of variables. This fact and the way s is
selected constitutes the key to the computational efficiency of the Simplex Method.
The basic solution associated with the new set of basic variables is unique; see
Theorem B.6 of the linear equation review in Appendix B on page 352.

THEOREM 3.7 (Finite Termination under Nondegeneracy) Assuming
nondegeneracy at each iteration, the Simplex Algorithm will terminate in a finite
number of iterations.

Proof. There is only a finite number of ways to choose a set of m basic variables
out of n variables. If the algorithm were to continue indefinitely, it could only do so
by repeating the same set of basic variables as that obtained on an earlier iteration—
hence, the same canonical system and the same value of z. (See the Uniqueness
Theorem B.6 on page 352.) This repetition cannot occur since the value of z strictly
decreases with each iteration under nondegeneracy.

However, when degenerate solutions occur, we can no longer argue that the
procedure will necessarily terminate in a finite number of iterations, because under
degeneracy it is possible for b̄r = 0 in (3.33), in which case the value of z does
not decrease. The procedure will not terminate if this were to happen an infinite
number of iterations in a row; however, this can only happen if the same set of
basic variables recur. If one were to continue, with the same selection of s and r
for each iteration as before, the same basic set would recur after, say, k iterations,
and again after 2k iterations, etc., indefinitely. There is therefore the possibility
of cycling in the Simplex Algorithm. In fact, examples have been constructed by
E.M.L. Beale, A.J. Hoffman, H. Kuhn, and others to show that this can happen.
Although in practice almost no problems have been encountered that would cycle
even if no special rules were used to prevent cycling, still, such rules are useful in
reducing the number of iterations in cases of near degeneracy.

3.3 SIMPLEX METHOD

The Simplex Method is applied to a linear program in standard form (3.1). It
employs the Simplex Algorithm presented in Section 3.2.3 in two phases. In Phase I
a starting basic feasible solution is sought to initiate Phase II or to determine that
no feasible solution exists. If found, then in Phase II an optimal basic feasible
solution or a class of feasible solutions with z → −∞ is sought.
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Many problems encountered in practice often have a starting feasible canonical
form readily at hand. The Phase I procedure is, of course, not necessary if one is
available. For example, one can immediately construct a great variety of starting
basic feasible solutions for the important class called “transportation” problems
(see Chapter 8). Other models, such as economic models, often contain storage
and slack activities, permitting an obvious starting solution that uses these storage
and slack activities. Such a solution, if basic, may be far away from the optimum
solution, but it provides an easy start. Even if not basic, it can be modified into a
basic feasible solution in no more than k pivot steps, where k ≤ n−m.

However, there are many problems encountered in practice where no obvious
starting feasible canonical form is available and a Phase I approach is required.
Initially nothing may be known (mathematically speaking) about the problem. It
is up to the algorithm to determine whether or not there are

1. Redundancies: This could occur, for example, if an equation balancing money
flow had been obtained from the equations balancing material flows by mul-
tiplying price by quantity and summing. The classic transportation problem
(Example 1.5 on page 4) provides a second example; and, the blending prob-
lem (Example 1.4 on page 3) provides a third example.

2. Inconsistencies: This could be caused by input errors, the use of inconsistent
data, or by the specification of requirements that cannot be filled from the
available resources. For example, one may pose a problem in which resources
are in short supply, and the main question is whether or not a feasible solution
exists.

The Phase I procedure, which uses the Simplex Algorithm itself to provide a
starting feasible canonical form (if it exists) for Phase II, has several important
features:

1. No assumptions are made regarding the original system; it may be redundant,
inconsistent, or not solvable in nonnegative numbers.

2. No eliminations are required to obtain an initial solution in canonical form
for Phase I.

3. The end product of Phase I is a basic feasible solution (if it exists) in canonical
form ready to initiate Phase II.

3.3.1 THE METHOD

The first step of the Simplex Method is the introduction into the standard form of
additional terms in additional nonnegative variables in such a way that the resulting
augmented problem is in canonical form. Historically these have been called by
many authors artificial, or error, or logical variables. We prefer the term artificial
variables as a reminder that we need to drive them out of the initial feasible basis
of Phase I.
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The objective is replaced by a new objective w (instead of z), which is the sum
of the artificial variables. Now at this point the Simplex Algorithm is employed.
It consists of a sequence of pivot operations, referred to as Phase I, that produces
a succession of different canonical forms with the property that the sum of the
artificial variables decreases with each iteration. The objective is to drive this sum
to zero. If we succeed in doing so we have found a basic feasible solution to the
original system with which to initiate Phase II.

Example 3.1 (Illustration of the Simplex Method) We now illustrate the Simplex
Method by carrying out the steps on the following problem: Find min z, x ≥ 0, such that

2x1 + 1x2 + 2x3 + x4 + 4x5 = z
4x1 + 2x2 + 13x3 + 3x4 + x5 = 17
x1 + x2 + 5x3 + x4 + x5 = 7.

(3.34)

If any of the constant terms are negative we change the signs of the corresponding equa-
tions. We can now initiate Phase I by adding the artificial variables x6 ≥ 0 and x7 ≥ 0
and the artificial objective w as shown below.

x6 + x7 = w
4x1 + 2x2 + 13x3 + 3x4 + x5 + x6 = 17
x1 + x2 + 5x3 + x4 + x5 + x7 = 7.

(3.35)

The Simplex Algorithm requires the equations to be in feasible canonical form at the start,
which can be easily done by subtracting the second and third equations from the w equation
to get the starting tableau shown in Table 3-1. The steps for the minimization of w in
Phase I are similar to those for minimizing z. On the first iteration (see Table 3-1) the
value of w is reduced from 24 to 6/13; on the second iteration (see Table 3-1) w is reduced
to zero. The basic feasible solution has basic variables x3 = 5/4, x5 = 3/4. Substituting
them into the z equation with the nonbasics set at zero, we get z = 11/2. Variables x6 and
x7 are nonbasic artificial and hence are made ineligible for pivoting in Phase II in order to
prevent the reintroduction of artificials x6 and x7 back into the solution. (In addition, the
general rule is that we make ineligible for pivoting in Phase II all variables, artificial or
not, that have positive relative cost factors d̄j in the w equation.) Next, the z equation is
reintroduced and basic variables x3 and x5 are eliminated as shown in Table 3-1. On the
third iteration (see Table 3-1) the value of z dropped from z = 11

2 (iteration 2) to z = 4,
which turns out to be minimum because all the relative cost factors (top row) are greater
than or equal to zero. The optimal solution is z = 4, x2 = 2, x3 = 1, and all other xj = 0.

3.3.2 PHASE I/PHASE II ALGORITHM

An outline of the detailed steps involved is shown below.

Algorithm 3.2 (The Simplex Method)

1. Make each bi nonnegative. Modify the original system of equations (3.1) so that all
the constant terms bi are nonnegative by multiplying an equation whose bi is less
than zero by −1.
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Iteration 0 (Phase I)
Basic OBJ Original Variables Artificial RHS

Variables Variables
−w x1 x2 x3 x4 x5 x6 x7

−w 1 −5 −3 −18 −4 −2 −24
x6 4 2 13 3 1 1 17
x7 1 1 5 1 1 1 7

Iteration 1 (Phase I)
−w 1 7

13 − 3
13

2
13 − 8

13
18
13 − 6

13

x3
4
13

2
13 1 3

13
1
13

1
13

17
13

x7 − 7
13

3
13 − 2

13
8
13 − 5

13 1 6
13

Iteration 2 (Phase I Optimal)
−w 1 1 1 0

x3
3
8

1
8 1 1

4
1
8 − 1

8
5
4

x5 − 7
8

3
8 − 1

4 1 − 5
8

13
8

3
4

Iteration 2 (Phase II Start: Introduce z)
Basic OBJ Original Variables Artificial RHS

Variables Variables
−z x1 x2 x3 x4 x5 x6 x7

−z 1 2 1 2 1 4 0 0 0

x3
3
8

1
8 1 1

4
1
8 − 1

8
5
4

x5 − 7
8

3
8 − 1

4 1 − 5
8

13
8

3
4

Iteration 2 (Phase II: Updated z)
−z 1 19

4 − 3
4

3
2

9
4 − 25

4 − 11
2

x3
3
8

1
8 1 1

4
1
8 − 1

8
5
4

x5 − 7
8

3
8 − 1

4 1 − 5
8

13
8

3
4

Iteration 3 (Phase II Optimal)
−z 1 3 1 2 1 19

2 −4
x3

2
3 1 1

3 − 1
3

1
3 − 2

3 1

x2 − 7
3 1 − 2

3
8
3 − 5

3
13
3 2

Table 3-1: Simplex Method: Tableau Form Example
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2. Add artificial variables. In order to set up an initial feasible solution for Phase I,
augment the system of equations to include a basic set,

xa = (xn+1, xn+2, . . . , xn+m) ≥ 0,

of artificial variables so that the system becomes

−w + eTxa = 0
Ax + Ixa = b
x ≥ 0

xa ≥ 0,

(3.36)

where e = (1, 1, . . . , 1)T.

3. Do Phase I. Use the Simplex Algorithm to find a solution to (3.36) that minimizes
the sum of the artificial variables w:

w =
n+m∑
j=n+1

xj . (3.37)

Equation (3.37) is called the infeasibility form. The initial feasible canonical system
for Phase I is obtained by selecting as basic variables xa, (−w), and eliminating xa
from the infeasibility form by subtracting the sum of the last m equations of (3.36)
from the first equation, yielding

−w + dTx = −w̄0

Ax + Ixa = b
x ≥ 0

xa ≥ 0,

(3.38)

where bi ≥ 0 and
d = −ATe

−w̄0 = −eTb. (3.39)

Writing (3.38) in detached coefficient form constitutes the initial tableau for Phase I
(see Table 3-2).

−w x xa RHS
1 d −w̄0

A I b

Table 3-2: Initial Tableau for Phase I

4. Terminate if minw > 0 at the end of Phase I. No feasible solution exists to the
original problem.

5. Set up Phase II if minw = 0. Start Phase II of the Simplex Method by

(a) dropping from further consideration all nonbasic nonartificial variables xj whose
corresponding coefficients d̄j are positive (not zero) in the final updated w-
equation;
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(b) dropping from further consideration all nonbasic artificial variables;

(c) dropping the linear form w (as modified by various eliminations);

(d) Introducing the linear form z after first eliminating all the basic nonartificial
variables and then augmenting the resulting z form by basic artificial terms
with zero coefficients.

6. Do Phase II. Apply the Simplex Algorithm to the feasible canonical form just
obtained and iterate to find a solution that minimizes the value of z or generates a
class of solutions such that z → −∞.

� Exercise 3.12 Why is Equation (3.37) called the infeasibility form?

� Exercise 3.13 Referring to Step 5d, show how the optimal canonical form for Phase I
can be used to eliminate the term in the z equation in order to initiate Phase II.

� Exercise 3.14 Show that if all the artificials are out of the basis at the end of Phase I,
then w =

∑n+m

j=n+1 xj .

3.3.3 THEORY BEHIND PHASE I

The above procedure for Phase I deserves a little more discussion. It is clear that if
there exists a feasible solution to the original system (3.1) then this same solution
also satisfies (3.36) with the artificial variables set equal to zero; that is, w = 0 in
this case. From (3.37), the smallest possible value for w is zero since w is the sum
of nonnegative variables. Hence, if feasible solutions exist, the minimum value of
w will be w = 0. Conversely, if a solution is obtained for (3.36) with w = 0, it is
clear that all xn+i = 0 and the values of xj for j ≤ n constitute a feasible solution
to (3.1). It also follows that if minw > 0, then no feasible solutions to (3.1) exist.
Note that the Phase I procedure cannot result in an unbounded problem since this
would imply falsely that w defined as a sum of nonnegative variables has no lower
bound.

Whenever the original system contains redundancies and often when degenerate
solutions occur, artificial variables will remain as part of the basic set of variables
at the end of Phase I. Thus, it is necessary that their values during Phase II
never exceed zero. We will now give three different ways (including Step 5 of
Algorithm 3.2) in which this can be accomplished.

1. One way was given in Step 5 of Algorithm 3.2 above by dropping all non-
artificial variables whose relative cost factors for w were positive and dropping
all nonbasic artificial variables. To see this we note that the w equation at
the end of Phase I satisfies

n+m∑
j=1

d̄jxj = w − w̄0, (3.40)
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where d̄j ≥ 0 and w̄0 = 0, since feasible solutions exist. For feasibility, w must
remain zero in Phase II, which means that every xj corresponding to d̄j > 0
must be zero; hence, all such xj can be set equal to zero and dropped from
further consideration in Phase II. We can also drop any nonbasic artificials as
no longer of any interest. Our attention is now confined only to variables whose
corresponding d̄j = 0. All feasible solutions involving only these remaining
variables now have w = 0 by (3.40), and therefore the remaining artificial
variables that sum to w are also zero and will remain zero as we subsequently
pivot. Consequently, the feasible solution to the modified augmented problem
is also a feasible solution for the original problem.

A variant of this method is to treat the z-equation as just another constraint
with z unrestricted in sign during Phase I. This automatically eliminates the
basic variables xB from the z-equation on each iteration. It does not require
any manipulation of data structures; but it can involve more computations.

2. A second way to maintain the basic artificial variables at zero values during
Phase II is to try to eliminate (if possible) all artificial variables still in the
basic set. This can be done by choosing a pivot in a row r corresponding to
such an artificial variable and in any column s ≤ n such that ārs �= 0. If all
coefficients in such a row for j = 1, . . . , n are zero, the row may be deleted
because the corresponding equation in the original system is redundant, or
the row may be left in if that is more convenient.

3. A third way is to keep the w equation during Phase II and treat the (−w)
variable as just another variable that is restricted to nonnegative values. The
system is then augmented by introducing the z-equation after eliminating the
basic variables from it. Since w ≥ 0 is always true, the added condition
(−w) ≥ 0 implies w = 0 during Phase II.

� Exercise 3.15 Solve the following problem by all three ways of transitioning from
Phase I to Phase II. Find max z, x ≥ 0 such that

10x1 + 10x2 + 20x3 + 30x4 = z
x1 + x3 + x4 = 1

x2 + x3 + x4 = 2
3x1 + 2x2 + 2x3 + x4 = 7.

(3.41)

Replace the last constraint by 3x1+2x2+5x3+5x4 = 7 and solve the problem again using
all three ways of transitioning from Phase I to Phase II. Explain what properties these
two examples have that make them interesting.

THEOREM 3.8 (Artificial Variables in Phase II) If artificial variables
form part of the basic sets of variables in the various iterations of Phase II, their
values will never exceed zero.

Proof. The proof follows from the discussion of the first way to maintain artificial
variables at zero in Phase II.
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� Exercise 3.16 Prove that the second way to maintain artificial variables at zero values
is valid.

� Exercise 3.17 Suppose Phase I terminates with a feasible solution with k artificials in
the basis. Show that if we know in advance that there are no degenerate solutions after the
removal of all redundant equations, then k is equal to the number of redundant equations.

� Exercise 3.18 Suppose at the end of Phase I that one or more artificial variables
remain in the basis at zero level. Assume that we can initiate Phase II by setting the cost
coefficients cj of all the artificials in the z equation at zero. Show that, as the iterations of
the Simplex Algorithm are performed, we can ensure that the artificial variables remain
at zero by the following procedure.

1. If for the incoming column s, we have one or more āis ≥ 0 for i corresponding to an
artificial variable, we perform the usual minimum ratio test.

2. On the other hand, if for all i corresponding to artificial variables we have āis ≤ 0,
then instead of performing the minimum ratio test, we pivot on any r = i corre-
sponding to an artificial variable.

3.4 BOUNDED VARIABLES

We now turn our attention to solving a linear program in bounded variables, that
is,

Minimize cTx
subject to Ax = b, A : m× n,

l ≤ x ≤ u.
(3.42)

As earlier, the independent variables will correspond to nonbasic variables, xN , and
the dependent ones to basics, xB. Let the canonical form with respect to xB be as
before:

(−z) + 0xB + c̄TxN = −z̄0
IxB + ĀxN = b̄,

(3.43)

where subscript B (or B) is the set of indices of basic variables, and subscript N
(or N ) is the set of indices of the nonbasic variables.

Definition (Basic Solution): Assuming that at least one of the bounds for
each xj is finite, the special solution obtained by setting each nonbasic equal
to either its lower bound or upper bound and then solving for the values of
the basic variables will now be called a basic solution.

Definition (Degenerate Solution): A basic solution is degenerate if the values
of one or more of the basic variables in the basic solution are at either their
lower bound or upper bound.
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� Exercise 3.19 Assume that for some j = j0, xj0 in (3.42) has a lower bound of −∞
and an upper bound of +∞. Further assume that the lower bounds on all other variables
are finite. Show how to convert such a problem into one where at least one of the bounds
on each variable is finite by each of the following three ways:

1. By eliminating the variable xj0 .

2. By replacing xj0 by the difference of two nonnegative variables.

3. By making sure that the variable xj0 is basic on the first iteration of Phase I and
then never making it nonbasic thereafter.

Explain why method 3 is the same as method 1.

� Exercise 3.20 Show that for problem (3.42) if each upper bound and lower bound is
finite, then the linear program can never have an unbounded solution.

� Exercise 3.21 Let xo = (xoB, xoN) be a basic solution as defined above. Assume that the
lower and upper bounds for each xj are finite. Make the following transformation:

1. If xoj = uj , replace xj by uj − yj .

2. If xoj = lj , replace xj by lj + yj .

3. If lj < xoj < uj , replace xj by yj .

Show that yj is a basic solution as defined earlier on Page 66.

THEOREM 3.9 (Optimality Test for the Bounded Variable LP) Let
x = (x∗B, x∗N) be a basic solution to (3.43) according to the above definition, i.e.,
x∗B = b̄− Āx∗N and each nonbasic component of x∗, for j ∈ N , must satisfy x∗j = lj
or x∗j = uj. Then (x∗B, x∗N) is a minimal solution with total costs z∗ = z̄0 + c̄Tx∗N if

lB ≤ x∗B = b̄− Āx∗N ≤ uB , (a)

c̄j ≥ 0 for j ∈ L, (b)

c̄j ≤ 0 for j ∈ U , (c)

(3.44)

where
L = { j ∈ N | x∗j = lj },
U = { j ∈ N | x∗j = uj }.

(3.45)

Proof. Clearly, for the basic solution to be feasible (3.44a) must hold. The
objective function value is given by

z∗ = z̄0 + c̄Tx∗N = z̄0 +
∑
j∈L

c̄jx
∗
j +

∑
j∈U

c̄jx
∗
j . (3.46)

For any feasible (x, z), we have

z = z̄0 +
∑
j∈L

c̄jxj +
∑
j∈U

c̄jxj . (3.47)
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Clearly, if c̄j ≥ 0 for j ∈ L, then the best we can do is to have the corresponding
xj be at their lower bounds, x∗j = lj . Similarly, if c̄j ≤ 0 for j ∈ U , then the
best we can do is to have the corresponding xj be at their upper bounds, x∗j = uj .
Thus, the right-hand side of (3.46) is a lower bound for z. Since this lower bound
is attained for the basic feasible solution (x∗B, x∗N), the minimum value of z in (3.47)
is the minimum value of z attained for all feasible solutions, basic or otherwise.

MODIFYING THE SIMPLEX ALGORITHM TO SOLVE THE
BOUNDED VARIABLE PROBLEM

To see how to modify the Simplex Algorithm to solve the bounded variable LP, note
the following:

1. The optimality conditions for a basic feasible solution x = (xoB, x
o
N) are

c̄j ≥ 0 for j ∈ L,
c̄j ≤ 0 for j ∈ U .

(We are assuming, to simplify the discussion, that at least one bound on
each xj is finite.) If the optimality conditions are not satisfied, the incoming
variable is selected by finding the index j = s such that

s = argmin
{j∈L}
{k∈U}

{c̄j ,−c̄k} . (3.48)

2. If not optimal, we try to bring the nonbasic variable with index j = s into the
basis. Clearly if xos = us, we will try to decrease xs, and if xos = ls, we will try
to increase xs in an attempt to bring it into the basis. Let δ be defined by

δ =
{

1 if xos = ls,
−1 if xos = us.

(3.49)

The nonbasic variable xs will change as follows:

xs = xos + δθ, (3.50)

where θ ≥ 0 will be determined as shown below so that xs and the basic
variables xji

, for i = 1, . . . ,m, all stay within their bounds.

This implies that we must have ls ≤ xos + δθ ≤ us and lji
≤ xoji

− δθāis ≤ uji

for i = 1, . . . ,m. The other nonbasic variables are fixed at xj = xoj . From this
it follows that θ is the smallest of three ratios

θs = us − ls, (3.51)

θl = min
{i|δāis>0}

(
xoji
− lji

δāis
,∞

)
≥ 0, (3.52)

θu = min
{i|δāis<0}

(
uji
− xoji

−δāis
,∞

)
≥ 0, (3.53)
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where δ is defined in equation (3.49). Note that θs is the maximum amount
that xs can change given its upper and lower bounds; θl reflects the maximum
that xs can change before one of the lower bounds on a basic variable is
violated; and θu reflects the maximum that xs can change before one of the
upper bounds on a basic variable is violated. Let

r = argmin(θs, θl, θu).

It may happen that θ = θs, in which case there is no change to the basis—the
nonbasic variable xs simply switches bounds and causes a feasible change in
the values of the basic variables. The case r = s occurs often in practice
and requires less work because there is no change to the basis, and hence no
pivoting is required.

3. The current value of xB changes as follows:

xB = xoB − δθĀ•s, (3.54)

where δ is given by (3.49).

� Exercise 3.22 Compare the steps of the algorithm just described for the bounded
variable problem, when the lower bounds l are equal to 0 and upper bounds u are equal to
∞, with the standard Simplex Algorithm 3.1 and show that the steps just discussed are
identical.

� Exercise 3.23 Write down the complete Simplex Algorithm for solving a linear program
with bounded variables.

Example 3.2 (Solving a Linear Program with Bounded Variables) This example
illustrates the use of the Simplex Algorithm as modified for a bounded variable linear
program.

Minimize −3x1 − 2x2 = z
subject to 2x1 + x2 ≤ 10

5x1 + 3x2 ≤ 27
0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 5.

(3.55)

We add slacks x3 and x4 and set each of their lower bounds to 0 and upper bounds to +∞.
In this case we obtain an initial starting solution by setting x1 and x2 to their lower bounds
of 0 and solving for the slack basic variables x3 and x4. In general, we may not be so lucky
and may need to add artificial variables (and also possibly change signs of the equations).

At the start of iteration 0, the initial tableau is shown under iteration 0 in Table 3-3.
Note that for nonbasic j the last row displays the bound status; if nonbasic j is at its lower
bound the status is l, otherwise the status is u.

Notice that both x1 and x2 are at their lower bound with c̄1 = −3 and c̄2 = −2
(displayed in the z row). Therefore, by (3.48), s = 1. Thus, we should try to increase
xs = x1 since it is at its lower bound. Applying (3.51)–(3.53), the three ratios are θs = 4,
θl = 5, and θu = +∞, implying r = s = 1. Hence by the end of the initial iteration, x1

has moved to its upper bound and remains nonbasic; since θ = θs, the basis is unchanged
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Iteration 0 (Phase II)
Lower Bound −∞ 0 0 0 0
Upper Bound +∞ 4 5 +∞ +∞

Basic
Variables Variables

−z x1 x2 x3 x4

−z = 0 1 −3 −2 0 0
x3 = 10 2 1 1 0
x4 = 27 5 3 0 1

Status l l

Iteration 1 (Phase II)
−z = 12 1 −3 −2 0 0
x3 = 2 2 1 1 0
x4 = 7 5 3 0 1

Status u l

Iteration 2 (Phase II)
−z = 16 1 1 0 2 0
x2 = 2 2 1 1 0
x4 = 1 −1 0 −3 1

Status u l

Iteration 3 (Phase II)
−z = 17 1 0 0 −1 1
x2 = 4 0 1 −5 2
x1 = 3 1 0 3 −1

Status l l

Iteration 4 (Phase II)
−z = 17 1

5 1 0 − 1
5 0 3

5

x3 = 1
5 0 − 1

5 1 − 2
5

x1 = 12
5 1 − 3

5 0 1
5

Status u l

Table 3-3: Tableau Form Example of a Bounded Variable LP
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and no pivoting is required. However, the new basic values for the basic variables need to
be computed by (3.54):

(−z
x3

x4

)
=

(
0
10
27

)
− 4×

(−3
2
5

)
=

(
12
2
7

)
.

At the start of iteration 1, x1 is at its upper bound and x2 is at its lower bound, with
c̄1 = −3 and c̄2 = −2, and therefore by (3.48), s = 2. Thus, we should try to increase
xs = x2 since it is at its lower bound. Applying (3.51)–(3.53), the three ratios are θs = 5,
θl = 2, and θu = +∞, implying r = l = 1, where jr = j1 = 3. Hence, xs = x2 enters the
basis at value x2 = θ = 2, and x3 leaves the basis to be at its lower bound. We compute
the change of basic variables xB and xs = x2 by (3.54) and (3.50) respectively:

(−z
x3

x4

)
=

(
12
2
7

)
− 2×

(−2
1
3

)
=

(
16
0
1

)
,

x2 = l2 + δθ = 0 + 2 = 2, replacing x3 in the basis.

The values of (−z), x2, and x4 are posted to the left of the double line at the start of
iteration 2. Next we pivot on the boldface term 1 and record the resulting values in the
tableau for the start of iteration 2.

At the start of iteration 2, x1 is at its upper bound and x3 is at its lower bound, with
c̄1 = 1 and c̄3 = 2. Therefore by (3.48), s = 1. Thus, we should try to decrease xs = x1

since it is at its upper bound; in this case δ = −1. Applying (3.51)–(3.53), the three ratios
are θs = 4, θl = 1, and θu = 3/2, implying r = l = 2, where jr = j2 = 4. Hence, xs = x1

enters the basis at value x1 = u1 − θ = 3, and x4 leaves the basis at its lower bound. We
compute the change of basic variables xB and xs = x1 by (3.54) and (3.50) respectively:

(−z
x2

x4

)
=

(
16
2
1

)
− (−1)× 1×

(
1
2

−1

)
=

(
17
4
0

)
,

x1 = u1 + δθ = 4 + (−1)× 1 = 3, replacing x4 in the basis.

The values of (−z), x2, and x1 are posted to the left of the double line at the start of
iteration 3. Next we pivot on the boldface term −1 and record the resulting values in the
tableau for the start of iteration 3.

At the start of iteration 3, x3 is at its lower bound and x4 is also at its lower bound, with
c̄3 = −1 and c̄4 = 1. Therefore by (3.48), s = 3. Thus, we should try to increase xs = x3

since it is at its lower bound. Applying (3.51)–(3.53), the three ratios are θs = +∞, θl = 1,
and θu = 1/5, implying r = u = 1, where jr = j1 = 2. Hence, xs = x3 enters the basis
at value x3 = l3 + θ = 1/5, and x2 leaves the basis at its upper bound. We compute the
change of basic variables xB and xs = x3 by (3.54) and (3.50) respectively:

(−z
x2

x1

)
=

(
17
4
3

)
− 1

5
×

(−1
−5
3

)
=

(
17 1

5
5
12
5

)
,

x3 = l3 + δθ = 0 + 1/5 = 1/5, replacing x2 in the basis.
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The values of (−z), x3, and x1 are posted to the left of the double line at the start of
iteration 4. Next we pivot on the boldface term −5 and record the resulting values in the
tableau for the start of iteration 4.

At the start of iteration 4, the tableau is optimal by Theorem 3.9, since x2 is at its
upper bound and c̄2 is negative; and, x4 is at its lower bound and c̄4 is positive. The
optimal solution is readily read off from the tableau: The basic values are z = −17 1

5 ,
x3 = 1/5, and x1 = 12/5; the nonbasic values are x2 = 5 since x2 has status u, and x4 = 0
since x4 has status l.

3.5 REVISED SIMPLEX METHOD

The Revised Simplex Method is not a different method but is a different way to
carry out each computational step of the Simplex Method. The revised method
offers several advantages over the Simplex Algorithm in tableau form.

1. Considerable savings in computations are possible if the fraction of nonzero
coefficients is less than 1− (2m/n). This is typically the case in practice.

2. Less data is recorded from one iteration to the next, which permits a larger
problem to be solved when the memory capacity of an electronic computer
is limited. Furthermore, considerable savings in computations are possible
because not all the entries in the tableau need to be updated.

3. A weakness of the simplex algorithm in tableau form is that the inverse of the
basis in explicit form is part of the full tableau. The explicit representation
of the inverse can be numerically unstable. Since the inverse is only needed
to solve certain systems of equations, the need to have an inverse can be
bypassed in the Revised Simplex Algorithm by solving the system of equations
by numerically stable methods.

3.5.1 MOTIVATION

While each iteration of the Simplex Method requires that a whole new tableau be
computed and recorded, it may be observed that only the modified cost row and
the column corresponding to the variable entering the basic set play any role in the
decision process. That is, in order to carry out the steps of the Simplex Algorithm
(see Algorithm 3.1),

1. we first look at the reduced costs (c̄ ) to determine whether an improvement
in the solution is possible, and if so, then we determine which column s to
bring into the basis (see Steps 1–3 of the Simplex Algorithm);

2. next we look at the pivot column Ā•s and the right hand side b̄ to determine
the pivot row r and the variable that leaves the basis (see Steps 4–5 of the
Simplex Algorithm).
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Since b̄ can be easily updated, at each iteration all we need are the reduced costs
and the updated column corresponding to the incoming variable. It turns out that
we can obtain this information directly if we have available a way to solve a system
of equations whose coefficient matrix is the current basis matrix B or its transpose.
Any efficient way to update the solution procedures for the next iteration will do.
For the purpose of illustrating the Revised Simplex Algorithm on small examples,
we will use an explicit representation of B−1 and a way to update it. In general, as
we have just noted, computing and using an inverse can be a numerically unstable
process and also, for large problems an explicit representation of B−1 may not be
computationally efficient in terms of speed and storage.

If we have at hand an explicit representation of B−1, it is easy to derive the
required quantities c̄ and Ā•s from the original data. Assume that an initial feasible
solution is available for a given linear program in standard form (3.1). Suppose, for
convenience of discussion, that the columns of the coefficient matrix A have been
ordered so that the basis columns (represented by the matrix B = Bt for iteration
t) are the firstm columns of A and the nonbasic columns (represented by the matrix
N = N t) are the last (n−m) columns of A. That is,

(−z) + cTBxB + cTNxN = 0 (a)
BxB + NxN = b (b).

(3.56)

Algebraically, the canonical form of (3.56) for iteration t is given by

(−z) + (cTN − cTBB
−1N)xN = −cTBB−1b (a)

IxB + B−1NxN = B−1b. (b)
(3.57)

This can be seen by multiplying (3.56b) by B−1 on the left to obtain (3.57b). If now
we multiply (3.57b) on the left by cTB and subtract from (3.56a), we obtain (3.57a).
But this is not the best way to carry out the computations.

To compute c̄ efficiently we first compute

πT = cTBB
−1, (3.58)

and then
c̄T = cTN − πTN, (3.59)

followed by s = argminj c̄j . Then if c̄s < 0, we compute

Ā•s = B−1A•s. (3.60)

The value b̄ = B−1b is not explicitly computed; instead it is updated in the Revised
Simplex Tableau when a pivot is performed.

Definition (Price): The vector π is called the price vector (or simplex multi-
pliers). We will see in Section 7.1 why the economists refer to π as the price
vector.
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THEOREM 3.10 (Uniqueness of π) At any iteration t, the simplex multipliers
π are unique.

� Exercise 3.24 Prove Theorem 3.10.

Definition (Pricing Out): The operation of multiplying π times the nonbasic
column A•j for nonbasic j in the determination of NTπ is called pricing out
the columns j.

Definition (Representation in Terms of the Basis): The linear combination
of the columns in the basis that yields the incoming column A•s is called the
representation of the sth activity in terms of the basic set of activities. It is
easy to see that this representation is the updated column A•s, see (3.60),
because in matrix notation (3.60) can be rewritten as:

BĀ•s = A•s. (3.61)

See Section A.6 in Appendix A where the notion of a basis in a vector space
is discussed.

Both pricing out a column and representation of an activity in terms of a basis
can be done very efficiently for matrices having many zero elements (so called sparse
matrices).

Next we shall show how to easily find B−1 and π in the tableau form. For
convenience of discussion we reorder the variables as before in (3.56) so that the
first m columns of A are B = Bt. Assume also that now we add m artificial
variables xa to (3.56b) to obtain (3.62):

(−z) + cTBxB + cTNxN = 0 (a)
BxB + NxN + Ixa = b. (b)

(3.62)

Once again multiplying (3.62b) by B−1, we get (3.63b), and subtracting the product
of cTB times (3.63b) from (3.62a), we get (3.63a), which together give the canonical
form for iteration t:

(−z) + (cTN − cTBB
−1N)xN − cTBB

−1xa = −cTBB−1b (a)
IxB + B−1NxN + B−1xa = B−1b. (b)

(3.63)

Thus, πT = cTBB
−1 and B−1 for any iteration t can be directly read off from the

tableau by examining the columns corresponding to xa.
Furthermore, if we were to change the basis by pivoting in a new column from

Ā = B−1N , then the new basis inverse, say B̄−1, would still be available in the
columns corresponding to xa.

� Exercise 3.25 Prove that no matter which column we bring into the basis, the new
basis inverse will be available in the columns corresponding to xa.
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The above discussion implies that we can reduce the size of our tableau form by
keeping only the (−z) column, the columns corresponding to xa, and the updated
right-hand side. With these we can generate the reduced cost c̄ and the incoming
column Ā•s. The reduced size tableau is shown below in Table 3-4. Thus, we never

(−z) xa RHS xs

1 −πT −πTb c̄s

B−1 b̄ Ā•s ←− Pivot on Ārs

Table 3-4: Revised Simplex Tableau Iteration t

explicitly compute Ā. This is what gives considerable savings in storage space. To
update the revised simplex tableau, Table 3-4 is pivoted on in the last column on
element ārs. Thus the b̄ for the next iteration is computed by the pivot step.

� Exercise 3.26 In Phase I we replace the objective (3.62a) by the infeasibility form

(−w) + eTxa = 0.

Show that canonical form at the start of Phase I is

(−w) − eTAx + 0xa = 0
Ax + Ixa = b.

Write down the steps of the Revised Simplex Algorithm for Phase I. Next write down the
steps of the Revised Simplex Method.

3.5.2 REVISED SIMPLEX METHOD ILLUSTRATED
Example 3.3 (Revised Simplex Method) We shall illustrate the Revised Simplex
Method on the same Example 3.1 used to illustrate the Simplex Method in tableau form.
Namely, find min z, x ≥ 0 such that

2x1 + 1x2 + 2x3 + x4 + 4x5 = z
4x1 + 2x2 + 13x3 + 3x4 + x5 = 17
x1 + x2 + 5x3 + x4 + x5 = 7.

(3.64)

For ease of exposition we will display the entire tableau form but only show the quantities
that are determined explicitly or obtained by pivoting.

The detached coefficient form for (3.64) is shown in Table 3-5. The coefficients that
appear in the top row are dj = −eTA•j , where e = (1, 1, . . . , 1)T. The Phase I reduced
costs d̄j that will be computed on iterations 0, 1, and 2 of Phase I of the Revised Simplex
Method are stored in the −w line of each iteration in Table 3-6, as will be the reduced costs
c̄j for iterations 2 and 3 of Phase II in Table 3-7. Actually, in practice, in the Revised
Simplex Method, the d̄j and c̄j are computed but not stored; only the minimum value
d̄s or c̄s is stored at the beginning of iteration t. Table 3-6 shows the recorded data at
the beginning of iteration t of the Revised Simplex Method. The column labeled “Basic
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Detached Coefficients of Original System
Basic Original Variables Artificial Constants

Variables Variables
−w −z x1 x2 x3 x4 x5 x6 x7

−w 1 −5 −3 −18 −4 −2 −24
−z 1 2 1 2 1 4 0
x6 4 2 13 3 1 1 17
x7 1 1 5 1 1 1 7

Table 3-5: Detached Coefficients

Variables” shows the names of the variables in the order (j1, . . . , jm) in the basis. The
relevant columns of the canonical form correspond to the artificial variables and contain
the negative of the simplex multipliers and the basis inverse. The simplex multipliers π
are the negative coefficients of the artificials in the −w row in Phase I; in Phase II these
are in the −z row. The column after the last artificial variable is the modified right hand
side. These are obtained by pivoting.

To compute d̄j and c̄j directly from the original system Table 3-5, we will need the
simplex multipliers associated with iteration t. The numbers shown in italic (or boldface)
are generated directly from the original system. Recall that d̄j = dj − πTA•j and c̄j =
cj − πTA•j can be computed from the original data. If the solution is not optimal, we
determine the incoming column index s. The inverse of the basis is used to compute Ā•s
directly from the original data by the formula Ā•s = B−1A•s. The pivoting transforms
column s to a unit column vector, which is not recorded.

On iteration 0, the Phase I basis inverse is the identity matrix (see Table 3-6), and hence
the entries shown in the table are the same as the corresponding entries from the original
data. Since the reduced cost d̄3 = −18 is the smallest, we bring in the corresponding x3

into the basis on the next iteration. We are now in a position to determine which variable
leaves the basis; we compute Ā•3 = B−1A•3. Since B−1 = I for this iteration, Ā•3 = A•3

can be read off directly from the original data and entered in the corresponding column
of Table 3-6 for iteration 0. The updated column Ā•3 and b̄ allow us to locate the pivot
position, which is Ā13. Pivoting on Ā13 drives x6 out of the basis, replacing it by x3, and
generates the artificial columns and updated b̄ of the next iteration, t = 1.

On iteration 1, the basis inverse is

B−1 =

( 1
13 0

− 5
13 1

)

in the columns corresponding to x6 and x7 in Table 3-6. The simplex multipliers are
π1 = −18/13 and π2 = 0 which are the negative of the entries in the first row in columns
corresponding to x6 and x7. Thus the d̄j can be computed by using (3.59) as dj − πTA•j
for iteration 1 and so forth.

3.5.3 REVISED SIMPLEX METHOD ALGORITHM

The algorithm is described using B−1; in practice the inverse is not computed, but
instead the system of equations involving B is solved directly by an LU factorization
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Iteration 0 (Phase I)
Basic OBJ Original Variables Artificial RHS

Variables Variables
−w x1 x2 x3 x4 x5 x6 x7

Ā•3 = B−1A•3 −π1 −π2

−w 1 − 5 − 3 − 18 − 4 − 2 0 0 −24
x6 13 1 17
x7 5 1 7

B−1

Iteration 1 (Phase I) d̄j = dj − πTA•j

B−1A•5 = Ā•5 −π1 −π2

−w 1 7
13 − 3

13 0 2
13 − 8

13
18
13 − 6

13

x3
1
13

1
13

17
13

x7
8
13 − 5

13 1 6
13

B−1

Iteration 2 (Phase I Optimal) d̄j = dj − πTA•j ≥ 0
−w 1 0 0 0 0 0 1 1 0

x3
1
8 − 1

8
5
4

x5 − 5
8

13
8

3
4

B−1

Table 3-6: Revised Simplex Method: Tableau Form Example
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Iteration 2 (Phase II Start: Introduce z)
Basic OBJ Original Variables Artificial RHS

Variables Variables
−z x1 x2 x3 x4 x5 x6 x7

−z 1 2 1 2 1 4 0 0 0

x3
1
8 − 1

8
5
4

x5 − 5
8

13
8

3
4

B−1

Iteration 2 (Phase II: Updated z) c̄j = cj − πTA•j

Ā•2 = B−1A•2 −πT = −cTBB−1

−z 1 19
4 − 3

4
3
2

9
4 − 25

4 − 11
2

x3
1
8

1
8 − 1

8
5
4

x5
3
8 − 5

8
13
8

3
4

B−1

Iteration 3 (Phase II Optimal) c̄j = cj − πTA•j ≥ 0

−π1 −π2

−z 1 3 0 0 1 2 1 19
2 −4

x3
1
3 − 2

3 1

x2 − 5
3

13
3 2

B−1

Table 3-7: Revised Simplex Method: Tableau Form Example (Continued)
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(based on Gaussian elimination).

Algorithm 3.3 (Revised Simplex Algorithm) Assume a linear program in standard
form and that xB = b̄ is a basic feasible solution and that columns with indices j1, . . . , jm
for a feasible basis B whose inverse B−1 is known.

1. Simplex Multipliers. Determine the simplex multipliers

π = (B−1)TcB.

2. Reduced Costs. Determine the reduced costs

c̄j = cj − πTA•j for j nonbasic.

3. Smallest Reduced Cost. Same as Step 1 of the Simplex Algorithm 3.1.

4. Test for Optimality. Same as Step 2 of the Simplex Algorithm 3.1.

5. Incoming Variable. Same as Step 3 of the Simplex Algorithm 3.1.

6. Determine Ā•s, the representation of A•s in terms of the basis B.

7. Test for unbounded z. Same as Step 4 of the Simplex Algorithm 3.1.

8. Outgoing Variable. Same as Step 5 of the Simplex Algorithm 3.1.

9. Pivot on ārs in the matrix
(
b̄, B−1, Ā•s

)
to obtain

(
updated b̄, updated B−1, er

)
,

where er is the unit vector with 1 in row r and zeros elsewhere.

10. Set jr = er and return to Step 1 with updated b̄ and B−1.

� Exercise 3.27 Show that pivoting on ārs involves multiplying b̄, B−1, and Ā•s by the
inverse of the elementary matrix

Er = I + (Ā•s − er)eTr ,

which is

E−1
r = I − (Ā•s − er)eTr

ārs
.

3.5.4 COMPUTATIONAL REMARKS

In the standard Simplex Method we modify on each iteration the entire tableau
of (m + 1)(n + 1) entries. Not counting the identity part of the standard sim-
plex tableau, the number of operations (multiplication and addition pairs) on each
iteration is

(
(n−m) + 1

)
(m+ 1) = (n− 2m)(m+ 1) + (m+ 1)2. (3.65)

In the Revised Simplex Method, we never explicitly compute all of Ā. We only
compute Ā•s and c̄; and update −π, and B̄−1 by pivoting. Thus we modify only
(m + 1)(m + 1) entries of the tableau (including the computation of π). Thus,
starting with an m× n system in a feasible canonical form, the total number of
operations required per iteration is

f(n−m)(m+ 1) + fm(m+ 1) + (m+ 1)2 = fn(m+ 1) + (m+ 1)2, (3.66)
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where f is the fraction of nonzero coefficients in the original tableau, which we
assume, on the average, is the same as that in the column entering the basis. The
three terms on the left are the numbers of operations used (a) in “pricing out,”
(b) in representing the new column, and (c) in pivoting.

Comparing (3.66) and (3.65) it is easy to see that the Revised Simplex Method
requires less work than the standard Simplex Method if f , the fraction of nonzeros,
satisfies

f < 1− 2m/n.

From the above it is clear that for the Revised Simplex Method to require less work
than the standard Simplex Method we must have n > 2m.

3.6 NOTES & SELECTED BIBLIOGRAPHY
Since the invention of the Simplex Method by one of the authors (George Dantzig) in 1947,
numerous papers have appeared; they are far too many to reference all the titles of the
papers and presentations of linear programming.

On first glance it may appear that most problems will be nondegenerate. After all,
what is the probability of four planes in three space meeting in a point (for example)! It
turns out that although it appears that the probability of a linear program being degenerate
is zero, almost every problem encountered in practice is highly degenerate. Degeneracy is
the rule, not the exception! For this reason, the choice of the variable to leave the basis in
the case of a tie has been and continues to be the subject of much investigation because of
the theoretical possibility that a poor choice could lead to a repetition of the same basic
solution after a number of iterations. In Linear Programming 2, several examples are given
where using the standard rules results in a sequence of pivots that repeats, called cycling
in the Simplex Algorithm. The choice of pivots under degeneracy and near degeneracy
is examined in detail later, in Linear Programming 2. There proofs are provided for
finite termination of the simplex algorithm under various degeneracy-resolving schemes
such Dantzig’s inductive method, Wolfe’s rule, Bland’s rule, Harris’s procedure, and the
Gill, Murray, Saunders, Wright anticycling procedure. A proof of convergence in a finite
number of steps under the random choice rule can be found in Dantzig [1963]; see also
Linear Programming 2.

Another question is concerned with the number of iterations required to solve a linear
program using the Simplex Method. Examples have been contrived by Klee and Minty
[1972] that require in the worst case (2m − 1) iterations. Consider the linear program

Minimize
m∑
j=1

−10m−jxj

subject to

(
2
i−1∑
j=1

10i−jxj

)
+ xi + zi = 100i−1, for i = 1, . . . ,m,

xj ≥ 0, zj ≥ 0, for j = 1, . . . ,m.

(3.67)

If we apply the Simplex Method (using the largest coefficient rule) to solve the prob-
lem (3.67), then it can be shown that the Simplex Method performs (2m − 1) iterations
before finding the optimal solution. If examples such as these are representative of the
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“real-world,” the number of iterations would be too high for the Simplex Method to be
a practical algorithm. Experience solving thousands and thousands of practical problems
shows that the method solves them in surprisingly few iterations. To explain why this
is so requires some way to characterize the special properties of problems encountered in
practice. So far nobody has been able to do so, and the best that one has been able to
do along these lines is to use some hypothesized probabilistic model for generating the
class of linear programs to be solved and proving theorems about the expected number of
iterations. See, for example, Borgwardt [1982a, 1982b, 1987a, 1987b] and Smale [1982]).

In Linear Programming 2 we describe other, more complex, rules for selecting an
incoming column, including those that are scale invariant, that are more computationally
efficient for large problems.

In this chapter, we described a Phase I procedure that uses a full set of artificial
variables to obtain a starting basic feasible solution; it was first proposed by Dantzig
[1951a]. Another technique, labeled the Big-M method, was first suggested by Dantzig and
subsequently by others. (See Problems 3.28, 3.29, 3.30, 3.31, and 3.32). The technique was
developed in the context of the standard form, but is also directly applicable to a linear
program with bounded variables. After adding a full set of artificial variables, the objective
function is modified by adding to it the sum of the artificial variables each multiplied by
a large cost M . Then the problem is solved with the new objective function. Provided
the cost M is chosen large enough, it is clear that the artificial variables will be driven to
zero when minimizing. The problems with this method are (1) M has to be chosen to be
large enough, and (2) a large value of M can cause numerical problems when computing
the multipliers and reduced costs. In Linear Programming 2 we discuss different methods
for finding an initial feasible solution.

The Revised Simplex Method was first proposed by Dantzig & Orchard-Hays [1953].

Many excellent books, too numerous to mention, are available on linear programming.
Among them are Bazarra, Jarvis, & Sherali [1990], Bradley, Hax, & Magnanti [1977],
Brickman [1989], Chvátal V. [1983], Dantzig [1963], Gass [1985], Hillier & Lieberman
[1995], Murty [1983], and Nering & Tucker [1993].

3.7 PROBLEMS

3.1 First solve the following using the Simplex Method. Next solve it using the
Revised Simplex Method. Finally, solve it using the DTZG Simplex Primal soft-
ware option.

Maximize 3x1 + x2 + 5x3 + 4x4 = z
subject to 3x1 − 3x2 + 2x3 + 8x4 ≤ 50

4x1 + 6x2 − 4x3 − 4x4 ≤ 40
4x1 − 2x2 + x3 + 3x4 ≤ 20

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.
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3.2 Consider:
Minimize 3x1 − x3 = z
subject to x1 + x2 + x3 + x4 = 4

−2x1 + x2 − x3 = 1
3x2 + x3 + x4 = 9

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

(a) Solve the above linear program using the Simplex Method. Be sure to carry
the part of the tableau corresponding to the artificial variables all the way
to the final tableau.

(b) What is the index set (call it B) of the optimal basis? What is A•B? Where
is [A•B]−1 in the final tableau?

(c) Compute π = ([A•B]−1)TcB. Where is π in the final tableau? Verify through
direct computation that c̄ = c−ATπ.

3.3 Solve the following bounded variable linear program by hand.

Minimize −2x1 − x2 = z
subject to 3x1 + x2 ≤ 9

2x1 − 2x2 ≤ 3
and 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 8.

3.4 Read each of the following statements carefully and decide whether it is true or
false. Briefly justify your answer.

(a) If a tie occurs in the pivot row choice during a pivot step while solving an
LP by the Simplex Method, the basic feasible solution obtained after this
pivot step is degenerate.

(b) In solving an LP by the Simplex Method, a different basic feasible solution
is generated after every pivot step.

(c) The total number of optimal solutions of an LP is always finite since the
total number of different bases is finite.

3.5 A farm is comprised of 240 acres of cropland. The acreage to be devoted to
corn production and the acreage to be used for oats production are the decision
variables. Profit per acre of corn production is $40 and the profit per acre
of oats production is $30. An additional resource restriction is that the total
labor hours available during the production period is 320. Each acre of land
in corn production uses 2 hours of labor during the production period, whereas
production of oats requires only 1 hour. Formulate an LP to maximize the
farm’s profit. Solve it.

3.6 Suppose we are solving the problem

Minimize cTx
subject to Ax = b

x ≥ 0.

and we arrive at the following Phase II tableau:

(−z) 0 1 0 c1 14
0 1 1 0 a1 b1
0 0 −2 1 a2 b2
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(a) Identity the current basic solution and give conditions that assure it is a
basic feasible solution.

(b) Give conditions that assure that the basic solution is an optimal basic
feasible solution.

(c) Give conditions that assure that the basic solution is the unique optimal
basic feasible solution.

(d) Give conditions that guarantee that the objective value is unbounded below.
(e) Assuming the conditions in (d) hold, exhibit a feasible ray on which the

objective value goes to −∞ and exhibit a set of infeasibility multipliers for
the dual problem. Note that the ray generated by q ∈ 
n is the set of
points {x | x = θq } as the scalar parameter θ varies from 0 to +∞.

(f) Assuming the conditions of (a) hold, give all conditions under which you
would perform a pivot on the element a1.

3.7 Late one night, while trying to make up this problem set, your trusty course
assistant decided to give you the following linear program to solve:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 RHS
1 0 0 0 0 0 1 1 1 1 1 4
0 1 0 0 0 0 2 2 −1 −3 5 6
0 0 1 0 0 0 2 2 3 0 0 4
0 0 0 1 0 0 −3 0 4 5 6 6
0 0 0 0 1 0 −9 3 −3 0 −1 9
0 0 0 0 0 1 −4 0 −2 −1 5 4
0 0 0 0 0 0 −5 −8 −5 −6 −7 0

After pivoting with the Simplex Algorithm until he got an optimal solution,
he then—klutz that he is—spilled his can of Coke over the final tableau (not a
suggested practice). Unfortunately, by Murphy’s Law of Selective Gravitation
(i.e., objects fall where they do the most damage) the spilled Coke dissolved the
right-hand side (RHS) of the final tableau, leaving only:

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 RHS
43/24 1/24 −15/16 −1/3 0 0 1 0 −115/48 0 1 −
3/8 1/8 −5/16 0 0 0 0 0 −11/16 0 1 −

−43/24 1/8 23/16 1/3 0 0 0 1 187/48 0 0 −
5/8 −1/8 −3/16 0 0 0 0 0 3/16 1 0 −

175/8 5/8 −209/16 −4 1 0 0 0 −591/16 0 0 −
71/12 −7/12 −19/8 −4/3 0 1 0 0 −191/24 0 0 −

1 0 7/2 1 0 0 0 0 21/2 0 0 −

Luckily the course assistant was able to fill in the missing right-hand side (opti-
mal basic feasible solution and final objective value) without doing any further
pivoting. How did he do it? What is the missing right hand side?

3.8 Spaceman Spiff hurtles through space toward planet Bog. Cautiously, he steps
out of his spacecraft and explores the dunes. Suddenly, the Great Giztnad
pounces! Spaceman Spiff turns his hydroponic laser against it, but it has no
effect! The Great Giztnad rears its gruesome head and speaks: “Solve this
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problem using the Simplex Method before I return, or I shall boil you in cosmic
oil! Hee, hee, hee!”

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS
1 0 0 0 0 1 1 2 1 3 3
0 1 0 0 0 −1 1 2 3 4 2
0 0 1 0 0 2 5 −4 0 2 4
0 0 0 1 0 1 3 1 1 2 1
0 0 0 0 1 5 4 3 −2 1 3
0 0 0 0 0 −3 −2 2 −1 −2

Using what he learned in OR340, Spiff quickly applied the Simplex Method and
arrived at the final tableau

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RHS
1 0 0 −1 0 0 −2 1 0 1 2

0 1 0 −13/7 4/7 0 −16/7 13/7 0 6/7 13/7

0 0 1 −4/7 −2/7 0 15/7 −38/7 0 4/7 18/7

0 0 0 5/7 −1/7 0 11/7 2/7 1 9/7 2/7

0 0 0 2/7 1/7 1 10/7 5/7 0 5/7 5/7

0 0 0 11/7 2/7 0 27/7 31/7 0 10/7 17/7

“I have solved the problem, your Vileness,” Spaceman Spiff announces. “Good-
bye, oh hideous master of–”
“Not so fast!” booms the Great Giztnad. “You have missed a column. Those
numbers farther off to the right are the RHS. Also, you copied some of the
numbers incorrectly. I’ll give you ten more minutes. Solve this quickly, before I
lose my patience and eat you raw!”

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 RHS
1 0 0 0 0 1 1 2 1 3 3∗ 90∗

0 1 0 0 0 −1 1 2 3 4 2∗ 155∗

0 0 1 0 0 2 5 −4 0 2 4∗ 62∗

0 0 0 1 0 1 3 1 1 7∗ 1∗ 70∗

0 0 0 0 1 5 4 3 −2 7∗ 3∗ 70∗

0 0 0 0 0 −3 −2 2 −1 −2 −2∗(∗ represents changes from the original tableau
)
.

Show what the resulting final tableau and optimal solution will be, and explain
why it is optimal. Hint: You do not need to redo the Simplex Method.

3.9 Consider the following linear program:

Minimize 2x1 − x2 + x3 + 5x4 = z
subject to x1 + x2 + x3 + x4 = 4

2x1 + 3x2 − 4x3 + 2x4 ≤ 5
x1 + 2x2 − 5x3 + x4 ≥ 2
xj ≥ 0, j = 1, . . . , 4.

(a) Use the Simplex Method (with no more than 2 artificial variables) to show
that it is infeasible.
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(b) Use the DTZG Simplex Primal software option on the problem.

3.10 Use the DTZG Simplex Primal software option to demonstrate that the following
system of inequalities in nonnegative variables is infeasible.

4x1 + x3 − x4 ≥ 4
4x1 + 4x2 + 4x3 + 5x4 ≤ 4
5x1 + 3x2 + x3 + 2x4 ≤ 9
xj ≥ 0, j = 1, . . . , 4.

3.11 As we shall see later (see Chapter 5)

Maximize 4y1 − 4y2 − 5y3 = v
subject to 4y1 − 4y2 − 5y3 ≤ 0

4y2 − 3y3 ≤ 0
y1 − 4y2 − y3 ≤ 0
y1 − 5y2 − 2y3 ≤ 0
yj ≥ 0, j = 1, . . . , 3

is the dual of the system in Problem 3.10, assuming it has a zero coefficient
objective. Use the DTZG Simplex Primal software option to demonstrate that
it is unbounded. How could you have deduced that it is unbounded simply by
looking at it.

3.12 Solve the following linear program by hand and also by the DTZG Simplex
Primal software option to demonstrate that it is unbounded.

Minimize 1x1 − 2x2 + x3 + 3x4 = z
subject to 2x1 − x2 + x3 − x4 ≤ 10

−5x1 + 2x2 − 2x3 + x4 ≤ 20
3x1 − 4x2 + 4x3 − 2x4 ≤ 30

xj ≥ 0, j = 1, . . . , 4.

Write down the class of feasible solutions that cause z → −∞.
3.13 Consider the following linear program.

Minimize −x1 − 2x2 + x3 + 2x4 + 3x5 = z
subject to 2x1 − x2 − x3 − x4 + 2x5 = 0

2x1 − x2 + 2x3 − x4 + x5 = 0
x1 + x2 + x3 + x4 + x5 = 0

xj ≥ 0, j = 1, . . . , 5.

(a) Apply Phase I of the Simplex Method to obtain a feasible solution to the
linear program.

(b) At the end of Phase I, use each of the three methods of handling artificials
in the basis and proceed to Phase II.

3.14 Kuhn’s Example of Cycling.

Minimize −2x1 − 3x2 + x3 + 12x4 = z
subject to −2x1 − 9x2 + x3 + 9x4 ≤ 0

1
3x1 + x2 − 1

3x3 − 2x4 ≤ 0

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.
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Add slack variables x5 and x6 and let the starting feasible basis contain x5 and
x6. Assume that

• the index s of the incoming variable is chosen as the nonbasic variable with
the most negative reduced cost;

• the index jr of the outgoing variable is determined by looking at all āis > 0
as specified in the Simplex Algorithm and choosing r = i as the smallest
index such that āis > 0.

(a) Solve the problem by hand and show that it cycles after iteration 6.
(b) Re-solve the problem applying Bland’s rule to show that the Simplex Al-

gorithm converges to an optimal solution.
(c) Re-solve the problem using the Random Choice Rule to show that the

Simplex Algorithm converges to an optimal solution. (For example use dice
to make your selections.)

3.15 Beale’s Example of Cycling.

Minimize −3x1/4 + 150x2 − x3/50 + 6x4 = z
subject to x1/4 − 60x2 − x3/25 + 9x4 ≤ 0

x1/2 − 90x2 − x3/50 + 3x4 ≤ 0

x3 ≤ 1

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Add slack variables x5, x6, and x7 and let the starting feasible basis contain x5,
x6, and x7. Assume that

• the index s of the incoming variable is chosen as the nonbasic variable with
the most negative reduced cost;

• the index jr of the outgoing variable is determined by looking at all āis > 0
as specified in the Simplex Algorithm and choosing r = i as the smallest
index such that āis > 0.

(a) Solve the problem by hand and show that it cycles.
(b) Re-solve the problem applying Bland’s rule to show that the Simplex Al-

gorithm converges to an optimal solution.
(c) Re-solve the problem using the Random Choice Rule to show that the

Simplex Algorithm converges to an optimal solution. (For example use dice
to make your selections.)

3.16 Consider the following 2-equation, 5-variable linear program.

Minimize x1 + 7x2 + 5x3 + x4 + 6x5 = z
subject to 1x1 + 2x2 + 2x3 + 5x4 + 4x5 = 10

3x1 + 6x2 − 2x3 + x4 − x5 = 30
xj ≥ 0, j = 1, . . . , 5.

(a) Apply Phase I of the Simplex Method to obtain a feasible solution to the
linear program.
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(b) If any artificials remain in the basis at the end of Phase I, use each of the
three methods of handling artificials in the basis.

(c) Apply Phase II to obtain an optimal solution.

3.17 Consider the following 3-equation, 5-variable linear program.

Minimize 2x1 + 3x2 + 4x3 + x4 + x5 = z
subject to 2x1 + x2 + x3 + x4 + x5 = 10

2x1 + 3x3 + 2x4 = 6
x2 − 2x3 − x4 + x5 = 4

xj ≥ 0, j = 1, . . . , 5.

(a) Apply Phase I of the Simplex Method to obtain a feasible solution to the
linear program.

(b) Show that an artificial remains in the basis at the end of Phase I because
the constraints are redundant.

(c) Apply Phase II to obtain an optimal solution.

3.18 Consider the following 3-equation, 4-variable linear program.

Maximize x1 = z
subject to x1 + 3x2 + 4x3 + x4 = 20

2x1 + x3 = 5
−7x1 + 3x2 + x4 = 0
xj ≥ 0, j = 1, . . . , 4.

(a) Apply Phase I of the Simplex Method to obtain a feasible solution to the
linear program.

(b) Show that an artificial remains in the basis at the end of Phase I because
the constraints are redundant.

(c) Apply Phase II to solve the problem.

3.19 Consider the following two variable linear program.

Maximize x1 + x2 = z
subject to x1 − x2 ≥ 1

x1 + x2 ≤ 3
2x1 − x2 ≤ 3
x1 ≥ 0, x2 ≥ 0.

(a) Plot the feasible region.
(b) Solve the problem graphically.
(c) Show graphically that the optimal solution is degenerate.
(d) On the figure, indicate which constraint can be dropped to obtain a non-

degenerate optimal solution.
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3.20 The purpose of this exercise is to examine the effect of changes to an optimal
solution as a result of changes to data.

Minimize 4x1 + 3x2 + 2x3 + 1x4 = z
subject to 2x1 − 3x2 + x3 + 2x4 = 10

1x1 + 4x2 − 2x3 + 3x4 ≥ 16
xj ≥ 0, j = 1, . . . , 4.

(a) Solve the linear program using the DTZG Simplex Primal software option.
(b) Change the cost on x4 from 1 to 4 and re-solve the problem. Change it to

8 and re-solve the problem. How does the solution change in each case?
(c) Change the coefficient of x2 in the second equation from a22 = 4 to a22 = 5

and re-solve the problem. How does the solution change?
(d) Decrease the right hand side b1 = 10 on the first equation to 8 and re-solve

the problem. Next increase it to b1 = 12 and re-solve. Finally, increase it
to b1 = 20 and re-solve. Examine how the solution changes in each case.

(e) Add a new activity 5 with level x5 ≥ 0 to the problem with c5 = −1,
a15 = −2, a25 = −3. Re-solve the problem and indicate how the solution
changes. How could you have predicted this based on your original run?

(f) Add a new activity 6 with level x6 ≥ 0 to the problem with c6 = −2,
a16 = 2, a16 = 3. Re-solve the problem and indicate how the solution
changes. How could you have predicted this based on your original run?

(g) Add in turn the following rows to the original problem and examine how
the solution changes:

• x1 + x2 + x3 + x4 ≥ 4.
• 2x1 + 2x2 + 4x3 + x4 ≤ 8.
• x1 + x2 + x3 + x4 = 6.

3.21 Consider the linear program

Minimize 2x1 + x2 + 3x3 = z
subject to x1 + 2x2 + x3 ≤ 6

2x1 + x3 ≤ 4
xj ≥ 0, j = 1, . . . , 3.

(a) Add slack variables x4 and x5 to the inequality constraints. Starting with
x4 and x5 as basic variables, solve the linear program by hand using the
Revised Simplex Method.

(b) Multiply the second constraint by 2 and re-solve the problem. What is
the effect on the multipliers π1 and π2? What is the effect on the optimal
solution?

3.22 Solve the following linear program by the Revised Simplex Method by hand,
starting with a full artificial basis.

Minimize x1 − 3x2 + x3 = z
subject to 2x1 + x2 + x3 = 6

x1 + x2 − x3 = 2
xj ≥ 0, j = 1, . . . , 3.
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Change the first inequality to be a ‘≤’ inequality. Re-solve the problem; this
time add a slack variable x4 to the first constraint and an artificial variable x5

to the second constraint and minimize w = x6.
3.23 Consider the following bounded variable linear program:

Minimize 4x1 + 2x2 + 3x3 = z
subject to x1 + 3x2 + x3 = 5

2x1 − x3 = 1
0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ ∞, 1 ≤ x3 ≤ ∞.

(a) Solve the problem by hand.
(b) Solve it using the DTZG Simplex Primal software option to verify your so-

lution.

3.24 Consider the following bounded 2-equation, 4-variable linear program:

Minimize 2x1 + x2 + 3x3 + 2x4 = z
subject to x1 + x2 + 3x3 − x4 = 7

x1 + 2x2 + 2x3 + x4 = 5
x1 + x3 = 3
0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ ∞, 1 ≤ x3 ≤ 4, −4 ≤ x4 ≤ −1.

(a) Solve the problem by hand.
(b) Solve it using the DTZG Simplex Primal software option to verify your so-

lution.

3.25 Apply Phase I of the Simplex Method by hand to show that the following linear
program is infeasible:

Maximize x1 − 3x2 + 2x3 = z
subject to x1 + 2x2 + 3x3 ≤ 5

2x1 + 3x2 + 2x3 ≤ 4
2 ≤ x1 ≤ 4, −∞ ≤ x2 ≤ −1, 3 ≤ x3 ≤ 8.

3.26 Consider the following bounded variable linear program:

Minimize x1 − 3x2 + 2x3 = z
subject to x1 + 2x2 + x3 ≤ 2

2x1 + x2 + 4x3 ≤ 4
0 ≤ x1 ≤ 2, −∞ ≤ x2 ≤ 0, −2 ≤ x3 ≤ 2.

(a) Solve the problem by hand and show that it has a class of solutions that
cause the objective function to go to −∞.

(b) Solve it using the DTZG Simplex Primal software option to verify your so-
lution.

3.27 Consider the following 2-equation, 4-variable linear program.

Minimize 9x1 + 2x2 + 4x3 + 8x4 = z
subject to 2x1 + x2 + x3 + 3x4 ≥ 20

3x1 − x2 + x3 − x4 ≥ 10
xj ≥ 0, j = 1, . . . , 4.
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(a) Solve the problem by hand or by the DTZG Simplex Primal software option.
(b) Show that the linear program has multiple optimal solutions.
(c) Find every basic feasible optimal solution.

3.28 Big-M Method. Suppose that we are trying to find the solution to the following
linear program:

Minimize −2x1 − 3x2 = z
subject to x1 + 2x2 ≤ 4

x1 + x2 = 3
x1 ≥ 0, x2 ≥ 0.

To initiate the Simplex Method we add a slack x3 ≥ 0 to the first constraint
and an artificial variable x4 ≥ 0 to the second constraint and then construct a
Phase I objective w = x4 and minimize w. With the Big-M method we solve
the linear program in one pass by solving the problem:

Minimize −2x1 − 3x2 + 0x3 + Mx4 = z
subject to x1 + 2x2 + x3 = 4

x1 + x2 + x4 = 3
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0,

where M is a large, prespecified positive number, and (x3, x4) are chosen to
form the starting basic feasible solution.

(a) Solve the above linear program with M = 100.
(b) Plot the steps of the algorithm in (x1, x2) space.
(c) Re-solve the original problem using the Phase I/Phase II approach.
(d) Plot the steps of the Phase I/Phase II algorithm in (x1, x2) space and

compare with the Big-M method.

3.29 Consider the following linear program:

Minimize x1 + x2 = z
subject to 2x1 + x2 = 4

3x1 + 2x2 ≥ 5
x1 ≥ 0, x2 ≥ 0.

(a) Solve the above linear program by the Big-M method of Problem 3.28 with
M = 100.

(b) Plot the steps of the algorithm in (x1, x2) space.

3.30 Solve the following linear program by the Big-M method described in Prob-
lem 3.28

Minimize −x1 − 2x2 + 3x3 = z
subject to 2x1 − x2 + 4x3 = 5

3x1 + 2x2 − x3 ≤ 4
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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3.31 Using the Big-M method described in Problem 3.28 show that the following
linear program is infeasible.

Minimize −2x1 + 3x2 − 3x3 = z
subject to 4x1 + x2 + x3 = 5

x1 + x2 + x3 ≥ 6
x1 ≥ 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

3.32 Suppose that you apply the Big-M method to solve a linear program and ob-
tain an unbounded solution. Does this imply that the original problem has an
unbounded solution?

3.33 Suppose that the following LP problem is feasible:

Minimize cTx
subject to Ax ≥ b, A : m× n,

x ≥ 0.

Show that z∗ → −∞ if and only if there exists an x̄ �= 0 such that x̄ ≥ 0,
Ax̄ ≥ 0, cTx̄ < 0.

3.34 Show that the system of equations

x1 + x2 − x3 + x4 = 1
− 4x2 + x3 + x5 = 2
− 3x2 + x3 + x6 = 3

has an unbounded solution.
3.35 Given a linear program Ax = b, x ≥ 0, and cTx = min. Prove that you can

(a) add a set of the columns to produce new columns with new nonnegative
variables, and

(b) add or subtract equations

without affecting the optimal solution.
3.36 Show that a one-equation linear program can be solved in at most one iteration.

Specifically, show how to choose the entering variable. What are your conclu-
sions on different cases that might arise. You can assume that the problem is
given in canonical form with respect to the variable x1 as follows:

Minimize c2x2 + c3x3 + · · · + cnxn = z
subject to x1 + a2x2 + a3x3 + · · · + anxn = b,

where b > 0.
3.37 Dantzig [1963]. Show, by changing units of any activity k whose c̄k < 0, that xk

can be chosen by the rule of c̄s = min c̄j to be the candidate to enter the next
basic set. Can you suggest another selection rule that might be better; does it
involve more work?

3.38 Consider an LP in canonical form (3.11).

(a) The standard Simplex Method determines the incoming column by selecting
the column that maximizes the decrease in the objective function per unit
increase of the incoming variable. In terms of the given canonical form,
indicate how the standard Simplex Method determines the pivot row and
pivot column.
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(b) A pivoting method is scale-invariant if the selection of pivot row and col-
umn remains unchanged under any positive scaling of some (or all) of the
variables. A positive scaling of a variable xj is of the form x′

j = djxj where
dj > 0. Is the standard Simplex Method scale-invariant? Justify your
answer.

(c) An alternative pivoting method is to choose the pivot row and column so as
to maximize the decrease in the objective function at each pivot step while
maintaining feasibility. In terms of the canonical form, describe how this
method determines the pivot row and pivot column.

(d) Is the method in (c) scale-invariant? Justify your answer.

3.39 Suppose that Phase I of the Simplex Method is applied to the system Ax = b,
x ≥ 0, and the procedure results in infeasibility. Show that the method has gen-
erated infeasibility multipliers. How can we derive the infeasibility multipliers
from the final tableau?

3.40 Suppose that for an LP in standard form, the system Ax = b has rank r < m,
i.e., it has m− r redundant equations.

(a) Show that there will be at least k = m − r artificial variables left in the
tableau at the end of Phase I.

(b) Show that if these k artificial variables are dropped from the tableau, then
the subsystem of equations associated with these artificial variables also has
m−r redundant equations and that if k = m−r, then the associated m−r
equations are vacuous.

3.41 T. Robacker in Dantzig [1963]. In some applications it often happens that
many variables initially in the basic set for some starting canonical form remain
until the final canonical form, so that their corresponding rows in the successive
tableaux of the Simplex Method, though continuously modified, have never
been used for pivoting. Devise a technique for generating rows only as needed
for pivoting and thereby avoiding needless work.

3.42 Bazarra, Jarvis, & Sherali [1990]. Consider the following two problems where
Ax = b, x ≥ 0 form a bounded region.

Minimize xn = z
subject to Ax = b, A : m× n,

x ≥ 0,

and
Maximize xn = z
subject to Ax = b, A : m× n,

x ≥ 0.

Let the optimal objective values of the two problems be x′
n and x′′

n respectively.
If xn is a number in the interval [x′

n, x
′′
n], show that there exists a feasible point

whose nth component is equal to xn.
3.43 Suppose that one equation of a linear program in standard form has one positive

coefficient, say that of xk, while all remaining coefficients of the equation are
nonpositive and the constant b is positive. This implies that xk > 0 for any
solution, whatever the values of the remaining xj ≥ 0. Pivot on any nonzero
term in xk to eliminate xk from the remaining equations and set aside the one
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equation involving xk. Prove that the resulting linear program in one fewer
equation and one fewer variable can be solved to find the optimal solution of
the original problem.

3.44 If it is known in advance that a solution cannot be optimal unless it involves a
variable xk at positive value, show that this variable can be eliminated and the
reduced system with one fewer equation and variable solved in its place.

3.45 Suppose that we assume that x1, which has a nonzero coefficient in row 1, is in
the optimal solution of a linear program and eliminate it from rows 2, . . . ,m and
from the objective function. Next we solve the linear program without row 1
to obtain an optimal solution. Then we substitute the values of x2, x3, . . . , xm
into the original row 1 to obtain the value of x1. Show that

(a) If x1 ≥ 0 then the solution x1, x2, . . . , xm is optimal.
(b) If x1 < 0 then its value must be zero in an optimal solution.

3.46 Show that if a linear program is feasible and the set of feasible solutions is
bounded, the linear program cannot have a homogeneous solution.

3.47 Suppose that the linear program

Minimize cTx
subject to Ax = b, A : m× n,

x ≥ 0

has a finite optimal solution. Show that if the right-hand side is changed from
b to some b′, the resulting linear program is either infeasible or has a finite
optimal feasible solution. Thus, by changing the right-hand side, we cannot
make a linear program, with a finite optimal solution, into a linear program
that is unbounded below.

3.48 Ph.D. Comprehensive Exam, June 13, 1968, at Stanford. In a Leontief substi-
tution model, there are m items that can be produced within the system. Let
the constant bi, i = 1, . . . ,m, denote the annual amount to be delivered by the
system to satisfy external demands.
Each process produces one and only one item j for j = 1, . . . ,m. Let the index
jk identify the kth alternative process for producing item j, and let the unknown
xjk denote the number of units of item j produced annually by process k, where
k = 1, . . . , n. In order to produce one unit of item j by process k, it requires aijk

units of input of item i, and a cost of cjk is incurred. The coefficients aijk ≥ 0,
and for each jk pair

m∑
i=1

aijk < 1.

(a) Formulate the linear programming model as one of meeting the annual
delivery requirements at minimum cost.

(b) Suppose that bi > 0, for i = 1, . . . ,m. Prove that in any basic feasible
solution to the linear programming problem formulated in part (a), exactly
one of the k alternative processes for item j will be operated at positive
intensity.

(c) Suppose that bi ≥ 0, for i = 1, . . . ,m. Prove that there exists a basic
feasible linear programming solution.
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(d) Prove that if we have an optimal solution with shadow prices (multipliers)
πoi for a particular set of delivery requirements boi , the same shadow prices
will also be optimal for any set of delivery requirements such that bi ≥ 0.

3.49 Ph.D. Comprehensive Exam, November 1995, at Stanford. Consider the linear
program:

Minimize
n∑

j=1

cjxj = z

subject to
n∑

j=1

Pjxj = b, Pj ∈ 
m

xj ≥ 0, for j = 1, . . . , n.

Suppose that z = z∗, xj = x∗j for j = 1, . . . , n is a nondegenerate optimal basic
feasible solution. A new activity vector is being considered for augmenting the
problem to

Minimize
n∑

j=1

cjxj + cn+1xn+1 = z

subject to
n∑

j=1

Pjxj + Pn+1xn+1 = b, Pj ∈ 
m

xj ≥ 0, for j = 1, . . . , n.

(a) How would you test whether the column n+1 is a candidate for improving
the solution?

(b) Assume that column n + 1 passes the test and xn+1 enters the basic set,
displacing xr. Let z = ẑ, xj = x̂j for j = 1, . . . , n+ 1 be the updated basic
feasible solution. Prove that it is a strict improvement, i.e., ẑ < z∗.

(c) Suppose the augmented problem is now iterated to a new optimal solution.
Prove that xn+1, once in, never leaves the basic set.
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C H A P T E R 4

INTERIOR-POINT

METHODS

An interior-point algorithm is one that improves a feasible interior solution point of
the linear program by steps through the interior, rather than one that improves by
steps around the boundary of the feasible region, as the classical Simplex Algorithm
does.

Just as there are many variants of the Simplex Method (which we refer to as
pivot-step algorithms), so there are many variants of interior methods such as pro-
jective, affine, and path-following. Some interior-point methods inscribe an ellip-
soidal ball in the feasible region with its center at the current iterate, or first trans-
form the feasible space and then inscribe a hypersphere with the current iterate at
the center. Next an improving direction is found by joining the current iterate to
the point on the boundary of the ellipsoid or sphere that maximizes (or minimizes)
the linear objective function (obtained by solving a linear system of equations). A
point is then selected on the improving direction line as the next current iterate.
Sometimes this iterate is found along a line that is a linear combination of the
improving direction and some other direction.

During the period 1979–1996, there has been intensive interest in the develop-
ment of interior-point methods. These methods are related to classical least-square
methods used in numerical analysis for making fits to data or fitting simpler func-
tional forms to more complicated ones. Therefore interior research can tap a vast
literature of approximation theory. A theoretical breakthrough came in 1979; the
Russian mathematician L.G. Khachian discovered an ellipsoid algorithm whose run-
ning time in its worst case was significantly lower than that of the Simplex Algo-
rithm in its worst case—its iterates are not always required to be feasible. Other
theoretical results quickly followed, notably that of N. Karmarkar who discovered
an interior-point algorithm whose running time performance in its worst case was

113
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significantly lower than that of Kachiyan’s. This in turn was followed by more
theoretical results by others improving on the worst-case performance.

It soon became apparent that these worst-case running times were many, many
times greater than the actual running times of the Simplex Method on practical
problems and totally misleading as to what algorithm to choose for solving practical
problems. It appears that the problems encountered in practical applications belong
to a very specialized class (that is yet to be characterized in a simple way). Or to
put it in another way, the class of problems simply described by Ax = b, x ≥ 0,
cTx = min is much too broad, and the worst-case examples drawn from this very
broad class are far different from anything ever encountered in practical applications
or likely ever to be encountered in the future.

Attempts to characterize in a simple way the class (or classes) of practical prob-
lems from which one could derive a theoretical explanation of the excellent perfor-
mance times of various algorithms in practice have, in general, failed. In special
cases, such as the shortest path problem, the worst-case performance and perfor-
mance on actual problems are comparable, and the algorithms are very efficient.
There has been progress proving that average performance on classes of randomly
generated problems using a parametric variant of the Simplex Method resembles
that obtained on practical problems, but no one claims that these randomly gener-
ated problems belong to the class of practical problems.

Because the theoretical results are totally misleading as to what algorithm to
choose to solve a practical problem, a different approach is used. The linear pro-
gramming profession has accumulated a large collection of test problems drawn
from practical sources. These are used to compare running times of various pro-
posed algorithms. The general goal of these efforts is to develop algorithms that
surpass the performance of the Simplex Method on this collection of problems. For
example, Karmarkar claimed that on very large problems his technique is signifi-
cantly faster. As of this writing, as far as the authors of this book can ascertain,
there appears to be no algorithm that is a clear winner, i.e., solves all (or almost
all of) the test problems faster than all the other proposed methods. On problems
with many bounding hyperplanes in the neighborhood of the optimum point, an
interior-method will probably do better. On problems with relatively few boundary
planes (which is often the case in practice) an exterior method will be hard to beat.
For this reason, it is likely that the commercial software of the future will be some
sort of a hybrid, because one does not know which kind of problem is being solved or
because one wishes to obtain an extreme-point solution. Many specialized, efficient
codes have been proposed for solving structured linear programs such as network
problems, staircase problems, and block-angular systems.

Here we illustrate the primal affine method which is the same as Dikin’s method,
and which has the distinction of having been rediscovered by many.
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Figure 4-1: Comparison of a Move from a Point x̂t Near the Center Versus a Point
x̄t Near the Boundary.

4.1 BASIC CONCEPTS

In interior-point methods for solving linear programs, we are given, or must be
able to find, an initial starting interior feasible point from which we proceed to an
improved interior feasible point, and so on, eventually stopping by some criterion.

Our development here of an interior-point method will be for solving a linear
program in standard form:

Minimize cTx = z
subject to Ax = b, A : m× n,

x ≥ 0.
(4.1)

The rationale for the approach is based on the following observations. When
minimizing, one is first tempted to move from the current solution xt in the di-
rection of steepest descent of the objective function (i.e., in the negative gradient
of the objective function, which is the same as moving orthogonal to the objective
hyperplane cTx = constant). If the current iterate xt is an interior point, so that
xt > 0, such a move will in general violate the constraints Ax = b. To adjust for
this, one typically moves instead in the direction given by the projection of the
negative gradient of the objective onto the hyperplanes Ax = b. However, if xt is
close to the boundary hyperplanes, as xt = x̄t is in Figure 4-1, very little improve-
ment will occur. On the other hand, if the current iterate happens to be near the
“center,” such as xt = x̂t in Figure 4-1, there could be a big improvement.

The key ideas behind interior-point methods are as follows, assuming an initial
feasible interior point is available and that all moves satisfy Ax = b:

1. Try to move through the interior in directions that show promise of moving
quickly to the optimal solution.

2. Recognize that if we move in a direction that sets the new point too “close” to
the boundary, this will be an obstacle that will impede our moving quickly to
an optimal solution. One way around this is to transform the feasible region
so that the current feasible interior point is at the center of the transformed
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feasible region. Once a movement has been made, the new interior point is
transformed back to the original space, and the whole process is repeated with
the new point as the center.

MAINTAINING FEASIBILITY

It is clear that the feasible point must satisfy Ax = b. Hence the only feasible
interior points x = xt are those that satisfy Axt = b and xt > 0. As a result,
whenever we move from a point (in the original space or transformed space) xt to
xt+1 = xt + αpt, with α > 0, we need to satisfy Axt+1 = b and xt+1 > 0. This
implies that

Axt+1 = A(xt + αpt) = b+ αApt. (4.2)

Since α �= 0, the above equation implies that in order to stay feasible, pt must
satisfy

Apt = 0. (4.3)

In other words, pt �= 0 must be orthogonal to the rows of A. A vector direction pt

that satisfies Apt = 0 is said to belong to the null space of A. It is easy to see that
the matrix

P = I −AT(AAT)−1A, (4.4)

called the projection matrix, will transform any vector v into Pv = p, and p will
be in the null space of A because AP = 0 is the zero matrix. Hence, in order to
maintain feasibility, every move from xt to xt+1 must be in the null space of A, i.e.,
pt = Pv for some vector v.

STEEPEST DESCENT DIRECTION

The next thing to note is that the direction of maximum decrease or steepest descent
is the direction that is the negative of the gradient of the objective function z.
Hence, the direction of steepest descent is −c. However, the condition that we must
maintain feasibility implies that we must move in the direction of steepest descent
projected into the null space of A. That is,

pt = −Pc. (4.5)

Such a direction is called a projected gradient direction. To see that such a direction
is a direction of decrease, let xt+1 = xt + αpt, with α > 0 and pt = −Pc. Then

cTxt+1 = cT
(
xt + αpt

)
= cTxt − αcTPc

≤ cTxt, (4.6)

where the last inequality follows because P has the property that P = PTP , and
therefore

cTPc = cTPTPc = (Pc)T(Pc) ≥ 0.

� Exercise 4.1 Prove PTP = P , where P is defined by (4.4).
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STAYING IN THE INTERIOR

We plan to stay in the interior of x ≥ 0 by limiting the amount of movement
α > 0 in the direction pt. The quantity α, called the steplength, is chosen to ensure
feasibility of the nonnegativity constraints. However, we do not want to move all the
way to the boundary because we want to avoid the need to move to the boundary
on subsequent iterations. Hence we move some portion of the way towards the
boundary. Based on the experience of others on practical problems, moving 50% to
90% of the way is a simple good rule for the primal affine/Dikin’s method that we
are about to describe.

CENTERING

What is left is the procedure for transforming the space so that an interior point xt

is the “center” point in the transformed space. The basic idea is very simple—
we change the scaling of the solution so that each component is equidistant from
the constraint boundaries in the transformed feasible region; for example, after
rescaling, xt = e, where e = (1, 1, . . . , 1)T. Let D = Diag (xt) be the diagonal
matrix having the components of the current iterate xt as the diagonal elements.
The simplest such scheme is to rescale x by setting x = Dx̂, so that x̂t = e.
Substituting x = Dx̂ in (4.1) we obtain

Minimize ĉTx̂ = z

subject to Âx̂ = b, Â : m× n,
x̂ ≥ 0,

(4.7)

where ĉ = Dc and Â = AD. As a result of this transformation, clearly the projection
matrix for the system (4.7) is now defined by

P̂ = I − ÂT(ÂÂT)−1Â. (4.8)

Hence at each iteration t, we rescale xt to x̂t = e and move to x̂t+1 in the
negative projected gradient direction −P̂ ĉ; thus

x̂t+1 = e− αP̂ ĉ, (4.9)

where e = (1, 1, . . . , 1)T and P̂ and ĉ are defined as above. Finally, we rescale back
to the original space by setting xt+1 = Dx̂t+1. Next we repeat the iterative process
replacing D by D = Diag (xt+1).

STOPPING RULE

The only item left out in our discussion is the stopping rule. The simple rule typi-
cally followed is to stop with an approximate optimal solution when the difference
between iterates xt+1 and xt is “deemed” sufficiently small in the original space.
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4.2 PRIMAL AFFINE / DIKIN’S METHOD

Now we are prepared to write down the specific steps of the primal affine algorithm
and illustrate it with an example. The name affine method results from the following
definition:

Definition (Affine Transformation): Let F be an n× n nonsingular matrix
and let d ∈ �n. The transformation y = Fx + d is called an affine transfor-
mation of x into y.

In the literature, an interior-point method that uses an affine transformation to
obtain the search direction is called an affine method.

The algorithm is described with P̂ computed explicitly. In practice P̂ is never
computed; instead, p = −P̂ ĉ is computed directly using a QR factorization or
Cholesky factorization.

Algorithm 4.1 (Primal Affine/Dikin’s Method) Assume that an initial feasible
interior point solution x = xo > 0 satisfying Axo = b is known. The steps of the algorithm
are as follows:

1. Initialize Counter: Set t← 0.

2. Create D: Set D = Diag (xt).

3. Compute Centering Transformation: Compute Â = AD, ĉ = Dc.

4. Determine the Projection Matrix: Compute P̂ = I − ÂT(ÂÂT)−1Â.

5. Compute Steepest Descent Direction: Set pt = −P̂ ĉ.
6. Set θ = −minj ptj .
7. Test for Unbounded Objective. If θ ≤ 0.0 report the objective as being unbounded

and stop.

8. Obtain x̂t+1: Compute

x̂t+1 = e+
(
α

θ

)
pt,

where e = (1, 1, . . . , 1)T and α is set to a number strictly between 0 and 1. Typically,
α is set to be between 0.5 and 0.95 for primal affine methods (in most implementa-
tions it is set between 0.9 and 0.95).

9. Transform Back to Original Space: Compute xt+1 = Dx̂t+1.

10. Termination Check: If xt+1 is “close” to xt, report xt+1 as “close” to optimal and
stop.

11. Set t← t+ 1 and go to Step 2.

Example 4.1 (Illustration of the Primal AffineMethod) Consider the two-variable
example

Minimize −2x1 − x2 = z
subject to x1 + x2 ≤ 5

2x1 + 3x2 ≤ 12
and x1 ≥ 0, x2 ≥ 0.
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An initial starting feasible interior solution xo1 = 1, xo2 = 2 is given.
We start by transforming this into the standard form by adding slack variables x3 and

x4 to obtain
Minimize −2x1 − x2 = z
subject to x1 + x2 + x3 = 5

2x1 + 3x2 + x4 = 12
and xj ≥ 0 for j = 1, . . . , 4.

The corresponding feasible interior-point starting solution is

xo = ( 1 2 2 4 )T . (4.10)

The objective value at xo is zo = −4.
We start the first iteration by setting the scaling matrix D to be

D =




1
2

2
4


 . (4.11)

The rescaled Â matrix and objective function coefficient ĉ are computed as

Â = AD =

(
1 1 1 0
2 3 0 1

)


1
2

2
4


 =

(
1 2 2 0
2 6 0 4

)
, (4.12)

ĉ = Dc =




1
2

2
4





−2
−1
0
0


 =



−2
−2
0
0


 . (4.13)

Next we compute the projection matrix P̂ :

P̂ = I − ÂT
(
ÂÂT

)−1
Â

=




1
1

1
1


−




1 2
2 6
2 0
0 4





(
1 2 2 0
2 6 0 4

)


1 2
2 6
2 0
0 4






−1(
1 2 2 0
2 6 0 4

)

=




.8831 −.2597 −.1818 −.0519
−.2597 .3117 −.1818 −.3377
−.1818 −.1818 .2727 .3636
−.0519 −.3777 .3636 .5325


 . (4.14)

Hence the projected gradient is

po = −P̂ ĉ = −




.8831 −.2597 −.1818 −.0519
−.2597 .3117 −.1818 −.3377
−.1818 −.1818 .2727 .3636
−.0519 −.3777 .3636 .5325





−2
−2
0
0


 =




1.2468
0.1039

−0.7273
−0.7792


 . (4.15)

Next we pick θ by
θ = −min

j
poj = .7792. (4.16)
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Next we rescale the current iterate to x̂o = D−1xo = e and move to x̂1 in the transformed
space:

x̂1 =




1
1
1
1


+

α

θ
po =




1
1
1
1


+

0.5
.7792




1.2468
0.1039

−0.7273
−0.7792


 =




1.8000
1.0667
0.5333
0.5000


 . (4.17)

Transforming this point to the original space we obtain

x1 = Dx̂1 =




1
2

2
4






1.8000
1.0667
0.5333
0.5000


 =




1.8000
2.1333
1.0667
2.0000


 . (4.18)

The objective value at x1 is z1 = −5.7333. This completes the first iteration of the method.
Because x1 is quite different from xo we proceed to the next iteration.

We update the scaling matrix D to Diag (xt+1):

D =




1.8000
2.1333

1.0667
2.0000


 . (4.19)

The rescaled Â matrix and objective function coefficient ĉ are computed as

Â = AD =

(
1 1 1 0
2 3 0 1

)


1.8000
2.1333

1.0667
2.0000




=

(
1.8000 2.1333 1.0667 0.0000
3.6000 6.4000 0.0000 2.0000

)
, (4.20)

ĉ = Dc =




1.8000
2.1333

1.0667
2.0000





−2
−1
0
0


 =



−3.6000
−2.1333
0.0000
0.0000


 . (4.21)

Next we need to compute the projection matrix P̂ . This is

P̂ = I − ÂT
(
ÂÂT

)−1
Â

=




.6203 −.3718 −.3031 .0733
−.3718 .2885 .0505 −.2539
−.3031 .0505 .4106 .3841
.0733 −.2539 .3841 .6806


 . (4.22)

Hence the projected gradient is

p1 = P̂ ĉ =




.6203 −.3718 −.3031 .0733
−.3718 .2885 .0505 −.2539
−.3031 .0505 .4106 .3841
.0733 −.2539 .3841 .6806





−3.6000
−2.1333
0.0000
0.0000


 =




1.4399
−0.7231
−0.9836
−0.2779


 .

(4.23)
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Next we pick θ by
θ = −min

j
p1
j = 0.9836 (4.24)

Next we rescale the current iterate to x̂1 = D−1x1 = e and move to x̂2 in the transformed
space:

x̂2 =




1
1
1
1


+

α

θ
p =




1
1
1
1


+

0.5
0.9836




1.4399
−0.7231
−0.9836
−0.2779


 =




1.7320
0.6324
0.5000
1.8588


 . (4.25)

Transforming this point to the original space, we obtain

x2 = Dx̂2 =




1.8000
2.1333

1.0667
2.0000






1.7320
0.6324
0.5000
1.8588


 =




3.1175
1.3492
0.5333
1.7175


 . (4.26)

The objective value is z2 = −7.5842. This completes the second iteration of the method.
Because x2 is quite different from x1 we proceed to the next iteration. We leave the rest
of the iterations as an exercise for the reader.

It is clear that the solution of the above problem using the primal affine method will
take many more iterations than the Simplex Method. However, the experience with very
large practical problems indicates that interior-point methods tend to solve faster than the
Simplex Method.

� Exercise 4.2 Complete the steps of the algorithm on Example 4.1 using the Primal
Affine / Dikin software option.

4.3 INITIAL SOLUTION

So far we have assumed that an initial feasible interior-point solution is available.
If an initial feasible interior solution is not available, we can easily generate one by
picking an arbitrary xo > 0, say xo = e where e = (1, 1, . . . , 1)T, and setting up the
following linear program with one artificial variable xa ≥ 0 and M (called “Big-M”
in the literature) a large scalar constant:

Minimize cTx + Mxa = z
subject to Ax + (b−Ax0)xa = b x ≥ 0, xa ≥ 0. (4.27)

Then x = x0 > 0 and xa = 1 is clearly a feasible solution to (4.27).

Example 4.2 (Initial Feasible Point) Consider the two-variable example described
in Example 4.2 with the slacks put in:

Minimize −2x1 − x2 = z
subject to x1 + x2 + x3 = 5

2x1 + 3x2 + x4 = 12
and xj ≥ 0 for j = 1, . . . , 4.
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We pick an arbitrary
xo = ( 1 1 1 1 )T .

Then we compute the quantity b−Axo:

b−Axo =

(
5
12

)
−
(
1 1 1 0
2 3 0 1

)


1
1
1
1


 =

(
2
6

)
.

Hence we create the following linear program with M = 1000:

Minimize −2x1 − x2 + 1000xa = z
subject to x1 + x2 + x3 + 2xa = 5

2x1 + 3x2 + x4 + 6xa = 12
and xj ≥ 0 for j = 1, . . . , 4 and xa ≥ 0.

Then a starting feasible solution is xo = e, where e = (1, 1, . . . , 1)T, and xa = 1.

� Exercise 4.3 Solve the problem in Example 4.2 using the Primal Affine / Dikin
software option.

See Problems 4.4 and 4.5 and Section 4.4 for a further discussion of the Big-M
Method.

4.4 NOTES & SELECTED BIBLIOGRAPHY
Interior-point methods are not recent, they have been around for a very long time. For
example, in chronological order, von Neumann [1947], Dantzig [1995] (based on an idea
of von Neumann, 1948), Hoffman, Mannos, Sokolowsky, & Wiegmann [1953], Tompkins
[1955, 1957], Frisch [1957], Dikin [1967]. (Fiacco & McMormick [1968] further developed
Frisch’s Barrier Method approach to nonlinear programming.) None of these earlier meth-
ods, including Khachian’s [1979] ellipsoidal polynomial-time method, turned out to be
competitive in speed to the Simplex Method on practical problems.

Interior-point methods became quite a popular way to solve linear programs in the late
1970s and early 1980s. However interior-point (and polynomial-time) methods have been
around for a very long time. For example, in chronological order, von Neumann [1947],
Hoffman, Mannos, Sokolowsky, & Wiegmann [1953], Tompkins [1955, 1957], Frisch [1957],
Dikin [1967], and Khachian [1979]. (Fiacco & McMormick [1968] further developed Frisch’s
Barrier Method approach to nonlinear programming.) None of these earlier methods
turned out to be competitive in speed on practical problems to the Simplex Method.

In 1979, Khachian presented an algorithm, based on a nonlinear geometry of shrinking
ellipsoids, with a worst-case polynomial-time bound of O(n6L2

B) (where LB is the number
of bits required to represent the input data on a computer). Given an open set of inequal-
ities of the form Ax < b, where A is m× n with m ≥ 2, n ≥ 2, Khachian’s algorithm
either finds a feasible point if the system is nonempty or demonstrates that no feasible
point exists. Assuming that the inequalities have a feasible solution, the method starts by
drawing a ball that is large enough to contain a sufficiently large volume of the feasible
space defined by the inequalities Ax < b. If the center of the ball is within the open set of
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inequalities, a feasible solution has been found and the algorithm terminates. If a feasible
solution is not obtained, the method proceeds to the next iteration by constructing an
ellipsoid of smaller volume that contains the feasible space of the inequalities contained in
the previously drawn ball. If the center of the ellipsoid is in the feasible space of Ax < b,
we have found a feasible solution; otherwise the method proceeds to the next iteration
by constructing another ellipsoid of smaller volume, and so on. The theory developed by
Khachian states that if a feasible solution exists, then the center of some ellipsoid will lie
in the feasible space within a number of iterations bounded by some polynomial expression
in the data. Although Khachian’s ellipsoid method has nice theoretical properties, unfor-
tunately it performs poorly in practice. First, the number of iterations tend to be very
large; and second, the amount of computation associated with each iteration is much more
than that with the Simplex Method. Khachian’s work specialized to linear programming
is based on earlier work done by Shor [1971a, 1971b, 1972a, 1972b, 1975, 1977a, 1977b] for
the more general case of convex programming. Other work that was influenced by Shor
and preceded Khachian was due to Judin & Nemirovskii [1976a,b,c]. Predating all this
was an article by Levin [1965] for convex programming.

In 1984, Karmarkar presented his interior point ellipsoid method with a worst-case
polynomial-time bound of O(n3.5L2

B), where LB , as defined above, is the number of bits
required to represent the input data on a computer. Claims by Karmarkar that his method
is much faster (in some cases 50 times faster) than the Simplex Method stimulated improve-
ments in the simplex-based algorithms and the development of alternative interior-point
methods. Up to 1996, no method has been devised to our knowledge that is superior for all
problems encountered in practice. Since the publication of Karmarkar’s [1984] paper there
have as of 1996 been well over a thousand papers published on interior-point methods. See
Kranich [1991] for a bibliography, M. Wright [1992] for a review of interior-point methods.
Also see Lustig, Marsten, & Shanno [1994] for a review of the computational aspects of
interior-point methods.

The primal affine method presented in this chapter (which is the same as Dikin’s
method) was rediscovered by Barnes [1986] and Vanderbei, Meketon, & Freedman [1986].
Dikin [1974] proved convergence of his method under primal nondegeneracy. Proofs of
convergence of Dikin’s iterates can also be found in Adler, Resende, Veiga, & Karmakar
[1989], Barnes [1986], Dantzig [1988a], Dantzig & Ye [1990], Monma & Morton [1987],
Vanderbei, Meketon, & Freedman [1986], and, under somewhat weaker assumptions, in
Vanderbei & Lagarias [1988].

A projected Newton Barrier method is described and related to Karmarkar’s method in
Gill, Murray, Saunders, Tomlin, & Wright [1986]. Dual approaches of both these methods
have also been developed, see Adler, Resende, Veiga, & Karmarkar [1989] and Renegar
[1988]. Megiddo [1988, 1986] first devised the theory for primal-dual interior-methods (see
Linear Programming 2 for details of the method) which has performed very well in practice.
Lustig, Marsten, & Shanno [1990, 1991a, 1991b, 1992a, 1992b, 1992c, 1994] implemented
and reported promising results for various versions of a primal-dual algorithm. For a
review of methods with a focus on computational results, see, for example, Gill, Murray,
& Saunders [1988] and Lustig, Marsten, & Shanno [1994].

For a description of various interior-point methods see Linear Programming 2. Also,
see Linear Programming 2 for a discussion on what to do in the event that M is not suffi-
ciently large that the vector xa goes to zero. Computational techniques (QR factorization,
Cholesky factorization) for solving linear progams by interior-point methods are dicsussed
in Linear Programming 2.
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4.5 PROBLEMS

4.1 Consider the linear program

Minimize 2x1 + x2 = z
subject to x1 + x2 = 2

x1 ≥ 0, x2 ≥ 0.

(a) Plot the feasible region.
(b) Starting with an initial interior feasible solution x1 = 1, x2 = 1, solve the

problem by hand by the primal affine method described in this chapter.
Plot each iteration and clearly show the direction of steepest descent that
was used.

(c) Solve the problem by the Primal Affine / Dikin software option.
(d) Solve it by the DTZG Simplex Primal software option and compare the

solution obtained to that obtained by the primal affine method.

4.2 Consider the linear program

Maximize x1 + x2 = z
subject to 2x1 + x2 ≤ 3

x1 ≤ 1
x1 ≥ 0, x2 ≥ 0.

(a) Plot the feasible region.
(b) Starting with an initial interior feasible solution x1 = 0.5, x2 = 0.5, solve

the problem by hand by the primal affine method described in this chapter.
Plot each iteration.

(c) Solve the problem by the Primal Affine / Dikin software option.
(d) Solve it by the DTZG Simplex Primal software option and compare the

solution obtained to that obtained by the primal affine method.

4.3 Consider the linear program

Minimize x1 − 2x2 = z
subject to x1 + 2x2 = 5

x1 ≥ 1
x1 ≥ 0, x2 ≥ 0.

(a) Plot the feasible region.
(b) Starting with an initial interior feasible solution x1 = 2, x2 = 1.5, solve

the problem by hand by the primal affine method described in this chapter.
Plot each iteration.

(c) Solve the problem by the Primal Affine / Dikin software option.
(d) Solve it by the DTZG Simplex Primal software option and compare the

solution obtained to that obtained by the primal affine method.
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4.4 Use the primal affine method to solve

Minimize 2x1 + 3x2 = z
subject to 2x1 + x2 ≤ 6

x1 ≥ 1
x1 ≥ 0, x2 ≥ 0

as follows:

(a) Plot the feasible region of the problem.
(b) Use the Big-M method of Section 4.3 to generate an initial feasible interior-

point solution.
(c) Plot the path taken by the iterates of the primal-affine method.

4.5 Apply the Big-M method of Section 4.3 to generate an initial feasible solution
to the linear program

Minimize x1 + x2 = z
subject to x1 + 2x2 ≥ 2

3x1 + 2x2 ≤ 1
x1 ≥ 0, x2 ≥ 0.

(a) Apply the primal affine method of this chapter and demonstrate that the
problem is infeasible.

(b) Solve the problem using the Primal Affine / Dikin software option.
(c) When in practice, the Big-M method is applied to large practical problems,

how do you think the choice ofM makes a difference in determining whether
the problem is infeasible.

4.6 Consider the following linear program:

Minimize −x1 = z
subject to x1 + x2 ≥ 4

x1 ≥ 0, x2 ≥ 0.

(a) Use the Big-M method of Section 4.3 to generate an initial feasible interior-
point solution.

(b) Apply the primal affine method of this chapter and demonstrate that the
problem is unbounded.

4.7 Solve the following problem by the primal affine method (software option Primal
Affine / Dikin) described in this chapter:

Minimize 3x1 + 2x2 + 4x3 = z
subject to x1 + x2 + x3 = 1

x1 + 3x2 − x3 = 0

and x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(4.28)

(a) Use the Big-M method of Section 4.3 to generate an initial feasible interior-
point solution.
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(b) Solve the problem by a two-phase procedure (similar to the Simplex Method)
as follows. Start by introducing an artificial variable as for the Big-M
method.

• Use a Phase I objective of the form min xa to solve the problem.
• Do Phase II. That is, drop the artificial variable and restart the method

with the feasible solution obtained at the end of Phase I and the real
objective of the problem.

(c) Compare the Big-M method with the two-phase method.

4.8 Solve the following linear program with a redundant constraint by hand with
the primal-affine method.

Minimize 3x1 − 2x2 = z
subject to x1 + x2 = 1

2x1 + 2x2 = 2

and x1 ≥ 0, x2 ≥ 0.

(4.29)

4.9 Consider the following linear program with a redundant constraint:

Minimize x1 + x2 + x3 + x4 + x5 = z
subject to x1 + 2x2 + x3 + x4 + 2x5 = 5

x1 − x2 = 1
3x1 + x3 + x4 + 2x5 = 7
xj ≥ 0, j = 1, . . . , 5.

(a) Solve the linear program by hand using primal-affine method. (You may
want to use mathematical software or spreadsheets to help with matrix
multiplications and solving of systems of equations.)

(b) Apply the Primal Affine / Dikin software option to solve the problem.
Explore the solution of the problem using different values of α (consider
at least 5 different values between 0.5 and 0.99, with 0.95 being one of the
values). Comment on your results.

4.10 Solve the following linear program:

Minimize −x1 = z
subject to x1 + x2 ≥ 4

x1 ≥ 0, x2 ≥ 0.

(a) Plot the feasible region.
(b) Apply the primal-affine method and display the iterates on your plot.

4.11 Consider the following linear program due to Klee & Minty [1972]:

Minimize
m∑
j=1

−10m−jxj

subject to

(
2
i−1∑
j=1

10i−jxj

)
+ xi + zi = 100i−1, for i = 1, . . . ,m

xj ≥ 0, zj ≥ 0, for j = 1, . . . ,m.

(4.30)
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If we apply the Simplex Method (using the largest coefficient rule) to solve
the problem (4.30), then it can be shown that the Simplex Method performs
(2m−1) iterations before finding the optimal solution. Apply the Primal Affine
/ Dikin software option for m ≥ 8 to solve the problem. Explore the solution
of the problem using different values of α (consider at least 5 different values
between 0.5 and 0.99). Comment on your results.

4.12 Solve the following problem using the Primal Affine / Dikin software option:

Minimize cTx
subject to Ax = b

x ≥ 0,

where A, b, and c are defined as follows:

Aij =
1

i+ j − 1
, for i, j = 1, . . . , 10,

bi =
10∑
j=1

Aij , for i = 1, . . . , 10,

cj = 1, for j = 1, . . . , 10.

Comment on your solution.
4.13 Use the Primal Affine / Dikin software option to solve the transportation

problem (1.4) on page 5.
4.14 How would you modify the primal affine method to handle upper and lower

bounds on the variables, assuming that on each variable at least one bound is
finite. Discuss how you would handle the case when a variable is unrestricted
in value. Hint: Replace each unrestricted variable by the difference of two
nonnegative variables (see Section 6.2).
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C H A P T E R 5

DUALITY

Earlier, see (1.6) and (1.8), we defined the dual of a linear program in standard
form, min z = cTx, Ax = b, x ≥ 0, as max v = bTπ, ATπ ≤ c. The original problem
in relation to its dual is called the primal. It is easy to prove, by rewriting the dual
in standard form, that the dual of the dual is the primal; see Exercise 5.2. Feasible
solutions to the primal and to the dual may appear to have little relation to one
another. Actually, there is a strong relationship between their objective values;
moreover, their optimal basic feasible solutions are such that it is possible to use
one to obtain the other readily. Commercial software is written using the primal
Simplex Method; as a result, it may sometimes be more convenient to use the dual
to obtain the solution to a linear programming problem than the primal.

5.1 DUAL AND PRIMAL PROBLEMS

5.1.1 VON NEUMANN SYMMETRIC FORM

Given the linear program in the form

PRIMAL: Find min z such that Ax ≥ b, x ≥ 0, cTx = z, (5.1)

von Neumann defined its dual as

DUAL: Find max v such that ATy ≤ c, y ≥ 0, bTy = v. (5.2)

This definition is equivalent to the one given above when the primal problem is
stated in standard form; see also Section 5.1.4.

� Exercise 5.1 Based on the above definition of a dual, prove that the dual of a dual is
a primal problem.

129
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Primal
Variables x1 ≥ 0 x2 ≥ 0 · · · xn ≥ 0 Relation Constants
y1 ≥ 0 a11 a12 · · · a1n ≥ b1
y2 ≥ 0 a21 a22 · · · a2n ≥ b2

Dual
...

...
...

...
...

...
...

ym ≥ 0 am1 am2 · · · amn ≥ bm
Relation ≤ ≤ · · · ≤ ≤

Max v
Constants c1 c2 · · · cn ≥ Min z

Table 5-1: Tucker Diagram

5.1.2 TUCKER DIAGRAM

To see more clearly the connection between the primal and dual problems, we shall
use Tucker’s detached coefficient array, Table 5-1. The primal problem reads across,
the dual problem down. A simple way to remember the direction of inequality is to
write the primal inequalities ≥ to correspond to the z-form being always ≥ min z,
and to write the dual inequalities ≤ to correspond to the v-form being always
≤ max v.

5.1.3 DUALS OF MIXED SYSTEMS

It is always possible to obtain the dual of a system consisting of a mixture of
equations, inequalities (in either direction), nonnegative variables, or variables un-
restricted in sign by changing the system to an equivalent inequality system in the
form (5.1). However, an easier way is to apply certain rules, displayed in Table 5-2,
which we will now discuss. Both the primal and dual systems can be viewed as con-
sisting of a set of variables with their sign restrictions and a set of linear equations
and inequalities, such that the variables of the primal are in one-to-one correspon-
dence with the equations and inequalities of the dual, and such that the equations
and inequalities of the primal are in one-to-one correspondence with the variables
of the dual. When the primal relation is a linear inequality (≥), the corresponding
dual variable of the dual is nonnegative; note in Table 5-2 that if the primal relation
is an equation, the corresponding dual variable will be unrestricted in sign.

As an illustration of these rules, consider the following example:

Example 5.1 (Dual of a Mixed Primal System) Suppose we have the following
mixed primal system find min z, x1 ≥ 0, x2 ≤ 0, x3 unrestricted, subject to

x1 + x2 + x3 = z (min)
x1 − 3x2 + 4x3 = 5
x1 − 2x2 ≥ 3

2x2 − x3 ≤ 4

(5.3)
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Primal Dual
Minimize Primal Objective Maximize Dual Objective
Objective Coefficients RHS of Dual
RHS of Primal Objective Coefficients
Coefficient Matrix Transposed Coefficient Matrix
Primal Relation: Dual Variable:
(ith) Inequality: ≥ yi ≥ 0
(ith) Inequality: ≤ yi ≤ 0
(ith) Equation: = yi unrestricted in sign

Primal Variable: Dual Relation:
xj ≥ 0 (jth) Inequality: ≤
xj ≤ 0 (jth) Inequality: ≥
xj unrestricted in sign (jth) Equation: =

Table 5-2: Correspondence Rules Between Primal and Dual LPs

The above primal system in detached coefficient form is displayed by reading across Ta-
ble 5-3. Its dual, obtained by applying the rules in Table 5-2, is displayed by reading down
in Table 5-3.

To see why this is the case, suppose we rewrite system (5.3) in its equivalent von
Neumann inequality form:

x1 + (−x′
2) + (x′

3 − x′′
3 ) ≥ min z

x1 − 3(−x′
2) + 4(x′

3 − x′′
3 ) ≥ 5 (x1 ≥ 0, x′

2 ≥ 0, x′
3 ≥ 0, x′′

3 ≥ 0)
−
[
x1 − 3(−x′

2) + 4(x′
3 − x′′

3 )
]
≥ −5

x1 − 2(−x′
2) ≥ 3

−
[
2(−x′

2) − (x′
3 − x′′

3 )
]
≥ −4.

(5.4)

We write x′
2 = −x2 ≥ 0; this changes the sign of x2. Also, we have written x3 = x′

3−x′′
3 as

the difference of two nonnegative variables (see Section 6.2), and we have written the first
equation of (5.3) as equivalent to two inequalities, x1−3x2+4x3 ≥ 5 and x1−3x2+4x3 ≤ 5.
The relationship between the primal of (5.4) and its dual is displayed in Table 5-4.

Here it is convenient to let y′
1 ≥ 0 and y′′

1 ≥ 0 be the dual variables corresponding
to the first two inequalities. Since coefficients of y′

1 and y′′
1 differ only in sign in every

inequality, we may set y′
1 − y′′

1 = y1, where y1 can have either sign. Note next that the
coefficients in the inequalities of the dual corresponding to x′

3 and x′′
3 differ only in sign,

which implies the equation

4(y′
1 − y′′

1 )− y3 = 1, or 4y1 − y3 = 1.

From these observations it is clear that Table 5-3 is stating more concisely the relations of
Table 5-4.
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Primal
Variables x1 ≥ 0 x2 ≤ 0 x3 Relation Constants

y1 1 −3 4 = 5
y2 ≥ 0 1 −2 ≥ 3

Dual y3 ≤ 0 2 −1 ≤ 4
Relation ≤ ≥ = ≤

Max v
Constants 1 1 1 ≥ Min z

Table 5-3: Example of a Dual of a Mixed System

Primal
Variables x1 ≥ 0 x′

2 ≥ 0 x′
3 ≥ 0 x′′

3 ≥ 0 Relation Constants
y′
1 ≥ 0 1 3 4 −4 ≥ 5

y′′
1 ≥ 0 −1 −3 −4 4 ≥ −5

Dual y2 ≥ 0 1 2 ≥ 3
−y3 ≥ 0 2 1 −1 ≥ −4
Relation ≤ ≤ ≤ ≤ ≤

Max v
Constants 1 −1 1 −1 ≥ Min z

Table 5-4: Example of a Dual of a Mixed System (Continued)

5.1.4 THE DUAL OF THE STANDARD FORM

Applying the correspondence rules of Table 5-2, the dual of the standard form
is easily obtained; see Table 5-5. The dual variables, which in this case are all
unrestricted in sign, are denoted by πi (instead of yi) to conform with the notation
used in earlier chapters (See Equation 1.8).

Thus, the primal problem for the standard linear program given in Table 5-5 is
to

Minimize cTx = z
subject to Ax = b, A : m× n,

x ≥ 0,
(5.5)

and the dual problem for the standard linear program is to

Maximize bTπ = v
subject to ATπ ≤ c, A : m× n,

(5.6)

where πi is unrestricted in sign.
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Primal
Variables x1 ≥ 0 x2 ≥ 0 · · · xn ≥ 0 Relation Constants

π1 a11 a12 · · · a1n = b1
π2 a21 a22 · · · a2n = b2

Dual
...

...
...

...
...

...
... (Dual Obj)

πm am1 am2 · · · amn = bm
Relation ≤ ≤ · · · ≤ ≤

Max v
Constants c1 c2 · · · cn ≥ Min z

(Primal Objective)

Table 5-5: Primal/Dual System for Standard Form

� Exercise 5.2 Show that the dual of a dual of a primal linear program in standard form
is itself the primal linear program in standard form.

5.1.5 PRIMAL-DUAL FEASIBLE-INFEASIBLE CASES

All four combinations of feasibility and infeasibility of the primal and dual systems
are possible as shown in the examples below:

Example 5.2 (Primal Feasible, Dual Feasible, and Min z = Max v)

Primal:
x1 = z (Min)
x1 = 5
x1 ≥ 0

Dual:
5π1 = v (Max)
π1 ≤ 1

Example 5.3 (Primal Feasible, Dual Infeasible, and Min z → −∞)

Primal:
−x1 − x2 = z (Min)
x1 − x2 = 5

x1 ≥ 0, x2 ≥ 0
Dual:

5π1 = v (Max)
π1 ≤ −1

−π1 ≤ −1

Example 5.4 (Primal Infeasible, Dual Feasible, and Max v →∞)

Primal:
x1 = z (Min)
x1 = −5
x1 ≥ 0

Dual:
−5π1 = v (Max)
π1 ≤ 1

Example 5.5 (Primal Infeasible, Dual Infeasible)

Primal:

−x1 − x2 = z (Min)
x1 − x2 = +5
x1 − x2 = −5

x1 ≥ 0, x2 ≥ 0

Dual:

5π1 − 5π2 = v (Max)
π1 + π2 ≤ −1

−π1 − π2 ≤ −1

� Exercise 5.3 Verify the above four examples.
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5.2 DUALITY THEOREMS

The Duality Theorem is a statement about the range of possible z values for the
primal versus the range of possible v values for the dual. This is depicted graphically
in Figure 5-1 for the case where the primal and dual are both feasible.

Von Neumann stated but did not prove the Duality Theorem: If the primal (5.1)
and dual (5.2) as stated above have feasible solutions, then there exist optimal feasible
solutions to both the primal and the dual that are equal. Here we simply state and
illustrate the Strong Duality Theorem and the Weak Duality Theorem.

Assuming that primal and dual solutions exist, the weaker form of the Duality
Theorem is

THEOREM 5.1 (Weak Duality Theorem) If xo is any feasible solution to
the primal (5.1) and yo is any feasible solution to the dual (5.2), then

yoTb = vo ≤ zo = cTxo. (5.7)

Example 5.6 (Illustration of Weak Duality) Consider the primal problem

5x1 + 3x2 = z (min)
x1 + 3x2 ≥ −2
2x1 + 4x2 ≥ −2
x1 ≥ 0, x2 ≥ 0

(5.8)

and its dual
−2y1 − 2y2 = v (max)
y1 + 2y2 ≤ 5
3y1 + 4y2 ≤ 3

y1 ≥ 0, y2 ≥ 0.

(5.9)

A feasible solution to the primal problem is x1 = 1, x2 = 1, with z = 8. A feasible solution
to the dual is y1 = 0.1, y2 = 0.1, with v = −0.4. As expected, according to the Weak
Duality Theorem, we have −0.4 = v ≤ z = 8.

Note: The bounds on the objective values are for any pair of feasible solutions.
When the Simplex Method is used to solve a linear program, each iteration in
Phase II ensures primal feasibility but not dual feasibility. In fact when dual fea-
sibility is attained, an optimal solution is obtained. In the intermediate steps of
Phase II, however, the primal and dual objectives are equal to each other, because
v = πTb = πTBx = cTBxB = z, where π is dual infeasible

COROLLARY 5.2 (Bounds on the Objectives) Every feasible solution yo

to the dual yields a lower bound yoTb to values of zo for feasible solutions xo to the
primal. Conversely, every feasible solution xo to the primal yields an upper bound
cTxo to values of vo for feasible solutions yo to the dual.
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vo sup v inf z zo

� �Duality Gap

Figure 5-1: Illustration of the Duality Gap

We can depict the relationship by plotting the points vo and zo on a line, as
shown in Figure 5-1.

We are now ready to formally state Von Neumann’s Duality Theorem which in
words states that if feasible solutions to the primal and dual exist then the duality
gap (depicted in Figure 5-1) is zero and that sup v is actually attained for some
choice of y and inf z is attained for some choice of x.

THEOREM 5.3 (Strong Duality Theorem) If the primal system min z =
cTx, Ax ≥ b, x ≥ 0 has a feasible solution and the dual system max v = bTy,
ATy ≤ c, y ≥ 0 has a feasible solution, then there exist optimal feasible solutions
x = x∗ and y = y∗ to the primal and dual systems such that

bTy∗ = max v = min z = cTx∗. (5.10)

Example 5.7 (Illustration of the Duality Theorem) An optimal solution to the
primal problem (5.8) is x1 = 0, x2 = 0, with z = 0. A optimal solution to the dual (5.9)
is y1 = 0.0, y2 = 0.0, with v = 0.0. As expected, according to the Duality Theorem, we
have 0.0 = v = z = 0.0.

5.3 COMPLEMENTARY SLACKNESS

An important property of primal/dual systems is complementary slackness. Let
xj ≥ 0 be any feasible solution satisfying (5.1) and yi ≥ 0 be any feasible solution
satisfying (5.2); we assume here that there exist feasible solutions. We rewrite the
former in standard equality form:

Minimize cTx = z
subject to Ax − Ixs = b

x ≥ 0,
(5.11)

where xs = (xn+1, xn+2, . . . , xn+m)T ≥ 0 are variables that measure the extent of
inequality, or negative slack, between the left- and right-hand sides of the inequali-
ties.
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It will be convenient also to let ys = (ym+1, ym+2, . . . , ym+n) ≥ 0 measure the
positive slack in the inequalities of the dual system. Then (5.2) in standard equality
form becomes

Maximize bTy = v
subject to ATy + Iys = c

y ≥ 0,
(5.12)

where ys = (ym+1, ym+2, . . . , ym+n)T ≥ 0.
THEOREM 5.4 (Complementary Slackness) For optimal feasible solutions
of the primal (5.1) and dual (5.2) systems, whenever the kth relation of either system
is slack, the kth variable of its dual is zero; if the kth variable is positive in either
system, the kth relation of its dual is tight, i.e.,

xkym+k = 0, k = 1, . . . , n, and ykxm+k = 0, k = 1, . . . ,m. (5.13)

Example 5.8 (Illustration of Complementary Slackness) At the optimal solution
of (5.8), see Example 5.7, we have n = 2, m = 2, and

x = (x1, x2) = (0, 0)T, xs = (x3, x4)T = (2, 2)T,

and
y = (y1, y2) = (0, 0)T, ys = (y3, y4)T = (5, 3)T.

Clearly
x1y3 = 0, x2y4 = 0, y1x3 = 0, y2x4 = 0.

� Exercise 5.4 Create an example with at least 3 variables that has an obvious feasible
solution to the primal and an obvious lower bound for z. State the dual. Use the DTZG
Simplex Primal software option to verify the Duality Theorem by solving both systems.

5.4 OBTAINING A DUAL SOLUTION

It turns out that when a primal linear program is solved, the dual solution can
also be obtained very easily. We shall illustrate this through an example of a linear
program in standard form to which a full set of artificial variables has been added.

Example 5.9 (Dual Solution from an Optimal Tableau) Consider the problem of
Example 3.1: Find min z, x ≥ 0 such that

2x1 + 1x2 + 2x3 + x4 + 4x5 = z
4x1 + 2x2 + 13x3 + 3x4 + x5 = 17
x1 + x2 + 5x3 + x4 + x5 = 7.

(5.14)

The optimal tableau for this problem, found in 3 iterations, is displayed in Table 5-6.
Recall from (3.63) in the discussion of the Revised Simplex Method that the reduced costs
corresponding to the artificial variables are −cTBB−1, which are the same as the negative
of the simplex multipliers, or dual variables, π. Hence the dual variables π can be read off
directly from the optimal simplex tableau, which contains the artificial variables. In this
case they are π1 = −1, π2 = −19/2. The optimal dual objective value v = 4 is the same
as the optimal primal objective value z = 4 by the Duality Theorem.
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Optimal Tableau
Basic OBJ Original Variables Artificial RHS

Variables Variables
−z x1 x2 x3 x4 x5 x6 x7

−z 1 3 1 2 1 19
2 −4

x3
2
3 1 1

3 − 1
3

1
3 − 2

3 1

x2 − 7
3 1 − 2

3
8
3 − 5

3
13
3 2

Table 5-6: Simplex Method: Optimal Tableau

� Exercise 5.5 Explain why π1 = −1, π2 = −19/2 satisfies ATπ and hence is a feasible
dual solution. Explain why x2 = 2, x3 = 1, x1 = x4 = x5 = x6 = x7 = 0 is a feasible
primal solution and why we have cTx = bTπ.

Another important property for primal/dual systems is

THEOREM 5.5 (Primal/Dual Optimality Criteria) Let (x∗1, . . . , x∗n, z∗) be
a feasible solution to a primal linear program in standard form and (π∗1, . . . , π∗m, v∗)
be a feasible solution to its dual, satisfying

c̄∗ = c−ATπ∗ ≥ 0, bTπ∗ = v∗. (5.15)

Then a necessary and sufficient condition for optimality of both solutions is

c̄∗j = 0, for x∗j > 0. (5.16)

Example 5.10 (Illustration of Primal/Dual Optimality) In the optimal tableau
displayed in Table 5-6, we have

c̄
∗ =




3
0
0
1
2
1

19/2



, x

∗ =




0
2
1
0
0
0
0



.

It is clear that c̄∗j = 0 for x∗j > 0.
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5.5 NOTES & SELECTED BIBLIOGRAPHY

As noted in this chapter, associated with every linear programming problem is another
linear programming problem called the dual. The fundamental notion of duality and the
term were introduced by John von Neumann (in conversations with George Dantzig in
October 1947) and appear implicitly in a working paper he wrote a few weeks later (von
Neumann [1947]). George Dantzig’s report, A Theorem on Linear Inequalities, dated 5
January 1948, contains the first known rigorous (unpublished) proof of the Duality The-
orem. Subsequently Gale, Kuhn, & Tucker [1951] independently formulated the Duality
Theorem, which they proved by means of a classical lemma due to Farkas [1902]. This the-
orem, known as Farkas’s Lemma (see Linear Programming 2), first appeared as a lemma
in Farkas’s 1902 paper. A constructive proof of the Duality Theorem using the Simplex
Method can be found in Dantzig [1963]. J. Abadie in verbal communications [1965] with
one of the authors showed how to use the Infeasibility Theorem to prove von Neumann’s
Strong Duality Theorem. We shall formally prove the Duality Theorem in Linear Pro-
gramming 2, using the Infeasibility Theorem 2.3.

It was Tobias Dantzig, mathematician and author, well known for his books popular-
izing the history of mathematics, who suggested around 1955 to his son George the term
primal as the natural antonym to dual since both primal and dual derive from the Latin.

A systematic presentation of theoretical properties of dual linear programs can be
found in Gale [1956] and Goldman & Tucker [1956a,b]. A review of von Neumann’s
contributions can be found in Kuhn & Tucker [1958]. Today everyone cites von Neumann as
the originator of the Duality Theorem and credits Gale, Kuhn, & Tucker as the publishers
of the first rigorous proof.

As already noted, there are several important duality-type results, known as “Either
Or” theorems of the alternatives, that predate the linear programming era: Farkas [1902],
Gordan [1873], Motzkin [1936], Stiemke [1915], and Ville [1938]. The earliest known result
on feasibility is one concerning homogeneous systems, Gordan [1873]: “Either a linear
homogeneous system of equations Ax = 0 possesses a nontrivial solution in nonnegative
variables or there exists an equation, formed by taking some linear combination of the
equations, that has all positive coefficients.”

A natural question to ask is why not use the classical method of Lagrange multipliers
to solve the linear programming problem. If we were to do so we would be required to
find optimal multipliers (or prices π), which, if they exist, must satisfy a “dual” system
with the property that the c̄j (or relative cost factors) and optimal xj satisfy c̄jxj = 0 for
j = 1, . . . , n. The latter leads to 2n possible cases of either c̄j = 0 or xj = 0. It is here that
this classical approach breaks down, for it is not practical to consider all 2n possible cases
for large n. In a certain sense, however, the Simplex Method can be viewed as a systematic
way to eliminate most of these cases and to consider only a few. Indeed, it immediately
restricts the number of cases by considering only those with n −m of the xj = 0 at one
time and such that the coefficient matrix of the remaining m variables is nonsingular;
moreover, the unique value of these variables is positive (under nondegeneracy). The
conditions c̄jxj = 0 tell us that c̄j = 0 for xj > 0 and this determines uniquely πi and the
remaining c̄j . If it turns out that not all c̄j ≥ 0, the case is dropped and a special new one
is examined on the next iteration, and so on.
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5.6 PROBLEMS

5.1 Set up the dual of the problem of finding xj :

Minimize x1 + x2 = z
subject to x1 + 2x2 ≥ 3

x1 − 2x2 ≥ −4
x1 + 7x2 ≤ 6,

where x1 ≥ 0 and x2 is unrestricted in sign. Determine the simplex multipliers
of the optimal solution of the primal and verify that it satisfies the dual and
gives the same value for the objective form.

5.2 Find the dual of

Minimize x1 + 2x2 + x3 = z
subject to x1 + x2 + x3 = 1

|x1| ≤ 4, x2 ≥ 0, x3 ≥ 0.

5.3 Use the DTZG Simplex Primal software option to show that the following linear
program is infeasible.

Minimize −x1 − 3x2 + 5x3 + 2x4 = z
subject to x1 + 2x2 − x3 + x4 ≤ 4

2x2 − x3 ≥ 8
xj ≥ 0, j = 1, . . . , 4.

Write down its dual and use the DTZG Simplex Primal software option to show
that the dual is unbounded.

5.4 Consider the linear program:

Minimize −2x1 − x2 = z
subject to 2x1 − x2 ≥ 4

x1 ≤ 1
x1 ≥ 0, x2 ≥ 0.

(a) Plot the feasible region of the primal and show that it is empty.
(b) Plot the feasible region of its dual and show that a class of solutions exists

for which the dual objective →∞.

5.5 Show that the linear program

Minimize x1 + x2 = z
subject to 2x1 + 3x2 ≥ 3

3x1 − 2x2 ≥ 4
x1 ≤ 1
x1 ≥ 0, x2 ≥ 0

is infeasible. Write down its dual and show that a class of solutions exists for
which the dual objective →∞.
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5.6 Consider the linear program:

Minimize −x1 + x2 = z
subject to 2x1 + 3x2 ≥ 4

x1 − x2 ≥ 1
x1 ≥ 0, x2 ≥ 0.

(a) Plot the feasible region of the primal and show that it is possible to construct
a class of solutions for which the primal objective z → −∞.

(b) Plot the feasible region of its dual and show that it is empty.

5.7 Use the DTZG Simplex Primal software option to show that the linear program

Minimize x1 − 2x2 + x3 = z
subject to x2 − x3 ≥ 4

x1 + x2 + x3 ≥ 1
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0

has a class of solutions for which the objective z → −∞. Write down the dual
and show that it is infeasible.

5.8 Consider the linear program

Minimize x1 + 2x2 − 3x3 = z
subject to 2x1 + 2x2 + x3 ≥ 10

5x1 − x2 − x3 ≤ 5
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(a) Use the DTZG Simplex Primal software option to solve the problem.
(b) Find its dual and use the DTZG Simplex Primal software option to solve it.
(c) Verify that the solution at each stage of Phase II satisfies the Weak Duality

Theorem.
(d) Verify that complementary slackness holds at the primal and dual optima.

5.9 Consider the linear program

Minimize 2x1 + x2 = z
subject to 2x1 + x2 ≤ 6

x1 + 3x2 ≥ 3
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(a) Plot the feasible region and solve the problem graphically.
(b) Find its dual and solve it graphically.
(c) Verify that each and every basic feasible solution (corner point) satisfies the

Weak Duality Theorem.
(d) Verify that complementary slackness holds at the primal and dual optima.
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5.10 Dantzig [1963]. Show that neither the primal nor the dual of the system

Minimize x1 − 2x2 = z
subject to x1 − x2 ≥ 2

−x1 + x2 ≥ −1
x1 ≥ 0, x2 ≥ 0

has a feasible solution.
5.11 Write down the dual of the linear program

Minimize x1 − 3x2 + x3 = z
subject to 2x1 − 3x2 + x3 ≥ 4

x1 − x3 ≤ 2
− x2 + x3 ≤ 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Use the DTZG Simplex Primal software option to demonstrate that neither the
primal nor its dual has a feasible solution.

5.12 Prove that the optimal dual solution is never unique if the optimal primal basic
solution is degenerate and the optimal dual solution is not.

5.13 Prove in general that an equation in the primal corresponds to an unrestricted
variable in the dual and a variable unrestricted in sign corresponds to an equa-
tion.

5.14 Show that the dual of the linear program

Minimize bTy = z
subject to ATy = 0,

eTy = 1,
y ≥ 0,

where e = (1, 1, . . . , 1)T, can be used to find a feasible solution to Ax ≤ b. Note
that the x variables are not restricted in sign.

5.15 Consider an LP in standard form (3.1). Let B be the index set corresponding to
the basic variables (i.e., A•B is the submatrix consisting of the basic columns).
In terms of the original data, c, A, b, and B,
(a) What is π (the simplex multipliers)? Describe the pivot selection rules.
(b) Show that if x is optimal then π is dual feasible. (By x optimal, we mean

that x prices out optimally in our tableau.)
(c) Show that if x is an optimal feasible solution to the LP, then π is optimal

for the dual.
(d) Assume that our current tableau indicates that the problem is unbounded.

Show that there exists some vector 0 �= x̄ ≥ 0 such that Ax̄ = 0 and cTx̄ < 0.

5.16 Let A be a skew symmetric matrix (that is, AT = −A). Show that the following
linear program is its own dual.

Minimize cTx
subject to Ax ≥ −c

x ≥ 0.

If x∗ is an optimal solution to the above linear program, what is the value of
cTx∗? Why?
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5.17 Consider the linear program

Minimize cTx = z
subject to Ax ≤ b

x ≥ 0,

where

A =

(
2 1 −4

−1 −1 1
1 0 0

)
, b =

(
2

−1
2

)
, c =

(
−2 1 0

)
.

The final tableau, where s1, s2, and s3 are slacks, is

(−z) x1 x2 x3 s1 s2 s3
1 0 1 0 0 0 2 4
0 0 −3 0 1 4 2 2
0 1 0 0 0 0 1 2
0 0 −1 1 0 1 1 1

(a) What is an optimal solution x∗? What is an optimal solution π∗ for the
dual? What is the optimal objective value z∗? What is the optimal basis
for the primal and what is its inverse?

(b) Suppose the right-hand side is changed to b̂ = (1,−1, 2)T. Does the current
basis remain feasible?

(c) Suppose the objective coefficients are changed to ĉ = (−2, 1, 2)T. Does the
current solution remain optimal?

5.18 Consider the linear program

Minimize aTx − bTy = z
subject to x − y = c

x ≤ 0
y ≤ 0,

where a, b, c are n-vectors.

(a) Exhibit a feasible solution.
(b) Since the problem is feasible, either there exists an optimal solution or there

exists a class of solutions with unbounded objective value. Find the dual
and using it, derive necessary and sufficient conditions on a and b for when
the primal has an optimal solution.

(c) Find the (obvious) optimal solution to the dual when it exists and use it
and complementary slackness to find a basic optimal solution to the primal.

(d) Eliminate y from the LP (by substituting y = x − c) and re-derive your
conditions for a bounded optimum for the primal without referring to the
dual problem. (Hint: This should agree with your answer in (b).)

5.19 What is the dual linear program for

Minimize cTx
subject to Ay = x

y ≤ b.
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5.20 What is the dual linear program for

Minimize cTx
subject to bl ≤ Ax ≤ bu

l ≤ x ≤ u,

where A is an m× n matrix. What would be the dual if we were maximizing
instead of minimizing?

5.21 Suppose that a linear program in standard form (5.5) has a finite optimal value.
Show that if the right-hand side is changed from b to some b′, the resulting linear
program is either infeasible or has a finite optimal value. Thus, by changing the
right-hand side b we cannot obtain an LP that is unbounded below.

5.22 In practical applications of linear programming, the scaling of coefficients is
important for numerical reasons and for knowing how to interpret model results.
Consider a typical linear program and its associated dual:

Minimize cTx = z
subject to Ax ≥ b,

x ≥ 0.

Maximize bTy = v
subject to ATy ≤ c,

y ≥ 0.

What is the effect of each of the actions (a), (b), (c), (d) below

(a) Multiplying a row of [A b] by a factor γ;
(b) Multiplying the right-hand side b by a factor γ > 0;

(c) Multiplying a column of

[
c
A

]
by a factor γ > 0;

(d) Multiplying the objective row c by a factor γ (consider both positive and
negative γ)

upon

• the optimal objective value;

• the optimal choice of decision variables and their optimal activity levels;

• the optimal values of the dual variables.
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C H A P T E R 6

EQUIVALENT

FORMULATIONS

Real world problems tend to be “dirty,” that is, there is a certain softness—a lack of
precision—in their definition that often permits them to have two or more ways of
being expressed mathematically. These different expressions may not be equivalent
in the mathematical sense that there is an exact one-to-one correspondence between
their solutions. However, from the point of view of a person looking for an answer,
either is an equally satisfactory statement of the practical problem to be solved. One
of these could turn out to be completely amenable to mathematical analysis and
solution while another could be computationally hopeless. Only through detailed
knowledge of the application and knowledge of what is intractable can one decide
which one of these two acceptable formulations is best to use. Linear programming
models have been successful because many large problems can be on the one hand
satisfactorily formulated by planners as linear programs and can be on the other
hand solved using computers.

6.1 RESTRICTED VARIABLES

Typically, the variables xj have a lower bound of 0. In practice, however, the
variables xj may have specified upper or lower bounds, or both. For example, xj ≥
−10. In this case the user could define a new variable x′

j = xj + 10 and substitute
x′
j−10 for xj into the equations and solve the resulting system as a “standard” LP.
If xj has both a finite upper and lower bound this simple substitution trick is not
sufficient to reduce the system to an equivalent standard form; an additional slack
variable and equation are needed.

145
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It would appear that having specified lower bounds increases the work required
by the user to set up the problem as a standard linear program. Fortunately, most
linear programming software makes it easy for the user to state the bounds. In
Chapter 3 we discussed special techniques for efficiently solving linear programs
whose variables have both upper and lower bounds.

6.2 UNRESTRICTED (FREE) VARIABLES

An interesting special case occurs when xj has neither a specified finite upper or
lower bound. This is called the unrestricted case. Except for possible numerical dif-
ficulties, we could eliminate any unrestricted variable by using one of the equations
that it is in with a nonzero coefficient, to solve for it and substitute its expression
in terms of the other variables into the other equations. Another approach is to
replace each such variable xj by the difference of two nonnegative variables,

xj = x+
j − x−

j , where x+
j ≥ 0, x−

j ≥ 0.

The variable x+
j is called the positive part of xj and the variable x−

j is called the
negative part of xj . The variables x+

j and x−
j are defined as follows:

x+
j =

{
+xj if xj ≥ 0
0 if xj < 0 , x−

j =
{
0 if xj ≥ 0
−xj if xj < 0 .

We shall show later that there exists an optimal solution for which either x+
j = 0

or x−
j = 0 or both equal zero.
Having no specified bounds appears to increase the work required by the user

to set up the problem as well as to increase the number of variables. Fortunately,
special techniques, such as those discussed in Chapter 3, not only allow the user
to specify the problem in a “user-friendly” way, but also in a way that does not
increase the size of the problem or the computational effort required to specify and
solve such problems.

� Exercise 6.1 Suppose that you have an n-dimensional linear program with 1 ≤ k ≤ n
unrestricted variables. That is,

Minimize
n∑

j=1

cjxj = z

subject to
n∑

j=1

aijxj ≥ bi for i = 1, . . . ,m.

Show that it is possible to modify the linear program to one that has all nonnegative
variables by replacing the unrestricted variables xj by restricted variables x̄j ≥ 0 and one
additional unrestricted variable xn+1.
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Figure 6-1: Absolute Value Function

� Exercise 6.2 Consider the problem Min x subject to x = 3. Since x is an unrestricted
variable, we replace it by x = u− v, where u ≥ 0, v ≥ 0 and we now have

Minimize −u + v = z
subject to u − v = 3.

Assume that a basic feasible solution u and simplex multiplier π = −1 have been de-
termined. Checking for optimality, the v column prices out to zero. Hence the basic
feasible solution is optimal. However, due to slight round-off error, it apparently prices
out −0.0000000000001 and the software therefore chooses to introduce v as the incoming
variable. Discuss what happens next and what safeguards must be put into the simplex
algorithm software to prevent this from happening.

6.3 ABSOLUTE VALUES

An absolute value variable |x| is defined as a function of x as follows:

|x| =
{

x if x ≥ 0,
−x if x < 0.

The plot of the function is illustrated in Figure 6-1. When the absolute value
variables appear in a general system of equations, it is not possible to reformulate
the problem as a linear program. However, when such functions appear only as
terms in the objective function, it is sometimes possible to reformulate the model
as a linear program.

Consider the following problem, where the objective is to minimize the weighted
sum of absolute values subject to linear constraints, where the weights cj are non-
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negative.

Minimize
n∑

j=1

cj |xj | = z, where cj ≥ 0 for j = 1, . . . , n,

subject to
n∑

j=1

aijxj = bi, for i = 1, . . . ,m.

(6.1)

We can replace in the equations each variable xj by the difference of its positive
and negative parts, that is,

xj = x+
j − x−

j , where x+
j ≥ 0, x−

j ≥ 0.

In the objective function, where the functions |xj | appear, |xj | can be replaced by
x+
j +x−

j , the sum of the positive and negative parts, provided that x+
j x

−
j = 0. This

results in the following modified problem:

Minimize
n∑

j=1

cj(x+
j + x−

j ) = z

subject to
n∑

j=1

aij(x+
j − x−

j ) = bi for i = 1, . . . ,m,

x+
j ≥ 0, x−

j ≥ 0 for j = 1, . . . , n,

x+
j x

−
j = 0 for j = 1, . . . , n.

(6.2)

The above problem is not a linear program because of relations x+
j x

−
j = 0

in (6.2). However, if cj ≥ 0 for all j, it can be shown (see Lemma 6.1) that even
if conditions x+

j x
−
j = 0 in (6.2) are dropped, either x+

j or x−
j will be zero at an

optimum solution. Therefore, in the case cj ≥ 0 for all j, the above problem reduces
to a linear program.

LEMMA 6.1 (Optimality Property) In the problem defined by (6.2), if each
cj ≥ 0, then there exists a finite optimum solution to

Minimize
n∑

j=1

cj(x+
j + x−

j ) = z

subject to
n∑

j=1

aij(x+
j − x−

j ) = bi for i = 1, . . . ,m,

x+
j ≥ 0, x−

j ≥ 0 for j = 1, . . . , n,

(6.3)

such that either x+
j or x

−
j is zero provided there is a feasible solution.

Proof. Let x̂+ = ( x̂+
1 , x̂

+
2 , . . . , x̂

+
n )

T and x̂− = ( x̂−
1 , x̂

−
2 , . . . , x̂

−
n )

T be a feasi-
ble solution to problem (6.3). For j = 1, . . . , n define vj = min(x̂+

j , x̂
−
j ) and use
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these vj ’s to define
x̄+
j = x̂+

j − vj ,

x̄−
j = x̂−

j − vj .
(6.4)

The x̄+
j , x̄

−
j are clearly also a feasible solution to problem (6.3) with the additional

property that either x̄+
j = 0 or x̄

−
j = 0. Therefore, they are also a feasible solution

to the problem defined by (6.2). Furthermore, if each cj ≥ 0, then

cT(x̄+ + x̄−) = cT(x̂+ + x̂−)− 2
n∑

j=1

cjvj

≤ cT(x̂+ + x̂−).

Thus, no matter what the solution, we can always find an equal or better solution
with either the positive part or negative part of each xj equal to zero. This completes
the proof.

The lemma shows that if problem (6.1) has an optimum solution, then it can be
found by solving the linear program (6.3) and setting xj = x+

j − x−
j .

� Exercise 6.3 Assume in problem (6.1) that some cj < 0 and that feasible solutions
exist. Construct an example where the minimum z is finite. Show for such an example
that if we try to solve by means of (6.3) we will obtain a class of feasible solutions to (6.3)
where the minimum z of (6.3) tends to −∞.

� Exercise 6.4 Generalize Lemma 6.1 where (6.1) is replaced by

Minimize
∑
j∈S

cj |xj |+
∑
j �∈S

cjxj = z

subject to
n∑

j=1

aijxj = bi for i = 1, . . . ,m,

xj ≥ 0 for j �∈ S,
cj ≥ 0 for j ∈ S.

(6.5)

� Exercise 6.5 Extend the discussion in this section to list the conditions under which
the following problem can be formulated as a linear program.

Minimize
p∑

i=1

fi

∣∣∣∣
n∑

j=1

cijxj

∣∣∣∣ = z

subject to
n∑

j=1

aijxj = bi for i = 1, . . . ,m.
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6.4 GOAL PROGRAMMING

So far, all the linear programming examples have had a simple objective that could
be incorporated into a single objective function. In some practical situations there
may be no clear single objective to be minimized but rather several objectives that
we would like to minimize at the same time, which, in general, is nonsense because
the objectives are incompatible. Nevertheless, humans to do this all the time; and
there are a few situations where the objectives are not incompatible and it may
make sense to do so, as we shall see.

The technique, referred to as goal programming, endeavors to satisfy multiple
objectives simultaneously. As noted, this may not always be possible because the
various objectives may conflict with each other. One possibility is to give all the
objectives roughly equal priorities but to give different weights measuring their
relative importance to one another and to add the different objectives together.

� Exercise 6.6 Consider the product mix problem of Section 1.4.1. Assuming the same
production constraints, modify the objective function so that profit from each of the desks
is 10, 20, 18, and 40 respectively. As before, the objective is to maximize profit. However,
it may also be important to try to maximize the production of Desk 1, which sells at a
lower price than the other desks, in order to satisfy a community requirement of always
having some of the cheaper desks available. State the two objective functions that you
would want to consider in this case. Assign a relative weighting to these two objectives in
order to formulate a goal program and optimize the linear program associated with this
goal program.

Other possibilities are when weights are assigned to deviations from goals or
when the objectives have priorities associated with them. These are described in
the next two subsections.

WEIGHTED GOAL PROGRAMMING

In general, suppose that there are K objectives, z1, z2, . . . , zK , with respective goal
values g1, g2, . . . , gK . In weighted goal programming, a composite objective function
is created of the form

z =
K∑
k=1

φk(gk − zk),

where the function φk is defined by

φk(y) =
{
αky if y ≥ 0,
βky if y < 0,

where αk ≥ 0 is the penalty (or weight) of overshooting the goal, and βk ≥ 0 is
the penalty (or weight) of undershooting the goal. For example the objectives for a
manufacturing corporation may to be to maximize profit while attempting to keep
the capital expenditures within a specified budget. Note that the budget restriction
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is not a rigid constraint since it need not be satisfied. In this case we call the right
hand side of the budget restriction a goal. Depending on how important it is to stay
within budget, we can attach a penalty cost to the violation of the budget goal.

The goal programming problem as defined above falls under a class of problems
called separable nonlinear programming. When the constraints are linear, we can
easily convert the problem into a linear programming problem as long as the weights
αk and βk are nonnegative for all k = 1, . . . ,K. Define

gk − zk = u+
k − u−

k , u+
k ≥ 0, u−

k ≥ 0, k = 1, . . . ,K.

Each φk can then be replaced by the linear function

φk(gk − zk) = αku
+
k + βku

−
k ,

together with the additional constraints u+
k ≥ 0 and u−

k ≥ 0. The resulting problem
is a linear program provided αk and βk are nonnegative for all k = 1, . . . ,K.

PRIORITY GOAL PROGRAMMING

In Priority Goal Programming the objectives fall into different priority classes. We
assume that no two goals have equal priority. In this case we first satisfy the
highest priority objectives and then if different solutions tie for the optimum, the
tie is resolved by the next set of priorities, and so on.

We will describe two methods for solving such problems. The first solves a
number of linear programs sequentially. First, order the objectives so that z1 has
the highest priority, z2 has the next highest priority, and so on. The objective of the
first linear program is the linear form z1 with highest priority. The resulting linear
program is solved. Nonbasic variables with reduced costs different from zero are
dropped (this technique for identifying alternative optimal solutions was discussed in
Section 3.2.4) and the next priority objective form z2 is made into the new objective
function. (Alternatively, we could optimize using z2 and setting the upper and lower
bounds on the nonbasic variables with positive reduced costs to be 0.) After the new
linear program is solved, the process is continued until all the priorities have been
converted into objective forms. The process also terminates if a unique solution
is found. There is a technique that was discussed in Section 3.2.4 for finding out
whether or not an optimal solution is unique.

� Exercise 6.7 Another technique would be to make the first objective z1 a constraint
by setting the value of z1 equal to its optimal value and then using the next priority
objective form z2 as the new objective function. Discuss what numerical difficulties may be
encountered. Suggest a method that may possibly help in getting around such difficulties.

� Exercise 6.8 Solve, using the software, Exercise 6.6 by the method of Exercise 6.7.
Show that if the optimal value of z1 is not correctly inputted into the second linear program
it can cause numerical difficulties if set too small. Graph the dual problem and identify
the corner solutions that are tied for minimum costs. Which corner solution was selected
and why?
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The second method is to form a single composite objective function by assigning
weights to the linear objective forms z1, z2, . . . , zK and summing. For example, the
weights on the two objectives in Exercise 6.6 might be w1 = 103 for profits (if it
has the highest priority) and w2 = 1 for the production of desk 1. It can be shown
that theoretically if a sufficiently high weight w1 is given to one profit goal relative
to the other goal, it will give the same solution as the first method. How to assign
such sufficiently high weights is an interesting problem in itself, that in general is
as difficult to solve as the original problem.

� Exercise 6.9 Solve, using the software, Exercise 6.6 by the second method with various
relative weights and find approximately how high w1 must be relative to w2 to give the
same answer as the first method.

6.5 MINIMIZING THE MAXIMUM OF
LINEAR FUNCTIONS

In goal programming we tried to satisfy multiple objectives simultaneously accord-
ing to some preassigned goals. In other situations there may be several different
disasters that could happen, and we may wish to minimize the cost of the worst
disaster. Let there be K different least cost functions zk that measure the cost of
disaster k:

zk =
n∑

j=1

ckjxj , k = 1, . . . ,K. (6.6)

In this case we want to

Minimize Maximum{z1, z2, . . . , zK}

subject to zk =
n∑

j=1

ckjxj , k = 1, . . . ,K,

Ax = b,

x ≥ 0,

(6.7)

where A ∈ �m× n, b ∈ �m.
The problem as defined above does not appear to be a linear program but can

be made into one by defining a new variable

z ≥ zk, for k = 1, . . . ,K, (6.8)

and minimizing z. We may rewrite (6.8) as

z −
n∑

j=1

ckjxj ≥ 0, for k = 1, . . . ,K.
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Thus we can reformulate problem (6.7) as the linear program

Minimize z

subject to z −
n∑

j=1

ckjxj ≥ 0 for k = 1, . . . ,K

Ax = b
x ≥ 0.

(6.9)

� Exercise 6.10 A department store chain may have stores in several cities and wishes
to avoid closing the least profitable one by maximizing its net revenues. Find the linear
programming problem that maximizes the minimum of the different revenue functions
zk =

∑n

j=1 c
k
jxj , k = 1, . . . ,K, subject to Ax = b, x ≥ 0, where A ∈ 
m× n, b ∈ 
m.

Example 6.1 (Finding a Center) Some of the recent developments in solving linear
programs are based on interior-point methods. Some of these techniques require an initial
solution point either at the “center” or an initial solution point close to the center. Various
definitions of a center are used. For our purposes we define it as the center of the largest
sphere that can be inscribed inside the constraints.

The following approach can be used to generate this center. Let Ax ≤ b, x ≥ 0, define
m constraints in 
n and let Ai•x = bi define the boundary of the ith constraint. The
boundary of a constraint is called a hyperplane. The problem of finding a center with
respect to these hyperplanes can be stated as the minimum of the maximum of m linear
functions. In analytic geometry we learned that the distance from any point x̂ to a plane
Ai•x = bi is given by

θi =
bi −Ai•x̂
||Ai•||

,

where ||Ai•|| =
(∑n

j=1A
2
ij

)1/2
. It is convenient to divide each inequality Ai•x ≤ bi by

||Ai•||. This results in a new set of inequalities Āx ≤ b̄, where Āi• = Ai•/||Ai•|| and
b̄i = bi/||Ai•||. The distance from any point x̂ to a hyperplane Ai•x = bi is then given by

θi = b̄i − Āi•x̂.

The problem of finding the center point can then be stated as

Minimize Maximum
{
θ1, θ2, . . . , θm

}
subject to Āi•x + θi = bi for i = 1, . . . ,m

xj ≥ 0 for j = 1, . . . , n
θ ≥ 0 for i = 1, . . . ,m.

(6.10)

� Exercise 6.11 Set up (6.10) as a linear program. Discuss why it was formulated with
θi ≥ 0 for i = 1, . . . ,m. Discuss what happens if the system Ax ≤ b, x ≥ 0, is infeasible.
Construct a two-variable problem with five hyperplanes (actually lines in two dimensional
space). Solve your problem using the software. Draw a picture and verify that you have
obtained a correct solution.
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No. t y

(1) 50 10
(2) 100 55
(3) 150 118
(4) 200 207
(5) 250 308

Table 6-1: Experimental Points

6.6 CURVE FITTING

Suppose physical theory says that the two variable quantities t (for time) and y (for
distance) are functionally related by

y = f(t),

where f(t) = x0 + x1t+ x2t
2, for example. The values of the coefficients x0, x1, x2

are not known. A number of experiments are run with different values of t = ti,
and the values of y = yi observed. This results in m data points

(ti, yi), i = 1, . . . ,m.

For example, the experiment may result in the data points shown in Table 6-1.
Since the observed yi are subject to error, the best that we can hope for is to find
values for x0, x1, x2 such that the resulting curve f(t) comes closest in some sense
to fitting the observed data. More generally, in many applications, the functional
form to be approximated is a polynomial in the independent variable t:

f(t) ≈ x0 + x1t+ x2t
2 + · · ·+ xnt

n.

Typically, because the observed data are subject to error, the experiment is repeated
many times, resulting in m data points (ti, yi), where m is much greater than n+1;
we shall assume this for the rest of this section. If there were no experimental errors
and if the underlying functional form y = f(t) is correct, then the problem reduces
to using the m data points to generate m equations and solving the overdetermined
but consistent system for the unknowns x0, x1, . . . , xn. Typically there is error, and
since the number of data points m is greater than the number of unknowns n+ 1,
the problem will turn out to be overdetermined and not consistent, in which case
it is not possible to solve for the xj ’s exactly. Thus, we try to find xj ’s such that
the error in the fit of the curve to the real-world data is minimized in some sense.
There are three commonly used “best-fit” models for choosing x0, x1, x2, . . . , xn:

1. The 1-norm. Minimize the sum of the absolute errors of the fit:

Minimize z1 =
m∑
i=1

∣∣∣yi −
n∑

j=0

xjt
j
i

∣∣∣.
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2. The ∞-norm. Minimize the maximum absolute value of the errors of the fit:

Minimize z∞ = max
1≤i≤m

∣∣∣yi −
n∑

j=0

xjt
j
i

∣∣∣.

3. The 2-norm. Minimize the sum of the squares of the errors of the fit:

Minimize z2 =
m∑
i=1

(
yi −

n∑
j=0

xjt
j
i

)2
.

In general, each of the above models will generate a different “best fit” solution.
Often in practice the curve found is almost the same whatever the norm chosen, so
that the choice of what is the appropriate norm to use is usually based on the ease
with which one can solve the resulting model.

MINIMIZING THE 1-NORM

In this case, the problem is

Minimize z1 =
m∑
i=1

∣∣∣yi −
n∑

j=0

xjt
j
i

∣∣∣. (6.11)

Using the techniques outlined in Section 6.3, we write

v+
i − v−

i = yi −
n∑

j=0

xjt
j
i , for i = 1, . . . ,m,

where v+
i ≥ 0 and v−

i ≥ 0 for i = 1, . . . ,m. The problem (6.11) can be reformulated
as the following equivalent linear program:

Minimize
m∑
i=1

(v+
i + v−

i ) = z

subject to v+
i − v−

i +
n∑

j=0

xjt
j
i = yi

v+
i ≥ 0

v−
i ≥ 0

for i = 1, . . . ,m.

(6.12)

� Exercise 6.12 Why is not necessary to specify v+
i v

−
i = 0 in problem (6.12)?

One of the advantages of using linear programming to solve the 1-norm model
is that additional constraints on the parameters x0, x1, x2, . . . , xn can easily be
incorporated into the model.
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� Exercise 6.13 Suppose that we want to minimize the 1-norm for the example displayed
in Table 6-1, assuming a quadratic functional form, i.e., y = x0 +x1t+x2t

2. Use the DTZG
Simplex Primal software option to solve the problem separately under the following three
assumptions:

1. x0, x1, x2 are unrestricted in sign.
2. Assume that the theory says that x0 ≥ 0, x1 ≥ 0, x2 ≥ 0.
3. Assume that x2 ≥ 2x1 but otherwise the xi are unrestricted in sign.

Compare the three solutions obtained.

� Exercise 6.14 Suppose that it is known that the errors in the experiment are always
greater to some known value α. In this case we look for a one-sided fit, i.e.,

Minimize z1 =
m∑
i=1

ei,

subject to yi − f(ti) = ei, ei ≥ α, i = 1, . . . ,m.

Redo Exercise 6.13 assuming a one-sided fit.

MINIMIZING THE ∞-NORM
In this case, the problem is:

Minimize z∞ = max
1≤i≤m

∣∣∣yi −
n∑

j=0

xjt
j
i

∣∣∣. (6.13)

Using the techniques outlined in Section 6.3, we write

v+
i − v−

i = yi −
n∑

j=0

xjt
j
i for i = 1, . . . ,m,

where v+
i ≥ 0 and v−

i ≥ 0 for i = 1, . . . ,m. Combining this with the techniques
from Section 6.5, we define a variable z such that

z ≥ v+
i + v−

i for i = 1, . . . ,m.

The problem (6.13) can then be reformulated as the following equivalent linear
program:

Minimize z
z − v+

i − v−
i ≥ 0

v+
i − v−

i +
n∑

j=0

xjt
j
i = yi

v+
i ≥ 0

v−
i ≥ 0

for i = 1, . . . ,m

(6.14)
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� Exercise 6.15 Solve Exercise 6.13 assuming the ∞-norm in place of the 1-norm. Com-
pare your solution with that found by minimizing the 1-norm.

MINIMIZING THE 2-NORM

In the third case, the problem is

Minimize z2 =
m∑
i=1

(
yi −

n∑
j=0

xjt
j
i

)2

. (6.15)

This problem is known as the least squares problem. It is not equivalent to a linear
program. The techniques that are used to solve this problem reduce to solving n+1
equations in n+1 unknowns. Statistical software packages for fitting curves to data
typically use the 2-norm. Techniques for solving such least-squares problems usually
are based on the QR factorization; see Section 6.8 for references.

� Exercise 6.16 Solve Part (1) of Exercise 6.13 assuming the 2-norm in place of the 1-
norm. Plot and compare your solution with those found by minimizing the 1-norm and
the ∞-norm.

6.7 PIECEWISE LINEAR
APPROXIMATIONS

In this section we consider linear programs having piecewise linear functions as
objectives. If the function being minimized is convex (or is concave, if being maxi-
mized), convergence is guaranteed to a global minimum.

6.7.1 CONVEX/CONCAVE FUNCTIONS

Convergence proofs for many algorithms often assume convexity of the objective
function and constraints.

Definition (Convex/Concave Functions): Let f(x) be a real-valued function
defined over the points x = (x1, x2, . . . , xn )

T ∈ �n. Then f(x) is said to be
a convex function if and only if for any two points x = (x1, x2, . . . , xn )

T and
y = ( y1, y2, . . . , yn )

T we have

f
(
λx+ (1− λ)y

)
≤ λf(x) + (1− λ)f(y) (6.16)

for all values of λ satisfying 0 ≤ λ ≤ 1. It is said to be a strictly convex
function if the inequality (6.16) is a strict inequality, i.e., ≤ is replaced by <,
for all 0 < λ < 1. The function f(x) is said to be concave (or strictly concave)
if the above inequality (6.16) holds with ≥ instead of ≤ (or > instead of <).
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Figure 6-2: Examples of Convex and General Functions

A convex function is illustrated on the left in Figure 6-2. From the figure it is
easy to see a geometric interpretation of a convex function. That is, if you take any
two points on the graph of a convex function and join them with a chord, then the
chord will lie on or above the graph of the function between the points. Note that
this is not true for every two points for the function on the right in Figure 6-2.

Convex functions have the following properties.

1. The negative of a convex function is a concave function.

2. A nonnegative linear combination of r convex functions is another convex
function. A similar result holds for concave functions.

3. A linear function (sometimes referred to as an affine function) is both convex
and concave.

4. In calculus, a function in one variable that is twice continuously differentiable
is defined to be convex if and only if its second derivative is greater than or
equal to zero everywhere. It is defined to be strictly convex if and only if its
second derivative is strictly greater than zero everywhere. It is defined to be
concave (or strictly concave) if and only if its second derivative is less than or
equal to zero (or strictly less than zero) everywhere. Our definitions can be
shown to be equivalent in the case that our functions are twice continuously
differentiable.

5. In calculus, a function in n variables that is twice continuously differentiable
is defined to be convex if and only if its matrix of partial second derivatives,
called the Hessian matrix, is positive semidefinite everywhere. It is strictly
convex if and only if its Hessian matrix is positive definite everywhere. (A
matrix M is positive definite if xTMx > 0 for all x �= 0, see Section A.13.) It
is concave (or strictly concave) if its Hessian matrix is negative semidefinite
(or negative definite) everywhere. Again our definitions can be shown to be
equivalent in the case that our functions are twice continuously differentiable.

� Exercise 6.17 Prove properties 1, 2, and 3.
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Figure 6-3: Piecewise Continuous Linear Functions

� Exercise 6.18 Prove properties 4 and 5.

6.7.2 PIECEWISE CONTINUOUS LINEAR FUNCTIONS

Definition (Piecewise Continuous Linear): A function β = f(α) is said to
be piecewise continuous linear on the interval α0 ≤ α ≤ αt if and only if
the range over which it is defined can be partitioned into successive closed
intervals:

f(α) = di + ciα, for αi ≤ α ≤ αi+1, i = 0, 1, . . . , t− 1, (6.17)

where di and ci are known constants and where we require for continuity,

di + ciαi+1 = di+1 + ci+1αi+1 for i = 0, 1, . . . , t− 1. (6.18)

Definition (Breakpoints): The points α1, α2, . . . , αt−1 are called breakpoints.
It is not required that the endpoints α0 or αt be finite; thus α0 = −∞ or
αt =∞ or both are allowed.

An example of a piecewise continuous linear function is the absolute value func-
tion illustrated in Figure 6-1, where α0 = −∞, α1 = 0, α2 = ∞. Other examples
of piecewise linear functions are shown in Figure 6-3.

� Exercise 6.19 Draw a function that is piecewise linear but not continuous.

LEMMA 6.2 (Convexity of a Piecewise Continuous Linear Function) A
continuous piecewise linear function is convex if and only if its slope is nondecreasing
with respect to α, that is, c0 ≤ c1 ≤ · · · ≤ ct−1.
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� Exercise 6.20 Prove Lemma 6.2. Define and prove an analogous lemma for concave
piecewise continuous linear functions.

� Exercise 6.21 Show that for a convex piecewise continuous linear function we have
d0 ≥ d1 ≥ · · · ≥ dt−1. What is true if α0 < 0? Define and prove analogous conditions for
concave piecewise linear functions.

6.7.3 SEPARABLE PIECEWISE CONTINUOUS LINEAR
FUNCTIONS

Definition (separable piecewise continuous linear function): A real-valued
function f(x) defined over x = (x1, x2, . . . , xn )

T ∈ �n is said to be a separable
piecewise continuous linear function if and only if it can be written as

f(x) = f1(x1) + f2(x2) + · · ·+ fn(xn),

where each component function fj(xj) depends only on one variable, xj , and
is piecewise continuous linear with respect to xj as described above.

For linear programs in standard form we assume that f(x) = cTx, that is, f(x),
the objective function, is separable in the variables xj and linear with respect to
each variable xj . In this section we generalize the discussion to include functions
where the contribution of variable xj to the cost function f(x) varies in a linear or
piecewise continuous linear manner. If all the fj(xj) are piecewise continuous linear
convex functions in the case we are minimizing, or all piecewise continuous linear
concave functions in the case we are maximizing, the problem can be modeled as a
linear program. Since a convex function of one variable can be approximated by a
piecewise continuous linear convex function, we can use the results developed here
to approximate the minimization of a general separable convex function by a linear
program.

Suppose that we wish to solve the following problem:

Minimize
n∑

j=1

fj(xj) = f(x)

subject to Ax = b, A : m× n,
x ≥ 0,

(6.19)

where each fj(xj) is either a linear or piecewise continuous linear convex function.
Let fk(xk) be a piecewise continuous linear convex function of the form

fk(xk) = drk + crkxk, for αr
k ≤ xk ≤ αr+1

k , r = 0, 1, . . . , tk − 1,

where, assuming xk ≥ 0, we have αo
k = 0, αtk

k = ∞, and dok = 0. Note that the
continuity assumption requires that drk ≥ dr+1

k for r = 0, 1, . . . , tk − 1, and the
convexity assumption requires that crk ≤ cr+1

k r = 0, 1, . . . , tk − 1.
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To formulate this problem as a linear program in standard form with upper and
lower bounds on the variables, define new variables yrk for r = 1, . . . , tk such that

0 ≤ y1
k ≤ α1

k,

0 ≤ y2
k ≤ α2

k − α1
k,

· · ·
0 ≤ ytk−1

k ≤ αtk−1
k − αtk−2

k ,

0 ≤ ytkk .

(6.20)

Next, in Ax = b, replace each variable xk by

xk =
tk∑
r=1

yrk. (6.21)

Then fk(xk) can be replaced by (6.22) in the objective function in (6.19):

fk(xk) =
tk−1∑
r=0

crky
r+1
k + γk, (6.22)

where

γk =
tk−1∑
r=0

drk

is a constant. Denoting the optimal values of yrk by ŷrk, we claim that substituting
the values ŷrk into (6.21) and (6.22) will yield the optimal values for xk and fk(xk),
because the functions fk(xk) are all convex.

� Exercise 6.22 Prove the above claim for the simple case of

f(x) = f1(x1) + c2x2 + c3x3 + · · ·+ cnxn,

where f1(x1) is continuous and piecewise linear. Extend your arguments to the more
general case of f(x) =

∑n

j=1 fj(xj), where each component fj(xj) is continuous and
piecewise linear. Hint: In order for our claim to hold we need yrk to satisfy an additional
property at a minimum, namely,

yrk > 0 =⇒ yik = αik − αi−1
k for i < r.

Show that this holds when we are minimizing a piecewise continuous linear convex function.

A similar technique can be used when maximizing a separable concave piecewise
continuous linear function.
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6.8 NOTES & SELECTED BIBLIOGRAPHY

Goal Programming is a special case of solving multiple objectives in general. Additional
information on goal programming can be found in Davis & McKeown [1981], Hillier &
Lieberman [1995], Ignizio [1976], Lee [1972], Murty [1983], and Steuer [1985]. For ap-
plications of goal programming to financial management see, for example, Sponk [1981].
Techniques for formulating linear programs in practice can be found in Bradley, Hax, &
Magnanti [1977], Shapiro [1984], and in Tilanus, DeGans, & Lenstra (eds.) [1986].

Curve fitting is used extensively, especially in statistical applications. In statistics, the
method described in Section 6.6 is referred to as least-squares or multiple linear regression.
Many excellent references are available, for example, Chambers [1977], Feller [1957, 1969],
Kennedy & Gentle [1980], and Mood, Graybill, & Boes [1974]. See Linear Programming 2
for a discussion on the use of the QR factorization to solve the linear least-squares problem.

The proof of Exercise 6.1 is originally due to Tucker (see, Dantzig [1963]). Problem 6.10
on page 165 introduces the concept of a fixed charge problem, see Dantzig & Hirsch [1954].
Problem 6.12 on page 166 briefly introduces the concept of game theory, the mathematical
formulation of which can be found in Borel [1921, 1924, 1927], von Neumann [1928, 1937,
1948a, 1953], and in the now famous book Theory of Games and Economic Behavior by
von Neumann & Morgenstern [1944].

6.9 PROBLEMS

6.1 Consider the following linear program:

Minimize −2x1 + x2 + x3 = z
subject to x1 + x2 + x3 = 4

2x1 − x3 ≥ 3
−∞ ≤ x1 ≤ ∞, x2 ≥ 0, x3 ≥ 0.

(a) Replace the variable x1 by the difference of two nonnegative variables and
solve the resulting linear program by hand.

(b) Solve the linear program using the DTZG Simplex Primal software option.

6.2 Formulate the following problem as a linear program in standard form:

Minimize x1 − 3x2 + x3 − x4 = z
subject to x1 − 2x2 − 3x3 + x4 ≤ 10

2x1 + x2 + x3 − 2x4 ≤ 6
x1, x2 unrestricted, x3 ≥ 0, x4 ≥ 0.

(a) Replace each of the unrestricted variables x1 and x2 by the difference of
two nonnegative variables and solve the resulting linear program by hand.

(b) Solve the linear program using the DTZG Simplex Primal software option.
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6.3 Formulate the following problem as a linear program and solve it using the DTZG
Simplex Primal software option.

Minimize 2|x1| + 3x2 + 4x3 = z
subject to x1 + x2 + 2x3 ≤ 8

2x1 − x2 + x3 ≥ 4
x1 unrestricted, x2 ≥ 0, x3 ≥ 0.

6.4 Formulate the following problem as a linear program and solve it using the DTZG
Simplex Primal software option.

Minimize −6x1 − 8x2 − 5x3 − 4x4 = z
subject to 3x1 + 3x2 + 8x3 + 2x4 = 50

|2x1 + 3x2 + 2x3 + 2x4| ≤ 20
xj ≤ 40, for j = 1, . . . , 4.

What happens if the bounds xj ≤ 40 are dropped.
6.5 Where possible, reformulate the following problems as linear programs in stan-

dard form, min cTx, Ax = b, x ≥ 0.
(a)

Minimize cTx = z, with c > 0
subject to xj = max(uj , vj), j = 1, . . . , n.

(b)

Minimize cTx = z
subject to A1x ≥ 0

A2x ≤ 0.

(c)

Minimize cTx = z
subject to Ax = b

x ≥ 0
xj integer for j = 1, . . . , n.

(d)

Minimize cTx = z
subject to Ax = b

x ≥ 0
x �= 0.

6.6 Excesses and Shortages. Problems that occur in practice often have costs as-
sociated with coming below or exceeding certain requirements. For example, if
production of an item is below the contracted amount, a shortage cost is in-
curred either because of the contract stipulation or because the demand is met
by having to buy the item from an expensive outside source. On the other hand,
if production exceeds the demand, then a holding cost is incurred for having to
store the excess production.
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Suppose that your company manufactures n different items xj , each of which
can be sold at a unit profit of pj . Assume that the production constraints are
Ax = b. Except for item 1, assume that all other items, x2, x3, . . . , xn, can
be sold easily on the open market. Suppose that your contractual agreements
are such that you must deliver d1 units of item 1. If you are unable to deliver
exactly d1 units of item 1, a penalty cost, or shortage cost, of s is incurred. On
the other hand, in the hopes of selling item 1 in the next time period, if you
produce more than the demand, you incur a holding cost, or excess cost, of e.
Develop a linear programming model to maximize profit. Clearly state the
conditions under which the linear programming model succeeds in solving this
problem.

6.7 Use the DTZG Simplex Primal software to find the maximum of the minimum
value of xj for j = 1, . . . , 3 that satisfy the system of inequalities

2x1 + x2 + 2x3 ≤ 15
x1 + 3x2 + 4x3 ≤ 25
3x1 + x2 + 5x3 ≤ 30
xj ≥ 0, j = 1, 2, 3.

6.8 Use the DTZG Simplex Primal software option to find the maximum of the
minimum value of xj for j = 1, . . . , 3 that satisfy the system of inequalities

2y1 + y2 + 3y3 ≥ 5
y1 + 3y2 + 1y3 ≥ 10
2y1 + 4y2 + 5y3 ≥ 20
yj ≥ 0, j = 1, 2, 3.

6.9 Optical Scanning Problem (Avi-Itzhak, H., Van Mieghen, J., & Rub, L. [1993]).
An optical scanner compares the preprogrammed pattern of each letter, de-

scribed by a matrix of pixels 50 × 50 = 2500 recorded as a 2500 dimensional
vector normalized to be of unit length, with that of an unknown letter observed
by scanning a matrix of pixels 50×50 = 2500. The unknown letter described by
the vector x will be said to be the same as the preprogrammed letter described
by the vector a if the correlation

aTx

||x|| ≥ k,

where k is a constant typically chosen to be greater than say 0.95.

(a) Suppose that you are designing software for a scanner to be used to differen-
tiate between the several kinds of letters of an alphabet and the typefaces of
each letter. Then each unknown would need to be compared with several
preprogrammed versions of each letter, which unfortunately turns out to
take too long to do and requires too much storage. Instead, we would like
to use some sort of average representation of each letter in order to reduce
the processing time and storage. If we let ai = Ai•, i = 1, . . . ,m, represent
m different representations of a given letter, then we might be interested in
choosing as the “average” representation of typefaces of a letter as β = β∗,
of unit length, that maximizes the minimum correlation:

ρ = max
β

{
min

i=1,...,m

Ai•β
||β||

}
, ||β|| = 1. (6.23)
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Show that this is equivalent to solving the following quadratic program (i.e.,
an optimization problem where the objective function is a quadratic and
the constraints are linear):

Minimize yTy = z
subject to Ai•y ≥ 1, i = 1, . . . ,m,

(6.24)

and setting β = y/||y||. Hint: Show that (6.24) is equivalent to finding β
that solves

Maximize ρ = u

subject to ρ ≤ Ai•β
||β|| , i = 1, . . . ,m.

(b) If software for solving a quadratic program is unavailable, show how you
can apply piecewise linear approximations to solve the quadratic program
(6.24) approximately as a bounded variable program. Hint: Show that yTy
is a separable quadratic form.

6.10 Fixed Charge Problem. In many practical applications there is the underlying
notion of a fixed charge. For example, a refinery may want to know whether
building an additional refinery would result in better serving the current set of
customers. In such situations the cost is characterized by

c =

{
αx+ β if x > 0,
0 if x = 0,

where β is the fixed charge.

(a) Show that we may model this by writing the cost form as

c = αx+ βy

and including the constraints

y = {0, 1}

and
x− yU ≤ 0,

where U is an upper bound on x.
(b) The inclusion of integer variables in the formulation requires a special-

purpose solver. However, if only one or two variables have an associated
fixed charge, it is possible to use the DTZG Simplex Primal option to solve
the problem. Discuss how you would do this.

(c) Consider the product mix problem of Section 1.4.1. Suppose that manage-
ment has the possibility of a special order on a new desk 5 that requires
12 carpentry hours, 50 finishing hours, and generates a profit of $60. Unfor-
tunately, it requires some additional equipment for finishing purposes and
the cost of this equipment is $500. Should desk 5 be manufactured. What
if the cost of the new equipment was $1,000.
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Figure 6-4: Purchase Price of Raw Milk in Region A

6.11 (a) Consider the linear program

Minimize 1x1 + 2x2 + 3x3 = z
subject to 2x1 − x2 + 3x3 = 3

0 ≤ xj ≤ 2, for j = 1, 2, 3,

where all variables must take integer values. Show how to convert this to
a binary integer program where all the variables are either 0 or 1 and the
coefficients and right-hand sides are −1, 0, or +1.

(b) Generalize to a linear program where all the variables must take integral
values and all the coefficients and right-hand side are integers.

6.12 Game Theory. In a zero-sum matrix game, the row player, to find his optimal
mixed strategy, must solve the linear program

Maximize L
subject to ATx ≥ Le

eTx = 1,

and the column player, to find her optimal strategy, must solve the linear pro-
gram

Minimize M
subject to Ay ≤ Mê

êTx = 1,

where A is m× n, e = (1, 1, . . . , 1)T is of dimension m, and ê = (1, . . . , 1)T is
of dimension n. Prove that these two programs are duals of each other and
Max L = Min M = v. Note: v is called the value of the game.

6.13 Ph.D. Comprehensive Exam, September 23, 1972, at Stanford. Happy Milk
Distributors (HMD) purchases raw milk from farmers in two regions: A and
B. Prices, butterfat content, and separation properties of the raw milk differ
between the two regions. HMD processes the raw milk to produce cream and
milk to desired specifications for distribution to the consumers.

Region A Raw Milk. The purchase price in 1972 dollars of raw milk in Region
A is indicated in Figure 6-4. For example, to purchase 700 gallons would cost
54(500) + 58(200) cents. There is no upper bound on the amount that can be
purchased. Raw milk from Region A has 25% butterfat and when separated (at
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Separation of
Region A Milk

�Raw Milk
15% butterfat

�Milk
41% butterfat

�Milk
12% butterfat

Figure 6-5: Separation of Region A Milk
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Gallons of raw milk

Cost in
cents/gallon

Figure 6-6: Purchase Price of Raw Milk in Region B

5 cents per gallon) yields two “milks,” one with 41% butterfat and another with
12% butterfat; this is shown in Figure 6-5. The volume of milk is conserved in
all separation processing.

Region B Raw Milk. The purchase price in 1972 dollars (as for Region A raw
milk) is illustrated in Figure 6-6. Raw milk from Region B has 15% butterfat
and when separated (at 7 cents per gallon) yields two “milks,” one with 43%
butterfat and another with 5% butterfat; this is shown in Figure 6-7. The
volume of milk is conserved in all separation processing.

Production Process. After the milk is purchased and collected at the plant, it is
either mixed directly or separated and then mixed. Mixing, to produce cream
and milk to specifications, is done at no cost. For example, some of the raw
milk from Region A may be separated and then mixed, and some of it may be
mixed directly (i.e., without having been first separated).

Demand and Selling Price. The demand and selling price are described in Ta-
ble 6-2. For example, all the cream produced must have at least 40% butterfat;
it sells at $1.50 per gallon; no more than 250 gallons of the cream produced can
be sold.

The Problem. Assuming disposal is free, formulate a linear program that when
solved on a computer would enable HMD to maximize its profits.

6.14 Vajda [1961]. Suppose that you visit the racecourse with B dollars available
for betting. Assume further that there is only one race on this day and that N
horses are competing. The betting works as follows: If you bet one dollar on
horse k, then you get αk > 0 dollars if it comes in first and 0 dollars otherwise.
Formulate a linear program to determine how much of a total of B dollars should
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Separation of
Region B Milk

�Raw Milk
15% butterfat

�Milk
43% butterfat

�Milk
5% butterfat

Figure 6-7: Separation of Region B Milk

Minimum required
percentage of butterfat

Maximum volume
demanded in gallons

Selling price in
cents per gallon

Cream 40 250 150
Milk 20 2000 70

Table 6-2: Demand and Selling Price of Milk

you bet on each horse so as to maximize the minimum net gain, irrespective of
which horse comes in first.

6.15 (a) Solve Problem 6.14 for N = 2, α1 = 1, α2 = 2, and B = 1.
(b) Observe that the bets are inversely proportional to α1 and α2. Prove that,

in general, the optimal solution is to bet inversely proportional to the return
on a bet αk. Hint: Show that the bets xj , for j = 1, . . . , N , must be basic
variables in an optimal solution and that they price out as optimal.

6.16 Suppose an experiment results in the data points shown in Table 6-3. It is
hypothesized that the relation is a cubic of the form

y = x0 + x1t+ x2t
2 + x3t

3.

Find the parameters x0, x1, x2, x3 that give the best fit to the data. Solve
the problem using each of the three models described in this chapter. (Note:
For the least squares problem, simply set up and solve the normal equations
ATAx = ATb.)

6.17 Davis & McKeown [1981]. Sigma Paper Company, Inc., is about to build a new
plant. The labor requirements to build the plant are 2,000 nonprofessionals and

t y

1 6
2 18
3 50
4 101
5 177
6 296
7 447
8 642

Table 6-3: Experimental Points for a Cubic
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850 professionals. Because of labor market shortages in both categories, costs
for recruiting women and minorities are greater than for others. Specifically,
the cost for recruiting minorities (men or women) is $740 for nonprofessionals
and $1,560 for professionals. For recruiting nonprofessional women the cost
is $850 and for recruiting professional women the cost is $1,450. Otherwise
the recruiting costs for men average $570 for each nonprofessional position and
$1,290 for each professional position. The company has budgeted $2.4 million
for recruiting purposes, and the management has established the following goals
in order of priority.

Goal 1: At least 45% of the new labor force should be women.
Goal 2: Minorities should constitute at least 40% of the labor force. Fur-

thermore, a minority woman is counted both as a minority and
as a woman employee.

Goal 3: The cost of recruiting should be minimized.
Goal 4: The recruiting cost should be limited to $300,000.

(a) Use the goal programming technique to formulate a linear programming
model for this problem.

(b) Solve the problem using the software provided with the book.

6.18 Adapted from Hillier & Lieberman [1995]. Consider a preemptive goal program-
ming problem with three priority levels, one goal for each priority level, and just
two activities to contribute towards these goals as shown in the table below:

Unit Contribution

Activity
Priority Level a b Goal
One 1 2 ≤ 20
Two 1 1 = 15
Three 2 1 ≥ 40

(a) Use the goal programming technique to formulate a linear programming
model for this problem.

(b) Solve the problem using the software provided with the book.
(c) Use the logic of preemptive goal programming to solve the problem graph-

ically by focusing on just the two decision variables. Clearly explain the
logic used.

(d) Use the sequential programming technique to solve this problem with the
software provided with the book. After using the goal programming tech-
nique to formulate the linear programming model at each stage, solve the
model graphically by focusing on just the two decision variables. Identify
all optimal solutions obtained for each stage.

6.19 Use the weighted goal programming method to solve Problem 6.18.
6.20 Estimate the failure rate xi of an item as a function of its age i. An experiment

is run with K new items put in use at time 0. Time is divided into unit intervals
and the number still working at the beginning of each interval is observed. If
we let fi be the number of items observed to be working at the start of time
interval i, then fi−fi+1 are the number of items that failed during time interval i
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and ai = (fi − fi+1)/fi is the observed failure rate at the age of i time units.
Suppose that from engineering considerations we know that the failure rate in
a large population increases with age; this is the Increasing Failure Rate (IFR)
property. The actual failure rates in the experiment with only K items may not
be increasing due to random fluctuations in the observations. The solution x
to the problem is required to satisfy the IFR property and at the same time be
one that is closest to the observed failure rates a in the sense of minimizing the
maximum absolute values of the difference. Formulate this problem.

6.21 Ubhaya [1974a, 1974b] in Murty [1983]. Let w = (w1, w2, . . . , wn )T > 0, a
vector of positive weights, be given. For each vector y ∈ 
n, define the function
L(y) by

L(y) = max {wi|yi| : i = 1, . . . , n }.
Given a vector a ∈ 
n, formulate a linear program to find a vector x ∈ 
n to

Minimize L(a− x)
subject to xi − xi+1 ≤ 0, i = 1, . . . , n− 1.

(a) Show that this is a generalization of Problem 6.20, where we have attached
weights wi to the deviations.

(b) How does the formulation change if, in addition, each xi is required to be
nonnegative, and also less than or equal to one?

(c) Solve the problem for n = 3, w = (0.3, 0.6, 0.1)T, and a = (0.20, 0.45, 0.35)T.

6.22 Solve the calculus problem

Minimize x2
1 + x2

2 + x2
3 + 2x1 + 4x2 + 8x3 = z

subject to x1 + x2 + x3 = 6

by using linear programming software and piecewise continuous linear approx-
imations to the quadratic functions (with upper and lower bounds on the vari-
ables introduced to make the approximations). What properties of the approx-
imates ensures the convexity of the approximations.

6.23 Consider the following problem, which has a convex objective function and linear
inequality constraints

Minimize x2
1 + 2x2

2 = z
subject to 4x1 + 5x2 ≤ 20

x1 + x2 ≥ 2

Solve the problem using piecewise continuous linear approximations to the con-
vex function. Use 4, 8, and 12 pieces. Compare the results under the different
approximations.



C H A P T E R 7

PRICE MECHANISM AND

SENSITIVITY ANALYSIS

The term sensitivity analysis, sometimes called post-optimality analysis, refers to
an analysis of the effect on the optimal solution of changes in the input-output
coefficients, cost coefficients, and constant terms. Such analysis can often be more
important in practice than finding the optimal solution. It is a very important part
of solving linear programs in practice. Most practical problems have input data
whose values are not known with certainty. For example, the costs of raw materials
may change after the model is solved, or the costs used in the model may only be
a guess as to what they will be in the future; the right-hand-side constraints may
have to be changed because more or less of the resources are available in the market
than previously estimated or were earlier authorized by management to buy; or
the coefficients may have to be changed because product specifications have been
changed.

In addition to the optimal tableau giving us the point of most profitable op-
eration, it is possible to obtain from it a wealth of information concerning a wide
range of operations in the neighborhood of this optimum by performing a sensitivity
analysis. As noted, in many applications, the information obtained is often more
valuable than the specification of the optimum solution itself.

Sensitivity analysis is important for several reasons:

1. Stability (robustness) of the optimum solution under changes of parameters
may be highly desirable. For example, using the old optimum solution point;
a slight variation of a parameter in one direction may result in a large unfavor-
able difference in the objective function relative to the new minimum, while
a large variation in the parameter in another direction may result in only a
small difference. In an industrial situation where there are certain inherent

171
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variabilities in processes and materials not taken account of in the model, it
may be desirable to move away from the optimum solution in order to achieve
a solution less sensitive to such changes in the input parameters.

2. Values of the input-output coefficients, objective function coefficients, and/or
constraint constants may be to some extent controllable at some cost; in this
case we want to know the effects that would result from changing these values
and what the cost would be to make these changes.

3. Even if the input-output and objective function coefficients and constraint
constants are not controllable, their values may be only approximate; thus it
is still important to know for what ranges of their values the solution is still
optimal. If it turns out that the optimal solution is extremely sensitive to
their values, it may become necessary to seek better estimates.

The problem of finding optimal solutions to linear programs whose coefficients
and right-hand sides are uncertain is called stochastic programming or planning
under uncertainty. The idea is to find solutions that hedge against various com-
binations of contingencies that might arise in the future and at the same time are
solutions that are minimal in some expected-value sense.

7.1 THE PRICE MECHANISM OF THE
SIMPLEX METHOD

Recall that in previous chapters we often referred to the simplex multipliers as
prices. In this section we shall show how this viewpoint of multipliers arises natu-
rally and we shall provide an economic interpretation of the Simplex Method. In
fact, it will turn out that an important part of sensitivity analysis is being able to
interpret the price mechanism of the Simplex Method.

For the discussion we shall once again consider the primal problem in standard
form:

Minimize cTx = z
subject to Ax = b, A : m× n,

x ≥ 0;
(7.1)

and its dual
Maximize bTπ = v
subject to ATπ ≤ c, A : m× n.

(7.2)

For the purpose of our discussion, suppose that an optimal solution is available
to the primal-dual system shown above. Let x∗ = (x∗B, x∗N) be the optimal primal
solution, and let π∗ be the corresponding dual solution (or multipliers). Let the
optimal primal objective value be

z∗ = cTx∗ = cTBx
∗
B, (7.3)
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and the optimal dual objective value be

v∗ = bTπ∗, (7.4)

where v∗ = z∗ and the optimal basic indices are denoted by B. Let c̄ = c−ATπ∗ ≥ 0
be the optimal reduced costs.

7.1.1 MARGINAL VALUES OR SHADOW PRICES

The price of an item is its exchange ratio relative to some standard item. If the
item measured by the objective function is taken as a standard, then the price π∗i
of item i is the change it induces in the optimal value of the objective z per unit
change of bi, for infinitesimally small changes of bi.

Definition (Price, Marginal Value, Shadow Price): The price, or marginal
value, or shadow price of a constraint i is defined to be the rate of the change
in the objective function as a result of a change in the value of bi, the right-
hand side of constraint i.

At an optimal solution, the primal objective and dual objective are equal. Thus,

z∗ = v∗ = bTπ∗

is a function of the right-hand sides b, and hence this relation can be used to
show that the price associated with bi at the optimum is π∗i if the basic solution
is nondegenerate. If so, then for small changes in any bi, the basis, and hence the
simplex multipliers, will remain constant. Under nondegeneracy the change in value
of z per change of bi for small changes in bi is obtained by partially differentiating
z with respect to the right-hand side bi, i.e.,

∂z

∂bi
= π∗i , (7.5)

and thus, by the above definition, π∗i can be interpreted as the price that, when
associated with the right-hand side, is referred to as the shadow price, a term
attributed to Paul Samuelson.

Example 7.1 (Shadow Prices Under Nondegeneracy) Consider the linear pro-
gram to find min z, x ≥ 0 such that

−x1 − 2x2 − 3x3 + x4 = z
x1 + 2x4 = 6

x2 + 3x4 = 2
x3 − x4 = 1.

It is easy to verify that the optimal basic solution is

x1 = 6, x2 = 2, x3 = 1, x4 = 0, z = −13.
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The shadow prices associated with the optimal basis (columns 1, 1, 3) are

πo1 = −1, πo2 = −2, πo3 = −3,

because
z = b1π1 + b2π2 + b3π3, where b = (6, 2, 1),

implies
∂z

∂b1
= π1 = −1,

∂z

∂b2
= π2 = −2,

∂z

∂b3
= π3 = −3.

Note that these do not change for small values of bi.

If the basic solution is degenerate, then the situation is not so straightforward.
However, it is easy to see from the above discussion that the objective function is
piecewise linear in the parameter bi. A price interpretation can still be obtained by
examining positive and negative changes to bi. In the case of degeneracy of a single
basic variable, a change in a particular bi will either result in no change in the value
of the degenerate basic variable, in which case there is no change in the shadow
prices, or it will result in no change in prices if bi is changed in one direction, but
will result in a complete set of new prices if bi is changed in the other direction.

In general the two sets of prices can be obtained by applying parametric tech-
niques; see Section 7.8.

Example 7.2 (Shadow Prices Under Degeneracy) Suppose that in Example 7.1,
we replace b3 = 1 by b3 = 0; then ∂z/∂b+3 = −3 if the change in b3 is positive. But if
the change in b3 is negative, then x3 drops out of the basis and x4 becomes basic and the
shadow prices are πo1 = −1, πo2 = −2, πo3 = ∂z/∂b−3 = −9.

7.1.2 ECONOMIC INTERPRETATION OF THE
SIMPLEX METHOD

When applied to the primal problem (7.1), the goal of the Simplex Method is to
determine a basic feasible solution that uses the available resources in the most
cost-effective manner. The objective function of the dual (7.2) at iteration t is the
total cost:

v = πTb =
m∑
i=1

πibi, (7.6)

where πi are the simplex multipliers associated with the basis B. As we will see,
πi (or π∗i at the optimal solution) can be interpreted as implicit revenues to offset
direct costs (i.e., the shadow price) per unit of resource i given the primal basic
variables at iteration t. Thus πibi can be interpreted as the offsets to the direct
costs

∑n
j=1 cjxj of having bi units of resource i available in the primal problem.

With this interpretation of the dual variables π and dual objective function v
we can examine each row j of the dual problem corresponding to column j of the
primal problem. Each unit of activity j in the primal problem consumes aij units of
resource i. Using shadow prices, the left-hand side,

∑m
i=1 aijπi, of the jth constraint

of the dual problem is the implicit indirect cost of the mix of resources that would
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be consumed and/or produced by one unit of activity j. On the other hand, the
right hand side, cj , of the jth constraint of the dual problem is the direct cost of
one unit of activity j. That is, the jth dual constraint,

∑m
i=1 aijπi ≤ cj , can be

interpreted as saying that the implicit indirect costs of the resources consumed by
activity j less the implicit indirect costs of the resources produced by activity j
must not exceed the direct costs cj ; and if these costs are strictly less than cj , it
does not pay to engage in activity j. On the other hand, if

∑m
i=1 aijπi > cj , it

means that it does pay to engage in activity j.
In other words, the dual constraints associated with the nonbasic variables xN

may be satisfied, feasible, or infeasible. That is, letting

c̄ = cN −NTπ, (7.7)

where π solves BTπ = cB, at any iteration t we could have c̄j ≥ 0 (the dual constraint
j is feasible) or c̄j < 0 (the dual constraint j is infeasible). From an economic
standpoint, c̄j < 0 implies that activity j can use its resources more economically
than any combination of activities in the basis, whose net input-output vector is
the same as activity j, implying an improved solution is possible. If, on the other
hand, c̄j ≥ 0, then the resources used by activity j are already being used by the
activities in the basis in a more cost-effective way elsewhere. The prices of the dual
problem are selected so as to maximize the implicit indirect costs of the resources
consumed by all the activities.

The complementary slackness conditions of dual optimality can be given the
following economic interpretation: Whenever an activity j is “operated” at a strictly
positive level, i.e., xj basic and xj > 0, the marginal value of the resources it
consumes (

∑m
i=1 aijπi) per unit level of this activity must exactly equal the cost cj

and all nonbasic activities must “operate” at a zero level.
When the primal-dual system is expressed in the von Neumann symmetric form

(see Section 5.1), if a slack variable is strictly positive in an optimal solution, this
implies that the corresponding dual variable, πi, is equal to 0. That is, the resource i
for which the primal slack variable is positive is a free resource, i.e., the marginal
value of obtaining the resource is zero. If the slack variable corresponding to the
difference between the direct and indirect costs of activity j is positive, this implies
that the corresponding primal activity level is zero.

7.1.3 THE MANAGER OF A MACHINE TOOL PLANT

The example of this section is based on material supplied by Clopper Almon Jr. to
one of the authors. Consider the dilemma of a manager of a machine tool plant, say
in an economy that has just been socialized by a revolution (for example, Russia
just after the 1917 revolution). The central planners have allocated to this manager
input quantities +b1, . . . ,+bk of materials (which we designate by 1, . . . , k) and
have instructed this manager to produce output quantities −bk+1, . . . ,−bm of the
machine tools (which we designate by k+1, . . . ,m). The b1, . . . , bk, being inputs, are
nonnegative, and bk+1, . . . , bm, being outputs, are nonpositive by our conventions.
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The planners further direct the manager that he shall use as little labor as possible
to meet his required production goals and that he must pay the workers with labor
certificates as wages, one certificate for each hour of labor. The central planners
have declared that the prices of items of the old free market economy are no longer
to be used but have not provided any new prices to guide the manager.

The manager has at his disposal many production activities, say n of them,
each of which he can describe by a column vector, A•j = (a1j , . . . , amj)T. If the jth
process inputs aij units of the ith item per unit level of operation, aij is positive.
If, on the other hand, the jth process outputs aij units of item i per unit level of
operation, aij is negative. The jth process also requires cj units of labor per unit
level of operation. The manager’s problem then is to find levels of operation for all
the processes, x1, x2, . . . , xn, that satisfy

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm

(7.8)

and minimize the total amount of labor used,

c1x1 + c2x2 + · · ·+ cnxn = z (min).

The components of x must, of course, be nonnegative. In matrix notation,

Ax = b, x ≥ 0, cTx = z.

The manager knows of m old reliable processes (activities), namely 1, . . . ,m,
which he is sure he can use in some combination to produce the required outputs
from the given inputs. However, the labor requirements may be excessive. Thus,
he knows he can find nonnegative x1, x2, . . . , xm such that

a11x1 + a12x2 + · · · + a1mxm = b1
a21x1 + a22x2 + · · · + a2mxm = b2
...

...
...

...
...

am1x1 + am2x2 + · · · + ammxm = bm

(7.9)

or in matrix notation,
BxB = b.

We shall assume that B is a feasible basis for (7.8).
This manager knows, alas, that his workers are prone to be extravagant with

materials, using far more inputs or producing far fewer outputs for each activity j
than that specified in (7.8). Unless he can keep this tendency in check, he knows he
will fail to meet his quotas, and he knows that failure to meet quotas is dangerous
to his health. Before the revolution, he deducted the cost of the excess use of
materials from the worker’s wages; but now that all prices have been swept away,
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he lacks a monetary measure for computing the cost of materials or the value of
items produced. Suddenly, in a stroke of genius, it occurs to him that he can
make up his own prices in terms of labor certificates, charge the operators of each
process for the materials they use, credit them for their products, and give them
the difference as their pay. (This sounds like a pretty good idea, it might even work
in our free market economy.)

Being a fair man, he wants to set prices such that the efficient workers can
take home a certificate for each hour worked. That is, he wants to set the prices,
π1, π2, . . . , πm, for raw material and products produced such that the net yield on a
unit level of each basic activity j is equal to the amount of labor cj that it requires:

π1a11 + π2a12 + · · · + πma1m = c1
π1a21 + π2a22 + · · · + πma2m = c2
...

...
...

...
...

π1am1 + π2am2 + · · · + πmamm = cm

(7.10)

or in matrix notation,
BTπ = cB.

The manager now uses his PC to solve (7.9) for xB and verify that xB ≥ 0, and
to solve (7.10) for π. Common sense tells the manager that by using his pricing
device he would have to pay out exactly as many labor certificates as he would if
he paid the labor by the hour and all labor worked efficiently. Indeed, this is easily
proved since the total cost, using his calculated prices for basic activities, is, noting
xN = 0,

πTb = πT(BxB) = (π
TB)xB = cTBxB = cTx,

where cTx is the cost of paying wages directly.
The manager harbors one qualm about his pricing device, however. He remem-

bers that there are other processes besides the m he is planning to use and suspects
that his lazy, wily workers will try to substitute one or more of these in place of
some combination of the basic ones that he is planning to use, and he could end up
issuing more labor certificate hours than actual hours worked. In order to discover
whether such activities exist he “prices out” each activity j, that is,

c′
j = π1a1j + π2a2j + · · ·+ πmamj , (7.11)

and sees whether any of them is greater than the direct wages cj . On looking over
the list of processes in (7.8), the manager finds several for which the inequality
c′
j > cj holds. Denoting the excess wages of the jth process by c̄j , the manager
determines

c̄j = cj − (π1a1j + π2a2j + · · ·+ πmamj)

and singles out process s, the one offering the most excess wages:

c̄s = min
j

c̄j < 0. (7.12)
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Before devising repressive measures to keep the workers from using processes
that yield excess wages, the manager, a meditative sort of fellow, who worries about
his health, pauses to reflect on the meaning of these excess wages. Having always had
a bent for mathematics, he soon discovers a relation that mathematically we express
by saying that the vector of coefficients āij , for any activity j in the canonical form,
can be interpreted as weights to form a linear combination of the original vectors
of the basic activities that has the same net input and output coefficients for all
items as those of activity j, except possibly the cost coefficient cj . In particular, he
finds that he can represent activity s, the one yielding the most excess wages, as a
linear combination of his “old reliable” activities as follows:




a11
a21
...

am1


 ā1s +




a12
a22
...

am2


 ā2s + · · ·+




a1m
a2m
...

amm


 āms =




a1s
a2s
...

ams


 , (7.13)

where āis are the coefficients of xs in the canonical form. In words, (7.13) tells
him that xs units of activity s can be simulated by a combination of the basic set
of activities (1, . . . ,m); i.e., by ā1sxs, ā2sxs, . . . , āmsxs units. Thus, if the workers
introduce xs units of activity s, the levels of the basic activities must be adjusted
by these amounts (up or down, depending on sign) if the material constraints and
output quotas are to remain satisfied. Now, the labor cost of simulating one unit
of activity s by the m old reliables is

c1ā1s + c2ā2s + · · ·+ cmāms.

This amount is precisely what the manager would pay for the various inputs and
outputs of one unit of the real activity s if he were to use the prices πi. For consid-
ering the vector equation (7.13) as m equations and multiplying the first equation
through by π1, the second by π2, etc. and summing, one obtains immediately from
(7.10)

c1ā1s + c2ā2s + · · ·+ cmāms = π1a1s + π2a2s + · · ·+ πmams. (7.14)

It is now readily shown that the fact that the process s yields excess wages means
to the manager that it takes less labor to operate s directly than to simulate it with
some combination of the m old activities. This is clear from (7.11), (7.12), and
(7.14), which yield

c1ā1s + · · ·+ crārs + · · ·+ cmāms > cs. (7.15)

Hence, he reasons, s must be in a sense more efficient than at least one of these old
processes. Recalling that the central planners instructed him to use as little labor
as possible, the manager decides to use activity s in place of one of the original m.
He soon discovers that if he wishes to avoid the nonsensical situation of planning
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to use some activity at a negative level, the process r to be replaced by process s
must be chosen so that

b̄r
ārs

= min
{ i|āis>0 }

b̄i
āis

, (ārs > 0).

Because ārs > 0, it follows from (7.15) that

c1ā1s + · · ·+ cr−1ār−1,s + cr+1ār+1,s · · ·+ cmāms − cs
−ārs

< cr. (7.16)

The coefficients ājs/(−ārs) of cj for j = 1, . . . , r−1, r+1, . . . ,m and the coefficient
−1/(−ārs) of cs in (7.16) are precisely the weights required to simulate activity r
out of the activities in the new basis, as can be seen by re-solving (7.13) for column
r in terms of the others. But, for example, c1ā1s/(−ārs) is the labor cost of the first
activity in the simulation of activity r, so that the left-hand side of (7.16) represents
the total labor cost of simulating a unit level of activity r by the activities in the
new basis, while cr is the labor cost of one unit of the real activity r. Hence (7.16)
shows that activity r is indeed less efficient in its use of labor than those in the new
basis.

In summary, the manager now knows that if there exist processes for which his
pricing device yields more labor certificates than are actually required, then he had
better substitute one of these more efficient processes for one in the original set
and thereby bring about a more efficient use of labor. Since the central planners
instructed him to use as little labor as possible, it is clearly wise for him to plan
production using activity s instead of one of the m he had originally intended to
use, to readjust the levels of use of the remaining ones, and to change the prices.

Having learned this lesson, the manager proceeds again to look for more efficient
processes that provide his wily workers with excess wages by being more efficient
than one in his new basis. If there are any, he makes the substitution, readjusts
prices, and again looks for more efficient processes, and so on until he finds a set of
prices π∗ under which no process prices out as more efficient. Fortunately for him,
it turns out (as we know) that in a finite number of steps he will find such a set of
prices.

Let us pause for a moment to ponder the meaning of one of these prices, say πi.
Suppose we introduce into the manager’s A matrix in equation (7.8) a fictitious
activity that consists simply in increasing his allotment of item i if bi > 0 or in
decreasing his production quota on i if bi < 0. Such an activity will be represented
by a column that has all zeros except for a one in the ith row. Thus the labor cost
of simulating this activity by a combination of those of the final basis is, by (7.11),
precisely πi. Thus πi is the labor value, the labor that can be displaced by one
additional unit of item i.

The manager has now achieved his objective of finding a set of prices to charge
for raw materials and to pay for finished goods that will keep his workers from
wasting inputs and yet offer no possibilities of his paying out more labor certificates
than actual hours worked. But he now begins to wonder whether he is truly safe



180 PRICE MECHANISM AND SENSITIVITY ANALYSIS

from the central planners’ criticism for the amount of labor he uses. He begins by
specifying explicitly what he intends to do. His operating plan consists of a set of
activity levels x∗ = (x∗1, x∗2, . . . , x∗n )

T satisfying

cTx∗ = z∗,
Ax∗ = b,
x∗ ≥ 0

(7.17)

and a set of prices π∗ = (π∗1, π∗2, . . . , π∗m )
T satisfying BTπ∗ = cB with the property

that

c̄j = cj −
m∑
i=1

π∗i aij > 0 =⇒ x∗j = 0. (7.18)

We shall now prove that the manager’s operating plan has minimized his labor
costs. Writing c̄ = c−ATπ∗, we have from (7.17) that

c̄Tx∗ = (c−ATπ∗)Tx∗ = z∗ − bTπ∗, (7.19)

where, by (7.17), z∗ is the total labor requirement of the manager’s operating plan.
But because of (7.18), c̄Tx∗ = 0, and therefore

z∗ = bTπ∗. (7.20)

Now let x = (x1, x2, . . . , xn )
T be any other feasible operating plan, and let z be

its labor requirements; then
cTx = z,
Ax = b,
x ≥ 0.

(7.21)

It follows by multiplying Ax = b by π∗, subtracting from cTx = z, and noting (7.20),
that

(c−ATπ∗)Tx = z − bTπ∗ = z − z∗, or
n∑

j=1

c̄jxj = z − z∗. (7.22)

But the left member is the sum of nonnegative terms and therefore z ≥ z∗. Hence,
no other feasible operating plan exists whose labor requirement is less than the one
found by the manager.

At this point, we can imagine the manager’s delight at his genius, for as a by-
product of his search for prices that will cause his workers to work efficiently, he
has also discovered those processes that minimize his labor requirements. Without
explicitly trying, he has solved his assigned task of keeping his use of labor to a
minimum!

Let us review the requirements satisfied by the prices found by the manager.
First, there will be no excess wages in any activity; that is,

ATπ ≤ c. (7.23)
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Second, the total amount of wages to be paid for all activities should be the same
whether they are paid directly or by use of the pricing device; that is

z∗ = cTx∗ = bTπ, (7.24)

where x∗ is an optimal solution to (7.8).
Let us now show that these prices π themselves represent the optimal solution

to another linear programming problem—specifically, to the dual problem of our
manager’s original production problem. By multiplying the jth equation of (7.23)
by x∗j and summing, we find that

π1

n∑
j=1

a1jx
∗
j + π2

n∑
j=1

a2jx
∗
j + · · ·+ πm

n∑
j=1

amjx
∗
j ≤

n∑
j=1

cjx
∗
j . (7.25)

Substituting from (7.8)

bi =
n∑

j=1

a1jx
∗
j , i = 1, . . . ,m, (7.26)

gives
π1b1 + π2b2 + · · ·+ πmbm ≤ c1x

o
1 + c2x

o
2 + · · ·+ cnx

o
n.

Thus, πTb ≤ cTx∗ for any π that satisfies (7.23). The prices π∗ found by the
manager give bTπ∗ = cTx∗, and thus π∗ maximizes bTπ, subject to the constraints
(7.23). Hence, π = π∗ may be viewed as an optimal solution to the dual linear
programming problem, namely,

bTπ = v (max),
ATπ ≤ c.

(7.27)

The relation bTπ∗ = cTx∗, where π∗ is an optimal solution to (7.27) and x∗ an
optimal solution to (7.8), agrees with the Strong Duality Theorem (see Theorem 5.3).

� Exercise 7.1 Interpret the economic meaning of maximizing bTπ in the case of the tool
plant manager.

7.1.4 THE AMBITIOUS INDUSTRIALIST

In this section we shall present a situation where the primal formulation and the dual
formulation both are problems that a planner would like to have solved. Consider
a defense plant that has just been built for the government. The plant has been
designed to produce certain definite amounts −bi, i = k + 1, . . . ,m, of certain
defense items and to use only certain definite amounts, +bi, i = 1, . . . , k, of certain
scarce materials that will be provided without cost by other government plants.
The consulting engineers who designed the plant provided the government with
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a list of the various processes available in the plant and their input and output
coefficients. Somewhat confused by this mass of data, the civil servants who were
supposed to operate the plant decide to call in a private industrialist to consult on
how they should plan their production. The industrialist realizes that it would be
good training for his men and a feather in his cap if he could contract to actually
operate the plant. Accordingly, once he gets the information and studies the data,
he proposes a flat fee for which he will manage the plant, turn over to the government
the required amounts of output, and use no more than the allotted quantities of the
scarce materials. The civil service men declare that all other things being equal,
they think it would be best for the government to operate the plant, but if he can
convince them that his proposal is a good one (meaning that if the government
operates the plant, it is unlikely it could do so less expensively), they will accept
his offer.

The industrialist takes the data back to his office, gets out his linear program-
ming book titled Linear Programming 1: Introduction, and uses input-output coef-
ficient data to form a matrix A and a labor cost vector c.

To determine the minimum fee for which he can afford to operate the defense
plant, the industrialist has only to solve the following linear program:

cTx = z (min),
Ax = b,
x ≥ 0.

(7.28)

Using the software provided, he quickly solves the problem on his PC and prints
out the results using his printer. The results are that z∗ is the minimum cost and
x∗ is the vector of optimal process utilization levels. His first thought is to explain
the linear programming technique to his civil service friends, show them the final
tableau, and thereby convince them that they can do no better than to accept
his offer and pay him z∗. But then he realizes that this plan will give away his
secret; the civil servants will have no further need for him. They will take his vector
of operating levels x∗ to optimally operate the plant themselves. To prevent this
from happening, he must find a way to convince the government that z∗ is minimal
without giving away his plan x∗.

To this end, he decides to invent a system of prices that he will offer to pay for
the materials, provided he is paid certain prices for the outputs. He wants these
prices to be such that there are no profits on any individual activity, for if there
were profits, the government would spot them and know that they could find a way
to run the plant with lower labor cost. On the other hand, given these restraints,
he wants to make as much money as possible. That is, he wants his price vector π
to satisfy

πTb = v (max),
ATπ ≤ c.

(7.29)

He recognizes this problem as the dual of the one he just solved and immediately
produces the dual solution: optimal π = π∗, the simplex multipliers from the last
iteration of the Simplex Method used to solve the primal problem, and maximal
v = v∗. Fortunately, he notes with relief, v∗ = z∗.
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With these results under his arm, the industrialist goes back to see the civil
servants and presents his offer in price terms. The bureaucrats check to be sure
that every one of the inequalities (7.29) is satisfied, and, of course, calculate the
total cost using these prices: bTπ∗ = v∗. The industrialist then invites them to
consider any program x satisfying (7.28). Its cost to them, if they operate the plant
themselves, is cTx. But replacing π by π∗ in (7.29) and multiplying both sides by
any feasible x yields

(π∗)TAx ≤ cTx (7.30)
or, by (7.28),

(π∗)Tb ≤ cTx. (7.31)
Hence,

v∗ ≤ cTx, (7.32)
so that the cost of any feasible program that the bureaucrats could devise will be
at least v∗. This argument convinces the civil servants that they can do no better
than to accept the industrialist’s flat fee offer of v∗. With one last hope of operating
the plant themselves, they try to pry out of him just how much of each process he
intends to operate; but he feigns ignorance of such details and is soon happily on
his way with a signed contract in his pocket.

7.1.5 SIGN CONVENTION ON PRICES

Economists use the sign convention that the flow of items produced by an activity
are positive and the flow of items consumed by an activity are negative. They
also assume the value of the cost item has a price of unity and that costs (money
paid out) are being minimized. With this in mind, let us introduce into the linear
program a fictitious “procurement” activity j = n+ i that increases the allotment
of item i; its coefficients are zero except for unity in row i and cn+i in the cost row.

How low must the cost cn+i be before it pays to increase the allotment of item i ?
Pricing out this activity, we see that it pays if

cn+i < πi.

Hence, πi is the break-even cost of the item i procurement activity.
If an item is produced by an activity aij > 0 and if the item has value, then the

flow of money πiaij > 0 is toward the activity. Similarly, for each unit of activity
j, the input aij < 0 would induce a payment of πiaij < 0. In other words, the flow
of money is out.

The total flow of money into the activity by the price device is given by pricing
it out, that is,

m∑
i=1

πiaij .

If this value exceeds cj , the amount that would be received by the alternative of
direct payment, then this activity (or some other with the same property) will be
used in lieu of a basic activity now in use. This in turn will generate a new set of
prices, etc.
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Basic Admissible Variables (Including Slacks) Constants
Variables −z x1 x2 x3 x4 x5 x6

−z 1 −12 −20 −18 −40 0 0 0
x5 0 4 9 7 10 1 0 6
x6 0 1 1 3 40 0 1 4

Table 7-1: Initial Tableau for Sensitivity Analysis

7.2 INTRODUCING A NEW VARIABLE

After an optimal solution x = x∗ has been determined, suppose that we want to
examine the effect on the optimal solution of introducing a new variable xn+1 with
cost coefficient cn+1 and input-output coefficients A•n+1.

LP IN STANDARD FORM

The augmented problem is then

Minimize cTx + cn+1xn+1 = z
subject to Ax + A•n+1xn+1 = b

x ≥ 0
xn+1 ≥ 0.

(7.33)

Introducing a new variable into (7.1) as shown in (7.33) does not alter feasibility
since we can make it nonbasic and set its value to be at its lower bound of 0. Thus,
the current solution is still feasible. However, the solution need not be optimal since
the reduced cost c̄n+1 corresponding to the new variable xn+1 may be negative. In
order to check for optimality we compute

c̄n+1 = cn+1 −AT
•n+1π

∗. (7.34)

If c̄n+1 ≥ 0, the old solution with xn+1 = 0 is optimal. If, on the other hand,
c̄n+1 < 0, then we know that we can improve on the solution by bringing the
variable xn+1 into the basis. It may be necessary to perform a series of pivot steps
before optimality is regained.

Example 7.3 (A New Column Introduction) Consider the product mix problem as
stated in Section 1.4.1:

−12x1 − 20x2 − 18x3 − 40x4 = z (min)
4x1 + 9x2 + 7x3 + 10x4 + x5 = 6 (carpentry)
x1 + x2 + 3x3 + 40x4 + x6 = 4 (finishing)

(7.35)

This is shown in simplex tableau form in Table 7-1. Since this is already in canonical form,
addition of artificial variables is unnecessary, and we can proceed directly to Phase II of
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Basic Admissible Variables (Including Slacks) Constants
Variables −z x1 x2 x3 x4 x5 x6

−z 1 0 20/3 10/3 0 44/15 4/15 56/3
x1 0 1 7/3 5/3 0 4/15 −1/15 4/3
x4 0 0 −1/30 1/30 1 −1/150 2/75 1/15

Table 7-2: Optimal Tableau for Sensitivity Analysis

the Simplex Method. After several iterations we arrive at the optimum solution as shown
in the final tableau in Table 7-2.

From the information contained in this tableau (Table 7-2) we see that the optimum
product mix for the problem as stated in thousands of units is at the rate of 4/3 thousand
desks of type 1 and 1/15 thousand desks of type 4 per time period for a total profit rate
of z = $56/3 thousand per period.

Suppose a new desk called Type 7 has been designed that will require 6 man-hours of
carpentry shop time and 2 man hours of finishing department labor per desk. Based on an
estimated profit of $18 per desk, we would like to know whether it would pay to produce
this desk.

Note that the negatives of the values of the simplex multipliers, 1, 44/15, 4/15, for
the last iteration can be obtained from the top row vector of the inverse of the final basis
(columns corresponding to (−z), x5, and x6). This yields, after pricing out,

c̄7 = −18 +
44
15

(6) +
4
15

(2) =
2
15
.

Since c̄7 > 0, it does not pay to produce this desk.

� Exercise 7.2 If the economic sign convention of Section 7.1.5 is followed, show that
the signs of the bottom two equations of (7.35) are reversed and the optimal prices are
π1 = 44/15 and π2 = 4/15, corresponding to the top row of the inverse in Table 7-1.

BOUNDED VARIABLE LP

Next, let us consider the more general case when xn+1 has upper and lower bounds
specified, i.e., ln+1 ≤ xn+1 ≤ un+1, where the lower bound is not necessarily 0 and
the upper bound is not necessarily ∞. In this case, besides regaining optimality,
we also have to be concerned with feasibility. There are three cases to consider:

1. The lower bound ln+1 = −∞ and the upper bound un+1 = ∞. In this
case xn+1 = 0 provides a feasible solution. However, the solution (if not
degenerate) is not optimal if c̄n+1 �= 0 because it is profitable to increase xn+1
if c̄n+1 < 0 and to decrease xn+1 if c̄n+1 > 0.

2. The lower and upper bounds are both finite. We first look at easy cases such
as setting set xn+1 at its lower bound and checking to see whether the solution
found by adjusting the basic variables is feasible. If not, we try again setting
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xn+1 at its upper bound. If this also does not work, we check to see whether 0
is bracketed by the bounds, in which case we set xn+1 = 0 to obtain a feasible
solution. See Exercise 7.3.

If a feasible solution is not obtained at either bound of xn+1 or at xn+1 = 0,
we set xn+1 = 0 and perform Phase I of the Simplex Method by creating a
Phase I objective and a modified problem for which this solution is feasible.
If un+1 < 0, we set the Phase I objective function to minimize w = xn+1
and temporarily set un+1 = ∞. If 0 < ln+1, we set the Phase I objective
function to be w = −xn+1 and temporarily set ln+1 = −∞. If by checking
at each iteration of the Simplex Algorithm to see whether xn+1 is feasible
with respect to the original bounds a feasible solution is found, we terminate
Phase I, reset the original bounds, and continue with Phase II. If Phase I
terminates optimal with w > 0, we report the original problem as infeasible.
This method is called minimizing the sum of infeasibilities.

If a feasible solution is obtained, we compute the value of c̄n+1 using equa-
tion (7.34). If xn+1 = ln+1 and c̄n+1 ≥ 0 the solution is optimal, else if
c̄n+1 < 0, we perform one or more iterations of the Simplex Method. If
xn+1 = un+1 and c̄n+1 ≤ 0 the solution is optimal, else if c̄n+1 > 0, we per-
form one or more iterations of the Simplex Method. If xn+1 = 0 is feasible
and c̄n+1 = 0 the solution is optimal, else if c̄n+1 �= 0, we perform one or more
iterations of the Simplex Method.

3. Either the lower bound or the upper bound is infinite but not both; see Ex-
ercise 7.4.

� Exercise 7.3 Show how we can take advantage of the sign of c̄n+1 to possibly reduce
the number of computations in Case 2 above.

� Exercise 7.4 For Case 3 above, complete the detailed steps for the case where either
the lower bound or the upper bound is infinite but not both.

7.3 INTRODUCING A NEW CONSTRAINT

We assume that the constraint being introduced is of one of the following forms:

Am+1•x = bm+1,
Am+1•x ≤ bm+1,
Am+1•x ≥ bm+1,

(7.36)

where bm+1 ≥ 0. By setting different bounds on the slack variable xn+1 we can
write any of the constraints (7.36) in the form

Am+1•x+ xn+1 = bm+1. (7.37)
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Thus if the constraint reads “= bm+1,” then 0 ≤ xn+1 ≤ 0, if it reads “≤ bm+1,”
then 0 ≤ xn+1 ≤ ∞, and if it reads “≥ bm+1,” then −∞ ≤ xn+1 ≤ 0. The cost
cn+1 associated with xn+1 is zero.

The current solution x = x∗ is feasible, optimal, and satisfies Ax∗ = b for the
original problem. If it also satisfies the added constraint (7.37) with xn+1 = x∗n+1,
the solution (x∗, x∗n+1) is also optimal for the augmented problem, as can be easily
seen by keeping the old optimal prices and setting the price on the extra constraint
to be equal to zero.

But what if the solution x = x∗ is infeasible after the addition of the constraint?
That is, for the equality constraint, xn+1 �= 0; for the ≤ constraint, xn+1 < 0; or
for the ≥ constraint, xn+1 > 0. Then we can solve the infeasibility problem by
minimizing a Phase I objective, and a modified problem is constructed as follows.

1. For the “= bm+1” case, if x∗n+1 > 0, then set w = xn+1 and set un+1 = ∞.
On the other hand, if x∗n+1 < 0, then set w = −xn+1 and set ln+1 = −∞.

2. For the “≤ bm+1” case, if x∗n+1 < 0, then set w = −xn+1 and set ln+1 = −∞.

3. For the “≥ bm+1” case, if x∗n+1 > 0, then set w = xn+1 and set un+1 −∞.

If by checking at each iteration of the Simplex Algorithm to see whether xn+1 is
feasible with respect to the original bounds a feasible solution is found, we terminate
Phase I, reset the original bounds, and continue with Phase II. If Phase I terminates
optimal with w > 0, we report the original problem as infeasible. This method is
called minimizing the sum of infeasibilities.

The new multipliers (π, πm+1) can be easily computed from

(
B 0
vTB 1

)T(
π

πm+1

)
=
(
0
θ

)
or

(
BT vB

0 1

)(
π

πm+1

)
=
(
0
θ

)
(7.38)

where θ = 1 if w = xn+1 and θ = −1 if w = −xn+1, and, letting j1, j2, . . . , jm
be indices of the variables in the optimal basis B of the original problem, vB =
(am+1,j1 , am+1,j2 , . . . , am+1,jm

)T . It is easy to see that the solution is given by

πm+1 = θ and π = θ(B−1)TvB. (7.39)

The reduced costs can be easily obtained from

d̄ = dN − (NT vN )
(

π
πm+1

)

= − (NT vN )
(

π
πm+1

)
, (7.40)

where vN = ( am+1,jm+1 , am+1,jm+2 , . . . , am+1,jn
)T and jm+1, . . . , jn are the

indices of the nonbasic variables.
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� Exercise 7.5 Show that
(
B 0
vT 1

)−1

=

(
B−1 0

−vTB−1 1

)
.

Derive the inverse form by using Equation (A.21) on Page 330.

7.4 COST RANGING

Often costs are uncertain in industrial applications. For example, in the oil industry,
the spot prices for purchasing crude oils for making gasoline may have changed after
the linear program has been run, and we are concerned with whether the changes
in price are sufficient to require us to rerun the program. It is clear that changing
the costs does not affect feasibility, and thus we only need to be concerned with
optimality. Cost ranging refers to the determination of the range of costs for a
variable xj such that the solution stays optimal. We are going to consider only
two cases: the effect of changing the cost of one nonbasic variable and the effect of
changing the cost for one of the basic variables.

THE EFFECT OF NONBASIC-VARIABLE COST
CHANGE

Consider the nonbasic variable xs with cost cs. For optimality to hold we need the
reduced costs to be nonnegative. That is, we need

cs ≥ AT
•sπ
∗. (7.41)

Thus, the range of costs cs for the nonbasic variable xs over which optimality of the
basis B is preserved is cs ≥ AT

•jπ
∗.

Example 7.4 (Change in Nonbasic Cost) In Example 7.3 on page 184, how much
would the profit for desk Type 7 have to change before it becomes worthwhile to produce
it? It follows from (7.41) that if the cost coefficient cj for any nonbasic activity is decreased
by the value of its relative cost factor c̄j in the optimal solution, it becomes a candidate to
enter the basis. In this case, desk Type 7 becomes a candidate for production if its profit
per unit can be increased by c̄7 = 2/15.

� Exercise 7.6 How much must the profit on desk Type 2 be increased to bring it into
an optimum solution? How much would you have to raise the selling price on desk Type 3
in order to make its production optimal? How would you modify the model if as the result
of a market survey you have determined that the amount that can be sold is a function of
selling price and that there is an upper bound on the amount that can be sold?
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THE EFFECT OF BASIC-VARIABLE COST CHANGE

The determination of the range of costs over which optimality of the basis is pre-
served is slightly more complicated in this case. For convenience, let us suppose that
the cost of optimal basic activity jr is changed from cjr

to γ and we are interested
in how much γ must increase or decrease before the basis B is no longer optimal.
The basic cost vector cB changes to

cB(γ) = cB + (γ − cjr )er, (7.42)

where er is the rth column of the identity matrix. Then the new multipliers π are
now a function of γ, which we write as π(γ). By definition, BTπ(γ) = cB(γ), that
is,

BTπ(γ) = cB + (γ − cjr
)er. (7.43)

Then for the current solution to remain optimal, we need

c̃j(γ) = cj − π(γ)TA•j ≥ 0 for all nonbasic j. (7.44)

The inequalities (7.44) are all linear in γ, because multiplying (7.43) on the left by
(BT )−1, and noting that (BT)−1) = (B−1)T, we have

π(γ) = π∗ + (γ − cjr )(B
−1)Ter. (7.45)

From these we can compute a range of values on γ that maintain optimality of the
solution.

Therefore, the new reduced costs are given by

c̃j(γ) = cj −AT
•jπ(γ) = cj −AT

•jπ
∗ − (γ − cjr )A

T
•j(B

−1)Ter

= cj −AT
•jπ
∗ − (γ − cjr

)(B−1A•j)Ter

= c̄j − (γ − cjr
)ĀT

•jer
= c̄j − (γ − cjr )ārj . (7.46)

As long as c̃j(γ) ≥ 0 for all nonbasic j, the solution will remain optimal. The range
of γ for which the solution is optimal can be computed by setting c̃j(γ) ≥ 0 for each
nonbasic j and solving for γ. Thus, the range on γ is given by

cjr
+ max

ārj<0

c̄j
ārj
≤ γ ≤ cjr

+ min
ārj>0

c̄j
ārj

. (7.47)

As long as γ lies in the range defined by (7.47), the current basis B remains
optimal; however, the optimal value of the objective function changes according to

z(γ) = cTB(γ)x
∗
B = cTBx

∗
B + (γ − cjr

)eTrx
∗
B = z∗ + (γ − cjr

)xjr
, (7.48)

where x∗B is the current optimal solution.
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Example 7.5 (Change in Basic Cost) For what range of cost of a particular basic
activity jr = 1 in the desk production Example 7.3 does the present optimal solution still
remain optimal? The present solution will remain optimal as long as cost coefficient γ = c1
satisfies Equation (7.47). Hence, based on (7.47) we use Table 7-2 to first compute

min
ārj>0

c̄j
ārj

= min
{
c̄2
ā12

,
c̄3
ā13

,
c̄5
ā15

}
=

{
20/3
7/3

,
10/3
5/3

,
44/15
4/15

}
= 2,

max
ārj<0

c̄j
ārj

= max
{
c̄6
ā16

}
=

{
4/15
−1/15

}
= −4.

Thus from (7.47) we see that the present solution remains optimal for c1 in the range
−12− 4 ≤ c1 ≤ −12 + 2, where −12 was the original value of c1.

� Exercise 7.7 For what range of profit for desk Type 4 is the present solution (see
Table 7-2) still optimal? Determine what activity enters the solution if c1 is decreased to
−20, increased to −19/2. What activity leaves the solution in each case?

� Exercise 7.8 Construct an example by changing b1 in the original problem in Table 7-1
to show that if the profit for desk Type 1 is decreased to 19/2, i.e., c1 is increased to −19/2,
then desk Type 1 is not the one that leaves the solution.

� Exercise 7.9 Given an initial optimal basic feasible solution, prove the theorem that
reducing the cost of a basic activity will not necessarily cause it to be dropped from the
optimal solution. Verify this by showing, in the example of Exercise 7.7, that no matter
how much c1 is decreased, activity j = 1 will still remain in the basis.

� Exercise 7.10 Modify the cost ranging analysis for the case when x has both upper
and lower bounds associated with it.

7.5 CHANGES IN THE RIGHT-HAND SIDE

It is important to be able to examine the effect of changes to the right-hand side
of the constraints, especially those that specify what resources are available. For
example, the availability of a resource may be constrained as a result of a company’s
policy decision to place a quota on imports of an item from a foreign company.

Assume that we have an optimal solution to a linear program in standard form.
Let the right-hand side of the rth constraint be given by a parameter θ with a
particular value of θ being the current br. Let

b(θ) = b+ (θ − br)er, (7.49)

where er is the rth column of the identity matrix. If the value of θ does not make
the current basis infeasible, then the revised basic solution is still optimal. However,
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if it is infeasible, this will result in a change of basis requiring that the new problem
be solved by a Phase I / Phase II procedure or by the Dual-Simplex Method. (The
Dual-Simplex Method is a pivot procedure that uses different rules as to which
column leaves the basis and which enters the basis. It turns out in reality to be a
clever way to solve the dual of the original problem by the Simplex Method without
having to transpose the matrix.) The range of values θ for the right hand side of
the rth constraint, for which the current basis remains feasible and thus optimal, is
obtained by ensuring that the solution xB(θ) to

BxB(θ) = b(θ) (7.50)

is such that xB(θ) ≥ 0. From (7.49) and (7.50) we get

xB(θ) = B−1b+ (θ − br)B−1er = x∗B + (θ − br)B−1er, (7.51)

where x∗B is the optimal solution with θ = br. For feasibility we need xB(θ) ≥ 0,
thus the range of θ is

br + max
βir>0

−(x∗B)i
βir

≤ θ ≤ br + min
βir<0

−(x∗B)i
βir

, (7.52)

where βir is element (i, r) of B−1.
As long as θ lies in the range defined by (7.52), the current basis B remains

optimal; however, the optimal values of the optimal basic solution (7.51) change,
and the optimal value of the objective function changes according to

z(θ) = cTBxB(θ) = cTBx
∗
B + (θ − br)cTBBer = z∗ + (θ − br)π

∗
r , (7.53)

where z∗ is the current optimal objective value and π∗ are the simplex multipliers
of the current optimal solution.

� Exercise 7.11 Derive the relation (7.53) alternatively by noting that z(θ) = b(θ)Tπ∗.

Example 7.6 (Change in Capacity) What is the effect of increasing finishing depart-
ment capacity in Example 7.3? The present solution will remain optimal as long as the
right-hand side θ = b2 satisfies (7.52). Hence, based on (7.52) we use Table 7-2 to first
compute

max
βir>0

−(x∗B)i
βir

= max

{
−x4

β22

}
=

{
−1/15
2/75

}
= −2.5,

min
βir<0

−(x∗B)i
βir

= min

{
−x1

β12

}
=

{
−4/3
−1/15

}
= 20.

Thus from (7.52), we see that the present solution remains feasible and optimal for b2 in
the range 4 − 2.5 ≤ b2 ≤ 4 + 20, or 1.5 ≤ b2 ≤ 24, where 20 was the original value of b2.
Thus, the answer to our question is that we can increase finishing department capacity up
to 20,000 hours. The net profit per hour of increase is −π∗2 = $4/15.
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� Exercise 7.12 If finishing department capacity in Example 7.3 has been increased by
20,000+ε hours, where ε is infinitesimally small, what is the resulting product mix? Which
basic activity has dropped out of the solution?

� Exercise 7.13 In Example 7.3, equipment needed to increase the carpentry capacity
by 10% can be rented for $5,000. Also, overtime hours up to 20% of the rated capacity of
either carpentry or finishing can be obtained at a premium of $1.50 per hour. Above this
figure, the premium is estimated to be about $3.00 per hour because of loss of productive
efficiency. Is it better to rent or to use overtime with increased capacity.

� Exercise 7.14 Show that if a slack variable corresponding to bi is basic in the optimal
solution with value x̄n+i, then the corresponding constraint constant bi = boi in the initial
tableau can take on any value bi ≥ boi − x̄ji , with no change in the values of the objective
function or the other basic variables in the optimal solution. In this range, is bi actually
constraining the solution?

� Exercise 7.15 Modify the analysis of this section for changing the right hand side for
the case when x has both upper and lower bounds associated with it.

7.6 CHANGES IN THE COEFFICIENT
MATRIX

When blending scrap metal, it may turn out that the actual percentage of, say,
chromium in the scrap is not according to specifications in the jth column in the
coefficient matrix, and it is important to determine the extent to which the variation
in chromium would affect the optimal blend. In general, when the coefficient matrix
is large, it is not practical to examine the effects of changes in the coefficients by
solving the problem again from scratch. We are going to assume that we have an
optimal solution to a linear program in standard form, and we will consider only
two cases: the effect of changes in a coefficient in a nonbasic column and the effect
of changes in a coefficient in a basic column.

THE EFFECT OF NONBASIC-COLUMN COEFFICIENT
CHANGES

Changing the coefficients of nonbasic columns does not affect the feasibility, only
optimality because the nonbasic variables are all set at their lower bound of 0. Let j
be a nonbasic column in the current optimal solution and let akj be replaced by
a parameter αkj subject to change. This αkj has current value akj . The solution
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stays optimal provided the reduced cost for column j is nonnegative. Thus, we wish
to determine the range of values for αkj for which

cj −
(
A•j + (αkj − akj)ek

)T
π∗ ≥ 0, (7.54)

where π∗ are the simplex multipliers of the current optimal solution. Hence

π∗kαkj ≤ c̄j + π∗kakj . (7.55)

Therefore, the current optimal solution remains optimal as long as (7.55) holds. If
π∗k = 0, the value of αkj does not affect optimality. Indeed, if π∗k = 0, the optimal
solution is not affected by the change of the coefficient in row k of any nonbasic
column j.

� Exercise 7.16 Modify the above analysis for the case when aij is changed for a nonbasic
column j whose corresponding variable xj has both upper and lower bounds associated
with it.

Example 7.7 (Change in Nonbasic Coefficient) Recall in Example 7.3 on page 184,
a new desk Type 7 with coefficients c7 = −18, a17 = 6, and a27 = 2 was introduced and
found to be unprofitable. How much would the carpentry shop labor requirement of a17 = 6
for desk Type 7 have to change for it to become more profitable to produce? Replacing
the original value of a17 = 6 by the parameter α17 in the c̄j calculation, we have

c̄7 = c7 − π
∗
1α17 − π

∗
2a27 = −18 +

44
15
α17 +

4
15
α27 =

44
15
α17 −

262
15

, (7.56)

where π∗1 = −44/15, π∗2 = −4/15 are the current optimal prices from Table 7-2. In order
for activity j = 7 to become a candidate to enter the optimal basis, we require c̄7 ≤ 0 or
α17 ≤ 131/22 = 5 21

22 . Therefore, the carpentry shop labor requirement for desk Type 7
must drop by at least 6− 5 21

22 = 1
22 .

� Exercise 7.17 In Example 7.3, to what value would the carpentry shop hours for desk
Type 2 have to be reduced to make it competitive?

Example 7.8 (Basis Change When Nonbasic Coefficients Change) Suppose that
we are not really sure of either the labor requirements or profit for desk Type 2. We would
like to determine a formula for these parameters that may be used to determine whether it
pays to change the production mix and produce some desks of Type 2. For activity j = 2
to become a candidate to enter the solution, its coefficients c2, a12, a22 must satisfy

c̄2 = c2 − π
∗
1a12 − π

∗
22a22

= c2 +
44
15
a12 +

4
15
a22 ≤ 0, (7.57)

where π∗1 = −44/15, π∗2 = −4/15 are the current optimal prices from Table 7-2. If, for
example, it turns out that a12 = 8, a22 = 2, c2 = −25, then substitution of these values
into (7.57) gives c̄2 = −1, which implies that it pays to produce some desks of Type 2. In
the general case, the formula is given by Equation (7.57).
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EFFECT OF BASIC-COLUMN COEFFICIENT CHANGES

Changing the coefficients of basic columns can affect both the feasibility and the
optimality. For convenience we relabel the basic columns to be i = 1, . . . ,m. Let i
be a basic column in the current optimal solution x∗, let aki be replaced by a
parameter αki subject to change, and let the modified optimal basis B be denoted
by

B̄ = B(αki).

In particular, B(aki) = B. The modified optimal basic feasible solution will be
denoted by xB(αki) (or equivalently, by xB̄) and the modified multipliers will be
denoted by π(αki). Our goal is to determine the range of αki over which the basis
B̄ remains optimal, i.e., xB̄ ≥ 0, xN = 0, and c̄ ≥ 0. We will first determine this
range for the following example.

Example 7.9 (Change in a Basic Coefficient) What happens if the carpentry shop
requirement for desk Type 1 in Example 7.3 changes? To evaluate the effect of varying
a11 we replace a11 by α11. First we note that the current optimal basis and its inverse
from Tables 7-1 and 7-2 are

B =

(
4 10
1 40

)
and B−1 =

1
150

(
40 −10
−1 4

)
. (7.58)

Replacing B11 by α11 note that

B̄ =

(
α11 10
1 40

)
and B̄−1 =

1
40α11 − 10

(
40 −10
−1 α11

)
. (7.59)

The formula for B̄−1 can be obtained by using Exercise A.13 on page 330.

� Exercise 7.18 Verify that B̄−1B̄ = I.

Note that in order for B̄ to serve as a basis, B̄−1 must exist. In this case this means
that 1/(40α11−10) �= 0, or α11 �= 1/4. We will first determine the range of α11 over which
the adjusted basic solution is primal feasible. Thus, α11 must be such that

xB̄ = B̄−1b = B̄−1

(
6
4

)
=

1
40α11 − 10

(
200

−6 + 4α11

)
≥ 0. (7.60)

This implies that 40α11 − 10 ≥ 0, or α11 ≥ 1/4 and −6 + 4α11 ≥ 0, or α ≥ 6/4. Together
these imply that for primal feasibility we require

α11 ≥ 6/4. (7.61)

Next we determine the range of α11 over which the simplex multipliers π are dual feasible.
This requires ensuring that the reduced costs c̄j , as a function of α11, remain nonnegative
for all the nonbasic variables j. We first compute the new multipliers as a function of α11,
i.e., π(α11) as

π(α11) = (B̄T )−1cB =
1

40α11 − 10

(
40 −1

−10 α11

)(
−12
−40

)

=
4

4α11 − 1

(
−11

3− α11

)
. (7.62)
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Using these multipliers the reduced costs can be computed as

c̄N =



c2
c3
c5
c6


−NTπ(α11) =



−20
−18

0
0


+

4
4α11 − 1




96 + α11

68 + 3α11

11
−3 + α11


 ≥ 0. (7.63)

Recalling that 40a11−10 > 0 by (7.60), we have by multiplying by 4a11−1 that the range
of α11 over which the simplex multipliers stay dual feasible is given by

3 ≤ α11 ≤
29
6
. (7.64)

Since this range happens also to preserve primal feasibility, see (7.61), we conclude that
as long as 3 ≤ α11 ≤ 29/6, the adjusted primal basic solution will remain optimal.

� Exercise 7.19 Suppose in Example 7.3, that the carpentry shop hours needed to man-
ufacture desk Type 1 should have been 4 1

2 hours instead of 4 hours per desk. How would
the solution change? What would be the effect if it turned out to be 5 hours instead of
4 hours per desk?

� Exercise 7.20 What is the effect on the optimal solution and the value of the objective
of simultaneous changes to carpentry shop requirements, finishing department require-
ments, and profit for desk Type 1 in Example 7.3?

Next we derive formulae for ranges on αki that preserve both primal and dual
feasibility. In order to compute this range, we note that aki = Bki and

B̄ = B + (αki −Bki)ekeTi = B
(
I + (αki −Bki)B−1eke

T
i

)
, (7.65)

where er is the rth column of the identity matrix for r = i, k. The inverse of the
new basis B̄ is given by (see Equation (A.21) on Page 330)

B̄−1 =
(
I − (αki −Bki)

1 + (αki −Bki)βik
B−1eke

T
i

)
B−1, (7.66)

providing 1 + (αki −Bki)βik �= 0, where βik is element (i, k) of B−1.

� Exercise 7.21 In (7.65) and (7.66) multiply B̄−1 by B̄ and verify that B̄−1B̄ = I.

Letting

φ =
1

B−1
ik + 1/(αki −Bki)

, (7.67)

we note that B̄−1 can be written as

B̄−1 =
(
I − φB−1eke

T
i

)
B−1. (7.68)
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1. Primal Feasibility. For primal feasibility we need xB(αki) ≥ 0 where we have
B̄xB(αki) = b and xB(aki) = x∗B. Then for feasibility we need to restrict αki

so that
xB(αki) = B̄−1b ≥ 0. (7.69)

Substituting (7.68) into (7.69), we obtain

xB(αki) = B̄−1b = B−1b− φB−1eke
T
i B

−1b

= x∗B − φB−1eke
T
i x
∗
B

= x∗B − φ[x∗B]iB−1
•k

≥ 0. (7.70)

This then provides the following range on φ:

max{
q∈B | [x∗

B
]iβqk<0

} x∗q
[x∗B]iβqk

≤ φ ≤ min{
q∈B | [x∗

B
]iβqk>0

} x∗q
[x∗B]iβqk

, (7.71)

where βqk is element (q, k) of B−1.

2. Dual Feasibility. In addition to primal feasibility we also need dual feasibility.
Hence we restrict αki so that for all nonbasic j

c̄j(αki) = cj −AT
•jπ(αki) ≥ 0, (7.72)

where π(αki), a function of αki, is computed from B̄Tπ(αki) = cB and B̄ is a
function of αki.

Next we determine the range on φ (and thus αki) for the current solution to
remain dual feasible. The new multipliers π(αki) are determined by:

π(αki) = (B̄−1)TcB = (B
−1)TcB − φ(B−1)TeieTk (B

−1)TcB

= π∗ − φ(B−1)TeieTk π
∗

= π∗ − φπ∗k(B−1)Tei. (7.73)

Using the above, the new reduced costs c̄N(αki), as a function of αki, are

c̄N(αki) = cN −NTπ(αki) = cN −NTπ∗ + φπ∗i (B−1N)Tek
= c̄N − φπ∗i (Āk•)T. (7.74)

For dual feasibility we need c̄N(αki) ≥ 0, which provides the following range
on φ:

max{
j∈N |π∗

i
Ākj<0

} c̄j

π∗i Ākj

≤ φ ≤ min{
j∈N |π∗

i
Ākj>0

} c̄j

π∗i Ākj

. (7.75)

Relations (7.71) and (7.75) together determine the range of values of αki that main-
tain feasibility and optimality of the current solution.
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� Exercise 7.22 First, from (7.71) derive the range on αki for primal feasibility. Next,
from (7.75) derive the range on αki for dual feasibility. Use these two ranges to derive a
formula for the range on αki that preserves optimality of the current basis.

If the value of αki changes so that the basis is no longer primal and dual feasible
for some αki, there are three cases to consider:

1. If for a particular value of αki, the primal solution is not feasible but the dual
solution is feasible, we can apply the Dual-Simplex Method.

2. If for a particular value of αki, the primal solution is feasible but not optimal,
we can apply the primal Simplex Method.

3. If for a particular value of αki, both the primal solution and dual solution are
feasible, we revert back to Phase I of the primal Simplex Algorithm.

� Exercise 7.23 Modify the above analysis, for the case when aki is changed for a basic
column i when the variables x have both upper and lower bounds associated with it.

� Exercise 7.24 Prove that although xB and c̄N are nonlinear functions of αkj − akj , the
ranges of αjk are determined by simple linear inequalities in φ, which in turn implies that
the range of values of φ are determined by simple linear inequalities in αkj .

� Exercise 7.25 Under what conditions can the value of an input-output coefficient for
a basic activity be changed without any effect on the optimal value of the objective?

In the course of the discussion above, we have proved the following:

THEOREM 7.1 (Change in Basic Coefficient) Let basis element aki = Bki

be changed to αki, and let the (i, k) element of B−1 be denoted by βik. For small
changes αki − aki, the changes to xB, π, and c̄ are nonlinear in αki − aki but are
linear in

φ =
αki − aki

1 + (αki − aki)βik
. (7.76)

� Exercise 7.26 Show that φ is a monotonically increasing function of αki − aki:

φ =
1

βik + 1/(αki − aki)
. (7.77)

� Exercise 7.27 In Theorem 7.1, under what conditions would the changes to xB, π, and
c̄ be linear in αki.

THEOREM 7.2 (Convexity of Variation of B•j) Given a general linear
program, the domain of all possible variations of a column B•j for which the given
basis remains optimal is convex in the space of the components of B•j.

� Exercise 7.28 Prove Theorem 7.2.
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7.7 THE SUBSTITUTION EFFECT OF
NONBASIC ACTIVITIES ON BASIC
ACTIVITIES

The Simplex Method tells us how many units of the entering activity j = s can
be brought into the solution and what will be its effect upon the quantities of the
other basic activities, namely,

maxxs = min
{ i | āis>0 }

(
b̄i
āis

)
. (7.78)

The rows of an optimal tableau (see, for example, Table 7-2) express the values
of the basic variables in terms of the nonbasic variables, while a column in the
optimal tableau expresses a nonbasic activity in terms of the set of basic activities.
Thus, in the latter case, the coefficients of the jth column vector, i.e., āij , can
be interpreted as the amounts of basic columns, ji, to be used as “substitution”
factors; see Equation (7.13) in the discussion of the price mechanism of the Simplex
Method.

Observe that the relative cost factor c̄j for each variable can be calculated from
the “substitution” factors āij and the original cost coefficients cj , namely,

c̄j = cj −
m∑
i=1

āijcji
(7.79)

where ji is the index of the ith basic activity. This is an alternative way to do the
“pricing out” calculations c̄j = cj −

∑m
i=1 πiaiji .

� Exercise 7.29 Prove that
∑m

i=1 āijcji =
∑m

i=1 πiaiji .

Example 7.10 (Substitution Effect) From (7.78), when maxx2 units of activity j = 2
are brought into the solution, then the corresponding ith basic activity drops out. However,
it does not pay to increase the level of activity j = 2 and adjust the values of the basic
activities because for each unit of activity j = 2 (see Table 7-2) that we bring into the
solution, we would have to remove 7/3 units of basic activity j = 1 and add 1/30 units of
basic activity j = 4 for a resulting net increase of 20/3 units in the objective function.

An alternative way to do the calculations is to use Equation (7.79). For each unit of
j = 2 added, the following changes in the basic variables result:

Variable Quantity Cost per Cost
Change Unit Change

x1 −7/3 −12 +28
x4 1/30 −40 −4/3
x2 +1 −20 −20

Relative cost factor: c̄2 +20/3
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� Exercise 7.30 In Example 7.3, if the profit on desk Type 2 is increased by exactly
c̄2 = 20

3 per desk, show that up to 571 3
7 desks of Type 2 can be produced per period

without reducing total profit. What is the resulting product mix?

7.8 NOTES AND SELECTED
BIBLIOGRAPHY

Most of the examples in this chapter are adapted from Dantzig [1963]. In particular, the
material in Section 7.1.3 was contributed by Clopper Almon, Jr. and Example 7.9 is based
on a private communication of William Blattner.

Sensitivity analysis has many uses in industry. This is the reason why many books on
linear programming extensively cover sensitivity analysis; see, for example, Bradley, Hax,
& Magnanti [1977], Chvátal [1983], Dantzig [1963], Gass [1985], Hadley [1972], Murty
[1983], and Shapiro [1979].

Many of the variants discussed in Linear Programming 2 can be used for sensitivity
analysis; for example, the Dual-Simplex Method and parametric programming. Obtaining
prices when the basic solution is degenerate can be obtained through the use of the para-
metric techniques described in Linear Programming 2. For further details on the method
of minimizing the sum of infeasibilities, see Linear Programming 2.

Planning under uncertainty, which is the problem of finding optimal solutions to linear
programs whose coefficients and right-hand sides are uncertain, is discussed in Linear
Programming 3.

7.9 PROBLEMS

7.1 Given a linear program in standard form with cost form z = cTx, suppose that x1

is basic in an optimal solution. Prove that x1 remains basic if its cost coefficient
c1 is reduced.

7.2 Let π = (π1, π2, . . . , πm )T be optimal simplex multipliers for a linear program
in standard form. Suppose that the basic feasible solution is nondegenerate.
Prove:

(a) ∂z/∂bi = πi, i.e., a small change δ in bi will change z by πiδ. Thus show
that the price πi represents the change in the total costs z per infinitesimal
change in the availability of item i.

(b) ∂z/∂xj = c̄j for j nonbasic, i.e., an increase by a small change δ of xj by
adjusting the values of the basic variables will change z by c̄jδ.

(c) What is the breakeven cost k of a procurement activity that produces δ
units of item i at a cost of kδ? Note: The procurement activity has no
other inputs or outputs.

7.3 Dantzig [1963]. Show that:
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Variety Man-days Cost Profit
per acre $/acre $/acre

Cabernet Sauvignon 20 115 70
Sauvignon Blanc 10 90 50
Chardonnay 15 200 120

Table 7-3: Data for the Grape Grower’s Dilemma

(a) If in an optimal solution there are surpluses of certain items, their prices
are zero.

(b) The price of an item is zero if there is no cost associated with the activity
of storing it and there is a surplus of the item.

(c) The above case might lead to excessive use of the raw material inputs,
unless the central planners place some cost, in terms of labor, of using
surplus excess raw material.

(d) It would be better, in general, not to use slacks but to introduce activities
for procurement of additional inputs and to place a labor cost on these as
well.

7.4 Dantzig [1963]. Which of the various properties associated with the duality
theorems of Chapter 5 explains why the manager of the tool plant discovered
the process that minimizes his labor requirements in the course of developing a
pricing system?

7.5 A grape grower has just purchased 1,000 acres of vineyards. Due to the quality
of the soil and the excellent climate in the region, he can sell all that he can grow
of cabernet sauvignon, chardonnay, and sauvignon blanc grapes. He would like
to determine how much of each variety to grow on the 1,000 acres, given various
costs, profits, and manpower limitations as shown in Table 7-3. Suppose that he
has a budget of $100,000 and has staff available to provide 8,000 man-days.

(a) Formulate the problem as a linear program.
(b) Solve it using the DTZG Simplex Primal software option.
(c) Being curious about other possibilities in the future, the grape grower would

like to know whether he should grow another variety merlot. This would re-
quire 12 man-days/acre, cost $80 per acre, and produce a profit of $55/acre.
Without rerunning the problem, determine whether it makes sense to try
to grow merlot. If it does make sense, re-solve the linear program with the
new grape variety included in the formulation.

(d) In order to obtain some initial cash, the grape grower decides to sell futures
(at a lower profit) of the yield from 25 acres of sauvignon blanc and 150 acres
of cabernet sauvignon grapes. How does this change the optimal solution?

7.6 Suppose that the solution of a linear program of the form

min z = cTx such that Ax ≤ b, x ≥ 0,

results in the following terminal simplex tableau:
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slacks
(−z) x1 x2 x3 s1 s2 s3 RHS
1 10 0 0 3 2 0 2
0 −2 1 0 −2 1 0 1
0 −4 0 1 1 1 0 1
0 7 0 0 4 2 1 3

(a) Consider a modification (ranging) of coefficient c3 of the form c3+ δ, where
δ is a scalar. For what range of δ (positive and negative) does the current
basis remain optimal?

(b) Similarly, change c1 to c1 + δ. What happens to the solution as δ → +∞
and as δ → −∞?

(c) Modify the right-hand side to be b + ∆, where ∆ = (δ1, δ2, δ3)T. Give a
system of inequalities that defines the joint range of variation in δ1, δ2, δ3
over which the current basis remains feasible.

7.7 Consider the linear program

Minimize 2x1 + x2 − x3 = z
subject to x1 + 2x2 + 3x3 = 12

−x1 + 4x2 − x3 ≤ 20
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

(a) Solve the linear program by the DTZG Simplex Primal software option to
obtain the optimal solution x∗.

(b) By hand, compute ranges on each right-hand side for which the solution x∗
stays optimal. How does the objective value change over the two ranges?
Clearly show your calculations.

(c) By hand compute ranges on the cost coefficients for which the solution x∗
stays optimal. How does the objective value change over these ranges?
Clearly show your calculations.

(d) By hand compute ranges on each of the matrix coefficients for which the
solution x∗ stays optimal. How does the objective value change over these
ranges? Clearly show your calculations.

(e) Rerun the DTZG Simplex Primal software option together with the Sensi-
tivity Analysis software option and verify your hand calculations.

(f) Add a new column

(
1

−3
2

)
corresponding to a new variable x4. Without

re-solving the problem, determine whether it enters the basis. If it does,
re-solve the linear program with this new column.

(g) Add the new row x1 + x2 + x3 ≥ 4. Without re-solving the problem,
determine whether it causes the optimal solution to change. If it does,
re-solve the linear program with this row included.

7.8 Consider the linear program

Minimize −x1 + 3x2 + x3 − 2x4 = z
subject to x1 + 2x2 + 3x3 − 4x4 ≤ 40

2x1 − 3x2 + x3 + x4 ≤ 50
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.
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(a) Solve the linear program with DTZG Simplex Primal software option to
obtain the optimal solution x∗.

(b) By hand, compute ranges on each right hand side for which the solution x∗
stays optimal. How does the objective value change over the two ranges?
Clearly show your calculations.

(c) By hand compute ranges on the cost coefficients for which the solution x∗
stays optimal. How does the objective value change over these ranges?
Clearly show your calculations.

(d) By hand compute ranges on each of the matrix coefficients for which the
solution x∗ stays optimal. How does the objective value change over these
ranges? Clearly show your calculations.

(e) Re-run the DTZG Simplex Primal software option together with the Sen-
sitivity Analysis software option and verify your hand calculations.

(f) Add a new column

(−6
2

−3

)
corresponding to a new variable x5. Without

re-solving the problem, determine whether it enters the basis. If it does,
re-solve the linear program with this new column.

(g) Add the new row x1 − x2 + x3 = 10. Without re-solving the problem,
determine whether it causes the optimal solution to change. If it does,
re-solve the linear program with this row included.

7.9 Ph.D. Comprehensive Exam, June 13, 1968, at Stanford. Consider the linear
program, find x and min z such that

Ax = b, x ≥ 0, cTx = z (Min).

Assume that xo = (xo1, xo2, . . . , xon )
T is an optimal solution to the problem.

Suppose further that a constraint aTx ≤ θ has been omitted from the original
problem and that a feasible program results from adjoining this constraint.

(a) Prove that if aTxo ≤ θ, then xo is still optimal for the augmented problem.
(b) Prove that if aTxo > θ, then either there exists no feasible solution aTxo ≤ b

or there exists an optimal solution x∗ such that aTx∗ = θ.

7.10 Dantzig [1963]. Given an optimal basic feasible solution and the corresponding
system in canonical form, show that c̄j represents the change necessary in the
unit cost of the jth nonbasic activity before it would be a candidate to enter the
basis. If the other coefficients as well as cost coefficients can vary, show that

c̄j = cj −
m∑
i=1

πiaij

is the amount of change where πi are the prices associated with the basic set of
variables.

7.11 Let B be an optimal basis for a linear program in standard form. Prove or
disprove (by means of a counter example) the claim that if some of the basic
costs cB are decreased, B will remain optimal.
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7.12 Dantzig [1963]. Develop a formula for the change in cost cj of a basic activity
before it is a candidate for being dropped from the basis. Which activity would
enter in its place?

7.13 Suppose we have an optimal solution for a linear program and the cost coef-
ficient cs of nonbasic variable xs is reduced sufficiently so that xs in positive
amount enters the basic set. Prove that in any optimal solution to the linear
program, xs is a basic variable.

7.14 Modify the analysis in Section 7.6 for the case when all the coefficients in a
column A•j change. Consider the cases where j is a basic column or a nonbasic
column when the linear program is in standard form with upper and lower
bounds on the variables.

7.15 Ph.D. Comprehensive Exam, September 26, 1992, at Stanford. Consider a linear
program in standard form:

Minimize cTx
subject to Ax = b, A : m× n,

x ≥ 0.

Assume that every basic solution is nondegenerate. Let

K =
{
x | Ax = b, x ≥ 0

}
,

K′ =
{
x | Ax = b, x ≥ 0, xn = 0

}
,

where xn is a scalar variable. Assume that the sets K and K′ are nonempty and
bounded.
Suppose that we allow only the cost coefficient cn to vary. Show that there
exists a constant γ such that xn is a nonbasic for cn > γ, and xn is basic for
cn < γ, in all optimal bases. Show how to compute the scalar γ. What happens
if cn = γ?
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C H A P T E R 8

TRANSPORTATION AND

ASSIGNMENT PROBLEM

The general case of the transportation and assignment problem is the minimum-cost
capacitated network-flow problem

Minimize cTx
subject to Ax = b, A : m× n,

l ≤ x ≤ u,
(8.1)

where each column A•j has at most one positive coefficient +1 and at most one
negative coefficient −1. This matrix structure implies that every basis is triangular
and that all basic solutions have integer values if the right-hand side and upper and
lower bounds have integer values.

The classical transportation problem, see (8.3), was studied as early as 1941
by Hitchcock, who proposed a solution technique that has points in common with
the Simplex Method. This case and the general case (which will be discussed in
Chapter 9) are reducible to one another.

8.1 THE CLASSICAL
TRANSPORTATION
PROBLEM

The classical transportation problem, see (8.3), is to determine an optimal schedule
of shipments that:

1. originate at sources where known quantities of a commodity are available;
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2. are allocated and sent directly to their final destinations, where the total
amount received must equal the known quantities required;

3. exhaust the supply and fulfill the demand; hence, total given demands must
equal total given supplies;

4. and finally, the cost of each shipment from a source to a destination is propor-
tional to the amount shipped, and the total cost is the sum of the individual
costs; i.e., the costs satisfy a linear objective function.

8.1.1 MATHEMATICAL STATEMENT

Suppose, for example, that m warehouses (origins) contain various amounts of a
commodity that must be allocated to n cities (destinations). Specifically, the ith
warehouse must dispose of exactly the quantity ai ≥ 0, while the jth city must
receive exactly the quantity bj ≥ 0. For this problem, it is assumed that the total
demand equals the total supply, that is,

m∑
i=1

ai =
n∑

j=1

bj = T, ai ≥ 0, bj ≥ 0. (8.2)

The cost cij of shipping a unit quantity from i to j is given; typically cij ≥ 0 but
cij < 0 is also possible. The problem then is to determine the number of units to
be shipped from i to j at an overall minimum cost.

The problem can be stated mathematically as

Minimize
m∑
i=1

n∑
j=1

cijxij = z

subject to
n∑

j=1

xij = ai, i = 1, . . . ,m

m∑
i=1

xij = bj , j = 1, . . . , n

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n.

(8.3)

Note that in this chapter, the symbols m and n denote the number of sources and
demand centers respectively, and are not the symbols used to denote the number
of constraints and variables for a general linear program. In this case the number
of equations is m+ n and the number of variables is mn.

8.1.2 PROPERTIES OF THE SYSTEM

This problem has a very nice structure that can be exploited to compute an initial
basic feasible solution very easily and then to compute improving solutions until an
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Figure 8-1: Network Representation of the Transportation Problem

optimal solution is determined. The nonzero pattern of coefficients (other than the
objective function) is evident when the equations are displayed as shown below.

x11+x12+ · · ·+x1n =a1
x21+x22+ · · ·+x2n =a2

. . .
...

xm1+xm2+ · · ·+xmn=am
x11 +x21 xm1 = b1

x12 +x22 +xm2 = b2
. . . . . . . . .

...
x1n +x2n +xmn= bn

(8.4)

The transportation problem is a special case of the more general network problem. A
network representation of the classical transportation problem is shown in Figure 8-
1.

Example 8.1 (Prototype Example) The example presented here is one that we shall
use to illustrate several aspects of the transportation problem. Consider the following
m = 3 (sources), n = 4 (destinations): Find

min z = 7x11 + 2x12 + 5x13 + 4x14 + 3x21 + 5x22
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+ 4x23 + 1x24 + 2x31 + 1x32 + 3x33 + 4x34 (8.5)

subject to

x11+x12+x13+x14 =3
x21+x22+x23+x24 =4

x31+x32+x33+x34=5
x11 +x21 +x31 =3

x12 +x22 +x32 =4
x13 +x23 +x33 =2

x14 +x24 +x34=3

(8.6)

and xij ≥ 0, for i = 1, . . . , 3, j = 1, . . . , 4. The detached coefficients have the following
structure: 



1 1 1 1
1 1 1 1

1 1 1 1
1 1 1

1 1 1
1 1 1

1 1 1



. (8.7)

The system of equations (8.6) may be written more compactly as follows:

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

= 3

= 4

= 5

=
3

=
4

=
2

=
3

� Exercise 8.1 Draw the network representation for the prototype Example 8.1 (see
Figure 8-1).

FEASIBILITY OF THE SYSTEM

It turns out that the assumption (8.2) that total supply equals total demand is
necessary for feasibility of (8.3), because adding the firstm equations in (8.3) results
in

m∑
i=1

n∑
j=1

xij =
m∑
i=1

ai

and adding the last n equations in (8.3) results in
m∑
i=1

n∑
j=1

xij =
m∑
j=1

bj .
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Therefore,
∑m

i=1 ai =
∑m

j=1 bj . In addition, the assumption (8.2) is sufficient for
feasibility because

xij =
aibj
T
≥ 0

is a feasible solution for (8.3).

� Exercise 8.2 Verify that xij = aibj/T is a feasible solution for (8.3).

Example 8.2 (Illustration of Feasibility) In the system (8.6) of Example 8.1 suppose
that we change the right-hand side of the first equation to 4. Now, subtracting the sum of
the first three equations from the sum of the last four equations results in 0 = 1, showing
that the system is infeasible. This demonstrates that

∑m

i=1 ai =
∑n

j=1 bj is a necessary
condition for feasibility.

� Exercise 8.3 Suppose that the total supply
∑m

i=1 ai available at the sources exceeds
the sum of the demands

∑n

i=1 bj at the destinations. Show that we can make the system
feasible by introducing a dummy destination to absorb the excess supply at no cost. If,
on the other hand,

∑m

i=1 ai <
∑n

j=1 bj show that we can introduce a dummy source to
supply the excess requirement at, for example, the market price.

� Exercise 8.4 In the case of excess supply, elaborate the model of Exercise 8.3 to include
the possibility of storage at various external places at a transportation and holding cost,
and also the possibility of storing at the supply site at a holding cost. Similarly, in the
case of excess demand, elaborate the model of Exercise 8.3 to include the possibility of
buying from various external suppliers.

RANK OF THE SYSTEM

The necessary and sufficient condition (8.2) for feasibility renders the system (8.4)
dependent since it implies that the sum of the first m equations is the same as the
sum of the last n. Therefore the rank of the system is at most m+ n− 1.

LEMMA 8.1 (Rank of the Transportation Problem) The rank of the sys-
tem (8.3) is exactly m+ n− 1. Furthermore, each equation is a linear combination
of the other m+ n− 1 equations, so that any one equation may be called redundant
and may be discarded if it is convenient to do so.

COROLLARY 8.2 (Number of Basic Variables) There are exactly m+n−1
basic variables xij.

Example 8.3 (Illustration of Rank) In the system (8.6) of Example 8.1 it is easy to
verify that if we subtract the sum of the first three equations from the sum of the last four
equations we obtain the zero equation 0 = 0, implying that the system contains at least
one redundant equation.

Dropping the first (or, for that matter, any other) equation will result in a full rank
system, as we will now illustrate on Example 8.1. Clearly the last four equations are of full
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rank because they each contain exactly one of the variables x11, x12, x13, x14, implying that
none of these equations can be generated by a linear combination of the other equations.
The second and third equations contain no variables in common and cannot be generated
from each other. Furthermore, the second equation cannot be generated from the third
and the last four equations. Similarly, the third equation also cannot be generated from
the second and the last four equations. This implies that the remaining system is of full
rank.

� Exercise 8.5 Prove Lemma 8.1 and Corollary 8.2.

BASIS TRIANGULARITY

A fundamental property of a transportation (or network flow) problem is that every
basis is triangular.

Definition (Triangular Matrix): We give the following two equivalent defini-
tions of a triangular matrix.

1. A square matrix is said to be triangular if it satisfies the following prop-
erties.

(a) The matrix contains at least one row having exactly one nonzero
element.

(b) If the row with a single nonzero element and its column are deleted,
the resulting matrix will once again have this same property.

2. Equivalently, we can define a square matrix to be triangular if its rows
and columns can be permuted to be either an upper triangular or lower
triangular matrix. See Section A.8 in the linear algebra Appendix A for
a definition of upper and lower triangular matrices.

Example 8.4 (Basis Triangularity) A basis can be formed by using the columns
corresponding to the variables x11, x13, x21, x24, x31, and x32 (as we shall see later) for
the transportation problem of Example 8.1. Below we display the system of equations
after deleting the nonbasic variables and deleting the last equation as redundant.

x11 + x13 = 3
x21 + x24 = 4

x31 + x32 = 5
x11 + x21 + x31 = 3

+ x32 = 4
x13 = 2.

(8.8)

It is easy to verify directly that this system is triangular by applying the first definition.
It can also be verified by the second definition by rearranging the rows and columns to
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Figure 8-2: Illustration of the Basis Triangularity Theorem

obtain the lower triangular form

x13 = 2
x32 = 4

x13 + x11 = 3
x32 + x31 = 5

x11 + x31 + x21 = 3
x21 + x24 = 2.

(8.9)

� Exercise 8.6 Find another basis for Example 8.1 and by reordering rows and columns,
demonstrate its triangularity.

� Exercise 8.7 Prove that the above two definitions of triangularity of a square matrix
are equivalent.

� Exercise 8.8 Show that an upper triangular matrix can be permuted to become a lower
triangular matrix.

If a system has the property that every basis is triangular, then given a basic
set of variables, it is easy to compute the associated basic solution. We can start by
setting the values of all nonbasic variables to zero. The resulting system of equa-
tions will then involve only the basic variables. Since the system is triangular the
basic variables can be easily evaluated by applying the first definition of triangu-
larity defined above. The following is known as the Fundamental Theorem for the
Transportation Problem.

THEOREM 8.3 (Basis Triangularity) Every basis of the transportation prob-
lem (8.3) is triangular.

Example 8.5 (Illustration of the Basis Triangularity Theorem) Suppose on the
contrary that the set of basic variables are those circled in Figure 8-2 and they do not
have the property that there is an equation (i.e., a row or column) with exactly one circled
(basic) variable. Then every row and every column has two or more circled variables.
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Because n = 4 ≥ m = 3, the number of circled variables, 8, is greater than or equal to
2n ≥ m + n = 7. (If m ≥ n were true then the number of circled variables would be
greater than or equal to 2m ≥ m + n.) We know that the number of basic variables is
m+ n− 1 = 6. Therefore we know that there is a singleton in some row or column.

� Exercise 8.9 Complete the proof started in Example 8.5 by deleting the row or column
having the singleton and showing that the remaining array has the same property.

INTEGRAL PROPERTY

The integer property of the solution is very important in practice. In the cannery
Example 1.5 on page 4, xij represents the integer number of cases shipped from
cannery i to warehouse j. An optimal solution with xij having a fractional value
would be unacceptable. Fortunately, Theorem 8.4 tells us that this will not happen.

THEOREM 8.4 (Integral Property) All the basic variables have integer val-
ues if the row and column totals ai and bj are integers.

Example 8.6 (Integral Property) It is easy to solve the triangular system (8.9) to
obtain the integer solution x13 = 2, x32 = 4, x11 = 1, x31 = 1, x21 = 1, and x24 = 3.
The solution is integral as Theorem 8.4 stated. The example also illustrates that it is not
possible to obtain fractional values when the right-hand sides of the equations have integer
values, because the nonzero coefficients of +1 imply that all the variables are either set
equal to the right-hand side or evaluated by simple subtractions.

� Exercise 8.10 Apply the basis triangularity property to prove Theorem 8.4.

8.2 STANDARD TRANSPORTATION ARRAY

As noted earlier, the special structure of the transportation problem allows us to
compactly represent the variables xij in an m× n array such that the sums across
the rows correspond to the demand constraints and the sums across the columns
correspond to the supply constraints. The ijth cell of this rectangular array corre-
sponds to variable xij . We shall see later that this compact representation can be
used very efficiently to solve the transportation problem by hand. A rectangular
array suitable for solving such a transportation problem is shown in Figure 8-3 for
a 3× 5 case.

In Figure 8-3 the column of cells to the right of the double vertical lines is called
the marginal column, and the row of cells below the double horizontal lines is called
the marginal row. The rest of the cells are referred to as the rectangular array.

Typically, in the rectangular array, in hand calculations, the following is done:

1. The cost coefficient, cij , of the objective function is stored in the lower right
corner of the ijth cell.
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Figure 8-3: Example of a Standard Transportation Array

2. Each of the values ofm+n−1 basic variables xij is stored in hand calculations
in the upper left corner of the ijth cell for all (i, j). The zero nonbasic variables
are left blank. A zero (nonblank) entry in the ijth cell indicates that the value
of the corresponding basic variable xij is equal to zero, implying a degenerate
basic solution.

3. For each of the first i = 1, . . . ,m equations, the right-hand side availability
ai is stored in the upper left corner of the marginal column cell i, and its
corresponding simplex multiplier ui (to be discussed later) is stored in the
cell’s lower right corner.

4. For each of the last j = 1, . . . , n equations, the right-hand side demand bj is
stored in the upper left corner of the marginal row cell j and its corresponding
simplex multiplier vj (to be discussed later) is stored in the cell’s lower right
corner.

5. The reduced costs c̄ij (to be discussed later) for the nonbasic variables are
stored in the lower left corner of the cells corresponding to the nonbasic vari-
ables instead of the zero values of the basic variables.

As we have noted, each row and column of the array represents an equation.
Thus, for feasibility, during the course of the algorithm, the sum of the xij entries
in each row and column must equal the appropriate row or column total, ai or bj ,
that appears in the margins.

Example 8.7 (Transportation Array Illustrated) The transportation problem of
Example 8.1 is shown in Figure 8-4 with the basic variables circled. During hand calcula-
tions the values of the basic variables will be stored rather than the symbols.
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8.3 FINDING AN INITIAL SOLUTION

The fact that every basis in the classical transportation problem is triangular makes
it easy to generate a starting basic feasible solution. We shall discuss five ways to
get started, illustrating each on prototype Example 8.1.

Example 8.8 (Order from the Cheapest Source) This is not one of the five ways
because this rule may lead to an infeasible solution, if it does lead to a feasible solution,
it will be optimal. The rule is that a buyer at each destination j orders the total supply
required bj from the cheapest source ij = argmini cij . If we apply this rule, then it
will typically result in an infeasible starting solution. Applying the rule to the prototype
transportation problem of Example 8.1, the amount that each buyer j = 1, 2, 3, 4 orders
from a supplier is illustrated by the circled amounts in Figure 8-5.

In the figure, buyer j = 1 orders 3 units from the cheapest source i = 3; buyer j = 2
orders 4 units from the cheapest source i = 3; buyer j = 3 orders 2 units from the cheapest
source i = 3; buyer j = 4 orders 3 units from the cheapest source i = 2. This solution is
clearly infeasible because source i = 3 can only supply a total of 5 units, whereas 9 units
have been ordered.

� Exercise 8.11 Prove that if by good luck the orders from the cheapest source turns
out to be a feasible solution, it is optimal.

8.3.1 TRIANGULARITY RULE

The simplest way to generate a starting basic feasible solution is by the following
triangularity rule (algorithm).

Triangularity Rule: Choose arbitrarily any variable xpq as the candidate for the
first feasible basic variable. Make xpq as large as possible without violating the row
and column totals, i.e., set

xpq = min { ap, bq }. (8.10)
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Figure 8-5: Buy from the Cheapest Source

The next variable to be made basic is determined by this same procedure after
reducing the rectangular array depending on which of the following three cases
arises.

1. If ap < bq, then all the other variables in the pth row are given the value zero
and designated as nonbasic. Next the pth row is deleted, and the value of bq
in column q is reduced to (bq − ap).

2. If ap > bq, then all the other variables in the qth column are given the value
zero and designated as nonbasic. Next the qth column is deleted and the value
of ap in row p is reduced to (ap − bq).

3. If ap = bq, then randomly choose either the pth row or the qth column to be
deleted, but not both. However, if several columns, but only one row, remain
in the reduced array, then drop the qth column, and conversely, if several rows
and one column remain in the reduced array, drop the pth row. If the pth row
is deleted, the value of bq in column q is reduced to 0. If the qth column is
deleted, the value of ap in row p is reduced to 0.

If after deletion of a row or column, there remains only one row or one column,
then all remaining cells are basic and are evaluated in turn as equal to the residual
amount in the row or column. On the last step exactly one row and one column
remain, and both must be dropped after the last variable is evaluated. Thus, this
Triangularity Rule will select as many variables for the basic set as there are rows
plus columns, less one, i.e., m+ n− 1.

� Exercise 8.12 Show that every reduced array retains the property that the sum of the
adjusted right-hand side entries in the marginal column is equal to the sum of the adjusted
right-hand side entries in the marginal row. This implies that the last remaining variable
acquires a value of the total for the single row that is equal to the total for the remaining
single column in the final reduced array.
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Figure 8-6: Illustration of the Triangularity Rule

Example 8.9 (Illustration of the Triangularity Rule) The sequence of steps to find
a feasible solution for the prototype example 8.1 by the triangularity rule is illustrated in
Figure 8-6.

We start by picking any variable (for example, in this case, the lowest cost variable)
and trying to assign as much as possible to it so as not to violate the row or column total.
We pick the variable in row 3, column 2 and assign it the value 4; this satisfies the column
total and we ignore column 2 from now on. Next we could pick any xij from the remaining
cells to increase. For example, look in the current row 3 for the lowest cost. The variable
in row 3, column 1 has the lowest cost of 2, and we assign it the value 1 because with this
assignment the row total is satisfied; and so forth. The objective value obtained for the
starting feasible basic solution is z = 28.

Special Case: Northwest Corner Rule. The Northwest Corner Rule is a
particular case of the Triangularity Rule described here. It starts off by selecting
x11 (the Northwest corner variable) as the first variable to enter the basis. The
variable x11 is assigned a value as large as possible without violating the row or
column totals. Then the iterative procedure proceeds as follows. If xij was the last
variable to be selected, the next variable to be selected is the one to the right of it,
i.e., xi,j+1 if the partial ith row total is still nonzero; otherwise, the next variable
to be selected is the one below it, i.e., xi+1,j . The same three cases can arise as
discussed for the Triangularity Rule on Page 214 and are treated in the same way
as discussed there.

Example 8.10 (Illustration of the Northwest Corner Rule) The sequence of steps
to find a feasible solution for the prototype Example 8.1 by the Northwest Corner Rule
is illustrated in Figure 8-7. The objective value obtained for the starting feasible basic
solution is: z = 59.

The remaining rules described in this section are similar to the Triangularity
Rule for choosing an initial feasible basic set and dropping other variables from
further consideration for entering the basis. The main difference is in the sequence
and reasons for choosing the basic variables.
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Figure 8-7: Illustration of the Northwest Corner Rule

The Northwest Corner Rule for finding an initial solution is very simple but
often does not generate a good start because the rule does not take into account
the values of the coefficients in the objective function. It is a special case of the
Triangularity Rule which also may not generate a good start unless a low-cost cell
is selected from among those remaining.

8.3.2 THE LEAST REMAINING COST RULE

Scan the costs cij for the smallest cij and choose the first basic variable xpq such
that

cpq = min
(i, j)

cij . (8.11)

Set the value of xpq to be the minimum of its row or column total, and make the
remaining variables in that row or column ineligible for further increases in the
values of its variables (see the discussion for the Triangularity Rule on Page 214).
For subsequent entries, find the smallest cost factor cij among the remaining cells
and continue.

Example 8.11 (Illustration of the Least Remaining Cost Rule) The sequence of
steps to find a feasible solution for the prototype Example 8.1 by the Least Remaining
Cost Rule is illustrated in Figure 8-8. The objective value obtained for the starting feasible
basic solution is z = 29.

8.3.3 VOGEL’S APPROXIMATION METHOD

Vogel’s method is similar to the method described above; the main difference is in
the way the basic variable is chosen from the eligible basic variables. The method
has been popular because it turns out that in practical applications it often finds
a solution that is close to the optimal. For each row i with eligible variables we
compute the cost difference between the smallest cost and the next to smallest cost
of eligible variables in the row; in a similar manner, we compute the cost difference
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Figure 8-8: Illustration of the Least Remaining Cost Rule

between the smallest cost and the next to smallest cost of eligible variables in each
column. The row or column with the largest cost difference is identified and the
variable with the lowest cost is then picked from this row or column as the next
basic variable. Ties for the largest cost difference can be broken in favor of the row
or column having the smallest cost. Ties between those having the smallest cost
can be broken at random.

The idea behind this approach is as follows. Suppose row k has the largest
cost difference among all the rows and columns. By selecting the variable with the
smallest cost from this row we avoid a future selection whereby the smallest cost
variable becomes ineligible and the next to smallest cost variable comes into the
basis.

This method clearly requires more computations than the other methods dis-
cussed so far. However, it turns out that in practice it is well worth this extra effort
since often a very good starting basis is obtained.

Example 8.12 (Illustration of Vogel’s Approximation Method) The sequence of
steps to find a feasible solution for the prototype example 8.1 by Vogel’s Approximation
Method is illustrated in Figure 8-9. The columns�cti are the differences in the two smallest
costs for row i on iteration t. The rows �ctj are the differences in the two smallest costs
for column j on iteration t. After the first four iterations, the differences are not relevant.

The objective value obtained for the starting feasible basic solution is z = 23.

8.3.4 RUSSEL’S APPROXIMATION METHOD

Like Vogel’s method, Russel’s method attempts to find a good or near-optimal start-
ing basis for the transportation problem. This method requires more computations
than Vogel’s method and is claimed to work better on the average. However, there
is no clear cut winner.

For each row and column containing variables eligible for entering the basis, we



8.3 FINDING AN INITIAL SOLUTION 219

7 2 5 4

3 5 4 1

2 1 3 4

3

4

5

3 4 2 3 z = 23

.........
........................................................................
......3 .........

........................................................................
......1 .........

........................................................................
......1

.........
........................................................................
......3.........

........................................................................
......3

.........
........................................................................
......3

........................
........................

........................
........................

........................
........................

........................
........................

..........................................................................................................................................................
........
........
........

..................................................................................................................
........
........
........
........
......................
................

.....................................................
.....................................................

....................................................
................................................................... ................

�c1i

2

2

1

�c2i

3∗

1

1

�c3i

−

1

1

�c4i

−

1

1

�c1j 1 1 1 3∗

�c2j 1 1 1 −
�c3j 1 4∗ 1 −
�c4j 1 − 1∗ −

Figure 8-9: Illustration of Vogel’s Approximation Method

first compute the maximum costs, i.e.,

ūi = max
j

cij and v̄j = max
i

cij .

Then for all the variables eligible to enter the basis, we compute the quantities

γij = cij − ūi − v̄j .

Then the variable with the most negative γij is selected as a candidate to enter the
basis.

Example 8.13 (Illustration of Russel’s Approximation Method) The sequence of
steps to find a feasible solution for the prototype Example 8.1 by Russel’s Approximation
Method is illustrated in Figure 8-10. The columns ūti are the largest costs in row i on
iteration t. The rows v̄tj are the largest costs in column j on iteration t. After the first
three iterations, these values are not relevant.

The objective value obtained for the starting feasible basic solution is z = 25.

8.3.5 COST PREPROCESSING

The general idea is to replace the original rectangular array of cij by another array
γij with the property that the new problem has the same optimal basic feasible
solution but is more convenient for finding a good initial basic solution. After
the preprocessing any of the above rules described earlier may be applied. The
preprocessing steps are:
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Figure 8-10: Illustration of Russel’s Approximation Method

1. For i = 1, . . . ,m replace cij by δij = cij −minl=1,...,n cil.

2. For j = 1, . . . , n replace δij by γij = cij −mink=1,...,m ckj .

Example 8.14 (Cost Preprocessing) Applying the first rule we get the first rectan-
gular array shown in Figure 8-11; applying the second rule we get the second rectangular
array shown in Figure 8-11.

� Exercise 8.13 Given a general linear program min
∑n

j=1 xj subject to
∑n

j=1 aijxj = bi

for i = 1, . . . ,m, xj ≥ 0 for j = 1, . . . , n, show that if we replace cj by cj−
∑m

i=1 πiaij then
the corresponding objective values of corresponding feasible solutions differ by a constant.

� Exercise 8.14 Show that if the order of the steps is reversed then we may not get the
same reduced array.

� Exercise 8.15 Apply the Least-Remaining-Cost Rule, Vogel’s Approximation Method,
and Russel’s Approximation Method in turn to see whether cost preprocessing gives a
better starting solution.
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Figure 8-12: Theta-Adjustments for the Standard Transportation Array

8.4 FAST SIMPLEX ALGORITHM FOR THE
TRANSPORTATION PROBLEM

Even small general linear programs require a computer; whereas small transporta-
tion problems can be easily solved by hand using just a pencil and paper. At each
iteration of the Simplex Algorithm applied to the transportation problem, adjust-
ments are made to the xij in the cells of the rectangular array in Figure 8-3. These
adjustments are sometimes referred to as theta-adjustments since a value θ of the
incoming variable is added and subtracted from some of the basic variables; see
the array in Figure 8-12, where the θ with a star, θ∗, refers to the position of the
entering variable.

The steps are the same as those of the Simplex Algorithm except that the
calculations of the reduced costs and the changes to the basic variables are simple
additions and subtractions.

8.4.1 SIMPLEX MULTIPLIERS, OPTIMALITY, AND
THE DUAL

In this section we show how we can take advantage of the structure of the classical
transportation problem to easily obtain the simplex multipliers and reduced costs.

SIMPLEX MULTIPLIERS

To distinguish the multipliers corresponding to the rows from those of the columns
of the transportation array, let ui represent the multiplier for the ith row equation,
and let vj represent the multiplier for the jth column equation instead of using πk
for all equations k as we have done earlier.

The values of the ui and vj are chosen so that the basic columns price out to zero.
However, there appears to be a complication because there are m+n− 1 equations
that are not redundant and m + n unknowns ui and vj (including the multiplier
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on the redundant equation). Recall that any equation in (8.4) may be considered
redundant and may be dropped. Dropping is the same as saying that we can assign
an arbitrary value, say zero, to the simplex multiplier on the redundant equation
and then evaluate the remaining m + n − 1 multipliers by solving the m + n − 1
equations corresponding to the m + n − 1 basic variables. If one id doing hand
computations, a good convention is to find a row or column having the greatest
number of basic variables and to set its corresponding price to zero. In order for a
basic column (i, j) to price out to zero, we must have

cij = ui + vj for xij basic, (8.12)

because column (i, j) has exactly two nonzero coefficients: +1 corresponding to
equation i in the demand equations and +1 corresponding to equation j in the
supply equations, see (8.3).

As we have seen, the basis is triangular and thus we can determine such prices
by scanning the squares corresponding to basic variables until one is found for
which either the row price, ui, or the column price, vj , has already been evaluated;
subtracting either price from cij determines the other price. The triangularity of
the basis guarantees that repeated scanning will result in the evaluation of all ui
and vj .

For large problems this procedure for scanning the rows and columns is not
efficient. More efficient methods are based on the fact that a basis of the trans-
portation problem corresponds to a tree in a graph; the tree structure can be used
to determine more efficiently the updated prices and changes in the values of the
basic variables. Such techniques are described for general networks in Chapter 9.

REDUCED COSTS AND OPTIMALITY

To determine whether the solution is optimal, multiply the ith row equation of (8.2)
by ui and the jth column equation by vj and then subtract the resulting equations
from the objective function to obtain a modified z-equation,

m∑
i=1

n∑
j=1

c̄ijxij = z − z0, (8.13)

where the c̄ij , which are the reduced costs, are given by

c̄ij = cij − (ui + vj) for i = 1, . . . ,m, j = 1, . . . , n, (8.14)

and

z0 =
m∑
i=1

aiui +
n∑

j=1

bjvj . (8.15)

The c̄ij corresponding to the basic variables are all zero by (8.12). The basic feasible
solution is optimal if c̄ij ≥ 0 for all the nonbasic variables.
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� Exercise 8.16 Show that any one of the m+ n multipliers may be given an arbitrary
value, other than 0, in determining the remaining multiplier. Specifically, show that an
arbitrary constant k can be added to all the multipliers ui and subtracted from all the
multipliers vj , (i.e., the multipliers ui may be replaced by (ui + k) and the multipliers vj
may be replaced by (vj−k)), without affecting the value of c̄ij and z0 in (8.14) and (8.15).

� Exercise 8.17 Show that if the cij are replaced by cij − ui − vj , where ui and vj are
arbitrary, that this does not affect the optimal solution x∗ij but does affect the value of the
objective.

DUAL OF THE TRANSPORTATION PROBLEM

It is interesting to look at the dual of the transportation problem, i.e.,

Maximize
m∑
i=1

aiui +
m∑
j=1

bjvj = w

subject to ui + vj ≤ cij for all (i, j),

(8.16)

where ui, vj are unrestricted in sign for all (i, j). The primal variable xij gives rise
to the dual constraint ui+ vj ≤ cij . Thus the slack variable on this dual constraint
is

yij = cij − ui − vj , yij ≥ 0, (8.17)

and, by complementary slackness, either xij = 0 or yij = 0. Thus, if xij is basic we
must have yij = 0 or cij = ui + vj , as we saw in Equation (8.12).

� Exercise 8.18 Prove that any basis of the transportation problem’s dual is triangular.

� Exercise 8.19 Prove in general that the transpose of any triangular basis is triangular.

8.4.2 FINDING A BETTER BASIC SOLUTION

As we have seen earlier, in the Simplex Method for a general linear program in
standard form, if c̄ij = c̄rs is negative, then the corresponding nonbasic variable xrs
is suitable as a candidate for entering into the basic set, replacing a basic variable
taht, after it is dropped from the basic set, becomes just another nonbasic variable.

The usual rule for selecting a nonbasic variable to enter the basic set is to choose
the one with the most negative reduced cost c̄ij , i.e., choose xrs to be the new basic
variable if

crs − ur − vs = min
(i, j)

(cij − ui − vj) < 0. (8.18)

The triangularity of the basis makes it very easy to perform the calculations
to determine which variable will leave the basis and makes it easy to update the
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values of the remaining basic variables. This is especially easy to do by hand if the
calculations are done directly on the rectangular array itself.

To start, enter the symbol θ∗ in the cell (r, s) to indicate that a value, called
θ = θ∗, will be given to the entering nonbasic variable xrs. Next, the basic entries
are adjusted so that the row sums and column sums stay unchanged. This requires
appending (+θ) to some entries, (−θ) to others, and leaving the rest unchanged.
Because the basis is triangular, it will always be possible to locate by eye where a
single basic entry is to be converted by an unknown amount +θ or −θ or remain
unchanged. Once the locations where the +θ or −θ adjustments have to be done
have been determined, θ is replaced by xpq, the largest numerical value that does
not make a basic entry negative. That is, at iteration t, θ takes on the value xtpq of
the smallest entry to which the symbol (−θ) is appended, so that xtpq − θ becomes
zero. The variable xpq is then dropped from the basic set. Any basic variable whose
value is equal to xtpq and which is appended by −θ may be chosen to be dropped
from the basic set. The value of θ so determined is then used to recompute all
the basic entries for the new basic solution xt+1. This completes the iteration and
we once again recompute the multipliers and check for optimality and repeat the
process if x = xt+1 is not optimal.

The eye scanning procedure used above is not efficient for large problems. In-
stead, the tree structure associated with the basis is exploited to efficiently adjust
the basic variables. Such techniques are described for general networks in Chapter 9.

� Exercise 8.20 Show that it is not possible to have z → −∞.

8.4.3 ILLUSTRATION OF THE SOLUTION PROCESS

In this section we illustrate the application of the algorithm described on two simple
transportation problems.

Example 8.15 (Hitchock [1941]) This example is the original example due to Hitch-
cock. The optimal solution is found in one iteration. The location and values of an initial
basic feasible solution are circled in Figure 8-13. The values ui and vj are shown in the
marginal row and column. The θ variables are introduced into the rectangular array.

We see that x34 leaves the basis and x32 enters at a value of θ∗ = 5.

Example 8.16 (Solution of the Prototype Example) For the purpose of illustrating
the simplex algorithm on the prototype Example 8.1, we assume that the Least-Remaining-
Cost rule has been applied and that we have obtained the starting basic feasible solution
shown in Example 8.11. The steps of the Simplex Algorithm are illustrated in Figure 8-14.

On iteration 1, the value of u3 was arbitrarily set equal to 0 because it has the highest
number of basic variables in a row. Then it is obvious that

v1 = c31 − u3 = 9,

v3 = c33 − u3 = 4,

v4 = c34 − u3 = 8.
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Figure 8-13: Hitchcock Transportation Problem
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Figure 8-14: Simplex Algorithm on the Prototype Transportation Problem
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Using these values we obtain, in turn,

u1 = c14 − v4 = −1,
u2 = c24 − v4 = −2,
v2 = c22 − u2 = 4.

Once ui and vj are determined, the location of the incoming is determined by variable

(r, s) = argmin
(i,j)

c̄ij = cij − ui − vj = (3, 2).

Note that the c̄ij are shown in the lower left corner of each cell. Because the basis is
triangular, it is easy to determine where the +θ and −θ corrections are entered. For
example, there is only one basic entry in column 2 and therefore the change in entry is
20− θ. Then, since there is only one entry in row 2, the adjusted x42 is 5 + θ. Note that
there is only one basic variable in each of column 1 and column 3 and also only one in
row 1, and therefore their values remain unchanged. This leaves only basic variable x34 to
be adjusted. The largest value that θ can take is determined from

x22 − θ = 20− θ ≥ 0

as θ = 20. The adjustments are made and the process continues.

� Exercise 8.21 Use the Transportation option to solve the transportation problem of
Example 8.16.

� Exercise 8.22 Solve the transportation problem of the prototype Example 8.1 assuming
that the initial solution has been obtained by the Triangularity Rule (see Example 8.9).
Show that the number of iterations required is 3.

� Exercise 8.23 Solve the transportation problem of the prototype Example 8.1 assum-
ing that the initial solution has been obtained by the Northwest Corner Rule (see Exam-
ple 8.10). Show that the number of iterations required is 6.

� Exercise 8.24 Show that the application of Vogel’s Approximation Method to find an
initial feasible solution to the transportation problem of the prototype Example 8.1 results
in an optimal solution (see Example 8.12).

� Exercise 8.25 Solve the transportation problem of the prototype Example 8.1 assum-
ing that the initial solution has been obtained by Russel’s Approximation Method (see
Example 8.13). Show that the number of iterations required is 2.
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8.5 THE ASSIGNMENT PROBLEM

The assignment problem is a special case of the classical transportation problem
where m = n and ai = 1 for all i and bj = 1 for all j. A typical example is finding
the best way to assign n persons to n jobs, assuming that the “desirability” of
assigning individual i to job j is dij . We shall assume that by means of performance
tests, the desirability of assigning the ith person to the jth job can in some sense
be determined and the objective is to maximize the sum of the dij for individuals
assigned to jobs. The problem can be converted to a minimization problem by using
the negative of the dij and denoting them by cij , which we will refer to as a cost.

� Exercise 8.26 Show that the minimizing problem is the same as finding a minimizing
permutation.

FORMULATION AND PROPERTIES

The assignment problem can be easily solved by reformulating it as a transportation
problem with the added requirement that

xij =
{
1 if the ith individual is assigned to the jth job,
0 otherwise. (8.19)

Because it is assumed that each person can be assigned only one job, we must have
n∑

j=1

xij = 1 for i = 1, . . . , n, (8.20)

and because each job is assigned to only one person,
n∑

i=1

xij = 1 for j = 1, . . . , n. (8.21)

Finally, the objective of the assignment problem is to choose xij satisfying (8.19),
(8.20), and (8.21) in such a way that the total cost,

z =
n∑

i=1

cipi
=

n∑
i=1

n∑
j=1

cijxij (8.22)

is minimized, where p1, p2, . . . , pn is the permutation associated with the assign-
ment.

In general, imposing a condition on a linear program, that the values of the
variables be integers cannot be solved by LP techniques. Transportation problems
whose constant terms are integers are an exception. To convert (8.19)–(8.22) to a
linear program all we need to do is relax the condition xij = 0 or 1 to

xij ≥ 0 for i = 1, . . . , n; j = 1, . . . , n. (8.23)
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Figure 8-15: Compact Representation of an Assignment Problem

THEOREM 8.5 (Integral Property of the Assignment Problem) An op-
timal solution of the assignment problem with the requirement that xij = 0 or 1 is
the same as an optimal solution of the linear programming problem given by (8.20),
(8.21), (8.22), and (8.23).

� Exercise 8.27 Use the integral property of the transportation problem to prove Theo-
rem 8.5.

The assignment problem can be represented compactly in an assignment array
similar to the transportation problem. See Figure 8-15 for a compact representation
of a 4× 4 example.

COROLLARY 8.6 (Number of Nonzero Basic Variables Is n) The integer
solution x to the assignment problem has exactly one xij = 1 in every row in the
assignment array and the sum n of these xij counts the number of basic variables
that are positive.

Comment: The linear program equivalent to an assignment problem has the prop-
erty that every basic solution is degenerate, since there are 2n − 1 basic variables
and exactly n basic variables must receive unit value, the remaining n − 1 basic
variables must therefore all be zero. Thus the linear program is highly degenerate.
To the best of the authors’ knowledge it is not known whether a special rule is
needed to avoid cycling. The random choice rule can be used to avoid cycling with
probability 1.

TWO ILLUSTRATIONS OF THE ASSIGNMENT PROBLEM

Example 8.17 (Prototype Assignment Problem) Suppose that we need to assign
four employees to four new tasks at the training costs shown in Figure 8-16. We set up
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Figure 8-16: Training Cost Data for Assigning Employees to Tasks
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Figure 8-17: Initial Solution to an Assignment Problem by Vogel’s Method
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Figure 8-18: Training Cost Data for Assigning 3 Employees to 4 Tasks

a 4 × 4 assignment array and find an initial basic feasible solution by applying Vogel’s
Method as shown in Figure 8-17.

� Exercise 8.28 Compute the simplex multipliers and reduced costs for the problem in
Example 8.17. If not optimal, apply the Transportation Simplex Algorithm to find the
optimal solution.

Example 8.18 (Assignment Problem Modified) Suppose that just before the as-
signments to tasks can be made for the data in Example 8.17, employee number 4 quits.
Management decides to find the best possible assignment of the remaining three employees
to three of the tasks, and then, over time, search for a suitable candidate for the fourth
task. The training cost data in this case are shown in Figure 8-18. As set up, the prob-
lem cannot be posed as an assignment problem because we have only three employees to
be assigned to four tasks, whereas we need four employees. However, this can be easily
corrected by setting up a dummy employee, which we shall label by D, and using 0 costs
for the assignment of D to any task. The new cost matrix is shown in Figure 8-19.

� Exercise 8.29 Solve the problem posed in Example 8.18.

� Exercise 8.30 Show that setting an arbitrarily high equal cost to every task for the
dummy employee will result in the same optimal assignments but will give a misleading
value to the objective.

� Exercise 8.31 Suppose that employee number 2 informs you that he will not be willing
to take on Task 3. How would you modify the formulation in Example 8.18 to handle this
situation within the context of an assignment problem formulation.

CONVERSION OF A TRANSPORTATION PROBLEM TO AN AS-
SIGNMENT PROBLEM

We have already seen that the assignment problem, is a special case of the trans-
portation problem. It turns out that the transportation problem is a special case



8.6 EXCESS AND SHORTAGE 233

3 7 11 8

0 4 4 6

0 4 10 9

0 0 0 0

1 2 3 4

1

2

3

D

Task

E
m
p
l
o
y
e
e

Figure 8-19: Modified Training Cost Data for Assigning 3 Employees to 4 Tasks

of the assignment problem as the next exercise demonstrates.

� Exercise 8.32 Assume that ai and bj are integers; if they are rational numbers then
these could be replaced by integers through a change of units. If ai and bj are irrational
numbers, then these could be approximated by rational numbers and then replaced by
integers.

1. Show how to convert the transportation problem into an equivalent assignment
problem by replacing the ith row by a row set I of ai equations each summing to 1,
replacing the jth column by a column set J of bj equations each summing to 1, and
assigning cost cij to all new variables that are in the intersection of row set I and
column set J .

2. Prove that the resulting optimal basic feasible solution to the resulting assignment
problem when aggregated back to the original transportation problem will be an op-
timal feasible solution but need not be a basic solution to the original transportation
problem.

3. Assume that we have solved the transportation problem to obtain an optimal basic
feasible solution. Suppose that the solution is unique (if it is not unique, make it
unique by adding 1 to the nonbasic costs). Show that the solution to the equiva-
lent assignment problem can be used to generate the unique optimal basic feasible
solution to the transportation problem.

8.6 EXCESS AND SHORTAGE

In some applications it may be impossible (or unprofitable) to supply all that is
required or to ship all that is available, in which case costs must be given to each unit
not supplied and each unit not shipped from the source. In this section we illustrate
how to formulate and solve such a problem. This problem can be converted to the
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Figure 8-20: Transportation Problem with Inequalities

classical transportation problem by the addition of the slack (excess and shortage)
variables. Other variants of this problem are discussed in Exercises 8.38 and 8.39.

8.6.1 MATHEMATICAL STATEMENT

Aside from its objective, a transportation problem with excess and shortage is of
the form

n∑
j=1

xij ≤ ai, i = 1, . . . ,m,

m∑
i=1

xij ≤ bj , j = 1, . . . , n,

xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n.

(8.24)

This is shown compactly in Figure 8-20.

Example 8.19 (Variation of Prototype Example) Suppose that in the prototype
Example 8.1, which we discussed earlier, we replace the equalities by inequalities of the
“≤” type. Then the problem is to find

min z = 7x11 + 2x12 + 5x13 + 4x14 + 3x21 + 5x22

+ 4x23 + 1x24 + 2x31 + 1x32 + 3x33 + 4x34 (8.25)

subject to

x11+x12+x13+x14 ≤ 3
x21+x22+x23+x24 ≤ 4

x31+x32+x33+x34 ≤ 5
x11 +x21 +x31 ≤ 3

x12 +x22 +x32 ≤ 4
x13 +x23 +x33 ≤ 2

x14 +x24 +x34 ≤ 3

(8.26)
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Figure 8-21: Transportation Problem with Row and Column Slacks

and xij ≥ 0, for i = 1, . . . , 3, j = 1, . . . , 4.

Introducing slack (excess and shortage) variables xi0, the excess at the ith origin,
and x0j , the shortage at the jth destination, and letting ci0 and c0j be the positive
penalties for the excesses at the origin and the shortages at the destinations, we
have

Minimize
m∑
i=1

ci0xi0 +
n∑

j=1

c0jx0j +
m∑
i=1

n∑
j=1

cijxij = z

subject to xi0 +
n∑

j=1

xij = ai, i = 1, . . . ,m,

x0j +
m∑
i=1

xij = bj , j = 1, . . . , n,

xi0 ≥ 0, x0j ≥ 0, xij ≥ 0, i = 1, . . . ,m, j = 1, . . . , n.

(8.27)

This is shown compactly in Figure 8-21. It should be noted that for problem (8.27)
if there is no penalty associated with failure to deliver the required amounts, then
there is really no problem at all; simply ship nothing. A meaningful problem exists
only when failure to ship means a loss of revenue or goodwill, i.e., when positive
cost factors ci0 or c0j are assigned to the surplus or shortage.
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8.6.2 PROPERTIES OF THE SYSTEM

RANK OF THE SYSTEM

It is straightforward to see that the addition of slack variables to (8.24) now causes
all m + n equations to be independent, in contrast to the classical transportation
case, in which only m+ n− 1 are independent. For example, it is easy to see that
the slack variables constitute a basic set of m+ n variables. In fact,

THEOREM 8.7 (Slack in Basis) Every basis contains at least one slack vari-
able.

Proof. Assume on the contrary that some basis has no slack variable. Then
this basis would also constitute a basis for the analogous transportation problem
without any slack variables. This can only happen if

∑m
i=1 ai =

∑n
j=1 bj . However,

in this case, we know that the number of basic variables cannot exceed m+ n− 1;
a contradiction.

� Exercise 8.33 Demonstrate Theorem 8.7 on Example 8.19.

� Exercise 8.34 Suppose that in the classical transportation problem (8.3), all the row
equations are replaced by ≥ and column equations are replaced by ≤ with the condition∑m

i=1 ai =
∑n

j=1 bj and arbitrary costs assigned to the surplus and slack variables. Show
that this inequality problem is the same as the original problem. Show that the same is
true if all the inequalities are reversed.

BASIS TRIANGULARITY

THEOREM 8.8 (Basis Triangularity) Every basis is triangular.

� Exercise 8.35 Prove Theorem 8.8.

� Exercise 8.36 Demonstrate Theorem 8.8 on Example 8.19.

8.6.3 CONVERSION TO THE CLASSICAL FORM

The problem (8.27) can be converted to the form of the classical transportation
problem, with an additional rank deficiency of 1, by defining

x00 =
m∑
i=1

n∑
j=1

xij , (8.28)



8.6 EXCESS AND SHORTAGE 237

where
∑m

i=1
∑n

j=1 xij is the total amount shipped from all origins to all destinations.
From this definition, it is straightforward to see that

m∑
i=1

ai −
m∑
i=1

xi0 =
n∑

j=1

bj −
n∑

j=1

x0j =
m∑
i=1

n∑
j=1

xij = x00. (8.29)

Augmenting the transportation problem (8.24) with the slack variables xi0 and
x0j and using Equation (8.29), we get the classical transportation problem:

Minimize
m∑
i=0

n∑
j=0

cijxij = z, with c00 = 0

subject to
n∑

j=0

x0j =
n∑

j=1

bj ,

n∑
j=0

xij = ai, i = 1, . . . ,m,

m∑
i=0

xi0 =
m∑
i=1

ai,

m∑
i=0

xij = bj , j = 1, . . . , n,

xij ≥ 0, i = 0, 1, . . . ,m, j = 0, 1, . . . , n.

(8.30)

This is shown compactly in Figure 8-22.

� Exercise 8.37 Prove that (8.30) has an additional rank deficiency of 1 over the classical
transportation problem, i.e., it has rank m + n. Show that adding an arbitrary k �= 0 to∑m

i=1 ai and to
∑n

j=1 bj in (8.30) increases the rank by 1 to m+ n+ 1. What conditions
must be placed on k?

� Exercise 8.38 Write down an equivalent classical transportation problem formulation
in equation and array format when there are surpluses only, i.e., when the availabilities
exceed the requirements

(
i.e.,

∑
i
ai >

∑
j
bj
)
but requirements must be met exactly.

� Exercise 8.39 Write down an equivalent classical transportation problem formulation
in equation and array format when there are shortages only, i.e., when the requirements
exceed the availabilities

(
i.e.,

∑
j
bj >

∑
i
ai
)
but all available supplies must be shipped.

� Exercise 8.40 Show that a starting basic feasible solution to (8.30) can be obtained by
choosing as them+n basic variables the slacks xi0 for i = 1, . . . ,m and x0j for j = 1, . . . , n.
Can you think of a better way to get started?
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Figure 8-22: Equivalent Classical Transportation Model

8.6.4 SIMPLEX MULTIPLIERS AND REDUCED COSTS

As in the classical transportation problem case we let ui and vj be the simplex
multipliers (or “implicit prices”) associated with row i column j. Because the rank
of the system ism+n, two of the simplex multipliers can be set arbitrarily. Note that
we need not define slack multipliers, u0 or v0, since there is no equation pertaining
to row zero or to column zero. Hence it is convenient to assign fictitious prices to
these slack multipliers, i.e., u0 = 0 and v0 = 0. Then the remaining m + n prices
ui and vj are chosen so that

ui + vj = cij if xij is basic. (8.31)

Then the reduced costs are

c̄ij = cij − (ui + vj) for i �= 0, j �= 0,
c̄0j = c0j − vj for j �= 0, and
c̄i0 = ci0 − ui for i �= 0.

(8.32)

If all the reduced costs for the nonbasic variables are nonnegative, the solution is
optimal.

� Exercise 8.41 Show that the system of equations in ui and vj is triangular.
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8.7 PRE-FIXED VALUES AND
INADMISSIBLE SQUARES

In practice, it quite often happens that some of the variables must assume pre-
determined values, either 0 or some other fixed values. For example, there may
be no route from an origin i to a destination j in a network; i.e., the variable
xij must be zero. In the problem of assigning people to jobs, certain assignments
may be mandatory; for example, assigning a physician to a medical position. Sub-
tracting its predetermined value from the corresponding row and column totals it
can be converted to a zero-restricted variable. One way to solve the problem with
zero-restricted variables is to assign an arbitrarily large cost M to these variables
so that if they appear in a feasible optimal basis with a positive value then we
know the original zero-restricted variable problem is infeasible. This is the Big M
method discussed in the Notes & Bibliography section of Chapter 3. For a trans-
portation problem, one way to choose M is to choose it greater than or equal to
max(i,j) cij (

∑
i ai) because

m∑
i=1

n∑
j=1

cijxij ≤ max
(i,j)

cij

m∑
i=1

n∑
j=1

xij = max
(i,j)

cij

(
m∑
i=1

ai

)
= max

(i,j)
cij


 n∑

j=1

bj


 .

Another way to solve such a problem is to shade the cells in the array corre-
sponding to the zero-restricted variables. These shaded cells are called inadmissible
to distinguish them from the regular cells. If only a few cells are inadmissible,
the best practical procedure is to attempt to find an initial basic feasible solution
by selecting the next basic variable from among the admissible cells, say, by the
Least-Remaining-Cost rule discussed in Section 8.3.

In the event that the above procedure fails to furnish enough basic variables,
then the zero-restricted variables (or inadmissible cells) can be used to furnish
artificial variables for a Phase I procedure, in which a basic feasible solution will be
constructed if possible. The Phase I objective of the Simplex Method can be set up
as the infeasibility form

w =
m∑
i=1

n∑
j=1

dijxij , (8.33)

where the dij are defined by

dij =
{
1 if xij is zero-restricted,
0 if xij otherwise.

(8.34)

If a feasible solution exists, then minw is zero; otherwise, if the problem is infeasible,
minw will be positive.

Just as in the solution of a linear program with the Simplex Method, it may
happen that the problem is feasible, but that some inadmissible variables remain in
the basic set at the end of Phase I. Because of the way that the Phase I objective
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has been defined, we know that these variables will be zero in value, and they must
be kept at zero value throughout the remaining procedure. To do this apply the
starting Phase II rule of the Simplex Method: drop any nonbasic xij from further
consideration if its relative infeasibility factor d̄ij = dij − ui − vj is positive, where
ui and vj are the simplex multipliers associated with the infeasibility form w at the
end of Phase I.

We demonstrate such a Phase I approach in the context of the capacitated
transportation problem, see Example 8.20.

� Exercise 8.42 For the Hitchcock Transportation Problem of Example 8.15, suppose
that x14 is invalid. Perform a Phase I approach followed by a Phase II to find a new
optimal solution.

8.8 THE CAPACITATED TRANSPORTATION
PROBLEM

A transportation problem with upper bound on the variables is called a capacitated
transportation problem:

Minimize
m∑
i=1

n∑
j=1

cijxij = z

subject to
n∑

j=1

xij = ai, i = 1, . . . ,m,

n∑
i=1

xij = bj , j = 1, . . . , n,

0 ≤ xij ≤ hij , i = 1, . . . ,m, j = 1, . . . , n.

(8.35)

A rectangular array for recording the data and the primal and dual solution of such
a transportation problem is shown in Figure 8-23 for a 3× 5 case.

THEOREM 8.9 (Optimality Test) A feasible solution xij = x∗ij for the
capacitated transportation problem is optimal if there is a set of implicit prices
ui = u∗i and vi = v∗j , and relative cost factors c̄ij = cij − u∗i − v∗j , such that

0 < x∗ij < hij =⇒ c̄ij = 0,

x∗ij = 0 =⇒ c̄ij ≥ 0,

x∗ij = hij =⇒ c̄ij ≤ 0.

(8.36)

� Exercise 8.43 Prove Theorem 8.9.
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Figure 8-23: Capacitated Transportation Problem
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Figure 8-24: Capacitated Transportation Problem Example

The method for solving a transportation problem with upper bounds is an ex-
tension of the method for solving a transportation problem without bounds. While
simple rules have been devised for finding an initial solution to an uncapacitated
transportation problem, none, to our knowledge, have been found for the capaci-
tated case. If one were able to do this, one could apply it to find a simple solution
to the problem of finding an assignment of m men to m jobs where certain men
are excluded from certain jobs. In mathematical terms, given an m×m incidence
matrix (elements 0 or 1), pick out a permutation of ones or show that none exists.
So far no one has been able to develop a noniterative procedure for solving this
problem.

We shall illustrate an approach for solving a capacitated transportation problem
with the following example.

Example 8.20 (Solution of a Capacitated Transportation Problem) Consider
the capacitated transportation problem in Figure 8-24. In trying to find an initial solution
for the problem in Figure 8-24, we begin by selecting a box (cell) with the minimum
cij , which in Figure 8-24 is c22 = 2. Next we assign as high a value as possible to the
corresponding variable, in this case x22, without forcing any variable to exceed its upper
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Figure 8-25: Initial Solution of a Capacitated Transportation Problem

bound, that is, we set x22 = 20. If the value of the variable is limited by a row or column
equation rather than its bound, we consider it to be a basic variable and make no more
entries in its row or column. If, on the other hand, the value of the variable is limited
by its upper bound, then we consider the variable to be nonbasic at its upper bound and
indicate this by putting a bar on the entry. If there is a tie between the two types of
limitations, we always consider the row or column as limiting and consider the variable
basic. Then we repeat the procedure with the remaining boxes.

Application of the above procedure to Figure 8-24 yields, in order, the assignments
x22 = 20 (basic), x33 = 25 (bounded), x13 = 5 (basic), x24 = 5 (basic), x14 = 20 (basic),
x34 = 7 (bounded), x31 = 15 (basic) as shown in Figure 8-25. Since the third row and
fourth column still have 3 units unassigned, the solution is not feasible. Extra “short”
boxes corresponding to an i = 0 row and j = 0 column are added to the array; the original
cij are replaced by dij = 0, and the shortage boxes have dij = 1 (see iteration 0 of Phase I
in Figure 8-26).

Note that d30 = d04 = 1 must equal u3 and v4 respectively, since we have previously
shown that slack rows and columns can be regarded as having prices u0 and v0 equal to
zero.

Continuing with Phase I, minimizing the sum x04 + x30 of the artificial variables, a
feasible solution is found in one iteration as shown in Figure 8-26. The original cost factors
cij are next restored, as shown in the array for iteration 1 in Figure 8-26.

This solution is not yet optimal, because x34 is a nonbasic variable at its upper bound
with relative cost factor c̄34 = c̄34 − u3 − v4 = 8 − 0 − 7 = +1. Hence, it pays (except in
degenerate cases) to decrease x34 from its upper bound value, keeping the other nonbasic
variables fixed and adjusting the basic variables. The greatest decrease θ that maintains
feasibility is θ = 1 because at this value, x24 reaches its upper bound, i.e., x24 = 8+θ ≤ 9.
The third array in Figure 8-26 is optimal.

The foregoing method illustrated in Example 8.20 implies the following theorem,
whose proof for the general bounded transportation problem is left as an exercise.
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Figure 8-26: Solution of a Capacitated Transportation Problem
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THEOREM 8.10 (Integral Property) In a capacitated transportation prob-
lem, if the upper bounds, the availabilities, and the requirements are all integers,
then every basic solution will be integral.

� Exercise 8.44 Prove Theorem 8.10.

8.9 NOTES & SELECTED BIBLIOGRAPHY
Many linear programming problems of economic and physical origin can be abstractly
formulated as a network composed of “nodes” (points) connected by “arcs” (routes), over
which various kinds of “flow” (transport) take place (see Chapter 9).

Although he awakened little interest at the time, L.V. Kantorovich [1939] showed that
a class of problems closely related to the classical transportation case has a remarkable
variety of applications concerned typically with the allotment of tasks to machines whose
costs and rates of production vary by task and machine type. He gave a useful but
incomplete algorithm for solving such problems (see the weighted distribution problem,
Chapter 21, in Dantzig [1963]). Again, in 1942, Kantorovich wrote a paper on a continuous
version of the transportation problem, and later, in 1948, he authored an applicational
study, jointly with Gavurin, on the capacitated transportation problem. Dantzig [1951b]
showed how the Simplex Method could be applied to the transportation problem.

The classical transportation problem was first formulated, along with a constructive
solution, by Frank L. Hitchcock [1941]. His paper sketched out an algorithm with points
in common with the Simplex Method; it did not exploit any special properties of the
transportation problem except for finding a starting solution. This paper also failed to
attract much attention.

The shortage of cargo ships during World War II constituted a critical bottleneck.
T.C. Koopmans, as a member of the Combined Allied Shipping Board during World War II,
used properties of the optimal solutions of the transportation problem to help find ways
to reduce overall shipping times. Because of this and the work done earlier by Hitchcock,
the classical case is often referred to as the Hitchcock-Koopmans Transportation Problem.
In 1947, after learning from Dantzig about the proposed use of linear programming for
planning, Koopmans spearheaded the research on linear and nonlinear programs for the
study of problems in economics. His historic paper in 1947, “Optimum Utilization of the
Transportation System,” was based on his wartime experience.

A description of Vogel’s approximation method can be found in Reinfield & Vogel
[1958]. Russel [1969] suggested an alternative approximation method for finding an initial
near-optimal basis for a transportation problem.

See Linear Programming 2 for a very contrived example, due to L. Johnson, of the
occurrence of cycling in the solution process of the transportation problem. It is not
known whether cycling can occur in transportation problems if the entering variable is
chosen based on the usual rule of picking the one that has the most negative reduced
cost. Besides other rules, such as the Random Choice Rule, Bland’s Rule, etc., the simple
perturbation scheme to avoid degeneracy, discussed in Linear Programming 2, can be used
with a trivial amount of extra work.

Another work before the era of linear programming was that of mathematician E. Eger-
váry [1931].. His 1931 paper considered the problem of finding a permutation of ones in
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a square matrix composed entirely of zero and one elements. Based on this investigation,
Kuhn [1955] developed an efficient algorithm (primal-dual), which he called the Hungarian
Method, for solving assignment problems (see Nering & Tucker [1993]). Kuhn’s approach,
in turn, underlies the Ford-Fulkerson Method for solution of the classical transportation
problem (see Chapter 20 in Dantzig [1963]). A detailed survey of assignment problem
algorithms can be found in Ahuja, Magnanti, & Orlin [1989]. In their 1993 book, Ahuja,
Magnanti, & Orlin note that many of the assignment problems share common features; for
example, the successive shortest path algorithm described in their book forms the basis for
many of these algorithms. Bertsekas [1988] has developed an auction algorithm for solving
the assignment problem. Gabow & Tarjan [1989] developed a cost scaling algorithm that
runs in O

(
m

1
2 n log(mC)

)
time, where C is the largest cost for any assignment, m is the

number of nodes, and n is the number of arcs. Orlin & Ahuja [1992] also obtain the
same running time of O

(
m

1
2 n log(mC)

)
by incorporating scaling within the context of an

auction algorithm.

Computational results for the various specialized algorithms for solving the assign-
ment problem can be found in Bertsekas [1988], Kennington & Wang [1991] and Zaki
[1990]. Computer code listings in the FORTRAN programming language for some of the
algorithms are available in Carpento, Martello, & Toth [1988].

Square arrays of nonnegative numbers xij with the property that all row and all column
sums are unity, frequently appear in statistical theory. They are called doubly stochastic
matrices, and the xij are interpreted as probabilities (not necessarily zero or one). When
such arrays have all xij zero or one, they are called permutation matrices. Garret Birkhoff
[1946] showed that the set of permutation matrices is given by the extreme points of
the convex set defined by the conditions for a doubly stochastic matrix with nonnegative
entries. Von Neumann [1953] establishes Birkhoff’s theorem by reducing an assignment
problem to an interesting matrix game. See also Marcus [1960].

The methods we discussed in this chapter to update the values of the basic variables are
useful for small problems only. To solve large problems on a computer, a more sophisticated
approach for keeping track of and updating basic variables is needed. These techniques are
based on graph-theoretical concepts. Discussion of these methods can be found in Ahuja,
Magnanti, & Orlin [1993], Chvátal [1983], Glover, Karney, & Klingman [1972, 1973, 1974],
Glover, Karney, Klingman, & Napier [1974], and Murty [1983]. Details about one such
technique is described in Linear Programming 2.

8.10 PROBLEMS

8.1 Consider the transportation array shown below for a problem where the sum of
the supplies is equal to the sum of the demands.
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5 3 4

8 6 2

4 2 5

7 6 8
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(a) Show that the values x33 = 2, a3 = 52, and b3 = 42 make the given basic
feasible solution optimal.

(b) What values of a3 and b3 give a degenerate optimal basic feasible solution?
(c) Why does some ui < 0 and other ui > 0 not contradict dual feasibility?
(d) Assume a3 = 60, b3 = 50, so that x33 = 10. Is this a unique optimal basic

feasible solution? If so explain why; if not find an alternative optimal basic
feasible solution.

8.2 Omit the primal basic and dual variables and reorder the rows and columns of
Example 8.1 so that the sources are in the order 3, 1, 2, and the destinations
are in the order 1, 2, 4, 3. This results in the following transportation array:

2 1 4 3

7 2 4 5

3 5 1 4

5

3

4

3 4 3 2

(a) Find an initial solution by randomly applying the general Triangularity
Rule and then solve the problem by hand by the Simplex Algorithm.

(b) Find an initial solution by the Northwest Corner Rule and then solve the
problem by hand by the Simplex Algorithm.

(c) Find an initial solution by the Least-Remaining-Cost Rule and then solve
the problem by hand by the Simplex Algorithm.

(d) Find an initial solution by Vogel’s Method and then solve the problem by
hand by the Simplex Algorithm.

(e) Find an initial solution by Russel’s Method and then solve the problem by
hand by the Simplex Algorithm.

(f) Compare the above five methods. Comment on the numbers of iterations
as compared to those obtained without the reordering.

8.3 Find, an optimal feasible solution to the following transportation problem where
the numbers M mean that shipment is not possible.
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Week Demand Production Production Storage
Limit cost/set cost/set

1 4 10 20.00 1.00
2 6 25 30.00 1.00
3 10 20 25.00 1.00
4 8 4 40.00 N/A

Table 8-1: Data for Dinner Set Production Schedule

M M 9 4

4 M 9 M

8 M 3 5

1 2 M M

6

16

50

14

10 14 28 34

Verify your solution by using the Transportation software option.
8.4 Solve the transportation problem Example 1.5 on Page 4 by the Simplex Method

discussed in this chapter.
8.5 Your wife has recently taken a ceramics class and discovered that she has a

talent for making elegant dinner sets. A specialty store around the corner from
the class has recently sold a couple of sets on her behalf. Besides the fact that
these sets have been well received, the store’s four other suppliers have moved
out of town and the store owner has offered your wife the job of supplying dinner
sets for the next four weeks to meet the store’s demand. With a new baby, it
would be difficult for her to meet the demand on her own. As a result she has
arranged to hire help over the four weeks. The hired help have different skills and
hence different rates. Your wife, on looking over the required demand schedule,
availability of firing time at the ceramics class and the cost of inventory storage
at the class has realized that the problem is nontrivial. She decides to approach
you to see whether your claimed expertise in operations research can help her.
The demand, schedule, and costs are displayed in Table 8-1 You immediately
realize that it can be set up as a linear program. However, on closer examination
you notice that it can be formulated as a transportation problem that can be
solved very efficiently.

(a) Formulate this problem as a transportation problem. Hint: Let xij be the
number of dinner sets produced in week i to satisfy demand in week j.

(b) Solve it by hand.
(c) Solve it by the Transportation software option to verify your solution.

8.6 (a) The optimal solution displayed in Figure 8-14 has c̄12 = 0. Demonstrate
a different basic feasible optimal solution in which we bring x12 into the
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basis.
(b) How much would the cost of x11 have to change in the problem of Figure 8-

14 before it becomes a candidate for entering the basis.

8.7 (a) Alternative Optima. For the transportation problem show that alterna-
tive optima exist if c̄ij = 0 for some nonbasic variable xij . Show how to
construct an alternative optimal solution.

(b) Cost Ranging. Derive relations for determining ranges on costs for basic
variables and nonbasic variables that retain optimality of the current solu-
tion of a transportation problem.

(c) Changes in the Right-Hand Side. What is the effect on the optimal solution
of changing ai to ai+β for some i and correspondingly changing bj to bj+β
for some j.

8.8 Prove that in the classical transportation problem (um = 0) the values of the
implicit simplex multipliers are always +1 or 0 or −1 if all cij = 0 except that
c11 = 1. What happens if c11 = 100.

8.9 (a) For the prototype example solved in Figure 8-14 add 10 to the first column
of costs and solve it. Show that the optimal solution is the same as that
obtained in Figure 8-14.

(b) For the prototype example solved in Figure 8-14 add 5 to the second row
of costs and solve it. Show that the optimal solution is the same as that
obtained in Figure 8-14.

8.10 Consider the transportation problem shown in the following array:

2 1 4 3

7 2 4 5

7 6 9 8

5

3

4

3 4 3 2

(a) Solve the problem by hand.
(b) Notice that rows 1 and 3 differ by a constant amount equal to 5. Change

the availability of row 1 to be the sum of the availabilities in row 1 and
row 3, drop row 3, and re-solve the problem.

(c) Show that the latter solution is equivalent to the original problem; i.e.,
before the two rows were combined. Show how to obtain the solution to the
original problem from this latter solution to the problem with the combined
rows.

8.11 (a) Prove for the classic transportation problem that the unit costs ciq of any
column q can be replaced by ciq+α without affecting the optimal solution;
similarly, for any row r, crj may be replaced by crj + β.

(b) Prove that the classic transportation problem with some (or all) cij < 0
can be replaced by an equivalent problem where all cij > 0.
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(c) Suppose corresponding values of cij in two rows differ by a constant; show
that the two rows can be combined into a single row. What happens to the
corresponding variables.

8.12 Consider the transportation problem shown in the following array:

4 2 1 5

M 7 2 1

9 M 6 M

2

7

6

5 3 4 3

where M implies that shipment is not possible (think of it as a prohibitively
high cost).

(a) Solve the problem by hand using a Phase I / Phase II approach.
(b) Solve it by hand using the Big-M method of Problem 3.28.
(c) Solve it using the Transportation software option to verify your solution.

8.13 Optimal Allocation of Receivers to Transmitters (Dantzig [1963]). A certain en-
gine testing facility is fully using four kinds of instruments: 200 thermocouples,
50 pressure gauges, 50 accelerometers, and 40 thrust meters. Each is measuring
one type of characteristic and transmitting data about it over a separate com-
munication channel. There are four types of receivers, each capable of recording
one channel of information: 200 cameras, 150 oscilloscopes, 256 test instruments
called “Idiots,” and 50 others called “Hathaways.” The setup time per channel
varies among the different types and also according to the kind of data to be
recorded. The allocation table is shown in Figure 8-27, where the setup time
cij is shown in the lower right corner of the square containing xij .

(a) Assuming that all data must be recorded, find an allocation of receivers to
transmitters that minimizes the total setup time.

(b) When recording instruments are in short supply (or are not of the most
suitable types), a decision must be reached as to how much of each kind of
data not to record. The engineers assign the following unit costs assigned
to the shortage row and surplus column.

c01 = 10, c02 = 10, c03 = 4, c04 = 100,
c10 = 0, c20 = −1, c30 = 0, c40 = 0, and
c00 = 0.

That is, for example, it is 25 times more costly to neglect thrust data
(c04 = 100) than to neglect acceleration data (c03 = 4). In general, however,
it is less costly to record data than to neglect it.

8.14 Consider the following capacitated transportation problem:
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Figure 8-27: Allocation of Receivers to Transmitters
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(a) Solve the capacitated transportation problem by hand.

(b) Solve it using the Transportation software option to verify your solution.

8.15 Solve the following capacitated transportation problem by hand.

10 5 6 7

8 2 7 6

9 3 4 8

25

25

50

15 20 30 35

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

5 5 5 9

14 20 10 9

18 4 25 7
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Explain how you could have determined in advance that the problem is infeasi-
ble.

8.16 (a) Show for the capacitated transportation problem illustrated in Figure 8-23
that no feasible solution exists if there is a row p such that

∑n

j=1 hpj < ap

or a column q such that
∑m

i=1 hiq < bq.
(b) Construct an example to show that a feasible solution satisfying a capac-

itated transportation problem (see Figure 8-23) need not exist even if for
all i = 1, . . . ,m and j = 1, . . . , n

n∑
j=1

hij ≥ ai,

m∑
i=1

hij ≥ bj .

8.17 Consider the assignment problem shown in the following array:

6 2 4 1

2 5 7 2

2 10 M 7

8 M 7 5

1 2 3 4

1

2

3

4

Task

E
m
p
l
o
y
e
e

where M implies that the assignment is not possible.

(a) Solve the above assignment problem by hand.
(b) Solve it using the Transportation software option to verify your solution.

8.18 Find, by hand, a feasible solution to the following 5× 5 assignment problem
where each person can only be assigned to a subset of available jobs (the exclu-
sion is shown by the letter M):

M M M

M M

M M M

M M

M M

1 2 3 4 4

1

2

3

4

5

Job

P
e
r
s
o
n
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Verify your solution by using the Transportation software option.



C H A P T E R 9

NETWORK FLOW THEORY

Network theory concerns a class of linear programs having a very special network
structure. The combinatorial nature of this structure has resulted in the devel-
opment of very efficient algorithms that combine ideas on data structures with
algorithms from computer science, and mathematics from operations research.

Networks arise in a wide variety of situations. For example, the transportation
problem discussed in Chapter 8 is a network representing the shipment of goods from
sources to destinations; see Figure 8-1. Networks arise naturally in electrical sys-
tems (circuit boards, distribution of electricity) and in communications (local-area
communication networks or wide-area communication networks) in which electricity
flows from various points in the network to other points. Typically, the analysis
of networks requires finding either a maximal-flow solution or a shortest-path solu-
tion or a minimal spanning tree solution or a least-cost solution (in the case of the
transportation problem), or determining the optimal sequence of tasks. The ability
to obtain, under certain conditions, integer-valued solutions has made it possible to
extend network analysis to many different areas such as facilities location, project
planning (PERT, CPM), resource management, etc.

9.1 TERMINOLOGY

We shall illustrate definitions and concepts of directed networks by referring to
Figure 9-1.

NODES AND ARCS OF A NETWORK

In the figure, the circles numbered 1, 2, 3, and 4 are called nodes; the lines joining
them are called arcs; and the arrowheads on the arcs show the direction of flow. In
all, there are four nodes and six directed arcs.

253
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Figure 9-1: A Simple Directed Network

Definition (Graph): A graph consists of a finite collection of nodes and a set
of node pairs called arcs.

Definition (Directed Network (or Digraph)): A directed network, or digraph,
consists of a set Nd of distinct elements indexed 1, 2, . . . called nodes and a
set Ac of ordered pairs of node indices, (i, j) ∈ Ac, called directed arcs.

(
Thus

(j, i) is different from (i, j) if i �= j
)
. In addition we will say that arc (i, j)

is outgoing from node i (or is leaving node i or has a tail at node i) and is
incoming to node j (or is entering node j or has a head at node j).

We will sometimes denote a directed network by G = [Nd;Ac]. Associated with a
directed network is an undirected network with the same node set Nd and set of
paired nodes Ac, except that the pairs are unordered.

Definition (Undirected Network): An undirected network consists of a set Nd
of elements indexed 1, 2, . . . called nodes and a set Ac of unordered pairs of
these node indices, (i, j) ∈ Ac, called undirected arcs.

(
Thus (j, i) is the same

as (i, j)
)
.

We will also say that a directed arc (i, j) connects i to j; and that an undirected
arc (i, j) connects i and j.

In the discussion to follow we shall assume that in a directed network, if there is
an arc connecting i to j it is unique. Moreover, we have assumed above that there
is no arc connecting i to itself, i.e., there are no arcs in Ac of the form (i, i).

Definition (Source, Destination, Intermediate Nodes): A node all of whose
arcs are outgoing is called a source (or origin) node; a node all of whose arcs
are incoming is called a destination (or sink or terminal) node. All other
nodes are called intermediate (or transshipment) nodes.

The classical Hitchcock-Koopmans transportation problem of Section 8.1 has
m source nodes, n destination nodes, and no intermediate nodes. In Figure 9-1 the
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node labeled 1 is the place where flow starts; i.e., it is the unique source node. On
the other hand, the node labeled 4 is the point where the flows terminate; it is the
unique destination node. All other nodes are intermediate nodes.

In addition, we shall use the following notation:

Af(k) = {j ∈ Nd | (k, j) ∈ Ac}, (9.1)
Bf(k) = {i ∈ Nd | (i, k) ∈ Ac}, (9.2)

where Af(k) stands for “after” node k and Bf(k) stands for “before” node k.

Definition (Rank or Degree): The rank, or degree, of a node is the number
of arcs that enter and leave it. The in-degree of a node is the number of arcs
that enter the node; the out-degree of a node is the number of arcs that leave
the node.

Using |S| to denote the number of elements in a set S, the in-degree of node k
is |Bf(k)| and the out-degree of node k is |Af(k)|.

PATHS, CHAINS, CIRCUITS, AND CYCLES

Definition (Path): In a directed network, a path (see Figure 9-2(a)) is defined
to be a sequence of nodes i1, i2, . . . , im, m ≥ 2, such that (ik, ik+1) ∈ Ac for
k = 1, . . . ,m− 1. A simple path has m distinct nodes, whereas in a nonsimple
path the nodes can repeat.

Definition (Chain): In a directed network, a chain (see Figure 9-2(b)) is
defined to be a sequence of nodes i1, i2, . . . , im, m ≥ 2, such that either
(ik, ik+1) is an arc or (ik+1, ik) is an arc for k = 1, . . . ,m − 1. Thus, a chain
is essentially the same as a path except that in “going” from i1 to im we do
not require the directed arcs to be traversed all in the same direction. In an
undirected network a path and chain are identical because (ik, ik+1) is the
same as (ik+1, ik).

Definition (Circuit and Cycle): A circuit (see Figure 9-2(c)) is a path from
some node i1 to node in where in = i1, n ≥ 2; i.e., a circuit is a closed path.
Similarly, a cycle is (see Figure 9-2(d)) a chain from some node i1 to node in
where in = i1; i.e., a cycle is a closed chain.

NODE-ARC INCIDENCE MATRIX

A convenient way to represent the structure of a network mathematically is through
the use of a node-arc incidence matrix. The nodes correspond to the rows of such
a matrix and the arcs correspond to the columns of the matrix. Since each arc
connects two nodes, a column corresponding to an arc has exactly two nonzero
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Figure 9-2: A Path, Chain, Circuit, and Cycle

entries; in the directed case, the entries are +1 (corresponding to the tail end of
the arc) and −1 (corresponding to the head of the arc), in the undirected case the
entries are +1 and +1.

Thus, in the directed case, for a column corresponding to arc (i, j) we use the
convention that its entry in row i is +1 and its entry in row j is −1. All other
entries in the column corresponding to arc (i, j) are zero. Denoting the node-arc
incidence matrix by A, and letting s be the column of the matrix corresponding to
arc (i, j),

Ais = 1
Ajs = −1
Aks = 0 if k �= i, k �= j.

(9.3)

That is, in matrix notation, A•s = ei − ej , where ei is a unit vector with a one
in position i and zeros elsewhere, and, similarly ej is a unit vector with a one in
position j and zeros elsewhere.

In the undirected case for a column corresponding to arc (i, j) we use the con-
vention that its entry in row i is +1 and its entry in row j is also +1. All other
entries in the column corresponding to arc (i, j) are zero.

Example 9.1 (Node-Arc Incidence Matrix) The node-arc incidence matrix corre-
sponding to Figure 9-1 is shown below, with the row labels being the node numbers and
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column labels being the arcs.




(1, 2) (1, 3) (2, 3) (3, 2) (2, 4) (3, 4)
1 1 1 0 0 0 0
2 −1 0 1 −1 1 0
3 0 −1 −1 1 0 1
4 0 0 0 0 −1 −1


. (9.4)

In this example, if we let x = (x12, x13, x23, x32, x24, x34)T ≥ 0 be a nonnegative flow vector
such that component xij represents the flow from node i to node j, we see that the product
of row i of the node-arc incidence matrix and the vector x gives the vector of net flow into
and out of node i. If a node net flow is nonnegative, it is the net flow out; if negative, its
absolute value is the net flow in. For example, the first component of the product Ax is
1x12 + 1x13, which is the net flow out of node 1.

CONNECTED NETWORKS AND TREES

Definition (Connected Network): Two nodes are said to be connected if there
is at least one chain that joins the two nodes. A connected network is a network
in which every pair of nodes is connected. The circuit of Figure 9-2(c) and
the cycle of Figure 9-2(d) are examples of connected networks (if there are no
other nodes).

Definition (Weakly and Strongly Connected): Sometimes a connected net-
work as defined above is referred to as being weakly connected, in which case,
a strongly connected network is defined as one in which there is a chain con-
necting every pair of nodes.

Definition (Complete Graph): If each node of a graph connected by an arc
to every other node, the graph is called a complete graph.

Definition (Tree): A tree is a connected network with no cycles.

Definition (Spanning Tree): Given a network with m nodes, a spanning tree
is a tree that connects all m nodes in the network.

The path of Figure 9-2(a) and the chain of Figure 9-2(b) are examples of span-
ning trees. A more general example of a tree is shown in Figure 9-3; it is a spanning
tree since its arcs connect all the nodes of the network.

� Exercise 9.1 Count the number of nodes and arcs in the tree shown in Figure 9-3.

THEOREM 9.1 (Arcs in a Spanning Tree) For a network with m nodes,
every spanning tree has exactly m− 1 arcs.
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Figure 9-3: A Tree

Another way to state the theorem is that m − 1 is the minimum number of arcs
needed to generate the tree and it is also the maximum number of arcs that can be
in the tree without creating undirected cycles.

COROLLARY 9.2 (When a Network Is a Spanning Tree) A connected
network with m nodes, m− 1 arcs, and no cycles is a spanning tree.

COROLLARY 9.3 (A Basis Is a Spanning Tree) Let A be the node-arc
incidence matrix of a network. Assuming that the rank of A is m − 1, the graph
associated with any m− 1 independent columns of A is a spanning tree.

� Exercise 9.2 Prove Theorem 9.1, Corollary 9.2, Corollary 9.3.

9.2 FLOWS AND ARC-CAPACITIES

We shall sometimes use x to denote a flow vector, i.e., a vector consisting of all
the arc flows xij for all (i, j) ∈ Ac in the network. In some applications xij ≥ 0
need not hold. For example, in the maximum flow problem that we will consider in
Section 9.3, we require that

lij ≤ xij ≤ hij , (9.5)

where the only qualifications on the bounds are that lij ≤ hij for all (i, j).

Definition (Flow Capacity): If hij ≥ 0 and lij = 0 then hij is referred to as
the flow capacity of the arc.

In the network in Figure 9-4 each upper bound hij on the flow is shown by the
number on the tail of the arc.

Consider a network with a single source node, s = 1, and a single destination
node, t = m, connected by several intermediate nodes. Except for the nodes 1
and m (the source and destination nodes), the flows into and out of each node
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Figure 9-4: A Simple Directed Network with Arc-Capacities

k must balance; such a relation is called conservation of flows (in physics, the
condition that the quantity of electrons flowing into a point of an electrical network
must equal the amount flowing out is referred to as Kirchoff’s Law). That is, for
an intermediate node k,

∑
i∈Bf(k)

xik −
∑

j∈Af(k)

xkj = 0, for k = 2, . . . ,m− 1, (9.6)

where the first summation is over all arcs that have node k as a head node and the
second summation is over all arcs that have node k as a tail node. If we denote by
F the exogenous flow into the source s = 1 from outside the network, then

F −
∑

j∈Af(1)

x1j = 0, (9.7)

because there are no arcs incoming into the source node. If we denote by H the
exogenous flow from the destination node t to outside the network, then

∑
i∈Bf(m)

xim −H = 0. (9.8)

If we sum the m− 2 relations in (9.6) and (9.7), then each variable xij appears
in exactly two equations with opposite signs (recall the node-arc incidence matrix)
and hence cancels, resulting in F = H. Therefore

∑
i∈Bf(m)

xim − F = 0. (9.9)

THEOREM 9.4 (Exogenous Flow Balance) The exogenous flow F into the
source node s equals the exogenous flow H out of the destination node t.

Example 9.2 (Exogenous Flow Balance) Figure 9-5 illustrates an exogenous flow
F = 4 into node 1, the exogenous flow H = 4 out of node 6, and the conservation
equations (9.6), (9.7), and (9.9).
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Figure 9-5: Exogenous Flow Balance

� Exercise 9.3 For the network in Figure 9-5, write down the conservation equations in
algebraic form and in matrix form using the node-arc incidence matrix.

� Exercise 9.4 Prove that a set of xij = xoij ≥ 0 satisfying capacity constraints 0 ≤ xij ≤
hij and the conservation equations (9.6), (9.7), and (9.9) can be replaced by another set
x′
ij with the same total flow F in which either x′

ij or x
′
ji is zero by setting

x′
ij = xoij −min(xoij , x

o
ji) and x′

ji = 0 if xoij ≥ xoji
x′
ji = xoij −min(xoij , x

o
ji) and x′

ij = 0 if xoji ≥ xoij .
(9.10)

Comment: When lij = 0, it follows from Exercise 9.4 that we need only consider
flows where either xij = 0 or xji = 0. Thus, for example, if on the directed arc
joining nodes i and j the flow xij = 4 appears, it will imply that xji = 0. Hence we
could, if we wanted to, replace all the flow variables xij and xji by their difference:

x̄ij = xij − xji, (9.11)

in which case

x̄ij > 0 corresponds to x̄ij = x′
ij and x′

ji = 0,
x̄ij < 0 corresponds to −x̄ij = x′

ji and x′
ij = 0.

� Exercise 9.5 Show that upon making the substitution for x̄ij , the arc-capacity con-
straints (9.5) with lij = 0 and the conservation equations (9.6), (9.7), and (9.9) for a
network defined by Nd and Ac become

−hji ≤ x̄ij ≤ hij , (i, j) ∈ Ac,∑
i

x̄ik = 0, k = 2, . . . ,m− 1,

F +
∑
i

x̄i1 = 0,

−F +
∑
i

x̄im = 0.

(9.12)
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� Exercise 9.6 Given a feasible solution to (9.12), find a corresponding feasible solution
that satisfies the conservation equations (9.6), (9.7), (9.9) and bounds that satisfy (9.5)
with lij = 0.

FLOW AUGMENTATION

Suppose that we are given a network (Nd,Ac) with lower and upper bound con-
straints lij ≤ xij ≤ hij on arcs (i, j) ∈ Ac and a set of feasible flows lij ≤ xoij ≤ hij .

Definition (Associated Path): For any chain of arcs connecting node ip to
node iq, the associated path P is the path formed by reversing, if necessary,
the direction of some of the arcs along the chain.

Definition (θ Path Flow): Given any path, a θ path flow is a flow with value
θ on every arc (i, j) along the path and zero elsewhere.

Definition (θ-Flow Augmentation): Let C be a chain joining s to t and let
P be the associated path. Let C+ be the arcs of the chain that are oriented
in the direction of the path P and let C−, be the remaining arcs of C. The
θ-flow augmentation of a feasible solution x = xo is xij = xoij+θ if (i, j) ∈ C+,
xij = xoij − θ if (i, j) ∈ C− and xij = xoij otherwise.

Definition (θ-Path Flow Augmentation is Maximal): A θ-path flow augmen-
tation is maximal if θ is the maximum value for which the augmentation
remains feasible.

Example 9.3 (Chain flow, θ Path flow, θ-flow Augmentation) A chain flow, θ
path flow, and a chain flow after a θ-flow augmentation are illustrated in Figure 9-6. The
numbers in brackets at the tail of each arc represent the lower and upper bounds on the
flow through the arc. In order for the chain flows to remain feasible after a θ augmentation
along the associated path, we need θ to satisfy

2 ≤ 3 + θ ≤ 5, 4 ≤ 5− θ ≤ 6, 1 ≤ 2 + θ ≤ 4.

The maximum θ augmentation that maintains feasibility is θ = 1, because the augmenta-
tion is blocked by the lower bound on x32.

FLOW DECOMPOSITION

The next theorem shows that a flow can be decomposed into a sum of flows along
simple paths and circuits. It is useful because it shows that a solution to a flow
problem corresponds to our intuitive notion that items start from nodes of surplus
and move from one node to the next without losing their identity along the way.
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Figure 9-6: Chain Flow, θ Path Flow, θ-Flow Augmentation

THEOREM 9.5 (Flow Decomposition) Consider a network (Nd,Ac) where
the arc-capacity constraints are 0 ≤ xij ≤ hij for (i, j) ∈ Ac. Given an incoming
exogenous flow of F > 0, a set of flows x = xoij that satisfy the capacity constraints
and conservation equations (9.6)–(9.9) can be decomposed into a vector sum of path
flows from source to destination and circuit flows such that the direction of these
flows in any common arc (i, j) is the same as that of the directed arc (i, j) ∈ Ac.
Example 9.4 (Illustration of Flow Decomposition) The Flow Decomposition The-
orem 9.5 is illustrated in Figure 9-7. The sum of the two path flows and circuit flow is
equal to the total flow shown in Figure 9-5.

9.3 AUGMENTING PATH ALGORITHM FOR
MAXIMAL FLOW

The maximal-flow problem for a network is to find the maximum amount that can
be transferred from the source to the destination given arc-capacity constraints
lij ≤ xij ≤ hij and the existence of a feasible flow x = xo. We will also assume that
all lij = 0. It is clear that solving the maximal flow problem is the same as solving
the linear program

Maximize F

subject to
∑

j∈Af(1)

x1j = −F,

∑
i∈Bf(k)

xik −
∑

j∈Af(k)

xkj = 0, for k = 2, . . . ,m− 1,

∑
i∈Bf(m)

xim = F,

0 ≤ xij ≤ hij , for all (i, j) ∈ Ac.

(9.13)
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Figure 9-7: Decomposition of Flow in Figure 9-5
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Figure 9-8: Augmentation Not Possible

Definition (Flow Value): The variable F , the exogenous flow into the system,
is called the flow value.

� Exercise 9.7 Show that by adjoining a “back flow” arc (t, s), of infinite capacity, joining
the destination node t to the source node s, and dropping the exogenous flow equations,
the maximal flow problem is equivalent to finding a feasible flow in the new network that
maximizes xts instead of F .

THEOREM 9.6 (Existence of a Positive Maximal Flow) In a network
with bounds 0 ≤ xij ≤ hij for all (i, j) ∈ Ac, the maximal flow is positive if and
only if there exists a chain of arcs joining the source to the destination such that a
positive θ-flow augmentation along the associated flow path is possible.

Example 9.5 (Maximal Flow Is Zero) In Figure 9-8 we illustrate a very simple
network in which a θ-flow augmentation is not possible if the flow on the directed arcs
must be nonnegative. Hence the maximal flow is zero.

� Exercise 9.8 Show that if the network defined by (9.13) has no chains connecting the
source to the destination, the network is disconnected and the maximum flow value is 0.
Show that a disconnected network does not necessarily imply that the maximal flow is
zero.

THEOREM 9.7 (Existence of an Improving Flow) Consider a network
(Nd,Ac) with arc-capacities 0 ≤ xij ≤ hij for all (i, j) ∈ Ac. Given a feasible
flow x = xoij with F = Fo, a flow value F > Fo can be found if and only if there
exists a chain of arcs joining the source to the destination such that a positive θ-flow
augmentation along its associated flow path is possible.

Example 9.6 (Illustration of an Improving Flow) Steps to obtain an improving
flow are illustrated in Figure 9-9. The numbers in brackets at the tail of each arc represent
the lower and upper bounds on the flow through the arc.

COROLLARY 9.8 (Maximal Flow Condition) The flow value F = Fo is
maximal if and only if there is no chain of arcs joining the source to the destination
such that a positive θ-flow augmentation along its associated flow path is possible.
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� Exercise 9.9 Show that the improving flow in Example 9.6 results in a maximal flow
for the network.

� Exercise 9.10 Prove Corollary 9.8.

Instead of adjusting flows in a network-flow problem, it is convenient to adjust
the arc capacities so that all the existing flows xoij are converted to zero and an im-
proving flow is found in this adjusted-capacity network. After finding the improving
flow, the arc capacities are again adjusted so that θ improvements are converted
to zero, and so on, iteratively. A final step notes the difference between the final
adjusted capacity and the original capacity on an arc, and this difference is x∗ij , the
maximal flow solution.

Definition (Adjusted-Capacity Network): Given any existing flow x = x0
ij on a

network (Nd,Ac), the adjusted-capacity network is a network that is computed
as follows. Subtract existing arc-flows xoij from the upper bound hij on arc-
capacity to obtain a new upper bound h̄ij = hij−xoij on the arc capacity. Add
a reverse arc (j, i) with an upper bound h̄ji = xoij on arc capacity; if x

o
ij = 0,

the reverse arc (j, i) may be omitted.

Example 9.7 (Construction of an Adjusted-Capacity Network) In Figure 9-10
we illustrate how to obtain an adjusted-capacity network from a network with initial flows.
The direction of the existing flow is shown by the arrows, and the flow values are shown
as numbers approximately halfway on each arc. It is assumed that each pair of nodes has
two arcs connecting it. The capacity on the arc from node i to node j is shown at the
tail of the arc; i.e., near node i. In the figure, on the line joining node 1 and node 2, the
number 4 near node 1 is the arc capacity for arc (1, 2) and the number 0 near node 2 is
the arc capacity for arc (2, 1). In Figure 9-10(a), an initial exogenous flow of F = 5 is
assumed. In Figure 9-10(b) we have created an adjusted-capacity network by converting
the existing flows to zero as discussed above.

Theorem 9.7 is a theoretical basis for the Ford-Fulkerson Augmenting Path Al-
gorithm (also due independently to Elias, Feinstein, and Shannon). We shall first
illustrate the algorithm through an example.

Example 9.8 (Illustration of the Augmenting Path Algorithm) Consider the
network displayed in Figure 9-11(a) with the capacities of the forward and reverse arcs
as shown by capacities on both ends of the arcs. Notice that the arc connecting nodes 2
and 3 has a capacity of 1 along the arc, (2, 3) and a capacity of 2 along the arc (3, 2); i.e.,
the arc joining nodes 2 and 3 is undirected and has been replaced by two arcs (2, 3) and
(3, 2). Noting that there are no existing flows, we start the algorithm by setting F = 0
and finding an augmenting path such as (1, 3), (3, 2), and (2, 4) with arc capacities 2, 2,
and 2 respectively. Thus the improving flow θ through this path is 2, and F = 0+ 2. The
capacities are then adjusted by subtracting θ = 2 from the tail of the forward arcs along
the path and adding θ = 2 to the tail of the reverse arcs along the path to generate the
next adjusted-capacity network, shown in Figure 9-11(b).
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Figure 9-10: Construction of an Adjusted-Capacity Network

In the new network there is only one augmenting path, namely the one with arcs
(1, 2), (2, 3), and (3, 4) with capacities 4, 3, and 3 respectively. Therefore the improving
flow for this iteration is θ = 3, and thus F = 2 + θ = 5. Notice how the flow in arc (2, 3)
more than counteracts the flow of the previous iteration on arc (3, 2). Adjusting the arc
capacities on the augmenting path by θ = 3, we get the adjusted-capacity network shown
in Figure 9-11(e).

No augmenting path exists, and therefore, by Theorem 9.7, the solution is optimal.
From the arc capacities in the adjusted-capacity network of Figure 9-11(e) we compute
the difference between original arc-capacities, shown in Figure 9-11(e), and the final arc-
capacities shown in Figure 9-11(e) to obtain the final maximal flow solution, shown in
Figure 9-11(f).

Algorithm 9.1 (Augmenting Path) In general, we first create an adjusted-capacity
network by adding to each arc (i, j) that does not have a reverse arc (j, i) an arc (j, i)
with capacity h̄ji = 0 (the capacities on the arcs corresponding to the original network are
relabeled as h̄ij). Set the flow F = 0 in this adjusted system. The original network with
arc-capacities hij is set aside until the termination of the algorithm, when its flows are set
to the optimal flows.

1. Using any θ-flow augmenting search procedure, try to find an augmenting path for
the current adjusted-capacity network. If no such path exists, stop with the updated
flow value F being optimal and the optimal arc-flows determined by

x
∗
ij = h̄ij − hij

for each arc in the original network.

2. Determine θ equal to the minimum capacity for the augmenting path in the current
adjusted-capacity network:

θ = min
(i,j)∈AP

h̄ij ,

where AP is the augmenting path. Set F ← F + θ.
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(d)Iteration 2: Adjusted arc capacities
and an augmenting path.
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(e)Iteration 3: Final adjusted arc
capacities, no additional path
flow possible.
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Figure 9-11: Illustration of the Augmenting Path Algorithm to Find Maximal Flow



9.3 AUGMENTING PATH ALGORITHM FOR MAXIMAL FLOW 269

3. For each directed arc (i, j) of the adjusted-capacity network along the augmenting
path, adjust the arc-capacity to be

h̄ij ← h̄ij − θ,

h̄ji ← h̄ji + θ

to determine the next adjusted-capacity network.

4. Go to Step 1.

Note that the algorithm only modifies the arc capacities in the adjusted-capacity
network and not its arc flows. The optimal arc flows x∗ij for the original network
are actually the sums of the individual path flows encountered during the solution
process; hence these could have been determined by adjusting the flows xij at the
same time that the arc capacities hij were adjusted in Step 3. However, a simpler
way is to obtain them from the final adjusted-capacity network by comparing the
final arc capacities with the initial assigned arc capacities. If for arc (i, j) the final
arc capacity h̄ij is less than the initially assigned arc capacity hij , then arc (i, j)
has a flow equal to the difference; i.e., xij = hij − h̄ij .

� Exercise 9.11 Modify Algorithm 9.1 if the initial feasible flow vector x = xo �= 0 is
given.

� Exercise 9.12 Modify Algorithm 9.1 so that instead of modifying the arc capacities we
update the flows directly. In this case we check for augmenting paths such that the arcs
in the path can be traversed in the direction of the arc if the flow is less than the upper
bound, and in the reverse direction if the flow is greater than the lower bound.

Starting with a feasible solution xij = xoij = 0 for all (i, j) ∈ Ac, Algorithm 9.1,
regardless of the augmenting path procedure, is guaranteed to solve the maximal
flow problem in a finite number of augmenting flow steps provided that the arc ca-
pacities are either integers or rational numbers (see Theorem 9.9 and Corollary 9.10).
In the event that the flow capacities are not rational numbers, the algorithm may
sometimes require an infinite number of steps to converge. However, even if the
flow capacities are not rational, the use of a procedure for finding an augmenting
path, called the Breadth-First Unblocked Search procedure (to be discussed later), is
guaranteed by the Edmonds-Karp Theorem 9.11 to solve the maximal flow problem
within mn/2 flow augmenting steps, where m is the number of nodes and n is the
number of arcs.

THEOREM 9.9 (Finite Termination with Integer Capacities) If the arc
capacities are all integers and a finite maximal flow exists, then Algorithm 9.1 will
construct only a finite number of path flows whose algebraic sum is the maximal
flow.
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Figure 9-12: Large Number of Iterations of Algorithm 9.1

COROLLARY 9.10 (Finite Termination with Rational Capacities) If
the arc capacities are all rational numbers and a finite maximal flow exists, then
Algorithm 9.1 will construct only a finite number of path flows whose algebraic sum
is the maximal flow.

The next example demonstrates that it is possible to choose augmenting paths
such that the algorithm takes a very large number of iterations to converge.

Example 9.9 (Large Number of Iterations of the Augmenting Path Algorithm)
Consider the network in Figure 9-12. It may seem that the greater the number of arcs in
the chosen augmenting path at each iteration, the sooner the sum of the augmenting path
flows will use up capacity of the arcs and terminate with maximal flow. However if we
apply this strategy to the network shown in Figure 9-12, we would choose path (1, 2, 3, 4)
on odd iterations and (1, 3, 2, 4) on even iterations and find that Algorithm 9.1 takes 2,000
iterations to converge! If the capacity on each arc with capacity of 1,000 is changed to a
capacity of a trillion, the algorithm would require two trillion iterations. If the capacity
restrictions on the arcs with capacities of a 1,000 are dropped, the algorithm would never
terminate. Notice that if at each iteration we had chosen instead the augmenting path
with the fewest number of arcs, the algorithm would have terminated in two iterations!

� Exercise 9.13 Create a network for which the augmenting path algorithm chooses at
each iteration an augmenting path with the largest number of arcs, and solves the problem
faster than one that chooses an augmenting path with the smallest number of arcs.

The following example demonstrates that if the capacities are irrational numbers
then it is possible that the maximal flow Algorithm 9.1 may never terminate even
if all the capacities are all finite.

Example 9.10 (Infinitely Many Iterations of the Augmenting Path Algorithm)
Consider the network in Figure 9-13 with source node 1, destination node 8, and bounds
on arcs

0 ≤ x23 ≤ h,
0 ≤ x47 ≤ 1,
0 ≤ x57 ≤ h,
0 ≤ xij ≤ ∞,

where h =
(
−1 +

√
5
)
/2 is the golden ratio. It turns out that the algorithm will go

through an infinite sequence of iterations τ shown in Table 9-1 if one chooses cyclically for
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Figure 9-13: Infinite Number of Iterations of Algorithm 9.1

Augmenting Path Resulting Arc Flow (on relevant arcs)
Iteration Path Flow x23 x47 x57 x76

1 1,2,3,4,7,8 h h h = 1− h2 0 0
2 1,3,2,4,7,6,8 h2 h− h2 1 0 h2

3 1,2,3,5,7,8 h2 h 1 h2 h2

4 1,3,2,5,7,4,8 h3 h− h3 1− h3 h h2

5 1,2,3,6,7,8 h3 h 1− h3 h h4

6 1,3,2,6,7,5,8 h4 h− h4 1− h3 h− h4 0
...

...
...

...
...

...
...

6τ + 1 1,2,3,4,7,8 h3τ+1 h 1− h3τ+2 h− h3τ+1 0
6τ + 2 1,3,2,4,7,6,8 h3τ+2 h− h3τ+2 1 h− h3τ+1 h3τ+2

6τ + 3 1,2,3,5,7,8 h3τ+2 h 1 h− h3τ+3 h3τ+2

6τ + 4 1,3,2,5,7,4,8 h3τ+3 h− h3τ+3 1− h3τ+3 h h3τ+2

6τ + 5 1,2,3,6,7,8 h3τ+3 h 1− h3τ+3 h h3τ+4

6τ + 6 1,3,2,6,7,5,8 h3τ+4 h− h3τ+4 1− h3τ+3 h− h3τ+4 0
...

...
...

...
...

...
...

Table 9-1: Infinite Number of Iterations of Algorithm 9.1
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the set of successive augmenting paths the ones listed in the table. To see this note that
hτ+2 = hτ − hτ+1 and h < 1.

� Exercise 9.14 Verify that Algorithm 9.1 can go through an infinite number of iterations
as claimed in Example 9.10. Calculate, for each iteration 6τ +1 through 6(τ +1)+1, flows
on each arc and flows into the origin 1 or out of the destination 8 as a function of τ and
show that these flows are feasible.

� Exercise 9.15 Prove that the maximal flow Algorithm 9.1 with the specified augment-
ing paths shown in Table 9-1 results in a finite total flow of 1/h2.

� Exercise 9.16 Show that the result of Exercise 9.15 implies that for the purpose of
Example 9.10 the arcs that have infinite upper bounds can be replaced by arcs that have
a bound of 1/h2.

� Exercise 9.17 Show that the maximal flow through the network of Figure 9-13 is
infinite.

BREADTH-FIRST UNBLOCKED SEARCH

A systematic procedure (which is a variation of the shortest path algorithm dis-
cussed in Section 9.5) for finding augmenting paths is the fanning-out (or breadth-
first search) procedure. This requires forming a tree of all the nodes j that can be
reached from the source s by a flow augmenting path. We first illustrate this by an
example and then state the algorithm.

Example 9.11 (Illustration of the Breadth-First Unblocked Search) The steps
of the algorithm on the network displayed earlier in Figure 9-12 are displayed in Figure 9-
14. We begin with the starting set of nodes Do = {source node s} = {1}. Next take
the set of nodes j not in Do that can be reached from nodes i in Do by some arc (i, j)
that has positive remaining capacity in the adjusted capacity network. In Figure 9-14(a)
these nodes are 2 and 3. Denote this set by D1 = {2, 3} and record the tracing-back
node of node 2 as 1 and of node 3 as 1 also. If D1 contained the destination node 4 we
stop the forward search. Since this is not so we continue the forward search by looking
for nodes j not in Do or D1 that can be reached from nodes i in D1 by some arc (i, j)
that has positive remaining capacity in the adjusted capacity network. In Figure 9-14(a)
this is node 4. Denote this set by D2 = {4} and record the tracing-back node of node 4
as 2. Since we have now reached the destination node 4, the θ-augmenting path (1, 2, 4)
is found by tracing back the path in reverse order (4, 2, 1) with arc capacities on (2, 4) of
1000 and on (1, 2) also of 1000 so that θ = min(1000, 1000) = 1000. After adjusting the
arc capacities along the path we obtain Figure 9-14(b).

On the next iteration of Algorithm 9.1 applied to Figure 9-14(b), we obtain D0 = {1},
D1 = {3} with the tracing-back node 1, and D2 = {4} with the tracing back node 3
as shown in Figure 9-14(c). Since we have now reached the destination node 4, the θ-
augmenting path (1, 3, 4) is found by tracing back the path in reverse order (4, 3, 1) with arc
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Figure 9-14: Augmenting Path Algorithm with Breadth-First Unblocked Search
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capacities on (3, 4) of 1000 and on (1, 3) of also 1000 so that θ = min(1000, 1000) = 1000.
After adjusting the arc capacities along the path we obtain Figure 9-14(d).

On the next iteration of Algorithm 9.1 applied to Figure 9-14(d), the breadth-first
unblocked search algorithm terminates with D1 = ∅, implying that no additional flow is
possible through the network, as shown in Figure 9-14(e). Either by adding the flows in
Figure 9-14(a) and Figure 9-14(c), or better by comparing capacities in Figure 9-14(d) and
Figure 9-12, we obtain the maximal flow of 2000, as shown in Figure 9-14(f).

Algorithm 9.2 (Breadth-First Unblocked Search) Let s be the source node, t be
the destination node, and let Dν be the boundary set of all nodes that can be reached
from s in exactly ν steps. The nodes in Dν are said to be a “distance” ν from s.

1. Set D0 = {s} and ν = 0.

2. Set ν ← ν + 1.

3. If there exists a directed arc (i, j) along which additional flow is possible (or if there
exists a directed arc (j, i) along which decreased flow is possible) such that i ∈ Dν−1,
j �∈ Dh, h = 0, 1, . . . , ν − 1, set Dν to be the set of all such j, and mark each node
j ∈ Dν by recording its “predecessor” node i ∈ Dν−1, which we call its tracing-back
node. If no such arc (i, j) (or arc (j, i)) exists, set Dν to be the empty set.

4. If the ν-distance set Dν is empty, terminate with a statement that no augmenting
path exists.

5. If t ∈ Dν , terminate with a statement that an augmenting path exists and use the
tracing-back nodes (see Step 3) to generate an augmenting path from s to t.

6. Go to Step 2.

� Exercise 9.18 Prove that Algorithm 9.2 terminates with a shortest path in m(m−1)/2
comparisons.

THEOREM 9.11 (Edmonds-Karp Max-Flow Theorem) If a maximal flow
exists, the augmenting path Algorithm 9.1, when used with the breadth-first unblocked
search Algorithm 9.2 to find the augmenting paths, will construct at most mn/2 path
flows whose algebraic sum is the maximal flow, where n is the number of arcs and m
is the number of nodes.

The key idea here is that at each iteration, the flow augmenting path from the
source to the destination along which positive flow is possible is chosen to be the
one with the fewest number of arcs.

� Exercise 9.19 Verify that Algorithm 9.1 with the breadth-first unblocked search Algo-
rithm 9.2 takes no more than mn/2 iterations on the example in Figure 9-14.

� Exercise 9.20 Apply Algorithm 9.1 with the breadth-first unblocked search Algo-
rithm 9.2 to the problem in Example 9.10 and show in this particular case that by selecting
at each iteration the augmenting path with the fewest number of arcs, Algorithm 9.1 ter-
minates in a finite number of iterations not exceeding mn/2.
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9.4 CUTS IN A NETWORK

The search for an augmenting path can be time-consuming, especially in large net-
works. Thus, it would be nice to be able to recognize optimality without doing an
exhaustive search for an augmenting path that may not exist. It turns out that it
is sometimes possible to prove that no such path exists by verifying that the con-
ditions of the Ford-Fulkerson max-flow min-cut Theorem 9.13 are satisfied. These
conditions make use of the notion of a cut and its value.

Definition (Cut): A cut Q = (X, X̄) in a network is a partition of the node
set into two nonempty subsets X and its complement X̄ = Nd \ X. If X
contains the source node s and X̄ contains the destination node t, the cut is
said to separate node s from node t.

Definition (Cut Value): If 0 ≤ xij ≤ hij for all (i, j) ∈ Ac, then the cut value
C of a cut Q = (X, X̄) is the sum of the capacities of the arcs that start in
set X and end in set X̄; i.e.,

C =
∑
i∈X

∑
j∈Af(i)∩X̄

hij , (9.14)

where Af(i) = {j ∈ Nd | (i, j) ∈ Ac}. If each such arc (i, j) has a lower bound
lij , not necessarily all zero, on the arc flow xij , then the cut value is

C =
∑
i∈X

∑
j∈Af(i)∩X̄

hij −
∑
j∈X̄

∑
i∈Bf(j)∩X

lij , (9.15)

where Af(i) = {j ∈ Nd | (i, j) ∈ Ac} and Bf(j) = {i ∈ Nd | (i, j) ∈ Ac}.

Definition (Saturated Arc): An arc is said to be saturated if it is used to full
capacity, i.e., xij = hij .

� Exercise 9.21 Given 0 ≤ xij ≤ hij , show that if flow F = Fo > 0 is maximal, then
there exists at least one arc that is saturated. Construct a counter example if maximal
F = Fo = 0.

From Exercise 9.21 it follows that if the saturated arcs associated with a maximal
flow are removed from the network by setting their capacities to zero, no flow is
possible from the source to the destination over a path of remaining unsaturated
arcs, because if such flow were possible, then the path would have positive arc
capacity for the adjusted capacity network formed, as discussed in Theorem 9.7, by
setting h′

ij = hij − xoij , implying that the flows xij = xoij can be augmented along
the path. Then by Theorem 9.7 the flows xij = xoij would not be maximal.
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Figure 9-15: Illustration of Min-Cut = Max-Flow

From the above discussion it is clear that the collection of saturated arcs in a
maximal solution can be used to define a partition of the nodes into two sets that
define a cut that separates the source from the destination.

Example 9.12 (Illustration of Min-Cut = Max-Flow) The network and flows in
Figures 9-15(a) and 9-15(b) are identical to those in Figure 9-11(f). The saturated arcs in
Figure 9-15(a) are (1, 3), (2, 3), (2, 4), and (3, 4) with arc capacities (2, 1, 2, 3) respectively,
with total arc capacity of 8. Observe that there are many cuts in the network. In particular,
the cut Q = (X, X̄) with X = {1, 2} and X̄ = {3, 4}, depicted by the use of a dotted line
that separates X and X̄ in Figure 9-15(a), has a cut value of 5. Similarly, the cut depicted
in Figure 9-15(b), Q = (X, X̄) with X = {1, 2, 3} and X̄ = {4} also has a cut value of 5.
The cut value 5 by accident happens to be the same in both cuts and also happens to be
the same value of that of the maximal flow.

� Exercise 9.22 Find all other cuts in the network of Example 9-15. What is the rela-
tionship of the flow value to the cut value of each of these cuts?

The relationship between flow values and cut values is specified in Lemma 9.12
and Theorem 9.13.

LEMMA 9.12 (Flow Value Bounded by Cut Value) The flow value F of
any feasible solution is less than or equal to the value C of any cut separating the
source s from the destination t.

THEOREM 9.13 (Ford-Fulkerson: Min-Cut =Max-Flow) The max-flow
value is equal to the min-cut value.

� Exercise 9.23 (Duality) Show that the dual of the maximal flow problem is the min
cut problem. Hint: Set up the maximal flow problem as a linear program. Set up the dual
by letting uj be the multipliers corresponding to the nodes and let wij be the multipliers
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corresponding to the upper bounds on arc flows, and show that the system is redundant.
The redundancy implies that we can set ut = 0, where t is the destination node; show
that this implies that us = 1, where s is the source node. Next show that the remaining
variables are all either 0 or 1. Then show that for arc (i, j), we have wij = 1 if and only
if ui = 1 and uj = 0. Use this last result to define the cut.

Example 9.13 (Another Example of Max-Flow) Consider the problem of finding
the maximal flow in the network illustrated in Figure 9-16(a1). The capacities for each
direction of an arc are stated at the end of the arc where the flow begins. Figure 9-
16(b1) represents a possible tree of positive arc capacities fanning out from the source.
The flow can now be increased to θ1 = 1 along the augmenting path (1, 2), (2, 4), (4, 6),
at which point the arcs (1, 2) and (2, 4) are saturated. The adjusted capacity network
is then constructed by adjusting the arc capacities to h′

ij = hij − θ1 and h′
ji = hji − θ1

along the augmenting path just considered. The resulting associated network is shown in
Figure 9-16(a2). In Figure 9-16(b2) is a new possible tree of positive arc capacities fanning
out from the source node 1, resulting in the path (1, 3), (3, 5), (5, 6). Arcs (3, 5) and (5, 6)
are saturated by assigning a flow θ2 = 1. The process is continued and the resulting path
and solutions are shown in Figures 9-16(a3), 9-16(b3), 9-16(a4), and 9-16(b4). Since it is
not possible to find an augmenting path in Figure 9-16(b4), the process is terminated with
a maximal flow of Fo = θ1 + θ2 + θ3 = 3.

To find the actual flows on each arc we subtract the final arc capacities in Figure 9-
16(a4) from the original arc capacities in Figure 9-16(a1), interpreting a negative difference
as a flow in the opposite direction, to obtain the final solution shown in Figure 9-17. To
find the cut with minimum value, choose saturated arcs leading from nodes in X to nodes
in X̄. The nodes in X can all be reached from the source along unsaturated paths. This
set was determined by the nodes in the subtree of positive arc capacities in Figure 9-16(b4).
Hence X = {1, 3, 4, 2, 5} and X̄ = {6} forms a cut Q = (X, X̄). The set of saturated arcs
joining the nodes in X to the nodes in X̄ are (4, 6) and (5, 6), with sum of arc capacities
Co = 2 + 1 = 3 = Fo, as shown in Figure 9-17.

� Exercise 9.24 In Figure 9-17 enumerate all the other cuts separating node 1 from
node 6. Show that their associated cut values are greater than the maximal flow value.

9.5 SHORTEST ROUTE

The shortest route problem is that of finding the minimum total “distance”
along paths in an undirected connected network from the source s = 1 to the
destination t = m. The distance can be actual miles, the cost or time to go between
nodes, etc.

A simple method to solve such a problem for nonnegative distances (or costs) is
a branching out procedure that fans out from the source. Starting from the source,
it always picks on the next iteration the closest node i to the source and records its
distance. The algorithm is terminated when the shortest distance from the source
node to the destination node is recorded. We first illustrate the algorithm and then
state it.
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Figure 9-16: Another Example of the Max-Flow Algorithm
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Figure 9-17: Max-Flow Min-Cut Solution

Example 9.14 (Illustration of Dijkstra’s Algorithm) The steps of the algorithm
are illustrated in Figure 9-18. Let Nd = {1, . . . , 6} be the set of nodes and Ac be the set
of arcs in the network. Let S be the set of nodes to which the shortest distances zj are
known at iteration k. We start by including the source node 1 in the set S, i.e., S = {1},
and assign it a distance label z1 = 0 and a fictitious predecessor node index p1 = 0. Note
that zj is called a permanent label if j ∈ S; this is shown by concentric circles in the figure.
Next we assign a temporary label zj = dij to each node j ∈ Nd \ S if an arc joins 1 to j
and zj =∞ if no such arc exists. Thus

z2 = 3, z3 = 8 and z4 =∞, z5 =∞, z6 =∞.

The corresponding predecessor indices are

p2 = 1, p3 = 1 and p4 = 1, p5 = 1, p6 = 1

where we interpret p4 = p5 = p6 = 1 as meaning that artificial arcs of infinite length join
node 1 to nodes 4, 5, and 6 respectively.

On iteration 1 we start by picking the node with the smallest temporary label (with
ties broken randomly), i.e.,

k
∗ = argmin

j∈Nd\S
= argmin{ z2, z3, z4, z5, z6 } = 2.

We now make node 2 a part of set S, i.e.,

S ← S ∪ {2}

and call z2 a permanent label. Next we update the temporary labels zjfor j ∈ Nd \ S if
there is an arc from the newly added node 2 to j. To do this define a set

Q = { j | (2, j) ∈ Ac, for j ∈ Nd \ S } = {3, 4, 5}.

Then the temporary labels that need updating are for j ∈ Q, and they are computed as
follows

zj ← min{zj , z2 + d2j} for j ∈ Q,
or

z3 = 5, z4 = 6, z5 = 4,

with predecessors
p3 = 2, p4 = 2, p5 = 2.
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Iteration 5: k∗ = 6, S = {1, 2, 5, 3, 4, 6}

Figure 9-18: Illustration of Dijkstra’s Shortest Route Algorithm
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We continue with iteration 2 by picking the next node with the smallest temporary
label (with ties broken randomly), i.e.,

k
∗ = argmin

j∈Nd\S
= argmin{ z3, z4, z5, z6 } = 5.

We now make node 5 a part of set S, i.e.,

S ← S ∪ {5},

and call z5 a permanent label. Next we update the temporary labels zj for j ∈ Nd \ S if
there is an arc from the newly added node 5 to j. To do this define a set

Q = { j | (5, j) ∈ Ac, for j ∈ Nd \ S } = {6}.

Then the temporary labels that need updating are for j ∈ Q, and they are computed as
follows

zj ← min{zj , z5 + d5j} for j ∈ Q,
or

z6 = 10,

with predecessors
p6 = 5.

The process then continues, as shown in the figure. Finally, on iteration 5 the shortest
distance is determined as z6 = 9. It is straightforward to determine the shortest path
through the use of the predecessor nodes.

Algorithm 9.3 (Dijkstra’s Shortest Route Algorithm) Given a network G =
(Nd,Ac) with m > 1 nodes, where s = 1 is the source node and t = m is the desti-
nation node. It is assumed that the distances between nodes are dij ≥ 0. On iteration τ ,
associated with each node j is (1) a distance zj from the source to node j along some
path Pj , and (2) pj , which is the predecessor node to node j along the path Pj . Also on
iteration τ , the nodes have been partitioned into two sets, S and Nd\S, where the paths Pj
leading to nodes j ∈ S are shortest paths. We will refer to zj as the label of node j. If
j ∈ S, zj will be called its permanent label; otherwise it will be called its temporary label.

1. Start with the source node s = 1 as the initial set S of permanently labeled nodes;
i.e., S = {1}. Assign as its permanent label z1 = 0, and predecessor p1 = 0. To
each of the nodes j ∈ Nd \ S assign a temporary label zj equal to the distance on
an arc from the source to node j, and pj = 1; if no such arc exists, the label is
set to ∞ and pj = 1. Conceptually this implies that we are adding an artificial
arc from the source to every node that is not connected to the source with an arc.
Computationally we do not use ∞; instead we use a number greater than the sum
of the distances on all the arcs.

2. Set the iteration count: τ ← 1.

3. Find a node k∗ ∈ Nd \ S such that

k
∗ = argmin

j∈Nd\S
zj

and set S ← S ∪ {k∗}.
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4. If Nd \ S is empty, terminate.

5. Let Q = { j | j ∈ Nd \ S, (k∗, j) ∈ Ac } be the set of nodes in set Nd \ S that are
attached to node k∗ by an arc. For j ∈ Q,

if z
k∗ + d

k∗j < zj , then set zj = z
k∗ + d

k∗j and pj = k∗.

6. Set τ ← τ + 1 and go to Step 3.

Comment: In order to avoid searching all j ∈ Nd \ S on Step 3, one maintains an ordered
list of zj by updating the list of j ∈ Q whose label values zj have been lowered during the
execution of Step 5.

LEMMA 9.14 (Number of Operations in Dijkstra’s Algorithm) Algo-
rithm 9.3 requiresm(m−1)/2 comparisons in Step 3 and requires at mostm(m−1)/2
comparisons and additions in Step 5.

Proof. In iteration τ there are τ nodes in S and thus m − τ comparisons are
required in Step 3. Hence in a network with m nodes we need

1 + 2 + · · ·+ (m− 1) = m(m− 1)/2

comparisons. Similarly, we need a maximum of m(m− 1)/2 comparisons in Step 5.
Fewer may be needed, because at any iteration τ , node k∗ will typically have fewer
than m− τ nodes in Nd \ S connected to it.

LEMMA 9.15 (Validity of Dijkstra’s Algorithm) Algorithm 9.3, with dis-
tances dij ≥ 0, finds the shortest path from the source to all nodes in the network.

� Exercise 9.25 Construct an example to show that Algorithm 9.3 can fail if there are
negative arc distances. Construct an example with some negative arc distances but where
the sum of distances around every cycle is nonnegative. Demonstrate that in this case
Algorithm 9.3 finds the shortest route from the source to the destination.

� Exercise 9.26 Construct an example to show that if the main post office has a collection
of shortest routes from it to every other post office, the collection of arcs along the route
is not necessarily a tree. Apply Dijkstra’s algorithm to your example to find an equivalent
tree.

9.6 MINIMAL SPANNING TREE

Consider a connected network G = (Nd,Ac) with m nodes and n arcs; the distances
on the arcs are unrestricted in sign. The minimal spanning tree problem is one
of finding a tree connecting all m nodes such that the sum of the distances on
the arcs of the tree is minimized. The meaning of distance here is very similar
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Figure 9-19: Minimal Spanning Tree Example

to that for the shortest route problem in that it can represent cost, time, etc.
The minimal spanning tree problem has been applied to design transportation and
communication networks; we do not need to have the network already built but just
to know what the distance (cost) would be if an arc were added between two nodes.

Example 9.15 (Minimal Spanning Tree and Artificial Node) Suppose that you
need to design a new freeway system connecting three equidistant points 1, 2, and 3. The
minimal spanning tree has a total distance of 4 miles, as shown in Figure 9-19(a). It is
interesting to note that a new freeway system can be built using only 2

√
3 < 4 miles by

building the freeway through an artificial node 4, as shown by the minimal spanning tree
in Figure 9-19(b).

� Exercise 9.27 Show that the minimal spanning tree remains the same if all arc dis-
tances are changed by a constant value β, i.e., d̄ij ← dij + β.

The solution process is very simple and is one of the rare cases where a greedy
algorithm (i.e., an algorithm in which one makes a locally best improvement at
each iteration) finds a global optimal solution. Since a spanning tree has exactly
m − 1 arcs, so will the optimal solution. An algorithm to do this chooses the arcs
one at a time in increasing order of their lengths, rejecting the selected arc only if
it forms a cycle with the arcs already chosen.

Example 9.16 (Illustration of Minimal Spanning Tree Algorithm) The steps of
the algorithm are illustrated in Figure 9-20. We start by initializing labels uj for each node
j = 1, . . . , 6 to have the value 0 to imply no label, and we order the arcs by increasing
distance. When every node is labeled the same by a nonzero label, the algorithm will
terminate.

At iteration 1 we pick arc (2, 5) because it has the smallest distance d25 = 1. The two
connecting nodes are relabeled as u2 = u5 = 1. Next, on iteration 2, from the remaining
arcs, we choose arc (3, 4) because it has a distance d34 = 2 (we could equivalently have
chosen arc (4, 5)) and does not create a cycle with the previously chosen arcs. We set
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Figure 9-20: Illustration of Minimal Spanning Tree Algorithm
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the labels for the connecting nodes of this arc to be u3 = u4 = 2 because the nodes do
not intersect any of the other labeled nodes. Continuing, on iteration 3, we pick the next
shortest distance arc (4, 5), which does not create a cycle with the previously chosen arcs.
Now, 4 belongs to a different set of previously labeled nodes than does 5. Hence, we set
the labels of the two sets to be equal; we arbitrarily set the labels to be 1 for nodes 2, 3,
4, and 5. We continue in this manner, picking arc (1, 2) on iteration 4 and arc (4, 6) on
the final iteration.

Algorithm 9.4 (Minimal Spanning Tree) The algorithm starts by reindexing the
arcs α = 1, . . . ,m so that they are in the order of nondecreasing arc lengths. The nodes
will be partitioned into several membership classes, with each node assigned a unique
positive membership label uj > 0; upon termination all nodes will belong to only one
membership class. Initially all uj = 0, meaning that they do not belong yet to any
membership class. Let T be the set of arcs in the minimal spanning tree, let ν represent
the number of arcs assigned so far to the minimal spanning tree, let k represent the last
membership class label assigned to a node, and let α be the iteration counter, which is,
in this case, the index of the arc being considered for candidacy in the minimal spanning
tree.

1. Set T ← {∅}, ν ← 0, k ← 0, and α← 1.

2. If ν = m− 1, terminate; we have found a minimal spanning tree.

3. Let arc α connect nodes i and j. We use the node labels to determine whether
candidate arc α forms a cycle with the arcs in T . If it forms a cycle, it is rejected;
otherwise it is accepted as belonging to the minimal spanning tree.

(a) Reject arc α if it will create a cycle with the arcs in T . If ui = uj �= 0, i.e.,
nodes i and j both belong to the same membership class, then arc α will create
a cycle amongst arcs already selected as belonging to the minimal spanning
tree, and therefore arc α is rejected. Go to Step 4.

(b) Accept arc α if it does not create a cycle with the arcs in T . In this case set
T ← T ∪ {α}, ν ← ν + 1, and update the labels of the membership classes by
doing one of the following:

• If ui = uj = 0, i.e., nodes i and j do not belong to any membership class,
then set k ← k + 1 followed by setting ui ← k and uj ← k.

• If 0 �= ui �= uj �= 0 then the nodes i and j belong to different membership
classes. We merge the two membership classes labeled ui and uj into one.
That is, we change the labels of all nodes p such that up = uj to up ← ui.

• If ui �= 0, but uj = 0 set uj ← ui.
• If uj �= 0, but ui = 0 set ui ← uj .

4. Set α← α+ 1. Go to Step 2.

LEMMA 9.16 (Spanning Tree in a Connected Network) A connected
network contains a spanning tree.

� Exercise 9.28 Prove Lemma 9.16.
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Figure 9-21: Disconnecting an Arc of T Results in Two Trees: T1 and T2

� Exercise 9.29 Prove that Algorithm 9.4 finds a minimal spanning tree for a connected
network. How would you modify the algorithm so that it could be used on any network?
(If the network is not connected your modified algorithm should determine that it was
unconnected.)

� Exercise 9.30 Show how using linked lists can make the operations of merging mem-
bership classes in Step 3b of Algorithm 9.4 efficient. Show that you can make it even more
efficient by merging the smaller membership class with the larger one.

LEMMA 9.17 (Disconnecting an Arc of a Tree) Disconnecting an arc (i, j)
of a tree T results in decomposing T into two trees, T1 and T2.

Example 9.17 (Disconnecting an Arc of a Tree) Figure 9-21 demonstrates how
disconnecting an arc of a tree results in two trees.

� Exercise 9.31 Prove Lemma 9.17

LEMMA 9.18 (End Nodes in a Tree) Any tree has at least two end nodes.

� Exercise 9.32 Verify Lemma 9.18 for the tree illustrated in Figure 9-21.

� Exercise 9.33 Prove Lemma 9.18.

9.7 MINIMUM COST-FLOW PROBLEM

The minimum cost-flow problem is to find flows xij through a directed network
G = (Nd,Ac) with m nodes indexed 1, . . . ,m and n arcs, such that the total cost of
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the flows is minimized. It can be stated as a standard linear programming problem
with very special structure:

Minimize
∑

(i,j)∈Ac
cijxij = z

subject to
∑

i∈Af(k)

xki −
∑

j∈Bf(k)

xjk = bk for all k ∈ Nd,

lij ≤ xij ≤ hij for all (i, j) ∈ Ac,

(9.16)

where cij is the cost per unit flow on the arc (i, j); bk is the net flow at node k; lij
is a lower bound on the flow in arc (i, j); and hij is an upper bound on the flow in
arc (i, j). Note that bk takes on values that depend on the type of node k:

bk is




> 0 if k is a source (supply) node;
< 0 if k is a destination (demand) node;
= 0 if k is a node for transshipment only.

Definition (Feasible Flow): A set of arc flows xij that satisfies the conser-
vation of flow constraints and the capacity constraints in (9.16) is called a
feasible flow.

� Exercise 9.34 Show that a necessary condition for feasibility of the system (9.16) is
that

∑
i∈Nd

bi = 0.

THEOREM 9.19 (Feasibility of a Minimum Cost-Flow Problem) The
minimum cost-flow problem (9.16) with lij = 0, hij = ∞ for all (i, j) ∈ Ac has a
feasible solution if and only if ∑

i∈Nd

bi = 0

and the cut value of every cut Q = (X, X̄) satisfies

C(Q) ≥
∑
i∈X

bi.

� Exercise 9.35 Through a simple example, demonstrate one particular instance of The-
orem 9.19. Prove it in general.

The minimum cost-flow formulation has many applications. In fact a number
of the problems in this book can be expressed in terms of a minimum cost-flow
formulation. Some of these are illustrated through the examples and exercises that
follow.
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Example 9.18 (Transportation/Assignment Problem) The transportation prob-
lem (8.3) is a special case of the minimum cost-flow problem. Here there are no interme-
diate nodes; only source and destination nodes. Furthermore, the upper bounds on the
flows are implied by the formulation.

The assignment problem given by (8.20), (8.21), (8.22), and (8.23) is a special case of
the transportation problem in which all bi at supply nodes are +1 and all bi at demand
nodes are −1. Thus, it too can be represented as a minimum cost-flow problem.

Example 9.19 (Maximal Flow Problem) The maximal flow problem of Section 9.3
is almost in the minimum cost-flow format. It can be easily converted to a maximal flow
problem as shown in Exercise 9.7 on Page 264.

� Exercise 9.36 (Shortest Path Problem) Show how the shortest path problem of
Section 9.5 can be set up as a minimum cost-flow problem. Hint: Reformulate the problem
into one of sending exactly one unit of flow from the source to the destination.

9.8 THE NETWORK SIMPLEX METHOD

In this section we show how to simplify the Simplex Method so that it can be applied
to solve graphically, by hand, a minimum cost-flow network problem with, say, less
than 100 nodes. The methodology can also be applied efficiently to solve, with a
computer, larger problems using special data structures. There are three ways in
which we can get computational savings:

1. Exploiting the fact that (by deleting a redundant node balance equation or
adding an artificial variable) every basis is triangular.

2. Exploiting the fact that all calculations involve additions and subtractions
only because the elements of every basis are +1, −1, or 0.

3. Exploiting the fact that typically not all the prices need to be updated when
a new column corresponding to an arc enters the basis.

We have already seen a specialized version of the Simplex Method applied to
the transportation problem in Chapter 8. The network version developed here has
similarities and can be used to solve the minimum cost-flow problem very efficiently.

We assume that the minimum cost-flow problem is in, what we call, standard
form; namely, it is one in which the arc flows are nonnegative with no specified
upper bounds:

Minimize
∑

(i,j)∈Ac
cijxij = z

subject to
∑

i∈Af(k)

xki −
∑

j∈Bf(k)

xjk = bk for all k ∈ Nd,

0 ≤ xij ≤ ∞ for all (i, j) ∈ Ac,

(9.17)
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Figure 9-22: Example of a Minimum Cost-Flow Problem

where
∑

k∈Nd bk = 0.
Recall from Section 9.1 that the flow through a network is represented by a

node-arc incidence matrix where each column corresponding to an arc (i, j) has
exactly two nonzero entries: +1 in row i and −1 in row j. In matrix notation, each
column of A corresponding to an arc s = (i, j) in the network can be written as

A•s = ei − ej , (9.18)

where ei is a unit-vector with 1 in position i and ej is a unit-vector with a 1 in
position j.

Example 9.20 (Minimum Cost-Flow Problem) An example of a minimum cost-flow
problem in standard form is shown in Figure 9-22. The costs cij and the demand/supply
bi are shown on the network. The resulting coefficient matrix is shown below:

A =




(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (2, 5) (3, 4) (3, 5) (4, 5)
1 1 1 1 0 0 0 0 0 0
2 −1 0 0 1 1 1 0 0 0
3 0 −1 0 −1 0 0 1 1 0
4 0 0 −1 0 −1 0 −1 0 1
5 0 0 0 0 0 −1 0 −1 −1




and
bT = ( 8 7 −5 0 −10 ) .

� Exercise 9.37 Show that an undirected arc (i, j) with cost cij ≥ 0, regardless of whether
the flow is from i to j or from j to i, can be replaced by two directed arcs (i, j) and (j, i)
each with the same cost cij = cji. Show that this reduction to a linear program is not
valid if cij < 0.
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Figure 9-23: Rooted Spanning Tree

BASES, TREES, AND INTEGRAL PROPERTY

Note that the system (9.17) contains at least one redundant equation.

LEMMA 9.20 (Rank of a Connected Network) The node-arc incidence
matrix A of a connected network with m ≥ 2 nodes has rank m− 1.

� Exercise 9.38 Demonstrate that the system shown in Example 9.20 contains exactly
one redundant equation.

� Exercise 9.39 Since the rank of any m− 1 rows of the node-arc incidence matrix of a
connected network is rank m − 1, show that any row may be regarded as dependent on
the remaining m− 1 rows and may be dropped as redundant.

� Exercise 9.40 Show that if the network is not connected, there is more than one
redundant equation.

We now know that the rank of A is m− 1 and we know from Exercise 9.39 that
we can drop any row of the matrix and solve the resulting problem. Instead of
dropping a row, we can augment the columns by an artificial unit-vector column,
say em, and associate with it an artificial variable xn+1 ≥ 0. This will make the
rank equal tom. If we were now to apply the Simplex Method to the resulting linear
program, xn+1 will be zero in every solution, feasible or otherwise, and therefore it
does not matter what cost we assign to the artificial variable.

� Exercise 9.41 Prove this last statement.

Adding such an artificial variable xn+1 corresponds to augmenting the directed
network by a symbolic arc that starts at node m and has no head node. We will
refer to such an arc as an artificial arc (see Figure 9-23).
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Definition (Root Node): The node associated with the artificial arc is referred
to as a root node. If the root node corresponds to the last row, then the
artificial arc corresponds to the column em, the unit vector with 1 in the mth
position. The artificial arc will be denoted by (k,∞) if the root arc is incident
at node k.

Definition (Rooted Spanning Tree): A spanning tree in a directed network
with a designated root node (and associated artificial arc) is called a rooted
spanning tree.

THEOREM 9.21 (Basis for the Network) In a connected network, if we
designate a node as the root node and add an artificial arc starting at the root, then
the node-arc incidence matrix of any rooted spanning tree is a basis matrix for the
network.

� Exercise 9.42 Prove Theorem 9.21.

Because the basis is triangular, it is easy to efficiently find a solution to BxB = b
and BTπ = cB. Furthermore, because the elements of B are all +1, −1, or 0, it is
easy to see that if b is integral then so is xB and if cB is integral then so is π. This
property is formalized through the next two exercises.

� Exercise 9.43 Show that if bi are integral and the capacity bounds are integral, then
the solution to any of the minimum cost-flow problems (9.16) or (9.17) is integral.

� Exercise 9.44 Every element of the inverse of the basis matrix B is +1, −1, or 0. Hint:
Recall that column j of B−1 is the solution to By = ej .

� Exercise 9.45 Show that the representation of nonbasic columnA•s in terms of the
basis B, namely B−1A•s, consists only of +1, −1, and 0 components.

SOLVING FOR THE BASIC VARIABLES

Because the system of equations is triangular, it is straightforward to solve the
system BxB = b for the values of the basic variables xB. These values can be
obtained directly by examining the tree (or subgraph) corresponding to the basis.
We start by examining all the end nodes; there are at least two end nodes. Because
exactly one arc is incident to each end node, the corresponding equation in the
system BxB = b contains only one variable, and because their coefficient is +1 or
−1, it can be easily evaluated. If the arc points out of end node k, the arc flow is
set to bk; if the arc points into the end node k, the arc flow is set to −bk. Once
this is done, the nodes are examined to see which have all its incident arcs assigned
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Figure 9-24: Computation of Flow Values from the End Nodes Towards the Root

except for one of the arcs. There must be at least one such node by triangularity
of the basis; the conservation of flows around this node can then be used to obtain
the arc flow on the unassigned incident arc. The process is continued until all the
flows are evaluated.

It turns out that the process of elimination proceeds from the ends of the tree
towards the root. This is because the last step evaluates the artificial arc, which
will always turn out to be zero since the sum of the bi’s is zero (see Exercise 9.34).
The above describes how to solve for the values of the basic variables if the network
is small and displayed visually as a graph. An efficient way to carry out this process
on a computer requires the use of special data structures that define the tree.

Example 9.21 (Computation of a Basic Feasible Solution) For the minimum cost-
flow network of Example 9.20, Figure 9-22, a rooted spanning tree corresponding to a
feasible basis is displayed in Figure 9-24; in this figure, node 5 has been arbitrarily made
into the root node. The nonbasic xij are all set to zero. The computation of the flow
values xij for flow on the arcs (except for the artificial arc at the root node) is done as
follows. Node 1 is an end node with arc (1, 2) leaving it, and hence x12 is easily evaluated
as

x12 = b1 = 8.

Next we note that node 3 is an end node with arc (2, 3) entering it, and hence

x23 = −b3 = 5.

At this point, at node 2, except for the flow value on arc (2, 4), the flow values on all the
arcs incident at the node are known, and hence x24 can be easily evaluated because

−x12 + x23 + x24 = b3.

Hence we know the value x24 = 10. Similarly at node 4 we know the value of x24, and
hence x45 can be evaluated by solving

−x24 + x45 = 0,

or x45 = 10.
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PRICING, OPTIMALITY, AND REDUCED COSTS

The dual of the minimum cost-flow problem (9.17) with (m,∞) as its root arc is

Minimize
∑
i∈Nd

biπi = z

subject to πi − πj ≤ cij for all (i, j) ∈ Ac, (i, j) �= (m,∞)
πm ≤ 0.

(9.19)

Given any basis B, we can compute the simplex multipliers π, in general, by solving
BTπ = cB; in the special case of the minimum cost-flow problem this reduces to

πi − πj = cij for (i, j) ∈ Ac, (i, j) �= (m,∞), xij basic, (9.20)

and for (i, j) = (m,∞),
πm = 0 (9.21)

because the column em corresponding to root arc (m,∞) is always basic. Substi-
tuting πm = 0 into (9.20) we can solve for the remaining πi because B triangular
implies BT is triangular. Moreover, since each equation of (9.20) has exactly two
variables, only a trivial amount of calculation is needed to solve the system.

The process of computing the remaining dual variables πi consists in working
from the root of the basis tree outwards towards the ends of the tree using the
relations (9.20). An efficient way to carry out this process on a computer requires
the use of special data structures that define the tree.

Example 9.22 (Computation of the Simplex Multipliers) Continuing with Ex-
ample 9.20, the rooted spanning tree of Example 9.21 is displayed in Figure 9-25 with the
computed values of the simplex multipliers obtained as follows. Proceeding from the root,
we start by setting

π5 = 0.
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Next we note that
π4 − π5 = c45 = 4,

implying that π4 = 4. For arc (2, 4) we note that

π2 − π4 = c24 = 3,

or π2 = 7. Similarly, we have
π2 − π3 = c23 = 1,

implying π3 = 6, and
π1 − π2 = c12 = 1,

implying π1 = 8.

The optimality criterion requires the reduced costs c̄N = cN − NTπ ≥ 0; this
reduces to the simple criterion

c̄ij = cij − (πi − πj) ≥ 0 for all (i, j) ∈ N , (9.22)

where N is the set of all nonbasic arcs.

Example 9.23 (Computation of the Reduced Costs) For the network of Exam-
ple 9.20, Figure 9-22, once the multipliers are computed as illustrated in Example 9.22 we
compute the reduced costs of the nonbasic variables as follows:

c̄13 = c13 − π1 + π3 = 2 − 8 + 6 = 0,
c̄14 = c14 − π1 + π4 = 2 − 8 + 4 = −2,
c̄25 = c25 − π2 + π5 = 3 − 7 + 0 = −4,
c̄34 = c34 − π3 + π4 = 1 − 6 + 4 = −1,
c̄35 = c35 − π3 + π5 = 1 − 6 + 0 = −5.

INCOMING VARIABLE AND ADJUSTMENTS TO FLOW

In general, if any of the c̄ij < 0 for some (i, j) = (is, js), and if the primal solution is
nondegenerate, then the primal solution is not optimal because we can decrease the
objective by increasing the flow value of the nonbasic variable xisjs

and adjusting the
flow values of the basic variables. If the value of xisjs

can be increased indefinitely
without decreasing the values of any of the basic variables, we have an unbounded
solution; otherwise, some basic variable xirjr will be driven to zero. The degenerate
case will be discussed in a moment.

The Simplex Method at each iteration adds an arc (corresponding to an incoming
variable) to the rooted spanning tree corresponding to the basis, thus creating a
cycle that we will denote here by C. The adjustment of the flow around the cycle
in the direction from is to js causes a decrease in the objective value. Because the
objective value is decreased by the flow adjusted, such a cycle is referred to as a
negative cycle. As the flow around the cycle increases, either it can be increased
indefinitely (in which case the problem is unbounded), or one of the flows in an arc
of the cycle is driven to zero (in which case the arc corresponding to the zero flow
is dropped and a new arc corresponding to the incoming basic variable is added to
form a new spanning tree).
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Figure 9-26: Adjustment of Flow Values Around a Cycle

If two or more arc flows are driven to zero simultaneously, the arc dropped from
the tree may be chosen arbitrarily in the nondegenerate case. On the other hand,
in the degenerate case, the choice is made by some special rule designed to prevent
repeating a basis at a subsequent iteration. Since basis repetition in practice is a
very rare phenomenon (if it can occur at all when the least cost rule is used for
selecting the incoming column), we will assume the tie is “broken” at random (see
Section 3.2.3) or by selecting, say, the first arc around the cycle starting with arc
(is, js) and moving around the cycle along the direction of flow along (is, js).

Let C+ denote the set of forward arcs in a cycle C, oriented in the direction of
arc (is, js); let C− denote the set of backward arcs in the cycle C; and let xij = xoij
be the current flow values. Then the new flow values are given by

xij =




xoij if (i, j) �∈ C,
xoij + θ if (i, j) ∈ C+,
xoij − θ if (i, j) ∈ C−.

(9.23)

Then if C− is empty, the solution is unbounded. Otherwise, let the maximum
change to the flow on the incoming arc be

xisjs
= θo = min

(i,j)∈C−
xoij

and let the adjustment of xij be given by (9.23) for θ = θo and (i, j) basic, and
otherwise xij = 0.

Example 9.24 (Adjustment of Flow Values Around a Cycle) For the spanning
tree displayed in Figure 9.21 of the network of Example 9.20, the reduced costs are com-
puted as shown in Example 9.23. If we pick the arc with the most negative reduced cost,
we find that arc (3, 5) would be the incoming arc and would create the cycle shown in
Figure 9-26. The cycle C consists of the arcs (3, 5), (4, 5), (2, 4), and (2, 3). The sets of
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forward and backward arcs in C are then

C+ =
{
(3, 5), (2, 3)

}
,

C− =
{
(4, 5), (2, 4)

}
.

Increasing the flow by θ along the cycle C results in changes to only the flow variables
along the cycle:

x35 = θ,
x45 = 10 − θ,
x24 = 10 − θ,
x23 = 5 + θ.

Examining the flow along the arcs in C−, we find that for feasibility, the maximum value
of θ = θ0 is given by

θo = min
(i,j)∈C−

xoij = 10.

Thus either arc (2, 4) or (4, 5) is dropped from the spanning tree; for the purposes of this
example we assume that a random rule was used and that it selected (2, 4) to be dropped.

UPDATING THE PRICES

The simplex multipliers (or prices) π after the change in the basis need not be
computed from scratch by solving the updated BTπ = cB; instead the prices π̂i
from before the addition of the new arc can be updated very efficiently.

Suppose, in general, that arc s = (p, q) enters the basis and r = (α, β) leaves the
basis. Start by deleting arc r = (α, β) from the spanning tree before augmentation
by s = (p, q). By Lemma 9.17 on Page 286, this decomposes the tree into two
subtrees, T1 and T2. Let the root arc n + 1 belong to tree T1; in this case the
prices πi corresponding to the tree T1 will stay unchanged because the prices are
computed outward from the root node to all the nodes of T1 (none of whose arcs
have changed). In order to update the prices that correspond to tree T2, there are
two cases to consider: the case that node q belongs to tree T2 and node p belongs
to tree T1, and the other way around.

Case 1 Notice that (9.20) implies that we can change the values of all the
prices πk by a constant and still satisfy the relations (9.20). There-
fore, for the first case, p belongs to T1, once we know the value of πq
we can compute the values of all other prices πi for nodes i ∈ T2 as
πi = π̂i + πq − π̂q because πq − π̂q is the amount by which π̂q changes.
Now, πp = π̂p is unchanged because p belongs to T1. Because (p, q)
enters the basis, we must have πp − πq = cpq. However, we currently
have c̄pq = cpq−πp+ π̂q and therefore πq− π̂q = −c̄pq. Therefore all the
prices πi for i ∈ T2 are increased by −c̄pq; that is,

πi = π̂i − c̄pq for all i ∈ T2. (9.24)

Case 2 If, on the other hand, p belongs to T2, then a similar analysis shows that
πq = π̂q is unchanged because q belongs to T1. Because (p, q) enters the
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basis, we must have πq − πp = cpq. Finally, all the prices πi for i ∈ T2
are increased by c̄pq; that is,

πi = π̂i + c̄pq for all i ∈ T2. (9.25)

Example 9.25 (Updating the Simplex Multipliers) Continuing with Example 9.24,
we have arc s = (p, q) = (3, 5) being added to the spanning tree and arc r = (α, β) = (2, 4)
being dropped. The incoming arc is shown by the dotted line in Figure 9-27. We think of
this process as dropping arc (2, 4) first so that the tree splits into two subtrees, T1 (which
contains the root node) and T2, before the addition of arc (3, 5). The subtree T1 consists
of nodes 4 and 5; the subtree T2 consists of nodes 1, 2, and 3. Let π̂i, i = 1, . . . , 5, be the
previous prices and let πi, i = 1, . . . , 5, be the new prices. Clearly, the simplex multipliers
on subtree T1 do not change because T1 includes the root node. That is,

π5 = 0 = π̂5

and
π4 − π5 = c45 = π̂4 − π̂5,

implying π4 = π̂4 = 4. On the other hand, because incoming arc (p, q) = (3, 5) has
node p = 3 in T2, the price on each node in subtree T2 is increased by c̄35 = −5 (which
means each is decreased by 5) as shown in Figure 9-27. To see this, note that

π3 − π5 = c35.

We know that π5 = π̂5; adding and subtracting π̂3, we obtain

π3 = π̂3 + c35 − (π̂3 − π̂5) = π̂3 + c̄35 = 6− 5 = 2. (9.26)

Next, in subtree T2,
π2 − π3 = c23 = π̂2 − π̂3.
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Hence, rearranging and using (9.26),

π2 = π̂2 + (π3 − π̂3) = π̂2 + c̄35 = 7− 5 = 2. (9.27)

Similarly,
π1 − π2 = c12 = π̂1 − π̂2.

Hence, rearranging and using (9.27),

π1 = π̂1 + (π2 − π̂2) = π̂1 + c̄35 = 8− 5 = 3. (9.28)

OBTAINING AN INITIAL FEASIBLE SOLUTION

An initial feasible solution can be obtained by adding an artificial node 0 and
artificial arcs from 0 to every node of the network as follows: If bk > 0, then an
artificial arc (i, 0) is added; otherwise an artificial arc (0, k) is added. If we let Āc
be the set of artificial arcs, the Phase I problem is then

Minimize∑
(k,0)∈Āc

xk0 +
∑

(0,k)∈Āc
x0k = z

subject to∑
i∈Af(k)

xki −
∑

j∈Bf(k)

xjk = bk for all k ∈ Nd ∪ {0},

0 ≤ xij ≤ ∞ for all (i, j) ∈ Ac ∪ Āc,

(9.29)

where

Af(k) = {i ∈ Nd | (k, i) ∈ Ac ∪ Āc}; (9.30)
Bf(k) = {j ∈ Nd | (j, k) ∈ Ac ∪ Āc}. (9.31)

If a feasible solution exists, it will be found with all the flows associated with the
artificial arcs at value 0 for the above problem.

� Exercise 9.46

(a) Suppose that we are given a problem where the total supply at supply nodes is greater
than the total demand at demand nodes so that

∑
i∈Nd

bi > 0. Show how to convert
such a problem to one in which the total supply is equal to the total demand.

(b) Show how the feasibility of (9.16) can be determined by solving a related max flow
problem with zero lower bounds on the arc flows.

� Exercise 9.47 Extend the methods discussed throughout this section to network prob-
lems in which the equations in (9.17) are replaced by inequalities.
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9.9 THE BOUNDED VARIABLE PROBLEM

Ideas from the Simplex Method for solving linear programs with bounded variables
carry over to network problems.

PROBLEM STATEMENT

The bounded variable minimum cost-flow problem (9.16) is repeated below for con-
venience:

Minimize
∑

(i,j)∈Ac
cijxij = z

subject to
∑

j∈Af(k)

xkj −
∑

i∈Bf(k)

xik = bk for all k ∈ Nd,

lij ≤ xij ≤ hij for all (i, j) ∈ Ac,

(9.32)

where cij is the cost per unit flow on the arc (i, j); bk is the net flow at node k; lij
is a lower bound on the flow in arc (i, j); and hij is an upper bound on the flow in
arc (i, j). Note that bk takes on values that depend on the type of node k:

bk is




> 0 if k is a source (supply) node;
< 0 if k is a destination (demand) node;
= 0 if k is a node for transshipment only.

NETWORK SIMPLEX METHOD

We assume that at least one of the bounds is finite and that a full set of artificial
variables as described on Page 298 has been added. A starting feasible solution
can be obtained by setting each arc flow to one of its bounds and calculating the
values for the artificial variables so that the conservation of flow constraints hold.
(Of course, the artificial variable will need to be added with appropriate signs so
that they are nonnegative.) Another method is to find any basis, say by finding the
minimal spanning tree, and create an objective function that minimizes the sum of
infeasibilities. The latter approach also allows the easy inclusion of arcs that have
no lower or upper bound on the flow.

The network Simplex Method for solving problem (9.32) is straightforward and
is developed through the following exercises.

� Exercise 9.48 Specify the optimality criterion for the bounded variable minimum cost-
flow problem.

� Exercise 9.49 Specify the rules for determining the exiting and entering column (arc)
for the bounded variable minimum cost-flow problem.

� Exercise 9.50 Generalize the network Simplex Method described in Section 9.8 to
include bounded variables.
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Figure 9-28: Converting Finite Upper Bounds to +∞

TRANSFORMATION TO STANDARD FORM

In the event that all lower bounds are finite, a straightforward translation can be
used to replace all the lower bounds on the flows with 0. To do so, substitute
xij = x̄ij + lij to obtain

Minimize
∑

(i,j)∈Ac
cij x̄ij = z̄

subject to
∑

j∈Af(k)

x̄kj −
∑

i∈Bf(k)

x̄ik = b̄k for all k ∈ Nd,

0 ≤ x̄ij ≤ h̄ij for all (i, j) ∈ Ac,

(9.33)

where

h̄ij = hij − lij ,

b̄k = bk −
∑

j∈Af(k)

lkj +
∑

i∈B(k)

lik,

z̄ = z −
∑

(i,j)∈Ac
cij lij .

Clearly it is possible to modify the network problem (9.33) to a problem with
no upper bounds (nonnegativity constraints only), by introducing slack variables
yij ≥ 0 so that

x̄ij + yij = h̄ij

for each finite h̄ij .
What is not so obvious is that this can be done in such a way that it becomes

a minimum cost-flow problem with no upper bound on the flows. To do so see
Figure 9-28(a). We start by dropping arc (i, j) and then introduce a new node p.
Next we draw an arc from p to j and the let the flow on this arc be the same
as the flow on the original arc (i, j); thus node j sees no change in the incoming
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flow x̄ij . Because x̄ij (now labeled as x̄pj because this flow originates at node p) is
bounded above by h̄ij we set the supply to node p as bp = h̄ij > 0. At the same
time, we reduce the supply bi at node i by h̄ij because that is where we would have
to draw from in the original network. However, x̄ij may not necessarily be at its
upper bound, i.e., it may not use up all its supply, and hence we need to balance
the flows by having an arc out from p to take care of the unused supply (or slack).
This unused supply, or slack, must then be returned to node i, and hence we draw
the arc from node p to node i with flow yij (labeled as x̄pi in the figure).

Note that as a result of the transformation all the flows into a node j are un-
changed; hence the supply at the node is unchanged, whereas all the flows out of a
node i are modified resulting in a reduction in the supply at the node. Figure 9-
28(a) illustrates this if we replace only one arc (i, j). When adjustments are made
for all the arcs, see Figure 9-28(b), this results in replacing b̄k by

b̄k −
∑

q∈Af(k)

h̄kq for all k ∈ Nd.

These adjustments of course increase the size of the network; in commercial imple-
mentations, upper (and lower) bounds are handled directly by the Simplex Method.

Example 9.26 (Illustration of Conversion to Standard Form) Figure 9-29 shows
the conversion of a network with upper bounds on the flows to one with no upper bounds.
In the figure, the concentric circles are the new nodes that are added for the conversion,
and the variables yij are the slacks added to xij ≤ hij to convert them to equalities.

� Exercise 9.51 Show how to convert a minimum cost-flow problem to a transportation
problem. Hint: Apply Figure 9-28 where the new nodes p are supply nodes and the original
nodes are destination nodes.

9.10 NOTES & SELECTED BIBLIOGRAPHY
Network optimization theory is a very large field, and our discussion of it has been at
a fairly elementary level. For more details on networks and their applications, see, for
example, Ahuja, Magnanti, & Orlin [1993], Bertsekas [1991], Ford & Fulkerson [1962],
and Lawler [1976]. See also Linear Programming 2 for more on the theory and details on
implementing such algorithms on a computer.

An oft-quoted example of a successful application of network analysis is the award
winning study by Klingman, Phillips, Steiger, & Young [1987] and Klingman, Phillips,
Steiger, Wirth, & Young [1986] at Citgo Petroleum Corporation. Developed with full
top management support, the model takes into account all aspects of the business from
production at the refineries to distribution to prices to charge. The study claimed that in
the system’s initial implementation there was a savings of $116 million in inventory cost
(which translates into a yearly saving in interest) as well as a savings of approximately
$2.5 million as a result of better pricing, transportation, and coordination.

The min-cut max-flow theorem was first established for planar networks at RAND
in 1954 and published by Dantzig & Fulkerson [1956a]. Later, Ford & Fulkerson [1956]
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Figure 9-29: Converting Finite Upper Bounds to +∞ in a Small Network
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established the theorem for general networks. It was also discovered independently by
Elias, Feinstein, & Shannon [1956]. A comprehensive treatment of the maximal flow
problem and related matters can be found in Ford & Fulkerson [1962].

The classical augmenting path method for finding a maximum flow through a network
was developed by Ford & Fulkerson [1957] based on earlier work by Kuhn [1955] and
Egerváry [1931]. Fulkerson & Dantzig [1955] and Dantzig & Fulkerson [1956a] developed
a tree method for solving maximal flow problems that is also described in Dantzig [1963].
The approach constructs two subtrees, one branching out from the source and the other
branching out from the destination so that every intermediate node is reached by just one
of the trees. Then a connecting arc between the two trees and an associated path from
source to destination is found, and finally the maximum flow along the path is assigned.
The network displayed in Example 9.10 due to Chvátal [1983] is a smaller network than
that used in the example by Ford & Fulkerson [1962] but based on the same type of
recurrence relation. The proofs of Lemma 9.12 and Theorem 9.13 can be found in Linear
Programming 2.

J. Edmonds & R.M. Karp [1972] showed that an augmenting path method called first-
labeled first-scanned finds a maximum flow within mn/2 iterations, where n is the number
of arcs and m is the number of nodes in the network, regardless of what the upper bounds
hij on the arcs are. This method then finds the maximal flow in O(n2m) operations
because it can be shown that each iteration of the augmenting path method takes only
O(n) comparisons to find an augmenting path. The proof of Theorem 9.11 can be found
in Edmonds & Karp [1972] and in Linear Programming 2. Around the same time as
Edmonds & Karp’s results, Dinic [1970] independently designed a faster algorithm that
requires O(m2n) operations. Later Malhotra, Kumar, & Maheshwari [1978] developed an
algorithm that requires O(m3) operations. For networks that have n� m2, an algorithm
designed by Galil [1978] takes O(m5/3n2/3) operations, and an algorithm designed by
Sleator [1980] takes only O(nm logm) steps.

Shortest path problems come up often in practice and arise as subproblems in many
network problems. Dantzig first proposed a method for finding the shortest path from a
source node to a destination node in a network, see Dantzig [1960a], based on an earlier
RAND research memorandum. At about the same time, Dijkstra [1959] proposed another
algorithm for finding the shortest directed paths from a node to all other nodes. The
Dijkstra algorithm takes O(m2) operations. See also Bellman [1958]. Independently,
Whiting & Hillier [1960] also developed a shortest route algorithm. Johnson [1977] has
shown that this bound can be further reduced to O(n logkm) operations, where k =
max(2, n/m). See also Denardo & Fox [1979], Dial [1969], Moore [1959], and Pape [1974].
A summary of various classical algorihtms can be found in Gallo & Pallottino [1988].
Improvements have continued to be made in shortest path algorithms; see, for example,
Ahuja, Mehlhorn, Orlin, & Tarjan [1990], Fredman & Willard [1987] Gabow & Tarjan
[1989], Goldberg [1993], and Goldberg & Radzik [1993]. Under the assumption that arc
lengths are integers between 0 and L where L ≥ 2, Ahuja, Mehlhorn, Orlin, & Tarjan’s
algorithm runs in O(n + m

√
logL). For theory and experimental evaluation of shortest

path algorithms see Cherkassky, Goldberg, & Radzik [1996]; in this paper the authors
show that some algorithms behave in exactly the same way on two networks, one of which
is obtained from the other by replacing the arc lengths by the reduced costs with respect
to a potential function; that is, the algorithms are potential-invariant. This implies, for
example, that a feasible shortest path problem has an equivalent with nonnegative arc
lengths.

The minimal spanning tree algorithm described here is due to Kruskal [1956].
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For details on the Network Simplex Method, including implementation (in addition to
that described in Linear Programming 2), see, for example, Ali, Helgason, Kennington,
& Lall [1978], Bradley, Brown, & Graves [1977], Chvátal [1983], Cunningham [1979], and
Mulvey [1978].

An example of cycling in the Network Simplex Method can be found in Cunningham
& Klincewicz [1983]. To the authors’ knowledge, cycling as a result of degeneracy, has not
been encountered on any practical problem. It is not known whether cycling can occur in
minimum cost network flow problems if the entering variable is chosen based on the usual
rule of picking the one that has the most negative reduced cost. The interested reader
can find strategies used to prevent the possibility of cycling in Bazaraa, Jarvis, & Sherali
[1990] and Chvátal [1983], for example.

The Network Simplex Method works very well in practice; in fact, this adaptation of
the Simplex Method for networks is typically 200 to 300 times faster than the Simplex
Method applied to general linear programs of the same dimensions. However, pathological
examples can be constructed in which the Network Simplex Method can take a very large
number of iterations. Zadeh [1973] has constructed a sequence of transshipment problems
such that the kth problem has only 2k + 2 nodes but if we choose the incoming arc by
picking the most negative reduced cost, the Network Simplex Method takes 2k +2k−2 − 2
iterations.

The method of minimizing the sum of infeasibilities for Phase I is described in Linear
Programming 2.

An area that we have not covered at all is that of project planning, and scheduling
and coordination of various activities. Methods to do this are called PERT (Program
Evaluation and Review Techniques) and CPM (Critical Path Method). Many references
exist for such methods; see Hillier & Lieberman [1995]. One such reference relating this
to networks is by Elmaghraby [1977].

9.11 PROBLEMS

9.1 Find the maximal flow through the network shown in Figure 9-30. Find a
cut that demonstrates the Ford-Fulkerson Min-Cut = Max-Flow Theorem 9.13.
Verify your answer by using the Maximum Flow software option.

9.2 Find the maximal flow through the network shown in Figure 9-31. Find a
cut that demonstrates the Ford-Fulkerson Min-Cut = Max-Flow Theorem 9.13.
Verify your answer by using the Maximum Flow software option.

9.3 Find, by hand, the maximal flow through the network shown in Figure 9-32;
the capacities in each direction are shown on the arcs. Find the cut whose value
equals the maximum flow value.

9.4 For the network shown in Figure 9-33 assume that the capacities shown on the
arcs are the same in each direction.

(a) Find the maximal flow by hand.
(b) Verify your answer by using the Maximum Flow software option.
(c) Find a cut that demonstrates the Ford-Fulkerson Min-Cut = Max-Flow

Theorem 9.13.
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Figure 9-30: Data for a Maximal Flow Problem
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Figure 9-31: Data for a Maximal Flow Problem
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Figure 9-32: Data for a Maximal Flow Problem
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Figure 9-33: Data for a Maximal Flow Problem

9.5 For the directed network shown in Figure 9-34, with capacities shown on the
arc, do the following:

(a) Find, by hand, the maximal flow.
(b) Verify your answer by using the Maximum Flow software option.
(c) Find a cut that demonstrates the Ford-Fulkerson Min-Cut = Max-Flow

Theorem 9.13.

9.6 Nurse Staff Scheduling (Khan & Lewis [1987] in Ahuja, Magnanti, & Orlin
[1993]). A local hospital operates three departments: Emergency (de-
partment 1), neonatal intensive care (department 2), and orthopedics (depart-
ment 3). It has three work shifts, each with different levels of staffing for nurses.
The hospital administrator would like to hold staffing levels as low as possible
while providing satisfactory levels of health care. Hence they would like to de-
termine the minimum number of nurses required to meet the following three
constraints:

• The hospital must allocate a minimum of 13, 32, and 22 nurses to the three
departments respectively.

• The hospital must allocate a minimum of 26, 24, and 19 nurses to each
shift.

• The number of nurses allocated to each department in each shift must be
between a lower and upper bound as shown in Table 9-2.

Determine the minimum number of nurses required to satisfy the constraints
based on a method for maximum flows.

9.7 Consider the proposed network with distances on the arcs as shown in Figure 9-
35.

(a) Find the shortest path using Dijkstra’s algorithm.
(b) Solve it using the Dijkstra’s Shortest Route software option to verify

your solution.

9.8 Dantzig [1963]. Find the shortest route from Los Angeles to Boston on one of
the routes shown in Figure 9-36.

(a) Solve the problem using Dijkstra’s algorithm.
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Figure 9-34: Data for a Maximal Flow Problem

Department
1 2 3

1 (6,8) (11,12) (7,12)

Shift 2 (4,6) (11,12) (7,12)

3 (2,4) (10,12) (5,7)

Table 9-2: Bounds on Nurses Allocated to Each Department in Each Shift
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Figure 9-35: Data for a Shortest Route Problem
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Figure 9-36: Shortest Route from Los Angeles to Boston
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Figure 9-37: Data for a Shortest Route Problem

(b) Solve it using the Dijkstra’s Shortest Route software option to verify
your solution.

9.9 Find the shortest route from source node 1 to destination node 8 for the network
shown in Figure 9-37.

9.10 Crew Scheduling (Ahuja, Magnanti, & Orlin [1993]). The drivers of a bus
company can work several duties. The duty hours and costs are shown below:

Duty Hours 9–1 9–11 12–3 12–5 2–5 1–4 4–5
Cost ($) 30 18 21 38 20 22 9

We wish to ensure that at least one driver is on duty for each hour of the
planning period (9am to 5pm). Formulate and solve this problem as a shortest
route problem.

9.11 Find the minimal spanning tree for the network shown in Figure 9-38. Verify
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Figure 9-38: Data for a Minimal Spanning Tree Problem
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Figure 9-39: Data for a Minimal Spanning Tree Problem

your answer by using the Minimal Spanning Tree software option.
9.12 Ph.D. Comprehensive Exam, September 26, 1987, at Stanford. Consider the

graph and the weights shown in Figure 9-39.

(a) Find the minimal spanning tree of the graph. Briefly outline the algorithm
you are using, and give the selection of the arcs of the tree in the order in
which they are determined.

(b) Suppose that you are given a graph G = (V,E) and weights as before, but
also a particular node v ∈ V . You are asked to find the shortest spanning
tree such that v is not an end-node. Explain briefly how to modify a
minimal spanning tree algorithm to solve the same problem efficiently.

9.13 A minimum cost-flow problem in standard form is shown in Figure 9-40.

(a) Solve it by hand by the Network Simplex Method taking advantage of all
efficiencies in computation.

(b) Verify your solution by solving it using the Network Simplex Method soft-
ware option.
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Figure 9-40: Data for a Minimum Cost-Flow Problem
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Figure 9-41: Another Method to Convert a Finite Upper Bound to +∞

9.14 Set up the maximal flow problem shown in Figure 9-16 as a minimum cost-flow
problem.

(a) Solve it by hand by the Network Simplex Method taking advantage of all
efficiencies in computation.

(b) Verify your solution by solving it using the Network Simplex Method soft-
ware option.

9.15 For the minimum cost-flow problem in Figure 9-40, suppose that arc (1, 2) has
an upper bound of 5, i.e., 0 ≤ x12 ≤ 5.

(a) Transform the problem into standard form and solve it by hand using the
Network Simplex Method.

(b) Solve the problem by hand using the Network Simplex Method but without
performing the transformation to the standard form.

(c) Verify your solution by solving it by the Network Simplex Method software
option.

9.16 Show that the arc (i, j) with flow value 0 ≤ xij ≤ hij can be replaced by the
node and arc representation shown in Figure 9-41. Compare this with that
shown in Figure 9-28.

9.17 Solve, by hand, the minimum cost-flow problem in standard form shown in
Figure 9-42. Verify your solution by solving it by the Network Simplex Method
software option.
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Figure 9-42: Data for a Minimum Cost-Flow Problem

9.18 For the minimum cost-flow problem of Figure 9-42 suppose that arc (1, 2) is
constrained to be 0 ≤ x12 ≤ 8.

(a) Use the technique of Figure 9-28 to convert it to standard form and solve
it by hand.

(b) Use the technique of Figure 9-41 to convert it to standard form and solve
it by hand.

(c) Verify your solution by solving it by the Network Simplex Method software
option.

9.19 (a) Using the discussion of the Simplex Algorithm for bounded variables (see
Section 3.4) as a guideline, modify the Network Simplex Algorithm to au-
tomatically handle lower and upper bounds on the flows.

(b) Suppose that the flows in the network shown in Figure 9-42 have the fol-
lowing lower and upper bounds: 3 ≤ x12 ≤ 10, 5 ≤ x14 ≤ 15, 0 ≤ x15 ≤ 20,
0 ≤ x23 ≤ 10, 0 ≤ x25 ≤ 25, 5 ≤ x26 ≤ 30, 0 ≤ x36 ≤ 20, 0 ≤ x45 ≤ 10, and
0 ≤ x56 ≤ 5. Solve this modified problem, using the variant of the Network
Simplex Algorithm that you developed in part (a).

9.20 Consider the following linear program

Minimize 2x1 + 3x2 + 4x3 + x4 + 2x5 = z
subject to 1x2 + 1x3 + 1x4 + 1x5 ≥ 10

1x2 1x4 + 1x5 ≥ 15
1x1 + 1x2 + 1x5 ≥ 20
1x1 + 1x2 ≥ 5.

It has a special structure in the sense that each column of the coefficient matrix
contains 0’s and 1’s, with the 1’s being consecutive in each column.

(a) Transform this special structure linear program into a minimum cost-flow
problem. Hint: Introduce surplus variables and a redundant 0 row to the
set of constraints. Subtract row i+ 1 from row i for i = 4, 3, 2, 1 in turn.

(b) Draw the network.
(c) Solve the problem by hand using the Network Simplex Method.
(d) Verify your solution by solving it by the Network Simplex Method software

option.
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9.21 Show that conditions 0 ≤ xij ≤ 1,
∑

(i,j)∈A xij = m− 1,
∑

(i,j)∈A wijxij = min
are necessary but not sufficient conditions for a minimal spanning tree even if
the system solves in integers.

9.22 Suppose that in a minimum cost-flow problem restrictions are placed on the
total flow leaving a node k; i.e.,

θ̄lk ≤
∑

j∈Af(k)

xkj ≤ θ̂lk.

Show how to modify these restrictions to convert the problem into a minimum
cost-flow problem of the form (9.16).

9.23 A variation of the minimum cost-flow problem (9.16) is to place upper and lower
bounds on the conservation of flow constraints at each node; i.e.,

Minimize
∑

(i,j)∈Ac
cijxij = z

subject to blk ≤
∑

j∈Af(k)

xkj −
∑

i∈Bf(k)

xik ≤ buk for all k ∈ Nd,

lij ≤ xij ≤ hij for all (i, j) ∈ Ac,

where blk and buk , the lower and upper bounds on the conservation of flow at
each node k, are given. Show how to convert this problem into the standard
minimum cost-flow form (9.16).

9.24 Pick arbitrary scalars βi for each node i ∈ Nd for the minimum cost-flow prob-
lem. Show that the optimal flow vectors are unaffected if the arc costs cij are
replaced by

ĉij = cij + βj − βi.

How is
ẑ =

∑
(i,j)∈Ac

ĉijxij

related to
z =

∑
(i,j)∈Ac

Cijxij?

9.25 The Caterer Problem (Jacobs[1964] in Dantzig[1963]). A caterer has booked
his services for the next T days. He requires rt fresh napkins on the tth day,
t = 1, . . . , T . He sends his soiled napkins to the laundry, which has three speeds
of service, f = 1, 2, or 3 days. The faster the service, the higher the cost cf of
laundering a napkin. He can also purchase new napkins at a cost co. He has an
initial stock of s napkins. The caterer wishes to minimize his total outlay.

(a) Formulate as a network problem. Hint: Define the caterer at time t as a
“source point” in an abstract network for soiled napkins that are connected
to “laundry points” t+ 1, t+ 2, t+ 3. The reverse arc is not possible. The
laundry point t is connected to a fresh napkin “destination point t,” which
in turn is connected to the same type point for t+ 1.

(b) Assign values to the various parameters and solve the problem.
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9.26 Suppose that the linear cost function for the minimum cost-flow problem is
replaced by a separable piecewise linear function (see Section 6.7.3). Show how
to convert this problem to the standard minimum cost-flow problem form (9.16).
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A P P E N D I X A

LINEAR ALGEBRA

In this chapter we briefly review some key concepts of linear algebra. Some of these
concepts are elaborated upon in the rest of the book. For details on the concepts
discussed here, the reader should refer to any of the standard linear algebra texts.

In this book we have assumed that the reader has working knowledge of linear
algebra. However, we start with the basics and briefly cover all the relevant linear
algebra required to understand the concepts discussed in this book.

A.1 SCALARS, VECTORS, AND MATRICES

In this section we define scalars, vectors, and matrices.

Definition (Scalar): A scalar is a real or complex number. In this book
scalars will often be denoted by lowercase Greek letters in order to distinguish
them from vectors and matrices.

Definition (Vector): A vector is an ordered collection of scalars.

Vectors will be represented by lower case letters of the alphabet. A subscript on a
vector will denote a particular element of the vector. For example, x4 will denote
the fourth element of the vector x. Superscripts on a vector will denote different
vectors. For example, xk will be a vector different from the vector xn.

A vector per se is just an ordered collection (x1, x2, . . . , xn ), neither a row nor
column vector. A row vector is one whose elements are displayed horizontally, and
a column vector is a vector whose elements are displayed in a vertical column.

315
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In this book, a vector, unless otherwise specified, will be understood to be a
column vector and have the form

x =




x1
x2
...
xn


 . (A.1)

To represent a column vector x as a row vector, we will take the transpose of x,
denoted by xT (“x-transpose”).

Definition (Vector Transpose): The transpose of a vector x, denoted by xT , is
defined as the same ordered collection of scalars as in x but with the ordering
going from left to right, i.e.,

xT = (x1, x2, . . . , xn ) . (A.2)

Definition (Matrix): A matrix is a rectangular array of numbers. It may be
viewed as an ordered collection of column vectors each of which is of the same
dimension, or as an ordered collection of row vectors each of which is of the
same dimension.

Matrices will be represented by uppercase letters of the alphabet. A double sub-
script will denote a particular element of the matrix. For example, a34 and A34 will
both denote the element in row 3 and column 4 of the matrix A. Furthermore A•j
will denote the jth column of A, and Ai• will denote the ith row of A.

The transpose operation is also defined for a matrix.

Definition (Matrix Transpose): The transpose of a matrix, denoted by AT,
is a new matrix that is the collection of the transpose of the column vectors
in the same order as the columns of the original matrix. Thus, the net effect
is to interchange the roles of the row and column indices. For example, if the
element in the ith row and jth column of A is Aij , then the element in the
jth row and ith column of AT is Aij .

Example A.1 (Transpose) Consider, for example, the matrix A given by

A =



a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


 .

The transpose of A is given by

AT =



a11 a21 . . . am1

a12 a22 . . . am2
...

...
. . .

...
a1n a2n . . . amn


 .
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Definition (Diagonal, Off-diagonal, Super-Diagonal, Sub-Diagonal): The ma-
trix elements on the diagonal, that is, aii, are called diagonal elements. All
other elements aij , i �= j are called off-diagonal elements. The off-diagonal
elements are further classified as super-diagonal and sub-diagonal elements.
Super-diagonal elements are the elements above the diagonal, that is, aij for
all j > i. Sub-diagonal elements are the elements below the diagonal, that is,
aij for all i > j.

A.2 ARITHMETIC OPERATIONS WITH
VECTORS AND MATRICES

Arithmetic operations with vectors and matrices are similar to arithmetic operations
performed with scalars. The main difference is that the operations are ordered in
a special way to take into account the ordering in the definition of vectors and
matrices.

Definition (Equal Matrices): Two m× n matrices A and B are equal if and
only if each element of A is equal to the corresponding element of B.

That is, A and B are equal if and only if

aij = bij for i = 1, . . . ,m, j = 1, . . . , n. (A.3)

Similarly two n dimensional vectors x and y are equal if and only if each element
of x is equal to the corresponding element of y.

Multiplication of a vector (or matrix) by a scalar amounts to multiplying each
element of the vector (or matrix) by the scalar. That is,

αA =




αa11 αa12 . . . αa1n
αa21 αa22 . . . αa2n
...

...
. . .

...
αam1 αam2 . . . αamn


 . (A.4)

The sum of two n-dimensional vectors is another n-dimensional vector whose el-
ements are the sums of the corresponding elements in each of the two vectors. Sim-
ilarly, the sum of two m× n matrices is another m× n matrix formed by summing
the corresponding elements in the matrix. The operation of addition is illustrated
below for two n-dimensional vectors x and y.

x+ y =




x1
x2
...
xn


+




y1
y2
...
yn


 =




x1 + y1
x2 + y2

...
xn + yn


 . (A.5)

The rules for matrix (and vector) multiplication are a bit more involved as
discussed next.
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Definition (Scalar (Dot) Product): The scalar (inner, dot) product of two
vectors is a scalar that is the sum of the products of the corresponding elements
of the two vectors, i.e.,

xTy = (x1, x2, . . . , xn )




y1
y2
...
yn


 =

n∑
j=1

xjyj

= x1y1 + x2y2 + · · ·+ xnyn. (A.6)

The scalar product of two n-dimensional vectors x and y is denoted by xTy (or, in
some books, by 〈x, y〉). It is defined in a manner similar to the product between
two scalars. The one exception to this is the fact that the product of two nonzero
scalars cannot be zero, whereas the scalar product of two nonzero vectors can be
zero as can be seen by taking the scalar product of the two vectors x and y shown
below:

x =


 10
0


 and y =


 01
0


 .

Definition (Outer Product): The outer product of two vectors, denoted by
xyT , is a matrix as illustrated in (A.7):

xyT =




x1
x2
...
xn


 ( y1, y2, . . . , yn ) =




x1y1 x1y2 . . . x1yn
x2y1 x2y2 . . . x2yn
...

...
. . .

...
xny1 xny2 . . . xnyn


 . (A.7)

The matrix xyT is special and is called a rank-one matrix (See Section A.7).

The product of an m× n matrix A times an n-dimensional vector x is another
vector Ax. This product Ax is defined only if the number of columns of A is equal
to the dimension of the vector x. The product of a matrix A times a vector x can
be thought of in one of two ways. The first way is to think of each element of the
resultant vector Ax as the scalar product of the corresponding row of the matrix A
times the vector x. That is,

Ax =




a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn







x1
x2
...
xn


 =




∑n
j=1 a1jxj∑n
j=1 a2jxj
...∑n

j=1 amjxj


 =




A1•x
A2•x
...

Am•x


 . (A.8)

Before looking at the second way of representing Ax, we need to define linear
combinations of vectors.
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Definition (Linear Combination): A linear combination of the n vectors
v1, v2, . . . , vn is another vector, say v, defined by

v = α1v
1 + α2v

2 + · · ·+ αnv
n,

where αi, i = 1, . . . , n, are scalars.

With the definition of a linear combination of vectors, it is straightforward to
see that the second way to think of Ax is to consider Ax as being the vector formed
by taking linear combinations of the columns of the matrix A with the weight on
the jth column of A being xj . This is illustrated below.

Ax =




a11
a21
...

am1


x1 +




a12
a22
...

am2


x2 + · · ·+




a1n
a2n
...

amn


xn

=
n∑

j=1

A•jxj . (A.9)

The product of an m× n matrix A times an n× p matrix B is another matrix
C = AB, which is of dimension m× p. This product AB is defined only if the
number columns of matrix A is equal to the number of rows of matrix B. The
product of a matrix A times a matrix B can be thought of in one of two ways.
The first way is to think of the ijth element of the resultant matrix C = AB as
the scalar product of the ith row of the matrix A times the the jth column of the
matrix B. That is, the ijth element of C is given by

cij =
n∑

k=1

aikbkj = Ai•B•j . (A.10)

The second way to think of the matrix product C = AB is to think of each
column of C as having been generated by taking linear combinations of the columns
of the matrix A. That is, the jth column of the matrix C uses the elements of the
jth column of the matrix B as the weights to form the linear combination of the
columns of the matrix A. For example,

C•j =
n∑

k=1

A•kbkj .

From the above discussion on vector/matrix operations, the reader can easily
verify that:

1. Matrix (vector) addition satisfies

associativity: A+ (B + C) = (A+B) + C;
commutativity: A+B = B +A.
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2. The scalar product for vectors satisfies

commutativity: xTy = yTx;
distributivity over vector addition: xT(y + z) = xTy + xTz.

3. Matrix multiplication satisfies

associativity: A(BC) = (AB)C;
distributivity over matrix addition: A(B + C) = AB +AC.

An additional property that matrix multiplication satisfies is

(AB)T = BTAT . (A.11)

However, note that matrix multiplication does not satisfy the property of
commutativity even if the matrices are square. That is, in general,

AB �= BA. (A.12)

� Exercise A.1 Prove (A.12).

A.3 LINEAR INDEPENDENCE

In this section we describe linear independence of vectors.

Definition (Linearly Independent): The vectors x1, x2, . . . , xn are said to be
linearly independent if and only if all nontrivial linear combinations of the
vectors are nonzero. That is,

α1x
1 + α2x

2 + · · ·+ αnx
n �= 0 unless α1 = α2 = · · · = αn = 0.

Example A.2 (Dependence and Independence) As an illustration of the concept
of dependence and linear independence consider the following three 3-dimensional vectors:

v1 =

(
2
0
4

)
, v2 =

(
0
3

−4

)
, v3 =

(
4
3
4

)
.

It is easy to see that v3 = 2v1+v2, or 2v1+v2−v3 = 0. That is, v3 is a linear combination
of v1 and v2, or, in other words, v3 is dependent on v1 and v2. On the other hand, any
two of the three vectors v1, v2, v3 are linearly independent, since neither of them can be
written as a multiple of only one of the other vectors.
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A.4 ORTHOGONALITY

The concept of orthogonality plays an important role in the solution of least squares
problems and also for the solution of linear programs using interior point methods.

Definition (Orthogonal and Orthornormal): The vectors q1, q2, . . . , qn are
said to be orthogonal to each other if and only if

(qi)Tqj = 0 if i �= j and (qi)Tqj �= 0 if i = j. (A.13)

The vectors are said to be orthonormal if they are orthogonal and

(qi)Tqj = 1 when i = j. (A.14)

THEOREM A.1 (Orthogonality Implies Independence) A set of orthog-
onal vectors are linearly independent.

Proof. In order to prove this, consider any linear combination of the n orthogonal
vectors q1, q2, . . . , qn that equals zero. That is,

α1q
1 + α2q

2 + · · ·+ αnq
n = 0.

Take the scalar product of the above vector equation with the vector qj for arbi-
trary j. Then, by the definition of orthogonality, all scalar products of the form
(qj)Tqi must vanish whenever i �= j. Thus, the equation reduces to

αj(qj)Tqj = 0.

Since we know that (qj)Tqj �= 0, αj must be zero. We showed this for arbitrary
αj , thus αi = 0 for i = 1, . . . , n, and the result follows from the definition of linear
independence.

� Exercise A.2 A set of n nonzero vectors p1, p2, . . . , pn are said to be conjugate, or
G-orthogonal, with respect to a matrix G if they satisfy

(pi)TGpj = 0 for all i �= j.

If G is a positive-definite symmetric n× n matrix, show that the vectors p1, p2, . . . , pn are
linearly independent.

A.5 NORMS

The norm of a vector or a matrix provides a means for measuring the size of the
vector or matrix.
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Definition (Vector Norm): The norm of a vector is a continuous function
with the following properties:

1. ||x|| ≥ 0; with equality holding if and only if x = 0.
2. ||αx|| = |α| ||x|| for any scalar α.
3. ||x+ y|| ≤ ||x||+ ||y||.

The p-norm of an n-dimensional vector x is denoted by ||x||p and is defined to be

||x||p =
(

n∑
i=1

|xi|p
)1/p

. (A.15)

The most commonly used norms are defined for p = 1 (1-norm), p = 2 (2-norm),
and p =∞ (∞-norm). These are illustrated below:

(a) ||x||1 =
∑n

i=1 |xi|, (1-norm)

(b) ||x||2 =
√
xTx =

(∑n
i=1 x

2
i

)1/2, (2-norm or Euclidean norm)
(c) ||x||∞ = max

i=1,...,n
|xi|. (∞-norm)

Unless otherwise stated, the symbol “|| · ||” will always denote the 2-norm.

Example A.3 (Relative Error Using the ∞-Norm) The relative error in the ∞-
norm is given by

eR =
||x− x̂||∞
||x||∞

,

where x is the true solution of some problem and x̂ is the computed solution of the
same problem. It turns out that by using the ∞-norm if eR = 10−t then we can expect
approximately t correct significant digits in the largest component of the computed solution
x̂. Let x = (0.5432, 8.789)T and let the computed solution be x̂ = (0.5213, 8.790)T . Then
eR = 0.002492 ≈ 10−3, implying that the largest component of x̂ has approximately three
correct significant digits, which is clearly true for x̂2 in this example. Nothing is implied
about the number of correct digits in other components; in this example, x̂1 has only one
correct siginificant digit.

The cosine of angle θ between two vectors x and y in �n is given by

cos θ =
xTy

||x||2||y||2
. (A.16)

Now, the cosine is bounded in absolute value by 1. Thus, this gives us a useful in-
equality for proving various theoretical results, i.e., the Cauchy-Schwartz inequality,
which is

|xTy| ≤ ||x||2 ||y||2. (A.17)

� Exercise A.3 Show that the Cauchy-Schwartz inequality (A.17) does not hold for the
∞-norm. Does it hold for the 1-norm?
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Definition (Matrix Norm): The norm of a matrix is a continuous function
with the following properties:

1. ||A|| ≥ 0; with equality holding if and only if A = 0.
2. ||αA|| = |α| ||A|| for any scalar α.
3. ||A+B|| ≤ ||A||+ ||B||.
4. ||AB|| ≤ ||A|| ||B||.

Note: Strictly speaking, a matrix norm need not satisfy the submultiplicative prop-
erty ||AB|| ≤ ||A|| ||B||; however, we have assumed it because all the matrix norms
that we work with in this book do satisfy this property.

� Exercise A.4 Define a matrix norm by

||A||γ = max
i,j
|aij |.

Construct an example to show that it satisfies matrix norm properties 1, 2, and 3, but not
the sub-multiplicative property 4.

Definition (Vector Induced Matrix Norm): A matrix norm is said to be in-
duced by a vector norm if it is defined as follows:

||A|| = max
||x||�=0

||Ax||
||x|| ,

where the norms on the right-hand side are vector norms. Equivalently, the
definition is sometimes stated as

||A|| = max
||x||=1

||Ax||.

Some specific examples of matrix norms are:

(a) ||A||1 = max
j=1,...,n

m∑
i=1

|aij |, (1-norm)

(b) ||A||2 =
√
λmax(ATA), (2-norm)

(c) ||A||∞ = max
i=1,...,m

n∑
j=1

|aij |, (∞-norm)

(d) ||A||F =

√√√√ m∑
i=1

n∑
j=1

a2
ij , (Frobenius norm)
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where λmax(ATA) is the largest eigenvalue of ATA (see Section A.12 for a defintion
of eigenvalues).

The 1-norm, 2-norm, and ∞-norm are norms that are induced by the corre-
sponding vector norms. The Frobenius norm on the other hand is not a vector
induced norm (V-norm) as can be easily seen by considering the identity matrix:

||I||F =
√
n; whereas ||I||V = max

||x||�=0

||Ix||
||x|| = 1.

� Exercise A.5 Show that the 1-norm, 2-norm, and∞-norm are norms that are induced
by the corresponding vector norms.

From the definition of a vector-induced norm, it is straightforward to see that a
matrix norm that is vector induced satisfies

||Ax|| ≤ ||A|| ||x||. (A.18)

Definition (Compatible (or Consistent) Norms): In general, any vector norm
|| · || and any matrix norm || · ||′ are said to be compatible, or consistent, if they
satisfy the following inequality:

||Ax|| ≤ ||A||′ ||x||.

From (A.18) it follows that every vector norm and its vector-induced matrix norm
are compatible.

� Exercise A.6 Show that the Frobenius matrix norm and the Euclidean vector norm
are compatible, that is, ||Ax||2 ≤ ||A||F ||x||2.

� Exercise A.7 Show that given any vector x, for any two vector norms || · || and || · ||′,
there exist two scalars α and β that depend only on the dimension of x such that

α||x|| ≤ ||x||′ ≤ β||x||.

A.6 VECTOR SPACES

Vector spaces play an important role in the development of the theory of active set
methods for linear programming.

Definition (Vector Space): A set of vectors is said to form a vector space if
they satisfy the following two properties:

1. The sum of any two vectors in the space also lies in the space.
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2. If we multiply any vector by a scalar, then the multiple also lies in the
space.

In other words a vector space is a set of vectors that is closed under vector addition
and closed under scalar multiplication.

A set of any n linearly independent n-dimensional vectors can be used to define
an n-dimensional vector space. This n-dimensional space is denoted by �n (for an
n-dimensional real space) or by En

(
for an n-dimensional Euclidean space when the

distance between two vectors x, y ∈ �n is given by
√∑n

i=1(xi − yi)2
)
.

Definition (Subspace): A subset of a vector space that is a vector space in
its own right is called a subspace. Thus, a subset of k linearly independent
vectors in �n could be used to define a k-dimensional subspace of the vector
space �n.

Definition (Span): If a vector space V consists of all linear combinations of a
particular set of vectors {w1, w2, . . . , wk}, then these vectors are said to span
the vector space V .

Definition (Basis): A spanning set of vectors that are linearly independent
are said to form a basis for the vector space.

Definition (Dimension of a Vector Space): The dimension of a vector space
(subspace) is the number of linearly independent vectors that span the vector
space (subspace).

Definition (Complementary Subspace, Null Space): For every proper sub-
space S ⊂ �n, there is a complementary subspace S ⊂ �n, whose members
are defined as follows: if y ∈ S and x ∈ S, then xTy = 0. That is, y is
orthogonal to every vector in S. The subspace S is termed the orthogonal
complement of S, and the two subspaces are completely disjoint except for
the origin. The vector subspace S is also called the null space with respect to
S, and S is called the null space with respect to S. If the dimension of S is
k, then the dimension of S is n− k. The vector subspace S ⊂ �n is therefore
defined by k basis vectors, and S ⊂ �n is defined by n− k basis vectors.

� Exercise A.8 Show that if the k basis vectors in S are orthogonal to each of the n− k
basis vectors in S, then the subspaces defined by each of these sets of basis vectors are
orthogonal complements of each other.

Definition (Null Space of a Matrix): Let A be anm× n matrix of rank r ≤ m
where m ≤ n. The rows of A belong to �n. The orthognal complement to the
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subspace generated by the rows of A is referred to as the null space of A and
has dimension n− r.

A.7 RANK OF A MATRIX

Analogous to the dimension of a vector space is the rank of a matrix.

Definition (Rank of a Matrix): The rank of a matrix is the number of linearly
independent rows (or columns). A matrix can only have one rank regardless
of the number of rows and columns.

Definition (Column Rank of a Matrix): The row rank of a matrix is the
dimension of the vector subspace spanned by the rows of A.

Definition (Row Rank of a Matrix): The column rank of a matrix is the
dimension of the vector subspace spanned by the columns of the matrix.

Definition (Full Rank): An m× n matrix (with m ≤ n) is said to be of full
rank if it has rank m.

Note: The definition of rank implies that row rank is equal to column rank.

A.8 MATRICES WITH SPECIAL
STRUCTURE

Matrices with special structure play an important role in optimization and in the
solution of systems of equations.

Definition (Diagonal Matrix): A matrix is a diagonal matrix if all its off-
diagonal elements are zero.

A diagonal matrix is usually denoted by the letter D.

Example A.4 (Diagonal Matrix) An example of an n× n diagonal matrix is

D =



d11 0 . . . 0
0 d22 . . . 0
...

...
. . .

...
0 0 . . . dnn


 .

Definition (Identity Matrix): A square diagonal matrix with all diagonal
elements equal to 1 is called an identity matrix.
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An identity matrix is denoted by I or by In, where n indicates the dimension of the
matrix. The ith column of an identity matrix is often denoted by ei or ei.

Example A.5 (Identity Matrix) The following illustrates an n-dimensional identity
matrix.

I =




1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1




= ( e1, e2, . . . , en ) .

Multiplication of a matrix by an identity matrix on the left or on the right does not
change the original matrix. This is analogous to the multiplication of a scalar by 1.

Definition (Permutation Matrix): A permutation matrix is a matrix with
exactly one 1 in each row and in each column and zeros everywhere else.

Thus, a permutation matrix is a rearrangement of the columns of the identity ma-
trix. A permutation matrix is usually denoted by P .

Example A.6 (Permutation Matrix) An example of a 3× 3 permutation matrix is
as follows.

P =

(
0 1 0
0 0 1
1 0 0

)
.

Multiplication by a permutation matrix on the left of a matrix A permutes the rows
of A whereas multiplication by a permutation matrix on the right of A permutes
the columns of A.

Example A.7 (Multiplying by a Permutation Matrix) For example, PA, using
the above 3-dimensional matrix P , results in a matrix that consists of the second row of A
followed by the third row of A followed by the first row of A. Multiplying by a permutation
matrix on the right of A has the effect of permuting the columns of A in a manner similar
to that described for the rows of A but in the order 3rd column, 1st column, 2nd column.

Definition (Upper (or Right) Triangular Matrix): A square matrix is upper,
or right, triangular if all its subdiagonal elements are zero, that is, Aij = 0 if
i > j.

An upper triangular matrix is often denoted by R or U .

Example A.8 (Upper Triangular Matrix) An upper triangular matrix is illustrated
below.

R =




r11 r12 r12 . . . r1n
0 r22 r23 . . . r2n
0 0 r33 . . . r3n
...

...
...

. . .
...

0 0 0 . . . rnn


 .
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A matrix is said to be upper trapezoidal if the definition of upper triangular matrix
is applied to a matrix with more columns than rows.

Definition (Lower (or Left) Triangular Matrix): A matrix is lower triangular
if all the elements above the diagonal are zero, i.e., Aij = 0 if i < j.

A lower triangular matrix is commonly denoted by L.

Example A.9 (Lower Triangular Matrix) An example of a lower triangular matrix
is

L =




l11 0 0 . . . 0
l21 l22 0 . . . 0
l31 l32 l33 . . . 0
...

...
...

. . .
...

ln1 ln2 ln3 . . . lnn


 .

A lower triangular matrix with ones all along the diagonal (that is, lii = 1 for all i)
is called a unit lower triangular matrix. A matrix is said to be lower trapezoidal if
the definition of lower triangular matrix is applied to a matrix with more rows than
columns.

Definition (Triangular Matrix): We give the following two equivalent defini-
tions of a triangular matrix.

1. A square matrix is said to be triangular if it satisfies the following prop-
erties.

(a) The matrix contains at least one row having exactly one nonzero
element.

(b) If the row with a single nonzero element and its column are deleted,
the resulting matrix will once again have this same property.

2. Equivalently we can define a square matrix to be triangular, if its rows
and columns can be permuted to be either an upper-triangular or lower-
triangular matrix.

� Exercise A.9 Prove that the transpose of a triangular matrix is also triangular.

Definition (Orthogonal (or Orthonormal) Matrix): A square matrix is said
to be an orthogonal (orthonormal) matrix if all its columns are orthogonal
(orthonormal).

Usually Q is used to denote an orthonormal matrix. An orthonormal matrix Q
satisfies

QTQ = I, QQT = I, (A.19)

where I is the identity matrix.
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Definition (Elementary Matrix): An elementary matrix is a matrix of the
form I + αuvT , where the matrix uvT is called a rank one matrix. A row
elementary matrix is a matrix of the form I + ekv

T and a column elementary
matrix is a matrix of the form I + uek

T , where ek is a vector with a 1 in
position k and zeros elsewhere.

Elementary matrices and rank one matrices play an important role in linear pro-
gramming.

Definition (Symmetric Matrix): A square matrix is said to be a symmetric
matrix if every element below the diagonal is equal to its mirror image above
the diagonal. That is, Aij = Aji.

Thus, a symmetric matrix is one whose transpose is equal to itself, that is, A = AT .

A.9 INVERSE OF A MATRIX

The inverse of a matrix is analogous to the reciprocal of a scalar.

Definition (Matrix Inverse): The inverse of a square matrix is another square
matrix that when multiplying the original matrix on the left or the right results
in an identity matrix. The inverse of a matrix A is denoted by A−1 and satisfies

AA−1 = A−1A = I. (A.20)

In early implementations of linear equation solvers, the inverse played a crit-
ical role since the solution of Ax = b can be written as x = A−1b. However, it
can be shown that computing the inverse is inefficient and can be highly unstable.
Thus, current implementations of linear equation solvers use matrix factorization
techniques (see Linear Programming 2).

THEOREM A.2 (Existence of the Inverse) The inverse as defined by (A.20)
only exists for a square matrix of full rank and is unique.

Proof. It is easy to prove the uniqueness of the inverse. Let B and C be two
inverses of A. Then AB = I. Multiplying this identity on the left by C and re-
arranging the multiplication, we get (CA)B = C or B = C, thus proving that the
two inverses are the same.

Definition (Singular Matrix): A square matrix is said to be nonsingular if
its inverse exists; otherwise the matrix is said to be singular.

It is possible to define one-sided inverses for matrices as follows.

Definition (Left Inverse, Right Inverse): The matrix B is said to be a left
inverse of a matrix A if B satisfies BA = I. The matrix C is said to be a
right inverse of a matrix A if AC = I.
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LEMMA A.3 (Left Inverse Equals Right Inverse) For a square matrix
only, if both the left and right inverses exist then they are equal and are equal to the
inverse of A.

Proof. This can be proved by looking at the identity B(AC) = (BA)C, which
follows from the associativity property of matrix multiplication. Since B is a left
inverse and C is a right inverse we get B = C.

The inverse operation affects the order of matrix multiplication in exactly the
same manner as the transpose operation. That is,

(AB)−1 = B−1A−1.

A.10 INVERSES OF SPECIAL MATRICES

The inverse of an orthonormal matrix Q is given by Q−1 = QT . This follows from
the fact that QQT = QTQ = I.

� Exercise A.10 Show that the inverse of a permutation matrix is the same as its trans-
pose.

� Exercise A.11 Show that the inverse of a lower (upper) triangular matrix is a lower
(upper) triangular matrix.

� Exercise A.12 The inverse of a nonsingular elementary matrix I + σuvT (where σ is
a scalar) is also an elementary matrix that involves the same two vectors u and v. Show
that if σuTv �= −1, then

(I + σuvT )−1 = I + γuvT , (A.21)

where γ = −σ/(1 + σuTv).

� Exercise A.13 Let A be an n× n matrix whose inverse exists. Use the result of
Exercise A.12 to determine the form of the inverse of

Â = A+ αuvT

in terms of A−1, the scalar α, and the vectors u and v. Under what conditions does Â−1

exist? The result obtained is a special case of the Sherman-Morrison-Woodbury formula
where u and v are replaced by U and V , which are n× k matrices; derive this formula.
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A.11 DETERMINANTS

We start our discussion by defining a formula for computing the determinant of a
square matrix.

Definition (Determinant): The determinant of a 1× 1 matrix is the value of
its element. The determinant of a general square n× n matrix A, with n > 1,
can be computed by expanding the matrix in the cofactors of its ith row, i.e.,

detA =
n∑

j=1

aijAij , (A.22)

where Aij , the ijth cofactor, is the determinant of the minor Mij with the
appropriate sign:

Aij = (−1)i+jdetMij . (A.23)

The minor Mij is the matrix formed from A by deleting the ith row and jth
column of A.

Example A.10 (Determinant) The determinant of a two dimensional matrix

A =

(
a b
c d

)

can be easily computed as
detA = ad− bc.

� Exercise A.14 Show that detA = detAT . Use this to show that the determinant of A
can be obtained by an expansion of the cofactors along any column j of A.

The determinant possesses several interesting properties. It turns out that every
property is a consequence of the following three properties:

1. The determinant of an identity matrix is 1.

2. The determinant is a linear function of the ith row, i.e.,

(a) Let Â be the matrix obtained by replacing the first row Ai• by αAi•.
Then det Â = α detA.

(b) Let Â be the matrix obtained by replacing the first row Ai• by a vector
Ai• + vT. Then det Â = detA + detB, where B is the matrix formed
from A by replacing Ai• by vT.

3. The determinant changes sign if any two rows are interchanged.

� Exercise A.15 Prove the above three properties of a determinant.
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� Exercise A.16 Use the above three properties to prove:

1. If the ith row of a matrix is a multiple of the jth row, where i �= j, the determinant
is zero.

2. If a multiple of the ith row is subtracted from (or added to) the jth row, where
i �= j, the determinant is unchanged.

3. If A has a zero row, the determinant of A is zero.

4. If A is singular, the determinant of A is zero; whereas, if A is nonsingular, the
determinant of A is nonzero.

5. The determinant of the product of two square matrices A and B satisfies

detAB = (detA)(detB).

� Exercise A.17 Show that the determinant of a lower (upper) triangular matrix is the
product of the diagonal elements of the matrix.

The inverse of a nonsingular matrix A can be computed using determinants
and cofactors. (This has no practical relevance because more efficient and stable
methods exist for computing the inverse in practice.) To see this, note that

0 =
n∑

j=1

aijAij , for i �= k, (A.24)

because in effect we are computing the determinant of a matrix formed from A
by replacing its ith row by its kth row, and therefore the determinant of this new
matrix is zero: it has two identical rows. Using (A.22) and (A.24) we find that

A adjA = (detA)I, (A.25)

where adjA is the matrix whose ijth component is the cofactor Aij . Therefore

A−1 =
adjA
detA

. (A.26)

For the purpose of solving systems of equations Ax = b, this implies that

x = A−1b =
(adjA)b
detA

. (A.27)

This is equivalent to Cramer’s rule for solving systems of equations, which is

xj =
detAj

detA
where Aj = [A•1, . . . , A•j−1, b, A•j+1, . . . , A•n], (A.28)

for j = 1, . . . , n.

� Exercise A.18 Prove that (A.27) and (A.28) are equivalent.
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A.12 EIGENVALUES

For this section assume that all matrices are square because it makes no sense to
talk about the eigenvalues of a rectangular matrix.

Definition (Eigenvalue, Eigenvector, and Eigensystem): A scalar λ is called
an eigenvalue of a matrix A and a corresponding nonzero vector x is called an
eigenvector of A if and only if

Ax = λx. (A.29)

The set of all eigenvalues and eigenvectors of A is called the eigensystem of A.

Rewriting Equation (A.29) it follows that

(A− λI)x = 0, (A.30)

that is, the vector x must lie in the null space of A − λI. Since we are interested
in a nonzero vector x, Equation (A.30) implies that λ must be such that A −
λI is singular. Therefore, the scalar λ will be an eigenvalue, with corresponding
eigenvector x, if and only if

det (A− λI) = 0. (A.31)

The roots of Equation (A.31) give the eigenvalues of A. Note that the eigenvector
of a matrix is uniquely determined in direction only, because obviously any nonzero
scalar multiple of an eigenvector is also an eigenvector for the matrix.

Definition (Characteristic Equation, Characteristic Polynomial): Equation
(A.31) is called the characteristic equation of the matrix A, and the resulting
polynomial is called the characteristic polynomial.

� Exercise A.19 Show that for any square matrix there is at least one eigenvalue and
one eigenvector.

� Exercise A.20 Show that a lower (upper) triangular matrix has eigenvalues equal to
its diagonal entries.

Definition (Similar Matrices): Two matrices are said to be similar if they
share the same eigenvalues (the eigenvectors can be different).

LEMMA A.4 (Similar Matrices) If W is any nonsingular matrix then the
matrices A and WAW−1 are similar.
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Proof. This can be seen by observing that if λ is an eigenvalue with eigenvector
x for the matrix A, then λ is also an eigenvalue with eigenvector Wx for the matrix
WAW−1, as shown below:

Ax = λx and WAW−1(Wx) = λ(Wx).

This completes our proof.
If the eigenvalues of A are denoted by λi(A), the spectral radius ρ(A) of the

matrix A is defined by:
ρ(A) = max

i
|λi|. (A.32)

Definition (Complex Conjugate): The complex conjugate of a complex number
c = a+ ib is c̄ = a− ib, where a and b are real numbers and i =

√
−1.

Definition (Complex Scalar Product): The scalar product of the two vectors
x and y composed of complex numbers is defined to be xHy, where xH is the
vector determined from by x by taking the complex conjugate of each element.

Definition (Hermitian Matrix): A Hermitian matrix A is defined to be a ma-
trix such that A = AH , where AH is the conjugate transpose of the matrix,
i.e., the matrix A such that aij = āji.

� Exercise A.21 Show that x̄HAx̄ is real for any Hermitian matrix A.

� Exercise A.22 Prove that if a matrix A has distinct eigenvalues, then the eigenvectors
corresponding to the distinct eigenvalues are linearly independent. Further prove that if
A is Hermitian, then the eigenvectors are orthogonal.

LEMMA A.5 (Eigenvalues and Eigenvectors of a Symmetric Matrix) If
A is a real symmetric matrix, then the following two properties hold:

1. All eigenvalues of A are real numbers;

2. The matrix A has n distinct eigenvectors. Furthermore, the eigenvectors can
be made to form an orthonormal set of vectors.

Proof. Let λ̄ be an eigenvalue of A and its corresponding eigenvector x̄, so that
Ax̄ = λ̄x̄. Multiplying both sides by x̄H , we get x̄HAx̄ = λ̄x̄Hx̄. The right-hand side
is clearly real, even if x̄ is complex. The left-hand side is also real (see Exercise A.21),
therefore λ̄ is real, proving property (1).

Since the eigenvalues are real and A is real, the eigenvectors are also real. To
complete the proof, see Exercise A.23.



A.13 POSITIVE-DEFINITENESS 335

� Exercise A.23 Show that for any square matrix A, there is an orthonormal matrix U
such that U−1AU is upper triangular. Use this to show property (2) of Lemma A.5.

The following lemmas illustrate some useful properties of eigenvalues:

LEMMA A.6 (Product of Eigenvalues Equals Determinant) The product
of the eigenvalues of A is equal to the determinant of A. That is,

n∏
i=1

λi = detA. (A.33)

� Exercise A.24 Prove Lemma A.6 by imagining that the characteristic polynomial is
factored into

det (A− λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ), (A.34)
and by choosing an appropriate λ.

LEMMA A.7 (Sum of Eigenvalues Equals Trace) The sum of the diagonal
elements of A (i.e., trace of A) is equal to the sum of the eigenvalues of A, that is

Trace(A) =
n∑

i=1

aii =
n∑

i=1

λi. (A.35)

� Exercise A.25 Prove Lemma A.7. Do this by first finding the coefficient of (−λ)n−1

on the right-hand side of Equation (A.34). Next look for all the terms on the left-hand
side of Equation (A.34) that involve (−λ)n−1 and compare the two. Hint: Show that
the terms on the left-hand side of Equation (A.34) involving (−λ)n−1 all come from the
product down the main diagonal.

� Exercise A.26 Show that the n-dimensional matrix (I + αuvT ) has n− 1 eigenvalues
equal to unity. What is its nth eigenvalue?

� Exercise A.27 Obtain an expression for the determinant of Â = A+αuvT in terms of
the determinant of A.

LEMMA A.8 (Product of Eigenvalues of a Matrix Product) The product
of the eigenvalues of AB is equal to the product of the eigenvalues of A times the
product of the eigenvalues of B,∏

λ(AB) =
∏

λ(A)
∏

λ(B). (A.36)

� Exercise A.28 Prove Lemma A.8.
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A.13 POSITIVE-DEFINITENESS

Positive-definite matrices play an important role in interior point methods for linear
programs and in nonlinear optimization.

Definition (Positive-Definite): A symmetric matrix A is said to be positive-
definite if and only if

xTAx > 0 for all x �= 0.

Definition (Positive Semidefinite): A symmetric matrix A is said to be pos-
itive semidefinite if and only if

xTAx ≥ 0 for all x.

Similar definitions hold for negative definite matrices and negative semidefinite
matrices.

� Exercise A.29 Let A be a full rank m× n matrix with m < n. Prove that AAT is a
symmetric positive-definite matrix.

Some important properties of a symmetric positive-definite matrix C are:

1. It is nonsingular.

2. It has all positive eigenvalues.

3. The square root of C exists (that is, there is a matrix A such that C = AA;
and A is called the square root of C).

� Exercise A.30 Prove the above three properties (a)–(c) of a symmetric positive-definite
matrix.

� Exercise A.31 Show that if A is a symmetric positive-definite matrix then so is A−1.

A positive-definite matrix C can be used to define a vector C-norm by

||x||C =
√
xTCx. (A.37)

The corresponding vector-induced matrix C-norm is

||A||C = max
||x||

C
�=0

||Ax||C
||x||C

. (A.38)

� Exercise A.32 Prove that ||x||C defined by (A.38) is in fact a vector norm.
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A.14 NOTES & SELECTED BIBLIOGRAPHY

For an excellent introduction to linear algebra refer to Strang [1988]. Some other references
on linear algebra are Dahlquist & Björck [1974], Samelson [1974], and Stewart [1973].
For numerical linear algebra refer to Gill, Murray, & Wright [1991], Golub & Van Loan
[1989], Householder [1974], Strang [1986], and the classic work of Wilkinson [1965]. For
an extensive discussion on determinants see Muir [1960].

The computation of eigenvalues and eigenvectors is an iterative process because in gen-
eral, as proved by Galois, there is no algebraic formula for the roots of a quintic polynomial.
For an excellent discussion on eigenvalues and eigenvectors and the numerical analysis of
such, see the classic work of Wilkinson [1965]. For modern computational techniques for
determining the eigenvalues and eigenvectors of a matrix and matrix computations in
general, see Golub & Van Loan [1989].

In general, developing software for matrix vector operations is not as easy as it seems,
even for the relatively simple operations of vector addition. For details on implement-
ing high-quality linear algebra routines see Dodson & Lewis [1985], Dongarra, DuCroz,
Hammarling, & Hanson [1985, 1988a, 1988b, 1988c], Dongara, Gustavson, & Karp [1984],
Lawson, Hanson, Kincaid, & Krogh [1979a, 1979b], and Rice [1985].

The multiplication of of two n× n matrices requires n3 multiplications and n3 − n2

additions. However, Strassen [1969] showed that the computations can be reduced by split-
ting each of the matrices into four equal-dimension blocks. For example, if n = 2m, then
four m×m blocks can be constructed; if the Strassen approach is not applied recursively,
then the computations require 7m3 multiplications and 11m2 additions compared to 8m3

multiplications and 8(m3 − m2) additions. If we assume that the matrix size is n = 2r

and recur the idea so that the minimum block size is q � 1, then the number of additions
are roughly the same as the number of multiplications. (We could take q down towards
1, but it turns out that as q → 1, the number of additions becomes high). The number
of subdivisions is then r − k, where q = 2k. Assuming conventional matrix multiplication
for the the final blocks, Strassen’s matrix multiplication requires (2k)37r−k multiplications
compared to (2r)3 multiplications. It can be shown that if the recursion is continued to
the 1× 1 level, the Strassen procedure requires approximately n2.807 multiplications. It
turns out that for large matrices this can cut the time down by as much as 40%, see Bailey
[1988]. For additional information on fast matrix multiplication, see also Golub & Van
Loan [1989] and Pan [1984].

The ∞-norm is sometimes referred to as the Chebyshev norm after Chebyshev, the
Russian mathematician, who first used it for solving curve fitting problems.

Exercises A.24 and A.25 are adapted from Strang [1986].

A.15 PROBLEMS

A.1 Putnam Exam, 1969. Let A be a 3× 2 matrix and let B be a 2× 3 matrix.
Suppose that

AB =

(
8 2 −2
2 5 4

−2 4 −2

)
.
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Show that

BA =

(
9 0
0 9

)
.

Hint: Square AB.
A.2 Show that {(

y
y
z

)
∈ 
3 : x+ y + z = 0

}

is a subspace of 
3, and find a basis for it.
A.3 Let (u1, u2, u3) be a basis of the vector space U . Show that (u1 + 2u2, 3u2 +

u3,−u1 + u3) is also a basis of the vector space U .
A.4 Find the dimension of the span in 
3 of{(

0
2
7

)
,

(−1
−1
−1

)
,

(
1
2
3

)}
.

A.5 Show the following:

(a) The vector space of all m× n matrices has dimension mn.
(b) The set of all diagonal matrices is a subspace of the vector space of all n× n

matrices.

A.6 Is there a 5× 3 matrix A and a 3× 5 matrix B such that AB = I5?
A.7 Let Ej be a matrix with its jth column different from an identity matrix. That

is, Ej = I + (x − ej)eTj for some vector x. What is the inverse of Ej? Under
what conditions does E−1

j exist?
A.8 Suppose that a matrix Ā is formed by replacing the jth column of an m ×m

matrix A by a vector v. Given A−1, what is the inverse of Ā? Under what
conditions does Ā−1 exist?

A.9 Suppose F is a n× n matrix and let ||F || satisfy the four properties of a matrix
norm defined on Page 323.

(a) Show that if ||F || < 1, then I − F is nonsingular and

(I − F )−1 =
∞∑
i=0

F i

with
||(I − F )−1|| ≤ 1

1− ||F || .

(b) Show also that

||(I − F )−1 − I|| ≤ ||F ||
1− ||F || .

A.10 This problem demonstrates how to quantify the change in A−1 as a function of
changes in A. Show that if A is nonsingular and ||A−1E|| = γ < 1, then A+E
is nonsingular and

||(A+ E)−1 −A−1|| ≤ ||E|| ||A−1||2
(1− γ)

.
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Hint: Use problem A.9 and also show that

B−1 = A−1 −B−1(B −A)A−1,

which shows how B−1 changes when B changes.
A.11 (a) Show that (AT )−1 = (A−1)T .

(b) Without using the above result show that det (AT )−1 = det (A−1)T .

A.12 Putnam Exam, 1969. Let Dn be the determinant of an n× n matrix of which
the element in the ith row and jth column is the absolute value of the difference
of i and j. Show that

Dn = (−1)n−1(n− 1)2n−2.

A.13 If the eigenvalues of A are λi and corresponding eigenvectors are xi, show that
A2 = AA (A-squared) has eigenvalues λ2

i and the same eigenvectors xi.
A.14 Let A be an m×m matrix. Show that there exists an x �= 0 such that Ax ≤ 0.
A.15 Find the inverse of (

6 2 −1
3 3 2

−5 0 3

)
.

A.16 Consider the system Ax = b, x ≥ 0, where A is m× n. Show that there is a
matrix B (perhaps empty) such that rank (A,B) = m and so that any solution
to

Ax + By = b
x ≥ 0

y ≥ 0

has y = 0.
A.17 Ph.D. Comprehensive Exam, September 22, 1973, at Stanford. Let A be an

m× n matrix and bk an m column vector for k = 1, . . . ,∞. Let Pk = {x |
Ax ≤ bk } for k = 1, . . . ,∞. Suppose that Pk �= φ for k = 1, . . . ,∞ and that
bk → b∞ for k →∞. Verify that the following formulae are or are not valid.

(a) Sup
x∈Pk

Inf
y∈P∞

||x− y|| → 0 as k →∞.

(b) Sup
x∈P∞

Inf
y∈Pk

||x− y|| → 0 as k →∞.

A.18 Ph.D. Comprehensive Exam, September 26, 1980, at Stanford. Consider a set
of 6 points A1, A2, A3, A4, A5, A6 situated in 3-dimensional Euclidean space
in such a way that:

1. the line segments A1A2, A2A3, A3A4, A4A5, A5A6, A6A1 have equal
lengths a;

2. the line segments A1A3, A2A4, A3A5, A4A6, A5A7, A6A2 have equal
lengths b.

3. 2a > b.

That such sets of 6 points exist (even in 2-dimensional space) is shown in Fig-
ure A-1.
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Figure A-1: Six Points in 2-dimensional Space

Given these conditions, the question now arises: What values can the lengths
of the line segments A1A4 (length x), A2A5 (length y), A3A6(lengthz) have?
Obviously, they cannot be arbitrary, and everyday experience should convince
you that among all sets of 6 points A1, A2, A3, A4, A5, A6 in 3-space satisfying
(1), (2), and (3) it is possible to achieve various lengths.
Luckily, the literature contains an answer to this question. Specialized, it is
THEOREM [L. Blumenthal, 1970]: Let D denote the matrix




0 1 1 1 1 1 1
1 0 a b x b a
1 a 0 a b y b
1 b a 0 a b z
1 x b a 0 a b
1 b y b a 0 a
1 a b z b a 0




and letDk denote the submatrix consisting of the first k rows and first k columns
of D. Then the realizable lengths of A1A4, A2A5, A3A6 are precisely those for
which the matrix D satisfies

(i) (−1)kdetDk < 0 for k = 3, 4, 5,
(ii) detDk = 0 for k = 6, 7.

Now, answer the following questions:

(a) What sort of a matrix is D? (The answer “nonnegative” is true, but trivial.
Say something more profound.)

(b) Show that under the assumptions (1), (2), and (3) the matrix D4 has 1
positive eigenvalue and 3 negative eigenvalues.

(c) What does Blumenthal’s Theorem say about the eigenvalues of D?
(d) Show that assumptions (1), (2), and (3) imply (i) for k = 3, 4.
(e) Assume x has been chosen so that (i) holds; suggest a way to find y and z

so that (ii) also holds.
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LINEAR EQUATIONS

In this chapter we discuss the basic theory behind solving systems of linear equa-
tions. In practice, linear equations are typically solved through the use of LU
factorizations.

B.1 SOLUTION SETS

Because methods used for solving the linear programming problem depend on famil-
iar methods for solving a system of linear equations, we shall review some elementary
concepts.

Example B.1 (Solution of a System of Equations) Consider the solution of the
following system of equations:

x1 + 2x3 + 3x4 = 11 (a)
+ x2 + 4x3 + 6x4 = 14, (b) (B.1)

which in matrix notation can be written as

(
1 0 2 3
0 1 4 6

)

x1

x2

x3

x4


 =

(
11
14

)
. (B.2)

The ordered set of values x1 = 11, x2 = 14, x3 = 0, x4 = 0 is said to be a solution
of the first equation B.1(a) because substitution of these values for x1, x2, x3, x4 into it
produces the identity, 11 = 11. The solution (11, 14, 0, 0) is said to satisfy Equation B.1(a).
Substituting the solution (11, 14, 0, 0) in Equation B.1(b) produces the identity 14 = 14.
Thus, the vector (11, 14, 0, 0) is said to be a solution of the system of Equations (B.1).

341
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Definition (Solution of a System of Equations): In general, suppose we have
a system of m equations in n variables,

Ax = b, (B.3)

where A is an m× n matrix. A solution of the ith equation is a vector x′ =
(x′

1, x
′
2, . . . , x

′
n )

T such that

ai1x
′
1 + ai2x

′
2 + · · ·+ ainx

′
n = bi.

The vector x′ is said to be a solution of a system of equations provided x′ is
a solution of each equation of the system.

Example B.2 (Solution Set) As we noted earlier, forming the product of a matrix and
a vector amounts to taking a linear combination of the columns of the matrix. Since the
first two columns of the coefficient matrix in (B.1) are linearly independent, they span the
entire space 
2. Hence, every right-hand side b can be represented as a linear combination
of the columns of A and hence a solution to (B.1) exists whatever the right-hand side
might be. In other words, every right-hand side belongs to the range space (or column
space) of A. However, note that there are fewer equations than unknowns, and thus there
will be infinitely many solutions, as can be seen by writing x1 and x2 in terms of x3 and
x4 as follows:

x1 = 11− 2x3 − 3x4

x2 = 14− 4x3 − 6x4.

The aggregate of solutions of a system is called its solution set. The full solution set
for (B.1) can be represented by



x1

x2

x3

x4


 =




11
14
0
0


+



−2
−4
1
0


x′

3 +



−3
−6
0
1


x′

4

by choosing various values for the parameters x′
3 and x′

4. The vectors

z1 =



−2
−4
1
0


 and z2 =



−3
−6
0
1




are linearly independent and are orthogonal to the rows of A, as can be easily verified.
That is, in other words, Az1 = 0 and Az2 = 0, and the vectors z1 and z2 are said to lie in
the null space of the rows of A (or simply the null space of A). Note that the row space
of A belongs to 
4. Recalling the definition of vector spaces given in Section A.6, the
dimension of the row space of A in our example is 2 and, as expected, the dimension of
the null space of A in this example is (4− 2), which is also 2.
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Example B.3 (Incompatible, or Inconsistent, Systems) If the coefficient matrix
A in the example above is changed so that we have

(
1 0 2 3
2 0 4 6

)

x1

x2

x3

x4


 =

(
b1
b2

)
,

the number of independent columns is reduced to 1. Thus, there will no longer be a
solution for every right-hand side. For example, the right-hand side bT = (1, 0)T cannot
be represented as a linear combination of the columns of A and thus there is no solution
x that satisfies Ax = b. In this example, the row space of A has rank or row dimension 1,
and thus the dimension of its null space will be (4− 1) = 3.

Definition (Inconsistent, Unsolvable, or Incompatible): If the right-hand side
of a system of equations Ax = b cannot be represented as a linear combination
of the columns of A, the system of equations is said to be inconsistent, or
unsolvable, or incompatible. A system of equations is said to be consistent, or
solvable, or compatible, if the right-hand side b lies in the column space of the
matrix A.

Definition (Empty Solution Set): If the system is inconsistent, the solution
set is said to be empty.

B.2 SYSTEMS OF EQUATIONS WITH THE
SAME SOLUTION SETS

We start by illustrating how to generate an equation with the same solution set as
the original system of equations.

Example B.4 (Same Solution Set) Given a system of equations such as (B.1) it is
easy to construct a new equation from it that has the property that every solution of (B.1)
is also a solution of the new equation. The new equation shown in (B.4) below was formed
by multiplying Equation B.1(a) by 2 and Equation B.1(b) by 3 and summing.

2x1 + 3x2 + 16x3 + 24x4 = 64. (B.4)

Thus the solution (11, 14, 0, 0) of the system of equations (B.1) is also a solution of the
new equation.

A scheme for generating a new equation whose solution set includes (among
others) all the solutions of a general linear system Ax = b, is shown in (B.5).
For each equation i an arbitrary number ki is chosen; the new equation is formed
by multiplying the ith equation by ki and summing. In matrix notation, with
kT = ( k1, k2, . . . , km ), this is

kTAx = kTb, or (B.5)
dTx = α, (B.6)
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where

dj = k1a1j + k2a2j + · · ·+ kmamj for j = 1, . . . , n,
α = k1b1 + k2b2 + · · ·+ kmbm.

(B.7)

Definition (Linear Combination): An equation such as dTx = α that is
formed in the above manner is called a linear combination of the original
equations; and the numbers ki are called multipliers, or weights, of the linear
combination.

� Exercise B.1 Suppose a linear combination of the columns of A equals some other

column. Show that the same linear combination applied to

(
A
dT

)
results in

(
b
α

)
, where

dT and α are defined by (B.7).

Whenever a vector x = (x1, x2, . . . , xn )
T constitutes a solution of (B.3), equa-

tion (B.6) becomes, upon substitution, a weighted sum of identities and hence an
identity itself. Therefore, every solution of a linear system is also a solution of any
linear combination of the equations of the system. Such an equation may therefore
be inserted into (or adjoined to) a system of equations without affecting the solution
set. This fact is used in devising algorithms to solve systems of equations.

Definition (Dependent System, Redundancy, Vacuous Equation): If in a
system of equations, an equation is a linear combination of the others, it is
said to be dependent upon them; the dependent equation is called redundant.
A vacuous equation is an equation of the form

0x1 + 0x2 + · · ·+ 0xn = 0. (B.8)

A system of equations consisting only of vacuous equations is also called re-
dundant.

Definition (Independent System): A system containing no redundancy is
called independent. In the theorems that follow about a system of equations
we assume that the system does not consist of only a single vacuous equation.

A linear system is clearly unsolvable, or inconsistent, if it is possible to exhibit
a linear combination of the equations of the system of the form

0x1 + 0x2 + · · ·+ 0xn = d with d �= 0 (B.9)

because any solution of the system would have to satisfy (B.9); but this is impossible
no matter what values are assigned to the variables. We shall refer to (B.9) as an
inconsistent equation.
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Example B.5 (Unsolvable System of Equations) The system

x1 + x2 + x3 = 3
x1 + x2 + x3 = 8 (B.10)

is unsolvable because the first equation states that a sum of three numbers is 3, while the
second states that this same sum is 8. If we apply multipliers k1 = 1, k2 = −1 to eliminate,
say, x1, we would obtain 0x = −5, which is clearly a contradiction.

In general, the process of elimination applied to an inconsistent system will always
lead in due course to an inconsistent equation, as we shall show in the next section.

� Exercise B.2 Show that the only single-equation inconsistent linear system is of the
form (B.9).

� Exercise B.3 Show that if a system of 2 or more equations contains a vacuous equation,
it is dependent.

B.3 HOW SYSTEMS ARE SOLVED
The usual “elimination” procedure for finding a solution of a system of equations is
to augment the system by generating new equations by taking linear combinations
in such a way that certain coefficients are zero. This is usually followed by the
deletion of certain redundant equations.

Example B.6 (Augmentation of a System of Equations) For example, consider,

x1 + x2 + x3 = 4
x1 − x2 − 2x3 = 2. (B.11)

Multiplying the first equation in (B.11) by k1 = +1 and the second equation by k2 = −1
and summing, the coefficient of x1 vanishes and we obtain

2x2 + 3x3 = 2.

The system of equations (B.11) augmented by the above equation clearly has the same
solution set as the original system of equations (B.11).

It is interesting to note that the technique of taking linear combinations and
augmenting the original system can be used to easily detect whether any equation
of the original system is linearly dependent on the others. A second advantage is
that it is easy to state the set of all possible solutions, as we have already seen. It
turns out that these same basic ideas are used for solving systems of equations on
a computer through the use of LU factorizations.

In general, the method of solving a system of equations is one of augmentation
by linear combinations until in the enlarged system there is a subsystem whose
solution set is readily seen. Moreover, all other equations of the system are linearly
dependent on the subsystem. An example of a system whose solution set is readily
seen is (B.1) on page 341; it belongs to a class called canonical.
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Definition (Canonical Form): A system of m equations in n variables xj
is said to be in canonical form with respect to an ordered set of variables
(xj1 , xj2 , . . . , xjm

) if and only if xji
has a unit coefficient in equation i and a

zero coefficient in all other equations.

System (B.12) below, with xB = (x1, x2, . . . , xm )
T and xN = (xm+1, . . . , xn)T is

canonical because for each i, the variable xi has a unit coefficient in the ith equation
and zero elsewhere:

IxB + ĀxN = b. (B.12)

� Exercise B.4 Show how by arbitrarily choosing values for xm+1, . . . , xn, the class of
all solutions for (B.12) can be generated. How can (B.12) be used to check easily whether
or not another equation α1x1 + α2x2 + · · ·+ αmxm = α0 is dependent upon it?

If by augmentation we can construct a subsystem that is in canonical form, then
it is easy to generate all possible solutions to the original system. When the original
system is unsolvable the canonical subsystem does not exist; but in this case the
process of generating the canonical form results in an infeasible equation, which
tells us that the original system is unsolvable.

Deletion of an equation that is a linear combination of the others is another
operation that does not affect the solution set. If after an augmentation, one of the
original equations in the system is found to be a linear combination of the others,
it may be deleted. In effect the new equation becomes a “substitute” for one of the
original equations. Although the limited capacity of electronic computers to store
information keeps growing year by year still there is likely always to be a practical
limit, and so this ability to throw away equations will remain important in the
future.

Definition (Equivalent Systems): Two systems are called equivalent if one
system may be derived from the other by inserting and deleting a redundant
equation or if one system may be derived from the other through a chain of
systems each linked to its predecessor by such insertions and deletions.

THEOREM B.1 (Same Solution Sets) Equivalent systems have the same
solution set.

� Exercise B.5 Prove Theorem B.1.

B.4 ELEMENTARY OPERATIONS

There are two simple but important types of linear combinations, called elementary
operations, that may be used to obtain equivalent systems.
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Type I. Replacing any equation Et by the equation kEt with k �= 0, and leaving
all remaining equations unchanged.

Type II. Replacing any equation Et by the equation Et + kEi, where Ei is any
other equation of the system, and leaving all remaining equations un-
changed.

To prove that an elementary operation of Type I results in an equivalent system,
insert kEt as a new equation after Et, then delete Et. Note that Et is a redundant
equation, for it can be formed from kEt by (1/k)kEt if k �= 0. Similarly, to prove
that an elementary operation of Type II results in an equivalent system, insert
Et + kEi after Et and then delete Et. Note that Et is a redundant equation, for it
is given by (Et + kEi)− kEi.

Therefore one way to transform a system of equations into an equivalent system
is by a sequence of elementary operations. For example, system (B.14) is equiva-
lent to system (B.13) because it can be obtained from (B.13) by replacing (B.13b)
by subtracting from it 2 times (B.14a). Furthermore, system (B.15) is equivalent
to (B.14) because (B.15b′′) can be obtained from (B.14b′) by dividing it by 3.

x1 − x2 + 2x3 = 4 (a)

2x1 + x2 − 2x3 = 2 (b) (B.13)

x1 − x2 + 2x3 = 4 (a′) = (a)

3x2 − 6x3 = −6 (b′) = (b) − 2(a) (B.14)

x1 − x2 + 2x3 = 4 (a′′) = (a′)

x2 − 2x3 = −2 (b′′) = (b′)/3 (B.15)

THEOREM B.2 (Inverse of a Sequence of Elementary Operations) Cor-
responding to a sequence of elementary operations is an inverse sequence of elemen-
tary operations of the same type by which a given system can be obtained from the
derived system.

� Exercise B.6 Prove Theorem B.2 by proving the following:

1. Show that the inverse operation of Type I is itself of Type I and is formed by
replacing equation Et by (1/k)Et with k �= 0.

2. Show that the inverse operation of Type II is itself of Type II and is formed by
replacing equation Et by Et − kEi.

� Exercise B.7 Perform the inverse operations on (B.15) and show that the result is the
original system (B.13).
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We can also see that if a system can be derived from a given system by a sequence
of elementary operations, this implies that it is possible to obtain each row of the
derived system in detached coefficient form directly by a linear combination of the
rows of the given system. Conversely, each row of the given system is some linear
combination of the rows of the derived system.

THEOREM B.3 (Obtaining Rows of an Equivalent System) The rows
of two equivalent systems in detached coefficient form can be obtained one from the
other by linear combinations.

THEOREM B.4 (Obtaining Equivalent Systems) If the rth equation of a
given system is replaced by a linear combination of the equations i with multipliers
ki where ki �= 0, an equivalent system is obtained.

� Exercise B.8 Prove Theorems B.3 and B.4. What is the inverse operation of a linear
combination performed in Theorem B.4.

� Exercise B.9 Show that if a second system of equations can be obtained from the
original system of equations by rearranging the order of equations, the two systems are
equivalent, i.e., one can be obtained from the other by elementary operations.

The most important property of a system derived by elementary operations is
that it has the same solution set as the system it was derived from.

An interesting converse question now arises. Are all systems of linear equations
with the same solution set obtained by a sequence of inserting and deleting of
redundant equations? As we will show in Section B.5, the answer is yes if the
solution set is nonempty but may be no if the solution set is empty, as can be easily
seen by comparing the two systems

{0x = 1} and
{
0x = 1
1x = 1

}
;

both have empty, hence identical, solution sets. It is obvious that if these two
systems were equivalent, some multiple (linear combination) of the equation 0x = 1
of the first system would yield the equation 1x = 1 of the second system, but this
is clearly impossible.

THEOREM B.5 (Reversal of a Sequence of Elementary Operations) Let
S be a system of equations E1, E2, . . . , Em and let E0 be formed from S by a linear
combination:

λ1E1 + λ2E2 + · · ·+ λkEk = E0,

where λi are not all zero. Let S be a system of equations Ē1, Ē2, . . . , Ēm obtained
from S by a sequence of elementary operations. Then there exists λ̄i such that

λ̄1Ē1 + λ̄2Ē2 + · · ·+ λ̄kĒk = E0,

where λ̄i are not all zero.
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Proof. If we can show that the theorem is true for a single elementary operation
of Type I and a single elementary operation of Type II, then by induction, it will
be true for a sequence of such operations.

Suppose that E1 is replaced by E′
1 = kE1 where k1 �= 0 (an elementary operation

of Type I). Then it is easy to verify that

λ1

k
E′

1 + λ2E2 + · · ·+ λkEk = E0,

where λ1/k, λ2, . . . , λk are not all zero.
Next suppose that E1 is replaced by E′

1 = E1 + kE2 (an elementary operation
of Type II), then E1 = E′

1 − kE2 and it is easy to verify that

λ1E
′
1 + (λ2 − λ1k)E2 + · · ·+ λkEk = E0.

By induction the theorem holds for any number of elementary operations.

B.5 CANONICAL FORMS, PIVOTING, AND
SOLUTIONS

Suppose that we have a system of m equations in n variables with m ≤ n,

Ax = b, (B.16)

where A is an m× n matrix. We are interested in ways of replacing this system,
if possible, by an equivalent canonical system (see Section B.3 for a definition of
canonical):

IxB + ĀxN = b̄, (B.17)

where Ā is m× (n−m). For square systems, it is clear that the canonical system
is simply of the form Ix = b̄. In this form the solution set is evident and it is easy
to check whether or not any other system is equivalent to it.

REDUCTION TO A CANONICAL FORM

The standard procedure for reducing (if possible) a general system (B.16) to an
equivalent canonical form (B.17) will now be discussed. The principles are best
illustrated with an example and then generalized.

Example B.7 (Reduction to Canonical Form) Consider the 2× 4 system

+ 2x2 + 2x3 + 2x4 = 10
x1 − 2x2 − x3 + x4 = 2. (B.18)

Choose as “pivot element” any term with nonzero coefficient such as the boldfaced term
in the first equation. Next perform a Type I elementary operation by dividing its equation
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(the first one) by the coefficient of the boldfaced term, and then eliminating its corre-
sponding variable (x2) from the other equation(s) by means of elementary operation(s) of
Type II:

x2 + x3 + x4 = 5
+ 1x1 + x3 + 3x4 = 12. (B.19)

Next choose as pivot any term in the remaining equations (such as the boldfaced term in
the second equation above). Eliminate the corresponding variable (in this case x1) from all
the other equations. (Because x1 happens to have a zero coefficient in the first equation,
no further work is required to perform the eliminations.) From this canonical system with
the ordered set of basic variables x2, x1, it is evident, by setting x3 = x4 = 0, that one
solution is x1 = 12, x2 = 5, x3 = x4 = 0.

� Exercise B.10 Show that system (B.19) is in canonical form with respect to basic
variables (x2, x1). Show that it is not possible to get system (B.18) into canonical form
with respect to variables (x1, x2) by first choosing a pivot element in the first equation
and then the second, etc., but that it is clearly possible by rearrangement of the order of
the equations. What are the elementary operations that would rearrange the order of the
equations?

PIVOTING

Pivoting forms the basis for the operations to reduce a system of equations to
canonical form and to maintain it in such form.

Definition (Pivot Operation): A pivot operation consists of m elementary
operations that replace a system by an equivalent system in which a specified
variable has a coefficient of unity in one equation and zero elsewhere.

The detailed steps for pivoting on a term arsxs, called the pivot term, where ars �= 0
are as follows:

1. Perform a Type I elementary operation by replacing the rth equation by the
rth equation multiplied by (1/ars).

2. For each i = 1, . . . ,m except i = r, perform a Type II elementary operation
by replacing the ith equation by the sum of the ith equation and the replaced
rth equation multiplied by (−ais).

Pivoting can be easily explained in matrix notation as follows. Let (B.20a) and
(B.20b) denote the systems before and after pivoting.

(a) Ax = b

(b) Ãx = b̃.
(B.20)

The pivoting operations described above are the same as multiplying (B.20a) by
the elementary matrix M :

(a) M = I +
1
ars

(er −A•s)eTr ,

(b) M−1 = I + (A•s − er)eTr ,
(B.21)
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where er is the unit vector with 1 in row r and zero elsewhere.

� Exercise B.11 Show that (B.21b) is the inverse of M . Prove that multiplying (B.20b)
by (B.21b) restores the original problem (B.20a). Show by way of an example that multi-
plying (B.20b) by (B.21b) is not necessarily the same as performing a pivot on (B.20b).

� Exercise B.12 Show that Ā•s is the same as er. How may this be applied to show the
second part of Exercise B.11.

In general the reduction to a canonical form can be accomplished by a sequence
of pivot operations. For the first pivot term select any term arsxs such that ars �= 0.
After the first pivoting, the second pivot term is selected using a nonzero term from
any equation r′ of the modified system except r. After pivoting, the third pivot term
is selected in the resulting modified m-equation system from any equation r′′ except
r and r′. In general, repeat the pivoting operation, always choosing the pivot term
from modified equations other than one corresponding to those previously selected.
Continue in this manner, terminating either when m pivots have been performed or
when, after selecting k < m pivot terms, it is not possible to find a nonzero pivot
term in any equation except those corresponding to equations previously selected
because all coefficients in the remaining equations are zero.

Let the successive pivoting be, for example, on variables x1, x2, . . . , xr in the
corresponding equations i = 1, . . . , r, where r ≤ m; then the original system (B.16)
has been reduced to an equivalent system of form (B.22) below, which we will refer
to as the reduced system with respect to the basic variables x1, x2, . . . , xr. We shall
also refer to a system as reduced with respect to r basic variables if by changing
the order of the variables and equations, it can be put into form (B.22), where
xB = (x1, x2, . . . , xr )

T and xN = (xr+1, . . . , xn)T:

IxB + ĀxN = b̄I
0xB + 0xN = b̄II ,

(B.22)

where Ā is r × (n− r), b̄I is of length r, and b̄II is of length m− r.
Since (B.22) was obtained from (B.16) by a sequence of pivoting operations each

of which consists of m elementary operations, it follows that the reduced system is
(a) formed from linear combinations of the original system, and (b) equivalent to
the original system.

The original system (B.16) is solvable if and only if its reduced system (B.22) is
solvable, and (B.22) is solvable if and only if b̄II = 0, i.e.,

b̄r+1 = b̄r+2 = · · · = b̄m = 0. (B.23)

If (B.23) holds, the solution set is immediately evident because any values of the
(independent) variables xr+1, . . . , xn determine corresponding values for the (depen-
dent) variables x1, . . . , xr. On the other hand, if b̄r+i �= 0 for some i, the solution
set is empty because the (r + i)th equation is clearly inconsistent; it states that
0 = b̄r+i. In this case, the original system (B.16) and the reduced system (B.23)
are both inconsistent (unsolvable).
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CANONICAL SYSTEM

If the original system is consistent, the system formed by dropping the vacuous
equations from the reduced system is called its canonical equivalent with the pivotal
variables as basic:

IxB + ĀxN = b̄I , (B.24)

where Ā is r × (n− r) and b̄I is of length r.

UNIQUENESS OF A CANONICAL EQUIVALENT

The fundamental property of a canonical system resulting from the reduction pro-
cess of a consistent system of equations is that for any other system with the same
solution set, a reduction can be effected using the same pivotal variables, and the re-
sulting canonical system will be identical if the equations are reordered (permuted)
so that the unit coefficient of the corresponding basic variables is on the same row
in both systems (in detached coefficient form).

Example B.8 (Canonical Equivalent) The following two canonical systems are clearly
equivalent if in the second system, the second row is exchanged with the first row.

x1 + 2x3 = 5
x2 − 3x3 = 2 and

x2 − 3x3 = 2
x1 + 2x3 = 5.

THEOREM B.6 (Uniqueness of a Canonical Equivalent) There is at most
one equivalent canonical system with respect to a fixed ordered set of basic variables.

Proof. Let there be two equivalent canonical systems relative to the ordered set
of basic variables x1, x2, . . . , xr. We wish to show that the two canonical systems
are identical. Substituting xr+1 = xr+2 = · · · = xn = 0 into the first system, we get
x1 = b̄1, x2 = b̄2, · · · , xr = b̄r. Because of equivalence, substitution into the second
system should yield the same values; this will only be true if their respective constant
terms b̄i are the same. Similarly, substituting the values for independent variables
of xr+1 = xr+2 = · · · = xn = 0 except xs = 1 will show (after equating constant
terms) that their corresponding coefficients āis of xs are the same. It follows that
the corresponding coefficients are the same for each s = r + 1, r + 2, . . . , n.

The above theorem can also be established by applying

LEMMA B.7 (Generating a System from its Canonical Equivalent) If a
system of equations S is equivalent to a canonical system, it can be generated from
the canonical system by a unique linear combination of the equations of the canonical
system, the weights being the coefficients of the basic variables of the equation of the
system S being generated.

� Exercise B.13 Prove Lemma B.7. Use Lemma B.7 to prove Theorem B.6.
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� Exercise B.14 Apply Lemma B.7 to test whether a system is equivalent to a canonical
system.

BASIC SOLUTIONS AND DEGENERATE SOLUTIONS

Basic solutions play a critical role in the solution of linear programs.

Definition (Basic Solution): The special solution obtained by setting the
independent variables equal to zero and solving for the dependent variables is
called a basic solution.

Thus if (B.17) is the canonical system of (B.16) with basic variables x1, x2, . . . , xm,
the corresponding basic solution is xB = b̄ and xN = 0, i.e.,

x1 = b̄1, x2 = b̄2, . . . , xm = b̄m; xm+1 = xm+2 = · · · = xn = 0. (B.25)

Definition (Degenerate Solution): A basic solution is degenerate if the value
of one or more of the dependent (basic) variables is zero. In particular, the
basic solution (B.25) is degenerate if b̄i = 0 for at least one i.

BASIS

A set of columns (of a system of equations in detached coefficient form) is said to
be a basis if they are linearly independent and each of the other columns can be
generated from them by a linear combination.

Definition (Basic Columns (Activities)): In accordance with the special usage
in linear programming, the term basis refers to the ordered set of columns of
the original independent system (in detached coefficient form) corresponding
to the ordered set of basic variables of the canonical equivalent. The columns
of the basis are called basic columns (or basic activities).

Example B.9 (Basis) For example, the canonical equivalent of system (B.18) is (B.19)
with respect to variables (x2, x1). Columns corresponding to this ordered set of variables
in (B.18) are (

2 0
−2 1

)
.

It is easy to verify that these columns are linearly independent and any other column
can be generated from them by a linear combination and hence they form a basis. For
instance, A•4 = 1.A•2 + 3.A•1 in the original system of equations (B.18) and the same
linear combination also works in the canonical system (B.19)—see Exercise B.9. In the
canonical system it is easy to find what linear combination of basic columns will generate
column j; namely, the weights are the same as the coefficients in column j. Thus the
weights (1, 3) are the same as Ā•4 in the canonical system (B.19).
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B.6 PIVOT THEORY

The purpose of this section is to extend the discussion regarding properties of pivot
operations and other characteristics of pivot operations. The first important prop-
erty of the pivot operation is its irreversibility except in certain situations.

THEOREM B.8 (Canonical Form After a Pivot Operation) If a system
is in canonical form before a pivot operation, then it is in canonical form after the
pivot operation.

Proof. Suppose that the system is in canonical form with respect to the variables
x1, x2, . . . , xm, i.e.,

IxB + ĀxN = b̄.

Pivoting on ārsxs, where s > m, is the same as multiplying on the left by M given
by Equation (B.21), that is,

MxB +MĀxN =Mb̄. (B.26)

Column s −m of MĀ is er, as we have seen earlier. This together with columns
1, . . . , r − 1, r + 1, . . . ,m of M shows that the system is in canonical form with
respect to 1, . . . , r − 1, s, r + 1, . . . ,m.

COROLLARY B.9 (Inverse of a Pivot Operation) If a system is in canon-
ical form, the inverse of a pivot operation is a pivot operation.

COROLLARY B.10 (Pivoting on a Canonical Subsystem of a General
System) Let S be a subsystem of equations S1, S2, . . . , Sk that is in canonical
form and let E be the remaining equations E1, E2, . . . , El such that there are coef-
ficients of zero for basic variables in the noncanonical equations. That is,

IxB + ĀxN = b̄I : S
0xB + TxN = b̄II : E

If the pivot term is selected in an equation of S, then the corresponding subsystem
after a pivot operation is in canonical form; the inverse of the pivot operation is
also a pivot operation.

COROLLARY B.11 (Inverse of a Pivot Operation on a Subsystem) Con-
sider the systems S and E defined in Corollary B.10. If the pivot term is selected
in an equation E not in S, then the subsystem corresponding to {S,E} after a pivot
operation is in canonical form; the inverse of the pivot operation is not a pivot
operation on {S,E} unless {S,E} was in canonical form initially.

� Exercise B.15 Prove Corollaries B.9, B.10, and B.11.
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The second important property of the pivot operation is that there is a one-
to-one correspondence between the original system of equations and the system of
equations derived by pivoting. Furthermore, easily defined subsets of the original
and the derived systems are equivalent.

Definition (Pivotal Subsystem): The pivotal subsystem P is that set of equa-
tions of the original system corresponding to those selected for pivot terms in
a sequence of pivot operations.

It is clear that the number of equations in the pivotal subsystem increases or
remains the same during a sequence of pivot operations, depending on whether or
not the successive pivot terms are selected from among equations corresponding to
the pivotal system or from among the remainder.

THEOREM B.12 (Equivalence and Canonical Form) Let S′ be the system
obtained after a sequence of pivot operations on S using rows corresponding to P
of S, and let P ′ be the set of equations of S′ corresponding to the pivotal subsystem
P of S. The system S′ is equivalent to S; in particular, P ′ is equivalent to P and
moreover, P ′ is in canonical form.

THEOREM B.13 (Pivotal Subsystem Properties) The pivotal subsystem
P is independent and solvable.

� Exercise B.16 Prove Theorems B.12 and B.13.

THEOREM B.14 (Redundancy and Inconsistency Tracing Theorem) If
an equation E′

t of a reduced system is vacuous (or inconsistent), then in the original
system, Et is either redundant with respect to the pivotal system P or a linear
combination of the equations of P and Et can form an inconsistent equation.

Proof. Let S be the equations of the original system, P be the pivotal subset,
and R be the remainder. Let S′, P ′, and R′ be the corresponding equations after
pivoting. If equation Et in R is not originally vacuous but becomes so after pivoting,
then

λ1E1 + λ2E2 + · · ·+ λkEk + Et = E′
t, (B.27)

where (E1, . . . , Ek) are the pivotal equations (not necessarily the first k) and E′
t is

alternatively either a vacuous or an inconsistent equation. Hence, if E′
t is vacuous,

Et is dependent on the others.

The third important property of the pivoting operation is that it provides a
way to show whether or not two systems have the same solution set by trying to
reduce them simultaneously by pivoting step by step, each step using the same
pivotal variables in both systems. The same process will test the equivalence of two
systems.
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Definition (Homogeneous System): It is convenient at this point to recall the
definition of a homogeneous system. A system Ax = b is homogeneous if the
right-hand side vector is b = 0.

Definition (Homogeneous Solution): A solution x = xh is called a homo-
geneous solution associated with Ax = b, b = 0 or b �= 0, if Axh = 0. A
fundamental property of homogeneous solutions is that any scalar multiple of
a homogeneous solution is a homogeneous solution. A homogeneous solution
is called nontrivial if xh �= 0.

THEOREM B.15 (Equivalence of Homogeneous Systems) Two homoge-
neous systems Ax = 0 and Âx = 0 are equivalent if and only if it is possible to pivot
on both systems with respect to the same set of variables and after pivoting, the two
systems are identical or can be made so after row permutations.

Proof. Let us suppose first that it is possible to reduce two homogeneous systems
using the same set of pivot variables. We assume that the equations of the canonical
parts are reordered so that both subsystems are canonical with the same set of basic
variables. If the two systems are to be equivalent, it is necessary that their canonical
parts be identical (see proof of Theorem B.6).

Next let us suppose that the two homogeneous systems are equivalent. By
Theorem B.6 there is at most one equivalent canonical system with respect to a
fixed ordered set of variables for each system. Thus, by the definition of equivalence,
if it is possible to pivot on one system with respect to a fixed set of variables, it is
also possible to pivot on the second system with respect to the same fixed set of
variables.

COROLLARY B.16 (Equivalence of Linear Systems) Two systems Ax = b

and Âx = b̂ are equivalent if and only if Ax − bx0 = 0 and Âx − b̂x0 = 0 are
equivalent.

Proof. It is clear that if a linear combination of Ax = b results in Âx = b̂ then the
same linear combination when applied to Ax− bx0 = 0 also results in Âx− b̂x0 = 0.
The converse also is clearly true.

THEOREM B.17 (Equivalent Systems Have Same Solution Sets) Two
solvable systems have the same solution sets if and only if they are equivalent.

� Exercise B.17 Prove Theorem B.17.

The fourth important property of pivoting is that it provides a way to prove a
number of interesting theorems concerning the number of independent and depen-
dent equations of a system.
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THEOREM B.18 (Number of Equations in Equivalent Systems) Two
equivalent, independent, and consistent systems have the same number of equations.

Proof. Since the two systems are equivalent, independent, and consistent, it is
possible simultaneously to reduce by pivoting the two systems to canonical forms
that are identical. No vacuous equations can happen during the process because
pivoting is actually a sequence of elementary operations, so that by Theorem B.5,
the appearance of such equations would imply the presence of redundant equations
in the original systems, contrary to the assumption of independence. Therefore, the
identical canonical equivalents have the same number of equations as their respective
original systems.

The following three theorems are consequences of the above.

THEOREM B.19 (Equations in Equivalent Canonical Systems) Two
equivalent canonical systems have the same number of equations.

THEOREM B.20 (Number of Equations in the Canonical Equivalent) If
a system can be partitioned into r independent equations and a set of equations de-
pendent on it, then the canonical equivalent of the original system has r equations.

THEOREM B.21 (Independent Set Can Generate the Others) If a sys-
tem has a canonical equivalent with r equations, then any r independent equations
of the system can generate the remainder by linear combinations.

� Exercise B.18 Prove Theorems B.19, B.20, and B.21. Show that r in Theorem B.20
is the rank of the system.

B.7 NOTES & SELECTED BIBLIOGRAPHY

For additional discussions on canonical forms and pivoting see Dantzig [1963]. For a
discussion on LU factorizations and the numerical solution of systems of linear equations
see Linear Programming 2.

B.8 PROBLEMS

B.1 Find a basis for the solution sets of:
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(a)
x1 + 2x2 + 3x3 = 0
4x1 + 5x2 + 6x3 = 0
7x1 + 8x2 + 9x3 = 0.

(b)
x1 − x3 = 0
2x1 + 10x2 − 2x3 = 0
x1 + x2 + x3 = 0.

(c)
x1 + x3 = 0
x1 + 5x2 = 0. (d)

x1 + x2 − 4x3 + 2x4 = 0
3x1 + x3 − 3x4 = 0
6x1 + 3x2 − 11x3 + 3x4 = 0
2x1 − x2 + 5x3 − 5x4 = 0.

B.2 Determine whether or not there exist solutions to the following systems of equa-
tions

(a)
x1 + 2x2 + 3x3 = 0
4x1 + 5x2 + 6x3 = 0
7x1 + 8x2 + 9x3 = 1.

(b)

x1 + x2 − 4x3 = 2
3x1 + x3 = −3
6x1 + 3x2 − 11x3 = 3
2x1 − x2 + 5x3 = −5.

(c)
3x1 + 2x3 = 2

−2x1 + x2 = 0
6x2 − 3x3 = 4.

(d)

x1 + 2x2 + 3x3 + 4x4 = 5
6x1 + 7x2 + 8x3 + 9x4 = 10
3x1 + 3x2 + 3x3 + 3x4 = 3
2x1 + x2 − x4 = −2.

B.3 Give the values of λ for which the following system of linear equations

2x1 + 2x2 + 7x3 = 7
3x1 + (λ+ 5)x2 + (λ+ 11)x3 = 10
3x1 + (λ+ 3)x2 + 11x3 = 10

has (a) no solutions, (b) exactly one solution, and (c) infinitely many solutions.
B.4 Reduce the following system Ax = b to canonical form

x1 + x2 + 2x3 + x4 + x5 = 1
7x1 + 2x2 + 9x3 + 9x4 = 8
9x1 + 4x2 + 13x3 + 11x4 + 2x5 = 10.

(a) What is the rank of A? What is the rank of [A b]?
(b) Change the right-hand side of the third equation from a 10 to an 11. Show

that the system is infeasible by finding the infeasibility multipliers for this
system of equations. Now what is the rank of A? What is the rank of [A b]?

B.5 Show by a sequence of pivots and row permutations that the following canonical
systems are equivalent:

x1 +x6=1
x2 +x4 +x6=2

x3+x4+x5+x6=3
and

−x1+x2 +x4 =1
−x2+x3 +x5 =1

x1 +x6=1.

Use the result just obtained to determine the inverse of the following matrix:
(
0 0 1
1 0 1
1 1 1

)
,
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which consists of some of the coefficients of the system on the left. Explain
briefly where you got your answer. Change one of the coefficients in the second
system and show that the two systems are not equivalent in general.

B.6 Given the system
Ix+Bu = 0, (B.28)

where I is an m×m matrix and B is square and nonsingular, prove that in m
pivots one can convert (B.28) to an equivalent canonical form

B−1x+ Iu = 0. (B.29)

Discuss how this can be viewed as an algorithm for finding the inverse of B.
B.7 Let A be an m× n matrix and suppose that we pivot on element (r, s) of A in

the canonical form [Im | A] and in the resulting tableau exchange columns r
and m+ s to obtain [Im | Ā]. Show that if we pivot on element (s, r) of −AT in
the canonical form [In | −AT ] and in the resulting tableau exchange columns s
and m+ r, then we obtain [In | −ĀT ].
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von Neumann, J. (1937). “Über ein Ökonomisches Gleichungsystem und ein Verallge-
meinerung des Brouwerschen Fixpunkstatzes,” Ergebnisse eines Mathematischen
Kolloquiums, No. 8. Translated in Rev. Econ. Studies, 13, 1–9.

von Neumann, J. (1947). “On a Maximization Problem,,” (manuscript), Institute for
Advanced Study, Princeton, New Jersey, USA.

von Neumann, J. (1948a). “A Numerical Method for the Determination of the Value
and Best Strategies of a Zero-Sum Two-Person Game,” (manuscript), Institute for
Advanced Study, Princeton, New Jersey, USA.

von Neumann, J. (1948b). Private Communication on an Interior Method.



REFERENCES 417

von Neumann, J. (1953). “A Certain Zero-Sum Two-Person Game Equivalent to the Op-
timal Assignment Problem,” in H.W. Kuhn and A.W. Tucker (eds.), Contributions
to the Theory of Games, Vol. 2, Annals of Mathematics Study No. 28, Princeton
University Press, Princeton, New Jersey, 12–15.

von Neumann, J. and Goldstine, H.H. (1947). “Numerical Inverting of Matrices of High
Order,” Bull. Amer. Math. Society 53, 1021–1089.

von Neumann, J. and Morgenstern, O. (1944). Theory of Games and Economic Behavior,
Princeton University Press, Princeton, New Jersey.

W

Wegner, P. (1968). Programming Languages, Information Structures and Machine Orga-
nization, McGraw-Hill, New York.

Wets, R.J. (1984). “Programming Under Uncertainty: The Equivalent Convex Program,”
SIAM J. of Applied Mathematics, 14, 89–105.

Whiting, P.D. and Hillier, J.A. (1960). “A Method for Finding the Shortest Route Through
a Road Network,” Operations Research Quarterly 11, 37–40.

Wilkinson, J.H. (1961). “Error Analysis of Direct Methods of Matrix Inversion,” Journal
of the Association for Computing Machinery, 8, 281–330.

Wilkinson, J.H. (1963). Rounding Errors in Algebraic Processes, Prentice-Hall, Inc., En-
glewood Cliffs, New Jersey.

Wilkinson, J.H. (1965). The Algebraic Eigenvalue Problem, Oxford University Press, Ox-
ford and New York.

Wilkinson, J.H. (1971). “Modern Error Analysis,” SIAM Review, 13, 548–568.

Wiliinson, J.H. and Reinsch, C. (eds.), (1971). Handbook for Automatic Computation,
Vol. 2, Linear Algebra, Springer-Verlag, Berlin and New York.

Williams, H.P. (1985). Model Building in Operations Research, Wiley, New York.

Wittrock, R.J. (1983). “Advances in a Nested Decomposition Algorithm for Solving Stair-
case Linear Programs,” Technical Report SOL 83-2, Department of Operations Re-
search, Stanford University, Stanford, CA.

Wolfe, P. (1960). “Accelerating the Cutting Plane Method for Nonlinear Programming,”
J. Society for Industrial and Applied Mathematics, 9, 481-488.

Wolfe, P. (1962). “The Reduced-Gradient Method,” unpublished manuscript, RAND Cor-
poration.

Wolfe, P. (1963). “A Technique for Resolving Degeneracy in Linear Programming,” SIAM
J. of Applied Mathematics, 11, 205–211.

Wolfe, P. (1965). “The Composite Simplex Algorithm,” SIAM Review, 7, 42–55.

Wolfe, P. (1967). “Methods for Nonlinear Programming,” in J. Abadie (ed.), Nonlinear
Programming, North-Holland, Amsterdam, the Netherlands, 67–86.

Wolfe, P. and Cutler, L. (1963). “Experiments in Linear Programming,” in Graves, R.L.
and Wolfe, P. (eds.), Recent Advances in Mathematical Programming, McGraw-Hill,
New York, 177–200.



418 REFERENCES

Wright, M.H. (1976). Numerical Methods for Nonlinearly Constrained Optimization, Ph.D.
thesis, Department of Computer Science, Stanford University, Stanford, CA.

Wright, M.H. (1992). “Interior Methods for Constrained Optimization,” in A. Iserles (ed.),
Acta Numerica, Cambridge University Press, New York, NY, 341–407.

Wright, M.H. and Glassman, S.C. (1978). “FORTRAN Subroutines to Solve the Lin-
ear Least Squares Problem and Compute the Complete Orthogonal Factorization,”
Technical Report SOL 78-8, Department of Operations Research, Stanford Univer-
sity, Stanford, CA.

Wright, S.J. (1993). “A Superlinear Infeasible-Interior-Point Algorithm for Monotone Non-
linear Complementarity Problems, Technical Report MCS-P344-1292, Mathematical
and Computer Science Division, Argonne National Laboratory, Argonne, Illinois.

Wright, W. (1980). “Automatic Identification of Network Rows in Large-Scale Optimiza-
tion Models,” M.S. thesis, Naval Postgraduate School, Monterey, CA.

Y

Yamada, T. and Kitahara, T. (1985). “Qualitative Properties of Systems of Linear Con-
straints,” Journal of the Operations Research Society of Japan 28, 331–343.

Yamashita, H. (1986). “A Polynomially and Quadratically Convergent Method for Lin-
ear Programming,” Working Paper, Mathematical Systems Institute, Inc., Tokyo,
Japan.

Ye, Y. (1987). “Eliminating Columns in the Simplex Method for Linear Programming”,
Technical Report SOL 87-14, Department of Operations Research, Stanford Univer-
sity, Stanford, CA.

Ye, Y. (1990). “A ‘Build-Down’ Scheme for Linear Programming,” Mathematical Pro-
gramming 46, 61–72.
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